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Abstract

This work addresses the real-time simulation of nonlinear audio circuits. In this thesis, we use
the port-Hamiltonian (PH) formalism to guarantee power balance and passivity. Moreover, we
adopt a continuous-time functional framework to represent “virtual analog” signals and propose
to approximate solutions by projection over time frames. As a main result, we establish a
sufficient condition on projectors to obtain time-continuous power-balanced trajectories. Our goal
is twofold: first, to manage frequency-bandwidth expansion due to nonlinearities, we consider
numerical engines processing signals that are not bandlimited but, instead, have a “finite rate of
innovation”; second, to get back to the bandlimited domain, we design “virtual analog-to-digital
converters”. Several numerical methods are built to be power-balanced, high-order accurate, with
a controllable regularity order. Their properties are studied: existence and uniqueness, accuracy
order and dispersion, but also, frequency resolution beyond the Nyquist frequency, aliasing
rejection, reproducing and Peano kernels. This approach reveals bridges between numerical
analysis, signal processing and generalised sampling theory, by relating accuracy, polynomial
reproduction, bandwidth, Legendre filterbanks, etc. A systematic framework to transform
schematics into equations and simulations is detailed. It is applied to representative audio circuits
(for the UVI company), featuring both ordinary and differential-algebraic equations. Special work
is devoted to PH modelling of operational amplifiers. Finally, we revisit PH modelling within the
framework of Geometric Algebra, opening perspectives for structure encoding.
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Introduction

Context

This thesis is the result of a joint collaboration between UVI (my employer) and the S3AM !
team of the STMS ? laboratory at IRCAM ®. It is unusual on two aspects: it happened as a late
PhD, 12 years after the end of my studies, and it took place, for the last five years, as a part-time
project, in parallel of my job at UVI. I am very grateful to my employers for this opportunity,
their trust, their continuous support and for fully funding this PhD.

The UVI company UVI? is a french SME, founded in 1987 by Alain Etchart and Jean-
Bernard Celier with head-quarters in Paris and offices in US and Japan. It is specialised in the
creation of virtual instruments and digital audio effects for sound-design and music production.
UVT’s flagship product, called Falcon® (and the underlying UVI engine), is a multi-synthesis
workstation with sixteen synthesis types and more than ninety audio effects. It integrates signal
modelling (additive, subtractive, granular, FM, etc), physical modelling and algorithmic musical
event processing within the same environment. The aim of this thesis for UVI is to broaden the
range of audio systems that can be emulated in real-time by physical modelling of audio circuits.

The S3AM team Multi-physics audio acoustics and virtual analog modelling is an important
thread of research in the S3AM team for which the port-Hamiltonian formalism [MV92, VDSJ14|
constitutes an important backbone and a unifying language. This thesis is a followup on the work
of Falaize |Fall6, FH16a|] on PH audio circuit modelling (including the Wah-Wah [FH13|, the
Fender Rhodes|FH17], speaker modelling [FH20], etc) and (to a less extent) on the work of Lopes
[Lopl6] (in particular a conservative linearly-implicit method based on energy quadratisation
[LHE15]). During that time, Falaize wrote a symbolic-numerical Python toolbox dedicated to
PHS modelling and simulation called PyPHS [FH16b]. Earlier work in the team includes the work
of Cohen and Usciati on audio circuit modelling (including triodes) [Coh12, Tar12|. Since then,
ongoing work based on PHS have been dedicated to loudspeakers [LWH 20, I.H20], the vocal tract
[SHV19, WHS19, WHS20], Lie groups and (multi) symplectic integrators [CB17, CB19, BC19]
active and finite-time control [JRH"17, JDTT17, WANHR18, WANF 19|, the Ondes Martenot
[NHRB20], PHS realisability [NHB" 18] and magnetic hysteresis [NMHR20|. The team has been
involved in two port-Hamiltonian research projects: the ANR projects Hamecmopsys ® and the
ANR-DFG project INFIDHEM 7, and is also actively working on Volterra series and identification
methods [BHRI18, Boul8, DHR19].

. Sound Systems and Signals: Audio/Acoustics, InstruMents http://s3am.ircam.fr

. Science and Technology of Music and Sound (UMR9912) https://www.stms-1lab.fr
. Institut de Recherche et Coordination Acoustique et Musique http://www.ircam.fr
https://www.uvi.net/about-us

https://www.uvi.net/falcon

. https://hamecmopsys.ens2m.fr

. https://websites.isae-supaero.fr/infidhem/

oUW
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Objectives

To simulate nonlinear electronic audio circuits, we consider the class of open, power-balanced
multi-physical systems. In this context, port-Hamiltonian systems (PHS) offer a structured
representational framework capable of dealing with energetic, algebraic and dynamical properties.
This thesis aims at designing a set of mathematical and computational methods that

1. accurately describe targeted systems in a modular way,

2. propose a systematic approach to automate modelling and real-time simulation of electronic
audio circuits,

model dynamical systems as port-Hamiltonian Systems,
simulate PHS in the continuous-time domain,

numerically preserve the power-balance of the approximated PHS,

S S

reproduce the regularity of continuous-time solutions.

Short literature overview

Virtual analog audio Modelling of (vintage) audio circuits is categorised in both academia
and audio markets under the term virtual analog (VA) [DSS09, Sti05, VHO6, VFSZ10, VBS*11,
D’A14, Werl6, EGZ17, EPPB17a, BVS20]®. Motivations for VA modelling are multiples: 1)
preserving the legacy of instruments and audio effects from obsolescence (old components are often
fragile or discontinued), 2) capturing the pleasant (and sometime complex) behaviour of analog
designs that is not easily reproducible by direct digital means, 3) simplifying the maintenance by
replacing (heavy, expensive, fragile) hardware by software. Significant research has been devoted to
the simulation of synthesiser filters [SS96, Huo04, Hél09, Pd13], equalisers [AB03a, SH11]|, guitar
amplifiers [PY, DZ11b, DHZ11, Macl2a, Coh12], modulation effects [Huo05, EFHZ14, Mac16],
distortion and saturation [HDZ11, EZ16, Holl6, HZ16|, dynamic processors [AB03b, GMR12,
GEZ17], analog delay and reverberation [BACO06, RS10, BP10, HP18]. Modelling approaches
divides in black-box models (which aim at reproducing the input-output behaviour of systems
disregarding their internal details) and white-box models (which by contrast decompose systems
into networks of known elementary components). Black-box modelling approaches in audio
include Volterra series and block models [BCD84, BTC83, EZ18, DHR19, EZ16]|, kernel methods
[SWO06, GE13] and neural networks [WDV19, PB19, MRBR20]. White-box approaches (which
we consider in this thesis) can be categorised in two groups: state-space methods (based on
Kirchhoff variables) [YAS10, DHZ10, HZ11, HZ15, FH16a] and Wave Digital Filters (based on
wave variables) [Fet86, DSS09, Bil04, WBSS18|. Energy-conserving methods in audio have been
considered in [Bil05, Bil0g, THB14, CvW15a, CvW15b] and anti-derivative based anti-aliasing
in [PZLB16, BEPV17, BEV17, MH17, Hol20, Alb20, Car20|. Note that VA audio often involves
several physical domains within a single device (electric, magnetic, acoustic, mechanical, even
optical). The port-Hamiltonian formalism is a natural candidate to deal with multi-physics: using
power exchange as the common mean of interaction between physical domains.

Port-Hamiltonian Systems and Geometric Numerical integration The PH formalism
[MV92, VDSJ14, VdS17] lies at the intersection of network modelling [Pay61], differential geometry
[O1v00] and Geometrical Numerical Integration (GNI)”. The goal of GNI is to propose numer-
ical integration methods (see [HNWO93, HW96, BGO08, Ise09]) which (in addition to numerical

8. An overview of VA (up to 2011) can be found in [PV11]
9. See [HLWO06] and references therein for an overview of the domain.



accuracy) preserve geometric properties of the flow of differential equations such as symplecticity
(see [WeiB3|), first-integrals (such as the energy), time-reversibility, passivity (for dissipative
systems) or group structure (in Lie group integrators [IMKNZ00, Cel03]). The preservation
of geometric invariants leads to improved qualitative and quantitative solutions in particular
over long time scales. Unconditionally energy-preserving (resp. dissipating) methods have been
proposed in [Hail0, HL14, CMM™*09, CGM ™12, CMOQ10] (An automatic consequence of energy-
preservation /passivity is the stability of simulated nonlinear systems). In particular, numerical
methods for PHS have been considered in [KL19] (based on symplectic integration) and [CH17]
(energy preserving/dissipating). In this thesis, our main geometric focus is on the power-balance
of physical systems, i.e. exact energy preservation for conservative systems and monotonous
energy decay for dissipative systems.

Thesis outline

This thesis is structured in 4 parts described below.

Power-balanced modelling of electronic audio circuits Starting from the netlist descrip-
tion of an electronic circuit, revisiting state of the art, methods are proposed to automati-
cally generate different PHS representations (Kirchhoff-Dirac structure, Hybrid semi-implicit
algebro-differential equations, input-state-output ordinary differential equations, thermodynamic
embedding, etc). This part is meant as a guide for practitioners and implementers, where the
PHS approach is favoured over classical circuit modelling approaches which are already well-
documented such as modified nodal analysis. A particular attention is paid to the usefulness
of each representation to derive efficient simulations. We also closely consider the sequence
of transformations that are required to convert between these representations. Wave-variables
formulations are recalled and a side by side comparison of network modelling using bond-graphs
and Wave Digital Filters is proposed to highlight their striking and often unnoticed similarities.

Time-continuous power-balanced numerical methods In this thesis, high-order power-
balanced numerical schemes are proposed. Their common ground and distinctive attribute is
to exclusively consider continuous-time signal representations in functional spaces. The word
discretisation is used in a generalised sense as the subspace representation of signals with a finite
number of parameters per unit of time. This specific approach exhibits interesting connections
between numerics, signal processing, generalised sampling theory, and physical modelling. A
particular attention is paid to signal smoothness and rejection of spectral aliasing artefacts caused
by system nonlinearities. The proposed approach relies on

1. piecewise parametric representation of non-bandlimited signals with a controllable regularity
order and a finite rate of innovation,

2. appropriate choices of signal spaces and approximations preserving the continuous-time
power-balance,

3. post-simulation continuous-time anti-aliasing filters and resampling.

An advantage of the proposed approach, is that the same functional discretisation methodology
can be used to address both ordinary and differential-algebraic equations (which also applies to
partial differential equations).

Electronic components and circuits: applications and results The proposed modelling
framework and numerical discretisation methods are evaluated on a number of representative
nonlinear audio circuits (covering both ODE and DAE) used by guitarists, synthesiser players and
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sound-engineers. In particular, we consider the simulation of fuzz, overdrive and self-oscillating
circuits. We also consider the simulation of (linear) systems having poles above the Nyquist
frequency thanks to the extended generalised bandwidth of high-order methods. A chapter is
dedicated to passive modelling of the operational amplifier. Indeed, the operational amplifier
is a key component of analog electronics, but despite the amount of literature on the topic, we
found that a simple passive model of the operational amplifier compatible with port-Hamiltonian
modelling was still missing.

Towards Geometric Algebra The last part of this thesis is prospective. We explore the
potentialities of Geometric Algebra (GA) in the context of port-Hamiltonian modelling. Geometric
Algebra is an elegant graded algebra unifying the Euclidean inner product and Grassman exterior
product into a single product called the geometric product. This unification has far reaching
consequences since complex numbers, quaternions, octonions, spinors, exterior algebra, etc, can
all be generated from simple axioms as sub-algebras of Geometric Algebra. Furthermore, since
PH theory is deeply rooted in differential geometry and coordinate-free representations there is
a natural match with GA. Given the scope of this thesis, we can only scratch the surface. In
particular we consider intrinsic representations of linear transforms and Dirac structures using
Geometric Algebra.

Publications

[MH17| Miiller Rémy, Thomas Hélie, "Trajectory Anti-Aliasing on Guaranteed-Passive
Simulation of Nonlinear Physical Systems", 20th International Conference on Digital
Audio Effects (DAFz-17), 2017.

[MH1S| Miiller Rémy, Thomas Hélie, "Power-Balanced Modelling Of Circuits As Skew
Gradient Systems", 20th International Conference on Digital Audio Effects (DAFz-
18), 2018.

[MH19| Miiller Rémy, Thomas Hélie, "A minimal passive model of the operational amplifier:

application to Sallen-Key analog filters", 20th International Conference on Digital
Audio Effects (DAFx-19), 2019.

[MH20| Miiller Rémy, Thomas Hélie, "Fully-implicit algebro-differential parametrization of
circuits", 20th International Conference on Digital Audio Effects (DAFz-20), 2020.

[NMHR20| Judy Najnudel, Rémy Muller, Thomas Hélie, David Roze, "A power-balanced
dynamic model of ferromagnetic coils", 20th International Conference on Digital

Audio Effects (DAFx-20), 2020.
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Port-Hamiltonian Systems
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The foundations of the Port-Hamiltonian formalism are recalled in this chapter. We restrict
the presentation to the finite-dimensional settings which is sufficient to cover lumped electronic
circuits. First, general results on existence, uniqueness and stability of state-space systems and
Differential Algebraic Equations are recalled in section 1.1 and section 1.2, then the constitutive
parts of port-Hamiltonian systems (power-balanced interconnections, energy-storing elements,
passive algebraic components and external ports) are presented in section 1.3. Finally since the
Wave Digital Filter (WDF) formalism [Fet86] is also an important modelling tool for physical
modelling and virtual analog electronics, we try to bridge the gap between both formalisms
by closing this chapter with section 1.4 on wave variables representations of port-Hamiltonian
Systems.
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1.1 Reminder on dynamical systems and ODE

This section recalls definitions and results on dynamical systems and stability (see [KG02]).

1.1.1 State-space representation, existence and uniqueness of solutions
We consider dynamical systems modelled by a finite number of coupled ordinary equations
iB(t) = f(ta CL'(t), u(t))v (11&)

where f: (t,x,u) € R x R™ x R™ — f(¢,x,u) € R™ is the vector field function, & denotes the
time derivative ! of the state variable  and u denotes the input variable of the system. The state
equation (1.1a) is often associated with an output equation

y(t) = h(t,z(t),u(t)), (1.1b)

where h : (t,x,u) € R x R™ x R"™ — h(t,x,u) € R™ is the observation function.

Remark 1.1. If the input is known explicitely (e.g. an external source or a state feeback
u(t) = g(x(t))). Then, it is possible to rewrite (1.1a) to remove the dependence on u as

@(t) = f(t, z(t)), with Ft,x) = f(t,x, u(t)).

Furthermore, by including time ¢ into an extended state z = (¢,x) and adding the differential
equation £ = 1, it is always possible to obtain an autonomous system

o o ~ T
(1) = £(=(1). with f(z) = [1, F(t.%)]

To predict the future state of the system from its initial value xg at time tg, the following
Cauchy problem must have a unique solution.

Definition 1.1 (Cauchy problem). Let T = [to, 1], X¢ an initial condition in X C R™ and
f:T xX — R” The Cauchy problem is to find a unique function « : T — X such that

z(t) = f(t,z(t)), VteT, (1.2)
x(tg) = xo, t = to. .

A key property to establish existence and uniqueness, is that f must satisfy a Lipschitz condition.

Theorem 1.1 (Local existence and uniqueness (|[KG02| p.88)). Let f(t,x) be piecewise
continuous in t and satisfy the local Lipschitz condition

|£(t,x1) = ft,x2)|| < Llix1 —xafl, (1.3)

Vx1,x3 € B={x€R" | |[x —xq|| < r}, Vt € [to,t1]. Then there exists some h > 0 such
that the state equation (1.2) as a unique solution over [to,to + h].

The previous theorem based on the Banach fixed point theorem only requires a simple Lipschitz
condition but does not recover the maximal existence domain of solutions (even in the linear
case). For stiff systems (when the step size h is bigger than some time constants of the system),
the following theorem, based on Newton iteration, yields better estimates.

1. In this thesis, we use capital x = f(x) for vectors in R™* and slanted @&(t) = f(x(t)) for functions of time.
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Theorem 1.2 (Stiff existence and uniqueness [Deu87]). Let f € C(X), X C R". For the
Jacobian A := f'(xq), assume a one-sided Lispchitz condition

(u, Au) < plull?, (1.4a)
where (-, ) denotes an inner product in R™, and ||-|| the associated norm. Assume that

| £ ()| < Lo, Vx € X, (1.4b)
|/ (0) = £/ (v)|| < Laflu—v]|, Yu,v e X. (1.4c)

Then, for X sufficiently large, existence and uniqueness of the solution of (1.2) holds for

h unbounded if ph < —1 and  h < hU(uh) if ph> -1, (1.44d)
_ 1 1@ 0

where h = ———, and  V(x):=<7 al+z) =70, (1.4e)
\/2LOL2 1 z = 0.

1.1.2 Lyapunov stability and LaSalle invariance principle

We recall results regarding Lyapunov stability for autonomous dynamical systems of the form

z = f(x), (1.5)

about an equilibrium point X € X, where f : X — R” is locally Lipschitz. Without loss of
generality, one can consider systems for which the equilibrium point is zero?. Definitions and
properties presented below are for systems whose equilibrium point is the origin.

Definition 1.2 (Lyapunov stability ([KG02] p.112)). The equilibrium point x = 0 of (1.5)
is

e Stable if, for all € > 0, there exists d. > 0 such that

|2(0)]| < e = |2(®)|| <€, VE>0, (1.6a)
e Unstable if it is not stable,
e Locally Asymptotically Stable (LAS) if it is stable and § can be chosen such that

|2(0)]| <6 = lim x(¢) = 0. (1.6b)

t—o00

o Globally Asymptotically Stable (GAS) if it is stable for X = R™ and if

lim z(t) =0, Vax(0) € R". (1.6¢)

t—o0

As illustrated on figure 1.1, oscillatory solutions can be stable in the sense of Lyapunov. The
stability of a system can be proved using a Lyapunov function (also called a storage function).

2. Indeed the variable change z = x — X, defines an equivalent system 2 = g(z) with 2 = & = f(x+ 2z) =: g(2),
and g(0) = f(x) = 0.
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Definition 1.3 (Lyapunov function). Let X be an open subset of R™ containing the equi-
librium point X = 0 for (1.5). The function V' : X — R is called a Lyapunov function
if

Cl. V is of class C! on X,

C2. V(x) =0 and V(x) > 0 for all x € X'\ {x},

C3. VV(x)- f(x) <0 forall x € X.
If the inequality is strict on X' \ {X}. Then, the Lyapunov function is said to be strict.

Note that, along a given trajectory of the dynamical system, one has

% V(z(t)) = VV(x(t) - f(z(t)) < 0.

Therefore, if V' is a Lyapunov function, then the value of V' is nonincreasing along any trajectory.
Theorem 1.3 (Lyapunov stability theorem). If there exists a Lyapunov function V' for

(1.5). Then, the equilibrium point X = 0 is stable. Moreover, if V is strict. Then, X =0 is
LAS. And if V is proper®. Then, x is GAS.

a. V is said to be proper whenever V~'(]0, L]) is a compact subset of X for every L € V(X). When
X =", this is equivalent to V(z) — 400 as||x|| — +oo

The Lyapunov theorem is illustrated on Figure 1.1 for the stable, asymptotic stable and unstable

cases.
When a storage function V' does not satisfy all hypotheses of the Lyapunov’s theorem, LaSalle’s
invariance principle allows useful extensions, based on the following definitions.

Definition 1.4 (Invariant set). A set M is said to be invariant for a trajectory x(t) of a
dynamical system (1.5) if

z(0) e M = z(t) e M, Vt e R. (1.7a)

If a solution belongs to M at a given instant. Then, it belongs to M for all past and future
instants. It is said to be positively invariant if

z(0) EM = x(t) € M, Vt e RT. (1.7b)
If a solution belongs to M at a given instant. Then, it belongs to M for all future instants.
We say that x(t) approaches a M as t goes to infinity, if for all € > 0, there is 7" > 0 such that
dist(x(t), M) <e, Vt>T, (1.8)
where dist(p, M) denotes the shortest distance from a point p to a set M

dist(p, M) := inf ||p — x| . (1.9)
xeM
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Theorem 1.4 (LaSalle invariance principle ([KGO02| p. 128)). Let 2 € X' be a compact
set that is positively invariant with respect to (1.5). Let V : X — R be a continuously
differentiable function such that VV (x) - f(x) < 0 in Q. Let E be the set of all points

E={xeQ|VV(x)- f(x)=0}. (1.10)

Let M be the largest invariant set in E. Then, every solution starting in ) approaches M
ast — 0o.

In this case, one does not talk about stability, but about convergence. The interest of this
principle is that it remains valid for non positive definite functions V.

1.1.3 Open systems and passivity

In this thesis, we have a particular interest in nonlinear open systems with p control inputs
and p outputs, which admit the state-space representation

e o)

where x(t) € R™, u(t) € RP, y(t) € RP are respectively the state vector, the input and the output
of the system. Unfortunately Lyapunov stability theorem rarely applies (e.g. constant inputs u).
The notation of passivity is a powerful tool for the analysis of nonlinear open systems.

Definition 1.5 (Passivity ([KGO02| p. 236)). The system (1.11) is said to be passive if there
exists a continuously differentiable positive semidefinite function V(x) (called the storage
function) such that

(uly) > VV(x)- f(x,u), V¥(x,u)€R" x RP. (1.12)

Moreover, it is said to be

e lossless if (uly) =VV(x)- f(x,u),

o strictly passive if (u|y) > VV(x) - f(x,u) + ¢(x) for some positive definite function
$(x).

This definition shows that a passive system can only feed the function V through its input
ports power (u|y). A natural candidate for this storage function is the (Hamiltonian) energy
of the system under study: this vision is used throughout this thesis and is the cornerstone of
Port-Hamiltonian systems.

Passivity can be related with Lyapunov stability. Indeed, when the input of a system is zero,
the passivity condition implies that %(V ox) < 0. LaSalle invariance principle can be applied and
proves that the system converges toward the largest invariant set where %(V ox) = 0. Moreover,
the Lyapunov stability theorem ensures that the system is stable when V' is positive definite.



12 Chapter 1. Port-Hamiltonian Systems

—— Asymptotically stable x(t-»«)-0

—— Stable ||x(t)]| <€

—— |Instable ||x(t)]| > €
® x(to)

........ 6=¢

X1

(a) 2D orbits in the plane (z1,z2)

V(x)

—— Asymptotically stable V<0 X
. 1
—— Stable V=0

—— Unstable V>0
® x(to)
........ {x | V(x) = V(x(to)) }

(b) 3D orbits in the plane (z1,z2, V(x = (21, z2)))

Figure 1.1 — (Lyapunov stability theorem) Stable orbits (orange), Asymptotically stable orbits
(blue) and instable orbits (red). The stable orbit converges to a limit cycle for which £V (z(t)) = 0.
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1.2 Reminder on Differential Algebraic Equations (DAE)

Results from this section are based on [Rhe90, Rei91, KM06, Haill| and references therein.
The most general form of a differential-algebraic equation over the reals is (for m,n € N)

F(t,z(t),2(t)) = 0, (1.13a)

with F : 1 x Dy x Dy — R™, where I C R is a closed interval and Dy, Dy C R” are open.
Existence and uniqueness of solutions are considered in the context of initial value problems,
when we additionally require a solution to satisfy the condition

CB(tD) = X(- (1.13b)

Here, we recall general results about classical (continuously differentiable) and weak solutions
(in the sense of distributions) of DAE of the form (1.13a) with initial condition (1.13Db).

Classical solutions

Definition 1.6 (Classical DAE solution [KMO06]). Let C*(I, R™) denote the vector space of
all k-times continuously differentiable functions from the real interval I into the vector space
R™.

1. A function & € C1(I,R?) is called a solution of (1.13a) if it satisfies (1.13a) pointwise.

2. The function @ € C*(I, R") is called a solution of the initial value problem if it addi-
tionnaly satisfies the initial condition (1.13b).

3. An initial condition (1.13b) is said to be consistent with F', if the associated initial
value problem has at least one solution.

A problem is called solvable if it has at least one solution.

Generalized solutions Many interesting aspects of DAEs (e.g. inconsistent initial values,
impulsive solutions) can not be studied using classical solutions. Switched systems, ideal diodes,
etc are common sources of non-differentiability which emphasise the need for generalised solutions
beyond those of definition 1.6. To this end, consistency conditions and smoothness can be relaxed
[Tre09] by allowing generalized functions or distributions (with the difficulty that pointwise
evaluation is not well-posed anymore, so that initial value problem cannot be formulated directly).
A thorough study of distributional DAFE is out of the scope of this thesis. We refer the reader to
the references [KMO06, AB08, Tre09]. However, we note that the DAE solutions of methods from
chapter 5 can be interpreted as weak solutions arising from Galerkin projection in time.

1.2.1 DAE Indexes

The motivation to introduce an index is to classify different types of differential-algebraic
equations with respect to the difficulty to solve them analytically as well as numerically. Several
kind of DAE indexes have been introduced in the literature: differentiation index, strangeness
index, perturbation index, tractability index, geometric index, structural index,etc. Their
respective roles and definitions have been summarised in the overview paper [Mech12|. Here we
only consider the differentiation and the perturbation indexes.

3. This reference is dedicated to Distributional Differential Algebraic Equations generalising the usage of weak
solutions (commonly used to solve partial differential equations) to DAE.
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Differentiation index

The differentiation index determines how far the differential-algebraic equation is from an
ordinary differential equation (for which analysis and numerical methods are well-established).

Definition 1.7 (Differentiation Index ([Haill] p.31)). Equation (1.13a) has differentiation
index m if m is the minimal number of analytical differentiations
F(t,x,z) =0 d F(t,x,z) =0 ™ F(t,xz,z) =0 (1.14)
T, )= — T, )= — T, x) = :
) ) 9 dt 7 ) ) dtm ) )

such that equations (1.14) allows to extract by algebraic manipulations an explicit ordinary
differential system @ = g(u) (called the "underlying ODE").

Perturbation index

Complementary to the differential index, one can define the pertubation index.

Definition 1.8 (Perturbation index [TB99]). Equation 1.13a is said to have perturbation
index m along a solution x(t) if m is the smallest integer such that, for all functions (t)

having a defect €(t) given by '
F(t,z,x) = €(t), (1.15a)

there exists an estimate
m—1
|20 = &0 = Cllxo = %ol + 3 supl|e® ()] (1.15b)
k=0

for which the expression on the right hand side is sufficiently small and C' is a constant that
depends only on the function F' and on the length of the time interval.

1.2.2 Semi-explicit DAEs

In this thesis, we consider semi-explicit DAE, that is systems admitting a semi-explicit form

Semi-explicit DAE with differential index-1

Consider differential-algebraic systems governed by equations of the form

= f(x, z),
fl@z) (1.16)

0= g(m7 Z)7
with no occurrence of 2. Differentiating the second equation of (1.16) with respect to time, if the

matrix g—g(m, z) is invertible in a neighbourhood of the solution, one obtains an ODE on z.

__ [ag (@, 2) f (=, 2).

9z @ Z)}

In practice it is not necessary to explicitly know the ODE on 2: if consistent initial values
satisfy 0 = g(xo, zo) and if the matrix g—g(xo, zp) is invertible, then the implicit function theorem

1
%9
ox
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guarantees the local existence of a unique function ¢(x) such that 0 = g(x,z = {(x)). The
problem then reduces locally to the ordinary differential equation

& = f(x,((x)).

Existence and uniqueness of solutions can then be established using theorem 1.1 p.8.

Semi explicit DAE with differential index-2

Consider differential-algebraic systems governed by equations of the form

T = f(m7z)7 (117&)
0=g(x).
Here, differentiation of the second relation with respect to time leads to the hidden constraint
0=g'(x)f(x, 2). (1.17b)

If the matrix c’% [g'(x) f(x,2)] is invertible in a neighborhood of the solution, then & = f(z, z)
and (1.17b) constitute an index 1 problem and differentiation of (1.17b) yields the missing
differential equation for z. If the initial values satisfy 0 = g(x¢) and 0 = g'(x¢) f (%0, zo), we call
them consistent. If in addition the matrix g’ (XO)%(XO, zg) is invertible, the implicit function
theorem implies the local existence of a function {(x) satisfying g’'(x)f(x,z = {(x)) =0 in a
neighborhood of x¢. We thus obtain a differential equation on a manifold, (see [Rhe90, Haill])

= f(x,{(x)), where z(t) e X = {xeR™ | g(x) =0}. (1.17c¢)

Systems (1.17a) are called differential-algebraic equations in Hessenberg form of index 2.

Example 1.1 (Linear state space DAE). Linear state space systems can be extended to
state-space DAEs described by equations

Ei = Az + B
{ T = Azt bu (1.18)

y =Czx + Du

where A, B, C, D are matrices and E is a singular matrix. A typical example in electronics
comes from the application of Modified Nodal Analysis® to VRLC circuits using node
voltages as state variables. Many results are available for the class of Linear DAE stemming
from the properties of the matrix pencil (E, A) (see [KMO6, p. 13]).

a. The matrix E can be singular when the node voltages cannot all be expressed as a function of voltage
sources and capacitor voltages.

1.2.3 Singular perturbations

Consider singularly perturbed systems governed by equations of the form

{?Zf@ﬁ% with 0<e<1. (1.19)
€z = g(iU,Z),

The limit case, € — 0, yields an index one problem in semi-explicit form. This system may be
proven to have an e-expansion where the expansion coefficients are solution to the system of
DAEs that we get in the limit of equation (1.19).



16 Chapter 1. Port-Hamiltonian Systems

Example 1.2 (Autonomous Van der Pol oscillator [HW96]). The Van der Pol oscillator
is governed by €Z + (22 — 1)Z + z = 0 (in Lienard coordinates). Introducing the auxiliary
variable x := €z + %(23 — z) yields a singular perturbation problem

T=—z with limit case as e — 0 T=—z

€ =x— (%Z?’ —2) the semi-explicit index-1 DAE 0=z— (%23 —2)
Differentiating the algebraic equation yields = (22 — 1)2. Substituting # = —z yields a
system of ODEs (where the ODE on z can be solved independently of x)

z

T = -z, z:—ZZ_l.

1.2.4 Existence and uniqueness of solutions

A major difficulty to study existence and uniqueness of DAE is that not all of the analytical and
numerical properties of differential-algebraic systems are completely understood. Several existence
(and uniqueness) theories have been developed for classes of DAE with increasing levels of difficulty
(and indexes). An overview can be found in [Gea71, Rhe90, Rei91, HW96, HLR06, KMO06, Haill].
General theorems for DAE of any index can be found in [KXMO06|. However pre-requisites are too
numerous to be reproduced here.

Semi-explicit Index-1 DAE

In this thesis, we focus on semi-explicit hybrid circuit formulations (see section 2.3.3 p.57)
with differential DAE index 1. This choice is motivated by the following excerpt from [dLVR13]:

Under passivity assumptions, the index of nodal models is known to be not greater than two,
according to the results in [Tis98, EST00]. (...) By contrast, recent research has been focused on so-
called hybrid models (...) their index does not exceed one in passive contexts [IT10, ITT12, TI10].

We have seen that for semi-explicit DAE of differential index 1 such as (1.16), one can use
the implicit function theorem to establish the existence of an equivalent ODE. Then classical
existence and uniqueness of DAE solutions can be obtained through the Lipschitz conditions of
theorem 1.1 p.8.

Because of this, until the work of Gear [Gea71], implicit systems of the form (1.13a) were
usually transformed into ordinary differential equations (1.5). However this approaches suffers
from two drawbacks: 1) closed-form expression of function inverses can be either inexistent or
inefficient; 2) classical existence and uniqueness theory is too restrictive on the simulation step
size h for stiff ODE .

An alternative strategy, is to use theorem 1.2° which recovers the full existence domain for
linear ODE. However, as often with Newton iteration, practical conditions are not easy to obtain.
It is now acknowledged that it is often preferable to develop methods that operate directly on the
given differential-algebraic equations. Practical existence and uniqueness condition, exploiting
particular forms of DAE, remains an important subject of research that we try to tackle in
section 5.3 p.135.

4. Reduction of DAE to ODE can typically yield infinitely stiff ODE.

5. This theorem is based on functional Newton iteration rather than the fixed-point theorem. Note that in
chapter 6 p.6 we use functional Newton iteration to show that exponential integrators arise as optimal Newton
pre-conditioners for stiff ODE.
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1.3 Introduction to port-Hamiltonian Systems

Let F denote spaces of flows (e.g. currents) and £ the conjugated spaces of efforts (e.g.
voltages) formally defined in definition C.19 p.284 below. From a network modelling perspective,
lumped parameter physical systems are naturally described by [VdS17, p.149] (see fig. 1.2)

e cnergy storing elements described by a storage structure (see definition 1.18 p.25)
S C Fs x &g (1.20a)
e memoryless passive elements described by a resistive structure (def. 1.19 p.27)
R C Fr X &R, (1.20b)
e power-conserving interconnections formalised by a Dirac structure (def. 1.14 p.20)
DC FgxEgxFrxErXFpxEp. (1.20¢)
e external ports to interact with their environment in the space
Fp x Ep. (1.20d)
A coordinate-free description of Port-Hamiltonian systems is given by the following definition.

Definition 1.9 (port-Hamiltonian System). A port-Hamiltonian System Y. is defined by the
composition (see see fig. 1.2 and definition 1.17 below)

S:=(S|DIR) C FpxEp. (1.21)

The constitutive parts of this modular framework are detailed below: Dirac structures are
considered in section 1.3.1, energy storage structures in section 1.3.2, and passive memoryless
elements in section 1.3.3. Finally, the PH ODE and DAE representations used in this thesis are
detailed in sections 1.3.4 and 1.3.5.

External ports

Resistive
structure

Energy storage
structure

Figure 1.2 — Graphical description of a Port-Hamiltonian System.
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1.3.1 Power-conserving elements (Dirac structures)

A foundation of PH modelling, is the notion of power-conserving interconnections which
are mathematically formalised by Dirac structures (see electronic examples in table 1.1). The
study of their mathematical formalisation and different representations is a key aspect in the
port-Hamiltonian framework. After preliminary recalls from [VdS17, VDSJ14|, we define Dirac
structures, examine their matrix representations (to be used in this thesis) and their composability.
Finally we comment and extend some of the examples in table 1.1.

Name Component Equations
Open circuit o—/o_]:_o f=0,eeR
‘ e
Short circuit s com— f, o e=0,feR
‘ e
f1 f2
o—p—— P —<—0
el 0 —p b4
Gyrator €1 D Q €9 =
€9 1% 0 f2
f1 p)
o
e 0 —«
Transformer e1 es L h
fo a 0 e
O O
O€4——0O e O4——O e O4——0O
Jiy €1 Try €L InY en
Parallel e1=...=¢, €R
. —— R
connections fit...+fn=0
oO4——O <4——0O <4+“—0
fiy el fk; €L fn; en
Serial 1=...=fmeR
. »—————J 0——————l f fn
connections e1+...+e, =0

PCB Kirchhoff Laws

Table 1.1 — (power-conserving Dirac structures) common examples in electronics.
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Preliminary definitions

Interconnected physical systems interact through power exchange. Here we give definitions of

flow, effort and power spaces to formalise power exchange in networked structures.

Definition 1.10 (flow and effort spaces). Let F be a linear space (the space of flows). Its
dual space is the set € = F* of linear functionals e : ¥ — R (the space of efforts).

Once the notion of dual flow and effort spaces is defined, one can define power as follows

Definition 1.11 (power). Denote (-|-) : F* x F — R the duality product between F and
& = F*. The product space B := F x & is called the space of bonds (or conjugated power
variables), with power P := (e|f). This power is related to the quadratic form on B

Q((f,e)) :==2(e|f), V(f,e) e F x €. (1.22)

In this thesis, we only need F ~ R", (e.g. the space of currents) and its dual £ ~ R" (e.g.
the space of voltages) while P = (e |f) = e'f denotes electrical power °.

Definition 1.12 (Canonical bilinear form). The product space B = F x &, is equipped with
a canonically defined symmetric bilinear form ((-,-)) induced by the quadratic form @

(((f1,e1), (f2, €2))) := (e1|f2) + (ex [ 1) . (1.23)

The bilinear form (1.23) is indefinite® but non-degenerate®. It gives B the structure of a
pseudo-euclidean space (or Krein space, see C.14 p.283) equipped with (-,-);z = ((-,-)).

a. i.e. its metric matrix has both positive and negative eigenvalues (see section 1.4.2 p.36).
b. in finite dimension, this is equivalent to rank (((-,-))) = dim B = 2n, (i.e. the metric is invertible).

Remark 1.2. The bilinear form ((-,-)) arises from the polarization identity ((u,v)) =
1 (Qu+v) —Q(u) — Q(v)). Indeed one easily proves using definition (1.22) that

(((f1,e1), (f2,e2))) = % (Q ((fr,e1) + (f2,€2)) — Q ((f1,€1)) — Q ((fz,ez)))
= (e1+ e |[fi +f2) — (e1[f1) — (e2[f2) = (e1[f) + (e2[f1).

Definition 1.13 (Orthogonal complement). Consider a subspace D C B = F x £. Its
orthogonal complement D+ with respect to the inner product (-, -) g is defined by

Dt = {fu=(fy,en) €B | (u,v)p=0, Vv=(f,e)€B}. (1.24)

Remark 1.3. If dimF = n, then dimB = 2n. Furthermore, as the bilinear form is
non-degenerate, it follows that if dim D = d then dim D+ = 2n — d.

6. The PH framework also applies to more general spaces, possibly infinite-dimensional, to describe e.g. Partial

Differential Equations (see [JZ12, DMSB09, VDSJ14]).
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Dirac structures

Definition 1.14 (Dirac structure). A subspace D C B = F x & is a (constant) Dirac
structure if it is self-orthogonal with respect to (-,-)z (so that dimD = dim F = dim¢&.) i.e.

D =D, (1.25)

Corollary 1.1. Let (f,e) € D = D' C B, then from equation (1.24) and equation (1.23), a
Dirac structure defines a power conserving relation between the variables (f,e), that is

(((f,e),(f,e))) =2(e|f) =0. (1.26)

Proposition 1.1. A set D C B = F x & is a Dirac structure if and only if (e|f) =0 for
all (f,e) € D and D is a maximal subspace with this property. In particular, any subspace
D C B satisfying (e |f) =0 is a Dirac structure if and only if dim D = dim F.

Remark 1.4. The property dim D = dim F translates that physical systems do not simul-
taneously impose both flow and efforts. This rules out the use of singular network elements
in PH modelling such as nullators (both flow and effort are zero) and norators (both flow
and effort are unconstrained) see references [Car64, Tel66] for more details. The nullor case
(combination of a nullator and a norator) is considered in section 7.2 p.190.

Matrix representations
A Dirac structure D C R™ x R™ can be represented in any of the following ways.

Definition 1.15 (kernel and image representations). Let E,F € R™*" satisfy
EF' + FET =0, rank |[FE| =n. (1.27a)
e The kernel representation of the Dirac structure D is given by

D:{(f,e)eR"xR" ' Ff—i—Eezo}:ker[F E} (1.27b)

e The image representation, (equivalent dual formulation) is given by

T

T A waere —im [F E}T. (1.27c)

— n n
D=« (f,e) e R" xR BT

‘ e

-
In short, D = ker [F E} =im [F E] .
Let D be given as in (1.27b) with rank F = n; < n. Select n; independent colums of F and

partition F,E, f e into F1,Fy, E1, Ey, f1,f5, €1, e so that (1.27b) can be rewritten as

f1

€2

€1
+ B B —o.

F1 By N
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It can be shown that [Fl Ez} is invertible so that D can be equivalently represented as the
-1
graph of a skew-symmetric matrix J = —JT = — [Fl E2i| {El FQ}. Conversely we have

Definition 1.16 (Hybrid skew-symmetric representation). For any skew-symmetric matrix
J € R™*™ the subspace (1.28) with integers n; + ng = n is a Dirac structure.

f
D= ((£1,£2), (e1,2)) € R™¥72 x R+ =3 T a2

e f5

In this thesis, we use hybrid Dirac structures as our main representation (see definition 2.21 p.55).

Composition of Dirac structures

A key property of Dirac structures is their composability (see figure 1.3): the composition of
two Dirac structures is again a Dirac structure so that the power-conserving interconnection of
any number of Dirac structures is a Dirac structure.

Definition 1.17 (parallel/serial connection). Let Fi, Fo, F3 be flow spaces with dual effort
spaces &1, &2, E3. Let Dy, Dp be two Dirac structures such that

E(fl,el,fA,eA) €Dy C F1 X 51 X Fg X 52,
H(fg.eg,fg,eg) € Dp C Fo x Ey X F3 X &3,

with a shared space /5> x & and a boundary space F1 X & X F3 x & . Then,

e The parallel connection Dy || Dp between D4 and Dp (common effort) is defined by
fg+fp =0, ey, = ep. (1.29a)

e The serial connection D4 o Dp between Dy and Dp (common flow) is defined by
es+eg =0, fq =15 (1.29b)

More formally,

(fi,e1,f5,e3) € Fi x &1 x Fa x & | I(fa,eq) € Fo x &
DA || DB =

st. (fi,e1,fz,e0) € Dy, (—fr,e9,f5,€3) € Dp

(fi,e1,f3,e3) € Fi x &1 x Fa x & | I(fa,en) € Fo x &
DAODB =

st. (fi,e1,fz,e0) € Dy, (f2,—e9,f35,e3) € Dp

For these definitions, we have the following result (see [VdS17])

I Theorem 1.5 (Dirac structure composition). Dy || D and D o Dp are Dirac structures.
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Figure 1.3 — Composition of Dirac structures (Parallel composition).

Remark 1.5. Equations (1.29a) and (1.29b) define a composition algebra so that an
expression such as (D4 || Dp) o D¢ is well-defined. This key property is exploited in modular
network representations such as Bondgraphs [Pay61] and Wave Digital Filters [Fet8&6].

Dirac structure examples

Example 1.3 (Ideal constraints). Ideal flow or effort constraints such as
Dy = {(f,e) e R" xR" | f =0}, or Do ={(f,e) ER" xR" |e=0}.

are trivial Dirac structures (in electronics: open circuits i = 0 or short circuits v = 0).

Example 1.4 ((Multi-dimensional) Transformer). Transformers (see table 1.1) can be
generalized to multi-dimensional transformer with a matrix-valued transformer ratio A €
R™™ with flow and effort variables (f, fs,e1,e2) € (R" x R™) x (R” x R™) such that

(S3] 0 —AT f1

f2 A 0 (S5}

It is an instance of hybrid Dirac structure (see definition 1.16, see also [Bel68]).

Example 1.5 ((Multi-dimensional) Gyrator). Similarly, a gyrator (see table 1.1) can be
generalized as a multi-dimensional gyrator with gyration matrix R € R"2*™ and flow and
effort variables (f, f2,e1,e2) € (R™ x R"2) x (R™ x R"?) such that

(53] 0 - RT f1

€9 R 0 fg

Example 1.6 (Serial and Parallel junctions). 0-junctions (resp. 1-junctions) (terminology
from bond graph theory [Pay61, Bre86]), corresponds to a parallel (resp. serial) junctions in
wave digital filters theory [Fet86]. They are defined by dual constraints: equality of efforts,
and balance of flows (resp. equality of flows, and balance of efforts).

Parallel: Do = {(f,e) cR"xR" | e1=...=¢€,, fi+...+fn=0}, (1.30a)
Serial: Di={(f,e) eR"xR" | fi=...=fp, e1+...+¢=0}. (1.30b)
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Only one port k € {1,...,n} can be chosen to impose the common effort ey, (resp. flow
fr). Denoting (f,e) (for ¢ € {1,...,n}\ {k}) the remaining port variables, the following
hybrid skew-symmetric matrix representations holds

Tk -1 -1 ek ek -1 -1 Tk
€1 1 fl f_l 1 €1
DO : . Dl : .
€n—1 1 fn—l fn—l 1 €n—1

In electronics, Kirchoff laws imply that for a parallel connection of components, voltages
v = v = vo = v, are equal (here efforts) and the current balance ir + ic + i, = 0 of
all branch currents is zero (conservation of charge). Dually, for a serial loop connection,
dipoles share the same current ¢ = igp = i = iy, and the oriented sum of branch voltages
vgr + vo + v, = 0 must be zero.

%ic ir .

|
| S

——
VR U

~

IR
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1.3.2 Energy-storing elements

Name Component State Energy Equations

Linear Capacitor ; q el i=q v=¢
O—U—>—@
Linear Inductor O—/zjmjx_ﬂ_o ) % v=¢, i= %
y v
Non linear Capacitor ° I I q o q H(q) i=q¢, v=VH(q)
—
Non linear Inductor o—(m\_ﬁ_o 0] H(¢) wv=¢, i=VH(¢)
4—
v

Table 1.2 — (energy storing components) examples in electronics.

In PHS (see figure 1.2 p.17), the structure S gathers all the energy-storing elements of the
system (see examples in table 1.2). Its energy is defined on a state space X (a vector space or a
manifold 7) by a storage function called the Hamiltonian

H: X —=R.

Let  be a trajectory. For a given ¢, denote x = x(t) € X a point along this trajectory with
derivative x = #(t). By convention, the incoming flow fs and internal effort eg are defined ® by

H
fo =% € Fg:=TxX, and eg = 88 (x) € Eg :=TLAX, (1.31)
b'e
so that the time-variation of the stored energy is the received power
d :
3 H@®) = (VHx)[%) = (es|fs), (1.32)

where TxX and TEAX denote the tangent space and co-tangent space at x.

fs &
Fs TpX

VH(x
T VH(X) ( ) €s
X T, X Es

Figure 1.4 — Block diagram of energy storing elements.

7. In this manuscript the state space manifold is always X ~ R", so that TxX x TxX ~R" x R"
8. Note that we use a different sign convention from [VDSJ14], here (fs, es) denotes the port variables of the
storage structure S instead of the port variables of the Dirac structure D that are connected to storage ports.
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One can sum up the above equations (see also figure 1.4) with the following definition

Definition 1.18 (Energy storage structure). Let X be a state space (a linear space or a
manifold) and H : X — R a Hamiltonian function. Flow and effort spaces are the tangent
space Fg := TxX and co-tangent space £g := TEX. An energy storage structure is defined

locally by

Sy = {(fs,es) € Fg x &g | eg = VH(X)} (1.33&)
where x € X denotes the current value of the trajectory
¢
_ / Fo(r)dr. (1.33b)

Remark 1.6 (Lagrangian submanifolds). It is possible to generalise energy-storage struc-
tures using Lagrangian submanifolds (see reference [VASM18] for the general theory and
[GHVASR20] for their use in circuit simulation). In this thesis, we do not use such generali-
sations, and thus skip their presentation.

Examples of storage structures

v
«—

Example 1.7 (Capacitors). For a capacitor o—{ }_,_O, with energy storage function
i

H : R — R, the energy variable is the charge (see [CDKS87, eq.1.2a|)

with the storage structure
S, = {(v,i) ER?|v= VH(q)} .
a) If the capacitor is linear, v = 0(q) = % by integration we obtain the energy
/ 2
b) If instead the capacitor is nonlinear, for example the saturating law v(q) = Vj asinh (q%) ,

then integrating the law we obtain the nonlinear energy

q 2
H(q) = / (z)dz = Vogo | 1+ L asinh <q) 1+ <q>
0 q0 q0 q0
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v
Example 1.8 (Inductors). For an inductor o4, —>——o » With energy storage function
i

H : R — R, the energy variable is the flux-linkage ¢(t) := f; v(1)dr, (cf [CDKS87, eq. 1.2b]
) and the storage structure

Sy = {(v,i) cR?|i= VH(gb)}.

a) If the inductor is linear, i = i(qb) = %, then by integration, its energy is the quadratic
potential

¢ 2
H(p) :/0 i(z)dx = %

b) If the inductor is nonlinear, for example the anti-saturating law 5(¢) = Ipsinh (%), then
by integration we obtain the non linear energy

H(¢p) = /j%@:) dz = ¢olo (cosh ((;i) — 1) .

c¢) Another example of flux-controlled inductor with a nonlinear / non-bijective ¢—i law is
the Josephson junction [CDK87, ex.3b| governed by i(¢) = I sin (i) with a positive but

N
H($) = Iogo (1 ~ cos (i)) |

a. Iy is a device parameter, ¢o = h/(2¢), h = h/(2m) the reduced Planck constant and e the electron
charge.

non-convex Hamiltonian ®.

A typology of typical effort laws and their corresponding energy potentials (for linear, harden-
ing, softening, saturating or oscillating laws), is shown on figure 1.5.

—— Linear —— Linear

—— Josephson —— Josephson
—— hardening —— hardening
—— softening —— softening
—— saturating —— saturating

0 0
Adimensioned state x Adimensioned state x
(a) Effort e = VH(z) (b) Energy H(x)

Figure 1.5 — Examples of adimensioned effort laws and their corresponding energies.
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1.3.3 Passive memoryless elements

The second type of multi-port element R corresponds to energy dissipation (friction, resistance)
or more generally to passive memoryless elements (examples shown in figure 1.3).

Name Component w Law w* = z(w)

Resistor o A AN > o 7 v=Ri
Conductor o AAN—>— v 1= Gv

Shockley Diode o—{>’_£_o v i =pn(v) (see (1.42))

D 0} veR \{0
Ideal Diode O—N—Z—O v i c { +} v \ {0}
R v=>0

BIT UBC iec| _ |vr —1| |pn(vec)
UBET ; . T'UBC : o 1
IBE 1BC UBE 'BE -1 ~r| |pn(vee)

Table 1.3 — (passive memoryless components) Examples in electronics. All components are
dissipative except the ideal diode which is non-energetic (and multi-valued).

A memoryless passive relation (or a resistive relation) is given by the following definition

Definition 1.19 (Resistive relation). Let Fg be a vector space with dual €r = Fj. A
resistive relation R is a subset R C Fr x Er defined by

R = {(fR,eR) € Fr X €&p ‘ <eR|fR> ZO} (1.34)

with dim R = dim F.

Note that, it defines a passive relation that is neither over nor under determined, but can be
multi-valued (see appendix A p.271). Following reference [RB16], we overload function notation
and write R(f) to mean the set

R(f) = {e € &r | (f,e) € R}. (1.35)

We define the domain and image of a relation by dom R := {f € Fp | R(f) # 0}, and im R :=
Utedom R R(f). Some important properties to describe relations are presented below.
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Definition 1.20 (Relation properties). A relation R (possibly multivalued) is said to be

e passive or resistive (resp. strictly resistive) if 3m > 0 (resp. m > 0) such that
(R(f) |f) > m, Vfe€domR, (1.36a)
e monotone or incrementally passive when

(R(f2) — R(f1) |[f2 — f1) >0, Vfi,f, € domR, (1.36b)

strongly monotone or coercive when there exists m > 0 such that

(R(f2) — R(£1) | f2 — £1) > m[f — £1]|*, V1, £ € dom R, (1.36¢)
e one-sided Lipschitz when there exist L > 0 such that

(R(f1) —R(E&) |2 — 1) < L|fs — f1||*, VFi,f € dom'R, (1.36d)
e Lipschitz when there exist L > 0 such that

|R(f2) — R(£2)|| < L||f2 — f1|, Vi1, f> € domR. (1.36¢)

Explicit mappings Let (W, W*) denote (possibly hybrid) flow-effort spaces induced by a
suitable permutation among the coordinates of flow and effort spaces (Fg,Er). In the majority of
cases, resistive relations can be defined by the graph of an explicit mapping z : w — w* = z(w)
where z is a dissipative operator satisfying the power-balance.

(z(w)|w) >0. (1.37)

Linear Resistive relations Linear resistive elements are characterized by linear mappings of
the form z(w) = Aw with positive semi-definite matrix A (i.e. A+ AT > 0). For example, pure
resistance (v = Ri) or conductance (i = Gv) relations are characterised by symmetric positive
definite matrices (R = R"T = 0, G = GT = 0).

Implicit parametrisation Multi-valued or non monotone relations (e.g ideal or tunnel diodes)
may be easier to describe using implicit parametrisations.

Definition 1.21 (Implicit resistive relation). Denote A = R" with Fr = R" = £ and let
E: A — Eg, F: A — Fr be two algebraic operators. If (E(X)|F(X)) > 0, for all X € A,
the set R is called an implicit resistive structure in image parametrisation, where

R={(F(A),E\) € FrxEr VYA€A}. (1.38)

To illustrate this, consider the set-valued relation of the ideal diode from table 1.3

] ({0} ver\{0) :
R=( (v,i) eRxR ZE{R* v e {0} . RJ\—H)
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with domR = R™, im R = RT. Equivalently, it can be implicitely parametrized by

D vl | =Volg-(N) : (5(N),i(N))
R=1(vi)eRxR A= neo | VAER,. R : (1.39)

where 1g denote the indicator function of a set S and Vj, Iy can be any positive normalisation
constants. R clearly defines a one-dimensional manifold in R x R that cannot be represented as
a single-valued function in the (v,7) plane. The implicit parametrisation has the advantage of
making the one dimensional constraint explicit, and uses continuous single-valued functions. This
last fact is useful numerically. It has been exploited by the author in the article [MH20].

Dissipative potentials

In this thesis, we use the results from [Mil51, Che51] about dissipative potentials for simulation
purposes . As effort laws derive from the gradient of the Hamiltonian for storage components.
In a similar manner, dissipative laws can be regarded as arising from the gradient of a “power
potential” (this is related to Brayton-Moser mixed-potential theory [BM64a, BM64b, JS03]). To
this end, consider the power differential

d(e-f) =e- df +f- de.

For an integrable resistive relation R, define potential functions D : Fr — R and D* : Eg = R
respectively called content and co-content '’ by the line integrals
fr €eRr
D(fr) = (F) - df , D*(er) = / F(e) - de, (1.40)
0 0
so that for all (fg,er) € R, integrating the differential d(e - f) along the path v : (0,0) —
(fr,er) € R, the power is equal to the sum of content and co-content potentials
er-frp = D(fR) + D*(eR) , V(fR,eR) €R. (1.41)

Differentiating (1.41) with respect to (eg, fr) it follows from the definition that we can indeed
recover efforts or flows respectively from the gradient of the content and co-content potentials.

er = VD(fR) s and fR = VD*(eR) .
Equation (1.41) is illustrated visually on figures 1.6 and 1.7 below.

Remark 1.7 (Legendre transformation). Content and co-content potential D and D* are
dual to each other (see figures 1.6, 1.7) and represent the same information. In the case of
convex potentials, they are respectively equal to the Legendre transformation of each other

D(fr) = er-fr — D*(er) , D*(er) = er-fr — D(fr) .

Note that this is just a reformulation of (1.41). See [ZRMO09] for a detailed introduction to
the Legendre and Legendre—Fenchel transformations.

9. Our motivation is that in subsection 5.4.1 p.140, antiderivatives allow closed-form computation of projection
coefficients. They are also useful for anti-aliasing and discrete gradient can be generalised to dissipative potentials.
10. These potential are sometimes called Rayleigh dissipation functions or current and voltage potentials
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Examples of resistive structures

v .
. . . . 4—1

Linear resistor For a linear resistor, the

resistive structure is bijective. It can be either current or i

voltage controlled

vi = D(i) + D*(v)

} ' D(i)

Its current and voltage potentials are respectively given by D*(v)

==

{(v,i) e R?|v = (i) :Ri} —R= {(v,i) e R?|i=i(v) =

% Z—Q v 2)2 v
D(i) :/0 @(L)dL:RT, D*(v) :/0 i(u)dz/:ﬁ. ‘ ‘

This is shown on figure 1.6. In this particular case (because Figure 1.6 — Law of a linear re-

of linearity), we have D(i) = D*(9(i)) = Ri2, but this result sistor and its.current and voltage
should not be extrapolated as the next example shows. power potentials.

PN Diode Consider the voltage controlled Shockley
v

diode model [Sho49] L . The resistive struc- N
ture is given by the graph of a PN junction R =
{(v,i) e R? | i =pn(v)} with

. i D(i)
nw):=Iglexp|—]—-1]. 1.42
pn(o) s< o (1) ) (142) | -

where Ig is the saturation current, n the ideality factor, ‘ ‘ ‘ v
Vr = IZ—T the thermal voltage with k£ the Boltzmann constant,

T the témperature in Kelvin and g the charge of the electron. Figure 1.7 — Law of a Shockley
By integration, its voltage potential is given by Diode and its power potentials.

D*(v) = /Ov i(v)dv = nVrls (exp <anT> — anT — 1> . (1.43)

Using bijectivity, we can express the current potential indirectly by using the inverse map

v=pnL(i) = nVrln (1 + ;) . i>—Ig, (1.44)
S

and the Legendre transformation D(i) = [vi — D*(v)] to obtain

v=i—1 (%)

D(i) =nVrls <<1 + IZS> In <1 + I;) - IZ«) (1.45)

Using the above definitions, the current and voltage potentials being known, for simulations
purposes, the component can be either flow or effort-driven (according to the constraints of circuit
interconnections). On figure 1.7, the areas filled by the diode power P(v,i) and the current
and voltage potentials D(7) and D*(v) are shown in the (v,7) plane for Ig =1, nVp = 1. It is
geometrically clear that the current and voltage potentials are complimentary and their sum
equals the power vi. It is also clear that in the nonlinear case D(7) # D*(0(1)).
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Example 1.9 (Tunnel diode). A tunnel diode RN is a passive device, but its
characteristic is not monotonous. It exhibits a region of negative incremental resistance. the
resistive structure is given by R = {(v,4) € R? | i = g(v)} where the nonlinear characteristic
g is shown on figure 1.8 with Vp the peak voltage, Vi, the inflection voltage and Vj, the
valley voltage. Common modelling approaches uses cubic ([NAY62, HDF*10]) or quintic
(|JCDKS87, p.409|) polynomials. More physical approaches (see [Ng06]) use the standard PN
diode model in parallel with additional terms to model the tunnel effect, the simplest being
(see figure 1.8)

v ) _ v—=Vp
gv)=Is(e'r —=1)+Ip|—|e P . (1.46)
Vp
—_—
PN diode peak current
Ip =R T T e e
| [
' I
e | I
w I } i
£ T
3 | H
N l
B | I
< | | [
2 |
2 | ! I
I —-—]—1—-—-"-—'-—— Vv Hvl
v L L i FII'F
Vp Vg Vy
FORWARD VOLTAGE
(a) RCA tunnel diode
5
L =
]
]
]
121 ! "
]
z 1 E z
£ : £ 3
> 84 T :
% 6 : g 24
(8] : O
44 i
i 14
2 Hmmmmmm e
] ]
0 | | 0
0.0 01 0.2 03 0.4 05 0.6 07 0.0 01 02 03 0.4 0.5 0.6 0.7 08
Voltage v (V) Voltage v (V)
(b) Cubic approximation (c) Exponential approximation

Figure 1.8 — Static characteristic of a tunnel diode. (a) tunnel diode plot from the RCA
tunnel diode manual [RCAG3]). (b) cubic approximation as used in Van der Pol oscillators, (c)
exponential model.
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Example 1.10 (BJT). An important electronic component is the Bipolar junction transistor.

____________________

The Ebers-Moll model of a NPN Bipolar Junction Transistor, which is equivalent to two
coupled PN diodes “, can be written compactly (see Gummel-Poon article [GP70, Eq.3]) as

1 v ) —1 n(v
Reyt = ,BC P | e R2 x R? BCl — | R pr(vec) . (1.47)

IBE UBE IBE -1 ~r| |pn(vee)

where the parameters g, g (usually S ~ 100, Sr =~ 20) are respectively the forward
and reverse common-emmiter curent gains. The derived parameters vr,vr are given by
v=1+41/8 > 1. Since the PHS formalism is all about explicitly formalising passive power
exchange, it is important to verify before using a model that it is energetically well-posed.
An original proof of passivity (not commonly found in the literature) is proposed below °.

Proof. To prove passivity of the Ebers—Moll model, notice that function pn (see eq. (1.42)),
is both passive (pn(v) - v > 0) and incrementally passive (pn(vi) — pn(v2)) - (v —v2) > 0).
Finally, decompose the power as a sum of non-negative terms

IBC 1 -1 yr—1 0 pn(vec)

= [UBC UBE] +

(
v v ]
[ BC UBE -1 1 0 yr—1 pn(vgg)

!BE

= (pn(vsc) — pu(vee)) (vec — vee) + (vF — 1) vec pu(vec) + (vr — 1) ve pn(vee) > 0.
>0 >0 >0 >0
>0 > > > >

O]

a. see equation (1.42) for the definition of the pn function.

b. Note that this proof assumes incremental passivity with both PN junctions having the same process
parameters. SPICE modelling is more flexible than that: different saturation currents and ideality factors
can be used, but then proving (local) passivity becomes dependent on the particular choice of parameters.
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1.3.4 Input-State-Output Representation (PH-ODE)

An important class of port-Hamiltonian systems is the structured state-space representation.

Definition 1.22 (Input-State-Output PHS [VdS17| p.113). An input-state-output port-
Hamiltonian system with ng-dimensional state-space manifold X', np-dimensional input and
output spaces U ~ Y = R"P and Hamiltonian H : X — R, is given by

{x = [J(x) - R(¥)] VH(x) + G(x)u (1.48)

y =GT(x)VH(x)
where matrix functions J(x), R(x) € R"$*"s gatisfy J = —J ' and R = R" = 0.

It follows that it structurally satisfies the following passive power balance (see definition 1.5)

% (How) = (VH(z)| &) = — (VH(z) | R(@) | VH(@)) + (y|u) < (y|u),  (1.49)
~— =

Pg Pr>0 Pp

meaning that storing components receive the power Pg, dissipative components receive (and
dissipate) Pr and external sources supply Pp in a balanced manner.

Remark 1.8 (Receiver convention). Exceptionnaly, in order to make the connection with
state-space system theory easier, the power (w|y) in (1.49) uses the emitter convention.
From now on (and throughout this document), we uniformly use the receiver convention
for all components including external ports / sources so that power balances can be written
under the canonical form

> leilfi)=0.

2

This choice is made to simplify sign conventions in automated modelling and is very common
in electronics (Tellegen theorem). However it requires special care with input/outputs when
using results from state-space and bond-graph theory where the emitter convention is often
implied for input-output ports.

An extension of definition 1.22 for systems with direct feed-through is given by

Definition 1.23 (input-state-output PHS with feedthrough ([VdS17] p.114)). An input-state-
output port-Hamiltonian system with feed through with n-dimensional state-space manifold
X, input and output spaces U ~ Y = R"? and Hamiltonian H : X — R, is given as

) — [J(x) - R(x)] Vji(x) , (1.50)

X

where matrix functions J(x), R(x) € R(stnp)x(nstnr) atisty J = —JT and R = R > 0.

likewise it satisfies the passive power balance (Pp now denotes the power received by sources)

<VH(x)yx>+<u|y>=—< VAG) | gy || VE) >§0. (1.51)
T Y u u

Pr>0
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1.3.5 Semi-explicit representation (PH-DAE)

A PHS does not always admit an explicit input-state-output representation. Moreover it
is not always desirable (or may be computationally difficult) to find one. Another important
representation of PHS, which is used in this thesis, is the following semi-explicit PH-DAE.

Definition 1.24 (semi-explicit PH-DAE). A semi-explicit port-Hamiltonian DAE with
ng-dimensional state-space manifold X and Hamiltonian H : X — R, resistive structure
R C W x W* given by an explicit map z : W — W* with W ~ W* = R"%_ and input output
spaces U ~ Y = R"P is given by

T VH(w) Jxx * *
w|l=J]| z(w) |, where J=1Jwx Jww * |, (1.52)
Yy u Jux Juw Juu

and the (ng + ng +np) x (ng + ng + np) matrix J = —J7 (possibly depending on x).
In this case, the power-balance writes as follows.

Property 1.1 (Power balance). By skew-symmetry, the PH-DAE has the structured instan-
taneous power balance

(VH(z)|2)+ (z(w)|w) + (uly) =0. (1.53a)
——— ~——
stored power Ps  dissipated power PR>0 external power Pp

Integrating over a time step [tg, t1] this yields the energy balance

[H (a:(t))}: - ttl é’@dt + /tl Pp(t)dt = 0. (1.53b)
0 0 to

Finally in the absence of external input, this reduces to the passivity relation
H (x(t1)) < H (x(to)) - (1.53¢)

Equation (1.52) can be rewritten as a semi-explicit state-space DAE (see section 1.2.2)

x = f(x,w,u) =

JxxVH(x) — Jlxz(w) — JIxu

0 = g(x,w,u) w <JWXVH(X) + w2z (W) — leu) . (1.54)
y = h(x,w,u) JuxVH(x) + Juwz(W) + Jyuu

Remark 1.9 (Index-1). According to definition 1.7, the DAE has differential index-1 if g

is solvable for w, i.e. if matrix 92 = I — Jywz'(w) is invertible. A case that frequently
ow

arises in applications is when either Jww = 0 or 2’(w) is positive definite. Then the DAE is

automatically of index-1. This will be addressed for circuits in section 2.3.4 p.60.

For more details such as representation of PHS in canonical coordinates, or constrained PHS
using Lagrange multipliers, we refer to [VDSJ14].
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1.4 From flow-effort to wave variables

In this section, we show that flow-effort variables, can be equivalently represented by incoming
and outgoing wave variables. In the Bondgraph litterature, wave variable representations of circuits
have been pioneered by Paynter (|[Pay61]| p.268) and Breedveld (|Bre85] p.6) where they constitute
an alternate choice of variables (see [SVDSMMO02, SSvdSF05]). By contrast, in Wave Digital Filters
(see Fettweiss [Fet86]), which is still an active research field [Bil04, WNSA15, WBSS18, BS17] in
audio, wave variables are a defining feature of the formalism. A distinguishing feature of WDF
is to use impedance adaptation to obtain a majority of explicit or reflection-free ports, which
considerably reduces the cost of numerical simulations ''.

We first present the classical wave variable change (defined locally for each port), then we
provide an alternative geometric viewpoint to show that the wave variable change naturally
arise from a splitting of the bondspace B into an euclidean space W7 for incident waves and an
anti-euclidean space W~ for outgoing waves both induced by the indefinite metric.

1.4.1 The classical wave variable change

Classically (see [Fet86]), for each port, incoming and outgoing waves (w™,w—) are introduced
with a reference "resistance" R (and possibly a reference voltage Vj for adimensionalisation '?)
by the variable change (e, f) <> (w™, w—)

_l’__ —
o _exny f:?<w2w>
Vo = (1.55)
wi:e—Rf _v w++w_
Vo e=v |l 75

Multiplying e and f yields that the instantaneous power P is proportional to the difference
between incoming power ‘w+}2 /2 and the outgoing powers ‘w_ |2 /2

Ve (fwt]” ~Juw "

P: = —
°f=3g 2

Classical choices for Vj are:

e 1y = 1 which yields the definition of effort wave variables.
e V) = R which yields the definition of flow wave variables.

e Vh = V2R which yields the definition of power wave variables.

Note that, for the last choice, the variable change is a sequence of two power-conserving unitary
transforms: an hyperbolic squeeze (with hyperbolic angle ¢ = In(v/R)) followed by a rotation (by
angle § = —m/4)

w+7L11\/}720 f
w| V2 |=1 1| |0 1/VR| |e| (1.56)

rotation hyperbolic rotation

11. One can show, that in the linear case, port-adaptation automatically and structurally performs on the fly
matrix inversion. This is closely related to QR decomposition using sequences of Householder reflections.
12. Note that bi-parametric waves (introduced in [BS17]) also makes use of two degrees of freedom.
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1.4.2 Geometric viewpoint

We now adopt a top-down geometric viewpoint. Considering the bond space B equipped with
the indefinite bilinear form (-,-); (see definition 1.12), we show that it naturally splits into a
positive euclidean space (for incoming waves) and a negative anti-euclidean space (for outgoing
waves): wave variables emerges as a consequence of the indefinite metric (see definition C.14
p.283) induced by the duality pairing .

Following [VdS17, SVDSMMO02], let F be a linear vector space, £ := F* its dual output space
and B = F x & the product space where (f, e) have already been normalized. The bilinear form
(-,-) 5 has the matrix representation (using the notation (u|A|v) =u"Av)

f1 f2 . f1 Om Im f2
el ’ e €] Im 0, €2 .

B

It has m eigenvalues +1 and m eigenvalues —1 and thus defines an indefinite inner product. As
in (1.56), the change of basis from flow-effort to waves is given by the rotation matrix UT

wt 1 I, L,| |f f 1 L, -L,.| |wT
W V2 =1, L.| |e el V2|1, L,| |w

The scattering representation consists in decomposing the vector (f,e) € F x £ according
to the positive and negative eigenvalues. It defines respectively a positive euclidean subspace
WT ~ R™0 and a negative anti-euclidean subspace'®> W~ ~ R%™ so that WT @ W~ ~ R™™,

Definition 1.25 (Scattering subspaces (|[VdS17] p. 27)). Any pair (W', W™) of subspaces
WH W™ C B=F x £ is called a pair of scattering subspaces if

1. WreW- =F x&,

2. <w1+,w2+>8 >0, Vw],wj e Wr\o,
3. <w1_,w2_>6<0, Ywi,wy € W\ 0,
4. (whw),=0, Viwhw)ewrew .

Any vector (f,e) € F x £ can be represented as a pair wr @ w~ € W @& W~. The
representation (f,e) = wt @ w™ is called a scattering representation and w* are called the wave
vectors of the combined vector (f,e). It follows that for all (f;,e;) =w; dw;,i=1,2

f f. wi|||Ln O wy
1 ’ 2 _ i m m i — <WT,W2+> = <Wf,wg> o (1.58)
el €2 Wy 0, -1, W, R R

B

13. R?? denotes the pseudo-euclidean space with metric signature 1,...1,—1,...,—1
~—— —
P a



1.4. From flow-effort to wave variables 37

Dirac structure
D

B <'7'>B =0

Figure 1.9 — Abstract illustration of the splitting of the (indefinite inner product) space B into
a positive space W, a negative space W~ and a null space D.

so that (for (e1,f;) = (ez,f2) = (e,f) = wT & w™), the power writes
1/|f f 1 2 2
pcn ([N 2t )
(e|f) 2<e e> 2<W N A (1.59)
B

Remark 1.10 (Physical Units). In the previous development, it is assumed that flow and
effort variables (f,e) have already been scaled to the same physical unit so that linear
combinations make sense physically. Since we also use P = (e |f) to denote power, for (f,&)
expressed in power-conjugated natural units (e.g. Ampere and Volts), it is necessary to use
a power-preserving variable change p : (f' ,€) — (f,e) (expressed in square root of Watt).

o |R 0 f R = diag(Ry,... Rn) >0
p: o = 0 R—1/2 s s = dlagl{iy, ... Ly, .

where Rq,..., R, can be chosen as arbitrary scaling constants “. Since the variable change
is power preserving, we can verify that the scaling p also preserves the inner product

< . . > < . . >
P ' P = 5 .
el (D) e €2

B

B

Combining variable changes, we obtain the unitary power-wave transform (f' €)= (wh w™).

L r X

whtl 1 | T I R!/2 0 (1.60)
wo| V2| -1 1|| 0 R2 ' '

(el

a. Recently, in reference [BMS20], the authors have proposed a vector definition of waves of the form
w® = e + Rf where R can be any invertible real matrix (not necessarily symmetric positive definite),
including "across ports" linear combinations. We investigate this topic independently in section 2.5 p.73.

In section 9.4 p.254, thanks to Geometric Algebra, we revisit flow-effort and wave representation
using simpler notations.
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1.4.3 Wave variables representation of Port-Hamiltonian Systems

We consider the scattering representation of Dirac, storage and dissipative structures considered
as causal maps w™ — w~. This section (mostly formal) is a step towards establishing deeper
links between PHS and WDF.

Dirac structures

A Dirac structure D can be represented by the graph of an invertible linear map S : W — W~
This is related to the standard results from Carlin [Car64, Car67]: normal linear passive networks
always possesses a scattering representation. This is summarized by the following definition.

Definition 1.26 (Scattering representation [VdS17] p.164). Let D C F x &£ be a Dirac
structure, and (W™, W) scattering subspaces. The linear map S : W — W™ satisfying

D:{(f,e):w+@w_ \w_:SW’L} (1.61)
is called the scattering representation of D.

For a skew-symmetric Dirac structure, we have the following proposition.

Proposition 1.2 (Scattering of skew-symmetric Dirac structure). For (1.60), the scattering
representation of a Dirac structure D given by f = Je with J = —J 7, is the matrix

Sp=(I-Jr)I+JIr)"", where Jr := RY2JRY?2 = _J% (1.62)
Sr (the Cayley transform of Jgr ) is orthonormal, so that HSDWJFHRR = HWJFHR,L.

Proof. Substituting f = Je in (1.60) and factoring R~/2 on the right, we obtain

1 1
+_ 1/211/2) p—1/2 - _ C R1/2R1/2) p-1/2
w ﬂ(I+R JR )R e, w \@<I R7“JR )R e.

Defining Jg = R'/2JR!/2 and solving for e we obtain the map w~ = (I—-Jg)(I+Jgr) 'wt. O

Linear resistive relations

Using the same argument as above, we obtain

Proposition 1.3 (Scattering of linear resistive structures). For a linear resistive structure,
Rin = {(e,f) e R" X R" | f = Ae} where A =mlI, m>0. (1.63)
and the wave variable change (1.60), the scattering representation of (1.63) is the matriz
Sgr = (I—AR)I+ Ag)~", where AR := R2AR!'? » 0, (1.64)
By properties of the Cayley transform, Si is non expansive, so that

ISRWligs < allWllgs, with a=[1—m| /(1+m). (1.65)

Note that, when A is diagonal (i.e. a multiport constituted of indepedent resistors), choosing
R = A1, it is possible to make the structure reflection-free. In this case Sz = 0.
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Non linear multi-valued resistive relations

Following reference [RB16], it is possible to generalise the Cayley transform to nonlinear
multi-valued relations. First we recall the following results '*. Let A be a relation and I the
identity relation, then for o € R, the resolvent of Ais Ra o = (I+aA)~! and its Cayley operator
(see equation (A.1) p.273) is Ca,q = 2RA o — I. When A is maximal and single-valued, then

Cao=I—aA)(I+aA)™, Va>0. (1.66)
When A is maximal monotone but not necessarily single-valued, then C4 satisfies

CaoI+aA)=T—-aA), Ya>0. (1.67)

Proposition 1.4 (Scattering of resistive relations). For a resistive relation
G={(e,f) eR"xR" | feG(e), (fle)>0}. (1.68)
and the wave variable change (1.60), then its scattering representation is the Cayley operator
Sg=2I-Ggr) ' —1T where Ggr = R'?GR'/? (1.69)
According to [RB16], if G is monotone, then Sg is nonexpansive, and if G is strongly monotone

with parameter m and Lipschitz with constant L (see definition 1.20 p.28), then Sg is a contraction
with parameter

4m

Storage structures

We pursue the same approach to characterise the scattering operators of storage structures.
for flows and efforts evolving in the Lebesgue spaces Fg ~ E5 ~ L?(2,R™) (over time steps €2).

Proposition 1.5 (scattering of linear storage structure). For a linear storage structure
S={(f.e)e Fsx & |3 c H'QR"), f=o, e=Qu, Q=QT ~0},  (L71)
the scattering representation of S through (1.60) is the formal differential operator

Ss=—(D-Qr)(P+Qr)"', where Qr=R’QR'V?adD=4%. (1.72)

Proof. Substituting the constitutive relation in (1.60) and factoring RY/2 on the right, we obtain

1 1
+ _ -1/2 -1/2 1/2 - _ -1/2 -1/2 1/2
w 7 (R QR + D) R'/“x, w 7 (R QR D) R/“x.
Defining Qr = R™/2QR~1/2 and solving for & we obtain w~ = —(D—Qgr)(D+Qgr) ' w*. O

14. For more details regarding relations, their inverse, resolvant and Cayley operator, please refer to reference
[RB16] whose main results are recalled in appendix A p.271.
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Note that for scalar components (e.g. for a capacitor Q = 1/C, Qr = 1/RC), the Laplace
transform of (1.72) (see definition C.10 p.282) yields the familiar allpass operator
s—qr 1—-3sRC
s+qr 1+ sRC’

Ho(s) = L(S¢e) = so that |Ho(s)| =1, Vs € iR.
In Wave Digital Filters, the Laplace variable is usually substituted by the finite difference
approximation s &~ (2/h) - (1 — 271)/(1 + z71), where z = "¢ denotes the time-shift operator, so
that after substitution and using impedance adaption R = h/2C, we get the causal map

N 1—(%13:1)30 Q+zH-(1-2Y
e e e T R

h14z"1

Numerically, this means that reflected waves w™[n] only depend on previous incoming waves
wT[n — 1], so that the numerical scheme is explicit.
Nonlinear storage structures

Finally, for nonlinear storage structures, we have the following formal result

Proposition 1.6 (scattering of nonlinear storage structure). For a storage structure
S= {(f,e) cFsxE | JxecH(QURY), f=a e= VH(X)} (1.74)

the wave variable change (1.60) yields a scattering representation given by the formal operator

1

S,
*T V2

(D—VHRg)o (D+VHR) 'WV2 where VHr =R Y20 VHoR Y2 (1.75)

Proof. Let f =@, e = VH(x) in the wave variable change (1.60), we get
1 1
V2 V2

Introducing z = RY2z, and VHg(z) = R™/2VH(R~1/22) yields the state-space ODE

(Rl/% v R_l/QVH(a:)> — w, (Rl/% - R_l/QVH(a:)) —w.

#2=-VHg(z) +vV2w", (D + VHg)(z) = V2w,
e leovme). T = Lo-vae.
w = —(2— z)). w- =—(D - z).
V2 . V2 .
The output equation can be further refined (by eliminating 2) as w~ = —/2VHR(z) + wt. O

A first difficulty to simulate nonlinear PHS directly from wave variables is being able to
compute the inverse operator (D+VHR) ™!, i.e. solving the system (1.76). To this end, numerical
integration methods such the ones in chapters 4, 5, 6 can be applied (but are usually iterative,
nonlinear and implicit), see also references [SVDSMMO02, SSvdSF05].

A second difficulty, is making the mapping w™ — w™ explicit in time after discretisation as
in (1.73) (which is the whole purpose of WDF). Impedance matching for PHS is also discussed in
[SVDSMMO2]. This non-trivial task is still an open subject for research. For this reason, in the
remainder of this thesis we focus on the flow-effort representation for simulation.
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VHR(Z)

te

VHr

Figure 1.10 — Scattering of nonlinear storage structures (see (1.76)).

Conclusion

In this chapter, we have reviewed fundamental results about ODE, state-space systems
and DAE. In particular existence and uniqueness theorems, DAE indexes, stability, Lyapunov
functions and power balance. The foundations of Port-Hamiltonian Systems (Dirac structure,
storage structures and resistive structures) which are required to model electronic circuits were
recalled. In particular, in Part II, input-state-output PH-ODE and semi-explicit PH-DAE are the
main representations used to construct numerical methods which preserves the energy balance in
Equation 1.53b .

An introduction to flow-effort and wave variables representations of PHS has been detailed
(in order to establishing deeper links between PHS and WDF') with an emphasis on the geometric
structure of the indefinite metric bond space B ~ R™™ and its positive and negative wave
polarisations W+ ~ R™% and W ~ R%". Special care has also been paid to include impedance-
adaption (to yield causal explicit numerical schemes) and to formalise the scattering representation
of Dirac structures, resistive structures and storage structures. In this context, the central tool
is the Cayley transform (and its generalisation to relations and maximal monotone operators).
Finding explicit time-stepping schemes through port-adaptation for nonlinear relations and storage
structures is an interesting opportunity for future research.

A number of electronic components have already been presented as illustrational examples.
However, we did not explain yet how to obtain PH-DAE and PH-ODE from circuit schematics.
This topic is precisely the object of chapter 2 below.
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Revisiting circuit representations
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With numerical simulation in mind, we present the steps that are required to convert between
circuit representations (see Figure 2.1): from the most general (netlists) to the most specific
(PH-ODE and semi-explicit PH-DAE). For each formulation, we establish a systematic link with
the underlying Dirac structures and the power balance. We quickly recall Kirchhoff laws and the
lumped circuit hypothesis in section 2.1, elements of graph theory are recalled in section 2.2,
PHS formulation of circuits are detailed in section 2.3, followed by a side by side comparison of
bond-graphs and wave digital filters in section 2.4, finally we conclude by power-preserving port
variable changes in section 2.5 that we use to preserve topological circuit symmetries (e.g. common
and differential modes). Along the way, causal computations are addressed in subsection 2.3.3, PH-
DAE to PH-ODE reduction in subsection 2.3.4. We also present in subsection 2.3.5 an alternative
PH-DAE to (modulated) PH-ODE conversion such that the total energy (Hamiltonian+heat) is
an explicit invariant (which can be exploited in numerical simulation).

state of the art For space reason, we focus on Port-Hamiltonian representations. We do
not present classical circuit formulations that are already well covered in the literature, namely
Modified Nodal Analysis (MNA) [HRB75] (the foundation of SPICE [Nag75]), Sparse Tableau
Analysis (STA) [HBGT71], Hybrid Analysis (HA) [CC76] and State Space formulation [KR65]
(including the K/DK-methods [BDPR00, YAS10] and [HZ15]). The Brayton-Moser approach

43
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[BM64a, BM64b| based on mixed-potential an co-energy variables is also skipped (we refer
to [JS03] for their dual relation with PHS). In contrast, Wave Digital Filters (WDF) [Fet86],
which are common in audio electronics, are shortly presented together with bond-graphs [Pay61]
to highlight their similarities. Finally, we note that recent formulations of circuits as PHS
The

[GHVASR20, GBJR20] have been published during the redaction of this manuscript.

approach presented here is close to the first reference while the second one considers the PHS

equivalent of charge-flux oriented MNA (which is not explored in this thesis).

Classic circuit modelling

(Modified) Nodal

solve for node il
voltages

| Schematics

label

nodes

Y
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(p.46)
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Y

(p.A7)
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Figure 2.1 — Map of state of the art circuit modelling: representations, transformation diagram
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2.1 Kirchhoff laws

In this manuscript, we only consider lumped circuits in the context of audio applications with
ideal conducting wires. To reduce a circuit to a lumped representation, for a given time scale, its
physical dimension must be small enough so that the propagation speed of electromagnetic waves

can be considered instantaneous .

Hypothesis 2.1 (Lumped circuit). The lumped circuit hypothesis assumes that the circuit’s
characteristic length L. is much smaller than the circuit’s operating wavelength A such that
electro-magnetic steady-state is assumed, i.e.

=0

0
e The change of the magnetic flux in time outside a conductor is zero. %

e The change of the charge in time inside conducting elements is zero. 8—? =0

When this condition is satisfied, the current i(¢) through any branch, and the voltage v(t)
difference between any pair of nodes are well defined [FACG3]. The behaviour of the circuit becomes
independent of the physical location of each component, only its topological interconnections
becomes relevant 2. Kirchhoff laws are a direct consequence of the lumped circuit hypothesis 2.1
and the assumption of ideal connections.

Kirchhoff Voltage Laws For any connected circuits with n nodes, since the electric potential
is jauge-invariant, one can choose arbitrarily one reference node with respect to which one can
measure n — 1 node voltages {e; ;‘:_11 and by definition ey = 0.

Definition 2.1 (Kirchhoff Voltage Laws (KVL)). The following are equivalent and defined
for all lumped connected circuits, for all times, for all choices of reference node

e (closed node sequences) For all closed node sequences, the algebraic sum of all node-to-
node voltages around the chosen closed node sequence is equal to zero.

e (Loop) The directed sum of the potential differences (voltages) around any closed loop
is zero.

e (branch) For all pairs of nodes j, k, the branch voltage vy; is equal to the difference of
the node voltages vy;(t) = ex(t) — e;(t).

Kirchhoff Current Laws Kirchhoff Current Law (KCL) is an expression the electric charge
conservation law. The fundamental concept to express KCL, is the notion of a gaussian surface.

Definition 2.2 (Gaussian surface). A gaussian surface S is a two-sided closed surface in
three-dimensional space enclosing a volume V' through which the flux of a vector field is
calculated. S = V.

1. For audio circuits, the characteristic length L. of a standard mounted rack is L. = 19” ~ 48.26 cm and the
upper limit of the human auditory system is about f = 20 kHz. This corresponds to an electromagnetic wavelength
A =c¢/f =15 km: that is four orders of magnitude higher than d. This justifies the lumping condition L. < .

2. This is analog to the lumping of rigid-body mass-spring systems using point-masses.
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Charge conservation, which was proved by Faraday in 1843, implies that the change in the
amount of electric charge in any volume of space is exactly equal to the amount of charge flowing
into the volume minus the amount of charge flowing out of the volume.

Definition 2.3 (Kirchhoff Current Laws (KCL)). Kirchhoff current laws, which are valid for
all lumped circuits, for all times ¢, can be expressed equivalently

e (Gaussian surface law) The algebraic sum of the currents entering a Gaussian surface
is equal to zero.

e (Node Law) The algebraic sum of the currents entering any node is equal to zero.

e (Cutset law) The algebraic sum of the currents associated with any cutset is equal to
zZero.

Proof. Les S be a gaussian surface enclosing a volume V', ¢ the quantity of charges within the
volume and J (A/m?) the current density. By 1) definition of the current entering a gaussian
surface, 2) the Stokes/divergence theorem, 3) charge conservation, 4) the lumped circuit hypothesis

one obtains 5
Ié—# J'dSi—///(V-J)dViqéo.
5=V 1% ot

Remark 2.1. To every node corresponds a gaussian surface enclosing the node which cuts
every edges connected to the node, and to every cutset corresponds a gaussian surface which
cuts exactly the same branches.

A direct consequence of Kirchhoff laws is the power-balance of electronic circuits.

Theorem 2.1 (Tellegen theorem [Tel52|). For all lumped circuits, for all times t, the sum
of power over all circuit’s branches is zero.

2.2  From circuits to graphs

Any lumped circuit can be splitted into two independant parts: component laws which
exist independently of the context in which components are used, and Kirchhoff Laws which
are algebraic constraints on branch voltages and currents arising from the interconnection of
components. Network topology deals with the properties of lumped networks solely determined
by the interconnection of components. This modelling step is standard and common to all circuit
modelling methods [Chu75, CDK87| (for PHS in audio circuits see [Fall6, FH16a|).

Netlist The standardized description of a circuit for electronic simulations is through a netlist.
For our current purpose, it is enough to say that each line of a netlist stands for a component
structured as follows

<type><label> <list of nodes> <parameters>; <comments>

For complete netlist specifications, please refer to SPICE documentation [V1a94].
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Example 2.1. The netlist of a diode clipper circuit in figure 2.1 is given by

R1 1 2 1k ; Resistor

D1 2 0 1N914 ; Shockley Diode
Cl1201u ; Linear capacitor
Vi 10 1v ; Voltage source

The knowledge of this netlist is then sufficient to one obtain the directed graph on the right

D TN

L

Cl Dl Cl

%
it N

1

Ry

o —
[ I\

Vi

)

Figure 2.2 — Diode clipper graph.

2.2.1 Elements of graph theory

In order to automate the description and manipulation of Kirchhoff laws for any circuit, it is
necessary to first recall some important results from graph theory that will be needed thereafter.
We rely on references [Chu75, Deol7], and [Slel12, Sma00].

Definition 2.4 (Graph). A graph G = (N, &) consists of two sets: a finite set of nodes
(vertices) N = {n1,...,n,} and a finite set of edges (branches, links) &€ = {e1,...¢,}. Each
edge is identified with a pair of vertices which can be ordered (directed graph) or non ordered
(undirected graph)

Definition 2.5 (Path). A set of edges p = {e€1,...,€,} in a graph G is called a path between
two nodes n;, ny, if

1. consecutive branches ¢;, ¢;41 have a common node,
2. No node of G is contained in more that two edges of the set p,

3. n; and 7y belong to exactly one edge in p.

Definition 2.6 (Connected Graph). A graph G is said to be connected if there exists a path
between any two nodes of the graph.

Definition 2.7 (Loop). A subgraph Gs of a graph G is called a loop (or cycle) if
1. G, is connected,

2. every node of G, has exactly two edges of G, incident at it.
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1 R, 2 1 R, 2 1 2
o€ . o€ . 2 [ ] [ ]
£1 Cl 62 Cl
V1 0 Vi 0 L 0 )

Figure 2.3 — Examples of loops shown in black.

Definition 2.8 (Tree). A subgraph G of a connected graph G is called a tree if
1. G, is connected,

2. G5 has no loop.

Definition 2.9 (Spanning Tree). A subgraph G, of a connected graph G is called a spanning
tree if it is a tree that contains all nodes of G.

Edges that belong to a spanning tree T" are called tree edges, and those which do not belong to a
spanning tree T" are called links. All the links of a spanning tree T' form a cotree T' such that
TUT ~ G. For a connected Graph G with n nodes, any spanning tree has exactly n — 1 tree
edges.

@ —

Ry 2 1
° °

Figure 2.4 — Examples of spanning trees shown in black, with their cotree shown in dashed

Definition 2.10 (Cutset). A set of edges C of a connected graph G is said to be a cutset if
1. The removal of edges C' (not their nodes) results in a graph that is not connected,

2. after the removal of the edges, the restoration of any one edge from the set, will result
in a connected graph.

To each cutset corresponds a partion of nodes N into two disjoint sets (N7, N3) which can be
oriented or non-oriented.

Definition 2.11 (Fundamental Loop and Cutset). Let T be a spanning tree of a connected
digraph G with cotree T.

e For each branch b € T, the loop L; := loop(bUT) is said to be a fundamental loop

e For each branch b € T, the cutset Cj, := bUT is said to be a fundamental cutset.

These concepts are important to express Kirchhoff Laws in matrix form. In particular the
notion of a (minimum) spanning tree, is required for automated generation of hybrid Dirac
structures p.55 and in causality assignment p.57.
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Incidence matrix

Definition 2.12 (Incidence Matrix). For a directed graph G with n nodes and b branches,
the (node-edge) incidence matriz of the graph is the n x b matrix defined by

1 if branch j enters node 1,

A = [aij]nxb’ a;j = ¢ —1 if branch j leaves node 4, (2.1)

0 otherwise

Example 2.2 (Diode clipper incidence matrix). For the circuit shown on Figure 2.1, the
incidence matrix is

Ry Dy Ci W

m| 0 -1 -1 -1
A=pl1 0o o 1
wml-1 1 1 o0

Definition 2.13 (Reduced Incidence matrix). Any (n — 1) x b submatrix A of an incidence
matrix A(G) obtained by removing the row corresponding to a chosen reference node is called
a reduced incidence matriz.

Example 2.3 (Diode clipper reduced incidence matrix). Choosing node 79 as reference
node, one obtains the reduced incidence matrix

Ry Dy C1 W

Af:nl 1 0 0 1
m|l-1 1 1 0

Definition 2.14 (Co-incidence Matrix). For a directed graph G with n nodes and b branches,
the co-incidence matrix of the graph is the b x n matrix defined by D = AT.

An important result to obtain a hybrid Dirac structure (p.55) from Kirchhoff laws is given in
the following theorem and its corollary

Theorem 2.2 ([Deol7] thm 7.3). Let A be the incidence matriz of a connected graph G
with n vertices. An (n — 1) x (n — 1) submatriz of A is non-singular if and only if the n — 1
edges corresponding to the n — 1 columns of this matriz constitutes a spanning tree in G.

Corollary 2.1. For a spanning tree T, A can be partitionned into an (n — 1) x (n — 1)
tree incidence matrix Ap and an (n — 1) X (b —n + 1) link incidence matrix Ap such that

A= [AT AL}, then A1 is invertible.
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Example 2.4. For the spanning tree 7' = {V;,C}, with cotree T = L = {Ry, D1}

Vi Ci Ry D i G Ry D
Ay = m| 1 0 1 0 Ay — m| 1 O A= m| 1 0
m|{ 0 1 -1 1 m| 0 1 m| -1 1

Figure 2.5 — Prototyping boards, a close physical analogy of a graph incidence matrix.

Loop matrix

Definition 2.15 (Loop incidence matrix). For a directed graph G with ¢ oriented loops and
b branches, the loop incidence matriz of the graph is the £ x b matrix defined by

1 if branch j is in loop ¢ with the same orientation,
B = [bij]£xb’ bij =< —1 if branch j is in loop i with the opposite orientation  (2.2)

0 otherwise.

Example 2.5 (Diode clipper loop matrix). For the Diode clipper circuit, one obtains the
loop matrix
Ry Ci Vi Dy
l] 1 1 -1
B= /|1 0 -1
3] 0 0 -1

=)
—
ro
w
S~—

Theorem 2.3. If G is a graph without self-loops, with incidence matriz A and loop matrix B
whose columns are arranged using the same order of edges, then every row of B is orthogonal
to every row of A, that is ABT = BAT = 0.
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Definition 2.16 (Fundamental Loop matrix). Any b —n + 1 x b submatrix B of a loop
matrix B in which all rows correspond to a set of fundamental loops (with respect to a
spanning tree T') is called a fundamental loop matriz.

Property 2.1. A Fundamental loop matrix can be partitionned as By = [Br Ir].

Example 2.6 (Diode clipper fundamental loop matrix). The fundamental loop matrix for
the tree T = {V7, C1} with cotree T = {Ry, D1} is obtained by removing the loop /5 (using
the rule of only one cotree link per fundamental loop) and reordering columns into tree
branches {C1, V1} and cotree branches {Ri, Dy}

Ci Vi R Dy Ci W Ry Dy

B 1 -1 1 0 B | 1 -1 B /| 1 0
= 5 T = 5 L=

T olo -1 0 1 bl o —1 tlo 1

Cutsets matrix

Definition 2.17 (Cutset incidence matrix). For a directed graph G with n. oriented cutsets
and ny branches, the cutset incidence matrix of the graph is the n. x n, matrix defined by

1 if branch j is in cutset ¢ with the same orientation,

C:= [cij]ncxnb , ¢;j = ¢ —1 if branch j is in cutset ¢ with the opposite orientation,
0  otherwise.
(2.4)
2
1 'R 2
’ 1 R Ry G Vi Dy

R | w0 1 0 1 0
| c1| —1 0 0 -1 0
ffffff R S el 10 -1 0 -1

| & D =
| ' ' C= . 1 -1 0 -1
| e cal—-1 1 0 0 0
0" e Y {0 0 1 1 1

Co C4

Figure 2.6 — Graph with cutsets and its cutset matrix

Theorem 2.4. If G is a connected graph, then the rank of a cut-set matriz C(G) is equal to
the rank of incidence matriz A(G), which equals the rank of graph G.
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Definition 2.18 (Fundamental cutset matrix). Let G be a connected graph with n nodes
and b branches. The fundamental cut-set matrix C; of G is an (n — 1) x b submatrix of
C such that the rows correspond to the set of fundamental cut-sets with respect to some
spanning tree 7.

Property 2.2. A Fundamental cutset matrix can be partitioned into a diagonal tree cutset
matrix and a link cutset matrix as Cy = [Ir Cyr].

Example 2.7. For atree T = { Ry, Ry, V1 }, and its cotree T = {C4, D1}, reordering columns,
and removing cutsets co, c1, ¢4 corresponding to tree edges Ry, Ro, Vi (ie. coURy =T,
¢t URy =T, ¢4 UVy =T) one obtains the fundamental cutset matrix.

Ry Ry Vi Ci Dy R Ry W Cv Dy

co| 1 0 0o -1 -1 co| 1 0 0 c|l -1 -1
Cr= 0|0 1 0 -1 —-1|, Cr=1¢310 1 0], Co= ¢3|-1 -1
cs| O 0 1 1 1 cs| 0 0 1 cs| 1 1

Relation between A, B, C From theorem 2.3, partitioning incidence and loop matrices A, B
according to a tree 7' and dual links L =T as Ay = [Ar Ar], Bf = [Br I.] and using corrolary
2.1, one can show that the tree loop matrix By is related to the tree and link incidence matrices
A7, Ap as follows By = —AZ'A L%,

Proof.

B
AB} =0 < [AT AL} "1 =0 ArBr+AL, =0 < Br=-A7'AL

I

3. Note that tree loop matrix Br and the link cutset matrices C; are important objects that emerge when a
Kirchhoff Dirac structure (see subsection 2.3.1) is reduced to an Hybrid Dirac structure.
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2.3 Port-Hamiltonian representations of electronic circuits

We present here PH circuit representations and transformations that will be used in this thesis.
The Kirchhoff-Dirac structure is presented in subsection 2.3.1, then its reduction as a Hybrid
Dirac structure is shown in subsection 2.3.2. Transformation to semi-explicit pH-DAE using well
chosen spanning trees is detailed in subsection 2.3.3. Finally reduction of pH-DAE to pH-ODE
in detailed in subsection 2.3.4. An alternative refinement is presented in subsection 2.3.5 using
thermodynamic embedding of pH-DAEs as conservative but irreversibly modulated pH-ODEs.

Voltage, current and bond spaces for circuits

Following [VASM13, VASM11] (see also [Sma00]), for a circuit graph G with n nodes and b
branches, over each node (using the label £ = 0) and branch (using the label k = 1), using the
receiver convention for both, we denote

e Vy ~ R"™ the node voltage space and Iy = V; (~ R™) its dual the node current space,

e V) ~ R’ the branch voltage space and T; = Vi (~ R®) its dual the branch current space,
with the duality pairings

<ik ’Vk>Bk =i - Vg, V(ik,Vk) L xVy, ke {0, 1}. (2.5)

Together they generate respectively the node bond space By = Zy x Vy, the branch bond space
By =11 x V1, and the bond space B = By x By. respectively equipped with the quadratic forms
(see (1.22) p.19)

QB, ((i,v))Bk =2(i|v), V(i,v) € By, ke{0,1}. (2.6)
and their associated canonically defined indefinite bilinear form (see definition 1.12)

((i1,v1), (12,V2)>3k = (i1 | va)p, + (2| vi)p, , V(1,v1),(i2,v2)) € By, k€ {0,1}.  (2.7)
2.3.1 Kirchhoff-Dirac structure

Definition 2.19. Let D = AT(G) be the reduced co-incidence matrix of a circuit graph G.
Kirchhoff Current and Voltage laws ¢ can be expressed dually by

V] = DV(), io = —DTi1 = 0. (28)

This defines the following Kirchhoff-Dirac structure

i 0 -DT| |v
D= (io, Vo, il,Vl) € By x By 01 = 0 , ip=0. (2.9)
Vi D 0 i1

a. The minus sign in front of ip comes from the consistent use of the receiver convention for both nodes
and branches: the sum of edge currents entering each node is zero.

4. This notation (k = 0, k = 1) is convenient and consistent with the k-junctions used in Bondgraph [Pay61]:
O-junctions for nodes (shared voltage, parallel connection) and 1-junctions for branches (shared current, serial
connection). It is also a mnemonic to remember that lumped circuit equations arise from the spatial discretization
of electro-magnetic 0-forms for nodes and 1-forms for branches.
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Remark 2.2 (Interpretation). Kirchhoff Current Laws can be interpreted as zero boundary
conditions on the node currents . The reduced co-incidence matrix D takes the status of
a (lumped) differential operator D : Vy — Vi, with adjoint the reduced incidence matrix
DT : 7, — T, i.e. we have the following diagram

vo € Vo Db vi €V
1), 18, (2.10)

ig € Iy <——DT el

a. If the charge is chosen as state variable for node and branches, this would correspoond to Neumann
boundary conditions ip = qo = 0.

Power Balance Left multiplying (2.9) by [vo i1], skew-symmetry of the Kirchhoff-Dirac
structure leads to the power balance

. . 110 -DT| |vo
Vo-lg+ vyl = [VO 11} =0. (2.11)
D 0 i

Tellegen theorem Furthermore since we have the KCL subconstraint ig = 0 over the nodes,
this yields Tellegen theorem (2.1) (the sum of a circuit branch power is zero ) over the edges”

A2 il =0. (212)

Circuits and homology groups Using homology groups, one can interpret the Kirchhoff-
Dirac structure as a realisation of a Stokes-Dirac structure [KMLI18| over 1-chains (edges) and
O-chains (nodes). See [VASM11, VASM13]. Kirchhoff laws can be rewritten canonically as di; = 0,
and vi = dvg where d = D denotes the ezterior derivative and § = DT denotes its dual the
co-differential. See the thesis [Abal4, chap.3| for more details about algebraic topology and
discrete Stokes relations (p.34) for electric circuits.

2.3.2 Reduced Hybrid Dirac structure

The dimensionality of the Kirchhoff-Dirac structure (2.9) can be reduced by eliminating node
variables Y which again yields a hybrid Dirac structure. Let T be a spanning tree (def. 2.9) of a
circuit graph G. Partitioning Kirchhoff laws (2.8) into tree (T) and link (L = T') variables yields

= vo, [D} DH Tl <o (2.13)
\'45 Dy, 17,

From theorem 2.2 and its corollary 2.1, having a spanning tree ensures that matrix D7 is invertible
so that one can eliminate node voltages vy using the relation

vo = Dylvr. (2.14)

5. Indeed [CDKS87, p.30], any two of KCL, KVL and Tellegen theorem implies the third one.
6. This is the opposite of (Modified) Nodal Analysis [HRB75] which uses node voltages as main unknowns.
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Fundamental loop and cutset form of Kirchhoff laws Substituting (2.14) in (2.13) and
left multiplying the second equation of (2.13) by D;T yields the expression of Kirchhoff Voltage
and Current Laws using fundamental loop and fundamental cutset matrices

_ vr _ ir
-D,;D;' I, =0, [IT DTTD{] Sl =0 (2.15)
— \'J 17
fundamental loop matrix By fundamental cutset matrix Cy
where the tree loop matric By = —DLD;1 and the link cutset matriz Cyp, = D;TDI, are related

by Cr = —Bij. This is summarized by the following definition.

Definition 2.20 (Loop and cutset form of Kirchhoff Laws). Let By and C¢ be the funda-
mental loop and cutset matrices associated to a graph G with spanning tree T'. then Kirchhoff
laws can be written as

B;v=0, (KVL) Ci=0. (KCL) (2.16)

where By = [B7 Ir] and Cy = [I Cr] and Cp, = —B;.

Hybrid Dirac structure

Splitting voltages and currents according to tree and links in (2.15), one can express link
voltages v, in terms of tree voltages vy and tree currents iy in terms of link currents iy, as

vy =Clvr, ir = —Cpir, (2.17)

and gathering these informations yields the following definition.

Definition 2.21 (Hybrid Dirac structure). Let Cy, be the fundamental link cutset matrix
associated to a graph G for a choice of spanning tree T', then the associated Hybrid Dirac
structure is

ir 0 —Cy v

S (iT,VT,iL,VL) € Br x By, = 5 (2.18)
vy, Cz 0 if,
i.e. we have the following diagram
cl
vr eVr —————— vy €V
ape. aprs (2.19)

ir €Iy <7C i € 1,
—CL
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Example 2.8. In example 2.3, the reduced incidence matrix is

R Dy Ci W
Af _ 171 1 0 0 1 _ DT.
wml-1 1 1 o0

By consequence, according to (2.9), the corresponding Kirchhoff-Dirac structure is

i1

19
VR,
UDy
'UCl

(%%

Choosing a tree T = {V;,C;} with cotree/links L =T = {Ry, D1} yields the fundamental

—1

= o O =

tree and link incidence matrices

According to (2.15), we obtain the fundamental loop cutset matrix

Vi

CL=A;'A; =

Cy

&1

C2

Ap

Ry
1
-1

U1
V2
IR,
iD,
10y

A

m
2

D1

0
1

)

Ry

-1

A1

19

D,
0
1

such that, according to (2.18), the Hybrid Dirac structure reduces to

loy

1y,

UR,

le

(A%

vcy

Kernel form of Reduced Hybrid Dirac structure

as follows. Define the matrices

0

Br 1
E_ |°T

9

0

then the kernel form of the reduced Dirac structure

D={(i,v) € B, | Ev+Fi=0}.

Using the fundamental loop and cutset
matrices By and Cy from (2.16), one can obtain the kernel form of the reduced Dirac structure

IR,

iD,
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where one can verify that since Cp = —B} it satisfies condition

0 Br+Cj N 0 0

EF' + FE' =
0 0 BT+C; 0

= 0. (2.22)

Image form of Reduced Hybrid Dirac structure Finally, by transposition of the kernel
Dirac structure (2.21) one obtains its dual image representation (which subsumes equation (2.17))

Bl 0 0 I
D={(G,v)eB | i=|T "|A v= “IA VAeR:Y. (2.23)
I, 0 0 C/

Note that, by inspection, the physical interpretation of the parameter A corresponds to link

currents iy, and tree voltages vy as A = [“,LT }

2.3.3 From hybrid Dirac structures to semi-explicit pH-DAE

The semi-explicit PHS representation from definition 1.24, is important for computer simu-
lation. In particular, it fixes the choice of variables, it allows the formulation of a fixed-point
equation, and it allows a structured interpretation of the power-balance.

X VH(x)
w|=J| z(w)
y u

In the context of a circuit, it is obtained by the following procedure: Let G be a circuit graph.

1. Denote x the state of differential components (capacitors and inductors) characterised by an
energy potential H(x), w the control variables of passive algebraic components characterized
by a law z(w), and u the vector of external inputs with conjugated output variables y.

2. Choose a spanning tree T of G such that current-controlled branches (voltage sources,
capacitors, resistors, etc.) belong to the tree and all voltage-controlled branches (current
sources, inductors, conductors, etc.) belong to the cotree T

3. Obtain the hybrid Dirac structure D of equation (2.18) and reorder rows and columns
according to variables variables (x, w,y) to obtain the skew-symmetric matrix J.

Example 2.9. Reconsidering the diode clipper example, where x = ¢, w = (vg,vp),y =
iy, u = vy, reordering the matrix and substituting component laws yields the pH-DAE

ic =g o1 ve = q/C
v | | -1] . D1 ir =vRr/R
Up - 1 ) .10 ip = pn(vp)
AYe . |=1 0 |. vy

In step 2, it is not always possible to find a tree that satisfies these contraints. To address
this problem, we propose the following approach
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Finding a minimum spanning tree
We seek a spanning tree 1" that satisfies the following requirements
1. All Voltage sources and current controlled branches belong to the tree,
2. No current source and no voltage-controlled branch belong to the tree,
3. A maximum number of capacitors belong to the tree
4. A minimum number of inductors belong to the tree
5. Linear resistors and bijective algebraic components can belong to either tree or cotree.

This problem is similar to the Sequential Causality Assignment Procedure (SCAP) [VD95] in the
bondgraph litterature (and its many variations [MFS00, WBIK02]). This problem has also been
addressed by Falaize with an ad-hoc algorithm in [Fall6, FH16a].

Zero-One-Linear integer programming problem in standard form For the b branches,
let x € {0,1}" be the boolean vector representation of a subgraph 7' of a graph G (where x,, = 1
if n € T and 0 otherwise). Its complement T is represented by the boolean vector X = 1 — x. A
subgraph T is a tree of G (def. 2.8 p.48) if every node is reachable exactly once from the tree.
This can be formalized using the graph Laplacian L(G) := AT(G)A(G) by the constraint

Lx = 1. (2.24)

where is the incidence matrix (see def. 2.12) of G. We formalize preferred computational
causalities " constraints by the objective function

O(x) =wr X+ Wwp-X (2.25)

with weights

() 1 if branch e is current-controlled (2.26a)
w = , .26a
T 0 otherwise
wor(e) = 1 if bran(-:h e is voltage-controlled (2.26D)
0 otherwise

Note that the objective function can be expressed with the number of branches b and a unique
weighting function w as

O(x) =wr X+ Wp-X=b+ (W — wWgp) - X.
This leads to the Zero-One-Linear integer programming maximization problem in standard form
maximize b+ w-x,
subject to Lx =1 and x € {0,1}",
—1 if e has voltage-controlled causality (I,L) (2.27)

with w(e) = {1 if e has current-controlled causality (V,C,D,Q) .
0  otherwise (R)

7. arising either from numerical integration rules or from the availability of bijective algebraic maps.
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Minimum spanning tree algorithm Since the cost function is restricted to spanning trees,
and determined exclusively trough the tree vector x, a significant simplification of the maximization
problem (2.27) is to find a minimum spanning tree which solves the minimization problem

minimize —W - X. (2.28)
x € spanningtrees(G) .

Note that this problem has an algorithmic complexity of O(blog(n)) when implemented using
either the Prim-Dijkstra [Pri57] or the Kruskal [Kru56]| algorithm.

A circuit with its minimum spanning tree is shown on figure 2.7. If a conforming spanning
tree is found, then the number w - x should corresponds to the maximum number np of current-
controlled edges in the circuit (here ny = 2).

Figure 2.7 — Example of a minimum spanning tree that includes current-controlled branches.

Failure to satisfy the condition w - x = np can be used to detect the presence of topological
problems such as hidden algebraic constraints (see figure 2.8).

1 L 2 1 L 2 1 Ly 2
= A
Cq Co Ch Co Ci Cy
0 3 0 3 0 3
> r—>
LQ Lz LQ

Figure 2.8 — Example of an LCLC circuit where there doesn’t exists a spanning tree that
includes all current-controlled branches and no voltage-controlled branches.

Note that, when a suitable minimum spanning tree cannot be found, so that the PH-DAE is
semi-explicit, we proposed a fully-implicit numerical discretisation strategy in [MH20| which does
not require causality assignment and can directly deal with such kind of implicit DAE constraints.
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2.3.4 Reduction to Input-State-Output pH-ODE

In many cases, to study existence and uniqueness of solutions or to employ standard integration
methods, it is desirable to reduce differential-algebraic equations to state-space ordinary differential
equations. We show here how to transform a semi-explicit pH-DAE (definition 1.24) to an input-
state-output pH-ODE (definition 1.23).

Consider a semi-explicit pH-DAE with Dirac structure D for a circuit graph G defined by the
skew-symmetric matrix S partionned as follows

x Jx  *x x| |VH(x)
wl = |Jxw Jw = z(w) | . (2.29)
y Jyx Jyw Jy u

S

Case Jy, = 0 If J,, = 0, which is a frequent case (no direct coupling between algebraic
components), and there exists a symmetric positive definite matrix-valued function® Z(w) such
that z(w) = Z(w)w, then one can reduce the dependance on w by reinjecting

w=JwVH(x) - Jj,u (2.30)

into (2.29) to obtain the nonlinear state-space system

VH
— (J - R(x,u)) (x) (2.31)
u
where the skew-symmetrix matrix J = —J T and the modulated symmetric positive definite matrix
R =RT" > 0 are defined by
Jx JI Z(x,u))w I Z(x,u)J]
J= * ’ 1%()(7 u) _ XW (X 11) XW (X 11) ywW (232)
Jyx Jy —JywZ(x,0)xw  JywZ(x,u)J],,
and where by abuse of notation
Z(x,u) = Z(w) . (2.33)
w:waVH(x)—J;Wu
Case Jy #0 When Jy # 0, one needs to solve the implicit equation on w
w—Jwz(w) =JxwVH(x) — J;wu. (2.34)

Suppose the DAE is of index 1 such that the function g(w) = w — Jwz(w) can be inverted
(algebraically or numerically) such that

w =g '(JuwVH(X) - J;Wu).

then in general z(w) is no longer a separable function of VH (x) and u. However if there exists
matrix-valued functions A, B such that

z(w) = A(x,u)VH(x) + B(x,u)u (2.35)

8. Z may not be positive definite if there exists conservative algebraic components, in which case J will be also
modulated by x,u
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then the algebraic feedback can be expressed by the matrix (not necessarily symmetric)

JIWA(Xa u) _JIWB(Xv u)

(2.36)
—-JywA(x,u) JywB(x,u)

R(x,u) =

Example 2.10. We reconsider the diode clipper example with semi-explicit representation
(x=¢, w= (vR,vp),y =iv,u=uvy)

ic=4q A A R ve =q/C y
VR -1 . . 1 iR = UR/R
= . ) V@ —_—C /D
Up 1 . .10 ip = pn(vp)
iV . -1 0 . vy

We remark that since current and voltage cannot be mixed in the Dirac structure, necessarily
Jx=0,Jw=0,Jy, =0 and Jyx = 0. We have vgp = vg — ¢/C and vp = ¢/C. It is then
possible to solve explicitely for w = (vg,vp) to obtain the reduced state-space PHS with
feed through (cf Equation (2.31) and Definition 1.23)

q/C 1 [1+ Rpn(vp)/vp -1
.| =—R(q) / , R(q) = = (op)/ = 0.
vp=q/C

where we already used in example 1.10 the fact that pn(v)/v > 0.

2.3.5 Dissipative pH-DAE to conservative pH-ODE embedding

We show how to embed a dissipative pH-DAE, as a conservative but irreversibly modulated
input-state-output pH-ODE with extended thermodynamic state space. Our motivation is two-
fold, first the DAE simplifies to a simpler state-space system, second the energy invariant of the
system being explicit, we can use an energy-preserving ODE solver, rather than a DAE solver
which only preserves a passive inequality. The transformation is similar to the approach presented
in [EMVDS06] (see also the RS element [Bor09, p.52|). However, since we are not interested here
in the thermodynamical details, it is simpler for our purpose to use the heat variable () instead
of the temperature 1" and entropy S.

We start from a semi-explicit skew-symmetric pH-DAE (2.29)

X Jx * x| | VH(x)
w| = |Jwx Jw * z(w) (2.37)
y Jyx Jyw Jy u

and we consider dissipators as energy transducers converting electrical energy into heat. To all
resistive ports with power conjugate variables (w, z(w)) and power P(w) = z(w)-w, we associate
a heat bath with thermodynamic potential

U@)=Q>0 (2.38)

with heat @) in Joule. It has energy variable () with trivial co-energy variable VU = 1.
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Thermodynamic power balance Requiring that the dissipated power is absorbed by the
thermodynamical potential U yields the thermodynamical power balance

d

I UQ) = Q =z(w) - w. (2.39)

Left multiplying the second row of (2.37) by z(w)T and factoring z(w) into the second column,
yields the inhomogeneous ODE

X Jx * * VH(X)
Q| = [Jwx(Ww) Ju(w) x| |VU= (2.40)
y Ty Jyw(w) Ty u

with the following matrix-valued functions of the algebraic variable w defined by

~ A

Jox(W) = 2(w) T T yx, Jw(w) = z(w) T wz(w), Jyw(W) = Jywz(w) (2.41)

and where w is the solution” of w = JwxVH (x) + Jywz(W) — J;Wu.

Solving for w We introduce the function g(w) = w — J,,z(w). Under the hypothesis of the
implicit function theorem (invertibility of the Jacobian g’), we define the inverse function w to
express the algebraic variable w as a function of state and input variables x, u

w(x,u) = g (Jux VH(X) — J;Wu). (2.42)

By substitution of (2.42) in (2.40) we define the modulated skew-symmetric matrix-valued function

Jx * *
J(x,u) = Jux(x,u)  Ju(x,u) x|, JT=—J. (2.43a)
Ty Jyw(x,u) Ty

were the resulting matrix-valued functions of x and u are given by

Jox(x,1) == z(w(x, 1)) " Jwx, (2.43D)
Jw(x,0) 1= z(w(x,u))" Iy z(w(x,u)), (2.43c)
ij(x, u) = Jyw z(w(x, u)) (2.43d)

Thermodynamic pH-ODE Finally, introducing the total energy potential (Hamiltonian -+
Thermodynamical energy)

E(x,Q):=H(x)+U(Q) (2.44)

and the extended state vector X = [x, Q]T, one obtains a conservative input-state-output pH-ODE
(see def. 1.23) with modulated matriz J.

X ~ i) VE(X)
y u

(2.45)

9. Note that although the general case is implicit, it is frequent to have Jw =0
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Example 2.11 (Conservative RLC). Consider a Parallel RLC circuit with semi-explicit
PHS representation

ic=( 0 -1 —1| |ve=g¢q/C
vp=¢| =11 0 0| |ir=¢/L (2.46)
VR 1 0 0 iR :UR/R

Using the thermodynamic embedding, we obtain the irreversibly modulated system with
conserved total energy E(q, ¢, Q) = ¢*/2C + ¢? /2L + Q (see figure 2.9)

q 0 -1 —¢/(RC)| |¢/C
ol = 1 0 0 o/L| - (2.47)
Q q/(RC) 0 0 1

Using the third row, and noticing that vg = q/C, we recover the dissipative power transfer

d

. q q q 1gq )
dt (@) =1 C RC C <RC’> VR iR 2 0 (248)

Figure 2.9 — Isothermal RLC. z = ¢/vVC, y = ¢/VL, z = (Q — Q). Iso-energy surface
{(q, ®,Q) | E(g,9,Q) = E(qo, o, QO)} (in blue). Reachable points are above the red circle.

Remark 2.3. It is possible to refine this representation in several ways.

a) use an isothermal heat bath U(S) = T'S with temperature 7" and entropy S,

b) keep track of the entropy variable for each component using the potential U(S1, ..., S,) =
T(S1+...4+Sn),

c¢) use distinct (and isolated) isothermal heat baths for each dissipative component
U(Sl,...,Sn) =151 4+...+ 1,5,

d) replace the isothermal condition by heat diffusion.
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2.4 Bond Graphs and Wave Digital Filters

We leave equational algebraic representations to present two graphical network representations,
namely bondgraphs and wave digital filters. Despite their notational differences, and the fact that
bondgraphs use flow-effort variables while wave digital filters use wave variables, both notations
are conceptually very similar and will be presented in parallel to highlight their similarities
and differences. Both representations rely on breaking down a system into elementary n-port
components, and connections between them.

We shortly present below the basics of both formalisms, for more details, please refer to
the following references for bond graphs [Pay61, Bre86, Bro99b, GVASBMO03, Bor09] and [Fet86,
Bilo4, WNSA15, WBSS18, BS17] for WDF.

2.4.1 Bondgraphs

Bondgraphs are a multi-physics network modelling tool invented by Henri Paynter at the
MIT in 1959. It models energy transfer as an oriented graph between subsystems A, B such that
power e - f is positive in the direction of the half-arrow.

A——B = A B
f 7

Note that the equivalent block diagram on the right is not oriented yet. To realize the block-
diagram, it is necessary to assign a so-called computational causality which is indicated by a
vertical bar toward the element that is effort-driven the other element being flow-driven.

(&

A%}|B = A B
. '/‘
, e
AI{TB = A [ B
. ']L‘

Serial and parallel junctions As we have already seen, systems are connected together
through power-preserving junctions structures. The basic building blocks to create more elaborated
connections are the serial 1 and parallel junctions 0

| [

f1:...=fn €] =...=¢€p
e1+...+e, =0 f1++fn:0

We remark that, for parallel junctions, since all efforts are equal only one port can be effort-driven.
Dually for serial junctions all flows being equal, only one port can be flow-driven.
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Transformer and Gyrators Two important Dirac structures, the Transformer and Gyrator
are represented (with their admissible causalities) by

Common electronic components

e Capacitor: the law of a (nonlinear) capacitor is vo(t) = VHe (qc = foto ic(T) dT). This is
formalized by the current-driven component.

. i qc ve j
e — [ VHe H P’&
. <«

!

e Inductor: the law of a (nonlinear) inductor is iy (t) = VH, ((Z)L = foto vr(7T) dT). This is
formalized by the voltage-driven component.

) VI, Dy, I .
UL = VH = i

—AL = f L = T
ir UL

e Resistor / Conductor: (nonlinear) resistors (conductors) are charaterized by passive relations
R:iRHvR, (Gthf—)iR)

UR iR VR
H——R R
'R ,LR
UR VR iR «
—AG G VR
'R

e RS element [Bor09, p.52|: In the bondgraph litterature, dissipators can also be considered
as energy transducers converting non-thermal energy into heat satisfying the power balance
Q=TS =wvgR-ig.
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Simplification rules We recall here some useful graphical bondgraph simplification rules
(see [Bro99b, Bor09]). These can considerably reduce the number of elements and save tedious
algebraic manipulations.

0 0 = —0— (2.49¢)

=—

1 = — 11— (2.49d)
[ ~— 00—~
/N |
——0 0— = —1—— (2.49¢)
\
N
0 ~—1——~
/N |
— 1 11— = — 0—— (2.49f)

In particular, these rules are implemented in the 20-sim software [Bro99a]. We also note that
since these identities only rely on (here Kirchhoff) conservation laws, they translate directly to
Wave Digital Filters.
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Automated conversion of circuits to Bondgraphs In reference [Bre86], Breedveld pro-
posed an procedure to automatically convert a circuit to bond graphs. This systematic procedure
is of great value in particular when working with pen and paper to avoid errors. It is summarized
(here for electronic circuits) by the following steps

1. For each node n; of the circuit create a parallel 0; junction (the node voltage v; is shared at
the O junction),

2. For each branch between two nodes 7;,7; form the voltage difference v;; = v; —v; represented
by a zero junction 0;; connected to a serial 1;; junction as follows 10

3. Connect all ports of all components to the corresponding branch voltages,
4. Suppress the ground node and all its bonds,
5. (optional) use bond graph simplification rules

A step by step application of the method to the diode clipper test circuit is shown below on
Figure 2.10.

=
O

<
—1
Q
>
-~

]

_7V CT_ Dﬁ:!.

?
4 4

— I 0 N
(a) circuit (b) node bondgraph

0 1 0 A% 1 0 D

2

R
1—-V C<x1 D<~—1 R C
(¢) node bondgraph mass removed (d) reduced bondgraph using simplifica-

tion rules

Figure 2.10 — Automated Bondgraph modelling of the diode clipper circuit.

We note that we can layout the graph in a canonical way, in order to exhibit the fact that
the junction structure of the unreduced bond graph is bipartite (i.e. a 1-junction is necessarily
connected to a 0-junction) see Figure 2.11.

Causality assignment procedures As we have seen, to make a bondgraph computable, it
is necessary to orient its equivalent block-diagram such that each port is either flow or effort
driven. However in practice, some components such as voltage and current sources or non bijective
dissipators have an imposed causality, dynamic components such as capacitors and inductors have
a preferred integral causality while bijective algebraic components have no preferred causality. In

10. Mnemonic: nOde, vOltage — 0-junction, serlal, 1ntensity — 1-junction.
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A% R C D components
|
019 019 099 099 branch voltages
| |
19 1o 19 1 branch currents
01 09 node voltages

Figure 2.11 — Bi-partite bondgraph of the diode clipper circuit.

the Bondgraph litterature this problem is called the Sequential Causality Assignment Procedure
(SCAP) [KR68| for which many variants have been proposed (see reference [MFS02| for a review).
It can be summarized by the following steps

1. Assign causalities for all components that have fixed causalities
Propagate causalities through 0,1 junctions, ideal transformers and gyrators
Repeat steps 1 and 2 with components having preferred causalities

While there remains unoriented bonds choose an orientation for one and propagate causalities

AN o o

(optional) If causality conflicts are detected, backtrack choices made in step 3 and 4 and
resume the procedure.

This problem is closely related to the problem presented in subsection 2.3.3 where we show
how to formulate and efficiently solve causality assignment as a minimum spanning tree problem.
In practice however, the procedure described above remains important to perform causality
assignment graphically using only pen and paper and no computer.

Occurence of step 4 is an indicator of the presence of algebraic loops in the bond graph.

n-port and m-terminal elements Finally, to illustrate how to deal with elements that are
represented either as n-ports or m-terminals, we show the bondgraph of a 2-port, 3-terminal: the
Bipolar Junction Transistor.

Op
¢
1pc
OB\Q R
1pE
D

Oc
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2.4.2 Wave Digital Filters (WDF)

Now that the bondgraph formalism has been presented, we show similarities and differences
between bond graphs and WDF. We rely on references [Fet86, Bil04], see also [FOO05, Werl6|
for more recent developments (in particular SPQR trees). Compared to bondgraphs, the WDF
formalism has some important differences:

1. wave variables (w',w™) are used instead of flow-effort variables (f,e),

2. there is no need to assign computational causalities: block diagram inputs are incident wave
w™ and outputs are reflected waves w™.

3. the variable change is done after discretization,

4. WDFs rely on adapting the port-impedance parameter R of the wave variable change to
achieve reflection-free ports or break delay-free loops (i.e. obtain causal delayed reflected
11
waves ).

The last property is perhaps the strongest computational advantage of WDF compared to standard
methods. In term of graphical representations, we have the following equivalences

) w, = wg
A——B = A B
/ wh =wx
A B
— +
Wy wg
A~—0——>B = A I B
= ,
W Wy
- +
Wy Wp
A<~—1——8B = A o B
= ,
w Wy

Continuing with the diode clipper example from figure 2.10, we obtain the equivalence between
bondgraph and WDF shown on figure 2.12.

v+ an y -

: ) : U vV U 192 “'D
vy U12 UD

\4 1———0 D v - [ D
Ly 112 LD _ . —
R - Wy, 7“"12 . 711,' D
T | m Q[a Wp Wp We We
R C R C
(a) reduced bondgraph (b) WDF

Figure 2.12 — Equivalence between circuit Bondgraph and WDF representions.

11. At time t,,, the reflected wave w,, does not depend on the incident wave w;'.
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Port-Adaptation, Binary and SPQR connection trees In WDF, the port impedance can
be chosen such that the reflected wave does not depend instantaneously on the incidence wave.
This property (no instantaneous algebraic loop) is shown graphically by a vertical bar where the
port is adapted.

A |>RA

w7 [n] does not depend on w} [n]

Similarily to the fact that for parallel (resp. serial) junctions, only one port can be effort-
driven (resp. flow-driven), in the WDFs, only one port (called the root) can be adapted while the
remaining ports (called the leaves) inherit their port-impedance from the connected components.

root root
)LAB J TRAoB
| |
A RSl || s, B A Ryl o |Rs 1, B

Serial /parallel Binary Connection Trees (BCT) Using this property, for many circuits,
(by decomposing serial and parallel junction into 3 port adapters) it is possible to arrange elements
into a serial-parallel binary connection tree.

To numerically process the WDF tree at each time step, first reflected waves (which do not
depend instantaneously on incident waves) are propagated from the leaves to the root. Then
incident waves are propagated from the root to the leaves to update the state of stateful elements.

Using this approach it is possible to have a single nonlinear element at the root and use
Newton iteration to solve the instantaneous algebraic loop. This is illustrated below: the diode
clipper from Figure 2.12 has been redrawn with the nonlinear element D at the root of the tree,
and the voltage source and resistor have been lumped into a resistive voltage source VR with
port impedance R).

VR I , C

SPQR trees However the above approach fails for multiple nonlinearities or complex net-
work topologies which stimulated research for alternative strategies [FOO05, WNSA15, Werl6,
WBSS18|. An approach is to collect all nonlinear elements into a single multi-port situated at
the root of the tree and to decompose the remaining elements into an SPQR. tree '? [DBT96].
The example in figure 2.13 illustrates that rigid nodes arise as soon as the bondgraph contains
algebraic loops. To address this difficulty, these loops (red lines in figure 2.13b) are aggregated
into irreducible Dirac structure multiports to obtain an acyclic bondgraph (in figure 2.13c). Then
choosing a root (V in fig.2.13d), the graph can be transformed into an SPQR tree.

12. S for serial nodes, P for parallel nodes, R for rigid (strongly connected) nodes and Q for trivial nodes.
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(a) circuit (b) cyclic bondgraph

Ry v
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RQ Cl

R3 Ry

@)

(¢) acyclic bondgraph (d) SPQR tree

Figure 2.13 — Example of a circuit containing a rigid node Dg transformed to a single-root
SPQR tree (taken from the tone stack stage of the Big Muff 7 distortion pedal). I would like to
thank Kurt Werner and Olafur Bogason for the fruitful discussion on this topology at DAFx18 in

Aveiro.
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2.5 Port-variable changes

This section introduces the class of port variables changes that are linear, power-conserving,
and that operate across ports. This class, different than that of wave variable changes (performing
port by port linear combination of flow-effort pairs) is of interest to exploit circuit symmetries.

2.5.1 Conversion to common and differential ports

A common source of symmetry in physics happens when a system only depends on the
difference between port variables. In electronics, differential amplifiers '* (as the name suggests)
are exactly designed for that purpose. However in practice, components are not perfect and are
often characterised by their common mode rejection ratio, so that both common and differential
ports are necessary. Furthermore it is often the case that topological symmetries in the circuit
are broken by computational causality assignment. By consequence, in practice, the following
theorem is useful for devices whose description is simpler in terms of common and differential
ports. This is used in section 7.2.3 p.194 (see also the symmetries on circuits, fig. 7.24 p.195).

Theorem 2.5 (Common-differential 2-port). Consider a 2-port with conjugated port variables
(f1,e1) € F1x&1, (fa,e2) € Fax &, and the variable change (f1, fa,e1,€2) < (fa, fs, e, ex)

fa=a(fi = f2), ea = Ber — e2), (2.50a)
fs=a(fi+ f), ex = Bler + e3). (2.50b)

where aff = 1/2. Then, (2.50a)-(2.50b) defines an equivalent common-differential 2-port
parametrisation with the same power

(foles) + (falea) = (filer) + (f2|e2). (2.51)

Proof. Substituting (2.50a) (2.50b) into (2.51) and eliminating cross terms yields
(foles) + (falea) = % [<f1+f2|€1+62>+<f1 — faler —62>] = (file1)+ (fa]e2). O

Example 2.12 (Amplifiers). Consider a 4-port amplifier (here with lumped energy source)
having input-output ports {I+,I—, O+, O—}, differential gain K > 1 and common mode
gain K. Its representation is the X-A domain by the diagonal matrix

A A A
eg 0 Ky e? f]z
is more natural than in the original domain by
eo+| _ K+e —-K+He€| |es fre _0 (2.53)
eo— —K+e¢ K-+e er— ’ fr—

A passive model of the operational amplifier is detailed in chapter 7.

13. Differential amplifiers are commonly used in guitar and microphone preamps, operational amplifiers or in
the Moog synthesizer filter
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2.5.2 Generalized linear port variables adapters

We generalize the previous variable change by interpreting it as a power-conserving Dirac struc-
ture adapter between multiports. This is illustrated by the block-diagram of figure 2.15.

Theorem 2.6. Let D be linear multi-port adapter mapping vector port variables (f5,€,) €
Fu X &4 to vector port variables (fy,€p) € Fp X & where Fo ~ R"™, Fy ~ R™ according to

f, = Ff,, e, = Ee,, F'E=-1,, (2.54)

with full rank matrices F,E € R" ™. Then D defines a Dirac structure.

Proof. According to proposition 1.1, D is a Dirac structure if and only if (f|e) = 0 and
dim D = dim F, X Fp. Indeed substituting (2.54) into the power-balance yields

(fle) = (f.|e.) + (f|ep) =f e, +f F Ee, =fle, — fle, = 0.
And we have dim D = rank(F) + rank(E) = 2n = dim F, X Fy. O

Lemma 2.1. Let F be any unitary orthogonal transform and E = —F. Then this is a
sufficient condition to have FTE = —1, satisfying equation (2.54).

Example 2.13 (Common-differential adapter). The common-differential variable change
from theorem 2.5 can be formalized as a common-differential adapater defined by

1 -1 1 -1
Ial_ nl R . (@255
Iz L 1| |f ex 1 1] |es

Note the change of sign compared to theorem 2.5, so that the adapter uses the receiver
convention. It is illustrated on figure 2.14.

bil Is
1 b))

€1 ey

9 port common-differential
P adapter

fo fa
2 A

€9 EA

Figure 2.14 — Illustration of common-differential adaptation of a 2-port.
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fa fon1
Aq By
€q,1 €h,1
n-port . Dirac structure .
P : adapter D :
fa,n fb,n
ATL BTL
€an €b,n

Figure 2.15 — Generalized n-port adapter.

Example 2.14 (Orthogonal adapters). According to lemma 2.1, the common-differential
adapter (2.55) is an instance of the more general class of unitary two-port adapters (for

0:7T/4)a:/8:1/\/§)

fa _ cos(0) —sin(@)| | f ’ eal cos(f) —sin(0)| |e1 . (2.56)
I sin(f)  cos(6) f2 ex sin(f)  cos(6) €9

More generally, orthogonal n-port adapters (2.54) can diagonalise a coupled multi-dimensional
relation (e.g. e = Rf where R = RT = 0 has an SVD decomposition R = USUT).

Example 2.15 (common differential representation of a 2-port parallel jonction). consider
a parallel jonction defined by

e1 = ey, fi+ f2=0.
Then its common-differential representation becomes the trivial constraints
ea =0, fs=0. (2.57)

such that we have P = ex - fx +ea - fa = 0.

Example 2.16 (common differential representation of a 3-port parallel jonction). consider
a classical parallel junction defined by

e1 = ey = eg, fi+ fo+ f3=0.

If we choose to transform ports {1,2} to common-differential {3, A} using (2.50b) with
a=1/2, B =1, we obtain the following singular skew-symmetric Dirac structure

ea . . 0| | fa
(&) == . . 1 fz . (258)
f3 0o -1 . €3

We can see that the differential port A has no influence on the behaviour of the circuit.
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Conclusion

In this chapter, we have recalled the main results from network and circuit theory, we
have seen how to obtain a PHS from a circuit graph and how to transform it to semi-explicit
PH-DAE and PH-ODE. We have reviewed the topic of “computational causality assignment”.
Causality assignment is important for numerical reasons: in practice, it is usually preferable to
obtain equations that are numerically integrated (integral causality) rather than numerically
differentiated (differential causality). A strength of the PH framework is that under a week
hypothesis (invertibility of the Jacobian of algebraic nonlinearities, see 1.2.2 p.14) many circuits
are representable as (semi-explicit) index-1 DAE (and thus convertible to ODE). This property
is important to study existence and uniqueness of solutions. To highlight their similarities and
differences, we have presented two graphical network formalisms side by side: Wave Digital Filters
and bond-graphs. Finally we have presented “accross ports” power-conserving variable changes.
They can explicitly exploit network or component symmetries. In particular %-A variable changes
can be used to avoid breaking symmetries of differential or push-pull circuits during computational
causality assignment. The modelling framework being setup, we are ready to address the broad
subject of power-balanced numerical simulation methods. This is the object of Part II which
constitutes the core of this thesis.
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Part 11

Time-continuous power-balanced
numerical methods






Approach and problem statement

u[n] Virtual [ %(t) | Numerical |Z(#) y(t) | Anti Y(t) | Virtual y[n]
— — » Observer * Alins > -
2(Z) DAC : U method | X y lasing |y : ADC (7))
A B C D B

Virtual Analog toolchain

Figure 2.16 — (continuous-time virtual analog signal processing) block-diagram of the approach

Signal processing framework

In this part, we propose power-balanced numerical methods (block B) within a complete
signal processing chain (A-F) described in figure 2.16. It is based on the following.

e Reconstruction (block A): A (bandlimited) sampled input u[n| is reconstructed by a
virtual Digital to Analog Converter (Virtual DAC) to obtain a continuous-time signal w(t)
represented over sequences of time frames.

o Numerical Solver (blocks B-C'): for each time frame, given an input signal u(¢) represented
by parameters u, a power-balanced numerical method produces an output signal y(t) with
parameters y,

o Sampler (Blocks D-E): the signal y(t) is meant to be listened through a soundcard. For
that purpose, a virtual antialiasing filter and sampler (Virtual ADC) are used to obtain the
discrete-time signal y[n] based on bandlimited Shannon-Nyquist sampling (see thm. 3.1).

To precise our approach, continuous-time signal representations, generalized sampling theory and
the implementation of virtual DAC, anti-aliasing and virtual ADC are discussed first in chapter 3.
Subsequent chapters are dedicated to power-balanced numerical methods.

Power-balanced Numerical methods

This thesis is dedicated to build numerical methods to solve PH-ODE and PH-DAE whose
numerical solutions are required to satisfy the following properties

PO. Class of solutions Numerical solutions are approximated in the time-continuous domain
and represented with a finite number of parameters per time-frame.

79
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P1. Regularity Numerical solutions inherit the global regularity of true solutions up to a
controllable regularity order denoted k. Indeed, for a function f(t) of class C¥, its Fourier-

2 2(k+1)

spectrum ‘ﬁ(w)‘ decreases asymptotically as 1/w This property is important to

reduce the requirements on the antialiasing module.

P2. Accuracy For each time frame, the approximation error between numerical solutions X (7)
and true solutions x(7) is controllable, bounded and converges to zero for small time steps
h, with a controllable accuracy order p (defined thereafter).

P3. Power-balance Numerical approximations satisfy the PH power-balance over each time-
frame. In particular, for conservative PHS the Hamiltonian H (x) must be exactly preserved
from frame to frame, and for dissipative PHS, the Hamiltonian must decrease monotonically
over time (in the absence of external input).

While the interplay between continuous and discrete time is a common theme in (digital)
signal processing and control theory, in numerical analysis, many numerical methods (e.g. Finite
Differences, Runge-Kutta, multistep) are discrete by design '*: the underlying continuous-time
signal model is not made explicit. We note some important exceptions which are relevant to us:
Runge-Kutta methods with dense output [HNW93, I1.6], Continuous Runge-Kutta Methods
[0Z92], Time finite elements (TFEM) [Hul92, BB93, Bot97, BS00], time-continuous Galerkin
(CG), time-discontinuous Galerkin (DG) [TS12, TSC17] and continuous-stage Runge-Kutta
(CSRK) methods [Hail0, MB16, Tan18|. Continuous Galerkin and CSRK formulations will be
considered in chapter 5 p.117.

Outline

Chapter 3 details the general continuous-time signal processing framework used to implement
blocks A-FE. We first review important results and notations about functional analysis, non-
bandlimited signals and (generalized) sampling theory that are required thereafter. Then we
review several realisation strategies and tradeoffs for the Virtual DAC (block A) and Virtual
ADC modules (blocks D-F in fig. 2.16). Subsequent chapters 4-6 propose different methods for
the realisation of blocks B-C.

Chapter 4 is of an introductory nature. Satisfaction of properties P1 — P3 is considered using
adaptive collocation for PH-ODEs. (Symmetric) Power balanced Adaptive collocation methods
((S)PAC) are introduced. Their analysis reveals that, using this approach, the existence domain
of power-balanced solutions is bounded.

Chapter 5 proposed a more general framework. It relies on an alternative viewpoint: using
the idea of continuous-time functional projection. We introduce the notion of a functional
Dirac structure'” over a time frame, for which a sufficient condition to preserve the power
balance is established. Then, Regular Power balanced projection Methods (RPM) are introduced,
with controllable projection and regularity orders. They are analysed and illustrated for both
Port-Hamiltonian ODEs and DAEs.

Chapter 6 extends the ideas of chapter 5 and combines them with ezponential integrators
(which exactly solve the linear dynamic). First the exponential Average Vector Field (EAVF)
method is introduced and shown to be energy-preserving (resp. dissipating) for autonomous
systems. Then, input—output ports are considered. Finally, an extension strategy towards higher
orders is proposed.

14. However, backward error analysis [HLWO06] allows to interpret these schemes as sampled solutions of modified
continuous-time approximation of the original system.
15. see definition 1.14 p.20.
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Non-bandlimited signal representations,
reconstruction and antialiasing

Think analog, act digital

Michael Unser [Uns05]

Contents
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Before we address numerical methods (blocks B-C' in fig.3.2), we detail the virtual analog (VA)
continuous-time signal processing framework that will be used in the following of this manuscript
and propose realisation strategies for blocks A,D,F.

Non band-limited signals with a finite rate of innovation We observe the following facts:

a) Signals arising from nonlinear physical systems are usually not bandlimited. Furthermore
the outputs of nonlinear systems usually have a richer spectral content than their inputs
because of the bandwidth expansion of nonlinearities (see figure 3.1a),

b) Real-time numerical time integration methods rely on causal time-stepping, meaning that
any decomposition on basis functions must have finite and non-overlapping temporal support
from frame to frame (see figure 3.1b)

¢) Because of memory requirements, computer representations of continuous-time signals
signals are necessarily finite-dimensional.

81
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Because of (a), in this thesis, we rely on generalized sampling theory [Uns00, NH14|. The Shannon-
Nyquist bandlimited hypothesis is replaced by a more flexible notion of limited bandwidth called
the finite rate of innovation [VMBO02]. This relaxed hypothesis is also of importance to address
(b). Indeed, this allows exact representation of piecewise defined signals using basis functions
that have finite temporal support. In particular, we will work with piecewise polynomials spaces
[UAE93a, UAE93b], and piecewise exponential spaces [UB05, Uns05].

A A

nonlinearity N (-) A

f frequency‘ 0 1f2f3f4f5f6f "

(a) Bandwidth expansion by a nonlinearity function N(-). The spectrum of a
distorted sinusoid usually contains an infinite number of harmonics.

Fourier transform
<

time ! requency

(b) Time-limited signals are not bandlimited

Figure 3.1 — Common sources of non-bandlimitednes: nonlinearities and finite temporal support.

Outline In section 3.1, we recall results and notations from generalized sampling theory and
functional analysis. In section 3.2, we consider continuous-time input reconstruction, in piecewise-
defined signal spaces, i.e. the realisation of the "Virtual DAC" module in figure 3.2 (block A). In
section 3.3, we consider the realisation of the dual output anti-aliasing, and sampling modules,
i.e. implementations strategies and choices to implement an anti-aliased "Virtual ADC" (blocks
D-E). In particular we consider two problems: exact continuous-time solutions of LTI ARMA
filters with piecewise polynomial inputs and projection of piecewise discontinuous polynomials
on smooth B-spline spaces [UAE93a, UAE93b]|. Finally, in section 3.4, as a validation test, we
illustrate this “virtual analog” toolchain with an original implementation of a common audio
effect: a “virtual analog” sampling rate reduction effect (emulating artefacts of old ADC-DAC).

u[n] Virtual u(t) y(t) Anti y(t) Virtual y[n]
—> > — > >
DAC Aliasing ADC
A B-C D FE

Figure 3.2 — (continuous-time virtual analog signal processing) block-diagram of the approach.
In this chapter, input reconstruction (Virtual DAC) and output antialiasing/ sampling (virtual
ADC) are considered.
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3.1 Generalized-sampling theory and Finite Rate of Innovation

3.1.1 Short reminder on functional analysis

Here we provide a short reminder on functional analysis and fix some notations. For more
details refer to the definitions in appendix C p.281 on Banach spaces, Hilbert spaces, Sobolev
spaces, etc). Let @ = (0,1) be the unit interval and I C Z a countable set.

The inner product of the Hilbert space of square integrable functions L?(2, R") is

(W, V) 1200 gny = / u(7) - v(r)dr, Vu,v € L*(9). (3.1)
Q
The inner product of the Hilbert space of square summable sequences £2(I, R?) is
(0, V) mny == Y ulk] - v[k], vu, v € £2(I). (3.2)
kel

In this manuscript, we identify the space L? with its dual (L?)* ~ L? (used as a pivot space).
This means that for a space V' and its (algebraic) dual V* (def. C.19), we have the inclusions

V CIL?CV*,
where the (functional) duality product between V* and V' is (note that V and V* can be swapped)

(u|wv) = /Q’LL(T) cv(r)dr, Yu,ve V' x V. (3.3)

Remark 3.1 (Dirac bra-ket notations). To simplify proofs and enhance readability (without
any reference to quantum mechanics) we use Dirac bra-ket notations (i.e. the functional
analogs of a transposed vector and a vector).

o A ket |1) denotes a synthesis operator from coefficients to functions.
e A bra (¢| is an analysis functional that returns a number and receives a function.

A bra-ket (¢ |1) denotes a contraction (or inner product). It returns a number.

A ket-bra | ¢) (1| denotes an analysis-synthesis operator.

(u| A|wv) is used as a shorthand for (u, Av);» = (A*u,v) ;. where A* denotes the
adjoint operator (see def. C.16 p.283). This is the functional equivalent of the matrix
notation u' Av = u'(Av) = (ATu)Tv.

Definition 3.1 (Frame [Chrl6]). Let V be an inner product space and F' = {¢} a set of
vectors in V/, then these vectors satisfy the frame condition if there are positive real numbers
A and B such that 0 < A < B < o0 and for each v € V

Alllly < S|k 10)|* < Blll? - (3.4)
kel

Furthermore a frame F' is said to be tight if A = B, a Parseval frame if A= B = 1. It is a
Riesz basis if F' is a basis, otherwise F' is said to be an overcomplete frame. For example, an
orthonormal basis, is at the same time, a tight frame, a Parseval frame and a Riesz basis.

The frame condition guarantees the well-posedness of analysis and resynthesis operators but
not the uniqueness of their representation. By contrast, if F' is a Riesz basis, then there exists a
unique dual basis F' (defined below) such that (¢;]é;) = d;;.
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Frame synthesis operator For a basis or frame {¢;} such that V = span{¢,} C L%(Q), we
introduce the frame synthesis operator ® : £2(I) — V defined by

®o= | o) o (3.5)

so that using the vector of coefficients X, we can compactly write a function as x(t) = (®X)(t).

Frame analysis operator Dually, we define the frame analysis operator ®* : L*(Q) — ¢2(I).

@ = | (¢n] (3.6)

kel
so that the coefficients X* of a function x(t) are given by X* = ®*x.

Gram Matrix The Gram Matriz (or gramian) of the frame ® is defined by
G = @ = [(¢m | n)],, per - (3.7)

Dual Frame If ® is a frame, then a dual frame ®, is a frame such that ®*® = I;.

Dual Basis If @ is a basis, then its dual basis (or biorthogonal basis) ® is the linear combination
of basis functions obtained using the inverse of the Gram Matrix.

® = PGl (3.8)
Proof. Using (3.7)-(3.8), we have ®*® = (®G3!)*® = G;'®*'® = G;'®*® = G;'Gs =
Iy. O

Reproducing Kernel If {¢y(7)}rer is an orthonormal basis of a space V' C L?(Q), then
according to Mercer’s theorem, the reproducing kernel of V' is

Ky (r,0) Z¢k (3.9)
kel
so that we can express the projector Py using the reproducing kernel Ky as
(Pyu)(T / Ky (r,0)u(o) dU:Z\qﬁk) (Pr | u) . (3.10)
kel
Resolutions of the Identity If ® represents an orthonormal basis, then by definition
P = [<¢m ‘ ¢”>]m,ne]1 =1Ir. (3'11)
Conversely, the projector Py : L2(2) — V is given by
= Z | k) (k| = Pv. (3.12)
kel

When Py is restricted to functions in V', then Py = Zy where Zy denotes the identity operator.

Partition of unity A generator o(t) satisfies the partition of unity property if the sum of its
integer translates sums to one.

Y pt—n)=1, VteR. (3.13)
nel
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3.1.2 Class of signals and notations

We introduce the class of signals and the notations that are used in this thesis. A vector-valued
signal « : t € R — x(t) € R™ is represented as a sequence of time frames @,(7)

p—1
t—tn t—t,
x(t) = Z Z b ( W ) Xn; |, where 7= - (3.14)

neZ \ =0

xn(T)

where

o T = {t,},cz is a monotonic partition of time (¢, < tn41),

e hy =tpy1 — Ly is the local step size,

p is the number of basis functions and I = {0,...p — 1},

The generating functions {gi)l(T)}z eI form the local representation basis,

Xn,i € R™ are the vector-valued coefficients for each time-step n and basis index 1,
o T = % is the normalized local time for time-step n,

e x,(7) is the local representation of x(t) at time-step n.

The generating functions ¢y, ..., ¢p—1 and their translates span the approximation space
V = span {qbi (t=ta)/h), Viel, neZ}aR"

This class of signals is related to (time) finite elements and multi-wavelets ! (see [Uns00, section
C]). For causality of computations, basis functions translates are non overlapping. When the
context is not ambiguous, we drop the temporal subscript n. We talk about the local trajectory

p—1
a(t) =) ¢i(r)xi.
=0

To simplify the presentation, we restrict to a constant step-size > h (h, = h, Vn € Z) so that the
approximation space V' is integer shift-invariant. Generating functions ¢; are defined over the
open unit interval Q = (0,1) with boundary 9Q = {0, 1} and closure 2 = Q U dQ = [0, 1].

Remark 3.2. The tensor of coefficients [z, ; j] may be denoted by x,; or x;[n] according
to the way it is "sliced" in each context, i.e. when a clear distinction between the different
roles of time index n, functional basis index i and "geometric" index j is required. We also
use x[n](7) as a synonym for x, (1) ¢

a. For example, we use the notation x;[n] (resp. [n|(7)) to emphasize the sequence of coefficients (resp.
functions) interpretation. This is particularly useful when working in the Z-domain.

1. In the multi-wavelets literature the generators ¢o, ..., ¢p—1 are called multi-scaling functions.
2. The numerical methods in this thesis, in particular in chapter 5, do not require a constant step size, they
can be adapted by taking the step size into account when computing derivatives of the solution.
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3.1.3 Sampling signals with a Finite Rate of Innovation (FRI)
Classical bandlimited sampling

The vast majority of digital (audio) signal processing relies on the following theorem.

Theorem 3.1 (Shannon sampling theorem [Sha49]). If a function z(t) contains no frequen-
cies higher than B cycles per second, it is completely determined by giving its ordinates at a
series of points spaced h = 1/2B seconds apart.

The reconstruction formula that complements the sampling theorem is

sin(7x)

x(t) = Zsinc (Z - n) Zn, where sinc(x) = and  x, = f(hn). (3.15)

T
nel

Equation (3.15) is exact when z is bandlimited to fp.: < B, called the Nyquist frequency.
Coefficients {x,,} € £2(Z) are called samples of x and f; = 2B is called the sampling rate.

Modern Sampling

Generalized sampling theory accounts for the fact that real world signal are not exactly
bandlimited and ideal band-limiting filters do not exist. Nevertheless, perfect analysis and
reconstruction of signals is still possible if we assume that they have a finite rate of innovation.

The paradigm shift in modern sampling is to realize that (3.15) is an orthogonal decomposition
and that ideal bandlimiting and sampling is simply a way to compute the projection coefficients?

z(t) = Z on(t)zy, where ©on(t) = sinc(t/h — n), and T = (Pn, T) . (3.16)
neZ

Shannon bandlimited sampling is an instance of the more general (and practical) situation.
Let ¢(t) be a generating function such that {¢, = ¢(-/h — n)}nEZ is a Riesz basis of the non-
nez I L?(R). One further
requires that ¢ satisfies the partition of unity property* (3.13). Then there exists a dual basis
{pn} of Vj, such that signals in Vj, are perfectly reconstructed ® according to

x(t) = Z on(t)zy, where Ty, = (Pn, T) . (3.17)
nez

bandlimited integer shift invariant space V() = span {¢(-/h —n)}

Note that, by construction, signals spaces such as (3.14) fulfil the finite rate of innovation
property. They can be ezactly represented (over a multi-generator basis) using a finite number of
degrees of freedom p per time-step h called the generalized bandwidth [VMBO02]

B=-—. 3.18

P (318)
Also note that, in our case, it is enough to have the constant reproduction property® over each
time step to fulfil the partition of unity (for all ¢ € R). It turns out that constant reproduction is
also a necessary condition to obtain consistent numerical integration schemes (eq. (5.21a) p.128).

3. It happens that the sinc system is both orthonormal in L?*(R) and interpolating, i.e. the sinc function (and
its integer translates) is the generator of the space of bandlimited signals.

4. This guarantees that the approximation is consistent, so that one can approximate any function of L2 (R)
over the space Vj, as closely as desired (in norm) for a small enough sampling step h.

5. B-spline sampling is a typical example of perfect reconstruction in non-bandlimited spaces.

6. meaning that constant functions belongs to the approximation space.
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Example 3.1. Piecewise polynomial signals are not band-limited in the sense of Shannon
(see (3.14) where ¢ ). For example, the discontinuities in a sequence of piecewise constant
signals (at the output of a sample and hold circuit for example) have an infinite spectrum
(see figure 3.1).

Approximation order, polynomial reproduction and Strang—Fix conditions

We recall result (3.22) from [Uns00, section IV] relating the approximation order of the
sampling space, the spectral flatness of the approximation error in the Fourier domain and the
capability of the approximation space to reproduce polynomials.

Let Qp, : L?(R) — V() C L?(R) denote the linear approximation operator defined by

(Qnf)(t %w(—@ <<p <h—n> ,f> (3.19)

and the approximation error by e, (f) =||f — Qnf|| ;2. Averaging e, over all time-shifts, it happens
that one can characterise the average error in the frequency domain as

2 dw
(S / |fC=7)=Qnf(-—7 H dT—/E (hw) ‘f (3.20)
where f denotes the Fourier transform of f and E,(w) is the error kernel given by
Ep(w) = ]1 ~ 3 (w)B(w) ‘ )P 3|8 + 2km) 7. (3.21)
k#0

One can predict the rate of decay of the approximation error from the degree of flatness of E,(w)
near the origin. If E,(w) = C2w?* + O(w?+D) as w — 0, then [Uns00, eq.45]

If — Qufll = ChLHf(L)’ . as h =0, (3.22)

for f € H*(R). This implies that the error decays globally like O(h¥) and is called the order of
approzimation. It happens that through the Strang—Fiz conditions |FS69, JL93, Cha99| (see also

appendix C.3 p.285) property (3.22) is equivalent to the reproduction of polynomials of degree
L—1.

Remark 3.3 (Peano kernels). In complement to the asymptotic error-bound estimate (3.22),
the error shape can be analysed thanks to Peano kernels presented thereafter (see (5.30)
p.131). In subsection 5.2.7, we have a closer look at error measures such as (3.22) by studying
the Peano kernels of approximation operators used in power-balanced integration methods.

Remark 3.4 (Accuracy order and Strang—Fix conditions). In the ODE literature, order
conditions of one-step methods are usually investigated using the combinatorial theory of
B-series [MMMEKV17, HLWO06]. As an interresting result, bridging sampling and numerics
through Strang-Fix conditions, we show in subsection 5.2.6 p.128 that if (continuous-
stage) Runge-Kutta methods are built on orthogonal projection (of the vector field) which
reproduces polynomials of order p. Then, the local truncation error has accuracy order 2p
(automatically fulfilling B-series order conditions). We note that this result reveals itself
in the continuous-time setting whereas it remains hidden using standard (discrete) RK
formulations.
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3.1.4 Piecewise polynomial frames

Let P*(Q2, F') be the space of F-valued polynomials of maximal degree n over the domain €.
We sometimes drop F' when F' = R and © when Q = (0,1). This section quickly mentions a few
important polynomial bases and their main properties.

Monomial Basis The canonical basis of polynomials is given by the monomial basis { My ()}
where

Lk
My(7) == o (3.23)
and satisfies the derivation property (i.e. they correspond to Green functions of (f;)
d Mi_; 1<k
- My, = - 3.24
dri Tk {0 i>k (3:24)

This basis is not orthogonal, which leads to bad conditioning for some numerical applications.
However we will use it in subsection 3.3.1 to obtain closed-form filtering of sequences of polynomials.

Shifted Orthonormal Legendre polynomials By Gram-Schmidt orthogonalisation of the
monomial basis in L2, one obtains the shifted orthonormal Legendre polynomial basis. They have

the explicit representation
V2k+1 d*
Li(r) = vert+1 4 r*
k! drk

Important properties of Legendre polynomials are detailed in appendix C.4. This is the main
basis used in projection methods of chapter 5.

(r =1k (3.25)

Bernstein polynomials Another useful basis of the polynomial space P™ is given by the
Bernstein basis |Farl2]

Bl (r) = <Z> (1 — 1)k, (3.26)

This basis is not orthogonal, but it is useful to represent Bezier splines by their control polygon

{xx} .
x(r) =Y Bp(T)xX. (3.27)
k=0

They satisfy a number of interesting properties. In particular the continuous derivative and
integral operators translate to finite differences and finite sums of their discrete control points,
and the curve is contained in the convex hull formed by the control polygon [Farl2].

Hermite splines Hermite splines (defined in (C.22) p.287) are closely related to the Bernstein
basis but the representation uses derivatives of functions on the left and right boundaries of the
interval as coefficients. It is useful in derivative sampling and function interpolation. Hermite
splines and their generalisation will appear in 5.2.7 p.129, to address C*-continuous trajectories.

B-splines (Cardinal) B-spline (see [UAE93a] [UAE93Db|) are smooth finite-support continuous
functions whose restriction to the unit interval are piecewise polynomials. B-splines are defined
and used below in subsections 3.2.1 and 3.3.2 dedicated to input reconstruction and output
projection.
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3.2 Input reconstruction (Virtual DAC)

No matter how accurate simulations methods can be, the response of the overall system is
limited by the quality of the input reconstruction. To reconstruct a continous-time input w(t) from
discrete samples uy, it is not practical to use Shannon’s bandlimited interpolation formula (3.15)
because it is both acausal and the sinc kernel has infinite temporal support”. By consequence, the
bandlimited input reconstruction is not computable. Instead, using generalised sampling theory
(see the overview paper [Uns00]), we consider computable non bandlimited approximations of
bandlimited spaces whose synthesis functions have finite temporal support.

3.2.1 B-spline spaces

Following the standard approach in [UAE93a] we consider reconstruction of the input in
compactly supported B-spline spaces® (B-splines basis functions are shown on figure 3.4)

oo W _sw\ mtl
u(t) = Z Brm (2 — n) Uy, Where B;l(w) = <€]2]_'u)6]2) = sin¢™*! <;> (3.28)

n=—oo

where function 3, denotes the centred B-spline of order m and 5; its Fourier transform.

Prefiltering The coefficients 1, are computed from the cardinal samples u(t,) using the discrete
B-spline IIR pre-filter Sp,(z), whose Z-transform is the inverse of the B-spline FIR filter By, (2)

/21
Smlz) = 1(Z) with Bu(x)= S (k). (3:29)
m k=—[m/2]

The block diagram of the method is shown on figure 3.3 (where « is the convolution operator).

>0 (E - n) u(ty) 5.(2) dond (E — n) U, wBn(t/B) uw(t) =, Bm (E — n) 12,;

discrete samples B-spline coeflicients B-spline signal

A4
A4

Figure 3.3 — Digital IIR prefiltering scheme to obtain B-spline coefficients {@,,} such that the
reconstructed function u(t) interpolates the cardinal samples {u(ty)}.

Piecewise polynomials Since B-splines are piecewise polynomials, for each time-frame 2,, =
(tn,tn + h), t, = hn, the restriction of the signal u(t, + h7) to the interval €, is exactly
representable as a polynomial, it is thus suitable for use in our one-step simulation framework,
which requires inputs to be specified as sequences of time frames. It is given by

n+(m+1)/2

= > Bmlr—k)

On k=n—(m+1)/2

u(tn + hr) Gp, ulte +hT)|  €P™([0,1)).  (3.30)

[0,1] Qn

7. A finite approximation of the Shannon bandlimited interpolation formula and approximate integration of
windowed sinc interpolation using quadratures has been proposed in [SH11]

8. This approach is more suitable for our time-stepping framework and it is known that the limit when m — oo
converges to bandlimited spaces.
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1.0
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Figure 3.4 — B-splines (non centered). Piecewise polynomial segments are emphasised using
alternating solid and dashed lines.

Cardinal interpolating splines It is possible to combine ? B-splines with their prefilter. This
gives the following interpolation formula expressed using the cardinal interpolating splines 5"

u(t) = Z 5Int ( _ k) u(ty) where B:l?r;t(w) = BB,:L((;)‘Z)' (3.31)

k=—o00

int

It is shown on figure 3.7 (d) that the prefilter has the role of a pre-emphasis filter that compensates
the lowpass characteristic of B-splines so that the magnitude response of cardinal splines is
maximally flat below the Nyquist frequency. Time and frequency responses of B-spline and
corresponding cardinal interpolating splines are shown on figure 3.7 .

Causality The above approach is adapted in image processing where causality is not an issue,
however for audio signal processing, acausality of the discrete prefilter S,,(z) is an important
issue that needs to be addressed. Several approaches can be considered:

e If phase linearity (i.e. constant delay) is considered more important than latency, it is
possible to approximate the IIR filter S,,(z) by an optimal FIR SF!R(z). Furthermore since
the impulse reponse s,,[n] of the filter S,,(z) decays quickly, an accurate approximation
can be obtained with short FIR filters (see figure 3.8).

o [f instead a minimal group delay is desired, it is possible to convert S, to minimum phase
so that both filters share the same magnitude response ’Sm(ej“’)‘ — |Sminphase pjw) | while
the minimum phase filter has a stable realization because it only has stable poles.

If we restrict to piecewise affine spaces, a cost-effective approach consists in using shifted-linear
interpolation which is detailed thereafter (see figure 3.5).

— lin. int.
—— shifted
---- original
® samples

Figure 3.5 — Comparison of shifted and standard linear interpolation.

9. In practice, since interpolating splines are infinitely supported, it is computationally more interesting to
work with finitely supported B-splines, and rely on IIR pre-filtering to obtain their coefficients.
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3.2.2 Shifted linear interpolation

We restrict to B-spline spaces of degree 1, following the approach presented in [BTUO4|.
Instead of using standard linear interpolation whose frequency response is sinc?(w/2), by relaxing
phase linearity, it is possible to both obtain a causal IIR prefilter and to improve the frequency
response of the interpolator. The mean to obtain this improvement is to use shifted linear
interpolation (see figure 3.5). The main idea is the following: instead of using the following
(trivial) B-spline prefilter to obtain a cardinal interpolating spline (i.e. here 3; = BiM)

$1() = 1
T B2+ 41(0) + Bi(1)2
one can use the inverse of the shifted B-spline FIR filter 31(- —T) to pre-filter the samples {u(t,)}

1
(1—7)+7271

-1 where Bi(t) :==]1— t‘+ )

Si-(2) = (3.32)

It turns out [BTUO4| that there exists an optimal shift 'V 7oy = 1 — % for which the magnitude
response of the cardinal interpolating spline is maximally flat. This gives the optimal IIR prefilter

b() 1 Topt
SOPY(2) = _— here bgp= ——, aq = —> 3.33
! ( ) 1+ CL12_1 b 0 1-— Topt ! 1-— Topt ( )
The frequency response is shown on figure 3.6. To conclude this paragraph on shifted linear
interpolation, for only a small additional cost (a causal discrete first order IIR pre-filter followed
by standard linear interpolation), the frequency response of linear interpolation is significantly
improved and can compete with higher order cardinal interpolating splines from figure 3.7 .

131 A ---- 1=0.0 _ 3
‘ il g‘; g o4
--- T=0. o
| _ R 7=0.0
1.0 — =03 - =22
— opt 2 -6 3
—— sinc ° 2 6 |~ Ton=3 -5
3 -9 : . z
051 2 2k 5k 10k .2 f,
5} Frequency (Hz)
0.0 / - S 0251
/ ©
f 3 000 '4/“:0}@
-05 £ —025 | - :=0'3
opt
2 1 o 1 2 3 4 0.0 05 10 15 2.0 2%k sk 10k £2 A
Normalized time normalized frequency f Frequency (Hz)
(a) Shifted interpolating splines (b) Fourier kernels A", (c) Fourier kernels (zoomed)
Figure 3.6 — Time and frequency response of shifted linear interpolation: A"t (w) =

ﬂAl(w) 1-(z= ¢/¥). Note that cardinal splines are interpolating on the integer grid, but their
maximum value is reached for the timeshift 7. For the optimal shift 7°P*, the magnitude response
is improved by up to 5dB between 5kHz and fs/2 compared to standard linear interpolation.

To sum up: for low order reconstruction, shifted linear interpolation is both causal and
cost-effective; for higher order reconstruction, causal approximations of B-spline prefilters and
higher latency are required (see figure 3.8).

10. We note by anticipation, that the optimal shift corresponds to a Gauss quadrature node (% — % is the
smallest root of the second shifted Legendre polynomials P> which is used in Gauss-Legendre numerical integration
methods [HLWO06]). This is the second time in this chapter (see remark 3.4 above) that we discover unexpected
connections between numerical analysis and signal processing. A dedicated study would be required to reveal the

fundamental causes behind these apparent co-incidences. Legendre polynomials are detailed in appendix C.4 p.286.
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1.0 1 =
— |Bl
— |Bal
— IBs|
— B4l
0.5 A1
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Normalized time t Normalized frequency f
(a) (centred) B-splines (b) Fourier transform of B-splines
— |BY"|
— 15
— B
0.5 1
0.0
-4 —I3 —I2 —Il (I) :i. 2I 3I 4 0.0 0.5 1.0 1.5 2.0
Normalized time t Normalized frequency f
(c) cardinal interpolating B-splines (d) Fourier transform of cardinal interpolating B-
splines

Figure 3.7 — Comparison between B-splines and cardinal interpolating B-splines (3.31). B-splines
have finite support and a lowpass frequency response (both time and frequency representations
converges to gaussians when order is increasd). By contrast, cardinal interpolating B-splines
have infinite support in both time and frequency (but both decay quickly). The major difference,
comes from the the fact that cardinal B-splines are interpolating (they vanish on the uniform
grid except in 0) and their frequency response below the Nyquist frequency is much sharper: it
converges to the ideal bandlimited rectangular kernel when order is increased.

o}t e o-_ol lo_- 0..Tl lT‘.

-5 -4 -3 -2-10 1 2 3 4 5 -5 -4 -3-2-10 1 2 3 4 5 -5 -4 -3 -2-10 1 2 3 4 5

Figure 3.8 — Impulse responses of cardinal interpolating B-spline pre-filters sa[n], s3[n], s4[n]
(see equation(3.29)).
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3.3 Output antialiasing and sampling (Virtual ADC)

In this section, we consider Virtual Analog to Digital Converters (vADC), their implementation
and different design tradeoffs. We propose two approaches. First, in subsection 3.3.1, we consider
the exact implementation of continuous-time Linear Time-Invariant ARMA filters represented as
state-space systems. This strategy allows the use of all analog filter design tools to implement
anti-aliasing filters (Butterworth, Chebyshev, Elliptic, etc). Second, in subsection 3.3.2, to mirror
input reconstruction in shift-invariant B-splines spaces, we propose an alternative strategy. Given
a (potentially discontinuous) signal y(t) defined as a (broken) piecewise polynomial, we look for
the best approximant ¢(¢) in B-splines spaces (the dual problem of input reconstruction).

3.3.1 Exact continuous-time filtering for LTI state-space systems

Let u(t) be a non band-limited signal with a finite rate of innovation B (see 3.18). For
band-limiting purposes '', we would like to apply an exact continuous-time antialiasing filter.
We consider the class of Linear Time-Invariant (LTI) state-space filters

]
—~
~~
~—
I

Ax(t) + Bu(t), (3.34a)
Cx(t) + Du(t), (3.34Db)

<

—~
~~

S~—
I

and assume that the input signal u(t), is locally defined for each time step by w(t, + h7) = u[n|(7)
for 7 € (0,1) over a basis ® = {¢1(7),...,¢p(7)} as follows

p

uln](7) =Y ér(r)uiln]. (3.35)

=1

For simplicity of notation, in the following, we drop the indices n and assume a normalized time
step h = 1 over the unit interval 7 € [0, 1]. It is well known that the Green kernel of the operator

d
- T — A. .
L , (3.36)

is given by (O(7) denotes the Heaviside unit step function)
Ka(1,0) = O(1 — 0)eAlT=) (3.37)

For an initial condition xg, the state x is obtained by convolution with the kernel & =
L7 (8ox0 + Bu) = [ Ka(7,0) (6(0)x0 + Bu(c)) do. It yields the basis representation

z(r) =Y pilT)xi where x; =Bu; i>0. (3.38)

The basis functions are defined by ¢; := U;[A, ®], i = 0,...,p where the generator of exponential
basis functions ¥, parametrized by the matrix A and basis ®, is defined as follows

/ Ka(1,0)00(0)do = exp(AT) i=0,
T,[A, B)(r) = (3.39)

/I{A7'U¢z o)do i=1,...,p.

11. i.e. if we need to resample a signal in a (quasi)-bandlimited sense: for audition via a soundcard or for
communication with digital audio processing chains inside of a Digital Audio Workstation.



94 Chapter 3. Non-bandlimited signal representations, reconstruction and antialiasing

Looking at the output equations (3.34b), we find that the output signal y belongs to the space
spanned by the union of input and exponential basis {cpk(r)} U {I ® cbk(T)}

y(r)=C Y wi(r)xi | +D [ > oi(r)wi | . (3.40)
1=0 =1

By sampling the functions for 7 = 1, we obtain the discrete state-space filtering scheme

p

xoln+ 1] = Z pi(l)xi[n], where x;[n]=Bun] fori>1, (3.41a)
1=0
yn+1] = Cxoln+ 1]+ D [ Y ¢i(Dui[n] | . (3.41D)

=1

Exact representation of the state x(7) over the basis {(o, ...y} relies on the ability to have
computable formulae for functions ¢. In the following, we consider the case of a polynomial input
space, for which we provide exact integration results.

Polynomial input spaces

We consider piecewise polynomial inputs, locally represented by polynomials u(7) € PP~1(Q, C™)
of maximal degree p — 1 over the unit time interval 2 = (0,1). In numerical applications, signals
will often be represented using orthogonal polynomials. However in the following, the use of the
monomial basis M leads to simpler formulae (see appendix D.1 for a detailed derivation)

(k=1)

M = {M,},_, where My(7) = Gk

(3.42)

In this section, the basis functions {¢y} '? (see figure 3.9) are generated from M using (3.39).
They are defined by the convolution (see [MVL78, CI01, MVLO03] to compute exp(AT))

exp(AT), k=0,

o (k=1) (3.43)

pr(A;7) = Yi[A, M](1) = /OT exp(A(r — U))m do, k>0.

If A = 0, the operator £ reduces to an integrator, it is then immediate that

k

-
Pr(A;T) = Ig = IMjp 11 (7). (3.44)

If A is invertible, the following recurrence relation can be used for practical computations
eri1(A;7) = A7 (@(A;7) — 91(0,7)) - (3.45)

By reccurence, we also have the explicit representation

k=1

_ T
en(A;7) = A% | exp(AT) — IZ Tl (3.46)
i=0

12. We have used the same notation for the so-called ¢-functions that have an important role in the literature on
exponential integrators [HO10]. Note however that here we are not only interested in discrete time-stepping, but
also on all the continuous-time values between time-stepping instants. This will be important in the resampling
application example.
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Reorganising terms, we note the following interpretation for functions ¢: the term AFp(A;7) is
the remainder of the Taylor series expansion of exp(Ar) truncated after k terms

e
—

~ (A7)

i + Afpr(A; 7).

exp(AT) =

Il
=)

)

Remark 3.5 (lower incomplete gamma function). ¢-functions are closely related to the
lower incomplete gamma function

v(kK, T) :/ "t do.
0

Indeed with A = —1 and k = k, we have pi(—1;7) = v(k, 7)

A=2nmi A= -5
1.00 1.0
0.75 )
0.8 1 7~
0.50 J/
0.25 A 0.6
0.00
—0254 — % 0.4 A - ¢o
P1 ¢
-0.50 4 — R
@2 0.2 92
_0754 @3 - ¢3
— ¢a ’/*’ — s
-1.00 T T T T 0.0 T T T T
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T T

Figure 3.9 — Normalized filtered polynomial p-functions for k € {0...4} for a complex pole
A =271 (left plot) and a real pole A = —5 (right plot) over the unit interval 7 € [0,1]. The left
plot only shows the real part of each function. blue: impulse response g, orange: step response
1, green: ramp response 2, red: quadratic ramp response s, magenta: cubic ramp response

P4.

Implementation

Remark 3.6 (Diagonalised state-space and parallelisation). To avoid using matrix-valued
function and forming the matrix exponential, for diagonalizable matrices A, it is advantageous
to use the eigenvalue decomposition A = UAU™! with eigenvalues A = diag(\1, ..., ).
We define the complex variable change z(t) := U~'x(t) to obtain the diagonalized state
space system

_lB,
CU.

o
Il
c

2(t) = Az(t) + Bu(t),
y(t) = Cz(t) + Du(t), C

The LTT state-space filter implementation can then be parallelised using scalar complex-valued
¢-functions and the output space belongs to span {ka(/\i, 7')}]“ U {¢k(r)}k
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Examples

1.0 u
— Y (we=1)
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Figure 3.10 — Exact piecewise continuous-time output of a first order low-pass filter for a time
sequence of local polynomials {72,1 — 7,0,1} and several values of w,. € {1,3,6,10}.

Example 3.2 (First order lowpass filter). We consider a first order lowpass filter with the
following state-space and Laplace transfer function representations for a cutoff pulsation
we € RT

1
1+s’

S

Y(s)=H (> U(s) where H(s) =

We

ZL‘(t) = wc(u(t) - :E(t)) Laplace transform
{y<t> 0 -

The filter is driven by a piecewise polynomial input signal u(t). It is defined by the sequence
of local polynomials (on the left) with corresponding monomial coefficients (on the right) by

o
—
(]
\]
=)

{un(1)} = {r%,1 - 7,0, 1}, = u=< o], |=1], o, o] b+

o

[es)}

o

S0
no

The input and output signals are shown on Figure 3.10.

1.0 4

0.5 A1

0.0 A

—0.5 A
_—u
—_Yy

—-1.0 1

Figure 3.11 — Exact piecewise continuous-time response y(t) of a third order Butterworth filter
with cutoff pulsation w. = 7 to a triangle input signal u(t) at the Nyquist frequency.
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Example 3.3 (Triangle signal at the Nyquist frequency). To illustrate the non-bandlimited
representation capacity of piecewise polynomials, and the effectiveness of the continuous-time
filtering scheme, consider a non-bandlimited triangular signal u(t) oscillating at the Nyquist
frequency, which is shown on figure 3.11. It is locally represented over each time step by

-1 1 70
u= , e

Vn €N .
2 -2 7!

—

{un(n)} ={(=D)"(2r — 1)},

We filter this signal by a third order Butterworth [But30] filter H (w%) whose cutoff is set
to the Nyquist pulsation w, = 7. The normalized Laplace transfer function prototype H(s)
is separated in partial fractions

1 C1 Co C3

H(S):(52+s+1)(s—|—1):s—)\1+s—)\2+s—)\3’

(3.47)

and realized in complex canonical diagonal form by the state-space system

A1 1
x(t) = Ax(t) + Bu(t
() () () A= Ao , B=|1], C:[Cl Co 03},(3.48)
y(t) = Cx(t)
A3 1
with poles Ay = =153, )y = =103 3y — 1 and coefficients ¢; = 7*3?\/5, o = *3*6“/5,

c3 = 1. The continuous-time response of the filter is shown on figure 3.11. The values at the
sampling instants are shown as black dots. To show that the method generalizes easily to
any order using the same approach (and that we can easily use dirac deltas distributions as
inputs), the exact impulse and step responses of an order 12 Butterworth filter are shown
on figure 3.12 (Note the higher group delay which is due to the higher order of the causal
minimum phase Butterworth filter).
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(a) Impulse response

(b) Step response

Figure 3.12 — Exact piecewise continuous-time impulse and step responses of an order 12
Butterworth filter. Inputs are plotted in dashed black, piecewise output segments with colours.
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3.3.2 Approximation of (broken) piecewise polynomials on B-spline spaces

In the simulation methods developed in chapters 4 and 5, the time-continuous-output y(t)
will often be defined as a (possibly broken) piecewise polynomial. Furthermore, in section 3.2, we
have considered input reconstruction in quasi-bandlimited B-spline spaces (with continuity order
m). It is natural in this context to look for the dual process: finding a B-spline approximation
y(t) having the same continuity order m (or a higher continuity order if smoothing is seeked)
and a rate of innovation equal to the output virtual ADC sampling rate (block E in figure 3.2).
Furthermore, for implementation purposes, we want such an approximation be both local and
causal.

Theory of operation The outline of the idea (shown on figure 3.13) is the following:

e Since B-splines of degree m, are piecewise polynomials with finite temporal support, there
exists an invertible matrix operator L of dimenson m + 1 converting from the restriction of
any B-splines over the interval [n,n + 1] to its Legendre coefficients (see figure 3.14).

e Conversely, for each polynomial y,(t) on Q, = [n,n + 1], the inverse operator L~! yields a
smooth extension operator: the resulting B-spline ¢, (¢) (with extended temporal support)
is such that its restriction to €2, yields the same polynomials, i.e. §,(t)|q, = yn(t).

e Note that each polynomial y,(t) yields a different local B-spline extension g, (t): we have
an overcomplete representation with m + 1 candidate coefficients y,[k] for each B-spline
basis function (,,(t — k). To obtain a unique output g(t), we need a strategy for the fusion
of coefficients. It is then natural to think of weighted Overlap Add (which is a very common
tool in signal processing based on the Short Time Fourier Transform).

e From frame theory [Chr16], we know that the combination of multiple bases using barycentric
weights wy, (summing to one) constitute a frame. Furthermore, since the choice of (positive)
weights is free, a natural idea is to use a weighting scheme proportional to the area of
influence of each B-spline f3,,,(t — k) (see (3.49)) on the interval [0, 1] (see figure 3.15).

An example of B-spline projection from L? signals is shown in figures 3.17 and 3.16. A similar
idea called Bezier projection for NURBS ' and T-splines in the context of Isogeometric Analysis
[HCBO5] was proposed in reference [TSET15].

Legendre B-spline time-aligned weight overlap continuous time
Yoln] Yoln] Yoln — 3] gln -3 gt —3)
s o |
y V_ V_1[n—2
y1[n] y-1[n] Lo | ¥ [n — 2] " H<+>
L71

ya[n] y-2[n] - yoal-1 | HG)

y3[n] y-3[n] ) y-s[n] ws H<+>

Figure 3.13 — (vADC) Block diagram of causal Legendre to cubic B-spline projection filterbank.

13. Non Uniform Rational B-splines



3.3. Output antialiasing and sampling (Virtual ADC) 99

B-splines Legendre
-3 (V) (7 o L 1-
0-
0 o
-1 0 1 2 | 0.0 0.5 1.0

Figure 3.14 — Conversion of local cubic B-splines to Legendre polynomials using operator L.
Dually, for each function u(t) defined over the Legendre polynomials on [0, 1], there is a smooth
B-spline extension with coefficients {@[—1],...,a[2]} induced by L.

m Bm(t) L L~
0 1.(1) 1) 1
by LV
L)+ —20t-1)++(—2)4 V3 1 V3
Lo L2 A
9 (t)i73(t71)i+23!(t72)3_+(t73)3_ _T\/zg 0 % 1 0 —25
Ll 38 115 337
I WEVICLE N I A B | I
120 120 120 120
__£ oo 8% 1 3v3 11V 337 |

Table 3.1 — B-spline to Legendre conversion operators L and L~!. The weights {wy} correspond
to the first row of operator L (i.e. projection of 3" on the first Legendre polynomial Py = 1).
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Causal B-splines In order to align polynomials with the integer grid, here we use the causal
definition of B-splines '* as the m-fold convolution (see figure 3.4)

m+1 —i m
B(t) = B0(t) % ...+ BO(t) = > (=1 <m j 1> (tm:)+ where  B°(t) = 19 41(t).  (3.49)

i=0
We define the spline space Sy, := span { ™ (t — k)}keZ C L*(R).
Local polynomial space Denote 3;"(t) the restriction to the unit interval 2 = [0,1] of the

B-spline ™ (t + k), i.e. B (t) = B™(t + k){ﬂ, so that the restriction to €2 of a function u(t) from
the spline space S, is locally represented in the polynomial space P (2) by

u(t)

Q

= i =18 (3.50)
k=0

where | 3) = U 521>] ::0 denotes the B-spline synthesis operator and u = ([afk]Z;o)T are the

m
B-spline coefficients corresponding to times {mTH — k}k . (see figure 3.14).

B-spline to Legendre representation We are interested in the Legendre representation.

m
u(t)| =Y Pu(t)ip =| P). (3.51)
€ k=0
where | P) = [| Py),...,| Pn)] denotes the Legendre synthesis operator (Legendre polynomials

are defined in appendix C.4 p.286) for the Legendre coefficients u = [uy, . . . ,ﬁm]T. Since both
representations correspond to the same function in the polynomial space P"(2), there exists an
invertible operator L such that U = Lu given by

L=(P|B). (3.52)
Proof. The result follows from the relations

u(t)le =|B)a=|P)a = (P|B)a=(P|P)a=1
L

using (a) representation of u(¢) in both basis, (b) left multiplication by the dual Legendre analysis
operator (P |, (c) orthonormality of the Legendre polynomial basis (P | P) = I,,. O

Inverse Legendre to B-spline operator Conversely for a sequence of Legendre coefficients
{ﬁ[n]}n ¢z the inverse operator yields m + 1 sequences of B-spline coefficients

R ()
{uln]} = {L_lﬁ[n]} = : : (3.53)

U [n]

We call L~! the B-spline extraction operator. Examples are shown on table 3.1 and figure 3.14.

14. From the spectral definitions of causal B-splines with Laplace transform 8 (s) = (1 — e~*)™*!/s™*'. The
binomial coefficients and time-shifts comes from the expansion of the finite difference operator (1 — e™*)™** while
T /m! comes from the inverse Laplace transform of the repeated integration operator 1/s™?.



3.3. Output antialiasing and sampling (Virtual ADC) 101

Weighted barycentric overlap-add Finally, the B-spline coefficients {ﬂ[n]}n ez of u(t) are
obtained by combining the m + 1 B-spline estimates using the barycentric average
m 1 om
t)dt
un—m|= Zwk&m_k [n— k], where wy, = W{O Bkl () . (3.54)
k=0 >0 Jo B (t) dt

The weights w;, are chosen proportional to the intersection of their area with the unit interval.

4% Wo

— BMt+1) BL(t+0)
-
il
€

-1 0 1 2 -1 0 1 2

W, w1 Wo

— BA(t+2) —— BA(t+1) —— B2(t+0)
o~
I
g

-1 0 1 2 -1 0 1 2 -1 0 1 2

w3 wy wi Wo

— B3(t+3) —— B3t+2) — B3(t+1) — B3(t+0)
m
i
€

-1 0 1 2 -1 0 1 2 -1 0 1 2 -1 0 1 2

Figure 3.15 — Barycentric overlap-add weights for linear, parabolic and cubic splines.

Formalisation of the approximation operator Denote Z7 : u(t) — u(t + 7),7 € R the
timeshift operator. Combining equations (3.49) to (3.54) according to the block diagram in figure
3.13, the analysis-synthesis process Q,, is defined by

(Qmu)(t) =) 2> w27y ZBM (L} (P | 2Mu) . (3.55)
0 =0

nez i=

Proposition 3.1. Operator Q,, defined by (3.55) reproduces the spline space Sy, up to a
constant delay of size m, i.e.

O™ =Z7"p™. (3.56)
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Proof. Substituting (a) u = ™ in (3.55), then, using (b) the local B-splines )" = 8™ (t + n)|a
(see (3.50)), and the definition of operator L (3.52), (c¢) L™'L = I,,,, (d) the barycentric weight
property » " qw; =1 (see (3.54)), we obtain

(QmB™)(t) =Y 2~ szZWZZ%m o (Pilzrsm)

nez
b m
= Z z™n Z w22 () Y L (P | B
N J n
n=0 i=0 =0 T
jn
m m m
=2 ET Y wE BT ()i = ZZ "B | D widin
n=0 =0 =0
m
LN ZnzTmE ()b, = 2B ().
n=0
By integer shift-invariance, by conclude that 9, reproduces the spline space S,;,. O

Numerical experiments In order to assess the qualitative approximation properties of opera-
tor Q,,, we perform two numerical experiments (a detailed quantitative study is left for future
work).

e First (figure 3.16), we approximate piecewise discontinuous square, sawtooth and triangle
polynomial signals over B-spline spaces of increasing smoothness Si,S2,S3. We note that
square and sawtooth belong to the kernel of the B-spline projector and are exactly filtered
after an initial transient. The triangle is exactly reproduced by first order B-splines, but it
is progressively filtered when increasing the B-spline smoothness.

e Second (figure 3.17), to anticipate signals from chapter 5, we project (first row) a (smooth,
bandlimited) sinusoid over piecewise constant and piecewise affine subspaces of L?(R)
(this yields non-bandlimited approximations, second row), then we reconstruct its C!
approximations over the B-spline space So using operator Qs (third row). We note that
even for low smoothness m = 2 and crude piecewise constant approximations, signals are
qualitatively well recovered. Furthermore we notice the increased accuracy of the piecewise
affine reconstruction (see section 3.1.3).

—— L2 signal —— L2 signal
—_ L2 5|gr\a| / \

—— B-splinem=1 —— B-splinem=1

—— B-splinem=2 —— B-splinem=2
N —— B-splinem=3 —— B-splinem=3 A
\/ —— B-splinem=1

—— B-splinem=2
—— B-splinem=3

(a) square (b) saw (c) triangle

Figure 3.16 — B-spline aproximation of square, saw and triangle oscillations at Nyquist.
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—— original —— original

g — —— L2 projection

s I —— L2 projection

—— B-splinem=2 B-splinem =2

original
—— B-splinem=2

—— original
—— B-splinem=2

(a) Piecewise constant (b) Piecewise affine

Figure 3.17 — Reconstruction of a sinusoid in the B-spline space Sy after (discontinuous)
piecewise constant (left column) and piecewise affine (right column) L? approximations . Signals
have been time-aligned to compensate for the causal delay of size m (see (3.56)). Edge differences
are due to to the fact that the smoothing operator operates on truncated signals with finite
support (L? signals are implicitly extended to zero outside of the approximation window, while Sy
signals in orange are smoothly extended according to the temporal support of the B-spline 32).
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3.4 Application: “virtual analog” resampler

As an illustration of the virtual analog toolchain, a real-time, variable rate, “virtual analog”,

resampler (fig. 3.18) has been implemented in UVI Falcon software [UVI21]. It is constituted of:

e First order B-spline DAC with sampling rate fs (see section 3.2) to convert discrete-time
signal to continous-time (and a second optional one with virtual sampling rate f7),

e a continuous-time anti-aliasing Butterworth lowpass filter (see figure 3.12) with cutoff
frequency f. < f!/2 to approximately limit the bandwidth of the signal to f,

e a variable rate sampler with virtual sampling rate f, < fs, to downsample the signal at a
lower sampling rate (with the effect of periodising the spectrum above f./2),

e a second exact high-order continuous-time anti-image Butterworth lowpass filter with

cutoff frequency f. < fs/2 to bandlimit the signal to f,/2 (voluntarily '° keeping spectral
images between f. and f.).

a fixed sampler to resample the signal back to the original sampling rate fs.

o ——Lpea A

Figure 3.18 — (Virtual Analog resampler) block-diagram.

It can be interpreted as a cascade of two multi-rate polyphase resamplers [VL88|, except that
using virtual continuous-time signal processing, we have an infinite number of 'phases’ between
sampling instants. Blocks in dashed line on figure 3.18 corresponds to approximate projection
(see (3.16)) on spaces of bandlimited signals with respective bandwidths f,/2 and fs/2.

Spectral periodisation about the virtual sampling rate f, = 4 kHz (and its multiples) is
illustrated on figure 3.19. The quasi-band-limiting effect of the two Butterworth filters is clearly
visible: we still observe some aliasing in the crossover region about the virtual Nyquist frequency
f1/2 =2 kHz (an its images at 6 KHz, 10 kHz, etc) but it is maintained below —84 dB.

1k 2k 3 ak sk 6k 7k 8k 9k

||||| |m | z H |leJI ‘M }‘ N { }M, |‘ i “ I I’M .||| ‘IWW IINIINIM. .

Figure 3.19 — (Virtual Analog resampler) spectrum periodisation.

15. The whole purpose of sampling rate reduction audio effects is to keep the spectrum periodisation artefacts of
the virtual sampling rate f, (to emulate the sound of old analog-to-digital and digital-to-analog converters) and at
the same time to avoid spectral aliasing artefacts that are linked to the current simulation sampling rate fs.
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Conclusion

In this chapter, we have reviewed the foundations of the non-bandlimited signal representation
framework used in this thesis. Instead, we use sequences of time-frames having a finite number of
parameters per time frame, i.e. signals with a finite rate of innovation. The tools of generalized
sampling theory allows consistent analysis-resynthesis of such non-bandlimited signals. Extended
bandwidth is useful to resolve the extended spectrum of nonlinear systems (for example a sawtooth
signal is not bandlimited in the Shannon-Nyquist sense, but its rate of innovation is finite and
proportional to its frequency), Having minimal disjoint temporal supports is also a critical
ingredient to obtain causal numerical integration schemes.

We have revisited the topic of continuous-time input reconstruction in B-spline spaces from
discrete signal samples. B-spline signal processing theory is now well established, yet discrete
B-spline pre-filters are sometimes omitted so that B-splines can be wrongly described as being too
smooth. In our context, causality is perhaps the most limiting factor, For that purpose, we have
seen that shifted linear interpolation is a causal and cost-effective way to improve the frequency
response of traditional linear interpolation at the expense of phase linearity.

We have also considered exact causal continuous-time ARMA filtering of piecewise defined
signals. This strategy allows to use the vast literature on analog filter design tools (e.g. Butter-
worth, Chebyshev, Elliptic, etc) for the realisation of the continuous-time anti-aliasing stage. As
an alternate approach: we consider the approximation of piecewise (discontinuous) polynomials
on smooth B-splines spaces. Indeed, it is known that in the limit of infinite smooothness, the
interpolating kernel in B-splines spaces converge to the sinc kernel of band-limited signal spaces.
The ARMA approach has the advantage of being very general and causal with steep anti-aliasing
filters for a relatively low filter order. The price to pay is the lack of phase linearity and lack of
idempotence of the bandlimiting operator. Alternatively, B-spline output approximation works as
a projector (with delay), so we have causality, phase linearity (idempotence with delay). We face
the same kind of design tradeoffs as is usual in the choice between Finite Impulse Response (FIR)
and Infinite Impulse Response (IIR) filters for a given application. Note that signal reconstruction
in quasi-bandlimited spaces such as the ones generated by Hammerich pulses [Ham07, KZ17]
looks promising for audio use but is left for future work.
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Chapter 4

Power-balanced Adaptive collocation

If an idea works once it’s a trick. If it works twice it’s a technique. If it works three times it’s a method.

Unknown source
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In this chapter we restrict our investigation to input-state-output PHS systems, defined in
definition 1.22, of the form

z=(J—-R)VH(z) + Gu, (4.1a)
y=G'VH(x). (4.1b)

Although the approach is general, we focus the study on linear systems.
For a unit interval Q = (0,1), and time step h, properties Pg—P3 (see p.79) are expressed by

Py the trajectory is locally approximated on [ty,t, + h] by a polynomial X,, on §2 such that
X, (1)~ x(t, + h7), V7T €EQ,
P; derivatives match on frame boundaries up to a controllable continuity order & > 0
xXm0)=x" 1), vme{o,... k}
P2 the local truncation error € has a controllable accuracy order s:

e(h) = z(to + h) — X (1) = O(R*T1),

P3 the trajectory X, satisfies the power balance over each frame

1 1
H(X,(1)) — H(X,(0)) = —h/o VH(X,(7)"RVH (X, (7)) dr + h/o y(m)Tu(r) dr.

Outline Our strategy, is detailed in section 4.1. It uses (adaptive) collocation (see [HLWO06])
to satisfy all of the above properties: the vector field and its derivatives is exactly satisfied at
fixed collocation instants to obtain both accuracy and smoothness. Additional collocation points
are used and adaptively optimised for each time frame to satisfy the power balance.

107
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In section 4.2 we propose a first instance of the approach. We obtain the adaptive Euler
method whose solutions are C’-regular. We study its accuracy order s € {1,2}, its stability
function, and the existence domain of power balanced solutions. This shows that with this
formulation, there exists a maximal dissipation rate above which power-balanced solutions do not
exist anymore. Numerical simulations show that despite the lower accuracy order, thanks to the
power-balance, qualitative aspects such as orbit and dissipation rate are improved compared to
the mid-point method.

In section 4.3, in order to improve the deficiencies (low accuracy and regularity orders) of the
first method, we add symmetry and smoothness. This leads to a C'-regular method. We study its
numerical properties showing that it is unconditionaly A-stable with an accuracy order s € {4,6}
(for linear systems). The existence domain of power-balanced solutions is also improved.

Finally in section 4.4, we generalise the approach to any number of derivatives and collocation
points with the definition of (Symmetric ') Power-balanced Adaptive collocation methods (PAC
and SPAC). We use symbolic computer algebra to automate the study of their stability function,
accuracy order, leading error term and maximal dissipation rate. The existence domain of
power-balanced solutions is also shown in the complex plane. The domains are different but
closely reminiscent of the theory of order stars [WHNT7S|.

4.1 Satisfying the power-balance using adaptive collocation

For a local trajectory X (1), 7 € [0,1], we define the local vector field

(X)) :=h((J-R)VH(X) + Gu), (4.2)
and the vector field approximation error operator
E(X):=X — fi(X). (4.3)
Finally we introduce the power balance error, defined by the functional
1
p(X):=(VH(X)|E(X)) = /0 VH(X (1)) E(X (7)) dr. (4.4)

Remark 4.1 (Power balance orthogonality condition). In the absence of external ports, the
power balance p(X) = 0 can be interpreted as an orthogonality condition between the vector
field approximation error E(X) and the gradient of the Hamiltonian VH (X).

Our first strategy, inspired by Runge-Kutta collocation methods [HLWO06] is to use a first set
of fixed collocation points C, and a second set of variables ones C' such that

E(X(¢) =0, VeeCuC.

The set C' is used to achieve numerical accuracy (and continuity). The set C is devoted to satisfy
the power balance: the variable parameters ¢; € [0, 1] are optimised so that

p(X) =0.

To obtain a practical numerical method, existence and uniqueness of power-balanced solutions
must be investigated. To study this problem, we propose a family of (Symmetric) Power-balanced
Adaptive collocation methods respectively called PAC and SPAC and study three instances of
increasing complexity. We restrict the analysis to autonomous linear ODEs, for which we provide
stability functions, accuracy analysis and analytical bounds on the existence of power-balanced
solutions (based on the maximal dissipation rate).

1. i.e. such that the method is invariant under time reversal and has an even accuracy order.
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4.2 Method A: adaptive collocation

We first consider the minimal requirements to satisfy properties PO — P3,

Method 4.1. The one-point Power-balanced Adaptive collocation method PAC(1) is defined
implicitly by the following constraints:

P0. (Model) The trajectory X,(7) € P! is an affine polynomial with 2 degrees of freedom
Xo(1) =Xo + 70X,. (4.5a)
P1. (C°-Continuity) The trajectory satisfies the initial condition

X,(0) = X9 =x0 € R"™. (4.5b)
P2. (Accuracy order s > 1) The vector field is satisfied for the collocation point « € [0, 1]
Xo(@) = 0Xo = fr(Xa(a)) € R™. (4.5¢)

P3. (Power balance) The PB is satisfied if there exists an optimal value o* satisfying
o €{ae(0,1] | p(Xa) =0} #0. (4.5d)

The method is completed by the time-stepping map @, : x¢ — x1 := X (1).

Method 4.1 defines a nonlinear problem with n + 1 parameters to solve with respect to
(60X, ). A difficulty is that the parameter o appears recursively in 6X,. To study this problem,
we consider the autonomous linear case.

Autonomous Linear analysis

Let H(x) = +x'Qx = %HXH?Q, with Q = QT = 0 be a quadratic Hamiltonian, A = h(J—-R)Q
and G = 0. We rewrite (4.1a) as the autonomous ODE

X =AX, X(0)=xq. (4.6)

Solving the collocation constraint (4.5¢): 6X, = A(xg + adX,) leads to 6X, = (I — @A)t Axg.
Substitution in (4.5a) yields the following family of candidate solutions parametrised by «

Xa(r) = (T+7(1- ) 'A) xo = (T - 0 &)™ (T+ (1 — )A). (4.7)

Evaluating x; = X, (7 = 1), yields the time stepping scheme x; = R, (A)xg, where the time-
stepping operator is
Ro(A) =T —aA) {1+ (1-a)A). (4.8)

Substituting the matrix A by a complex pole A € C, we obtain

Property 4.1 (stability fonction). For the Dahlquist test equation, & = Az, A € C, approxi-
mated using method 4.1, we obtain z1 = R, (\)zo, the stability function (see def. B.4 p.276)
is thus

1+ (1 -a)A

Ra(h) = —— (49)
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Remark 4.2. This classical result corresponds to the stability function of extended Fuler
methods. Using Taylor series expansion, the time-stepping approximation error is given by

€(V) = exp(A) — Ra(\) = A2 (; - a> O, (4.10)

e The method has accuracy order s > 1, Va € [0, 1]. It reaches accuracy order s = 2 for
o= % and Ry /5(A) is the Padé approximant of exp(A) of order (1,1).

o If > %, then the method is A-stable: ‘Ra()\)| <1 for R(A) <0, (see def. B.5 p.276).
If a = 3, then the method is conservative: | Rq(A)| =1 for all A € iR.

The following result shows that, even in the linear dissipative case, there is a maximal
dissipation rate above which it is not possible to satisfy the power balance (see figure 4.1).

Property 4.2 (bounded power balanced domain). Let A = —o, 0 € RT. If o € [0, /3], then
the power balance (4.5d) is satisfied for the optimal collocation point

G-D+yl-% 0,1]. (4.11)

20

T

Proof. Substituting equation (4.7) in the power balance functional (4.4), and integrating symbol-
ically (see appendix E.1 p.309) we btain

20 — 3> o?xd
(

0=p(Xan) = /01 Xa(T) (Xa(T) —f(on(T))> dr = <O‘20+0‘(1_J)+ 6 1+ o0a)?

This quadratic equation has a unique real branch in [0, 1] given by (4.11) for|o| € [0,/3]. O

1 —— valid branch
—==- discarded branch
maximal dissipation rate

O mid-point ]
: valid range of a
\
0
ey 1 0 1 V3

Dissipation rate o

Figure 4.1 — (PAC(1)) Optimal parameter a* as a function of the dissipation rate o. Note
that in the absence of dissipation (o = 0), the optimal parameter (a* = 1/2) corresponds to the
mid-point method. When the dissipation rate increases (o > 0), the method goes towards the
Forward Euler method (a* < 0.5). Conversely if the pole is unstable (o < 0), the method goes
towards the Backward Euler scheme (a* > 0.5). For || > /3, it has no real solution.

It may seem that the method relies on the stability margin provided by the dissipation rate
to solve the power-balance constraint. To demonstrate that solving the power balance does
not require the use of artificial numerical damping (or emphasis), a symmetric power balanced
adaptive collocation method that is always A-stable is presented in section 4.3.
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Example 4.1 (Damped Oscillator). Consider a damped oscillator with normalised (h = 1)
pulsation w and dissipation rate o (for example a parallel RLC circuit) with vector field

A numerical simulation of this system is shown on Figure 4.2. The mid-point method (o = %),

which is second order accurate, is compared to the PAC(1) (adaptive Euler), which is only
first-order accurate (in general). Despite the lower local numerical accuracy, we remark
that two qualitative aspects of the exact solutions have been improved thanks to the power
balance: the dissipation rate and the distance to the exact dissipative orbit.

mid-point vs exact solution PAC(1) vs exact solution 0.60
— ———
0.2 mid-point 0.2 — PAC(1)
— exact — exact
\ 0.55 A
0.1 0.1
& 004 & 004 s 0.50
-0.11 —-0.1+ 0.45
—0.2 1 —0.2 1
: : : : / : : r r / 0.40 : r r T
-02 -01 00 01 02 -02 -01 0.0 01 02 0 10 20 30 40 50
X1 X1 T
(a) orbits (b) « values

Figure 4.2 — (PAC(1) - Damped RLC) Mid-point method vs PAC(1). Despite the lower accuracy
order of PAC(1), we remark that the orbit and dissipation (in blue on the right) are improved
compared to the mid-point method (in orange on the left).

4.3 Method B: symmetric adaptive collocation

To generalize to C! solutions and to obtain a symmetric A-stable method, we introduce

Method 4.2 (SPAC(2)). PO. (Model) The trajectory is a polynomial X, € P*(Q, R"),

P1-2. (Cl-continuity) X, satisfies an initial condition and collocation of the vector field on
the boundary of the interval 0Q2 = {0, 1}

Xa(0) = Xo, Xa(0) = f(Xa(0)), Xa(1) = fa(Xa(1)), (4.122)
P2-3. (Power balance) the vector field is satisfied on symmetric adaptive collocation points
Xo() = fr(Xa(a)), Xao(l =) = fu(Xa(l = a)), (4.12b)

The PB is satisfied if there exists an o* such that

o € {ae0,1] | p(Xs)=0}. (4.12c)
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We study the behaviour of method 4.2 and its validity domain. In the linear case, we have
the following property

proximated using method 4.2, the time stepping map is 1 = Rg(\)xzo with the stability
function

e 2 1 = B 4 i
Rﬁ()\)_ 2 12 24

= d f=a(l-a)
ra-pr-sy M7 ol =)

Property 4.3 (stability fonction). For the Dahlquist test equation, & = Az, A € C, ap-

(4.13)
Proof. The proof is omitted. The result can be derived using CAS such as in E.1 p.309.

O
Remark 4.3. The method is A-stable for all values of 8. Using Taylor series expansion,
the approximation error is

A% 4+ X6 7
e(\) = exp(\) — Ra(\) = (5ﬁ—1)( - >+O<z ) (4.14)
By consequence the method

e has (linear) accuracy order s > 4, Vj € [0, 1],
e reaches accuracy order s = 6 for § = % (ie. a =

L4 ﬁ)
corresponds to the Padé approximation of exp(\) 3

2 = 10
of order (3,3) (see also D.7 p.297).

. In this case, Rg(\)
For a purely dissipative test equation, we also have the following result

Property 4.4. Let A = —0, 0 > 0. The power balance p(X3) = 0 has a unique solution

2520 + 02(902 — 84) — \/3 (—0® + 11206 + 2116800) 1
= € 0,~], 4.15
A 4202 (02 — 10) [ 4} (4.15)
subject to o € [0, Omaz) Where opmar ~ 10.651 (see fig 4.3).

Proof. As in property 4.2, solving the power balance p(Xg) = 0 yields a quadratic equation
af?+b8+c=0,

(4.16)
with a = 2102(0? — 10), b = —90* + 8402 — 2520, ¢ = 504 — 1202 + ¢*. It admits a unique
solution for g € [O,i (i.e. a €10,1/2]) which is given by (4.15).

O

4 6

Dissipation rate o

8 10 12

4 6
Dissipation rate o

Figure 4.3 — Optimal value of 5 (and «) as a function of the dissipation rate o.

8 10 12
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4.4 Increasing regularity: SPAC methods

In order to increase the regularity and accuracy orders, we combine the previously presented
approach with multi-derivative Hermite-Obreshkoff collocation methods [HNW93, Nor74, Obr40].
We summarize and extend the previous methods with the following definition.

Method 4.3 ((S)PAC). Denote k the C*-regularity order and d = 2k + 1 (resp. d = 2/~c +2)
the polynomial degree. Denote t = tg + hr, 7 € Q = [0,1] the time and D = ;- the

time derivative (= &). The (Symmetric) Power-balanced Adaptive collocation method of
regularity k, in short (S)PAC(k), is defined by

e PO (Model) X, € P4(Q,R") is a polynomial over the interval §,

e P1,P2 (C*-continuity). X, satisfies an initial condition and multi-derivative collocation
of the vector field on the boundaries of the interval 092 = {0, 1}.

X (0) = xo, (4.17a)
(D™ X,) (c) = <Dm_1f(Xa(7')))(c), Vee dQ, Vme{l,...k}.  (4.17b)

e P3 (power balance) The vector field is satisfied over the set C={a},aeD=(0,1)
for PAC (resp. C ={a,1—a}, a € D =(0,1/2) for SPAC) such that

DX,(c) = f (Xalc)), Ve e C. (4.17c)
The power balance is satisfied if there exists an o* such that

o €e{aeD|p(X,)=0}. (4.17d)

Automating proofs using CAS, as in E.1 p.309, we obtain the properties in table 4.1.

Method Stability function R(\) Leading error s Omax
1+ (1—a)A A2
PAC(0) Jrl(iao‘) ~2a-1%5 1to2 ~1.73
1+ A(4— 2a) + /\2(16701) 4
PAC(1) — /\(2%;“) s (20— 1) 2 3tod ~6.66
1+ )\(72153404) + A (1;32—012a) + )\3(f2—02a) 6
PAC(?) 1 A(24OJ+48) )\2(12C¥+6) a)\a — (20{ — ].) % 5 to 6 ~ 496
0~ 1% 60
1+5+ 2% A3 4\
SPAC(0) ﬁ (65 — 1) % 204 ~3.66
T2
1 1— A% 5 )6
SPAC(1) ta+(1-f 1 52;1 G8-1) (22 dor6 ~10.65
1-— 5 +(1- 5) ﬁ 720
A2(245+72) )\3(12ﬁ+6) 24(28)
SPAC(2) Lfot ™" *+" 7 + 7 (148 — 3) M4 6to8 =~ 6.38
1 - ) 4 XCiB)  X(026+6) | N) 302400 o
— 3t 70 + 0

Table 4.1 — (SPAC methods) Linear properties. Remind that § = a(1 — «), s denotes accuracy
order and the leading error is the first nonzero term in Taylor series expansion of the error.
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Dahlquist test equation & = Az, A = —o + jw. Contour plots are shaded according to a for SPAC
and o — % for PAC. Note that multiple solution branches are overlaid using transparency.
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Discussion about (S)PAC methods Optimal power balanced adaptive collocation points
«* are shown in figure 4.5 according to dissipation rate for real poles. Power balanced regions
for complex poles are shown on figure 4.4 for (S)PAC methods for regularity orders & = 0,1, 2.
Analysing table 4.1 and figures 4.4, we make the following observations:

Power-balanced regions are closely related but different from the theory of order stars?
which was introduced in [WHN78| to study the stability of numerical methods.

We remark on figure 4.4 that for both PAC and SPAC, increasing the regularity k increases
the surface of power balanced regions. However, we also notice in table 4.1 that the maximal
dissipation rate shrinks for &k = 2. A tradeoff seems to operate between the maximal
dissipation rate and the total area of the power-balanced region.

In Table 4.1, for PAC methods, the leading error term vanishes for the roots of the Legendre
and Lobatto polynomials®. These polynomials play an important role in the construction
of Gauss-Legendre and Gauss-Lobatto Runge-Kutta methods (see [HLWO06]).

In the absence of dissipation, for both PAC and SPAC methods, the power-balance yields
balanced A-stable Padé approximations of the exponential with optimal accuracy order s.

In the presence of dissipation, PAC methods may use locally expansive stability functions
(blue zones in figures 4.4a-c). The method relaxes accuracy order to satisfy the power
balance. Nevertheless, one can see on figure 4.2 that the orbit of the power-balanced
approximation (with lower accuracy order s = 1) is closer to the orbit of the true solution
when compared to the orbit of an A-stable approximation having higher accuracy order
(s = 2) and the same number of collocation points.

The previous observation indicates that the local truncation error, commonly used to
measure accuracy order, is only one metric among others based on a discrete simulation grid:
minimising specific continuous-time error metrics (such as the power-balance functional
p(X) (eq. (4.4)) or the vector-field approximation error E(X) (eq. (4.3))), can be beneficial
to capture or improve important features of the dynamics (such as energy-conservation,
orbit shapes or dissipation rate).

SPAC methods are all symmetric, A-stable, time-reversible and of even accuracy order
(independently of the dissipation rate) by symmetry of their collocation points.

A Python code example to produce results of table 4.1 and graphics of figures 4.4 and 4.5 is
shown in listing E.1 p.309.

2. Order star theory uses the regions A = {)\ eCl|5(\) > 1|} with S(A) = R(\)/ exp()) to study stability, In
(S)PAC we use power balanced regions of the complex plane for which p(Xa) = 0 can be satisfied.

3. For all PAC methods, the leading error term in table 4.1 vanishes for a = 1/2, the root of the Legendre
polynomial P;(a) = 2a — 1. Expanding 8 = a(1 — a), we obtain the Legendre polynomial Py(a) = 6a® — 6a + 1
for SPAC(0), and the Jacobi/Lobatto polynomial La(a) = 5a2 — 5a + 1 for SPAC(1).
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Conclusion

We have proposed a first family of (Symmetric) Power balanced Adaptive collocation methods
called (S)PAC that can satisfy the regularity, accuracy and power balance requirements P1, P2, P3.
This approach has the following advantages and drawbacks

Advantages

e arbitrary high regularity order k (P1) and accuracy order s (P2) can be easily obtained by
increasing the order of derivatives and the number of collocation points,

e the continuous-time power balance is exactly satisfied (when a solution exists),

e dissipation rate and orbits are more accurately tracked thanks to the power-balance P3.

Drawbacks Unfortunately, we also note the following important drawbacks

e the existence domain of power-balanced solutions is bounded by a maximal the dissipation
rate (for real poles) or more generally by the power-balanced regions of figure 4.4 for complex
poles,

e an implicit nonlinear equation has to be solved for each time-step (even for linear systems),

e polynomial parameters are implicitly defined with respect to the adaptive parameter o which
does not appear linearly in the equations. This makes estimation of parameters in the case of
nonlinear vector field f(x) a difficult problem* for which existence /uniqueness/convergence
conditions remains an open subject.

To overcome these problems, we abandon the collocation approach and adopt a different strat-
egy: we interpret the power-balance as an orthogonality condition p(X) = (VH(X) ‘ E(X))=0
between the vector field error E(X) = X — f(X) and the Hamiltonian gradient VH (X). This
interpretation leads us to methods based on continuous-time functional projection® in chapter
chapter 5.

4. A strategy consist in alternating between the fixed-point (or Newton) estimation of the implicit polynomial
X (through collocation of the vector field for a given «), and optimisation of the collocation point « for a given
polynomial X, . Joint optimisation of both parameters has also been investigated but is not detailed here.

5. Note that, interpolation of the vector field in collocation methods can also be interpreted as continuous-time
projection in Sobolev spaces (rather than discrete inner product spaces). However, continuous-time projection
alone is not sufficient to preserve the power balance. This viewpoint is detailed in chapter 5, particularly in section
5.2.7.
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Power-balanced projection methods

Spectral methods are like Swiss watch. They work beautifully,
but a little dust in the gear stops them entirely.

Philip L. Roe, quoted by J. P. Boyd, STAM Rev., 46(2004)
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Introduction

This chapter presents one of the main results of this thesis: we establish a sufficient condition
on projectors to obtain time-continuous power-balanced trajectories. Indeed, in chapter 4, we
have seen that it is not possible to unconditionally satisfy the power balance functional (4.4)
using (adaptive) collocation methods. In particular (see figures 4.4 and 4.5 p.114), the existence
domain of power balanced solution is bounded: there is a maximal dissipation rate (or more
generally a method-dependent maximal pole radius) above which power-balanced solutions cease
to exist. Furthermore, the power-balance constraint led to numerical schemes whose parameter
estimation is nonlinear in the parameters (even for linear ODE).

To avoid these problems, in this chapter, which is central in this thesis, we propose a
continuous-time power-balanced functional projection approach.

The chapter is structured as follows ':

e In section 5.1, we define regular power balanced methods (RPM) of variable projection
and regularity orders which satisfy properties P1, P2, P3 (defined p.79). The main foun-
dational results, which links functional L? projection and power balance are exposed in
subsection 5.1.1, where we introduce the functional notion of projected conservative (Dirac)
and dissipative structures over time-frames. Based on these results, RPM are first defined
for pH-ODE in subsection 5.1.3, and for pH-DAE in subsection 5.1.4.

e In section 5.2, instead of jumping straight to implementation and simulation issues (see
sections 5.4, 5.5), we provide a thorough analysis of RPM in the case of pH-ODE. This
step is important to guide the choice of approximation spaces. In subsection 5.2.2, we
reformulate RPM as continuous-stage Runge-Kutta methods. The goal is twofold: first to
leverage the vast amount of results available for Runge-Kutta methods, second to bridge
the functional projection and the Runge-Kutta viewpoints. Existence and uniqueness
conditions are considered in subsection 5.2.3, stability functions in subsection 5.2.4, power
balance in subsection 5.2.5, accuracy order conditions in subsection 5.2.6. Finally regularity
analysis and Peano error kernels are detailed in subsection 5.2.7. A landmark of this section
is that projection spaces that reproduce polynomials yield high-order accuracy.

e In section 5.3 we try to tackle the more difficult subject of pH-DAE. A short discussion on
accuracy and stage-order and stiffness is provided in subsection 5.3.1. But most of the work
is dedicated to establishing milestones towards practical existence and uniqueness conditions
for RPM applied to pH-DAE by exploiting the particular structure of the equations.

e In section 5.4, we address the implementation of RPM: numerical computation of projections,
choice of unknowns and implicit equation solving using Newton iteration.

e In section 5.5, we finally detail and illustrate RPM modelling and simulation on two
examples ’: a conservative pH-ODE and a dissipative pH-DAE. For both uses cases, we
provide and compare several simulations at different projection and regularity orders. A close
attention is also paid to energy preservation (up to machine precision), the quality /regularity
of continuous-time orbits and to the anti-aliasing and generalized spectral bandwidth.

Finally, we conclude this chapter by analysing the strengths and weaknesses of RPM and
compare with state of the art energy-preserving methods.

1. Application oriented readers, may skip numerical analysis sections 5.2 and 5.3, which are mostly theoretical,
to jump straight to implementation in section 5.4 p.140 and the numerical simulations in section 5.5 p.147

2. Note that chapter 8 p.197 is dedicated to applications on real circuits, where the complete process (from
circuit modelling to numerical simulation) is detailed with a finer level of details.
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5.1 Regular Projection Methods for pH-ODE and pH-DAE

5.1.1 Power-balance condition

Motivation In chapter 4 we have seen that using collocation, it is not possible to unconditionally
satisfy the power balance condition <VH(X) ‘ X - f(X)> = 0 (see Equation 4.4). We propose,

instead, to consider the weak ODE formulation over a subspace V of L%(, R")

<U‘X—f(X)>:O, Vv eV,

Note that, if we had VH(X) € V, this would imply the orthogonality <VH(X) ( X - f(X)> = 0.

Unfortunately, for X € V, by integration and nonlinearity, the function VH (X (7)) belongs to a
larger space. It needs to be projected on V' without loosing energy/passivity preservation.

To this end, we propose the following definition and theorem that are applicable for both
pH-ODE and pH-DAE (see corollaries 5.1-5.3).

Definition 5.1 (Projected structure). Let A € R™*™ be a matrix defining the structure
S={(f,e) eR" xR" | f = Ae}.

Denote F' = L?(2,R") the flow space of square integrable time signals over an open { C R.
Denote E = F* ~ F the (dual) space of effort signals. Let P : F — F be a projector and
denote P* : E — E its adjoint for the L? duality pairing (-|-). We call the functional set

Sp={(f.e)c FxE| f=PAe}, (5.1)
a projected structure over the time interval ).

We want that the projected structure Sp preserves (on average over (1) passivity properties (in
the sense of (1.53b) p.34) of the original structure S. To this end, we propose

Theorem 5.1 (Projected passivity). Assume that the pair (P, A) satisfies the condition
PA = AP (5.2)
Then, the projection P preserves the passivity properties of S: for all (f,e) € Sp

Sp is passive if A <0, i.e. (e| f) <0, (5.3a)
Sp is power-conserving if A = —AT, i.e. (e| f)=0. (5.3b)

When (5.3a) (resp. (5.3b)) holds, we call Sp a projected dissipative (resp. Dirac) structure.

Proof. The result follows from the sequence of relations
el f) L (e|PAle) £ (e|P*Ale) £ (| PAP [e) L (| P -~ R)P"|e)

L (e|PRP"|e) L0

using (a) projected flows f = PAe (5.1), (b) idempotency P? = P, (c¢) commutation (5.2)
PA = AP*, (d) equality A =J—R with J = J(A—AT), R = —3(A+AT), (e) skew-ajointness
(5.3b) of PJP* and (f) positive self-adjointness (5.3a) of PRP*. This yields (e| f) = 0 when
R=0. O
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Theorem 5.1 has a number of important implications for PHS detailed below.

Corollary 5.1 (Projected Hamiltonian System). Let x = JVH (x) be a Hamiltonian system
and P a projector such that (P,J) satisfies (5.2). Then, for X € H' (2, R™) solution of

X =PIVH(X), X(to) = xo, (5.4)

the energy is conserved on the boundaries of Q = (to,t1), namely H (X (t1)) = H (X (to)).

Proof. The result follows from 0 = (e | f) L < ‘ > H(x1) — H(xp), using (a) Theo-
rem 5.1 with A=J=-J7, (b) f = X, e = VH(X), (c) the gradient theorem. O

Corollary 5.2 (Projected pH-ODE). Consider a projected input-state-output pH-ODE with
given input w € L*(Q,R"?) and (P,J — R) satisfying (5.2)

X1 _ PJ-R) VHX) , X (to) = %o, (5.5)

Yy u

Then, for X € HY(Q,R"s), y € L*(Q,R"?) solutions of (5.5), x1 = X (t1), the projected
pH-ODE is passive, i.e. it satisfies the average power balance over = (to,t1)

H(x1) — H(xo) + (u|y) <0

Proof. The result follows from 0 E (el f) 2 <VH(X) ‘ X> +(u|y) = H(x1) — H(xo) + (u|y),

using (a) Theorem 5.1 with A =J—-R, (b) f = [)y(}, e= [VHU(X)], (c) the gradient theorem. O

Corollary 5.3 (Projected pH-DAE). Consider the projected semi-explicit pH-DAE with
given input w € L*(Q,R"?) and (P,J) satisfying (5.2)

X VH(X)
w| =PI | z(w) |, X (to) = xo.- (5.6)
Y u

Then, for X € HY(Q,R"s), w € L*(Q,R"?) y € L*(Q,R"?) solutions of (5.6) and x; =
X (t1), the projected pH-DAE is passive, i.e. it satisfies the average power balance over
Q = (to, t1)

H(x1) — H(x0) + (u|y) = — (z(w "w> 0.
Proof. The results follows from
02 (e f) £<VH(X)]X>+<z(w)\w>+<uyy>

N Hixy) — H(xo) + (u]y) = — (z(w) |w) < 0,

using (a) Theorem 5.1 with A =J, (b) f = (X, w,y), e = (VH(X), z(w),u) (c) the gradient
theorem and (d) pointwise non-negativity of z(w)-w > 0. O
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5.1.2 Examples of projector design

Theorem 5.1 allows some flexibility in the design of projectors. This can be illustrated on
example 2.10 61 (Diode clipper) whose structure matrix J is recalled below.

on| T 1 1] [ig(wr)]
vp| 1 0| |ip(vp)
ic|l |1 -1 veic)
19 -1 0 Vg

Several choices of projectors P can be considered

a)

The simplest choice consists in using the same scalar projector P = P* for each dimension by

introducing P = P ® I (by construction PJ = JP = JP*). This defines the skew-adjoint

operator

P 0

PI
P =P
-P 0

This choice is the one explored and detailed in section 5.1 to build Power-Balanced methods
for pH-ODEs and pH-DAEs.

A natural extension, is to use a diagonal projector P = diag(Pr, Pp, Pc, Ps) with different
(not necessarily self-adjoint) projectors for each dimension so that

Pr

PJ

Pp

Pc

Ps

1
-1

-1
0

-1 1

1

0

Pc
_735

—Pc
0

—Pr PR-
Pp 0

However, note that, in order to have PJ skew-adjoint, it is necessary to fulfil hidden
constraints Pr = Pp = P and Pc = Pg = P* for a given projector P (and its adjoint
P*). This choice is more flexible than the self-adjointness constraint (a) for partitionnable
systems. In particular, canonical Hamiltonian systems could be discretized as

OH OH
) = _P* a ) ) ] = P a ) .
P aq (. q) q op (p,q)
The most general situation arises by direct substitution of each cell of the structure matrix
by projectors to obtain a skew-adjoint approximation of the structure matrix J (or J—R). In
our example, we may choose 3 projectors Por, Pcp, Psr such that the following functional
matrix operator J (approximating J) is skew-adjoint

~Pcr Psr
Pép 0

Pcr
Psr

—Pcp
0

Alternatively, we could define the skew-adjoint operator J = PJP* from (b). This choice
is not explored further in this thesis, but is left as an interesting perspective for future work.
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5.1.3 RPM for pH-ODE

We propose a power-balanced method for pH-ODEs. The key ideas of the method are a) to
use corollary 5.2 to obtain projected power balanced solutions (P2) in a subspace of L?, b) to
improve this result using multi-derivatives supplementary boundary conditions (P1) so that the
concatenation of time frames yields globally smooth solutions in the Sobolev space H*.

For our purposes, we rewrite input-state-output pH-ODEs from definition 1.22 p.33 as

T _gom |VE@| @0 ) — e (5.7
y u g(z,u)
a b

with &(t), VH(x(t)) € R™ and y(t),u(t) € R™. In this chapter, let [to,t1] be a time step,
h =t; — tg its step size, and (1) = to + h7, with 7 € Q = [0, 1] a time variable change for which
we define the differential operator D := %% (ie. D= <4). We propose the following method
Method 5.1 (RPM for pH-ODE). Denote p be the projection order, k the regularity order,
l=p+2k and n = ng + ny. A Regular Power-balanced projection Method called RPM(p, k)
for pH-ODE (5.7) is defined by steps (i)-(iii)
i) PO Approzimation spaces and operators: Let {(bi}f;é € H*(Q) c L?*(Q) be an orthonor-
mal basis for the L? inner product and define the subspaces of L?(£2)
Ap = span {gzbi}f;ol , AR = span {qbi}f;; , A:=Ap @ Ag. (5.8)
We assume that (H1) Ap is such that the orthogonal projector P on Ap, reproduces
constant functions and that (H2) the image of Agr through B spans R?* where B :
H*(Q,R) — R?* the (multi-derivatives) boundary trace operator [Aubl1, p.163] is
B = (Bg, BB ,B’f‘1> . with  B™(u):= (D™u)(@).  (5.9)
Denote A = A™ x A™  and B~ A approximation spaces for dual variables a, b and
P=P®IL, B=B®I, the extensions of P, B to L?(Q)" and H*(Q)".

ii) P2,P3 Accuracy and power balance: Denote ap = (6X,Y) € P(A) the unknowns of
the projection step and define the time-stepping method ®; : x¢ — x1 such that

0X H(X
=PJ-R) VH (X) , where

u X1 = X(1).

X(1) =x0+ h/OT X (0)do, (5.10)

iii) P1 Regularity: For k > 1, denote a = (5}, Y) € A the unknowns of the regularisation
step such that Pa = ap and satisfying the multi-derivatives boundary conditions
0X VH(X — .
B = || = B(J-R) (X) , where X(7):=x0+ h/ 0X(o)do. (5.11)
u 0

The condition Pa = ap ensures that the regular solution a is at least as good as the projected
solution ap, (i.e. regularity is not in conflict with the power balance). Furthermore, if the
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projector P reproduces constants (H1), then by orthogonality, fol ¢n(s)ds = 0 for all n > p,
such that by construction the projected and the regularised trajectories share the same endpoint
x; = X (1) = X(1). By consequence supplementary boundary conditions (5.11) only depend
on the numerical value of vectors x¢,x; and on the formal derivatives of functions VH, u (see
section B.3 p.278 for numerical evaluation). Hypothesis (H2) ensures that steps (iii) is solvable.

5.1.4 RPM for pH-DAE

We extend the method RPM(p, k) from method 5.1 to semi-explicit pH-DAEs. The main
difference comes from the appearance of memoryless algebraic constraints through the variables
w. For our purposes, we rewrite semi-explicit pH-DAEs from definition 1.24 p.34 as

T VH(x) flz,w,u)

w| =J| z(w) | = |g(x,w,u)|, =x(to) = o. (5.12)
Y ( h(x,w,u)

a b

Method 5.2 (RPM for pH-DAE). Let p > 0 be the projection order and k > 0 the regularity
order and n = nx + nw + ny. A Regular Power balanced projection Method RPM(p, k) for
pH-DAE (5.12) is defined by steps (i)-(iii)
i) PO Approzimation spaces: Let A, Ap, Ar be approximations spaces from (5.8). Let
A = = x HW x HW, B~ A and denote P = P®l, B=B®I,.

ii) P2,P3 Accuracy and power balance: denote ap = (6 X, W.Y) € ’P(AV) the unknowns
of the projection step and define the time-stepping method ®j, : xg — x; such that

5X VH (X) . o
w|=Pi| 2w |, X = O+h/0 0X(9)do, (5.13)
Y u X1 :X(l)

iii) P1 Regularity: denote a = (;53(/, f?[v/', ?) € A the unknowns of the regularisation step
such that Pa = ap and satisfying the multi-derivative boundary conditions

5X VH(X) _

B|\W|=BJ| W) |, X (1) := x0+h/ 6X (o) do. (5.14)
~ 0
Y u

Note that solutions of equation (5.13) are only weak DAE solutions in the sense of L?
projection. In particular, concatenation of time steps yields piecewise discontinuous solutions in
step ii). The boundary values of flow and efforts are not defined in L?: only X (but not §X)
is piecewise continuous because of 1ntegrat10n However step iii) restores continuity such that
the concatenation of time-frames for (5X W Y yields globally smooth functions in the Sobolev
space HF.
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Comments Note that, contrary to most numerical methods, because of our virtual analog
viewpoint (see chapter 3 p.81), in practice, we are more interested in the quality of the continuous-
time approximation of dual flow/efforts variables a = ((535, w, Y), b= (VH(E(V), z(ﬁ;), u) than
on the sequence of values {x, } produced by the discrete time-stepping map @, : x,, +— Xp4+1. This
map remains an important object to study the numerical properties of the numerical schemes,
but from a signal processing perspective, it only gives us a partial viewpoint by sampling the
(non bandlimited!) trajectory X on the boundaries of each time frame.

Note that passivity propagates from time-frame to time-frame. Also note that for RPM,
contrary to symplectic® methods [HLW06, KL19], the eract Hamiltonian is preserved (resp.
dissipated) when it is evaluated on the boundaries of each time frame (see figure 5.12 p.152 for
the behaviour of the energy within each time interval).

Theoretical existence and uniqueness conditions for RPM are addressed in section for 5.2
(for pH-ODE) and in section 5.3 (for pH-DAE). Accuracy analysis is detailed in subsection 5.2.6.
Computational implementation details such as the computation of projections, the evaluation of
boundary derivatives or implicit equation solving are considered in section 5.4.

In particular we give the following results

e RPM are energy (resp. passivity) preserving (see corollary 5.2).
e RPM are A-stable (see proposition 5.2 p.127 and section D.7 p.297).

e RPM have (pointwise) accuracy order 2p (on interval boundaries?®) if the projector P
reproduces polynomials of degree p — 1 (see subsection 5.2.6 p.128). For this reason, in
applications, we will use the shifted (L?) orthonormal Legendre polynomial basis (defined
in section C.4 p.286). For comparison, in section D.7 p.297 we provide the stability function
of the orthonormal cosine basis (which only yields second order accurate time-stepping
approximations).

e The regularisation step (iii) yields a secondary (non self-adjoint) projector Q (formalised in
subsection 5.2.7 p.129). Peano error kernels of projectors P and Q are derived and shown
in figures 5.4 and 5.5 p.134.

e A graphical illustration of the method and of the respective roles of nested projectors P
and @ is shown in figure D.1 p.295.

Readers that are not interested in the theoretical or technical details, may skip directly to the
examples shown in section 5.5 p.147.

3. It is known from [ZM88] that approximate symplectic algorithms cannot preserve energy for nonintegrable
systems.

4. Conversely, the accuracy (in the L? norm) of continuous-time flow and effort trajectories within each time
frame is proportional to the number of degrees of freedom p + 2k.
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5.2 Analysis of RPM for pH-ODE

To analyse RPM, in order to compare with the literature and to study existence/uniquess, and
accuracy conditions, it is convenient to reformulate (5.10) (def. 5.1, step ii) using the framework of
continuous-stage Runge Kutta methods (CSRK). The main object in this section is the orthogonal
projector P whose reproducing kernel is (see eq. (3.9) p.84)

p—1
Kp(1,0) = ¢n(r)dn(0). (5.15)
=0

in a chosen orthonormal basis such that span {¢’N}fz;10 = Ap.

We show in sections 5.2.2 to 5.2.6 that CSRK parameters can all be obtained from the
kernel Kp and that energy-preservation, existence/uniqueness, stability function and accuracy
automatically follow from the properties of P. Then we show in section 5.2.7 that the third step
of RPM (the regularisation step) yields another (oblique) projector Q refining P and we compare
their respective approximation properties and Peano error kernels.

5.2.1 Reminder on Runge-Kutta methods

Definition 5.2 (Runge-Kutta method [HLWO06] p.29). Let b;, a;; (4,7 =1,...,s) be real
numbers and let ¢; = Z;:l a;j. An s-stage Runge—Kutta method is given by

s
k; = f | to + hc, xo—i—hZaijkj , t=1,...,s
g=1 (5.16)

X1 = Xq + hzbzkz
=1

\

The slopes k; do not necessarily exists, however, the implicit function theorem assures that, for
sufficiently small h, the nonlinear system for the values ki, ...,k has a locally unique solution
close to k; ~ f(to,%p). Since Butcher’s work the coefficients are usually displayed as follows

c1|d4ail ... Qis
clA
Cs | Qg1 ... Qs b
by ... bs

5.2.2 Reformulation of RPM as Continuous-Stage Runge-Kutta methods

The idea of CSRK was hinted by Butcher in [But72], but it had to wait until the work of
Hairer in 2010 |[HailO] to understand the key role of CSRK methods to derive energy-preserving
integrators. Early examples of energy—preserving CSRK method are the Average Vector Field
method [QMO08, CGM ™12, COS14] and Hamiltonian Boundary Value methods (HBVMs) which
were later interpreted as CSRK in [ABI19]. A similar thread of research arises from the use of
Time Finite Elements Methods (TFEM) and (Continuous) Galerkin projection in time [TS12]
based on ideas that can be traced back to [Hul92, BB93, Bot97, BS00]. For more details on
CSRK methods please refer to the overview paper [Tanl8|.
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CSRK methods are generalisations of Runge-Kutta methods (5.16) for an infinite number of
stage values X (7) so that the matrix A, weights b and abscissae ¢ in def. 5.2 are replaced by
functions A(r,0),B(0),C(T).

Definition 5.3 (CSRK method [Tanl8|). A Continuous-Stage Runge-Kutta method is a one
step method @, : xg — x1 defined by a triplet (A: QxQ >R, B: Q - R, C:Q — R) and

1

X(1)=x0+ h/o A(r,0)f (t(0), X (o)) do, (5.17a)
1

X1 = %o+ h/o B(0)f (t(0), X (0)) do, (5.17b)

where X (1) approximates  (¢(7)) at times ¢(7) = tog + hC(7) for 7 € Q = [0, 1].

Proposition 5.1. For RPM, the reproducing kernel Kp(7,0) of projector P defined by (5.15)
uniquely defines the CSRK triplet.

A(r,0) = [ Kr(e,0)de, (5.18)
0
1
B(o) = / Kp(r,o)dr =1, (5.18b)
0
T 1
¢ = [ [ Kegordode=r. (5.180)
0 0
Proof. The proof in detailed in section D.2 p.291. O

Remark 5.1. For consistency, it is often assumed [Tanl18, 2.3] that

1
C(7) :/0 A(r,0)do.

For RPM, this is automatically fulfilled because of (5.18a)-(5.18c). Also note that, differen-
tiating (5.18¢) and comparing with (5.18b) yields the symmetric relation between C’ and
B

1 1
C'(1) :/ Kp(1,0)do = 1 = / Kp(r,0)dr = B(T1).
0 0
In short, the symmetry of kernel Kp (self-adjointness of P) and the reproduction of constants

ensure that the weight B(o) = 1 is uniform (5.18b) and consistent with the (uniform density
of the) measure dC(7) = B(7) dr in the variable change ¢(7) = tgo+hC(7) = dt(r) = hdr.



5.2. Analysis of RPM for pH-ODE 127

5.2.3 Existence and uniqueness of solutions

Here we provide existence and uniqueness conditions for a CSRK method when X € L?(€, R™)
and P is an orthogonal projector. Our result and proof are different from the ones in [TS12,
MB16, Tan18] because we consider convergence in the L? norm.

Theorem 5.2. Let P be an orthogonal L? projector such that the associated CSRK method
(def.5.5) satisfies (5.18a)~(5.18¢c). If f is L-Lipschitz and hL < 5. Then, the method has a
unique solution in L.

Proof. The proof is detailed in section D.4 p.293. O

5.2.4 Linear Stability function

We consider the Dahlquist test equation & = Az, 2(0) = zp, A € C, and a time stepping
method @) : 29 — 1 = R(\)x defined by the orthogonal projection & = Pz on Q = (0,1).

Proposition 5.2 (Stability function). Let {¢n (T)}Z:) be an orthonormal basis of dimension
p in L?(Q) reproducing constants. Let 1 = [(¢n,, 1>]p_1 and

n=0

V= [<¢m7v¢n>]m7n:0_“p_1 , where (Vu)(r) = /OT u(s)ds, (5.19)

be the matriz representations of the constant function and of the (projected) Volterra integration
operator. Then, the stability function of method ®y with projection order p is given by

det(I+AVT)

_ T 17 _
RN =1+ATI-2V) 1 Totd =3V

(5.20)

Proof. The proof is detailed in section D.7 p.297. O

5.2.5 Energy preservation (P3)

Since P is an orthogonal projector, it is self adjoint (P = P*). Furthermore, by construction
it commutes with matrices, so we already know from corollary 5.2 p.120 that our method is
energy, (resp. passivity) preserving for pH-ODE. Here, we provide an alternate interpretation
using CSRK theory to highlight the role of the reproducing kernel Kp.

In the context of CSRK methods, a method is energy—preserving [Tanl18, thm.3.7] when

(‘Zf) (r,0) = <‘3‘7‘_‘> (,7), A(0,0) =0, A(1,0) = B(o).

Reformulated with the reproducing kernel Kp, using (5.18a), this is equivalent to the three
conditions

T 1
Kp(r,0) £ Kp(o,7), /0 Kp(¢,0)dg| Lo, /0 Kp(r.0)dr £ B(o).

7=0

(a) The symmetry of Kp(1,0) = Zf:_g (7)o@ (o) follows from its construction. It is equivalent
to P being self-adjoint. (b) The second condition always hold when Kp € L2(Q) ® L?(Q) (i.e.
Kp does not contain Dirac delta distributions) and (c) the third condition is fulfilled by (5.18b).
This is equivalent to x; = X (1).
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5.2.6 Order conditions and polynomial reproduction (P2)

Usually, the accuracy order of one-step methods is studied using the theory of B-series
[HLWO06]. Here, we establish that CSRK order conditions are automatically fulfilled when the
RPM projector P reproduces polynomials up to a given order (Strang-Fix conditions).

Definition 5.4 (Accuracy order [Tanl8]). A CSRK method is of accuracy order s if for all
sufficiently regular problems (5.17a)-(5.17b) its local error satisfies @ (to + h) — x; = O(h*H1)
as h — 0.

The main tool we use to study accuracy is a generalisation to CSRK methods of the simplifying
order assumptions for Runge-Kutta methods (see [BGO8, p.186] and [HNW93, p.208|). They are
given by the following theorem.

Theorem 5.3 (Simplifying order assumptions [Hail0]). If a CSRK method satisfies the
simplifying order assumptions for integers p,n,( > 1.

1
B(p) : / B(r)C(r)Ftdr = % k=1,...,p, (5.21a)

0
1
C(n): / A(T,O’)C(O’)k_l do = P k=1,...,n, (5.21b)
0

1
D) : /0 B(r)C(r)* 1 A(r, ) dr = %B(J)(l _C()), k=1,....¢C. (5.21c)

Then, its accuracy order is at least s > min(p,2n+ 2,71+ ¢+ 1).

In RPM, these conditions are greatly simplified, they are linked to the polynomial reproduction
properties of the projector P. To this end, we establish the following proposition.

Proposition 5.3. Let P be a projector with kernel Kp(7, o) such that the associated CSRK
method satisfies B(o) = 1, C(1) = T, % = Kp(1,0) (eq. (5.18a)-(5.18¢c)). Then, the
simplifying order assumptions (5.21a)-(5.21¢) are equivalent to

1
. 1
Bp) : / kol = 2, RI=1 0, (5.22a)
0
C(n): Pri-l = k=1 k=1,...,n, (5.22b)
D(C) : Prrk =k, k=1,...,C. (5.22¢)

The CSRK order conditions B(co) always hold and C, D are equivalent to the polynomial
reproduction property of P and P* (see Strang—Fiz" conditions [['S69, SF11]).

a. Also refer to [Lig91, Uns96, BU99, DVB07] for the importance of Strang—Fix conditions in approximation,
wavelet and generalized sampling theories.

Proof. The proof is detailed in section D.3 p.292. O

Accuracy order For RPM, the projector P is self-adjoint. Then, condition C(n = p) implies
D(¢ =p—1). By consequence, if the RPM projection reproduces polynomials of order (def. 5.1)
p. Then, by theorem 5.3, the accuracy order s of its local truncation error (def. 5.4) is at least

529
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5.2.7 Regularity (P1)

The main drawback of piecewise L? projection is that the resulting approximations are
piecewise discontinuous (blue curves on figure 5.2). We show that step iii) of method 5.1 induces
a projector Q which both restores piecewise continuity and improves the accuracy (a graphical
illustration of the method is shown in figure D.1 p.295). Then we compare the approximation
properties of P and Q in the Hilbert space L? (see figures 5.2 and 5.3).

First, we give an explicit construction of the inverse boundary operator B~! in A (i.e. the
continuous reconstruction operator complimentary to the multi-derivative boundary analysis
functionals B (-) used to obtain regularity in the Sobolev space H¥).

Proposition 5.4. Let {1#3”(7)} form=0,....,k—1, a € {0,1} be linear combinations of

{gbn}f;ik_l (spanning the space Ag in (5.8)) satisfying the biorthogonality conditions

1 a=d andm=m'

Bg(ng&’)—{ . Vae{0,1},Vvme{0,... . k—1}, (5.24)

0 otherwise,

then the synthesis operator B~ : R?* — Ap satisfying BB~ = Iy, and B~'B = Lay, s

1

k—1
B )(r) =D Y aksm, Vue R, (5.25)

a=0m=0

a. Two sequences {fm}, {gn} are said to be biorthogonal if (fm | gn) = dmn.

Example Let {¢,} be the orthonormal Legendre polynomials ((C.16) p.286). The corresponding
synthesis functions {¢7'(7)} are shown on figure 5.1 for projection orders p € {0,1,2} and
regularity orders k € {1,2,3}. Note that the right boundary functions (o = 1) are drawn shifted
on [—1,0] to emphasize the global continuity and limited support of boundary functions on [—1, 1]

Proposition 5.5. Step iii) of RPM, def. 5.1, induces a projector Q : H*(Q) — A, satisfying

Q=POR, where R =B 'B(T - P). (5.26)

Proof. The proof is detailed in section D.5 p.294. O

According to (5.24) and (5.26), operator Q can be written as an integral operator (Qf)(7) =
fol Ko(7,0)f(0)do with kernel

1

k-1 .
Ko(ro) = Kp(ri) + Y Y u(r) (670 - ) - S22 @) G21)

a=0m=0

where Kp is defined according to (3.9) p.84 (see table 5.1 p.132 for some examples).

Approximation properties A qualitative study of the approximation properties of operator
Q is shown on figure 5.2. The function to approximate, exp(—87), is chosen such that, from an
ODE viewpoint, the system is both smooth and stiff (with a time constant height times larger
than the step-size). On this example, a numerical study of the convergence rate of Q, according

«

to projection order p, and regularity order k, is also shown on figure 5.3
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AW
VLV

Figure 5.1 — (Polynomial supplementary boundary functions). The basis {¢/'()} is shown
for projection order p € {0,1,2}, and regularity order k¥ € {1,2,3}. The case p = 0 (which
corresponds to Hermite splines) is not used in this thesis as the consistency of the time stepping
method requires that p > 1. By construction, these boundary functions act as continuous
regularisations of the Dirac delta distributions §(").

k=2 k=3
1.0 1 1.0
— Pu — Pu
— Qu — Qu
0.5 1 -——-u 0.5 A == u
0.0 1, et - 001 e
0.0 0.5 1.0 0.0 0.5 1.0

(a) Approximated functions.

Figure 5.2 — Comparison of operators P and Q to approximate u(7) = exp(—87) for projection
order p € {1,2} and regularity order k € {1,2,3}. On this example, we clearly see that L?
projection Pu (in blue) is discontinuous and a crude approximation of the function u. The
projection Qu preserves and refines the approximation Pu. It restores CF~!-continuity by
interpolating u and its derivatives on the boundary of the interval. We also observe that it reduces
the pointwise approximation error: the amplitude of oscillations decreases with increasing k.
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[lu—Qul|.2

[lu - Qul|.2

x~x o x
LI I
W N o

~1tttd

(a) k-convergence (b) p-convergence

Figure 5.3 — Comparison of k-convergence and p-convergence of RPM(p, k) on the approximation
error ||u — Qul|;» for u(7) = exp(—87). We remark on figure 5.3a (k-convergence) that the error
for k = 5 (for all values of p) is systematically smaller than the error on figure 5.3b (p-convergence)
for p =5 (for all values of k).

Relation between projection order p and continuity order k:

We ask the following question:

For a given projection order p, what is the mazimal regqularity order k such that multi-derivative
supplementary boundary conditions (5.11) yield a consistent ODE approximation?

To answer that question, let z(t = tg + h7) := X (7) be an approximate ODE solution and x(t)
the exact solution. We remark from CSRK order conditions that we have the local truncation
error (see (5.23))

x(to + h) = z(tg + h) + O(h*PT1).
Then, according backward error analysis theory [HLWO06, thm 1.2, p.340], there exists for each
time-step a modified vector field fy such that z is locally the exact solution of the modified ODE
z = fi(z) with

f(z) = fu(z) + O(h?).

m
Since D™ = <%%) and BJ'u = (D™u)(«), it follows that supplementary boundary conditions

yields the approximation

By (f(2)) = By (fa(2)) + O(R*™™).

We conclude that, for a small enough step size h, as long as k < 2p, multi-derivative boundary
conditions (5.11) are consistent with the projected vector field up to order 2p — k.

Peano error kernels and pointwise error

To study the approximation error of operators P and Q, we use the Peano kernel theorem 5.4
to obtain their respective Peano error kernels 5.30 from which numerical bounds and qualitative
information can be obtained. Let g be a function sufficiently differentiable such that its Taylor
polynomial expansion with remainder may be written for 7 € [a,b] in the form®

(1 —a)?

9(7) = 9(a) + ¢ (@)(7 — ) + ... + ¢V (a) T

b (7._ S)d
Rl Eile = [T ) ds.

5. Using the common notation (-)+ = max(0, -).
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If an approximation Qg reproduces polynomials up to degree d, then the residual g— Qg = O(R][g])
is governed by ¢(4*1) and an error kernel E which is given by the following theorem.

Theorem 5.4 (Peano kernel theorem [Ise09]). Let Q = [a,b], let L be a linear functional
that commutes with the operation of integration, and such that L[u] = 0, Yu € P4(Q). Then,
for all g € CHH(Q)

b r— o)
Llg] = / E(0)g'V (o) do, E(o):=1L [(d,”] (5.28)

and E is called the Peano error kernel of L.

In RPM, for projectors P (resp. Q), we propose to use the continuous family of functionals

Lplfl = (Z-P)f) (), (5.29)

to measure the pointwise approximation error ep(7) = f(7) — (Pf)(7) for all 7 € [0, 1].

Definition 5.5. Let P be a projector with kernel Kp (7, o) reproducing polynomials up to
degree d. Then, by definition of P, functionals (5.29) satisfy the conditions of theorem 5.4.
The associated Peano error kernel is

(T—U)i] _ (T—U)i _/1 KP(T@)M de. (5.30)
0

Ep(r,0):=Lp | d)! d)!

Peano kernels for P Kernels for projection orders p € {1,2,3} in the Legendre basis are
shown on figure 5.4 and Table 5.1 (P reproduces polynomials up to degree d = p — 1). We note
that the synthesis error kernel Ep(t,-) is always non zero on the boundary 09 = {0, 1}, this
confirms that L? projection is always discontinuous on boundaries when ¢*) # 0. Conversely,
the analysis error kernel Ep(-, s) always vanishes on the boundary, this means that Legendre
projection is blind to the boundary values of the residual term ¢®).

Peano kernels for Q Corresponding Peano error kernels for operator Q with p=1, k=1,2
are shown on figure 5.5 (Q reproduces polynomials up to degree d = p + 2k — 1). See (5.27) for
the definition of Kg. As expected, the error and its derivatives vanishes on the boundary 02, i.e.
the error belongs to the Sobolev space HY(Q) = {u € H*(Q) | Bu = O}. We also note that the

maximum norm of the kernel Fg is an order of magnitude lower than Ep.

Kernels Kp(r,0) Ep(t,0)
p=1 1 (r—0))l—(1-0)
p=2 1+ Pi(1)Pi(0) (r—0o)r—(1+(2r—1)(20+1)) 3(1 —0)?

T7—0)2 o—
p=3 Yy ROP0) S+ (1+ PR+ 0) + Y Pyr)(60% + 30+ 1)) 5

Table 5.1 — Reproducing kernel Kp and Peano error kernel Ep of Legendre orthogonal projector.



5.2. Analysis of RPM for pH-ODE 133

Error kernel Ep(+, 0) (synthesis) Error kernel Ep(T, *) (analysis on g’)
1 1
—— 0=0.00 —— 1=0.00
—— 0=0.25 —— 1=0.25
—— 0=0.50 —— 1=0.50
—— 0=0.75 — 1=0.75
OT_ o=1.00 0 - —— 17=1.00
_1 T T T _1 T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
T g
(a) Projection order p =1
Error kernel Ep(-, 0) (synthesis) Error kernel Ep(T, *) (analysis on g”)
0.15 0.15
—— 0=0.00
—— 0=0.25
—— 0=0.50 —— 1=0.00
— 0=0.75 —— 1=0.25
0.00 - —— 0=1.00 0.00 - — 1=0.50
—— 1=0.75
— 1=1.00
_0.15 T T T _0.15 T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
T g
(b) Projection order p = 2
Error kernel Ep(+, 0) (synthesis) Error kernel Ep(T, -) (analysis on g®)
0.02 0.02
—— 5=0.00
—— 5=0.25

— 5=0.50
— 5=0.75 4

0.00 %.00 . 0.00 -

_002 T T —002 T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

t S

t=0.00
— t=0.25
— t=0.50
— t=0.75
— t=1.00

(c) Projection order p =3

Figure 5.4 — Peano error kernels Ep(7,0) for projector P with projection order p € {1, 2, 3}.
As P does not handle regularity, expected discontinuities of kernels appear at 7 = o (the Sobolev
regularity of Ep(-,0) Ep(7,:) is p —1). We notice in the synthesis column that the largest
approximation errors are more likely to appear towards the interval boundaries. The maximal
error decreases by an order of magnitude as p is incremented. We notice, on the analysis column,
that kernels are all zero on boundaries, meaning that, at these points, the error might be arbitrarily
high (which is confirmed on the synthesis kernels). Conversely they have maximal weight towards
the center of the interval. These observations show that projector P is biased towards reducing
errors close to the center of the interval.



134 Chapter 5. Power-balanced projection methods

Error kernel Eq(+, 0) (synthesis) Error kernel Eo(T, +) (analysis on g'3)
0.015 - — 0=0.00 0.015
—— 0=0.25
—— 0=0.50
—— 0=0.75
—— 0=1.00
0.000 0.000
—0.015 - —0.015 -
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
T g
(a) Regularity order k = 1, projection order p = 1
Error kernel Eq(:, 0) (synthesis) Error kernel Eo(T, -) (analysis on g®)
0.00015 4+ —— o =0.00 0.00015 A — T=0.00
—— 0=025 —— 1=025
—— 0=0.50 —— 1=0.50
— 0=0.75 — 1=0.75
—— 0=1.00 —— 1=1.00
0.00000 0.00000 >~
—0.00015 A ~0.00015
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
T g

(b) Regularity order k = 2, projection order p =1

Figure 5.5 — Peano error kernels Eg(7,0) for operator Q with p = 1 and regularity k € {1, 2}.
Comparing these error kernels to those of projection P in figure 5.4, we notice that (in the
synthesis column) the error (and it derivatives when increasing k) now vanishes on the boundaries
and that the magnitude order of the error is also much smaller. However, in the analysis column,
we notice that the maximal weight is still towards the center of the interval. Although projection Q
reduces the boundary error, this means that the error might still become high near the boundaries.
A more uniform handling of the point-wise error would require the use of a different basis, for
example Chebyshev polynomials. Unfortunately, this choice is not an option since the uniform
weight of the L? inner product is already dictated by the power-balance.
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5.3 Analysis of RPM for pH-DAE

In this section, we consider existence, uniqueness and accuracy of solutions for pH-DAE of
index 1 ((1.16) p.14) discretized using RPM (def. 5.2 p.123). A general theory is still missing.
Results below are preliminary steps towards this goal. In subsection 5.3.1, we recall order reduction
for stiff ODE, while subsection 5.3.2 is dedicated to existence and uniqueness of solutions.

5.3.1 Accuracy and stage order for stiff ODE and DAE

In the theory of Runge-Kutta methods applied to stiff ODE and DAE (i.e. when the time-
constants of the vector field are much smaller than the step size h), it is known [HW96, thm 1.1
p.380] that point-wise super-convergence on the time stepping grid x(t, = hn) is lost. We recall
that for RPM(p, k) the local truncation error accuracy is in O(h?P), see (5.23) p.128. In the case
of RPM(p, k) for pH-DAE, the stiff accuracy falls back to the level of stage order conditions C'(n)
(see eq. (5.22b) p.128) which reduces to O(h") with r = min(2p — 1,p) = p. This corresponds to
the polynomial reproduction property of the projector and thus to the accuracy for all values of
the solutions between time-stepping instants, not just on the boundaries of each time interval.

5.3.2 Existence and uniqueness of solutions

First, we establish (naive) existence and uniqueness conditions for solving DAE using fixed-
point iteration. These conditions are tractable, but usually too restrictive. However we know
that if the fixed-point converges, then Newton iteration also converges. Second, we establish
pH-specific conditions to ensure a DAE is of index-1. Finally, we propose partial results for the
resolution of Newton iteration in the case of projected pH-DAE.

Fixed-point convergence

We consider the semi-explicit Hybrid Dirac structure formulation (2.18) p.55 of pH-DAE,
parameterized by tree currents i1 and link voltaged vy, rewritten as a fixed-point map G : F' — F,

. . O _CT V .
Tlhog! | ] = (ir) , (5.31)
vy, vy, c o I(vy)

where F' € L?(Q, R(7+7L)) is the projection space (see def. 5.2 p.123) and V', I are operators on
F standing for projected component laws which yield tree voltages vy and cotree currents 2y..
A sufficient condition for existence and uniqueness of solutions is given by

Theorem 5.5. Let (Ly, Ly, Lc) be the Lipschitz constants of operators (V,I,CTC) for
the L? norm. If Ly Ly Lc < 1, then the fized-point (5.31) converges to a unique solution.

Proof. Rewrite the iterated map G? in separated variables by composing operators as

ir = Gr(ir) = (—CT oI o Co V)(ip),

vy =Gy(vy) = (CoVo(=CT)oI)(vy).
It follows that we have the Lipschitz bounds [|Gy(i1) — Gi(i2)|| < LrLy | CTC|li1 — i), and
|Gy (v1) — Gy (v)]| < LILVHCCT ’Hvl — || (where CTC = CT o C). Finally, since L =
|ecT] =|eTe
Banach fixed-point theorem under the contractivity condition Ly Ly Lo < 1. O

, then, convergence of the map G? to a unique fixed point follows from the
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Example 5.1 (parallel RLC). We consider a parallel RLC with orthogonal projector

P:L2(Q) —» PYQ), P=]|1)(1] and (ic,vr,vr) € P*(Q)3, governed by
Volic) =P [t & h[lio(s)d
icl o -1 1| |Volic) olic) =P (8 & (a0 + b fyic(s)ds) ).
v =10 0 Hp(v) |, where IL(UL)_P<t'_> I <¢o+hfot’UL(8)d3) :

vR 1 0 0] Iz(vg) Ir(ve) =P (t > vr/R) .

We can show that [|Vo| = 45, [[IL]| = 4+, Lr = +, so that a sufficient

convergence condition is given by % max <£L g 2<1

h? h <1
max | ——, ——
2LC" RC
Nonlinear extensions of this example follow by replacing the linear conductance law Ip(-) of
the resistor by a nonlinear one where the Lipschitz constant becomes Lr = sup‘I }3‘

These convergence conditions are easy to obtain but unfortunately, they are not tight. As
soon as algebraic components are present in both tree and link branches, convergence conditions
are dominated by algebraic components (for which Lipschitz constant do not depend on the step
size h): it is not possible to adapt h anymore to obtain convergence. For example adding a serial
resistor Ry to the parallel RLC leads to the condition

h h 1
max(zc R2>' ax<2L R> -2 < 1.
Then, if Ry > h/2C, 1/R > h/2L and 2R3/R > 1, this condition does not guarantee the
convergence of the fixed-point (although for linear systems a solution always exists).

Remark 5.2 (Fixed point vs Newton). Clearly, we need a better alternative to the fixed-
point method. As noted by [Deull, p.289] (see also [Deu87]), for stiff and DAE systems,
the use of implicit discretization methods solves only one half of the problem, the choice
of iterative scheme is at least equally important. Proofs based on the Newton-Kantorovich
theorem rather than the Banach fixed-point theorem are more difficult but yield tighter
estimates (see [Deull, thm 6.3, p.297] and [HW96, thm 3.5, p.397]). Indeed, classical
existence and uniqueness theory (based on fixed-point iteration) is bounded by the Lipschitz
constant of the vector field whereas Newton iteration converges in one iteration for linear
systems and restores the full existence domain h € [0, 00) for A-stable and L-stable methods.

Index-1 DAE

In this section, we consider the index-1 DAE hypothesis (see (1.16) p.14 and remark 1.9 p.34).
In the semi-explicit pH-DAE formulation (1.52) p.34, the algebraic function

gw(w) =w — Jyz(w), (5.32)

is assumed to be invertible, where Jy, is a skew symmetric matrix and z a passive law (z(w)-w > 0)
so that existence and uniqueness of solutions follows from classical ODE theory (see thm 1.1 p.8).
Exploiting the particular structure of semi-explicit pH-DAE, we establish the following sufficient
conditions for the invertibility of gy in the following lemma



5.3. Analysis of RPM for pH-DAE 137

Lemma 5.1. If either of the following conditions is satisfied in equation (5.32)
Cl. Jw =0, or
C2. 2'(w) is symmetric positive definite (2'(w) = 2'(w)T = 0), or
C3. JwZz' satisfies conditions (C2) of lemma 5.3.
Then, gw is invertible and the associated pH-DAFE (1.52) p.3/ has differential index-1.

Proof. If condition (C1) is satisfied, then gy reduces to the identity function which is obviously
invertible. If condition (C2) is satisfied, denote Q = Q" = z'(w) = 0, and A = g, =1 - J, Q.
Invertiblity of gi, follows from lemma 5.2 below. If condition (C3) is satisfied then invertibility of
g4, follows from lemma 5.3 below with M = J,,2’. Then, the invertibility of function gy follows
from the invertibility of its Jacobian g, using the implicit function theorem. O

We note some common cases where the conditions of lemma 5.1 are satisfied:

e Condition (C1) is often naturally satisfied because of the circuit topology. Note that it is
possible to decouple instantaneous algebraic loops (forcing Jyw = 0) by adding (topologically
well chosen) parasitic capacitances and inductances in the network.

e Condition (C2) is satisfied when algebraic components are one-port elements (2’ is diagonal)
and each component is incrementally passive (i.e. monotonically increasing z’ > 0). In
particular this is the case for resistors and diodes.

The following lemmas are used in the proof of lemma 5.1.

Lemma 5.2. Let A =1 —JQ with J a real skew symmetric matriz and Q = Q" > 0 real
positive definite. Then A is invertible with positive determinant det A > 0.

Note that the form I — JQ also appears when solving projected pH-DAE using Newton iteration.

Proof. Since Q = Q" > 0, there exists a real invertible upper triangular matrix M with positive
diagonal such that Q = MM (Cholesky factorization). Denote Apy = MAM™! the similarity
transform of A (det A = det Apg) and Jpy = MIMT. The result follows from the relations

det A = det Apg = det(MM ™! = MIMTMM 1) = det(I — Jnp) > 0,

where the last inequality follows from skew-symmetry of Jng. O

Lemma 5.3. Let A =1—M with M a diagonalizable real square matrix whose real spectrum
is denoted by or(M) and complex spectrum oc(M). Then the following results holds

CL IfA<1, VYA€ op(M), and if A < 2L Y € 5o(M) then det A > 0,

C2. If \#1, VX € or(M) and if X\ # I'H;"Q, VA € oc(M), then A is invertible.

Proof. Let M = U'AU be the eigenvalue decomposition of M. Denote Ay = UAU ! =1 - A
the similarity transform of A. The determinant of A is given by the product of the eigenvalues

detA=detAy= [J[ @-Na-X J[ (-xn.
N————
Aeoc(A) ARETR(A)

If condition (C1) is satisfied then, the first term (1 —A)(1 —X) = 1 — 2Re(A) +|A|? and the second
term (1 — Ag) are positive so det A > 0. If condition (C2) is satisfied then, since both terms are
nonzero det A is non zero and A is invertible. O
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Newton iteration for pH-DAE with projection order p =1

We investigate the implementation of step ii) of RPM 5.2 p.123 using Newton iteration for
the simplest case (p = 1, k = 0). We look for ways to obtain practical existence/uniqueness
conditions. We consider autonomous pH-DAE discretized using the projector P = |1) (1| (Since
P is an averaging projector, we use the notation f := P f for all variables) with J skew-symmetric

: @ &(f) = /01 VH <x0 + h/OT f"ds) dr = VH (xo, hf) -

o 1
w z(w) zZ(w) :/O z(w)dr = z(w).

We look for a solution a* of the algebraic equation F'(a*) = 0, defined by the Newton function

f e(f
F(a):=a— Jb(a), where a:= , b(a) := e(t) . (5.34)
W Z(W)
To this end, we use the simplified Newton iteration
Aa® = —(F)"'F(a"), aftl = af + Aak, (5.35)

where the Jacobian of F evaluated at ag = (0, wyg) ® is denoted

b2 H (xo) 0

Fj:=F(a;) =1-1JQ, with Q=
0 z'(wo)

(5.36)

Existence and uniqueness conditions for simplified Newton iteration (i.e. when the Jacobian
F’(xy,) is approximated by F’(xq)) are given by the following theorem

Theorem 5.6 (Newton-Kantorovich theorem for simplified Newton iteration [Deull]). Let
F : D — R" be a continuously differentiable mapping with D C R™ open and convex. Let
xg € D denote a given starting point. Assume that

F'(xq) is invertible with T := F’(xq)~?, (5.37a)
|To(F'(x) — F'(x0)) || < wollx — xo|| for all x € D. (5.37b)
ho = WOHAXOH <1/2, with Ax® = —ToF(xq). (5.37¢)

Definet™ = 1—+/1 — 2hg, p =t~ Jwy. Moreover, assume that S(x p) = {x||x — xo|| < p} C
D. Then the simplified Newton iterates {xy} remain in the ball S(x p) and converge to some
x* with F(x*) = 0.

Towards existence and uniqueness (a sketch of proof) Our goal is to obtain simple
conditions on the projected pH-DAE (5.33) so that conditions (5.37a)-(5.37¢) are satisfied in
order to make Newton iteration convergent. We restrict the study to the frequent case where
nonlinearities are separable and monotone by assuming that

V2H and 2’ are diagonal positive definite. (5.38)

6. Assuming the consistent initial condition wo = Jwx VH (Xx0) + Jwz(Wo).
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Under these hypotheses, we show that (5.37a) is satisfied. However further work is required to
establish a proportionality relation between wy and the step size h in (5.37b) so that Newton
iteration (5.35) is contractive for sufficiently small h. A sketch of proof is reproduced thereafter.

Sketch of proof.

1. Since V2H and 2’ are positive definite. Then, according to lemma 5.2, F}} is invertible with
positive determinant det Fj > 0, so that (5.37a) is always satisfied.

2. Since V2H and 2’ are diagonal. Denote M = /Q in (5.36). Define a = Ma and introduce
the affine similarity transform G(a) = MUF(M~1a). For the transformed problem G(a) = 0,
we have the jacobian

b= Gp(ag) =T — Ty, where Jv = MIMT.
Denote Dx = y/V2H (xg) and Dy, = \/2/(Wy), so that

I-4D,JD] +ViDJLDL|  |[I-0(h) OWh)

Gl = =
" | -ViDwJwxDI I-D,J,DL ~O(Vh) 0Q1)

Using the determinant identity for block matrices
det [4B] = det(D)det (A - BD™'C),
it follows that
det Gy = det (I - DWJWDVTV) det (I - ngJxDI + hD,JT DY, (I . DWJWDVTV> - DWJWXD1>

— O(1)det (I + hA).

_ —1
with A = 1D, J, D] + D,J7, DT, (I - DWJWDVTV> Dy JwxDY.
Note that, for h sufficiently small, det(I + hA) ~ 1+ htr A + O(h?), so that
det G ~ O(1)(1 + htr A + O(h?)).

Unfortunately, this approach is not sufficient to make wy proportional to A in (5.37b). B
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5.4 Implementation choices

In order to make RPM(p, k) from methods 5.1, 5.2 p.122-123, a practical numerical method
(implemented on a computer with finite memory and computation time), we need to adress the
following three subproblems:

a) Numerical methods in step (ii) to compute projection coefficients (see (5.7) p.122) such as
fi = <¢Za f(X7u>> )

b) A numerical solver in step (ii) for implicit equations of the form (see (5.13) p.123) (for a
given u)

X = PF(X, ),
c) A procedure to compute multiderivatives in step (iii) (see (5.11) p.122) such as
BoX = Bf(X,u).

In this section, we detail problems (a) and (b). For problem (a), we propose both particular
efficient closed-form projections results in subsection 5.4.1 and general-purpose projections based
on numerical quadratures in subsection 5.4.2. Problem b) is addressed in subsection 5.4.3. For
problem (c) we use symbolic differentiation: the computation of multi-variate derivatives and
elementary differentials is detailed in appendix B.3 p.278.

Exact solution (1) = f(x(r))
2 \:
Projection space §X (1) = PF(X (7))
A 2

Coefficient space 5/)?@ = {f/o?(}l = (¢i, fo X)

Table 5.2 — (RPM) principle of the time discretisation approach.

Hypothesis For problem (a), in this thesis, input functions w are assumed to belong to a space
such that projection coefficients U; = (¢;, u) are exactly computable. Moreover f,g are most of
the time separable functions of X, u. By consequence, we only present computational methods to
find the projection coefficients f; = <q§i, f (:1:)>

5.4.1 Closed-form projection results for nonlinear maps of affine functions

Here, we give an explicit formula to compute polynomial projection coefficients (e.g. Legendre
expansions) of f ox when f is nonlinear and « is affine. We assume that f(x) is a separable
function” of z1,...,x, with known anti-derivatives so that we only need to consider the scalar

case ﬁ = <¢z‘7 f(x(r))>

7. generalisation to multivariate
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Typical usage for PHS concerns both differential and algebraic component laws of one-port
elements

o VH(x) = [H|(x1),...,H,(x,)]" for separable Hamiltonians H(x) = >, H;(z;),

e and z(w) = [z1(w;), ..., 2, (wy,)]" for separable nonlinear algebraic constraints

Theorem 5.7 (Polynomial expansion). Let Q = [0,1], let 2(7) = o + 76z € PL(Q), let
f:R— R be a function with anti-derivatives f'™ known up to order n and let {L,} be a
sequence of polynomials with deg L, = n and (Ly,,1) =0 for all n > 0. Then, the projection

coefficients of f ox noted { f ox}, and defined by

—

1
{foux}, = /0 Ln(7)f (%(7)) dr, n € N. (5.39)

have the following finite closed-form expressions using the (known) anti-derivatives of f

~ (D" :
kZO (0z)k+T [Lﬁlk)(s)f[kzﬂ} (x(s))}o . Sz 40,

{Foa}, =% (5.40)
f(z0) dr =0,n =0,
0 dx =0,n>0.
Proof. The proof is shown in appendix D.6. O

Some applications of this theorem are illustrated by the following two examples.

Example 5.2 (Average discrete gradient). Note that using f = VH and projecting on
Lo(1) = 1, the first coefficient of VH oz corresponds to the definition of the average discrete
gradient from the Average Vector Field (AVF) method [QMO08, CGM™12, COS14|. According

to theorem 5.7, its closed-form expression is
H(zo + dz) — H(xo)

{VHouz}, = /1 VH(z(r))dr = ox
0 VH (xg) ox = 0.

0270 . T H(zo,07) (5.41)

We note that the Average Discrete gradient has a regularisation effect shown on figure 5.6.
In numerical applications, it can reduce the Lipschitz constant. For example, when applied
to discontinuous functions, the averaged function is continuous everywhere except for dx = 0.
We proved in [MI18] that the derivative of the Average Discrete Gradient VH with respect
to the unknown variable dx has the closed form expression

VH(xg+ §z) — VH (g, 6x) 5z 40

9 o 5
—— VH(x,6x) = t 5.42
0oz (%0, 0) 1 02H (5.42)
This quantity plays the role of a “discrete Hessian” of H in the implementation of Newton
iteration. We proposed an extension of this result to semi-continuous functions in [MH20].
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Example 5.3 (AVF error estimation). Still using f = VH and projecting on the next
legendre polynomial L (s) = 2s — 1, after factorisation, we obtain in closed-form

2 H(z1) + H(zo)  HY(x1) — HY () 4o
(VHouz}, =4 11— 2 1 — LT (5.43)

0 1 = IgQ.

The first term is the trapezoidal average and the second one is the continuous average of
H oz (i.e. the Average Discrete Gradient of the antiderivative H!(z)). In other words,
projection on Lj is proportional to the difference between the trapezoidal and the continuous
average of H ox. This result can be used to obtain the first coefficient of the Average Vector
Field approximation error (projection order p = 0).

Anti-derivative anti-aliasing and spectral projection In the digital audio literature
[PZLB16, BEPV17, BEV17, MH17, Hol20, Alb20, Car20], there is a growing interest for anti-
derivative based anti-aliasing methods. They greatly improve the audible quality of audio
simulations for a small additional cost. We note that spectral projection on polynomials can
be interpreted as anti-aliasing since it truncates higher order spectral terms that cannot be
represented in the approximation basis. Finally, as shown by Theorem 5.7, partial integration on
the projection coeflicients automatically involves anti-derivatives of the function of interest. Inter-
esting connections between the Average Vector Field method and anti-derivative anti-aliasing have
been discussed by the author in [MH17, MH18, MH19, MH20| and a partial form of Theorem 5.7
is published in [MH20].

Application to memoryless nonlinearities Note that the results from examples 5.2 and
5.3 are directly applicable to the projection of memoryless nonlinearities by using f(w) = z(w)
(assuming dissipative potentials Z(w) are known, see 1.40 p.29). For pH-DAE this means that
projection of memoryless non-linearites ® are still computable in closed-form for projection order
p=1 (i.e. w € P!). This property has been exploited in [MH18, MH19, MH20].

8. We also note that a common situation in electronics is to have linear storage components (i.e. projections
are exactly computable in closed form for any order p > 0) and nonlinear memoryless nonlinearities.
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Ax
1 5 2

(a) VH(z) = tanh(Kz), K =20

(b) VH(z) =sinh(Kz), K =1

Figure 5.6 — Smoothing effect of the Average Discrete Gradient for VH (z) = tanh(Kz), (i.e.
H(z) = 4 Incosh(Kz) (top plot). When K — oo, it converges to the discontinuous sign function
(discontinuous at the origin). The greater dx, the higher the regularisation effect. For symmetry
reasons, the graph is drawn for the centered coordinates T = % = 9+ 0x/2, and dz. Note
that for hardening laws (bottom plot) VH (x) = sinh(Kx), the ADG has the opposite effect, it
increases the Lipschitz constant. To avoid this issue, we have shown in [MH20], using implicit
parametrisations, that we can avoid the stiffening behaviour and improve convergence.
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5.4.2 General purpose numerical quadratures

When higher order accuracy is seeked, for general functions, no exact integration formula can
be used. Numerical quadratures are required to estimate projection coefficients

P, = / bu(D)FX (7)) dr & Y wida () F(X (7).
0 i=1

where abscissae 71,...,7r and weights wi,...,w are chosen such that the integral is exact
when the integrand belongs to a given functional subspace (typically polynomial or trigonometric
functions). The mathematical literature on numerical quadrature formulas is huge. We forward the
reader to the survey in reference [Gau81]. In this thesis we focus on Gauss-Legendre quadrature
rules (see also [CMM™09, Hail0, BFCI14, CH17]).

Theorem 5.8 (Gauss-Legendre quadrature [SB13]). Let {r}._, be the roots of the n-

th shifted orthonormal Legendre polynomial Pn(T) and let {wy};_, be the solution of the
(nonsingular) system of equations

n . o
1, if53=0,
> Pi(ri)w; = f‘y (5.44)
— 0, ifj=1,...,n—1.

Then w; >0, fori=1,...,n and fol p(r)dr =Y 1_ wif () holds Vp € P?"~1([0,1]).

Many proofs of this theorem exists. In this PhD, a proof highlighting the role of the reproducing
kernel with explicit formulas for the weights wy, is detailed in appendix D.8 p.300.

Exact projection results for polynomial nonlinearities From a practical point of view,
if f is polynomial ¥ with degree d s and X is also polynomial 10 with degree dx, then f o X is
polynomial with degree d = dg - dx. In other words, the “polynomial spectrum” of f o X is band-
limited (in the Legendre basis). By consequence, if a quadrature rule is exact for polynomials of
degree d, its use in methods RPM to compute projections, makes energy and passivity preservation
guaranteed (see [CH17]).

Approximation up to machine accuracy for nonlinearities with infinite spectrum In
many interesting cases, foX has an infinite spectrum in the chosen basis ' A naive implementation
would require an infinite number of evaluation points. Fortunately, the situation is not desperate:
if f and X are sufficiently smooth, the spectrum of f o X has a fast decay rate ([WX12]) so that,
exact integration (up to machine accuracy) can be reached with a finite number of evaluation
points. This approach has been studied in [BFCI14] where machine accuracy is reached with few
evaluation points. If however f is not smooth, then low projection orders and smaller time-steps
should be used together with Theorem 5.7. Indeed, in this case, the fast convergence property of
spectral methods is lost and the additional quality of higher orders methods is no longer worth the
increase in numerical computation cost (cf [Boy01]). The Legendre spectrum and the convergence
of Gauss-Legendre quadrature are illustrated on figure 5.7 for the cases of C* and C° functions.

9. Example: the Duffing and Van der Pol oscillators are cubic, the Lotka-Volterra equations are quadratic.
10. The spectrum of f o X is also finite when X is trigonometric and f is polynomial.
11. For example f € {sin, cos, sinh, cosh, exp, min, max, ...}.
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(Fo x)(t) Approximation Error Legendre spectrum
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(a) C* case: f(z) =exp(azx)—1
(Fo x)(t) Approximation Error Legendre spectrum
3.0 100 10°
2.5
1073 1073 -
50 "“NE
1076 1076 - B
1.5 - — a=2
1.04 107° - 107° T
0.5 10712 4 10712 4 ""l“
O.O-I T T 10_15 T ML AL | ML A | 10_15 T ML LR | ML LR |
0.0 0.5 1.0 1 10 100 1 10 100
t quadrature order n Order Py

(b) C° case: f(z) = max(az,0)

Figure 5.7 — (Convergence of Gauss-Legendre quadrature). The graph (left), quadrature approx-

imation error (middle) and Legendre spectrum {f oz}, (right) are plotted for the composition
of functions (f o x)(t) where x(t) = xo + t(x1 — x0), o = —1,21 = 1 is an affine trajectory
and for two nonlinearities: (top) A C* function f(z) = exp(azx) — 1 (like a diode law) and
(bottom) a piecewise linear C° ReLU function f(z) = max(ax,0) (used in opamp clipping) both
for parameters a = 1,2,3. We can clearly see that for C* functions (top), both the approximation
error and the (Legendre) spectrum decay very fast. The error reaches the machine epsilon
after a finite number of quadrature nodes. By contrast, for C° functions (bottom), both the
approximation error and the Legendre spectrum decay much more slowly: the quadrature order
and the number of Legendre coefficients have been increased to 100 but the quadrature error
remains significant (about 10~%) which is more than 10 orders of magnitude above the machine
epsilon. The spectrum is shown in log-log scale to emphasize its slow linear decay (due to the
discontinuity of the first derivative).
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5.4.3 Representations, fixed-point and Newton iterations

Choice of representation Until now, to design RPM, we have worked with abstract functional
spaces and projections, but the choice of functional space and its representation has remained open.
To actually implement the method on a computer, we need finite-dimensional representations of
functions for each time step (finite rate of innovation).

Questions To this end, several questions must be addressed, in particular:

e Should we use trajectories X (7) or their derivative 0 X (7) as primary representation? (i.e.
should we use the state space or the space of flows and efforts as primary space?)

e Should we use use nodal representations (as in FEM and Runge-Kutta methods) or spectral
representations (as in modal and spectral elements methods)? See [Boy01].

e [s it easier to work with orthogonal (as in spectral methods) or non-orthogonal (as in FEM)
representations of functions? For which computational cost and numerical conditioning 7

Choices In this chapter, we make the following choices:

A. We use the projected flows f and efforts e (in L?) as the approximated objects, rather than
the state X. Indeed, since we are not only interested in solving autonomous ODEs, but
on manipulating PHS (with ports), it is more natural and consistent to have a common
representation for all components '?. The state x(t) = z(to) + ftl; f(s)ds is treated as an
internal construct of energy-storing components (treated as a hidden variable).

B. We use (spectral) orthogonal basis coefficients. Indeed, this is a natural fit for a projection
method, furthermore they have optimal conditioning, require less computations '* and their
coefficients decay quickly for smooth functions (see fig. 5.7a).

Choice (A) is different from the standard formulation of CSRK methods (i.e. we emphasize the
role of the reproducing kernel kp (7, o) rather than the integrated kernel A(r,o)). More precisely
(for an autonomous PHS) we solve the equation

T p—1 .
0X(r)=PJ-R)VH <xo + h/ X (s) ds) , where 0X (1) = Z ok (7)0 Xk,
0 k=0
for the coefficients (5/)\(;.C (the true unknowns in the projection space) rather than
T p—1 T
X (1) =%+ h/ P [(J —R)VH (X)] (s)ds, X(7)=x0+ Z </ or(s) ds) Xpa1-
0 k=0 /0

with respect to coefficients )A(k (where the initial condition xg is given by the problem). Note that
our choice is closely related to the W-transformation of Runge-Kutta methods [BGO08, p.267].

Fixed-point and Newton iteration For pH-ODE, we have seen (theorem 5.2 p.127) that the
fixed-point iteration is contracting for hl < 5 where L is the Lipschitz constant of the vector field.
However the existence domain of solutions can be larger than predicted by Lipschitz conditions '*
and the fixed-point convergence is often too slow. For these reasons it is often advantageous to
use (simplified) Newton iteration and we know that if the fixed-point converges, then Newton
converges too. Newton iteration for pH-DAE is also discussed in subsection 5.3.2 p.138.

12. energy storing: f = &, e = VH(x), memoryless: f = w, e = z(w), ports: f =y, e = u.

13. For example, the operational matrix of the Volterra integration operator is tri-diagonal and almost skew-
symmetric in the Legendre Basis (see appendix C.4 p.286).

14. For example & = Az has solution exp(\t)zo independently of the stiffness of its Lipschitz constant L = |}|
and Newton iteration converges in one iteration for linear problems.
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5.5 Examples

5.5.1 Nonlinear Conservative LC

We consider a nonlinear LC oscillator described by the schematics (left), Dirac structure
(middle) and its Hamiltonian formulation (right)

= <~ =
L, 1 0| | ) 1 0| |VHL(9)

I ic 0 —1| |ve q 0 —1| |VHc(q)
UCT vL

The flows are i¢c = ¢, vy, = qz'S, the effort laws and associated Hamiltonian are given by

_ _ 4 s
volg) = VHe(q) = &, Helg) = 571
i(¢) = VHL(¢) = Is tanh <£S> , Hy(¢) = LI Incosh (ﬁq) :

where Is denote the saturation current of the inductor '°. For simplicity, we take L = C' = w™!
and Is = 1 such that for small values '° of ¢ the oscillator has pulsation w = 1/v/LC rads™*.

e Step i) We use the orthonormal Legendre basis [P,(T)]f:_ol and use as unknowns the vector
of Legendre coefficients

— —

. \qp-1 -1
oq = [(Pi]ic)]i - 00 = [(Pi|vn)]iy
e Step ii) for any scalar function H(z), we define its (Legendre) projected gradient by

p—1

rp-l
VH(zg; %) := <H VH | xg+ h/ ZP]-(U)(SXJ- do > ) (5.45)
0 . —
=0
Substituting functions of time by their projection coefficients (computed according to the

results of sections 5.4.1 5.4.2), we obtain an algebraic system of dimension 2p (projected
Hamitonian system) which is solved using Newton iteration.

da| _ |0 ~I,| | VHc(q;0a) (5.46)
5d I, O | |VHp(po;0®)| '

e Step iii) For a € {0, 1} we evaluate the boundary conditions (according to B.3 p.278)

Ba(q) = ~VHi (), Bi(g) = ~V*H1(¢a) VHc (o), etc

Ba(¢) = VHc(qa), B (¢) = =V*Hc(4a) VHL(¢a), etc
This regularisation process yields piecewise C* solutions ¢(t), ¢(t) thanks to the boundary
functions {¢/7'(7)} defined in proposition 5.4 p.129.

Simulation results for different values of order p and regularity k are shown in figures 5.8-5.13.

15. In this example, we neglect hysteresis and use a generic tanh nonlinearity rather than a realistic one. We have
supervised a work on a detailed inductor model for PHS (based on statistical physics) which includes hysteresis.
This work, which is out of the scope of this thesis, has been published in [NMHR20].

16. For small values of ¢, we have VHL(¢) = ¢/L + O(¢®) so that the circuit reduces to a harmonic oscillator.
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Figure 5.8 — (Nonlinear LC) Orbits for projection order p = 1,2, 3, and regularity order k£ = 0, 1,
for a Nyquist pulsation w = 7 (the actual pulsation is slower because of nonlinearities) and initial
conditions (qo, ¢o) = (0,2). Plots are shown both in the phase space (¢, q) (first row), and in the
flow /effort space (ir,vc) (second row).
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Orbits and trajectories Orbits in the (¢, q) and (i1, vc) planes are shown on figure 5.8 and
time trajectories are shown on figure 5.9. A pulsation close to the Nyquist frequency has been
chosen in order to be able to show visual differences between different values of projection and
regularity order p, k. On figure 5.8d (p = 1, k = 1), since the accuracy is only O(h?) and we are
close to the Nyquist frequency, we remark that the magnitude of derivatives is overestimated
(overshoot). Despite this, orbits are much closer to the true manifold for regularity & = 1 (fig.
5.8d) than for £ = 0 (fig. 5.8a). As the projection order p increases, orbits converge quickly to the
true manifold but the derivatives remains discontinuous at the junctions. Increasing the regularity
k improves the situation (the accuracy is now high enough to avoid derivative overestimation).

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
normalized time normalized time normalized time

(a) regularity order k =0

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
normalized time normalized time normalized time

(b) regularity order k =1

Figure 5.9 — (Nonlinear LC) Trajectories for projection order p = 1,2,3, regularity order
k = 0,1, pulsation w = 7 and initial conditions (qo, ¢o) = (0,2). Oversampled trajectories by a
factor of 20 are shown with dashed lines. Dots correspond to the boundaries of time frames.

Frequency warping and dispersion To emphasize the effect of projection order on frequency
warping, it is shown on figure 5.10 that the frequency warping (dispersion) error diminishes
greatly as p increases. In just two steps, the full circle is accurately reproduced. For (p =1,k = 1)
(fig. 5.10d), we see that the accuracy is not high enough to simulate a pole at the Nyquist
frequency: the magnitude of the vector field is over-estimated. Nevertheless, even in this extreme
situation, the smooth solution (k = 1, fig. 5.10d) is still better than the affine approximation
(k =0, fig. 5.10a). For p = 3, the warping error becomes negligible. The effect of projection
order on frequency and dissipation warping is further detailed in the appendix on figures D.2, D.3
p.298. A general formula to obtain the corresponding (A-stable) stability functions is proposed in
section D.7 p.297.
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Figure 5.10 — (Linear LC) Orbits for projection order p = 1,2,3, regularity order k = 0,1,
pulsation w = 7 (Nyquist frequency) and initial conditions (go, ¢0) = (0,0.1). Frequency warping
can be observed by looking at blue dots (that should theoretically be aligned at angles 0 and 7).

Aliasing To inspect aliasing, several oscillation cycles of vo(t) are simulated and examined
in the Fourier domain (see figure 5.11). To exploit continuous-time trajectories, signals are
(over)sampled over each time-step by a factor of 20, weighted by a Dolph—Chebyshev window
(sidelobes rejection > 100 dB), and a Fast Fourrier Transform is performed. For reference, the
Nyquist frequency of the time-stepping simulation scheme is shown in solid black and multiples
of the sampling frequency are shown in dashed black lines.

We remark that, above the Nyquist frequency, the spectral content approaches the expected
harmonic structure more and more closely, as the projection order p increases: this is due to the
increasing bandwidth (w.r.t. p) in the sense of generalised sampling theory (see section 3.1 p.83).
Accordingly, the aliasing decreases in the audio frequency range: the signal to (aliasing) noise
ratio is above 100 dB for p = 3 in the frequency band below 20 kHz.

For k = 0, because of discontinuities, the high frequency spectrum has a slow spectral decay,
but the magnitude of discontinuities diminishes when increasing accuracy. As expected, increasing
the Sobolev regularity k exhibits a faster spectral decay. We remark that the signal to noise ratio
and aliasing rejection are also improved in the frequency range around the Nyquist frequency,
including in the frequency band below the Nyquist frequency.

However, as we have already warned before (see fig. 5.8), we experiment that, increasing the
regularity k£ should be used with care (in regions where accuracy is high enough). Otherwise
unwanted local frequency modulation can occur and create sub-harmonics in the pass-band.

A perspective that is left for further work would be to use backward error analysis theory
[HLWO06] to evaluate (multi-)derivatives of the modified vector field that are consistent with the
frequency warping induced by projection operators.
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Figure 5.11 — (Nonlinear LC) Spectrum and aliasing of v¢(t) according to projection order p
and smoothness k. Note that state trajectories are C* in the time domain. Spectral peaks are
shown instead of the full spectrum to improve the visual contrast between signal harmonics and
aliased partials.
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Local and long-term energy error The local energy behaviour for w = 7/4 is shown in
figure 5.12. We remark as expected that the relative energy error

H(q(7), (7)) — H(qo, $0)
H (qo, ¢0) ’

vanishes on the time-stepping grid. Furthermore, its maximal also diminishes by an order of
magnitude as the projection order p is increased. Finally, increasing the regularity order k also
diminishes the local energy error (note the similarity with Peano kernels from figure 5.5 p.134).
On figure 5.13, we show that energy conservation is satisfied on the time-stepping grid 7 € N up
to machine epsilon accuracy in double precision arithmetic.

ex(T) =

Relative energy error &y Relative energy error &4
0.00 ~ A \7
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Figure 5.12 — (Nonlinear LC) Continuous-time energy error ey (7) for 7 € R according to
projection order p and regularity order k for w = 7/2 and (q, ¢) = (0,1).

le-16 Relative Energy error |ey(T)|

0 20 40 60 80
normalized time T

Figure 5.13 — (Nonlinear LC) Energy conservation on steps boundaries 7 € N for w = 7/10 and
(¢,¢) = (0,1). Horizontal lines correspond to multiples of the machine epsilon.



5.5. Examples

153
5.5.2 Diode Clipper

We consider the diode clipper circuit and its semi-explicit PHS representation

_UR_ [ —1 1_ [ ir(vR) ]
Up 1 0 iD(UD)
¢ A P A ve(@Q" (i)
?C iD 19 -1 0 Vg
j; L™ L J L J

where ig(vr) = vr/R, ip(vp) = 2Igsinh(vp/Vr), vo(q) = ¢/C, and vg is a given input function
For the purpose of simulation, with ic = ¢, we can reduce it to the ODE

q . q Vg b . T
G=——=—ip| = |+ —, q=Q (ZCZQ):Qo+h/ ic(s)ds.
RC <C> R © 0
i) Let 6q := [(Py ]ic)]z;l), Vs = [(Py ]v@]ilé be the Legendre coefficients of ic(7), vg (7).

ii) Let P = I(,—1)xp be the matrix representation of the projector and define the projected
charge and diode current operators

=1 P
(7 . : T q0
Qu <1> = <Pz qo + h/o ;PJ(S)IJ d3> 0

+ hVi,
1=0

p—1
P
<Pz' in [ > Pi(r)¥ >
=0 i
1=

where V is the p X (p — 1) operational matrix of the Volterra integration operator ¥V = fOT.
The projected ODE becomes the algebraic fixed point on 5?1

0q = —PJ?C —1Ip (g) + ‘;S =G (5_(;1) , where q = QZO (5?1) .

We define the Newton function F' <5?1) = 5_{:1 -G (521) and use the simplified Newton
iteration to solve F' (5?1*> = 0 given by

ID(\_;) N

-

0Qty41 = 0qy + Adqy, A&p——@ml(&m—GQﬁa), dqg == 0.

Its Jacobian is tridiagonal positive definite (easy to invert) and equal to

. h dip (qo
th = L (14 REL2 (D)),
wi o RC’( +R(%D <C>>

iii) For regulariy k& > 0, we evaluate the boundary conditions at 7 = « € {0,1}

Blic) = (vste) - %) o (%),

i a (i 2 B
B, (ic) :% (bs(a) - BQ(CC)> _ i (qC> B, (ic)

o etc

F,=1+aPV =0,

The regularized current 70(7) is synthesized using the boundary functions {wg”(f)} defined
in proposition 5.4 p.129. The voltage v¢(7) is then obtained from ic(7) by integration.
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Simulation results Simulation results for a ramp/step input and for different values of projec-
tion order p and regularity k are shown on figure 5.14. As expected we can observe diode clipping
of the voltage about 0.7 V. Simulations differ mostly on how they behave when switching from
the linear regime to the stiff clipping mode. For p = 0, we observe well-known Nyquist oscillations
artefacts about the exact solution. These are due to the frequency warping of the method (stiff
real poles are warped towards imaginary poles at the Nyquist frequency, see fig. D.2 p.298).
Increasing the projection order p, we observe a significant reduction of this phenomenon thanks to
higher order accuracy and bandwidth. Increasing the regularity order k& yields smoother solutions,
but for stiff poles (as we already noticed in fig. 5.10), we observe that additional smoothness
also yields an amplification of artefacts. Increasing jointly p and k reduces both the amplitude of
oscillations and their frequency. However small oscillations are still observable for p = 2, k = 2.
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Figure 5.14 — (Diode clipper) Simulation for projection order p = 1,2, 3, and regularity order
k=0,1,2 with R =1 kQ, C' = 20 nF such that the diode clipper cutoff f. = 50 kHz is set above
the sampling frequency fs = 44.1 kHz. We use Ig = 1 fA and Vp = 26 mV. The case (k = 2,p = 1)
is not shown because the accuracy order is not high enough to use second derivatives.

Sine sweep spectrograms and aliasing Spectrogram responses of the diode clipper to a
sinusoidal sweep are also displayed on in 5.15 in linear scale and in figure 5.16 in log scale. The
linear frequency scale is makes the visualisation easier to exhibit the generalized bandwidth and
aliasing reduction of higher-order projection. The logarithmic frequency scale is closer to the
human hearing resolution, the residual aliasing below 20kHz is easier to visualize with this scale.
We see that with increasing order p = 3 the audible aliasing becomes barely noticeable, it only
happens for input sinusoids above 5 kHz, and folded harmonics level stays below about 70/80dB.
In comparison for low order p = 1, aliasing starts for sinusoids below 1kHz and its level is above

—60dB.
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Figure 5.15 — (Diode clipper) Sinesweep spectrograms for p = 1,2,3, k = 0 with R = 1 kQ,
C = 20 nF such that the diode clipper cutoff is f. = 20 kHz for a fixed sampling frequency
fs = 48 kHz. We use Ig = 1 fA and Vp = 26 mV and an input gain g = 1.5. The spectrum
above the Nyquist frequency (24 kHz) is delimited by a dashed blacked line. The generalized
bandwidth f, = pfs/2 is shown in dotted black. The non-bandlimited modelling power (and

aliasing rejection) of high order projection clearly becomes more efficient as the projection order
is increased.
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Figure 5.16 — (Diode clipper) Sinesweep spectrograms in logarithmic frequency scale (same
simulation) to be compared with figure 5.15.
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Discussion and perspectives for stiff dissipative systems

We reconsider the power balance functional p from chapter 4 in the case of an autonomous
pH-ODE. In this chapter, using a self-adjoint scalar projector P, we have by commmutation of
(P,J — R), self-adjointness of P and skew-symmetry of matrix J

p(X) = (VH(X)| £(X) - X) = (VH(X) | (I = R)(T - P)VH(X)) = (T - P)VH(X)],.

This means that, after projection, conservative systems, are still unconditionally conservative
and dissipative systems are still unconditionally dissipative. For conservative systems, the energy
preservation is exact (since R = 0). But for dissipative systems, comparing the functional
projection approach in this chapter with the adaptive collocation strategy from chapter 4 p.107,
the price to pay for unconditional passivity (and linear parametrization of the problem using
projection coefficients) is an error on the dissipation rate which is in O (H(I - P)VH(X )H2R>
A perspective, for stiff dissipative systems (see oscillations in figure 5.14), is to combine the
unconditional energy dissipation of RPM (see also [HI.14]) with damping for infinitely damped
poles (as in L-stable methods such as Radau ITa [HLWO06]) while optimising the decay rate. A
path towards this goal would be to combine a) the continuous-time functional projection in this

chapter, b) the exact preservation (or minimisation) of the power-balance functional p(X) =0
introduced in (S)PAC methods.
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Conclusion

In this chapter, we have demonstrated that representing flows and and efforts as functions
of time in the Hilbert space L? (used as a pivot space) coupled with respectively skew-adjoint
and self-adjoint approximations of PH structure matrices J and R (using projectors) is a key
ingredient to yield energy-preserving and passivity-preserving methods for both pH-ODEs and
pH-DAEs. Coupling this result with supplementary boundary conditions, we have proposed a
class of methods called RPM(p, k) that satisfy properties P1, P2, P3 (power-balance, accuracy,
regularity) and whose principle is applicable to both pH-ODEs and pH-DAEs. A detailed analysis
of RPM for ODE has been proposed where accuracy order, existence and uniqueness, local
accuracy, Peano error kernels, etc have been studied. Works remains to be done in the case of
DAE. First results show that the PH structure and its tree/cotree partitioning can be exploited
advantageously. In particular, we were able to show that the Jacobian in Newton iteration is
always invertible for convex Hamiltonians and incrementally passive dissipative component laws.
The main advantages and drawbacks of the approach are listed below.

Advantages

e Unconditional energy preservation and passivity,

Representation is linear in the parameters,

Spectral projection converges exponentially fast for smooth functions,

The method can be interpretated using the framework of CSRK methods,

Order conditions directly stems from to the polynomial reproduction property of projectors,

e Orthonormal basis have optimal numerical conditioning and require less computations.

Drawbacks

e Projections integrals need to be computed exactly to have energy conservation,
e High orders require quadrature approximations (up to machine accuracy),

e Inexact dissipation rate and lack of damping for infinitely stiff systems.
e Regularity is a post-regularisation step rather than a built-in feature!”: the increased
regularity and local accuracy of projector Q does not improve the time-stepping accuracy.

Remark 5.3 (Discrete PHS). Comparing with the discrete PHS definition proposed in
[KL19], which is based on symplectic integration (such as Gauss-Legendre schemes), a main
difference is that the functional projection approach in this chapter preserves the exact
Hamiltonian (and passivity) while symplectic integrators preserve the symplectic structure
(and possess a perturbed Hamiltonian).

17. The main reason is that orthogonal projection in H* is not orthogonal in L2. Since the power-balance is
intimately linked to the L? inner product, we cannot choose a different inner product even if we look for regular
solutions in H*. However we can interpret L? solutions as weak solutions and H* solutions as stronger solutions
where the regularisation step is compatible with L? projection.
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In the previous chapter, we have used functional orthogonal projection. It minimises the
L?-norm of the residual error between the exact and the projected vector field and preserves the
power balance. In this chapter, we combine vector field projection with exponential integrators
to obtain energy-preserving exponential integrators. A salient feature of exponential integrators

is that they exactly integrates the (local) linear dynamics

1

e In section 6.1 we motivate the choice of exponential integrators by showing that they
naturally arise as optimal pre-conditioners in functional Newton iteration when minimizing
the L?-norm of the vector field residual error.

e In section 6.2, we propose an extended definition of the AVF discrete gradient and show how
to combine it with exponential integrators to yield an energy (resp. dissipation) preserving
numerical scheme.

e In section 6.3, we generalise this approach to power-balanced integrators with arbitrary
high projection orders and basis functions.

1. This is

a way to increase accuracy and to manage stiffness of the equations.

159
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6.1 From functional Newton iteration to exponential integrators

In this section, instead of pre-specifying a finite-dimensional approximation space, we seek
a solution of the ODE using infinite-dimensional Newton iteration in functional space. As a
byproduct, exponential integrators naturally arise as pre-conditioners for Newton iteration 2.
Consider an autonomous ODE over a time interval 2, governed by

&(t) = f(x(t), x(0)=x0€R",

with f : R®™ — R™. We define the diffential operator D := %, and the residual vector field
operator E : X := H'(Q,R") — L?(2,R") by

E(x) := Dz — f(x). (6.1)

For an initial trajectory function £° € X, we propose to formally solve the following minimisation
problem using functional Newton iteration

. 2
x* = argmin P(x) = %HE(J;)HL2 ,
zeX (6.2)
s.t. x(0) = xo.

Newton iteration consists in locally approximating the functional ® about each functional iterate
x* by a conver positive definite quadratic functional ® (detailed below) and solving the associated
sequence of least-square problems. The Newton-Kantorovich theorem guarantees convergence
with quadratic speed when the initial estimate is in the bassin of attraction of the solution (not
detailed here). Using Frechet derivatives (see definition C.8 p.282), an extrema of the functional
® corresponds to a zero of its first-order derivative

' (z)(u) = (Ey(u), E(x)) =0, (6.3)
where by definition of the Frechet derivative, E’, is the linear operator at @ acting on w given by
E. (u) = (D— Ay)u, where A, = f(z). (6.4)

To have a local minimum at each iteration, it is sufficient that the Hessian approximation
®"” ~ ®" = 0 be a positive define bilinear form. For that purpose, we use the following convez
positive semi-definite approzimation® of the second Fréchet derivative

3" (z)(u,v) = (El(u), EL(v)) > 0. (6.5)

Note that, P (z) being a positive bilinear form, it defines, for each function x, a Sobolev inner
product

<u7,U>E’m = <E,w(u)7E£c(U)>L2 . (66)
where the local metric is given by the linear self-adjoint differential operator

W = (E,)"(E;) = (D — Ag)"(D — Ag). (6.7)

2. Note that our goal is to guide the choice of optimal approximation space, not to actually implement Newton
iteration in infinite-dimensional space. To focus on the idea, and not on functional details, the adjoint and inverse
operators below are formal. Technically here, we assume that f is locally Lipschitz and that fixed-point Picard
iteration converges to a unique solution, so that Newton iteration is only considered as a convergence acceleration
tool. A similar derivation is available in [LC12].

3. Note that ®"(z)(u,v) = (Ey(u), E,(v)) + (Ej(u,v), E(xz)). We (classically) neglect the second term
which is assumed to be small compared to the first term in a neighbourhood sufficiently close to a minimum.
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An exponential integrator in disguise Starting from an initial functional estimate 2 € X,
the approximate Newton step is formally given for all £ > 0 by

Aat ! = [ () T ol (). (6.8)

combined with a line-search iteration z**! = 2% + aAz*, a € [0,1]. Note that if E, is invertible,
we can simplify the pseudo-inverse in the Newton step as follows:

Ax = — [5//(%)]_1 (I)’(a;) = — [(E;)*(E;)] -1 (Em)*E(w) _ _(E:/B)—lE(x) (6.9)

where from (6.4), the inverse operator (E.)~! is nothing but an exponential integrator

1 t
(B ] (0= [ e ( | A dg) Ot — s)u(s) ds. (6.10)
0 s
It plays the role of a preconditioner applied to the residual E(x).
Remark 6.1. The role of a Newton preconditioner is to enhance convergence and condi-
tioning [Deull] but it does not change the solution (of the fixed-point Picard iteration).

Furthermore, since the exact operator can be difficult to approximate, we may instead use
the following tractable approximation (simplified Newton iteration)

1
[(E;)*lu} () ~ /0 exp (Ao(t — s)) O(t — s)u(s)ds, where Ag= f'(x0). (6.11)

Functional Newton iteration automatically generates an exponential integrator (D — Agz)~! to
precondition the residual E(x).

Sobolev Gradients Using the theory of Sobolev gradients [Neu09] and the Riesz representation
theorem (see C.1), there exists respectively L? and Sobolev gradients V® and Vg® such that the
Fréchet derivative can be represented either using the L? or the Sobolev inner product as

' (x)(u) = (VO(x),u),, = <V5<I>(a:),u>Eéc : (6.12)
where from (6.3) and (6.9) we find that
Vo(z) = (E)"E(z), Vs®(z) = (E,) " E(). (6.13)
Likewise there exists L? and Sobolev Hessians V2® and V?gi) such that V%é is the identity.

" (x)(u,v) = <u ‘ V20 (x) "v>L2 = (u,v)p .

/
xT

Indeed, from (6.5), using the formal adjoint (E.)*, we find that V2® = (E.)*E., (see (6.7)), and
we can express the Fréchet derivatives as

(@) (u,v) = (u,v)p, = (Ely(u), B4(v)) = (u| () E} | v) = <u ( V20(z) ’v> .

According to (6.9) and (6.13) we may conclude that
‘ Functional Newton iteration is equivalent to steepest gradient descent in Sobolev space. ‘
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6.2 Exponential Average Vector Field method

6.2.1 Notations and preliminary definitions

Let (u,v) := u'v, and |jul| := /(u,u) denote the euclidean inner product and norm in

R”. For an invertible symmetric positive definite matrix R?*" 5 Q = Q' > 0, we define the
associated inner product and norm by (u,v)q = u'Qv, and [ullq = (u, u)lQ/2.

Definition 6.1. Let H : R® — R be a differentiable function on R™. Using the Riesz
representation theorem, we define the euclidean gradient VH and the Q-gradient VqH as
the unique elements satisfying

H'(x)() = (- VH(X))g, = (- VoH(x))q, ¥x€R". (6.14)

where H'(x)(-) denotes the Frechet derivative of H at x. It follows that VqQH () = Q" 'VH(-).

Lemma 6.1. Let A = (J — R)Q with R™*"™ matrices J = —JT, R =RT = 0 and Q =
QT = 0. Then the semigroup e is norm-preserving (resp. mon expansive) in the Q-norm,
i.e. it satisfies for allu € R™, for allt >0

HetAuHQ =|ullq i R=0, otherwise HetAuHQ <lullq ¥ R=0. (6.15)

Proof. For a pH-ODE & = (J — R)Qz, x(0) = x¢, the Hamiltonian H(x) = %Hx”é is preserved
=e

(resp. dissipated) along the solution x(t) = e*Axq (see equation (1.49) p.33). O

Definition 6.2. Let Q = (0, 1), We define the orthogonal averaging projector P : L?(Q, R") —
L%(Q,R"), and the associated Sobolev projector Ps : H (£, R") — H(Q,R") by

1 T
(Pu)(r) = / o) A (Psu)(r) == u(0) + / (P4)(0) do (6.16)
0 0
In particular, they satisfy the commutation identity %(Psu) = P(%u) = u — ug.

Using these operators we give an extended functional definition of the average discrete gradient

Thm-definition 6.1 (Generalized Average Discrete (Q)-Gradient). Let V € C'(R™,R). For
all z € H'(,R"), we define the generalized average discrete gradient (GADG)

VV(x) := (PoVV oPs)(x). (6.17)

and the discrete Q-gradient gQV(m) = Q_lgV x) satisfying the discrete gradient identity

(
Viz) — V(zo) = <€V(m),m1 - a:0> - <€QV(m),m1 - a:0>Q. (6.18)

Rn

a b . c IS
Proof. V(a1)—V (o) % <VV(7?5ac) di(Psm)>L2 L (VV(Psz)|Pi),, < <VV(m),a:1 - :c0>Rn
using (a) the gradient theorem, (b) < (Psz) = P(La), (c) P> =P =P* and P& = &1 —xp. O
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6.2.2 Energy preserving (resp. dissipating) Exponential AVF

We consider (for each time frame) the semi-linear splitting of an autonomous pH-ODE
z=(J-R)(Qx+ VV(x)), x(ty) = X0, (6.19)

with matrices J = —JT, R=R" = 0, and Q = Q" = 0. The Hamiltonian is decomposed as
1
H(x) = §IIXH?Q + V(x). (6.20)

A typical choice for H € C? is to use the Hessian Q = V2H(X) about an expansion point X and
define the potential V' as the difference V(x) = H(x) — %Hx”é

Introducing the linear operator £ = % — A, with matrix A = h(J — R)Q, we rewrite (6.19)
as the normalized-time initial value problem.

Lx=AVqV(x), 7€(0,1) x(0) = xo, (6.21)

where VqV = Q" 'VV denotes the Q-gradient * of V and t = to + hr, for 7 € [0, 1].

Theorem 6.1. If X (1) is the solution of the projected Initial Value Problem (6.21) using
the generalized average discrete gradient (6.17)

LX = AVqQV(X), X (0) := xo. (6.22)
Then the time stepping ® : xg — x1 = X (1) is energy (resp. passivity) preserving i.e.

H(x1)— H(xg) =0 i R=0 otherwise <0 if R=0. (6.23)

Figure 6.1 — (Exponential AVF) Schematic description of the method. The linear part & = Qa
of the ODE is exactly integrated by the exponential integrator. The nonlinear part VV (X)) =
PVV (PsgX) is averaged along the trajectory PsX where by construction X and PgX share
the same endpoints on the manifold M = {x € R" | H(x) = H(x¢)} and thus the same average
slope.

4. The reason for using the Q-gradient and the Q-norm will become apparent in the proof of theorem 6.1.
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Proof. We prove the result in three steps:
i) Using the Green kernel e(7=7A0(7 — o) of operator £, we have the trajectory
X (1) = e™x0 + / eTIAA AoV QV (X) = e™x0 + (eTA — I) VaoV(X).
0

ii) It follows after evaluating x; = X (1) and factorisation that we have the identities

X] — Xo = (eA - I) (xo —|—§QV(X)> , (6.24a)

VoH(X) =2 ‘; X0 L VoV(X) = (eA + 1) (xo + %V(X)) % (6.24b)

iii) Energy-conservation (resp. dissipation) follows from the sequence of relations
H(x1) = H(xo) £ (VH(X),x - x0>Q

25 (A1) (o Far ). (4 1) (0 + Fav ) )

2 Q
c 1 A = 2 1 = 2
=35 e (Xo + VQV(X)) g - §HX0 + VQV(X)HQ (6.24(2)
d
L0ifR=0 and <O0ifR > 0. (6.24d)

using (a) the discrete Q-gradient identity (6.18), (b) identities from step ii), (c) expansion
of the inner product (with vanishing cross terms), (d) lemma 6.1 with u = x¢ + VqQV(X).

A geometric interpretation of the proof is shown on figure 6.2. O

(eA 4+ D)id = 2V H(X)

1) Form u=x¢+ €QV(X) and its

Ay in orange,

A

rotation e
form the differences e*u — u and
x1 — X¢ (in blue and dashed blue).
We get (6.24a) .

2) Form the sum u + e®u and its half,

and add %QV(X) (green),
we get (6.24D)

3) Note the orthogonality in (6.24d)
X1 —Xo Lq %QH(X)

(a) Geometry (b) Explanations

Figure 6.2 — (Exponential AVF) Visual illustration of geometric objects in the proof of theorem
6.1. For simplicity, we consider the conservative case R = 0, Q = I. Energy conservation stems

from the orthogonality x; —x¢ Lq VqH (X).

form the barycenter (x¢ + x1)/2 (red)
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6.2.3 LC example

In order to perform a comparison betwen the AVF method (i.e. projection order p = 1,
regularity £ = 0) and the Exponential AVF method, we reconsider the nonlinear LC example of
subsection 5.5.1.

q 0 —1| |VHc(q)

1
= , = V2H(qo,d0) = | €
é 10| |VHL(e) Q (@:90) =1

where the Hessian Q is governed by the local inductance Ly = L/(1 — tanh?(¢o/LIs)). We
decompose the Hamiltonian as H(q, ¢) = % + % + V(¢) where

2 B 4
V(¢) = LI%Incosh (ﬁ,s) - 2¢Lo = LIZIncosh (ED +0O <(¢ijo) > . (6.25)

0

1
Lo’

Using (6.24a), we solve the fixed point equation on (g, d¢)

dq :(eA—I) qo n :O 0 —1
00 Po LoVV(9) 1 0

>

I

>
o Q-

using the closed-form formula of the AVF discrete gradient (see Equation 5.41)
VV(¢) = 0¢
VV (o) 8¢ = 0.

See [MVL78, CI01, MVLO03| to compute the matrix exponential eA (simulation results use scipy’s
[VGO™20] function expm which is based on the scaling and squaring method from [AMH10]).
The potential V' and its gradient VV are shown on Figure 6.3.

V(9) VV(¢)

> | A

(a) V(¢) (b) VV(9)

Figure 6.3 — (EAVF) Potential function V and its gradient VV for Ly = L,2L,3L,4L. Note
that although V' is not a positive function, the Hamiltonian H remains positive: the quadratic
part of H is handled by matrix Q.

Simulations results comparing the AVF method with the Exponential AVF (EAVF) method
are shown on Figure 6.4. As expected, the exponential AVF trajectories are closer to the true
solution (in dashed black), and exhibit very good accuracy when the nonlinearities changes slowly
over the time step. Because of exact integration of the linear dynamic, we note that frequency
warping is also improved in the EAVF compared to the AVF method (compare figures 6.4a and
6.4Db).
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R 151 151 1.5
1.0 1.0 1.0 1 1.0
051 054/ 0.5 /'/ 051
> o.o-{ o 001 > 004 & 0.0
-054% —0.5{ -054 1\ -0.5 1
-1.01 10 -1.01 -1.01
-151 -15+ ~151 ~151
-2 0 2 2
¢
15T 1.5 15 15
1.0 1.0 1.01 1.0
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$ 00 $ 001 $ 007 ¢ 00
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-154 -151 -151 -151
-1 0 1 1o 1
i i it it
(a) AVFw=m (b) EAVFw=mn (¢) AVF w=m/2 (d) EAVF w=m/2

Figure 6.4 — (Exponential AVF) Comparison of EAVF and AVF methods on Nonlinear LC.
The pulsation is set to w € {7, 7/2}.

6.2.4 Adding external ports

We generalize the exponential AVF method to input-state-output pH-ODEs (definition 1.22).
For that purpose, we remark that compared to projection methods of chapter 5 , the crucial
element of the proof of theorem 6.1 relies on making a distinction between the exponential
trajectory > X and its affine Sobolev projection Xg = PsX (sharing the same endpoints) such
that, thanks to path independence of the gradient theorem, a the proof of equation (6.18) relies
on the following identity (see Figure 6.1)

H(X,) — H(Xo) = <VH(X) ‘ X>L2 - <VH(X5) ‘ XS>L2 - <€H(X) ‘ X, — XO>L2 .

Exponential AVF for input-state-output pH-ODESs
Consider the pH-ODE

{d: =(J-R)VH(z) + Gu, . a(ty) =xo, where VH(z)=Qz+VV(z). (6.27)

y=-G'VH(z).

Note that, compared to the autonomous case, special care has to be paid for the treatment of
inputs and outputs: in the following, we use AVF projection of the input term u = Pwu; dually, we
have to use a dual output y = —GTVH(X) to ensure that we still have a passive power-balance
(see vanishing cross terms in the proof of theorem 6.2 below). Otherwise the method follows the
same construction as in the autonomous case.

5. which brings accuracy by exact integration of the linear part of the vector field
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Method 6.1 (Exponential AVF for pH-ODE). Denote P = fol the AVF projector and
denote X (7) an approximation of (tp + h7) solution of the system

%X(T) — (J-R)(QX + VV(X)) + Ga, X(0) = xo, (6.282)
y=-G'VH(X), (6.28b)

where w = Pu. The associated time-stepping method is @, : x¢ — x; = X (1).

Let A = h(J — R)Q, the exponential trajectory should be a solution of the fixed-point

X (1) =€ x0 + / eTmAp ((J ~R)VV(X) + Ga) do.
0

Theorem 6.2. If system (6.27) is discretized using the exponential AVE method (6.28a)-
(6.28b). Then, it satisfies the passive average power balance

H(x1) — H(xo)
h

+ (u|y) <0.

Proof. Take the inner product of (6.28a) with %H(XS) on the left, of (6.28b) with w and sum
the results to get

%EH(X) \ X> +{uly) = <€H(X) ‘ (J-R)(QX + VV(X)) +Ga> - <u ’ GT$H(X)>

: %<§H(X)’X1—Xo>+(u|y>:% ’

b, H(x) — H(xo)
h

A (xo + %V(X))

o - %on +VQV(X)H;.

+(uly) <0 if R>0.

The following identities were used to obtain the result:

a) By construction (see def.6.2), we have PX = Xg = x; — Xg, P2 = P and P* = P so that
(VH(X) ] X) = (PVH(Xs) j X) = (PVH(Xs) ] X) = (PVH(Xs) \ PX)
= <€H(X) ‘Xl —x0>.

Furthermore we use (6.24c¢) in the proof of theorem 6.1, the main difference compared to
the proof of theorem 6.1 is the presence of input-output cross-terms. They vanish thanks to

VH(X)=PVH(X5s), 4 = Pu and the self-adjoint property of projector P (as above).
(VH(X)|Gu) - (u|GTVH(X)) = (VH(X) | GPu) - (GPu| VH(X)) =0.

b) we use (6.18) for the left hand side and we use (6.24d) for the right hand side.
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6.3 High-order energy-preserving exponential integrators

In this section, we propose an extension of the results from section 6.2 to arbitrary projection
orders. The price we pay with this approach, is that the linear dynamic is no longer integrated
exactly: a perturbation term is introduced by the projector to satisfy the power balance.

For simplicity, we consider the autonomous Hamiltonian IVP

& =JVH(x), x(to) = Xo,

with matrix J skew symmetric. Choose a matrix A (usually A = JV2H(xg)), decompose the
vector field into a linear part and a deflated vector field as

& =Axz+ (JVH(z) — Ax),
and introduce the differential operator L& = & — Ax to define the equivalent IVP
Lz = (JVH(z)— Az), x(tg) = Xo. (6.29)
We define the following discretization scheme.

Definition 6.3 (Exponential Projection Method (EPM)). Let Q = (to,tp + h). Let P be
a projector in L?()) reproducing constant functions and satisfying PJ = JP*. Denote
X, X5 € H'(Q) the approximations of the IVP (6.29), that solve the implicit equations

LX =P(JVH(Xg)—AX) inQ, and X (to) = Xo, (6.30a)
where  Xg:=PX, inQ, and Xg(to) = X(to).  (6.30b)

We call X the exponential trajectory, Xg its Sobolev projection® and @y, : xg — x1 = X (tg+h)
the time-stepping function of the exponential projection method (EPM).

a. See definition 6.2.
Then, the following results holds.
Proposition 6.1 (Energy preservation). EPMs are energy-preserving.

Proof. Rewrite equation (6.30a) to express the derivative X
X -AX =P (JVH(Xs) - AX) — X =PIVH(Xs)+(Z—-P)AX. (6.31)

From proposition 6.3 below, we have x; = X (tg + h) = Xg(to + h). Express the power-balance

[lo

H(x) — H(xo) < <VH(XS) ( XS> > <VH (PX>
(VH(Xs ( )| PravE(Xs) £ P(Z - P)AX>

Il

(VH(X ‘PJP*\VH(XS»

This result stems from (a) the gradient theorem, (b) equation(6.30b), (¢) equation (6.31), (d)
identities P2J = PIP* and P(Z — P) = 0, (e) skew-adjointness of PIP*. O



6.3. High-order energy-preserving exponential integrators 169

Proposition 6.2 (passivity preservation). EPMs are passivity-preserving.

Proof. Replacing the skew symmetric matrix J by J — R with R = RT > 0 in the proof of
proposition 6.1 yields H(x1) — H(x¢) = — (VH(Xg) | PRP*|VH(Xg)) < 0. O

Proposition 6.3. The exponential trajectory X and its Sobolev projection Xg in definition
6.3 share the same endpoint x1 = X (tg + h) = Xg(to + h).

Proof. By definition 6.3, x; =: X (tp + h). Let Py = %fg denote the averaging projector from
L?(Q2) to the space of constant functions. Since P reproduces constants, we have PyP = Py.
Then,

X (tg + h) :x0+/ X (t)dt = xo + hPo X
Q
and Xs(to+h) =x0 + / PX (t)dt = xo + hPyPX = xo + hPp X
Q
It follows that x; =: X (to + h) = Xs(to + h). O

Remarks We make the following observations regarding EPMs

a) As in chapter 5, we only require the projector to reproduce constants and satisfy the

commutation condition PJ = JP*.

b) A sufficient condition is fulfilled when P is scalar (commuting with matrices) and self-adjoint
(P = P*) projector. But using adjoint pairs of non-scalar projectors is an interesting option
for partitionable equations that gives more freedom over the choice of projection space(s).

¢) As in the EAVF method, using the Sobolev projected trajectory Xg to evaluate the
nonlinearity is a key aspect of the method ®. Without this double projection, we would have

X =JVH(X)+ (I -P)AX
and evaluating the power balance would result (in general) in the non-vanishing term
(VH(X) ‘ X) = (VH(X) | PIVH(X) + (T - P)AX) = (VH(X) | (T - P)AX) £0.

d) A drawback of the proposed approach, compared to the EAVF method, is that the linear
dynamic is no longer integrated exactly: the projection induces the perturbation term
(Z — P)AX in equation 6.31). The proof is simple (and closer to the approach of chapter
5), but we lose in linear accuracy.

e) Adding H* regularity has been left for future research.

Note that when we approximate the linear vector field differently from its non-linear part, i.e.
if we dissociate the flow space from the projection space (using exponential integration), we have
to be more careful (than we had to in chapter 5) to ensure that energy is preserved.

6. A perspective of the proposed approach is to look more closely at the properties of the equivalence class of
trajectories that share the same projected vector field: i.e. PX = PX5s.
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Conclusion

We found after bibliographical research that energy-preserving exponential AVF methods
had already been proposed in [SL19| (but restricted to commuting matrices J, Q) and also in
[WW18|. For this reason, we chose not to publish our derivation of the exponential AVF method.

However, since the genesis of the method and the structure of the proof are different, we hope
that our presentation, specially in the context of pH-ODE and continuous-time projection, brings
a complementary viewpoint which paves the way towards different approximation strategies.

Using the tools and methodology from chapter 5, we were able to generalize this result to
higher projection orders for an arbitrary choice of basis. We call this approach (energy /passivity
preserving) Exponential Projection Methods (EPM). The proof is simpler than the proof of
the EAVF method: it avoids (sometimes tedious) manipulation of convolutions and identities
involving matrix exponentials, however, the price to pay is that the linear dynamics is no longer
integrated exactly (it is perturbed by a projection term).

The results in this chapter have been obtained late in the redaction of this manuscript. For this
reason, analysis of order conditions, existence and uniqueness of solutions and detailed simulations
are not included and are left for future research. To this end, a theory of (stiff) order conditions
for exponential integrators, using exponential B-series, can be found in the reference [LO13]
see also [BOS05, But10]. Finding an alternative strategy to generalise the approach to higher
projection orders while exactly integrating the linear dynamic is also left for further research.
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Introduction

The Operational Amplifier is widely used in analog audio circuits. This chapter is concerned
with its passive power-balanced modelling as a PHS, which, to our knowledge, has not yet been
explored. Our motivation arises by examining the two following questions:

e Do not we learn (in high school) that an operational amplifier is an active device?

e Why should we consider a pH model rather than the state-of-the-art ' ?

First, the OPA component does not create energy by itself: it is passive without a power
supply. Thus, our first motivation is to model the passive component separately from the power
supply, introducing explicit power supply ports”.

Second, to understand the interest of such a modelling, we perform a simple passivity test.
Consider the circuit in figure 7.1, involving a resistor, an OPA and a capacitor. This capacitor
replaces the traditional power supply of the OPA: this circuit is thus fully passive. Indeed, the
capacitor is initialised with zero charge, all ports except the positive supply and the output are
grounded ®. Then, according to charge conservation, the sum of all currents should be zero, so

1. such as the macro models in SPICE-like simulation software that have been used for decades by engineers.

2. Note that qualifying the OPA as an "active device" and hiding the power supply ports is common practice.
But this is a huge source of confusion for many students. Examination of the second question will show that this
confusion is not limited to vocabulary but also affects modelling.

3. The output resistor is meant as a short circuit, but LTSPICE solvers requires a non zero resistance.
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that no current can flow in the capacitor and its output voltage should stay equal to zero.

VvCC .ic V(VCC)=0

"TLO72

Figure 7.1 — (Passivity test) operational amplifier circuit.

Simulations in LTSPICE (see figure 7.2) yield ill results that do not pass the passivity test for
various OPAs models used in audio amplifiers (TL1366 and TL072). Indeed, both conservation of
charge and passivity are violated since the OPA charges the capacitor to a significant non-zero
value (dependent on the OPA macro model). The reason lies in the common practice of using
controlled current and voltage sources in behavioural macro-modelling* of components.

V(vce) —
! [ -

(a) LT1366 (b) TLOT2

Figure 7.2 — (Passivity test) Simulation result in LTSPICE for two different OPA macro models.
The OPA is charging the capacitor, violating both passivity and conservation of charge.

Our passivity test may seem far-fetched for real-life applications as OPA, transistor and tube
amplifiers are usually designed and biased to avoid non-ideal behaviour. But musicians are known
for pushing devices outside of their intended use (e.g. overdrive). It is not unusual for guitarists
and effect pedal designers to use what is called voltage sag for creative purposes °.

All these practical elements strongly motivate our strategy to build passive OPA models,
including in overdriven and under-powered configuration. Section 7.1 presents a first idealized
(conservative, memoryless, saturating) model with an illustrative application (this section repeats
the original content published in [MH19]). Section 7.2 considers a limit-case: a fully-differential
amplifier with infinite gain. Section 7.3 paves the way towards a grey-box model incorporating
non-ideal behaviours (limited bandwidth, and slew-rate, dissipation. . .)

4. As a counter example, the Ebers—Moll transistor model is often depicted using diodes and voltage-controlled
current sources to describe PN coupling. Despite this, we proved in example 1.10 p.32 that this model is passive.
However establishing such proofs can be difficult and has to be performed for each component. By contrast, the
pH modelling strategy is to exclusively rely on provably passive formulations.

5. The power supply voltage is voluntarily (and even dynamically) lowered to push a circuit outside of its ideal
operating point, resulting in all kinds of unexpected behaviours (dead zone, self-oscilations, etc).
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7.1 A minimal passive model of the operational amplifier

This section repeats the original content published in [MH19].

Abstract

This papers stems from the fact that, whereas there are passive models of transistors and
tubes, a minimal passive model of the operational amplifier does not seem to exist. A new
behavioural model is presented that is memoryless, fully described by its interaction ports, with
a minimal number of equations, for which a passive power balance can be defined. The proposed
model handles saturation, asymmetric power supply, and can be used with non-ideal voltage
references. To illustrate the model in audio applications, the non-inverting voltage amplifier and
a saturating Sallen-Key lowpass filter are considered.

7.1.1 Introduction

Operational Amplifier (OPA) models can be roughly categorized into a) Controlled Source
(CS) models, b) white box macro models and ¢) Nullor models .

In CS models (see [CDK8T7]), the power supplies are lumped within the OPA and controlled
sources can provide an infinite amount of power. It has the advantage of being simple and hides
most of the internal complexity. This is the method of choice used by students to study the
functional behaviour of OPA circuits. The main drawback comes from the absence of external
supply ports. This results in non passive models, and forbids simulations with non-ideal voltage
sources (e.g. in low-budget guitar stomboxes).

White box macro models (see references [BPCS74] [CB01] [AB90]) use dozens of transistors
to accurately reproduce the inner structure and non-ideal characteristics of particular devices.
While this is appropriate for offline simulation and circuit design, the main drawback of this
approach comes from the high number of (implicit) nonlinear equations which makes it often
unsuitable for real-time simulation.

Nullors (see references [Car64] [Tel66] [OU80] [Mar65]), are singular two-port elements where
the input flow and effort variables are both zero: e; = f; = 0, while the output flow and effort
variables e, fo are unconstrained. One drawback is the lack of flow / effort duality. In addition,
similar to CS, Nullors have no explicit power supply ports and thus are not passive devices,
inheriting the same drawbacks mentioned above.

For audio applications, dedicated Wave Digital Filters (WDF) models of the OPA for specific
circuit topologies have been proposed in [PdPV12], more recently, using Modified Nodal Analysis
to WDF adaptors, both Nullor and CS general purpose models of the OPA and OTA have been
proposed in [WDR"16] [BW17| and Sallen-key filters have been modelled with WDF in [VBS17].

We propose a passive, quasi-ideal, black-box, behavioural model of the OPA, simple enough for
realtime simulation, with explicit power supply and modelling nonlinear saturation. In particular,
a by-product of this research is to have a model compatible with the port-Hamiltonian formalism
[VdS06].

The paper is structured as follows. First a general purpose passive model of the OPA is
proposed in subsection 7.1.2, then it is illustrated by treating the non-inverting voltage amplifier
circuit in subsection 7.1.3, finally a detailed study and simulation of a saturating Sallen-Key
lowpass filter is presented in subsection 7.1.4.
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7.1.2 Operational Amplifier Model

The objective of this paper is to find the simplest class of Operational Amplifier models
satisfying the following requirements:

a) Memoryless: infinite bandwidth, infinite slew rate,

b) Passivity: the power dissipated by the OPA is non-negative (i.e. hidden sources of energy
are forbidden),

¢) Quasi-ideal: infinite input impedance, zero output impedance, infinite common-mode
rejection ratio,

d) Finite output voltage range and saturation: explicit non-constant power-supply ports,

e) Minimal: behavioural model with a minimum number of equations (i.e. not a white box
model containing dozen of transistors).

Figure 7.3 — Circuit diagram of an Operational Amplifier (OPA) with currents drawn in receiver
convention. The gaussian surface S enclosing the component is shown in dashed line.

Notations

The OPA shown on figure 7.3 is modelled as a 5-port device with node voltages being measured
relatively to the ground, node currents directed toward the element using the receiver convention
and pins labelled P = {4+, —,S+,S—, out}. In this paper, we assume that the ports of the OPA
can be partitioned into a voltage-driven set 7', and a current-controlled co-set T'

T:={+,—,5+,5-}, T := {out}, TUT = P. (7.1)

The respective inputs and outputs are collected into the vectors
u:= [eT? iT]T = [€+7 e, eS+; €s—, iOUt]Tu (72&)
y = [ir,eq]’ = [iy,i—,isy,is—,€oul (7.2b)

Finally, the common supply, the differential supply and the differential input voltages are
respectively defined by

€s4 + es— Vi = €S+ — €s—
b g o= =t

Vem = 7 5 e=ep —e_. (7.3)
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Constitutive equations

Since there are 5 ports with dual flow and efforts variables, 5 independent equations are
required to specify the device:
1-2) Non-energetic input ports: the current entering the pins {+, —} is zero (infinite input
impedance)
i =1i_ =0, (7.4)

3) Conservation of charge: Kirchoff Current Law applied over the gaussian surface® S
enclosing the AOP implies that the sum of all currents is zero

> ig=0, (7.5)

LeP

4) Passivity: the power absorbed by the OPA is greater or equal to zero

Piss =y u=> es-ip>0, (7.6)
(P

5) Differential gain and saturation: the tensions are tied by a continuous relation

3}”

— >0, monotonicity

max <a differential gain (7.7)

max(f) = esy, € — +00 positive saturation

€out = f(€+, €—, €5+, 657)7 with

min(f) =es_, € » —o0  negative saturation

This gives 4 equalities and 1 inequality

iy =0 (7.8a)

io=0 (7.8b)

isy 4 is_ +igu = 0 (7.8¢)

Piss = is+ - es+ +is— - es— + iout * €out > 0 (7.8d)
flest,es_,eq,e) —eout =0 (7.8e)

Since there is an inequality and the relation f is not specified yet, there is an infinite class of
models satisfying these equations. A particular instance is chosen as follows.

Toward a unique model

Substituting (7.3) into the passivity equation (7.8d), using the conservation of charge (7.8¢)
and simplifying by iout gives the constraint
isy — iS—) Piss

m m . . - ut — . 9 .u 79
Vi Vim (255757 ) = o = 222, (i £0) (7.9

which imposes a lot of structure on the form of the output function. In order to specify a unique
model, the following choices are made.

6. The Gaussian surface S is shown on figure 7.3. For more details see [CDKS87].
7. see appendix D.9.1 for a detailed proof.
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1| p(£e)

€
2 ~15 —1 0.5 0.5 1 15 2

Figure 7.4 — The adimensioned modulation factor p(=+e), for K/Vym =1,2,3

Push—Pull current splitting First, motivated by the typical structure of an OPA, composed
of a differential pair of transistors, gain stages and a push-pull output (see [SS98] p.707), the
adimensioned modulation factor ®

oe) = _isi_ exp (x) G

_ AL 7.10
iout  exp(z)+exp(—x) v Vim ( )

is introduced and shown on figure 7.4. According to the conservation of charge (7.8c), this leads
to the symmetrical current splitting

’is+ = —p(ﬁ)’iout, Z'Sf = —p(—ﬁ)iout. (711)

The conservative OPA choice Second, among all passive OPA models, the conservative ones
are chosen, neglecting internal dissipation:

Pyiss = 0. (7.12)

The power supply ports provide the amount of power necessary to balance the power consumed
at the output port. This is an instance of a nonlinear nonenergic n-port [WC77].

Final model Substituting (7.11) and (7.12) into (7.9) uniquely defines the output function (a
similar result was also derived in [Macl2al)

K
€out = Vem + Vgm tanh <6> . (7.13)
Vam
Expressed as a function of esy, es_ this gives
eout = p(+€)esy + p(—€)es_. (7.14)

Finally gathering equations (7.4) (7.11) (7.14) in matrix form reveals the modulated hybrid Dirac
structure’ of the conservative OPA model given by the skew-symmetric matrix J(u):

8. This choices is reminiscent of a BJT push-pull. Different choices for the function p can be made to adapt to
other transistors types, for examples MOSFETs as long as it defines a complimentary splitting function compatible
with charge conservation (7.8¢) (i.e. p(€) + p(—€) = 1) and saturation constraints (7.7).

9. Please refer to the references [Cou90] [VdS17] [VAS06] for more details on Dirac structures and to [CDK87]
for hybrid parameters.
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i+ . . . . 0 €4
i 0 e_
ist | = —p(+e€) | |es+| - (7.15)
is— —p(—€) | |es—
Cout 0 0]p(e) pl—e) : lout
y J(u) u

The singularity of the structure matrix J encodes the conservation of the so-called Casimir
invariants ¢4 = ¢_ = 0, in addition to the conservative power-balance

Pjes =u'y = uTJ(u)u =0, (becauseJ = —JT). (7.16)

7.1.3 Case study

To study the behaviour of the proposed model in practical applications, the case of the
voltage amplifier is examined. Then as a pedagogical example, the voltage amplifier is driven
by a sinusoidal voltage source and asymmetrically powered by a single capacitor to simulate a
discharging battery. The voltage amplifier will be used as a building block of the Sallen-Key
lowpass filter shown in subsection 7.1.4.

The non-inverting voltage amplifier

Cout

(a) non inverting amplifier (b) equivalent component

Figure 7.5 — Non-inverting voltage amplifier circuit with explicit alimentation ports.

A non-inverting voltage amplifier (figure 7.5) is achieved by feeding back the output eoyt to
the negative input e_ through a voltage divider

Cout Ry + R Ry
c=eL — M g=""1T72_q4 2 717
The instantaneous feedback makes the circuit act as a proportional corrector with high proportional
gain K in order to satisfy the constraint eoy ~ Gey within the range eyt € [esy, es—].
The voltage divider induces an internal current ip = eoyt/R, where R = R; + Ra, and the
current splitting (7.11) becomes

is+ = —p(€)(iout — iR); is— = —p(—€)(lout — iR). (7.18)
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This results in the following law for the voltage amplifier

il ] . ] e ]
is+| _ | - g+(e) gxle) | —ple) es+ (7.19)
is— | g9x(e) g-(€) | —p(—€) | |es-
out| | | ple) p(—€) -] [fout)
with conductances
€ 2 —€ 2 € —€
gl =" g0 =" gu(e) = 1A=, (7.20)

R
In the following, it is assumed that R — oo such that internal losses are negligible. In particular,
this is the case of the classical voltage follower circuit for which Ry = 0, and R; = oo.

Implicit constraint The relation (7.19) is still implicitly defined since € depends on both input
and output variables ey and eqy. To avoid apparent difficulties with discontinuous functions,
consider the curve

F= {(u, y) €R® | F(uy) = 0}, (7.21)
specified by the function
K
F(u,y) = Vem + Vam tanh (VHm <u — é)) —y, (7.22)

and given e, look for eqy such that (ey,eout) € F.

Since the output function is monotonous with respect to € and bounded in [es_, es ], a unique
solution exists within that range. A global method such as the bisection method is guaranteed
to find it, whereas, since K is typically about 10, it is very difficult to use either fixed-point
or derivative-based methods because of bad numerical conditioning. Numerical simulations are
shown on figure 7.6.

transfer function sine waveshaping
15 —> 15 e
101 £ 104 /4 .
54 5
2 0 0
>
—5 T -7 —5 7 N ]
—10{ " ~10-
-15 L | | -15 | | —
-10 0 10 0.0 0.2 0.4 0.6 0.8 1.0
u (V) normalized time

Figure 7.6 — Transfer function of the voltage amplifier for G =1, K € {1,2,5,50}, es; = 10V,
es_ = —5V. Smaller values than the typical OPA gain K ~ 10 are used for visualisation purposes.

Explicit representation Taking the limit when K — oo gives an explicit representation of F
as the piecewise continuous curve
Y = esy, Gu >y
Feo= lim F:y=es_, Gu<uy. (7.23)
K—o0
y€les_,esy], y=Gu
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One can see on figure 7.6 that convergence to F is very fast even for moderate values of K.
This justifies the use of this limit process in following developments.
For (e, eout) € Fo this gives the explicit form

Gey — V.
€out = Vem + Vam sat (eJ}/cm> , where sat(z) = min(max(z, —1), 1). (7.24)
dm
Alternatively one can represent this function as

Cout = ,u+(e+, Vems Vdm) -esy  + u_(€+, Vem, Vdm) - 65— (725)

where the implicit modulation factor p(£e) in (7.19) has been replaced by the explicit one

1 £ sat(x Gey — V.
Ni(ﬁh‘émyvﬁm)::““‘l‘z, g =——__m (7.26)
2 Vam

A single-rail voltage follower powered by a capacitor

Figure 7.7 — A single-rail voltage amplifier powered by a capacitor.

To illustrate one of the practical interest of having explicit power supply ports, the voltage
amplifier is used with the negative supply port grounded, and the positive supply port powered
by a capacitor to simulate a discharging battery (figure 7.7).

Using (7.15) with Vem = Vgm = ¢/(2C), and ioue = —y/R, yields the algebro-differential
equations

d=—M%®%, ¢ g
q ) 77(“> Q) = M4 (U, %7 26’) . (727)
y=MM®5

The energy stored in the capacitor is H(g) = ¢?/2C. Then its differential equation is governed by
the monotonous discharge

d 0H dq q Y yz
H — * .2
dt¢ (q) dq dt Cﬁ(fb u) R R (7 8)

The circuit acts as a half-wave rectifier with a positive clipping threshold governed by the discharge
of the capacitor as shown on figure 7.8.

Comparison between models As expected, with the proposed model (fig.7.8 (a)), the capac-
itor does not discharge during negative saturation (energy-preservation), and has a monotonous
discharge otherwise. Comparison with LTspice’s universal model (fig.7.9) shows that the two
simulations are very close. With the LT1366 (fig.7.8 (b)), the discharge is monotonous and
qualitatively similar, but decays faster due to internal dissipation. Finally the LTC6241 (fig.7.8
(c)) exhibits unexpected behaviour: it starts charging back the capacitor once the capacitors
drops below a threshold (probably linked non-ideal rail-rail behaviour).
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(a) Simulation of the single-rail voltage follower driven by a sinusoid and powered

by a capacitor
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(c) Same simulation using LTC6241. It is obvious that the LTC6241 is not passive.
The capacitor is being charged by the OPA! Instead of discharging monotonously.

Figure 7.8 — Time domain simulation of the capacitor-powered single rail voltage amplifier with

ve(0) =5V and |u| = 3V.

5
—— model
47 ---- LT universal
E 3 — —— LT1366
$ o =
1A —
0 T T T T T
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Figure 7.9 — Comparison
opamp [Dev19].

of discharge rate with LTspice’s Universal OPA level.2 and the LT1366
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7.1.4 Sallen-Key analog lowpass filter

The class of Sallen-Key Filters (SKF), introduced in [SK55|, is perhaps one of the most
common analog filter design topology. It is used for the realization of analog biquadratic filters,
for example in parametric equalisers. It is also the basis of the multimode Steiner filter [Ste74],
the Korg MS-20 [Sti06] and the Buchla Lowpass-Gate [Pd13].

A Sallen-Key lowpass filter schematic is shown on figure 7.11a. The linear regime and its
control parameters are studied in 7.1.4, the circuit is then converted into equations in 7.1.4.
Discretization is performed using the Average Vector Field method in 7.1.4, finally simulation
results are shown in 7.1.4.

Linear behaviour and control parameters

Magnitude (dB) Phase (rad)
40 0
20
_1 -
0 -
-2
_20 u
—40 . =31 .
1071 10° 10! 107! 10° 10!

w (rad/s) w (rad/s)

Figure 7.10 — Bode plot of the Sallen-Key filter for w =1, G € [0, 3].

It is recalled that the Laplace transfer function (shown on figure 7.10) of a second order
resonant lowpass filters with pulsation w and quality factor @ is

1

Hip(s) = 5 (7.29)
1+5(5)+(2)
In the linear regime, the Laplace transfer function of the lowpass Sallen-Key filter is
YsK 1
H =L{=)=—— 7.30
sk () {v”\, } 1+ ais+ ags?’ (7.30)
where
a1 = (1= G)RiCy + (R1 + Ry)Ca) (7.31a)
ag = ClCQRlRQ. (7.31b)

Since there are only two target controls (w, @), for 5 design parameters (R1, Ra, C1,Ca, G), there
are many possible design decisions that are often decided according to electronic constraints.

In this paper, the Steiner filter parametrization is used with Ry = Ro = R, and C1 = Cy = C
because of its simplicity. The transfer function (7.30) simplifies to

1
1+3-6)(2)+(2)"

w

Hsk(s) = (7.32)

with w = 1/(RC), and @ = 1/(3 — G). In simulations, capacitances are both set to C' = 4.7nF
and the resistors are adjusted to achieve the target cutoff frequencies.
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(¢) Skew-symmetric Dirac structure (KCL+KVL)

(d) Reduced model (admittance form)

Figure 7.11 — a) The original Sallen-Key lowpass filter circuit, b) its corresponding bondgraph
(see references [Pay61] [Bre86] [Bro99b]) with computational causality assignment. ¢) the skew-
symmetric Dirac structure representing Kirchoff conservation laws. d) the reduced dynamical

model.

Modelling

To model the Sallen-Key filter, the following systematic approach is used: (See also chapters

1 and 2)

e Bondgraph: The circuit on figure 7.11a is first converted to an equivalent bondgraph 7.11b

using the rules in [Bre86]. A bond between two ports A —~ B
dual port-variables (e

stands for a pair of

, ). The half-arrow indicates the power sign convention P = ef > 0.

0 denotes a parallel junction where all bonds share the same voltage, and 1 denotes a serial
junction where all bonds share the same current.

Causality assignment: to convert an acausal bidirectional bondgraph to a causal, com-
putable, block-diagram, one needs to partition the flows and efforts into inputs and outputs.
The convention uses a vertical stroke A ——> B next to ports that are effort-controlled.
Computational causalities can be assigned graphically by propagating the following rules:
voltage sources and capacitors have an effort-out causality, 0 junctions can only have one
input effort, while the dual 1 junctions can only have one output effort.

Dirac Structure: given the causality assignment, shown on 7.11b, into inputs and outputs,
it is now straightforward to fill the Dirac Structure matrix 7.11c¢ by inspecting circuit 7.11a
and expressing Kirchoff’s current and voltage laws.

Reduced model: one can reduce the model by solving trivial equalities like e4 = v¢,,
es+ = Vi, es_ = V_, treating Vi as constants and replacing the linear resistive currents
(iRy,iR,) by their constitutive laws. This results in the reduced admittance model shown
on figure 7.11d.
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Nonlinear feedback To separate the linear and nonlinear feedback, one can write
éout(v) = Gv — VN(v) (7.33)
where the nonlinear law is
VN (v) := Gv — éout(v) = min(0, Gv — es_) + max(0, Gv — esy). (7.34)
and its algebraic potential (figure 7.12) is given by the line integral

v min(0, Gv — es_)?  max(0, Gv — es; )?
NU::/VNs-ds: + : 7.35
©)= [ IN) - " (7.35)

This potential will used by the Average Vector Field discretization (an instance of Anti-Derivative
Anti-Aliasing).

- algebraic laws algebraic potentials (integrated laws)
’ N 1
e E \\ L
201 f;N( ) 1o Gvyr2
v / 1204 N{v) /
154 — Gv—-VUN(v) \ — GV22 - N(v)
10 -
5 -
O -
_5 -
_10 -
-15 —— T T T T . T T T
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

v (Volts) v (Volts)

Figure 7.12 — Algebraic feedback laws and their potentials shown for G = 2, esy = 10V,
es_ = —bHV.

State-space model

Finally replacing the flow and effort variables by their constitutive laws, and only considering
the input-state-output, one gets

{x = w[Ax + Bu— FVN(Cx)] | (736)
y =Cx
where u = v\, ¥ = ysk, X = [vcy, Ve, T, w = 1/(RC) and
-2 1-2G 1 -2
A= , B=| |, C:[o 1}, F— . (7.37)
1 —-1+G 0 1

Using the co-energy variables v, ,ve, instead of the energy variables qc,, gc, is justified here
by the fact that the capacitors are linear and time-invariant, i.e. the co-energy H*(v) = Cv?/2
equals the energy H(q) = ¢*/(2C) for the linear law v = ¢/C.
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Discretization using the AVF method

The Average Vector Field (AVF) method is used to discretize (7.36) because of its structure-
preserving properties: it preserves the energy (resp. dissipativity) of conservative (resp. dissipative)
systems (see [CGMT12]). One can also refer to [Héll1| where it has been shown that the bilinear
transform doesn’t always guarantee the dissipativity of nonlinear filters (whether time-varying
or not). Furthemore, the interrest of generalizing the Average Discrete Gradient to algebraic
potentials has been shown in [MH18]. As an important side-effect, the AVF method can also be
interpreted as a first-order instance of anti-derivative antialiasing [BEPV17].

The Average Vector Field method Let Q = [tg, o + k] be a time-step, € P1(Q — R") a
locally affine trajectory parametrized by the normalized variable T € [0, 1]
x(to + h1) = x0 + 7(x1 — X0). (7.38)

Introduce the averaging projector A, defined for all functions f : R™ — R" or operators f : H — H,
where H is a functional space from €2 — R", by

1
(Af) (@) = / f(@(to + hr)) dr. (7.39)
0
For the time derivative and identity operators, one gets first order finite difference and average
— d X1 — X _ X0 + X1
= — = = =—. 4
x <A dt) x o z:=(Al)x 5 (7.40)

For VN, using the gradient theorem, this gives the average discrete gradient

N(v1) — N(vo)

_ ———— wg#v
VN (vg,v1) := (AVN)(vg + 7(v1 — v0)) = V1 — Vg 07 1 . (7.41)
VN(U()) Vg = VU1
Computing its derivative with respect to v; leads to the discrete pseudo-Hessian
VN (v1) — VN (vg,v
OVN ) (v0, 1) v # U1
I (U()’ Ul) = 1 v1 =Y . (742)
! §V2N(Uo) Vg = V1

One can refer to [MHI18|, where the discrete gradient’s derivative is also used for numerical
simulation. Note that the average discrete gradient of the nonlinearity VN is continuously
derivable for vg # v, while VN is not.

Averaged state space system Applying the averaging projector A to (7.36), leads to the
structure-preserving discrete algebraic system

T=w [A:I: + Ba — FVN(Cxo, Cx1)

(7.43)
y=Czx
Solving the linear part for x; gives the discrete state-space update
x1 = Agxo+ Bgu — Fy ﬁN(CXO, Cxq), (7.44)

with the normalised pulsation wy = hw and

A;=D"! (I + u;dA) , By=DYw;B), D= <I — ?A) , Fg=D Y wgF). (7.45)
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Simulation

Simulation results ' are shown on figures 7.13 and 7.14 and exhibit a very close match with
offline simulations performed in LTspice. To solve (7.44), one can either use the simple fixed-point
iteration, or Newton’s method.

Fixed-point iteration A simple numerical scheme is to look for the fixed-point x; = ¢(x1) of
the pre-conditioned fixed-point function

¢(X1) = Agxg + Bgu — FdVN(CXO, Cxl), (7.46)
with the fixed-point iteration

A sufficient convergence condition is detailed in appendix D.9.2.

In practice, thanks to the non linear feedback splitting in (7.33), when the OPA is in the
linear regime, VN = 0. Then the iteration reduces to an explicit one-step trapezoidal integrator
and converges in only one iteration.

Newton iteration To accelerate convergence, one can use Newton’s method [Deull]| as follows:
define the auxiliary function

p(x1) = x1 — ¢(x1), (7.48)

and look for the root x} such that ¢(x7) = 0 with the Newton iteration
~1
Kb = xf - (Ph)eld), xd=xo. (7.49)
where the Jacobian of ¢ is given by

OVN
(p/(Xl) =1+ FdC 9

(CX(], CXl). (750)

0 5 10 15 20 25 30 0 1 2 3 4 5 6 7 0.0 0.5 1.0 15 2.0 2.5 3.0 35
time (ms) time (ms) time (ms)

(a) fo = 50Hz (b) fo = 250Hz (c) fo=1kHz

Figure 7.13 — SKF filter response to a square wave input with sampling frequency f; = 44.1kHz,
C = 4.70F, cutoff f. = 1kHz (R = 33.8k(2), @ = 10, asymmetric saturation V; = 15V, V_ = 0V
and different fundamental frequencies. The non linear SKF response is shown in solid blue, with
the linear SKF response in dashed red for reference.

10. Sound examples and LTspice files are available at the accompanying website: https://github.com/
remymuller/dafx19-opa.


https://github.com/remymuller/dafx19-opa
https://github.com/remymuller/dafx19-opa
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Figure 7.14 — Comparison between the proposed model, LTspice’s universal OPA level.2 and the
LT1366 opamp. The proposed model output is almost indistinguishable from LTspice’s universal
model, whereas the tuning of the LT1366 is slightly different because of dissipation.
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Figure 7.15 — Spectrogram responses to a sine sweep for f. € {1000, 2000,4000} Hz. Intermod-
ulation between the input and the resonance is noticeable.
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Conclusions and perspectives

In this paper, a static, passive, black-box model of the operational amplifier with explicit
power supply has been examined. It is suitable for the modelling of audio circuits and simple
enough for real-time simulation. Furthermore the explicit modelling of external power supply
ports allows the use of non-ideal voltage sources.

The choice has been made to ignore internal dissipation to keep the model minimal. However,
non-ideal characteristics such as input and output impedance or power supply voltage drop can
be achieved by modular composition of the model with other circuit elements. This will be the
topic of further research.

The non inverting amplifier is also derived as a dedicated building block. Numerical simulations
justify the use of an infinite OPA gain to get an explicit formulation. Having a pre-solved amplifier
model also greatly simplifies its use in electronic circuits, avoiding numerical stiffness and high
index DAE.

Finally, the amplifier is used for audio simulations to model a saturating Sallen-Key lowpass
filter of second order. A reduced state-space model is derived from the circuit schematic, and
a struc-ture-preserving discretization is performed using the average vector field method. A
comparison with LTspice shows that our results are very close to those of more complex macro
models.

The perspectives of this study are a) modelling other non-ideal OPA characteristics such
as finite slew-rate and bandwidth, current and voltage offsets, non-zero common-mode input
gain...b) studying the behaviour of the model in other typical circuits (oscillator, rectifier,
comparator) and c¢) experimental comparison with specific devices such as the common pA741, or
TL072 audio OPAs which are not rail-to-rail opamps.
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7.2 A passive fully differential amplifier model with infinite gain

This section deals with the pH modelling of fully-differential operational amplifiers having
symmetric power supply, infinite gain, and differential input and output. This component is
common in textbooks, but usually, the power supply port is not represented (and passivity not
addressed). Moreover, the linear or saturation behaviours are usually modelled separately, on a
case-by-case basis. The model proposed below solves this problem. To this end, the model of
section 7.1 is extended to the case of a differential output and simplified to the degenerated case
of an infinite differential gain (and symmetric power-supply).

This limit case yields a multi-valued relation (see subsection 7.2.1 and appendix A p.271) that
requires special care for numerical simulation. In this thesis, we do not consider solvers based
on non-smooth dynamics and differential inclusions (see [ABO08]). Instead, in subsection 7.2.2,
we propose an alternative strategy based on implicit continuous parametrisation of the idealised
amplifier relation (see definition 1.21 p.28). This follows the approach that we proposed in [MH20]
and exploits the fact that the nonlinear law is in fact geometrically C°-continuous.

7.2.1 Ideal Fully Differential Amplifier (FDA) model

)

iv; UOT
o—— 4+ —

ir /

Figure 7.16 — (FDA) Ideal non-energetic Fully Differential Amplifier 3-port.

In this section, compared to section 7.1, we assume the following additional hypothesis:

e the supply voltages are symmetric vs; = —vs_ = vg,
e the output port is no longer referenced to the ground,

e we consider the limit case of the amplification gain K — oo,

Moreover, using the common-differential variable change introduced in section 2.5 p.73, because of
symmetries (e.g. eg = eJSr +eg = 0on fig. 7.3 p.176), the common-mode input and common-mode
power supply have no influence on the model behaviour. We can reduce the FDA to a 3-port. We
label ports {I,S,O} for Input, Supply, Output, satisfying the set relations (see appx A p.271)

ir € {0} (infinite input impedance) (7.51a)
vo € vgsign(vy) (saturating fully differential amplifier) (7.51b)
vrir +vgis + voio € {0} (conservative power balance) (7.51c)

Rewriting (7.51a)-(7.51c¢) yields ig € — sign(vy)ip, which we summarize by the vector relation

i . . . vr {-1} z€(-,0),
vo| € |. : sign(vy)| |io|, where sign(z):= 4 (-1,1) x € {0}, (7.52)
19 . = Sign(vj) . vg {1} HARS (0, +OO)-
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When solving circuits with (7.52), we may distinguish two situations:

e Either v; # 0, the amplifier is in saturation mode (black curve in figure 7.17). Then vo is
single-valued and equal to either vg or —vg. This corresponds to the situation where the
amplifier is used as a comparator to implement flip-flops, Schmidt triggers, etc.

e Or v; = 0, the amplifier is in the vertical branch of the sign relation (red curve). This
corresponds to infinite amplification. We call it the singular nullor mode (see [Car64, Mar65,
Tel66, OU80]). This situation is very common. It is used to implement voltage buffers,
virtual grounds, active filters, etc. Although vo (and ig) appear as multi-valued functions
of vy, in practice, a unique operating point is imposed by the external circuit.

The next sub section proposes a single-valued parametric representation to overcome the apparent
difficulty of dealing with this multi-valued property.

Vs

Vo
o
1

—Vs

Vi

Figure 7.17 — (FDA) Ideal law in the (v, v)-plane expressed as a multi-valued function.

A

Figure 7.18 — (FDA) Ideal law in (vy,vp, A1) coordinates. The law is represented by an implicit
CO-continuous map X — (ir,io,is,vr,v0,vs) parametrised by A = (A1, A2, A3).
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7.2.2 Continuous parametrisation

The (non-energetic ') relation (7.52) between (vr,i0,vs) € R3 and (i, v0,is) € R? is multi-
valued and may seem difficult to simulate. But this equation hides that the FDA admits a
continuous geometrical description . The underlying continuous 3D manifold in this R3 x R3-space
can be described by the following parametric description (recall def. 1.21 p.28).

Introduce parameters A = (A1, A2, A3) € A = R3 to relate the currents i = (is,ip,is) € R?
and voltages v = (vr,v0,vs) € R? of the FDA according to the single-valued relation

i1 0 vy (A1)
Rrpa=4 (i, v) eREXR3| |ig| = A 1 o = A3 | u(A) | VAEA . (7.53)
is —u(A1) v 1

where the complementary modulation functions '? u, u* are defined by

-1 z< -1 z+1 < -1
p(z):=qz xe(=1,1), pi(z) ==z —p(r) = {0 z € (=11), (7.54)
1 z>1 r—1 z>1

and for which equations (7.51a)-(7.51c) are satisfied: this is obvious for (7.51a), straightforward
for (7.51b) (compare also the (vr,vp)-planes of figures 7.17 and 7.18), and the (non-energetic)
power balance (7.51c) is pointwise satisfied since

vr -ir +vo -io +vs - ig = W (A1)A3 - 0+ AaAzp(A1) — (A1) A2A3 = 0.

Description (7.53) (see fig. 7.20) shows that Ag and A3 are respectively controlled by ip and vg
(io = A2 and vg = A3). Because of the dual complementary functions pu, u* (see figure 7.19),
parameter \; is alternatively controlled by vy in saturation mode and vp in Nullor mode (but it
still corresponds to a single one-dimensional constraint). This description can be reformulated as
the single-valued relation (to be compared to the multi-valued one (7.52))

ir . . . vr = W (A1)A3
vo| — |- . [1,()\1) ’io = )\2 . (7.55)
iS . —,u()\l) . vs = )\3

An important property of (7.55) is that, contrary to (7.52), it is now explicit that for all A; (for
both linear and saturation modes) there exists a unique pair (vp,is) and not a multi-valued set

Discussion: Nullors and computational causality To simplify circuit design and analysis,
a common practice in electronic engineering is to use OPA in nullor mode, that is, to impose
the double constraint i; = 0, v; = 0 (while ip and vp are unconstrained). But, as mentioned
by Breedveld [Bre85, V.4], it is physically impossible to impose or control both effort and flow
of one port. So, is the nullor mode paradoxical? How shall we interpret its double contraint
ir =0, v = 07 To reconcile both viewpoints, thanks to (7.53), one can remark that the current
constraint ¢y = 0 is inherent to the device (it must be considered as an output of the FDA since
it cannot be controlled whatever the mode). Conversely, vy is an input of the device determining

11. See (7.51c) and references [WCT77], [Bre85, VIL4] for the theory of nonlinear non-energetic n-ports.
12. Note the complementarity x’ + (4*)" = 1 and the Legendre transform duality [ pdz + [ p* dz = 12’
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its modes (through A1). The case vy = 0 is a consequence of the circuit operating point. It holds
only if vp can be maintained in (—vg,vg) out of the saturation mode. Indeed, as soon as vp
saturates, vy is no longer zero. In practice, the Nullor mode region can be extended at will by
increasing the supply voltage vg. A clear analysis of causality arises by reformulating the FDA
according to input-output common-differential ports introduced in subsection 7.2.3 p.194.

2 u 1A
— u*
1-
0 .
— (Y
_1-
—2 4 0
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
/\1 /\1

Figure 7.19 — (FDA) Dual functions u, u* (left) and their derivative (right) used to implicitly
parametrise the FDA relation (7.53). Note that similar functions have already been used (without
being formalised) in figure 7.12 for the OPA.

Figure 7.20 — (FDA) Ideal laws in the (vg, A\1,vo)-space (left) and (vg, A\1,vr)-space (right).
Note that, according to (7.53), these laws are independent of the output current i and corresponds
to a continuous function (vg, A1) — (vo,vr) and remind that vg = As.
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Figure 7.21 — (FDA) Voltage buffer. This examples shows a physical interpretation for the
input-output common mode voltage (vs = vo + vr) which is equal to the buffer input u.
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7.2.3 Explicit formulation using common and differential ports

The understanding of causality is greatly simplified by switching to the unconventional '*

common and differential ports {¥, A} built from input and output ports {I,O}. Indeed we show
that parameter A\; can be explicitly controlled from the sum of input and output voltages '*
(see fig.7.21). Using theorem 2.5 (p.73), we perform the power-preserving port variables change
{I,0} — {X, A} between input and output variables. We introduce the quantities

1

’UE = ’UO —|— UI7 'LZ = 5 (ZO + 2[) 5 (756&)
1
VA ‘= V0 — VI in = 9 (io —ir). (7.56Db)

to form the alternative R? x R? system of coordinates given by currents i= (ix,in,i5) € R3, and
voltages Vv = (vs,va,vs) € R3. Substituting (7.56a) (7.56b) into equation (7.53) yields

Uy = )\11)5', VA = (2/1,()\1) — )\1)1)5, iz = io/2, iA = ’io/2.

This shows that we can control parameter A; (in (7.53)) from the (input-output) common mode
voltage vy and the power supply voltage vg, while the map ia — ¢y is just the identity. We
consider the differential mode va as an output and the common mode vy, as an input (see fig.7.21).
By consequence the relation in eq. (7.53) can be written as the explicit skew-symmetric map

iS . . —2”(/\1) vs
Rrpa={ LV eR xR | |ig|=| . . 1 vs| s A= Z—E . (1.57)
S
VA 2u(A) -1 . (N

We see on figure 7.22b that increasing the power supply voltage vg increases the nullor region
(v =wva <= vy =0), whereas in saturation (vy| >|vg|) the output va is reflected about +vg.

—_— vs=1

-3 T T T T T
-3 -2 -1 0 1 2 3
Vs

(a) 2D vg — va (b) 3D (vs,vs) — va

Figure 7.22 — (FDA) causal map in input-output X-A coordinates.

13. Common and differential modes in electronics are usually associated with positive and negative symmetries
such as power supply or input ports in traditional OPA. Here we consider input-ouput variable changes.

14. Co-incidently, in the final stage of redaction, we found that "across-ports" wave-variable changes have just
been proposed in [BMS20], precisely to handle operational amplifiers in WDF.
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7.3 Towards a grey-box passive model of the OPA

In previous sections, we have considered nonlinear but idealised black-box OPA model
with conservative memoryless saturating behaviour. To increase realism, additional non-ideal
behaviours should be accounted for, such as those quantified in datasheets: finite gain-bandwidth
product, slew-rate, internal dissipation, finite input impedance, non-zero output resistance, etc.
As an alternative to a full physical modelling (of a dozen of transistors), this section opens a way
towards a grey-box oriented pH modelling with an affordable simulation cost.

Some phenomena (such as input and output impedance, power-supply voltage drop, etc)
can be modelled by composing the ideal OPA models with resistors, diode and capacitors (see
[BPCS74, WDR™16]). However bandwidth, slew-rate and internal dissipation, require a finer level
of description. A possible approach (common in the literature [SS98, CDK87]), is to use a 3-stage
model (see figure 7.23): first a differential amplifier behaving like a (saturating) voltage-controlled
current source; second a dynamic stage responsible for bandwidth (in linear mode) and slew rate
(in saturation); and third a unity gain push-pull output distributing power from the supply port
to the output load. A main difference with common modelling approaches in [Chu75, p.111]
or [BPCST74] is that our proposition does not make use of voltage or current controlled sources
to model sub-components but explicitly models power-supply ports and passivity. Due to time
constraint, our full modelling is not complete. We propose to use OPA building blocks as shown
in figure 7.24 and an explicit model of a BJT push-pull for large-signals is detailed in appendix
D.9.3 p.302. Minimal pH models of these blocks will be completed in future work.

S+
IN— o—
Differential . Push-Pull
Dynamics o0
Input output
IN+¢— oo R
.

Figure 7.23 — (OPA, grey box model) structure of the macro model. Terminals are considered
as ports by referencing them to the ground (not necessarily connected to the OPA).
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Figure 7.24 — (OPA, grey box model) building blocks candidates.
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Conclusion

In this chapter, we have proposed a minimal memoryless non-energetic model of the operational
amplifier compatible with the the pH formalism. Surprisingly, despite the amount of (more
advanced) publications on the subject and the abundant usage of OPA in electronics, we have not
found in the literature such a nonlinear model, that is both energy-balanced and simple enough
for standard use in most circuits. In order to stay within the PHS modelling framework, we
had to propose a new model. Explicit modelling of power supply ports and saturation is a key
ingredient to derive passive models and allows the modelling of non-ideal power-supply circuits
(possibly modulated by the current of the output load).

As a further simplification and an alternative to pure nullors, we propose a 3-port fully
differential amplifier with infinite gain. It includes (i) both nullor and saturation modes as special
cases of a general relation (ii) a non-energetic memoryless modelling with an explicit port to
model the power supply. To avoid the use of multi-valued relations, we propose a 3-dimensional
implicit parametrisation of the component relation. This parametrisation is directly compatible
with the simulation framework proposed in this thesis (chapter 5 p. 117), and in particular the
fully implicit approach that we proposed in [MH20]. Other applications and simulations can be
found in chapter 8.

Finally, the outline of a 3-stages grey-box pH model including slew-rate, finite gain-bandwidth
and dissipation is sketched in section 7.3. The first steps to achieve this work have been developed:
a common structure, candidate circuits for building blocks and an exact explicit input-output
relation for a simplified BJT push-pull for large signals (see the technical details in appendix D.9.3
p-302). This preliminary result shows that an exact white-box modelling, although achievable,
can quickly become overwhelmingly complex and does not scale with a high number of algebraic
components. Due to time constraints, the derivation of simple and efficient pH realisations of the
passive OPA building blocks from figure 7.23 (keeping the minimalist approach of [MH19]) is left
for future research. Finally applications and simulation of circuits containing OPA are detailed in
the next chapter.
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Circuits case studies
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In this chapter, we consider a number of electronic audio circuits, chosen as representatives
of the common situations and difficulties encountered when trying to simulate virtual analog
audio circuits. All circuits are analysed and modelled systematically as pHS using the tools from
chapters 1 and 2 (using both pH-DAE et pH-ODE formulations). We repeat the same process for
each example in order to exhibit the common modelling steps as well as the different modelling
and simulation strategies. The nonlinear systems are then discretised using the power-balanced
projection methods from chapter 5 p.117 and solved using Newton iteration.

In section 8.1, we address the simulation of stiff pH-DAE with a variant of the classical
FuzzFace circuit, a canonical design for fuzz guitar sounds.

In section 8.2, we merge the diode clipper circuit (already studied in chapters 2 and 5) with
the tone-stack of the BigMuff Pi guitar pedal to produce a nonlinear tonestack (pH-ODE).

In section 8.3, we simulate the drive stage of the Tube Screamer guitar pedal. This is the
occasion to consider a typical pattern used by electronic designers, namely overdrive amplifiers
which saturates the feedback path of amplifiers. This is also the occasion to revisit the op amp
model from chapter 7 in a different context.

In section 8.4, we consider a building block of analog synthesizers: we revisit the Sallen-Key
filter topology from chapter 7, in this variant, the circuit uses 3 operational amplifiers to buffer
stages and a nonlinear overdrive saturation in the feedback path (similar to the one of the
TubeScreamer). These slight modifications can yield drastic changes to the sound and salient
features of the filter such as self-oscillations and inter-modulations.

In section 8.5, we consider the FitzHugh-Nagumo relaxation oscillator which exhibit a limit
cycle. With this circuit, we look more closely at the tunnel diode. This is an example of passive
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component with a non-monotonous characteristic. The locally negative incremental resistance is
the key ingredient used to favour the emergence of a limit cycle with both stable and non-stable
equilibrium points. This is also the occasion to look at a system combining a slow dynamic
(determining the period of oscillations) and fast relazations when switching between stable states.
Finally in section 8.6, we consider a classical passive peaking equalizer whose resonance
frequency is much higher than the sampling rate. Such a situation is traditionally solved through
oversampling. By contrast, this use case is an opportunity to study the spectral properties of
high-order projection methods from chapter 5 p.117. In particular, we look at their extended
bandwidth using generalised sampling theory and compare with the oversampling approach.

Remark 8.1. All examples * in this chapter follow the same systematic derivation process
schematic — netlist — semi — explicit hybrid dirac structure — reduced dissipative structure.
This process is detailed in figure 2.1 p.44. In step 3, to emphasize the sparse block-structure
of J matrices, port-Hamiltonian systems are standardized under the following semi-explicit
tree / cotree form (see (2.18) p.55)

. v iT
iT 0 - CL VT(IT) J _ 17 0 —Cr,
\47 c,' o IL(vr) ve €L 0 ]

where algebro-differential operators Vp , I; respectively stand for component laws of

current-controlled tree branches and voltage-controlled cotree branches (links) and Cyp, is
the link cutset matrix obtained from circuit incidence matrices according to eq. (2.15) p.55.

As a further simplification, in step 4, linear resistive branches are pre-solved to canonically
obtain the following resistive tree/cotree formulation

. T o A\ iT
ir | Gr -« Vr(ir) _ Mo i |Gr —af
VL o R, IL(VT) vi| o« Rp

where G is the tree conductance matrix, Ry is the link resistance matrix and « is a
tree/cotree matrix transformer ratio (see subsection 2.3.4 p.60). These two forms can be
directly simulated thanks to our passivity-preserving projection theorem 5.1 p.119. Finally,
adhoc reduction to ODE or DAE subsets is performed where appropriate.

For simplicity of exposition, power-balanced simulations are obtained using discretisation
by projection with RPM(1,0)" (see definitions 5.1 p.122 for pH-ODE and 5.2 p.123 for
pH-DAE).

a. Except in the MS-20 example: due to the high number of branches (34), we use nodal analysis to jump
straight to the most reduced formulation.
b. Projection order p = 1, regularity order k = 0 (equivalent to the average vector field method).

Remark 8.2 (Practical existence / uniqueness conditions and Newton convergence). Exis-
tence / uniqueness conditions have been studied in 5.2.3 p.127 for pH-ODE and (partially) in
5.3.2 p.135 for pH-DAE. However sharp practical conditions are still missing. Indeed, while
practical convergence is always observed in presented simulations, theoretical convergence
bounds are either missing, or too restrictive, in particular for stiff systems. For this reason,
convergence conditions will not be detailed in upcoming examples. This important but
difficult topic is left for future research.
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8.1 Fuzz Face (NPN variant)
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Figure 8.1 — (NPN Fuzz Face) Schematic. The chosen spanning tree 7' (current-controlled) is

shown in blue. Complementarily, its cotree T (voltage-controlled) is shown in orange.

The Fuzz Face is an effect pedal for electric guitar designed to produce a distorted fuzz
sound (reminiscent of the buzzing sound of damaged speakers'). It was conceived in 1966 by
Arbiter Electronics Ltd and made famous by guitarists such as Jimi Hendrix (with custom
modifications made by Roger Mayer), David Gilmour (Pink Floyd), Pete Townshend (The Who).
The original design uses Germanium PNP transistors (positive ground, negative voltage source).
A number of imitations, tribute and modifications have been proposed: Vox Tone bender, Mike
Fuller’s ’69 Fulltone or more recently ZVEX Woolly Mammoth. The circuit has been studied in
[COCR09, DZ11a, HHVW17, Hol19]. Here, we consider the NPN ? variant of figure 8.1 which is
obtained by replacing PNP by NPN transistors and inverting the power supply. For simulation, we
use 2N3904 transistors with parameters Ig = 10 fA, Sr = 300 and Sr = 4 using the memoryless
Ebers—Moll model. This circuit is an opportunity to see that in electronics, many components are
resistors. But since the majority are linear, a significant reduction in the number of unknowns
can be achieved by pre-solving linear constraints (the price to pay is denser matrices). As often
in electronics, this circuit yields a pH-DAE that is not explicitly convertible to a pH-ODE. This
is the occasion to look at the direct simulation of pH-DAE on a real circuit.

1. The song Rocket 88 by Ike Turner and Jackie Brenston is often credited as the first "rock and roll" song
featuring a damaged speaker. The songs Rumble by Link Wray and You really got me by The Kinks also feature
speakers damaged on purpose to obtain a fuzz sound.

2. The Woolly Mammoth is also NPN.
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Theory of operation As the behaviour and the design of the Fuzz Face are well documented,
we only provide a short description. It can be roughly described as a (voluntarily badly biased)
two stages common-emitter transistor amplifiers with feedback. The biasing is responsible for
asymmetrical clipping and even harmonics generation. The cascade of two transistors was used
(before OPA) to achieve a higher distortion gain. For more details, see reference [Ele20a).

Incidence matrix For the chosen orientation of branches®, the incidence matrix (definition

2.12 p.49) of the graph corresponding to the fuzz face schematic (figure 8.1) is given by

>

OICICICICICISICRIO

Branches B

-1 -1

+1

+1

IN CC Ci

Co Cs3 Ri Rs3

-1

+1

+1

Ry

+1

Rs Ry RS

-1

+1

R

-1

BC1 BE1

+1

-1

+1

BC2 BE2 OUT

+1

+1

-1

Dirac structure Using the causality assignment procedure detailed in subsection 2.3.3 p.57,
we select the minimum spanning tree (def. 2.9 p.48) T'= {IN,CC,C4,Cs,C3, R1, R3, Ry, Rs},

to split branches B into a current-controlled tree T and voltage-controlled cotree T (links).

From the incidence matrix A, using equation (2.15) p.55, we obtain the link cutset matrix Cp,

so that the circuit is described by the reduced hybrid Dirac structure (

v
WVIN VUCC VYo, VO, VC3 VR, VR VRy VRg iRy URZ iRg iBc1 iBE1 tBC2 %BE2LOUT
- 0 -1 0 -1 -1 0 +1 0
ot T ) B 51 B (R )
ic, 0 +1 0 +1 +1 0 -1 0
ic, . 0 +1 -1 0 0 0 0 0
ir { ic, —Cy {+1 0 0 0 0 +1 0 0
iR, . 0 0 0 —1 0 +1 +1 0
iRg 0 0 0 0 0 -1 0 0
J— | in . e 0 +1 0 0 0 0 -1 0
in, . . . . . . . 41 0 0 0 0 41 0 -1
YRy 0 +1 0 0 —1 0 0 0 -1 . . . . . .
VRg +1 0 -1 -1 0 0 0 —1 0
ng 0 0 0 +1 0 0 0 0 0 .
wp | vBct |[f1 -1 L0 0410 0 0f g
vBE1 +1 0 —1 0 0 0 0 0 0 E
veog |0 +1 0 0 -1 -1 +1 0 -1
vppe |-1 +1 +1 0 0 -1 0 41 0
vour |0 0 0 0 0 0 0 o0 1 ]

def. 2.21 p.55)
I

Note that the canonical separation between tree and link/cotree variables has been emphasised

by the ordering of component: tree currents iy (left) can only exchange with cotree currents

iz (right), while cotree voltages vz (left) can only exchange with tree voltages v (right).

3. Using the receiver convention, branch currents are oriented from positive nodes (41) to negative nodes (—1).
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Reduced dissipative structure To simplify simulation, we eliminate linear resistive branches
{Rl, R3, R4, Re, Ro, RE, Rg} by solving the corresponding linear resistive constraints, (see sub-
section 2.3.4, p.60 and [FH16a, Fall6, Lopl6]). Reducing linear resistive relations, the Dirac

structure matrix J is replaced by the (hybrid) linear dissipative structure * matrix

_UIN  VcC Ve vy vcy  iBC1 YBE1 iBC2 BE2 1OUT.

N —G11 o G Gn . -1 -1 o4

ico o —Ga2 o o Ga2 +1 —agzs -1 —ass

iy G11 o -G11 —Gn +1 +1 —Qiyg

10, G11 —G11 —Gus 5 . ous .
M — 1Cy . Gao . —Gag . @23 . as3s , (81)

VBC1 +1 =Il =1l —-R Ry Ry

VBE1 +1 -1 . . . .

VBC2 @23 o —agzz Ry —Rss3 —Ri1 Rss

vBp2 | —a1a  +1 Q14 —a4s Ry —R1  —Ruya 5

vouT ass —ass R3s —R35

where the conductances, gains and resistances parameters are

1 1 Ry+ R¢+ R?
G- Gop = ——, Gu = Tt B+ Bs
YT R+ R * " Ry+ Ry 7 R (Ry + RY)
R . oon = T2 e — 6 e — T
“ T R+ RY T Ry+ Ry’ % T Ry+ Ry’ ® T R, + R
RoRg + (R1 + R3) (Ra + Ry) RyRg Ry (R4 + R¢) + R4R¢
R33 = , R3s = 55—, Ry = .
Ry + Re Ry + Rg Ry + RY

Note that it is structured into a skew-symmetric part and a dissipative part of the form

T e o
a 0 0 R|’

M:

where G = GT = 0 denotes the tree conductance matrix and R = RT > 0 the cotree resistance
matrix, while a plays the role of adimensioned multi-dimensional transformer ratio (whose
values have a magnitude less or equal to 1, see example 1.4 p.7). Since nonlinear transistor
elements are coupled instantaneously through the (positive semi-definite) resistive matrix R,
further reduction to an explicit pH-ODE would require the implicit function theorem. Instead we
use direct pH-DAE simulation implemented as follows.

pH-DAE Discretization We identify equations corresponding to implicitly defined variables
. . . T
X =11C1,%C2,'C3 , VBC1,VBE1,VBC1,VBE2 ] .

Once these variables are solved, then iry,icc and wvoyr are also determined (by rows 1,2,10

in (8.1)). To keep notation simple and for space reasons, we focus on the first order Average
Vector Field (RPM methods with p = 1, k = 0) whose projector P : L%(Q2) — P°(Q), denotes

4. Please refer to corollary 5.2 p.120 for the power balanced projection of linear dissipative structures.



202 Chapter 8. Circuits case studies

projection on the space of constant functions”. We denote # the average projection coefficient of
a function u(t) over a time step (tg, to + h) so that (Pu)(t) = 1q(t) - @. For linear capacitors and
an affine temporal model of charge ¢(t) = qo + fg i(s) ds, the projected effort law V¢, is

_ b
= Taolc

1 L
<q0 + h/o ic(s) ds)

Velqoyic) =P (8.2)

C

For bipolar transistors (ex. 1.10 p.32), and (only for) piecewise constants signals vpc, Vg, the
projected law equals the original nonlinearity (evaluated for the averaged voltages)

yr —1| |pn(vBc)
-1 ~r| |pn(9BE)

Ipc(Vpe, UBE)

Ipr(Uc, UBE)

Splitting M, in equation (8.1), according to inputs u = (07n, ¥c¢) and unknown variables x, and
using the law of the output open circuit (ipyr = 0 in fig. 8.1), we obtain the following discrete

algebraic equations ’
% = Aé(x) + Ba, (8.3)

where matrices A and B (extracted from M according to X and u) are

[ —Gu1 —Gn1 +1 +1 —Aqy ] [ G111 ]
—G11 —Gu Auss G
—Gao A3 G2
A=| -1 —R; R, R |, B=| 41 -1|,
-1 +1
—Ags | Ry —R33 —Ry Aos
| A —Ass Ry —Ri —Ru | | —Au |
and where the projected variables X, i and projected laws é(X) are
ic, Ve (g@,5icy)
icy Vo (48, icy)
icy Vs (e, ics) _
X=| vpc1 |- e(x) = | Ipci(vBc1, UBEL) u= l,)IN
UBE1 Ipe1(vBct, UBE1) ree
UBC2 Ipc2 (B2, UBE?)
| UBE2 | | IpE2(UBC2,UBE2) |

First, (8.3) is solved using Newton iteration by looking for the root of F'(x) = 0, where
F(x) =% — Aé(x) — Ba.

Then we compute voyr from X and the observer equation (the last row of M in (8.1))

dour = Ass (voc — Uin) + RssI po2(Upc2, UpE2)-

5. See example 5.5.2 from chapter 5 for generalisations to higher projection order.

6. Note that, since capacitors are linear, one could further reduce the size of the algebraic equations to the four
nonlinear transistor branches. We do not perform this reduction to show the interaction between (discretized)
differential and algebraic equations.
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Figure 8.2 — (NPN Fuzz Face) simulation for a sine input with magnitudes {2,5,10,20} mV,
frequency fo = 200 Hz and sampling rate f; = 44.1 kHz. Note the asymmetrical distortion. The
fuzz sound is roughly characterised by the transformation of the input into a (filtered) square
wave with uneven pulse width. Convergence is reached after 1 to 5 iterations (1.671 on average).
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Figure 8.3 — (NPN Fuzz Face) Overlay of simulations from figure 8.2. As expected, we observe
gradual asymmetrical clipping of the waveform as the gain is increased (consistent with SPICE).
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8.2 Big Muff tone clipper

In this section we consider a nonlinear filter designed by simply merging the circuit of the
original Big Muff 7 tone filter (red+blue) with the circuit of a diode clipper (green part on
fig. 8.4). This non-trivial circuit is chosen for its relative simplicity, for the commonness of its
constituent parts and because it can be reduced to a pH-ODE.

iRQ A

Ry 227k

?12 /I:CQ @

(L

0
@ o Rs %\}’OOk @

orph
Ry i{h
@T VUIN 27k10 C? iD Eﬂ% vouT
n—~oq

Y icl

Figure 8.4 — (BMP Tone clipper) Schematics. Current-controlled spanning tree 7' shown in

blue. Voltage-controlled cotree branches 7T in orange.

Theory of operation The BigMuff 7 tone circuit consists of a passive cross fade (through
resistor R3: R$ = mR3, R} = (1 — m)Rs, m € [0,1]) between a first order lowpass filter (R, C1)
(red block in fig. 8.4) and first order highpass filter (Ra, C2) (blue block). As the combination of
both circuits is unbuffered, the two filters interact. Moreover, the output voltage of the lowpass
filter Ry, C1 is clipped by diodes Dy, D2 (in green) but since the circuit is passive, it also influences
the high pass filter branch in a nonlinear way. As a result (see figure 8.5), the lowpass and
highpass branches roughly produce smoothed square and triangular voltages respectively (for a
sinusoidal input).

Incidence matrix The incidence matrix of the BMP graph shown on figure 8.4 is given by

IN C; Cy R} Rl Ry R{ D OUT
-1 -1 . . . -1 . -1 -1
+1 . 41 . 41

+1 . -1 -1 . . 41

>
HEEEOE

+1 . .o =1 . +1
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Dirac structure We select a spanning tree T' = {IN, C1, Co, Rg} to obtain the following Dirac
structure matrix (encoding Kirchhoff laws)

UIN vCc1 Vc2 Vg iRl iR2 iR§ D iOUT

v | .. . . -1 -1 -1 0 0
icn .. .. 41 0 41 -1 -1
ico .. . . 0 41 41 0 0
i .. . . 0 0 41 0 -1

J= vp | +1 -1 0
VR2 +1 0 —1
vgg | +1 -1 -1 -1
UD 0 +1 0 0
vouT | 0 +1

Reduced dissipative structure The reduction of linear resistive relations yields the linear
dissipative structure matrix

UIN Vet vc2 D toUT

ity | =G =Gz —Giz 0 —a9
ic1 | —Gi2 —Ga2 —Gaz -1 —aa
M= iy |-Gz —Ga —Gszz 0 —oao3l; (8:4)
UD 0 +1 0 0 0
vouT | @21 a2 a3 0 —Ray |

where the tree conductance matrix G , cotree resistance matrix R and transformation ratio
« are

RiRo+(Ra+R2)R3  Ri+Rs _ Ro+Rs
R1R2R3 R1R3 RoR3 0 0
G = _Ri+R3 Ri+Rs 1 , R =
R1R3 RlR3 RB —
_ RytRy 1 RpRy 0 m(l—m)Ry
RoR3 Rs3 R2R3
0 +1 0
o =
(I-m) m —(1-m)

ODE Notice in (8.4) that the diode voltage vp does not depend implicitly on ip (Myy = 0), so
that we can easily solve the linear constraint vp = ve, (row 4). Furthermore, there is no load on

output pin @ so that the observer current vanishes (ipyr = 0). Substituting the capacitor laws
(see (8.2) in (8.4), we formulate the state-space ODE’

{x = —GxVH(x) — N(x) - Guu, (8.5)

y = CVH(x) + Du.

7. Here we removed the unobserved output variables, by consequence, the state space does not have the
canonical form of a pH-ODE.
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where
G Go G I i (‘IL)
X — qaci . Gy = 12 . Gy= 22 23 , VH(x) = o} lx, N(x) = D\
qc2 G13 Gz G33 0 & 0
y = vour, u = YIN, C= |:Oé22 Oz23:| , D = as;.

Discretisation by projection We consider the AVF discretisation. We use the averaged

_ IR T
current variable i = [icl,i@f and the initial condition xy = [qgl,q&} to parametrize the

trajectory
-
x(T) = %0 + h/ ic ds.
0
By projection of (8.5) on the space of constant funtions, we obtain the algebraic equation on ic
F(i¢) = i¢c + GxVH (%o, hic) + N(x¢, hic) + Gyt = 0, (8.6)
where the AVF discrete gradient for linear capacitors is
— & 0 1
VH(xp;0x) = |“* ) X0+ -0x |,
0 & 2
where the averaged law of projected diodes is

Z (vo + 6v) — Z(vo)

— 1 0

N (x0;0%x) = zZ <qCC1, 52&) ,  where Z(vp;0v) = dv ov#0,
0 L L z(vo) v =0.

and where the anti-parallel diode law z and its anti-derivative Z are given by

2(v) = 2Igsinh <‘;’) , Z(v) = 25V (cosh <‘;’> - 1) . (8.7)

T T

Remark 8.3. We remind that projection is computed according to theorem (5.7) p.141 (see
example 5.2). The quantity z plays the role of the dissipative AVF discrete gradient of the
voltage potential Z. The average discrete gradient has been applied to dissipative potentials
by the author in [MH18, (63)] where it is shown that the following closed-form expression
holds

+ 15 5 inh 0
Z(vo; 0v) = 2Ig sinh <UV;U> sinhc (2‘1/;> , where sinhc(z) := {im e if(]’ :

Finally, the system (8.6) is solved using Newton iteration, where we use the result from equation
(5.42) p.141 (also introduced in [MHI8, (38)]) to compute the Jacobian of the AVF discrete
gradients. Simulation results for varying values of the morph parameter are shown on figure 8.5.
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Figure 8.5 — (BMP Tone Clipper) Responses voyr (coloured curves) to a sinusoidal input vyy
in blue (amplitude 700 mV, fundamental frequency fy = 200H z and a sampling rate f, = 44.1
kHz. Morph values are continuously selected for m € [0, 1].

As expected from the circuit design, in figure 8.5, the lowpass output (dark blue curve)
is identical to that of a lowpass diode clipper circuit (i.e a damped saturated wave). As the
morph potentiometer is moved in the opposite direction (orange curve), the waveform becomes
progressively triangular (the diode limiting effect on voltage v, in the lowpass branch, yields a
quasi-constant current charge/discharge of capacitor Cy on the highpass circuit side)

By consequence, the output waveform roughly changes from a damped saturated square (low-
pass circuit branch) to a smooth triangular wave (high-pass circuit branch in orange) according
to the morph potentiometer.

The interest of this circuit remains mostly pedagogical rather than practical ®. It illustrates
the design of new circuits from simpler subcircuits, and the (sometimes) unexpected consequences
of unbuffered coupling. Indeed, "happy accidents" are not uncommon in the history of analog
audio electronics (even more among guitarists). Nowadays, a popular branch of this trial and
error approach to circuit design is commonly referred under the umbrella term of circuit bending.

8. In synthesizers, converters of sinusoidal waveforms to triangle and square waves use different and more
complicated circuitry. See [EPPB17b, GEPP18] for more information about "west coast" waveshaping audio
synthesis.
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8.3 Tube Screamer drive stage

We consider the drive stage of the Tube Screamer (TS) guitar Pedal. The T'S was manufactured
by Ibanez in 1979 to emulate the saturation of tube amplifiers with solid-state circuitry. Notable
users include Stevie Ray Vaughan, Carlos Santana and Steve Vai. This circuit is emblematic of
the class of overdrive circuits (as opposed to distortion which is more agressive) and it can be
found as a building block of many circuits (e.g. in the Boss OD-1, or in the feedback path of
the Korg MS-20 Voltage-controlled filter shown in section 8.4). The main advantage of overdrive
(compared to distortion) is that saturation applies to the difference v; — vo instead of the direct
signal v7. This leads to a more subtle effect preserving the dynamics and expressivity of the input
signal while enriching its harmonic content.

@
or}

D
4.7k 4‘7111 Py Ry @
I ]| AYN—ANA
gy o, @gg Sk

Figure 8.6 — (Tube screamer) Drive stage. In the original schematic, the virtual ground is set
to Viias = 4.5V, with Voo =9 V and Vigg = 0 grounded. For simplicity, we have chosen Vj;.s as
the reference voltage and shifted Voo and Vgg accordingly. Spanning tree 7' in blue.

Theory of operation Denote Ry = P, + R;. removing diodes and assuming that the OPA is
in nullor mode, the circuit reduces to a non inverting amplifier with Laplace transfer function

Z1(s) Ry ! ialra%:
H =1 =1+
75(5) + Za(s) - Ry (1 + sRlCl> (1 + 8R2C'2>

low-pass high-pass

where Z1, Zy are respectively parallel and serial impedances corresponding to R; || C1 and RoCl.
At high frequencies, Ry || C; act as a lowpass filter with cutoff frequency between 5.66 and
61.2 kHz, above which the gain reduces to unity. At low frequencies, RoCy acts as a high-pass
filter with cutoff frequency 720 Hz, below which the amplifier gain also reduces to unity. Between
these two limits, the circuit behaves as a bandpass booster (see figure 8.7) where Ry controls
both the boost and the cutoff. Adding diodes to the circuit brings soft saturation and limits the
voltage across diodes vp = vp — vy to approximately 22700 mV. When diodes are conducting and
the op amp is in nullor mode, the output voltage is approximately vo ~ vy 4+ 0.7, so that the
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effective gain also reduces to unity for large signals. For a typical guitar input signal (i.e. between
100 and 700 mV according to the type of pickups and playing intensity) and a 9 V battery as
power supply, the headroom before the opamp enters saturation” is about 3 V. A more detailed
analysis of the complete circuit can be found in [Ele20b].

Magnitude (dB)

Phase (rad)

102
Frequency (Hz)

10°

104

10! 102 10° 104 10°
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Figure 8.7 — (Tube screamer drive) Linearized frequency response for varying values of P;.

Incidence matrix The incidence matrix of Tube screamer drive circuit shown on figure 8.6 is

>
I

CICICIOICICIO,

CC

+1

EE IN C

-1

+1

-1

+1

+1

Cy Ao R
—1
+1 . —1
—1
+1 +1

Ry

-1

+1

D A; Acc Age OUT
-1 —1 -1
+1
-1 -1
+1 . . . +1
+1
+1

Dirac structure We select the current-controlled spanning tree T' = {CC, EE,IN,C1,Cy, Ao}

with voltage-controlled co-tree T = {R1, R2, D, Ar, Acc, Apg, OUT?} to obtain the following
hybrid Dirac structure

icc
IEE
N
ic,
10y
iAO
J — UR,
VR,
VD
'UAI
VAcc
VApp

vour

N Velel

o o © o -

S OO O O -

VEE

VIN

ve,

+1
=il
+1
+1

Ve, VAo IR

0
0
0
-1
0
0

0 0

-1 +1

0 0

0 -1

0 0

0 0

0 1

IR,

o

+1
+1

ID tA; %Acc tApp tOUT -
0 0 -1 0 0
0 0 0 -1 0
0 —1 0 0 0
-1 -1 0 0 0
0 0 0 0 0
0 +1 0 0 —1

9. For completeness, op amp clipping is handled in the simulation code. However, op amp clipping is too far
from standard behaviour, so that it is not pertinent to show on simulation results.
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Reduced linear resistive structure Reducing the resistive branches {R;, Rs} yields the
linear dissipative structure

vce VEE VIN Ve, VG, VA, D tA; %Age YAgp OUT

ico 0 0 -1 0 0

igg | - . .. .. 0 0 0 -1 0

iIN .0 -1 0 0 0

icy TG TGy TG L -1 00 00 0

i, | . . 1. —Gy =G Gy 0, 0 0 0 0
M= i, | . . . G Gy -Gy 0/ 41 0 0 -1 |,

D 0 41 0 0 |

va, | O 0 A1 41 0 -1 .

Vaee | +1 0O 0 0 0 0 .

Vigs| O 41 0 0 0

vovr| 0 0 0 0 0 41 |

with conductances G1 = 1/Rg, G2 = Réj'R}?.

Reduced DAE and ODE To solve the system, we remove variables corresponding to trivial
constraints in matrix M. It is enough to consider the implicit DAE defined by the following
submatrix of M (all other variables of the system can be retrieved from ic,,ic,,v4,,vp using M
and component laws).

VIN Ve, VU,  VAg D
ic,| 0 —Gro —G Gy -1
ic,| 0 —Gy —G» Go 0
va, | +1 41 0 -1
UD 0 +1 0 0

To handle the OPA, we have to consider the third row of M, with special care:

e Nullor mode (see subsection 7.2.1 p.190): we have va,(A) = 0. This yields the linear
constraint va, = vy + vy

e Saturation mode: we have the constraint va,(\) = vr + ve, — va,(X). Furthermore, if
va, > 0 then vy, = voe and if vy, <0, then v4, = vEE.

Here, we unify both modes by solving for v4,, and introduce the function

Vg VU < VEE,
VA, (V) == v v € [vpg, vocl, (8.8)
voc VU > veC.

Substituting capacitor and diode laws (vc = ¢/C and ip(-) = z(-) from (8.7)), in the first two
rows of M., and using v, = viy + ve, (row 3), we finally obtain the reduced ODE

] -G -G C G 1
ol 12 2| |@/Ch I <UIN n Q1> 1 <q1) (8.9)
P —Go —Ga| |q2/C2 Go Gy 0 C1
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Discretization Using the Average Vector Field discretisation method with q1(7) = ¢¥ + 7dq1,
q2(7) = ¢9 + 78g2 yields the algebraic equation F(6x) = 0 for the variables 6x = (Jq1, dg2) where

1) -G -G q1/C G 1| -
F(6x) = al h 12 2| |@/C + 2 VAo (UIN + 2) — iD <2> )
0q2 -Gy —G2| |32/Cs Gs 0 Cy

where T4 (1) = [ vao(0(r)) A, ip(v) = [} vay(v(r)) dr and Ge = [ qo(7) dr = g + Sgc/2.
denote the average vector field projection of component laws in the right hand side of (8.9). As
for other examples, the system F'(dx) = 0 is solved using Newton method.

Simulation results for a sampling rate of fs = 44.1 kHz are shown on figure 8.8. For simulated
examples, convergence is reached after 1 to 3 iterationés (1.52 on average) for absolute and
relative Newton errors respectively of 10 £V and a 107!°. Note that exhaustive energy and power
plots are not reproduced for each example for brievety (see [MH18, fig. 2 and 4], reproduced in
appendix G p.323, for similar plots, see also figure 5.13 p.152).

800 A
Vin
600 A Vout (d=0.00)
Vout (d=0.25)
4 -
00 Vout (d=10.50)
E 200 1 Vout (d = 0.75)
- Vout (d=1.00)
8’) 0 - I ”
S e
S —200 - ’
>
—400 A
—600 A
—800 +— T T T T T T
0 5 10 15 20 25 30
Time (ms)
(a) fo =100 Hz, G = 200 mV
600 A N -—- Vin
— Vout (d=0.00)
400 A —— Vout (d=0.25)
— Vout (d=10.50)
< 200 A — Vout (d=0.75)
£ . —— Vout (d=1.00)
g 0 s -
(o)) S
S
S —200
—400 A
—600 A
0 1 2 3 4 5 6
Time (ms)

(b) fo =500 Hz, G = 50 mV

Figure 8.8 — (Tube screamer drive) simulation for the series resistance R; exponentially dis-
tributed in [51,551] kQ according to the drive parameter d € [0, 1]. The input signal is a sinusoid
with frequency fy and amplitude G simulated at fs = 44.1 kHz.
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8.4 Korg MS-20 Filter

The filter of the Korg MS-20 synthesizer is (with the Moog filter) one of the most famous
synthesizer filter. It has been studied in the references [Sti06, Pirl3]. This filter is closely related
to the Sallen—Key filter from section 7.1.4 with the following differences: the lowpass filter stages
are buffered from each other by (ideal) voltage followers !’; the feedback path contains a nonlinear
overdrive amplifier (see figure 8.9b) and a voltage divider to control the resonance of the filter.
Resistors R3 and Ry (voltage divider) controls the feedback gain of the filter. Furthermore,
the nonlinear amplifier also features a calibration gain. The combination of both gains with
nonlinearities allows the filter to reach self-oscillation.

(b) Voltage buffer vo = vy (c) Overdrive amplifier vo = A(vr)  (d) Clipping diodes (element D)

Figure 8.9 — (MS-20 filter) Simplified overall schematic (a) and its sub-components (b-d). In

(a), the chosen spanning tree 7T is shown in blue and its complimentary cotree T in orange.

10. in this example, contrary to the Sallen-Key example of section 7.1.4, we assume that the power supply
voltages are large enough to not enter saturation.
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8.4.1 Overdrive amplifier

The overdrive amplifier (figure 8.9¢c-d) is a non-inverting amplifier (as in section 7.1.4 ) with
negative feedback diodes to limit the voltage difference between inputs and outputs. This situation
is similar to the TubeScreamer saturation in section 8.3 but without capacitor filtering.

Algebraic modelling The stage is composed of resistors, diodes and OPA, all considered
memoryless. To avoid solving such a stiff system iteratively, we choose to pre-solve this sub-circuit
as an equivalent algebraic component. We assume that the power supply voltages are large enough
to maintain the OPA in nullor mode. Applying nodal analysis at node @ (see figure 8.9¢) yields
iR, =ip +ig,. This leads to to the voltage equation v;/Ry = (vo —vr)/R1 + ip(vo — vr), that
we reformulate as an implicit equation on the output voltage

R
vo = <1+1> vr — Ryip(vo — vr), (8.10)
Ry
where the clipping diodes law ip is given by
in(v) = I'sinh <€;> with I =2Ig, V = 3Vp. (8.11)

Analysis for small and large signals: For small signals (ip = 0), diodes are not conducting,
so that the non-inverting amplifier is governed by vo ~ Guvy with G =1+ %. For Ry = 10k and
Ry =2200(1 + (1 — k)) with k € [0, 1], the small signal gain of the amplifier belongs to [3.2,5.54].
Conversely, as soon as diodes conducts (large signals), the signal is soft-clipped. Assuming that
we know an explicit mapping vo = A(v;), (lumping the power supply ports '), we can replace
the circuit by the nonlinear amplifier two-port defined by

{(U[,Uo,i[,io) € R? x R? |ir =0, vo = A(v[)}.

Explicit formulation and approximation Using the implicit function theorem, one can
prove that there exists a unique function A : v; — vo = A(vr) solution of (8.10) that can be
tabulated (see figure 8.10). Going further, we look for a closed-form approximation of A. To this
end, we invert the hyperbolic sine in (8.11) to obtain the equivalent formulation of (8.10)

vo = vr + V asinh <GU]I%1_IUO> .

This form suggests a candidate approximation model A(v) =~ g(v; a, 3, ) parametrized by («, 3, 7)

1/v

g(v;a, B,y) = v+ asign(v) (asinh (6|v\7)) (8.12)

A very accurate approximation can be obtained from (8.12) (see figure 8.10). For V' =3-26 mV
A, I = 2 fA, nonlinear least squares optimisation yields the optimal parameters

K ‘ « 15} vy
0 | 1.7 1.33 14.56
05| 1.7 1.78 14.28
1.0|1.69 2.69 13.71

11. If required it is still possible to recover the power supply currents to express the power balance using the
OPA model from subsection 7.2.1, but we do not detail this further.
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4 Error A(v) —g(v; a, B, y)

0.006 A

0.004 4

0.002 4

0.000 4

—0.002

Output Voltage vo (V)
Approximation error (V)

—0.004

—0.006

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -3 -2 -1 0 1 2 3
Input Voltage v; (V) Input Voltage v; (V)

Figure 8.10 — Explicit overdrive amplifier mapping and its approximation for x € [0, 1]. Exact
relation A(v) in black, and its approximation g(v) in dashed orange.

8.4.2 Filter

For this circuit, thanks to buffering, it is simpler to use Nodal analysis (at nodes @, @) to
directly obtain the ODE: using Kirchhoff laws, we have ic, = ig, and ic, = i, and using the
node voltages ea = v40 + v, , €3 = V2, U5 = V4 one gets

U1 — V40 — V1 VAO + VCy — VC2

B Ry ’ Ry '

The nonlinear state space system is obtained using (i) the amplifier law v4o = A(kvc,) where
k= Rf f}‘h € [0,0.55] corresponds to the voltage divider, (ii) introducing co-energy variables
T1 = vUgy, T2 = v, for the linear capacitor law ic = C'0¢ and (iii) defining the cutoff pulsation
we := 1/(RC) for equal resistances R; = Ry = R, and capacitances C; = Cy = C.

i, icy =

1 [z -1 0 T -1 1 pR4
= + A(kzs) + vy, where k=————, 8.13a
We | 1 =1 |x2 1 (kz2) 0 R3 + Ry ( )
vo = T2. (8.13b)

Small signals analysis For small signals, we have the linear approximation A(v) ~ Kv with
overall feedback gain K = Gk (remind that G =1+ %) Then equation (8.13a) simplifies to

1 i -1 -K | |z 1
— " ~ Ll I e (8.14)
We i‘g 1 K-—-1 xI9 0

From this linearized state-space system, we can obtain the following Laplace transfer function,

which corresponds to a resonant lowpass filter with Q-factor Q = ﬁ and cutoff pulsation w,

(see section 7.1.4 for more details on resonant lowpass filters and their frequency response).

(wic)2+(2_K) (Wi) +1

Hys20(s) = (8.15)
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As noted in |[Pirl3| and in contrast with the unbuffered case from section 7.1.4, the filter reaches
infinite Q (i.e self-oscillation) for K = 2 instead of K = 3. Furthermore, according to circuit
parametrisation, the maximum feedback gain (for small signals) belongs to [1.76, 3.05] for p =1,
k € [0,1], which is enough to reach self-oscillations.

Large signals analysis For large signals, the output of the overdrive amplifier can be approxi-
mated by vao ~ +2.1 + v; so that the direct gain of the circuit is bounded by K = p < 0.55.
Despite the absence of rail-to-rail hard clipping as in section 8.3, the clipping diodes are still
strong enough to stabilise the system.

Discretization To simulate this filter, we use the Average Vector Field discretization. Projection
of equations (8.13a), (8.13b) for affine state trajectories of the form v(7) = v° 4+ 7dv with 7 € [0, 1]
yields the discrete state space

) -1 0 0415 —1| _ 1
i PLE20T T T, kswa) + || or | (8.164)
0o 1 =1 |29+ %5&62 0
1
Vo = T2 + 55%. (8.16b)

where the normalised pulsation is wg = hw. and A(vg, 6v) := (1, A(vg + 70v)) denotes the AVF
projection of the feedback nonlinearity. The algebraic system (8.16a) is rewritten as F'(dx) = 0
with dx = [d21, d29]" and solved using Newton iteration, where the Jacobian of F' is

1{-1 0 0 -1
F(0x)=T—wq| = +k 0

Ak, ko
2 1 1 O 1 851‘2 ( .’172, ZIIQ)

Simulation results Simulation results are displayed below on figures 8.11, 8.12 and 8.13 for
square and saw inputs at various amplitudes to exhibit the nonlinear behaviour of this filter.

2000 1 —
Vo
. 1000
>
5 |
3 0 -
o
G
= 1000 -
~2000 1
0 25 50 75 100 125 150 175 200

time (ms)

Figure 8.11 — MS-20 filter response to a square wave input with peak volage 650 mV, for a
cutoff frequency of 100 Hz and a resonance k = 0.9, k = 1. The nonlinear self-oscillation is clearly
visible, with an asymmetrical waveshape modulated by the square wave input signal.
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Voltage (V)

0 20 40 60 80 100
time (ms)

Figure 8.12 — (MS-20 filter) same simulation as figure 8.11 with input levels {600, 650, 700} mV.
We observe that the input amplitude influences the amplitude of self-oscillation, its frequency, its
damping and its shape. The higher the input, the higher the damping. The lower the oscillation
amplitude, the higher the resonance frequency.

1.0
054+ v

0.0 4

Voltage (V)
S
w

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time (ms)

Figure 8.13 — (MS-20) response to a 1V sawtooth signal with fundamental frequency fy = 100
Hz. The cutoff frequency is set to 2.5 kHz for a resonance k = 0.68. Bursts of self-oscillation in
the middle of the ramp are typical of this filter and allowed by the temporarily lower input level.

Simulation results are consistent with SPICE simulation and measurements. The expected
behaviour of this filter and its salient features are reproduced. Note that comparing results with
the ones of the Sallen—Key filter in figure 7.13 p.187, we observe that small topological changes
(buffering stages and a nonlinear feedback path) yield significant modifications to the behaviour
of this filter (an thus to its sonic character). Important differences are: (i) filter oscillations are
saw-like rather than sinusoidal (fig. 8.11), (ii) the behaviour is more progressive according to
input level (fig. 8.12), (iii) self-oscillation can happen near zero-crossings (fig. 8.13).



8.5. FitzHugh-Nagumo relaxation oscillator 217

8.5 FitzHugh—Nagumo relaxation oscillator

In this section, we consider the electronic realisation of a FitzHugh-Nagumo (FHN) (see
[Fit55, NAY62]) relaxation oscillator. The FitzHugh—-Nagumo model was originally proposed by
FitzHugh as modification of the Van der Pol system to model neurons. It uses a cubic nonlinearity
with negative incremental resistance to achieve self-excitation. The electronic circuit realisation
of fig. 8.14 was proposed by Nagumo and uses a tunnel diode (see ex. 1.9 p.31) to implement a
nonlinearity with negative incremental resistance. In music, FHN oscillators have been used for
sound synthesis purposes in [Col08, SBM] and for beat/tempo synchronisation in [Eck02; AOI07].

ve|l—-=—C vp

L

Figure 8.14 — Electronic realisation of a Fitzhugh—Nagumo relaxation oscillator.

Theory of operation At static operating point, the capacitor C' can be considered as an open
circuit and the inductor L as a short-circuit. The tunnel diode D is biased by the combination of
the voltage source E and resistor R by the load line vp = E — Rip (for vy, = d) =0andir = —ip).
It can exhibit astable, monostable or bi-stable behaviour according to the choice of E and R (see
[RCAG3, p.36-44] and figure 8.15). The inductor controls the slow dynamics by modulating the
bias point current. This roughly determines the period of relaxation oscillations. The capacitor
acts as a stiffness controller by smoothing the fast jumps occuring when the trajectory is in the
unstable negative incremental resistance region. Indeed, in the limit C' — 0, the diode becomes
current-controlled by the inductor. Its characteristics is current-controlled and multi-valued (see
fig. 8.15), but only the positive incremental resistance points are stable points of the system.

LOAD LINE T

b S S N e
Ip TUNNEL -DIQDE
CHARACTERISTIC
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: i
|
ll 1

Iy d N\ i

|

o Vp Ve, Ve, Vy 73 Veg v

Figure 8.15 — Different biasing scenarios for a tunnel diode multivibrator. Figure extracted
from the RCA tunnel diode manual [RCAG3|.
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Incidence matrix The incidence matrix of the graph corresponding to the FHN schematic is

EelR p L

A €)1 T B
@ . 1 -1 1 .
3. -1 . -1 1

Dirac structure From the incidence matrix A, we select the current-controlled spanning tree
T = {R,C, E}, with voltage-controlled cotree T = {D, L}, to obtain the hybrid Dirac structure

ip i, VR YC VE

vp| . . 0 1 0

ur | - . -1 1 -1
J= IR 0 1

ic| -1 -1

ip| O 1

Reduced Linear resistive structure Eliminating the linear resistor branch R and solving
the trival constraint vp = v¢ yields the linear dissipative structure

I ip(ve) i ve VB
VD . . 1 0
S =0l SRR vf, . -R 1 -1
M= "L} T et — M= jo| -1 -1
'L.C \—1 —1 : 0 1
| | 1
ig 10 1 | g

pH-ODE Finally substituting the laws of the components, one obtains the dissipative pH-ODE

x = —r(x) + JVH(x) + Gug, (8.17a)
ip = -G VH(x). (8.17b)

where the state x, skew-symmetric matrix J, Hamiltonian H, resistive function = and port matrix
G are given by

R 101 1 qu qj B RV H (x) -1
X = q ) J= 10 ’ H<X)_2<L+C>7 ’I‘(X)— Z(qu(X>) ) G 0

We use as default values £ =400 mV, R =20 Q, C' = 10 uF, L = 300 mH. For the tunnel diode,
we use the model of the tunnel diode from example 1.9 p.31

2(0) = Ts (eXp <V”T> _ 1) I (;;) exp (- (” ‘VPVP)) ,

with parameters Ig = 1 fA, Vp = % ~ 26 mV, Ip =4.7mA, Vp = 100 mV.
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Simulation The system is solved using AVF projection and Newton iteration. Simulation
results are shown on figure 8.16 with time series corresponding to different values of the bias
voltages E/ and the capacitor C. Phase plots are shown on figure 8.17.

The g-nullcline ' (¢ = 0) corresponding to the tunnel diode is an attractor for the slow
dynamics. When its intersection with the ¢-nullcline (gi) = 0) happens in the negative incremental
resistance region, the equilibrium point is unstable, leading to a limit cycle. On the contrary,
when the intersection happens in the region of positive incremental resistance, the equilibrium

point is stable and all trajectories converge to it (red trajectory).

Voltage v, (mV)

0 20 40 60 80 100
(a) F =200 mV

S
E
s
()
[@)]
8
S
>
0 20 40 60 80 100
(b) E =300 mV
400 -
>
£ 2001
S o — C=3uF
g T —— C=10uF
8
£ -200 - /
>
_400 L T T T T T T
0 20 40 60 80 100

(c) E =400 mV

Figure 8.16 — FitzHugh—Nagumo relaxation oscillations, varying values of the offset voltage
E € {200,300,400} mV and capacitance C' € {3,10} uF.

In figure 8.16, the frequency of relaxations increases with the bias voltages E while the
period increases with higher values of capacitance C'. The smoothing effect of the capacitance is
noticeable by reducing the slope of the relaxation. Time is displayed in milliseconds.

12. For a system of ODE x = f(x), the i-th nullcline is the geometric shape such that x; = 0. The equilibrium
points of the system are located where all of the nullclines intersect (i.e. x = 0).
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Figure 8.17 — (FitzHugh—Nagumo) Phase plot, for varying values of E.

In figure 8.17, the simulated orbits trajectories are displayed in the (ve, —ir)-space of co-
energy variables. Inductor nullclines are shown as load lines corresponding to each bias point
(dashed colored curves, b=0 < vo=F+ Rir). Conversely, the capacitor nullcline
(=0 <= ir =—2z(vc) and vc = vp) corresponds to the tunnel diode characteristic. It is an
attractor for the slow dynamic (dashed black). Note that the red curve converges to a stable
equilibrium point (positive incremental resistance) at the intersection of the (dashed red) load
line and the (dashed black) tunnel diode characteristic (red dot) while other curves converge to
limit cycles about unstable equilibrium points (blue, orange and green dots).
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8.6 Passive peaking equalizer (beyond the Nyquist frequency)

1D

1Y

Figure 8.18 — (Passive Peaking EQ). Spanning tree T in blue, cotree T in orange.

We consider a passive peaking equaliser circuit (the only linear example in this chapter) to
study the effect of high order RPM methods on frequency warping and spectral accuracy for open
systems. Indeed, in the linear case, the stability function for projection order p = 1 is identical to
the mid-point and bilinear ones (sharing the same numerical dispersion).

Reminder on the bilinear method Artefacts of the bilinear method on the frequency
response of systems are well known. Let H,(s) denote the Laplace transfer function of a
continuous-time system, its discrete-time approximation Hg(z) is obtain by substituting s by

A 22—-1 -1 1
§(z):M:E%+1, where A:Zh ) and M:Z;
in H,(s) so that Hy(z) := Hq(5(z)). Operators A and M are finite differences approximation
of the time derivative and identity centred at h/2 (to compensate the time shift induced by A)
where z = e"® denotes the Laplace transform of the positive time-shift operator (see |Bil09, p.35]).

Substituting z = e in (8.18) one can show that bilinear discretization acts as the mapping '*

hs hs ha hw ,
5= tanh <2> , so that 5 = tan <2> for s = iw. (8.19)

(8.18)

The principal value of this mapping warps the frequency axis § € iR to the range s € i(—hmw, hr)
severely distorting the frequency response at high frequencies (see fig. 8.19b and D.4 p.299).

Remark 8.4. To link the AVF/RPM(1,0) method with the bilinear scheme, note that, for
an affine trajectory z(t) = z¢ + (t/h)(x1 — x0), M is the discrete equivalent of the average
vector field projection Z = (21 + z9)/2 and A of the average slope & = (z1 — x¢)/h.

Goals To challenge high-order RPM schemes (def. 5.1 p.122), we consider the case where the
peaking equalizer has a resonance frequency beyond the Nyquist frequency. This situation is in
fact common in electronic audio circuits: several analog equalisers use a peaking EQ between
20 kHz and 100 kHz with a large bandwidth to implement high frequency boost (instead of a
shelving filter). Note that for audio use, we are not interested in the frequency response above 20
khz (beyond human hearing). Nevertheless, the action of a 50 kHz resonance on input signals
below 20 kHz is significant (see fig. 8.19a) and should be faithfully reproduced.

13. see also the frequency warping graphs shown in figure D.2 p.298 for several values of projection order p.
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Theory of operation The potentiometer is parametrised by v € [0, 1] according to the law
R¢ = (1 — )Ry, R® = yR;. When the potentiometer R is down (y = 0 R} = Ry, RS = 0), the

RLC network is short-circuited (ve = v4) so that the remaining circuit is a simple voltage divider

with static gain ap = 522~. When ~ is increased, the RLC network acts as a bandpass filter
Ri+R>

whose contribution is added to the output to yield a peaking EQ. Its resonance frequency is
controlled by L, C and its bandwidth by Rs.

Incidence matrix The incidence matrix of the circuit shown on figure 8.18 is given by

S C R} Rp RO L O
-1 . . -1 . . -
+1 .+

+1

-1 . . . +1

>
I
HEH®OE

+1 -1 -1 +1

Dirac structure We select the current-controlled tree T = {S, C, RS, RQ} with cotree T =
{R%, L, 0} to obtain the Dirac structure

US UC UR: VR, iR‘; ir, z'o_

is [ . . . . -1 -1 0
ic| . . . . 0 +1 0
ire| . . . . #1410

J= g, | . . . . 41 41 —1f.

v [+1 0 -1 -1

v, |+1 -1 -1 -1
V0 0 0 0 +1

Reduced linear resistive structure Reducing linear resistive branches {R‘f, RQ,RZ{}, with

the potentiometer relation R{ = (1 — )Ry, Rll’ = vRy, yields the resistive structure

vs v iL o

is FGn1 0 —oqr —oae
ic| O 0 +1 0

M = (8.20)
vp | a1r —1 —Ri1 Ris
volaiz 0 Rip —Ry
where
G ! G11R G11R
= —_, (8% = s (87 pry s
11 Ri + Ry 11 BASaNF11] 12 11412
R1R2 Rl
Roy = ———, Ris = VR, Ry =(14+4—(1- Rqs.
22 R, + Ry 12 Y122 11 < Rz( 7)) 12
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pH-ODE and state-space formulations The pH-ODE is built from (8.20) by (i) choosing
the state & = [¢, ¢]T, input u = [vs,ip], and output y = [ig, vo], (ii) substituting component laws
ve =q/C,ic =q, i = ¢/L, vy = é in (8.20) with energy H(q, ¢) = % + % In practice, we
use an open circuit load ip = 0 (reduced input u = vg) and neglect ig (reduced output y = vp).
Then (8.20) can be formulated as a pH-ODE (left) with reduced state-space system (right)

z = (Jx — Rx)Qz + Gu, — z = Az + Bu, (8.21a)
y=-G'Qz + (Ju — Ry)u, — y = Cz + Du. (8.21b)

where systems matrices are respectively

0 1 1/C 0 0 0 —G11 — a2
Jx—Rx:[ ]7 Q [0 1/L:|’ GZ[au R12:|’ Ju_Ru:[ 1%22]7

—1 —Ri11 12

I
—
Q
=
S
J—

A= (Jx—RQ, B:[a?l,}, cz[o Rlz/L}, D

Laplace transfer function Computing the Laplace transfer function using the formula
Heq(s) = C(sI — A)~!B + D yields the standard form of a peaking equalizer

H (s)( Ry ) LCs®> +yRCs+1 K_(&>2+B(7)<Ui)>+1
B =\ Ry + Ry LCsQVVRlC((l_I%)%QRQ)SJF]‘_ <§0>2+%<§0>+17

where the direct gain K, pulsation wp, damping/bandwidth B and resonance gain G are

RQ 1 C Rl +R2
K=—"2_ ———, B()=9Ri/=, G()= . (822

Note that this peaking EQ is neither constant-Q) nor exactly proportional-@ (see [Boh88]). The
quality factor @ = 1/B is modulated by +, so that the higher the boost, the larger the bandwidth.
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Figure 8.19 — (Peaking EQ) Frequency Response for L = 10 mH, C' = 1 nF, Ry = 9k, Ry = 1k,
v € [0,1]. This yields fo ~ 50 kHz and Q(1) ~ 2.8. (a) continuous-time response, (b) warped
frequency response of second order mid-point/AVF discretisation (see eq.(8.19)) for a sampling
rate f, = 44.1 kHz (Nyquist frequency fs/2 in dashed blue). The main drawback is that the
resonance peak is warped by several kHz into the audible frequency band. Note that the frequency
response is also periodised above the Nyquist frequency by sampling, but is not shown here.
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8.6.1 High-order RPM discretisation of a linear state-space system
Definitions To discretize the state-space (8.21a)-(8.21h), we use '* RPM(p,0). Denote '

= (B &), = (R, = (R, (8.23a)

the projection coefficients of functions &(7), u(7),y(7) in the Legendre basis over a unit time step
Q = (0,1). Using the Kronecker product (see appendix D.10.1) and n x n identity I,,, denote by

A=I,©A, B=L,eB, C=I,0C, D=IL®D, I=L®I, (8.23b)
expanded state-space and identity matrices. Moreover, denote respectively
- N r p—1
I=eo®I, withey = [(F|1)]/_, and V =V, ®I, with V), = [(PZ- | [Pﬁ} , (8.23¢)

the matrix representation of the constant function |1) and the operational matrix of integration
(Vp = [y extended to R") (see (C.17) p.286). Introduce the discrete integration operator

-

V:(x0,X) = % = Ixg + hVX. (8.23d)

Projected state-space Using these notations, Legendre projection of the continuous-time
state-space system (8.21a)-(8.21b) yields the projected linear system of algebraic equations

x = A% + Bi, Ll
)j ~}j+ fi ; where X = V(xq,X). (8.24)
y = CxX+ Du

Explicit solution Solving (8.24) for X, yields the coefficients of the projected vector field
- =\l /5 o0 -

- (I - hAV) (Aleo + Bﬁ) : (8.25)
where AV = V, ® A (by properties of kronecker products, see appendix D.10.1). As the state
increment x; — Xq is proportional to the average (fol) of the vector field &, projecting (8.25) on
(1], (equivalent to the transposed matrix (f)T), we deduce the discrete time-stepping scheme

- - SNl /o oo -
x1 = xo + h(D)T (I - hAV) (AleO + Bﬁ) . (8.26)
From (8.23d)-(8.25), we get the explicit input to output map (in term of Legendre coefficients)

— —

o S /o R I _
Hygn 5 =C <Ix0 AY (1 - hAV) (Avixo + Bﬁ)) + Dii. (8.27)

Remark 8.5. The Jacobian of the mapping (8.27) with respect to U is
C(hV(I - hAV)'B) + D (8.28)

This is analog to H(s) = C(sI — A)"'B+D = C1(I- A1)"!B + D, the Laplace transfer
function of a state space system. Note that in (8.28) the operational matrix of integration

hV plays the role of the Laplace integration operator %

14. See def.5.1 p.122. For simplicity, we only consider regularity order k = 0
15. Note that x denotes the coefficients of the projected vector field, here the dot is a label, not an operator.
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8.6.2 Frequency response and Legendre filterbank interpretation

We want to study the quality of the RPM(p,0) high-order projection scheme (8.27) on the
continuous-time frequency response. First, we establish the continuous-time system corresponding

to the discrete-time one (8.27). Second, we derive its Laplace transfer function '°.
Legendre Analysis Discrete projected system ﬁg(z) Legendre Synthesis
! i) fo(=) !
U(s) T > Pg(é) —» L1y . > ;b Llly Y (s)
! 1% Flwo(z) Hoi(s) B }
= i) Aoo(Z) Ao1(2) AUI(Z) W) 5
g > P (s) L1y > Hio(z) Hi(z) Hii(z) Ll g
E | ! Hyo(z) Hy(z) Ha(z) | =
! R () B(2) |
h > P (s) o Ll ™ > > Ly
3 | ADC 3 i Digital 3 |
continuous convolution + sampling Discrete multi-channel convolution pulse gen. + continuous convolution

Figure 8.20 — Interpretation of RPM(p=3,0) as a mixed Legendre filterbank. We remind that
the discrete Z-domain is embedded into the continuous Laplace domain through z = €°.

Legendre filterbank interpretation Step 1) The discrete-time system (8.27) governs the
discrete-time Legendre coefficients mapping t[n| — ¥[n] (blue block on fig. 8.20). In this step,
we formalize its Z-domain matrix transfer function f—I\p(z). Step 2) Legendre coefficients result
from a frame-synchronous analysis/projection process u(t) — t[n]. This can be reformulated as
convolution with the mirrored impulse responses Py (—t) followed by sampling (gray block). The
continuous-time output results from the dual synthesis process, ¥[n| — y(t) (reversing the order
of operations): impulse synthesis followed by convolution with Legendre poynomials Py (t) (figs.
C.1 C.2 p.287). In this step, we obtain their Laplace transfer function. Step 3) The complete
system (analysis, discrete system, synthesis) can be represented by the cascade in figure 8.20. In

this step, we obtain its frequency response Y (s) for a zero order hold input U(s).

Step 1: Z-domain transfer function To obtain the Z-domain transfer function of the
projected state-space (H)p(2) in the middle of the filterbank), we propose the following result

Proposition 8.1 (Z-transform of Legendre projected state-space). Consider the continuous
state-space system (8.21a)-(8.21b) discretised by RPM(p,0), according to (8.23a)-(8.27). Then,

I~ —

the Z-domain transfer function H,, of dimension p X p, satisfying y(z) = Hp(z)u(z), is

— eoel - eoel I
Hy(z) = 4V, |ec] (I- (22 1v,)ca| B+D. (8.29)

z — z —

The proof of this proposition is detailed in appendix D.10 p.305.

16. Under the condition that input signals already belong to projection space. Note that the continuous-time
system of figure 8.20 is not shift-invariant hence its Laplace transfer function is not defined in general.
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Step 2: Laplace transform of Legendre operator For continuous-time analysis and syn-
thesis, we need the Laplace transform of the Legendre polynomials restricted to 7 € (0, 1).

A) Unrestricted transfer functions: We first introduce the one-side Laplace transform of
shifted orthonormal Legendre polynomials extended to [0, c0)

~

By(s) == /000 e " Py(r)dr. (8.30)

Symbolic computation up to degree 3 yields

k 0 1 2 3
(8.31)
~ _s) VB5(12—6s+s%)  VT(120—60s+125%—s3
Bu(s) 1 Ygmn SlEetd) JUR-Seniatos)

Remark 8.6 (Legendre polynomials and Padé approximations of the exponential). The
numerators of B\k(s) are proportional to the denominators of the (k, k) Padé “ approximation
of the exponential (see [EhI69]) while numerators of Bj(—s) corresponds to the Padé
numerators so that

ki1 Br(=s)

Padey i) [exp](s) = (1) Ek(s)

= ¢* + O(s%). (8.32)

a. We have already seen Padé approximations of the exponential when considering the stability function
of RPM (see section D.7)

B) Time-limited transfer functions: Restricting shifted orthonormal Legendre polynomials to
the unit time interval, their Laplace transform is

1
Pi(s) ::/0 e ¥ Py(r)dr, (8.33)

Symbolic computation yields the results shown in table 8.1.

k Py(s)

1—e*

S

1 \s/f ((2 —s5)—(2+ s)e_s)

\/5 2 2\, —s
2 83<<12—63+3)—(12+63+3)e )

7
3 4 <(120 — 605 + 125% — 33) — (120 + 60s + 1252 + 83)678)
S5

Table 8.1 — Laplace transforms of Legendre polynomials restricted to (0, 1).

Then, we introduce the Legendre convolution operator of order p in the Laplace domain by

Py(s) = |Py(s) ... P,_i(s)]- (8.34)
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Remark 8.7 (Laplace exponential approximation error). The Laplace transforms of unre-
stricted and time-limited polynomials are linked by the identity

Pi(s) = Br(s) — (~1)F' By(—s)e " (8.35)

Furthermore, dividing (8.35) by B(s) and using equation (8.32), one can form the error

This error quantifies regions, in the Laplace domain, where the time shift operator e® is
well approximated by the projection methods (shown on figures 8.21 and 8.22). This error
measure is also closely related to the stability theory of order stars (see [WHNT78|).

k 0 1 2 3

Ek(s) (1 _ e—s) <1 _ @e—s) (1 _ s2+65+126—s) (1 _ 120+603+1252+s3e—s>

2—s s2—6s+12 120—60s+12s2—s3

Table 8.2 — Laplace exponential approximation error for the Legendre polynomials.

| Q' 5 "V/'
\!

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Normalized frequency

Error (linear magnitude)

Figure 8.21 — Legendre exponential approximation error in the frequency domain. Note the
manifestation of Strang-Fix conditions in the spectral domain (see eq. (3.22) p.87 and appendix
(.3 p.285): the order of accuracy increases with the number of zeros of the error Ek(s) at the
origin s = 0, which in turn increases the width of the maximally flat approximation region.
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Figure 8.22 — Exponential approximation error ‘Ek(s)‘ in the Laplace plane for Legendre

polynomials for k = 0,1,2,3 (from left to right). We observe that the accurate region (in red)
increases with the order p. Furthermore, the periodicity of oscillations gets slower on the Fourrier
axis ¢{R as a mark of increased bandwidth.

Step3: Laplace transfer function Remind that because of (frame-synchronous) projection,
the linear system is h-shift-invariant '” but not continuous-shift-invariant: for time shifts 7 = kh,
k € Z, a delayed input yields a delayed output Y(e=7*U(s)) = e~ ") (U(s)). Hence its Laplace
transfer function is generally not defined.

For simplicity, we restrict our study to a frame-synchronous zero-order-hold input u(t) =
> Po(t/h — n)u[n] with samples u[n], which already belongs to the projection space. Its Laplace
transform is U(s) = Py(hs)ii(z = ") where @(z) denotes the Z-transform of sequence u[n], so
that the Z-domain input of the discrete filterbank is u(z) = |:0p1—1:| u(z). Then, the Laplace

transform of the continuous output of order p is

o) = BB ([ol, ] 76)) for 2=

For this particular (frame-synchronous) input, dividing Y, by U and cancelling u(z) finally yields
the Laplace transfer function

(8.37)

Observations The magnitude and phases responses are displayed on figures 8.23 8.24. We
make the following observations:

a) Starting with order p > 2, it is possible to simulate a pole above the Nyquist frequency,

b) Such a pole is subject to frequency warping, but the warping error gets lower when increasing
either the sampling rate fs or the projection order p.

c) Starting with order p > 2 the frequency response below 20 kHz '® is qualitatively very
similar to the analog one '

d) For p > 3 the response is very close to the analog one, even for low sampling rates fs < fe.
For p = 2, a small amount of oversampling is beneficial, while for p = 1, it is necessary to
use the classical Shannon-Nyquist condition fs; > 2f. to obtain a good match below 20 kHz.

17. Using the lifting isomorphism @[n|(7) = u(h(n + 7)), it can be transformed to an equivalent discrete
shift-invariant system with an infinite number of "phases" 7 between sampling instants n (see [MM10]).

18. For audio use, we are not interested in frequencies above 20kHz i.e. the limit of audible frequencies.

19. We get rid of the compression of the analog frequency axis [0, c0) to the digital one [0, fs/2) that is typical
of the mid-point and bilinear schemes.
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Figure 8.23 — (Peaking EQ) Magnitude response of the projected system with cutoff frequency
fe = 50 kHz for common audio sampling rates f; € [48,96,192] kHz and projection orders
p=1,2,3,4. (No prewarping has been applied to observe the effects of frequency warping).
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Figure 8.24 — (Peaking EQ) Phase response of the projected system with cutoff frequency
fe = 50 kHz for common audio sampling rates fs € [48,96,192] kHz and projection orders
p=1,2,34.
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Oversampling vs increasing order

Building on the previous observations, it is natural to ask the following question: How does
oversampling by a factor ¢ (i.e lowering the step size hy = h/q) compares to raising the projection
order p for the same number of parameters pq by time-step? i.e. we compare simulations that have
the same rate of innovation By, = pq/h (generalized bandwidth). To measure both magnitude
and phase innaccuracies, we introduce the following relative error in the Fourrier domain

epg(f) = Heals) ~ iy (%> (8.38)
P Heq(s) ' '

s=j2nf

For a base audio sampling rate fs = 1/h = 48 kHz, we compare the error €; 4 to €, 1 for pg = 2, 3,4,
that is pure oversampling €, 1 versus pure order increase €, 1 strategies

Results are shown in table 8.3 and on figure 8.25. Considering the audible frequency band
below the Nyquist frequency fs/2, we remark that the higher order approximation error €, is
always lower than the oversampled approximation error €1 4 by at least 10 dB. This is confirmed
by the results in table 8.3. Furthermore, thanks to the higher accuracy, the error drops much
faster for sub-Nyquist frequencies (see footnote 20). Above the Nyquist frequency, we remark
that the maximum errors for each approximations are comparable, but the high order error €, 1 is
lower most of the time. In summary, we observe that:

increasing the projection order p improves the error much faster than oversampling by ¢,

even when the pole is not small compared to the frame rate 1/h*". We conjecture that this
increased domain of accuracy must be limited to a region within or close to the generalized
bandwidth B, , (see fig. 8.22). This issue would require a dedicated study and is left for further
research. As another perspective, the L2-orthogonal V-system [MQSWO07] is a generalization of
Legendre polynomials and Haar Wavelets which can both reproduce polynomials up to order p
and cover multiple time scales. This way, different trade-offs between high-order accuracy and
frequency resolution than the ones presented here could be considered.

comparison on 20 Hz - 20 kHz pq =2 pg=3 pg =4

oversampled: maximum error Hel’quo 185-1073 70.0-1073 37.3-1073

high order: maximum error Hepleoo 125-1073% 4.63-1073 1.21-1073

oversampled: mean abs error HeLqu 7.91-107% 3.22-107% 1.76-1073
high order: mean abs error H6P71H1 6.57-1073 1.25.10% 3.54.107°

Table 8.3 — (Peaking EQ) comparison of the transfer function approximation error €; 4 (over-
sampling) and €, (high order) over the audible range 20 — 20000 Hz. The frequency domain
error of high order discretisation is systematically lower than the oversampled one for the same
degrees of freedom per time step pg = 2, 3, 4.

20. We remind that our test uses a pole above the Nyquist frequency (also above the base sampling rate) to
challenge the numerical method. Otherwise, for sub-Nyquist poles such that |hA| < 1, it is already obvious from
accuracy analysis that non-oversampled high-order methods have an error in O(\h)\|2p ) which drops exponentially
with p, much faster than the error of oversampled second-order methods in (9(| h)\/q|2) i.e. polynomial in q.
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Figure 8.25 — (Peaking EQ) Comparison of transfer function approximation errors €, (f) (in
decibels) for a constant number of parameters pg (see eq. (8.38)). The oversampling error € 4
(blue) is compared to the high order error €, (orange) for pg = 2,3, 4.
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Conclusion

In this chapter, we have reviewed a number of representative electronic audio circuits. Circuits
have been modeled using the PHS framework with a systematic transformational approach from
the circuit graph to continuous and discrete time simulation equations using the tools of chapter
2 and 5. We have considered bipolar transistors in section 8.1, diode clipping and filtering in
section 8.2, operational amplifiers with feedback saturation in section 8.3 and 8.4, a self-oscillating
resonant filter in section 8.4, a passive equalizer with a resonance above the Nyquist frequency in
section 8.6 and a relaxation oscillator using a tunnel diode as non-monotonous negative-resistance
element in section 8.5. The FuzzFace circuit had to be simulated as a pH-DAE because of the
algebraic coupling between transistors, while others like the MS-20 or the relaxation oscillator
could be simulated as ODEs. For the MS-20, we chose to pre-solve the algebraic feedback
nonlinearity offline as an equivalent component, rather than having to solve a stiff DAE. This
approach considerably reduces the complexity of simulation at the price of more preparation work.
All of the circuits were nonlinear except the peaking equaliser. For this circuit, we exploited
linearity to study the accuracy and increased bandwidth of high order projection methods in
the spectral domain. We confirmed that high-order methods have faster convergence than
oversampling for open linear systems, even more when the frequency region of interest is below
the Nyquist frequency.
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Part IV

Towards Geometric Algebra






Chapter 9

Geometric Algebra for PHS
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This chapter is dedicated to Geometric Algebra (GA) and attempts to highlight its potentialities
for port-Hamiltonian System modelling.

A complete overview of GA is clearly out of the scope of this chapter, Geometric Algebra
is at the same time very simple and elementary in its construction, making a perfect fit for
undergraduates, and very far reaching, unifying concepts as diverse as complex numbers, split
complex numbers, quaternions, octonions, Pauli an Dirac matrices, projective, conformal and
non-euclidean geometries within a unifying framework. A main difficulty to its wider adoption is
related to the fact that it requires unlearning to fully grasp its full potential. In particular, it
is necessary to get rid of the three dimensional cross product ! (which does not generalises to
an arbitrary number of dimension). A second learning barrier, which I found more difficult in
practice, is to stop identifying General Linear transforms with their matrix representation. This
chapter describes my personal journey towards using geometric algebra with port-Hamiltonian
systems.

Section 9.1, is a brief introduction to Geometric Algebra. In section 9.2, we show some
motivating examples where Geometric Algebra is a key tool to simplify the representation of
physical problems allowing to extract their invariants. In section 9.3, we use GA to represent

1. The 3-dimensional cross product can be defined as the Hodge dual of the exterior product of two vectors.

237
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General Linear transforms uniformly as (parabolic, hyberbolic) rotations using elements of the
same algebra”. In section 9.4, we use GA to describe Dirac structures, revisiting the content of
section 1.3.1 p.20.

In sections 9.3 and 9.4 we use non-euclidean geometry which is required to describe the duality
pairing of Dirac structures and hyperbolic transformations in general linear transforms. Section
9.3 and 9.4 present some initial work that needs to be further devlopped and matured. This work
shows how to technically represent Dirac structures and General linear transforms with Geometric
Algebra. However it still lacks the simplifying elegance usually associated with GA. One of the
main difficulty is that intuitions from euclidean geometry are no longer valid in non-euclidean
spaces . T hope that this chapter motivates more people to adopt Geometric Algebra and find
more satisfying answers to these questions.

2. A powerful property of complex numbers is that a complex number can represent both a point of the 2D
space and a scaling/rotation. In GA, we can generalize this property. Another common example from computer
graphics is that 3D geometry is significantly simplified by using quaternions to represent affine 3D transformations.

3. We note that reference [Hes93| avoids non-euclidean metrics by identifying the configuration space with its
dual: the momentum space. Conversely, in [DHSVA93| non-euclidean signatures are key to represent general linear
transforms GL(n) as orthogonal transforms O(n,n).
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Why use Geometric Algebra for PHS?

Without diving into details yet *, my original motivation for trying to encode the physics of
PHS using the language of geometric algebra arises from the following observations:

)

For conservative systems of the form x = JVH(x), the skew-symmetric matrix J =
—JT, is an infinitesimal generator of rotations. It defines an anti-commutative Poisson
bracket® [O1v00, p.390] {f,g}; = —{g, [};- In the language of Grassmann algebras, this is
intimately linked to the notions of exterior product A and bivector so that the dynamic of
Poisson/Hamiltonian systems can be described by the Poisson bracket

x={x,H}j.

For dissipative gradient systems of the form x = —RV H (x), a symmetric positive semi-
definite dissipation matrix R = RT > 0 is used to encode dissipation. In turn, this induces
a metric bracket® (f,g)r = (g9, f)r- The dynamic of purely dissipative gradient systems
can be written using the metric bracket as

x=—(x,H)R.

For dissipative PHS of the form x = (J — R)V H(x), both rotation and dissipation happen
at the same time. This is unified in the geometry of metriplectic systems [Mor86, BMBM1§],
by introducing the notion of a metriplectic bracket [[f,g]] = {f,9}; — (f,9)r to combine
purely conservative and purely dissipative geometries.

From the geometric algebra viewpoint 7, the geometric product uv of two vectors u, v is
equal to the sum of the inner product u - v (a scalar) and the exterior product u A v (a
bivector). Furthermore, while the cosine of the angle between vectors u, v is naturally
encoded by the inner product into the scalar part® 1 of the algebra, the exterior product
completes the picture by encoding the sine of the angle into the bivector part i ¥ (generalizing
complex numbers in any dimensions). This is summarized by the following identity

u-v . uAv

uv=u-v+uAv=|u||v|(lcosf+isinh), where 1:=—— 1= ——.
allv| [ulfv]

Since geometric algebra has the power to unify inner and exterior products into a single geometric
product, it seems natural to embrace this formalism and study its consequences for PHS modelling.

This chapter is a personal take on the subject and the reflect of my current understanding (far
from being complete). The proposed approach is to put aside our knowledge of matrix algebra
and to exclusively use GA constructs to reintroduce, step by step, the PH modelling tools from
chapter 1 p.7. For the formulation of Hamiltonian mechanics using GA see [Hes93] and [DGLT03,
p. 432|. For Lagrangian mechanics see [DGL 03, p. 420].

4. See [Olv00, p.390] for a definition of the Poisson bracket and [Mor86, BMBM18]| for metriplectic geometry.

5. In euclidean coordinates the Poisson bracket is {f,g}; =

6. In euclidean coordinates the metric bracket is (f,g)r = >

0f 5,99
i 9, " Ox,

0f . 99 _
i D, R,; oz, so that (x, H)r = RVH(x).

so that {x, H}; = JVH(x).

7. An introduction is detailed in section 9.1

8. Geometric algebra is a graded algebra, i.e. is has 0-vectors, 1-vectors, 2-vectors, etc. It is a common notation
to denote 1 the basis element representing the scalar part of the algebra (a 0-vector).

9. We use the symbol ¢ to emphasize its role as a complex number, in the plane spanned by vectors u, v. But,
it is embedded and can be oriented arbitrarily in dimension n.
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9.1 Introduction to Geometric Algebra

Remark 9.1 (Reading advice). Introducing Geometric Algebra (GA) in just a few pages is
not an easy task. For a self-taught introduction to GA, I recommend starting from the basics
by reading reference [Macl0| (taking the time to do the exercises) followed by [Macl2b| on
Geometric Calculus (GC). For more advanced topics and physical applications, the book
[DGL703] is a very good starting point. For a quick course on GA, see [Macl7, GLD93|
and [Hes14, Hes86| see also [Hit01]. For the relation between GA and differential geometry
refer to [Hesl1|. For minimal and axiomatic constructions of GA see [Mac02, Art06], see
also [DGL 703, p.84]. In this manuscript, I will deliberately skip some of the hallmarks of
GA such as Space-time Algebra, and GA representations of Dirac and Pauli matrices.

Modern Geometric Algebra was initiated by David Hestenes building on the work of Hamilton,
Grassmann and Clifford. A main difference with Clifford Algebras is in the simpler notations ' and
the stronger focus on geometry (hence the name). The main concept of GA is the introduction of
the geometric product. This makes the product of two (multi-)vectors a well-defined mathematical
object. It also gives rise to the introduction of mathematical objects such as the inverse of a
(nonzero) vector, blades, multi-vectors, pseudo-scalars, spinors, etc (introduced below). To see
this, we start from well known concepts such as the inner product and the exterior product before
introducing the (graded) geometric algebra.

Inner product (of vectors) The inner product, denoted u - v, of
two vectors u, v is a scalar number with magnitude |u||v|cos 6 where
|lu| = y/u - u denotes the length (norm) of u and 6 is the angle from
u to v. It satisfies the symmetric relation

u-v=v-u.
Figure 9.1 — Inner prod-

Exterior product (of vectors) The inner product only gives a uct of vectors.
partial information regarding vectors u, v. Traditionally, in 3 dimen-
sion it is customary to use the cross product u x v, however such a
construct is only valid in 3-dimensional space. Instead, Grassmann
introduced the exterior product A and the associated exterior alge-
bras. The exterior product u A v of two vectors u, v has magnitude
lu||v|sin @ but it is not a scalar or a vector: it is an oriented area (or (a) oriented area
bivector or 2-vector) from u to v. It satisfies the anti-commutative

relation

u

uAv=-vAu.

A geometric interpretation of the exterior product uAv is the oriented
area corresponding to the parallelogram formed by vectors u, v. This W
construction can be generalised to any number of vectors leading to the u
notion of k-blades'' representing oriented volumes between vectors 2.
For example in 3-dimension the volume of highest grade is a 3-volume
represented by the 3-vector (or 3-blade) u A v A w.

(b) oriented volume

Figure 9.2 — Exterior
product of vectors.

10. which makes it more approachable by non mathematicians.

11. A blade is equal to the product of nonzero orthogonal vectors B = e1 Aea Aey so that its norm |B| =le]. . .|ek|
is equivalent to the volume of the rectangular parallelogram with edges e, eq, ..., ex.

12. if some vectors are co-linear then their oriented volume is zero.
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Geometric product (of vectors) We can think of the inner and outer products as the
symmetric and antisymmetric parts of a new product called the geometric product '* below.

uv=u-v+uAv

We remark that the inner product and the exterior product respectively lower and rise the
grade of their operands. The product of parallel vectors is a pure scalar and the product of
orthogonal vectors and is a bivector. A more axiomatic approach (detailed below) is to reverse
the situation and extract the inner product and exterior product respectively as the symmetric
and skew-symmetric parts of the geometric product

1 1
u~v:§(uv—i—vu), u/\v:i(uv—vu). (9.1)

Geometric algebra We reproduce the following definition of geometric algebra.

Definition 9.1 (Geometric algebra [Macl7]). The geometric algebra G™ is an extension of
the inner product space R™ noted G" := G(R™). It is an associative algebra with scalar
identity element 1. That is, it is a vector space with a product satisfying properties P1-P4
for all scalars a and elements A, B,C € G".

Pl. A(B+C)=AB+ AC and (B + C)A = BA+ CA (left and right distributivity) ,
P2. (aA)B = A(aB) = a(AB) (Compatibility of scalar and geometric multiplication),
P3. (AB)C = A(BC) (Associativity)

P4. 1A = A1 (Commuting left and right multiplicative identity)

the product is called the geometric product. Members of G™ are called multi-vectors. We list
two more properties.

P5. The geometric product of G" is linked to the algebraic structure of R™ by

w=uu=u-u=1jul? Vu e R"

P6. Every orthonormal basis of R™ determines a canonical basis of the vector space G" (see
table 9.1 p.242).

Property P5 yields that nonzero vectors have a multiplicative inverse in G™ noted u=! = u/ \u|2.

Notations GA is a graded algebra. In the general setting, an element A of the GA is a mixed-
grade multivector. It can be decomposed as a direct sum of graded k-vectors (a sum of k-blades)
noted (A), where (-);, is the grade extracting operator of order k, so that

A=(A)y+ (A +(A)y+ ...+ (A)

The geometric product of two multivectors M, N is denoted M N. An important operation in GA
is called reversion which reverses the order of its operands. It is defined and denoted by

(MN)' = NTMT, (MY = (M), (9.2)

n-

In this thesis, we use the lower case bold notation u for vectors, uppercase bold B for bivectors,
and lower case standard font a for scalars. As an exception, the neutral element of GA is often
denoted 1 to higlight its role as a basis for elements of grade 0 (scalars) as in a = 1a.

13. Note that the axiomatic definition (def. 9.1) of the geometric product is preferable to manipulate multi-vectors
of mixed grade. The identity uv = u-v 4+ u A v is only valid for vectors. See equations (9.3)-(9.5)
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Canonical basis of G" Let {e;};"; be an orthonormal basis of R” with signature eZZ =e;je =1

(by definition e; - e; = 16;5). The vector space G™ = G(R"™) has a canonical basis of dimension 2".
Its subspaces (of grade k) have dimension (Z) Examples for G2, G2, G* are given in table 9.1.

Grade k£ basis denomination cardinality (Z)
0 1 O-vectors (scalars) 1
1 e, e2 l-vectors (vectors) 2
2 ejes  2-vectors (bivectors) 1

(a) G?, dim(G?) =4

Grade k basis denomination cardinality (Z)
0 1 0O-vectors (scalars) 1
1 eq, €2, €3 1-vectors (vectors) 3
2 eses, ezeq, ejey  2-vectors (bivectors) 3
3 ejeses 3-vectors (trivectors) 1

(b) G*, dim(G*) =8

Grade k basis denomination cardinality (Z)

1 0-vectors (scalars)

eq, €y, e3, €4 1-vectors Vectors)

esesey, ese, e, e4e1es, e1ege; 3-vectors (trivectors)

N =)
[l S > B SN

(
(
ejey, e1€3, 1€y, €2e3, €2€y, €se4 2-vectors (bivectors)
(
(

ejesesey 4-vectors (quadrivectors)

(c) G*, dim(G*) =16

Table 9.1 — Canonical bases of G2, G3, G*.

Multiplication tables To get an understanding and some intuition of the algebra, one can
obtain the multiplication tables '* using the following properties

e By collinearity, orthonormal vectors in R™ square to one (since e; A e; = 0)
2 _ _ _
e —ee; —e;-e =1,
e By orthogonality, basis vectors anti-commute (because e; - €; = d;;)

ee; =¢e;/\e; = —e; Ne; = —eje; ’L#]

Then by reordering terms, according to anti-commutation rules, we obtain canonical basis elements
(see table 9.1). The multiplication tables of G? and G are shown in table 9.2.

14. Efficient numerical implementations of GA rely on fast encoding and realisation of these multiplication
tables.
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AB|| 1| e1 ey| 1

1 1| e e )

e || e 1 7 | ey

€9 €9 —1 1 —e]

1 3 —e2 €] -1

(a) Multiplication table of G?. where i = e1e»

AB 1 (3] €9 €3 B1 BQ B3 I
1 1 e €9 es3 B, B, B3 I

e e 1 Bg —BQ I —e3 €9 B1
€9 €9 —B3 1 B1 €3 I —eq BQ
€3 €3 B2 —B1 1 —€9 (31 I B3

B, || B; I —e3 ey -1 —-Bs By | —e;

By || Bo | e3 I —e1 | Bs -1 —-B;| —e
Bs || Bs | —es el I -B, B; -1 | —es3
I I | By By B3| —-e —e —es3| 1

(b) Multiplication table of G3. where By = eses, By = ese;, Bs = ejey, I = ejezes.

Table 9.2 — (Geometric Algebra) Multiplication tables.

Extended definitions of inner and exterior product Let (M), denote the components of
grade i (i-vectors) in M. Then, the inner product (here left-contraction '°) and exterior product
of a i-vector A with a j-vector B are respectively defined by [Mac10, p.101]

A-B:=(AB)

AN B = (AB) (9.3)

i_j ) i.t,.j I

where AA B =0 if i+ j > n. We highlight some identities that are used in the following '°. Note
that, in the case of a vector a multiplied by a bivector B, signs are reversed compared to (9.1)!

a-B=_-(aB-Ba), aAB=_(aB+ Ba). (9.4)

N =
N =

More generally, for a k-vector A, the vector-blade formulae are given by

a A= % (a4~ (-1)"4a). an A= % (aA+ (1" 4a). (9.5)

For example, let a = e1, B = ejey, then using (9.4) a-B = %(eleleg —ejeze;) = ((ed)ey +
(e1)%es) =ex and aAB = %(eleleQ +erese;) = ((e3)ex — (e1)%es) = 0.

15. The litterature on Clifford algebras often uses the left contraction notation A|B to denote A - B.
16. We need the contraction of a vector with a bivector to implement skew-symmetric maps for Hamiltonian
systems and Dirac structures.
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Norm Expand a multivector A with respect to a canonical basis {e;} 7 (of graded multivectors)
as A=Y ;eja . Then, the norm '®|A| of A is defined by "

AP = "lag]?. (9.6)
J

Inverse Generalizing the inverse of a vector (see definition 9.1 P5), let B be a k-blade B =
u; A...Aug. It can be written in an orthonormal basis {b;} of the hyperplane spanned by B
as B = |B|bj...b;. One can define its (right) inverse as the unique element B~! such that
BB~! = 1. One can easily show that its inverse is given by the reversion

B !=B'/B|=b,...b;/|B|. (9.7)

Indeed, using b? = 1 (in euclidean spaces), we have BB™! =|B| by ... bgby ... by /|B| = 1.

Duality The n-vectors in G" are called pseudo-scalars. They have the property of commuting
with all elements of the algebra (hence their name). For example, the unit pseudoscalar of G*
with orthonormal basis {e;, ez, e3} is I = ejeges (sometimes denoted by P to avoid confusion).
It has unit norm |I| =|e;||ez2|les| = 1 and is unique up to a sign change when permuting the order
of multiplication. Tts inverse is I"! = egese; = —I. In G" we have I™! = (—1)"'L.

Definition 9.2 (Dual [Mac10]). The dual of a multivector A is A* := A/I.

For example, the dual of vector e; is the bivector e] = e1/I = e;(ezeze;) = —e%egeg = —eges.
Moreover, if a blade A represents the span Sa C R" of its vectors, then its dual A* represents is
orthogonal complements Sﬁ.

Theorem 9.1 (Duality [Macl0]). The inner product and outer products are dual
(A-B)* = AA B, (AAB)* = A-B* (9.8)
With this definition of the GA dual, the Hodge dual from exterior algebra can be defined explicitly
by x(A) := —A*. So that in G3
*(1) = -1, *(e1) = ez A eg, *(e2) = ez Aey, *(e3) = e1 Aes.

The dual extends to all elements of the G* (not just to the exterior algebra A(R3) C G3).

Remark 9.2 (cross product). A well known example in R? (whose definition does not extend
to R™) is the cross product u x v of two vectors. In GA, it is defined as the (pseudo-vector)
dual to the plane spanned by the bivector u A v, that is

uxv=(uAv)".

Indeed, in G", the dual of a bivector is a (n — 2)-vector (a scalar in G2, a vector in G3, a
bivector in G*, etc).

17. Where J are multi-indexes, for example J = (1,2) denotes the basis element e; = e;es.

18. Note that we can generalise to spaces of indefinite or mixed signature. The square, inner product, norm and
signature s of a vector u are then linked by u? = u - u = s|u|® where s € {—1,0,1}.

19. For example |1 + 2e; + 3e2 + 4e1e2|2 =12 4922 432 4+42
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9.1.1 Linear geometric transforms

Remark 9.3. One difficulty, when learning GA, comes from the necessity to unlearn the
following implicit habits and expectations inherited from complex and linear algebra:

1. Linear transformations act on the left as in y = Az for complex numbers or y = Ax
for linear algebra.

2. Linear maps Ly : x — y = Az and LA : x — y = Ax are usually identified with the
complex number A and the matrix A using the same symbol.

3. X is an element of the complex algebra acting on complex numbers * however the
matrix A is an element, from outside the set of vectors, acting on vectors x.

At this point in GA, to avoid ambiguity, it is customary to introduce a notation to
distinguish transforms from elements of the algebra used to implement the transform. For
example, we have seen in (9.4) that we can implement a skew-symmetric map J acting on a
vector x as a contraction with a bivector .J

J(X)ZX-J:%(XJ—JX). (9.9)

The adjoint map noted J* is indeed skew-symmetric
1
J*(x) :J-xzi(Jx—xJ) = —J(x). (9.10)

Distinguising notations J (map) and J (GA element), it is possible to unambiguously use
the common notation AB to denote the composition of maps A o B.

a. In GA, this situation is generalized by the notion of even and odd spinors, i.e. elements of GA with
even or odd grade, used to represent transforms on GA elements.

b. Note that, to avoid confusion between adjoint map and GA dual notations, an alternative notation in
the GA literature uses J (linear map associated to a symbol J) and J (adjoint map) .

Projection

A vector can be decomposed into its projection and rejection u =

u| + u . with respect to a subspace. In GA, a subspace is represented by u
the blade formed by its spanning vectors (not necessarily orthonormals)
B=e A...Ney. U

Theorem 9.2 (Projection-rejection [Macl0]). Let u be a vector and ~ Figure 9.3 —

B a blade. Then Projection and
rejection.

u =Pg(u):=(u-B)/B, u, = P5(u):= (uAB)/B.  (9.11)
More generally, if A is a blade, then the projection of A on B is Pg(A) = (A -B)/B. This allows

to compute the angle between the subspaces represented by blades A and B as (|[Mac10], p.123)

Pe(a)| _|A-B
AT~ [A[B]

cosf =
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Reflection

Geometrically, the reflection of a vector u = u +uy in a
subspace B is uj —u . From theorem 9.2 and equation 9.5
UL
Mg(u) =y —u; =(u-B-uAB)/B= (-1 1BuB~L.
vy
More generally, the following results holds for blades

Mp(u)¥ —u
Theorem 9.3 (Reflect