
HAL Id: tel-03783509
https://theses.hal.science/tel-03783509

Submitted on 22 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of deep multi-task networks
Lucas Pascal

To cite this version:
Lucas Pascal. Optimization of deep multi-task networks. Neural and Evolutionary Computing [cs.NE].
Sorbonne Université, 2021. English. �NNT : 2021SORUS535�. �tel-03783509�

https://theses.hal.science/tel-03783509
https://hal.archives-ouvertes.fr


SORBONNE UNIVERSITY

DOCTORAL SCHOOL EDITE
DATA SCIENCE

P H D T H E S I S
to obtain the title of

PhD of Science

of EURECOM - Sophia Antipolis
Specialty : Data Science

Defended by

Lucas Pascal

Optimization of Deep Multi-Task
Networks

Thesis Advisor: Maria A. Zuluaga

prepared at EURECOM Sophia Antipolis
defended on 08/11/2021

Jury :

Reviewers : Pablo Árbelaez - Universidad de los Andes
Marcel Worring - University of Amsterdam

Examiners : François Bremond - INRIA
Ender Konukoglu - ETH Zurich
Pietro Michiardi - Eurecom
Maria A. Zuluaga - Eurecom

Invited : Xavier Bost - Orkis
Benoit Huet - Median Technologies





i

Acknowledgments

During this PhD, I’ve been surrounded by many great people, all of whom have
contributed in their own way to my work. I would like to express my gratitude to
them in the following lines.

I would first like to thank my two successive supervisors Benoit Huet and Maria
A. Zuluaga. Benoit entrusted me to start this PhD, and kept providing me with
valuable advice all along this journey, even after his departure. Maria drove me
forward as a researcher, and I learnt a lot from her rigor. Her kindness and
encouragements in periods of doubt have been an incredible support to me.

I am also very grateful to Xavier, my Orkis supervisor for his kindness during these
almost four years in the company. Working with him has been both enjoyable and
enriching to me.

I have then to thank all the PhDs and researchers who interacted with me in Eu-
recom during these years, and created a favorable research environment for my growth.

Many thanks to everyone in Orkis. It’s been a pleasure to work in this motivated,
lively and friendly team. All the moments in the company were pleasant ones to me,
and I feel proud to have contributed to its development.

I’d finally like to thank my family and all my friends for their continuous presence
and support. I feel blessed to be surrounded by such wonderful people, and this
positive environment has always been a key factor in my progress.





Abstract

Multi-Task Learning (MTL) is a learning paradigm involving the joint optimization
of parameters with respect to multiple tasks. By learning multiple related tasks, a
learner receives more complete and complementary information on the input domain
from which the tasks are issued. This allows to gain better understanding of the
domain by building a more accurate set of assumptions of it, what is denoted as
the inductive bias, thus leading to more robust features and better generalization
performance.

Thanks to these features, Multi-Task Learning has become highly attractive for deep
networks. Given their important data requirements, MTL offers the possibility to
learn more generalizable features from the often limited data at disposal. However,
in practice, the broader use of MTL is hindered by the lack of consistent performance
gains observed by deep multi-task networks. It is often the case that deep MTL
networks suffer from performance degradation caused by task interference. This
phenomenon results from destructive interactions between the back-propagated
gradients of the different tasks, and prevents the network from strengthening its
inductive bias.

This thesis addresses the problem of task interference in MTL to improve the
generalization capabilities of deep networks. To this end, it introduces novel
optimization techniques for multi-task learners, which take inspiration from existing
partitioning methods. These methods tackle task interference by allowing the tasks
to specify their own usage of network neurons. Differently from standard MTL
optimization schemes, which aggregate all task specific objectives under a unique
multi-task objective optimized using gradient descent methods, partitioning methods
use independent gradient descent steps that are alternated along the different
task-specific objectives.

In a first contribution, a new dynamic parameter sharing scheme is proposed, which
reduces task interference while strengthening the inductive bias by maximizing
the contribution of every task in the learning of every parameter. This is done
with a lightweight discrete partitioning update scheme, inspired from dropout and
based on random updates. The proposed method, Maximum Roaming, achieved
better generalization performance over different state-of-the-art multi-task baselines,
accross variated experimental settings.

In a second contribution, this thesis studies the difference between the optimization
schemes of standard MTL and partitioning methods, which surprisingly has not been
studied in detail before. To this end, it presents a convergence analysis, along with



iv

a comparative study. From this inspiration, in a third contribution is introduced
a novel optimization scheme, which pushes further the separation of task specific
objectives by specifying task-specific momentum mechanisms, aiming for a more
stochastic optimization. A fourth contribution proposes a task grouping strategy, in
order to freely compromise between the improved generalization performances of
this novel optimization scheme, and the computational efficiency of the standard
optimization scheme used in most related works.

In a final contribution, the developed methods are used in a concrete real world
application, involving glaucoma diagnosis from retinal fundus images. A MTL
approach is proposed, to create superior generalization performance from the few
data at disposal. Although task interference is observable in the experimental results
of the multi-task baselines, the proposed methods efficiently mitigate it, and are
able to improve the generalization performance of the pipeline compared to single
task models.



Résumé

L’apprentissage multi-tâches est un paradigme d’apprentissage qui consiste à
optimiser des paramètres par rapport à plusieurs tâches simultanément. En
apprenant plusieurs tâches liées, un modèle d’apprentissage dispose d’un ensemble
d’informations plus complet concernant le domaine d’entrée dont les tâches sont
issues. Cela lui permet de mieux appréhender ce domaine, en construisant un
ensemble d’hypothèses plus précis, appelé biais inductif, menant ainsi à de meilleures
représentations et une meilleure généralisation.

Ces avantages ont rendu l’apprentissage multi-tâches très attractif pour les réseaux
de neurones profonds. Étant données les contraintes qu’ils imposent en termes de
quantités de données, l’apprentissage multi-tâches offre la possibilité d’apprendre
des représentations plus robustes à partir des données souvent limitées à disposition.
Cependant, en pratique, la systématisation de méthodes multi-tâches est limitée
par le manque de régularité dans les gains de performance obtenus par les réseaux
multi-tâches. Il arrive au contraire que ces réseaux multi-tâches subissent une
perte de performance causée par des interférences de tâches. Ce phénomène résulte
d’intéractions destructives entre les gradients rétro-propagés par les différentes
tâches, et empêche les réseaux de renforcer leur biais inductif.

Cette thèse traite du problème d’interférences de tâches en apprentissage multi-tâches,
afin d’améliorer les capacités de généralisation des réseaux de neurones profonds.
Elle introduit ainsi de nouvelles techniques d’optimisation de réseaux multi-tâches,
en s’inspirant de méthodes de partitionnement existantes. Ces méthodes réduisent
les phénomènes d’interférences en permettant aux différentes tâches de spécifier
leur propre usage des neurones du réseau. Contrairement aux méthodes usuelles
d’apprentissage multi-tâches, qui accumulent les objectifs propres aux différentes
tâches sous un unique objectif multi-tâches, les méthodes de partitionnement
altèrnent les descentes de gradient sur les objectifs respectifs des différentes tâches.

Dans une première contribution, un nouveau schéma dynamique de partage des
paramètres est proposé. Celui-ci réduit les phénomènes d’interférences et renforce le
biais inductif en guarantissant la contribution de chaque tâche dans l’apprentissage
de chaque paramètre partagé. Pour cela est utilisé un schéma de partitionnement
dynamique binaire et peu couteux, inspiré du dropout et basé sur des mises à
jour aléatoires. La méthode proposée, Maximum Roaming, atteint de meilleures
performances de généralisation par rapport à différentes approches multi-tâches
existant dans l’état de l’art, dans des contextes expérimentaux variés.

Dans une seconde contribution, cette thèse étudie la différence entre l’optimisation



vi

utilisée par les méthodes usuelles d’apprentissage multi-tâches, et celle utilisée par
les méthodes de partitionnement, qui n’a étonnement jamais été étudiée en détails.
Pour cela, une étude de convergence et une étude expérimentale comparative de ces
différents schémas d’optimisation est présentée. Dans la continuité de ce travail,
une troisième contribution propose un nouveau schéma d’optimisation, qui pousse
plus loin la séparation entre les objectifs propres aux différentes tâches en spécifiant
des mécanismes de momentum eux aussi propres aux différentes tâches, dans le
but de favoriser une optimisation plus stochastique. Une quatrième contribution
propose une stratégie de groupement de tâches, afin d’établir librement différents
compromis entre les performances de généralisation accrues de ce nouveau schéma
d’optimisation et la vitesse de calcul du schéma d’optimisation utilisé dans la plupart
des travaux existants en apprentissage multi-tâches.

Dans une dernière contribution, les méthodes développées dans cette thèse sont
utilisées dans une application concrète, à savoir le diagnostique automatique de
glaucome à partir d’images de fundus rétinien. Une approche multi-tâches est
proposée afin d’obtenir de meilleures performances de généralisation à partir du peu
de données annotées à disposition. Bien que des phénomènes d’interférences soient
empiriquement observables sur des méthodes d’apprentissage multi-tâches standards,
les méthodes proposées les réduisent efficacement et sont capables d’améliorer les
performances de généralisation du réseau par rapport à des équivalents mono-tâches.



Contents

1 Introduction 1
1.1 Using related tasks to strengthen the inductive bias . . . . . . . . . . 3

1.1.1 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Continual Learning . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Deep Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Parameter Sharing . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Optimization of the shared network . . . . . . . . . . . . . . . 6
1.2.3 Task interference in Deep MTL . . . . . . . . . . . . . . . . . 7

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 11
2.1 Tackling task interference in Deep Multi-Task Learning . . . . . . . . 11

2.1.1 Task affinities in MTL . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Network Architectures in MTL . . . . . . . . . . . . . . . . . 13
2.1.3 Multi-task Optimization . . . . . . . . . . . . . . . . . . . . . 14

2.2 Related works in MTL optimization . . . . . . . . . . . . . . . . . . 15
2.2.1 Loss weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . 16
2.2.3 Gradient editing . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Parameter partitioning . . . . . . . . . . . . . . . . . . . . . . 18

3 Strengthening the inductive bias with a dynamic parameter parti-
tioning 21
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Parameter Partitioning . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Parameter Partitioning Initialization . . . . . . . . . . . . . . 24

3.3 Maximum Roaming Multi-Task Learning . . . . . . . . . . . . . . . . 25
3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.3 Facial Attributes Detection . . . . . . . . . . . . . . . . . . . 29
3.4.4 Scene Understanding . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



viii Contents

4 Separating task-specific objectives for a better optimization 41
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Alternate and independent optimization of task-specific objective

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Standard MTL optimization with aggregated loss . . . . . . . 43
4.2.2 Alternate and independent optimization of task-specific objec-

tive functions for SGD . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Alternate and independent optimization of task-specific objec-

tive functions for moving-average based optimizers . . . . . . 45
4.2.4 Mitigating computational costs through task grouping . . . . 46

4.3 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Scene understanding on NYUv2 . . . . . . . . . . . . . . . . . 47
4.3.2 Multi-class segmentation on Cityscapes . . . . . . . . . . . . 49
4.3.3 Multi-attribute segmentation on Celeb-A . . . . . . . . . . . . 50
4.3.4 Covered distance . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Glaucoma Diagnosis from Retinal Fundus Imaging through MTL 61
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Deep multi-task networks for automated glaucoma diagnosing 61
5.1.2 The Retinal Fundus Imaging challenge (REFUGE) . . . . . . 63

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Pipeline description . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.2 Losses and metrics . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 69
5.4.3 Combination with Transfer Learning . . . . . . . . . . . . . . 73

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Conclusion 79
6.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Open perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Appendices 83

A Semantic and Visual Similarities for Efficient Knowledge Transfer
in CNN Training 85
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.2.1 Datasets and architectures . . . . . . . . . . . . . . . . . . . . 87



Contents ix

A.2.2 Transfer Learning process . . . . . . . . . . . . . . . . . . . . 87
A.2.3 Semantic similarity between textual content . . . . . . . . . . 88

A.3 Similarity-based knowledge transfer . . . . . . . . . . . . . . . . . . . 89
A.3.1 Similarity measures . . . . . . . . . . . . . . . . . . . . . . . . 89
A.3.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . 90
A.4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.4.3 Similarities and Initialization . . . . . . . . . . . . . . . . . . 91
A.4.4 Neighboring optimization . . . . . . . . . . . . . . . . . . . . 92
A.4.5 Data reduction study . . . . . . . . . . . . . . . . . . . . . . . 94

A.5 Conclusion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 97





Chapter 1

Introduction

Contents
1.1 Using related tasks to strengthen the inductive bias . . . . 3

1.1.1 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Continual Learning . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Deep Multi-Task Learning . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Parameter Sharing . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Optimization of the shared network . . . . . . . . . . . . . . 6
1.2.3 Task interference in Deep MTL . . . . . . . . . . . . . . . . . 7

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Deep neural networks (DNN) are known for being over-parameterized models,
containing more parameters than the number of available training samples. This
makes them prone to overfitting, leading to poor generalization on new data. It is
thus crucial to inject DNNs with massive latent information about the input domain
from which the samples are extracted, so that the DNNs can build a relevant set of
assumptions about these domain rules. For example, when working with natural
images, to generalize correctly a learner should learn the invariance of certain entities
to pose and lighting. These domain rules are not explicitly provided in data labels,
but can be deduced by the learner when it experiences label invariance for images of
different pose and lighting. The learner will then refine pose and lighting invariant
features, which will generalize better on new data. Reciprocally, when learning from
low populated and poorly varied datasets, the lack of latent information on the
input domain can lead the learner to deduce wrong assumptions, which will lead to
poor generalization, i.e. overfitting. This set of assumptions made by a learner on an
input domain is generally called inductive bias in machine learning [Baxter 2000].

One first way to strengthen the inductive bias of a learner is to feed it with vast
amounts of data: this is how the massive increase of online publicly available
annotated data led to an impressive breakthrough of deep networks these recent
years [Deng et al. 2009], and established them as a standard in most computer vision
tasks [Krizhevsky et al. 2012]. However, creating massive sets of annotated data for



2 Chapter 1. Introduction

a given task is not affordable in the general case: First, collecting such amount of data
is often impossible in many domains, like medical imaging [Tajbakhsh et al. 2020]
in which data privacy makes it really hard for medical centers to share data, or for
specific tasks in which data doesn’t exist in large amounts. Second, data labelling is
often a tedious and costly work, which cannot reasonably be applied to millions
of samples. For example, annotations for tasks like video captioning or image
segmentation can require a considerable time for just one sample [Dang et al. 2021].
Hence, other solutions have to be adopted to improve the generalization performance
of DNNs.

Data augmentation, dropout and norm-regularization are common and widely
used techniques to improve DNNs generalization [Tajbakhsh et al. 2020]. Data
augmentation refers to techniques used to increase the amount of data by adding
slightly modified copies of the available data or newly created synthetic data using
the existing data as a starting point. These include geometric transformations,
noise addition and color shifts, among others [Shorten & Khoshgoftaar 2019].
Dropout [Srivastava et al. 2014] addresses the generalization problem by explicitly
trying to reduce overfitting of DNNs. To this end, network units are randomly
switched off (or dropped out) during training to encourage the network to rely on as
many possible feature combinations, thus preventing units to co-adapt too much. At
inference time, the predictions from the different "thinned" networks are averaged
together. Finally, norm-regularization techniques penalize the norm (L1 or L2) of
parameters during learning, which is shown to reduce erratic behaviors between
interpolated samples, therefore improving generalization.

Another important resource to improve generalization when training a DNN on
a given task is the usage of other related tasks to introduce a positive inductive
bias. Since different related tasks may provide different and complementary
information on their input domain, using multiple related tasks to train a model
may introduce a more robust inductive bias, and lead the model to better
generalization [Caruana 1997, Baxter 2000]. This is why humans perform so well
on any new vision task: new tasks are not learned from scratch, but instead
reuse all related knowledge on the visual domain, and quickly adapt to this new
task [Thrun & Pratt 1998]. Multi-task learning is a machine learning sub-domain,
which formalizes this concept and aims to develop learning-based methods that can
efficiently exploit multiple tasks in their training process. This thesis focuses on
deep Multi-Task Learning, which aims at jointly optimizing a DNN with respect to
multiple tasks, in order to strengthen its inductive bias.

This chapter provides a context to the work presented in the thesis. It first details
the different existing methods to introduce an inductive bias in the learning process
of a deep neural network from the interactions of related tasks. In a second part,
more attention is given to Multi-Task Learning. Its application to deep networks
(i.e. deep Multi-Task Learning) is more thoroughly detailed and task interference,



1.1. Using related tasks to strengthen the inductive bias 3

the main challenge in MTL is presented. This thesis is devoted to improve task
interference in MTL methods. The chapter concludes by summarizing the main
contributions of this thesis, listing related publications, and by presenting the outline
of this manuscript.

1.1 Using related tasks to strengthen the inductive bias

The usage of multiple related tasks to create robust inductive bias is mainly studied
in three domains, which are Transfer Learning, Multi-Task Learning and Continual
Learning.

1.1.1 Transfer Learning

In Transfer Learning [Pratt 1993, Zamir et al. 2018], a model previously trained on
a source task is used to learn a related but different target task from the same input
domain. Using the source task as a proxy for the target task instead of training a
model from scratch directly on the target task introduces into the learning process
of the target task a set of assumptions on the input domain (i.e. inductive bias)
learned on the source task. This complementary knowledge on the input domain
might not have been acquired as such by training on the target task alone, and
should help the model to learn more generalizable features for the target task. This
is particularly useful in cases where annotated data is lacking for the target task:
the already robust inductive bias learned on the source task allows the network to
quickly and efficiently adapt its robust features to the new task with only few samples.

Transfer Learning for neural networks has been firstly introduced in
[Hinton & Salakhutdinov 2006]. It was then studied in more details in works
like [Yosinski et al. 2014] and [Chu et al. 2016]. In [Yosinski et al. 2014] exper-
iments transfers of different network depths, and notice that transfers can be
negatively affected when transfering only portions of pre-trained networks, which
could break some co-adaptations between convolutional filters of different depth.
They also notice that deeper layers tend to contain more specialized features, which
do not transfer as well as shallow layers. Authors in [Chu et al. 2016] conduce their
study depending on different target dataset sizes, and conclude that the performance
gains of Transfer Learning compared to models trained from scratch is all the
more so high when the target dataset is small. The transfer affinities between
different related computer vision tasks have been thoroughly studied in works
like [Zamir et al. 2018], which provides a large transfer affinity graph between 26

tasks. Some works [Wang et al. 2017, Gonzales Zuniga et al. 2018] also showed that
the performance gains of Transfer Learning can be further increased by augmenting
the pre-trained network with more weights: this is done in [Wang et al. 2017]
by deepening and widening the pre-trained network with new units. Similarly,
in [Gonzales Zuniga et al. 2018], residual units are added to the transfered network,
and trained under a specific scheme, to allow the network to better compensate the



4 Chapter 1. Introduction

shift between the source and target task.

Transfer learning has become very popular in deep learning, in which data require-
ments make it difficult to train networks from scratch. It has shown as particularly
beneficial in computer vision, inside of which the different tasks generally transfer
very well. In practice, the pre-trained layers in convolutional networks transfer so
well between vision tasks that Transfer Learning has also shown as beneficial between
different domains: for example in medical imaging [Tajbakhsh et al. 2020], for which
models pre-trained on natural images (such as ImageNet [Deng et al. 2009]) are often
used to compensate for the lack of annotated data. However, Transfer Learning is a
one-sided interaction between tasks that does not aim to maintain performance on
the source task.

1.1.2 Continual Learning

In Continual Learning [Parisi et al. 2019], a learner continuously learns new
incoming tasks without forgetting previous ones, i.e. avoid catastrophic forgetting,
while data from previous tasks might not be available anymore when learning
a new task. Unlike Transfer Learning, by retaining the knowledge progressively
acquired through different encountered new tasks, the model gets its inductive bias
continuously strengthened. This is analogous to how humans progressively learn
from birth, by continuously receiving new information, and processing it relatively
to the ever-growing knowledge already acquired on their surrounding world (i.e. the
input domain).

To avoid catastrophic forgetting, Continual Learning works have to ensure
that the knowledge acquired from previous task gets preserved when learning
a new one. In works like [Kirkpatrick et al. 2017, Zenke et al. 2017], this is
done through regularization methods: the change on neurons evaluated as
relevant with respect to previous tasks gets penalized in a loss term. This
relevance is computed as a posterior distribution in [Kirkpatrick et al. 2017],
while it is computed from entire learning trajectories in the parameter space
in [Zenke et al. 2017]. In [Lopez-Paz & Ranzato 2017, Chaudhry et al. 2019],
memories of past gradients from previous tasks are retained, and each learning step
for a new task is conduced in order to avoid conflicts with these past gradients.
The intuition is to make the network evolve in directions which do not destroy
what was learned from previous tasks. Other works instead act on the network
architecture [Rusu et al. 2016, Mallya et al. 2018, Mancini et al. 2018], and create
task-specific network branches for every new incoming task. The learning is then
conducted only in the task-specific portions of the network, while the shared parts are
fixed. In [Mallya et al. 2018] and [Mancini et al. 2018] this is done with trainable
task-specific masks that modulate each neuron. Instead, in [Rusu et al. 2016] entire
new networks are defined for each incoming task. Lateral connections allow to
connect with the networks from other tasks.



1.2. Deep Multi-Task Learning 5

In most of the Continual Learning literature [Parisi et al. 2019], the different tasks
are always incoming sequentially, i.e. a new task comes in when the learning of
the previous one is finished. Similarly to Transfer Learning, this implies that the
training for a new task always start with a network containing a well trained set
of assumptions on the input domain. As a result, the case where all tasks income
together and have to be learned jointly is not covered. This setting provides at
once all latent information on the input domain instead of progressively delivering
it through incoming tasks. This simultaneous learning of multiple tasks is also an
ability of the human learning system, which has to deal with new incoming tasks
both sequentially and jointly. This thesis is devoted to this simultaneous learning of
multiple tasks, denoted as Multi-Task Learning.

1.1.3 Multi-Task Learning

In Multi-Task Learning [Caruana 1997], a learner is trained jointly on multiple
tasks from a same input domain. During a unique training phase, the learner is
thus exposed to all the available information of the input domain. All the tasks
are used to create inductive bias for each other. On top of the strengthened
inductive bias, another benefit of MTL is its computational efficiency. In
terms of training time, memory and computational power, training a unique
network jointly on multiple tasks is generally way more efficient than learning
these tasks separately. However the joint optimization of multiple tasks is
particularly challenging for deep networks, and is currently an active research
topic [Ruder 2017, Crawshaw 2020, Vandenhende et al. 2021].

Multi-Task Learning is a widely studied topic in the machine learning
field [Zhang & Yang 2021]. More specifically, deep MTL (i.e. MTL with deep
networks) has been applied in different domains, such as computer vision
(CV) [Ruder 2017, Crawshaw 2020, Vandenhende et al. 2021] and Natural Language
Processing (NLP) [Collobert & Weston 2008, Liu et al. 2015a, Crawshaw 2020].
Most of these works proceed under supervised learning settings, although
more recently MTL has been applied with Reinforcement Learning (RL)
[Pinto & Gupta 2017, Yu et al. 2020, Crawshaw 2020]. In this work, the study is
focused on supervised computer vision tasks, which has been the most investigated
domain so far [Ruder 2017, Crawshaw 2020, Vandenhende et al. 2021].

1.2 Deep Multi-Task Learning

This section provides an overview of deep Multi-Task Learning for computer vision.
It first introduces the standard application of Multi-Task Learning to Deep Convolu-
tional Networks, detailing how parameters are shared and how models are optimized.
Then the performance degradation faced by such networks compared to single task
approaches, namely task interference, is discussed.



6 Chapter 1. Introduction

1.2.1 Parameter Sharing

Multi-Task Learning uses a unique model for the predictions of multiple tasks.
Figure 1.1 depicts the structure typically followed by deep MTL networks. There is
a common trunk shared by the different tasks that contains most of the network’s
complexity, and task specific prediction heads, made of a few layers [Ruder 2017,
Crawshaw 2020]. The inductive bias is generated by the shared parameters in the
common trunk, which are jointly trained with respect to every task. The shared
trunk, learning from all the tasks, has access to all the latent information on the
input domain, and can thus learn more robust features, that the task-specific heads
can freely use for their predictions.
Parameter sharing can be of two types: hard sharing and soft sharing, although
some recent works developed hybrid methods for Multi-Task Learning involving both
types of sharing [Vandenhende et al. 2021].

• Hard sharing [Chen et al. 2018, Strezoski et al. 2019b] consists in using a same
set of parameters for every task. This unique set of parameters is trained
with respect to every task jointly. It is a particularly computationally efficient
approach for deep MTL, since the heaviest part of the network (i.e. the shared
trunk) keeps its size fixed regardless of the number of tasks. Adding a new
task only incurs a supplementary prediction head, of negligible size compared
to the trunk.

• In soft sharing [Misra et al. 2016, Gao et al. 2019], each task uses its own set
of weights, but a constraint is added on the distance between all the identical
shared weights, thus encouraging them to remain close to each other. This
constraint generally takes the form of a L1-norm, L2-norm or the trace norm.
The model size thus increases proportionally to the number of tasks, which
makes soft sharing strategies difficult to use with heavy models like deep neural
networks when the number of tasks increases.

As most existing deep MTL works [Ruder 2017, Crawshaw 2020,
Vandenhende et al. 2021], this thesis focuses on hard parameter sharing strategies.

1.2.2 Optimization of the shared network

Training of a MTL network or model requires that each task is associated to a
differentiable objective function or loss function, to be minimized. To handle the
joint optimization of multiple tasks, the standard practice is to average all the
task-specific objective functions, forming a unique aggregated objective function
(multi-task objective), such as:

L =

N∑
i=1

wi · Li, (1.1)



1.2. Deep Multi-Task Learning 7

Figure 1.1: (Right) Hard parameter sharing. (Left) Soft parameter sharing.

with L the aggregated multi-task objective function, Li the objective function for
task i and wi its associated weight in the averaged sum. The model is trained
to minimize this aggregated objective function [Caruana 1997] through gradient
descent methods. An example is provided in Figure 1.2, with the representation
of both task-specific objective functions and aggregated multi-task objective function.

MTL optimization holds similarities with multi-label classification, where the loss
contributions of each class are averaged. The difference between the two consists in
that in MTL the objective or loss function may be different for each task. Instead,
in multi-label classification the loss function is the same across all classes.

1.2.3 Task interference in Deep MTL

Deep networks present high-dimensional, complex and non-convex loss landscapes
[Li et al. 2018], for which few insights exist at current time, making their op-
timization a difficult process. Unfortunately, the generalization benefits that
could bring MTL approaches are highly dependent on how well the optimization
goes. In practice, current MTL approaches are not always able to improve the
generalization of single-task models, and can even deteriorate it, suggesting
that the joint optimization of parameters by gradient descent methods with
respect to multiple non-convex objective functions is a challenging bottleneck
to achieve performance gains [Kendall et al. 2018]. As shown in Figure 1.2, in
non-convex settings, the gradient information obtained from a location in the
loss landscape can be misleading for long term improvement. It is therefore not
possible to define an optimal and unique way to use the gradients from the different
objective functions (which likely point in different directions) without any insight
on the shape of the loss landscape. This performance degradation phenomenon
observed in Multi-Task Learning is generally called task interference or negative
interference in the literature [Maninis et al. 2019, Strezoski et al. 2019a], and it
is an important hurdle to the spread of multi-task strategies in deep learning systems.



8 Chapter 1. Introduction

Figure 1.2: (upper-left), (upper-right) and (lower-left) represent three possible
2-dimensional non-convex objective functions, with (lower-right) their sum. From
a randomly sampled initialization point for the multi-task optimization, with only
local gradient information from each task, it is impossible to guarantee convergence
into the multi-task optimum, nor is it to judge if a task gradient is beneficial or
detrimental. Increasing the convergence speed or precision would likely not higher
the chances of visiting the convex region around the optimum. One might instead
prefer to play on the stochasticity of the optimization.

This thesis aims at improving the generalization capabilities of MTL frameworks by
improving their optimization. More specifically, it focuses on developing strategies
for parameter sharing and optimization that can mitigate task interference, to allow
these frameworks better exploit the multiple tasks and build a better inductive bias.
Therefore, particular attention is paid to the generalization of the proposed methods
to different networks, contexts, and settings.

1.3 Contributions

The contributions of this thesis are: :

• A method maximising the regularization brought by the plurality of tasks,
while reducing task interference. To this end a partitioning strategy is applied
to the shared parameters with respect to the different tasks, to reduce the



1.4. Publications 9

average number of tasks optimizing a same parameter. The partitioning evolves
through the learning process, for each task, thus it is successively involved in
the training of every single parameter (Chapter 3).

• A convergence analysis of the specific optimization scheme used in partitioning
methods, including the partitioning method proposed in Chapter 3. It opti-
mizes separately and successively the different task-specific objective functions,
instead of aggregating them in a single objective to optimize. An experimental
comparison with the standard MTL optimization scheme is also provided
(Chapter 4).

• A novel optimization scheme inspired by the one used in partitioning meth-
ods. It provides more independence to the tasks by defining task-specific
momentum mechanisms. This new scheme consistently improves the networks
generalization under different experimental settings (Chapter 4).

• A task grouping strategy, which offers a simple and efficient trade-off between
the computational overhead and the generalization benefits of the proposed
methods (Chapter 4).

• A full application over a real world medical imaging challenge, centered on
glaucoma diagnosis from fundus images (Chapter 5), to evidence the benefits
brought by the proposed solutions out of an academic context. In particular,
they prove to be an efficient solution to increase the multi-task performances
in low data settings, and combine well with Transfer Learning.

As previously stated, this thesis focuses on computer vision tasks. However, the
main differences in MTL methods across different application domains (e.g. NLP
or CV) come from the way that domain-specific architectures are exploited. MTL
weight sharing and optimization strategies are essentially domain agnostic. Therefore,
the considerations and contributions of this thesis could be easily applied to other
domains beyond CV tasks.

1.4 Publications

1. Lucas Pascal, Xavier Bost and Benoit Huet. Semantic and Visual Similar-
ities for Efficient Knowledge Transfer in CNN Training. 2019 International
Conference on Content-Based Multimedia Indexing (CBMI), pages 1-6, 2019.

2. Lucas Pascal, Benoit Huet, Xavier Bost and Maria A. Zuluaga. Detection,
Segmentation and localization using a single model in Glaucoma detection from
color fundus images. Presented in MICCAI, 2020.

3. Lucas Pascal, Pietro Michiardi, Xavier Bost, Benoit Huet and Maria A.
Zuluaga. Maximum Roaming Mutli-Task Learning. Proceedings of the AAAI
Conference on Artificial Intelligence, pages 9331-9341, 2021.



10 Chapter 1. Introduction

4. Lucas Pascal, Oscar J. Perdomo, Xavier Bost, Benoit Huet, Sebastian Otálora
and Maria A. Zuluaga. Multi-task deep learning for Glaucoma detection from
color fundus images. Submitted.

5. Lucas Pascal, Pietro Michiardi, Xavier Bost, Benoit Huet and Maria A. Zulu-
aga. Optimization Strategies in Multi-Task Learning: Averaged or Independent
Losses? To be submitted.

1.5 Thesis Outline

The rest of the thesis is organized into five chapters:

Chapter 2 provides a global overview on the topic of deep multi-task learning, by
presenting major research trends. It then more specifically presents existing works
in deep MTL optimization, which is the main topic of the thesis.

Chapter 3 introduces Maximum Roaming, a randomly dynamic partitioning method,
aiming at creating more regularization while benefiting of the easier optimization
provided by partitioning approaches. After a preliminary formulation of the
partitioning strategy applied to the network, it presents the main contribution of
the chapter, which is a novel update strategy for the partitioning scheme.

Chapter 4 focuses on the optimization strategy generally used by existing partitioning
methods, through an extensive study and experimental evaluation, it shows how this
strategy differs from most existing MTL approaches. The chapter then presents a
novel optimization strategy, designed for state-of-the-art moment-based optimizers
generally used with deep networks.

Chapter 5 demonstrates the relevance of the methods presented in Chapters 3
and 4 through their application in a real-world application. Concretely, it de-
velops a MTL framework for glaucoma disease diagnosis from Retinal Fundus Images.

Finally, a conclusion of this thesis is given in Chapter 6. All the contributions
brought in this work are summed up, and possible openings for further research are
discussed from the current limitations in this work.



Chapter 2

Literature Review

Contents
2.1 Tackling task interference in Deep Multi-Task Learning . . 11

2.1.1 Task affinities in MTL . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Network Architectures in MTL . . . . . . . . . . . . . . . . . 13
2.1.3 Multi-task Optimization . . . . . . . . . . . . . . . . . . . . . 14

2.2 Related works in MTL optimization . . . . . . . . . . . . . . 15
2.2.1 Loss weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . 16
2.2.3 Gradient editing . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Parameter partitioning . . . . . . . . . . . . . . . . . . . . . . 18

This chapter provides a literature review of deep Multi-Task Learning. In a first
part, an overview of the main research trends in deep MTL is presented. In a second
part, the focus is given to existing optimization strategies for deep MTL, which is
the core of this thesis.

2.1 Tackling task interference in Deep Multi-Task Learn-
ing

Strategies to tackle task interference in MTL can be essentially classified into
three main types of approaches: task affinities [Doersch & Zisserman 2017,
Zamir et al. 2018, Strezoski et al. 2019b, Standley et al. 2020], networks ar-
chitectures [Misra et al. 2016, Kokkinos 2017, Meyerson & Miikkulainen 2017,
Rosenbaum et al. 2017] and multi-task optimization methods [Chen et al. 2018,
Sener & Koltun 2018, Yu et al. 2020, Maninis et al. 2019, Bragman et al. 2019].

2.1.1 Task affinities in MTL

To maximize the benefits of multi-task learning and tackle task interference,
some works propose to combine multiple tasks and compare the obtained
performance to that one of the equivalent single task models, while keeping
track of which combination is beneficial and which one produces degradation,
i.e. task interference [Doersch & Zisserman 2017, Martinez Alonso & Plank 2017,
Bingel & Søgaard 2017, Standley et al. 2020]. The objective is to discover some



12 Chapter 2. Literature Review

multi-task affinities, that is which task combinations should be preferred to avoid
task interference.

In [Doersch & Zisserman 2017] the multi-task networks systematically produce
improvement compared to single-task ones, on a set of four computer vision tasks:
position regression, colorization, motion segmentation, and exemplar matching.
Instead, in [Martinez Alonso & Plank 2017] and [Bingel & Søgaard 2017], 1440 and
90 combinations of NLP tasks are tested respectively, with some task combinations
clearly producing a performance degradation. In [Bingel & Søgaard 2017], a
logistic regression model is then trained on these results to predict whether a task
combination might or not be beneficial. The downside of these approaches is that
training each combination to evaluate it has a prohibitive cost for deep networks.
To avoid this computational burden, in [Strezoski et al. 2019b], the authors do not
explicitly evaluate the task affinities. Instead, they progressively separate the tasks
in different network branches during training to avoid task interferences, on the
basis of a similarity computed between the gradients issued from the different tasks.

While multi-task affinities have not been largely explored in MTL, they have been
thoroughly studied in Tranfer Learning [Zamir et al. 2018, Dwivedi & Roig 2019,
Song et al. 2019], with the similar objective of determining which task transfers can
produce the most benefits. After introducing the Taskonomy dataset 1, a CV dataset
containing 4 million images from 600 different buildings with 26 annotated CV tasks,
the authors in [Zamir et al. 2018] establish a transfer affinity graph by experimenting
different transfers between the available tasks. As previously stated, this process is
expensive, and requires close to 50000 GPU hours. [Dwivedi & Roig 2019] proposed
a more computationally efficient method that evaluates the transfer affinity between
two tasks by comparing their learned features when trained in isolation (single
task). The assumption here is that tasks with high transfer affinity should learn
similar features when trained in isolation. The comparison is conducted with
Representation Similarity Analysis (RSA) [Kriegeskorte et al. 2008], a method
coming from neuroscience, and used in deep networks to compare neural network
activations. Finally, [Song et al. 2019] propose to compare attribution maps of a
same input image with respect to the different tasks. The attribution maps associate
to each pixel a relevance score with respect to the network output. The authors
consider that tasks with high transfer affinities should essentially focus on the same
parts of an image.

Despite the positive results reported in the literature, experimental results
in [Standley et al. 2020] show that there is no evident correlation between transfer
affinity and MTL affinity. This suggests that insights obtained from previous works
on transfer affinities might not hold for MTL affinities, and that similar studies
should be conducted for MTL. This work [Standley et al. 2020] also shows that the

1http://taskonomy.stanford.edu/



2.1. Tackling task interference in Deep Multi-Task Learning 13

performance gain with respect to single task approaches varies widely depending on
the training settings. The latter suggests that task interference is not entirely deter-
mined by the nature of task pairings, and that advances in multi-task optimization
might lead to systematic generalization benefits regardless of the task pairings.

2.1.2 Network Architectures in MTL

A large body of the literature in Multi-Task Learning focuses on designing
better performing network architectures. Some works have proposed to en-
large deep networks with task-specific branches and attention mechanisms
[Gao et al. 2019, Liu et al. 2019b, Misra et al. 2016, Mordan et al. 2018], giving
tasks more room for specialization. In Cross-stitch networks [Misra et al. 2016],
linear combinations are applied between parallel features of task-specific networks at
different network depths. In a similar spirit, NDDR-CNN [Gao et al. 2019] replaces
the linear combinations with 1× 1 convolutions. In [Mordan et al. 2018], Residual
Auxiliary Blocks are incorporated in a network by directly using supervision from
auxiliary tasks.

Other works adopt fine-grained architectural adaptations to fit a specific set of
tasks [He et al. 2017, Xu et al. 2018, Zhang et al. 2019, Vandenhende et al. 2020].
Among these, there is Mask-RCNN [He et al. 2017] a notable pipeline
for jointly processing instance detection, classification and segmenta-
tion. Arguing that task-specific prediction might be useful for perform-
ing other tasks, PAD-Net [Xu et al. 2018], Pattern Affinitive Propagation
(PAP) [Zhang et al. 2019] and MTI-Net [Vandenhende et al. 2020] compute
preliminary task predictions, which are then mixed together to produce fi-
nal predictions. In [Zhang et al. 2019], an affinity learning layer is added
for efficient combination of the task-specific predictions. Instead, in MTI-
Net [Vandenhende et al. 2020], these affinities are computed at different feature
scales. These works [Xu et al. 2018, Zhang et al. 2019, Vandenhende et al. 2020]
have been designed for NYUv2 [Silberman et al. 2012], an indoor scene under-
standing dataset. However, such developments require important human efforts,
domain-specific knowledge and development time.

A different family of works takes inspiration from Neural Architecture
Search [Elsken et al. 2019] and Meta-Learning [Huisman et al. 2021], and propose
dynamically evolving architectures, so that models can eventually modify their
structure to avoid cases of task interference. In [Lu et al. 2017a], similarly
to [Strezoski et al. 2019b], an initially fully shared network is progressively split
layer by layer, starting from deepest layers, separating task groups based on the
prediction errors faced over same data inputs. In [Meyerson & Miikkulainen 2017]
and [Liang et al. 2018], each layer output for each task is computed as a learned
task-specific weighting of different modules. [Gao et al. 2020] proposed a Gradient-
based Neural Architecture Search (NAS) method, MTL-NAS, which learns to mix



14 Chapter 2. Literature Review

different single-task architectures with feature fusions and then converges to a
smaller fixed architecture. Authors in [Fernando et al. 2017] create a large shared
network, from which subnetworks are optimized for each task through a genetic
algorithm. More recently, in [Sun et al. 2019] the network learns for each task
whether a layer shall be used or ignored, with the help of Gumbel-Softmax sam-
pling [Maddison et al. 2017, Jang et al. 2017]. Inspired from [Bengio et al. 2013], in
which a router adapts the network architecture with respect to each input sample,
works like [Rosenbaum et al. 2017] and [Ahn et al. 2019] propose similar approaches
for multi-task networks. The routers in these works are trained with Reinforcement
Learning.

Similarly to works based on task affinities, NAS methods essentially aim at avoiding
learning configurations which could lead to task interference. Although generally
achieving great improvements with respect to task interference, many of these meth-
ods demand important resources, in terms of computational time or model size, due to
factors like joint architecture and weights learning [Meyerson & Miikkulainen 2017,
Liang et al. 2018], over-parameterization [Fernando et al. 2017], added task-specific
branches [Misra et al. 2016, Liu et al. 2019b, Gao et al. 2020] or growing mod-
els [Lu et al. 2017b, Strezoski et al. 2019b]. As a consequence, they might not scale
well with the number of tasks.

2.1.3 Multi-task Optimization

In opposition to the task affinities works which exploit task groupings to avoid
optimization difficulties, and Architecture Search works which try to find the
best network architecture for a given Multi-Task problem, a third stream of
works aims at improving the optimization schemes for multi-task networks, in
order to better exploit the inductive bias created by the plurality of tasks, re-
gardless of the network architecture or task affinities. These works mainly in-
volve loss weighting strategies [Chen et al. 2018, Guo et al. 2018, Kendall et al. 2018,
Sinha et al. 2018, Liu et al. 2019a, Liu et al. 2019b], Multi-Objective Optimiza-
tion [Sener & Koltun 2018, Lin et al. 2019], gradient editing [Chen et al. 2020,
Yu et al. 2020] and parameter partitioning [Mallya et al. 2018, Mancini et al. 2018,
Strezoski et al. 2019a, Maninis et al. 2019, Bragman et al. 2019]. The methods pro-
posed by this type of techniques generally present multiple advantages:

• they are more computationally efficient, since they do not need to compute any
prior knowledge on the tasks, nor do they modify the network architecture.

• they scale better to the number of tasks, for the same reasons.

• they generalize better to other problem settings (i.e. other domain, task, or
network), since they are essentially domain, task and model-agnostic.

This thesis focuses on optimization schemes in deep Multi-Task Learning. In the
next section a detailed review of this family of works is presented.



2.2. Related works in MTL optimization 15

2.2 Related works in MTL optimization

This section presents the works most related to this thesis, which are optimization
techniques for deep Multi-Task Learning. Methods under this category can be
classified into three sub-categories: loss weighting, gradient editing and parameter
partitioning strategies.

2.2.1 Loss weighting

As stated in Chapter 1, most MTL works optimize an aggregated objective function
L containing all the task-specific objective functions [Caruana 1997], generally under
the form:

L =
∑
i

ωiLi (2.1)

with Li the objective function of task i, and ωi its associated weight. These weights
are of key importance to avoid high magnitude differences among the objective
functions of the different tasks, which could harm the learning of low magnitude
tasks. Tuning these weights with a grid-search presents two major issues:

• it is time consuming: the number of weights combinations to try exponentially
grows with the number of tasks.

• changing dynamics during learning might require a dynamic weighting scheme.

Some deep MTL works have thus proposed different mechanisms to au-
tomatically and dynamically adapt these weights during the learning pro-
cess [Chen et al. 2018, Guo et al. 2018, Kendall et al. 2018, Sinha et al. 2018,
Liu et al. 2019a, Liu et al. 2019b].

In [Kendall et al. 2018] each task loss coefficient is expressed as a function of trainable
task-specific prediction uncertainty parameters. While the model is pushed to reduce
the overall uncertainty, the greater one task uncertainty is, the larger its associated
weight. In [Liu et al. 2019a] these coefficients are modulated considering the learning
speed (i.e. the rate of loss change) of each task. The idea behind it is that tasks
whose losses decreased the least should get prioritized with larger weights. The
coefficient ωi for task i at training step t is thus expressed as:

ωi(t) =

(
Li(t)
Li(0)

)α
(2.2)

with α a hyperparameter to tune.

Dynamic Weight Averaging (DWA) introduced in [Liu et al. 2019b] is a similar
weighting scheme which considers loss ratios with respect to the previous learning
step, i.e. Li(t − 1) instead of Li(0) in Eq. 2.2. These ratios are used inside of a
softmax with temperature scaling to progressively increase their contribution in the



16 Chapter 2. Literature Review

final task weighting coefficients. [Guo et al. 2018] used a similar learning speed for
the weighting, with the difference being that it is computed based on performance
metrics instead of loss functions.

GradNorm [Chen et al. 2018] introduces a differentiable loss term aiming to match
each task gradient magnitude with some desired magnitudes. These desired magni-
tudes are established based on the average task loss gradient and the learning speed
of each task. Specifically, this loss term is defined as:

Lgrad(ωi(t)) =
∑
j

||Gj(t)− Ḡ(t)× (ri(t))
α||1 (2.3)

with Gj(t) and Ḡ(t) respectively the weighted gradient from task j and the aver-
age weighted gradient at step t, and ri(t) the relative learning speed of task i at step t.

Finally, in[Sinha et al. 2018], gradient magnitude equalization among tasks is
explicitly enforced with adversarial training. Specifically, an auxiliary network is
trained to classify from which task incoming gradients are issued. An adversarial
loss term based on this classification is then introduced in the main loss, to force the
different tasks to produce indistinguishable gradients.

Although they adopt different weighting strategies, all these works have in common
the optimization of an aggregated objective function, introduced in [Caruana 1997].
Some other works, presented below, instead question this aggregation, and tackle
task interference by giving more consideration to the task-specific objectives.

2.2.2 Multi-Objective Optimization

Multi-Objective Optimization [Kaisa 1999] consists in optimizing simultaneously
a set of objective functions (L1(t),L2(t), ...,LN (t)), which holds strong analogies
with MTL. A characteristic feature of Multi-Objective Optimization is that it does
not consider the existence of a unique optimal solution. Instead, it defines a set of
solutions named pareto frontier, from which no improvement is possible on one task
without degrading another.

The first application of gradient descent for Multi-Objective Optimization, the
Multiple Gradient Descent Algorithm (MGDA) has been proposed in [Désidéri 2012],
and guarantees convergence in pareto stationary solutions, i.e. solutions on the pareto
frontier. In [Sener & Koltun 2018], an adaptation of this algorithm is proposed,
MGDA-UB, which scales to the high dimensionality of deep networks, by optimizing
an upper-bound of the MGDA objective. MGDA-UB computes for each learning step
scaling factors for each task gradient which guarantees no degradation on any task.
This work has been extended by [Lin et al. 2019] to obtain a set of solutions with
different trade-offs among tasks. Similarly to MGDA, these methods ensure, under



2.2. Related works in MTL optimization 17

reasonable assumptions, to converge into a Pareto optimal solution, from which no
improvement is possible for one task without deteriorating another task.
On a more general note, the motivation behind Multi-Objective Optimization is
that averaging the different objectives into a single one leads to an information
loss, and that task individuality should instead be maintained through the
optimization. However, as pointed out in [Crawshaw 2020], the methods proposed
in [Sener & Koltun 2018] and [Lin et al. 2019] come down to optimizing an
aggregated objective function with dynamic weighting, similarly to loss weighting
methods. Furthermore, these methods present a greedy behavior, trying to improve
every task for each learning step. In the case of multiple non-convex objectives, this
could lead to stagnation into task-specific local minima, performing poorly on the
other tasks. More generally, converging on the pareto frontier is not a sufficient
guarantee for good multi-task performance in non-convex settings.

2.2.3 Gradient editing

Similarly to Multi-Objective Optimization methods, a recent line of works,
denoted in this thesis as gradient editing methods, also highlight the importance
of considering individual task-specific gradient components to tackle task inter-
ference [Chen et al. 2020, Yu et al. 2020]. These works hypothesize that task
interference is related to opposite gradient directions among the tasks. Therefore,
they propose to modify the task-specific gradients to solve the conflicts before
averaging them.

The method proposed in [Yu et al. 2020] takes inspiration in some Continual Learning
works [Lopez-Paz & Ranzato 2017, Chaudhry et al. 2019]. The methods proposed
in [Lopez-Paz & Ranzato 2017, Chaudhry et al. 2019], which learn sequentially in-
coming tasks, keep memories of previous task gradients for a given task j. For any
new training step for a given task i they detect a gradient conflict if the gradient
from task i points in an opposite direction of any other previous task gradient:

∃j < i, Gi(t)
TGj(t) < 0 (2.4)

with Gi(t) and Gj(t) are the gradient vectors of the current task i and
of a previous task j memory at update step t. In case of such conflict,
in [Lopez-Paz & Ranzato 2017] a quadratic optimization problem is solved to find
the closest possible replacement candidate for Gi(t) which would not conflict
with any Gj(t), ∀j < i. In [Chaudhry et al. 2019] a relaxed version is proposed
by only solving the conflict with a unique average gradient of the previous tasks.
This comes down to a simple projection on the normal plane in case of initial
conflict, which greatly improves computation time. [Yu et al. 2020] propose to apply
the same approach in a multi-task setting. For each training step, each pair of
conflicting gradients gets projected onto the normal planes of each other, so that
the optimization follows a consensual descent direction. Theoretically, this method



18 Chapter 2. Literature Review

provides a better convergence in some conflicting regions with strong unbalance
between the different task loss magnitudes.

In [Chen et al. 2020], the authors propose a probabilistic framework to solve gradient
conflicts. They propose to have a network layer, transparent during the forward
pass, through which each task gradient component is given a certain probability to
be kept. This probability gets higher the more the gradient component’s sign is in
accordance with the sign of other tasks gradient components. Concretely, a gradient
positive sign purity P is computed:

P =
1

2

(
1 +

∑
i∇Li∑
i |∇Li|

)
(2.5)

This gradient positive sign purity represents the "average positivity" of each compo-
nent of task gradients, ranging from 0, when all task-specific gradient components
are negative, to 1 if they are all positive. For each model parameter component k,
its associated gradient component gi,k from task i has a probability to be kept of:{

Pk if gi,k > 0

(1− Pk) if gi,k < 0
(2.6)

and is set to zero otherwise. All the task-specific component are then average into a
multi-task loss for back-propagation.

Despite the promising results and convergence guarantees, these works apply correc-
tions in some specific cases, i.e. gradients pointing in opposite directions, assuming
that these are systematically detrimental to learning. Such assumption cannot fully
hold in non-convex settings (or would require more prior knowledge on the loss
landscapes), and some of these happenings might occasionally lead to the discovery
of better regions of the loss landscape.

2.2.4 Parameter partitioning

One last family of works proposes a relaxed version of the hard parameter sharing
strategy: while a unique set of parameter is defined for every task as in hard
parameter sharing, for each task is defined a specific usage of this set of parameters.
Concretely, this specification takes the form of attention masks applied at the neuron-
level (i.e. convolutional filters), allowing each task to select, modulate or discard the
output of each neuron. Binary masks can be used for binary neuron selection, and
real-valued masks for modulation. In the following, this task-specific selection of
parameters with selection masks is denoted as parameter partitioning. The idea
behind works using parameter partitioning [Mallya et al. 2018, Mancini et al. 2018,
Strezoski et al. 2019a, Maninis et al. 2019, Bragman et al. 2019] is to allow tasks
specify their own usage of the shared parameters, while potentially reducing cases of
task interference.



2.2. Related works in MTL optimization 19

The first of such works, Piggyback [Mallya et al. 2018], is a method to adapt a
pre-trained network to related tasks. The pre-trained weights are frozen, while
task-specific binary masks (i.e. partitions) are learned to allow the tasks to specify
their own usage of parameters. The advantage of this approach is that each task
can learn from the pre-trained parameters without altering them, so that new tasks
can be added with no degradation for the previous others. A similar approach
is proposed in [Mancini et al. 2018], where affine transformations of the shared
features are produced from learned real-valued partitions. However as pointed out
in [Mallya et al. 2018], since the shared parameters are frozen in these two methods,
the tasks cannot benefit from each other learning to strengthen their inductive bias.

Unlike [Mallya et al. 2018], in [Strezoski et al. 2019a] a parameter partitioning
method allowing for a joint training of the shared parameters with respect to the
multiple tasks is proposed. For this, binary selection masks are randomly initialized
and fixed from start as the different task-specific partitions, while the shared parts
are optimized by using this partitioning. The parameter partitions are initialized
with one hyper-parameter, which determines the proportion of the total parameters
that should be selected for every task. The experimental results suggest that this
method greatly reduces task interference, by reducing the average number of tasks
optimizing the same parameter.

In [Maninis et al. 2019], task-specific Squeeze and Excitation (SE) mod-
ules [Hu et al. 2018] are proposed to optimize real-valued parameter partitions,
trained along with the network. Squeeze and Excitation modules are small
modules made of 1 × 1 fully connected layers, which learn for each layer an
attention map at the filter level, which is then applied to the layer output. To
further reduce task interference, the authors in [Maninis et al. 2019] also use
Residual Adapters [Rebuffi et al. 2018], which are residual blocks aiming at refining
task-specific features on top of the shared ones, and an adversarial training similar
to [Sinha et al. 2018] to make the gradients from each task indistinguishable.

Finally, in [Bragman et al. 2019], task-specific binary partitions are set
along with a shared one, and trained using a Gumbel-Softmax distribu-
tion [Maddison et al. 2017, Jang et al. 2017] to avoid the discontinuities created by
binary assignments. The intuition here is to separate convolutional filters between
one "generalist" group, used by every task, and multiple task-specific "specialist"
groups used by isolated tasks to obtain more specific features.

Although these methods are essentially used as optimization methods for hard
parameter sharing multi-task pipelines, they can also be considered themselves as a
new kind of parameter sharing, which compromises the memory efficiency of hard
parameter sharing, and the flexibility of soft parameter sharing. Back to optimization
considerations, interestingly, the task-specific usage of parameters in all these methods
imposes to alternately apply independent update steps with respect to the different



20 Chapter 2. Literature Review

tasks objective functions, instead of aggregating them into a single objective, which
is a different optimization scheme than in most other MTL works, applying update
steps on an aggregated loss. This specific optimization scheme is discussed in
[Maninis et al. 2019] as a way to exploit the benefits of partitioning, but is however
never studied in isolation, theoretically or experimentally. These considerations
make partitioning methods particularly interesting to study. This thesis therefore
takes inspiration from partitioning methods to develop new optimization and sharing
schemes for MTL pipelines.



Chapter 3

Strengthening the inductive bias
with a dynamic parameter

partitioning

Contents
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Parameter Partitioning . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Parameter Partitioning Initialization . . . . . . . . . . . . . . 24

3.3 Maximum Roaming Multi-Task Learning . . . . . . . . . . . 25

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.3 Facial Attributes Detection . . . . . . . . . . . . . . . . . . . 29

3.4.4 Scene Understanding . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

The content of this chapter is based on: "Maximum Roaming Multi-Task Learn-
ing" [Pascal et al. 2021a], which was published as a conference paper in AAAI 2021.

3.1 Motivation

In most existing works in MTL, parameters are shared among all tasks indifferently,
except these used for task-specific predictions. However, this setting can lead to cases
of task interferences, degrading the performance compared to single task models, and
thus canceling one of the expected benefits of multi-tasking, which is better general-
ization on new data. In this section current limitations in related works are presented.

To address the problem of task interferences, several works have proposed
to enlarge deep networks with task specific parameters [Gao et al. 2019,
He et al. 2017, Kokkinos 2017, Liu et al. 2019b, Lu et al. 2017a, Misra et al. 2016,
Mordan et al. 2018], giving tasks more room for specialization, and thus achieving



22
Chapter 3. Strengthening the inductive bias with a dynamic parameter

partitioning

Figure 3.1: Maximum Roaming task partitions update process illustrated for two
tasks in a layer containing 10 parameters. The partitions are initialized with a
sharing ratio p = 0.6. After four update steps, every parameter has been used by
both the tasks for at least ∆ iterations.

better results. Other works adopt architectural adaptations to fit a specific set of tasks
[Xu et al. 2018, Zhang et al. 2018, Zhang et al. 2019, Vandenhende et al. 2020].
These approaches, however, do not solve the problem of task interference in
the shared portions of the networks. Furthermore, they generally do not scale
well with the number of tasks. Closer to the approach proposed in this chapter,
some other works leave out architectural considerations and directly aim at
easing the optimization in the shared parts of the networks, thanks to different
loss weighting strategies [Kendall et al. 2018, Chen et al. 2018, Liu et al. 2019b,
Sinha et al. 2018, Sener & Koltun 2018]. However most of these methods
[Kendall et al. 2018, Chen et al. 2018, Liu et al. 2019b, Sinha et al. 2018] do not
directly aim at addressing task interference, their main goal being to allow each
task objective to have more or less magnitude in the main objective according
to some learning dynamics. In the case of [Sener & Koltun 2018], although the
method is guaranteed to converge in pareto-optimal solutions, the constraint
of improving every single task at each training step is at risk in the case of
non-convex loss landscapes, and can lead to quick convergence into poor loss
regions in case of strongly interfering tasks. Finally, partitioning methods are
explicitly used in [Strezoski et al. 2019a, Bragman et al. 2019, Maninis et al. 2019]
to mitigate task-interferences by reducing the average number of tasks training a



3.2. Preliminaries 23

given parameter: with this the chances are lower to having destructive conflicts on
this parameter. However, despite the promising results, the risk in this strategy
is to reduce the contribution of some tasks in the learning of each parameter, and
therefore weaken the inductive bias of the model.

This chapter presents Maximum Roaming (Figure 3.1), a dynamic partitioning
scheme that sequentially strengthens the inductive bias, while keeping task inter-
ference under control. Inspired by the dropout technique [Srivastava et al. 2014],
the proposed method allows each parameter to roam across several task-specific
sub-networks, thus giving them the ability to learn from a maximum number of
tasks and build representations more robust to variations in the input domain. It
can therefore be considered as a regularization method in the context of multi-task
learning. Differently from other recent partitioning methods that aim at optimiz-
ing [Bragman et al. 2019, Maninis et al. 2019] or fixing [Strezoski et al. 2019a] a
specific partitioning, maximum roaming privileges continuous random partition
and assignment of parameters to tasks allowing them to learn from each task.
Experimental results show consistent improvements over the state of the art methods.

The remaining of the chapter is organized as follows. Some preliminary elements
and notations are first set out before the details of Maximum Roaming. Extensive
experiments are then conducted to study the properties of the proposed method and
to demonstrate its superior performance compared to other state-of-the-art MTL
approaches. A final discussion over contributions and perspectives is presented.

3.2 Preliminaries

Let us define a training set T = {(xn,yn,t)}n∈[N ],t∈[T ], where T is the number of
tasks and N the number of data points. The set T is used to learn the T tasks
with a standard shared convolutional network of depth D having one different final
prediction layer for each task t. Under this setup, the convolutional filters of the
network are referred to as parameters, with S(d) the number of parameters of the
dth layer and i ∈

{
1, . . . , S(d)

}
its index. Finally, Smax = maxd {S(d)} represents

the maximum number of parameters contained by a network layer.

In standard MTL, with fully shared parameters, the output of the dth layer for task
t is computed as:

f
(d)
t (H) = σ

(
H ∗K(d)

)
, (3.1)

where σ(.) is a non-linear function (e.g. ReLU), H a hidden input, and K(d) the
convolutional kernel composed of the S(d) parameters of layer d.



24
Chapter 3. Strengthening the inductive bias with a dynamic parameter

partitioning

3.2.1 Parameter Partitioning

Let us now introduce

M =
{(

m
(d)
1 , . . . ,m

(d)
T

)}
d∈[D]

,

the parameter partitioning matrix, with m
(d)
t ∈ {0, 1}S

(d) a column vector associated
to task t in the dth layer, and m(d)

i,t an element on such vector associated to the ith

parameter. AsM allows to select a subset of parameters for every t, the output of
the dth layer for task t (Eq. 3.1) is now computed as:

f
(d)
t (Ht) = σ

((
Ht ∗K(d)

)
�m

(d)
t

)
, (3.2)

with � the channel-wise product. This notation is consistent with the formalization
of the dropout (e.g. [Gomez et al. 2019]). By introducing M, the hidden inputs
are now also task-dependent: each task requires an independent forward pass, like
in [Maninis et al. 2019, Strezoski et al. 2019a]. In other words, given a training
point (xn, {yn,t}Tt=1), for each task t is computed an independent forward pass
Ft(x) = f

(D)
t ◦ ... ◦ f (1)

t (x) and then back-propagate the associated task-specific
losses Lt(Ft(x),yt). Each parameter i receives independent training gradient signals
from the tasks using it, i.e. m(d)

i,t = 1. If the parameter is not used, i.e. m(d)
i,t = 0,

the received training gradient signals from those tasks account to zero.

For the sake of simplicity in the notation and without loss of generality, in the
remaining of this document the index d indicating a given layer is omitted.

3.2.2 Parameter Partitioning Initialization

Every element ofM follows a Bernoulli distribution of parameter p:

P (mi,t = 1) ∼ B(p).

Here p denotes the sharing ratio [Strezoski et al. 2019a]. The same value p is used
for every layer of the network. The sharing ratio controls the overlap between task
partitions, i.e. the number of different gradient signals a given parameter i will
receive through training. Reducing the number of training gradient signals reduces
task interference, by reducing the probability of having conflicting signals, and eases
optimization. However, reducing the number of task gradient signals received by i
also reduces the amount and the quality of inductive bias that different task gradient
signals provide, which is one of the main motivations and benefits of multi-task
learning [Caruana 1997].

A condition is imposed to guarantee the full capacity use of the network:

T∑
t=1

mi,t ≥ 1. (3.3)



3.3. Maximum Roaming Multi-Task Learning 25

Parameters not satisfying this constraint are attributed to a unique uniformly
sampled task. The case p = 0, thus corresponds to a fully disjoint parameter
partitioning, i.e.

∑T
t=1mi,t = 1,∀ i, whereas p = 1 is a fully shared network, i.e.∑T

t=1mi,t = T, ∀ i, equivalent to Eq. 3.1.

Following a strategy similar to dropout [Srivastava et al. 2014], which forces parame-
ters to successively learn efficient representations in many different randomly sampled
sub-networks, the aim here is to make every parameter i learn from every possible
task by regularly updating the parameter partitioningM, i.e. make parameters roam
among tasks to sequentially build the inductive bias, while still taking advantage
of the "simpler" optimization setup regulated by p. For this Maximum Roaming
Multi-Task Learning is introduced. It is a learning strategy consisting of two core
elements: 1) a parameter partitioning update plan that establishes how to introduce
changes inM, and 2) a parameter selection process to identify the elements ofM
to be modified.

3.3 Maximum Roaming Multi-Task Learning

In this section is formalized the core of the proposed contribution. Let first present
an assumption that relaxes what can be considered as inductive bias.

Assumption 1. The benefits of the inductive bias provided by the simultaneous
optimization of parameters with respect to several tasks can be obtained by a sequential
optimization with respect to different subgroups of these tasks.

This assumption is in line with [Yosinski et al. 2014], where the authors state that
initializing the parameters with transferred weights can improve generalization per-
formance, and with other works showing the performance gain achieved by inductive
transfer (see [He et al. 2017, Singh 1992, Tajbakhsh et al. 2016, Zamir et al. 2018]).

Assumption 1 allows to introduce the concept of evolution in time of the parameters
partitioningM, by indexing over time asM(c), where c ∈ N indexes update time-
steps, and M(0) is the partitioning initialization. At every step c, the values of
M(c) are updated, under constraint (3.3), allowing parameters to roam across the
different tasks.

Definition 1. Let At(c) = {i |mi,t(c) = 1} be the set of parameter indices used by
task t, at update step c, and Bt(c) = ∪cl=1At(l) the set of parameter indices that
have been visited by t, at least once, after c update steps. At step c+ 1, the binary
parameter partitioning matrix M(c) is updated according to the following update
rules: 

mi−,t(c+ 1) = 0, i− ∈ At(c)
mi+,t(c+ 1) = 1, i+ ∈ {1, ..., S}\Bt(c)
mi,t(c+ 1) = mi,t(c), ∀ i /∈ {i−, i+}

(3.4)



26
Chapter 3. Strengthening the inductive bias with a dynamic parameter

partitioning

with i+ and i− unique, uniformly sampled in their respective sets at each update step.

The frequency at whichM(c) is updated is governed by ∆, where c =
⌊
E
∆

⌋
and E

denotes the training epochs. This allows parameters to learn from a fixed parti-
tioning over ∆ training iterations in a given partitioning configuration. ∆ has to
be significantly large (it is expressed in terms of training epochs), so the network
can fully adapt to each new configuration. Considering that discrete updates are
applied in the parameter space, which has an impact in model performance, only one
parameter is updated per update step to minimize the short-term impact. Figure 3.1
illustrates the full update process for one layer.

Lemma 1. Any update plan as in Def.1, with update frequency ∆ has the following
properties:

1. The update plan finishes in ∆(1− p)Smax training steps.

2. At completion, every parameter has been trained by each task for at least ∆

training epochs.

3. The number of parameters attributed to each task remains constant over the
whole duration of update plan.

Proof: Point 1 comes from the fact that Bt(c)grows by 1 at every step c, until all
possible parameters in a given layer d are included, thus no new i+ can be sampled.
At initialization, |Bt(c)| = pS, and it increases by one every ∆ training iterations,
which gives the indicated result, upper bounded by the layer containing the most
parameters. Point 2 is straightforward, since each new parameter partition remains
frozen for at least ∆ training epochs. The same holds for item 3 , since every update
consists in the exchange of parameters i− and i+

Definition 1 requires to select update candidate parameters i+ and i− from their
respective subsets (Eq 3.4). i+, i− are both selected under a uniform distribution
(without replacement), a lightweight solution to guarantee a constant overlap between
the parameter partitions of the different tasks.

Lemma 2. The overlap between parameter partitions of different tasks remains
constant, on average, when the candidate parameters i− and i+, at every update step
c+ 1, are sampled without replacement under a uniform distribution from At(c) and
{1, ..., S}\Bt(c), respectively.

Proof: It is proven by induction that P (mi,t(c) = 1) is constant over c, i and t,
which ensures a constant overlap between the parameter partitions of the different
tasks. The detailed proof is provided in appendix 3.6

The probability of a parameter i to have been used by task t, after c update steps
can be formulated as:

P (i ∈ Bt(c)) = p+ (1− p) r(c) (3.5)



3.4. Experimental Results 27

where

r(c) =

(
c

(1− p)S

)
, c ≤ (1− p)S (3.6)

is the update ratio, which indicates the completion rate of the update process within
a layer. The condition c ≤ (1 − p)S refers to the fact that there cannot be more
updates than the number of available parameters. It is also a necessary condition
for P (i ∈ Bt(c)) ∈ [0, 1]. The increase of this probability represents the increase in
the number of visited tasks for a given parameter, which is what creates inductive
bias, following Assumption 1.

The benefits of Maximum Roaming are formalized in the following proposition:

Proposition 1. Starting from a random binary parameter partitioningM(0) con-
trolled by the sharing ratio p, Maximum Roaming maximizes the inductive bias across
tasks, while controlling task interference.

Proof: Under Assumption 1, the inductive bias is correlated to the averaged
number of tasks having optimized any given the parameter, which is expressed by
Eq. 3.5. P (i ∈ Bt(c)) is maximized with the increase of the number of updates c,
to compensate the initial loss imposed by p ≤ 1. The control over task interference
cases is guaranteed by Lemma 2

3.4 Experimental Results

This section first describes the datasets and the baselines used for comparison. The
presented Maximum Roaming MTL method is first evaluated on several problems.
First are studied its properties such as the effects the sharing ratio p, the impact of
the interval between two updates ∆ and the completion rate of the update process
r(c) and the importance of having a random selection process of parameters for
update. Finally, a benchmark is presented, comparing MR with the different baseline
methods. All code, data and experiments are available on GitHub 1.

3.4.1 Datasets

Three publicly available datasets are used in the experiments:

Celeb-A. The official release is used, which consists of more than 200k
celebrities images, annotated with 40 different facial attributes. To reduce the
computational burden and allow for faster experimentation, it is casted into a
multi-task problem by grouping the 40 attributes into eight groups of spatially or
semantically related attributes (e.g. eyes attributes, hair attributes, accessories..)
and creating one attribute prediction task for each group. The composition of these



28
Chapter 3. Strengthening the inductive bias with a dynamic parameter

partitioning

Tasks Classes

Global Attractive, Blurry, Chubby, Double Chin, Heavy Makeup, Male,
Oval Face, Pale Skin, Young

Eyes Bags Under Eyes, Eyeglasses, Narrow Eyes, Arched Eyebrows,
Bushy Eyebrows

Hair Bald, Bangs, Black Hair, Blond Hair, Brown Hair, Gray Hair,
Receding Hairline, Straight Hair, Wavy Hair

Mouth Big Lips, Mouth Slightly Open, Smiling, Wearing Lipstick

Nose Big Nose, Pointy Nose

Beard 5 o’ Clock Shadow, Goatee, Mustache, No Beard, Sideburns

Cheeks High Cheekbones, Rosy Cheeks

Wearings Wearing Earrings, Wearing Hat, Wearing Necklace, Wearing Necktie

Table 3.1: Class composition of each the tasks for the Celeb-A dataset.

groups is provided in Table 3.1.

Cityscapes
The Cityscapes dataset [Cordts et al. 2016] contains 5000 annotated street-view
images with pixel-level annotations from a car point of view. The seven main
semantic segmentation tasks are considered, along with a depth-estimation regression
task, for a total of 8 tasks.

NYUv2
The NYUv2 dataset [Silberman et al. 2012] is a challenging dataset containing 1449

indoor images recorded over 464 different scenes from Microsoft Kinect camera. It
provides 13 semantic segmentation tasks, depth estimation and surfaces normals
estimation tasks, for a total of 15 tasks. As with Cityscapes, the pre-processed data
provided by [Liu et al. 2019b] is used.

3.4.2 Baselines

Maximum Roaming is compared with several alternatives, including two parameter
partitioning approaches [Maninis et al. 2019, Strezoski et al. 2019a]. Among these,
[Bragman et al. 2019] was not included, as it was not possible to correctly replicate
the method with the available resources. Specifically, the following methods are
evaluated:

• MTL, a standard fully shared network with uniform task weighting.

1https://github.com/lucaspascal/Maximum-Roaming-Mutli-Task-Learning

https://github.com/lucaspascal/Maximum-Roaming-Mutli-Task-Learning


3.4. Experimental Results 29

• GradNorm [Chen et al. 2018], a fully shared network with trainable task weight-
ing method.

• MGDA-UB [Sener & Koltun 2018], a fully shared network which formulates
the MTL as a multi-objective optimization problem.

• Task Routing (TR) [Strezoski et al. 2019a], a parameter partitioning method
with fixed binary masks.

• SE-MTL [Maninis et al. 2019] a parameters partitioning method, with trainable
real-valued masks. Note that it consists in the original paper of a more complex
framework which comprises several other contributions. For a fair comparison
with the other baselines, only the parameter partitioning is considered and not
the other elements of their work.

• STL, the single-task learning baselines, using one model per task.

3.4.3 Facial Attributes Detection

These first experiments study in detail the properties of the proposed method using
the Celeb-A dataset. Being a small dataset it allows for fast experimentation.

Experimental setup
Table 3.1 provides details on the distribution of the 40 facial attributes between
the 8 created tasks. Every attribute in a task uses the same parameter partition.
During training, the losses of all the attributes of the same task are averaged to
form a task-specific loss. All baselines use a ResNet-18 [He et al. 2016c] truncated
after the last average pooling as a shared network. 8 fully connected layers of
input size 512 are then added, one per task, with the appropriate number of
outputs, i.e. the number of facial attributes in the task. The partitioning methods
([Maninis et al. 2019], [Strezoski et al. 2019a] and Maximum Roaming) are applied
to every shared convolutional layer in the network. The parameter α in GradNorm
[Chen et al. 2018] has been optimized in the set of values {0.5, 1, 1.5}. All models
were trained with an Adam optimizer [Kingma & Ba 2017] and a learning rate of
1e−4, until convergence, using a binary cross-entropy loss function, averaged over
the different attributes of a given task. The batch size is set to 256, and all input
images are resized to (64 × 64 × 3). The reported results are evaluated using a
validation split provided in the official release of the dataset [Liu et al. 2015b]. The
reported results are averaged over five seeds.

Effect of Roaming
In a first experiment, the effects of the roaming imposed to parameters in MTL
performance as a function of the sharing ratio p are studied, and compared with
a fixed partitioning setup. Figure 3.2 reports achieved F-scores as p varies, with
∆ = 0.1 and r(c) = 100%. Let us remark that as all models scores are averaged over
5 seeds, this means that the fixed partitioning scores are the average of 5 different



30
Chapter 3. Strengthening the inductive bias with a dynamic parameter

partitioning

(fixed) partitionings.

Figure 3.2: Contribution of Maximum Roaming depending on the parameter parti-
tioning selectivity p.

Results show that for the same network capacity Maximum Roaming provides
improved performance w.r.t. a fixed partitioning approach. Moreover, as the values
of p are smaller, and for the same network capacity, Maximum Roaming does not
suffer from a dramatic drop in performance as it occurs using a fixed partitioning.
This behavior suggests that parameter partitioning does have an unwanted effect
on the inductive bias that is, thus, reflected in poorer generalization performance.
However, these negative effects can be compensated by parameter roaming across
tasks.

The fixed partitioning scheme (blue bars) achieves its best performance at p = 0.9

(F-score= 0.6552). This is explained by the fact that the dataset is not originally
made for multi-task learning: all its classes are closely related, so they naturally
have a lot to share with few task interference. Maximum Roaming achieves higher
performance than this nearly full shared configuration (the overlap between task
partitions is close to its maximum) for every p in the range [0.3, 0.9]. In this range,
the smaller p is, the greater the gain in performance: it can be profitable to partially
separate tasks even when they are very similar (i.e. multi-class, multi-attribute
datasets) while allowing parameters to roam.

Effect of ∆ and r(c)

Here, the impact of the interval between two updates ∆ and the completion rate of
the update process r(c) (Eq. 3.6) is studied. Using a fixed sharing ratio, p = 0.5,



3.4. Experimental Results 31

the obtained F-score values of Maximum Roaming over a grid search with respect to
these two hyper-parameters are reported in Figure 3.3(center).

Figure 3.3: F-score of the proposed method reported for different values of the
update interval ∆ and the update completion rate r. Different colors and circle sizes
indicate different F-score values.

Results show that the model’s performance increases for a wide range of ∆ values
(∼ 0.05-1 epochs). For higher ∆ values, the update process is still going on while
the model starts to overfit, which seems to prevent it from reaching its full potential.
A rough knowledge of the overall learning behavior on the training dataset or a
coarse grid search is enough to set it. Regarding the completion percentage r, as it
would be expected, the F-score increases with r as long as ∆ is not too high. The
performance improvement becomes substantial beyond r = 25%, suggesting that it
can also be tuned to adapt the duration of the update process without incurring in
a significant loss.

Role of random selection
Finally, the importance of choosing candidate parameters for updates under a
uniform distribution is addressed. To this end, here is defined a deterministic
selection process to systematically choose i− and i+ within the update plan of Def. 1.
New candidate parameters are selected to minimize the average cosine similarity
in the task parameter partition. The intuition behind this update plan is to select
parameters which are the most likely to provide additional information for a task,
while discarding the more redundant ones based on their weights. The candidate



32
Chapter 3. Strengthening the inductive bias with a dynamic parameter

partitioning

parameters i− and i+ are thus respectively selected such that:

i− = arg minu∈At(c)

(∑
v∈(At(c)\{u})

Ku·Kv
||Ku||||Kv ||

)
i+ = arg maxu∈{1,..,S}\Bt(c)

(∑
v∈At(c)

Ku·Kv
||Ku||||Kv ||

)
with Ku,Kv the parameters u, v of the convolutional kernel K. Figure 3.4 compares
this deterministic selection process with Maximum Roaming by reporting the best
F-scores achieved by the fully converged models for different completion rates r(c)
of the update process.

Figure 3.4: Comparison of Maximum Roaming with random and non-random
selection process of parameter candidates for updates.

Results show that, while both selection methods perform about equally at low values
of r, MR progressively improves as r grows. This is to attribute to the varying
overlapping induced by the deterministic selection. Thanks to it, outliers in the
parameter space have more chances than others to be quickly selected as update
candidates, which slightly favours a specific update order, common to every task.
This has the effect of increasing the overlap between the different task partitions,
along with the cases of task interference.

It should be noted that the deterministic selection method still provides a significant
improvement compared to a fixed partitioning (r = 0). This highlights the primary
importance of making the parameters learn from a maximum number of tasks, which
is guaranteed by the update plan (Def. 1), i.e. the roaming, used by both selection
methods.



3.4. Experimental Results 33

Benchmark
Finally, the proposed method is benchmarked with the different baselines. Precision,
recall and f-score metrics averaged over the 40 facial attributes are reported, along
with the average ranking of each MTL model over the reported performance
measures; and the ratio #P of trainable parameters w.r.t. the MTL baseline
(Table 3.2). The partitioning methods (TR, SE-MTL and MR) achieve the three
best results, and the MR method performs substantially better than the two others.

Figure 3.5: Radar chart comparing different baselines F-scores on every facial
attribute of Celeb-A. (left) attributes with highest scores, (right) attributes with
lowest scores. Each plot is displayed at a different scale.

On top of the benchmark, Figure 3.5 shows radar charts with the individual F-scores
obtained by the different multi-task baselines for each of the 40 facial attributes.
For improved readability, the scores have been plotted in two different charts, one
for the 20 highest scores and one for the remaining 20 lowest. Results confirm
the superiority of Maximum Roaming (already shown in Table 3.2), and show the
consistency of these observations across the 40 classes, the MR model reaching the
best performances on several individual facial attributes.

3.4.4 Scene Understanding

This experiment compares the performance of MR with the baseline methods in two
well-established scene-understanding benchmarks: Cityscapes and NYUv2.

Experimental setup
For this study, each segmentation task is considered as an independent task, although
it is a common approach to consider all of them as a unique task. As with the



34
Chapter 3. Strengthening the inductive bias with a dynamic parameter

partitioning

Multi-Attribute Classification

#P Precision (↑) Recall (↑) F-Score (↑) Rank (↓)

STL 7.9 67.10

(±0.37)

61.99

(±0.49)

64.07

(±0.21)

-

MTL 1.0 68.67

(±0.69)

59.54

(±0.52)

62.95

(±0.21)

5.33

GradNorm
(α = 0.5)

1.0 70.36

(±0.07)

59.49

(±0.58)

63.55

(±0.49)

5.00

MGDA-UB 1.0 68.64

(±0.12)

60.21

(±0.33)

63.56

(±0.27)

4.66

SE-MTL 1.1 71.10

(±0.28)

62.64

(±0.51)

65.85

(±0.17)

2.33

TR
(p = 0.9)

1.0 71.71

(±0.06)

61.75

(±0.47)

65.51

(±0.32)

2.33

MR
(p = 0.8)

1.0 71.24

(±0.35)

63.04

(±0.56)

66.23

(±0.20)

1.33

Table 3.2: Celeb-A results (Average over 40 facial attributes). The best per column
score of an MTL method is underlined.

Celeb-A dataset, for the sake of fairness in comparison, all approaches use the same
base network, a SegNet [Badrinarayanan et al. 2017] outputting 64 feature maps of
same height and width as the inputs. For each of the 8 tasks, one prediction head is
added, composed of one (3× 3× 64× 64) and one (1× 1× 64× 1) convolutions. A
sigmoid function is applied on the output of the segmentation tasks. The partitioning
methods ([Maninis et al. 2019], [Strezoski et al. 2019a] and Maximum Roaming)
are applied to every shared convolutional layer in the network. This excludes
those in the task respective prediction heads. The parameter α in GradNorm
[Chen et al. 2018] has been optimized in the set of values {0.5, 1, 1.5}. All models
were trained with an Adam optimizer [Kingma & Ba 2017] and a learning rate of
1e−4, until convergence. The binary cross-entropy is used as a loss function for
each segmentation task, and the averaged absolute error for the depth estimation
task. For the normals estimation task of NYUv2, the prediction head is made of
one (3× 3× 64× 64) and one (1× 1× 64× 3) convolutions. Its loss is computed
with an element-wise dot product between the normalized predictions and the
ground-truth map. The batch size is set to 8 for Cityscapes and 2 for NYUv2. The
input samples are resized to 128 × 256 for Cityscapes and 288 × 384 for NYUv2,
provided as such by [Liu et al. 2019b]2. The reported results are evaluated on the
validation splits furnished by [Liu et al. 2019b].

2https://github.com/lorenmt/mtan

https://github.com/lorenmt/mtan


3.4. Experimental Results 35

Benchmark
The reported metrics are Intersection over Union (mIoU) and pixel accuracy (Pix.
Acc.) averaged over all segmentation tasks, average absolute (Abs. Err.) and relative
error (Rel. Err.) for depth estimation tasks, mean (Mean Err.) and median errors
(Med. Err.) for the normals estimation task, the ratio #P of trainable parameters
w.r.t. MTL, and the average rank of the MTL methods over the measures. STL is
not included in the ranking, as it is considered of a different nature, but reported as
a baseline reference.

Tables 3.3 and 3.4 report the results on Cityscapes and NYUv2, respectively. The
reported results are the best achieved with each method on the validation set,
averaged over 3 seeds, after a grid-search on the hyper-parameters.

Segmentation (↑) Depth estimation (↓)

#P mIoU Pix. Acc. Abs. Err. Rel. Err. Rank (↓)

STL 7.9 58.57

(±0.49)

97.46

(±0.03)

0.0141

(±0.0002)

22.59

(±1.15)

-

MTL 1.0 56.57

(±0.22)

97.36

(±0.02)

0.0170

(±0.0006)

43.99

(±5.53)

3.75

GradNorm
(α = 1.5)

1.0 56.77

(±0.08)

97.37

(±0.02)

0.0199

(±0.0004)

68.13

(±4.48)

3.87

MGDA-UB 1.0 56.19

(±0.24)

97.33

(±0.01)

0.0130

(±0.0001)

25.09

(±0.28)

2.50

SE-MTL 1.1 55.45

(±1.03)

97.24

(±0.10)

0.0160

(±0.0006)

35.72

(±1.62)

4.87

TR
(p = 0.6)

1.0 56.52

(±0.41)

97.24

(±0.04)

0.0155

(±0.0003)

31.47

(±0.55))

3.87

MR
(p = 0.6)

1.0 57.93

(±0.20
97.37

(±0.02)

0.0143

(±0.0001)

29.38

(±1.66)

1.62

Table 3.3: Cityscape results. The best per column score of an MTL method is
underlined.

Maximum Roaming reaches the best scores on segmentation and normals estimation
tasks, and ranks second on depth estimation tasks. In particular, it outperforms
other methods on the segmentation tasks: it restores the inductive bias decreased by
parameter partitioning, so the tasks benefiting the most from it are the ones most
similar to each other, which are here the segmentation tasks. Furthermore, MR uses
the same number of trainable weights than the MTL baseline, plus a few binary



36
Chapter 3. Strengthening the inductive bias with a dynamic parameter

partitioning

Segmentation Depth estimation Normals estimation

#P mIoU
(↑)

Pix.
Acc.
(↑)

Abs.
Err.
(↑)

Rel.
Err.
(↑)

Mean
Err.
(↑)

Med.
Err.
(↑)

Rank
(↓)

STL 14.9 13.12

(±1.06)

94.58

(±0.14)

67.46

(±2.64)

28.79

(±1.18)

29.77

(±0.22)

23.93

(±0.15)

-

MTL 1.0 15.98

(±0.56)

94.22

(±0.25)

60.95

(±0.41)

25.54

(±0.07)

32.43

(±0.19)

27.43

(±0.35)

3.7

GradNorm 1.0 16.13

(±0.23)

94.43

(±0.07)

76.26

(±0.34)

32.08

(±0.50)

34.45

(±0.52)

30.98

(±0.80)

4.5

MGDA-UB 1.0 2.96

(±0.35)

82.87

(±0.23)

186.9

(±15.3)

98.74

(±5.34)

46.96

(±0.37)

45.15

(±0.70)

6.0

SE-MTL 1.2 16.02

(±0.12)

94.56

(±0.01)

59.88

(±1.12)

26.30

(±0.58)

32.22

(±0.02)

26.12

(±0.02)

2.7

TR
(p = 0.8)

1.0 16.54

(±0.02)

94.58

(±0.11)

63.54

(±0.85)

27.86

(±0.90)

30.93

(±0.19)

25.51

(±0.28)

2.7

MR
(p = 0.8)

1.0 17.40

(±0.31)

94.86

(±0.06)

60.82

(±0.23)

27.50

(±0.15)

30.58

(±0.04)

24.67

(±0.08)

1.5

Table 3.4: NYUv2 results. The best per column score of an MTL method is
underlined.

partitions masks (negligible), which means it scales almost optimally to the number
of tasks. This is also the case for the other presented baselines, which sets them
apart from heavier models in the literature, which add task-specific branches in their
networks to improve performance at the cost of scalability.

For other MTL baselines, it is observed that GradNorm fails on the regression
tasks (depth and normals estimation). This is due to the equalization of the task
respective gradient magnitudes. Specifically, since the multi-class segmentation
task is divided into independent segmentation tasks (7 for Cityscapes and 13 for
NYUv2), GradNorm attributes to the depth estimation task of Cityscapes only
one eighth of the total gradient magnitude, which gives it a systematically low
importance compared to the segmentation tasks which are more likely to agree on a
common gradient direction, thus diminishing the depth estimation task. Instead, in
MTL the gradient’s magnitude is not constrained, having more or less importance
depending on the loss obtained for a given task. This explains why the regression
tasks are better handled by this simpler model in this configuration. For instance,
in a configuration with the CityScapes segmentation classes addressed as one task
(for 2 tasks in total), GradNorm keeps its good segmentation performance and
improves at regression tasks (see Table 3.3), which confirms the hypothesis. It
is also observed that MGDA-UB reaches pretty low performance on the NYUv2



3.5. Discussion 37

dataset, especially on segmentation tasks, while being one of the best performing
ones on Cityscapes. It appears that during training, the loss computed for the
shared weights quickly converges to zero, leaving task-specific prediction layers to
learn their task independently from an almost frozen shared representation. This
could also explain why it still achieves good results at the regression tasks, these
being easier tasks. A hypothesis is that the solver fails at finding good directions
improving all tasks, leaving the model stuck in a Pareto-stationary point.

When comparing to the single task learners counterpart, it is observed that on
Cityscapes STL achieves slightly better segmentation performances than the other
approaches, and competitive results on depth estimation. On NYUv2 (and Celeb-A),
its results are far from the best MTL models. These show that complex setups
proposing numerous tasks, as in the setup proposed here (8, 8 and 15), are challenging
for the different MTL baselines, resulting in losses in performance as the number of
tasks increase. This is not a problem with STL, which uses an independent model
for each task. However, the associated increase in training time and parameters
(15× more parameters for NYUv2, which is equivalent to 375M parameters) makes
it inefficient in practice, while its results are not even guaranteed to be better than
the multi-task approaches.

3.5 Discussion

This chapter introduced Maximum Roaming, a dynamic parameter partitioning
method designed to reduce the task interference phenomenon while better exploiting
the latent inductive bias represented by the plurality of tasks. The proposed
approach makes each parameter learn successively from all possible tasks, with a
simple yet effective parameter selection process. The proposed algorithm achieves
it in a minimal time, without additional costs compared to other partitioning
methods, nor additional parameter to be trained on top of the base network.
Experimental results show a substantially improved performance on all reported
datasets, regardless of the type of convolutional network it applies on.

From these encouraging results, multiple directions of improvement could be
explored. First, from its formulation, one can notice that the update process finishes
at different times depending on the layer depth, which may eventually weaken some
co-adaptations when partitions get frozen. An update pace adapted to the layer
depth may instead be more adapted. Similarly, an adaptation of the sharing ratio to
the network depth could be considered, since convolutional networks representations
get more specific as layers get deeper [Yosinski et al. 2014], suggesting that less
conflicts should arise in the shallow parts of the network.

Finally, one shall notice that, similarly to other partitioning methods, Maximum
Roaming proceeds task specific learning steps, which is slightly different from opti-



38
Chapter 3. Strengthening the inductive bias with a dynamic parameter

partitioning

mizing a unique objective function aggregating the task specific ones, as most other
MTL methods. This specificity is studied extensively in Chapter 4.

3.6 Appendix

Proof of Lemma 2

At c = 0, every element ofM(0) follows a Bernoulli distribution:

P (mi,t = 1) ∼ B(p).

Lets assume P (mi,t(c) = 1) = p, ∀c ∈ {1, ..., (1− p)S − 1} and prove it holds for
c+ 1.

The probability P (mi,t(c+ 1) = 1) can be written as:

P (mi,t(c+ 1) = 1) =

P (mi,t(c+ 1) = 1 | mi,t(c) = 1)P (mi,t(c) = 1)

+ P (mi,t(c+ 1) = 1 | mi,t(c) = 0)P (mi,t(c) = 0). (3.7)

Since P (mi,t(c) = 1) = P (i ∈ At(c)), Eq. 3.7 can be reformulated as:

P (i ∈ At(c+ 1)) =

P (i ∈ At(c+ 1) | i ∈ At(c))P (i ∈ At(c))
+ P (i ∈ At(c+ 1) | i /∈ At(c))P (i /∈ At(c)) . (3.8)

As i− is uniformly sampled from At(c), the first term in Eq. 3.8 can be reformulated
as

P (i ∈ At(c+ 1) | i ∈ At(c))P (i ∈ At(c)) = (
1− 1

pS

)
p = p− 1

S
. (3.9)

Let us now expand the second term in Eq. 3.8 by considering whether i ∈ Bt(c) or
not:

P (i ∈ At(c+ 1) | i /∈ At(c))P (i /∈ At(c)) =

P (i ∈ At(c+ 1) | i /∈ At(c), i /∈ Bt(c))
× P (i /∈ At(c) | i /∈ Bt(c))P (i /∈ Bt(c))

+ P (i ∈ At(c+ 1) | i /∈ At(c), i ∈ Bt(c))
× P (i /∈ At(c) | i ∈ Bt(c))P (i ∈ Bt(c)). (3.10)

From Def. 1, P (i ∈ At(c+ 1) | i /∈ At(c), i ∈ Bt(c)) = 0 and At(c) ⊂ Bt(c), thus
(3.10) becomes:

P (i ∈ At(c+ 1) | i /∈ At(c))P (i /∈ At(c)) =

P (i ∈ At(c+ 1) | i /∈ Bt(c))P (i /∈ Bt(c)) .



3.6. Appendix 39

Given that i+ is uniformly sampled from {1, ..., S}\Bt(c) :

P (i ∈ At(c+ 1) | i /∈ At(c))P (i /∈ At(c)) =

1

(1− p)S − c
· (1− p)S − c

S
=

1

S
. (3.11)

Then, by replacing (3.9) and (3.11) in Eq. 3.8:

P (mi,t(c+ 1) = 1) = P (i ∈ At(c+ 1))

= p− 1

S
+

1

S

= p,

which demonstrates that P (mi,t(c) = 1) remains constant over c, given a uniform
sampling of i− and i+ from At(c) and {1, ..., S}\Bt(c), respectively





Chapter 4

Separating task-specific objectives
for a better optimization

Contents
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Alternate and independent optimization of task-specific ob-

jective functions . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Standard MTL optimization with aggregated loss . . . . . . . 43
4.2.2 Alternate and independent optimization of task-specific objec-

tive functions for SGD . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Alternate and independent optimization of task-specific objec-

tive functions for moving-average based optimizers . . . . . . 45
4.2.4 Mitigating computational costs through task grouping . . . . 46

4.3 Experiments and results . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Scene understanding on NYUv2 . . . . . . . . . . . . . . . . 47
4.3.2 Multi-class segmentation on Cityscapes . . . . . . . . . . . . 49
4.3.3 Multi-attribute segmentation on Celeb-A . . . . . . . . . . . 50
4.3.4 Covered distance . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

The content of this chapter is based on "Optimization Strategies in Multi-Task
Learning: Averaged or Independent Losses?" [Pascal et al. 2021b] (to be submitted).

4.1 Motivation

The optimization objective in MTL has been introduced for the first time
in [Caruana 1997] as the combination into a single aggregated objective function,
generally in the form of a weighted sum of all the task-specific objective functions,
which the shared model is trained to minimize. This formulation is particularly
convenient for deep MTL. First, it is computationally efficient, since a single gradient
descent step (i.e. one forward and one backward propagation) optimizes the shared
parameters w.r.t. every task, with the only extra computational cost coming from
the task-specific parts of the network. Second, in the case of convex task-specific
objective functions, it guarantees convergence to the optimum, since the average



42Chapter 4. Separating task-specific objectives for a better optimization

objective function remains convex.

Following works then developed new methods to mitigate the problems asso-
ciated to the complexity of the loss [Vandenhende et al. 2021, Crawshaw 2020].
However, as detailed in Chapter 2, most of them rely on similar aggre-
gated loss optimization schemes: a first family of methods uses dynamic
loss weighting strategies to control the influence of tasks in the main ob-
jective function and to account for the learning dynamics of the different
tasks [Chen et al. 2018, Guo et al. 2018, Kendall et al. 2018, Liu et al. 2019b].
Other works formulate the problem as a multi-objective optimization
task [Désidéri 2012], which converges to a Pareto optimal solution, from which no task
can be improved without hurting another one [Lin et al. 2019, Sener & Koltun 2018].
A more recent line of works proposes to modify the task-specific gradients before
averaging them, when there are conflicting gradient directions, under the hypothesis
that they can be destructive for some tasks [Chen et al. 2020, Yu et al. 2020].
Although some of these works provide a better convergence in specific conflicting
regions of the loss landscape, the guarantees are very local and become of relative
importance in the case of complex non-convex loss landscapes, for which a wider
exploration of the parameter space might be preferred over greedy strategies.

On the other hand, an alternative to this optimization of an aggregated loss
can be found in partitioning methods [Bragman et al. 2019, Maninis et al. 2019,
Pascal et al. 2021a, Strezoski et al. 2019a]: by construction, similarly to Maximum
Roaming introduced in Chapter 3, these methods optimize each task-specific
objective function alternately and independently, which is not equivalent to
optimizing the average sum of the different task-specific objectives, i.e. the
aggregated loss. To the best of my knowledge, only [Maninis et al. 2019] discusses it
explicitly, as a way to exploit the benefits of partitioning. Therefore, it has not been
studied in isolation in any previous work, nor are there theoretical guarantees that
this strategy can lead to similar results as the aggregated loss one. This in part can
be explained by the fact that the optimization scheme of partitioning methods is
always coupled with parameter partitioning, making it difficult to evaluate which
part of the contribution is due to the partitioning, and which one is due to the
optimization scheme. Moreover, these works do not consider that moving average
mechanisms (e.g. momentum) included in state-of-the-art optimizers can mix
previous gradient descent directions from different tasks, which means that the
individual objective functions are only partially separated.

This chapter studies the task-specific alternate and independent optimization used
in partitioning methods and formulates improvements to it by making the following
contributions.

• It proves that this optimization strategy provides convergence guarantees
similar to the aggregated loss optimization for stochastic gradient descent in



4.2. Alternate and independent optimization of task-specific objective
functions 43

the convex case, and the associated convergence bound is provided.

• It shows that current alternated optimization schemes do not operate truly
independent task-specific update steps, due to the momentum mechanisms
of most of the existing optimizers, which memorize previous updates, thus
bringing them into the current learning steps. I therefore propose a novel
alternated optimization scheme that performs truly independent task-specific
update steps with momentum-based state-of-the-art optimizers.

• To account for the losses in computational efficiency that alternate independent
updates incur into, I introduce a task grouping strategy to reduce training
time when dealing with a high number of tasks.

• The proposed optimization strategies consistently lead to substantial improve-
ments in terms of both generalization performance and benchmark results over
existing state-of-the-art methods on three well-known benchmark datasets.

4.2 Alternate and independent optimization of task-
specific objective functions

The standard MTL optimization setup using an aggregated loss is first formalized
before the contributions.

4.2.1 Standard MTL optimization with aggregated loss

Let ξt be an input data instance randomly sampled during optimization step t, and k
the index of the N tasks. The aggregated multi-task objective function to minimize
is defined as

F (wt, ξt) =

N∑
k=1

c(k) · F (k)(wt, ξt), (4.1)

where F (k) is the objective function associated to task k using shared parameters wt,
and c(k) are the task-specific weighting coefficients. For the sake of simplicity in the
notation, but without loss of generality, here a uniform weighting of the different
task objective functions is considered, i.e. c(k) = 1. Hereinafter, superscripts are
used to index elements associated to different tasks, and subscripts to index the
steps of the optimization process.

When using stochastic gradient descent (SGD) to optimize Eq. 4.1, the shared
parameters w at step t+ 1 are updated according to the following rule:

wt+1 = wt − ηt
N∑
k=1

∂

∂wt
F (k) (wt, ξt) , (4.2)



44Chapter 4. Separating task-specific objectives for a better optimization

where ηt is the learning rate. For the ease in notation, let us denote g(k)(wt, ξt) the
derivative of F (k) w.r.t. the parameters wt. Eq. 4.2 can be rewritten as

wt+1 = wt − ηt
N∑
k=1

g(k) (wt, ξt) . (4.3)

In the remaining of the document, this optimization strategy with an aggregated loss
is referred as MTL with Shared Update Steps (MTL-SUS) to reflect the characteristics
of its update rule (Eq. 4.3).

4.2.2 Alternate and independent optimization of task-specific ob-
jective functions for SGD

I now formalize the SGD update step for the alternate and independent optimization
scheme used in state-of-the-art MTL partitioning works [Bragman et al. 2019,
Maninis et al. 2019, Pascal et al. 2021a, Strezoski et al. 2019a] and provide conver-
gence bounds in the special case of convex objective functions.

I define a multi-task update step as the alternate Individual Update Steps (IUS)
of each of the N task-specific objective functions, and denote w(k)

t the parameters
optimized w.r.t. task k, during the t-th update step. The individual update step
t+ 1 of task k is:

w
(k)
t+1 =


w

(N)
t − ηt · g(k)

(
w

(N)
t , ξt

)
, k = 1

w
(k−1)
t+1 − ηt · g(k)

(
w

(k−1)
t+1 , ξt

)
, ∀ k > 1.

(4.4)

To reflect the properties of the update rule (Eq. 4.4), this optimization strategy is
denoted as MTL-IUS.

MTL holds analogies with the federated learning problem [Konečný et al. 2015,
Li et al. 2020, Shokri & Shmatikov 2015], where each involved device accounts for
one task objective function, with communication after each update step. MTL-
SUS corresponds to a full-device participation, and MTL-IUS to a single device
participation. Using this analogy, inspiration is taken from [Li et al. 2020] to prove
that alternate and independent optimization schemes using the MTL-IUS rule
converge to the optimum in the case of convex objective functions.

Assumption 2. F (1), ..., F (N) are all L-smooth: for all v, w, F (k)(v) ≤ F (k)(w) +

(v − w)T∇F (k)(w) + L
2 ||v − w||

2
2.

Assumption 3. F (1), ..., F (N) are all µ-strongly convex: for all v, w, F (k)(v) ≥
F (k)(w) + (v − w)T∇F (k)(w) + µ

2 ||v − w||
2
2.

Assumption 4. Let ξt be uniformly sampled from the data. The variance of stochas-
tic gradients is uniformly bounded: E||∇F (k)(wt, ξt)−∇F (k)(wt)||2 ≤ σ(k)2.



4.2. Alternate and independent optimization of task-specific objective
functions 45

Assumption 5. The expected squared norm of stochastic gradients is uniformly
bounded: E||∇F (k)(wt, ξt)||2 ≤ G2.

Let us denote F ∗ and F (k)∗ as the minima values of F and F (k) respectively, and
w∗ as the minimizer of F . Let thus define

Γ = F ∗ − 1

N

N∑
k=1

F (k)∗,

which can be considered as the heterogeneity of the different task-specific objective
functions.

Theorem 1. Let γ ≥ 2Lµ − 1 and ηt = 2
µ(γ+t) the learning rate. Under assumptions

2, 3, 4 and 5, the optimization scheme MTL-IUS presented in Eq. (4.4) satisfies

E[F (wT )]− F ∗ ≤ L

γ + T

(
2B

µ2
+

(γ + 1)

2
E||w1 − w∗||2

)
, (4.5)

with B =
∑N

k=1 p
2
kσ

2
k + 2LΓ +G2.

Proof: See appendix 4.5

Theorem 1 guarantees the convergence of MTL-IUS to the optimum in O( 1
T ) with

a decreasing learning rate for stochastic gradient descent. However, it should be
noted that the bound does not increase directly with the number of tasks, but with
the heterogeneity term Γ, which corresponds to the average deviation between the
optimum F ∗ and the values of the task-specific objective functions F (k)∗ at that
point.

4.2.3 Alternate and independent optimization of task-specific ob-
jective functions for moving-average based optimizers

In most of deep learning’s literature and in current practice, more complex
optimizers than a regular SGD are preferred. State-of-the-art optimizers, such as
Adam [Kingma & Ba 2017], generally use exponential moving average mechanisms,
e.g. momentum, to smooth and regulate the optimization trajectory. These
mechanisms can partially compromise the independence of the task-specific update
steps, i.e. MTL-IUS, since every learning step includes descent directions of previous
tasks. This section proposes a new update rule that allows to use Individual
Optimizers (IO), providing true optimization independence to the different tasks.

MTL-IUS with momentum
The update step of MTL-IUS is first reformulated with a momentum-based optimizer,
as it is done in partitioning MTL works [Bragman et al. 2019, Maninis et al. 2019,
Pascal et al. 2021a].



46Chapter 4. Separating task-specific objectives for a better optimization

Let us define m̂ a generic optimizer rule, which adjusts the gradient descent direction
based on exponential moving average mechanisms [Kingma & Ba 2017]. The update
step t+ 1 of task k (Eq. (4.4)) can be then reformulated as:

w
(k)
t+1 =


w

(N)
t − ηt · m̂

(
g(k)

(
w

(N)
t , ξt

))
, k = 1

w
(k−1)
t+1 − ηt · m̂

(
g(k)

(
w

(k−1)
t+1 , ξt

))
, ∀ k > 1,

(4.6)

where m̂ mixes g(k) with descent directions g(j 6=i) of previous tasks update steps.
This implies that using this rule does not allow for fully independent task-specific
update steps thanks to m̂.

Individual Optimizers (MTL-IO)
I propose here to use individual exponential moving averages for each task to allow
for fully independent task-specific update steps. I reformulate this update rule, using
Individual Optimizers (IOs), as:

w
(k)
t+1 =


w

(N)
t − ηt · m̂(k)

(
g(k)

(
w

(N)
t , ξt

))
, k = 1

w
(k−1)
t+1 − ηt · m̂(k)

(
g(k)

(
w

(k−1)
t+1 , ξt

))
, ∀ k > 1

(4.7)

with m̂(k) the exponential moving average mechanism of task k. This alternate and
independent optimization strategy is denoted as MTL-IO (Individual Optimizers) to
reflect the properties of its update rule. With MTL-IO, the memory term introduced
by m̂(k) only involves previous updates of task k. This is equivalent to using one IO
per task, which avoids the memory leakage that MTL-IUS incurs into.

4.2.4 Mitigating computational costs through task grouping

Alternate and independent optimization schemes using MTL-IUS or MTL-IO require
one training step per task for each input sample, i.e N training steps in total.
This makes the inference and training time proportional to the number of tasks.
To compensate for the increased computational burden, the N tasks are equally
and randomly distributed among a set T̂ = {T̂l}l∈{1..N̂} of N̂ super-tasks, with
N̂ ∈ {1..N}. The set of super-tasks can be optimized with MTL-IUS or MTL-IO,
whereas the individual super-task gradients are expressed as the weighted sum of
the gradients of their constituting tasks:

w
(l)
t+1 =


w

(N̂)
t − ηt · m̂

(∑
k∈T̂l g

(k)(w
(N̂)
t , ξt)

)
, l = 1

w
(l−1)
t+1 − ηt · m̂

(∑
k∈T̂l g

(k)
(
w

(l−1)
t+1 .ξt

))
, ∀ l > 1

(4.8)

For the sake of brevity, only the formulation adapted for MTL-IUS is presented.
Derivation with MTL-IO is straightforward. One should note that this formulation
is equivalent to MTL-IUS (respectively, MTL-IO) when N̂ = T , and to MTL-SUS
when N̂ = 1. Such task grouping thus defines an adjustable compromise between
tasks independence and training speed.



4.3. Experiments and results 47

4.3 Experiments and results

I report four different experiments performed on three widely used datasets for
MTL. The generalization performance of MTL-SUS, MTL-IUS and MTL-IO on
NYUv2 [Silberman et al. 2012] is first studied, with three heterogeneous tasks, and
on the seven homogeneous segmentation tasks of Cityscapes [Cordts et al. 2016].
The proposed grouping strategy behavior is then studied on the 40 tasks of
Celeb-A [Liu et al. 2015b]. Finally are provided insights about the shared parameter
space exploration operated by the studied optimization schemes.

In this study, the proposed models are compared with state-of-the-art multi-
task methods, including three aggregated loss optimization methods, Grad-
Norm [Chen et al. 2018], MGDA [Sener & Koltun 2018], PCGrad [Chen et al. 2020],
and the partitioning method proposed in Chapter 3, Maximum Roaming (MR)
[Pascal et al. 2021a] using the MTL-IUS optimization scheme. To ensure fairness of
comparison, all baselines have been implemented in the same pipeline, under Pytorch
1.2, and run on Nvidia Titan-XP GPUs. For every baseline compared on a dataset,
a grid search is performed on the learning rate. All the used scripts to perform these
experiments are available on GitHub.1. The data used comes from official releases
for the three datasets.

4.3.1 Scene understanding on NYUv2

The NYUv2 dataset [Silberman et al. 2012] provides close to 1500 annotated indoor
images extracted from videos captured with the Microsoft Kinect in different
buildings. The small number of images and the complexity of the scenes makes it
particularly difficult and interesting for multi-task problems. It is used here for one
13-class semantic segmentation task, one depth estimation task, and one normal
estimation task. This multi-task setting is judged as particularly challenging, since
it is made of three tasks of different natures.

All baselines use a U-Net [Ronneberger et al. 2015a], which is known to be
particularly efficient for dense labelling tasks. To maximize the proportion of shared
weights in the network, all encoders and decoders are shared by all the tasks, while
the task-specific prediction heads are made of a single 1× 1 convolutional layer per
task.

The image size is set to 288× 384 with a batch size of 8. All models are trained for
500 epochs, and all performances are reported over 3 random seeds. Reported metrics
are mean Intersection over Union (mIoU) and pixel accuracy for segmentation tasks,
absolute and relative error for depth estimation, and mean and median angle error
for normal estimation.

1https://github.com/lucaspascal/AITSO_MTL.

https://github.com/lucaspascal/AITSO_MTL


48Chapter 4. Separating task-specific objectives for a better optimization

Figure 4.1: NYUv2 best averaged and task-specific validation losses w.r.t the learning
rate η.

To understand the general behavior of the compared optimization strategies
MTL-SUS, MTL-IUS and MTL-IO, their generalization performance is first studied
with respect to the learning rate η, which has a direct influence on the sensitivity of
deep networks to minima in the loss landscape, and therefore on their convergence.
In Fig. 4.1 are reported the best validation losses achieved by MTL-SUS, MTL-IUS
and MTL-IO over a full training, w.r.t. different values of η. It was ensured for ev-
ery model that the validation loss reached its minimum before the end of the training.

It is first observe that MTL-IO is by far the best overall performing method. Above
η = 5e−5, it substantially improves the losses of each of the three tasks, which
suggests that it is able to consistently reach better loss regions in the shared
parameter space. One can also observe a smaller difference between MTL-IUS and
MTL-SUS. Specifically, MTL-IUS performs better for smaller learning rates, and
worse beyond η = 2e−4. It is also interesting to note the overall distorted aspect of
these curves, with high standard deviations, while more "convex" shapes could be
expected. This suggests that the loss landscape is particularly complex, compared
to that one of other datasets (see Fig. 4.2,4.3).

The models with the best validation losses for each method are compared with
the state-of-the-art baselines (Table 4.1). While MTL-IUS and MTL-SUS perform
similarly, MTL-IO achieves the best results overall on segmentation and depth



4.3. Experiments and results 49

Figure 4.2: Cityscapes best averaged and task-specific validation losses w.r.t the
learning rate η.

estimation metrics, and falls close behind MR for normals estimation, making it the
best performing multi-task method on this dataset.

4.3.2 Multi-class segmentation on Cityscapes

The Cityscapes dataset [Cordts et al. 2016] provides 5K fine-grained annotated
street-view images captured from a car point of view, in many different German
cities. The 7 semantic segmentation classes are used here as 7 independent tasks, to
observe how the different optimization methods behave with more homogeneous
tasks. The same network as for NYUv2 is used, and images are resized to 128× 256

with a batch size of 24. A similar study to the one conducted on NYUv2 is reported
in Fig. 4.2, and a benchmark in Table 4.2.

Here can be observed smoother curves with smaller variations, which confirms the
intuition that this setting is easier to optimize. The three optimization methods
report very similar results. While the best overall validation loss is reached by
MTL-SUS, MTL-IUS and MTL-IO are consistently better in the lower learning
rates, suggesting that they are more robust to local minima in the loss landscape.
As one could expect given Fig. 4.2, all the methods, including the state-of-the art
benchmarks, present a very close performance. It seems like in a simple setting with
a well calibrated learning rate, the influence of a particular optimization method is
greatly reduced.



50Chapter 4. Separating task-specific objectives for a better optimization

Segmentation Depth estimation Normals estimation

mIoU
(↑)

Pix.
Acc.
(↑)

Abs.
Err.
(↓)

Rel.
Err.
(↓)

Mean
Err.
(↓)

Med.
Err.
(↓)

Rank
(↓)

MTL-SUS 24.29

(±0.38)

48.79

(±0.35)

68.48

(±0.28)

52.93

(±0.59)

27.28

(±0.02)

33.70

(±0.03)

4.33

MTL-IUS 24.93

(±0.33)

48.91

(±0.17)

67.76

(±0.61)

53.25

(±0.77)

27.28

(±0.05)

33.70

(±0.05)

3.88

MTL-IO 29.48

(±0.30)

54.06

(±0.21)

66.07

(±0.68)

50.27

(±0.28)

27.08

(±0.03)

33.35

(±0.05)

1.00

GradNorm 28.09

(±0.85)

52.91

(±0.74)

70.26

(±1.4)

52.40

(±1.35)

27.18

(±0.05)

33.44

(±0.07)

3.16

PCGrad 24.51

(±0.32)

48.87

(±0.41)

67.89

(±0.67)

52.29

(±0.75)

27.32

(±0.04)

33.65

(±0.08)

3.50

MR 28.82

(±0.18)

53.77

(±0.61)

71.30

(±0.97)

53.37

(±0.97)

27.03

(±0.02)

33.27

(±0.03)

2.66

Table 4.1: NYUv2 results with standard deviations. The best results (and statistically
equivalent) per column are highlighted in each category. Methods ranks are computed
by averaging the rank of the methods on each metric.

4.3.3 Multi-attribute segmentation on Celeb-A

The CelebA dataset [Liu et al. 2015b] contains 200K face images of 10K different
celebrities. Annotations are provided for 40 different facial attributes. In this
experiment is studied the proposed random grouping strategy with a large number
of tasks, to establish to which extent it can reduce the computational overhead
of MTL-IUS and MTL-IO without affecting their performance. Each of the 40

provided facial attributes is considered as an independent facial attribute detection
task, and different groupings are operated on them, N̂ = {2, 4, 8, 20, 40}.

A shallow 9-layer fully convolutional network similar to [Chen et al. 2020] is used,
with a task-specific fully-connected prediction layer for each task (or task group).
The image size is set to 64 × 64, with a batch size of 256. All models are trained
over 15 epochs. The average classification error is reported along with F1-score,
since the different attributes are not balanced. Reported results are averaged over 3

seeds, with new task groups are sampled for every seed. Figure 4.3 shows the best
achieved validation losses over training w.r.t. the learning rate and for different
number of super-tasks N̂ . Table 4.3 summarizes the benchmark result.

For N̂ ≤ 8, MTL-IUS and MTL-IO are able to reach an improvement compared
to MTL-SUS. Then, the performance decreases up to N̂ = 40 (i.e. no grouping).
This suggests that the use of a grouping strategy is beneficial both in terms of



4.3. Experiments and results 51

Segmentation

mIoU (↑) Pix. Acc. (↑) Rank (↓)

MTL-SUS 69.79± 0.40 90.40± 0.08 1.0

MTL-IUS 69.74± 0.05 90.22± 0.13 2.5

MTL-IO 69.52± 0.26 90.28± 0.14 2.5

GradNorm 69.00± 0.12 90.17± 0.10 5.0

PCGrad 69.73± 0.05 90.42± 0.06 1.0

MR 69.15± 0.08 89.79± 0.08 5.5

Table 4.2: Cityscape results with standard deviations. The best results (and sta-
tistically equivalent) per column are highlighted. Methods ranks are computed by
averaging the rank of the methods on each metric.

Figure 4.3: Celeb-A best averaged validation losses w.r.t the learning rate η and
different numbers of task groups. (Left) MTL-IUS models compared to MTL-SUS.
(Right) MTL-IO models compared to MTL-SUS.

performance and computational efficiency when dealing with a large number of
tasks. The latter is further confirmed in Table 4.3, where the best grouping models
of MTL-IUS and MTL-IO also outperform other state-of-the art methods on both
average error and F-score metrics.

More generally, a progressive evolution of the curves w.r.t. the different values of N̂
can be observed: as with Cityscapes, the less tasks are grouped together, the better
is the optimization of IUS and IO in the low learning rates, while it is the opposite
for high learning rates. This behavior suggests that these methods introduce more
noise in the optimization, making them less sensitive to local minima, and pushing
for a larger exploration of the shared parameter space.



52Chapter 4. Separating task-specific objectives for a better optimization

Avg. error (↓) F1-score (↑) Rank (↓)

MTL-SUS 9.20± 0.02 68.66± 0.24 6.0

MTL-IUS (2 groups) 9.16± 0.03 68.69± 0.21 −
MTL-IUS (4 groups) 9.13± 0.02 69.01± 0.27 −
MTL-IUS (8 groups) 9.10± 0.03 68.93± 0.38 3.0

MTL-IUS (20 groups) 9.20± 0.05 68.82± 0.11 −
MTL-IUS (40 groups) 9.27± 0.05 68.97± 0.17 −

MTL-IO (2 groups) 9.15± 0.02 68.85± 0.33 −
MTL-IO (4 groups) 9.11± 0.02 69.48± 0.15 1.0

MTL-IO (8 groups) 9.15± 0.01 68.55± 0.09 −
MTL-IO (20 groups) 9.23± 0.02 68.61± 0.31 −
MTL-IO (40 groups) 9.24± 0.00 68.57± 0.04 −

GradNorm 9.16± 0.03 69.16± 0.19 4.0

PCGrad 9.16± 0.04 69.26± 0.30 2.5

MGDA-UB 9.42± 0.03 67.68± 0.12 7.0

MR 9.12± 0.00 69.21± 0.31 1.0

Table 4.3: Celeb-A results with standard deviations. The best results (and statistically
equivalent) per column are highlighted. In parenthesis are reported the different
number of task groups for MTL-IUS and IO. The best (4 and 8) and worst (40)
performing numbers of task groups are reported for both the strategies.

4.3.4 Covered distance

Here are provided insights about how the studied optimization strategies explore the
shared parameter space, by measuring the distances covered in this space during
training. Using the Frobenius norm, measures are provided for the shortest path
from the network’s initialization to the loss minimum (shortest) and the total
covered distance (total), which is the sum of the distances covered at each update
step. The total-to-shortest-distance ratio is also reported, which gives an insight on
how much the surrounding space has been explored for a given shortest path.

Table 4.4 summarizes the obtained measures during the optimization of MTL-SUS,
MTL-IUS and MTL-IO over all datasets. All three baselines start from the same
parameter initialization (i.e. same point in the parameter space) and use the same
learning rate (the one providing the best performances overall). The measurements
are performed at the same point in time (the closest from the validation loss
minimum). The results are averaged over 3 different seeds. As a reminder, the
aggregated multi-task loss uses uniform weights of 1 for every task, so that the
gradient scaling is the same for the three optimization strategies.

It can be observed that both MTL-IUS and MTL-IO travel more, both in terms



4.4. Discussion 53

Dataset Model Total covered dist. Shortest path Ratio

NYUv2
SUS 879.33± 18.22 38.77± 0.53 22.68± 0.17

IUS 2597.74± 49.59 67.44± 1.02 38.52± 0.24

IO 2769.52± 40.20 71.06± 0.80 38.97± 0.22

Cityscapes
SUS 909.38± 10.02 74.38± 0.80 12.23± 0.01

IUS 8102.39± 13.16 262.68± 0.48 30.85± 0.02

IO 8438.78± 105.47 277.29± 5.69 30.44± 0.35

Celeb-A

SUS 1398.01± 3.54 99.66± 0.22 14.03± 0.00

IUS (4 groups) 5636.18± 19.59 223.83± 0.69 25.18± 0.02

IO (4 groups) 6560.56± 45.21 242.55± 1.80 27.05± 0.12

IUS (8 groups) 14955.87± 15.55 387.13± 0.48 38.63± 0.01

IO (8 groups) 13992.50± 268.21 369.67± 5.39 37.85± 0.17

IUS (40 groups) 65376.36± 164.54 837.32± 1.91 78.08± 0.08

IO (40 groups) 59627.39± 746.35 764.42± 9.01 78.00± 0.07

Table 4.4: Total covered and shortest path distances in the shared parameter space
from the same initialization point.

of total covered and shortest path distances. The distances increase globally with
the number of tasks (or task groups). The increase in the shortest path distance
indicates that these methods are able to discover more distant loss regions compared
to MTL-SUS. These observations correlate with the findings from the previous
experiments, suggesting that some of these more distant regions can provide better
generalization performance.

Most interestingly, MTL-IUS and MTL-IO present a higher total-to-shortest path
distance ratio compared to MTL-SUS, which means that between two locations in
the shared parameter space, MTL-IUS and MTL-IO follow a much more oscillating
trajectory. This observation suggests that optimizing tasks-specific objective
functions, instead of an aggregated multi-task objective one, introduces more
stochasticity to the optimization, which is usually beneficial in deep learning.

4.4 Discussion

This Chapter studied the alternate and independent optimization of the task-specific
objective functions (MTL-IUS) used in partitioning methods, and compared it to
the optimization of the more standard aggregated objective function (MTL-SUS),
which is widely adopted in the literature. Taking inspiration from Federated
Learning works [Konečný et al. 2015, Li et al. 2020], it was first demonstrated that
the former has similar convergence properties as the latter when dealing with
convex objective functions. It was then showed that the existing partitioning



54Chapter 4. Separating task-specific objectives for a better optimization

methods do not operate truly independent update steps due to the momentum
mechanisms included in state-of-the-art optimizers. A novel strategy was thus
formulated, using an independent optimizer per task (MTL-IO), that favors
task independence. To account for the computational overhead of these strate-
gies, a random grouping strategy was proposed, strinking a balance between
computational efficiency, and the benefits of a task-independent optimization strategy.

The experimental results over three datasets show both MTL-IUS and MTL-IO
achieve an overall better generalization performance w.r.t standard aggregated
objective optimization (MTL-SUS) and state-of-the-art MTL baselines using an
aggregated objective function. In particular, MTL-IO shows important improvements
in settings where tasks are of a very different nature. The results also confirm
that the proposed random grouping strategy applied to MTL-IUS and MTL-IO is
beneficial both in terms of performance and efficiency, when dealing with a great
number of tasks. Finally, it was showed that MTL-IUS and IO allow parameters
updates to travel a longer distance, and ensure a more thorough exploration of the
shared parameter space.

While the optimization of an aggregated multi-task objective function is widely
adopted in the literature, the presented investigations suggest that its usage should
be questioned, despite the computational benefits it provides.

4.5 Appendix

In this section is proved the convergence of MTL-IUS for stochastic gradient descent
when dealing with convex objective functions (Theorem 1). Inspiration is drawn
from the proof of convergence of the FedAvg algorithm [Li et al. 2020] for partial
device participation in federated learning.

Problem setting and notations

For the ease of notation, in the following, the double indexing of w (tasks and
iterations) used in equation 4.4 is dropped. The IUS update rule (i.e. equation 4.4)
of the weights at update step t+ 1 thus gets re-written as:

vkt+1 = wt − ηt∇F (k)(wt, ξ
k
t ),

wt+1 = vstt+1,

where vkt+1 is the SGD from wt with respect to task k objective function, and
wt+1 only follows the SGD of one task st (while others are not considered), with
st selected in {1, ..., N}, for every step t. The theorem is proved for st randomly
selected at uniform at each iteration t, which also proves it for the case proposed
here, since the proof only assumes a sampling probability of pk = 1

N for any task k.



4.5. Appendix 55

Let us define v̄t = 1
N

∑N
k=1 v

k
t the averaged SGD at step t+1, ḡt = 1

N

∑N
k=1∇F (k)(wt)

the averaged gradient and gt = 1
N

∑N
k=1∇F (k)(wt, ξ

k
t ) the averaged stochastic gradi-

ent. This gives v̄t+1 = wt − ηtgt and Egt = ḡt.

Key lemmas

Two lemmas used in the theorem’s proof are first stated. Their proof is left for
Appendix 4.5.

Lemma 3. Under assumptions 2 and 3, if ηt ≤ 1
L , one can obtain:

E||vt+1 − w∗||2 ≤ (1− µηt)E||wt − w∗||2 + 2Lη2
t Γ +

η2
t

N2

N∑
k=1

σ2
k (4.9)

Lemma 4. For ηt non-increasing such as ηt ≤ 2ηt+1,∀t ≥ 0, one can obtain:

Est ||vt+1 − wt+1||2 ≤ η2
tG

2 (4.10)

Theorem proof

||wt+1 − w∗||2 = ||wt+1 − vt+1||2︸ ︷︷ ︸
A1

+ ||vt+1 − w∗||2︸ ︷︷ ︸
A2

+ 2 < wt+1 − vt+1, vt+1 − w∗ >︸ ︷︷ ︸
A3

For A3, one can obtain

Est(wt+1) = Est(v
st
t+1) =

1

N

N∑
k=1

vkt+1 = v̄t+1

which proves Est+1(A3) = 0, where Est accounts for the expectation taken over the
random sampling of st.

A1 is bounded with Lemma 2 and A2 with Lemma 1:

E||wt+1 − w∗||2 ≤ (1− µηt)E||wt − w∗||2 +
η2
t

N2

N∑
k=1

σ2
k + 2Lη2

t Γ + η2
tG

2

Let ∆t = E||wt+1 − w∗||2 and B = 1
N2

∑N
k=1 σ

2
k + 2LΓ +G2. This gives:

∆t+1 ≤ (1− µηt)∆t + η2
tB

One can show by induction that for β > 1
µ and γ > 0 verifying η1 ≤ 1

L and ηt ≤ 2ηt+1,

one obtains ∆t ≤ v
γ+t with v = max{ β

2B
βµ−1 , (γ + 1)∆1}:



56Chapter 4. Separating task-specific objectives for a better optimization

The affirmation directly holds for t = 1. Then, suppose it holds for t, this gives:

∆t+1 ≤ (1− µηt)∆t + η2
tB

≤
(

1− βµ

t+ γ

)
v

t+ γ
+

β2B

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
β2B

(t+ γ)2
− βµ− 1

(t+ γ)2
v

]
≤ t+ γ − 1

(t+ γ)2
v

≤ t+ γ − 1

(t+ γ + 1)(t+ γ − 1)
v =

v

(t+ 1) + γ

where the second inequality comes from v ≥ β2B
βµ−1 . This proves that the affirmation

holds for t+ 1.

Which gives, with the convexity of F :

E[F (wt)]− F ∗ ≤
L

2(γ + t)

(
β2B

βµ− 1
+ (γ + 1)||w1 − w∗||2

)

which proves theorem 1 for β = 2
µ , and γ ≥ 2Lµ − 1, to ensure η1 ≤ 1

L .

Proof of key lemmas

Lemma 1 Let assumptions 2 and 3 hold, and find an upper bound for E||vt+1−w∗||2:

||v̄t+1 − w∗||2 = ||wt − ηtgt − w∗ − ηtḡt + ηtḡt||2

= ||wt − w∗ − ηtḡt||2︸ ︷︷ ︸
A1

+ 2ηt < wt − w∗ − ηtḡt, ḡt − gt >︸ ︷︷ ︸
A2

+η2
t ||gt − ḡt||2

(4.11)

Note that E[A2] = 0, so the focus gets to A1:

A1 = ||wt − w∗ − ηtḡt||2

= ||wt − w∗||2−2ηt < wt − w∗, ḡt >︸ ︷︷ ︸
B1

+ η2
t ||ḡt||2︸ ︷︷ ︸
B2



4.5. Appendix 57

By convexity of ||.||2 and L-smoothness of F (k)(.), one gets:

B2 = η2
t ||ḡt||2

≤ η2
t

N

N∑
k=1

||∇F (k)(wt)||2

≤ 2L
η2
t

N

N∑
k=1

(F (k)(wt)− F (k)∗)

Then:

B1 = −2ηt < wt − w∗, ḡt >

= −2
ηt
N

N∑
k=1

< wt − w∗,∇F (k)(wt) >

The µ-strong convexity of F (k)(.) gives:

− < wt − w∗,∇F (k)(wt) >≤ −(F (k)(wt)− F (k)(w∗))− µ

2
||wt − w∗||2

it is then replaced in A1:

A1 = ||wt − w∗ − ηtḡt||2

≤ ||wt − w∗||2 + 2L
η2
t

N

N∑
k=1

(F (k)(wt)− F (k)∗)

− 2
ηt
N

N∑
k=1

(
(F (k)(wt)− F (k)(w∗)) +

µ

2
||wt − w∗||2

)
= (1− µηt)||wt − w∗||2

+ 2L
η2
t

N

N∑
k=1

(F (k)(wt)− F (k)∗)− 2
ηt
N

N∑
k=1

(
F (k)(wt)− F (k)(w∗)

)
︸ ︷︷ ︸

C



58Chapter 4. Separating task-specific objectives for a better optimization

Let γt = 2ηt(1− Lηt). Since ηt ≤ 1
L , one obtains γt ≥ 0. Then:

C = 2L
η2
t

N

N∑
k=1

(F (k)(wt)− F (k)∗)− 2
ηt
N

N∑
k=1

(
F (k)(wt)− F (k)(w∗)

)
= 2L

η2
t

N

N∑
k=1

(F (k)(wt)− F (k)∗)− 2
ηt
N

N∑
k=1

(
F (k)(wt) + F (k)∗ − F (k)∗ − F (k)(w∗)

)
=

[
1

N

N∑
k=1

(F (k)(wt)− F (k)∗)

]
(2Lη2

t − 2ηt) + 2
ηt
N

N∑
k=1

(F (k)(w∗)− F (k)∗)

= −γt
N

N∑
k=1

(F (k)(wt)− F (k)∗) + 2
ηt
N

N∑
k=1

(F (k)(w∗)− F (k)∗)

= −γt
N

N∑
k=1

(F (k)(wt)− F ∗ + F ∗ − F (k)∗) + 2
ηt
N

N∑
k=1

(F ∗ − F (k)∗)

= −γt
N

N∑
k=1

(F (k)(wt)− F ∗) +
2ηt − γt
N

N∑
k=1

(F ∗ − F (k)∗)

= −γt
N

N∑
k=1

(F (k)(wt)− F ∗) + 2L
η2
t

N

N∑
k=1

(F ∗ − F (k)∗)

= −γt
N

N∑
k=1

(F (k)(wt)− F ∗) + 2Lη2
t Γ

= −γt(F (wt)− F ∗) + 2Lη2
t Γ ≤ 2Lη2

t Γ

Since (F (wt)− F ∗) ≥ 0 and γt ≥ 0. It is then replaced in equation 4.11:

||v̄t+1 − w∗||2 ≤ (1− µηt)||wt − w∗||2 + 2Lη2
t Γ + η2

t ||gt − ḡt||2

E||v̄t+1 − w∗||2 ≤ (1− µηt)E||wt − w∗||2 + 2Lη2
t Γ + η2

tE||gt − ḡt||2

Then, Assumption 3 gives us:

E||gt − ḡt||2 = E|| 1
N

N∑
k=1

(∇F (k)(wt, ξ
k
t )−∇F (k)(wt))||2

=
1

N2

N∑
k=1

E||∇F (k)(wt, ξ
k
t )−∇F (k)(wt)||2

≤ 1

N2

N∑
k=1

σ2
k



4.5. Appendix 59

One finally obtains:

E||v̄t+1 − w∗||2 ≤ (1− µηt)E||wt − w∗||2 + 2Lη2
t Γ +

η2
t

N2

N∑
k=1

σ2
k

Lemma 2
Now is to find an upper bound for Est ||v̄t+1 − wt+1||2, with Est the expected value
taken over st values:

Est ||v̄t+1 − wt+1||2 = Est ||vstt+1 − v̄t+1||2

=
1

N

N∑
k=1

||vkt+1 − v̄t+1||2

=
1

N

N∑
k=1

||(vkt+1 − wt)− (v̄t+1 − wt)||2

= E||(vkt+1 − wt)− E(vkt+1 − wt)||2

Since E||x− Ex||2 ≤ E||x||2, one obtains:

Est ||v̄t+1 − wt+1||2 ≤ E||vkt+1 − wt||2 =
1

N

N∑
k=1

||vkt+1 − wt||2

≤ 1

N

N∑
k=1

E||vkt+1 − wt||2

≤ 1

N

N∑
k=1

E||ηt∇F (k)(wt, ξ
k
t )||2

≤ 1

N

N∑
k=1

η2
tG

2 = η2
tG

2

which proves the Lemma.





Chapter 5

Glaucoma Diagnosis from Retinal
Fundus Imaging through MTL

Contents
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Deep multi-task networks for automated glaucoma diagnosing 61

5.1.2 The Retinal Fundus Imaging challenge (REFUGE) . . . . . . 63

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Pipeline description . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.2 Losses and metrics . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . 68

5.4.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 69

5.4.3 Combination with Transfer Learning . . . . . . . . . . . . . . 73

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

This chapter is adapted from "Detection, Segmentation and localization using a
single model in Glaucoma detection from color fundus images", a work presented
at the second edition of the Retinal Fundus Glaucoma challenge (REFUGE2) 1,
organized at the MICCAI 2020 conference.

5.1 Motivation

5.1.1 Deep multi-task networks for automated glaucoma diagnos-
ing

Glaucoma is a prevalent condition related to an abnormal fluid balance in the
eye that causes an increase of internal ocular pressure. The increase of pressure
gradually damages the eye optic nerve. If not diagnosed, these damages can result
in permanent vision loss. Approximately 4% of the global population between 40

and 80 years old is affected by glaucoma [Tham et al. 2014]. Patients affected by
1https://refuge.grand-challenge.org/Home2020/

https://refuge.grand-challenge.org/Home2020/


62
Chapter 5. Glaucoma Diagnosis from Retinal Fundus Imaging through

MTL

glaucoma usually do not present symptoms in the early stages of the disease, while
an early diagnosis is critical to prevent irreversible damages. It is thus important to
develop inexpensive detection methods, in order to massively and systematically
control patients, before the symptoms appear.

One way to diagnose glaucoma is to perform a visual examination of the inside back
surface of the eye, named fundus. The images are obtained by special cameras
through a dilated pupil. An example of such imaging technique is shown in
Figures 5.2 (left) and 5.1. The main advantage of this technique, called "Retinal
Fundus Imaging", is to be brief and painless to the patient, making it suited for
simple routine checks. However, establishing an accurate diagnosis from these
images is particularly difficult, and generally requires human experts. The most
discriminant symptom for detecting glaucoma on fundus images is the presence of
a "cupping", which is retraction of the optic disc on the optic cup. This cupping
causes an increase of the vertical Cup-to-Disc ratio, which is the height ratio between
the optic cup (OC) and optic disc (OD). Other markers of glaucoma exist, more
difficult to detect, such as peripapillary hemorrhages and Retinal nerve fiber layer
defects [Orlando et al. 2020].

While diagnosing campaigns are regularly launched, these require human experts to
examine large amounts of samples in limited time [Orlando et al. 2020]. Therefore,
automatic glaucoma detection methods are desirable. Deep convolutional networks
have shown beneficial for years in medical imaging tasks [Tajbakhsh et al. 2016],
and seem particularly adapted for such task, only involving the identification of
some specific visual patterns in images. Since deep networks learn their own set
of discriminant features, these models might also leverage other relevant features
than just the vCDR. However, automating glaucoma diagnosis with deep networks
essentially suffers from two limitations:

• The lack of data: existing annotated datasets contain at most few hundreds of
samples [Hagiwara et al. 2018].

• The disparity of data: the data can vary a lot depending on the imaging device
involved and its calibration. One solution developed in one particular medical
center may perform poorly in another medical center [Orlando et al. 2020].

These issues are highly problematic for training deep neural networks, which demand
large amounts of data to reach correct generalization performance. Therefore, a
Multi-Task Learning approach is of particular relevance in this context, to maximize
the benefits of the few annotated data at disposal and create better generalization
performances. Although most existing works on glaucoma diagnosis use single-task
approaches [Hagiwara et al. 2018, Orlando et al. 2020], this chapter proposes to use
a multi-task one. As a result, only a single model is required for the different tasks
involved in glaucoma diagnosis. The sharing and optimization methods proposed
in previous chapters are used, to mitigate possible task interference and improve



5.1. Motivation 63

Figure 5.1: Example of a retinal fundus image, with annotations for Optic Disc,
Optic Cup and Fovea. (Source: [Orlando et al. 2020])

further the generalization performance in a concrete application, such as glaucoma
diagnosis.

5.1.2 The Retinal Fundus Imaging challenge (REFUGE)

In 2018 has been organized the “Retinal Fundus Glaucoma Challenge” (REFUGE),
included as a satellite event in the MICCAI conference (2018). For this event, 1200

retinal fundus images (400 for training, 400 for validation, 400 for testing) from
different cameras and medical centers have been collected and annotated by human
experts. Annotations were provided for four different tasks:

• Glaucoma diagnosis: binary labels, attesting for the presence of glaucoma.

• Optic Disc segmentation map: The optic disc is the region defined by the
optic nerve head.

• Optic Cup segmentation map: The optic cup is the white elliptic region
located inside the optic disc.

• Fovea localization: The fovea is the sharp central vision point.

A visualization of such annotations is provided in Figure 5.1.
In the following, the data provided in this challenge is used to experiment the
methods proposed in this thesis in a multi-task pipeline, with the aim of improving
the generalization performance of deep networks in a real world application.



64
Chapter 5. Glaucoma Diagnosis from Retinal Fundus Imaging through

MTL

5.2 Related work

In [Orlando et al. 2020] it is presented a report of the first edition of the REFUGE
challenge, along with thorough description of the methods submitted by the 12

best ranked contenders. Note however that the fovea localization tasks was not
part of the contest in this first edition. All the reported strategies use a single-task
approach, with one independent convolutional network per task. The segmentation
tasks are essentially dealt with state-of-the-art like Mask-RCNN [He et al. 2017] and
U-Net-like [Ronneberger et al. 2015a] architecture. The glaucoma classification task
is instead mostly dealt with ResNet [He et al. 2016c], Inception [Szegedy et al. 2017]
and DeepLab [Chen et al. 2017] networks, with eventual ensembling methods. Some
contenders advantageously ensemble their network classification predictions with
these of a linear classifier, trained over the vertical Cup-to-Disc Ratio (vCDR)
obtained from the segmentation predictions.

In order to cope with the few provided labeled data, half of the contenders applied
Transfer Learning from networks pre-trained on Imagenet [Deng et al. 2009]. A
few other teams used existing related datasets for training. However, none of
the teams in the challenge adopted a multi-task approach, although multiple
related tasks were provided over a same input domain. One first explanation
could be that the tasks are of different nature (classification and segmenta-
tion), and the state-of-the-art on these tasks is reached by different network
architectures in the existing literature, making it inconvenient to share a same
network for all tasks. A second explanation might come from task interference
issues, leading to marginal gains or even degradation compared to single task learners.

One existing multi-task approach on this dataset has been exposed
in [Zhao et al. 2019]. The authors propose a weakly supervised method, al-
lowing them to predict glaucoma diagnosis, OD segmentation and a third evidence
identification task with high accuracy, while only training with glaucoma diagnosis
labels. Experimental results show comparable segmentation performance to a
fully-supervised U-Net trained on the segmentation and evidence identification
tasks. Although this thesis focuses on fully-supervised methods, this weakly
supervised approach indicates well the close relationship between the classification
and segmentation tasks, which shows that some benefits could definitely be expected
from their joint learning.

5.3 Method

Instead of existing approaches [Hagiwara et al. 2018, Orlando et al. 2020] which
generally train one deep CNN per task, here only one CNN is jointly trained on all
the different tasks. This section first presents the whole adopted pipeline, with data
pre-processing, network choice, and task prediction heads. It then introduces the



5.3. Method 65

Figure 5.2: Left: An input sample (retinal fundus image). Right: Saliency map
centered on fovea coordinates.

different loss functions and metrics used for the different tasks. It finally details how
the different sharing strategies and optimization schemes presented in this thesis are
applied to this pipeline.

5.3.1 Pipeline description

Figure 5.3 gives an overview of the whole pipeline, which is describe hereafter.

Tasks pre-processing
The dataset is composed of one binary classification task (glaucoma diagnosis),
two semantic segmentation tasks (OD, OC), and on localization task (Fovea).
Localization tasks are difficult tasks to process with convolutional networks, which
do not use any notion of distance, but instead focus on receptive fields. Existing
localization methods generally involve complex networks with anchor proposal
mechanisms [He et al. 2017]. Instead, the fovea localization task is casted into a
segmentation one: from the given coordinates of the fovea is created a saliency map
as a bidirectional Gaussian centered in the fovea coordinates. An example is shown
in figure 5.2 (right). Fovea locations are then computed as the center of mass of
such saliency maps.

Network choice
Now disposing of one classification task and three segmentation tasks, a network
able to jointly optimize these different tasks is needed. The chosen network is a
U-Net [Ronneberger et al. 2015b], an encoder-decoder convolutional network, with
a VGG-16 [Simonyan & Zisserman 2015] structure, and added skip connections
between equivalent depths of encoder and decoder. These skip connections allow the



66
Chapter 5. Glaucoma Diagnosis from Retinal Fundus Imaging through

MTL

Figure 5.3: Method pipeline, used to deal with glaucoma diagnosis, OD/OC segmen-
tation and fovea localization with a unique shared deep network.

decoder to recover fine-grained details through the multiple feature maps upscalings.
This network is both well renowned and particularly efficient for segmentation tasks.
Concerning the classification task, it can be processed by the VGG-like encoder part
of the U-Net.

Segmentation tasks predictions
The predictions for segmentation tasks are obtained with one task-respective
convolutional layer after the shared decoder for each task. Similarly to existing
works in [Orlando et al. 2020], the segmentations of OD and OC are then refined
by only keeping the biggest connected instance in the prediction map, to remove
eventual prediction noise around these elliptic regions. This is not applied to the
fovea segmentation map, since it could shift its center of mass.

Classification task predictions
The prediction for the classification task (glaucoma diagnosis) contains two steps:

• A fist prediction is obtained from a fully connected layer, branched after the
U-Net encoder.

• Similarly to some works in [Orlando et al. 2020], a second prediction is obtained
from a linear classifier, taking as input the vertical Cup-to-Disc Ratio (vCDR)
obtained from the OD and OC segmentation tasks. The vCDR is computed as:

vCDR =
OCheight
ODheight

With OCheight and ODheight the heights of the optic cup and optic disc,
computed on the segmentation maps.

The final classification score is obtained by averaging the predictions of the two
classifiers.



5.3. Method 67

5.3.2 Losses and metrics

Different loss functions and metrics are used for the different tasks to optimize.

OD and OC segmentation
The OD and OC segmentation tasks both use a binary cross-entropy loss (BCE),
averaged over every pixel i of the segmentation maps:

LBCE(p, y) = − 1

Npix

Npix∑
i=1

yi log(pi) + (1− yi) log(1− pi)

with p, y and Npix respectively the prediction, ground-truth and number of pixels.
The metric used is the dice score (DSC), which computes the intersection over union
between predicted and ground truth segmentation maps:

DSC(p, y) =
2
∑

i piyi∑
i pi +

∑
i yi

Fovea localization
For the fovea localization task, the network is trained to fit the pre-processed saliency
maps with a L1-loss, since values are not binarized on this task:

LL1(p, y) =
∑
i

|yi − pi|

After the predicted fovea location is computed as the center of mass of the predicted
saliency map, the metric used is the L2-distance.

Glaucoma classification
For the glaucoma classification task, I use a focal loss [Lin et al. 2017], to better
handle the unbalance between positive and negative samples (only 10% of positives):

LFocal(p, y) = (1− pt)γlog(pt)

with

pt =

{
p if y = 1

(1− p) otherwise

Concretely, this loss multiplies the usual binary cross-entropy term with a classifica-
tion uncertainty term (1− pt), to give more importance to uncertain classifications,
i.e. these of low populated classes. γ is a hyperparameter, set to 2 in the following.
The metric used for this task is the Area Under Curve (AUC) score, in order to
account for prediction confidence scores instead of just binary predictions.



68
Chapter 5. Glaucoma Diagnosis from Retinal Fundus Imaging through

MTL

5.3.3 Optimization

This chapter aims at comparing the performance obtained by the proposed multi-task
pipeline with different combinations of sharing strategies (full sharing and Maximum
Roaming partitioning) and optimization schemes (SUS, IUS and IO) discussed
in Chapters 3 and 4. Different models represent different combinations of these
strategies (six possible combinations in total), applied to the same pipeline.

For models using Maximum Roaming, the parameter partitioning is applied in every
layer of the shared U-Net (encoder and decoder). The optimization schemes SUS,
IUS and IO detailed in Chapter 4 are then applied over the loss functions of the four
tasks. Note that for Maximum Roaming models, the SUS update scheme is not
trivial, since these models require separate task-specific forward passes due to the
partitioning. This combination MR-SUS is thus conducted by accumulating the
losses of the different tasks forward passes, and back-propagating only when all task
losses have been accumulated.

Along with the multi-task models, single-task versions (STL) of the same pipeline
are also evaluated (adding four more models, one per task).

5.4 Experiments and Results

This section experiments the learning of the proposed multi-task pipeline on the four
tasks of the REFUGE challenge. First are introduced some experimental details.
Then are compared the obtained performance between all possible combinations of the
two sharing patterns (full sharing and Maximum Roaming), and three optimization
methods (SUS, IUS and IO) discussed in this thesis. The same pipeline is also run in
single-task setting (independently for each task), in order to observe potential task
interference phenomenon in the multi-task models. In a last part, the same study
is conducted when combined with Transfer Learning, to evaluate if the proposed
multi-task approach can produce benefits in this context.

5.4.1 Experimental details

For every pipeline setting, i.e. sharing pattern and optimization scheme combination,
the learning is conducted with an Adam optimizer (β1 = 0.9, β2 = 0.999, ε = 10−8)
and a batch size of 8. I use Maximum Roaming with a partition selectivity p = 0.8

and an update interval ∆ of 1 epochs. I apply a dropout rate of 0.8 to the fully
connected layer of the Glaucoma classification task. The network is trained for 300

epochs. After each epoch, the validation performances are ranked according to the
challenge ranking procedure. All the code is made under Pytorch 1.2, and run on
NVIDIA Titan XP graphic cards.



5.4. Experiments and Results 69

5.4.2 Experimental Results

For all models is first applied a grid search over the learning rate, to obtain a better
insight on the different models behavior.

Grid-search reported on loss values
The results are reported in Figure 5.4 for fully shared models, and Figure 5.5 for
Maximum Roaming models (MR). Specifically, the best validation losses achieved by
the SUS, IUS and IO optimizations over a full training, w.r.t. different values of η
are reported.

Figure 5.4: Reported losses of the learning rate grid-search over fully shared (MTL)
models trained from scratch, with different optimization schemes (SUS, IUS and IO).

One observation from these two figures is the strong unbalance between the different
loss magnitudes: some classification loss values are close to 100 times bigger than
some fovea loss values, which means that the fovea localization task has chances
to dominated by the classification task, at the risk of degraded performances.
Then, one important issue with these figures is that some learning dynamics are
not accurately represented: in the case of the fovea localization task, some slight
differences in the loss can lead to huge differences in the task metrics. In Figure 5.6
is represented the fovea localization validation metric through training of the MTL
models with a learning rate η = 5e−3. One can indeed observe that the SUS and IUS
models completely overlook this task, while presenting a loss value close to that of



70
Chapter 5. Glaucoma Diagnosis from Retinal Fundus Imaging through

MTL

Figure 5.5: Reported losses of the learning rate grid-search over Maximum Roaming
(MR) models trained from scratch, with different optimization schemes (SUS, IUS
and IO).

the IO model. Instead, the different task metrics introduced in 5.3.2 might represent
more accurately the true performances of the different models. Therefore, in the
following the grid searches will be reported with respect to the task-specific metrics.

Grid-search reported on task metrics values
Figure 5.7 and 5.8 report the same grid search for fully shared and Maximum
Roaming methods respectively, with task respective metrics reported instead of losses.

One can first see on these figures noticeable differences compared to the previous
ones (reporting the tasks losses): in particular, the models failing on the fovea
localization task are more visible, and the top performances achieved on the different
curves are slightly shifted towards the lower learning rates for the classification task.

Both in the case of fully-shared and Maximum Roaming models, the IO optimization
scheme consistently achieves better validation metrics over the different tasks and
learning rates, and reaches the best performance over the grid search on every single
task, often with a substantial margin. It is also interesting to notice that it reaches
close-to-best performance on the fovea task on wider learning rate frames. Keeping
in mind that this task has a loss of inferior magnitude, it suggests that the IO



5.4. Experiments and Results 71

Figure 5.6: Fovea localization L1-error validation metric over training of the different
MTL models, with a learning rate η = 5e−3. While the loss values of SUS, IUS and
IO models are pretty close for this learning rate, the difference is huge on the task
metric.

optimization scheme better handles losses unbalance between tasks.

The contribution of Maximum Roaming can be observed by comparing the curves
in Figures 5.7 and 5.8. With SUS and IUS optimization schemes, Maximum
Roaming significantly improves the results achieved on segmentation tasks and
fovea localization task. No notable differences are visible on the classification task.
This suggests that the roaming of parameters among the different tasks during the
optimizations helps to discover more favorable loss regions for tasks of lower loss
magnitude, while it is more difficult for fully shared approaches to optimize them
jointly with the other tasks. However the combination of MR and IO doesn’t show
the same improvements: the results are pretty similar to these obtained with the
fully shared network and IO optimization scheme.

Benchmark
Finally, Table 5.1 presents a benchmark, comparing the best models obtained from
the previous grid search over fully shared and Maximum Roaming model, with
the three different optimization schemes. In order to obtain a unified metric for
comparing the different models, every obtained metric score is normalized between
the best and worse performance achieved on the respective task among all models,
which gives scores between 0 and 1 for every task. A multi-task score is then
averaged from the four task scores. The best scoring models of each sharing strategy
and optimization scheme at their best scoring iteration on the validation set are
selected for comparison on the test set. Single task baselines (STL) for each task are
also included in the benchmark.



72
Chapter 5. Glaucoma Diagnosis from Retinal Fundus Imaging through

MTL

Figure 5.7: Reported metrics of the learning rate grid-search over fully shared (MTL)
models trained from scratch, with different optimization schemes (SUS, IUS and IO).

The previous observations about the optimization schemes mostly hold here: the IO
models reach the best scores on every single task among multi-task models (MTL
and MR), by large margins. The IUS models instead seem like the worst ones,
although the MTL-SUS model totally fails on the fovea localization task. Once
again, Maximum Roaming seems to operate a better balancing between the four
different task performances when combined with SUS and IUS optimization schemes,
although the downside is lower performance on the classification task. The benefits
of Maximum Roaming and the IO scheme do not cumulate, since the MTL-IO
model performs slightly better than the MR-IO one, while cumulated effects can
be observed on the IUS models. This may suggest that the MR-IO combination
introduces too much noise in the optimization.

When comparing the performance of multi-task and single task models, it is intersting
to notice that the fully shared network with standard SUS optimization scheme
(MTL-SUS) perfoms worse than the single task baselines on every tasks, highlighting
a task interference issue. Instead, when combined with the methods proposed in
this thesis, the multi-task network is able to greatly reduce task interference, and
often produce improvements compared to the single task baselines. In particular,
the MTL-IO model reaches better scores on 3 of the 4 tasks, and closely approaches



5.4. Experiments and Results 73

Figure 5.8: Reported metrics of the learning rate grid-search over Maximum Roaming
(MR) models trained from scratch, with different optimization schemes (SUS, IUS
and IO).

the STL score on the Fovea localization task.

5.4.3 Combination with Transfer Learning

Transfer Learning is a widely adopted method to bias a model with prior knowledge
on an input domain and lead it to better generalization on new data. In practice,
Imagenet [Deng et al. 2009] pre-trained models have proven to be profitable on a
large majority of vision tasks. In medical imaging, although the input domain
is different from the Imagenet domain (natural images), the benefits are still
noticeable [Tajbakhsh et al. 2020], and particularly appreciated to compensate for
the usual lack of training data. Its combination with Multi-Task Learning strategies
studied here is thus relevant. This part is a similar study as the one presented above,
this time built on top of a pre-trained model. As Imagenet only involves image
classification, there exist no Imagenet pre-trained models for semantic segmentation.
However, it is possible to use a pre-trained VGG-16 [Simonyan & Zisserman 2015]
network for the encoding part of the U-Net in the pipeline, while the decoder is
initialized from scratch.

As in the previous experiments, Figures 5.9 and 5.10 report the grid search operated



74
Chapter 5. Glaucoma Diagnosis from Retinal Fundus Imaging through

MTL

Models trained
from scratch

AUC
(↑)

Dice OD
(↑)

Dice OC
(↑)

Fov. Err.
(↓)

STL (Classif.) 90.09± 2.70 − − −
STL (OD) − 89.25± 1.87 − −
STL (OC) − − 80.61± 1.36 −
STL (Fovea) − − − 5.46± 0.23

MTL-SUS 89.79± 1.35 87.81± 0.96 74.40± 0.32 36.51± 4.40

MTL-IUS 85.47± 3.80 82.88± 3.40 70.57± 3.67 9.06± 2.03

MTL-IO 92.91± 0.69 92.07± 1.50 81.37± 0.20 5.60± 0.24

GradNorm 86.31± 1.35 80.32± 1.10 68.93± 4.78 28.48± 0.65

PCGrad 85.51± 1.71 85.23± 1.52 71.08± 7.40 34.45± 0.33

Table 5.1: Benchmark of the different combinations between different parameter
sharing strategies (MTL and MR) and optimization schemes (SUS, IUS and IO),
along with single task models (STL), trained from scratch.

on the task specific metrics, and Table 5.2 the benchmark comparing the best
performing models.

Pre-trained models AUC
(↑)

Dice OD
(↑)

Dice OC
(↑)

Fov. Err.
(↓)

STL (Classif.) 94.30± 1.68 − − −
STL (OD) − 95.29± 0.01 − −
STL (OC) − − 85.86± 0.21 −
STL (Fovea) − − − 5.42± 0.06

MTL-SUS 94.96± 0.74 93.94± 0.27 84.62± 0.40 11.55± 1.71

MTL-IUS 96.06± 0.91 93.94± 0.27 83.89± 0.98 5.36± 0.03

MTL-IO 96.15± 0.14 94.24± 0.38 83.95± 0.90 5.22± 0.18

MR-SUS 92.92± 1.83 94.00± 0.76 84.23± 0.61 5.50± 0.16

MR-IUS 94.57± 0.53 94.10± 0.10 84.31± 0.31 5.20± 0.24

MR-IO 94.82± 0.84 94.63± 0.24 83.86± 0.22 5.51± 0.09

GradNorm 88.06± 3.17 81.37± 6.91 67.69± 9.75 32.38± 1.11

PCGrad 95.24± 0.67 94.41± 0.38 84.56± 0.40 5.34± 0.13

Table 5.2: Benchmark of the different combinations between different parameter
sharing strategies (MTL and MR) and optimization schemes (SUS, IUS and IO),
along with single task models (STL), used with a pre-trained network.

From a first look at the grid search figures, one can notice that Transfer Learning
provides an overall performance gain for all models and tasks. The performance
peaks tend to happen for smaller learning rates compared to the networks
trained from scratch. The performance then quickly drops with the increase of
η. This kind of behavior is generally expected when using Transfer Learning: the



5.4. Experiments and Results 75

Figure 5.9: Reported metrics of the learning rate grid-search over pretrained fully
shared (MTL) models, with different optimization schemes (SUS, IUS and IO).

pre-trained weights provide robust representations on the source input domain
trained on millions of images, which needs only small adaptations in order
to adapt to the slight domain shift. A too large learning rate might instead
break some of these representations, and thus waste the provided inductive
bias [Yosinski et al. 2014, Tamaazousti et al. 2017]. Pushing further this reasoning,
the fact that this phenomenon is less pronounced on the segmentation tasks might
come from that they use a decoder initialized from scratch, therefore reducing the
impact of the pre-trained encoder.

Then, the benefits obtained by Maximum Roaming and the optimization schemes
IUS and IO are similar to these obtained without Transfer Learning: both the
optimization schemes consistently increase the performance on the different tasks,
while Maximum Roaming models seem to give more attention to tasks of lower
loss magnitude, at the cost of a performance drop on the classification task.
However, the gains produced by these methods here are of smaller magnitude
compared to these obtained on models trained from scratch, which could suggest
that the pre-training places the network in smoother regions of the loss landscape,
in which different optimization and sharing strategies make less differences.
Similar conclusion can be drawn from comparison with the STL models, which are
also slighter: Transfer Learning obviously reduces the impact of Multi-Task Learning.



76
Chapter 5. Glaucoma Diagnosis from Retinal Fundus Imaging through

MTL

Figure 5.10: Reported metrics of the learning rate grid-search over pretrained
Maximum Roaming (MR) models, with different optimization schemes (SUS, IUS
and IO).

Finally, the fact that Maximum Roaming behaves in a similar way when combined
with Transfer Learning is particularly interesting: due to the parameter partitioning
operated in MR models, one could expect to break some co-adaptations in the
pre-trained layers, and thus reduce the impact of Transfer Learning, which doesn’t
seem to be the case here.

5.5 Discussion

This chapter proposes the application of the multi-task methods discussed in this
thesis on a real world medical imaging challenge centered on glaucoma diagnosis, for
which methods to bias the learning process like Transfer Learning and Multi-Task
Learning are of particular relevance to compensate for the lack of annotated data.
The proposed pipeline aims at maximising the inductive bias by using a unique CNN
to learn all tasks jointly, and applies different combinations of sharing strategies and
optimization schemes to compare their respective impacts on generalization and task
interference. These same experiments were then conducted when using a pre-trained
network, i.e. Transfer Learning, in order to evaluate how hold these methods benefit
when combined with respect to this other learning paradigm.



5.5. Discussion 77

The experimental results on networks trained from scratch mostly confirm the findings
of Chapters 3 and 4, and provide interesting information about their combination:

• Maximum Roaming proceeds of an overall improvement of the multiple tasks: in
a setting where one task loss dominates the others, the dominated tasks see their
performance significantly increased, at the cost of a moderated performance
loss on the dominating task.

• The optimization scheme using independent optimizers (IO) for each task
greatly improves the performance on every task, while results are more compa-
rable between the shared optimization scheme and independent one with same
optimizer (SUS and IO).

• The combination of Maximum Roaming. and IO scheme do not improve the
results of IO used alone, while it is the case with IUS.

• The proposed methods greatly reduce task interference, and consistently out-
class single-task baselines.

This is to add to the fact the presented multi-task pipeline uses a unique convolutional
network for all tasks, which is more lightweight compared to single-task learners.
Therefore, the proposed pipeline combined with the methods presented in this
thesis produces significant benefits both in terms of performance and computational
efficiency.

These observation hold in smaller proportions when these methods are combined
with Transfer Learning, which suggests that these strategies can be efficiently
applied in real world contexts to create better generalization performance on
Multi-Task problems, in isolation, or eventually combined with Transfer Learning
when possible. However more investigation should be conducted under differ-
ent setting and problems to obtain more insight about the combination of MR and IO.





Chapter 6

Conclusion

Contents
6.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . 79

6.2 Open perspectives . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Summary of contributions

Over the last years, research in computer vision tried to make the most benefit out
of limited existing annotated data to introduce inductive bias into their learning
processes. Among different existing solutions is Multi-Task Learning, which consists
in jointly optimizing a unique model with respect to multiple tasks. The presence of
multiple tasks issued from a same domain provides more information to the network
about the input domain, which should improve its generalization on new data.
However, current research encounters major difficulties in the optimization of deep
multi-task networks, which in practice do not consistently reach better generalization
performance compared to equivalent single-task learners, and can instead degrade it.
This is denoted as task interference. This thesis proposed two methods to improve
the optimization of deep multi-task networks and mitigate task interference. The
relevance and feasibility of the proposed methods was demonstrated through its
application to a real world concrete problem involving the detection of glaucoma
from fundus images.

Maximum Roaming (Chapter 3)
Parameter partitioning methods explicitly propose to combat task interference by
relaxing the standard hard parameter sharing strategy: each task is attributed a
specific use of the parameters in each layer. This procedure experimentally shows
to efficiently reduce task interference. However existing partitioning methods
might block interactions between some tasks and parameters and therefore reduce
the latent inductive bias. This thesis proposed Maximum Roaming, a dynamic
parameter partitioning method inspired by dropout. The discrete parameter
partitioning is regularly updated through learning with respect to a finite update
plan, which imposes every parameter to be trained by every single task for a
certain duration. In the meantime, the averaged overlap between the different task
partitions remains constant, in order to fully benefit of the interference reduction



80 Chapter 6. Conclusion

provided by partitioning methods. The method is model-agnostic, only involves
negligible supplementary non-trainable binary parameters. Experimental results
show consistently improved performance across multiple datasets and different
convolutional networks over existing state of the art baselines.

Alternated and independent optimization of tasks-specific objectives
(Chapter 4)
Partitioning methods, due to the task-specified parameters usage, compute separate
forward and backward passes for each task, sequentially. This optimization scheme
is different from most other approaches, back-propagating at once all the different
losses aggregated in a multi-task loss. However this difference is never studied
in isolation in the literature. This thesis provided a convergence analysis of this
optimization scheme, named IUS (Independent Update Steps) here. It was then
compared with the standard optimization of the aggregated loss. Suspecting that
giving more independence to the tasks could introduce more stochasticity into the
optimization and reveal beneficial, a new optimization scheme was then proposed,
defining one optimizer per task (Independent Optimizers, IO), to avoid the mixing
of different tasks gradients into the momentum mechanisms of state-of-the-art
optimizers. Experimental results report that these two optimization schemes, with
a clear advantage to the IO one, consistently achieve better performance that the
aggregated loss optimization scheme, and compare favorably to other state-of-the-art
baselines. They also report a larger traveled distance into the loss landscape,
reaching more remote solutions, with more oscillations on their path, suggesting
that they indeed bring more stochasticity into the optimization process. However,
in the worst case, both the IUS and IO schemes scale linearly to the number of
tasks, in terms of optimization time. Experiments are therefore conducted on their
combination with a simple task grouping strategy, which allows to freely balance the
optimization schemes benefits with the optimization time increase. Experimental
results over three datasets show both MTL-IUS and MTL-IO achieve an overall
better generalization performance w.r.t standard aggregated objective optimization
(MTL-SUS) and state-of-the-art MTL baselines using an aggregated objective
function. In particular, MTL-IO shows important improvements in settings where
tasks are of a very different nature. These results also confirm that the proposed
random grouping strategy applied to MTL-IUS and MTL-IO is beneficial both in
terms of performance and efficiency, when dealing with a great number of tasks.
Finally, the results showed that MTL-IUS and IO allow parameters updates to
travel a longer distance, and ensure a more thorough exploration of the shared
parameter space.

Application on a medical imaging challenge (Chapter 5)
Concerned about how well the proposed methods could generalize over non-academic
contexts, this thesis evaluated them on a medical imaging challenge, centered on
glaucoma diagnosing from fundus imaging, and providing annotations for multiple
tasks. A Multi-Task Learning approach was adopted to create the most possible



6.2. Open perspectives 81

inductive bias from the few data at disposal, and optimize with different possible
combinations of sharing strategies (i.e. fully shared and Maximum Roaming models)
and optimization schemes (SUS, IUS and IO). The comparisons showed that the
contributions found in the previous chapters are also observable in this context,
with improved multi-task performance. While the optimization schemes IUS and
IO consistently improve each task performance, Maximum Roaming benefits are
more focused on tasks presenting lower loss magnitude. Finally, this thesis studied
how Multi-Task Learning could be combined with other strategies, such as Transfer
Learning.

6.2 Open perspectives

The most direct perspectives opened by this thesis are the possible improvements of
the two introduced methods, Maximum Roaming, and the separate and independent
optimization of the tasks, MTL-IO.

Towards learnable roaming parameter partitioning
In opposition to other partitioning methods which try to find an optimal partitioning,
regardless of the potentially lost latent inductive bias, Maximum Roaming instead
only focuses on the roaming of parameters among tasks to create more regularization,
and proceeds random updates regardless of any parameter-task affinity. Further
improvements could unify both these different approaches, in order to fully exploit
the latent inductive bias, while maximising the efficiency of the partitions with
respect to their tasks.

A first solution would be to apply the two approaches sequentially: one first training
with Maximum Roaming to introduce robust knowledge into the parameters, followed
by a fine-tuning of the partitions to refine better task-parameters combinations. A
second possibility would be to find a differentiable representation of the roaming of
parameters and introduce it in the loss function, so that parameters optimization,
partitions optimization and roaming are all conducted jointly. Such differentiable
approach would also avoid the hyper-parameter tuning in Maximum Roaming.

Re-thinking optimization schemes in existing MTL works
Chapters 4 and 5 showed that alternated and independent optimization of
tasks (MTL-IO) consistently achieved better generalization performance than
the standard optimization of an aggregated loss. However, its main downside
remains the increased optimization time due to task-specific update steps. Ex-
perimental results thus showed that a naïve random task grouping strategy is
enough to reduce at will this optimization time, at the cost of reduced perfor-
mance gains. One straightforward evolution would be to replace the random
task grouping with sophisticated task grouping methods, as some of these pre-



82 Chapter 6. Conclusion

sented in Chapter 2, in order to limit the risks of negative transfer among task groups.

Then, MTL-IO is proposed as an alternative way of jointly optimizing a set of
parameters with respect to multiple tasks. As shown in Chapter 5, it is not
specifically intended to be used in isolation, but can instead be combined with
most existing multi-task works, with minimal effort. It is therefore encouraged to
further research on how to apply this simple optimization scheme to other existing
multi-task methods, in order to eventually combine their benefits.



Appendices





Appendix A

Semantic and Visual Similarities
for Efficient Knowledge Transfer

in CNN Training

Contents
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.2.1 Datasets and architectures . . . . . . . . . . . . . . . . . . . . 87
A.2.2 Transfer Learning process . . . . . . . . . . . . . . . . . . . . 87
A.2.3 Semantic similarity between textual content . . . . . . . . . . 88

A.3 Similarity-based knowledge transfer . . . . . . . . . . . . . . 89
A.3.1 Similarity measures . . . . . . . . . . . . . . . . . . . . . . . 89
A.3.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . 90
A.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . 90
A.4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.4.3 Similarities and Initialization . . . . . . . . . . . . . . . . . . 91
A.4.4 Neighboring optimization . . . . . . . . . . . . . . . . . . . . 92
A.4.5 Data reduction study . . . . . . . . . . . . . . . . . . . . . . 94

A.5 Conclusion and Perspectives . . . . . . . . . . . . . . . . . . . 95

The content of this chapter is based on: "Semantic and Visual Similarities for Efficient
Knowledge Transfer in CNN Training" [Pascal et al. 2019], which was published as
a conference paper in CBMI 2019.

A.1 Introduction

With the emergence of large, public and thoroughly annotated datasets
[Russakovsky et al. 2015], along with the ever increasing computing capabilities of
GPUs, Deep Neural Networks, and especially CNNs, have rapidly revolutionized
many computer vision tasks. Such quantities of data allow to learn visual feature
extractors whose relevance and discrimination power surpasses the best hand crafted
ones [Krizhevsky et al. 2012], regardless of the problem complexity or the model



86
Appendix A. Semantic and Visual Similarities for Efficient Knowledge

Transfer in CNN Training

size. However, the time and associated cost for creating such new huge datasets,
and to make new models converge over these are still a huge bottleneck in real-world
use cases, so that someone with limited resources cannot reasonably compete with
companies running each of their models during weeks over hundreds of GPUs (or
TPUs) and gigantic datasets.

Transfer learning is a recent and still evolving approach to address this issue. It
consists in reusing a model developed for a task as a starting point for another
related task. This is based on the assumption that two related tasks require some
common knowledge, so that some of the knowledge associated to a task could
benefit another similar one. In deep learning, this is performed by using some of
the model’s weights as an initialization for the training over the new task, while
the usual practice is to initialize them randomly ([Glorot & Bengio 2010]). In
computer vision tasks, well trained CNN low level and mid-level layers generally
detect basic shapes and textures, no matter the specificity of the task. They
consequently transfer well between different computer vision problems, as shown
in numerous publications ([Hinton & Salakhutdinov 2006, Yosinski et al. 2014,
Chu et al. 2016, Azizpour et al. 2016, Zamir et al. 2018, Tamaazousti et al. 2017,
Wang et al. 2017]).

Transfer learning can then be distinguished in two types of applications : domain
adaptation, aiming to adapt a pre-trained network to a new task, out of this work’s
scope, and fine-tuning, which consists in adapting the network to new target data,
for the same task. In the latter case, one can extend the transfer to the whole set
of weights concerning the features extraction, and just replace the output fully
connected layer with one shaped for his target classes. Almost all the knowledge
required to perform the task is already present in the network, and can be aligned
with the target data by a small training procedure (not necessary on the entire set
of weights), lighter than the one required to train a model “from scratch”. Note that
fine-tuning a pre-trained CNN often leads to better performances, and requires fewer
data than a network trained from scratch, as most of the knowledge required for the
task is already present in it ([Yosinski et al. 2014, Chu et al. 2016]).

Fine tuning has become common practice, allowing faster trainings on consequently
smaller datasets, and giving the opportunity for researchers and companies to
develop their own systems. However, there may still be a lack of efficiency in training
a new fully connected layer from scratch, and transfer learning can once again fulfill
it. To further improve the transfer, this chapter thus proposes to reuse some weights
of the last fully connected layer of the original model, based on similarity between
source and target classes.

The contribution of this work is fivefold: First is showed that there is some
important knowledge within the last layer of pre-trained DNN models which when
identified and used properly can be somewhat transferred to the new model, to



A.2. Related Works 87

speed up training and benefit model accuracy for fine tuning. Second, a novel
method is proposed to reuse that knowledge in combining multiple relevant
source classes. Third, a study is conducted over one visual and two semantic
similarity measures to select these relevant source classes. Fourth, an original
analysis enables to separate cases between three possible types of knowledge
transfer, to attest that the proposed method performs well on each of them,
and optimize the proposed method. Fifth, the propose method is monitored
while decreasing the amount of training data, to validate the consistency of the results.

This chapter is organized as follows. It first reviews some related works, then present
the contribution, before discussing the experimental results. A final discussion is
provided on this work and future developments.

A.2 Related Works

A.2.1 Datasets and architectures

The most common source dataset to apply transfer learning for computer vision
tasks is ImageNet [Russakovsky et al. 2015], since it presents 1000 classes, shared
between various semantic fields (animals, flora life, vehicles, tools, etc...). It is thus
very likely to benefit the training of almost any kind of target data, and its efficiency
is demonstrated in [Huh et al. 2016].

As for the choice of the network to use, many state of the art results in image
classification tasks (including the ImageNet dataset) have been achieved by (or
built on) the ResNet architecture [He et al. 2016a, He et al. 2016b], and Inception
[Szegedy et al. 2015, Szegedy et al. 2017] structures (or combinations of them).
Their efficiency and simplicity often places them as the best choice for transfer
learning, be it for other classification tasks, or using it as a backbone for other tasks
(object detection and segmentation, for example).

A.2.2 Transfer Learning process

Reusing some pre-trained weights for a new task has been pioneered by
[Hinton & Salakhutdinov 2006] and [Yosinski et al. 2014], showing that the new
task can greatly benefit it, not only in terms of training speed, but also of global
performance.

However, the way to optimize a transfer learning process is still unclear. It is known
that the deeper the layer in a network, the more specialized are its weights to the
task they are trained on [Krizhevsky et al. 2012, Yosinski et al. 2014]. Concretely,
if the first few layers of a ResNet (detecting simple visual patterns like geometrical
shapes) can benefit any computer vision task, it is still unclear how deep the weights



88
Appendix A. Semantic and Visual Similarities for Efficient Knowledge

Transfer in CNN Training

can efficiently be reused. [Yosinski et al. 2014] experiments transfers of different
depths, and highlights that the transfer of specialized layers can hurt performance
on the target task, depending on their depth.

In [Chu et al. 2016] is given a study taking into account the amount of data available.
They show that if transferring weights has only a moderate impact on performance
in a context with a lot of data, it becomes crucial for long-term performance as the
data decreases. For two sufficiently close tasks (source and target), they generally
advise to transfer all the layers except the classification one before a global fine
tuning. This advice seems quite reasonable in the case investigated here, since only
the images contained in the dataset and their classes change, while the classification
objective remains the same.

However, with enough populated classes, [Yosinski et al. 2014] shows that training
only the randomly initialized part of the transferred CNN can break fragile
co-adaptations at the boundary. Fine tuning equally the whole network gives
better results, allowing to readjust those co-adaptations. [Tamaazousti et al. 2017]
proposes a finer process that consists in training the whole network in one go with a
lower learning rate applied to the transfered part. This focuses the training on the
new part, while allowing co-adaptation between the two parts.

As shown in [Wang et al. 2017], transfer learning can also be improved by deepening
and/or widening the original network, giving more rooms to small adjustments,
under the condition of correctly managing the simultaneous training of both
transferred and newly created cells.

A systematic process in all these works is to discard the classifying layer and to
train a new one, adapted to the target classes, from scratch. This chapter argues
and shows that, when the source and target are similar to a certain extent, the
knowledge contained in the pre-trained classifier layer can be efficiently reused for
learning a new model.

A.2.3 Semantic similarity between textual content

One traditional way to get a similarity measure between two concepts is to
use the WordNet graph [Beckwith et al. 1991]: WordNet is an english lexical
database of nouns, verbs, adjectives, and adverbs grouped under lexicalized
concepts (named synsets), interlinked by different types of semantic relations.
There are five main semantic similarity measures defined for WordNet in the
literature : Jiang & Conrath [Jiang & Conrath 1997], Leacock & Chodorow
[Leacock & Chodorow 1998], Lin [Lin et al. 1998], Resnik [Resnik 1995], and Wu
& Palmer [Wu & Palmer 1994]. Each of them evaluates the semantic distance
between two synsets. [Capelle et al. 2012] evaluated the Wu & Palmer one, making



A.3. Similarity-based knowledge transfer 89

use of the path length between the synsets organized in a ’is-a’ hierarchy and
the depth of their most specific ancestor node, as the best one for semantic similarities.

More recently, [Mikolov et al. 2013] designed an approach using neural networks to
project words into feature vectors named Word2Vec representations, to represent
efficiently textual content. In this feature space, distances between words are
shown to be quite accurate to attest and quantify some semantic relationships
[Mikolov et al. 2013, Wang 2014, Handler 2014].

A.3 Similarity-based knowledge transfer

A standard, basic transfer learning process to train an image classifier for some
target classes is to reuse the convolution weights of a network already trained on
a similar task on source classes. A fully connected layer fitting the target task
is then randomly initialized on top of the network, which is fine tuned following
a strategy adapted to the specificities of the problem (amount of available data,
possible computational power restrictions, etc...).

The fully connected layer of the pre-trained network represents the knowledge of
the task it is devised for. In cases where the original classification problem and
the destination one are close, there might be a gain in transferring some of the
knowledge of the original network head (last layer) to the target one.

The hypothesis is made here that re-adjusting this available knowledge to fit the
target classes could be more efficient than creating it from scratch, in the usual
way. Assume there are M source classes and N target ones at disposal, each
target class (represented by its fully connected weights) could be initialized with a
combination of a relevant subset of those M source classes, instead of randomly. The
relevance of such a subset of classes is defined by using alternative similarity measures.

A.3.1 Similarity measures

Three of them are proposed. The first is a visual one, directly based on the image
content. The two others are label-based semantic similarities :

Inference similarity. The images of the target classes are input to the plain
source network. The similarities between source and target classes are computed as
F-score measures for each "source network output/target class" couples. In a more
practical way, let oj be the jth output of the source network and ci the ith target
class with j ∈ {1, ...,M} and i ∈ {1, ..., N}, sim(i, j) is computed as the F-score
for oj discriminating ci. This similarity measure aims at leveraging relations based



90
Appendix A. Semantic and Visual Similarities for Efficient Knowledge

Transfer in CNN Training

more on pure visual content than semantics.

WordNet similarity, using the Wu & Palmer ([Wu & Palmer 1994]) measure, as
advised in [Capelle et al. 2012].

Word2Vec similarity. Using some pre-trained Word2Vec embeddings, the
standard cosine similarity is computed between the Word2Vec embeddings of the
source and target class names.

In the following section, these three initialization techniques are compared to the
classic one (i.e. using random initialization of the neural network weights).

A.3.2 Initialization

The affinity values are considered as the coefficients of a neighboring structure,
allowing us to approach the target class as a combination of some source neighbors.
For each target class are thus computed the weights of its classifier as a linear
combination of its K closest source neighbors with respect to the similarity measure,
taking as coefficients these affinity values (normalized, for them to sum to one overK).

W ′i =
K∑
j=1

(
sim(i, j)∑K
j=1 sim(i, j)

)
Wj

In this way, each of the K source classes neighbors contributes to the construc-
tion of the target class initialization, in proportion to its normalized similarity.
The setting of K with respect to the target classes is studied in the experimental part.

A.4 Experiments and Results

A.4.1 Implementation Details

In the following, a ResNet-101 pre-trained on Imagenet is used to com-
bine architecture simplicity and high performances, and replace the last
fully connected layer to fit the target classes. Weights are trained from
the fourth block (included) to the end, while the rest remains frozen.
One could use a finer transfer strategy to optimize the results obtained
[Yosinski et al. 2014, Chu et al. 2016, Wang et al. 2016, Tamaazousti et al. 2017].
Input images’ smallest sides are resized to 256 (preserving aspect ratio), then
cropped (randomly for training, center crop for testing) to output 224× 224 images.



A.4. Experiments and Results 91

The Adam optimizer is used with a learning rate of 10−3, β1 = 0.9, β2 = 0.999 and
ε = 10−8, with a batch size of 64. A dropout of 0.75 is applied on the last fully
connected layer to prevent overfitting.

A.4.2 Dataset

For this experiment, the 1000 classes of the ILSVRC challenge
[Russakovsky et al. 2015] which the ResNet-101 has been trained to classify
are used as source classes. For the target classes are selected 90 ImageNet synsets
that are not part of those former 1000. They can be separated in three types :

Included classes. The target synset is a child of a source synset, thus representing
a more restrictive class than the one in the original problem.

Inclusive classes. The target class is an ancestor of some source synset(s), thus
representing a more general class.

Disjoint classes. Neither child nor ancestor of any already source synset.

For these 90 target classes, synsets containing at least 1000 images are selected, and
equally distributed into the three types of target classes (30 classes each). Within
each target class, 100 images are picked for testing and 900 for training, producing
balanced training and testing sets. Depending on the experiments, only a certain
portion of this training set will be used for training. The list of synsets used for this
experiment along with the selected images is available on a GitHub repository 1.

A.4.3 Similarities and Initialization

The inference similarities are computed as explained earlier, with a pass of the
training set through the pre-trained network (with the 1000 class pre-trained
classifier).

For the WordNet similarities, the WordNet module of the NLTK Python library is
used to obtain a similarity measure based on the shortest path that connects the
labels (or synsets) in the "is-a" (hypernym/hyponym) taxonomy.

To compute the Word2Vec embedding of a given label, the embeddings 2 of all the
words composing it are averaged, since labels are not always denoted by a single
word, but often by an expression.

1https://github.com/lucaspascal/semantic-and-visual-similarities-for-efficient-
knowledge-transfer-in-CNN-training.

2as trained on Flickr, and publicly available at https://github.com/li-xirong/hierse/blob
/master/README.md.

https://github.com/lucaspascal/semantic-and-visual-similarities-for-efficient-knowledge-transfer-in-CNN-training
https://github.com/lucaspascal/semantic-and-visual-similarities-for-efficient-knowledge-transfer-in-CNN-training
https://github.com/li-xirong/hierse/blob/master/README.md
https://github.com/li-xirong/hierse/blob/master/README.md


92
Appendix A. Semantic and Visual Similarities for Efficient Knowledge

Transfer in CNN Training

Each target class is then initialized with the weights of its selected source(s), depend-
ing on the chosen similarity measure and the number of source neighbors. A standard
Xavier initialization [Glorot & Bengio 2010] is used for the random initialization
baseline.

A.4.4 Neighboring optimization

The first experiment shows the global behavior of the proposed initialization method
with a single source class neighbor as initialization for each of the target class, in
terms of F-score measure, averaged over the 90 target classes. For this experiment,
each of the 90 target classes are populated with 500 training images (limit above
which the results did not change significantly). Fig.A.1 shows the evolution through
training in terms of F-score averaged over all the 90 target classes, with the four
initialization strategies (i.e Random, Inference, WordNet and Word2Vec).

Figure A.1: averaged per-class Fscore

One can observe that each of the three initialization strategies performs better
than the random baseline: the convergence is accelerated, and the models produce
interesting results even without training (iteration 0): from 40% to more than 70%

of the F-score achieved at convergence, depending on the model. The initialization
by inference similarity is performing best, as one could have expected since the
similarities in this case have directly been evaluated with respect to the task’s
performance metric. The four models tend to converge to the same value, provided



A.4. Experiments and Results 93

with enough data to fill the gap.

In Table A.1 is provided an example of source/target class correspondence given
by each similarity measure, for the "Anchor, ground tackle" target class. The results
of these transfers are shown in Fig. A.2. In this case, the Word2Vec method has
been mistaken by the "tackle" term, and chose the football accessory as a source
class (worst performing). WordNet found a logical source class ("Hook, claw"),
according to the synsets semantic, and the inference similarity selected "Sundial",
which has no obvious semantic link with an anchor, but presents some very similar
visual patterns, as shown on the images (performing best).

From this example, along with the global results, can be drawn the conclusion that
label-based semantic similarities are more likely to select wrong matchings for visual
classification, while the inference similarity is able to bring out better ones, out of
any semantic consideration

Another intersting fact here is that the Word2Vec similarity is still learning faster
than the random initialization. This observation, verified over multiple other
examples, suggests that any pre-trained classifier is always a better initialization
than a random one for fine-tuning in image classification.

Table A.1: Classes correspondances

Target Class
Inference
Affinity

WordNet
Affinity

Word2Vec
Affinity

Anchor,
ground tackle

Sundial Hook, claw
Football
helmet

The study is then extended to the use of multiple source classes neighbors to
compute the different initializations: Fig. A.3 shows the F-scores of the models
directly after initialization (without training), with respect to the number of source
class neighbors selected, for each type of target class (i.e disjoint, included and
inclusive).

The initialization by inference similarity benefits the most from extending the



94
Appendix A. Semantic and Visual Similarities for Efficient Knowledge

Transfer in CNN Training

Figure A.2: Evolution of the models on the target class Anchor, ground tackle, for
the different source classes determined by the similarity measures.

number of source class neighbors: for any type of initialization, the built classifiers
smoothly gain in performances by adding neighbors. Beyond the selection of one
best source class, this confirms the superiority of the visual similarity over the
semantic ones to estimate the relevance of any source class for a transfer. For the
WordNet and Word2Vec cases, there is also a significant gain, even if the evolution
over the number of neighbors is more chaotic, and it appears to be a good way to
compensate bad matchings (like the Word2Vec case in Table A.1).

A.4.5 Data reduction study

In this experiment is studied how well this process generalizes while decreasing
the amount of training data. For each of the initialization methods, a new
model is initialized, taking for each target class the optimal number of neighbors
source classes depending on its type (disjoint, included or inclusive). These
optimal numbers are taken from Fig.A.3. Table A.2 shows the scores of these
models compared to the random baseline for 100, 50, 25, 10, 5, 2 and 1 training
images per class. For each model, the initial performance after initialization
(without training) and the best registered performance until convergence are reported.

The source classes selection by inference similarity varies with the number of



A.5. Conclusion and Perspectives 95

Figure A.3: Immediate inference results for each type of classes and initialization,
with respect to the number of source classes selected to compute the initialization.

Table A.2: Evolution of the four methods through data reduction. Performances
after initialization (left columns) and best registered performances (right columns)
are reported, with respect to the number of training samples for each class.

Images
per class

Random
Visual

similarity

WordNet
semantic
similarity

Word2Vec
semantic
similarity

First Best First Best First Best First Best
100 0.00 0.72 0.59 0.73 0.39 0.72 0.35 0.72
50 0.00 0.68 0.58 0.69 0.39 0.68 0.35 0.68
25 0.00 0.62 0.58 0.64 0.39 0.63 0.35 0.63
10 0.00 0.53 0.54 0.54 0.39 0.54 0.35 0.53
5 0.00 0.41 0.50 0.50 0.39 0.43 0.35 0.45
2 0.00 0.26 0.44 0.44 0.39 0.39 0.35 0.35
1 0.00 0.16 0.40 0.40 0.39 0.39 0.35 0.35

training images (unlike the two others), since it is computed with those images.
Its performance at initialization thus decreases with the amount of training data.
However, it still always achieves better performances, which puts aside the idea of
combining both types of similarities [Safadi et al. 2014]. Under 5 training images per
class, a consequent performance gap remains between the baseline and the proposed
models even after training. Under 2 images per class (5 for inference similarity),
the best scores are achieved right after initialization, and training only degrades
performances. Building the best possible initialization is thus crucial in such cases.

A.5 Conclusion and Perspectives

This chapter addresses transfer learning in an image classification context. In
particular, alternative approaches were studied to re-use the knowledge inherent
within the original pre-trained deep network in the target one (handling new image
classes). Rather than only transferring network weights corresponding to the feature



96
Appendix A. Semantic and Visual Similarities for Efficient Knowledge

Transfer in CNN Training

extraction part, several initialization strategies were investigated to re-use and com-
bine specifically identified weights from the pre-trained classifier into the target model.
To validate the impact of the proposed method, three different similarity estimators
were presented, one visual and two semantics, optimized the models across the dif-
ferent types of target classes, and monitored them while reducing the amount of data.

In the end, the proposed method produced systematically better initializations,
faster trainings, and significantly superior long term performances in limited training
data configurations. The consistency with which the best model, based on visual
similarities, outperforms the baseline across the different types of target classes
and amounts of data, along with its computational lightness (a few supplementary
inferences in the network) suggest that it can be systematically adopted when
performing transfer learning in this context.



Bibliography

[Ahn et al. 2019] Chanho Ahn, Eunwoo Kim and Songhwai Oh. Deep Elastic Net-
works With Model Selection for Multi-Task Learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
(Cited on page 14.)

[Azizpour et al. 2016] H. Azizpour, A. Razavian, J. Sullivan, A. Maki and S. Carls-
son. Factors of transferability for a generic convnet representation. IEEE
transactions on pattern analysis and machine intelligence, vol. 38, no. 9, pages
1790–1802, 2016. (Cited on page 86.)

[Badrinarayanan et al. 2017] Vijay Badrinarayanan, Alex Kendall and Roberto
Cipolla. SegNet: A Deep Convolutional Encoder-Decoder Architecture for
Image Segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 12, pages 2481–2495, 2017. (Cited on page 34.)

[Baxter 2000] Jonathan Baxter. A Model of Inductive Bias Learning. Journal of
Artificial Intelligence Research, vol. 12, pages 149–198, 2000. (Cited on pages 1
and 2.)

[Beckwith et al. 1991] R. Beckwith, C. Fellbaum, D. Gross and G. Miller. WordNet:
A lexical database organized on psycholinguistic principles. Lexical acquisition:
Exploiting on-line resources to build a lexicon, pages 211–232, 1991. (Cited
on page 88.)

[Bengio et al. 2013] Yoshua Bengio, Nicholas Léonard and Aaron C. Courville. Esti-
mating or Propagating Gradients Through Stochastic Neurons for Conditional
Computation. CoRR, vol. abs/1308.3432, 2013. (Cited on page 14.)

[Bingel & Søgaard 2017] Joachim Bingel and Anders Søgaard. Identifying beneficial
task relations for multi-task learning in deep neural networks. In Proceedings
of the 15th Conference of the European Chapter of the Association for
Computational Linguistics (EACL), pages 164–169, 2017. (Cited on pages 11
and 12.)

[Bragman et al. 2019] Felix J.S. Bragman, Ryutaro Tanno, Sebastien Ourselin,
Daniel C. Alexander and Jorge Cardoso. Stochastic Filter Groups for Multi-
Task CNNs: Learning Specialist and Generalist Convolution Kernels. In The
IEEE International Conference on Computer Vision (ICCV), pages 1385–1394,
2019. (Cited on pages 11, 14, 18, 19, 22, 23, 28, 42, 44 and 45.)

[Capelle et al. 2012] M. Capelle, F. Frasincar, M. Moerland and F. Hogenboom.
Semantics-based news recommendation. In Proceedings of the 2nd interna-
tional conference on web intelligence, mining and semantics, page 27. ACM,
2012. (Cited on pages 88 and 90.)



98 Bibliography

[Caruana 1997] Rich Caruana. Multitask Learning. Machine Learning, vol. 28, no. 1,
pages 41–75, 1997. (Cited on pages 2, 5, 7, 15, 16, 24 and 41.)

[Chaudhry et al. 2019] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach
and Mohamed Elhoseiny. Efficient Lifelong Learning with A-GEM. In
International Conference on Learning Representations, 2019. (Cited on
pages 4 and 17.)

[Chen et al. 2017] Liang-Chieh Chen, G. Papandreou, Florian Schroff and Hartwig
Adam. Rethinking Atrous Convolution for Semantic Image Segmentation.
ArXiv, vol. abs/1706.05587, 2017. (Cited on page 64.)

[Chen et al. 2018] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee and Andrew
Rabinovich. GradNorm: Gradient Normalization for Adaptive Loss Balanc-
ing in Deep Multitask Networks. In Proceedings of the 35th International
Conference on Machine Learning, volume 80, pages 794–803, 2018. (Cited on
pages 6, 11, 14, 15, 16, 22, 29, 34, 42 and 47.)

[Chen et al. 2020] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Hen-
rik Kretzschmar, Yuning Chai and Dragomir Anguelov. Just Pick a Sign:
Optimizing Deep Multitask Models with Gradient Sign Dropout. Advances
in Neural Information Processing Systems, vol. 33, pages 2039–2050, 2020.
(Cited on pages 14, 17, 18, 42, 47 and 50.)

[Chu et al. 2016] B. Chu, V. Madhavan, O. Beijbom, J. Hoffman and T. Darrell.
Best practices for fine-tuning visual classifiers to new domains. In ECCV,
pages 435–442. Springer, 2016. (Cited on pages 3, 86, 88 and 90.)

[Collobert & Weston 2008] Ronan Collobert and Jason Weston. A Unified Architec-
ture for Natural Language Processing: Deep Neural Networks with Multitask
Learning. In Proceedings of the 25th International Conference on Machine
Learning, ICML ’08, page 160–167, New York, NY, USA, 2008. Association
for Computing Machinery. (Cited on page 5.)

[Cordts et al. 2016] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Re-
hfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth and
Bernt Schiele. The Cityscapes Dataset for Semantic Urban Scene Understand-
ing. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3213–3223, 2016. (Cited on pages 28, 47 and 49.)

[Crawshaw 2020] Michael Crawshaw. Multi-Task Learning with Deep Neural Net-
works: A Survey. arXiv:2009.09796 [cs, stat], 2020. (Cited on pages 5, 6, 17
and 42.)

[Dang et al. 2021] Vien Ngoc Dang, Giuseppe Di Giacomo, Viola Marconetto, Pra-
teek Mathur, Rosa Cortese, Marco Lorenzi, Ferran Prados and Maria A.



Bibliography 99

Zuluaga. Vessel-CAPTCHA: an efficient learning framework for vessel an-
notation and segmentation. CoRR, vol. abs/2101.09321, 2021. (Cited on
page 2.)

[Deng et al. 2009] J. Deng, W. Dong, R. Socher, L. Li, K. Li and L. Fei-Fei. Imagenet:
A large-scale hierarchical image database. In CVPR, pages 248–255. Ieee,
2009. (Cited on pages 1, 4, 64 and 73.)

[Doersch & Zisserman 2017] Carl Doersch and Andrew Zisserman. Multi-Task Self-
Supervised Visual Learning. In Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV), 2017. (Cited on pages 11 and 12.)

[Dwivedi & Roig 2019] Kshitij Dwivedi and Gemma Roig. Representation Similarity
Analysis for Efficient Task Taxonomy & Transfer Learning. In Proceedings of
the Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
(Cited on page 12.)

[Désidéri 2012] Jean-Antoine Désidéri. Multiple-gradient Descent Algorithm (MGDA)
for Multiobjective Optimization. Comptes Rendus Mathematique, vol. 350,
no. 5, pages 313–318, 2012. (Cited on pages 16 and 42.)

[Elsken et al. 2019] Thomas Elsken, Jan Hendrik Metzen and Frank Hutter. Neural
Architecture Search: A Survey. Journal of Machine Learning Research, vol. 20,
no. 55, pages 1–21, 2019. (Cited on page 13.)

[Fernando et al. 2017] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori
Zwols, David Ha, Andrei A. Rusu, Alexander Pritzel and Daan Wierstra.
PathNet: Evolution Channels Gradient Descent in Super Neural Networks.
CoRR, vol. abs/1701.08734, 2017. (Cited on page 14.)

[Gao et al. 2019] Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu and Alan L. Yuille.
NDDR-CNN: Layerwise Feature Fusing in Multi-Task CNNs by Neural Dis-
criminative Dimensionality Reduction. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3200–3209, 2019. (Cited on
pages 6, 13 and 21.)

[Gao et al. 2020] Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia and Wei
Liu. MTL-NAS: Task-Agnostic Neural Architecture Search Towards General-
Purpose Multi-Task Learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2020. (Cited on
pages 13 and 14.)

[Glorot & Bengio 2010] X. Glorot and Y. Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics, pages 249–256,
2010. (Cited on pages 86 and 92.)



100 Bibliography

[Gomez et al. 2019] Aidan N. Gomez, Ivan Zhang, Siddhartha Rao Kamalakara,
Divyam Madaan, Kevin Swersky, Yarin Gal and Geoffrey E. Hinton. Learn-
ing Sparse Networks Using Targeted Dropout. arXiv:1905.13678 [cs, stat],
September 2019. (Cited on page 24.)

[Gonzales Zuniga et al. 2018] Juan Diego Gonzales Zuniga, Thi-Lan-Anh Nguyen
and Francois Bremond. Residual Transfer Learning for Multiple Object
Tracking. In International Conference on Advanced Video and Signal-based
Surveillance (AVSS), Auckland, New Zealand, November 2018. IEEE. (Cited
on page 3.)

[Guo et al. 2018] Michelle Guo, Albert Haque, De-An Huang, Serena Yeung and
Li Fei-Fei. Dynamic Task Prioritization for Multitask Learning. pages 270–287,
2018. (Cited on pages 14, 15, 16 and 42.)

[Hagiwara et al. 2018] Yuki Hagiwara, Joel En Wei Koh, Jen Hong Tan, Sulatha V.
Bhandary, Augustinus Laude, Edward J. Ciaccio, Louis Tong and U. Rajendra
Acharya. Computer-aided diagnosis of glaucoma using fundus images: A
review. Computer Methods and Programs in Biomedicine, vol. 165, pages
1–12, 2018. (Cited on pages 62 and 64.)

[Handler 2014] A. Handler. An empirical study of semantic similarity in WordNet
and Word2Vec. 2014. (Cited on page 89.)

[He et al. 2016a] K. He, X. Zhang, S. Ren and J. Sun. Deep residual learning for
image recognition. In CVPR, pages 770–778, 2016. (Cited on page 87.)

[He et al. 2016b] K. He, X. Zhang, S. Ren and J. Sun. Identity mappings in deep
residual networks. In ECCV, pages 630–645. Springer, 2016. (Cited on
page 87.)

[He et al. 2016c] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Deep
Residual Learning for Image Recognition. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 770–778, 2016. (Cited
on pages 29 and 64.)

[He et al. 2017] Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick.
Mask R-CNN. In The IEEE International Conference on Computer Vision
(ICCV), pages 2961–2969, 2017. (Cited on pages 13, 21, 25, 64 and 65.)

[Hinton & Salakhutdinov 2006] G. Hinton and R. Salakhutdinov. Reducing the di-
mensionality of data with neural networks. science, vol. 313, no. 5786, pages
504–507, 2006. (Cited on pages 3, 86 and 87.)

[Hu et al. 2018] Jie Hu, Li Shen and Gang Sun. Squeeze-and-Excitation Networks. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7132–7141, 2018. (Cited on page 19.)



Bibliography 101

[Huh et al. 2016] M. Huh, P. Agrawal and A. Efros. What makes ImageNet good for
transfer learning? arXiv preprint arXiv:1608.08614, 2016. (Cited on page 87.)

[Huisman et al. 2021] Mike Huisman, Jan van Rijn and Aske Plaat. A survey of
deep meta-learning. Artificial Intelligence Review, vol. 54, 08 2021. (Cited on
page 13.)

[Jang et al. 2017] Eric Jang, Shixiang Gu and Ben Poole. Categorical Reparameter-
ization with Gumbel-Softmax. arXiv:1611.01144 [cs, stat], 2017. (Cited on
pages 14 and 19.)

[Jiang & Conrath 1997] J. J Jiang and D. Conrath. Semantic similarity based on
corpus statistics and lexical taxonomy. arXiv preprint cmp-lg/9709008, 1997.
(Cited on page 88.)

[Kaisa 1999] Miettinen Kaisa. Nonlinear multiobjective optimization, volume 12 of
International Series in Operations Research & Management Science. Kluwer
Academic Publishers, Boston, USA, 1999. (Cited on page 16.)

[Kendall et al. 2018] Alex Kendall, Yarin Gal and Roberto Cipolla. Multi-Task
Learning Using Uncertainty to Weigh Losses for Scene Geometry and Seman-
tics. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7482–7491, 2018. (Cited on pages 7, 14, 15, 22 and 42.)

[Kingma & Ba 2017] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. arXiv:1412.6980 [cs], 2017. (Cited on pages 29, 34,
45 and 46.)

[Kirkpatrick et al. 2017] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan,
Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia
Clopath, Dharshan Kumaran and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks, 2017. (Cited on page 4.)

[Kokkinos 2017] Iasonas Kokkinos. Ubernet: Training a Universal Convolutional
Neural Network for Low-, Mid-, and High-Level Vision Using Diverse Datasets
and Limited Memory. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 6129–6138, 2017. (Cited on pages 11
and 21.)

[Konečný et al. 2015] Jakub Konečný, Brendan McMahan and Daniel Ramage.
Federated Optimization:Distributed Optimization Beyond the Datacenter.
arXiv:1511.03575 [cs.LG], 2015. (Cited on pages 44 and 53.)

[Kriegeskorte et al. 2008] Nikolaus Kriegeskorte, Marieke Mur and Peter Bandettini.
Representational Similarity Analysis – Connecting the Branches of Systems
Neuroscience. Frontiers in systems neuroscience, page 4, 2008. (Cited on
page 12.)



102 Bibliography

[Krizhevsky et al. 2012] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. Im-
ageNet Classification with Deep Convolutional Neural Networks. In Advances
in Neural Information Processing Systems 25, pages 1097–1105. 2012. (Cited
on pages 1, 85 and 87.)

[Leacock & Chodorow 1998] C. Leacock and M. Chodorow. WordNet: An Electronic
Lexical Database, chapter Combining Local Context and WordNet Similarity
for Word Sense Identification, pages 265–283, 1998. (Cited on page 88.)

[Li et al. 2018] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer and Tom Gold-
stein. Visualizing the Loss Landscape of Neural Nets. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. (Cited on page 7.)

[Li et al. 2020] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang and Zhihua
Zhang. On the Convergence of FedAvg on Non-IID Data. arXiv:1907.02189
[stat.ML], 2020. (Cited on pages 44, 53 and 54.)

[Liang et al. 2018] Jason Liang, Elliot Meyerson and Risto Miikkulainen. Evolu-
tionary Architecture Search for Deep Multitask Networks. In Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO ’18, page
466–473, New York, NY, USA, 2018. Association for Computing Machinery.
(Cited on pages 13 and 14.)

[Lin et al. 1998] D. Linet al. An information-theoretic definition of similarity. In
Icml, volume 98, pages 296–304. Citeseer, 1998. (Cited on page 88.)

[Lin et al. 2017] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He and Piotr
Dollár. Focal loss for dense object detection. In Proceedings of the IEEE
international conference on computer vision, pages 2980–2988, 2017. (Cited
on page 67.)

[Lin et al. 2019] Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qing-Fu Zhang and Sam Kwong.
Pareto Multi-Task Learning. In Advances in Neural Information Processing
Systems 32, pages 12060–12070, 2019. (Cited on pages 14, 16, 17 and 42.)

[Liu et al. 2015a] Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh
and Ye-yi Wang. Representation Learning Using Multi-Task Deep Neural Net-
works for Semantic Classification and Information Retrieval. In Proceedings
of the 2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 912–921,
Denver, Colorado, May–June 2015. Association for Computational Linguistics.
(Cited on page 5.)

[Liu et al. 2015b] Ziwei Liu, Ping Luo, Xiaogang Wang and Xiaoou Tang. Deep
Learning Face Attributes in the Wild. In The IEEE International Conference



Bibliography 103

on Computer Vision (ICCV), pages 3730–3738, 2015. (Cited on pages 29, 47
and 50.)

[Liu et al. 2019a] Shengchao Liu, Yingyu Liang and Anthony Gitter. Loss-Balanced
Task Weighting to Reduce Negative Transfer in Multi-Task Learning. Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pages
9977–9978, Jul. 2019. (Cited on pages 14 and 15.)

[Liu et al. 2019b] Shikun Liu, Edward Johns and Andrew J. Davison. End-To-End
Multi-Task Learning With Attention. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1871–1880, 2019. (Cited on
pages 13, 14, 15, 21, 22, 28, 34 and 42.)

[Lopez-Paz & Ranzato 2017] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
Episodic Memory for Continual Learning. Advances in Neural Information
Processing Systems, vol. 30, 2017. (Cited on pages 4 and 17.)

[Lu et al. 2017a] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara
Javidi and Rogerio Feris. Fully-Adaptive Feature Sharing in Multi-Task
Networks With Applications in Person Attribute Classification. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
5334–5343, 2017. (Cited on pages 13 and 21.)

[Lu et al. 2017b] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara
Javidi and Rogerio Feris. Fully-Adaptive Feature Sharing in Multi-Task
Networks With Applications in Person Attribute Classification. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017. (Cited on page 14.)

[Maddison et al. 2017] Chris J. Maddison, Andriy Mnih and Yee Whye Teh. The
Concrete Distribution: A Continuous Relaxation of Discrete Random Vari-
ables. arXiv:1611.00712 [cs, stat], 2017. (Cited on pages 14 and 19.)

[Mallya et al. 2018] Arun Mallya, Dillon Davis and Svetlana Lazebnik. Piggyback:
Adapting a Single Network to Multiple Tasks by Learning to Mask Weights.
In Proceedings of the European Conference on Computer Vision (ECCV),
pages 67–82, September 2018. (Cited on pages 4, 14, 18 and 19.)

[Mancini et al. 2018] Massimiliano Mancini, Elisa Ricci, Barbara Caputo and Samuel
Rota Bulo. Adding New Tasks to a Single Network with Weight Transforma-
tions using Binary Masks. In Proceedings of the European Conference on
Computer Vision (ECCV) Workshops, September 2018. (Cited on pages 4,
14, 18 and 19.)

[Maninis et al. 2019] Kevis-Kokitsi Maninis, Ilija Radosavovic and Iasonas Kokkinos.
Attentive Single-Tasking of Multiple Tasks. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1851–1860, 2019.
(Cited on pages 7, 11, 14, 18, 19, 20, 22, 23, 24, 28, 29, 34, 42, 44 and 45.)



104 Bibliography

[Martinez Alonso & Plank 2017] Hector Martinez Alonso and Barbara Plank. When
is multitask learning effective? Semantic sequence prediction under varying
data conditions. In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics (EACL), pages
1–10, 2017. (Cited on pages 11 and 12.)

[Meyerson & Miikkulainen 2017] Elliot Meyerson and Risto Miikkulainen. Beyond
Shared Hierarchies: Deep Multitask Learning through Soft Layer Ordering.
CoRR, vol. abs/1711.00108, 2017. (Cited on pages 11, 13 and 14.)

[Mikolov et al. 2013] T. Mikolov, K. Chen, G. Corrado and J. Dean. Efficient estima-
tion of word representations in vector space. arXiv preprint arXiv:1301.3781,
2013. (Cited on page 89.)

[Misra et al. 2016] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta and Martial
Hebert. Cross-Stitch Networks for Multi-Task Learning. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 3994–4003,
2016. (Cited on pages 6, 11, 13, 14 and 21.)

[Mordan et al. 2018] Taylor Mordan, Nicolas Thome, Gilles Henaff and Matthieu
Cord. Revisiting Multi-Task Learning with ROCK: a Deep Residual Auxiliary
Block for Visual Detection. In Advances in Neural Information Processing
Systems 31, pages 1310–1322, 2018. (Cited on pages 13 and 21.)

[Orlando et al. 2020] José Ignacio Orlando, Huazhu Fu, João Barbosa Breda, Karel
van Keer, Deepti R. Bathula, Andrés Diaz-Pinto, Ruogu Fang, Pheng-Ann
Heng, Jeyoung Kim, JoonHo Lee, Joonseok Lee, Xiaoxiao Li, Peng Liu,
Shuai Lu, Balamurali Murugesan, Valery Naranjo, Sai Samarth R. Phaye,
Sharath M. Shankaranarayana, Apoorva Sikka, Jaemin Son, Anton van den
Hengel, Shujun Wang, Junyan Wu, Zifeng Wu, Guanghui Xu, Yongli Xu,
Pengshuai Yin, Fei Li, Xiulan Zhang, Yanwu Xu and Hrvoje Bogunović.
REFUGE Challenge: A unified framework for evaluating automated methods
for glaucoma assessment from fundus photographs. Medical Image Analysis,
vol. 59, page 101570, 2020. (Cited on pages 62, 63, 64 and 66.)

[Parisi et al. 2019] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher
Kanan and Stefan Wermter. Continual lifelong learning with neural networks:
A review. Neural Networks, vol. 113, pages 54–71, 2019. (Cited on pages 4
and 5.)

[Pascal et al. 2019] Lucas Pascal, Xavier Bost and Benoit Huet. Semantic and Visual
Similarities for Efficient Knowledge Transfer in CNN Training. In 2019
International Conference on Content-Based Multimedia Indexing (CBMI),
pages 1–6, 2019. (Cited on page 85.)

[Pascal et al. 2021a] Lucas Pascal, Pietro Michiardi, Xavier Bost, Benoit Huet and
Maria A. Zuluaga. Maximum Roaming Multi-Task Learning. Proceedings



Bibliography 105

of the AAAI Conference on Artificial Intelligence, vol. 35, no. 10, pages
9331–9341, May 2021. (Cited on pages 21, 42, 44, 45 and 47.)

[Pascal et al. 2021b] Lucas Pascal, Pietro Michiardi, Xavier Bost, Benoit Huet and
Maria A. Zuluaga. Optimization Strategies in Multi-Task Learning: Averaged
or Independent Losses? arxiv:2109.11678 [cs], 2021. (Cited on page 41.)

[Pinto & Gupta 2017] Lerrel Pinto and Abhinav Gupta. Learning to push by grasp-
ing: Using multiple tasks for effective learning. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 2161–2168, 2017.
(Cited on page 5.)

[Pratt 1993] L. Y. Pratt. Discriminability-Based Transfer between Neural Networks.
In S. Hanson, J. Cowan and C. Giles, editors, Advances in Neural Information
Processing Systems, volume 5. Morgan-Kaufmann, 1993. (Cited on page 3.)

[Rebuffi et al. 2018] Sylvestre-Alvise Rebuffi, Hakan Bilen and Andrea Vedaldi. Effi-
cient Parametrization of Multi-Domain Deep Neural Networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018. (Cited on page 19.)

[Resnik 1995] P. Resnik. Using information content to evaluate semantic similarity
in a taxonomy. arXiv preprint cmp-lg/9511007, 1995. (Cited on page 88.)

[Ronneberger et al. 2015a] Olaf Ronneberger, Philipp Fischer and Thomas Brox.
U-Net: Convolutional Networks for Biomedical Image Segmentation. In Nassir
Navab, Joachim Hornegger, William M. Wells and Alejandro F. Frangi,
editors, Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2015, Lecture Notes in Computer Science, pages 234–241, Cham,
2015. Springer International Publishing. (Cited on pages 47 and 64.)

[Ronneberger et al. 2015b] Olaf Ronneberger, Philipp Fischer and Thomas Brox.
U-Net: Convolutional Networks for Biomedical Image Segmentation.
arxiv:1505.04597 [cs], 2015. (Cited on page 65.)

[Rosenbaum et al. 2017] Clemens Rosenbaum, Tim Klinger and Matthew Riemer.
Routing Networks: Adaptive Selection of Non-linear Functions for Multi-Task
Learning. CoRR, vol. abs/1711.01239, 2017. (Cited on pages 11 and 14.)

[Ruder 2017] Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural
Networks. arXiv:1706.05098 [cs, stat], 2017. (Cited on pages 5 and 6.)

[Russakovsky et al. 2015] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernsteinet al. Imagenet large
scale visual recognition challenge. IJCV, vol. 115, no. 3, pages 211–252, 2015.
(Cited on pages 85, 87 and 91.)



106 Bibliography

[Rusu et al. 2016] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hu-
bert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu and
Raia Hadsell. Progressive Neural Networks, 2016. (Cited on page 4.)

[Safadi et al. 2014] B. Safadi, M. Sahuguet and B. Huet. When textual and visual
information join forces for multimedia retrieval. In ICMR, 2014. (Cited on
page 95.)

[Sener & Koltun 2018] Ozan Sener and Vladlen Koltun. Multi-Task Learning as
Multi-Objective Optimization. In Advances in Neural Information Processing
Systems 31, pages 527–538, 2018. (Cited on pages 11, 14, 16, 17, 22, 29, 42
and 47.)

[Shokri & Shmatikov 2015] Reza Shokri and Vitaly Shmatikov. Privacy-Preserving
Deep Learning. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, page 1310–1321, 2015. (Cited on
page 44.)

[Shorten & Khoshgoftaar 2019] Connor Shorten and T. Khoshgoftaar. A survey on
Image Data Augmentation for Deep Learning. Journal of Big Data, vol. 6,
pages 1–48, 2019. (Cited on page 2.)

[Silberman et al. 2012] Nathan Silberman, Derek Hoiem, Pushmeet Kohli and Rob
Fergus. Indoor Segmentation and Support Inference from RGBD Images. In
European Conference on Computer Vision (ECCV) 2012, Lecture Notes in
Computer Science, pages 746–760, 2012. (Cited on pages 13, 28 and 47.)

[Simonyan & Zisserman 2015] Karen Simonyan and Andrew Zisserman. Very Deep
Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556
[cs], 2015. (Cited on pages 65 and 73.)

[Singh 1992] Satinder Pal Singh. Transfer of Learning by Composing Solutions of
Elemental Sequential Tasks. Machine Learning, vol. 8, no. 3-4, pages 323–339,
1992. (Cited on page 25.)

[Sinha et al. 2018] Ayan Sinha, Zhao Chen, Vijay Badrinarayanan and Andrew Rabi-
novich. Gradient Adversarial Training of Neural Networks. arXiv:1806.08028
[cs, stat], 2018. (Cited on pages 14, 15, 16, 19 and 22.)

[Song et al. 2019] Jie Song, Yixin Chen, Xinchao Wang, Chengchao Shen and Mingli
Song. Deep Model Transferability from Attribution Maps. In Advances in
Neural Information Processing Systems (NeurIPS), pages 6179–6189, 2019.
(Cited on page 12.)

[Srivastava et al. 2014] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever and Ruslan Salakhutdinov. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. Journal of Machine Learning Research,
vol. 15, no. 56, pages 1929–1958, 2014. (Cited on pages 2, 23 and 25.)



Bibliography 107

[Standley et al. 2020] Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas,
Jitendra Malik and Silvio Savarese. Which Tasks Should Be Learned Together
in Multi-task Learning? In Proceedings of the 37th International Conference
on Machine Learning, volume 119, pages 9120–9132, 2020. (Cited on pages 11
and 12.)

[Strezoski et al. 2019a] Gjorgji Strezoski, Nanne van Noord and Marcel Worring.
Many Task Learning With Task Routing. In The IEEE International Confer-
ence on Computer Vision (ICCV), pages 1375–1384, 2019. (Cited on pages 7,
14, 18, 19, 22, 23, 24, 28, 29, 34, 42 and 44.)

[Strezoski et al. 2019b] Gjorgji Strezoski, Nanne van Noord and Marcel Worring.
Learning Task Relatedness in Multi-Task Learning for Images in Context. In
Proceedings of the 2019 on International Conference on Multimedia Retrieval,
page 78–86, 2019. (Cited on pages 6, 11, 12, 13 and 14.)

[Sun et al. 2019] Ximeng Sun, Rameswar Panda and Rogério Schmidt Feris.
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning.
CoRR, vol. abs/1911.12423, 2019. (Cited on page 14.)

[Szegedy et al. 2015] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke and A. Rabinovich. Going deeper with convolutions.
In CVPR, pages 1–9, 2015. (Cited on page 87.)

[Szegedy et al. 2017] C. Szegedy, S. Ioffe, V. Vanhoucke and A. Alemi. Inception-v4
Inception-Resnet and the impact of residual connections on learning. In AAAI,
2017. (Cited on pages 64 and 87.)

[Tajbakhsh et al. 2016] Nima Tajbakhsh, Jae Y. Shin, Suryakanth R. Gurudu,
R. Todd Hurst, Christopher B. Kendall, Michael B. Gotway and Jianming
Liang. Convolutional Neural Networks for Medical Image Analysis: Full
Training or Fine Tuning? IEEE Transactions on Medical Imaging, vol. 35,
no. 5, pages 1299–1312, 2016. (Cited on pages 25 and 62.)

[Tajbakhsh et al. 2020] Nima Tajbakhsh, Laura Jeyaseelan, Qian Li, Jeffrey N. Chi-
ang, Zhihao Wu and Xiaowei Ding. Embracing imperfect datasets: A review
of deep learning solutions for medical image segmentation. Medical Image
Analysis, vol. 63, page 101693, 2020. (Cited on pages 2, 4 and 73.)

[Tamaazousti et al. 2017] Y. Tamaazousti, H. Le Borgne, C. Hudelot, M. Seddik
and M. Tamaazousti. Learning More Universal Representations for Transfer-
Learning. arXiv preprint arXiv:1712.09708, 2017. (Cited on pages 75, 86, 88
and 90.)

[Tham et al. 2014] YC Tham, X Li, TY Wong, HA Quigley, T Aung and CY Cheng.
Global prevalence of glaucoma and projections of glaucoma burden through
2040: a systematic review and meta-analysis. Ophthalmology 121, pages
2081–2090, 2014. (Cited on page 61.)



108 Bibliography

[Thrun & Pratt 1998] Sebastian Thrun and Lorien Pratt. Learning to learn: Intro-
duction and overview, pages 3–17. Springer US, Boston, MA, 1998. (Cited
on page 2.)

[Vandenhende et al. 2020] Simon Vandenhende, Stamatios Georgoulis and Luc
Van Gool. MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task
Learning. arXiv:2001.06902 [cs], 2020. (Cited on pages 13 and 22.)

[Vandenhende et al. 2021] Simon Vandenhende, Stamatios Georgoulis, Wouter
Van Gansbeke, Marc Proesmans, Dengxin Dai and Luc Van Gool. Multi-Task
Learning for Dense Prediction Tasks: A Survey. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, pages 1–1, 2021. (Cited on pages 5,
6 and 42.)

[Wang et al. 2016] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang and W. Xu.
Cnn-rnn: A unified framework for multi-label image classification. In CVPR,
pages 2285–2294, 2016. (Cited on page 90.)

[Wang et al. 2017] Y. Wang, D. Ramanan and M. Hebert. Growing a brain: Fine-
tuning by increasing model capacity. In CVPR, pages 2471–2480, 2017. (Cited
on pages 3, 86 and 88.)

[Wang 2014] H. Wang. Introduction to Word2vec and its application to find predom-
inant word senses. 2014. (Cited on page 89.)

[Wu & Palmer 1994] Z. Wu and M. Palmer. Verbs semantics and lexical selection.
In Proceedings of the 32nd annual meeting on Association for Computational
Linguistics, pages 133–138. Association for Computational Linguistics, 1994.
(Cited on pages 88 and 90.)

[Xu et al. 2018] Dan Xu, Wanli Ouyang, Xiaogang Wang and Nicu Sebe. PAD-Net:
Multi-Tasks Guided Prediction-and-Distillation Network for Simultaneous
Depth Estimation and Scene Parsing. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 675–684, 2018. (Cited on
pages 13 and 22.)

[Yosinski et al. 2014] Jason Yosinski, Jeff Clune, Yoshua Bengio and Hod Lipson.
How transferable are features in deep neural networks? In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 3320–3328.
Curran Associates, Inc., 2014. (Cited on pages 3, 25, 37, 75, 86, 87, 88
and 90.)

[Yu et al. 2020] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol
Hausman and Chelsea Finn. Gradient Surgery for Multi-Task Learning.
Advances in Neural Information Processing Systems, vol. 33, pages 5824–
5836, 2020. (Cited on pages 5, 11, 14, 17 and 42.)



Bibliography 109

[Zamir et al. 2018] Amir R. Zamir, Alexander Sax, William Shen, Leonidas J. Guibas,
Jitendra Malik and Silvio Savarese. Taskonomy: Disentangling Task Trans-
fer Learning. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3712–3722, 2018. (Cited on pages 3, 11, 12, 25
and 86.)

[Zenke et al. 2017] Friedemann Zenke, Ben Poole and Surya Ganguli. Continual
Learning Through Synaptic Intelligence. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages
3987–3995. PMLR, 06–11 Aug 2017. (Cited on page 4.)

[Zhang & Yang 2021] Yu Zhang and Qiang Yang. A Survey on Multi-Task Learning.
IEEE Transactions on Knowledge and Data Engineering, pages 1–1, 2021.
(Cited on page 5.)

[Zhang et al. 2018] Yu Zhang, Ying Wei and Qiang Yang. Learning to Multitask. In
Advances in Neural Information Processing Systems 31, pages 5771–5782,
2018. (Cited on page 22.)

[Zhang et al. 2019] Zhenyu Zhang, Zhen Cui, Chunyan Xu, Yan Yan, Nicu Sebe and
Jian Yang. Pattern-Affinitive Propagation Across Depth, Surface Normal and
Semantic Segmentation. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4106–4115, 2019. (Cited on pages 13
and 22.)

[Zhao et al. 2019] Rongchang Zhao, Wangmin Liao, Beiji Zou, Zailiang Chen and
Shuo Li. Weakly-Supervised Simultaneous Evidence Identification and Seg-
mentation for Automated Glaucoma Diagnosis. Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, pages 809–816, Jul. 2019.
(Cited on page 64.)


	Introduction
	Using related tasks to strengthen the inductive bias
	Transfer Learning
	Continual Learning
	Multi-Task Learning

	Deep Multi-Task Learning
	Parameter Sharing
	Optimization of the shared network
	Task interference in Deep MTL

	Contributions
	Publications
	Thesis Outline

	Literature Review
	Tackling task interference in Deep Multi-Task Learning
	Task affinities in MTL
	Network Architectures in MTL
	Multi-task Optimization

	Related works in MTL optimization
	Loss weighting
	Multi-Objective Optimization
	Gradient editing
	Parameter partitioning


	Strengthening the inductive bias with a dynamic parameter partitioning
	Motivation
	Preliminaries
	Parameter Partitioning
	Parameter Partitioning Initialization

	Maximum Roaming Multi-Task Learning
	Experimental Results
	Datasets
	Baselines
	Facial Attributes Detection
	Scene Understanding

	Discussion
	Appendix

	Separating task-specific objectives for a better optimization
	Motivation
	Alternate and independent optimization of task-specific objective functions
	Standard MTL optimization with aggregated loss
	Alternate and independent optimization of task-specific objective functions for SGD
	Alternate and independent optimization of task-specific objective functions for moving-average based optimizers
	Mitigating computational costs through task grouping

	Experiments and results
	Scene understanding on NYUv2
	Multi-class segmentation on Cityscapes
	Multi-attribute segmentation on Celeb-A
	Covered distance

	Discussion
	Appendix

	Glaucoma Diagnosis from Retinal Fundus Imaging through MTL
	Motivation
	Deep multi-task networks for automated glaucoma diagnosing
	The Retinal Fundus Imaging challenge (REFUGE)

	Related work
	Method
	Pipeline description
	Losses and metrics
	Optimization

	Experiments and Results
	Experimental details
	Experimental Results
	Combination with Transfer Learning

	Discussion

	Conclusion
	Summary of contributions
	Open perspectives
	Appendices
	Semantic and Visual Similarities for Efficient Knowledge Transfer in CNN Training
	Introduction
	Related Works
	Datasets and architectures
	Transfer Learning process
	Semantic similarity between textual content

	Similarity-based knowledge transfer
	Similarity measures
	Initialization

	Experiments and Results
	Implementation Details
	Dataset
	Similarities and Initialization
	Neighboring optimization
	Data reduction study

	Conclusion and Perspectives

	Bibliography




