Multi-Task Learning (MTL) is a learning paradigm involving the joint optimization of parameters with respect to multiple tasks. By learning multiple related tasks, a learner receives more complete and complementary information on the input domain from which the tasks are issued. This allows to gain better understanding of the domain by building a more accurate set of assumptions of it, what is denoted as the inductive bias, thus leading to more robust features and better generalization performance.

Thanks to these features, Multi-Task Learning has become highly attractive for deep networks. Given their important data requirements, MTL offers the possibility to learn more generalizable features from the often limited data at disposal. However, in practice, the broader use of MTL is hindered by the lack of consistent performance gains observed by deep multi-task networks. It is often the case that deep MTL networks suffer from performance degradation caused by task interference. This phenomenon results from destructive interactions between the back-propagated gradients of the different tasks, and prevents the network from strengthening its inductive bias. This thesis addresses the problem of task interference in MTL to improve the generalization capabilities of deep networks. To this end, it introduces novel optimization techniques for multi-task learners, which take inspiration from existing partitioning methods. These methods tackle task interference by allowing the tasks to specify their own usage of network neurons. Differently from standard MTL optimization schemes, which aggregate all task specific objectives under a unique multi-task objective optimized using gradient descent methods, partitioning methods use independent gradient descent steps that are alternated along the different task-specific objectives.

In a first contribution, a new dynamic parameter sharing scheme is proposed, which reduces task interference while strengthening the inductive bias by maximizing the contribution of every task in the learning of every parameter. This is done with a lightweight discrete partitioning update scheme, inspired from dropout and based on random updates. The proposed method, Maximum Roaming, achieved better generalization performance over different state-of-the-art multi-task baselines, accross variated experimental settings.

In a second contribution, this thesis studies the difference between the optimization schemes of standard MTL and partitioning methods, which surprisingly has not been studied in detail before. To this end, it presents a convergence analysis, along with Résumé L'apprentissage multi-tâches est un paradigme d'apprentissage qui consiste à optimiser des paramètres par rapport à plusieurs tâches simultanément. En apprenant plusieurs tâches liées, un modèle d'apprentissage dispose d'un ensemble d'informations plus complet concernant le domaine d'entrée dont les tâches sont issues. Cela lui permet de mieux appréhender ce domaine, en construisant un ensemble d'hypothèses plus précis, appelé biais inductif, menant ainsi à de meilleures représentations et une meilleure généralisation.

Ces avantages ont rendu l'apprentissage multi-tâches très attractif pour les réseaux de neurones profonds. Étant données les contraintes qu'ils imposent en termes de quantités de données, l'apprentissage multi-tâches offre la possibilité d'apprendre des représentations plus robustes à partir des données souvent limitées à disposition. Cependant, en pratique, la systématisation de méthodes multi-tâches est limitée par le manque de régularité dans les gains de performance obtenus par les réseaux multi-tâches. Il arrive au contraire que ces réseaux multi-tâches subissent une perte de performance causée par des interférences de tâches. Ce phénomène résulte d'intéractions destructives entre les gradients rétro-propagés par les différentes tâches, et empêche les réseaux de renforcer leur biais inductif.

Cette thèse traite du problème d'interférences de tâches en apprentissage multi-tâches, afin d'améliorer les capacités de généralisation des réseaux de neurones profonds. Elle introduit ainsi de nouvelles techniques d'optimisation de réseaux multi-tâches, en s'inspirant de méthodes de partitionnement existantes. Ces méthodes réduisent les phénomènes d'interférences en permettant aux différentes tâches de spécifier leur propre usage des neurones du réseau. Contrairement aux méthodes usuelles d'apprentissage multi-tâches, qui accumulent les objectifs propres aux différentes tâches sous un unique objectif multi-tâches, les méthodes de partitionnement altèrnent les descentes de gradient sur les objectifs respectifs des différentes tâches.

Dans une première contribution, un nouveau schéma dynamique de partage des paramètres est proposé. Celui-ci réduit les phénomènes d'interférences et renforce le biais inductif en guarantissant la contribution de chaque tâche dans l'apprentissage de chaque paramètre partagé. Pour cela est utilisé un schéma de partitionnement dynamique binaire et peu couteux, inspiré du dropout et basé sur des mises à jour aléatoires. La méthode proposée, Maximum Roaming, atteint de meilleures performances de généralisation par rapport à différentes approches multi-tâches existant dans l'état de l'art, dans des contextes expérimentaux variés.

Dans une seconde contribution, cette thèse étudie la différence entre l'optimisation vi utilisée par les méthodes usuelles d'apprentissage multi-tâches, et celle utilisée par les méthodes de partitionnement, qui n'a étonnement jamais été étudiée en détails. Pour cela, une étude de convergence et une étude expérimentale comparative de ces différents schémas d'optimisation est présentée. Dans la continuité de ce travail, une troisième contribution propose un nouveau schéma d'optimisation, qui pousse plus loin la séparation entre les objectifs propres aux différentes tâches en spécifiant des mécanismes de momentum eux aussi propres aux différentes tâches, dans le but de favoriser une optimisation plus stochastique. Une quatrième contribution propose une stratégie de groupement de tâches, afin d'établir librement différents compromis entre les performances de généralisation accrues de ce nouveau schéma d'optimisation et la vitesse de calcul du schéma d'optimisation utilisé dans la plupart des travaux existants en apprentissage multi-tâches.

Dans une dernière contribution, les méthodes développées dans cette thèse sont utilisées dans une application concrète, à savoir le diagnostique automatique de glaucome à partir d'images de fundus rétinien. Une approche multi-tâches est proposée afin d'obtenir de meilleures performances de généralisation à partir du peu de données annotées à disposition. Bien que des phénomènes d'interférences soient empiriquement observables sur des méthodes d'apprentissage multi-tâches standards, les méthodes proposées les réduisent efficacement et sont capables d'améliorer les performances de généralisation du réseau par rapport à des équivalents mono-tâches.

a comparative study. From this inspiration, in a third contribution is introduced a novel optimization scheme, which pushes further the separation of task specific objectives by specifying task-specific momentum mechanisms, aiming for a more stochastic optimization. A fourth contribution proposes a task grouping strategy, in order to freely compromise between the improved generalization performances of this novel optimization scheme, and the computational efficiency of the standard optimization scheme used in most related works.

In a final contribution, the developed methods are used in a concrete real world application, involving glaucoma diagnosis from retinal fundus images. A MTL approach is proposed, to create superior generalization performance from the few data at disposal. Although task interference is observable in the experimental results of the multi-task baselines, the proposed methods efficiently mitigate it, and are able to improve the generalization performance of the pipeline compared to single task models. Deep neural networks (DNN) are known for being over-parameterized models, containing more parameters than the number of available training samples. This makes them prone to overfitting, leading to poor generalization on new data. It is thus crucial to inject DNNs with massive latent information about the input domain from which the samples are extracted, so that the DNNs can build a relevant set of assumptions about these domain rules. For example, when working with natural images, to generalize correctly a learner should learn the invariance of certain entities to pose and lighting. These domain rules are not explicitly provided in data labels, but can be deduced by the learner when it experiences label invariance for images of different pose and lighting. The learner will then refine pose and lighting invariant features, which will generalize better on new data. Reciprocally, when learning from low populated and poorly varied datasets, the lack of latent information on the input domain can lead the learner to deduce wrong assumptions, which will lead to poor generalization, i.e. overfitting. This set of assumptions made by a learner on an input domain is generally called inductive bias in machine learning [Baxter 2000].

One first way to strengthen the inductive bias of a learner is to feed it with vast amounts of data: this is how the massive increase of online publicly available annotated data led to an impressive breakthrough of deep networks these recent years [Deng et al. 2009], and established them as a standard in most computer vision tasks [Krizhevsky et al. 2012]. However, creating massive sets of annotated data for a given task is not affordable in the general case: First, collecting such amount of data is often impossible in many domains, like medical imaging [Tajbakhsh et al. 2020] in which data privacy makes it really hard for medical centers to share data, or for specific tasks in which data doesn't exist in large amounts. Second, data labelling is often a tedious and costly work, which cannot reasonably be applied to millions of samples. For example, annotations for tasks like video captioning or image segmentation can require a considerable time for just one sample [START_REF] Dang | [END_REF]].

Hence, other solutions have to be adopted to improve the generalization performance of DNNs.

Data augmentation, dropout and norm-regularization are common and widely used techniques to improve DNNs generalization [Tajbakhsh et al. 2020]. Data augmentation refers to techniques used to increase the amount of data by adding slightly modified copies of the available data or newly created synthetic data using the existing data as a starting point. These include geometric transformations, noise addition and color shifts, among others [START_REF] Shorten | [END_REF].

Dropout [START_REF] Srivastava | [END_REF] addresses the generalization problem by explicitly trying to reduce overfitting of DNNs. To this end, network units are randomly switched off (or dropped out) during training to encourage the network to rely on as many possible feature combinations, thus preventing units to co-adapt too much. At inference time, the predictions from the different "thinned" networks are averaged together. Finally, norm-regularization techniques penalize the norm (L1 or L2) of parameters during learning, which is shown to reduce erratic behaviors between interpolated samples, therefore improving generalization.

Another important resource to improve generalization when training a DNN on a given task is the usage of other related tasks to introduce a positive inductive bias. Since different related tasks may provide different and complementary information on their input domain, using multiple related tasks to train a model may introduce a more robust inductive bias, and lead the model to better generalization [Caruana 1997, Baxter 2000]. This is why humans perform so well on any new vision task: new tasks are not learned from scratch, but instead reuse all related knowledge on the visual domain, and quickly adapt to this new task [START_REF] Thrun | Learning to learn: Introduction and overview[END_REF]]. Multi-task learning is a machine learning sub-domain, which formalizes this concept and aims to develop learning-based methods that can efficiently exploit multiple tasks in their training process. This thesis focuses on deep Multi-Task Learning, which aims at jointly optimizing a DNN with respect to multiple tasks, in order to strengthen its inductive bias.

This chapter provides a context to the work presented in the thesis. It first details the different existing methods to introduce an inductive bias in the learning process of a deep neural network from the interactions of related tasks. In a second part, more attention is given to Multi-Task Learning. Its application to deep networks (i.e. deep Multi-Task Learning) is more thoroughly detailed and task interference, 1.1. Using related tasks to strengthen the inductive bias the main challenge in MTL is presented. This thesis is devoted to improve task interference in MTL methods. The chapter concludes by summarizing the main contributions of this thesis, listing related publications, and by presenting the outline of this manuscript.

1.1 Using related tasks to strengthen the inductive bias

The usage of multiple related tasks to create robust inductive bias is mainly studied in three domains, which are Transfer Learning, Multi-Task Learning and Continual Learning.

Transfer Learning

In Transfer Learning [Pratt 1993, Zamir et al. 2018], a model previously trained on a source task is used to learn a related but different target task from the same input domain. Using the source task as a proxy for the target task instead of training a model from scratch directly on the target task introduces into the learning process of the target task a set of assumptions on the input domain (i.e. inductive bias) learned on the source task. This complementary knowledge on the input domain might not have been acquired as such by training on the target task alone, and should help the model to learn more generalizable features for the target task. This is particularly useful in cases where annotated data is lacking for the target task: the already robust inductive bias learned on the source task allows the network to quickly and efficiently adapt its robust features to the new task with only few samples.

Transfer Learning for neural networks has been firstly introduced in [START_REF] Hinton | [END_REF]. It was then studied in more details in works like [START_REF] Yosinski | [END_REF]] and [Chu et al. 2016]. In [START_REF] Yosinski | [END_REF] experiments transfers of different network depths, and notice that transfers can be negatively affected when transfering only portions of pre-trained networks, which could break some co-adaptations between convolutional filters of different depth. They also notice that deeper layers tend to contain more specialized features, which do not transfer as well as shallow layers. Authors in [Chu et al. 2016] conduce their study depending on different target dataset sizes, and conclude that the performance gains of Transfer Learning compared to models trained from scratch is all the more so high when the target dataset is small. The transfer affinities between different related computer vision tasks have been thoroughly studied in works like [Zamir et al. 2018], which provides a large transfer affinity graph between 26 tasks. Some works [START_REF] Wang | [END_REF], Gonzales Zuniga et al. 2018] also showed that the performance gains of Transfer Learning can be further increased by augmenting the pre-trained network with more weights: this is done in [START_REF] Wang | [END_REF]] by deepening and widening the pre-trained network with new units. Similarly, in [START_REF] Zuniga | [END_REF], residual units are added to the transfered network, and trained under a specific scheme, to allow the network to better compensate the shift between the source and target task.

Transfer learning has become very popular in deep learning, in which data requirements make it difficult to train networks from scratch. It has shown as particularly beneficial in computer vision, inside of which the different tasks generally transfer very well. In practice, the pre-trained layers in convolutional networks transfer so well between vision tasks that Transfer Learning has also shown as beneficial between different domains: for example in medical imaging [Tajbakhsh et al. 2020], for which models pre-trained on natural images (such as ImageNet [Deng et al. 2009]) are often used to compensate for the lack of annotated data. However, Transfer Learning is a one-sided interaction between tasks that does not aim to maintain performance on the source task.

Continual Learning

In Continual Learning [START_REF] Parisi | Continual lifelong learning with neural networks: A review[END_REF]], a learner continuously learns new incoming tasks without forgetting previous ones, i.e. avoid catastrophic forgetting, while data from previous tasks might not be available anymore when learning a new task. Unlike Transfer Learning, by retaining the knowledge progressively acquired through different encountered new tasks, the model gets its inductive bias continuously strengthened. This is analogous to how humans progressively learn from birth, by continuously receiving new information, and processing it relatively to the ever-growing knowledge already acquired on their surrounding world (i.e. the input domain).

To avoid catastrophic forgetting, Continual Learning works have to ensure that the knowledge acquired from previous task gets preserved when learning a new one. In works like [START_REF] Kirkpatrick | [END_REF], Zenke et al. 2017], this is done through regularization methods: the change on neurons evaluated as relevant with respect to previous tasks gets penalized in a loss term. This relevance is computed as a posterior distribution in [START_REF] Kirkpatrick | [END_REF]], while it is computed from entire learning trajectories in the parameter space in [START_REF] Zenke | [END_REF].

In [START_REF] Lopez-Paz & Ranzato | [END_REF], Chaudhry et al. 2019], memories of past gradients from previous tasks are retained, and each learning step for a new task is conduced in order to avoid conflicts with these past gradients. The intuition is to make the network evolve in directions which do not destroy what was learned from previous tasks. Other works instead act on the network architecture [Rusu et al. 2016, Mallya et al. 2018, Mancini et al. 2018], and create task-specific network branches for every new incoming task. The learning is then conducted only in the task-specific portions of the network, while the shared parts are fixed. In [START_REF] Mallya | [END_REF]] and [START_REF] Mancini | [END_REF] this is done with trainable task-specific masks that modulate each neuron. Instead, in [Rusu et al. 2016] entire new networks are defined for each incoming task. Lateral connections allow to connect with the networks from other tasks.

In most of the Continual Learning literature [START_REF] Parisi | Continual lifelong learning with neural networks: A review[END_REF], the different tasks are always incoming sequentially, i.e. a new task comes in when the learning of the previous one is finished. Similarly to Transfer Learning, this implies that the training for a new task always start with a network containing a well trained set of assumptions on the input domain. As a result, the case where all tasks income together and have to be learned jointly is not covered. This setting provides at once all latent information on the input domain instead of progressively delivering it through incoming tasks. This simultaneous learning of multiple tasks is also an ability of the human learning system, which has to deal with new incoming tasks both sequentially and jointly. This thesis is devoted to this simultaneous learning of multiple tasks, denoted as Multi-Task Learning.

Multi-Task Learning

In Multi-Task Learning [Caruana 1997], a learner is trained jointly on multiple tasks from a same input domain. During a unique training phase, the learner is thus exposed to all the available information of the input domain. All the tasks are used to create inductive bias for each other. On top of the strengthened inductive bias, another benefit of MTL is its computational efficiency. In terms of training time, memory and computational power, training a unique network jointly on multiple tasks is generally way more efficient than learning these tasks separately. However the joint optimization of multiple tasks is particularly challenging for deep networks, and is currently an active research topic [Ruder 2017, Crawshaw 2020, Vandenhende et al. 2021].

Multi-Task Learning is a widely studied topic in the machine learning field [START_REF] Zhang | [END_REF]. More specifically, deep MTL (i.e. MTL with deep networks) has been applied in different domains, such as computer vision (CV) [Ruder 2017, Crawshaw 2020, Vandenhende et al. 2021] and Natural Language Processing (NLP) [START_REF] Collobert | [END_REF], Liu et al. 2015a, Crawshaw 2020]. Most of these works proceed under supervised learning settings, although more recently MTL has been applied with Reinforcement Learning (RL) [START_REF] Pinto | Learning to push by grasping: Using multiple tasks for effective learning[END_REF], Yu et al. 2020, Crawshaw 2020]. In this work, the study is focused on supervised computer vision tasks, which has been the most investigated domain so far [Ruder 2017, Crawshaw 2020, Vandenhende et al. 2021].

Deep Multi-Task Learning

This section provides an overview of deep Multi-Task Learning for computer vision. It first introduces the standard application of Multi-Task Learning to Deep Convolutional Networks, detailing how parameters are shared and how models are optimized. Then the performance degradation faced by such networks compared to single task approaches, namely task interference, is discussed.

Parameter Sharing

Multi-Task Learning uses a unique model for the predictions of multiple tasks. Figure 1.1 depicts the structure typically followed by deep MTL networks. There is a common trunk shared by the different tasks that contains most of the network's complexity, and task specific prediction heads, made of a few layers [Ruder 2017, Crawshaw 2020]. The inductive bias is generated by the shared parameters in the common trunk, which are jointly trained with respect to every task. The shared trunk, learning from all the tasks, has access to all the latent information on the input domain, and can thus learn more robust features, that the task-specific heads can freely use for their predictions. Parameter sharing can be of two types: hard sharing and soft sharing, although some recent works developed hybrid methods for Multi-Task Learning involving both types of sharing [START_REF] Vandenhende | [END_REF]].

• Hard sharing [START_REF][END_REF], Strezoski et al. 2019b] consists in using a same set of parameters for every task. This unique set of parameters is trained with respect to every task jointly. It is a particularly computationally efficient approach for deep MTL, since the heaviest part of the network (i.e. the shared trunk) keeps its size fixed regardless of the number of tasks. Adding a new task only incurs a supplementary prediction head, of negligible size compared to the trunk.

• In soft sharing [START_REF] Misra | [END_REF], Gao et al. 2019], each task uses its own set of weights, but a constraint is added on the distance between all the identical shared weights, thus encouraging them to remain close to each other. This constraint generally takes the form of a L1-norm, L2-norm or the trace norm.

The model size thus increases proportionally to the number of tasks, which makes soft sharing strategies difficult to use with heavy models like deep neural networks when the number of tasks increases.

As most existing deep MTL works [Ruder 2017, Crawshaw 2020, Vandenhende et al. 2021], this thesis focuses on hard parameter sharing strategies.

Optimization of the shared network

Training of a MTL network or model requires that each task is associated to a differentiable objective function or loss function, to be minimized. To handle the joint optimization of multiple tasks, the standard practice is to average all the task-specific objective functions, forming a unique aggregated objective function (multi-task objective), such as: with L the aggregated multi-task objective function, L i the objective function for task i and w i its associated weight in the averaged sum. The model is trained to minimize this aggregated objective function [Caruana 1997] through gradient descent methods. An example is provided in Figure 1.2, with the representation of both task-specific objective functions and aggregated multi-task objective function.

L = N i=1 w i • L i , (1.1) 
MTL optimization holds similarities with multi-label classification, where the loss contributions of each class are averaged. The difference between the two consists in that in MTL the objective or loss function may be different for each task. Instead, in multi-label classification the loss function is the same across all classes.

Task interference in Deep MTL

Deep networks present high-dimensional, complex and non-convex loss landscapes [START_REF] Li | [END_REF], for which few insights exist at current time, making their optimization a difficult process. Unfortunately, the generalization benefits that could bring MTL approaches are highly dependent on how well the optimization goes. In practice, current MTL approaches are not always able to improve the generalization of single-task models, and can even deteriorate it, suggesting that the joint optimization of parameters by gradient descent methods with respect to multiple non-convex objective functions is a challenging bottleneck to achieve performance gains [Kendall et al. 2018]. As shown in Figure 1.2, in non-convex settings, the gradient information obtained from a location in the loss landscape can be misleading for long term improvement. It is therefore not possible to define an optimal and unique way to use the gradients from the different objective functions (which likely point in different directions) without any insight on the shape of the loss landscape. This performance degradation phenomenon observed in Multi-Task Learning is generally called task interference or negative interference in the literature [START_REF] Maninis | [END_REF], Strezoski et al. 2019a], and it is an important hurdle to the spread of multi-task strategies in deep learning systems. This thesis aims at improving the generalization capabilities of MTL frameworks by improving their optimization. More specifically, it focuses on developing strategies for parameter sharing and optimization that can mitigate task interference, to allow these frameworks better exploit the multiple tasks and build a better inductive bias. Therefore, particular attention is paid to the generalization of the proposed methods to different networks, contexts, and settings.

Contributions

The contributions of this thesis are: :

• A method maximising the regularization brought by the plurality of tasks, while reducing task interference. To this end a partitioning strategy is applied to the shared parameters with respect to the different tasks, to reduce the 1.4. Publications average number of tasks optimizing a same parameter. The partitioning evolves through the learning process, for each task, thus it is successively involved in the training of every single parameter (Chapter 3).

• A convergence analysis of the specific optimization scheme used in partitioning methods, including the partitioning method proposed in Chapter 3. It optimizes separately and successively the different task-specific objective functions, instead of aggregating them in a single objective to optimize. An experimental comparison with the standard MTL optimization scheme is also provided (Chapter 4).

• A novel optimization scheme inspired by the one used in partitioning methods. It provides more independence to the tasks by defining task-specific momentum mechanisms. This new scheme consistently improves the networks generalization under different experimental settings (Chapter 4).

• A task grouping strategy, which offers a simple and efficient trade-off between the computational overhead and the generalization benefits of the proposed methods (Chapter 4).

• A full application over a real world medical imaging challenge, centered on glaucoma diagnosis from fundus images (Chapter 5), to evidence the benefits brought by the proposed solutions out of an academic context. In particular, they prove to be an efficient solution to increase the multi-task performances in low data settings, and combine well with Transfer Learning.

As previously stated, this thesis focuses on computer vision tasks. However, the main differences in MTL methods across different application domains (e.g. NLP or CV) come from the way that domain-specific architectures are exploited. MTL weight sharing and optimization strategies are essentially domain agnostic. Therefore, the considerations and contributions of this thesis could be easily applied to other domains beyond CV tasks. 

Thesis Outline

The rest of the thesis is organized into five chapters:

Chapter 2 provides a global overview on the topic of deep multi-task learning, by presenting major research trends. It then more specifically presents existing works in deep MTL optimization, which is the main topic of the thesis.

Chapter 3 introduces Maximum Roaming, a randomly dynamic partitioning method, aiming at creating more regularization while benefiting of the easier optimization provided by partitioning approaches. After a preliminary formulation of the partitioning strategy applied to the network, it presents the main contribution of the chapter, which is a novel update strategy for the partitioning scheme.

Chapter 4 focuses on the optimization strategy generally used by existing partitioning methods, through an extensive study and experimental evaluation, it shows how this strategy differs from most existing MTL approaches. The chapter then presents a novel optimization strategy, designed for state-of-the-art moment-based optimizers generally used with deep networks.

Chapter 5 demonstrates the relevance of the methods presented in Chapters 3 and 4 through their application in a real-world application. Concretely, it develops a MTL framework for glaucoma disease diagnosis from Retinal Fundus Images.

Finally, a conclusion of this thesis is given in Chapter 6. All the contributions brought in this work are summed up, and possible openings for further research are discussed from the current limitations in this work. This chapter provides a literature review of deep Multi-Task Learning. In a first part, an overview of the main research trends in deep MTL is presented. In a second part, the focus is given to existing optimization strategies for deep MTL, which is the core of this thesis. 

Task affinities in MTL

To maximize the benefits of multi-task learning and tackle task interference, some works propose to combine multiple tasks and compare the obtained performance to that one of the equivalent single task models, while keeping track of which combination is beneficial and which one produces degradation, i.e. task interference [START_REF] Doersch | [END_REF], Martinez Alonso & Plank 2017[START_REF] Bingel | Identifying beneficial task relations for multi-task learning in deep neural networks[END_REF], Standley et al. 2020]. The objective is to discover some multi-task affinities, that is which task combinations should be preferred to avoid task interference.

In [START_REF] Doersch | [END_REF] the multi-task networks systematically produce improvement compared to single-task ones, on a set of four computer vision tasks: position regression, colorization, motion segmentation, and exemplar matching. Instead, in [Martinez Alonso & Plank 2017] and [START_REF] Bingel | Identifying beneficial task relations for multi-task learning in deep neural networks[END_REF], 1440 and 90 combinations of NLP tasks are tested respectively, with some task combinations clearly producing a performance degradation. In [START_REF] Bingel | Identifying beneficial task relations for multi-task learning in deep neural networks[END_REF], a logistic regression model is then trained on these results to predict whether a task combination might or not be beneficial. The downside of these approaches is that training each combination to evaluate it has a prohibitive cost for deep networks.

To avoid this computational burden, in [Strezoski et al. 2019b], the authors do not explicitly evaluate the task affinities. Instead, they progressively separate the tasks in different network branches during training to avoid task interferences, on the basis of a similarity computed between the gradients issued from the different tasks.

While multi-task affinities have not been largely explored in MTL, they have been thoroughly studied in Tranfer Learning [Zamir et al. 2018[START_REF] Dwivedi | [END_REF], Song et al. 2019], with the similar objective of determining which task transfers can produce the most benefits. After introducing the Taskonomy dataset 1 , a CV dataset containing 4 million images from 600 different buildings with 26 annotated CV tasks, the authors in [Zamir et al. 2018] establish a transfer affinity graph by experimenting different transfers between the available tasks. As previously stated, this process is expensive, and requires close to 50000 GPU hours. [START_REF] Dwivedi | [END_REF] proposed a more computationally efficient method that evaluates the transfer affinity between two tasks by comparing their learned features when trained in isolation (single task). The assumption here is that tasks with high transfer affinity should learn similar features when trained in isolation. The comparison is conducted with Representation Similarity Analysis (RSA) [START_REF] Kriegeskorte | [END_REF], a method coming from neuroscience, and used in deep networks to compare neural network activations. Finally, [START_REF] Song | [END_REF] propose to compare attribution maps of a same input image with respect to the different tasks. The attribution maps associate to each pixel a relevance score with respect to the network output. The authors consider that tasks with high transfer affinities should essentially focus on the same parts of an image.

Despite the positive results reported in the literature, experimental results in [Standley et al. 2020] show that there is no evident correlation between transfer affinity and MTL affinity. This suggests that insights obtained from previous works on transfer affinities might not hold for MTL affinities, and that similar studies should be conducted for MTL. This work [Standley et al. 2020] also shows that the Other works adopt fine-grained architectural adaptations to fit a specific set of tasks [START_REF] He | Mask R-CNN[END_REF], Xu et al. 2018, Zhang et al. 2019, Vandenhende et al. 2020]. Among these, there is Mask-RCNN [START_REF] He | Mask R-CNN[END_REF]] a notable pipeline for jointly processing instance detection, classification and segmentation.

Arguing that task-specific prediction might be useful for performing other tasks, PAD-Net [START_REF] Xu | [END_REF], Pattern Affinitive Propagation (PAP) [START_REF] Zhang | [END_REF]] and MTI-Net [START_REF] Vandenhende | [END_REF]] compute preliminary task predictions, which are then mixed together to produce final predictions.

In [START_REF] Zhang | [END_REF]], an affinity learning layer is added for efficient combination of the task-specific predictions. Instead, in MTI-Net [START_REF] Vandenhende | [END_REF]], these affinities are computed at different feature scales. These works [START_REF] Xu | [END_REF], Zhang et al. 2019, Vandenhende et al. 2020] have been designed for NYUv2 [Silberman et al. 2012], an indoor scene understanding dataset. However, such developments require important human efforts, domain-specific knowledge and development time.

A different family of works takes inspiration from Neural Architecture Search [Elsken et al. 2019] and Meta-Learning [START_REF] Huisman | [END_REF], and propose dynamically evolving architectures, so that models can eventually modify their structure to avoid cases of task interference. In [Lu et al. 2017a], similarly to [Strezoski et al. 2019b], an initially fully shared network is progressively split layer by layer, starting from deepest layers, separating task groups based on the prediction errors faced over same data inputs. In [START_REF] Meyerson | [END_REF] and [START_REF] Liang | [END_REF], each layer output for each task is computed as a learned task-specific weighting of different modules. [START_REF] Gao | [END_REF]] proposed a Gradientbased Neural Architecture Search (NAS) method, MTL-NAS, which learns to mix different single-task architectures with feature fusions and then converges to a smaller fixed architecture. Authors in [Fernando et al. 2017] create a large shared network, from which subnetworks are optimized for each task through a genetic algorithm. More recently, in [START_REF] Sun | [END_REF] the network learns for each task whether a layer shall be used or ignored, with the help of Gumbel-Softmax sampling [START_REF] Maddison | [END_REF], Jang et al. 2017]. Inspired from [START_REF] Bengio | [END_REF], in which a router adapts the network architecture with respect to each input sample, works like [START_REF] Rosenbaum | [END_REF]] and [START_REF] Ahn | [END_REF] propose similar approaches for multi-task networks. The routers in these works are trained with Reinforcement Learning.

Similarly to works based on task affinities, NAS methods essentially aim at avoiding learning configurations which could lead to task interference. Although generally achieving great improvements with respect to task interference, many of these methods demand important resources, in terms of computational time or model size, due to factors like joint architecture and weights learning [START_REF] Meyerson | [END_REF], Liang et al. 2018], over-parameterization [Fernando et al. 2017], added task-specific branches [START_REF] Misra | [END_REF], Liu et al. 2019b, Gao et al. 2020] or growing models [Lu et al. 2017b, Strezoski et al. 2019b]. As a consequence, they might not scale well with the number of tasks.

Multi-task Optimization

In opposition to the task affinities works which exploit task groupings to avoid optimization difficulties, and Architecture Search works which try to find the best network architecture for a given Multi-Task problem, a third stream of works aims at improving the optimization schemes for multi-task networks, in order to better exploit the inductive bias created by the plurality of tasks, regardless of the network architecture or task affinities. These works mainly involve loss weighting strategies [START_REF][END_REF], Guo et al. 2018, Kendall et al. 2018, Sinha et al. 2018, Liu et al. 2019a, Liu et al. 2019b], Multi-Objective Optimization [Sener & Koltun 2018, Lin et al. 2019], gradient editing [START_REF][END_REF], Yu et al. 2020] and parameter partitioning [START_REF] Mallya | [END_REF], Mancini et al. 2018, Strezoski et al. 2019a, Maninis et al. 2019, Bragman et al. 2019]. The methods proposed by this type of techniques generally present multiple advantages:

• they are more computationally efficient, since they do not need to compute any prior knowledge on the tasks, nor do they modify the network architecture.

• they scale better to the number of tasks, for the same reasons.

• they generalize better to other problem settings (i.e. other domain, task, or network), since they are essentially domain, task and model-agnostic.

This thesis focuses on optimization schemes in deep Multi-Task Learning. In the next section a detailed review of this family of works is presented.

Related works in MTL optimization

This section presents the works most related to this thesis, which are optimization techniques for deep Multi-Task Learning. Methods under this category can be classified into three sub-categories: loss weighting, gradient editing and parameter partitioning strategies.

Loss weighting

As stated in Chapter 1, most MTL works optimize an aggregated objective function L containing all the task-specific objective functions [Caruana 1997], generally under the form:

L = i ω i L i (2.1)
with L i the objective function of task i, and ω i its associated weight. These weights are of key importance to avoid high magnitude differences among the objective functions of the different tasks, which could harm the learning of low magnitude tasks. Tuning these weights with a grid-search presents two major issues:

• it is time consuming: the number of weights combinations to try exponentially grows with the number of tasks.

• changing dynamics during learning might require a dynamic weighting scheme.

Some deep MTL works have thus proposed different mechanisms to automatically and dynamically adapt these weights during the learning process [START_REF][END_REF], Guo et al. 2018, Kendall et al. 2018, Sinha et al. 2018, Liu et al. 2019a, Liu et al. 2019b].

In [Kendall et al. 2018] each task loss coefficient is expressed as a function of trainable task-specific prediction uncertainty parameters. While the model is pushed to reduce the overall uncertainty, the greater one task uncertainty is, the larger its associated weight. In [Liu et al. 2019a] these coefficients are modulated considering the learning speed (i.e. the rate of loss change) of each task. The idea behind it is that tasks whose losses decreased the least should get prioritized with larger weights. The coefficient ω i for task i at training step t is thus expressed as:

ω i (t) = L i (t) L i (0) α (2.2)
with α a hyperparameter to tune.

Dynamic Weight Averaging (DWA) introduced in [Liu et al. 2019b] is a similar weighting scheme which considers loss ratios with respect to the previous learning step, i.e. L i (t -1) instead of L i (0) in Eq. 2.2. These ratios are used inside of a softmax with temperature scaling to progressively increase their contribution in the Chapter 2. Literature Review final task weighting coefficients. [START_REF] Guo | [END_REF]] used a similar learning speed for the weighting, with the difference being that it is computed based on performance metrics instead of loss functions.

GradNorm [START_REF][END_REF]] introduces a differentiable loss term aiming to match each task gradient magnitude with some desired magnitudes. These desired magnitudes are established based on the average task loss gradient and the learning speed of each task. Specifically, this loss term is defined as:

L grad (ω i (t)) = j ||G j (t) -Ḡ(t) × (r i (t)) α || 1 (2.3)
with G j (t) and Ḡ(t) respectively the weighted gradient from task j and the average weighted gradient at step t, and r i (t) the relative learning speed of task i at step t.

Finally, in [Sinha et al. 2018], gradient magnitude equalization among tasks is explicitly enforced with adversarial training. Specifically, an auxiliary network is trained to classify from which task incoming gradients are issued. An adversarial loss term based on this classification is then introduced in the main loss, to force the different tasks to produce indistinguishable gradients.

Although they adopt different weighting strategies, all these works have in common the optimization of an aggregated objective function, introduced in [Caruana 1997]. Some other works, presented below, instead question this aggregation, and tackle task interference by giving more consideration to the task-specific objectives.

Multi-Objective Optimization

Multi-Objective Optimization [Kaisa 1999] consists in optimizing simultaneously a set of objective functions (L 1 (t), L 2 (t), ..., L N (t)), which holds strong analogies with MTL. A characteristic feature of Multi-Objective Optimization is that it does not consider the existence of a unique optimal solution. Instead, it defines a set of solutions named pareto frontier, from which no improvement is possible on one task without degrading another.

The first application of gradient descent for Multi-Objective Optimization, the Multiple Gradient Descent Algorithm (MGDA) has been proposed in [START_REF] Désidéri | Multiple-gradient Descent Algorithm (MGDA) for Multiobjective Optimization[END_REF]], and guarantees convergence in pareto stationary solutions, i.e. solutions on the pareto frontier. In [Sener & Koltun 2018], an adaptation of this algorithm is proposed, MGDA-UB, which scales to the high dimensionality of deep networks, by optimizing an upper-bound of the MGDA objective. MGDA-UB computes for each learning step scaling factors for each task gradient which guarantees no degradation on any task. This work has been extended by [START_REF][END_REF] to obtain a set of solutions with different trade-offs among tasks. Similarly to MGDA, these methods ensure, under reasonable assumptions, to converge into a Pareto optimal solution, from which no improvement is possible for one task without deteriorating another task. On a more general note, the motivation behind Multi-Objective Optimization is that averaging the different objectives into a single one leads to an information loss, and that task individuality should instead be maintained through the optimization. However, as pointed out in [Crawshaw 2020], the methods proposed in [Sener & Koltun 2018] and [START_REF][END_REF]] come down to optimizing an aggregated objective function with dynamic weighting, similarly to loss weighting methods. Furthermore, these methods present a greedy behavior, trying to improve every task for each learning step. In the case of multiple non-convex objectives, this could lead to stagnation into task-specific local minima, performing poorly on the other tasks. More generally, converging on the pareto frontier is not a sufficient guarantee for good multi-task performance in non-convex settings.

Gradient editing

Similarly to Multi-Objective Optimization methods, a recent line of works, denoted in this thesis as gradient editing methods, also highlight the importance of considering individual task-specific gradient components to tackle task interference [START_REF][END_REF], Yu et al. 2020]. These works hypothesize that task interference is related to opposite gradient directions among the tasks. Therefore, they propose to modify the task-specific gradients to solve the conflicts before averaging them.

The method proposed in [START_REF] Yu | [END_REF] takes inspiration in some Continual Learning works [START_REF] Lopez-Paz & Ranzato | [END_REF], Chaudhry et al. 2019]. The methods proposed in [START_REF] Lopez-Paz & Ranzato | [END_REF], Chaudhry et al. 2019], which learn sequentially incoming tasks, keep memories of previous task gradients for a given task j. For any new training step for a given task i they detect a gradient conflict if the gradient from task i points in an opposite direction of any other previous task gradient:

∃j < i, G i (t) T G j (t) < 0 (2.4)
with G i (t) and G j (t) are the gradient vectors of the current task i and of a previous task j memory at update step t. In case of such conflict, in [START_REF] Lopez-Paz & Ranzato | [END_REF] a quadratic optimization problem is solved to find the closest possible replacement candidate for G i (t) which would not conflict with any G j (t), ∀j < i. In [Chaudhry et al. 2019] a relaxed version is proposed by only solving the conflict with a unique average gradient of the previous tasks. This comes down to a simple projection on the normal plane in case of initial conflict, which greatly improves computation time. [START_REF] Yu | [END_REF] propose to apply the same approach in a multi-task setting. For each training step, each pair of conflicting gradients gets projected onto the normal planes of each other, so that the optimization follows a consensual descent direction. Theoretically, this method Chapter 2. Literature Review provides a better convergence in some conflicting regions with strong unbalance between the different task loss magnitudes.

In [START_REF][END_REF], the authors propose a probabilistic framework to solve gradient conflicts. They propose to have a network layer, transparent during the forward pass, through which each task gradient component is given a certain probability to be kept. This probability gets higher the more the gradient component's sign is in accordance with the sign of other tasks gradient components. Concretely, a gradient positive sign purity P is computed:

P = 1 2 1 + i ∇L i i |∇L i | (2.5)
This gradient positive sign purity represents the "average positivity" of each component of task gradients, ranging from 0, when all task-specific gradient components are negative, to 1 if they are all positive. For each model parameter component k, its associated gradient component g i,k from task i has a probability to be kept of:

P k if g i,k > 0 (1 -P k ) if g i,k < 0 (2.6)
and is set to zero otherwise. All the task-specific component are then average into a multi-task loss for back-propagation.

Despite the promising results and convergence guarantees, these works apply corrections in some specific cases, i.e. gradients pointing in opposite directions, assuming that these are systematically detrimental to learning. Such assumption cannot fully hold in non-convex settings (or would require more prior knowledge on the loss landscapes), and some of these happenings might occasionally lead to the discovery of better regions of the loss landscape.

Parameter partitioning

One last family of works proposes a relaxed version of the hard parameter sharing strategy: while a unique set of parameter is defined for every task as in hard parameter sharing, for each task is defined a specific usage of this set of parameters.

Concretely, this specification takes the form of attention masks applied at the neuronlevel (i.e. convolutional filters), allowing each task to select, modulate or discard the output of each neuron. Binary masks can be used for binary neuron selection, and real-valued masks for modulation. In the following, this task-specific selection of parameters with selection masks is denoted as parameter partitioning. The idea behind works using parameter partitioning [START_REF] Mallya | [END_REF], Mancini et al. 2018, Strezoski et al. 2019a, Maninis et al. 2019, Bragman et al. 2019] is to allow tasks specify their own usage of the shared parameters, while potentially reducing cases of task interference.

The first of such works, Piggyback [START_REF] Mallya | [END_REF], is a method to adapt a pre-trained network to related tasks. The pre-trained weights are frozen, while task-specific binary masks (i.e. partitions) are learned to allow the tasks to specify their own usage of parameters. The advantage of this approach is that each task can learn from the pre-trained parameters without altering them, so that new tasks can be added with no degradation for the previous others. A similar approach is proposed in [START_REF] Mancini | [END_REF], where affine transformations of the shared features are produced from learned real-valued partitions. However as pointed out in [START_REF] Mallya | [END_REF], since the shared parameters are frozen in these two methods, the tasks cannot benefit from each other learning to strengthen their inductive bias.

Unlike [START_REF] Mallya | [END_REF], in [Strezoski et al. 2019a] a parameter partitioning method allowing for a joint training of the shared parameters with respect to the multiple tasks is proposed. For this, binary selection masks are randomly initialized and fixed from start as the different task-specific partitions, while the shared parts are optimized by using this partitioning. The parameter partitions are initialized with one hyper-parameter, which determines the proportion of the total parameters that should be selected for every task. The experimental results suggest that this method greatly reduces task interference, by reducing the average number of tasks optimizing the same parameter.

In [START_REF] Maninis | [END_REF], task-specific Squeeze and Excitation (SE) modules [Hu et al. 2018] are proposed to optimize real-valued parameter partitions, trained along with the network. Squeeze and Excitation modules are small modules made of 1 × 1 fully connected layers, which learn for each layer an attention map at the filter level, which is then applied to the layer output. To further reduce task interference, the authors in [START_REF] Maninis | [END_REF]] also use Residual Adapters [START_REF] Rebuffi | [END_REF], which are residual blocks aiming at refining task-specific features on top of the shared ones, and an adversarial training similar to [Sinha et al. 2018] to make the gradients from each task indistinguishable.

Finally, in [START_REF] Bragman | [END_REF], task-specific binary partitions are set along with a shared one, and trained using a Gumbel-Softmax distribution [START_REF] Maddison | [END_REF], Jang et al. 2017] to avoid the discontinuities created by binary assignments. The intuition here is to separate convolutional filters between one "generalist" group, used by every task, and multiple task-specific "specialist" groups used by isolated tasks to obtain more specific features.

Although these methods are essentially used as optimization methods for hard parameter sharing multi-task pipelines, they can also be considered themselves as a new kind of parameter sharing, which compromises the memory efficiency of hard parameter sharing, and the flexibility of soft parameter sharing. Back to optimization considerations, interestingly, the task-specific usage of parameters in all these methods imposes to alternately apply independent update steps with respect to the different tasks objective functions, instead of aggregating them into a single objective, which is a different optimization scheme than in most other MTL works, applying update steps on an aggregated loss. This specific optimization scheme is discussed in [START_REF] Maninis | [END_REF] as a way to exploit the benefits of partitioning, but is however never studied in isolation, theoretically or experimentally. These considerations make partitioning methods particularly interesting to study. This thesis therefore takes inspiration from partitioning methods to develop new optimization and sharing schemes for MTL pipelines.

Chapter 3

Strengthening the inductive bias with a dynamic parameter partitioning The content of this chapter is based on: "Maximum Roaming Multi-Task Learning" [Pascal et al. 2021a], which was published as a conference paper in AAAI 2021.

Motivation

In most existing works in MTL, parameters are shared among all tasks indifferently, except these used for task-specific predictions. However, this setting can lead to cases of task interferences, degrading the performance compared to single task models, and thus canceling one of the expected benefits of multi-tasking, which is better generalization on new data. In this section current limitations in related works are presented.

To address the problem of task interferences, several works have proposed to enlarge deep networks with task specific parameters [Gao et al. 2019, He et al. 2017, Kokkinos 2017, Liu et al. 2019b, Lu et al. 2017a, Misra et al. 2016, Mordan et al. 2018], giving tasks more room for specialization, and thus achieving partitioning These approaches, however, do not solve the problem of task interference in the shared portions of the networks. Furthermore, they generally do not scale well with the number of tasks. Closer to the approach proposed in this chapter, some other works leave out architectural considerations and directly aim at easing the optimization in the shared parts of the networks, thanks to different loss weighting strategies [Kendall et al. 2018, Chen et al. 2018, Liu et al. 2019b, Sinha et al. 2018, Sener & Koltun 2018]. However most of these methods [Kendall et al. 2018, Chen et al. 2018, Liu et al. 2019b, Sinha et al. 2018] do not directly aim at addressing task interference, their main goal being to allow each task objective to have more or less magnitude in the main objective according to some learning dynamics. In the case of [Sener & Koltun 2018], although the method is guaranteed to converge in pareto-optimal solutions, the constraint of improving every single task at each training step is at risk in the case of non-convex loss landscapes, and can lead to quick convergence into poor loss regions in case of strongly interfering tasks. Finally, partitioning methods are explicitly used in [Strezoski et al. 2019a, Bragman et al. 2019, Maninis et al. 2019] to mitigate task-interferences by reducing the average number of tasks training a given parameter: with this the chances are lower to having destructive conflicts on this parameter. However, despite the promising results, the risk in this strategy is to reduce the contribution of some tasks in the learning of each parameter, and therefore weaken the inductive bias of the model. This chapter presents Maximum Roaming (Figure 3.1), a dynamic partitioning scheme that sequentially strengthens the inductive bias, while keeping task interference under control. Inspired by the dropout technique [START_REF] Srivastava | [END_REF], the proposed method allows each parameter to roam across several task-specific sub-networks, thus giving them the ability to learn from a maximum number of tasks and build representations more robust to variations in the input domain. It can therefore be considered as a regularization method in the context of multi-task learning. Differently from other recent partitioning methods that aim at optimizing [START_REF] Bragman | [END_REF], Maninis et al. 2019] or fixing [Strezoski et al. 2019a] a specific partitioning, maximum roaming privileges continuous random partition and assignment of parameters to tasks allowing them to learn from each task. Experimental results show consistent improvements over the state of the art methods.

The remaining of the chapter is organized as follows. Some preliminary elements and notations are first set out before the details of Maximum Roaming. Extensive experiments are then conducted to study the properties of the proposed method and to demonstrate its superior performance compared to other state-of-the-art MTL approaches. A final discussion over contributions and perspectives is presented.

Preliminaries

Let us define a training set

T = {(x n , y n,t )} n∈[N ],t∈[T ]
, where T is the number of tasks and N the number of data points. The set T is used to learn the T tasks with a standard shared convolutional network of depth D having one different final prediction layer for each task t. Under this setup, the convolutional filters of the network are referred to as parameters, with S (d) the number of parameters of the d th layer and i ∈ 1, . . . , S (d) its index. Finally, S max = max d {S (d) } represents the maximum number of parameters contained by a network layer.

In standard MTL, with fully shared parameters, the output of the d th layer for task t is computed as:

f (d) t (H) = σ H * K (d) , (3.1) 
where σ(.) is a non-linear function (e.g. ReLU), H a hidden input, and K (d) the convolutional kernel composed of the S (d) parameters of layer d.
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Parameter Partitioning

Let us now introduce

M = m (d) 1 , . . . , m (d) T d∈[D]
,

the parameter partitioning matrix, with m d) a column vector associated to task t in the d th layer, and m (d) i,t an element on such vector associated to the i th parameter. As M allows to select a subset of parameters for every t, the output of the d th layer for task t (Eq. 3.1) is now computed as:

(d) t ∈ {0, 1} S (
f (d) t (H t ) = σ H t * K (d) m (d) t , (3.2) 
with the channel-wise product. This notation is consistent with the formalization of the dropout (e.g. [START_REF] Gomez | [END_REF]). By introducing M, the hidden inputs are now also task-dependent: each task requires an independent forward pass, like in [START_REF] Maninis | [END_REF], Strezoski et al. 2019a]. In other words, given a training point (x n , {y n,t } T t=1 ), for each task t is computed an independent forward pass

F t (x) = f (D) t • ... • f (1)
t (x) and then back-propagate the associated task-specific losses L t (F t (x), y t ). Each parameter i receives independent training gradient signals from the tasks using it, i.e. m For the sake of simplicity in the notation and without loss of generality, in the remaining of this document the index d indicating a given layer is omitted.

Parameter Partitioning Initialization

Every element of M follows a Bernoulli distribution of parameter p:

P (m i,t = 1) ∼ B(p).
Here p denotes the sharing ratio [Strezoski et al. 2019a]. The same value p is used for every layer of the network. The sharing ratio controls the overlap between task partitions, i.e. the number of different gradient signals a given parameter i will receive through training. Reducing the number of training gradient signals reduces task interference, by reducing the probability of having conflicting signals, and eases optimization. However, reducing the number of task gradient signals received by i also reduces the amount and the quality of inductive bias that different task gradient signals provide, which is one of the main motivations and benefits of multi-task learning [Caruana 1997].

A condition is imposed to guarantee the full capacity use of the network:

T t=1 m i,t ≥ 1. (3.3)
Parameters not satisfying this constraint are attributed to a unique uniformly sampled task. The case p = 0, thus corresponds to a fully disjoint parameter partitioning, i.e.

T t=1 m i,t = 1, ∀ i, whereas p = 1 is a fully shared network, i.e.

T t=1 m i,t = T, ∀ i, equivalent to Eq. 3.1.

Following a strategy similar to dropout [START_REF] Srivastava | [END_REF], which forces parameters to successively learn efficient representations in many different randomly sampled sub-networks, the aim here is to make every parameter i learn from every possible task by regularly updating the parameter partitioning M, i.e. make parameters roam among tasks to sequentially build the inductive bias, while still taking advantage of the "simpler" optimization setup regulated by p. For this Maximum Roaming Multi-Task Learning is introduced. It is a learning strategy consisting of two core elements: 1) a parameter partitioning update plan that establishes how to introduce changes in M, and 2) a parameter selection process to identify the elements of M to be modified.

Maximum Roaming Multi-Task Learning

In this section is formalized the core of the proposed contribution. Let first present an assumption that relaxes what can be considered as inductive bias.

Assumption 1. The benefits of the inductive bias provided by the simultaneous optimization of parameters with respect to several tasks can be obtained by a sequential optimization with respect to different subgroups of these tasks.

This assumption is in line with [START_REF] Yosinski | [END_REF], where the authors state that initializing the parameters with transferred weights can improve generalization performance, and with other works showing the performance gain achieved by inductive transfer (see [START_REF] He | Mask R-CNN[END_REF][START_REF] Singh | [END_REF], Tajbakhsh et al. 2016, Zamir et al. 2018]).

Assumption 1 allows to introduce the concept of evolution in time of the parameters partitioning M, by indexing over time as M(c), where c ∈ N indexes update timesteps, and M(0) is the partitioning initialization. At every step c, the values of M(c) are updated, under constraint (3.3), allowing parameters to roam across the different tasks.

Definition 1. Let A t (c) = {i | m i,t (c) = 1}
be the set of parameter indices used by task t, at update step c, and B t (c) = ∪ c l=1 A t (l) the set of parameter indices that have been visited by t, at least once, after c update steps. At step c + 1, the binary parameter partitioning matrix M(c) is updated according to the following update rules:

   m i -,t (c + 1) = 0, i -∈ A t (c) m i + ,t (c + 1) = 1, i + ∈ {1, ..., S}\B t (c) m i,t (c + 1) = m i,t (c), ∀ i / ∈ {i -, i + } (3.4) partitioning
with i + and i -unique, uniformly sampled in their respective sets at each update step.

The frequency at which M(c) is updated is governed by ∆, where c = E ∆ and E denotes the training epochs. This allows parameters to learn from a fixed partitioning over ∆ training iterations in a given partitioning configuration. ∆ has to be significantly large (it is expressed in terms of training epochs), so the network can fully adapt to each new configuration. Considering that discrete updates are applied in the parameter space, which has an impact in model performance, only one parameter is updated per update step to minimize the short-term impact. Figure 3 Definition 1 requires to select update candidate parameters i + and i -from their respective subsets (Eq 3.4). i + , i -are both selected under a uniform distribution (without replacement), a lightweight solution to guarantee a constant overlap between the parameter partitions of the different tasks.

Lemma 2. The overlap between parameter partitions of different tasks remains constant, on average, when the candidate parameters i -and i + , at every update step c + 1, are sampled without replacement under a uniform distribution from A t (c) and {1, ..., S}\B t (c), respectively.

Proof: It is proven by induction that P (m i,t (c) = 1) is constant over c, i and t, which ensures a constant overlap between the parameter partitions of the different tasks. The detailed proof is provided in appendix 3.6

The probability of a parameter i to have been used by task t, after c update steps can be formulated as:

P (i ∈ B t (c)) = p + (1 -p) r(c) (3.5)
where

r(c) = c (1 -p)S , c ≤ (1 -p)S (3.6)
is the update ratio, which indicates the completion rate of the update process within a layer. The condition c ≤ (1 -p)S refers to the fact that there cannot be more updates than the number of available parameters. It is also a necessary condition for

P (i ∈ B t (c)) ∈ [0, 1]
. The increase of this probability represents the increase in the number of visited tasks for a given parameter, which is what creates inductive bias, following Assumption 1.

The benefits of Maximum Roaming are formalized in the following proposition:

Proposition 1.
Starting from a random binary parameter partitioning M(0) controlled by the sharing ratio p, Maximum Roaming maximizes the inductive bias across tasks, while controlling task interference.

Proof: Under Assumption 1, the inductive bias is correlated to the averaged number of tasks having optimized any given the parameter, which is expressed by Eq. 3.5. P (i ∈ B t (c)) is maximized with the increase of the number of updates c, to compensate the initial loss imposed by p ≤ 1. The control over task interference cases is guaranteed by Lemma 2

Experimental Results

This section first describes the datasets and the baselines used for comparison. The presented Maximum Roaming MTL method is first evaluated on several problems. First are studied its properties such as the effects the sharing ratio p, the impact of the interval between two updates ∆ and the completion rate of the update process r(c) and the importance of having a random selection process of parameters for update. Finally, a benchmark is presented, comparing MR with the different baseline methods. All code, data and experiments are available on GitHub 1 .

Datasets

Three publicly available datasets are used in the experiments: groups is provided in Table 3.1.

Celeb-A.

Cityscapes

The Cityscapes dataset [START_REF] Cordts | [END_REF]] contains 5000 annotated street-view images with pixel-level annotations from a car point of view. The seven main semantic segmentation tasks are considered, along with a depth-estimation regression task, for a total of 8 tasks.

NYUv2

The NYUv2 dataset [Silberman et al. 2012] is a challenging dataset containing 1449 indoor images recorded over 464 different scenes from Microsoft Kinect camera. It provides 13 semantic segmentation tasks, depth estimation and surfaces normals estimation tasks, for a total of 15 tasks. As with Cityscapes, the pre-processed data provided by [Liu et al. 2019b] is used.

Baselines

Maximum Roaming is compared with several alternatives, including two parameter partitioning approaches [START_REF] Maninis | [END_REF], Strezoski et al. 2019a]. Among these, [START_REF] Bragman | [END_REF] was not included, as it was not possible to correctly replicate the method with the available resources. Specifically, the following methods are evaluated:

• MTL, a standard fully shared network with uniform task weighting.

1 https://github.com/lucaspascal/Maximum-Roaming-Mutli-Task-Learning

• GradNorm [START_REF][END_REF], a fully shared network with trainable task weighting method.

• MGDA-UB [Sener & Koltun 2018], a fully shared network which formulates the MTL as a multi-objective optimization problem.

• Task Routing (TR) [Strezoski et al. 2019a], a parameter partitioning method with fixed binary masks.

• SE-MTL [START_REF] Maninis | [END_REF]] a parameters partitioning method, with trainable real-valued masks. Note that it consists in the original paper of a more complex framework which comprises several other contributions. For a fair comparison with the other baselines, only the parameter partitioning is considered and not the other elements of their work.

• STL, the single-task learning baselines, using one model per task.

Facial Attributes Detection

These first experiments study in detail the properties of the proposed method using the Celeb-A dataset. Being a small dataset it allows for fast experimentation.

Experimental setup Table 3.1 provides details on the distribution of the 40 facial attributes between the 8 created tasks. Every attribute in a task uses the same parameter partition.

During training, the losses of all the attributes of the same task are averaged to form a task-specific loss. All baselines use a ResNet-18 [He et al. 2016c] truncated after the last average pooling as a shared network. 8 fully connected layers of input size 512 are then added, one per task, with the appropriate number of outputs, i.e. the number of facial attributes in the task. The partitioning methods ( [START_REF] Maninis | [END_REF], [Strezoski et al. 2019a] and Maximum Roaming) are applied to every shared convolutional layer in the network. The parameter α in GradNorm [START_REF][END_REF] has been optimized in the set of values {0.5, 1, 1.5}. All models were trained with an Adam optimizer [START_REF] Kingma | [END_REF]] and a learning rate of 1e-4, until convergence, using a binary cross-entropy loss function, averaged over the different attributes of a given task. The batch size is set to 256, and all input images are resized to (64 × 64 × 3). The reported results are evaluated using a validation split provided in the official release of the dataset [Liu et al. 2015b]. The reported results are averaged over five seeds.

Effect of Roaming

In a first experiment, the effects of the roaming imposed to parameters in MTL performance as a function of the sharing ratio p are studied, and compared with a fixed partitioning setup. Results show that for the same network capacity Maximum Roaming provides improved performance w.r.t. a fixed partitioning approach. Moreover, as the values of p are smaller, and for the same network capacity, Maximum Roaming does not suffer from a dramatic drop in performance as it occurs using a fixed partitioning. This behavior suggests that parameter partitioning does have an unwanted effect on the inductive bias that is, thus, reflected in poorer generalization performance. However, these negative effects can be compensated by parameter roaming across tasks.

The fixed partitioning scheme (blue bars) achieves its best performance at p = 0.9 (F-score= 0.6552). This is explained by the fact that the dataset is not originally made for multi-task learning: all its classes are closely related, so they naturally have a lot to share with few task interference. Maximum Roaming achieves higher performance than this nearly full shared configuration (the overlap between task partitions is close to its maximum) for every p in the range [0.3, 0.9]. In this range, the smaller p is, the greater the gain in performance: it can be profitable to partially separate tasks even when they are very similar (i.e. multi-class, multi-attribute datasets) while allowing parameters to roam.

Effect of ∆ and r(c) Here, the impact of the interval between two updates ∆ and the completion rate of the update process r(c) (Eq. 3.6) is studied. Using a fixed sharing ratio, p = 0.5, the obtained F-score values of Maximum Roaming over a grid search with respect to these two hyper-parameters are reported in Figure 3.3(center). Results show that the model's performance increases for a wide range of ∆ values (∼ 0.05-1 epochs). For higher ∆ values, the update process is still going on while the model starts to overfit, which seems to prevent it from reaching its full potential.

A rough knowledge of the overall learning behavior on the training dataset or a coarse grid search is enough to set it. Regarding the completion percentage r, as it would be expected, the F-score increases with r as long as ∆ is not too high. The performance improvement becomes substantial beyond r = 25%, suggesting that it can also be tuned to adapt the duration of the update process without incurring in a significant loss.

Role of random selection

Finally, the importance of choosing candidate parameters for updates under a uniform distribution is addressed. To this end, here is defined a deterministic selection process to systematically choose i -and i + within the update plan of Def. 1. New candidate parameters are selected to minimize the average cosine similarity in the task parameter partition. The intuition behind this update plan is to select parameters which are the most likely to provide additional information for a task, while discarding the more redundant ones based on their weights. The candidate Results show that, while both selection methods perform about equally at low values of r, MR progressively improves as r grows. This is to attribute to the varying overlapping induced by the deterministic selection. Thanks to it, outliers in the parameter space have more chances than others to be quickly selected as update candidates, which slightly favours a specific update order, common to every task. This has the effect of increasing the overlap between the different task partitions, along with the cases of task interference.

It should be noted that the deterministic selection method still provides a significant improvement compared to a fixed partitioning (r = 0). This highlights the primary importance of making the parameters learn from a maximum number of tasks, which is guaranteed by the update plan (Def. 1), i.e. the roaming, used by both selection methods.

Benchmark

Finally, the proposed method is benchmarked with the different baselines. Precision, recall and f-score metrics averaged over the 40 facial attributes are reported, along with the average ranking of each MTL model over the reported performance measures; and the ratio #P of trainable parameters w.r.t. the MTL baseline (Table 3.2). The partitioning methods (TR, SE-MTL and MR) achieve the three best results, and the MR method performs substantially better than the two others. 

Scene Understanding

This experiment compares the performance of MR with the baseline methods in two well-established scene-understanding benchmarks: Cityscapes and NYUv2.

Experimental setup

For this study, each segmentation task is considered as an independent task, although it is a common approach to consider all of them as a unique task. As with the 

Benchmark

The reported metrics are Intersection over Union (mIoU) and pixel accuracy (Pix. Acc.) averaged over all segmentation tasks, average absolute (Abs. Err.) and relative error (Rel. Err.) for depth estimation tasks, mean (Mean Err.) and median errors (Med. Err.) for the normals estimation task, the ratio #P of trainable parameters w.r.t. MTL, and the average rank of the MTL methods over the measures. STL is not included in the ranking, as it is considered of a different nature, but reported as a baseline reference.

Tables 3.3 and3 partitions masks (negligible), which means it scales almost optimally to the number of tasks. This is also the case for the other presented baselines, which sets them apart from heavier models in the literature, which add task-specific branches in their networks to improve performance at the cost of scalability.

For other MTL baselines, it is observed that GradNorm fails on the regression tasks (depth and normals estimation). This is due to the equalization of the task respective gradient magnitudes. Specifically, since the multi-class segmentation task is divided into independent segmentation tasks (7 for Cityscapes and 13 for NYUv2), GradNorm attributes to the depth estimation task of Cityscapes only one eighth of the total gradient magnitude, which gives it a systematically low importance compared to the segmentation tasks which are more likely to agree on a common gradient direction, thus diminishing the depth estimation task. Instead, in MTL the gradient's magnitude is not constrained, having more or less importance depending on the loss obtained for a given task. This explains why the regression tasks are better handled by this simpler model in this configuration. For instance, in a configuration with the CityScapes segmentation classes addressed as one task (for 2 tasks in total), GradNorm keeps its good segmentation performance and improves at regression tasks (see Table 3.3), which confirms the hypothesis. It is also observed that MGDA-UB reaches pretty low performance on the NYUv2 dataset, especially on segmentation tasks, while being one of the best performing ones on Cityscapes. It appears that during training, the loss computed for the shared weights quickly converges to zero, leaving task-specific prediction layers to learn their task independently from an almost frozen shared representation. This could also explain why it still achieves good results at the regression tasks, these being easier tasks. A hypothesis is that the solver fails at finding good directions improving all tasks, leaving the model stuck in a Pareto-stationary point.

When comparing to the single task learners counterpart, it is observed that on Cityscapes STL achieves slightly better segmentation performances than the other approaches, and competitive results on depth estimation. On NYUv2 (and Celeb-A), its results are far from the best MTL models. These show that complex setups proposing numerous tasks, as in the setup proposed here (8, 8 and 15), are challenging for the different MTL baselines, resulting in losses in performance as the number of tasks increase. This is not a problem with STL, which uses an independent model for each task. However, the associated increase in training time and parameters (15× more parameters for NYUv2, which is equivalent to 375M parameters) makes it inefficient in practice, while its results are not even guaranteed to be better than the multi-task approaches.

Discussion

This chapter introduced Maximum Roaming, a dynamic parameter partitioning method designed to reduce the task interference phenomenon while better exploiting the latent inductive bias represented by the plurality of tasks. The proposed approach makes each parameter learn successively from all possible tasks, with a simple yet effective parameter selection process. The proposed algorithm achieves it in a minimal time, without additional costs compared to other partitioning methods, nor additional parameter to be trained on top of the base network.

Experimental results show a substantially improved performance on all reported datasets, regardless of the type of convolutional network it applies on.

From these encouraging results, multiple directions of improvement could be explored. First, from its formulation, one can notice that the update process finishes at different times depending on the layer depth, which may eventually weaken some co-adaptations when partitions get frozen. An update pace adapted to the layer depth may instead be more adapted. Similarly, an adaptation of the sharing ratio to the network depth could be considered, since convolutional networks representations get more specific as layers get deeper [START_REF] Yosinski | [END_REF], suggesting that less conflicts should arise in the shallow parts of the network.

Finally, one shall notice that, similarly to other partitioning methods, Maximum Roaming proceeds task specific learning steps, which is slightly different from opti-objective function remains convex.

Following works then developed new methods to mitigate the problems associated to the complexity of the loss [START_REF] Vandenhende | [END_REF], Crawshaw 2020]. However, as detailed in Chapter 2, most of them rely on similar aggregated loss optimization schemes: a first family of methods uses dynamic loss weighting strategies to control the influence of tasks in the main objective function and to account for the learning dynamics of the different tasks [START_REF][END_REF], Guo et al. 2018, Kendall et al. 2018, Liu et al. 2019b].

Other works formulate the problem as a multi-objective optimization task [START_REF] Désidéri | Multiple-gradient Descent Algorithm (MGDA) for Multiobjective Optimization[END_REF]], which converges to a Pareto optimal solution, from which no task can be improved without hurting another one [START_REF][END_REF], Sener & Koltun 2018].

A more recent line of works proposes to modify the task-specific gradients before averaging them, when there are conflicting gradient directions, under the hypothesis that they can be destructive for some tasks [START_REF][END_REF], Yu et al. 2020].

Although some of these works provide a better convergence in specific conflicting regions of the loss landscape, the guarantees are very local and become of relative importance in the case of complex non-convex loss landscapes, for which a wider exploration of the parameter space might be preferred over greedy strategies.

On the other hand, an alternative to this optimization of an aggregated loss can be found in partitioning methods [START_REF] Bragman | [END_REF], Maninis et al. 2019, Pascal et al. 2021a, Strezoski et al. 2019a]: by construction, similarly to Maximum Roaming introduced in Chapter 3, these methods optimize each task-specific objective function alternately and independently, which is not equivalent to optimizing the average sum of the different task-specific objectives, i.e. the aggregated loss. To the best of my knowledge, only [START_REF] Maninis | [END_REF]] discusses it explicitly, as a way to exploit the benefits of partitioning. Therefore, it has not been studied in isolation in any previous work, nor are there theoretical guarantees that this strategy can lead to similar results as the aggregated loss one. This in part can be explained by the fact that the optimization scheme of partitioning methods is always coupled with parameter partitioning, making it difficult to evaluate which part of the contribution is due to the partitioning, and which one is due to the optimization scheme. Moreover, these works do not consider that moving average mechanisms (e.g. momentum) included in state-of-the-art optimizers can mix previous gradient descent directions from different tasks, which means that the individual objective functions are only partially separated.

This chapter studies the task-specific alternate and independent optimization used in partitioning methods and formulates improvements to it by making the following contributions.

• It proves that this optimization strategy provides convergence guarantees similar to the aggregated loss optimization for stochastic gradient descent in 4.2. Alternate and independent optimization of task-specific objective functions 43

the convex case, and the associated convergence bound is provided.

• It shows that current alternated optimization schemes do not operate truly independent task-specific update steps, due to the momentum mechanisms of most of the existing optimizers, which memorize previous updates, thus bringing them into the current learning steps. I therefore propose a novel alternated optimization scheme that performs truly independent task-specific update steps with momentum-based state-of-the-art optimizers.

• To account for the losses in computational efficiency that alternate independent updates incur into, I introduce a task grouping strategy to reduce training time when dealing with a high number of tasks.

• The proposed optimization strategies consistently lead to substantial improvements in terms of both generalization performance and benchmark results over existing state-of-the-art methods on three well-known benchmark datasets.

Alternate and independent optimization of taskspecific objective functions

The standard MTL optimization setup using an aggregated loss is first formalized before the contributions.

Standard MTL optimization with aggregated loss

Let ξ t be an input data instance randomly sampled during optimization step t, and k the index of the N tasks. The aggregated multi-task objective function to minimize is defined as

F (w t , ξ t ) = N k=1 c (k) • F (k) (w t , ξ t ), (4.1) 
where F (k) is the objective function associated to task k using shared parameters w t , and c (k) are the task-specific weighting coefficients. For the sake of simplicity in the notation, but without loss of generality, here a uniform weighting of the different task objective functions is considered, i.e. c (k) = 1. Hereinafter, superscripts are used to index elements associated to different tasks, and subscripts to index the steps of the optimization process.

When using stochastic gradient descent (SGD) to optimize Eq. 4.1, the shared parameters w at step t + 1 are updated according to the following rule:

w t+1 = w t -η t N k=1 ∂ ∂w t F (k) (w t , ξ t ) , (4.2)
where η t is the learning rate. For the ease in notation, let us denote g (k) (w t , ξ t ) the derivative of F (k) w.r.t. the parameters w t . Eq. 4.2 can be rewritten as

w t+1 = w t -η t N k=1 g (k) (w t , ξ t ) . (4.3)
In the remaining of the document, this optimization strategy with an aggregated loss is referred as MTL with Shared Update Steps (MTL-SUS) to reflect the characteristics of its update rule (Eq. 4.3). 

4.2.2

w (k) t+1 =      w (N ) t -η t • g (k) w (N ) t , ξ t , k = 1 w (k-1) t+1 -η t • g (k) w (k-1) t+1 , ξ t , ∀ k > 1. (4.4)
To reflect the properties of the update rule (Eq. 4.4), this optimization strategy is denoted as MTL-IUS.

MTL holds analogies with the federated learning problem [START_REF] Konečný | [END_REF], Li et al. 2020[START_REF] Shokri | [END_REF], where each involved device accounts for one task objective function, with communication after each update step. MTL-SUS corresponds to a full-device participation, and MTL-IUS to a single device participation. Using this analogy, inspiration is taken from [START_REF] Li | [END_REF] to prove that alternate and independent optimization schemes using the MTL-IUS rule converge to the optimum in the case of convex objective functions. Assumption 2. F (1) , ..., F (N ) are all L-smooth: for all v, w, F (k) 

(v) ≤ F (k) (w) + (v -w) T ∇F (k) (w) + L 2 ||v -w|| 2 2 .
Assumption 3. F (1) , ..., F (N ) are all µ-strongly convex: for all v, w,

F (k) (v) ≥ F (k) (w) + (v -w) T ∇F (k) (w) + µ 2 ||v -w|| 2 2 .
Assumption 4. Let ξ t be uniformly sampled from the data. The variance of stochastic gradients is uniformly bounded:

E||∇F (k) (w t , ξ t ) -∇F (k) (w t )|| 2 ≤ σ (k) 2 .
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Assumption 5. The expected squared norm of stochastic gradients is uniformly bounded:

E||∇F (k) (w t , ξ t )|| 2 ≤ G 2 .
Let us denote F * and F (k) * as the minima values of F and F (k) respectively, and w * as the minimizer of F . Let thus define

Γ = F * - 1 N N k=1 F (k) * ,
which can be considered as the heterogeneity of the different task-specific objective functions.

Theorem 1. Let γ ≥ 2 L µ -1 and η t = 2 µ(γ+t) the learning rate. Under assumptions 2, 3, 4 and 5, the optimization scheme MTL-IUS presented in Eq. (4.4) satisfies

E[F (w T )] -F * ≤ L γ + T 2B µ 2 + (γ + 1) 2 E||w 1 -w * || 2 , (4.5) with B = N k=1 p 2 k σ 2 k + 2LΓ + G 2 .
Proof: See appendix 4.5

Theorem 1 guarantees the convergence of MTL-IUS to the optimum in O( 1 T ) with a decreasing learning rate for stochastic gradient descent. However, it should be noted that the bound does not increase directly with the number of tasks, but with the heterogeneity term Γ, which corresponds to the average deviation between the optimum F * and the values of the task-specific objective functions F (k) * at that point.

Alternate and independent optimization of task-specific objective functions for moving-average based optimizers

In most of deep learning's literature and in current practice, more complex optimizers than a regular SGD are preferred. State-of-the-art optimizers, such as Adam [START_REF] Kingma | [END_REF], generally use exponential moving average mechanisms, e.g. momentum, to smooth and regulate the optimization trajectory. These mechanisms can partially compromise the independence of the task-specific update steps, i.e. MTL-IUS, since every learning step includes descent directions of previous tasks. This section proposes a new update rule that allows to use Individual Optimizers (IO), providing true optimization independence to the different tasks.

MTL-IUS with momentum

The update step of MTL-IUS is first reformulated with a momentum-based optimizer, as it is done in partitioning MTL works [START_REF] Bragman | [END_REF], Maninis et al. 2019, Pascal et al. 2021a].

Let us define m a generic optimizer rule, which adjusts the gradient descent direction based on exponential moving average mechanisms [START_REF] Kingma | [END_REF]. The update step t + 1 of task k (Eq. (4.4)) can be then reformulated as:

w (k) t+1 =      w (N ) t -η t • m g (k) w (N ) t , ξ t , k = 1 w (k-1) t+1 -η t • m g (k) w (k-1) t+1 , ξ t , ∀ k > 1, (4.6) 
where m mixes g (k) with descent directions g (j =i) of previous tasks update steps. This implies that using this rule does not allow for fully independent task-specific update steps thanks to m.

Individual Optimizers (MTL-IO)

I propose here to use individual exponential moving averages for each task to allow for fully independent task-specific update steps. I reformulate this update rule, using Individual Optimizers (IOs), as:

w (k) t+1 =      w (N ) t -η t • m(k) g (k) w (N ) t , ξ t , k = 1 w (k-1) t+1 -η t • m(k) g (k) w (k-1) t+1 , ξ t , ∀ k > 1 (4.7)
with m(k) the exponential moving average mechanism of task k. This alternate and independent optimization strategy is denoted as MTL-IO (Individual Optimizers) to reflect the properties of its update rule. With MTL-IO, the memory term introduced by m(k) only involves previous updates of task k. This is equivalent to using one IO per task, which avoids the memory leakage that MTL-IUS incurs into.

Mitigating computational costs through task grouping

Alternate and independent optimization schemes using MTL-IUS or MTL-IO require one training step per task for each input sample, i.e N training steps in total. This makes the inference and training time proportional to the number of tasks.

To compensate for the increased computational burden, the N tasks are equally and randomly distributed among a set T = { Tl } l∈{1.. N } of N super-tasks, with N ∈ {1..N }. The set of super-tasks can be optimized with MTL-IUS or MTL-IO, whereas the individual super-task gradients are expressed as the weighted sum of the gradients of their constituting tasks:

w (l) t+1 =      w ( N ) t -η t • m k∈ Tl g (k) (w ( N ) t , ξ t ) , l = 1 w (l-1) t+1 -η t • m k∈ Tl g (k) w (l-1) t+1 .ξ t , ∀ l > 1 (4.8)
For the sake of brevity, only the formulation adapted for MTL-IUS is presented. Derivation with MTL-IO is straightforward. One should note that this formulation is equivalent to MTL-IUS (respectively, MTL-IO) when N = T , and to MTL-SUS when N = 1. Such task grouping thus defines an adjustable compromise between tasks independence and training speed.

Experiments and results

I report four different experiments performed on three widely used datasets for MTL. The generalization performance of MTL-SUS, MTL-IUS and MTL-IO on NYUv2 [Silberman et al. 2012] is first studied, with three heterogeneous tasks, and on the seven homogeneous segmentation tasks of Cityscapes [START_REF] Cordts | [END_REF]].

The proposed grouping strategy behavior is then studied on the 40 tasks of Celeb-A [Liu et al. 2015b]. Finally are provided insights about the shared parameter space exploration operated by the studied optimization schemes.

In this study, the proposed models are compared with state-of-the-art multitask methods, including three aggregated loss optimization methods, Grad-Norm [START_REF][END_REF], MGDA [Sener & Koltun 2018], PCGrad [START_REF][END_REF], and the partitioning method proposed in Chapter 3, Maximum Roaming (MR) [Pascal et al. 2021a] using the MTL-IUS optimization scheme. To ensure fairness of comparison, all baselines have been implemented in the same pipeline, under Pytorch 1.2, and run on Nvidia Titan-XP GPUs. For every baseline compared on a dataset, a grid search is performed on the learning rate. All the used scripts to perform these experiments are available on GitHub. 1 . The data used comes from official releases for the three datasets.

Scene understanding on NYUv2

The NYUv2 dataset [Silberman et al. 2012] provides close to 1500 annotated indoor images extracted from videos captured with the Microsoft Kinect in different buildings. The small number of images and the complexity of the scenes makes it particularly difficult and interesting for multi-task problems. It is used here for one 13-class semantic segmentation task, one depth estimation task, and one normal estimation task. This multi-task setting is judged as particularly challenging, since it is made of three tasks of different natures.

All baselines use a U-Net [Ronneberger et al. 2015a], which is known to be particularly efficient for dense labelling tasks. To maximize the proportion of shared weights in the network, all encoders and decoders are shared by all the tasks, while the task-specific prediction heads are made of a single 1 × 1 convolutional layer per task.

The image size is set to 288 × 384 with a batch size of 8. All models are trained for 500 epochs, and all performances are reported over 3 random seeds. Reported metrics are mean Intersection over Union (mIoU) and pixel accuracy for segmentation tasks, absolute and relative error for depth estimation, and mean and median angle error for normal estimation. It is first observe that MTL-IO is by far the best overall performing method. Above η = 5e -5 , it substantially improves the losses of each of the three tasks, which suggests that it is able to consistently reach better loss regions in the shared parameter space. One can also observe a smaller difference between MTL-IUS and MTL-SUS. Specifically, MTL-IUS performs better for smaller learning rates, and worse beyond η = 2e -4 . It is also interesting to note the overall distorted aspect of these curves, with high standard deviations, while more "convex" shapes could be expected. This suggests that the loss landscape is particularly complex, compared to that one of other datasets (see Fig. 4.2,4.3).

The models with the best validation losses for each method are compared with the state-of-the-art baselines (Table 4.1). While MTL-IUS and MTL-SUS perform similarly, MTL-IO achieves the best results overall on segmentation and depth estimation metrics, and falls close behind MR for normals estimation, making it the best performing multi-task method on this dataset.

Multi-class segmentation on Cityscapes

The Cityscapes dataset [START_REF] Cordts | [END_REF] provides 5K fine-grained annotated street-view images captured from a car point of view, in many different German cities. The 7 semantic segmentation classes are used here as 7 independent tasks, to observe how the different optimization methods behave with more homogeneous tasks. The same network as for NYUv2 is used, and images are resized to 128 × 256 with a batch size of 24. A similar study to the one conducted on NYUv2 is reported in Fig. 4.2, and a benchmark in Table 4.2.

Here can be observed smoother curves with smaller variations, which confirms the intuition that this setting is easier to optimize. The three optimization methods report very similar results. While the best overall validation loss is reached by MTL-SUS, MTL-IUS and MTL-IO are consistently better in the lower learning rates, suggesting that they are more robust to local minima in the loss landscape.

As one could expect given Fig. 4.2, all the methods, including the state-of-the art benchmarks, present a very close performance. It seems like in a simple setting with a well calibrated learning rate, the influence of a particular optimization method is greatly reduced. 

Multi-attribute segmentation on Celeb-A

The CelebA dataset [Liu et al. 2015b] contains 200K face images of 10K different celebrities. Annotations are provided for 40 different facial attributes. In this experiment is studied the proposed random grouping strategy with a large number of tasks, to establish to which extent it can reduce the computational overhead of MTL-IUS and MTL-IO without affecting their performance. Each of the 40 provided facial attributes is considered as an independent facial attribute detection task, and different groupings are operated on them, N = {2, 4, 8, 20, 40}.

A shallow 9-layer fully convolutional network similar to [START_REF][END_REF] performance and computational efficiency when dealing with a large number of tasks. The latter is further confirmed in Table 4.3, where the best grouping models of MTL-IUS and MTL-IO also outperform other state-of-the art methods on both average error and F-score metrics.

More generally, a progressive evolution of the curves w.r.t. the different values of N can be observed: as with Cityscapes, the less tasks are grouped together, the better is the optimization of IUS and IO in the low learning rates, while it is the opposite for high learning rates. This behavior suggests that these methods introduce more noise in the optimization, making them less sensitive to local minima, and pushing for a larger exploration of the shared parameter space. 

Covered distance

Here are provided insights about how the studied optimization strategies explore the shared parameter space, by measuring the distances covered in this space during training. Using the Frobenius norm, measures are provided for the shortest path from the network's initialization to the loss minimum (shortest) and the total covered distance (total), which is the sum of the distances covered at each update step. The total-to-shortest-distance ratio is also reported, which gives an insight on how much the surrounding space has been explored for a given shortest path.

Table 4.4 summarizes the obtained measures during the optimization of MTL-SUS, MTL-IUS and MTL-IO over all datasets. All three baselines start from the same parameter initialization (i.e. same point in the parameter space) and use the same learning rate (the one providing the best performances overall). The measurements are performed at the same point in time (the closest from the validation loss minimum). The results are averaged over 3 different seeds. As a reminder, the aggregated multi-task loss uses uniform weights of 1 for every task, so that the gradient scaling is the same for the three optimization strategies. of total covered and shortest path distances. The distances increase globally with the number of tasks (or task groups). The increase in the shortest path distance indicates that these methods are able to discover more distant loss regions compared to MTL-SUS. These observations correlate with the findings from the previous experiments, suggesting that some of these more distant regions can provide better generalization performance.

Most interestingly, MTL-IUS and MTL-IO present a higher total-to-shortest path distance ratio compared to MTL-SUS, which means that between two locations in the shared parameter space, MTL-IUS and MTL-IO follow a much more oscillating trajectory. This observation suggests that optimizing tasks-specific objective functions, instead of an aggregated multi-task objective one, introduces more stochasticity to the optimization, which is usually beneficial in deep learning.

Discussion

This Chapter studied the alternate and independent optimization of the task-specific objective functions (MTL-IUS) used in partitioning methods, and compared it to the optimization of the more standard aggregated objective function (MTL-SUS), which is widely adopted in the literature. Taking inspiration from Federated Learning works [START_REF] Konečný | [END_REF], Li et al. 2020], it was first demonstrated that the former has similar convergence properties as the latter when dealing with convex objective functions. It was then showed that the existing partitioning methods do not operate truly independent update steps due to the momentum mechanisms included in state-of-the-art optimizers. A novel strategy was thus formulated, using an independent optimizer per task (MTL-IO), that favors task independence. To account for the computational overhead of these strategies, a random grouping strategy was proposed, strinking a balance between computational efficiency, and the benefits of a task-independent optimization strategy.

The experimental results over three datasets show both MTL-IUS and MTL-IO achieve an overall better generalization performance w.r.t standard aggregated objective optimization (MTL-SUS) and state-of-the-art MTL baselines using an aggregated objective function. In particular, MTL-IO shows important improvements in settings where tasks are of a very different nature. The results also confirm that the proposed random grouping strategy applied to MTL-IUS and MTL-IO is beneficial both in terms of performance and efficiency, when dealing with a great number of tasks. Finally, it was showed that MTL-IUS and IO allow parameters updates to travel a longer distance, and ensure a more thorough exploration of the shared parameter space.

While the optimization of an aggregated multi-task objective function is widely adopted in the literature, the presented investigations suggest that its usage should be questioned, despite the computational benefits it provides.

Appendix

In this section is proved the convergence of MTL-IUS for stochastic gradient descent when dealing with convex objective functions (Theorem 1). Inspiration is drawn from the proof of convergence of the FedAvg algorithm [START_REF] Li | [END_REF] for partial device participation in federated learning.

Problem setting and notations

For the ease of notation, in the following, the double indexing of w (tasks and iterations) used in equation 4.4 is dropped. The IUS update rule (i.e. equation 4.4) of the weights at update step t + 1 thus gets re-written as:

     v k t+1 = w t -η t ∇F (k) (w t , ξ k t ), w t+1 = v st t+1 ,
where v k t+1 is the SGD from w t with respect to task k objective function, and w t+1 only follows the SGD of one task s t (while others are not considered), with s t selected in {1, ..., N }, for every step t. The theorem is proved for s t randomly selected at uniform at each iteration t, which also proves it for the case proposed here, since the proof only assumes a sampling probability of p k = 1 N for any task k. N N k=1 ∇F (k) (w t , ξ k t ) the averaged stochastic gradient. This gives vt+1 = w t -η t g t and Eg t = ḡt .

Key lemmas

Two lemmas used in the theorem's proof are first stated. Their proof is left for Appendix 4.5. Lemma 3. Under assumptions 2 and 3, if η t ≤ 1 L , one can obtain:

E||v t+1 -w * || 2 ≤ (1 -µη t )E||w t -w * || 2 + 2Lη 2 t Γ + η 2 t N 2 N k=1 σ 2 k (4.9)
Lemma 4. For η t non-increasing such as η t ≤ 2η t+1 , ∀t ≥ 0, one can obtain:

E st ||v t+1 -w t+1 || 2 ≤ η 2 t G 2 (4.10)
Theorem proof

||w t+1 -w * || 2 = ||w t+1 -v t+1 || 2 A 1 + ||v t+1 -w * || 2 A 2 + 2 < w t+1 -v t+1 , v t+1 -w * > A 3
For A 3 , one can obtain

E st (w t+1 ) = E st (v st t+1 ) = 1 N N k=1 v k t+1 = vt+1
which proves E s t+1 (A 3 ) = 0, where E st accounts for the expectation taken over the random sampling of s t .

A 1 is bounded with Lemma 2 and A 2 with Lemma 1:

E||w t+1 -w * || 2 ≤ (1 -µη t )E||w t -w * || 2 + η 2 t N 2 N k=1 σ 2 k + 2Lη 2 t Γ + η 2 t G 2 Let ∆ t = E||w t+1 -w * || 2 and B = 1 N 2 N k=1 σ 2 k + 2LΓ + G 2 .
This gives:

∆ t+1 ≤ (1 -µη t )∆ t + η 2 t B
One can show by induction that for β > 1 µ and γ > 0 verifying

η 1 ≤ 1 L and η t ≤ 2η t+1 , one obtains ∆ t ≤ v γ+t with v = max{ β 2 B βµ-1 , (γ + 1)∆ 1 }:
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The affirmation directly holds for t = 1. Then, suppose it holds for t, this gives:

∆ t+1 ≤ (1 -µη t )∆ t + η 2 t B ≤ 1 - βµ t + γ v t + γ + β 2 B (t + γ) 2 = t + γ -1 (t + γ) 2 v + β 2 B (t + γ) 2 - βµ -1 (t + γ) 2 v ≤ t + γ -1 (t + γ) 2 v ≤ t + γ -1 (t + γ + 1)(t + γ -1) v = v (t + 1) + γ
where the second inequality comes from v ≥ β 2 B βµ-1 . This proves that the affirmation holds for t + 1.

Which gives, with the convexity of F :

E[F (w t )] -F * ≤ L 2(γ + t) β 2 B βµ -1 + (γ + 1)||w 1 -w * || 2
which proves theorem 1 for β = 2 µ , and γ ≥ 2 L µ -1, to ensure η 1 ≤ 1 L .

Proof of key lemmas

Lemma 1 Let assumptions 2 and 3 hold, and find an upper bound for E||v t+1 -w * || 2 :

||v t+1 -w * || 2 = ||w t -η t g t -w * -η t ḡt + η t ḡt || 2 = ||w t -w * -η t ḡt || 2 A 1 + 2η t < w t -w * -η t ḡt , ḡt -g t > A 2 +η 2 t ||g t -ḡt || 2 (4.11)
Note that E[A 2 ] = 0, so the focus gets to A 1 :

A 1 = ||w t -w * -η t ḡt || 2 = ||w t -w * || 2 -2η t < w t -w * , ḡt > B 1 + η 2 t ||ḡ t || 2 B 2

Appendix 57

By convexity of ||.|| 2 and L-smoothness of F (k) (.), one gets:

B 2 = η 2 t ||ḡ t || 2 ≤ η 2 t N N k=1 ||∇F (k) (w t )|| 2 ≤ 2L η 2 t N N k=1 (F (k) (w t ) -F (k) * )
Then:

B 1 = -2η t < w t -w * , ḡt > = -2 η t N N k=1 < w t -w * , ∇F (k) (w t ) >
The µ-strong convexity of F (k) (.) gives:

-< w t -w * , ∇F (k) (w t ) >≤ -(F (k) (w t ) -F (k) (w * )) - µ 2 ||w t -w * || 2
it is then replaced in A 1 :

A 1 = ||w t -w * -η t ḡt || 2 ≤ ||w t -w * || 2 + 2L η 2 t N N k=1 (F (k) (w t ) -F (k) * ) -2 η t N N k=1 (F (k) (w t ) -F (k) (w * )) + µ 2 ||w t -w * || 2 = (1 -µη t )||w t -w * || 2 + 2L η 2 t N N k=1 (F (k) (w t ) -F (k) * ) -2 η t N N k=1 F (k) (w t ) -F (k) (w * ) C
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Let γ t = 2η t (1 -Lη t ). Since η t ≤ 1 L , one obtains γ t ≥ 0. Then: C = 2L η 2 t N N k=1 (F (k) (w t ) -F (k) * ) -2 η t N N k=1 F (k) (w t ) -F (k) (w * ) = 2L η 2 t N N k=1 (F (k) (w t ) -F (k) * ) -2 η t N N k=1 F (k) (w t ) + F (k) * -F (k) * -F (k) (w * ) = 1 N N k=1 (F (k) (w t ) -F (k) * ) (2Lη 2 t -2η t ) + 2 η t N N k=1 (F (k) (w * ) -F (k) * ) = - γ t N N k=1 (F (k) (w t ) -F (k) * ) + 2 η t N N k=1 (F (k) (w * ) -F (k) * ) = - γ t N N k=1 (F (k) (w t ) -F * + F * -F (k) * ) + 2 η t N N k=1 (F * -F (k) * ) = - γ t N N k=1 (F (k) (w t ) -F * ) + 2η t -γ t N N k=1 (F * -F (k) * ) = - γ t N N k=1 (F (k) (w t ) -F * ) + 2L η 2 t N N k=1 (F * -F (k) * ) = - γ t N N k=1 (F (k) (w t ) -F * ) + 2Lη 2 t Γ = -γ t (F (w t ) -F * ) + 2Lη 2 t Γ ≤ 2Lη 2 t Γ
Since (F (w t ) -F * ) ≥ 0 and γ t ≥ 0. It is then replaced in equation 4.11:

||v t+1 -w * || 2 ≤ (1 -µη t )||w t -w * || 2 + 2Lη 2 t Γ + η 2 t ||g t -ḡt || 2 E||v t+1 -w * || 2 ≤ (1 -µη t )E||w t -w * || 2 + 2Lη 2 t Γ + η 2 t E||g t -ḡt || 2
Then, Assumption 3 gives us:

E||g t -ḡt || 2 = E|| 1 N N k=1 (∇F (k) (w t , ξ k t ) -∇F (k) (w t ))|| 2 = 1 N 2 N k=1 E||∇F (k) (w t , ξ k t ) -∇F (k) (w t )|| 2 ≤ 1 N 2 N k=1 σ 2 k 4.5. Appendix 59
One finally obtains:

E||v t+1 -w * || 2 ≤ (1 -µη t )E||w t -w * || 2 + 2Lη 2 t Γ + η 2 t N 2 N k=1 σ 2 k Lemma 2
Now is to find an upper bound for E st ||v t+1 -w t+1 || 2 , with E st the expected value taken over s t values:

E st ||v t+1 -w t+1 || 2 = E st ||v st t+1 -vt+1 || 2 = 1 N N k=1 ||v k t+1 -vt+1 || 2 = 1 N N k=1 ||(v k t+1 -w t ) -(v t+1 -w t )|| 2 = E||(v k t+1 -w t ) -E(v k t+1 -w t )|| 2
Since E||x -Ex|| 2 ≤ E||x|| 2 , one obtains:

E st ||v t+1 -w t+1 || 2 ≤ E||v k t+1 -w t || 2 = 1 N N k=1 ||v k t+1 -w t || 2 ≤ 1 N N k=1 E||v k t+1 -w t || 2 ≤ 1 N N k=1 E||η t ∇F (k) (w t , ξ k t )|| 2 ≤ 1 N N k=1 η 2 t G 2 = η 2 t G 2
which proves the Lemma.

Chapter 5

Glaucoma Diagnosis from Retinal Fundus Imaging through MTL This chapter is adapted from "Detection, Segmentation and localization using a single model in Glaucoma detection from color fundus images", a work presented at the second edition of the Retinal Fundus Glaucoma challenge (REFUGE2)1 , organized at the MICCAI 2020 conference.

Motivation

Deep multi-task networks for automated glaucoma diagnosing

Glaucoma is a prevalent condition related to an abnormal fluid balance in the eye that causes an increase of internal ocular pressure. The increase of pressure gradually damages the eye optic nerve. If not diagnosed, these damages can result in permanent vision loss. Approximately 4% of the global population between 40 and 80 years old is affected by glaucoma [START_REF] Tham | [END_REF]. Patients affected by MTL glaucoma usually do not present symptoms in the early stages of the disease, while an early diagnosis is critical to prevent irreversible damages. It is thus important to develop inexpensive detection methods, in order to massively and systematically control patients, before the symptoms appear.

One way to diagnose glaucoma is to perform a visual examination of the inside back surface of the eye, named fundus. The images are obtained by special cameras through a dilated pupil. An example of such imaging technique is shown in Figures 5.2 (left) and 5.1. The main advantage of this technique, called "Retinal Fundus Imaging", is to be brief and painless to the patient, making it suited for simple routine checks. However, establishing an accurate diagnosis from these images is particularly difficult, and generally requires human experts. The most discriminant symptom for detecting glaucoma on fundus images is the presence of a "cupping", which is retraction of the optic disc on the optic cup. This cupping causes an increase of the vertical Cup-to-Disc ratio, which is the height ratio between the optic cup (OC) and optic disc (OD). Other markers of glaucoma exist, more difficult to detect, such as peripapillary hemorrhages and Retinal nerve fiber layer defects [START_REF] Orlando | [END_REF].

While diagnosing campaigns are regularly launched, these require human experts to examine large amounts of samples in limited time [START_REF] Orlando | [END_REF]. Therefore, automatic glaucoma detection methods are desirable. Deep convolutional networks have shown beneficial for years in medical imaging tasks [START_REF] Tajbakhsh | [END_REF], and seem particularly adapted for such task, only involving the identification of some specific visual patterns in images. Since deep networks learn their own set of discriminant features, these models might also leverage other relevant features than just the vCDR. However, automating glaucoma diagnosis with deep networks essentially suffers from two limitations:

• The lack of data: existing annotated datasets contain at most few hundreds of samples [START_REF] Hagiwara | [END_REF]].

• The disparity of data: the data can vary a lot depending on the imaging device involved and its calibration. One solution developed in one particular medical center may perform poorly in another medical center [START_REF] Orlando | [END_REF]].

These issues are highly problematic for training deep neural networks, which demand large amounts of data to reach correct generalization performance. Therefore, a Multi-Task Learning approach is of particular relevance in this context, to maximize the benefits of the few annotated data at disposal and create better generalization performances. Although most existing works on glaucoma diagnosis use single-task approaches [START_REF] Hagiwara | [END_REF], Orlando et al. 2020], this chapter proposes to use a multi-task one. As a result, only a single model is required for the different tasks involved in glaucoma diagnosis. The sharing and optimization methods proposed in previous chapters are used, to mitigate possible task interference and improve further the generalization performance in a concrete application, such as glaucoma diagnosis.

The Retinal Fundus Imaging challenge (REFUGE)

In 2018 has been organized the "Retinal Fundus Glaucoma Challenge" (REFUGE), included as a satellite event in the MICCAI conference (2018). For this event, 1200 retinal fundus images (400 for training, 400 for validation, 400 for testing) from different cameras and medical centers have been collected and annotated by human experts. Annotations were provided for four different tasks:

• Glaucoma diagnosis: binary labels, attesting for the presence of glaucoma.

• Optic Disc segmentation map: The optic disc is the region defined by the optic nerve head.

• Optic Cup segmentation map: The optic cup is the white elliptic region located inside the optic disc.

• Fovea localization: The fovea is the sharp central vision point.

A visualization of such annotations is provided in Figure 5.1.

In the following, the data provided in this challenge is used to experiment the methods proposed in this thesis in a multi-task pipeline, with the aim of improving the generalization performance of deep networks in a real world application.

Related work

In [START_REF] Orlando | [END_REF] it is presented a report of the first edition of the REFUGE challenge, along with thorough description of the methods submitted by the 12 best ranked contenders. Note however that the fovea localization tasks was not part of the contest in this first edition. All the reported strategies use a single-task approach, with one independent convolutional network per task. The segmentation tasks are essentially dealt with state-of-the-art like Mask-RCNN [START_REF] He | Mask R-CNN[END_REF]] and U-Net-like [Ronneberger et al. 2015a] architecture. The glaucoma classification task is instead mostly dealt with ResNet [He et al. 2016c], Inception [START_REF] Szegedy | [END_REF] and DeepLab [START_REF][END_REF]] networks, with eventual ensembling methods. Some contenders advantageously ensemble their network classification predictions with these of a linear classifier, trained over the vertical Cup-to-Disc Ratio (vCDR) obtained from the segmentation predictions.

In order to cope with the few provided labeled data, half of the contenders applied Transfer Learning from networks pre-trained on Imagenet [Deng et al. 2009]. A few other teams used existing related datasets for training. However, none of the teams in the challenge adopted a multi-task approach, although multiple related tasks were provided over a same input domain. One first explanation could be that the tasks are of different nature (classification and segmentation), and the state-of-the-art on these tasks is reached by different network architectures in the existing literature, making it inconvenient to share a same network for all tasks. A second explanation might come from task interference issues, leading to marginal gains or even degradation compared to single task learners.

One existing multi-task approach on this dataset has been exposed in [START_REF] Zhao | [END_REF]. The authors propose a weakly supervised method, allowing them to predict glaucoma diagnosis, OD segmentation and a third evidence identification task with high accuracy, while only training with glaucoma diagnosis labels. Experimental results show comparable segmentation performance to a fully-supervised U-Net trained on the segmentation and evidence identification tasks. Although this thesis focuses on fully-supervised methods, this weakly supervised approach indicates well the close relationship between the classification and segmentation tasks, which shows that some benefits could definitely be expected from their joint learning.

Method

Instead of existing approaches [START_REF] Hagiwara | [END_REF], Orlando et al. 2020] which generally train one deep CNN per task, here only one CNN is jointly trained on all the different tasks. This section first presents the whole adopted pipeline, with data pre-processing, network choice, and task prediction heads. It then introduces the 

Pipeline description

Figure 5.3 gives an overview of the whole pipeline, which is describe hereafter.

Tasks pre-processing

The dataset is composed of one binary classification task (glaucoma diagnosis), two semantic segmentation tasks (OD, OC), and on localization task (Fovea). Localization tasks are difficult tasks to process with convolutional networks, which do not use any notion of distance, but instead focus on receptive fields. Existing localization methods generally involve complex networks with anchor proposal mechanisms [START_REF] He | Mask R-CNN[END_REF]. Instead, the fovea localization task is casted into a segmentation one: from the given coordinates of the fovea is created a saliency map as a bidirectional Gaussian centered in the fovea coordinates. An example is shown in figure 5.2 (right). Fovea locations are then computed as the center of mass of such saliency maps.

Network choice

Now disposing of one classification task and three segmentation tasks, a network able to jointly optimize these different tasks is needed. The chosen network is a U-Net [Ronneberger et al. 2015b], an encoder-decoder convolutional network, with a VGG-16 [Simonyan & Zisserman 2015] structure, and added skip connections between equivalent depths of encoder and decoder. These skip connections allow the decoder to recover fine-grained details through the multiple feature maps upscalings. This network is both well renowned and particularly efficient for segmentation tasks.

Concerning the classification task, it can be processed by the VGG-like encoder part of the U-Net.

Segmentation tasks predictions

The predictions for segmentation tasks are obtained with one task-respective convolutional layer after the shared decoder for each task. Similarly to existing works in [START_REF] Orlando | [END_REF], the segmentations of OD and OC are then refined by only keeping the biggest connected instance in the prediction map, to remove eventual prediction noise around these elliptic regions. This is not applied to the fovea segmentation map, since it could shift its center of mass.

Classification task predictions

The prediction for the classification task (glaucoma diagnosis) contains two steps:

• A fist prediction is obtained from a fully connected layer, branched after the U-Net encoder.

• Similarly to some works in [START_REF] Orlando | [END_REF], a second prediction is obtained from a linear classifier, taking as input the vertical Cup-to-Disc Ratio (vCDR) obtained from the OD and OC segmentation tasks. The vCDR is computed as:

vCDR = OC height OD height
With OC height and OD height the heights of the optic cup and optic disc, computed on the segmentation maps.

The final classification score is obtained by averaging the predictions of the two classifiers.

Losses and metrics

Different loss functions and metrics are used for the different tasks to optimize.

OD and OC segmentation

The OD and OC segmentation tasks both use a binary cross-entropy loss (BCE), averaged over every pixel i of the segmentation maps:

L BCE (p, y) = - 1 N pix N pix i=1 y i log(p i ) + (1 -y i ) log(1 -p i )
with p, y and N pix respectively the prediction, ground-truth and number of pixels. The metric used is the dice score (DSC), which computes the intersection over union between predicted and ground truth segmentation maps:

DSC(p, y) = 2 i p i y i i p i + i y i

Fovea localization

For the fovea localization task, the network is trained to fit the pre-processed saliency maps with a L1-loss, since values are not binarized on this task:

L L1 (p, y) = i |y i -p i |
After the predicted fovea location is computed as the center of mass of the predicted saliency map, the metric used is the L2-distance.

Glaucoma classification

For the glaucoma classification task, I use a focal loss [Lin et al. 2017], to better handle the unbalance between positive and negative samples (only 10% of positives):

L F ocal (p, y) = (1 -p t ) γ log(p t ) with p t = p if y = 1 (1 -p) otherwise
Concretely, this loss multiplies the usual binary cross-entropy term with a classification uncertainty term (1 -p t ), to give more importance to uncertain classifications, i.e. these of low populated classes. γ is a hyperparameter, set to 2 in the following.

The metric used for this task is the Area Under Curve (AUC) score, in order to account for prediction confidence scores instead of just binary predictions.

Optimization

This chapter aims at comparing the performance obtained by the proposed multi-task pipeline with different combinations of sharing strategies (full sharing and Maximum Roaming partitioning) and optimization schemes (SUS, IUS and IO) discussed in Chapters 3 and 4. Different models represent different combinations of these strategies (six possible combinations in total), applied to the same pipeline.

For models using Maximum Roaming, the parameter partitioning is applied in every layer of the shared U-Net (encoder and decoder). The optimization schemes SUS, IUS and IO detailed in Chapter 4 are then applied over the loss functions of the four tasks. Note that for Maximum Roaming models, the SUS update scheme is not trivial, since these models require separate task-specific forward passes due to the partitioning. This combination MR-SUS is thus conducted by accumulating the losses of the different tasks forward passes, and back-propagating only when all task losses have been accumulated.

Along with the multi-task models, single-task versions (STL) of the same pipeline are also evaluated (adding four more models, one per task).

Experiments and Results

This section experiments the learning of the proposed multi-task pipeline on the four tasks of the REFUGE challenge. First are introduced some experimental details.

Then are compared the obtained performance between all possible combinations of the two sharing patterns (full sharing and Maximum Roaming), and three optimization methods (SUS, IUS and IO) discussed in this thesis. The same pipeline is also run in single-task setting (independently for each task), in order to observe potential task interference phenomenon in the multi-task models. In a last part, the same study is conducted when combined with Transfer Learning, to evaluate if the proposed multi-task approach can produce benefits in this context.

Experimental details

For every pipeline setting, i.e. sharing pattern and optimization scheme combination, the learning is conducted with an Adam optimizer (β 1 = 0.9, β 2 = 0.999, ε = 10 -8 ) and a batch size of 8. I use Maximum Roaming with a partition selectivity p = 0.8 and an update interval ∆ of 1 epochs. I apply a dropout rate of 0.8 to the fully connected layer of the Glaucoma classification task. The network is trained for 300 epochs. After each epoch, the validation performances are ranked according to the challenge ranking procedure. All the code is made under Pytorch 1.2, and run on NVIDIA Titan XP graphic cards.

Experimental Results

For all models is first applied a grid search over the learning rate, to obtain a better insight on the different models behavior.

Grid-search reported on loss values

The results are reported in Figure 5.4 for fully shared models, and One observation from these two figures is the strong unbalance between the different loss magnitudes: some classification loss values are close to 100 times bigger than some fovea loss values, which means that the fovea localization task has chances to dominated by the classification task, at the risk of degraded performances.

Then, one important issue with these figures is that some learning dynamics are not accurately represented: in the case of the fovea localization task, some slight differences in the loss can lead to huge differences in the task metrics. In Figure 5.6 is represented the fovea localization validation metric through training of the MTL models with a learning rate η = 5e -3 . One can indeed observe that the SUS and IUS models completely overlook this task, while presenting a loss value close to that of the IO model. Instead, the different task metrics introduced in 5.3.2 might represent more accurately the true performances of the different models. Therefore, in the following the grid searches will be reported with respect to the task-specific metrics.

Grid-search reported on task metrics values Figure 5.7 and 5.8 report the same grid search for fully shared and Maximum Roaming methods respectively, with task respective metrics reported instead of losses.

One can first see on these figures noticeable differences compared to the previous ones (reporting the tasks losses): in particular, the models failing on the fovea localization task are more visible, and the top performances achieved on the different curves are slightly shifted towards the lower learning rates for the classification task.

Both in the case of fully-shared and Maximum Roaming models, the IO optimization scheme consistently achieves better validation metrics over the different tasks and learning rates, and reaches the best performance over the grid search on every single task, often with a substantial margin. It is also interesting to notice that it reaches close-to-best performance on the fovea task on wider learning rate frames. Keeping in mind that this task has a loss of inferior magnitude, it suggests that the IO This suggests that the roaming of parameters among the different tasks during the optimizations helps to discover more favorable loss regions for tasks of lower loss magnitude, while it is more difficult for fully shared approaches to optimize them jointly with the other tasks. However the combination of MR and IO doesn't show the same improvements: the results are pretty similar to these obtained with the fully shared network and IO optimization scheme.

Benchmark

Finally, Table 5.1 presents a benchmark, comparing the best models obtained from the previous grid search over fully shared and Maximum Roaming model, with the three different optimization schemes. In order to obtain a unified metric for comparing the different models, every obtained metric score is normalized between the best and worse performance achieved on the respective task among all models, which gives scores between 0 and 1 for every task. A multi-task score is then averaged from the four task scores. The best scoring models of each sharing strategy and optimization scheme at their best scoring iteration on the validation set are selected for comparison on the test set. Single task baselines (STL) for each task are also included in the benchmark. The previous observations about the optimization schemes mostly hold here: the IO models reach the best scores on every single task among multi-task models (MTL and MR), by large margins. The IUS models instead seem like the worst ones, although the MTL-SUS model totally fails on the fovea localization task. Once again, Maximum Roaming seems to operate a better balancing between the four different task performances when combined with SUS and IUS optimization schemes, although the downside is lower performance on the classification task. The benefits of Maximum Roaming and the IO scheme do not cumulate, since the MTL-IO model performs slightly better than the MR-IO one, while cumulated effects can be observed on the IUS models. This may suggest that the MR-IO combination introduces too much noise in the optimization.

When comparing the performance of multi-task and single task models, it is intersting to notice that the fully shared network with standard SUS optimization scheme (MTL-SUS) perfoms worse than the single task baselines on every tasks, highlighting a task interference issue. Instead, when combined with the methods proposed in this thesis, the multi-task network is able to greatly reduce task interference, and often produce improvements compared to the single task baselines. In particular, the MTL-IO model reaches better scores on 3 of the 4 tasks, and closely approaches the STL score on the Fovea localization task.

Combination with Transfer Learning

Transfer Learning is a widely adopted method to bias a model with prior knowledge on an input domain and lead it to better generalization on new data. In practice, Imagenet [Deng et al. 2009] pre-trained models have proven to be profitable on a large majority of vision tasks. In medical imaging, although the input domain is different from the Imagenet domain (natural images), the benefits are still noticeable [Tajbakhsh et al. 2020], and particularly appreciated to compensate for the usual lack of training data. Its combination with Multi-Task Learning strategies studied here is thus relevant. This part is a similar study as the one presented above, this time built on top of a pre-trained model. As Imagenet only involves image classification, there exist no Imagenet pre-trained models for semantic segmentation. However, it is possible to use a pre-trained VGG-16 [Simonyan & Zisserman 2015] network for the encoding part of the U-Net in the pipeline, while the decoder is initialized from scratch.

As in the previous experiments, Figures 5.9 and 5.10 report the grid search operated along with single task models (STL), used with a pre-trained network.

From a first look at the grid search figures, one can notice that Transfer Learning provides an overall performance gain for all models and tasks. The performance peaks tend to happen for smaller learning rates compared to the networks trained from scratch. The performance then quickly drops with the increase of η. This kind of behavior is generally expected when using Transfer Learning: the pre-trained weights provide robust representations on the source input domain trained on millions of images, which needs only small adaptations in order to adapt to the slight domain shift. A too large learning rate might instead break some of these representations, and thus waste the provided inductive bias [START_REF] Yosinski | [END_REF], Tamaazousti et al. 2017]. Pushing further this reasoning, the fact that this phenomenon is less pronounced on the segmentation tasks might come from that they use a decoder initialized from scratch, therefore reducing the impact of the pre-trained encoder.

Then, the benefits obtained by Maximum Roaming and the optimization schemes IUS and IO are similar to these obtained without Transfer Learning: both the optimization schemes consistently increase the performance on the different tasks, while Maximum Roaming models seem to give more attention to tasks of lower loss magnitude, at the cost of a performance drop on the classification task. However, the gains produced by these methods here are of smaller magnitude compared to these obtained on models trained from scratch, which could suggest that the pre-training places the network in smoother regions of the loss landscape, in which different optimization and sharing strategies make less differences. Similar conclusion can be drawn from comparison with the STL models, which are also slighter: Transfer Learning obviously reduces the impact of Multi-Task Learning. Finally, the fact that Maximum Roaming behaves in a similar way when combined with Transfer Learning is particularly interesting: due to the parameter partitioning operated in MR models, one could expect to break some co-adaptations in the pre-trained layers, and thus reduce the impact of Transfer Learning, which doesn't seem to be the case here.

Discussion

This chapter proposes the application of the multi-task methods discussed in this thesis on a real world medical imaging challenge centered on glaucoma diagnosis, for which methods to bias the learning process like Transfer Learning and Multi-Task Learning are of particular relevance to compensate for the lack of annotated data. The proposed pipeline aims at maximising the inductive bias by using a unique CNN to learn all tasks jointly, and applies different combinations of sharing strategies and optimization schemes to compare their respective impacts on generalization and task interference. These same experiments were then conducted when using a pre-trained network, i.e. Transfer Learning, in order to evaluate how hold these methods benefit when combined with respect to this other learning paradigm.

The experimental results on networks trained from scratch mostly confirm the findings of Chapters 3 and 4, and provide interesting information about their combination:

• Maximum Roaming proceeds of an overall improvement of the multiple tasks: in a setting where one task loss dominates the others, the dominated tasks see their performance significantly increased, at the cost of a moderated performance loss on the dominating task.

• The optimization scheme using independent optimizers (IO) for each task greatly improves the performance on every task, while results are more comparable between the shared optimization scheme and independent one with same optimizer (SUS and IO).

• The combination of Maximum Roaming. and IO scheme do not improve the results of IO used alone, while it is the case with IUS.

• The proposed methods greatly reduce task interference, and consistently outclass single-task baselines.

This is to add to the fact the presented multi-task pipeline uses a unique convolutional network for all tasks, which is more lightweight compared to single-task learners. Therefore, the proposed pipeline combined with the methods presented in this thesis produces significant benefits both in terms of performance and computational efficiency.

These observation hold in smaller proportions when these methods are combined with Transfer Learning, which suggests that these strategies can be efficiently applied in real world contexts to create better generalization performance on Multi-Task problems, in isolation, or eventually combined with Transfer Learning when possible. However more investigation should be conducted under different setting and problems to obtain more insight about the combination of MR and IO. 

Summary of contributions

Over the last years, research in computer vision tried to make the most benefit out of limited existing annotated data to introduce inductive bias into their learning processes. Among different existing solutions is Multi-Task Learning, which consists in jointly optimizing a unique model with respect to multiple tasks. The presence of multiple tasks issued from a same domain provides more information to the network about the input domain, which should improve its generalization on new data. However, current research encounters major difficulties in the optimization of deep multi-task networks, which in practice do not consistently reach better generalization performance compared to equivalent single-task learners, and can instead degrade it. This is denoted as task interference. This thesis proposed two methods to improve the optimization of deep multi-task networks and mitigate task interference. The relevance and feasibility of the proposed methods was demonstrated through its application to a real world concrete problem involving the detection of glaucoma from fundus images.

Maximum Roaming (Chapter 3)

Parameter partitioning methods explicitly propose to combat task interference by relaxing the standard hard parameter sharing strategy: each task is attributed a specific use of the parameters in each layer. This procedure experimentally shows to efficiently reduce task interference. However existing partitioning methods might block interactions between some tasks and parameters and therefore reduce the latent inductive bias. This thesis proposed Maximum Roaming, a dynamic parameter partitioning method inspired by dropout. The discrete parameter partitioning is regularly updated through learning with respect to a finite update plan, which imposes every parameter to be trained by every single task for a certain duration. In the meantime, the averaged overlap between the different task partitions remains constant, in order to fully benefit of the interference reduction provided by partitioning methods. The method is model-agnostic, only involves negligible supplementary non-trainable binary parameters. Experimental results show consistently improved performance across multiple datasets and different convolutional networks over existing state of the art baselines.

Alternated and independent optimization of tasks-specific objectives (Chapter 4) Partitioning methods, due to the task-specified parameters usage, compute separate forward and backward passes for each task, sequentially. This optimization scheme is different from most other approaches, back-propagating at once all the different losses aggregated in a multi-task loss. However this difference is never studied in isolation in the literature. This thesis provided a convergence analysis of this optimization scheme, named IUS (Independent Update Steps) here. It was then compared with the standard optimization of the aggregated loss. Suspecting that giving more independence to the tasks could introduce more stochasticity into the optimization and reveal beneficial, a new optimization scheme was then proposed, defining one optimizer per task (Independent Optimizers, IO), to avoid the mixing of different tasks gradients into the momentum mechanisms of state-of-the-art optimizers. Experimental results report that these two optimization schemes, with a clear advantage to the IO one, consistently achieve better performance that the aggregated loss optimization scheme, and compare favorably to other state-of-the-art baselines. They also report a larger traveled distance into the loss landscape, reaching more remote solutions, with more oscillations on their path, suggesting that they indeed bring more stochasticity into the optimization process. However, in the worst case, both the IUS and IO schemes scale linearly to the number of tasks, in terms of optimization time. Experiments are therefore conducted on their combination with a simple task grouping strategy, which allows to freely balance the optimization schemes benefits with the optimization time increase. Experimental results over three datasets show both MTL-IUS and MTL-IO achieve an overall better generalization performance w.r.t standard aggregated objective optimization (MTL-SUS) and state-of-the-art MTL baselines using an aggregated objective function. In particular, MTL-IO shows important improvements in settings where tasks are of a very different nature. These results also confirm that the proposed random grouping strategy applied to MTL-IUS and MTL-IO is beneficial both in terms of performance and efficiency, when dealing with a great number of tasks. Finally, the results showed that MTL-IUS and IO allow parameters updates to travel a longer distance, and ensure a more thorough exploration of the shared parameter space.

Application on a medical imaging challenge (Chapter 5) Concerned about how well the proposed methods could generalize over non-academic contexts, this thesis evaluated them on a medical imaging challenge, centered on glaucoma diagnosing from fundus imaging, and providing annotations for multiple tasks. A Multi-Task Learning approach was adopted to create the most possible inductive bias from the few data at disposal, and optimize with different possible combinations of sharing strategies (i.e. fully shared and Maximum Roaming models) and optimization schemes (SUS, IUS and IO). The comparisons showed that the contributions found in the previous chapters are also observable in this context, with improved multi-task performance. While the optimization schemes IUS and IO consistently improve each task performance, Maximum Roaming benefits are more focused on tasks presenting lower loss magnitude. Finally, this thesis studied how Multi-Task Learning could be combined with other strategies, such as Transfer Learning.

Open perspectives

The most direct perspectives opened by this thesis are the possible improvements of the two introduced methods, Maximum Roaming, and the separate and independent optimization of the tasks, MTL-IO.

Towards learnable roaming parameter partitioning

In opposition to other partitioning methods which try to find an optimal partitioning, regardless of the potentially lost latent inductive bias, Maximum Roaming instead only focuses on the roaming of parameters among tasks to create more regularization, and proceeds random updates regardless of any parameter-task affinity. Further improvements could unify both these different approaches, in order to fully exploit the latent inductive bias, while maximising the efficiency of the partitions with respect to their tasks.

A first solution would be to apply the two approaches sequentially: one first training with Maximum Roaming to introduce robust knowledge into the parameters, followed by a fine-tuning of the partitions to refine better task-parameters combinations. A second possibility would be to find a differentiable representation of the roaming of parameters and introduce it in the loss function, so that parameters optimization, partitions optimization and roaming are all conducted jointly. Such differentiable approach would also avoid the hyper-parameter tuning in Maximum Roaming.

Re-thinking optimization schemes in existing MTL works Chapters 4 and 5 showed that alternated and independent optimization of tasks (MTL-IO) consistently achieved better generalization performance than the standard optimization of an aggregated loss. However, its main downside remains the increased optimization time due to task-specific update steps. Experimental results thus showed that a naïve random task grouping strategy is enough to reduce at will this optimization time, at the cost of reduced performance gains. One straightforward evolution would be to replace the random task grouping with sophisticated task grouping methods, as some of these pre-Transfer in CNN Training size. However, the time and associated cost for creating such new huge datasets, and to make new models converge over these are still a huge bottleneck in real-world use cases, so that someone with limited resources cannot reasonably compete with companies running each of their models during weeks over hundreds of GPUs (or TPUs) and gigantic datasets.

Transfer learning is a recent and still evolving approach to address this issue. It consists in reusing a model developed for a task as a starting point for another related task. This is based on the assumption that two related tasks require some common knowledge, so that some of the knowledge associated to a task could benefit another similar one. In deep learning, this is performed by using some of the model's weights as an initialization for the training over the new task, while the usual practice is to initialize them randomly ( [START_REF] Glorot | [END_REF]). In computer vision tasks, well trained CNN low level and mid-level layers generally detect basic shapes and textures, no matter the specificity of the task. They consequently transfer well between different computer vision problems, as shown in numerous publications ( [START_REF] Hinton | [END_REF][START_REF] Yosinski | [END_REF], Chu et al. 2016, Azizpour et al. 2016, Zamir et al. 2018, Tamaazousti et al. 2017, Wang et al. 2017]).

Transfer learning can then be distinguished in two types of applications : domain adaptation, aiming to adapt a pre-trained network to a new task, out of this work's scope, and fine-tuning, which consists in adapting the network to new target data, for the same task. In the latter case, one can extend the transfer to the whole set of weights concerning the features extraction, and just replace the output fully connected layer with one shaped for his target classes. Almost all the knowledge required to perform the task is already present in the network, and can be aligned with the target data by a small training procedure (not necessary on the entire set of weights), lighter than the one required to train a model "from scratch". Note that fine-tuning a pre-trained CNN often leads to better performances, and requires fewer data than a network trained from scratch, as most of the knowledge required for the task is already present in it ( [START_REF] Yosinski | [END_REF], Chu et al. 2016]).

Fine tuning has become common practice, allowing faster trainings on consequently smaller datasets, and giving the opportunity for researchers and companies to develop their own systems. However, there may still be a lack of efficiency in training a new fully connected layer from scratch, and transfer learning can once again fulfill it. To further improve the transfer, this chapter thus proposes to reuse some weights of the last fully connected layer of the original model, based on similarity between source and target classes.

The contribution of this work is fivefold: First is showed that there is some important knowledge within the last layer of pre-trained DNN models which when identified and used properly can be somewhat transferred to the new model, to speed up training and benefit model accuracy for fine tuning. Second, a novel method is proposed to reuse that knowledge in combining multiple relevant source classes. Third, a study is conducted over one visual and two semantic similarity measures to select these relevant source classes. Fourth, an original analysis enables to separate cases between three possible types of knowledge transfer, to attest that the proposed method performs well on each of them, and optimize the proposed method. Fifth, the propose method is monitored while decreasing the amount of training data, to validate the consistency of the results.

This chapter is organized as follows. It first reviews some related works, then present the contribution, before discussing the experimental results. A final discussion is provided on this work and future developments.

A.2 Related Works

A.2.1 Datasets and architectures

The most common source dataset to apply transfer learning for computer vision tasks is ImageNet [START_REF] Russakovsky | [END_REF], since it presents 1000 classes, shared between various semantic fields (animals, flora life, vehicles, tools, etc...). It is thus very likely to benefit the training of almost any kind of target data, and its efficiency is demonstrated in [START_REF] Huh | [END_REF].

As for the choice of the network to use, many state of the art results in image classification tasks (including the ImageNet dataset) have been achieved by (or built on) the ResNet architecture [He et al. 2016a, He et al. 2016b], and Inception [Szegedy et al. 2015, Szegedy et al. 2017] structures (or combinations of them). Their efficiency and simplicity often places them as the best choice for transfer learning, be it for other classification tasks, or using it as a backbone for other tasks (object detection and segmentation, for example).

A.2.2 Transfer Learning process

Reusing some pre-trained weights for a new task has been pioneered by [START_REF] Hinton | [END_REF]] and [START_REF] Yosinski | [END_REF], showing that the new task can greatly benefit it, not only in terms of training speed, but also of global performance.

However, the way to optimize a transfer learning process is still unclear. It is known that the deeper the layer in a network, the more specialized are its weights to the task they are trained on [Krizhevsky et al. 2012[START_REF] Yosinski | [END_REF] can efficiently be reused. [START_REF] Yosinski | [END_REF]] experiments transfers of different depths, and highlights that the transfer of specialized layers can hurt performance on the target task, depending on their depth.

In [Chu et al. 2016] is given a study taking into account the amount of data available. They show that if transferring weights has only a moderate impact on performance in a context with a lot of data, it becomes crucial for long-term performance as the data decreases. For two sufficiently close tasks (source and target), they generally advise to transfer all the layers except the classification one before a global fine tuning. This advice seems quite reasonable in the case investigated here, since only the images contained in the dataset and their classes change, while the classification objective remains the same.

However, with enough populated classes, [START_REF] Yosinski | [END_REF] shows that training only the randomly initialized part of the transferred CNN can break fragile co-adaptations at the boundary. Fine tuning equally the whole network gives better results, allowing to readjust those co-adaptations. [Tamaazousti et al. 2017] proposes a finer process that consists in training the whole network in one go with a lower learning rate applied to the transfered part. This focuses the training on the new part, while allowing co-adaptation between the two parts.

As shown in [START_REF] Wang | [END_REF], transfer learning can also be improved by deepening and/or widening the original network, giving more rooms to small adjustments, under the condition of correctly managing the simultaneous training of both transferred and newly created cells.

A systematic process in all these works is to discard the classifying layer and to train a new one, adapted to the target classes, from scratch. This chapter argues and shows that, when the source and target are similar to a certain extent, the knowledge contained in the pre-trained classifier layer can be efficiently reused for learning a new model.

A.2.3 Semantic similarity between textual content

One traditional way to get a similarity measure between two concepts is to use the WordNet graph [Beckwith et al. 1991]: WordNet is an english lexical database of nouns, verbs, adjectives, and adverbs grouped under lexicalized concepts (named synsets), interlinked by different types of semantic relations. There are five main semantic similarity measures defined for WordNet in the literature : [START_REF] Jiang | [END_REF], [START_REF] Leacock | [END_REF]], Lin [START_REF][END_REF]], Resnik [Resnik 1995], and Wu & Palmer [START_REF] Wu | [END_REF]. Each of them evaluates the semantic distance between two synsets. [START_REF] Capelle | [END_REF]] evaluated the Wu & Palmer one, making use of the path length between the synsets organized in a 'is-a' hierarchy and the depth of their most specific ancestor node, as the best one for semantic similarities.

More recently, [Mikolov et al. 2013] designed an approach using neural networks to project words into feature vectors named Word2Vec representations, to represent efficiently textual content. In this feature space, distances between words are shown to be quite accurate to attest and quantify some semantic relationships [Mikolov et al. 2013, Wang 2014, Handler 2014].

A.3 Similarity-based knowledge transfer

A standard, basic transfer learning process to train an image classifier for some target classes is to reuse the convolution weights of a network already trained on a similar task on source classes. A fully connected layer fitting the target task is then randomly initialized on top of the network, which is fine tuned following a strategy adapted to the specificities of the problem (amount of available data, possible computational power restrictions, etc...).

The fully connected layer of the pre-trained network represents the knowledge of the task it is devised for. In cases where the original classification problem and the destination one are close, there might be a gain in transferring some of the knowledge of the original network head (last layer) to the target one.

The hypothesis is made here that re-adjusting this available knowledge to fit the target classes could be more efficient than creating it from scratch, in the usual way. Assume there are M source classes and N target ones at disposal, each target class (represented by its fully connected weights) could be initialized with a combination of a relevant subset of those M source classes, instead of randomly. The relevance of such a subset of classes is defined by using alternative similarity measures.

A.3.1 Similarity measures

Three of them are proposed. The first is a visual one, directly based on the image content. The two others are label-based semantic similarities :

Inference similarity. The images of the target classes are input to the plain source network. The similarities between source and target classes are computed as F-score measures for each "source network output/target class" couples. In a more practical way, let o j be the j th output of the source network and c i the i th target class with j ∈ {1, ..., M } and i ∈ {1, ..., N }, sim(i, j) is computed as the F-score for o j discriminating c i . This similarity measure aims at leveraging relations based

The Adam optimizer is used with a learning rate of 10 -3 , β 1 = 0.9, β 2 = 0.999 and ε = 10 -8 , with a batch size of 64. A dropout of 0.75 is applied on the last fully connected layer to prevent overfitting.

A.4.2 Dataset

For this experiment, the 1000 classes of the ILSVRC challenge [START_REF] Russakovsky | [END_REF] which the ResNet-101 has been trained to classify are used as source classes. For the target classes are selected 90 ImageNet synsets that are not part of those former 1000. They can be separated in three types :

Included classes. The target synset is a child of a source synset, thus representing a more restrictive class than the one in the original problem.

Inclusive classes. The target class is an ancestor of some source synset(s), thus representing a more general class. 

A.4.3 Similarities and Initialization

The inference similarities are computed as explained earlier, with a pass of the training set through the pre-trained network (with the 1000 class pre-trained classifier).

For the WordNet similarities, the WordNet module of the NLTK Python library is used to obtain a similarity measure based on the shortest path that connects the labels (or synsets) in the "is-a" (hypernym/hyponym) taxonomy.

To compute the Word2Vec embedding of a given label, the embeddings2 of all the words composing it are averaged, since labels are not always denoted by a single word, but often by an expression.

with enough data to fill the gap.

In Table A.1 is provided an example of source/target class correspondence given by each similarity measure, for the "Anchor, ground tackle" target class. The results of these transfers are shown in Fig. A.2. In this case, the Word2Vec method has been mistaken by the "tackle" term, and chose the football accessory as a source class (worst performing). WordNet found a logical source class ("Hook, claw "), according to the synsets semantic, and the inference similarity selected "Sundial ", which has no obvious semantic link with an anchor, but presents some very similar visual patterns, as shown on the images (performing best).

From this example, along with the global results, can be drawn the conclusion that label-based semantic similarities are more likely to select wrong matchings for visual classification, while the inference similarity is able to bring out better ones, out of any semantic consideration Another intersting fact here is that the Word2Vec similarity is still learning faster than the random initialization. This observation, verified over multiple other examples, suggests that any pre-trained classifier is always a better initialization than a random one for fine-tuning in image classification. The study is then extended to the use of multiple source classes neighbors to compute the different initializations: The initialization by inference similarity benefits the most from extending the 

A.5 Conclusion and Perspectives

This chapter addresses transfer learning in an image classification context. In particular, alternative approaches were studied to re-use the knowledge inherent within the original pre-trained deep network in the target one (handling new image classes). Rather than only transferring network weights corresponding to the feature extraction part, several initialization strategies were investigated to re-use and combine specifically identified weights from the pre-trained classifier into the target model.

To validate the impact of the proposed method, three different similarity estimators were presented, one visual and two semantics, optimized the models across the different types of target classes, and monitored them while reducing the amount of data.

In the end, the proposed method produced systematically better initializations, faster trainings, and significantly superior long term performances in limited training data configurations. The consistency with which the best model, based on visual similarities, outperforms the baseline across the different types of target classes and amounts of data, along with its computational lightness (a few supplementary inferences in the network) suggest that it can be systematically adopted when performing transfer learning in this context.
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 11 Figure 1.1: (Right) Hard parameter sharing. (Left) Soft parameter sharing.

Figure 1 . 2 :

 12 Figure 1.2: (upper-left), (upper-right) and (lower-left) represent three possible 2-dimensional non-convex objective functions, with (lower-right) their sum.From a randomly sampled initialization point for the multi-task optimization, with only local gradient information from each task, it is impossible to guarantee convergence into the multi-task optimum, nor is it to judge if a task gradient is beneficial or detrimental. Increasing the convergence speed or precision would likely not higher the chances of visiting the convex region around the optimum. One might instead prefer to play on the stochasticity of the optimization.
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Figure 3 . 1 :

 31 Figure 3.1: Maximum Roaming task partitions update process illustrated for two tasks in a layer containing 10 parameters. The partitions are initialized with a sharing ratio p = 0.6. After four update steps, every parameter has been used by both the tasks for at least ∆ iterations.

1 .

 1 If the parameter is not used, i.e. m

  the received training gradient signals from those tasks account to zero.

  Figure 3.2 reports achieved F-scores as p varies, with ∆ = 0.1 and r(c) = 100%. Let us remark that as all models scores are averaged over 5 seeds, this means that the fixed partitioning scores are the average of 5 different Chapter 3. Strengthening the inductive bias with a dynamic parameter partitioning (fixed) partitionings.
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 32 Figure 3.2: Contribution of Maximum Roaming depending on the parameter partitioning selectivity p.

Figure 3 .

 3 Figure 3.3: F-score of the proposed method reported for different values of the update interval ∆ and the update completion rate r. Different colors and circle sizes indicate different F-score values.
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 3 Strengthening the inductive bias with a dynamic parameter partitioning parameters i -and i + are thus respectively selected such that: i -= arg min u∈At(c) v∈(At(c)\{u}) Ku•Kv ||Ku||||Kv|| i + = arg max u∈{1,..,S}\Bt(c) v∈At(c) Ku•Kv ||Ku||||Kv|| with K u , K v the parameters u, v of the convolutional kernel K.

  Figure 3.4 compares this deterministic selection process with Maximum Roaming by reporting the best F-scores achieved by the fully converged models for different completion rates r(c) of the update process.
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 3 Figure 3.4: Comparison of Maximum Roaming with random and non-random selection process of parameter candidates for updates.

Figure 3 .

 3 Figure 3.5: Radar chart comparing different baselines F-scores on every facial attribute of Celeb-A. (left) attributes with highest scores, (right) attributes with lowest scores. Each plot is displayed at a different scale.
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 41 Figure 4.1: NYUv2 best averaged and task-specific validation losses w.r.t the learning rate η.

Figure 4 . 2 :

 42 Figure 4.2: Cityscapes best averaged and task-specific validation losses w.r.t the learning rate η.

Figure 4 . 3 :

 43 Figure 4.3: Celeb-A best averaged validation losses w.r.t the learning rate η and different numbers of task groups. (Left) MTL-IUS models compared to MTL-SUS. (Right) MTL-IO models compared to MTL-SUS.

  t the averaged SGD at step t+1, ḡt = 1 N N k=1 ∇F (k) (w t ) the averaged gradient and g t = 1
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 51 Figure 5.1: Example of a retinal fundus image, with annotations for Optic Disc, Optic Cup and Fovea. (Source: [Orlando et al. 2020])

Figure 5 . 2 :

 52 Figure 5.2: Left: An input sample (retinal fundus image). Right: Saliency map centered on fovea coordinates.

Figure 5 . 3 :

 53 Figure 5.3: Method pipeline, used to deal with glaucoma diagnosis, OD/OC segmentation and fovea localization with a unique shared deep network.

  Figure 5.5 for Maximum Roaming models (MR). Specifically, the best validation losses achieved by the SUS, IUS and IO optimizations over a full training, w.r.t. different values of η are reported.
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 54 Figure 5.4: Reported losses of the learning rate grid-search over fully shared (MTL) models trained from scratch, with different optimization schemes (SUS, IUS and IO).
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 55 Figure 5.5: Reported losses of the learning rate grid-search over Maximum Roaming (MR) models trained from scratch, with different optimization schemes (SUS, IUS and IO).

Figure 5

 5 Figure 5.6: Fovea localization L1-error validation metric over training of the different MTL models, with a learning rate η = 5e -3 . While the loss values of SUS, IUS and IO models are pretty close for this learning rate, the difference is huge on the task metric.
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 57 Figure 5.7: Reported metrics of the learning rate grid-search over fully shared (MTL) models trained from scratch, with different optimization schemes (SUS, IUS and IO).

Figure 5 . 8 :

 58 Figure 5.8: Reported metrics of the learning rate grid-search over Maximum Roaming (MR) models trained from scratch, with different optimization schemes (SUS, IUS and IO).
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 59 Figure 5.9: Reported metrics of the learning rate grid-search over pretrained fully shared (MTL) models, with different optimization schemes (SUS, IUS and IO).
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 5 Figure 5.10: Reported metrics of the learning rate grid-search over pretrained Maximum Roaming (MR) models, with different optimization schemes (SUS, IUS and IO).

  Disjoint classes.Neither child nor ancestor of any already source synset.For these 90 target classes, synsets containing at least 1000 images are selected, and equally distributed into the three types of target classes (30 classes each). Within each target class, 100 images are picked for testing and 900 for training, producing balanced training and testing sets. Depending on the experiments, only a certain portion of this training set will be used for training. The list of synsets used for this experiment along with the selected images is available on a GitHub repository 1 .

  Fig. A.3 shows the F-scores of the models directly after initialization (without training), with respect to the number of source class neighbors selected, for each type of target class (i.e disjoint, included and inclusive).

Figure A. 3 :

 3 Figure A.3: Immediate inference results for each type of classes and initialization, with respect to the number of source classes selected to compute the initialization.
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  .1 illustrates the full update process for one layer. Lemma 1. Any update plan as in Def.1, with update frequency ∆ has the following properties: 1. The update plan finishes in ∆(1 -p)S max training steps. 2. At completion, every parameter has been trained by each task for at least ∆ training epochs.

3. The number of parameters attributed to each task remains constant over the whole duration of update plan. Proof: Point 1 comes from the fact that B t (c)grows by 1 at every step c, until all possible parameters in a given layer d are included, thus no new i + can be sampled. At initialization, |B t (c)| = pS, and it increases by one every ∆ training iterations, which gives the indicated result, upper bounded by the layer containing the most parameters. Point 2 is straightforward, since each new parameter partition remains frozen for at least ∆ training epochs. The same holds for item 3 , since every update consists in the exchange of parameters i -and i +

Table 3 .

 3 The official release is used, which consists of more than 200k celebrities images, annotated with 40 different facial attributes. To reduce the computational burden and allow for faster experimentation, it is casted into a

	Chapter 3. Strengthening the inductive bias with a dynamic parameter
		partitioning
	Tasks	Classes
	Global	Attractive, Blurry, Chubby, Double Chin, Heavy Makeup, Male,
		Oval Face, Pale Skin, Young
	Eyes	Bags Under Eyes, Eyeglasses, Narrow Eyes, Arched Eyebrows,
		Bushy Eyebrows
	Hair	Bald, Bangs, Black Hair, Blond Hair, Brown Hair, Gray Hair,
		Receding Hairline, Straight Hair, Wavy Hair
	Mouth	Big Lips, Mouth Slightly Open, Smiling, Wearing Lipstick
	Nose	Big Nose, Pointy Nose
	Beard	5 o' Clock Shadow, Goatee, Mustache, No Beard, Sideburns
	Cheeks	High Cheekbones, Rosy Cheeks
	Wearings Wearing Earrings, Wearing Hat, Wearing Necklace, Wearing Necktie

multi-task problem by grouping the 40 attributes into eight groups of spatially or semantically related attributes (e.g. eyes attributes, hair attributes, accessories..) and creating one attribute prediction task for each group. The composition of these 1: Class composition of each the tasks for the Celeb-A dataset.

Table 3 .

 3 Chapter 3. Strengthening the inductive bias with a dynamic parameter partitioningStrezoski et al. 2019a] and Maximum Roaming) are applied to every shared convolutional layer in the network. This excludes those in the task respective prediction heads. The parameter α in GradNorm[START_REF][END_REF] has been optimized in the set of values {0.5, 1, 1.5}. All models were trained with an Adam optimizer[START_REF] Kingma | [END_REF]] and a learning rate of 1e-4, until convergence. The binary cross-entropy is used as a loss function for each segmentation task, and the averaged absolute error for the depth estimation task. For the normals estimation task of NYUv2, the prediction head is made of one (3 × 3 × 64 × 64) and one (1 × 1 × 64 × 3) convolutions. Its loss is computed with an element-wise dot product between the normalized predictions and the ground-truth map. The batch size is set to 8 for Cityscapes and 2 for NYUv2. The input samples are resized to 128 × 256 for Cityscapes and 288 × 384 for NYUv2, provided as such by[Liu et al. 2019b] 

			Multi-Attribute Classification	
		#P	Precision (↑) Recall (↑) F-Score (↑) Rank (↓)
	STL	7.9	67.10	61.99	64.07	-
			(±0.37)	(±0.49)	(±0.21)	
	MTL	1.0	68.67	59.54	62.95	5.33
			(±0.69)	(±0.52)	(±0.21)	
	GradNorm	1.0	70.36	59.49	63.55	5.00
	(α = 0.5)		(±0.07)	(±0.58)	(±0.49)	
	MGDA-UB	1.0	68.64	60.21	63.56	4.66
			(±0.12)	(±0.33)	(±0.27)	
	SE-MTL	1.1	71.10	62.64	65.85	2.33
			(±0.28)	(±0.51)	(±0.17)	
	TR	1.0	71.71	61.75	65.51	2.33
	(p = 0.9)		(±0.06)	(±0.47)	(±0.32)	
	MR	1.0	71.24	63.04	66.23	1.33
	(p = 0.8)		(±0.35)	(±0.56)	(±0.20)	

2: Celeb-A results (Average over 40 facial attributes). The best per column score of an MTL method is underlined.

Celeb-A dataset, for the sake of fairness in comparison, all approaches use the same base network, a SegNet

[Badrinarayanan et al. 2017] 

outputting 64 feature maps of same height and width as the inputs. For each of the 8 tasks, one prediction head is added, composed of one (3 × 3 × 64 × 64) and one (1 × 1 × 64 × 1) convolutions. A sigmoid function is applied on the output of the segmentation tasks. The partitioning methods

[START_REF] Maninis | [END_REF]

], [2 . The reported results are evaluated on the validation splits furnished by

[Liu et al. 2019b

].
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 3 .4 report the results on Cityscapes and NYUv2, respectively. The reported results are the best achieved with each method on the validation set, averaged over 3 seeds, after a grid-search on the hyper-parameters. 3: Cityscape results. The best per column score of an MTL method is underlined.Maximum Roaming reaches the best scores on segmentation and normals estimation tasks, and ranks second on depth estimation tasks. In particular, it outperforms other methods on the segmentation tasks: it restores the inductive bias decreased by parameter partitioning, so the tasks benefiting the most from it are the ones most similar to each other, which are here the segmentation tasks. Furthermore, MR uses the same number of trainable weights than the MTL baseline, plus a few binary Chapter 3. Strengthening the inductive bias with a dynamic parameter partitioning

	STL	7.9	58.57	97.46	0.0141	22.59	-
			(±0.49)	(±0.03)	(±0.0002)	(±1.15)	
	MTL	1.0	56.57	97.36	0.0170	43.99	3.75
			(±0.22)	(±0.02)	(±0.0006)	(±5.53)	
	GradNorm	1.0	56.77	97.37	0.0199	68.13	3.87
	(α = 1.5)		(±0.08)	(±0.02)	(±0.0004)	(±4.48)	
	MGDA-UB	1.0	56.19	97.33	0.0130	25.09	2.50
			(±0.24)	(±0.01)	(±0.0001)	(±0.28)	
	SE-MTL	1.1	55.45	97.24	0.0160	35.72	4.87
			(±1.03)	(±0.10)	(±0.0006)	(±1.62)	
	TR	1.0	56.52	97.24	0.0155	31.47	3.87
	(p = 0.6)		(±0.41)	(±0.04)	(±0.0003)	(±0.55))	
	MR	1.0	57.93	97.37	0.0143	29.38	1.62
	(p = 0.6)		(±0.20	(±0.02)	(±0.0001)	(±1.66)	

Segmentation (↑) Depth estimation (↓) #P mIoU Pix. Acc. Abs. Err. Rel. Err. Rank (↓)

Table 3

 3 

.4: NYUv2 results. The best per column score of an MTL method is underlined.

  Alternate and independent optimization of task-specific objective functions for SGD I now formalize the SGD update step for the alternate and independent optimization scheme used in state-of-the-art MTL partitioning works[START_REF] Bragman | [END_REF], Maninis et al. 2019, Pascal et al. 2021a, Strezoski et al. 2019a] and provide convergence bounds in the special case of convex objective functions.

I define a multi-task update step as the alternate Individual Update Steps (IUS) of each of the N task-specific objective functions, and denote w (k) t the parameters optimized w.r.t. task k, during the t-th update step. The individual update step t + 1 of task k is:

Table 4 .
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		Segmentation	Depth estimation	Normals estimation	
		mIoU	Pix.	Abs.	Rel.	Mean	Med.	Rank
		(↑)	Acc.	Err.	Err.	Err.	Err.	(↓)
			(↑)	(↓)	(↓)	(↓)	(↓)	
	MTL-SUS 24.29	48.79	68.48	52.93	27.28	33.70	4.33
		(±0.38)	(±0.35)	(±0.28)	(±0.59)	(±0.02)	(±0.03)	
	MTL-IUS	24.93	48.91	67.76	53.25	27.28	33.70	3.88
		(±0.33)	(±0.17)	(±0.61)	(±0.77)	(±0.05)	(±0.05)	
	MTL-IO	29.48	54.06	66.07	50.27	27.08	33.35	1.00
		(±0.30)	(±0.21)	(±0.68)	(±0.28)	(±0.03)	(±0.05)	
	GradNorm 28.09	52.91	70.26	52.40	27.18	33.44	3.16
		(±0.85)	(±0.74)	(±1.4)	(±1.35)	(±0.05)	(±0.07)	
	PCGrad	24.51	48.87	67.89	52.29	27.32	33.65	3.50
		(±0.32)	(±0.41)	(±0.67)	(±0.75)	(±0.04)	(±0.08)	
	MR	28.82	53.77	71.30	53.37	27.03	33.27	2.66
		(±0.18)	(±0.61)	(±0.97)	(±0.97)	(±0.02)	(±0.03)	

1: NYUv2 results with standard deviations. The best results (and statistically equivalent) per column are highlighted in each category. Methods ranks are computed by averaging the rank of the methods on each metric.

Table 4 . 2

 42 is used, with a task-specific fully-connected prediction layer for each task (or task group). The image size is set to 64 × 64, with a batch size of 256. All models are trained over 15 epochs. The average classification error is reported along with F1-score, since the different attributes are not balanced. Reported results are averaged over 3 seeds, with new task groups are sampled for every seed. Figure 4.3 shows the best achieved validation losses over training w.r.t. the learning rate and for different number of super-tasks N . Table 4.3 summarizes the benchmark result.

		Segmentation	
		mIoU (↑)	Pix. Acc. (↑) Rank (↓)
	MTL-SUS 69.79 ± 0.40 90.40 ± 0.08	1.0
	MTL-IUS	69.74 ± 0.05	90.22 ± 0.13	2.5
	MTL-IO	69.52 ± 0.26 90.28 ± 0.14	2.5
	GradNorm	69.00 ± 0.12	90.17 ± 0.10	5.0
	PCGrad	69.73 ± 0.05 90.42 ± 0.06	1.0
	MR	69.15 ± 0.08	89.79 ± 0.08	5.5

For N ≤ 8, MTL-IUS and MTL-IO are able to reach an improvement compared to MTL-SUS. Then, the performance decreases up to N = 40 (i.e. no grouping). This suggests that the use of a grouping strategy is beneficial both in terms of : Cityscape results with standard deviations. The best results (and statistically equivalent) per column are highlighted. Methods ranks are computed by averaging the rank of the methods on each metric.
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		Avg. error (↓)	F1-score (↑) Rank (↓)
	MTL-SUS	9.20 ± 0.02	68.66 ± 0.24	6.0
	MTL-IUS (2 groups)	9.16 ± 0.03	68.69 ± 0.21	-
	MTL-IUS (4 groups)	9.13 ± 0.02	69.01 ± 0.27	-
	MTL-IUS (8 groups)	9.10 ± 0.03	68.93 ± 0.38	3.0
	MTL-IUS (20 groups)	9.20 ± 0.05	68.82 ± 0.11	-
	MTL-IUS (40 groups)	9.27 ± 0.05	68.97 ± 0.17	-
	MTL-IO (2 groups)	9.15 ± 0.02	68.85 ± 0.33	-
	MTL-IO (4 groups)	9.11 ± 0.02 69.48 ± 0.15	1.0
	MTL-IO (8 groups)	9.15 ± 0.01	68.55 ± 0.09	-
	MTL-IO (20 groups)	9.23 ± 0.02	68.61 ± 0.31	-
	MTL-IO (40 groups)	9.24 ± 0.00	68.57 ± 0.04	-
	GradNorm	9.16 ± 0.03	69.16 ± 0.19	4.0
	PCGrad	9.16 ± 0.04 69.26 ± 0.30	2.5
	MGDA-UB	9.42 ± 0.03	67.68 ± 0.12	7.0
	MR	9.12 ± 0.00 69.21 ± 0.31	1.0

3: Celeb-A results with standard deviations. The best results (and statistically equivalent) per column are highlighted. In parenthesis are reported the different number of task groups for MTL-IUS and IO. The best (4 and 8) and worst (40) performing numbers of task groups are reported for both the strategies.
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	Dataset	Model	Total covered dist. Shortest path	Ratio
		SUS	879.33 ± 18.22	38.77 ± 0.53 22.68 ± 0.17
	NYUv2	IUS	2597.74 ± 49.59	67.44 ± 1.02 38.52 ± 0.24
		IO	2769.52 ± 40.20	71.06 ± 0.80 38.97 ± 0.22
		SUS	909.38 ± 10.02	74.38 ± 0.80 12.23 ± 0.01
	Cityscapes	IUS	8102.39 ± 13.16 262.68 ± 0.48 30.85 ± 0.02
		IO	8438.78 ± 105.47 277.29 ± 5.69 30.44 ± 0.35
		SUS	1398.01 ± 3.54	99.66 ± 0.22 14.03 ± 0.00
		IUS (4 groups)	5636.18 ± 19.59 223.83 ± 0.69 25.18 ± 0.02
		IO (4 groups)	6560.56 ± 45.21 242.55 ± 1.80 27.05 ± 0.12
		IUS (8 groups)	14955.87 ± 15.55 387.13 ± 0.48 38.63 ± 0.01
		IO (8 groups)	13992.50 ± 268.21 369.67 ± 5.39 37.85 ± 0.17
	Celeb-A	IUS (40 groups) 65376.36 ± 164.54 837.32 ± 1.91 78.08 ± 0.08
		IO (40 groups)	59627.39 ± 746.35 764.42 ± 9.01 78.00 ± 0.07

It can be observed that both MTL-IUS and MTL-IO travel more, both in terms .4: Total covered and shortest path distances in the shared parameter space from the same initialization point.

Table 5 .

 5 1: Benchmark of the different combinations between different parameter sharing strategies (MTL and MR) and optimization schemes (SUS, IUS and IO), along with single task models (STL), trained from scratch.on the task specific metrics, and Table5.2 the benchmark comparing the best performing models.

	Pre-trained models AUC	Dice OD	Dice OC	Fov. Err.
		(↑)	(↑)	(↑)	(↓)
	STL (Classif.)	94.30 ± 1.68 -	-	-
	STL (OD)	-	95.29 ± 0.01 -	-
	STL (OC)	-	-	85.86 ± 0.21 -
	STL (Fovea)	-	-	-	5.42 ± 0.06
	MTL-SUS	94.96 ± 0.74 93.94 ± 0.27 84.62 ± 0.40 11.55 ± 1.71
	MTL-IUS	96.06 ± 0.91 93.94 ± 0.27 83.89 ± 0.98 5.36 ± 0.03
	MTL-IO	96.15 ± 0.14 94.24 ± 0.38 83.95 ± 0.90 5.22 ± 0.18
	MR-SUS	92.92 ± 1.83 94.00 ± 0.76 84.23 ± 0.61 5.50 ± 0.16
	MR-IUS	94.57 ± 0.53 94.10 ± 0.10 84.31 ± 0.31 5.20 ± 0.24
	MR-IO	94.82 ± 0.84 94.63 ± 0.24 83.86 ± 0.22 5.51 ± 0.09
	GradNorm	88.06 ± 3.17 81.37 ± 6.91 67.69 ± 9.75 32.38 ± 1.11
	PCGrad	95.24 ± 0.67 94.41 ± 0.38 84.56 ± 0.40 5.34 ± 0.13
	Table 5.2: Benchmark of the different combinations between different parameter
	sharing strategies (MTL and MR) and optimization schemes (SUS, IUS and IO),
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  ]. Concretely, if the first few layers of a ResNet (detecting simple visual patterns like geometrical shapes) can benefit any computer vision task, it is still unclear how deep the weights Transfer in CNN Training

Table A . 1 :

 A1 Classes correspondances

	Target Class	Inference Affinity	WordNet Affinity	Word2Vec Affinity
	Anchor, ground tackle	Sundial	Hook, claw	Football helmet

Table A .

 A 2: Evolution of the four methods through data reduction. Performances after initialization (left columns) and best registered performances (right columns) are reported, with respect to the number of training samples for each class. unlike the two others), since it is computed with those images. Its performance at initialization thus decreases with the amount of training data. However, it still always achieves better performances, which puts aside the idea of combining both types of similarities[START_REF] Safadi | [END_REF]. Under 5 training images per class, a consequent performance gap remains between the baseline and the proposed models even after training. Under 2 images per class (5 for inference similarity), the best scores are achieved right after initialization, and training only degrades performances. Building the best possible initialization is thus crucial in such cases.

	Images per class	Random	Visual similarity	WordNet semantic similarity	Word2Vec semantic similarity
		First Best First Best First Best First Best
	100	0.00	0.72	0.59	0.73	0.39	0.72	0.35	0.72
	50	0.00	0.68	0.58	0.69	0.39	0.68	0.35	0.68
	25	0.00	0.62	0.58	0.64	0.39	0.63	0.35	0.63
	10	0.00	0.53	0.54	0.54	0.39	0.54	0.35	0.53
	5	0.00	0.41	0.50	0.50	0.39	0.43	0.35	0.45
	2	0.00	0.26	0.44	0.44	0.39	0.39	0.35	0.35
	1	0.00	0.16	0.40	0.40	0.39	0.39	0.35	0.35
	training images (							

https://github.com/lorenmt/mtan

https://github.com/lucaspascal/AITSO_MTL.

https://refuge.grand-challenge.org/Home2020/

https://github.com/lucaspascal/semantic-and-visual-similarities-for-efficientknowledge-transfer-in-CNN-training

.[START_REF] Pascal | Detection, Segmentation and localization using a single model in Glaucoma detection from color fundus images[END_REF] as trained on Flickr, and publicly available at https://github.com/li-xirong/hierse/blob /master/README.md.

Chapter 6. Conclusion sented in Chapter 2, in order to limit the risks of negative transfer among task groups.

Then, MTL-IO is proposed as an alternative way of jointly optimizing a set of parameters with respect to multiple tasks. As shown in Chapter 5, it is not specifically intended to be used in isolation, but can instead be combined with most existing multi-task works, with minimal effort. It is therefore encouraged to further research on how to apply this simple optimization scheme to other existing multi-task methods, in order to eventually combine their benefits.

Chapter 3. Strengthening the inductive bias with a dynamic parameter partitioning mizing a unique objective function aggregating the task specific ones, as most other MTL methods. This specificity is studied extensively in Chapter 4.

Appendix

Proof of Lemma 2

At c = 0, every element of M(0) follows a Bernoulli distribution:

Lets assume P (m i,t (c) = 1) = p, ∀c ∈ {1, ..., (1 -p)S -1} and prove it holds for c + 1.

The probability P (m i,t (c + 1) = 1) can be written as:

P (m i,t (c + 1) = 1) = P (m i,t (c + 1) = 1 | m i,t (c) = 1)P (m i,t (c) = 1)

+ P (m i,t (c + 1) = 1 | m i,t (c) = 0)P (m i,t (c) = 0). (3.7) Since P (m i,t (c) = 1) = P (i ∈ A t (c)), Eq. 3.7 can be reformulated as:

+ P (i ∈ A t (c + 1) | i / ∈ A t (c))P (i / ∈ A t (c)) . (3.8) As i -is uniformly sampled from A t (c), the first term in Eq. 3.8 can be reformulated as

Let us now expand the second term in Eq. 3.8 by considering whether i ∈ B t (c) or not:

, thus (3.10) becomes:

Appendix 39

Given that i + is uniformly sampled from {1, ..., S}\B t (c) :

Then, by replacing (3.9) and (3.11) in Eq. 3.8: The content of this chapter is based on "Optimization Strategies in Multi-Task Learning: Averaged or Independent Losses?" [Pascal et al. 2021b] (to be submitted).

Motivation

The optimization objective in MTL has been introduced for the first time in [Caruana 1997] as the combination into a single aggregated objective function, generally in the form of a weighted sum of all the task-specific objective functions, which the shared model is trained to minimize. This formulation is particularly convenient for deep MTL. First, it is computationally efficient, since a single gradient descent step (i.e. one forward and one backward propagation) optimizes the shared parameters w.r.t. every task, with the only extra computational cost coming from the task-specific parts of the network. Second, in the case of convex task-specific objective functions, it guarantees convergence to the optimum, since the average 

A.1 Introduction

With the emergence of large, public and thoroughly annotated datasets [START_REF] Russakovsky | [END_REF], along with the ever increasing computing capabilities of GPUs, Deep Neural Networks, and especially CNNs, have rapidly revolutionized many computer vision tasks. Such quantities of data allow to learn visual feature extractors whose relevance and discrimination power surpasses the best hand crafted ones [Krizhevsky et al. 2012 Word2Vec similarity. Using some pre-trained Word2Vec embeddings, the standard cosine similarity is computed between the Word2Vec embeddings of the source and target class names.

In the following section, these three initialization techniques are compared to the classic one (i.e. using random initialization of the neural network weights).

A.3.2 Initialization

The affinity values are considered as the coefficients of a neighboring structure, allowing us to approach the target class as a combination of some source neighbors.

For each target class are thus computed the weights of its classifier as a linear combination of its K closest source neighbors with respect to the similarity measure, taking as coefficients these affinity values (normalized, for them to sum to one over K).

In this way, each of the K source classes neighbors contributes to the construction of the target class initialization, in proportion to its normalized similarity. The setting of K with respect to the target classes is studied in the experimental part.

A.4 Experiments and Results

A.4.1 Implementation Details

In the following, a ResNet-101 pre-trained on Imagenet is used to combine architecture simplicity and high performances, and replace the last fully connected layer to fit the target classes.

Weights are trained from the fourth block (included) to the end, while the rest remains frozen. One could use a finer transfer strategy to optimize the results obtained [START_REF] Yosinski | [END_REF], Chu et al. 2016, Wang et al. 2016, Tamaazousti et al. 2017]. Input images' smallest sides are resized to 256 (preserving aspect ratio), then cropped (randomly for training, center crop for testing) to output 224 × 224 images.

Transfer in CNN Training

Each target class is then initialized with the weights of its selected source(s), depending on the chosen similarity measure and the number of source neighbors. A standard Xavier initialization [START_REF] Glorot | [END_REF]] is used for the random initialization baseline.

A.4.4 Neighboring optimization

The first experiment shows the global behavior of the proposed initialization method with a single source class neighbor as initialization for each of the target class, in terms of F-score measure, averaged over the 90 target classes. For this experiment, each of the 90 target classes are populated with 500 training images (limit above which the results did not change significantly). number of source class neighbors: for any type of initialization, the built classifiers smoothly gain in performances by adding neighbors. Beyond the selection of one best source class, this confirms the superiority of the visual similarity over the semantic ones to estimate the relevance of any source class for a transfer. For the WordNet and Word2Vec cases, there is also a significant gain, even if the evolution over the number of neighbors is more chaotic, and it appears to be a good way to compensate bad matchings (like the Word2Vec case in Table A .1).

A.4.5 Data reduction study

In this experiment is studied how well this process generalizes while decreasing the amount of training data. For each of the initialization methods, a new model is initialized, taking for each target class the optimal number of neighbors source classes depending on its type (disjoint, included or inclusive). These optimal numbers are taken from Fig. A.3. Table A.2 shows the scores of these models compared to the random baseline for 100, 50, 25, 10, 5, 2 and 1 training images per class. For each model, the initial performance after initialization (without training) and the best registered performance until convergence are reported.

The source classes selection by inference similarity varies with the number of