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Abstract

This work addresses the real-time simulation of nonlinear audio circuits. In this thesis, we use
the port-Hamiltonian (PH) formalism to guarantee power balance and passivity. Moreover, we
adopt a continuous-time functional framework to represent “virtual analog” signals and propose
to approximate solutions by projection over time frames. As a main result, we establish a
sufficient condition on projectors to obtain time-continuous power-balanced trajectories. Our goal
is twofold: first, to manage frequency-bandwidth expansion due to nonlinearities, we consider
numerical engines processing signals that are not bandlimited but, instead, have a “finite rate of
innovation”; second, to get back to the bandlimited domain, we design “virtual analog-to-digital
converters”. Several numerical methods are built to be power-balanced, high-order accurate, with
a controllable regularity order. Their properties are studied: existence and uniqueness, accuracy
order and dispersion, but also, frequency resolution beyond the Nyquist frequency, aliasing
rejection, reproducing and Peano kernels. This approach reveals bridges between numerical
analysis, signal processing and generalised sampling theory, by relating accuracy, polynomial
reproduction, bandwidth, Legendre filterbanks, etc. A systematic framework to transform
schematics into equations and simulations is detailed. It is applied to representative audio circuits
(for the UVI company), featuring both ordinary and differential-algebraic equations. Special work
is devoted to PH modelling of operational amplifiers. Finally, we revisit PH modelling within the
framework of Geometric Algebra, opening perspectives for structure encoding.
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Introduction

Context

This thesis is the result of a joint collaboration between UVI (my employer) and the S3AM 1

team of the STMS 2 laboratory at IRCAM 3. It is unusual on two aspects: it happened as a late
PhD, 12 years after the end of my studies, and it took place, for the last five years, as a part-time
project, in parallel of my job at UVI. I am very grateful to my employers for this opportunity,
their trust, their continuous support and for fully funding this PhD.

The UVI company UVI 4 is a french SME, founded in 1987 by Alain Etchart and Jean-
Bernard Celier with head-quarters in Paris and offices in US and Japan. It is specialised in the
creation of virtual instruments and digital audio effects for sound-design and music production.
UVI’s flagship product, called Falcon 5 (and the underlying UVI engine), is a multi-synthesis
workstation with sixteen synthesis types and more than ninety audio effects. It integrates signal
modelling (additive, subtractive, granular, FM, etc), physical modelling and algorithmic musical
event processing within the same environment. The aim of this thesis for UVI is to broaden the
range of audio systems that can be emulated in real-time by physical modelling of audio circuits.

The S3AM team Multi-physics audio acoustics and virtual analog modelling is an important
thread of research in the S3AM team for which the port-Hamiltonian formalism [MV92, VDSJ14]
constitutes an important backbone and a unifying language. This thesis is a followup on the work
of Falaize [Fal16, FH16a] on PH audio circuit modelling (including the Wah-Wah [FH13], the
Fender Rhodes[FH17], speaker modelling [FH20], etc) and (to a less extent) on the work of Lopes
[Lop16] (in particular a conservative linearly-implicit method based on energy quadratisation
[LHF15]). During that time, Falaize wrote a symbolic-numerical Python toolbox dedicated to
PHS modelling and simulation called PyPHS [FH16b]. Earlier work in the team includes the work
of Cohen and Usciati on audio circuit modelling (including triodes) [Coh12, Tar12]. Since then,
ongoing work based on PHS have been dedicated to loudspeakers [LWH+20, LH20], the vocal tract
[SHV19, WHS19, WHS20], Lie groups and (multi) symplectic integrators [CB17, CB19, BC19]
active and finite-time control [JRH+17, JDT+17, WdNHR18, WdNF+19], the Ondes Martenot
[NHRB20], PHS realisability [NHB+18] and magnetic hysteresis [NMHR20]. The team has been
involved in two port-Hamiltonian research projects: the ANR projects Hamecmopsys 6 and the
ANR-DFG project INFIDHEM 7, and is also actively working on Volterra series and identification
methods [BHR18, Bou18, DHR19].

1. Sound Systems and Signals: Audio/Acoustics, InstruMents http://s3am.ircam.fr
2. Science and Technology of Music and Sound (UMR9912) https://www.stms-lab.fr
3. Institut de Recherche et Coordination Acoustique et Musique http://www.ircam.fr
4. https://www.uvi.net/about-us
5. https://www.uvi.net/falcon
6. https://hamecmopsys.ens2m.fr
7. https://websites.isae-supaero.fr/infidhem/

1

http://s3am.ircam.fr
https://www.stms-lab.fr
http://www.ircam.fr
https://www.uvi.net/about-us
https://www.uvi.net/falcon
https://hamecmopsys.ens2m.fr
https://websites.isae-supaero.fr/infidhem/


2 Introduction

Objectives

To simulate nonlinear electronic audio circuits, we consider the class of open, power-balanced
multi-physical systems. In this context, port-Hamiltonian systems (PHS) offer a structured
representational framework capable of dealing with energetic, algebraic and dynamical properties.
This thesis aims at designing a set of mathematical and computational methods that

1. accurately describe targeted systems in a modular way,

2. propose a systematic approach to automate modelling and real-time simulation of electronic
audio circuits,

3. model dynamical systems as port-Hamiltonian Systems,

4. simulate PHS in the continuous-time domain,

5. numerically preserve the power-balance of the approximated PHS,

6. reproduce the regularity of continuous-time solutions.

Short literature overview

Virtual analog audio Modelling of (vintage) audio circuits is categorised in both academia
and audio markets under the term virtual analog (VA) [DSS09, Sti05, VH06, VFSZ10, VBS+11,
D’A14, Wer16, EGZ17, EPPB17a, BVS20] 8. Motivations for VA modelling are multiples: 1)
preserving the legacy of instruments and audio effects from obsolescence (old components are often
fragile or discontinued), 2) capturing the pleasant (and sometime complex) behaviour of analog
designs that is not easily reproducible by direct digital means, 3) simplifying the maintenance by
replacing (heavy, expensive, fragile) hardware by software. Significant research has been devoted to
the simulation of synthesiser filters [SS96, Huo04, Hél09, Pd13], equalisers [AB03a, SH11], guitar
amplifiers [PY, DZ11b, DHZ11, Mac12a, Coh12], modulation effects [Huo05, EFHZ14, Mac16],
distortion and saturation [HDZ11, EZ16, Hol16, HZ16], dynamic processors [AB03b, GMR12,
GEZ17], analog delay and reverberation [BAC06, RS10, BP10, HP18]. Modelling approaches
divides in black-box models (which aim at reproducing the input-output behaviour of systems
disregarding their internal details) and white-box models (which by contrast decompose systems
into networks of known elementary components). Black-box modelling approaches in audio
include Volterra series and block models [BCD84, BTC83, EZ18, DHR19, EZ16], kernel methods
[SW06, GE13] and neural networks [WDV19, PB19, MRBR20]. White-box approaches (which
we consider in this thesis) can be categorised in two groups: state-space methods (based on
Kirchhoff variables) [YAS10, DHZ10, HZ11, HZ15, FH16a] and Wave Digital Filters (based on
wave variables) [Fet86, DSS09, Bil04, WBSS18]. Energy-conserving methods in audio have been
considered in [Bil05, Bil08, THB14, CvW15a, CvW15b] and anti-derivative based anti-aliasing
in [PZLB16, BEPV17, BEV17, MH17, Hol20, Alb20, Car20]. Note that VA audio often involves
several physical domains within a single device (electric, magnetic, acoustic, mechanical, even
optical). The port-Hamiltonian formalism is a natural candidate to deal with multi-physics: using
power exchange as the common mean of interaction between physical domains.

Port-Hamiltonian Systems and Geometric Numerical integration The PH formalism
[MV92, VDSJ14, VdS17] lies at the intersection of network modelling [Pay61], differential geometry
[Olv00] and Geometrical Numerical Integration (GNI) 9. The goal of GNI is to propose numer-
ical integration methods (see [HNW93, HW96, BG08, Ise09]) which (in addition to numerical

8. An overview of VA (up to 2011) can be found in [PV11]
9. See [HLW06] and references therein for an overview of the domain.
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accuracy) preserve geometric properties of the flow of differential equations such as symplecticity
(see [Wei83]), first-integrals (such as the energy), time-reversibility, passivity (for dissipative
systems) or group structure (in Lie group integrators [IMKNZ00, Cel03]). The preservation
of geometric invariants leads to improved qualitative and quantitative solutions in particular
over long time scales. Unconditionally energy-preserving (resp. dissipating) methods have been
proposed in [Hai10, HL14, CMM+09, CGM+12, CMOQ10] (An automatic consequence of energy-
preservation/passivity is the stability of simulated nonlinear systems). In particular, numerical
methods for PHS have been considered in [KL19] (based on symplectic integration) and [CH17]
(energy preserving/dissipating). In this thesis, our main geometric focus is on the power-balance
of physical systems, i.e. exact energy preservation for conservative systems and monotonous
energy decay for dissipative systems.

Thesis outline

This thesis is structured in 4 parts described below.

Power-balanced modelling of electronic audio circuits Starting from the netlist descrip-
tion of an electronic circuit, revisiting state of the art, methods are proposed to automati-
cally generate different PHS representations (Kirchhoff–Dirac structure, Hybrid semi-implicit
algebro-differential equations, input-state-output ordinary differential equations, thermodynamic
embedding, etc). This part is meant as a guide for practitioners and implementers, where the
PHS approach is favoured over classical circuit modelling approaches which are already well-
documented such as modified nodal analysis. A particular attention is paid to the usefulness
of each representation to derive efficient simulations. We also closely consider the sequence
of transformations that are required to convert between these representations. Wave-variables
formulations are recalled and a side by side comparison of network modelling using bond-graphs
and Wave Digital Filters is proposed to highlight their striking and often unnoticed similarities.

Time-continuous power-balanced numerical methods In this thesis, high-order power-
balanced numerical schemes are proposed. Their common ground and distinctive attribute is
to exclusively consider continuous-time signal representations in functional spaces. The word
discretisation is used in a generalised sense as the subspace representation of signals with a finite
number of parameters per unit of time. This specific approach exhibits interesting connections
between numerics, signal processing, generalised sampling theory, and physical modelling. A
particular attention is paid to signal smoothness and rejection of spectral aliasing artefacts caused
by system nonlinearities. The proposed approach relies on

1. piecewise parametric representation of non-bandlimited signals with a controllable regularity
order and a finite rate of innovation,

2. appropriate choices of signal spaces and approximations preserving the continuous-time
power-balance,

3. post-simulation continuous-time anti-aliasing filters and resampling.
An advantage of the proposed approach, is that the same functional discretisation methodology
can be used to address both ordinary and differential-algebraic equations (which also applies to
partial differential equations).

Electronic components and circuits: applications and results The proposed modelling
framework and numerical discretisation methods are evaluated on a number of representative
nonlinear audio circuits (covering both ODE and DAE) used by guitarists, synthesiser players and
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sound-engineers. In particular, we consider the simulation of fuzz, overdrive and self-oscillating
circuits. We also consider the simulation of (linear) systems having poles above the Nyquist
frequency thanks to the extended generalised bandwidth of high-order methods. A chapter is
dedicated to passive modelling of the operational amplifier. Indeed, the operational amplifier
is a key component of analog electronics, but despite the amount of literature on the topic, we
found that a simple passive model of the operational amplifier compatible with port-Hamiltonian
modelling was still missing.

Towards Geometric Algebra The last part of this thesis is prospective. We explore the
potentialities of Geometric Algebra (GA) in the context of port-Hamiltonian modelling. Geometric
Algebra is an elegant graded algebra unifying the Euclidean inner product and Grassman exterior
product into a single product called the geometric product. This unification has far reaching
consequences since complex numbers, quaternions, octonions, spinors, exterior algebra, etc, can
all be generated from simple axioms as sub-algebras of Geometric Algebra. Furthermore, since
PH theory is deeply rooted in differential geometry and coordinate-free representations there is
a natural match with GA. Given the scope of this thesis, we can only scratch the surface. In
particular we consider intrinsic representations of linear transforms and Dirac structures using
Geometric Algebra.

Publications

[MH17] Müller Rémy, Thomas Hélie, "Trajectory Anti-Aliasing on Guaranteed-Passive
Simulation of Nonlinear Physical Systems", 20th International Conference on Digital
Audio Effects (DAFx-17), 2017.

[MH18] Müller Rémy, Thomas Hélie, "Power-Balanced Modelling Of Circuits As Skew
Gradient Systems", 20th International Conference on Digital Audio Effects (DAFx-
18), 2018.

[MH19] Müller Rémy, Thomas Hélie, "A minimal passive model of the operational amplifier:
application to Sallen–Key analog filters", 20th International Conference on Digital
Audio Effects (DAFx-19), 2019.

[MH20] Müller Rémy, Thomas Hélie, "Fully-implicit algebro-differential parametrization of
circuits", 20th International Conference on Digital Audio Effects (DAFx-20), 2020.

[NMHR20] Judy Najnudel, Rémy Muller, Thomas Hélie, David Roze, "A power-balanced
dynamic model of ferromagnetic coils", 20th International Conference on Digital
Audio Effects (DAFx-20), 2020.
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Power-balanced modelling of electronic
circuits
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Port-Hamiltonian Systems
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1.4.3 Wave variables representation of Port-Hamiltonian Systems . . . . . . . . . 38

The foundations of the Port-Hamiltonian formalism are recalled in this chapter. We restrict
the presentation to the finite-dimensional settings which is sufficient to cover lumped electronic
circuits. First, general results on existence, uniqueness and stability of state-space systems and
Differential Algebraic Equations are recalled in section 1.1 and section 1.2, then the constitutive
parts of port-Hamiltonian systems (power-balanced interconnections, energy-storing elements,
passive algebraic components and external ports) are presented in section 1.3. Finally since the
Wave Digital Filter (WDF) formalism [Fet86] is also an important modelling tool for physical
modelling and virtual analog electronics, we try to bridge the gap between both formalisms
by closing this chapter with section 1.4 on wave variables representations of port-Hamiltonian
Systems.

7



8 Chapter 1. Port-Hamiltonian Systems

1.1 Reminder on dynamical systems and ODE

This section recalls definitions and results on dynamical systems and stability (see [KG02]).

1.1.1 State-space representation, existence and uniqueness of solutions

We consider dynamical systems modelled by a finite number of coupled ordinary equations

ẋ(t) = f(t,x(t),u(t)), (1.1a)

where f : (t,x,u) ∈ R×Rnx ×Rnu 7→ f(t,x,u) ∈ Rnx is the vector field function, ẋ denotes the
time derivative 1 of the state variable x and u denotes the input variable of the system. The state
equation (1.1a) is often associated with an output equation

y(t) = h(t,x(t),u(t)), (1.1b)

where h : (t,x,u) ∈ R× Rnx × Rnu 7→ h(t,x,u) ∈ Rny is the observation function.

Remark 1.1. If the input is known explicitely (e.g. an external source or a state feeback
u(t) = g(x(t))). Then, it is possible to rewrite (1.1a) to remove the dependence on u as

ẋ(t) = f̃(t,x(t)), with f̃(t,x) = f(t,x,u(t)).

Furthermore, by including time t into an extended state z = (t,x) and adding the differential
equation ṫ = 1, it is always possible to obtain an autonomous system

ż(t) = f̆(z(t)), with f̆(z) =
[
1, f̃(t,x)

]T
.

To predict the future state of the system from its initial value x0 at time t0, the following
Cauchy problem must have a unique solution.

Definition 1.1 (Cauchy problem). Let T = [t0, t1], x0 an initial condition in X ⊂ Rn and
f : T×X → Rn. The Cauchy problem is to find a unique function x : T→ X such that{

ẋ(t) = f(t,x(t)), ∀t ∈ T,
x(t0) = x0, t = t0.

(1.2)

A key property to establish existence and uniqueness, is that f must satisfy a Lipschitz condition.

Theorem 1.1 (Local existence and uniqueness ([KG02] p.88)). Let f(t,x) be piecewise
continuous in t and satisfy the local Lipschitz condition∥∥f(t,x1)− f(t,x2)

∥∥ ≤ L‖x1 − x2‖ , (1.3)

∀x1,x2 ∈ B =
{
x ∈ Rn | ‖x− x0‖ ≤ r

}
, ∀t ∈ [t0, t1]. Then there exists some h > 0 such

that the state equation (1.2) as a unique solution over [t0, t0 + h].

The previous theorem based on the Banach fixed point theorem only requires a simple Lipschitz
condition but does not recover the maximal existence domain of solutions (even in the linear
case). For stiff systems (when the step size h is bigger than some time constants of the system),
the following theorem, based on Newton iteration, yields better estimates.

1. In this thesis, we use capital ẋ = f(x) for vectors in Rnx and slanted ẋ(t) = f(x(t)) for functions of time.
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Theorem 1.2 (Stiff existence and uniqueness [Deu87]). Let f ∈ C1(X ), X ⊆ Rn. For the
Jacobian A := f ′(x0), assume a one-sided Lispchitz condition

〈u,Au〉 ≤ µ‖u‖2 , (1.4a)

where 〈·, ·〉 denotes an inner product in Rn, and ‖·‖ the associated norm. Assume that∥∥f(x)
∥∥ ≤ L0, ∀x ∈ X , (1.4b)∥∥f ′(u)− f ′(v)
∥∥ ≤ L2‖u− v‖ , ∀u,v ∈ X . (1.4c)

Then, for X sufficiently large, existence and uniqueness of the solution of (1.2) holds for

h unbounded if µh̄ < −1 and h ≤ h̄Ψ(µh̄) if µh̄ > −1, (1.4d)

where h̄ :=
1√

2L0L2
, and Ψ(x) :=

{
1
x ln(1 + x) x 6= 0,

1 x = 0.
(1.4e)

1.1.2 Lyapunov stability and LaSalle invariance principle

We recall results regarding Lyapunov stability for autonomous dynamical systems of the form

ẋ = f(x), (1.5)

about an equilibrium point x̄ ∈ X , where f : X → Rn is locally Lipschitz. Without loss of
generality, one can consider systems for which the equilibrium point is zero 2. Definitions and
properties presented below are for systems whose equilibrium point is the origin.

Definition 1.2 (Lyapunov stability ([KG02] p.112)). The equilibrium point x̄ = 0 of (1.5)
is

• Stable if, for all ε > 0, there exists δε > 0 such that∥∥x(0)
∥∥ < δε =⇒

∥∥x(t)
∥∥ < ε, ∀t ≥ 0, (1.6a)

• Unstable if it is not stable,

• Locally Asymptotically Stable (LAS) if it is stable and δ can be chosen such that∥∥x(0)
∥∥ < δ =⇒ lim

t→∞
x(t) = 0. (1.6b)

• Globally Asymptotically Stable (GAS) if it is stable for X = Rn and if

lim
t→∞

x(t) = 0, ∀x(0) ∈ Rn. (1.6c)

As illustrated on figure 1.1, oscillatory solutions can be stable in the sense of Lyapunov. The
stability of a system can be proved using a Lyapunov function (also called a storage function).

2. Indeed the variable change z = x− x̄, defines an equivalent system ż = g(z) with ż = ẋ = f(x̄+z) =: g(z),
and g(0) = f(x̄) = 0.
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Definition 1.3 (Lyapunov function). Let X be an open subset of Rn containing the equi-
librium point x̄ = 0 for (1.5). The function V : X → R is called a Lyapunov function
if

C1. V is of class C1 on X ,

C2. V (x̄) = 0 and V (x) > 0 for all x ∈ X \ {x̄},

C3. ∇V (x) · f(x) ≤ 0 for all x ∈ X .
If the inequality is strict on X \ {x̄}. Then, the Lyapunov function is said to be strict.

Note that, along a given trajectory of the dynamical system, one has

d

dt
V (x(t)) = ∇V (x(t)) · f(x(t)) ≤ 0.

Therefore, if V is a Lyapunov function, then the value of V is nonincreasing along any trajectory.

Theorem 1.3 (Lyapunov stability theorem). If there exists a Lyapunov function V for
(1.5). Then, the equilibrium point x̄ = 0 is stable. Moreover, if V is strict. Then, x̄ = 0 is
LAS. And if V is proper a. Then, x̄ is GAS.

a. V is said to be proper whenever V −1([0, L]) is a compact subset of X for every L ∈ V (X ). When
X = Rn, this is equivalent to V (x)→ +∞ as ‖x‖ → +∞

The Lyapunov theorem is illustrated on Figure 1.1 for the stable, asymptotic stable and unstable
cases.

When a storage function V does not satisfy all hypotheses of the Lyapunov’s theorem, LaSalle’s
invariance principle allows useful extensions, based on the following definitions.

Definition 1.4 (Invariant set). A setM is said to be invariant for a trajectory x(t) of a
dynamical system (1.5) if

x(0) ∈M =⇒ x(t) ∈M, ∀t ∈ R. (1.7a)

If a solution belongs toM at a given instant. Then, it belongs toM for all past and future
instants. It is said to be positively invariant if

x(0) ∈M =⇒ x(t) ∈M, ∀t ∈ R+. (1.7b)

If a solution belongs toM at a given instant. Then, it belongs toM for all future instants.

We say that x(t) approaches aM as t goes to infinity, if for all ε > 0, there is T > 0 such that

dist(x(t),M) < ε, ∀t > T, (1.8)

where dist(p,M) denotes the shortest distance from a point p to a setM

dist(p,M) := inf
x∈M
‖p− x‖ . (1.9)
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Theorem 1.4 (LaSalle invariance principle ([KG02] p. 128)). Let Ω ∈ X be a compact
set that is positively invariant with respect to (1.5). Let V : X → R be a continuously
differentiable function such that ∇V (x) · f(x) ≤ 0 in Ω. Let E be the set of all points

E =
{
x ∈ Ω | ∇V (x) · f(x) = 0

}
. (1.10)

LetM be the largest invariant set in E. Then, every solution starting in Ω approachesM
as t→∞.

In this case, one does not talk about stability, but about convergence. The interest of this
principle is that it remains valid for non positive definite functions V .

1.1.3 Open systems and passivity

In this thesis, we have a particular interest in nonlinear open systems with p control inputs
and p outputs, which admit the state-space representation{

ẋ = f(x,u),

y = h(x,u).
(1.11)

where x(t) ∈ Rn, u(t) ∈ Rp, y(t) ∈ Rp are respectively the state vector, the input and the output
of the system. Unfortunately Lyapunov stability theorem rarely applies (e.g. constant inputs u).
The notation of passivity is a powerful tool for the analysis of nonlinear open systems.

Definition 1.5 (Passivity ([KG02] p. 236)). The system (1.11) is said to be passive if there
exists a continuously differentiable positive semidefinite function V (x) (called the storage
function) such that

〈u |y〉 ≥ ∇V (x) · f(x,u), ∀(x,u) ∈ Rn × Rp. (1.12)

Moreover, it is said to be

• lossless if 〈u |y〉 = ∇V (x) · f(x,u),

• strictly passive if 〈u |y〉 ≥ ∇V (x) · f(x,u) + ψ(x) for some positive definite function
ψ(x).

This definition shows that a passive system can only feed the function V through its input
ports power 〈u |y〉. A natural candidate for this storage function is the (Hamiltonian) energy
of the system under study: this vision is used throughout this thesis and is the cornerstone of
Port-Hamiltonian systems.

Passivity can be related with Lyapunov stability. Indeed, when the input of a system is zero,
the passivity condition implies that d

dt (V ◦x) ≤ 0. LaSalle invariance principle can be applied and
proves that the system converges toward the largest invariant set where d

dt (V ◦ x) = 0. Moreover,
the Lyapunov stability theorem ensures that the system is stable when V is positive definite.
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x1

x2
Asymptotically stable x(t ) 0
Stable ||x(t)|| <
Instable ||x(t)|| >
x(t0)

=

(a) 2D orbits in the plane (x1, x2)

x1

x2

V(x)

Asymptotically stable V < 0
Stable V 0
Unstable V > 0
x(t0)
{x | V(x) = V(x(t0))}

(b) 3D orbits in the plane (x1, x2, V (x = (x1, x2)))

Figure 1.1 – (Lyapunov stability theorem) Stable orbits (orange), Asymptotically stable orbits
(blue) and instable orbits (red). The stable orbit converges to a limit cycle for which d

dtV (x(t)) = 0.
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1.2 Reminder on Differential Algebraic Equations (DAE)

Results from this section are based on [Rhe90, Rei91, KM06, Hai11] and references therein.
The most general form of a differential-algebraic equation over the reals is (for m,n ∈ N)

F (t,x(t), ẋ(t)) = 0, (1.13a)

with F : I× Dx × Dẋ → Rm, where I ⊆ R is a closed interval and Dx,Dẋ ⊂ Rn are open.
Existence and uniqueness of solutions are considered in the context of initial value problems,

when we additionally require a solution to satisfy the condition

x(t0) = x0. (1.13b)

Here, we recall general results about classical (continuously differentiable) and weak solutions
(in the sense of distributions) of DAE of the form (1.13a) with initial condition (1.13b).

Classical solutions

Definition 1.6 (Classical DAE solution [KM06]). Let Ck(I,Rn) denote the vector space of
all k-times continuously differentiable functions from the real interval I into the vector space
Rn.

1. A function x ∈ C1(I,Rn) is called a solution of (1.13a) if it satisfies (1.13a) pointwise.

2. The function x ∈ C1(I,Rn) is called a solution of the initial value problem if it addi-
tionnaly satisfies the initial condition (1.13b).

3. An initial condition (1.13b) is said to be consistent with F , if the associated initial
value problem has at least one solution.

A problem is called solvable if it has at least one solution.

Generalized solutions Many interesting aspects of DAEs (e.g. inconsistent initial values,
impulsive solutions) can not be studied using classical solutions. Switched systems, ideal diodes,
etc are common sources of non-differentiability which emphasise the need for generalised solutions
beyond those of definition 1.6. To this end, consistency conditions and smoothness can be relaxed
[Tre09] 3 by allowing generalized functions or distributions (with the difficulty that pointwise
evaluation is not well-posed anymore, so that initial value problem cannot be formulated directly).
A thorough study of distributional DAE is out of the scope of this thesis. We refer the reader to
the references [KM06, AB08, Tre09]. However, we note that the DAE solutions of methods from
chapter 5 can be interpreted as weak solutions arising from Galerkin projection in time.

1.2.1 DAE Indexes

The motivation to introduce an index is to classify different types of differential-algebraic
equations with respect to the difficulty to solve them analytically as well as numerically. Several
kind of DAE indexes have been introduced in the literature: differentiation index, strangeness
index, perturbation index, tractability index, geometric index, structural index,etc. Their
respective roles and definitions have been summarised in the overview paper [Meh12]. Here we
only consider the differentiation and the perturbation indexes.

3. This reference is dedicated to Distributional Differential Algebraic Equations generalising the usage of weak
solutions (commonly used to solve partial differential equations) to DAE.
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Differentiation index

The differentiation index determines how far the differential-algebraic equation is from an
ordinary differential equation (for which analysis and numerical methods are well-established).

Definition 1.7 (Differentiation Index ([Hai11] p.31)). Equation (1.13a) has differentiation
index m if m is the minimal number of analytical differentiations

F (t,x, ẋ) = 0,
d

dt
F (t,x, ẋ) = 0, . . .

dm

dtm
F (t,x, ẋ) = 0 (1.14)

such that equations (1.14) allows to extract by algebraic manipulations an explicit ordinary
differential system u̇ = g(u) (called the "underlying ODE").

Perturbation index

Complementary to the differential index, one can define the pertubation index.

Definition 1.8 (Perturbation index [TB99]). Equation 1.13a is said to have perturbation
index m along a solution x(t) if m is the smallest integer such that, for all functions x̂(t)
having a defect ε(t) given by

F (t, x̂, ˙̂x) = ε(t), (1.15a)

there exists an estimate

∥∥x(t)− x̂(t)
∥∥ = C‖x0 − x̂0‖+

m−1∑
k=0

sup
ξ

∥∥∥ε(k)(ξ)
∥∥∥ , (1.15b)

for which the expression on the right hand side is sufficiently small and C is a constant that
depends only on the function F and on the length of the time interval.

1.2.2 Semi-explicit DAEs

In this thesis, we consider semi-explicit DAE, that is systems admitting a semi-explicit form

Semi-explicit DAE with differential index-1

Consider differential-algebraic systems governed by equations of the form{
ẋ = f(x, z),

0 = g(x, z),
(1.16)

with no occurrence of ż. Differentiating the second equation of (1.16) with respect to time, if the
matrix ∂g

∂z (x, z) is invertible in a neighbourhood of the solution, one obtains an ODE on z.

ż = −
[
∂g

∂z
(x, z)

]−1 ∂g

∂x
(x, z)f(x, z).

In practice it is not necessary to explicitly know the ODE on ż: if consistent initial values
satisfy 0 = g(x0, z0) and if the matrix ∂g

∂z (x0, z0) is invertible, then the implicit function theorem
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guarantees the local existence of a unique function ζ(x) such that 0 = g(x, z = ζ(x)). The
problem then reduces locally to the ordinary differential equation

ẋ = f(x, ζ(x)).

Existence and uniqueness of solutions can then be established using theorem 1.1 p.8.

Semi explicit DAE with differential index-2

Consider differential-algebraic systems governed by equations of the form{
ẋ = f(x, z),

0 = g(x).
(1.17a)

Here, differentiation of the second relation with respect to time leads to the hidden constraint

0 = g′(x)f(x, z). (1.17b)

If the matrix ∂
∂z

[
g′(x)f(x, z)

]
is invertible in a neighborhood of the solution, then ẋ = f(x, z)

and (1.17b) constitute an index 1 problem and differentiation of (1.17b) yields the missing
differential equation for z. If the initial values satisfy 0 = g(x0) and 0 = g′(x0)f(x0, z0), we call
them consistent. If in addition the matrix g′(x0)∂f∂z (x0, z0) is invertible, the implicit function
theorem implies the local existence of a function ζ(x) satisfying g′(x)f(x, z = ζ(x)) = 0 in a
neighborhood of x0. We thus obtain a differential equation on a manifold, (see [Rhe90, Hai11])

ẋ = f(x, ζ(x)), where x(t) ∈ X =
{
x ∈ Rnx | g(x) = 0

}
. (1.17c)

Systems (1.17a) are called differential-algebraic equations in Hessenberg form of index 2.

Example 1.1 (Linear state space DAE). Linear state space systems can be extended to
state-space DAEs described by equations{

E ẋ = Ax+ Bu

y = Cx+ Du
(1.18)

where A,B,C,D are matrices and E is a singular matrix. A typical example in electronics
comes from the application of Modified Nodal Analysis a to VRLC circuits using node
voltages as state variables. Many results are available for the class of Linear DAE stemming
from the properties of the matrix pencil (E,A) (see [KM06, p. 13]).

a. The matrix E can be singular when the node voltages cannot all be expressed as a function of voltage
sources and capacitor voltages.

1.2.3 Singular perturbations

Consider singularly perturbed systems governed by equations of the form{
ẋ = f(x, z),

ε ż = g(x, z),
with 0 < ε� 1. (1.19)

The limit case, ε→ 0, yields an index one problem in semi-explicit form. This system may be
proven to have an ε-expansion where the expansion coefficients are solution to the system of
DAEs that we get in the limit of equation (1.19).
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Example 1.2 (Autonomous Van der Pol oscillator [HW96]). The Van der Pol oscillator
is governed by εz̈ + (z2 − 1)ż + z = 0 (in Lienard coordinates). Introducing the auxiliary
variable x := εż + 1

3(z3 − z) yields a singular perturbation problem{
ẋ = −z
εż = x− (1

3z
3 − z)

with limit case as ε→ 0

the semi-explicit index-1 DAE

{
ẋ = −z
0 = x− (1

3z
3 − z)

Differentiating the algebraic equation yields ẋ = (z2 − 1)ż. Substituting ẋ = −z yields a
system of ODEs (where the ODE on z can be solved independently of x)

ẋ = −z, ż = − z

z2 − 1
.

1.2.4 Existence and uniqueness of solutions

A major difficulty to study existence and uniqueness of DAE is that not all of the analytical and
numerical properties of differential-algebraic systems are completely understood. Several existence
(and uniqueness) theories have been developed for classes of DAE with increasing levels of difficulty
(and indexes). An overview can be found in [Gea71, Rhe90, Rei91, HW96, HLR06, KM06, Hai11].
General theorems for DAE of any index can be found in [KM06]. However pre-requisites are too
numerous to be reproduced here.

Semi-explicit Index-1 DAE

In this thesis, we focus on semi-explicit hybrid circuit formulations (see section 2.3.3 p.57)
with differential DAE index 1. This choice is motivated by the following excerpt from [dLVR13]:

Under passivity assumptions, the index of nodal models is known to be not greater than two,
according to the results in [Tis98, EST00]. (...) By contrast, recent research has been focused on so-
called hybrid models (...) their index does not exceed one in passive contexts [IT10, ITT12, TI10].

We have seen that for semi-explicit DAE of differential index 1 such as (1.16), one can use
the implicit function theorem to establish the existence of an equivalent ODE. Then classical
existence and uniqueness of DAE solutions can be obtained through the Lipschitz conditions of
theorem 1.1 p.8.

Because of this, until the work of Gear [Gea71], implicit systems of the form (1.13a) were
usually transformed into ordinary differential equations (1.5). However this approaches suffers
from two drawbacks: 1) closed-form expression of function inverses can be either inexistent or
inefficient; 2) classical existence and uniqueness theory is too restrictive on the simulation step
size h for stiff ODE 4.

An alternative strategy, is to use theorem 1.2 5 which recovers the full existence domain for
linear ODE. However, as often with Newton iteration, practical conditions are not easy to obtain.
It is now acknowledged that it is often preferable to develop methods that operate directly on the
given differential-algebraic equations. Practical existence and uniqueness condition, exploiting
particular forms of DAE, remains an important subject of research that we try to tackle in
section 5.3 p.135.

4. Reduction of DAE to ODE can typically yield infinitely stiff ODE.
5. This theorem is based on functional Newton iteration rather than the fixed-point theorem. Note that in

chapter 6 p.6 we use functional Newton iteration to show that exponential integrators arise as optimal Newton
pre-conditioners for stiff ODE.
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1.3 Introduction to port-Hamiltonian Systems

Let F denote spaces of flows (e.g. currents) and E the conjugated spaces of efforts (e.g.
voltages) formally defined in definition C.19 p.284 below. From a network modelling perspective,
lumped parameter physical systems are naturally described by [VdS17, p.149] (see fig. 1.2)

• energy storing elements described by a storage structure (see definition 1.18 p.25)

S ⊂ FS × ES (1.20a)

• memoryless passive elements described by a resistive structure (def. 1.19 p.27)

R ⊂ FR × ER, (1.20b)

• power-conserving interconnections formalised by a Dirac structure (def. 1.14 p.20)

D ⊂ FS × ES ×FR × ER ×FP × EP . (1.20c)

• external ports to interact with their environment in the space

FP × EP . (1.20d)

A coordinate-free description of Port-Hamiltonian systems is given by the following definition.

Definition 1.9 (port-Hamiltonian System). A port-Hamiltonian System Σ is defined by the
composition (see see fig. 1.2 and definition 1.17 below)

Σ := (S ‖ D ‖ R) ⊂ FP × EP . (1.21)

The constitutive parts of this modular framework are detailed below: Dirac structures are
considered in section 1.3.1, energy storage structures in section 1.3.2, and passive memoryless
elements in section 1.3.3. Finally, the PH ODE and DAE representations used in this thesis are
detailed in sections 1.3.4 and 1.3.5.

Dirac Structure
D

‖
Energy storage

structure
S

‖
Resistive
structure
R

‖

External ports
P

fS

eS

fR

eR

fP eP

−fS

eS

−fR

eR

−fP eP

Port-Hamiltonian System Σ

Figure 1.2 – Graphical description of a Port-Hamiltonian System.
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1.3.1 Power-conserving elements (Dirac structures)

A foundation of PH modelling, is the notion of power-conserving interconnections which
are mathematically formalised by Dirac structures (see electronic examples in table 1.1). The
study of their mathematical formalisation and different representations is a key aspect in the
port-Hamiltonian framework. After preliminary recalls from [VdS17, VDSJ14], we define Dirac
structures, examine their matrix representations (to be used in this thesis) and their composability.
Finally we comment and extend some of the examples in table 1.1.

Name Component Equations

Open circuit
e

f
f = 0, e ∈ R

Short circuit
e

f
e = 0, f ∈ R

Gyrator

ρ
f1 f2

e1 e2

 e1

e2

 =

 0 −ρ
ρ 0

 f1

f2



Transformer

α
f1 f2

e1 e2

 e1

f2

 =

 0 −α
α 0

 f1

e2



Parallel

connections

f1

. . .

fk

. . .

fne1 enek

e1 = . . . = en ∈ R
f1 + . . .+ fn = 0

Serial

connections

f1

. . .

fk

. . .

fne1 enek

f1 = . . . = fn ∈ R
e1 + . . .+ en = 0

PCB Kirchhoff Laws

Table 1.1 – (power-conserving Dirac structures) common examples in electronics.
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Preliminary definitions

Interconnected physical systems interact through power exchange. Here we give definitions of
flow, effort and power spaces to formalise power exchange in networked structures.

Definition 1.10 (flow and effort spaces). Let F be a linear space (the space of flows). Its
dual space is the set E = F∗ of linear functionals e : F → R (the space of efforts).

Once the notion of dual flow and effort spaces is defined, one can define power as follows

Definition 1.11 (power). Denote 〈· | ·〉 : F∗ × F → R the duality product between F and
E = F∗. The product space B := F × E is called the space of bonds (or conjugated power
variables), with power P := 〈e | f〉. This power is related to the quadratic form on B

Q
(
(f , e)

)
:= 2 〈e | f〉 , ∀(f , e) ∈ F × E . (1.22)

In this thesis, we only need F ∼ Rn, (e.g. the space of currents) and its dual E ∼ Rn (e.g.
the space of voltages) while P = 〈e | f〉 = eTf denotes electrical power 6.

Definition 1.12 (Canonical bilinear form). The product space B = F × E , is equipped with
a canonically defined symmetric bilinear form 〈〈·, ·〉〉 induced by the quadratic form Q

〈〈(f1, e1), (f2, e2)〉〉 := 〈e1 | f2〉+ 〈e2 | f1〉 . (1.23)

The bilinear form (1.23) is indefinite a but non-degenerate b. It gives B the structure of a
pseudo-euclidean space (or Krein space, see C.14 p.283) equipped with 〈·, ·〉B := 〈〈·, ·〉〉.

a. i.e. its metric matrix has both positive and negative eigenvalues (see section 1.4.2 p.36).
b. in finite dimension, this is equivalent to rank

(
〈〈·, ·〉〉

)
= dimB = 2n, (i.e. the metric is invertible).

Remark 1.2. The bilinear form 〈〈·, ·〉〉 arises from the polarization identity 〈〈u,v〉〉 =
1
2

(
Q(u + v)−Q(u)−Q(v)

)
. Indeed one easily proves using definition (1.22) that

〈〈(f1, e1), (f2, e2)〉〉 =
1

2

(
Q
(
(f1, e1) + (f2, e2)

)
−Q

(
(f1, e1)

)
−Q

(
(f2, e2)

))
= 〈e1 + e2 | f1 + f2〉 − 〈e1 | f1〉 − 〈e2 | f2〉 = 〈e1 | f2〉+ 〈e2 | f1〉 .

Definition 1.13 (Orthogonal complement). Consider a subspace D ⊂ B = F × E . Its
orthogonal complement D⊥⊥ with respect to the inner product 〈·, ·〉B is defined by

D⊥⊥ :=
{
u = (fu, eu) ∈ B

∣∣ 〈u,v〉B = 0, ∀v = (fv, ev) ∈ B
}
. (1.24)

Remark 1.3. If dimF = n, then dimB = 2n. Furthermore, as the bilinear form is
non-degenerate, it follows that if dimD = d then dimD⊥⊥ = 2n− d.

6. The PH framework also applies to more general spaces, possibly infinite-dimensional, to describe e.g. Partial
Differential Equations (see [JZ12, DMSB09, VDSJ14]).
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Dirac structures

Definition 1.14 (Dirac structure). A subspace D ⊂ B = F × E is a (constant) Dirac
structure if it is self-orthogonal with respect to 〈·, ·〉B (so that dimD = dimF = dim E .) i.e.

D = D⊥⊥. (1.25)

Corollary 1.1. Let (f , e) ∈ D = D⊥⊥ ⊂ B, then from equation (1.24) and equation (1.23), a
Dirac structure defines a power conserving relation between the variables (f , e), that is

〈〈(f , e), (f , e)〉〉 = 2 〈e | f〉 = 0. (1.26)

Proposition 1.1. A set D ⊂ B = F × E is a Dirac structure if and only if 〈e | f〉 = 0 for
all (f , e) ∈ D and D is a maximal subspace with this property. In particular, any subspace
D ⊂ B satisfying 〈e | f〉 = 0 is a Dirac structure if and only if dimD = dimF .

Remark 1.4. The property dimD = dimF translates that physical systems do not simul-
taneously impose both flow and efforts. This rules out the use of singular network elements
in PH modelling such as nullators (both flow and effort are zero) and norators (both flow
and effort are unconstrained) see references [Car64, Tel66] for more details. The nullor case
(combination of a nullator and a norator) is considered in section 7.2 p.190.

Matrix representations

A Dirac structure D ⊂ Rn × Rn can be represented in any of the following ways.

Definition 1.15 (kernel and image representations). Let E,F ∈ Rn×n satisfy

EFT + FET = 0, rank
[
F E

]
= n. (1.27a)

• The kernel representation of the Dirac structure D is given by

D =

{
(f , e) ∈ Rn × Rn

∣∣∣∣ Ff + Ee = 0

}
= ker

[
F E

]
. (1.27b)

• The image representation, (equivalent dual formulation) is given by

D =

(f , e) ∈ Rn × Rn
∣∣∣∣
f

e

 =

FT

ET

λ, ∀λ ∈ Rn

 = im
[
F E

]T
. (1.27c)

In short, D = ker
[
F E

]
= im

[
F E

]T
.

Let D be given as in (1.27b) with rank F = n1 ≤ n. Select n1 independent colums of F and
partition F,E, f , e into F1,F2, E1,E2, f1, f2, e1, e2 so that (1.27b) can be rewritten as[

F1 E2

]f1

e2

+
[
E1 F2

]e1

f2

 = 0.



1.3. Introduction to port-Hamiltonian Systems 21

It can be shown that
[
F1 E2

]
is invertible so that D can be equivalently represented as the

graph of a skew-symmetric matrix J = −JT = −
[
F1 E2

]−1 [
E1 F2

]
. Conversely we have

Definition 1.16 (Hybrid skew-symmetric representation). For any skew-symmetric matrix
J ∈ Rn×n, the subspace (1.28) with integers n1 + n2 = n is a Dirac structure.

D =

((f1, f2), (e1, e2)
)
∈ Rn1+n2 × Rn1+n2

∣∣∣∣∣∣∣
f1

e2

 = J

e1

f2


 . (1.28)

In this thesis, we use hybrid Dirac structures as our main representation (see definition 2.21 p.55).

Composition of Dirac structures

A key property of Dirac structures is their composability (see figure 1.3): the composition of
two Dirac structures is again a Dirac structure so that the power-conserving interconnection of
any number of Dirac structures is a Dirac structure.

Definition 1.17 (parallel/serial connection). Let F1,F2,F3 be flow spaces with dual effort
spaces E1, E2, E3. Let DA, DB be two Dirac structures such that

∃(f1, e1, fA, eA) ∈ DA ⊂ F1 × E1 ×F2 × E2,

∃(fB, eB, f3, e3) ∈ DB ⊂ F2 × E2 ×F3 × E3,

with a shared space F2 × E2 and a boundary space F1 × E1 ×F3 × E3 . Then,

• The parallel connection DA ‖ DB between DA and DB (common effort) is defined by

fA + fB = 0, eA = eB. (1.29a)

• The serial connection DA ◦ DB between DA and DB (common flow) is defined by

eA + eB = 0, fA = fB. (1.29b)

More formally,

DA ‖ DB :=

 (f1, e1, f3, e3) ∈ F1 × E1 ×F3 × E3 | ∃(f2, e2) ∈ F2 × E2

s.t. (f1, e1, f2, e2) ∈ DA, (−f2, e2, f3, e3) ∈ DB

 ,

DA ◦ DB :=

 (f1, e1, f3, e3) ∈ F1 × E1 ×F3 × E3 | ∃(f2, e2) ∈ F2 × E2

s.t. (f1, e1, f2, e2) ∈ DA, (f2,−e2, f3, e3) ∈ DB

 .

For these definitions, we have the following result (see [VdS17])

Theorem 1.5 (Dirac structure composition). DA ‖ DB and DA ◦ DB are Dirac structures.
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DA ‖ DB
fA

eA

fB

eB

f1

e1

f3

e3

D = DA ‖ DB

Figure 1.3 – Composition of Dirac structures (Parallel composition).

Remark 1.5. Equations (1.29a) and (1.29b) define a composition algebra so that an
expression such as (DA ‖ DB) ◦DC is well-defined. This key property is exploited in modular
network representations such as Bondgraphs [Pay61] and Wave Digital Filters [Fet86].

Dirac structure examples

Example 1.3 (Ideal constraints). Ideal flow or effort constraints such as

Df =
{

(f , e) ∈ Rn × Rn | f = 0
}
, or De =

{
(f , e) ∈ Rn × Rn | e = 0

}
.

are trivial Dirac structures (in electronics: open circuits i = 0 or short circuits v = 0).

Example 1.4 ((Multi-dimensional) Transformer). Transformers (see table 1.1) can be
generalized to multi-dimensional transformer with a matrix-valued transformer ratio A ∈
Rn×n with flow and effort variables (f1, f2, e1, e2) ∈ (Rn × Rn)× (Rn × Rn) such thate1

f2

 =

 0 −AT

A 0

f1

e2

 .
It is an instance of hybrid Dirac structure (see definition 1.16, see also [Bel68]).

Example 1.5 ((Multi-dimensional) Gyrator). Similarly, a gyrator (see table 1.1) can be
generalized as a multi-dimensional gyrator with gyration matrix R ∈ Rn2×n1 and flow and
effort variables (f1, f2, e1, e2) ∈ (Rn1 × Rn2)× (Rn1 × Rn2) such thate1

e2

 =

 0 −RT

R 0

f1

f2

 .

Example 1.6 (Serial and Parallel junctions). 0-junctions (resp. 1-junctions) (terminology
from bond graph theory [Pay61, Bre86]), corresponds to a parallel (resp. serial) junctions in
wave digital filters theory [Fet86]. They are defined by dual constraints: equality of efforts,
and balance of flows (resp. equality of flows, and balance of efforts).

Parallel: D0 =
{

(f , e) ∈ Rn × Rn | e1 = . . . = en, f1 + . . .+ fn = 0
}
, (1.30a)

Serial: D1 =
{

(f , e) ∈ Rn × Rn | f1 = . . . = fn, e1 + . . .+ en = 0
}
. (1.30b)
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Only one port k ∈ {1, . . . , n} can be chosen to impose the common effort ek (resp. flow
fk). Denoting (f̄ , ē) (for i ∈ {1, . . . , n} \ {k}) the remaining port variables, the following
hybrid skew-symmetric matrix representations holds

D0 :


fk

ē1

...

ēn−1

 =


−1 . . . −1

1
...

1




ek

f̄1

...

f̄n−1

 , D1 :


ek

f̄1

...

f̄n−1

 =


−1 . . . −1

1
...

1




fk

ē1

...

ēn−1

 .

In electronics, Kirchoff laws imply that for a parallel connection of components, voltages
v = vR = vC = vL are equal (here efforts) and the current balance iR + iC + iL = 0 of
all branch currents is zero (conservation of charge). Dually, for a serial loop connection,
dipoles share the same current i = iR = iC = iL and the oriented sum of branch voltages
vR + vC + vL = 0 must be zero.

v

iR
iC iL

vR vC
vL

i
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1.3.2 Energy-storing elements

Name Component State Energy Equations

Linear Capacitor

v

i q q2

2C i = q̇, v = q
C

Linear Inductor
v

i φ φ2

2L v = φ̇, i = φ
L

Non linear Capacitor

v

i q H(q) i = q̇, v = ∇H(q)

Non linear Inductor
v

i φ H(φ) v = φ̇, i = ∇H(φ)

Table 1.2 – (energy storing components) examples in electronics.

In PHS (see figure 1.2 p.17), the structure S gathers all the energy-storing elements of the
system (see examples in table 1.2). Its energy is defined on a state space X (a vector space or a
manifold 7) by a storage function called the Hamiltonian

H : X → R.

Let x be a trajectory. For a given t, denote x = x(t) ∈ X a point along this trajectory with
derivative ẋ = ẋ(t). By convention, the incoming flow fS and internal effort eS are defined 8 by

fS := ẋ ∈ FS := TxX , and eS :=
∂H

∂x
(x) ∈ ES := T∗xX , (1.31)

so that the time-variation of the stored energy is the received power

d

dt
H(x(t)) =

〈
∇H(x)

∣∣ ẋ〉 = 〈eS | fS〉 , (1.32)

where TxX and T∗xX denote the tangent space and co-tangent space at x.

´
∇H(x)

fS

FS
ẋ

TxX
x

X
∇H(x)

T∗xX
eS

ES

Figure 1.4 – Block diagram of energy storing elements.

7. In this manuscript the state space manifold is always X ∼ Rn, so that TxX × T∗xX ∼ Rn × Rn
8. Note that we use a different sign convention from [VDSJ14], here (fS , eS) denotes the port variables of the

storage structure S instead of the port variables of the Dirac structure D that are connected to storage ports.
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One can sum up the above equations (see also figure 1.4) with the following definition

Definition 1.18 (Energy storage structure). Let X be a state space (a linear space or a
manifold) and H : X → R a Hamiltonian function. Flow and effort spaces are the tangent
space FS := TxX and co-tangent space ES := T∗xX . An energy storage structure is defined
locally by

Sx :=
{

(fS , eS) ∈ FS × ES | eS = ∇H(x)
}

(1.33a)

where x ∈ X denotes the current value of the trajectory

x(t) =

ˆ t

−∞
fS(τ) dτ. (1.33b)

Remark 1.6 (Lagrangian submanifolds). It is possible to generalise energy-storage struc-
tures using Lagrangian submanifolds (see reference [VdSM18] for the general theory and
[GHVdSR20] for their use in circuit simulation). In this thesis, we do not use such generali-
sations, and thus skip their presentation.

Examples of storage structures

Example 1.7 (Capacitors). For a capacitor
v

i
, with energy storage function

H : R→ R, the energy variable is the charge (see [CDK87, eq.1.2a])

q(t) :=

ˆ t

−∞
i(τ) dτ,

with the storage structure

Sq =
{

(v, i) ∈ R2 | v = ∇H(q)
}
.

a) If the capacitor is linear, v = v̂(q) = q
C , by integration we obtain the energy

H(q) =

ˆ q

0
v̂(x) dx =

q2

2C
.

b) If instead the capacitor is nonlinear, for example the saturating law v̂(q) = V0 asinh
(
q
q0

)
,

then integrating the law we obtain the nonlinear energy

H(q) =

ˆ q

0
v̂(x) dx = V0q0

1 +
q

q0
asinh

(
q

q0

)
−

√
1 +

(
q

q0

)2
 .
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Example 1.8 (Inductors). For an inductor
v

i
, with energy storage function

H : R→ R, the energy variable is the flux-linkage φ(t) :=
´ t
∞ v(τ) dτ, (cf [CDK87, eq. 1.2b]

) and the storage structure

Sφ =
{

(v, i) ∈ R2 | i = ∇H(φ)
}
.

a) If the inductor is linear, i = î(φ) = φ
L , then by integration, its energy is the quadratic

potential

H(φ) =

ˆ φ

0
î(x) dx =

φ2

2L
.

b) If the inductor is nonlinear, for example the anti-saturating law î(φ) = I0 sinh
(
φ
φ0

)
, then

by integration we obtain the non linear energy

H(φ) =

ˆ φ

0
î(x) dx = φ0I0

(
cosh

(
φ

φ0

)
− 1

)
.

c) Another example of flux-controlled inductor with a nonlinear / non-bijective φ–i law is
the Josephson junction [CDK87, ex.3b] governed by î(φ) = I0 sin

(
φ
φ0

)
with a positive but

non-convex Hamiltonian a.

H(φ) = I0φ0

(
1− cos

(
φ

φ0

))
.

a. I0 is a device parameter, φ0 = ~/(2e), ~ = h/(2π) the reduced Planck constant and e the electron
charge.

A typology of typical effort laws and their corresponding energy potentials (for linear, harden-
ing, softening, saturating or oscillating laws), is shown on figure 1.5.

0
Adimensioned state x

0

Linear
Josephson
hardening
softening
saturating

(a) Effort e = ∇H(x)

0
Adimensioned state x

0

Linear
Josephson
hardening
softening
saturating

(b) Energy H(x)

Figure 1.5 – Examples of adimensioned effort laws and their corresponding energies.
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1.3.3 Passive memoryless elements

The second type of multi-port elementR corresponds to energy dissipation (friction, resistance)
or more generally to passive memoryless elements (examples shown in figure 1.3).

Name Component w Law w∗ = z(w)

Resistor
R

v

i i v = Ri

Conductor
G

v

i v i = Gv

Shockley Diode
D

v

i v i = pn(v) (see (1.42))

Ideal Diode
D

v

i v i ∈

{
{0} v ∈ R− \ {0}
R+ v = 0

BJT
B

CE

iBE iBC

iBCiBE
vBE vBC

vBC
vBE

 iBC
iBE

 =

γR −1

−1 γF

pn(vBC)

pn(vBE)



Table 1.3 – (passive memoryless components) Examples in electronics. All components are
dissipative except the ideal diode which is non-energetic (and multi-valued).

A memoryless passive relation (or a resistive relation) is given by the following definition

Definition 1.19 (Resistive relation). Let FR be a vector space with dual ER = F∗R. A
resistive relation R is a subset R ⊂ FR × ER defined by

R :=
{

(fR, eR) ∈ FR × ER | 〈eR | fR〉 ≥ 0
}
. (1.34)

with dimR = dimF .

Note that, it defines a passive relation that is neither over nor under determined, but can be
multi-valued (see appendix A p.271). Following reference [RB16], we overload function notation
and write R(f) to mean the set

R(f) =
{
e ∈ ER | (f , e) ∈ R

}
. (1.35)

We define the domain and image of a relation by domR :=
{
f ∈ FR | R(f) 6= ∅

}
, and imR :=

∪f∈domRR(f). Some important properties to describe relations are presented below.
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Definition 1.20 (Relation properties). A relation R (possibly multivalued) is said to be

• passive or resistive (resp. strictly resistive) if ∃ m ≥ 0 (resp. m > 0) such that〈
R(f)

∣∣ f〉 ≥ m, ∀f ∈ domR, (1.36a)

• monotone or incrementally passive when〈
R(f2)−R(f1)

∣∣ f2 − f1

〉
≥ 0, ∀f1, f2 ∈ domR, (1.36b)

• strongly monotone or coercive when there exists m > 0 such that〈
R(f2)−R(f1)

∣∣ f2 − f1

〉
≥ m‖f2 − f1‖2 , ∀f1, f2 ∈ domR, (1.36c)

• one-sided Lipschitz when there exist L > 0 such that〈
R(f1)−R(f2)

∣∣ f2 − f1

〉
≤ L‖f2 − f1‖2 , ∀f1, f2 ∈ domR, (1.36d)

• Lipschitz when there exist L > 0 such that∥∥R(f2)−R(f2)
∥∥ ≤ L‖f2 − f1‖ , ∀f1, f2 ∈ domR. (1.36e)

Explicit mappings Let (W,W∗) denote (possibly hybrid) flow-effort spaces induced by a
suitable permutation among the coordinates of flow and effort spaces (FR, ER). In the majority of
cases, resistive relations can be defined by the graph of an explicit mapping z : w 7→ w∗ = z(w)
where z is a dissipative operator satisfying the power-balance.〈

z(w)
∣∣w〉 ≥ 0. (1.37)

Linear Resistive relations Linear resistive elements are characterized by linear mappings of
the form z(w) = Aw with positive semi-definite matrix A (i.e. A + AT � 0). For example, pure
resistance (v = Ri) or conductance (i = Gv) relations are characterised by symmetric positive
definite matrices (R = RT � 0, G = GT � 0).

Implicit parametrisation Multi-valued or non monotone relations (e.g ideal or tunnel diodes)
may be easier to describe using implicit parametrisations.

Definition 1.21 (Implicit resistive relation). Denote Λ = Rn with FR = Rn = ER and let
E : Λ → ER, F : Λ → FR be two algebraic operators. If

〈
E(λ)

∣∣F (λ)
〉
≥ 0, for all λ ∈ Λ,

the set R is called an implicit resistive structure in image parametrisation, where

R =
{

(F (λ),E(λ)) ∈ FR × ER ∀λ ∈ Λ
}
. (1.38)

To illustrate this, consider the set-valued relation of the ideal diode from table 1.3

R =

(v, i) ∈ R× R

∣∣∣∣∣∣ i ∈

{
{0} v ∈ R− \ {0}
R+ v ∈ {0}

 . v

i

R
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with domR = R−, imR = R+. Equivalently, it can be implicitely parametrized by

R =

(v, i) ∈ R× R

∣∣∣∣∣∣∣
v
i

 =

−V0 1R−(λ)

I0 1R+(λ)

 , ∀λ ∈ R

 .
v

i
•(v̂(λ), î(λ))

R (1.39)

where 1S denote the indicator function of a set S and V0, I0 can be any positive normalisation
constants. R clearly defines a one-dimensional manifold in R× R that cannot be represented as
a single-valued function in the (v, i) plane. The implicit parametrisation has the advantage of
making the one dimensional constraint explicit, and uses continuous single-valued functions. This
last fact is useful numerically. It has been exploited by the author in the article [MH20].

Dissipative potentials

In this thesis, we use the results from [Mil51, Che51] about dissipative potentials for simulation
purposes 9. As effort laws derive from the gradient of the Hamiltonian for storage components.
In a similar manner, dissipative laws can be regarded as arising from the gradient of a “power
potential” (this is related to Brayton–Moser mixed-potential theory [BM64a, BM64b, JS03]). To
this end, consider the power differential

d(e · f) = e · df + f · de .

For an integrable resistive relation R, define potential functions D : FR → R and D∗ : ER → R
respectively called content and co-content 10 by the line integrals

D(fR) :=

ˆ fR

0
E(f) · df , D∗(eR) :=

ˆ eR

0
F (e) · de , (1.40)

so that for all (fR, eR) ∈ R, integrating the differential d(e · f) along the path γ : (0,0) →
(fR, eR) ∈ R, the power is equal to the sum of content and co-content potentials

eR · fR = D(fR) + D∗(eR) , ∀(fR, eR) ∈ R. (1.41)

Differentiating (1.41) with respect to (eR, fR) it follows from the definition that we can indeed
recover efforts or flows respectively from the gradient of the content and co-content potentials.

eR = ∇D(fR) , and fR = ∇D∗(eR) .

Equation (1.41) is illustrated visually on figures 1.6 and 1.7 below.

Remark 1.7 (Legendre transformation). Content and co-content potential D and D∗ are
dual to each other (see figures 1.6, 1.7) and represent the same information. In the case of
convex potentials, they are respectively equal to the Legendre transformation of each other

D(fR) = eR · fR − D∗(eR) , D∗(eR) = eR · fR − D(fR) .

Note that this is just a reformulation of (1.41). See [ZRM09] for a detailed introduction to
the Legendre and Legendre–Fenchel transformations.

9. Our motivation is that in subsection 5.4.1 p.140, antiderivatives allow closed-form computation of projection
coefficients. They are also useful for anti-aliasing and discrete gradient can be generalised to dissipative potentials.
10. These potential are sometimes called Rayleigh dissipation functions or current and voltage potentials
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Examples of resistive structures

vi = D(i) +D∗(v)

D∗(v)

D(i)

v

i

Figure 1.6 – Law of a linear re-
sistor and its current and voltage
power potentials.

Linear resistor For a linear resistor,
v

i the
resistive structure is bijective. It can be either current or
voltage controlled{

(v, i) ∈ R2 | v = v̂(i) = Ri
}

= R =

{
(v, i) ∈ R2 | i = î(v) =

v

R

}
.

Its current and voltage potentials are respectively given by

D(i) =

ˆ i

0
v̂(ι) dι =

Ri2

2
, D∗(v) =

ˆ v

0
î(ν) dν =

v2

2R
.

This is shown on figure 1.6. In this particular case (because
of linearity), we have D(i) = D∗(v̂(i)) = Ri2, but this result
should not be extrapolated as the next example shows.

vi = D(i) +D∗(v)

D∗(v)

D(i)

v

i

Figure 1.7 – Law of a Shockley
Diode and its power potentials.

PN Diode Consider the voltage controlled Shockley

diode model [Sho49]
v

i . The resistive struc-
ture is given by the graph of a PN junction R ={

(v, i) ∈ R2 | i = pn(v)
}
with

pn(v) := IS

(
exp

(
v

nVT

)
− 1

)
. (1.42)

where IS is the saturation current, n the ideality factor,
VT = kT

qe
the thermal voltage with k the Boltzmann constant,

T the temperature in Kelvin and qe the charge of the electron.
By integration, its voltage potential is given by

D∗(v) =

ˆ v

0
î(ν) dν = nVT IS

(
exp

(
v

nVT

)
− v

nVT
− 1

)
. (1.43)

Using bijectivity, we can express the current potential indirectly by using the inverse map

v = pn−1(i) = nVT ln

(
1 +

i

IS

)
, i > −IS , (1.44)

and the Legendre transformation D(i) =
[
vi−D∗(v)

]
v=î−1(i)

to obtain

D(i) = nVT IS

((
1 +

i

IS

)
ln

(
1 +

i

IS

)
− i

IS

)
(1.45)

Using the above definitions, the current and voltage potentials being known, for simulations
purposes, the component can be either flow or effort-driven (according to the constraints of circuit
interconnections). On figure 1.7, the areas filled by the diode power P (v, i) and the current
and voltage potentials D(i) and D∗(v) are shown in the (v, i) plane for IS = 1, nVT = 1. It is
geometrically clear that the current and voltage potentials are complimentary and their sum
equals the power vi. It is also clear that in the nonlinear case D(i) 6= D∗(v̂(i)).
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Example 1.9 (Tunnel diode). A tunnel diode
v

i is a passive device, but its
characteristic is not monotonous. It exhibits a region of negative incremental resistance. the
resistive structure is given by R =

{
(v, i) ∈ R2 | i = g(v)

}
where the nonlinear characteristic

g is shown on figure 1.8 with VP the peak voltage, VI , the inflection voltage and VV the
valley voltage. Common modelling approaches uses cubic ([NAY62, HDF+10]) or quintic
([CDK87, p.409]) polynomials. More physical approaches (see [Ng06]) use the standard PN
diode model in parallel with additional terms to model the tunnel effect, the simplest being
(see figure 1.8)

g(v) = IS

(
e
v
VT − 1

)
︸ ︷︷ ︸

PN diode

+ IP

(
v

VP

)
e
− v−VP

VP︸ ︷︷ ︸
peak current

. (1.46)

(a) RCA tunnel diode
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(b) Cubic approximation
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(c) Exponential approximation

Figure 1.8 – Static characteristic of a tunnel diode. (a) tunnel diode plot from the RCA
tunnel diode manual [RCA63]). (b) cubic approximation as used in Van der Pol oscillators, (c)
exponential model.
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Example 1.10 (BJT). An important electronic component is the Bipolar junction transistor.

B

CE

iBE iBC

iBCiBE
vBE vBC

The Ebers-Moll model of a NPN Bipolar Junction Transistor, which is equivalent to two
coupled PN diodes a, can be written compactly (see Gummel–Poon article [GP70, Eq.3]) as

RBJT =



iBC
iBE

 ,
vBC
vBE


 ∈ R2 × R2

∣∣∣∣
iBC
iBE

 =

γR −1

−1 γF

pn(vBC)

pn(vBE)


 . (1.47)

where the parameters βF , βR (usually βF ≈ 100, βR ≈ 20) are respectively the forward
and reverse common-emmiter curent gains. The derived parameters γF , γR are given by
γ = 1 + 1/β > 1. Since the PHS formalism is all about explicitly formalising passive power
exchange, it is important to verify before using a model that it is energetically well-posed.
An original proof of passivity (not commonly found in the literature) is proposed below b.

Proof. To prove passivity of the Ebers–Moll model, notice that function pn (see eq. (1.42)),
is both passive (pn(v) · v ≥ 0) and incrementally passive (pn(v1)− pn(v2)) · (v1 − v2) ≥ 0).
Finally, decompose the power as a sum of non-negative terms

[
vBC vBE

]iBC
iBE

 =
[
vBC vBE

]
 1 −1

−1 1

+

γR − 1 0

0 γF − 1



pn(vBC)

pn(vBE)


=
(
pn(vBC)− pn(vBE)

)
(vBC − vBE)︸ ︷︷ ︸

≥0

+ (γF − 1)︸ ︷︷ ︸
≥0

vBC pn(vBC)︸ ︷︷ ︸
≥0

+ (γR − 1)︸ ︷︷ ︸
≥0

vBE pn(vBE)︸ ︷︷ ︸
≥0

≥ 0.

a. see equation (1.42) for the definition of the pn function.
b. Note that this proof assumes incremental passivity with both PN junctions having the same process

parameters. SPICE modelling is more flexible than that: different saturation currents and ideality factors
can be used, but then proving (local) passivity becomes dependent on the particular choice of parameters.
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1.3.4 Input-State-Output Representation (PH-ODE)

An important class of port-Hamiltonian systems is the structured state-space representation.

Definition 1.22 (Input-State-Output PHS [VdS17] p.113). An input-state-output port-
Hamiltonian system with nS-dimensional state-space manifold X , nP -dimensional input and
output spaces U ∼ Y = RnP , and Hamiltonian H : X → R, is given by{

ẋ =
[
J(x)−R(x)

]
∇H(x) +G(x)u

y = GT(x)∇H(x)
(1.48)

where matrix functions J(x), R(x) ∈ RnS×nS satisfy J = −JT and R = RT � 0.

It follows that it structurally satisfies the following passive power balance (see definition 1.5)

d

dt
(H ◦ x) =

〈
∇H(x)

∣∣ ẋ〉︸ ︷︷ ︸
PS

= −
〈
∇H(x)

∣∣R(x)
∣∣∇H(x)

〉︸ ︷︷ ︸
PR≥0

+ 〈y |u〉︸ ︷︷ ︸
PP

≤ 〈y |u〉 , (1.49)

meaning that storing components receive the power PS , dissipative components receive (and
dissipate) PR and external sources supply PP in a balanced manner.

Remark 1.8 (Receiver convention). Exceptionnaly, in order to make the connection with
state-space system theory easier, the power 〈u |y〉 in (1.49) uses the emitter convention.
From now on (and throughout this document), we uniformly use the receiver convention
for all components including external ports / sources so that power balances can be written
under the canonical form ∑

i

〈ei | fi〉 = 0.

This choice is made to simplify sign conventions in automated modelling and is very common
in electronics (Tellegen theorem). However it requires special care with input/outputs when
using results from state-space and bond-graph theory where the emitter convention is often
implied for input-output ports.

An extension of definition 1.22 for systems with direct feed-through is given by

Definition 1.23 (input-state-output PHS with feedthrough ([VdS17] p.114)). An input-state-
output port-Hamiltonian system with feed through with n-dimensional state-space manifold
X , input and output spaces U ∼ Y = RnP , and Hamiltonian H : X → R, is given asẋ

y

 =
[
J(x)−R(x)

] ∇H(x)

u

 , (1.50)

where matrix functions J(x), R(x) ∈ R(nS+nP )×(nS+nP ) satisfy J = −JT and R = RT � 0.

likewise it satisfies the passive power balance (PP now denotes the power received by sources)

〈
∇H(x)

∣∣ ẋ〉︸ ︷︷ ︸
PS

+ 〈u |y〉︸ ︷︷ ︸
PP

= −

〈∇H(x)

u


∣∣∣∣∣∣∣R(x)

∣∣∣∣∣∣∣
∇H(x)

u

〉
︸ ︷︷ ︸

PR≥0

≤ 0. (1.51)
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1.3.5 Semi-explicit representation (PH-DAE)

A PHS does not always admit an explicit input-state-output representation. Moreover it
is not always desirable (or may be computationally difficult) to find one. Another important
representation of PHS, which is used in this thesis, is the following semi-explicit PH-DAE.

Definition 1.24 (semi-explicit PH-DAE). A semi-explicit port-Hamiltonian DAE with
nS-dimensional state-space manifold X and Hamiltonian H : X → R, resistive structure
R ⊂W ×W ∗ given by an explicit map z : W →W ∗ with W ∼W ∗ = RnR , and input output
spaces U ∼ Y = RnP , is given by

ẋ

w

y

 = J


∇H(x)

z(w)

u

 , where J =


Jxx ∗ ∗
Jwx Jww ∗
Jux Juw Juu

 , (1.52)

and the (nS + nR + nP )× (nS + nR + nP ) matrix J = −JT (possibly depending on x).

In this case, the power-balance writes as follows.

Property 1.1 (Power balance). By skew-symmetry, the PH-DAE has the structured instan-
taneous power balance〈

∇H(x)
∣∣ ẋ〉︸ ︷︷ ︸

stored power PS

+
〈
z(w)

∣∣w〉︸ ︷︷ ︸
dissipated power PR≥0

+ 〈u |y〉︸ ︷︷ ︸
external power PP

= 0. (1.53a)

Integrating over a time step [t0, t1] this yields the energy balance[
H
(
x(t)

)]t1
t0

+

ˆ t1

t0

PR(t)︸ ︷︷ ︸
≥0

dt+

ˆ t1

t0

PP (t) dt = 0. (1.53b)

Finally in the absence of external input, this reduces to the passivity relation

H
(
x(t1)

)
≤ H

(
x(t0)

)
. (1.53c)

Equation (1.52) can be rewritten as a semi-explicit state-space DAE (see section 1.2.2)
ẋ = f(x,w,u) = Jxx∇H(x)− JT

wxz(w)− JT
uxu

0 = g(x,w,u) = w −
(
Jwx∇H(x) + Jwwz(w)− JT

uwu
)

y = h(x,w,u) = Jux∇H(x) + Juwz(w) + Juuu

. (1.54)

Remark 1.9 (Index-1). According to definition 1.7, the DAE has differential index-1 if g
is solvable for w, i.e. if matrix ∂g

∂w = I − Jwwz
′(w) is invertible. A case that frequently

arises in applications is when either Jww = 0 or z′(w) is positive definite. Then the DAE is
automatically of index-1. This will be addressed for circuits in section 2.3.4 p.60.

For more details such as representation of PHS in canonical coordinates, or constrained PHS
using Lagrange multipliers, we refer to [VDSJ14].
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1.4 From flow-effort to wave variables

In this section, we show that flow-effort variables, can be equivalently represented by incoming
and outgoing wave variables. In the Bondgraph litterature, wave variable representations of circuits
have been pioneered by Paynter ([Pay61] p.268) and Breedveld ([Bre85] p.6) where they constitute
an alternate choice of variables (see [SVDSMM02, SSvdSF05]). By contrast, in Wave Digital Filters
(see Fettweiss [Fet86]), which is still an active research field [Bil04, WNSA15, WBSS18, BS17] in
audio, wave variables are a defining feature of the formalism. A distinguishing feature of WDF
is to use impedance adaptation to obtain a majority of explicit or reflection-free ports, which
considerably reduces the cost of numerical simulations 11.

We first present the classical wave variable change (defined locally for each port), then we
provide an alternative geometric viewpoint to show that the wave variable change naturally
arise from a splitting of the bondspace B into an euclidean space W+ for incident waves and an
anti-euclidean space W− for outgoing waves both induced by the indefinite metric.

1.4.1 The classical wave variable change

Classically (see [Fet86]), for each port, incoming and outgoing waves (w+, w−) are introduced
with a reference "resistance" R (and possibly a reference voltage V0 for adimensionalisation 12)
by the variable change (e, f)↔ (w+, w−)


w+ =

e+Rf

V0

w− =
e−Rf
V0

⇐⇒


f =

V0

R

(
w+ − w−

2

)

e = V0

(
w+ + w−

2

) (1.55)

Multiplying e and f yields that the instantaneous power P is proportional to the difference
between incoming power

∣∣w+
∣∣2 /2 and the outgoing powers

∣∣w−∣∣2 /2
P = ef =

V 2
0

2R

∣∣w+
∣∣2 −∣∣w−∣∣2

2

 .

Classical choices for V0 are:
• V0 = 1 which yields the definition of effort wave variables.

• V0 = R which yields the definition of flow wave variables.

• V0 =
√

2R which yields the definition of power wave variables.
Note that, for the last choice, the variable change is a sequence of two power-conserving unitary
transforms : an hyperbolic squeeze (with hyperbolic angle ϕ = ln(

√
R)) followed by a rotation (by

angle θ = −π/4) w+

w−

 =
1√
2

 1 1

−1 1


︸ ︷︷ ︸

rotation

√R 0

0 1/
√
R


︸ ︷︷ ︸
hyperbolic rotation

f
e

 . (1.56)

11. One can show, that in the linear case, port-adaptation automatically and structurally performs on the fly
matrix inversion. This is closely related to QR decomposition using sequences of Householder reflections.
12. Note that bi-parametric waves (introduced in [BS17]) also makes use of two degrees of freedom.
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1.4.2 Geometric viewpoint

We now adopt a top-down geometric viewpoint. Considering the bond space B equipped with
the indefinite bilinear form 〈·, ·〉B (see definition 1.12), we show that it naturally splits into a
positive euclidean space (for incoming waves) and a negative anti-euclidean space (for outgoing
waves): wave variables emerges as a consequence of the indefinite metric (see definition C.14
p.283) induced by the duality pairing .

Following [VdS17, SVDSMM02], let F be a linear vector space, E := F∗ its dual output space
and B = F × E the product space where (f , e) have already been normalized. The bilinear form
〈·, ·〉B has the matrix representation (using the notation 〈u |A |v〉 = uTAv)

〈f1

e1

 ,
f2

e2

〉
B

=

〈f1

e1


∣∣∣∣∣∣∣
0m Im

Im 0m


∣∣∣∣∣∣∣
f2

e2

〉 .
It immediately follows using the eigenvalue decomposition that0m Im

Im 0m

 =
1√
2

Im −Im

Im Im


︸ ︷︷ ︸

U

Im 0m

0m −Im


︸ ︷︷ ︸

Λ

1√
2

 Im Im

−Im Im


︸ ︷︷ ︸

UT

.

It has m eigenvalues +1 and m eigenvalues −1 and thus defines an indefinite inner product. As
in (1.56), the change of basis from flow-effort to waves is given by the rotation matrix UTw+

w−

 =
1√
2

 Im Im

−Im Im

f

e

 ⇐⇒

f

e

 =
1√
2

Im −Im

Im Im

w+

w−

 . (1.57)

The scattering representation consists in decomposing the vector (f , e) ∈ F × E according
to the positive and negative eigenvalues. It defines respectively a positive euclidean subspace
W+ ∼ Rm,0 and a negative anti-euclidean subspace 13 W− ∼ R0,m so that W+ ⊕W− ∼ Rm,m.

Definition 1.25 (Scattering subspaces ([VdS17] p. 27)). Any pair (W+,W−) of subspaces
W+,W− ⊂ B = F × E is called a pair of scattering subspaces if

1. W+ ⊕W− = F × E ,

2.
〈
w+

1 ,w
+
2

〉
B
> 0, ∀w+

1 ,w
+
2 ∈ W+ \ 0,

3.
〈
w−1 ,w

−
2

〉
B
< 0, ∀w−1 ,w

−
2 ∈ W− \ 0,

4.
〈
w+,w−

〉
B = 0, ∀ (w+,w−) ∈ W+ ⊕W−.

Any vector (f , e) ∈ F × E can be represented as a pair w+ ⊕ w− ∈ W+ ⊕ W−. The
representation (f , e) = w+ ⊕w− is called a scattering representation and w± are called the wave
vectors of the combined vector (f , e). It follows that for all (fi, ei) = w+

i ⊕w−i , i = 1, 2

〈f1

e1

 ,
f2

e2

〉
B

=

〈w+
1

w−1


∣∣∣∣∣∣∣
Im 0m

0m −Im


∣∣∣∣∣∣∣
w+

2

w−2

〉 =
〈
w+

1 ,w
+
2

〉
Rm
−
〈
w−1 ,w

−
2

〉
Rm

. (1.58)

13. Rp,q denotes the pseudo-euclidean space with metric signature 1, . . . 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q



1.4. From flow-effort to wave variables 37

Reflected waves

W−

Incident waves

W+

Dirac structure
D

〈·, ·〉B < 0

〈·, ·〉B = 0

〈·, ·〉B > 0

B

Figure 1.9 – Abstract illustration of the splitting of the (indefinite inner product) space B into
a positive space W+, a negative space W− and a null space D.

so that (for (e1, f1) = (e2, f2) = (e, f) = w+ ⊕w−), the power writes

P = 〈e | f〉 =
1

2

〈f

e

 ,
f

e

〉
B

=
1

2

(∥∥∥w+
∥∥∥2

Rm
−
∥∥∥w−∥∥∥2

Rm

)
. (1.59)

Remark 1.10 (Physical Units). In the previous development, it is assumed that flow and
effort variables (f , e) have already been scaled to the same physical unit so that linear
combinations make sense physically. Since we also use P = 〈e | f〉 to denote power, for (f̃ , ẽ)
expressed in power-conjugated natural units (e.g. Ampere and Volts), it is necessary to use
a power-preserving variable change ρ : (f̃ , ẽ) 7→ (f , e) (expressed in square root of Watt).

ρ :

f

e

 =

R1/2 0

0 R−1/2

f̃

ẽ

 , R = diag(R1, . . . Rm) > 0.

where R1, . . . , Rm can be chosen as arbitrary scaling constants a. Since the variable change
is power preserving, we can verify that the scaling ρ also preserves the inner product〈

ρ

f1

e1

 , ρ
f2

e2

〉
B

=

〈f1

e1

 ,
f2

e2

〉
B

.

Combining variable changes, we obtain the unitary power-wave transform (f̃ , ẽ) 7→ (w+,w−).w+

w−

 =
1√
2

 I I

−I I

R1/2 0

0 R−1/2

f̃

ẽ

 . (1.60)

a. Recently, in reference [BMS20], the authors have proposed a vector definition of waves of the form
w± = e ± Rf where R can be any invertible real matrix (not necessarily symmetric positive definite),
including "across ports" linear combinations. We investigate this topic independently in section 2.5 p.73.

In section 9.4 p.254, thanks to Geometric Algebra, we revisit flow-effort and wave representation
using simpler notations.
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1.4.3 Wave variables representation of Port-Hamiltonian Systems

We consider the scattering representation of Dirac, storage and dissipative structures considered
as causal maps w+ 7→ w−. This section (mostly formal) is a step towards establishing deeper
links between PHS and WDF.

Dirac structures

A Dirac structure D can be represented by the graph of an invertible linear map S :W+ →W−.
This is related to the standard results from Carlin [Car64, Car67]: normal linear passive networks
always possesses a scattering representation. This is summarized by the following definition.

Definition 1.26 (Scattering representation [VdS17] p.164). Let D ⊂ F × E be a Dirac
structure, and (W+,W−) scattering subspaces. The linear map S :W+ →W− satisfying

D =
{

(f , e) = w+ ⊕w− | w− = Sw+
}

(1.61)

is called the scattering representation of D.

For a skew-symmetric Dirac structure, we have the following proposition.

Proposition 1.2 (Scattering of skew-symmetric Dirac structure). For (1.60), the scattering
representation of a Dirac structure D given by f = Je with J = −JT, is the matrix

SD = (I− JR)(I + JR)−1, where JR := R1/2JR1/2 = −JT
R (1.62)

SR (the Cayley transform of JR) is orthonormal, so that
∥∥SDw+

∥∥
Rn =

∥∥w+
∥∥
Rn.

Proof. Substituting f = Je in (1.60) and factoring R−1/2 on the right, we obtain

w+ =
1√
2

(
I + R1/2JR1/2

)
R−1/2e, w− =

1√
2

(
I−R1/2JR1/2

)
R−1/2e.

Defining JR = R1/2JR1/2 and solving for e we obtain the map w− = (I−JR)(I+JR)−1w+.

Linear resistive relations

Using the same argument as above, we obtain

Proposition 1.3 (Scattering of linear resistive structures). For a linear resistive structure,

Rlin =
{

(e, f) ∈ Rn × Rn | f = Ae
}

where A � mI, m ≥ 0. (1.63)

and the wave variable change (1.60), the scattering representation of (1.63) is the matrix

SR = (I−AR)(I + AR)−1, where AR := R1/2AR1/2 � 0, (1.64)

By properties of the Cayley transform, SR is non expansive, so that

‖SRw‖Rn ≤ α‖w‖Rn , with α = |1−m| /(1 +m). (1.65)

Note that, when A is diagonal (i.e. a multiport constituted of indepedent resistors), choosing
R = A−1, it is possible to make the structure reflection-free. In this case SR = 0.
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Non linear multi-valued resistive relations

Following reference [RB16], it is possible to generalise the Cayley transform to nonlinear
multi-valued relations. First we recall the following results 14. Let A be a relation and I the
identity relation, then for α ∈ R, the resolvent of A is RA,α = (I+αA)−1 and its Cayley operator
(see equation (A.1) p.273) is CA,α = 2RA,α − I. When A is maximal and single-valued, then

CA,α = (I − αA)(I + αA)−1, ∀α ≥ 0. (1.66)

When A is maximal monotone but not necessarily single-valued, then CA satisfies

CA,α(I + αA) = (I − αA), ∀α > 0. (1.67)

Proposition 1.4 (Scattering of resistive relations). For a resistive relation

G =
{

(e, f) ∈ Rn × Rn | f ∈ G(e), 〈f | e〉 ≥ 0
}
. (1.68)

and the wave variable change (1.60), then its scattering representation is the Cayley operator

SG = 2(I −GR)−1 − I where GR = R1/2GR1/2 (1.69)

According to [RB16], if G is monotone, then SG is nonexpansive, and if G is strongly monotone
with parameterm and Lipschitz with constant L (see definition 1.20 p.28), then SG is a contraction
with parameter

LSG =

√
1− 4m

(1 + L)2
. (1.70)

Storage structures

We pursue the same approach to characterise the scattering operators of storage structures.
for flows and efforts evolving in the Lebesgue spaces FS ∼ ES ∼ L2(Ω,Rn) (over time steps Ω).

Proposition 1.5 (scattering of linear storage structure). For a linear storage structure

S =
{

(f , e) ∈ FS × ES | ∃x ∈ H1(Ω,Rn), f = ẋ, e = Qx, Q = QT � 0
}
, (1.71)

the scattering representation of S through (1.60) is the formal differential operator

SS = −(D −QR)(D + QR)−1, where QR = R−1/2QR−1/2 and D = d
dt . (1.72)

Proof. Substituting the constitutive relation in (1.60) and factoring R1/2 on the right, we obtain

w+ =
1√
2

(
R−1/2QR−1/2 +D

)
R1/2x, w− =

1√
2

(
R−1/2QR−1/2 −D

)
R1/2x.

Defining QR = R−1/2QR−1/2 and solving for x we obtain w− = −(D−QR)(D+QR)−1w+.

14. For more details regarding relations, their inverse, resolvant and Cayley operator, please refer to reference
[RB16] whose main results are recalled in appendix A p.271.
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Note that for scalar components (e.g. for a capacitor Q = 1/C, QR = 1/RC), the Laplace
transform of (1.72) (see definition C.10 p.282) yields the familiar allpass operator

HC(s) = L(SC) = −s− qR
s+ qR

=
1− sRC
1 + sRC

, so that
∣∣HC(s)

∣∣ = 1, ∀s ∈ iR.

In Wave Digital Filters, the Laplace variable is usually substituted by the finite difference
approximation s ≈ (2/h) · (1− z−1)/(1 + z−1), where z = ehs denotes the time-shift operator, so
that after substitution and using impedance adaption R = h/2C, we get the causal map

H̃C(z) =
1−

(
2
h

1−z−1

1+z−1

)
RC

1 +
(

2
h

1−z−1

1+z−1

)
RC

=
(1 + z−1)− (1− z−1)

(1 + z−1) + (1− z−1)
= z−1. (1.73)

Numerically, this means that reflected waves w−[n] only depend on previous incoming waves
w+[n− 1], so that the numerical scheme is explicit.

Nonlinear storage structures

Finally, for nonlinear storage structures, we have the following formal result

Proposition 1.6 (scattering of nonlinear storage structure). For a storage structure

S =
{

(f , e) ∈ FS × ES | ∃x ∈ H1(Ω,Rn), f = ẋ, e = ∇H(x)
}

(1.74)

the wave variable change (1.60) yields a scattering representation given by the formal operator

SS =
1√
2

(D −∇HR) ◦ (D +∇HR)−1
√

2 where ∇HR = R−1/2 ◦ ∇H ◦R−1/2. (1.75)

Proof. Let f = ẋ, e = ∇H(x) in the wave variable change (1.60), we get

1√
2

(
R1/2ẋ+ R−1/2∇H(x)

)
= w+,

1√
2

(
R1/2ẋ−R−1/2∇H(x)

)
= w−.

Introducing z = R1/2x, and ∇HR(z) = R−1/2∇H(R−1/2z) yields the state-space ODE
ż = −∇HR(z) +

√
2w+,

w− =
1√
2

(ż −∇HR(z)).
⇐⇒


(D +∇HR)(z) =

√
2w+,

w− =
1√
2

(D −∇HR)(z).
(1.76)

The output equation can be further refined (by eliminating ż) as w− = −
√

2∇HR(z) +w+.

A first difficulty to simulate nonlinear PHS directly from wave variables is being able to
compute the inverse operator (D+∇HR)−1, i.e. solving the system (1.76). To this end, numerical
integration methods such the ones in chapters 4, 5, 6 can be applied (but are usually iterative,
nonlinear and implicit), see also references [SVDSMM02, SSvdSF05].

A second difficulty, is making the mapping w+ 7→ w− explicit in time after discretisation as
in (1.73) (which is the whole purpose of WDF). Impedance matching for PHS is also discussed in
[SVDSMM02]. This non-trivial task is still an open subject for research. For this reason, in the
remainder of this thesis we focus on the flow-effort representation for simulation.
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Figure 1.10 – Scattering of nonlinear storage structures (see (1.76)).

Conclusion

In this chapter, we have reviewed fundamental results about ODE, state-space systems
and DAE. In particular existence and uniqueness theorems, DAE indexes, stability, Lyapunov
functions and power balance. The foundations of Port-Hamiltonian Systems (Dirac structure,
storage structures and resistive structures) which are required to model electronic circuits were
recalled. In particular, in Part II, input-state-output PH-ODE and semi-explicit PH-DAE are the
main representations used to construct numerical methods which preserves the energy balance in
Equation 1.53b .

An introduction to flow-effort and wave variables representations of PHS has been detailed
(in order to establishing deeper links between PHS and WDF) with an emphasis on the geometric
structure of the indefinite metric bond space B ∼ Rn,n and its positive and negative wave
polarisations W+ ∼ Rn,0 and W+ ∼ R0,n. Special care has also been paid to include impedance-
adaption (to yield causal explicit numerical schemes) and to formalise the scattering representation
of Dirac structures, resistive structures and storage structures. In this context, the central tool
is the Cayley transform (and its generalisation to relations and maximal monotone operators).
Finding explicit time-stepping schemes through port-adaptation for nonlinear relations and storage
structures is an interesting opportunity for future research.

A number of electronic components have already been presented as illustrational examples.
However, we did not explain yet how to obtain PH-DAE and PH-ODE from circuit schematics.
This topic is precisely the object of chapter 2 below.
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With numerical simulation in mind, we present the steps that are required to convert between
circuit representations (see Figure 2.1): from the most general (netlists) to the most specific
(PH-ODE and semi-explicit PH-DAE). For each formulation, we establish a systematic link with
the underlying Dirac structures and the power balance. We quickly recall Kirchhoff laws and the
lumped circuit hypothesis in section 2.1, elements of graph theory are recalled in section 2.2,
PHS formulation of circuits are detailed in section 2.3, followed by a side by side comparison of
bond-graphs and wave digital filters in section 2.4, finally we conclude by power-preserving port
variable changes in section 2.5 that we use to preserve topological circuit symmetries (e.g. common
and differential modes). Along the way, causal computations are addressed in subsection 2.3.3, PH-
DAE to PH-ODE reduction in subsection 2.3.4. We also present in subsection 2.3.5 an alternative
PH-DAE to (modulated) PH-ODE conversion such that the total energy (Hamiltonian+heat) is
an explicit invariant (which can be exploited in numerical simulation).

state of the art For space reason, we focus on Port-Hamiltonian representations. We do
not present classical circuit formulations that are already well covered in the literature, namely
Modified Nodal Analysis (MNA) [HRB75] (the foundation of SPICE [Nag75]), Sparse Tableau
Analysis (STA) [HBG71], Hybrid Analysis (HA) [CC76] and State Space formulation [KR65]
(including the K/DK-methods [BDPR00, YAS10] and [HZ15]). The Brayton-Moser approach

43
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[BM64a, BM64b] based on mixed-potential an co-energy variables is also skipped (we refer
to [JS03] for their dual relation with PHS). In contrast, Wave Digital Filters (WDF) [Fet86],
which are common in audio electronics, are shortly presented together with bond-graphs [Pay61]
to highlight their similarities. Finally, we note that recent formulations of circuits as PHS
[GHVdSR20, GBJR20] have been published during the redaction of this manuscript. The
approach presented here is close to the first reference while the second one considers the PHS
equivalent of charge-flux oriented MNA (which is not explored in this thesis).

Schematics

Netlist
(p.46)

Directed graph
(p.47)

Kirchhoff–Dirac
structure (p.53)

Hybrid Dirac
structure (p.54)

Semi-explicit
pH-DAE (p.34)

Input-State-Output
pH-ODE (p.33)

Conservative
thermodynamic

pH-ODE

(Modified) Nodal
Analysis [HRB75]

(Sparse) Tableau
Analysis [HBG71]

Hybrid Analysis
[CC76]

State Space
[KR65]

Bond graphs (p.64)

Wave Digital
Filters (p.69)

label nodes

choose branches

incidence matrix (p.49)
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link cutset matrix

causality as-
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spanning tree

reduce algebraic
constraints (p.60)

dissipation
to entropy
embedding

(p.61)

solve for node
voltages Breedveld

p.67

wave variables
(p.35)

Kirchhoff
variables

DAE

ODE

port-Hamiltonian systems (p.17)

Classic circuit modelling

Graphical modelling

Figure 2.1 – Map of state of the art circuit modelling: representations, transformation diagram
and relations with port-Hamiltonian formulations.
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2.1 Kirchhoff laws

In this manuscript, we only consider lumped circuits in the context of audio applications with
ideal conducting wires. To reduce a circuit to a lumped representation, for a given time scale, its
physical dimension must be small enough so that the propagation speed of electromagnetic waves
can be considered instantaneous 1.

Hypothesis 2.1 (Lumped circuit). The lumped circuit hypothesis assumes that the circuit’s
characteristic length Lc is much smaller than the circuit’s operating wavelength λ such that
electro-magnetic steady-state is assumed, i.e.

• The change of the magnetic flux in time outside a conductor is zero.
∂φB
∂t

= 0

• The change of the charge in time inside conducting elements is zero.
∂q

∂t
= 0

When this condition is satisfied, the current i(t) through any branch, and the voltage v(t)
difference between any pair of nodes are well defined [FAC63]. The behaviour of the circuit becomes
independent of the physical location of each component, only its topological interconnections
becomes relevant 2. Kirchhoff laws are a direct consequence of the lumped circuit hypothesis 2.1
and the assumption of ideal connections.

Kirchhoff Voltage Laws For any connected circuits with n nodes, since the electric potential
is jauge-invariant, one can choose arbitrarily one reference node with respect to which one can
measure n− 1 node voltages {ei}n−1

i=1 and by definition e0 = 0.

Definition 2.1 (Kirchhoff Voltage Laws (KVL)). The following are equivalent and defined
for all lumped connected circuits, for all times, for all choices of reference node

• (closed node sequences) For all closed node sequences, the algebraic sum of all node-to-
node voltages around the chosen closed node sequence is equal to zero.

• (Loop) The directed sum of the potential differences (voltages) around any closed loop
is zero.

• (branch) For all pairs of nodes j, k, the branch voltage vkj is equal to the difference of
the node voltages vkj(t) = ek(t)− ej(t).

Kirchhoff Current Laws Kirchhoff Current Law (KCL) is an expression the electric charge
conservation law. The fundamental concept to express KCL, is the notion of a gaussian surface.

Definition 2.2 (Gaussian surface). A gaussian surface S is a two-sided closed surface in
three-dimensional space enclosing a volume V through which the flux of a vector field is
calculated. S = ∂V .

1. For audio circuits, the characteristic length Lc of a standard mounted rack is Lc = 19′′ ≈ 48.26 cm and the
upper limit of the human auditory system is about f = 20 kHz. This corresponds to an electromagnetic wavelength
λ = c/f = 15 km: that is four orders of magnitude higher than d. This justifies the lumping condition Lc � λ.

2. This is analog to the lumping of rigid-body mass-spring systems using point-masses.
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Charge conservation, which was proved by Faraday in 1843, implies that the change in the
amount of electric charge in any volume of space is exactly equal to the amount of charge flowing
into the volume minus the amount of charge flowing out of the volume.

Definition 2.3 (Kirchhoff Current Laws (KCL)). Kirchhoff current laws, which are valid for
all lumped circuits, for all times t, can be expressed equivalently

• (Gaussian surface law) The algebraic sum of the currents entering a Gaussian surface
is equal to zero.

• (Node Law) The algebraic sum of the currents entering any node is equal to zero.

• (Cutset law) The algebraic sum of the currents associated with any cutset is equal to
zero.

Proof. Les S be a gaussian surface enclosing a volume V , q the quantity of charges within the
volume and J (A/m2) the current density. By 1) definition of the current entering a gaussian
surface, 2) the Stokes/divergence theorem, 3) charge conservation, 4) the lumped circuit hypothesis
one obtains

I
1
= −
‹
S=∂V

J · dS 2
= −

˚
V

(∇ · J) dV
3
=
∂q

∂t

4
= 0.

Remark 2.1. To every node corresponds a gaussian surface enclosing the node which cuts
every edges connected to the node, and to every cutset corresponds a gaussian surface which
cuts exactly the same branches.

A direct consequence of Kirchhoff laws is the power-balance of electronic circuits.

Theorem 2.1 (Tellegen theorem [Tel52]). For all lumped circuits, for all times t, the sum
of power over all circuit’s branches is zero.

2.2 From circuits to graphs

Any lumped circuit can be splitted into two independant parts: component laws which
exist independently of the context in which components are used, and Kirchhoff Laws which
are algebraic constraints on branch voltages and currents arising from the interconnection of
components. Network topology deals with the properties of lumped networks solely determined
by the interconnection of components. This modelling step is standard and common to all circuit
modelling methods [Chu75, CDK87] (for PHS in audio circuits see [Fal16, FH16a]).

Netlist The standardized description of a circuit for electronic simulations is through a netlist.
For our current purpose, it is enough to say that each line of a netlist stands for a component
structured as follows

<type><label> <list of nodes> <parameters>; <comments>

For complete netlist specifications, please refer to SPICE documentation [Vla94].
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Example 2.1. The netlist of a diode clipper circuit in figure 2.1 is given by

R1 1 2 1k ; Resistor
D1 2 0 1N914 ; Shockley Diode
C1 2 0 1u ; Linear capacitor
V1 1 0 1V ; Voltage source

The knowledge of this netlist is then sufficient to one obtain the directed graph on the right

V1

R1

C1 D1

0

1 2

0

1 2

V1

C1

D1

R1

Figure 2.2 – Diode clipper graph.

2.2.1 Elements of graph theory

In order to automate the description and manipulation of Kirchhoff laws for any circuit, it is
necessary to first recall some important results from graph theory that will be needed thereafter.
We rely on references [Chu75, Deo17], and [Sle12, Sma00].

Definition 2.4 (Graph). A graph G = (N , E) consists of two sets: a finite set of nodes
(vertices) N = {η1, . . . , ηn} and a finite set of edges (branches, links) E = {ε1, . . . εb}. Each
edge is identified with a pair of vertices which can be ordered (directed graph) or non ordered
(undirected graph)

Definition 2.5 (Path). A set of edges p = {ε1, . . . , εn} in a graph G is called a path between
two nodes ηj , ηk if

1. consecutive branches εi, εi+1 have a common node,

2. No node of G is contained in more that two edges of the set p,

3. ηj and ηk belong to exactly one edge in p.

Definition 2.6 (Connected Graph). A graph G is said to be connected if there exists a path
between any two nodes of the graph.

Definition 2.7 (Loop). A subgraph Gs of a graph G is called a loop (or cycle) if

1. Gs is connected,
2. every node of Gs has exactly two edges of Gs incident at it.
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Figure 2.3 – Examples of loops shown in black.

Definition 2.8 (Tree). A subgraph Gs of a connected graph G is called a tree if

1. Gs is connected,
2. Gs has no loop.

Definition 2.9 (Spanning Tree). A subgraph Gs of a connected graph G is called a spanning
tree if it is a tree that contains all nodes of G.

Edges that belong to a spanning tree T are called tree edges, and those which do not belong to a
spanning tree T are called links. All the links of a spanning tree T form a cotree T such that
T ∪ T ∼ G. For a connected Graph G with n nodes, any spanning tree has exactly n − 1 tree
edges.
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V1

C1

D1

R1

0

1 2

V1

C1

D1
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1 2

V1

C1

D1
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Figure 2.4 – Examples of spanning trees shown in black, with their cotree shown in dashed

Definition 2.10 (Cutset). A set of edges C of a connected graph G is said to be a cutset if

1. The removal of edges C (not their nodes) results in a graph that is not connected,

2. after the removal of the edges, the restoration of any one edge from the set, will result
in a connected graph.

To each cutset corresponds a partion of nodes N into two disjoint sets (N1,N2) which can be
oriented or non-oriented.

Definition 2.11 (Fundamental Loop and Cutset). Let T be a spanning tree of a connected
digraph G with cotree T .

• For each branch b ∈ T , the loop Lb := loop(b ∪ T ) is said to be a fundamental loop

• For each branch b ∈ T , the cutset Cb := b ∪ T is said to be a fundamental cutset.

These concepts are important to express Kirchhoff Laws in matrix form. In particular the
notion of a (minimum) spanning tree, is required for automated generation of hybrid Dirac
structures p.55 and in causality assignment p.57.
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Incidence matrix

Definition 2.12 (Incidence Matrix). For a directed graph G with n nodes and b branches,
the (node-edge) incidence matrix of the graph is the n× b matrix defined by

A :=
[
aij
]
n×b , aij =


1 if branch j enters node i,
−1 if branch j leaves node i,
0 otherwise

(2.1)

Example 2.2 (Diode clipper incidence matrix). For the circuit shown on Figure 2.1, the
incidence matrix is

A =


R1 D1 C1 V1

η0 0 −1 −1 −1

η1 1 0 0 1

η2 −1 1 1 0

.

Definition 2.13 (Reduced Incidence matrix). Any (n− 1)× b submatrix Af of an incidence
matrix A(G) obtained by removing the row corresponding to a chosen reference node is called
a reduced incidence matrix.

Example 2.3 (Diode clipper reduced incidence matrix). Choosing node η0 as reference
node, one obtains the reduced incidence matrix

Af =


R1 D1 C1 V1

η1 1 0 0 1

η2 −1 1 1 0

.

Definition 2.14 (Co-incidence Matrix). For a directed graph G with n nodes and b branches,
the co-incidence matrix of the graph is the b× n matrix defined by D = AT.

An important result to obtain a hybrid Dirac structure (p.55) from Kirchhoff laws is given in
the following theorem and its corollary

Theorem 2.2 ([Deo17] thm 7.3). Let A be the incidence matrix of a connected graph G
with n vertices. An (n− 1)× (n− 1) submatrix of A is non-singular if and only if the n− 1
edges corresponding to the n− 1 columns of this matrix constitutes a spanning tree in G.

Corollary 2.1. For a spanning tree T , A can be partitionned into an (n − 1) × (n − 1)
tree incidence matrix AT and an (n− 1)× (b− n+ 1) link incidence matrix AL such that
A =

[
AT AL

]
, then AT is invertible.
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Example 2.4. For the spanning tree T = {V1, C1}, with cotree T = L = {R1, D1}

Af =


V1 C1 R1 D1

η1 1 0 1 0

η2 0 1 −1 1

, AT =


V1 C1

η1 1 0

η2 0 1

, AL =


R1 D1

η1 1 0

η2 −1 1

.

Figure 2.5 – Prototyping boards, a close physical analogy of a graph incidence matrix.

Loop matrix

Definition 2.15 (Loop incidence matrix). For a directed graph G with ` oriented loops and
b branches, the loop incidence matrix of the graph is the `× b matrix defined by

B :=
[
bij
]
`×b , bij =


1 if branch j is in loop i with the same orientation,
−1 if branch j is in loop i with the opposite orientation
0 otherwise.

(2.2)

Example 2.5 (Diode clipper loop matrix). For the Diode clipper circuit, one obtains the
loop matrix

B =


R1 C1 V1 D1

`1 1 1 −1 0
`2 1 0 −1 1
`3 0 0 −1 1

. (2.3)

Theorem 2.3. If G is a graph without self-loops, with incidence matrix A and loop matrix B
whose columns are arranged using the same order of edges, then every row of B is orthogonal
to every row of A, that is ABT = BAT = 0.



2.2. From circuits to graphs 51

Definition 2.16 (Fundamental Loop matrix). Any b − n + 1 × b submatrix Bf of a loop
matrix B in which all rows correspond to a set of fundamental loops (with respect to a
spanning tree T ) is called a fundamental loop matrix.

Property 2.1. A Fundamental loop matrix can be partitionned as Bf = [BT IL].

Example 2.6 (Diode clipper fundamental loop matrix). The fundamental loop matrix for
the tree T = {V1, C1} with cotree T = {R1, D1} is obtained by removing the loop `2 (using
the rule of only one cotree link per fundamental loop) and reordering columns into tree
branches {C1, V1} and cotree branches {R1, D1}

Bf =


C1 V1 R1 D1

`1 1 −1 1 0

`3 0 −1 0 1

, BT =


C1 V1

`1 1 −1

`3 0 −1

, BL =


R1 D1

`1 1 0

`3 0 1

.
Cutsets matrix

Definition 2.17 (Cutset incidence matrix). For a directed graph G with nc oriented cutsets
and nb branches, the cutset incidence matrix of the graph is the nc × nb matrix defined by

C :=
[
cij
]
nc×nb , cij =


1 if branch j is in cutset i with the same orientation,
−1 if branch j is in cutset i with the opposite orientation,
0 otherwise.

(2.4)
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c5
C =



R1 R2 C1 V1 D1

c0 0 1 0 1 0
c1 −1 0 0 −1 0
c2 1 0 −1 0 −1
c3 0 1 −1 0 −1
c4 −1 1 0 0 0
c5 0 0 1 1 1



Figure 2.6 – Graph with cutsets and its cutset matrix

Theorem 2.4. If G is a connected graph, then the rank of a cut-set matrix C(G) is equal to
the rank of incidence matrix A(G), which equals the rank of graph G.
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Definition 2.18 (Fundamental cutset matrix). Let G be a connected graph with n nodes
and b branches. The fundamental cut-set matrix Cf of G is an (n − 1) × b submatrix of
C such that the rows correspond to the set of fundamental cut-sets with respect to some
spanning tree T .

Property 2.2. A Fundamental cutset matrix can be partitioned into a diagonal tree cutset
matrix and a link cutset matrix as Cf = [IT CL].

Example 2.7. For a tree T = {R1, R2, V1}, and its cotree T = {C1, D1}, reordering columns,
and removing cutsets c0, c1, c4 corresponding to tree edges R1, R2, V1 (i.e. c0 ∪ R1 = T ,
c1 ∪R2 = T , c4 ∪ V1 = T ) one obtains the fundamental cutset matrix.

Cf =


R1 R2 V1 C1 D1

c2 1 0 0 −1 −1

c3 0 1 0 −1 −1

c5 0 0 1 1 1

, CT =


R1 R2 V1

c2 1 0 0

c3 0 1 0

c5 0 0 1

, CL =


C1 D1

c2 −1 −1

c3 −1 −1

c5 1 1

.

Relation between A, B, C From theorem 2.3, partitioning incidence and loop matrices A,B
according to a tree T and dual links L = T as Af = [AT AL], Bf = [BT IL] and using corrolary
2.1, one can show that the tree loop matrix BT is related to the tree and link incidence matrices
AT , AL as follows BT = −A−1

T AL
3.

Proof.

AfB
T
f = 0 ⇐⇒

[
AT AL

]BT

IL

 = 0 ⇐⇒ ATBT + AL = 0 ⇐⇒ BT = −A−1
T AL.

3. Note that tree loop matrix BT and the link cutset matrices CL are important objects that emerge when a
Kirchhoff Dirac structure (see subsection 2.3.1) is reduced to an Hybrid Dirac structure.
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2.3 Port-Hamiltonian representations of electronic circuits

We present here PH circuit representations and transformations that will be used in this thesis.
The Kirchhoff–Dirac structure is presented in subsection 2.3.1, then its reduction as a Hybrid
Dirac structure is shown in subsection 2.3.2. Transformation to semi-explicit pH-DAE using well
chosen spanning trees is detailed in subsection 2.3.3. Finally reduction of pH-DAE to pH-ODE
in detailed in subsection 2.3.4. An alternative refinement is presented in subsection 2.3.5 using
thermodynamic embedding of pH-DAEs as conservative but irreversibly modulated pH-ODEs.

Voltage, current and bond spaces for circuits

Following [VdSM13, VdSM11] (see also [Sma00]), for a circuit graph G with n nodes and b
branches, over each node (using the label k = 0) and branch (using the label k = 1) 4, using the
receiver convention for both, we denote

• V0 ∼ Rn the node voltage space and I0 = V∗0 (∼ Rn) its dual the node current space,

• V1 ∼ Rb the branch voltage space and I1 = V∗1 (∼ Rb) its dual the branch current space,
with the duality pairings

〈ik |vk〉Bk := ik · vk, ∀(ik,vk) ∈ Ik × Vk, k ∈ {0, 1}. (2.5)

Together they generate respectively the node bond space B0 = I0 × V0, the branch bond space
B1 = I1 × V1, and the bond space B = B0 × B1. respectively equipped with the quadratic forms
(see (1.22) p.19)

QBk
(
(i,v)

)
Bk = 2 〈i |v〉 , ∀(i,v) ∈ Bk, k ∈ {0, 1}. (2.6)

and their associated canonically defined indefinite bilinear form (see definition 1.12)〈
(i1,v1), (i2,v2)

〉
Bk := 〈i1 |v2〉Bk + 〈i2 |v1〉Bk , ∀(i1,v1), (i2,v2)) ∈ Bk, k ∈ {0, 1}. (2.7)

2.3.1 Kirchhoff-Dirac structure

Definition 2.19. Let D = AT(G) be the reduced co-incidence matrix of a circuit graph G.
Kirchhoff Current and Voltage laws a can be expressed dually by

v1 = Dv0, i0 = −DTi1 = 0. (2.8)

This defines the following Kirchhoff-Dirac structure

D =

(i0,v0, i1,v1) ∈ B0 × B1

∣∣∣∣∣∣∣
 i0

v1

 =

0 −DT

D 0

v0

i1

 , i0 = 0.

 (2.9)

a. The minus sign in front of i0 comes from the consistent use of the receiver convention for both nodes
and branches: the sum of edge currents entering each node is zero.

4. This notation (k = 0, k = 1) is convenient and consistent with the k-junctions used in Bondgraph [Pay61]:
0-junctions for nodes (shared voltage, parallel connection) and 1-junctions for branches (shared current, serial
connection). It is also a mnemonic to remember that lumped circuit equations arise from the spatial discretization
of electro-magnetic 0-forms for nodes and 1-forms for branches.
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Remark 2.2 (Interpretation). Kirchhoff Current Laws can be interpreted as zero boundary
conditions on the node currents a. The reduced co-incidence matrix D takes the status of
a (lumped) differential operator D : V0 → V1, with adjoint the reduced incidence matrix
DT : I1 → I0, i.e. we have the following diagram

v0 ∈ V0 v1 ∈ V1

i0 ∈ I0 i1 ∈ I1

D

〈· | ·〉B0
〈· | ·〉B1

−DT

(2.10)

a. If the charge is chosen as state variable for node and branches, this would correspoond to Neumann
boundary conditions i0 = q̇0 = 0.

Power Balance Left multiplying (2.9) by [v0 i1], skew-symmetry of the Kirchhoff-Dirac
structure leads to the power balance

v0 · i0 + v1 · i1 =
[
v0 i1

]0 −DT

D 0

v0

i1

 = 0. (2.11)

Tellegen theorem Furthermore since we have the KCL subconstraint i0 = 0 over the nodes,
this yields Tellegen theorem (2.1) (the sum of a circuit branch power is zero ) over the edges 5

v1 · i1 = 0. (2.12)

Circuits and homology groups Using homology groups, one can interpret the Kirchhoff–
Dirac structure as a realisation of a Stokes–Dirac structure [KML18] over 1-chains (edges) and
0-chains (nodes). See [VdSM11, VdSM13]. Kirchhoff laws can be rewritten canonically as δi1 = 0,
and v1 = dv0 where d≡ D denotes the exterior derivative and δ ≡ DT denotes its dual the
co-differential. See the thesis [Aba14, chap.3] for more details about algebraic topology and
discrete Stokes relations (p.34) for electric circuits.

2.3.2 Reduced Hybrid Dirac structure

The dimensionality of the Kirchhoff-Dirac structure (2.9) can be reduced by eliminating node
variables 6 which again yields a hybrid Dirac structure. Let T be a spanning tree (def. 2.9) of a
circuit graph G. Partitioning Kirchhoff laws (2.8) into tree (T ) and link (L = T ) variables yieldsvT

vL

 =

DT

DL

v0,
[
DT
T DT

L

]iT

iL

 = 0. (2.13)

From theorem 2.2 and its corollary 2.1, having a spanning tree ensures that matrix DT is invertible
so that one can eliminate node voltages v0 using the relation

v0 = D−1
T vT . (2.14)

5. Indeed [CDK87, p.30], any two of KCL, KVL and Tellegen theorem implies the third one.
6. This is the opposite of (Modified) Nodal Analysis [HRB75] which uses node voltages as main unknowns.
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Fundamental loop and cutset form of Kirchhoff laws Substituting (2.14) in (2.13) and
left multiplying the second equation of (2.13) by D−TT yields the expression of Kirchhoff Voltage
and Current Laws using fundamental loop and fundamental cutset matrices

[
−DLD−1

T IL

]
︸ ︷︷ ︸

fundamental loop matrix Bf

vT

vL

 = 0,
[
IT D−TT DT

L

]
︸ ︷︷ ︸

fundamental cutset matrix Cf

iT

iL

 = 0. (2.15)

where the tree loop matrix BT = −DLD−1
T and the link cutset matrix CL = D−TT DT

L, are related
by CL = −BT

T . This is summarized by the following definition.

Definition 2.20 (Loop and cutset form of Kirchhoff Laws). Let Bf and Cf be the funda-
mental loop and cutset matrices associated to a graph G with spanning tree T . then Kirchhoff
laws can be written as

Bfv = 0, (KVL) Cf i = 0. (KCL) (2.16)

where Bf = [BT IL] and Cf = [IT CL] and CL = −BT
T .

Hybrid Dirac structure

Splitting voltages and currents according to tree and links in (2.15), one can express link
voltages vL in terms of tree voltages vT and tree currents iT in terms of link currents iL as

vL = CT
LvT , iT = −CLiL, (2.17)

and gathering these informations yields the following definition.

Definition 2.21 (Hybrid Dirac structure). Let CL be the fundamental link cutset matrix
associated to a graph G for a choice of spanning tree T , then the associated Hybrid Dirac
structure is

D =

(iT ,vT , iL,vL) ∈ BT × BL

∣∣∣∣∣∣∣
 iT

vL

 =

 0 −CL

CT
L 0

vT

iL


 . (2.18)

i.e. we have the following diagram

vT ∈ VT vL ∈ VL

iT ∈ IT iL ∈ IL

CT
L

〈· | ·〉BT 〈· | ·〉BL

−CL

(2.19)
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Example 2.8. In example 2.3, the reduced incidence matrix is

Af =


R1 D1 C1 V1

η1 1 0 0 1

η2 −1 1 1 0

 = DT.

By consequence, according to (2.9), the corresponding Kirchhoff-Dirac structure is

i1

i2

vR1

vD1

vC1

vV1


=



. . −1 0 0 −1

. . 1 −1 −1 0

1 −1 . . . .

0 1 . . . .

0 1 . . . .

1 0 . . . .





v1

v2

iR1

iD1

iC1

iV1


,

i1
i2

 = 0.

Choosing a tree T = {V1, C1} with cotree/links L = T = {R1, D1} yields the fundamental
tree and link incidence matrices

AT =


V1 C1

η1 1 0

η2 0 1

, AL =


R1 D1

η1 1 0

η2 −1 1

.
According to (2.15), we obtain the fundamental loop cutset matrix

CL = A−1
T AL =


R1 D1

c1 1 0

c2 −1 1

,
such that, according to (2.18), the Hybrid Dirac structure reduces to

iV1

iC1

vR1

vD1

 =


. . −1 0

. . 1 −1

1 −1 . .

0 1 . .




vV1

vC1

iR1

iD1

 .

Kernel form of Reduced Hybrid Dirac structure Using the fundamental loop and cutset
matrices Bf and Cf from (2.16), one can obtain the kernel form of the reduced Dirac structure
as follows. Define the matrices

E =

BT IL

0 0

 , F =

 0 0

IT CL

 , (2.20)

then the kernel form of the reduced Dirac structure

D =
{

(i,v) ∈ B1 | Ev + Fi = 0
}
. (2.21)
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where one can verify that since CL = −BT
T it satisfies condition

EFT + FET =

0 BT + CT
L

0 0

+

 0 0

BT + CL 0

 = 0. (2.22)

Image form of Reduced Hybrid Dirac structure Finally, by transposition of the kernel
Dirac structure (2.21) one obtains its dual image representation (which subsumes equation (2.17))

D =

(i,v) ∈ B1

∣∣∣∣∣∣∣ i =

BT
T 0

IL 0

λ, v =

0 IT

0 CT
L

λ, ∀λ ∈ Rb

 . (2.23)

Note that, by inspection, the physical interpretation of the parameter λ corresponds to link
currents iL and tree voltages vT as λ =

[
iL
vT

]
.

2.3.3 From hybrid Dirac structures to semi-explicit pH-DAE

The semi-explicit PHS representation from definition 1.24, is important for computer simu-
lation. In particular, it fixes the choice of variables, it allows the formulation of a fixed-point
equation, and it allows a structured interpretation of the power-balance.

ẋ

w

y

 = J


∇H(x)

z(w)

u


In the context of a circuit, it is obtained by the following procedure: Let G be a circuit graph.

1. Denote x the state of differential components (capacitors and inductors) characterised by an
energy potential H(x), w the control variables of passive algebraic components characterized
by a law z(w), and u the vector of external inputs with conjugated output variables y.

2. Choose a spanning tree T of G such that current-controlled branches (voltage sources,
capacitors, resistors, etc.) belong to the tree and all voltage-controlled branches (current
sources, inductors, conductors, etc.) belong to the cotree T .

3. Obtain the hybrid Dirac structure D of equation (2.18) and reorder rows and columns
according to variables variables (x,w,y) to obtain the skew-symmetric matrix J.

Example 2.9. Reconsidering the diode clipper example, where x = q, w = (vR, vD),y =
iV ,u = vV , reordering the matrix and substituting component laws yields the pH-DAE

iC = q̇

vR

vD

iV

 =


. 1 −1 .

−1 . . 1

1 . . 0

. −1 0 .




vC = q/C

iR = vR/R

iD = pn(vD)

vV


In step 2, it is not always possible to find a tree that satisfies these contraints. To address

this problem, we propose the following approach
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Finding a minimum spanning tree

We seek a spanning tree T that satisfies the following requirements

1. All Voltage sources and current controlled branches belong to the tree,

2. No current source and no voltage-controlled branch belong to the tree,

3. A maximum number of capacitors belong to the tree

4. A minimum number of inductors belong to the tree

5. Linear resistors and bijective algebraic components can belong to either tree or cotree.

This problem is similar to the Sequential Causality Assignment Procedure (SCAP) [VD95] in the
bondgraph litterature (and its many variations [MFS00, WBK02]). This problem has also been
addressed by Falaize with an ad-hoc algorithm in [Fal16, FH16a].

Zero-One-Linear integer programming problem in standard form For the b branches,
let x ∈ {0, 1}b be the boolean vector representation of a subgraph T of a graph G (where xη = 1
if η ∈ T and 0 otherwise). Its complement T is represented by the boolean vector x̄ = 1− x. A
subgraph T is a tree of G (def. 2.8 p.48) if every node is reachable exactly once from the tree.
This can be formalized using the graph Laplacian L(G) := AT(G)A(G) by the constraint

Lx = 1. (2.24)

where is the incidence matrix (see def. 2.12) of G. We formalize preferred computational
causalities 7 constraints by the objective function

Φ(x) = wT · x + wT · x̄ (2.25)

with weights

wT (e) =

{
1 if branch e is current-controlled
0 otherwise

, (2.26a)

wT (e) =

{
1 if branch e is voltage-controlled
0 otherwise

(2.26b)

Note that the objective function can be expressed with the number of branches b and a unique
weighting function w as

Φ(x) = wT · x + wT · x̄ = b+ (wT −wT ) · x.

This leads to the Zero-One-Linear integer programming maximization problem in standard form

maximize b+ w · x,
subject to Lx = 1 and x ∈ {0, 1}b,

with w(e) =


−1 if e has voltage-controlled causality (I,L)
1 if e has current-controlled causality (V,C,D,Q)
0 otherwise (R)

.

(2.27)

7. arising either from numerical integration rules or from the availability of bijective algebraic maps.
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Minimum spanning tree algorithm Since the cost function is restricted to spanning trees,
and determined exclusively trough the tree vector x, a significant simplification of the maximization
problem (2.27) is to find a minimum spanning tree which solves the minimization problem

minimize −w · x.
x ∈ spanningtrees(G)

(2.28)

Note that this problem has an algorithmic complexity of O(b log(n)) when implemented using
either the Prim–Dijkstra [Pri57] or the Kruskal [Kru56] algorithm.

A circuit with its minimum spanning tree is shown on figure 2.7. If a conforming spanning
tree is found, then the number w · x should corresponds to the maximum number nT of current-
controlled edges in the circuit (here nT = 2).

1

2 3

V1

C1

D1

R1

Figure 2.7 – Example of a minimum spanning tree that includes current-controlled branches.

Failure to satisfy the condition w · x = nT can be used to detect the presence of topological
problems such as hidden algebraic constraints (see figure 2.8).

0

1 2

3

C1

L1

C2

L2

0

1 2

3

C1

L1

C2

L2

0

1 2

3

C1

L1

C2

L2

0

1 2

3

C1

L1

C2

L2

Figure 2.8 – Example of an LCLC circuit where there doesn’t exists a spanning tree that
includes all current-controlled branches and no voltage-controlled branches.

Note that, when a suitable minimum spanning tree cannot be found, so that the PH-DAE is
semi-explicit, we proposed a fully-implicit numerical discretisation strategy in [MH20] which does
not require causality assignment and can directly deal with such kind of implicit DAE constraints.
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2.3.4 Reduction to Input-State-Output pH-ODE

In many cases, to study existence and uniqueness of solutions or to employ standard integration
methods, it is desirable to reduce differential-algebraic equations to state-space ordinary differential
equations. We show here how to transform a semi-explicit pH-DAE (definition 1.24) to an input-
state-output pH-ODE (definition 1.23).

Consider a semi-explicit pH-DAE with Dirac structure D for a circuit graph G defined by the
skew-symmetric matrix S partionned as follows

ẋ

w

y

 =


Jx ∗ ∗

Jxw Jw ∗
Jyx Jyw Jy


︸ ︷︷ ︸

S


∇H(x)

z(w)

u

 . (2.29)

Case Jw = 0 If Jw = 0, which is a frequent case (no direct coupling between algebraic
components), and there exists a symmetric positive definite matrix-valued function 8 Z(w) such
that z(w) = Z(w)w, then one can reduce the dependance on w by reinjecting

w = Jxw∇H(x)− JT
ywu (2.30)

into (2.29) to obtain the nonlinear state-space systemẋ

y

 =
(
J−R(x,u)

)∇H(x)

u

 (2.31)

where the skew-symmetrix matrix J = −JT and the modulated symmetric positive definite matrix
R = RT � 0 are defined by

J =

 Jx ∗
Jyx Jy

 , R(x,u) =

 JT
xwZ(x,u)Jxw −JT

xwZ(x,u)JT
yw

−JywZ(x,u)Jxw JywZ(x,u)JT
yw

 . (2.32)

and where by abuse of notation

Z(x,u) := Z(w)

∣∣∣∣
w=Jxw∇H(x)−JT

ywu

. (2.33)

Case Jw 6= 0 When Jw 6= 0, one needs to solve the implicit equation on w

w − Jwz(w) = Jxw∇H(x)− JT
ywu. (2.34)

Suppose the DAE is of index 1 such that the function g(w) = w − Jwz(w) can be inverted
(algebraically or numerically) such that

w = g−1(Jxw∇H(x)− JT
ywu).

then in general z(w) is no longer a separable function of ∇H(x) and u. However if there exists
matrix-valued functions A, B such that

z(w) = A(x,u)∇H(x) +B(x,u)u (2.35)

8. Z may not be positive definite if there exists conservative algebraic components, in which case J will be also
modulated by x,u
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then the algebraic feedback can be expressed by the matrix (not necessarily symmetric)

R(x,u) =

 JT
xwA(x,u) −JT

xwB(x,u)

−JywA(x,u) JywB(x,u)

 . (2.36)

Example 2.10. We reconsider the diode clipper example with semi-explicit representation
(x = q, w = (vR, vD),y = iV ,u = vV )
iC = q̇

vR

vD

iV

 =


. 1 −1 .

−1 . . 1

1 . . 0

. −1 0 .




vC = q/C

iR = vR/R

iD = pn(vD)

vV

 , V

R

C D

We remark that since current and voltage cannot be mixed in the Dirac structure, necessarily
Jx = 0, Jw = 0, Jy = 0 and Jyx = 0. We have vR = vS − q/C and vD = q/C. It is then
possible to solve explicitely for w = (vR, vD) to obtain the reduced state-space PHS with
feed through (cf Equation (2.31) and Definition 1.23) q̇

y = iV

 = −R(q)

 q/C

u = vV

 , R(q) =
1

R

1 +R pn(vD)/vD −1

−1 1


vD=q/C

� 0.

where we already used in example 1.10 the fact that pn(v)/v � 0.

2.3.5 Dissipative pH-DAE to conservative pH-ODE embedding

We show how to embed a dissipative pH-DAE, as a conservative but irreversibly modulated
input-state-output pH-ODE with extended thermodynamic state space. Our motivation is two-
fold, first the DAE simplifies to a simpler state-space system, second the energy invariant of the
system being explicit, we can use an energy-preserving ODE solver, rather than a DAE solver
which only preserves a passive inequality. The transformation is similar to the approach presented
in [EMVDS06] (see also the RS element [Bor09, p.52]). However, since we are not interested here
in the thermodynamical details, it is simpler for our purpose to use the heat variable Q instead
of the temperature T and entropy S.

We start from a semi-explicit skew-symmetric pH-DAE (2.29)
ẋ

w

y

 =


Jx ∗ ∗

Jwx Jw ∗
Jyx Jyw Jy



∇H(x)

z(w)

u

 (2.37)

and we consider dissipators as energy transducers converting electrical energy into heat. To all
resistive ports with power conjugate variables (w, z(w)) and power P (w) = z(w) ·w, we associate
a heat bath with thermodynamic potential

U(Q) = Q > 0 (2.38)

with heat Q in Joule. It has energy variable Q with trivial co-energy variable ∇U = 1.
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Thermodynamic power balance Requiring that the dissipated power is absorbed by the
thermodynamical potential U yields the thermodynamical power balance

d

dt
U(Q) = Q̇ = z(w) ·w. (2.39)

Left multiplying the second row of (2.37) by z(w)T and factoring z(w) into the second column,
yields the inhomogeneous ODE

ẋ

Q̇

y

 =


Jx ∗ ∗

Ĵwx(w) Ĵw(w) ∗
Jyx Ĵyw(w) Jy



∇H(x)

∇U = 1

u

 (2.40)

with the following matrix-valued functions of the algebraic variable w defined by

Ĵwx(w) = z(w)TJwx, Ĵw(w) = z(w)TJwz(w), Ĵyw(w) = Jywz(w) (2.41)

and where w is the solution 9 of w = Jwx∇H(x) + Jwz(w)− JT
ywu.

Solving for w We introduce the function g(w) = w − Jwz(w). Under the hypothesis of the
implicit function theorem (invertibility of the Jacobian g′), we define the inverse function w to
express the algebraic variable w as a function of state and input variables x,u

w(x,u) = g−1(Jwx∇H(x)− JT
ywu). (2.42)

By substitution of (2.42) in (2.40) we define the modulated skew-symmetric matrix-valued function

Ĵ(x,u) :=


Jx ∗ ∗

Ĵwx(x,u) Ĵw(x,u) ∗
Jyx Ĵyw(x,u) Jy.

 , ĴT = −Ĵ . (2.43a)

were the resulting matrix-valued functions of x and u are given by

Ĵwx(x,u) := z(w(x,u))T Jwx, (2.43b)

Ĵw(x,u) := z(w(x,u))T Jw z(w(x,u)), (2.43c)

Ĵyw(x,u) := Jyw z(w(x,u)) (2.43d)

Thermodynamic pH-ODE Finally, introducing the total energy potential (Hamiltonian +
Thermodynamical energy)

E(x, Q) := H(x) + U(Q) (2.44)

and the extended state vector X = [x, Q]T, one obtains a conservative input-state-output pH-ODE
(see def. 1.23) with modulated matrix Ĵ .Ẋ

y

 = Ĵ(x,u)

∇E(X)

u

 . (2.45)

9. Note that although the general case is implicit, it is frequent to have Jw = 0
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Example 2.11 (Conservative RLC). Consider a Parallel RLC circuit with semi-explicit
PHS representation 

iC = q̇

vL = φ̇

vR

 =


0 −1 −1

1 0 0

1 0 0



vC = q/C

iL = φ/L

iR = vR/R

 (2.46)

Using the thermodynamic embedding, we obtain the irreversibly modulated system with
conserved total energy E(q, φ,Q) = q2/2C + φ2/2L+Q (see figure 2.9)

q̇

φ̇

Q̇

 =


0 −1 −q/(RC)

1 0 0

q/(RC) 0 0



q/C

φ/L

1

 . (2.47)

Using the third row, and noticing that vR = q/C, we recover the dissipative power transfer

d

dt
U(Q) = 1 · Q̇ =

q

C
· q

RC
=

q

C
·
(

1

R

q

C

)
= vR · iR ≥ 0. (2.48)

Figure 2.9 – Isothermal RLC. x = q/
√
C, y = φ/

√
L, z = (Q − Q0). Iso-energy surface{

(q, φ,Q) | E(q, φ,Q) = E(q0, φ0, Q0)
}
(in blue). Reachable points are above the red circle.

Remark 2.3. It is possible to refine this representation in several ways.

a) use an isothermal heat bath U(S) = TS with temperature T and entropy S,

b) keep track of the entropy variable for each component using the potential U(S1, . . . , Sn) =
T (S1 + . . .+ Sn),

c) use distinct (and isolated) isothermal heat baths for each dissipative component
U(S1, . . . , Sn) = T1S1 + . . .+ TnSn,

d) replace the isothermal condition by heat diffusion.
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2.4 Bond Graphs and Wave Digital Filters

We leave equational algebraic representations to present two graphical network representations,
namely bondgraphs and wave digital filters. Despite their notational differences, and the fact that
bondgraphs use flow-effort variables while wave digital filters use wave variables, both notations
are conceptually very similar and will be presented in parallel to highlight their similarities
and differences. Both representations rely on breaking down a system into elementary n-port
components, and connections between them.

We shortly present below the basics of both formalisms, for more details, please refer to
the following references for bond graphs [Pay61, Bre86, Bro99b, GVdSBM03, Bor09] and [Fet86,
Bil04, WNSA15, WBSS18, BS17] for WDF.

2.4.1 Bondgraphs

Bondgraphs are a multi-physics network modelling tool invented by Henri Paynter at the
MIT in 1959. It models energy transfer as an oriented graph between subsystems A,B such that
power e · f is positive in the direction of the half-arrow.

A B
e

f
≡ A B

e

f

Note that the equivalent block diagram on the right is not oriented yet. To realize the block-
diagram, it is necessary to assign a so-called computational causality which is indicated by a
vertical bar toward the element that is effort-driven the other element being flow-driven.

A B
e

f
≡ A B

e

f

A B
e

f
≡ A B

e

f

Serial and parallel junctions As we have already seen, systems are connected together
through power-preserving junctions structures. The basic building blocks to create more elaborated
connections are the serial 1 and parallel junctions 0

1 0

f1 = . . . = fn e1 = . . . = en

e1 + . . .+ en = 0 f1 + . . .+ fn = 0

We remark that, for parallel junctions, since all efforts are equal only one port can be effort-driven.
Dually for serial junctions all flows being equal, only one port can be flow-driven.
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Transformer and Gyrators Two important Dirac structures, the Transformer and Gyrator
are represented (with their admissible causalities) by

GY
e1

f1

e2

f2
GY

e1

f1

e2

f2

TF
e1

f1

e2

f2
TF

e1

f1

e2

f2

Common electronic components

• Capacitor: the law of a (nonlinear) capacitor is vC(t) = ∇HC

(
qC =

´ t
∞ iC(τ) dτ

)
. This is

formalized by the current-driven component.

C
vC

iC
≡

´
∇HC

iC qC vC ≡
vC

iC

• Inductor: the law of a (nonlinear) inductor is iL(t) = ∇HL

(
φL =

´ t
∞ vL(τ) dτ

)
. This is

formalized by the voltage-driven component.

L
vL

iL
≡

´
∇HL

vL φL iL ≡
vL

iL

• Resistor / Conductor: (nonlinear) resistors (conductors) are charaterized by passive relations
R : iR 7→ vR, (G : vR 7→ iR)

R
vR

iR

G
vR

iR

≡
R

iR vR

G
vR iR

≡
vR

iR

• RS element [Bor09, p.52]: In the bondgraph litterature, dissipators can also be considered
as energy transducers converting non-thermal energy into heat satisfying the power balance
Q̇ = T Ṡ = vR · iR.

RS
vR

iR

T

Ṡ
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Simplification rules We recall here some useful graphical bondgraph simplification rules
(see [Bro99b, Bor09]). These can considerably reduce the number of elements and save tedious
algebraic manipulations.

0 ≡ (2.49a)

1 ≡ (2.49b)

0 0 ≡ 0 (2.49c)

1 1 ≡ 1 (2.49d)

0 0

1

1

≡ 1

0

(2.49e)

1 1

0

0

≡ 0

1

(2.49f)

In particular, these rules are implemented in the 20-sim software [Bro99a]. We also note that
since these identities only rely on (here Kirchhoff) conservation laws, they translate directly to
Wave Digital Filters.
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Automated conversion of circuits to Bondgraphs In reference [Bre86], Breedveld pro-
posed an procedure to automatically convert a circuit to bond graphs. This systematic procedure
is of great value in particular when working with pen and paper to avoid errors. It is summarized
(here for electronic circuits) by the following steps

1. For each node ηi of the circuit create a parallel 0i junction (the node voltage vi is shared at
the 0 junction),

2. For each branch between two nodes ηi, ηj form the voltage difference vij = vi−vj represented
by a zero junction 0ij connected to a serial 1ij junction as follows 10

0 1 0

0

v1

i12

v2

i12v
1
2

i1
2

3. Connect all ports of all components to the corresponding branch voltages,

4. Suppress the ground node and all its bonds,

5. (optional) use bond graph simplification rules

A step by step application of the method to the diode clipper test circuit is shown below on
Figure 2.10.

V

R

C D

0

1 2

(a) circuit

1

1

1 1

0

0 0

V
R

C D

(b) node bondgraph

1

1

1 1

0 0

V
R

C D

(c) node bondgraph mass removed

1 0V

R C

D

(d) reduced bondgraph using simplifica-
tion rules

Figure 2.10 – Automated Bondgraph modelling of the diode clipper circuit.

We note that we can layout the graph in a canonical way, in order to exhibit the fact that
the junction structure of the unreduced bond graph is bipartite (i.e. a 1-junction is necessarily
connected to a 0-junction) see Figure 2.11.

Causality assignment procedures As we have seen, to make a bondgraph computable, it
is necessary to orient its equivalent block-diagram such that each port is either flow or effort
driven. However in practice, some components such as voltage and current sources or non bijective
dissipators have an imposed causality, dynamic components such as capacitors and inductors have
a preferred integral causality while bijective algebraic components have no preferred causality. In

10. Mnemonic: n0de, v0ltage → 0-junction, ser1al, 1ntensity → 1-junction.
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V R C D components

010 012 020 020 branch voltages

110 112 120 120 branch currents

01 02 node voltages

Figure 2.11 – Bi-partite bondgraph of the diode clipper circuit.

the Bondgraph litterature this problem is called the Sequential Causality Assignment Procedure
(SCAP) [KR68] for which many variants have been proposed (see reference [MFS02] for a review).
It can be summarized by the following steps

1. Assign causalities for all components that have fixed causalities

2. Propagate causalities through 0,1 junctions, ideal transformers and gyrators

3. Repeat steps 1 and 2 with components having preferred causalities

4. While there remains unoriented bonds choose an orientation for one and propagate causalities

5. (optional) If causality conflicts are detected, backtrack choices made in step 3 and 4 and
resume the procedure.

This problem is closely related to the problem presented in subsection 2.3.3 where we show
how to formulate and efficiently solve causality assignment as a minimum spanning tree problem.
In practice however, the procedure described above remains important to perform causality
assignment graphically using only pen and paper and no computer.

Occurence of step 4 is an indicator of the presence of algebraic loops in the bond graph.

n-port and m-terminal elements Finally, to illustrate how to deal with elements that are
represented either as n-ports or m-terminals, we show the bondgraph of a 2-port, 3-terminal: the
Bipolar Junction Transistor.

0B

1BC

Q0B

1BE

0C

≡ QB

C

E
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2.4.2 Wave Digital Filters (WDF)

Now that the bondgraph formalism has been presented, we show similarities and differences
between bond graphs and WDF. We rely on references [Fet86, Bil04], see also [FOO05, Wer16]
for more recent developments (in particular SPQR trees). Compared to bondgraphs, the WDF
formalism has some important differences:

1. wave variables (w+, w−) are used instead of flow-effort variables (f, e),

2. there is no need to assign computational causalities: block diagram inputs are incident wave
w+ and outputs are reflected waves w−.

3. the variable change is done after discretization,

4. WDFs rely on adapting the port-impedance parameter R of the wave variable change to
achieve reflection-free ports or break delay-free loops (i.e. obtain causal delayed reflected
waves 11).

The last property is perhaps the strongest computational advantage of WDF compared to standard
methods. In term of graphical representations, we have the following equivalences

A B
e

f
≡ A B

w−A = w+
B

w+
A = w−B

A 0 B ≡ A ‖ B

w−A

w+
A

w+
B

w−B

A 1 B ≡ A —• B

w−A

w+
A

w+
B

w−B

Continuing with the diode clipper example from figure 2.10, we obtain the equivalence between
bondgraph and WDF shown on figure 2.12.

1 0V

R C

D
v12

i12

vV

iV

v
R

iR v
C

iC

vD

iD

(a) reduced bondgraph

V —• ‖

R C

D

w+
V

w−V

w+
12

w−12

w+
D

w−D
w+
R w+

Cw−R w−C

(b) WDF

Figure 2.12 – Equivalence between circuit Bondgraph and WDF representions.

11. At time tn, the reflected wave w−n does not depend on the incident wave w+
n .
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Port-Adaptation, Binary and SPQR connection trees In WDF, the port impedance can
be chosen such that the reflected wave does not depend instantaneously on the incidence wave.
This property (no instantaneous algebraic loop) is shown graphically by a vertical bar where the
port is adapted.

A B

w−A

w+
A

|
RA ≡ w−A [n] does not depend on w+

A [n]

Similarily to the fact that for parallel (resp. serial) junctions, only one port can be effort-
driven (resp. flow-driven), in the WDFs, only one port (called the root) can be adapted while the
remaining ports (called the leaves) inherit their port-impedance from the connected components.

A ‖

root

BRBRA

RA‖B

a
−`

A —•

root

BRBRA

RA•B

a
−`

Serial/parallel Binary Connection Trees (BCT) Using this property, for many circuits,
(by decomposing serial and parallel junction into 3 port adapters) it is possible to arrange elements
into a serial-parallel binary connection tree.

To numerically process the WDF tree at each time step, first reflected waves (which do not
depend instantaneously on incident waves) are propagated from the leaves to the root. Then
incident waves are propagated from the root to the leaves to update the state of stateful elements.

Using this approach it is possible to have a single nonlinear element at the root and use
Newton iteration to solve the instantaneous algebraic loop. This is illustrated below: the diode
clipper from Figure 2.12 has been redrawn with the nonlinear element D at the root of the tree,
and the voltage source and resistor have been lumped into a resistive voltage source VR with
port impedance R).

VR ‖

D

Ca
−`

SPQR trees However the above approach fails for multiple nonlinearities or complex net-
work topologies which stimulated research for alternative strategies [FOO05, WNSA15, Wer16,
WBSS18]. An approach is to collect all nonlinear elements into a single multi-port situated at
the root of the tree and to decompose the remaining elements into an SPQR tree 12 [DBT96].
The example in figure 2.13 illustrates that rigid nodes arise as soon as the bondgraph contains
algebraic loops. To address this difficulty, these loops (red lines in figure 2.13b) are aggregated
into irreducible Dirac structure multiports to obtain an acyclic bondgraph (in figure 2.13c). Then
choosing a root (V in fig.2.13d), the graph can be transformed into an SPQR tree.

12. S for serial nodes, P for parallel nodes, R for rigid (strongly connected) nodes and Q for trivial nodes.
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C 2

R
1

R
3

R 4

R2

C1

V O

(a) circuit

DR0

0

0

0

1

1

1

1

R2

V O

C1

C2

R1

R3

R4

(b) cyclic bondgraph

DR O

R3

R2

C2

V

R1

C1

R4

(c) acyclic bondgraph

DR

V

R1

C1

R4O
R3

R2

C2

(d) SPQR tree

Figure 2.13 – Example of a circuit containing a rigid node DR transformed to a single-root
SPQR tree (taken from the tone stack stage of the Big Muff π distortion pedal). I would like to
thank Kurt Werner and Ólafur Bogason for the fruitful discussion on this topology at DAFx18 in
Aveiro.
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2.5 Port-variable changes

This section introduces the class of port variables changes that are linear, power-conserving,
and that operate across ports. This class, different than that of wave variable changes (performing
port by port linear combination of flow-effort pairs) is of interest to exploit circuit symmetries.

2.5.1 Conversion to common and differential ports

A common source of symmetry in physics happens when a system only depends on the
difference between port variables. In electronics, differential amplifiers 13 (as the name suggests)
are exactly designed for that purpose. However in practice, components are not perfect and are
often characterised by their common mode rejection ratio, so that both common and differential
ports are necessary. Furthermore it is often the case that topological symmetries in the circuit
are broken by computational causality assignment. By consequence, in practice, the following
theorem is useful for devices whose description is simpler in terms of common and differential
ports. This is used in section 7.2.3 p.194 (see also the symmetries on circuits, fig. 7.24 p.195).

Theorem 2.5 (Common-differential 2-port). Consider a 2-port with conjugated port variables
(f1, e1) ∈ F1×E1, (f2, e2) ∈ F2×E2, and the variable change (f1, f2, e1, e2)↔ (f∆, fΣ, e∆, eΣ)

f∆ = α(f1 − f2), e∆ = β(e1 − e2), (2.50a)
fΣ = α(f1 + f2), eΣ = β(e1 + e2). (2.50b)

where αβ = 1/2. Then, (2.50a)-(2.50b) defines an equivalent common-differential 2-port
parametrisation with the same power

〈fΣ | eΣ〉+ 〈f∆ | e∆〉 = 〈f1 | e1〉+ 〈f2 | e2〉 . (2.51)

Proof. Substituting (2.50a) (2.50b) into (2.51) and eliminating cross terms yields
〈fΣ | eΣ〉+ 〈f∆ | e∆〉 = 1

2

[
〈f1 + f2 | e1 + e2〉+ 〈f1 − f2 | e1 − e2〉

]
= 〈f1 | e1〉+ 〈f2 | e2〉 .

Example 2.12 (Amplifiers). Consider a 4-port amplifier (here with lumped energy source)
having input-output ports {I+, I−, O+, O−}, differential gain K∆ � 1 and common mode
gain KΣ. Its representation is the Σ-∆ domain by the diagonal matrixe∆

O

eΣ
O

 =

K∆ 0

0 KΣ

e∆
I

eΣ
I

 ,
f∆

I

fΣ
I

 = 0. (2.52)

is more natural than in the original domain byeO+

eO−

 =

 K + ε −K + ε

−K + ε K + ε

eI+
eI−

 ,
fI+
fI−

 = 0. (2.53)

A passive model of the operational amplifier is detailed in chapter 7.

13. Differential amplifiers are commonly used in guitar and microphone preamps, operational amplifiers or in
the Moog synthesizer filter
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2.5.2 Generalized linear port variables adapters

We generalize the previous variable change by interpreting it as a power-conserving Dirac struc-
ture adapter between multiports. This is illustrated by the block-diagram of figure 2.15.

Theorem 2.6. Let D be linear multi-port adapter mapping vector port variables (fa, ea) ∈
Fa × Ea to vector port variables (fb, eb) ∈ Fb × Eb where Fa ∼ Rn, Fb ∼ Rn according to

fb = Ffa, eb = Eea, FTE = −In, (2.54)

with full rank matrices F,E ∈ Rn×n. Then D defines a Dirac structure.

Proof. According to proposition 1.1, D is a Dirac structure if and only if 〈f | e〉 = 0 and
dimD = dimFa ×Fb. Indeed substituting (2.54) into the power-balance yields

〈f | e〉 = 〈fa | ea〉+ 〈fb | eb〉 = fTa ea + fTa FTEea = fTa ea − fTa ea = 0.

And we have dimD = rank(F) + rank(E) = 2n = dimFa ×Fb.

Lemma 2.1. Let F be any unitary orthogonal transform and E = −F. Then this is a
sufficient condition to have FTE = −I, satisfying equation (2.54).

Example 2.13 (Common-differential adapter). The common-differential variable change
from theorem 2.5 can be formalized as a common-differential adapater defined byf∆

fΣ

 = −α

1 −1

1 1

f1

f2

 ,
e∆

eΣ

 = β

1 −1

1 1

e1

e2

 . (2.55)

Note the change of sign compared to theorem 2.5, so that the adapter uses the receiver
convention. It is illustrated on figure 2.14.

1

2

Σ

∆

f1

e1

f2

e2

fΣ

eΣ

f∆

e∆

common-differential
adapter

2-port

Figure 2.14 – Illustration of common-differential adaptation of a 2-port.
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A1

An

B1

Bn

fa,1

ea,1

fa,n

ea,n

fb,1

eb,1

fb,n

eb,n

...
...

Dirac structure
adapter Dn-port

Figure 2.15 – Generalized n-port adapter.

Example 2.14 (Orthogonal adapters). According to lemma 2.1, the common-differential
adapter (2.55) is an instance of the more general class of unitary two-port adapters (for
θ = π/4, α = β = 1/

√
2)f∆

fΣ

 = −

cos(θ) − sin(θ)

sin(θ) cos(θ)

f1

f2

 ,
e∆

eΣ

 =

cos(θ) − sin(θ)

sin(θ) cos(θ)

e1

e2

 . (2.56)

More generally, orthogonal n-port adapters (2.54) can diagonalise a coupled multi-dimensional
relation (e.g. e = Rf where R = RT � 0 has an SVD decomposition R = USUT).

Example 2.15 (common differential representation of a 2-port parallel jonction). consider
a parallel jonction defined by

e1 = e2, f1 + f2 = 0.

Then its common-differential representation becomes the trivial constraints

e∆ = 0, fΣ = 0. (2.57)

such that we have P = eΣ · fΣ + e∆ · f∆ = 0.

Example 2.16 (common differential representation of a 3-port parallel jonction). consider
a classical parallel junction defined by

e1 = e2 = e3, f1 + f2 + f3 = 0.

If we choose to transform ports {1, 2} to common-differential {Σ,∆} using (2.50b) with
α = 1/2, β = 1, we obtain the following singular skew-symmetric Dirac structure

e∆

eΣ

f3

 =


. . 0

. . 1

0 −1 .



f∆

fΣ

e3

 . (2.58)

We can see that the differential port ∆ has no influence on the behaviour of the circuit.
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Conclusion

In this chapter, we have recalled the main results from network and circuit theory, we
have seen how to obtain a PHS from a circuit graph and how to transform it to semi-explicit
PH-DAE and PH-ODE. We have reviewed the topic of “computational causality assignment”.
Causality assignment is important for numerical reasons: in practice, it is usually preferable to
obtain equations that are numerically integrated (integral causality) rather than numerically
differentiated (differential causality). A strength of the PH framework is that under a week
hypothesis (invertibility of the Jacobian of algebraic nonlinearities, see 1.2.2 p.14) many circuits
are representable as (semi-explicit) index-1 DAE (and thus convertible to ODE). This property
is important to study existence and uniqueness of solutions. To highlight their similarities and
differences, we have presented two graphical network formalisms side by side: Wave Digital Filters
and bond-graphs. Finally we have presented “accross ports” power-conserving variable changes.
They can explicitly exploit network or component symmetries. In particular Σ-∆ variable changes
can be used to avoid breaking symmetries of differential or push-pull circuits during computational
causality assignment. The modelling framework being setup, we are ready to address the broad
subject of power-balanced numerical simulation methods. This is the object of Part II which
constitutes the core of this thesis.
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Part II

Time-continuous power-balanced
numerical methods





Approach and problem statement

Virtual
DAC

Numerical
method Observer

Anti
Aliasing

Virtual
ADC

A B C D E

u[n]

`2(Z)

u(t)

U
x(t)

X
y(t)

Y
ỹ(t)

Ỹ

ỹ[n]

`2(Z)

Virtual Analog toolchain

Figure 2.16 – (continuous-time virtual analog signal processing) block-diagram of the approach

Signal processing framework

In this part, we propose power-balanced numerical methods (block B) within a complete
signal processing chain (A-E) described in figure 2.16. It is based on the following.

• Reconstruction (block A): A (bandlimited) sampled input u[n] is reconstructed by a
virtual Digital to Analog Converter (Virtual DAC) to obtain a continuous-time signal u(t)
represented over sequences of time frames.

• Numerical Solver (blocks B-C): for each time frame, given an input signal u(t) represented
by parameters û, a power-balanced numerical method produces an output signal y(t) with
parameters ŷ,

• Sampler (Blocks D-E): the signal y(t) is meant to be listened through a soundcard. For
that purpose, a virtual antialiasing filter and sampler (Virtual ADC) are used to obtain the
discrete-time signal ỹ[n] based on bandlimited Shannon-Nyquist sampling (see thm. 3.1).

To precise our approach, continuous-time signal representations, generalized sampling theory and
the implementation of virtual DAC, anti-aliasing and virtual ADC are discussed first in chapter 3.
Subsequent chapters are dedicated to power-balanced numerical methods.

Power-balanced Numerical methods

This thesis is dedicated to build numerical methods to solve PH-ODE and PH-DAE whose
numerical solutions are required to satisfy the following properties

P0. Class of solutions Numerical solutions are approximated in the time-continuous domain
and represented with a finite number of parameters per time-frame.
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P1. Regularity Numerical solutions inherit the global regularity of true solutions up to a
controllable regularity order denoted k. Indeed, for a function f(t) of class Ck, its Fourier-
spectrum

∣∣∣F̂ (ω)
∣∣∣2 decreases asymptotically as 1/ω2(k+1). This property is important to

reduce the requirements on the antialiasing module.

P2. Accuracy For each time frame, the approximation error between numerical solutions X(τ)
and true solutions x(τ) is controllable, bounded and converges to zero for small time steps
h, with a controllable accuracy order p (defined thereafter).

P3. Power-balance Numerical approximations satisfy the PH power-balance over each time-
frame. In particular, for conservative PHS the Hamiltonian H(x) must be exactly preserved
from frame to frame, and for dissipative PHS, the Hamiltonian must decrease monotonically
over time (in the absence of external input).

While the interplay between continuous and discrete time is a common theme in (digital)
signal processing and control theory, in numerical analysis, many numerical methods (e.g. Finite
Differences, Runge–Kutta, multistep) are discrete by design 14: the underlying continuous-time
signal model is not made explicit. We note some important exceptions which are relevant to us:
Runge–Kutta methods with dense output [HNW93, II.6], Continuous Runge–Kutta Methods
[OZ92], Time finite elements (TFEM) [Hul92, BB93, Bot97, BS00], time-continuous Galerkin
(CG), time-discontinuous Galerkin (DG) [TS12, TSC17] and continuous-stage Runge–Kutta
(CSRK) methods [Hai10, MB16, Tan18]. Continuous Galerkin and CSRK formulations will be
considered in chapter 5 p.117.

Outline

Chapter 3 details the general continuous-time signal processing framework used to implement
blocks A-E. We first review important results and notations about functional analysis, non-
bandlimited signals and (generalized) sampling theory that are required thereafter. Then we
review several realisation strategies and tradeoffs for the Virtual DAC (block A) and Virtual
ADC modules (blocks D-E in fig. 2.16). Subsequent chapters 4-6 propose different methods for
the realisation of blocks B-C.

Chapter 4 is of an introductory nature. Satisfaction of properties P1−P3 is considered using
adaptive collocation for PH-ODEs. (Symmetric) Power balanced Adaptive collocation methods
((S)PAC) are introduced. Their analysis reveals that, using this approach, the existence domain
of power-balanced solutions is bounded.

Chapter 5 proposed a more general framework. It relies on an alternative viewpoint: using
the idea of continuous-time functional projection. We introduce the notion of a functional
Dirac structure 15 over a time frame, for which a sufficient condition to preserve the power
balance is established. Then, Regular Power balanced projection Methods (RPM) are introduced,
with controllable projection and regularity orders. They are analysed and illustrated for both
Port-Hamiltonian ODEs and DAEs.

Chapter 6 extends the ideas of chapter 5 and combines them with exponential integrators
(which exactly solve the linear dynamic). First the exponential Average Vector Field (EAVF)
method is introduced and shown to be energy-preserving (resp. dissipating) for autonomous
systems. Then, input–output ports are considered. Finally, an extension strategy towards higher
orders is proposed.

14. However, backward error analysis [HLW06] allows to interpret these schemes as sampled solutions of modified
continuous-time approximation of the original system.
15. see definition 1.14 p.20.
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Before we address numerical methods (blocks B-C in fig.3.2), we detail the virtual analog (VA)
continuous-time signal processing framework that will be used in the following of this manuscript
and propose realisation strategies for blocks A,D,E.

Non band-limited signals with a finite rate of innovation We observe the following facts:
a) Signals arising from nonlinear physical systems are usually not bandlimited. Furthermore

the outputs of nonlinear systems usually have a richer spectral content than their inputs
because of the bandwidth expansion of nonlinearities (see figure 3.1a),

b) Real-time numerical time integration methods rely on causal time-stepping, meaning that
any decomposition on basis functions must have finite and non-overlapping temporal support
from frame to frame (see figure 3.1b)

c) Because of memory requirements, computer representations of continuous-time signals
signals are necessarily finite-dimensional.
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Because of (a), in this thesis, we rely on generalized sampling theory [Uns00, NH14]. The Shannon-
Nyquist bandlimited hypothesis is replaced by a more flexible notion of limited bandwidth called
the finite rate of innovation [VMB02]. This relaxed hypothesis is also of importance to address
(b). Indeed, this allows exact representation of piecewise defined signals using basis functions
that have finite temporal support. In particular, we will work with piecewise polynomials spaces
[UAE93a, UAE93b], and piecewise exponential spaces [UB05, Uns05].

f frequency

nonlinearity N(·)−→

0 1f 2f 3f 4f 5f 6f

(a) Bandwidth expansion by a nonlinearity function N(·). The spectrum of a
distorted sinusoid usually contains an infinite number of harmonics.

time

Fourier transform⇐⇒
frequency

(b) Time-limited signals are not bandlimited

Figure 3.1 – Common sources of non-bandlimitednes: nonlinearities and finite temporal support.

Outline In section 3.1, we recall results and notations from generalized sampling theory and
functional analysis. In section 3.2, we consider continuous-time input reconstruction, in piecewise-
defined signal spaces, i.e. the realisation of the "Virtual DAC" module in figure 3.2 (block A). In
section 3.3, we consider the realisation of the dual output anti-aliasing, and sampling modules,
i.e. implementations strategies and choices to implement an anti-aliased "Virtual ADC" (blocks
D-E). In particular we consider two problems: exact continuous-time solutions of LTI ARMA
filters with piecewise polynomial inputs and projection of piecewise discontinuous polynomials
on smooth B-spline spaces [UAE93a, UAE93b]. Finally, in section 3.4, as a validation test, we
illustrate this “virtual analog” toolchain with an original implementation of a common audio
effect: a “virtual analog” sampling rate reduction effect (emulating artefacts of old ADC-DAC).

Virtual
DAC

Virtual
Nonlinear
System

Anti
Aliasing

Virtual
ADC

A B-C D E

u[n] u(t) y(t) ỹ(t) ỹ[n]

Figure 3.2 – (continuous-time virtual analog signal processing) block-diagram of the approach.
In this chapter, input reconstruction (Virtual DAC) and output antialiasing/ sampling (virtual
ADC) are considered.
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3.1 Generalized-sampling theory and Finite Rate of Innovation

3.1.1 Short reminder on functional analysis

Here we provide a short reminder on functional analysis and fix some notations. For more
details refer to the definitions in appendix C p.281 on Banach spaces, Hilbert spaces, Sobolev
spaces, etc). Let Ω = (0, 1) be the unit interval and I ⊆ Z a countable set.
The inner product of the Hilbert space of square integrable functions L2(Ω,Rn) is

〈u,v〉L2(Ω,Rn) :=

ˆ
Ω
u(τ) · v(τ) dτ, ∀u,v ∈ L2(Ω). (3.1)

The inner product of the Hilbert space of square summable sequences `2(I,Rn) is

〈u,v〉`2(I,Rn) :=
∑
k∈I

u[k] · v[k], ∀u,v ∈ `2(I). (3.2)

In this manuscript, we identify the space L2 with its dual (L2)∗ ' L2 (used as a pivot space).
This means that for a space V and its (algebraic) dual V ∗ (def. C.19), we have the inclusions

V ⊆ L2 ⊆ V ∗,

where the (functional) duality product between V ∗ and V is (note that V and V ∗ can be swapped)

〈u |v〉 :=

ˆ
Ω
u(τ) · v(τ) dτ, ∀u,v ∈ V ∗ × V. (3.3)

Remark 3.1 (Dirac bra-ket notations). To simplify proofs and enhance readability (without
any reference to quantum mechanics) we use Dirac bra-ket notations (i.e. the functional
analogs of a transposed vector and a vector).

• A ket |ψ〉 denotes a synthesis operator from coefficients to functions.

• A bra 〈φ | is an analysis functional that returns a number and receives a function.

• A bra-ket 〈φ |ψ〉 denotes a contraction (or inner product). It returns a number.

• A ket-bra |φ〉 〈ψ | denotes an analysis-synthesis operator.

• 〈u | A |v〉 is used as a shorthand for 〈u,Av〉L2 = 〈A∗u,v〉L2 where A∗ denotes the
adjoint operator (see def. C.16 p.283). This is the functional equivalent of the matrix
notation uTAv = uT(Av) = (ATu)Tv.

Definition 3.1 (Frame [Chr16]). Let V be an inner product space and F = {φk} a set of
vectors in V , then these vectors satisfy the frame condition if there are positive real numbers
A and B such that 0 < A < B <∞ and for each v ∈ V

A‖v‖2V ≤
∑
k∈I

∣∣〈φk | v〉∣∣2 ≤ B‖v‖2V . (3.4)

Furthermore a frame F is said to be tight if A = B, a Parseval frame if A = B = 1. It is a
Riesz basis if F is a basis, otherwise F is said to be an overcomplete frame. For example, an
orthonormal basis, is at the same time, a tight frame, a Parseval frame and a Riesz basis.

The frame condition guarantees the well-posedness of analysis and resynthesis operators but
not the uniqueness of their representation. By contrast, if F is a Riesz basis, then there exists a
unique dual basis F̃ (defined below) such that 〈φ̃i|φj〉 = δij .
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Frame synthesis operator For a basis or frame {φk} such that V = span{φk} ⊂ L2(Ω), we
introduce the frame synthesis operator Φ : `2(I)→ V defined by

Φ :=
[
. . . |φk〉 . . .

]
k∈I

, (3.5)

so that using the vector of coefficients ~x, we can compactly write a function as x(t) = (Φ~x)(t).

Frame analysis operator Dually, we define the frame analysis operator Φ∗ : L2(Ω)→ `2(I).

Φ∗ :=


...

〈φk |
...


k∈I

(3.6)

so that the coefficients ~x∗ of a function x(t) are given by ~x∗ = Φ∗x.

Gram Matrix The Gram Matrix (or gramian) of the frame Φ is defined by

GΦ := Φ∗Φ =
[
〈φm |φn〉

]
m,n∈I . (3.7)

Dual Frame If Φ is a frame, then a dual frame Φ̃, is a frame such that Φ̃∗Φ = II.

Dual Basis If Φ is a basis, then its dual basis (or biorthogonal basis) Φ̃ is the linear combination
of basis functions obtained using the inverse of the Gram Matrix.

Φ̃ = ΦG−1
Φ . (3.8)

Proof. Using (3.7)-(3.8), we have Φ̃∗Φ = (ΦG−1
Φ )∗Φ = G−TΦ Φ∗Φ = G−1

Φ Φ∗Φ = G−1
Φ GΦ =

II.

Reproducing Kernel If {φk(τ)}k∈I is an orthonormal basis of a space V ⊆ L2(Ω), then
according to Mercer’s theorem, the reproducing kernel of V is

KV (τ, σ) :=
∑
k∈I

φk(τ)φk(σ), (3.9)

so that we can express the projector PV using the reproducing kernel KV as

(PV u)(τ) :=

ˆ
Ω
KV (τ, σ)u(σ) dσ =

∑
k∈I
|φk〉 〈φk |u〉 . (3.10)

Resolutions of the Identity If Φ represents an orthonormal basis, then by definition

Φ∗Φ =
[
〈φm |φn〉

]
m,n∈I = II. (3.11)

Conversely, the projector PV : L2(Ω)→ V is given by

ΦΦ∗ =
∑
k∈I
|φk〉 〈φk | = PV . (3.12)

When PV is restricted to functions in V , then PV = IV where IV denotes the identity operator.

Partition of unity A generator ϕ(t) satisfies the partition of unity property if the sum of its
integer translates sums to one. ∑

n∈Z
ϕ(t− n) = 1, ∀t ∈ R. (3.13)
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3.1.2 Class of signals and notations

We introduce the class of signals and the notations that are used in this thesis. A vector-valued
signal x : t ∈ R→ x(t) ∈ Rm is represented as a sequence of time frames xn(τ)

x(t) =
∑
n∈Z

p−1∑
i=0

φi

(
t− tn
hn

)
xn,i


︸ ︷︷ ︸

xn(τ)

, where τ =
t− tn
hn

(3.14)

where

• T = {tn}n∈Z is a monotonic partition of time (tn < tn+1),

• hn = tn+1 − tn is the local step size,

• p is the number of basis functions and I = {0, . . . p− 1},

• The generating functions
{
φi(τ)

}
i∈I form the local representation basis,

• xn,i ∈ Rm are the vector-valued coefficients for each time-step n and basis index i,

• τ = t−tn
hn

is the normalized local time for time-step n,

• xn(τ) is the local representation of x(t) at time-step n.

The generating functions φ0, . . . , φp−1 and their translates span the approximation space

V = span
{
φi
(
(t− tn)/hn

)
, ∀i ∈ I, n ∈ Z

}
⊗ Rn.

This class of signals is related to (time) finite elements and multi-wavelets 1 (see [Uns00, section
C]). For causality of computations, basis functions translates are non overlapping. When the
context is not ambiguous, we drop the temporal subscript n. We talk about the local trajectory

x(τ) =

p−1∑
i=0

φi(τ)xi.

To simplify the presentation, we restrict to a constant step-size 2 h (hn = h, ∀n ∈ Z) so that the
approximation space V is integer shift-invariant. Generating functions φi are defined over the
open unit interval Ω = (0, 1) with boundary ∂Ω = {0, 1} and closure Ω = Ω ∪ ∂Ω = [0, 1].

Remark 3.2. The tensor of coefficients [xn,i,j ] may be denoted by xn,i or xi[n] according
to the way it is "sliced" in each context, i.e. when a clear distinction between the different
roles of time index n, functional basis index i and "geometric" index j is required. We also
use x[n](τ) as a synonym for xn(τ) a.

a. For example, we use the notation xi[n] (resp. x[n](τ)) to emphasize the sequence of coefficients (resp.
functions) interpretation. This is particularly useful when working in the Z-domain.

1. In the multi-wavelets literature the generators φ0, . . . , φp−1 are called multi-scaling functions.
2. The numerical methods in this thesis, in particular in chapter 5, do not require a constant step size, they

can be adapted by taking the step size into account when computing derivatives of the solution.
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3.1.3 Sampling signals with a Finite Rate of Innovation (FRI)

Classical bandlimited sampling

The vast majority of digital (audio) signal processing relies on the following theorem.

Theorem 3.1 (Shannon sampling theorem [Sha49]). If a function x(t) contains no frequen-
cies higher than B cycles per second, it is completely determined by giving its ordinates at a
series of points spaced h = 1/2B seconds apart.

The reconstruction formula that complements the sampling theorem is

x(t) =
∑
n∈Z

sinc

(
t

h
− n

)
xn, where sinc(x) :=

sin(πx)

πx
and xn = f(hn). (3.15)

Equation (3.15) is exact when x is bandlimited to fmax < B, called the Nyquist frequency.
Coefficients {xn} ∈ `2(Z) are called samples of x and fs = 2B is called the sampling rate.

Modern Sampling

Generalized sampling theory accounts for the fact that real world signal are not exactly
bandlimited and ideal band-limiting filters do not exist. Nevertheless, perfect analysis and
reconstruction of signals is still possible if we assume that they have a finite rate of innovation.

The paradigm shift in modern sampling is to realize that (3.15) is an orthogonal decomposition
and that ideal bandlimiting and sampling is simply a way to compute the projection coefficients 3

x(t) =
∑
n∈Z

ϕn(t)xn, where ϕn(t) = sinc(t/h− n), and xn = 〈ϕn, x〉 . (3.16)

Shannon bandlimited sampling is an instance of the more general (and practical) situation.
Let ϕ(t) be a generating function such that

{
ϕn = ϕ(·/h− n)

}
n∈Z is a Riesz basis of the non-

bandlimited integer shift invariant space Vh(ϕ) = span
{
ϕ(·/h− n)

}
n∈Z in L2(R). One further

requires that ϕ satisfies the partition of unity property 4 (3.13). Then there exists a dual basis
{ϕ̃n} of Vh such that signals in Vh are perfectly reconstructed 5 according to

x(t) =
∑
n∈Z

ϕn(t)xn where xn = 〈ϕ̃n, x〉 . (3.17)

Note that, by construction, signals spaces such as (3.14) fulfil the finite rate of innovation
property. They can be exactly represented (over a multi-generator basis) using a finite number of
degrees of freedom p per time-step h called the generalized bandwidth [VMB02]

B =
p

h
. (3.18)

Also note that, in our case, it is enough to have the constant reproduction property 6 over each
time step to fulfil the partition of unity (for all t ∈ R). It turns out that constant reproduction is
also a necessary condition to obtain consistent numerical integration schemes (eq. (5.21a) p.128).

3. It happens that the sinc system is both orthonormal in L2(R) and interpolating, i.e. the sinc function (and
its integer translates) is the generator of the space of bandlimited signals.

4. This guarantees that the approximation is consistent, so that one can approximate any function of L2(R)
over the space Vh as closely as desired (in norm) for a small enough sampling step h.

5. B-spline sampling is a typical example of perfect reconstruction in non-bandlimited spaces.
6. meaning that constant functions belongs to the approximation space.
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Example 3.1. Piecewise polynomial signals are not band-limited in the sense of Shannon
(see (3.14) where φ ). For example, the discontinuities in a sequence of piecewise constant
signals (at the output of a sample and hold circuit for example) have an infinite spectrum
(see figure 3.1).

Approximation order, polynomial reproduction and Strang–Fix conditions

We recall result (3.22) from [Uns00, section IV] relating the approximation order of the
sampling space, the spectral flatness of the approximation error in the Fourier domain and the
capability of the approximation space to reproduce polynomials.

Let Qh : L2(R)→ Vh(ϕ) ⊂ L2(R) denote the linear approximation operator defined by

(Qhf)(t) =
∑
n∈Z

ϕ

(
t

h
− n

)〈
ϕ

(
·
h
− n

)
, f

〉
(3.19)

and the approximation error by εh(f) =‖f −Qhf‖L2 . Averaging εh over all time-shifts, it happens
that one can characterise the average error in the frequency domain as

ε2h(f) :=
1

h

ˆ h

0

∥∥f(· − τ)−Qhf(· − τ)
∥∥2

dτ =

ˆ
R
Eϕ(hω)

∣∣∣f̂(ω)
∣∣∣2 dω

2π
, (3.20)

where f̂ denotes the Fourier transform of f and Eϕ(ω) is the error kernel given by

Eϕ(ω) =
∣∣∣1− ̂̃ϕ∗(ω)̂̃ϕ(ω)

∣∣∣+
∣∣ϕ̂(ω)

∣∣2∑
k 6=0

∣∣ϕ̂(ω + 2kπ)
∣∣2 . (3.21)

One can predict the rate of decay of the approximation error from the degree of flatness of Eϕ(ω)
near the origin. If Eϕ(ω) = C2ω2L +O(ω2(L+1)) as ω → 0, then [Uns00, eq.45]

‖f −Qhf‖L2 = ChL
∥∥∥f (L)

∥∥∥
L2

as h→ 0. (3.22)

for f ∈ HL(R). This implies that the error decays globally like O(hL) and is called the order of
approximation. It happens that through the Strang–Fix conditions [FS69, JL93, Cha99] (see also
appendix C.3 p.285) property (3.22) is equivalent to the reproduction of polynomials of degree
L− 1.

Remark 3.3 (Peano kernels). In complement to the asymptotic error-bound estimate (3.22),
the error shape can be analysed thanks to Peano kernels presented thereafter (see (5.30)
p.131). In subsection 5.2.7, we have a closer look at error measures such as (3.22) by studying
the Peano kernels of approximation operators used in power-balanced integration methods.

Remark 3.4 (Accuracy order and Strang–Fix conditions). In the ODE literature, order
conditions of one-step methods are usually investigated using the combinatorial theory of
B-series [MMMKV17, HLW06]. As an interresting result, bridging sampling and numerics
through Strang-Fix conditions, we show in subsection 5.2.6 p.128 that if (continuous-
stage) Runge–Kutta methods are built on orthogonal projection (of the vector field) which
reproduces polynomials of order p. Then, the local truncation error has accuracy order 2p
(automatically fulfilling B-series order conditions). We note that this result reveals itself
in the continuous-time setting whereas it remains hidden using standard (discrete) RK
formulations.
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3.1.4 Piecewise polynomial frames

Let Pn(Ω, F ) be the space of F -valued polynomials of maximal degree n over the domain Ω.
We sometimes drop F when F = R and Ω when Ω = (0, 1). This section quickly mentions a few
important polynomial bases and their main properties.

Monomial Basis The canonical basis of polynomials is given by the monomial basis {Mk(τ)}
where

Mk(τ) :=
τk

k!
(3.23)

and satisfies the derivation property (i.e. they correspond to Green functions of di

dτ i
)

di

dτ i
Mk =

{
Mk−i i ≤ k
0 i > k

(3.24)

This basis is not orthogonal, which leads to bad conditioning for some numerical applications.
However we will use it in subsection 3.3.1 to obtain closed-form filtering of sequences of polynomials.

Shifted Orthonormal Legendre polynomials By Gram-Schmidt orthogonalisation of the
monomial basis in L2, one obtains the shifted orthonormal Legendre polynomial basis. They have
the explicit representation

Lk(τ) =

√
2k + 1

k!

dk

dτk
τk(τ − 1)k. (3.25)

Important properties of Legendre polynomials are detailed in appendix C.4. This is the main
basis used in projection methods of chapter 5.

Bernstein polynomials Another useful basis of the polynomial space Pn is given by the
Bernstein basis [Far12]

Bn
k (τ) =

(
n

k

)
(1− τ)n−kτk. (3.26)

This basis is not orthogonal, but it is useful to represent Bezier splines by their control polygon
{xk}

x(τ) =

n∑
k=0

Bn
k (τ)xk. (3.27)

They satisfy a number of interesting properties. In particular the continuous derivative and
integral operators translate to finite differences and finite sums of their discrete control points,
and the curve is contained in the convex hull formed by the control polygon [Far12].

Hermite splines Hermite splines (defined in (C.22) p.287) are closely related to the Bernstein
basis but the representation uses derivatives of functions on the left and right boundaries of the
interval as coefficients. It is useful in derivative sampling and function interpolation. Hermite
splines and their generalisation will appear in 5.2.7 p.129, to address Ck-continuous trajectories.

B-splines (Cardinal) B-spline (see [UAE93a] [UAE93b]) are smooth finite-support continuous
functions whose restriction to the unit interval are piecewise polynomials. B-splines are defined
and used below in subsections 3.2.1 and 3.3.2 dedicated to input reconstruction and output
projection.
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3.2 Input reconstruction (Virtual DAC)

No matter how accurate simulations methods can be, the response of the overall system is
limited by the quality of the input reconstruction. To reconstruct a continous-time input u(t) from
discrete samples un, it is not practical to use Shannon’s bandlimited interpolation formula (3.15)
because it is both acausal and the sinc kernel has infinite temporal support 7. By consequence, the
bandlimited input reconstruction is not computable. Instead, using generalised sampling theory
(see the overview paper [Uns00]), we consider computable non bandlimited approximations of
bandlimited spaces whose synthesis functions have finite temporal support.

3.2.1 B-spline spaces

Following the standard approach in [UAE93a] we consider reconstruction of the input in
compactly supported B-spline spaces 8 (B-splines basis functions are shown on figure 3.4)

u(t) =
∞∑

n=−∞
βm

(
t

h
− n

)
ũn where β̂m(ω) :=

(
ej

ω
2 − e−j

ω
2

jω

)m+1

= sincm+1

(
ω

2

)
(3.28)

where function βm denotes the centred B-spline of order m and β̂m its Fourier transform.

Prefiltering The coefficients ũn are computed from the cardinal samples u(tn) using the discrete
B-spline IIR pre-filter Sm(z), whose Z-transform is the inverse of the B-spline FIR filter Bm(z)

Sm(z) =
1

Bm(z)
with Bm(z) =

dm/2e∑
k=−dm/2e

βm(k)zk. (3.29)

The block diagram of the method is shown on figure 3.3 (where ? is the convolution operator).

Sm(z) ?βm(t/h)

∑
n δ
(
t
h − n

)
u(tn)

discrete samples

∑
n δ
(
t
h − n

)
ũn

B-spline coefficients

u(t) =
∑

n βm
(
t
h − n

)
ũn

B-spline signal

Figure 3.3 – Digital IIR prefiltering scheme to obtain B-spline coefficients {ũn} such that the
reconstructed function u(t) interpolates the cardinal samples

{
u(tn)

}
.

Piecewise polynomials Since B-splines are piecewise polynomials, for each time-frame Ωn =
(tn, tn + h), tn = hn, the restriction of the signal u(tn + hτ) to the interval Ωn is exactly
representable as a polynomial, it is thus suitable for use in our one-step simulation framework,
which requires inputs to be specified as sequences of time frames. It is given by

u(tn + hτ)

∣∣∣∣
Ωn

=

n+(m+1)/2∑
k=n−(m+1)/2

βm (τ − k)

∣∣∣∣
[0,1]

· ũk, u(tn + hτ)

∣∣∣∣
Ωn

∈ Pm([0, 1]). (3.30)

7. A finite approximation of the Shannon bandlimited interpolation formula and approximate integration of
windowed sinc interpolation using quadratures has been proposed in [SH11]

8. This approach is more suitable for our time-stepping framework and it is known that the limit when m→∞
converges to bandlimited spaces.
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Figure 3.4 – B-splines (non centered). Piecewise polynomial segments are emphasised using
alternating solid and dashed lines.

Cardinal interpolating splines It is possible to combine 9 B-splines with their prefilter. This
gives the following interpolation formula expressed using the cardinal interpolating splines βmint

u(t) =

∞∑
k=−∞

βintm

(
t

h
− k
)
u(tk) where β̂intm (ω) =

β̂m(ω)

Bm(ejω)
. (3.31)

It is shown on figure 3.7 (d) that the prefilter has the role of a pre-emphasis filter that compensates
the lowpass characteristic of B-splines so that the magnitude response of cardinal splines is
maximally flat below the Nyquist frequency. Time and frequency responses of B-spline and
corresponding cardinal interpolating splines are shown on figure 3.7 .

Causality The above approach is adapted in image processing where causality is not an issue,
however for audio signal processing, acausality of the discrete prefilter Sm(z) is an important
issue that needs to be addressed. Several approaches can be considered:

• If phase linearity (i.e. constant delay) is considered more important than latency, it is
possible to approximate the IIR filter Sm(z) by an optimal FIR SFIR

m (z). Furthermore since
the impulse reponse sm[n] of the filter Sm(z) decays quickly, an accurate approximation
can be obtained with short FIR filters (see figure 3.8).

• If instead a minimal group delay is desired, it is possible to convert Sm to minimum phase
so that both filters share the same magnitude response

∣∣Sm(ejω)
∣∣ =
∣∣∣Sminphase
m (ejω)

∣∣∣ while
the minimum phase filter has a stable realization because it only has stable poles.

If we restrict to piecewise affine spaces, a cost-effective approach consists in using shifted-linear
interpolation which is detailed thereafter (see figure 3.5).

lin. int.
shifted
original
samples

Figure 3.5 – Comparison of shifted and standard linear interpolation.

9. In practice, since interpolating splines are infinitely supported, it is computationally more interesting to
work with finitely supported B-splines, and rely on IIR pre-filtering to obtain their coefficients.
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3.2.2 Shifted linear interpolation

We restrict to B-spline spaces of degree 1, following the approach presented in [BTU04].
Instead of using standard linear interpolation whose frequency response is sinc2(ω/2), by relaxing
phase linearity, it is possible to both obtain a causal IIR prefilter and to improve the frequency
response of the interpolator. The mean to obtain this improvement is to use shifted linear
interpolation (see figure 3.5). The main idea is the following: instead of using the following
(trivial) B-spline prefilter to obtain a cardinal interpolating spline (i.e. here β1 = βint1 )

S1(z) =
1

β1(−1)z + β1(0) + β1(1)z−1
= 1 where β1(t) := |1− t|+ ,

one can use the inverse of the shifted B-spline FIR filter β1(·− τ) to pre-filter the samples
{
u(tn)

}
S1,τ (z) =

1

(1− τ) + τz−1
. (3.32)

It turns out [BTU04] that there exists an optimal shift 10 τopt = 1
2 −

√
3

6 for which the magnitude
response of the cardinal interpolating spline is maximally flat. This gives the optimal IIR prefilter

Sopt
1 (z) =

b0
1 + a1z−1

, where b0 =
1

1− τopt
, a1 =

τopt
1− τopt

. (3.33)

The frequency response is shown on figure 3.6. To conclude this paragraph on shifted linear
interpolation, for only a small additional cost (a causal discrete first order IIR pre-filter followed
by standard linear interpolation), the frequency response of linear interpolation is significantly
improved and can compete with higher order cardinal interpolating splines from figure 3.7 .
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Figure 3.6 – Time and frequency response of shifted linear interpolation: β̂int1,τ (ω) =

β̂1(ω)Sτ1,τ (z = ejω). Note that cardinal splines are interpolating on the integer grid, but their
maximum value is reached for the timeshift τ . For the optimal shift τopt, the magnitude response
is improved by up to 5dB between 5kHz and fs/2 compared to standard linear interpolation.

To sum up: for low order reconstruction, shifted linear interpolation is both causal and
cost-effective; for higher order reconstruction, causal approximations of B-spline prefilters and
higher latency are required (see figure 3.8).

10. We note by anticipation, that the optimal shift corresponds to a Gauss quadrature node ( 1
2
−
√

3
6

is the
smallest root of the second shifted Legendre polynomials P2 which is used in Gauss-Legendre numerical integration
methods [HLW06]). This is the second time in this chapter (see remark 3.4 above) that we discover unexpected
connections between numerical analysis and signal processing. A dedicated study would be required to reveal the
fundamental causes behind these apparent co-incidences. Legendre polynomials are detailed in appendix C.4 p.286.
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Figure 3.7 – Comparison between B-splines and cardinal interpolating B-splines (3.31). B-splines
have finite support and a lowpass frequency response (both time and frequency representations
converges to gaussians when order is increasd). By contrast, cardinal interpolating B-splines
have infinite support in both time and frequency (but both decay quickly). The major difference,
comes from the the fact that cardinal B-splines are interpolating (they vanish on the uniform
grid except in 0) and their frequency response below the Nyquist frequency is much sharper: it
converges to the ideal bandlimited rectangular kernel when order is increased.
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Figure 3.8 – Impulse responses of cardinal interpolating B-spline pre-filters s2[n], s3[n], s4[n]
(see equation(3.29)).
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3.3 Output antialiasing and sampling (Virtual ADC)

In this section, we consider Virtual Analog to Digital Converters (vADC), their implementation
and different design tradeoffs. We propose two approaches. First, in subsection 3.3.1, we consider
the exact implementation of continuous-time Linear Time-Invariant ARMA filters represented as
state-space systems. This strategy allows the use of all analog filter design tools to implement
anti-aliasing filters (Butterworth, Chebyshev, Elliptic, etc). Second, in subsection 3.3.2, to mirror
input reconstruction in shift-invariant B-splines spaces, we propose an alternative strategy. Given
a (potentially discontinuous) signal y(t) defined as a (broken) piecewise polynomial, we look for
the best approximant ỹ(t) in B-splines spaces (the dual problem of input reconstruction).

3.3.1 Exact continuous-time filtering for LTI state-space systems

Let u(t) be a non band-limited signal with a finite rate of innovation B (see 3.18). For
band-limiting purposes 11, we would like to apply an exact continuous-time antialiasing filter.

We consider the class of Linear Time-Invariant (LTI) state-space filters

ẋ(t) = Ax(t) + Bu(t), (3.34a)
y(t) = Cx(t) + Du(t), (3.34b)

and assume that the input signal u(t), is locally defined for each time step by u(tn+hτ) = u[n](τ)
for τ ∈ (0, 1) over a basis Φ =

{
φ1(τ), . . . , φp(τ)

}
as follows

u[n](τ) =

p∑
i=1

φk(τ)ui[n]. (3.35)

For simplicity of notation, in the following, we drop the indices n and assume a normalized time
step h = 1 over the unit interval τ ∈ [0, 1]. It is well known that the Green kernel of the operator

L =
d

dτ
−A, (3.36)

is given by (Θ(τ) denotes the Heaviside unit step function)

KA(τ, σ) = Θ(τ − σ)eA(τ−σ) (3.37)

For an initial condition x0, the state x is obtained by convolution with the kernel x =
L−1 (δ0x0 + Bu) =

´
KA(τ, σ)

(
δ0(σ)x0 + Bu(σ)

)
dσ. It yields the basis representation

x(τ) =

p∑
i=0

ϕi(τ)xi where xi = Bui i > 0. (3.38)

The basis functions are defined by ϕi := Ψi[A,Φ], i = 0, . . . , p where the generator of exponential
basis functions Ψ, parametrized by the matrix A and basis Φ, is defined as follows

Ψi[A,Φ](τ) :=


ˆ 1

0
KA(τ, σ)δ0(σ) dσ = exp(Aτ) i = 0,

ˆ 1

0
KA(τ, σ)φi(σ) dσ i = 1, . . . , p.

(3.39)

11. i.e. if we need to resample a signal in a (quasi)-bandlimited sense: for audition via a soundcard or for
communication with digital audio processing chains inside of a Digital Audio Workstation.
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Looking at the output equations (3.34b), we find that the output signal y belongs to the space
spanned by the union of input and exponential basis

{
ϕk(τ)

}
∪
{
I⊗ φk(τ)

}
y(τ) = C

 p∑
i=0

ϕi(τ)xi

+ D

 p∑
i=1

φi(τ)ui

 . (3.40)

By sampling the functions for τ = 1, we obtain the discrete state-space filtering scheme

x0[n+ 1] =

p∑
i=0

ϕi(1)xi[n], where xi[n] = Bui[n] for i > 1, (3.41a)

y[n+ 1] = Cx0[n+ 1] + D

 p∑
i=1

φi(1)ui[n]

 . (3.41b)

Exact representation of the state x(τ) over the basis {ϕ0, . . .ϕp} relies on the ability to have
computable formulae for functions ϕ. In the following, we consider the case of a polynomial input
space, for which we provide exact integration results.

Polynomial input spaces

We consider piecewise polynomial inputs, locally represented by polynomials u(τ) ∈ Pp−1(Ω,Cm)
of maximal degree p− 1 over the unit time interval Ω = (0, 1). In numerical applications, signals
will often be represented using orthogonal polynomials. However in the following, the use of the
monomial basis M leads to simpler formulae (see appendix D.1 for a detailed derivation)

M = {Mk}pk=1 where Mk(τ) :=
τ (k−1)

(k − 1)!
. (3.42)

In this section, the basis functions {ϕk} 12 (see figure 3.9) are generated from M using (3.39).
They are defined by the convolution (see [MVL78, CI01, MVL03] to compute exp(Aτ))

ϕk(A; τ) := Ψk[A,M ](τ) =


exp(Aτ), k = 0,ˆ τ

0
exp(A(τ − σ))

σ(k−1)

(k − 1)!
dσ, k > 0.

(3.43)

If A = 0, the operator L reduces to an integrator, it is then immediate that

ϕk(A; τ) = I
τk

k!
= IMk+1(τ). (3.44)

If A is invertible, the following recurrence relation can be used for practical computations

ϕk+1(A; τ) = A−1
(
ϕk(A; τ)−ϕk(0, τ)

)
. (3.45)

By reccurence, we also have the explicit representation

ϕk(A; τ) = A−k

exp(Aτ)− I

k−1∑
i=0

τ i

i!

 . (3.46)

12. We have used the same notation for the so-called ϕ-functions that have an important role in the literature on
exponential integrators [HO10]. Note however that here we are not only interested in discrete time-stepping, but
also on all the continuous-time values between time-stepping instants. This will be important in the resampling
application example.
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Reorganising terms, we note the following interpretation for functions ϕ: the term Akϕ(A; τ) is
the remainder of the Taylor series expansion of exp(Aτ) truncated after k terms

exp(Aτ) =
k−1∑
i=0

(Aτ)i

i!
+ Akϕk(A; τ).

Remark 3.5 (lower incomplete gamma function). ϕ-functions are closely related to the
lower incomplete gamma function

γ(κ, τ) =

ˆ τ

0
σκ−1e−σ dσ.

Indeed with A = −1 and κ = k, we have ϕk(−1; τ) = γ(k, τ)
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Figure 3.9 – Normalized filtered polynomial ϕ-functions for k ∈ {0 . . . 4} for a complex pole
A = 2πi (left plot) and a real pole A = −5 (right plot) over the unit interval τ ∈ [0, 1]. The left
plot only shows the real part of each function. blue: impulse response ϕ0, orange: step response
ϕ1, green: ramp response ϕ2, red: quadratic ramp response ϕ3, magenta: cubic ramp response
ϕ4.

Implementation

Remark 3.6 (Diagonalised state-space and parallelisation). To avoid using matrix-valued
function and forming the matrix exponential, for diagonalizable matrices A, it is advantageous
to use the eigenvalue decomposition A = UΛU−1 with eigenvalues Λ = diag(λ1, . . . , λn).
We define the complex variable change z(t) := U−1x(t) to obtain the diagonalized state
space system

ż(t) = Λz(t) + B̂u(t), B̂ = U−1B,

y(t) = Ĉz(t) + Du(t), Ĉ = CU.

The LTI state-space filter implementation can then be parallelised using scalar complex-valued
ϕ-functions and the output space belongs to span

{
ϕk(λi, τ)

}
k,i
∪
{
φk(τ)

}
k
.
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Examples
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Figure 3.10 – Exact piecewise continuous-time output of a first order low-pass filter for a time
sequence of local polynomials {τ2, 1− τ, 0, 1} and several values of ωc ∈ {1, 3, 6, 10}.

Example 3.2 (First order lowpass filter). We consider a first order lowpass filter with the
following state-space and Laplace transfer function representations for a cutoff pulsation
ωc ∈ R+{

ẋ(t) = ωc(u(t)− x(t))

y(t) = x(t)

Laplace transform⇐⇒ Y (s) = H

(
s

ωc

)
U(s) where H(s) =

1

1 + s
.

The filter is driven by a piecewise polynomial input signal u(t). It is defined by the sequence
of local polynomials (on the left) with corresponding monomial coefficients (on the right) by

{un(τ)} = {τ2, 1− τ, 0, 1}, ⇐⇒ u =




0

0

1

 ,


1

−1

0

 ,


0

0

0

 ,


1

0

0



τ0

τ1

τ2

.

The input and output signals are shown on Figure 3.10.
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Figure 3.11 – Exact piecewise continuous-time response y(t) of a third order Butterworth filter
with cutoff pulsation ωc = π to a triangle input signal u(t) at the Nyquist frequency.
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Example 3.3 (Triangle signal at the Nyquist frequency). To illustrate the non-bandlimited
representation capacity of piecewise polynomials, and the effectiveness of the continuous-time
filtering scheme, consider a non-bandlimited triangular signal u(t) oscillating at the Nyquist
frequency, which is shown on figure 3.11. It is locally represented over each time step by

{
un(τ)

}
=
{

(−1)n(2τ − 1)
}
, ∀n ∈ N ⇐⇒ u =


−1

2

 ,
 1

−2

 , . . .
 τ0

τ1
.

We filter this signal by a third order Butterworth [But30] filter H
(
s
ωc

)
whose cutoff is set

to the Nyquist pulsation ωc = π. The normalized Laplace transfer function prototype H(s)
is separated in partial fractions

H(s) =
1

(s2 + s+ 1)(s+ 1)
=

c1

s− λ1
+

c2

s− λ2
+

c3

s− λ3
, (3.47)

and realized in complex canonical diagonal form by the state-space system

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
A =


λ1

λ2

λ3

 , B =


1

1

1

 , C =
[
c1 c2 c3

]
, (3.48)

with poles λ1 = −1−i
√

3
2 , λ2 = −1+i

√
3

2 , λ3 = −1 and coefficients c1 = −3+i
√

3
6 , c2 = −3−i

√
3

6 ,
c3 = 1. The continuous-time response of the filter is shown on figure 3.11. The values at the
sampling instants are shown as black dots. To show that the method generalizes easily to
any order using the same approach (and that we can easily use dirac deltas distributions as
inputs), the exact impulse and step responses of an order 12 Butterworth filter are shown
on figure 3.12 (Note the higher group delay which is due to the higher order of the causal
minimum phase Butterworth filter).
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Figure 3.12 – Exact piecewise continuous-time impulse and step responses of an order 12
Butterworth filter. Inputs are plotted in dashed black, piecewise output segments with colours.



98 Chapter 3. Non-bandlimited signal representations, reconstruction and antialiasing

3.3.2 Approximation of (broken) piecewise polynomials on B-spline spaces

In the simulation methods developed in chapters 4 and 5, the time-continuous-output y(t)
will often be defined as a (possibly broken) piecewise polynomial. Furthermore, in section 3.2, we
have considered input reconstruction in quasi-bandlimited B-spline spaces (with continuity order
m). It is natural in this context to look for the dual process: finding a B-spline approximation
ỹ(t) having the same continuity order m (or a higher continuity order if smoothing is seeked)
and a rate of innovation equal to the output virtual ADC sampling rate (block E in figure 3.2).
Furthermore, for implementation purposes, we want such an approximation be both local and
causal.

Theory of operation The outline of the idea (shown on figure 3.13) is the following:

• Since B-splines of degree m, are piecewise polynomials with finite temporal support, there
exists an invertible matrix operator L of dimenson m+ 1 converting from the restriction of
any B-splines over the interval [n, n+ 1] to its Legendre coefficients (see figure 3.14).

• Conversely, for each polynomial yn(t) on Ωn = [n, n+ 1], the inverse operator L−1 yields a
smooth extension operator: the resulting B-spline ỹn(t) (with extended temporal support)
is such that its restriction to Ωn yields the same polynomials, i.e. ỹn(t)|Ωn = yn(t).

• Note that each polynomial yn(t) yields a different local B-spline extension ỹn(t): we have
an overcomplete representation with m+ 1 candidate coefficients ỹn[k] for each B-spline
basis function βm(t− k). To obtain a unique output ỹ(t), we need a strategy for the fusion
of coefficients. It is then natural to think of weighted Overlap Add (which is a very common
tool in signal processing based on the Short Time Fourier Transform).

• From frame theory [Chr16], we know that the combination of multiple bases using barycentric
weights wk (summing to one) constitute a frame. Furthermore, since the choice of (positive)
weights is free, a natural idea is to use a weighting scheme proportional to the area of
influence of each B-spline βm(t− k) (see (3.49)) on the interval [0, 1] (see figure 3.15).

An example of B-spline projection from L2 signals is shown in figures 3.17 and 3.16. A similar
idea called Bezier projection for NURBS 13 and T-splines in the context of Isogeometric Analysis
[HCB05] was proposed in reference [TSE+15].
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ŷ2[n]
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Figure 3.13 – (vADC) Block diagram of causal Legendre to cubic B-spline projection filterbank.

13. Non Uniform Rational B-splines
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Figure 3.14 – Conversion of local cubic B-splines to Legendre polynomials using operator L.
Dually, for each function u(t) defined over the Legendre polynomials on [0, 1], there is a smooth
B-spline extension with coefficients

{
ũ[−1], . . . , ũ[2]

}
induced by L−1.

m βm(t) L L−1

0 1[0,1](t) [1] [1]

1 (t)+ − 2(t− 1)+ + (t− 2)+

 1
2

1
2

−
√

3
6

√
3

6

 1 −
√

3

1
√

3



2
(t)2

+−3(t−1)2
++3(t−2)2

++(t−3)2
+

2!


1
6

2
3

1
6

−
√

3
12 0

√
3

12√
5

60 −
√

5
30

√
5

60




1 −2
√

3 4
√

5

1 0 −2
√

5

1 2
√

3 4
√

5



3
∑4

i=0(−1)i
(

4
i

) (t−i)3
+

3! ,


1
24

11
24

11
24

1
24

−
√

3
40 −11

√
3

120
11
√

3
120

√
3

40√
5

120 −
√

5
120 −

√
5

120

√
5

120

−
√

7
840

√
7

280 −
√

7
280

√
7

840




1 −3

√
3 11

√
5 −33

√
7

1 −
√

3 −
√

5 9
√

7

1
√

3 −
√

5 −9
√

7

1 3
√

3 11
√

5 33
√

7


Table 3.1 – B-spline to Legendre conversion operators L and L−1. The weights {wk} correspond
to the first row of operator L (i.e. projection of βmk on the first Legendre polynomial P0 = 1).
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Causal B-splines In order to align polynomials with the integer grid, here we use the causal
definition of B-splines 14 as the m-fold convolution (see figure 3.4)

βm(t) := β0(t) ? . . . ? β0(t) =
m+1∑
i=0

(−1)i
(
m+ 1

i

)
(t− i)m+
m!

, where β0(t) = 1[0,1](t). (3.49)

We define the spline space Sm := span
{
βm(t− k)

}
k∈Z ⊂ L

2(R).

Local polynomial space Denote βmk (t) the restriction to the unit interval Ω = [0, 1] of the
B-spline βm(t+ k), i.e. βmk (t) = βm(t+ k)

∣∣
Ω
, so that the restriction to Ω of a function u(t) from

the spline space Sm is locally represented in the polynomial space Pm(Ω) by

u(t)

∣∣∣∣
Ω

=

m∑
k=0

βmk (t)ũ−k = |β〉 ũ. (3.50)

where |β〉 =
[∣∣βmk 〉]m

k=0
denotes the B-spline synthesis operator and ũ =

(
[ũ−k]

m
k=0

)T are the

B-spline coefficients corresponding to times
{
m+1

2 − k
}m
k=0

(see figure 3.14).

B-spline to Legendre representation We are interested in the Legendre representation.

u(t)

∣∣∣∣
Ω

=

m∑
k=0

Pk(t)ûk = |P 〉 û. (3.51)

where |P 〉 =
[
|P0〉 , . . . , |Pm〉

]
denotes the Legendre synthesis operator (Legendre polynomials

are defined in appendix C.4 p.286) for the Legendre coefficients û = [û0, . . . , ûm]T. Since both
representations correspond to the same function in the polynomial space Pm(Ω), there exists an
invertible operator L such that û = Lu given by

L = 〈P |β〉 . (3.52)

Proof. The result follows from the relations

u(t)|Ω
a
= |β〉 ũ = |P 〉 û b⇐⇒ 〈P |β〉︸ ︷︷ ︸

L

ũ = 〈P |P 〉 û c
= û

using (a) representation of u(t) in both basis, (b) left multiplication by the dual Legendre analysis
operator 〈P |, (c) orthonormality of the Legendre polynomial basis 〈P |P 〉 = Ip.

Inverse Legendre to B-spline operator Conversely for a sequence of Legendre coefficients{
û[n]

}
n∈Z, the inverse operator yields m+ 1 sequences of B-spline coefficients

{
ũ[n]

}
=
{

L−1û[n]
}

=


. . . ũ0[n] . . .

...

. . . ũ−m[n] . . .

 . (3.53)

We call L−1 the B-spline extraction operator. Examples are shown on table 3.1 and figure 3.14.

14. From the spectral definitions of causal B-splines with Laplace transform β̂m(s) = (1− e−s)m+1/sm+1. The
binomial coefficients and time-shifts comes from the expansion of the finite difference operator (1− e−s)m+1 while
tm+ /m! comes from the inverse Laplace transform of the repeated integration operator 1/sm+1.
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Weighted barycentric overlap-add Finally, the B-spline coefficients
{
ũ[n]

}
n∈Z of ũ(t) are

obtained by combining the m+ 1 B-spline estimates using the barycentric average

ũ [n−m] =
m∑
k=0

wkũm−k [n− k] , where wk =

´ 1
0 β

m
k (t) dt∑m

k=0

´ 1
0 β

m
k (t) dt

. (3.54)

The weights wk are chosen proportional to the intersection of their area with the unit interval.

1 0 1 2

m
=

1

w1

1(t + 1)

1 0 1 2

w0

1(t + 0)

1 0 1 2

m
=

2

w2

2(t + 2)

1 0 1 2

w1

2(t + 1)

1 0 1 2

w0

2(t + 0)

1 0 1 2

m
=

3

w3

3(t + 3)

1 0 1 2

w2

3(t + 2)

1 0 1 2

w1

3(t + 1)

1 0 1 2

w0

3(t + 0)

Figure 3.15 – Barycentric overlap-add weights for linear, parabolic and cubic splines.

Formalisation of the approximation operator Denote Zτ : u(t) 7→ u(t + τ), τ ∈ R the
timeshift operator. Combining equations (3.49) to (3.54) according to the block diagram in figure
3.13, the analysis-synthesis process Qm is defined by

(Qmu)(t) =
∑
n∈Z
Z−n

m∑
i=0

wiZ i−m
m∑
j=0

Z iβm(t)L−1
i,j

〈
Pj
∣∣Znu〉 . (3.55)

Proposition 3.1. Operator Qm defined by (3.55) reproduces the spline space Sm up to a
constant delay of size m, i.e.

Qmβm = Z−mβm. (3.56)
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Proof. Substituting (a) u = βm in (3.55), then, using (b) the local B-splines βmn = βm(t+ n)|Ω
(see (3.50)), and the definition of operator L (3.52), (c) L−1L = Im, (d) the barycentric weight
property

∑m
i=0wi = 1 (see (3.54)), we obtain

(Qmβm)(t)
a
=
∑
n∈Z
Z−n

m∑
i=0

wiZ i−m
m∑
j=0

Z iβm(t)L−1
i,j

〈
Pj
∣∣Znβm〉

b
=

m∑
n=0

Z−n
m∑
i=0

wiZ i−mZ iβm(t)
m∑
j=0

L−1
i,j

〈
Pj
∣∣βmn 〉︸ ︷︷ ︸

Ljn

c
=

m∑
n=0

Z−n
m∑
i=0

wiZ−mβm(t)δi,n =
m∑
n=0

Z−nZ−mβm(t)

 m∑
i=0

wiδi,n


d
=

m∑
n=0

Z−nZ−mβm(t)δ0,n = Z−mβm(t).

By integer shift-invariance, by conclude that Qm reproduces the spline space Sm.

Numerical experiments In order to assess the qualitative approximation properties of opera-
tor Qm, we perform two numerical experiments (a detailed quantitative study is left for future
work).

• First (figure 3.16), we approximate piecewise discontinuous square, sawtooth and triangle
polynomial signals over B-spline spaces of increasing smoothness S1,S2,S3. We note that
square and sawtooth belong to the kernel of the B-spline projector and are exactly filtered
after an initial transient. The triangle is exactly reproduced by first order B-splines, but it
is progressively filtered when increasing the B-spline smoothness.

• Second (figure 3.17), to anticipate signals from chapter 5, we project (first row) a (smooth,
bandlimited) sinusoid over piecewise constant and piecewise affine subspaces of L2(R)
(this yields non-bandlimited approximations, second row), then we reconstruct its C1

approximations over the B-spline space S2 using operator Q2 (third row). We note that
even for low smoothness m = 2 and crude piecewise constant approximations, signals are
qualitatively well recovered. Furthermore we notice the increased accuracy of the piecewise
affine reconstruction (see section 3.1.3).

L2 signal

B-spline m = 1
B-spline m = 2
B-spline m = 3

(a) square

L2 signal

B-spline m = 1
B-spline m = 2
B-spline m = 3

(b) saw

L2 signal

B-spline m = 1
B-spline m = 2
B-spline m = 3

(c) triangle

Figure 3.16 – B-spline aproximation of square, saw and triangle oscillations at Nyquist.
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original

L2 projection

B-spline m = 2

original
B-spline m = 2

(a) Piecewise constant

original

L2 projection

B-spline m = 2

original
B-spline m = 2

(b) Piecewise affine

Figure 3.17 – Reconstruction of a sinusoid in the B-spline space S2 after (discontinuous)
piecewise constant (left column) and piecewise affine (right column) L2 approximations . Signals
have been time-aligned to compensate for the causal delay of size m (see (3.56)). Edge differences
are due to to the fact that the smoothing operator operates on truncated signals with finite
support (L2 signals are implicitly extended to zero outside of the approximation window, while S2

signals in orange are smoothly extended according to the temporal support of the B-spline β2).
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3.4 Application: “virtual analog” resampler

As an illustration of the virtual analog toolchain, a real-time, variable rate, “virtual analog”,
resampler (fig. 3.18) has been implemented in UVI Falcon software [UVI21]. It is constituted of:

• First order B-spline DAC with sampling rate fs (see section 3.2) to convert discrete-time
signal to continous-time (and a second optional one with virtual sampling rate f ′s),

• a continuous-time anti-aliasing Butterworth lowpass filter (see figure 3.12) with cutoff
frequency f ′c < f ′s/2 to approximately limit the bandwidth of the signal to f ′c,

• a variable rate sampler with virtual sampling rate f ′s < fs, to downsample the signal at a
lower sampling rate (with the effect of periodising the spectrum above f ′s/2),

• a second exact high-order continuous-time anti-image Butterworth lowpass filter with
cutoff frequency fc < fs/2 to bandlimit the signal to fs/2 (voluntarily 15 keeping spectral
images between f ′c and fc).

• a fixed sampler to resample the signal back to the original sampling rate fs.

u[n] y[n]
u(t) x(t) x[n] x̃[n] y(t)

fs f ′c f ′s fc fs

Figure 3.18 – (Virtual Analog resampler) block-diagram.

It can be interpreted as a cascade of two multi-rate polyphase resamplers [VL88], except that
using virtual continuous-time signal processing, we have an infinite number of ’phases’ between
sampling instants. Blocks in dashed line on figure 3.18 corresponds to approximate projection
(see (3.16)) on spaces of bandlimited signals with respective bandwidths f ′s/2 and fs/2.

Spectral periodisation about the virtual sampling rate f ′s = 4 kHz (and its multiples) is
illustrated on figure 3.19. The quasi-band-limiting effect of the two Butterworth filters is clearly
visible: we still observe some aliasing in the crossover region about the virtual Nyquist frequency
f ′s/2 = 2 kHz (an its images at 6 KHz, 10 kHz, etc) but it is maintained below −84 dB.

Figure 3.19 – (Virtual Analog resampler) spectrum periodisation.

15. The whole purpose of sampling rate reduction audio effects is to keep the spectrum periodisation artefacts of
the virtual sampling rate f ′s (to emulate the sound of old analog-to-digital and digital-to-analog converters) and at
the same time to avoid spectral aliasing artefacts that are linked to the current simulation sampling rate fs.
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Conclusion

In this chapter, we have reviewed the foundations of the non-bandlimited signal representation
framework used in this thesis. Instead, we use sequences of time-frames having a finite number of
parameters per time frame, i.e. signals with a finite rate of innovation. The tools of generalized
sampling theory allows consistent analysis-resynthesis of such non-bandlimited signals. Extended
bandwidth is useful to resolve the extended spectrum of nonlinear systems (for example a sawtooth
signal is not bandlimited in the Shannon-Nyquist sense, but its rate of innovation is finite and
proportional to its frequency), Having minimal disjoint temporal supports is also a critical
ingredient to obtain causal numerical integration schemes.

We have revisited the topic of continuous-time input reconstruction in B-spline spaces from
discrete signal samples. B-spline signal processing theory is now well established, yet discrete
B-spline pre-filters are sometimes omitted so that B-splines can be wrongly described as being too
smooth. In our context, causality is perhaps the most limiting factor, For that purpose, we have
seen that shifted linear interpolation is a causal and cost-effective way to improve the frequency
response of traditional linear interpolation at the expense of phase linearity.

We have also considered exact causal continuous-time ARMA filtering of piecewise defined
signals. This strategy allows to use the vast literature on analog filter design tools (e.g. Butter-
worth, Chebyshev, Elliptic, etc) for the realisation of the continuous-time anti-aliasing stage. As
an alternate approach: we consider the approximation of piecewise (discontinuous) polynomials
on smooth B-splines spaces. Indeed, it is known that in the limit of infinite smooothness, the
interpolating kernel in B-splines spaces converge to the sinc kernel of band-limited signal spaces.
The ARMA approach has the advantage of being very general and causal with steep anti-aliasing
filters for a relatively low filter order. The price to pay is the lack of phase linearity and lack of
idempotence of the bandlimiting operator. Alternatively, B-spline output approximation works as
a projector (with delay), so we have causality, phase linearity (idempotence with delay). We face
the same kind of design tradeoffs as is usual in the choice between Finite Impulse Response (FIR)
and Infinite Impulse Response (IIR) filters for a given application. Note that signal reconstruction
in quasi-bandlimited spaces such as the ones generated by Hammerich pulses [Ham07, KZ17]
looks promising for audio use but is left for future work.
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Chapter 4

Power-balanced Adaptive collocation

If an idea works once it’s a trick. If it works twice it’s a technique. If it works three times it’s a method.

Unknown source

Contents
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In this chapter we restrict our investigation to input-state-output PHS systems, defined in
definition 1.22, of the form

ẋ = (J−R)∇H(x) + Gu, (4.1a)

y = GT∇H(x). (4.1b)

Although the approach is general, we focus the study on linear systems.
For a unit interval Ω = (0, 1), and time step h, properties P0–P3 (see p.79) are expressed by

P0 the trajectory is locally approximated on [tn, tn + h] by a polynomial Xn on Ω such that

Xn(τ) ≈ x(tn + hτ), ∀τ ∈ Ω,

P1 derivatives match on frame boundaries up to a controllable continuity order k ≥ 0

X(m)
n (0) = X

(m)
n−1(1), ∀m ∈ {0, . . . , k},

P2 the local truncation error ε has a controllable accuracy order s:

ε(h) = x(t0 + h)−X(1) = O(hs+1),

P3 the trajectory Xn satisfies the power balance over each frame

H(Xn(1))−H(Xn(0)) = −h
ˆ 1

0
∇H(Xn(τ))TR∇H(Xn(τ)) dτ + h

ˆ 1

0
y(τ)Tu(τ) dτ.

Outline Our strategy, is detailed in section 4.1. It uses (adaptive) collocation (see [HLW06])
to satisfy all of the above properties: the vector field and its derivatives is exactly satisfied at
fixed collocation instants to obtain both accuracy and smoothness. Additional collocation points
are used and adaptively optimised for each time frame to satisfy the power balance.

107
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In section 4.2 we propose a first instance of the approach. We obtain the adaptive Euler
method whose solutions are C0-regular. We study its accuracy order s ∈ {1, 2}, its stability
function, and the existence domain of power balanced solutions. This shows that with this
formulation, there exists a maximal dissipation rate above which power-balanced solutions do not
exist anymore. Numerical simulations show that despite the lower accuracy order, thanks to the
power-balance, qualitative aspects such as orbit and dissipation rate are improved compared to
the mid-point method.

In section 4.3, in order to improve the deficiencies (low accuracy and regularity orders) of the
first method, we add symmetry and smoothness. This leads to a C1-regular method. We study its
numerical properties showing that it is unconditionaly A-stable with an accuracy order s ∈ {4, 6}
(for linear systems). The existence domain of power-balanced solutions is also improved.

Finally in section 4.4, we generalise the approach to any number of derivatives and collocation
points with the definition of (Symmetric 1) Power-balanced Adaptive collocation methods (PAC
and SPAC). We use symbolic computer algebra to automate the study of their stability function,
accuracy order, leading error term and maximal dissipation rate. The existence domain of
power-balanced solutions is also shown in the complex plane. The domains are different but
closely reminiscent of the theory of order stars [WHN78].

4.1 Satisfying the power-balance using adaptive collocation

For a local trajectory X(τ), τ ∈ [0, 1], we define the local vector field

fh(X) := h
(
(J−R)∇H(X) + Gu

)
, (4.2)

and the vector field approximation error operator

E(X) := Ẋ − fh(X). (4.3)

Finally we introduce the power balance error, defined by the functional

ρ(X) :=
〈
∇H(X)

∣∣E(X)
〉

=

ˆ 1

0
∇H(X(τ))TE(X(τ)) dτ. (4.4)

Remark 4.1 (Power balance orthogonality condition). In the absence of external ports, the
power balance ρ(X) = 0 can be interpreted as an orthogonality condition between the vector
field approximation error E(X) and the gradient of the Hamiltonian ∇H(X).

Our first strategy, inspired by Runge-Kutta collocation methods [HLW06] is to use a first set
of fixed collocation points C, and a second set of variables ones C̃ such that

E(X(ci)) = 0, ∀ci ∈ C ∪ C̃.

The set C is used to achieve numerical accuracy (and continuity). The set C̃ is devoted to satisfy
the power balance: the variable parameters c̃i ∈ [0, 1] are optimised so that

ρ(X) = 0.

To obtain a practical numerical method, existence and uniqueness of power-balanced solutions
must be investigated. To study this problem, we propose a family of (Symmetric) Power-balanced
Adaptive collocation methods respectively called PAC and SPAC and study three instances of
increasing complexity. We restrict the analysis to autonomous linear ODEs, for which we provide
stability functions, accuracy analysis and analytical bounds on the existence of power-balanced
solutions (based on the maximal dissipation rate).

1. i.e. such that the method is invariant under time reversal and has an even accuracy order.
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4.2 Method A: adaptive collocation

We first consider the minimal requirements to satisfy properties P0−P3,

Method 4.1. The one-point Power-balanced Adaptive collocation method PAC(1) is defined
implicitly by the following constraints:

P0. (Model) The trajectory Xα(τ) ∈ P1 is an affine polynomial with 2 degrees of freedom

Xα(τ) = X0 + τδXα. (4.5a)

P1. (C0-Continuity) The trajectory satisfies the initial condition

Xα(0) = X0 = x0 ∈ Rn. (4.5b)

P2. (Accuracy order s ≥ 1) The vector field is satisfied for the collocation point α ∈ [0, 1]

Ẋα(α) = δXα = fh(Xα(α)) ∈ Rn. (4.5c)

P3. (Power balance) The PB is satisfied if there exists an optimal value α? satisfying

α? ∈
{
α ∈ [0, 1] | ρ(Xα) = 0

}
6= ∅. (4.5d)

The method is completed by the time-stepping map Φh : x0 7→ x1 := X(1).

Method 4.1 defines a nonlinear problem with n + 1 parameters to solve with respect to
(δXα, α). A difficulty is that the parameter α appears recursively in δXα. To study this problem,
we consider the autonomous linear case.

Autonomous Linear analysis

Let H(x) = 1
2xTQx = 1

2‖x‖
2
Q, with Q = QT � 0 be a quadratic Hamiltonian, A = h(J−R)Q

and G = 0. We rewrite (4.1a) as the autonomous ODE

Ẋ = AX, X(0) = x0. (4.6)

Solving the collocation constraint (4.5c): δXα = A(x0 + αδXα) leads to δXα = (I− αA)−1Ax0.
Substitution in (4.5a) yields the following family of candidate solutions parametrised by α

Xα(τ) =
(
I + τ(I− αA)−1A

)
x0 = (I− αA)−1

(
I + (τ − α)A

)
. (4.7)

Evaluating x1 = Xα(τ = 1), yields the time stepping scheme x1 = Rα(A)x0, where the time-
stepping operator is

Rα(A) = (I− αA)−1(I + (1− α)A). (4.8)

Substituting the matrix A by a complex pole λ ∈ C, we obtain

Property 4.1 (stability fonction). For the Dahlquist test equation, ẋ = λx, λ ∈ C, approxi-
mated using method 4.1, we obtain x1 = Rα(λ)x0, the stability function (see def. B.4 p.276)
is thus

Rα(λ) =
1 + (1− α)λ

1− αλ
. (4.9)
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Remark 4.2. This classical result corresponds to the stability function of extended Euler
methods. Using Taylor series expansion, the time-stepping approximation error is given by

ε(λ) = exp(λ)−Rα(λ) = λ2

(
1

2
− α

)
+O(λ3). (4.10)

• The method has accuracy order s ≥ 1, ∀α ∈ [0, 1]. It reaches accuracy order s = 2 for
α = 1

2 and R1/2(λ) is the Padé approximant of exp(λ) of order (1, 1).

• If α ≥ 1
2 , then the method is A-stable:

∣∣Rα(λ)
∣∣ ≤ 1 for <(λ) ≤ 0, (see def. B.5 p.276).

If α = 1
2 , then the method is conservative:

∣∣Rα(λ)
∣∣ = 1 for all λ ∈ iR.

The following result shows that, even in the linear dissipative case, there is a maximal
dissipation rate above which it is not possible to satisfy the power balance (see figure 4.1).

Property 4.2 (bounded power balanced domain). Let λ = −σ, σ ∈ R+. If σ ∈ [0,
√

3], then
the power balance (4.5d) is satisfied for the optimal collocation point

α? =
(σ − 1) +

√
1− σ2

3

2σ
∈ [0, 1]. (4.11)

Proof. Substituting equation (4.7) in the power balance functional (4.4), and integrating symbol-
ically (see appendix E.1 p.309) we btain

0 = ρ(Xα) =

ˆ 1

0
Xα(τ)

(
Ẋα(τ)− f(Xα(τ))

)
dτ =

(
α2σ + α (1− σ) +

2σ − 3

6

)
σ2x2

0

(1 + σα)2
.

This quadratic equation has a unique real branch in [0, 1] given by (4.11) for |σ| ∈ [0,
√

3].

3 -1 0 1 3
Dissipation rate 

0

1
2

1 valid branch
discarded branch
maximal dissipation rate
mid-point
valid range of 

Figure 4.1 – (PAC(1)) Optimal parameter α? as a function of the dissipation rate σ. Note
that in the absence of dissipation (σ = 0), the optimal parameter (α? = 1/2) corresponds to the
mid-point method. When the dissipation rate increases (σ > 0), the method goes towards the
Forward Euler method (α? < 0.5). Conversely if the pole is unstable (σ < 0), the method goes
towards the Backward Euler scheme (α? > 0.5). For |σ| >

√
3, it has no real solution.

It may seem that the method relies on the stability margin provided by the dissipation rate
to solve the power-balance constraint. To demonstrate that solving the power balance does
not require the use of artificial numerical damping (or emphasis), a symmetric power balanced
adaptive collocation method that is always A-stable is presented in section 4.3.
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Example 4.1 (Damped Oscillator). Consider a damped oscillator with normalised (h = 1)
pulsation ω and dissipation rate σ (for example a parallel RLC circuit) with vector field

f(X) =

−σ −ω
ω 0

X.

A numerical simulation of this system is shown on Figure 4.2. The mid-point method (α = 1
2),

which is second order accurate, is compared to the PAC(1) (adaptive Euler), which is only
first-order accurate (in general). Despite the lower local numerical accuracy, we remark
that two qualitative aspects of the exact solutions have been improved thanks to the power
balance: the dissipation rate and the distance to the exact dissipative orbit.
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0.2

0.1

0.0
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0.2

x 2

mid-point vs exact solution
mid-point
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PAC(1) vs exact solution
PAC(1)
exact

(a) orbits
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0.40

0.45

0.50

0.55

0.60

(b) α values

Figure 4.2 – (PAC(1) - Damped RLC) Mid-point method vs PAC(1). Despite the lower accuracy
order of PAC(1), we remark that the orbit and dissipation (in blue on the right) are improved
compared to the mid-point method (in orange on the left).

4.3 Method B: symmetric adaptive collocation

To generalize to C1 solutions and to obtain a symmetric A-stable method, we introduce

Method 4.2 (SPAC(2)). P0. (Model) The trajectory is a polynomial Xα ∈ P4(Ω,Rn),

P1-2. (C1-continuity) Xα satisfies an initial condition and collocation of the vector field on
the boundary of the interval ∂Ω = {0, 1}

Xα(0) = X0, Ẋα(0) = fh(Xα(0)), Ẋα(1) = fh(Xα(1)), (4.12a)

P2-3. (Power balance) the vector field is satisfied on symmetric adaptive collocation points

Ẋα(α) = fh(Xα(α)), Ẋα(1− α) = fh(Xα(1− α)), (4.12b)

The PB is satisfied if there exists an α? such that

α? ∈
{
α ∈ [0, 1] | ρ(Xα) = 0

}
. (4.12c)
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We study the behaviour of method 4.2 and its validity domain. In the linear case, we have
the following property

Property 4.3 (stability fonction). For the Dahlquist test equation, ẋ = λx, λ ∈ C, ap-
proximated using method 4.2, the time stepping map is x1 = Rβ(λ)x0 with the stability
function

Rβ(λ) =
1 + λ

2 + (1− β)λ
2

12 + β λ
3

24

1− λ
2 + (1− β)λ

2

12 − β
λ3

24

, and β = α(1− α). (4.13)

Proof. The proof is omitted. The result can be derived using CAS such as in E.1 p.309.

Remark 4.3. The method is A-stable for all values of β. Using Taylor series expansion,
the approximation error is

ε(λ) = exp(λ)−Rβ(λ) = (5β − 1)

(
λ5 + λ6

720

)
+O

(
z7
)
. (4.14)

By consequence the method

• has (linear) accuracy order s ≥ 4, ∀β ∈ [0, 1
4 ],

• reaches accuracy order s = 6 for β = 1
5 (i.e. α = 1

2 ±
√

5
10 ). In this case, Rβ(λ)

corresponds to the Padé approximation of exp(λ) of order (3, 3) (see also D.7 p.297).

For a purely dissipative test equation, we also have the following result

Property 4.4. Let λ = −σ, σ > 0. The power balance ρ(Xβ) = 0 has a unique solution

β =
2520 + σ2(9σ2 − 84)−

√
3
(
−σ8 + 112σ6 + 2116800

)
42σ2

(
σ2 − 10

) ∈
[
0,

1

4

]
, (4.15)

subject to σ ∈ [0, σmax) where σmax ≈ 10.651 (see fig 4.3).

Proof. As in property 4.2, solving the power balance ρ(Xβ) = 0 yields a quadratic equation

aβ2 + bβ + c = 0, (4.16)

with a = 21σ2(σ2 − 10), b = −9σ4 + 84σ2 − 2520, c = 504 − 12σ2 + σ4. It admits a unique
solution for β ∈

[
0, 1

4

]
(i.e. α ∈ [0, 1/2]) which is given by (4.15).
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0.35

Figure 4.3 – Optimal value of β (and α) as a function of the dissipation rate σ.
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4.4 Increasing regularity: SPAC methods

In order to increase the regularity and accuracy orders, we combine the previously presented
approach with multi-derivative Hermite-Obreshkoff collocation methods [HNW93, Nør74, Obr40].
We summarize and extend the previous methods with the following definition.

Method 4.3 ((S)PAC). Denote k the Ck-regularity order and d = 2k + 1 (resp. d = 2k + 2)
the polynomial degree. Denote t = t0 + hτ , τ ∈ Ω = [0, 1] the time and D = 1

h
d
dτ the

time derivative (≡ d
dt ). The (Symmetric) Power-balanced Adaptive collocation method of

regularity k, in short (S)PAC(k), is defined by

• P0 (Model) Xα ∈ Pd(Ω,Rn) is a polynomial over the interval Ω,

• P1,P2 (Ck-continuity). Xα satisfies an initial condition and multi-derivative collocation
of the vector field on the boundaries of the interval ∂Ω = {0, 1}.

Xα(0) = x0, (4.17a)

(DmXα) (c) =
(
Dm−1f

(
Xα(τ)

))
(c), ∀c ∈ ∂Ω, ∀m ∈ {1, . . . k}. (4.17b)

• P3 (power balance) The vector field is satisfied over the set C̃ = {α}, α ∈ D = (0, 1)
for PAC (resp. C̃ = {α, 1− α}, α ∈ D = (0, 1/2) for SPAC) such that

DXα(c) = f
(
Xα(c)

)
, ∀c ∈ C̃. (4.17c)

The power balance is satisfied if there exists an α? such that

α? ∈
{
α ∈ D | ρ(Xα) = 0

}
. (4.17d)

Automating proofs using CAS, as in E.1 p.309, we obtain the properties in table 4.1.

Method Stability function R(λ) Leading error s σmax

PAC(0)
1 + (1− α)λ

1− αλ
− (2α− 1)

λ2

2
1 to 2 ≈ 1.73

PAC(1)
1 + λ(4−2α)

6 + λ2(1−α)
6

1− λ(2α+2)
6 + αλ2

6

(2α− 1)
λ4

72
3 to 4 ≈ 6.66

PAC(2)
1 + λ(72−24α)

120 + λ2(18−12α)
120 + λ3(2−2α)

120

1− λ(24α+48)
120 + λ2(12α+6)

120 − αλ3

60

− (2α− 1)
λ6

7200
5 to 6 ≈ 4.96

SPAC(0)
1 + λ

2 + λ2β
2

1− λ
2 + λ2β

2

(6β − 1)

(
λ3 + λ4

12

)
2 to 4 ≈ 3.66

SPAC(1)
1 + λ

2 + (1− β)λ
2

12 + β λ
3

24

1− λ
2 + (1− β)λ

2

12 − β
λ3

24

(5β − 1)

(
λ5 + λ6

720

)
4 or 6 ≈ 10.65

SPAC(2)
1 + λ

2 + λ2(24β+72)
720 + λ3(12β+6)

720 + λ4(2β)
720

1− λ
2 + λ2(24β+72)

720 − λ3(12β+6)
720 + λ4(2β)

720

(14β − 3)

(
λ7 + λ8

302400

)
6 to 8 ≈ 6.38

Table 4.1 – (SPAC methods) Linear properties. Remind that β = α(1− α), s denotes accuracy
order and the leading error is the first nonzero term in Taylor series expansion of the error.
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Figure 4.4 – ((S)PAC) Power Balanced regions satisfying ρ(Xα) = 0 and α ∈ [0, 1] for the
Dahlquist test equation ẋ = λx, λ = −σ+ jω. Contour plots are shaded according to α for SPAC
and α− 1

2 for PAC. Note that multiple solution branches are overlaid using transparency.
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Figure 4.5 – ((S)PAC) Optimal values of power-balanced collocation point(s) α as a function of
the dissipation rate σ (λ = −σ). Note that multiple solutions are plotted with different colours .
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Discussion about (S)PAC methods Optimal power balanced adaptive collocation points
α? are shown in figure 4.5 according to dissipation rate for real poles. Power balanced regions
for complex poles are shown on figure 4.4 for (S)PAC methods for regularity orders k = 0, 1, 2.
Analysing table 4.1 and figures 4.4, we make the following observations:

• Power-balanced regions are closely related but different from the theory of order stars 2

which was introduced in [WHN78] to study the stability of numerical methods.

• We remark on figure 4.4 that for both PAC and SPAC, increasing the regularity k increases
the surface of power balanced regions. However, we also notice in table 4.1 that the maximal
dissipation rate shrinks for k = 2. A tradeoff seems to operate between the maximal
dissipation rate and the total area of the power-balanced region.

• In Table 4.1, for PAC methods, the leading error term vanishes for the roots of the Legendre
and Lobatto polynomials 3. These polynomials play an important role in the construction
of Gauss–Legendre and Gauss–Lobatto Runge–Kutta methods (see [HLW06]).

• In the absence of dissipation, for both PAC and SPAC methods, the power-balance yields
balanced A-stable Padé approximations of the exponential with optimal accuracy order s.

• In the presence of dissipation, PAC methods may use locally expansive stability functions
(blue zones in figures 4.4a-c). The method relaxes accuracy order to satisfy the power
balance. Nevertheless, one can see on figure 4.2 that the orbit of the power-balanced
approximation (with lower accuracy order s = 1) is closer to the orbit of the true solution
when compared to the orbit of an A-stable approximation having higher accuracy order
(s = 2) and the same number of collocation points.

• The previous observation indicates that the local truncation error, commonly used to
measure accuracy order, is only one metric among others based on a discrete simulation grid:
minimising specific continuous-time error metrics (such as the power-balance functional
ρ(X) (eq. (4.4)) or the vector-field approximation error E(X) (eq. (4.3))), can be beneficial
to capture or improve important features of the dynamics (such as energy-conservation,
orbit shapes or dissipation rate).

• SPAC methods are all symmetric, A-stable, time-reversible and of even accuracy order
(independently of the dissipation rate) by symmetry of their collocation points.

A Python code example to produce results of table 4.1 and graphics of figures 4.4 and 4.5 is
shown in listing E.1 p.309.

2. Order star theory uses the regions A =
{
λ ∈ C |

∣∣S(λ) > 1
∣∣
}

with S(λ) = R(λ)/ exp(λ) to study stability, In
(S)PAC we use power balanced regions of the complex plane for which ρ(Xα) = 0 can be satisfied.

3. For all PAC methods, the leading error term in table 4.1 vanishes for α = 1/2, the root of the Legendre
polynomial P1(α) = 2α− 1. Expanding β = α(1− α), we obtain the Legendre polynomial P2(α) = 6α2 − 6α+ 1
for SPAC(0), and the Jacobi/Lobatto polynomial L2(α) = 5α2 − 5α+ 1 for SPAC(1).
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Conclusion

We have proposed a first family of (Symmetric) Power balanced Adaptive collocation methods
called (S)PAC that can satisfy the regularity, accuracy and power balance requirements P1,P2,P3.
This approach has the following advantages and drawbacks

Advantages

• arbitrary high regularity order k (P1) and accuracy order s (P2) can be easily obtained by
increasing the order of derivatives and the number of collocation points,

• the continuous-time power balance is exactly satisfied (when a solution exists),

• dissipation rate and orbits are more accurately tracked thanks to the power-balance P3.

Drawbacks Unfortunately, we also note the following important drawbacks

• the existence domain of power-balanced solutions is bounded by a maximal the dissipation
rate (for real poles) or more generally by the power-balanced regions of figure 4.4 for complex
poles,

• an implicit nonlinear equation has to be solved for each time-step (even for linear systems),

• polynomial parameters are implicitly defined with respect to the adaptive parameter α which
does not appear linearly in the equations. This makes estimation of parameters in the case of
nonlinear vector field f(x) a difficult problem 4 for which existence/uniqueness/convergence
conditions remains an open subject.

To overcome these problems, we abandon the collocation approach and adopt a different strat-
egy: we interpret the power-balance as an orthogonality condition ρ(X) =

〈
∇H(X)

∣∣E(X)
〉

= 0

between the vector field error E(X) = Ẋ − f(X) and the Hamiltonian gradient ∇H(X). This
interpretation leads us to methods based on continuous-time functional projection 5 in chapter
chapter 5.

4. A strategy consist in alternating between the fixed-point (or Newton) estimation of the implicit polynomial
Xα (through collocation of the vector field for a given α), and optimisation of the collocation point α for a given
polynomial Xα. Joint optimisation of both parameters has also been investigated but is not detailed here.

5. Note that, interpolation of the vector field in collocation methods can also be interpreted as continuous-time
projection in Sobolev spaces (rather than discrete inner product spaces). However, continuous-time projection
alone is not sufficient to preserve the power balance. This viewpoint is detailed in chapter 5, particularly in section
5.2.7.
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Power-balanced projection methods

Spectral methods are like Swiss watch. They work beautifully,
but a little dust in the gear stops them entirely.

Philip L. Roe, quoted by J. P. Boyd, SIAM Rev., 46(2004)
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Introduction

This chapter presents one of the main results of this thesis: we establish a sufficient condition
on projectors to obtain time-continuous power-balanced trajectories. Indeed, in chapter 4, we
have seen that it is not possible to unconditionally satisfy the power balance functional (4.4)
using (adaptive) collocation methods. In particular (see figures 4.4 and 4.5 p.114), the existence
domain of power balanced solution is bounded: there is a maximal dissipation rate (or more
generally a method-dependent maximal pole radius) above which power-balanced solutions cease
to exist. Furthermore, the power-balance constraint led to numerical schemes whose parameter
estimation is nonlinear in the parameters (even for linear ODE).

To avoid these problems, in this chapter, which is central in this thesis, we propose a
continuous-time power-balanced functional projection approach.

The chapter is structured as follows 1:

• In section 5.1, we define regular power balanced methods (RPM) of variable projection
and regularity orders which satisfy properties P1,P2,P3 (defined p.79). The main foun-
dational results, which links functional L2 projection and power balance are exposed in
subsection 5.1.1, where we introduce the functional notion of projected conservative (Dirac)
and dissipative structures over time-frames. Based on these results, RPM are first defined
for pH-ODE in subsection 5.1.3, and for pH-DAE in subsection 5.1.4.

• In section 5.2, instead of jumping straight to implementation and simulation issues (see
sections 5.4, 5.5), we provide a thorough analysis of RPM in the case of pH-ODE. This
step is important to guide the choice of approximation spaces. In subsection 5.2.2, we
reformulate RPM as continuous-stage Runge-Kutta methods. The goal is twofold: first to
leverage the vast amount of results available for Runge-Kutta methods, second to bridge
the functional projection and the Runge–Kutta viewpoints. Existence and uniqueness
conditions are considered in subsection 5.2.3, stability functions in subsection 5.2.4, power
balance in subsection 5.2.5, accuracy order conditions in subsection 5.2.6. Finally regularity
analysis and Peano error kernels are detailed in subsection 5.2.7. A landmark of this section
is that projection spaces that reproduce polynomials yield high-order accuracy.

• In section 5.3 we try to tackle the more difficult subject of pH-DAE. A short discussion on
accuracy and stage-order and stiffness is provided in subsection 5.3.1. But most of the work
is dedicated to establishing milestones towards practical existence and uniqueness conditions
for RPM applied to pH-DAE by exploiting the particular structure of the equations.

• In section 5.4, we address the implementation of RPM: numerical computation of projections,
choice of unknowns and implicit equation solving using Newton iteration.

• In section 5.5, we finally detail and illustrate RPM modelling and simulation on two
examples 2: a conservative pH-ODE and a dissipative pH-DAE. For both uses cases, we
provide and compare several simulations at different projection and regularity orders. A close
attention is also paid to energy preservation (up to machine precision), the quality/regularity
of continuous-time orbits and to the anti-aliasing and generalized spectral bandwidth.

Finally, we conclude this chapter by analysing the strengths and weaknesses of RPM and
compare with state of the art energy-preserving methods.

1. Application oriented readers, may skip numerical analysis sections 5.2 and 5.3, which are mostly theoretical,
to jump straight to implementation in section 5.4 p.140 and the numerical simulations in section 5.5 p.147

2. Note that chapter 8 p.197 is dedicated to applications on real circuits, where the complete process (from
circuit modelling to numerical simulation) is detailed with a finer level of details.
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5.1 Regular Projection Methods for pH-ODE and pH-DAE

5.1.1 Power-balance condition

Motivation In chapter 4 we have seen that using collocation, it is not possible to unconditionally
satisfy the power balance condition

〈
∇H(X)

∣∣∣ Ẋ − f(X)
〉

= 0 (see Equation 4.4). We propose,
instead, to consider the weak ODE formulation over a subspace V of L2(Ω,Rn)〈

v
∣∣∣ Ẋ − f(X)

〉
= 0, ∀v ∈ V.

Note that, if we had ∇H(X) ∈ V , this would imply the orthogonality
〈
∇H(X)

∣∣∣ Ẋ − f(X)
〉

= 0.

Unfortunately, for Ẋ ∈ V , by integration and nonlinearity, the function ∇H(X(τ)) belongs to a
larger space. It needs to be projected on V without loosing energy/passivity preservation.

To this end, we propose the following definition and theorem that are applicable for both
pH-ODE and pH-DAE (see corollaries 5.1-5.3).

Definition 5.1 (Projected structure). Let A ∈ Rn×n be a matrix defining the structure

S =
{

(f , e) ∈ Rn × Rn | f = Ae
}
.

Denote F = L2(Ω,Rn) the flow space of square integrable time signals over an open Ω ⊂ R.
Denote E = F ∗ ∼ F the (dual) space of effort signals. Let P : F → F be a projector and
denote P∗ : E → E its adjoint for the L2 duality pairing 〈· | ·〉. We call the functional set

SP =
{

(f , e) ∈ F × E | f = PAe
}
, (5.1)

a projected structure over the time interval Ω.

We want that the projected structure SP preserves (on average over Ω) passivity properties (in
the sense of (1.53b) p.34) of the original structure S. To this end, we propose

Theorem 5.1 (Projected passivity). Assume that the pair (P ,A) satisfies the condition

PA = AP∗. (5.2)

Then, the projection P preserves the passivity properties of S: for all (f , e) ∈ SP

SP is passive if A � 0, i.e. 〈e |f〉 ≤ 0, (5.3a)

SP is power-conserving if A = −AT, i.e. 〈e |f〉 = 0. (5.3b)

When (5.3a) (resp. (5.3b)) holds, we call SP a projected dissipative (resp. Dirac) structure.

Proof. The result follows from the sequence of relations

〈e |f〉 a= 〈e |PA | e〉 b
=
〈
e
∣∣∣P2A

∣∣∣ e〉 c
=
〈
e
∣∣PAP∗

∣∣ e〉 d
=
〈
e
∣∣P(J−R)P∗

∣∣ e〉
e
= −

〈
e
∣∣PRP∗

∣∣ e〉 f
≤ 0.

using (a) projected flows f = PAe (5.1), (b) idempotency P2 = P , (c) commutation (5.2)
PA = AP∗, (d) equality A = J−R with J = 1

2(A−AT), R = −1
2(A+AT), (e) skew-ajointness

(5.3b) of PJP∗ and (f) positive self-adjointness (5.3a) of PRP∗. This yields 〈e |f〉 = 0 when
R = 0.
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Theorem 5.1 has a number of important implications for PHS detailed below.

Corollary 5.1 (Projected Hamiltonian System). Let ẋ = J∇H(x) be a Hamiltonian system
and P a projector such that (P ,J) satisfies (5.2). Then, for X ∈ H1(Ω,Rn) solution of

Ẋ = PJ∇H(X), X(t0) = x0, (5.4)

the energy is conserved on the boundaries of Ω = (t0, t1), namely H
(
X(t1)

)
= H

(
X(t0)

)
.

Proof. The result follows from 0
a
= 〈e |f〉 b

=
〈
∇H(X)

∣∣∣ Ẋ〉 c
= H(x1)−H(x0), using (a) Theo-

rem 5.1 with A = J = −JT, (b) f = Ẋ, e = ∇H(X), (c) the gradient theorem.

Corollary 5.2 (Projected pH-ODE). Consider a projected input-state-output pH-ODE with
given input u ∈ L2(Ω,RnP ) and (P ,J−R) satisfying (5.2)Ẋ

y

 = P (J−R)

∇H(X)

u

 , X(t0) = x0, (5.5)

Then, for X ∈ H1(Ω,RnS ), y ∈ L2(Ω,RnP ) solutions of (5.5), x1 = X(t1), the projected
pH-ODE is passive, i.e. it satisfies the average power balance over Ω = (t0, t1)

H(x1)−H(x0) + 〈u |y〉 ≤ 0.

Proof. The result follows from 0
a
≥ 〈e |f〉 b

=
〈
∇H(X)

∣∣∣ Ẋ〉+ 〈u |y〉 c
= H(x1)−H(x0) + 〈u |y〉 ,

using (a) Theorem 5.1 with A = J−R, (b) f =
[
Ẋ
y

]
, e =

[
∇H(X)
u

]
, (c) the gradient theorem.

Corollary 5.3 (Projected pH-DAE). Consider the projected semi-explicit pH-DAE with
given input u ∈ L2(Ω,RnP ) and (P ,J) satisfying (5.2)

Ẋ

w

y

 = PJ


∇H(X)

z(w)

u

 , X(t0) = x0.. (5.6)

Then, for X ∈ H1(Ω,RnS ), w ∈ L2(Ω,RnR) y ∈ L2(Ω,RnP ) solutions of (5.6) and x1 =
X(t1), the projected pH-DAE is passive, i.e. it satisfies the average power balance over
Ω = (t0, t1)

H(x1)−H(x0) + 〈u |y〉 = −
〈
z(w)

∣∣w〉 ≤ 0.

Proof. The results follows from

0
a
= 〈e |f〉 b

=
〈
∇H(X)

∣∣∣ Ẋ〉+
〈
z(w)

∣∣w〉+ 〈u |y〉

c⇐⇒ H(x1)−H(x0) + 〈u |y〉 = −
〈
z(w)

∣∣w〉 d
≤ 0,

using (a) Theorem 5.1 with A = J, (b) f = (Ẋ,w,y), e = (∇H(X), z(w),u) (c) the gradient
theorem and (d) pointwise non-negativity of z(w) ·w ≥ 0.
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5.1.2 Examples of projector design

Theorem 5.1 allows some flexibility in the design of projectors. This can be illustrated on
example 2.10 61 (Diode clipper) whose structure matrix J is recalled below.

vR

vD

iC

iS

 =


−1 1

1 0

1 −1

−1 0




iR(vR)

iD(vD)

vC(iC)

vS


Several choices of projectors P can be considered

a) The simplest choice consists in using the same scalar projector P = P∗ for each dimension by
introducing P = P ⊗ I4 (by construction PJ = JP = JP∗). This defines the skew-adjoint
operator

PJ =


−P∗ P∗

P∗ 0

P −P
−P 0


This choice is the one explored and detailed in section 5.1 to build Power-Balanced methods
for pH-ODEs and pH-DAEs.

b) A natural extension, is to use a diagonal projector P = diag(PR,PD,PC ,PS) with different
(not necessarily self-adjoint) projectors for each dimension so that

PJ =


PR

PD
PC

PS




−1 1

1 0

1 −1

−1 0

 =


−PR PR
PD 0

PC −PC
−PS 0

 .
However, note that, in order to have PJ skew-adjoint, it is necessary to fulfil hidden
constraints PR = PD = P and PC = PS = P∗ for a given projector P (and its adjoint
P∗). This choice is more flexible than the self-adjointness constraint (a) for partitionnable
systems. In particular, canonical Hamiltonian systems could be discretized as

ṗ = −P∗ ∂H
∂q

(p, q), q̇ = P ∂H
∂p

(p, q).

c) The most general situation arises by direct substitution of each cell of the structure matrix
by projectors to obtain a skew-adjoint approximation of the structure matrix J (or J−R). In
our example, we may choose 3 projectors PCR,PCD,PSR such that the following functional
matrix operator J (approximating J) is skew-adjoint

J =


−P∗CR P∗SR
P∗CD 0

PCR −PCD
PSR 0

 = −J ∗.

Alternatively, we could define the skew-adjoint operator J = PJP∗ from (b). This choice
is not explored further in this thesis, but is left as an interesting perspective for future work.
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5.1.3 RPM for pH-ODE

We propose a power-balanced method for pH-ODEs. The key ideas of the method are a) to
use corollary 5.2 to obtain projected power balanced solutions (P2) in a subspace of L2, b) to
improve this result using multi-derivatives supplementary boundary conditions (P1) so that the
concatenation of time frames yields globally smooth solutions in the Sobolev space Hk.

For our purposes, we rewrite input-state-output pH-ODEs from definition 1.22 p.33 asẋ
y


︸︷︷︸
a

= (J−R)

∇H(x)

u


︸ ︷︷ ︸

b

=:

f(x,u)

g(x,u)

 , x(t0) = x0. (5.7)

with ẋ(t),∇H(x(t)) ∈ Rnx and y(t),u(t) ∈ Rny . In this chapter, let [t0, t1] be a time step,
h = t1 − t0 its step size, and t(τ) = t0 + hτ , with τ ∈ Ω = [0, 1] a time variable change for which
we define the differential operator D := 1

h
d
dτ (i.e. D ≡ d

dt ). We propose the following method

Method 5.1 (RPM for pH-ODE). Denote p be the projection order, k the regularity order,
` = p+ 2k and n = nx + ny. A Regular Power-balanced projection Method called RPM(p, k)
for pH-ODE (5.7) is defined by steps (i)-(iii)

i) P0 Approximation spaces and operators : Let {φi}`−1
i=0 ∈ Hk(Ω) ⊂ L2(Ω) be an orthonor-

mal basis for the L2 inner product and define the subspaces of L2(Ω)

AP := span {φi}p−1
i=0 , AR := span {φi}`−1

i=p , A := AP ⊕AR. (5.8)

We assume that (H1) AP is such that the orthogonal projector P on AP , reproduces
constant functions and that (H2) the image of AR through B spans R2k where B :

Hk(Ω,R)→ R2k the (multi-derivatives) boundary trace operator [Aub11, p.163] is

B :=
(
B0

0, . . . ,Bk−1
0 ,B0

1, . . . ,Bk−1
1

)
, with Bmα (u) := (Dmu)(α). (5.9)

Denote Ã = Anx ×Any , and B̃ ' Ã approximation spaces for dual variables a, b and
P = P ⊗ In, B = B ⊗ In the extensions of P,B to L2(Ω)n and Hk(Ω)n.

ii) P2,P3 Accuracy and power balance: Denote aP = (δX,Y ) ∈ P(Ã) the unknowns of
the projection step and define the time-stepping method Φh : x0 7→ x1 such thatδX

Y

 = P (J−R)

∇H (X)

u

 , where

X(τ) := x0 + h

ˆ τ

0
δX(σ) dσ,

x1 := X(1).

(5.10)

iii) P1 Regularity : For k ≥ 1, denote ã = (δ̃X, Ỹ ) ∈ Ã the unknowns of the regularisation
step such that Pã = aP and satisfying the multi-derivatives boundary conditions

B
δ̃X
Ỹ

 = B (J−R)

∇H(X̃)

u

 , where X̃(τ) := x0 + h

ˆ τ

0
δX̃(σ) dσ. (5.11)

The condition Pã = aP ensures that the regular solution ã is at least as good as the projected
solution aP , (i.e. regularity is not in conflict with the power balance). Furthermore, if the
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projector P reproduces constants (H1), then by orthogonality,
´ 1

0 φn(s) ds = 0 for all n ≥ p,
such that by construction the projected and the regularised trajectories share the same endpoint
x1 = X(1) = X̃(1). By consequence supplementary boundary conditions (5.11) only depend
on the numerical value of vectors x0,x1 and on the formal derivatives of functions ∇H,u (see
section B.3 p.278 for numerical evaluation). Hypothesis (H2) ensures that steps (iii) is solvable.

5.1.4 RPM for pH-DAE

We extend the method RPM(p, k) from method 5.1 to semi-explicit pH-DAEs. The main
difference comes from the appearance of memoryless algebraic constraints through the variables
w. For our purposes, we rewrite semi-explicit pH-DAEs from definition 1.24 p.34 as

ẋ

w

y


︸ ︷︷ ︸
a

= J


∇H(x)

z(w)

u


︸ ︷︷ ︸

b

=:


f(x,w,u)

g(x,w,u)

h(x,w,u)

 , x(t0) = x0. (5.12)

Method 5.2 (RPM for pH-DAE). Let p > 0 be the projection order and k ≥ 0 the regularity
order and n = nx + nw + ny. A Regular Power balanced projection Method RPM(p, k) for
pH-DAE (5.12) is defined by steps (i)-(iii)

i) P0 Approximation spaces: Let A,AP , AR be approximations spaces from (5.8). Let
Ã = Hnx ×Hnw ×Hny , B̃ ' Ã and denote P = P ⊗ In, B = B ⊗ In.

ii) P2,P3 Accuracy and power balance: denote aP = (δX,W ,Y ) ∈ P(Ã) the unknowns
of the projection step and define the time-stepping method Φh : x0 7→ x1 such that

δX

W

Y

 = PJ


∇H (X)

z (W )

u

 ,
X(τ) := x0 + h

ˆ τ

0
δX(σ) dσ,

x1 := X(1).

(5.13)

iii) P1 Regularity : denote ã = (δ̃X, W̃ , Ỹ ) ∈ Ã the unknowns of the regularisation step
such that Pã = aP and satisfying the multi-derivative boundary conditions

B


δ̃X

W̃

Ỹ

 = B J


∇H(X̃)

z(W̃ )

u

 , X̃(τ) := x0 + h

ˆ τ

0
δ̃X(σ) dσ. (5.14)

Note that solutions of equation (5.13) are only weak DAE solutions in the sense of L2

projection. In particular, concatenation of time steps yields piecewise discontinuous solutions in
step ii). The boundary values of flow and efforts are not defined in L2: only X (but not δX)
is piecewise continuous because of integration. However step iii) restores continuity such that
the concatenation of time-frames for δ̃X, W̃ , Ỹ yields globally smooth functions in the Sobolev
space Hk.
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Comments Note that, contrary to most numerical methods, because of our virtual analog
viewpoint (see chapter 3 p.81), in practice, we are more interested in the quality of the continuous-
time approximation of dual flow/efforts variables ã = (δX̃, W̃ , Ỹ ), b̃ = (∇H(X̃), z(W̃ ),u) than
on the sequence of values {xn} produced by the discrete time-stepping map Φh : xn 7→ xn+1. This
map remains an important object to study the numerical properties of the numerical schemes,
but from a signal processing perspective, it only gives us a partial viewpoint by sampling the
(non bandlimited!) trajectory X on the boundaries of each time frame.

Note that passivity propagates from time-frame to time-frame. Also note that for RPM,
contrary to symplectic 3 methods [HLW06, KL19], the exact Hamiltonian is preserved (resp.
dissipated) when it is evaluated on the boundaries of each time frame (see figure 5.12 p.152 for
the behaviour of the energy within each time interval).

Theoretical existence and uniqueness conditions for RPM are addressed in section for 5.2
(for pH-ODE) and in section 5.3 (for pH-DAE). Accuracy analysis is detailed in subsection 5.2.6.
Computational implementation details such as the computation of projections, the evaluation of
boundary derivatives or implicit equation solving are considered in section 5.4.

In particular we give the following results

• RPM are energy (resp. passivity) preserving (see corollary 5.2).

• RPM are A-stable (see proposition 5.2 p.127 and section D.7 p.297).

• RPM have (pointwise) accuracy order 2p (on interval boundaries 4) if the projector P
reproduces polynomials of degree p − 1 (see subsection 5.2.6 p.128). For this reason, in
applications, we will use the shifted (L2) orthonormal Legendre polynomial basis (defined
in section C.4 p.286). For comparison, in section D.7 p.297 we provide the stability function
of the orthonormal cosine basis (which only yields second order accurate time-stepping
approximations).

• The regularisation step (iii) yields a secondary (non self-adjoint) projector Q (formalised in
subsection 5.2.7 p.129). Peano error kernels of projectors P and Q are derived and shown
in figures 5.4 and 5.5 p.134.

• A graphical illustration of the method and of the respective roles of nested projectors P
and Q is shown in figure D.1 p.295.

Readers that are not interested in the theoretical or technical details, may skip directly to the
examples shown in section 5.5 p.147.

3. It is known from [ZM88] that approximate symplectic algorithms cannot preserve energy for nonintegrable
systems.

4. Conversely, the accuracy (in the L2 norm) of continuous-time flow and effort trajectories within each time
frame is proportional to the number of degrees of freedom p+ 2k.
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5.2 Analysis of RPM for pH-ODE

To analyse RPM, in order to compare with the literature and to study existence/uniquess, and
accuracy conditions, it is convenient to reformulate (5.10) (def. 5.1, step ii) using the framework of
continuous-stage Runge Kutta methods (CSRK). The main object in this section is the orthogonal
projector P whose reproducing kernel is (see eq. (3.9) p.84)

KP(τ, σ) =

p−1∑
i=0

φn(τ)φn(σ). (5.15)

in a chosen orthonormal basis such that span {φn}p−1
n=0 = AP .

We show in sections 5.2.2 to 5.2.6 that CSRK parameters can all be obtained from the
kernel KP and that energy-preservation, existence/uniqueness, stability function and accuracy
automatically follow from the properties of P . Then we show in section 5.2.7 that the third step
of RPM (the regularisation step) yields another (oblique) projector Q refining P and we compare
their respective approximation properties and Peano error kernels.

5.2.1 Reminder on Runge-Kutta methods

Definition 5.2 (Runge–Kutta method [HLW06] p.29). Let bi, ai,j (i, j = 1, . . . , s) be real
numbers and let ci =

∑s
j=1 aij . An s-stage Runge–Kutta method is given by

ki = f

t0 + hci, x0 + h
s∑
j=1

aijkj

 , i = 1, . . . , s

x1 = x0 + h
s∑
i=1

biki.

(5.16)

The slopes ki do not necessarily exists, however, the implicit function theorem assures that, for
sufficiently small h, the nonlinear system for the values k1, . . . ,ks has a locally unique solution
close to ki ≈ f(t0,x0). Since Butcher’s work the coefficients are usually displayed as follows

c1 a11 . . . a1s

...
...

...

cs as1 . . . ass

b1 . . . bs

≡
c A

b
.

5.2.2 Reformulation of RPM as Continuous-Stage Runge-Kutta methods

The idea of CSRK was hinted by Butcher in [But72], but it had to wait until the work of
Hairer in 2010 [Hai10] to understand the key role of CSRK methods to derive energy-preserving
integrators. Early examples of energy–preserving CSRK method are the Average Vector Field
method [QM08, CGM+12, COS14] and Hamiltonian Boundary Value methods (HBVMs) which
were later interpreted as CSRK in [ABI19]. A similar thread of research arises from the use of
Time Finite Elements Methods (TFEM) and (Continuous) Galerkin projection in time [TS12]
based on ideas that can be traced back to [Hul92, BB93, Bot97, BS00]. For more details on
CSRK methods please refer to the overview paper [Tan18].
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CSRK methods are generalisations of Runge–Kutta methods (5.16) for an infinite number of
stage values Ẋ(τ) so that the matrix A, weights b and abscissae c in def. 5.2 are replaced by
functions A(τ, σ), B(σ), C(τ).

Definition 5.3 (CSRK method [Tan18]). A Continuous-Stage Runge-Kutta method is a one
step method Φh : x0 7→ x1 defined by a triplet (A : Ω×Ω→ R, B : Ω→ R, C : Ω→ R) and

X(τ) = x0 + h

ˆ 1

0
A(τ, σ)f

(
t(σ),X(σ)

)
dσ, (5.17a)

x1 = x0 + h

ˆ 1

0
B(σ)f

(
t(σ),X(σ)

)
dσ, (5.17b)

where X(τ) approximates x
(
t(τ)

)
at times t(τ) = t0 + hC(τ) for τ ∈ Ω = [0, 1].

Proposition 5.1. For RPM, the reproducing kernel KP(τ, σ) of projector P defined by (5.15)
uniquely defines the CSRK triplet.

A(τ, σ) =

ˆ τ

0
KP(ξ, σ) dξ, (5.18a)

B(σ) =

ˆ 1

0
KP(τ, σ) dτ = 1, (5.18b)

C(τ) =

ˆ τ

0

ˆ 1

0
KP(ξ, σ) dσ dξ = τ. (5.18c)

Proof. The proof in detailed in section D.2 p.291.

Remark 5.1. For consistency, it is often assumed [Tan18, 2.3] that

C(τ) =

ˆ 1

0
A(τ, σ) dσ.

For RPM, this is automatically fulfilled because of (5.18a)-(5.18c). Also note that, differen-
tiating (5.18c) and comparing with (5.18b) yields the symmetric relation between C ′ and
B

C ′(τ) =

ˆ 1

0
KP(τ, σ) dσ = 1 =

ˆ 1

0
KP(τ, σ) dτ = B(τ).

In short, the symmetry of kernel KP (self-adjointness of P) and the reproduction of constants
ensure that the weight B(σ) = 1 is uniform (5.18b) and consistent with the (uniform density
of the) measure dC(τ) = B(τ) dτ in the variable change t(τ) = t0 +hC(τ) =⇒ dt(τ) = hdτ .
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5.2.3 Existence and uniqueness of solutions

Here we provide existence and uniqueness conditions for a CSRK method when Ẋ ∈ L2(Ω,Rn)
and P is an orthogonal projector. Our result and proof are different from the ones in [TS12,
MB16, Tan18] because we consider convergence in the L2 norm.

Theorem 5.2. Let P be an orthogonal L2 projector such that the associated CSRK method
(def.5.3) satisfies (5.18a)–(5.18c). If f is L-Lipschitz and hL < π

2 . Then, the method has a
unique solution in L2.

Proof. The proof is detailed in section D.4 p.293.

5.2.4 Linear Stability function

We consider the Dahlquist test equation ẋ = λx, x(0) = x0, λ ∈ C, and a time stepping
method Φλ : x0 7→ x1 = R(λ)x0 defined by the orthogonal projection ẋ = Pλx on Ω = (0, 1).

Proposition 5.2 (Stability function). Let
{
φn(τ)

}p−1

n=0
be an orthonormal basis of dimension

p in L2(Ω) reproducing constants. Let 1 = [〈φn, 1〉]p−1
n=0 and

V =
[
〈φm,Vφn〉

]
m,n=0...p−1

, where (Vu)(τ) =

ˆ τ

0
u(s) ds, (5.19)

be the matrix representations of the constant function and of the (projected) Volterra integration
operator. Then, the stability function of method Φλ with projection order p is given by

R(λ) = 1 + λ1T(I− λV)−11 =
det(I + λVT)

det(I− λV)
. (5.20)

Proof. The proof is detailed in section D.7 p.297.

5.2.5 Energy preservation (P3)

Since P is an orthogonal projector, it is self adjoint (P = P∗). Furthermore, by construction
it commutes with matrices, so we already know from corollary 5.2 p.120 that our method is
energy, (resp. passivity) preserving for pH-ODE. Here, we provide an alternate interpretation
using CSRK theory to highlight the role of the reproducing kernel KP .

In the context of CSRK methods, a method is energy–preserving [Tan18, thm.3.7] when(
∂A

∂τ

)
(τ, σ) =

(
∂A

∂τ

)
(σ, τ), A(0, σ) = 0, A(1, σ) = B(σ).

Reformulated with the reproducing kernel KP , using (5.18a), this is equivalent to the three
conditions

KP(τ, σ)
a
= KP(σ, τ),

ˆ τ

0
KP(ξ, σ) dξ

∣∣∣∣
τ=0

b
= 0,

ˆ 1

0
KP(τ, σ) dτ

c
= B(σ).

(a) The symmetry of KP(τ, σ) =
∑p−1

i=0 φi(τ)φi(σ) follows from its construction. It is equivalent
to P being self-adjoint. (b) The second condition always hold when KP ∈ L2(Ω)⊗ L2(Ω) (i.e.
KP does not contain Dirac delta distributions) and (c) the third condition is fulfilled by (5.18b).
This is equivalent to x1 = X(1).
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5.2.6 Order conditions and polynomial reproduction (P2)

Usually, the accuracy order of one-step methods is studied using the theory of B-series
[HLW06]. Here, we establish that CSRK order conditions are automatically fulfilled when the
RPM projector P reproduces polynomials up to a given order (Strang-Fix conditions).

Definition 5.4 (Accuracy order [Tan18]). A CSRK method is of accuracy order s if for all
sufficiently regular problems (5.17a)-(5.17b) its local error satisfies x(t0 + h)− x1 = O(hs+1)
as h→ 0.

The main tool we use to study accuracy is a generalisation to CSRK methods of the simplifying
order assumptions for Runge–Kutta methods (see [BG08, p.186] and [HNW93, p.208]). They are
given by the following theorem.

Theorem 5.3 (Simplifying order assumptions [Hai10]). If a CSRK method satisfies the
simplifying order assumptions for integers ρ, η, ζ ≥ 1.

B̌(ρ) :

ˆ 1

0
B(τ)C(τ)k−1 dτ =

1

k
, k = 1, . . . , ρ, (5.21a)

Č(η) :

ˆ 1

0
A(τ, σ)C(σ)k−1 dσ =

C(τ)k

k
, k = 1, . . . , η, (5.21b)

Ď(ζ) :

ˆ 1

0
B(τ)C(τ)k−1A(τ, σ) dτ =

1

k
B(σ)(1− C(σ)k), k = 1, . . . , ζ. (5.21c)

Then, its accuracy order is at least s ≥ min(ρ, 2η + 2, η + ζ + 1).

In RPM, these conditions are greatly simplified, they are linked to the polynomial reproduction
properties of the projector P. To this end, we establish the following proposition.

Proposition 5.3. Let P be a projector with kernel KP(τ, σ) such that the associated CSRK
method satisfies B(σ) = 1, C(τ) = τ , ∂A

∂τ = KP(τ, σ) (eq. (5.18a)-(5.18c)). Then, the
simplifying order assumptions (5.21a)-(5.21c) are equivalent to

B̌(ρ) :

ˆ 1

0
τk−1 dτ =

1

k
, k = 1, . . . , ρ, (5.22a)

Č(η) : Pτk−1 = τk−1, k = 1, . . . , η, (5.22b)

Ď(ζ) : P∗τk = τk, k = 1, . . . , ζ. (5.22c)

The CSRK order conditions B(∞) always hold and Č, Ď are equivalent to the polynomial
reproduction property of P and P∗ (see Strang–Fix a conditions [FS69, SF11]).

a. Also refer to [Lig91, Uns96, BU99, DVB07] for the importance of Strang–Fix conditions in approximation,
wavelet and generalized sampling theories.

Proof. The proof is detailed in section D.3 p.292.

Accuracy order For RPM, the projector P is self-adjoint. Then, condition Č(η = p) implies
Ď(ζ = p− 1). By consequence, if the RPM projection reproduces polynomials of order (def. 5.1)
p. Then, by theorem 5.3, the accuracy order s of its local truncation error (def. 5.4) is at least

s ≥ 2p. (5.23)
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5.2.7 Regularity (P1)

The main drawback of piecewise L2 projection is that the resulting approximations are
piecewise discontinuous (blue curves on figure 5.2). We show that step iii) of method 5.1 induces
a projector Q which both restores piecewise continuity and improves the accuracy (a graphical
illustration of the method is shown in figure D.1 p.295). Then we compare the approximation
properties of P and Q in the Hilbert space L2 (see figures 5.2 and 5.3).

First, we give an explicit construction of the inverse boundary operator B−1 in AR (i.e. the
continuous reconstruction operator complimentary to the multi-derivative boundary analysis
functionals Bmα (·) used to obtain regularity in the Sobolev space Hk).

Proposition 5.4. Let
{
ψmα (τ)

}
for m = 0, . . . , k − 1, α ∈ {0, 1} be linear combinations of

{φn}p+2k−1
n=p (spanning the space AR in (5.8)) satisfying the biorthogonality conditions a

Bmα (ψm
′

α′ ) =

{
1 α = α′ and m = m′

0 otherwise,
, ∀α ∈ {0, 1} , ∀m ∈ {0, . . . , k − 1} , (5.24)

then the synthesis operator B−1 : R2k 7→ AR satisfying BB−1 = I2k and B−1B = IAR , is

(B−1u)(τ) =
1∑

α=0

k−1∑
m=0

ψmα (τ)uαk+m, ∀u ∈ R2k. (5.25)

a. Two sequences {fm}, {gn} are said to be biorthogonal if 〈fm | gn〉 = δmn.

Example Let {φn} be the orthonormal Legendre polynomials ((C.16) p.286). The corresponding
synthesis functions

{
ψmα (τ)

}
are shown on figure 5.1 for projection orders p ∈ {0, 1, 2} and

regularity orders k ∈ {1, 2, 3}. Note that the right boundary functions (α = 1) are drawn shifted
on [−1, 0] to emphasize the global continuity and limited support of boundary functions on [−1, 1]
.

Proposition 5.5. Step iii) of RPM, def. 5.1, induces a projector Q : Hk(Ω)→ A, satisfying

Q = P ⊕R, where R = B−1B(I − P). (5.26)

Proof. The proof is detailed in section D.5 p.294.

According to (5.24) and (5.26), operator Q can be written as an integral operator (Qf)(τ) =´ 1
0 KQ(τ, σ)f(σ) dσ with kernel

KQ(τ, σ) = KP(τ, σ) +
1∑

α=0

k−1∑
m=0

ψmα (τ)

(
δ(m)(σ − α)− ∂mKP

∂τm
(α, σ)

)
. (5.27)

where KP is defined according to (3.9) p.84 (see table 5.1 p.132 for some examples).

Approximation properties A qualitative study of the approximation properties of operator
Q is shown on figure 5.2. The function to approximate, exp(−8τ), is chosen such that, from an
ODE viewpoint, the system is both smooth and stiff (with a time constant height times larger
than the step-size). On this example, a numerical study of the convergence rate of Q, according
to projection order p, and regularity order k, is also shown on figure 5.3.
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Figure 5.1 – (Polynomial supplementary boundary functions). The basis
{
ψmα (τ)

}
is shown

for projection order p ∈ {0, 1, 2}, and regularity order k ∈ {1, 2, 3}. The case p = 0 (which
corresponds to Hermite splines) is not used in this thesis as the consistency of the time stepping
method requires that p ≥ 1. By construction, these boundary functions act as continuous
regularisations of the Dirac delta distributions δ(m).
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(a) Approximated functions.

Figure 5.2 – Comparison of operators P and Q to approximate u(τ) = exp(−8τ) for projection
order p ∈ {1, 2} and regularity order k ∈ {1, 2, 3}. On this example, we clearly see that L2

projection Pu (in blue) is discontinuous and a crude approximation of the function u. The
projection Qu preserves and refines the approximation Pu. It restores Ck−1-continuity by
interpolating u and its derivatives on the boundary of the interval. We also observe that it reduces
the pointwise approximation error: the amplitude of oscillations decreases with increasing k.
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Figure 5.3 – Comparison of k-convergence and p-convergence of RPM(p, k) on the approximation
error ‖u−Qu‖L2 for u(τ) = exp(−8τ). We remark on figure 5.3a (k-convergence) that the error
for k = 5 (for all values of p) is systematically smaller than the error on figure 5.3b (p-convergence)
for p = 5 (for all values of k).

Relation between projection order p and continuity order k:

We ask the following question:

For a given projection order p, what is the maximal regularity order k such that multi-derivative
supplementary boundary conditions (5.11) yield a consistent ODE approximation?

To answer that question, let z(t = t0 + hτ) := X(τ) be an approximate ODE solution and x(t)
the exact solution. We remark from CSRK order conditions that we have the local truncation
error (see (5.23))

x(t0 + h) = z(t0 + h) +O(h2p+1).

Then, according backward error analysis theory [HLW06, thm 1.2, p.340], there exists for each
time-step a modified vector field fh such that z is locally the exact solution of the modified ODE
ż = fh(z) with

f(z) = fh(z) +O(h2p).

Since Dm =
(

1
h

d
dτ

)m
and Bmα u = (Dmu)(α), it follows that supplementary boundary conditions

yields the approximation

Bmα
(
f(z)

)
= Bmα

(
fh(z)

)
+O(h2p−m).

We conclude that, for a small enough step size h, as long as k ≤ 2p, multi-derivative boundary
conditions (5.11) are consistent with the projected vector field up to order 2p− k.

Peano error kernels and pointwise error

To study the approximation error of operators P and Q, we use the Peano kernel theorem 5.4
to obtain their respective Peano error kernels 5.30 from which numerical bounds and qualitative
information can be obtained. Let g be a function sufficiently differentiable such that its Taylor
polynomial expansion with remainder may be written for τ ∈ [a, b] in the form 5

g(τ) = g(a) + g′(a)(τ − a) + . . .+ g(d)(a)
(τ − a)d

d!
+Rτd[g], Rτd[g] =

ˆ b

a

(τ − s)d+
d!

g(d+1)(s) ds.

5. Using the common notation (·)+ = max(0, ·).
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If an approximationQg reproduces polynomials up to degree d, then the residual g−Qg = O(Rτd [g])
is governed by g(d+1) and an error kernel E which is given by the following theorem.

Theorem 5.4 (Peano kernel theorem [Ise09]). Let Ω = [a, b], let L be a linear functional
that commutes with the operation of integration, and such that L[u] = 0, ∀u ∈ Pd(Ω). Then,
for all g ∈ Cd+1(Ω)

L[g] =

ˆ b

a
E(σ)g(d+1)(σ) dσ, E(σ) := L

[
(τ − σ)d+

d!

]
(5.28)

and E is called the Peano error kernel of L.

In RPM, for projectors P (resp. Q), we propose to use the continuous family of functionals

LτP [f ] :=
(
(I − P)f

)
(τ), (5.29)

to measure the pointwise approximation error eP(τ) = f(τ)− (Pf)(τ) for all τ ∈ [0, 1].

Definition 5.5. Let P be a projector with kernel KP(τ, σ) reproducing polynomials up to
degree d. Then, by definition of P, functionals (5.29) satisfy the conditions of theorem 5.4.
The associated Peano error kernel is

EP(τ, σ) := LτP

[
(τ − σ)d+

(d)!

]
=

(τ − σ)d+
(d)!

−
ˆ 1

0
KP(τ, ξ)

(ξ − σ)d+
(d)!

dξ. (5.30)

Peano kernels for P Kernels for projection orders p ∈ {1, 2, 3} in the Legendre basis are
shown on figure 5.4 and Table 5.1 (P reproduces polynomials up to degree d = p− 1). We note
that the synthesis error kernel EP(t, ·) is always non zero on the boundary ∂Ω = {0, 1}, this
confirms that L2 projection is always discontinuous on boundaries when g(p) 6= 0. Conversely,
the analysis error kernel EP(·, s) always vanishes on the boundary, this means that Legendre
projection is blind to the boundary values of the residual term g(p).

Peano kernels for Q Corresponding Peano error kernels for operator Q with p = 1, k = 1, 2
are shown on figure 5.5 (Q reproduces polynomials up to degree d = p+ 2k − 1). See (5.27) for
the definition of KQ. As expected, the error and its derivatives vanishes on the boundary ∂Ω, i.e.
the error belongs to the Sobolev space Hk

0 (Ω) =
{
u ∈ Hk(Ω) | Bu = 0

}
. We also note that the

maximum norm of the kernel EQ is an order of magnitude lower than EP .

Kernels KP(τ, σ) EP(τ, σ)

p = 1 1 (τ − σ)0
+ − (1− σ)

p = 2 1 + P1(τ)P1(σ) (τ − σ)+ −
(
1 + (2τ − 1)(2σ + 1)

)
1
2(1− σ)2

p = 3
∑p−1

i=0 Pi(τ)Pi(σ)
(τ−σ)2

+

2! +
(

1 +
√

3
2 P1(τ)(1 + σ) +

√
5

10 P2(τ)(6σ2 + 3σ + 1)
)

(σ−1)3

3!

Table 5.1 – Reproducing kernel KP and Peano error kernel EP of Legendre orthogonal projector.
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(c) Projection order p = 3

Figure 5.4 – Peano error kernels EP(τ, σ) for projector P with projection order p ∈ {1, 2, 3}.
As P does not handle regularity, expected discontinuities of kernels appear at τ = σ (the Sobolev
regularity of EP(·, σ) EP(τ, ·) is p − 1). We notice in the synthesis column that the largest
approximation errors are more likely to appear towards the interval boundaries. The maximal
error decreases by an order of magnitude as p is incremented. We notice, on the analysis column,
that kernels are all zero on boundaries, meaning that, at these points, the error might be arbitrarily
high (which is confirmed on the synthesis kernels). Conversely they have maximal weight towards
the center of the interval. These observations show that projector P is biased towards reducing
errors close to the center of the interval.
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Figure 5.5 – Peano error kernels EQ(τ, σ) for operator Q with p = 1 and regularity k ∈ {1, 2}.
Comparing these error kernels to those of projection P in figure 5.4, we notice that (in the
synthesis column) the error (and it derivatives when increasing k) now vanishes on the boundaries
and that the magnitude order of the error is also much smaller. However, in the analysis column,
we notice that the maximal weight is still towards the center of the interval. Although projection Q
reduces the boundary error, this means that the error might still become high near the boundaries.
A more uniform handling of the point-wise error would require the use of a different basis, for
example Chebyshev polynomials. Unfortunately, this choice is not an option since the uniform
weight of the L2 inner product is already dictated by the power-balance.
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5.3 Analysis of RPM for pH-DAE

In this section, we consider existence, uniqueness and accuracy of solutions for pH-DAE of
index 1 ((1.16) p.14) discretized using RPM (def. 5.2 p.123). A general theory is still missing.
Results below are preliminary steps towards this goal. In subsection 5.3.1, we recall order reduction
for stiff ODE, while subsection 5.3.2 is dedicated to existence and uniqueness of solutions.

5.3.1 Accuracy and stage order for stiff ODE and DAE

In the theory of Runge-Kutta methods applied to stiff ODE and DAE (i.e. when the time-
constants of the vector field are much smaller than the step size h), it is known [HW96, thm 1.1
p.380] that point-wise super-convergence on the time stepping grid x(tn = hn) is lost. We recall
that for RPM(p, k) the local truncation error accuracy is in O(h2p), see (5.23) p.128. In the case
of RPM(p, k) for pH-DAE, the stiff accuracy falls back to the level of stage order conditions C(η)
(see eq. (5.22b) p.128) which reduces to O(hr) with r = min(2p− 1, p) = p. This corresponds to
the polynomial reproduction property of the projector and thus to the accuracy for all values of
the solutions between time-stepping instants, not just on the boundaries of each time interval.

5.3.2 Existence and uniqueness of solutions

First, we establish (naive) existence and uniqueness conditions for solving DAE using fixed-
point iteration. These conditions are tractable, but usually too restrictive. However we know
that if the fixed-point converges, then Newton iteration also converges. Second, we establish
pH-specific conditions to ensure a DAE is of index-1. Finally, we propose partial results for the
resolution of Newton iteration in the case of projected pH-DAE.

Fixed-point convergence

We consider the semi-explicit Hybrid Dirac structure formulation (2.18) p.55 of pH-DAE,
parameterized by tree currents iT and link voltaged vL rewritten as a fixed-point map G : F → F ,iT

vL

 = G


iT
vL


 :=

0 −CT

C 0

V (iT )

I(vL)

 , (5.31)

where F ⊂ L2(Ω,R(nT+nL)) is the projection space (see def. 5.2 p.123) and V , I are operators on
F standing for projected component laws which yield tree voltages vT and cotree currents iL.

A sufficient condition for existence and uniqueness of solutions is given by

Theorem 5.5. Let (LV , LI , LC) be the Lipschitz constants of operators (V , I,CTC) for
the L2 norm. If LV LI LC < 1, then the fixed-point (5.31) converges to a unique solution.

Proof. Rewrite the iterated map G2 in separated variables by composing operators as

iT = GI(iT ) = (−CT ◦ I ◦C ◦ V )(iT ),

vL = GV (vL) = (C ◦ V ◦ (−CT) ◦ I)(vL).

It follows that we have the Lipschitz bounds
∥∥GI(i1)−GI(i2)

∥∥ ≤ LILV ∥∥∥CTC
∥∥∥‖i1 − i2‖, and∥∥GV (v1)−GV (v2)

∥∥ ≤ LILV

∥∥∥CCT
∥∥∥‖v1 − v2‖ (where CTC ≡ CT ◦ C). Finally, since LC =∥∥∥CCT

∥∥∥ =
∥∥∥CTC

∥∥∥, then, convergence of the map G2 to a unique fixed point follows from the
Banach fixed-point theorem under the contractivity condition LV LI LC < 1.
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Example 5.1 (parallel RLC). We consider a parallel RLC with orthogonal projector
P : L2(Ω)→ P0(Ω), P = | 1〉 〈1 | and (iC , vL, vR) ∈ P0(Ω)3, governed by


iC

vL

vR

 =


0 −1 −1

1 0 0

1 0 0



VC(iC)

IL(vL)

IR(vR)

 , where


VC(iC) = P

(
t 7→ 1

C

(
q0 + h

´ t
0 iC(s) ds

))
,

IL(vL) = P
(
t 7→ 1

L

(
φ0 + h

´ t
0 vL(s) ds

))
,

IR(vR) = P
(
t 7→ vR/R

)
.

We can show that ‖VC‖ = h
2C , ‖IL‖ = h

2L , LR = 1
R ,
∥∥∥CTC

∥∥∥ = 2 so that a sufficient

convergence condition is given by h
2C max

(
h

2L ,
1
R

)
2 < 1 i.e.

max

(
h2

2LC
,
h

RC

)
< 1.

Nonlinear extensions of this example follow by replacing the linear conductance law IR(·) of
the resistor by a nonlinear one where the Lipschitz constant becomes LR = sup

∣∣I ′R∣∣.
These convergence conditions are easy to obtain but unfortunately, they are not tight. As

soon as algebraic components are present in both tree and link branches, convergence conditions
are dominated by algebraic components (for which Lipschitz constant do not depend on the step
size h): it is not possible to adapt h anymore to obtain convergence. For example adding a serial
resistor R2 to the parallel RLC leads to the condition

max

(
h

2C
,R2

)
·max

(
h

2L
,

1

R

)
· 2 < 1.

Then, if R2 > h/2C, 1/R > h/2L and 2R2/R > 1, this condition does not guarantee the
convergence of the fixed-point (although for linear systems a solution always exists).

Remark 5.2 (Fixed point vs Newton). Clearly, we need a better alternative to the fixed-
point method. As noted by [Deu11, p.289] (see also [Deu87]), for stiff and DAE systems,
the use of implicit discretization methods solves only one half of the problem, the choice
of iterative scheme is at least equally important. Proofs based on the Newton-Kantorovich
theorem rather than the Banach fixed-point theorem are more difficult but yield tighter
estimates (see [Deu11, thm 6.3, p.297] and [HW96, thm 3.5, p.397]). Indeed, classical
existence and uniqueness theory (based on fixed-point iteration) is bounded by the Lipschitz
constant of the vector field whereas Newton iteration converges in one iteration for linear
systems and restores the full existence domain h ∈ [0,∞) for A-stable and L-stable methods.

Index-1 DAE

In this section, we consider the index-1 DAE hypothesis (see (1.16) p.14 and remark 1.9 p.34).
In the semi-explicit pH-DAE formulation (1.52) p.34, the algebraic function

gw(w) = w − Jwz(w), (5.32)

is assumed to be invertible, where Jw is a skew symmetric matrix and z a passive law (z(w)·w ≥ 0)
so that existence and uniqueness of solutions follows from classical ODE theory (see thm 1.1 p.8).
Exploiting the particular structure of semi-explicit pH-DAE, we establish the following sufficient
conditions for the invertibility of gw in the following lemma
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Lemma 5.1. If either of the following conditions is satisfied in equation (5.32)

C1. Jw = 0, or

C2. z′(w) is symmetric positive definite (z′(w) = z′(w)T � 0), or

C3. Jwz
′ satisfies conditions (C2) of lemma 5.3.

Then, gw is invertible and the associated pH-DAE (1.52) p.34 has differential index-1.

Proof. If condition (C1) is satisfied, then gw reduces to the identity function which is obviously
invertible. If condition (C2) is satisfied, denote Q = QT = z′(w) � 0, and A = g′w = I− JwQ.
Invertiblity of g′w follows from lemma 5.2 below. If condition (C3) is satisfied then invertibility of
g′w follows from lemma 5.3 below with M = Jwz

′. Then, the invertibility of function gw follows
from the invertibility of its Jacobian g′w using the implicit function theorem.

We note some common cases where the conditions of lemma 5.1 are satisfied:
• Condition (C1) is often naturally satisfied because of the circuit topology. Note that it is

possible to decouple instantaneous algebraic loops (forcing Jw = 0) by adding (topologically
well chosen) parasitic capacitances and inductances in the network.

• Condition (C2) is satisfied when algebraic components are one-port elements (z′ is diagonal)
and each component is incrementally passive (i.e. monotonically increasing z′ � 0). In
particular this is the case for resistors and diodes.

The following lemmas are used in the proof of lemma 5.1.

Lemma 5.2. Let A = I− JQ with J a real skew symmetric matrix and Q = QT � 0 real
positive definite. Then A is invertible with positive determinant det A > 0.

Note that the form I− JQ also appears when solving projected pH-DAE using Newton iteration.

Proof. Since Q = QT � 0, there exists a real invertible upper triangular matrix M with positive
diagonal such that Q = MTM (Cholesky factorization). Denote AM = MAM−1 the similarity
transform of A (det A = det AM) and JM = MJMT. The result follows from the relations

det A = det AM = det(MM−1 −MJMTMM−1) = det(I− JM) > 0,

where the last inequality follows from skew-symmetry of JM.

Lemma 5.3. Let A = I−M with M a diagonalizable real square matrix whose real spectrum
is denoted by σR(M) and complex spectrum σC(M). Then the following results holds

C1. If λ < 1, ∀λ ∈ σR(M), and if λ < 1+|λ|2
2 , ∀λ ∈ σC(M) then det A > 0,

C2. If λ 6= 1, ∀λ ∈ σR(M) and if λ 6= 1+|λ|2
2 , ∀λ ∈ σC(M), then A is invertible.

Proof. Let M = U−1ΛU be the eigenvalue decomposition of M. Denote AU = UAU−1 = I− Λ
the similarity transform of A. The determinant of A is given by the product of the eigenvalues

det A = det AU =
∏

λ∈σC(Λ)

(1− λ)(1− λ)︸ ︷︷ ︸ ∏
λR∈σR(Λ)

(1− λR).

If condition (C1) is satisfied then, the first term (1−λ)(1−λ) = 1− 2<e(λ) +|λ|2 and the second
term (1− λR) are positive so det A > 0. If condition (C2) is satisfied then, since both terms are
nonzero det A is non zero and A is invertible.
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Newton iteration for pH-DAE with projection order p = 1

We investigate the implementation of step ii) of RPM 5.2 p.123 using Newton iteration for
the simplest case (p = 1, k = 0). We look for ways to obtain practical existence/uniqueness
conditions. We consider autonomous pH-DAE discretized using the projector P = | 1〉 〈1 | (Since
P is an averaging projector, we use the notation f := Pf for all variables) with J skew-symmetric

 f̄

w̄

 = J

 ē(f̄)

z̄(w̄)

 ,


ē(f̄) =

ˆ 1

0
∇H

(
x0 + h

ˆ τ

0
f̄ ds

)
dτ = ∇H(x0, hf̄)

z̄(w̄) =

ˆ 1

0
z(w̄) dτ = z(w̄).

(5.33)

We look for a solution a? of the algebraic equation F (a?) = 0, defined by the Newton function

F (a) := a− Jb(a), where a :=

 f̄

w̄

 , b(a) :=

 ē(f̄)

z̄(w̄)

 . (5.34)

To this end, we use the simplified Newton iteration

∆ak = −(F ′0)−1F (ak), ak+1 = ak + ∆ak, (5.35)

where the Jacobian of F evaluated at a0 = (0,w0) 6 is denoted

F ′0 := F (a0) = I− JQ, with Q =

h2∇2H(x0) 0

0 z′(w0)

 . (5.36)

Existence and uniqueness conditions for simplified Newton iteration (i.e. when the Jacobian
F ′(xk) is approximated by F ′(x0)) are given by the following theorem

Theorem 5.6 (Newton-Kantorovich theorem for simplified Newton iteration [Deu11]). Let
F : D → Rn be a continuously differentiable mapping with D ⊂ Rn open and convex. Let
x0 ∈ D denote a given starting point. Assume that

F ′(x0) is invertible with Γ0 := F ′(x0)−1, (5.37a)∥∥Γ0(F ′(x)− F ′(x0))
∥∥ ≤ ω0‖x− x0‖ for all x ∈ D. (5.37b)

h0 := ω0

∥∥∥∆x0
∥∥∥ ≤ 1/2, with ∆x0 = −Γ0F (x0). (5.37c)

Define t− = 1−
√

1− 2h0, ρ = t−/ω0. Moreover, assume that S(x,ρ) =
{
x | ‖x− x0‖ ≤ ρ

}
⊂

D. Then the simplified Newton iterates {xk} remain in the ball S(x,ρ) and converge to some
x? with F (x?) = 0.

Towards existence and uniqueness (a sketch of proof) Our goal is to obtain simple
conditions on the projected pH-DAE (5.33) so that conditions (5.37a)-(5.37c) are satisfied in
order to make Newton iteration convergent. We restrict the study to the frequent case where
nonlinearities are separable and monotone by assuming that

∇2H and z′ are diagonal positive definite. (5.38)

6. Assuming the consistent initial condition w0 = Jwx∇H(x0) + Jwz(w0).
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Under these hypotheses, we show that (5.37a) is satisfied. However further work is required to
establish a proportionality relation between ω0 and the step size h in (5.37b) so that Newton
iteration (5.35) is contractive for sufficiently small h. A sketch of proof is reproduced thereafter.
Sketch of proof.

1. Since ∇2H and z′ are positive definite. Then, according to lemma 5.2, F ′0 is invertible with
positive determinant detF ′0 > 0, so that (5.37a) is always satisfied.

2. Since ∇2H and z′ are diagonal. Denote M =
√

Q in (5.36). Define ã = Ma and introduce
the affine similarity transform G(ã) = MF (M−1ã). For the transformed problemG(ã) = 0,
we have the jacobian

G′0 := G′0(ã0) = I− JM, where JM = MJMT.

Denote Dx =
√
∇2H(x0) and Dw =

√
z′(w0), so that

G′0 =

 I− h
2 DxJxDT

x +
√
hDxJT

wxDT
w

−
√
hDwJwxDT

x I−DwJwDT
w

 =

I−O(h) O(
√
h)

−O(
√
h) O(1)

 .
Using the determinant identity for block matrices

det
[

A B
C D

]
= det(D) det

(
A−BD−1C

)
,

it follows that

det G′0 = det
(
I−DwJwDT

w

)
det

(
I− h

2
DxJxDT

x + hDxJT
wxDT

w

(
I−DwJwDT

w

)−1
DwJwxDT

x

)
= O(1) det

(
I + hĀ

)
.

with Ā = 1
2DxJxDT

x + DxJT
wxDT

w

(
I−DwJwDT

w

)−1
DwJwxDT

x .

Note that, for h sufficiently small, det(I + hĀ) ≈ 1 + h tr Ā +O(h2), so that

det G′0 ≈ O(1)(1 + h tr Ā +O(h2)).

Unfortunately, this approach is not sufficient to make ω0 proportional to h in (5.37b). �
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5.4 Implementation choices

In order to make RPM(p, k) from methods 5.1, 5.2 p.122-123, a practical numerical method
(implemented on a computer with finite memory and computation time), we need to adress the
following three subproblems:

a) Numerical methods in step (ii) to compute projection coefficients (see (5.7) p.122) such as

f̂i =
〈
φi,f(X,u)

〉
,

b) A numerical solver in step (ii) for implicit equations of the form (see (5.13) p.123) (for a
given u)

δX = Pf(X,u),

c) A procedure to compute multiderivatives in step (iii) (see (5.11) p.122) such as

Bδ̃X = Bf(X̃,u).

In this section, we detail problems (a) and (b). For problem (a), we propose both particular
efficient closed-form projections results in subsection 5.4.1 and general-purpose projections based
on numerical quadratures in subsection 5.4.2. Problem b) is addressed in subsection 5.4.3. For
problem (c) we use symbolic differentiation: the computation of multi-variate derivatives and
elementary differentials is detailed in appendix B.3 p.278.

Exact solution ẋ(τ) = f(x(τ))

↓ ↓

Projection space δX(τ) = Pf(X(τ))

↓ ↓

Coefficient space δ̂Xi = ̂{f ◦X}i = 〈φi,f ◦X〉

Table 5.2 – (RPM) principle of the time discretisation approach.

Hypothesis For problem (a), in this thesis, input functions u are assumed to belong to a space
such that projection coefficients ûi = 〈φi,u〉 are exactly computable. Moreover f , g are most of
the time separable functions of x,u. By consequence, we only present computational methods to
find the projection coefficients f̂i =

〈
φi,f(x)

〉
.

5.4.1 Closed-form projection results for nonlinear maps of affine functions

Here, we give an explicit formula to compute polynomial projection coefficients (e.g. Legendre
expansions) of f ◦ x when f is nonlinear and x is affine. We assume that f(x) is a separable
function 7 of x1, . . . , xn with known anti-derivatives so that we only need to consider the scalar
case f̂i =

〈
φi, f(x(τ))

〉
.

7. generalisation to multivariate
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Typical usage for PHS concerns both differential and algebraic component laws of one-port
elements

• ∇H(x) = [H ′1(x1), . . . ,H ′n(xn)]T for separable Hamiltonians H(x) =
∑

iHi(xi),

• and z(w) = [z1(wi), . . . , zn(wn)]T for separable nonlinear algebraic constraints

Theorem 5.7 (Polynomial expansion). Let Ω = [0, 1], let x(τ) = x0 + τδx ∈ P1(Ω), let
f : R 7→ R be a function with anti-derivatives f [m] known up to order n and let {Ln} be a
sequence of polynomials with degLn = n and 〈Ln, 1〉 = 0 for all n > 0. Then, the projection
coefficients of f ◦ x noted {̂f ◦ x}n and defined by

{̂f ◦ x}n :=

ˆ 1

0
Ln(τ)f

(
x(τ)

)
dτ, n ∈ N. (5.39)

have the following finite closed-form expressions using the (known) anti-derivatives of f

{̂f ◦ x}n =



n∑
k=0

(−1)k

(δx)k+1

[
L(k)
n (s)f [k+1](x(s))

]1

0
, δx 6= 0,

f(x0) δx = 0, n = 0,

0 δx = 0, n > 0.

(5.40)

Proof. The proof is shown in appendix D.6.

Some applications of this theorem are illustrated by the following two examples.

Example 5.2 (Average discrete gradient). Note that using f = ∇H and projecting on
L0(τ) = 1, the first coefficient of ∇H ◦x corresponds to the definition of the average discrete
gradient from the Average Vector Field (AVF) method [QM08, CGM+12, COS14]. According
to theorem 5.7, its closed-form expression is

{∇H ◦ x}0 =

ˆ 1

0
∇H(x(τ)) dτ =


H(x0 + δx)−H(x0)

δx
δx 6= 0,

∇H(x0) δx = 0.
=: ∇H(x0, δx) (5.41)

We note that the Average Discrete gradient has a regularisation effect shown on figure 5.6.
In numerical applications, it can reduce the Lipschitz constant. For example, when applied
to discontinuous functions, the averaged function is continuous everywhere except for δx = 0.
We proved in [MH18] that the derivative of the Average Discrete Gradient ∇H with respect
to the unknown variable δx has the closed form expression

∂

∂δx
∇H(x0, δx) =


∇H(x0 + δx)−∇H(x0, δx)

δx
δx 6= 0,

1

2

∂2H

∂x2
(x0) δx = 0.

(5.42)

This quantity plays the role of a “discrete Hessian” of H in the implementation of Newton
iteration. We proposed an extension of this result to semi-continuous functions in [MH20].
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Example 5.3 (AVF error estimation). Still using f = ∇H and projecting on the next
legendre polynomial L1(s) = 2s− 1, after factorisation, we obtain in closed-form

{∇H ◦ x}1 =


2

x1 − x0

(
H(x1) +H(x0)

2
− H [1](x1)−H [1](x0)

x1 − x0

)
x1 6= x0,

0 x1 = x0.

(5.43)

The first term is the trapezoidal average and the second one is the continuous average of
H ◦ x (i.e. the Average Discrete Gradient of the antiderivative H [1](x)). In other words,
projection on L1 is proportional to the difference between the trapezoidal and the continuous
average of H ◦ x. This result can be used to obtain the first coefficient of the Average Vector
Field approximation error (projection order p = 0).

Anti-derivative anti-aliasing and spectral projection In the digital audio literature
[PZLB16, BEPV17, BEV17, MH17, Hol20, Alb20, Car20], there is a growing interest for anti-
derivative based anti-aliasing methods. They greatly improve the audible quality of audio
simulations for a small additional cost. We note that spectral projection on polynomials can
be interpreted as anti-aliasing since it truncates higher order spectral terms that cannot be
represented in the approximation basis. Finally, as shown by Theorem 5.7, partial integration on
the projection coefficients automatically involves anti-derivatives of the function of interest. Inter-
esting connections between the Average Vector Field method and anti-derivative anti-aliasing have
been discussed by the author in [MH17, MH18, MH19, MH20] and a partial form of Theorem 5.7
is published in [MH20].

Application to memoryless nonlinearities Note that the results from examples 5.2 and
5.3 are directly applicable to the projection of memoryless nonlinearities by using f(w) = z(w)
(assuming dissipative potentials Z(w) are known, see 1.40 p.29). For pH-DAE this means that
projection of memoryless non-linearites 8 are still computable in closed-form for projection order
p = 1 (i.e. w ∈ P1). This property has been exploited in [MH18, MH19, MH20].

8. We also note that a common situation in electronics is to have linear storage components (i.e. projections
are exactly computable in closed form for any order p ≥ 0) and nonlinear memoryless nonlinearities.
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(a) ∇H(x) = tanh(Kx), K = 20
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(b) ∇H(x) = sinh(Kx), K = 1

Figure 5.6 – Smoothing effect of the Average Discrete Gradient for ∇H(x) = tanh(Kx), (i.e.
H(x) = 1

K ln cosh(Kx) (top plot). When K →∞, it converges to the discontinuous sign function
(discontinuous at the origin). The greater δx, the higher the regularisation effect. For symmetry
reasons, the graph is drawn for the centered coordinates x̄ = x0+x1

2 = x0 + δx/2, and δx. Note
that for hardening laws (bottom plot) ∇H(x) = sinh(Kx), the ADG has the opposite effect, it
increases the Lipschitz constant. To avoid this issue, we have shown in [MH20], using implicit
parametrisations, that we can avoid the stiffening behaviour and improve convergence.
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5.4.2 General purpose numerical quadratures

When higher order accuracy is seeked, for general functions, no exact integration formula can
be used. Numerical quadratures are required to estimate projection coefficients

f̂n =

ˆ 1

0
φn(τ)f(X(τ)) dτ ≈

L∑
i=1

wiφn(τi)f(X(τi)).

where abscissae τ1, . . . , τL and weights w1, . . . , wL are chosen such that the integral is exact
when the integrand belongs to a given functional subspace (typically polynomial or trigonometric
functions). The mathematical literature on numerical quadrature formulas is huge. We forward the
reader to the survey in reference [Gau81]. In this thesis we focus on Gauss-Legendre quadrature
rules (see also [CMM+09, Hai10, BFCI14, CH17]).

Theorem 5.8 (Gauss-Legendre quadrature [SB13]). Let {τk}nk=1 be the roots of the n-
th shifted orthonormal Legendre polynomial Pn(τ) and let {wk}nk=1 be the solution of the
(nonsingular) system of equations

n∑
i=1

Pj(τi)wi =

{
1, if j = 0,

0, if j = 1, . . . , n− 1.
(5.44)

Then wi > 0, for i = 1, . . . , n and
´ 1

0 p(τ) dτ =
∑n

k=1wkf(τk) holds ∀p ∈ P2n−1([0, 1]).

Many proofs of this theorem exists. In this PhD, a proof highlighting the role of the reproducing
kernel with explicit formulas for the weights wk is detailed in appendix D.8 p.300.

Exact projection results for polynomial nonlinearities From a practical point of view,
if f is polynomial 9 with degree df and X is also polynomial 10 with degree dX , then f ◦X is
polynomial with degree d = df · dX . In other words, the “polynomial spectrum” of f ◦X is band-
limited (in the Legendre basis). By consequence, if a quadrature rule is exact for polynomials of
degree d, its use in methods RPM to compute projections, makes energy and passivity preservation
guaranteed (see [CH17]).

Approximation up to machine accuracy for nonlinearities with infinite spectrum In
many interesting cases, f◦X has an infinite spectrum in the chosen basis 11 A naive implementation
would require an infinite number of evaluation points. Fortunately, the situation is not desperate:
if f and X are sufficiently smooth, the spectrum of f ◦X has a fast decay rate ([WX12]) so that,
exact integration (up to machine accuracy) can be reached with a finite number of evaluation
points. This approach has been studied in [BFCI14] where machine accuracy is reached with few
evaluation points. If however f is not smooth, then low projection orders and smaller time-steps
should be used together with Theorem 5.7. Indeed, in this case, the fast convergence property of
spectral methods is lost and the additional quality of higher orders methods is no longer worth the
increase in numerical computation cost (cf [Boy01]). The Legendre spectrum and the convergence
of Gauss-Legendre quadrature are illustrated on figure 5.7 for the cases of C∞ and C0 functions.

9. Example: the Duffing and Van der Pol oscillators are cubic, the Lotka-Volterra equations are quadratic.
10. The spectrum of f ◦X is also finite when X is trigonometric and f is polynomial.
11. For example f ∈ {sin, cos, sinh, cosh, exp,min,max, . . .}.
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(a) C∞ case: f(x) = exp(ax)− 1
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Figure 5.7 – (Convergence of Gauss–Legendre quadrature). The graph (left), quadrature approx-
imation error (middle) and Legendre spectrum {̂f ◦ x}k (right) are plotted for the composition
of functions (f ◦ x)(t) where x(t) = x0 + t(x1 − x0), x0 = −1, x1 = 1 is an affine trajectory
and for two nonlinearities: (top) A C∞ function f(x) = exp(ax) − 1 (like a diode law) and
(bottom) a piecewise linear C0 ReLU function f(x) = max(ax, 0) (used in opamp clipping) both
for parameters a = 1, 2, 3. We can clearly see that for C∞ functions (top), both the approximation
error and the (Legendre) spectrum decay very fast. The error reaches the machine epsilon
after a finite number of quadrature nodes. By contrast, for C0 functions (bottom), both the
approximation error and the Legendre spectrum decay much more slowly: the quadrature order
and the number of Legendre coefficients have been increased to 100 but the quadrature error
remains significant (about 10−4) which is more than 10 orders of magnitude above the machine
epsilon. The spectrum is shown in log-log scale to emphasize its slow linear decay (due to the
discontinuity of the first derivative).



146 Chapter 5. Power-balanced projection methods

5.4.3 Representations, fixed-point and Newton iterations

Choice of representation Until now, to design RPM, we have worked with abstract functional
spaces and projections, but the choice of functional space and its representation has remained open.
To actually implement the method on a computer, we need finite-dimensional representations of
functions for each time step (finite rate of innovation).
Questions To this end, several questions must be addressed, in particular:

• Should we use trajectories X(τ) or their derivative δX(τ) as primary representation? (i.e.
should we use the state space or the space of flows and efforts as primary space?)

• Should we use use nodal representations (as in FEM and Runge–Kutta methods) or spectral
representations (as in modal and spectral elements methods)? See [Boy01].

• Is it easier to work with orthogonal (as in spectral methods) or non-orthogonal (as in FEM)
representations of functions? For which computational cost and numerical conditioning ?

Choices In this chapter, we make the following choices:
A. We use the projected flows f and efforts e (in L2) as the approximated objects, rather than

the state X. Indeed, since we are not only interested in solving autonomous ODEs, but
on manipulating PHS (with ports), it is more natural and consistent to have a common
representation for all components 12. The state x(t) = x(t0) +

´ t
t0
f(s) ds is treated as an

internal construct of energy-storing components (treated as a hidden variable).

B. We use (spectral) orthogonal basis coefficients. Indeed, this is a natural fit for a projection
method, furthermore they have optimal conditioning, require less computations 13 and their
coefficients decay quickly for smooth functions (see fig. 5.7a).

Choice (A) is different from the standard formulation of CSRK methods (i.e. we emphasize the
role of the reproducing kernel kP(τ, σ) rather than the integrated kernel A(τ, σ)). More precisely
(for an autonomous PHS) we solve the equation

δX(τ) = P(J−R)∇H
(

x0 + h

ˆ τ

0
δX(s) ds

)
, where δX(τ) =

p−1∑
k=0

φk(τ)δ̂Xk,

for the coefficients δ̂Xk (the true unknowns in the projection space) rather than

X(τ) = x0 + h

ˆ τ

0
P
[
(J−R)∇H (X)

]
(s) ds, X(τ) = x0 +

p−1∑
k=0

(ˆ τ

0
φk(s) ds

)
X̂k+1.

with respect to coefficients X̂k (where the initial condition x0 is given by the problem). Note that
our choice is closely related to the W-transformation of Runge-Kutta methods [BG08, p.267].

Fixed-point and Newton iteration For pH-ODE, we have seen (theorem 5.2 p.127) that the
fixed-point iteration is contracting for hL < π

2 where L is the Lipschitz constant of the vector field.
However the existence domain of solutions can be larger than predicted by Lipschitz conditions 14

and the fixed-point convergence is often too slow. For these reasons it is often advantageous to
use (simplified) Newton iteration and we know that if the fixed-point converges, then Newton
converges too. Newton iteration for pH-DAE is also discussed in subsection 5.3.2 p.138.
12. energy storing: f = ẋ, e = ∇H(x), memoryless: f = w, e = z(w), ports: f = y, e = u.
13. For example, the operational matrix of the Volterra integration operator is tri-diagonal and almost skew-

symmetric in the Legendre Basis (see appendix C.4 p.286).
14. For example ẋ = λx has solution exp(λt)x0 independently of the stiffness of its Lipschitz constant L = |λ|

and Newton iteration converges in one iteration for linear problems.
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5.5 Examples

5.5.1 Nonlinear Conservative LC

We consider a nonlinear LC oscillator described by the schematics (left), Dirac structure
(middle) and its Hamiltonian formulation (right)

vC

iC

vL

iL

≡

iC
vL

 =

0 −1

1 0

vC
iL

 ⇐⇒

q̇
φ̇

 =

0 −1

1 0

∇HC(q)

∇HL(φ)

 .

The flows are iC = q̇, vL = φ̇, the effort laws and associated Hamiltonian are given by

vC(q) = ∇HC(q) =
q

C
, HC(q) =

q2

2C
,

iL(φ) = ∇HL(φ) = IS tanh

(
φ

LIS

)
, HL(φ) = LI2

S ln cosh

(
φ

LIS

)
,

where IS denote the saturation current of the inductor 15. For simplicity, we take L = C = ω−1

and IS = 1 such that for small values 16 of φ the oscillator has pulsation ω = 1/
√
LC rad s−1.

• Step i) We use the orthonormal Legendre basis
[
Pi(τ)

]p−1

i=0
and use as unknowns the vector

of Legendre coefficients

~δq :=
[
〈Pi | iC〉

]p−1

i=0
, ~δΦ :=

[
〈Pi | vL〉

]p−1

i=0
,

• Step ii) for any scalar function H(x), we define its (Legendre) projected gradient by

~∇H(x0; ~δx) :=

〈Pi
∣∣∣∣∣∣∣∇H

x0 + h

ˆ τ

0

p−1∑
j=0

Pj(σ) ~δxj dσ

〉

p−1

i=0

. (5.45)

Substituting functions of time by their projection coefficients (computed according to the
results of sections 5.4.1 5.4.2), we obtain an algebraic system of dimension 2p (projected
Hamitonian system) which is solved using Newton iteration. ~δq

~δΦ

 =

0 −Ip

Ip 0

 ~∇HC(q0; ~δq)

~∇HL(φ0; ~δΦ)

 . (5.46)

• Step iii) For α ∈ {0, 1} we evaluate the boundary conditions (according to B.3 p.278)

B0
α(q) = −∇HL(φα), B1

α(q) = −∇2HL(φα)∇HC(qα), etc

B0
α(φ) = ∇HC(qα), B1

α(φ) = −∇2HC(qα)∇HL(φα), etc

This regularisation process yields piecewise Ck solutions q(t), φ(t) thanks to the boundary
functions

{
ψmα (τ)

}
defined in proposition 5.4 p.129.

Simulation results for different values of order p and regularity k are shown in figures 5.8-5.13.
15. In this example, we neglect hysteresis and use a generic tanh nonlinearity rather than a realistic one. We have

supervised a work on a detailed inductor model for PHS (based on statistical physics) which includes hysteresis.
This work, which is out of the scope of this thesis, has been published in [NMHR20].
16. For small values of φ, we have ∇HL(φ) = φ/L+O(φ3) so that the circuit reduces to a harmonic oscillator.



148 Chapter 5. Power-balanced projection methods

2 1 0 1 2

1.5

1.0

0.5

0.0

0.5

1.0

1.5

q

1.0 0.5 0.0 0.5 1.0
iL

1.5

1.0

0.5

0.0

0.5

1.0

1.5

v C

h=1/20
h=1

(a) p = 1, k = 0

2 1 0 1 2

1.5

1.0

0.5

0.0

0.5

1.0

1.5

q

1.0 0.5 0.0 0.5 1.0
iL

1.5

1.0

0.5

0.0

0.5

1.0

1.5

v C

h=1/20
h=1

(b) p = 2, k = 0

2 1 0 1 2

1.5

1.0

0.5

0.0

0.5

1.0

1.5

q
1.0 0.5 0.0 0.5 1.0

iL

1.5

1.0

0.5

0.0

0.5

1.0

1.5

v C

h=1/20
h=1

(c) p = 3, k = 0

2 1 0 1 2

1.5

1.0

0.5

0.0

0.5

1.0

1.5

q

1.0 0.5 0.0 0.5 1.0
iL

1.5

1.0

0.5

0.0

0.5

1.0

1.5

v C

h=1/20
h=1

(d) p = 1, k = 1

2 1 0 1 2

1.5

1.0

0.5

0.0

0.5

1.0

1.5

q

1.0 0.5 0.0 0.5 1.0
iL

1.5

1.0

0.5

0.0

0.5

1.0

1.5

v C

h=1/20
h=1

(e) p = 2, k = 1

2 1 0 1 2

1.5

1.0

0.5

0.0

0.5

1.0

1.5

q

1.0 0.5 0.0 0.5 1.0
iL

1.5

1.0

0.5

0.0

0.5

1.0

1.5

v C

h=1/20
h=1

(f) p = 3, k = 1

Figure 5.8 – (Nonlinear LC) Orbits for projection order p = 1, 2, 3, and regularity order k = 0, 1,
for a Nyquist pulsation ω = π (the actual pulsation is slower because of nonlinearities) and initial
conditions (q0, φ0) = (0, 2). Plots are shown both in the phase space (φ, q) (first row), and in the
flow/effort space (iL, vC) (second row).
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Orbits and trajectories Orbits in the (φ, q) and (iL, vC) planes are shown on figure 5.8 and
time trajectories are shown on figure 5.9. A pulsation close to the Nyquist frequency has been
chosen in order to be able to show visual differences between different values of projection and
regularity order p, k. On figure 5.8d (p = 1, k = 1), since the accuracy is only O(h2) and we are
close to the Nyquist frequency, we remark that the magnitude of derivatives is overestimated
(overshoot). Despite this, orbits are much closer to the true manifold for regularity k = 1 (fig.
5.8d) than for k = 0 (fig. 5.8a). As the projection order p increases, orbits converge quickly to the
true manifold but the derivatives remains discontinuous at the junctions. Increasing the regularity
k improves the situation (the accuracy is now high enough to avoid derivative overestimation).
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Figure 5.9 – (Nonlinear LC) Trajectories for projection order p = 1, 2, 3, regularity order
k = 0, 1, pulsation ω = π and initial conditions (q0, φ0) = (0, 2). Oversampled trajectories by a
factor of 20 are shown with dashed lines. Dots correspond to the boundaries of time frames.

Frequency warping and dispersion To emphasize the effect of projection order on frequency
warping, it is shown on figure 5.10 that the frequency warping (dispersion) error diminishes
greatly as p increases. In just two steps, the full circle is accurately reproduced. For (p = 1, k = 1)
(fig. 5.10d), we see that the accuracy is not high enough to simulate a pole at the Nyquist
frequency: the magnitude of the vector field is over-estimated. Nevertheless, even in this extreme
situation, the smooth solution (k = 1, fig. 5.10d) is still better than the affine approximation
(k = 0, fig. 5.10a). For p = 3, the warping error becomes negligible. The effect of projection
order on frequency and dissipation warping is further detailed in the appendix on figures D.2, D.3
p.298. A general formula to obtain the corresponding (A-stable) stability functions is proposed in
section D.7 p.297.
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Figure 5.10 – (Linear LC) Orbits for projection order p = 1, 2, 3, regularity order k = 0, 1,
pulsation ω = π (Nyquist frequency) and initial conditions (q0, φ0) = (0, 0.1). Frequency warping
can be observed by looking at blue dots (that should theoretically be aligned at angles 0 and π).

Aliasing To inspect aliasing, several oscillation cycles of vC(t) are simulated and examined
in the Fourier domain (see figure 5.11). To exploit continuous-time trajectories, signals are
(over)sampled over each time-step by a factor of 20, weighted by a Dolph–Chebyshev window
(sidelobes rejection > 100 dB), and a Fast Fourrier Transform is performed. For reference, the
Nyquist frequency of the time-stepping simulation scheme is shown in solid black and multiples
of the sampling frequency are shown in dashed black lines.

We remark that, above the Nyquist frequency, the spectral content approaches the expected
harmonic structure more and more closely, as the projection order p increases: this is due to the
increasing bandwidth (w.r.t. p) in the sense of generalised sampling theory (see section 3.1 p.83).
Accordingly, the aliasing decreases in the audio frequency range: the signal to (aliasing) noise
ratio is above 100 dB for p = 3 in the frequency band below 20 kHz.

For k = 0, because of discontinuities, the high frequency spectrum has a slow spectral decay,
but the magnitude of discontinuities diminishes when increasing accuracy. As expected, increasing
the Sobolev regularity k exhibits a faster spectral decay. We remark that the signal to noise ratio
and aliasing rejection are also improved in the frequency range around the Nyquist frequency,
including in the frequency band below the Nyquist frequency.

However, as we have already warned before (see fig. 5.8), we experiment that, increasing the
regularity k should be used with care (in regions where accuracy is high enough). Otherwise
unwanted local frequency modulation can occur and create sub-harmonics in the pass-band.

A perspective that is left for further work would be to use backward error analysis theory
[HLW06] to evaluate (multi-)derivatives of the modified vector field that are consistent with the
frequency warping induced by projection operators.
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(a) regularity k = 0, spectral decay increase with order, pass-band aliasing drops below -100dB for p = 3.
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Figure 5.11 – (Nonlinear LC) Spectrum and aliasing of vC(t) according to projection order p
and smoothness k. Note that state trajectories are Ck in the time domain. Spectral peaks are
shown instead of the full spectrum to improve the visual contrast between signal harmonics and
aliased partials.



152 Chapter 5. Power-balanced projection methods

Local and long-term energy error The local energy behaviour for ω = π/4 is shown in
figure 5.12. We remark as expected that the relative energy error

εH(τ) =
H(q(τ), φ(τ))−H(q0, φ0)

H(q0, φ0)
,

vanishes on the time-stepping grid. Furthermore, its maximal also diminishes by an order of
magnitude as the projection order p is increased. Finally, increasing the regularity order k also
diminishes the local energy error (note the similarity with Peano kernels from figure 5.5 p.134).
On figure 5.13, we show that energy conservation is satisfied on the time-stepping grid τ ∈ N up
to machine epsilon accuracy in double precision arithmetic.
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Figure 5.12 – (Nonlinear LC) Continuous-time energy error εH(τ) for τ ∈ R according to
projection order p and regularity order k for ω = π/2 and (q, φ) = (0, 1).
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Figure 5.13 – (Nonlinear LC) Energy conservation on steps boundaries τ ∈ N for ω = π/10 and
(q, φ) = (0, 1). Horizontal lines correspond to multiples of the machine epsilon.
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5.5.2 Diode Clipper

We consider the diode clipper circuit and its semi-explicit PHS representation

vS

iS

R iR

C

iC

D

iD

⇐⇒


vR

vD

iC

iS

 =


−1 1

1 0

1 −1

−1 0




iR(vR)

iD(vD)

vC(Qhq0(iC))

vS


where iR(vR) = vR/R, iD(vD) = 2IS sinh(vD/VT ), vC(q) = q/C, and vS is a given input function.
For the purpose of simulation, with iC = q̇, we can reduce it to the ODE

q̇ = − q

RC
− iD

(
q

C

)
+
vS
R
, q = Qhq0(iC = q̇) = q0 + h

ˆ τ

0
iC(s) ds.

i) Let ~δq :=
[
〈Pk | iC〉

]p−1

k=0
, ~vS :=

[
〈Pk | vS〉

]p−1

k=0
be the Legendre coefficients of iC(τ), vS(τ).

ii) Let P = I(p−1)×p be the matrix representation of the projector and define the projected
charge and diode current operators

Qh
q0

(
~i
)

:=

〈Pi
∣∣∣∣∣∣ q0 + h

ˆ τ

0

p−1∑
j=0

Pj(s)~ij ds

〉p
i=0

=

q0

0

+ hV~i,

ID(~v) :=

〈Pi
∣∣∣∣∣∣∣ iD

 p∑
j=0

Pj(τ)~vj

〉

p−1

i=0

where V is the p× (p− 1) operational matrix of the Volterra integration operator V =
´ τ

0 .
The projected ODE becomes the algebraic fixed point on ~δq

~δq = −P
~q

RC
− ID

(
~q

C

)
+
~vS
R

=: G
(
~δq
)
, where ~q = Qh

q0

(
~δq
)
.

We define the Newton function F
(
~δq
)

:= ~δq −G
(
~δq
)
and use the simplified Newton

iteration to solve F
(
~δq?

)
= 0 given by

~δqk+1 := ~δqk + ∆ ~δqk, ∆ ~δqk := −(F ′0)−1

(
~δqk −G

(
~δqk

))
, ~δq0 := 0.

Its Jacobian is tridiagonal positive definite (easy to invert) and equal to

F ′0 = I + αPV � 0, with α =
h

RC

(
1 +R

∂iD
∂vD

(
q0

C

))
.

iii) For regulariy k > 0, we evaluate the boundary conditions at τ = α ∈ {0, 1}

B0
α(̃iC) =

1

R

(
vS(α)− qα

C

)
− iD

(
qα
C

)
,

B1
α(̃iC) =

1

R

(
v̇S(α)− B

0
α(̃iC)

C

)
− i′D

(
qα
C

)
B0
α(̃iC)

C
, etc

The regularized current ĩC(τ) is synthesized using the boundary functions
{
ψmα (τ)

}
defined

in proposition 5.4 p.129. The voltage ṽC(τ) is then obtained from ĩC(τ) by integration.
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Simulation results Simulation results for a ramp/step input and for different values of projec-
tion order p and regularity k are shown on figure 5.14. As expected we can observe diode clipping
of the voltage about 0.7 V. Simulations differ mostly on how they behave when switching from
the linear regime to the stiff clipping mode. For p = 0, we observe well-known Nyquist oscillations
artefacts about the exact solution. These are due to the frequency warping of the method (stiff
real poles are warped towards imaginary poles at the Nyquist frequency, see fig. D.2 p.298).
Increasing the projection order p, we observe a significant reduction of this phenomenon thanks to
higher order accuracy and bandwidth. Increasing the regularity order k yields smoother solutions,
but for stiff poles (as we already noticed in fig. 5.10), we observe that additional smoothness
also yields an amplification of artefacts. Increasing jointly p and k reduces both the amplitude of
oscillations and their frequency. However small oscillations are still observable for p = 2, k = 2.

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

k
=

0

p = 1

vS

vC

vC (h = 1/10)

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0
p = 2

vS

vC

vC (h = 1/10)

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0
p = 3

vS

vC

vC (h = 1/10)

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

k
=

1

vS

vC

vC (h = 1/10)

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

vS

vC

vC (h = 1/10)

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

1.0

vS

vC

vC (h = 1/10)

0.00 0.05 0.10 0.15 0.20
time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

vS

vC

vC (h = 1/10)

0.00 0.05 0.10 0.15 0.20
time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

vS

vC

vC (h = 1/10)

Figure 5.14 – (Diode clipper) Simulation for projection order p = 1, 2, 3, and regularity order
k = 0, 1, 2 with R = 1 kΩ, C = 20 nF such that the diode clipper cutoff fc = 50 kHz is set above
the sampling frequency fs = 44.1 kHz. We use IS = 1 fA and VT = 26 mV. The case (k = 2, p = 1)
is not shown because the accuracy order is not high enough to use second derivatives.

Sine sweep spectrograms and aliasing Spectrogram responses of the diode clipper to a
sinusoidal sweep are also displayed on in 5.15 in linear scale and in figure 5.16 in log scale. The
linear frequency scale is makes the visualisation easier to exhibit the generalized bandwidth and
aliasing reduction of higher-order projection. The logarithmic frequency scale is closer to the
human hearing resolution, the residual aliasing below 20kHz is easier to visualize with this scale.
We see that with increasing order p = 3 the audible aliasing becomes barely noticeable, it only
happens for input sinusoids above 5 kHz, and folded harmonics level stays below about 70/80dB.
In comparison for low order p = 1, aliasing starts for sinusoids below 1kHz and its level is above
−60dB.
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(a) projection order p = 1
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(c) projection order p = 3

Figure 5.15 – (Diode clipper) Sinesweep spectrograms for p = 1, 2, 3, k = 0 with R = 1 kΩ,
C = 20 nF such that the diode clipper cutoff is fc = 20 kHz for a fixed sampling frequency
fs = 48 kHz. We use IS = 1 fA and VT = 26 mV and an input gain g = 1.5. The spectrum
above the Nyquist frequency (24 kHz) is delimited by a dashed blacked line. The generalized
bandwidth fp = pfs/2 is shown in dotted black. The non-bandlimited modelling power (and
aliasing rejection) of high order projection clearly becomes more efficient as the projection order
is increased.
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Figure 5.16 – (Diode clipper) Sinesweep spectrograms in logarithmic frequency scale (same
simulation) to be compared with figure 5.15.
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Discussion and perspectives for stiff dissipative systems

We reconsider the power balance functional ρ from chapter 4 in the case of an autonomous
pH-ODE. In this chapter, using a self-adjoint scalar projector P, we have by commmutation of
(P,J−R), self-adjointness of P and skew-symmetry of matrix J

ρ(X) =
〈
∇H(X)

∣∣∣f(X)− Ẋ
〉

=
〈
∇H(X)

∣∣ (J−R)(I − P)∇H(X)
〉

= −
∥∥(I − P)∇H(X)

∥∥2

R
.

This means that, after projection, conservative systems, are still unconditionally conservative
and dissipative systems are still unconditionally dissipative. For conservative systems, the energy
preservation is exact (since R = 0). But for dissipative systems, comparing the functional
projection approach in this chapter with the adaptive collocation strategy from chapter 4 p.107,
the price to pay for unconditional passivity (and linear parametrization of the problem using
projection coefficients) is an error on the dissipation rate which is in O

(∥∥(I − P)∇H(X)
∥∥2

R

)
.

A perspective, for stiff dissipative systems (see oscillations in figure 5.14), is to combine the
unconditional energy dissipation of RPM (see also [HL14]) with damping for infinitely damped
poles (as in L-stable methods such as Radau IIa [HLW06]) while optimising the decay rate. A
path towards this goal would be to combine a) the continuous-time functional projection in this
chapter, b) the exact preservation (or minimisation) of the power-balance functional ρ(X) = 0
introduced in (S)PAC methods.
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Conclusion

In this chapter, we have demonstrated that representing flows and and efforts as functions
of time in the Hilbert space L2 (used as a pivot space) coupled with respectively skew-adjoint
and self-adjoint approximations of PH structure matrices J and R (using projectors) is a key
ingredient to yield energy-preserving and passivity-preserving methods for both pH-ODEs and
pH-DAEs. Coupling this result with supplementary boundary conditions, we have proposed a
class of methods called RPM(p, k) that satisfy properties P1,P2,P3 (power-balance, accuracy,
regularity) and whose principle is applicable to both pH-ODEs and pH-DAEs. A detailed analysis
of RPM for ODE has been proposed where accuracy order, existence and uniqueness, local
accuracy, Peano error kernels, etc have been studied. Works remains to be done in the case of
DAE. First results show that the PH structure and its tree/cotree partitioning can be exploited
advantageously. In particular, we were able to show that the Jacobian in Newton iteration is
always invertible for convex Hamiltonians and incrementally passive dissipative component laws.
The main advantages and drawbacks of the approach are listed below.

Advantages

• Unconditional energy preservation and passivity,

• Representation is linear in the parameters,

• Spectral projection converges exponentially fast for smooth functions,

• The method can be interpretated using the framework of CSRK methods,

• Order conditions directly stems from to the polynomial reproduction property of projectors,

• Orthonormal basis have optimal numerical conditioning and require less computations.

Drawbacks

• Projections integrals need to be computed exactly to have energy conservation,

• High orders require quadrature approximations (up to machine accuracy),

• Inexact dissipation rate and lack of damping for infinitely stiff systems.

• Regularity is a post-regularisation step rather than a built-in feature 17: the increased
regularity and local accuracy of projector Q does not improve the time-stepping accuracy.

Remark 5.3 (Discrete PHS). Comparing with the discrete PHS definition proposed in
[KL19], which is based on symplectic integration (such as Gauss-Legendre schemes), a main
difference is that the functional projection approach in this chapter preserves the exact
Hamiltonian (and passivity) while symplectic integrators preserve the symplectic structure
(and possess a perturbed Hamiltonian).

17. The main reason is that orthogonal projection in Hk is not orthogonal in L2. Since the power-balance is
intimately linked to the L2 inner product, we cannot choose a different inner product even if we look for regular
solutions in Hk. However we can interpret L2 solutions as weak solutions and Hk solutions as stronger solutions
where the regularisation step is compatible with L2 projection.
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Power-balanced Exponential Integrators

First Law of Numerical Analysis: Analytical and Numerical Difficulties Always Come Paired

J.W.Neuberger, "Sobolev Gradients and differential equations", [Neu09]
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In the previous chapter, we have used functional orthogonal projection. It minimises the
L2-norm of the residual error between the exact and the projected vector field and preserves the
power balance. In this chapter, we combine vector field projection with exponential integrators
to obtain energy-preserving exponential integrators. A salient feature of exponential integrators
is that they exactly integrates the (local) linear dynamics 1.

• In section 6.1 we motivate the choice of exponential integrators by showing that they
naturally arise as optimal pre-conditioners in functional Newton iteration when minimizing
the L2-norm of the vector field residual error.

• In section 6.2, we propose an extended definition of the AVF discrete gradient and show how
to combine it with exponential integrators to yield an energy (resp. dissipation) preserving
numerical scheme.

• In section 6.3, we generalise this approach to power-balanced integrators with arbitrary
high projection orders and basis functions.

1. This is a way to increase accuracy and to manage stiffness of the equations.

159
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6.1 From functional Newton iteration to exponential integrators

In this section, instead of pre-specifying a finite-dimensional approximation space, we seek
a solution of the ODE using infinite-dimensional Newton iteration in functional space. As a
byproduct, exponential integrators naturally arise as pre-conditioners for Newton iteration 2.

Consider an autonomous ODE over a time interval Ω, governed by

ẋ(t) = f(x(t)), x(0) = x0 ∈ Rn,

with f : Rn → Rn. We define the diffential operator D := d
dt , and the residual vector field

operator E : X := H1(Ω,Rn)→ L2(Ω,Rn) by

E(x) := Dx− f(x). (6.1)

For an initial trajectory function x0 ∈ X , we propose to formally solve the following minimisation
problem using functional Newton iteration

x? = argmin
x∈X

Φ(x) = 1
2

∥∥E(x)
∥∥2

L2 ,

s.t. x(0) = x0.
(6.2)

Newton iteration consists in locally approximating the functional Φ about each functional iterate
xk by a convex positive definite quadratic functional Φ̃ (detailed below) and solving the associated
sequence of least-square problems. The Newton-Kantorovich theorem guarantees convergence
with quadratic speed when the initial estimate is in the bassin of attraction of the solution (not
detailed here). Using Frechet derivatives (see definition C.8 p.282), an extrema of the functional
Φ corresponds to a zero of its first-order derivative

Φ′(x)(u) =
〈
E′x(u),E(x)

〉
= 0, (6.3)

where by definition of the Frechet derivative, E′x is the linear operator at x acting on u given by

E′x(u) = (D −Ax)u, where Ax = f ′(x). (6.4)

To have a local minimum at each iteration, it is sufficient that the Hessian approximation
Φ′′ ≈ Φ̃′′ � 0 be a positive define bilinear form. For that purpose, we use the following convex
positive semi-definite approximation 3 of the second Fréchet derivative

Φ̃′′(x)(u,v) =
〈
E′x(u),E′x(v)

〉
≥ 0. (6.5)

Note that, Φ̃′′(x) being a positive bilinear form, it defines, for each function x, a Sobolev inner
product

〈u,v〉E′x :=
〈
E′x(u),E′x(v)

〉
L2 . (6.6)

where the local metric is given by the linear self-adjoint differential operator

W = (E′x)∗(E′x) = (D −Ax)∗(D −Ax). (6.7)

2. Note that our goal is to guide the choice of optimal approximation space, not to actually implement Newton
iteration in infinite-dimensional space. To focus on the idea, and not on functional details, the adjoint and inverse
operators below are formal. Technically here, we assume that f is locally Lipschitz and that fixed-point Picard
iteration converges to a unique solution, so that Newton iteration is only considered as a convergence acceleration
tool. A similar derivation is available in [LC12].

3. Note that Φ′′(x)(u,v) =
〈
E′x(u),E′x(v)

〉
+
〈
E′′x(u,v),E(x)

〉
. We (classically) neglect the second term

which is assumed to be small compared to the first term in a neighbourhood sufficiently close to a minimum.
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An exponential integrator in disguise Starting from an initial functional estimate x0 ∈ X ,
the approximate Newton step is formally given for all k ≥ 0 by

∆xk+1 = −
[
Φ̃′′(xk)

]−1
Φ′(xk). (6.8)

combined with a line-search iteration xk+1 = xk +α∆xk, α ∈ [0, 1]. Note that if E′x is invertible,
we can simplify the pseudo-inverse in the Newton step as follows:

∆x = −
[
Φ̃′′(x)

]−1
Φ′(x) = −

[
(E′x)∗(E′x)

]−1
(Ex)∗E(x) = −(E′x)−1E(x) (6.9)

where from (6.4), the inverse operator (E′x)−1 is nothing but an exponential integrator

[
(E′x)−1u

]
(t) =

ˆ 1

0
exp

(ˆ t

s
A(x(ξ)) dξ

)
Θ(t− s)u(s) ds. (6.10)

It plays the role of a preconditioner applied to the residual E(x).

Remark 6.1. The role of a Newton preconditioner is to enhance convergence and condi-
tioning [Deu11] but it does not change the solution (of the fixed-point Picard iteration).
Furthermore, since the exact operator can be difficult to approximate, we may instead use
the following tractable approximation (simplified Newton iteration)[

(E′x)−1u
]

(t) ≈
ˆ 1

0
exp

(
A0(t− s)

)
Θ(t− s)u(s) ds, where A0 = f ′(x0). (6.11)

Functional Newton iteration automatically generates an exponential integrator (D −Ax)−1 to
precondition the residual E(x).

Sobolev Gradients Using the theory of Sobolev gradients [Neu09] and the Riesz representation
theorem (see C.1), there exists respectively L2 and Sobolev gradients ∇Φ and ∇SΦ such that the
Fréchet derivative can be represented either using the L2 or the Sobolev inner product as

Φ′(x)(u) =
〈
∇Φ(x),u

〉
L2 =

〈
∇SΦ(x),u

〉
E′x

, (6.12)

where from (6.3) and (6.9) we find that

∇Φ(x) = (E′x)∗E(x), ∇SΦ(x) = (E′x)−1E(x). (6.13)

Likewise there exists L2 and Sobolev Hessians ∇2Φ̃ and ∇2
SΦ̃ such that ∇2

SΦ̃ is the identity.

Φ̃′′(x)(u,v) =
〈
u
∣∣∣∇2Φ̃(x)

∣∣∣v〉
L2

= 〈u,v〉E′x .

Indeed, from (6.5), using the formal adjoint (E′x)∗, we find that ∇2Φ̃ = (E′x)∗E′x (see (6.7)), and
we can express the Fréchet derivatives as

Φ̃′′(x)(u,v) = 〈u,v〉E′x =
〈
E′x(u),E′x(v)

〉
=
〈
u
∣∣ (E′x)∗E′x

∣∣v〉 =
〈
u
∣∣∣∇2Φ(x)

∣∣∣v〉 .
According to (6.9) and (6.13) we may conclude that
Functional Newton iteration is equivalent to steepest gradient descent in Sobolev space.
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6.2 Exponential Average Vector Field method

6.2.1 Notations and preliminary definitions

Let 〈u,v〉 := uTv, and ‖u‖ :=
√
〈u,u〉 denote the euclidean inner product and norm in

Rn. For an invertible symmetric positive definite matrix Rn×n 3 Q = QT � 0, we define the
associated inner product and norm by 〈u,v〉Q := uTQv, and ‖u‖Q := 〈u,u〉1/2Q .

Definition 6.1. Let H : Rn → R be a differentiable function on Rn. Using the Riesz
representation theorem, we define the euclidean gradient ∇H and the Q-gradient ∇QH as
the unique elements satisfying

H ′(x)(·) =
〈
·,∇H(x)

〉
Rn =

〈
·,∇QH(x)

〉
Q
, ∀x ∈ Rn. (6.14)

whereH ′(x)(·) denotes the Frechet derivative ofH at x. It follows that∇QH(·) = Q−1∇H(·).

Lemma 6.1. Let A = (J − R)Q with Rn×n matrices J = −JT, R = RT � 0 and Q =
QT � 0. Then the semigroup etA is norm-preserving (resp. non expansive) in the Q-norm,
i.e. it satisfies for all u ∈ Rn, for all t ≥ 0∥∥∥etAu

∥∥∥
Q

=‖u‖Q if R = 0, otherwise
∥∥∥etAu

∥∥∥
Q
≤‖u‖Q if R � 0. (6.15)

Proof. For a pH-ODE ẋ = (J−R)Qx, x(0) = x0, the Hamiltonian H(x) = 1
2‖x‖

2
Q is preserved

(resp. dissipated) along the solution x(t) = etAx0 (see equation (1.49) p.33).

Definition 6.2. Let Ω = (0, 1), We define the orthogonal averaging projector P : L2(Ω,Rn)→
L2(Ω,Rn), and the associated Sobolev projector PS : H1(Ω,Rn)→ H1(Ω,Rn) by

(Pu)(τ) :=

ˆ 1

0
u(σ) dσ, (PSu)(τ) := u(0) +

ˆ τ

0
(Pu̇)(σ) dσ. (6.16)

In particular, they satisfy the commutation identity d
dτ (PSu) = P( d

dτ u) = u1 − u0.

Using these operators we give an extended functional definition of the average discrete gradient

Thm-definition 6.1 (Generalized Average Discrete (Q)-Gradient). Let V ∈ C1(Rn,R). For
all x ∈ H1(Ω,Rn), we define the generalized average discrete gradient (GADG)

∇V (x) := (P ◦ ∇V ◦ PS)(x). (6.17)

and the discrete Q-gradient ∇QV (x) := Q−1∇V (x) satisfying the discrete gradient identity

V (x1)− V (x0) =
〈
∇V (x),x1 − x0

〉
Rn

=
〈
∇QV (x),x1 − x0

〉
Q
. (6.18)

Proof. V (x1)−V (x0)
a
=
〈
∇V (PSx)

∣∣∣ d
dτ (PSx)

〉
L2

b
=
〈
∇V (PSx)

∣∣Pẋ〉
L2

c
=
〈
∇V (x),x1 − x0

〉
Rn
.

using (a) the gradient theorem, (b) d
dτ (PSx) = P( d

dτ x), (c) P2 = P = P∗ and Pẋ = x1−x0.
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6.2.2 Energy preserving (resp. dissipating) Exponential AVF

We consider (for each time frame) the semi-linear splitting of an autonomous pH-ODE

ẋ = (J−R)(Qx+∇V (x)), x(t0) = x0, (6.19)

with matrices J = −JT, R = RT � 0, and Q = QT � 0. The Hamiltonian is decomposed as

H(x) =
1

2
‖x‖2Q + V (x). (6.20)

A typical choice for H ∈ C2 is to use the Hessian Q = ∇2H(x̄) about an expansion point x̄ and
define the potential V as the difference V (x) = H(x)− 1

2‖x‖
2
Q.

Introducing the linear operator L = d
dτ −A, with matrix A = h(J−R)Q, we rewrite (6.19)

as the normalized-time initial value problem.

Lx = A∇QV (x), τ ∈ (0, 1) x(0) = x0, (6.21)

where ∇QV = Q−1∇V denotes the Q-gradient 4 of V and t = t0 + hτ , for τ ∈ [0, 1].

Theorem 6.1. If X(τ) is the solution of the projected Initial Value Problem (6.21) using
the generalized average discrete gradient (6.17)

LX = A∇QV (X), X(0) := x0. (6.22)

Then the time stepping Φ : x0 7→ x1 = X(1) is energy (resp. passivity) preserving i.e.

H(x1)−H(x0) = 0 if R = 0 otherwise ≤ 0 if R � 0. (6.23)

•

•

X0

X1

(PSX)(τ)

M
X(τ)

Figure 6.1 – (Exponential AVF) Schematic description of the method. The linear part ẋ = Qx

of the ODE is exactly integrated by the exponential integrator. The nonlinear part ∇V (X) =
P∇V (PSX) is averaged along the trajectory PSX where by construction X and PSX share
the same endpoints on the manifoldM =

{
x ∈ Rn | H(x) = H(x0)

}
and thus the same average

slope.

4. The reason for using the Q-gradient and the Q-norm will become apparent in the proof of theorem 6.1.
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Proof. We prove the result in three steps:

i) Using the Green kernel e(τ−σ)AΘ(τ − σ) of operator L, we have the trajectory

X(τ) = eτAx0 +

ˆ τ

0
e(τ−σ)AA dσ∇QV (X) = eτAx0 +

(
eτA − I

)
∇QV (X).

ii) It follows after evaluating x1 = X(1) and factorisation that we have the identities

x1 − x0 =
(
eA − I

)(
x0 +∇QV (X)

)
, (6.24a)

∇QH(X) =
x1 + x0

2
+∇QV (X) =

(
eA + I

)(
x0 +∇QV (X)

) 1

2
. (6.24b)

iii) Energy-conservation (resp. dissipation) follows from the sequence of relations

H(x1)−H(x0)
a
=
〈
∇QH(X),x1 − x0

〉
Q

b
=

1

2

〈(
eA + I

)(
x0 +∇QV (X)

)
,
(
eA − I

)(
x0 +∇QV (X)

)〉
Q

c
=

1

2

∥∥∥∥eA (x0 +∇QV (X)
)∥∥∥∥2

Q

− 1

2

∥∥∥x0 +∇QV (X)
∥∥∥2

Q
(6.24c)

d
= 0 if R = 0 and

d
≤ 0 if R � 0. (6.24d)

using (a) the discrete Q-gradient identity (6.18), (b) identities from step ii), (c) expansion
of the inner product (with vanishing cross terms), (d) lemma 6.1 with u = x0 +∇QV (X).

A geometric interpretation of the proof is shown on figure 6.2.

•

•

•

•

•

•

•

x0

x0+x1
2

x1

∇QV (X)

x0 +∇QV (X) = ~u

eA~u

(eA − I)~u = x1 − x0

(eA + I)~u = 2∇QH(X)

eA+I
2

~u

(a) Geometry

1) Form u = x0 +∇QV (X) and its

rotation eAu in orange,

form the differences eAu− u and

x1 − x0 (in blue and dashed blue).

We get (6.24a) .

2) Form the sum u + eAu and its half,

form the barycenter (x0 + x1)/2 (red)

and add ∇QV (X) (green),

we get (6.24b)

3) Note the orthogonality in (6.24d)

x1 − x0 ⊥Q ∇QH(X)

(b) Explanations

Figure 6.2 – (Exponential AVF) Visual illustration of geometric objects in the proof of theorem
6.1. For simplicity, we consider the conservative case R = 0, Q = I. Energy conservation stems
from the orthogonality x1 − x0 ⊥Q ∇QH(X).



6.2. Exponential Average Vector Field method 165

6.2.3 LC example

In order to perform a comparison betwen the AVF method (i.e. projection order p = 1,
regularity k = 0) and the Exponential AVF method, we reconsider the nonlinear LC example of
subsection 5.5.1.q̇

φ̇

 =

0 −1

1 0

∇HC(q)

∇HL(φ)

 , Q = ∇2H(q0, φ0) =

 1
C 0

0 1
L0
,


where the Hessian Q is governed by the local inductance L0 = L/(1 − tanh2(φ0/LIS)). We
decompose the Hamiltonian as H(q, φ) = q2

2C + φ2

2L0
+ V (φ) where

V (φ) = LI2
S ln cosh

(
φ

LIS

)
− φ2

2L0
= LI2

S ln cosh

(
φ0

LIS

)
+O

((
φ− φ0

LIS

)4
)
. (6.25)

Using (6.24a), we solve the fixed point equation on (δq, δφ)δq
δφ

 = (eA − I)


q0

φ0

+

 0

L0∇V (φ)


 , A = h

0 −1

1 0

 1
C 0

0 1
L0

 , (6.26)

using the closed-form formula of the AVF discrete gradient (see Equation 5.41)

∇V (φ) =


V (φ0 + δφ)− V (φ0)

δφ
δφ 6= 0,

∇V (φ0) δφ = 0.

See [MVL78, CI01, MVL03] to compute the matrix exponential eA (simulation results use scipy’s
[VGO+20] function expm which is based on the scaling and squaring method from [AMH10]).

The potential V and its gradient ∇V are shown on Figure 6.3.

φ

V (φ)

(a) V (φ)

φ

∇V (φ)

(b) ∇V (φ)

Figure 6.3 – (EAVF) Potential function V and its gradient ∇V for L0 = L, 2L, 3L, 4L. Note
that although V is not a positive function, the Hamiltonian H remains positive: the quadratic
part of H is handled by matrix Q.

Simulations results comparing the AVF method with the Exponential AVF (EAVF) method
are shown on Figure 6.4. As expected, the exponential AVF trajectories are closer to the true
solution (in dashed black), and exhibit very good accuracy when the nonlinearities changes slowly
over the time step. Because of exact integration of the linear dynamic, we note that frequency
warping is also improved in the EAVF compared to the AVF method (compare figures 6.4a and
6.4b).
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(c) AVF ω = π/2
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(d) EAVF ω = π/2

Figure 6.4 – (Exponential AVF) Comparison of EAVF and AVF methods on Nonlinear LC.
The pulsation is set to ω ∈

{
π, π/2

}
.

6.2.4 Adding external ports

We generalize the exponential AVF method to input-state-output pH-ODEs (definition 1.22).
For that purpose, we remark that compared to projection methods of chapter 5 , the crucial
element of the proof of theorem 6.1 relies on making a distinction between the exponential
trajectory 5 X and its affine Sobolev projection XS = PSX (sharing the same endpoints) such
that, thanks to path independence of the gradient theorem, a the proof of equation (6.18) relies
on the following identity (see Figure 6.1)

H(X1)−H(X0) =
〈
∇H(X)

∣∣∣ Ẋ〉
L2

=
〈
∇H(XS)

∣∣∣ ẊS

〉
L2

=
〈
∇H(X)

∣∣∣X1 −X0

〉
L2
.

Exponential AVF for input-state-output pH-ODEs

Consider the pH-ODE{
ẋ = (J−R)∇H(x) + Gu,

y = −GT∇H(x).
, x(t0) = x0, where ∇H(x) = Qx+∇V (x). (6.27)

Note that, compared to the autonomous case, special care has to be paid for the treatment of
inputs and outputs: in the following, we use AVF projection of the input term ū = Pu; dually, we
have to use a dual output y = −GT∇H(X) to ensure that we still have a passive power-balance
(see vanishing cross terms in the proof of theorem 6.2 below). Otherwise the method follows the
same construction as in the autonomous case.

5. which brings accuracy by exact integration of the linear part of the vector field
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Method 6.1 (Exponential AVF for pH-ODE). Denote P =
´ 1

0 the AVF projector and
denote X(τ) an approximation of x(t0 + hτ) solution of the system

1

h
Ẋ(τ) = (J−R)(QX +∇V (X)) + Gū, X(0) = x0, (6.28a)

y = −GT∇H(X), (6.28b)

where ū = Pu. The associated time-stepping method is Φh : x0 7→ x1 = X(1).

Let A = h(J−R)Q, the exponential trajectory should be a solution of the fixed-point

X(τ) = eτAx0 +

ˆ τ

0
e(τ−σ)Ah

(
(J−R)∇V (X) + Gū

)
dσ.

Theorem 6.2. If system (6.27) is discretized using the exponential AVF method (6.28a)-
(6.28b). Then, it satisfies the passive average power balance

H(x1)−H(x0)

h
+ 〈u |y〉 ≤ 0.

Proof. Take the inner product of (6.28a) with ∇H(XS) on the left, of (6.28b) with u and sum
the results to get

1

h

〈
∇H(X)

∣∣∣ Ẋ〉+ 〈u |y〉 =
〈
∇H(X)

∣∣∣ (J−R)(QX +∇V (X)) + Gū
〉
−
〈
u
∣∣∣GT∇H(X)

〉
a⇐⇒ 1

h

〈
∇H(X)

∣∣∣x1 − x0

〉
+ 〈u |y〉 =

1

2

∥∥∥∥eA (x0 +∇QV (X)
)∥∥∥∥2

Q

− 1

2

∥∥∥x0 +∇QV (X)
∥∥∥2

Q
.

b
=⇒ H(x1)−H(x0)

h
+ 〈u |y〉 ≤ 0 if R � 0.

The following identities were used to obtain the result:

a) By construction (see def.6.2), we have PẊ = ẊS = x1 − x0, P2 = P and P∗ = P so that〈
∇H(X)

∣∣∣ Ẋ〉 =
〈
P∇H(XS)

∣∣∣ Ẋ〉 =
〈
P2∇H(XS)

∣∣∣ Ẋ〉 =
〈
P∇H(XS)

∣∣∣PẊ〉
=
〈
∇H(X)

∣∣∣x1 − x0

〉
.

Furthermore we use (6.24c) in the proof of theorem 6.1, the main difference compared to
the proof of theorem 6.1 is the presence of input-output cross-terms. They vanish thanks to
∇H(X) = P∇H(XS), ū = Pu and the self-adjoint property of projector P (as above).〈

∇H(X)
∣∣∣Gū〉− 〈u ∣∣∣GT∇H(X)

〉
=
〈
∇H(X)

∣∣∣GPu〉− 〈GPu
∣∣∣∇H(X)

〉
= 0.

b) we use (6.18) for the left hand side and we use (6.24d) for the right hand side.
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6.3 High-order energy-preserving exponential integrators

In this section, we propose an extension of the results from section 6.2 to arbitrary projection
orders. The price we pay with this approach, is that the linear dynamic is no longer integrated
exactly: a perturbation term is introduced by the projector to satisfy the power balance.

For simplicity, we consider the autonomous Hamiltonian IVP

ẋ = J∇H(x), x(t0) = x0,

with matrix J skew symmetric. Choose a matrix A (usually A = J∇2H(x0)), decompose the
vector field into a linear part and a deflated vector field as

ẋ = Ax+
(
J∇H(x)−Ax

)
,

and introduce the differential operator Lx = ẋ−Ax to define the equivalent IVP

Lx =
(
J∇H(x)−Ax

)
, x(t0) = x0. (6.29)

We define the following discretization scheme.

Definition 6.3 (Exponential Projection Method (EPM)). Let Ω = (t0, t0 + h). Let P be
a projector in L2(Ω) reproducing constant functions and satisfying PJ = JP∗. Denote
X,XS ∈ H1(Ω) the approximations of the IVP (6.29), that solve the implicit equations

LX = P
(
J∇H(XS)−AX

)
in Ω, and X(t0) = x0, (6.30a)

where ẊS := PẊ, in Ω, and XS(t0) = X(t0). (6.30b)

We callX the exponential trajectory,XS its Sobolev projection a and Φh : x0 7→ x1 = X(t0+h)
the time-stepping function of the exponential projection method (EPM).

a. See definition 6.2.

Then, the following results holds.

Proposition 6.1 (Energy preservation). EPMs are energy-preserving.

Proof. Rewrite equation (6.30a) to express the derivative Ẋ

Ẋ −AX = P
(
J∇H(XS)−AX

)
⇐⇒ Ẋ = PJ∇H(XS) + (I − P)AX. (6.31)

From proposition 6.3 below, we have x1 = X(t0 + h) = XS(t0 + h). Express the power-balance

H(x1)−H(x0)
a
=
〈
∇H(XS)

∣∣∣ ẊS

〉
b
=
〈
∇H(XS)

∣∣∣PẊ〉
c
=
〈
∇H(XS)

∣∣∣P2J∇H(XS) + P(I − P)AX
〉

d
=
〈
∇H(XS)

∣∣PJP∗|∇H(XS)
〉 e

= 0.

This result stems from (a) the gradient theorem, (b) equation(6.30b), (c) equation (6.31), (d)
identities P2J = PJP∗ and P(I − P) = 0, (e) skew-adjointness of PJP∗.
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Proposition 6.2 (passivity preservation). EPMs are passivity-preserving.

Proof. Replacing the skew symmetric matrix J by J − R with R = RT � 0 in the proof of
proposition 6.1 yields H(x1)−H(x0) = −

〈
∇H(XS)

∣∣PRP∗|∇H(XS)
〉
≤ 0 .

Proposition 6.3. The exponential trajectory X and its Sobolev projection XS in definition
6.3 share the same endpoint x1 = X(t0 + h) = XS(t0 + h).

Proof. By definition 6.3, x1 =: X(t0 + h). Let P0 = 1
h

´
Ω denote the averaging projector from

L2(Ω) to the space of constant functions. Since P reproduces constants, we have P0P = P0.
Then,

X(t0 + h) = x0 +

ˆ
Ω
Ẋ(t) dt = x0 + hP0Ẋ

and XS(t0 + h) = x0 +

ˆ
Ω
PẊ(t) dt = x0 + hP0PẊ = x0 + hP0X.

It follows that x1 =: X(t0 + h) = XS(t0 + h).

Remarks We make the following observations regarding EPMs

a) As in chapter 5, we only require the projector to reproduce constants and satisfy the
commutation condition PJ = JP∗.

b) A sufficient condition is fulfilled when P is scalar (commuting with matrices) and self-adjoint
(P = P∗) projector. But using adjoint pairs of non-scalar projectors is an interesting option
for partitionable equations that gives more freedom over the choice of projection space(s).

c) As in the EAVF method, using the Sobolev projected trajectory XS to evaluate the
nonlinearity is a key aspect of the method 6. Without this double projection, we would have

Ẋ = J∇H(X) + (I − P)AX

and evaluating the power balance would result (in general) in the non-vanishing term〈
∇H(X)

∣∣∣ Ẋ〉 =
〈
∇H(X)

∣∣PJ∇H(X) + (I − P)AX
〉

=
〈
∇H(X)

∣∣ (I − P)AX
〉
6= 0.

d) A drawback of the proposed approach, compared to the EAVF method, is that the linear
dynamic is no longer integrated exactly: the projection induces the perturbation term
(I − P)AX in equation 6.31). The proof is simple (and closer to the approach of chapter
5), but we lose in linear accuracy.

e) Adding Hk regularity has been left for future research.

Note that when we approximate the linear vector field differently from its non-linear part, i.e.
if we dissociate the flow space from the projection space (using exponential integration), we have
to be more careful (than we had to in chapter 5) to ensure that energy is preserved.

6. A perspective of the proposed approach is to look more closely at the properties of the equivalence class of
trajectories that share the same projected vector field: i.e. PẊ = PẊS .
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Conclusion

We found after bibliographical research that energy-preserving exponential AVF methods
had already been proposed in [SL19] (but restricted to commuting matrices J,Q) and also in
[WW18]. For this reason, we chose not to publish our derivation of the exponential AVF method.

However, since the genesis of the method and the structure of the proof are different, we hope
that our presentation, specially in the context of pH-ODE and continuous-time projection, brings
a complementary viewpoint which paves the way towards different approximation strategies.

Using the tools and methodology from chapter 5, we were able to generalize this result to
higher projection orders for an arbitrary choice of basis. We call this approach (energy/passivity
preserving) Exponential Projection Methods (EPM). The proof is simpler than the proof of
the EAVF method: it avoids (sometimes tedious) manipulation of convolutions and identities
involving matrix exponentials, however, the price to pay is that the linear dynamics is no longer
integrated exactly (it is perturbed by a projection term).

The results in this chapter have been obtained late in the redaction of this manuscript. For this
reason, analysis of order conditions, existence and uniqueness of solutions and detailed simulations
are not included and are left for future research. To this end, a theory of (stiff) order conditions
for exponential integrators, using exponential B-series, can be found in the reference [LO13]
see also [BOS05, But10]. Finding an alternative strategy to generalise the approach to higher
projection orders while exactly integrating the linear dynamic is also left for further research.
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Introduction

The Operational Amplifier is widely used in analog audio circuits. This chapter is concerned
with its passive power-balanced modelling as a PHS, which, to our knowledge, has not yet been
explored. Our motivation arises by examining the two following questions:

• Do not we learn (in high school) that an operational amplifier is an active device?

• Why should we consider a pH model rather than the state-of-the-art 1 ?

First, the OPA component does not create energy by itself: it is passive without a power
supply. Thus, our first motivation is to model the passive component separately from the power
supply, introducing explicit power supply ports 2.

Second, to understand the interest of such a modelling, we perform a simple passivity test.
Consider the circuit in figure 7.1, involving a resistor, an OPA and a capacitor. This capacitor
replaces the traditional power supply of the OPA: this circuit is thus fully passive. Indeed, the
capacitor is initialised with zero charge, all ports except the positive supply and the output are
grounded 3. Then, according to charge conservation, the sum of all currents should be zero, so

1. such as the macro models in SPICE-like simulation software that have been used for decades by engineers.
2. Note that qualifying the OPA as an "active device" and hiding the power supply ports is common practice.

But this is a huge source of confusion for many students. Examination of the second question will show that this
confusion is not limited to vocabulary but also affects modelling.

3. The output resistor is meant as a short circuit, but LTSPICE solvers requires a non zero resistance.
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that no current can flow in the capacitor and its output voltage should stay equal to zero.

Figure 7.1 – (Passivity test) operational amplifier circuit.

Simulations in LTSPICE (see figure 7.2) yield ill results that do not pass the passivity test for
various OPAs models used in audio amplifiers (TL1366 and TL072). Indeed, both conservation of
charge and passivity are violated since the OPA charges the capacitor to a significant non-zero
value (dependent on the OPA macro model). The reason lies in the common practice of using
controlled current and voltage sources in behavioural macro-modelling 4 of components.

(a) LT1366 (b) TL072

Figure 7.2 – (Passivity test) Simulation result in LTSPICE for two different OPA macro models.
The OPA is charging the capacitor, violating both passivity and conservation of charge.

Our passivity test may seem far-fetched for real-life applications as OPA, transistor and tube
amplifiers are usually designed and biased to avoid non-ideal behaviour. But musicians are known
for pushing devices outside of their intended use (e.g. overdrive). It is not unusual for guitarists
and effect pedal designers to use what is called voltage sag for creative purposes 5.

All these practical elements strongly motivate our strategy to build passive OPA models,
including in overdriven and under-powered configuration. Section 7.1 presents a first idealized
(conservative, memoryless, saturating) model with an illustrative application (this section repeats
the original content published in [MH19]). Section 7.2 considers a limit-case: a fully-differential
amplifier with infinite gain. Section 7.3 paves the way towards a grey-box model incorporating
non-ideal behaviours (limited bandwidth, and slew-rate, dissipation. . . )

4. As a counter example, the Ebers–Moll transistor model is often depicted using diodes and voltage-controlled
current sources to describe PN coupling. Despite this, we proved in example 1.10 p.32 that this model is passive.
However establishing such proofs can be difficult and has to be performed for each component. By contrast, the
pH modelling strategy is to exclusively rely on provably passive formulations.

5. The power supply voltage is voluntarily (and even dynamically) lowered to push a circuit outside of its ideal
operating point, resulting in all kinds of unexpected behaviours (dead zone, self-oscilations, etc).
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7.1 A minimal passive model of the operational amplifier

This section repeats the original content published in [MH19].

Abstract

This papers stems from the fact that, whereas there are passive models of transistors and
tubes, a minimal passive model of the operational amplifier does not seem to exist. A new
behavioural model is presented that is memoryless, fully described by its interaction ports, with
a minimal number of equations, for which a passive power balance can be defined. The proposed
model handles saturation, asymmetric power supply, and can be used with non-ideal voltage
references. To illustrate the model in audio applications, the non-inverting voltage amplifier and
a saturating Sallen-Key lowpass filter are considered.

7.1.1 Introduction

Operational Amplifier (OPA) models can be roughly categorized into a) Controlled Source
(CS) models, b) white box macro models and c) Nullor models .

In CS models (see [CDK87]), the power supplies are lumped within the OPA and controlled
sources can provide an infinite amount of power. It has the advantage of being simple and hides
most of the internal complexity. This is the method of choice used by students to study the
functional behaviour of OPA circuits. The main drawback comes from the absence of external
supply ports. This results in non passive models, and forbids simulations with non-ideal voltage
sources (e.g. in low-budget guitar stomboxes).

White box macro models (see references [BPCS74] [CB01] [AB90]) use dozens of transistors
to accurately reproduce the inner structure and non-ideal characteristics of particular devices.
While this is appropriate for offline simulation and circuit design, the main drawback of this
approach comes from the high number of (implicit) nonlinear equations which makes it often
unsuitable for real-time simulation.

Nullors (see references [Car64] [Tel66] [OU80] [Mar65]), are singular two-port elements where
the input flow and effort variables are both zero: e1 = f1 = 0, while the output flow and effort
variables e2, f2 are unconstrained. One drawback is the lack of flow / effort duality. In addition,
similar to CS, Nullors have no explicit power supply ports and thus are not passive devices,
inheriting the same drawbacks mentioned above.

For audio applications, dedicated Wave Digital Filters (WDF) models of the OPA for specific
circuit topologies have been proposed in [PdPV12], more recently, using Modified Nodal Analysis
to WDF adaptors, both Nullor and CS general purpose models of the OPA and OTA have been
proposed in [WDR+16] [BW17] and Sallen-key filters have been modelled with WDF in [VBS17].

We propose a passive, quasi-ideal, black-box, behavioural model of the OPA, simple enough for
realtime simulation, with explicit power supply and modelling nonlinear saturation. In particular,
a by-product of this research is to have a model compatible with the port-Hamiltonian formalism
[VdS06].

The paper is structured as follows. First a general purpose passive model of the OPA is
proposed in subsection 7.1.2, then it is illustrated by treating the non-inverting voltage amplifier
circuit in subsection 7.1.3, finally a detailed study and simulation of a saturating Sallen-Key
lowpass filter is presented in subsection 7.1.4.



176 Chapter 7. Passive Operational Amplifier models

7.1.2 Operational Amplifier Model

The objective of this paper is to find the simplest class of Operational Amplifier models
satisfying the following requirements:

a) Memoryless: infinite bandwidth, infinite slew rate,

b) Passivity: the power dissipated by the OPA is non-negative (i.e. hidden sources of energy
are forbidden),

c) Quasi-ideal: infinite input impedance, zero output impedance, infinite common-mode
rejection ratio,

d) Finite output voltage range and saturation: explicit non-constant power-supply ports,

e) Minimal: behavioural model with a minimum number of equations (i.e. not a white box
model containing dozen of transistors).

−

+

i+
e+

i−
e−

iout eout

iS+

eS+

iS−
eS−

S

Figure 7.3 – Circuit diagram of an Operational Amplifier (OPA) with currents drawn in receiver
convention. The gaussian surface S enclosing the component is shown in dashed line.

Notations

The OPA shown on figure 7.3 is modelled as a 5-port device with node voltages being measured
relatively to the ground, node currents directed toward the element using the receiver convention
and pins labelled P = {+,−, S+, S−, out}. In this paper, we assume that the ports of the OPA
can be partitioned into a voltage-driven set T , and a current-controlled co-set T

T := {+,−, S+, S−} , T := {out} , T ∪ T = P. (7.1)

The respective inputs and outputs are collected into the vectors

u := [eT , iT ]T = [e+, e−, eS+, eS−, iout]
T, (7.2a)

y := [iT , eT ]T = [i+, i−, iS+, iS−, eout]
T, (7.2b)

Finally, the common supply, the differential supply and the differential input voltages are
respectively defined by

Vcm =
eS+ + eS−

2
, Vdm =

eS+ − eS−
2

, ε = e+ − e−. (7.3)
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Constitutive equations

Since there are 5 ports with dual flow and efforts variables, 5 independent equations are
required to specify the device:
1-2) Non-energetic input ports: the current entering the pins {+,−} is zero (infinite input

impedance)
i+ = i− = 0, (7.4)

3) Conservation of charge: Kirchoff Current Law applied over the gaussian surface 6 S
enclosing the AOP implies that the sum of all currents is zero∑

`∈P
i` = 0, (7.5)

4) Passivity: the power absorbed by the OPA is greater or equal to zero

Pdiss = yTu =
∑
`∈P

e` · i` ≥ 0, (7.6)

5) Differential gain and saturation: the tensions are tied by a continuous relation

eout = f(e+, e−, eS+, eS−), with



∂f

∂ε
≥ 0, monotonicity

max

(
∂f

∂ε

)
= K, differential gain

max(f) = eS+, ε→ +∞ positive saturation
min(f) = eS−, ε→ −∞ negative saturation

. (7.7)

This gives 4 equalities and 1 inequality

i+ = 0 (7.8a)
i− = 0 (7.8b)

iS+ + iS− + iout = 0 (7.8c)
Pdiss = iS+ · eS+ + iS− · eS− + iout · eout ≥ 0 (7.8d)

f(eS+, eS−, e+, e−)− eout = 0 (7.8e)

Since there is an inequality and the relation f is not specified yet, there is an infinite class of
models satisfying these equations. A particular instance is chosen as follows.

Toward a unique model

Substituting (7.3) into the passivity equation (7.8d), using the conservation of charge (7.8c)
and simplifying by iout gives the constraint 7

Vcm + Vdm

(
iS+ − iS−
iS+ + iS−

)
= eout −

Pdiss

iout
, (iout 6= 0) (7.9)

which imposes a lot of structure on the form of the output function. In order to specify a unique
model, the following choices are made.

6. The Gaussian surface S is shown on figure 7.3. For more details see [CDK87].
7. see appendix D.9.1 for a detailed proof.
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ε

ρ(±ε)

Figure 7.4 – The adimensioned modulation factor ρ(±ε), for K/Vdm = 1, 2, 3

Push–Pull current splitting First, motivated by the typical structure of an OPA, composed
of a differential pair of transistors, gain stages and a push-pull output (see [SS98] p.707), the
adimensioned modulation factor 8

ρ(ε) := − iS+

iout
=

exp (x)

exp (x) + exp (−x)
, x =

Kε

Vdm
, (7.10)

is introduced and shown on figure 7.4. According to the conservation of charge (7.8c), this leads
to the symmetrical current splitting

iS+ = −ρ(ε)iout, iS− = −ρ(−ε)iout. (7.11)

The conservative OPA choice Second, among all passive OPA models, the conservative ones
are chosen, neglecting internal dissipation:

Pdiss = 0. (7.12)

The power supply ports provide the amount of power necessary to balance the power consumed
at the output port. This is an instance of a nonlinear nonenergic n-port [WC77].

Final model Substituting (7.11) and (7.12) into (7.9) uniquely defines the output function (a
similar result was also derived in [Mac12a])

eout = Vcm + Vdm tanh

(
Kε

Vdm

)
. (7.13)

Expressed as a function of eS+, eS− this gives

eout = ρ(+ε)eS+ + ρ(−ε)eS−. (7.14)

Finally gathering equations (7.4) (7.11) (7.14) in matrix form reveals the modulated hybrid Dirac
structure 9 of the conservative OPA model given by the skew-symmetric matrix J(u):

8. This choices is reminiscent of a BJT push-pull. Different choices for the function ρ can be made to adapt to
other transistors types, for examples MOSFETs as long as it defines a complimentary splitting function compatible
with charge conservation (7.8c) (i.e. ρ(ε) + ρ(−ε) = 1) and saturation constraints (7.7).

9. Please refer to the references [Cou90] [VdS17] [VdS06] for more details on Dirac structures and to [CDK87]
for hybrid parameters.
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

i+

i−

iS+

iS−

eout


︸ ︷︷ ︸

y

=



. . . . 0

. . . . 0

. . . . −ρ(+ε)

. . . . −ρ(−ε)
0 0 ρ(ε) ρ(−ε) .


︸ ︷︷ ︸

J(u)



e+

e−

eS+

eS−

iout


︸ ︷︷ ︸

u

. (7.15)

The singularity of the structure matrix J encodes the conservation of the so-called Casimir
invariants i+ = i− = 0, in addition to the conservative power-balance

Pdiss = uTy = uTJ(u)u = 0, (because J = −JT). (7.16)

7.1.3 Case study

To study the behaviour of the proposed model in practical applications, the case of the
voltage amplifier is examined. Then as a pedagogical example, the voltage amplifier is driven
by a sinusoidal voltage source and asymmetrically powered by a single capacitor to simulate a
discharging battery. The voltage amplifier will be used as a building block of the Sallen-Key
lowpass filter shown in subsection 7.1.4.

The non-inverting voltage amplifier

−

+e+
iout eout

eS+

eS−

R2
iRR1

(a) non inverting amplifier

Ge+ eout

eS+

eS−

(b) equivalent component

Figure 7.5 – Non-inverting voltage amplifier circuit with explicit alimentation ports.

A non-inverting voltage amplifier (figure 7.5) is achieved by feeding back the output eout to
the negative input e− through a voltage divider

ε = e+ −
eout
G
, G =

R1 +R2

R1
= 1 +

R2

R1
. (7.17)

The instantaneous feedback makes the circuit act as a proportional corrector with high proportional
gain K in order to satisfy the constraint eout ≈ Ge+ within the range eout ∈ [eS+, eS−].

The voltage divider induces an internal current iR = eout/R, where R = R1 + R2, and the
current splitting (7.11) becomes

iS+ = −ρ(ε)(iout − iR), iS− = −ρ(−ε)(iout − iR). (7.18)
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This results in the following law for the voltage amplifier
i+

iS+

iS−

eout

 =


. . . .

. g+(ε) g±(ε) −ρ(ε)

. g±(ε) g−(ε) −ρ(−ε)

. ρ(ε) ρ(−ε) .




e+

eS+

eS−

iout

 . (7.19)

with conductances

g+(ε) =
ρ(ε)2

R
, g−(ε) =

ρ(−ε)2

R
, g±(ε) =

ρ(ε)ρ(−ε)
R

. (7.20)

In the following, it is assumed that R→∞ such that internal losses are negligible. In particular,
this is the case of the classical voltage follower circuit for which R2 = 0, and R1 =∞.

Implicit constraint The relation (7.19) is still implicitly defined since ε depends on both input
and output variables e+ and eout. To avoid apparent difficulties with discontinuous functions,
consider the curve

F =
{

(u, y) ∈ R2 | F (u, y) = 0
}
, (7.21)

specified by the function

F (u, y) = Vcm + Vdm tanh

(
K

Vdm

(
u− y

G

))
− y, (7.22)

and given e+, look for eout such that (e+, eout) ∈ F .
Since the output function is monotonous with respect to ε and bounded in [eS−, eS+], a unique

solution exists within that range. A global method such as the bisection method is guaranteed
to find it, whereas, since K is typically about 106, it is very difficult to use either fixed-point
or derivative-based methods because of bad numerical conditioning. Numerical simulations are
shown on figure 7.6.
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Figure 7.6 – Transfer function of the voltage amplifier for G = 1, K ∈ {1, 2, 5, 50}, eS+ = 10V,
eS− = −5V. Smaller values than the typical OPA gain K ≈ 106 are used for visualisation purposes.

Explicit representation Taking the limit when K →∞ gives an explicit representation of F
as the piecewise continuous curve

F∞ = lim
K→∞

F :


y = eS+, Gu > y

y = eS−, Gu < y

y ∈ [eS−, eS+], y = Gu

. (7.23)
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One can see on figure 7.6 that convergence to F∞ is very fast even for moderate values of K.
This justifies the use of this limit process in following developments.

For (e+, eout) ∈ F∞ this gives the explicit form

eout = Vcm + Vdm sat

(
Ge+ − Vcm

Vdm

)
, where sat(x) = min(max(x,−1), 1). (7.24)

Alternatively one can represent this function as

eout = µ+(e+, Vcm, Vdm) · eS+ + µ−(e+, Vcm, Vdm) · eS− (7.25)

where the implicit modulation factor ρ(±ε) in (7.19) has been replaced by the explicit one

µ±(e+, Vcm, Vdm) =
1± sat(x)

2
, x =

Ge+ − Vcm
Vdm

. (7.26)

A single-rail voltage follower powered by a capacitor

u

1 kΩ

iR

vC

50 µF

iC
1

y

Figure 7.7 – A single-rail voltage amplifier powered by a capacitor.

To illustrate one of the practical interest of having explicit power supply ports, the voltage
amplifier is used with the negative supply port grounded, and the positive supply port powered
by a capacitor to simulate a discharging battery (figure 7.7).

Using (7.15) with Vcm = Vdm = q/(2C), and iout = −y/R, yields the algebro-differential
equations 

q̇ = −η(u, q)
y

R
,

y = η(u, q)
q

C

, η(u, q) = µ+

(
u,

q

2C
,
q

2C

)
. (7.27)

The energy stored in the capacitor is H(q) = q2/2C. Then its differential equation is governed by
the monotonous discharge

d

dt
H(q) =

∂H

∂q

dq

dt
= − q

C
η(q, u)

y

R
= −y

2

R
. (7.28)

The circuit acts as a half-wave rectifier with a positive clipping threshold governed by the discharge
of the capacitor as shown on figure 7.8.

Comparison between models As expected, with the proposed model (fig.7.8 (a)), the capac-
itor does not discharge during negative saturation (energy-preservation), and has a monotonous
discharge otherwise. Comparison with LTspice’s universal model (fig.7.9) shows that the two
simulations are very close. With the LT1366 (fig.7.8 (b)), the discharge is monotonous and
qualitatively similar, but decays faster due to internal dissipation. Finally the LTC6241 (fig.7.8
(c)) exhibits unexpected behaviour: it starts charging back the capacitor once the capacitors
drops below a threshold (probably linked non-ideal rail-rail behaviour).
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(a) Simulation of the single-rail voltage follower driven by a sinusoid and powered
by a capacitor
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(c) Same simulation using LTC6241. It is obvious that the LTC6241 is not passive.
The capacitor is being charged by the OPA! Instead of discharging monotonously.

Figure 7.8 – Time domain simulation of the capacitor-powered single rail voltage amplifier with
vC(0) = 5V and |u| = 3V .
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Figure 7.9 – Comparison of discharge rate with LTspice’s Universal OPA level.2 and the LT1366
opamp [Dev19].



7.1. A minimal passive model of the operational amplifier 183

7.1.4 Sallen-Key analog lowpass filter

The class of Sallen-Key Filters (SKF), introduced in [SK55], is perhaps one of the most
common analog filter design topology. It is used for the realization of analog biquadratic filters,
for example in parametric equalisers. It is also the basis of the multimode Steiner filter [Ste74],
the Korg MS-20 [Sti06] and the Buchla Lowpass-Gate [Pd13].

A Sallen-Key lowpass filter schematic is shown on figure 7.11a. The linear regime and its
control parameters are studied in 7.1.4, the circuit is then converted into equations in 7.1.4.
Discretization is performed using the Average Vector Field method in 7.1.4, finally simulation
results are shown in 7.1.4.

Linear behaviour and control parameters
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Figure 7.10 – Bode plot of the Sallen-Key filter for ω = 1, G ∈ [0, 3].

It is recalled that the Laplace transfer function (shown on figure 7.10) of a second order
resonant lowpass filters with pulsation ω and quality factor Q is

HLP(s) =
1

1 + 1
Q

(
s
ω

)
+
(
s
ω

)2 , (7.29)

In the linear regime, the Laplace transfer function of the lowpass Sallen-Key filter is

HSK(s) = L
{
ySK
vIN

}
=

1

1 + a1s+ a2s2
, (7.30)

where

a1 =
(
(1−G)R1C1 + (R1 +R2)C2

)
, (7.31a)

a2 = C1C2R1R2. (7.31b)

Since there are only two target controls (ω,Q), for 5 design parameters (R1, R2, C1, C2, G), there
are many possible design decisions that are often decided according to electronic constraints.

In this paper, the Steiner filter parametrization is used with R1 = R2 = R, and C1 = C2 = C
because of its simplicity. The transfer function (7.30) simplifies to

HSK(s) =
1

1 + (3−G)
(
s
ω

)
+
(
s
ω

)2 , (7.32)

with ω = 1/(RC), and Q = 1/(3−G). In simulations, capacitances are both set to C = 4.7nF
and the resistors are adjusted to achieve the target cutoff frequencies.
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Figure 7.11 – a) The original Sallen-Key lowpass filter circuit, b) its corresponding bondgraph
(see references [Pay61] [Bre86] [Bro99b]) with computational causality assignment. c) the skew-
symmetric Dirac structure representing Kirchoff conservation laws. d) the reduced dynamical
model.

Modelling

To model the Sallen-Key filter, the following systematic approach is used: (See also chapters
1 and 2)

• Bondgraph: The circuit on figure 7.11a is first converted to an equivalent bondgraph 7.11b
using the rules in [Bre86]. A bond between two ports A B stands for a pair of
dual port-variables (e, f). The half-arrow indicates the power sign convention P = ef ≥ 0.
0 denotes a parallel junction where all bonds share the same voltage, and 1 denotes a serial
junction where all bonds share the same current.

• Causality assignment: to convert an acausal bidirectional bondgraph to a causal, com-
putable, block-diagram, one needs to partition the flows and efforts into inputs and outputs.
The convention uses a vertical stroke A B next to ports that are effort-controlled.
Computational causalities can be assigned graphically by propagating the following rules:
voltage sources and capacitors have an effort-out causality, 0 junctions can only have one
input effort, while the dual 1 junctions can only have one output effort.

• Dirac Structure: given the causality assignment, shown on 7.11b, into inputs and outputs,
it is now straightforward to fill the Dirac Structure matrix 7.11c by inspecting circuit 7.11a
and expressing Kirchoff’s current and voltage laws.

• Reduced model: one can reduce the model by solving trivial equalities like e+ = vC2 ,
eS+ = V+, eS− = V−, treating V± as constants and replacing the linear resistive currents
(iR1 , iR2) by their constitutive laws. This results in the reduced admittance model shown
on figure 7.11d.
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Nonlinear feedback To separate the linear and nonlinear feedback, one can write

êout(v) = Gv −∇N(v) (7.33)

where the nonlinear law is

∇N(v) := Gv − êout(v) = min(0, Gv − eS−) + max(0, Gv − eS+). (7.34)

and its algebraic potential (figure 7.12) is given by the line integral

N(v) :=

ˆ v

0
∇N(s) · ds =

min(0, Gv − eS−)2

2G
+

max(0, Gv − eS+)2

2G
. (7.35)

This potential will used by the Average Vector Field discretization (an instance of Anti-Derivative
Anti-Aliasing).
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Figure 7.12 – Algebraic feedback laws and their potentials shown for G = 2, eS+ = 10V,
eS− = −5V.

State-space model

Finally replacing the flow and effort variables by their constitutive laws, and only considering
the input-state-output, one gets{

ẋ = ω
[
Ax + Bu− F∇N(Cx)

]
y = Cx

, (7.36)

where u = vIN, y = ySK, x = [vC1 , vC2 ]T, ω = 1/(RC) and

A =

−2 1− 2G

1 −1 +G

 , B =

1

0

 , C =
[
0 1

]
, F =

−2

1

 . (7.37)

Using the co-energy variables vC1 , vC2 instead of the energy variables qC1 , qC2 is justified here
by the fact that the capacitors are linear and time-invariant, i.e. the co-energy H∗(v) = Cv2/2
equals the energy H(q) = q2/(2C) for the linear law v = q/C.
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Discretization using the AVF method

The Average Vector Field (AVF) method is used to discretize (7.36) because of its structure-
preserving properties: it preserves the energy (resp. dissipativity) of conservative (resp. dissipative)
systems (see [CGM+12]). One can also refer to [Hél11] where it has been shown that the bilinear
transform doesn’t always guarantee the dissipativity of nonlinear filters (whether time-varying
or not). Furthemore, the interrest of generalizing the Average Discrete Gradient to algebraic
potentials has been shown in [MH18]. As an important side-effect, the AVF method can also be
interpreted as a first-order instance of anti-derivative antialiasing [BEPV17].

The Average Vector Field method Let Ω = [t0, t0 + h] be a time-step, x ∈ P1(Ω→ Rn) a
locally affine trajectory parametrized by the normalized variable τ ∈ [0, 1]

x(t0 + hτ) = x0 + τ(x1 − x0). (7.38)

Introduce the averaging projector A, defined for all functions f : Rn → Rn or operators f : H → H,
where H is a functional space from Ω→ Rn, by

(A f)(x) :=

ˆ 1

0
f(x(t0 + hτ)) dτ. (7.39)

For the time derivative and identity operators, one gets first order finite difference and average

ẋ :=

(
A d

dt

)
x =

x1 − x0

h
, x̄ := (AI)x =

x0 + x1

2
. (7.40)

For ∇N , using the gradient theorem, this gives the average discrete gradient

∇N(v0, v1) := (A∇N)(v0 + τ(v1 − v0)) =


N(v1)−N(v0)

v1 − v0
v0 6= v1

∇N(v0) v0 = v1

. (7.41)

Computing its derivative with respect to v1 leads to the discrete pseudo-Hessian

∂∇N
∂v1

(v0, v1) =


∇N(v1)−∇N(v0, v1)

v1 − v0
v0 6= v1

1

2
∇2N(v0) v0 = v1

. (7.42)

One can refer to [MH18], where the discrete gradient’s derivative is also used for numerical
simulation. Note that the average discrete gradient of the nonlinearity ∇N is continuously
derivable for v0 6= v1, while ∇N is not.

Averaged state space system Applying the averaging projector A to (7.36), leads to the
structure-preserving discrete algebraic systemẋ = ω

[
Ax̄+ Bū− F∇N(Cx0,Cx1)

]
ȳ = Cx̄

. (7.43)

Solving the linear part for x1 gives the discrete state-space update

x1 = Adx0 + Bdū− Fd∇N(Cx0,Cx1), (7.44)

with the normalised pulsation ωd = hω and

Ad = D−1

(
I +

ωd
2

A

)
, Bd = D−1(ωdB), D =

(
I− ωd

2
A

)
, Fd = D−1(ωdF). (7.45)
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Simulation

Simulation results 10 are shown on figures 7.13 and 7.14 and exhibit a very close match with
offline simulations performed in LTspice. To solve (7.44), one can either use the simple fixed-point
iteration, or Newton’s method.

Fixed-point iteration A simple numerical scheme is to look for the fixed-point x1 = φ(x1) of
the pre-conditioned fixed-point function

φ(x1) := Adx0 + Bdū− Fd∇N(Cx0,Cx1), (7.46)

with the fixed-point iteration
xk+1

1 = φ
(
xk1

)
, x0

1 = x0. (7.47)

A sufficient convergence condition is detailed in appendix D.9.2.
In practice, thanks to the non linear feedback splitting in (7.33), when the OPA is in the

linear regime, ∇N = 0. Then the iteration reduces to an explicit one-step trapezoidal integrator
and converges in only one iteration.

Newton iteration To accelerate convergence, one can use Newton’s method [Deu11] as follows:
define the auxiliary function

ϕ(x1) = x1 − φ(x1), (7.48)

and look for the root x∗1 such that ϕ(x?1) = 0 with the Newton iteration

xk+1
1 = xk1 −

(
ϕ′(xk1)

)−1
ϕ(xk1), x0

1 = x0. (7.49)

where the Jacobian of ϕ is given by

ϕ′(x1) = I + FdC
∂∇N
∂v1

(Cx0,Cx1). (7.50)
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Figure 7.13 – SKF filter response to a square wave input with sampling frequency fs = 44.1kHz,
C = 4.7nF, cutoff fc = 1kHz (R = 33.8kΩ), Q = 10, asymmetric saturation V+ = 15V, V− = 0V
and different fundamental frequencies. The non linear SKF response is shown in solid blue, with
the linear SKF response in dashed red for reference.

10. Sound examples and LTspice files are available at the accompanying website: https://github.com/
remymuller/dafx19-opa.

https://github.com/remymuller/dafx19-opa
https://github.com/remymuller/dafx19-opa
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Figure 7.14 – Comparison between the proposed model, LTspice’s universal OPA level.2 and the
LT1366 opamp. The proposed model output is almost indistinguishable from LTspice’s universal
model, whereas the tuning of the LT1366 is slightly different because of dissipation.
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Figure 7.15 – Spectrogram responses to a sine sweep for fc ∈ {1000, 2000, 4000} Hz. Intermod-
ulation between the input and the resonance is noticeable.
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Conclusions and perspectives

In this paper, a static, passive, black-box model of the operational amplifier with explicit
power supply has been examined. It is suitable for the modelling of audio circuits and simple
enough for real-time simulation. Furthermore the explicit modelling of external power supply
ports allows the use of non-ideal voltage sources.

The choice has been made to ignore internal dissipation to keep the model minimal. However,
non-ideal characteristics such as input and output impedance or power supply voltage drop can
be achieved by modular composition of the model with other circuit elements. This will be the
topic of further research.

The non inverting amplifier is also derived as a dedicated building block. Numerical simulations
justify the use of an infinite OPA gain to get an explicit formulation. Having a pre-solved amplifier
model also greatly simplifies its use in electronic circuits, avoiding numerical stiffness and high
index DAE.

Finally, the amplifier is used for audio simulations to model a saturating Sallen-Key lowpass
filter of second order. A reduced state-space model is derived from the circuit schematic, and
a struc-ture-preserving discretization is performed using the average vector field method. A
comparison with LTspice shows that our results are very close to those of more complex macro
models.

The perspectives of this study are a) modelling other non-ideal OPA characteristics such
as finite slew-rate and bandwidth, current and voltage offsets, non-zero common-mode input
gain. . . b) studying the behaviour of the model in other typical circuits (oscillator, rectifier,
comparator) and c) experimental comparison with specific devices such as the common µA741, or
TL072 audio OPAs which are not rail-to-rail opamps.
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7.2 A passive fully differential amplifier model with infinite gain

This section deals with the pH modelling of fully-differential operational amplifiers having
symmetric power supply, infinite gain, and differential input and output. This component is
common in textbooks, but usually, the power supply port is not represented (and passivity not
addressed). Moreover, the linear or saturation behaviours are usually modelled separately, on a
case-by-case basis. The model proposed below solves this problem. To this end, the model of
section 7.1 is extended to the case of a differential output and simplified to the degenerated case
of an infinite differential gain (and symmetric power-supply).

This limit case yields a multi-valued relation (see subsection 7.2.1 and appendix A p.271) that
requires special care for numerical simulation. In this thesis, we do not consider solvers based
on non-smooth dynamics and differential inclusions (see [AB08]). Instead, in subsection 7.2.2,
we propose an alternative strategy based on implicit continuous parametrisation of the idealised
amplifier relation (see definition 1.21 p.28). This follows the approach that we proposed in [MH20]
and exploits the fact that the nonlinear law is in fact geometrically C0-continuous.

7.2.1 Ideal Fully Differential Amplifier (FDA) model

−

+ −

+

iI

vI

iO

vO

iS

vS

Figure 7.16 – (FDA) Ideal non-energetic Fully Differential Amplifier 3-port.

In this section, compared to section 7.1, we assume the following additional hypothesis:
• the supply voltages are symmetric vS+ = −vS− = vS ,

• the output port is no longer referenced to the ground,

• we consider the limit case of the amplification gain K →∞,
Moreover, using the common-differential variable change introduced in section 2.5 p.73, because of
symmetries (e.g. eΣ

S = e+
S +e−S = 0 on fig. 7.3 p.176), the common-mode input and common-mode

power supply have no influence on the model behaviour. We can reduce the FDA to a 3-port. We
label ports {I, S,O} for Input, Supply, Output, satisfying the set relations (see appx A p.271)

iI ∈ {0} (infinite input impedance) (7.51a)
vO ∈ vS sign(vI) (saturating fully differential amplifier) (7.51b)

vIiI + vSiS + vOiO ∈ {0} (conservative power balance) (7.51c)

Rewriting (7.51a)-(7.51c) yields iS ∈ − sign(vI)iO, which we summarize by the vector relation
iI

vO

iS

 ∈

. . .

. . sign(vI)

. − sign(vI) .



vI

iO

vS

 , where sign(x) :=


{−1} x ∈ (−∞, 0),

(−1, 1) x ∈ {0} ,
{1} x ∈ (0,+∞).

(7.52)
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When solving circuits with (7.52), we may distinguish two situations:

• Either vI 6= 0, the amplifier is in saturation mode (black curve in figure 7.17). Then vO is
single-valued and equal to either vS or −vS . This corresponds to the situation where the
amplifier is used as a comparator to implement flip-flops, Schmidt triggers, etc.

• Or vI = 0, the amplifier is in the vertical branch of the sign relation (red curve). This
corresponds to infinite amplification. We call it the singular nullor mode (see [Car64, Mar65,
Tel66, OU80]). This situation is very common. It is used to implement voltage buffers,
virtual grounds, active filters, etc. Although vO (and iS) appear as multi-valued functions
of vI , in practice, a unique operating point is imposed by the external circuit.

The next sub section proposes a single-valued parametric representation to overcome the apparent
difficulty of dealing with this multi-valued property.

1 0 1
vI

vS

0

vS

v O

Figure 7.17 – (FDA) Ideal law in the (vI , v0)-plane expressed as a multi-valued function.
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Figure 7.18 – (FDA) Ideal law in (vI , v0, λ1) coordinates. The law is represented by an implicit
C0-continuous map λ 7→ (iI , iO, iS , vI , vO, vS) parametrised by λ = (λ1, λ2, λ3).
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7.2.2 Continuous parametrisation

The (non-energetic 11) relation (7.52) between (vI , iO, vS) ∈ R3 and (iI , vO, iS) ∈ R3 is multi-
valued and may seem difficult to simulate. But this equation hides that the FDA admits a
continuous geometrical description . The underlying continuous 3D manifold in this R3×R3-space
can be described by the following parametric description (recall def. 1.21 p.28).

Introduce parameters λ = (λ1, λ2, λ3) ∈ Λ = R3 to relate the currents i = (iI , iO, iS) ∈ R3

and voltages v = (vI , vO, vS) ∈ R3 of the FDA according to the single-valued relation

RFDA =

(i,v) ∈ R3 × R3 |


iI

iO

iS

 = λ2


0

1

−µ(λ1)

 ,

vI

vO

vS

 = λ3


µ∗(λ1)

µ(λ1)

1

 , ∀λ ∈ Λ

 . (7.53)

where the complementary modulation functions 12 µ, µ∗ are defined by

µ(x) :=


−1 x ≤ −1

x x ∈ (−1, 1)

1 x ≥ 1

, µ∗(x) := x− µ(x) =


x+ 1 x ≤ −1

0 x ∈ (−1, 1)

x− 1 x ≥ 1

, (7.54)

and for which equations (7.51a)-(7.51c) are satisfied: this is obvious for (7.51a), straightforward
for (7.51b) (compare also the (vI , vO)-planes of figures 7.17 and 7.18), and the (non-energetic)
power balance (7.51c) is pointwise satisfied since

vI · iI + vO · iO + vS · iS = µ∗(λ1)λ3 · 0 + λ2λ3µ(λ1)− µ(λ1)λ2λ3 = 0.

Description (7.53) (see fig. 7.20) shows that λ2 and λ3 are respectively controlled by iO and vS
(iO = λ2 and vS = λ3). Because of the dual complementary functions µ, µ∗ (see figure 7.19),
parameter λ1 is alternatively controlled by vI in saturation mode and vO in Nullor mode (but it
still corresponds to a single one-dimensional constraint). This description can be reformulated as
the single-valued relation (to be compared to the multi-valued one (7.52))

iI

vO

iS

 =


. . .

. . µ(λ1)

. −µ(λ1) .



vI = µ∗(λ1)λ3

iO = λ2

vS = λ3

 . (7.55)

An important property of (7.55) is that, contrary to (7.52), it is now explicit that for all λ1 (for
both linear and saturation modes) there exists a unique pair (vO, iS) and not a multi-valued set

Discussion: Nullors and computational causality To simplify circuit design and analysis,
a common practice in electronic engineering is to use OPA in nullor mode, that is, to impose
the double constraint iI = 0, vI = 0 (while iO and vO are unconstrained). But, as mentioned
by Breedveld [Bre85, V.4], it is physically impossible to impose or control both effort and flow
of one port. So, is the nullor mode paradoxical? How shall we interpret its double contraint
iI = 0, vI = 0? To reconcile both viewpoints, thanks to (7.53), one can remark that the current
constraint iI = 0 is inherent to the device (it must be considered as an output of the FDA since
it cannot be controlled whatever the mode). Conversely, vI is an input of the device determining

11. See (7.51c) and references [WC77], [Bre85, VII.4] for the theory of nonlinear non-energetic n-ports.
12. Note the complementarity µ′ + (µ∗)′ = 1 and the Legendre transform duality

´ x
0
µ dx+

´ x
0
µ∗ dx = 1

2
x2.
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its modes (through λ1). The case vI = 0 is a consequence of the circuit operating point. It holds
only if vO can be maintained in (−vS , vS) out of the saturation mode. Indeed, as soon as vO
saturates, vI is no longer zero. In practice, the Nullor mode region can be extended at will by
increasing the supply voltage vS . A clear analysis of causality arises by reformulating the FDA
according to input-output common-differential ports introduced in subsection 7.2.3 p.194.
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Figure 7.19 – (FDA) Dual functions µ, µ∗ (left) and their derivative (right) used to implicitly
parametrise the FDA relation (7.53). Note that similar functions have already been used (without
being formalised) in figure 7.12 for the OPA.
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Figure 7.20 – (FDA) Ideal laws in the (vS , λ1, vO)-space (left) and (vS , λ1, vI)-space (right).
Note that, according to (7.53), these laws are independent of the output current iO and corresponds
to a continuous function (vS , λ1) 7→ (vO, vI) and remind that vS = λ3.
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Figure 7.21 – (FDA) Voltage buffer. This examples shows a physical interpretation for the
input-output common mode voltage (vΣ = vO + vI) which is equal to the buffer input u.
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7.2.3 Explicit formulation using common and differential ports

The understanding of causality is greatly simplified by switching to the unconventional 13

common and differential ports {Σ,∆} built from input and output ports {I,O}. Indeed we show
that parameter λ1 can be explicitly controlled from the sum of input and output voltages 14

(see fig.7.21). Using theorem 2.5 (p.73), we perform the power-preserving port variables change
{I,O} 7→ {Σ,∆} between input and output variables. We introduce the quantities

vΣ := vO + vI , iΣ :=
1

2
(iO + iI) , (7.56a)

v∆ := vO − vI i∆ :=
1

2
(iO − iI) . (7.56b)

to form the alternative R3×R3 system of coordinates given by currents ĩ = (iΣ, i∆, iS) ∈ R3, and
voltages ṽ = (vΣ, v∆, vS) ∈ R3. Substituting (7.56a) (7.56b) into equation (7.53) yields

vΣ = λ1vS , v∆ = (2µ(λ1)− λ1)vS , iΣ = iO/2, i∆ = iO/2.

This shows that we can control parameter λ1 (in (7.53)) from the (input-output) common mode
voltage vΣ and the power supply voltage vS , while the map i∆ 7→ iΣ is just the identity. We
consider the differential mode v∆ as an output and the common mode vΣ as an input (see fig.7.21).
By consequence the relation in eq. (7.53) can be written as the explicit skew-symmetric map

RFDA =

(̃i, ṽ) ∈ R3 × R3

∣∣∣∣∣∣∣∣∣∣


iS

iΣ

v∆

 =


. . −2µ(λ1)

. . 1

2µ(λ1) −1 .



vS

vΣ

i∆

 , λ1 =
vΣ

vS

 . (7.57)

We see on figure 7.22b that increasing the power supply voltage vS increases the nullor region
(vΣ = v∆ ⇐⇒ vI = 0), whereas in saturation (|vΣ| > |vS |) the output v∆ is reflected about ±vS .
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(b) 3D (vΣ, vS) 7→ v∆

Figure 7.22 – (FDA) causal map in input-output Σ-∆ coordinates.

13. Common and differential modes in electronics are usually associated with positive and negative symmetries
such as power supply or input ports in traditional OPA. Here we consider input-ouput variable changes.
14. Co-incidently, in the final stage of redaction, we found that "across-ports" wave-variable changes have just

been proposed in [BMS20], precisely to handle operational amplifiers in WDF.
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7.3 Towards a grey-box passive model of the OPA

In previous sections, we have considered nonlinear but idealised black-box OPA model
with conservative memoryless saturating behaviour. To increase realism, additional non-ideal
behaviours should be accounted for, such as those quantified in datasheets: finite gain-bandwidth
product, slew-rate, internal dissipation, finite input impedance, non-zero output resistance, etc.
As an alternative to a full physical modelling (of a dozen of transistors), this section opens a way
towards a grey-box oriented pH modelling with an affordable simulation cost.

Some phenomena (such as input and output impedance, power-supply voltage drop, etc)
can be modelled by composing the ideal OPA models with resistors, diode and capacitors (see
[BPCS74, WDR+16]). However bandwidth, slew-rate and internal dissipation, require a finer level
of description. A possible approach (common in the literature [SS98, CDK87]), is to use a 3-stage
model (see figure 7.23): first a differential amplifier behaving like a (saturating) voltage-controlled
current source; second a dynamic stage responsible for bandwidth (in linear mode) and slew rate
(in saturation); and third a unity gain push-pull output distributing power from the supply port
to the output load. A main difference with common modelling approaches in [Chu75, p.111]
or [BPCS74] is that our proposition does not make use of voltage or current controlled sources
to model sub-components but explicitly models power-supply ports and passivity. Due to time
constraint, our full modelling is not complete. We propose to use OPA building blocks as shown
in figure 7.24 and an explicit model of a BJT push-pull for large-signals is detailed in appendix
D.9.3 p.302. Minimal pH models of these blocks will be completed in future work.

Differential
Input
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IN+

Dynamics Push-Pull
output O

S+

S−

Figure 7.23 – (OPA, grey box model) structure of the macro model. Terminals are considered
as ports by referencing them to the ground (not necessarily connected to the OPA).
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Conclusion

In this chapter, we have proposed a minimal memoryless non-energetic model of the operational
amplifier compatible with the the pH formalism. Surprisingly, despite the amount of (more
advanced) publications on the subject and the abundant usage of OPA in electronics, we have not
found in the literature such a nonlinear model, that is both energy-balanced and simple enough
for standard use in most circuits. In order to stay within the PHS modelling framework, we
had to propose a new model. Explicit modelling of power supply ports and saturation is a key
ingredient to derive passive models and allows the modelling of non-ideal power-supply circuits
(possibly modulated by the current of the output load).

As a further simplification and an alternative to pure nullors, we propose a 3-port fully
differential amplifier with infinite gain. It includes (i) both nullor and saturation modes as special
cases of a general relation (ii) a non-energetic memoryless modelling with an explicit port to
model the power supply. To avoid the use of multi-valued relations, we propose a 3-dimensional
implicit parametrisation of the component relation. This parametrisation is directly compatible
with the simulation framework proposed in this thesis (chapter 5 p. 117), and in particular the
fully implicit approach that we proposed in [MH20]. Other applications and simulations can be
found in chapter 8.

Finally, the outline of a 3-stages grey-box pH model including slew-rate, finite gain-bandwidth
and dissipation is sketched in section 7.3. The first steps to achieve this work have been developed:
a common structure, candidate circuits for building blocks and an exact explicit input-output
relation for a simplified BJT push-pull for large signals (see the technical details in appendix D.9.3
p.302). This preliminary result shows that an exact white-box modelling, although achievable,
can quickly become overwhelmingly complex and does not scale with a high number of algebraic
components. Due to time constraints, the derivation of simple and efficient pH realisations of the
passive OPA building blocks from figure 7.23 (keeping the minimalist approach of [MH19]) is left
for future research. Finally applications and simulation of circuits containing OPA are detailed in
the next chapter.
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In this chapter, we consider a number of electronic audio circuits, chosen as representatives
of the common situations and difficulties encountered when trying to simulate virtual analog
audio circuits. All circuits are analysed and modelled systematically as pHS using the tools from
chapters 1 and 2 (using both pH-DAE et pH-ODE formulations). We repeat the same process for
each example in order to exhibit the common modelling steps as well as the different modelling
and simulation strategies. The nonlinear systems are then discretised using the power-balanced
projection methods from chapter 5 p.117 and solved using Newton iteration.

In section 8.1, we address the simulation of stiff pH-DAE with a variant of the classical
FuzzFace circuit, a canonical design for fuzz guitar sounds.

In section 8.2, we merge the diode clipper circuit (already studied in chapters 2 and 5) with
the tone-stack of the BigMuff Pi guitar pedal to produce a nonlinear tonestack (pH-ODE).

In section 8.3, we simulate the drive stage of the Tube Screamer guitar pedal. This is the
occasion to consider a typical pattern used by electronic designers, namely overdrive amplifiers
which saturates the feedback path of amplifiers. This is also the occasion to revisit the op amp
model from chapter 7 in a different context.

In section 8.4, we consider a building block of analog synthesizers: we revisit the Sallen-Key
filter topology from chapter 7, in this variant, the circuit uses 3 operational amplifiers to buffer
stages and a nonlinear overdrive saturation in the feedback path (similar to the one of the
TubeScreamer). These slight modifications can yield drastic changes to the sound and salient
features of the filter such as self-oscillations and inter-modulations.

In section 8.5, we consider the FitzHugh-Nagumo relaxation oscillator which exhibit a limit
cycle. With this circuit, we look more closely at the tunnel diode. This is an example of passive
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component with a non-monotonous characteristic. The locally negative incremental resistance is
the key ingredient used to favour the emergence of a limit cycle with both stable and non-stable
equilibrium points. This is also the occasion to look at a system combining a slow dynamic
(determining the period of oscillations) and fast relaxations when switching between stable states.

Finally in section 8.6, we consider a classical passive peaking equalizer whose resonance
frequency is much higher than the sampling rate. Such a situation is traditionally solved through
oversampling. By contrast, this use case is an opportunity to study the spectral properties of
high-order projection methods from chapter 5 p.117. In particular, we look at their extended
bandwidth using generalised sampling theory and compare with the oversampling approach.

Remark 8.1. All examples a in this chapter follow the same systematic derivation process
schematic → netlist → semi− explicit hybrid dirac structure → reduced dissipative structure.
This process is detailed in figure 2.1 p.44. In step 3, to emphasize the sparse block-structure
of J matrices, port-Hamiltonian systems are standardized under the following semi-explicit
tree / cotree form (see (2.18) p.55)

 iT

vL

 =

 0 − CL

CL
T

0

 VT (iT )

IL(vT )

 ≡ J =


vT iT

iT 0 −CL

vL CT
L 0

,

where algebro-differential operators VT , IL respectively stand for component laws of

current-controlled tree branches and voltage-controlled cotree branches (links) and CL is
the link cutset matrix obtained from circuit incidence matrices according to eq. (2.15) p.55.

As a further simplification, in step 4, linear resistive branches are pre-solved to canonically
obtain the following resistive tree/cotree formulation

 iT

vL

 =

 GT − α T

α RL

 VT (iT )

IL(vT )

 ≡ M =


vT iT

iT GT −αT

vL α RL

,

where GT is the tree conductance matrix, RL is the link resistance matrix and α is a
tree/cotree matrix transformer ratio (see subsection 2.3.4 p.60). These two forms can be
directly simulated thanks to our passivity-preserving projection theorem 5.1 p.119. Finally,
adhoc reduction to ODE or DAE subsets is performed where appropriate.

For simplicity of exposition, power-balanced simulations are obtained using discretisation
by projection with RPM(1,0) b (see definitions 5.1 p.122 for pH-ODE and 5.2 p.123 for
pH-DAE).

a. Except in the MS-20 example: due to the high number of branches (34), we use nodal analysis to jump
straight to the most reduced formulation.

b. Projection order p = 1, regularity order k = 0 (equivalent to the average vector field method).

Remark 8.2 (Practical existence / uniqueness conditions and Newton convergence). Exis-
tence / uniqueness conditions have been studied in 5.2.3 p.127 for pH-ODE and (partially) in
5.3.2 p.135 for pH-DAE. However sharp practical conditions are still missing. Indeed, while
practical convergence is always observed in presented simulations, theoretical convergence
bounds are either missing, or too restrictive, in particular for stiff systems. For this reason,
convergence conditions will not be detailed in upcoming examples. This important but
difficult topic is left for future research.
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8.1 Fuzz Face (NPN variant)
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Figure 8.1 – (NPN Fuzz Face) Schematic. The chosen spanning tree T (current-controlled) is

shown in blue. Complementarily, its cotree T (voltage-controlled) is shown in orange.

The Fuzz Face is an effect pedal for electric guitar designed to produce a distorted fuzz
sound (reminiscent of the buzzing sound of damaged speakers 1). It was conceived in 1966 by
Arbiter Electronics Ltd and made famous by guitarists such as Jimi Hendrix (with custom
modifications made by Roger Mayer), David Gilmour (Pink Floyd), Pete Townshend (The Who).
The original design uses Germanium PNP transistors (positive ground, negative voltage source).
A number of imitations, tribute and modifications have been proposed: Vox Tone bender, Mike
Fuller’s ’69 Fulltone or more recently ZVEX Woolly Mammoth. The circuit has been studied in
[COCR09, DZ11a, HHVW17, Hol19]. Here, we consider the NPN 2 variant of figure 8.1 which is
obtained by replacing PNP by NPN transistors and inverting the power supply. For simulation, we
use 2N3904 transistors with parameters IS = 10 fA, βF = 300 and βR = 4 using the memoryless
Ebers–Moll model. This circuit is an opportunity to see that in electronics, many components are
resistors. But since the majority are linear, a significant reduction in the number of unknowns
can be achieved by pre-solving linear constraints (the price to pay is denser matrices). As often
in electronics, this circuit yields a pH-DAE that is not explicitly convertible to a pH-ODE. This
is the occasion to look at the direct simulation of pH-DAE on a real circuit.

1. The song Rocket 88 by Ike Turner and Jackie Brenston is often credited as the first "rock and roll" song
featuring a damaged speaker. The songs Rumble by Link Wray and You really got me by The Kinks also feature
speakers damaged on purpose to obtain a fuzz sound.

2. The Woolly Mammoth is also NPN.
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Theory of operation As the behaviour and the design of the Fuzz Face are well documented,
we only provide a short description. It can be roughly described as a (voluntarily badly biased)
two stages common-emitter transistor amplifiers with feedback. The biasing is responsible for
asymmetrical clipping and even harmonics generation. The cascade of two transistors was used
(before OPA) to achieve a higher distortion gain. For more details, see reference [Ele20a].

Incidence matrix For the chosen orientation of branches 3, the incidence matrix (definition
2.12 p.49) of the graph corresponding to the fuzz face schematic (figure 8.1) is given by

A =



IN CC C1 C2 C3 R1 R3 R4 R6 R2 Ra5 Rb5 BC1 BE1 BC2 BE2 OUT

0 −1 −1 . −1 . . . . −1 . . −1 . −1 . . −1

1 +1 . +1 . . . . . . . . . . . . . .

2 . . −1 . . . . +1 . . . . +1 +1 . . .

3 . . . . . −1 . . . . . . −1 . +1 +1 .

4 . +1 . . . +1 . . . +1 . . . . . . .

5 . . . . +1 . +1 . . −1 . . . . . . .

6 . . . . . . −1 . . . . . . . −1 . .

7 . . . . . . . −1 . . +1 . . . . −1 .

8 . . . +1 . . . . . . −1 +1 . . . . .

9 . . . . −1 . . . +1 . . . . . . . 1



Branches B

.

Dirac structure Using the causality assignment procedure detailed in subsection 2.3.3 p.57,
we select the minimum spanning tree (def. 2.9 p.48) T = {IN,CC,C1, C2, C3, R1, R3, R4, R6},
to split branches B into a current-controlled tree T and voltage-controlled cotree T (links).
From the incidence matrix A, using equation (2.15) p.55, we obtain the link cutset matrix CL

so that the circuit is described by the reduced hybrid Dirac structure (def. 2.21 p.55)

J =



vIN vCC vC1 vC2 vC3 vR1 vR3 vR4 vR6 iR2 iRa
5

iRb
5

iBC1 iBE1 iBC2 iBE2 iOUT

iIN . . . . . . . . . 0 −1 0 −1 −1 0 +1 0

iCC . . . . . . . . . −1 0 0 +1 0 −1 −1 0

iC1
. . . . . . . . . 0 +1 0 +1 +1 0 −1 0

iC2
. . . . . . . . . 0 +1 −1 0 0 0 0 0

iC3
. . . . . . . . . +1 0 0 0 0 +1 0 0

iR1
. . . . . . . . . 0 0 0 −1 0 +1 +1 0

iR3
. . . . . . . . . 0 0 0 0 0 −1 0 0

iR4
. . . . . . . . . 0 +1 0 0 0 0 −1 0

iR6
. . . . . . . . . +1 0 0 0 0 +1 0 −1

vR2
0 +1 0 0 −1 0 0 0 −1 . . . . . . . .

vRa
5

+1 0 −1 −1 0 0 0 −1 0 . . . . . . . .

vRb
5

0 0 0 +1 0 0 0 0 0 . . . . . . . .

vBC1
+1 −1 −1 0 0 +1 0 0 0 . . . . . . . .

vBE1
+1 0 −1 0 0 0 0 0 0 . . . . . . . .

vBC2
0 +1 0 0 −1 −1 +1 0 −1 . . . . . . . .

vBE2
−1 +1 +1 0 0 −1 0 +1 0 . . . . . . . .

vOUT 0 0 0 0 0 0 0 0 1 . . . . . . . .



vT
iT

iT

vT

−CL

CT
L

.

Note that the canonical separation between tree and link/cotree variables has been emphasised

by the ordering of component: tree currents iT (left) can only exchange with cotree currents

iT (right), while cotree voltages vT (left) can only exchange with tree voltages vT (right).

3. Using the receiver convention, branch currents are oriented from positive nodes (+1) to negative nodes (−1).
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Reduced dissipative structure To simplify simulation, we eliminate linear resistive branches{
R1, R3, R4, R6, R2, R

a
5, R

b
5

}
by solving the corresponding linear resistive constraints, (see sub-

section 2.3.4, p.60 and [FH16a, Fal16, Lop16]). Reducing linear resistive relations, the Dirac
structure matrix J is replaced by the (hybrid) linear dissipative structure 4 matrix

M =



vIN vCC vC1 vC2 vC3 iBC1 iBE1 iBC2 iBE2 iOUT

iIN −G11 . G11 G11 . −1 −1 . α14 .

iCC . −G22 . . G22 +1 . −α23 −1 −α35

iC1 G11 . −G11 −G11 . +1 +1 . −α14 .

iC2 G11 . −G11 −G44 . . . . α45 .

iC3
. G22 . . −G22 . . α23 . α35

vBC1 +1 −1 −1 . . −R1 . R1 R1 .

vBE1 +1 . −1 . . . . . . .

vBC2 . α23 . . −α23 R1 . −R33 −R1 R35

vBE2 −α14 +1 α14 −α45 . R1 . −R1 −R44 .

vOUT . α35 . . −α35 . . R35 . −R35



, (8.1)

where the conductances, gains and resistances parameters are

G11 =
1

R4 +Ra5
, G22 =

1

R2 +R6
, G44 =

R4 +Ra5 +Rb5
Rb5
(
R4 +Ra5

) ,
α14 =

Ra5
R4 +Ra5

, α23 =
R2

R2 +R6
, α35 =

R6

R2 +R6
, α45 =

R4

R4 +Ra5
,

R33 =
R2R6 + (R1 +R3) (R2 +R6)

R2 +R6
, R35 =

R2R6

R2 +R6
, R44 =

R1

(
R4 +Ra5

)
+R4R

a
5

R4 +Ra5
.

Note that it is structured into a skew-symmetric part and a dissipative part of the form

M =

 0 − α T

α 0

−
 G 0

0 R

 ,
where G = GT � 0 denotes the tree conductance matrix and R = RT � 0 the cotree resistance
matrix, while α plays the role of adimensioned multi-dimensional transformer ratio (whose
values have a magnitude less or equal to 1, see example 1.4 p.7). Since nonlinear transistor
elements are coupled instantaneously through the (positive semi-definite) resistive matrix R,
further reduction to an explicit pH-ODE would require the implicit function theorem. Instead we
use direct pH-DAE simulation implemented as follows.

pH-DAE Discretization We identify equations corresponding to implicitly defined variables

x =
[
iC1, iC2, iC3 , vBC1, vBE1, vBC1, vBE2

]T
.

Once these variables are solved, then iIN , iCC and vOUT are also determined (by rows 1,2,10
in (8.1)). To keep notation simple and for space reasons, we focus on the first order Average
Vector Field (RPM methods with p = 1, k = 0) whose projector P : L2(Ω) → P0(Ω), denotes

4. Please refer to corollary 5.2 p.120 for the power balanced projection of linear dissipative structures.
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projection on the space of constant functions 5. We denote ū the average projection coefficient of
a function u(t) over a time step (t0, t0 + h) so that (Pu)(t) = 1Ω(t) · ū. For linear capacitors and
an affine temporal model of charge q(t) = q0 +

´ t
0 ī(s) ds, the projected effort law V C , is

V C(q0; īC) := P

 1

C

(
q0 + h

ˆ t

0
īC(s) ds

) =
q0

C
+

h

2C
īC . (8.2)

For bipolar transistors (ex. 1.10 p.32), and (only for) piecewise constants signals v̄BC , v̄BE , the
projected law equals the original nonlinearity (evaluated for the averaged voltages)IBC(v̄BC , v̄BE)

IBE(v̄BC , v̄BE)

 =

γR −1

−1 γF

pn(v̄BC)

pn(v̄BE)

 .
Splitting M, in equation (8.1), according to inputs ū = (v̄IN , v̄CC) and unknown variables x, and
using the law of the output open circuit (iOUT = 0 in fig. 8.1), we obtain the following discrete
algebraic equations 6

x̄ = Ãē(x̄) + B̃ū, (8.3)

where matrices Ã and B̃ (extracted from M according to x̄ and ū) are

Ã =



−G11 −G11 . +1 +1 . −A14

−G11 −G44 . . . . A45

. . −G22 . . A23 .

−1 . . −R1 . R1 R1

−1 . . . . . .

. . −A23 R1 . −R33 −R1

A14 −A45 . R1 . −R1 −R44


, B̃ =



G11 .

G11 .

. G22

+1 −1

+1 .

. A23

−A14 .


,

and where the projected variables x̄, ū and projected laws ē(x̄) are

x̄ =



īC1

īC2

īC3

v̄BC1

v̄BE1

v̄BC2

v̄BE2


, ē(x̄) =



V C1(q0
C1

; īC1)

V C2(q0
C2

; īC2)

V C3(q0
C3

; īC3)

IBC1(v̄BC1, v̄BE1)

IBE1(v̄BC1, v̄BE1)

IBC2(v̄BC2, v̄BE2)

IBE2(v̄BC2, v̄BE2)


, ū =

 v̄IN

v̄CC

 .

First, (8.3) is solved using Newton iteration by looking for the root of F (x̄) = 0, where

F (x̄) = x̄− Ãē(x̄)− B̃ū.

Then we compute v̄OUT from x̄ and the observer equation (the last row of M in (8.1))

v̄OUT = A35 (v̄CC − v̄IN ) +R35IBC2(v̄BC2, v̄BE2).

5. See example 5.5.2 from chapter 5 for generalisations to higher projection order.
6. Note that, since capacitors are linear, one could further reduce the size of the algebraic equations to the four

nonlinear transistor branches. We do not perform this reduction to show the interaction between (discretized)
differential and algebraic equations.
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Figure 8.2 – (NPN Fuzz Face) simulation for a sine input with magnitudes {2, 5, 10, 20} mV,
frequency f0 = 200 Hz and sampling rate fs = 44.1 kHz. Note the asymmetrical distortion. The
fuzz sound is roughly characterised by the transformation of the input into a (filtered) square
wave with uneven pulse width. Convergence is reached after 1 to 5 iterations (1.671 on average).
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Figure 8.3 – (NPN Fuzz Face) Overlay of simulations from figure 8.2. As expected, we observe
gradual asymmetrical clipping of the waveform as the gain is increased (consistent with SPICE).
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8.2 Big Muff tone clipper

In this section we consider a nonlinear filter designed by simply merging the circuit of the
original Big Muff π tone filter (red+blue) with the circuit of a diode clipper (green part on
fig. 8.4). This non-trivial circuit is chosen for its relative simplicity, for the commonness of its
constituent parts and because it can be reduced to a pH-ODE.

vIN

R1

27k

iR1

C110n
iC1

C2

10n

iC2

R2 27k

iR2

R3

vOUT

100k
Morph

iD

1

2

3

4

Figure 8.4 – (BMP Tone clipper) Schematics. Current-controlled spanning tree T shown in

blue. Voltage-controlled cotree branches T in orange.

Theory of operation The BigMuff π tone circuit consists of a passive cross fade (through
resistor R3: Ra3 = mR3, Rb3 = (1−m)R3, m ∈ [0, 1]) between a first order lowpass filter (R1, C1)
(red block in fig. 8.4) and first order highpass filter (R2, C2) (blue block). As the combination of
both circuits is unbuffered, the two filters interact. Moreover, the output voltage of the lowpass
filter R1, C1 is clipped by diodes D1, D2 (in green) but since the circuit is passive, it also influences
the high pass filter branch in a nonlinear way. As a result (see figure 8.5), the lowpass and
highpass branches roughly produce smoothed square and triangular voltages respectively (for a
sinusoidal input).

Incidence matrix The incidence matrix of the BMP graph shown on figure 8.4 is given by

A =



IN C1 C2 Rb3 R1 R2 Ra3 D OUT

0 −1 −1 . . . −1 . −1 −1

1 +1 . +1 . +1 . . . .

2 . +1 . −1 −1 . . +1 .

3 . . −1 . . +1 +1 . .

4 . . . +1 . . −1 . +1


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Dirac structure We select a spanning tree T = {IN,C1, C2, R
b
3} to obtain the following Dirac

structure matrix (encoding Kirchhoff laws)

J =



vIN vC1 vC2 vRb3
iR1 iR2 iRa3 iD iOUT

iIN . . . . −1 −1 −1 0 0

iC1 . . . . +1 0 +1 −1 −1

iC2 . . . . 0 +1 +1 0 0

iRb3
. . . . 0 0 +1 0 −1

vR1 +1 −1 0 0 . . . . .

vR2 +1 0 −1 0 . . . . .

vRa3 +1 −1 −1 −1 . . . . .

vD 0 +1 0 0 . . . . .

vOUT 0 +1 0 1 . . . . .



.

Reduced dissipative structure The reduction of linear resistive relations yields the linear
dissipative structure matrix

M =



vIN vC1 vC2 iD iOUT

iIN −G11 −G12 −G13 0 −α21

iC1 −G12 −G22 −G23 −1 −α22

iC2 −G13 −G23 −G33 0 −α23

vD 0 +1 0 0 0

vOUT α21 α22 α23 0 −R22


, (8.4)

where the tree conductance matrix G , cotree resistance matrix R and transformation ratio
α are

G =


R1R2+(R1+R2)R3

R1R2R3
−R1+R3

R1R3
−R2+R3

R2R3

−R1+R3
R1R3

R1+R3
R1R3

1
R3

−R2+R3
R2R3

1
R3

R2+R3
R2R3

 , R =

0 0

0 m(1−m)R3

 ,

α =

 0 +1 0

(1−m) m −(1−m)

 .
ODE Notice in (8.4) that the diode voltage vD does not depend implicitly on iD (M44 = 0), so
that we can easily solve the linear constraint vD = vC1 (row 4). Furthermore, there is no load on
output pin 4 so that the observer current vanishes (iOUT = 0). Substituting the capacitor laws
(see (8.2) in (8.4), we formulate the state-space ODE 7

{
ẋ = −Gx∇H(x)−N(x)−Guu,

y = C∇H(x) + Du.
(8.5)

7. Here we removed the unobserved output variables, by consequence, the state space does not have the
canonical form of a pH-ODE.
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where

x =

qC1

qC2

 , Gu =

G12

G13

 , Gx =

G22 G23

G23 G33

 , ∇H(x) =

 1
C1

0

0 1
C2

x, N(x) =

iD ( qC1
C1

)
0

 ,
y = vOUT , u = vIN , C =

[
α22 α23

]
, D = α21.

Discretisation by projection We consider the AVF discretisation. We use the averaged

current variable īC =
[̄
iC1 , īC2

]T and the initial condition x0 =
[
q0
C1
, q0
C2

]T
to parametrize the

trajectory

x(τ) = x0 + h

ˆ τ

0
īC ds.

By projection of (8.5) on the space of constant funtions, we obtain the algebraic equation on īC

F (̄iC) = īC + Gx∇H(x0, h̄iC) +N(x0, h̄iC) + Guū = 0, (8.6)

where the AVF discrete gradient for linear capacitors is

∇H(x0; δx) =

 1
C1

0

0 1
C2

(x0 +
1

2
δx

)
,

where the averaged law of projected diodes is

N(x0; δx) =

1

0

 z(q0
C1

C1
;
δqC1

C1

)
, where z (v0; δv) =


Z (v0 + δv)− Z(v0)

δv
δv 6= 0,

z(v0) δv = 0.

and where the anti-parallel diode law z and its anti-derivative Z are given by

z(v) = 2IS sinh

(
v

VT

)
, Z(v) = 2ISVT

(
cosh

(
v

VT

)
− 1

)
. (8.7)

Remark 8.3. We remind that projection is computed according to theorem (5.7) p.141 (see
example 5.2). The quantity z̄ plays the role of the dissipative AVF discrete gradient of the
voltage potential Z. The average discrete gradient has been applied to dissipative potentials
by the author in [MH18, (63)] where it is shown that the following closed-form expression
holds

z(v0; δv) = 2IS sinh

(
v + 1

2δv

VT

)
sinhc

(
δv

2VT

)
, where sinhc(x) :=

{
sinh(x)/x x 6= 0,

1 x = 0.
.

Finally, the system (8.6) is solved using Newton iteration, where we use the result from equation
(5.42) p.141 (also introduced in [MH18, (38)]) to compute the Jacobian of the AVF discrete
gradients. Simulation results for varying values of the morph parameter are shown on figure 8.5.
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Figure 8.5 – (BMP Tone Clipper) Responses vOUT (coloured curves) to a sinusoidal input vIN
in blue (amplitude 700 mV, fundamental frequency f0 = 200Hz and a sampling rate fs = 44.1
kHz. Morph values are continuously selected for m ∈ [0, 1].

As expected from the circuit design, in figure 8.5, the lowpass output (dark blue curve)
is identical to that of a lowpass diode clipper circuit (i.e a damped saturated wave). As the
morph potentiometer is moved in the opposite direction (orange curve), the waveform becomes
progressively triangular (the diode limiting effect on voltage vC1 in the lowpass branch, yields a
quasi-constant current charge/discharge of capacitor C2 on the highpass circuit side)

By consequence, the output waveform roughly changes from a damped saturated square (low-
pass circuit branch) to a smooth triangular wave (high-pass circuit branch in orange) according
to the morph potentiometer.

The interest of this circuit remains mostly pedagogical rather than practical 8. It illustrates
the design of new circuits from simpler subcircuits, and the (sometimes) unexpected consequences
of unbuffered coupling. Indeed, "happy accidents" are not uncommon in the history of analog
audio electronics (even more among guitarists). Nowadays, a popular branch of this trial and
error approach to circuit design is commonly referred under the umbrella term of circuit bending.

8. In synthesizers, converters of sinusoidal waveforms to triangle and square waves use different and more
complicated circuitry. See [EPPB17b, GEPP18] for more information about "west coast" waveshaping audio
synthesis.
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8.3 Tube Screamer drive stage

We consider the drive stage of the Tube Screamer (TS) guitar Pedal. The TS was manufactured
by Ibanez in 1979 to emulate the saturation of tube amplifiers with solid-state circuitry. Notable
users include Stevie Ray Vaughan, Carlos Santana and Steve Vai. This circuit is emblematic of
the class of overdrive circuits (as opposed to distortion which is more agressive) and it can be
found as a building block of many circuits (e.g. in the Boss OD-1, or in the feedback path of
the Korg MS-20 Voltage-controlled filter shown in section 8.4). The main advantage of overdrive
(compared to distortion) is that saturation applies to the difference vI − vO instead of the direct
signal vI . This leads to a more subtle effect preserving the dynamics and expressivity of the input
signal while enriching its harmonic content.

−
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51kC2

47n

iC2R2
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vAI=

1

23
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Figure 8.6 – (Tube screamer) Drive stage. In the original schematic, the virtual ground is set
to Vbias = 4.5V , with VCC = 9 V and VEE = 0 grounded. For simplicity, we have chosen Vbias as
the reference voltage and shifted VCC and VEE accordingly. Spanning tree T in blue.

Theory of operation Denote R1 = P1 + R̃1. removing diodes and assuming that the OPA is
in nullor mode, the circuit reduces to a non inverting amplifier with Laplace transfer function

HTS(s) = 1 +
Z1(s)

Z2(s)
= 1 +

R1

R2

(
1

1 + sR1C1

)
︸ ︷︷ ︸

low-pass

(
sR2C2

1 + sR2C2

)
︸ ︷︷ ︸

high-pass

where Z1, Z2 are respectively parallel and serial impedances corresponding to R1 ‖ C1 and R2C2.
At high frequencies, R1 ‖ C1 act as a lowpass filter with cutoff frequency between 5.66 and
61.2 kHz, above which the gain reduces to unity. At low frequencies, R2C2 acts as a high-pass
filter with cutoff frequency 720 Hz, below which the amplifier gain also reduces to unity. Between
these two limits, the circuit behaves as a bandpass booster (see figure 8.7) where R1 controls
both the boost and the cutoff. Adding diodes to the circuit brings soft saturation and limits the
voltage across diodes vD = vO − vI to approximately ±700 mV. When diodes are conducting and
the op amp is in nullor mode, the output voltage is approximately vO ≈ vI ± 0.7, so that the
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effective gain also reduces to unity for large signals. For a typical guitar input signal (i.e. between
100 and 700 mV according to the type of pickups and playing intensity) and a 9 V battery as
power supply, the headroom before the opamp enters saturation 9 is about 3 V. A more detailed
analysis of the complete circuit can be found in [Ele20b].
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Figure 8.7 – (Tube screamer drive) Linearized frequency response for varying values of P1.

Incidence matrix The incidence matrix of Tube screamer drive circuit shown on figure 8.6 is

A =



CC EE IN C1 C2 AO R1 R2 D AI ACC AEE OUT

0 −1 −1 −1 . . −1 . −1 . . −1 −1 −1

1 . . +1 . . . . . . +1 . . .

2 . . . −1 +1 . −1 . −1 −1 . . .

3 . . . . −1 . . +1 . . . . .

4 . . . +1 . +1 +1 . +1 . . . +1

5 +1 . . . . . . . . . +1 . .

6 . +1 . . . . . . . . . +1 .



.

Dirac structure We select the current-controlled spanning tree T = {CC,EE, IN,C1, C2, AO}
with voltage-controlled co-tree T = {R1, R2, D,AI , ACC , AEE , OUT} to obtain the following
hybrid Dirac structure

J =



vCC vEE vIN vC1
vC2

vAO
iR1

iR2
iD iAI

iACC
iAEE

iOUT

iCC . . . . . . 0 0 0 0 −1 0 0

iEE . . . . . . 0 0 0 0 0 −1 0

iIN . . . . . . 0 0 0 −1 0 0 0

iC1
. . . . . . −1 +1 −1 −1 0 0 0

iC2
. . . . . . 0 +1 0 0 0 0 0

iAO
. . . . . . 0 −1 0 +1 0 0 −1

vR1
0 0 0 +1 0 0 . . . . . . .

vR2
0 0 0 −1 −1 +1 . . . . . . .

vD 0 0 0 +1 0 0 . . . . . . .

vAI
0 0 +1 +1 0 −1 . . . . . . .

vACC
+1 0 0 0 0 0 . . . . . . .

vAEE
0 +1 0 0 0 0 . . . . . . .

vOUT 0 0 0 0 0 1 . . . . . . .



.

9. For completeness, op amp clipping is handled in the simulation code. However, op amp clipping is too far
from standard behaviour, so that it is not pertinent to show on simulation results.
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Reduced linear resistive structure Reducing the resistive branches {R1, R2} yields the
linear dissipative structure

M =



vCC vEE vIN vC1 vC2 vAO iD iAI iACC iAEE iOUT

iCC . . . . . . 0 0 −1 0 0

iEE . . . . . . 0 0 0 −1 0

iIN . . . . . . 0 −1 0 0 0

iC1 . . . −G12 −G2 G2 −1 −1 0 0 0

iC2 . . . −G2 −G2 G2 0 0 0 0 0

iAO . . . G2 G2 −G2 0 +1 0 0 −1

vD 0 0 0 +1 0 0 . . . . .

vAI 0 0 +1 +1 0 −1 . . . . .

vACC +1 0 0 0 0 0 . . . . .

vAEE 0 +1 0 0 0 0 . . . . .

vOUT 0 0 0 0 0 +1 . . . . .



,

with conductances G1 = 1/R2, G12 = R1+R2
R1R2

.

Reduced DAE and ODE To solve the system, we remove variables corresponding to trivial
constraints in matrix M. It is enough to consider the implicit DAE defined by the following
submatrix of M (all other variables of the system can be retrieved from iC1 , iC2 , vAI , vD using M
and component laws).

Mr =



vIN vC1 vC2 vAO iD

iC1 0 −G12 −G2 G2 −1

iC2 0 −G2 −G2 G2 0

vAI +1 +1 0 −1 .

vD 0 +1 0 0 .

.
To handle the OPA, we have to consider the third row of Mr with special care:

• Nullor mode (see subsection 7.2.1 p.190): we have vAI (λ) = 0. This yields the linear
constraint vAO = vIN + vC1

• Saturation mode: we have the constraint vAI (λ) = vI + vC1 − vAO(λ). Furthermore, if
vAI > 0 then vA0 = vCC and if vAI < 0, then vAO = vEE .

Here, we unify both modes by solving for vAO and introduce the function

vAO(v) :=


vEE v < vEE ,

v v ∈ [vEE , vCC ],

vCC v > vCC .

(8.8)

Substituting capacitor and diode laws (vC = q/C and iD(·) = z(·) from (8.7)), in the first two
rows of Mr, and using vAI = vIN + vC1 (row 3), we finally obtain the reduced ODEq̇1

q̇2

 =

−G12 −G2

−G2 −G2

q1/C1

q2/C2

+

G2

G2

 vAO (vIN +
q1

C1

)
−

1

0

 iD ( q1

C1

)
(8.9)
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Discretization Using the Average Vector Field discretisation method with q1(τ) = q0
1 + τδq1,

q2(τ) = q0
2 + τδq2 yields the algebraic equation F (δx) = 0 for the variables δx = (δq1, δq2) where

F (δx) =

δq1

δq2

− h

−G12 −G2

−G2 −G2

q̄1/C1

q̄2/C2

+

G2

G2

 vAO (vIN +
q1

C1

)
−

1

0

 iD ( q1

C1

) ,

where vA0(v) =
´ 1

0 vA0(v(τ)) dτ , iD(v) =
´ 1

0 vA0(v(τ)) dτ and q̄C =
´ 1

0 qC(τ) dτ = q0
C + δqC/2.

denote the average vector field projection of component laws in the right hand side of (8.9). As
for other examples, the system F (δx) = 0 is solved using Newton method.

Simulation results for a sampling rate of fs = 44.1 kHz are shown on figure 8.8. For simulated
examples, convergence is reached after 1 to 3 iterationés (1.52 on average) for absolute and
relative Newton errors respectively of 10 µV and a 10−10. Note that exhaustive energy and power
plots are not reproduced for each example for brievety (see [MH18, fig. 2 and 4], reproduced in
appendix G p.323, for similar plots, see also figure 5.13 p.152).
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(b) f0 = 500 Hz, G = 50 mV

Figure 8.8 – (Tube screamer drive) simulation for the series resistance R1 exponentially dis-
tributed in [51, 551] kΩ according to the drive parameter d ∈ [0, 1]. The input signal is a sinusoid
with frequency f0 and amplitude G simulated at fs = 44.1 kHz.



212 Chapter 8. Circuits case studies

8.4 Korg MS-20 Filter

The filter of the Korg MS-20 synthesizer is (with the Moog filter) one of the most famous
synthesizer filter. It has been studied in the references [Sti06, Pir13]. This filter is closely related
to the Sallen–Key filter from section 7.1.4 with the following differences: the lowpass filter stages
are buffered from each other by (ideal) voltage followers 10; the feedback path contains a nonlinear
overdrive amplifier (see figure 8.9b) and a voltage divider to control the resonance of the filter.
Resistors R3 and R4 (voltage divider) controls the feedback gain of the filter. Furthermore,
the nonlinear amplifier also features a calibration gain. The combination of both gains with
nonlinearities allows the filter to reach self-oscillation.

vI

R1

C12.2n

R2

C22.2n R38.2k

R4
10k

A(v)

1 1

vO

1 2 3 4 5

6
7 8

(a) Overall filter schematic.
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−
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vI
+

−

vO

(b) Voltage buffer vO = vI

+

−
+

−

vI

+

−

vODiD

R1iR1

R2

iR2

9

6
7

(c) Overdrive amplifier vO = A(vI)

iD

(d) Clipping diodes (element D)

Figure 8.9 – (MS-20 filter) Simplified overall schematic (a) and its sub-components (b-d). In
(a), the chosen spanning tree T is shown in blue and its complimentary cotree T in orange.

10. in this example, contrary to the Sallen-Key example of section 7.1.4, we assume that the power supply
voltages are large enough to not enter saturation.
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8.4.1 Overdrive amplifier

The overdrive amplifier (figure 8.9c-d) is a non-inverting amplifier (as in section 7.1.4 ) with
negative feedback diodes to limit the voltage difference between inputs and outputs. This situation
is similar to the TubeScreamer saturation in section 8.3 but without capacitor filtering.

Algebraic modelling The stage is composed of resistors, diodes and OPA, all considered
memoryless. To avoid solving such a stiff system iteratively, we choose to pre-solve this sub-circuit
as an equivalent algebraic component. We assume that the power supply voltages are large enough
to maintain the OPA in nullor mode. Applying nodal analysis at node 9 (see figure 8.9c) yields
iR2 = iD + iR1 . This leads to to the voltage equation vI/R2 = (vO − vI)/R1 + iD(vO − vI), that
we reformulate as an implicit equation on the output voltage

vO =

(
1 +

R1

R2

)
vI −R1iD(vO − vI), (8.10)

where the clipping diodes law iD is given by

iD(v) = I sinh

(
v

V

)
with I = 2IS , V = 3VT . (8.11)

Analysis for small and large signals: For small signals (iD ≈ 0), diodes are not conducting,
so that the non-inverting amplifier is governed by vO ≈ GvI with G = 1 + R1

R2
. For R1 = 10k and

R2 = 2200(1 + (1− κ)) with κ ∈ [0, 1], the small signal gain of the amplifier belongs to [3.2, 5.54].
Conversely, as soon as diodes conducts (large signals), the signal is soft-clipped. Assuming that
we know an explicit mapping vO = A(vI), (lumping the power supply ports 11), we can replace
the circuit by the nonlinear amplifier two-port defined by{

(vI , vO, iI , iO) ∈ R2 × R2 | iI = 0, vO = A(vI)
}
.

Explicit formulation and approximation Using the implicit function theorem, one can
prove that there exists a unique function A : vI 7→ vO = A(vI) solution of (8.10) that can be
tabulated (see figure 8.10). Going further, we look for a closed-form approximation of A. To this
end, we invert the hyperbolic sine in (8.11) to obtain the equivalent formulation of (8.10)

vO = vI + V asinh

(
GvI − vO
R1I

)
.

This form suggests a candidate approximation model A(v) ≈ g(v;α, β, γ) parametrized by (α, β, γ)

g(v;α, β, γ) = v + α sign(v)
(

asinh
(
β|v|γ

))1/γ
. (8.12)

A very accurate approximation can be obtained from (8.12) (see figure 8.10). For V = 3 · 26 mV
A, I = 2 fA, nonlinear least squares optimisation yields the optimal parameters

κ α β γ

0 1.7 1.33 14.56

0.5 1.7 1.78 14.28

1.0 1.69 2.69 13.71

.

11. If required it is still possible to recover the power supply currents to express the power balance using the
OPA model from subsection 7.2.1, but we do not detail this further.
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Figure 8.10 – Explicit overdrive amplifier mapping and its approximation for κ ∈ [0, 1]. Exact
relation A(v) in black, and its approximation g(v) in dashed orange.

8.4.2 Filter

For this circuit, thanks to buffering, it is simpler to use Nodal analysis (at nodes 2 , 4 ) to
directly obtain the ODE: using Kirchhoff laws, we have iC1 = iR1 and iC2 = iR2 and using the
node voltages e2 = vAO + vC1 , e3 = v2, v5 = v4 one gets

iC1 =
vI − vAO − vC1

R1
, iC2 =

vAO + vC1 − vC2

R2
.

The nonlinear state space system is obtained using (i) the amplifier law vAO = A(kvC2) where
k = ρR4

R3+R4
∈ [0, 0.55] corresponds to the voltage divider, (ii) introducing co-energy variables

x1 := vC1 , x2 := vC2 for the linear capacitor law iC = Cv̇C and (iii) defining the cutoff pulsation
ωc := 1/(RC) for equal resistances R1 = R2 = R, and capacitances C1 = C2 = C.

1

ωc

ẋ1

ẋ2

 =

−1 0

1 −1

x1

x2

+

−1

1

A(kx2) +

1

0

 vI , where k =
ρR4

R3 +R4
, (8.13a)

vO = x2. (8.13b)

Small signals analysis For small signals, we have the linear approximation A(v) ≈ Kv with
overall feedback gain K = Gk (remind that G = 1 + R1

R2
). Then equation (8.13a) simplifies to

1

ωc

ẋ1

ẋ2

 ≈
−1 −K

1 K − 1

x1

x2

+

1

0

 vI . (8.14)

From this linearized state-space system, we can obtain the following Laplace transfer function,
which corresponds to a resonant lowpass filter with Q-factor Q = 1

2−K and cutoff pulsation ωc
(see section 7.1.4 for more details on resonant lowpass filters and their frequency response).

HMS20(s) =
1(

s
ωc

)2
+ (2−K)

(
s
ωc

)
+ 1

. (8.15)
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As noted in [Pir13] and in contrast with the unbuffered case from section 7.1.4, the filter reaches
infinite Q (i.e self-oscillation) for K = 2 instead of K = 3. Furthermore, according to circuit
parametrisation, the maximum feedback gain (for small signals) belongs to [1.76, 3.05] for ρ = 1,
κ ∈ [0, 1], which is enough to reach self-oscillations.

Large signals analysis For large signals, the output of the overdrive amplifier can be approxi-
mated by vAO ≈ ±2.1 + vI so that the direct gain of the circuit is bounded by K = ρ < 0.55.
Despite the absence of rail-to-rail hard clipping as in section 8.3, the clipping diodes are still
strong enough to stabilise the system.

Discretization To simulate this filter, we use the Average Vector Field discretization. Projection
of equations (8.13a), (8.13b) for affine state trajectories of the form v(τ) = v0 +τδv with τ ∈ [0, 1]
yields the discrete state spaceδx1

δx2

 = ωd


−1 0

1 −1

x0
1 + 1

2δx1

x0
2 + 1

2δx2

+

−1

1

A(kv0
2, kδv2) +

1

0

 v̄I
 , (8.16a)

vO = x2 +
1

2
δx. (8.16b)

where the normalised pulsation is ωd = hωc and A(v0, δv) :=
〈
1, A(v0 + τδv)

〉
denotes the AVF

projection of the feedback nonlinearity. The algebraic system (8.16a) is rewritten as F (δx) = 0
with δx = [δx1, δx2]T and solved using Newton iteration, where the Jacobian of F is

F ′(δx) = I− ωd

1

2

−1 0

1 −1

+ k

0 −1

0 1

 ∂

∂δx2

A(kx0
2, kδx2)

 .

Simulation results Simulation results are displayed below on figures 8.11, 8.12 and 8.13 for
square and saw inputs at various amplitudes to exhibit the nonlinear behaviour of this filter.
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Figure 8.11 – MS-20 filter response to a square wave input with peak volage 650 mV, for a
cutoff frequency of 100 Hz and a resonance k = 0.9, κ = 1. The nonlinear self-oscillation is clearly
visible, with an asymmetrical waveshape modulated by the square wave input signal.
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Figure 8.12 – (MS-20 filter) same simulation as figure 8.11 with input levels {600, 650, 700} mV.
We observe that the input amplitude influences the amplitude of self-oscillation, its frequency, its
damping and its shape. The higher the input, the higher the damping. The lower the oscillation
amplitude, the higher the resonance frequency.
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Figure 8.13 – (MS-20) response to a 1V sawtooth signal with fundamental frequency f0 = 100
Hz. The cutoff frequency is set to 2.5 kHz for a resonance k = 0.68. Bursts of self-oscillation in
the middle of the ramp are typical of this filter and allowed by the temporarily lower input level.

Simulation results are consistent with SPICE simulation and measurements. The expected
behaviour of this filter and its salient features are reproduced. Note that comparing results with
the ones of the Sallen–Key filter in figure 7.13 p.187, we observe that small topological changes
(buffering stages and a nonlinear feedback path) yield significant modifications to the behaviour
of this filter (an thus to its sonic character). Important differences are: (i) filter oscillations are
saw-like rather than sinusoidal (fig. 8.11), (ii) the behaviour is more progressive according to
input level (fig. 8.12), (iii) self-oscillation can happen near zero-crossings (fig. 8.13).
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8.5 FitzHugh–Nagumo relaxation oscillator

In this section, we consider the electronic realisation of a FitzHugh–Nagumo (FHN) (see
[Fit55, NAY62]) relaxation oscillator. The FitzHugh–Nagumo model was originally proposed by
FitzHugh as modification of the Van der Pol system to model neurons. It uses a cubic nonlinearity
with negative incremental resistance to achieve self-excitation. The electronic circuit realisation
of fig. 8.14 was proposed by Nagumo and uses a tunnel diode (see ex. 1.9 p.31) to implement a
nonlinearity with negative incremental resistance. In music, FHN oscillators have been used for
sound synthesis purposes in [Col08, SBM] and for beat/tempo synchronisation in [Eck02, AOI07].

DvD

iD

R

vR

iR

E

iE
CvC

iC LvL

iL0

1 2

3

Figure 8.14 – Electronic realisation of a Fitzhugh–Nagumo relaxation oscillator.

Theory of operation At static operating point, the capacitor C can be considered as an open
circuit and the inductor L as a short-circuit. The tunnel diode D is biased by the combination of
the voltage source E and resistor R by the load line vD = E−RiD (for vL = φ̇ = 0 and iR = −iD).
It can exhibit astable, monostable or bi-stable behaviour according to the choice of E and R (see
[RCA63, p.36-44] and figure 8.15). The inductor controls the slow dynamics by modulating the
bias point current. This roughly determines the period of relaxation oscillations. The capacitor
acts as a stiffness controller by smoothing the fast jumps occuring when the trajectory is in the
unstable negative incremental resistance region. Indeed, in the limit C → 0, the diode becomes
current-controlled by the inductor. Its characteristics is current-controlled and multi-valued (see
fig. 8.15), but only the positive incremental resistance points are stable points of the system.

Figure 8.15 – Different biasing scenarios for a tunnel diode multivibrator. Figure extracted
from the RCA tunnel diode manual [RCA63].
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Incidence matrix The incidence matrix of the graph corresponding to the FHN schematic is

A =



E C R D L

0 −1 . . . −1

1 1 . 1 . .

2 . 1 −1 1 .

3 . −1 . −1 1

.

Dirac structure From the incidence matrix A, we select the current-controlled spanning tree
T = {R,C,E}, with voltage-controlled cotree T = {D,L}, to obtain the hybrid Dirac structure

J =



iD iL vR vC vE

vD . . 0 1 0

vL . . −1 1 −1

iR 0 1 . . .

iC −1 −1 . . .

iE 0 1 . . .


.

Reduced Linear resistive structure Eliminating the linear resistor branch R and solving
the trival constraint vD = vC yields the linear dissipative structure

M =



iD iL vC vE

vD . . 1 0

vL . −R 1 −1

iC −1 −1 . .

iE 0 1 . .

 −→ M̃ =


iD(vC) iL vC vE

vL . −R 1 −1

iC −1 −1 . .

iE 0 1 . .

.

pH-ODE Finally substituting the laws of the components, one obtains the dissipative pH-ODE

ẋ = −r(x) + J∇H(x) + GvE , (8.17a)

iE = −GT∇H(x). (8.17b)

where the state x, skew-symmetric matrix J, Hamiltonian H, resistive function r and port matrix
G are given by

x =

φ
q

 , J =

 0 1

−1 0

 , H(x) =
1

2

(
φ2

L
+
q2

C

)
, r(x) =

 R∇φH(x)

z
(
∇qH(x)

)
 , G =

−1

0

 .
We use as default values E = 400 mV, R = 20 Ω, C = 10 µF, L = 300 mH. For the tunnel diode,
we use the model of the tunnel diode from example 1.9 p.31

z(v) = IS

(
exp

(
v

VT

)
− 1

)
+ IP

(
v

VP

)
exp

(
−
(
v − VP
VP

))
,

with parameters IS = 1 fA, VT = kT
qe
≈ 26 mV, IP = 4.7 mA, VP = 100 mV.
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Simulation The system is solved using AVF projection and Newton iteration. Simulation
results are shown on figure 8.16 with time series corresponding to different values of the bias
voltages E and the capacitor C. Phase plots are shown on figure 8.17.

The q-nullcline 12 (q̇ = 0) corresponding to the tunnel diode is an attractor for the slow
dynamics. When its intersection with the φ-nullcline (φ̇ = 0) happens in the negative incremental
resistance region, the equilibrium point is unstable, leading to a limit cycle. On the contrary,
when the intersection happens in the region of positive incremental resistance, the equilibrium
point is stable and all trajectories converge to it (red trajectory).
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Figure 8.16 – FitzHugh–Nagumo relaxation oscillations, varying values of the offset voltage
E ∈ {200, 300, 400} mV and capacitance C ∈ {3, 10} µF.

In figure 8.16, the frequency of relaxations increases with the bias voltages E while the
period increases with higher values of capacitance C. The smoothing effect of the capacitance is
noticeable by reducing the slope of the relaxation. Time is displayed in milliseconds.

12. For a system of ODE ẋ = f(x), the i-th nullcline is the geometric shape such that ẋi = 0. The equilibrium
points of the system are located where all of the nullclines intersect (i.e. ẋ = 0).
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Figure 8.17 – (FitzHugh–Nagumo) Phase plot, for varying values of E.

In figure 8.17, the simulated orbits trajectories are displayed in the (vC ,−iL)-space of co-
energy variables. Inductor nullclines are shown as load lines corresponding to each bias point
(dashed colored curves, φ̇ = 0 ⇐⇒ vC = E + RiL). Conversely, the capacitor nullcline
(q̇ = 0 ⇐⇒ iL = −z(vC) and vC = vD) corresponds to the tunnel diode characteristic. It is an
attractor for the slow dynamic (dashed black). Note that the red curve converges to a stable
equilibrium point (positive incremental resistance) at the intersection of the (dashed red) load
line and the (dashed black) tunnel diode characteristic (red dot) while other curves converge to
limit cycles about unstable equilibrium points (blue, orange and green dots).
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Figure 8.18 – (Passive Peaking EQ). Spanning tree T in blue, cotree T in orange.

We consider a passive peaking equaliser circuit (the only linear example in this chapter) to
study the effect of high order RPM methods on frequency warping and spectral accuracy for open
systems. Indeed, in the linear case, the stability function for projection order p = 1 is identical to
the mid-point and bilinear ones (sharing the same numerical dispersion).

Reminder on the bilinear method Artefacts of the bilinear method on the frequency
response of systems are well known. Let Ha(s) denote the Laplace transfer function of a
continuous-time system, its discrete-time approximation Hd(z) is obtain by substituting s by

s̃(z) =
∆

M
=

2

h

z − 1

z + 1
, where ∆ =

z − 1

h
, and M =

z + 1

2
(8.18)

in Ha(s) so that Hd(z) := Ha(s̃(z)). Operators ∆ and M are finite differences approximation
of the time derivative and identity centred at h/2 (to compensate the time shift induced by ∆)
where z = ehs denotes the Laplace transform of the positive time-shift operator (see [Bil09, p.35]).
Substituting z = ehs in (8.18) one can show that bilinear discretization acts as the mapping 13

hs̃

2
= tanh

(
hs

2

)
, so that

hω̃

2
= tan

(
hω

2

)
for s = iω. (8.19)

The principal value of this mapping warps the frequency axis s̃ ∈ iR to the range s ∈ i(−hπ, hπ)
severely distorting the frequency response at high frequencies (see fig. 8.19b and D.4 p.299).

Remark 8.4. To link the AVF/RPM(1,0) method with the bilinear scheme, note that, for
an affine trajectory x(t) = x0 + (t/h)(x1 − x0), M is the discrete equivalent of the average
vector field projection x̄ = (x1 + x0)/2 and ∆ of the average slope ¯̇x = (x1 − x0)/h.

Goals To challenge high-order RPM schemes (def. 5.1 p.122), we consider the case where the
peaking equalizer has a resonance frequency beyond the Nyquist frequency. This situation is in
fact common in electronic audio circuits: several analog equalisers use a peaking EQ between
20 kHz and 100 kHz with a large bandwidth to implement high frequency boost (instead of a
shelving filter). Note that for audio use, we are not interested in the frequency response above 20
khz (beyond human hearing). Nevertheless, the action of a 50 kHz resonance on input signals
below 20 kHz is significant (see fig. 8.19a) and should be faithfully reproduced.

13. see also the frequency warping graphs shown in figure D.2 p.298 for several values of projection order p.
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Theory of operation The potentiometer is parametrised by γ ∈ [0, 1] according to the law
Ra1 = (1− γ)R1, Rb1 = γR1. When the potentiometer R1 is down (γ = 0 Ra1 = R1, Rb1 = 0), the
RLC network is short-circuited (v2 = v4) so that the remaining circuit is a simple voltage divider
with static gain a0 = R2

R1+R2
. When γ is increased, the RLC network acts as a bandpass filter

whose contribution is added to the output to yield a peaking EQ. Its resonance frequency is
controlled by L,C and its bandwidth by R2.

Incidence matrix The incidence matrix of the circuit shown on figure 8.18 is given by

Ã =



S C Ra1 R2 Rb1 L O

0 −1 . . −1 . . −1

1 +1 . +1 . . . .

2 . +1 −1 . +1 . .

3 . −1 . . . +1 .

4 . . . +1 −1 −1 +1


.

Dirac structure We select the current-controlled tree T =
{
S,C,Ra1, R2

}
with cotree T =

{Rb1, L,O} to obtain the Dirac structure

J =



vS vC vRa1 vR2 iRb1
iL iO

iS . . . . −1 −1 0
iC . . . . 0 +1 0
iRa1 . . . . +1 +1 0
iR2 . . . . +1 +1 −1
vRb1

+1 0 −1 −1 . . .
vL +1 −1 −1 −1 . . .
vO 0 0 0 +1 . . .


.

Reduced linear resistive structure Reducing linear resistive branches
{
Ra1, R2, R

b
1

}
, with

the potentiometer relation Ra1 = (1− γ)R1, Rb1 = γR1, yields the resistive structure

M =



vS vC iL iO

iS −G11 0 −α11 −α12

iC 0 0 +1 0

vL α11 −1 −R11 R12

vO α12 0 R12 −R22.

. (8.20)

where

G11 =
1

R1 +R2
, α11 = γG11R1, α12 = G11R2,

R22 =
R1R2

R1 +R2
, R12 = γR22, R11 =

(
1 +

R1

R2
(1− γ)

)
R12.
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pH-ODE and state-space formulations The pH-ODE is built from (8.20) by (i) choosing
the state x = [q, φ]T, input u = [vS , iO], and output y = [iS , vO], (ii) substituting component laws
vC = q/C, iC = q̇, iL = φ/L, vL = φ̇ in (8.20) with energy H(q, φ) = q2

2C + φ2

2L . In practice, we
use an open circuit load iO = 0 (reduced input u = vS) and neglect iS (reduced output y = vO).
Then (8.20) can be formulated as a pH-ODE (left) with reduced state-space system (right)

ẋ = (Jx −Rx)Qx+ Gu, → ẋ = Ax+ Bu, (8.21a)

y = −GTQx+ (Ju −Ru)u, → y = Cx+ Du. (8.21b)

where systems matrices are respectively

Jx −Rx =

[
0 1

−1 −R11

]
, Q =

[
1/C 0

0 1/L

]
, G =

[
0 0

α11 R12

]
, Ju −Ru =

[
−G11 − α12

α12 −R22

]
,

A = (Jx −Rx)Q, B =
[

0
α11 ,

]
, C =

[
0 R12 /L

]
, D =

[
α12

]
.

Laplace transfer function Computing the Laplace transfer function using the formula
HEQ(s) = C(sI−A)−1B + D yields the standard form of a peaking equalizer

HEQ(s) =

(
R2

R1 +R2

)
· LCs2 + γR1Cs+ 1

LCs2 + γR1C
(

(1−γ)R1+R2

R1+R2

)
s+ 1

= K ·

(
s
ω0

)2
+B(γ)

(
s
ω0

)
+ 1(

s
ω0

)2
+ B(γ)

G(γ)

(
s
ω0

)
+ 1

,

where the direct gain K, pulsation ω0, damping/bandwidth B and resonance gain G are

K =
R2

R1 +R2
, ω0 =

1√
LC

, B(γ) = γR1

√
C

L
, G(γ) =

R1 +R2

(1− γ)R1 +R2
. (8.22)

Note that this peaking EQ is neither constant-Q nor exactly proportional-Q (see [Boh88]). The
quality factor Q = 1/B is modulated by γ, so that the higher the boost, the larger the bandwidth.
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(b) AVF/Mid-point approximation

Figure 8.19 – (Peaking EQ) Frequency Response for L = 10 mH, C = 1 nF, R1 = 9k, R2 = 1k,
γ ∈ [0, 1]. This yields f0 ≈ 50 kHz and Q(1) ≈ 2.8. (a) continuous-time response, (b) warped
frequency response of second order mid-point/AVF discretisation (see eq.(8.19)) for a sampling
rate fs = 44.1 kHz (Nyquist frequency fs/2 in dashed blue). The main drawback is that the
resonance peak is warped by several kHz into the audible frequency band. Note that the frequency
response is also periodised above the Nyquist frequency by sampling, but is not shown here.
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8.6.1 High-order RPM discretisation of a linear state-space system

Definitions To discretize the state-space (8.21a)-(8.21b), we use 14 RPM(p,0). Denote 15

~̇x := [〈Pi | ẋ〉]p−1
i=0 , ~u := [〈Pi |u〉]p−1

i=0 , ~y := [〈Pi | y〉]p−1
i=0 , (8.23a)

the projection coefficients of functions ẋ(τ), u(τ), y(τ) in the Legendre basis over a unit time step
Ω = (0, 1). Using the Kronecker product (see appendix D.10.1) and n× n identity In, denote by

~A = Ip ⊗A, ~B = Ip ⊗B, ~C = Ip ⊗C, ~D = Ip ⊗D, ~I = Ip ⊗ In, (8.23b)

expanded state-space and identity matrices. Moreover, denote respectively

~1 = e0 ⊗ In with e0 =
[
〈Pi | 1〉

]p−1

i=0
, and ~V = Vp ⊗ In with Vp =

[
〈Pi |

τ
∫
0
Pj〉
]p−1

i,j=0

, (8.23c)

the matrix representation of the constant function | 1〉 and the operational matrix of integration
(Vp ≡

´ τ
0 extended to Rn) (see (C.17) p.286). Introduce the discrete integration operator

~V : (x0, ~̇x) 7→ ~x = ~1x0 + h~V~̇x. (8.23d)

Projected state-space Using these notations, Legendre projection of the continuous-time
state-space system (8.21a)-(8.21b) yields the projected linear system of algebraic equations{

~̇x = ~A~x + ~B~u,

~y = ~C~x + ~D~u
, where ~x = ~V(x0, ~̇x). (8.24)

Explicit solution Solving (8.24) for ~̇x, yields the coefficients of the projected vector field

~̇x =
(
~I− h~A~V

)−1 (
~A~V~1x0 + ~B~u

)
, (8.25)

where ~A~V = Vp ⊗A (by properties of kronecker products, see appendix D.10.1). As the state
increment x1 − x0 is proportional to the average (

´ 1
0 ) of the vector field ẋ, projecting (8.25) on

〈1 |, (equivalent to the transposed matrix (~1)T), we deduce the discrete time-stepping scheme

x1 = x0 + h(~1)T
(
~I− h~A~V

)−1 (
~A~V~1x0 + ~B~u

)
. (8.26)

From (8.23d)-(8.25), we get the explicit input to output map (in term of Legendre coefficients)

~Hx0,h : ~u 7→ ~y = ~C

(
~1x0 + h~V

(
~I− h~A~V

)−1 (
~A~V~1x0 + ~B~u

))
+ ~D~u. (8.27)

Remark 8.5. The Jacobian of the mapping (8.27) with respect to ~u is

~C(h~V(~I− h~A~V)−1~B) + ~D (8.28)

This is analog to H(s) = C(sI−A)−1B + D = C1
s (I−A1

s )−1B + D, the Laplace transfer
function of a state space system. Note that in (8.28) the operational matrix of integration
h~V plays the role of the Laplace integration operator 1

s .

14. See def.5.1 p.122. For simplicity, we only consider regularity order k = 0

15. Note that ~̇x denotes the coefficients of the projected vector field, here the dot is a label, not an operator.
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8.6.2 Frequency response and Legendre filterbank interpretation

We want to study the quality of the RPM(p,0) high-order projection scheme (8.27) on the
continuous-time frequency response. First, we establish the continuous-time system corresponding
to the discrete-time one (8.27). Second, we derive its Laplace transfer function 16.

U(s)

A
n
a
lo
g
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Figure 8.20 – Interpretation of RPM(p=3,0) as a mixed Legendre filterbank. We remind that
the discrete Z-domain is embedded into the continuous Laplace domain through z = es.

Legendre filterbank interpretation Step 1) The discrete-time system (8.27) governs the
discrete-time Legendre coefficients mapping ~u[n] 7→ ~y[n] (blue block on fig. 8.20). In this step,
we formalize its Z-domain matrix transfer function Ĥp(z). Step 2) Legendre coefficients result
from a frame-synchronous analysis/projection process u(t) 7→ ~u[n]. This can be reformulated as
convolution with the mirrored impulse responses Pk(−t) followed by sampling (gray block). The
continuous-time output results from the dual synthesis process, ~y[n] 7→ y(t) (reversing the order
of operations): impulse synthesis followed by convolution with Legendre poynomials Pk(t) (figs.
C.1 C.2 p.287). In this step, we obtain their Laplace transfer function. Step 3) The complete
system (analysis, discrete system, synthesis) can be represented by the cascade in figure 8.20. In
this step, we obtain its frequency response Y (s) for a zero order hold input U(s).

Step 1: Z-domain transfer function To obtain the Z-domain transfer function of the
projected state-space (Ĥp(z) in the middle of the filterbank), we propose the following result

Proposition 8.1 (Z-transform of Legendre projected state-space). Consider the continuous
state-space system (8.21a)-(8.21b) discretised by RPM(p,0), according to (8.23a)-(8.27). Then,
the Z-domain transfer function Ĥp, of dimension p × p, satisfying ŷ(z) = Ĥp(z)û(z), is

Ĥp(z) =

( e0e
T
0

z − 1
+ Vp

)
⊗C

~I−( e0e
T
0

z − 1
+ Vp

)
⊗A

−1

~B + ~D. (8.29)

The proof of this proposition is detailed in appendix D.10 p.305.

16. Under the condition that input signals already belong to projection space. Note that the continuous-time
system of figure 8.20 is not shift-invariant hence its Laplace transfer function is not defined in general.
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Step 2: Laplace transform of Legendre operator For continuous-time analysis and syn-
thesis, we need the Laplace transform of the Legendre polynomials restricted to τ ∈ (0, 1).

A) Unrestricted transfer functions: We first introduce the one-side Laplace transform of
shifted orthonormal Legendre polynomials extended to [0,∞)

B̂k(s) :=

ˆ ∞
0

e−τsPk(τ) dτ. (8.30)

Symbolic computation up to degree 3 yields

k 0 1 2 3

B̂k(s)
1
s

√
3(2−s)
s2

√
5(12−6s+s2)

s3

√
7(120−60s+12s2−s3)

s4

(8.31)

Remark 8.6 (Legendre polynomials and Padé approximations of the exponential). The
numerators of B̂k(s) are proportional to the denominators of the (k, k) Padé a approximation
of the exponential (see [Ehl69]) while numerators of B̂k(−s) corresponds to the Padé
numerators so that

Pade(k,k)[exp](s) = (−1)k+1 B̂k(−s)
B̂k(s)

= es +O(s2k). (8.32)

a. We have already seen Padé approximations of the exponential when considering the stability function
of RPM (see section D.7)

B) Time-limited transfer functions: Restricting shifted orthonormal Legendre polynomials to
the unit time interval, their Laplace transform is

P̂k(s) :=

ˆ 1

0
e−τsPk(τ) dτ, (8.33)

Symbolic computation yields the results shown in table 8.1.

k P̂k(s)

0
1− e−s

s

1

√
3

s2

(
(2− s)− (2 + s)e−s

)
2

√
5

s3

((
12− 6s+ s2

)
− (12 + 6s+ s2)e−s

)
3

√
7

s4

(
(120− 60s+ 12s2 − s3)− (120 + 60s+ 12s2 + s3)e−s

)

Table 8.1 – Laplace transforms of Legendre polynomials restricted to (0, 1).

Then, we introduce the Legendre convolution operator of order p in the Laplace domain by

P̂p(s) =
[
P̂0(s) . . . P̂p−1(s)

]
. (8.34)
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Remark 8.7 (Laplace exponential approximation error). The Laplace transforms of unre-
stricted and time-limited polynomials are linked by the identity

P̂k(s) = B̂k(s)− (−1)k+1B̂k(−s)e−s. (8.35)

Furthermore, dividing (8.35) by B̂k(s) and using equation (8.32), one can form the error

Êk(s) =
P̂k(s)

B̂k(s)
= 1−

Pade(k,k)[exp](s)

exp(s)
= −O(s2k)e−s. (8.36)

This error quantifies regions, in the Laplace domain, where the time shift operator es is
well approximated by the projection methods (shown on figures 8.21 and 8.22). This error
measure is also closely related to the stability theory of order stars (see [WHN78]).

k 0 1 2 3

Êk(s)
(
1− e−s

) (
1− 2+s

2−se
−s
) (

1− s2+6s+12
s2−6s+12

e−s
) (

1− 120+60s+12s2+s3

120−60s+12s2−s3 e
−s
)

Table 8.2 – Laplace exponential approximation error for the Legendre polynomials.
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Figure 8.21 – Legendre exponential approximation error in the frequency domain. Note the
manifestation of Strang–Fix conditions in the spectral domain (see eq. (3.22) p.87 and appendix
C.3 p.285): the order of accuracy increases with the number of zeros of the error Êk(s) at the
origin s = 0, which in turn increases the width of the maximally flat approximation region.
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Figure 8.22 – Exponential approximation error
∣∣∣Êk(s)∣∣∣ in the Laplace plane for Legendre

polynomials for k = 0, 1, 2, 3 (from left to right). We observe that the accurate region (in red)
increases with the order p. Furthermore, the periodicity of oscillations gets slower on the Fourrier
axis iR as a mark of increased bandwidth.

Step3: Laplace transfer function Remind that because of (frame-synchronous) projection,
the linear system is h-shift-invariant 17 but not continuous-shift-invariant: for time shifts τ = kh,
k ∈ Z, a delayed input yields a delayed output Y(e−τsU(s)) = e−τsY(U(s)). Hence its Laplace
transfer function is generally not defined.

For simplicity, we restrict our study to a frame-synchronous zero-order-hold input u(t) =∑
n P0(t/h− n)u[n] with samples u[n], which already belongs to the projection space. Its Laplace

transform is U(s) = P̂0(hs)û(z = ehs) where û(z) denotes the Z-transform of sequence u[n], so
that the Z-domain input of the discrete filterbank is û(z) =

[
1

0p−1

]
û(z). Then, the Laplace

transform of the continuous output of order p is

Yp(s) = P̂p(hs)Ĥp(z)

([
1

0p−1

]
û(z)

)
, for z = ehs.

For this particular (frame-synchronous) input, dividing Yp by U and cancelling û(z) finally yields
the Laplace transfer function

Hp(s) :=
Yp(s)

U(s)
= P̂p(hs)Ĥp(e

hs)

 1

0p−1

 1

P̂0(hs)
. (8.37)

Observations The magnitude and phases responses are displayed on figures 8.23 8.24. We
make the following observations:

a) Starting with order p ≥ 2, it is possible to simulate a pole above the Nyquist frequency,

b) Such a pole is subject to frequency warping, but the warping error gets lower when increasing
either the sampling rate fs or the projection order p.

c) Starting with order p ≥ 2 the frequency response below 20 kHz 18 is qualitatively very
similar to the analog one 19.

d) For p ≥ 3 the response is very close to the analog one, even for low sampling rates fs � fc.
For p = 2, a small amount of oversampling is beneficial, while for p = 1, it is necessary to
use the classical Shannon-Nyquist condition fs > 2fc to obtain a good match below 20 kHz.

17. Using the lifting isomorphism ŭ[n](τ) = u(h(n + τ)), it can be transformed to an equivalent discrete
shift-invariant system with an infinite number of "phases" τ between sampling instants n (see [MM10]).
18. For audio use, we are not interested in frequencies above 20kHz i.e. the limit of audible frequencies.
19. We get rid of the compression of the analog frequency axis [0,∞) to the digital one [0, fs/2) that is typical

of the mid-point and bilinear schemes.



8.6. Passive peaking equalizer (beyond the Nyquist frequency) 229

10k 20k 30k 40k 60kfcfs
2

fs
Frequency (Hz)

25

20

15

10

5

0
M

ag
ni

tu
de

 (d
B)

p=1
p=2
p=3
p=4
analog

(a) fs = 48 kHz

10k 20k 30k 40k 60kfcfs
2

fs
Frequency (Hz)

25

20

15

10

5

0

M
ag

ni
tu

de
 (d

B)

p=1
p=2
p=3
p=4
analog

(b) fs = 96 kHz

10k 20k 30k 40k 60kfc fs
2

Frequency (Hz)

25

20

15

10

5

0

M
ag

ni
tu

de
 (d

B)

p=1
p=2
p=3
p=4
analog

(c) fs = 192 kHz

Figure 8.23 – (Peaking EQ) Magnitude response of the projected system with cutoff frequency
fc ≈ 50 kHz for common audio sampling rates fs ∈ [48, 96, 192] kHz and projection orders
p = 1, 2, 3, 4. (No prewarping has been applied to observe the effects of frequency warping).



230 Chapter 8. Circuits case studies

10k 20k 30k 40k 60kfcfs
2

fs
Frequency (Hz)

1.0

0.5

0.0

0.5

1.0

Ph
as

e 
(ra

d)

p=1
p=2
p=3
p=4
analog

(a) fs = 48 kHz

10k 20k 30k 40k 60kfcfs
2

fs
Frequency (Hz)

1.0

0.5

0.0

0.5

1.0

Ph
as

e 
(ra

d)

p=1
p=2
p=3
p=4
analog

(b) fs = 96 kHz

10k 20k 30k 40k 60kfc fs
2

Frequency (Hz)

1.5

1.0

0.5

0.0

0.5

1.0

Ph
as

e 
(ra

d)

p=1
p=2
p=3
p=4
analog

(c) fs = 192 kHz

Figure 8.24 – (Peaking EQ) Phase response of the projected system with cutoff frequency
fc ≈ 50 kHz for common audio sampling rates fs ∈ [48, 96, 192] kHz and projection orders
p = 1, 2, 3, 4.
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Oversampling vs increasing order

Building on the previous observations, it is natural to ask the following question: How does
oversampling by a factor q (i.e lowering the step size hq = h/q) compares to raising the projection
order p for the same number of parameters pq by time-step? i.e. we compare simulations that have
the same rate of innovation Bp,q = pq/h (generalized bandwidth). To measure both magnitude
and phase innaccuracies, we introduce the following relative error in the Fourrier domain

εp,q(f) =

∣∣∣∣∣∣∣
HEQ(s)−Hp

(
hs
q

)
HEQ(s)

∣∣∣∣∣∣∣
s=j2πf

. (8.38)

For a base audio sampling rate fs = 1/h = 48 kHz, we compare the error ε1,q to εp,1 for pq = 2, 3, 4,
that is pure oversampling εq,1 versus pure order increase εp,1 strategies

Results are shown in table 8.3 and on figure 8.25. Considering the audible frequency band
below the Nyquist frequency fs/2, we remark that the higher order approximation error εp,1 is
always lower than the oversampled approximation error ε1,q by at least 10 dB. This is confirmed
by the results in table 8.3. Furthermore, thanks to the higher accuracy, the error drops much
faster for sub-Nyquist frequencies (see footnote 20). Above the Nyquist frequency, we remark
that the maximum errors for each approximations are comparable, but the high order error εp,1 is
lower most of the time. In summary, we observe that:

increasing the projection order p improves the error much faster than oversampling by q,

even when the pole is not small compared to the frame rate 1/h 20. We conjecture that this
increased domain of accuracy must be limited to a region within or close to the generalized
bandwidth Bp,q (see fig. 8.22). This issue would require a dedicated study and is left for further
research. As another perspective, the L2-orthogonal V -system [MQSW07] is a generalization of
Legendre polynomials and Haar Wavelets which can both reproduce polynomials up to order p
and cover multiple time scales. This way, different trade-offs between high-order accuracy and
frequency resolution than the ones presented here could be considered.

comparison on 20 Hz - 20 kHz pq = 2 pq = 3 pq = 4

oversampled: maximum error
∥∥ε1,q∥∥∞ 185 · 10−3 70.0 · 10−3 37.3 · 10−3

high order: maximum error
∥∥εp,1∥∥∞ 125 · 10−3 4.63 · 10−3 1.21 · 10−3

oversampled: mean abs error
∥∥ε1,q∥∥1

7.91 · 10−3 3.22 · 10−3 1.76 · 10−3

high order: mean abs error
∥∥εp,1∥∥1

6.57 · 10−3 1.25 · 10−4 3.54 · 10−5

Table 8.3 – (Peaking EQ) comparison of the transfer function approximation error ε1,q (over-
sampling) and εp,1 (high order) over the audible range 20 − 20000 Hz. The frequency domain
error of high order discretisation is systematically lower than the oversampled one for the same
degrees of freedom per time step pq = 2, 3, 4.

20. We remind that our test uses a pole above the Nyquist frequency (also above the base sampling rate) to
challenge the numerical method. Otherwise, for sub-Nyquist poles such that |hλ| � 1, it is already obvious from
accuracy analysis that non-oversampled high-order methods have an error in O(|hλ|2p) which drops exponentially
with p, much faster than the error of oversampled second-order methods in O(

∣∣hλ/q
∣∣2) i.e. polynomial in q.
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Figure 8.25 – (Peaking EQ) Comparison of transfer function approximation errors εp,q(f) (in
decibels) for a constant number of parameters pq (see eq. (8.38)). The oversampling error ε1,q
(blue) is compared to the high order error εp,1 (orange) for pq = 2, 3, 4.
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Conclusion

In this chapter, we have reviewed a number of representative electronic audio circuits. Circuits
have been modeled using the PHS framework with a systematic transformational approach from
the circuit graph to continuous and discrete time simulation equations using the tools of chapter
2 and 5. We have considered bipolar transistors in section 8.1, diode clipping and filtering in
section 8.2, operational amplifiers with feedback saturation in section 8.3 and 8.4, a self-oscillating
resonant filter in section 8.4, a passive equalizer with a resonance above the Nyquist frequency in
section 8.6 and a relaxation oscillator using a tunnel diode as non-monotonous negative-resistance
element in section 8.5. The FuzzFace circuit had to be simulated as a pH-DAE because of the
algebraic coupling between transistors, while others like the MS-20 or the relaxation oscillator
could be simulated as ODEs. For the MS-20, we chose to pre-solve the algebraic feedback
nonlinearity offline as an equivalent component, rather than having to solve a stiff DAE. This
approach considerably reduces the complexity of simulation at the price of more preparation work.
All of the circuits were nonlinear except the peaking equaliser. For this circuit, we exploited
linearity to study the accuracy and increased bandwidth of high order projection methods in
the spectral domain. We confirmed that high-order methods have faster convergence than
oversampling for open linear systems, even more when the frequency region of interest is below
the Nyquist frequency.
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Part IV

Towards Geometric Algebra





Chapter 9

Geometric Algebra for PHS
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This chapter is dedicated to Geometric Algebra (GA) and attempts to highlight its potentialities
for port-Hamiltonian System modelling.

A complete overview of GA is clearly out of the scope of this chapter, Geometric Algebra
is at the same time very simple and elementary in its construction, making a perfect fit for
undergraduates, and very far reaching, unifying concepts as diverse as complex numbers, split
complex numbers, quaternions, octonions, Pauli an Dirac matrices, projective, conformal and
non-euclidean geometries within a unifying framework. A main difficulty to its wider adoption is
related to the fact that it requires unlearning to fully grasp its full potential. In particular, it
is necessary to get rid of the three dimensional cross product 1 (which does not generalises to
an arbitrary number of dimension). A second learning barrier, which I found more difficult in
practice, is to stop identifying General Linear transforms with their matrix representation. This
chapter describes my personal journey towards using geometric algebra with port-Hamiltonian
systems.

Section 9.1, is a brief introduction to Geometric Algebra. In section 9.2, we show some
motivating examples where Geometric Algebra is a key tool to simplify the representation of
physical problems allowing to extract their invariants. In section 9.3, we use GA to represent

1. The 3-dimensional cross product can be defined as the Hodge dual of the exterior product of two vectors.

237



238 Chapter 9. Geometric Algebra for PHS

General Linear transforms uniformly as (parabolic, hyberbolic) rotations using elements of the
same algebra 2. In section 9.4, we use GA to describe Dirac structures, revisiting the content of
section 1.3.1 p.20.

In sections 9.3 and 9.4 we use non-euclidean geometry which is required to describe the duality
pairing of Dirac structures and hyperbolic transformations in general linear transforms. Section
9.3 and 9.4 present some initial work that needs to be further devlopped and matured. This work
shows how to technically represent Dirac structures and General linear transforms with Geometric
Algebra. However it still lacks the simplifying elegance usually associated with GA. One of the
main difficulty is that intuitions from euclidean geometry are no longer valid in non-euclidean
spaces 3. I hope that this chapter motivates more people to adopt Geometric Algebra and find
more satisfying answers to these questions.

2. A powerful property of complex numbers is that a complex number can represent both a point of the 2D
space and a scaling/rotation. In GA, we can generalize this property. Another common example from computer
graphics is that 3D geometry is significantly simplified by using quaternions to represent affine 3D transformations.

3. We note that reference [Hes93] avoids non-euclidean metrics by identifying the configuration space with its
dual: the momentum space. Conversely, in [DHSVA93] non-euclidean signatures are key to represent general linear
transforms GL(n) as orthogonal transforms O(n, n).
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Why use Geometric Algebra for PHS?

Without diving into details yet 4, my original motivation for trying to encode the physics of
PHS using the language of geometric algebra arises from the following observations:

1) For conservative systems of the form ẋ = J∇H(x), the skew-symmetric matrix J =
−JT, is an infinitesimal generator of rotations. It defines an anti-commutative Poisson
bracket 5 [Olv00, p.390] {f, g}J = −{g, f}J. In the language of Grassmann algebras, this is
intimately linked to the notions of exterior product ∧ and bivector so that the dynamic of
Poisson/Hamiltonian systems can be described by the Poisson bracket

ẋ = {x, H}J .

2) For dissipative gradient systems of the form ẋ = −R∇H(x), a symmetric positive semi-
definite dissipation matrix R = RT � 0 is used to encode dissipation. In turn, this induces
a metric bracket 6 (f, g)R = (g, f)R. The dynamic of purely dissipative gradient systems
can be written using the metric bracket as

ẋ = −(x, H)R.

3) For dissipative PHS of the form ẋ = (J−R)∇H(x), both rotation and dissipation happen
at the same time. This is unified in the geometry of metriplectic systems [Mor86, BMBM18],
by introducing the notion of a metriplectic bracket [[f, g]] = {f, g}J − (f, g)R to combine
purely conservative and purely dissipative geometries.

4) From the geometric algebra viewpoint 7, the geometric product uv of two vectors u,v is
equal to the sum of the inner product u · v (a scalar) and the exterior product u ∧ v (a
bivector). Furthermore, while the cosine of the angle between vectors u,v is naturally
encoded by the inner product into the scalar part 8 1 of the algebra, the exterior product
completes the picture by encoding the sine of the angle into the bivector part i 9 (generalizing
complex numbers in any dimensions). This is summarized by the following identity

uv = u · v + u ∧ v = |u||v| (1 cos θ + i sin θ) , where 1 :=
u · v
|u||v|

, i :=
u ∧ v

|u||v|
.

Since geometric algebra has the power to unify inner and exterior products into a single geometric
product, it seems natural to embrace this formalism and study its consequences for PHS modelling.

This chapter is a personal take on the subject and the reflect of my current understanding (far
from being complete). The proposed approach is to put aside our knowledge of matrix algebra
and to exclusively use GA constructs to reintroduce, step by step, the PH modelling tools from
chapter 1 p.7. For the formulation of Hamiltonian mechanics using GA see [Hes93] and [DGL+03,
p. 432]. For Lagrangian mechanics see [DGL+03, p. 420].

4. See [Olv00, p.390] for a definition of the Poisson bracket and [Mor86, BMBM18] for metriplectic geometry.

5. In euclidean coordinates the Poisson bracket is {f, g}J =
∑
i,j

∂f

∂xi
Jij

∂g

∂xj
so that {x, H}J = J∇H(x).

6. In euclidean coordinates the metric bracket is (f, g)R =
∑
ij

∂f

∂xi
Rij

∂g

∂xj
so that (x, H)R = R∇H(x).

7. An introduction is detailed in section 9.1
8. Geometric algebra is a graded algebra, i.e. is has 0-vectors, 1-vectors, 2-vectors, etc. It is a common notation

to denote 1 the basis element representing the scalar part of the algebra (a 0-vector).
9. We use the symbol i to emphasize its role as a complex number, in the plane spanned by vectors u, v. But,

it is embedded and can be oriented arbitrarily in dimension n.
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9.1 Introduction to Geometric Algebra

Remark 9.1 (Reading advice). Introducing Geometric Algebra (GA) in just a few pages is
not an easy task. For a self-taught introduction to GA, I recommend starting from the basics
by reading reference [Mac10] (taking the time to do the exercises) followed by [Mac12b] on
Geometric Calculus (GC). For more advanced topics and physical applications, the book
[DGL+03] is a very good starting point. For a quick course on GA, see [Mac17, GLD93]
and [Hes14, Hes86] see also [Hit01]. For the relation between GA and differential geometry
refer to [Hes11]. For minimal and axiomatic constructions of GA see [Mac02, Art06], see
also [DGL+03, p.84]. In this manuscript, I will deliberately skip some of the hallmarks of
GA such as Space-time Algebra, and GA representations of Dirac and Pauli matrices.

Modern Geometric Algebra was initiated by David Hestenes building on the work of Hamilton,
Grassmann and Clifford. A main difference with Clifford Algebras is in the simpler notations 10 and
the stronger focus on geometry (hence the name). The main concept of GA is the introduction of
the geometric product. This makes the product of two (multi-)vectors a well-defined mathematical
object. It also gives rise to the introduction of mathematical objects such as the inverse of a
(nonzero) vector, blades, multi-vectors, pseudo-scalars, spinors, etc (introduced below). To see
this, we start from well known concepts such as the inner product and the exterior product before
introducing the (graded) geometric algebra.

uu·v
u·u

u

v

θ

Figure 9.1 – Inner prod-
uct of vectors.

Inner product (of vectors) The inner product, denoted u · v, of
two vectors u, v is a scalar number with magnitude |u||v| cos θ where
|u| ≡

√
u · u denotes the length (norm) of u and θ is the angle from

u to v. It satisfies the symmetric relation

u · v = v · u.

u

v

	
u ∧ v

(a) oriented area

u

v
w

	
	

(b) oriented volume

Figure 9.2 – Exterior
product of vectors.

Exterior product (of vectors) The inner product only gives a
partial information regarding vectors u, v. Traditionally, in 3 dimen-
sion it is customary to use the cross product u× v, however such a
construct is only valid in 3-dimensional space. Instead, Grassmann
introduced the exterior product ∧ and the associated exterior alge-
bras. The exterior product u ∧ v of two vectors u, v has magnitude
|u||v| sin θ but it is not a scalar or a vector: it is an oriented area (or
bivector or 2-vector) from u to v. It satisfies the anti-commutative
relation

u ∧ v = −v ∧ u.

A geometric interpretation of the exterior product u∧v is the oriented
area corresponding to the parallelogram formed by vectors u, v. This
construction can be generalised to any number of vectors leading to the
notion of k-blades 11 representing oriented volumes between vectors 12.
For example in 3-dimension the volume of highest grade is a 3-volume
represented by the 3-vector (or 3-blade) u ∧ v ∧w.

10. which makes it more approachable by non mathematicians.
11. A blade is equal to the product of nonzero orthogonal vectors B = e1∧e2∧ek so that its norm|B| = |e1| . . .|ek|

is equivalent to the volume of the rectangular parallelogram with edges e1, e2, . . . , ek.
12. if some vectors are co-linear then their oriented volume is zero.
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Geometric product (of vectors) We can think of the inner and outer products as the
symmetric and antisymmetric parts of a new product called the geometric product 13 below.

uv ≡ u · v + u ∧ v

We remark that the inner product and the exterior product respectively lower and rise the
grade of their operands. The product of parallel vectors is a pure scalar and the product of
orthogonal vectors and is a bivector. A more axiomatic approach (detailed below) is to reverse
the situation and extract the inner product and exterior product respectively as the symmetric
and skew-symmetric parts of the geometric product

u · v =
1

2
(uv + vu), u ∧ v =

1

2
(uv − vu). (9.1)

Geometric algebra We reproduce the following definition of geometric algebra.

Definition 9.1 (Geometric algebra [Mac17]). The geometric algebra Gn is an extension of
the inner product space Rn noted Gn := G(Rn). It is an associative algebra with scalar
identity element 1. That is, it is a vector space with a product satisfying properties P1-P4
for all scalars a and elements A,B,C ∈ Gn.

P1. A(B + C) = AB +AC and (B + C)A = BA+ CA (left and right distributivity) ,

P2. (aA)B = A(aB) = a(AB) (Compatibility of scalar and geometric multiplication),

P3. (AB)C = A(BC) (Associativity)

P4. 1A = A1 (Commuting left and right multiplicative identity)

the product is called the geometric product. Members of Gn are called multi-vectors. We list
two more properties.

P5. The geometric product of Gn is linked to the algebraic structure of Rn by

u2 = uu = u · u = 1|u|2 ∀u ∈ Rn

P6. Every orthonormal basis of Rn determines a canonical basis of the vector space Gn (see
table 9.1 p.242).

Property P5 yields that nonzero vectors have a multiplicative inverse in Gn noted u−1 = u/|u|2.

Notations GA is a graded algebra. In the general setting, an element A of the GA is a mixed-
grade multivector. It can be decomposed as a direct sum of graded k-vectors (a sum of k-blades)
noted 〈A〉k where 〈·〉k is the grade extracting operator of order k, so that

A = 〈A〉0 + 〈A〉1 + 〈A〉2 + . . .+ 〈A〉n .

The geometric product of two multivectors M,N is denoted MN . An important operation in GA
is called reversion which reverses the order of its operands. It is defined and denoted by

(MN)† = N †M †, 〈M〉†1 = 〈M〉1 . (9.2)

In this thesis, we use the lower case bold notation u for vectors, uppercase bold B for bivectors,
and lower case standard font a for scalars. As an exception, the neutral element of GA is often
denoted 1 to higlight its role as a basis for elements of grade 0 (scalars) as in a ≡ 1a.
13. Note that the axiomatic definition (def. 9.1) of the geometric product is preferable to manipulate multi-vectors

of mixed grade. The identity uv = u · v + u ∧ v is only valid for vectors. See equations (9.3)-(9.5)
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Canonical basis of Gn Let {ei}ni=1 be an orthonormal basis of Rn with signature e2
i = ei·ei = 1

(by definition ei · ej = 1δij). The vector space Gn = G(Rn) has a canonical basis of dimension 2n.
Its subspaces (of grade k) have dimension

(
n
k

)
. Examples for G2,G3,G4 are given in table 9.1.

Grade k basis denomination cardinality
(
n
k

)
0 1 0-vectors (scalars) 1

1 e1, e2 1-vectors (vectors) 2

2 e1e2 2-vectors (bivectors) 1

(a) G2, dim(G2) = 4

Grade k basis denomination cardinality
(
n
k

)
0 1 0-vectors (scalars) 1

1 e1, e2, e3 1-vectors (vectors) 3

2 e2e3, e3e1, e1e2 2-vectors (bivectors) 3

3 e1e2e3 3-vectors (trivectors) 1

(b) G3, dim(G3) = 8

Grade k basis denomination cardinality
(
n
k

)
0 1 0-vectors (scalars) 1

1 e1, e2, e3, e4 1-vectors (vectors) 4

2 e1e2, e1e3, e1e4, e2e3, e2e4, e3e4 2-vectors (bivectors) 6

3 e2e3e4, e3e4e1, e4e1e2, e1e2e3 3-vectors (trivectors) 4

4 e1e2e3e4 4-vectors (quadrivectors) 1

(c) G4, dim(G4) = 16

Table 9.1 – Canonical bases of G2, G3, G4.

Multiplication tables To get an understanding and some intuition of the algebra, one can
obtain the multiplication tables 14 using the following properties

• By collinearity, orthonormal vectors in Rn square to one (since ei ∧ ei = 0)

e2
i = eiei = ei · ei = 1,

• By orthogonality, basis vectors anti-commute (because ei · ej = δij)

eiej = ei ∧ ej = −ej ∧ ei = −ejei i 6= j.

Then by reordering terms, according to anti-commutation rules, we obtain canonical basis elements
(see table 9.1). The multiplication tables of G2 and G3 are shown in table 9.2.

14. Efficient numerical implementations of GA rely on fast encoding and realisation of these multiplication
tables.
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AB 1 e1 e2 i

1 1 e1 e2 i

e1 e1 1 i e2

e2 e2 −i 1 −e1

i i −e2 e1 −1

(a) Multiplication table of G2. where i = e1e2

AB 1 e1 e2 e3 B1 B2 B3 I

1 1 e1 e2 e3 B1 B2 B3 I

e1 e1 1 B3 −B2 I −e3 e2 B1

e2 e2 −B3 1 B1 e3 I −e1 B2

e3 e3 B2 −B1 1 −e2 e1 I B3

B1 B1 I −e3 e2 −1 −B3 B2 −e1

B2 B2 e3 I −e1 B3 −1 −B1 −e2

B3 B3 −e2 e1 I −B2 B1 −1 −e3

I I B1 B2 B3 −e1 −e2 −e3 1

(b) Multiplication table of G3. where B1 = e2e3, B2 = e3e1, B3 = e1e2, I = e1e2e3.

Table 9.2 – (Geometric Algebra) Multiplication tables.

Extended definitions of inner and exterior product Let 〈M〉i denote the components of
grade i (i-vectors) in M . Then, the inner product (here left-contraction 15) and exterior product
of a i-vector A with a j-vector B are respectively defined by [Mac10, p.101]

A ·B := 〈AB〉i−j , A ∧B := 〈AB〉i+j , (9.3)

where A∧B = 0 if i+ j > n. We highlight some identities that are used in the following 16. Note
that, in the case of a vector a multiplied by a bivector B, signs are reversed compared to (9.1)!

a ·B =
1

2
(aB−Ba) , a ∧B =

1

2
(aB + Ba) . (9.4)

More generally, for a k-vector A, the vector-blade formulae are given by

a ·A =
1

2

(
aA− (−1)kAa

)
, a ∧A =

1

2

(
aA+ (−1)kAa

)
. (9.5)

For example, let a = e1, B = e1e2, then using (9.4) a · B = 1
2(e1e1e2 − e1e2e1) = ((e2

1)e2 +
(e1)2e2) = e2 and a ∧B = 1

2(e1e1e2 + e1e2e1) = ((e2
1)e2 − (e1)2e2) = 0.

15. The litterature on Clifford algebras often uses the left contraction notation AcB to denote A ·B.
16. We need the contraction of a vector with a bivector to implement skew-symmetric maps for Hamiltonian

systems and Dirac structures.
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Norm Expand a multivector A with respect to a canonical basis {eJ} 17 (of graded multivectors)
as A =

∑
J eJaJ . Then, the norm 18 |A| of A is defined by 19

|A|2 =
∑
J

|aJ |2 . (9.6)

Inverse Generalizing the inverse of a vector (see definition 9.1 P5), let B be a k-blade B =
u1 ∧ . . . ∧ uk. It can be written in an orthonormal basis {bi} of the hyperplane spanned by B
as B = |B|b1 . . .bk. One can define its (right) inverse as the unique element B−1 such that
BB−1 = 1. One can easily show that its inverse is given by the reversion

B−1 = B†/|B| = bk . . .b1/|B| . (9.7)

Indeed, using b2
i = 1 (in euclidean spaces), we have BB−1 = |B|b1 . . .bkbk . . .b1/|B| = 1.

Duality The n-vectors in Gn are called pseudo-scalars. They have the property of commuting
with all elements of the algebra (hence their name). For example, the unit pseudoscalar of G3

with orthonormal basis {e1, e2, e3} is I = e1e2e3 (sometimes denoted by P to avoid confusion).
It has unit norm |I| = |e1||e2||e3| = 1 and is unique up to a sign change when permuting the order
of multiplication. Its inverse is I−1 = e3e2e1 = −I. In Gn we have I−1 = (−1)n!I.

Definition 9.2 (Dual [Mac10]). The dual of a multivector A is A∗ := A/I.

For example, the dual of vector e1 is the bivector e∗1 = e1/I = e1(e3e2e1) = −e2
1e2e3 = −e2e3.

Moreover, if a blade A represents the span SA ⊂ Rn of its vectors, then its dual A∗ represents is
orthogonal complements S⊥A.

Theorem 9.1 (Duality [Mac10]). The inner product and outer products are dual

(A ·B)∗ = A ∧B∗, (A ∧B)∗ = A ·B∗ (9.8)

With this definition of the GA dual, the Hodge dual from exterior algebra can be defined explicitly
by ?(A) := −A∗. So that in G3

?(1) = −I, ?(e1) = e2 ∧ e3, ?(e2) = e3 ∧ e1, ?(e3) = e1 ∧ e2.

The dual extends to all elements of the G3 (not just to the exterior algebra ∧(R3) ⊂ G3).

Remark 9.2 (cross product). A well known example in R3 (whose definition does not extend
to Rn) is the cross product u× v of two vectors. In GA, it is defined as the (pseudo-vector)
dual to the plane spanned by the bivector u ∧ v, that is

u× v = (u ∧ v)∗.

Indeed, in Gn, the dual of a bivector is a (n− 2)-vector (a scalar in G2, a vector in G3, a
bivector in G4, etc).

17. Where J are multi-indexes, for example J = (1, 2) denotes the basis element eJ = e1e2.
18. Note that we can generalise to spaces of indefinite or mixed signature. The square, inner product, norm and

signature s of a vector u are then linked by u2 = u · u = s|u|2 where s ∈ {−1,0,1}.
19. For example |1 + 2e1 + 3e2 + 4e1e2|2 = 12 + 22 + 32 + 42.
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9.1.1 Linear geometric transforms

Remark 9.3. One difficulty, when learning GA, comes from the necessity to unlearn the
following implicit habits and expectations inherited from complex and linear algebra:

1. Linear transformations act on the left as in y = λx for complex numbers or y = Ax
for linear algebra.

2. Linear maps Lλ : x 7→ y = λx and LA : x 7→ y = Ax are usually identified with the
complex number λ and the matrix A using the same symbol.

3. λ is an element of the complex algebra acting on complex numbers a however the
matrix A is an element, from outside the set of vectors, acting on vectors x.

At this point in GA, to avoid ambiguity, it is customary to introduce a notation to
distinguish transforms from elements of the algebra used to implement the transform. For
example, we have seen in (9.4) that we can implement a skew-symmetric map J acting on a
vector x as a contraction with a bivector J

J(x) = x · J =
1

2
(xJ − Jx) . (9.9)

The adjoint map noted J∗ is indeed skew-symmetric b

J∗(x) = J · x =
1

2
(Jx− xJ) = −J(x). (9.10)

Distinguising notations J (map) and J (GA element), it is possible to unambiguously use
the common notation AB to denote the composition of maps A ◦ B.

a. In GA, this situation is generalized by the notion of even and odd spinors, i.e. elements of GA with
even or odd grade, used to represent transforms on GA elements.

b. Note that, to avoid confusion between adjoint map and GA dual notations, an alternative notation in
the GA literature uses J (linear map associated to a symbol J) and J (adjoint map) .

Projection

u‖

u u⊥

B

Figure 9.3 –
Projection and
rejection.

A vector can be decomposed into its projection and rejection u =
u‖ + u⊥ with respect to a subspace. In GA, a subspace is represented by
the blade formed by its spanning vectors (not necessarily orthonormals)
B = e1 ∧ . . . ∧ ek.

Theorem 9.2 (Projection-rejection [Mac10]). Let u be a vector and
B a blade. Then

u‖ = PB(u) := (u ·B)/B, u⊥ = P⊥B(u) := (u ∧B)/B. (9.11)

More generally, if A is a blade, then the projection of A on B is PB(A) = (A ·B)/B. This allows
to compute the angle between the subspaces represented by blades A and B as ([Mac10], p.123)

cos θ =

∣∣PB(A)
∣∣

|A|
=
|A ·B|
|A||B|

.
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Reflection

u‖

u
u⊥

−u⊥MB(u)

B

(a) Mirror of a vector

u

v

MB(u)

MB(v)

B

(b) Mirror of a blade

Figure 9.4 – Reflection.

Geometrically, the reflection of a vector u = u‖ + u⊥ in a
subspace B is u‖ − u⊥. From theorem 9.2 and equation 9.5

MB(u) := u‖ − u⊥ = (u ·B− u ∧B) /B = (−1)k+1BuB−1.

More generally, the following results holds for blades

Theorem 9.3 (Reflection [Mac10]). Let B be a k-blade. Then
the reflection or mirror of a vector u into B is

MB(u) = (−1)k+1BuB−1. (9.12)

By extension, the reflection of a `-blade U = u1 ∧ . . . ∧ u`
defined by MB(u1) ∧ . . . ∧MB(u`) is

MB(U) = (−1)`(k+1)BUB−1. (9.13)

Example 9.1 (Mirror in a line). The reflection of a vector u in a line represented by x is

Mx(u) = xux−1. (9.14)

When x has unit norm then x−1 = x/|x| = x so that Mx(u) = xux. One can show (using
duality, see def. 9.2) that the reflection in the hyperplane x∗ dual to a vector x is

Mx∗(u) = −xux−1. (9.15)

u

u‖

u⊥

x

Mx(u)

Mx∗(u)

x∗

Figure 9.5 – Mirror in a line x and its dual hyperplane x∗.

Rotation

u

u‖

u⊥

R(u)

R(u‖)

u⊥

iθ

Figure 9.6 –
Rotation.

Geometrically, Let i be a bivector, the rotation of a vector u‖ + u⊥ in
the plane i by the bivector angle iθ is equal to the sum of its perpendicular
component and of its rotated plane projection R(u) = R(u‖) + u⊥ =

u‖eiθ + u⊥. Similarly to reflections, one can show ([Mac10] p.89) that
rotations can be canonically written using the "sandwich" product 20

R(u) = RuR−1,

where the rotor R = e−iθ/2 :=
∑∞

n=0
(−iθ/2)n

n! behaves like a "half-rotation"
acting symmetrically on left and right. By extension, we have

20. In quaternion algebra, transforms are canonically represented using "sandwich products".
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Theorem 9.4 (Rotation [Mac10]). The rotation of a blade A = a1 ∧ . . . ∧ a` defined by
R(A) = R(a1) ∧ . . . ∧ R(a`) and rotor R is

R(A) = RAR−1. (9.16)

Unit norm rotors satisfy R−1 = R† and RR−1 = RR† = 1 (see (9.7)). Furthermore, let R1,R2

be two rotations defined by rotors R1, R2, then composing rotations, we see that rotors form a
group whose group composition is R = R2R1

R(u) = (R2R1)(u) = R2

(
R1uR

−1
1

)
R−1

2 = RuR−1.

Rotations as compositions of reflections One can show (see [DGL+03] p.43) that the
composition of two reflections in the hyperplanes perpendicular to unit vectors x and y yields a
rotation by 2θ in the plane B = x ∧ y with cos θ = x · y. It is given (eq. (9.15)) by

R(u) = (My∗Mx∗)(u) = (−y(−xux)y) = (yx)u(xy) = RuR−1 with R = yx.

Dually the composition of reflection in lines x,y yields the same rotation R(u) = (MyMx)(u) =
(y(xux)y) = (yx)u(xy) = RuR−1.

9.1.2 Sub-algebras

Complex numbers A complex number in Gn is a multivector of the form a+ ib with a, b ∈ R
where i = ab is the unit pseudoscalar of some plane spanned by orthonormal vectors a,b. Since
i2 = −1, this means that every plane has its own complex number system 21 which is isomorphic
to C. For two vectors u,v ∈ span {a,b}, we have the polar representation

uv = u · v + u ∧ v = |u||v| (cos θ + i sin θ) = reiθ,

where r := |u||v| and eiθ := cos θ+ i sin θ. The geometric interpretation of the quantity |u||v| sin θ
is shown in figure 9.7 (the red and blue oriented areas are equal to each other).

u

v

θ

Figure 9.7 – GA identity |u ∧ v| = |u||v| sin θ.

Quaternions In G3, the bivectors squares to −1. Defining i = −e2e3, j = −e3e1, k = −e1e2,
we obtain Hamilton’s equation defining quaternions

i2 = j2 = k2 = ijk = −1.

We see by looking at table 9.2 that the bivectors i, j,k are duals of the vectors e1, e2, e3 (indeed
multiplication of i, j,k by the pseudo-scalar I3 = e1e2e3 of G3 yields respectively e1, e2, e3).
Exactly like in G2 we can represent a vector either using the vectors basis {e1, e2} (odd subalgebra)
or the complex basis {1, i = e1e2} (even subalgebra), in G3 we can represent vectors either using
the vectors {e1, e2, e3} or their duals {i, j,k}.

21. We have i2 = abab = −aabb = −a2b2 = −1 (using anticommutation ab = −ba of orthogonal vectors, and
the metric signature a2 = b2 = 1). See table 9.2 to verify that unit bivectors squares to −1 (in euclidean space).
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Matrix isomorphisms

G2 There exists an "accidental" isomorphism between R2×2 and G2 given by

[1] =

1 0

0 1

 , [e1] =

1 0

0 −1

 , [e2] =

0 1

1 0

 , [e1e2] =

 0 1

−1 0

 .
Indeed, identifying the geometric product with the matrix product, we can verify that

[e1]2 = [e2
1] = [1], [e2]2 = [e2

2] = [1], [e1][e2] = [e1e2].

so that matrices
{

[1], [e1], [e2], [e1e2]
}
satisfy the GA properties from definition 9.1 (see also the

multiplication table 9.2a).

G3 There exists similar embeddings (see [Sob08, Sob20]) for G3, (which is of dimension 23 = 8).
However it requires a matrix embedding as a sub-algebra of either R4×4 or C2×2 (of dimension
16). The most famous one is the algebra generated by Pauli matrices

[e1] =

0 1

1 0

 , [e2] =

1 0

0 −1

 , [e3] =

 0 i

−i 0

 .
One can verify that [ei]

2 = [1], that we have the bivectors

[B1] = [e2e3] =

0 i

i 0

 , [B2] = [e3e1] =

i 0

0 −i

 , [B3] = [e1e2] =

0 −1

1 0

 ,
and that the pseudo scalar of the algebra is

[I] = [e1e2e3] =

i 0

0 i

 ,
so that we have the duality relation between vectors and bivectors [Bi] = [I]ei (see definition 9.2
and the multiplication table 9.2b).
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9.2 Motivating examples and invariants

In this section, we review short motivating examples (the harmonic oscillator, a dissipative
oscillator, and Maxwell equations). This shows the potential of GA for revealing hidden geometric
structure, unifying and simplifying representations.

9.2.1 Harmonic oscillator

Consider a linear harmonic oscillator with unit mass and pulsation ωẋ
ẏ

 = J

∂xH
∂yH

 , with J = ω

 0 1

−1 0

 , and H(x, y) =
1

2

(
x2 + y2

)
. (9.17)

Using the geometric algebra G(R2), in a basis {e1, e2}, it can be written as

ẋ = J ·∇H(x), with H(x) =
1

2
x2, (9.18)

where the vector x, the gradient operator ∇ and the bivector J (see (9.10)) are represented as

x = e1x+ e2y, ∇ = e1
∂

∂x
+ e2

∂

∂y
, J = iω, i := e1e2 = e1 ∧ e2. (9.19)

The system has two invariants: the energy E and the angular momentum L defined by

E(t) = H(x(t)), L(t) = x(t) ∧ ẋ(t). (9.20)

Angular momentum To have a geometric interpretation of the angular momentum (see figure
9.8), denote dA the infinitesimal oriented area swept from x(t) to x(t+ dt)

dA := x(t) ∧ x(t+ dt). (9.21)

Then, using (9.20) and (9.21), we see how the angular momentum L(t) quantifies the rate of
change of A along the trajectory

L(t) = x(t) ∧ ẋ(t) = x(t) ∧
(
x(t+ dt)− x(t)

dt

)
=
x(t) ∧ x(t+ dt)

dt
=

dA

dt
. (9.22)

Figure 9.8 shows the geometrical interpretations of L and dA.

x(t)

x(t+ dt)

dx

dA

•
x

∇H(x)ẋ = J ·∇H(x)

L

Figure 9.8 – Angular momentum of an harmonic oscillator. Note that according to (9.22), the
angular momentum L and the infinitesimal area dA are linked through dA = Ldt.
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Power To obtain a geometric insight on the power, we consider the time-derivative of the
energy. Using the chain rule, we recover (as expected) the GA definition of the inner product

dE

dt
=

d

dt

(
x2

2

)
=

d

dt

(
xx

2

)
=

1

2
(xẋ+ ẋx) = x · ẋ = x · J · x = 0, (9.23)

which vanishes by orthogonality of x and ẋ (thanks to skew-symmetry of bivector J).

Unification of power and angular momentum We remark that power involves the inner
product, while momentum is linked to the exterior product. Using GA, we can unify (9.23) and
(9.22) as the direct sum of a scalar and of a bivector using the the geometric product

dE

dt
+

dA

dt
= x · ẋ+ x ∧ ẋ = xẋ. (9.24)

Remark 9.4 (Multi-vector potential). In equation (9.24), we notice the emergence of the
time derivative of a multivector. This suggests that the multivector functional

M(x) =

ˆ t

0
x(t) · ẋ(t) dt+

ˆ t

0
x(t) ∧ ẋ(t) dt =

ˆ x(t)

x(0)
x · dx +

ˆ x(t)

x(0)
x ∧ dx =

ˆ x(t)

x(0)
x dx,

that is M = E +A, plays an important role in the formulation of the dynamic.

In the conservative case, by orthogonality, the energy variation is zero (Ė = x · ẋ = 0), the energy
H(x) is thus constant and we have xẋ = x ∧ ẋ. Furthermore, we can show that momentum and
energy are proportional

L = 2JH(x), (9.25)

so that the momentum L is constant too.

Proof. Since x = e1x+ e2y, and ẋ = J ·∇H(x) = ω(−e1y+ e2x), using the multiplication table
of G2 from table 9.2 we show that

L = x ∧ ẋ = xẋ = (e1x+ e2y)ω(−e1y + e2x) = ω
(
e1e1xy − e2e2xy + e1e2x

2 − e2e1y
2
)

= ω
(
1(xy − xy) + i(x2 + y2)

)
= 2JH(x).

Alternatively (using the grade operator), L = x(J · x) = 〈xJx〉2 =
〈
Jx2

〉
2

= 2JH(x).

9.2.2 Dissipative oscillator

We introduce dissipation to obtain the following logarithmic spiral oscillator (see figure 9.9)ẋ
ẏ

 =

ω
 0 1

−1 0

− σ
1 0

0 1



x
y

 . (9.26)

An equivalent geometric algebra formulation is given by

ẋ = (J −R) · ∇H(x) with J = iω, R = σ1. (9.27)

The system is no longer conservative but it still has two constants of motion, which are the
relative dissipation rate (prop. to σ) and the relative angular momentum (prop. to ω)

Ḣ

H
= −2σ,

L

H
= −2iω. (9.28)
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• •
x0 ~x0 = ∇H(x0)

J · ∇H(x0)

−R · ∇H(x0)

~̇x0 = (J −R) · ∇H(x0)

L

θ

α

•
x1

~x1 = ∇H(x1)

J · ∇H(x1)

−R · ∇H(x1)
~̇x1 = (J −R) · ∇H(x1)

•
x2 •

x3

Figure 9.9 – Bernouilli’s logarithmic spiral.

Proof. Recall that i = e1e2 and x2 = 2H(x) = x2 + y2. Then,

|ẋ|2 = |(−σ1 + ωi)x|2 = |σx|2 + |ωix|2 = |x|2(σ2 + ω2).

We also have the polar decomposition of the geometric product

∇H(x)ẋ = ∇H(x) · ẋ+∇H(x) ∧ ẋ = |x||ẋ|(1 cos θ + i sin θ)

where

1 cos θ :=
x · ẋ
|x||ẋ|

= 1
−σ√
σ2 + ω2

, i sin θ :=
x ∧ ẋ
|x||ẋ|

= i
−ω√
σ2 + ω2

.

Then, using the left identity for cos θ, the relative dissipation rate is

d

dt
lnH(x) =

Ḣ(x)

H(x)
= 2

x · ẋ
x · x

= 2
|x||ẋ|
|x|2

1 cos θ = 2
|ẋ|
|x|

1 cos θ = 2
√
σ2 + ω21 cos θ = −2σ.

Likewise, using the right identity for sin θ, the relative momentum is

L(x)

H(x)
=

Ȧ

H(x)
= 2

x ∧ ẋ
x · x

= 2
|x||ẋ|
|x|2

i sin θ = 2
|ẋ|
|x|
i sin θ = 2

√
σ2 + ω2i sin θ = −2iω.

Dividing both expressions, we obtain the dissipation angle θ given by

Ȧ

Ė
= i tan θ = i

(
ω

σ

)
. (9.29)

9.2.3 Maxwell equations (in empty space)

As a last example, due to [Mac17, eq. (3.1)], one can show, using GA, that Maxwell equations
can be elegantly unified as an instance of the wave equation ∂2

t F =∇2F over a multivector field
F (t, x, y, z) ∈ G3. The derivation, not directly relevant to this thesis, is reproduced in appendix
F.3 p.322. We mention this example to highlight the kind of paradigm shift that can be expected
from adequate use of Geometric Algebra.
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9.3 Port-Hamiltonian systems using Geometric Algebra

A direct translation in GA of an input-state-output port Hamiltonian system (see definition
1.22 p.33) is given by {

ẋ = (J− R)(∇H(x)) + G(u)

y = G∗(∇H(x))
(9.30)

with vectors u,y ∈ Rp, x ∈ Rn, and linear maps J ∈ L(Rn,Rn), R ∈ L(Rn,Rn), G ∈ L(Rp,Rn),
satisfying skew-symmetry J∗ = −J, and R∗ = R � 0. The Hamiltonian is H ∈ C2(Rn,R), the
gradient is ∇ =

∑
n en

∂
∂xn

expressed in the canonical basis {ek} of Rn such that vectors are
written as x =

∑
k ekxk.

At this point, nothing has changed, we only abstracted matrices by their linear maps. In this
section we are interested in the implementation of the linear maps J,R,G,G∗ using elements of
geometric algebra (exclusively) instead of their matrix representation.

Implementation of skew-symmetric maps

We have already seen during the GA introduction in (9.9) that skew-symmetric maps J can
be implemented as a contraction with a bivector J so that (choosing right contraction) in GA 22

J(∇H(x)) = J · ∇H(x) =
1

2

(
J∇H(x)−∇H(x)J

)
. (9.31)

Implementation of symmetric positive definite maps

Using a linear algebra argument, a possible strategy to implement a symmetric positive
(semi-)definite map R = R∗ � 0 is to use its eigenvalue decomposition R = QΛQ∗ with (real)
orthonormal eigenvectors {qi}ri=1 (r ≤ n) and corresponding (positive real) eigenvalues {λi}.
This way, for a vector v, projecting on qi, scaling by λi and synthesising on qi we obtain

R(v) =
r∑
i=1

qiλi(qi · v)
a
=

r∑
i=1

qiλi

(
qiv + vqi

2

)
b
=

r∑
i=1

λi

(
v + qivqi

2

)
c
=

r∑
i=1

λi

(
v + Mqi(v)

2

)
d
=

r∑
i=1

λiPqi(v).

Where we used a) the definition of the inner product (9.1), b) the signature of euclidean vectors
q2
i = 1, c) the definition of reflection in a unit line (9.14) and d) the definition of projection

on a unit vector (9.11). This representation explicitly emphasises that every SPD transforms
determines a scaling in the direction of its eigenvectors (but requires that we know them).

Implementation of non square linear maps

To implement maps G ∈ L(Rp,Rn) (and their dual G∗) a similar approach is to use the singular
value decomposition G = UΣV∗, with left and right eigenvector {µi}, {νi} and corresponding
singular values {σi}ri=1, with r ≤ min(p, n) so that for a vector x

G(x) =

r∑
i=1

µi σi(νi · x)

22. Note the skew-symmetric similarity with the results from [Cel] and [MQR99, eq. (1.3)]: for a vector field
f(x) with nonzero invariant H(x), the structure matrix of the ODE is J(x) = 1

2

(
f(x)∇H(x)T

‖∇H‖2 −
∇H(x)

‖∇H‖2 f(x)T
)
.
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Since the spaces Rn and Rp are distinct, we cannot say more about its geometric interpretation
unless we embed both spaces in a larger space in which we can establish relations.

9.3.1 Going further: unifying transforms

So far we have managed to represent the geometric transform that we needed for PHS
modelling and to obtain some geometric interpretation. However, compared to the simplicity of
matrix linear algebra, this is still not sufficient: we had to use different patterns and strategies
for each type of transform, we lack a unifying framework. An elegant solution to this problem
has been proposed in [DHSVA93], which states that every Lie algebra can be represented as a
bivector algebra; hence every Lie group can be represented as a spin group. The general idea is
the following: one can represent general linear transforms

A : Rn 7→ Rn, x 7→ y ∈ GL(n,R),

by representing a vector x ∈ Rn by its image ~x in Rn,n. This is obtained by using an embedding
map φ : Rn → Rn,n as

~x = φ(x) ∈ Rn,n ⊂ G(Rn,n).

The inverse operation is obtained through a projection π : Rn,n → Rn such that π is a left inverse
of φ. In other words, π ◦ φ = IRn so that π = φ−1.

The reason is that, in the space Rn,n, we can represent the image ~A of any linear transform A
on Rn by an orthogonal transform implemented by a spinor 23 R ∈ Spin(n, n) ⊂ G(Rn,n) as

~A : ~x 7→ ~y = R(~x) = R~xR−1, (9.32)

(see (9.16) and (9.12) for the GA definition of orthogonal transforms (i.e. rotations and reflections)
using spinors). Going back to Rn, the transform A is realised by

A : x 7→ y = φ−1
(
~A
(
φ (x)

))
. (9.33)

It can be summarised by the commutation diagram

x ∈ Rn y ∈ Rn

~x ∈ Rn,n ~y ∈ Rn,n

A

~A

φ π = φ−1 (9.34)

The "beauty" in this approach is unification: every linear transform becomes an orthogonal
transform, unifying for example rotations (bivectors squaring to −1) and hyperbolic rotations
(bivectors squaring to 1). We do not have enough space to develop this path further and point to
the main reference [DHSVA93], see also the book [DGL+03, ch.11].

Coincidently, we note that in chapter 1, 1.3.1 p.18, on Dirac structures (and subsequently in
1.4 35 on wave variables), we also had to work using the indefinite metric of the space Rn,n to
encode the duality of effort and flow spaces (with the consequence that incident and reflected
wave spaces corresponds respectively to the positive and negative polarisations of Rn,n).

Note that the space G(Rn,n) and its geometry will be explored further in the next sections,
where we revisit flow-effort spaces, incident-reflected wave spaces and Dirac structures with the
tools of geometric algebra.

23. An even (resp. odd) spinor is a GA element whose (multivector) components are of even (resp. odd) grade.
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9.4 Representing Dirac structures with Geometric Algebra

In this section, we revisit the representation of Dirac structures, a cornerstone of PHS
modelling (defined in subsection 1.3.1 p.18), using Geometric Algebra (see [Hes93] for Hamiltonian
Mechanics). We have already seen in subsection 1.4.2 p.36 that the natural geometry of the
bond space B = F ⊕ E is that of an indefinite inner product space identifiable with Rn,n (i.e. its
metric is not positive definite, see def. C.14 p.283). It can be separated either into euclidean and
anti-euclidean wave subspaces W+,W− or into dual flow and effort spaces F , E . Our goal here is
to: 1) exhibit bases of these subspaces, 2) choose the respective metric signatures so that the
geometric product regenerates the quadratic form Q from equation (1.22) p.19 and the associated
bilinear form 〈〈·, ·〉〉 defined in (1.23) p.19, 3) extend the bond space B ∼ Rn,n to the geometric
algebra Gn,n = G(Rn,n) and formulate Dirac structures in Gn,n 24, 4) show that GA can simplify
the results and definitions on Dirac structures from subsection 1.3.1 p.18 thanks to its ability to
multiply vectors.

Wave spaces as pseudo-euclidean subspaces of Rn,n Following subsection 1.4.2, letW+ =
Rn,0 be an euclidean space of incident wave vectors with basis {ai}ni=1 and W− = R0,n an anti-
euclidean spaces of reflected wave vectors with basis {bi}ni=1 such that B =W+ ⊕W− = Rn,n.
Any element of B can be represented as x = a + b, with a ∈ W+ and b ∈ W− where

a =
n∑
i=1

aiai, b =
n∑
i=1

bibi, (9.35)

and where the basis vectors have the metric signature
[

I 0
0 −I

]
(see also [DHSVA93, eq.3.17]) i.e.

ai · aj = δij , ai · bj = 0, bi · bj = −δij . (9.36)

Using the language of geometric algebra, we see that W+ is a positive Euclidean space since its
basis vectors square to one (a2

i = 1), while W− is a negative Euclidean space whose basis vector
square to minus one (b2

i = −1). Note that the metric encodes the sign of waves.

Dual flow and effort spaces as null spaces of Rn,n Define the flow space F with basis
{fi}ni=1 and its dual, the effort space E , with basis {ei}ni=1, through the change of basis

ei =
ai + bi√

2
, fi =

ai − bi√
2

, (9.37)

so that any element of B = E × F can be (alternatively) represented as x = f + e where

f =

n∑
i=1

fifi, e =

n∑
i=1

eiei. (9.38)

In this basis, we have the following metric signature, encoding the duality of the subspaces E ,F

ei · ej = 0, ei · fj = δij , fi · fj = 0. (9.39)

The subspaces E ,F are said to be null spaces 25 and vectors e, f are said to be null vectors
[PS02]. Indeed, using geometric algebra, one easily finds that their basis vectors all square to
zero (e2

i = 0 = f2
i ). This is also called a Witt basis [PS02], [DHSVA93, p.8].

24. We note that Rn,n, its null spaces and the geometric algebra G(Rn,n) also play important roles in [PS02] to
represent matrix transforms and more generally to represent Lie groups as spin groups in [DHSVA93].
25. Not to be confused with the nullspace of an operator.
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Proof. Using the metric signature (9.36) of W+,W−, in the variable change (9.37), we have

ei · ej =
1

2
(ai + bi) · (ai + bi) =

1

2
(δij + (−δij)) = 0,

ei · fj =
1

2
(ai + bi) · (ai − bi) =

1

2
(δij − (−δij)) = δij ,

fi · fj =
1

2
(ai − bi) · (ai − bi) =

1

2
(δij + (−δij)) = 0.

Quadratic form and power Let x be an element of the bondspace B. To replicate the
quadratic form defined in equation (1.22) p.19, we define

Q(x) := x2. (9.40)

a) Flow and effort decomposition: Consider an element x = e + f with e ∈ E and f ∈ F . Then
using the metric signature from equation (9.39) and the definition of the inner product of two
vectors (9.1), we recover that the quadratic form represents power through the duality product of
flow and efforts (see equation (1.22)).

Q(x) = (e + f)2 = e2︸︷︷︸
=0

+ef + fe + f2︸︷︷︸
=0

= 2 e · f .

b) Wave decomposition: Consider an element x = a + b, with a ∈ W+, and b ∈ W−. Then, from
the metric (9.36), we recover that power is proportional to the difference between the squared
(Euclidean) norms of incident and reflected waves (see equation (1.59) p.37)

Q(x) = (a + b)2 = a2 + ab + ba︸ ︷︷ ︸
=0

+b2 = 1
(
|a|2 −|b|2

)
.

Canonical bilinear form and inner product Let x,y be two elements of B, following remark
1.2 p.19, we introduce the canonically defined bilinear form B through the polarization identity

B(x,y) :=
1

2

(
Q(x + y)−Q(x)−Q(y)

)
. (9.41)

Expanding (9.41), it is immediate that B is identical to the GA inner product (9.1) p.241.

B(x,y) =
1

2

(
(x + y)2 − x2 − y2

)
=

xy + yx

2
= x · y. (9.42)

a) flow and effort decomposition: consider two elements u = eu + fu, v = ev + fv with
eu, ev ∈ E and fu, fv ∈ F then

B(u,v) = u · v = (eu + fu) · (ev + fv) = eu · fv + fu · ev

We recover the usual flow-effort representation of the symmetric bilinear form defined in definition
1.12 p.19. We note that equations (9.41), (9.42) do not rely on a particular choice of coordinates.
This highlights the interest of GA to manipulate coordinate-free representations.

b) wave decomposition: consider two elements u = au + bu, v = av + bv, with au,av ∈ W+

and bu,bv ∈ W− then the inner product between u and v is equal to the difference between the
Euclidean inner products of their incident and reflected waves.

B(u,v) = u · v = (au + bu) · (av + bv) = 〈au,av〉Rn − 〈bu,bv〉Rn .
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9.4.1 Dirac structures

Now that the geometric structure of the indefinite inner product space(see definition C.14
p.283) is setup, we can give the following GA definition of a Dirac structure

Definition 9.3 (Dirac structure (GA)). A Dirac structure D in B ∼ Rn,n, is a self-orthogonal
subspace of dimension n, i.e. a maximal subspace of vectors squaring to zero (for the GA
product)

D =
{

x ∈ B | x2 = 0
}
, dimD = n. (9.43)

A Dirac structure D is said to be a null space (or a maximal isotropic space) and its elements
are said to be null vectors.

Example 9.2. The following are examples of Dirac structures (see [Gua11])

• Let x ∈ D = F , then x2 = 0, this corresponds to the constraint e = 0 (short circuit),

• Let x ∈ D = E , then x2 = 0, this corresponds to the constraint f = 0 (open circuit),

• More generally (see [Gua11, ex 2.4]), let V ⊆ F be any subspace of F and define its
annihilator space in E by Ann(V ) :=

{
e ∈ E | e · f = 0, ∀f ∈ V

}
, then by construction

D = V ⊕Ann(V ) is a Dirac structure since for x ∈ D we have x2 = (f +e)2 = 2e · f = 0.

Parametric representation of Dirac structures We revisit the representation of Dirac
structures from a GA perspective. Let λ ∈ Rn be a parametrisation of a Dirac structure so that

D =
{
x ∈ B | x = X(λ), ∀λ ∈ Rn

}
, (9.44)

with X : Rn → D ⊂ B structured as X = E⊕ F, with an effort operator E : Rn → R(E) ⊂ E , and
a flow operator F : Rn → R(F) ⊂ F . The Dirac structure constraint implies that x2 = 0. Since E
and F are null spaces, only the cross-terms do not vanish so that we have

0 = x · x = (E⊕ F)(λ) · (E⊕ F)(λ) = F(λ) · E(λ) + E(λ) · F(λ) =
〈
λ
∣∣F∗E + E∗F|λ

〉
Rn .

we recover that Dirac structures should satisfy the constraint F∗E + E∗F = 0 and dimR(D) = n
from equation (1.27a) p.20.

Example 9.3. We want to represent (using GA) the Dirac structure induced by the hybrid
skew-symmetric map 

f1

f2

e3

 =


0 0 −1

0 0 −1

1 1 0



e1

e2

f3

 .
To do so, introduce the map J(x) = J · x = 1

2 (Jx− xJ) defined by the bivector J =
−(f1 + f2) ∧ e3. We verify using GA that the mapping is indeed

J(fi) = −(f1 + f2)δi3, J(ei) = (δ1i + δ2i)e3.

so that for x = e1e1 + e2e2 + f3f3, the conjugated vector is J(x) = f1f1 + f2f2 + e3e3.
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Proof. Using (a) the definition of the bivector contraction J ·x, (b) the definition of bivector
J , (c) commutation (with sign change) and factorisation of (f1 + f2) on the left (respectively
of e3 on the right), (d) the definition of the interior product and (e) the metric, we obtain

J(fi)
a
=
Jfi − fiJ

2

b
= −(f1 + f2)e3fi − fi(f1 + f2)e3

2

c
= −(f1 + f2)

(
e3fi + fie3

2

)
d
= −(f1 + f2)(e3 · fi)

e
= −(f1 + f2)δ3i,

J(ei) =
Jei − eiJ

2
= −(f1 + f2)e3ei − ei(f1 + f2)e3

2
=

(
(f1 + f2)ei + ei(f1 + f2)

2

)
e3

=
(
(f1 + f2) · ei

)
e3 = (δ1i + δ2i)e3.
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9.5 Exploring the geometry of Rn,n with Geometric Algebra

Indefinite inner product spaces are characterised by an involution. We follow the derivation
of the main involution of Gn,n from [DHSVA93] and [DGL+03, p.413] to study its properties and
their consequences. Introduce the linear duality map between W+ and W− 26

K(x) = x ·K, for the bivector K =
n∑
i=1

ai ∧ bi. (9.45)

Proposition 9.1. The transform K is an involution. It satisfies (K2)(x) = x and

K(ai) = bi, K(bi) = ai. (9.46)

It is a reflection in the subspace E swapping spaces W+ and W− (see figure 9.10).

Proof. Using (a) associativity of the inner product, (b) the metric from (9.36) and (c) anti-
commutativity of aibj = −bjai, we obtain.

K(ai) = ai ·K
a
=
∑
j

(ai · aj)bj
b
= bi, K(bi) = bi ·K =

∑
j

bi · ajbj
c
=
∑
j

(−bi · bj)aj
b
= ai.

It follows that K2(ai) = ai and K2(bi) = bi so that K2(x) = x.

Definition 9.4 (K-dual). For any vector x ∈ Rn,n, we define its K-dual a by x̄ = K(x).

a. This construct is analog to the complex-conjugate of a complex number.

Using (9.37) and (9.46), we find that the eigenvectors of K are given by (see figure 9.10)

K(fi) = K

(
ai − bi√

2

)
=

(
K(ai)− K(bi)√

2

)
=

(
bi − ai√

2

)
= −fi, (9.47a)

K(ei) = K

(
ai + bi√

2

)
=

(
K(ai) + K(bi)√

2

)
=

(
bi + ai√

2

)
= ei. (9.47b)

This induces a splitting Rn,n = F ⊕ E according to positive and negative eigenvalues of K.

Proposition 9.2. The projectors a PF : F ⊕ E → F , and PE : F ⊕ E → E are defined by

PE(x) =
1

2
(x + x̄), PF (x) =

1

2
(x− x̄). (9.48)

a. similarly to the real and imaginary part of a complex number

Proof. Take the sum and differences of equations (9.47a) and (9.47b).

The involution K is said to generate a null structure 27 because K(x) has opposite signature to x
(use eq. (9.36))

āi · āj = bi · bj = −δij , āi · b̄j = bi · aj = 0, b̄i · b̄j = ai · aj = −δij , (9.49)

so that one can decompose x as the sum of two null vectors x = x+ ⊕ x− with x− = PF (x), and
x+ = PE(x).

26. Note the identity of bivectors ai ∧ bi = aibi = 1
2
(ei + fi)(ei − fi) = 1

2
(e2
i + fiei − eifi − f2

i ) = fi ∧ ei.
27. Instead of a complex structure.
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Ei

fi

ei = K(ei)

K(fi)

ai = K(bi)bi = K(ai)

Fi fi = −K(fi)

ei

−K(ei)

aibi

−K(ai)−K(bi)

Figure 9.10 – Effects of the main involution K and −K on basis vectors. They correspond
respectively to reflections in the spaces Ei and Fi. Note that contrary to the Euclidean case, here
contraction of vectors with bivector K yields a reflection instead of a 90 degrees rotation.

Subspaces

Basis functions {ai} span the euclidean space W+ ∼ Rn,0 while the basis {bi} span the
anti-euclidean space W− ∼ R0,n so that Rn,n admits the decomposition

Rn,n =W+ ⊕W−.

Following [DHSVA93, 3.19a-c], we can construct (p+ q)-blades representing subspaces Rp,q

Wp,q := ApB
†
q = Ap ∧B†q (9.50)

where Ap := a1 . . .ap, Bq := b1 . . .bq. Each blade defines a projector Pp,q : Rn,n → Rp,q defined
by (9.11) as

Pp,q(x) = (x ·Wp,q)W
−1
p,q =

1

2

(
x− (−1)p+qWp,qxW

−1
p,q

)
.
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9.6 Rotor description of the flow-effort to wave variables change

We want a GA realisation of the flow-effort to wave variable change (see (1.56) p.35)a
b

 =

 1√
2

 1 1

−1 1




︸ ︷︷ ︸
rotation R(·)

Z1/2 0

0 Z−1/2


︸ ︷︷ ︸

squeeze S(·)

f
e

 , with port resistance Z > 0. (9.51)

To simplify, we only consider a single port. We see this variable change as a sequence of two
inner-product preserving (and thus power-preserving) basis changes representing the same vector

x = ~ff + ~ee
S−→ x = f̃ f̃ + ẽẽ

R−→ x = aa+ bb.

9.6.1 Hyperbolic squeeze mapping

Since the metric of this space is indefinite, it is easier to start with hyperbolic rotations.

Proposition 9.3. The bivector B = a ∧ b = f ∧ e is a generator of hyperbolic rotations so
that the squeeze mapping S mapping (~f ,~e) to (f̃ , ẽ) can be realised by a rotor S with hyperbolic
angle ϕ as

S(x) = SxS−1, with S = eBϕ/2 and ϕ = − ln(Z). (9.52)

Proof. 1) since a · b = 0 and (~e)2 = (~f)2 = 0, we have the identity B = a ∧ b = ab = f ∧ e:

a ∧ b = ab =
1

2
(~e +~f)(e− f) =

1

2
((~e)2 +~f~e− ~e~f + (~f)2) =

1

2
(~f~e− ~e~f) = ~f ∧ ~e.

2) We show using Taylor series expansion of exp and grouping terms that

exp(Bϕ) =
∑
n

(Bϕ)n

n!
= 1

∑
k

ϕ2k

2k!
+ B

∑
k

ϕ2k+1

(2k + 1)!
= 1 cosh(ϕ) + B sinh(ϕ). (9.53)

where 28 B2k = 1 and B2k+1 = B since B2 = (ab)(ab) = (ab)(−ba) = a(−b2)a = aa = 1.
3) It follows by substituting Ba = aba = −b, Bb = abb = −a in the previous result that

eBϕa = a cosh(ϕ)− b sinh(ϕ), eBϕb = b cosh(ϕ)− a sinh(ϕ).

4) We finally show that ~f ,~e are eigenvectors of left multiplication by eBϕ with eigenvalues e±ϕ,

f̃ := eBϕ~f = eBϕ

(
a− b√

2

)
=

(
a− b√

2

)
(coshϕ+ sinhϕ) = eϕ~f .

ẽ := eBϕ~e = eBϕ

(
a + b√

2

)
=

(
a + b√

2

)
(coshϕ− sinhϕ) = e−ϕ~e.

5) From aB = aab = b, bB = bab = a, and 3), we have Bx = −Bx for any vector x. This
yields the commutation rule eBϕx = xe−Bϕ so that we have the symmetrised representation

S(x) = eBϕx =
(

eBϕ/2
)2

x = eBϕ/2xe−Bϕ/2.

6) The constraint x = ~ff + ~ee = f̃ f̃ + ẽẽ = eϕf f̃ + e−ϕeẽ yields f̃ = e−ϕf and ẽ = eϕe so that
we must choose e−ϕ/2 = Z1/2 =⇒ ϕ = − ln(Z). Choosing S = eBϕ/2 completes the proof.
28. Note that contrary to the euclidean case, here, because of the indefinite metric, the bivector B squares to 1

instead of −1. The rotation is thus an hyperbolic one.
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9.6.2 Rotation by π/4

Geometrically, the transform R is a rotation of angle θ = π/4 (see fig. 9.10). However, because
of the indefinite metric, the geometric intuition of euclidean space is lost 29. We need another
strategy: instead of exponentiating a bivector to generate a rotation, we compose reflections.

From (9.51), the action of R, yields the following identity on basis vectors

R(e) =
e− f√

2
= b, R(e) =

e + f√
2

= a. (9.54)

First, we introduce the duality map between e and f 30

Proposition 9.4. Let T(x) = axa denote reflection in vector a. Then T is an involution
acting as the duality map between f and e such that

T(e) = f , T(f) = e. (9.55)

Its eigenvectors are respectively a,b with eigenvalues +1,−1.

Proof. Using the metric a2 = 1 and anti-commutation ab = −ba we can show that

T(e) = aea = a
a + b√

2
a =

a− b√
2

= f , T(f) = afa = a
a− b√

2
a =

a + b√
2

= e.

and also that T(a) = aaa = a and T(b) = aba = −aab = −b.

Then composing K and T, we have the following result.

Proposition 9.5. Let K,T be the involutions defined by (9.45) and (9.55). Then R : Rn,n →
Rn,n satisfies (9.54). It can be written as

R(x) =
1√
2

(
x + K(T(x))

)
. (9.56)

Proof. using K(e) = e and K(f) = −f from (9.47a)-(9.47b), we prove that (9.54) is satisfied

R(e) =
1√
2

(
e + K(T(e))

)
=

1√
2

(
e + K(f)

)
=

1√
2

(e− f) = b,

R(f) =
1√
2

(
f + K(T(f))

)
=

1√
2

(
f + K(e)

)
=

1√
2

(f + e) = a,

See figure 9.10.

29. We have seen in (9.53) that bivector ab squares to 1 instead of −1 generating hyperbolic rotations.
30. This is analog to (9.55), the duality map K between a and b.
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Conclusion

In this chapter, an introduction to Geometric Algebra and its constructs has been presented in
section 9.1, We have briefly presented some motivating examples in 9.2 to highlight both invariants
and the unification power of GA. We note the emergence of a multi-vector field potential and the
perspective of working with multivector ODE which seems like a promising direction of research
in particular for the case of dissipative systems for which the energy is no longer an invariant.

In section 9.3 we have briefly considered the encoding of input-state-output PH-ODE using GA.
We have proposed two strategies to encode skew-symmetric and symmetric semi-positive definite
maps. A more promising perspective is to embrace indefinite inner product spaces so that every
linear transform can be represented by an orthogonal transform (the canonical representation of
orthogonal transforms in GA uses spinors).

In section 9.4, we continue our journey, this time using GA to encode Dirac structures. As
in chapter 1, encoding the duality product of flows and efforts induces an indefinite metric so
that the bond space is isomorphic to the pseudo-euclidean space Rn,n. We show (see definition
9.3 p.256) that with this GA formulation, Dirac structures are simply subspaces of Rn,n whose
elements square to 0 (sometimes called null-vectors in the litterature) independently of their
internal representation (flow-effort or incident-reflected waves).

In section 9.5, we have a closer look at the geometry of Rn,n. By contrast with the euclidean
space Rn, we note that in indefinite signature, contraction with a bivector yields a reflection
instead of a rotation so that a significant part of the geometric intuition developed in section 9.1
(which relied on euclidean geometry) has to be abandoned.

Finally, in section 9.6, we consider a pure spinor representation of the flow-effort to power wave
variables change, as a sequence of two power-preserving linear transforms. The power-preserving
hyperbolic squeze mapping in the wave variable change is easily found to be an hyperbolic rotation.
However, unintuitively (because of the indefinite metric), we had to rely on a sequence of two
reflections to implement the linear combination of flows and efforts to wave variables (which looks
like a simple π/4 rotation in euclidean space).

This chapter present some initial work that needs to be further developed and matured. It still
lacks the elegance usually associated with GA. A main difficulty is that intuitions from euclidean
geometry are no longer valid in non-euclidean spaces. Another difficulty is that transcoding
concepts into a different mathematical language does not yields simplification by itself. This
is only a preliminary condition 31. I hope that this chapter motivates more people to adopt
Geometric Algebra for PHS and find simplifying answers to these questions.

31. In this regards, the Maxwell equations example from appendix F.3 p.322 is telling: first we have to drop the
cross product in favour of the exterior product, second we have to unify the four Maxwell equations into a single
one using the geometric product, and third we have to embrace the concept of partial differential equations over a
multi-vector field to finally reveal that Maxwell equations simplify to the wave equation (over a multivector field).



General Conclusion

This thesis considers the power-balanced modelling and simulation of nonlinear audio circuits
using the port-Hamiltonian framework. We proposed “virtual analog” simulation methods for
both PH-ODE and PH-DAE that a) operate in the continuous-time domain, b) can reproduce the
regularity of physical trajectories c) can be of high-accuracy order, d) preserve the power-balance
over time-frames (and thus energy or passivity).

Contributions

Continuous-time VA signal-processing framework and anti-aliasing In chapter 3, we
propose a “virtual analog” signal processing chain. In order to address causality of computations,
bandwidth expansion and compatibility with numerical schemes, this toolchain operates with
non-bandlimited signals having instead a Finite Rate of Innovation. To this end, we use generalised
sampling theory. We propose input-output reconstruction in B-spline spaces based on the literature
on B-spline signal processing. We also propose an exact implementation of ARMA filtering for
piecewise-defined input signals. This allows to benefit from all the literature on analog filter
design for band-limiting and classical resampling (Butterworth, Chebyshev, elliptic filters, etc.).

(S)PAC methods In chapter 4, we propose a class of (symmetric) power-balanced adaptive
collocation methods called (S)PAC of arbitrary regularity order which are (linearly) high-order
accurate. They can be interpreted as a generalisation of Hermite–Obreshkov methods. Their
analysis (restricted here to the linear case) shows that the power-balance cannot be unconditionally
preserved. However, it is remarkable that the power-balanced orbits of PAC(1) are closer to the
orbits of the exact solutions than the orbit of the mid-point method (see figure 4.2 p.111). While
(S)PAC methods admit rather simple formulations, their implementation is difficult in general
(implicit and nonlinear in its parameters). For this reason, this path is not explored further in
this thesis.

Projected power-Balance condition In section 5.1.1, we propose continuous-time projected
Dirac and resistive structures over time-frames (definition 5.1 p.119). Then, in theorem 5.1,
we establish a sufficient condition on projectors so that the power-balance is satisfied. This
implies energy conservation for Hamiltonian systems and passivity for PH-ODE and PH-DAE (see
corrolaries 5.1, 5.2, 5.3 p.120). The power balance condition is quite permissive, which leaves room
on the choices of bases and on the design of projectors to obtain additional properties. We outline
several prospective scenarios in section 5.1.2, including partitionable systems. In particular, the
power-balance condition is satisfied for scalar orthogonal (self-adjoint) L2 projectors 32.

32. We show in 5.2.5 p.127 that (although the projection viewpoint is not always emphasised in the literature)
energy-preserving CSRK methods (which includes the AVF and HBVM) rely on scalar orthogonal projection.
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RPM Choosing the scalar orthogonal projection strategy, we introduce Regular Power-balanced
Methods for both PH-ODE and PH-DAE. Regularity is achieved through supplementary multi-
derivative boundary conditions. We show in section 5.2.7, that this induces nested projections in
the Sobolev space Hk, for which Peano error kernels are detailed. We study existence, uniqueness
and accuracy order for PH-ODE by reformulating RPM using the theory of CSRK methods.
To this end, we rely on the reproducing kernel of the projector and its properties to perform
the translation. We show that accuracy order 2p is automatically reached if the (orthogonal)
projector reproduces polynomials of order p, relating CSRK simplified order conditions with
Strang–Fix conditions. This results explains why choosing polynomial spaces is optimal (and
the default choice) to construct general-purpose numerical methods (but this is not the only one,
see the cosine basis example in section D.7 p.297). It is also shown in the examples of sections
5.5.1, 5.5.2 that higher-order projection yields higher frequency bandwidth and ultimately less
aliasing (a consequence of the higher rate of innovation). To leverage this result, it is necessary to
not only know the value of the trajectory on the boundaries of time-frames, but to continuously
know the values of the trajectory in-between 33. Generalised frequency bandwidth is revisited in
depth in section 8.6 p.221. As a numerical challenge, we simulate an equaliser whose resonance
frequency is beyond the Nyquist frequency. We formalise RPM projection for linear state-spaces
as a mixed continuous/discrete Legendre filterbank whose Z-domain and Laplace transform are
detailed. We show that the resonance can be simulated without aliasing and that errors in the
audible bandwidth decrease faster with increasing order than with oversampling. This evidence
supports our thesis.

Energy-preserving exponential integrators In chapter 6, we consider projection-based
conservative/passive exponential integrators. To motivate the choice of exponential integrators,
we show that they naturally arise when trying to minimise the L2 norm of the vector field
approximation error using functional Newton iteration. We introduce a new tool: the doubly-
projected AVF discrete gradient which can be applied not only to piecewise affine trajectories
but to trajectories in the Sobolev space H1 (including exponential trajectories). Based on this,
we provide an alternate proof (see theorem 6.1 p.163) that the Exponential AVF method is both
unconditionally energy-preserving and dissipating and we provide a geometric interpretation. This
resulted is extended to PHS by adding external ports. Finally, based on the results of chapter 5,
we propose an extension strategy to higher projection orders. However, this extension is no longer
exact for linear systems (one of the main advantages of exponential integrators).

Passive operational amplifier modelling In chapter 7, we propose passive operational
amplifier models for PHS (with saturation and explicit power supply ports). Surprisingly, the
passivity of OPA models seems to have been overlooked in the literature. First an idealised
memoryless conservative model is proposed and used to simulate Sallen–Key filters. Its constitutive
law is shown to be a nonlinear modulated Dirac structure whose modulation coefficient is linked
to output current splitting and power supply saturation. Then, we consider the limit case of an
infinite amplifier gain, which requires the use of set-valued relations. The linear branch of this
relation corresponds to the so-called nullors in the litterature, while other branches corresponds
to the OPA in saturation. Alternatively, we show (using across port variable changes) that this
relation can be continuously parametrised by the sum of input and output voltages (see section
7.2.2 p.192). Finally, to model slew-rate and limited bandwidth, we sketch the structure of a
passive three-stage grey-box OPA whose complete realisation is left for further research.

33. Indeed, increasing accuracy may lead to increased aliasing if the trajectory is simply sampled without being
bandlimited by an antialiasing filter.
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Perspectives

(S)PAC methods

• Complex time (and collocation points). On several occasions (suggested by mathematical
equations) 34 we felt the need to give sense to complex-valued time. In particular, for
(S)PAC methods, once the dissipation rate is too high, the power-balance is no longer
solvable over the reals. However it remains solvable over complex numbers. Imaginary
time has been popularised by Stephen Hawking [Haw01] and is sometimes used in special
relativity and quantum mechanics. However, using complex-time (which we feel should not
be motivated exclusively by mathematical intuition) has far-reaching consequences which
are beyond the scope of this thesis, but it remains a fascinating subject of exploration.

• (S)PAC implementation. In thesis, we have favoured the functional projection approach of
chapter 5 (which is more generally applicable and linear in the estimation of parameters).
However, we have seen that, despite some implementation challenges, (S)PAC methods
have interesting properties (improved orbits and dissipation rate, no quadrature involved,
built-in smoothness, etc) which can motivate further work to address these issues.

• Minimizing the power-balance error In (S)PAC, when the power-balance cannot be satisfied,
we could relax the power-balance constraint by minimising instead the power-balance error.
Indeed, in RPM, the dissipation rate is no longer exactly satisfied (see p.157), but the
residual error is such that energy is still unconditionally preserved (or dissipated).

Continuous-time projection methods and RPM

• pH-DAE existence and uniqueness conditions In section 5.3, p.135, we have considered
existence and uniqueness conditions of pH-DAE. To this end, we proposed intermediate
results to prove the invertibility of the Jacobian in Newton iteration. However, while
convergence is observed in practice, further work is required to obtain theoretical result.

• Joint power-balance and Ck-smoothess A long standing problem during this thesis has
been the joint-preservation of both power-balance and smoothness. On one hand, (S)PAC
methods show that joint-preservation of both power-balance and smoothness is possible
and beneficial for accuracy (but the existence domain is bounded and the implementation
difficult). On the other hand, for RPM, orthogonal L2 projection is a powerful tool to
address both power-balance and accuracy (but we had to rely on nested projections). To
combine SPAC and RPM, we tried to explore the design of doubly-orthogonal bases 35

(see [Ber70, Sha79]) in both L2 and Hk. However, we faced several issues that require
further work: (i) double-orthogonality requires the exact resolution of functional eigenvalue
problems, (ii) the Sobolev inner products we are interested yield not only differential
operators, but also involve the boundary trace operator (see (5.9) p.122), (iii) there is no
guarantee that generated bases have the polynomial reproduction property (see section
5.2.6 p.128).

• Projector design. An extension of (projected passivity) theorem 5.1 p.119 which is suggested
in section 5.1.2, consists in substituting nonzero entries by projections and (possibly) zeros
by rejections (I − P) in structure matrices J and R, so that resulting matrix operators

34. Computing projections using complex contour integrals is another example.
35. For example, prolate-spheroidal wave functions [SP61] are doubly-orthogonal in both L2(−1, 1) and the

Paley–Wiener subspace of bandlimited function in L2(R).
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J ,R are respectively skew-adjoint and self-adjoint. This setting is less constrained than
scalar orthogonal projection (used in RPM). We may exploit the additional degrees of
freedom to preserve additional properties (for example joint smoothness and passivity as
mentioned above).

• Fast computation of projections. We have seen in section 5.4.1 p.140 that for affine trajecto-
ries, using anti-derivatives, we have closed-form formulas to compute projection coefficients
(e.g. Legendre expansions). However, for arbitrary trajectories (and nonlinearities), we
have to rely on quadratures with a number quadrature nodes sufficiently high to reach
machine precision. This can make the implementation cost of high-order schemes prohibitive
(specially for non-smooth nonlinearities). It is thus desirable to have either more general
exact closed-form integration results or fast O(n log(n)) implementations of projections (as
in the compuation of FFT, DCT, etc.). To this end, the following reference [Ise11], proposes
fast O(n log(n)) Legendre expansion, which looks promising for the implementation of
high-order power-balanced methods based on time-domain projection.

• Generalised bandwidth and high-order As we have seen (see figures 5.11 p.151, 5.15, p.155,
8.22 p.228 and 8.23 p.229), high-order methods converge faster than oversampling and
have a larger generalised frequency bandwidth (or finite rate of innovation). This raises
the following opportunity: to which point can we increase the step size h (i.e downsample)
while increasing order without deteriorating audio quality (in particular aliasing)? Indeed,
if we can trade step size, against order, then we can simulate several blocks of input-output
samples at once and amortise the cost of iterative solvers. To this end, the V-system 36

seems like a promising basis to consider: its basis functions are orthogonal in L2 (for
power-balance), have the polynomial reproducing property (for time-stepping accuracy)
and satisfy wavelet multi-scale similarity (for frequency resolution).

• Implicit constraints and Lagrangian submanifolds A theoretical perspective, is to generalise
time-continuous projection methods to constrained PHS which are no longer described
by Hamiltonians, but by Lagrangian submanifolds (see [VdSM18, GHVdSR20]). As a
partial answer to this question, we proposed in [MH20] a fully-implicit generalisation of
time-continuous projection for PH-DAE (reproduced in appendix) where PHS are no longer
required to be in semi-explicit DAE form 37.

Exponential integrators

• Existence, uniqueness and stiff order conditions. In this thesis, we focused on the power-
balance of exponential power-balanced methods. By analogy with RPM, higher projection
orders are expected to yield higher time-stepping accuracy. However, this intuition, as well
as existence and uniqueness conditions, remains to be established quantitatively.

• Linearly-exact high-order extension. To extend the EAVF method to higher projection
order, we had to drop exact integration of linear systems. An obvious perspective is to
consider alternate extension strategies that are linearly-exact.

• Exponential splines In chapter 3, we relied on B-spline signal processing theory [UAE93a,
UAE93b]. Results from section 3.3.1 are based on exact exponential integration of linear

36. A basis inpired both by Haar wavelets and Legendre polynomials.
37. Both flow and effort laws can depend on hidden implicit control variables. And the method can directly

address hidden constraints such as inductor loops and capacitor cutsets (i.e. causality conflicts).
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ARMA filters. A natural perspective is to consider more closely the theory of cardinal
exponential splines [UB05, Uns05] for both theoretical results and numerical implementation.

Operational amplifier The architecture and specifications of a passive three-stages grey-box
operational amplifier model have been detailed in section 7.3 p.195. White-box modelling of the
differential input and push-pull output have been considered (see appendix D.9.3), but efficient
minimal black-box realisations of each submodule (simple enough for real-time simulation) remain
to be derived.

Wave-domain PHS simulation In section 1.4, as a first step to bridge the gap between Wave
Digital Filters and port-Hamiltonian Systems (pursuing the work of Falaize [Fal16]), we formally
study the scattering representation of elementary PHS components (storage, Dirac and resistive
structures). Note that the combination of waves with the continuous-time projection of chapter 5
allows the definition of projected functional waves over each time-step. While the linear case and
its port-adaptation are well-understood (through the Cayley transform), local port-adaptation of
nonlinear storage or resistive structures for efficient simulations remains difficult (see [BS16]).

Geometric Algebra In chapter 9, we started translating PHS formulations into the language
of Geometric Algebra. In this formulation, Dirac structures can be elegantly encoded as null
spaces (see definition 9.3 p.256) i.e. subspaces whose vectors square to zero (called null vectors).
In this formulation flow and effort spaces are also found to be null spaces while incoming wave
spaces are positive spaces and outgoing wave spaces are negative spaces. While skew-symmetric
matrices are easily encoded by bivectors, semi-positive dissipation matrices require more work to
be replaced by GA constructs. A drawback of the indefinite metric of the bondspace, is that the
flow-effort to waves transformation (which looks like a simple π/4 rotation using matrix notation)
could not be intuitively expressed as the exponential of a bivector. We had to use the composition
of two reflections instead. Further work is necessary to fully benefit from the GA framework and
its mathematical encoding(s) of PHS. In particular, we think that a direct translation of reference
[Mak10] from Clifford to Geometric algebra notations could be a “rosetta stone” to emphasise
the roles of spinors in PHS.

Time/frequency-warping and backward error analysis In this thesis, we have considered
approximation of the vector field of varying orders. However, using backward-error analysis
[HLW06], it is also possible to increase the approximation order of low order schemes: numerical
dispersion is compensated by time/frequency warping. A well-known example in audio is the
bilinear scheme: frequency warping is compensated by time warping the step size h so that the
frequency of a simulated pole is exactly preserved. This approach has been extended to nonlinear
systems (including discrete gradients methods) by Cieśliński in [CR10, CR11, Cie13, Cie14].
A perspective of this thesis is to incorporate similar mechanisms for error feedback within
continuous-time projection methods 38.

38. Note that using time-warping may change the Lebesgue measure in the L2 inner product and thus the
mathematical expression of the power-balance.
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Part V

Appendix





Appendix A

Relations: definitions and properties

We recall here some results from reference [RB16] regarding relations. See also [AC12].

Relation A relation (also called operator or multi-valued function) on Rn is a subset R of
Rn × Rn. It is frequent to overload function and matrix operator notation so that

R(x) ≡ Rx :=
{
y | (x, y) ∈ R

}
.

Function If R(x) is a singleton or empty, then R is a function with domain

domR :=
{
x | R(x) 6= ∅

}
.

By abuse of notation, we identify the singleton {y} with its value y in

R(x) = {y} ∼ y.

Some trivial examples of relations are

0 =
{

(x, y) ∈ Rn × Rn | y = 0
}
, Zero relation (a function)

I =
{

(x, y) ∈ Rn × Rn | y = x
}
, Identity relation (a function)

X0 =
{

(x, y) ∈ Rn × Rn | x = 0
}
. (multi-valued)

Composition Let R,S be two relations we define the composition

R ◦ S := RS =
{

(x, z) | ∃y such that (x, y) ∈ R, and (y, z) ∈ S
}

Sum Let R,S be two relations we define their sum by

R+ S :=
{

(x, y) | (x, yR) ∈ R, (x, yS) ∈ S, y = yR + yS
}
.

Extensions to standard binary operators is done similarly.

Inverse relation The inverse relation is

R−1 :=
{

(x, y) | (y, x) ∈ R
}
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Lipschitz continuity A relation is Lipschitz continuous if there exists M > 0 such that

‖v − u‖ ≤M‖y − x‖ , ∀v ∈ R(y), u ∈ R(x)

If M < 1 it is called a contraction, if M = 1 it is said to be non-expansive. Mapping a pair of
points by a contraction reduces the distance between them; mapping them by a nonexpansive
operator does not increase the distance between them.

Fixed point We say that x is a fixed point of F is F (x) = x. When F is non expansive, the
set of fixed points of F , {

x ∈ domF | x = F (x)
}

= (I − F )−1({0}),

is closed and convex. Moreover if F is a contraction and domF = Rn, the set of fixed-points of
F is a singleton (uniqueness).

Monotone operator An operator R is said to be monotone (incrementally passive) when

〈v − u, y − x〉 ≥ 0, ∀v ∈ R(y), u ∈ R(x)

Maximal monotone operator A monotone set-valued map R is maximal if there is no other
monotone set-valued map whose graph contains strictly the graph of R.

Strongly monotonous (coercive) operator It is said to be strongly monotonous if ∃m > 0
such that

〈v − u, y − x〉 ≥ m‖y − x‖2 , ∀x, y ∈ domF.

Strongly monotonous and Lipschitz operator Consider and operator R and denote con-
stants m the maximal lower bound and M the minimal lower bound (0 < m ≤M) such that

m‖y − x‖2 ≤
〈
R(y)−R(x), y − x

〉
≤M‖y − x‖2 , ∀x, y ∈ domF.

we define the condition number of R by

κ = cond(R) :=
M

m
.

This situation is closely related to the notion of norm equivalence.

Example For example consider the relation

R(x) =


x+ 1 x > 0

∅ x = 0

x− 1 x < 0

, R(x) =


x+ 1 x > 0

[−1, 1] x = 0

x− 1 x < 0

.

Then R is monotone but not maximal, while R is monotone and maximal. Furthermore R is
strongly monotone with constant m = 1, but not Lipschitz. It is however one-sided Lipschitz
with constant L = 1. We have cond(κ) = 1.

Resolvent the resolvent RA,α of a relation A is (dropping)

RA = (I + αA)−1
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Cayley operator The Cayley operator (or reflected resolvent) of a relation A is

CA = 2RA − I. (A.1)

For α > 0 we have

• if A is monotone, then operators RA, CA are non-expansive

• if A is maximal monotone, then domRA = domCA = Rn

• 0 ∈ A(x) ⇐⇒ x = RA(x) = CA(x)

Proof. 0 ∈ A(x) ⇐⇒ x ∈ (I +A)(x) ⇐⇒ (I +A)−1(x) 3 x ⇐⇒ RA(x) 3 x.

Identities Let A be a (possibly multi-valued) operator. Then

a) if A is maximal monotone and single-valued and α ≥ 0, we have

CA = (I − αA)(I + αA)−1,

b) otherwise if A is multi-valued and α > 0, we only have the weaker identity

CA(I + αA) = (I − αA).

Proof. To prove (a), if A is maximal monotone and single-valued, then it is invertible (bijective)

CA = 2RA − I = 2(I + αA)−1 − I = (2I − (I + αA))(I + αA)−1 = (I − αA)(I + αA)−1.
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Appendix B

Reminder on ODEs

We consider ordinary differential equations of the form ẋ(t) = f(t,x(t)).

B.1 Runge–Kutta methods

Definition B.1 (Runge–Kutta method [HLW06] p.29). Let bi, ai,j (i, j = 1, . . . , s) be real
numbers and let ci =

∑s
j=1 aij . An s-stage Runge–Kutta method is given by

ki = f

t0 + hci, x0 + h
s∑
j=1

aijkj

 , i = 1, . . . , s

x1 = x0 + h
s∑
i=1

biki.

(B.1)

The slopes ki do not necessarily exists, however, the implicit function theorem assures that, for
sufficiently small h, the nonlinear system for the values k1, . . . ,ks has a locally unique solution
close to ki ≈ f(t0,x0). Since Butcher’s work the coefficients are usually displayed as follows

c1 a11 . . . a1s

...
...

...

cs as1 . . . ass

b1 . . . bs

≡
c A

b
.

A direct generalisation of B.1 to a continuum of stages is

Definition B.2 (Continuous-stage Runge–Kutta method). Let B(τ), A(τ, σ) be real func-
tions of τ, σ ∈ [0, 1] and let C(τ) =

´ 1
0 A(τ, σ) dσ. A continuous-stage Runge–Kutta method

275
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is given by 
k(τ) = f

(
t0 + hC(τ), x0 + h

ˆ 1

0
A(τ, σ)k(σ) dσ

)
, τ ∈ [0, 1]

x1 = x0 + h

ˆ 1

0
B(τ)k(τ) dτ.

(B.2)

Definition B.3 (Collocation methods [HLW06] p.30). Let c1, . . . , cs be distinct real numbers
(usually 0 ≤ ci ≤ 1). The collocation polynomial X(t) is a polynomial of degree s satisfying{

X(t0) = x0,

Ẋ(t0 + hci) = f(t0 + hci,X(t0 + hci)), i = 1, . . . , s.
(B.3)

and the numerical solution of the collocation method is defined by x1 = X(t0 + h).

B.2 Numerical Stabillity

Several notions of numerical stability exists, we recall here some important results and
definitions.

Definition B.4 (Stability function [HW96] p.16). Let Φh : x0 7→ x1 be a time-stepping
method whose application to the Dahlquist test equation ẋ = λx leads to

x1 = R(z)x0, z = hλ. (B.4)

The function R(z) is called the stability function of the method. The set

S =
{
z ∈ C |

∣∣R(z)
∣∣ < 1

}
(B.5)

is called the stability domain of the method.

Proposition B.1 (Stability function of Runge–Kutta methods [BG08] p.243). The stability
function of a Runge–Kutta method (B.1) is the rational function.

R(z) = 1 + zbT(I− zA)−11. (B.6)

Definition B.5 (A-stability [BG08] p.243). A method is A-stable if its stability function
satisfies ∣∣R(z)

∣∣ ≤ 1 whenever <(z) ≤ 0. (B.7)

Definition B.6 (L-stability ([Ehl69])). A method is L-stable if it is A-stable and if in
addition

lim
z→∞

R(z) = 0. (B.8)

For nonlinear ODEs, B-stability characterize the fact that the distance between two solutions
is a non increasing functions of time.
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Definition B.7 (B-stability [HW96] p.181). A Runge–Kutta method is called B-stable if
the contractivity condition 〈

f(t,x1)− f(t,x2),x1 − x2

〉
≤ 0, (B.9)

implies for all h ≥ 0.
‖x1 − x̂1‖ ≤‖x0 − x̂1‖ . (B.10)

where x1 and x̂1 are the numerical solutions after one step starting with initial values x0 and
x̂0, respectively.

Whereas B-stability relies on incremental dissipativity of the vector field f , BN-stability only
requires dissipativity.

Definition B.8 (BN-stability [BG08] p.263). A Runge–Kutta method is called BN-stable if
the condition 〈

f(t,x),x
〉
≤ 0, (B.11)

implies that the sequence of computed solutions satisfy

‖xn‖ ≤‖xn−1‖ . (B.12)

We note that PHODEs satisfy the generalized passivity condition
〈
f(x),∇H(x)

〉
≤ 0.

A sufficient condition for B-stability is given by the algebraic conditions

Definition B.9 (Algebraic stability [BG08] p.263 and [HW96] p.182). A Runge–Kutta
method is algebraically stable if

• bi > 0 for i = 1, . . . , s,

• M = (mij = (biaij + bjaji − bibj)si,j=1 is non negative definite.

Theorem B.1 ([BG08] p.263). If a Runge-Kutta method is algebraicallly stable then it is
BN-stable.

Theorem B.2 ([HW96] p.182). If a Runge-Kutta method is algebraicallly stable then it is
B-stable.

Theorem B.3 ([HW96] p.185)). For a Runge–Kutta method it holds

B-stable =⇒ A-stable. (B.13)

Proposition B.2 ([CMM+09]). À Runge–Kutta method with stability function R(z) is
energy-preserving for all quadratic Hamiltonians iff R(z)R(−z) ≡ 1.
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B.3 Elementary differentials and B-series

In the theory of B-series (see [HLW06, p.51] and [MMMKV17, CMOQ10]), and multi-
derivatives Runge-Kutta methods, it is necessary to manipulate higher derivatives of the following
systems

ẋ(t) = f(x(t)), ẋ(t) = f(t, x(t)),

{
ẋ(t) = f(x(t), u(t)),

y(t) = g(x(t), u(t)).

The Faa di Bruno formula is an important tool to manipulate derivatives of composed functions

dn

dtn
f(x(t)) =

∑
S

n!

m1! . . .mn!
f (m1+...+mn)(x(t)) ·

∏
j=1

n

(
x(j)(t)

j!

)mj
(B.14)

where the sum is over the set S =
{

(m1, . . . ,mn) ∈ Nn | 1 ·m1 + 2 ·m2 + . . .+ n ·mn = n
}
.

For ODEs, we have an additional piece of information ẋ = f(x(t)). Substituting this
information and using the Faa di Bruno Formula recursively gives rise to B-series.

Autonomous case Let x0 = x(t0), it is customary to note fk(t)(x0) :=

(
dk

dtk
f(x(t0 + t))

)
(t)(x0)

such that the local derivatives fk only depend on the evaluation point x0. For compacity, it is
also customary to use f ′[·] = (Df)x0 [·], f ′′[·, ·] = (D2f)x0 [·, ·], . . . where Dnf denotes the Frechet
derivatives (multi-linear operators) of f at x0. It is also customary to omit parenthesis when
possible i.e. f ′f = f ′[f ]. As a final simplification, in B-series literature, to emphasize their
combinatorial significance, elementary differentials are replaced by trees 1. This yields [HLW06,
p.51]

ẋ = f0 := f = ,

ẍ = f1 := f ′f = ,

x(3) = f2 := f ′′[f, f ] + f ′f ′f, = + ,

x(4) = f3 := f ′′′[f, f, f ] + 3f ′′[f ′f, f ] + f ′f ′′[f, f ] + f ′f ′f ′f = + 3 + + + .

Using this notation, the exact flow of the solution x(t0 + h) = Φh(x0) has the following series
expansion (B-series when summing over rooted trees, Taylor series when summing for differentials)

Φh(x0) =

I + h ( ) +
h2

2!
( ) +

h3

3!

(
+
)

+
h4

4!

(
+ 3 + + +

)
+ . . .

 (x0).

Non-autonomous case The non autonomous case is slightly more complicated since f depends
on variables t, x. We use the shorthand notation ft = ∂tf , ftt = ∂2

t f , ftx = ∂t∂xf . Likewise by
recursive substitution and application of the chain rule we obtain

ẋ = f0 := f,

ẍ = f1 := ft + fxf,

x(3) = f2 := ftt + ftxf + fxft + fxx[f, f ] + fxfxf.

1. The number of branches corresponds to the order of differentiation
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State-space case For the state space systems ẋ(t) = f(x(t), u(t)), we obtain

ẋ = f0 := f,

ẍ = f1 := fu[u̇] + fx[f ],

x(3) = f2 := fuu[u̇, u̇] + fu[ü] + 2fxu[f, u̇] + fxfu[u̇] + fxx[f, f ] + fxfxf,

and for y(t) = g(x(t), u(t))

y = g0 := g,

ẏ = g1 := gu[u̇] + gx[f ],

ÿ = g2 := guu[u̇, u̇] + gu[ü] + 2gux[u̇, f ] + gxfu[u̇] + gxx[f, f ] + gxfxf.

PH-ODEs For the particular case of input-state-output PH-ODEs where{
f(x,u) = A∇H(x) + Gu,

g(x,u) = GT∇H(x),
with A = J−R,

this yields the explicit expressions

f0(x,u) = A∇H(x) + Gu, f1(x,u, u̇) = A∇2H(x)[A∇H(x) + Gu] + Gu̇,

g0(x,u) = GT∇H(x), g1(x,u, u̇) = GT∇2H(x)[A∇H(x) + Gu].

Higher order derivatives can be obtained by following the same derivation process and substituting
recursively but are not reproduced here.

Remark B.1 (Computer Algebra Software). Note the existence of the symbolic calculus
library [Sun15], written in Python, which can automate the manipulation of trees and B-
series for the analysis of ODE (accuracy order, symplecticity, energy-preservation, modified
equation, etc).
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Appendix C

Functional Analysis

The functional results thereafter are gathered from references [BCL99, Aub11, CZ12, Chr16].

C.1 Definitions

Definition C.1 (Lipschitz continuity). Let f be an operator on a normed space. If there
exists constants `f , Lf such that

`f‖u− v‖ ≤
∥∥f(u)− f(v)

∥∥ ≤ Lf‖u− v‖ , (C.1)

then, Lf is called the least upper bound Lipschitz constant (or simply the Lipschitz constant)
of f and `f is called the greatest lower bound Lipschitz constant of f .

Definition C.2 (One-sided Lipschitz continuity and logarithmic norm). Let f be an operator
on an inner product space, if there exists constants mf ,Mf such that

mf‖u− v‖2 ≤
〈
f(u)− f(v),u− v

〉
≤Mf‖u− v‖2 , (C.2)

then, Mf is called the least upper bound logarithmic Lipschitz constant of f and mf is the
greatest lower bound logarithmic Lipschitz constant of f .

Definition C.3. The logarithmic norm µ of a linear operator A is defined by

µ(A) := sup
x 6=0

〈x,Ax〉
〈x, x〉

.

The logarithmic norm of a linear operator A is thus equivalent to its least upper bound logarithmic
Lipschitz constant (i.e µ(A) = MA).

Definition C.4 (Contractivity). An operator f satisfying Lf < 1, is called contractive.

Definition C.5. An operator f satisfying mf > 0 is called strongly convex.
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Definition C.6. An operator f satisfying Mf < 0 is called strongly concave.

Definition C.7 (uniform monotonicity). An operator f satisfying either mf > 0 or Mf < 0,
f is called uniformly monotone.

Definition C.8 (Fréchet derivative). Let V and W be normed vector spaces, and U ⊂ V be
an open subset of V . A function f : U →W is called Fréchet differentiable at x ∈ U if there
exists a bounded linear operator A : V →W such that

lim
‖h‖→0

∥∥f(x+ h)− f(x)−Ah
∥∥
W

‖h‖V
= 0.

If there exists such an operator A, it is unique, so we write Df(x) = A and call it the Fréchet
derivative of f at x.

Alternative notations emphasizing the role of the operator A are f ′(x)(·) ≡ f ′x(·) ≡ A(·).

Definition C.9 (Gateaux derivative). A function f : U ⊂ V → W is called Gateaux
differentiable at at x ∈ U if f as a directional derivative along all directions at x. This means
that there exists a function g : V →W such that

df(x; v) := lim
h→0

f(x+ hv)− f(x)

h
= g(v), ∀v ∈ V.

and where h is from the scalar field associated with V (usually real).

If f is Frechet differentiable at x, it is also Gateaux differentiable there, and g is just the linear
operator A = Df(x). However, not every Gateaux differentiable function is Frechet differentiable.

Definition C.10 (Unilateral Laplace transform [CZ12]). Let V be a separable Hilbert space,
let u : R+ → V have the property that e−βtu(t) ∈ L1(R+, V ) for some real β. We call these
Laplace-transformable functions and we define their Laplace transform Û by

L : u 7→ Û(s) =

ˆ ∞
0

e−stu(t) dt, (C.3)

for s ∈ C+
β =

{
s ∈ C | Re(s) ≥ β

}
.

Definition C.11 (Unilateral Z-transform). Let D ⊂ C denote the unit disc, and H2(D,C)
the Hardy space of square integrable holomorphic functions on the unit disk. The unilateral
Z-transform is the operator Z : `2(C)→ H2(D,C) defined by

Z : u 7→ Û(z) =

∞∑
n=0

unz
n. (C.4)
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C.2 Banach, Hilbert and Sobolev spaces

Definition C.12 (Banach Space). A Banach space (X,‖·‖) is a complete normed vector
space.

Definition C.13 (Hilbert space). A Hilbert space (H, 〈·, ·〉) is a real or complex inner product
space that is also a complete metric space with respect to the norm ‖·‖ induced by the inner
product 〈·, ·〉.

Definition C.14 (indefinite inner product space). An indefinite inner product space (K, 〈·, ·〉 , J)
is a vector space K equipped with both a positive semi-definite inner product 〈·, ·〉 and an
indefinite inner product 〈u, v〉J := 〈u, Jv〉 where the metric operator J is an involution
(J2 = I).

The following subsets are defined in terms of the square norm induced by the indefinite inner
product

K0 :=
{
x ∈ K | 〈x, x〉J = 0

}
, neutral space (C.5a)

K+ :=
{
x ∈ K | 〈x, x〉J > 0

}
, positive space (C.5b)

K− :=
{
x ∈ K | 〈x, x〉J < 0

}
negative space. (C.5c)

It is clear (see definition 1.3.1 p.18) that by definition Dirac structures are neutral spaces, while
incident and reflected waves belong respectively to positive and negative spaces (see subsection
1.4.2 p.36). For more details on indefinite inner product spaces see [Bog12].

Definition C.15 (Base [Chr16]). Let X be a Banach space, A sequence of vectors {ek}∞k=1

of X is a basis for X if, for each f ∈ X, there exists unique scalar coefficients
{
ck(f)

}∞
k=1

such that

f =
∞∑
k=1

ekck(f). (C.6)

Definition C.16 (Adjoint operator [Chr16]). Let U be a bounded operator from the Hilbert
space (K, 〈·, ·〉K) to the Hilbert space (V, 〈·, ·〉V ). The adjoint operator is defined as the
unique operator U∗ : V → K satisfying

〈x, Uy〉V =
〈
U∗x, y

〉
K
, ∀x ∈ V, y ∈ K. (C.7)

Definition C.17 (Lebesgue space). The Hilbert space L2(Ω,R) defined by

L2(Ω,R) =

{
u

∣∣∣∣ ˆ
Ω

∣∣u(t)
∣∣2 dt <∞

}
and equipped with the inner product

〈u, v〉L2 :=

ˆ
Ω
u(t) · v(t) dt,
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is called the Lebesgue space of square-integrable real-valued functions.

Definition C.18 (Sobolev space [Aub11]). The subspace Hm(Ω) of L2(Ω) defined by

Hm(Ω) :=
{
u ∈ L2(Ω) | Dku ∈ L2(Ω) for k = 1 . . .m

}
(C.8)

is called the Sobolev space of order m, equipped with the scalar product

〈u, v〉Hm(Ω) :=
m∑
k=0

〈
Dku,Dkv

〉
L2(Ω)

. (C.9)

where D denote the derivative operator.

Definition C.19 (Dual space(s)). Let V be a Banach space, its topological dual V ∗ is the
space of all linear functionals from V to a scalar field F. Its continuous dual V ′ is the space
all continuous (i.e. bounded) linear functionals on V .

Theorem C.1 (Riesz-Frechet representation theorem [BCL99]). Let V be a Hilbert space
with (continuous) dual V ′. For all functionals f∗ ∈ V ′, there exists f ∈ V such that

f∗(g) = 〈f, g〉V , (C.10)

Definition C.20 (Volterra operator). The Volterra operator V and its adjoint V∗ are defined
respectively, for any function u in L2([0, 1]), by

(Vu)(τ) =

ˆ τ

0
u(σ) dσ, (V∗u)(τ) =

ˆ 1

τ
u(σ) dσ. (C.11)

Property C.1. The Volterra operator V satisfies the following properties [Thi]

P1. The eigenvalues of V∗V are σn =
(

2
π(2n+1)

)2
, n ∈ N.

P2. The operator norm of V is thus ‖V‖2 = 2/π =
√
σ0.

P3. The sum of V with its adjoing yields the self-adjoint averaging operator

V := V + V∗ with (Vu)(τ) =

ˆ 1

0
u(σ) dσ. (C.12)

P4. The difference V − V∗ is a skew-adjoint operator.
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C.3 Strang–Fix conditions

Strang–Fix conditions, first formulated in [FS69, SF11] to analyse Finite Elements, are impor-
tant in approximation theory, wavelets, and generalised sampling. They relates approximation
order with polynomial reproduction, vanishing moments and spectral flatness of the approximation.
Here we reproduce the following variant of Strang–Fix conditions from [Cha99].

Preparations For h > 0, the scaling operator Uh is defined by

(Uhf)(x) =
1√
h
f

(
x

h

)
.

Observe that it is norm preserving: ‖Uhf‖L2(R) =‖f‖L2(R) . More generally∥∥∥(Uhf)(n)
∥∥∥
L2(R)

=
1

hn
‖f‖L2(R) .

Let P be an operator with localized shift-invariant 1 kernel K(x, y) defined by (Pf)(x) =´
RK(x, y)f(y) dy, and define the scaled operator Ph = UhPU 1

h
so that ‖Phf‖L2(R) =

∥∥∥PU 1
h
f
∥∥∥.

Theorem C.2 (Strang–Fix conditions [Cha99]). The following statements are equivalent:

A1. For any f ∈ Hk(R),

1

hk
‖Phf − f‖L2(R) → 0 when h→ 0, (C.13)

A2. (Accuracy order) For any f ∈ Hk+1(R) and h ≤ 1,

‖Phf − f‖L2 ≤ Chk
∥∥∥f (k+1)

∥∥∥
L2(R)

, (C.14)

A3. (Polynomial reproduction) For any integer 0 ≤ p ≤ k
ˆ
R
K(x, y)yp dy = xp. (C.15)

for almost every x.

A different formulation is proposed in [JL93] with an emphasis on the spectral flatness

Definition C.21 ([JL93]). Let Φ be a finite collection of compactly supported functions in
L1(Rs). We denote by span(Φ) the linear span of Φ and by S(Φ) the linear space spanned
by the functions in Φ and all their shifts. Here by a shift we mean a multi-integer translate.

Given a positive integer k we say that the collection Φ satisfies the Strang–Fix conditions
of order k if there is an element ψ of S(Φ) such that

ψ̂(0) = 1, Dλψ̂(2πα) = 0,

for all λ ∈ Ns with |λ| < k and all α ∈ Zz \ ∅, where ψ̂ denote the Fourier transform of ψ.

1. i.e. K(x+ 1, y + 1) = K(x, y) and ∃M > 0 such that K(x, y) = 0 for |x− y| ≥M .
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C.4 Shifted orthonormal Legendre polynomials

Some properties of shifted 2 orthonormal Legendre polynomials on Ω = (0, 1) are detailed
below.

Rodrigues formula Legendre polynomials are defined explicitly by

Pn(τ) :=

√
2n+ 1

n!

dn

dτn
(
τn(1− τ)n

)
, ∀n ∈ N. (C.16)

Symmetry Shifted Legendre polynomials are symmetric (anti-symmetric) with respect to 1/2

Pn(1− τ) = (−1)nPn(τ).

Orthonormality They are orthonormal with respect to the L2 inner product on [0, 1]

〈Pm, Pn〉 =

ˆ 1

0
Pm(τ)Pn(τ) dτ = δmn, ∀m,n ∈ N.

Integration Their integral can be represented in the Legendre basis [TS12, BTI09] by .

ˆ τ

0
Pn(s) ds =

ξ1P1(τ) +
1

2
P0(τ) n = 0,

ξn+1Pn+1(τ)− ξn−1Pn−1τ n > 0,
, ξn =

1

2
√

4n2 − 1
. (C.17)

Let V denote the Volterra operator (C.11) defined by Vu =
´ τ

0 u(σ) dσ . Then, the Volterra oper-
ator is represented by the (almost skew-symmetric) tridiagonal operational matrix of integration

V :=
[
〈Pm,VPn〉

]
=


1
2 −ξ1

ξ1 0
. . .

. . . . . . −ξn
ξn 0

 . (C.18)

Boundary values Pn(α) = (2α− 1)n
√

2n+ 1 for α ∈ {0, 1}.

Vanishing integral on boundaries By orthogonality with P0(τ) = 1, integrals of shifted
Legendre polynomials vanish on the boundary of the unit interval for n > 0ˆ α

0
Pn(s) ds = 0, α ∈ {0, 1}, ∀n > 0. (C.19)

Adjoint Volterra identity It follows by decomposing
´ 1

0 =
´ τ

0 +
´ 1
τ that we have the identity

ˆ τ

0
Pn(s) ds = −

ˆ 1

τ
Pn(s) ds+

{
1 n = 0,

0 n > 0.
(C.20)

using operator notation, with the adjoint operator V∗u =
´ 1
τ u(σ) dσ from (C.11), this is equivalent

to

VPn = −V∗Pn + δ0n. (C.21)

2. Legendre polynomials are defined on (−1, 1).
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Figure C.1 – (Shifted orthonormal Legendre polynomials)
{
Pn(τ)/Pn(1)

}
.

C.5 Hermite polynomial splines

Hermite splines of degree d = 2k + 1, for k > 0 are the unique polynomials hm,α ∈ Pd([0, 1])
which satisfy the (bi-orthogonality) relations

Bm′α′ (hm,α) =

{
1 m = m′ and α = α′

0 otherwise
, where Bmα (f) =

dmf

dτm
(α). (C.22)

for all α ∈ {0, 1} and m ∈ {0, . . . , k}.

Example C.1 (Cubic Hermite splines). For k = 1, cubic Hermite splines are explicitly
given by

h0,0(τ) = 2τ3 − 3τ2 + 1, h1,0(τ) = τ3 − 2τ2 + τ,

h0,1(τ) = −2τ3 + 3τ2, h1,1(τ) = τ3 − τ2.

These functions are commonly used in Computer Assisted Design software and Computer Graphics
to draw piecewise Ck-continuous splines.
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Figure C.2 – (Shifted orthonormal Legendre polynomials) Fourier spectrum P̂n(s = 2iπf) of
Pn(τ) (restricted to (0, 1)). Note the phase linearity (constant phase slope), which is due to the
time shift on the unit interval(0, 1) and ±π discontinuitites at spectral zero-crossings.
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Proofs

D.1 Exponential ϕ-functions: proofs and properties

The ϕ-functions, that appear when doing exact integration of an LTI system with polynomial
input given in monomial form, are defined by the convolution integral

ϕk(λ, t) =

ˆ t

0
eλ(t−τ) τk−1

(k − 1)!
dτ k ≥ 1, (D.1)

and by definition

ϕ0(λ, t) := eλt. (D.2)

For λ = 0 it is immediate that

ϕk(0, t) =
tk

k!
(D.3)

Recurrence relation We first prove that for λ 6= 0, they satisfy the recurrence formula

ϕk+1(λ, t) =
ϕk(λ, t)− ϕk(0, t)

λ
, λ 6= 0. (D.4)

Proof. Using integration by parts of (D.1) yields

ϕk(λ, t) =

[
eλ(t−τ) τ

k

k!

]t
0

+ λ

ˆ t

0
eλ(t−τ) τ

k

k!
dτ =

tk

k!
+ λϕk+1(λ, t)

substituting (D.3) and collecting all term depending on k + 1 on the left and k on the right, we
obtain the recurrence relation

ϕk+1(λ, t) =
ϕk(λ, t)− ϕk(0, t)

λ
.

289
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Explicit form Using (D.4) recursively for λ 6= 0, the first basis functions are given by

ϕ0(λ, t) = eλt, (D.5a)

ϕ1(λ, t) =
eλt − 1

λ
, (D.5b)

ϕ2(λ, t) =
eλt − (1 + λt)

λ2
, (D.5c)

ϕ3(λ, t) =
eλt − (1 + λt+ (λt)2

2! )

λ3
, (D.5d)

ϕ4(λ, t) =
eλt − (1 + λt+ (λt)2

2! + (λt)3

3! )

λ4
. (D.5e)

This suggests the following explicit form

ϕk(λ, t) =
1

λk

eλt − k−1∑
n=0

(λt)n

n!

 , λ 6= 0 (D.6)

Proof. 1) It is immediate to verify that (D.6) holds for k = 0. 2) Assuming that (D.6) is satisfied
for some k ∈ N and using the recurrence relation (D.4), we prove by factoring the last term that
(D.6) also holds for k + 1

ϕk+1(λ, t) =
ϕk(λ, t)− ϕk(0, t)

λ
=

1

λk+1

eλt − k−1∑
n=0

(λt)n

n!

− 1

λ

tk

k!
=

1

λk+1

eλt − k∑
n=0

(λt)n

n!

 .

Then by induction, equation (D.6) holds for all k ∈ N.

Taylor series form The ϕ-functions represent thus the tail of the truncated Taylor series
expansion of eλt up to a scaling factor. This is clear when rewriting (D.6) as

eλt =
k−1∑
n=0

(λt)n

n!
+ λkϕk(λ, t). (D.7)

By consequence, we may define ϕ-functions from the formal series

ϕk(λ, t) =
1

λk

∞∑
n=k

(λt)n

n!
=

∞∑
n=k

λn−k
tn

n!
. (D.8)

Note that, since no inversion is used, this definition can be extended to matrix-valued λ provided
the series is convergent.
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D.2 CSRK formulation of projected ODEs

We reformulate a projected ODE as a CSRK method (def. 5.3) and extract its parameters
(A,B,C) which corresponds to equations (5.18a)-(5.18c) p.126.

Proof. Consider the projected ODE

Ẋ = hPf(X,u).

Rewrite the vector field equivalently using the substitution f(x,u(τ))→ fu(τ,x) and drop the
subscript u. Let KP be the reproducing kernel of the projector P (see eqs. (3.9) (3.10) p.84).
By integration of Ẋ and using Fubini’s theorem, rewrite the projected ODE as a CSRK method
(where functions A(τ, σ) and B(σ) are extracted by identification)

X(τ) = x0 + h

ˆ τ

0

(ˆ 1

0
KP(ξ, σ)f(t(σ),X(σ)) dσ

)
dξ

= x0 + h

ˆ 1

0

(ˆ τ

0
KP(ξ, σ) dξ

)
︸ ︷︷ ︸

A(τ,σ)

f(t(σ),X(σ)) dσ,

x1 = X(1) = x0 + h

ˆ 1

0

(ˆ 1

0
KP(ξ, σ) dξ

)
︸ ︷︷ ︸

B(σ)

f(t(σ),X(σ)) dσ.

This proves (5.18a) p.126. Furthermore, by hypothesis, since P is self-adjoint (P = P∗), its
reproducing kernel is symmetric (KP(τ, σ) = KP(σ, τ)) and since P reproduces contants, it
follows that

B(σ) =

ˆ 1

0
KP(τ, σ) dτ =

ˆ 1

0
KP(τ, σ) · 1 dτ = P(1) = 1.

This proves (5.18b) p.126. Finally from the previous result, by symmetry of KP , it comes that

C(τ) =

ˆ τ

0

ˆ 1

0
KP(ξ, σ) dσ dξ =

ˆ τ

0
B(σ) dσ = τ.

This proves (5.18c) p.126.



292 Appendix D. Proofs

D.3 Proof of proposition 5.3 (CSRK order and Strang-Fix condi-
tions)

We recall the following CSRK order conditions (5.21a), (5.21b), (5.21c) p. 128

B̌(ρ) :

ˆ 1

0
B(τ)C(τ)k−1 dτ =

1

k
, k = 1, . . . , ρ,

Č(η) :

ˆ 1

0
A(τ, σ)C(σ)k−1 dσ =

C(τ)k

k
, k = 1, . . . , η,

Ď(ζ) :

ˆ 1

0
B(τ)C(τ)k−1A(τ, σ) dτ =

1

k
B(σ)(1− C(σ)k), k = 1, . . . , ζ.

Proof. Let P be a self-adjoint projector (Pu)(τ) =
´ 1

0 K(τ, σ)u(σ) dσ that reproduces constants
with reproducing kernel K(τ, σ). From (5.18a)-(5.18c) p.126, we recall that B(τ) = 1, C(τ) = τ ,
A(τ, σ) =

´ τ
0 K(ξ, σ) dξ. Then we show that:

• condition B̌(ρ =∞) holds since for all k ≥ 1

ˆ 1

0
B(τ)C(τ)k−1 dτ =

ˆ 1

0
τk−1 dτ =

[
τk

k

]1

0

=
1

k
,

where we used the definitions B(τ) = 1, C(τ) = τ .

• condition Č(η), is equivalent to projector P reproducing polynomials up to degree η − 1:
ˆ 1

0
A(τ, σ)C(σ)k−1 dσ =

C(τ)k

k
,

a⇐⇒
ˆ τ

0

ˆ 1

0
K(ξ, σ)σk−1 dξ dσ =

τk

k
,

b⇐⇒
ˆ 1

0
K(ξ, σ)σk−1 dσ = τk−1,

c⇐⇒ Pτk−1 = τk−1.

using (a) the definitions C(τ) = τ , A(τ, σ) =
´ τ

0 K(ξ, σ) dξ and Fubini’s theorem, (b)
differentiation with respect to τ , (c) the definition of the projector P.

• condition Ď(ζ), is equivalent to the adjoint projector P∗ reproducing polynomials from
degree 1 to degree ζ

ˆ 1

0
B(τ)C(τ)k−1A(τ, σ) dτ =

1

k
B(σ)(1− C(σ)k),

a⇐⇒
ˆ 1

0
τk−1A(τ, σ) dτ =

1

k
(1− σk),

b⇐⇒

[
τk

k
A(τ, σ)

]1

τ=0

−
ˆ 1

0

τk

k
K(τ, σ) dτ =

1

k
(1− σk),

c⇐⇒
ˆ 1

0
τkK(τ, σ) dτ = σk,

d⇐⇒ P∗σk = σk,
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using (a) B(τ) = 1, C(τ) = τ , (b) integration by parts with ∂A
∂τ = K, (c) A(0, σ) = 0,

A(1, σ) = B(σ) = 1 and simplifying by 1/k, (d) the definition of the adjoint projector P∗.

D.4 Proof of theorem 5.2 (existence and uniqueness of CSRK
solutions)

Proof. We formalize the solution of the CSRK as a fixed–point: find X? ∈ L2(Ω,Rn) such that

X? = G(X?), with G(X) = x0 + h

ˆ τ

0
Pf(X(s)) ds.

Let V be the Volterra operator defined by (Vu)(τ) =
´ τ

0 u(σ) dσ, we can rewrite G without
ambiguity using operator notation as

G(X) = x0 + hVPfX = x0 + hV ◦ P ◦ f ◦X.

Denote ‖·‖ :=‖·‖Rn and ‖·‖2 :=‖·‖L2(Ω,Rn) and let X1,X2 be two functions in L2(Ω,Rn). We
prove the existence and uniqueness condition of the fixed-point in four steps.

step i) If f is Lf -Lipschitz on Rn, then it is also Lf -Lipschitz on L2(Ω,Rn)

∥∥f(X1)− f(X2)
∥∥

2
=

√ˆ 1

0

∥∥f(X1(s))− f(X2(s))
∥∥2

ds

≤

√ˆ 1

0
L2
f

∥∥X1(s)−X2(s)
∥∥2

ds = Lf‖X1 −X2‖2 .

step ii) The adjoint of V is (V∗u)(τ) =
´ 1
τ u(σ) dσ and the eigenvalues of V∗V are σn =

(
2

π(2n+1)

)2

so that the operator norm is ‖V‖2 =
√
‖V∗V‖2 = supn

√
σn = 2/π (see reference [Thi]).

step iii) Using the operator norm of V, P and the Lipschitz constant of f we obtain the bound∥∥G(X1)−G(X1)
∥∥

2
=‖hVPfX1 − hVPfX2‖2 ≤ h‖V‖2‖P‖2 Lf ‖X1 −X2‖2 .

step iv) Since the operator norm of an orthogonal projector is 1, then if α = 2hLf/π < 1, the
mapping G is contracting. By the Banach fixed–point theorem, this guarantees convergence
of G to a unique fixed–point X? ∈ L2.

Remark D.1. Note that ‖VP‖2 ≤‖V‖2‖P‖2. In practice, the existence domain of fixed-
point solutions is bigger than predicted above. For example, for the AVF projector (Pu) =´ 1

0 u(s) ds, we have the majoration

‖VP‖2 = sup
g∈L2(Ω)

‖VPg‖
‖g‖

≤ sup
g∈L2(Ω)

‖VPg‖
‖Pg‖

= sup
g∈P(L2(Ω))

‖Vg‖
‖f‖

=
∥∥V(1)

∥∥
2

=‖τ‖2 =
1√
3
.

This leads to the improved bound hLf <
√

3. Note that this result is similar to the one
obtained for SPAC methods in property 4.2 p.110. Convergence in other Lp normed spaces
leads to different bounds.



294 Appendix D. Proofs

D.5 Proof of proposition 5.5 p.129 (nested projectors)

Proof. From definition 5.1 p.122, we can reformulate (5.10) (5.11) in steps ii) and iii) as

Q
δ̃X
Ỹ

 =Q (J−R)

∇H (X)

u

 , where


X(τ) := x0 + h

ˆ τ

0
δX(σ) dσ,

X̃(τ) := x0 + h

ˆ τ

0
δ̃X(σ) dσ,

x1 := X(1) = X̃(1).

where Q = Q⊗ In (Q commutes with J−R) and the operator Q is equivalently specified by the
conditions

PQ a
= P, (orthogonal projector in L2) (D.9a)

BQ b
= B, (multi-derivative interpolator in Hk) (D.9b)

range(B−1) = AR where AR ⊥ AP (orthogonality of AR and AP) (D.9c)

First we prove that R = B−1B(I − P) (equation (5.26) p.129): a) left multiply (D.9b) by B−1,
b) from (D.9a), there exists an operator R such that Q = P + R, c) finally use the relation
B−1B = IAR (prop. 5.4 p.129)

B−1BQ a
= B−1B

⇐⇒ B−1B(P +R)
b
= B−1B

⇐⇒ B−1BR = B−1B(I − P)

⇐⇒ R c
= B−1B(I − P), (D.10)

Then we prove that Q (and R) is a projector in four steps
i) We prove that PR = 0: using (D.9a) and idempotence of P we obtain

PQ = P ⇐⇒ P(P +R) = P ⇐⇒ PR = P − P2 ⇐⇒ PR = 0.

ii) We prove that RP = 0: using (D.10) and the orthogonality relation (I − P)P = 0 we
obtain

RP = B−1 BP(I − P)︸ ︷︷ ︸
=0

= 0.

iii) We show that R is a projector: a) we expand R using (D.10), b) from (D.9c) we deduce
(I −P)B−1 = B−1, c) since B−1B = IAR we have (B−1B)2 = B−1B, d) use equation (D.10)

R2 a
= B−1B(I − P)B−1B(I − P)

b
= (B−1B)2(I − P)

c
= B−1B(I − P)

d
= R,

iv) We finally show idempotence Q2 = Q so that Q is a projector (an oblique projector): using
relations (i)-(iii), we obtain

Q2 = (P +R)2 = P2 + PR+RP +R2 = P +R = Q.

This result is illustrate in figure D.1.
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A⊥P

A = AP ⊕AR

AR

AP

A⊥

•a

•
(I − P)(a)

•
ã = Q(a)

•
R(a)

•
aP = P(a)

I − P

P

R

P

I − P

B−1B

Q

P

•

Power balance: P = P∗

Regularity k:


B(AR) ' R2k

rangeB−1 = AR
AR ⊥ AP

Ambiant “power” space:
(
L2, 〈· | ·〉L2

)

Consistency: 1 ∈ AP (required)
2p-accuracy: Pp ∈ AP

Figure D.1 – (RPM method) Illustration of orthogonal and oblique projectors P, Q, R. Note
that P and Q are nested projections (PQ = P), the regularisation is R = B−1B(I − P) and
Q = P +R.
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D.6 Proof of theorem 5.7 (Legendre expansion)

Proof. To simplify notations, here we use the shorthand f
[m]
x (s) = f [(m)](x(s)) for the anti-

derivatives of f evaluated at x(s). We first prove the limit case δx = 0. Then, for δx 6= 0 , we
prove the general case by induction.
I) for δx = 0

• Case n = 0, {̂f ◦ x}n =
´ 1

0 f(x0) ds = f(x0).

• Case n ≥ 1, For δx = 0, ∀n > 0, by orthogonality of Ln with constants

{̂f ◦ x}n =
〈
Ln, f(x0)

〉
= 0.

II) for δx 6= 0

• Case n = 0, Since ẋ = δx, using the chain rule, d
ds [f [1](x(s))] = f(x)δx, we obtain

{̂f ◦ x}0 =

ˆ 1

0
f(x(s)) ds =

1

δx

ˆ 1

0

d

ds

[
f [1](x(s))

]
ds =

f [1](x0 + δx)− f [1](x0)

δx
(D.11)

• Case n = 1, still using the chain rule, partial integration and L′1 = const, we obtain

{̂f ◦ x}1 =

ˆ 1

0
L1(s)f(x(s)) ds =

1

δx

([
L1(s)f [1](x(s))

]1

0
−
ˆ 1

0
L′1(s)f [1](x(s)) ds

)

=
1

δx

([
L1(s)f [1](x(s))

]1

0
−
{
L′1(s)f [1](x(s))

}
0

)
where the boundary terms are easily computable, and the inner product can be computed
by substituting f by its antiderivative f [1] in (D.11).

• Case n = 2, using partial integration twice and L′′2 = const, we obtain

{̂f ◦ x}2 =

ˆ 1

0
L2(s)f(x(s)) ds =

1

δx

[
L2f

[1]
x

]1

0
− 1

δx

ˆ 1

0
L′2(s)f [1](x(s)) ds

=
1

δx

[
L2f

[1]
x

]1

0
− 1

(δx)2

[
L′2f

[2]
x

]
+

1

(δx)2

{
L′′2f

[2]
x

}
0

=
1

δx

[
L2f

[1]
x

]1

0
− 1

(δx)2

[
L′2f

[2]
x

]1

0
+

1

(δx)3

[
L′′2f

[3]
x

]1

0

• Case n = 3, continuing partial integration, we obtain similarily

{̂f ◦ x}3 =

ˆ 1

0
L3(s)f(x(s)) ds

=
1

δx

[
L3f

[1]
x

]1

0
− 1

(δx)2

[
L′3f

[2]
x

]1

0
+

1

(δx)3

[
L′′3f

[3]
x

]1

0
− 1

(δx)4

[
L′′′3 f

[4]
x

]1

0

• General case n ≥ 0, by induction, we obtain the general solution

{̂f ◦ x}n =
n∑
k=0

(−1)k

(δx)k+1

[
L(k)
n (s)f [k+1](x(s))

]1

0
.
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D.7 Stability function of L2 projection methods

Proof. To prove proposition 5.2 p.127, we consider the Dahlquist test equation

ẋ = λx, x(0) = x0, λ ∈ C.

For an orthonormal basis
{
φn(τ)

}p−1

n=0
over Ω = (0, 1), orthogonal L2 projection of the ODE yields

ẋ = λ

(
1 · x0 +

ˆ τ

0
ẋ(s) ds

)
,

x1 = x0 +

ˆ 1

0
1 · λẋ(s) ds,

projection
=⇒

~̇x = λ
(
1x0 + V~̇x

)
,

x1 = x0 + λ1T~̇x.

where 1 = [〈φm, 1〉]p×1, and the truncated operational matrix of integration is

V =
[
〈φm,Vφn〉

]
p×p , (Vu)(τ) =

ˆ τ

0
u(s) ds. (D.12)

Solving for x1, we obtain the time-stepping x0 7→ x1 = R(λ)x0 with stability function

R(λ) = 1 + λ1T(I− λV)−11.

Using (a) the Sylvester determinant identity det(M) det(1 + uTM−1v) = det(M + vuT) with
u = v = 1 and M = (I− λV)/λ, and (b) identity VT + V = 11T (eq. (D.13) ), then

R(λ)
a
=

det((I− λV) + λ11T)

det(I− λV)
=

det(I + λ(11T −V))

det(I− λV)

b
=

det(I + λVT)

det(I− λV)
.

A main difference with the stability function of Runge-Kutta methods (B.6) comes from the
explicit construction (by orthogonal L2 projection) of the operational matrix of integration V
and representation of the constant function by 1 in the chosen basis {φn}. (not necessarily using
polynomials, see example below).

Legendre basis For the Legendre polynomials (an explicit formula for V is given in section C.4).
As expected, we obtain the diagonal Padé approximations of the exponential

Rp=1(λ) = −λ+ 2

λ− 2
= exp(λ) +O(λ3),

Rp=2(λ) =
λ2 + 6λ+ 12

λ2 − 6λ+ 12
= exp(λ) +O(λ5),

Rp=3(λ) = −λ
3 + 12λ2 + 60λ+ 120

λ3 − 12λ2 + 60λ− 120
= exp(λ) +O(λ7),

Rp=4(λ) =
λ4 + 20λ3 + 180λ2 + 840λ+ 1680

λ4 − 20λ3 + 180λ2 − 840λ+ 1680
= exp(λ) +O(λ9).

Cosine basis For comparison, we consider the orthonormal cosine basis {1} ∪
{√

2 cos(nπτ)
}
.

Since it only reproduces constant functions, it only yields second order approximations (see
proposition 5.3 p.128) but with diminishing error constants.

Rp=1(λ) = −λ+ 2

λ− 2
= exp(λ) +

λ3 + λ4

12
+O(λ5),

Rp=2(λ) =
λ2 +

(
π
2

)4
λ+ 2

(
π
2

)4
λ2 −

(
π
2

)4
λ+ 2

(
π
2

)4 = exp(λ) +

(
1

12
− 8

π4

)(
λ3 + λ4

12

)
+O(λ5), etc
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1 2 3 4

1

2
3
4

p

p = 1
p = 2
p = 3
p = 4

Figure D.2 – (Legendre projection) Frequency warping for a pole λ = iω with pulsation
ωp := unwrap

(
imag

(
lnRp(iω)

))

10 1 100 101100 101 102
10 1

100

101

100

101

p

p = 1
p = 2
p = 3
p = 4

Figure D.3 – (Legendre projection) Dissipative warping for a pole λ = −σ with dissipation rate
σp := − ln

∣∣Rp(−σ)
∣∣
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2 0 2
Re(s)

/2

0

/2

Im
(s

)
Laplace domain

2 0 2
Re(s)

/2

0

/2

Im
(s

)

Warped Laplace domain

Figure D.4 – (Legendre projection) Laplace conformal map s/2 = pv
(
atanh(s̃/2)

)
corresponding

to bilinear, mid-point, AVF and RPM(p = 1,k = 0) where pv denotes the complex principal
value). Compression/warping of the Fourier axis iR to the interval (−π, π) is noticeable. As a
consequence, the rectilinear grid (left plot) is only accurately approximated (right plot) near the
origin of the Laplace place (s = 0).

Proposition D.1. Let 1 and V be respectively the matrix representations of the constant
function and of the Volterra operator (as in (D.12)). Then, the following identity holds

VT + V = 11T. (D.13)

It is the finite dimensional equivalent of the functional identity V +V∗ = V (eq. (C.12) p.284)

Proof. For an orthonormal basis {φi} of L2([0, 1]), writing the averaging operator as V =
´ 1

0 =
| 1〉 〈1 |, the coefficients of its operational matrix satisfy[

V
]
ij

=

[〈
φi

∣∣∣Vφj〉] =
[
〈φi | 1〉

〈
1
∣∣φj〉] =

[
〈φi | 1〉

] [〈
1
∣∣φj〉] = 11T.

Likewise, using (a) V = V + V∗ (C.12), (b) linearity, (c) definition of the adjoint (C.7) , (d)
definition of V (D.12), we get[

V
]
ij

=

[〈
φi

∣∣∣Vφj〉] a
=
[〈
φi
∣∣ (V + V∗)φj

〉] b
=
[〈
φi
∣∣Vφj〉]+

[〈
φi
∣∣V∗φj〉]

c
=
[〈
φi
∣∣Vφj〉]+

[〈
Vφi

∣∣φj〉] d
= V + VT.
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D.8 Proof of Gauss-Legendre quadrature formula

For this thesis to be self-contained (and to highlight the role of the reproducing kernel), we
prove that the Gauss-Legendre quadrature formulaˆ 1

0
f(x) dx =

n∑
k=1

wkf(xk),

is exact for all polynomials f ∈ P2n−1 and that the quadrature weights wk are given by

wk =

ˆ 1

0
`k(x) dx, where `k(x) =

n∏
i=1,i 6=k

x− xi
xk − xi

,

are the Lagrange interpolation polynomials at Gauss-Legendre nodes xk (the roots of Pn(x)).

Proof. We prove the result in four steps (a)-(d)

a) Let n ≥ 1 and f ∈ P2n−1. Denote polynomials q and r the quotient and remainder of
polynomial division of f by the Legendre polynomial Pn, so that we can write f as follows

f(x) = Pn(x)q(x) + r(x), q, r ∈ Pn−1.

b) Integrating f , by orthogonality of Pn with Pn−1 we haveˆ 1

0
f(x) dx = 〈Pn, q〉︸ ︷︷ ︸

=0

+ 〈1, r〉 =

ˆ 1

0
r(x) dx.

c) Likewise, using Gaussian quadrature nodes makes the first sum vanish
n∑
k=1

wkf(xk) =
n∑
k=1

wk Pn(xk)︸ ︷︷ ︸
=0

q(xk) +
n∑
k=1

wkr(xk) =
n∑
k=1

wkr(xk).

Note from (a)-(c), we only need to prove that the quadrature of the remainder is exactˆ 1

0
r(x) dx =

n∑
k=1

wkr(xk), ∀r ∈ Pn−1.

d) Note that the frame {`k}nk=1 is the dual frame to
{
K(xk, ·)

}n
k=1

(where K(x, y) is the
reproducing kernel of Pn−1) satisfying the biorthogonality conditions

〈
K(xi, ·), `j

〉
= δij .

Then for all r ∈ Pn−1 we have the nodal representation

r(x) =

n∑
k=1

`k(x)r(xk), with r(xk) =
〈
K(xk, ·), r

〉
.

Integrating r over [0, 1] it comes that quadrature weights wk are given by the average of
the Lagrange interpolation polynomials `kˆ 1

0
r(x) dx =

n∑
k=1

(ˆ 1

0
`k(x) dx

)
︸ ︷︷ ︸

wk

r(xk) =
n∑
k=1

wkr(xk).

Combining (a)(b)(c)(d) yields the resultˆ 1

0
f(x) dx =

n∑
k=1

wkf(xk), ∀f ∈ P2n−1.
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D.9 Proofs and appendix for section 7.1 (Minimal passive OPA)

D.9.1 Structure of the output equation

Proof. Using the passivity equation (7.8d) p.177, then introducing Vcm, Vdm using (7.3) p.176,
factoring Vcm, Vdm, finally, for iout 6= 0, dividing by iout and using (7.8c) p.177 one gets the general
form for the output equation (7.9) p.177.

iS+ · eS+ + iS− · eS− = −iout · eout − Pdiss

⇐⇒ iS+(Vcm + Vdm) + iS−(Vcm − Vdm) = −iout · eout − Pdiss

⇐⇒ Vcm(iS+ + iS−) + Vdm(iS+ − iS−) = −iout · eout − Pdiss

iout 6=0⇐⇒ Vcm + Vdm

(
iS+ − iS−
iS+ + iS−

)
= eout −

Pdiss

iout
.

D.9.2 Fixed-point Convergence

According to the Banach fixed-point theorem, existence and uniqueness of the solution are
guaranteed if the fixed point (7.47) is contracting, i.e. there exists a Lipschitz constant α ∈ [0, 1)
such that ∥∥φ(x1)− φ(x0)

∥∥ ≤ α‖x1 − x0‖ . (D.14)

A sufficient (but conservative) condition is given by

α = 1.162Gωd < 1. (D.15)

Proof. Using (7.46), then the derivative of the discrete gradient (7.42), (bounded by G/2), and
using the matrix norm of FdC, one gets

∥∥φ(x1)− φ(x0)
∥∥

2
=

∥∥∥∥Fd

(
∇N(Cx0,Cx1)−∇N(Cx0)

)∥∥∥∥
2

≤

∥∥∥∥∥Fd
∂∇N
∂v1

C

∥∥∥∥∥
2

‖x1 − x0‖2

≤‖FdC‖2 sup
v1

∣∣∣∣∣∂∇N∂v1

(v0, v1)

∣∣∣∣∣‖x1 − x0‖2

≤
2ωd

√
ω2
d + 8ωd + 20∣∣ω2

d + 2(3−G)ωd + 4
∣∣G2 ‖x1 − x0‖2

≤ 1.162Gωd‖x1 − x0‖2

where the bound 1.162 is obtained numerically by majorizing over G ∈ [0, 3] and ωd ≥ 0.
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D.9.3 BJT Push-Pull

We detail a (tedious but systematic) derivation for an explicit algebraic (large-signals) relation
for the simple BJT push-pull of figure D.5.

iB1

iB2

iE1

iE2iIN
vIN

iO vO

i+

v+

i−
v−

+ −vBE

Figure D.5 – (Push-pull) class-B amplifier.

Input - Outputs ports We consider the algebraic relation u 7→ y for the following choice of
input and output variables

u = [vIN, v+, v−, iO]T , y = [iIN, i+, i−, vO]T . (D.16)

Kirchoff laws From Kirchhoff laws at input and output nodes we have

vIN = vB1 = vB2 , iIN = iB1 + iB2 , vO = vE1 = vE2 , iO = iE1 + iE2 , (D.17a)

from which we obtain and the internal voltages

vBE = vIN − vO, vBC1 = vIN − v+, vBC2 = vIN − v−. (D.17b)

Component equations For a given transistor model (here the Ebers-Moll BJT model from
(1.47) p.32), there exists functions îB1 , îC1 , îE1 , îB2 , îC2 , îE2 such that

iB1 = îB1(vBC1 , vBE) iE1 = îE1(vBC1 , vBE) iC1 = îC1(vBC1 , vBE) (D.18a)

iB2 = îB2(vBC2 , vBE) iE2 = îE2(vBC2 , vBE) iC2 = îC2(vBC2 , vBE) (D.18b)

Explicit Input-Output map We want to express everything as nonlinear map y = F (u), i.e.
we look for functions îIN, î+, î−, v̂O such that

iIN = îIN(vIN, v+, v−, iO), (D.19a)

i+ = î+(vIN, v+, v−, iO), (D.19b)

i− = î−(vIN, v+, v−, iO), (D.19c)
vO = v̂O(vIN, v+, v−, iO), (D.19d)
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where according to Kirchhoff laws (D.17a)

îIN(vIN, v+, v−, iO) := îB1(vIN − v+, vBE) + îB2(vIN − v−, vBE), (D.20a)

î+(vIN, v+, v−, iO) := îC1(vIN − v+, vBE), (D.20b)

î−(vIN, v+, v−, iO) := îC2(vIN − v−, vBE), (D.20c)
v̂O(vIN, v+, v−, iO) := vIN − vBE, (D.20d)

where vBE = v̂BE[vIN, v+, v−](iO). (D.20e)

To obtain an explicit relation, we need a formula for v̂BE which is defined as the inverse map

v̂BE[vIN, v+, v−](iO) := î−1
O [vIN, v+, v−](iO), (D.21a)

where îO[vIN, v+, v−](vBE) := îE1(vIN − v+, vBE) + îE2(vIN − v+, vBE). (D.21b)

Ebers–Moll Model We want to explicitly characterize v̂BE for the Ebers–Moll model from
(1.47) p.32. Define the adimensioned variables IB1 = iB1/IS . . ., VBE = vBE/VT , etc and the
adimensioned PN law

PN(V ) := exp(V )− 1. (D.22)

Assuming perfectly matched transistors (i.e. β1
F = β2

F , I
1
S = I2

S), we have the adimensionned laws

ÎB1(VBC1 , VBE) = PN(VBE)/βF + PN(vBC1)/βR, (D.23a)

ÎE1(VBC1 , VBE) = PN(VBC1)− (1 + 1/βF )PN(VBE), (D.23b)

ÎC1(VBC1 , VBE) = PN(VBE)− (1 + 1/βR)PN(VBC1), (D.23c)

ÎB2(VBC2 , VBE) = −PN(−VBE)/βF − PN(−vBC2)/βR, (D.23d)

ÎE2(VBC2 , VBE) = −PN(−VBC2) + (1 + 1/βF )PN(−VBE), (D.23e)

ÎC2(VBC2 , VBE) = −PN(−VBE) + (1 + 1/βR)PN(−VBC2). (D.23f)

Substituting these relation in (D.21b), yields ÎO as a function of VBE

ÎO[VIN, V+, V−](VBE) = PN(VBC1)− PN(−VBC2)− (1 + 1/βF )(PN(VBE)− PN(−VBE))

= PN(VIN − V+)− PN(V− − VIN)− (1 + 1/βF )2 sinh(VBE).

Inverting this function, we obtain the explicit form for V̂BE as a function of IO.

V̂BE[VIN, V+, V−](IO) = asinh

(
PN(VIN − V+)− PN(V− − VIN)− IO

2(1 + 1/βF )

)
(D.24)

By consequence, we finally obtain the explicit output law as a function of input variables

VO = VIN − asinh

(
exp(VIN − V+)− exp(V− − VIN)− IO

2(1 + 1/βF )

)
. (D.25)

It can be factored as

VO = VIN − asinh

 1

1 + 1/βF

sinh

(
VIN −

V + + V −

2

)
exp

(
−V

+ − V −

2

)
− IO


 . (D.26)

Assuming the symmetric power supply case V + = −V − and IO ≈ 0, this simplifies to

VO = VIN − asinh

(
exp(−V +) sinh(VIN)

1 + 1/βF

)
. (D.27)

This is similar to (but different from) tanh as shown on figure D.6.
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Figure D.6 – (Push-pull circuit) Output functions v̂O(vIN) (dimensioned) and V̂O(VIN) (adimen-
sionned) for V + = 15, V − ∈ {−15,−10,−5, 0}, for IO = 0.
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D.10 Z-domain response of Legendre projection filterbank (linear
state-space system)

D.10.1 Reminder on the Kronecker product

We recall the definition of the Kronecker product and its main properties.

Definition D.1 (Kronecker product). Let A be an m × n matrix, and B a p × q matrix,
then the Kronecker product A⊗B is the pm× qn block matrix

A⊗B =


a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 . (D.28)

Property D.1 (Kronecker product properties). For suitable matrices A,B,C,D and scalar
k, the Kronecker product is non-commutative and satisfies the following properties

• Bilinearity and associativity

A⊗ (B + C) = A⊗B + A⊗C, (D.29a)
(B + C)⊗A = B⊗A + C⊗A, (D.29b)

(kA)⊗B = A⊗ (kB) = k(A⊗B), (D.29c)
(A⊗B)⊗C = A⊗ (B⊗C), (D.29d)

A⊗ 0 = 0⊗A = 0. (D.29e)

• Mixed product property: for suitable matrices A,B,C,D

(A⊗B)(C⊗D) = (AC)⊗ (BD). (D.30)

• Distributivity: A⊗B is invertible iff A and B are invertible, then the inverse, Moore-
pseudo inverse, adjoint and transpose operators are distributive over the Kronecker
product, i.e.

(A⊗B)−1 = A−1 ⊗B−1, (D.31a)

(A⊗B)† = A† ⊗B†, (D.31b)
(A⊗B)∗ = A∗ ⊗B∗, (D.31c)

(A⊗B)T = AT ⊗BT. (D.31d)

D.10.2 proof of proposition 8.1

The proof of proposition 8.1 p.225 is detailed below.

Remark D.2 (Notations in this proof). This proof uses Kronecker products whose prop-
erties are recalled in subsection D.10.1 below. Indeed we have to blend finite-dimensional
representation of functional operators (matrices Ip,Vp, e0) with matrices from state-spaces
systems A,B,C,D. To this end, we use matrix algebra (instead of multi-dimensional tensor
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algebra) with large vectors and block matrices such as Ip⊗A built from Kronecker products.
Let f(t) be a q-dimensional vector-valued function of time with scalar components f i(t).

We denote by fn(τ) the sequence of functions fn(τ) = f(n+ τ)|τ∈(0,1) at time frame n and
by ~f [n] its sequence of projection coefficients in the Legendre polynomial basis such that

~f [n] =


〈P0 |fn〉

...〈
Pp−1

∣∣fn〉
 =


〈P0 |
...〈

Pp−1

∣∣
⊗ |fn〉 .

With the chosen convention, matrices and vectors corresponding to the Legendre representa-
tion of functional operators

Ip =
[
〈Pm |Pn〉

]
, Vp =

[〈
Pm

∣∣∣∣ ˆ τ

0
Pn

〉]
, e0 =

[
〈Pm | 1〉

]
,

are written to the left of the Kronecker product while state-space matrices A,B,C,D are
written to the right. Matrix Ip is the identity of the Legendre space of order p, column
vector e0 represents the synthesis operator | 1〉. Its transpose eT0 represents the dual analysis
operator 〈1 |. Matrix Vp is the Legendre operational matrix of integration defined in (C.18).

Proof. Consider a state-space system of dimension nx defined by matrices A ∈ Rnx×nx ,B ∈
Rnx×1,C ∈ R1×nx ,D ∈ R1×1. For each time index n and time frame Ωn = (n, n+ 1), with initial
condition xn, the local representation for normalized time τ ∈ (0, 1) is given by the following
equations{

Ẋn(τ) = AXn(τ) + Bun(τ),

yn(τ) = CXn(τ) + Dun(τ),
, where

Xn(τ) = xn +

ˆ τ

0
Ẋn(σ) dσ,

xn+1 = Xn(τ = 1)

(D.32)

Step 1: Legendre projection. Denote ~d[n], ~y[n], ~X[n], ~u[n] the Legendre projection coefficients
of functions Ẋn,yn,Xn,un and denote x[n] ≡ xn. The four equations in (D.32), expressed in
terms of Legendre coefficients, directly translate to the discrete system

~d[n] = (Ip ⊗A)~X[n] + (Ip ⊗B)~u[n], (D.33a)

~y[n] = (Ip ⊗C)~X[n] + (Ip ⊗D)~u[n], (D.33b)
~X[n] = (e0 ⊗ I)x[n] + (V ⊗ I)~d[n], (D.33c)

x[n+ 1] = x[n] + (eT0 ⊗ I)~d[n]. (D.33d)

Equations (D.33a)-(D.33b) are just higher-dimensional embeddings. In equations (D.33c)-(D.33d),
operators | 1〉,

´ τ
0 , 〈1 | are respectively replaced by matrices e0, Vp, eT0 compared to (D.32).

Step 2: Z-domain representation: Denote by d̂, ŷ, X̂, û, x̂ the Z-transform of sequences
~d, ~y, ~X, ~u,x. By linearity of the Z-transform, equations (D.33a)-(D.33d) become the Z-domain
system

d̂(z) = (Ip ⊗A)X̂(z) + (Ip ⊗B)û(z), (D.34a)

ŷ(z) = (Ip ⊗C)X̂(z) + (Ip ⊗D)û(z), (D.34b)

X̂(z) = (e0 ⊗ I)x̂(z) + (Vp ⊗ I)d̂(z), (D.34c)

zx̂(z) = x̂(z) + (e0 ⊗ I)Td̂(z). (D.34d)
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Step 3: Z-domain transfer function We solve the linear system of equations (D.34a)-(D.34d)
to obtain the matrix-valued transfer function Ĥp : û(z) 7→ ŷ(z) as follows.

Solving (D.34d) for the Z-transform of boundary values x̂(z) we obtain

x̂(z) =
1

z − 1
(e0 ⊗ I)Td̂(z). (D.35)

Back subtitution of x̂ in (D.34c) yields the Z-transform of the trajectory coefficients in term of
its vector field coefficients d̂

X̂(z) =

( e0e
T
0

z − 1
+ Vp

)
⊗ I

 d̂(z). (D.36)

Back substitution of X̂ in (D.34a) leads to the implicit equation on d̂

d̂(z) = (Ip ⊗A)

( e0e
T
0

z − 1
+ Vp

)
⊗ I

 d̂(z) + (Ip ⊗B)û(z).

Using the mixed Kronecker product property (D.30) and solving for d̂ yields

d̂(z) =

Ip ⊗ I−

(
e0e

T
0

z − 1
+ Vp

)
⊗A

−1

(Ip ⊗B)û(z).

Back-subtitution of d̂ in (D.36) yields the explicit expression of X̂ in term of û

X̂(z) =

( e0e
T
0

z − 1
+ Vp

)
⊗ I

Ip ⊗ I−

(
e0e

T
0

z − 1
+ Vp

)
⊗A

−1

(Ip ⊗B)û(z).

Finally, back-substitution of X̂ in the output equation (D.34b), yields the input-output mapping

ŷ(z) =


( e0e

T
0

z − 1
+ Vp

)
⊗C

Ip ⊗ I−

(
e0e

T
0

z − 1
+ Vp

)
⊗A

−1

(Ip ⊗B) + (Ip ⊗D)

 û(z).

The Z-transform of the p× p Legendre filterbank representing the linear state-space system is
thus

Ĥp(z) =

( e0e
T
0

z − 1
+ Vp

)
⊗C

Ip ⊗ I−

(
e0e

T
0

z − 1
+ Vp

)
⊗A

−1

(Ip ⊗B) + (Ip ⊗D).

Remark D.3. Note that formula (D.35) is the Z-domain representation of the cumulative
sum of average vector fields linking the initial condition at time n to the history of average
vector fields over all previous time frames. Indeed 1/(z − 1) is the Z-domain representation
of the cumulative sum operator, and the term (e0 ⊗ I)Td̂(z) is the Z-domain equivalent of
the average vector field: eT0 selects the 0-th coefficient from the vector field coefficients d̂(z)
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Appendix E

Code listing (SPAC methods)

1 """
2 Plots
3 - power balanced regions and
4 - power balanced values of collocation parameter \alpha
5 as a function of dissipation parameter \sigma
6 """
7

8 from pylab import *
9 import sympy as sp

10

11 t,alpha = sp.symbols("t alpha", real=True)
12 a = sp.symbols("lambda")
13

14 def f(x):
15 """ linear complex vector field """
16 return a * x
17

18 def B(u, m, tau):
19 """ Compute the Boundary operator """
20 return sp.diff(u,t,m).subs(t, tau)
21

22 def get_R ():
23 """"
24 find the stability function R(z) and
25 its continuous extension R_t(z) such that
26

27 X(t) = R_t(z) x_0 for t in [0,1]
28 """
29 d = 3
30 c = sp.symbols("c0:%d" % (d+1)) # tuple of coefficients
31 xt = sum([c[i] * t**i for i in range(d+1)]) # polynomial x(t)
32 E = sp.diff(xt,t) - f(xt) # vector field error
33 eqs = [
34 sp.Eq(xt.subs(t,0), 1), # initial condition
35 sp.Eq(B(E, 0, alpha), 0), # adaptive collocation point
36 sp.Eq(B(E, 0, 0), 0), # left boundary condition
37 sp.Eq(B(E, 0, 1), 0), # right boundary condition
38 ]
39 sol = sp.solve(eqs , c)
40 Rt = xt.subs(sol)
41 R = Rt.subs(t,1).together ().collect(a)
42 return Rt, R
43

44 def inner_product(u,v):

309



310 Appendix E. Code listing (SPAC methods)

45 """ Compute the L^2 inner product """
46 return sp.integrate(sp.conjugate(u) * v, (t,0,1))
47

48 def power_balance(x):
49 """ Compute the power balance functional \rho(x) """
50 dx = sp.diff(x,t); E = dx - f(x)
51 rho = inner_product(x, E).together ()
52 return rho
53

54 def plot_power_balanced_dissipation(Rt):
55 rho = power_balance(Rt).simplify ()
56 num ,den = sp.fraction(rho) #; sp.pprint(num)
57 sol = sp.solve(sp.Eq(sp.re(num) ,0), alpha)
58 sp.pprint(sol)
59 figure(figsize =(5 ,4))
60 Max = 6.7
61 i = 0
62 for s in sol:
63 s = sp.lambdify(a,s)
64 sigma = Max * arange(0, 200) / 200
65 plot(sigma , s(sigma), ’C%d’ % i)
66 plot(-sigma , s(-sigma), ’C%d’ % i)
67 ylim ([0 ,1])
68 i += 1
69 axhline (0.5, ls=’--’, c=’k’, lw=1)
70 axvline(-Max , ls=’--’, c=’k’, lw=1)
71 axvline(Max , ls=’--’, c=’k’, lw=1)
72 xlabel("Dissipation rate $\\ sigma$")
73 ylabel("collocation point $\\ alpha$")
74 grid()
75 tight_layout ()
76 savefig("alpha_sigma_PAC (1).pdf", bbox_inches="tight")
77 show()
78

79 def plot_power_balanced_region(Rt):
80 rho = power_balance(Rt).simplify ()
81 num ,den = sp.fraction(rho)
82 sp.pprint(num)
83 sol = sp.solve(sp.Eq(sp.re(num) ,0), alpha)
84 sp.pprint(sol)
85 sol = [sp.lambdify(a,s) for s in sol]
86

87 M = pi
88 x = linspace(-M, M, 200)
89 y = linspace(-M, M, 200)
90 X,Y = meshgrid(x,y)
91 Z = [zeros_like(X)] * len(sol)
92 figure(figsize =(5 ,4))
93 for i in range(X.shape [0]):
94 for j in range(Y.shape [1]):
95 pole = X[i,j] + 1j * Y[i,j]
96 z = NaN
97 for k in range(len(sol)):
98 s = sol[k]
99 zs = s(pole)

100 if abs(imag(zs)) < 1e-20 and real(zs) >= 0 and real(zs) <= 1:
101 z = zs - 0.5
102 Z[k][i,j] = z
103 contourf(X,Y,Z[0], antialiased=True , alpha =0.9, cmap=plt.get_cmap("seismic"))
104 contourf(X,Y,Z[1], antialiased=True , alpha =0.9, cmap=plt.get_cmap("seismic"))
105 grid()
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106 xlabel("Dissipation rate $\\ sigma$")
107 ylabel("Pulsation $\\ omega$")
108 tight_layout ()
109 savefig("PB_region_PAC (1).pdf", bbox_inches="tight")
110 show()
111

112 Rt ,R = get_R () # get stability function R(z)
113 error = sp.series(sp.exp(a) - R, a).simplify () # Taylor series expansion
114 sp.pprint(R)
115 sp.pprint(error)
116 plot_power_balanced_dissipation(Rt)
117 plot_power_balanced_region(Rt)

Listing E.1 – "Code for plotting SPAC(1) Power Balance region"
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Appendix F

Geometric Algebra

Here we gather a collection of definition, theorem and properties related to Geometric Algebra
and Geometric calculus. Our main references are [Mac10, Mac12b] and [DGL+03].

F.1 Algebra

F.1.1 Inner product spaces

Definition F.1 (Inner product). If u = (u1, . . . , un), v = (v1, . . . , vn) are vectors in Rn,
then their inner product is

u · v :=

n∑
i=1

uivi. (F.1)

Theorem F.1 (inner product properties). If u,v,w are vectors in Rn and a is a scalar in
R, then
P1. (au) · v = a(u · v)

P2. (u + v) ·w = u ·w + v ·w

P3. u · v = v · u

P4. if v 6= 0, v · v > 0

Definition F.2 (inner product space). An inner product space is a vector space with a
product called an inner product satisfying axioms P1-P4 of Theorem F.1.

Definition F.3 (Norm). . The norm |v| of a vector v in an inner product space is given by
|v|2 = v · v.

Definition F.4 (angle). The angle θ ∈ [0, π] between nonzero vectors u,v in an inner

313
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product space is defined by
θ :=

u · v
|u||v|

. (F.2)

Definition F.5 (Orthogonal vectors). Let u, v be vectors in an inner product space. Then
u and v are orthogonal iff u · v = 0.

Theorem F.2 (Pythagorean theorem). if u and v are orthogonal vectors then

|u2 + v2| = |u|2 + |v|2. (F.3)

Lemma F.1 (Cauchy-Schwartz inequality). if u and v are vectors in Rn then

|u · v| ≤ |u||v|. (F.4)

F.1.2 Geometric Algebra

Definition F.6 (Oriented length). An oriented length v is and oriented segment of a line.
The length of v is called its norm |v|.

Definition F.7 (Oriented Area). An oriented area B is and oriented segment of a plane (i.e.
an area). The area of B is called its norm |B|.

Theorem F.3. Oriented areas in Rn form a vector space.

Definition F.8 (Oriented Solid). An oriented solid T is and oriented segment of a three
dimensional space (i.e. a volume). The volume of T is called its norm |T|.

Definition F.9 (Outer product). The outer product denoted ∧ is an operation satisfying
the following properties

u ∧ u = 0, (F.5)
u ∧ v = −v ∧ u (F.6)

a(u ∧ v) = (au) ∧ v (F.7)
(u + v) ∧w := u ∧w + v ∧w (F.8)

Theorem F.4. Let e1, e2 be an orthonormal basis for a plane. Orient the plane with e1∧e2.
Let u and v be vectors in the plane. Let θ ∈ (−π, π] be the oriented angle from u to v, then

u ∧ v = |u||v| sin θ (e1 ∧ e2) (F.9)
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Theorem F.5 (Oriented area basis). Let e1 . . . en be an orthonormal basis of Rn, then the
oriented areas {e1 ∧ e2, e2 ∧ e3, . . . en ∧ e1} form a basis of the vector space of oriented areas.

Definition F.10 (Geometric product). The geometric of two vector u,v is defined by

uv := u · v + u ∧ v. (F.10)

Theorem F.6 (Geometric vector space Gn). The inner product space Rn can be extended
to the geometric algebra Gn. Members of Gn are called multivectors. The geometric algebra
is a vector space with a product called the geometric product.

The geometric product of multivectors A and B is written AB. For all scalars a and
multivectors A, B, C:

G0. AB ∈ Gn.

G1. A(B + C) = AB +AC, (B + C)A = BA+ CA.

G2. (aAB) = A(aB) = a(AB).

G3. A(BC) = (AB)C.

G4. 1A = A 1.

G5. The geometric product of Gn is linked to the inner product of Rn:

uu = u · u = |u|2, ∀u ∈ Rn. (F.11)

G6. Every orthonormal basis of Rn determines a canonical basis for the vector space Gn.

G7. The k-vectors in a canonical basis for Gn form a basis for the subspace of k-vectors
in Gn, for k ∈ {0 . . . n}. Every multivector can be uniquely expressed as a sum of
k-vectors.

Property F.1 (Symmetric inner product). For all vectors u,v in Rn

u · v =
uv + vu

2
. (F.12)

Property F.2 (skew-symmetric exterior product). For all vectors u,v in Rn

u ∧ v =
uv − vu

2
. (F.13)
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Definition F.11 (biorthogonal basis). Let {bi} be a basis of Rn. There is a unique reciprocal
basis

{
b̃i
}

for Rn satisfying the biorthogonality conditon

bi · b̃j = δij . (F.14)

Definition F.12 (Unit pseudoscalar). The unit pseudo-scalar of Gn is

I := e1e2 . . . en. (F.15)

Definition F.13 (Unit pseudoscalar inverse). The right inverse of the unit pseudoscalar of
Gn is given by its retrograde symmetry

I−1 = en . . . e1. (F.16)

Proof. I I−1 = e1 . . . enen . . . e1 = e1 . . . en−1en−1 . . . e1 = . . . = 1.

Definition F.14 (Dual). The dual of a multivector M ∈ Gn is

M∗ := MI−1. (F.17)

Theorem F.7 (Orthogonal complement). If a blade B represents a subpsace S, then B∗

represents S⊥ the orthogonal complement of S

Remark F.1.

(M ∧N)∗ = M ·N∗ (M ·N)∗ = M ∧N∗ (u ∧ v)∗ = u× v (F.18)

Definition F.15 (Canonical Basis of G2). Denote {e1, e2} the canonical basis of R2. The
canonical basis of G2 is

1 (scalar: grade 0)
e1 e2 (vector: grade 1)

e1e2 (pseudoscalar, bivector: grade 2)

Definition F.16 (Canonical Basis of G3). Denote {e1, e2, e3} the canonical basis of R2. The
canonical basis of G2 is

1 (scalar: grade 0)
e1 e2 e3 (vector: grade 1)

e1e2 e2e3 e3e1 (bivector: grade 2)
e1e2e3 (pseudoscalar, trivector: grade 3)
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Remark F.2. A multivector M ∈ Gn separates uniquely into k-vector parts 〈M〉k

M =

n∑
k=0

〈M〉k (F.19)

Definition F.17 (Blade). A k-blade B is a product of k nonzero orthogonal vectors

B = b1b2 . . .bk (F.20)

Remark F.3. A k-blade B = b1b2 . . .bk represents the subpsace of Rn with basis
{b1, . . . ,bn}

Definition F.18 (Norm of a blade). The norm of a k-blade B = b1 . . .bk is

|B| = |b1| . . . |bk|. (F.21)

This is the volume of the parallelogram with edges b1 . . .bk.

Remark F.4. Algebraic operations on blades represent geometric operations on their
subspaces

Definition F.19 (inner product (bis)). The inner product of a j vector A and k-vector B is

A ·B = 〈AB〉k−j . (F.22)

Definition F.20 (outer product (bis)). The outer product of a j vector A and k-vector B is

A ∧B = 〈AB〉k+j . (F.23)

F.1.3 Generalized complex numbers

Definition F.21. Let {e1, e2} be an orthonormal basis for a plane in Gn. Then the unit
bivector i = e1 ∧ e2 = e1e2 is the unit pseudoscalar of the oriented plane e1 ∧ e2.

Definition F.22 (bivector angle iθ). Consider an angle θ in a plane i ∈ Gn. We call the
bivector iθ an angle. A bivector angle represents both the plane i and its size |iθ| = θ.
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Definition F.23 (exponential eiθ). Define the exponential

exp(iθ) = cos θ + i sin θ (F.24)

Theorem F.8. Let u,v be vectors in Gn. Let iθ be the angle from u to v. Set r = |u||v|,
a = r cos θ, b = r sin θ, then

uv = reiθ = a+ ib = u · v + u ∧ v. (F.25)

Theorem F.9 (complex conjugate). Let z = uv = reiθ = a+ ib be a generalized complex
number, then

z̄ = vu = re−iθ = a− ib = u · v − u ∧ v (F.26)

is called the complex conjugate of z.

Theorem F.10 (complex norm). Let z = uv = reiθ = a + ib be a generalized complex
number, then

|z| = |u||v| = r =
√
a2 + b2 (F.27)

is called the norm of z.

Theorem F.11 (complex inverse). Let z be a generalized complex number, then |z|2 = zz̄.
Thus if z 6= 0, then z−1 exists and

z−1 =
z̄

|z|2
(F.28)
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F.2 Calculus

Definition F.24 (Gradient). The gradient is the vector operator

∇ :=

n∑
i=1

ei
∂

∂xi
. (F.29)

Definition F.25 (Divergence). For F ∈ Gn

divF :=∇ · F =

n∑
i=1

ei ·
∂

∂xi
(F.30)

Definition F.26 (Curl). For F ∈ Gn

curlF :=∇ ∧ F =

n∑
i=1

ei ∧
∂

∂xi
(F.31)

Remark F.5.
∇F =∇ · F +∇ ∧ F = divF + curlF (F.32)

Theorem F.12 (Tangent space basis). Let x : q = (u, v) ∈ R2 → x(q) ∈ X ⊂ Rn
parametrize a surface, then {

xu =
∂x

∂u
(q),xv =

∂x

∂v
(q)

}
(F.33)

is a basis of the tangent space TqX .

The vector derivative ∂ on manifolds, generalizes the gradient on Rn

Definition F.27 (Vector derivative ∂). Let x : (u, v) ∈ R2 → x(q) ∈ X ⊂ Rn parametrize
a surface with basis {xu,xv} and reciprocal {xu,xv}. F (x) a multi-vector valued function
on X . The vector derivative is

∂F := xu
∂F

∂u
+ xv

∂F

∂v
. (F.34)

Remark F.6. xu,xv is not necessarily orthogonal, and is the reciprocal basis of xu,xv.

Definition F.28 (Line integral). Let C be a curve in Rn, f : C → Rn a vector valued
function and ds the infinitesimal vector tangent to C, the line integral is given by

I =

ˆ
C
f · ds. (F.35)



320 Appendix F. Geometric Algebra

Definition F.29 (Directed integral). Let C be a curve in Rn, F : C → Gn a multi-vector
valued function and ds the infinitesimal vector tangent to C (i.e. the infinitesimal pseudoscalar
in the tangent algebra G1 to C, or 1-form), the directed integral is given by

I =

ˆ
C

dsF =

ˆ
C

ds · F +

ˆ
C

ds ∧ F. (F.36)

Definition F.30 (Flux integral Vector calculus). Let S be a surface in R3 (and only in R3),
f : S → Rn a vector valued function and dσ the infinitesimal vector normal to S, the flux
integral is given by

I =

¨
S
f · dσ. (F.37)

Definition F.31 (Directed surface integral). Let S be a surface in Rn, F : S → Rn a
multivector valued function and dS the infinitesimal bivector tangent to S (i.e the infinitesimal
pseudo scalar in the tangent algebra G2 to S, or a 2-form), the flux integral is given by

I =

¨
S

dSF. (F.38)

Remark F.7. To generalize notations for the directed integral, let M be a k-dimensional
manifold in Rn, let dkx be the infinitesimal pseudoscalar of the algebra Gk tangent to M (a
k-form), then the directed integral on M is noted

I =

ˆ
M

dkxF. (F.39)

Theorem F.13. The boundary of an m-dimensional manifold M is an m− 1 dimensional
manifold, denoted ∂M .

Remark F.8. If M is a ball (3D), ∂M is a sphere (2D), If M is an hemisphere (2D), ∂M
is a circle (1D), if M is a curve (1D), ∂M is its boundary points 0D.

Remark F.9. Recall the following vector calculus
ˆ
C
∇H · ds = H(x1)−H(x0) (F.40)

¨
S

(∇× f) · dσ =

ˆ
C

f · ds (F.41)
˚

V
∇ · f dV =

¨
S

f · dσ (F.42)
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Theorem F.14 (Fundamental theorem of geometric calculus). If M is a m-dimensional
manifold in Rn, let dmx be the infinitesimal pseudoscalar of the algebra Gm tangent to M ,
then ˆ

M
dmx∂ F =

ˆ
∂M

dm−1xF. (F.43)

Theorem F.15 (Divergence theorem in R3).
˚

V
∇ · f dV =

‹
S

f · dσ (F.44)

Theorem F.16 (Generalized Divergence theorem). If M is a m-dimensional manifold in
Rm, and n is the unit normal to ∂M then,

ˆ
M
∇F dmx =

ˆ
∂M

nF dm−1x (F.45)

Remark F.10. These are not directed integrals, but standard multiple integrals. dmx =
dx1 dx2 . . . dxm.

Theorem F.17 (Curl theorem in R3).
¨
S

(∇× f) · dσ =

˛
C

f · ds (F.46)

Theorem F.18 (Generalized Curl theorem). If M is a m-dimensional manifold in Rm, and
F is an m− 1 vector field on M , then

ˆ
M

dmx · (∂ ∧ F ) =

ˆ
∂M

dm−1x · F. (F.47)



322 Appendix F. Geometric Algebra

F.3 Maxwell equations (in empty space)

The following example is taken from [Mac17, eq. (3.1)]. Denote b ∈ R3 the 3-dimensional mag-
netic field (dependence on time and space variables (t, x, y, z) is ommited). In geometric algebra it
is represented through its dual: the bivector B ∈ span {B1 = e2e3,B2 = e3e1,B3 = e1e2} ⊂ G3.
Denote e ∈ R3 the electric field. The classical formulation of Maxwell equations using vector
calculus is given by the four equations

Gauss law div e = ∇ · e = 0, (F.48a)
Gauss law for magnetism div b = ∇ · b = 0, (F.48b)

Faraday’s law of induction ∂te−∇× b = 0, (F.48c)
Ampere law ∂tb+∇× e = 0 (F.48d)

Using Geometric calculus, the exterior product ∧ and bivectors are favoured over the cross product
× (which doesn’t generalize to n dimensions). Maxwell equations can be rewritten in term of the
bivector B and the exterior product ∧ as

∇ · e = 0, ∇ ∧B = 0, ∂te+∇ ·B = 0, ∂tB +∇ ∧ e = 0.

Using geometric algebra, it becomes possible to introduce the multivector field F = e+B (the
direct sum of a vector and a bivector) so that Maxwell equations becomes a single equation

(∂t +∇)F = 0. (F.50)

Finally, multiplying on the left by (∂t −∇) and expanding the differential operator reveals that
Maxwell equations are simply an instance of the wave equation but over a multi vector field F

∂2
t F −∇2F = 0. (F.51)

This is a significant reduction in complexity and a revelator of hidden structure.

Remark F.11 (Going further). See [DGL+03, p.229] for a more detailed treatment of
Maxwell equations using GA. See also [VLM12] for a port-Hamiltonian approach to Maxwell
equations using k-forms applied to plasma dynamics in Tokamak reactors.
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ABSTRACT

This article is concerned with the accurate simulation of passive
nonlinear dynamical systems with a particular attention paid on
aliasing reduction in the pass-band. The approach is based on the
combination of Port-Hamiltonian Systems, continuous-time state-
space trajectories reconstruction and exact continuous-time anti-
aliasing filter realization. The proposed framework is applied on
a nonlinear LC oscillator circuit to study the effectiveness of the
method.

1. INTRODUCTION

The need for accurate and passive-guaranteed simulation of non-
linear multi-physical systems is ubiquitous in the modelling of
electronic circuits or mechanical systems.

Geometric numerical integration [1] is a very active research
field that provides a theoretical framework for structure and invari-
ant preserving integration of dynamical systems. Port-Hamiltonian
Systems (PHS) [2] [3] that focus on the energy storage functions
and power continuous component interconnections belong to this
field and offer a well adapted framework to preserve the system
energy (resp. passivity). In the context of nonlinear physical au-
dio systems, it has been applied successfully to the modelling of
the wah-wah pedal [4], Fender Rhodes [5], brass instruments [6]
and the loudspeaker nonlinearities [7]. Automatic generation of
the system equations from a graph of components has been inves-
tigated in [8]

However the presence of aliasing errors in the numerical sim-
ulation is annoying for three reasons. First it causes audible in-
harmonic audio artefacts. Second it deteriorates the accuracy of
the numerical scheme leading to poor convergence rate. Third it
requires the use of significant oversampling. This problem is even
more pronounced in the case of systems such as sustained instru-
ments that rely on nonlinearities to achieve auto-oscillation.

Aliasing errors in the context of finite elements simulation
and some alternatives have been discussed in [9] (ch 11). Anti-
aliased waveform generation without oversampling has been pro-
posed in [10]. Static nonlinearity anti-aliasing has also been pro-
posed in [11] [12] by combining exact anti-derivatives and finite-
differences.

Continuous-time input reconstruction has been used in [13] to
simulate the frequency response of LTI systems with higher accu-
racy. It is also central in collocation-based Runge-Kutta methods

∗ The contribution of this author has been done at laboratory
STMS, Paris, within the context of the French National Research
Agency sponsored project INFIDHEM. Further information is avail-
able at http://www.lagep.cpe.fr/wwwlagep7/anr-dfg-infidhem-fev-2017-
jan-2020/

that rely on non-uniform polynomial interpolation of the vector
field. Splines and in particular uniform B-splines [14] [15] [16],
[17] also offer a particularly interesting framework to represent
and manipulate piecewise continuous-time signals through their
digital representations using the standard tools of linear algebra
and digital signal processing.

In this article, we try to combine the geometric and the signal
processing viewpoints: we choose a physically informed piece-
wise smooth polynomial reconstruction model based on a discrete
sequence of points generated by a passive-guaranteed simulation
method.

The paper is organized as follows. We first recall some results
about Port-Hamiltonian systems in Section 3, then we consider
passive numerical methods in section 4, we talk about piecewise-
continuous trajectory reconstruction in section 5 and continuous-
time filtering of piecewise polynomials in section 6. Finally we
apply our method to a non linear LC oscillator circuit in section 7.

2. PROBLEM STATEMENT

2.1. Objective

The objective is to simulate nonlinear passive physical audio sys-
tems in such a way that:

(i) The nonlinear dynamics is accurately reproduced,
(ii) The power balance decomposed into its conservative, dissi-

pative and source parts is satisfied,
(iii) The observation operator is designed to reduce the aliasing

induced by the nonlinearities.

2.2. Approach

To address this problem, the following strategy is adopted.
First, trajectories are approximated in the continuous-time do-

main by smooth parametric piecewise-defined functions, such that
the three following properties are fulfilled:

(P1) Regularity: functions and junctions are Ck with k ∈ N,
(P2) Accuracy: the approximation has accuracy order p,
(P3) Passivity: the power balance is globally satisfied for each

frame.
Second, the anti-aliased output is built a posteriori in three steps:

1. Observe the output from the approximated dynamics in the
continuous-time domain,

2. Apply a continuous-time anti-aliasing filter in order to re-
spect the Shannon-Nyquist sampling theorem,

3. Sample the filtered trajectories to convert them back to discrete-
time.

DAFX-1
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2.3. Methodology

In this article, we restrict ourselves to piece-wise continuous glob-
ally C1 polynomial trajectories of the form

x̂(t) =
∞∑

n=−∞
x̂n

(
t− tn
h

)
rect]0,1]

(
t− tn
h

)
, t ∈ R (1)

with x̂ ∈ RN , x̂n(τ), τ ∈ [0, 1] being a local polynomial model
of order r, tn = hn, n ∈ Z and h being the time step parameter.
The continuity hypothesis (P1) is expressed mathematically by.

x̂
(`)
n+1(τ) = x̂(`)

n (τ) ∀n ∈ Z, ` ≤ k (2)

For property (P2) the local approximation error between the exact
solution and its approximation is defined by

e(h) = x(t0 + h)− x̂(t0 + h) (3)

provided that x(t0) = x̂(t0) and it is required that for some p.

e(h) = O(hp+1) (4)

Finally to express property (P3) we require the power-balance

E′(t) = −Pd + Pe (5)

wherePd andPe are respectively the dissipated and external power
and E′(t) is the instantaneous energy variation of the system.

3. PORT-HAMILTONIAN SYSTEMS

In this article, nonlinear passive physical audio systems are de-
scribed under their Port-Hamiltonian formulation. The theory of
Port-Hamiltonian Systems (PHS) [2] [3] extends the theory of Hamil-
tonian mechanics to non-autonomous and dissipative open sys-
tems. It provides a general framework where the dynamic state-
space equations derives directly from an energy storage function
and power-conserving interconnection of its subsystems.

3.1. Explicit differential form

Consider a system with input u(t) ∈ U = RP , with state x(t) ∈
X = RN and output y(t) ∈ Y = RP with the structured state-
space equations [2]
{

x′ = (J(x)−R(x))∇H(x) + G(x)u = f(x,u)
y = G(x)Tu

(6)

whereH gives the stored energy of the system

E(t) = (H ◦ x)(t) (7)

with H ∈ C1(X,R+), ∇ being the gradient operator, J = −JT a
skew-symmetric matrix and R = RT � 0 a positive-semidefinite
matrix. The energy variation of this system satisfies the power-
balance given by the derivative chain rule

E′(t) = ∇H(x)Tx′ (8)

which can be decomposed as

E′(t) = Pc − Pd + Pe (9)

with.

Pc = ∇H(x)TJ(x)∇H(x) = 0 (10)

Pd = ∇H(x)TR(x)∇H(x) ≥ 0 (11)

Pe = ∇H(x)TG(x)u (12)

The Pc term is null because J is skew-symmetric: it represents
conservative power exchange between storage components in the
system. The Pd term is positive because R ≥ 0: it represents
the dissipated power. Finally the term Pe represents the power
brought to the system by the external ports.

Equation (9) express the system’s passivity property: with ex-
ternal inputs switched off (u = 0) the energy can either be constant
(conservative case Pd = 0) or decaying (dissipative case Pd > 0).

3.2. Component-based approach and semi-explicit DAE form

More generally, PHS can be expressed in Differential Algebraic
Equation form. When we consider physical systems containing
N energy-storage components, M dissipative components and P
external interaction ports described by

Pc the stored energy level en and its variation law defined by
e′n = ∇Hn(xn)x′n for the state variable xn.

Pd the dissipated power qm(w) ≥ 0 with the component’s flux
and effort variables being in algebraic relation of a single
variable w.

Pe the external power upyp brought to the system through this
port with up being the controllable input of the system and
yp being the observable output.

For a storage component, en = Hn(xn) gives the physical energy
storage law. If x′n is a flux (resp. effort) variable then ∇Hn(xn)
is the dual effort (resp. flux) variable.

Similarly, for a dissipative component, the power is qm =
Rm(wm) so that ifwm is a flux (resp. effort) variable then z(wm) =
Rm(wm)
wm

is the effort (resp. flux) and gives the dissipation law.
We then consider a passive system obtained by interconnection

of these components given by


x′

w
−y




︸ ︷︷ ︸
b

= S(x,w)



∇H(x)
z(w)
u




︸ ︷︷ ︸
a

(13)

with S = −ST being skew-symmetric, H(x) =
∑N
i=1Hn(xn)

and z(w) = [z1(w1), . . . , zm(wm)]T .
The S matrix represents the power exchange between compo-

nents: since S = −ST we have a · b = aTSa = 0 which again
leads to the power balance1.

∇H(x) · x′︸ ︷︷ ︸
Pc=E′(t)

+ z(w) ·w︸ ︷︷ ︸
Pd

− u · y︸︷︷︸
Pe

= 0 (14)

The explicit form (6) can be found by solving the second row of
(13). The S matrix represents a Dirac structure [2] that expresses
the power-balance and can be constructed from a component con-
nection graph [8] [18].

1The minus sign in −y in Eq. (13) is used to restore the receiver con-
vention used for internal components.
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4. PASSIVE NUMERICAL INTEGRATION

Whereas most numerical schemes concentrate their efforts on the
the temporal derivative or the numerical integration quadrature,
discrete gradient methods preserve the energy (resp. passivity)
given by the power-balance (9), (14) in discrete-time by providing
a discrete equivalent of the chain rule derivation property E′(t) =
∇H(x)Tx′. A discrete gradient [19]∇H is required to satisfy the
following conditions.

H(x + δx)−H(x) = ∇H(x, δx)T δx (15)

∇H(x, 0) = ∇H(x) (16)

In this article, we will focus on the average vector field [20].

4.1. Average Vector Field

In the general case, the AVF method is defined by.

δxn
δt

=

∫ 1

0

f(xn + τδxn)dτ, xn+1 = xn + δxn (17)

When the matrices J(x),R(x),G(x) are approximated by con-
stant matrices J̄, R̄, Ḡ, we obtain the separable structure-preserving
approximation of (17)

δxn
δt

= (J−R)∇H(xn, δxn) + Gūn (18)

with the discrete gradient being defined by

∇H(x, δx) =

∫ 1

0

∇H(x + τδx)dτ (19)

and it satisfies the discrete power balance

δE = ∇HT δx
δt

= ∇HT (J−R)∇H+∇HTGu

= 0− Pd + Pe

Then, by the fundamental theorem of calculus, for mono-variant
components, i.e. separable Hamiltonians of the form H(x) =∑N
i=1Hi(xi), we have for each coordinate:

∇Hi(xi, δxi) =

{ Hi(xi+δxi)−Hi(xi)
δxi

δxi 6= 0

∇H(xi) δxi = 0
(20)

which satisfies the discrete gradient conditions (15)-(16). For non-
separable Hamiltonians, a discrete-gradient can also be uniquely
defined, see [21] for more details.

To summarize, this method relies on two complimentary ap-
proximations: the differential operator dx

dt
→ δx

δt
and the vector

field f → f to achieve energy (resp. passivity) conservation. The
discrete PHS equivalent of (6) is given by the numerical scheme.





δxn
δt

=
(
J−R

)
∇H(xn, δxn) + Gun

yn = G
T∇H(xn, δxn)

xn+1 = xn + δxn

(21)

4.2. Accuracy order

As shown in [22], the AVF has accuracy order p = 2, it is a B-
series method, is affine-covariant and self-adjoint. When approxi-
mated as in Eq (19) by evaluating matrices J,R,G for x∗ = xn
the accuracy is only of order 1. Order 2 is achieved when either
J,R,G are independent of x or when evaluated at the mid-point
x∗ = xn + δxn

2
in the conservative case. It is also possible to re-

store the accuracy order p = 2 in the general case using a Runge-
Kutta refinement [21].

4.3. Implicit resolution

The discrete system is implicit on δxn and admits a unique so-
lution when H is convex. In the general case, an iterative solver
is required (typically a fixed-point or Newton iteration), but when
the Hamiltonian is quadratic we can avoid the need for an itera-
tive resolution. Furthermore, when the Hamiltonian is convex the
method can also be made non-iterative by quadratization of the
Hamiltonian [21].

Proof. When the Hamiltonian is quadratic of the form H(x) =
1
2
xTQx, the discrete gradient reduces to the mid-point rule

∇H(x, δx) =

∫ 1

0

Q(xn + δxnτ)dτ = Q

(
xn +

1

2
δxn

)

the implicit dependency on δx can thus be solved by matrix inver-
sion

δxn = δt

(
I − δt

2
A

)−1 (
Axn + Gun

)
(22)

with A = (J−R)Q

5. PIECEWISE-CONTINUOUS TRAJECTORIES
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Figure 1: Example of a cubic trajectory with conservative end-
points. The affine trajectory used to compute the average vector
field is shown (in green), the associated cubic interpolated ap-
proximation (in blue), its control polygon (in red), and the exact
manifold (in dashed black).

Given the sequence of points {xn} obtained by a passive-
guaranteed method, we would like to reconstruct piece-wise Ck-
continuous polynomial trajectories informed by the system dy-
namics.
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The idea is to exploit the dynamic equation at each junction
point xn where the approximation is known to be O(hp+1).

Indeed, if we had the samples of the exact trajectory, by the
Weierstrass approximation theorem, arbitrarily close polynomial
approximations converging uniformly to the exact solution could
be obtained by computing its derivatives to any desired order.

Since we only have an approximation of order p = 2, we
restrict ourselves to a regularity k = 1. This gives four constraints

x̂(0) = xn, x̂(1) = xn+1, x̂′(0) = f(xn), x̂′(1) = f(xn+1)

that can be satisfied by a cubic polynomial (r = 3). We choose to
represent it using the Bézier form,

x̂(τ) =
3∑

i=0

XiB
3
i (τ), Bni (t) =

(
n

i

)
(1− t)n−iti (23)

with {Xi} being its control polygon and Bni (t) being the Bern-
stein polynomial basis functions, because they have important ge-
ometric and finite differences interpretations [23].

This choice immediately leads to the following equations,

X0 = xn X1 = xn +
1

3
f(xn) (24)

X3 = xn+1 X2 = xn+1 − 1

3
f(xn+1) (25)

where the internal control points X1,X2 are computed from the
end points xn,xn+1 by first order forward / backward prediction
using the derivative rule.

x̂′(t) =

n−1∑

i=0

DiB
n−1
i (t), Di = n(Xi+1 −Xi) (26)

An example trajectory is shown in Figure 1.

6. ANTI-ALIASED OBSERVATION

Given an observed signal ũ(t) = y(t) belonging to the class of
piecewise polynomials, in order to reject the non-band-limited part
of the spectrum, we would like to apply an antialiasing filter oper-
ator given by its continuous-time ARMA transfer function H(s),
then sample its output ỹ(t) to get back to the digital domain.

Since our anti-aliasing filter will be LTI, we will make use
of exact exponential integration and decompose its output on a
custom basis of exponential polynomial functions.

Without loss of generality we only consider single-input single-
output filters (SISO) since we can always filter each observed out-
put independently.

6.1. State-space ARMA filtering of polynomial input

We want to filter the trajectory by an ARMA filter given by its
Laplace transfer function

H(s) =
Y (s)

U(s)
=
b0s

N + b1s
N−1 + . . .+ bN

sN + a1sN−1 + . . .+ aN
(27)

This filter can be realized in state-space form as

x̃′ = Ax̃ + Bũ (28)
ỹ = Cx̃ + Dũ (29)

Common choices are the observable and controllable state-space
forms.

Furthermore when the denominator can be factored with dis-
tinct roots, it is possible to rewrite the transfer function using par-
tial fraction expansion as.

H(s) = c0 +
c1

s− λ1
+ . . .+

cN
s− λN

(30)

which leads to the canonical diagonal form

A =



λ1

. . .
λN


 B =




1
...
1


 (31)

C =
[
c1 . . . cN

]
D =

[
c0
]

(32)

6.2. Exact exponential integration

The exact state trajectory is given by the integral

x̃(t) = x̃h(t) + x̃e(t) = eAtx̃0 +

∫ t

0

eA(t−τ)Bũ(τ)dτ (33)

as the sum of the homogeneous solution to the initial conditions
x̃h and the forced state-response with zero initial conditions x̃e
given by the convolution of the input with the kernel eAt.

Furthermore when A is diagonal we have

eAt =



eλ1t

. . .
eλN t


 (34)

which greatly simplifies the computation of the exponential map.
In that case (33) can be evaluated component-wise as

x̃i(t) = eλitx̃i0 +

∫ t

0

eλi(t−τ)ũ(τ)dτ i ∈ {1 . . . N} (35)

where we used the notation xi to detonate the i-th coordinate of
the vector x

6.2.1. Polynomial input

With ũ(t) being a polynomial of degreeK in monomial2 form and
coefficients ũk

ũ(t) =
K∑

k=0

ũk
tk

k!
(36)

we can expand the forced response x̃e in (35) as a weighted sum

∫ t

0

eλi(t−τ)
(

K∑

k=0

ũk
tk(τ)

k!

)
dτ =

K∑

k=0

ũkϕk+1(λi, t) (37)

with the basis functions {ϕk} being defined by the convolution

ϕk(λ, t) =

∫ t

0

eλ(t−τ)
τk−1

(k − 1)!
dτ k ≥ 1 (38)

One of the main advantages of using a polynomial input (rather
than a more general model) lies in the fact that these basis func-
tions can be integrated exactly, avoiding the need of a quadrature
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Figure 2: Normalized ϕ-functions for k ∈ {0 . . . 4}. The real
parts of the impulse (blue), step (red), ramp (green), quadratic
(magenta) and cubic (black) responses are shown for a complex
pole λ = i2π (left plot) and a real pole λ = −5 (right plot) over
the unit interval t ∈ [0, 1].

approximation formula. See Appendix 12 for a detailed derivation
and a recursive formula, and Figure 2 for their temporal shapes.

Using those we can decompose the local state trajectories as.

x̃i(t) = x̃i0ϕ0(λi, t) +
K∑

k=0

ũkϕk+1(λi, t) (39)

We note that the initial condition is equivalent to an impulsive
input x̃i0δ(t). This filtering scheme can thus be generalized to non
polynomial impulsive inputs.

6.2.2. Numerical update scheme

Since we only wish to sample the trajectory on a fixed grid tn ∈
Z, we just need to evaluate the local state trajectory x(t) and the
output y(t) at t = 1 to finally get the following numerical scheme

x̃in+1 = x̃inϕ0(λi) +
K∑

k=0

ũk,nϕk+1(λi, 1) (40)

ỹn+1 =
N∑

i=1

cix̃
i
n+1 + c0ũn(1) (41)

where the coefficientsϕk(λi, 1) can be pre-computed and the com-
ponents x̃in+1 evaluated in parallel.

6.3. Filter examples

6.3.1. Low-pass filter of order 1

We consider a first order low-pass filter with transfer function
H(s) = a

s+a
. The temporal response to a piecewise polynomial

input {t2, 1− t, 0, 1} is shown in Figure 3 for a ∈ {1, 3, 6, 10}.

6.3.2. Butterworth Filter of order 3

To further illustrate the non-band-limited representation capacity
of piece-wise polynomials, and the effectiveness of the filtering
scheme, we have shown in Figure 4 the response of a third-order
Butterworth filter with cutoff ωc = π to a triangular input signal.
Its Laplace transfer function for a normalized pulsation ωc = 1

is given by H(s) = 1
(s2+s+1)(s+1)

with poles λ1 = −1−i
√
3

2
,

λ2 = −1+i
√
3

2
, λ3 = −1 and coefficients c0 = 0, c1 = −3+i

√
3

6
,

c2 = −3−i
√

3
6

, c3 = 1.

2We use the monomial form here instead of Bernstein polynomials be-
cause this is the one that leads to the most straightforward and meaningful
derivation.

0 1 2 3 4
samples

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Exact continuous-time responses of a first order low-
pass filter to a polynomial input (in blue).
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samples

1.0

0.5

0.0

0.5

1.0

Figure 4: Exact continuous-time response of the order 3 Butter-
worth filter with cutoff pulsation ωc = π to a triangle input at the
Nyquist frequency.

7. APPLICATION: NONLINEAR LC OSCILLATOR

In order to illustrate the proposed method, we consider the sim-
plest example having non linear dynamics. For that purpose, we
use a parallel autonomous LC circuit with a linear inductor and a
saturating capacitor with the Hamiltonian energy storage function
given by

H(q, φ) =
ln(cosh(q))

C0
+

φ

2L
(42)

where the state q is the charge of the capacitor and φ the flux in the
inductor. Its circuit’s schematic is shown in figure 5 and its energy
storage law are displayed in 6

L

+

−

VL

IL

C(q)

+

−
VC

IC

Figure 5: A nonlinear LC oscillator circuit

By partial differentiation of the Hamiltonian functionH by re-
spectively q and φwe get the capacitor’s voltage and the inductor’s
current, while applying the temporal derivative on q, φ gives the
capacitor’s current and inductor’s voltage.

VC = ∂qH =
tanh(q)

C0
IC = q′ (43)

IL = ∂φH =
φ

L
VL = φ′ (44)
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Figure 6: Respective energy storage functions (left plot) and their
gradients (right plot), of the nonlinear capacitor (in red) and lin-
ear inductor (in blue), for C = 1, L = 1.
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Figure 7: Comparison of simulated orbits with discrete points (in
blue) computed using the AVF method, reconstructed cubic trajec-
tory (in green) and reference trajectory computed at 10x sampling
rate (in red).

This gives the Branch Component Equations.
Applying Kirchhoff Current and Voltage Laws gives the con-

straints IC = −IL, VC = VL. We can summarize the previous
equations with the conservative autonomous Hamiltonian system.

x′ = J∇H(x) (45)

with.

x =

[
q
φ

]
, J =

[
0 −1
1 0

]
, ∇H =

[
∂qH
∂φH

]
(46)

Its state space and temporal trajectories are shown in Figure 7.
We can see that the numerical scheme preserves the energy since
the discrete points lie exactly on the orbit of the reference trajec-
tory. The reconstructed state-space trajectory also shows a good
match with the reference for most of the interpolated segments,
except around transition regions at the bottom and top.

The spectrum of the flux φ is shown in Figure 8. One can see
that the reference spectrum contains harmonics above twice the
representable bandwidth where they pass below -90 dB.

The ZOH and FOH spectrums contains spectral images of the
non bandlimited spectrum that decay respectively at -6dB/oct and
-12dB/oct. Their aliased components in the audio bandwidth start
around -80 dB at the Nyquist frequency and decay slowly toward
approximately -100 dB at low frequencies.

Contrary, our method, informed by the dynamic, exhibits both
reduced aliasing in the audio bandwidth and sharpened spectrum
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Figure 8: Continuous-time spectrum of the nonlinear LC circuit
flux φ for a fundamental frequency of 500 Hz and a sampling fre-
quency of 44.1 kHz. The 10x oversampled reference is compared
to the AVF method’s discrete output with zero-order hold (ZOH),
first-order hold (FOH), the proposed method (proposed cubic) and
its 12th order Butterworth filtered spectrum (proposed + AA). The
Nyquist frequency is materialized in blue and the multiples of the
sampling rate in red.

around the Nyquist frequency. It also has a higher spectral images
decay rate thanks to its C1 regularity. Its aliased components start
at -85 dB at the Nyquist frequency and decay much faster to reach
-100 dB at about 14 kHz where they reach a kind of aliasing noise
floor caused by higher harmonics fold-back.

Finally, as expected, the 12th-order Butterworth half-band low-
pass filter removes components above the Nyquist frequency thanks
to the piecewise continuous cubic input.

8. DISCUSSION

First, we highlight the fact that the vector field approximation in
(17) acts as a first-order antialiasing filter: it is a projection of the
vector field on a rectangular kernel. It prevents high-order spec-
tral images from disturbing the low frequency dynamic during the
numerical simulation and it is consistent with the underlying piece-
wise linear approximation model.

Second, the numerical scheme is energy-preserving. From a
signal processing perspective, the lowpass filtering effect on the
vector field is compensated by the finite difference approximation
of the derivative. This is a direct generalization of the mid-point /
bilinear methods to nonlinear differential equations.

Third, using the fact that the trajectory approximation has ac-
curacy order p = 2 at the junctions, we can re-exploit the dif-
ferential equation to reconstruct an informed C1-continuous cubic
trajectory. It exhibits reduced aliasing in the passband and better
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high-frequency resolution.
We observe that on the studied example, our method man-

ages to reduce aliased components that are folded once into the
audio band. However components caused by multiple folding of
the spectrum cannot be removed anymore. This is related to the
Papoulis generalized sampling expansion [24] who states that a
band-limited function can be perfectly reconstructed from its val-
ues and derivatives sampled at half the Nyquist rate.

Some difficulties arise when trying to generalize the above
ideas to higher order trajectories and filtering kernels. First, the
line-integral (17) is no longer computable in closed form when the
trajectory model is non-affine. Second, higher order kernels have
longer temporal support which can lead to non-causal integrals.

9. CONCLUSION AND PERSPECTIVES

Our main contribution is an approach based on smooth piecewise
defined trajectories coupled with a guaranteed-passive simulation.
The method proceeds in three steps: 1) an energy-preserving pas-
sive numerical scheme is applied, 2) Ck-continuous trajectories
are reconstructed, 3) Exact continuous time lowpass filtering and
sampling is performed. We have proposed a first instance of this
method using the class of piecewise polynomials with regularity
k = 1 and accuracy order p = 2 that exhibits reduced aliasing.

Further work will concern increasing the regularity k and ac-
curacy order p, merging the numerical scheme and the interpola-
tion steps by considering energy-preserving methods with a built-
in regular continuous model and considering other classes of mod-
els such as rational and exponential functions.

In this regard, exponential integrators [25] that integrate the
linear part of the dynamic exactly (as we have done in section 6)
and rely on approximations for the nonlinear part are of great in-
terest.

Finally we would like to further investigate the link between
multi-stages / multi-derivatives general linear methods, their accu-
racy orders, numerical dispersion and internal bandwidth, and to
analyze their behavior and representation capabilities within the
framework of Reproducing Kernels Hilbert Spaces and general-
ized sampling theory [26] [27] [28].
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12. APPENDIX: ϕ-FUNCTIONS

The ϕ-functions, that appear when doing exact integration of an
LTI system with polynomial input given in monomial form, are
defined by the convolution integral

ϕk(λ, t) =

∫ t

0

eλ(t−τ)
τk−1

(k − 1)!
dτ k ≥ 1 (47)

and by definition
ϕ0(λ, t) := eλt (48)

For λ = 0 it is immediate that

ϕk(λ = 0, t) =
tk

k!
(49)

12.1. Recurrence relation

We first prove that they satisfy the recurrence formula

ϕk+1(λ, t) =
ϕk(λ, t)− ϕk(0, t)

λ
λ 6= 0 (50)

Proof. Using integration by parts

∫ b

a

u(τ)v′(τ)dτ = [uv]ba −
∫ b

a

u′(τ)v(τ)dτ

with [a, b] = [0, t], u(τ) = eλ(t−τ), v′(τ) = τk−1

(k−1)!
and its prim-

itive v(τ) = τk

k!
gives

ϕk(λ, t) =

[
eλ(t−τ)

τk

k!

]t

0

+ λ

∫ t

0

eλ(t−τ)
τk

k!
dτ

=
tk

k!
+ λϕk+1(λ, t)

which after using (49) and identification gives

ϕk+1(λ, t) =
ϕk(λ, t)− ϕk(0, t)

λ

12.2. Explicit form

Using (50) recursively for λ 6= 0, the first basis functions are given
by

ϕ0(λ, t) = eλt (51)

ϕ1(λ, t) =
eλt − 1

λ
(52)

ϕ2(λ, t) =
eλt − (1 + λt)

λ2
(53)

ϕ3(λ, t) =
eλt − (1 + λt+ (λt)2

2!
)

λ3
(54)

ϕ4(λ, t) =
eλt − (1 + λt+ (λt)2

2!
+ (λt)3

3!
)

λ4
(55)

this suggests the following explicit form

ϕk(λ, t) =
1

λk

(
eλt −

k−1∑

n=0

(λt)n

n!

)
, λ 6= 0 (56)

Proof. It is immediate to verify that (56) is satisfied for k = 0.
Then assuming that (56) is true for some k ∈ N and using the
recurrence (50) we prove

ϕk+1(λ, t) =
ϕk(λ, t)− ϕk(0, t)

λ

=
1

λk+1

(
eλt −

k−1∑

n=0

(λt)n

n!

)
− 1

λ

tk

k!

=
1

λk+1

(
eλt −

k∑

n=0

(λt)n

n!

)

that (56) is also true for k + 1. By induction (56) is thus satisfied
for all k ∈ N.

The ϕ-functions represent thus the tail of the truncated taylor
series expansion of eλt up to a scaling factor. This is clear when
rewriting (56) as

eλt =

k−1∑

n=0

(λt)n

n!
+ λkϕk(λ, t) (57)
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ABSTRACT

This article is concerned with the power-balanced simulation of
analog audio circuits, governed by nonlinear differential algebraic
equations (DAE). The proposed approach is to combine principles
from the port-Hamiltonian and Brayton-Moser formalisms to yield
a skew-symmetric gradient system. The practical interest is to pro-
vide a solver, using an average discrete gradient, that handles dif-
ferential and algebraic relations in a unified way, and avoids having
to pre-solve the algebraic part. This leads to a structure-preserving
method that conserves the power balance and total energy. The
proposed formulation is then applied on typical nonlinear audio
circuits to study the effectiveness of the method.

1. INTRODUCTION

The need for stable, accurate and power-balanced simulation of
nonlinear multi-physical systems is ubiquitous in the modelling of
electronic circuits or mechanical systems and the natural setting
for electronic circuits leads to Differential-Algebraic Equations.

Standard methods of solving electronic circuits are the State-
variable [1], Modified Nodal Analysis [2], Sparse Tableau Analy-
sis [3] and Wave Digital Filters (WDF) [4] according to the choice
of variables the system is solved for. More recently, in the audio
signal processing field, it has led to the Nodal DK method [5],
nonlinear state-space [6] and extension of WDF to handle multi-
port nonlinearities [7].

However, the underlying geometric structure and power-balance
are often lost in the process. Furthermore, most numerical schemes
either introduce or dissipate energy artificially, yielding unexpected,
unstable or over-damped results.

To get rid of such artefacts, a very active research is focused on
geometric numerical integration methods [8] that provide a theo-
retical framework for structure-preserving or invariant-preserving
integration of dynamical systems. Among those methods, the Port-
Hamiltonian (PHS) [9] [10] and Brayton-Moser (BM) [11] [12]
formalisms are dual representations [13] [14] generalizing the Hamil-
tonian and Lagrangian formalisms to open dynamical systems with
algebraic constraints (including dissipation).

PHS have been applied successfully to the modelling of the
wah-wah pedal [15], Fender Rhodes [16], brass instruments [17]
and loudspeaker nonlinearities [18]. Furthermore, automated gen-
eration of the PHS equations from the graph incidence matrix of a
circuit’s netlist has been investigated in [19] and leads to a skew-
symmetric DAE form.

This paper considers this formulation as a starting point and
proposes to combine the Brayton-Moser and Port-Hamiltonian view-

∗ The author acknowledges the support of the ANR-DFG (French-
German) project INFIDHEM ANR-16-CE92-0028.

points to represent all the constitutive laws as deriving from a sin-
gle potential.

The presentation is organized as follows: first, in section 2, re-
sults about power balance, passivity, and duality of flow and effort
spaces are recalled and it is shown how the power-balance can be
represented by Dirac structures. Section 3 shows how, for both dy-
namic and algebraic components, the flow and effort variables can
be derived from a single power potential involving the Hamilto-
nian and the algebraic content and co-content potentials [20] [21].
Section 4, then shows how to perform a power-balanced structure-
preserving discretization of the system using a discrete gradient
[22] [23]. Section 5 shows how to solve the resulting algebraic
system using Newton iteration. Finally the method is applied to
some example circuits in section 6 to show the effectiveness of the
approach.

2. POWER BALANCE AND DIRAC STRUCTURES

For an electronic circuit, the Tellegen theorem [24] states that the
sum of powers absorbed by all circuit elements is balanced.

P (e, f) := eTf =
∑

n

enfn = 0 (1)

where e, f are respectively the effort and flow variables of the cir-
cuit’s branch components. This is an instance of the conservation
of energy principle made famous by Lavoisier with the statement
nothing is lost, nothing is created, everything is transformed.

This principle can be formalized mathematically by Dirac struc-
tures1 that encodes the conservative power exchange in the circuit.

2.1. Power space

For an n-port element, letF be an n-dimensional real vector space
and denote its dual E := F∗ (the space of linear functions on F).
We call F the space of flows f and E the space of efforts e. On the
product spaceP := F×E , power is defined by the non-degenerate
bilinear form

P (e, f) = 〈e | f〉, ∀(f , e) ∈ P = F × E (2)

where 〈e | f〉 denotes the duality product, that is the linear function
e ∈ E = F∗ acting on f ∈ F . If F is equipped with an inner
product 〈·, ·〉F , then E = F∗ can be identified with F such that
〈e | f〉 = 〈e, f〉F , for all f ∈ F , e ∈ E ∼ F . If for example, F
is the space of currents and E the space of voltages, then 〈e | f〉 =
〈e, f〉F = eTf denote the electrical power.

1The Kirchoff Current and Voltage laws are special cases of Dirac struc-
tures when all the components share either the same current (series connec-
tion) or the same voltage (parallel connection).
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2.2. Passivity and Dirac structures

In the 2n-dimensional space P , a passive linear n-port can be rep-
resented as an n-dimensional subspace S ⊂ P defined by n linear
constraints which admits the kernel representation

S = {(f , e) ∈ P | Ff + Ee = 0} (3)

with rank([F E]) = n. Furthermore, a linear subspace D ⊂ P is
said to be power-conserving if

〈e | f〉 = 0, ∀(f , e) ∈ D (4)

It becomes a (constant) Dirac structure [25] [26] if and only if it
is a maximal subspace of P with that property i.e. dim(D) =
dim(F) = dim(E) and it admits the following matrix representa-
tions.

Definition 2.1 (Kernel representation). The kernel form of a Dirac
structure is given by the subspace

D = {(f , e) ∈ P | Ff + Ee = 0, ETF + FET = 0} (5)

where F,E ∈ Rn×n satisfy rank([F E]) = n.

Definition 2.2 (Hybrid skew-symmetric representation). LetD be
given as in (5), suppose there exists a permutation of the flow and
efforts variables π : (F,E, f , e) → (F̃, Ẽ, f̃ , ẽ) such that F̃ is
invertible then

D = {(f̃ , ẽ) ∈ P | f̃ = Jẽ, J = −F̃−1Ẽ} (6)

where J = −JT is skew-symmetric.

Conversely, for any skew-symmetric matrix J, the subspaceD
is a Dirac structure and one can verify that the power balance (1)
is encoded by the skew-symmetry of J:

P (ẽ, f̃) = ẽT f̃ = ẽTJẽ = 0. (7)

The skew-symetric form (6) will be used in the rest of the article.

3. GRADIENT DESCRIPTION OF COMPONENTS

Circuits are then categorized into dynamical, and algebraic compo-
nents where algebraic components are further separated into dis-
sipative and external sources because the later have degenerated
constitutive laws. We show how the mixed effort ẽ can be uni-
formly represented as the gradient of the scalar power potential
(1).

3.1. Dynamic components: Hamiltonian potential

For dynamic components with state variable x, flow variables are
defined as the time-derivative of the state (f := ẋ) and the effort by
a constitutive law e := ê(x). It is assumed that the constitutive law
derives from the gradient of an energy storage function H(x(t))
such that by definition ê(x) := ∇H(x) and the power is

P (e, f) = eTf = ∇H(x) · ẋ =
d

dt
H(x(t)). (8)

The Hamiltonian function can then be found using the line integral.

H(x) =

∫
∇H(x)︸ ︷︷ ︸

e

· ẋ︸︷︷︸
f

dt =

∫
∇H(x) · dx (9)

This idea is illustrated with the important cases of the linear ca-
pacitor and inductor. We then show how to handle a nonlinear
component with an integrable constitutive law.

3.1.1. Capacitor

For a capacitor, the state variable is given by the charge xC = q,
with the flow f = iC = q̇, and effort e = vC = q

C
. This gives the

Hamiltonian

H(q) =

∫
q

C
· q̇ dt =

1

C

∫
q dq =

q2

2C
(10)

3.1.2. Inductor

Similarily for an inductor, the state variable is given by the flux-
linkage xL = φ, the flow2 by its time-derivative f = φ̇ = vL and
the dual effort by e = iL = φ

L
with an Hamiltonian function

H(φ) =

∫
φ

L
· φ̇ dt =

1

L

∫
φ · dφ =

φ2

2L
(11)

3.1.3. Nonlinear dynamic component

For a nonlinear dynamic component with state variable x, flow
f = ẋ and a constitutive law e = ê(x) = tanh(x), its Hamilto-
nian storage function is given by

H(x) =

∫ t

0

ê(x) · ẋdt =

∫ x

0

ê(x̄) · dx̄ = ln(cosh(x)) (12)

3.2. Algebraic components: current and voltage potentials

If we consider the power differential dP , using the product rule,

dP (e, f) = d(e · f) = e · df + f · de. (13)

Integration over a path Γ gives the integration by parts formula

e · f
∣∣∣∣
∂Γ

=

∫

Γ

e · df +

∫

Γ

f · de. (14)

So, for components defined by algebraic constitutive laws Γ =

{(e, f) ∈ P | f = f̂(e)}, (respectively e = ê(f)), the flow and
effort potentials3 are defined by the line integrals

D(f) :=

∫ f

0

ê(f̄) · df̄ , D∗(e) :=

∫ e

0

f̂(ē) · dē. (15)

And according to (14), the instantaneous power is given, for (e, f) ∈
Γ, by (see figure 1 for a geometric interpretation and proof)

P (e, f) = e · f = D(f) +D∗(e). (16)

The flow and efforts can then be respectively obtained by partial
derivatives of the power potential as

e =
∂P

∂f
= ∇D(f), or f =

∂P

∂e
= ∇D∗(e). (17)

So in the case of a flow (resp. effort) controlled component the
power can be expressed as a function of a single variable using
either

P (e) = e · ∇D∗(e) or P (f) = ∇D(f) · f . (18)
2Note that according to the energy domain (electric, magnetic, . . . ), the

roles of flow and efforts need not necessarily be associated to the current
and voltage. The convention adopted here, is that the flow of dynamic
components is given by the time-derivative of the energy variable, while
the effort is given by the gradient of the energy potential.

3These potentials are also called the content and co-content [20] [21].
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3.2.1. Linear resistor

For a current-controlled (resp. voltage-controlled) resistor, the con-
stitutive law is v = ê(i) = Ri (resp. i = f̂(v) = v/R). By
consequence its current and voltage potentials are given by

D(i) =

∫ i

0

ê(f) df =

∫ i

0

Rf df =
Ri2

2
(19)

D∗(v) =

∫ v

0

f̂(e) de =

∫ v

0

e

R
de =

v2

2R
. (20)

Introduce function P as P (v, i) = D(i) + D∗(v), then, for all
(v, i) belonging on the characteristic curve, the power can be given
by v · i (product-type), P (v, i) (sum-type), P (v, f̂(v)) (voltage-
controlled) and P (ê(i), i) (current-controlled), that is

P (v, i) = v·i = D(i)+D∗(v) =
1

2

(
Ri2 +

v2

R

)
=
v2

R
= Ri2.

(21)
In this particular case, we have D(i) = D∗(v) = Ri2 because of
linearity (for v = Ri) but this result should not be extrapolated as
the next example will show.

3.2.2. P-N Diode

For a voltage controlled P-N diode, the constitutive law is given by

i = f̂(v) = IS

(
exp

(
v

nVT

)
− 1

)
(22)

where IS is the saturation current, n the ideality factor and VT the
thermal voltage. Its voltage potential is given by

D∗(v) =

∫ v

0

f̂(e) de = nVT IS

(
exp

(
v

nVT

)
− v

nVT
− 1

)
.

(23)
Direct integration for the current potential does not lead to an eas-
ily integrable primitive, however because of bijectivity, we can
evaluate it indirectly by using the inverse map

v = ê(i) = f̂−1(i) = nVT ln

(
1 +

i

IS

)
, i > −IS (24)

and the Legendre transform D(i) =
[
vi−D∗(v)

]
v=f̂−1(i)

:

D(i) = nVT IS

((
1 +

i

IS

)
ln

(
1 +

i

IS

)
− i

IS

)
(25)

Using the above definitions, the current and voltage potentials be-
ing known, the component can be used as being either flow or
effort-driven according to the constraints imposed by the circuit
interconnections.

3.3. External sources

For external voltage (resp. current) sources, the constitutive laws
v = ê(i) = V , (resp. i = f̂(v) = I) are independent of the
current (resp. voltage) variables and not bijective, with V (resp. I)
being the source parameter. This gives the powers

PV (v, i) = V i = D(i), PI(v, i) = vI = D∗(v). (26)

f̂(v) = IS

(
exp

(
v

nVT

)
− 1

)

P (v, i) = vi = D(i) +D∗(v)

D∗(v)

D(i)

(v, i)

v

i

Figure 1: The areas occupied by the diode power P (v, i) and the
current and voltage potentials D(i) and D∗(v) are shown in the
(v, i) plane for IS = 1, nVT = 1. It is geometrically clear that the
current and voltage potentials are complimentary and their sum
equals the power vi. It is also clear that in the nonlinear case
D(i) 6= D∗(v).

By consequence, for voltage (resp. current) sources, the voltage
potential D∗(v) (resp. current potential D(i)) is degenerate and
null.

3.4. Summary

Using an appropriate permutation π (cf definition 2.2), the mixed
flow f̃ and its dual ẽ can be parametrized by a state variable x ∈
Rn, a dissipative variable w ∈ Rp and an output y ∈ Rm, where
the potential Z(w) (resp. S(y)) is an appropriate choice among
the dissipative (resp. external) current and voltage potentials im-
posed by the permutation π. (Please refer to [19] for more details.)

f̃ := [ẋ,w,y]T (27)

ẽ := [∇H(x),∇Z(w),∇S(y)]T (28)

The power potential4 (1) can then be expressed as

P (ẽ, f̃) = ẽT f̃ = ∇H(x)Tẋ︸ ︷︷ ︸
Pc

+∇Z(w)Tw︸ ︷︷ ︸
Pd

+∇S(y)Ty︸ ︷︷ ︸
Pe

. (29)

Combining the definitions (27) and (28), with the Dirac structure
(6), leads to the skew-symmetric gradient form of Differential-
Algebraic Port-Hamiltonian equations as



ẋ
w
y




︸ ︷︷ ︸
f̃

= J



∇H(x)
∇Z(w)
∇S(y)




︸ ︷︷ ︸
ẽ

⇐⇒ ∂P

∂ẽ
= J

∂P

∂ f̃
(30)

4Note that because of the uniform usage of the receiver convention for
each component (including sources), the power potentials represent the ab-
sorbed power by each component. This means that dissipative components
will absorb positive power, while sources will, on average, absorb negative
power to compensate for losses (but can temporarily receive power).
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Integrating (29) over a time interval [t0, t1] combined with the
power balance (7), leads to the conservation of the total energy

∆E = H(x)

∣∣∣∣
t1

t0

+

∫ t1

t0

Pd(t) dt+

∫ t1

t0

Pe(t) dt = 0. (31)

4. STRUCTURE-PRESERVING INTEGRATION SCHEME

The main objective of the numerical scheme is first and foremost,
to provide a structure-preserving method that conserves the invari-
ant (31) in discrete-time over each time-step. This offers the strong
guarantee that no artificial energy is either consumed or created by
the numerical scheme.To achieve this goal, thanks to the unified
representation of DAE circuits as gradient systems introduced in
section 3, it is now possible to generalize the usage of discrete
gradient methods [22] [23] for both dynamic and algebraic com-
ponents.

4.1. Discrete Gradients

Given a scalar potential H : Rn 7→ R, a point x ∈ Rn and
a variation δx ∈ Rn, a necessary and sufficient condition for a
function ∇H(x, δx) : Rn × Rn 7→ Rn to be a discrete gradient
is given by

∇H(x, δx) · δx = H(x + δx)−H(x) (32)

∇H(x, 0) = ∇H(x) (33)

Definition 4.1 (Average Discrete Gradient). Let x, δx ∈ Rn, and
H : Rn 7→ R be a scalar potential. The average discrete gradient
is defined for an affine trajectory model x̂(τ) = x + τδx by

∇H(x, δx) :=

∫ 1

0

∇H(x + τδx) dτ (34)

Furthermore, using the gradient theorem, for separable poten-
tials of the form

H(x) =
N∑

i=1

Hi(xi), (35)

the discrete gradient can be computed exactly by finite differences
on each scalar potential. It is given component-wise by

[∇H(x, δx)]i :=





Hi(xi + δxi)−Hi(xi)
δxi

δxi 6= 0

∂Hi
∂xi

(xi) δxi = 0

(36)

Finally, and only in the case of quadratic potentials of the form
H(x) = 1

2
xTWx with W = WT � 0, does the discrete gradi-

ent correspond to evaluation of the gradient at the mid-point.

∇H(x, δx) = ∇H
(
x +

1

2
δx

)
= W

(
x +

1

2
δx

)
(37)

The following result will also be exploited in the next section.

Property 4.1. Given a separable potential H : Rn 7→ R, as in
(35) of class C2, a point x ∈ Rn, a variation ν ∈ Rn and its
discrete gradient ∇H(x,ν) defined as (36), the derivative of the

discrete gradient with respect to the variation ν is the diagonal
matrix ∂ν∇H : (x,ν) ∈ Rn × Rn → Rn×n with entries

[
∂ν∇H

]
i,i

=





∇Hi(xi + νi)−∇Hi(xi, νi)
νi

νi 6= 0

1

2

∂2Hi
∂x2

i

(xi) νi = 0

(38)

Proof. see Appendix A.

4.2. Averaged System

Assuming over each time step Ωn = [tn, tn + h], an affine trajec-
tory model

z(tn + hτ) = zn + τδzn (39)

where z = [x,w,y]T , and integrating (30) over Ωn, we obtain
the discrete structure-preserving system



δxn/h
w̄n

ȳn


 = J



∇H(xn, δxn)
∇Z(wn, δwn)
∇S(yn, δyn)


 (40)

where w̄n = wn + δwn/2, ȳn = yn + δyn/2. The DAE system
(30) has been converted to an algebraic system that needs to be to
solved for the average variation δzn = [δxn, δwn, δyn]T.

5. NEWTON ITERATION

Denote the variation ν = δzn, solving the discrete algebraic sys-
tem (40) can be rewritten as the root-finding problem

F (ν∗) = 0 (41)

where ν∗ is the looked for solution and F is defined by

F (ν) := D0zn + D1ν − J∇f̃P (zn,ν), (42)

with D0 =




0 0 0
0 Ip 0
0 0 Im


, D1 =



In/h 0 0

0 Ip/2 0
0 0 Im/2


, where

In denote the n×n identity matrix and∇f̃P = [∇H,∇Z,∇S]T.

5.1. Newton update

For an estimate νk and a perturbation ∆νk, the true solution ν∗ of
(41) can be written as ν∗ = νk + ∆νk. Taylor series expansion
of F around νk, with ‖∆νk‖ sufficiently small yields

0 = F (νk + ∆νk) = F (νk) + [F ′(νk)](∆νk) +O(‖∆νk‖2).
(43)

If the Jacobian F ′ is invertible, neglecting high-order terms and
solving for ∆ν leads to the Newton update

∆νk := −F ′(νk)−1F (νk), νk+1 := νk + ∆νk, (44)

where the Jacobian of F is given by

F ′(ν) = D1 − J
(
∂ν∇f̃P (zn,ν)

)
. (45)

For a separable potential P , using property (4.1), ∂ν∇f̃P is a di-
agonal matrix that can be computed from the knowledge of the
gradient, Hessian and discrete gradient of the potential.

DAFX-4



Proceedings of the 21st International Conference on Digital Audio Effects (DAFx-18), Aveiro, Portugal, September 4–8, 2018

5.2. Convergence and stiffness

If the eigenvalues of the matrix A = D−1
1 J

(
∂ν∇f̃P (zn,ν)

)

are such that‖A‖2 = max(|λi|) < 1, the fixed-point induced by
(40) is contracting. The Banach fixed-point theorem guarantees
existence and unicity of the solution. It is then possible to approx-
imate the inverse of the Jacobian with the Neumann series identity

(I−A)−1 =
∞∑

k=0

Ak ≈ I + A + A2 + . . . (46)

to get the first (or any higher) order approximation

F ′(ν)−1 ≈
(
I + D−1

1 J
(
∂ν∇f̃P (zn,ν)

))
D−1

1 (47)

If max |λi| ≥ 1, the system is said to be stiff, the series (46) is di-
vergent, and the approximation (47) is no longer valid. Solving the
system then requires a matrix inversion for each iteration. Using
the Newton-Kantorovich theorem, for a starting point ν0, if there
exists positive constants β0, γ, h0, such that ‖F ′(ν0)−1‖ ≤ β0,
F ′(ν) is locally γ-Lipschitz and h0 := ‖∆ν0‖β0γ < 1/2, then
the sequence {νk} converges quadratically to some unique ν∗

such that F (ν∗) = 0. Please refer to [27] for more details.

6. CIRCUIT EXAMPLES

6.1. Envelope Follower

We consider the envelope follower circuit shown in figure 3 with
parameters C = 100 pF, IS = 2.52 nA, VT = 23 mV and n =
1.96. Kirchoff laws leads to the following Dirac structure:



iC
vD
iS




︸ ︷︷ ︸
f̃

=




0 1 0
−1 0 1
0 −1 0




︸ ︷︷ ︸
J



vC
iD
vS




︸ ︷︷ ︸
ẽ

. (48)

For this circuit we have x = [q], w = [vD], y = [iS ], f̃ =
[q̇, vD, iS ]T and the following potentials

H(q) =
q2

2C
, (49)

Z(vD) = nVT IS

(
exp

(
vD
nVT

)
− 1

)
− vDIS , (50)

S(iS) = V iS . (51)

Taking their gradients gives the right-hand side vector

ẽ =



vC
iD
vS


 =



∇H(q)
∇Z(vD)
∇S(iS)


 =




q/C

IS

(
exp

(
vD
nVT

)
− 1

)

V


 (52)

and the product ẽT f̃ gives the power balance potential

P (ẽ, f̃) = ∇H(q)q̇︸ ︷︷ ︸
PC(q)

+∇Z(vD)vD︸ ︷︷ ︸
PD(vD)

+∇S(iS)iS︸ ︷︷ ︸
PS(iS)

. (53)

For the capacitor and voltage source, we obtain the discrete gradi-
ents

∇H(q, δq) =
1

C

(
q +

δq

2

)
, ∇S(i, δi) = V, (54)

and after some algebraic manipulations (see appendix B), the dis-
crete gradient of the diode potential can be expressed as

∇Z(v, δv) = IS

(
exp

(
v + δv/2

nVT

)
sinhc

(
δv

2nVT

)
− 1

)
.

(55)
where the sinhc term (sinhc := sinh(x)/x) acts as a correction
compared to evaluation of the gradient at the mid-point.

6.2. Diode Clipper

We consider the diode clipper circuit shown in figure 5 with pa-
rameters R = 1 kΩ, C = 100 nF, IS = 2.52 fA, VT = 23 mV
and n = 1. For the two diodes, with vD := vD1 and the diodes
current iD := iD1 − iD2 , the constitutive law is

iD = f̂(vD) = 2IS sinh

(
vD
nVT

)
. (56)

Its integration gives the voltage potential

D∗D(vD) =

∫ vD

0

f̂(v)dv = 2nVT IS

(
cosh

(
vD
nVT

)
− 1

)
.

(57)
Application of Kirchoff laws leads to the following Dirac struc-
ture: 



iC
vR
vD
iS




︸ ︷︷ ︸
f̃

=




0 1 −1 0
−1 0 0 1
1 0 0 0
0 −1 0 0




︸ ︷︷ ︸
J




vC
iR
iD
vS




︸ ︷︷ ︸
ẽ

. (58)

For this circuit, x = [q], w = [vR, vD]T, y = [iS ], f̃ = [q̇, vR, vD, iS ]T

and the potentials are

H(q) =
q2

2C
, Z(vR, vD) =

v2
R

2R
+D∗D(vD), S(iS) = V iS .

(59)

Their gradients regenerates the mixed effort

ẽ =




vC
iR
iD
vS


 =




∇H
∇ZR
∇ZD
∇S


 =




q/C
vR/R

2IS sinh
(
vD
nVT

)

V


 (60)

and the product ẽT f̃ gives the power balance potential

P (ẽ, f̃) = ∇H(q)q̇︸ ︷︷ ︸
PC(q)

+∇ZR(vR)vR︸ ︷︷ ︸
PR(vR)

+∇ZD(vD)vD︸ ︷︷ ︸
PD(vD)

+∇S(iS)iS︸ ︷︷ ︸
PS(iS)

.

(61)
Similarily as in the envelope follower case, we have the discrete
gradients (54) for the capacitor and voltage source, with

∇ZR(v, δv) =
1

R

(
v +

δv

2

)
(62)

for the resistor, and after some algebraic manipulations, the dis-
crete gradient of the diodes potential can be expressed as

∇ZD(v, δv) = 2IS sinh

(
v + δv/2

nVT

)
sinhc

(
δv

2nVT

)
. (63)
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Figure 2: Envelope follower circuit driven by a 1V sinusoidal input
with fundamental frequency f = 40 Hz, fs = 4 kHz.
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Figure 3: Envelope Follower circuit
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Figure 4: Diode clipper circuit driven by a 1V sinusoidal input
with fundamental frequency f = 400 Hz, fs = 44.1 kHz.

−
+vS

iS

+ −
vR

iR

+

−

vC

iC iD1
+

−

vD2

iD2

Figure 5: Diode Clipper circuit
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6.3. Analysis

Simulation results for both circuits are shown in figure 2 and fig-
ure 4 with respective sampling frequencies 4 kHz and 44.1 kHz.
We remark that in both cases, the power balance is satisfied with
high precision. The relative error is of the order of the machine
epsilon (ε = 2−53 ≈ 1.11 · 10−16). This results in a vanishing
total energy variation.

For dissipative components, the absorbed power is always pos-
itive; the dissipated energy is thus monotonously increasing. For
dynamic components and sources, the power is alternatively ab-
sorbed and released, the difference being that sources have a de-
creasing average energy trend to compensate for losses in the dis-
sipative components.

Existence and uniqueness of the fixed points are guaranteed if
h < C/γD for the envelope follower and if h < C/max(γD, γR)
for the diode clipper (proof is ommited) where γK stands for the
local Lipschitz constants γK = maxν |∂ν∇ZK(vK0 , ν)| of the
diode and resistor components in a neighborhood around ν0.

For the diode clipper circuit, the fixed-point does not converge,
but the Newton iteration does. We can remark that each time the
diodes are saturating, the precision of the power balance is slightly
deteriorated. This can be explained by two facts: the dissipated
power is also increasing during saturation and the system becomes
stiff, thus the numerical conditioning of the Jacobian in the Newton
iteration gets worse.

7. CONCLUSION

The main contribution of this paper consists in a) using the power-
balance as the core object from which all quantities in the system
are derived, b) generalizing the usage of potentials and their gra-
dients to represent the flow and effort variables for both dynamic
an algebraic components, c) keeping the sparse skew-symmetric
structure matrix J until numerical simulation, d) integration of the
system using the average discrete gradient. This leads to a consis-
tent structure-preserving approximation that conserves the form of
the original system in discrete-time.

It is also shown that the Jacobian of the Newton iteration has a
special structure that only involves diagonal and skew-symmetric
matrices. It can be computed only from the knowledge of the po-
tentials associated with each component and stiffness can be in-
ferred by inspection of the derivatives of the discrete gradient. Fur-
thermore the structure-preserving approach offers a valuable tool
to monitor the quality of our approximations with respect to the
power balance.

The main drawback of the approach is a direct consequence
from its strength. Indeed, the preservation of the power balance,
prevents the use of L-stable integrators (which limit the stiffness by
introducing artificial numerical dissipation) such as the Backward
Difference Formulas or Radau IIa methods [28] [29]. This imposes
some restrictions on the step size or the use of adaptive strategies.
However, since the average integration of the system can be in-
terpreted as a lowpass projector and first-order anti-aliasing filter
[30], parasitic oscillations at the Nyquist frequency which are typ-
ical of stiff systems are attenuated during the simulation.

Further perspectives include the use of higher-order trajectory
models, exponential integrators [31] which have shown to be effec-
tive in the simulation of stiff systems and more generally Lie-group
integrators [32] [33] whose trajectories belong, by construction, to
the system manifold.
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A. DISCRETE GRADIENT DERIVATIVE

Proof. To prove property 4.1 forH(x) a scalar potential, when the
variation ν 6= 0, using a) the quotient rule, b) the chain rule and c)
identification with the discrete gradient definition (36), we obtain

∂∇H
∂ν

a
=

[ ∂
∂ν

(H(x+ ν)−H(x))]ν − [H(x+ ν)−H(x)] ∂ν
∂ν

ν2

b
=

1

ν

(
∂H

∂x
(x+ ν)

∂(x+ ν)

∂v
− H(x+ ν)−H(x)

ν

)

c
=
∇H(x+ ν)−∇H(x, ν)

ν
.

When ν → 0, using a) the definition of the discrete gradient (36)
with b) Taylor series expansion about x and neglecting high order
terms when passing to the limit leads to

∂∇H
∂ν

(x, 0) := lim
ν→0

∇H(x+ ν)−∇H(x, ν)

ν

a
= lim
ν→0

∇H(x+ ν)

ν
− H(x+ ν)−H(x)

ν2

b
= lim
ν→0

H ′(x) +H ′′ν

ν
− H ′(x)ν +H ′′(x)ν2/2!

ν2

=
1

2

∂2H

∂x2
(x)

B. DISCRETE GRADIENT OF THE DIODE POTENTIAL

Proof. Using a) the definition of the discrete gradient (36), b) the
definition of the diode potential (23) followed by c) factorization of
the mid-point exponential term, then d) identification of the sinh
and e) sinhc functions, the discrete gradient of the diode voltage
potential can be expressed as

∇D∗(v, δv)
a

:=
D∗D(v + δv)−D∗D(v)

δv

b
=
nVT IS
δv

(
exp

(
v + δv

nVT

)
− exp

(
v

nVT

)
− δv

nVT

)

c
= IS

(
nVT
δv

exp

(
v + δv/2

nVT

)(
e

δv
2nVT − e−

δv
2nVT

)
− 1

)

d
= IS

(
2nVT
δv

exp

(
v + δv/2

nVT

)
sinh

(
δv

2nVT

)
− 1

)

e
= IS

(
exp

(
v + δv/2

nVT

)
sinhc

(
δv

2nVT

)
− 1

)

and since sinhc(0) = 1, ∇D∗(v, 0) = ∇D∗(v) satisfies eq (33).
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ABSTRACT

This papers stems from the fact that, whereas there are passive
models of transistors and tubes, a minimal passive model of the
operational amplifier does not seem to exist. A new behavioural
model is presented that is memoryless, fully described by its inter-
action ports, with a minimal number of equations, for which a pas-
sive power balance can be defined. The proposed model handles
saturation, asymmetric power supply, and can be used with non-
ideal voltage references. To illustrate the model in audio applica-
tions, the non-inverting voltage amplifier and a saturating Sallen-
Key lowpass filter are considered.

1. INTRODUCTION

Operational Amplifier (OPA) models can be roughly categorized
into a) Controlled Source (CS) models, b) white box macro models
and c) Nullor models .

In CS models (see [1]), the power supplies are lumped within
the OPA and controlled sources can provide an infinite amount
of power. It has the advantage of being simple and hides most
of the internal complexity. This is the method of choice used by
students to study the functional behaviour of OPA circuits. The
main drawback comes from the absence of external supply ports.
This results in non passive models, and forbids simulations with
non-ideal voltage sources (e.g. in low-budget guitar stomboxes).

White box macro models (see references [2] [3] [4]) use dozens
of transistors to accurately reproduce the inner structure and non-
ideal characteristics of particular devices. While this is appropri-
ate for offline simulation and circuit design, the main drawback of
this approach comes from the high number of (implicit) nonlinear
equations which makes it often unsuitable for real-time simulation.

Nullors (see references [5] [6] [7] [8]), are singular two-port
elements where the input flow and effort variables are both zero:
e1 = f1 = 0, while the output flow and effort variables e2, f2
are unconstrained. One drawback is the lack of flow / effort du-
ality. In addition, similar to CS, Nullors have no explicit power
supply ports and thus are not passive devices, inheriting the same
drawbacks mentioned above.

For audio applications, dedicated Wave Digital Filters (WDF)
models of the OPA for specific circuit topologies have been pro-
posed in [9], more recently, using Modified Nodal Analysis to

∗ The author acknowledges the support of the ANR-DFG (French-
German) project INFIDHEM ANR-16-CE92-0028.
Copyright: © 2019 Rémy Müller et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

WDF adaptors, both Nullor and CS general purpose models of the
OPA and OTA have been proposed in [10] [11] and Sallen-key fil-
ters have been modelled with WDF in [12].

We propose a passive, quasi-ideal, black-box, behavioural model
of the OPA, simple enough for realtime simulation, with explicit
power supply and modelling nonlinear saturation. In particular, a
by-product of this research is to have a model compatible with the
port-Hamiltonian formalism [13].

The paper is structured as follows. First a general purpose pas-
sive model of the OPA is proposed in section 2, then it is illustrated
by treating the non-inverting voltage amplifier circuit in section 3,
finally a detailed study and simulation of a saturating Sallen-Key
lowpass filter is presented in section 4.

2. OPERATIONAL AMPLIFIER MODEL

The objective of this paper is to find the simplest class of Opera-
tional Amplifier models satisfying the following properties:

a) Memoryless: infinite bandwidth, infinite slew rate,

b) Passivity: the power dissipated by the OPA is non-negative
(i.e. hidden sources of energy are forbidden),

c) Quasi-ideal behaviour: infinite input impedance, zero out-
put impedance, infinite common-mode rejection ratio,

d) Finite output voltage range and saturation: explicit non-
constant power-supply ports,

e) Minimal: behavioural model with a minimum number of
equations (i.e. not a white box model containing dozen of
transistors).

−
+

i+
e+

i−
e−

iout
eout

iS+

eS+

iS−

eS−

S

Figure 1: Circuit diagram of an Operational Amplifier (OPA) with
currents drawn in receiver convention. The gaussian surface S
enclosing the component is shown in dashed line.
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2.1. Notations

The OPA shown on figure 1 is modelled as a 5-port device with
node voltages being measured relatively to the ground, node cur-
rents directed toward the element using the receiver convention
and pins labelled P = {+,−, S+, S−, out}. In this paper, we
assume that the ports of the OPA can be partitioned into a voltage-
driven set T , and a current-controlled co-set T ∗

T := {+,−,S+,S−} , T ∗ := {out} , T ∪ T ∗ = P. (1)

The respective inputs and outputs are collected into the vectors

u := [eT , iT ∗ ]T = [e+, e−, eS+, eS−, iout]
T, (2)

y := [iT , eT ∗ ]T = [i+, i−, iS+, iS−, eout]
T, (3)

Finally, the common supply, the differential supply and the differ-
ential input voltages are respectively defined by

Vcm =
eS+ + eS−

2
, Vdm =

eS+ − eS−
2

, ε = e+ − e−. (4)

2.2. Constitutive equations

Since there are 5 ports with dual flow and efforts variables, 5 inde-
pendent equations are required to specify the device:

1-2) Non-energetic input ports: the current entering the pins
{+,−} is zero (infinite input impedance)

i+ = i− = 0, (5)

3) Conservation of charge: Kirchoff Current Law applied
over the gaussian surface1 S enclosing the AOP implies that
the sum of all currents is zero

∑

`∈P
i` = 0, (6)

4) Passivity: the power absorbed by the OPA is greater or
equal to zero

Pdiss = yTu =
∑

`∈P
e` · i` ≥ 0, (7)

5) Differential gain and saturation: the tensions are tied by
a continuous relation eout = f(e+, e−, eS+, eS−) such that




∂f

∂ε
≥ 0, monotonicity

max

(
∂f

∂ε

)
= K, differential gain

max(f) = eS+, ε→ +∞ positive saturation
min(f) = eS−, ε→ −∞ negative saturation

(8)

This gives 4 equalities and 1 inequality

i+ = 0 (9)
i− = 0 (10)

iS+ + iS− + iout = 0 (11)
Pdiss = iS+ · eS+ + iS− · eS− + iout · eout ≥ 0 (12)

f(eS+, eS−, e+, e−)− eout = 0 (13)

Since there is an inequality and the relation f is not specified yet,
there is an infinite class of models satisfying these equations. A
particular instance is chosen as follows.

1The Gaussian surface S is shown on figure 1. For more details see [1].

2.3. Toward a unique model

Substituting (4) into the passivity equation (12), using the conser-
vation of charge (11) and simplifying by iout gives the constraint2

Vcm + Vdm

(
iS+ − iS−
iS+ + iS−

)
= eout − Pdiss

iout
, (iout 6= 0) (14)

which imposes a lot of structure on the form of the output function.
In order to specify a unique model, the following choices are made.

2.3.1. Differential input transistor pair

First, motivated by the typical structure of an OPA, composed of
a differential pair of transistors, gain stages and a push-pull output
(see [14] p.707), the adimensioned modulation factor 3

ρ(ε) := − iS+
iout

=
exp (x)

exp (x) + exp (−x)
, x =

Kε

Vdm
, (15)

is introduced and shown on figure 2. According to the conservation
of charge (11), this leads to the symmetric current splitting

iS+ = −ρ(ε)iout, iS− = −ρ(−ε)iout. (16)

2.3.2. The conservative OPA choice

Second, among all passive OPA models, the conservative ones are
chosen, neglecting internal dissipation:

Pdiss = 0. (17)

The power supply ports provide the amount of power necessary to
balance the power consumed at the output port. This is an instance
of a nonlinear nonenergic n-port [15].

2.3.3. Final model

Substituting (16) and (17) into (14) uniquely defines the output
function (a similar result was also derived in [16])

eout = Vcm + Vdm tanh

(
Kε

Vdm

)
. (18)

Expressed as a function of eS+, eS− this gives

eout = ρ(+ε)eS+ + ρ(−ε)eS−. (19)

Finally gathering equations (5) (16) (19) in matrix form reveals the
modulated hybrid Dirac structure4 of the conservative OPA model
given by the skew-symmetric matrix J(u):




i+
i−
iS+
iS−
eout




︸ ︷︷ ︸
y

=




. . . . .

. . . . .

. . . . −ρ(+ε)

. . . . −ρ(−ε)

. . ρ(ε) ρ(−ε) .




︸ ︷︷ ︸
J(u)




e+
e−
eS+
eS−
iout




︸ ︷︷ ︸
u

. (20)

The singularity of the structure matrix J encodes the conservation
of the so-called Casimir invariants i+ = i− = 0, in addition to the
conservative power-balance

Pdiss = uTy = uTJ(u)u = 0, (J = −JT). (21)

2see appendix A for a detailed proof.
3Different choices can be made here to adapt to other transistors types.
4Please refer to the references [17] [18] [13] for more details on Dirac

structures and to [1] for hybrid parameters.
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Figure 2: The modulation factor ρ(±ε), for K = 1, Vdm = 1.

3. CASE STUDY

To study the behaviour of the proposed model in practical applica-
tions, the case of the voltage amplifier is examined in section 3.1.
Then as a pedagogical example, the voltage amplifier is driven by
a sinusoidal voltage source and asymmetrically powered by a sin-
gle capacitor to simulate a discharging battery in section 3.2. The
voltage amplifier will be used as a building block of the Sallen-Key
lowpass filter shown in section 4.

3.1. The non-inverting voltage amplifier

−
+e+ iout

eout

eS+

eS−

R2
iRR1

(a)

e+ eout

eS+

eS−

G

(b)

Figure 3: a) a non-inverting voltage amplifier circuit with explicit
alimentation ports and b) its symbol.

A non-inverting voltage amplifier (figure 3) is achieved by
feeding back the output eout to the negative input e− through a
voltage divider

ε = e+ − eout
G
, G =

R1 +R2

R1
= 1 +

R2

R1
. (22)

The instantaneous feedback makes the circuit act as a proportional
corrector with high proportional gainK in order to satisfy the con-
straint eout ≈ Ge+ within the range eout ∈ [eS+, eS−].

The voltage divider induces an internal current iR = eout/R,
where R = R1 +R2, and the current splitting (16) becomes

iS+ = −ρ(ε)(iout − iR), iS− = −ρ(−ε)(iout − iR). (23)

This results in the following law for the voltage amplifier



i+
iS+
iS−
eout


 =




. . . .

. g+(ε) g±(ε) −ρ(ε)

. g±(ε) g−(ε) −ρ(−ε)

. ρ(ε) ρ(−ε) .







e+
eS+
eS−
iout


 . (24)

with conductances

g+(ε) =
ρ(ε)2

R
, g−(ε) =

ρ(−ε)2
R

, g±(ε) =
ρ(ε)ρ(−ε)

R
. (25)

In the following, it is assumed that R → ∞ such that internal
losses are negligible. In particular, this is the case of the classical
voltage follower circuit for which R2 = 0, and R1 =∞.

3.1.1. Implicit constraint

The relation (24) is still implicitly defined since ε depends on both
input and output variables e+ and eout. To avoid apparent difficul-
ties with discontinuous functions, consider the curve

F =
{

(u, y) ∈ R2 | F (u, y) = 0
}
, (26)

specified by the function

F (u, y) = Vcm + Vdm tanh

(
K

Vdm

(
u− y

G

))
− y, (27)

and given e+, look for eout such that (e+, eout) ∈ F .
Since the output function is monotonous with respect to ε and

bounded in [eS−, eS+], a unique solution exists within that range.
A global method such as the bisection method is guaranteed to
find it, whereas, since K is typically about 106, it is very difficult
to use either fixed-point or derivative-based methods because of
bad numerical conditioning. Numerical simulations are shown on
figure 4.
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Figure 4: Transfer function of the voltage amplifier for G = 1,
K ∈ {1, 2, 5, 50}, eS+ = 10V, eS− = −5V. Smaller values than
the typical OPA gainK ≈ 106 are used for visualisation purposes.

3.1.2. Explicit representation

Taking the limit when K →∞ gives an explicit representation of
F as the piecewise continuous curve

F∞ = lim
K→∞

F :





y = eS+, Gu > y

y = eS−, Gu < y

y ∈ [eS−, eS+], y = Gu

. (28)

One can see on figure 4 that convergence to F∞ is very fast even
for moderate values of K. This justifies the use of this limit pro-
cess in following developments.

For (e+, eout) ∈ F∞ this gives the explicit form

eout = Vcm + Vdm sat

(
Ge+ − Vcm

Vdm

)
, (29)

where
sat(x) = min(max(x,−1), 1). (30)

Alternatively one can represent this function as

eout = µ+(e+, Vcm, Vdm)eS+ + µ−(e+, Vcm, Vdm)eS− (31)

where the implicit modulation factor ρ(±ε) in (24) has been re-
placed by the explicit one

µ±(e+, Vcm, Vdm) =
1± sat(x)

2
, x =

Ge+ − Vcm

Vdm
. (32)
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3.2. A single-rail voltage follower powered by a capacitor

u

1kΩ

iR

vC

50µF

iC

1
y

Figure 5: A single-rail voltage amplifier powered by a capacitor.

To illustrate one of the practical interest of having explicit
power supply ports, the voltage amplifier is used with the nega-
tive supply port grounded, and the positive supply port powered
by a capacitor to simulate a discharging battery (figure 5).

Using (20) with Vcm = Vdm = q/(2C), and iout = −y/R,
yields the algebro-differential equations




q̇ = −η(u, q)
y

R
,

y = η(u, q)
q

C

, η(u, q) = µ+

(
u,

q

2C
,
q

2C

)
. (33)

The energy stored in the capacitor is H(q) = q2/2C. Then its
differential equation is governed by the monotonous discharge

d

dt
H(q) =

∂H

∂q

dq

dt
= − q

C
η(q, u)

y

R
= −y

2

R
. (34)

The circuit acts as a half-wave rectifier with a positive clipping
threshold governed by the discharge of the capacitor as shown on
figure 6.
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Figure 6: Time domain simulation of the capacitor-powered single
rail voltage amplifier with vC(0) = 5V and |u| = 3V . Top plot:
proposed model. Bottom plot: comparison of discharge rate with
LTspice’s Universal OPA level.2 and the LT1366 [19].

Remark (Comparison between models)

As expected, with the proposed model, the capacitor does not dis-
charge during negative saturation (energy-preservation), and has a
monotonous discharge otherwise. Comparison with LTspice’s uni-
versal model shows that the two simulations are very close. Finally
with the LT1366, the discharge is monotonous and qualitatively
similar, but decays faster due to internal dissipation.

4. SALLEN-KEY ANALOG LOWPASS FILTER

The class of Sallen-Key Filters (SKF), introduced in [20], is per-
haps one of the most common analog filter design topology. It
is used for the realization of analog biquadratic filters, for exam-
ple in parametric equalisers. It is also the basis of the multimode
Steiner filter [21], the Korg MS-20 [22] and the Buchla Lowpass-
Gate [23].

A Sallen-Key lowpass filter schematic is shown on figure 8a.
The linear regime and its control parameters are studied in 4.1, the
circuit is then converted into equations in 4.2. Discretization is
performed using the Average Vector Field method in 4.3, finally
simulation results are shown in 4.4.

4.1. Linear behaviour and control parameters
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40

20
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40
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2

1

0
Phase (rad)

Figure 7: Bode plot of the Sallen-Key filter for ω = 1, G ∈ [0, 3]

It is recalled that the Laplace transfer function (shown on fig-
ure 7) of a second order resonant lowpass filters with pulsation ω
and quality factor Q is

HLP(s) =
1

1 + 1
Q

(
s
ω

)
+
(

s
ω

)2 , (35)

In the linear regime, the Laplace transfer function of the lowpass
Sallen-Key filter is

HSK(s) = L
{
ySK
vIN

}
=

1

1 + a1s+ a2s2
, (36)

where

a1 =
(
(1−G)R1C1 + (R1 +R2)C2

)
, (37)

a2 = C1C2R1R2. (38)

Since there are only two target controls (ω,Q), for 5 design pa-
rameters (R1, R2, C1, C2, G), there are many possible design de-
cisions that are often decided according to electronic constraints.

In this paper, the Steiner filter parametrization is used with
R1 = R2 = R, and C1 = C2 = C because of its simplicity. The
transfer function (36) simplifies to

HSK(s) =
1

1 + (3−G)
(

s
ω

)
+
(

s
ω

)2 , (39)

with ω = 1/(RC), and Q = 1/(3 − G). In simulations, capaci-
tances are both set to C = 4.7nF and the resistors are adjusted to
achieve the target cutoff frequencies.
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Figure 8: a) The original Sallen-Key lowpass filter circuit, b) its corresponding bondgraph (see references [24] [25] [26]) with computational
causality assignment. c) the skew-symmetric Dirac structure representing Kirchoff conservation laws. d) the reduced dynamical model.

4.2. Modelling

To model the Sallen-Key filter, the following systematic approach
is used:

• Bondgraph: The circuit 8a is first converted to an equiv-
alent bondgraph 8b using the rules in [25]. A bond be-
tween two ports A B stands for a pair of dual
port-variables (e, f). The half-arrow indicates the power
sign convention P = ef ≥ 0. 0 denotes a parallel junc-
tion where all bonds share the same voltage, and 1 denotes
a serial junction where all bonds share the same current.

• Causality assignment: to convert an acausal bidirectional
bondgraph to a causal, computable, block-diagram, one needs
to partition the flows and efforts into inputs and outputs.
The convention uses a vertical stroke A B next
to ports that are effort-controlled. Computational causali-
ties can be assigned graphically by propagating the follow-
ing rules: voltage sources and capacitors have an effort-out
causality, 0 junctions can only have one input effort, while
the dual 1 junctions can only have one output effort.

• Dirac Structure: given the causality assignment, shown on
8b, into inputs and outputs, it is now straightforward to fill
the Dirac Structure matrix 8c by inspecting circuit 8a and
expressing Kirchoff’s current and voltage laws.

• Reduced model: one can reduce the model by solving triv-
ial equalities like e+ = vC2 , eS+ = V+, eS− = V−, treat-
ing V± as constants and replacing the linear resistive cur-
rents (iR1 , iR2) by their constitutive laws. This results in
the reduced admittance model shown on figure 8d.

4.2.1. Nonlinear feedback

To separate the linear and nonlinear feedback, one can write

êout(v) = Gv −∇N(v) (40)

where the nonlinear law is

∇N(v) := Gv − êout(v)

= min(0, Gv − eS−) + max(0, Gv − eS+). (41)

and its algebraic potential (figure 9) is given by the line integral

N(v) :=

∫ v

0

∇N(s) · ds

=
min(0, Gv − eS−)2

2G
+

max(0, Gv − eS+)2

2G
. (42)

15 10 5 0 5 10 15
v (Volts)

15
10
5
0
5

10
15
20
25

algebraic laws
Gv

N(v)
Gv N(v)

15 10 5 0 5 10 15
v (Volts)

0

20

40

60

80

100

120

140
algebraic potentials (integrated laws)

Gv2/2
N(v)
Gv2/2 N(v)

Figure 9: Algebraic feedback laws and their potentials shown for
G = 2, eS+ = 10V, eS− = −5V.
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4.2.2. State-space model

Finally replacing the flow and effort variables by their constitutive
laws, and only considering the input-state-output, one gets

{
ẋ = ω

[
Ax + Bu− F∇N(Cx)

]

y = Cx
, (43)

where u = vIN, y = ySK, x = [vC1 , vC2 ]T, ω = 1/(RC) and

A =

[
−2 1− 2G
1 −1 +G

]
, B =

[
1
0

]
, (44)

C =
[
0 1

]
, F =

[
−2
1

]
. (45)

Using the co-energy variables vC1 , vC2 instead of the energy vari-
ables qC1 , qC2 is justified here by the fact that the capacitors are
linear and time-invariant, i.e. the co-energy H∗(v) = Cv2/2
equals the energy H(q) = q2/(2C) for the linear law v = q/C.

4.3. Discretization using the AVF method

The Average Vector Field (AVF) method is used to discretize (43)
because of its structure-preserving properties: it preserves the en-
ergy (resp. dissipativity) of conservative (resp. dissipative) sys-
tems (see [27]). One can also refer to [28] where it has been shown
that the bilinear transform doesn’t always guarantee the dissipativ-
ity of nonlinear filters (whether time-varying or not).

As an important side-effect, the AVF method can also be inter-
preted as a first-order instance of anti-derivative antialiasing [29].

4.3.1. The Average Vector Field method

Let Ω = [t0, t0 + h] be a time-step, x : Ω → Rn a locally affine
trajectory parametrized by the normalized variable τ ∈ [0, 1]

x(t0 + hτ) = x0 + τ(x1 − x0). (46)

Introduce the averaging operator A, defined for all functions f :
Rn → Rn or operators f : H → H, whereH is a functional space
from Ω→ Rn, by

(A f)(x) :=

∫ 1

0

f(x(t0 + hτ)) dτ. (47)

For the time derivative and identity operators, one gets

ẋ :=
(
A d

dt

)
x =

x1 − x0

h
, x̄ := (AI)x =

x0 + x1

2
. (48)

Using the gradient theorem, this gives the average discrete gradient

∇N(v0, v1) := (A∇N)(v0 + τ(v1 − v0))

=





N(v1)−N(v0)

v1 − v0
v0 6= v1

∇N(v0) v0 = v1

. (49)

Computing its derivative with respect to v1 leads to

∂∇N
∂v1

(v0, v1) =





∇N(v1)−∇N(v0, v1)

v1 − v0
v0 6= v1

1

2
∇2N(v0) v0 = v1

. (50)

One can refer to [30], where the discrete gradient’s derivative is
also used for numerical simulation.

4.3.2. Averaged system

Applying the averaging operator A to (43), leads to the structure-
preserving discrete algebraic system




ẋ = ω

[
Ax̄ + Bū− F∇N(Cx0,Cx1)

]

ȳ = Cx̄
. (51)

Solving the linear part for x1 gives the discrete state-space update

x1 = Adx0 + Bdū− Fd∇N(Cx0,Cx1), (52)

with the normalised pulsation ωd = hω and

Ad = D−1

(
I +

ωd

2
A

)
, Bd = D−1(ωdB),

D =

(
I− ωd

2
A

)
, Fd = D−1(ωdF). (53)

4.4. Simulation

Simulation results5 are shown on figures 10 and 11 and exhibit a
very close match with offline simulations performed in LTspice.
To solve (52), one can either use the simple fixed-point iteration,
or Newton’s method.

4.4.1. Fixed-point iteration

A simple numerical scheme is to look for the fixed-point x1 =
φ(x1) of the pre-conditioned fixed-point function

φ(x1) := Adx0 + Bdū− Fd∇N(Cx0,Cx1), (54)

with the fixed-point iteration

xk+1
1 = φ

(
xk
1

)
, x0

1 = x0. (55)

A sufficient convergence condition is detailed in appendix B.
In practice, thanks to the non linear feedback splitting in (40),

when the OPA is in the linear regime, ∇N = 0. Then the it-
eration reduces to an explicit one-step trapezoidal integrator and
converges in only one iteration.

4.4.2. Newton iteration

To accelerate convergence, one can use Newton’s method [31] as
follows: define the auxiliary function

ϕ(x1) = x1 − φ(x1), (56)

and look for the root x∗1 such that ϕ(x∗1) = 0 with the Newton
iteration

xk+1
1 = xk

1 −
(
ϕ′(xk

1)
)−1

ϕ(xk
1), x0

1 = x0. (57)

where the Jacobian of ϕ is given by

ϕ′(x1) = I + FdC
∂∇N
∂v1

(Cx0,Cx1). (58)

5Sound examples and LTspice files are available at the accompanying
website: https://github.com/remymuller/dafx19-opa.
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Figure 10: SKF filter response to a square wave input with sampling frequency fs = 44.1kHz, C = 4.7nF, cutoff fc = 1kHz (R =
33.8kΩ), Q = 10, asymmetric saturation V+ = 15V, V− = 0V and different fundamental frequencies. The non linear SKF response is
shown in solid blue, with the linear SKF response in dashed red for reference.
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Figure 11: Comparison between the proposed model, LTspice’s universal OPA level.2 and the LT1366 opamp. The proposed model output
is almost indistinguishable from LTspice’s universal model, whereas the tuning of the LT1366 is slightly different because of dissipation.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, a static, passive, black-box model of the operational
amplifier with explicit power supply has been examined. It is suit-
able for the modelling of audio circuits and simple enough for real-
time simulation. Furthermore the explicit modelling of external
power supply ports allows the use of non-ideal voltage sources.

The choice has been made to ignore internal dissipation to
keep the model minimal. However, non-ideal characteristics such
as input and output impedance or power supply voltage drop can
be achieved by modular composition of the model with other cir-
cuit elements. This will be the topic of further research.

The non inverting amplifier is also derived as a dedicated build-
ing block. Numerical simulations justify the use of an infinite OPA
gain to get an explicit formulation. Having a pre-solved amplifier
model also greatly simplifies its use in electronic circuits, avoiding
numerical stiffness and high index DAE.

Finally, the amplifier is used for audio simulations to model
a saturating Sallen-Key lowpass filter of second order. A reduced
state-space model is derived from the circuit schematic, and a struc-
ture-preserving discretization is performed using the average vec-
tor field method. A comparison with LTspice shows that our re-
sults are very close to those of more complex macro models.

The perspectives of this study are a) modelling other non-ideal
OPA characteristics such as finite slew-rate and bandwidth, cur-
rent and voltage offsets, non-zero common-mode input gain. . . b)
studying the behaviour of the model in other typical circuits (oscil-
lator, rectifier, comparator) and c) experimental comparison with
specific devices such as the common µA741, or TL072 audio OPAs.
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A. STRUCTURE OF THE OUTPUT EQUATION

Using the passivity equation (12), then introducing Vcm, Vdm using
(4), factoring Vcm, Vdm, finally, for iout 6= 0, dividing by iout and
using (11) one gets the general form for the output equation (14).

Proof.

iS+ · eS+ + iS− · eS− = −iout · eout − Pdiss

⇐⇒ iS+(Vcm + Vdm) + iS−(Vcm − Vdm) = −iout · eout − Pdiss

⇐⇒ Vcm(iS+ + iS−) + Vdm(iS+ − iS−) = −iout · eout − Pdiss

iout 6=0⇐⇒ Vcm + Vdm

(
iS+ − iS−
iS+ + iS−

)
= eout − Pdiss

iout
.

B. FIXED-POINT CONVERGENCE

According to the Banach fixed-point theorem, existence and unique-
ness of the solution are guaranteed if the fixed point (55) is con-
tracting, i.e. there exists a Lipschitz constant α ∈ [0, 1) such that

∥∥φ(x1)− φ(x0)
∥∥ ≤ α‖x1 − x0‖ . (59)

A sufficient (but conservative) condition is given by

α = 1.162Gωd < 1. (60)

Proof. Using (54), then the derivative of the discrete gradient (50),
(bounded by G/2), and using the matrix norm of FdC, one gets

∥∥φ(x1)− φ(x0)
∥∥
2

=

∥∥∥∥Fd

(
∇N(Cx0,Cx1)−∇N(Cx0)

)∥∥∥∥
2

≤
∥∥∥∥∥Fd

∂∇N
∂v1

C

∥∥∥∥∥
2

‖x1 − x0‖2

≤‖FdC‖2 sup
v1

∣∣∣∣∣
∂∇N
∂v1

(v0, v1)

∣∣∣∣∣‖x1 − x0‖2

≤ 2ωd

√
ω2
d + 8ωd + 20∣∣ω2

d + 2(3−G)ωd + 4
∣∣
G

2
‖x1 − x0‖2

≤ 1.162Gωd‖x1 − x0‖2
where the bound 1.162 is obtained numerically by majorizing over
G ∈ [0, 3] and ωd ≥ 0.
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ABSTRACT

This paper is concerned with the conception of methods tailored
for the numerical simulation of power-balanced systems that are
well-posed but implicitly described. The motivation is threefold:
some electronic components (such as the ideal diode) can only
be implicitly described, arbitrary connection of components can
lead to implicit topological constraints, finally stable discretization
schemes also lead to implicit algebraic equations.

In this paper we start from the representation of circuits using a
power-balanced Kirchhoff-Dirac structure, electronic components
are described by a local state that is observed through a pair of
power-conjugated algebro-differential operators (V, I) to yield the
branch voltages and currents, the arc length is used to parametrize
switching and non-Lipschitz components, and a power balanced
functional time-discretization is proposed. Finally, the method is
illustrated on two simple but non-trivial examples.

1. INTRODUCTION

Network analysis of circuits and expression of Kirchhoff laws, nat-
urally leads to implicit differential algebraic equations (DAE). In-
deed in the most general form, the branch equations are not de-
scribed by functions but by relations (in the voltage-current plane
for algebraic components, voltage-charge for capacitor, current-
flux for inductors . . . ). One of the most general approach is the
Sparse Tableau analysis [1] which involves both the nodes and
branch variables.

In the study of power-balanced systems, and more generally in
the field of geometrical numerical integration, one is not only con-
cerned with the quantitative accuracy of numerical simulations, but
also with the qualitative preservation of structural invariants dur-
ing discretization [2]. It has been shown that the symplectic struc-
ture of Hamiltonian systems, responsible for energy preservation,
can be generalized to open systems with algebraic constraints by
the notion of a Dirac structure [3] [4]. It can even be extended
to infinite-dimensional systems such as partial differential equa-
tions using a Stokes-Dirac [5] structure. It has been shown in [6]
(see also [7] [8]) that Kirchhoff laws generates a Kirchhoff-Dirac
structure. Recent work [9] also study the properties and numeri-
cal discretization of Port-Hamiltonian DAE systems in descriptor
form.

Usually, when possible, DAE are reduced to ordinary differ-
ential equations (ODE) or semi-explicit index-1 DAE [10] [8] for
which a rich literature of results from system theory and numerical

Copyright: © 2020 Rémy Müller et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

analysis is available to study stability, conservation laws, attraction
points, existence and uniqueness of solutions . . .

In these reduction processes, a choice has to be made regard-
ing the variables the system is solved for. Choosing the node volt-
ages leads to the Nodal Analysis (NA) method. But it is not suf-
ficient to represent all systems, adding some branch currents leads
to the popular Modified Nodal Analysis (MNA) [11]. The impor-
tance of state variable choices for computable numerical simula-
tions can be found in [12]. Similar issues are addressed for wave
digital filters in [13]. A procedure to guide these choices is the
Sequential Causality Assignment Procedure (SCAP) in the bond-
graph literature [14]. In the case of switching-circuits, such as
those containing ideal diodes or discontinuous laws (see [15]) an
approach is to solve for different variables according to the switch-
ing state of the system, but the number of such states becomes
exponential in the number of switching components.

Since after time discretization, one is left with an algebraic
system of (nonlinear) equations which has to be solved by an it-
erative scheme anyway, the goal of this article, is to propose a
structure-preserving power-balanced numerical method capable of
dealing with the implicit nature of the network equations.

Section 2 recalls how any electronic circuit can be represented
by a Kirchhoff-Dirac structure, uniquely determined by the cir-
cuit’s incidence matrix. Section 3 describes how to parametrize
the (possibly implicit) relation imposed by any circuit component.
Power-conjugated voltages and currents (v, i) are obtained by the
application of a pair of nonlinear algebro-differential operators
(V, I) to a parameter x which stands for the component’s local
state. In Section 4 arc-length and pseudo arc-length parameteriza-
tions1 are proposed to overcome computational causality problems
that arise in switching components and reduce numerical stiffness
caused by high Lipschitz constants. In Section 5 a power-balanced
and structure preserving time-discretization is presented using a
functional framework. This leads to a nonlinear system of alge-
braic equations which is solved using Newton iteration. Finally
two tests circuits are studied in Section 6, a stiff switching diode
clipper and a conservative (nonlinear) LCLC circuit with an im-
plicit topological constraint.

2. KIRCHHOFF-DIRAC STRUCTURES FOR CIRCUIT
GRAPHS

From a circuit theory perspective, a Dirac structure is simply a
multi-port that doesn’t generate or dissipate power i.e.

P = 〈i |v〉 = 0.

Considering components and their interconnections separately, be-
cause of Kirchhoff laws, the multi-port connecting all components

1Curvilinear coordinates for multi-ports are possible but not addressed.
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Figure 1: Dirac structure example with edges E = {A,B,C,D},
nodesN = {0, 1, 2} and chosen spanning tree T = {A,C}.

(the PCB) is necessarily a Dirac structure. To formalize it for cir-
cuits, we borrow and slightly adapt the notations from [6] [5] [9].

2.1. Circuit Graphs

A directed circuit graph G(N , E) is defined by a set of n nodes
N = {η1, . . . , ηn} and a set E = {ε1, . . . , εm} of m directed
edges (links, branches) with no self-loops. Edges are ordered pairs
of nodes εi = (ηi,0, ηi,1). Over each node (k = 0) and edge (k =
1)2, using the receiver convention for both, we define conjugated
current and voltages

(ik,vk) ∈ Ik × Vk =: Bk, k ∈ {0, 1} (1)

where V0 ∼ Rn, V1 ∼ Rm are the spaces of voltages over the
nodes N (resp. the edges E) and I0 = V∗0 , I1 = V∗1 the dual
spaces of functionals V0 → R, V1 → R. The spaces B0 and B1

are respectively the spaces of bonds corresponding to the nodes
and edges such that power is given by the duality pairings

〈ik |vk〉Bk := iTkvk, k ∈ {0, 1}. (2)

Note that since the spaces are finite-dimensional, one can identify
each space with its dual V0 ∼ I0 = Rn, V1 ∼ I0 = Rm.

Furthermore, the directed graph is uniquely specified by its
(reduced) co-incidence matrix D given by

D = [dij ]m×n , di,j =





1 εi,1 = ηj

−1 εi,0 = ηj

0 otherwise
. (3)

Kirchhoff Current (KCL) and Voltage laws (KVL) 3 can be ex-
pressed with an elegant duality (see [16] p.710) using the incidence
and coincidence matrices by

v1 = Dv0, i0 = −DTi1 = 0. (4)

i.e. we have the following diagram.

v0 ∈ V0 v1 ∈ V1

i0 ∈ I0 i1 ∈ I1

D

〈· | ·〉B0 〈· | ·〉B1

−DT

(5)

2This notation is convenient to make the link with automated circuit to
Bond-graph algorithms [14]: 0-junctions (shared voltage, parallel connec-
tion) for nodes and 1-junctions for branches (shared current, serial con-
nection) see Figures 5 and 6 for examples. It is also a mnemonic to re-
member that lumped circuit equations arise from the spatial discretization
of electro-magnetic 1-forms for branches and 0-forms for nodes.

3The minus sign in front of i0 comes from the consistent use of the
receiver convention for both nodes and branches: the sum of edge currents
i0 entering each node has to be zero.

2.2. Kirchhoff-Dirac structure

Written in matrix form, one obtains the canonical Kirchhoff-Dirac
structure D (with a structure very similar to the ones obtained for
partial differential equations (PDE) [17] [5])

D :


 i0

v1


 =


0 −DT

D 0




v0

i1


 , i0 = 0. (6)

i.e. Kirchhoff Current Laws can be interpreted as zero boundary
conditions on the node currents, and the co-incidence matrix D as
a (lumped) differential operator. Left multiplying by [v0 i1], the
duality products and skew-symmetry leads to the power balance

P = 〈i0 |v0〉+ 〈i1 |v1〉 =
[
v0 i1

]

0 −DT

D 0




v0

i1


 = 0.

Furthermore since we have conservation of charge i0 = 0 on the
nodesN , this yields the Tellegen theorem over the edges4 E

〈i1 |v1〉 =
∑

ε∈E
〈iε | vε〉 = 0.

We also remark that the node voltages v0 can be interpreted as
Lagrange multipliers parametrizing the sub-manifold defined by
the linear constraints i0 = 0.

2.3. (Reduced) Hybrid Dirac structure

Whereas MNA solves the system for node voltages and branch
currents, in Hybrid Analysis [16] and skew-gradient DAE [7] [8],
the node voltages are eliminated. First a spanning tree T is cho-
sen, this yields a partition of the branch currents and voltages into
tree (vT , iT ) and link variables (vL, iL). Partitioning equations
according to the spanning tree, Kirchhoff laws (4) are rewritten as


vT
vL


 =


DT

DL


v0,

[
DT
T DT

L

]

iT
iL


 = 0. (7)

From graph theory, having a spanning tree ensures that the matrix
DT ∈ Rn×n is invertible. So we can eliminate the node volt-
ages v0 using v0 = D−1

T vT . This yields a reduced Hybrid Dirac
structure specified by its link-cutset matrix C = (DLD

−1
T )T

D :


 iT
vL


 =


 0 −C
CT 0




vT
iL


 . (8)

Traditionally, the spanning tree is chosen to be a proper tree
(i.e. containing all current-driven branches: Voltages Sources, Ca-
pacitors, . . . ) such that vT is current-driven by iT (i.e. computable
from iT ). However topological constraints such as in example 6.2
may prevent a proper tree to be found. Since the proposed method
is fully-implicit by nature, it does not have such a requirement.
Either the Kirchhoff-Dirac structure or any reduced Hybrid Dirac
structure can be used for simulation.

For a formal definition of Dirac structures in the broader con-
text of multi-physical networks, pleaser refer to [6] and references
therein. A generic example of a Dirac structure and its graph, em-
phasizing the node-edge incidence structure, is shown on Figure 1.
Detailed case-study are shown on Figures 5 and 6 and studied in
Section 6.

4Indeed (see [16] p. 30) any two of KCL, KVL and Tellegen theorem
implies the third one.
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3. ALGEBRO-DIFFERENTIAL PARAMETRIZATION OF
COMPONENT LAWS

From now on, for functional discretization purpose, we adopt a
Hilbert space viewpoint, and lift Dirac structures over time steps.
Consider a time interval Ω ⊂ R, the branch voltage and current
spaces are lifted to the dual Hilbert spaces I1 ∼ V1 ⊆ L2(Ω)m

(L2 being a pivot space) equipped with the inner (duality) product

〈u |v〉 :=
1

|Ω|

∫

Ω

u(t)Tv(t) dt. (9)

We assume that branch equations can be parametrized locally
by a state x ∈ X1 ⊆ L2(Ω)m, nonlinear differential-algebraic
operators I1 : X1 → I1,V1 : X1 → V1 and a law

F : X1 −→ B1 := I1 × V1

x 7−→ (I1(x),V1(x))
. (10)

Likewise the KCL node boundary conditions (4) can be parametrized
by the vector of node voltages λ ∈ X0 ⊆ L2(Ω)n and the linear
constraint

B : X0 −→ B0 := I0 × V0

λ 7−→ (I0,V0)(λ) = (0,λ)
. (11)

Composing (6) with (10) (11) we obtain the fully implicit algebro-
differential formulation of a Port-Hamiltonian system (PHS)

Σ =





(I0,V0, I1,V1)(x,λ) ∈ B1 × B0;

N(x) = 0, ∀(x,λ) ∈ X1 ×X0



 (12)

defined by the operator N : X0 ×X1 → L2(Ω)m+n

N(x,λ) =


 0

V1(x)


−


0 −DT

D 0




 λ

I1(x)


 . (13)

For the reduced Hybrid Dirac structure one gets

Σ =
{

(IT ,VT , IC ,VC)(x) ∈ B1|N(x) = 0, ∀x ∈ X1

}

(14)
with the algebro-differential operator N : X1 → L2(Ω)m

N(x) =


IT (x)

VC(x)


−


 0 −C
CT 0




VT (x)

IC(x)


 . (15)

We note that for differential components, the state space is
given by the Sobolev space X ⊆ H1(Ω) ⊂ L2(Ω) defined by

X =

{
x ∈ L2(Ω)

∣∣∣∣∣ ẋ ∈ L
2(Ω); x(t) = x0 +

∫ t

0

ẋ(s) ds

}
,

(16)
whereas for algebraic components, no additional smoothness is
implied so X ∼ L2(Ω).

The differential-algebraic operators corresponding to common
electronic components are summarized in Table 1 and the case of
implicitly parametrized algebraic components is now further de-
tailed in Section 4.

4. (PSEUDO) ARC-LENGTH PARAMETRIZATION

We study here implicit arc-length and pseudo arc-length parame-
terizations of algebraic components whose laws cannot be repre-
sented as functions of either current or voltage (or such that un-
bounded Lipschitz constants may cause numerical problems dur-
ing simulations). As an example we consider the cases of the ideal
diode, a nonlinear resistor and the Shockley diode.

4.1. The ideal diode

An ideal diode law is determined by the set (see [15])

RD =



(v, i) ∈ R2

∣∣∣∣∣∣

{
v = 0 i ∈ R+,

i = 0 v ∈ R−.



 (17)

It has the numerical disadvantage of being alternatively voltage
and current controlled. In the hybrid formulation, computational
causality assignment [14] would imply that a different Dirac struc-
ture such as (8) should be used according to the current state of the
circuit. Furthermore, when the number of switching components
grows, the number of switch configurations of the circuit grows
exponentially. A solution around this problem is to consider the
parametrization RD : λ 7→ (VD(λ), ID(λ)) with arc-length

λ(v, i) =

{
i/I0 v = 0, i ∈ R+

v/V0 i = 0, v ∈ R−
, (18)

for arbitrarily chosen positive reference current and voltages I0, V0.
Inverting the relation, one obtains the algebraic operators

VD(λ) = V0 min(λ, 0), ID(λ) = I0 max(λ, 0). (19)

with V ′D(λ) = V0 · 1R−(λ), and I ′D(λ) = I0 · 1R+(λ), where
1A(λ) denotes the indicator function of a set A.

Differential x V (x) I(x) H(x)

Capacitor q q/C q̇ q2/2C

Inductor φ φ̇ φ/L φ2/2L

Nonlinear Capacitor q ∇H(q) q̇ H(q)

Nonlinear Inductor φ φ̇ ∇H(φ) H(φ)

Algebraic x V (x) I(x) P (x)

Resistor i Ri i Ri2

Conductor v v Gv Gv2

Nonlinear Resistor i z(i) i i · z(i)
Nonlinear Conductor v v z(v) v · z(v)

Voltage source i V i V · i
Current source v v I I · v

Table 1: Differential and Algebraic components. H (energy),
P (power), q (charge), φ (flux), z (non linear function).
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4.2. A Hard Clipping resistor

We now consider the case of a hard clipping resistor (it will be
used in example 6.1) whose (v, i) graph is described by the set

RD =





(v, i) ∈ R2;





i ∈ R− \ {0} v ∈ {−1}
i ∈ {0} v ∈ (−1, 1)

i ∈ R+ \ {0} v ∈ {1}




. (20)

We parametrize it continuously using (see Figure 4 page 8)

RD =
{

(v, i) ∈ R2; (v, i) = (V (λ), I(λ)), ∀λ ∈ R
}

(21)
with the voltage and current operators

V (λ) = V0 clip[−1,1](λ), (22)

I(λ) = I0
(
min(0, λ+ 1) + max(0, λ− 1)

)
. (23)

For arbitarily chosen positive reference voltage and currents V0, I0.

4.3. The Shockley diode

We finally consider the Shockley diode model 5.

I(v) = IS

(
exp

(
v

VT

)
− 1

)
, (24)

where IS is the saturation current, VT = kbT/qe the thermal
voltage, with temperature T , Boltzmann constant kb and electron
charge qe. It is C∞-continuous, but not globally Lipschitz.

For a chosen reference resistanceR0, the true arc-length of the
graph (v,R0I(v)) is determined by dλ2 = (1 + (R0I

′(v))2) dv2

but it is not practical to manipulate. Instead, introducing the diode
cutoff point (V0, I0) as the point of unit slope

R0I
′(V0) = 1, I0 = I(V0), (25)

where V0 = VT ln
(

VT
R0IS

)
, I0 = VT /R0 − IS . Remarking that

for v � V0, dλ ≈ dv and for v � V0, dλ ≈ R0I
′(v) dv, one

can introduce the C0 pseudo arc-length differential

dλ̃(v) =

{
dv v < V0

R0I
′(v) dv v ≥ V0

. (26)

Integrating λ̃(v) :=
∫ v

0
dλ̃ one obtains the C1 pseudo-arclength

λ̃(v) =

{
v v < V0

V0 +R0(I(v)− I0), v ≥ V0.
(27)

Inverting the relation leads to the algebraic operators

VD(λ) =





λ λ < V0,

VT ln

(
1 +

I0 + (λ− V0)/R0

IS

)
λ ≥ V0,

(28)

ID(λ) =





I(λ) λ < V0,

I0 +
λ− V0

R0
λ ≥ V0

. (29)

5Anti-parallel Shockley diodes will be simulated in example 6.1

such that by construction, Lipschitz constants are unitary (this prop-
erty is key to deal with convergence and numerical stiffness)

LV = sup
λ

∣∣∣V ′D
∣∣∣ = 1, LI = sup

λ

∣∣∣R0I
′
D

∣∣∣ = 1. (30)

5. FUNCTIONAL DISCRETIZATION AND NUMERICAL
SOLVER

We now use the functional framework presented in Section 3 to
discretize the system with a finite number of parameters per time
step, (see the reference [18] for the representation of non band-
limited signals having a finite rate of innovation).

Our time discretisation scheme can be interpreted as an exten-
sion of (spectral) time-finite elements methods [19] to DAE. It is
based on the following theorem which proves that a weak PHS is
preserved over the chosen approximation subspace.

Theorem 5.1 (Weak PHS). Let Ω be a time step, x ∈ X ⊆
L2(Ω)m a functional state, two operators b : X → L2(Ω)m,
a : X → L2(Ω)m and a skew-symmetric matrix J defining the
PHS operator

N(x) = b(x)− Ja(x) = 0, J = −J∗. (31)

Let P : L2(Ω) → R(P ) ⊆ L2(Ω)m be a projector (P 2 = P )
satisfying the skew-adjoint commutation PJ = JP ∗, for the L2

inner product (9), then the projected operator

P ◦N(x) = 0 (32)

defines a weak PHS which preserves the power balance.
〈
a(x)

∣∣P
∣∣ b(x)

〉
= 0. (33)

Proof. Using (32), taking the inner product with a(x), and using
the fact that 1) P 2 = P (idempotence), 2) we have the commuta-
tion PJ = JP ∗ and 3) PJP ∗ is skew-adjoint, we obtain

〈
a(x)

∣∣P
∣∣N(x)

〉
= 0

⇐⇒
〈
a(x)

∣∣P
∣∣ b(x)

〉
=
〈
a(x)

∣∣PJ
∣∣a(x)

〉

1
=
〈
a(x)

∣∣∣P 2J
∣∣∣a(x)

〉

2
=
〈
a(x)

∣∣PJP ∗
∣∣a(x)

〉 3
= 0.

Remark (Energy conservation). As an immediate consequence,
for a conservative Hamiltonian system given by the operator

N(x) =
dx

dt
− J∇H(x) = 0, J = −JT . (34)

discretized such that ẋ = PJ∇H(x), then the Hamiltonian en-
ergy H is preserved over a time-step Ω = (t0, t1),

H(x(t1))−H(x(t0)) = 0. (35)

Indeed, let b = d
dt

and a = ∇H , from the gradient theorem and
using the same arguments as the previous proof, it follows that

H(x(t1))−H(x(t0)) =
〈
∇H(x)

∣∣ ẋ
〉

=
〈
∇H(x)

∣∣PJP ∗
∣∣∇H(x)

〉
= 0.
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5.1. Piecewise constant and affine polynomial spaces

In this article we will restrict ourselves to constant and affine poly-
nomial spaces P0, P1 for which we have exact closed-form expres-
sion of the projected operators. (Higher-order polynomial spaces
require the use of approximate quadratures rules [2] [9]). Results
are exposed without proof except when the proof is not available
elsewhere (see [8]).

Consider a unit time step Ω = (0, 1), for the normalized time
variable τ ∈ (0, 1) and two orthogonal polynomials

`0(τ) = 1, `1(τ) = τ − 1

2
.

The operator PK : L2(Ω) → PK(Ω) ⊂ L2(Ω), K ∈ {0, 1}
defined by

(PK u)(τ) =
K∑

i=0

`i(τ)
〈`i |u〉
〈`i | `i〉

(36)

is an orthogonal projector. i.e. PK is self-adjoint (PK = P ∗K ) and
idempotent (P 2

K = PK ). For notational simplicity, we define the
following notation. Let A : L2(Ω) → L2(Ω) be an operator, the
projected operator ĀK : L2(Ω)→ PK(Ω) is defined by

ĀK := PK ◦A, Ā := Ā0. (37)

By extension, for a vectorized projector P := PK ⊗ In, it yields
the projected PHS operator

N(x) := P ◦N(x) (38)

Because of the tensor product construction, we also have the com-
mutation PJ = JP = JP ∗ such that P satisfies Theorem 5.1.

For numerical computations, it is necessary to compute the
polynomial coefficients of the image of a trajectory through a non-
linear function. This is possible thanks to the following property

Property 5.1 (Projected function). Let f : R → R be a semi-
continuous function with known antiderivative F and a function

x(τ) = `0(τ)x̄+ `1(τ)δx ∈ P1(Ω), (39)

parametrized by its mean and variation Θ = (x̄, δx) ∈ R2

Then the projected function P1 ◦ f ◦ x has the projection co-
efficients f : R2 → R2 defined by

f i := 〈`i | f ◦ x〉 /‖`i‖2 . (40)

They are given in closed form by

f0(Θ) =





F (x̄+ δx
2

)− F (x̄− δx
2

)

δx
δx 6= 0

f(x̄+) + f(x̄−)

2
δx = 0

(41)

f1(Θ) =





12

δx

(
F (x1) + F (x0)

2
− F0(Θ)

)
δx 6= 0

0 δx = 0

(42)

where x1 = x̄+ δx/2, x0 = x̄− δx/2.

Proof. See Appendix A.

Note that for a scalar (or separable) potential F , using f =
∇F , and x̄ = (x0 + x1)/2, δx = x1 − x0 in property 5.1 yields
the Average Discrete Gradient from [8] (this is also an instance of
anti-derivative anti-aliasing)

∇F (x0, x1) := f0(Θ). (43)

Additional results for linear gradients are given in appendix B.

5.2. Newton iteration

For each time step Ω, let Θ denote the unknown parameters of a
local state xΘ ∈ (PK(Ω))m we look for a zero N(Θ?) = 0 of

N(Θ) :=
[〈
`i
∣∣N(xΘ)

〉
/‖`i‖2

]
i=0...K

(44)

using Newton iteration (line search is not used in this paper)

Θκ+1 = Θκ + ∆Θκ, ∆Θκ = −N′(Θκ)−1N(Θκ). (45)

A detailed convergence analysis for the general case is out of the
scope this paper and is left for future work. Please refer to [20] for
more details. When N is only semi-smooth which is the case of
the ideal and hard clipping diodes, special care should be taken to
ensure convergence using semi-smooth Newton methods [21].

It should be noted that in piecewise constant spaces (k = 0),
algebraic constraints simplifies to V(s) = V (s), I(s) = I(s), and
one can compute the Jacobian from the derivative V ′, I ′. For affine
trajectories (k = 1) one should use the results from properties 5.1
and the following property from [8] to compute the coefficients
and the Jacobian.

Property 5.2. Given a potential F ∈ C2(R,R), and its discrete
gradient ∇F (x0, x1) defined in Equation (43), the derivative of
the discrete gradient with respect to x1 is

∂∇F
∂x1

=





∇F (x1)−∇F (x0, x1)

x1 − x0
x0 6= x1

1

2

∂2F

∂x2
(x0) x0 = x1

. (46)

6. EXAMPLES

6.1. Diode Clipper

We consider the diode clipper circuit shown in Figure 5. This cir-
cuit which is dissipatively stiff because of the diode unbounded
Lipschitz constant is commonly used to benchmark numerical schemes.
In this paper the nonlinear resistor D is considered abstract and
will be substituted by anti-parallel Shockley and hard clipping diode
models from Section 4.

Over each time step it is parametrized by the vector of Leg-
endre coefficients Θ = (iS , iC ,vR,xD) ∈ (RK+1)4, for K ∈
{0, 1} and the functional statexΘ = [iS , iC , vR, xD]T ∈ (PK(Ω))4

such that each element v ∈ PK(Ω) is of the form v(t0 + hτ) =∑K
n=0 `n(τ)v[n]. The projected Dirac structure (where 1 is the

identity on RK+1) is then given by the operator

N =




iS

iC

vR

VD(xD)



−




. . −1 0

. . 1 −1
1 −1 . .

0 1 . .







VS

VC(iC)

IR(vR)

ID(xD)



. (47)

Results are shown on Figure 2 for an input vS = V sin(2πf0t)
with high input gain V = 104, fundamental frequency f0 = 500
Hz, R = 1 kΩ , C = 10µF, IS = 100 fA, R0 = 0.1Ω, sampling
frequency fs = 96 kHz. Anti-parallel Shockley diodes with arc
length converge on average in 2 iterations and 4 times reduction
of the worst-case iteration count (Newton tolerance εr = 10−5),
Hard clipping diodes exhibit convergence in one iteration most of
the time (2 when switching) even for εr = 10−10.
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Figure 2: Diode clipper: anti-parallel Shockley diodes (top) with
V = 104 to emphasize Newton iteration differences, Hard clipping
diodes (bottom) V = 102 to see dynamic and saturation.

6.2. LCLC circuit

We study here an LCLC circuit (shown on Figure 6) chosen to
demonstrate the proposed method when the circuit is conservative,
nonlinear and contains topological constraints (parallel capacitors,
serial inductors . . . ). Here the circuit contains two inductors with
the implicit topological constraint iL1 = iL2 .

In traditional solvers, such constraints usually needs to be de-
tected and eliminated before proceeding to simulation. A possi-
ble approach is the use of equivalent macro components (see [22]
[23]). In contrast, the proposed approach doesn’t require such a
preprocessing step, and keeps the modularity and sparsity of the
component-based description. To demonstrate energy conserva-
tion, the capacitor C2 is chosen first with a linear law VC2(q) =
q/C2 and an hardening nonlinearity VC2(q) = Vα sinh( q

C2Vα
)

with Vα = 1/30 (V).
Using the vector of Legendre coefficients as unknown Θ =

(iC1 ,vL1 , iC2 ,vL2), we have the projected Dirac structure oper-
ator

N =




iC1

IL1(vL1)

iC2

vL2



−




. . . 1

. . . 1

. . . 1

−1 −1 −1 .







VC1(iC1)

vL1

VC2(iC2)

IL2(vL2)




(48)

Simulation results are shown for the implicit and nonlinear
LCLC circuit on Figure 3 for fs = 88.2 kHz, C1 = 20µF, C2 =
100µF, L1 = 1mH, L2 = 100µH, zero initial conditions and
vC1(0) = 1V. We observe that both the algebraic constraint iL1 =
iL2 and the conservation of total energy H are respected. Conver-
gence is reached in 1 iteration for the linear case and between 1 and
2 iterations for the nonlinear one (relative tolerance εr = 10−5).

0.0 0.5 1.0 1.5 2.0

0

1

(V
) vC1

vC2

0.0 0.5 1.0 1.5 2.0
100

0
100

(m
A)

iL1

iL2

0.0 0.5 1.0 1.5 2.0
t (ms)

0

10

En
er

gy
 (

J)

H

0.0 0.5 1.0 1.5 2.0
0

1

(V
) vC1

vC2

0.0 0.5 1.0 1.5 2.0
100

0

100

(m
A) iL1

iL2

0.0 0.5 1.0 1.5 2.0
t (ms)

0

10

En
er

gy
 (

J)

H

0.0 0.5 1.0 1.5 2.0
1

2

ite
ra

tio
ns

Figure 3: Conservative LCLC circuit: Linear (top) and Nonlinear
(bottom). Notice the periodicity change and conserved energy.

7. CONCLUSIONS

A new power-balanced, fully implicit component oriented method
has been presented with a functional time-discretization. Its main
strengths (not necessarily unique to this method) are: a) it retains
the topological sparsity and modularity of the network based de-
scription, b) it is power-balanced and energy-conserving (includ-
ing nonlinear components), c) it can deal with implicit topological
constraints (capacitor loops, inductor cutsets) without the need of
manual substitution of equivalent components, d) it can deal with
implicit components including switching components, e) it uses
finite-dimensional subspace projection as a unifying discretization
tool common to ODE, PDE and DAE. f) Newton iteration con-
verges faster using arc-length description of algebraic components
with unbounded Lipschitz constants,

Regarding perspectives, a detailed convergence study of the
Newton iteration is needed (such as the one in [24]), but has been
postponed for future work. Using different and higher order func-
tional approximation spaces is also an obvious perspective pro-
vided the projections can be computed exactly and efficiently. In
particular, from a generalized sampling theory viewpoint, it would
be interesting to perform a comparative analysis of implementation
cost and convergence rate (to the true solution) between functional
projection and oversampling.
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A. PROOF OF PROPERTY 5.1

The proof of Equation (41) is available in [8] and is not reproduced
here. To prove its extension to semi-continuous functions, using
left and right Taylor series expansion one finds

lim
δx→0

f0(x) = lim
δx→0

F (x̄+ δx
2

)− F (x̄− δx
2

)

δx

= lim
δx→0

f(x̄+ δx
2

) δx
2

+ f(x̄− δx
2

) δx
2

+O(|δx|2)

δx

=
f(x̄+) + f(x̄−)

2
.

For the second coefficient, one finds‖`1‖2 = 1/12 and using inte-
gration by parts, one gets the recursive relation

f1(x) =

∫ 1

0

`1(τ)f(x(τ)) dτ =
1

δx

∫ 1

0

`1(τ) (F ◦ x)′ (τ) dτ

=
1

δx

(
[
`1(τ)(F ◦ x)(τ)

]1
0
−
∫ 1

0

(F ◦ x) (τ) dτ

)

=
1

δx

(
F (x1) + F (x0)

2
− F0(x)

)
.

Finally, when δx = 0, one finds

f1(x) =

∫ 1

0

`1(τ)f(x̄) dτ = f(x̄)

∫ 1

0

`1(τ) dτ = 0.

B. LINEAR DIFFERENTIAL COMPONENTS

When ∇H(x) = Wx with state ẋ(τ) ∈ P1 and coefficients ẋ
expressed in the orthonormal Legendre basis {Li}, the projected
gradient is

∇H(x0, ẋ) = W ⊗
([

x0
0

]
+ h

[
1/2 −

√
3/6√

3/6 0

]
ẋ

)
.

For ẋ(τ) ∈ P0 it reduces to the midpoint integration rule

∇H(x0, ẋ) = W

(
x0 +

h

2
ẋ

)
.
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Figure 4: (Pseudo) Arc-length parametrization of hard clipping resistor and anti-parallel Shockley diodes.
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Figure 5: Diode Clipper circuit: From the schematic (a) Kirchhoff laws immediately yield the bond-graph (b) which can be reduced to the
bond-graph c). Using the Graph incidence matrix d), one obtains the Kirchhoff-Dirac structure e). Elimination of the node voltages yields
the reduced Dirac structure f).
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Figure 6: Conservative LCLC circuit (a single cell of a transmission line). There is an apparent computational causality conflict shown
in red on subfigure f): the loop current can either be controlled by L1 or L2 but not by both. The circuit has thus an implicit constraint
IL1(φ1) = IL2(φ2). The inductor L1 is said to have a differential causality since vL1 = φ̇1, whereas C1, C2, L2 are said to have an
integral causality.
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