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This work addresses the real-time simulation of nonlinear audio circuits. In this thesis, we use the port-Hamiltonian (PH) formalism to guarantee power balance and passivity. Moreover, we adopt a continuous-time functional framework to represent "virtual analog" signals and propose to approximate solutions by projection over time frames. As a main result, we establish a sufficient condition on projectors to obtain time-continuous power-balanced trajectories. Our goal is twofold: first, to manage frequency-bandwidth expansion due to nonlinearities, we consider numerical engines processing signals that are not bandlimited but, instead, have a "finite rate of innovation"; second, to get back to the bandlimited domain, we design "virtual analog-to-digital converters". Several numerical methods are built to be power-balanced, high-order accurate, with a controllable regularity order. Their properties are studied: existence and uniqueness, accuracy order and dispersion, but also, frequency resolution beyond the Nyquist frequency, aliasing rejection, reproducing and Peano kernels. This approach reveals bridges between numerical analysis, signal processing and generalised sampling theory, by relating accuracy, polynomial reproduction, bandwidth, Legendre filterbanks, etc. A systematic framework to transform schematics into equations and simulations is detailed. It is applied to representative audio circuits (for the UVI company), featuring both ordinary and differential-algebraic equations. Special work is devoted to PH modelling of operational amplifiers. Finally, we revisit PH modelling within the framework of Geometric Algebra, opening perspectives for structure encoding.
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Notations

f norm f | g duality product | f vector (ket) f | covector (bra) f | g A operator duality product ( f | g A = f | A | g )
x smallest integer greater or equal to x (ceil)

Integration and derivation

f (n) (t)
n-th order derivative f [n] (t) n-th order anti-derivative ẋ time derivative of x f (x) derivative of f with respect to the free variable x.

∇ gradient operator

∂ x partial derivative with respect to the variable x F (x)(•) Fréchet derivative of a function F at x (a linear operator)

V Volterra operator (Vf )(x) = ´x 0 f (s) ds

Introduction

Context

This thesis is the result of a joint collaboration between UVI (my employer) and the S3AM 1 team of the STMS 2 laboratory at IRCAM 3 . It is unusual on two aspects: it happened as a late PhD, 12 years after the end of my studies, and it took place, for the last five years, as a part-time project, in parallel of my job at UVI. I am very grateful to my employers for this opportunity, their trust, their continuous support and for fully funding this PhD.

The UVI company UVI 4 is a french SME, founded in 1987 by Alain Etchart and Jean-Bernard Celier with head-quarters in Paris and offices in US and Japan. It is specialised in the creation of virtual instruments and digital audio effects for sound-design and music production. UVI's flagship product, called Falcon 5 (and the underlying UVI engine), is a multi-synthesis workstation with sixteen synthesis types and more than ninety audio effects. It integrates signal modelling (additive, subtractive, granular, FM, etc), physical modelling and algorithmic musical event processing within the same environment. The aim of this thesis for UVI is to broaden the range of audio systems that can be emulated in real-time by physical modelling of audio circuits.

The S3AM team Multi-physics audio acoustics and virtual analog modelling is an important thread of research in the S3AM team for which the port-Hamiltonian formalism [START_REF] Maschke | Port-controlled Hamiltonian systems: Modelling origins and system theoretic properties[END_REF][START_REF] Van Der Schaft | Port-Hamiltonian systems theory: An introductory overview[END_REF] constitutes an important backbone and a unifying language. This thesis is a followup on the work of Falaize [START_REF] Falaize | Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios: Approche par réseau de composants et formulation Hamiltonienne à ports[END_REF][START_REF]Passive guaranteed simulation of analog audio circuits: A port-Hamiltonian approach[END_REF] on PH audio circuit modelling (including the Wah-Wah [START_REF] Falaize | Simulation of an analog circuit of a wah pedal: a port-Hamiltonian approach[END_REF], the Fender Rhodes [START_REF]Passive simulation of the nonlinear port-Hamiltonian modeling of a rhodes piano[END_REF], speaker modelling [START_REF]Passive modelling of the electrodynamic loudspeaker: from the Thiele-Small model to nonlinear port-Hamiltonian systems[END_REF], etc) and (to a less extent) on the work of Lopes [START_REF] Lopes | Approche passive pour la modélisation, la simulation et l'étude d'un banc de test robotisé pour les instruments de type cuivre[END_REF] (in particular a conservative linearly-implicit method based on energy quadratisation [START_REF] Lopes | Explicit second-order accurate method for the passive guaranteed simulation of port-Hamiltonian systems[END_REF]). During that time, Falaize wrote a symbolic-numerical Python toolbox dedicated to PHS modelling and simulation called PyPHS [START_REF]PyPHS: Passive modeling and simulation in python[END_REF]. Earlier work in the team includes the work of Cohen and Usciati on audio circuit modelling (including triodes) [START_REF] Cohen | Modélisation, analyse et identification de circuits non linéaires: application aux amplificateurs guitare à lampes pour la simulation en temps réel[END_REF][START_REF] Tarik | Analyseur de circuit électronique analogique audio, et génération automatique de code pour la simulation temps-réel[END_REF]. Since then, ongoing work based on PHS have been dedicated to loudspeakers [LWH + 20, LH20], the vocal tract [SHV19, WHS19, WHS20], Lie groups and (multi) symplectic integrators [CB17, CB19, BC19] active and finite-time control [JRH + 17, JDT + 17, WdNHR18, WdNF + 19], the Ondes Martenot [START_REF] Najnudel | Simulation of an ondes Martenot circuit[END_REF], PHS realisability [NHB + 18] and magnetic hysteresis [START_REF] Najnudel | A power-balanced dynamic model of ferromagnetic coils[END_REF]. The team has been involved in two port-Hamiltonian research projects: the ANR projects Hamecmopsys 6 and the ANR-DFG project INFIDHEM 7 , and is also actively working on Volterra series and identification methods [START_REF] Bouvier | Homophase signals separation for volterra series identification[END_REF][START_REF] Bouvier | Identification de systèmes non linéaires représentés en séries de volterra: applications aux systèmes sonores[END_REF][START_REF] Damien | Phase-based order separation for Volterra series identification[END_REF].

Objectives

To simulate nonlinear electronic audio circuits, we consider the class of open, power-balanced multi-physical systems. In this context, port-Hamiltonian systems (PHS) offer a structured representational framework capable of dealing with energetic, algebraic and dynamical properties. This thesis aims at designing a set of mathematical and computational methods that 1. accurately describe targeted systems in a modular way, 2. propose a systematic approach to automate modelling and real-time simulation of electronic audio circuits, 3. model dynamical systems as port-Hamiltonian Systems, 4. simulate PHS in the continuous-time domain, 5. numerically preserve the power-balance of the approximated PHS, 6. reproduce the regularity of continuous-time solutions.

Short literature overview

Virtual analog audio Modelling of (vintage) audio circuits is categorised in both academia and audio markets under the term virtual analog (VA) [DSS09, Sti05, VH06, VFSZ10, VBS + 11, D'A14, Wer16, EGZ17, EPPB17a, BVS20] 8 . Motivations for VA modelling are multiples: 1) preserving the legacy of instruments and audio effects from obsolescence (old components are often fragile or discontinued), 2) capturing the pleasant (and sometime complex) behaviour of analog designs that is not easily reproducible by direct digital means, 3) simplifying the maintenance by replacing (heavy, expensive, fragile) hardware by software. Significant research has been devoted to the simulation of synthesiser filters [START_REF] Stilson | Analyzing the Moog vcf with considerations for digital implementation[END_REF][START_REF] Huovilainen | Non-linear digital implementation of the Moog ladder filter[END_REF][START_REF] Hélie | Volterra series and state transformation for real-time simulations of audio circuits including saturations: Application to the Moog ladder filter[END_REF][START_REF] Parker | A digital model of the Buchla lowpass-gate[END_REF], equalisers [START_REF] Abel | Discrete-time shelf filter design for analog modeling[END_REF][START_REF] Sarkka | Accurate discretization of analog audio filters with application to parametric equalizer design[END_REF] ] and anti-derivative based anti-aliasing in [PZLB16, BEPV17, BEV17, MH17, Hol20, Alb20, Car20]. Note that VA audio often involves several physical domains within a single device (electric, magnetic, acoustic, mechanical, even optical). The port-Hamiltonian formalism is a natural candidate to deal with multi-physics: using power exchange as the common mean of interaction between physical domains.

Port-Hamiltonian Systems and Geometric Numerical integration

The PH formalism [START_REF] Maschke | Port-controlled Hamiltonian systems: Modelling origins and system theoretic properties[END_REF][START_REF] Van Der Schaft | Port-Hamiltonian systems theory: An introductory overview[END_REF][START_REF]L2-gain and passivity techniques in nonlinear control[END_REF] lies at the intersection of network modelling [START_REF] Paynter | Analysis and design of engineering systems[END_REF], differential geometry [START_REF] Olver | Applications of Lie groups to differential equations[END_REF] and Geometrical Numerical Integration (GNI) 9 . The goal of GNI is to propose numerical integration methods (see [START_REF] Hairer | Solving ordinary differential equations I. Nonstiff problems[END_REF][START_REF] Hairer | Solving ordinary differential equations II: Stiff and Differential-Algebraic Problems[END_REF][START_REF] Butcher | Numerical methods for ordinary differential equations[END_REF][START_REF] Iserles | A first course in the numerical analysis of differential equations[END_REF]) which (in addition to numerical

8. An overview of VA (up to 2011) can be found in [START_REF] Pekonen | The brief history of virtual analog synthesis[END_REF] 9. See [START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary differential equations[END_REF] and references therein for an overview of the domain.

accuracy) preserve geometric properties of the flow of differential equations such as symplecticity (see [START_REF] Weinstein | Symplectic geometry[END_REF]), first-integrals (such as the energy), time-reversibility, passivity (for dissipative systems) or group structure (in Lie group integrators [START_REF] Iserles | Lie-group methods[END_REF][START_REF] Celledoni | Lie group methods for rigid body dynamics and time integration on manifolds[END_REF]). The preservation of geometric invariants leads to improved qualitative and quantitative solutions in particular over long time scales. Unconditionally energy-preserving (resp. dissipating) methods have been proposed in [Hai10, HL14, CMM + 09, CGM + 12, CMOQ10] (An automatic consequence of energypreservation/passivity is the stability of simulated nonlinear systems). In particular, numerical methods for PHS have been considered in [START_REF] Kotyczka | Discrete-time port-Hamiltonian systems: A definition based on symplectic integration[END_REF] (based on symplectic integration) and [START_REF] Celledoni | Energy-preserving and passivity-consistent numerical discretization of port-Hamiltonian systems[END_REF] (energy preserving/dissipating). In this thesis, our main geometric focus is on the power-balance of physical systems, i.e. exact energy preservation for conservative systems and monotonous energy decay for dissipative systems.

Thesis outline

This thesis is structured in 4 parts described below.

Power-balanced modelling of electronic audio circuits Starting from the netlist description of an electronic circuit, revisiting state of the art, methods are proposed to automatically generate different PHS representations (Kirchhoff-Dirac structure, Hybrid semi-implicit algebro-differential equations, input-state-output ordinary differential equations, thermodynamic embedding, etc). This part is meant as a guide for practitioners and implementers, where the PHS approach is favoured over classical circuit modelling approaches which are already welldocumented such as modified nodal analysis. A particular attention is paid to the usefulness of each representation to derive efficient simulations. We also closely consider the sequence of transformations that are required to convert between these representations. Wave-variables formulations are recalled and a side by side comparison of network modelling using bond-graphs and Wave Digital Filters is proposed to highlight their striking and often unnoticed similarities.

Time-continuous power-balanced numerical methods In this thesis, high-order powerbalanced numerical schemes are proposed. Their common ground and distinctive attribute is to exclusively consider continuous-time signal representations in functional spaces. The word discretisation is used in a generalised sense as the subspace representation of signals with a finite number of parameters per unit of time. This specific approach exhibits interesting connections between numerics, signal processing, generalised sampling theory, and physical modelling. A particular attention is paid to signal smoothness and rejection of spectral aliasing artefacts caused by system nonlinearities. The proposed approach relies on sound-engineers. In particular, we consider the simulation of fuzz, overdrive and self-oscillating circuits. We also consider the simulation of (linear) systems having poles above the Nyquist frequency thanks to the extended generalised bandwidth of high-order methods. A chapter is dedicated to passive modelling of the operational amplifier. Indeed, the operational amplifier is a key component of analog electronics, but despite the amount of literature on the topic, we found that a simple passive model of the operational amplifier compatible with port-Hamiltonian modelling was still missing.

Towards Geometric Algebra The last part of this thesis is prospective. We explore the potentialities of Geometric Algebra (GA) in the context of port-Hamiltonian modelling. Geometric Algebra is an elegant graded algebra unifying the Euclidean inner product and Grassman exterior product into a single product called the geometric product. This unification has far reaching consequences since complex numbers, quaternions, octonions, spinors, exterior algebra, etc, can all be generated from simple axioms as sub-algebras of Geometric Algebra. Furthermore, since PH theory is deeply rooted in differential geometry and coordinate-free representations there is a natural match with GA. Given the scope of this thesis, we can only scratch the surface. In particular we consider intrinsic representations of linear transforms and Dirac structures using Geometric Algebra.
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Part I

Power-balanced modelling of electronic circuits The foundations of the Port-Hamiltonian formalism are recalled in this chapter. We restrict the presentation to the finite-dimensional settings which is sufficient to cover lumped electronic circuits. First, general results on existence, uniqueness and stability of state-space systems and Differential Algebraic Equations are recalled in section 1.1 and section 1.2, then the constitutive parts of port-Hamiltonian systems (power-balanced interconnections, energy-storing elements, passive algebraic components and external ports) are presented in section 1.3. Finally since the Wave Digital Filter (WDF) formalism [START_REF] Fettweis | Wave digital filters: Theory and practice[END_REF] is also an important modelling tool for physical modelling and virtual analog electronics, we try to bridge the gap between both formalisms by closing this chapter with section 1.4 on wave variables representations of port-Hamiltonian Systems.

Reminder on dynamical systems and ODE

This section recalls definitions and results on dynamical systems and stability (see [START_REF] Khalil | Nonlinear systems[END_REF]).

State-space representation, existence and uniqueness of solutions

We consider dynamical systems modelled by a finite number of coupled ordinary equations ẋ(t) = f (t, x(t), u(t)), (1.1a) where f : (t, x, u) ∈ R × R nx × R nu → f (t, x, u) ∈ R nx is the vector field function, ẋ denotes the time derivative 1 of the state variable x and u denotes the input variable of the system. The state equation (1.1a) is often associated with an output equation

y(t) = h(t, x(t), u(t)), (1.1b) 
where h : (t, x, u) ∈ R × R nx × R nu → h(t, x, u) ∈ R ny is the observation function.

Remark 1.1. If the input is known explicitely (e.g. an external source or a state feeback u(t) = g(x(t))). Then, it is possible to rewrite (1.1a) to remove the dependence on u as ẋ(t) = f (t, x(t)), with f (t, x) = f (t, x, u(t)).

Furthermore, by including time t into an extended state z = (t, x) and adding the differential equation ṫ = 1, it is always possible to obtain an autonomous system

ż(t) = f (z(t)), with f (z) = 1, f (t, x) T .
To predict the future state of the system from its initial value x 0 at time t 0 , the following Cauchy problem must have a unique solution.

Definition 1.1 (Cauchy problem). Let T = [t 0 , t 1 ], x 0 an initial condition in X ⊂ R n and f : T × X → R n . The Cauchy problem is to find a unique function x : T → X such that ẋ(t) = f (t, x(t)), ∀t ∈ T,

x(t 0 ) = x 0 , t = t 0 . (1.2) 
A key property to establish existence and uniqueness, is that f must satisfy a Lipschitz condition.

Theorem 1.1 (Local existence and uniqueness ([KG02] p.88)). Let f (t, x) be piecewise continuous in t and satisfy the local Lipschitz condition

f (t, x 1 ) -f (t, x 2 ) ≤ L x 1 -x 2 , (1.3 
)

∀x 1 , x 2 ∈ B = x ∈ R n | x -x 0 ≤ r , ∀t ∈ [t 0 , t 1 ].
Then there exists some h > 0 such that the state equation (1.2) as a unique solution over [t 0 , t 0 + h].

The previous theorem based on the Banach fixed point theorem only requires a simple Lipschitz condition but does not recover the maximal existence domain of solutions (even in the linear case). For stiff systems (when the step size h is bigger than some time constants of the system), the following theorem, based on Newton iteration, yields better estimates. Theorem 1.2 (Stiff existence and uniqueness [START_REF] Deuflhard | Uniqueness theorems for stiff ODE initial value problems[END_REF]). Let f ∈ C 1 (X ), X ⊆ R n . For the Jacobian A := f (x 0 ), assume a one-sided Lispchitz condition u, Au ≤ µ u 2 , (1.4a) where •, • denotes an inner product in R n , and • the associated norm. Assume that

f (x) ≤ L 0 , ∀x ∈ X , (1.4b 
)

f (u) -f (v) ≤ L 2 u -v , ∀u, v ∈ X . (1.4c)
Then, for X sufficiently large, existence and uniqueness of the solution of (1.2) holds for

h unbounded if µ h < -1 and h ≤ hΨ(µ h) if µ h > -1, (1.4d) 
where h := 1 √ 2L 0 L 2 , and Ψ(x) := 1

x ln(1 + x) x = 0, 1 x = 0.

(1.4e)

Lyapunov stability and LaSalle invariance principle

We recall results regarding Lyapunov stability for autonomous dynamical systems of the form

ẋ = f (x), (1.5) 
about an equilibrium point x ∈ X , where f : X → R n is locally Lipschitz. Without loss of generality, one can consider systems for which the equilibrium point is zero 2 . Definitions and properties presented below are for systems whose equilibrium point is the origin.

Definition 1.2 (Lyapunov stability ([KG02] p.112)). The equilibrium point x = 0 of (1.5) is

• Stable if, for all > 0, there exists δ > 0 such that

x(0) < δ =⇒ x(t) < , ∀t ≥ 0, (1.6a) 
• Unstable if it is not stable,

• Locally Asymptotically Stable (LAS) if it is stable and δ can be chosen such that

x(0) < δ =⇒ lim t→∞ x(t) = 0.

(1.6b)

• Globally Asymptotically Stable (GAS) if it is stable for X = R n and if lim t→∞ x(t) = 0, ∀x(0) ∈ R n .

(1.6c)

As illustrated on figure 1.1, oscillatory solutions can be stable in the sense of Lyapunov. The stability of a system can be proved using a Lyapunov function (also called a storage function).

2. Indeed the variable change z = xx, defines an equivalent system ż = g(z) with ż = ẋ = f (x + z) =: g(z), and g(0) = f (x) = 0. Definition 1.3 (Lyapunov function). Let X be an open subset of R n containing the equilibrium point x = 0 for (1.5). The function V : X → R is called a Lyapunov function if C1. V is of class C 1 on X , C2. V (x) = 0 and V (x) > 0 for all x ∈ X \ {x}, C3. ∇V (x) • f (x) ≤ 0 for all x ∈ X .

If the inequality is strict on X \ {x}. Then, the Lyapunov function is said to be strict.

Note that, along a given trajectory of the dynamical system, one has

d dt V (x(t)) = ∇V (x(t)) • f (x(t)) ≤ 0.
Therefore, if V is a Lyapunov function, then the value of V is nonincreasing along any trajectory.

Theorem 1.3 (Lyapunov stability theorem). If there exists a Lyapunov function V for (1.5). Then, the equilibrium point x = 0 is stable. Moreover, if V is strict. Then, x = 0 is LAS. And if V is proper a . Then, x is GAS.

a. V is said to be proper whenever V -1 ([0, L]) is a compact subset of X for every L ∈ V (X ). When X = R n , this is equivalent to V (x) → +∞ as x → +∞

The Lyapunov theorem is illustrated on Figure 1.1 for the stable, asymptotic stable and unstable cases.

When a storage function V does not satisfy all hypotheses of the Lyapunov's theorem, LaSalle's invariance principle allows useful extensions, based on the following definitions. Definition 1.4 (Invariant set). A set M is said to be invariant for a trajectory x(t) of a dynamical system (1.5) if

x(0) ∈ M =⇒ x(t) ∈ M, ∀t ∈ R.

(1.7a)

If a solution belongs to M at a given instant. Then, it belongs to M for all past and future instants. It is said to be positively invariant if

x(0) ∈ M =⇒ x(t) ∈ M, ∀t ∈ R + . (1.7b)
If a solution belongs to M at a given instant. Then, it belongs to M for all future instants.

We say that x(t) approaches a M as t goes to infinity, if for all > 0, there is T > 0 such that dist(x(t), M) < , ∀t > T, (1.8) where dist(p, M) denotes the shortest distance from a point p to a set M dist(p, M) := inf x∈M px .

(1.9)

Theorem 1.4 (LaSalle invariance principle ([KG02] p. 128)). Let Ω ∈ X be a compact set that is positively invariant with respect to (1.5). Let V : X → R be a continuously differentiable function such that ∇V (x) • f (x) ≤ 0 in Ω. Let E be the set of all points

E = x ∈ Ω | ∇V (x) • f (x) = 0 . (1.10)
Let M be the largest invariant set in E. Then, every solution starting in Ω approaches M as t → ∞.

In this case, one does not talk about stability, but about convergence. The interest of this principle is that it remains valid for non positive definite functions V .

Open systems and passivity

In this thesis, we have a particular interest in nonlinear open systems with p control inputs and p outputs, which admit the state-space representation ẋ = f (x, u), y = h(x, u).

(1.11)

where x(t) ∈ R n , u(t) ∈ R p , y(t) ∈ R p are respectively the state vector, the input and the output of the system. Unfortunately Lyapunov stability theorem rarely applies (e.g. constant inputs u).

The notation of passivity is a powerful tool for the analysis of nonlinear open systems.

Definition 1.5 (Passivity ([KG02] p. 236)). The system (1.11) is said to be passive if there exists a continuously differentiable positive semidefinite function V (x) (called the storage function) such that u | y ≥ ∇V (x) • f (x, u), ∀(x, u) ∈ R n × R p .

(1.12)

Moreover, it is said to be

• lossless if u | y = ∇V (x) • f (x, u),
• strictly passive if u | y ≥ ∇V (x) • f (x, u) + ψ(x) for some positive definite function ψ(x).

This definition shows that a passive system can only feed the function V through its input ports power u | y . A natural candidate for this storage function is the (Hamiltonian) energy of the system under study: this vision is used throughout this thesis and is the cornerstone of Port-Hamiltonian systems.

Passivity can be related with Lyapunov stability. Indeed, when the input of a system is zero, the passivity condition implies that d dt (V • x) ≤ 0. LaSalle invariance principle can be applied and proves that the system converges toward the largest invariant set where d dt (V • x) = 0. Moreover, the Lyapunov stability theorem ensures that the system is stable when V is positive definite.

x 1

x 2 Asymptotically stable x(t ) 0 Stable ||x(t)|| < Instable ||x(t)|| > x(t 0 ) = (a) 2D orbits in the plane (x1, x2)

x 1 x 2 V(x) Asymptotically stable V < 0 Stable V 0 Unstable V > 0 x(t 0 ) {x | V(x) = V(x(t 0 ))} (b) 3D orbits in the plane (x1, x2, V (x = (x1, x2)))
Figure 1.1 -(Lyapunov stability theorem) Stable orbits (orange), Asymptotically stable orbits (blue) and instable orbits (red). The stable orbit converges to a limit cycle for which d dt V (x(t)) = 0.

Reminder on Differential Algebraic Equations (DAE)

Results from this section are based on [START_REF] Rheinboldt | On the theory and numerics of differential-algebraic equations[END_REF][START_REF] Reich | On an existence and uniqueness theory for nonlinear differential-algebraic equations[END_REF][START_REF] Kunkel | Differential-algebraic equations: analysis and numerical solution[END_REF][START_REF]Solving differential equations on manifolds[END_REF] and references therein. The most general form of a differential-algebraic equation over the reals is (for m, n ∈ N) Existence and uniqueness of solutions are considered in the context of initial value problems, when we additionally require a solution to satisfy the condition x(t 0 ) = x 0 .

F (t, x(t), ẋ(t)) = 0, (1.13a 
(1.13b)

Here, we recall general results about classical (continuously differentiable) and weak solutions (in the sense of distributions) of DAE of the form (1.13a) with initial condition (1.13b).

Classical solutions Definition 1.6 (Classical DAE solution [START_REF] Kunkel | Differential-algebraic equations: analysis and numerical solution[END_REF]). Let C k (I, R n ) denote the vector space of all k-times continuously differentiable functions from the real interval I into the vector space R n . 1. A function x ∈ C 1 (I, R n ) is called a solution of (1.13a) if it satisfies (1.13a) pointwise.

2. The function x ∈ C 1 (I, R n ) is called a solution of the initial value problem if it additionnaly satisfies the initial condition (1.13b).

3. An initial condition (1.13b) is said to be consistent with F , if the associated initial value problem has at least one solution.

A problem is called solvable if it has at least one solution.

Generalized solutions Many interesting aspects of DAEs (e.g. inconsistent initial values, impulsive solutions) can not be studied using classical solutions. Switched systems, ideal diodes, etc are common sources of non-differentiability which emphasise the need for generalised solutions beyond those of definition 1.6. To this end, consistency conditions and smoothness can be relaxed [START_REF] Trenn | Distributional differential algebraic equations[END_REF] 3 by allowing generalized functions or distributions (with the difficulty that pointwise evaluation is not well-posed anymore, so that initial value problem cannot be formulated directly).

A thorough study of distributional DAE is out of the scope of this thesis. We refer the reader to the references [KM06, [START_REF] Acary | Numerical methods for nonsmooth dynamical systems: applications in mechanics and electronics[END_REF][START_REF] Trenn | Distributional differential algebraic equations[END_REF]. However, we note that the DAE solutions of methods from chapter 5 can be interpreted as weak solutions arising from Galerkin projection in time.

DAE Indexes

The motivation to introduce an index is to classify different types of differential-algebraic equations with respect to the difficulty to solve them analytically as well as numerically. Several kind of DAE indexes have been introduced in the literature: differentiation index, strangeness index, perturbation index, tractability index, geometric index, structural index,etc. Their respective roles and definitions have been summarised in the overview paper [START_REF] Mehrmann | Index concepts for differential-algebraic equations[END_REF]. Here we only consider the differentiation and the perturbation indexes.

Differentiation index

The differentiation index determines how far the differential-algebraic equation is from an ordinary differential equation (for which analysis and numerical methods are well-established). such that equations (1.14) allows to extract by algebraic manipulations an explicit ordinary differential system u = g(u) (called the "underlying ODE").

Perturbation index

Complementary to the differential index, one can define the pertubation index.

Definition 1.8 (Perturbation index [START_REF] Thomsen | Numerical solution of differential algebraic equations[END_REF]). Equation 1.13a is said to have perturbation index m along a solution x(t) if m is the smallest integer such that, for all functions x(t) having a defect (t) given by F (t, x, ẋ) = (t),

there exists an estimate

x(t) -x(t) = C x 0 -x0 + m-1 k=0 sup ξ (k) (ξ) , (1.15b) 
for which the expression on the right hand side is sufficiently small and C is a constant that depends only on the function F and on the length of the time interval.

Semi-explicit DAEs

In this thesis, we consider semi-explicit DAE, that is systems admitting a semi-explicit form

Semi-explicit DAE with differential index-1

Consider differential-algebraic systems governed by equations of the form ẋ = f (x, z), 0 = g(x, z), (1.16) with no occurrence of ż. Differentiating the second equation of (1.16) with respect to time, if the matrix ∂ g ∂z (x, z) is invertible in a neighbourhood of the solution, one obtains an ODE on z.

ż = - ∂ g ∂z (x, z) -1 ∂ g ∂x (x, z)f (x, z).
In practice it is not necessary to explicitly know the ODE on ż: if consistent initial values satisfy 0 = g(x 0 , z 0 ) and if the matrix ∂ g ∂z (x 0 , z 0 ) is invertible, then the implicit function theorem guarantees the local existence of a unique function ζ(x) such that 0 = g(x, z = ζ(x)). The problem then reduces locally to the ordinary differential equation

ẋ = f (x, ζ(x)).
Existence and uniqueness of solutions can then be established using theorem 1.1 p.8.

Semi explicit DAE with differential index-2

Consider differential-algebraic systems governed by equations of the form ẋ = f (x, z), 0 = g(x).

(1.17a)

Here, differentiation of the second relation with respect to time leads to the hidden constraint 0 = g (x)f (x, z).

(1.17b)

If the matrix ∂ ∂z g (x)f (x, z) is invertible in a neighborhood of the solution, then ẋ = f (x, z) and (1.17b) constitute an index 1 problem and differentiation of (1.17b) yields the missing differential equation for z. If the initial values satisfy 0 = g(x 0 ) and 0 = g (x 0 )f (x 0 , z 0 ), we call them consistent. If in addition the matrix g (x 0 ) ∂ f ∂z (x 0 , z 0 ) is invertible, the implicit function theorem implies the local existence of a function ζ(x) satisfying g (x)f (x, z = ζ(x)) = 0 in a neighborhood of x 0 . We thus obtain a differential equation on a manifold, (see [START_REF] Rheinboldt | On the theory and numerics of differential-algebraic equations[END_REF][START_REF]Solving differential equations on manifolds[END_REF])

ẋ = f (x, ζ(x)), where x(t) ∈ X = x ∈ R nx | g(x) = 0 . (1.17c) 
Systems (1.17a) are called differential-algebraic equations in Hessenberg form of index 2.

Example 1.1 (Linear state space DAE). Linear state space systems can be extended to state-space DAEs described by equations

E ẋ = Ax + Bu y = Cx + Du (1.18)
where A, B, C, D are matrices and E is a singular matrix. A typical example in electronics comes from the application of Modified Nodal Analysis a to VRLC circuits using node voltages as state variables. Many results are available for the class of Linear DAE stemming from the properties of the matrix pencil (E, A) (see [START_REF] Kunkel | Differential-algebraic equations: analysis and numerical solution[END_REF]p. 13]).

a. The matrix E can be singular when the node voltages cannot all be expressed as a function of voltage sources and capacitor voltages.

Singular perturbations

Consider singularly perturbed systems governed by equations of the form ẋ = f (x, z), ż = g(x, z), with 0 < 1.

(1. 19) The limit case, → 0, yields an index one problem in semi-explicit form. This system may be proven to have an -expansion where the expansion coefficients are solution to the system of DAEs that we get in the limit of equation (1.19).

Example 1.2 (Autonomous Van der Pol oscillator [START_REF] Hairer | Solving ordinary differential equations II: Stiff and Differential-Algebraic Problems[END_REF]). The Van der Pol oscillator is governed by z + (z 2 -1) ż + z = 0 (in Lienard coordinates). Introducing the auxiliary variable x := ż + 1 3 (z 3 -z) yields a singular perturbation problem

ẋ = -z ż = x -( 1 3 z 3 -z)
with limit case as → 0 the semi-explicit index-1 DAE

ẋ = -z 0 = x -( 1 3 z 3 -z)
Differentiating the algebraic equation yields ẋ = (z 2 -1) ż. Substituting ẋ = -z yields a system of ODEs (where the ODE on z can be solved independently of x)

ẋ = -z, ż = - z z 2 -1 .

Existence and uniqueness of solutions

A major difficulty to study existence and uniqueness of DAE is that not all of the analytical and numerical properties of differential-algebraic systems are completely understood. Several existence (and uniqueness) theories have been developed for classes of DAE with increasing levels of difficulty (and indexes). An overview can be found in [Gea71, Rhe90, Rei91, HW96, HLR06, [START_REF] Kunkel | Differential-algebraic equations: analysis and numerical solution[END_REF][START_REF]Solving differential equations on manifolds[END_REF]. General theorems for DAE of any index can be found in [START_REF] Kunkel | Differential-algebraic equations: analysis and numerical solution[END_REF]. However pre-requisites are too numerous to be reproduced here.

Semi-explicit Index-1 DAE

In this thesis, we focus on semi-explicit hybrid circuit formulations (see section 2.3.3 p.57) with differential DAE index 1. This choice is motivated by the following excerpt from [START_REF] De | Hybrid analysis of nonlinear circuits: DAE models with indices zero and one[END_REF]:

Under passivity assumptions, the index of nodal models is known to be not greater than two, according to the results in [START_REF] Tischendorf | Topological index-calculation of DAEs in circuit simulation[END_REF][START_REF] Schwarz | Structural analysis of electric circuits and consequences for MNA[END_REF]. (...) By contrast, recent research has been focused on socalled hybrid models (...) their index does not exceed one in passive contexts [START_REF] Iwata | Index minimization of differential-algebraic equations in hybrid analysis for circuit simulation[END_REF][START_REF] Iwata | Tractability index of hybrid equations for circuit simulation[END_REF][START_REF] Takamatsu | Index characterization of differential-algebraic equations in hybrid analysis for circuit simulation[END_REF].

We have seen that for semi-explicit DAE of differential index 1 such as (1.16), one can use the implicit function theorem to establish the existence of an equivalent ODE. Then classical existence and uniqueness of DAE solutions can be obtained through the Lipschitz conditions of theorem 1.1 p.8.

Because of this, until the work of Gear [START_REF] Gear | Simultaneous numerical solution of differential-algebraic equations[END_REF], implicit systems of the form (1.13a) were usually transformed into ordinary differential equations (1.5). However this approaches suffers from two drawbacks: 1) closed-form expression of function inverses can be either inexistent or inefficient; 2) classical existence and uniqueness theory is too restrictive on the simulation step size h for stiff ODE 4 .

An alternative strategy, is to use theorem 1.2 5 which recovers the full existence domain for linear ODE. However, as often with Newton iteration, practical conditions are not easy to obtain. It is now acknowledged that it is often preferable to develop methods that operate directly on the given differential-algebraic equations. Practical existence and uniqueness condition, exploiting particular forms of DAE, remains an important subject of research that we try to tackle in section 5.3 p.135.

Introduction to port-Hamiltonian Systems

Let F denote spaces of flows (e.g. currents) and E the conjugated spaces of efforts (e.g. voltages) formally defined in definition C.19 p.284 below. From a network modelling perspective, lumped parameter physical systems are naturally described by [START_REF]L2-gain and passivity techniques in nonlinear control[END_REF]p.149] (see fig. 1.2)

• energy storing elements described by a storage structure (see definition 1.18 p.25) S ⊂ F S × E S (1.20a)

• memoryless passive elements described by a resistive structure (def. 1.19 p.27)

R ⊂ F R × E R , (1.20b) 
• power-conserving interconnections formalised by a Dirac structure (def. 1.14 p.20)

D ⊂ F S × E S × F R × E R × F P × E P . (1.20c) 
• external ports to interact with their environment in the space

F P × E P . (1.20d) 
A coordinate-free description of Port-Hamiltonian systems is given by the following definition. 

Power-conserving elements (Dirac structures)

A foundation of PH modelling, is the notion of power-conserving interconnections which are mathematically formalised by Dirac structures (see electronic examples in table 1.1). The study of their mathematical formalisation and different representations is a key aspect in the port-Hamiltonian framework. After preliminary recalls from [START_REF]L2-gain and passivity techniques in nonlinear control[END_REF][START_REF] Van Der Schaft | Port-Hamiltonian systems theory: An introductory overview[END_REF], we define Dirac structures, examine their matrix representations (to be used in this thesis) and their composability. Finally we comment and extend some of the examples in table 1.1.

Name Component Equations

Open circuit e 

Preliminary definitions

Interconnected physical systems interact through power exchange. Here we give definitions of flow, effort and power spaces to formalise power exchange in networked structures. Definition 1.10 (flow and effort spaces). Let F be a linear space (the space of flows). Its dual space is the set E = F * of linear functionals e : F → R (the space of efforts).

Once the notion of dual flow and effort spaces is defined, one can define power as follows Definition 1.11 (power). Denote • | • : F * × F → R the duality product between F and E = F * . The product space B := F × E is called the space of bonds (or conjugated power variables), with power P := e | f . This power is related to the quadratic form on B Q (f , e) := 2 e | f , ∀(f , e) ∈ F × E.

(1. 22) In this thesis, we only need F ∼ R n , (e.g. the space of currents) and its dual E ∼ R n (e.g. the space of voltages) while P = e | f = e T f denotes electrical power 6 . Definition 1.12 (Canonical bilinear form). The product space B = F × E, is equipped with a canonically defined symmetric bilinear form •, • induced by the quadratic form Q (f 1 , e 1 ), (f 2 , e 2 ) := e 1 | f 2 + e 2 | f 1 .

(

The bilinear form (1.23) is indefinite a but non-degenerate b . It gives B the structure of a pseudo-euclidean space (or Krein space, see C. Remark 1.4. The property dim D = dim F translates that physical systems do not simultaneously impose both flow and efforts. This rules out the use of singular network elements in PH modelling such as nullators (both flow and effort are zero) and norators (both flow and effort are unconstrained) see references [START_REF] Carlin | Singular network elements[END_REF][START_REF]On nullators and norators[END_REF] for more details. The nullor case (combination of a nullator and a norator) is considered in section 7.2 p.190.

Matrix representations

A Dirac structure D ⊂ R n × R n can be represented in any of the following ways.

Definition 1.15 (kernel and image representations). Let E, F ∈ R n×n satisfy EF T + FE T = 0, rank F E = n.

(1.27a)

• The kernel representation of the Dirac structure D is given by

D = (f , e) ∈ R n × R n Ff + Ee = 0 = ker F E . (1.27b) 
• The image representation, (equivalent dual formulation) is given by

D =      (f , e) ∈ R n × R n   f e   =   F T E T   λ, ∀λ ∈ R n      = im F E T . (1.27c) In short, D = ker F E = im F E T .
Let D be given as in (1.27b) with rank F = n 1 ≤ n. Select n 1 independent colums of F and partition F, E, f , e into F 1 , F 2 , E 1 , E 2 , f 1 , f 2 , e 1 , e 2 so that (1.27b) can be rewritten as

F 1 E 2   f 1 e 2   + E 1 F 2   e 1 f 2   = 0.
It can be shown that F 1 E 2 is invertible so that D can be equivalently represented as the graph of a skew-symmetric matrix J = -J T = -F 1 E 2 -1 E 1 F 2 . Conversely we have Definition 1.16 (Hybrid skew-symmetric representation). For any skew-symmetric matrix J ∈ R n×n , the subspace (1.28) with integers n 1 + n 2 = n is a Dirac structure.

D =      (f 1 , f 2 ), (e 1 , e 2 ) ∈ R n 1 +n 2 × R n 1 +n 2   f 1 e 2   = J   e 1 f 2       
.

(1. 28) In this thesis, we use hybrid Dirac structures as our main representation (see definition 2.21 p.55).

Composition of Dirac structures

A key property of Dirac structures is their composability (see figure 1.3): the composition of two Dirac structures is again a Dirac structure so that the power-conserving interconnection of any number of Dirac structures is a Dirac structure. Definition 1.17 (parallel/serial connection). Let F 1 , F 2 , F 3 be flow spaces with dual effort spaces E 1 , E 2 , E 3 . Let D A , D B be two Dirac structures such that

∃(f 1 , e 1 , f A , e A ) ∈ D A ⊂ F 1 × E 1 × F 2 × E 2 , ∃(f B , e B , f 3 , e 3 ) ∈ D B ⊂ F 2 × E 2 × F 3 × E 3 ,
with a shared space F 2 × E 2 and a boundary space F 1 × E 1 × F 3 × E 3 . Then,

• The parallel connection D A D B between D A and D B (common effort) is defined by

f A + f B = 0, e A = e B .
(1.29a)

• The serial connection D A • D B between D A and D B (common flow) is defined by

e A + e B = 0, f A = f B . (1.29b) 
More formally,

D A D B :=    (f 1 , e 1 , f 3 , e 3 ) ∈ F 1 × E 1 × F 3 × E 3 | ∃(f 2 , e 2 ) ∈ F 2 × E 2 s.t. (f 1 , e 1 , f 2 , e 2 ) ∈ D A , (-f 2 , e 2 , f 3 , e 3 ) ∈ D B    , D A • D B :=    (f 1 , e 1 , f 3 , e 3 ) ∈ F 1 × E 1 × F 3 × E 3 | ∃(f 2 , e 2 ) ∈ F 2 × E 2 s.t. (f 1 , e 1 , f 2 , e 2 ) ∈ D A , (f 2 , -e 2 , f 3 , e 3 ) ∈ D B    .
For these definitions, we have the following result (see [START_REF]L2-gain and passivity techniques in nonlinear control[END_REF]) Remark 1.5. Equations (1.29a) and (1.29b) define a composition algebra so that an expression such as (D A D B ) • D C is well-defined. This key property is exploited in modular network representations such as Bondgraphs [START_REF] Paynter | Analysis and design of engineering systems[END_REF] and Wave Digital Filters [START_REF] Fettweis | Wave digital filters: Theory and practice[END_REF].

Theorem

Dirac structure examples

Example 1.3 (Ideal constraints). Ideal flow or effort constraints such as

D f = (f , e) ∈ R n × R n | f = 0 , or D e = (f , e) ∈ R n × R n | e = 0 .
are trivial Dirac structures (in electronics: open circuits i = 0 or short circuits v = 0).

Example 1.4 ((Multi-dimensional) Transformer). Transformers (see table 1.1) can be generalized to multi-dimensional transformer with a matrix-valued transformer ratio A ∈ R n×n with flow and effort variables (f 1 , f 2 , e 1 , e 2 )

∈ (R n × R n ) × (R n × R n ) such that   e 1 f 2   =   0 -A T A 0     f 1 e 2   .
It is an instance of hybrid Dirac structure (see definition 1.16, see also [START_REF] Belevitch | Classical network theory[END_REF]).

Example 1.5 ((Multi-dimensional) Gyrator). Similarly, a gyrator (see table 1.1) can be generalized as a multi-dimensional gyrator with gyration matrix R ∈ R n 2 ×n 1 and flow and effort variables

(f 1 , f 2 , e 1 , e 2 ) ∈ (R n 1 × R n 2 ) × (R n 1 × R n 2 ) such that   e 1 e 2   =   0 -R T R 0     f 1 f 2   .
Example 1.6 (Serial and Parallel junctions). 0-junctions (resp. 1-junctions) (terminology from bond graph theory [START_REF] Paynter | Analysis and design of engineering systems[END_REF][START_REF]A systematic method to derive bond graph models[END_REF]), corresponds to a parallel (resp. serial) junctions in wave digital filters theory [START_REF] Fettweis | Wave digital filters: Theory and practice[END_REF]. They are defined by dual constraints: equality of efforts, and balance of flows (resp. equality of flows, and balance of efforts).

Parallel:

D 0 = (f , e) ∈ R n × R n | e 1 = . . . = e n , f 1 + . . . + f n = 0 , (1.30a) 
Serial:

D 1 = (f , e) ∈ R n × R n | f 1 = . . . = f n , e 1 + . . . + e n = 0 . (1.30b)
Only one port k ∈ {1, . . . , n} can be chosen to impose the common effort e k (resp. flow f k ). Denoting ( f , ē) (for i ∈ {1, . . . , n} \ {k}) the remaining port variables, the following hybrid skew-symmetric matrix representations holds

D 0 :         f k ē1 . . . ēn-1         =         -1 . . . -1 1 . . . 1                 e k f1 . . . fn-1         , D 1 :         e k f1 . . . fn-1         =         -1 . . . -1 1 . . . 1                 f k ē1 . . . ēn-1         .
In electronics, Kirchoff laws imply that for a parallel connection of components, voltages v = v R = v C = v L are equal (here efforts) and the current balance i R + i C + i L = 0 of all branch currents is zero (conservation of charge). Dually, for a serial loop connection, dipoles share the same current i = i R = i C = i L and the oriented sum of branch voltages v R + v C + v L = 0 must be zero. 

v i R i C i L v R v C v L i 1.
q 2 2C i = q, v = q C Linear Inductor v i φ φ 2 2L v = φ, i = φ L Non linear Capacitor v i q H(q) i = q, v = ∇H(q)
Non linear Inductor In PHS (see figure 1.2 p.17), the structure S gathers all the energy-storing elements of the system (see examples in table 1.2). Its energy is defined on a state space X (a vector space or a manifold 7 ) by a storage function called the Hamiltonian H : X → R.

v i φ H(φ) v = φ, i = ∇H(φ)
Let x be a trajectory. For a given t, denote x = x(t) ∈ X a point along this trajectory with derivative ẋ = ẋ(t). By convention, the incoming flow f S and internal effort e S are defined 8 by f S := ẋ ∈ F S := T x X , and e S := ∂ H ∂x (x) ∈ E S := T * x X , (1.31) so that the time-variation of the stored energy is the received power

d dt H(x(t)) = ∇H(x) ẋ = e S | f S , (1.32) 
where T x X and T * x X denote the tangent space and co-tangent space at x. 7. In this manuscript the state space manifold is always X ∼ R n , so that TxX × T * x X ∼ R n × R n 8. Note that we use a different sign convention from [START_REF] Van Der Schaft | Port-Hamiltonian systems theory: An introductory overview[END_REF], here (fS, eS) denotes the port variables of the storage structure S instead of the port variables of the Dirac structure D that are connected to storage ports.

´∇H(x) f S F S ẋ T x X x X ∇H(x) T * x X e S E S
One can sum up the above equations (see also figure 1.4) with the following definition Definition 1.18 (Energy storage structure). Let X be a state space (a linear space or a manifold) and H : X → R a Hamiltonian function. Flow and effort spaces are the tangent space F S := T x X and co-tangent space E S := T * x X . An energy storage structure is defined locally by S x := (f S , e S ) ∈ F S × E S | e S = ∇H(x) (1.33a) where x ∈ X denotes the current value of the trajectory

x(t) = ˆt -∞ f S (τ ) dτ.
(1.33b)

Remark 1.6 (Lagrangian submanifolds). It is possible to generalise energy-storage structures using Lagrangian submanifolds (see reference [START_REF]Generalized port-Hamiltonian DAE systems[END_REF] for the general theory and [START_REF] Gernandt | Port-Hamiltonian formulation of nonlinear electrical circuits[END_REF] for their use in circuit simulation). In this thesis, we do not use such generalisations, and thus skip their presentation.

Examples of storage structures

Example 1.7 (Capacitors). For a capacitor v i , with energy storage function H : R → R, the energy variable is the charge (see [CDK87, eq.1.2a])

q(t) := ˆt -∞ i(τ ) dτ,
with the storage structure

S q = (v, i) ∈ R 2 | v = ∇H(q) .
a) If the capacitor is linear, v = v(q) = q C , by integration we obtain the energy

H(q) = ˆq 0 v(x) dx = q 2 2C .
b) If instead the capacitor is nonlinear, for example the saturating law v(q) = V 0 asinh q q 0 , then integrating the law we obtain the nonlinear energy H(q) = ˆq 0 v(x) dx = V 0 q 0   1 + q q 0 asinh q q 0 -1 + q q 0 2   .

Example 1.8 (Inductors). For an inductor v i , with energy storage function H : R → R, the energy variable is the flux-linkage φ(t) := ´t ∞ v(τ ) dτ, (cf [CDK87, eq. 1.2b] ) and the storage structure

S φ = (v, i) ∈ R 2 | i = ∇H(φ) .
a) If the inductor is linear, i = î(φ) = φ L , then by integration, its energy is the quadratic potential

H(φ) = ˆφ 0 î(x) dx = φ 2 2L .
b) If the inductor is nonlinear, for example the anti-saturating law î(φ) = I 0 sinh φ φ 0 , then by integration we obtain the non linear energy

H(φ) = ˆφ 0 î(x) dx = φ 0 I 0 cosh φ φ 0 -1 .
c) Another example of flux-controlled inductor with a nonlinear / non-bijective φ-i law is the Josephson junction [CDK87, ex.3b] governed by î(φ) = I 0 sin φ φ 0 with a positive but non-convex Hamiltonian a . H(φ) = I 0 φ 0 1 -cos φ φ 0 .

a. I0 is a device parameter, φ0 = /(2e), = h/(2π) the reduced Planck constant and e the electron charge.

A typology of typical effort laws and their corresponding energy potentials (for linear, hardening, softening, saturating or oscillating laws), is shown on figure 1.5. 

Passive memoryless elements

The second type of multi-port element R corresponds to energy dissipation (friction, resistance) or more generally to passive memoryless elements (examples shown in figure 1.3).

Name

Component w Law w * = z(w) 

Resistor R v i i v = Ri Conductor G v i v i = Gv Shockley Diode D v i v i = pn(v) (see (1.42)) Ideal Diode D v i v i ∈ {0} v ∈ R -\ {0} R + v = 0 BJT B C E i BE i BC i BC i BE v BE v BC   v BC v BE     i BC i BE   =   γ R -1 -1 γ F     pn(v BC ) pn(v BE )  
E R = F * R . A resistive relation R is a subset R ⊂ F R × E R defined by R := (f R , e R ) ∈ F R × E R | e R | f R ≥ 0 .
(1.34)

with dim R = dim F.
Note that, it defines a passive relation that is neither over nor under determined, but can be multi-valued (see appendix A p.271). Following reference [START_REF] Ryu | Primer on monotone operator methods[END_REF], we overload function notation and write R(f ) to mean the set 

R(f ) = e ∈ E R | (f , e) ∈ R . ( 1 
R(f ) f ≥ m, ∀f ∈ dom R, (1.36a) 
• monotone or incrementally passive when

R(f 2 ) -R(f 1 ) f 2 -f 1 ≥ 0, ∀f 1 , f 2 ∈ dom R, (1.36b) 
• strongly monotone or coercive when there exists m > 0 such that

R(f 2 ) -R(f 1 ) f 2 -f 1 ≥ m f 2 -f 1 2 , ∀f 1 , f 2 ∈ dom R, (1.36c) 
• one-sided Lipschitz when there exist L > 0 such that

R(f 1 ) -R(f 2 ) f 2 -f 1 ≤ L f 2 -f 1 2 , ∀f 1 , f 2 ∈ dom R, (1.36d) 
• Lipschitz when there exist L > 0 such that

R(f 2 ) -R(f 2 ) ≤ L f 2 -f 1 , ∀f 1 , f 2 ∈ dom R. (1.36e)
Explicit mappings Let (W, W * ) denote (possibly hybrid) flow-effort spaces induced by a suitable permutation among the coordinates of flow and effort spaces (F R , E R ). In the majority of cases, resistive relations can be defined by the graph of an explicit mapping z : w → w * = z(w) where z is a dissipative operator satisfying the power-balance.

z(w) w ≥ 0.

(1.37)

Linear Resistive relations Linear resistive elements are characterized by linear mappings of the form z(w) = Aw with positive semi-definite matrix A (i.e. A + A T 0). For example, pure resistance (v = Ri) or conductance (i = Gv) relations are characterised by symmetric positive definite matrices (R = R T 0, G = G T 0).

Implicit parametrisation Multi-valued or non monotone relations (e.g ideal or tunnel diodes) may be easier to describe using implicit parametrisations.

Definition 1.21 (Implicit resistive relation). Denote Λ = R n with F R = R n = E R and let E : Λ → E R , F : Λ → F R be two algebraic operators. If E(λ) F (λ) ≥ 0, for all λ ∈ Λ, the set R is called an implicit resistive structure in image parametrisation, where

R = (F (λ), E(λ)) ∈ F R × E R ∀λ ∈ Λ . (1.38)
To illustrate this, consider the set-valued relation of the ideal diode from table 1.3

R =    (v, i) ∈ R × R i ∈ {0} v ∈ R -\ {0} R + v ∈ {0}    . v i R with dom R = R -, im R = R + .
Equivalently, it can be implicitely parametrized by

R =      (v, i) ∈ R × R   v i   =   -V 0 1 R -(λ) I 0 1 R + (λ)   , ∀λ ∈ R      . v i • (v(λ), î(λ)) R (1.39)
where 1 S denote the indicator function of a set S and V 0 , I 0 can be any positive normalisation constants. R clearly defines a one-dimensional manifold in R × R that cannot be represented as a single-valued function in the (v, i) plane. The implicit parametrisation has the advantage of making the one dimensional constraint explicit, and uses continuous single-valued functions. This last fact is useful numerically. It has been exploited by the author in the article [START_REF]Fully-implicit algebro-differential parametrization of circuits[END_REF].

Dissipative potentials

In this thesis, we use the results from [START_REF] Millar | Some general theorems for non-linear systems possessing resistance[END_REF][START_REF] Cherry | Some general theorems for non-linear systems possessing reactance[END_REF] about dissipative potentials for simulation purposes 9 . As effort laws derive from the gradient of the Hamiltonian for storage components. In a similar manner, dissipative laws can be regarded as arising from the gradient of a "power potential" (this is related to Brayton-Moser mixed-potential theory [START_REF] Brayton | A theory of nonlinear networks. i[END_REF][START_REF]A theory of nonlinear networks. ii[END_REF][START_REF] Jeltsema | A dual relation between port-Hamiltonian systems and the Brayton-Moser equations for nonlinear switched RLC circuits[END_REF]). To this end, consider the power differential

d(e • f ) = e • df + f • de .
For an integrable resistive relation R, define potential functions D : F R → R and D * : E R → R respectively called content and co-content10 by the line integrals

D(f R ) := ˆfR 0 E(f ) • df , D * (e R ) := ˆeR 0 F (e) • de , (1.40) 
so that for all (f R , e R ) ∈ R, integrating the differential d(e • f ) along the path γ : (0, 0) → (f R , e R ) ∈ R, the power is equal to the sum of content and co-content potentials

e R • f R = D(f R ) + D * (e R ) , ∀(f R , e R ) ∈ R.
(1.41)

Differentiating (1.41) with respect to (e R , f R ) it follows from the definition that we can indeed recover efforts or flows respectively from the gradient of the content and co-content potentials.

e R = ∇D(f R ) , and f R = ∇D * (e R ) .

Equation (1.41) is illustrated visually on figures 1.6 and 1.7 below.

Remark 1.7 (Legendre transformation). Content and co-content potential D and D * are dual to each other (see figures 1.6, 1.7) and represent the same information. In the case of convex potentials, they are respectively equal to the Legendre transformation of each other

D(f R ) = e R • f R -D * (e R ) , D * (e R ) = e R • f R -D(f R ) .
Note that this is just a reformulation of (1.41). See [START_REF] Zia | Making sense of the Legendre transform[END_REF] for a detailed introduction to the Legendre and Legendre-Fenchel transformations.

Chapter 1. Port-Hamiltonian Systems

Examples of resistive structures

vi = D(i) + D * (v) D * (v) D(i) v i Figure 1.
6 -Law of a linear resistor and its current and voltage power potentials.

Linear resistor For a linear resistor, v i the resistive structure is bijective. It can be either current or voltage controlled

(v, i) ∈ R 2 | v = v(i) = Ri = R = (v, i) ∈ R 2 | i = î(v) = v R .
Its current and voltage potentials are respectively given by

D(i) = ˆi 0 v(ι) dι = Ri 2 2 , D * (v) = ˆv 0 î(ν) dν = v 2 2R .
This is shown on figure 1.6. In this particular case (because of linearity), we have

D(i) = D * (v(i)) = Ri 2
, but this result should not be extrapolated as the next example shows. 

vi = D(i) + D * (v) D * (v) D(i) v i
= (v, i) ∈ R 2 | i = pn(v) with pn(v) := I S exp v nV T -1 . (1.42)
where I S is the saturation current, n the ideality factor, V T = kT qe the thermal voltage with k the Boltzmann constant, T the temperature in Kelvin and q e the charge of the electron. By integration, its voltage potential is given by

D * (v) = ˆv 0 î(ν) dν = nV T I S exp v nV T - v nV T -1 . (1.43)
Using bijectivity, we can express the current potential indirectly by using the inverse map

v = pn -1 (i) = nV T ln 1 + i I S , i > -I S , (1.44) 
and the Legendre transformation

D(i) = vi -D * (v) v= î-1 (i) to obtain D(i) = nV T I S 1 + i I S ln 1 + i I S - i I S (1.45)
Using the above definitions, the current and voltage potentials being known, for simulations purposes, the component can be either flow or effort-driven (according to the constraints of circuit interconnections). On figure 1.7, the areas filled by the diode power P (v, i) and the current and voltage potentials D(i) and D * (v) are shown in the (v, i) plane for I S = 1, nV T = 1. It is geometrically clear that the current and voltage potentials are complimentary and their sum equals the power vi. It is also clear that in the nonlinear case

D(i) = D * (v(i)).
Example 1.9 (Tunnel diode). A tunnel diode v i is a passive device, but its characteristic is not monotonous. It exhibits a region of negative incremental resistance. the resistive structure is given by R

= (v, i) ∈ R 2 | i = g(v)
where the nonlinear characteristic g is shown on figure 1.8 with V P the peak voltage, V I , the inflection voltage and V V the valley voltage. Common modelling approaches uses cubic ([NAY62, HDF + 10]) or quintic ([CDK87, p.409]) polynomials. More physical approaches (see [START_REF] Ng | Tunnel Devices[END_REF]) use the standard PN diode model in parallel with additional terms to model the tunnel effect, the simplest being (see figure 1.8)

g(v) = I S e v V T -1 PN diode + I P v V P e - v-V P V P peak current
.

(1.46) 

i BE i BC i BC i BE v BE v BC
The Ebers-Moll model of a NPN Bipolar Junction Transistor, which is equivalent to two coupled PN diodes a , can be written compactly (see Gummel-Poon article [GP70, Eq.3]) as

R BJT =             i BC i BE   ,   v BC v BE      ∈ R 2 × R 2   i BC i BE   =   γ R -1 -1 γ F     pn(v BC ) pn(v BE )          . (1.47)
where the parameters β F , β R (usually β F ≈ 100, β R ≈ 20) are respectively the forward and reverse common-emmiter curent gains. The derived parameters γ F , γ R are given by γ = 1 + 1/β > 1. Since the PHS formalism is all about explicitly formalising passive power exchange, it is important to verify before using a model that it is energetically well-posed. An original proof of passivity (not commonly found in the literature) is proposed below b .

Proof. To prove passivity of the Ebers-Moll model, notice that function pn (see eq. (1.42)), is both passive (pn(v) • v ≥ 0) and incrementally passive (pn

(v 1 ) -pn(v 2 )) • (v 1 -v 2 ) ≥ 0).
Finally, decompose the power as a sum of non-negative terms

v BC v BE   i BC i BE   = v BC v BE      1 -1 -1 1   +   γ R -1 0 0 γ F -1        pn(v BC ) pn(v BE )   = pn(v BC ) -pn(v BE ) (v BC -v BE ) ≥0 + (γ F -1) ≥0 v BC pn(v BC ) ≥0 + (γ R -1) ≥0 v BE pn(v BE ) ≥0 ≥ 0.
a. see equation (1.42) for the definition of the pn function. b. Note that this proof assumes incremental passivity with both PN junctions having the same process parameters. SPICE modelling is more flexible than that: different saturation currents and ideality factors can be used, but then proving (local) passivity becomes dependent on the particular choice of parameters.

Input-State-Output Representation (PH-ODE)

An important class of port-Hamiltonian systems is the structured state-space representation. Definition 1.22 (Input-State-Output PHS [START_REF]L2-gain and passivity techniques in nonlinear control[END_REF] p.113). An input-state-output port-Hamiltonian system with n S -dimensional state-space manifold X , n P -dimensional input and output spaces U ∼ Y = R n P , and Hamiltonian H : X → R, is given by

ẋ = J (x) -R(x) ∇H(x) + G(x)u y = G T (x)∇H(x) (1.48)
where matrix functions J (x), R(x) ∈ R n S ×n S satisfy J = -J T and R = R T 0.

It follows that it structurally satisfies the following passive power balance (see definition 1.5)

d dt (H • x) = ∇H(x) ẋ P S = -∇H(x) R(x) ∇H(x) P R ≥0 + y | u P P ≤ y | u , (1.49) 
meaning that storing components receive the power P S , dissipative components receive (and dissipate) P R and external sources supply P P in a balanced manner.

Remark 1.8 (Receiver convention). Exceptionnaly, in order to make the connection with state-space system theory easier, the power u | y in (1.49) uses the emitter convention.

From now on (and throughout this document), we uniformly use the receiver convention for all components including external ports / sources so that power balances can be written under the canonical form

i e i | f i = 0.
This choice is made to simplify sign conventions in automated modelling and is very common in electronics (Tellegen theorem). However it requires special care with input/outputs when using results from state-space and bond-graph theory where the emitter convention is often implied for input-output ports.

An extension of definition 1.22 for systems with direct feed-through is given by Definition 1.23 (input-state-output PHS with feedthrough ([VdS17] p.114)). An input-stateoutput port-Hamiltonian system with feed through with n-dimensional state-space manifold X , input and output spaces U ∼ Y = R n P , and Hamiltonian H : X → R, is given as

  ẋ y   = J (x) -R(x)   ∇H(x) u   , (1.50) 
where matrix functions J (x), R(x) ∈ R (n S +n P )×(n S +n P ) satisfy J = -J T and R = R T 0.

likewise it satisfies the passive power balance (P P now denotes the power received by sources)

∇H(x) ẋ P S + u | y P P = -   ∇H(x) u   R(x)   ∇H(x) u   P R ≥0 ≤ 0.
(1.51)

Semi-explicit representation (PH-DAE)

A PHS does not always admit an explicit input-state-output representation. Moreover it is not always desirable (or may be computationally difficult) to find one. Another important representation of PHS, which is used in this thesis, is the following semi-explicit PH-DAE. Definition 1.24 (semi-explicit PH-DAE). A semi-explicit port-Hamiltonian DAE with n S -dimensional state-space manifold X and Hamiltonian H : X → R, resistive structure R ⊂ W × W * given by an explicit map z : W → W * with W ∼ W * = R n R , and input output spaces U ∼ Y = R n P , is given by

     ẋ w y      = J      ∇H(x) z(w) u      , where J =      J xx * * J wx J ww * J ux J uw J uu      , (1.52) 
and the (n S + n R + n P ) × (n S + n R + n P ) matrix J = -J T (possibly depending on x).

In this case, the power-balance writes as follows. 

         ẋ = f (x, w, u) = J xx ∇H(x) -J T wx z(w) -J T ux u 0 = g(x, w, u) = w - J wx ∇H(x) + J ww z(w) -J T uw u y = h(x, w, u) = J ux ∇H(x) + J uw z(w) + J uu u . (1.54)
Remark 1.9 (Index-1). According to definition 1.7, the DAE has differential index-1 if g is solvable for w, i.e. if matrix ∂ g ∂w = I -J ww z (w) is invertible. A case that frequently arises in applications is when either J ww = 0 or z (w) is positive definite. Then the DAE is automatically of index-1. This will be addressed for circuits in section 2.3.4 p.60.

For more details such as representation of PHS in canonical coordinates, or constrained PHS using Lagrange multipliers, we refer to [START_REF] Van Der Schaft | Port-Hamiltonian systems theory: An introductory overview[END_REF].

From flow-effort to wave variables

In this section, we show that flow-effort variables, can be equivalently represented by incoming and outgoing wave variables. In the Bondgraph litterature, wave variable representations of circuits have been pioneered by Paynter ([Pay61] p.268) and Breedveld ([Bre85] p.6) where they constitute an alternate choice of variables (see [START_REF] Stramigioli | Geometric scattering in robotic telemanipulation[END_REF][START_REF] Stramigioli | Sampled data systems passivity and discrete port-hamiltonian systems[END_REF]). By contrast, in Wave Digital Filters (see Fettweiss [START_REF] Fettweis | Wave digital filters: Theory and practice[END_REF]), which is still an active research field [Bil04, WNSA15, WBSS18, BS17] in audio, wave variables are a defining feature of the formalism. A distinguishing feature of WDF is to use impedance adaptation to obtain a majority of explicit or reflection-free ports, which considerably reduces the cost of numerical simulations 11 .

We first present the classical wave variable change (defined locally for each port), then we provide an alternative geometric viewpoint to show that the wave variable change naturally arise from a splitting of the bondspace B into an euclidean space W + for incident waves and an anti-euclidean space W -for outgoing waves both induced by the indefinite metric.

The classical wave variable change

Classically (see [START_REF] Fettweis | Wave digital filters: Theory and practice[END_REF]), for each port, incoming and outgoing waves (w + , w-) are introduced with a reference "resistance" R (and possibly a reference voltage V 0 for adimensionalisation 12 ) by the variable change (e, f ) ↔ (w + , w-)

       w + = e + Rf V 0 w -= e -Rf V 0 ⇐⇒              f = V 0 R w + -w - 2 e = V 0 w + + w - 2 (1.55) 
Multiplying e and f yields that the instantaneous power P is proportional to the difference between incoming power w + 2 /2 and the outgoing powers w -2 /2

P = ef = V 2 0 2R   w + 2 -w -2 2   .
Classical choices for V 0 are:

• V 0 = 1 which yields the definition of effort wave variables.

• V 0 = R which yields the definition of flow wave variables.

• V 0 = √ 2R which yields the definition of power wave variables. Note that, for the last choice, the variable change is a sequence of two power-conserving unitary transforms: an hyperbolic squeeze (with hyperbolic angle ϕ = ln( √ R)) followed by a rotation (by angle θ = -π/4)

  w + w -   = 1 √ 2   1 1 -1 1   rotation   √ R 0 0 1/ √ R   hyperbolic rotation   f e   .
(1.56)

11. One can show, that in the linear case, port-adaptation automatically and structurally performs on the fly matrix inversion. This is closely related to QR decomposition using sequences of Householder reflections.

12. Note that bi-parametric waves (introduced in [BS17]) also makes use of two degrees of freedom.

Geometric viewpoint

We now adopt a top-down geometric viewpoint. Considering the bond space B equipped with the indefinite bilinear form •, • B (see definition 1.12), we show that it naturally splits into a positive euclidean space (for incoming waves) and a negative anti-euclidean space (for outgoing waves): wave variables emerges as a consequence of the indefinite metric (see definition C.14 p.283) induced by the duality pairing .

Following [START_REF]L2-gain and passivity techniques in nonlinear control[END_REF][START_REF] Stramigioli | Geometric scattering in robotic telemanipulation[END_REF], let F be a linear vector space, E := F * its dual output space and B = F × E the product space where (f , e) have already been normalized. The bilinear form

•, • B has the matrix representation (using the notation u

| A | v = u T Av)   f 1 e 1   ,   f 2 e 2   B =   f 1 e 1     0 m I m I m 0 m     f 2 e 2   .
It immediately follows using the eigenvalue decomposition that

  0 m I m I m 0 m   = 1 √ 2   I m -I m I m I m   U   I m 0 m 0 m -I m   Λ 1 √ 2   I m I m -I m I m   U T .
It has m eigenvalues +1 and m eigenvalues -1 and thus defines an indefinite inner product. As in (1.56), the change of basis from flow-effort to waves is given by the rotation matrix

U T   w + w -   = 1 √ 2   I m I m -I m I m     f e   ⇐⇒   f e   = 1 √ 2   I m -I m I m I m     w + w -   . (1.57) 
The scattering representation consists in decomposing the vector (f , e) ∈ F × E according to the positive and negative eigenvalues. It defines respectively a positive euclidean subspace W + ∼ R m,0 and a negative anti-euclidean subspace 13 W -∼ R 0,m so that

W + ⊕ W -∼ R m,m . Definition 1.25 (Scattering subspaces ([VdS17] p. 27)). Any pair (W + , W -) of subspaces W + , W -⊂ B = F × E is called a pair of scattering subspaces if 1. W + ⊕ W -= F × E, 2. w + 1 , w + 2 B > 0, ∀ w + 1 , w + 2 ∈ W + \ 0, 3. w - 1 , w - 2 B < 0, ∀ w - 1 , w - 2 ∈ W -\ 0, 4. w + , w - B = 0, ∀ (w + , w -) ∈ W + ⊕ W -.
Any vector (f , e) ∈ F × E can be represented as a pair w + ⊕ w -∈ W + ⊕ W -. The representation (f , e) = w + ⊕ w -is called a scattering representation and w ± are called the wave vectors of the combined vector (f , e). It follows that for all

(f i , e i ) = w + i ⊕ w - i , i = 1, 2   f 1 e 1   ,   f 2 e 2   B =   w + 1 w - 1     I m 0 m 0 m -I m     w + 2 w - 2   = w + 1 , w + 2 R m -w - 1 , w - 2 R m . (1.58)
13. R p,q denotes the pseudo-euclidean space with metric signature 1, . . .

1 p , -1, . . . , -1 q Reflected waves W - Incident waves W + Dirac structure D •, • B < 0 •, • B = 0 •, • B > 0 B Figure 1
.9 -Abstract illustration of the splitting of the (indefinite inner product) space B into a positive space W + , a negative space W -and a null space D.

so that (for (e 1 , f 1 ) = (e 2 , f 2 ) = (e, f ) = w + ⊕ w -), the power writes

P = e | f = 1 2   f e   ,   f e   B = 1 2 w + 2 R m -w -2 R m .
(1.59)

Remark 1.10 (Physical Units). In the previous development, it is assumed that flow and effort variables (f , e) have already been scaled to the same physical unit so that linear combinations make sense physically. Since we also use P = e | f to denote power, for ( f , ẽ) expressed in power-conjugated natural units (e.g. Ampere and Volts), it is necessary to use a power-preserving variable change ρ : ( f , ẽ) → (f , e) (expressed in square root of Watt).

ρ :

  f e   =   R 1/2 0 0 R -1/2     f ẽ  , R = diag(R 1 , . . . R m ) > 0.
where R 1 , . . . , R m can be chosen as arbitrary scaling constants a . Since the variable change is power preserving, we can verify that the scaling ρ also preserves the inner product

ρ   f 1 e 1   , ρ   f 2 e 2   B =   f 1 e 1   ,   f 2 e 2   B .
Combining variable changes, we obtain the unitary power-wave transform ( f , ẽ) → (w + , w -).

  w + w -   = 1 √ 2   I I -I I     R 1/2 0 0 R -1/2     f ẽ  . (1.60) a.
Recently, in reference [START_REF] Bernardini | Vector wave digital filters and their application to circuits with two-port elements[END_REF], the authors have proposed a vector definition of waves of the form w ± = e ± Rf where R can be any invertible real matrix (not necessarily symmetric positive definite), including "across ports" linear combinations. We investigate this topic independently in section 2.5 p.73.

In section 9.4 p.254, thanks to Geometric Algebra, we revisit flow-effort and wave representation using simpler notations.

Wave variables representation of Port-Hamiltonian Systems

We consider the scattering representation of Dirac, storage and dissipative structures considered as causal maps w + → w -. This section (mostly formal) is a step towards establishing deeper links between PHS and WDF.

Dirac structures

A Dirac structure D can be represented by the graph of an invertible linear map S : W + → W -. This is related to the standard results from Carlin [START_REF] Carlin | Singular network elements[END_REF][START_REF]On the existence of a scattering representation for passive networks[END_REF]: normal linear passive networks always possesses a scattering representation. This is summarized by the following definition. Definition 1.26 (Scattering representation [START_REF]L2-gain and passivity techniques in nonlinear control[END_REF] p.164). Let D ⊂ F × E be a Dirac structure, and (W + , W -) scattering subspaces. The linear map S :

W + → W -satisfying D = (f , e) = w + ⊕ w -| w -= Sw + (1.61)
is called the scattering representation of D.

For a skew-symmetric Dirac structure, we have the following proposition.

Proposition 1.2 (Scattering of skew-symmetric Dirac structure). For (1.60), the scattering representation of a Dirac structure D given by f = Je with J = -J T , is the matrix

S D = (I -J R )(I + J R ) -1 , where J R := R 1/2 JR 1/2 = -J T R (1.62) S R (the Cayley transform of J R ) is orthonormal, so that S D w + R n = w + R n .
Proof. Substituting f = Je in (1.60) and factoring R -1/2 on the right, we obtain

w + = 1 √ 2 I + R 1/2 JR 1/2 R -1/2 e, w -= 1 √ 2 I -R 1/2 JR 1/2 R -1/2 e.
Defining J R = R 1/2 JR 1/2 and solving for e we obtain the map w -= (I -J R )(I + J R ) -1 w + .

Linear resistive relations

Using the same argument as above, we obtain Proposition 1.3 (Scattering of linear resistive structures). For a linear resistive structure,

R lin = (e, f ) ∈ R n × R n | f = Ae where A mI, m ≥ 0. (1.63)
and the wave variable change (1.60), the scattering representation of (1.63) is the matrix

S R = (I -A R )(I + A R ) -1 , where A R := R 1/2 AR 1/2 0, (1.64)
By properties of the Cayley transform, S R is non expansive, so that

S R w R n ≤ α w R n , with α = |1 -m| /(1 + m).
(1.65) Note that, when A is diagonal (i.e. a multiport constituted of indepedent resistors), choosing R = A -1 , it is possible to make the structure reflection-free. In this case S R = 0.

Non linear multi-valued resistive relations

Following reference [START_REF] Ryu | Primer on monotone operator methods[END_REF], it is possible to generalise the Cayley transform to nonlinear multi-valued relations. First we recall the following results 14 . Let A be a relation and I the identity relation, then for α ∈ R, the resolvent of A is R A,α = (I + αA) -1 and its Cayley operator (see equation (A.1) p.273) is C A,α = 2R A,α -I. When A is maximal and single-valued, then

C A,α = (I -αA)(I + αA) -1 , ∀α ≥ 0.
(1.66)

When A is maximal monotone but not necessarily single-valued, then C A satisfies

C A,α (I + αA) = (I -αA), ∀α > 0.
(1.67) Proposition 1.4 (Scattering of resistive relations). For a resistive relation

G = (e, f ) ∈ R n × R n | f ∈ G(e), f | e ≥ 0 . (1.68)
and the wave variable change (1.60), then its scattering representation is the Cayley operator

S G = 2(I -G R ) -1 -I where G R = R 1/2 GR 1/2 (1.69)
According to [START_REF] Ryu | Primer on monotone operator methods[END_REF], if G is monotone, then S G is nonexpansive, and if G is strongly monotone with parameter m and Lipschitz with constant L (see definition 1.20 p.28), then S G is a contraction with parameter

L S G = 1 - 4m (1 + L) 2 .
(1.70)

Storage structures

We pursue the same approach to characterise the scattering operators of storage structures. for flows and efforts evolving in the Lebesgue spaces F S ∼ E S ∼ L 2 (Ω, R n ) (over time steps Ω). Proposition 1.5 (scattering of linear storage structure). For a linear storage structure

S = (f , e) ∈ F S × E S | ∃x ∈ H 1 (Ω, R n ), f = ẋ, e = Qx, Q = Q T 0 , (1.71)
the scattering representation of S through (1.60) is the formal differential operator

S S = -(D -Q R )(D + Q R ) -1 , where Q R = R -1/2 QR -1/2 and D = d dt .
(1.72)

Proof. Substituting the constitutive relation in (1.60) and factoring R 1/2 on the right, we obtain

w + = 1 √ 2 R -1/2 QR -1/2 + D R 1/2 x, w -= 1 √ 2 R -1/2 QR -1/2 -D R 1/2 x.
Defining Q R = R -1/2 QR -1/2 and solving for x we obtain

w -= -(D -Q R )(D +Q R ) -1 w + .
14. For more details regarding relations, their inverse, resolvant and Cayley operator, please refer to reference [START_REF] Ryu | Primer on monotone operator methods[END_REF] whose main results are recalled in appendix A p.271.

Note that for scalar components (e.g. for a capacitor Q = 1/C, Q R = 1/RC), the Laplace transform of (1.72) (see definition C.10 p.282) yields the familiar allpass operator

H C (s) = L(S C ) = - s -q R s + q R = 1 -sRC 1 + sRC , so that H C (s) = 1, ∀s ∈ iR.
In Wave Digital Filters, the Laplace variable is usually substituted by the finite difference approximation s ≈ (2/h) • (1 -z -1 )/(1 + z -1 ), where z = e hs denotes the time-shift operator, so that after substitution and using impedance adaption R = h/2C, we get the causal map

H C (z) = 1 -2 h 1-z -1 1+z -1 RC 1 + 2 h 1-z -1 1+z -1 RC = (1 + z -1 ) -(1 -z -1 ) (1 + z -1 ) + (1 -z -1 ) = z -1 . (1.73)
Numerically, this means that reflected waves w -[n] only depend on previous incoming waves w + [n -1], so that the numerical scheme is explicit.

Nonlinear storage structures

Finally, for nonlinear storage structures, we have the following formal result Proposition 1.6 (scattering of nonlinear storage structure). For a storage structure

S = (f , e) ∈ F S × E S | ∃x ∈ H 1 (Ω, R n ), f = ẋ, e = ∇H(x) (1.74)
the wave variable change (1.60) yields a scattering representation given by the formal operator

S S = 1 √ 2 (D -∇H R ) • (D + ∇H R ) -1 √ 2 where ∇H R = R -1/2 • ∇H • R -1/2 . (1.75)
Proof. Let f = ẋ, e = ∇H(x) in the wave variable change (1.60), we get

1 √ 2 R 1/2 ẋ + R -1/2 ∇H(x) = w + , 1 √ 2 R 1/2 ẋ -R -1/2 ∇H(x) = w -. Introducing z = R 1/2 x, and ∇H R (z) = R -1/2 ∇H(R -1/2 z) yields the state-space ODE      ż = -∇H R (z) + √ 2w + , w -= 1 √ 2 ( ż -∇H R (z)). ⇐⇒      (D + ∇H R )(z) = √ 2w + , w -= 1 √ 2 (D -∇H R )(z). (1.76)
The output equation can be further refined (by eliminating ż) as

w -= - √ 2∇H R (z) + w + .
A first difficulty to simulate nonlinear PHS directly from wave variables is being able to compute the inverse operator (D + ∇H R ) -1 , i.e. solving the system (1.76). To this end, numerical integration methods such the ones in chapters 4, 5, 6 can be applied (but are usually iterative, nonlinear and implicit), see also references [START_REF] Stramigioli | Geometric scattering in robotic telemanipulation[END_REF][START_REF] Stramigioli | Sampled data systems passivity and discrete port-hamiltonian systems[END_REF].

A second difficulty, is making the mapping w + → w -explicit in time after discretisation as in (1.73) (which is the whole purpose of WDF). Impedance matching for PHS is also discussed in [START_REF] Stramigioli | Geometric scattering in robotic telemanipulation[END_REF]. This non-trivial task is still an open subject for research. For this reason, in the remainder of this thesis we focus on the flow-effort representation for simulation. 

√ 2 + • ∇ H R • + 1 √ 2 w + ż z ∇H R (z) - w - - Figure 1.

Conclusion

In this chapter, we have reviewed fundamental results about ODE, state-space systems and DAE. In particular existence and uniqueness theorems, DAE indexes, stability, Lyapunov functions and power balance. The foundations of Port-Hamiltonian Systems (Dirac structure, storage structures and resistive structures) which are required to model electronic circuits were recalled. In particular, in Part II, input-state-output PH-ODE and semi-explicit PH-DAE are the main representations used to construct numerical methods which preserves the energy balance in Equation 1.53b .

An introduction to flow-effort and wave variables representations of PHS has been detailed (in order to establishing deeper links between PHS and WDF) with an emphasis on the geometric structure of the indefinite metric bond space B ∼ R n,n and its positive and negative wave polarisations W + ∼ R n,0 and W + ∼ R 0,n . Special care has also been paid to include impedanceadaption (to yield causal explicit numerical schemes) and to formalise the scattering representation of Dirac structures, resistive structures and storage structures. In this context, the central tool is the Cayley transform (and its generalisation to relations and maximal monotone operators). Finding explicit time-stepping schemes through port-adaptation for nonlinear relations and storage structures is an interesting opportunity for future research.

A number of electronic components have already been presented as illustrational examples. However, we did not explain yet how to obtain PH-DAE and PH-ODE from circuit schematics. This topic is precisely the object of chapter 2 below. With numerical simulation in mind, we present the steps that are required to convert between circuit representations (see Figure 2.1): from the most general (netlists) to the most specific (PH-ODE and semi-explicit PH-DAE). For each formulation, we establish a systematic link with the underlying Dirac structures and the power balance. We quickly recall Kirchhoff laws and the lumped circuit hypothesis in section 2.1, elements of graph theory are recalled in section 2.2, PHS formulation of circuits are detailed in section 2.3, followed by a side by side comparison of bond-graphs and wave digital filters in section 2.4, finally we conclude by power-preserving port variable changes in section 2.5 that we use to preserve topological circuit symmetries (e.g. common and differential modes). Along the way, causal computations are addressed in subsection 2.3.3, PH-DAE to PH-ODE reduction in subsection 2.3.4. We also present in subsection 2.3.5 an alternative PH-DAE to (modulated) PH-ODE conversion such that the total energy (Hamiltonian+heat) is an explicit invariant (which can be exploited in numerical simulation). state of the art For space reason, we focus on Port-Hamiltonian representations. We do not present classical circuit formulations that are already well covered in the literature, namely Modified Nodal Analysis (MNA) [START_REF] Ho | The modified nodal approach to network analysis[END_REF] (the foundation of SPICE [START_REF] Nagel | Spice2: A computer program to simulate semiconductor circuits[END_REF]), Sparse Tableau Analysis (STA) [START_REF] Hachtel | The sparse tableau approach to network analysis and design[END_REF], Hybrid Analysis (HA) [START_REF] Chua | Diakoptic and generalized hybrid analysis[END_REF] and State Space formulation [START_REF] Kuh | The state-variable approach to network analysis[END_REF] (including the K/DK-methods [BDPR00, YAS10] and [START_REF]A generalized method for the derivation of non-linear state-space models from circuit schematics[END_REF]). The Brayton-Moser approach [START_REF] Brayton | A theory of nonlinear networks. i[END_REF][START_REF]A theory of nonlinear networks. ii[END_REF] based on mixed-potential an co-energy variables is also skipped (we refer to [START_REF] Jeltsema | A dual relation between port-Hamiltonian systems and the Brayton-Moser equations for nonlinear switched RLC circuits[END_REF] for their dual relation with PHS). In contrast, Wave Digital Filters (WDF) [START_REF] Fettweis | Wave digital filters: Theory and practice[END_REF], which are common in audio electronics, are shortly presented together with bond-graphs [START_REF] Paynter | Analysis and design of engineering systems[END_REF] to highlight their similarities. Finally, we note that recent formulations of circuits as PHS [START_REF] Gernandt | Port-Hamiltonian formulation of nonlinear electrical circuits[END_REF][START_REF] Günther | Dynamic iteration schemes and port-Hamiltonian formulation in coupled DAE circuit simulation[END_REF] have been published during the redaction of this manuscript. The approach presented here is close to the first reference while the second one considers the PHS equivalent of charge-flux oriented MNA (which is not explored in this thesis). 

Chapter 2

Revisiting circuit representations

Kirchhoff laws

In this manuscript, we only consider lumped circuits in the context of audio applications with ideal conducting wires. To reduce a circuit to a lumped representation, for a given time scale, its physical dimension must be small enough so that the propagation speed of electromagnetic waves can be considered instantaneous1 . Hypothesis 2.1 (Lumped circuit). The lumped circuit hypothesis assumes that the circuit's characteristic length L c is much smaller than the circuit's operating wavelength λ such that electro-magnetic steady-state is assumed, i.e.

• The change of the magnetic flux in time outside a conductor is zero.

∂ φ B ∂t = 0
• The change of the charge in time inside conducting elements is zero.

∂ q ∂t = 0
When this condition is satisfied, the current i(t) through any branch, and the voltage v(t) difference between any pair of nodes are well defined [START_REF] Fano | Electromagnetic fields, energy, and forces[END_REF]. The behaviour of the circuit becomes independent of the physical location of each component, only its topological interconnections becomes relevant2 . Kirchhoff laws are a direct consequence of the lumped circuit hypothesis 2.1 and the assumption of ideal connections.

Kirchhoff Voltage Laws For any connected circuits with n nodes, since the electric potential is jauge-invariant, one can choose arbitrarily one reference node with respect to which one can measure n -1 node voltages {e i } n-1 i=1 and by definition e 0 = 0.

Definition 2.1 (Kirchhoff Voltage Laws (KVL)). The following are equivalent and defined for all lumped connected circuits, for all times, for all choices of reference node

• (closed node sequences) For all closed node sequences, the algebraic sum of all node-tonode voltages around the chosen closed node sequence is equal to zero.

• (Loop)

The directed sum of the potential differences (voltages) around any closed loop is zero.

• (branch) For all pairs of nodes j, k, the branch voltage v kj is equal to the difference of the node voltages v kj (t) = e k (t) -e j (t).

Kirchhoff Current Laws Kirchhoff Current Law (KCL) is an expression the electric charge conservation law. The fundamental concept to express KCL, is the notion of a gaussian surface.

Definition 2.2 (Gaussian surface).

A gaussian surface S is a two-sided closed surface in three-dimensional space enclosing a volume V through which the flux of a vector field is calculated. S = ∂V .

Charge conservation, which was proved by Faraday in 1843, implies that the change in the amount of electric charge in any volume of space is exactly equal to the amount of charge flowing into the volume minus the amount of charge flowing out of the volume. Definition 2.3 (Kirchhoff Current Laws (KCL)). Kirchhoff current laws, which are valid for all lumped circuits, for all times t, can be expressed equivalently • (Gaussian surface law) The algebraic sum of the currents entering a Gaussian surface is equal to zero.

• (Node Law) The algebraic sum of the currents entering any node is equal to zero.

• (Cutset law) The algebraic sum of the currents associated with any cutset is equal to zero.

Proof. Les S be a gaussian surface enclosing a volume V , q the quantity of charges within the volume and J (A/m 2 ) the current density. By 1) definition of the current entering a gaussian surface, 2) the Stokes/divergence theorem, 3) charge conservation, 4) the lumped circuit hypothesis one obtains

I 1 = - ‹ S=∂V J • dS 2 = -˚V (∇ • J ) dV 3 = ∂ q ∂t 4 = 0.
Remark 2.1. To every node corresponds a gaussian surface enclosing the node which cuts every edges connected to the node, and to every cutset corresponds a gaussian surface which cuts exactly the same branches.

A direct consequence of Kirchhoff laws is the power-balance of electronic circuits.

Theorem 2.1 (Tellegen theorem [START_REF] Tellegen | A general network theorem, with applications[END_REF]). For all lumped circuits, for all times t, the sum of power over all circuit's branches is zero.

From circuits to graphs

Any lumped circuit can be splitted into two independant parts: component laws which exist independently of the context in which components are used, and Kirchhoff Laws which are algebraic constraints on branch voltages and currents arising from the interconnection of components. Network topology deals with the properties of lumped networks solely determined by the interconnection of components. This modelling step is standard and common to all circuit modelling methods [Chu75, CDK87] (for PHS in audio circuits see [START_REF] Falaize | Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios: Approche par réseau de composants et formulation Hamiltonienne à ports[END_REF][START_REF]Passive guaranteed simulation of analog audio circuits: A port-Hamiltonian approach[END_REF]).

Netlist The standardized description of a circuit for electronic simulations is through a netlist. For our current purpose, it is enough to say that each line of a netlist stands for a component structured as follows <type><label> <list of nodes> <parameters>; <comments> For complete netlist specifications, please refer to SPICE documentation [START_REF] Vladimirescu | The SPICE book[END_REF]. The knowledge of this netlist is then sufficient to one obtain the directed graph on the right

V 1 R 1 C 1 D 1 0 1 2 0 1 2 V 1 C 1 D 1 R 1 Figure 2.2 -Diode clipper graph.

Elements of graph theory

In order to automate the description and manipulation of Kirchhoff laws for any circuit, it is necessary to first recall some important results from graph theory that will be needed thereafter. We rely on references [START_REF] Chua | Computer-aided analysis of electronic circuits[END_REF][START_REF] Deo | Graph theory with applications to engineering and computer science[END_REF], and [START_REF] Slepian | Mathematical foundations of network analysis[END_REF][START_REF] Smale | On the mathematical foundations of electrical circuit theory[END_REF].

Definition 2.4 (Graph).

A graph G = (N , E) consists of two sets: a finite set of nodes (vertices) N = {η 1 , . . . , η n } and a finite set of edges (branches, links) E = { 1 , . . . b }. Each edge is identified with a pair of vertices which can be ordered (directed graph) or non ordered (undirected graph)

Definition 2.5 (Path). A set of edges p = { 1 , . . . , n } in a graph G is called a path between two nodes η j , η k if 1. consecutive branches i , i+1 have a common node, 2.
No node of G is contained in more that two edges of the set p, 3. η j and η k belong to exactly one edge in p.

Definition 2.6 (Connected Graph).

A graph G is said to be connected if there exists a path between any two nodes of the graph.

Definition 2.7 (Loop). A subgraph G s of a graph G is called a loop (or cycle) if 1. G s is connected, 2. every node of G s has exactly two edges of G s incident at it. 0 1 2 1 V 1 C 1 D 1 R 1 0 1 2 2 V 1 C 1 D 1 R 1 0 1 2 3 V 1 C 1 D 1 R 1 Figure 2.3 -Examples of loops shown in black. Definition 2.8 (Tree). A subgraph G s of a connected graph G is called a tree if 1. G s is connected, 2. G s has no loop.
Definition 2.9 (Spanning Tree). A subgraph G s of a connected graph G is called a spanning tree if it is a tree that contains all nodes of G.

Edges that belong to a spanning tree T are called tree edges, and those which do not belong to a spanning tree T are called links. All the links of a spanning tree T form a cotree T such that T ∪ T ∼ G. For a connected Graph G with n nodes, any spanning tree has exactly n -1 tree edges. The removal of edges C (not their nodes) results in a graph that is not connected, 2. after the removal of the edges, the restoration of any one edge from the set, will result in a connected graph.

0 1 2 V 1 C 1 D 1 R 1 0 1 2 V 1 C 1 D 1 R 1 0 1 2 V 1 C 1 D 1 R 1
To each cutset corresponds a partion of nodes N into two disjoint sets (N 1 , N 2 ) which can be oriented or non-oriented. These concepts are important to express Kirchhoff Laws in matrix form. In particular the notion of a (minimum) spanning tree, is required for automated generation of hybrid Dirac structures p.55 and in causality assignment p.57.

Incidence matrix

Definition 2.12 (Incidence Matrix). For a directed graph G with n nodes and b branches, the (node-edge) incidence matrix of the graph is the n × b matrix defined by

A := a ij n×b , a ij =        1 if branch j enters node i, -1 if branch j leaves node i, 0 otherwise (2.1)
Example 2.2 (Diode clipper incidence matrix). For the circuit shown on Figure 2.1, the incidence matrix is

A =     R 1 D 1 C 1 V 1 η 0 0 -1 -1 -1 η 1 1 0 0 1 η 2 -1 1 1 0     .
Definition 2.13 (Reduced Incidence matrix). Any (n -1) × b submatrix A f of an incidence matrix A(G) obtained by removing the row corresponding to a chosen reference node is called a reduced incidence matrix.

Example 2.3 (Diode clipper reduced incidence matrix). Choosing node η 0 as reference node, one obtains the reduced incidence matrix

A f =   R 1 D 1 C 1 V 1 η 1 1 0 0 1 η 2 -1 1 1 0   .
Definition 2.14 (Co-incidence Matrix). For a directed graph G with n nodes and b branches, the co-incidence matrix of the graph is the b × n matrix defined by D = A T .

An important result to obtain a hybrid Dirac structure (p.55) from Kirchhoff laws is given in the following theorem and its corollary Theorem 2.2 ([Deo17] thm 7.3). Let A be the incidence matrix of a connected graph G with n vertices. An (n -1) × (n -1) submatrix of A is non-singular if and only if the n -1 edges corresponding to the n -1 columns of this matrix constitutes a spanning tree in G.

Corollary 2.1. For a spanning tree T , A can be partitionned into an (n -1) × (n -1) tree incidence matrix A T and an (n -1) × (b -n + 1) link incidence matrix A L such that 

A = A T A L , then A T is invertible. Example 2.4. For the spanning tree T = {V 1 , C 1 }, with cotree T = L = {R 1 , D 1 } A f =   V 1 C 1 R 1 D 1 η 1 1 0 1 0 η 2 0 1 -1 1   , A T =   V 1 C 1 η 1 1 0 η 2 0 1   , A L =   R 1 D 1 η 1 1 0 η 2 -1 1   .
B := b ij ×b , b ij =       
1 if branch j is in loop i with the same orientation, -1 if branch j is in loop i with the opposite orientation 0 otherwise.

(2.2)

Example 2.5 (Diode clipper loop matrix). For the Diode clipper circuit, one obtains the loop matrix

B =    R 1 C 1 V 1 D 1 1 1 1 -1 0 2 1 0 -1 1 3 0 0 -1 1   . (2.3) Theorem 2.3.
If G is a graph without self-loops, with incidence matrix A and loop matrix B whose columns are arranged using the same order of edges, then every row of B is orthogonal to every row of A, that is AB T = BA T = 0.

Definition 2.16 (Fundamental Loop matrix). Any b -n + 1 × b submatrix B f of a loop matrix B in which all rows correspond to a set of fundamental loops (with respect to a spanning tree T ) is called a fundamental loop matrix.

Property 2.1. A Fundamental loop matrix can be partitionned as

B f = [B T I L ].
Example 2.6 (Diode clipper fundamental loop matrix). The fundamental loop matrix for the tree T = {V 1 , C 1 } with cotree T = {R 1 , D 1 } is obtained by removing the loop 2 (using the rule of only one cotree link per fundamental loop) and reordering columns into tree branches

{C 1 , V 1 } and cotree branches {R 1 , D 1 } B f =   C 1 V 1 R 1 D 1 1 1 -1 1 0 3 0 -1 0 1   , B T =   C 1 V 1 1 1 -1 3 0 -1   , B L =   R 1 D 1 1 1 0 3 0 1   .
Cutsets matrix Definition 2.17 (Cutset incidence matrix). For a directed graph G with n c oriented cutsets and n b branches, the cutset incidence matrix of the graph is the n c × n b matrix defined by

C := c ij nc×n b , c ij =       
1 if branch j is in cutset i with the same orientation, -1 if branch j is in cutset i with the opposite orientation, 0 otherwise.

(2.4) Definition 2.18 (Fundamental cutset matrix). Let G be a connected graph with n nodes and b branches. The fundamental cut-set matrix C f of G is an (n -1) × b submatrix of C such that the rows correspond to the set of fundamental cut-sets with respect to some spanning tree T .

0 1 2 3 V 1 C 1 D 1 R 1 R 2 c 0 c 1 c 2 c 3 c 4 c 5 C =          R 1 R 2 C 1 V 1 D 1 c 0 0 1 0 1 0 c 1 -1 0 0 -1 0 c 2 1 0 -1 0 -1 c 3 0 1 -1 0 -1 c 4 -1 1 0 0 0 c 5 0 0 1 1 1         
Property 2.2. A Fundamental cutset matrix can be partitioned into a diagonal tree cutset matrix and a link cutset matrix as

C f = [I T C L ].
Example 2.7. For a tree T = {R 1 , R 2 , V 1 }, and its cotree T = {C 1 , D 1 }, reordering columns, and removing cutsets c 0 , c 1 , c 4 corresponding to tree edges

R 1 , R 2 , V 1 (i.e. c 0 ∪ R 1 = T , c 1 ∪ R 2 = T , c 4 ∪ V 1 = T ) one obtains the fundamental cutset matrix. C f =     R 1 R 2 V 1 C 1 D 1 c 2 1 0 0 -1 -1 c 3 0 1 0 -1 -1 c 5 0 0 1 1 1     , C T =     R 1 R 2 V 1 c 2 1 0 0 c 3 0 1 0 c 5 0 0 1     , C L =     C 1 D 1 c 2 -1 -1 c 3 -1 -1 c 5 1 1     .
Relation between A, B, C From theorem 2.3, partitioning incidence and loop matrices A, B according to a tree T and dual links L = T as

A f = [A T A L ], B f = [B T I L ]
and using corrolary 2.1, one can show that the tree loop matrix B T is related to the tree and link incidence matrices

A T , A L as follows B T = -A -1 T A L 3 .
Proof.

A f B T f = 0 ⇐⇒ A T A L   B T I L   = 0 ⇐⇒ A T B T + A L = 0 ⇐⇒ B T = -A -1 T A L .

Port-Hamiltonian representations of electronic circuits

We present here PH circuit representations and transformations that will be used in this thesis. The Kirchhoff-Dirac structure is presented in subsection 2.3.1, then its reduction as a Hybrid Dirac structure is shown in subsection 2.3.2. Transformation to semi-explicit pH-DAE using well chosen spanning trees is detailed in subsection 2.3.3. Finally reduction of pH-DAE to pH-ODE in detailed in subsection 2.3.4. An alternative refinement is presented in subsection 2.3.5 using thermodynamic embedding of pH-DAEs as conservative but irreversibly modulated pH-ODEs.

Voltage, current and bond spaces for circuits

Following [START_REF]Port-Hamiltonian systems on graphs[END_REF][START_REF] Van Der Schaft | Discrete conservation laws and port-Hamiltonian systems on graphs and complexes[END_REF] (see also [START_REF] Smale | On the mathematical foundations of electrical circuit theory[END_REF]), for a circuit graph G with n nodes and b branches, over each node (using the label k = 0) and branch (using the label k = 1) 4 , using the receiver convention for both, we denote • V 0 ∼ R n the node voltage space and I 0 = V * 0 (∼ R n ) its dual the node current space,

• V 1 ∼ R b the branch voltage space and I 1 = V * 1 (∼ R b
) its dual the branch current space, with the duality pairings

i k | v k B k := i k • v k , ∀(i k , v k ) ∈ I k × V k , k ∈ {0, 1}.
(2.5)

Together they generate respectively the node bond space B 0 = I 0 × V 0 , the branch bond space 

B 1 = I 1 × V
Q B k (i, v) B k = 2 i | v , ∀(i, v) ∈ B k , k ∈ {0, 1}. (2.6) 
and their associated canonically defined indefinite bilinear form (see definition 1.12)

(i 1 , v 1 ), (i 2 , v 2 ) B k := i 1 | v 2 B k + i 2 | v 1 B k , ∀(i 1 , v 1 ), (i 2 , v 2 )) ∈ B k , k ∈ {0, 1}.
(2.7)

Kirchhoff-Dirac structure

Definition 2.19. Let D = A T (G) be the reduced co-incidence matrix of a circuit graph G. Kirchhoff Current and Voltage laws a can be expressed dually by

v 1 = Dv 0 , i 0 = -D T i 1 = 0. (2.8)
This defines the following Kirchhoff-Dirac structure

D =      (i 0 , v 0 , i 1 , v 1 ) ∈ B 0 × B 1   i 0 v 1   =   0 -D T D 0     v 0 i 1   , i 0 = 0.      (2.9)
a. The minus sign in front of i0 comes from the consistent use of the receiver convention for both nodes and branches: the sum of edge currents entering each node is zero.

4. This notation (k = 0, k = 1) is convenient and consistent with the k-junctions used in Bondgraph [START_REF] Paynter | Analysis and design of engineering systems[END_REF]: 0-junctions for nodes (shared voltage, parallel connection) and 1-junctions for branches (shared current, serial connection). It is also a mnemonic to remember that lumped circuit equations arise from the spatial discretization of electro-magnetic 0-forms for nodes and 1-forms for branches.

Remark 2.2 (Interpretation). Kirchhoff Current Laws can be interpreted as zero boundary conditions on the node currents a . The reduced co-incidence matrix D takes the status of a (lumped) differential operator D : V 0 → V 1 , with adjoint the reduced incidence matrix D T : I 1 → I 0 , i.e. we have the following diagram

v 0 ∈ V 0 v 1 ∈ V 1 i 0 ∈ I 0 i 1 ∈ I 1 D • | • B 0 • | • B 1 -D T (2.10) a.
If the charge is chosen as state variable for node and branches, this would correspoond to Neumann boundary conditions i0 = q0 = 0.

Power Balance Left multiplying (2.9) by [v 0 i 1 ], skew-symmetry of the Kirchhoff-Dirac structure leads to the power balance

v 0 • i 0 + v 1 • i 1 = v 0 i 1   0 -D T D 0     v 0 i 1   = 0. (2.11) 
Tellegen theorem Furthermore since we have the KCL subconstraint i 0 = 0 over the nodes, this yields Tellegen theorem (2.1) (the sum of a circuit branch power is zero ) over the edges 5

v 1 • i 1 = 0.
(2.12)

Circuits and homology groups Using homology groups, one can interpret the Kirchhoff-Dirac structure as a realisation of a Stokes-Dirac structure [START_REF] Kotyczka | Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems[END_REF] over 1-chains (edges) and 0-chains (nodes). See [START_REF] Van Der Schaft | Discrete conservation laws and port-Hamiltonian systems on graphs and complexes[END_REF][START_REF]Port-Hamiltonian systems on graphs[END_REF]. Kirchhoff laws can be rewritten canonically as δi 1 = 0, and v 1 = dv 0 where d ≡ D denotes the exterior derivative and δ ≡ D T denotes its dual the co-differential. See the thesis [START_REF] Abath | Circuit theory via algebraic topology[END_REF]chap.3] for more details about algebraic topology and discrete Stokes relations (p.34) for electric circuits.

Reduced Hybrid Dirac structure

The dimensionality of the Kirchhoff-Dirac structure (2.9) can be reduced by eliminating node variables 6 which again yields a hybrid Dirac structure. Let T be a spanning tree (def. 2.9) of a circuit graph G. Partitioning Kirchhoff laws (2.8) into tree (T ) and link (L = T ) variables yields

  v T v L   =   D T D L   v 0 , D T T D T L   i T i L   = 0. (2.13)
From theorem 2.2 and its corollary 2.1, having a spanning tree ensures that matrix D T is invertible so that one can eliminate node voltages v 0 using the relation

v 0 = D -1 T v T .
(2.14)

5. Indeed [CDK87, p.30], any two of KCL, KVL and Tellegen theorem implies the third one. 6. This is the opposite of (Modified) Nodal Analysis [START_REF] Ho | The modified nodal approach to network analysis[END_REF] which uses node voltages as main unknowns.

Fundamental loop and cutset form of Kirchhoff laws Substituting (2.14) in (2.13) and left multiplying the second equation of (2.13) by D -T T yields the expression of Kirchhoff Voltage and Current Laws using fundamental loop and fundamental cutset matrices

-D L D -1 T I L fundamental loop matrix B f   v T v L   = 0, I T D -T T D T L fundamental cutset matrix C f   i T i L   = 0. (2.15)
where the tree loop matrix B T = -D L D -1 T and the link cutset matrix

C L = D -T T D T L , are related by C L = -B T
T . This is summarized by the following definition.

Definition 2.20 (Loop and cutset form of Kirchhoff Laws). Let B f and C f be the fundamental loop and cutset matrices associated to a graph G with spanning tree T . then Kirchhoff laws can be written as

B f v = 0, (KVL) C f i = 0. (KCL) (2.16)
where

B f = [B T I L ] and C f = [I T C L ] and C L = -B T T .

Hybrid Dirac structure

Splitting voltages and currents according to tree and links in (2.15), one can express link voltages v L in terms of tree voltages v T and tree currents i T in terms of link currents i L as

v L = C T L v T , i T = -C L i L , (2.17) 
and gathering these informations yields the following definition.

Definition 2.21 (Hybrid Dirac structure). Let C L be the fundamental link cutset matrix associated to a graph G for a choice of spanning tree T , then the associated Hybrid Dirac structure is

D =      (i T , v T , i L , v L ) ∈ B T × B L   i T v L   =   0 -C L C T L 0     v T i L        . ( 2.18) 
i.e. we have the following diagram

v T ∈ V T v L ∈ V L i T ∈ I T i L ∈ I L C T L • | • B T • | • B L -C L (2.19)
Example 2.8. In example 2.3, the reduced incidence matrix is

A f =   R 1 D 1 C 1 V 1 η 1 1 0 0 1 η 2 -1 1 1 0   = D T .
By consequence, according to (2.9), the corresponding Kirchhoff-Dirac structure is

             i 1 i 2 v R 1 v D 1 v C 1 v V 1              =              . . -1 0 0 -1 . . 1 -1 -1 0 1 -1 . . . . 0 1 . . . . 0 1 . . . . 1 0 . . . .                           v 1 v 2 i R 1 i D 1 i C 1 i V 1              ,   i 1 i 2   = 0.
Choosing a tree T = {V 1 , C 1 } with cotree/links L = T = {R 1 , D 1 } yields the fundamental tree and link incidence matrices

A T =   V 1 C 1 η 1 1 0 η 2 0 1   , A L =   R 1 D 1 η 1 1 0 η 2 -1 1   .
According to (2.15), we obtain the fundamental loop cutset matrix

C L = A -1 T A L =   R 1 D 1 c 1 1 0 c 2 -1 1   ,
such that, according to (2.18), the Hybrid Dirac structure reduces to

       i V 1 i C 1 v R 1 v D 1        =        . . -1 0 . . 1 -1 1 -1 . . 0 1 . .               v V 1 v C 1 i R 1 i D 1        .
Kernel form of Reduced Hybrid Dirac structure Using the fundamental loop and cutset matrices B f and C f from (2.16), one can obtain the kernel form of the reduced Dirac structure as follows. Define the matrices

E =   B T I L 0 0   , F =   0 0 I T C L   , (2.20) 
then the kernel form of the reduced Dirac structure

D = (i, v) ∈ B 1 | Ev + Fi = 0 . (2.21)
where one can verify that since C L = -B T T it satisfies condition

EF T + FE T =   0 B T + C T L 0 0   +   0 0 B T + C L 0   = 0. (2.22)
Image form of Reduced Hybrid Dirac structure Finally, by transposition of the kernel Dirac structure (2.21) one obtains its dual image representation (which subsumes equation (2.17))

D =      (i, v) ∈ B 1 i =   B T T 0 I L 0   λ, v =   0 I T 0 C T L   λ, ∀λ ∈ R b      . (2.23)
Note that, by inspection, the physical interpretation of the parameter λ corresponds to link currents i L and tree voltages v T as λ = i L v T .

From hybrid Dirac structures to semi-explicit pH-DAE

The semi-explicit PHS representation from definition 1.24, is important for computer simulation. In particular, it fixes the choice of variables, it allows the formulation of a fixed-point equation, and it allows a structured interpretation of the power-balance.

     ẋ w y      = J      ∇H(x) z(w) u     
In the context of a circuit, it is obtained by the following procedure: Let G be a circuit graph.

1. Denote x the state of differential components (capacitors and inductors) characterised by an energy potential H(x), w the control variables of passive algebraic components characterized by a law z(w), and u the vector of external inputs with conjugated output variables y.

2. Choose a spanning tree T of G such that current-controlled branches (voltage sources, capacitors, resistors, etc.) belong to the tree and all voltage-controlled branches (current sources, inductors, conductors, etc.) belong to the cotree T .

3. Obtain the hybrid Dirac structure D of equation (2.18) and reorder rows and columns according to variables variables (x, w, y) to obtain the skew-symmetric matrix J.

Example 2.9. Reconsidering the diode clipper example, where

x = q, w = (v R , v D ), y = i V , u = v V ,
reordering the matrix and substituting component laws yields the pH-DAE

       i C = q v R v D i V        =        . 1 -1 . -1 . . 1 1 . . 0 . -1 0 .               v C = q/C i R = v R /R i D = pn(v D ) v V       
In step 2, it is not always possible to find a tree that satisfies these contraints. To address this problem, we propose the following approach

Finding a minimum spanning tree

We seek a spanning tree T that satisfies the following requirements 1. All Voltage sources and current controlled branches belong to the tree, 2. No current source and no voltage-controlled branch belong to the tree, 3. A maximum number of capacitors belong to the tree 4. A minimum number of inductors belong to the tree 5. Linear resistors and bijective algebraic components can belong to either tree or cotree. This problem is similar to the Sequential Causality Assignment Procedure (SCAP) [START_REF] Van Dijk | On the role of bond graph causality in modelling mechatronic systems[END_REF] in the bondgraph litterature (and its many variations [START_REF] Marquis-Favre | Alternative causality assignment procedures in bond graph language[END_REF][START_REF] Wong | Causality assignment using multi-objective evolutionary algorithms[END_REF]). This problem has also been addressed by Falaize with an ad-hoc algorithm in [START_REF] Falaize | Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios: Approche par réseau de composants et formulation Hamiltonienne à ports[END_REF][START_REF]Passive guaranteed simulation of analog audio circuits: A port-Hamiltonian approach[END_REF].

Zero-One-Linear integer programming problem in standard form For the b branches, let x ∈ {0, 1} b be the boolean vector representation of a subgraph T of a graph G (where x η = 1 if η ∈ T and 0 otherwise). Its complement T is represented by the boolean vector x = 1 -x. A subgraph T is a tree of G (def. 2.8 p.48) if every node is reachable exactly once from the tree. This can be formalized using the graph Laplacian L(G) := A T (G)A(G) by the constraint

Lx = 1.
(2.24)

where is the incidence matrix (see def. 2.12) of G. We formalize preferred computational causalities 7 constraints by the objective function

Φ(x) = w T • x + w T • x (2.25)
with weights

w T (e) = 1 if branch e is current-controlled 0 otherwise , (2.26a) 
w T (e) = 1 if branch e is voltage-controlled 0 otherwise (2.26b)
Note that the objective function can be expressed with the number of branches b and a unique weighting function w as

Φ(x) = w T • x + w T • x = b + (w T -w T ) • x.
This leads to the Zero-One-Linear integer programming maximization problem in standard form

maximize b + w • x, subject to Lx = 1 and x ∈ {0, 1} b , with w(e) =        -1 if e has voltage-controlled causality (I,L) 1 if e has current-controlled causality (V,C,D,Q) 0 otherwise (R)
.

(2.27)

7. arising either from numerical integration rules or from the availability of bijective algebraic maps.

Minimum spanning tree algorithm Since the cost function is restricted to spanning trees, and determined exclusively trough the tree vector x, a significant simplification of the maximization problem (2.27) is to find a minimum spanning tree which solves the minimization problem minimize -w • x.

x ∈ spanningtrees(G) (2.28)

Note that this problem has an algorithmic complexity of O(b log(n)) when implemented using either the Prim-Dijkstra [START_REF] Prim | Shortest connection networks and some generalizations[END_REF] or the Kruskal [Kru56] algorithm.

A circuit with its minimum spanning tree is shown on figure 2.7. If a conforming spanning tree is found, then the number w • x should corresponds to the maximum number n T of currentcontrolled edges in the circuit (here n T = 2).

1 2 3 V 1 C 1 D 1 R 1 Figure 2.
7 -Example of a minimum spanning tree that includes current-controlled branches.

Failure to satisfy the condition w • x = n T can be used to detect the presence of topological problems such as hidden algebraic constraints (see figure 2.8).

0 1 2 3 C 1 L 1 C 2 L 2 0 1 2 3 C 1 L 1 C 2 L 2 0 1 2 3 C 1 L 1 C 2 L 2 0 1 2 3 C 1 L 1 C 2 L 2 Figure 2.
8 -Example of an LCLC circuit where there doesn't exists a spanning tree that includes all current-controlled branches and no voltage-controlled branches.

Note that, when a suitable minimum spanning tree cannot be found, so that the PH-DAE is semi-explicit, we proposed a fully-implicit numerical discretisation strategy in [START_REF]Fully-implicit algebro-differential parametrization of circuits[END_REF] which does not require causality assignment and can directly deal with such kind of implicit DAE constraints.

Reduction to Input-State-Output pH-ODE

In many cases, to study existence and uniqueness of solutions or to employ standard integration methods, it is desirable to reduce differential-algebraic equations to state-space ordinary differential equations. We show here how to transform a semi-explicit pH-DAE (definition 1.24) to an inputstate-output pH-ODE (definition 1.23).

Consider a semi-explicit pH-DAE with Dirac structure D for a circuit graph G defined by the skew-symmetric matrix S partionned as follows

     ẋ w y      =      J x * * J xw J w * J yx J yw J y      S      ∇H(x) z(w) u      . ( 2 

.29)

Case J w = 0 If J w = 0, which is a frequent case (no direct coupling between algebraic components), and there exists a symmetric positive definite matrix-valued function 8 Z(w) such that z(w) = Z(w)w, then one can reduce the dependance on w by reinjecting

w = J xw ∇H(x) -J T yw u (2.30)
into (2.29) to obtain the nonlinear state-space system

  ẋ y   = J -R(x, u)   ∇H(x) u   (2.31) 
where the skew-symmetrix matrix J = -J T and the modulated symmetric positive definite matrix R = R T 0 are defined by

J =   J x * J yx J y   , R(x, u) =   J T xw Z(x, u)J xw -J T xw Z(x, u)J T yw -J yw Z(x, u)J xw J yw Z(x, u)J T yw   . (2.32)
and where by abuse of notation

Z(x, u) := Z(w) w=Jxw∇H(x)-J T yw u . ( 2 

.33)

Case J w = 0 When J w = 0, one needs to solve the implicit equation on w

w -J w z(w) = J xw ∇H(x) -J T yw u. (2.34)
Suppose the DAE is of index 1 such that the function g(w) = w -J w z(w) can be inverted (algebraically or numerically) such that

w = g -1 (J xw ∇H(x) -J T yw u).
then in general z(w) is no longer a separable function of ∇H(x) and u. However if there exists matrix-valued functions A, B such that

z(w) = A(x, u)∇H(x) + B(x, u)u (2.35)
8. Z may not be positive definite if there exists conservative algebraic components, in which case J will be also modulated by x, u then the algebraic feedback can be expressed by the matrix (not necessarily symmetric)

R(x, u) =   J T xw A(x, u) -J T xw B(x, u) -J yw A(x, u) J yw B(x, u)   .
(2.36)

Example 2.10. We reconsider the diode clipper example with semi-explicit representation

(x = q, w = (v R , v D ), y = i V , u = v V )        i C = q v R v D i V        =        . 1 -1 . -1 . . 1 1 . . 0 . -1 0 .               v C = q/C i R = v R /R i D = pn(v D ) v V        , V R C D
We remark that since current and voltage cannot be mixed in the Dirac structure, necessarily J x = 0, J w = 0, J y = 0 and J yx = 0. We have v R = v S -q/C and v D = q/C. It is then possible to solve explicitely for w = (v R , v D ) to obtain the reduced state-space PHS with feed through (cf Equation (2.31) and Definition 1.23)

  q y = i V   = -R(q)   q/C u = v V   , R(q) = 1 R   1 + R pn(v D )/v D -1 -1 1   v D =q/C 0.
where we already used in example 1.10 the fact that pn(v)/v 0.

Dissipative pH-DAE to conservative pH-ODE embedding

We show how to embed a dissipative pH-DAE, as a conservative but irreversibly modulated input-state-output pH-ODE with extended thermodynamic state space. Our motivation is twofold, first the DAE simplifies to a simpler state-space system, second the energy invariant of the system being explicit, we can use an energy-preserving ODE solver, rather than a DAE solver which only preserves a passive inequality. The transformation is similar to the approach presented in [START_REF] Eberard | Energy-conserving formulation of RLC-circuits with linear resistors[END_REF] (see also the RS element [Bor09, p.52]). However, since we are not interested here in the thermodynamical details, it is simpler for our purpose to use the heat variable Q instead of the temperature T and entropy S.

We start from a semi-explicit skew-symmetric pH-DAE (2.29)

     ẋ w y      =      J x * * J wx J w * J yx J yw J y           ∇H(x) z(w) u      (2.37)
and we consider dissipators as energy transducers converting electrical energy into heat. To all resistive ports with power conjugate variables (w, z(w)) and power P (w) = z(w) • w, we associate a heat bath with thermodynamic potential

U (Q) = Q > 0 (2.38)
with heat Q in Joule. It has energy variable Q with trivial co-energy variable ∇U = 1.

Thermodynamic power balance Requiring that the dissipated power is absorbed by the thermodynamical potential U yields the thermodynamical power balance

d dt U (Q) = Q = z(w) • w. (2.39)
Left multiplying the second row of (2.37) by z(w) T and factoring z(w) into the second column, yields the inhomogeneous ODE

     ẋ Q y      =      J x * * Ĵwx (w) Ĵw (w) * J yx Ĵyw (w) J y           ∇H(x) ∇U = 1 u      (2.40)
with the following matrix-valued functions of the algebraic variable w defined by

Ĵwx (w) = z(w) T J wx , Ĵw (w) = z(w) T J w z(w), Ĵyw (w) = J yw z(w) (2.41)
and where w is the solution 9 of w = J wx ∇H(x) + J w z(w) -J T yw u.

Solving for w We introduce the function g(w) = w -J w z(w). Under the hypothesis of the implicit function theorem (invertibility of the Jacobian g ), we define the inverse function w to express the algebraic variable w as a function of state and input variables x, u

w(x, u) = g -1 (J wx ∇H(x) -J T yw u). (2.42) 
By substitution of (2.42) in (2.40) we define the modulated skew-symmetric matrix-valued function

Ĵ (x, u) :=      J x * * Ĵwx (x, u) Ĵw (x, u) * J yx Ĵyw (x, u) J y .      , Ĵ T = -Ĵ .
(2.43a)

were the resulting matrix-valued functions of x and u are given by Ĵwx (x, u) := z(w(x, u)) T J wx , (2.43b) Ĵw (x, u) := z(w(x, u)) T J w z(w(x, u)),

(2.43c) Ĵyw (x, u) := J yw z(w(x, u))

(2.43d)

Thermodynamic pH-ODE Finally, introducing the total energy potential (Hamiltonian + Thermodynamical energy) 

E(x, Q) := H(x) + U (Q) (2.
    i C = q v L = φ v R      =      0 -1 -1 1 0 0 1 0 0           v C = q/C i L = φ/L i R = v R /R      (2.46)
Using the thermodynamic embedding, we obtain the irreversibly modulated system with conserved total energy E(q, φ, Q) = q 2 /2C + φ 2 /2L + Q (see figure 2.9)

     q φ Q     =      0 -1 -q/(RC) 1 0 0 q/(RC) 0 0           q/C φ/L 1      . (2.47)
Using the third row, and noticing that v R = q/C, we recover the dissipative power transfer

d dt U (Q) = 1 • Q = q C • q RC = q C • 1 R q C = v R • i R ≥ 0. (2.48) Figure 2.9 -Isothermal RLC. x = q/ √ C, y = φ/ √ L, z = (Q -Q 0 )
. Iso-energy surface (q, φ, Q) | E(q, φ, Q) = E(q 0 , φ 0 , Q 0 ) (in blue). Reachable points are above the red circle. 

Bond Graphs and Wave Digital Filters

We leave equational algebraic representations to present two graphical network representations, namely bondgraphs and wave digital filters. Despite their notational differences, and the fact that bondgraphs use flow-effort variables while wave digital filters use wave variables, both notations are conceptually very similar and will be presented in parallel to highlight their similarities and differences. Both representations rely on breaking down a system into elementary n-port components, and connections between them.

We shortly present below the basics of both formalisms, for more details, please refer to the following references for bond graphs [START_REF] Paynter | Analysis and design of engineering systems[END_REF][START_REF]A systematic method to derive bond graph models[END_REF][START_REF]Introduction to physical systems modelling with bond graphs[END_REF][START_REF] Golo | Hamiltonian formulation of bond graphs[END_REF][START_REF] Borutzky | Bond graph methodology: development and analysis of multidisciplinary dynamic system models[END_REF] and [Fet86, Bil04, WNSA15, WBSS18, BS17] for WDF.

Bondgraphs

Bondgraphs are a multi-physics network modelling tool invented by Henri Paynter at the MIT in 1959. It models energy transfer as an oriented graph between subsystems A, B such that power e • f is positive in the direction of the half-arrow.

A B e f ≡ A B e f
Note that the equivalent block diagram on the right is not oriented yet. To realize the blockdiagram, it is necessary to assign a so-called computational causality which is indicated by a vertical bar toward the element that is effort-driven the other element being flow-driven.

A B

e f ≡ A B e f A B e f ≡ A B e f
Serial and parallel junctions As we have already seen, systems are connected together through power-preserving junctions structures. The basic building blocks to create more elaborated connections are the serial 1 and parallel junctions 0

1 0 f 1 = . . . = f n e 1 = . . . = e n e 1 + . . . + e n = 0 f 1 + . . . + f n = 0
We remark that, for parallel junctions, since all efforts are equal only one port can be effort-driven. Dually for serial junctions all flows being equal, only one port can be flow-driven.

Transformer and Gyrators Two important Dirac structures, the Transformer and Gyrator are represented (with their admissible causalities) by

GY e 1 f 1 e 2 f 2 GY e 1 f 1 e 2 f 2 TF e 1 f 1 e 2 f 2 TF e 1 f 1 e 2 f 2
Common electronic components

• Capacitor: the law of a (nonlinear) capacitor is v C (t) = ∇H C q C = ´t ∞ i C (τ ) dτ
. This is formalized by the current-driven component.

C v C i C ≡ ´∇H C i C q C v C ≡ v C i C
• Inductor: the law of a (nonlinear) inductor is i

L (t) = ∇H L φ L = ´t ∞ v L (τ ) dτ
. This is formalized by the voltage-driven component.

L v L i L ≡ ´∇H L v L φ L i L ≡ v L i L
• Resistor / Conductor: (nonlinear) resistors (conductors) are charaterized by passive relations

R : i R → v R , (G : v R → i R ) R v R i R G v R i R ≡ R i R v R G v R i R ≡ v R i R
• RS element [Bor09, p.52]: In the bondgraph litterature, dissipators can also be considered as energy transducers converting non-thermal energy into heat satisfying the power balance

Q = T Ṡ = v R • i R . RS v R i R T Ṡ
Simplification rules We recall here some useful graphical bondgraph simplification rules (see [START_REF]Introduction to physical systems modelling with bond graphs[END_REF][START_REF] Borutzky | Bond graph methodology: development and analysis of multidisciplinary dynamic system models[END_REF]). These can considerably reduce the number of elements and save tedious algebraic manipulations.

0 ≡ (2.49a) 1 ≡ (2.49b) 0 0 ≡ 0 (2.49c) 1 1 ≡ 1 (2.49d) 0 0 1 1 ≡ 1 0 (2.49e) 1 1 0 0 ≡ 0 1 (2.49f)
In particular, these rules are implemented in the 20-sim software [START_REF] Broenink | 20-sim software for hierarchical bond-graph/block-diagram models[END_REF]. We also note that since these identities only rely on (here Kirchhoff) conservation laws, they translate directly to Wave Digital Filters.

Automated conversion of circuits to Bondgraphs

In reference [START_REF]A systematic method to derive bond graph models[END_REF], Breedveld proposed an procedure to automatically convert a circuit to bond graphs. This systematic procedure is of great value in particular when working with pen and paper to avoid errors. It is summarized (here for electronic circuits) by the following steps 1. For each node η i of the circuit create a parallel 0 i junction (the node voltage v i is shared at the 0 junction), 2. For each branch between two nodes η i , η j form the voltage difference v ij = v i -v j represented by a zero junction 0 ij connected to a serial 1 ij junction as follows10 

0 1 0 0 v 1 i 12 v 2 i 12 v 12 i 12
3. Connect all ports of all components to the corresponding branch voltages, We note that we can layout the graph in a canonical way, in order to exhibit the fact that the junction structure of the unreduced bond graph is bipartite (i.e. a 1-junction is necessarily connected to a 0-junction) see Figure 2.11.

Causality assignment procedures As we have seen, to make a bondgraph computable, it is necessary to orient its equivalent block-diagram such that each port is either flow or effort driven. However in practice, some components such as voltage and current sources or non bijective dissipators have an imposed causality, dynamic components such as capacitors and inductors have a preferred integral causality while bijective algebraic components have no preferred causality. In This problem is closely related to the problem presented in subsection 2.3.3 where we show how to formulate and efficiently solve causality assignment as a minimum spanning tree problem. In practice however, the procedure described above remains important to perform causality assignment graphically using only pen and paper and no computer.

Occurence of step 4 is an indicator of the presence of algebraic loops in the bond graph.

n-port and m-terminal elements Finally, to illustrate how to deal with elements that are represented either as n-ports or m-terminals, we show the bondgraph of a 2-port, 3-terminal: the Bipolar Junction Transistor.

0 B 1 BC Q 0 B 1 BE 0 C ≡ Q B C E

Wave Digital Filters (WDF)

Now that the bondgraph formalism has been presented, we show similarities and differences between bond graphs and WDF. We rely on references [START_REF] Fettweis | Wave digital filters: Theory and practice[END_REF][START_REF] Bilbao | Wave and scattering methods for numerical simulation[END_REF], see also [START_REF] Franken | Generation of wave digital structures for networks containing multiport elements[END_REF][START_REF] Werner | Virtual analog modeling of audio circuitry using wave digital filters[END_REF] for more recent developments (in particular SPQR trees). Compared to bondgraphs, the WDF formalism has some important differences:

1. wave variables (w + , w -) are used instead of flow-effort variables (f, e), 2. there is no need to assign computational causalities: block diagram inputs are incident wave w + and outputs are reflected waves w -.

3. the variable change is done after discretization, 4. WDFs rely on adapting the port-impedance parameter R of the wave variable change to achieve reflection-free ports or break delay-free loops (i.e. obtain causal delayed reflected waves 11 ).

The last property is perhaps the strongest computational advantage of WDF compared to standard methods. In term of graphical representations, we have the following equivalences

A B e f ≡ A B w - A = w + B w + A = w - B A 0 B ≡ A B w - A w + A w + B w - B A 1 B ≡ A -• B w - A w + A w + B w - B
Continuing with the diode clipper example from figure 2.10, we obtain the equivalence between bondgraph and WDF shown on figure 2.12.

1 0 V R C D v 12 i 12 v V i V v R i R v C i C v D i D (a) reduced bondgraph V -• R C D w + V w - V w + 12 w - 12 w + D w - D w + R w + C w - R w - C (b) WDF Figure 2.
12 -Equivalence between circuit Bondgraph and WDF representions.

11. At time tn, the reflected wave w - n does not depend on the incident wave w + n .

Port-Adaptation, Binary and SPQR connection trees In WDF, the port impedance can be chosen such that the reflected wave does not depend instantaneously on the incidence wave. This property (no instantaneous algebraic loop) is shown graphically by a vertical bar where the port is adapted.

A B w - A w + A | R A ≡ w - A [n] does not depend on w + A [n]
Similarily to the fact that for parallel (resp. serial) junctions, only one port can be effortdriven (resp. flow-driven), in the WDFs, only one port (called the root) can be adapted while the remaining ports (called the leaves) inherit their port-impedance from the connected components.

A root B R B R A R A B - A -• root B R B R A R A•B
-Serial/parallel Binary Connection Trees (BCT) Using this property, for many circuits, (by decomposing serial and parallel junction into 3 port adapters) it is possible to arrange elements into a serial-parallel binary connection tree.

To numerically process the WDF tree at each time step, first reflected waves (which do not depend instantaneously on incident waves) are propagated from the leaves to the root. Then incident waves are propagated from the root to the leaves to update the state of stateful elements.

Using this approach it is possible to have a single nonlinear element at the root and use Newton iteration to solve the instantaneous algebraic loop. This is illustrated below: the diode clipper from Figure 2.12 has been redrawn with the nonlinear element D at the root of the tree, and the voltage source and resistor have been lumped into a resistive voltage source VR with port impedance R).

VR D C

-SPQR trees However the above approach fails for multiple nonlinearities or complex network topologies which stimulated research for alternative strategies [START_REF] Franken | Generation of wave digital structures for networks containing multiport elements[END_REF][START_REF] Werner | A general and explicit formulation for wave digital filters with multiple/multiport nonlinearities and complicated topologies[END_REF][START_REF] Werner | Virtual analog modeling of audio circuitry using wave digital filters[END_REF][START_REF] Werner | Modeling circuits with arbitrary topologies and active linear multiports using wave digital filters[END_REF]. An approach is to collect all nonlinear elements into a single multi-port situated at the root of the tree and to decompose the remaining elements into an SPQR tree 12 [START_REF] Battista | On-line maintenance of triconnected components with SPQR-trees[END_REF]. The example in figure 2.13 illustrates that rigid nodes arise as soon as the bondgraph contains algebraic loops. To address this difficulty, these loops (red lines in figure 2.13b) are aggregated into irreducible Dirac structure multiports to obtain an acyclic bondgraph (in figure 2.13c). Then choosing a root (V in fig. 2.13d), the graph can be transformed into an SPQR tree.

12. S for serial nodes, P for parallel nodes, R for rigid (strongly connected) nodes and Q for trivial nodes. 
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Port-variable changes

This section introduces the class of port variables changes that are linear, power-conserving, and that operate across ports. This class, different than that of wave variable changes (performing port by port linear combination of flow-effort pairs) is of interest to exploit circuit symmetries.

Conversion to common and differential ports

A common source of symmetry in physics happens when a system only depends on the difference between port variables. In electronics, differential amplifiers 13 (as the name suggests) are exactly designed for that purpose. However in practice, components are not perfect and are often characterised by their common mode rejection ratio, so that both common and differential ports are necessary. Furthermore it is often the case that topological symmetries in the circuit are broken by computational causality assignment. By consequence, in practice, the following theorem is useful for devices whose description is simpler in terms of common and differential ports. This is used in section 7.2.3 p.194 (see also the symmetries on circuits, fig. 7.24 p.195).

Theorem 2.5 (Common-differential 2-port). Consider a 2-port with conjugated port variables

(f 1 , e 1 ) ∈ F 1 ×E 1 , (f 2 , e 2 ) ∈ F 2 ×E 2 , and the variable change (f 1 , f 2 , e 1 , e 2 ) ↔ (f ∆ , f Σ , e ∆ , e Σ ) f ∆ = α(f 1 -f 2 ), e ∆ = β(e 1 -e 2 ), (2.50a) 
f Σ = α(f 1 + f 2 ), e Σ = β(e 1 + e 2 ). (2.50b) 
where αβ = 1/2. Then, (2.50a)-(2.50b) defines an equivalent common-differential 2-port parametrisation with the same power

f Σ | e Σ + f ∆ | e ∆ = f 1 | e 1 + f 2 | e 2 .
(2.51)

Proof. Substituting (2.50a) (2.50b) into (2.51) and eliminating cross terms yields

f Σ | e Σ + f ∆ | e ∆ = 1 2 f 1 + f 2 | e 1 + e 2 + f 1 -f 2 | e 1 -e 2 = f 1 | e 1 + f 2 | e 2 .
Example 2.12 (Amplifiers). Consider a 4-port amplifier (here with lumped energy source) having input-output ports {I+, I-, O+, O-}, differential gain K ∆ 1 and common mode gain K Σ . Its representation is the Σ-∆ domain by the diagonal matrix

  e ∆ O e Σ O   =   K ∆ 0 0 K Σ     e ∆ I e Σ I   ,   f ∆ I f Σ I   = 0.
(2.52) is more natural than in the original domain by

  e O+ e O-   =   K + -K + -K + K +     e I+ e I-   ,   f I+ f I-   = 0. ( 2 

.53)

A passive model of the operational amplifier is detailed in chapter 7.

13. Differential amplifiers are commonly used in guitar and microphone preamps, operational amplifiers or in the Moog synthesizer filter

Generalized linear port variables adapters

We generalize the previous variable change by interpreting it as a power-conserving Dirac structure adapter between multiports. This is illustrated by the block-diagram of figure 2.15.

Theorem 2.6. Let D be linear multi-port adapter mapping vector port variables (f a , e a ) ∈ F a × E a to vector port variables 

(f b , e b ) ∈ F b × E b where F a ∼ R n , F b ∼ R n according to f b = Ff a , e b = Ee a , F T E = -I n , ( 2 
f | e = f a | e a + f b | e b = f T a e a + f T a F T Ee a = f T a e a -f T a e a = 0.
And we have dim

D = rank(F) + rank(E) = 2n = dim F a × F b .
Lemma 2.1. Let F be any unitary orthogonal transform and E = -F. Then this is a sufficient condition to have F T E = -I, satisfying equation (2.54).

Example 2.13 (Common-differential adapter). The common-differential variable change from theorem 2.5 can be formalized as a common-differential adapater defined by

  f ∆ f Σ   = -α   1 -1 1 1     f 1 f 2   ,   e ∆ e Σ   = β   1 -1 1 1     e 1 e 2   . 
(2.55)

Note the change of sign compared to theorem 2.5, so that the adapter uses the receiver convention. It is illustrated on figure 2.14. Example 2.14 (Orthogonal adapters). According to lemma 2.1, the common-differential adapter (2.55) is an instance of the more general class of unitary two-port adapters (for Example 2.15 (common differential representation of a 2-port parallel jonction). consider a parallel jonction defined by

1 2 Σ ∆ f 1 e 1 f 2 e 2 f Σ e Σ f ∆ e ∆ common-differential adapter 2-port
θ = π/4, α = β = 1/ √ 2)   f ∆ f Σ   = -   cos(θ) -sin(θ) sin(θ) cos(θ)     f 1 f 2   ,   e ∆ e Σ   =   cos(θ) -sin(θ) sin(θ) cos(θ)     e 1 e 2   . ( 2 
e 1 = e 2 , f 1 + f 2 = 0.
Then its common-differential representation becomes the trivial constraints

e ∆ = 0, f Σ = 0. (2.57) such that we have P = e Σ • f Σ + e ∆ • f ∆ = 0.
Example 2.16 (common differential representation of a 3-port parallel jonction). consider a classical parallel junction defined by

e 1 = e 2 = e 3 , f 1 + f 2 + f 3 = 0.
If we choose to transform ports {1, 2} to common-differential {Σ, ∆} using (2.50b) with α = 1/2, β = 1, we obtain the following singular skew-symmetric Dirac structure

     e ∆ e Σ f 3      =      . . 0 . . 1 0 -1 .           f ∆ f Σ e 3      . ( 2 

.58)

We can see that the differential port ∆ has no influence on the behaviour of the circuit.

Conclusion

In this chapter, we have recalled the main results from network and circuit theory, we have seen how to obtain a PHS from a circuit graph and how to transform it to semi-explicit PH-DAE and PH-ODE. We have reviewed the topic of "computational causality assignment". Causality assignment is important for numerical reasons: in practice, it is usually preferable to obtain equations that are numerically integrated (integral causality) rather than numerically differentiated (differential causality). A strength of the PH framework is that under a week hypothesis (invertibility of the Jacobian of algebraic nonlinearities, see 1.2.2 p.14) many circuits are representable as (semi-explicit) index-1 DAE (and thus convertible to ODE). This property is important to study existence and uniqueness of solutions. To highlight their similarities and differences, we have presented two graphical network formalisms side by side: Wave Digital Filters and bond-graphs. Finally we have presented "accross ports" power-conserving variable changes. They can explicitly exploit network or component symmetries. In particular Σ-∆ variable changes can be used to avoid breaking symmetries of differential or push-pull circuits during computational causality assignment. The modelling framework being setup, we are ready to address the broad subject of power-balanced numerical simulation methods. This is the object of Part II which constitutes the core of this thesis.

Part II

Time-continuous power-balanced numerical methods

Approach and problem statement

Virtual DAC Numerical method Observer Anti Aliasing Virtual ADC A B C D E u[n] 2 (Z) u(t) U x(t) X y(t) Y ỹ(t) Ỹ ỹ[n] 2 (Z)
Virtual Analog toolchain 

Signal processing framework

In this part, we propose power-balanced numerical methods (block B) within a complete signal processing chain (A-E) described in figure 2. 16. It is based on the following.

• Reconstruction (block A): A (bandlimited) sampled input u[n] is reconstructed by a virtual Digital to Analog Converter (Virtual DAC) to obtain a continuous-time signal u(t) represented over sequences of time frames.

• Numerical Solver (blocks B-C): for each time frame, given an input signal u(t) represented by parameters u, a power-balanced numerical method produces an output signal y(t) with parameters y,

• Sampler (Blocks D-E): the signal y(t) is meant to be listened through a soundcard. For that purpose, a virtual antialiasing filter and sampler (Virtual ADC) are used to obtain the discrete-time signal ỹ[n] based on bandlimited Shannon-Nyquist sampling (see thm. 3.1).

To precise our approach, continuous-time signal representations, generalized sampling theory and the implementation of virtual DAC, anti-aliasing and virtual ADC are discussed first in chapter 3. Subsequent chapters are dedicated to power-balanced numerical methods.

Power-balanced Numerical methods

This thesis is dedicated to build numerical methods to solve PH-ODE and PH-DAE whose numerical solutions are required to satisfy the following properties P0. Class of solutions Numerical solutions are approximated in the time-continuous domain and represented with a finite number of parameters per time-frame.

P1. Regularity Numerical solutions inherit the global regularity of true solutions up to a controllable regularity order denoted k. Indeed, for a function f (t) of class C k , its Fourierspectrum F (ω)

2
decreases asymptotically as 1/ω 2(k+1) . This property is important to reduce the requirements on the antialiasing module. P2. Accuracy For each time frame, the approximation error between numerical solutions X(τ ) and true solutions x(τ ) is controllable, bounded and converges to zero for small time steps h, with a controllable accuracy order p (defined thereafter).

P3. Power-balance Numerical approximations satisfy the PH power-balance over each timeframe. In particular, for conservative PHS the Hamiltonian H(x) must be exactly preserved from frame to frame, and for dissipative PHS, the Hamiltonian must decrease monotonically over time (in the absence of external input).

While the interplay between continuous and discrete time is a common theme in (digital) signal processing and control theory, in numerical analysis, many numerical methods (e.g. Finite Differences, Runge-Kutta, multistep) are discrete by design 14 : the underlying continuous-time signal model is not made explicit. We note some important exceptions which are relevant to us: Runge-Kutta methods with dense output [HNW93, II.6], Continuous Runge-Kutta Methods [START_REF] Owren | Derivation of efficient, continuous, explicit Runge-Kutta methods[END_REF], Time finite elements (TFEM) [Hul92, BB93, Bot97, BS00], time-continuous Galerkin (CG), time-discontinuous Galerkin (DG) [TS12, TSC17] and continuous-stage Runge-Kutta (CSRK) methods [START_REF] Hairer | Energy-preserving variant of collocation methods[END_REF][START_REF] Miyatake | A characterization of energy-preserving methods and the construction of parallel integrators for hamiltonian systems[END_REF][START_REF] Tang | A note on continuous-stage Runge-Kutta methods[END_REF]. Continuous Galerkin and CSRK formulations will be considered in chapter 5 p.117.

Outline

Chapter 3 details the general continuous-time signal processing framework used to implement blocks A-E. We first review important results and notations about functional analysis, nonbandlimited signals and (generalized) sampling theory that are required thereafter. Then we review several realisation strategies and tradeoffs for the Virtual DAC (block A) and Virtual ADC modules (blocks D-E in fig. 2.16). Subsequent chapters 4-6 propose different methods for the realisation of blocks B-C.

Chapter 4 is of an introductory nature. Satisfaction of properties P1 -P3 is considered using adaptive collocation for PH-ODEs. (Symmetric) Power balanced Adaptive collocation methods ((S)PAC) are introduced. Their analysis reveals that, using this approach, the existence domain of power-balanced solutions is bounded.

Chapter 5 proposed a more general framework. It relies on an alternative viewpoint: using the idea of continuous-time functional projection. We introduce the notion of a functional Dirac structure 15 over a time frame, for which a sufficient condition to preserve the power balance is established. Then, Regular Power balanced projection Methods (RPM) are introduced, with controllable projection and regularity orders. They are analysed and illustrated for both Port-Hamiltonian ODEs and DAEs.

Chapter 6 extends the ideas of chapter 5 and combines them with exponential integrators (which exactly solve the linear dynamic). First the exponential Average Vector Field (EAVF) method is introduced and shown to be energy-preserving (resp. dissipating) for autonomous systems. Then, input-output ports are considered. Finally, an extension strategy towards higher orders is proposed.

14. However, backward error analysis [START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary differential equations[END_REF] allows to interpret these schemes as sampled solutions of modified continuous-time approximation of the original system.

15. see definition 1.14 p.20.

Chapter 3

Non-bandlimited signal representations, reconstruction and antialiasing Outline In section 3.1, we recall results and notations from generalized sampling theory and functional analysis. In section 3.2, we consider continuous-time input reconstruction, in piecewisedefined signal spaces, i.e. the realisation of the "Virtual DAC" module in figure 3.2 (block A). In section 3.3, we consider the realisation of the dual output anti-aliasing, and sampling modules, i.e. implementations strategies and choices to implement an anti-aliased "Virtual ADC" (blocks D-E). In particular we consider two problems: exact continuous-time solutions of LTI ARMA filters with piecewise polynomial inputs and projection of piecewise discontinuous polynomials on smooth B-spline spaces [START_REF] Unser | B-spline signal processing. I. theory[END_REF][START_REF]B-spline signal processing. II. efficiency design and applications[END_REF]. Finally, in section 3.4, as a validation test, we illustrate this "virtual analog" toolchain with an original implementation of a common audio effect: a "virtual analog" sampling rate reduction effect (emulating artefacts of old ADC-DAC).

Virtual DAC In this chapter, input reconstruction (Virtual DAC) and output antialiasing/ sampling (virtual ADC) are considered.

Virtual Nonlinear System Anti Aliasing Virtual ADC A B-C D E u[n] u(t) y(t) ỹ(t) ỹ[n]
3.1 Generalized-sampling theory and Finite Rate of Innovation

Short reminder on functional analysis

Here we provide a short reminder on functional analysis and fix some notations. For more details refer to the definitions in appendix C p.281 on Banach spaces, Hilbert spaces, Sobolev spaces, etc). Let Ω = (0, 1) be the unit interval and I ⊆ Z a countable set. The inner product of the Hilbert space of square integrable functions

L 2 (Ω, R n ) is u, v L 2 (Ω,R n ) := ˆΩ u(τ ) • v(τ ) dτ, ∀u, v ∈ L 2 (Ω). (3.1)
The inner product of the Hilbert space of square summable sequences

2 (I, R n ) is u, v 2 (I,R n ) := k∈I u[k] • v[k], ∀u, v ∈ 2 (I). (3.2) 
In this manuscript, we identify the space L 2 with its dual (L 2 ) * L 2 (used as a pivot space). This means that for a space V and its (algebraic) dual V * (def. C.19), we have the inclusions

V ⊆ L 2 ⊆ V * ,
where the (functional) duality product between V * and V is (note that V and V * can be swapped)

u | v := ˆΩ u(τ ) • v(τ ) dτ, ∀u, v ∈ V * × V. (3.3) 
Remark 3.1 (Dirac bra-ket notations). To simplify proofs and enhance readability (without any reference to quantum mechanics) we use Dirac bra-ket notations (i.e. the functional analogs of a transposed vector and a vector).

• A ket | ψ denotes a synthesis operator from coefficients to functions.

• A bra φ | is an analysis functional that returns a number and receives a function.

• A bra-ket φ | ψ denotes a contraction (or inner product). It returns a number.

• A ket-bra | φ ψ | denotes an analysis-synthesis operator.

• u | A | v is used as a shorthand for u, Av L 2 = A * u, v L 2 where A * denotes the adjoint operator (see def. C.16 p.283). This is the functional equivalent of the matrix notation u T Av = u T (Av) = (A T u) T v.

Definition 3.1 (Frame [START_REF] Christensen | An introduction to frames and Riesz bases[END_REF]). Let V be an inner product space and F = {φ k } a set of vectors in V , then these vectors satisfy the frame condition if there are positive real numbers A and B such that

0 < A < B < ∞ and for each v ∈ V A v 2 V ≤ k∈I φ k | v 2 ≤ B v 2 V . (3.4) Furthermore a frame F is said to be tight if A = B, a Parseval frame if A = B = 1.
It is a Riesz basis if F is a basis, otherwise F is said to be an overcomplete frame. For example, an orthonormal basis, is at the same time, a tight frame, a Parseval frame and a Riesz basis. The frame condition guarantees the well-posedness of analysis and resynthesis operators but not the uniqueness of their representation. By contrast, if F is a Riesz basis, then there exists a unique dual basis F (defined below) such that φi |φ j = δ ij .

Frame synthesis operator For a basis or frame {φ k } such that V = span{φ k } ⊂ L 2 (Ω), we introduce the frame synthesis operator Φ : 2 (I) → V defined by

Φ := . . . | φ k . . . k∈I , (3.5) 
so that using the vector of coefficients x, we can compactly write a function as x(t) = (Φ x)(t).

Frame analysis operator Dually, we define the frame analysis operator Φ * : L 2 (Ω) → 2 (I).

Φ * :=      . . . φ k | . . .      k∈I (3.6)
so that the coefficients x * of a function x(t) are given by x * = Φ * x.

Gram Matrix The Gram Matrix (or gramian) of the frame Φ is defined by

G Φ := Φ * Φ = φ m | φ n m,n∈I . (3.7) 
Dual Frame If Φ is a frame, then a dual frame Φ, is a frame such that Φ * Φ = I I .

Dual Basis If Φ is a basis, then its dual basis (or biorthogonal basis) Φ is the linear combination of basis functions obtained using the inverse of the Gram Matrix.

Φ = ΦG -1 Φ . (3.8) 
Proof. Using (3.7)-(3.8), we have

Φ * Φ = (ΦG -1 Φ ) * Φ = G -T Φ Φ * Φ = G -1 Φ Φ * Φ = G -1 Φ G Φ = I I .
Reproducing Kernel If {φ k (τ )} k∈I is an orthonormal basis of a space V ⊆ L 2 (Ω), then according to Mercer's theorem, the reproducing kernel of V is

K V (τ, σ) := k∈I φ k (τ )φ k (σ), (3.9) 
so that we can express the projector P V using the reproducing kernel K V as

(P V u)(τ ) := ˆΩ K V (τ, σ)u(σ) dσ = k∈I | φ k φ k | u . (3.10)
Resolutions of the Identity If Φ represents an orthonormal basis, then by definition

Φ * Φ = φ m | φ n m,n∈I = I I . (3.11)
Conversely, the projector P V : L 2 (Ω) → V is given by

ΦΦ * = k∈I | φ k φ k | = P V . (3.12)
When P V is restricted to functions in V , then P V = I V where I V denotes the identity operator.

Partition of unity A generator ϕ(t) satisfies the partition of unity property if the sum of its integer translates sums to one.

n∈Z ϕ(t -n) = 1, ∀t ∈ R. (3.13)

Class of signals and notations

We introduce the class of signals and the notations that are used in this thesis. A vector-valued signal x : t ∈ R → x(t) ∈ R m is represented as a sequence of time frames x n (τ )

x(t) = n∈Z   p-1 i=0 φ i t -t n h n x n,i   xn(τ )
, where τ = t -t n h n (3.14) where

• T = {t n } n∈Z is a monotonic partition of time (t n < t n+1 ), • h n = t n+1 -t n is the local step size,
• p is the number of basis functions and I = {0, . . . p -1},

• The generating functions φ i (τ ) i∈I form the local representation basis,

• x n,i ∈ R m are the vector-valued coefficients for each time-step n and basis index i,

• τ = t-tn hn is the normalized local time for time-step n,

• x n (τ ) is the local representation of x(t) at time-step n.

The generating functions φ 0 , . . . , φ p-1 and their translates span the approximation space

V = span φ i (t -t n )/h n , ∀i ∈ I, n ∈ Z ⊗ R n .
This class of signals is related to (time) finite elements and multi-wavelets 1 (see [Uns00, section C]). For causality of computations, basis functions translates are non overlapping. When the context is not ambiguous, we drop the temporal subscript n. We talk about the local trajectory

x(τ ) = p-1 i=0 φ i (τ )x i .
To simplify the presentation, we restrict to a constant step-size 2 h (h n = h, ∀n ∈ Z) so that the approximation space V is integer shift-invariant. Generating functions φ i are defined over the open unit interval Ω = (0, 1) with boundary ∂Ω = {0, 1} and closure

Ω = Ω ∪ ∂Ω = [0, 1].
Remark 3.2. The tensor of coefficients [x n,i,j ] may be denoted by x n,i or x i [n] according to the way it is "sliced" in each context, i.e. when a clear distinction between the different roles of time index n, functional basis index i and "geometric" index j is required. We also use x[n](τ ) as a synonym for x n (τ ) a .

Sampling signals with a Finite Rate of Innovation (FRI)

Classical bandlimited sampling

The vast majority of digital (audio) signal processing relies on the following theorem.

Theorem 3.1 (Shannon sampling theorem [START_REF] Shannon | Communication in the presence of noise[END_REF]). If a function x(t) contains no frequencies higher than B cycles per second, it is completely determined by giving its ordinates at a series of points spaced h = 1/2B seconds apart.

The reconstruction formula that complements the sampling theorem is Also note that, in our case, it is enough to have the constant reproduction property6 over each time step to fulfil the partition of unity (for all t ∈ R). It turns out that constant reproduction is also a necessary condition to obtain consistent numerical integration schemes (eq. (5.21a) p.128).

x(t) = n∈Z sinc t h -n
Example 3.1. Piecewise polynomial signals are not band-limited in the sense of Shannon (see (3.14) where φ ). For example, the discontinuities in a sequence of piecewise constant signals (at the output of a sample and hold circuit for example) have an infinite spectrum (see figure 3.1).

Approximation order, polynomial reproduction and Strang-Fix conditions

We recall result (3.22) from [Uns00, section IV] relating the approximation order of the sampling space, the spectral flatness of the approximation error in the Fourier domain and the capability of the approximation space to reproduce polynomials.

Let

Q h : L 2 (R) → V h (ϕ) ⊂ L 2 (R)
denote the linear approximation operator defined by

(Q h f )(t) = n∈Z ϕ t h -n ϕ • h -n , f (3.19) 
and the approximation error by

h (f ) = f -Q h f L 2 .
Averaging h over all time-shifts, it happens that one can characterise the average error in the frequency domain as

2 h (f ) := 1 h ˆh 0 f (• -τ ) -Q h f (• -τ ) 2 dτ = ˆR E ϕ (hω) f (ω) 2 dω 2π , (3.20) 
where f denotes the Fourier transform of f and E ϕ (ω) is the error kernel given by

E ϕ (ω) = 1 - φ * (ω) φ(ω) + ϕ(ω) 2 k =0 ϕ(ω + 2kπ) 2 . (3.21) 
One can predict the rate of decay of the approximation error from the degree of flatness of E ϕ (ω) near the origin. If E ϕ (ω) = C 2 ω 2L + O(ω 2(L+1) ) as ω → 0, then [Uns00, eq.45] (automatically fulfilling B-series order conditions). We note that this result reveals itself in the continuous-time setting whereas it remains hidden using standard (discrete) RK formulations.

f -Q h f L 2 = Ch L f (L) L 2 as h → 0. ( 3 

Piecewise polynomial frames

Let P n (Ω, F ) be the space of F -valued polynomials of maximal degree n over the domain Ω. We sometimes drop F when F = R and Ω when Ω = (0, 1). This section quickly mentions a few important polynomial bases and their main properties.

Monomial Basis

The canonical basis of polynomials is given by the monomial basis {M k (τ )} where

M k (τ ) := τ k k! (3.23)
and satisfies the derivation property (i.e. they correspond to Green functions of d i dτ i )

d i dτ i M k = M k-i i ≤ k 0 i > k (3.24)
This basis is not orthogonal, which leads to bad conditioning for some numerical applications. However we will use it in subsection 3.3.1 to obtain closed-form filtering of sequences of polynomials.

Shifted Orthonormal Legendre polynomials By Gram-Schmidt orthogonalisation of the monomial basis in L 2 , one obtains the shifted orthonormal Legendre polynomial basis. They have the explicit representation

L k (τ ) = √ 2k + 1 k! d k dτ k τ k (τ -1) k . (3.25) 
Important properties of Legendre polynomials are detailed in appendix C.4. This is the main basis used in projection methods of chapter 5.

Bernstein polynomials Another useful basis of the polynomial space P n is given by the Bernstein basis [Far12]

B n k (τ ) = n k (1 -τ ) n-k τ k . (3.26)
This basis is not orthogonal, but it is useful to represent Bezier splines by their control polygon

{x k } x(τ ) = n k=0 B n k (τ )x k . (3.27)
They satisfy a number of interesting properties. In particular the continuous derivative and integral operators translate to finite differences and finite sums of their discrete control points, and the curve is contained in the convex hull formed by the control polygon [START_REF] Farouki | The Bernstein polynomial basis: A centennial retrospective[END_REF]. 

Hermite splines

Input reconstruction (Virtual DAC)

No matter how accurate simulations methods can be, the response of the overall system is limited by the quality of the input reconstruction. To reconstruct a continous-time input u(t) from discrete samples u n , it is not practical to use Shannon's bandlimited interpolation formula (3.15) because it is both acausal and the sinc kernel has infinite temporal support 7 . By consequence, the bandlimited input reconstruction is not computable. Instead, using generalised sampling theory (see the overview paper [Uns00]), we consider computable non bandlimited approximations of bandlimited spaces whose synthesis functions have finite temporal support.

B-spline spaces

Following the standard approach in [START_REF] Unser | B-spline signal processing. I. theory[END_REF] we consider reconstruction of the input in compactly supported B-spline spaces 8 (B-splines basis functions are shown on figure 3.4)

u(t) = ∞ n=-∞ β m t h -n ũn where β m (ω) := e j ω 2 -e -j ω 2 jω m+1 = sinc m+1 ω 2 (3.28)
where function β m denotes the centred B-spline of order m and β m its Fourier transform.

Prefiltering The coefficients ũn are computed from the cardinal samples u(t n ) using the discrete B-spline IIR pre-filter S m (z), whose Z-transform is the inverse of the B-spline FIR filter B m (z)

S m (z) = 1 B m (z) with B m (z) = m/2 k=-m/2 β m (k)z k . (3.29) 
The block diagram of the method is shown on figure 3.3 (where is the convolution operator). Piecewise polynomials Since B-splines are piecewise polynomials, for each time-frame Ω n = (t n , t n + h), t n = hn, the restriction of the signal u(t n + hτ ) to the interval Ω n is exactly representable as a polynomial, it is thus suitable for use in our one-step simulation framework, which requires inputs to be specified as sequences of time frames. It is given by

S m (z) β m (t/h) n δ t h -n u(t n ) discrete samples n δ t h -n ũn B-spline coefficients u(t) = n β m t h -n ũn B-spline signal
u(t n + hτ ) Ωn = n+(m+1)/2 k=n-(m+1)/2 β m (τ -k) [0,1]
• ũk , u(t n + hτ )

Ωn ∈ P m ([0, 1]).
(3.30)

7. A finite approximation of the Shannon bandlimited interpolation formula and approximate integration of windowed sinc interpolation using quadratures has been proposed in [START_REF] Sarkka | Accurate discretization of analog audio filters with application to parametric equalizer design[END_REF] 8. This approach is more suitable for our time-stepping framework and it is known that the limit when m → ∞ converges to bandlimited spaces. Cardinal interpolating splines It is possible to combine 9 B-splines with their prefilter. This gives the following interpolation formula expressed using the cardinal interpolating splines

β m int u(t) = ∞ k=-∞ β int m t h -k u(t k ) where β int m (ω) = β m (ω) B m (e jω ) . (3.31) 
It is shown on figure 3.7 (d) that the prefilter has the role of a pre-emphasis filter that compensates the lowpass characteristic of B-splines so that the magnitude response of cardinal splines is maximally flat below the Nyquist frequency. Time and frequency responses of B-spline and corresponding cardinal interpolating splines are shown on figure 3.7 .

Causality The above approach is adapted in image processing where causality is not an issue, however for audio signal processing, acausality of the discrete prefilter S m (z) is an important issue that needs to be addressed. Several approaches can be considered:

• If phase linearity (i.e. constant delay) is considered more important than latency, it is possible to approximate the IIR filter S m (z) by an optimal FIR S FIR m (z). Furthermore since the impulse reponse s m [n] of the filter S m (z) decays quickly, an accurate approximation can be obtained with short FIR filters (see figure 3.8).

• If instead a minimal group delay is desired, it is possible to convert S m to minimum phase so that both filters share the same magnitude response S m (e jω ) = S minphase m (e jω ) while the minimum phase filter has a stable realization because it only has stable poles.

If we restrict to piecewise affine spaces, a cost-effective approach consists in using shifted-linear interpolation which is detailed thereafter (see figure 3.5). 9. In practice, since interpolating splines are infinitely supported, it is computationally more interesting to work with finitely supported B-splines, and rely on IIR pre-filtering to obtain their coefficients.

Shifted linear interpolation

We restrict to B-spline spaces of degree 1, following the approach presented in [START_REF] Blu | Linear interpolation revitalized[END_REF]. Instead of using standard linear interpolation whose frequency response is sinc 2 (ω/2), by relaxing phase linearity, it is possible to both obtain a causal IIR prefilter and to improve the frequency response of the interpolator. The mean to obtain this improvement is to use shifted linear interpolation (see figure 3.5). The main idea is the following: instead of using the following (trivial) B-spline prefilter to obtain a cardinal interpolating spline (i.e. here β 1 = β int 1 )

S 1 (z) = 1 β 1 (-1)z + β 1 (0) + β 1 (1)z -1 = 1 where β 1 (t) := |1 -t| + ,
one can use the inverse of the shifted B-spline FIR filter

β 1 (• -τ ) to pre-filter the samples u(t n ) S 1,τ (z) = 1 (1 -τ ) + τ z -1 .
(3.32)

It turns out [START_REF] Blu | Linear interpolation revitalized[END_REF] that there exists an optimal shift 10 τ opt = 1 2 -√ 3

6 for which the magnitude response of the cardinal interpolating spline is maximally flat. This gives the optimal IIR prefilter

S opt 1 (z) = b 0 1 + a 1 z -1 , where b 0 = 1 1 -τ opt , a 1 = τ opt 1 -τ opt . (3.33)
The frequency response is shown on figure 3.6. To conclude this paragraph on shifted linear interpolation, for only a small additional cost (a causal discrete first order IIR pre-filter followed by standard linear interpolation), the frequency response of linear interpolation is significantly improved and can compete with higher order cardinal interpolating splines from figure 3.7 . 

β int 1,τ (ω) = β 1 (ω)S τ 1,τ (z = e jω ).
Note that cardinal splines are interpolating on the integer grid, but their maximum value is reached for the timeshift τ . For the optimal shift τ opt , the magnitude response is improved by up to 5dB between 5kHz and f s /2 compared to standard linear interpolation.

To sum up: for low order reconstruction, shifted linear interpolation is both causal and cost-effective; for higher order reconstruction, causal approximations of B-spline prefilters and higher latency are required (see figure 3.8).

10. We note by anticipation, that the optimal shift corresponds to a Gauss quadrature node ( 12 -

√ 3
6 is the smallest root of the second shifted Legendre polynomials P2 which is used in Gauss-Legendre numerical integration methods [START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary differential equations[END_REF]). This is the second time in this chapter (see remark 3.4 above) that we discover unexpected connections between numerical analysis and signal processing. A dedicated study would be required to reveal the fundamental causes behind these apparent co-incidences. Legendre polynomials are detailed in appendix C.4 p.286. ). B-splines have finite support and a lowpass frequency response (both time and frequency representations converges to gaussians when order is increasd). By contrast, cardinal interpolating B-splines have infinite support in both time and frequency (but both decay quickly). The major difference, comes from the the fact that cardinal B-splines are interpolating (they vanish on the uniform grid except in 0) and their frequency response below the Nyquist frequency is much sharper: it converges to the ideal bandlimited rectangular kernel when order is increased. 

1.0 | int 1 | | int 2 | | int 3 | | int 4 | ( 

Output antialiasing and sampling (Virtual ADC)

In this section, we consider Virtual Analog to Digital Converters (vADC), their implementation and different design tradeoffs. We propose two approaches. First, in subsection 3.3.1, we consider the exact implementation of continuous-time Linear Time-Invariant ARMA filters represented as state-space systems. This strategy allows the use of all analog filter design tools to implement anti-aliasing filters (Butterworth, Chebyshev, Elliptic, etc). Second, in subsection 3.3.2, to mirror input reconstruction in shift-invariant B-splines spaces, we propose an alternative strategy. Given a (potentially discontinuous) signal y(t) defined as a (broken) piecewise polynomial, we look for the best approximant ỹ(t) in B-splines spaces (the dual problem of input reconstruction).

Exact continuous-time filtering for LTI state-space systems

Let u(t) be a non band-limited signal with a finite rate of innovation B (see 3.18). For band-limiting purposes 11 , we would like to apply an exact continuous-time antialiasing filter.

We consider the class of Linear Time-Invariant (LTI) state-space filters

ẋ(t) = Ax(t) + Bu(t), (3.34a) 
y(t) = Cx(t) + Du(t), (3.34b) 
and assume that the input signal u(t), is locally defined for each time step by

u(t n + hτ ) = u[n](τ ) for τ ∈ (0, 1) over a basis Φ = φ 1 (τ ), . . . , φ p (τ ) as follows u[n](τ ) = p i=1 φ k (τ )u i [n]. (3.35) 
For simplicity of notation, in the following, we drop the indices n and assume a normalized time step h = 1 over the unit interval τ ∈ [0, 1]. It is well known that the Green kernel of the operator

L = d dτ -A, (3.36) 
is given by (Θ(τ ) denotes the Heaviside unit step function)

K A (τ, σ) = Θ(τ -σ)e A(τ -σ) (3.37)
For an initial condition x 0 , the state x is obtained by convolution with the kernel

x = L -1 (δ 0 x 0 + Bu) = ´KA (τ, σ) δ 0 (σ)x 0 + Bu(σ) dσ. It yields the basis representation x(τ ) = p i=0 ϕ i (τ )x i where x i = Bu i i > 0. (3.38)
The basis functions are defined by ϕ i := Ψ i [A, Φ], i = 0, . . . , p where the generator of exponential basis functions Ψ, parametrized by the matrix A and basis Φ, is defined as follows

Ψ i [A, Φ](τ ) :=          ˆ1 0 K A (τ, σ)δ 0 (σ) dσ = exp(Aτ ) i = 0, ˆ1 0 K A (τ, σ)φ i (σ) dσ i = 1, . . . , p.
(3.39)

11. i.e. if we need to resample a signal in a (quasi)-bandlimited sense: for audition via a soundcard or for communication with digital audio processing chains inside of a Digital Audio Workstation.

Looking at the output equations (3.34b), we find that the output signal y belongs to the space spanned by the union of input and exponential basis ϕ k (τ ) ∪ I ⊗ φ k (τ )

y(τ ) = C   p i=0 ϕ i (τ )x i   + D   p i=1 φ i (τ )u i   .
(3.40)

By sampling the functions for τ = 1, we obtain the discrete state-space filtering scheme

x 0 [n + 1] = p i=0 ϕ i (1)x i [n], where x i [n] = Bu i [n] for i > 1, (3.41a 
)

y[n + 1] = Cx 0 [n + 1] + D   p i=1 φ i (1)u i [n]   . (3.41b)
Exact representation of the state x(τ ) over the basis {ϕ 0 , . . . ϕ p } relies on the ability to have computable formulae for functions ϕ. In the following, we consider the case of a polynomial input space, for which we provide exact integration results.

Polynomial input spaces

We consider piecewise polynomial inputs, locally represented by polynomials u(τ ) ∈ P p-1 (Ω, C m ) of maximal degree p -1 over the unit time interval Ω = (0, 1). In numerical applications, signals will often be represented using orthogonal polynomials. However in the following, the use of the monomial basis M leads to simpler formulae (see appendix D.1 for a detailed derivation)

M = {M k } p k=1 where M k (τ ) := τ (k-1) (k -1)! . (3.42)
In this section, the basis functions {ϕ k } 12 (see figure 3.9) are generated from M using (3.39). They are defined by the convolution (see [START_REF] Moler | Nineteen dubious ways to compute the exponential of a matrix[END_REF][START_REF] Celledoni | Methods for the approximation of the matrix exponential in a Lie-algebraic setting[END_REF][START_REF]Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later[END_REF] to compute exp(Aτ ))

ϕ k (A; τ ) := Ψ k [A, M ](τ ) =      exp(Aτ ), k = 0, ˆτ 0 exp(A(τ -σ)) σ (k-1) (k -1)! dσ, k > 0. ( 3 

.43)

If A = 0, the operator L reduces to an integrator, it is then immediate that

ϕ k (A; τ ) = I τ k k! = IM k+1 (τ ). ( 3 

.44)

If A is invertible, the following recurrence relation can be used for practical computations

ϕ k+1 (A; τ ) = A -1 ϕ k (A; τ ) -ϕ k (0, τ ) . (3.45)
By reccurence, we also have the explicit representation

ϕ k (A; τ ) = A -k   exp(Aτ ) -I k-1 i=0 τ i i!   . (3.46)
12. We have used the same notation for the so-called ϕ-functions that have an important role in the literature on exponential integrators [START_REF] Hochbruck | Exponential integrators[END_REF]. Note however that here we are not only interested in discrete time-stepping, but also on all the continuous-time values between time-stepping instants. This will be important in the resampling application example.

Reorganising terms, we note the following interpretation for functions ϕ: the term A k ϕ(A; τ ) is the remainder of the Taylor series expansion of exp(Aτ ) truncated after k terms 

exp(Aτ ) = k-1 i=0 (Aτ ) i i! + A k ϕ k (A; τ ).

Implementation

Remark 3.6 (Diagonalised state-space and parallelisation). To avoid using matrix-valued function and forming the matrix exponential, for diagonalizable matrices A, it is advantageous to use the eigenvalue decomposition A = UΛU -1 with eigenvalues Λ = diag(λ 1 , . . . , λ n ). We define the complex variable change z(t) := U -1 x(t) to obtain the diagonalized state space system

ż(t) = Λz(t) + Bu(t), B = U -1 B, y(t) = Ĉz(t) + Du(t), Ĉ = CU.
The LTI state-space filter implementation can then be parallelised using scalar complex-valued ϕ-functions and the output space belongs to span ϕ Example 3.2 (First order lowpass filter). We consider a first order lowpass filter with the following state-space and Laplace transfer function representations for a cutoff pulsation

k (λ i , τ ) k,i ∪ φ k (τ ) k .
ω c ∈ R + ẋ(t) = ω c (u(t) -x(t)) y(t) = x(t) Laplace transform ⇐⇒ Y (s) = H s ω c U (s) where H(s) = 1 1 + s .
The filter is driven by a piecewise polynomial input signal u(t). It is defined by the sequence of local polynomials (on the left) with corresponding monomial coefficients (on the right) by

{u n (τ )} = {τ 2 , 1 -τ, 0, 1}, ⇐⇒ u =                 0 0 1      ,      1 -1 0      ,      0 0 0      ,      1 0 0                 τ 0 τ 1 τ 2 .
The input and output signals are shown on Figure 3.10. 

u n (τ ) = (-1) n (2τ -1) , ∀n ∈ N ⇐⇒ u =        -1 2   ,   1 -2   , . . .      τ 0 τ 1 .
We filter this signal by a third order Butterworth [START_REF] Butterworth | On the theory of filter amplifiers[END_REF] filter H s ωc whose cutoff is set to the Nyquist pulsation ω c = π. The normalized Laplace transfer function prototype H(s) is separated in partial fractions

H(s) = 1 (s 2 + s + 1)(s + 1) = c 1 s -λ 1 + c 2 s -λ 2 + c 3 s -λ 3 , (3.47) 
and realized in complex canonical diagonal form by the state-space system

ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) A =      λ 1 λ 2 λ 3      , B =      1 1 1      , C = c 1 c 2 c 3 , (3.48) 
with poles

λ 1 = -1-i √ 3 2 , λ 2 = -1+i √ 3 2 , λ 3 = -1 and coefficients c 1 = -3+i √ 3 6 , c 2 = -3-i √ 3 6 , c 3 = 1.
The continuous-time response of the filter is shown on figure 3.11. The values at the sampling instants are shown as black dots. To show that the method generalizes easily to any order using the same approach (and that we can easily use dirac deltas distributions as inputs), the exact impulse and step responses of an order 12 Butterworth filter are shown on figure 3.12 (Note the higher group delay which is due to the higher order of the causal minimum phase Butterworth filter). 

Approximation of (broken) piecewise polynomials on B-spline spaces

In the simulation methods developed in chapters 4 and 5, the time-continuous-output y(t) will often be defined as a (possibly broken) piecewise polynomial. Furthermore, in section 3.2, we have considered input reconstruction in quasi-bandlimited B-spline spaces (with continuity order m). It is natural in this context to look for the dual process: finding a B-spline approximation ỹ(t) having the same continuity order m (or a higher continuity order if smoothing is seeked) and a rate of innovation equal to the output virtual ADC sampling rate (block E in figure 3.2). Furthermore, for implementation purposes, we want such an approximation be both local and causal. • Conversely, for each polynomial y n (t) on Ω n = [n, n + 1], the inverse operator L -1 yields a smooth extension operator: the resulting B-spline ỹn (t) (with extended temporal support) is such that its restriction to Ω n yields the same polynomials, i.e. ỹn (t)| Ωn = y n (t).

Theory of operation

• Note that each polynomial y n (t) yields a different local B-spline extension ỹn (t): we have an overcomplete representation with m + 1 candidate coefficients ỹn [k] for each B-spline basis function β m (t -k). To obtain a unique output ỹ(t), we need a strategy for the fusion of coefficients. It is then natural to think of weighted Overlap Add (which is a very common tool in signal processing based on the Short Time Fourier Transform).

• From frame theory [START_REF] Christensen | An introduction to frames and Riesz bases[END_REF], we know that the combination of multiple bases using barycentric weights w k (summing to one) constitute a frame. Furthermore, since the choice of (positive) weights is free, a natural idea is to use a weighting scheme proportional to the area of influence of each B-spline β m (t -k) (see (3.49)) on the interval [0, 1] (see figure 3.15).

An example of B-spline projection from L 2 signals is shown in figures 3.17 and 3.16. A similar idea called Bezier projection for NURBS 13 and T-splines in the context of Isogeometric Analysis [START_REF] Hughes | Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[END_REF] was proposed in reference [TSE + 15]. Causal B-splines In order to align polynomials with the integer grid, here we use the causal definition of B-splines 14 as the m-fold convolution (see figure 3.4)

y 0 [n] y 1 [n] y 2 [n] y 3 [n] ỹ0 [n] z -3 ỹ-1 [n] z -2 ỹ-2 [n] z -1 ỹ-3 [n] 1 ỹ0 [n -3] w 0 ỹ-1 [n -2] w 1 ỹ-2 [n -1] w 2 ỹ-3 [n] w 3 + + + + ỹ[n -3] β 3 (t) ỹ(t -3) L -1
m β m (t) L L -1 0 1 [0,1] (t) [1] [1] 1 (t) + -2(t -1) + + (t -2) +   1 2 1 2 - √ 3 6 √ 3 6     1 - √ 3 1 √ 3   2 (t) 2 + -3(t-1) 2 + +3(t-2) 2 + +(t-3) 2 + 2!      1 6 2 3 1 6 - √ 3 12 0 √ 3 12 √ 5 60 - √ 5 30 √ 5 60           1 -2 √ 3 4 √ 5 1 0 -2 √ 5 1 2 √ 3 4 √ 5      3 4 i=0 (-1) i 4 i (t-i) 3 + 3! ,        1 
- √ 7 280 √ 7 840               1 -3 √ 3 11 √ 5 -33 √ 7 1 - √ 3 - √ 5 9 √ 7 1 √ 3 - √ 5 -9 √ 7 1 3 √ 3 11 √ 5 33 √ 7        Table 3.
β m (t) := β 0 (t) . . . β 0 (t) = m+1 i=0 (-1) i m + 1 i (t -i) m + m! , where β 0 (t) = 1 [0,1] (t). (3.49)
We define the spline space

S m := span β m (t -k) k∈Z ⊂ L 2 (R).
Local polynomial space Denote β m k (t) the restriction to the unit interval

Ω = [0, 1] of the B-spline β m (t + k), i.e. β m k (t) = β m (t + k) Ω
, so that the restriction to Ω of a function u(t) from the spline space S m is locally represented in the polynomial space P m (Ω) by 14. From the spectral definitions of causal B-splines with Laplace transform β m (s) = (1e -s ) m+1 /s m+1 . The binomial coefficients and time-shifts comes from the expansion of the finite difference operator (1e -s ) m+1 while t m + /m! comes from the inverse Laplace transform of the repeated integration operator 1/s m+1 .

u(t) Ω = m k=0 β m k (t)ũ -k = | β ũ. ( 3 
ũ[n] = L -1 u[n] =      . . . ũ0 [n] . . . . . . . . . ũ-m [n] . . .      . ( 3 
Weighted barycentric overlap-add Finally, the B-spline coefficients ũ[n] n∈Z of ũ(t) are obtained by combining the m + 1 B-spline estimates using the barycentric average

ũ [n -m] = m k=0 w k ũm-k [n -k] ,
where

w k = ´1 0 β m k (t) dt m k=0 ´1 0 β m k (t) dt . (3.54)
The weights w k are chosen proportional to the intersection of their area with the unit interval. 

1 0 1 2 m = 1 w 1 1 (t + 1) 1 0 1 2 w 0 1 (t + 0) 1 0 1 2 m = 2 w 2 2 (t + 2) 1 0 1 2 w 1 2 (t + 1) 1 0 1 2 w 0 2 (t + 0) 1 0 1 2 m = 3 w 3 3 (t + 3) 1 0 1 2 w 2 3 (t + 2) 1 0 1 2 w 1 3 (t + 1) 1 0 1 2 w 0 3 (t + 0)
(Q m u)(t) = n∈Z Z -n m i=0 w i Z i-m m j=0 Z i β m (t)L -1 i,j P j Z n u . ( 3 
(Q m β m )(t) a = n∈Z Z -n m i=0 w i Z i-m m j=0 Z i β m (t)L -1 i,j P j Z n β m b = m n=0 Z -n m i=0 w i Z i-m Z i β m (t) m j=0 L -1 i,j P j β m n L jn c = m n=0 Z -n m i=0 w i Z -m β m (t)δ i,n = m n=0 Z -n Z -m β m (t)   m i=0 w i δ i,n   d = m n=0 Z -n Z -m β m (t)δ 0,n = Z -m β m (t).
By integer shift-invariance, by conclude that Q m reproduces the spline space S m .

Numerical experiments

In order to assess the qualitative approximation properties of operator Q m , we perform two numerical experiments (a detailed quantitative study is left for future work).

• First (figure 3.16), we approximate piecewise discontinuous square, sawtooth and triangle polynomial signals over B-spline spaces of increasing smoothness S 1 , S 2 , S 3 . We note that square and sawtooth belong to the kernel of the B-spline projector and are exactly filtered after an initial transient. The triangle is exactly reproduced by first order B-splines, but it is progressively filtered when increasing the B-spline smoothness.

• Second (figure 3.17), to anticipate signals from chapter 5, we project (first row) a (smooth, bandlimited) sinusoid over piecewise constant and piecewise affine subspaces of L 2 (R) (this yields non-bandlimited approximations, second row), then we reconstruct its C 1 approximations over the B-spline space S 2 using operator Q 2 (third row). We note that even for low smoothness m = 2 and crude piecewise constant approximations, signals are qualitatively well recovered. Furthermore we notice the increased accuracy of the piecewise affine reconstruction (see section 3.1.3).

L2 signal 

B-spline m = 1 B-spline m = 2 B-spline m = 3 (a) square L2 signal B-spline m = 1 B-spline m = 2 B-spline m = 3 (b) saw L2 signal B-spline m = 1 B-spline m = 2 B-spline m = 3 (c) triangle

Application: "virtual analog" resampler

As an illustration of the virtual analog toolchain, a real-time, variable rate, "virtual analog", resampler (fig. 3.18) has been implemented in UVI Falcon software [START_REF] Uvi | Falcon[END_REF]. It is constituted of:

• First order B-spline DAC with sampling rate f s (see section 3.2) to convert discrete-time signal to continous-time (and a second optional one with virtual sampling rate f s ),

• a continuous-time anti-aliasing Butterworth lowpass filter (see figure 3.12) with cutoff frequency f c < f s /2 to approximately limit the bandwidth of the signal to f c ,

• a variable rate sampler with virtual sampling rate f s < f s , to downsample the signal at a lower sampling rate (with the effect of periodising the spectrum above f s /2),

• a second exact high-order continuous-time anti-image Butterworth lowpass filter with cutoff frequency f c < f s /2 to bandlimit the signal to f s /2 (voluntarily 15 keeping spectral images between f c and f c ).

• a fixed sampler to resample the signal back to the original sampling rate f s .

u[n] y[n] u(t) x(t) x[n] x[n] y(t) f s f c f s f c f s Figure 3.18 -(Virtual Analog resampler) block-diagram.
It can be interpreted as a cascade of two multi-rate polyphase resamplers [START_REF] Vaidyanathan | Classical sampling theorems in the context of multirate and polyphase digital filter bank structures[END_REF], except that using virtual continuous-time signal processing, we have an infinite number of 'phases' between sampling instants. Blocks in dashed line on figure 3.18 corresponds to approximate projection (see (3.16)) on spaces of bandlimited signals with respective bandwidths f s /2 and f s /2.

Spectral periodisation about the virtual sampling rate f s = 4 kHz (and its multiples) is illustrated on figure 3.19. The quasi-band-limiting effect of the two Butterworth filters is clearly visible: we still observe some aliasing in the crossover region about the virtual Nyquist frequency f s /2 = 2 kHz (an its images at 6 KHz, 10 kHz, etc) but it is maintained below -84 dB. 15. The whole purpose of sampling rate reduction audio effects is to keep the spectrum periodisation artefacts of the virtual sampling rate f s (to emulate the sound of old analog-to-digital and digital-to-analog converters) and at the same time to avoid spectral aliasing artefacts that are linked to the current simulation sampling rate fs.

Conclusion

In this chapter, we have reviewed the foundations of the non-bandlimited signal representation framework used in this thesis. Instead, we use sequences of time-frames having a finite number of parameters per time frame, i.e. signals with a finite rate of innovation. The tools of generalized sampling theory allows consistent analysis-resynthesis of such non-bandlimited signals. Extended bandwidth is useful to resolve the extended spectrum of nonlinear systems (for example a sawtooth signal is not bandlimited in the Shannon-Nyquist sense, but its rate of innovation is finite and proportional to its frequency), Having minimal disjoint temporal supports is also a critical ingredient to obtain causal numerical integration schemes.

We have revisited the topic of continuous-time input reconstruction in B-spline spaces from discrete signal samples. B-spline signal processing theory is now well established, yet discrete B-spline pre-filters are sometimes omitted so that B-splines can be wrongly described as being too smooth. In our context, causality is perhaps the most limiting factor, For that purpose, we have seen that shifted linear interpolation is a causal and cost-effective way to improve the frequency response of traditional linear interpolation at the expense of phase linearity.

We have also considered exact causal continuous-time ARMA filtering of piecewise defined signals. This strategy allows to use the vast literature on analog filter design tools (e.g. Butterworth, Chebyshev, Elliptic, etc) for the realisation of the continuous-time anti-aliasing stage. As an alternate approach: we consider the approximation of piecewise (discontinuous) polynomials on smooth B-splines spaces. Indeed, it is known that in the limit of infinite smooothness, the interpolating kernel in B-splines spaces converge to the sinc kernel of band-limited signal spaces. The ARMA approach has the advantage of being very general and causal with steep anti-aliasing filters for a relatively low filter order. The price to pay is the lack of phase linearity and lack of idempotence of the bandlimiting operator. Alternatively, B-spline output approximation works as a projector (with delay), so we have causality, phase linearity (idempotence with delay). We face the same kind of design tradeoffs as is usual in the choice between Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters for a given application. Note that signal reconstruction in quasi-bandlimited spaces such as the ones generated by Hammerich pulses [Ham07, KZ17] looks promising for audio use but is left for future work. In this chapter we restrict our investigation to input-state-output PHS systems, defined in definition 1.22, of the form

ẋ = (J -R)∇H(x) + Gu, (4.1a 
)

y = G T ∇H(x). (4.1b)
Although the approach is general, we focus the study on linear systems. For a unit interval Ω = (0, 1), and time step h, properties P 0 -P 3 (see p.79) are expressed by P 0 the trajectory is locally approximated on [t n , t n + h] by a polynomial X n on Ω such that

X n (τ ) ≈ x(t n + hτ ), ∀τ ∈ Ω,
P 1 derivatives match on frame boundaries up to a controllable continuity order k ≥ 0

X (m) n (0) = X (m)
n-1 (1), ∀m ∈ {0, . . . , k}, P 2 the local truncation error has a controllable accuracy order s:

(h) = x(t 0 + h) -X(1) = O(h s+1 ),
P 3 the trajectory X n satisfies the power balance over each frame

H(X n (1)) -H(X n (0)) = -h ˆ1 0 ∇H(X n (τ )) T R∇H(X n (τ )) dτ + h ˆ1 0 y(τ ) T u(τ ) dτ.
Outline Our strategy, is detailed in section 4.1. It uses (adaptive) collocation (see [START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary differential equations[END_REF]) to satisfy all of the above properties: the vector field and its derivatives is exactly satisfied at fixed collocation instants to obtain both accuracy and smoothness. Additional collocation points are used and adaptively optimised for each time frame to satisfy the power balance.
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In section 4.2 we propose a first instance of the approach. We obtain the adaptive Euler method whose solutions are C 0 -regular. We study its accuracy order s ∈ {1, 2}, its stability function, and the existence domain of power balanced solutions. This shows that with this formulation, there exists a maximal dissipation rate above which power-balanced solutions do not exist anymore. Numerical simulations show that despite the lower accuracy order, thanks to the power-balance, qualitative aspects such as orbit and dissipation rate are improved compared to the mid-point method.

In section 4.3, in order to improve the deficiencies (low accuracy and regularity orders) of the first method, we add symmetry and smoothness. This leads to a C1 -regular method. We study its numerical properties showing that it is unconditionaly A-stable with an accuracy order s ∈ {4, 6} (for linear systems). The existence domain of power-balanced solutions is also improved.

Finally in section 4.4, we generalise the approach to any number of derivatives and collocation points with the definition of (Symmetric 1 ) Power-balanced Adaptive collocation methods (PAC and SPAC). We use symbolic computer algebra to automate the study of their stability function, accuracy order, leading error term and maximal dissipation rate. The existence domain of power-balanced solutions is also shown in the complex plane. The domains are different but closely reminiscent of the theory of order stars [START_REF] Wanner | Order stars and stability theorems[END_REF].

Satisfying the power-balance using adaptive collocation

For a local trajectory X(τ ), τ ∈ [0, 1], we define the local vector field

f h (X) := h (J -R)∇H(X) + Gu , (4.2) 
and the vector field approximation error operator

E(X) := Ẋ -f h (X). (4.3) 
Finally we introduce the power balance error, defined by the functional

ρ(X) := ∇H(X) E(X) = ˆ1 0 ∇H(X(τ )) T E(X(τ )) dτ. (4.4)
Remark 4.1 (Power balance orthogonality condition). In the absence of external ports, the power balance ρ(X) = 0 can be interpreted as an orthogonality condition between the vector field approximation error E(X) and the gradient of the Hamiltonian ∇H(X).

Our first strategy, inspired by Runge-Kutta collocation methods [START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary differential equations[END_REF] is to use a first set of fixed collocation points C, and a second set of variables ones C such that

E(X(c i )) = 0, ∀c i ∈ C ∪ C.
The set C is used to achieve numerical accuracy (and continuity). The set C is devoted to satisfy the power balance: the variable parameters ci ∈ [0, 1] are optimised so that ρ(X) = 0.

To obtain a practical numerical method, existence and uniqueness of power-balanced solutions must be investigated. To study this problem, we propose a family of (Symmetric) Power-balanced Adaptive collocation methods respectively called PAC and SPAC and study three instances of increasing complexity. We restrict the analysis to autonomous linear ODEs, for which we provide stability functions, accuracy analysis and analytical bounds on the existence of power-balanced solutions (based on the maximal dissipation rate).

Method A: adaptive collocation

We first consider the minimal requirements to satisfy properties P0 -P3, Method 4.1. The one-point Power-balanced Adaptive collocation method PAC(1) is defined implicitly by the following constraints: P0. (Model) The trajectory X α (τ ) ∈ P 1 is an affine polynomial with 2 degrees of freedom

X α (τ ) = X 0 + τ δX α . (4.5a) P1. (C 0 -Continuity)
The trajectory satisfies the initial condition

X α (0) = X 0 = x 0 ∈ R n . (4.5b)
P2. (Accuracy order s ≥ 1) The vector field is satisfied for the collocation point α ∈ [0, 1]

Ẋα (α) = δX α = f h (X α (α)) ∈ R n . (4.5c) P3. (Power balance)
The PB is satisfied if there exists an optimal value α satisfying

α ∈ α ∈ [0, 1] | ρ(X α ) = 0 = ∅. (4.5d)
The method is completed by the time-stepping map Φ h : x 0 → x 1 := X(1).

Method 4.1 defines a nonlinear problem with n + 1 parameters to solve with respect to (δX α , α). A difficulty is that the parameter α appears recursively in δX α . To study this problem, we consider the autonomous linear case.

Autonomous Linear analysis

Let H(x) = 1 2 x T Qx = 1 2 x 2 Q , with Q = Q T 0 be a quadratic Hamiltonian, A = h(J-R)Q and G = 0. We rewrite (4.1a) as the autonomous ODE Ẋ = AX, X(0) = x 0 . (4.6)
Solving the collocation constraint (4.5c):

δX α = A(x 0 + αδX α ) leads to δX α = (I -αA) -1 Ax 0 .
Substitution in (4.5a) yields the following family of candidate solutions parametrised by α

X α (τ ) = I + τ (I -αA) -1 A x 0 = (I -αA) -1 I + (τ -α)A . (4.7) 
Evaluating x 1 = X α (τ = 1), yields the time stepping scheme

x 1 = R α (A)x 0 , where the time- stepping operator is R α (A) = (I -αA) -1 (I + (1 -α)A). (4.8) 
Substituting the matrix A by a complex pole λ ∈ C, we obtain Property 4.1 (stability fonction). For the Dahlquist test equation, ẋ = λx, λ ∈ C, approximated using method 4.1, we obtain

x 1 = R α (λ)x 0 , the stability function (see def. B.4 p.276) is thus R α (λ) = 1 + (1 -α)λ 1 -αλ . (4.9)
Remark 4.2. This classical result corresponds to the stability function of extended Euler methods. Using Taylor series expansion, the time-stepping approximation error is given by

(λ) = exp(λ) -R α (λ) = λ 2 1 2 -α + O(λ 3 ). (4.10)
• The method has accuracy order s ≥ 1, ∀α ∈ [0, 1]. It reaches accuracy order s = 2 for α = 1 2 and R 1/2 (λ) is the Padé approximant of exp(λ) of order (1, 1).

• If α ≥ 1 2 , then the method is A-stable: R α (λ) ≤ 1 for (λ) ≤ 0, (see def. B.5 p.276). If α = 1 2 , then the method is conservative: R α (λ) = 1 for all λ ∈ iR.

The following result shows that, even in the linear dissipative case, there is a maximal dissipation rate above which it is not possible to satisfy the power balance (see figure 4.1).

Property 4.2 (bounded power balanced domain). Let

λ = -σ, σ ∈ R + . If σ ∈ [0, √ 3 
], then the power balance (4.5d) is satisfied for the optimal collocation point

α = (σ -1) + 1 -σ 2 3 2σ ∈ [0, 1]. (4.11)
Proof. Substituting equation (4.7) in the power balance functional (4.4), and integrating symbolically (see appendix E.1 p.309) we btain

0 = ρ(X α ) = ˆ1 0 X α (τ ) Ẋα (τ ) -f (X α (τ )) dτ = α 2 σ + α (1 -σ) + 2σ -3 6 σ 2 x 2 0 (1 + σα) 2 .
This quadratic equation has a unique real branch in [0, 1] given by (4.11) for |σ| ∈ [0, √ 3]. 1)) Optimal parameter α as a function of the dissipation rate σ. Note that in the absence of dissipation (σ = 0), the optimal parameter (α = 1/2) corresponds to the mid-point method. When the dissipation rate increases (σ > 0), the method goes towards the Forward Euler method (α < 0.5). Conversely if the pole is unstable (σ < 0), the method goes towards the Backward Euler scheme (α > 0.5). For |σ| > √ 3, it has no real solution.

It may seem that the method relies on the stability margin provided by the dissipation rate to solve the power-balance constraint. To demonstrate that solving the power balance does not require the use of artificial numerical damping (or emphasis), a symmetric power balanced adaptive collocation method that is always A-stable is presented in section 4.3.

Example 4.1 (Damped Oscillator). Consider a damped oscillator with normalised (h = 1)

pulsation ω and dissipation rate σ (for example a parallel RLC circuit) with vector field

f (X) =   -σ -ω ω 0   X.
A numerical simulation of this system is shown on Figure 4.2. The mid-point method (α = 1 2 ), which is second order accurate, is compared to the PAC(1) (adaptive Euler), which is only first-order accurate (in general). Despite the lower local numerical accuracy, we remark that two qualitative aspects of the exact solutions have been improved thanks to the power balance: the dissipation rate and the distance to the exact dissipative orbit. (1). Despite the lower accuracy order of PAC(1), we remark that the orbit and dissipation (in blue on the right) are improved compared to the mid-point method (in orange on the left).

Method B: symmetric adaptive collocation

To generalize to C 1 solutions and to obtain a symmetric A-stable method, we introduce

Method 4.2 (SPAC(2)). P0. (Model) The trajectory is a polynomial X α ∈ P 4 (Ω, R n ), P1-2. (C 1 -continuity) X α
satisfies an initial condition and collocation of the vector field on the boundary of the interval ∂Ω = {0, 1}

X α (0) = X 0 , Ẋα (0) = f h (X α (0)), Ẋα (1) = f h (X α (1)), (4.12a) 
P2-3. (Power balance) the vector field is satisfied on symmetric adaptive collocation points

Ẋα (α) = f h (X α (α)), Ẋα (1 -α) = f h (X α (1 -α)), (4.12b) 
The PB is satisfied if there exists an α such that

α ∈ α ∈ [0, 1] | ρ(X α ) = 0 . (4.12c)
We study the behaviour of method 4.2 and its validity domain. In the linear case, we have the following property Property 4.3 (stability fonction). For the Dahlquist test equation, ẋ = λx, λ ∈ C, approximated using method 4.2, the time stepping map is x 1 = R β (λ)x 0 with the stability function

R β (λ) = 1 + λ 2 + (1 -β) λ 2 12 + β λ 3 24 1 -λ 2 + (1 -β) λ 2 12 -β λ 3

24

, and

β = α(1 -α). (4.13)
Proof. The proof is omitted. The result can be derived using CAS such as in E.1 p.309.

Remark 4.3. The method is A-stable for all values of β. Using Taylor series expansion, the approximation error is

(λ) = exp(λ) -R β (λ) = (5β -1) λ 5 + λ 6 720 + O z 7 . (4.14)
By consequence the method

• has (linear) accuracy order s ≥ 4, ∀β ∈ [0, 1 4 ],

• reaches accuracy order s = 6

for β = 1 5 (i.e. α = 1 2 ± √ 5 
10 ). In this case, R β (λ) corresponds to the Padé approximation of exp(λ) of order (3, 3) (see also D.7 p.297).

For a purely dissipative test equation, we also have the following result Property 4.4. Let λ = -σ, σ > 0. The power balance ρ(X β ) = 0 has a unique solution

β = 2520 + σ 2 (9σ 2 -84) -3 -σ 8 + 112σ 6 + 2116800 42σ 2 σ 2 -10 ∈ 0, 1 4 , (4.15) 
subject to σ ∈ [0, σ max ) where σ max ≈ 10.651 (see fig 4 .3).

Proof. As in property 4.2, solving the power balance ρ(X β ) = 0 yields a quadratic equation

aβ 2 + bβ + c = 0, (4.16 
)

with a = 21σ 2 (σ 2 -10), b = -9σ 4 + 84σ 2 -2520, c = 504 -12σ 2 + σ 4 . It admits a unique solution for β ∈ 0, 1 4 (i.e. α ∈ [0, 1/2]
) which is given by (4.15). 

Increasing regularity: SPAC methods

In order to increase the regularity and accuracy orders, we combine the previously presented approach with multi-derivative Hermite-Obreshkoff collocation methods [START_REF] Hairer | Solving ordinary differential equations I. Nonstiff problems[END_REF][START_REF] Nørsett | One-step methods of Hermite type for numerical integration of stiff systems[END_REF][START_REF] Obreshkov | Neue quadraturformeln[END_REF]. We summarize and extend the previous methods with the following definition. 

P0 (Model) X α ∈ P d (Ω, R n ) is a polynomial over the interval Ω,
• P1,P2 (C k -continuity). X α satisfies an initial condition and multi-derivative collocation of the vector field on the boundaries of the interval ∂Ω = {0, 1}.

X α (0) = x 0 , (4.17a) 
(D m X α ) (c) = D m-1 f X α (τ ) (c), ∀c ∈ ∂Ω, ∀m ∈ {1, . . . k}. (4.17b) 
• P3 (power balance) The vector field is satisfied over the set

C = {α}, α ∈ D = (0, 1) for PAC (resp. C = {α, 1 -α}, α ∈ D = (0, 1/2) for SPAC) such that DX α (c) = f X α (c) , ∀c ∈ C. (4.17c) 
The power balance is satisfied if there exists an α such that

α ∈ α ∈ D | ρ(X α ) = 0 . (4.17d)
Automating proofs using CAS, as in E.1 p.309, we obtain the properties in table 4.1.

Method Stability function R(λ)

Leading error s σ max

PAC(0) 1 + (1 -α)λ 1 -αλ -(2α -1) λ 2 2 1 to 2 ≈ 1.73 PAC(1) 1 + λ(4-2α) 6 + λ 2 (1-α) 6 1 -λ(2α+2) 6 + αλ 2 6 (2α -1) λ 4 72 3 to 4 ≈ 6.66 PAC(2) 1 + λ(72-24α) 120 + λ 2 (18-12α) 120 + λ 3 (2-2α) 120 1 -λ(24α+48) 120 + λ 2 (12α+6) 120 -αλ 3 60 -(2α -1) λ 6 7200 5 to 6 ≈ 4.96 SPAC(0) 1 + λ 2 + λ 2 β 2 1 -λ 2 + λ 2 β 2 (6β -1) λ 3 + λ 4 12 2 to 4 ≈ 3.66 SPAC(1) 1 + λ 2 + (1 -β) λ 2 12 + β λ 3 24 1 -λ 2 + (1 -β) λ 2 12 -β λ 3 24 (5β -1) λ 5 + λ 6 720 4 or 6 ≈ 10.65 SPAC(2) 1 + λ 2 + λ 2 (24β+72) 720 + λ 3 (12β+6) 720 + λ 4 (2β) 720 1 -λ 2 + λ 2 (24β+72) 720 -λ 3 (12β+6) 720 + λ 4 (2β) 720 (14β -3) λ 7 + λ 8 302400 6 to 8 ≈ 6.38
Table 4.1 -(SPAC methods) Linear properties. Remind that β = α(1 -α), s denotes accuracy order and the leading error is the first nonzero term in Taylor series expansion of the error. Analysing table 4.1 and figures 4.4, we make the following observations:

• Power-balanced regions are closely related but different from the theory of order stars 2 which was introduced in [START_REF] Wanner | Order stars and stability theorems[END_REF] to study the stability of numerical methods.

• We remark on figure 4.4 that for both PAC and SPAC, increasing the regularity k increases the surface of power balanced regions. However, we also notice in table 4.1 that the maximal dissipation rate shrinks for k = 2. A tradeoff seems to operate between the maximal dissipation rate and the total area of the power-balanced region.

• In Table 4.1, for PAC methods, the leading error term vanishes for the roots of the Legendre and Lobatto polynomials 3 . These polynomials play an important role in the construction of Gauss-Legendre and Gauss-Lobatto Runge-Kutta methods (see [START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary differential equations[END_REF]).

• In the absence of dissipation, for both PAC and SPAC methods, the power-balance yields balanced A-stable Padé approximations of the exponential with optimal accuracy order s.

• In the presence of dissipation, PAC methods may use locally expansive stability functions (blue zones in figures 4.4a-c). The method relaxes accuracy order to satisfy the power balance. Nevertheless, one can see on figure 4.2 that the orbit of the power-balanced approximation (with lower accuracy order s = 1) is closer to the orbit of the true solution when compared to the orbit of an A-stable approximation having higher accuracy order (s = 2) and the same number of collocation points.

• The previous observation indicates that the local truncation error, commonly used to measure accuracy order, is only one metric among others based on a discrete simulation grid: minimising specific continuous-time error metrics (such as the power-balance functional ρ(X) (eq. (4.4)) or the vector-field approximation error E(X) (eq. ( 4.3))), can be beneficial to capture or improve important features of the dynamics (such as energy-conservation, orbit shapes or dissipation rate).

• SPAC methods are all symmetric, A-stable, time-reversible and of even accuracy order (independently of the dissipation rate) by symmetry of their collocation points.

A Python code example to produce results of table 4.1 and graphics of figures 4.4 and 4.5 is shown in listing E.1 p.309.

Order star theory uses the regions

A = λ ∈ C | S(λ) > 1 with S(λ) = R(λ)/ exp(λ)
to study stability, In (S)PAC we use power balanced regions of the complex plane for which ρ(Xα) = 0 can be satisfied.

3. For all PAC methods, the leading error term in table 4.1 vanishes for α = 1/2, the root of the Legendre polynomial P1(α) = 2α -1. Expanding β = α(1α), we obtain the Legendre polynomial P2(α) = 6α 2 -6α + 1 for SPAC(0), and the Jacobi/Lobatto polynomial L2(α) = 5α 2 -5α + 1 for SPAC (1).

Conclusion

We have proposed a first family of (Symmetric) Power balanced Adaptive collocation methods called (S)PAC that can satisfy the regularity, accuracy and power balance requirements P1, P2, P3. This approach has the following advantages and drawbacks

Advantages

• arbitrary high regularity order k (P1) and accuracy order s (P2) can be easily obtained by increasing the order of derivatives and the number of collocation points,

• the continuous-time power balance is exactly satisfied (when a solution exists),

• dissipation rate and orbits are more accurately tracked thanks to the power-balance P3.

Drawbacks Unfortunately, we also note the following important drawbacks

• the existence domain of power-balanced solutions is bounded by a maximal the dissipation rate (for real poles) or more generally by the power-balanced regions of figure 4.4 for complex poles,

• an implicit nonlinear equation has to be solved for each time-step (even for linear systems),

• polynomial parameters are implicitly defined with respect to the adaptive parameter α which does not appear linearly in the equations. This makes estimation of parameters in the case of nonlinear vector field f (x) a difficult problem 4 for which existence/uniqueness/convergence conditions remains an open subject.

To overcome these problems, we abandon the collocation approach and adopt a different strategy: we interpret the power-balance as an orthogonality condition ρ(X) = ∇H(X) E(X) = 0 between the vector field error E(X) = Ẋf (X) and the Hamiltonian gradient ∇H(X). This interpretation leads us to methods based on continuous-time functional projection 5 in chapter chapter 5.

Introduction

This chapter presents one of the main results of this thesis: we establish a sufficient condition on projectors to obtain time-continuous power-balanced trajectories. Indeed, in chapter 4, we have seen that it is not possible to unconditionally satisfy the power balance functional (4.4) using (adaptive) collocation methods. In particular (see figures 4.4 and 4.5 p.114), the existence domain of power balanced solution is bounded: there is a maximal dissipation rate (or more generally a method-dependent maximal pole radius) above which power-balanced solutions cease to exist. Furthermore, the power-balance constraint led to numerical schemes whose parameter estimation is nonlinear in the parameters (even for linear ODE).

To avoid these problems, in this chapter, which is central in this thesis, we propose a continuous-time power-balanced functional projection approach.

The chapter is structured as follows1 :

• In section 5.1, we define regular power balanced methods (RPM) of variable projection and regularity orders which satisfy properties P1, P2, P3 (defined p.79). The main foundational results, which links functional L2 projection and power balance are exposed in subsection 5.1.1, where we introduce the functional notion of projected conservative (Dirac) and dissipative structures over time-frames. Based on these results, RPM are first defined for pH-ODE in subsection 5.1.3, and for pH-DAE in subsection 5.1.4.

• In section 5.2, instead of jumping straight to implementation and simulation issues (see sections 5.4, 5.5), we provide a thorough analysis of RPM in the case of pH-ODE. This step is important to guide the choice of approximation spaces. In subsection 5.2.2, we reformulate RPM as continuous-stage Runge-Kutta methods. The goal is twofold: first to leverage the vast amount of results available for Runge-Kutta methods, second to bridge the functional projection and the Runge-Kutta viewpoints. Existence and uniqueness conditions are considered in subsection 5.2.3, stability functions in subsection 5.2.4, power balance in subsection 5.2.5, accuracy order conditions in subsection 5.2.6. Finally regularity analysis and Peano error kernels are detailed in subsection 5.2.7. A landmark of this section is that projection spaces that reproduce polynomials yield high-order accuracy.

• In section 5.3 we try to tackle the more difficult subject of pH-DAE. A short discussion on accuracy and stage-order and stiffness is provided in subsection 5.3.1. But most of the work is dedicated to establishing milestones towards practical existence and uniqueness conditions for RPM applied to pH-DAE by exploiting the particular structure of the equations.

• In section 5.4, we address the implementation of RPM: numerical computation of projections, choice of unknowns and implicit equation solving using Newton iteration.

• In section 5.5, we finally detail and illustrate RPM modelling and simulation on two examples 2 : a conservative pH-ODE and a dissipative pH-DAE. For both uses cases, we provide and compare several simulations at different projection and regularity orders. A close attention is also paid to energy preservation (up to machine precision), the quality/regularity of continuous-time orbits and to the anti-aliasing and generalized spectral bandwidth.

Finally, we conclude this chapter by analysing the strengths and weaknesses of RPM and compare with state of the art energy-preserving methods.

Regular Projection Methods for pH-ODE and pH-DAE

Power-balance condition

Motivation In chapter 4 we have seen that using collocation, it is not possible to unconditionally satisfy the power balance condition ∇H(X) Ẋf (X) = 0 (see Equation 4.4). We propose, instead, to consider the weak ODE formulation over a subspace

V of L 2 (Ω, R n ) v Ẋ -f (X) = 0, ∀v ∈ V.
Note that, if we had ∇H(X) ∈ V , this would imply the orthogonality ∇H(X) Ẋf (X) = 0.

Unfortunately, for Ẋ ∈ V , by integration and nonlinearity, the function ∇H(X(τ )) belongs to a larger space. It needs to be projected on V without loosing energy/passivity preservation.

To this end, we propose the following definition and theorem that are applicable for both pH-ODE and pH-DAE (see corollaries 5.1-5.3). Definition 5.1 (Projected structure). Let A ∈ R n×n be a matrix defining the structure 

S = (f , e) ∈ R n × R n | f = Ae . Denote F = L 2 (Ω, R n ) the
S P = (f , e) ∈ F × E | f = PAe , (5.1) 
a projected structure over the time interval Ω.

We want that the projected structure S P preserves (on average over Ω) passivity properties (in the sense of (1.53b) p.34) of the original structure S. To this end, we propose Theorem 5.1 (Projected passivity). Assume that the pair (P, A) satisfies the condition

PA = AP * . (5.2)
Then, the projection P preserves the passivity properties of S: for all (f , e) ∈ S P S P is passive if A 0, i.e. e | f ≤ 0, (5.3a) 

S P is power-conserving if A = -A T , i.e. e | f = 0. ( 5 
PA = AP * , (d) equality A = J -R with J = 1 2 (A -A T ), R = -1 2 (A + A T )
, (e) skew-ajointness (5.3b) of PJP * and (f) positive self-adjointness (5.3a) of PRP * . This yields e | f = 0 when R = 0. Theorem 5.1 has a number of important implications for PHS detailed below.

Corollary 5.1 (Projected Hamiltonian System). Let ẋ = J∇H(x) be a Hamiltonian system and P a projector such that (P, J) satisfies (5.2). Then, for X ∈ H

1 (Ω, R n ) solution of Ẋ = PJ∇H(X), X(t 0 ) = x 0 , (5.4) 
the energy is conserved on the boundaries of Ω = (t 0 , t 1 ), namely H X(t 1 ) = H X(t 0 ) .

Proof. The result follows from 

0 a = e | f b = ∇H(X) Ẋ c = H(x 1 ) -H(x 0 ),
  Ẋ y   = P (J -R)   ∇H(X) u   , X(t 0 ) = x 0 , (5.5) 
Then, for X ∈ H 1 (Ω, R n S ), y ∈ L 2 (Ω, R n P ) solutions of (5.5), x 1 = X(t 1 ), the projected pH-ODE is passive, i.e. it satisfies the average power balance over Ω = (t 0 , t 1 )

H(x 1 ) -H(x 0 ) + u | y ≤ 0.
Proof. The result follows from 

0 a ≥ e | f b = ∇H(X) Ẋ + u | y c = H(x 1 ) -H(x 0 ) + u | y ,
     Ẋ w y      = PJ      ∇H(X) z(w) u      , X(t 0 ) = x 0 .. (5.6) Then, for X ∈ H 1 (Ω, R n S ), w ∈ L 2 (Ω, R n R ) y ∈ L 2 (Ω, R n P ) solutions of (5.6) and x 1 = X(t 1
), the projected pH-DAE is passive, i.e. it satisfies the average power balance over Ω = (t 0 , t 1 )

H(x 1 ) -H(x 0 ) + u | y = -z(w) w ≤ 0.
Proof. The results follows from 

0 a = e | f b = ∇H(X) Ẋ + z(w) w + u | y c ⇐⇒ H(x 1 ) -H(x 0 ) + u | y = -z(w) w d ≤ 0,

Examples of projector design

Theorem 5.1 allows some flexibility in the design of projectors. This can be illustrated on example 2.10 61 (Diode clipper) whose structure matrix J is recalled below.

       v R v D i C i S        =        -1 1 1 0 1 -1 -1 0               i R (v R ) i D (v D ) v C (i C ) v S       
Several choices of projectors P can be considered a) The simplest choice consists in using the same scalar projector P = P * for each dimension by introducing P = P ⊗ I 4 (by construction PJ = JP = JP * ). This defines the skew-adjoint operator

PJ =        -P * P * P * 0 P -P -P 0       
This choice is the one explored and detailed in section 5.1 to build Power-Balanced methods for pH-ODEs and pH-DAEs.

b) A natural extension, is to use a diagonal projector P = diag(P R , P D , P C , P S ) with different (not necessarily self-adjoint) projectors for each dimension so that

PJ =        P R P D P C P S               -1 1 1 0 1 -1 -1 0        =        -P R P R P D 0 P C -P C -P S 0        .
However, note that, in order to have PJ skew-adjoint, it is necessary to fulfil hidden constraints P R = P D = P and P C = P S = P * for a given projector P (and its adjoint P * ). This choice is more flexible than the self-adjointness constraint (a) for partitionnable systems. In particular, canonical Hamiltonian systems could be discretized as

ṗ = -P * ∂ H ∂q (p, q), q = P ∂ H ∂p (p, q).
c) The most general situation arises by direct substitution of each cell of the structure matrix by projectors to obtain a skew-adjoint approximation of the structure matrix J (or J-R). In our example, we may choose 3 projectors P CR , P CD , P SR such that the following functional matrix operator J (approximating J) is skew-adjoint

J =        -P * CR P * SR P * CD 0 P CR -P CD P SR 0        = -J * .
Alternatively, we could define the skew-adjoint operator J = PJP * from (b). This choice is not explored further in this thesis, but is left as an interesting perspective for future work.

RPM for pH-ODE

We propose a power-balanced method for pH-ODEs. The key ideas of the method are a) to use corollary 5.2 to obtain projected power balanced solutions (P2) in a subspace of L 2 , b) to improve this result using multi-derivatives supplementary boundary conditions (P1) so that the concatenation of time frames yields globally smooth solutions in the Sobolev space H k .

For our purposes, we rewrite input-state-output pH-ODEs from definition 1.22 p.33 as 

  ẋ y   a = (J -R)   ∇H(x) u   b =:   f (x, u) g(x, u)   , x(t 0 ) = x 0 . ( 5 
Let {φ i } -1 i=0 ∈ H k (Ω) ⊂ L 2
(Ω) be an orthonormal basis for the L 2 inner product and define the subspaces of L 2 (Ω)

A P := span {φ i } p-1 i=0 , A R := span {φ i } -1 i=p , A := A P ⊕ A R . (5.8) 
We assume that (H1) A P is such that the orthogonal projector P on A P , reproduces constant functions and that (H2) the image of A R through B spans R 2k where B : ii) P2, P3 Accuracy and power balance: Denote a P = (δX, Y ) ∈ P( A) the unknowns of the projection step and define the time-stepping method Φ h :

H k (Ω, R) → R
x 0 → x 1 such that   δX Y   = P (J -R)   ∇H (X) u   , where      X(τ ) := x 0 + h ˆτ 0 δX(σ) dσ,
x 1 := X(1).

(5.10)

iii) P1 Regularity: For k ≥ 1, denote a = ( δX, Y ) ∈ A the unknowns of the regularisation step such that P a = a P and satisfying the multi-derivatives boundary conditions

B   δX Y   = B (J -R)   ∇H( X) u   , where X(τ ) := x 0 + h ˆτ 0 δ X(σ) dσ. (5.11)
The condition P a = a P ensures that the regular solution a is at least as good as the projected solution a P , (i.e. regularity is not in conflict with the power balance). Furthermore, if the projector P reproduces constants (H1), then by orthogonality, ´1 0 φ n (s) ds = 0 for all n ≥ p, such that by construction the projected and the regularised trajectories share the same endpoint x 1 = X(1) = X(1). By consequence supplementary boundary conditions (5.11) only depend on the numerical value of vectors x 0 , x 1 and on the formal derivatives of functions ∇H, u (see section B.3 p.278 for numerical evaluation). Hypothesis (H2) ensures that steps (iii) is solvable.

RPM for pH-DAE

We extend the method RPM(p, k) from method 5.1 to semi-explicit pH-DAEs. The main difference comes from the appearance of memoryless algebraic constraints through the variables w. For our purposes, we rewrite semi-explicit pH-DAEs from definition 1.24 p.34 as

     ẋ w y      a = J      ∇H(x) z(w) u      b =:      f (x, w, u) g(x, w, u) h(x, w, u)      , x(t 0 ) = x 0 .
(5.12) Method 5.2 (RPM for pH-DAE). Let p > 0 be the projection order and k ≥ 0 the regularity order and n = n x + n w + n y . A Regular Power balanced projection Method RPM(p, k) for pH-DAE (5.12) is defined by steps (i)-(iii) i) P0 Approximation spaces: Let A, A P , A R be approximations spaces from (5.8). Let

A = H nx × H nw × H ny , B A and denote P = P ⊗ I n , B = B ⊗ I n .
ii) P2, P3 Accuracy and power balance: denote a P = (δX, W , Y ) ∈ P( A) the unknowns of the projection step and define the time-stepping method Φ h :

x 0 → x 1 such that      δX W Y      = PJ      ∇H (X) z (W ) u      ,      X(τ ) := x 0 + h ˆτ 0 δX(σ) dσ,
x 1 := X(1).

(5.13)

iii) P1 Regularity: denote a = ( δX, W , Y ) ∈ A the unknowns of the regularisation step such that P a = a P and satisfying the multi-derivative boundary conditions

B      δX W Y      = B J      ∇H( X) z( W ) u      , X(τ ) := x 0 + h ˆτ 0 δX(σ) dσ. (5.14)
Note that solutions of equation (5.13) are only weak DAE solutions in the sense of L 2 projection. In particular, concatenation of time steps yields piecewise discontinuous solutions in step ii). The boundary values of flow and efforts are not defined in L 2 : only X (but not δX) is piecewise continuous because of integration. However step iii) restores continuity such that the concatenation of time-frames for δX, W , Y yields globally smooth functions in the Sobolev space H k .

Comments Note that, contrary to most numerical methods, because of our virtual analog viewpoint (see chapter 3 p.81), in practice, we are more interested in the quality of the continuoustime approximation of dual flow/efforts variables a = (δ X, W , Y ), b = (∇H( X), z( W ), u) than on the sequence of values {x n } produced by the discrete time-stepping map Φ h : x n → x n+1 . This map remains an important object to study the numerical properties of the numerical schemes, but from a signal processing perspective, it only gives us a partial viewpoint by sampling the (non bandlimited!) trajectory X on the boundaries of each time frame.

Note that passivity propagates from time-frame to time-frame. Also note that for RPM, contrary to symplectic3 methods [HLW06, KL19], the exact Hamiltonian is preserved (resp. dissipated) when it is evaluated on the boundaries of each time frame (see figure 5.12 p.152 for the behaviour of the energy within each time interval).

Theoretical existence and uniqueness conditions for RPM are addressed in section for 5.2 (for pH-ODE) and in section 5.3 (for pH-DAE). Accuracy analysis is detailed in subsection 5.2.6. Computational implementation details such as the computation of projections, the evaluation of boundary derivatives or implicit equation solving are considered in section 5. 4.

In particular we give the following results

• RPM are energy (resp. passivity) preserving (see corollary 5.2).

• RPM are A-stable (see proposition 5.2 p.127 and section D.7 p.297).

• RPM have (pointwise) accuracy order 2p (on interval boundaries4 ) if the projector P reproduces polynomials of degree p -1 (see subsection 5.2.6 p.128). For this reason, in applications, we will use the shifted (L 2 ) orthonormal Legendre polynomial basis (defined in section C.4 p.286). For comparison, in section D.7 p.297 we provide the stability function of the orthonormal cosine basis (which only yields second order accurate time-stepping approximations).

• The regularisation step (iii) yields a secondary (non self-adjoint) projector Q (formalised in subsection 5.2.7 p.129). Peano error kernels of projectors P and Q are derived and shown in figures 5.4 and 5.5 p.134.

• A graphical illustration of the method and of the respective roles of nested projectors P and Q is shown in figure D.1 p.295.

Readers that are not interested in the theoretical or technical details, may skip directly to the examples shown in section 5.5 p.147.

Analysis of RPM for pH-ODE

To analyse RPM, in order to compare with the literature and to study existence/uniquess, and accuracy conditions, it is convenient to reformulate (5.10) (def. 5.1, step ii) using the framework of continuous-stage Runge Kutta methods (CSRK). The main object in this section is the orthogonal projector P whose reproducing kernel is (see eq. (3.9) p.84)

K P (τ, σ) = p-1 i=0 φ n (τ )φ n (σ).
(5.15) in a chosen orthonormal basis such that span {φ n } p-1 n=0 = A P . We show in sections 5.2.2 to 5.2.6 that CSRK parameters can all be obtained from the kernel K P and that energy-preservation, existence/uniqueness, stability function and accuracy automatically follow from the properties of P. Then we show in section 5.2.7 that the third step of RPM (the regularisation step) yields another (oblique) projector Q refining P and we compare their respective approximation properties and Peano error kernels.

Reminder on Runge-Kutta methods

Definition 5.2 (Runge-Kutta method [HLW06] p.29). Let b i , a i,j (i, j = 1, . . . , s) be real numbers and let c i = s j=1 a ij . An s-stage Runge-Kutta method is given by

               k i = f   t 0 + hc i , x 0 + h s j=1 a ij k j   , i = 1, . . . , s x 1 = x 0 + h s i=1 b i k i .
(5.16)

The slopes k i do not necessarily exists, however, the implicit function theorem assures that, for sufficiently small h, the nonlinear system for the values k 1 , . . . , k s has a locally unique solution close to k i ≈ f (t 0 , x 0 ). Since Butcher's work the coefficients are usually displayed as follows 

Reformulation of RPM as Continuous-Stage Runge-Kutta methods

The idea of CSRK was hinted by Butcher in [START_REF] Butcher | An algebraic theory of integration methods[END_REF], but it had to wait until the work of Hairer in 2010 [START_REF] Hairer | Energy-preserving variant of collocation methods[END_REF] to understand the key role of CSRK methods to derive energy-preserving integrators. Early examples of energy-preserving CSRK method are the Average Vector Field method [QM08, CGM + 12, COS14] and Hamiltonian Boundary Value methods (HBVMs) which were later interpreted as CSRK in [START_REF] Amodio | A note on the continuous-stage Runge-Kutta (-Nyström) formulation of Hamiltonian Boundary Value Methods (HBVMs)[END_REF]. A similar thread of research arises from the use of Time Finite Elements Methods (TFEM) and (Continuous) Galerkin projection in time [START_REF] Tang | Time finite element methods: a unified framework for numerical discretizations of ODEs[END_REF] based on ideas that can be traced back to [START_REF] Hulbert | Time finite element methods for structural dynamics[END_REF][START_REF] Borri | A general framework for interpreting time finite element formulations[END_REF][START_REF] Bottasso | A new look at finite elements in time: a variational interpretation of Runge-Kutta methods[END_REF][START_REF] Betsch | Inherently energy conserving time finite elements for classical mechanics[END_REF]. For more details on CSRK methods please refer to the overview paper [START_REF] Tang | A note on continuous-stage Runge-Kutta methods[END_REF].

CSRK methods are generalisations of Runge-Kutta methods (5.16) for an infinite number of stage values Ẋ(τ ) so that the matrix A, weights b and abscissae c in def. 5.2 are replaced by functions A(τ, σ), B(σ), C(τ ). Definition 5.3 (CSRK method [START_REF] Tang | A note on continuous-stage Runge-Kutta methods[END_REF]). A Continuous-Stage Runge-Kutta method is a one step method Φ h :

x 0 → x 1 defined by a triplet (A : Ω × Ω → R, B : Ω → R, C : Ω → R) and X(τ ) = x 0 + h ˆ1 0 A(τ, σ)f t(σ), X(σ) dσ, (5.17a 
)

x 1 = x 0 + h ˆ1 0 B(σ)f t(σ), X(σ) dσ, (5.17b) 
where X(τ ) approximates x t(τ ) at times t(τ

) = t 0 + hC(τ ) for τ ∈ Ω = [0, 1].
Proposition 5.1. For RPM, the reproducing kernel K P (τ, σ) of projector P defined by (5.15) uniquely defines the CSRK triplet.

A(τ, σ) = ˆτ 0 K P (ξ, σ) dξ, (5.18a) 
B(σ) = ˆ1 0 K P (τ, σ) dτ = 1, (5.18b) 
C(τ ) = ˆτ 0 ˆ1 0 K P (ξ, σ) dσ dξ = τ. (5.18c) 
Proof. The proof in detailed in section D.2 p.291.

Remark 5.1. For consistency, it is often assumed [Tan18, 2.3] that

C(τ ) = ˆ1 0 A(τ, σ) dσ.
For RPM, this is automatically fulfilled because of (5.18a)-(5.18c). Also note that, differentiating (5.18c) and comparing with (5.18b) yields the symmetric relation between C and B

C (τ ) = ˆ1 0 K P (τ, σ) dσ = 1 = ˆ1 0 K P (τ, σ) dτ = B(τ ).
In short, the symmetry of kernel K P (self-adjointness of P) and the reproduction of constants ensure that the weight B(σ) = 1 is uniform (5.18b) and consistent with the (uniform density of the) measure dC(τ ) = B(τ ) dτ in the variable change t(τ ) = t 0 +hC(τ ) =⇒ dt(τ ) = h dτ .

Existence and uniqueness of solutions

Here we provide existence and uniqueness conditions for a CSRK method when Ẋ ∈ L 2 (Ω, R n ) and P is an orthogonal projector. Our result and proof are different from the ones in [TS12, MB16, Tan18] because we consider convergence in the L 2 norm. Theorem 5.2. Let P be an orthogonal L 2 projector such that the associated CSRK method (def.5.3) satisfies (5.18a)-(5.18c). If f is L-Lipschitz and hL < π 2 . Then, the method has a unique solution in L 2 .

Proof. The proof is detailed in section D.4 p.293.

Linear Stability function

We consider the Dahlquist test equation ẋ = λx, x(0) = x 0 , λ ∈ C, and a time stepping method Φ λ : x 0 → x 1 = R(λ)x 0 defined by the orthogonal projection ẋ = Pλx on Ω = (0, 1).

Proposition 5.2 (Stability function). Let φ n (τ ) p-1 n=0 be an orthonormal basis of dimension p in L 2 (Ω) reproducing constants. Let 1 = [ φ n , 1 ] p-1 n=0 and V = φ m , Vφ n m,n=0...p-1 , where (Vu)(τ ) = ˆτ 0 u(s) ds, (5.19) 
be the matrix representations of the constant function and of the (projected) Volterra integration operator. Then, the stability function of method Φ λ with projection order p is given by

R(λ) = 1 + λ1 T (I -λV) -1 1 = det(I + λV T ) det(I -λV) .
(5.20)

Proof. The proof is detailed in section D.7 p.297.

Energy preservation (P3)

Since P is an orthogonal projector, it is self adjoint (P = P * ). Furthermore, by construction it commutes with matrices, so we already know from corollary 5.2 p.120 that our method is energy, (resp. passivity) preserving for pH-ODE. Here, we provide an alternate interpretation using CSRK theory to highlight the role of the reproducing kernel K P .

In the context of CSRK methods, a method is energy-preserving [Tan18, thm.3.7] when

∂ A ∂τ (τ, σ) = ∂ A ∂τ (σ, τ ), A(0, σ) = 0, A(1, σ) = B(σ).
Reformulated with the reproducing kernel K P , using (5.18a), this is equivalent to the three conditions

K P (τ, σ) a = K P (σ, τ ), ˆτ 0 K P (ξ, σ) dξ τ =0 b = 0, ˆ1 0 K P (τ, σ) dτ c = B(σ).
(a) The symmetry of K P (τ, σ) = p-1 i=0 φ i (τ )φ i (σ) follows from its construction. It is equivalent to P being self-adjoint. (b) The second condition always hold when K P ∈ L 2 (Ω) ⊗ L 2 (Ω) (i.e. K P does not contain Dirac delta distributions) and (c) the third condition is fulfilled by (5.18b). This is equivalent to x 1 = X(1).

Order conditions and polynomial reproduction (P2)

Usually, the accuracy order of one-step methods is studied using the theory of B-series [START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary differential equations[END_REF]. Here, we establish that CSRK order conditions are automatically fulfilled when the RPM projector P reproduces polynomials up to a given order (Strang-Fix conditions). Definition 5.4 (Accuracy order [START_REF] Tang | A note on continuous-stage Runge-Kutta methods[END_REF]). A CSRK method is of accuracy order s if for all sufficiently regular problems (5.17a)-(5.17b) its local error satisfies x(t 0 + h) -

x 1 = O(h s+1 ) as h → 0.
The main tool we use to study accuracy is a generalisation to CSRK methods of the simplifying order assumptions for Runge-Kutta methods (see [START_REF] Butcher | Numerical methods for ordinary differential equations[END_REF]p.186] and [HNW93, p.208]). They are given by the following theorem.

Theorem 5.3 (Simplifying order assumptions [START_REF] Hairer | Energy-preserving variant of collocation methods[END_REF]). If a CSRK method satisfies the simplifying order assumptions for integers ρ, η, ζ ≥ 1.

B(ρ) : ˆ1 0 B(τ )C(τ ) k-1 dτ = 1 k , k = 1, . . . , ρ, (5.21a) 
Č(η) : ˆ1 0 A(τ, σ)C(σ) k-1 dσ = C(τ ) k k , k = 1, . . . , η, (5.21b) 
Ď(ζ) : ˆ1 0 B(τ )C(τ ) k-1 A(τ, σ) dτ = 1 k B(σ)(1 -C(σ) k ), k = 1, . . . , ζ. (5.21c) 
Then, its accuracy order is at least s ≥ min(ρ, 2η + 2, η + ζ + 1).

In RPM, these conditions are greatly simplified, they are linked to the polynomial reproduction properties of the projector P. To this end, we establish the following proposition.

Proposition 5.3. Let P be a projector with kernel K P (τ, σ) such that the associated CSRK method satisfies B(σ) = 1, C(τ ) = τ , ∂ A ∂τ = K P (τ, σ) (eq. (5.18a)-(5.18c)). Then, the simplifying order assumptions (5.21a)-(5.21c) are equivalent to

B(ρ) : ˆ1 0 τ k-1 dτ = 1 k , k = 1, . . . , ρ, (5.22a) 
Č(η) : Pτ k-1 = τ k-1 , k = 1, . . . , η, (5.22b) Ď(ζ) : P * τ k = τ k , k = 1, . . . , ζ. (5.22c)
The CSRK order conditions B(∞) always hold and Č, Ď are equivalent to the polynomial reproduction property of P and P * (see Strang-Fix a conditions [FS69, SF11]).

a. Also refer to [Lig91, Uns96, BU99, DVB07] for the importance of Strang-Fix conditions in approximation, wavelet and generalized sampling theories.

Proof. The proof is detailed in section D.3 p.292.

Accuracy order For RPM, the projector P is self-adjoint. Then, condition Č(η = p) implies Ď(ζ = p -1). By consequence, if the RPM projection reproduces polynomials of order (def. 5.1) p. Then, by theorem 5.3, the accuracy order s of its local truncation error (def. 5.4) is at least s ≥ 2p.

(5.23)

Regularity (P1)

The main drawback of piecewise L 2 projection is that the resulting approximations are piecewise discontinuous (blue curves on figure 5.2). We show that step iii) of method 5.1 induces a projector Q which both restores piecewise continuity and improves the accuracy (a graphical illustration of the method is shown in figure D.1 p.295). Then we compare the approximation properties of P and Q in the Hilbert space L 2 (see figures 5.2 and 5.3).

First, we give an explicit construction of the inverse boundary operator B -1 in A R (i.e. the continuous reconstruction operator complimentary to the multi-derivative boundary analysis functionals B m α (•) used to obtain regularity in the Sobolev space H k ).

Proposition 5.4. Let ψ m α (τ ) for m = 0, . . . , k -1, α ∈ {0, 1} be linear combinations of {φ n } p+2k-1 n=p (spanning the space A R in (5.8)) satisfying the biorthogonality conditions a B m α (ψ m α ) = 1 α = α and m = m 0 otherwise, , ∀α ∈ {0, 1} , ∀m ∈ {0, . . . , k -1} , (5.24) 
then the synthesis operator (5.26)

B -1 : R 2k → A R satisfying BB -1 = I 2k and B -1 B = I A R , is (B -1 u)(τ ) = 1 α=0 k-1 m=0 ψ m α (τ )u αk+m , ∀u ∈ R 2k . (5.25) 
Proof. The proof is detailed in section D.5 p.294.

According to (5.24) and (5.26), operator Q can be written as an integral operator (Qf

)(τ ) = ´1 0 K Q (τ, σ)f (σ) dσ with kernel K Q (τ, σ) = K P (τ, σ) + 1 α=0 k-1 m=0 ψ m α (τ ) δ (m) (σ -α) - ∂ m K P ∂τ m (α, σ) . (5.27)
where K P is defined according to (3.9) p.84 (see table 5.1 p.132 for some examples).

Approximation properties A qualitative study of the approximation properties of operator Q is shown on figure 5.2. The function to approximate, exp(-8τ ), is chosen such that, from an ODE viewpoint, the system is both smooth and stiff (with a time constant height times larger than the step-size). On this example, a numerical study of the convergence rate of Q, according to projection order p, and regularity order k, is also shown on figure 5.3. 8τ ) for projection order p ∈ {1, 2} and regularity order k ∈ {1, 2, 3}. On this example, we clearly see that L 2 projection Pu (in blue) is discontinuous and a crude approximation of the function u. The projection Qu preserves and refines the approximation Pu. It restores C k-1 -continuity by interpolating u and its derivatives on the boundary of the interval. We also observe that it reduces the pointwise approximation error: the amplitude of oscillations decreases with increasing k. 
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Relation between projection order p and continuity order k:

We ask the following question:

For a given projection order p, what is the maximal regularity order k such that multi-derivative supplementary boundary conditions (5.11) yield a consistent ODE approximation?

To answer that question, let z(t = t 0 + hτ ) := X(τ ) be an approximate ODE solution and x(t) the exact solution. We remark from CSRK order conditions that we have the local truncation error (see (5.23))

x(t 0 + h) = z(t 0 + h) + O(h 2p+1 ).
Then, according backward error analysis theory [HLW06, thm 1.2, p.340], there exists for each time-step a modified vector field f h such that z is locally the exact solution of the modified ODE ż = f h (z) with

f (z) = f h (z) + O(h 2p ). Since D m = 1 h d dτ m and B m α u = (D m u)(α)
, it follows that supplementary boundary conditions yields the approximation

B m α f (z) = B m α f h (z) + O(h 2p-m ).
We conclude that, for a small enough step size h, as long as k ≤ 2p, multi-derivative boundary conditions (5.11) are consistent with the projected vector field up to order 2p -k.

Peano error kernels and pointwise error

To study the approximation error of operators P and Q, we use the Peano kernel theorem 5.4 to obtain their respective Peano error kernels 5.30 from which numerical bounds and qualitative information can be obtained. Let g be a function sufficiently differentiable such that its Taylor polynomial expansion with remainder may be written for τ ∈ [a, b] in the form 5 If an approximation Qg reproduces polynomials up to degree d, then the residual g-Qg = O(R τ d [g]) is governed by g (d+1) and an error kernel E which is given by the following theorem.

g(τ ) = g(a) + g (a)(τ -a) + . . . + g (d) (a) (τ -a) d d! + R τ d [g], R τ d [g] = ˆb a (τ -s) d + d! g (d+1) (s) ds.
Theorem 5.4 (Peano kernel theorem [START_REF] Iserles | A first course in the numerical analysis of differential equations[END_REF]). Let Ω = [a, b], let L be a linear functional that commutes with the operation of integration, and such that L[u] = 0, ∀u ∈ P d (Ω). Then, for all g ∈ C d+1 (Ω)

L[g] = ˆb a E(σ)g (d+1) (σ) dσ, E(σ) := L (τ -σ) d + d! (5.28)
and E is called the Peano error kernel of L.

In RPM, for projectors P (resp. Q), we propose to use the continuous family of functionals

L τ P [f ] := (I -P)f (τ ), (5.29) 
to measure the pointwise approximation error e P (τ

) = f (τ ) -(Pf )(τ ) for all τ ∈ [0, 1].
Definition 5.5. Let P be a projector with kernel K P (τ, σ) reproducing polynomials up to degree d. Then, by definition of P, functionals (5.29) satisfy the conditions of theorem 5.4. The associated Peano error kernel is

E P (τ, σ) := L τ P (τ -σ) d + (d)! = (τ -σ) d + (d)! - ˆ1 0 K P (τ, ξ) (ξ -σ) d + (d)! dξ. (5.30) 
Peano kernels for P Kernels for projection orders p ∈ {1, 2, 3} in the Legendre basis are shown on figure 5.4 and Table 5.1 (P reproduces polynomials up to degree d = p -1). We note that the synthesis error kernel E P (t, •) is always non zero on the boundary ∂Ω = {0, 1}, this confirms that L 2 projection is always discontinuous on boundaries when g (p) = 0. Conversely, the analysis error kernel E P (•, s) always vanishes on the boundary, this means that Legendre projection is blind to the boundary values of the residual term g (p) .

Peano kernels for Q Corresponding Peano error kernels for operator Q with p = 1, k = 1, 2 are shown on figure 5.5 (Q reproduces polynomials up to degree d = p + 2k -1). See (5.27) for the definition of K Q . As expected, the error and its derivatives vanishes on the boundary ∂Ω, i.e. the error belongs to the Sobolev space

H k 0 (Ω) = u ∈ H k (Ω) | Bu = 0 .
We also note that the maximum norm of the kernel E Q is an order of magnitude lower than E P . Error kernel E P ( , ) (analysis on g (3) ) As P does not handle regularity, expected discontinuities of kernels appear at τ = σ (the Sobolev regularity of E P (•, σ) E P (τ, •) is p -1). We notice in the synthesis column that the largest approximation errors are more likely to appear towards the interval boundaries. The maximal error decreases by an order of magnitude as p is incremented. We notice, on the analysis column, that kernels are all zero on boundaries, meaning that, at these points, the error might be arbitrarily high (which is confirmed on the synthesis kernels). Conversely they have maximal weight towards the center of the interval. These observations show that projector P is biased towards reducing errors close to the center of the interval. Comparing these error kernels to those of projection P in figure 5.4, we notice that (in the synthesis column) the error (and it derivatives when increasing k) now vanishes on the boundaries and that the magnitude order of the error is also much smaller. However, in the analysis column, we notice that the maximal weight is still towards the center of the interval. Although projection Q reduces the boundary error, this means that the error might still become high near the boundaries.

Kernels K P (τ, σ) E P (τ, σ) p = 1 1 (τ -σ) 0 + -(1 -σ) p = 2 1 + P 1 (τ )P 1 (σ) (τ -σ) + -1 + (2τ -1)(2σ + 1) 1 2 (1 -σ) 2 p = 3 p-1 i=0 P i (τ )P i (σ) (τ -σ) 2 + 2! + 1 + √ 3 2 P 1 (τ )(1 + σ) + √ 5 10 P 2 (τ )(6σ 2 + 3σ + 1) (σ-1) 3 3!
A more uniform handling of the point-wise error would require the use of a different basis, for example Chebyshev polynomials. Unfortunately, this choice is not an option since the uniform weight of the L 2 inner product is already dictated by the power-balance.

Analysis of RPM for pH-DAE

In this section, we consider existence, uniqueness and accuracy of solutions for pH-DAE of index 1 ((1.16) p.14) discretized using RPM (def. 5.2 p.123). A general theory is still missing. Results below are preliminary steps towards this goal. In subsection 5.3.1, we recall order reduction for stiff ODE, while subsection 5.3.2 is dedicated to existence and uniqueness of solutions.

Accuracy and stage order for stiff ODE and DAE

In the theory of Runge-Kutta methods applied to stiff ODE and DAE (i.e. when the timeconstants of the vector field are much smaller than the step size h), it is known [HW96, thm 1.1 p.380] that point-wise super-convergence on the time stepping grid x(t n = hn) is lost. We recall that for RPM(p, k) the local truncation error accuracy is in O(h 2p ), see (5.23) p.128. In the case of RPM(p, k) for pH-DAE, the stiff accuracy falls back to the level of stage order conditions C(η) (see eq. (5.22b) p.128) which reduces to O(h r ) with r = min(2p -1, p) = p. This corresponds to the polynomial reproduction property of the projector and thus to the accuracy for all values of the solutions between time-stepping instants, not just on the boundaries of each time interval.

Existence and uniqueness of solutions

First, we establish (naive) existence and uniqueness conditions for solving DAE using fixedpoint iteration. These conditions are tractable, but usually too restrictive. However we know that if the fixed-point converges, then Newton iteration also converges. Second, we establish pH-specific conditions to ensure a DAE is of index-1. Finally, we propose partial results for the resolution of Newton iteration in the case of projected pH-DAE.

Fixed-point convergence

We consider the semi-explicit Hybrid Dirac structure formulation (2.18) p.55 of pH-DAE, parameterized by tree currents i T and link voltaged v L rewritten as a fixed-point map G :

F → F ,   i T v L   = G      i T v L      :=   0 -C T C 0     V (i T ) I(v L )   , (5.31) 
where

F ⊂ L 2 (Ω, R (n T +n L )
) is the projection space (see def. 5.2 p.123) and V , I are operators on F standing for projected component laws which yield tree voltages v T and cotree currents i L .

A sufficient condition for existence and uniqueness of solutions is given by Theorem 5.5.

Let (L V , L I , L C ) be the Lipschitz constants of operators (V , I, C T C) for the L 2 norm. If L V L I L C < 1,
then the fixed-point (5.31) converges to a unique solution.

Proof. Rewrite the iterated map G 2 in separated variables by composing operators as

i T = G I (i T ) = (-C T • I • C • V )(i T ), v L = G V (v L ) = (C • V • (-C T ) • I)(v L ).
It follows that we have the Lipschitz bounds

G I (i 1 ) -G I (i 2 ) ≤ L I L V C T C i 1 -i 2 ,
and

G V (v 1 ) -G V (v 2 ) ≤ L I L V CC T v 1 -v 2 (where C T C ≡ C T • C). Finally, since L C = CC T = C T C
, then, convergence of the map G 2 to a unique fixed point follows from the Banach fixed-point theorem under the contractivity condition L V L I L C < 1.

Example 5.1 (parallel RLC). We consider a parallel RLC with orthogonal projector

P : L 2 (Ω) → P 0 (Ω), P = | 1 1 | and (i C , v L , v R ) ∈ P 0 (Ω) 3 , governed by      i C v L v R      =      0 -1 -1 1 0 0 1 0 0           V C (i C ) I L (v L ) I R (v R )     
, where

             V C (i C ) = P t → 1 C q 0 + h ´t 0 i C (s) ds , I L (v L ) = P t → 1 L φ 0 + h ´t 0 v L (s) ds , I R (v R ) = P t → v R /R .
We can show that

V C = h 2C , I L = h 2L , L R = 1 R , C T C = 2 so that a sufficient convergence condition is given by h 2C max h 2L , 1 R 2 < 1 i.e. max h 2 2LC , h RC < 1.
Nonlinear extensions of this example follow by replacing the linear conductance law I R (•) of the resistor by a nonlinear one where the Lipschitz constant becomes L R = sup I R .

These convergence conditions are easy to obtain but unfortunately, they are not tight. As soon as algebraic components are present in both tree and link branches, convergence conditions are dominated by algebraic components (for which Lipschitz constant do not depend on the step size h): it is not possible to adapt h anymore to obtain convergence. For example adding a serial resistor R 2 to the parallel RLC leads to the condition

max h 2C , R 2 • max h 2L , 1 R • 2 < 1.
Then, if R 2 > h/2C, 1/R > h/2L and 2R 2 /R > 1, this condition does not guarantee the convergence of the fixed-point (although for linear systems a solution always exists).

Remark 5.2 (Fixed point vs Newton). Clearly, we need a better alternative to the fixedpoint method. As noted by [Deu11, p.289] (see also [START_REF] Deuflhard | Uniqueness theorems for stiff ODE initial value problems[END_REF]), for stiff and DAE systems, the use of implicit discretization methods solves only one half of the problem, the choice of iterative scheme is at least equally important. Proofs based on the Newton-Kantorovich theorem rather than the Banach fixed-point theorem are more difficult but yield tighter estimates (see [Deu11, thm 6.3, p.297] and [HW96, thm 3.5, p.397]). Indeed, classical existence and uniqueness theory (based on fixed-point iteration) is bounded by the Lipschitz constant of the vector field whereas Newton iteration converges in one iteration for linear systems and restores the full existence domain h ∈ [0, ∞) for A-stable and L-stable methods.

Index-1 DAE

In this section, we consider the index-1 DAE hypothesis (see (1.16) p.14 and remark 1.9 p.34). In the semi-explicit pH-DAE formulation (1.52) p.34, the algebraic function

g w (w) = w -J w z(w), (5.32) 
is assumed to be invertible, where J w is a skew symmetric matrix and z a passive law (z(w)•w ≥ 0) so that existence and uniqueness of solutions follows from classical ODE theory (see thm 1.1 p.8).

Exploiting the particular structure of semi-explicit pH-DAE, we establish the following sufficient conditions for the invertibility of g w in the following lemma Then, g w is invertible and the associated pH-DAE (1.52) p.34 has differential index-1.

Proof. If condition (C1) is satisfied, then g w reduces to the identity function which is obviously invertible. If condition (C2) is satisfied, denote Q = Q T = z (w) 0, and A = g w = I -J w Q. Invertiblity of g w follows from lemma 5.2 below. If condition (C3) is satisfied then invertibility of g w follows from lemma 5.3 below with M = J w z . Then, the invertibility of function g w follows from the invertibility of its Jacobian g w using the implicit function theorem.

We note some common cases where the conditions of lemma 5.1 are satisfied:

• Condition (C1) is often naturally satisfied because of the circuit topology. Note that it is possible to decouple instantaneous algebraic loops (forcing J w = 0) by adding (topologically well chosen) parasitic capacitances and inductances in the network.

• Condition (C2) is satisfied when algebraic components are one-port elements (z is diagonal) and each component is incrementally passive (i.e. monotonically increasing z 0). In particular this is the case for resistors and diodes. The following lemmas are used in the proof of lemma 5.1. Lemma 5.2. Let A = I -JQ with J a real skew symmetric matrix and Q = Q T 0 real positive definite. Then A is invertible with positive determinant det A > 0.

Note that the form I -JQ also appears when solving projected pH-DAE using Newton iteration.

Proof. Since Q = Q T 0, there exists a real invertible upper triangular matrix M with positive diagonal such that Q = M T M (Cholesky factorization). Denote A M = MAM -1 the similarity transform of A (det A = det A M ) and J M = MJM T . The result follows from the relations

det A = det A M = det(MM -1 -MJM T MM -1 ) = det(I -J M ) > 0,
where the last inequality follows from skew-symmetry of J M . Lemma 5.3. Let A = I -M with M a diagonalizable real square matrix whose real spectrum is denoted by σ R (M) and complex spectrum σ C (M). Then the following results holds

C1. If λ < 1, ∀λ ∈ σ R (M), and if λ < 1+|λ| 2 2 , ∀λ ∈ σ C (M) then det A > 0, C2. If λ = 1, ∀λ ∈ σ R (M) and if λ = 1+|λ| 2 2 , ∀λ ∈ σ C (M), then A is invertible.
Proof. Let M = U -1 ΛU be the eigenvalue decomposition of M. Denote A U = UAU -1 = I -Λ the similarity transform of A. The determinant of A is given by the product of the eigenvalues

det A = det A U = λ∈σ C (Λ) (1 -λ)(1 -λ) λ R ∈σ R (Λ) (1 -λ R ).
If condition (C1) is satisfied then, the first term (1 -λ)(1 -λ) = 1 -2 e(λ) +|λ| 2 and the second term (1 -λ R ) are positive so det A > 0. If condition (C2) is satisfied then, since both terms are nonzero det A is non zero and A is invertible.

Newton iteration for pH-DAE with projection order p = 1

We investigate the implementation of step ii) of RPM 5.2 p.123 using Newton iteration for the simplest case (p = 1, k = 0). We look for ways to obtain practical existence/uniqueness conditions. We consider autonomous pH-DAE discretized using the projector P = | 1 1 | (Since P is an averaging projector, we use the notation f := Pf for all variables) with J skew-symmetric

  f w  = J   ē( f ) z( w)   ,          ē( f ) = ˆ1 0 ∇H x 0 + h ˆτ 0 f ds dτ = ∇H(x 0 , h f ) z( w) = ˆ1 0 z( w) dτ = z( w).
(5.33)

We look for a solution a of the algebraic equation F (a ) = 0, defined by the Newton function

F (a) := a -Jb(a), where a :=   f w  , b(a) :=   ē( f ) z( w)   .
(5.34)

To this end, we use the simplified Newton iteration

∆a k = -(F 0 ) -1 F (a k ), a k+1 = a k + ∆a k , (5.35)
where the Jacobian of F evaluated at a 0 = (0, w 0 ) 6 is denoted

F 0 := F (a 0 ) = I -JQ, with Q =   h 2 ∇ 2 H(x 0 ) 0 0 z (w 0 )   . (5.36) 
Existence and uniqueness conditions for simplified Newton iteration (i.e. when the Jacobian F (x k ) is approximated by F (x 0 )) are given by the following theorem Theorem 5.6 (Newton-Kantorovich theorem for simplified Newton iteration [START_REF]Newton methods for nonlinear problems: affine invariance and adaptive algorithms[END_REF]). Let F : D → R n be a continuously differentiable mapping with D ⊂ R n open and convex. Let x 0 ∈ D denote a given starting point. Assume that

F (x 0 ) is invertible with Γ 0 := F (x 0 ) -1 , (5.37a) 
Γ 0 (F (x) -F (x 0 )) ≤ ω 0 x -x 0 for all x ∈ D.
(5.37b)

h 0 := ω 0 ∆x 0 ≤ 1/2, with ∆x 0 = -Γ 0 F (x 0 ). (5.37c) Define t -= 1- √ 1 -2h 0 , ρ = t -/ω 0 . Moreover, assume that S(x , ρ) = x | x -x 0 ≤ ρ ⊂ D.
Then the simplified Newton iterates {x k } remain in the ball S(x , ρ) and converge to some x with F (x ) = 0.

Towards existence and uniqueness (a sketch of proof ) Our goal is to obtain simple conditions on the projected pH-DAE (5.33) so that conditions (5.37a)-(5.37c) are satisfied in order to make Newton iteration convergent. We restrict the study to the frequent case where nonlinearities are separable and monotone by assuming that ∇ 2 H and z are diagonal positive definite.

(5.38)

6. Assuming the consistent initial condition w0 = Jwx∇H(x0) + Jwz(w0).

Under these hypotheses, we show that (5.37a) is satisfied. However further work is required to establish a proportionality relation between ω 0 and the step size h in (5.37b) so that Newton iteration (5.35) is contractive for sufficiently small h. A sketch of proof is reproduced thereafter. Sketch of proof.

1. Since ∇ 2 H and z are positive definite. Then, according to lemma 5.2, F 0 is invertible with positive determinant det F 0 > 0, so that (5.37a) is always satisfied.

2. Since ∇ 2 H and z are diagonal. Denote M = √ Q in (5.36). Define ã = Ma and introduce the affine similarity transform G(ã) = MF (M -1 ã). For the transformed problem G(ã) = 0, we have the jacobian

G 0 := G 0 (ã 0 ) = I -J M ,
where

J M = MJM T . Denote D x = ∇ 2 H(x 0 ) and D w = z (w 0 ), so that G 0 =   I -h 2 D x J x D T x + √ hD x J T wx D T w - √ hD w J wx D T x I -D w J w D T w   =   I -O(h) O( √ h) -O( √ h) O(1)   .
Using the determinant identity for block matrices

det A B C D = det(D) det A -BD -1 C , it follows that det G 0 = det I -D w J w D T w det I - h 2 D x J x D T x + hD x J T wx D T w I -D w J w D T w -1 D w J wx D T x = O(1) det I + h Ā . with Ā = 1 2 D x J x D T x + D x J T wx D T w I -D w J w D T w -1 D w J wx D T x . Note that, for h sufficiently small, det(I + h Ā) ≈ 1 + h tr Ā + O(h 2 ), so that det G 0 ≈ O(1)(1 + h tr Ā + O(h 2 )).
Unfortunately, this approach is not sufficient to make ω 0 proportional to h in (5.37b).

Implementation choices

In order to make RPM(p, k) from methods 5.1, 5.2 p.122-123, a practical numerical method (implemented on a computer with finite memory and computation time), we need to adress the following three subproblems: a) Numerical methods in step (ii) to compute projection coefficients (see (5.7) p.122) such as

f i = φ i , f (X, u) ,
b) A numerical solver in step (ii) for implicit equations of the form (see (5.13) p.123) (for a given u) δX = Pf (X, u), c) A procedure to compute multiderivatives in step (iii) (see (5.11) p.122) such as

B δX = Bf ( X, u).
In this section, we detail problems (a) and (b). For problem (a), we propose both particular efficient closed-form projections results in subsection 5.4. 

(τ ) = f (x(τ )) ↓ ↓ Projection space δX(τ ) = Pf (X(τ )) ↓ ↓ Coefficient space δX i = {f • X} i = φ i , f • X Table 5.2 -(RPM) principle of the time discretisation approach.
Hypothesis For problem (a), in this thesis, input functions u are assumed to belong to a space such that projection coefficients u i = φ i , u are exactly computable. Moreover f , g are most of the time separable functions of x, u. By consequence, we only present computational methods to find the projection coefficients f i = φ i , f (x) .

Closed-form projection results for nonlinear maps of affine functions

Here, we give an explicit formula to compute polynomial projection coefficients (e.g. Legendre expansions) of f • x when f is nonlinear and x is affine. We assume that f (x) is a separable function 7 of x 1 , . . . , x n with known anti-derivatives so that we only need to consider the scalar case f i = φ i , f (x(τ )) .

generalisation to multivariate

Typical usage for PHS concerns both differential and algebraic component laws of one-port elements

• ∇H(x) = [H 1 (x 1 ), . . . , H n (x n )] T for separable Hamiltonians H(x) = i H i (x i ),
• and z(w) = [z 1 (w i ), . . . , z n (w n )] T for separable nonlinear algebraic constraints Theorem 5.7 (Polynomial expansion). Let Ω = [0, 1], let x(τ ) = x 0 + τ δx ∈ P 1 (Ω), let f : R → R be a function with anti-derivatives f [m] known up to order n and let {L n } be a sequence of polynomials with deg L n = n and L n , 1 = 0 for all n > 0. Then, the projection coefficients of f • x noted {f • x} n and defined by

{f • x} n := ˆ1 0 L n (τ )f x(τ ) dτ, n ∈ N.
(5.39)

have the following finite closed-form expressions using the (known) anti-derivatives of f

{f • x} n =              n k=0 (-1) k (δx) k+1 L (k) n (s)f [k+1] (x(s)) 1 0 , δx = 0, f (x 0 ) δx = 0, n = 0, 0 δx = 0, n > 0.
(5.40)

Proof. The proof is shown in appendix D.6. Some applications of this theorem are illustrated by the following two examples.

Example 5.2 (Average discrete gradient). Note that using f = ∇H and projecting on L 0 (τ ) = 1, the first coefficient of ∇H • x corresponds to the definition of the average discrete gradient from the Average Vector Field (AVF) method [QM08, CGM + 12, COS14]. According to theorem 5.7, its closed-form expression is

{∇H • x} 0 = ˆ1 0 ∇H(x(τ )) dτ =      H(x 0 + δx) -H(x 0 ) δx δx = 0, ∇H(x 0 ) δx = 0. =: ∇H(x 0 , δx) (5.41)
We note that the Average Discrete gradient has a regularisation effect shown on figure 5.6.

In numerical applications, it can reduce the Lipschitz constant. For example, when applied to discontinuous functions, the averaged function is continuous everywhere except for δx = 0. We proved in [START_REF]Power-balanced modelling of circuits as skew gradient systems[END_REF] that the derivative of the Average Discrete Gradient ∇H with respect to the unknown variable δx has the closed form expression

∂ ∂δx ∇H(x 0 , δx) =          ∇H(x 0 + δx) -∇H(x 0 , δx) δx δx = 0, 1 2 
∂ 2 H ∂x 2 (x 0 ) δx = 0.
(5.42)

This quantity plays the role of a "discrete Hessian" of H in the implementation of Newton iteration. We proposed an extension of this result to semi-continuous functions in [START_REF]Fully-implicit algebro-differential parametrization of circuits[END_REF].

Example 5.3 (AVF error estimation). Still using f = ∇H and projecting on the next legendre polynomial L 1 (s) = 2s -1, after factorisation, we obtain in closed-form

{∇H • x} 1 =        2 x 1 -x 0 H(x 1 ) + H(x 0 ) 2 - H [1] (x 1 ) -H [1] (x 0 ) x 1 -x 0 x 1 = x 0 , 0 x 1 = x 0 .
(5.43)

The first term is the trapezoidal average and the second one is the continuous average of H • x (i.e. the Average Discrete Gradient of the antiderivative H [1] (x)). In other words, projection on L 1 is proportional to the difference between the trapezoidal and the continuous average of H • x. This result can be used to obtain the first coefficient of the Average Vector Field approximation error (projection order p = 0).

Anti-derivative anti-aliasing and spectral projection In the digital audio literature [PZLB16, BEPV17, BEV17, MH17, Hol20, Alb20, Car20], there is a growing interest for antiderivative based anti-aliasing methods. They greatly improve the audible quality of audio simulations for a small additional cost. We note that spectral projection on polynomials can be interpreted as anti-aliasing since it truncates higher order spectral terms that cannot be represented in the approximation basis. Finally, as shown by Theorem 5.7, partial integration on the projection coefficients automatically involves anti-derivatives of the function of interest. Interesting connections between the Average Vector Field method and anti-derivative anti-aliasing have been discussed by the author in [MH17, MH18, MH19, MH20] and a partial form of Theorem 5.7 is published in [START_REF]Fully-implicit algebro-differential parametrization of circuits[END_REF].

Application to memoryless nonlinearities Note that the results from examples 5.2 and 5.3 are directly applicable to the projection of memoryless nonlinearities by using f (w) = z(w) (assuming dissipative potentials Z(w) are known, see 1.40 p.29). For pH-DAE this means that projection of memoryless non-linearites 8 are still computable in closed-form for projection order p = 1 (i.e. w ∈ P 1 ). This property has been exploited in [MH18, MH19, MH20].

8. We also note that a common situation in electronics is to have linear storage components (i.e. projections are exactly computable in closed form for any order p ≥ 0) and nonlinear memoryless nonlinearities.

x H(x) = 1 K ln cosh(Kx) (top plot). When K → ∞, it converges to the discontinuous sign function (discontinuous at the origin). The greater δx, the higher the regularisation effect. For symmetry reasons, the graph is drawn for the centered coordinates x = x 0 +x 1 2 = x 0 + δx/2, and δx. Note that for hardening laws (bottom plot) ∇H(x) = sinh(Kx), the ADG has the opposite effect, it increases the Lipschitz constant. To avoid this issue, we have shown in [START_REF]Fully-implicit algebro-differential parametrization of circuits[END_REF], using implicit parametrisations, that we can avoid the stiffening behaviour and improve convergence.

2 1 0 1 2 x 2 1 0 1 2 H 1 0 1 (a) ∇H(x) = tanh(Kx), K = 20 x 4 3 2 1 0 1 2 3 4 x 4 3 2 1 0 1 2 3 

General purpose numerical quadratures

When higher order accuracy is seeked, for general functions, no exact integration formula can be used. Numerical quadratures are required to estimate projection coefficients

f n = ˆ1 0 φ n (τ )f (X(τ )) dτ ≈ L i=1 w i φ n (τ i )f (X(τ i )).
where abscissae τ 1 , . . . , τ L and weights w 1 , . . . , w L are chosen such that the integral is exact when the integrand belongs to a given functional subspace (typically polynomial or trigonometric functions). The mathematical literature on numerical quadrature formulas is huge. We forward the reader to the survey in reference [START_REF] Gautschi | A survey of Gauss-Christoffel quadrature formulae[END_REF]. In this thesis we focus on Gauss-Legendre quadrature rules (see also [CMM + 09, Hai10, BFCI14, CH17]).

Theorem 5.8 (Gauss-Legendre quadrature [START_REF] Stoer | Introduction to numerical analysis[END_REF]). Let {τ k } n k=1 be the roots of the nth shifted orthonormal Legendre polynomial P n (τ ) and let {w k } n k=1 be the solution of the (nonsingular) system of equations

n i=1 P j (τ i )w i = 1, if j = 0, 0, if j = 1, . . . , n -1.
(5.44)

Then w i > 0, for i = 1, . . . , n and ´1 0 p(τ ) dτ = n k=1 w k f (τ k ) holds ∀p ∈ P 2n-1 ([0, 1]).
Many proofs of this theorem exists. In this PhD, a proof highlighting the role of the reproducing kernel with explicit formulas for the weights w k is detailed in appendix D.8 p.300.

Exact projection results for polynomial nonlinearities From a practical point of view, if f is polynomial 9 with degree d f and X is also polynomial 10 with degree d X , then f • X is polynomial with degree d = d f • d X . In other words, the "polynomial spectrum" of f • X is bandlimited (in the Legendre basis). By consequence, if a quadrature rule is exact for polynomials of degree d, its use in methods RPM to compute projections, makes energy and passivity preservation guaranteed (see [START_REF] Celledoni | Energy-preserving and passivity-consistent numerical discretization of port-Hamiltonian systems[END_REF]).

Approximation up to machine accuracy for nonlinearities with infinite spectrum In many interesting cases, f •X has an infinite spectrum in the chosen basis 11 A naive implementation would require an infinite number of evaluation points. Fortunately, the situation is not desperate: if f and X are sufficiently smooth, the spectrum of f • X has a fast decay rate ([WX12]) so that, exact integration (up to machine accuracy) can be reached with a finite number of evaluation points. This approach has been studied in [START_REF] Brugnano | Hamiltonian boundary value methods (HBVMs) and their efficient implementation[END_REF] where machine accuracy is reached with few evaluation points. If however f is not smooth, then low projection orders and smaller time-steps should be used together with Theorem 5.7. Indeed, in this case, the fast convergence property of spectral methods is lost and the additional quality of higher orders methods is no longer worth the increase in numerical computation cost (cf [START_REF] Boyd | Chebyshev and Fourier spectral methods[END_REF]). The Legendre spectrum and the convergence of Gauss-Legendre quadrature are illustrated on figure 5.7 for the cases of C ∞ and C 0 functions.

9. Example: the Duffing and Van der Pol oscillators are cubic, the Lotka-Volterra equations are quadratic. 10. The spectrum of f • X is also finite when X is trigonometric and f is polynomial. 11. For example f ∈ {sin, cos, sinh, cosh, exp, min, max, . . .}. 

(f • x)(t) where x(t) = x 0 + t(x 1 -x 0 ), x 0 = -1, x 1 = 1 is
an affine trajectory and for two nonlinearities: (top) A C ∞ function f (x) = exp(ax) -1 (like a diode law) and (bottom) a piecewise linear C 0 ReLU function f (x) = max(ax, 0) (used in opamp clipping) both for parameters a = 1, 2, 3. We can clearly see that for C ∞ functions (top), both the approximation error and the (Legendre) spectrum decay very fast. The error reaches the machine epsilon after a finite number of quadrature nodes. By contrast, for C 0 functions (bottom), both the approximation error and the Legendre spectrum decay much more slowly: the quadrature order and the number of Legendre coefficients have been increased to 100 but the quadrature error remains significant (about 10 -4 ) which is more than 10 orders of magnitude above the machine epsilon. The spectrum is shown in log-log scale to emphasize its slow linear decay (due to the discontinuity of the first derivative).

Representations, fixed-point and Newton iterations

Choice of representation Until now, to design RPM, we have worked with abstract functional spaces and projections, but the choice of functional space and its representation has remained open. To actually implement the method on a computer, we need finite-dimensional representations of functions for each time step (finite rate of innovation). Questions To this end, several questions must be addressed, in particular:

• Should we use trajectories X(τ ) or their derivative δX(τ ) as primary representation? (i.e. should we use the state space or the space of flows and efforts as primary space?)

• Should we use use nodal representations (as in FEM and Runge-Kutta methods) or spectral representations (as in modal and spectral elements methods)? See [START_REF] Boyd | Chebyshev and Fourier spectral methods[END_REF].

• Is it easier to work with orthogonal (as in spectral methods) or non-orthogonal (as in FEM) representations of functions? For which computational cost and numerical conditioning ?

Choices In this chapter, we make the following choices: A. We use the projected flows f and efforts e (in L 2 ) as the approximated objects, rather than the state X. Indeed, since we are not only interested in solving autonomous ODEs, but on manipulating PHS (with ports), it is more natural and consistent to have a common representation for all components 12 . The state x(t) = x(t 0 ) + ´t t 0 f (s) ds is treated as an internal construct of energy-storing components (treated as a hidden variable).

B. We use (spectral) orthogonal basis coefficients. Indeed, this is a natural fit for a projection method, furthermore they have optimal conditioning, require less computations 13 and their coefficients decay quickly for smooth functions (see fig. 5.7a). Choice (A) is different from the standard formulation of CSRK methods (i.e. we emphasize the role of the reproducing kernel k P (τ, σ) rather than the integrated kernel A(τ, σ)). More precisely (for an autonomous PHS) we solve the equation

δX(τ ) = P(J -R)∇H x 0 + h ˆτ 0 δX(s) ds , where δX(τ ) = p-1 k=0 φ k (τ ) δX k ,
for the coefficients δX k (the true unknowns in the projection space) rather than

X(τ ) = x 0 + h ˆτ 0 P (J -R)∇H (X) (s) ds, X(τ ) = x 0 + p-1 k=0 ˆτ 0 φ k (s) ds X k+1 .
with respect to coefficients X k (where the initial condition x 0 is given by the problem). Note that our choice is closely related to the W-transformation of Runge-Kutta methods [BG08, p.267].

Fixed-point and Newton iteration For pH-ODE, we have seen (theorem 5.2 p.127) that the fixed-point iteration is contracting for hL < π 2 where L is the Lipschitz constant of the vector field. However the existence domain of solutions can be larger than predicted by Lipschitz conditions 14 and the fixed-point convergence is often too slow. For these reasons it is often advantageous to use (simplified) Newton iteration and we know that if the fixed-point converges, then Newton converges too. Newton iteration for pH-DAE is also discussed in subsection 5.3.2 p.138.

12. energy storing: f = ẋ, e = ∇H(x), memoryless: f = w, e = z(w), ports: f = y, e = u. 13. For example, the operational matrix of the Volterra integration operator is tri-diagonal and almost skewsymmetric in the Legendre Basis (see appendix C.4 p.286).

14. For example ẋ = λx has solution exp(λt)x0 independently of the stiffness of its Lipschitz constant L = |λ| and Newton iteration converges in one iteration for linear problems.

Examples

Nonlinear Conservative LC

We consider a nonlinear LC oscillator described by the schematics (left), Dirac structure (middle) and its Hamiltonian formulation (right)

v C i C v L i L ≡   i C v L   =   0 -1 1 0     v C i L   ⇐⇒   q φ  =   0 -1 1 0     ∇H C (q) ∇H L (φ)   .
The flows are i C = q, v L = φ, the effort laws and associated Hamiltonian are given by

v C (q) = ∇H C (q) = q C , H C (q) = q 2 2C , i L (φ) = ∇H L (φ) = I S tanh φ LI S , H L (φ) = LI 2 S ln cosh φ LI S ,
where I S denote the saturation current of the inductor 15 . For simplicity, we take L = C = ω -1 and I S = 1 such that for small values 16 of φ the oscillator has pulsation ω = 1/ √ LC rad s -1 .

• Step i) We use the orthonormal Legendre basis P i (τ )

p-1 i=0 and use as unknowns the vector of Legendre coefficients

δq := P i | i C p-1 i=0 , δΦ := P i | v L p-1 i=0 ,
•

Step ii) for any scalar function H(x), we define its (Legendre) projected gradient by

∇H(x 0 ; δx) :=    P i ∇H   x 0 + h ˆτ 0 p-1 j=0 P j (σ) δx j dσ      p-1 i=0
.

(5.45)

Substituting functions of time by their projection coefficients (computed according to the results of sections 5.4.1 5.4.2), we obtain an algebraic system of dimension 2p (projected Hamitonian system) which is solved using Newton iteration.

  δq δΦ   =   0 -I p I p 0     ∇H C (q 0 ; δq) ∇H L (φ 0 ; δΦ)   .
(5.46)

• Step iii) For α ∈ {0, 1} we evaluate the boundary conditions (according to B.3 p.278)

B 0 α (q) = -∇H L (φ α ), B 1 α (q) = -∇ 2 H L (φ α )∇H C (q α ), etc B 0 α (φ) = ∇H C (q α ), B 1 α (φ) = -∇ 2 H C (q α )∇H L (φ α ), etc
This regularisation process yields piecewise C k solutions q(t), φ(t) thanks to the boundary functions ψ m α (τ ) defined in proposition 5.4 p.129. Simulation results for different values of order p and regularity k are shown in figures 5.8-5.13.

15.

In this example, we neglect hysteresis and use a generic tanh nonlinearity rather than a realistic one. We have supervised a work on a detailed inductor model for PHS (based on statistical physics) which includes hysteresis. This work, which is out of the scope of this thesis, has been published in [START_REF] Najnudel | A power-balanced dynamic model of ferromagnetic coils[END_REF]. 16. For small values of φ, we have ∇HL(φ) = φ/L + O(φ 3 ) so that the circuit reduces to a harmonic oscillator. for a Nyquist pulsation ω = π (the actual pulsation is slower because of nonlinearities) and initial conditions (q 0 , φ 0 ) = (0, 2). Plots are shown both in the phase space (φ, q) (first row), and in the flow/effort space (i L , v C ) (second row).

Orbits and trajectories Orbits in the (φ, q) and (i L , v C ) planes are shown on figure 5.8 and time trajectories are shown on figure 5.9. A pulsation close to the Nyquist frequency has been chosen in order to be able to show visual differences between different values of projection and regularity order p, k. On figure 5.8d (p = 1, k = 1), since the accuracy is only O(h 2 ) and we are close to the Nyquist frequency, we remark that the magnitude of derivatives is overestimated (overshoot). Despite this, orbits are much closer to the true manifold for regularity k = 1 (fig.

5.8d) than for k = 0 (fig. 5.8a). As the projection order p increases, orbits converge quickly to the true manifold but the derivatives remains discontinuous at the junctions. Increasing the regularity k improves the situation (the accuracy is now high enough to avoid derivative overestimation). 

0 1 2 3 4 normalized time 2 1 0 1 2 p = 1 v C i L 0 1 2 3 4 normalized time 2 1 0 1 2 p = 2 v C i L 0 1 2 3 4 normalized time 2 1 0 1 2 p = 3 v C i L (a) regularity order k = 0 0 1 2 3 4 normalized time 2 1 0 1 2 p = 1 v C i L 0 1 2 3 4 normalized time 2 1 0 1 2 p = 2 v C i L 0 1 2 3 4 normalized time 2 1 0 1 2 p = 3 v C i L (b) regularity order k = 1

Frequency warping and dispersion

To emphasize the effect of projection order on frequency warping, it is shown on figure 5.10 that the frequency warping (dispersion) error diminishes greatly as p increases. In just two steps, the full circle is accurately reproduced. For (p = 1, k = 1) (fig. 5.10d), we see that the accuracy is not high enough to simulate a pole at the Nyquist frequency: the magnitude of the vector field is over-estimated. Nevertheless, even in this extreme situation, the smooth solution (k = 1, fig. We remark that, above the Nyquist frequency, the spectral content approaches the expected harmonic structure more and more closely, as the projection order p increases: this is due to the increasing bandwidth (w.r.t. p) in the sense of generalised sampling theory (see section 3.1 p.83). Accordingly, the aliasing decreases in the audio frequency range: the signal to (aliasing) noise ratio is above 100 dB for p = 3 in the frequency band below 20 kHz.

For k = 0, because of discontinuities, the high frequency spectrum has a slow spectral decay, but the magnitude of discontinuities diminishes when increasing accuracy. As expected, increasing the Sobolev regularity k exhibits a faster spectral decay. We remark that the signal to noise ratio and aliasing rejection are also improved in the frequency range around the Nyquist frequency, including in the frequency band below the Nyquist frequency.

However, as we have already warned before (see fig. 5.8), we experiment that, increasing the regularity k should be used with care (in regions where accuracy is high enough). Otherwise unwanted local frequency modulation can occur and create sub-harmonics in the pass-band.

A perspective that is left for further work would be to use backward error analysis theory [START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary differential equations[END_REF] to evaluate (multi-)derivatives of the modified vector field that are consistent with the frequency warping induced by projection operators. Local and long-term energy error The local energy behaviour for ω = π/4 is shown in figure 5.12. We remark as expected that the relative energy error

H (τ ) =
H(q(τ ), φ(τ )) -H(q 0 , φ 0 ) H(q 0 , φ 0 ) , vanishes on the time-stepping grid. Furthermore, its maximal also diminishes by an order of magnitude as the projection order p is increased. Finally, increasing the regularity order k also diminishes the local energy error (note the similarity with Peano kernels from figure 5.5 p.134). On figure 5.13, we show that energy conservation is satisfied on the time-stepping grid τ ∈ N up to machine epsilon accuracy in double precision arithmetic. (q, φ) = (0, 1). Horizontal lines correspond to multiples of the machine epsilon.

Diode Clipper

We consider the diode clipper circuit and its semi-explicit PHS representation

v S i S R i R C i C D i D ⇐⇒        v R v D i C i S        =        -1 1 1 0 1 -1 -1 0               i R (v R ) i D (v D ) v C (Q h q 0 (i C )) v S        where i R (v R ) = v R /R, i D (v D ) = 2I S sinh(v D /V T ), v C (q) = q/C
, and v S is a given input function.

For the purpose of simulation, with i C = q, we can reduce it to the ODE

q = - q RC -i D q C + v S R , q = Q h q 0 (i C = q) = q 0 + h ˆτ 0 i C (s) ds. i) Let δq := P k | i C p-1 k=0 , v S := P k | v S p-1 k=0 be the Legendre coefficients of i C (τ ), v S (τ ).
ii) Let P = I (p-1)×p be the matrix representation of the projector and define the projected charge and diode current operators

Q h q 0 i :=   P i q 0 + h ˆτ 0 p-1 j=0 P j (s) i j ds   p i=0 =   q 0 0   + hV i, I D ( v) :=    P i i D   p j=0 P j (τ ) v j      p-1 i=0
where V is the p × (p -1) operational matrix of the Volterra integration operator V = ´τ 0 . The projected ODE becomes the algebraic fixed point on δq

δq = -P q RC -I D q C + v S R =: G δq ,
where q = Q h q 0 δq .

We define the Newton function F δq := δq -G δq and use the simplified Newton iteration to solve F δq = 0 given by

δq k+1 := δq k + ∆ δq k , ∆ δq k := -(F 0 ) -1 δq k -G δq k , δq 0 := 0.
Its Jacobian is tridiagonal positive definite (easy to invert) and equal to

F 0 = I + αPV 0, with α = h RC 1 + R ∂ i D ∂v D q 0 C .
iii) For regulariy k > 0, we evaluate the boundary conditions at τ = α ∈ {0, 1}

B 0 α ( i C ) = 1 R v S (α) - q α C -i D q α C , B 1 α ( i C ) = 1 R vS (α) - B 0 α ( i C ) C -i D q α C B 0 α ( i C ) C , etc
The regularized current i C (τ ) is synthesized using the boundary functions ψ m α (τ ) defined in proposition 5.4 p.129. The voltage v C (τ ) is then obtained from i C (τ ) by integration.

Simulation results

Simulation results for a ramp/step input and for different values of projection order p and regularity k are shown on figure 5.14. As expected we can observe diode clipping of the voltage about 0.7 V. Simulations differ mostly on how they behave when switching from the linear regime to the stiff clipping mode. For p = 0, we observe well-known Nyquist oscillations artefacts about the exact solution. These are due to the frequency warping of the method (stiff real poles are warped towards imaginary poles at the Nyquist frequency, see fig. D.2 p.298). Increasing the projection order p, we observe a significant reduction of this phenomenon thanks to higher order accuracy and bandwidth. Increasing the regularity order k yields smoother solutions, but for stiff poles (as we already noticed in fig. 5.10), we observe that additional smoothness also yields an amplification of artefacts. Increasing jointly p and k reduces both the amplitude of oscillations and their frequency. However small oscillations are still observable for p = 2, k = 2. is not shown because the accuracy order is not high enough to use second derivatives.

Sine sweep spectrograms and aliasing Spectrogram responses of the diode clipper to a sinusoidal sweep are also displayed on in 5.15 in linear scale and in figure 5.16 in log scale. The linear frequency scale is makes the visualisation easier to exhibit the generalized bandwidth and aliasing reduction of higher-order projection. The logarithmic frequency scale is closer to the human hearing resolution, the residual aliasing below 20kHz is easier to visualize with this scale. We see that with increasing order p = 3 the audible aliasing becomes barely noticeable, it only happens for input sinusoids above 5 kHz, and folded harmonics level stays below about 70/80dB. In comparison for low order p = 1, aliasing starts for sinusoids below 1kHz and its level is above -60dB. 

Discussion and perspectives for stiff dissipative systems

We reconsider the power balance functional ρ from chapter 4 in the case of an autonomous pH-ODE. In this chapter, using a self-adjoint scalar projector P, we have by commmutation of (P, J -R), self-adjointness of P and skew-symmetry of matrix J

ρ(X) = ∇H(X) f (X) -Ẋ = ∇H(X) (J -R)(I -P)∇H(X) = -(I -P)∇H(X) 2 R .
This means that, after projection, conservative systems, are still unconditionally conservative and dissipative systems are still unconditionally dissipative. For conservative systems, the energy preservation is exact (since R = 0). But for dissipative systems, comparing the functional projection approach in this chapter with the adaptive collocation strategy from chapter 4 p.107, the price to pay for unconditional passivity (and linear parametrization of the problem using projection coefficients) is an error on the dissipation rate which is in

O (I -P)∇H(X) 2 R .
A perspective, for stiff dissipative systems (see oscillations in figure 5.14), is to combine the unconditional energy dissipation of RPM (see also [START_REF] Hairer | Energy-diminishing integration of gradient systems[END_REF]) with damping for infinitely damped poles (as in L-stable methods such as Radau IIa [START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary differential equations[END_REF]) while optimising the decay rate. A path towards this goal would be to combine a) the continuous-time functional projection in this chapter, b) the exact preservation (or minimisation) of the power-balance functional ρ(X) = 0 introduced in (S)PAC methods.

Conclusion

In this chapter, we have demonstrated that representing flows and and efforts as functions of time in the Hilbert space L 2 (used as a pivot space) coupled with respectively skew-adjoint and self-adjoint approximations of PH structure matrices J and R (using projectors) is a key ingredient to yield energy-preserving and passivity-preserving methods for both pH-ODEs and pH-DAEs. Coupling this result with supplementary boundary conditions, we have proposed a class of methods called RPM(p, k) that satisfy properties P1, P2, P3 (power-balance, accuracy, regularity) and whose principle is applicable to both pH-ODEs and pH-DAEs. A detailed analysis of RPM for ODE has been proposed where accuracy order, existence and uniqueness, local accuracy, Peano error kernels, etc have been studied. Works remains to be done in the case of DAE. First results show that the PH structure and its tree/cotree partitioning can be exploited advantageously. In particular, we were able to show that the Jacobian in Newton iteration is always invertible for convex Hamiltonians and incrementally passive dissipative component laws. The main advantages and drawbacks of the approach are listed below.

Advantages

• Unconditional energy preservation and passivity,

• Representation is linear in the parameters,

• Spectral projection converges exponentially fast for smooth functions,

• The method can be interpretated using the framework of CSRK methods,

• Order conditions directly stems from to the polynomial reproduction property of projectors,

• Orthonormal basis have optimal numerical conditioning and require less computations.

Drawbacks

• Projections integrals need to be computed exactly to have energy conservation,

• High orders require quadrature approximations (up to machine accuracy),

• Inexact dissipation rate and lack of damping for infinitely stiff systems.

• Regularity is a post-regularisation step rather than a built-in feature 17 : the increased regularity and local accuracy of projector Q does not improve the time-stepping accuracy.

Remark 5.3 (Discrete PHS). Comparing with the discrete PHS definition proposed in [START_REF] Kotyczka | Discrete-time port-Hamiltonian systems: A definition based on symplectic integration[END_REF], which is based on symplectic integration (such as Gauss-Legendre schemes), a main difference is that the functional projection approach in this chapter preserves the exact Hamiltonian (and passivity) while symplectic integrators preserve the symplectic structure (and possess a perturbed Hamiltonian).

Chapter 6

Power-balanced Exponential Integrators In the previous chapter, we have used functional orthogonal projection. It minimises the L 2 -norm of the residual error between the exact and the projected vector field and preserves the power balance. In this chapter, we combine vector field projection with exponential integrators to obtain energy-preserving exponential integrators. A salient feature of exponential integrators is that they exactly integrates the (local) linear dynamics1 .

• In section 6.1 we motivate the choice of exponential integrators by showing that they naturally arise as optimal pre-conditioners in functional Newton iteration when minimizing the L 2 -norm of the vector field residual error.

• In section 6.2, we propose an extended definition of the AVF discrete gradient and show how to combine it with exponential integrators to yield an energy (resp. dissipation) preserving numerical scheme.

• In section 6.3, we generalise this approach to power-balanced integrators with arbitrary high projection orders and basis functions.

From functional Newton iteration to exponential integrators

In this section, instead of pre-specifying a finite-dimensional approximation space, we seek a solution of the ODE using infinite-dimensional Newton iteration in functional space. As a byproduct, exponential integrators naturally arise as pre-conditioners for Newton iteration 2 .

Consider an autonomous ODE over a time interval Ω, governed by

ẋ(t) = f (x(t)), x(0) = x 0 ∈ R n ,
with f : R n → R n . We define the diffential operator D := d dt , and the residual vector field operator E :

X := H 1 (Ω, R n ) → L 2 (Ω, R n ) by E(x) := Dx -f (x). (6.1) 
For an initial trajectory function x 0 ∈ X , we propose to formally solve the following minimisation problem using functional Newton iteration

x = argmin x∈X Φ(x) = 1 2 E(x) 2 L 2 , s.t. x(0) = x 0 . (6.2) 
Newton iteration consists in locally approximating the functional Φ about each functional iterate x k by a convex positive definite quadratic functional Φ (detailed below) and solving the associated sequence of least-square problems. The Newton-Kantorovich theorem guarantees convergence with quadratic speed when the initial estimate is in the bassin of attraction of the solution (not detailed here). Using Frechet derivatives (see definition C.8 p.282), an extrema of the functional Φ corresponds to a zero of its first-order derivative

Φ (x)(u) = E x (u), E(x) = 0, (6.3) 
where by definition of the Frechet derivative, E x is the linear operator at x acting on u given by

E x (u) = (D -A x ) u, where A x = f (x). (6.4) 
To have a local minimum at each iteration, it is sufficient that the Hessian approximation Φ ≈ Φ 0 be a positive define bilinear form. For that purpose, we use the following convex positive semi-definite approximation3 of the second Fréchet derivative

Φ (x)(u, v) = E x (u), E x (v) ≥ 0. (6.5) 
Note that, Φ (x) being a positive bilinear form, it defines, for each function x, a Sobolev inner product

u, v E x := E x (u), E x (v) L 2 . (6.6)
where the local metric is given by the linear self-adjoint differential operator

W = (E x ) * (E x ) = (D -A x ) * (D -A x ). (6.7)
An exponential integrator in disguise Starting from an initial functional estimate x 0 ∈ X , the approximate Newton step is formally given for all k ≥ 0 by

∆x k+1 = -Φ (x k ) -1 Φ (x k ). (6.8)
combined with a line-search iteration

x k+1 = x k + α∆x k , α ∈ [0, 1]. Note that if E x is invertible,
we can simplify the pseudo-inverse in the Newton step as follows:

∆x = -Φ (x) -1 Φ (x) = -(E x ) * (E x ) -1 (E x ) * E(x) = -(E x ) -1 E(x) (6.9) 
where from (6.4), the inverse operator (E x ) -1 is nothing but an exponential integrator

(E x ) -1 u (t) = ˆ1 0 exp ˆt s A(x(ξ)) dξ Θ(t -s)u(s) ds. (6.10)
It plays the role of a preconditioner applied to the residual E(x).

Remark 6.1. The role of a Newton preconditioner is to enhance convergence and conditioning [START_REF]Newton methods for nonlinear problems: affine invariance and adaptive algorithms[END_REF] but it does not change the solution (of the fixed-point Picard iteration). Furthermore, since the exact operator can be difficult to approximate, we may instead use the following tractable approximation (simplified Newton iteration)

(E x ) -1 u (t) ≈ ˆ1 0 exp A 0 (t -s) Θ(t -s)u(s) ds, where A 0 = f (x 0 ). (6.11) 
Functional Newton iteration automatically generates an exponential integrator (D -A x ) -1 to precondition the residual E(x).

Sobolev Gradients Using the theory of Sobolev gradients [START_REF] Neuberger | Sobolev gradients and differential equations[END_REF] and the Riesz representation theorem (see C.1), there exists respectively L 2 and Sobolev gradients ∇Φ and ∇ S Φ such that the Fréchet derivative can be represented either using the L 2 or the Sobolev inner product as

Φ (x)(u) = ∇Φ(x), u L 2 = ∇ S Φ(x), u E x , (6.12) 
where from (6.3) and (6.9) we find that

∇Φ(x) = (E x ) * E(x), ∇ S Φ(x) = (E x ) -1 E(x). (6.13) 
Likewise there exists L 2 and Sobolev Hessians ∇ 2 Φ and ∇ 2 S Φ such that ∇ 2 S Φ is the identity.

Φ (x)(u, v) = u ∇ 2 Φ(x) v L 2 = u, v E x .
Indeed, from (6.5), using the formal adjoint (E x ) * , we find that ∇ 2 Φ = (E x ) * E x (see (6.7)), and we can express the Fréchet derivatives as

Φ (x)(u, v) = u, v E x = E x (u), E x (v) = u (E x ) * E x v = u ∇ 2 Φ(x) v .
According to (6.9) and (6.13) we may conclude that Functional Newton iteration is equivalent to steepest gradient descent in Sobolev space.

6.2 Exponential Average Vector Field method

Notations and preliminary definitions

Let u, v := u T v, and u := u, u denote the euclidean inner product and norm in R n . For an invertible symmetric positive definite matrix R n×n Q = Q T 0, we define the associated inner product and norm by u, v Q := u T Qv, and u Q := u, u 1/2 Q . Definition 6.1. Let H : R n → R be a differentiable function on R n . Using the Riesz representation theorem, we define the euclidean gradient ∇H and the Q-gradient ∇ Q H as the unique elements satisfying

H (x)(•) = •, ∇H(x) R n = •, ∇ Q H(x) Q , ∀x ∈ R n . (6.14)
where

H (x)(•) denotes the Frechet derivative of H at x. It follows that ∇ Q H(•) = Q -1 ∇H(•). Lemma 6.1. Let A = (J -R)Q with R n×n matrices J = -J T , R = R T 0 and Q = Q T 0.
Then the semigroup e tA is norm-preserving (resp. non expansive) in the Q-norm, i.e. it satisfies for all u ∈ R n , for all t ≥ 0

e tA u Q = u Q if R = 0, otherwise e tA u Q ≤ u Q if R 0. (6.15) 
Proof. For a pH-ODE ẋ = (J -R)Qx, x(0) = x 0 , the Hamiltonian H(x) = 1 2 x 2 Q is preserved (resp. dissipated) along the solution x(t) = e tA x 0 (see equation (1.49) p.33). Definition 6.2. Let Ω = (0, 1), We define the orthogonal averaging projector P : L 2 (Ω, R n ) → L 2 (Ω, R n ), and the associated Sobolev projector P S :

H 1 (Ω, R n ) → H 1 (Ω, R n ) by (Pu)(τ ) := ˆ1 0 u(σ) dσ, (P S u)(τ ) := u(0) + ˆτ 0 (P u)(σ) dσ. (6.16) 
In particular, they satisfy the commutation identity d dτ (P S u) = P(

d dτ u) = u 1 -u 0 .
Using these operators we give an extended functional definition of the average discrete gradient Thm-definition 6.1

(Generalized Average Discrete (Q)-Gradient). Let V ∈ C 1 (R n , R). For all x ∈ H 1 (Ω, R n ),
we define the generalized average discrete gradient (GADG)

∇V (x) := (P • ∇V • P S )(x). (6.17)

and the discrete Q-gradient ∇ Q V (x) := Q -1 ∇V (x) satisfying the discrete gradient identity V (x 1 ) -V (x 0 ) = ∇V (x), x 1 -x 0 R n = ∇ Q V (x), x 1 -x 0 Q . (6.18) Proof. V (x 1 )-V (x 0 ) a = ∇V (P S x) d dτ (P S x) L 2 b = ∇V (P S x) P ẋ L 2 c = ∇V (x), x 1 -x 0 R n .
using (a) the gradient theorem, (b) d dτ (P S x) = P( d dτ x), (c) P 2 = P = P * and P ẋ = x 1 -x 0 .

Energy preserving (resp. dissipating) Exponential AVF

We consider (for each time frame) the semi-linear splitting of an autonomous pH-ODE

ẋ = (J -R)(Qx + ∇V (x)), x(t 0 ) = x 0 , (6.19) 
with matrices J = -J T , R = R T 0, and Q = Q T 0. The Hamiltonian is decomposed as

H(x) = 1 2 x 2 Q + V (x). (6.20) 
A typical choice for H ∈ C 2 is to use the Hessian Q = ∇ 2 H(x) about an expansion point x and define the potential V as the difference

V (x) = H(x) -1 2 x 2 Q . Introducing the linear operator L = d dτ -A, with matrix A = h(J -R)Q, we rewrite (6.
19) as the normalized-time initial value problem.

L x = A∇ Q V (x), τ ∈ (0, 1) x(0) = x 0 , (6.21) 
where

∇ Q V = Q -1 ∇V denotes the Q-gradient 4 of V and t = t 0 + hτ , for τ ∈ [0, 1]. Theorem 6.1. If X(τ )
is the solution of the projected Initial Value Problem (6.21) using the generalized average discrete gradient (6.17)

LX = A∇ Q V (X), X(0) := x 0 . (6.22) 
Then the time stepping Φ : 1) is energy (resp. passivity) preserving i.e. Proof. We prove the result in three steps: i) Using the Green kernel e (τ -σ)A Θ(τ -σ) of operator L, we have the trajectory

x 0 → x 1 = X(
H(x 1 ) -H(x 0 ) = 0 if R = 0 otherwise ≤ 0 if R 0. (6.23) • • X 0 X 1 (P S X)(τ ) M X(τ )
X(τ ) = e τ A x 0 + ˆτ 0 e (τ -σ)A A dσ∇ Q V (X) = e τ A x 0 + e τ A -I ∇ Q V (X).
ii) It follows after evaluating x 1 = X(1) and factorisation that we have the identities

x 1 -x 0 = e A -I x 0 + ∇ Q V (X) , (6.24a) 
∇ Q H(X) = x 1 + x 0 2 + ∇ Q V (X) = e A + I x 0 + ∇ Q V (X) 1 2 . (6.24b)
iii) Energy-conservation (resp. dissipation) follows from the sequence of relations

H(x 1 ) -H(x 0 ) a = ∇ Q H(X), x 1 -x 0 Q b = 1 2 e A + I x 0 + ∇ Q V (X) , e A -I x 0 + ∇ Q V (X) Q c = 1 2 e A x 0 + ∇ Q V (X) 2 Q - 1 2 x 0 + ∇ Q V (X) 2 Q (6.24c) d = 0 if R = 0 and d ≤ 0 if R 0. (6.24d) 
using (a) the discrete Q-gradient identity (6.18), (b) identities from step ii), (c) expansion of the inner product (with vanishing cross terms), (d) lemma 6.1 with u = x 0 + ∇ Q V (X).

A geometric interpretation of the proof is shown on figure 6.2.

• • • • • • • x 0 x 0 +x 1 2 x 1 ∇ Q V (X) x 0 + ∇ Q V (X) = u e A u (e A -I) u = x 1 -x 0 (e A + I) u = 2∇ Q H(X) e A +I 2 u (a) Geometry 1) Form u = x 0 + ∇ Q V (X)
and its rotation e A u in orange, form the differences e A uu and

x 1 -x 0 (in blue and dashed blue).

We get (6.24a) .

2) Form the sum u + e A u and its half, form the barycenter (x 0 + x 1 )/2 (red)

and add ∇ Q V (X) (green),
we get (6.24b)

3) Note the orthogonality in (6.24d) 

x 1 -x 0 ⊥ Q ∇ Q H(X) (b) Explanations
-x 0 ⊥ Q ∇ Q H(X).

LC example

In order to perform a comparison betwen the AVF method (i.e. projection order p = 1, regularity k = 0) and the Exponential AVF method, we reconsider the nonlinear LC example of subsection 5.5.1.

  q φ  =   0 -1 1 0     ∇H C (q) ∇H L (φ)   , Q = ∇ 2 H(q 0 , φ 0 ) =   1 C 0 0 1 L 0 ,  
where the Hessian Q is governed by the local inductance L 0 = L/(1 -tanh 2 (φ 0 /LI S )). We decompose the Hamiltonian as H(q, φ)

= q 2 2C + φ 2 2L 0 + V (φ)
where

V (φ) = LI 2 S ln cosh φ LI S - φ 2 2L 0 = LI 2 S ln cosh φ 0 LI S + O φ -φ 0 LI S 4 . (6.25) 
Using (6.24a), we solve the fixed point equation on (δq, δφ)

  δq δφ   = (e A -I)      q 0 φ 0   +   0 L 0 ∇V (φ)      , A = h   0 -1 1 0     1 C 0 0 1 L 0   , (6.26) 
using the closed-form formula of the AVF discrete gradient (see Equation 5.41) Simulations results comparing the AVF method with the Exponential AVF (EAVF) method are shown on Figure 6.4. As expected, the exponential AVF trajectories are closer to the true solution (in dashed black), and exhibit very good accuracy when the nonlinearities changes slowly over the time step. Because of exact integration of the linear dynamic, we note that frequency warping is also improved in the EAVF compared to the AVF method (compare figures 6.4a and 6.4b). The pulsation is set to ω ∈ π, π/2 .

∇V (φ) =      V (φ 0 + δφ) -V (φ 0 ) δφ δφ = 0, ∇V (φ 0 ) δφ = 0.

Adding external ports

We generalize the exponential AVF method to input-state-output pH-ODEs (definition 1.22). For that purpose, we remark that compared to projection methods of chapter 5 , the crucial element of the proof of theorem 6.1 relies on making a distinction between the exponential trajectory 5 X and its affine Sobolev projection X S = P S X (sharing the same endpoints) such that, thanks to path independence of the gradient theorem, a the proof of equation (6.18) relies on the following identity (see Figure 6.1)

H(X 1 ) -H(X 0 ) = ∇H(X) Ẋ L 2 = ∇H(X S ) ẊS L 2 = ∇H(X) X 1 -X 0 L 2 .
Exponential AVF for input-state-output pH-ODEs

Consider the pH-ODE ẋ = (J -R)∇H(x) + Gu, y = -G T ∇H(x). , x(t 0 ) = x 0 , where ∇H(x) = Qx + ∇V (x). (6.27) 
Note that, compared to the autonomous case, special care has to be paid for the treatment of inputs and outputs: in the following, we use AVF projection of the input term ū = Pu; dually, we have to use a dual output y = -G T ∇H(X) to ensure that we still have a passive power-balance (see vanishing cross terms in the proof of theorem 6.2 below). Otherwise the method follows the same construction as in the autonomous case.

5. which brings accuracy by exact integration of the linear part of the vector field Method 6.1 (Exponential AVF for pH-ODE). Denote P = ´1 0 the AVF projector and denote X(τ ) an approximation of x(t 0 + hτ ) solution of the system

1 h Ẋ(τ ) = (J -R)(QX + ∇V (X)) + G ū, X(0) = x 0 , (6.28a 
)

y = -G T ∇H(X), (6.28b) 
where ū = Pu. The associated time-stepping method is Φ h : x 0 → x 1 = X(1).

Let A = h(J -R)Q, the exponential trajectory should be a solution of the fixed-point

X(τ ) = e τ A x 0 + ˆτ 0 e (τ -σ)A h (J -R)∇V (X) + G ū dσ.
Theorem 6.2. If system (6.27) is discretized using the exponential AVF method (6.28a)-(6.28b). Then, it satisfies the passive average power balance

H(x 1 ) -H(x 0 ) h + u | y ≤ 0.
Proof. Take the inner product of (6.28a) with ∇H(X S ) on the left, of (6.28b) with u and sum the results to get

1 h ∇H(X) Ẋ + u | y = ∇H(X) (J -R)(QX + ∇V (X)) + G ū -u G T ∇H(X) a ⇐⇒ 1 h ∇H(X) x 1 -x 0 + u | y = 1 2 e A x 0 + ∇ Q V (X) 2 Q - 1 2 x 0 + ∇ Q V (X) 2 Q . b =⇒ H(x 1 ) -H(x 0 ) h + u | y ≤ 0 if R 0.
The following identities were used to obtain the result: a) By construction (see def.6.2), we have P Ẋ = ẊS = x 1 -x 0 , P 2 = P and P * = P so that

∇H(X) Ẋ = P∇H(X S ) Ẋ = P 2 ∇H(X S ) Ẋ = P∇H(X S ) P Ẋ = ∇H(X) x 1 -x 0 .
Furthermore we use (6.24c) in the proof of theorem 6.1, the main difference compared to the proof of theorem 6.1 is the presence of input-output cross-terms. They vanish thanks to ∇H(X) = P∇H(X S ), ū = Pu and the self-adjoint property of projector P (as above).

∇H(X) G ū -u G T ∇H(X) = ∇H(X) GPu -GPu ∇H(X) = 0.
b) we use (6.18) for the left hand side and we use (6.24d) for the right hand side.

High-order energy-preserving exponential integrators

In this section, we propose an extension of the results from section 6.2 to arbitrary projection orders. The price we pay with this approach, is that the linear dynamic is no longer integrated exactly: a perturbation term is introduced by the projector to satisfy the power balance.

For simplicity, we consider the autonomous Hamiltonian IVP ẋ = J∇H(x), x(t 0 ) = x 0 , with matrix J skew symmetric. Choose a matrix A (usually A = J∇ 2 H(x 0 )), decompose the vector field into a linear part and a deflated vector field as

ẋ = Ax + J∇H(x) -Ax ,
and introduce the differential operator Lx = ẋ -Ax to define the equivalent IVP

Lx = J∇H(x) -Ax , x(t 0 ) = x 0 . (6.29)
We define the following discretization scheme. Definition 6.3 (Exponential Projection Method (EPM)). Let Ω = (t 0 , t 0 + h). Let P be a projector in L 2 (Ω) reproducing constant functions and satisfying PJ = JP * . Denote X, X S ∈ H 1 (Ω) the approximations of the IVP (6.29), that solve the implicit equations

LX = P J∇H(X S ) -AX in Ω, and 
X(t 0 ) = x 0 , (6.30a) 
where ẊS := P Ẋ, in Ω, and

X S (t 0 ) = X(t 0 ). (6.30b) 
We call X the exponential trajectory, X S its Sobolev projection a and Φ h : x 0 → x 1 = X(t 0 +h) the time-stepping function of the exponential projection method (EPM).

a. See definition 6.2.

Then, the following results holds. From proposition 6.3 below, we have x 1 = X(t 0 + h) = X S (t 0 + h). Express the power-balance

H(x 1 ) -H(x 0 ) a = ∇H(X S ) ẊS b = ∇H(X S ) P Ẋ c = ∇H(X S ) P 2 J∇H(X S ) + P(I -P)AX d = ∇H(X S ) PJP * |∇H(X S ) e = 0.
This result stems from (a) the gradient theorem, (b) equation(6.30b), (c) equation (6.31), (d) identities P 2 J = PJP * and P(I -P) = 0, (e) skew-adjointness of PJP * . Proposition 6.2 (passivity preservation). EPMs are passivity-preserving.

Proof. Replacing the skew symmetric matrix J by J -R with R = R T 0 in the proof of proposition 6.1 yields H(x 1 ) -H(x 0 ) = -∇H(X S ) PRP * |∇H(X S ) ≤ 0 . Proposition 6.3. The exponential trajectory X and its Sobolev projection X S in definition 6.3 share the same endpoint x 1 = X(t 0 + h) = X S (t 0 + h).

Proof. By definition 6.3, x 1 =: X(t 0 + h). Let P 0 = 1 h ´Ω denote the averaging projector from L 2 (Ω) to the space of constant functions. Since P reproduces constants, we have P 0 P = P 0 . Then,

X(t 0 + h) = x 0 + ˆΩ Ẋ(t) dt = x 0 + hP 0 Ẋ and X S (t 0 + h) = x 0 + ˆΩ P Ẋ(t) dt = x 0 + hP 0 P Ẋ = x 0 + hP 0 X. It follows that x 1 =: X(t 0 + h) = X S (t 0 + h).
Remarks We make the following observations regarding EPMs a) As in chapter 5, we only require the projector to reproduce constants and satisfy the commutation condition PJ = JP * . b) A sufficient condition is fulfilled when P is scalar (commuting with matrices) and self-adjoint (P = P * ) projector. But using adjoint pairs of non-scalar projectors is an interesting option for partitionable equations that gives more freedom over the choice of projection space(s). c) As in the EAVF method, using the Sobolev projected trajectory X S to evaluate the nonlinearity is a key aspect of the method 6 . Without this double projection, we would have

Ẋ = J∇H(X) + (I -P)AX
and evaluating the power balance would result (in general) in the non-vanishing term

∇H(X) Ẋ = ∇H(X) PJ∇H(X) + (I -P)AX = ∇H(X) (I -P)AX = 0.
d) A drawback of the proposed approach, compared to the EAVF method, is that the linear dynamic is no longer integrated exactly: the projection induces the perturbation term (I -P)AX in equation 6.31). The proof is simple (and closer to the approach of chapter 5), but we lose in linear accuracy.

e) Adding H k regularity has been left for future research.

Note that when we approximate the linear vector field differently from its non-linear part, i.e. if we dissociate the flow space from the projection space (using exponential integration), we have to be more careful (than we had to in chapter 5) to ensure that energy is preserved.

6. A perspective of the proposed approach is to look more closely at the properties of the equivalence class of trajectories that share the same projected vector field: i.e. P Ẋ = P ẊS.

Conclusion

We found after bibliographical research that energy-preserving exponential AVF methods had already been proposed in [START_REF] Shen | Geometric exponential integrators[END_REF] (but restricted to commuting matrices J, Q) and also in [START_REF] Wu | Exponential average-vector-field integrator for conservative or dissipative systems[END_REF]. For this reason, we chose not to publish our derivation of the exponential AVF method.

However, since the genesis of the method and the structure of the proof are different, we hope that our presentation, specially in the context of pH-ODE and continuous-time projection, brings a complementary viewpoint which paves the way towards different approximation strategies.

Using the tools and methodology from chapter 5, we were able to generalize this result to higher projection orders for an arbitrary choice of basis. We call this approach (energy/passivity preserving) Exponential Projection Methods (EPM). The proof is simpler than the proof of the EAVF method: it avoids (sometimes tedious) manipulation of convolutions and identities involving matrix exponentials, however, the price to pay is that the linear dynamics is no longer integrated exactly (it is perturbed by a projection term).

The results in this chapter have been obtained late in the redaction of this manuscript. For this reason, analysis of order conditions, existence and uniqueness of solutions and detailed simulations are not included and are left for future research. To this end, a theory of (stiff) order conditions for exponential integrators, using exponential B-series, can be found in the reference [START_REF] Luan | Exponential B-series: The stiff case[END_REF] see also [START_REF] Berland | B-series and order conditions for exponential integrators[END_REF][START_REF] Butcher | Trees, B-series and exponential integrators[END_REF]. Finding an alternative strategy to generalise the approach to higher projection orders while exactly integrating the linear dynamic is also left for further research.

Introduction

The Operational Amplifier is widely used in analog audio circuits. This chapter is concerned with its passive power-balanced modelling as a PHS, which, to our knowledge, has not yet been explored. Our motivation arises by examining the two following questions:

• Do not we learn (in high school) that an operational amplifier is an active device?

• Why should we consider a pH model rather than the state-of-the-art 1 ? First, the OPA component does not create energy by itself: it is passive without a power supply. Thus, our first motivation is to model the passive component separately from the power supply, introducing explicit power supply ports 2 .

Second, to understand the interest of such a modelling, we perform a simple passivity test. Consider the circuit in figure 7.1, involving a resistor, an OPA and a capacitor. This capacitor replaces the traditional power supply of the OPA: this circuit is thus fully passive. Indeed, the capacitor is initialised with zero charge, all ports except the positive supply and the output are grounded 3 . Then, according to charge conservation, the sum of all currents should be zero, so that no current can flow in the capacitor and its output voltage should stay equal to zero. Simulations in LTSPICE (see figure 7.2) yield ill results that do not pass the passivity test for various OPAs models used in audio amplifiers (TL1366 and TL072). Indeed, both conservation of charge and passivity are violated since the OPA charges the capacitor to a significant non-zero value (dependent on the OPA macro model). The reason lies in the common practice of using controlled current and voltage sources in behavioural macro-modelling 4 of components. The OPA is charging the capacitor, violating both passivity and conservation of charge.

Our passivity test may seem far-fetched for real-life applications as OPA, transistor and tube amplifiers are usually designed and biased to avoid non-ideal behaviour. But musicians are known for pushing devices outside of their intended use (e.g. overdrive). It is not unusual for guitarists and effect pedal designers to use what is called voltage sag for creative purposes 5 .

All these practical elements strongly motivate our strategy to build passive OPA models, including in overdriven and under-powered configuration. Section 7.1 presents a first idealized (conservative, memoryless, saturating) model with an illustrative application (this section repeats the original content published in [START_REF]A minimal passive model of the operational amplifier: Application to Sallen-Key analog filters[END_REF]). Section 7.2 considers a limit-case: a fully-differential amplifier with infinite gain. Section 7.3 paves the way towards a grey-box model incorporating non-ideal behaviours (limited bandwidth, and slew-rate, dissipation. . . )

4. As a counter example, the Ebers-Moll transistor model is often depicted using diodes and voltage-controlled current sources to describe PN coupling. Despite this, we proved in example 1.10 p.32 that this model is passive. However establishing such proofs can be difficult and has to be performed for each component. By contrast, the pH modelling strategy is to exclusively rely on provably passive formulations.

5. The power supply voltage is voluntarily (and even dynamically) lowered to push a circuit outside of its ideal operating point, resulting in all kinds of unexpected behaviours (dead zone, self-oscilations, etc).

A minimal passive model of the operational amplifier

This section repeats the original content published in [START_REF]A minimal passive model of the operational amplifier: Application to Sallen-Key analog filters[END_REF].

Abstract

This papers stems from the fact that, whereas there are passive models of transistors and tubes, a minimal passive model of the operational amplifier does not seem to exist. A new behavioural model is presented that is memoryless, fully described by its interaction ports, with a minimal number of equations, for which a passive power balance can be defined. The proposed model handles saturation, asymmetric power supply, and can be used with non-ideal voltage references. To illustrate the model in audio applications, the non-inverting voltage amplifier and a saturating Sallen-Key lowpass filter are considered.

Introduction

Operational Amplifier (OPA) models can be roughly categorized into a) Controlled Source (CS) models, b) white box macro models and c) Nullor models .

In CS models (see [START_REF] Chua | Linear and nonlinear circuits[END_REF]), the power supplies are lumped within the OPA and controlled sources can provide an infinite amount of power. It has the advantage of being simple and hides most of the internal complexity. This is the method of choice used by students to study the functional behaviour of OPA circuits. The main drawback comes from the absence of external supply ports. This results in non passive models, and forbids simulations with non-ideal voltage sources (e.g. in low-budget guitar stomboxes).

White box macro models (see references [BPCS74] [CB01] [AB90]

) use dozens of transistors to accurately reproduce the inner structure and non-ideal characteristics of particular devices. While this is appropriate for offline simulation and circuit design, the main drawback of this approach comes from the high number of (implicit) nonlinear equations which makes it often unsuitable for real-time simulation.

Nullors (see references [START_REF] Carlin | Singular network elements[END_REF] [Tel66] [OU80] [Mar65]), are singular two-port elements where the input flow and effort variables are both zero: e 1 = f 1 = 0, while the output flow and effort variables e 2 , f 2 are unconstrained. One drawback is the lack of flow / effort duality. In addition, similar to CS, Nullors have no explicit power supply ports and thus are not passive devices, inheriting the same drawbacks mentioned above.

For audio applications, dedicated Wave Digital Filters (WDF) models of the OPA for specific circuit topologies have been proposed in [START_REF] Paiva | Emulation of operational amplifiers and diodes in audio distortion circuits[END_REF], more recently, using Modified Nodal Analysis to WDF adaptors, both Nullor and CS general purpose models of the OPA and OTA have been proposed in [WDR + 16] [BW17] and Sallen-key filters have been modelled with WDF in [START_REF] Verasani | Modeling Sallen-Key audio filters in the wave digital domain[END_REF].

We propose a passive, quasi-ideal, black-box, behavioural model of the OPA, simple enough for realtime simulation, with explicit power supply and modelling nonlinear saturation. In particular, a by-product of this research is to have a model compatible with the port-Hamiltonian formalism [START_REF] Van Der Schaft | Port-Hamiltonian systems: an introductory survey[END_REF].

The paper is structured as follows. First a general purpose passive model of the OPA is proposed in subsection 7.1.2, then it is illustrated by treating the non-inverting voltage amplifier circuit in subsection 7.1.3, finally a detailed study and simulation of a saturating Sallen-Key lowpass filter is presented in subsection 7.1.4.

Operational Amplifier Model

The objective of this paper is to find the simplest class of Operational Amplifier models satisfying the following requirements: - 

+ i + e + i - e - i out e out

Notations

The OPA shown on figure 7.3 is modelled as a 5-port device with node voltages being measured relatively to the ground, node currents directed toward the element using the receiver convention and pins labelled P = {+, -, S+, S-, out}. In this paper, we assume that the ports of the OPA can be partitioned into a voltage-driven set T , and a current-controlled co-set T T := {+, -, S+, S-} , T := {out} , T ∪ T = P.

The respective inputs and outputs are collected into the vectors u := [e T , i T ] T = [e + , e -, e S+ , e S-, i out ] T , (7.2a)

y := [i T , e T ] T = [i + , i -, i S+ , i S-, e out ] T , (7.2b) 
Finally, the common supply, the differential supply and the differential input voltages are respectively defined by

V cm = e S+ + e S- 2 , V dm = e S+ -e S- 2 , = e + -e -. (7.3) 

Constitutive equations

Since there are 5 ports with dual flow and efforts variables, 5 independent equations are required to specify the device: 1-2) Non-energetic input ports: the current entering the pins {+, -} is zero (infinite input impedance)

i + = i -= 0, (7.4) 
3) Conservation of charge: Kirchoff Current Law applied over the gaussian surface 6 S enclosing the AOP implies that the sum of all currents is zero

∈P i = 0, (7.5) 
4) Passivity: the power absorbed by the OPA is greater or equal to zero 

P diss = y T u = ∈P e • i ≥ 0, (7.6 
                   ∂ f ∂ ≥ 0, monotonicity max ∂ f ∂ = K, differential gain max(f ) = e S+ , → +∞ positive saturation min(f ) = e S-, → -∞ negative saturation . (7.7) 
This gives 4 equalities and 1 inequality i + = 0 (7.8a)

i -= 0 (7.8b)

i S+ + i S-+ i out = 0 (7.8c)

P diss = i S+ • e S+ + i S-• e S-+ i out • e out ≥ 0 (7.8d) 
f (e S+ , e S-, e + , e -) -e out = 0 (7.8e)

Since there is an inequality and the relation f is not specified yet, there is an infinite class of models satisfying these equations. A particular instance is chosen as follows.

Toward a unique model Substituting (7.3) into the passivity equation (7.8d), using the conservation of charge (7.8c) and simplifying by i out gives the constraint 7

V cm + V dm i S+ -i S- i S+ + i S- = e out - P diss i out , (i out = 0) (7.9)
which imposes a lot of structure on the form of the output function. In order to specify a unique model, the following choices are made. Push-Pull current splitting First, motivated by the typical structure of an OPA, composed of a differential pair of transistors, gain stages and a push-pull output (see [START_REF] Sedra | Microelectronic circuits[END_REF] p.707), the adimensioned modulation factor 8 ρ(

) := - i S+ i out = exp (x) exp (x) + exp (-x) , x = K V dm , (7.10) 
is introduced and shown on figure 7.4. According to the conservation of charge (7.8c), this leads to the symmetrical current splitting

i S+ = -ρ( )i out , i S-= -ρ(-)i out . (7.11) 
The conservative OPA choice Second, among all passive OPA models, the conservative ones are chosen, neglecting internal dissipation:

P diss = 0. (7.
12)

The power supply ports provide the amount of power necessary to balance the power consumed at the output port. This is an instance of a nonlinear nonenergic n-port [WC77].

Final model Substituting (7.11) and (7.12) into (7.9) uniquely defines the output function (a similar result was also derived in [START_REF] Macák | Real-time digital simulation of guitar amplifiers as audio effects[END_REF]) Finally gathering equations (7.4) (7.11) (7.14) in matrix form reveals the modulated hybrid Dirac structure 9 of the conservative OPA model given by the skew-symmetric matrix J(u):

e out = V cm + V dm tanh K V dm . ( 7 
8. This choices is reminiscent of a BJT push-pull. Different choices for the function ρ can be made to adapt to other transistors types, for examples MOSFETs as long as it defines a complimentary splitting function compatible with charge conservation (7.8c) (i.e. ρ( ) + ρ(-) = 1) and saturation constraints (7.7). 

         i + i - i S+ i S- e out           y =           . . . . 0 . . . . 0 . . . . -ρ(+ ) . . . . -ρ(-) 0 0 ρ( ) ρ(-) .           J(u)           e + e - e S+ e S- i out           u . (7.15)
The singularity of the structure matrix J encodes the conservation of the so-called Casimir invariants i + = i -= 0, in addition to the conservative power-balance

P diss = u T y = u T J(u)u = 0, (because J = -J T ). (7.16)

Case study

To study the behaviour of the proposed model in practical applications, the case of the voltage amplifier is examined. Then as a pedagogical example, the voltage amplifier is driven by a sinusoidal voltage source and asymmetrically powered by a single capacitor to simulate a discharging battery. The voltage amplifier will be used as a building block of the Sallen-Key lowpass filter shown in subsection 7.1.4. A non-inverting voltage amplifier (figure 7.5) is achieved by feeding back the output e out to the negative input e -through a voltage divider

The non-inverting voltage amplifier

= e + - e out G , G = R 1 + R 2 R 1 = 1 + R 2 R 1 . (7.17)
The instantaneous feedback makes the circuit act as a proportional corrector with high proportional gain K in order to satisfy the constraint e out ≈ Ge + within the range e out ∈ [e S+ , e S-].

The voltage divider induces an internal current i R = e out /R, where R = R 1 + R 2 , and the current splitting (7.11) becomes

i S+ = -ρ( )(i out -i R ), i S-= -ρ(-)(i out -i R ). (7.18)
This results in the following law for the voltage amplifier

       i + i S+ i S- e out        =        . . . . . g + ( ) g ± ( ) -ρ( ) . g ± ( ) g -( ) -ρ(-) . ρ( ) ρ(-) .               e + e S+ e S- i out        . (7.19)
with conductances

g + ( ) = ρ( ) 2 R , g -( ) = ρ(-) 2 R , g ± ( ) = ρ( )ρ(-) R . (7.20) 
In the following, it is assumed that R → ∞ such that internal losses are negligible. In particular, this is the case of the classical voltage follower circuit for which R 2 = 0, and R 1 = ∞.

Implicit constraint

The relation (7.19) is still implicitly defined since depends on both input and output variables e + and e out . To avoid apparent difficulties with discontinuous functions, consider the curve

F = (u, y) ∈ R 2 | F (u, y) = 0 , (7.21) 
specified by the function

F (u, y) = V cm + V dm tanh K V dm u - y G -y, (7.22) 
and given e + , look for e out such that (e + , e out ) ∈ F.

Since the output function is monotonous with respect to and bounded in [e S-, e S+ ], a unique solution exists within that range. A global method such as the bisection method is guaranteed to find it, whereas, since K is typically about 10 6 , it is very difficult to use either fixed-point or derivative-based methods because of bad numerical conditioning. Numerical simulations are shown on figure 7.6. One can see on figure 7.6 that convergence to F ∞ is very fast even for moderate values of K. This justifies the use of this limit process in following developments.

For (e + , e out ) ∈ F ∞ this gives the explicit form

e out = V cm + V dm sat Ge + -V cm V dm ,
where sat(x) = min(max(x, -1), 1). (7.24)

Alternatively one can represent this function as

e out = µ + (e + , V cm , V dm ) • e S+ + µ -(e + , V cm , V dm ) • e S- (7.25) 
where the implicit modulation factor ρ(± ) in (7. 19) has been replaced by the explicit one

µ ± (e + , V cm , V dm ) = 1 ± sat(x) 2 , x = Ge + -V cm V dm . ( 7 

.26)

A single-rail voltage follower powered by a capacitor u To illustrate one of the practical interest of having explicit power supply ports, the voltage amplifier is used with the negative supply port grounded, and the positive supply port powered by a capacitor to simulate a discharging battery (figure 7.7). Using (7.15) with V cm = V dm = q/(2C), and i out = -y/R, yields the algebro-differential equations

1 kΩ i R v C 50 µF i C 1 y
     q = -η(u, q) y R , y = η(u, q) q C , η(u, q) = µ + u, q 2C , q 2C . (7.27) 
The energy stored in the capacitor is H(q) = q 2 /2C. Then its differential equation is governed by the monotonous discharge

d dt H(q) = ∂ H ∂q dq dt = - q C η(q, u) y R = - y 2 R . (7.28) 
The circuit acts as a half-wave rectifier with a positive clipping threshold governed by the discharge of the capacitor as shown on figure 7.8. 

Comparison between models

Sallen-Key analog lowpass filter

The class of Sallen-Key Filters (SKF), introduced in [SK55], is perhaps one of the most common analog filter design topology. It is used for the realization of analog biquadratic filters, for example in parametric equalisers. It is also the basis of the multimode Steiner filter [START_REF] Steiner | Voltage-tunable active filter features, low, high and bandpass modes[END_REF], the Korg MS-20 [START_REF] Stinchcombe | A study of the Korg MS10 & MS20 filters[END_REF] and the Buchla Lowpass-Gate [START_REF] Parker | A digital model of the Buchla lowpass-gate[END_REF].

A Sallen-Key lowpass filter schematic is shown on figure 7.11a. The linear regime and its control parameters are studied in 7.1.4, the circuit is then converted into equations in 7.1.4. Discretization is performed using the Average Vector Field method in 7.1.4, finally simulation results are shown in 7.1.4. It is recalled that the Laplace transfer function (shown on figure 7.10) of a second order resonant lowpass filters with pulsation ω and quality factor Q is

Linear behaviour and control parameters

H LP (s) = 1 1 + 1 Q s ω + s ω 2 , (7.29) 
In the linear regime, the Laplace transfer function of the lowpass Sallen-Key filter is

H SK (s) = L y SK v IN = 1 1 + a 1 s + a 2 s 2 , (7.30) 
where

a 1 = (1 -G)R 1 C 1 + (R 1 + R 2 )C 2 , (7.31a 
)

a 2 = C 1 C 2 R 1 R 2 . (7.31b)
Since there are only two target controls (ω, Q), for 5 design parameters (R 1 , R 2 , C 1 , C 2 , G), there are many possible design decisions that are often decided according to electronic constraints. In this paper, the Steiner filter parametrization is used with R 1 = R 2 = R, and C 1 = C 2 = C because of its simplicity. The transfer function (7.30) simplifies to

H SK (s) = 1 1 + (3 -G) s ω + s ω 2 , (7.32) 
with ω = 1/(RC), and Q = 1/(3 -G). In simulations, capacitances are both set to C = 4.7nF and the resistors are adjusted to achieve the target cutoff frequencies. 
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Modelling

To model the Sallen-Key filter, the following systematic approach is used: (See also chapters 1 and 2)

• Bondgraph: The circuit on figure 7.11a is first converted to an equivalent bondgraph 7.11b using the rules in [START_REF]A systematic method to derive bond graph models[END_REF]. A bond between two ports A B stands for a pair of dual port-variables (e, f ). The half-arrow indicates the power sign convention P = ef ≥ 0. 0 denotes a parallel junction where all bonds share the same voltage, and 1 denotes a serial junction where all bonds share the same current.

• Causality assignment: to convert an acausal bidirectional bondgraph to a causal, computable, block-diagram, one needs to partition the flows and efforts into inputs and outputs. The convention uses a vertical stroke A B next to ports that are effort-controlled. Computational causalities can be assigned graphically by propagating the following rules: voltage sources and capacitors have an effort-out causality, 0 junctions can only have one input effort, while the dual 1 junctions can only have one output effort.

• Dirac Structure: given the causality assignment, shown on 7.11b, into inputs and outputs, it is now straightforward to fill the Dirac Structure matrix 7.11c by inspecting circuit 7.11a and expressing Kirchoff's current and voltage laws.

• Reduced model: one can reduce the model by solving trivial equalities like e + = v C 2 , e S+ = V + , e S-= V -, treating V ± as constants and replacing the linear resistive currents

(i R 1 , i R 2 )
by their constitutive laws. This results in the reduced admittance model shown on figure 7.11d.

Nonlinear feedback To separate the linear and nonlinear feedback, one can write

êout (v) = Gv -∇N (v) (7.33)
where the nonlinear law is ∇N (v) := Gv -êout (v) = min(0, Gv -e S-) + max(0, Gv -e S+ ). (7.34) and its algebraic potential (figure 7.12) is given by the line integral 

N (v) := ˆv 0 ∇N (s) • ds = min(0, Gv -e S-) 2 2G + max(0, Gv -e S+ ) 2 2G . ( 7 
Gv 2 /2 N(v) Gv 2 /2 N(v)

State-space model

Finally replacing the flow and effort variables by their constitutive laws, and only considering the input-state-output, one gets

ẋ = ω Ax + Bu -F∇N (Cx) y = Cx , (7.36) 
where

u = v IN , y = y SK , x = [v C 1 , v C 2 ] T , ω = 1/(RC) and A =   -2 1 -2G 1 -1 + G   , B =   1 0   , C = 0 1 , F =   -2 1   . (7.37)
Using the co-energy variables v C 1 , v C 2 instead of the energy variables q C 1 , q C 2 is justified here by the fact that the capacitors are linear and time-invariant, i.e. the co-energy H * (v) = Cv 2 /2 equals the energy H(q) = q 2 /(2C) for the linear law v = q/C.

Discretization using the AVF method

The Average Vector Field (AVF) method is used to discretize (7.36) because of its structurepreserving properties: it preserves the energy (resp. dissipativity) of conservative (resp. dissipative) systems (see [CGM + 12]). One can also refer to [START_REF]Lyapunov stability analysis of the Moog ladder filter and dissipativity aspects in numerical solutions[END_REF] where it has been shown that the bilinear transform doesn't always guarantee the dissipativity of nonlinear filters (whether time-varying or not). Furthemore, the interrest of generalizing the Average Discrete Gradient to algebraic potentials has been shown in [START_REF]Power-balanced modelling of circuits as skew gradient systems[END_REF]. As an important side-effect, the AVF method can also be interpreted as a first-order instance of anti-derivative antialiasing [START_REF] Bilbao | Antiderivative antialiasing for memoryless nonlinearities[END_REF].

The Average Vector Field method Let Ω = [t 0 , t 0 + h] be a time-step, x ∈ P 1 (Ω → R n ) a locally affine trajectory parametrized by the normalized variable τ ∈ [0, 1]

x(t 0 + hτ ) = x 0 + τ (x 1 -x 0 ). (7.38)
Introduce the averaging projector A, defined for all functions f : R n → R n or operators f : H → H, where H is a functional space from Ω → R n , by

(A f )(x) := ˆ1 0 f (x(t 0 + hτ )) dτ. (7.39)
For the time derivative and identity operators, one gets first order finite difference and average

ẋ := A d dt x = x 1 -x 0 h , x := (AI)x = x 0 + x 1 2 . (7.40) 
For ∇N , using the gradient theorem, this gives the average discrete gradient

∇N (v 0 , v 1 ) := (A∇N )(v 0 + τ (v 1 -v 0 )) =      N (v 1 ) -N (v 0 ) v 1 -v 0 v 0 = v 1 ∇N (v 0 ) v 0 = v 1 . ( 7 

.41)

Computing its derivative with respect to v 1 leads to the discrete pseudo-Hessian

∂ ∇N ∂v 1 (v 0 , v 1 ) =        ∇N (v 1 ) -∇N (v 0 , v 1 ) v 1 -v 0 v 0 = v 1 1 2 ∇ 2 N (v 0 ) v 0 = v 1 . (7.42)
One can refer to [START_REF]Power-balanced modelling of circuits as skew gradient systems[END_REF], where the discrete gradient's derivative is also used for numerical simulation. Note that the average discrete gradient of the nonlinearity ∇N is continuously derivable for v 0 = v 1 , while ∇N is not.

Averaged state space system Applying the averaging projector A to (7.36), leads to the structure-preserving discrete algebraic system

   ẋ = ω A x + B ū -F ∇N (Cx 0 , Cx 1 ) ȳ = C x . ( 7 

.43)

Solving the linear part for x 1 gives the discrete state-space update

x 1 = A d x 0 + B d ū -F d ∇N (Cx 0 , Cx 1 ), (7.44) 
with the normalised pulsation ω d = hω and

A d = D -1 I + ω d 2 A , B d = D -1 (ω d B), D = I - ω d 2 A , F d = D -1 (ω d F). (7.45)

Simulation

Simulation results 10 are shown on figures 7.13 and 7.14 and exhibit a very close match with offline simulations performed in LTspice. To solve (7.44), one can either use the simple fixed-point iteration, or Newton's method.

Fixed-point iteration A simple numerical scheme is to look for the fixed-point x 1 = φ(x 1 ) of the pre-conditioned fixed-point function

φ(x 1 ) := A d x 0 + B d ū -F d ∇N (Cx 0 , Cx 1 ), (7.46) 
with the fixed-point iteration

x k+1 1 = φ x k 1 , x 0 1 = x 0 . ( 7 

.47)

A sufficient convergence condition is detailed in appendix D.9.2.

In practice, thanks to the non linear feedback splitting in (7.33), when the OPA is in the linear regime, ∇N = 0. Then the iteration reduces to an explicit one-step trapezoidal integrator and converges in only one iteration.

Newton iteration

To accelerate convergence, one can use Newton's method [START_REF]Newton methods for nonlinear problems: affine invariance and adaptive algorithms[END_REF] as follows: define the auxiliary function

ϕ(x 1 ) = x 1 -φ(x 1 ), (7.48) 
and look for the root x * 1 such that ϕ(x 1 ) = 0 with the Newton iteration

x k+1 1 = x k 1 -ϕ (x k 1 ) -1 ϕ(x k 1 ), x 0 1 = x 0 . (7.49) 
where the Jacobian of ϕ is given by 

ϕ (x 1 ) = I + F d C ∂ ∇N ∂v 1 (Cx 0 , Cx 1 ). ( 7 

Conclusions and perspectives

In this paper, a static, passive, black-box model of the operational amplifier with explicit power supply has been examined. It is suitable for the modelling of audio circuits and simple enough for real-time simulation. Furthermore the explicit modelling of external power supply ports allows the use of non-ideal voltage sources.

The choice has been made to ignore internal dissipation to keep the model minimal. However, non-ideal characteristics such as input and output impedance or power supply voltage drop can be achieved by modular composition of the model with other circuit elements. This will be the topic of further research.

The non inverting amplifier is also derived as a dedicated building block. Numerical simulations justify the use of an infinite OPA gain to get an explicit formulation. Having a pre-solved amplifier model also greatly simplifies its use in electronic circuits, avoiding numerical stiffness and high index DAE.

Finally, the amplifier is used for audio simulations to model a saturating Sallen-Key lowpass filter of second order. A reduced state-space model is derived from the circuit schematic, and a struc-ture-preserving discretization is performed using the average vector field method. A comparison with LTspice shows that our results are very close to those of more complex macro models.

The perspectives of this study are a) modelling other non-ideal OPA characteristics such as finite slew-rate and bandwidth, current and voltage offsets, non-zero common-mode input gain. . . b) studying the behaviour of the model in other typical circuits (oscillator, rectifier, comparator) and c) experimental comparison with specific devices such as the common µA741, or TL072 audio OPAs which are not rail-to-rail opamps.

A passive fully differential amplifier model with infinite gain

This section deals with the pH modelling of fully-differential operational amplifiers having symmetric power supply, infinite gain, and differential input and output. This component is common in textbooks, but usually, the power supply port is not represented (and passivity not addressed). Moreover, the linear or saturation behaviours are usually modelled separately, on a case-by-case basis. The model proposed below solves this problem. To this end, the model of section 7.1 is extended to the case of a differential output and simplified to the degenerated case of an infinite differential gain (and symmetric power-supply).

This limit case yields a multi-valued relation (see subsection 7.2.1 and appendix A p.271) that requires special care for numerical simulation. In this thesis, we do not consider solvers based on non-smooth dynamics and differential inclusions (see [START_REF] Acary | Numerical methods for nonsmooth dynamical systems: applications in mechanics and electronics[END_REF]). Instead, in subsection 7.2.2, we propose an alternative strategy based on implicit continuous parametrisation of the idealised amplifier relation (see definition 1.21 p.28). This follows the approach that we proposed in [START_REF]Fully-implicit algebro-differential parametrization of circuits[END_REF] and exploits the fact that the nonlinear law is in fact geometrically C 0 -continuous. In this section, compared to section 7.1, we assume the following additional hypothesis:

Ideal Fully Differential Amplifier (FDA) model

- + - + i I v I i O v O i S v S
• the supply voltages are symmetric

v S+ = -v S-= v S ,
• the output port is no longer referenced to the ground,

• we consider the limit case of the amplification gain K → ∞, Moreover, using the common-differential variable change introduced in section 2.5 p.73, because of symmetries (e.g. e Σ S = e + S + e - S = 0 on fig. 7.3 p.176), the common-mode input and common-mode power supply have no influence on the model behaviour. We can reduce the FDA to a 3-port. We label ports {I, S, O} for Input, Supply, Output, satisfying the set relations (see appx A p.271)

i I ∈ {0} (infinite input impedance) (7.51a) v O ∈ v S sign(v I )
(saturating fully differential amplifier) (7.51b)

v I i I + v S i S + v O i O ∈ {0}
(conservative power balance) (7.51c) Rewriting (7.51a)-(7.51c) yields i S ∈ -sign(v I )i O , which we summarize by the vector relation

     i I v O i S      ∈      . . . . . sign(v I ) . -sign(v I ) .           v I i O v S     
, where sign(x) :=

       {-1} x ∈ (-∞, 0), (-1, 1) x ∈ {0} , {1}
x ∈ (0, +∞).

(7.52)

When solving circuits with (7.52), we may distinguish two situations:

• Either v I = 0, the amplifier is in saturation mode (black curve in figure 7.17). Then v O is single-valued and equal to either v S or -v S . This corresponds to the situation where the amplifier is used as a comparator to implement flip-flops, Schmidt triggers, etc.

• Or v I = 0, the amplifier is in the vertical branch of the sign relation (red curve). This corresponds to infinite amplification. We call it the singular nullor mode (see [START_REF] Carlin | Singular network elements[END_REF][START_REF] Martinelli | On the nullor[END_REF][START_REF]On nullators and norators[END_REF][START_REF] Odess | Nullor equivalent networks of nonideal operational amplifiers and voltage-controlled sources[END_REF]). This situation is very common. It is used to implement voltage buffers, virtual grounds, active filters, etc. Although v O (and i S ) appear as multi-valued functions of v I , in practice, a unique operating point is imposed by the external circuit.

The next sub section proposes a single-valued parametric representation to overcome the apparent difficulty of dealing with this multi-valued property. 

implicit C 0 -continuous map λ → (i I , i O , i S , v I , v O , v S ) parametrised by λ = (λ 1 , λ 2 , λ 3 ).

Continuous parametrisation

The (non-energetic 11 ) relation (7.52) between (v I , i O , v S ) ∈ R 3 and (i I , v O , i S ) ∈ R 3 is multivalued and may seem difficult to simulate. But this equation hides that the FDA admits a continuous geometrical description . The underlying continuous 3D manifold in this R 3 × R 3 -space can be described by the following parametric description (recall def. 1.21 p.28).

Introduce parameters λ = (λ 1 , λ 2 , λ 3 ) ∈ Λ = R 3 to relate the currents i = (i

I , i O , i S ) ∈ R 3 and voltages v = (v I , v O , v S ) ∈ R 3 of the FDA according to the single-valued relation R F DA =            (i, v) ∈ R 3 × R 3 |      i I i O i S      = λ 2      0 1 -µ(λ 1 )      ,      v I v O v S      = λ 3      µ * (λ 1 ) µ(λ 1 ) 1      , ∀λ ∈ Λ            . (7.53)
where the complementary modulation functions 12 µ, µ * are defined by

µ(x) :=        -1 x ≤ -1 x x ∈ (-1, 1) 1 x ≥ 1 , µ * (x) := x -µ(x) =        x + 1 x ≤ -1 0 x ∈ (-1, 1) x -1 x ≥ 1 , (7.54) 
and for which equations (7.51a)-(7.51c) are satisfied: this is obvious for (7.51a), straightforward for (7.51b) (compare also the (v I , v O )-planes of figures 7.17 and 7.18), and the (non-energetic) power balance (7.51c) is pointwise satisfied since

v I • i I + v O • i O + v S • i S = µ * (λ 1 )λ 3 • 0 + λ 2 λ 3 µ(λ 1 ) -µ(λ 1 )λ 2 λ 3 = 0.
Description (7.53) (see fig. 7.20) shows that λ 2 and λ 3 are respectively controlled by i O and v S (i O = λ 2 and v S = λ 3 ). Because of the dual complementary functions µ, µ * (see figure 7.19), parameter λ 1 is alternatively controlled by v I in saturation mode and v O in Nullor mode (but it still corresponds to a single one-dimensional constraint). This description can be reformulated as the single-valued relation (to be compared to the multi-valued one (7.52))

     i I v O i S      =      . . . . . µ(λ 1 ) . -µ(λ 1 ) .           v I = µ * (λ 1 )λ 3 i O = λ 2 v S = λ 3      . (7.55)
An important property of (7.55) is that, contrary to (7.52), it is now explicit that for all λ 1 (for both linear and saturation modes) there exists a unique pair (v O , i S ) and not a multi-valued set Discussion: Nullors and computational causality To simplify circuit design and analysis, a common practice in electronic engineering is to use OPA in nullor mode, that is, to impose the double constraint i I = 0, v I = 0 (while i O and v O are unconstrained). But, as mentioned by Breedveld [Bre85, V.4], it is physically impossible to impose or control both effort and flow of one port. So, is the nullor mode paradoxical? How shall we interpret its double contraint i I = 0, v I = 0? To reconcile both viewpoints, thanks to (7.53), one can remark that the current constraint i I = 0 is inherent to the device (it must be considered as an output of the FDA since it cannot be controlled whatever the mode). Conversely, v I is an input of the device determining its modes (through λ 1 ). The case v I = 0 is a consequence of the circuit operating point. It holds only if v O can be maintained in (-v S , v S ) out of the saturation mode. Indeed, as soon as v O saturates, v I is no longer zero. In practice, the Nullor mode region can be extended at will by increasing the supply voltage v S . A clear analysis of causality arises by reformulating the FDA according to input-output common-differential ports introduced in subsection 7.2.3 p.194. 

Explicit formulation using common and differential ports

The understanding of causality is greatly simplified by switching to the unconventional 13 common and differential ports {Σ, ∆} built from input and output ports {I, O}. Indeed we show that parameter λ 1 can be explicitly controlled from the sum of input and output voltages 14 (see fig. 7.21). Using theorem 2.5 (p.73), we perform the power-preserving port variables change {I, O} → {Σ, ∆} between input and output variables. We introduce the quantities

v Σ := v O + v I , i Σ := 1 2 (i O + i I ) , (7.56a 
)

v ∆ := v O -v I i ∆ := 1 2 (i O -i I ) . (7.56b)
to form the alternative R 3 × R 3 system of coordinates given by currents ĩ = (i Σ , i ∆ , i S ) ∈ R 3 , and voltages ṽ = (v Σ , v ∆ , v S ) ∈ R 3 . Substituting (7.56a) (7.56b) into equation (7.53) yields

v Σ = λ 1 v S , v ∆ = (2µ(λ 1 ) -λ 1 )v S , i Σ = i O /2, i ∆ = i O /2.
This shows that we can control parameter λ 1 (in (7.53)) from the (input-output) common mode voltage v Σ and the power supply voltage v S , while the map i ∆ → i Σ is just the identity. We consider the differential mode v ∆ as an output and the common mode v Σ as an input (see fig. 7.21). By consequence the relation in eq. ( 7.53) can be written as the explicit skew-symmetric map

R F DA =            ( ĩ, ṽ) ∈ R 3 × R 3      i S i Σ v ∆      =      . . -2µ(λ 1 ) . . 1 2µ(λ 1 ) -1 .           v S v Σ i ∆      , λ 1 = v Σ v S            . (7.57) 
We see on figure 7.22b that increasing the power supply voltage v S increases the nullor region

(v Σ = v ∆ ⇐⇒ v I = 0), whereas in saturation (|v Σ | > |v S |) the output v ∆ is reflected about ±v S .
3 2 1 0 1 2 3 v 13. Common and differential modes in electronics are usually associated with positive and negative symmetries such as power supply or input ports in traditional OPA. Here we consider input-ouput variable changes.

14. Co-incidently, in the final stage of redaction, we found that "across-ports" wave-variable changes have just been proposed in [START_REF] Bernardini | Vector wave digital filters and their application to circuits with two-port elements[END_REF], precisely to handle operational amplifiers in WDF.

Towards a grey-box passive model of the OPA

In previous sections, we have considered nonlinear but idealised black-box OPA model with conservative memoryless saturating behaviour. To increase realism, additional non-ideal behaviours should be accounted for, such as those quantified in datasheets: finite gain-bandwidth product, slew-rate, internal dissipation, finite input impedance, non-zero output resistance, etc. As an alternative to a full physical modelling (of a dozen of transistors), this section opens a way towards a grey-box oriented pH modelling with an affordable simulation cost.

Some phenomena (such as input and output impedance, power-supply voltage drop, etc) can be modelled by composing the ideal OPA models with resistors, diode and capacitors (see [BPCS74, WDR + 16]). However bandwidth, slew-rate and internal dissipation, require a finer level of description. A possible approach (common in the literature [SS98, CDK87]), is to use a 3-stage model (see figure 7.23): first a differential amplifier behaving like a (saturating) voltage-controlled current source; second a dynamic stage responsible for bandwidth (in linear mode) and slew rate (in saturation); and third a unity gain push-pull output distributing power from the supply port to the output load. A main difference with common modelling approaches in [START_REF] Chua | Computer-aided analysis of electronic circuits[END_REF]p.111] or [START_REF] Boyle | Macromodeling of integrated circuit operational amplifiers[END_REF] is that our proposition does not make use of voltage or current controlled sources to model sub-components but explicitly models power-supply ports and passivity. Due to time constraint, our full modelling is not complete. We propose to use OPA building blocks as shown in figure 7.24 and an explicit model of a BJT push-pull for large-signals is detailed in appendix D.9.3 p.302. Minimal pH models of these blocks will be completed in future work. 
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Conclusion

In this chapter, we have proposed a minimal memoryless non-energetic model of the operational amplifier compatible with the the pH formalism. Surprisingly, despite the amount of (more advanced) publications on the subject and the abundant usage of OPA in electronics, we have not found in the literature such a nonlinear model, that is both energy-balanced and simple enough for standard use in most circuits. In order to stay within the PHS modelling framework, we had to propose a new model. Explicit modelling of power supply ports and saturation is a key ingredient to derive passive models and allows the modelling of non-ideal power-supply circuits (possibly modulated by the current of the output load).

As a further simplification and an alternative to pure nullors, we propose a 3-port fully differential amplifier with infinite gain. It includes (i) both nullor and saturation modes as special cases of a general relation (ii) a non-energetic memoryless modelling with an explicit port to model the power supply. To avoid the use of multi-valued relations, we propose a 3-dimensional implicit parametrisation of the component relation. This parametrisation is directly compatible with the simulation framework proposed in this thesis (chapter 5 p. 117), and in particular the fully implicit approach that we proposed in [START_REF]Fully-implicit algebro-differential parametrization of circuits[END_REF]. Other applications and simulations can be found in chapter 8.

Finally, the outline of a 3-stages grey-box pH model including slew-rate, finite gain-bandwidth and dissipation is sketched in section 7.3. The first steps to achieve this work have been developed: a common structure, candidate circuits for building blocks and an exact explicit input-output relation for a simplified BJT push-pull for large signals (see the technical details in appendix D.9.3 p.302). This preliminary result shows that an exact white-box modelling, although achievable, can quickly become overwhelmingly complex and does not scale with a high number of algebraic components. Due to time constraints, the derivation of simple and efficient pH realisations of the passive OPA building blocks from figure 7.23 (keeping the minimalist approach of [START_REF]A minimal passive model of the operational amplifier: Application to Sallen-Key analog filters[END_REF]) is left for future research. Finally applications and simulation of circuits containing OPA are detailed in the next chapter.

Chapter 8

Circuits case studies In this chapter, we consider a number of electronic audio circuits, chosen as representatives of the common situations and difficulties encountered when trying to simulate virtual analog audio circuits. All circuits are analysed and modelled systematically as pHS using the tools from chapters 1 and 2 (using both pH-DAE et pH-ODE formulations). We repeat the same process for each example in order to exhibit the common modelling steps as well as the different modelling and simulation strategies. The nonlinear systems are then discretised using the power-balanced projection methods from chapter 5 p.117 and solved using Newton iteration.

In section 8.1, we address the simulation of stiff pH-DAE with a variant of the classical FuzzFace circuit, a canonical design for fuzz guitar sounds.

In section 8.2, we merge the diode clipper circuit (already studied in chapters 2 and 5) with the tone-stack of the BigMuff Pi guitar pedal to produce a nonlinear tonestack (pH-ODE).

In section 8.3, we simulate the drive stage of the Tube Screamer guitar pedal. This is the occasion to consider a typical pattern used by electronic designers, namely overdrive amplifiers which saturates the feedback path of amplifiers. This is also the occasion to revisit the op amp model from chapter 7 in a different context.

In section 8.4, we consider a building block of analog synthesizers: we revisit the Sallen-Key filter topology from chapter 7, in this variant, the circuit uses 3 operational amplifiers to buffer stages and a nonlinear overdrive saturation in the feedback path (similar to the one of the TubeScreamer). These slight modifications can yield drastic changes to the sound and salient features of the filter such as self-oscillations and inter-modulations.

In section 8.5, we consider the FitzHugh-Nagumo relaxation oscillator which exhibit a limit cycle. With this circuit, we look more closely at the tunnel diode. This is an example of passive component with a non-monotonous characteristic. The locally negative incremental resistance is the key ingredient used to favour the emergence of a limit cycle with both stable and non-stable equilibrium points. This is also the occasion to look at a system combining a slow dynamic (determining the period of oscillations) and fast relaxations when switching between stable states.

Finally in section 8.6, we consider a classical passive peaking equalizer whose resonance frequency is much higher than the sampling rate. Such a situation is traditionally solved through oversampling. By contrast, this use case is an opportunity to study the spectral properties of high-order projection methods from chapter 5 p.117. In particular, we look at their extended bandwidth using generalised sampling theory and compare with the oversampling approach.

Remark 8.1. All examples a in this chapter follow the same systematic derivation process schematic → netlist → semiexplicit hybrid dirac structure → reduced dissipative structure. This process is detailed in figure 2.1 p.44. In step 3, to emphasize the sparse block-structure of J matrices, port-Hamiltonian systems are standardized under the following semi-explicit tree / cotree form (see (2.18) p.55)

  i T v L   =   0 -C L C L T 0     V T (i T ) I L (v T )   ≡ J =    v T i T i T 0 -C L v L C T L 0   ,
where algebro-differential operators V T , I L respectively stand for component laws of current-controlled tree branches and voltage-controlled cotree branches (links) and C L is the link cutset matrix obtained from circuit incidence matrices according to eq. (2.15) p.55. As a further simplification, in step 4, linear resistive branches are pre-solved to canonically obtain the following resistive tree/cotree formulation

  i T v L   =   G T -α T α R L     V T (i T ) I L (v T )   ≡ M =   v T i T i T G T -α T v L α R L   ,
where G T is the tree conductance matrix, R L is the link resistance matrix and α is a tree/cotree matrix transformer ratio (see subsection 2.3.4 p.60). These two forms can be directly simulated thanks to our passivity-preserving projection theorem 5.1 p.119. Finally, adhoc reduction to ODE or DAE subsets is performed where appropriate. For simplicity of exposition, power-balanced simulations are obtained using discretisation by projection with RPM(1,0) b (see definitions 5.1 p.122 for pH-ODE and 5.2 p.123 for pH-DAE).

a. Except in the MS-20 example: due to the high number of branches (34), we use nodal analysis to jump straight to the most reduced formulation.

b. Projection order p = 1, regularity order k = 0 (equivalent to the average vector field method).

Remark 8.2 (Practical existence / uniqueness conditions and Newton convergence). Existence / uniqueness conditions have been studied in 5.2.3 p.127 for pH-ODE and (partially) in 5.3.2 p.135 for pH-DAE. However sharp practical conditions are still missing. Indeed, while practical convergence is always observed in presented simulations, theoretical convergence bounds are either missing, or too restrictive, in particular for stiff systems. For this reason, convergence conditions will not be detailed in upcoming examples. This important but difficult topic is left for future research. The Fuzz Face is an effect pedal for electric guitar designed to produce a distorted fuzz sound (reminiscent of the buzzing sound of damaged speakers1 ). It was conceived in 1966 by Arbiter Electronics Ltd and made famous by guitarists such as Jimi Hendrix (with custom modifications made by Roger Mayer), David Gilmour (Pink Floyd), Pete Townshend (The Who). The original design uses Germanium PNP transistors (positive ground, negative voltage source). A number of imitations, tribute and modifications have been proposed: Vox Tone bender, Mike Fuller's '69 Fulltone or more recently ZVEX Woolly Mammoth. The circuit has been studied in [COCR09, DZ11a, HHVW17, Hol19]. Here, we consider the NPN2 variant of figure 8.1 which is obtained by replacing PNP by NPN transistors and inverting the power supply. For simulation, we use 2N3904 transistors with parameters I S = 10 fA, β F = 300 and β R = 4 using the memoryless Ebers-Moll model. This circuit is an opportunity to see that in electronics, many components are resistors. But since the majority are linear, a significant reduction in the number of unknowns can be achieved by pre-solving linear constraints (the price to pay is denser matrices). As often in electronics, this circuit yields a pH-DAE that is not explicitly convertible to a pH-ODE. This is the occasion to look at the direct simulation of pH-DAE on a real circuit.

Fuzz Face (NPN variant)
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Theory of operation

As the behaviour and the design of the Fuzz Face are well documented, we only provide a short description. It can be roughly described as a (voluntarily badly biased) two stages common-emitter transistor amplifiers with feedback. The biasing is responsible for asymmetrical clipping and even harmonics generation. The cascade of two transistors was used (before OPA) to achieve a higher distortion gain. For more details, see reference [START_REF] Electrosmash | Fuzz face analysis[END_REF].

Incidence matrix For the chosen orientation of branches 3 , the incidence matrix (definition 2.12 p.49) of the graph corresponding to the fuzz face schematic (figure 8.1) is given by 

A =                                  IN CC C 1 C 2 C 3 R 1 R 3 R 4 R 6 R 2 R a 5 R b 5 BC1 BE1 BC2 BE2 OU T 0 -1 -1 . -1 . . . . -1 . . -1 . -1 . . -1 1 
                                 Branches B
.

Dirac structure Using the causality assignment procedure detailed in subsection 2.3.3 p.57, we select the minimum spanning tree (def. 2.9 p.48)

T = {IN, CC, C 1 , C 2 , C 3 , R 1 , R 3 , R 4 , R 6 },
to split branches B into a current-controlled tree T and voltage-controlled cotree T (links).

From the incidence matrix A, using equation (2.15) p.55, we obtain the link cutset matrix C L so that the circuit is described by the reduced hybrid Dirac structure (def. 2.21 p.55)

J =                                 v IN v CC v C 1 v C 2 v C 3 v R 1 v R 3 v R 4 v R 6 i R 2 i R a 5 i R b 5 i BC1 i BE1 i BC2 i BE2 i OU T i IN . . . . . . . . . 0 -1 0 -1 -1 0 +1 0 i CC . . . . . . . . . -1 0 0 +1 0 -1 -1 0 i C 1 . . . . . . . . . 0 +1 0 +1 +1 0 -1 0 i C 2 . . . . . . . . . 0 +1 -1 0 0 0 0 0 i C 3 . . . . . . . . . +1 0 0 0 0 +1 0 0 i R 1 . . . . . . . . . 0 0 0 -1 0 +1 +1 0 i R 3 . . . . . . . . . 0 0 0 0 0 -1 0 0 i R 4 . . . . . . . . . 0 +1 0 0 0 0 -1 0 i R 6 . . . . . . . . . +1 0 0 0 0 +1 0 -1 v R 2 0 +1 0 0 -1 0 0 0 -1 . . . . . . . . v R a 5 +1 0 -1 -1 0 0 0 -1 0 . . . . . . . . v R b 5 0 0 0 +1 0 0 0 0 0 . . . . . . . . v BC1 +1 -1 -1 0 0 +1 0 0 0 . . . . . . . . v BE1 +1 0 -1 0 0 0 0 0 0 . . . . . . . . v BC2 0 +1 0 0 -1 -1 +1 0 -1 . . . . . . . . v BE2 -1 +1 +1 0 0 -1 0 +1 0 . . . . . . . . v OU T 0 0 0 0 0 0 0 0 1 . . . . . . . .                                 v T i T i T v T -C L C T L .
Note that the canonical separation between tree and link/cotree variables has been emphasised by the ordering of component: tree currents i T (left) can only exchange with cotree currents i T (right), while cotree voltages v T (left) can only exchange with tree voltages v T (right).

3. Using the receiver convention, branch currents are oriented from positive nodes (+1) to negative nodes (-1).

Reduced dissipative structure To simplify simulation, we eliminate linear resistive branches R 1 , R 3 , R 4 , R 6 , R 2 , R a 5 , R b 5 by solving the corresponding linear resistive constraints, (see subsection 2.3.4, p.60 and [START_REF]Passive guaranteed simulation of analog audio circuits: A port-Hamiltonian approach[END_REF][START_REF] Falaize | Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios: Approche par réseau de composants et formulation Hamiltonienne à ports[END_REF][START_REF] Lopes | Approche passive pour la modélisation, la simulation et l'étude d'un banc de test robotisé pour les instruments de type cuivre[END_REF]). Reducing linear resistive relations, the Dirac structure matrix J is replaced by the (hybrid) linear dissipative structure4 matrix

M =                      v IN v CC v C 1 v C 2 v C 3 i BC1 i BE1 i BC2 i BE2 i OU T i IN -G 11 . G 11 G 11 . -1 -1 . α 14 . i CC . -G 22 . . G 22 +1 . -α 23 -1 -α 35 i C 1 G 11 . -G 11 -G 11 . +1 +1 . -α 14 . i C 2 G 11 . -G 11 -G 44 . . . . α 45 . i C 3 . G 22 . . -G 22 . . α 23 . α 35 v BC1 +1 -1 -1 . . -R 1 . R 1 R 1 . v BE1 +1 . -1 . . . . . . . v BC2 . α 23 . . -α 23 R 1 . -R 33 -R 1 R 35 v BE2 -α 14 +1 α 14 -α 45 . R 1 . -R 1 -R 44 . v OU T . α 35 . . -α 35 . . R 35 . -R 35                      , (8.1) 
where the conductances, gains and resistances parameters are

G 11 = 1 R 4 + R a 5 , G 22 = 1 R 2 + R 6 , G 44 = R 4 + R a 5 + R b 5 R b 5 R 4 + R a 5 , α 14 = R a 5 R 4 + R a 5 , α 23 = R 2 R 2 + R 6 , α 35 = R 6 R 2 + R 6 , α 45 = R 4 R 4 + R a 5 , R 33 = R 2 R 6 + (R 1 + R 3 ) (R 2 + R 6 ) R 2 + R 6 , R 35 = R 2 R 6 R 2 + R 6 , R 44 = R 1 R 4 + R a 5 + R 4 R a 5 R 4 + R a 5 .
Note that it is structured into a skew-symmetric part and a dissipative part of the form

M =   0 -α T α 0   -   G 0 0 R   ,
where G = G T 0 denotes the tree conductance matrix and R = R T 0 the cotree resistance matrix, while α plays the role of adimensioned multi-dimensional transformer ratio (whose values have a magnitude less or equal to 1, see example 1.4 p.7). Since nonlinear transistor elements are coupled instantaneously through the (positive semi-definite) resistive matrix R, further reduction to an explicit pH-ODE would require the implicit function theorem. Instead we use direct pH-DAE simulation implemented as follows.

pH-DAE Discretization We identify equations corresponding to implicitly defined variables

x = i C1 , i C2 , i C3 , v BC1 , v BE1 , v BC1 , v BE2 T .
Once these variables are solved, then i IN , i CC and v OU T are also determined (by rows 1,2,10 in (8.1)). To keep notation simple and for space reasons, we focus on the first order Average Vector Field (RPM methods with p = 1, k = 0) whose projector P : L 2 (Ω) → P 0 (Ω), denotes projection on the space of constant functions 5 . We denote ū the average projection coefficient of a function u(t) over a time step (t 0 , t 0 + h) so that (Pu)(t) = 1 Ω (t) • ū. For linear capacitors and an affine temporal model of charge q(t) = q 0 + ´t 0 ī(s) ds, the projected effort law V C , is

V C (q 0 ; īC ) := P   1 C q 0 + h ˆt 0 īC (s) ds   = q 0 C + h 2C īC . (8.2)
For bipolar transistors (ex. 1.10 p.32), and (only for) piecewise constants signals vBC , vBE , the projected law equals the original nonlinearity (evaluated for the averaged voltages)

  I BC (v BC , vBE ) I BE (v BC , vBE )   =   γ R -1 -1 γ F     pn(v BC ) pn(v BE )   .
Splitting M, in equation ( 8.1), according to inputs ū = (v IN , vCC ) and unknown variables x, and using the law of the output open circuit (i OU T = 0 in fig. 8.1), we obtain the following discrete algebraic equations 6

x = Ãē(x) + Bū, (8.3) where matrices à and B (extracted from M according to x and ū) are

à =                -G 11 -G 11 . +1 +1 . -A 14 -G 11 -G 44 . . . . A 45 . . -G 22 . . A 23 . -1 . . -R 1 . R 1 R 1 -1 . . . . . . . . -A 23 R 1 . -R 33 -R 1 A 14 -A 45 . R 1 . -R 1 -R 44                , B =                G 11 . G 11 . . G 22 +1 -1 +1 . . A 23 -A 14 .               
, and where the projected variables x, ū and projected laws ē(x) are

x =                īC 1 īC 2 īC 3 vBC1 vBE1 vBC2 vBE2                , ē(x) =                V C 1 (q 0 C 1 ; īC 1 ) V C 2 (q 0 C 2 ; īC 2 ) V C 3 (q 0 C 3 ; īC 3 ) I BC1 (v BC1 , vBE1 ) I BE1 (v BC1 , vBE1 ) I BC2 (v BC2 , vBE2 ) I BE2 (v BC2 , vBE2 )                , ū =   vIN vCC   .
First, (8.3) is solved using Newton iteration by looking for the root of F (x) = 0, where

F (x) = x -Ãē(x) -Bū.
Then we compute vOUT from x and the observer equation (the last row of M in (8.1))

vOUT = A 35 (v CC -vIN ) + R 35 I BC2 (v BC2 , vBE2 ).
5. See example 5.5.2 from chapter 5 for generalisations to higher projection order. 6. Note that, since capacitors are linear, one could further reduce the size of the algebraic equations to the four nonlinear transistor branches. We do not perform this reduction to show the interaction between (discretized) differential and algebraic equations. 

Big Muff tone clipper

In this section we consider a nonlinear filter designed by simply merging the circuit of the original Big Muff π tone filter (red+blue) with the circuit of a diode clipper (green part on fig. 8.4). This non-trivial circuit is chosen for its relative simplicity, for the commonness of its constituent parts and because it can be reduced to a pH-ODE. 

v IN R 1 27k i R 1 C 1 10n i C 1 C 2 10n i C 2 R 2 27k i R 2 R 3 v OU T 100k Morph i D

Theory of operation

The BigMuff π tone circuit consists of a passive cross fade (through resistor R 3 : R a

3 = mR 3 , R b 3 = (1 -m)R 3 , m ∈ [0, 1]
) between a first order lowpass filter (R 1 , C 1 ) (red block in fig. 8.4) and first order highpass filter (R 2 , C 2 ) (blue block). As the combination of both circuits is unbuffered, the two filters interact. Moreover, the output voltage of the lowpass filter R 1 , C 1 is clipped by diodes D 1 , D 2 (in green) but since the circuit is passive, it also influences the high pass filter branch in a nonlinear way. As a result (see figure 8.5), the lowpass and highpass branches roughly produce smoothed square and triangular voltages respectively (for a sinusoidal input).

Incidence matrix The incidence matrix of the BMP graph shown on figure 8.4 is given by

A =            IN C 1 C 2 R b 3 R 1 R 2 R a 3 D OU T 0 -1 -1 . . . -1 . -1 -1 1 +1 . +1 . +1 . . . . 2 . +1 . -1 -1 . . +1 . 3 . . -1 . . +1 +1 . . 4 . . . +1 . . -1 . +1           
Dirac structure We select a spanning tree T = {IN, C 1 , C 2 , R b 3 } to obtain the following Dirac structure matrix (encoding Kirchhoff laws)

J =                    v IN v C1 v C2 v R b 3 i R1 i R2 i R a 3 i D i OU T i IN . . . . -1 -1 -1 0 0 i C1 . . . . +1 0 +1 -1 -1 i C2 . . . . 0 +1 +1 0 0 i R b 3 . . . . 0 0 +1 0 -1 v R1 +1 -1 0 0 . . . . . v R2 +1 0 -1 0 . . . . . v R a 3 +1 -1 -1 -1 . . . . . v D 0 +1 0 0 . . . . . v OU T 0 +1 0 1 . . . . .                   
.

Reduced dissipative structure The reduction of linear resistive relations yields the linear dissipative structure matrix

M =          v IN v C1 v C2 i D i OU T i IN -G 11 -G 12 -G 13 0 -α 21 i C1 -G 12 -G 22 -G 23 -1 -α 22 i C2 -G 13 -G 23 -G 33 0 -α 23 v D 0 +1 0 0 0 v OU T α 21 α 22 α 23 0 -R 22          , (8.4) 
where the tree conductance matrix G , cotree resistance matrix R and transformation ratio α are

G =      R 1 R 2 +(R 1 +R 2 )R 3 R 1 R 2 R 3 -R 1 +R 3 R 1 R 3 -R 2 +R 3 R 2 R 3 -R 1 +R 3 R 1 R 3 R 1 +R 3 R 1 R 3 1 R 3 -R 2 +R 3 R 2 R 3 1 R 3 R 2 +R 3 R 2 R 3      , R =   0 0 0 m(1 -m)R 3   , α =   0 +1 0 (1 -m) m -(1 -m)   .
ODE Notice in (8.4) that the diode voltage v D does not depend implicitly on i D (M 44 = 0), so that we can easily solve the linear constraint v D = v C 1 (row 4). Furthermore, there is no load on output pin 4 so that the observer current vanishes (i OU T = 0). Substituting the capacitor laws (see (8.2) in (8.4), we formulate the state-space ODE

7 ẋ = -G x ∇H(x) -N (x) -G u u, y = C∇H(x) + Du. (8.5)
7. Here we removed the unobserved output variables, by consequence, the state space does not have the canonical form of a pH-ODE.

where

x =   q C1 q C2   , G u =   G 12 G 13   , G x =   G 22 G 23 G 23 G 33   , ∇H(x) =   1 C 1 0 0 1 C 2   x, N (x) =   i D q C 1 C 1 0   , y = v OU T , u = v IN , C = α 22 α 23 , D = α 21 .
Discretisation by projection We consider the AVF discretisation. We use the averaged current variable īC = īC 1 , īC 2 T and the initial condition

x 0 = q 0 C 1 , q 0 C 2 T
to parametrize the trajectory

x(τ ) = x 0 + h ˆτ 0 īC ds.
By projection of (8.5) on the space of constant funtions, we obtain the algebraic equation on īC

F ( īC ) = īC + G x ∇H(x 0 , h īC ) + N (x 0 , h īC ) + G u ū = 0, (8.6) 
where the AVF discrete gradient for linear capacitors is

∇H(x 0 ; δx) =   1 C 1 0 0 1 C 2   x 0 + 1 2 δx ,
where the averaged law of projected diodes is

N (x 0 ; δx) =   1 0   z q 0 C 1 C 1 ; δq C 1 C 1 , where z (v 0 ; δv) =      Z (v 0 + δv) -Z(v 0 ) δv δv = 0, z(v 0 ) δv = 0.
and where the anti-parallel diode law z and its anti-derivative Z are given by

z(v) = 2I S sinh v V T , Z(v) = 2I S V T cosh v V T -1 . (8.7)
Remark 8.3. We remind that projection is computed according to theorem (5.7) p.141 (see example 5.2). The quantity z plays the role of the dissipative AVF discrete gradient of the voltage potential Z. The average discrete gradient has been applied to dissipative potentials by the author in [START_REF]Power-balanced modelling of circuits as skew gradient systems[END_REF](63)] where it is shown that the following closed-form expression holds

z(v 0 ; δv) = 2I S sinh v + 1 2 δv V T sinhc δv 2V T
, where sinhc(x) := sinh(x)/x x = 0, 1 x = 0. . As expected from the circuit design, in figure 8.5, the lowpass output (dark blue curve) is identical to that of a lowpass diode clipper circuit (i.e a damped saturated wave). As the morph potentiometer is moved in the opposite direction (orange curve), the waveform becomes progressively triangular (the diode limiting effect on voltage v C 1 in the lowpass branch, yields a quasi-constant current charge/discharge of capacitor C 2 on the highpass circuit side) By consequence, the output waveform roughly changes from a damped saturated square (lowpass circuit branch) to a smooth triangular wave (high-pass circuit branch in orange) according to the morph potentiometer.

The interest of this circuit remains mostly pedagogical rather than practical 8 . It illustrates the design of new circuits from simpler subcircuits, and the (sometimes) unexpected consequences of unbuffered coupling. Indeed, "happy accidents" are not uncommon in the history of analog audio electronics (even more among guitarists). Nowadays, a popular branch of this trial and error approach to circuit design is commonly referred under the umbrella term of circuit bending.

8. In synthesizers, converters of sinusoidal waveforms to triangle and square waves use different and more complicated circuitry. See [START_REF]Virtual analog models of the Lockhart and Serge wavefolders[END_REF][START_REF] Gormond | Waveshaping with Norton amplifiers: modeling the Serge triple waveshaper[END_REF] for more information about "west coast" waveshaping audio synthesis.

Tube Screamer drive stage

We consider the drive stage of the Tube Screamer (TS) guitar Pedal. The TS was manufactured by Ibanez in 1979 to emulate the saturation of tube amplifiers with solid-state circuitry. Notable users include Stevie Ray Vaughan, Carlos Santana and Steve Vai. This circuit is emblematic of the class of overdrive circuits (as opposed to distortion which is more agressive) and it can be found as a building block of many circuits (e.g. in the Boss OD-1, or in the feedback path of the Korg MS-20 Voltage-controlled filter shown in section 8.4). The main advantage of overdrive (compared to distortion) is that saturation applies to the difference v I -v O instead of the direct signal v I . This leads to a more subtle effect preserving the dynamics and expressivity of the input signal while enriching its harmonic content. In the original schematic, the virtual ground is set to V bias = 4.5V , with V CC = 9 V and V EE = 0 grounded. For simplicity, we have chosen V bias as the reference voltage and shifted V CC and V EE accordingly. Spanning tree T in blue.
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Theory of operation Denote R 1 = P 1 + R1 . removing diodes and assuming that the OPA is in nullor mode, the circuit reduces to a non inverting amplifier with Laplace transfer function

H T S (s) = 1 + Z 1 (s) Z 2 (s) = 1 + R 1 R 2 1 1 + sR 1 C 1 low-pass sR 2 C 2 1 + sR 2 C 2 high-pass
where Z 1 , Z 2 are respectively parallel and serial impedances corresponding to R 1 C 1 and R 2 C 2 . At high frequencies, R 1 C 1 act as a lowpass filter with cutoff frequency between 5.66 and 61.2 kHz, above which the gain reduces to unity. At low frequencies, R 2 C 2 acts as a high-pass filter with cutoff frequency 720 Hz, below which the amplifier gain also reduces to unity. Between these two limits, the circuit behaves as a bandpass booster (see figure 8.7) where R 1 controls both the boost and the cutoff. Adding diodes to the circuit brings soft saturation and limits the voltage across diodes v D = v O -v I to approximately ±700 mV. When diodes are conducting and the op amp is in nullor mode, the output voltage is approximately v O ≈ v I ± 0.7, so that the effective gain also reduces to unity for large signals. For a typical guitar input signal (i.e. between 100 and 700 mV according to the type of pickups and playing intensity) and a 9 V battery as power supply, the headroom before the opamp enters saturation 9 is about 3 V. A more detailed analysis of the complete circuit can be found in [START_REF]Tube screamer analysis[END_REF]. 

A =                       CC EE IN C 1 C 2 A O R 1 R 2 D A I A CC A EE OU T 0 -1 -1 -1 . . -1 . -1 . . -1 -1 -1 1 . . +1 . . . . . . +1 . . . 2 . . . -1 +1 . -1 . -1 -1 . . . 3 
                     
.

Dirac structure We select the current-controlled spanning tree

T = {CC, EE, IN, C 1 , C 2 , A O }
with voltage-controlled co-tree T = {R 1 , R 2 , D, A I , A CC , A EE , OU T } to obtain the following hybrid Dirac structure

J =                              v CC v EE v IN v C 1 v C 2 v A O i R 1 i R 2 i D i A I i A CC i A EE i OU T i CC . . . . . . 0 0 0 0 -1 0 0 i EE . . . . . . 0 0 0 0 0 -1 0 i IN . . . . . . 0 0 0 -1 0 0 0 i C 1 . . . . . . -1 +1 -1 -1 0 0 0 i C 2 . . . . . . 0 +1 0 0 0 0 0 i A O . . . . . . 0 -1 0 +1 0 0 -1 v R 1 0 0 0 +1 0 0 . . . . . . . v R 2 0 0 0 -1 -1 +1 . . . . . . . v D 0 0 0 +1 0 0 . . . . . . . v A I 0 0 +1 +1 0 -1 . . . . . . . v A CC +1 0 0 0 0 0 . . . . . . . v A EE 0 +1 0 0 0 0 . . . . . . . v OU T 0 0 0 0 0 1 . . . . . . .                             
. 9. For completeness, op amp clipping is handled in the simulation code. However, op amp clipping is too far from standard behaviour, so that it is not pertinent to show on simulation results.

Reduced linear resistive structure Reducing the resistive branches {R 1 , R 2 } yields the linear dissipative structure

M =                         v CC v EE v IN v C 1 v C 2 v A O i D i A I i A CC i A EE i OU T i CC . . . . . . 0 0 -1 0 0 i EE . . . . . . 0 0 0 -1 0 i IN . . . . . . 0 -1 0 0 0 i C 1 . . . -G 12 -G 2 G 2 -1 -1 0 0 0 i C 2 . . . -G 2 -G 2 G 2 0 0 0 0 0 i A O . . . G 2 G 2 -G 2 0 +1 0 0 -1 v D 0 0 0 +1 0 0 . . . . . v A I 0 0 +1 +1 0 -1 . . . . . v A CC +1 0 0 0 0 0 . . . . . v A EE 0 +1 0 0 0 0 . . . . . v OU T 0 0 0 0 0 +1 . . . . .                         , with conductances G 1 = 1/R 2 , G 12 = R 1 +R 2 R 1 R 2 .
Reduced DAE and ODE To solve the system, we remove variables corresponding to trivial constraints in matrix M. It is enough to consider the implicit DAE defined by the following submatrix of M (all other variables of the system can be retrieved from i C 1 , i C 2 , v A I , v D using M and component laws).

M r =        v IN v C 1 v C 2 v A O i D i C 1 0 -G 12 -G 2 G 2 -1 i C 2 0 -G 2 -G 2 G 2 0 v A I +1 +1 0 -1 . v D 0 +1 0 0 .        .
To handle the OPA, we have to consider the third row of M r with special care:

• Nullor mode (see subsection 7.2.1 p.190): we have v A I (λ) = 0. This yields the linear

constraint v A O = v IN + v C 1 • Saturation mode: we have the constraint v A I (λ) = v I + v C 1 -v A O (λ). Furthermore, if v A I > 0 then v A 0 = v CC and if v A I < 0, then v A O = v EE .
Here, we unify both modes by solving for v A O and introduce the function

v A O (v) :=        v EE v < v EE , v v ∈ [v EE , v CC ], v CC v > v CC . (8.8)
Substituting capacitor and diode laws (v C = q/C and i D (•) = z(•) from (8.7)), in the first two rows of M r , and using

v A I = v IN + v C 1 (row 3), we finally obtain the reduced ODE   q1 q2   =   -G 12 -G 2 -G 2 -G 2     q 1 /C 1 q 2 /C 2   +   G 2 G 2   v A O v IN + q 1 C 1 -   1 0   i D q 1 C 1 (8.9)
Discretization Using the Average Vector Field discretisation method with q 1 (τ ) = q + τ δq 1 , q 2 (τ ) = q 0 2 + τ δq 2 yields the algebraic equation F (δx) = 0 for the variables δx = (δq 1 , δq ) where

F (δx) =   δq 1 δq 2   -h      -G 12 -G 2 -G 2 -G 2     q1 /C 1 q2 /C 2   +   G 2 G 2   v A O v IN + q 1 C 1 -   1 0   i D q C 1    , where v A 0 (v) = ´1 0 v A 0 (v(τ )) dτ , i D (v) = ´1 0 v A 0 (v(τ )
) dτ and qC = ´1 0 q C (τ ) dτ = q 0 C + δq C /2. denote the average vector field projection of component laws in the right hand side of (8.9). As for other examples, the system F (δx) = 0 is solved using Newton method.

Simulation results for a sampling rate of f s = 44.1 kHz are shown on figure 8.8. For simulated examples, convergence is reached after 1 to 3 iterationés (1.52 on average) for absolute and relative Newton errors respectively of 10 µV and a 10 -10 . Note that exhaustive energy and power plots are not reproduced for each example for brievety (see [MH18, fig. 2 and4], reproduced in appendix G p.323, for similar plots, see also figure 5.13 p.152). 

Korg MS-20 Filter

The filter of the Korg MS-20 synthesizer is (with the Moog filter) one of the most famous synthesizer filter. It has been studied in the references [START_REF] Stinchcombe | A study of the Korg MS10 & MS20 filters[END_REF][START_REF] Pirkle | Modeling the Korg35 lowpass and highpass filters[END_REF]. This filter is closely related to the Sallen-Key filter from section 7.1.4 with the following differences: the lowpass filter stages are buffered from each other by (ideal) voltage followers10 ; the feedback path contains a nonlinear overdrive amplifier (see figure 8.9b) and a voltage divider to control the resonance of the filter. Resistors R 3 and R 4 (voltage divider) controls the feedback gain of the filter. Furthermore, the nonlinear amplifier also features a calibration gain. The combination of both gains with nonlinearities allows the filter to reach self-oscillation.

v I R 1 C 1 2.2n R 2 C 2 2.2n R 3 8.2k R 4 10k A(v) 1 1 v O 1 2 3 4 5 6 7 8 
(a) Overall filter schematic. In (a), the chosen spanning tree T is shown in blue and its complimentary cotree T in orange.
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Overdrive amplifier

The overdrive amplifier (figure 8.9c-d) is a non-inverting amplifier (as in section 7.1.4 ) with negative feedback diodes to limit the voltage difference between inputs and outputs. This situation is similar to the TubeScreamer saturation in section 8.3 but without capacitor filtering.

Algebraic modelling

The stage is composed of resistors, diodes and OPA, all considered memoryless. To avoid solving such a stiff system iteratively, we choose to pre-solve this sub-circuit as an equivalent algebraic component. We assume that the power supply voltages are large enough to maintain the OPA in nullor mode. Applying nodal analysis at node 9 (see figure 8

.9c) yields i R 2 = i D + i R 1 . This leads to to the voltage equation v I /R 2 = (v O -v I )/R 1 + i D (v O -v I )
, that we reformulate as an implicit equation on the output voltage

v O = 1 + R 1 R 2 v I -R 1 i D (v O -v I ), (8.10) 
where the clipping diodes law i D is given by

i D (v) = I sinh v V with I = 2I S , V = 3V T . (8.11)
Analysis for small and large signals: For small signals (i D ≈ 0), diodes are not conducting, so that the non-inverting amplifier is governed by

v O ≈ Gv I with G = 1 + R 1 R 2 . For R 1 = 10k and R 2 = 2200(1 + (1 -κ)) with κ ∈ [0, 1],
the small signal gain of the amplifier belongs to [3.2, 5.54]. Conversely, as soon as diodes conducts (large signals), the signal is soft-clipped. Assuming that we know an explicit mapping v O = A(v I ), (lumping the power supply ports 11 ), we can replace the circuit by the nonlinear amplifier two-port defined by

(v I , v O , i I , i O ) ∈ R 2 × R 2 | i I = 0, v O = A(v I ) .
Explicit formulation and approximation Using the implicit function theorem, one can prove that there exists a unique function A : v I → v O = A(v I ) solution of (8.10) that can be tabulated (see figure 8.10). Going further, we look for a closed-form approximation of A. To this end, we invert the hyperbolic sine in (8.11) to obtain the equivalent formulation of (8.10) 11. If required it is still possible to recover the power supply currents to express the power balance using the OPA model from subsection 7.2.1, but we do not detail this further. 

v O = v I + V asinh Gv I -v O R 1 I .

This form suggests a candidate approximation model

A(v) ≈ g(v; α, β, γ) parametrized by (α, β, γ) g(v; α, β, γ) = v + α sign(v) asinh β|v| γ 1/γ . ( 8 

Filter

For this circuit, thanks to buffering, it is simpler to use Nodal analysis (at nodes 2 , 4 ) to directly obtain the ODE: using Kirchhoff laws, we have i

C 1 = i R 1 and i C 2 = i R 2 and using the node voltages e 2 = v AO + v C 1 , e 3 = v 2 , v 5 = v 4 one gets i C 1 = v I -v AO -v C1 R 1 , i C 2 = v AO + v C 1 -v C2 R 2 .
The nonlinear state space system is obtained using (i) the amplifier law v AO = A(kv C 2 ) where k = ρR 4 R 3 +R 4 ∈ [0, 0.55] corresponds to the voltage divider, (ii) introducing co-energy variables x 1 := v C 1 , x 2 := v C 2 for the linear capacitor law i C = C vC and (iii) defining the cutoff pulsation ω c := 1/(RC) for equal resistances R 1 = R 2 = R, and capacitances

C 1 = C 2 = C. 1 ω c   ẋ1 ẋ2   =   -1 0 1 -1     x 1 x 2   +   -1 1   A(kx 2 ) +   1 0   v I , where k = ρR 4 R 3 + R 4 , (8.13a 
)

v O = x 2 . (8.13b)
Small signals analysis For small signals, we have the linear approximation A(v) ≈ Kv with overall feedback gain

K = Gk (remind that G = 1 + R 1 R 2 )
. Then equation (8.13a) simplifies to

1 ω c   ẋ1 ẋ2   ≈   -1 -K 1 K -1     x 1 x 2   +   1 0   v I . (8.14)
From this linearized state-space system, we can obtain the following Laplace transfer function, which corresponds to a resonant lowpass filter with Q-factor Q = 1 2-K and cutoff pulsation ω c (see section 7.1.4 for more details on resonant lowpass filters and their frequency response).

H MS20 (s) = 1 s ωc 2 + (2 -K) s ωc + 1 . (8.15)
As noted in [START_REF] Pirkle | Modeling the Korg35 lowpass and highpass filters[END_REF] and in contrast with the unbuffered case from section 7.1.4, the filter reaches infinite Q (i.e self-oscillation) for K = 2 instead of K = 3. Furthermore, according to circuit parametrisation, the maximum feedback gain (for small signals) belongs to [1.76, 3.05] for ρ = 1, κ ∈ [0, 1], which is enough to reach self-oscillations.

Large signals analysis For large signals, the output of the overdrive amplifier can be approximated by v AO ≈ ±2.1 + v I so that the direct gain of the circuit is bounded by K = ρ < 0.55. Despite the absence of rail-to-rail hard clipping as in section 8.3, the clipping diodes are still strong enough to stabilise the system.

Discretization To simulate this filter, we use the Average Vector Field discretization. Projection of equations (8.13a), (8.13b) for affine state trajectories of the form v(τ

) = v 0 + τ δv with τ ∈ [0, 1] yields the discrete state space   δx 1 δx 2   = ω d      -1 0 1 -1     x 0 1 + 1 2 δx 1 x 0 2 + 1 2 δx 2   +   -1 1   A(kv 0 2 , kδv 2 ) +   1 0   vI    , (8.16a 
)

v O = x 2 + 1 2 δx. (8.16b)
where the normalised pulsation is ω d = hω c and A(v 0 , δv) := 1, A(v 0 + τ δv) denotes the AVF projection of the feedback nonlinearity. The algebraic system (8.16a) is rewritten as F (δx) = 0 with δx = [δx 1 , δx 2 ] T and solved using Newton iteration, where the Jacobian of F is

F (δx) = I -ω d    1 2   -1 0 1 -1   + k   0 -1 0 1   ∂ ∂δx 2 A(kx 0 2 , kδx 2 )    .
Simulation results Simulation results are displayed below on figures 8.11, 8.12 and 8.13 for square and saw inputs at various amplitudes to exhibit the nonlinear behaviour of this filter. We observe that the input amplitude influences the amplitude of self-oscillation, its frequency, its damping and its shape. The higher the input, the higher the damping. The lower the oscillation amplitude, the higher the resonance frequency. Simulation results are consistent with SPICE simulation and measurements. The expected behaviour of this filter and its salient features are reproduced. Note that comparing results with the ones of the Sallen-Key filter in figure 7.13 p.187, we observe that small topological changes (buffering stages and a nonlinear feedback path) yield significant modifications to the behaviour of this filter (an thus to its sonic character). Important differences are: (i) filter oscillations are saw-like rather than sinusoidal (fig. 8.11), (ii) the behaviour is more progressive according to input level (fig. 8.12), (iii) self-oscillation can happen near zero-crossings (fig. 8.13).

FitzHugh-Nagumo relaxation oscillator

In this section, we consider the electronic realisation of a FitzHugh-Nagumo (FHN) (see [START_REF] Fitzhugh | Mathematical models of threshold phenomena in the nerve membrane[END_REF][START_REF] Nagumo | An active pulse transmission line simulating nerve axon[END_REF]) relaxation oscillator. The FitzHugh-Nagumo model was originally proposed by FitzHugh as modification of the Van der Pol system to model neurons. It uses a cubic nonlinearity with negative incremental resistance to achieve self-excitation. The electronic circuit realisation of fig. 8.14 was proposed by Nagumo and uses a tunnel diode (see ex. 1.9 p.31) to implement a nonlinearity with negative incremental resistance. In music, FHN oscillators have been used for sound synthesis purposes in [START_REF] Collins | Errant sound synthesis[END_REF][START_REF] Snyder | Neuron-modeled audio synthesis[END_REF] and for beat/tempo synchronisation in [START_REF] Eck | Real-time musical beat induction with spiking neural networks[END_REF][START_REF] Aucouturier | Making a robot dance to music using chaotic itinerancy in a network of fitzhugh-nagumo neurons[END_REF]. Incidence matrix The incidence matrix of the graph corresponding to the FHN schematic is

D v D i D R v R i R E i E C v C i C L v L i L 0 1 2 3 
A =         E C R D L 0 -1 . . . -1 1 1 . 1 . . 2 . 1 -1 1 . 3 . -1 . -1 1         .
Dirac structure From the incidence matrix A, we select the current-controlled spanning tree T = {R, C, E}, with voltage-controlled cotree T = {D, L}, to obtain the hybrid Dirac structure

J =          i D i L v R v C v E v D . . 0 1 0 v L . . -1 1 -1 i R 0 1 . . . i C -1 -1 . . . i E 0 1 . . .          .
Reduced Linear resistive structure Eliminating the linear resistor branch R and solving the trival constraint v D = v C yields the linear dissipative structure

M =        i D i L v C v E v D . . 1 0 v L . -R 1 -1 i C -1 -1 . . i E 0 1 . .        -→ M =     i D (v C ) i L v C v E v L . -R 1 -1 i C -1 -1 . . i E 0 1 . .     .
pH-ODE Finally substituting the laws of the components, one obtains the dissipative pH-ODE

ẋ = -r(x) + J∇H(x) + Gv E , (8.17a 
)

i E = -G T ∇H(x). (8.17b)
where the state x, skew-symmetric matrix J, Hamiltonian H, resistive function r and port matrix G are given by

x =   φ q   , J =   0 1 -1 0   , H(x) = 1 2 φ 2 L + q 2 C , r(x) =   R∇ φ H(x) z ∇ q H(x)   , G =   -1 0   .
We use as default values E = 400 mV, R = 20 Ω, C = 10 µF, L = 300 mH. For the tunnel diode, we use the model of the tunnel diode from example 1.9 p.31

z(v) = I S exp v V T -1 + I P v V P exp - v -V P V P ,
with parameters I S = 1 fA, V T = kT qe ≈ 26 mV, I P = 4.7 mA, V P = 100 mV.

Simulation

The system is solved using AVF projection and Newton iteration. Simulation results are shown on figure 8.16 with time series corresponding to different values of the bias voltages E and the capacitor C. Phase plots are shown on figure 8.17.

The q-nullcline 12 ( q = 0) corresponding to the tunnel diode is an attractor for the slow dynamics. When its intersection with the φ-nullcline ( φ = 0) happens in the negative incremental resistance region, the equilibrium point is unstable, leading to a limit cycle. On the contrary, when the intersection happens in the region of positive incremental resistance, the equilibrium point is stable and all trajectories converge to it (red trajectory). In figure 8.16, the frequency of relaxations increases with the bias voltages E while the period increases with higher values of capacitance C. The smoothing effect of the capacitance is noticeable by reducing the slope of the relaxation. Time is displayed in milliseconds.

12. For a system of ODE ẋ = f (x), the i-th nullcline is the geometric shape such that ẋi = 0. The equilibrium points of the system are located where all of the nullclines intersect (i.e. ẋ = 0). In figure 8.17, the simulated orbits trajectories are displayed in the (v C , -i L )-space of coenergy variables. Inductor nullclines are shown as load lines corresponding to each bias point (dashed colored curves, φ = 0 ⇐⇒ v C = E + Ri L ). Conversely, the capacitor nullcline ( q = 0 ⇐⇒ i L = -z(v C ) and v C = v D ) corresponds to the tunnel diode characteristic. It is an attractor for the slow dynamic (dashed black). Note that the red curve converges to a stable equilibrium point (positive incremental resistance) at the intersection of the (dashed red) load line and the (dashed black) tunnel diode characteristic (red dot) while other curves converge to limit cycles about unstable equilibrium points (blue, orange and green dots).

L = i D + i C ) (mA) z(v D ) E = 200 mV E = 400 mV E = 600 mV E = 800 mV

Passive peaking equalizer (beyond the Nyquist frequency)

i R a 1 v S i S R 1 i R b 1 C i C L i L R 2 i R 2 v O i O 0 1 2 3 4
Figure 8.18 -(Passive Peaking EQ). Spanning tree T in blue, cotree T in orange.

We consider a passive peaking equaliser circuit (the only linear example in this chapter) to study the effect of high order RPM methods on frequency warping and spectral accuracy for open systems. Indeed, in the linear case, the stability function for projection order p = 1 is identical to the mid-point and bilinear ones (sharing the same numerical dispersion).

Reminder on the bilinear method Artefacts of the bilinear method on the frequency response of systems are well known. Let H a (s) denote the Laplace transfer function of a continuous-time system, its discrete-time approximation H d (z) is obtain by substituting s by The principal value of this mapping warps the frequency axis s ∈ iR to the range s ∈ i(-hπ, hπ) severely distorting the frequency response at high frequencies (see fig. 8.19b and D.4 p.299).

s(z) = ∆ M = 2 h z -1 z + 1 , where ∆ = z -
Remark 8.4. To link the AVF/RPM(1,0) method with the bilinear scheme, note that, for an affine trajectory x(t) = x 0 + (t/h)(x 1 -x 0 ), M is the discrete equivalent of the average vector field projection x = (x 1 + x 0 )/2 and ∆ of the average slope x = (x 1 -x 0 )/h.

Goals

To challenge high-order RPM schemes (def. 5.1 p.122), we consider the case where the peaking equalizer has a resonance frequency beyond the Nyquist frequency. This situation is in fact common in electronic audio circuits: several analog equalisers use a peaking EQ between 20 kHz and 100 kHz with a large bandwidth to implement high frequency boost (instead of a shelving filter). Note that for audio use, we are not interested in the frequency response above 20 khz (beyond human hearing). Nevertheless, the action of a 50 kHz resonance on input signals below 20 kHz is significant (see fig. 8.19a) and should be faithfully reproduced.

Theory of operation

The potentiometer is parametrised by γ ∈ [0, 1] according to the law

R a 1 = (1 -γ)R 1 , R b 1 = γR 1 . When the potentiometer R 1 is down (γ = 0 R a 1 = R 1 , R b 1 = 0), the RLC network is short-circuited (v 2 = v 4
) so that the remaining circuit is a simple voltage divider with static gain a 0 = R 2 R 1 +R 2 . When γ is increased, the RLC network acts as a bandpass filter whose contribution is added to the output to yield a peaking EQ. Its resonance frequency is controlled by L, C and its bandwidth by R 2 .

Incidence matrix The incidence matrix of the circuit shown on figure 8.18 is given by

à =                S C R a 1 R 2 R b 1 L O 0 -1 . . -1 . . -1 1 +1 . +1 . . . . 2 . +1 -1 . +1 . . 3 . -1 . . . +1 . 4 . . . +1 -1 -1 +1               
.

Dirac structure We select the current-controlled tree T = S, C, R a 1 , R 2 with cotree T = {R b 1 , L, O} to obtain the Dirac structure .20) where

J =            v S v C v R a 1 v R 2 i R b 1 i L i O i S . . . . -1 -1 0 i C . . . . 0 +1 0 i R a 1 . . . . +1 +1 0 i R 2 . . . . +1 +1 -1 v R b 1 +1 0 -1 -1 . . . v L +1 -1 -1 -1 . . . v O 0 0 0 +1 . . .            . Reduced linear resistive structure Reducing linear resistive branches R a 1 , R 2 , R b 1 , with the potentiometer relation R a 1 = (1 -γ)R 1 , R b 1 = γR 1 , yields the resistive structure M =        v S v C i L i O i S -G 11 0 -α 11 -α 12 i C 0 0 +1 0 v L α 11 -1 -R 11 R 12 v O α 12 0 R 12 -R 22 .        . ( 8 
G 11 = 1 R 1 + R 2 , α 11 = γG 11 R 1 , α 12 = G 11 R 2 , R 22 = R 1 R 2 R 1 + R 2 , R 12 = γR 22 , R 11 = 1 + R 1 R 2 (1 -γ) R 12 .
pH-ODE and state-space formulations The pH-ODE is built from (8.20) by (i) choosing the state (8.20) with energy H(q, φ) = q 2 2C + φ 2 2L . In practice, we use an open circuit load i O = 0 (reduced input u = v S ) and neglect i S (reduced output y = v O ). Then (8.20) can be formulated as a pH-ODE (left) with reduced state-space system (right)

x = [q, φ] T , input u = [v S , i O ], and output y = [i S , v O ], (ii) substituting component laws v C = q/C, i C = q, i L = φ/L, v L = φ in
ẋ = (J x -R x )Qx + Gu, → ẋ = Ax + Bu, (8.21a) y = -G T Qx + (J u -R u )u, → y = Cx + Du. (8.21b)
where systems matrices are respectively

J x -R x = 0 1 -1 -R 11 , Q = 1/C 0 0 1/L , G = 0 0 α 11 R 12 , J u -R u = -G 11 -α 12 α 12 -R 22 , A = (J x -R x )Q, B = 0 α 11 , , C = 0 R 12 /L , D = α 12 .
Laplace transfer function Computing the Laplace transfer function using the formula H EQ (s) = C(sI -A) -1 B + D yields the standard form of a peaking equalizer

H EQ (s) = R 2 R 1 + R 2 • LCs 2 + γR 1 Cs + 1 LCs 2 + γR 1 C (1-γ)R 1 +R 2 R 1 +R 2 s + 1 = K • s ω 0 2 + B(γ) s ω 0 + 1 s ω 0 2 + B(γ) G(γ) s ω 0 + 1
, where the direct gain K, pulsation ω 0 , damping/bandwidth B and resonance gain G are .22) Note that this peaking EQ is neither constant-Q nor exactly proportional-Q (see [START_REF] Bohn | Operator adjustable equalizers: An overview[END_REF]). The quality factor Q = 1/B is modulated by γ, so that the higher the boost, the larger the bandwidth. )) for a sampling rate f s = 44.1 kHz (Nyquist frequency f s /2 in dashed blue). The main drawback is that the resonance peak is warped by several kHz into the audible frequency band. Note that the frequency response is also periodised above the Nyquist frequency by sampling, but is not shown here.

K = R 2 R 1 + R 2 , ω 0 = 1 √ LC , B(γ) = γR 1 C L , G(γ) = R 1 + R 2 (1 -γ)R 1 + R 2 . ( 8 

High-order RPM discretisation of a linear state-space system

Definitions To discretize the state-space (8.21a)-(8.21b), we use14 RPM(p,0). Denote15 

ẋ := [ P i | ẋ ] p-1 i=0 , u := [ P i | u ] p-1 i=0 , y := [ P i | y ] p-1 i=0 , (8.23a)
the projection coefficients of functions ẋ(τ ), u(τ ), y(τ ) in the Legendre basis over a unit time step Ω = (0, 1). Using the Kronecker product (see appendix D.10.1) and n × n identity I n , denote by

A = I p ⊗ A, B = I p ⊗ B, C = I p ⊗ C, D = I p ⊗ D, I = I p ⊗ I n , (8.23b) 
expanded state-space and identity matrices. Moreover, denote respectively

1 = e 0 ⊗ I n with e 0 = P i | 1 p-1 i=0 , and V = V p ⊗ I n with V p = P i | τ ∫ 0 P j p-1 i,j=0
, (8.23c)

the matrix representation of the constant function | 1 and the operational matrix of integration (V p ≡ ´τ 0 extended to R n ) (see (C.17) p.286). Introduce the discrete integration operator

V : (x 0 , ẋ) → x = 1x 0 + h V ẋ. (8.23d)
Projected state-space Using these notations, Legendre projection of the continuous-time state-space system (8.21a)-(8.21b) yields the projected linear system of algebraic equations

ẋ = A x + B u, y = C x + D u , where x = V(x 0 , ẋ). (8.24) 
Explicit solution Solving (8.24) for ẋ, yields the coefficients of the projected vector field

ẋ = I -h A V -1 A V 1x 0 + B u , (8.25) 
where A V = V p ⊗ A (by properties of kronecker products, see appendix D.10.1). As the state increment x 1 -x 0 is proportional to the average ( ´1 0 ) of the vector field ẋ, projecting (8.25) on 1 |, (equivalent to the transposed matrix ( 1) T ), we deduce the discrete time-stepping scheme

x 1 = x 0 + h( 1) T I -h A V -1 A V 1x 0 + B u . (8.26)
From (8.23d)-(8.25), we get the explicit input to output map (in term of Legendre coefficients)

H x 0 ,h : u → y = C 1x 0 + h V I -h A V -1 A V 1x 0 + B u + D u. (8.27)
Remark 8.5. The Jacobian of the mapping (8.27) with respect to u is

C(h V( I -h A V) -1 B) + D (8.28)
This is analog to

H(s) = C(sI -A) -1 B + D = C 1 s (I -A 1 s ) -1 B + D,
the Laplace transfer function of a state space system. Note that in (8.28) the operational matrix of integration h V plays the role of the Laplace integration operator 1 s .

Frequency response and Legendre filterbank interpretation

We want to study the quality of the RPM(p,0) high-order projection scheme (8.27) on the continuous-time frequency response. First, we establish the continuous-time system corresponding to the discrete-time one (8.27). Second, we derive its Laplace transfer function 16 .

U (s)

Analog P * 0 (s) Step 2) Legendre coefficients result from a frame-synchronous analysis/projection process u(t) → u[n]. This can be reformulated as convolution with the mirrored impulse responses P k (-t) followed by sampling (gray block). The continuous-time output results from the dual synthesis process, y[n] → y(t) (reversing the order of operations): impulse synthesis followed by convolution with Legendre poynomials P k (t) (figs.

P * 1 (s) P * 2 (s) ⊥⊥⊥ * h ⊥⊥⊥ * h ⊥⊥⊥ * h      H 00 (z) H 01 (z) H 01 (z) H 10 (z) H 11 (z) H 11 (z) H 20 (z) H 21 (z) H 22 (z)      ⊥⊥⊥ h ⊥⊥⊥ h ⊥⊥⊥ h P 0 (s) P 1 (s) P 2 (s) + + + Y (s) Analog u 0 (z) u 1 (z) u 2 (z) y 0 (z) y 1 (z)
C.1 C.2 p.287). In this step, we obtain their Laplace transfer function.

Step 3) The complete system (analysis, discrete system, synthesis) can be represented by the cascade in figure 8. 20. In this step, we obtain its frequency response Y (s) for a zero order hold input U (s).

Step 

(z) = H p (z) u(z), is H p (z) =   e 0 e T 0 z -1 + V p ⊗ C     I - e 0 e T 0 z -1 + V p ⊗ A   -1 B + D. (8.29)
The proof of this proposition is detailed in appendix D.10 p.305.

16. Under the condition that input signals already belong to projection space. Note that the continuous-time system of figure 8.20 is not shift-invariant hence its Laplace transfer function is not defined in general.

Step 2: Laplace transform of Legendre operator For continuous-time analysis and synthesis, we need the Laplace transform of the Legendre polynomials restricted to τ ∈ (0, 1).

A) Unrestricted transfer functions: We first introduce the one-side Laplace transform of shifted orthonormal Legendre polynomials extended to [0, ∞)

B k (s) :=
ˆ∞ 0 e -τ s P k (τ ) dτ. (8.30) Symbolic computation up to degree 3 yields Symbolic computation yields the results shown in table 8.1. (8.36) This error quantifies regions, in the Laplace domain, where the time shift operator e s is well approximated by the projection methods (shown on figures 8. 21 and 8.22). This error measure is also closely related to the stability theory of order stars (see [START_REF] Wanner | Order stars and stability theorems[END_REF]). We observe that the accurate region (in red) increases with the order p. Furthermore, the periodicity of oscillations gets slower on the Fourrier axis iR as a mark of increased bandwidth.

k 0 1 2 3 B k (s) 1 s √ 3(2-s) s 2 √ 5(12-6s+s 2 )
k P k (s) 0 1 -e -s s 1 √ 3 s 2 (2 -s) -(2 + s)e -s 2 √ 5 s 3 12 -6s + s 2 -(12 + 6s + s 2 )e -s 3 √ 7 s 4 (120 -60s + 12s 2 -s 3 ) -(120 + 60s + 12s 2 + s 3 )e -s
E k (s) = P k (s) B k (s) = 1 - Pade (k,k) [exp](s) exp(s) = -O(s 2k )e -s .
k 0 1 2 3 E k (s) 1 -e -s 1 -2+s 2-s e -s 1 -s 2 +6s+12 s 2 -6s+12 e -s 1 -120+60s+12s 2 +s 3 120-60s+12s 2 -s 3 e -s
Step3: Laplace transfer function Remind that because of (frame-synchronous) projection, the linear system is h-shift-invariant 17 but not continuous-shift-invariant: for time shifts τ = kh, k ∈ Z, a delayed input yields a delayed output Y(e -τ s U (s)) = e -τ s Y(U (s)). Hence its Laplace transfer function is generally not defined.

For simplicity, we restrict our study to a frame-synchronous zero-order-hold input u(t)

= n P 0 (t/h -n)u[n] with samples u[n]
, which already belongs to the projection space. Its Laplace transform is U (s) = P 0 (hs) u(z = e hs ) where u(z) denotes the Z-transform of sequence u[n], so that the Z-domain input of the discrete filterbank is u(z) = 1 0 p-1 u(z). Then, the Laplace transform of the continuous output of order p is

Y p (s) = P p (hs) H p (z) 1 0 p-1 u(z) , for z = e hs .
For this particular (frame-synchronous) input, dividing Y p by U and cancelling u(z) finally yields the Laplace transfer function

H p (s) := Y p (s) U (s) = P p (hs) H p (e hs )   1 0 p-1   1 P 0 (hs) . (8.37) 
Observations The magnitude and phases responses are displayed on figures 8.23 8.24. We make the following observations: a) Starting with order p ≥ 2, it is possible to simulate a pole above the Nyquist frequency, b) Such a pole is subject to frequency warping, but the warping error gets lower when increasing either the sampling rate f s or the projection order p.

c) Starting with order p ≥ 2 the frequency response below 20 kHz 18 is qualitatively very similar to the analog one 19 . d) For p ≥ 3 the response is very close to the analog one, even for low sampling rates f s f c . For p = 2, a small amount of oversampling is beneficial, while for p = 1, it is necessary to use the classical Shannon-Nyquist condition f s > 2f c to obtain a good match below 20 kHz. 17. Using the lifting isomorphism ȗ[n](τ ) = u(h(n + τ )), it can be transformed to an equivalent discrete shift-invariant system with an infinite number of "phases" τ between sampling instants n (see [START_REF] Meinsma | Sampling from a system-theoretic viewpoint: Part i-concepts and tools[END_REF]).

18. For audio use, we are not interested in frequencies above 20kHz i.e. the limit of audible frequencies. 19. We get rid of the compression of the analog frequency axis [0, ∞) to the digital one [0, fs/2) that is typical of the mid-point and bilinear schemes. 

Oversampling vs increasing order

Building on the previous observations, it is natural to ask the following question: How does oversampling by a factor q (i.e lowering the step size h q = h/q) compares to raising the projection order p for the same number of parameters pq by time-step? i.e. we compare simulations that have the same rate of innovation B p,q = pq/h (generalized bandwidth). To measure both magnitude and phase innaccuracies, we introduce the following relative error in the Fourrier domain

p,q (f ) = H EQ (s) -H p hs q H EQ (s) s=j2πf . (8.38) 
For a base audio sampling rate f s = 1/h = 48 kHz, we compare the error 1,q to p,1 for pq = 2, 3, 4, that is pure oversampling q,1 versus pure order increase p,1 strategies Results are shown in table 8.3 and on figure 8.25. Considering the audible frequency band below the Nyquist frequency f s /2, we remark that the higher order approximation error p,1 is always lower than the oversampled approximation error 1,q by at least 10 dB. This is confirmed by the results in table 8.3. Furthermore, thanks to the higher accuracy, the error drops much faster for sub-Nyquist frequencies (see footnote 20). Above the Nyquist frequency, we remark that the maximum errors for each approximations are comparable, but the high order error p,1 is lower most of the time. In summary, we observe that: increasing the projection order p improves the error much faster than oversampling by q, even when the pole is not small compared to the frame rate 1/h 20 . We conjecture that this increased domain of accuracy must be limited to a region within or close to the generalized bandwidth B p,q (see fig. 8.22). This issue would require a dedicated study and is left for further research. As another perspective, the L 2 -orthogonal V -system [MQSW07] is a generalization of Legendre polynomials and Haar Wavelets which can both reproduce polynomials up to order p and cover multiple time scales. This way, different trade-offs between high-order accuracy and frequency resolution than the ones presented here could be considered. oversampled: mean abs error 1,q 1 7.91

• 10 -3 3.22 • 10 -3 1.76 • 10 -3
high order: mean abs error p,1 1 6.57

• 10 -3 1.25 • 10 -4 3.54 • 10 -5
Table 8.3 -(Peaking EQ) comparison of the transfer function approximation error 1,q (oversampling) and p,1 (high order) over the audible range 20 -20000 Hz. The frequency domain error of high order discretisation is systematically lower than the oversampled one for the same degrees of freedom per time step pq = 2, 3, 4.

20. We remind that our test uses a pole above the Nyquist frequency (also above the base sampling rate) to challenge the numerical method. Otherwise, for sub-Nyquist poles such that |hλ| 1, it is already obvious from accuracy analysis that non-oversampled high-order methods have an error in O(|hλ| 2p ) which drops exponentially with p, much faster than the error of oversampled second-order methods in O( hλ/q

2 ) i.e. polynomial in q.

1k 10k 20k 30k 40k 60k

f s 2 B p, q 2
Frequency (Hz) 100 0 Magnitude (dB) oversampled (p,q)=(1,2) high order (p,q)=(2,1)

(a) pq = 2 1k 10k 20k 30k 40k 60k f c f s 2 B p, q 2
Frequency (Hz) 100 0 Magnitude (dB) oversampled (p,q)=(1,3) high order (p,q)=(3,1)

(b) pq = 3 1k 10k 20k 30k 40k 60k f c f s 2 B p, q 2
Frequency (Hz) 100 0 Magnitude (dB) oversampled (p,q)=(1,4) high order (p,q)=(4,1) high order (p,q)=(2,2)

(c) pq = 4
Figure 8.25 -(Peaking EQ) Comparison of transfer function approximation errors p,q (f ) (in decibels) for a constant number of parameters pq (see eq. ( 8.38)). The oversampling error 1,q (blue) is compared to the high order error p,1 (orange) for pq = 2, 3, 4.

Conclusion

In this chapter, we have reviewed a number of representative electronic audio circuits. Circuits have been modeled using the PHS framework with a systematic transformational approach from the circuit graph to continuous and discrete time simulation equations using the tools of chapter 2 and 5. We have considered bipolar transistors in section 8.1, diode clipping and filtering in section 8.2, operational amplifiers with feedback saturation in section 8.3 and 8.4, a self-oscillating resonant filter in section 8.4, a passive equalizer with a resonance above the Nyquist frequency in section 8.6 and a relaxation oscillator using a tunnel diode as non-monotonous negative-resistance element in section 8.5. The FuzzFace circuit had to be simulated as a pH-DAE because of the algebraic coupling between transistors, while others like the MS-20 or the relaxation oscillator could be simulated as ODEs. For the MS-20, we chose to pre-solve the algebraic feedback nonlinearity offline as an equivalent component, rather than having to solve a stiff DAE. This approach considerably reduces the complexity of simulation at the price of more preparation work. All of the circuits were nonlinear except the peaking equaliser. For this circuit, we exploited linearity to study the accuracy and increased bandwidth of high order projection methods in the spectral domain. We confirmed that high-order methods have faster convergence than oversampling for open linear systems, even more when the frequency region of interest is below the Nyquist frequency.

Part IV

Towards Geometric Algebra

Chapter 9

Geometric Algebra for PHS This chapter is dedicated to Geometric Algebra (GA) and attempts to highlight its potentialities for port-Hamiltonian System modelling.

A complete overview of GA is clearly out of the scope of this chapter, Geometric Algebra is at the same time very simple and elementary in its construction, making a perfect fit for undergraduates, and very far reaching, unifying concepts as diverse as complex numbers, split complex numbers, quaternions, octonions, Pauli an Dirac matrices, projective, conformal and non-euclidean geometries within a unifying framework. A main difficulty to its wider adoption is related to the fact that it requires unlearning to fully grasp its full potential. In particular, it is necessary to get rid of the three dimensional cross product 1 (which does not generalises to an arbitrary number of dimension). A second learning barrier, which I found more difficult in practice, is to stop identifying General Linear transforms with their matrix representation. This chapter describes my personal journey towards using geometric algebra with port-Hamiltonian systems.

Section 9.1, is a brief introduction to Geometric Algebra. In section 9.2, we show some motivating examples where Geometric Algebra is a key tool to simplify the representation of physical problems allowing to extract their invariants. In section 9.3, we use GA to represent General Linear transforms uniformly as (parabolic, hyberbolic) rotations using elements of the same algebra 2 . In section 9.4, we use GA to describe Dirac structures, revisiting the content of section 1.3.1 p. 20.

In sections 9.3 and 9.4 we use non-euclidean geometry which is required to describe the duality pairing of Dirac structures and hyperbolic transformations in general linear transforms. Section 9.3 and 9.4 present some initial work that needs to be further devlopped and matured. This work shows how to technically represent Dirac structures and General linear transforms with Geometric Algebra. However it still lacks the simplifying elegance usually associated with GA. One of the main difficulty is that intuitions from euclidean geometry are no longer valid in non-euclidean spaces 3 . I hope that this chapter motivates more people to adopt Geometric Algebra and find more satisfying answers to these questions.

2. A powerful property of complex numbers is that a complex number can represent both a point of the 2D space and a scaling/rotation. In GA, we can generalize this property. Another common example from computer graphics is that 3D geometry is significantly simplified by using quaternions to represent affine 3D transformations.

3. We note that reference [START_REF]Hamiltonian mechanics with geometric calculus[END_REF] avoids non-euclidean metrics by identifying the configuration space with its dual: the momentum space. Conversely, in [START_REF] Doran | Lie groups as spin groups[END_REF] non-euclidean signatures are key to represent general linear transforms GL(n) as orthogonal transforms O(n, n).

Why use Geometric Algebra for PHS?

Without diving into details yet 4 , my original motivation for trying to encode the physics of PHS using the language of geometric algebra arises from the following observations: 1) For conservative systems of the form ẋ = J∇H(x), the skew-symmetric matrix J = -J T , is an infinitesimal generator of rotations. It defines an anti-commutative Poisson bracket 5 [Olv00, p.390] {f, g} J = -{g, f } J . In the language of Grassmann algebras, this is intimately linked to the notions of exterior product ∧ and bivector so that the dynamic of Poisson/Hamiltonian systems can be described by the Poisson bracket ẋ = {x, H} J .

2) For dissipative gradient systems of the form ẋ = -R∇H(x), a symmetric positive semidefinite dissipation matrix R = R T 0 is used to encode dissipation. In turn, this induces a metric bracket 6 (f, g) R = (g, f ) R . The dynamic of purely dissipative gradient systems can be written using the metric bracket as

ẋ = -(x, H) R .
3) For dissipative PHS of the form ẋ = (J -R)∇H(x), both rotation and dissipation happen at the same time. This is unified in the geometry of metriplectic systems [START_REF] Morrison | A paradigm for joined hamiltonian and dissipative systems[END_REF][START_REF] Badlyan | Open physical systems: from GENERIC to port-Hamiltonian systems[END_REF], by introducing the notion of a metriplectic bracket [[f, g]] = {f, g} J -(f, g) R to combine purely conservative and purely dissipative geometries.

4) From the geometric algebra viewpoint 7 , the geometric product uv of two vectors u, v is equal to the sum of the inner product u • v (a scalar) and the exterior product u ∧ v (a bivector). Furthermore, while the cosine of the angle between vectors u, v is naturally encoded by the inner product into the scalar part 8 1 of the algebra, the exterior product completes the picture by encoding the sine of the angle into the bivector part i 9 (generalizing complex numbers in any dimensions). This is summarized by the following identity

uv = u • v + u ∧ v = |u||v| (1 cos θ + i sin θ) , where 1 := u • v |u||v| , i := u ∧ v |u||v| .
Since geometric algebra has the power to unify inner and exterior products into a single geometric product, it seems natural to embrace this formalism and study its consequences for PHS modelling. This chapter is a personal take on the subject and the reflect of my current understanding (far from being complete). The proposed approach is to put aside our knowledge of matrix algebra and to exclusively use GA constructs to reintroduce, step by step, the PH modelling tools from chapter 1 p.7. For the formulation of Hamiltonian mechanics using GA see [START_REF]Hamiltonian mechanics with geometric calculus[END_REF] 

In euclidean coordinates the Poisson bracket is {f, g}

J = i,j ∂ f ∂x i Jij ∂ g ∂x j so that {x, H} J = J∇H(x).
6. In euclidean coordinates the metric bracket is

(f, g) R = ij ∂ f ∂x i Rij ∂ g ∂x j so that (x, H) R = R∇H(x).
7. An introduction is detailed in section 9.1 8. Geometric algebra is a graded algebra, i.e. is has 0-vectors, 1-vectors, 2-vectors, etc. It is a common notation to denote 1 the basis element representing the scalar part of the algebra (a 0-vector).

9. We use the symbol i to emphasize its role as a complex number, in the plane spanned by vectors u, v. But, it is embedded and can be oriented arbitrarily in dimension n.

Introduction to Geometric Algebra

Remark 9.1 (Reading advice). Introducing Geometric Algebra (GA) in just a few pages is not an easy task. For a self-taught introduction to GA, I recommend starting from the basics by reading reference [START_REF]Linear and geometric algebra[END_REF] (taking the time to do the exercises) followed by [START_REF] Macdonald | Vector and geometric calculus[END_REF] on Geometric Calculus (GC). For more advanced topics and physical applications, the book [DGL + 03] is a very good starting point. For a quick course on GA, see [START_REF] Macdonald | A survey of geometric algebra and geometric calculus[END_REF][START_REF] Gull | Imaginary numbers are not real, the geometric algebra of spacetime[END_REF] and [START_REF]Tutorial on geometric calculus[END_REF][START_REF] Hestenes | A unified language for mathematics and physics[END_REF] see also [START_REF] Hitzer | Antisymmetric matrices are real bivectors[END_REF]. For the relation between GA and differential geometry refer to [START_REF]The shape of differential geometry in geometric calculus[END_REF]. For minimal and axiomatic constructions of GA see [START_REF] Macdonald | An elementary construction of the geometric algebra[END_REF][START_REF] Arthan | A minimalist construction of the geometric algebra[END_REF], see also [DGL + 03, p.84]. In this manuscript, I will deliberately skip some of the hallmarks of GA such as Space-time Algebra, and GA representations of Dirac and Pauli matrices.

Modern Geometric Algebra was initiated by David Hestenes building on the work of Hamilton, Grassmann and Clifford. A main difference with Clifford Algebras is in the simpler notations 10 and the stronger focus on geometry (hence the name). The main concept of GA is the introduction of the geometric product. This makes the product of two (multi-)vectors a well-defined mathematical object. It also gives rise to the introduction of mathematical objects such as the inverse of a (nonzero) vector, blades, multi-vectors, pseudo-scalars, spinors, etc (introduced below). To see this, we start from well known concepts such as the inner product and the exterior product before introducing the (graded) geometric algebra. Exterior product (of vectors) The inner product only gives a partial information regarding vectors u, v. Traditionally, in 3 dimension it is customary to use the cross product u × v, however such a construct is only valid in 3-dimensional space. Instead, Grassmann introduced the exterior product ∧ and the associated exterior algebras. The exterior product u ∧ v of two vectors u, v has magnitude |u||v| sin θ but it is not a scalar or a vector: it is an oriented area (or bivector or 2-vector) from u to v. It satisfies the anti-commutative relation

u u•v u•u u v θ
u • v = v • u. u v u ∧ v
u ∧ v = -v ∧ u.
A geometric interpretation of the exterior product u ∧ v is the oriented area corresponding to the parallelogram formed by vectors u, v. This construction can be generalised to any number of vectors leading to the notion of k-blades 11 representing oriented volumes between vectors 12 . For example in 3-dimension the volume of highest grade is a 3-volume represented by the 3-vector (or 3-blade) u ∧ v ∧ w.

10. which makes it more approachable by non mathematicians. 11. A blade is equal to the product of nonzero orthogonal vectors B = e1 ∧e2 ∧e k so that its norm|B| = |e1| . . .|e k | is equivalent to the volume of the rectangular parallelogram with edges e1, e2, . . . , e k .

12. if some vectors are co-linear then their oriented volume is zero.

Geometric product (of vectors)

We can think of the inner and outer products as the symmetric and antisymmetric parts of a new product called the geometric product13 below.

uv ≡ u • v + u ∧ v
We remark that the inner product and the exterior product respectively lower and rise the grade of their operands. The product of parallel vectors is a pure scalar and the product of orthogonal vectors and is a bivector. A more axiomatic approach (detailed below) is to reverse the situation and extract the inner product and exterior product respectively as the symmetric and skew-symmetric parts of the geometric product

u • v = 1 2 (uv + vu), u ∧ v = 1 2 (uv -vu). (9.1) 
Geometric algebra We reproduce the following definition of geometric algebra.

Definition 9.1 (Geometric algebra [START_REF] Macdonald | A survey of geometric algebra and geometric calculus[END_REF]). The geometric algebra G n is an extension of the inner product space

R n noted G n := G(R n ).
It is an associative algebra with scalar identity element 1. That is, it is a vector space with a product satisfying properties P1-P4 for all scalars a and elements A, B, C ∈ G n . the product is called the geometric product. Members of G n are called multi-vectors. We list two more properties.

P5. The geometric product of G n is linked to the algebraic structure of R n by

u 2 = uu = u • u = 1|u| 2 ∀u ∈ R n
P6. Every orthonormal basis of R n determines a canonical basis of the vector space G n (see table 9.1 p.242).

Property P5 yields that nonzero vectors have a multiplicative inverse in

G n noted u -1 = u/|u| 2 .
Notations GA is a graded algebra. In the general setting, an element A of the GA is a mixedgrade multivector. It can be decomposed as a direct sum of graded k-vectors (a sum of k-blades) noted A k where • k is the grade extracting operator of order k, so that

A = A 0 + A 1 + A 2 + . . . + A n .
The geometric product of two multivectors M, N is denoted M N . An important operation in GA is called reversion which reverses the order of its operands. It is defined and denoted by

(M N ) † = N † M † , M † 1 = M 1 . (9.2) 
In this thesis, we use the lower case bold notation u for vectors, uppercase bold B for bivectors, and lower case standard font a for scalars. As an exception, the neutral element of GA is often denoted 1 to higlight its role as a basis for elements of grade 0 (scalars) as in a ≡ 1a.

Canonical basis of G n Let {e i } n i=1 be an orthonormal basis of R n with signature e 2 i = e i •e i = 1 (by definition e i • e j = 1δ ij ). The vector space G n = G(R n ) has a canonical basis of dimension 2 n . Its subspaces (of grade k) have dimension 

(c) G 4 , dim(G 4 ) = 16 Table 9.1 -Canonical bases of G 2 , G 3 , G 4 .

Multiplication tables

To get an understanding and some intuition of the algebra, one can obtain the multiplication tables 14 using the following properties

• By collinearity, orthonormal vectors in R n square to one (since e i ∧ e i = 0)

e 2 i = e i e i = e i • e i = 1,
• By orthogonality, basis vectors anti-commute (because e i • e j = δ ij )

e i e j = e i ∧ e j = -e j ∧ e i = -e j e i i = j.

Then by reordering terms, according to anti-commutation rules, we obtain canonical basis elements (see table 9.1). The multiplication tables of G 2 and G 3 are shown in table 9.2. 

e 3 e 3 B 2 -B 1 1 -e 2 e 1 I B 3 B 1 B 1 I -e 3 e 2 -1 -B 3 B 2 -e 1 B 2 B 2 e 3 I -e 1 B 3 -1 -B 1 -e 2 B 3 B 3 -e 2 e 1 I -B 2 B 1 -1 -e 3 I I B 1 B 2 B 3 -e 1 -e 2 -e 3 1 (b) Multiplication table of G 3 . where B1 = e2e3, B2 = e3e1, B3 = e1e2, I = e1e2e3.
Table 9.2 -(Geometric Algebra) Multiplication tables.

Extended definitions of inner and exterior product Let M i denote the components of grade i (i-vectors) in M . Then, the inner product (here left-contraction 15 ) and exterior product of a i-vector A with a j-vector B are respectively defined by [Mac10, p.101]

A • B := AB i-j , A ∧ B := AB i+j , (9.3) 
where A ∧ B = 0 if i + j > n. We highlight some identities that are used in the following 16 . Note that, in the case of a vector a multiplied by a bivector B, signs are reversed compared to (9.1)!

a • B = 1 2 (aB -Ba) , a ∧ B = 1 2 (aB + Ba) . (9.4) 
More generally, for a k-vector A, the vector-blade formulae are given by

a • A = 1 2 aA -(-1) k Aa , a ∧ A = 1 2 aA + (-1) k Aa . (9.5) 
For example, let a = e 1 , B = e 1 e 2 , then using (9.4) a • B = 1 2 (e 1 e 1 e 2 -e 1 e 2 e 1 ) = ((e 2 1 )e 2 + (e 1 ) 2 e 2 ) = e 2 and a ∧ B = 1 2 (e 1 e 1 e 2 + e 1 e 2 e 1 ) = ((e 2 1 )e 2 -(e 1 ) 2 e 2 ) = 0.

15. The litterature on Clifford algebras often uses the left contraction notation A B to denote A • B. 16. We need the contraction of a vector with a bivector to implement skew-symmetric maps for Hamiltonian systems and Dirac structures.

Norm Expand a multivector A with respect to a canonical basis {e J } 17 (of graded multivectors) as A = J e J a J . Then, the norm 18 |A| of A is defined by 19

|A| 2 = J |a J | 2 . (9.6)
Inverse Generalizing the inverse of a vector (see definition 9.1 P5), let B be a k-blade B = u 1 ∧ . . . ∧ u k . It can be written in an orthonormal basis {b i } of the hyperplane spanned by B as B = |B| b 1 . . . b k . One can define its (right) inverse as the unique element B -1 such that BB -1 = 1. One can easily show that its inverse is given by the reversion

B -1 = B † /|B| = b k . . . b 1 /|B| . (9.7) 
Indeed, using b 2 i = 1 (in euclidean spaces), we have

BB -1 = |B| b 1 . . . b k b k . . . b 1 /|B| = 1.
Duality The n-vectors in G n are called pseudo-scalars. They have the property of commuting with all elements of the algebra (hence their name). For example, the unit pseudoscalar of For example, the dual of vector e 1 is the bivector e * 1 = e 1 /I = e 1 (e 3 e 2 e 1 ) = -e 2 1 e 2 e 3 = -e 2 e 3 . Moreover, if a blade A represents the span S A ⊂ R n of its vectors, then its dual A * represents is orthogonal complements S ⊥ A .

Theorem 9.1 (Duality [START_REF]Linear and geometric algebra[END_REF]). The inner product and outer products are dual

(A • B) * = A ∧ B * , (A ∧ B) * = A • B * (9.8)
With this definition of the GA dual, the Hodge dual from exterior algebra can be defined explicitly by (A) := -A * . So that in G 3

(1) = -I, (e 1 ) = e 2 ∧ e 3 , (e 2 ) = e 3 ∧ e 1 , (e 3 ) = e 1 ∧ e 2 .

The dual extends to all elements of the G 3 (not just to the exterior algebra ∧(R 3 ) ⊂ G 3 ).

Remark 9.2 (cross product). A well known example in R 3 (whose definition does not extend to R n ) is the cross product u × v of two vectors. In GA, it is defined as the (pseudo-vector) dual to the plane spanned by the bivector u ∧ v, that is

u × v = (u ∧ v) * .
Indeed, in G n , the dual of a bivector is a (n -2)-vector (a scalar in G 2 , a vector in G 3 , a bivector in G 4 , etc).

Matrix isomorphisms

G 2 There exists an "accidental" isomorphism between R 2×2 and G 2 given by

[1] =   1 0 0 1   , [e 1 ] =   1 0 0 -1   , [e 2 ] =   0 1 1 0   , [e 1 e 2 ] =   0 1 -1 0   .
Indeed, identifying the geometric product with the matrix product, we can verify that

[e 1 ] 2 = [e 2 1 ] = [1], [e 2 ] 2 = [e 2 2 ] = [1], [e 1 ][e 2 ] = [e 1 e 2 ].
so that matrices [1], [e 1 ], [e 2 ], [e 1 e 2 ] satisfy the GA properties from definition 9.1 (see also the multiplication table 9.2a).

G 3 There exists similar embeddings (see [START_REF] Sobczyk | Geometric matrix algebra[END_REF][START_REF]Periodic table of geometric numbers[END_REF]) for G 3 , (which is of dimension

2 3 = 8).
However it requires a matrix embedding as a sub-algebra of either R 4×4 or C 2×2 (of dimension 16). The most famous one is the algebra generated by Pauli matrices

[e 1 ] =   0 1 1 0   , [e 2 ] =   1 0 0 -1   , [e 3 ] =   0 i -i 0   .
One can verify that [e i ] 2 = [1], that we have the bivectors

[B 1 ] = [e 2 e 3 ] =   0 i i 0   , [B 2 ] = [e 3 e 1 ] =   i 0 0 -i   , [B 3 ] = [e 1 e 2 ] =   0 -1 1 0   ,
and that the pseudo scalar of the algebra is

[I] = [e 1 e 2 e 3 ] =   i 0 0 i   ,
so that we have the duality relation between vectors and bivectors [B i ] = [I]e i (see definition 9.2 and the multiplication table 9.2b).

Motivating examples and invariants

In this section, we review short motivating examples (the harmonic oscillator, a dissipative oscillator, and Maxwell equations). This shows the potential of GA for revealing hidden geometric structure, unifying and simplifying representations.

Harmonic oscillator

Consider a linear harmonic oscillator with unit mass and pulsation ω

  ẋ ẏ  = J   ∂ x H ∂ y H   , with J = ω   0 1 -1 0   , and 
H(x, y) = 1 2 x 2 + y 2 . ( 9.17) 
Using the geometric algebra G(R 2 ), in a basis {e 1 , e 2 }, it can be written as

ẋ = J • ∇H(x), with H(x) = 1 2 x 2 , (9.18) 
where the vector x, the gradient operator ∇ and the bivector J (see (9.10)) are represented as

x = e 1 x + e 2 y, ∇ = e 1 ∂ ∂x + e 2 ∂ ∂y , J = iω, i := e 1 e 2 = e 1 ∧ e 2 . (9.19) 
The system has two invariants: the energy E and the angular momentum L defined by

E(t) = H(x(t)), L(t) = x(t) ∧ ẋ(t). (9.20) 
Angular momentum To have a geometric interpretation of the angular momentum (see figure 9.8), denote dA the infinitesimal oriented area swept from x(t) to x(t + dt)

dA := x(t) ∧ x(t + dt). (9.21) 
Then, using (9.20) and (9.21), we see how the angular momentum L(t) quantifies the rate of change of A along the trajectory

L(t) = x(t) ∧ ẋ(t) = x(t) ∧ x(t + dt) -x(t) dt = x(t) ∧ x(t + dt) dt = dA dt . (9.22) 
Figure 9.8 shows the geometrical interpretations of L and dA.

x(t)

x(t + dt) dx dA • x ∇H(x) ẋ = J • ∇H(x) L Figure 9
.8 -Angular momentum of an harmonic oscillator. Note that according to (9.22), the angular momentum L and the infinitesimal area dA are linked through dA = L dt.

Power To obtain a geometric insight on the power, we consider the time-derivative of the energy. Using the chain rule, we recover (as expected) the GA definition of the inner product

dE dt = d dt x 2 2 = d dt xx 2 = 1 2 (x ẋ + ẋx) = x • ẋ = x • J • x = 0, (9.23) 
which vanishes by orthogonality of x and ẋ (thanks to skew-symmetry of bivector J ).

Unification of power and angular momentum We remark that power involves the inner product, while momentum is linked to the exterior product. Using GA, we can unify (9.23) and (9.22) as the direct sum of a scalar and of a bivector using the the geometric product

dE dt + dA dt = x • ẋ + x ∧ ẋ = x ẋ. (9.24) 
Remark 9.4 (Multi-vector potential). In equation ( 9.24), we notice the emergence of the time derivative of a multivector. This suggests that the multivector functional

M (x) = ˆt 0 x(t) • ẋ(t) dt + ˆt 0 x(t) ∧ ẋ(t) dt = ˆx(t) x(0) x • dx + ˆx(t)
x(0)

x ∧ dx = ˆx(t)

x(0)
x dx, that is M = E + A, plays an important role in the formulation of the dynamic.

In the conservative case, by orthogonality, the energy variation is zero ( Ė = x • ẋ = 0), the energy H(x) is thus constant and we have x ẋ = x ∧ ẋ. Furthermore, we can show that momentum and energy are proportional

L = 2J H(x), (9.25) 
so that the momentum L is constant too.

Proof. Since x = e 1 x + e 2 y, and ẋ = J • ∇H(x) = ω(-e 1 y + e 2 x), using the multiplication table of G 2 from table 9.2 we show that

L = x ∧ ẋ = x ẋ = (e 1
x + e 2 y)ω(-e 1 y + e 2 x) = ω e 1 e 1 xy -e 2 e 2 xy + e 1 e 2 x 2 -e 2 e 1 y 2

= ω 1(xy -xy) + i(x 2 + y 2 ) = 2J H(x).

Alternatively (using the grade operator),

L = x(J • x) = xJ x 2 = J x 2 2 = 2J H(x).

Dissipative oscillator

We introduce dissipation to obtain the following logarithmic spiral oscillator (see figure 9.9)

  ẋ ẏ  =   ω   0 1 -1 0   -σ   1 0 0 1        x y   . (9.26) 
An equivalent geometric algebra formulation is given by

ẋ = (J -R) • ∇H(x) with J = iω, R = σ1. (9.27) 
The system is no longer conservative but it still has two constants of motion, which are the relative dissipation rate (prop. to σ) and the relative angular momentum (prop. to ω)

Ḣ H = -2σ, L H = -2iω. (9.28) • • x 0 x 0 = ∇H(x 0 ) J • ∇H(x 0 ) -R • ∇H(x 0 ) ẋ0 = (J -R) • ∇H(x 0 ) L θ α • x 1 x 1 = ∇H(x 1 ) J • ∇H(x 1 ) -R • ∇H(x 1 ) ẋ1 = (J -R) • ∇H(x 1 ) • x 2 • x 3 Figure 9
.9 -Bernouilli's logarithmic spiral.

Proof. Recall that i = e 1 e 2 and x 2 = 2H(x) = x 2 + y 2 . Then,

| ẋ| 2 = |(-σ1 + ωi)x| 2 = |σx| 2 + |ωix| 2 = |x| 2 (σ 2 + ω 2 ).
We also have the polar decomposition of the geometric product

∇H(x) ẋ = ∇H(x) • ẋ + ∇H(x) ∧ ẋ = |x|| ẋ|(1 cos θ + i sin θ)
where

1 cos θ := x • ẋ |x|| ẋ| = 1 -σ √ σ 2 + ω 2 , i sin θ := x ∧ ẋ |x|| ẋ| = i -ω √ σ 2 + ω 2 .
Then, using the left identity for cos θ, the relative dissipation rate is

d dt ln H(x) = Ḣ(x) H(x) = 2 x • ẋ x • x = 2 |x|| ẋ| |x| 2 1 cos θ = 2 | ẋ| |x| 1 cos θ = 2 σ 2 + ω 2 1 cos θ = -2σ.
Likewise, using the right identity for sin θ, the relative momentum is

L(x) H(x) = Ȧ H(x) = 2 x ∧ ẋ x • x = 2 |x|| ẋ| |x| 2 i sin θ = 2 | ẋ| |x| i sin θ = 2 σ 2 + ω 2 i sin θ = -2iω.
Dividing both expressions, we obtain the dissipation angle θ given by

Ȧ Ė = i tan θ = i ω σ . (9.29) 

Maxwell equations (in empty space)

As a last example, due to [Mac17, eq. (3.1)], one can show, using GA, that Maxwell equations can be elegantly unified as an instance of the wave equation ∂ 2 t F = ∇ 2 F over a multivector field F (t, x, y, z) ∈ G 3 . The derivation, not directly relevant to this thesis, is reproduced in appendix F.3 p.322. We mention this example to highlight the kind of paradigm shift that can be expected from adequate use of Geometric Algebra.

Port-Hamiltonian systems using Geometric Algebra

A direct translation in GA of an input-state-output port Hamiltonian system (see definition 1.22 p.33) is given by ẋ

= (J -R)(∇H(x)) + G(u) y = G * (∇H(x)) (9.30) 
with vectors u, y ∈ R p , x ∈ R n , and linear maps

J ∈ L(R n , R n ), R ∈ L(R n , R n ), G ∈ L(R p , R n ),
satisfying skew-symmetry J * = -J, and

R * = R 0. The Hamiltonian is H ∈ C 2 (R n , R), the gradient is ∇ = n e n ∂ ∂x n
expressed in the canonical basis {e k } of R n such that vectors are written as x = k e k x k .

At this point, nothing has changed, we only abstracted matrices by their linear maps. In this section we are interested in the implementation of the linear maps J, R, G, G * using elements of geometric algebra (exclusively) instead of their matrix representation.

Implementation of skew-symmetric maps

We have already seen during the GA introduction in (9.9) that skew-symmetric maps J can be implemented as a contraction with a bivector J so that (choosing right contraction) in GA 22

J(∇H(x)) = J • ∇H(x) = 1 2 J∇H(x) -∇H(x)J . (9.31) 

Implementation of symmetric positive definite maps

Using a linear algebra argument, a possible strategy to implement a symmetric positive (semi-)definite map R = R * 0 is to use its eigenvalue decomposition R = QΛQ * with (real) orthonormal eigenvectors {q i } r i=1 (r ≤ n) and corresponding (positive real) eigenvalues {λ i }. This way, for a vector v, projecting on q i , scaling by λ i and synthesising on q i we obtain

R(v) = r i=1 q i λ i (q i • v) a = r i=1 q i λ i q i v + vq i 2 b = r i=1 λ i v + q i vq i 2 c = r i=1 λ i v + M q i (v) 2 d = r i=1 λ i P q i (v).
Where we used a) the definition of the inner product (9.1), b) the signature of euclidean vectors q 2 i = 1, c) the definition of reflection in a unit line (9.14) and d) the definition of projection on a unit vector (9.11). This representation explicitly emphasises that every SPD transforms determines a scaling in the direction of its eigenvectors (but requires that we know them).

Implementation of non square linear maps

To implement maps G ∈ L(R p , R n ) (and their dual G * ) a similar approach is to use the singular value decomposition G = UΣV * , with left and right eigenvector {µ i }, {ν i } and corresponding singular values {σ i } r i=1 , with r ≤ min(p, n) so that for a vector x

G(x) = r i=1 µ i σ i (ν i • x)
22. Note the skew-symmetric similarity with the results from [Cel] and [MQR99, eq. (1.

3)]: for a vector field f (x) with nonzero invariant H(x), the structure matrix of the ODE is J

(x) = 1 2 f (x) ∇H(x) T ∇H 2 -∇H(x) ∇H 2 f (x) T .
Since the spaces R n and R p are distinct, we cannot say more about its geometric interpretation unless we embed both spaces in a larger space in which we can establish relations.

Going further: unifying transforms

So far we have managed to represent the geometric transform that we needed for PHS modelling and to obtain some geometric interpretation. However, compared to the simplicity of matrix linear algebra, this is still not sufficient: we had to use different patterns and strategies for each type of transform, we lack a unifying framework. An elegant solution to this problem has been proposed in [START_REF] Doran | Lie groups as spin groups[END_REF], which states that every Lie algebra can be represented as a bivector algebra; hence every Lie group can be represented as a spin group. The general idea is the following: one can represent general linear transforms

A : R n → R n , x → y ∈ GL(n, R),
by representing a vector x ∈ R n by its image x in R n,n . This is obtained by using an embedding map φ : R n → R n,n as

x = φ(x) ∈ R n,n ⊂ G(R n,n ).
The inverse operation is obtained through a projection π : R n,n → R n such that π is a left inverse of φ. In other words, π

• φ = I Rn so that π = φ -1 .
The reason is that, in the space R n,n , we can represent the image A of any linear transform A on R n by an orthogonal transform implemented by a spinor 23 

R ∈ Spin(n, n) ⊂ G(R n,n ) as A : x → y = R( x) = R x R -1 , (9.32) 
(see (9.16) and (9.12) for the GA definition of orthogonal transforms (i.e. rotations and reflections) using spinors). Going back to R n , the transform A is realised by

A : x → y = φ -1 A φ (x) . (9.33) 
It can be summarised by the commutation diagram

x ∈ R n y ∈ R n x ∈ R n,n y ∈ R n,n A A φ π = φ -1 (9.34) 
The "beauty" in this approach is unification: every linear transform becomes an orthogonal transform, unifying for example rotations (bivectors squaring to -1) and hyperbolic rotations (bivectors squaring to 1). We do not have enough space to develop this path further and point to the main reference [START_REF] Doran | Lie groups as spin groups[END_REF], see also the book [DGL + 03, ch.11].

Coincidently, we note that in chapter 1, 1.3.1 p.18, on Dirac structures (and subsequently in 1.4 35 on wave variables), we also had to work using the indefinite metric of the space R n,n to encode the duality of effort and flow spaces (with the consequence that incident and reflected wave spaces corresponds respectively to the positive and negative polarisations of R n,n ).

Note that the space G(R n,n ) and its geometry will be explored further in the next sections, where we revisit flow-effort spaces, incident-reflected wave spaces and Dirac structures with the tools of geometric algebra.

Representing Dirac structures with Geometric Algebra

In this section, we revisit the representation of Dirac structures, a cornerstone of PHS modelling (defined in subsection 1.3.1 p.18), using Geometric Algebra (see [START_REF]Hamiltonian mechanics with geometric calculus[END_REF] for Hamiltonian Mechanics). We have already seen in subsection 1.4.2 p.36 that the natural geometry of the bond space B = F ⊕ E is that of an indefinite inner product space identifiable with R n,n (i.e. its metric is not positive definite, see def. C.14 p.283). It can be separated either into euclidean and anti-euclidean wave subspaces W + , W -or into dual flow and effort spaces F, E. Our goal here is to: 1) exhibit bases of these subspaces, 2) choose the respective metric signatures so that the geometric product regenerates the quadratic form Q from equation (1.22) p.19 and the associated bilinear form •, • defined in (1.23) p.19, 3) extend the bond space B ∼ R n,n to the geometric algebra G n,n = G(R n,n ) and formulate Dirac structures in G n,n 24 , 4) show that GA can simplify the results and definitions on Dirac structures from subsection 1.3.1 p.18 thanks to its ability to multiply vectors.

Wave spaces as pseudo-euclidean subspaces of R n,n Following subsection 1.4.2, let W + = R n,0 be an euclidean space of incident wave vectors with basis {a i } n i=1 and W -= R 0,n an antieuclidean spaces of reflected wave vectors with basis

{b i } n i=1 such that B = W + ⊕ W -= R n,n . Any element of B can be represented as x = a + b, with a ∈ W + and b ∈ W -where a = n i=1 a i a i , b = n i=1 b i b i , (9.35) 
and where the basis vectors have the metric signature I 0 0 -I (see also [DHSVA93, eq.3.17]) i.e.

a i • a j = δ ij , a i • b j = 0, b i • b j = -δ ij . (9.36) 
Using the language of geometric algebra, we see that W + is a positive Euclidean space since its basis vectors square to one (a 2 i = 1), while W -is a negative Euclidean space whose basis vector square to minus one (b 2 i = -1). Note that the metric encodes the sign of waves.

Dual flow and effort spaces as null spaces of R n,n Define the flow space F with basis {f i } n i=1 and its dual, the effort space E, with basis {e i } n i=1 , through the change of basis

e i = a i + b i √ 2 , f i = a i -b i √ 2 , (9.37) 
so that any element of B = E × F can be (alternatively) represented as x = f + e where

f = n i=1 f i f i , e = n i=1
e i e i .

In this basis, we have the following metric signature, encoding the duality of the subspaces E, F

e i • e j = 0, e i • f j = δ ij , f i • f j = 0. (9.39) 
The subspaces E, F are said to be null spaces 25 and vectors e, f are said to be null vectors [START_REF] Pozo | Geometric algebra in linear algebra and geometry[END_REF]. Indeed, using geometric algebra, one easily finds that their basis vectors all square to zero (e 2 i = 0 = f 2 i ). This is also called a Witt basis [START_REF] Pozo | Geometric algebra in linear algebra and geometry[END_REF], [START_REF] Doran | Lie groups as spin groups[END_REF]p.8].

Proof. Using the metric signature (9.36) of W + , W -, in the variable change (9.37), we have

e i • e j = 1 2 (a i + b i ) • (a i + b i ) = 1 2 (δ ij + (-δ ij )) = 0, e i • f j = 1 2 (a i + b i ) • (a i -b i ) = 1 2 (δ ij -(-δ ij )) = δ ij , f i • f j = 1 2 (a i -b i ) • (a i -b i ) = 1 2 (δ ij + (-δ ij )) = 0.
Quadratic form and power Let x be an element of the bondspace B. To replicate the quadratic form defined in equation (1.22) p.19, we define

Q(x) := x 2 . (9.40)
a) Flow and effort decomposition: Consider an element x = e + f with e ∈ E and f ∈ F. Then using the metric signature from equation ( 9.39) and the definition of the inner product of two vectors (9.1), we recover that the quadratic form represents power through the duality product of flow and efforts (see equation (1.22)).

Q(x) = (e + f ) 2 = e 2 =0 +ef + fe + f 2 =0 = 2 e • f .
b) Wave decomposition: Consider an element x = a + b, with a ∈ W + , and b ∈ W -. Then, from the metric (9.36), we recover that power is proportional to the difference between the squared (Euclidean) norms of incident and reflected waves (see equation (1.59) p.37)

Q(x) = (a + b) 2 = a 2 + ab + ba =0 +b 2 = 1 |a| 2 -|b| 2 .
Canonical bilinear form and inner product Let x, y be two elements of B, following remark 1.2 p.19, we introduce the canonically defined bilinear form B through the polarization identity

B(x, y) := 1 2 Q(x + y) -Q(x) -Q(y) . (9.41) 
Expanding (9.41), it is immediate that B is identical to the GA inner product (9.1) p.241.

B(x, y) = 1 2 (x + y) 2 -x 2 -y 2 = xy + yx 2 = x • y. (9.42) 
a) flow and effort decomposition:

consider two elements u = e u + f u , v = e v + f v with e u , e v ∈ E and f u , f v ∈ F then B(u, v) = u • v = (e u + f u ) • (e v + f v ) = e u • f v + f u • e v
We recover the usual flow-effort representation of the symmetric bilinear form defined in definition 1.12 p.19. We note that equations (9.41), (9.42) do not rely on a particular choice of coordinates. This highlights the interest of GA to manipulate coordinate-free representations.

b) wave decomposition:

consider two elements u = a u + b u , v = a v + b v , with a u , a v ∈ W + and b u , b v ∈ W -
then the inner product between u and v is equal to the difference between the Euclidean inner products of their incident and reflected waves.

B(u, v) = u • v = (a u + b u ) • (a v + b v ) = a u , a v R n -b u , b v R n .

Dirac structures

Now that the geometric structure of the indefinite inner product space(see definition C.14 p.283) is setup, we can give the following GA definition of a Dirac structure Definition 9.3 (Dirac structure (GA)). A Dirac structure D in B ∼ R n,n , is a self-orthogonal subspace of dimension n, i.e. a maximal subspace of vectors squaring to zero (for the GA product)

D = x ∈ B | x 2 = 0 , dim D = n. (9.43) 
A Dirac structure D is said to be a null space (or a maximal isotropic space) and its elements are said to be null vectors.

Example 9.2. The following are examples of Dirac structures (see [START_REF] Gualtieri | Generalized complex geometry[END_REF])

• Let x ∈ D = F, then x 2 = 0, this corresponds to the constraint e = 0 (short circuit),

• Let x ∈ D = E, then x 2 = 0, this corresponds to the constraint f = 0 (open circuit),

• More generally (see [Gua11, ex 2.4]), let V ⊆ F be any subspace of F and define its annihilator space in E by Ann(

V ) := e ∈ E | e • f = 0, ∀f ∈ V , then by construction D = V ⊕ Ann(V ) is a Dirac structure since for x ∈ D we have x 2 = (f + e) 2 = 2e • f = 0.

Parametric representation of Dirac structures

We revisit the representation of Dirac structures from a GA perspective. Let λ ∈ R n be a parametrisation of a Dirac structure so that

D = x ∈ B | x = X(λ), ∀λ ∈ R n , (9.44) 
with X : R n → D ⊂ B structured as X = E ⊕ F, with an effort operator E : R n → R(E) ⊂ E, and a flow operator F : R n → R(F) ⊂ F. The Dirac structure constraint implies that x 2 = 0. Since E and F are null spaces, only the cross-terms do not vanish so that we have

0 = x • x = (E ⊕ F)(λ) • (E ⊕ F)(λ) = F(λ) • E(λ) + E(λ) • F(λ) = λ F * E + E * F|λ R n .
we recover that Dirac structures should satisfy the constraint

F * E + E * F = 0 and dim R(D) = n from equation (1.27a) p.20.
Example 9.3. We want to represent (using GA) the Dirac structure induced by the hybrid skew-symmetric map

     f 1 f 2 e 3      =      0 0 -1 0 0 -1 1 1 0           e 1 e 2 f 3      .
To do so, introduce the map J(x) = J • x = 1 2 (Jx -xJ) defined by the bivector J = -(f 1 + f 2 ) ∧ e 3 . We verify using GA that the mapping is indeed

J(f i ) = -(f 1 + f 2 )δ i3 , J(e i ) = (δ 1i + δ 2i )e 3 .
so that for x = e 1 e 1 + e 2 e 2 + f 3 f 3 , the conjugated vector is

J(x) = f 1 f 1 + f 2 f 2 + e 3 e 3 .
Proof. Using (a) the definition of the bivector contraction J • x, (b) the definition of bivector J, (c) commutation (with sign change) and factorisation of (f 1 + f 2 ) on the left (respectively of e 3 on the right), (d) the definition of the interior product and (e) the metric, we obtain

J(f i ) a = Jf i -f i J 2 b = - (f 1 + f 2 )e 3 f i -f i (f 1 + f 2 )e 3 2 c = -(f 1 + f 2 ) e 3 f i + f i e 3 2 d = -(f 1 + f 2 )(e 3 • f i ) e = -(f 1 + f 2 )δ 3i , J(e i ) = Je i -e i J 2 = - (f 1 + f 2 )e 3 e i -e i (f 1 + f 2 )e 3 2 = (f 1 + f 2 )e i + e i (f 1 + f 2 ) 2 e 3 = (f 1 + f 2 ) • e i e 3 = (δ 1i + δ 2i )e 3 .
9.5 Exploring the geometry of R n,n with Geometric Algebra Indefinite inner product spaces are characterised by an involution. We follow the derivation of the main involution of G n,n from [START_REF] Doran | Lie groups as spin groups[END_REF] and [DGL + 03, p.413] to study its properties and their consequences. Introduce the linear duality map between W + and W -26 

K(x) = x • K, for the bivector K = n i=1 a i ∧ b i . (9.45) Proposition 9.1. The transform K is an involution. It satisfies (K 2 )(x) = x and K(a i ) = b i , K(b i ) = a i . (9.46)
It is a reflection in the subspace E swapping spaces W + and W -(see figure 9.10).

Proof. Using (a) associativity of the inner product, (b) the metric from (9.36) and (c) anticommutativity of a i b j = -b j a i , we obtain.

K(a i ) = a i • K a = j (a i • a j )b j b = b i , K(b i ) = b i • K = j b i • a j b j c = j (-b i • b j )a j b = a i . It follows that K 2 (a i ) = a i and K 2 (b i ) = b i so that K 2 (x) = x.
Definition 9.4 (K-dual). For any vector x ∈ R n,n , we define its K-dual a by x = K(x).

a. This construct is analog to the complex-conjugate of a complex number.

Using (9.37) and (9.46), we find that the eigenvectors of K are given by (see figure 9.10)

K(f i ) = K a i -b i √ 2 = K(a i ) -K(b i ) √ 2 = b i -a i √ 2 = -f i , (9.47a) 
K(e i ) = K a i + b i √ 2 = K(a i ) + K(b i ) √ 2 = b i + a i √ 2 = e i . (9.47b) 
This induces a splitting R n,n = F ⊕ E according to positive and negative eigenvalues of K.

Proposition 9.2. The projectors a P F : F ⊕ E → F, and P E : F ⊕ E → E are defined by

P E (x) = 1 2 (x + x), P F (x) = 1 2 (x -x). (9.48) 
a. similarly to the real and imaginary part of a complex number

Proof. Take the sum and differences of equations (9.47a) and (9.47b).

The involution K is said to generate a null structure27 because K(x) has opposite signature to x (use eq. (9.36))

āi • āj = b i • b j = -δ ij , āi • bj = b i • a j = 0, bi • bj = a i • a j = -δ ij , (9.49) 
so that one can decompose x as the sum of two null vectors x = x + ⊕ x -with x -= P F (x), and x + = P E (x).

E i f i e i = K(e i ) K(f i ) a i = K(b i ) b i = K(a i ) F i f i = -K(f i ) e i -K(e i ) a i b i -K(a i ) -K(b i ) Figure 9
.10 -Effects of the main involution K and -K on basis vectors. They correspond respectively to reflections in the spaces E i and F i . Note that contrary to the Euclidean case, here contraction of vectors with bivector K yields a reflection instead of a 90 degrees rotation.

Subspaces

Basis functions {a i } span the euclidean space W + ∼ R n,0 while the basis {b i } span the anti-euclidean space W -∼ R 0,n so that R n,n admits the decomposition

R n,n = W + ⊕ W -.
Following [START_REF] Doran | Lie groups as spin groups[END_REF]3.19a-c], we can construct (p + q)-blades representing subspaces R p,q W p,q := A p B † q = A p ∧ B † q (9.50)

where A p := a 1 . . . a p , B q := b 1 . . . b q . Each blade defines a projector P p,q : R n,n → R p,q defined by (9.11) as

P p,q (x) = (x • W p,q )W -1 p,q = 1 2
x -(-1) p+q W p,q xW -1 p,q .

Rotor description of the flow-effort to wave variables change

We want a GA realisation of the flow-effort to wave variable change (see (1.56) p.35)

  a b   =    1 √ 2   1 1 -1 1      rotation R(•)   Z 1/2 0 0 Z -1/2   squeeze S(•)   f e   , with port resistance Z > 0. (9.51) 
To simplify, we only consider a single port. We see this variable change as a sequence of two inner-product preserving (and thus power-preserving) basis changes representing the same vector

x = f f + ee S -→ x = f f + ẽẽ R -→ x = aa + bb.

Hyperbolic squeeze mapping

Since the metric of this space is indefinite, it is easier to start with hyperbolic rotations.

Proposition 9.3. The bivector B = a ∧ b = f ∧ e is a generator of hyperbolic rotations so that the squeeze mapping S mapping ( f , e) to ( f , ẽ) can be realised by a rotor S with hyperbolic angle ϕ as

S(x) = SxS -1 , with S = e Bϕ/2 and ϕ = -ln(Z). (9.52) 
Proof. 1) since a • b = 0 and ( e) 2 = ( f ) 2 = 0, we have the identity B = a ∧ b = ab = f ∧ e: a ∧ b = ab = 1 2 ( e + f )(e -f ) = 1 2 (( e) 2 + f e -e f + ( f ) 2 ) = 1 2 ( f e -e f ) = f ∧ e.
2) We show using Taylor series expansion of exp and grouping terms that

exp(Bϕ) = n (Bϕ) n n! = 1 k ϕ 2k 2k! + B k ϕ 2k+1 (2k + 1)! = 1 cosh(ϕ) + B sinh(ϕ). (9.53) 
where28 B 2k = 1 and

B 2k+1 = B since B 2 = (ab)(ab) = (ab)(-ba) = a(-b 2 )a = aa = 1.
3) It follows by substituting Ba = aba = -b, Bb = abb = -a in the previous result that e Bϕ a = a cosh(ϕ) -b sinh(ϕ), e Bϕ b = b cosh(ϕ) -a sinh(ϕ).

4)

We finally show that f , e are eigenvectors of left multiplication by e Bϕ with eigenvalues e ±ϕ ,

f := e Bϕ f = e Bϕ a -b √ 2 = a -b √ 2 (cosh ϕ + sinh ϕ) = e ϕ f . ẽ := e Bϕ e = e Bϕ a + b √ 2 = a + b √ 2 (cosh ϕ -sinh ϕ) = e -ϕ e.
5) From aB = aab = b, bB = bab = a, and 3), we have Bx = -Bx for any vector x. This yields the commutation rule e Bϕ x = xe -Bϕ so that we have the symmetrised representation

S(x) = e Bϕ x = e Bϕ/2 2 x = e Bϕ/2 xe -Bϕ/2 .
6) The constraint x = f f + ee = f f + ẽẽ = e ϕ f f + e -ϕ eẽ yields f = e -ϕ f and ẽ = e ϕ e so that we must choose e -ϕ/2 = Z 1/2 =⇒ ϕ = -ln(Z). Choosing S = e Bϕ/2 completes the proof.

Rotation by π/4

Geometrically, the transform R is a rotation of angle θ = π/4 (see fig. 9.10). However, because of the indefinite metric, the geometric intuition of euclidean space is lost 29 . We need another strategy: instead of exponentiating a bivector to generate a rotation, we compose reflections.

From (9.51), the action of R, yields the following identity on basis vectors

R(e) = e -f √ 2 = b, R(e) = e + f √ 2 = a. (9.54) 
First, we introduce the duality map between e and f 30 Proposition 9.4. Let T(x) = axa denote reflection in vector a. Then T is an involution acting as the duality map between f and e such that

T(e) = f , T(f ) = e. (9.55) 
Its eigenvectors are respectively a, b with eigenvalues +1, -1.

Proof. Using the metric a 2 = 1 and anti-commutation ab = -ba we can show that

T(e) = aea = a a + b √ 2 a = a -b √ 2 = f , T(f ) = afa = a a -b √ 2 a = a + b √ 2 = e.
and also that T(a) = aaa = a and T(b) = aba = -aab = -b.

Then composing K and T, we have the following result.

Proposition 9.5. Let K, T be the involutions defined by (9.45) and (9.55). Then R : R n,n → R n,n satisfies (9.54). It can be written as

R(x) = 1 √ 2 x + K(T(x)) . (9.56) 
Proof. using K(e) = e and K(f ) = -f from (9.47a)-(9.47b), we prove that (9.54) is satisfied

R(e) = 1 √ 2 e + K(T(e)) = 1 √ 2 e + K(f ) = 1 √ 2 (e -f ) = b, R(f ) = 1 √ 2 f + K(T(f )) = 1 √ 2 f + K(e) = 1 √ 2 (f + e) = a,
See figure 9.10.

29. We have seen in (9.53) that bivector ab squares to 1 instead of -1 generating hyperbolic rotations. 30. This is analog to (9.55), the duality map K between a and b.

Conclusion

In this chapter, an introduction to Geometric Algebra and its constructs has been presented in section 9.1, We have briefly presented some motivating examples in 9.2 to highlight both invariants and the unification power of GA. We note the emergence of a multi-vector field potential and the perspective of working with multivector ODE which seems like a promising direction of research in particular for the case of dissipative systems for which the energy is no longer an invariant.

In section 9.3 we have briefly considered the encoding of input-state-output PH-ODE using GA. We have proposed two strategies to encode skew-symmetric and symmetric semi-positive definite maps. A more promising perspective is to embrace indefinite inner product spaces so that every linear transform can be represented by an orthogonal transform (the canonical representation of orthogonal transforms in GA uses spinors).

In section 9.4, we continue our journey, this time using GA to encode Dirac structures. As in chapter 1, encoding the duality product of flows and efforts induces an indefinite metric so that the bond space is isomorphic to the pseudo-euclidean space R n,n . We show (see definition 9.3 p.256) that with this GA formulation, Dirac structures are simply subspaces of R n,n whose elements square to 0 (sometimes called null-vectors in the litterature) independently of their internal representation (flow-effort or incident-reflected waves).

In section 9.5, we have a closer look at the geometry of R n,n . By contrast with the euclidean space R n , we note that in indefinite signature, contraction with a bivector yields a reflection instead of a rotation so that a significant part of the geometric intuition developed in section 9.1 (which relied on euclidean geometry) has to be abandoned.

Finally, in section 9.6, we consider a pure spinor representation of the flow-effort to power wave variables change, as a sequence of two power-preserving linear transforms. The power-preserving hyperbolic squeze mapping in the wave variable change is easily found to be an hyperbolic rotation. However, unintuitively (because of the indefinite metric), we had to rely on a sequence of two reflections to implement the linear combination of flows and efforts to wave variables (which looks like a simple π/4 rotation in euclidean space).

This chapter present some initial work that needs to be further developed and matured. It still lacks the elegance usually associated with GA. A main difficulty is that intuitions from euclidean geometry are no longer valid in non-euclidean spaces. Another difficulty is that transcoding concepts into a different mathematical language does not yields simplification by itself. This is only a preliminary condition 31 . I hope that this chapter motivates more people to adopt Geometric Algebra for PHS and find simplifying answers to these questions.

General Conclusion

This thesis considers the power-balanced modelling and simulation of nonlinear audio circuits using the port-Hamiltonian framework. We proposed "virtual analog" simulation methods for both PH-ODE and PH-DAE that a) operate in the continuous-time domain, b) can reproduce the regularity of physical trajectories c) can be of high-accuracy order, d) preserve the power-balance over time-frames (and thus energy or passivity).

Contributions

Continuous-time VA signal-processing framework and anti-aliasing In chapter 3, we propose a "virtual analog" signal processing chain. In order to address causality of computations, bandwidth expansion and compatibility with numerical schemes, this toolchain operates with non-bandlimited signals having instead a Finite Rate of Innovation. To this end, we use generalised sampling theory. We propose input-output reconstruction in B-spline spaces based on the literature on B-spline signal processing. We also propose an exact implementation of ARMA filtering for piecewise-defined input signals. This allows to benefit from all the literature on analog filter design for band-limiting and classical resampling (Butterworth, Chebyshev, elliptic filters, etc.).

(S)PAC methods In chapter 4, we propose a class of (symmetric) power-balanced adaptive collocation methods called (S)PAC of arbitrary regularity order which are (linearly) high-order accurate. They can be interpreted as a generalisation of Hermite-Obreshkov methods. Their analysis (restricted here to the linear case) shows that the power-balance cannot be unconditionally preserved. However, it is remarkable that the power-balanced orbits of PAC(1) are closer to the orbits of the exact solutions than the orbit of the mid-point method (see figure 4.2 p.111). While (S)PAC methods admit rather simple formulations, their implementation is difficult in general (implicit and nonlinear in its parameters). For this reason, this path is not explored further in this thesis.

Projected power-Balance condition In section 5.1.1, we propose continuous-time projected Dirac and resistive structures over time-frames (definition 5.1 p.119). Then, in theorem 5.1, we establish a sufficient condition on projectors so that the power-balance is satisfied. This implies energy conservation for Hamiltonian systems and passivity for PH-ODE and PH-DAE (see corrolaries 5.1, 5.2, 5.3 p.120). The power balance condition is quite permissive, which leaves room on the choices of bases and on the design of projectors to obtain additional properties. We outline several prospective scenarios in section 5.1.2, including partitionable systems. In particular, the power-balance condition is satisfied for scalar orthogonal (self-adjoint) L 2 projectors32 .

RPM Choosing the scalar orthogonal projection strategy, we introduce Regular Power-balanced Methods for both PH-ODE and PH-DAE. Regularity is achieved through supplementary multiderivative boundary conditions. We show in section 5.2.7, that this induces nested projections in the Sobolev space H k , for which Peano error kernels are detailed. We study existence, uniqueness and accuracy order for PH-ODE by reformulating RPM using the theory of CSRK methods. To this end, we rely on the reproducing kernel of the projector and its properties to perform the translation. We show that accuracy order 2p is automatically reached if the (orthogonal) projector reproduces polynomials of order p, relating CSRK simplified order conditions with Strang-Fix conditions. This results explains why choosing polynomial spaces is optimal (and the default choice) to construct general-purpose numerical methods (but this is not the only one, see the cosine basis example in section D.7 p.297). It is also shown in the examples of sections 5.5.1, 5.5.2 that higher-order projection yields higher frequency bandwidth and ultimately less aliasing (a consequence of the higher rate of innovation). To leverage this result, it is necessary to not only know the value of the trajectory on the boundaries of time-frames, but to continuously know the values of the trajectory in-between 33 . Generalised frequency bandwidth is revisited in depth in section 8.6 p.221. As a numerical challenge, we simulate an equaliser whose resonance frequency is beyond the Nyquist frequency. We formalise RPM projection for linear state-spaces as a mixed continuous/discrete Legendre filterbank whose Z-domain and Laplace transform are detailed. We show that the resonance can be simulated without aliasing and that errors in the audible bandwidth decrease faster with increasing order than with oversampling. This evidence supports our thesis.

Energy-preserving exponential integrators In chapter 6, we consider projection-based conservative/passive exponential integrators. To motivate the choice of exponential integrators, we show that they naturally arise when trying to minimise the L 2 norm of the vector field approximation error using functional Newton iteration. We introduce a new tool: the doublyprojected AVF discrete gradient which can be applied not only to piecewise affine trajectories but to trajectories in the Sobolev space H 1 (including exponential trajectories). Based on this, we provide an alternate proof (see theorem 6.1 p.163) that the Exponential AVF method is both unconditionally energy-preserving and dissipating and we provide a geometric interpretation. This resulted is extended to PHS by adding external ports. Finally, based on the results of chapter 5, we propose an extension strategy to higher projection orders. However, this extension is no longer exact for linear systems (one of the main advantages of exponential integrators).

Passive operational amplifier modelling In chapter 7, we propose passive operational amplifier models for PHS (with saturation and explicit power supply ports). Surprisingly, the passivity of OPA models seems to have been overlooked in the literature. First an idealised memoryless conservative model is proposed and used to simulate Sallen-Key filters. Its constitutive law is shown to be a nonlinear modulated Dirac structure whose modulation coefficient is linked to output current splitting and power supply saturation. Then, we consider the limit case of an infinite amplifier gain, which requires the use of set-valued relations. The linear branch of this relation corresponds to the so-called nullors in the litterature, while other branches corresponds to the OPA in saturation. Alternatively, we show (using across port variable changes) that this relation can be continuously parametrised by the sum of input and output voltages (see section 7.2.2 p.192). Finally, to model slew-rate and limited bandwidth, we sketch the structure of a passive three-stage grey-box OPA whose complete realisation is left for further research.

33. Indeed, increasing accuracy may lead to increased aliasing if the trajectory is simply sampled without being bandlimited by an antialiasing filter.

Perspectives (S)PAC methods

• Complex time (and collocation points). On several occasions (suggested by mathematical equations) 34 we felt the need to give sense to complex-valued time. In particular, for (S)PAC methods, once the dissipation rate is too high, the power-balance is no longer solvable over the reals. However it remains solvable over complex numbers. Imaginary time has been popularised by Stephen Hawking [START_REF] Hawking | The universe in a nutshell[END_REF] and is sometimes used in special relativity and quantum mechanics. However, using complex-time (which we feel should not be motivated exclusively by mathematical intuition) has far-reaching consequences which are beyond the scope of this thesis, but it remains a fascinating subject of exploration.

• (S)PAC implementation. In thesis, we have favoured the functional projection approach of chapter 5 (which is more generally applicable and linear in the estimation of parameters). However, we have seen that, despite some implementation challenges, (S)PAC methods have interesting properties (improved orbits and dissipation rate, no quadrature involved, built-in smoothness, etc) which can motivate further work to address these issues.

• Minimizing the power-balance error In (S)PAC, when the power-balance cannot be satisfied, we could relax the power-balance constraint by minimising instead the power-balance error. Indeed, in RPM, the dissipation rate is no longer exactly satisfied (see p.157), but the residual error is such that energy is still unconditionally preserved (or dissipated).

Continuous-time projection methods and RPM

• pH-DAE existence and uniqueness conditions In section 5.3, p.135, we have considered existence and uniqueness conditions of pH-DAE. To this end, we proposed intermediate results to prove the invertibility of the Jacobian in Newton iteration. However, while convergence is observed in practice, further work is required to obtain theoretical result.

• Joint power-balance and C k -smoothess A long standing problem during this thesis has been the joint-preservation of both power-balance and smoothness. On one hand, (S)PAC methods show that joint-preservation of both power-balance and smoothness is possible and beneficial for accuracy (but the existence domain is bounded and the implementation difficult). On the other hand, for RPM, orthogonal L 2 projection is a powerful tool to address both power-balance and accuracy (but we had to rely on nested projections). To combine SPAC and RPM, we tried to explore the design of doubly-orthogonal bases 35 (see [START_REF] Bergman | The kernel function and conformal mapping[END_REF][START_REF] Shapiro | Stefan bergman's theory of doubly-orthogonal functions. an operator-theoretic approach[END_REF]) in both L 2 and H k . However, we faced several issues that require further work: (i) double-orthogonality requires the exact resolution of functional eigenvalue problems, (ii) the Sobolev inner products we are interested yield not only differential operators, but also involve the boundary trace operator (see (5.9) p.122), (iii) there is no guarantee that generated bases have the polynomial reproduction property (see section 5.2.6 p.128).

• Projector design. An extension of (projected passivity) theorem 5.1 p.119 which is suggested in section 5.1.2, consists in substituting nonzero entries by projections and (possibly) zeros by rejections (I -P) in structure matrices J and R, so that resulting matrix operators 34. Computing projections using complex contour integrals is another example. 35. For example, prolate-spheroidal wave functions [START_REF] Slepian | Prolate spheroidal wave functions, fourier analysis and uncertainty-I[END_REF] are doubly-orthogonal in both L 2 (-1, 1) and the Paley-Wiener subspace of bandlimited function in L 2 (R).

J , R are respectively skew-adjoint and self-adjoint. This setting is less constrained than scalar orthogonal projection (used in RPM). We may exploit the additional degrees of freedom to preserve additional properties (for example joint smoothness and passivity as mentioned above).

• Fast computation of projections. We have seen in section 5.4.1 p.140 that for affine trajectories, using anti-derivatives, we have closed-form formulas to compute projection coefficients (e.g. Legendre expansions). However, for arbitrary trajectories (and nonlinearities), we have to rely on quadratures with a number quadrature nodes sufficiently high to reach machine precision. This can make the implementation cost of high-order schemes prohibitive (specially for non-smooth nonlinearities). It is thus desirable to have either more general exact closed-form integration results or fast O(n log(n)) implementations of projections (as in the compuation of FFT, DCT, etc.). To this end, the following reference [START_REF]A fast and simple algorithm for the computation of legendre coefficients[END_REF], proposes fast O(n log(n)) Legendre expansion, which looks promising for the implementation of high-order power-balanced methods based on time-domain projection. while increasing order without deteriorating audio quality (in particular aliasing)? Indeed, if we can trade step size, against order, then we can simulate several blocks of input-output samples at once and amortise the cost of iterative solvers. To this end, the V-system 36 seems like a promising basis to consider: its basis functions are orthogonal in L 2 (for power-balance), have the polynomial reproducing property (for time-stepping accuracy) and satisfy wavelet multi-scale similarity (for frequency resolution).

• Implicit constraints and Lagrangian submanifolds A theoretical perspective, is to generalise time-continuous projection methods to constrained PHS which are no longer described by Hamiltonians, but by Lagrangian submanifolds (see [START_REF]Generalized port-Hamiltonian DAE systems[END_REF][START_REF] Gernandt | Port-Hamiltonian formulation of nonlinear electrical circuits[END_REF]). As a partial answer to this question, we proposed in [START_REF]Fully-implicit algebro-differential parametrization of circuits[END_REF] a fully-implicit generalisation of time-continuous projection for PH-DAE (reproduced in appendix) where PHS are no longer required to be in semi-explicit DAE form 37 .

Exponential integrators

• Existence, uniqueness and stiff order conditions. In this thesis, we focused on the powerbalance of exponential power-balanced methods. By analogy with RPM, higher projection orders are expected to yield higher time-stepping accuracy. However, this intuition, as well as existence and uniqueness conditions, remains to be established quantitatively.

• Linearly-exact high-order extension. To extend the EAVF method to higher projection order, we had to drop exact integration of linear systems. An obvious perspective is to consider alternate extension strategies that are linearly-exact.

• Exponential splines In chapter 3, we relied on B-spline signal processing theory [START_REF] Unser | B-spline signal processing. I. theory[END_REF][START_REF]B-spline signal processing. II. efficiency design and applications[END_REF]. Results from section 3.3.1 are based on exact exponential integration of linear 36. A basis inpired both by Haar wavelets and Legendre polynomials. 37. Both flow and effort laws can depend on hidden implicit control variables. And the method can directly address hidden constraints such as inductor loops and capacitor cutsets (i.e. causality conflicts).

ARMA filters. A natural perspective is to consider more closely the theory of cardinal exponential splines [UB05, Uns05] for both theoretical results and numerical implementation.

Operational amplifier

The architecture and specifications of a passive three-stages grey-box operational amplifier model have been detailed in section 7.3 p.195. White-box modelling of the differential input and push-pull output have been considered (see appendix D.9.3), but efficient minimal black-box realisations of each submodule (simple enough for real-time simulation) remain to be derived.

Wave-domain PHS simulation In section 1.4, as a first step to bridge the gap between Wave Digital Filters and port-Hamiltonian Systems (pursuing the work of Falaize [START_REF] Falaize | Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios: Approche par réseau de composants et formulation Hamiltonienne à ports[END_REF]), we formally study the scattering representation of elementary PHS components (storage, Dirac and resistive structures). Note that the combination of waves with the continuous-time projection of chapter 5 allows the definition of projected functional waves over each time-step. While the linear case and its port-adaptation are well-understood (through the Cayley transform), local port-adaptation of nonlinear storage or resistive structures for efficient simulations remains difficult (see [START_REF] Bernardini | Dynamic adaptation of instantaneous nonlinear bipoles in wave digital networks[END_REF]).

Geometric Algebra In chapter 9, we started translating PHS formulations into the language of Geometric Algebra. In this formulation, Dirac structures can be elegantly encoded as null spaces (see definition 9.3 p.256) i.e. subspaces whose vectors square to zero (called null vectors). In this formulation flow and effort spaces are also found to be null spaces while incoming wave spaces are positive spaces and outgoing wave spaces are negative spaces. While skew-symmetric matrices are easily encoded by bivectors, semi-positive dissipation matrices require more work to be replaced by GA constructs. A drawback of the indefinite metric of the bondspace, is that the flow-effort to waves transformation (which looks like a simple π/4 rotation using matrix notation) could not be intuitively expressed as the exponential of a bivector. We had to use the composition of two reflections instead. Further work is necessary to fully benefit from the GA framework and its mathematical encoding(s) of PHS. In particular, we think that a direct translation of reference [START_REF] Maks | A spinor approach to port-hamiltonian systems[END_REF] from Clifford to Geometric algebra notations could be a "rosetta stone" to emphasise the roles of spinors in PHS.

Time/frequency-warping and backward error analysis In this thesis, we have considered approximation of the vector field of varying orders. However, using backward-error analysis [START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary differential equations[END_REF], it is also possible to increase the approximation order of low order schemes: numerical dispersion is compensated by time/frequency warping. A well-known example in audio is the bilinear scheme: frequency warping is compensated by time warping the step size h so that the frequency of a simulated pole is exactly preserved. This approach has been extended to nonlinear systems (including discrete gradients methods) by Cieśliński in [CR10, [START_REF]Energy-preserving numerical schemes of high accuracy for one-dimensional hamiltonian systems[END_REF][START_REF] Cieśliński | Locally exact modifications of numerical schemes[END_REF][START_REF]Improving the accuracy of the AVF method[END_REF]. A perspective of this thesis is to incorporate similar mechanisms for error feedback within continuous-time projection methods38 .

Part V Appendix Lipschitz continuity A relation is Lipschitz continuous if there exists M > 0 such that v -u ≤ M y -x , ∀v ∈ R(y), u ∈ R(x) If M < 1 it is called a contraction, if M = 1 it
is said to be non-expansive. Mapping a pair of points by a contraction reduces the distance between them; mapping them by a nonexpansive operator does not increase the distance between them.

Fixed point

We say that x is a fixed point of F is F (x) = x. When F is non expansive, the set of fixed points of F ,

x ∈ dom F | x = F (x) = (I -F ) -1 ({0}),
is closed and convex. Moreover if F is a contraction and dom F = R n , the set of fixed-points of F is a singleton (uniqueness).

Monotone operator An operator R is said to be monotone (incrementally passive) when

v -u, y -x ≥ 0, ∀v ∈ R(y), u ∈ R(x)
Maximal monotone operator A monotone set-valued map R is maximal if there is no other monotone set-valued map whose graph contains strictly the graph of R. This situation is closely related to the notion of norm equivalence.

Strongly monotonous (coercive) operator

Example For example consider the relation

R(x) =        x + 1 x > 0 ∅ x = 0 x -1 x < 0 , R(x) =        x + 1 x > 0 [-1, 1] x = 0 x -1 x < 0 .
Then R is monotone but not maximal, while R is monotone and maximal. Furthermore R is strongly monotone with constant m = 1, but not Lipschitz. It is however one-sided Lipschitz with constant L = 1. We have cond(κ) = 1.

Resolvent the resolvent R A,α of a relation A is (dropping)

R A = (I + αA) -1

B.3 Elementary differentials and B-series

In the theory of B-series (see [START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary differential equations[END_REF]p.51] and [START_REF] Mclachlan | Butcher series: a story of rooted trees and numerical methods for evolution equations[END_REF][START_REF] Celledoni | Energy-preserving integrators and the structure of B-series[END_REF]), and multiderivatives Runge-Kutta methods, it is necessary to manipulate higher derivatives of the following systems

ẋ(t) = f (x(t)), ẋ(t) = f (t, x(t)), ẋ(t) = f (x(t), u(t)), y(t) = g(x(t), u(t)).
The Faa di Bruno formula is an important tool to manipulate derivatives of composed functions

d n dt n f (x(t)) = S n! m 1 ! . . . m n ! f (m 1 +...+mn) (x(t)) • j=1 n x (j) (t) j! m j (B.14)
where the sum is over the set

S = (m 1 , . . . , m n ) ∈ N n | 1 • m 1 + 2 • m 2 + . . . + n • m n = n .
For ODEs, we have an additional piece of information ẋ = f (x(t)). Substituting this information and using the Faa di Bruno Formula recursively gives rise to B-series.

Autonomous case

Let x 0 = x(t 0 ), it is customary to note f k (t)(x 0 ) := d k dt k f (x(t 0 + t)) (t)(x 0
) such that the local derivatives f k only depend on the evaluation point x 0 . For compacity, it is also customary to use 

f [•] = (Df ) x 0 [•], f [•, •] = (D 2 f ) x 0 [•, •], . . .
ẋ = f 0 := f = , ẍ = f 1 := f f = , x (3) = f 2 := f [f, f ] + f f f, = + , x (4) = f 3 := f [f, f, f ] + 3f [f f, f ] + f f [f, f ] + f f f f = + 3 + + + .
Using this notation, the exact flow of the solution x(t 0 + h) = Φ h (x 0 ) has the following series expansion (B-series when summing over rooted trees, Taylor series when summing for differentials)

Φ h (x 0 ) =   I + h ( ) + h 2 2! ( ) + h 3 3! + + h 4 4! + 3 + + + + . . .   (x 0 ).

Non-autonomous case

The non autonomous case is slightly more complicated since f depends on variables t, x. We use the shorthand notation

f t = ∂ t f , f tt = ∂ 2 t f , f tx = ∂ t ∂ x f .
Likewise by recursive substitution and application of the chain rule we obtain

ẋ = f 0 := f, ẍ = f 1 := f t + f x f, x (3) = f 2 := f tt + f tx f + f x f t + f xx [f, f ] + f x f x f.
1. The number of branches corresponds to the order of differentiation C.2 Banach, Hilbert and Sobolev spaces Definition C.12 (Banach Space). A Banach space (X, • ) is a complete normed vector space.

Definition C.13 (Hilbert space). A Hilbert space (H, •, • ) is a real or complex inner product space that is also a complete metric space with respect to the norm • induced by the inner product •, • .

Definition C.14 (indefinite inner product space). An indefinite inner product space (K, •, • , J) is a vector space K equipped with both a positive semi-definite inner product •, • and an indefinite inner product u, v J := u, Jv where the metric operator J is an involution (J 2 = I).

The following subsets are defined in terms of the square norm induced by the indefinite inner product

K 0 := x ∈ K | x, x J = 0 ,
neutral space (C.5a)

K + := x ∈ K | x, x J > 0 , positive space (C.5b) K -:= x ∈ K | x, x J < 0 negative space. (C.5c)
It is clear (see definition 1.3.1 p.18) that by definition Dirac structures are neutral spaces, while incident and reflected waves belong respectively to positive and negative spaces (see subsection 1.4.2 p.36). For more details on indefinite inner product spaces see [START_REF] Bognár | Indefinite inner product spaces[END_REF].

Definition C.15 (Base [START_REF] Christensen | An introduction to frames and Riesz bases[END_REF]). Let X be a Banach space, A sequence of vectors {e k } ∞ k=1 of X is a basis for X if, for each f ∈ X, there exists unique scalar coefficients c k (f )

∞ k=1 such that f = ∞ k=1 e k c k (f ). (C.6)
Definition C.16 (Adjoint operator [START_REF] Christensen | An introduction to frames and Riesz bases[END_REF]). Let U be a bounded operator from the Hilbert space (K, •, • K ) to the Hilbert space (V, •, • V ). The adjoint operator is defined as the unique operator

U * : V → K satisfying x, U y V = U * x, y K , ∀x ∈ V, y ∈ K. (C.7)
Definition C.17 (Lebesgue space). The Hilbert space L 2 (Ω, R) defined by

L 2 (Ω, R) = u ˆΩ u(t) 2 dt < ∞
and equipped with the inner product

u, v L 2 := ˆΩ u(t) • v(t) dt,

C.3 Strang-Fix conditions

Strang-Fix conditions, first formulated in [START_REF] Fix | Fourier analysis of the finite element method in Ritz-Galerkin theory[END_REF][START_REF] Strang | A Fourier analysis of the finite element variational method[END_REF] to analyse Finite Elements, are important in approximation theory, wavelets, and generalised sampling. They relates approximation order with polynomial reproduction, vanishing moments and spectral flatness of the approximation. Here we reproduce the following variant of Strang-Fix conditions from [START_REF] Chaplais | The Strang and Fix conditions[END_REF].

Preparations For h > 0, the scaling operator U h is defined by

(U h f )(x) = 1 √ h f x h .
Observe that it is norm preserving:

U h f L 2 (R) = f L 2 (R)
. More generally

(U h f ) (n) L 2 (R) = 1 h n f L 2 (R) .
Let P be an operator with localized shift-invariant1 kernel K(x, y) defined by (Pf )(x) = ´R K(x, y)f (y) dy, and define the scaled operator

P h = U h PU 1 h so that P h f L 2 (R) = PU 1 h f . Theorem C.2 (Strang-Fix conditions [Cha99]
). The following statements are equivalent:

A1. For any f ∈ H k (R), 1 h k P h f -f L 2 (R) → 0 when h → 0, (C.13) 
A2. (Accuracy order) For any f ∈ H k+1 (R) and h ≤ 1, for almost every x.

P h f -f L 2 ≤ Ch k f (k+1) L 2 (R) , (C.
A different formulation is proposed in [START_REF] Jia | A new version of the Strang-Fix conditions[END_REF] with an emphasis on the spectral flatness

Definition C.21 ([JL93]

). Let Φ be a finite collection of compactly supported functions in L 1 (R s ). We denote by span(Φ) the linear span of Φ and by S(Φ) the linear space spanned by the functions in Φ and all their shifts. Here by a shift we mean a multi-integer translate. Given a positive integer k we say that the collection Φ satisfies the Strang-Fix conditions of order k if there is an element ψ of S(Φ) such that

ψ(0) = 1, D λ ψ(2πα) = 0,
for all λ ∈ N s with |λ| < k and all α ∈ Z z \ ∅, where ψ denote the Fourier transform of ψ.

C.4 Shifted orthonormal Legendre polynomials

Some properties of shifted 2 orthonormal Legendre polynomials on Ω = (0, 1) are detailed below.

Rodrigues formula Legendre polynomials are defined explicitly by

P n (τ ) := √ 2n + 1 n! d n dτ n τ n (1 -τ ) n , ∀n ∈ N. (C.16)
Symmetry Shifted Legendre polynomials are symmetric (anti-symmetric) with respect to 1/2

P n (1 -τ ) = (-1) n P n (τ ).
Orthonormality They are orthonormal with respect to the L 2 inner product on [0, 1]

P m , P n = ˆ1 0 P m (τ )P n (τ ) dτ = δ mn , ∀m, n ∈ N.
Integration Their integral can be represented in the Legendre basis [START_REF] Tang | Time finite element methods: a unified framework for numerical discretizations of ODEs[END_REF][START_REF] Brugnano | Analysis of Hamiltonian boundary value methods (HBVMs) for the numerical solution of polynomial Hamiltonian dynamical systems[END_REF] by . for all α ∈ {0, 1} and m ∈ {0, . . . , k}.

ˆτ 0 P n (s) ds =      ξ 1 P 1 (τ ) + 1 2 P 0 (τ ) n = 0, ξ n+1 P n+1 (τ ) -ξ n-1 P n-1 τ n > 0, , ξ n = 1 2 √ 4n 2 -1 . (C.17
Example C.1 (Cubic Hermite splines). For k = 1, cubic Hermite splines are explicitly given by

h 0,0 (τ ) = 2τ 3 -3τ 2 + 1, h 1,0 (τ ) = τ 3 -2τ 2 + τ, h 0,1 (τ ) = -2τ 3 + 3τ 2 , h 1,1 (τ ) = τ 3 -τ 2 .
These functions are commonly used in Computer Assisted Design software and Computer Graphics to draw piecewise C k -continuous splines. The ϕ-functions, that appear when doing exact integration of an LTI system with polynomial input given in monomial form, are defined by the convolution integral

ϕ k (λ, t) = ˆt 0 e λ(t-τ ) τ k-1 (k -1)! dτ k ≥ 1, (D.1) 
and by definition For λ = 0 it is immediate that

ϕ k (0, t) = t k k! (D.3)
Recurrence relation We first prove that for λ = 0, they satisfy the recurrence formula

ϕ k+1 (λ, t) = ϕ k (λ, t) -ϕ k (0, t) λ , λ = 0. (D.4)
Proof. Using integration by parts of (D.1) yields

ϕ k (λ, t) = e λ(t-τ ) τ k k! t 0 + λ ˆt 0 e λ(t-τ ) τ k k! dτ = t k k! + λϕ k+1 (λ, t)
substituting (D.3) and collecting all term depending on k + 1 on the left and k on the right, we obtain the recurrence relation

ϕ k+1 (λ, t) = ϕ k (λ, t) -ϕ k (0, t) λ .
Explicit form Using (D.4) recursively for λ = 0, the first basis functions are given by ϕ 0 (λ, t) = e λt , (D.5a)

ϕ 1 (λ, t) = e λt -1 λ , (D.5b) ϕ 2 (λ, t) = e λt -(1 + λt) λ 2 , (D.5c) ϕ 3 (λ, t) = e λt -(1 + λt + (λt) 2 2! ) λ 3 , (D.5d) ϕ 4 (λ, t) = e λt -(1 + λt + (λt) 2 2! + (λt) 3 3! ) λ 4 . (D.5e)
This suggests the following explicit form

ϕ k (λ, t) = 1 λ k   e λt - k-1 n=0 (λt) n n!   , λ = 0 (D.6)
Proof. 1) It is immediate to verify that (D.6) holds for k = 0. 2) Assuming that (D.6) is satisfied for some k ∈ N and using the recurrence relation (D.4), we prove by factoring the last term that (D.6) also holds for k + 1

ϕ k+1 (λ, t) = ϕ k (λ, t) -ϕ k (0, t) λ = 1 λ k+1   e λt - k-1 n=0 (λt) n n!   - 1 λ t k k! = 1 λ k+1   e λt - k n=0 (λt) n n!   .
Then by induction, equation (D.6) holds for all k ∈ N.

Taylor series form The ϕ-functions represent thus the tail of the truncated Taylor series expansion of e λt up to a scaling factor. This is clear when rewriting (D.6) as

e λt = k-1 n=0 (λt) n n! + λ k ϕ k (λ, t). (D.7)
By consequence, we may define ϕ-functions from the formal series

ϕ k (λ, t) = 1 λ k ∞ n=k (λt) n n! = ∞ n=k λ n-k t n n! . (D.8)
Note that, since no inversion is used, this definition can be extended to matrix-valued λ provided the series is convergent.

D.3 Proof of proposition 5.3 (CSRK order and Strang-Fix conditions)

We recall the following CSRK order conditions (5.21a), (5.21b), (5.21c) p. 128

B(ρ) : ˆ1 0 B(τ )C(τ ) k-1 dτ = 1 k , k = 1, . . . , ρ, Č(η) : ˆ1 0 A(τ, σ)C(σ) k-1 dσ = C(τ ) k k , k = 1, . . . , η, Ď(ζ) : ˆ1 0 B(τ )C(τ ) k-1 A(τ, σ) dτ = 1 k B(σ)(1 -C(σ) k ), k = 1, . . . , ζ.
Proof. Let P be a self-adjoint projector (Pu)(τ ) = ´1 0 K(τ, σ)u(σ) dσ that reproduces constants with reproducing kernel K(τ, σ). From (5.18a)-(5.18c) p.126, we recall that B(τ ) = 1, C(τ ) = τ , A(τ, σ) = ´τ 0 K(ξ, σ) dξ. Then we show that:

• condition B(ρ = ∞) holds since for all k ≥ 1

ˆ1 0 B(τ )C(τ ) k-1 dτ = ˆ1 0 τ k-1 dτ = τ k k 1 0 = 1 k ,
where we used the definitions B(τ ) = 1, C(τ ) = τ .

• condition Č(η), is equivalent to projector P reproducing polynomials up to degree η -1:

ˆ1 0 A(τ, σ)C(σ) k-1 dσ = C(τ ) k k , a ⇐⇒ ˆτ 0 ˆ1 0 K(ξ, σ)σ k-1 dξ dσ = τ k k , b ⇐⇒ ˆ1 0 K(ξ, σ)σ k-1 dσ = τ k-1 , c ⇐⇒ Pτ k-1 = τ k-1 .
using (a) the definitions C(τ ) = τ , A(τ, σ) = ´τ 0 K(ξ, σ) dξ and Fubini's theorem, (b) differentiation with respect to τ , (c) the definition of the projector P.

• condition Ď(ζ), is equivalent to the adjoint projector P * reproducing polynomials from degree 1 to degree ζ Proof. We formalize the solution of the CSRK as a fixed-point: find

ˆ1 0 B(τ )C(τ ) k-1 A(τ, σ) dτ = 1 k B(σ)(1 -C(σ) k ), a ⇐⇒ ˆ1 0 τ k-1 A(τ, σ) dτ = 1 k (1 -σ k ), b ⇐⇒ τ k k A(τ, σ) 1 τ =0 - ˆ1 0 τ k k K(τ, σ) dτ = 1 k (1 -σ k ), c ⇐⇒ ˆ1 0 τ k K(τ, σ) dτ = σ k , d ⇐⇒ P * σ k = σ k , using ( 
X ∈ L 2 (Ω, R n ) such that X = G(X ), with G(X) = x 0 + h ˆτ 0 Pf (X(s)) ds.
Let V be the Volterra operator defined by (Vu)(τ ) = ´τ 0 u(σ) dσ, we can rewrite G without ambiguity using operator notation as

G(X) = x 0 + hVPf X = x 0 + hV • P • f • X. Denote • := • R n and • 2 := • L 2 (Ω,R n ) and let X 1 , X 2 be two functions in L 2 (Ω, R n ).
We prove the existence and uniqueness condition of the fixed-point in four steps.

step i) If f is L f -Lipschitz on R n , then it is also L f -Lipschitz on L 2 (Ω, R n ) f (X 1 ) -f (X 2 ) 2 = ˆ1 0 f (X 1 (s)) -f (X 2 (s)) 2 ds ≤ ˆ1 0 L 2 f X 1 (s) -X 2 (s) 2 ds = L f X 1 -X 2 2 .
step ii) The adjoint of V is (V * u)(τ ) = ´1 τ u(σ) dσ and the eigenvalues of V * V are σ n = 2 π(2n+1) 2 so that the operator norm is V 2 = V * V 2 = sup n √ σ n = 2/π (see reference [Thi]).

step iii) Using the operator norm of V, P and the Lipschitz constant of f we obtain the bound

G(X 1 ) -G(X 1 ) 2 = hVPf X 1 -hVPf X 2 2 ≤ h V 2 P 2 L f X 1 -X 2 2 .
step iv) Since the operator norm of an orthogonal projector is 1, then if α = 2hL f /π < 1, the mapping G is contracting. By the Banach fixed-point theorem, this guarantees convergence of G to a unique fixed-point X ∈ L 2 .

Remark D.1. Note that VP 2 ≤ V 2 P 2 . In practice, the existence domain of fixedpoint solutions is bigger than predicted above. For example, for the AVF projector (Pu) = ´1 0 u(s) ds, we have the majoration

VP 2 = sup g∈L 2 (Ω) VPg g ≤ sup g∈L 2 (Ω) VPg Pg = sup g∈P(L 2 (Ω)) Vg f = V(1) 2 = τ 2 = 1 √ 3 .
This leads to the improved bound hL f < √ 3. Note that this result is similar to the one obtained for SPAC methods in property 4.2 p.110. Convergence in other L p normed spaces leads to different bounds.

D.5 Proof of proposition 5.5 p.129 (nested projectors)

Proof. From definition 5.1 p.122, we can reformulate (5.10) (5.11) in steps ii) and iii) as

Q   δX Y   = Q (J -R)   ∇H (X) u   ,
where

               X(τ ) := x 0 + h ˆτ 0 δX(σ) dσ, X(τ ) := x 0 + h ˆτ 0 δX(σ) dσ, x 1 := X(1) = X(1).
where Then we prove that Q (and R) is a projector in four steps i) We prove that PR = 0: using (D.9a) and idempotence of P we obtain PQ = P ⇐⇒ P(P + R) = P ⇐⇒ PR = P -P 2 ⇐⇒ PR = 0.

Q = Q ⊗ I n (Q commutes with J -R)
ii) We prove that RP = 0: using (D.10) and the orthogonality relation (I -P)P = 0 we obtain

RP = B -1 B P(I -P) =0 = 0.
iii) We show that R is a projector: a) we expand R using (D.10), b) from (D.9c) we deduce

(I -P)B -1 = B -1 , c) since B -1 B = I A R we have (B -1 B) 2 = B -1 B, d) use equation (D.10) R 2 a = B -1 B(I -P)B -1 B(I -P) b = (B -1 B) 2 (I -P) c = B -1 B(I -P) d = R, iv)
We finally show idempotence Q 2 = Q so that Q is a projector (an oblique projector): using relations (i)-(iii), we obtain

Q 2 = (P + R) 2 = P 2 + PR + RP + R 2 = P + R = Q.
This result is illustrate in figure D.1. 

A ⊥ P A = A P ⊕ A R A R A P A ⊥ • a • (I -P)(a) • a = Q(a) • R ( 
       B(A R ) R 2k range B -1 = A R A R ⊥ A P Ambiant "power" space: L 2 , • | • L 2
Consistency: 1 ∈ A P (required) 2p-accuracy: P p ∈ A P x (s) = f [(m)] (x(s)) for the antiderivatives of f evaluated at x(s). We first prove the limit case δx = 0. Then, for δx = 0 , we prove the general case by induction. I) for δx = 0

• Case n = 0, {f • x} n = ´1 0 f (x 0 ) ds = f (x 0 ).
• Case n ≥ 1, For δx = 0, ∀n > 0, by orthogonality of L n with constants

{f • x} n = L n , f (x 0 ) = 0.
II) for δx = 0

• Case n = 0, Since ẋ = δx, using the chain rule, d ds [f [1] (x(s))] = f (x)δx, we obtain [1] (x(s)) ds = f [1] (x 0 + δ x ) -f [1] (x 0 ) δx (D.11)

{f • x} 0 = ˆ1 0 f (x(s)) ds = 1 δx ˆ1 0 d ds f
• Case n = 1, still using the chain rule, partial integration and L 1 = const, we obtain

{f • x} 1 = ˆ1 0 L 1 (s)f (x(s)) ds = 1 δx L 1 (s)f [1] (x(s)) 1 0 - ˆ1 0 L 1 (s)f [1] (x(s)) ds = 1 δx L 1 (s)f [1] (x(s)) 1 0
-L 1 (s)f [1] (x(s))

0
where the boundary terms are easily computable, and the inner product can be computed by substituting f by its antiderivative f [1] in (D.11).

• Case n = 2, using partial integration twice and L 2 = const, we obtain [2] x + 1 (δx) 2 L 2 f [2] x 0 [3] x 1 0

{f • x} 2 = ˆ1 0 L 2 (s)f (x(s)) ds = 1 δx L 2 f [1] x 1 0 - 1 δx ˆ1 0 L 2 (s)f [1] (x(s)) ds = 1 δx L 2 f [1] x 1 0 - 1 (δx) 2 L 2 f
= 1 δx L 2 f [1] x 1 0 - 1 (δx) 2 L 2 f [2] x 1 0 + 1 (δx) 3 L 2 f
• Case n = 3, continuing partial integration, we obtain similarily

{f • x} 3 = ˆ1 0 L 3 (s)f (x(s)) ds = 1 δx L 3 f [1] x 1 0 - 1 (δx) 2 L 3 f [2] x 1 0 + 1 (δx) 3 L 3 f [3] x 1 0 - 1 (δx) 4 L 3 f [4] x 1 0
• General case n ≥ 0, by induction, we obtain the general solution For an orthonormal basis φ n (τ )

{f • x} n = n k=0 (-1) k (δx) k+1 L (k) n (s)f [k+1] (x(s))
p-1 n=0 over Ω = (0, 1), orthogonal L 2 projection of the ODE yields

         ẋ = λ 1 • x 0 + ˆτ 0 ẋ(s) ds , x 1 = x 0 + ˆ1 0 1 • λ ẋ(s) ds, projection =⇒    ẋ = λ 1x 0 + V ẋ , x 1 = x 0 + λ1 T ẋ.
where 1 = [ φ m , 1 ] p×1 , and the truncated operational matrix of integration is A main difference with the stability function of Runge-Kutta methods (B.6) comes from the explicit construction (by orthogonal L 2 projection) of the operational matrix of integration V and representation of the constant function by 1 in the chosen basis {φ n }. (not necessarily using polynomials, see example below).

V = φ m , Vφ n p×p , (Vu) 
Legendre basis For the Legendre polynomials (an explicit formula for V is given in section C.4). As expected, we obtain the diagonal Padé approximations of the exponential

R p=1 (λ) = - λ + 2 λ -2 = exp(λ) + O(λ 3 ), R p=2 (λ) = λ 2 + 6λ + 12 λ 2 -6λ + 12 = exp(λ) + O(λ 5 ), R p=3 (λ) = - λ 3 + 12λ 2 + 60λ + 120 λ 3 -12λ 2 + 60λ -120 = exp(λ) + O(λ 7 ), R p=4 (λ) = λ 4 + 20λ 3 + 180λ 2 + 840λ + 1680 λ 4 -20λ 3 + 180λ 2 -840λ + 1680 = exp(λ) + O(λ 9 ).
Cosine basis For comparison, we consider the orthonormal cosine basis {1} ∪ √ 2 cos(nπτ ) . Since it only reproduces constant functions, it only yields second order approximations (see proposition 5.3 p.128) but with diminishing error constants. Proposition D.1. Let 1 and V be respectively the matrix representations of the constant function and of the Volterra operator (as in (D.12)). Then, the following identity holds

R p=1 (λ) = - λ + 2 λ -2 = exp(λ) + λ 3 + λ 4 12 + O(λ 5 ), R p=2 (λ) = λ 2 + π 2 4 λ + 2 π
V T + V = 11 T . (D.13)
It is the finite dimensional equivalent of the functional identity V + V * = V (eq. (C.12) p.284)

Proof. For an orthonormal basis {φ i } of L 2 ([0, 1]), writing the averaging operator as V = ´1 0 = | 1 1 |, the coefficients of its operational matrix satisfy

V ij = φ i Vφ j = φ i | 1 1 φ j = φ i | 1 1 φ j = 11 T .
Likewise, using (a) V = V + V * (C.12), (b) linearity, (c) definition of the adjoint (C.7) , (d) definition of V (D.12), we get

V ij = φ i Vφ j a = φ i (V + V * )φ j b = φ i Vφ j + φ i V * φ j c = φ i Vφ j + Vφ i φ j d = V + V T .
D.9 Proofs and appendix for section 7.1 (Minimal passive OPA) D.9.1 Structure of the output equation

Proof. Using the passivity equation (7.8d) p.177, then introducing V cm , V dm using (7.3) p.176, factoring V cm , V dm , finally, for i out = 0, dividing by i out and using (7.8c) p.177 one gets the general form for the output equation (7.9) p.177.

i S+ • e S+ + i S-• e S-= -i out • e out -P diss ⇐⇒ i S+ (V cm + V dm ) + i S-(V cm -V dm ) = -i out • e out -P diss ⇐⇒ V cm (i S+ + i S-) + V dm (i S+ -i S-) = -i out • e out -P diss iout =0 ⇐⇒ V cm + V dm i S+ -i S- i S+ + i S- = e out - P diss i out .

D.9.2 Fixed-point Convergence

According to the Banach fixed-point theorem, existence and uniqueness of the solution are guaranteed if the fixed point (7.47) is contracting, i.e. there exists a Lipschitz constant α ∈ [0, 1)

such that φ(x 1 ) -φ(x 0 ) ≤ α x 1 -x 0 . (D .14) 
A sufficient (but conservative) condition is given by

α = 1.162 Gω d < 1. (D.15)
Proof. Using (7.46), then the derivative of the discrete gradient (7.42), (bounded by G/2), and using the matrix norm of F d C, one gets

φ(x 1 ) -φ(x 0 ) 2 = F d ∇N (Cx 0 , Cx 1 ) -∇N (Cx 0 ) 2 ≤ F d ∂ ∇N ∂v 1 C 2 x 1 -x 0 2 ≤ F d C 2 sup v 1 ∂ ∇N ∂v 1 (v 0 , v 1 ) x 1 -x 0 2 ≤ 2ω d ω 2 d + 8ω d + 20 ω 2 d + 2(3 -G)ω d + 4 G 2 x 1 -x 0 2 ≤ 1.162 Gω d x 1 -x 0 2
where the bound 1.162 is obtained numerically by majorizing over G ∈ [0, 3] and ω d ≥ 0.

where according to Kirchhoff laws (D.17a)

îIN (v IN , v + , v -, i O ) := îB 1 (v IN -v + , v BE ) + îB 2 (v IN -v -, v BE ), (D.20a) î+ (v IN , v + , v -, i O ) := îC 1 (v IN -v + , v BE ), (D.20b) î-(v IN , v + , v -, i O ) := îC 2 (v IN -v -, v BE ), (D.20c) vO (v IN , v + , v -, i O ) := v IN -v BE , (D.20d) where v BE = vBE [v IN , v + , v -](i O ). (D.20e)
To obtain an explicit relation, we need a formula for vBE which is defined as the inverse map

vBE [v IN , v + , v -](i O ) := î-1 O [v IN , v + , v -](i O ), (D.21a)
where 

îO [v IN , v + , v -](v BE ) := îE 1 (v IN -v + , v BE ) + îE 2 (v IN -v + , v BE ). ( 
ÎB 1 (V BC 1 , V BE ) = PN(V BE )/β F + PN(v BC 1 )/β R , (D.23a) ÎE 1 (V BC 1 , V BE ) = PN(V BC 1 ) -(1 + 1/β F )PN(V BE ), (D.23b) ÎC 1 (V BC 1 , V BE ) = PN(V BE ) -(1 + 1/β R )PN(V BC 1 ), (D.23c) ÎB 2 (V BC 2 , V BE ) = -PN(-V BE )/β F -PN(-v BC 2 )/β R , (D.23d) ÎE 2 (V BC 2 , V BE ) = -PN(-V BC 2 ) + (1 + 1/β F )PN(-V BE ), (D.23e) ÎC 2 (V BC 2 , V BE ) = -PN(-V BE ) + (1 + 1/β R )PN(-V BC 2 ).
(D.23f) Substituting these relation in (D.21b), yields ÎO as a function of

V BE ÎO [V IN , V + , V -](V BE ) = PN(V BC 1 ) -PN(-V BC 2 ) -(1 + 1/β F )(PN(V BE ) -PN(-V BE )) = PN(V IN -V + ) -PN(V --V IN ) -(1 + 1/β F )2 sinh(V BE ).
Inverting this function, we obtain the explicit form for VBE as a function of

I O . VBE [V IN , V + , V -](I O ) = asinh PN(V IN -V + ) -PN(V --V IN ) -I O 2(1 + 1/β F ) (D.24)
By consequence, we finally obtain the explicit output law as a function of input variables

V O = V IN -asinh exp(V IN -V + ) -exp(V --V IN ) -I O 2(1 + 1/β F ) . (D.25)
It can be factored as

V O = V IN -asinh    1 1 + 1/β F   sinh V IN - V + + V - 2 exp - V + -V - 2 -I O      . (D.26)
Assuming the symmetric power supply case V + = -V -and I O ≈ 0, this simplifies to

V O = V IN -asinh exp(-V + ) sinh(V IN ) 1 + 1/β F . (D.27)
This is similar to (but different from) tanh as shown on figure D.6. algebra) with large vectors and block matrices such as I p ⊗ A built from Kronecker products. Let f (t) be a q-dimensional vector-valued function of time with scalar components f i (t). We denote by f n (τ ) the sequence of functions f n (τ ) = f (n + τ )| τ ∈(0,1) at time frame n and by f [n] its sequence of projection coefficients in the Legendre polynomial basis such that

f [n] =      P 0 | f n . . . P p-1 f n      =      P 0 | . . . P p-1      ⊗ | f n .
With the chosen convention, matrices and vectors corresponding to the Legendre representation of functional operators

I p = P m | P n , V p = P m ˆτ 0 P n , e 0 = P m | 1 ,
are written to the left of the Kronecker product while state-space matrices A, B, C, D are written to the right. Matrix I p is the identity of the Legendre space of order p, column vector e 0 represents the synthesis operator | 1 . Its transpose e T 0 represents the dual analysis operator 1 |. Matrix V p is the Legendre operational matrix of integration defined in (C.18).

Proof. Consider a state-space system of dimension n x defined by matrices Using the mixed Kronecker product property (D.30) and solving for d yields Finally, back-substitution of X in the output equation (D.34b), yields the input-output mapping

A ∈ R nx×nx , B ∈ R nx×1 , C ∈ R 1×nx , D ∈ R 1×1 .
d(z) =   I p ⊗ I - e 0 e T 0 z -1 + V p ⊗ A   -1 (I p ⊗ B) u(z).
y(z) =      e 0 e T 0 z -1 + V p ⊗ C     I p ⊗ I - e 0 e T 0 z -1 + V p ⊗ A   -1 (I p ⊗ B) + (I p ⊗ D)    u(z).
The Z-transform of the p × p Legendre filterbank representing the linear state-space system is thus

H p (z) =   e 0 e T 0 z -1 + V p ⊗ C     I p ⊗ I - e 0 e T 0 z -1 + V p ⊗ A   -1 (I p ⊗ B) + (I p ⊗ D).
Remark D.3. Note that formula (D.35) is the Z-domain representation of the cumulative sum of average vector fields linking the initial condition at time n to the history of average vector fields over all previous time frames. Indeed 1/(z -1) is the Z-domain representation of the cumulative sum operator, and the term (e 0 ⊗ I) T d(z) is the Z-domain equivalent of the average vector field: e T 0 selects the 0-th coefficient from the vector field coefficients d(z)

Theorem F.5 (Oriented area basis). Let e 1 . . . e n be an orthonormal basis of R n , then the oriented areas {e 1 ∧ e 2 , e 2 ∧ e 3 , . . . e n ∧ e 1 } form a basis of the vector space of oriented areas.

Definition F.10 (Geometric product). The geometric of two vector u, v is defined by

uv := u • v + u ∧ v. (F.10)
Theorem F.6 (Geometric vector space G n ). The inner product space R n can be extended to the geometric algebra G n . Members of G n are called multivectors. The geometric algebra is a vector space with a product called the geometric product.

The geometric product of multivectors A and B is written AB. For all scalars a and multivectors A, B, C:

G0. AB ∈ G n . G1. A(B + C) = AB + AC, (B + C)A = BA + CA. G2. (aAB) = A(aB) = a(AB). G3. A(BC) = (AB)C. G4. 1 A = A 1.
G5. The geometric product of G n is linked to the inner product of R n :

uu = u • u = |u| 2 , ∀u ∈ R n .
(F.11)

G6. Every orthonormal basis of R n determines a canonical basis for the vector space G n .

G7. The k-vectors in a canonical basis for G n form a basis for the subspace of k-vectors in G n , for k ∈ {0 . . . n}. Every multivector can be uniquely expressed as a sum of k-vectors. Definition F.22 (bivector angle iθ). Consider an angle θ in a plane i ∈ G n . We call the bivector iθ an angle. A bivector angle represents both the plane i and its size |iθ| = θ.

(M ∧ N ) * = M • N * (M • N ) * = M ∧ N * (u ∧ v) * = u × v (F.

F.2 Calculus

Definition F.24 (Gradient). The gradient is the vector operator

∇ := n i=1 e i ∂ ∂x i . (F.29) Definition F.25 (Divergence). For F ∈ G n div F := ∇ • F = n i=1 e i • ∂ ∂x i (F.30) Definition F.26 (Curl). For F ∈ G n curl F := ∇ ∧ F = n i=1 e i ∧ ∂ ∂x i (F.31) Remark F.5. ∇F = ∇ • F + ∇ ∧ F = div F + curl F (F.32)
Theorem F.12 (Tangent space basis). Let x : q = (u, v) ∈ R 2 → x(q) ∈ X ⊂ R n parametrize a surface, then

x u = ∂ x ∂u (q), x v = ∂ x ∂v (q) (F.33)
is a basis of the tangent space T q X .

The vector derivative ∂ on manifolds, generalizes the gradient on R n Definition F.27 (Vector derivative ∂). Let x : (u, v) ∈ R 2 → x(q) ∈ X ⊂ R n parametrize a surface with basis {x u , x v } and reciprocal {x u , x v }. F (x) a multi-vector valued function on X . The vector derivative is

∂F := x u ∂ F ∂u + x v ∂ F ∂v . (F.34)
Remark F.6. x u , x v is not necessarily orthogonal, and is the reciprocal basis of x u , x v .

Definition F.28 (Line integral). Let C be a curve in R n , f : C → R n a vector valued function and ds the infinitesimal vector tangent to C, the line integral is given by Theorem F.17

I = ˆC f • ds. (F.35) Theorem F.14 (Fundamental theorem of geometric calculus). If M is a m-dimensional manifold in R n , let d m x be the infinitesimal pseudoscalar of the algebra G m tangent to M , then ˆM d m x∂ F = ˆ∂M d m-1 x F. (F.43) Theorem F.15 (Divergence theorem in R 3 ). ˚V ∇ • f dV = ‹ S f • dσ (F.44) Theorem F.16 (Generalized Divergence theorem). If M is a m-dimensional manifold in R m ,
(Curl theorem in R 3 ). ¨S(∇ × f ) • dσ = ˛C f • ds (F.46) Theorem F.18 (Generalized Curl theorem). If M is a m-dimensional manifold in R m , and F is an m -1 vector field on M , then ˆM d m x • (∂ ∧ F ) = ˆ∂M d m-1 x • F. (F.47)

F.3 Maxwell equations (in empty space)

The following example is taken from [Mac17, eq. (3.1)]. Denote b ∈ R 3 the 3-dimensional magnetic field (dependence on time and space variables (t, x, y, z) is ommited). In geometric algebra it is represented through its dual: the bivector B ∈ span {B Using Geometric calculus, the exterior product ∧ and bivectors are favoured over the cross product × (which doesn't generalize to n dimensions). Maxwell equations can be rewritten in term of the bivector B and the exterior product ∧ as

∇ • e = 0, ∇ ∧ B = 0, ∂ t e + ∇ • B = 0, ∂ t B + ∇ ∧ e = 0.
Using geometric algebra, it becomes possible to introduce the multivector field F = e + B (the direct sum of a vector and a bivector) so that Maxwell equations becomes a single equation

(∂ t + ∇)F = 0. (F.50)
Finally, multiplying on the left by (∂ t -∇) and expanding the differential operator reveals that Maxwell equations are simply an instance of the wave equation but over a multi vector field F

∂ 2 t F -∇ 2 F = 0. (F.51)
This is a significant reduction in complexity and a revelator of hidden structure.

Remark F.11 (Going further). See [DGL + 03, p.229] for a more detailed treatment of Maxwell equations using GA. See also [START_REF] Vu | Port-Hamiltonian formulation for systems of conservation laws: application to plasma dynamics in tokamak reactors[END_REF] for a port-Hamiltonian approach to Maxwell equations using k-forms applied to plasma dynamics in Tokamak reactors.

INTRODUCTION

The need for accurate and passive-guaranteed simulation of nonlinear multi-physical systems is ubiquitous in the modelling of electronic circuits or mechanical systems. Geometric numerical integration [1] is a very active research field that provides a theoretical framework for structure and invariant preserving integration of dynamical systems. Port-Hamiltonian Systems (PHS) [2] [3] that focus on the energy storage functions and power continuous component interconnections belong to this field and offer a well adapted framework to preserve the system energy (resp. passivity). In the context of nonlinear physical audio systems, it has been applied successfully to the modelling of the wah-wah pedal [4], Fender Rhodes [5], brass instruments [6] and the loudspeaker nonlinearities [7]. Automatic generation of the system equations from a graph of components has been investigated in [8] However the presence of aliasing errors in the numerical simulation is annoying for three reasons. First it causes audible inharmonic audio artefacts. Second it deteriorates the accuracy of the numerical scheme leading to poor convergence rate. Third it requires the use of significant oversampling. This problem is even more pronounced in the case of systems such as sustained instruments that rely on nonlinearities to achieve auto-oscillation.

Aliasing errors in the context of finite elements simulation and some alternatives have been discussed in [9] (ch 11). Antialiased waveform generation without oversampling has been proposed in [10]. Static nonlinearity anti-aliasing has also been proposed in [11] [12] by combining exact anti-derivatives and finitedifferences.

Continuous-time input reconstruction has been used in [13] to simulate the frequency response of LTI systems with higher accuracy. It is also central in collocation-based Runge-Kutta methods * The contribution of this author has been done at laboratory STMS, Paris, within the context of the French National Research Agency sponsored project INFIDHEM. Further information is available at http://www.lagep.cpe.fr/wwwlagep7/anr-dfg-infidhem-fev-2017jan-2020/ that rely on non-uniform polynomial interpolation of the vector field. Splines and in particular uniform B-splines [14] [15] [16], [17] also offer a particularly interesting framework to represent and manipulate piecewise continuous-time signals through their digital representations using the standard tools of linear algebra and digital signal processing.

In this article, we try to combine the geometric and the signal processing viewpoints: we choose a physically informed piecewise smooth polynomial reconstruction model based on a discrete sequence of points generated by a passive-guaranteed simulation method.

The paper is organized as follows. We first recall some results about Port-Hamiltonian systems in Section 3, then we consider passive numerical methods in section 4, we talk about piecewisecontinuous trajectory reconstruction in section 5 and continuoustime filtering of piecewise polynomials in section 6. Finally we apply our method to a non linear LC oscillator circuit in section 7.

PROBLEM STATEMENT

Objective

The objective is to simulate nonlinear passive physical audio systems in such a way that:

(i) The nonlinear dynamics is accurately reproduced, (ii) The power balance decomposed into its conservative, dissipative and source parts is satisfied, (iii) The observation operator is designed to reduce the aliasing induced by the nonlinearities.

Approach

To address this problem, the following strategy is adopted. First, trajectories are approximated in the continuous-time domain by smooth parametric piecewise-defined functions, such that the three following properties are fulfilled:

(P1) Regularity: functions and junctions are C k with k ∈ N, (P2) Accuracy: the approximation has accuracy order p, (P3) Passivity: the power balance is globally satisfied for each frame. Second, the anti-aliased output is built a posteriori in three steps:

1. Observe the output from the approximated dynamics in the continuous-time domain, 2. Apply a continuous-time anti-aliasing filter in order to respect the Shannon-Nyquist sampling theorem, 3. Sample the filtered trajectories to convert them back to discretetime.
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Methodology

In this article, we restrict ourselves to piece-wise continuous globally C1 polynomial trajectories of the form

x(t) = ∞ n=-∞ xn t -tn h rect ]0,1] t -tn h , t ∈ R (1)
with x ∈ R N , xn(τ ), τ ∈ [0, 1] being a local polynomial model of order r, tn = hn, n ∈ Z and h being the time step parameter. The continuity hypothesis (P1) is expressed mathematically by.

x( )

n+1 (τ ) = x( ) n (τ ) ∀n ∈ Z, ≤ k (2) 
For property (P2) the local approximation error between the exact solution and its approximation is defined by

e(h) = x(t0 + h) -x(t0 + h) (3) 
provided that x(t0) = x(t0) and it is required that for some p.

e(h) = O(h p+1 ) (4) 
Finally to express property (P3) we require the power-balance

E (t) = -P d + Pe (5) 
where P d and Pe are respectively the dissipated and external power and E (t) is the instantaneous energy variation of the system.

PORT-HAMILTONIAN SYSTEMS

In this article, nonlinear passive physical audio systems are described under their Port-Hamiltonian formulation. The theory of Port-Hamiltonian Systems (PHS) [2] [3] extends the theory of Hamiltonian mechanics to non-autonomous and dissipative open systems. It provides a general framework where the dynamic statespace equations derives directly from an energy storage function and power-conserving interconnection of its subsystems.

Explicit differential form

Consider a system with input u(t) ∈ U = R P , with state x(t) ∈ X = R N and output y(t) ∈ Y = R P with the structured statespace equations [2] x

= (J(x) -R(x)) ∇H(x) + G(x)u = f (x, u) y = G(x) T u (6) 
where H gives the stored energy of the system

E(t) = (H • x)(t) (7) 
with H ∈ C 1 (X, R + ), ∇ being the gradient operator, J = -J T a skew-symmetric matrix and R = R T 0 a positive-semidefinite matrix. The energy variation of this system satisfies the powerbalance given by the derivative chain rule

E (t) = ∇H(x) T x (8) 
which can be decomposed as

E (t) = Pc -P d + Pe (9) 
with.

Pc = ∇H(x) T J(x)∇H(x) = 0 (10)

P d = ∇H(x) T R(x)∇H(x) ≥ 0 (11) Pe = ∇H(x) T G(x)u (12) 
The Pc term is null because J is skew-symmetric: it represents conservative power exchange between storage components in the system. The P d term is positive because R ≥ 0: it represents the dissipated power. Finally the term Pe represents the power brought to the system by the external ports. Equation (9) express the system's passivity property: with external inputs switched off (u = 0) the energy can either be constant (conservative case P d = 0) or decaying (dissipative case P d > 0).

Component-based approach and semi-explicit DAE form

More generally, PHS can be expressed in Differential Algebraic Equation form. When we consider physical systems containing N energy-storage components, M dissipative components and P external interaction ports described by Pc the stored energy level en and its variation law defined by e n = ∇Hn(xn)x n for the state variable xn.

P d the dissipated power qm(w) ≥ 0 with the component's flux and effort variables being in algebraic relation of a single variable w.

Pe the external power upyp brought to the system through this port with up being the controllable input of the system and yp being the observable output. For a storage component, en = Hn(xn) gives the physical energy storage law. If x n is a flux (resp. effort) variable then ∇Hn(xn) is the dual effort (resp. flux) variable.

Similarly, for a dissipative component, the power is qm = Rm(wm) so that if wm is a flux (resp. effort) variable then z(wm) = Rm(wm) wm is the effort (resp. flux) and gives the dissipation law. We then consider a passive system obtained by interconnection of these components given by

  x w -y   b = S(x, w)   ∇H(x) z(w) u   a (13) 
with S = -S T being skew-symmetric, H(x) = N i=1 Hn(xn) and z(w) = [z1(w1), . . . , zm(wm)] T .

The S matrix represents the power exchange between components: since S = -S T we have a • b = a T Sa = 0 which again leads to the power balance 1 .

∇H(x) • x Pc=E (t) + z(w) • w P d -u • y Pe = 0 (14) 
The explicit form (6) can be found by solving the second row of (13). The S matrix represents a Dirac structure [2] that expresses the power-balance and can be constructed from a component connection graph [8] [18].

PASSIVE NUMERICAL INTEGRATION

Whereas most numerical schemes concentrate their efforts on the the temporal derivative or the numerical integration quadrature, discrete gradient methods preserve the energy (resp. passivity) given by the power-balance ( 9), ( 14) in discrete-time by providing a discrete equivalent of the chain rule derivation property E (t) = ∇H(x) T x . A discrete gradient [19] ∇H is required to satisfy the following conditions.

H(x + δx) -H(x) = ∇H(x, δx) T δx (15) ∇H(x, 0) = ∇H(x) (16) 
In this article, we will focus on the average vector field [20].

Average Vector Field

In the general case, the AVF method is defined by.

δxn δt = 1 0 f (xn + τ δxn)dτ, xn+1 = xn + δxn (17) 
When the matrices J(x), R(x), G(x) are approximated by constant matrices J, R, Ḡ, we obtain the separable structure-preserving approximation of ( 17)

δxn δt = (J -R)∇H(xn, δxn) + Gūn (18) 
with the discrete gradient being defined by

∇H(x, δx) = 1 0 ∇H(x + τ δx)dτ (19) 
and it satisfies the discrete power balance

δE = ∇H T δx δt = ∇H T (J -R)∇H + ∇H T Gu = 0 -P d + Pe
Then, by the fundamental theorem of calculus, for mono-variant components, i.e. separable Hamiltonians of the form H(x) = N i=1 Hi(xi), we have for each coordinate:

∇Hi(xi, δxi) = H i (x i +δx i )-H i (x i ) δx i δxi = 0 ∇H(xi) δxi = 0 (20) 
which satisfies the discrete gradient conditions ( 15)-( 16). For nonseparable Hamiltonians, a discrete-gradient can also be uniquely defined, see [21] for more details.

To summarize, this method relies on two complimentary approximations: the differential operator dx dt → δx δt and the vector field f → f to achieve energy (resp. passivity) conservation. The discrete PHS equivalent of ( 6) is given by the numerical scheme. 

Accuracy order

As shown in [22], the AVF has accuracy order p = 2, it is a Bseries method, is affine-covariant and self-adjoint. When approximated as in Eq (19) by evaluating matrices J, R, G for x * = xn the accuracy is only of order 1. Order 2 is achieved when either J, R, G are independent of x or when evaluated at the mid-point x * = xn + δxn 2 in the conservative case. It is also possible to restore the accuracy order p = 2 in the general case using a Runge-Kutta refinement [21].

Implicit resolution

The discrete system is implicit on δxn and admits a unique solution when H is convex. In the general case, an iterative solver is required (typically a fixed-point or Newton iteration), but when the Hamiltonian is quadratic we can avoid the need for an iterative resolution. Furthermore, when the Hamiltonian is convex the method can also be made non-iterative by quadratization of the Hamiltonian [21].

Proof. When the Hamiltonian is quadratic of the form H(x) = 1 2 x T Qx, the discrete gradient reduces to the mid-point rule

∇H(x, δx) = 1 0 Q(xn + δxnτ )dτ = Q xn + 1 2 δxn
the implicit dependency on δx can thus be solved by matrix inversion

δxn = δt I - δt 2 A -1 Axn + Gun (22) 
with A = (J -R)Q Given the sequence of points {xn} obtained by a passiveguaranteed method, we would like to reconstruct piece-wise C kcontinuous polynomial trajectories informed by the system dynamics.
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The idea is to exploit the dynamic equation at each junction point xn where the approximation is known to be O(h p+1 ).

Indeed, if we had the samples of the exact trajectory, by the Weierstrass approximation theorem, arbitrarily close polynomial approximations converging uniformly to the exact solution could be obtained by computing its derivatives to any desired order.

Since we only have an approximation of order p = 2, we restrict ourselves to a regularity k = 1. This gives four constraints

x(0) = xn, x(1) = xn+1, x (0) = f (xn), x (1) = f (xn+1)
that can be satisfied by a cubic polynomial (r = 3). We choose to represent it using the Bézier form,

x(τ ) = 3 i=0 XiB 3 i (τ ), B n i (t) = n i (1 -t) n-i t i (23) 
with {Xi} being its control polygon and B n i (t) being the Bernstein polynomial basis functions, because they have important geometric and finite differences interpretations [23].

This choice immediately leads to the following equations,

X0 = xn X1 = xn + 1 3 f (xn) (24) 
X3 = xn+1 X2 = xn+1 - 1 3 f (xn+1) (25) 
where the internal control points X1, X2 are computed from the end points xn, xn+1 by first order forward / backward prediction using the derivative rule.

x (t) = n-1 i=0 DiB n-1 i (t), Di = n(Xi+1 -Xi) (26) 
An example trajectory is shown in Figure 1.

ANTI-ALIASED OBSERVATION

Given an observed signal ũ(t) = y(t) belonging to the class of piecewise polynomials, in order to reject the non-band-limited part of the spectrum, we would like to apply an antialiasing filter operator given by its continuous-time ARMA transfer function H(s), then sample its output ỹ(t) to get back to the digital domain.

Since our anti-aliasing filter will be LTI, we will make use of exact exponential integration and decompose its output on a custom basis of exponential polynomial functions.

Without loss of generality we only consider single-input singleoutput filters (SISO) since we can always filter each observed output independently.

State-space ARMA filtering of polynomial input

We want to filter the trajectory by an ARMA filter given by its Laplace transfer function

H(s) = Y (s) U (s) = b0s N + b1s N -1 + . . . + bN s N + a1s N -1 + . . . + aN (27) 
This filter can be realized in state-space form as

x = Ax + Bũ (28) ỹ = Cx + Dũ (29) 
Common choices are the observable and controllable state-space forms. Furthermore when the denominator can be factored with distinct roots, it is possible to rewrite the transfer function using partial fraction expansion as.

H(s) = c0 + c1 s -λ1 + . . . + cN s -λN (30) 
which leads to the canonical diagonal form

A =    λ1 . . . λN    B =    1 . . . 1    (31) 
C = c1 . . . cN D = c0 (32) 

Exact exponential integration

The exact state trajectory is given by the integral

x(t) = xh (t) + xe(t) = e At x0 + t 0 e A(t-τ ) Bũ(τ )dτ (33)
as the sum of the homogeneous solution to the initial conditions xh and the forced state-response with zero initial conditions xe given by the convolution of the input with the kernel e At . Furthermore when A is diagonal we have

e At =    e λ 1 t . . . e λ N t    (34) 
which greatly simplifies the computation of the exponential map.

In that case (33) can be evaluated component-wise as

xi (t) = e λ i t xi 0 + t 0 e λ i (t-τ ) ũ(τ )dτ i ∈ {1 . . . N } (35)
where we used the notation x i to detonate the i-th coordinate of the vector x

Polynomial input

With ũ(t) being a polynomial of degree K in monomial 2 form and coefficients ũk

ũ(t) = K k=0 ũk t k k! (36) 
we can expand the forced response xe in (35) as a weighted sum

t 0 e λ i (t-τ ) K k=0 ũk t k (τ ) k! dτ = K k=0 ũk ϕ k+1 (λi, t) (37) 
with the basis functions {ϕ k } being defined by the convolution

ϕ k (λ, t) = t 0 e λ(t-τ ) τ k-1 (k -1)! dτ k ≥ 1 (38) 
One of the main advantages of using a polynomial input (rather than a more general model) lies in the fact that these basis functions can be integrated exactly, avoiding the need of a quadrature approximation formula. See Appendix 12 for a detailed derivation and a recursive formula, and Figure 2 for their temporal shapes.

Using those we can decompose the local state trajectories as.

xi (t) = xi 0 ϕ0(λi, t) + K k=0 ũk ϕ k+1 (λi, t) (39) 
We note that the initial condition is equivalent to an impulsive input xi 0 δ(t). This filtering scheme can thus be generalized to non polynomial impulsive inputs.

Numerical update scheme

Since we only wish to sample the trajectory on a fixed grid tn ∈ Z, we just need to evaluate the local state trajectory x(t) and the output y(t) at t = 1 to finally get the following numerical scheme

xi n+1 = xi n ϕ0(λi) + K k=0 ũk,n ϕ k+1 (λi, 1) (40) ỹn+1 
= N i=1 ci xi n+1 + c0 ũn(1) (41) 
where the coefficients ϕ k (λi, 1) can be pre-computed and the components xi n+1 evaluated in parallel.

Filter examples

Low-pass filter of order 1

We consider a first order low-pass filter with transfer function H(s) = a s+a . The temporal response to a piecewise polynomial input {t 2 , 1t, 0, 1} is shown in Figure 3 for a ∈ {1, 3, 6, 10}.

Butterworth Filter of order 3

To further illustrate the non-band-limited representation capacity of piece-wise polynomials, and the effectiveness of the filtering scheme, we have shown in Figure 4 the response of a third-order Butterworth filter with cutoff ωc = π to a triangular input signal. Its Laplace transfer function for a normalized pulsation ωc = 1 is given by H

(s) = 1 (s 2 +s+1)(s+1) with poles λ1 = -1-i √ 3 2 , λ2 = -1+i √ 3 2 , λ3 = -1 and coefficients c0 = 0, c1 = -3+i √ 3 6 , c2 = -3-i √ 3 6 , c3 = 1.
2 We use the monomial form here instead of Bernstein polynomials because this is the one that leads to the most straightforward and meaningful derivation. 

APPLICATION: NONLINEAR LC OSCILLATOR

In order to illustrate the proposed method, we consider the simplest example having non linear dynamics. For that purpose, we use a parallel autonomous LC circuit with a linear inductor and a saturating capacitor with the Hamiltonian energy storage function given by

H(q, φ) = ln(cosh(q)) C0 + φ 2L (42) 
where the state q is the charge of the capacitor and φ the flux in the inductor. Its circuit's schematic is shown in figure 5 By partial differentiation of the Hamiltonian function H by respectively q and φ we get the capacitor's voltage and the inductor's current, while applying the temporal derivative on q, φ gives the capacitor's current and inductor's voltage. This gives the Branch Component Equations. Applying Kirchhoff Current and Voltage Laws gives the constraints IC = -IL, VC = VL. We can summarize the previous equations with the conservative autonomous Hamiltonian system.

VC = ∂qH = tanh(q) C0 IC = q (43) IL = ∂ φ H = φ L VL = φ ( 
x = J∇H(x) (45) 
with.

x = q φ , J = 0 -1 1 0 , ∇H = ∂qH ∂ φ H (46) 
Its state space and temporal trajectories are shown in Figure 7. We can see that the numerical scheme preserves the energy since the discrete points lie exactly on the orbit of the reference trajectory. The reconstructed state-space trajectory also shows a good match with the reference for most of the interpolated segments, except around transition regions at the bottom and top.

The spectrum of the flux φ is shown in Figure 8. One can see that the reference spectrum contains harmonics above twice the representable bandwidth where they pass below -90 dB.

The ZOH and FOH spectrums contains spectral images of the non bandlimited spectrum that decay respectively at -6dB/oct and -12dB/oct. Their aliased components in the audio bandwidth start around -80 dB at the Nyquist frequency and decay slowly toward approximately -100 dB at low frequencies.

Contrary, our method, informed by the dynamic, exhibits both reduced aliasing in the audio bandwidth and sharpened spectrum The 10x oversampled reference is compared to the AVF method's discrete output with zero-order hold (ZOH), first-order hold (FOH), the proposed method (proposed cubic) and its 12th order Butterworth filtered spectrum (proposed + AA). The Nyquist frequency is materialized in blue and the multiples of the sampling rate in red.

around the Nyquist frequency. It also has a higher spectral images decay rate thanks to its C 1 regularity. Its aliased components start at -85 dB at the Nyquist frequency and decay much faster to reach -100 dB at about 14 kHz where they reach a kind of aliasing noise floor caused by higher harmonics fold-back. Finally, as expected, the 12th-order Butterworth half-band lowpass filter removes components above the Nyquist frequency thanks to the piecewise continuous cubic input.

DISCUSSION

First, we highlight the fact that the vector field approximation in (17) acts as a first-order antialiasing filter: it is a projection of the vector field on a rectangular kernel. It prevents high-order spectral images from disturbing the low frequency dynamic during the numerical simulation and it is consistent with the underlying piecewise linear approximation model.

Second, the numerical scheme is energy-preserving. From a signal processing perspective, the lowpass filtering effect on the vector field is compensated by the finite difference approximation of the derivative. This is a direct generalization of the mid-point / bilinear methods to nonlinear differential equations.

Third, using the fact that the trajectory approximation has accuracy order p = 2 at the junctions, we can re-exploit the differential equation to reconstruct an informed C 1 -continuous cubic trajectory. It exhibits reduced aliasing in the passband and better DAFX-6 high-frequency resolution.

We observe that on the studied example, our method manages to reduce aliased components that are folded once into the audio band. However components caused by multiple folding of the spectrum cannot be removed anymore. This is related to the Papoulis generalized sampling expansion [24] who states that a band-limited function can be perfectly reconstructed from its values and derivatives sampled at half the Nyquist rate.

Some difficulties arise when trying to generalize the above ideas to higher order trajectories and filtering kernels. First, the line-integral ( 17) is no longer computable in closed form when the trajectory model is non-affine. Second, higher order kernels have longer temporal support which can lead to non-causal integrals.

CONCLUSION AND PERSPECTIVES

Our main contribution is an approach based on smooth piecewise defined trajectories coupled with a guaranteed-passive simulation. The method proceeds in three steps: 1) an energy-preserving passive numerical scheme is applied, 2) C k -continuous trajectories are reconstructed, 3) Exact continuous time lowpass filtering and sampling is performed. We have proposed a first instance of this method using the class of piecewise polynomials with regularity k = 1 and accuracy order p = 2 that exhibits reduced aliasing.

Further work will concern increasing the regularity k and accuracy order p, merging the numerical scheme and the interpolation steps by considering energy-preserving methods with a builtin regular continuous model and considering other classes of models such as rational and exponential functions.

In this regard, exponential integrators [25] that integrate the linear part of the dynamic exactly (as we have done in section 6) and rely on approximations for the nonlinear part are of great interest.

Finally we would like to further investigate the link between multi-stages / multi-derivatives general linear methods, their accuracy orders, numerical dispersion and internal bandwidth, and to analyze their behavior and representation capabilities within the framework of Reproducing Kernels Hilbert Spaces and generalized sampling theory [26] [27] [28].

APPENDIX: ϕ-FUNCTIONS

The ϕ-functions, that appear when doing exact integration of an LTI system with polynomial input given in monomial form, are defined by the convolution integral

ϕ k (λ, t) = t 0 e λ(t-τ ) τ k-1 (k -1)! dτ k ≥ 1 (47) 
and by definition ϕ0(λ, t) := e λt (48)

For λ = 0 it is immediate that

ϕ k (λ = 0, t) = t k k! (49)

Recurrence relation

We first prove that they satisfy the recurrence formula

ϕ k+1 (λ, t) = ϕ k (λ, t) -ϕ k (0, t) λ λ = 0 (50) Proof. Using integration by parts b a u(τ )v (τ )dτ = [uv] b a - b a u (τ )v(τ )dτ with [a, b] = [0, t], u(τ ) = e λ(t-τ ) , v (τ ) = τ k-1 (k-1)! and its prim- itive v(τ ) = τ k k! gives ϕ k (λ, t) = e λ(t-τ ) τ k k! t 0 + λ t 0 e λ(t-τ ) τ k k! dτ = t k k! + λϕ k+1 (λ, t)
which after using (49) and identification gives

ϕ k+1 (λ, t) = ϕ k (λ, t) -ϕ k (0, t) λ 12.2.

Explicit form

Using (50) recursively for λ = 0, the first basis functions are given by ϕ0(λ, t) = e λt (51)

ϕ1(λ, t) = e λt -1 λ (52) ϕ2(λ, t) = e λt -(1 + λt) λ 2 (53) ϕ3(λ, t) = e λt -(1 + λt + (λt) 2 2! ) λ 3 (54) ϕ4(λ, t) = e λt -(1 + λt + (λt) 2 2! + (λt) 3 3! ) λ 4 (55) 
this suggests the following explicit form

ϕ k (λ, t) = 1 λ k e λt - k-1 n=0 (λt) n n! , λ = 0 (56) 
Proof. It is immediate to verify that (56) is satisfied for k = 0. Then assuming that (56) is true for some k ∈ N and using the recurrence (50) we prove

ϕ k+1 (λ, t) = ϕ k (λ, t) -ϕ k (0, t) λ = 1 λ k+1 e λt - k-1 n=0 (λt) n n! - 1 λ t k k! = 1 λ k+1 e λt - k n=0 (λt) n n!
that (56) is also true for k + 1. By induction (56) is thus satisfied for all k ∈ N.

The ϕ-functions represent thus the tail of the truncated taylor series expansion of e λt up to a scaling factor. This is clear when rewriting (56) as 

e λt = k-1 n=0 (λt) n n! + λ k ϕ k (λ, t) (57) 

ABSTRACT

This article is concerned with the power-balanced simulation of analog audio circuits, governed by nonlinear differential algebraic equations (DAE). The proposed approach is to combine principles from the port-Hamiltonian and Brayton-Moser formalisms to yield a skew-symmetric gradient system. The practical interest is to provide a solver, using an average discrete gradient, that handles differential and algebraic relations in a unified way, and avoids having to pre-solve the algebraic part. This leads to a structure-preserving method that conserves the power balance and total energy. The proposed formulation is then applied on typical nonlinear audio circuits to study the effectiveness of the method.

INTRODUCTION

The need for stable, accurate and power-balanced simulation of nonlinear multi-physical systems is ubiquitous in the modelling of electronic circuits or mechanical systems and the natural setting for electronic circuits leads to Differential-Algebraic Equations.

Standard methods of solving electronic circuits are the Statevariable [1], Modified Nodal Analysis [2], Sparse Tableau Analysis [3] and Wave Digital Filters (WDF) [4] according to the choice of variables the system is solved for. More recently, in the audio signal processing field, it has led to the Nodal DK method [5], nonlinear state-space [6] and extension of WDF to handle multiport nonlinearities [7].

However, the underlying geometric structure and power-balance are often lost in the process. Furthermore, most numerical schemes either introduce or dissipate energy artificially, yielding unexpected, unstable or over-damped results.

To get rid of such artefacts, a very active research is focused on geometric numerical integration methods [8] that provide a theoretical framework for structure-preserving or invariant-preserving integration of dynamical systems. Among those methods, the Port-Hamiltonian (PHS) [9] [10] and Brayton-Moser (BM) [11] [12] formalisms are dual representations [13] [14] generalizing the Hamiltonian and Lagrangian formalisms to open dynamical systems with algebraic constraints (including dissipation).

PHS have been applied successfully to the modelling of the wah-wah pedal [15], Fender Rhodes [16], brass instruments [17] and loudspeaker nonlinearities [18]. Furthermore, automated generation of the PHS equations from the graph incidence matrix of a circuit's netlist has been investigated in [19] and leads to a skewsymmetric DAE form.

This paper considers this formulation as a starting point and proposes to combine the Brayton-Moser and Port-Hamiltonian view-points to represent all the constitutive laws as deriving from a single potential.

The presentation is organized as follows: first, in section 2, results about power balance, passivity, and duality of flow and effort spaces are recalled and it is shown how the power-balance can be represented by Dirac structures. Section 3 shows how, for both dynamic and algebraic components, the flow and effort variables can be derived from a single power potential involving the Hamiltonian and the algebraic content and co-content potentials [20] [21]. Section 4, then shows how to perform a power-balanced structurepreserving discretization of the system using a discrete gradient [22] [23]. Section 5 shows how to solve the resulting algebraic system using Newton iteration. Finally the method is applied to some example circuits in section 6 to show the effectiveness of the approach.

POWER BALANCE AND DIRAC STRUCTURES

For an electronic circuit, the Tellegen theorem [24] states that the sum of powers absorbed by all circuit elements is balanced.

P (e, f ) := e T f = n enfn = 0 (1) 
where e, f are respectively the effort and flow variables of the circuit's branch components. This is an instance of the conservation of energy principle made famous by Lavoisier with the statement nothing is lost, nothing is created, everything is transformed. This principle can be formalized mathematically by Dirac structures1 that encodes the conservative power exchange in the circuit.

Power space

For an n-port element, let F be an n-dimensional real vector space and denote its dual E := F * (the space of linear functions on F). We call F the space of flows f and E the space of efforts e. On the product space P := F ×E, power is defined by the non-degenerate bilinear form

P (e, f ) = e | f , ∀(f , e) ∈ P = F × E (2) 
where e | f denotes the duality product, that is the linear function e ∈ E = F * acting on f ∈ F. If F is equipped with an inner product •, • F , then E = F * can be identified with F such that e | f = e, f F , for all f ∈ F, e ∈ E ∼ F. If for example, F is the space of currents and E the space of voltages, then e | f = e, f F = e T f denote the electrical power.

In the 2n-dimensional space P, a passive linear n-port can be represented as an n-dimensional subspace S ⊂ P defined by n linear constraints which admits the kernel representation

S = {(f , e) ∈ P | Ff + Ee = 0} (3) 
with rank([F E]) = n. Furthermore, a linear subspace D ⊂ P is said to be power-conserving if

e | f = 0, ∀(f , e) ∈ D (4) 
It becomes a (constant) Dirac structure [25] [26] if and only if it is a maximal subspace of P with that property i.e. dim(D) = dim(F) = dim(E) and it admits the following matrix representations.

Definition 2.1 (Kernel representation). The kernel form of a Dirac structure is given by the subspace

D = {(f , e) ∈ P | Ff + Ee = 0, E T F + FE T = 0} (5) 
where

F, E ∈ R n×n satisfy rank([F E]) = n.
Definition 2.2 (Hybrid skew-symmetric representation). Let D be given as in (5), suppose there exists a permutation of the flow and efforts variables π : (F, E, f , e) → ( F, Ẽ, f , ẽ) such that F is invertible then

D = {( f , ẽ) ∈ P | f = Jẽ, J = -F-1 Ẽ} (6) 
where J = -J T is skew-symmetric.

Conversely, for any skew-symmetric matrix J, the subspace D is a Dirac structure and one can verify that the power balance ( 1) is encoded by the skew-symmetry of J:

P (ẽ, f ) = ẽT f = ẽT Jẽ = 0. (7) 
The skew-symetric form (6) will be used in the rest of the article.

GRADIENT DESCRIPTION OF COMPONENTS

Circuits are then categorized into dynamical, and algebraic components where algebraic components are further separated into dissipative and external sources because the later have degenerated constitutive laws. We show how the mixed effort ẽ can be uniformly represented as the gradient of the scalar power potential (1).

Dynamic components: Hamiltonian potential

For dynamic components with state variable x, flow variables are defined as the time-derivative of the state (f := ẋ) and the effort by a constitutive law e := ê(x). It is assumed that the constitutive law derives from the gradient of an energy storage function H(x(t)) such that by definition ê(x) := ∇H(x) and the power is

P (e, f ) = e T f = ∇H(x) • ẋ = d dt H(x(t)). (8) 
The Hamiltonian function can then be found using the line integral.

H(x) = ∇H(x) e • ẋ f dt = ∇H(x) • dx (9) 
This idea is illustrated with the important cases of the linear capacitor and inductor. We then show how to handle a nonlinear component with an integrable constitutive law.

Capacitor

For a capacitor, the state variable is given by the charge xC = q, with the flow f = iC = q, and effort e = vC = q C . This gives the Hamiltonian

H(q) = q C • q dt = 1 C q dq = q 2 2C (10) 

Inductor

Similarily for an inductor, the state variable is given by the fluxlinkage xL = φ, the flow 2 by its time-derivative f = φ = vL and the dual effort by e = iL = φ L with an Hamiltonian function

H(φ) = φ L • φ dt = 1 L φ • dφ = φ 2 2L (11) 

Nonlinear dynamic component

For a nonlinear dynamic component with state variable x, flow f = ẋ and a constitutive law e = ê(x) = tanh(x), its Hamiltonian storage function is given by

H(x) = t 0 ê(x) • ẋ dt = x 0 ê(x) • dx = ln(cosh(x)) (12)

Algebraic components: current and voltage potentials

If we consider the power differential dP , using the product rule,

dP (e, f ) = d(e • f ) = e • df + f • de. (13) 
Integration over a path Γ gives the integration by parts formula

e • f ∂Γ = Γ e • df + Γ f • de. (14) 
So, for components defined by algebraic constitutive laws Γ = {(e, f ) ∈ P | f = f (e)}, (respectively e = ê(f )), the flow and effort potentials 3 are defined by the line integrals

D(f ) := f 0 ê( f ) • d f , D * (e) := e 0 f (ē) • dē. (15) 
And according to (14), the instantaneous power is given, for (e, f ) ∈ Γ, by (see figure 1 for a geometric interpretation and proof)

P (e, f ) = e • f = D(f ) + D * (e). (16) 
The flow and efforts can then be respectively obtained by partial derivatives of the power potential as

e = ∂P ∂f = ∇D(f ), or f = ∂P ∂e = ∇D * (e). (17) 
So in the case of a flow (resp. effort) controlled component the power can be expressed as a function of a single variable using either

P (e) = e • ∇D * (e) or P (f ) = ∇D(f ) • f . ( 18 
)
2 Note that according to the energy domain (electric, magnetic, . . . ), the roles of flow and efforts need not necessarily be associated to the current and voltage. The convention adopted here, is that the flow of dynamic components is given by the time-derivative of the energy variable, while the effort is given by the gradient of the energy potential. 3 These potentials are also called the content and co-content [20] [21].
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Linear resistor

For a current-controlled (resp. voltage-controlled) resistor, the constitutive law is v = ê(i) = Ri (resp. i = f (v) = v/R). By consequence its current and voltage potentials are given by

D(i) = i 0 ê(f ) df = i 0 Rf df = Ri 2 2 (19) D * (v) = v 0 f (e) de = v 0 e R de = v 2 2R . (20) 
Introduce function P as P (v, i) = D(i) + D * (v), then, for all (v, i) belonging on the characteristic curve, the power can be given by v • i (product-type), P (v, i) (sum-type), P (v, f (v)) (voltagecontrolled) and P (ê(i), i) (current-controlled), that is

P (v, i) = v•i = D(i)+D * (v) = 1 2 Ri 2 + v 2 R = v 2 R = Ri 2 .
(21) In this particular case, we have D(i) = D * (v) = Ri 2 because of linearity (for v = Ri) but this result should not be extrapolated as the next example will show.

P-N Diode

For a voltage controlled P-N diode, the constitutive law is given by

i = f (v) = IS exp v nVT -1 (22) 
where IS is the saturation current, n the ideality factor and VT the thermal voltage. Its voltage potential is given by

D * (v) = v 0 f (e) de = nVT IS exp v nVT - v nVT - 1 . 
(23) Direct integration for the current potential does not lead to an easily integrable primitive, however because of bijectivity, we can evaluate it indirectly by using the inverse map

v = ê(i) = f -1 (i) = nVT ln 1 + i IS , i > -IS (24) 
and the Legendre transform

D(i) = vi -D * (v) v= f -1 (i) : D(i) = nVT IS 1 + i IS ln 1 + i IS - i IS (25) 
Using the above definitions, the current and voltage potentials being known, the component can be used as being either flow or effort-driven according to the constraints imposed by the circuit interconnections.

External sources

For external voltage (resp. current) sources, the constitutive laws v = ê(i) = V , (resp. i = f (v) = I) are independent of the current (resp. voltage) variables and not bijective, with V (resp. I) being the source parameter. This gives the powers By consequence, for voltage (resp. current) sources, the voltage potential D * (v) (resp. current potential D(i)) is degenerate and null.

PV (v, i) = V i = D(i), PI (v, i) = vI = D * (v). (26) 
f (v) = IS exp v nV T -1 P (v, i) = vi = D(i) + D * (v) D * (v) D(i) (v, i) v i

Summary

Using an appropriate permutation π (cf definition 2.2), the mixed flow f and its dual ẽ can be parametrized by a state variable x ∈ R n , a dissipative variable w ∈ R p and an output y ∈ R m , where the potential Z(w) (resp. S(y)) is an appropriate choice among the dissipative (resp. external) current and voltage potentials imposed by the permutation π. (Please refer to [19] for more details.)

f := [ ẋ, w, y] T (27) 
ẽ := [∇H(x), ∇Z(w), ∇S(y)] T

The power potential 4 (1) can then be expressed as

P (ẽ, f ) = ẽT f = ∇H(x) T ẋ Pc + ∇Z(w) T w P d + ∇S(y) T y Pe . (29) 
Combining the definitions ( 27) and ( 28), with the Dirac structure (6), leads to the skew-symmetric gradient form of Differential-Algebraic Port-Hamiltonian equations as

  ẋ w y   f = J   ∇H(x) ∇Z(w) ∇S(y)   ẽ ⇐⇒ ∂P ∂ẽ = J ∂P ∂ f (30) 
Integrating ( 29) over a time interval [t0, t1] combined with the power balance (7), leads to the conservation of the total energy ∆E = H(x)

t 1 t 0 + t 1 t 0 P d (t) dt + t 1 t 0 Pe(t) dt = 0. (31)

STRUCTURE-PRESERVING INTEGRATION SCHEME

The main objective of the numerical scheme is first and foremost, to provide a structure-preserving method that conserves the invariant (31) in discrete-time over each time-step. This offers the strong guarantee that no artificial energy is either consumed or created by the numerical scheme.To achieve this goal, thanks to the unified representation of DAE circuits as gradient systems introduced in section 3, it is now possible to generalize the usage of discrete gradient methods [22] [23] for both dynamic and algebraic components.

Discrete Gradients

Given a scalar potential H : R n → R, a point x ∈ R n and a variation δx ∈ R n , a necessary and sufficient condition for a function ∇H(x, δx) : R n × R n → R n to be a discrete gradient is given by 

∇H(x, δx) • δx = H(x + δx) -H(x) (32) 
∇H(x, 0) = ∇H(x) (33) 
Furthermore, using the gradient theorem, for separable potentials of the form

H(x) = N i=1 Hi(xi), (35) 
the discrete gradient can be computed exactly by finite differences on each scalar potential. It is given component-wise by

[∇H(x, δx)]i :=        Hi(xi + δxi) -Hi(xi) δxi δxi = 0 ∂Hi ∂xi (xi) δxi = 0 (36) 
Finally, and only in the case of quadratic potentials of the form H(x) = 1 2 x T Wx with W = W T 0, does the discrete gradient correspond to evaluation of the gradient at the mid-point.

∇H(x, δx)

= ∇H x + 1 2 δx = W x + 1 2 δx (37) 
The following result will also be exploited in the next section.

Property 4.1. Given a separable potential H : R n → R, as in (35) of class C 2 , a point x ∈ R n , a variation ν ∈ R n and its discrete gradient ∇H(x, ν) defined as (36), the derivative of the discrete gradient with respect to the variation ν is the diagonal matrix ∂ν ∇H : 

(x, ν) ∈ R n × R n → R n×n with entries ∂ν ∇H i,i =          ∇Hi(xi + νi) -∇Hi(xi, νi) νi νi = 0 1 2 ∂ 2 Hi ∂x 2 i (xi) νi = 0 ( 
where wn = wn + δwn/2, ȳn = yn + δyn/2. The DAE system (30) has been converted to an algebraic system that needs to be to solved for the average variation δzn = [δxn, δwn, δyn] T .

NEWTON ITERATION

Denote the variation ν = δzn, solving the discrete algebraic system (40) can be rewritten as the root-finding problem

F (ν * ) = 0 (41) 
where ν * is the looked for solution and F is defined by In denote the n × n identity matrix and ∇f P = [∇H, ∇Z, ∇S] T .

F (ν) := D0zn + D1ν -J∇f P (zn, ν), (42) 

Newton update

For an estimate ν k and a perturbation ∆ν k , the true solution ν * of (41) can be written as ν * = ν k + ∆ν k . Taylor series expansion of F around ν k , with ∆ν k sufficiently small yields

0 = F (ν k + ∆ν k ) = F (ν k ) + [F (ν k )](∆ν k ) + O( ∆ν k 2 ). (43 
) If the Jacobian F is invertible, neglecting high-order terms and solving for ∆ν leads to the Newton update

∆ν k := -F (ν k ) -1 F (ν k ), ν k+1 := ν k + ∆ν k , (44) 
where the Jacobian of F is given by

F (ν) = D1 -J ∂ν ∇f P (zn, ν) . (45) 
For a separable potential P , using property (4.1), ∂ν ∇f P is a diagonal matrix that can be computed from the knowledge of the gradient, Hessian and discrete gradient of the potential.
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Convergence and stiffness

If the eigenvalues of the matrix A = D -1 1 J ∂ν ∇f P (zn, ν) are such that A 2 = max(|λi|) < 1, the fixed-point induced by (40) is contracting. The Banach fixed-point theorem guarantees existence and unicity of the solution. It is then possible to approximate the inverse of the Jacobian with the Neumann series identity

(I -A) -1 = ∞ k=0 A k ≈ I + A + A 2 + . . . (46) 
to get the first (or any higher) order approximation

F (ν) -1 ≈ I + D -1 1 J ∂ν ∇f P (zn, ν) D -1 1 (47) 
If max |λi| ≥ 1, the system is said to be stiff, the series ( 46) is divergent, and the approximation (47) is no longer valid. Solving the system then requires a matrix inversion for each iteration. Using the Newton-Kantorovich theorem, for a starting point ν0, if there exists positive constants β0, γ, h0, such that F (ν0) -1 ≤ β0, F (ν) is locally γ-Lipschitz and h0 := ∆ν0 β0γ < 1/2, then the sequence {ν k } converges quadratically to some unique ν * such that F (ν * ) = 0. Please refer to [27] for more details.

CIRCUIT EXAMPLES

Envelope Follower

We consider the envelope follower circuit shown in figure 3 with parameters C = 100 pF, IS = 2.52 nA, VT = 23 mV and n = 1.96. Kirchoff laws leads to the following Dirac structure:

  iC vD iS   f =   0 1 0 -1 0 1 0 -1 0   J   vC iD vS   ẽ . (48) 
For this circuit we have x = [q], w = [vD], y = [iS], f = [ q, vD, iS] T and the following potentials

H(q) = q 2 2C , (49) 
Z(vD) = nVT IS exp vD nVT -1 -vDIS, (50) 
S(iS) = V iS. (51) 
Taking their gradients gives the right-hand side vector

ẽ =   vC iD vS   =   ∇H(q) ∇Z(vD) ∇S(iS)   =     q/C IS exp v D nV T -1 V     (52) 
and the product ẽT f gives the power balance potential P (ẽ, f ) = ∇H(q) q P C (q)

+ ∇Z(vD)vD

P D (v D ) + ∇S(iS)iS P S (i S ) . (53) 
For the capacitor and voltage source, we obtain the discrete gradients

∇H(q, δq) = 1 C q + δq 2 , ∇S(i, δi) = V, (54) 
and after some algebraic manipulations (see appendix B), the discrete gradient of the diode potential can be expressed as

∇Z(v, δv) = IS exp v + δv/2 nVT sinhc δv 2nVT - 1 . 
(55) where the sinhc term (sinhc := sinh(x)/x) acts as a correction compared to evaluation of the gradient at the mid-point.

Diode Clipper

We consider the diode clipper circuit shown in figure 5 with parameters R = 1 kΩ, C = 100 nF, IS = 2.52 fA, VT = 23 mV and n = 1. For the two diodes, with vD := vD 1 and the diodes current iD := iD 1 -iD 2 , the constitutive law is

iD = f (vD) = 2IS sinh vD nVT . (56) 
Its integration gives the voltage potential

D * D (vD) = v D 0 f (v)dv = 2nVT IS cosh vD nVT - 1 . 
(57) Application of Kirchoff laws leads to the following Dirac structure:

    iC vR vD iS     f =     0 1 -1 0 -1 0 0 1 1 0 0 0 0 -1 0 0     J     vC iR iD vS     ẽ . (58) 
For this circuit, x = [q], w = [vR, vD] T , y = [iS], f = [ q, vR, vD, iS] T and the potentials are

H(q) = q 2 2C , Z(vR, vD) = v 2 R 2R + D * D (vD), S(iS) = V iS. (59) 
Their gradients regenerates the mixed effort

ẽ =     vC iR iD vS     =     ∇H ∇ZR ∇ZD ∇S     =      q/C vR/R 2IS sinh v D nV T V      (60) 
and the product ẽT f gives the power balance potential

P (ẽ, f ) = ∇H(q) q P C (q) + ∇ZR(vR)vR P R (v R )
+ ∇ZD(vD)vD

P D (v D ) + ∇S(iS)iS P S (i S )
.

(61) Similarily as in the envelope follower case, we have the discrete gradients (54) for the capacitor and voltage source, with

∇ZR(v, δv) = 1 R v + δv 2 (62) 
for the resistor, and after some algebraic manipulations, the discrete gradient of the diodes potential can be expressed as We remark that in both cases, the power balance is satisfied with high precision. The relative error is of the order of the machine epsilon ( = 2 -53 ≈ 1.11 • 10 -16 ). This results in a vanishing total energy variation. For dissipative components, the absorbed power is always positive; the dissipated energy is thus monotonously increasing. For dynamic components and sources, the power is alternatively absorbed and released, the difference being that sources have a decreasing average energy trend to compensate for losses in the dissipative components.

∇ZD(v, δv) = 2IS sinh v + δv/2 nVT sinhc δv 2nVT . (63 
Existence and uniqueness of the fixed points are guaranteed if h < C/γD for the envelope follower and if h < C/ max(γD, γR) for the diode clipper (proof is ommited) where γK stands for the local Lipschitz constants γK = maxν |∂ν ∇ZK (vK 0 , ν)| of the diode and resistor components in a neighborhood around ν0.

For the diode clipper circuit, the fixed-point does not converge, but the Newton iteration does. We can remark that each time the diodes are saturating, the precision of the power balance is slightly deteriorated. This can be explained by two facts: the dissipated power is also increasing during saturation and the system becomes stiff, thus the numerical conditioning of the Jacobian in the Newton iteration gets worse.

CONCLUSION

The main contribution of this paper consists in a) using the powerbalance as the core object from which all quantities in the system are derived, b) generalizing the usage of potentials and their gradients to represent the flow and effort variables for both dynamic an algebraic components, c) keeping the sparse skew-symmetric structure matrix J until numerical simulation, d) integration of the system using the average discrete gradient. This leads to a consistent structure-preserving approximation that conserves the form of the original system in discrete-time.

It is also shown that the Jacobian of the Newton iteration has a special structure that only involves diagonal and skew-symmetric matrices. It can be computed only from the knowledge of the potentials associated with each component and stiffness can be inferred by inspection of the derivatives of the discrete gradient. Furthermore the structure-preserving approach offers a valuable tool to monitor the quality of our approximations with respect to the power balance.

The main drawback of the approach is a direct consequence from its strength. Indeed, the preservation of the power balance, prevents the use of L-stable integrators (which limit the stiffness by introducing artificial numerical dissipation) such as the Backward Difference Formulas or Radau IIa methods [28] [29]. This imposes some restrictions on the step size or the use of adaptive strategies. However, since the average integration of the system can be interpreted as a lowpass projector and first-order anti-aliasing filter [30], parasitic oscillations at the Nyquist frequency which are typical of stiff systems are attenuated during the simulation.

Further perspectives include the use of higher-order trajectory models, exponential integrators [31] which have shown to be effective in the simulation of stiff systems and more generally Lie-group integrators [START_REF] Celledoni | An introduction to lie group integrators-basics, new developments and applications[END_REF] [START_REF] Iserles | Lie-group methods[END_REF] whose trajectories belong, by construction, to the system manifold. When ν → 0, using a) the definition of the discrete gradient (36) with b) Taylor series expansion about x and neglecting high order terms when passing to the limit leads to and since sinhc(0) = 1, ∇D * (v, 0) = ∇D * (v) satisfies eq [START_REF] Iserles | Lie-group methods[END_REF].

INTRODUCTION

Operational Amplifier (OPA) models can be roughly categorized into a) Controlled Source (CS) models, b) white box macro models and c) Nullor models .

In CS models (see [1]), the power supplies are lumped within the OPA and controlled sources can provide an infinite amount of power. It has the advantage of being simple and hides most of the internal complexity. This is the method of choice used by students to study the functional behaviour of OPA circuits. The main drawback comes from the absence of external supply ports. This results in non passive models, and forbids simulations with non-ideal voltage sources (e.g. in low-budget guitar stomboxes).

White box macro models (see references [2] [3] [4]) use dozens of transistors to accurately reproduce the inner structure and nonideal characteristics of particular devices. While this is appropriate for offline simulation and circuit design, the main drawback of this approach comes from the high number of (implicit) nonlinear equations which makes it often unsuitable for real-time simulation.

Nullors (see references [5] [6] [7] [8]), are singular two-port elements where the input flow and effort variables are both zero: e1 = f1 = 0, while the output flow and effort variables e2, f2 are unconstrained. One drawback is the lack of flow / effort duality. In addition, similar to CS, Nullors have no explicit power supply ports and thus are not passive devices, inheriting the same drawbacks mentioned above.

For audio applications, dedicated Wave Digital Filters (WDF) models of the OPA for specific circuit topologies have been proposed in [9], more recently, using Modified Nodal Analysis to WDF adaptors, both Nullor and CS general purpose models of the OPA and OTA have been proposed in [10] [11] and Sallen-key filters have been modelled with WDF in [12].

We propose a passive, quasi-ideal, black-box, behavioural model of the OPA, simple enough for realtime simulation, with explicit power supply and modelling nonlinear saturation. In particular, a by-product of this research is to have a model compatible with the port-Hamiltonian formalism [13].

The paper is structured as follows. First a general purpose passive model of the OPA is proposed in section 2, then it is illustrated by treating the non-inverting voltage amplifier circuit in section 3, finally a detailed study and simulation of a saturating Sallen-Key lowpass filter is presented in section 4.

OPERATIONAL AMPLIFIER MODEL

The objective of this paper is to find the simplest class of Operational Amplifier models satisfying the following properties: The OPA shown on figure 1 is modelled as a 5-port device with node voltages being measured relatively to the ground, node currents directed toward the element using the receiver convention and pins labelled P = {+, -, S+, S-, out}. In this paper, we assume that the ports of the OPA can be partitioned into a voltagedriven set T , and a current-controlled co-set T * T := {+, -, S+, S-} , T * := {out} , T ∪ T * = P. 

Constitutive equations

Since there are 5 ports with dual flow and efforts variables, 5 independent equations are required to specify the device: 1-2) Non-energetic input ports: the current entering the pins {+, -} is zero (infinite input impedance)

i+ = i-= 0, (5) 
3) Conservation of charge: Kirchoff Current Law applied over the gaussian surface 1 S enclosing the AOP implies that the sum of all currents is zero f (e S+ , e S-, e+, e-)eout = 0 (13

∈P i = 0, (6) 4 
)
Since there is an inequality and the relation f is not specified yet, there is an infinite class of models satisfying these equations. A particular instance is chosen as follows. 1 The Gaussian surface S is shown on figure 1. For more details see [1].

Toward a unique model

Substituting (4) into the passivity equation ( 12), using the conservation of charge (11) and simplifying by iout gives the constraint2 

Vcm + V dm i S+i S- i S+ + i S- = eout -P diss iout , (iout = 0) (14) which imposes a lot of structure on the form of the output function.

In order to specify a unique model, the following choices are made.

Differential input transistor pair

First, motivated by the typical structure of an OPA, composed of a differential pair of transistors, gain stages and a push-pull output (see [14] p.707), the adimensioned modulation factor3 ρ( ) := -i S+ iout = exp (x) exp (x) + exp (-x)

, x = K V dm , (15) 
is introduced and shown on figure 2. According to the conservation of charge (11), this leads to the symmetric current splitting i S+ = -ρ( )iout, i S-= -ρ(-)iout.

(16)

The conservative OPA choice

Second, among all passive OPA models, the conservative ones are chosen, neglecting internal dissipation:

P diss = 0. (17) 
The power supply ports provide the amount of power necessary to balance the power consumed at the output port. This is an instance of a nonlinear nonenergic n-port [15].

Final model

Substituting ( 16) and ( 17) into (14) uniquely defines the output function (a similar result was also derived in [16])

eout = Vcm + V dm tanh K V dm . ( 18 
)
Expressed as a function of e S+ , e S-this gives eout = ρ(+ )e S+ + ρ(-)e S-.

Finally gathering equations (5) (16) (19) in matrix form reveals the modulated hybrid Dirac structure 4 of the conservative OPA model given by the skew-symmetric matrix J(u): 

      i+ i- i S+ i S- eout       y =    
The singularity of the structure matrix J encodes the conservation of the so-called Casimir invariants i+ = i-= 0, in addition to the conservative power-balance P diss = u T y = u T J(u)u = 0, (J = -J T ). 

CASE STUDY

To study the behaviour of the proposed model in practical applications, the case of the voltage amplifier is examined in section 3.1. Then as a pedagogical example, the voltage amplifier is driven by a sinusoidal voltage source and asymmetrically powered by a single capacitor to simulate a discharging battery in section 3.2. The voltage amplifier will be used as a building block of the Sallen-Key lowpass filter shown in section 4. A non-inverting voltage amplifier (figure 3) is achieved by feeding back the output eout to the negative input e-through a voltage divider

= e+ - eout G , G = R1 + R2 R1 = 1 + R2 R1 . (22) 
The instantaneous feedback makes the circuit act as a proportional corrector with high proportional gain K in order to satisfy the constraint eout ≈ Ge+ within the range eout ∈ [e S+ , e S-].

The voltage divider induces an internal current iR = eout/R, where R = R1 + R2, and the current splitting (16) becomes i S+ = -ρ( )(iout -iR), i S-= -ρ(-)(iout -iR). 

In the following, it is assumed that R → ∞ such that internal losses are negligible. In particular, this is the case of the classical voltage follower circuit for which R2 = 0, and R1 = ∞.

Implicit constraint

The relation ( 24) is still implicitly defined since depends on both input and output variables e+ and eout. To avoid apparent difficulties with discontinuous functions, consider the curve

F = (u, y) ∈ R 2 | F (u, y) = 0 , (26) 
specified by the function

F (u, y) = Vcm + V dm tanh K V dm u - y G -y, (27) 
and given e+, look for eout such that (e+, eout) ∈ F . Since the output function is monotonous with respect to and bounded in [e S-, e S+ ], a unique solution exists within that range. A global method such as the bisection method is guaranteed to find it, whereas, since K is typically about 10 6 , it is very difficult to use either fixed-point or derivative-based methods because of bad numerical conditioning. Numerical simulations are shown on figure 4. 

One can see on figure 4 that convergence to F∞ is very fast even for moderate values of K. This justifies the use of this limit process in following developments. For (e+, eout) ∈ F∞ this gives the explicit form

eout = Vcm + V dm sat Ge+ -Vcm V dm , (29) 
where sat(x) = min(max(x, -1), 1).

(30) Alternatively one can represent this function as eout = µ+(e+, Vcm, V dm )e S+ + µ-(e+, Vcm, V dm )e S- (31) where the implicit modulation factor ρ(± ) in (24) To illustrate one of the practical interest of having explicit power supply ports, the voltage amplifier is used with the negative supply port grounded, and the positive supply port powered by a capacitor to simulate a discharging battery (figure 5).

Using (20) with Vcm = V dm = q/(2C), and iout = -y/R, yields the algebro-differential equations      q = -η(u, q) y R , y = η(u, q) q C

, η(u, q) = µ+ u, q 2C , q 2C . (

The energy stored in the capacitor is H(q) = q 2 /2C. Then its differential equation is governed by the monotonous discharge

d dt H(q) = ∂ H ∂q dq dt = - q C η(q, u) y R = - y 2 R . (34) 
The circuit acts as a half-wave rectifier with a positive clipping threshold governed by the discharge of the capacitor as shown on figure 6. 

Remark (Comparison between models)

As expected, with the proposed model, the capacitor does not discharge during negative saturation (energy-preservation), and has a monotonous discharge otherwise. Comparison with LTspice's universal model shows that the two simulations are very close. Finally with the LT1366, the discharge is monotonous and qualitatively similar, but decays faster due to internal dissipation.

SALLEN-KEY ANALOG LOWPASS FILTER

The class of Sallen-Key Filters (SKF), introduced in [20], is perhaps one of the most common analog filter design topology. It is used for the realization of analog biquadratic filters, for example in parametric equalisers. It is also the basis of the multimode Steiner filter [21], the Korg MS-20 [22] and the Buchla Lowpass-Gate [23].

A Sallen-Key lowpass filter schematic is shown on figure 8a. The linear regime and its control parameters are studied in 4.1, the circuit is then converted into equations in 4.2. Discretization is performed using the Average Vector Field method in 4.3, finally simulation results are shown in 4.4. 

In the linear regime, the Laplace transfer function of the lowpass Sallen-Key filter is

H SK (s) = L y SK v IN = 1 1 + a1s + a2s 2 , (36) 
where a1 = (1 -G)R1C1 + (R1 + R2)C2 , (37)

a2 = C1C2R1R2. (38) 
Since there are only two target controls (ω, Q), for 5 design parameters (R1, R2, C1, C2, G), there are many possible design decisions that are often decided according to electronic constraints. In this paper, the Steiner filter parametrization is used with R1 = R2 = R, and C1 = C2 = C because of its simplicity. The transfer function (36) simplifies to

H SK (s) = 1 1 + (3 -G) s ω + s ω 2 , (39) 
with ω = 1/(RC), and Q = 1/(3 -G). In simulations, capacitances are both set to C = 4.7nF and the resistors are adjusted to achieve the target cutoff frequencies.
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Modelling

To model the Sallen-Key filter, the following systematic approach is used:

• Bondgraph: The circuit 8a is first converted to an equivalent bondgraph 8b using the rules in [25]. A bond between two ports A B stands for a pair of dual port-variables (e, f ). The half-arrow indicates the power sign convention P = ef ≥ 0. 0 denotes a parallel junction where all bonds share the same voltage, and 1 denotes a serial junction where all bonds share the same current.

• Causality assignment: to convert an acausal bidirectional bondgraph to a causal, computable, block-diagram, one needs to partition the flows and efforts into inputs and outputs. The convention uses a vertical stroke A B next to ports that are effort-controlled. Computational causalities can be assigned graphically by propagating the following rules: voltage sources and capacitors have an effort-out causality, 0 junctions can only have one input effort, while the dual 1 junctions can only have one output effort.

• Dirac Structure: given the causality assignment, shown on 8b, into inputs and outputs, it is now straightforward to fill the Dirac Structure matrix 8c by inspecting circuit 8a and expressing Kirchoff's current and voltage laws.

• Reduced model: one can reduce the model by solving trivial equalities like e+ = vC 2 , e S+ = V+, e S-= V-, treating V± as constants and replacing the linear resistive currents (iR 1 , iR 2 ) by their constitutive laws. This results in the reduced admittance model shown on figure 8d.

Nonlinear feedback

To separate the linear and nonlinear feedback, one can write

êout(v) = Gv -∇N (v) (40) 
where the nonlinear law is

∇N (v) := Gv -êout(v)
= min(0, Gve S-) + max(0, Gve S+ ).

(41)

and its algebraic potential (figure 9) is given by the line integral 

CONCLUSIONS AND PERSPECTIVES

In this paper, a static, passive, black-box model of the operational amplifier with explicit power supply has been examined. It is suitable for the modelling of audio circuits and simple enough for realtime simulation. Furthermore the explicit modelling of external power supply ports allows the use of non-ideal voltage sources.

The choice has been made to ignore internal dissipation to keep the model minimal. However, non-ideal characteristics such as input and output impedance or power supply voltage drop can be achieved by modular composition of the model with other circuit elements. This will be the topic of further research.

The non inverting amplifier is also derived as a dedicated building block. Numerical simulations justify the use of an infinite OPA gain to get an explicit formulation. Having a pre-solved amplifier model also greatly simplifies its use in electronic circuits, avoiding numerical stiffness and high index DAE.

Finally, the amplifier is used for audio simulations to model a saturating Sallen-Key lowpass filter of second order. A reduced state-space model is derived from the circuit schematic, and a structure-preserving discretization is performed using the average vector field method. A comparison with LTspice shows that our results are very close to those of more complex macro models.

The perspectives of this study are a) modelling other non-ideal OPA characteristics such as finite slew-rate and bandwidth, current and voltage offsets, non-zero common-mode input gain. . . b) studying the behaviour of the model in other typical circuits (oscillator, rectifier, comparator) and c) experimental comparison with specific devices such as the common µA741, or TL072 audio OPAs.

A. STRUCTURE OF THE OUTPUT EQUATION

Using the passivity equation ( 12), then introducing Vcm, V dm using (4), factoring Vcm, V dm , finally, for iout = 0, dividing by iout and using (11) one gets the general form for the output equation (14).

Proof.

i S+ • e S+ + i S-• e S-= -iout • eout -P diss ⇐⇒ i S+ (Vcm + V dm ) + i S-(Vcm -V dm ) = -iout • eout -P diss ⇐⇒ Vcm(i S+ + i S-) + V dm (i S+ -i S-) = -iout • eout -P diss iout =0 ⇐⇒ Vcm + V dm i S+ -i S- i S+ + i S- = eout - P diss iout .

B. FIXED-POINT CONVERGENCE

According to the Banach fixed-point theorem, existence and uniqueness of the solution are guaranteed if the fixed point (55) is contracting, i.e. there exists a Lipschitz constant α ∈ [0, 1) such that DAFX-8

INTRODUCTION

Network analysis of circuits and expression of Kirchhoff laws, naturally leads to implicit differential algebraic equations (DAE). Indeed in the most general form, the branch equations are not described by functions but by relations (in the voltage-current plane for algebraic components, voltage-charge for capacitor, currentflux for inductors . . . ). One of the most general approach is the Sparse Tableau analysis [1] which involves both the nodes and branch variables.

In the study of power-balanced systems, and more generally in the field of geometrical numerical integration, one is not only concerned with the quantitative accuracy of numerical simulations, but also with the qualitative preservation of structural invariants during discretization [2]. It has been shown that the symplectic structure of Hamiltonian systems, responsible for energy preservation, can be generalized to open systems with algebraic constraints by the notion of a Dirac structure [3] [4]. It can even be extended to infinite-dimensional systems such as partial differential equations using a Stokes-Dirac [5] structure. It has been shown in [6] (see also [7] [8]) that Kirchhoff laws generates a Kirchhoff-Dirac structure. Recent work [9] also study the properties and numerical discretization of Port-Hamiltonian DAE systems in descriptor form.

Usually, when possible, DAE are reduced to ordinary differential equations (ODE) or semi-explicit index-1 DAE [10] [8] for which a rich literature of results from system theory and numerical analysis is available to study stability, conservation laws, attraction points, existence and uniqueness of solutions . . . In these reduction processes, a choice has to be made regarding the variables the system is solved for. Choosing the node voltages leads to the Nodal Analysis (NA) method. But it is not sufficient to represent all systems, adding some branch currents leads to the popular Modified Nodal Analysis (MNA) [11]. The importance of state variable choices for computable numerical simulations can be found in [12]. Similar issues are addressed for wave digital filters in [13]. A procedure to guide these choices is the Sequential Causality Assignment Procedure (SCAP) in the bondgraph literature [14]. In the case of switching-circuits, such as those containing ideal diodes or discontinuous laws (see [15]) an approach is to solve for different variables according to the switching state of the system, but the number of such states becomes exponential in the number of switching components.

Since after time discretization, one is left with an algebraic system of (nonlinear) equations which has to be solved by an iterative scheme anyway, the goal of this article, is to propose a structure-preserving power-balanced numerical method capable of dealing with the implicit nature of the network equations.

Section 2 recalls how any electronic circuit can be represented by a Kirchhoff-Dirac structure, uniquely determined by the circuit's incidence matrix. Section 3 describes how to parametrize the (possibly implicit) relation imposed by any circuit component. Power-conjugated voltages and currents (v, i) are obtained by the application of a pair of nonlinear algebro-differential operators (V, I) to a parameter x which stands for the component's local state. In Section 4 arc-length and pseudo arc-length parameterizations 1 are proposed to overcome computational causality problems that arise in switching components and reduce numerical stiffness caused by high Lipschitz constants. In Section 5 a power-balanced and structure preserving time-discretization is presented using a functional framework. This leads to a nonlinear system of algebraic equations which is solved using Newton iteration. Finally two tests circuits are studied in Section 6, a stiff switching diode clipper and a conservative (nonlinear) LCLC circuit with an implicit topological constraint.

KIRCHHOFF-DIRAC STRUCTURES FOR CIRCUIT GRAPHS

From a circuit theory perspective, a Dirac structure is simply a multi-port that doesn't generate or dissipate power i.e.

P = i | v = 0.
Considering components and their interconnections separately, because of Kirchhoff laws, the multi-port connecting all components 1 Curvilinear coordinates for multi-ports are possible but not addressed. (the PCB) is necessarily a Dirac structure. To formalize it for circuits, we borrow and slightly adapt the notations from [6] [5] [9].

Circuit Graphs

A directed circuit graph G(N , E) is defined by a set of n nodes N = {η1, . . . , ηn} and a set E = { 1, . . . , m} of m directed edges (links, branches) with no self-loops. Edges are ordered pairs of nodes i = (ηi,0, ηi,1). Over each node (k = 0) and edge (k = 1) 2 , using the receiver convention for both, we define conjugated current and voltages

(i k , v k ) ∈ I k × V k =: B k , k ∈ {0, 1} (1) 
where V0 ∼ R n , V1 ∼ R m are the spaces of voltages over the nodes N (resp. the edges E) and I0 = V * 0 , I1 = V * 1 the dual spaces of functionals V0 → R, V1 → R. The spaces B0 and B1 are respectively the spaces of bonds corresponding to the nodes and edges such that power is given by the duality pairings

i k | v k B k := i T k v k , k ∈ {0, 1}. (2) 
Note that since the spaces are finite-dimensional, one can identify each space with its dual V0 ∼ I0 = R n , V1 ∼ I0 = R m . Furthermore, the directed graph is uniquely specified by its (reduced) co-incidence matrix D given by

D = [dij] m×n , di,j =      1 i,1 = ηj -1 i,0 = ηj 0 otherwise . (3) 
Kirchhoff Current (KCL) and Voltage laws (KVL) 3 can be expressed with an elegant duality (see [16] p.710) using the incidence and coincidence matrices by

v1 = Dv0, i0 = -D T i1 = 0. (4) 
i.e. we have the following diagram.

v0 ∈ V0 v1 ∈ V1 i0 ∈ I0 i1 ∈ I1 D • | • B 0 • | • B 1 -D T (5) 
2 This notation is convenient to make the link with automated circuit to Bond-graph algorithms [14]: 0-junctions (shared voltage, parallel connection) for nodes and 1-junctions for branches (shared current, serial connection) see Figures 5 and6 for examples. It is also a mnemonic to remember that lumped circuit equations arise from the spatial discretization of electro-magnetic 1-forms for branches and 0-forms for nodes. 3 The minus sign in front of i 0 comes from the consistent use of the receiver convention for both nodes and branches: the sum of edge currents i 0 entering each node has to be zero.

Kirchhoff-Dirac structure

Written in matrix form, one obtains the canonical Kirchhoff-Dirac structure D (with a structure very similar to the ones obtained for partial differential equations (PDE) [17] We also remark that the node voltages v0 can be interpreted as Lagrange multipliers parametrizing the sub-manifold defined by the linear constraints i0 = 0.

(Reduced) Hybrid Dirac structure

Whereas MNA solves the system for node voltages and branch currents, in Hybrid Analysis [16] and skew-gradient DAE [7] [8], the node voltages are eliminated. First a spanning tree T is chosen, this yields a partition of the branch currents and voltages into tree (vT , iT 

From graph theory, having a spanning tree ensures that the matrix DT ∈ R n×n is invertible. So we can eliminate the node voltages v0 using v0 = D -1 T vT . This yields a reduced Hybrid Dirac structure specified by its link-cutset matrix C = (DLD -1 T ) T D :

  iT vL   =   0 -C C T 0     vT iL   . (8) 
Traditionally, the spanning tree is chosen to be a proper tree (i.e. containing all current-driven branches: Voltages Sources, Capacitors, . . . ) such that vT is current-driven by iT (i.e. computable from iT ). However topological constraints such as in example 6.2 may prevent a proper tree to be found. Since the proposed method is fully-implicit by nature, it does not have such a requirement. Either the Kirchhoff-Dirac structure or any reduced Hybrid Dirac structure can be used for simulation.

For a formal definition of Dirac structures in the broader context of multi-physical networks, pleaser refer to [6] and references therein. A generic example of a Dirac structure and its graph, emphasizing the node-edge incidence structure, is shown on Figure 1. Detailed case-study are shown on Figures 5 and6 and studied in Section 6.

ALGEBRO-DIFFERENTIAL PARAMETRIZATION OF COMPONENT LAWS

From now on, for functional discretization purpose, we adopt a Hilbert space viewpoint, and lift Dirac structures over time steps. Consider a time interval Ω ⊂ R, the branch voltage and current spaces are lifted to the dual Hilbert spaces I1 ∼ V1 ⊆ L 2 (Ω) m (L 2 being a pivot space) equipped with the inner (duality) product

u | v := 1 |Ω| Ω u(t) T v(t) dt. (9) 
We assume that branch equations can be parametrized locally by a state x ∈ X1 ⊆ L 2 (Ω) m , nonlinear differential-algebraic operators I1 : X1 → I1, V1 : X1 → V1 and a law F : X1 -→ B1 := I1 × V1

x -→ (I1(x), V1(x))

.

Likewise the KCL node boundary conditions (4) can be parametrized by the vector of node voltages λ ∈ X0 ⊆ L 2 (Ω) n and the linear constraint

B : X0 -→ B0 := I0 × V0 λ -→ (I0, V0)(λ) = (0, λ) . (11) 
Composing ( 6) with ( 10 

We note that for differential components, the state space is given by the Sobolev space X ⊆ H 1 (Ω) ⊂ L 2 (Ω) defined by X = x ∈ L 2 (Ω) ẋ ∈ L 2 (Ω); x(t) = x0 + t 0 ẋ(s) ds , (16) whereas for algebraic components, no additional smoothness is implied so X ∼ L 2 (Ω).

The differential-algebraic operators corresponding to common electronic components are summarized in Table 1 and the case of implicitly parametrized algebraic components is now further detailed in Section 4.

(PSEUDO) ARC-LENGTH PARAMETRIZATION

We study here implicit arc-length and pseudo arc-length parameterizations of algebraic components whose laws cannot be represented as functions of either current or voltage (or such that unbounded Lipschitz constants may cause numerical problems during simulations). As an example we consider the cases of the ideal diode, a nonlinear resistor and the Shockley diode.

The ideal diode

An ideal diode law is determined by the set (see [15])

RD =    (v, i) ∈ R 2 v = 0 i ∈ R + , i = 0 v ∈ R -.    (17) 
It has the numerical disadvantage of being alternatively voltage and current controlled. In the hybrid formulation, computational causality assignment [14] would imply that a different Dirac structure such as (8) should be used according to the current state of the circuit. Furthermore, when the number of switching components grows, the number of switch configurations of the circuit grows exponentially. A solution around this problem is to consider the parametrization RD : λ → (VD(λ), ID(λ)) with arc-length

λ(v, i) = i/I0 v = 0, i ∈ R + v/V0 i = 0, v ∈ R -, (18) 
for arbitrarily chosen positive reference current and voltages I0, V0.

Inverting the relation, one obtains the algebraic operators VD(λ) = V0 min(λ, 0), ID(λ) = I0 max(λ, 0). Capacitor q q/C q q 2 /2C Inductor φ φ φ/L φ 2 /2L Nonlinear Capacitor q ∇H(q) q H(q) Nonlinear Inductor φ φ ∇H(φ) H(φ)

Algebraic

x V (x) I(x) P (x)

Resistor i Ri i Ri 2 Conductor v v Gv Gv 2 Nonlinear Resistor i z(i) i i • z(i) Nonlinear Conductor v v z(v) v • z(v) Voltage source i V i V • i Current source v v I I • v
Table 1: Differential and Algebraic components. H (energy), P (power), q (charge), φ (flux), z (non linear function).
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A Hard Clipping resistor

We now consider the case of a hard clipping resistor (it will be used in example 6.1) whose (v, i) graph is described by the set

RD =        (v, i) ∈ R 2 ;      i ∈ R -\ {0} v ∈ {-1} i ∈ {0} v ∈ (-1, 1) i ∈ R + \ {0} v ∈ {1}        . (20) 
We parametrize it continuously using (see Figure 4 page 8) RD = (v, i) ∈ R 2 ; (v, i) = (V (λ), I(λ)), ∀λ ∈ R (21) with the voltage and current operators

V (λ) = V0 clip [-1,1] (λ), (22) 
I(λ) = I0 min(0, λ + 1) + max(0, λ -1) .

For arbitarily chosen positive reference voltage and currents V0, I0.

The Shockley diode

We finally consider the Shockley diode model 5 .

I(v) = IS exp v VT -1 , (24) 
where IS is the saturation current, VT = k b T /qe the thermal voltage, with temperature T , Boltzmann constant k b and electron charge qe. It is C ∞ -continuous, but not globally Lipschitz. For a chosen reference resistance R0, the true arc-length of the graph (v, R0I(v)) is determined by dλ 2 = (1 + (R0I (v)) 2 ) dv 2 but it is not practical to manipulate. Instead, introducing the diode cutoff point (V0, I0) as the point of unit slope

R0I (V0) = 1, I0 = I(V0), (25) 
where V0 = VT ln V T R 0 I S , I0 = VT /R0 -IS. Remarking that for v V0, dλ ≈ dv and for v V0, dλ ≈ R0I (v) dv, one can introduce the C 0 pseudo arc-length differential

d λ(v) = dv v < V0 R0I (v) dv v ≥ V0 . (26) 
Integrating λ(v) := v 0 d λ one obtains the C 1 pseudo-arclength

λ(v) = v v < V0 V0 + R0(I(v) -I0), v ≥ V0. ( 27 
)
Inverting the relation leads to the algebraic operators

VD(λ) =      λ λ < V0, VT ln 1 + I0 + (λ -V0)/R0 IS λ ≥ V0, (28) 
ID(λ) =      I(λ) λ < V0, I0 + λ -V0 R0 λ ≥ V0 . ( 29 
)
5 Anti-parallel Shockley diodes will be simulated in example 6.1 such that by construction, Lipschitz constants are unitary (this property is key to deal with convergence and numerical stiffness)

LV = sup λ V D = 1, LI = sup λ R0I D = 1. (30) 

FUNCTIONAL DISCRETIZATION AND NUMERICAL SOLVER

We now use the functional framework presented in Section 3 to discretize the system with a finite number of parameters per time step, (see the reference [18] for the representation of non bandlimited signals having a finite rate of innovation).

Our time discretisation scheme can be interpreted as an extension of (spectral) time-finite elements methods [19] to DAE. It is based on the following theorem which proves that a weak PHS is preserved over the chosen approximation subspace.

Theorem 5.1 (Weak PHS). Let Ω be a time step, x ∈ X ⊆ L 2 (Ω) m a functional state, two operators b : X → L 2 (Ω) m , a : X → L 2 (Ω) m and a skew-symmetric matrix J defining the PHS operator N (x) = b(x) -Ja(x) = 0, J = -J * .

(

) 31 
Let P : L 2 (Ω) → R(P ) ⊆ L 2 (Ω) m be a projector (P 2 = P ) satisfying the skew-adjoint commutation P J = JP * , for the L 2 inner product (9), then the projected operator

P • N (x) = 0 (32) 
defines a weak PHS which preserves the power balance.

a(x) P b(x) = 0.

Proof. Using [START_REF] Celledoni | An introduction to lie group integrators-basics, new developments and applications[END_REF], taking the inner product with a(x), and using the fact that 1) P 2 = P (idempotence), 2) we have the commutation P J = JP * and 3) P JP * is skew-adjoint, we obtain In this article we will restrict ourselves to constant and affine polynomial spaces P 0 , P 1 for which we have exact closed-form expression of the projected operators. (Higher-order polynomial spaces require the use of approximate quadratures rules [2] [9]). Results are exposed without proof except when the proof is not available elsewhere (see [8]).

Consider a unit time step Ω = (0, 1), for the normalized time variable τ ∈ (0, 1) and two orthogonal polynomials

0(τ ) = 1, 1(τ ) = τ - 1 2 .
The operator PK : L 2 (Ω) → P K (Ω) ⊂ L 2 (Ω), K ∈ {0, 1} defined by

(PK u)(τ ) = K i=0 i(τ ) i | u i | i (36) 
is an orthogonal projector. i.e. PK is self-adjoint (PK = P * K ) and idempotent (P 2 K = PK ). For notational simplicity, we define the following notation. Let A : L 2 (Ω) → L 2 (Ω) be an operator, the projected operator ĀK : L 2 (Ω) → P K (Ω) is defined by ĀK := PK • A, Ā := Ā0.

(37)

By extension, for a vectorized projector P := PK ⊗ In, it yields the projected PHS operator

N (x) := P • N (x) (38) 
Because of the tensor product construction, we also have the commutation P J = JP = JP * such that P satisfies Theorem 5.1.

For numerical computations, it is necessary to compute the polynomial coefficients of the image of a trajectory through a nonlinear function. This is possible thanks to the following property Proof. See Appendix A.

Note that for a scalar (or separable) potential F , using f = ∇F , and x = (x0 + x1)/2, δx = x1 -x0 in property 5.1 yields the Average Discrete Gradient from [8] (this is also an instance of anti-derivative anti-aliasing) ∇F (x0, x1) := f 0(Θ).

(43)

Additional results for linear gradients are given in appendix B. A detailed convergence analysis for the general case is out of the scope this paper and is left for future work. Please refer to [20] for more details. When N is only semi-smooth which is the case of the ideal and hard clipping diodes, special care should be taken to ensure convergence using semi-smooth Newton methods [21].

Newton iteration

It should be noted that in piecewise constant spaces (k = 0), algebraic constraints simplifies to V(s) = V (s), I(s) = I(s), and one can compute the Jacobian from the derivative V , I . For affine trajectories (k = 1) one should use the results from properties 5.1 and the following property from [8] to compute the coefficients and the Jacobian. 

LCLC circuit

We study here an LCLC circuit (shown on Figure 6) chosen to demonstrate the proposed method when the circuit is conservative, nonlinear and contains topological constraints (parallel capacitors, serial inductors . . . ). Here the circuit contains two inductors with the implicit topological constraint iL 1 = iL 2 .

In traditional solvers, such constraints usually needs to be detected and eliminated before proceeding to simulation. A possible approach is the use of equivalent macro components (see [22] [23]). In contrast, the proposed approach doesn't require such a preprocessing step, and keeps the modularity and sparsity of the component-based description. To demonstrate energy conservation, the capacitor C2 is chosen first with a linear law VC 2 (q) = q/C2 and an hardening nonlinearity VC 2 (q) = Vα sinh( q C 2 Vα ) with Vα = 1/30 (V).

Using the vector of Legendre coefficients as unknown Θ = (iC 1 , vL 1 , iC 2 , vL 2 ), we have the projected Dirac structure operator

N =        iC1 IL1(vL1) iC2 vL2        -        . . . 1 . . . 1 . . . 1 -1 -1 -1 .               VC1(iC1) vL1 VC2(iC2) IL2(vL2)        (48)
Simulation results are shown for the implicit and nonlinear LCLC circuit on Figure 3 for fs = 88.2 kHz, C1 = 20µF, C2 = 100µF, L1 = 1mH, L2 = 100µH, zero initial conditions and vC 1 (0) = 1V. We observe that both the algebraic constraint iL 1 = iL 2 and the conservation of total energy H are respected. Convergence is reached in 1 iteration for the linear case and between 1 and 2 iterations for the nonlinear one (relative tolerance r = 10 -5 ). 

CONCLUSIONS

A new power-balanced, fully implicit component oriented method has been presented with a functional time-discretization. Its main strengths (not necessarily unique to this method) are: a) it retains the topological sparsity and modularity of the network based description, b) it is power-balanced and energy-conserving (including nonlinear components), c) it can deal with implicit topological constraints (capacitor loops, inductor cutsets) without the need of manual substitution of equivalent components, d) it can deal with implicit components including switching components, e) it uses finite-dimensional subspace projection as a unifying discretization tool common to ODE, PDE and DAE. f) Newton iteration converges faster using arc-length description of algebraic components with unbounded Lipschitz constants, Regarding perspectives, a detailed convergence study of the Newton iteration is needed (such as the one in [24]), but has been postponed for future work. Using different and higher order functional approximation spaces is also an obvious perspective provided the projections can be computed exactly and efficiently. In particular, from a generalized sampling theory viewpoint, it would be interesting to perform a comparative analysis of implementation cost and convergence rate (to the true solution) between functional projection and oversampling. There is an apparent computational causality conflict shown in red on subfigure f): the loop current can either be controlled by L1 or L2 but not by both. The circuit has thus an implicit constraint IL 1 (φ1) = IL 2 (φ2). The inductor L1 is said to have a differential causality since vL 1 = φ1, whereas C1, C2, L2 are said to have an integral causality.
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1 . 5 ( 3 DFigure 1 . 3 -

 15313 Figure 1.3 -Composition of Dirac structures (Parallel composition).

Figure 1 . 4 -

 14 Figure 1.4 -Block diagram of energy storing elements.

Figure 1 . 5 -

 15 Figure 1.5 -Examples of adimensioned effort laws and their corresponding energies.

  .35) We define the domain and image of a relation by dom R := f ∈ F R | R(f ) = ∅ , and im R := ∪ f ∈dom R R(f ). Some important properties to describe relations are presented below. Chapter 1. Port-Hamiltonian Systems Definition 1.20 (Relation properties). A relation R (possibly multivalued) is said to be • passive or resistive (resp. strictly resistive) if ∃ m ≥ 0 (resp. m > 0) such that

Figure 1 . 7 -

 17 Figure 1.7 -Law of a Shockley Diode and its power potentials.

Figure 1 . 8 -

 18 Figure 1.8 -Static characteristic of a tunnel diode. (a) tunnel diode plot from the RCA tunnel diode manual [RCA63]). (b) cubic approximation as used in Van der Pol oscillators, (c) exponential model.

Figure 2 . 1 -

 21 Figure 2.1 -Map of state of the art circuit modelling: representations, transformation diagram and relations with port-Hamiltonian formulations.

Example 2 . 1 .

 21 The netlist of a diode clipper circuit in figure2.1 is given by

Figure 2 . 4 -

 24 Figure 2.4 -Examples of spanning trees shown in black, with their cotree shown in dashed

Definition 2 . 11 (

 211 Fundamental Loop and Cutset). Let T be a spanning tree of a connected digraph G with cotree T . • For each branch b ∈ T , the loop L b := loop(b ∪ T ) is said to be a fundamental loop • For each branch b ∈ T , the cutset C b := b ∪ T is said to be a fundamental cutset.

Figure 2 . 5 -

 25 Figure 2.5 -Prototyping boards, a close physical analogy of a graph incidence matrix.

Figure 2 . 6 -

 26 Figure 2.6 -Graph with cutsets and its cutset matrix

Remark 2 . 3 .

 23 It is possible to refine this representation in several ways. a) use an isothermal heat bath U (S) = T S with temperature T and entropy S, b) keep track of the entropy variable for each component using the potential U (S 1 , . . . , S n ) = T (S 1 + . . . + S n ), c) use distinct (and isolated) isothermal heat baths for each dissipative component U (S 1 , . . . , S n ) = T 1 S 1 + . . . + T n S n , d) replace the isothermal condition by heat diffusion.

4 .Figure 2 . 10 -

 4210 Figure 2.10 -Automated Bondgraph modelling of the diode clipper circuit.

Figure 2 . 13 -

 213 Figure 2.13 -Example of a circuit containing a rigid node D R transformed to a single-root SPQR tree (taken from the tone stack stage of the Big Muff π distortion pedal). I would like to thank Kurt Werner and Ólafur Bogason for the fruitful discussion on this topology at DAFx18 in Aveiro.

Figure 2 . 14 -Figure 2 . 15 -

 214215 Figure 2.14 -Illustration of common-differential adaptation of a 2-port.

  .56) More generally, orthogonal n-port adapters (2.54) can diagonalise a coupled multi-dimensional relation (e.g. e = Rf where R = R T 0 has an SVD decomposition R = USU T ).

Figure 2 . 16 -

 216 Figure 2.16 -(continuous-time virtual analog signal processing) block-diagram of the approach

Figure 3 . 1 -

 31 Figure 3.1 -Common sources of non-bandlimitednes: nonlinearities and finite temporal support.

Figure 3 . 2 -

 32 Figure 3.2 -(continuous-time virtual analog signal processing) block-diagram of the approach.In this chapter, input reconstruction (Virtual DAC) and output antialiasing/ sampling (virtual ADC) are considered.

Figure 3 . 3 -

 33 Figure 3.3 -Digital IIR prefiltering scheme to obtain B-spline coefficients {ũ n } such that the reconstructed function u(t) interpolates the cardinal samples u(t n ) .

Figure 3 . 4 -

 34 Figure 3.4 -B-splines (non centered). Piecewise polynomial segments are emphasised using alternating solid and dashed lines.

Figure 3 . 5 -

 35 Figure 3.5 -Comparison of shifted and standard linear interpolation.

Figure 3 . 6 -

 36 Figure 3.6 -Time and frequency response of shifted linear interpolation:β int 1,τ (ω) = β 1 (ω)S τ 1,τ (z = e jω ).Note that cardinal splines are interpolating on the integer grid, but their maximum value is reached for the timeshift τ . For the optimal shift τ opt , the magnitude response is improved by up to 5dB between 5kHz and f s /2 compared to standard linear interpolation.

Figure 3 . 7 -

 37 Figure 3.7 -Comparison between B-splines and cardinal interpolating B-splines(3.31). B-splines have finite support and a lowpass frequency response (both time and frequency representations converges to gaussians when order is increasd). By contrast, cardinal interpolating B-splines have infinite support in both time and frequency (but both decay quickly). The major difference, comes from the the fact that cardinal B-splines are interpolating (they vanish on the uniform grid except in 0) and their frequency response below the Nyquist frequency is much sharper: it converges to the ideal bandlimited rectangular kernel when order is increased.

Figure 3 . 8 -

 38 Figure 3.8 -Impulse responses of cardinal interpolating B-spline pre-filters s 2 [n], s 3 [n], s 4 [n] (see equation(3.29)).

Remark 3 . 5 (Figure 3 . 9 -

 3539 Figure 3.9 -Normalized filtered polynomial ϕ-functions for k ∈ {0 . . . 4} for a complex pole A = 2πi (left plot) and a real pole A = -5 (right plot) over the unit interval τ ∈ [0, 1]. The left plot only shows the real part of each function. blue: impulse response ϕ 0 , orange: step response ϕ 1 , green: ramp response ϕ 2 , red: quadratic ramp response ϕ 3 , magenta: cubic ramp response ϕ 4 .

Figure 3 . 10 -

 310 Figure 3.10 -Exact piecewise continuous-time output of a first order low-pass filter for a time sequence of local polynomials {τ 2 , 1 -τ, 0, 1} and several values of ω c ∈ {1, 3, 6, 10}.

Figure 3 . 11 -

 311 Figure 3.11 -Exact piecewise continuous-time response y(t) of a third order Butterworth filter with cutoff pulsation ω c = π to a triangle input signal u(t) at the Nyquist frequency.

Example 3 . 3 (

 33 Triangle signal at the Nyquist frequency). To illustrate the non-bandlimited representation capacity of piecewise polynomials, and the effectiveness of the continuous-time filtering scheme, consider a non-bandlimited triangular signal u(t) oscillating at the Nyquist frequency, which is shown on figure 3.11. It is locally represented over each time step by

Figure 3 . 12 -

 312 Figure 3.12 -Exact piecewise continuous-time impulse and step responses of an order 12 Butterworth filter. Inputs are plotted in dashed black, piecewise output segments with colours.

  The outline of the idea (shown on figure 3.13) is the following: • Since B-splines of degree m, are piecewise polynomials with finite temporal support, there exists an invertible matrix operator L of dimenson m + 1 converting from the restriction of any B-splines over the interval [n, n + 1] to its Legendre coefficients (see figure 3.14).

Figure 3 . 13 -Figure 3 . 14 -

 313314 Figure 3.13 -(vADC) Block diagram of causal Legendre to cubic B-spline projection filterbank.

1 -

 1 B-spline to Legendre conversion operators L and L -1 . The weights {w k } correspond to the first row of operator L (i.e. projection of β m k on the first Legendre polynomial P 0 = 1).

P

  .50) where | β = β m k m k=0 denotes the B-spline synthesis operator and ũ = [ũ -k ] m k=0 T are the B-spline coefficients corresponding to times m+1 2 -k m k=0 (see figure 3.14). B-spline to Legendre representation We are interested in the Legendre representation. k (t) u k = | P u. (3.51) where | P = | P 0 , . . . , | P m denotes the Legendre synthesis operator (Legendre polynomials are defined in appendix C.4 p.286) for the Legendre coefficients u = [ u 0 , . . . , u m ] T . Since both representations correspond to the same function in the polynomial space P m (Ω), there exists an invertible operator L such that u = Lu given by L = P | β . (3.52) Proof. The result follows from the relations u(t)| Ω a = | β ũ = | P u b ⇐⇒ P | β L ũ = P | P u c = u using (a) representation of u(t) in both basis, (b) left multiplication by the dual Legendre analysis operator P |, (c) orthonormality of the Legendre polynomial basis P | P = I p . Inverse Legendre to B-spline operator Conversely for a sequence of Legendre coefficients u[n] n∈Z , the inverse operator yields m + 1 sequences of B-spline coefficients

  .53) We call L -1 the B-spline extraction operator. Examples are shown on table 3.1 and figure 3.14.

Figure 3 . 15 -

 315 Figure 3.15 -Barycentric overlap-add weights for linear, parabolic and cubic splines.

. 55 )

 55 Proposition 3.1. Operator Q m defined by (3.55) reproduces the spline space S m up to a constant delay of size m, i.e. Q m β m = Z -m β m . (3.56) Proof. Substituting (a) u = β m in (3.55), then, using (b) the local B-splines β m n = β m (t + n)| Ω (see (3.50)), and the definition of operator L (3.52), (c) L -1 L = I m , (d) the barycentric weight property m i=0 w i = 1 (see (3.54)), we obtain

Figure 3 .Figure 3 . 17 -

 3317 Figure 3.16 -B-spline aproximation of square, saw and triangle oscillations at Nyquist.

Figure 3 .

 3 Figure 3.19 -(Virtual Analog resampler) spectrum periodisation.

Chapter 4 Power

 4 -balanced Adaptive collocation If an idea works once it's a trick. If it works twice it's a technique. If it works three times it's a method. Unknown source Contents 4.1 Satisfying the power-balance using adaptive collocation . . . . . . . . . 108 4.2 Method A: adaptive collocation . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3 Method B: symmetric adaptive collocation . . . . . . . . . . . . . . . . 111 4.4 Increasing regularity: SPAC methods . . . . . . . . . . . . . . . . . . . . 113

Figure 4 . 1 -

 41 Figure 4.1 -(PAC(1)) Optimal parameter α as a function of the dissipation rate σ. Note that in the absence of dissipation (σ = 0), the optimal parameter (α = 1/2) corresponds to the mid-point method. When the dissipation rate increases (σ > 0), the method goes towards the Forward Euler method (α < 0.5). Conversely if the pole is unstable (σ < 0), the method goes towards the Backward Euler scheme (α > 0.5). For |σ| > √ 3, it has no real solution.

Figure 4 . 2 -

 42 Figure 4.2 -(PAC(1) -Damped RLC) Mid-point method vs PAC(1). Despite the lower accuracy order of PAC(1), we remark that the orbit and dissipation (in blue on the right) are improved compared to the mid-point method (in orange on the left).

Figure 4 . 3 -

 43 Figure 4.3 -Optimal value of β (and α) as a function of the dissipation rate σ.

Method 4 . 3 (

 43 (S)PAC). Denote k the C k -regularity order and d = 2k + 1 (resp. d = 2k + 2) the polynomial degree. Denote t = t 0 + hτ , τ ∈ Ω = [0, 1] the time and D = 1 h d dτ the time derivative (≡ d dt ). The (Symmetric) Power-balanced Adaptive collocation method of regularity k, in short (S)PAC(k), is defined by •

Figure 4 . 4 -

 44 Figure 4.4 -((S)PAC) Power Balanced regions satisfying ρ(X α ) = 0 and α ∈ [0, 1] for the Dahlquist test equation ẋ = λx, λ = -σ + jω. Contour plots are shaded according to α for SPAC and α -1 2 for PAC. Note that multiple solution branches are overlaid using transparency.

  SPAC(k = 2)

Figure 4 . 5 -

 45 Figure 4.5 -((S)PAC) Optimal values of power-balanced collocation point(s) α as a function of the dissipation rate σ (λ = -σ). Note that multiple solutions are plotted with different colours .

  flow space of square integrable time signals over an open Ω ⊂ R. Denote E = F * ∼ F the (dual) space of effort signals. Let P : F → F be a projector and denote P * : E → E its adjoint for the L 2 duality pairing • | • . We call the functional set

  .3b) When (5.3a) (resp. (5.3b)) holds, we call S P a projected dissipative (resp. Dirac) structure. Proof. The result follows from the sequence of relations e | f a = e | PA | e b = e P 2 A e c = e PAP * e d = e P(J -R)P * e e = -e PRP * e f ≤ 0. using (a) projected flows f = PAe (5.1), (b) idempotency P 2 = P, (c) commutation (5.2)

  using (a) Theorem 5.1 with A = J = -J T , (b) f = Ẋ, e = ∇H(X), (c) the gradient theorem.Corollary 5.2 (Projected pH-ODE). Consider a projected input-state-output pH-ODE with given input u ∈ L 2 (Ω, R n P ) and (P, J -R) satisfying (5.2)

  using (a) Theorem 5.1 with A = J-R, (b) f = Ẋ y , e = ∇H(X) u , (c) the gradient theorem. Corollary 5.3 (Projected pH-DAE). Consider the projected semi-explicit pH-DAE with given input u ∈ L 2 (Ω, R n P ) and (P, J) satisfying (5.2)

  using (a) Theorem 5.1 with A = J, (b) f = ( Ẋ, w, y), e = (∇H(X), z(w), u) (c) the gradient theorem and (d) pointwise non-negativity of z(w) • w ≥ 0.

1 ,

 1 2k the (multi-derivatives) boundary trace operator [Aub11, p.163] is B := B 0 0 , . . . , B k-1 0 , B 0 1 , . . . , B k-1 with B m α (u) := (D m u)(α). (5.9) Denote A = A nx × A ny , and B A approximation spaces for dual variables a, b and P = P ⊗ I n , B = B ⊗ I n the extensions of P, B to L 2 (Ω) n and H k (Ω) n .

c 1 a

 1 11 . . . a 1s . . . . . . . . . c s a s1 . . . a ss b 1 . . . b s ≡ c A b .

a.

  Two sequences {fm}, {gn} are said to be biorthogonal if fm | gn = δmn. Example Let {φ n } be the orthonormal Legendre polynomials ((C.16) p.286). The corresponding synthesis functions ψ m α (τ ) are shown on figure 5.1 for projection orders p ∈ {0, 1, 2} and regularity orders k ∈ {1, 2, 3}. Note that the right boundary functions (α = 1) are drawn shifted on [-1, 0] to emphasize the global continuity and limited support of boundary functions on [-1, 1] . Proposition 5.5. Step iii) of RPM, def. 5.1, induces a projector Q : H k (Ω) → A, satisfying Q = P ⊕ R, where R = B -1 B(I -P).

Figure 5 . 1 -

 51 Figure 5.1 -(Polynomial supplementary boundary functions). The basis ψ mα (τ ) is shown for projection order p ∈ {0, 1, 2}, and regularity order k ∈ {1, 2, 3}. The case p = 0 (which corresponds to Hermite splines) is not used in this thesis as the consistency of the time stepping method requires that p ≥ 1. By construction, these boundary functions act as continuous regularisations of the Dirac delta distributions δ (m) .

Figure 5 . 2 -

 52 Figure 5.2 -Comparison of operators P and Q to approximate u(τ ) = exp(-8τ) for projection order p ∈ {1, 2} and regularity order k ∈ {1, 2, 3}. On this example, we clearly see that L 2 projection Pu (in blue) is discontinuous and a crude approximation of the function u. The projection Qu preserves and refines the approximation Pu. It restores C k-1 -continuity by interpolating u and its derivatives on the boundary of the interval. We also observe that it reduces the pointwise approximation error: the amplitude of oscillations decreases with increasing k.

Figure 5 . 3 -

 53 Figure 5.3 -Comparison of k-convergence and p-convergence of RPM(p, k) on the approximation error u -Qu L 2 for u(τ ) = exp(-8τ ). We remark on figure 5.3a (k-convergence) that the error for k = 5 (for all values of p) is systematically smaller than the error on figure 5.3b (p-convergence) for p = 5 (for all values of k).

5 .

 5 Using the common notation (•)+ = max(0, •).

  E P ( , ) (analysis on g ) kernel E P ( , ) (analysis on g )

  kernel E P ( , ) (synthesis) s = 0.00 s = 0.25 s = 0.50 s = 0.75 s = 1.00 (c) Projection order p = 3

Figure 5 . 4 -

 54 Figure 5.4 -Peano error kernels E P (τ, σ) for projector P with projection order p ∈ {1, 2, 3}. As P does not handle regularity, expected discontinuities of kernels appear at τ = σ (the Sobolev regularity of E P (•, σ) E P (τ, •) is p -1). We notice in the synthesis column that the largest approximation errors are more likely to appear towards the interval boundaries. The maximal error decreases by an order of magnitude as p is incremented. We notice, on the analysis column, that kernels are all zero on boundaries, meaning that, at these points, the error might be arbitrarily high (which is confirmed on the synthesis kernels). Conversely they have maximal weight towards the center of the interval. These observations show that projector P is biased towards reducing errors close to the center of the interval.

1 Figure 5 . 5 -

 155 Figure 5.5 -Peano error kernels E Q (τ, σ) for operator Q with p = 1 and regularity k ∈ {1, 2}.Comparing these error kernels to those of projection P in figure5.4, we notice that (in the synthesis column) the error (and it derivatives when increasing k) now vanishes on the boundaries and that the magnitude order of the error is also much smaller. However, in the analysis column, we notice that the maximal weight is still towards the center of the interval. Although projection Q reduces the boundary error, this means that the error might still become high near the boundaries. A more uniform handling of the point-wise error would require the use of a different basis, for example Chebyshev polynomials. Unfortunately, this choice is not an option since the uniform weight of the L 2 inner product is already dictated by the power-balance.

Lemma 5 . 1 .

 51 If either of the following conditions is satisfied in equation (5.32) C1. J w = 0, or C2. z (w) is symmetric positive definite (z (w) = z (w) T 0), or C3. J w z satisfies conditions (C2) of lemma 5.3.

1 Figure 5 . 6 -

 156 Figure 5.6 -Smoothing effect of the Average Discrete Gradient for ∇H(x) = tanh(Kx), (i.e. H(x) = 1K ln cosh(Kx) (top plot). When K → ∞, it converges to the discontinuous sign function (discontinuous at the origin). The greater δx, the higher the regularisation effect. For symmetry reasons, the graph is drawn for the centered coordinates x = x 0 +x 1

Figure 5 . 7 -

 57 Figure 5.7 -(Convergence of Gauss-Legendre quadrature).The graph (left), quadrature approximation error (middle) and Legendre spectrum {f • x} k (right) are plotted for the composition of functions (f • x)(t) where x(t) = x 0 + t(x 1 -x 0 ), x 0 = -1, x 1 = 1 is an affine trajectory and for two nonlinearities: (top) A C ∞ function f (x) = exp(ax) -1 (like a diode law) and (bottom) a piecewise linear C 0 ReLU function f (x) = max(ax, 0) (used in opamp clipping) both for parameters a = 1, 2, 3. We can clearly see that for C ∞ functions (top), both the approximation error and the (Legendre) spectrum decay very fast. The error reaches the machine epsilon after a finite number of quadrature nodes. By contrast, for C 0 functions (bottom), both the approximation error and the Legendre spectrum decay much more slowly: the quadrature order and the number of Legendre coefficients have been increased to 100 but the quadrature error remains significant (about 10 -4 ) which is more than 10 orders of magnitude above the machine epsilon. The spectrum is shown in log-log scale to emphasize its slow linear decay (due to the discontinuity of the first derivative).

p = 3 , k = 1 Figure 5 . 8 -

 3158 Figure5.8 -(Nonlinear LC) Orbits for projection order p = 1, 2, 3, and regularity order k = 0, 1, for a Nyquist pulsation ω = π (the actual pulsation is slower because of nonlinearities) and initial conditions (q 0 , φ 0 ) = (0, 2). Plots are shown both in the phase space (φ, q) (first row), and in the flow/effort space (i L , v C ) (second row).

Figure 5 . 9 -

 59 Figure 5.9 -(Nonlinear LC) Trajectories for projection order p = 1, 2, 3, regularity order k = 0, 1, pulsation ω = π and initial conditions (q 0 , φ 0 ) = (0, 2). Oversampled trajectories by a factor of 20 are shown with dashed lines. Dots correspond to the boundaries of time frames.

p = 3 , k = 1 Figure 5 . 10 -

 31510 Figure5.10 -(Linear LC) Orbits for projection order p = 1, 2, 3, regularity order k = 0, 1, pulsation ω = π (Nyquist frequency) and initial conditions (q 0 , φ 0 ) = (0, 0.1). Frequency warping can be observed by looking at blue dots (that should theoretically be aligned at angles 0 and π).

4 (

 4 regularity k = 0, spectral decay increase with order, pass-band aliasing drops below -100dB for p = 3. b) regularity k = 1, faster spectral decay, better high frequency signal to noise ratio.

Figure 5 .

 5 Figure 5.11 -(Nonlinear LC) Spectrum and aliasing of v C (t) according to projection order p and smoothness k. Note that state trajectories are C k in the time domain. Spectral peaks are shown instead of the full spectrum to improve the visual contrast between signal harmonics and aliased partials.

Figure 5 . 12 -

 512 Figure 5.12 -(Nonlinear LC) Continuous-time energy error H (τ ) for τ ∈ R according to projection order p and regularity order k for ω = π/2 and (q, φ) = (0, 1).

Figure 5 .

 5 Figure 5.13 -(Nonlinear LC) Energy conservation on steps boundaries τ ∈ N for ω = π/10 and (q, φ) = (0, 1). Horizontal lines correspond to multiples of the machine epsilon.

Figure 5 . 14 -

 514 Figure 5.14 -(Diode clipper) Simulation for projection order p = 1, 2, 3, and regularity order k = 0, 1, 2 with R = 1 kΩ, C = 20 nF such that the diode clipper cutoff f c = 50 kHz is set above the sampling frequency f s = 44.1 kHz. We use I S = 1 fA and V T = 26 mV. The case (k = 2, p = 1)is not shown because the accuracy order is not high enough to use second derivatives.

3 Figure 5 .

 35 Figure 5.15 -(Diode clipper) Sinesweep spectrograms for p = 1, 2, 3, k = 0 with R = 1 kΩ, C = 20 nF such that the diode clipper cutoff is f c = 20 kHz for a fixed sampling frequency f s = 48 kHz. We use I S = 1 fA and V T = 26 mV and an input gain g = 1.5. The spectrum above the Nyquist frequency (24 kHz) is delimited by a dashed blacked line. The generalized bandwidth f p = pf s /2 is shown in dotted black. The non-bandlimited modelling power (and aliasing rejection) of high order projection clearly becomes more efficient as the projection order is increased.

3 Figure 5 .

 35 Figure 5.16 -(Diode clipper) Sinesweep spectrograms in logarithmic frequency scale (same simulation) to be compared with figure 5.15.

Figure 6 . 1 -

 61 Figure 6.1 -(Exponential AVF) Schematic description of the method. The linear part ẋ = Qx of the ODE is exactly integrated by the exponential integrator. The nonlinear part ∇V (X) = P∇V (P S X) is averaged along the trajectory P S X where by construction X and P S X share the same endpoints on the manifold M = x ∈ R n | H(x) = H(x 0 ) and thus the same average slope.

Figure 6 . 2 -

 62 Figure 6.2 -(Exponential AVF) Visual illustration of geometric objects in the proof of theorem 6.1. For simplicity, we consider the conservative case R = 0, Q = I. Energy conservation stems from the orthogonality x 1 -x 0 ⊥ Q ∇ Q H(X).

See [ MVL78 ,Figure 6 . 3 -

 MVL7863 Figure 6.3 -(EAVF) Potential function V and its gradient ∇V for L 0 = L, 2L, 3L, 4L. Note that although V is not a positive function, the Hamiltonian H remains positive: the quadratic part of H is handled by matrix Q.

2 Figure 6 . 4 -

 264 Figure 6.4 -(Exponential AVF) Comparison of EAVF and AVF methods on Nonlinear LC. The pulsation is set to ω ∈ π, π/2 .

Proposition 6 . 1 (

 61 Energy preservation). EPMs are energy-preserving. Proof. Rewrite equation (6.30a) to express the derivative Ẋ Ẋ -AX = P J∇H(X S ) -AX ⇐⇒ Ẋ = PJ∇H(X S ) + (I -P)AX. (6.31)

Figure 7 . 1 -

 71 Figure 7.1 -(Passivity test) operational amplifier circuit.

Figure 7 . 2 -

 72 Figure 7.2 -(Passivity test) Simulation result in LTSPICE for two different OPA macro models. The OPA is charging the capacitor, violating both passivity and conservation of charge.

  a) Memoryless: infinite bandwidth, infinite slew rate, b) Passivity: the power dissipated by the OPA is non-negative (i.e. hidden sources of energy are forbidden), c) Quasi-ideal: infinite input impedance, zero output impedance, infinite common-mode rejection ratio, d) Finite output voltage range and saturation: explicit non-constant power-supply ports, e) Minimal: behavioural model with a minimum number of equations (i.e. not a white box model containing dozen of transistors).

Figure 7 . 3 -

 73 Figure 7.3 -Circuit diagram of an Operational Amplifier (OPA) with currents drawn in receiver convention. The gaussian surface S enclosing the component is shown in dashed line.

) 5 )

 5 Differential gain and saturation: the tensions are tied by a continuous relation e out = f (e + , e -, e S+ , e S-), with

Figure 7 . 4 -

 74 Figure 7.4 -The adimensioned modulation factor ρ(± ), for K/V dm = 1, 2, 3

. 13 )

 13 Expressed as a function of e S+ , e S-this gives e out = ρ(+ )e S+ + ρ(-)e S-.(7.14) 

9 .

 9 Please refer to the references[START_REF] Courant | Dirac manifolds[END_REF] [VdS17][START_REF] Van Der Schaft | Port-Hamiltonian systems: an introductory survey[END_REF] for more details on Dirac structures and to[START_REF] Chua | Linear and nonlinear circuits[END_REF] for hybrid parameters.



  

Figure 7 . 5 -

 75 Figure 7.5 -Non-inverting voltage amplifier circuit with explicit alimentation ports.

Figure 7 . 6 -y

 76 Figure 7.6 -Transfer function of the voltage amplifier for G = 1, K ∈ {1, 2, 5, 50}, e S+ = 10V, e S-= -5V. Smaller values than the typical OPA gain K ≈ 10 6 are used for visualisation purposes.

Figure 7 . 7 -

 77 Figure 7.7 -A single-rail voltage amplifier powered by a capacitor.

Figure 7 . 8 -Figure 7 . 9 -

 7879 Figure 7.8 -Time domain simulation of the capacitor-powered single rail voltage amplifier with v C (0) = 5V and |u| = 3V .

Figure 7 . 10 -

 710 Figure 7.10 -Bode plot of the Sallen-Key filter for ω = 1, G ∈ [0, 3].

Figure 7 .

 7 Figure 7.11 -a) The original Sallen-Key lowpass filter circuit, b) its corresponding bondgraph (see references [Pay61] [Bre86] [Bro99b]) with computational causality assignment. c) the skewsymmetric Dirac structure representing Kirchoff conservation laws. d) the reduced dynamical model.

  .35) This potential will used by the Average Vector Field discretization (an instance of Anti-Derivative Anti-Aliasing).

Figure 7 . 12 -

 712 Figure 7.12 -Algebraic feedback laws and their potentials shown for G = 2, e S+ = 10V, e S-= -5V.

Figure 7 . 13 -

 713 Figure 7.13 -SKF filter response to a square wave input with sampling frequency f s = 44.1kHz, C = 4.7nF, cutoff f c = 1kHz (R = 33.8kΩ), Q = 10, asymmetric saturation V + = 15V, V -= 0V and different fundamental frequencies. The non linear SKF response is shown in solid blue, with the linear SKF response in dashed red for reference.

Figure 7 . 14 -

 714 Figure 7.14 -Comparison between the proposed model, LTspice's universal OPA level.2 and the LT1366 opamp. The proposed model output is almost indistinguishable from LTspice's universal model, whereas the tuning of the LT1366 is slightly different because of dissipation.

Figure 7 . 15 -

 715 Figure 7.15 -Spectrogram responses to a sine sweep for f c ∈ {1000, 2000, 4000} Hz. Intermodulation between the input and the resonance is noticeable.

Figure 7 . 16 -

 716 Figure 7.16 -(FDA) Ideal non-energetic Fully Differential Amplifier 3-port.

Figure 7 . 17 -

 717 Figure 7.17 -(FDA) Ideal law in the (v I , v 0 )-plane expressed as a multi-valued function.

Figure 7 . 18 -

 718 Figure 7.18 -(FDA) Ideal law in (v I , v 0 , λ 1 ) coordinates. The law is represented by an implicit C 0 -continuous map λ → (i I , i O , i S , v I , v O , v S ) parametrised by λ = (λ 1 , λ 2 , λ 3 ).

Figure 7 . 19 -

 719 Figure 7.19 -(FDA) Dual functions µ, µ * (left) and their derivative (right) used to implicitly parametrise the FDA relation (7.53). Note that similar functions have already been used (without being formalised) in figure 7.12 for the OPA.

Figure 7 . 20 -Figure 7 . 21 -

 720721 Figure 7.20 -(FDA) Ideal laws in the (v S , λ 1 , v O )-space (left) and (v S , λ 1 , v I )-space (right). Note that, according to (7.53), these laws are independent of the output current i O and corresponds to a continuous function (v S , λ 1 ) → (v O , v I ) and remind that v S = λ 3 .

  3D (vΣ, vS) → v∆

Figure 7 . 22 -

 722 Figure 7.22 -(FDA) causal map in input-output Σ-∆ coordinates.

Figure 7 . 23 -

 723 Figure 7.23 -(OPA, grey box model) structure of the macro model. Terminals are considered as ports by referencing them to the ground (not necessarily connected to the OPA).

  iR

Figure 7 .

 7 Figure 7.24 -(OPA, grey box model) building blocks candidates.

Figure 8 . 1 -

 81 Figure 8.1 -(NPN Fuzz Face) Schematic. The chosen spanning tree T (current-controlled) is shown in blue. Complementarily, its cotree T (voltage-controlled) is shown in orange.

Figure 8 . 2 -

 82 Figure 8.2 -(NPN Fuzz Face) simulation for a sine input with magnitudes {2, 5, 10, 20} mV, frequency f 0 = 200 Hz and sampling rate f s = 44.1 kHz. Note the asymmetrical distortion. The fuzz sound is roughly characterised by the transformation of the input into a (filtered) square wave with uneven pulse width. Convergence is reached after 1 to 5 iterations (1.671 on average).

Figure 8 . 3 -

 83 Figure 8.3 -(NPN Fuzz Face) Overlay of simulations from figure 8.2. As expected, we observe gradual asymmetrical clipping of the waveform as the gain is increased (consistent with SPICE).

Figure 8 . 4 -

 84 Figure 8.4 -(BMP Tone clipper) Schematics. Current-controlled spanning tree T shown in blue. Voltage-controlled cotree branches T in orange.

Finally, the system ( 8 . 6 )

 86 is solved using Newton iteration, where we use the result from equation (5.42) p.141 (also introduced in [MH18, (38)]) to compute the Jacobian of the AVF discrete gradients. Simulation results for varying values of the morph parameter are shown on figure 8.5.

Figure 8 . 5 -

 85 Figure 8.5 -(BMP Tone Clipper) Responses v OU T (coloured curves) to a sinusoidal input v IN in blue (amplitude 700 mV, fundamental frequency f 0 = 200Hz and a sampling rate f s = 44.1 kHz. Morph values are continuously selected for m ∈ [0, 1].

Figure 8 . 6 -

 86 Figure 8.6 -(Tube screamer) Drive stage.In the original schematic, the virtual ground is set to V bias = 4.5V , with V CC = 9 V and V EE = 0 grounded. For simplicity, we have chosen V bias as the reference voltage and shifted V CC and V EE accordingly. Spanning tree T in blue.

Figure 8 . 7 -

 87 Figure 8.7 -(Tube screamer drive) Linearized frequency response for varying values of P 1 .

  Figure 8.8 -(Tube screamer drive) simulation for the series resistance R 1 exponentially distributed in [51, 551] kΩ according to the drive parameter d ∈ [0, 1]. The input signal is a sinusoid with frequency f 0 and amplitude G simulated at f s = 44.1 kHz.

Figure 8 . 9 -

 89 Figure 8.9 -(MS-20 filter) Simplified overall schematic (a) and its sub-components (b-d). In (a), the chosen spanning tree T is shown in blue and its complimentary cotree T in orange.

.

  

Figure 8 . 10 -

 810 Figure 8.10 -Explicit overdrive amplifier mapping and its approximation for κ ∈ [0, 1]. Exact relation A(v) in black, and its approximation g(v) in dashed orange.

Figure 8 . 11 -

 811 Figure 8.11 -MS-20 filter response to a square wave input with peak volage 650 mV, for a cutoff frequency of 100 Hz and a resonance k = 0.9, κ = 1. The nonlinear self-oscillation is clearly visible, with an asymmetrical waveshape modulated by the square wave input signal.

Figure 8 .

 8 Figure 8.12 -(MS-20 filter) same simulation as figure 8.11 with input levels {600, 650, 700} mV.We observe that the input amplitude influences the amplitude of self-oscillation, its frequency, its damping and its shape. The higher the input, the higher the damping. The lower the oscillation amplitude, the higher the resonance frequency.

Figure 8 .

 8 Figure 8.13 -(MS-20) response to a 1V sawtooth signal with fundamental frequency f 0 = 100 Hz. The cutoff frequency is set to 2.5 kHz for a resonance k = 0.68. Bursts of self-oscillation in the middle of the ramp are typical of this filter and allowed by the temporarily lower input level.

Figure 8 . 14 -

 814 Figure 8.14 -Electronic realisation of a Fitzhugh-Nagumo relaxation oscillator.

Figure 8 . 15 -

 815 Figure 8.15 -Different biasing scenarios for a tunnel diode multivibrator. Figure extracted from the RCA tunnel diode manual [RCA63].

Figure 8 . 16 -

 816 Figure 8.16 -FitzHugh-Nagumo relaxation oscillations, varying values of the offset voltage E ∈ {200, 300, 400} mV and capacitance C ∈ {3, 10} µF.

Figure 8 . 17 -

 817 Figure 8.17 -(FitzHugh-Nagumo) Phase plot, for varying values of E.

  AVF/Mid-point approximation

Figure 8 . 19 -

 819 Figure 8.19 -(Peaking EQ) Frequency Response for L = 10 mH, C = 1 nF, R 1 = 9k, R 2 = 1k, γ ∈ [0, 1]. This yields f 0 ≈ 50 kHz and Q(1) ≈ 2.8. (a) continuous-time response, (b) warped frequency response of second order mid-point/AVF discretisation (see eq.(8.19)) for a sampling rate f s = 44.1 kHz (Nyquist frequency f s /2 in dashed blue). The main drawback is that the resonance peak is warped by several kHz into the audible frequency band. Note that the frequency response is also periodised above the Nyquist frequency by sampling, but is not shown here.

y 2 Figure 8 . 20 -

 2820 Figure 8.20 -Interpretation of RPM(p=3,0) as a mixed Legendre filterbank. We remind that the discrete Z-domain is embedded into the continuous Laplace domain through z = e s .

s 3 √ 7 ( 4 ( 8 . 31 )

 374831 120-60s+12s 2 -s 3 ) s Remark 8.6 (Legendre polynomials and Padé approximations of the exponential). The numerators of B k (s) are proportional to the denominators of the (k, k) Padé a approximation of the exponential (see[START_REF] Ehle | On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems[END_REF]) while numerators of B k (-s) corresponds to the Padé numerators so thatPade (k,k) [exp](s) = (-1) k+1 B k (-s) B k (s) = e s + O(s 2k ).(8.32)a. We have already seen Padé approximations of the exponential when considering the stability function of RPM (see section D.7) B) Time-limited transfer functions: Restricting shifted orthonormal Legendre polynomials to the unit time interval, their Laplace transform is P k (s) := ˆ1 0 e -τ s P k (τ ) dτ,(8.33) 

Figure 8 . 21 -

 821 Figure 8.21 -Legendre exponential approximation error in the frequency domain. Note the manifestation of Strang-Fix conditions in the spectral domain (see eq. (3.22) p.87 and appendix C.3 p.285): the order of accuracy increases with the number of zeros of the error E k (s) at the origin s = 0, which in turn increases the width of the maximally flat approximation region.

Figure 8 . 22 -

 822 Figure 8.22 -Exponential approximation error E k (s) in the Laplace plane for Legendre polynomials for k = 0, 1, 2, 3 (from left to right).We observe that the accurate region (in red) increases with the order p. Furthermore, the periodicity of oscillations gets slower on the Fourrier axis iR as a mark of increased bandwidth.

  Figure 8.23 -(Peaking EQ) Magnitude response of the projected system with cutoff frequency f c ≈ 50 kHz for common audio sampling rates f s ∈ [48, 96, 192] kHz and projection orders p = 1, 2, 3, 4. (No prewarping has been applied to observe the effects of frequency warping).

  Figure 8.24 -(Peaking EQ) Phase response of the projected system with cutoff frequency f c ≈ 50 kHz for common audio sampling rates f s ∈ [48, 96, 192] kHz and projection orders p = 1, 2, 3, 4.

comparison on 20

 20 Hz -20 kHz pq = 2 pq = 3 pq = 4 oversampled: maximum error 1,q ∞ 185 • 10 -3 70.0 • 10 -3 37.3 • 10 -3 high order: maximum error p,1 ∞ 125 • 10 -3 4.63 • 10 -3 1.21 • 10 -3
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 4 See [Olv00, p.390] for a definition of the Poisson bracket and [Mor86, BMBM18] for metriplectic geometry.

Figure 9 . 1 -

 91 Figure 9.1 -Inner product of vectors.

Figure 9 . 2 -

 92 Figure 9.2 -Exterior product of vectors.

  P1. A(B + C) = AB + AC and (B + C)A = BA + CA (left and right distributivity) , P2. (aA)B = A(aB) = a(AB) (Compatibility of scalar and geometric multiplication), P3. (AB)C = A(BC) (Associativity) P4. 1A = A1 (Commuting left and right multiplicative identity)

1 , 3 3 e 1 e 2 e 3 3 - 1 , 4 2 e 1 e 2 , e 1 e 3 , e 1 e 4 , e 2 e 3 , e 2 e 4 , 6 3 e 2 e 3 e 4 , e 3 e 4 e 1 , e 4 e 1 e 2 , e 1 e 2 e 3 3 -vectors (trivectors) 4 4 e 1 e 2 e 3 e 4 4 -

 13314234346412344 n k . Examples for G 2 , G 3 , G 4 are given in table 9e 2 , e 3 1-vectors (vectors) 3 2 e 2 e 3 , e 3 e 1 , e 1 e 2 2-vectors (bivectors) vectors (trivectors) 1 (b) G 3 , dim(G 3 ) e 2 , e 3 , e 4 1-vectors (vectors) e 3 e 4 2-vectors (bivectors) vectors (quadrivectors) 1

  G 3 with orthonormal basis {e 1 , e 2 , e 3 } is I = e 1 e 2 e 3 (sometimes denoted by P to avoid confusion). It has unit norm |I| = |e 1 ||e 2 ||e 3 | = 1 and is unique up to a sign change when permuting the order of multiplication. Its inverse is I -1 = e 3 e 2 e 1 = -I. In G n we have I -1 = (-1) n! I. Definition 9.2 (Dual [Mac10]). The dual of a multivector A is A * := A/I.

  It is said to be strongly monotonousif ∃m > 0 such that v -u, y -x ≥ m y -x 2 , ∀x, y ∈ dom F.Strongly monotonous and Lipschitz operator Consider and operator R and denote constants m the maximal lower bound and M the minimal lower bound (0 < m ≤ M ) such that m y -x 2 ≤ R(y) -R(x), y -x ≤ M y -x 2 , ∀x, y ∈ dom F. we define the condition number of R by κ = cond(R) := M m .

  where D n f denotes the Frechet derivatives (multi-linear operators) of f at x 0 . It is also customary to omit parenthesis when possible i.e. f f = f [f ]. As a final simplification, in B-series literature, to emphasize their combinatorial significance, elementary differentials are replaced by trees 1 . This yields[START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary differential equations[END_REF] p.51] 

14 )

 14 A3. (Polynomial reproduction) For any integer 0 ≤ p ≤ k ˆR K(x, y)y p dy = x p . (C.15)

18 )Figure C. 1 -

 181 Figure C.1 -(Shifted orthonormal Legendre polynomials) P n (τ )/P n (1) .

4 Figure C. 2 -

 42 Figure C.2 -(Shifted orthonormal Legendre polynomials) Fourier spectrum P n (s = 2iπf ) of P n (τ ) (restricted to (0, 1)). Note the phase linearity (constant phase slope), which is due to the time shift on the unit interval(0, 1) and ±π discontinuitites at spectral zero-crossings.

ϕ 0

 0 (λ, t) := e λt . (D.2)

  a) B(τ ) = 1, C(τ ) = τ , (b) integration by parts with ∂ A ∂τ = K, (c) A(0, σ) = 0, A(1, σ) = B(σ) = 1 and simplifying by 1/k, (d) the definition of the adjoint projector P * . D.4 Proof of theorem 5.2 (existence and uniqueness of CSRK solutions)

  and the operator Q is equivalently specified by the conditions PQ a = P, (orthogonal projector in L 2 ) (D.9a) BQ b = B, (multi-derivative interpolator in H k ) (D.9b) range(B -1 ) = A R where A R ⊥ A P (orthogonality of A R and A P ) (D.9c) First we prove that R = B -1 B(I -P) (equation (5.26) p.129): a) left multiply (D.9b) by B -1 , b) from (D.9a), there exists an operator R such that Q = P + R, c) finally use the relation B -1 B = I A R (prop. 5.4 p.129)

Figure D. 1 -

 1 Figure D.1 -(RPM method) Illustration of orthogonal and oblique projectors P, Q, R. Note that P and Q are nested projections (PQ = P), the regularisation is R = B -1 B(I -P) and Q = P + R.

1 0 .D. 7

 107 Stability function of L 2 projection methodsProof. To prove proposition 5.2 p.127, we consider the Dahlquist test equation ẋ = λx, x(0) = x 0 , λ ∈ C.

  (τ ) = ˆτ 0 u(s) ds.(D.12)Solving for x 1 , we obtain the time-stepping x 0 → x 1 = R(λ)x 0 with stability functionR(λ) = 1 + λ1 T (I -λV) -1 1.Using (a) the Sylvester determinant identity det(M) det(1+ u T M -1 v) = det(M + vu T ) with u = v =1 and M = (I -λV)/λ, and (b) identity V T + V = 11 T (eq. (D.13) ), then R(λ) a = det((I -λV) + λ11 T ) det(I -λV) = det(I + λ(11 T -V)) det(I -λV) b = det(I + λV T ) det(I -λV) .

2 4λ 2 -π 2 4 λ + 2 π 2 4 = 4 Figure D. 2 -Figure D. 3 -

 2224423 Figure D.2 -(Legendre projection) Frequency warping for a pole λ = iω with pulsation ω p := unwrap imag ln R p (iω)

Figure D. 4 -

 4 Figure D.4 -(Legendre projection) Laplace conformal map s/2 = pv atanh(s/2) corresponding to bilinear, mid-point, AVF and RPM(p = 1,k = 0) where pv denotes the complex principal value). Compression/warping of the Fourier axis iR to the interval (-π, π) is noticeable. As a consequence, the rectilinear grid (left plot) is only accurately approximated (right plot) near the origin of the Laplace place (s = 0).

1 F = β 2 F

 12 D.21b) Ebers-Moll Model We want to explicitly characterize vBE for the Ebers-Moll model from (1.47) p.32. Define the adimensioned variables I B1 = i B1 /I S . . ., V BE = v BE /V T , etc and the adimensioned PN law PN(V ) := exp(V ) -1. (D.22) Assuming perfectly matched transistors (i.e. β , I 1 S = I 2 S ), we have the adimensionned laws

Step 1 :X

 1 For each time index n and time frame Ω n = (n, n + 1), with initial condition x n , the local representation for normalized time τ ∈ (0, 1) is given by the following equationsẊn (τ ) = AX n (τ ) + Bu n (τ ), y n (τ ) = CX n (τ ) + Du n (τ ), Legendre projection. Denote d[n], y[n], X[n], u[n]the Legendre projection coefficients of functions Ẋn , y n , X n , u n and denote x[n] ≡ x n . The four equations in (D.32), expressed in terms of Legendre coefficients, directly translate to the discrete systemd[n] = (I p ⊗ A) X[n] + (I p ⊗ B) u[n],(D.33a)y[n] = (I p ⊗ C) X[n] + (I p ⊗ D) u[n], (D.33b) X[n] = (e 0 ⊗ I)x[n] + (V ⊗ I) d[n], (D.33c) x[n + 1] = x[n] + (e T 0 ⊗ I) d[n].(D.33d) Equations (D.33a)-(D.33b) are just higher-dimensional embeddings. In equations (D.33c)-(D.33d), operators | 1 , ´τ 0 , 1 | are respectively replaced by matrices e 0 , V p , e T 0 compared to (D.32). Step 2: Z-domain representation: Denote by d, y, X, u, x the Z-transform of sequences d, y, X, u, x. By linearity of the Z-transform, equations (D.33a)-(D.33d) become the Z-domain system d(z) = (I p ⊗ A) X(z) + (I p ⊗ B) u(z), (D.34a) y(z) = (I p ⊗ C) X(z) + (I p ⊗ D) u(z), (D.34b) X(z) = (e 0 ⊗ I) x(z) + (V p ⊗ I) d(z), (D.34c) z x(z) = x(z) + (e 0 ⊗ I) T d(z). (D.34d) Step 3: Z-domain transfer function We solve the linear system of equations (D.34a)-(D.34d) to obtain the matrix-valued transfer function H p : u(z) → y(z) as follows. Solving (D.34d) for the Z-transform of boundary values x(z) we obtain x(z) = 1 z -1 (e 0 ⊗ I) T d(z). (D.35) Back subtitution of x in (D.34c) yields the Z-transform of the trajectory coefficients in term of its vector field coefficients d X in (D.34a) leads to the implicit equation on d d(z) = (I p ⊗ A)   e 0 e T 0 z -1 + V p ⊗ I   d(z) + (I p ⊗ B) u(z).

Back-subtitution ofX 1 (

 1 d in (D.36) yields the explicit expression of X in term of u I p ⊗ B) u(z).

Property F. 1 (vu 2 . (F. 12 )

 1212 Symmetric inner product). For all vectorsu, v in R n u • v = uv + Property F.2 (skew-symmetric exterior product). For all vectors u, v in R n u ∧ v = uvvu 2 . (F.13) Definition F.11 (biorthogonal basis). Let {b i } be a basis of R n . There is a unique reciprocal basis bi for R n satisfying the biorthogonality conditon b i • bj = δ ij . (F.14) Definition F.12 (Unit pseudoscalar). The unit pseudo-scalar of G n is I := e 1 e 2 . . . e n . (F.15) Definition F.13 (Unit pseudoscalar inverse). The right inverse of the unit pseudoscalar of G n is given by its retrograde symmetry I -1 = e n . . . e 1 . (F.16) Proof. I I -1 = e 1 . . . e n e n . . . e 1 = e 1 . . . e n-1 e n-1 . . . e 1 = . . . = 1. Definition F.14 (Dual). The dual of a multivector M ∈ G n is M * := M I -1 . (F.17) Theorem F.7 (Orthogonal complement). If a blade B represents a subpsace S, then B * represents S ⊥ the orthogonal complement of S Remark F.1.

F. 1 . 3

 13 (Blade). A k-blade B is a product of k nonzero orthogonal vectors B = b 1 b 2 . . . b k (F.20) Remark F.3. A k-blade B = b 1 b 2 . . . b k represents the subpsace of R n with basis {b 1 , . . . , b n } Definition F.18 (Norm of a blade). The norm of a k-blade B = b 1 . . . b k is |B| = |b 1 | . . . |b k |. (F.21) This is the volume of the parallelogram with edges b 1 . . . b k . Remark F.4. Algebraic operations on blades represent geometric operations on their subspaces Definition F.19 (inner product (bis)). The inner product of a j vector A and k-vector B is A • B = AB k-j . (F.22) Definition F.20 (outer product (bis)). The outer product of a j vector A and k-vector B is A ∧ B = AB k+j . (F.23) Generalized complex numbers Definition F.21. Let {e 1 , e 2 } be an orthonormal basis for a plane in G n . Then the unit bivector i = e 1 ∧ e 2 = e 1 e 2 is the unit pseudoscalar of the oriented plane e 1 ∧ e 2 .

1 = e 2 e 3 ,

 13 B 2 = e 3 e 1 , B 3 = e 1 e 2 } ⊂ G 3 . Denote e ∈ R 3 the electric field. The classical formulation of Maxwell equations using vector calculus is given by the four equations Gauss law div e = ∇ • e = 0, (F.48a) Gauss law for magnetism div b = ∇ • b = 0, (F.48b) Faraday's law of induction ∂ t e -∇ × b = 0, (F.48c) Ampere law ∂ t b + ∇ × e = 0 (F.48d)

=

  J -R ∇H(xn, δxn) + Gun yn = G T ∇H(xn, δxn) xn+1 = xn + δxn(21)

Figure 1 :

 1 Figure1: Example of a cubic trajectory with conservative endpoints. The affine trajectory used to compute the average vector field is shown (in green), the associated cubic interpolated approximation (in blue), its control polygon (in red), and the exact manifold (in dashed black).

DAFX- 4 5 Figure 2 :

 452 Figure 2: Normalized ϕ-functions for k ∈ {0 . . . 4}. The real parts of the impulse (blue), step (red), ramp (green), quadratic (magenta) and cubic (black) responses are shown for a complex pole λ = i2π (left plot) and a real pole λ = -5 (right plot) over the unit interval t ∈ [0, 1].

Figure 3 :

 3 Figure 3: Exact continuous-time responses of a first order lowpass filter to a polynomial input (in blue).

Figure 4 :

 4 Figure 4: Exact continuous-time response of the order 3 Butterworth filter with cutoff pulsation ωc = π to a triangle input at the Nyquist frequency.

and its energy storage law are displayed in 6 LFigure 5 :

 65 Figure 5: A nonlinear LC oscillator circuit

Figure 6 :

 6 Figure 6: Respective energy storage functions (left plot) and their gradients (right plot), of the nonlinear capacitor (in red) and linear inductor (in blue), for C = 1, L = 1.

Figure 7 :

 7 Figure7: Comparison of simulated orbits with discrete points (in blue) computed using the AVF method, reconstructed cubic trajectory (in green) and reference trajectory computed at 10x sampling rate (in red).

Figure 8 :

 8 Figure 8: Continuous-time spectrum of the nonlinear LC circuit flux φ for a fundamental frequency of Hz and a sampling frequency of 44.1 kHz.The 10x oversampled reference is compared to the AVF method's discrete output with zero-order hold (ZOH), first-order hold (FOH), the proposed method (proposed cubic) and its 12th order Butterworth filtered spectrum (proposed + AA). The Nyquist frequency is materialized in blue and the multiples of the sampling rate in red.

Figure 1 :

 1 Figure 1: The areas occupied by the diode power P (v, i) and the current and voltage potentials D(i) and D * (v) are shown in the (v, i) plane for IS = 1, nVT = 1. It is geometrically clear that the current and voltage potentials are complimentary and their sum equals the power vi. It is also clear that in the nonlinear case D(i) = D * (v).

Definition 4 . 1 ( 1 0

 411 Average Discrete Gradient). Let x, δx ∈ R n, and H : R n → R be a scalar potential. The average discrete gradient is defined for an affine trajectory model x(τ ) = x + τ δx by ∇H(x, δx) := ∇H(x + τ δx) dτ

Figure 2 :

 2 Figure 2: Envelope follower circuit driven by a 1V sinusoidal input with fundamental frequency f = 40 Hz, fs = 4 kHz.

Figure 4 : 2 Figure 5 : 6

 4256 Figure 4: Diode clipper circuit driven by a 1V sinusoidal input with fundamental frequency f = 400 Hz, fs = 44.1 kHz.

A

  . DISCRETE GRADIENT DERIVATIVE Proof. To prove property 4.1 for H(x) a scalar potential, when the variation ν = 0, using a) the quotient rule, b) the chain rule and c) identification with the discrete gradient definition (36), we obtain∂∇H ∂ν a = [ ∂ ∂ν (H(x + ν) -H(x))]ν -[H(x + ν) -H(x)] + ν) -H(x) ν c = ∇H(x + ν) -∇H(x, ν) ν .

  GRADIENT OF THE DIODE POTENTIALProof. Using a) the definition of the discrete gradient (36), b) the definition of the diode potential(23) followed by c) factorization of the mid-point exponential term, then d) identification of the sinh and e) sinhc functions, the discrete gradient of the diode voltage potential can be expressed as ∇D * (v, δv)

Figure 1 : 1

 11 Figure 1: Circuit diagram of an Operational Amplifier (OPA) with currents drawn in receiver convention. The gaussian surface S enclosing the component is shown in dashed line.

( 1 )

 1 The respective inputs and outputs are collected into the vectorsu := [eT , iT * ] T = [e+, e-, e S+ , e S-, iout] T ,(2)y := [iT , eT * ] T = [i+, i-, i S+ , i S-, eout] T ,(3)Finally, the common supply, the differential supply and the differential input voltages are respectively defined byVcm = e S+ + e S-2, V dm = e S+e S- 2 , = e+e-. (4)

) 7 ) 5 )i

 75 Passivity: the power absorbed by the OPA is greater or equal to zeroP diss = y T u = ∈P e • i ≥ 0,(Differential gain and saturation: the tensions are tied by a continuous relation eout = f (e+, e-, e S+ , e S-) such that          ) = e S+ , → +∞ positive saturation min(f ) = e S-, → -∞ negative saturation S+ + i S-+ iout = 0(11)P diss = i S+ • e S+ + i S-• e S-+ iout • eout ≥ 0(12)

Figure 2 :

 2 Figure 2: The modulation factor ρ(± ), for K = 1, V dm = 1.

3. 1 .Figure 3 :

 13 Figure 3: a) a non-inverting voltage amplifier circuit with explicit alimentation ports and b) its symbol.

( 23 )

 23 This results in the following law for the voltage amplifier ) g±( ) -ρ( ) . g±( ) g-( ) -ρ(-) . ρ( ) ρ(-).

Figure 4 :

 4 Figure 4: Transfer function of the voltage amplifier for G = 1, K ∈ {1, 2, 5, 50}, e S+ = 10V, e S-= -5V. Smaller values than the typical OPA gain K ≈ 10 6 are used for visualisation purposes.

3. 1 . 2 .y

 12 Explicit representationTaking the limit when K → ∞ gives an explicit representation of F as the piecewise continuous curve = e S+ , Gu > y y = e S-, Gu < y y ∈ [e S-, e S+ ], y = Gu .

Figure 5 :

 5 Figure 5: A single-rail voltage amplifier powered by a capacitor.

Figure 6 :

 6 Figure 6: Time domain simulation of the capacitor-powered single rail voltage amplifier with vC (0) = 5V and |u| = 3V . Top plot: proposed model. Bottom plot: comparison of discharge rate with LTspice's Universal OPA level.2 and the LT1366 [19].

4. 1 .

 1 Linear behaviour and control parameters

Figure 7 :

 7 Figure 7: Bode plot of the Sallen-Key filter for ω = 1, G ∈ [0, 3] It is recalled that the Laplace transfer function (shown on figure 7) of a second order resonant lowpass filters with pulsation ω and quality factor Q is H LP (s) = 1 1 + 1 Q

  Figure 8: a) The original Sallen-Key lowpass filter circuit, b) its corresponding bondgraph (see references [24] [25] [26]) with computational causality assignment. c) the skew-symmetric Dirac structure representing Kirchoff conservation laws. d) the reduced dynamical model.

N (v) := v 0 ∇N

 0 (s) • ds = min(0, Gve S-) 2 2G + max(0, Gve S+ ) 22G.

Figure 9 :

 9 Figure 9: Algebraic feedback laws and their potentials shown for G = 2, e S+ = 10V, e S-= -5V.

Figure 10 :

 10 Figure 10: SKF filter response to a square wave input with sampling frequency fs = 44.1kHz, C = 4.7nF, cutoff fc = 1kHz (R = 33.8kΩ), Q = 10, asymmetric saturation V+ = 15V, V-= 0V and different fundamental frequencies. The non linear SKF response is shown in solid blue, with the linear SKF response in dashed red for reference.

Figure 11 :

 11 Figure 11: Comparison between the proposed model, LTspice's universal OPA level.2 and the LT1366 opamp. The proposed model output is almost indistinguishable from LTspice's universal model, whereas the tuning of the LT1366 is slightly different because of dissipation.

φ 2 ≤ F d ∂ ∇N ∂v 1 C 2 x1 -x0 2 ≤ F d C 2 sup v 1 ∂ ∇N ∂v 1 ( 2 ≤ 2ω d ω 2 d + 8ω d + 20 ω 2 d + 2 ( 3 -G)ω d + 4 G 2 x1 -x0 2 ≤ 1 .

 22211222234221 (x1)φ(x0) ≤ α x1 -x0 . (59)A sufficient (but conservative) condition is given byα = 1.162 Gω d < 1.(60)Proof. Using (54), then the derivative of the discrete gradient (50), (bounded by G/2), and using the matrix norm of F d C, one getsφ(x1)φ(x0) 2 = F d ∇N (Cx0, Cx1) -∇N (Cx0) v0, v1) x1 -x0 162 Gω d x1 -x0 2where the bound 1.162 is obtained numerically by majorizing over G ∈ [0, 3] and ω d ≥ 0.
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DAFx. 1 Figure 1 :

 11 Figure 1: Dirac structure example with edges E = {A, B, C, D}, nodes N = {0, 1, 2} and chosen spanning tree T = {A, C}.



  . Kirchhoff Current Laws can be interpreted as zero boundary conditions on the node currents, and the co-incidence matrix D as a (lumped) differential operator. Left multiplying by [v0 i1], the duality products and skew-symmetry leads to the power balanceP = i0 | v0 + i1 | v1 = v0 i1Furthermore since we have conservation of charge i0 = 0 on the nodes N , this yields the Tellegen theorem over the edges4 E i1 | v1 = ∈E i | v = 0.

  ) and link variables (vL, iL). Partitioning equations according to the spanning tree, Kirchhoff laws (4) are rewritten as 

N

  )(11) we obtain the fully implicit algebrodifferential formulation of a Port-Hamiltonian system (PHS) V0, I1, V1)(x, λ) ∈ B1 × B0;N (x) = 0, ∀(x, λ) ∈ X1 × X0 operator N : X0 × X1 → L 2 (Ω) m+n N (x, λ) Hybrid Dirac structure one gets Σ = (IT , VT , IC , VC )(x) ∈ B1| N (x) = 0, ∀x ∈ X1(14)with the algebro-differential operator N : X1 → L 2 (Ω) m

( 19 )

 19 with V D (λ) = V0 • 1 R -(λ), and I D (λ) = I0 • 1 R + (λ), where 1A(λ) denotes the indicator function of a set A.

a 1 = 2 = 3 = 0 . 4

 12304 (x) P N (x) = 0 ⇐⇒ a(x) P b(x) = a(x) P J a(x) a(x) P 2 J a(x) a(x) P JP * a(x) Remark (Energy conservation). As an immediate consequence, for a conservative Hamiltonian system given by the operatorN (x) = dx dt -J∇H(x) = 0, J = -J T . (34)discretized such that ẋ = P J∇H(x), then the Hamiltonian energy H is preserved over a time-step Ω = (t0, t1),H(x(t1)) -H(x(t0)) = 0.(35)Indeed, let b = d dt and a = ∇H, from the gradient theorem and using the same arguments as the previous proof, it follows thatH(x(t1)) -H(x(t0)) = ∇H(x) ẋ = ∇H(x) P JP * ∇H(x) = 0.DAFx.Proceedings of the 23 rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria, September 8-12, 2020 5.1. Piecewise constant and affine polynomial spaces

Property 5 . 1 (F

 51 Projected function). Let f : R → R be a semicontinuous function with known antiderivative F and a functionx(τ ) = 0(τ )x + 1(τ )δx ∈ P 1 (Ω),(39)parametrized by its mean and variation Θ = (x, δx) ∈ R 2 Then the projected function P1 • f • x has the projection coefficients f : R 2 → R 2 defined byf i := i | f • x / i 2 . (x + δx 2 ) -F (x -δx 2 ) δx δx = 0 f (x + ) + f (x -x1 = x + δx/2, x0 = xδx/2.

For 2 i=0

 2 each time step Ω, let Θ denote the unknown parameters of a local state xΘ ∈ (P K (Ω)) m we look for a zero N(Θ ) = 0 of N(Θ) := i N (xΘ) / i iteration (line search is not used in this paper) Θκ+1 = Θκ + ∆Θκ, ∆Θκ = -N (Θκ) -1 N(Θκ). (45)

Property 5 . 2 . 5 Figure 2 :

 5252 Figure 2: Diode clipper: anti-parallel Shockley diodes (top) with V = 10 4 to emphasize Newton iteration differences, Hard clipping diodes (bottom) V = 10 2 to see dynamic and saturation.

Figure 3 :

 3 Figure 3: Conservative LCLC circuit: Linear (top) and Nonlinear (bottom). Notice the periodicity change and conserved energy.

Figure 4 :

 4 Figure 4: (Pseudo) Arc-length parametrization of hard clipping resistor and anti-parallel Shockley diodes.

Figure 5 :

 5 Figure 5: Diode Clipper circuit: From the schematic (a) Kirchhoff laws immediately yield the bond-graph (b) which can be reduced to the bond-graph c). Using the Graph incidence matrix d), one obtains the Kirchhoff-Dirac structure e). Elimination of the node voltages yields the reduced Dirac structure f).

Figure 6 :

 6 Figure 6: Conservative LCLC circuit (a single cell of a transmission line).There is an apparent computational causality conflict shown in red on subfigure f): the loop current can either be controlled by L1 or L2 but not by both. The circuit has thus an implicit constraint IL 1 (φ1) = IL 2 (φ2). The inductor L1 is said to have a differential causality since vL 1 = φ1, whereas C1, C2, L2 are said to have an integral causality.
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  3.2 Energy-storing elements

	Name	Component	State Energy	Equations
	Linear Capacitor	i	q	
		v		

Table 1 .

 1 

2 -(energy storing components) examples in electronics.

Table 1 .

 1 

3 -(passive memoryless components) Examples in electronics. All components are dissipative except the ideal diode which is non-energetic (and multi-valued). A memoryless passive relation (or a resistive relation) is given by the following definition Definition 1.19 (Resistive relation). Let F R be a vector space with dual
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  is bandlimited to f max < B, called the Nyquist frequency. Coefficients {x n } ∈ 2 (Z) are called samples of x and f s = 2B is called the sampling rate.

			x n ,	where	sinc(x) :=	sin(πx) πx	and	x n = f (hn).	(3.15)
	Equation (3.15) is exact when x Modern Sampling				
	Generalized sampling theory accounts for the fact that real world signal are not exactly
	bandlimited and ideal band-limiting filters do not exist. Nevertheless, perfect analysis and
	reconstruction of signals is still possible if we assume that they have a finite rate of innovation.
	The paradigm shift in modern sampling is to realize that (3.15) is an orthogonal decomposition
	and that ideal bandlimiting and sampling is simply a way to compute the projection coefficients 3
	x(t) =	ϕ n (t)x n ,	where	ϕ n (t) = sinc(t/h -n),	and	x n = ϕ n , x .	(3.16)
	n∈Z						
	Shannon bandlimited sampling is an instance of the more general (and practical) situation.
	Let ϕ(t) be a generating function such that ϕ n = ϕ(•/h -n) n∈Z is a Riesz basis of the non-bandlimited integer shift invariant space V h (ϕ) = span ϕ(•/h -n) n∈Z in L 2 (R). One further requires that ϕ satisfies the partition of unity property 4 (3.13). Then there exists a dual basis
	{ φn } of V h such that signals in V h are perfectly reconstructed 5 according to
	x(t) =	ϕ n (t)x n		where	x n = φn , x .	(3.17)
		n∈Z					
	Note that, by construction, signals spaces such as (3.14) fulfil the finite rate of innovation
	property. They can be exactly represented (over a multi-generator basis) using a finite number of
	degrees of freedom p per time-step h called the generalized bandwidth [VMB02]
					B =	p h	.	(3.18)

  .7) with ẋ(t), ∇H(x(t)) ∈ R nx and y(t), u(t) ∈ R ny . In this chapter, let [t 0 , t 1 ] be a time step, h = t 1 -t 0 its step size, and t(τ ) = t 0 + hτ , with τ ∈ Ω = [0, 1] a time variable change for which we define the differential operator D := 1

h d dτ (i.e. D ≡ d dt ). We propose the following method Method 5.1 (RPM for pH-ODE). Denote p be the projection order, k the regularity order, = p + 2k and n = n x + n y . A Regular Power-balanced projection Method called RPM(p, k) for pH-ODE (5.7) is defined by steps (i)-(iii) i) P0 Approximation spaces and operators:

Table 5 .

 5 

1 -Reproducing kernel K P and Peano error kernel E P of Legendre orthogonal projector.

  Same simulation using LTC6241. It is obvious that the LTC6241 is not passive. The capacitor is being charged by the OPA! Instead of discharging monotonously.

	(V)	0 2 4						u(t) y(t) v C (t)
		2					
		0.00	0.05	0.10	0.15 time (s)	0.20	0.25	0.30
	(a) Simulation of the single-rail voltage follower driven by a sinusoid and powered
	by a capacitor					
	(V)	0 2 4						u(t) y(t) v C (t)
		2					
		0.00	0.05	0.10	0.15 time (s)	0.20	0.25	0.30
			(b) Same simulation using the LT1366	
	(V)	0 2 4	u(t) y(t) v C (t)				
		2					
		0.00	0.05	0.10	0.15 time (s)	0.20	0.25	0.30
	(c)						
				As expected, with the proposed model (fig.7.8 (a)), the capac-
	itor does not discharge during negative saturation (energy-preservation), and has a monotonous
	discharge otherwise. Comparison with LTspice's universal model (fig.7.9) shows that the two

simulations are very close. With the LT1366 (fig.7.8 (b)), the discharge is monotonous and qualitatively similar, but decays faster due to internal dissipation. Finally the LTC6241 (fig.7.8 (c)) exhibits unexpected behaviour: it starts charging back the capacitor once the capacitors drops below a threshold (probably linked non-ideal rail-rail behaviour).
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  1: Z-domain transfer function To obtain the Z-domain transfer function of the projected state-space ( H p (z) in the middle of the filterbank), we propose the following result

	Proposition 8.1 (Z-transform of Legendre projected state-space). Consider the continuous
	state-space system (8.21a)-(8.21b) discretised by RPM(p,0), according to (8.23a)-(8.27). Then,
	the Z-domain transfer function H

p , of dimension p × p, satisfying y

Table 8 . 1 -

 81 Laplace transforms of Legendre polynomials restricted to (0, 1). , we introduce the Legendre convolution operator of order p in the Laplace domain by P Remark 8.7 (Laplace exponential approximation error). The Laplace transforms of unrestricted and time-limited polynomials are linked by the identity P k (s) = B k (s) -(-1) k+1 B k (-s)e -s .

	Then

p (s) = P 0 (s) . . . P p-1 (s) .

(8.34) 

Table 8 .

 8 

2 -Laplace exponential approximation error for the Legendre polynomials.

  and [DGL + 03, p. 432]. For Lagrangian mechanics see [DGL + 03, p. 420].

  14. Efficient numerical implementations of GA rely on fast encoding and realisation of these multiplication tables.

			AB 1	e 1 e 2	i		
			1	1	e 1 e 2	i		
			e 1	e 1	1	i	e 2		
			e 2	e 2 -i 1 -e 1		
			i	i -e 2 e 1 -1		
		(a) Multiplication table of G 2 . where i = e1e2	
	AB	1	e 1	e 2	e 3	B 1	B 2	B 3	I
	1	1	e 1	e 2	e 3	B 1	B 2	B 3	I
	e 1	e 1	1	B 3 -B 2	I	-e 3	e 2	B 1
	e 2	e 2 -B 3	1	B 1	e 3	I	-e 1 B 2

•

  Generalised bandwidth and high-order As we have seen (see figures 5.11 p.151, 5.15, p.155, 8.22 p.228 and 8.23 p.229), high-order methods converge faster than oversampling and have a larger generalised frequency bandwidth (or finite rate of innovation). This raises the following opportunity: to which point can we increase the step size h (i.e downsample)

18 )

 18 Definition F.15 (Canonical Basis of G 2 ). Denote {e 1 , e 2 } the canonical basis of R 2 . The canonical basis of G 2 is Definition F.16 (Canonical Basis of G 3 ). Denote {e 1 , e 2 , e 3 } the canonical basis of R 2 . The canonical basis of G 2 is Remark F.2. A multivector M ∈ G n separates uniquely into k-vector parts M k

		n	
		M =	M k	(F.19)
		k=0	
	Definition F.17		
	1			(scalar: grade 0)
	e 1	e 2		(vector: grade 1)
	e 1 e 2		(pseudoscalar, bivector: grade 2)
	1			(scalar: grade 0)
	e 1 e 2 e 3		(vector: grade 1)
	e 1 e 2 e 2 e 3 e 3 e 1		(bivector: grade 2)
	e 1 e 2 e 3	(pseudoscalar, trivector: grade 3)
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			vC		
	50µF	u	1	y	
	iC			1kΩ	
				iR	
				placed by the explicit one	has been re-
				µ±(e+, Vcm, V dm ) =	1 ± sat(x) 2	, x =	Ge+ -Vcm V dm	. (32)
				DAFX-3	

  of the 22 nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2-6, 2019 VIN vC 1 vC 2 V+ V-iR 1 iR 2 i+ iS+ iS-eout

												ySK		V+			VIN		R1		R2		C2	V+
	iV + V+	iV -		1	VIN iIN	R1	iR 1	2	C1 iC 1	R2	iR 2	C2 iC 2 3 i+	V-iS-iout 4 iS+ G	01	e1 iR 1	1	e2 02 iC 1 iR 1 e2 iR 2 e2	1	e3 iR 2	03	e+ i+	V-VA	eout iout	04
	V-																		C1	1			e4 iC 1
								(a) Circuit										(b) Bondgraph
	iIN iC 1 iC 2 iV + iV -vR 1 vR 2 e+ eS+ eS-	                 	1 . . . .	-1 1 . . .	. -1 1 . .	. . . 1 .	. . . . 1		-1 1 . . .	. -1 1 -1 . . . . . .	. . . -1 .	. . . . -1	-1 1 . . .	                 						
	iout									1	-1	.	.	.								
			(c) Skew-symmetric Dirac structure (KCL+KVL)								

This reference is dedicated to Distributional Differential Algebraic Equations generalising the usage of weak solutions (commonly used to solve partial differential equations) to DAE.

Our motivation is that in subsection 5.4.1 p.140, antiderivatives allow closed-form computation of projection coefficients. They are also useful for anti-aliasing and discrete gradient can be generalised to dissipative potentials.

These potential are sometimes called Rayleigh dissipation functions or current and voltage potentials

For audio circuits, the characteristic length Lc of a standard mounted rack is Lc = 19 ≈ 48.26 cm and the upper limit of the human auditory system is about f = 20 kHz. This corresponds to an electromagnetic wavelength λ = c/f = 15 km: that is four orders of magnitude higher than d. This justifies the lumping condition Lc λ.

This is analog to the lumping of rigid-body mass-spring systems using point-masses.

Mnemonic: n0de, v0ltage → 0-junction, ser1al, 1ntensity → 1-junction.

It happens that the sinc system is both orthonormal in L 2 (R) and interpolating, i.e. the sinc function (and its integer translates) is the generator of the space of bandlimited signals.

This guarantees that the approximation is consistent, so that one can approximate any function of L 2 (R) over the space V h as closely as desired (in norm) for a small enough sampling step h.

B-spline sampling is a typical example of perfect reconstruction in non-bandlimited spaces.

meaning that constant functions belongs to the approximation space.

i.e. such that the method is invariant under time reversal and has an even accuracy order.

Application oriented readers, may skip numerical analysis sections 5.2 and 5.3, which are mostly theoretical, to jump straight to implementation in section 5.4 p.140 and the numerical simulations in section 5.5 p.147

Note that chapter 8 p.197 is dedicated to applications on real circuits, where the complete process (from circuit modelling to numerical simulation) is detailed with a finer level of details.

It is known from[START_REF] Zhong | Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators[END_REF] that approximate symplectic algorithms cannot preserve energy for nonintegrable systems.

Conversely, the accuracy (in the L 2 norm) of continuous-time flow and effort trajectories within each time frame is proportional to the number of degrees of freedom p + 2k.

The main reason is that orthogonal projection in H k is not orthogonal in L 2 . Since the power-balance is intimately linked to the L 2 inner product, we cannot choose a different inner product even if we look for regular solutions in H k . However we can interpret L 2 solutions as weak solutions and H k solutions as stronger solutions where the regularisation step is compatible with L 2 projection.

This is a way to increase accuracy and to manage stiffness of the equations.

Note that our goal is to guide the choice of optimal approximation space, not to actually implement Newton iteration in infinite-dimensional space. To focus on the idea, and not on functional details, the adjoint and inverse operators below are formal. Technically here, we assume that f is locally Lipschitz and that fixed-point Picard iteration converges to a unique solution, so that Newton iteration is only considered as a convergence acceleration tool. A similar derivation is available in[START_REF] Lederman | Time-parallel solutions to ordinary differential equations on GPUs with a new functional optimization approach related to the Sobolev gradient method[END_REF].

Note that Φ (x)(u, v) = E x (u), E x (v) + E x (u, v), E(x). We (classically) neglect the second term which is assumed to be small compared to the first term in a neighbourhood sufficiently close to a minimum.

The reason for using the Q-gradient and the Q-norm will become apparent in the proof of theorem 6.1.

Note that qualifying the OPA as an "active device" and hiding the power supply ports is common practice. But this is a huge source of confusion for many students. Examination of the second question will show that this confusion is not limited to vocabulary but also affects modelling.

The output resistor is meant as a short circuit, but LTSPICE solvers requires a non zero resistance.

The song Rocket 88 by Ike Turner and Jackie Brenston is often credited as the first "rock and roll" song featuring a damaged speaker. The songs Rumble by Link Wray and You really got me by The Kinks also feature speakers damaged on purpose to obtain a fuzz sound.

The Woolly Mammoth is also NPN.

Please refer to corollary

5.2 p.120 for the power balanced projection of linear dissipative structures.

in this example, contrary to the Sallen-Key example of section 7.1.4, we assume that the power supply voltages are large enough to not enter saturation.

see also the frequency warping graphs shown in figure D.2 p.298 for several values of projection order p.

See def.5.1 p.122. For simplicity, we only consider regularity order k = 0

Note that ẋ denotes the coefficients of the projected vector field, here the dot is a label, not an operator.

Note that the axiomatic definition (def. 9.1) of the geometric product is preferable to manipulate multi-vectors of mixed grade. The identity uv = u • v + u ∧ v is only valid for vectors. See equations (9.3)-(9.5) 

We have i 2 = abab = -aabb = -a 2 b 2 = -1 (using anticommutation ab = -ba of orthogonal vectors, and the metric signature a 2 = b 2 = 1). See table 9.2 to verify that unit bivectors squares to -1 (in euclidean space).

An even (resp. odd) spinor is a GA element whose (multivector) components are of even (resp. odd) grade.

Note the identity of bivectors ai∧ bi = aibi = 1 2 (ei + fi)(eifi) = 1 2 (e 2 i + fieieifif 2 i ) = fi ∧ ei.

Instead of a complex structure.

Note that contrary to the euclidean case, here, because of the indefinite metric, the bivector B squares to 1 instead of -1. The rotation is thus an hyperbolic one.

In this regards, the Maxwell equations example from appendix F.3 p.322 is telling: first we have to drop the cross product in favour of the exterior product, second we have to unify the four Maxwell equations into a single one using the geometric product, and third we have to embrace the concept of partial differential equations over a multi-vector field to finally reveal that Maxwell equations simplify to the wave equation (over a multivector field).

We show in 5.2.5 p.127 that (although the projection viewpoint is not always emphasised in the literature) energy-preserving CSRK methods (which includes the AVF and HBVM) rely on scalar orthogonal projection.

Note that using time-warping may change the Lebesgue measure in the L 2 inner product and thus the mathematical expression of the power-balance.

i.e. K(x + 1, y + 1) = K(x, y) and ∃M > 0 such that K(x, y) = 0 for |x -y| ≥ M .

Proceedings of the 20 th International Conference on Digital Audio Effects (DAFx-17), Edinburgh, UK, September[5][6][7][8][9] 2017 

The minus sign in -y in Eq. (13) is used to restore the receiver convention used for internal components.

The Kirchoff Current and Voltage laws are special cases of Dirac structures when all the components share either the same current (series connection) or the same voltage (parallel connection).

Note that because of the uniform usage of the receiver convention for each component (including sources), the power potentials represent the absorbed power by each component. This means that dissipative components will absorb positive power, while sources will, on average, absorb negative power to compensate for losses (but can temporarily receive power).

Proceedings of the 22 nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2-6, 2019

see appendix A for a detailed proof.

Different choices can be made here to adapt to other transistors types.

Please refer to the references[17] [18][13] for more details on Dirac structures and to[1] for hybrid parameters.

Sound examples and LTspice files are available at the accompanying website: https://github.com/remymuller/dafx19-opa.

Indeed (see[16] p. 30) any two of KCL, KVL and Tellegen theorem implies the third one.

Proceedings of the 23 rd International Conference on Digital Audio Effects (DAFx-20), Vienna, Austria,[START_REF] Celledoni | Energy-preserving and passivity-consistent numerical discretization of port-DAFx[END_REF] 
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Part III

Applications

Chapter 7

Passive Operational Amplifier models Contents 9.1.1 Linear geometric transforms Remark 9.3. One difficulty, when learning GA, comes from the necessity to unlearn the following implicit habits and expectations inherited from complex and linear algebra:

1. Linear transformations act on the left as in y = λx for complex numbers or y = Ax for linear algebra.

2. Linear maps L λ : x → y = λx and L A : x → y = Ax are usually identified with the complex number λ and the matrix A using the same symbol.

3. λ is an element of the complex algebra acting on complex numbers a however the matrix A is an element, from outside the set of vectors, acting on vectors x.

At this point in GA, to avoid ambiguity, it is customary to introduce a notation to distinguish transforms from elements of the algebra used to implement the transform. For example, we have seen in ( 9.4) that we can implement a skew-symmetric map J acting on a vector x as a contraction with a bivector J

The adjoint map noted J * is indeed skew-symmetric b

Distinguising notations J (map) and J (GA element), it is possible to unambiguously use the common notation AB to denote the composition of maps A • B.

a. In GA, this situation is generalized by the notion of even and odd spinors, i.e. elements of GA with even or odd grade, used to represent transforms on GA elements.

b. Note that, to avoid confusion between adjoint map and GA dual notations, an alternative notation in the GA literature uses J (linear map associated to a symbol J) and J (adjoint map) . A vector can be decomposed into its projection and rejection u = u + u ⊥ with respect to a subspace. In GA, a subspace is represented by the blade formed by its spanning vectors (not necessarily orthonormals) B = e 1 ∧ . . . ∧ e k . Theorem 9.2 (Projection-rejection [START_REF]Linear and geometric algebra[END_REF]). Let u be a vector and B a blade. Then Geometrically, the reflection of a vector u = u + u ⊥ in a subspace B is uu ⊥ . From theorem 9.2 and equation 9.5

More generally, the following results holds for blades Theorem 9.3 (Reflection [START_REF]Linear and geometric algebra[END_REF]). Let B be a k-blade. Then the reflection or mirror of a vector u into B is M B (u) = (-1) k+1 BuB -1 .

(9.12)

By extension, the reflection of a -blade U = u 1 ∧ . . . ∧ u defined by M B (u 1 ) ∧ . . . ∧ M B (u ) is M B (U) = (-1) (k+1) BUB -1 . (9.13)

Example 9.1 (Mirror in a line). The reflection of a vector u in a line represented by x is

When x has unit norm then x -1 = x/|x| = x so that M x (u) = xux. One can show (using duality, see def. 9.2) that the reflection in the hyperplane x * dual to a vector x is

x * Geometrically, Let i be a bivector, the rotation of a vector u + u ⊥ in the plane i by the bivector angle iθ is equal to the sum of its perpendicular component and of its rotated plane projection R(u) = R(u ) + u ⊥ = u e iθ + u ⊥ . Similarly to reflections, one can show ([Mac10] p.89) that rotations can be canonically written using the "sandwich" product 20

behaves like a "half-rotation" acting symmetrically on left and right. By extension, we have 20. In quaternion algebra, transforms are canonically represented using "sandwich products". Theorem 9.4 (Rotation [START_REF]Linear and geometric algebra[END_REF]). The rotation of a blade A = a 1 ∧ . . . ∧ a defined by

Unit norm rotors satisfy R -1 = R † and RR -1 = RR † = 1 (see (9.7)). Furthermore, let R 1 , R 2 be two rotations defined by rotors R 1 , R 2 , then composing rotations, we see that rotors form a group whose group composition is 

Rotations as compositions of reflections

Dually the composition of reflection in lines x, y yields the same rotation

Sub-algebras

Complex numbers A complex number in G n is a multivector of the form a + ib with a, b ∈ R where i = ab is the unit pseudoscalar of some plane spanned by orthonormal vectors a, b. Since i 2 = -1, this means that every plane has its own complex number system 21 which is isomorphic to C. For two vectors u, v ∈ span {a, b}, we have the polar representation Quaternions In G 3 , the bivectors squares to -1. Defining i = -e 2 e 3 , j = -e 3 e 1 , k = -e 1 e 2 , we obtain Hamilton's equation defining quaternions

We see by looking at table 9.2 that the bivectors i, j, k are duals of the vectors e 1 , e 2 , e 3 (indeed multiplication of i, j, k by the pseudo-scalar I 3 = e 1 e 2 e 3 of G 3 yields respectively e 1 , e 2 , e 3 ). Exactly like in G 2 we can represent a vector either using the vectors basis {e 1 , e 2 } (odd subalgebra) or the complex basis {1, i = e 1 e 2 } (even subalgebra), in G 3 we can represent vectors either using the vectors {e 1 , e 2 , e 3 } or their duals {i, j, k}.

Appendix A

Relations: definitions and properties

We recall here some results from reference [START_REF] Ryu | Primer on monotone operator methods[END_REF] regarding relations. See also [START_REF] Aubin | Differential inclusions: set-valued maps and viability theory[END_REF].

It is frequent to overload function and matrix operator notation so that

By abuse of notation, we identify the singleton {y} with its value y in

Some trivial examples of relations are

Composition Let R, S be two relations we define the composition R • S := RS = (x, z) | ∃y such that (x, y) ∈ R, and (y, z) ∈ S Sum Let R, S be two relations we define their sum by

Extensions to standard binary operators is done similarly.

Inverse relation

The inverse relation is

Cayley operator

The Cayley operator (or reflected resolvent) of a relation A is

For α > 0 we have

Identities Let A be a (possibly multi-valued) operator. Then a) if A is maximal monotone and single-valued and α ≥ 0, we have

b) otherwise if A is multi-valued and α > 0, we only have the weaker identity

Proof. To prove (a), if A is maximal monotone and single-valued, then it is invertible (bijective)

Appendix B

Reminder on ODEs

We consider ordinary differential equations of the form ẋ(t) = f (t, x(t)).

B.1 Runge-Kutta methods

Definition B.1 (Runge-Kutta method [HLW06] p.29). Let b i , a i,j (i, j = 1, . . . , s) be real numbers and let c i = s j=1 a ij . An s-stage Runge-Kutta method is given by

The slopes k i do not necessarily exists, however, the implicit function theorem assures that, for sufficiently small h, the nonlinear system for the values k 1 , . . . , k s has a locally unique solution close to k i ≈ f (t 0 , x 0 ). Since Butcher's work the coefficients are usually displayed as follows 

Definition B.3 (Collocation methods [START_REF] Hairer | Geometric numerical integration: structurepreserving algorithms for ordinary differential equations[END_REF] p.30). Let c 1 , . . . , c s be distinct real numbers (usually 0 ≤ c i ≤ 1). The collocation polynomial X(t) is a polynomial of degree s satisfying

and the numerical solution of the collocation method is defined by x 1 = X(t 0 + h).

B.2 Numerical Stabillity

Several notions of numerical stability exists, we recall here some important results and definitions.

Definition B.4 (Stability function [HW96] p.16

). Let Φ h : x 0 → x 1 be a time-stepping method whose application to the Dahlquist test equation ẋ = λx leads to

The function R(z) is called the stability function of the method. The set

is called the stability domain of the method. 

For nonlinear ODEs, B-stability characterize the fact that the distance between two solutions is a non increasing functions of time.

Definition B.7 (B-stability [HW96] p.181). A Runge-Kutta method is called B-stable if the contractivity condition

implies for all h ≥ 0.

where x 1 and x1 are the numerical solutions after one step starting with initial values x 0 and x0 , respectively.

Whereas B-stability relies on incremental dissipativity of the vector field f , BN-stability only requires dissipativity.

implies that the sequence of computed solutions satisfy

We note that PHODEs satisfy the generalized passivity condition f (x), ∇H(x) ≤ 0.

A sufficient condition for B-stability is given by the algebraic conditions Definition B.9 (Algebraic stability [START_REF] Butcher | Numerical methods for ordinary differential equations[END_REF] p.263 and [HW96] p.182). A Runge-Kutta method is algebraically stable if 

State-space case For the state space systems ẋ(t) = f (x(t), u(t)), we obtain

and for y(t) = g(x(t), u(t))

PH-ODEs For the particular case of input-state-output PH-ODEs where

this yields the explicit expressions

Higher order derivatives can be obtained by following the same derivation process and substituting recursively but are not reproduced here.

Remark B.1 (Computer Algebra Software). Note the existence of the symbolic calculus library [START_REF] Sundklakk | A library for computing with trees and B-series[END_REF], written in Python, which can automate the manipulation of trees and Bseries for the analysis of ODE (accuracy order, symplecticity, energy-preservation, modified equation, etc).

Appendix C

Functional Analysis

The functional results thereafter are gathered from references [BCL99, Aub11, CZ12, Chr16].

C.1 Definitions

Definition C.1 (Lipschitz continuity). Let f be an operator on a normed space. If there exists constants f , L f such that

then, L f is called the least upper bound Lipschitz constant (or simply the Lipschitz constant) of f and f is called the greatest lower bound Lipschitz constant of f . Definition C.2 (One-sided Lipschitz continuity and logarithmic norm). Let f be an operator on an inner product space, if there exists constants m f , M f such that

then, M f is called the least upper bound logarithmic Lipschitz constant of f and m f is the greatest lower bound logarithmic Lipschitz constant of f .

Definition C.3. The logarithmic norm µ of a linear operator A is defined by

x, Ax x, x .

The logarithmic norm of a linear operator A is thus equivalent to its least upper bound logarithmic Lipschitz constant (i.e µ(A) = M A ).

Definition C.4 (Contractivity). An operator f satisfying L f < 1, is called contractive.

Definition C.5. An operator f satisfying m f > 0 is called strongly convex.

Definition C.6. An operator f satisfying M f < 0 is called strongly concave.

Definition C.7 (uniform monotonicity). An operator f satisfying either m f > 0 or M f < 0, f is called uniformly monotone.

Definition C.8 (Fréchet derivative). Let V and W be normed vector spaces, and

If there exists such an operator A, it is unique, so we write Df (x) = A and call it the Fréchet derivative of f at x.

Alternative notations emphasizing the role of the operator

as a directional derivative along all directions at x. This means that there exists a function g :

and where h is from the scalar field associated with V (usually real).

If f is Frechet differentiable at x, it is also Gateaux differentiable there, and g is just the linear operator A = Df (x). However, not every Gateaux differentiable function is Frechet differentiable.

Definition C.10 (Unilateral Laplace transform [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF]). Let V be a separable Hilbert space, let u : R + → V have the property that e -βt u(t) ∈ L 1 (R + , V ) for some real β. We call these Laplace-transformable functions and we define their Laplace transform U by 

is called the Lebesgue space of square-integrable real-valued functions.

Definition C.18 (Sobolev space [START_REF] Aubin | Applied functional analysis[END_REF]). The subspace H m (Ω) of L 2 (Ω) defined by

is called the Sobolev space of order m, equipped with the scalar product

.

(C.9)

where D denote the derivative operator.

Definition C.19 (Dual space(s)). Let V be a Banach space, its topological dual V * is the space of all linear functionals from V to a scalar field F. Its continuous dual V is the space all continuous (i.e. bounded) linear functionals on V .

Theorem C.1 (Riesz-Frechet representation theorem [START_REF] Brezis | Analyse fonctionnelle: théorie et applications[END_REF]). Let V be a Hilbert space with (continuous) dual V . For all functionals f * ∈ V , there exists f ∈ V such that

Definition C.20 (Volterra operator). The Volterra operator V and its adjoint V * are defined respectively, for any function u in L 2 ([0, 1]), by

Property C.1. The Volterra operator V satisfies the following properties [Thi] P1. The eigenvalues of

P3. The sum of V with its adjoing yields the self-adjoint averaging operator

P4. The difference V -V * is a skew-adjoint operator.

D.2 CSRK formulation of projected ODEs

We reformulate a projected ODE as a CSRK method (def. 5.3) and extract its parameters (A, B, C) which corresponds to equations (5.18a)-(5.18c) p.126.

Proof. Consider the projected ODE Ẋ = hPf (X, u).

Rewrite the vector field equivalently using the substitution f (x, u(τ )) → f u (τ, x) and drop the subscript u. Let K P be the reproducing kernel of the projector P (see eqs. (3.9) (3.10) p.84). By integration of Ẋ and using Fubini's theorem, rewrite the projected ODE as a CSRK method (where functions A(τ, σ) and B(σ) are extracted by identification)

This proves (5.18a) p.126. Furthermore, by hypothesis, since P is self-adjoint (P = P * ), its reproducing kernel is symmetric (K P (τ, σ) = K P (σ, τ )) and since P reproduces contants, it follows that

This proves (5.18b) p.126. Finally from the previous result, by symmetry of K P , it comes that

This proves (5.18c) p.126.

D.8 Proof of Gauss-Legendre quadrature formula

For this thesis to be self-contained (and to highlight the role of the reproducing kernel), we prove that the Gauss-Legendre quadrature formula

is exact for all polynomials f ∈ P 2n-1 and that the quadrature weights w k are given by

are the Lagrange interpolation polynomials at Gauss-Legendre nodes x k (the roots of P n (x)).

Proof. We prove the result in four steps (a)-(d) a) Let n ≥ 1 and f ∈ P 2n-1 . Denote polynomials q and r the quotient and remainder of polynomial division of f by the Legendre polynomial P n , so that we can write f as follows f (x) = P n (x)q(x) + r(x), q, r ∈ P n-1 .

b) Integrating f , by orthogonality of P n with P n-1 we have

c) Likewise, using Gaussian quadrature nodes makes the first sum vanish

Note from (a)-(c), we only need to prove that the quadrature of the remainder is exact

d) Note that the frame { k } n k=1 is the dual frame to K(x k , •) n k=1 (where K(x, y) is the reproducing kernel of P n-1 ) satisfying the biorthogonality conditions K(x i , •), j = δ ij . Then for all r ∈ P n-1 we have the nodal representation

Integrating r over [0, 1] it comes that quadrature weights w k are given by the average of the Lagrange interpolation polynomials k ˆ1

D.9.3 BJT Push-Pull

We detail a (tedious but systematic) derivation for an explicit algebraic (large-signals) relation for the simple BJT push-pull of figure D.5.

Input -Outputs ports We consider the algebraic relation u → y for the following choice of input and output variables

Kirchoff laws From Kirchhoff laws at input and output nodes we have

from which we obtain and the internal voltages

Component equations For a given transistor model (here the Ebers-Moll BJT model from (1.47) p.32), there exists functions îB 1 , îC 1 , îE 1 , îB 2 , îC 2 , îE 2 such that

Explicit Input-Output map We want to express everything as nonlinear map y = F (u), i.e. we look for functions îIN , î+ , î-, vO such that 

• Mixed product property: for suitable matrices A, B, C, D

(D.30)

• Distributivity: A ⊗ B is invertible iff A and B are invertible, then the inverse, Moorepseudo inverse, adjoint and transpose operators are distributive over the Kronecker product, i.e.

D.10.2 proof of proposition 8.1

The proof of proposition 8.1 p.225 is detailed below.

Remark D.2 (Notations in this proof

). This proof uses Kronecker products whose properties are recalled in subsection D.10.1 below. Indeed we have to blend finite-dimensional representation of functional operators (matrices I p , V p , e 0 ) with matrices from state-spaces systems A, B, C, D. To this end, we use matrix algebra (instead of multi-dimensional tensor

Appendix E

Code listing (SPAC methods)

""" Plots -power balanced regions and -power balanced values of collocation parameter \ alpha as a function of dissipation parameter \ sigma """ from pylab import * import sympy as sp t , alpha = sp . symbols ( " t alpha " , real = True ) a = sp . symbols ( " lambda " ) def f ( x ) :

""" linear complex vector field """ return a * x def B (u , m , tau ) :

""" Compute the Boundary operator """ return sp . diff (u ,t , m ) . subs (t , tau ) def get_R () :

""" " find the stability function R ( z ) and its continuous extension R_t ( z ) such that 

Geometric Algebra

Here we gather a collection of definition, theorem and properties related to Geometric Algebra and Geometric calculus. Our main references are [START_REF]Linear and geometric algebra[END_REF][START_REF] Macdonald | Vector and geometric calculus[END_REF] and [DGL + 03].

F.1 Algebra

Theorem F.1 (inner product properties). If u, v, w are vectors in R n and a is a scalar in R, then

Definition F.2 (inner product space). An inner product space is a vector space with a product called an inner product satisfying axioms P1-P4 of Theorem F.1.

Definition F.3 (Norm). . The norm |v| of a vector v in an inner product space is given by Definition F.7 (Oriented Area). An oriented area B is and oriented segment of a plane (i.e. an area). The area of B is called its norm |B|.

Theorem F.3. Oriented areas in R n form a vector space.

Definition F.8 (Oriented Solid). An oriented solid T is and oriented segment of a three dimensional space (i.e. a volume). The volume of T is called its norm |T|.

Definition F.9 (Outer product). The outer product denoted ∧ is an operation satisfying the following properties Theorem F.9 (complex conjugate). Let z = uv = re iθ = a + ib be a generalized complex number, then

is called the complex conjugate of z.

Theorem F.10 (complex norm). Let z = uv = re iθ = a + ib be a generalized complex number, then

is called the norm of z.

Theorem F.11 (complex inverse). Let z be a generalized complex number, then |z| 2 = z z.

Thus if z = 0, then z -1 exists and

Definition F.29 (Directed integral). Let C be a curve in R n , F : C → G n a multi-vector valued function and ds the infinitesimal vector tangent to C (i.e. the infinitesimal pseudoscalar in the tangent algebra G 1 to C, or 1-form), the directed integral is given by

Definition F.30 (Flux integral Vector calculus). Let S be a surface in R 3 (and only in R 3 ), f : S → R n a vector valued function and dσ the infinitesimal vector normal to S, the flux integral is given by

Definition F.31 (Directed surface integral). Let S be a surface in R n , F : S → R n a multivector valued function and dS the infinitesimal bivector tangent to S (i.e the infinitesimal pseudo scalar in the tangent algebra G 2 to S, or a 2-form), the flux integral is given by

Remark F.7. To generalize notations for the directed integral, let M be a k-dimensional manifold in R n , let d k x be the infinitesimal pseudoscalar of the algebra G k tangent to M (a k-form), then the directed integral on M is noted

Remark F.9. Recall the following vector calculus 

where

Using the co-energy variables vC 1 , vC 2 instead of the energy variables qC 1 , qC 2 is justified here by the fact that the capacitors are linear and time-invariant, i.e. the co-energy H * (v) = Cv 2 /2 equals the energy H(q) = q 2 /(2C) for the linear law v = q/C.

Discretization using the AVF method

The Average Vector Field (AVF) method is used to discretize (43) because of its structure-preserving properties: it preserves the energy (resp. dissipativity) of conservative (resp. dissipative) systems (see [27]). One can also refer to [28] where it has been shown that the bilinear transform doesn't always guarantee the dissipativity of nonlinear filters (whether time-varying or not).

As an important side-effect, the AVF method can also be interpreted as a first-order instance of anti-derivative antialiasing [29].

The Average Vector Field method

Let Ω = [t0, t0 + h] be a time-step, x : Ω → R n a locally affine trajectory parametrized by the normalized variable τ ∈ [0, 1]

Introduce the averaging operator A, defined for all functions f : R n → R n or operators f : H → H, where H is a functional space from Ω → R n , by

For the time derivative and identity operators, one gets

Using the gradient theorem, this gives the average discrete gradient

Computing its derivative with respect to v1 leads to

One can refer to [30], where the discrete gradient's derivative is also used for numerical simulation.

Averaged system

Applying the averaging operator A to (43), leads to the structurepreserving discrete algebraic system

Solving the linear part for x1 gives the discrete state-space update

with the normalised pulsation ω d = hω and 

with the fixed-point iteration

A sufficient convergence condition is detailed in appendix B.

In practice, thanks to the non linear feedback splitting in (40), when the OPA is in the linear regime, ∇N = 0. Then the iteration reduces to an explicit one-step trapezoidal integrator and converges in only one iteration.

Newton iteration

To accelerate convergence, one can use Newton's method [31] as follows: define the auxiliary function

and look for the root x * 1 such that ϕ(x * 1 ) = 0 with the Newton iteration

where the Jacobian of ϕ is given by

FULLY-IMPLICIT ALGEBRO-DIFFERENTIAL PARAMETRIZATION OF CIRCUITS

Rémy Müller and Thomas Hélie

IRCAM-STMS (UMR 9912) Sorbonne University Paris, France remy.muller@ircam.fr ABSTRACT This paper is concerned with the conception of methods tailored for the numerical simulation of power-balanced systems that are well-posed but implicitly described. The motivation is threefold: some electronic components (such as the ideal diode) can only be implicitly described, arbitrary connection of components can lead to implicit topological constraints, finally stable discretization schemes also lead to implicit algebraic equations.

In this paper we start from the representation of circuits using a power-balanced Kirchhoff-Dirac structure, electronic components are described by a local state that is observed through a pair of power-conjugated algebro-differential operators (V, I) to yield the branch voltages and currents, the arc length is used to parametrize switching and non-Lipschitz components, and a power balanced functional time-discretization is proposed. Finally, the method is illustrated on two simple but non-trivial examples.

A. PROOF OF PROPERTY 5.1

The proof of Equation ( 41) is available in [8] and is not reproduced here. To prove its extension to semi-continuous functions, using left and right Taylor series expansion one finds

For the second coefficient, one finds 1 2 = 1/12 and using integration by parts, one gets the recursive relation