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Résumé

Cette thèse s’inscrit dans le cadre de la cosmologie moderne, qui est définitive-
ment entrée dans une ère de précision. Par exemple, les dernières mesures du
fond diffus cosmologique (CMB) par Planck ont fourni une nouvelle validation

du modèle standard de la cosmologie ΛCDM et de ses extensions directes. Un résultat
notable de Planck est la mesure d’une quantité clé, le nombre effectif d’espèces de neutrinos
𝑁eff. Ce paramètre quantifie l’excès de densité d’énergie dans le fond cosmique de
neutrinos entre l’évolution réelle de l’Univers et l’approximation dite de découplage
instantané : puisque le découplage des neutrinos du plasma électromagnétique de pho-
tons, d’électrons et de positrons n’est pas entièrement terminé lorsque les annihilations
des électrons/positrons prennent place, la prise en compte de ce "chevauchement" con-
duit à une plus grande densité d’énergie. Plus généralement, une prédiction robuste et
précise des conséquences de ce "découplage incomplet des neutrinos" est cruciale car les
neutrinos ont un impact sur de nombreuses étapes cosmologiques, de la nucléosynthèse
primordiale (BBN) à la formation des structures.

Étude du découplage "standard" des neutrinos
Aspects formels Les premières déterminations de 𝑁eff négligeaient les oscillations de
saveur des neutrinos, ce qui réduisait le problème physique à la résolution d’une équa-
tion de Boltzmann pour les fonctions de distribution des neutrinos. Cependant, puisque
les particules n’évoluent pas dans le vide mais dans un bain thermique, des corrections
d’électrodynamique quantique (QED) à la thermodynamique du plasma doivent aussi
être prises en compte. Enfin, la prise en compte des oscillations de saveur nécessite
de remplacer l’ensemble des fonctions de distribution par un objet plus général, une
matrice densité, et d’introduire de même une généralisation adaptée de l’équation de
Boltzmann. Jusqu’à présent, les méthodes permettant d’obtenir la dénommée “équa-
tion cinétique quantique" (Quantum Kinetic Equation, QKE) étaient une approche opéra-
tionnelle reposant sur un développement perturbatif en l’interaction faible [SR93], ou
l’approche fonctionnelle basée sur les fonctions de Green et le formalisme CTP (Closed-
Time-Path) [BC16].

Dans le chapitre 2, nous présentons une méthode alternative — à savoir une hiérar-
chie BBGKY généralisée —, où le développement perturbatif de [SR93] est remplacé par
une séparation contrôlée des contributions (non-)corrélées à la matrice densité à 1−, 2−,
... 𝑛− corps. Cette méthode avait été utilisée dans [VVE13] pour obtenir les termes de
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Résumé

champ moyen de la QKE dans l’approximation de Hartree-Fock. Nous avons été au-delà
de cette approximation et inclus des corrélations d’ordre plus élevé (utilisant l’ansatz
du chaos moléculaire) afin d’obtenir le terme de collision, c’est-à-dire les contributions
de diffusion et d’annihilation entre 𝜈, 𝜈̄ et avec 𝑒−, 𝑒+ — et donc l’équation cinétique
complète.

Aspects numériques Dans le chapitre 3, nous présentons un calcul du découplage des
neutrinos avec, pour la première fois, le terme de collision complet (et les corrections
QED susmentionnées). À titre d’exemple, l’évolution de la température4 des différentes
saveurs de neutrinos est représentée Figure 1. Avec ces résultats, nous avons obtenu la
nouvelle valeur

𝑁eff = 3,0440 ,

avec une précision de quelques 10−4. Cette incertitude est due aux valeurs expéri-
mentales actuelles des paramètres physiques (et notamment l’angle de mélange 𝜃12),
ainsi que la variabilité reliée aux paramètres numériques du code NEVO que nous avons
développé.

Des calculs précédents, qui tenaient compte des oscillations de saveur et qui ont
abouti à la valeur 𝑁eff ≃ 3,045 [SP16], ne tenaient pas compte de l’intégralité du
terme de collision : ses composantes hors diagonale étaient approchées par un terme
d’amortissement. L’inclusion de ce terme sans aucune approximation est un véritable
défi numérique, en particulier à cause de la raideur qu’il apporte à l’équation dif-
férentielle et parce qu’il se calcule en un temps 𝒪(𝑁3) où 𝑁 est la taille de la grille
d’impulsions. Nous assurons un temps de calcul raisonnable grâce à une amélioration
majeure, à savoir le calcul direct du jacobien du système différentiel. Notre résultat sur
𝑁eff a été confirmé ultérieurement par [Ben+20].

Description approchée de l’évolution Nous avons également introduit une descrip-
tion effective des oscillations de saveur, qui donne des résultats indiscernables de ceux
obtenus en résolvant l’équation exacte. Elle permet également de réduire considérable-
ment le temps de calcul, ce qui constitue une autre amélioration importante de notre
code. Cette approximation repose sur l’existence d’une grande séparation d’échelles en-
tre les fréquences d’oscillation et le taux de collision, ce qui permet de faire la moyenne
de ces oscillations. En d’autres termes, la matrice densité reste toujours diagonale dans
la base de la matière (la base des états propres du Hamiltonien prenant en compte les
effets du vide et de champ moyen). Nous avons appelé cette description simplifiée
l’approximation de Transfert Adiabatique d’Oscillations Moyennées (ATAO pour Adiabatic
Transfer of Averaged Oscillations). De plus, nous avons utilisé cette approximation afin de
mieux comprendre certains résultats comme l’absence d’effets de la phase CP dans le
découplage standard des neutrinos.

4Il s’agit en réalité d’une température effective car le processus de découplage est légèrement hors-
équilibre, cela est précisé dans la section 3.4.1.
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Figure 1 – Évolution de la température (effective) des neutrinos au cours du découplage,
en prenant ou non en compte les oscillations de saveur. 𝑇cm est la température comobile,
proportionnelle à l’inverse du facteur d’échelle, qui correspond à la température des
neutrinos dans l’approximation de découplage instantané.

Nucléosynthèse primordiale et découplage incomplet des
neutrinos
En résolvant la QKE, nous obtenons les distributions gelées des (anti)neutrinos, qui à
leur tour donnent accès aux paramètres cosmologiques tels que 𝑁eff (cf. ci-dessus) ou
la densité d’énergie des neutrinos aujourd’hui Ω𝜈. Ainsi, nous sommes notamment en
possession des deux paramètres qui fixent les différents effets du découplage incomplet
des neutrinos sur la plus ancienne sonde de l’histoire de l’Univers dont nous disposons
— la BBN — : la distribution de 𝜈𝑒 , 𝜈̄𝑒 et la densité d’énergie paramétrée par 𝑁eff.

Le chapitre 4 est dédié à l’évaluation des changements des abondances primor-
diales d’hélium, de deutérium et de lithium dus au découplage incomplet des neutrinos.
Tout d’abord, les abondances des éléments légers dépendent du taux d’expansion de
l’Univers (donc de 𝑁eff, via l’effet dit d’horloge — clock effect —). Ensuite, l’abondance
des neutrons au début de la BBN est entre autres fixée par le rapport neutrons-protons
qui varie si l’on change les distributions de 𝜈𝑒 , 𝜈̄𝑒 . Nous avons étudié en détail comment
ces effets interagissaient, en comparant leurs contributions relatives et en fournissant
des estimations analytiques lorsque cela était possible. Ce travail théorique est mené
conjointement à une étude numérique, en combinant notre code d’évolution des neu-
trinos et le code de BBN PRIMAT [Pit+18]. En particulier, nous avons pu résoudre un
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Résumé

désaccord existant dans la littérature entre [Man+05] et [Gro+16] concernant la variation
de l’abondance du deutérium due à un découplage incomplet des neutrinos.

Évolution des asymétries primordiales
Le cas "standard" du découplage des neutrinos suppose que l’asymétrie des leptons est
nulle, une approximation justifiée pour les électrons et les positrons (dont la dégénéres-
cence doit être de l’ordre du rapport baryon/photon 𝜂 ≃ 6×10−10 [Fie+20] par neutralité
de charge), mais il n’existe pas de telle contrainte pour les neutrinos. Le CMB et, plus
important encore, le BBN sont en fait les meilleures sources de limites sur les asymétries
des neutrinos, puisque de telles asymétries affecteraient les abondances primordiales
par les mêmes mécanismes que ceux présentés précédemment.

La présence d’asymétries de neutrinos non nulles ajoute une couche de complexité
considérable à la physique de l’évolution des neutrinos. En effet, il faut désormais
prendre en compte un terme supplémentaire de champ moyen d’auto-interaction dans
la QKE, qui domine pendant une grande partie de l’ère du découplage des neutrinos
pour des asymétries 𝜇/𝑇 ∈ [10−3 , 10−1]. Dans la lignée de nos travaux sur la résolution
des QKEs dans le cas standard avec le terme de collision complet, nous étendons notre
code au cas asymétrique dans le chapitre 5.
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10 2346820
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Figure 2 – Évolution de l’asymétrie dans un cas à deux saveurs 𝜈𝜇 (vert) - 𝜈𝜏 (rouge),
avec une différence de masse Δ𝑚2 = 2, 45 × 10−3 eV2 et un angle de mélange 𝜃 = 0, 831.
Les résultats de la résolution directe de la QKE (trait plein) et via l’approximation ATAO
(pointillés) sont indiscernables. Paramètres initiaux : 𝜉1 = 𝜇1/𝑇 = 0, 001 ≡ 𝜉, 𝜉2 = 0.
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De plus, nous avons généralisé l’approximation ATAO pour tenir compte des auto-
interactions, qui rendent le Hamiltonien non linéaire. Cette description approchée
nous a permis de retrouver analytiquement les résultats connus sur les oscillations
collectives dites synchrones, mais aussi de découvrir que ce régime est généralement suivi
d’oscillations quasi-synchrones de fréquences croissant plus rapidement. Nous avons
fourni de nombreuses vérifications analytiques et numériques de ce nouveau résultat,
dans le cas simplifié à deux saveurs mais aussi dans le cadre général à trois saveurs. À
titre d’illustration, on représente Figure 2 un exemple d’évolution de l’asymétrie dans
un cas simplifié à deux saveurs. Dans cet exemple, le régime d’oscillations synchrones
prend place jusqu’à environ 2, 8 MeV, et est suivi par le régime d’oscillations quasi-
synchrones.

Nous avons exploré plus avant la dépendance de la configuration finale des neu-
trinos par rapport aux paramètres de mélange, et nous avons notamment montré que
la phase CP de Dirac ne peut pas affecter substantiellement la valeur finale de 𝑁eff
ni le spectre électronique final des (anti)neutrinos, et ne devrait donc pas affecter les
observables cosmologiques.





Introduction

I have done a terrible thing today, something which no theoretical physicist should
ever do. I have suggested something that can never be verified experimentally.

Wolfgang Pauli, 1930, quoted in [Hoy67]

W. Pauli is reported to have confessed this “terrible thing” to his friend Walter
Baade, after having proposed the existence of a particle in order to save the principle of
energy conservation: the neutrino. Indeed, the measurement of the energy of electrons
emitted in beta decays was in complete disagreement with predictions. For instance,
the predicted decay 14

6C −−−→ 14
7N + e− should lead to a very peaked electron energy

𝐸𝑒 = (𝑚14C − 𝑚14N)𝑐2. On the contrary, scientists measured a continuous spectrum of
energies... Pauli thus proposed that the final state actually contained a third particle,
neutral and very light, that would take away part of the disintegration energy, such
that the decay actually reads 14

6C −−−→ 14
7N + e− + 𝜈̄𝑒 . However, with such properties,

a neutrino (actually here, an antineutrino) should be very difficult to detect, hence the
quotation at the start of this introduction. Yet, a few decades later, in 1956, F. Reines
and C. L. Cowan sent a telegram informing Pauli of the discovery of the electronic
antineutrino. Reines was awarded half the Nobel Prize in Physics “for the detection of
the neutrino” in 1995, Cowan having passed away.

Today, we associate one neutrino to each charged lepton, bringing to 3 the number
of known neutrinos: 𝜈𝑒 , 𝜈𝜇 and 𝜈𝜏. In the Standard Model of particle physics, they are
massless particles which only interact via the weak interaction. However, there is now
a large body of experimental evidence that neutrinos have properties that are not pre-
dicted by the Standard Model. In particular, they undergo flavour oscillations, a property
that cannot be understood with massless species, whose discovery led to another Nobel
Prize in 2015, awarded to T. Kajita (from the Super-Kamiokande experiment) and A. B.
McDonald (from the Sudbury Neutrino Observatory).

These exciting developments in particle physics have a particular resonance at an
incredibly wider scaler — in cosmology. Indeed, neutrinos play a key role at various
stages of the evolution of the Universe, and the imprints they leave on cosmological
observables will be uncovered more and more precisely as new detectors are being
developed. In this period of “precision cosmology”, there is therefore an important need
for accurate theoretical predictions on the values of these cosmological observables, in
order to be able to pinpoint potential hints for beyond-the-Standard-Model physics.
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During this PhD, we have focused on the epoch when the temperature of the
Universe was about 1010 K ∼ 1 MeV, the so-called “MeV age”. As we will detail in
the forthcoming chapters, this period is extremely rich in physical events involving
neutrinos: they decouple from the electromagnetic plasma, electrons and positrons
annihilate, and primordial nucleosynthesis starts. It is crucial to accurately predict the
features of neutrino distributions at this epoch, as the MeV era is the neutrino “Grand
Finale” before their behaviour is simply described by that of a free streaming particle
bath, the Cosmic Neutrino Background. Our goal was twofold: develop new theoretical
tools, regarding the derivation of the resolution of the evolution equations, and apply a
numerical code to investigate neutrino evolution in various frameworks. In particular,
we have studied in-depth the cases of “standard” neutrino decoupling, which involves
solely Standard Model physics with the known results about flavour oscillations, and
the situation of potentially large primordial neutrino/antineutrino asymmetry, which
could largely affect the cosmological expansion.
This PhD is based on the following publications:

• [FP20] focusing on the various ways in which incomplete neutrino decoupling
(without taking into account flavour mixing) affects the abundances of light ele-
ments produced during Big Bang Nucleosynthesis, in order to understand semi-
analytically the physics at play;

• [FPV20] in which we performed the first calculation of neutrino decoupling in-
cluding all known physical effects required to reach a few 10−4 accuracy on the
parameter 𝑁eff prediction;

• [Fro21] Proceedings of the TAUP2021 conference where the results of the above
paper were presented, and a discussion on the neutrino energy density parameter
Ω𝜈 was added;

• [FP22] extending the study of neutrino evolution to account for the possibility of
non-zero neutrino/antineutrino asymmetry.

The manuscript is organised as follows. In chapter 1, we provide a wide introduction
to cosmology and, in particular, neutrino physics in connection with cosmology. This
gives the basis for the in-depth analyses of the next chapters. In order to perform
the precision calculation of 𝑁eff, we first present a new derivation of the evolution
equation of neutrinos and antineutrinos (the “Quantum Kinetic Equations”) in chapter 2.
Chapter 3 is dedicated to the standard calculation of 𝑁eff. We then use these results
to study their consequences on Big Bang Nucleosynthesis in chapter 4. Finally, we
extend the previous analytical and numerical tools to the case of non-zero asymmetries
in chapter 5.



CHAPTER 1
Neutrinos in cosmology: an

overview

Our whole universe was in a hot, dense state
Then nearly fourteen billion years ago expansion started [...]

Barenaked Ladies, Big Bang Theory Theme

Contents
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Neutrinos are probably the most exciting particles in the Standard Model: being
neutral fermions, they could be Majorana particles, and we know (see section 1.3) that at
least two neutrino states are massive — a feature not predicted by the Standard Model.
If many particle physics experiments have been able to determine the properties of these
particles with increasing accuracy in the last decades, there is another promising labora-
tory that can be used: the Universe itself. Cosmology indeed provides complementary
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1. Neutrinos in cosmology: an overview

results, as the imprints left by neutrino evolution on cosmological observables are di-
rectly dependent on neutrino properties. In this introductory chapter, we present the
main elements of neutrino physics that are relevant to study their evolution in the early
Universe. This presentation, which is necessarily limited, only scratches the surface of
many topics that are developed in, e.g. [Les+13; LP12].

1.1 Elements of standard cosmology
We describe in this section the key features of the Standard Model of cosmology, intro-
ducing the necessary notations and equations for the forthcoming sections and chapters.
It is intended as a concise and oriented presentation of cosmology, and we refer to many
excellent references such as [KT90; PU13; Wei08; DS20] for a more complete presentation
of cosmology. The reader familiar with standard cosmology can skip this first section
and jump to section 1.2, dedicated to an overview of neutrinos in the early Universe.

1.1.1 The homogeneous and isotropic universe
The Standard Model of cosmology is based on two main assumptions [PU13]:

• General Relativity is an adequate theory of gravitation ;

• the cosmological principle: on the largest scales, the Universe is spatially homoge-
neous and isotropic.

This second hypothesis must be understood as a statistical, averaged property on scales
typically ≳ 100 Mpc. Under these assumptions, it can be shown that space-time must be
described by a Friedmann-Lemaître-Robertson-Walker (FLRW) geometry, that is with
the metric (we use the same conventions as [KT90; GK07]):

d𝑠2 = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 ≡ d𝑡2 − 𝑎2(𝑡)
(

d𝑟2

1 − 𝐾𝑟2 + 𝑟2d𝜃2 + 𝑟2 sin𝜃2d𝜑2
)
, (1.1)

where (𝑡 , 𝑟 , 𝜃, 𝜑) are the coordinates, 𝐾 = −1, 0,+1 for spaces with negative, zero and
positive curvature, and 𝑎(𝑡) is the scale factor. Such a cosmology is entirely determined
by the evolution of 𝑎(𝑡), which is given by Einstein theory of General Relativity. It
unveils the relationship between the geometry of spacetime (through the metric 𝑔𝜇𝜈)
and its energy content (through the stress-energy tensor 𝑇𝜇𝜈). Einstein field equations
read

𝑅𝜇𝜈 − 1
2𝑅𝑔𝜇𝜈 = 8𝜋𝒢𝑇𝜇𝜈 +Λ𝑔𝜇𝜈 . (1.2)

In this equation 𝑅𝜇𝜈 is the Ricci tensor and 𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈 the Ricci scalar, 𝒢 the gravita-
tional constant, and Λ the cosmological constant. Note that we use natural units in which
ℏ = 𝑐 = 𝑘𝐵 = 1. We assume that basics of General Relativity are known to the reader,
and refer for instance to [PU13; Wal84; Car97].
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1.1. Elements of standard cosmology

Dynamical equations

Thanks to the cosmological principle, the Universe can be described as a collection of
perfect fluids, for which the energy-momentum tensor reads

𝑇𝜇𝜈 = (𝜌 + 𝑃)𝑢𝜇𝑢𝜈 − 𝑃𝑔𝜇𝜈 , (1.3)

where 𝜌 is the energy density, 𝑃 is the pressure, and 𝑢𝜇 = d𝑥𝜇/d𝑠 is the four-velocity of
the fluid. In the comoving frame where the perfect fluid is at rest, 𝑢𝜇 = (1, 0, 0, 0) and
one has

𝑇𝜇
𝜈 = diag(𝜌,−𝑃,−𝑃,−𝑃) . (1.4)

We see then from (1.2) that it is possible to interpret the cosmological constant as the
energy density of the vacuum, through

𝜌Λ =
Λ

8𝜋𝒢 and 𝑃Λ = −𝜌Λ . (1.5)

We detail below that this a priori peculiar negative pressure amounts to the fact that the
cosmological constant corresponds to a constant energy density.
We can now obtain the equations governing the dynamics of expansion:1

• from the 0 − 0 component of (1.2), one gets the famous Friedmann equation:

( ¤𝑎
𝑎

)2
≡ 𝐻2 =

8𝜋𝒢
3 𝜌 − 𝐾

𝑎2 , (1.6)

where we defined the Hubble parameter 𝐻 ≡ ¤𝑎/𝑎. Introducing the Planck mass
𝑀Pl ≡ 𝒢−1/2 ≃ 1.22 × 1019 GeV, we have

𝐻2 =
8𝜋

3𝑀2
Pl
𝜌 − 𝐾

𝑎2 .

We will also sometimes use the reduced Planck mass 𝑚Pl ≡ 𝑀Pl/
√

8𝜋. The critical
density is the energy density corresponding to a flat (𝐾 = 0) Universe today,
𝜌crit ≡ 3𝐻2

0/8𝜋𝒢. The energy density parameter is then defined as Ω = 𝜌/𝜌crit, the
different values in the standard model of cosmology being given below.

1Although we only quote the results, let us give here the non-vanishing Christoffel symbols of the
FLRW metric, which we write d𝑠2 = d𝑡2 − 𝑎2(𝑡)𝛾𝑖 𝑗d𝑥 𝑖d𝑥 𝑗 :

Γ0
𝑖 𝑗 = ¤𝑎𝑎𝛾𝑖 𝑗 , Γ𝑖0𝑗 =

¤𝑎
𝑎
𝛿𝑖 𝑗 , Γ𝑖 𝑗𝑘 =

1
2𝛾

𝑖𝑙
(
𝜕𝑗𝛾𝑘𝑙 + 𝜕𝑘𝛾𝑗𝑙 − 𝜕𝑙𝛾 𝑗𝑘

)
=(3)Γ𝑖 𝑗𝑘 .

This allows to compute the non-zero components of the Ricci tensor,

𝑅00 = −3 ¥𝑎
𝑎

, 𝑅𝑖 𝑗 =
( ¥𝑎
𝑎
+ 2𝐻2 + 2𝐾

𝑎2

)
𝑎2𝛾𝑖 𝑗 and the Ricci scalar 𝑅 = −6

( ¥𝑎
𝑎
+ 𝐻2 + 𝐾

𝑎2

)
.
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1. Neutrinos in cosmology: an overview

• from the 𝑖 − 𝑖 component of (1.2), one gets

¥𝑎
𝑎
= −4𝜋𝒢

3 (𝜌 + 3𝑃) . (1.7)

• the energy-momentum conservation∇𝜇𝑇𝜇𝜈 = 0 (∇𝜇 being the covariant derivative)
reduces to

¤𝜌 + 3𝐻(𝜌 + 𝑃) = 0 . (1.8)

These three equations are not independent, which is a consequence of Bianchi identities.
The most often used equations are then (1.6) and (1.8).

Some solutions

Friedmann equation Perfect fluids are characterized by their equation of state 𝑃 = 𝑤𝜌,
where 𝑤 is independent of time. With such a relation, we see from (1.8) that the energy
density evolves as 𝜌 ∝ 𝑎−3(1+𝑤). We distinguish three examples of interest:

• radiation (𝑤 = 1/3), for which 𝜌 ∝ 𝑎−4,

• pressureless matter (𝑤 = 0), for which 𝜌 ∝ 𝑎−3,

• dark energy (𝑤 = −1), for which 𝜌 = const.

The 𝚲CDM model In the standard model of cosmology, which accounts extremely
well for an incredible variety of observations,2 the constituents of the Universe
are [Zyl+21]:

• baryonic matter (the “usual” matter), which behaves as pressureless matter,
amounting today to Ω0

𝑏 ≃ 0.049,

• photons which behave as radiation and amounting to Ω0
𝑟 ∼ 10−4,

• neutrinos, which are the only known particles in the Standard Model which were
ultrarelativistic at early times (during Big Bang Nucleosynthesis and Cosmic Mi-
crowave Background formation) and thus behaving as radiation, and are non-
relativistic today (at least for two eigenstates, cf. section 3.4.3). Their contribution
Ω0

𝜈 is thus split between Ω0
𝑟 and the total matter part Ω0

𝑚 ,

• “dark” components, which account for the missing energy (the baryonic and
photon components which come from the Standard Model of particle physics
only represent 5 % of the total energy budget):

– a cosmological constantΛ corresponding to dark energy, which dominates the
energy density today with Ω0

Λ ≃ 0.685,
2There are of course some tensions, like the 𝐻0 tension between “early” and “late” measurements of

the Hubble constant. We do not discuss such limits of the ΛCDM model in this introduction.
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1.1. Elements of standard cosmology

– cold dark matter, necessarily non-baryonic and whose nature is still unknown
today, which amounts for Ω0

𝑐 ≃ 0.265.

These last two components are at the origin of the name “ΛCDM” of the model.
We plot on Figure 1.1 the evolution of the energy density for the different con-

stituents of the Universe. Given the different scalings of 𝜌 with the scale factor, it
appears that, although today the dark energy is dominating the Universe, this was not
the case in the past. In the early Universe, we were in the so-called radiation-dominated
era, until the energy densities of radiation and matter became equal (“matter-radiation
equality”) at the scale factor 𝑎eq. We then entered the matter-dominated era, until the re-
cent period of accelerated expansion driven by the cosmological constant, the transition
taking place at the scale factor 𝑎Λ at which the acceleration of the expansion was zero.3

Scale factor and time Assuming that the Universe is flat (𝐾 = 0), we can solve Fried-
mann equation (1.6) for a fluid of equation of state 𝑃 = 𝑤𝜌:

¤𝑎 ∝ 𝑎−(1+3𝑤)/2 =⇒ 𝑎(𝑡) ∝ 𝑡 2
3(1+𝑤) . (1.9)

In particular, we find for radiation the important relationship between the Hubble rate
and cosmic time:

𝑎(𝑡) ∝ √𝑡 hence 𝐻 =
1
2𝑡 . (1.10)
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Figure 1.1 – Energy density as a function of the scale factor for nonrelativistic matter
(∝ 𝑎−3), radiation (∝ 𝑎−4) and a cosmological constant (= const.). At early times, the
energy density of the Universe is dominated by the radiation component.

3Indeed, one can see from (1.7) that the dominance of matter makes the Universe decelerate, while
dark energy drives an accelerated expansion. The transition thus corresponds to a vanishing acceleration.
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1. Neutrinos in cosmology: an overview

Redshifting of momenta

We end this section with a very useful result valid in FLRW spacetime: the so-called
“redshifting” of physical momentum as the Universe expands.

Let us show that the physical linear momentum of a free-falling particle decreases
as 1/𝑎 as the Universe expands, following [Les+13; DS20]. We start with the geodesic
equation

d2𝑥𝜇

d𝜆2 + Γ
𝜇
𝛼𝛽

d𝑥𝛼
d𝜆

d𝑥𝛽
d𝜆 = 0 , (1.11)

where the use of the affine parameter 𝜆 instead of the proper time 𝜏 allows to treat
at the same time massive and massless particles. It is implicitly defined such that the
four-momentum 𝑃𝜇 = (𝐸, 𝑃 𝑖) reads

𝑃𝜇 ≡ d𝑥𝜇
d𝜆 . (1.12)

Note that the 0−component of this definition gives d/d𝜆 = 𝐸d/d𝑡. The 0−component
of the geodesic equation (1.11) can thus be written

𝐸
d𝐸
d𝑡 + Γ

0
𝑖 𝑗𝑃

𝑖𝑃 𝑗 = 0 , (1.13)

where we use the fact that only the spatial components of Γ0
𝛼𝛽 are non-zero. Since

Γ0
𝑖 𝑗 = −(¤𝑎/𝑎)𝑔𝑖 𝑗 = ¤𝑎𝑎𝛾𝑖 𝑗 , we have

𝐸
d𝐸
d𝑡 + ¤𝑎𝑎𝛾𝑖 𝑗𝑃

𝑖𝑃 𝑗 = 0 . (1.14)

The norm of the four-momentum is 𝑚2 = 𝑃𝜇𝑃𝜇 = 𝐸2 − 𝑎2𝛾𝑖 𝑗𝑃 𝑖𝑃 𝑗 . It is customary to
introduce the physical linear momentum 𝑝 𝑖 ≡ 𝑎(𝑡)𝑃 𝑖 , which allows to rewrite the norm
of the four-momentum 𝐸2− |®𝑝 |2 = 𝑚2 with | ®𝑝 |2 ≡ 𝛾𝑖 𝑗𝑝 𝑖𝑝 𝑗 (as in flat spacetime). Deriving
this relation gives (note that the calculation is also valid if 𝑚 = 0)

𝐸
d𝐸
d𝑡 − |®𝑝 |

d| ®𝑝 |
d𝑡 = 0 . (1.15)

Rewriting (1.14) with the physical momentum finally leads to

𝐸
d𝐸
d𝑡 +

¤𝑎
𝑎
| ®𝑝 |2 = 0 ========⇒

using (1.15)

1
| ®𝑝 |

d| ®𝑝 |
d𝑡 = − ¤𝑎

𝑎
. (1.16)

Therefore, we have proven that
| ®𝑝 | ∝ 𝑎−1 . (1.17)
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1.1. Elements of standard cosmology

1.1.2 Equilibrium thermodynamics
Having described gravity in the homogeneous Universe, we must now turn to the
equations governing matter and radiation. The statistical properties of the particles
filling the Universe are described by their distribution functions 𝑓 (𝑝, 𝑡), which give the
number of particles of momentum 𝑝 at time 𝑡 (there is no dependence on space nor on
the direction of ®𝑝 thanks to homogeneity and isotropy):

d𝑁(𝑝, 𝑡) = 𝑓 (𝑝, 𝑡)4𝜋𝑝
2d𝑝

(2𝜋)3 . (1.18)

The number density 𝑛, energy density 𝜌, and pressure 𝑃 of a dilute, weakly-
interacting of a gas of particles with 𝑔 internal degrees of freedom (for example, 2 for
photons or charged leptons) and distribution function 𝑓 (𝑝, 𝑡) read

𝑛 =
𝑔

2𝜋2

∫ ∞

0
𝑝2d𝑝 𝑓 (𝑝, 𝑡) , (1.19a)

𝜌 =
𝑔

2𝜋2

∫ ∞

0
𝐸(𝑝)𝑝2d𝑝 𝑓 (𝑝, 𝑡) , (1.19b)

𝑃 =
𝑔

2𝜋2

∫ ∞

0

𝑝2

3𝐸(𝑝)𝑝
2d𝑝 𝑓 (𝑝, 𝑡) . (1.19c)

If the reaction rates of a particle species are high enough (cf. the discussion on decoupling
below), it will be maintained in kinetic equilibrium, such that its distribution function
reads

𝑓 (𝑝) = 1
𝑒(𝐸−𝜇)/𝑇 ± 1

, (1.20)

with 𝜇 the chemical potential and 𝑇 the temperature of the species. The + sign is for
fermions (Fermi-Dirac (FD) distribution), the− sign for bosons (Bose-Einstein (BE) distri-
bution). If this particle species is in chemical equilibrium, there is an additional constraint
on the chemical potentials, namely, the reaction 𝑎 + 𝑏 ↔ 𝑐 + 𝑑 implies 𝜇𝑎 +𝜇𝑏 = 𝜇𝑐 +𝜇𝑑.
If this reaction is an elastic scattering, this is trivial since the incoming and outgoing
particles are identical.4 An interesting case is particle/antiparticle annihilation: for
instance, annihilations into pairs of photons will impose 𝜇 = −𝜇̄ since 𝜇𝛾 = 0.

Let us give the explicit results for the different thermodynamic quantities in the
relativistic limit 𝑇 ≫ 𝑚, for non-degenerate particles 𝑇 ≫ 𝜇:

𝑛 =



𝑔
𝜁(3)
𝜋2 𝑇

3 (BE)

𝑔
3
4
𝜁(3)
𝜋2 𝑇

3 (FD)
, 𝜌 =



𝑔
𝜋2

30𝑇
4 (BE)

𝑔
7
8
𝜋2

30𝑇
4 (FD)

, 𝑃 =
𝜌

3 , (1.21)

4That is why we should rather talk about chemical equilibrium with a given system. In contrast, kinetic
equilibrium is an “intrinsic” property: self-interactions can maintain equilibrium spectra even if there is
no external species to be at equilibrium with.
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1. Neutrinos in cosmology: an overview

while in the non-relativistic limit (𝑚 ≫ 𝑇), the results are the same for fermions and for
bosons:

𝑛 = 𝑔
(
𝑚𝑇
2𝜋

)3/2
𝑒−(𝑚−𝜇)/𝑇 , 𝜌 = 𝑚𝑛 , 𝑃 = 𝑛𝑇 ≪ 𝜌 . (1.22)

These results justify the equations of state 𝑤 = 1/3 for radiation and 𝑤 = 0 for non-
relativistic matter.

Entropy One can show, combining the conservation equation (1.8) and the derivative
of pressure (1.19c) with respect to temperature (with an equilibrium distribution), that
the entropy density

𝑠 ≡ 𝜌 + 𝑃 − 𝜇𝑛
𝑇

, (1.23)

satisfies
d(𝑠𝑎3) = −𝜇

𝑇
d(𝑛𝑎3) . (1.24)

Therefore, for non-degenerate matter (𝜇/𝑇 ≪ 1) or when it is neither destroyed nor
created (d(𝑛𝑎3) = 0), the product 𝑠𝑎3 is constant.

Note that these relations can be deduced from standard equilibrium thermody-
namics. Indeed, the Gibbs free energy (or free enthalpy) 𝐺 = 𝑈 + 𝑃𝑉 −𝑇𝑆 is a function
of (𝑇, 𝑃, 𝑁) thanks to the property of Legendre transforms: starting from 𝑈(𝑆,𝑉, 𝑁),
the two Legendre transforms via+𝑃𝑉 and−𝑇𝑆 change the natural variables to (𝑇, 𝑃, 𝑁),
and the fundamental thermodynamic identity becomes

d𝑈 = 𝑇d𝑆 − 𝑃d𝑉 + 𝜇d𝑁 =⇒ d𝐺 = −𝑆d𝑇 +𝑉d𝑃 + 𝜇d𝑁 . (1.25)

However, 𝐺 is an additive function, and its only additive variable is 𝑁 , therefore
𝐺(𝑇, 𝑃, 𝑁) = 𝜇(𝑇, 𝑃)𝑁 . We thus deduce that the entropy is 𝑆 = (𝑈 + 𝑃𝑉 − 𝜇𝑁)/𝑇,
which gives (1.23) after dividing by the volume. Moreover, using the identity (1.25) for
a comoving volume𝑉 ∝ 𝑎3, we get 𝑇d(𝑠𝑎3) = d(𝜌𝑎3) + 𝑃d𝑎3 − 𝜇d(𝑛𝑎3), but the first two
terms on the right-hand side cancel according to the conservation equation (1.8).

In the following section, we discuss some consequences of the expansion of the
Universe. The conservation of entropy plays an important role as it gives directly some
information on the evolution of the temperature.

1.1.3 Thermal history of the Universe
In short, the history of the Universe in the hot Big Bang model is the history of its cooling
as it expands. This cooling has several consequences, and we discuss here two crucial
ones to understand neutrino evolution in the (early) Universe.

10



1.1. Elements of standard cosmology

Nonrelativistic transition and entropy transfer

It is useful to write the entropy density of the plasma as a function of the photon
temperature 𝑇𝛾:

𝑠pl ≡ 2𝜋2

45 𝑔𝑠(𝑇𝛾)𝑇3
𝛾 . (1.26)

Let us assume that we are in a non-degenerate case (𝜇 = 0 for all species), such that
the entropy is conserved according to (1.24): 𝑠pl𝑎3 = const. We thus obtain the very
important result:

𝑇𝛾 ∝ 𝑔−1/3
𝑠 𝑎−1 . (1.27)

Whenever 𝑔𝑠 is constant, the temperature decreases as 𝑎−1. However, it is possible
that particles in the plasma become non-relativistic, in which case their entropy is
exponentially suppressed (in other words, they do not contribute anymore to 𝑔𝑠) —
cf. the integrals given in (1.21) and (1.22). The conservation of 𝑠pl𝑎3 then shows that
entropy is transferred to the other species. The mechanism behind this transfer is the
displacement of the equilibrium of the reaction 𝑋 + 𝑋̄ ↔ 𝛾 + 𝛾 towards the right when
the temperature gets below 𝑚𝑋 , since the average energy of photons is then too small to
create𝑋− 𝑋̄ pairs. This temperature threshold is precisely the one of the non-relativistic
transition, which is why we will equivalently talk about non-relativistic transition and
entropy transfer, or particle/antiparticle annihilation.

We show a concrete example in section 1.2 when we discuss electron/positron
annihilations and the associated reheating of photons.

Decoupling

The second consequence of the cooling of the Universe is the decoupling of species when
their interaction rate becomes too small compared to the expansion rate. Below the
decoupling temperature, they interact too little to remain in thermal contact with other
species. As a rule of thumb, we say that decoupling occurs when5

Γ
𝐻
∼ 1 , (1.28)

with Γ = 𝑛⟨𝜎𝑣⟩, where 𝑛 is the number density of target particles, 𝜎 is the cross-
section and 𝑣 ∼ 1 the relative velocity (in the ultrarelativistic case). The angle brackets
denote thermal averaging. This expression shows why decoupling occurs when the
temperature decreases: the interactions may become too weak, or the target density can
be suppressed (this is the case after recombination and thus for photon decoupling at
𝑇 ∼ 0.3 eV).

5Another way to justify this is to say that the heat bath temperature varies as 𝑇𝛾 ∝ 𝑎−1 (we neglect a
variation of 𝑔𝑠 for this argument), such that ¤𝑇𝛾/𝑇𝛾 = −𝐻. Therefore, the relation (1.28) corresponds to the
moment when the interactions are not fast enough to adjust to the changing temperature.

11



1. Neutrinos in cosmology: an overview

Temperature evolution of a decoupled species Once they are decoupled from the
plasma, particles are free-streaming and their distribution functions are frozen: if we
write with a subscript 𝐷 the quantities at decoupling, we have

𝑓 (𝑝, 𝑡) = 𝑓 (𝑝𝐷 , 𝑡𝐷) = 𝑓
(
𝑎(𝑡)
𝑎𝐷

𝑝, 𝑡𝐷

)
, (1.29)

where we have used the scaling relation (1.17). In general, we cannot define an ef-
fective temperature and an effective chemical potential,6 except in the two following
limits [GK07].

• If the particles are ultrarelativistic (and non-degenerate) at decoupling (which is
the case for massless particles), we have from (1.29) and using 𝐸 = 𝑝,

𝑓 (𝑝, 𝑡) = 1

𝑒
𝑎
𝑎𝐷
𝑝/𝑇𝐷 ± 1

=
1

𝑒𝑝/𝑇 ± 1
with 𝑇 = 𝑇𝐷

𝑎𝐷
𝑎
∝ 𝑎−1 . (1.30)

The particles keep a relativistic equilibrium distribution with an effective tem-
perature scaling as 𝑎−1. Note that even if, at some point, the particles become
nonrelativistic (𝑚 ∼ 𝑇), the spectrum keeps this shape.

• If the particles are nonrelativistic at decoupling, we can simplify𝐸𝐷 =
√
𝑝2
𝐷 + 𝑚2 ≃

𝑚 + (𝑝2/2𝑚), hence,

𝑓 (𝑝, 𝑡) = 1
𝑒(𝐸𝐷−𝜇𝐷)/𝑇𝐷 ± 1

≃ 𝑒(𝜇𝐷−𝑚)/𝑇𝐷 𝑒−𝑝2
𝐷/(2𝑚𝑇𝐷)

≡ 𝑒(𝜇−𝑚)/𝑇 𝑒−𝑝2/(2𝑚𝑇) , (1.31)

where, using once again the scaling relation 𝑝 = 𝑝𝐷𝑎𝐷/𝑎, we define the effective
temperature

𝑇 = 𝑇𝐷
( 𝑎𝐷
𝑎

)2
∝ 𝑎−2 , (1.32)

and the effective chemical potential

𝜇 = 𝑚 + (𝜇𝐷 − 𝑚) 𝑇𝑇𝐷 = 𝑚 + (𝜇𝐷 − 𝑚)
( 𝑎𝐷
𝑎

)2
. (1.33)

Even if at decoupling 𝜇𝐷 = 0, it cannot remain equal to zero later.

6Such quantities have to be effective, since equilibrium is not maintained anymore by interactions.
However this is not in contradiction with the fact that, in the ultra- and non-relativistic limits, equilibrium
distributions are maintained.
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1.1. Elements of standard cosmology

A (very) brief thermal history of the Universe

If the number of relativistic degrees of freedom 𝑔𝑠 is constant, (1.27) shows that the
temperature of the plasma (what we usually call “the temperature of the Universe”)
decreases as 𝑎−1. As the Universe cools down, equilibrium between species can no
longer be maintained, and massive particles become non-relativistic. There are also
very high-energy phenomena that we did not discuss such as the electroweak phase
transition. A summary of the major events that are predicted by the standard model
of cosmology is presented in Table 1.1. The earliest experimental probe of this model
is Big Bang Nucleosynthesis (BBN), which we discuss in section 1.2.3. The observation
of the Cosmic Microwave Background (CMB), that is photons that decoupled from
electrons 380 000 years after the Big Bang, has been another decisive argument towards
the validation of this standard model.

∼ Age of the Universe Temperature (K) Major event(s)

< 10−43 s > 1032 ???
10−43 − 10−35 s 1032 − 1028 Period of inflation

10−35 − 10−12 s 1028 − 1016 Generation of matter/antimatter
asymmetry

10−12 s 1016 Electroweak phase transition

10−4 s 1012 Quark-hadron transition, 𝜇+𝜇−
annihilation

1 − 102 s ∼ 1010 (∼ 1 MeV)
Neutrino decoupling, 𝒆+𝒆−

annihilation, BBN

105 yr 4000 Recombination, formation of the
Cosmic Microwave Background

2 × 105 − 109 yr Galaxy formation
13.7 × 109 yr 2.73 Today

Table 1.1 – Major events occurring during the expansion of the Universe in the hot Big
Bang model (adapted from [MP04]). Note that the values given for the epoch of inflation
are particularly model-dependent.

As emphasized in Table 1.1, the period during which the temperature of the Uni-
verse was about 1 MeV (the so-called “MeV era”) is eventful. Indeed, we show in the next
section that neutrinos decouple only shortly before electrons/positrons annihilate, sug-
gesting a partial overlap between these two phenomena. Moreover, this era also marks
the beginning of BBN, meaning that neutrino decoupling influences the primordial
abundances.

13



1. Neutrinos in cosmology: an overview

1.2 Neutrinos in the early Universe
In this section, we give an introduction to the main events summarized in Table 1.1 that
take place during the MeV age: neutrino decoupling, 𝑒± annihilations, and primordial
nucleosynthesis. The results presented here are standard, and will be the basis of the
work presented in chapters 3 and 4.
During this period, the constituents of the Universe are:

• a QED plasma of electrons, positrons and photons, tightly coupled by QED inter-
actions (note that heavier charged leptons, 𝜇∓ and 𝜏∓, have annihilated),

• a bath of neutrinos and antineutrinos, coupled to the QED plasma via weak
interactions with electrons and positrons,

• baryons (initially neutrons and protons which combine later on to form light
elements during BBN) in negligible abundance compared to the leptons, as
shown by the latest measurement of the baryon-to-photon ratio 𝜂 = 𝑛𝑏/𝑛𝛾 ≃
6.1 × 10−10 [Fie+20].

We emphasize that the calculations presented in this section do not take into account
all the physics known to play a role at this epoch, as neutrino oscillations (see section 1.3)
are discarded. Full calculations including these phenomena and providing an in-depth
analysis of their effects are the subject of this thesis.

1.2.1 Instantaneous neutrino decoupling
To roughly estimate the temperature of neutrino decoupling via (1.28), we need to
compare Γ and 𝐻. In the early universe, neutrinos are kept in equilibrium via weak
interaction processes like 𝜈 + 𝑒− → 𝑒− + 𝜈. The cross-section of such processes scales
as 𝜎 ∼ 𝐺2

𝐹𝑇
2, the particle density (for ultrarelativistic electrons) as 𝑛𝑒 ∼ 𝑇3 (see (1.21)

above) and the relative velocity is 𝑣 ∼ 1. Hence the interaction rate

Γ = 𝑛𝑒 ⟨𝜎𝑣⟩ ∼ 𝐺2
𝐹𝑇

5 .

From Eq. (1.6), the Hubble rate is, in the radiation era,

𝐻 =

√
8𝜋

3𝑀2
Pl
𝜌rad =

√
8𝜋

3𝑀2
Pl
𝑔∗
𝜋2

30𝑇
4 ∼ √𝑔∗

𝑇2
𝛾

𝑀Pl
,

where 𝑔∗ is the number of relativistic degrees of freedom, defined such that

𝜌rad =
𝜋2

30 𝑔∗(𝑇𝛾)𝑇
4
𝛾 . (1.34)

At this time, the relativistic species in the Universe are photons (with two helicity states),
three species of neutrinos and antineutrinos (each with one helicity state), plus electrons
and positrons (with two spin states), thus

𝑔∗ = 2 + 3 × 2 × 7
8 + 2 × 2 × 7

8 =
43
4 = 10.75 . (1.35)

14



1.2. Neutrinos in the early Universe

The ratio of the interaction rate to the expansion rate is thus

Γ
𝐻
∼ 𝐺2

𝐹𝑇
5

√
𝑔∗ 𝑇2/𝑀Pl

≃
(

𝑇
1 MeV

)3
. (1.36)

Therefore, at 𝑇𝜈𝐷 ∼ 1 MeV, there are not enough collisions compared to the expansion
of the Universe and neutrinos subsequently decouple from the electromagnetic plasma.
Once it has decoupled, the fluid of neutrinos and antineutrinos is called the Cosmic
Neutrino Background (C𝜈B): if it could be directly detected, it would give a snapshot of
the Universe as it was a few dozens of seconds after the Big Bang, a tremendous jump
in the past compared to the CMB, which was formed 380 000 years later...

In the instantaneous decoupling approximation, one considers that at 𝑇𝜈𝐷 , all neutrinos
suddenly decouple. From this moment onward, their distribution function remains a
Fermi-Dirac distribution (1.30)

𝑓𝜈(𝑝) = 1
𝑒𝑝/𝑇𝜈 + 1

; 𝑇𝜈 ∝ 𝑎−1 .

In the electromagnetic plasma, the equilibrium of the reaction 𝑒++ 𝑒− ↔ 𝛾+𝛾 gets very
displaced on the right when the temperature drops below 𝑚𝑒 ≃ 0.511 MeV. Electrons
and positrons annihilate and their entropy is transferred to the gas of photons, whose
temperature will thus decrease slower than 𝑎−1.

Let us estimate the final ratio of the photon-to-neutrino temperature once the 𝑒+𝑒−
annihilation is over. Using (1.27), the conservation of the entropy of the electromagnetic
plasma reads7

𝑔(pl)
𝑠 × 𝑇3

𝛾 𝑎
3 = cst =⇒ 𝑔(pl)

𝑠 ×
(
𝑇𝛾
𝑇𝜈

)3
= cst ,

since 𝑇𝜈 ∝ 𝑎−1. Long before the annihilation of electrons and positrons (but after
neutrino decoupling), 𝑇𝛾 = 𝑇𝜈 and the relativistic species are photons and 𝑒± pairs, so
𝑔(pl)
𝑠 = 2+2×2× 7

8 = 11
2 . After the annihilation, there are only photons left and 𝑔(pl)

𝑠 = 2.
Therefore, long after decoupling, the ratio of temperatures is

𝑇𝛾
𝑇𝜈

=
(

11
4

)1/3
≃ 1.40 . (1.37)

This is of course an approximate result, for various reasons. First, since the temper-
atures of neutrino decoupling and 𝑒+𝑒− annihilation are close, neutrinos are not fully
decoupled when the annihilation takes place. This leads to a small “reheating” of neu-
trinos compared to the instantaneous decoupling (ID) limit. Historically, this has been

7We put a superscript (pl) to highlight the fact that neutrinos do not interact with the plasma anymore,
and are thus not counted in 𝑔(pl)

𝑠 .
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parameterized in the following way: should ID be true, then after 𝑒+𝑒− annihilation the
radiation energy density would read

𝜌rad =

(
1 + 3 × 7

8

(
4
11

)4/3)
𝜌𝛾 , (1.38)

where we used the expressions (1.21) and the ratio of temperatures (1.37). The departure
from this “ideal” picture is defined such that 𝜌rad reads

𝜌rad =

(
1 + 𝑁eff × 7

8

(
4
11

)4/3)
𝜌𝛾 , (1.39)

where the parameter 𝑁eff is called8 the effective number of neutrino species. It represents
the (non-integer) number of instantaneously decoupled neutrinos that would have the
same energy density as the actual 3 active neutrinos. It is a convenient cosmologi-
cal observable as it encapsulates all the information on the energy density during the
radiation-dominated era. Due to the overlap between 𝑒+𝑒− annihilation and neutrino
decoupling, we expect 𝑁eff > 3. It should be noted that 𝑁eff is one of the main cosmo-
logical quantities we will be interested in throughout this manuscript.

Another limitation to the instantaneous decoupling limit is the fact that the more
energetic neutrinos will remain in thermal contact with the plasma longer than the
low-energy ones, which should source spectral distortions of the neutrino distribution
functions. Finally, the different flavours of neutrinos do not have the same coupling
with electrons/positrons. Indeed, electronic neutrinos can interact with 𝑒± via neutral
and charged current processes (i.e., exchanges of 𝑍 and 𝑊 bosons), while the other
flavours of neutrinos can only interact with the heat bath via neutral current processes.
Assuming that neutrinos had Maxwell-Boltzmann distributions, Dolgov found [Dol02]:

𝑇𝜈𝑒𝐷 ≃ 1.87 MeV ; 𝑇𝜈𝜇,𝜏𝐷 ≃ 3.12 MeV .

These different arguments show that, in reality, neutrino decoupling is a much
more complicated process than what is described in the instantaneous decoupling ap-
proximation. The true decoupling process is referred to as incomplete neutrino decoupling,
and describing it requires to solve the Boltzmann equations which drive the evolution
of the neutrino distributions functions. The following subsection describes standard
numerical results on this topic.

1.2.2 Incomplete neutrino decoupling
Previous works have tackled the problem of incomplete neutrino decoupling, with in-
creasing precision and taking into account the distortions of the spectra:9 [DF92; DT92]

8The key is in “effective”: there are still exactly 3 active neutrinos, but their energetic contribution
is equivalent to the one of not exactly 3 instantaneously decoupled neutrinos. In addition, note that any
beyond-the-Standard-Model relativistic species that would contribute to 𝜌rad is taken into account in 𝑁eff.

9A good summary of the existing literature as of 2015 can be found in [Gro+16].
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approximated the distribution functions with Maxwell-Boltzmann statistics, an approx-
imation overcome in [HM95; DHS97; DHS99; Esp+00] which used various numerical
methods. Corrections to the plasma thermodynamics (see section 3.1.2) were included
in [Man+02; Man+05; Gro+16; SP16; GSP19]. We can also quote the recent approximate
but accurate methods developed in [Esc19; Esc20].

We present in this section the results of a typical calculation of incomplete neutrino
decoupling which does not take into account neutrino masses and mixings, features
that we describe in the next section. The full calculation is done in chapter 3 and
requires a more complex formalism. Without flavour oscillations, calculating neutrino
decoupling [Man+02; Gro+16; FP20] requires to solve the covariant Boltzmann kinetic
equation which reads for neutrinos [DS20][

𝜕

𝜕𝑡
− 𝐻𝑝 𝜕

𝜕𝑝

]
𝑓𝜈𝛼 (𝑝, 𝑡) = 𝐶𝜈𝛼 [ 𝑓𝜈 , 𝑓𝑒±] , (1.40)

where 𝐶𝜈𝛼 [ 𝑓𝑗] is the collision term. This collision integral is dominated by two-body
reactions 1 + 2→ 3 + 4 and is given by (the sum is over reactions)

𝐶𝜈1 =
1

2𝐸1

∑∫ d3𝑝2

2𝐸2(2𝜋)3
d3𝑝3

2𝐸3(2𝜋)3
d3𝑝4

2𝐸4(2𝜋)3 × (2𝜋)
4𝛿(4)(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4)

× 𝑆⟨|ℳ|2⟩ × 𝐹[ 𝑓 (1) , 𝑓 (2) , 𝑓 (3) , 𝑓 (4)] , (1.41)

where 𝑆 is the symmetrization factor, ⟨|ℳ|2⟩ the summed-squared matrix element
(given for instance in [Gro+16]), and

𝐹 ≡ 𝑓 (3) 𝑓 (4)(1 − 𝑓 (1))(1 − 𝑓 (2)) − 𝑓 (1) 𝑓 (2)(1 − 𝑓 (3))(1 − 𝑓 (4)) ,

the notation 𝑓 (𝑗)𝑎 meaning 𝑓𝑎(𝑝 𝑗). The standard calculation assumes no neutrino asym-
metry 𝑓𝜈𝛼 = 𝑓𝜈̄𝛼 . Finally, the distribution functions are the same for 𝜈𝜇 and 𝜈𝜏, as at
the energy scales of interest the muon and tau neutrinos have the same interactions
(while the distribution of 𝜈𝑒 is different because of charged current interactions with the
background medium). We are thus restricted to two unknown neutrino distributions,
𝑓𝜈𝑒 and 𝑓𝜈𝜇 . In addition to the Boltzmann equation for neutrinos, the last necessary
equation10 is the total energy conservation (1.8).

Comoving variables We define the comoving temperature 𝑇cm ∝ 𝑎−1 [Gro+16], which
corresponds to the physical temperature of all species when they are strongly coupled,
i.e. 𝑇𝜈 = 𝑇𝛾 = 𝑇cm when 𝑇cm ≫ 1 MeV, and is also the temperature of neutrinos at all
times in the instantaneous decoupling approximation 𝑇ID

𝜈 = 𝑇cm. From this proxy for
the scale factor, we define the comoving variables [Esp+00; Man+05]

𝑥 ≡ 𝑚𝑒/𝑇cm , 𝑦 ≡ 𝑝/𝑇cm , and 𝑧 ≡ 𝑇𝛾/𝑇cm , (1.42)
10All remaining species (electrons, positrons, photons) are kept at equilibrium by fast QED interactions,

so their properties are summarized by a single parameter, the plasma temperature 𝑇𝛾 — whose evolution
is thus given by energy conservation.
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1. Neutrinos in cosmology: an overview

which are respectively the reduced scale factor, the comoving momentum, and the
dimensionless photon temperature, such that 𝑓 (𝑝, 𝑡) is now expressed 𝑓 (𝑥, 𝑦). We
also introduce the dimensionless thermodynamic quantities 𝜌̄ ≡ (𝑥/𝑚𝑒)4𝜌 and 𝑃̄ ≡
(𝑥/𝑚𝑒)4𝑃.

Neutrino spectral distortions due to 𝑒± annihilation It is then possible to follow the
evolution of neutrino distribution functions across the decoupling era. Since this is
an out-of-equilibrium process, we cannot properly talk about neutrino “temperatures”,
although such quantities are quite convenient to give a global picture of the results.
Note that for instance in Refs. [DT92; HM95; DHS97], an “effective temperature” is
defined as

𝑇eff(𝑝) = 𝑝
ln [1/ 𝑓𝜈(𝑝) − 1]

and comparing 𝑇eff with 𝑇𝛾 along the evolution would seem to be a good indicator of
decoupling. However, such a temperature is just the temperature of the only Fermi-Dirac
spectrum which takes the value 𝑓𝜈(𝑝) at 𝑝, so it doesn’t give the "global" information
one is looking for when defining a temperature. Moreover, we are interested in the
parameter 𝑁eff which depends on the energy density of neutrinos — but 𝑇eff is not a
convenient parameter to compute the energy density.

Therefore, we rather introduce the following parameterization:

𝑓𝜈𝛼 (𝑥, 𝑦) ≡
1

𝑒𝑦/𝑧𝜈𝛼 + 1
[1 + 𝛿𝑔𝜈𝛼 (𝑥, 𝑦)] , (1.43)

where the reduced effective temperature 𝑧𝜈𝛼 ≡ 𝑇𝜈𝛼/𝑇cm is the reduced temperature of the
Fermi-Dirac spectrum with zero chemical potential which has the same energy density
as the real distribution:

𝜌̄𝜈𝛼 ≡
7
8
𝜋2

30 𝑧
4
𝜈𝛼 . (1.44)

Note that the effective distortions are constrained so that (1.44) holds:∫ ∞

0
d𝑦𝑦3 𝛿𝑔𝜈𝛼

𝑒𝑦/𝑧𝜈𝛼 + 1
= 0 . (1.45)

The evolution of the effective temperatures is shown on Figure 1.2. As expected,
photons are less reheated by 𝑒+𝑒− annihilation, hence the smaller final value of 𝑇𝛾. Even
though we draw two lines, 𝑇𝜈𝜇 and 𝑇𝜈𝜏 are exactly equal. The higher value of 𝑇𝜈𝑒 is
due to the charged current processes: these additional interactions maintain thermal
contact longer and make electronic (anti)neutrinos the main channel of entropy transfer
between the QED plasma and the neutrino bath. The effective number of neutrino
species is conveniently computed from the effective temperatures:

𝜌𝜈 + 𝜌𝜈̄ = 𝑁eff × 7
8

(
4
11

)4/3
𝜌𝛾 ⇐⇒ 𝑁eff ≡

[ (11/4)1/3
𝑧

]4

×
(
𝑧4
𝜈𝑒 + 𝑧4

𝜈𝜇 + 𝑧4
𝜈𝜏

)
, (1.46)

18



1.2. Neutrinos in the early Universe

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

𝑇 𝑇 c
m

𝑇ID
𝛾

10−210−1100101

𝑇cm (MeV)

10−5

10−4

10−3

10−2

10−1

𝑇 𝑇 c
m
−1

𝑇𝛾
𝑇𝜈𝑒
𝑇𝜈𝜇
𝑇𝜈𝜏

10−2

1.38

1.39

1.40

Figure 1.2 – Evolution of the (effective) temperatures of the relativistic species (photons
and neutrinos) across the decoupling era. Top panel: Comoving photon temperature
in the instantaneous decoupling approximation (dashed grey line) and taking into
account incomplete neutrino decoupling (solid orange line). The asymptotic value of
𝑇ID
𝛾 /𝑇cm is, as derived in (1.37), (11/4)1/3 ≃ 1.40102. The neutrino effective temperatures

cannot be distinguished by eye from 𝑇cm. Bottom panel: Relative difference between the
temperatures and 𝑇cm, showing the higher reheating of 𝜈𝑒 compared to 𝜈𝜇,𝜏.

where we assumed no asymmetry between neutrinos and antineutrinos (𝑧𝜈𝛼 = 𝑧𝜈̄𝛼 ). In
the general case, one simply has to replace 𝑧4

𝜈𝛼 → (𝑧4
𝜈𝛼 + 𝑧4

𝜈̄𝛼
)/2.
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1. Neutrinos in cosmology: an overview

We plot on Figure 1.3 the final non-thermal distortions 𝛿𝑔𝜈𝛼 . The same comments
can be made as for the final effective temperatures. Note that the typical size of the
corrections to the ID limit is ∼ 1 %.
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Figure 1.3 – Final non-thermal distortions of the neutrino spectra. Since they have
exactly the same interactions, 𝛿𝑔𝜈𝜇 = 𝛿𝑔𝜈𝜏 . The larger amplitude of distortions for
electronic neutrinos is due to the charged current processes.

For completeness, we give the value of 𝑁eff deduced from the results shown on
Figure 1.2: 𝑁eff ≃ 3.043. It is close to the values previously obtained in the literature,
notably the previous reference 𝑁eff = 3.046 [SP16]. However, these values strongly
depend on the inclusion of QED corrections, of a proper treatment of flavour mixing
(which we haven’t introduced yet), etc. We postpone the dedicated computation of 𝑁eff
to chapter 3.

Experimental constraints

We gather in Table 1.2 some of the latest bounds on 𝑁eff obtained from different CMB
experiments [Hin+13; Agh+20; Aio+20; Bal+21].11 These results notably confirm the ex-
istence of only 3 neutrino species being thermally populated close to decoupling, which
constrains the properties of possible sterile states. For instance, light sterile neutrinos
with a ∼ eV mass, favoured to fit some experimental anomalies, would unavoidably
bring 𝑁eff ≃ 4 [GSP19] thanks to oscillation mechanisms introduced in section 1.3.

11A detailed discussion of the effects of neutrinos on CMB can be found in, e.g., [Les+13].
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1.2. Neutrinos in the early Universe

Experiment 𝑁eff

WMAP [Hin+13] 3.84 ± 0.40 [WMAP + ACT + SPT + BAO + 𝐻0]
Planck [Agh+20] 2.99 ± 0.17 [Planck + BAO]

ACT [Aio+20] 2.74 ± 0.17 [ACT + Planck]
SPT-3G [Bal+21] 2.95 ± 0.17 [SPT + Planck]

Table 1.2 – Recent constraints on the value of 𝑁eff obtained from different experiments
and combined datasets. The uncertainties are 68 % confidence intervals.

One of the main results of this PhD is the reevaluation of the cosmological observ-
able 𝑁eff, including all relevant effects to reach a 10−4 precision, also including the effect
of neutrino masses (to be introduced in the following section 1.3). To this aim, we first
derive the neutrino evolution equations in chapter 2, extending the work of [VVE13]
for astrophysical environments, and implement two-body collisions in an isotropic and
homogeneous environment, including neutrino self-interactions with their full matrix
structure. Then, we numerically solve these equations, but also present an approximate
solution where an adiabatic evolution is considered, exploiting the different timescales
involved in the problem. This procedure allows to maintain the required precision
while decreasing substantially the computation time, gaining some physical insight on
the role of the phenomenon of flavour oscillations in neutrino decoupling. The numer-
ical results we present correspond to the case of zero chemical potential. Finally we
investigate the impact of neutrino masses and mixings on BBN predictions in chapter 4,
going beyond works available in the literature [Man+05; GV10; Vol20].

1.2.3 Big Bang Nucleosynthesis
Big Bang Nucleosynthesis (BBN) is one of the historical pillars of the Big Bang model,
together with the expansion of the Universe and the Cosmic Microwave Background.
It corresponds to the period when the temperature was small enough to enable the
formation of light elements by combining neutrons and protons. The idea first appeared
in the seminal paper by Alpher, Bethe and Gamow [ABG48], and later studies showed
that BBN was responsible for the primordial production of deuterium (D = 2H), helium-
3, helium-4 and lithium-7.

We do not present in-depth the different steps of BBN, referring for more details
to books like [PU13] or reviews like [Pit+18], and to chapter 4. There are nevertheless
three big steps to keep in mind:

1. At high temperatures, neutrons and protons are kept in chemical equilibrium by
weak interactions:

𝑛 + 𝜈𝑒 ↔ 𝑝 + 𝑒−
𝑛 ↔ 𝑝 + 𝑒− + 𝜈̄𝑒

𝑛 + 𝑒+ ↔ 𝑝 + 𝜈̄𝑒

(1.47)
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Similarly to neutrino decoupling, these reactions freeze-out at a temperature𝑇FO ∼
0.7 MeV.

2. Below 𝑇FO, the only reaction left12 is neutron decay 𝑛 → 𝑝 + 𝑒− + 𝜈̄𝑒 , until the
beginning of nucleosynthesis at𝑇Nuc, the first nuclear reaction being 𝑛+𝑝 → D+𝛾.

3. A whole set of out-of-equilibrium nuclear reactions take place, producing heavier
nuclei until BBN eventually stops when the temperature is too low to maintain
high enough nuclear rates. This leads to the primordial abundances represented
on Figure 1.4 (the results were obtained with a numerical code, PRIMAT, whose
principle is presented in chapter 4).

The standard notations are the following: 𝑛𝑖 is the number density of isotope 𝑖 and the
number fraction of isotope 𝑖 is 𝑋𝑖 ≡ 𝑛𝑖/𝑛𝑏 , with 𝑛𝑏 the baryon density. The mass fraction
is 𝑌𝑖 ≡ 𝐴𝑖𝑋𝑖 , where 𝐴𝑖 is the nucleon number. It is customary to define:

𝑌p ≡ 𝑌4He = 4
𝑛4He
𝑛𝑏

and 𝑖/H ≡ 𝑋𝑖
𝑋H

=
𝑛𝑖
𝑛H

. (1.48)

Note that, in addition to the species previously mentioned, we also plot the evolution of
the abundances of T = 3H and 7Be. These nuclei are actually unstable: tritium decays
into helium-3 with a half-life of 12.32 years, and the half-life of the decay 7Be→ 7Li is
53.22 days. Since these periods are much higher than the time-scale on Figure 1.4, and
that the next major event in the history of the Universe is the formation of the CMB 380
000 years later, we add the abundances (T+ 3He) and (7Be+ 7Li) in the final abundances
reported (cf. Table 4.1).

Neutrinos affect BBN at various levels: via 𝑁eff, the Hubble expansion rate is
modified, affecting the “clock” of BBN. Then, the neutron-to-proton ratio, set by (1.47),
is modified when the electronic neutrino distribution functions get distorted, which is
parameterized by 𝑧𝜈𝑒 and 𝛿𝑔𝜈𝑒 .

As of today, the experimental measurements of primordial abundances are precise
enough to be compared with numerical predictions are 𝑌p and D/H, and the excellent
agreement is seen as a decisive proof of the hot Big Bang model (see chapter 4). We can
however make two remarks:

• the predicted abundance of lithium-7, given the baryon density otherwise mea-
sured by Planck and in agreement with helium-4 and deuterium measurements, is
three times larger than the observed one: this is called the cosmological lithium prob-
lem. Many solutions have been proposed, but it is for instance very hard to change
the abundance of 7Li without dramatically affecting the very well constrained
D/H. For a review, see for instance [Fie11] ;

12This is actually an oversimplification, as evidenced for instance in [GF16]. We discuss this point later
in chapter 4.
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Figure 1.4 – Evolution of light element abundances, computed with the code PRIMAT.
At the end of BBN, the baryonic content of the Universe is mainly made of hydrogen
and helium-4. Deuterium is also an important cosmological probe (see text).

• the uncertainty on the prediction of the deuterium abundance has recently been
reduced thanks to the updated rates of the reaction D + 𝑝 ↔ 3He + 𝛾 from the
LUNA experiment [Mos+20]. On the one hand, a series of works [Pis+21; YOF21]
confirm the agreement between predictions and measurements, while the analysis
of [Pit+21a] hints for a possible tension. As discussed in [Pit+21b], the difference
between these results is due to the values selected for the nuclear rates of the
reactions D + D ↔ 𝑛 + 3He and D + D ↔ 𝑝 + T. When the same rates are used,
the different numerical codes agree. However, there is no definitive argument in
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favour of one selection or the other, which calls for higher precision measurements
in the future.

These issues show how crucial it is to understand the physics at play during BBN. In
chapter 4, we study in detail how incomplete neutrino decoupling affects the primordial
abundances, combining a numerical and a theoretical analyses.

1.3 From massless to massive neutrinos
Up to this point in the discussion, we have considered that neutrinos were the particles
predicted by the Standard Model of particle physics — cf. appendix A. However, there
is now a substantial amount of experimental evidence for the fact that neutrinos are
not massless and can undergo neutrino oscillations, that is the possible change of flavour
as neutrinos propagate. The concept of neutrino oscillations was first proposed by
Pontecorvo [Pon57; Pon58] but for 𝜈 ↔ 𝜈̄ mixing, as he had been misled by some
experimental results. In 1962, Maki, Nakagawa and Sakata [MNS62] proposed that the
“weak neutrinos”13 𝜈𝑒 and 𝜈𝜇 were quantum superpositions of the “true neutrinos” 𝜈1
and 𝜈2:

𝜈𝑒 = cos𝜃𝜈1 + sin𝜃𝜈2

𝜈𝜇 = − sin𝜃𝜈1 + cos𝜃𝜈2
. (1.49)

However, it was about a decade later that the current theory of neutrino oscillations was
truly developed, cf. for instance [ES76].

We shall not review the history neutrino oscillations, but we will present it through
the prism of a particular topic: the so-called solar neutrino problem. This will allow us
to introduce all the elements we will later need to take into account neutrino mixing in
our calculations.

Moreover, the theoretical description of neutrino masses and mixings is presented
in appendix A. We do not discuss models of neutrino masses, such as the see-saw
mechanisms, and refer to, e.g., [GK07; MP04; Kin15].

1.3.1 Massive neutrinos: the example of the solar neutrino
problem

The Sun is a powerful source of electronic neutrinos with energy of the order of 1 MeV,
produced in the thermonuclear reactions which generate solar energy. One of the two
main chains of reactions, the so-called 𝑝𝑝 chain, involves the following reactions:

𝑝 + 𝑝 → D + 𝑒+ + 𝜈𝑒 (𝑝𝑝)
𝑝 + 𝑒− + 𝑝 → D + 𝜈𝑒 (𝑝𝑒𝑝)

3He + 𝑝 → 4He + 𝑒+ + 𝜈𝑒 (ℎ𝑒𝑝)
7Be + 𝑒− → 7Li + 𝜈𝑒 (7Be)

8B→ 8Be∗ + 𝑒+ + 𝜈𝑒 (8B)

(1.50)

13At that time, the 𝜏 lepton had not yet been discovered.
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Each of these reactions produces neutrinos with different energy distributions, and in
particular different average energies (see for instance the spectrum of solar neutrino
fluxes in [Zyl+21] or [VTR20]).

The flux of solar neutrinos on the Earth is about 6 × 1010 cm−2s−1. Such neutrinos
were detected for the first time in 1970 in the Homestake experiment. However, the
observed number of neutrinos was about one third of what the Standard Solar Model14
(SSM) predicted. This discrepancy was called the solar neutrino problem, in particular af-
ter the disagreement between the SSM and experimental counts had been confirmed by
several experiments (Kamiokande, GALLEX/GNO, SAGE, Super-Kamiokande), which
probed different parts of the solar neutrino energy spectrum.

All these experiments measured a smaller number of electronic neutrinos compared
to the expected flux. A solution to this problem can be obtained with the phenomenon
of neutrino oscillations. Assuming that the mass states 𝜈1 and 𝜈2 introduced in (1.49)
have a squared mass-difference Δ𝑚2 = 𝑚2

2 − 𝑚2
1 , one can show that the probability that

a neutrino of energy 𝐸, initially in a state |𝜈𝑒⟩, be measured in a state of the same flavour
|𝜈𝑒⟩ (the survival probability) after a distance 𝐿 is [GK07]15

𝒫𝑒→𝑒 = 1 − sin2(2𝜃) sin2
(
Δ𝑚2𝐿

4𝐸

)
. (1.51)

For neutrinos coming from the sun, the “source-detector” distance is huge and it hap-
pens that Δ𝑚2 is not too small, such that the measurable quantity over the energy
resolution of the detector is the average probability

𝒫vacuum
𝑒→𝑒 = 1 − 1

2 sin2(2𝜃) . (1.52)

The superscript vacuum highlights the fact that we do not consider any matter effect, which
comes from the different behaviour of neutrinos propagating in matter and in vacuum,
as evidenced in the following.

The first experiments on solar neutrinos were only able to measure a deficit in
the number of detected electronic neutrinos. The observations of the Sudbury Neu-
trino Observatory (SNO) [Ahm+02] were crucial in proving the validity of the mech-
anism of neutrino oscillations. In this heavy-water Cherenkov detector located in the
Creighton mine near Sudbury (Ontario, Canada), solar neutrinos are detected through
both charged and neutral currents on deuterium (and also via elastic scattering):

𝜈𝑒 +D→ 𝑝 + 𝑝 + 𝑒− (CC)
𝜈𝛼 +D→ 𝑝 + 𝑛 + 𝜈𝛼 (NC)

14A SSM is a “solar model that is constructed with the best available physics and input data” and is
“required to fit the observed luminosity and radius of the Sun at the present epoch, as well as the observed
heavy-element-to-hydrogen ratio at the surface of the Sun” [BPB01].

15This formula is easily derived in standard quantum mechanics with the so-called “equal momentum”
assumption, which states that neutrinos propagate with identical momenta but different energies due to
their different masses. This assumption is highly questionable, but does not affect the result, see [GK07]
for a thorough discussion.
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The neutral-current reaction on deuterium is equally sensitive to all neutrinos, while
the charged-current one is only sensitive to electronic neutrinos: this provides a direct
way to check the flavour transformation and the survival probability by comparing the
flux from CC to the total neutrino flux.

We show on Figure 1.5 the measured electron neutrino survival probability for
different neutrino energies. These different energies correspond to different production
channels of solar neutrinos (1.50), and the results plotted on this Figure come from two
experiments: SNO, already mentioned, and Borexino, a liquid scintillator experiment
based at Gran Sasso (Italy).
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Figure 1.5 – Electron neutrino survival probability as a function of neutrino energy.
The points represent, from left to right, the Borexino 𝑝𝑝, 7Be, 𝑝𝑒𝑝, and 8B data (red
points) [Ago+18] and the SNO 8B data (green point) [Bel+16]. The error bars repre-
sent the ±1𝜎 experimental + theoretical uncertainties. The blue curve corresponds to
the prediction of the MSW-LMA solution using the formulae given in [Vis17b; Vis17a;
Ago+18] and the parameters from [Zyl+21]. The dashed grey line is the vacuum pre-
diction (equation (1.52), corrected to account for three-neutrino mixing).

First and foremost, 𝒫𝑒→𝑒 ≠ 1: there is a large conversion of electronic neutrinos into
the other flavours. At low energies, the prediction16 of the vacuum solution (1.52) is in
agreement with experimental data. However, this solution does not explain the results
at higher energies, notably the SNO one. The answer to this discrepancy requires to
take into account matter effects.

16This formula is actually corrected in the three-neutrino case and reads (the mixing angles are intro-
duced in appendix A)

𝒫vacuum
𝑒→𝑒 = cos4 𝜃13

(
1 − 1

2 sin2(2𝜃12)
)
+ sin4 𝜃13 .
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Matter effects and MSW resonance Flavour oscillation is a consequence of the fact that
flavour and mass eigenstates are not identical (flavour mixing) and that mass eigenstates
propagate with different velocities (mass differences). The propagation in a medium
different from vacuum is thus expected to change the oscillation mechanism, similarly
to the refraction index of a dielectric medium for photons (the matter effects we discuss
here are sometimes called refractive effects). Wolfenstein [Wol78] discovered in 1978 that
neutrinos propagating in matter were subject to a mean-field potential which modifies
their mixing.

The effective potential due to charged-current interactions, 𝑉CC, is obtained by
averaging the weak Hamiltonian (A.4) over the background particle distribution. For a
homogeneous and isotropic gas of unpolarized electrons, we obtain an average effective
Hamiltonian (we assume we are at sufficiently low energy to use the effective four-Fermi
theory)

⟨𝐻(CC)
eff ⟩ = 𝑉CC𝜈𝑒𝐿(𝑥)𝛾0𝜈𝑒𝐿(𝑥) with 𝑉CC =

√
2𝐺𝐹𝑛𝑒− . (1.53)

A background of positrons leads to 𝑉CC = −√2𝐺𝐹𝑛𝑒+ , because of the anticommutation
of annihilation/creation operators in the Hamiltonian when dealing with antiparticles.
The same procedure can be applied to neutral-current interactions, and the effective
potential experienced by a neutrino of any flavour in a background of unpolarized
fermions 𝑓 reads

𝑉 𝑓
NC =

√
2𝐺𝐹𝑛 𝑓 𝑔

𝑓
𝑉 , (1.54)

with 𝑔 𝑓𝑉 the weak vector coupling of fermion 𝑓 . Given the values of the different 𝑔 𝑓𝑉 , in
an environment of electrons, positrons, protons and neutrons such as the early Universe,
and because of charge neutrality, all contributions cancel except that of neutrons:

𝑉NC = −1
2
√

2𝐺𝐹𝑛𝑛 . (1.55)

In summary, the effective potential felt by a neutrino of flavour 𝛼 is [Les+13; GK07]

𝑉𝛼 =
√

2𝐺𝐹
[
(𝑛𝑒− − 𝑛𝑒+)𝛿𝛼𝑒 − 1

2𝑛𝑛
]
. (1.56)

Note that in astrophysical environments, there are usually no positrons and the effective
potential is the one boxed in (1.53). Since 𝑉NC is flavour-independent, it does not affect
mixing.17

Due to this extra term in the Hamiltonian, the effective mass states are modified —
in other words, the mass basis becomes the matter basis. In the two-neutrino simplified
case, the eigenstates of the total Hamiltonian, 𝜈𝑚1 and 𝜈𝑚2 , are related to the flavour
eigenstates via the same relation as (1.49), but the effective mixing angle in matter

tan 2𝜃𝑚 =
tan 2𝜃

1 − 2𝐸𝑉CC
Δ𝑚2 cos 2𝜃

, (1.57)

17This is true as long as we only consider active-active oscillations. The presence of sterile neutrino
species would break this simplification.
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and the effective mass-squared difference is

Δ𝑚2
𝑚 =

√
(Δ𝑚2 cos 2𝜃 − 2𝐸𝑉CC)2 + (Δ𝑚2 sin 2𝜃)2 . (1.58)

It was first pointed out in 1985 by Mikheev and Smirnov [MS85] that in a medium with
varying density, there was a region in which the effective mixing angle passes through
the maximal mixing value of 𝜋/4. From (1.57), this resonance occurs for

Δ𝑚2 cos 2𝜃 = 2𝑝𝑉CC ⇐⇒ 𝑛res
𝑒− =

Δ𝑚2 cos 2𝜃
2
√

2𝐺𝐹𝐸
, (1.59)

if we assume there are no positrons (standard case in astrophysical environments where
this effect was first discussed). This mechanism is now commonly referred to as the
MSW effect.

The possibility of large flavour conversion will depend on the hierarchy between
two timescales: the oscillation frequency Δ𝑚2/2𝐸 and the rate of variation of the mixing
angle d𝜃𝑚/dx, where we parameterize the neutrino trajectory by a position in space x. In
particular, if Δ𝑚2/2𝐸 ≫ |d𝜃𝑚/dx|, the evolution is adiabatic and transitions between 𝜈𝑚1
and 𝜈𝑚2 are suppressed. The criterion of adiabaticity, which suppresses the transitions
between matter eigenstates, will be at the core of the approximation developed to study
neutrino decoupling including flavour oscillations in chapters 3 and 5.

For solar neutrinos, assuming Δ𝑚2 ∼ 7 × 10−5 eV2 and tan2 𝜃 ≃ 0.4, we obtain the
survival probability represented by the blue curve on Figure 1.5. This set of parameters,
that is well-measured today in the 3-neutrino framework, was historically called the
“Large Mixing Angle” (LMA) solution, and was for instance in competition with the
“Small Mixing Angle” (SMA) solution, for which Δ𝑚2 ∼ 5× 10−6 eV2, tan2 𝜃 ∼ 5× 10−4.
The agreement with the experimental points is a proof of the validity of the flavour
oscillation mechanism, with the additional complexity of matter effects.

1.3.2 Three-neutrino mixing
In our discussion of the solar neutrino problem, we have reduced the problem to the
mixing of two neutrino states. After many other experiments (atmospheric neutrinos,
reactors and accelerators), the “standard” model of neutrino mixing involves the three
active flavour species and the associated three mass eigenstates. The parameterization
of the mixing is presented in appendix A.2, and the values of all parameters are now
well measured, except for two:

• the mass ordering (we also talk about the mass hierarchy) is unknown. Defin-
ing Δ𝑚2

𝑗𝑖 = 𝑚2
𝜈𝑗 − 𝑚2

𝜈𝑖 , there are two possibilities concerning the sign of Δ𝑚2
31,

represented on Figure 1.6;

• the value of the Dirac CP phase: a non-vanishing phase would indicate a dif-
ference between the mixing of neutrinos and antineutrinos. An important result
of this thesis is the strong independence of neutrino physics in the MeV era, as
long as beyond-the-Standard-Model mechanisms (outside of neutrino masses and
mixings) are not invoked.
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1.3. From massless to massive neutrinos

Figure 1.6 – The two possible mass orderings, normal (left) and inverted (right). The
small mass gap Δ𝑚2

21 is the one involved in solar neutrino oscillations.

This standard “three-neutrino mixing” model will be used throughout the manuscript.

1.3.3 Massive neutrinos in cosmology
A robust and precise prediction of the consequences of incomplete neutrino decoupling
is crucial since neutrinos impact many cosmological stages.

1. During Big Bang Nucleosynthesis (BBN), neutrinos control neutron/proton con-
versions as they participate to weak interactions, and the frozen neutron abun-
dance subsequently affects nuclear reactions and light element relics — see 1.2.3.

2. During the Cosmic Microwave Background (CMB) formation, the free streaming
of neutrinos is crucial to predict the CMB angular spectrum. Also, the value of
𝑁eff affects the cosmological expansion, and thus also the radiative transfer of
CMB. From these effects, CMB alone can be used to place constraints on 𝑁eff or in
combination with BBN constraints on primordial light elements.

3. In the late universe, neutrino free streaming also affects structure formation, via
its effect on the growth of perturbations. This is used to place the constraint∑
𝑖 𝑚𝜈𝑖 < 0.12 eV (see e.g. [Agh+20; Ala+21]) on the sum of neutrino masses.

It is striking that neutrino masses play a key role in both the earliest stage 1 and the latest
stage 3 for very different reasons. In stage 1, neutrino oscillations, which are due to small
neutrino mass-squared differences and mixing angles, affect the non-thermal part of the
spectra, as they lead to less distortion in electron-type neutrinos and more distortion
in other types than if there were no oscillations at all. Also, oscillations lead to a mild
modification of 𝑁eff — see chapter 3. In stage 3, and due to cosmological redshifting,
all massive neutrinos undergo at some point a transition from being very relativistic
(they behave gravitationally like decoupled photons) to being non-relativistic. This
transition depends only on neutrino masses and not on mixing angles, since frozen
neutrino spectra inherited from stage 1 are generated incoherently in the mass basis.
Finally, stage 2 would also be affected beyond the standard cosmological model, if we
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were to consider exotic physics with increased neutrino self-interactions, so that they
would still behave effectively as a perfect fluid around CMB formation [KCD20; GFS20].

This interplay between the various cosmological eras implies that it is crucial to
understand neutrino decoupling as precisely as possible, in order to use these predic-
tions as initial conditions for the subsequent eras. For instance, current constraints
from CMB on cosmological parameters [Agh+20] were placed using 𝑁eff = 3.046 when
solving numerically for the linear evolution of cosmological perturbations.
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CHAPTER 2
The Quantum Kinetic Equations

You think this is hard? Try being
waterboarded, that’s hard!

Sue Sylvester, Glee [S01E01]
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The material of this chapter was published in [FPV20].

A precision calculation of neutrino evolution requires to take into account the
phenomenon of flavour oscillations. This means that the Boltzmann kinetic equation
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2. The Quantum Kinetic Equations

must be generalized to account for flavour coherence, that is the possibility to have a non-
vanishing statistical average of mixed-flavour states. A convenient formalism consists
in promoting the set of distribution functions to a one-body density matrix, a strategy
notably introduced in a seminal paper by Sigl and Raffelt [SR93]. They obtained the
so-called “Quantum Kinetic Equation” (QKE) through a perturbative expansion of this
“matrix of densities” on the interaction parameter (i.e. the Fermi constant 𝐺𝐹). In the
following, we present a formalism that follows quite closely this historical approach,
but in the more general framework of a hierarchy of equations. Alternatively to this
operator approach, we can quote the functional approach1 of [BC16] which uses the
Closed-Time Path formalism.

After deriving the QKEs in the general case of a system subject only to two-body in-
teractions, we apply the formalism to the specific case of neutrinos in the early Universe,
which leads to many simplifications.

2.1 Hierarchy of evolution equations
In this section, we derive from first principles the neutrino quantum kinetic equa-
tions, which generalize the Boltzmann kinetic equation for distribution functions (1.40),
to account for neutrino masses and mixings. We present the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy [Bog46; BG46; Kir46; Yvo35] that was historically de-
rived for a non-relativistic 𝑁−body system and heavily used in nuclear physics [WC85;
CM90; RT94; LAC04; SAL08; LA14], but which can also be applied to a relativistic sys-
tem such as the bath of neutrinos and antineutrinos in the early Universe. We extend
the formalism of [VVE13], where the BBGKY formalism was applied to derive extended
mean-field equations for astrophysical applications, and include the collision term.

2.1.1 BBGKY formalism
The exact evolution of a 𝑁−body system under the Hamiltonian 𝐻̂ is given by the
Liouville-von Neumann equation for the many-body density matrix

id𝐷̂
d𝑡 = [𝐻̂, 𝐷̂] , (2.1)

where 𝐷̂ = |Ψ⟩⟨Ψ|, with |Ψ⟩ the quantum state, from which we define the 𝑠-body
reduced density matrices,

𝜚 (1···𝑠) ≡ 𝑁 !
(𝑁 − 𝑠)!Tr𝑠+1...𝑁 𝐷̂ . (2.2)

1We do not compare here these approaches, but simply note that the functional formalism contains
information about the spectrum of the theory (i.e., which states are available) [Ber04; VFC14; Ber15;
Dre+18]. However, for neutrinos in the early Universe the spectral function is, at the order we are interested
in, the same as the massless, free-field one, such that the two formalisms can be used interchangeably.
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2.1. Hierarchy of evolution equations

Its components (we drop the superscript (1···𝑠), redundant with the number of indices)
read, as detailed in the appendix B.1.1:

𝜚 𝑖1···𝑖𝑠𝑗1···𝑗𝑠 ≡ ⟨𝑎̂†𝑗𝑠 · · · 𝑎̂†𝑗1 𝑎̂𝑖1 · · · 𝑎̂𝑖𝑠 ⟩ , (2.3)

where the indices 𝑖 , 𝑗 label a set of quantum numbers (species 𝜙𝑖 , momentum ®𝑝𝑖 , helicity
ℎ𝑖) which describe a one-particle quantum state, and ⟨· · · ⟩ is shorthand for ⟨Ψ| · · · |Ψ⟩.
Let us give one example, where the summing rules are also made explicit:2∑

𝑖

𝑎̂†𝑖 =
∑
𝜙𝑖

∑
ℎ𝑖

∫
[d3®𝑝𝑖] 𝑎̂†𝜙𝑖 (®𝑝𝑖 , ℎ𝑖) with [d3®𝑝𝑖] ≡ d3®𝑝𝑖

(2𝜋)32𝐸𝑖
. (2.4)

The creation and annihilation operators satisfy the fermionic anticommutation rules
{𝑎̂†𝑖 , 𝑎̂ 𝑗} = 𝛿𝑖 𝑗 , with 𝛿 the Kronecker delta (generalized to the set of quantum numbers
precised above)

𝛿𝑖 𝑗 ≡ (2𝜋)3 2𝐸𝑖 𝛿(3)(®𝑝𝑖 − ®𝑝 𝑗 )𝛿ℎ𝑖 ℎ 𝑗𝛿𝜙𝑖𝜙 𝑗 . (2.5)
The central object is the one-body reduced density matrix [SR93],

𝜚 𝑖𝑗 ≡ ⟨𝑎̂†𝑗 𝑎̂𝑖⟩ , (2.6)

whose diagonal entries correspond to the standard occupation numbers.
The Hamiltonian for this system is given by the sum of the kinetic and the two-body

interaction terms (such an interaction Hamiltonian being adequate for neutrinos whose
interactions are described by Fermi theory),

𝐻̂ = 𝐻̂0 + 𝐻̂int =
∑
𝑖 , 𝑗

𝑡 𝑖𝑗 𝑎̂
†
𝑖 𝑎̂ 𝑗 +

1
4

∑
𝑖 , 𝑗 ,𝑘,𝑙

𝑣̃ 𝑖𝑘𝑗𝑙 𝑎̂
†
𝑖 𝑎̂
†
𝑘 𝑎̂𝑙 𝑎̂ 𝑗 . (2.7)

The interaction matrix elements are fully anti-symmetrized by construction:

⟨𝑖𝑘 |𝐻̂int | 𝑗𝑙⟩ ≡ 𝑣̃ 𝑖𝑘𝑗𝑙 = −𝑣̃𝑘𝑖𝑗𝑙 = 𝑣̃𝑘𝑖𝑙 𝑗 . (2.8)

The traditional presentation of the BBGKY formalism in nuclear physics is sometimes
based on tensor products of one-particle states rather than fully antisymmetrized states
(defined as |𝑖1 · · · 𝑖𝑠⟩ = 𝑎̂†𝑖1 · · · 𝑎̂†𝑖𝑠 |0⟩with |0⟩ the quantum vacuum state). The equivalence
between both approaches is discussed for completeness in the appendix B.1.

This set of definitions ensures proper transformation laws under a unitary trans-
formation of the one-particle quantum state 𝜓𝑖 = 𝒰 𝑖

𝑎𝜓
𝑎 : all lower indices are covariant

while upper indices are contravariant, namely,

𝜚 𝑎𝑏 =𝒰†
𝑎
𝑖 𝜚

𝑖
𝑗𝒰

𝑗
𝑏 , 𝑡𝑎𝑏 =𝒰†

𝑎
𝑖 𝑡

𝑖
𝑗𝒰

𝑗
𝑏 , 𝑣̃𝑎𝑐𝑏𝑑 =𝒰†

𝑎
𝑖𝒰†𝑐𝑘 𝑣̃ 𝑖𝑘𝑗𝑙 𝒰

𝑗
𝑏𝒰 𝑙

𝑑 . (2.9)

One must keep in mind that the unitary transformation “matrix”𝒰 is extremely com-
plicated a priori, all the complexity being hidden in the use of the generalized indices.

2Reminder: the factors of 2𝐸 in the denominator of [d3®𝑝] arise from relativistic phase-space constraints.
More precisely, the phase space integrals should be four-dimensional, with the on-shell condition:∫

d3®𝑝
∫ ∞

0
d𝐸 𝛿(𝐸2 − 𝑝2 − 𝑚2) =

∫
d3®𝑝

∫ ∞

0
d𝐸

𝛿(𝐸 −
√
𝑝2 + 𝑚2)

2𝐸 ,

and the additional (2𝜋)3 are actually the fundamental phase space volumes (2𝜋ℏ)3 with ℏ = 1.
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2. The Quantum Kinetic Equations

BBGKY hierarchy The evolution equation for 𝜚 can be obtained directly via the Ehren-
fest theorem. One can also apply partial traces to (2.1), which leads to the well-known
BBGKY hierarchy [Bog46; BG46; Kir46; Yvo35], whose first two equations read3 (Einstein
summation convention implied):




i
d𝜚 𝑖𝑗
d𝑡 =

(
𝑡 𝑖𝑘𝜚

𝑘
𝑗 − 𝜚 𝑖𝑘𝑡𝑘𝑗

)
+ 1

2

(
𝑣̃ 𝑖𝑘𝑚𝑙𝜚

𝑚𝑙
𝑗𝑘 − 𝜚 𝑖𝑘𝑚𝑙 𝑣̃𝑚𝑙𝑗𝑘

)
,

i
d𝜚 𝑖𝑘𝑗𝑙
d𝑡 =

(
𝑡 𝑖𝑟𝜚

𝑟𝑘
𝑗𝑙 + 𝑡𝑘𝑝𝜚

𝑖𝑝
𝑗𝑙 +

1
2 𝑣̃

𝑖𝑘
𝑟𝑝𝜚

𝑟𝑝
𝑗𝑙 − 𝜚 𝑖𝑘𝑟𝑙 𝑡𝑟𝑗 − 𝜚 𝑖𝑘𝑗𝑝𝑡

𝑝
𝑙 −

1
2𝜚

𝑖𝑘
𝑟𝑝 𝑣̃

𝑟𝑝
𝑗𝑙

)

+ 1
2

(
𝑣̃ 𝑖𝑚𝑟𝑛 𝜚

𝑟𝑘𝑛
𝑗𝑙𝑚 + 𝑣̃𝑘𝑚𝑝𝑛 𝜚

𝑖𝑝𝑛
𝑗𝑙𝑚 − 𝜚 𝑖𝑘𝑚𝑟𝑙𝑛 𝑣̃𝑟𝑛𝑗𝑚 − 𝜚 𝑖𝑘𝑚𝑗𝑝𝑛 𝑣̃

𝑝𝑛
𝑙𝑚

)
.

(2.10a)

(2.10b)

More than simply recasting in a less compact form the very complicated problem
(2.1), this hierarchy furnishes a set of evolution equations which depend on higher-order
reduced density matrices. In order to solve these equations, one necessarily needs to
truncate this hierarchy. Different truncation schemes exist, and we will only discuss the
useful ones for neutrino evolution in the early Universe.

2.1.2 Hartree-Fock approximation and mean-field terms
It proves convenient to split the two-body density matrix into its uncorrelated (i.e.,
products of one-body density matrices) and correlated contributions [LAC04; SAL08;
LA14]:

𝜚 𝑖𝑘𝑗𝑙 ≡ 2𝜚 𝑖[𝑗𝜚
𝑘
𝑙] + 𝐶 𝑖𝑘𝑗𝑙 ≡ 𝜚 𝑖𝑗𝜚

𝑘
𝑙 − 𝜚 𝑖𝑙𝜚 𝑘𝑗 + 𝐶 𝑖𝑘𝑗𝑙 . (2.11)

Inserting this decomposition into (2.10a), we get

i
d𝜚 𝑖𝑗
d𝑡 =

[(
𝑡 𝑖𝑘 + Γ𝑖𝑘

)
𝜚 𝑘𝑗 − 𝜚 𝑖𝑘

(
𝑡𝑘𝑗 + Γ𝑘𝑗

)]
+ 1

2

(
𝑣̃ 𝑖𝑘𝑚𝑙𝐶

𝑚𝑙
𝑗𝑘 − 𝐶 𝑖𝑘𝑚𝑙 𝑣̃𝑚𝑙𝑗𝑘

)
=

[
𝑡 + Γ̂, 𝜚] 𝑖𝑗 + i𝒞 𝑖𝑗 , (2.12)

which defines the collision term 𝐶̂ (discussed later) and the mean-field potential Γ̂ (for
once, we explicit the summation)

Γ𝑖𝑗 =
∑
𝑘,𝑙

𝑣̃ 𝑖𝑘𝑗𝑙 𝜚
𝑙
𝑘 . (2.13)

It accounts for the effective potential “felt” by the particles when propagating in a
non-vacuum background.

3We explicitly wrote the components of the tensors compared to the expressions found in [VVE13]
or [LAC04; SAL08].
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2.1. Hierarchy of evolution equations

Mean-field approximation

The simplest non-trivial closure of the BBGKY hierarchy is the so-called Hartree-Fock
or mean-field approximation. It consists in neglecting 𝐶 𝑖𝑘𝑗𝑙 ≃ 0 and keeping only the
commutator part in (2.12).

However, in the context of neutrino decoupling in the early Universe, one seeks a
generalization of the Boltzmann equation for neutrino distribution functions [DHS97;
Esp+00; Man+02; Gro+16; FP20], which describes the evolution of densities under two-
body collisions. In other words, we need to truncate the hierarchy (2.10) assuming
the molecular chaos ansatz: correlations between the one-body density matrices arise
from two-body interactions between uncorrelated matrices [LAC04]. This prescribes
the form of 𝐶 𝑖𝑘𝑗𝑙 (𝑡), leading to a formal expression for 𝒞̂, which we establish in the
following section.

2.1.3 Derivation of the structure of the collision term
Compared to the Boltzmann treatment of neutrino evolution, which neglects flavour
mixing, the QKE contains mean-field terms, and the collision term has a richer matrix
structure with non-zero off-diagonal components. To derive this collision term, i.e., the
contribution to the evolution of the one-body density matrix from two-body correla-
tions, one needs an expression for the correlated part 𝐶̂ in (2.12). It is obtained from
the evolution equation for 𝜚 (12), where we separate correlated and uncorrelated parts
[LAC04].

To do so, we need a splitting similar to (2.11) for the three-body density matrix,

𝜚 𝑖𝑘𝑚𝑗𝑙𝑛 = 6𝜚 𝑖[𝑗𝜚
𝑘
𝑙 𝜚

𝑚
𝑛] + 9𝜚 [𝑖[𝑗𝐶

𝑘𝑚]
𝑙𝑛] + 𝐶 𝑖𝑘𝑚𝑗𝑙𝑛 . (2.14)

This allows to rewrite (2.10b) as an equation for the two-body correlation function
[VVE13]. In the molecular chaos ansatz, correlations are built through collisions between
uncorrelated particles. These correlations then evolve “freely”, i.e., we do not take
into account a mean-field background for 𝐶̂. The evolution equation is thus greatly
simplified and reads

i
d𝐶 𝑖𝑘𝑗𝑙

d𝑡 ≃
[
𝑡 𝑖𝑟𝐶

𝑟𝑘
𝑗𝑙 + 𝑡𝑘𝑝𝐶

𝑖𝑝
𝑗𝑙 − 𝐶 𝑖𝑘𝑟𝑙 𝑡𝑟𝑗 − 𝐶 𝑖𝑘𝑗𝑝𝑡

𝑝
𝑙

]
+ (1̂ − 𝜚)𝑖𝑟(1̂ − 𝜚)𝑘𝑝 𝑣̃𝑟𝑝𝑠𝑞 𝜚 𝑠𝑗𝜚

𝑞
𝑙 − 𝜚 𝑖𝑟𝜚 𝑘𝑝 𝑣̃

𝑟𝑝
𝑠𝑞 (1̂ − 𝜚)𝑠𝑗 (1̂ − 𝜚)

𝑞
𝑙︸                                                             ︷︷                                                             ︸

≡ 𝐵𝑖𝑘𝑗𝑙

, (2.15)

The commutator in the first row is a “vacuum term” which accounts for the evolution
of correlations in the vacuum, hence depending only on the kinetic part of the Hamil-
tonian (2.7). The second row is the “Born term” which only involves the uncorrelated
part of (2.11). The other neglected terms can be found in e.g. [WC85; LAC04; VVE13].

35



2. The Quantum Kinetic Equations

We can solve this equation, starting from 𝐶(𝑡 = 0) = 0,

𝐶 𝑖𝑘𝑗𝑙 (𝑡) = −i
∫ 𝑡

0
d𝑠 𝑇 𝑖𝑘𝑚𝑝(𝑡 , 𝑠)𝐵𝑚𝑝𝑛𝑞 (𝑠)𝑇†𝑛𝑞𝑗𝑙 (𝑡 , 𝑠) , (2.16)

with the evolution operator

𝑇 𝑖𝑘𝑗𝑙 (𝑠, 𝑠′) = exp
(
−i

∫ 𝑠

𝑠′
d𝜏 𝑡(𝜏)

) 𝑖
𝑗
exp

(
−i

∫ 𝑠

𝑠′
d𝜏 𝑡(𝜏)

) 𝑘
𝑙
. (2.17)

Now we consider that there is a clear separation of scales [SR93], i.e.the duration of one
collision is very small compared to the variation timescale of the density matrices (i.e.,
compared to the duration between two collisions, and the typical inverse oscillation
frequency). Therefore, the argument inside the integral of (2.16) is only non-zero for
𝑠 ≃ 0: we can extend the integration domain to +∞, while the operators keep their 𝑡 = 0
value. Finally we symmetrize the integration domain4 with respect to 0 (with an extra
factor of 1/2), which leads to the equation with collision term:5

i
d𝜚 𝑖𝑗
d𝑡 =

[
𝑡 + Γ̂, 𝜚] 𝑖𝑗 − i

4

∫ +∞

−∞
d𝑡

[
𝑣̃ , 𝑇̂(𝑡 , 0)𝐵̂(0)𝑇̂†(𝑡 , 0)] 𝑖𝑘𝑗𝑘 (2.18a)

= [(𝑡 𝑖𝑘 + Γ𝑖𝑘)𝜚 𝑘𝑗 − 𝜚 𝑖𝑘(𝑡𝑘𝑗 + Γ𝑘𝑗 )]

− i
4

∫ +∞

−∞
d𝑡 𝑒−i(𝐸𝑚+𝐸𝑙−𝐸𝑗−𝐸𝑘 )𝑡

︸                          ︷︷                          ︸
(2𝜋) 𝛿(𝐸𝑚+𝐸𝑙−𝐸𝑗−𝐸𝑘 )

[
𝑣̃ 𝑖𝑘𝑟𝑙𝐵

𝑟𝑙
𝑗𝑘 − 𝐵𝑖𝑘𝑟𝑙 𝑣̃𝑟𝑙𝑗𝑘

]
, (2.18b)

≡ [
𝑡 + Γ̂, 𝜚] 𝑖𝑗 + i𝒞 𝑖𝑗 (2.18c)

The exponential of energies comes from the 𝑇̂ terms, using that the density matrix for
a given momentum 𝜚(𝑝) satisfies6 𝑡𝜚(𝑝) = 𝑝 𝜚(𝑝). The general form of the collision term
is then

𝒞 𝑖1𝑖′1 =
1
4

∑
𝑖2 ,𝑖3 ,𝑖4

∑
𝑗1 , 𝑗2 , 𝑗3 , 𝑗4

(
𝑣̃ 𝑖1 𝑖2𝑖3 𝑖4

𝜚 𝑖3𝑗3𝜚
𝑖4
𝑗4
𝑣̃ 𝑗3 𝑗4𝑗1 𝑗2
(1̂ − 𝜚)𝑗1𝑖′1(1̂ − 𝜚)

𝑗2
𝑖2
− 𝑣̃ 𝑖1 𝑖2𝑖3 𝑖4

(1̂ − 𝜚)𝑖3𝑗3(1̂ − 𝜚)
𝑖4
𝑗4
𝑣̃ 𝑗3 𝑗4𝑗1 𝑗2

𝜚
𝑗1
𝑖′1
𝜚
𝑗2
𝑖2

+(1̂ − 𝜚)𝑖1𝑗1(1̂ − 𝜚)
𝑖2
𝑗2
𝑣̃ 𝑗1 𝑗2𝑗3 𝑗4

𝜚
𝑗3
𝑖3
𝜚
𝑗4
𝑖4
𝑣̃ 𝑖3 𝑖4𝑖′1 𝑖2
− 𝜚 𝑖1𝑗1𝜚

𝑖2
𝑗2
𝑣̃ 𝑗1 𝑗2𝑗3 𝑗4
(1̂ − 𝜚)𝑗3𝑖3(1̂ − 𝜚)

𝑗4
𝑖4
𝑣̃ 𝑖3 𝑖4𝑖′1 𝑖2

)
× (2𝜋) 𝛿(𝐸𝑖1 + 𝐸𝑖2 − 𝐸𝑖3 − 𝐸𝑖4) . (2.19)

4See section 6.1 [FP17] for a detailed discussion of this procedure, which amounts to separate the
macroscopic evolution from the microphysics processes.

5The product 𝑇̂𝐵̂𝑇̂† must be done from left to right, as can be seen with the components in (2.16).
6We anticipate the simplification of the density matrices due to homogeneity and isotropy (2.20) in

order to get a practical result. Note that we do not take into account the contribution of masses to neutrino
energies in the collision term, since they are completely negligible compared to the ultrarelativistic part.
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2.2. Application to neutrinos in the early Universe

It has the standard structure “gain− loss+ h.c.”, which will be made more explicit when
we give the full expressions for a system of neutrinos and antineutrinos interacting with
standard model weak interactions, cf. section 2.2.4.

In the following sections, we will focus on the case of the early Universe and consider
three active species of neutrinos in a background of electrons and positrons, muons
and antimuons (in traces), and photons. The influence of baryons can be discarded
given their negligible density compared to relativistic species (the baryon-to-photon
ratio is 𝜂 ≡ 𝑛𝑏/𝑛𝛾 ≃ 6.1 × 10−10 from the most recent measurement of the baryon
density [Fie+20]). Therefore, we focus on the lepton sector evolution, and baryons will
only be dealt with when we discuss BBN in chapter 4.

2.2 Application to neutrinos in the early Universe
Assuming the Universe to be homogeneous and isotropic in the period of interest, the
density matrices read,7

⟨𝑎̂†𝜈𝛽 (®𝑝′, ℎ′)𝑎̂𝜈𝛼 (®𝑝, ℎ)⟩ = (2𝜋)3 2𝐸𝑝 𝛿(3)(®𝑝 − ®𝑝′)𝛿ℎℎ′ 𝜚𝜈𝛼𝜈𝛽 (𝑝, 𝑡) 𝛿ℎ− , (2.20a)

⟨𝑏†𝜈𝛼 (®𝑝, ℎ)𝑏𝜈𝛽 (®𝑝′, ℎ′)⟩ = (2𝜋)3 2𝐸𝑝 𝛿(3)(®𝑝 − ®𝑝′)𝛿ℎℎ′ 𝜚𝜈𝛼𝜈𝛽 (𝑝, 𝑡) 𝛿ℎ+ . (2.20b)

The Kronecker delta ensures that only left-handed neutrinos and right-handed antineu-
trinos are included. However, in anisotropic environments, “wrong-helicity“ densities
or pairing densities (like the non-lepton-number-violating correlator, in the Dirac neu-
trino case, ⟨𝑏𝜈𝛼 𝑎̂𝜈𝛽⟩) can be sourced [VVE13; SV14; Vol15; KRV15]. We do not consider

such terms here. The energy function is 𝐸𝑝 = 𝑝 for neutrinos,8 and 𝐸𝑝 =
√
𝑝2 + 𝑚2

𝑒 ,𝜇 for
𝑒± , 𝜇±.

In the following, we will apply the BBGKY formalism to a system of neutrinos,
leaving the details of the inclusion of antineutrinos9 to appendix B.2. Note that, for a
relativistic system, the hierarchy is given by an infinite set of equations [CH88] (basically,
𝑁 →∞ in (2.2), but this does not affect the reduced equations for the one-body density
matrix). We emphasize that we use the notation 𝜚 for a slightly different object from
the one defined in equation (2.6). 𝜚𝜈𝛼𝜈𝛽 (𝑝, 𝑡) is a reduced part of the full 𝜚 , namely the
diagonal values in helicity and momentum space. It nevertheless possesses a matrix
structure in flavour space. However, the previous formalism must be applied with the

7The annihilation and creation operators satisfy the equal time anticommutation rules

{𝑎̂𝜈𝛼 (®𝑝, ℎ), 𝑎̂†𝜈𝛽 (®𝑝′, ℎ′)} = (2𝜋)3 2𝐸𝑝 𝛿(3)(®𝑝− ®𝑝′) 𝛿ℎℎ′ 𝛿𝛼𝛽 ; {𝑎̂†𝜈𝛼 (®𝑝, ℎ), 𝑎̂†𝜈𝛽 (®𝑝′, ℎ′)} = {𝑎̂𝜈𝛼 (®𝑝, ℎ), 𝑎̂𝜈𝛽 (®𝑝′, ℎ′)} = 0

Similar relations hold for the antiparticle operators.
8We always neglect the small neutrino masses compared to their typical momentum, except for the

vacuum term since the diagonal momentum contribution disappears from the evolution equation (sec-
tion 2.2.1).

9Note that the antineutrino density matrix 𝜚 𝑖𝑗 ≡ ⟨𝑏†𝑖 𝑏 𝑗⟩ is defined with a transposed convention, com-
pared to the neutrino density matrix, to have similar evolution equations and transformation properties.
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2. The Quantum Kinetic Equations

full density matrix,10 thus one must also look at the charged lepton indices. Since only
neutrinos mix between themselves (i.e., the flavour structure is strictly diagonal except
in the neutrino-neutrino subspace of 𝜚), we can distinguish two “blocks” in 𝜚 : the lepton
part, purely diagonal

𝜚 lep(𝑝, 𝑡) = diag( 𝑓𝑒−(𝑝, 𝑡), 𝑓𝜇−(𝑝, 𝑡), 0) and 𝜚 lep = diag( 𝑓𝑒+(𝑝, 𝑡), 𝑓𝜇+(𝑝, 𝑡), 0) ,
and the neutrino part for which we will use the simplified notation 𝜚𝛼𝛽 ≡ 𝜚𝜈𝛼𝜈𝛽 . In the
following, we will only use the distribution functions when it comes to leptons. Fur-
thermore, and as expected from homogeneity and isotropy assumptions, all quantities
are diagonal in momentum space, such that in the end, only the diagonal values 𝐴(𝑝) of
operators 𝐴®𝑝®𝑝′ = 𝐴(𝑝)𝜹®𝑝®𝑝′ will be dealt with, where the “Kronecker symbol” in momen-
tum space is 𝜹®𝑝®𝑝′ = (2𝜋)3 2𝐸𝑝 𝛿(3)(®𝑝 − ®𝑝′). This will be made explicit in the upcoming
calculations.

To determine the equation of evolution of the statistical ensemble of neutrinos, we
now have to calculate the relevant expressions of the vacuum, the mean-field (2.13) and
collision (2.19) terms.

Remark: Majorana and Dirac neutrinos In the case of Dirac neutrinos, the discussion
above can be directly applied: right-handed (RH) neutrinos and left-handed (LH) an-
tineutrinos are not present in the early Universe [STW80; LP12; Dol02], such that 𝜚 and
𝜚 correspond respectively to the LH part of the full neutrino density matrix in helicity
space, and the RH part of full antineutrino density matrix in helicity space.

In the Majorana case, what we call antineutrinos are actually the right-handed neu-
trinos. More precisely, since the energy scale is much higher than the mass of neutrinos,
helicity-flip processes are suppressed and one can match these definitions safely. The
interactions of the neutrino field have the same form regardless of the mass mechanism,
see for instance Eq. (14.23) in [GK07]. Therefore, all the following calculations, includ-
ing the mean-field and collision terms, can be done without considering the nature of
neutrinos. Note that this would not hold in an anisotropic setup: taking into account
spin coherence effects shows differences between the Majorana and Dirac cases [VFC14;
SV14; CFV15; BC16].

2.2.1 Vacuum term
The neutrino kinetic term is, by definition, diagonal in the mass basis (the basis elements
being the eigenstates of the vacuum Hamiltonian 𝐻̂0):

𝑡𝑎𝑏 (𝑝)
��
mass basis =

√
𝑝2 + 𝑚2

𝑎 𝛿
𝑎
𝑏 ≃ 𝑝𝛿𝑎𝑏 +

𝑚2
𝑎

2𝑝 𝛿
𝑎
𝑏 . (2.21)

Since terms proportional to the identity do not contribute to flavour evolution (their
commutator with 𝜚 vanishes), the first term will later disappear from the evolution

10In practice, this is hardly a problem: one must just remember to sum over all possible species.
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2.2. Application to neutrinos in the early Universe

equation. In the flavour basis, the vacuum term is obtained following the transformation
laws (2.9):

𝑡 𝑖𝑗 = 𝑝𝛿𝑖𝑗 +
(
𝑈
M2

2𝑝 𝑈
†
) 𝑖
𝑗
, (2.22)

with M2 the matrix of mass-squared differences and 𝑈 the Pontercorvo-Maki-
Nakagawa-Sakata (PMNS) mixing matrix [GK07; Zyl+21].

2.2.2 Weak interaction matrix elements
Neutrinos and antineutrinos in the early Universe interact with each others and with
the charged leptons forming the homogeneous and isotropic plasma. The interaction
Hamiltonian is thus given by the charged- and neutral-current terms from the standard
model of weak interactions, expanded at low energies compared to the gauge boson
masses. All expressions and subsequent interaction matrix elements (2.8) are gathered
in the appendix C.1, while we give here the details of the calculation for the charged-
current processes 𝜈𝑒 − 𝑒± so as to illustrate how the formalism works.

Example: matrix elements for charged-currents with 𝑒±

The part of the interaction Hamiltonian corresponding to charged-current processes
with electrons and positrons is (A.4), which we recall here (cf. also equation (4.10)
in [SR93]):

𝐻̂𝐶𝐶 = 2
√

2𝐺𝐹𝑚2
𝑊

∫
[d3®𝑝1][d3®𝑝2][d3®𝑝3][d3®𝑝4] (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)

× [𝜓𝜈𝑒
(®𝑝1)𝛾𝜇𝑃𝐿𝜓𝑒(®𝑝4)]𝑊𝜇𝜈(Δ)[𝜓𝑒(®𝑝2)𝛾𝜈𝑃𝐿𝜓𝜈𝑒 (®𝑝3)] , (2.23)

with 𝜓(®𝑝) = ∑
ℎ

[
𝑎̂(®𝑝, ℎ)𝑢ℎ(®𝑝) + 𝑏†(−®𝑝, ℎ)𝑣ℎ(−®𝑝)

]
the Fourier transform of the quan-

tum fields, 𝑃𝐿 = (1 − 𝛾5)/2 the left-handed projection operator, and the gauge boson
propagator

𝑊𝜇𝜈(Δ) =
𝜂𝜇𝜈 − Δ𝜇Δ𝜈

𝑚2
𝑊

𝑚2
𝑊 − Δ2

≃ 𝜂𝜇𝜈

𝑚2
𝑊

+ 1
𝑚2
𝑊

(
Δ2𝜂𝜇𝜈

𝑚2
𝑊

− Δ𝜇Δ𝜈

𝑚2
𝑊

)
. (2.24)

The lowest order in the previous expansion is the Fermi four-fermion effective theory.
The momentum transfer isΔ = 𝑝1−𝑝4 for a 𝑡-channel (𝜈𝑒− 𝑒− scattering), andΔ = 𝑝1+𝑝2
for the 𝑠-channel (𝜈𝑒 − 𝑒+), see figure 2.1. More precisely, going from 𝑡-channel to 𝑠-
channel corresponds to the change of variables −𝑝2 ↔ 𝑝4 in the integral (2.23), which
will be important to keep track of the correct signs when computing the interaction
matrix elements. Finally, note that we only discuss the interaction between 𝜈𝑒 − 𝑒±, but
the exact same calculation can be carried out with 𝜈𝜇 − 𝜇±.

Our goal is to identify the 𝑣̃ coefficients by matching the expression (2.23) with the
general definition (2.7). Note that it is important to write the sums and integrals in the
form (2.4) to ensure the proper identification.
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𝑝2

𝑝1

𝑝3

𝑊

𝑝4

𝑒−

𝜈𝑒

𝜈𝑒

𝑒−

𝑔

𝑔 𝑝1

𝑝4𝑝2

𝑊

𝑝3

𝑒+

𝜈𝑒

𝑒+

𝜈𝑒

𝑔 𝑔

Figure 2.1 – Charged-current processes.

To compute the coefficient 𝑣̃𝜈𝑒 𝑒𝜈𝑒 𝑒 , we need to extract from (2.23) the terms involving
𝑎̂(†)𝑒 and 𝑎̂(†)𝜈𝑒 . It reads:

𝐻̂𝐶𝐶 ⊃ 2
√

2𝐺𝐹𝑚2
𝑊

∑
ℎ1 ,···

∫
[d3®𝑝1] · · · (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4) × [𝑢̄ℎ1

𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢ℎ4
𝑒 (®𝑝4)]

×𝑊𝜇𝜈(𝑝4 − 𝑝1)[𝑢̄ℎ2
𝑒 (®𝑝2)𝛾𝜈𝑃𝐿𝑢ℎ3

𝜈𝑒 (®𝑝3)] × 𝑎̂†𝜈𝑒 (®𝑝1 , ℎ1)𝑎̂𝑒(®𝑝4 , ℎ4)𝑎̂†𝑒 (®𝑝2 , ℎ2)𝑎̂𝜈𝑒 (®𝑝3 , ℎ3)︸                                              ︷︷                                              ︸
= −𝑎̂†𝜈𝑒 (1)𝑎̂†𝑒 (2)𝑎̂𝑒(4)𝑎̂𝜈𝑒 (3)

. (2.25)

In anticommuting 𝑎̂†𝑒 and 𝑎̂𝑒 we were slightly careless regarding the delta-function that
appears if ®𝑝2 = ®𝑝4 and ℎ2 = ℎ4, but it corresponds to disconnected parts in the Hamil-
tonian which only affect the ground-state energy. In other words, it disappears when
prescribing the normal ordering of the Hamiltonian, which we have not mentioned here
for brevity. Note that we explicitly replaced the gauge boson momentum Δ = 𝑝4 − 𝑝1
since we look at the interaction between 𝜈𝑒 and 𝑒−.

Finally, in order to fit with the general definition (2.4) so that we can directly read
off the coefficients 𝑣̃ from its expression, the Hamiltonian (2.25) must explicitly show
a sum on the different species. This is a crucial step to get the numerical prefactor
right: indeed, for now the coefficients appearing in the expression (2.25) are not 𝑣̃, as
it does not contain all the necessary (normal) orderings of the annihilation/creation
operators, like for instance 𝑎̂†𝜈𝑒 (1)𝑎̂†𝑒 (2)𝑎̂𝜈𝑒 (3)𝑎̂𝑒(4). In other words, as long as we do
not properly antisymmetrize the ordering of 𝑎̂ , 𝑎̂† operators in the Hamiltonian, we
would get coefficients like 𝑣̃𝜈𝑒 (1)𝑒(2)

𝜈𝑒 (3)𝑒(4) ≠ 0 but 𝑣̃𝜈𝑒 (1)𝑒(2)𝑒(4)𝜈𝑒 (3) = 0, which does not respect the
antisymmetrization property (2.8). We thus write (using 𝑖 instead of (®𝑝𝑖 , ℎ𝑖) for brevity):

𝑎̂†𝜈𝑒 (1)𝑎̂†𝑒 (2)𝑎̂𝑒(4)𝑎̂𝜈𝑒 (3) =
1
4

(
𝑎̂†𝜈𝑒 (1)𝑎̂†𝑒 (2)𝑎̂𝑒(4)𝑎̂𝜈𝑒 (3) − 𝑎̂†𝜈𝑒 (1)𝑎̂†𝑒 (2)𝑎̂𝜈𝑒 (3)𝑎̂𝑒(4)
+ 𝑎̂†𝑒 (2)𝑎̂†𝜈𝑒 (1)𝑎̂𝜈𝑒 (3)𝑎̂𝑒(4) − 𝑎̂†𝑒 (2)𝑎̂†𝜈𝑒 (1)𝑎̂𝑒(4)𝑎̂𝜈𝑒 (3)

)
,

Given the factor 1/4 in the definition (2.7) we obtain

𝑣̃𝜈𝑒 (1)𝑒(2)
𝜈𝑒 (3)𝑒(4) = −2

√
2𝐺𝐹𝑚2

𝑊 (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)
× [𝑢̄ℎ1

𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢ℎ4
𝑒 (®𝑝4)]𝑊𝜇𝜈(𝑝4 − 𝑝1) [𝑢̄ℎ2

𝑒 (®𝑝2)𝛾𝜈𝑃𝐿𝑢ℎ3
𝜈𝑒 (®𝑝3)] . (2.26)

With the expression of the propagator (A.5), we have three contributions to 𝑣̃.
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2.2. Application to neutrinos in the early Universe

Fermi order Keeping only the lowest order in (A.5), the exchange of a 𝑊 boson is
reduced to a contact interaction. We can then perform a Fierz transformation [GK07;
PS95] (it amounts to rewriting this charged-current process as a neutral-current one):

[𝑢̄ℎ1
𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢

ℎ4
𝑒 (®𝑝4)] [𝑢̄ℎ2

𝑒 (®𝑝2)𝛾𝜇𝑃𝐿] = −[𝑢̄ℎ1
𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢

ℎ3
𝜈𝑒 (®𝑝3)] [𝑢̄ℎ2

𝑒 (®𝑝2)𝛾𝜇𝑃𝐿𝑢ℎ3
𝜈𝑒 (®𝑝3)] .

(2.27)
This leads us to the final expression of the weak interaction matrix element for the
charged-current processes, at Fermi order:

𝑣̃𝜈𝑒 (1)𝑒(2)
𝜈𝑒 (3)𝑒(4) =

CC, Fermi
2
√

2𝐺𝐹 (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)

× [𝑢̄ℎ1
𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢

ℎ3
𝜈𝑒 (®𝑝3)] [𝑢̄ℎ2

𝑒 (®𝑝2)𝛾𝜇𝑃𝐿𝑢ℎ4
𝑒 (®𝑝4)] . (2.28)

First post-Fermi order Note that we can perform a Fierz transformation with the part
of the propagator ∝ 𝜂𝜇𝜈, but not with the last term. Therefore, we have:

𝑣̃𝜈𝑒 (1)𝑒(2)
𝜈𝑒 (3)𝑒(4) =

CC, Δ2/𝑚2
𝑊

2
√

2𝐺𝐹 (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)

× [𝑢̄ℎ1
𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢

ℎ3
𝜈𝑒 (®𝑝3)] (𝑝4 − 𝑝1)𝜈(𝑝4 − 𝑝1)𝜈

𝑚2
𝑊

[𝑢̄ℎ2
𝑒 (®𝑝2)𝛾𝜇𝑃𝐿𝑢ℎ4

𝑒 (®𝑝4)] , (2.29)

and

𝑣̃𝜈𝑒 (1)𝑒(2)
𝜈𝑒 (3)𝑒(4) =

CC, −Δ𝜇Δ𝜈/𝑚2
𝑊

2
√

2𝐺𝐹 (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)

× [𝑢̄ℎ1
𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢ℎ4

𝑒 (®𝑝4)] (𝑝4 − 𝑝1)𝜇(𝑝4 − 𝑝1)𝜈
𝑚2
𝑊

[𝑢̄ℎ2
𝑒 (®𝑝2)𝛾𝜈𝑃𝐿𝑢ℎ3

𝜈𝑒 (®𝑝3)] . (2.30)

We chose to use Fierz identities to avoid remaining minus signs and to make the
calculation of the mean-field potentials more straightforward (see next subsection).

Positron background If we are interested in the interaction between electronic neutri-
nos and positrons, we extract the contributions in 𝐻̂𝐶𝐶 involving 𝑏𝑒 , 𝑏†𝑒 . It reads:11

𝐻̂𝐶𝐶 ⊃ 2
√

2𝐺𝐹𝑚2
𝑊

∑
ℎ1 ,···

∫
[d3®𝑝1] · · · (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4) × [𝑢̄ℎ1

𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑣ℎ2
𝑒 (®𝑝2)]

×𝑊𝜇𝜈(𝑝1 + 𝑝2)[𝑣̄ℎ4
𝑒 (®𝑝4)𝛾𝜈𝑃𝐿𝑢ℎ3

𝜈𝑒 (®𝑝3)] × 𝑎̂†𝜈𝑒 (®𝑝1 , ℎ1)𝑏†𝑒 (®𝑝2 , ℎ2)𝑏𝑒(®𝑝4 , ℎ4)𝑎̂𝜈𝑒 (®𝑝3 , ℎ3) , (2.31)

which has the opposite sign compared to (2.25), since there is no need to anticommute
the antiparticle creation/annihilation operators which already appear “in the reference
order”. Of course, the full antisymmetrization is still necessary to read the 𝑣̃ coefficients

11Recall the change of variables compared to (2.25) corresponding to the crossing symmetry 𝑝2 ↔ −𝑝4.
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2. The Quantum Kinetic Equations

and get the prefactor right. For instance, at Fermi order, we get following the same steps
as before (including a Fierz transformation):

𝑣̃𝜈𝑒 (1)𝑒(2)
𝜈𝑒 (3)𝑒(4) =

CC, Fermi
−2
√

2𝐺𝐹 (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)

× [𝑢̄ℎ1
𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢

ℎ3
𝜈𝑒 (®𝑝3)] [𝑣̄ℎ4

𝑒 (®𝑝4)𝛾𝜇𝑃𝐿𝑣ℎ2
𝑒 (®𝑝2)] . (2.32)

Set of matrix elements at Fermi order

We show in table 2.1 the set of interaction matrix elements derived from the Hamil-
tonians A.1.2, at Fermi order. They are of special importance, since they give the first
non-zero contribution to the collision term: in other words, we will only use these ma-
trix elements to compute 𝒞. Conversely, to compute the mean-field potentials at order
Δ2/𝑚2

𝑊,𝑍, one needs the matrix elements from the expansion of the propagator (A.5),
which are obtained similarly (cf. the example detailed above) and not reproduced here
for the sake of brevity.

Interaction process 𝑣̃12
34/

[√
2𝐺𝐹(2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)

]
𝐶𝐶

𝜈𝑒(1)𝑒(2)𝜈𝑒(3)𝑒(4) 2 × [𝑢̄ℎ1
𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢

ℎ3
𝜈𝑒 (®𝑝3)][𝑢̄ℎ2

𝑒 (®𝑝2)𝛾𝜇𝑃𝐿𝑢ℎ4
𝑒 (®𝑝4)]

𝜈𝑒(1)𝑒(2)𝜈𝑒(3)𝑒(4) −2 × [𝑢̄ℎ1
𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢

ℎ3
𝜈𝑒 (®𝑝3)][𝑣̄ℎ4

𝑒 (®𝑝4)𝛾𝜇𝑃𝐿𝑣ℎ2
𝑒 (®𝑝2)]

𝜈𝑒(1)𝜈̄𝑒(2)𝑒(3)𝑒(4) 2 × [𝑢̄ℎ1
𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑣

ℎ2
𝜈𝑒 (®𝑝2)][𝑣̄ℎ4

𝑒 (®𝑝4)𝛾𝜇𝑃𝐿𝑢ℎ3
𝑒 (®𝑝3)]

𝑁𝐶,matter

𝜈𝑒(1)𝑒(2)𝜈𝑒(3)𝑒(4) 2 × [𝑢̄ℎ1
𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢

ℎ3
𝜈𝑒 (®𝑝3)][𝑢̄ℎ2

𝑒 (®𝑝2)𝛾𝜇(𝑔𝐿𝑃𝐿 + 𝑔𝑅𝑃𝑅)𝑢ℎ4
𝑒 (®𝑝4)]

𝜈𝑒(1)𝑒(2)𝜈𝑒(3)𝑒(4) −2 × [𝑢̄ℎ1
𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢

ℎ3
𝜈𝑒 (®𝑝3)][𝑣̄ℎ4

𝑒 (®𝑝4)𝛾𝜇(𝑔𝐿𝑃𝐿 + 𝑔𝑅𝑃𝑅)𝑣ℎ2
𝑒 (®𝑝2)]

𝜈𝑒(1)𝜈̄𝑒(2)𝑒(3)𝑒(4) 2 × [𝑢̄ℎ1
𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑣

ℎ2
𝜈𝑒 (®𝑝2)][𝑣̄ℎ4

𝑒 (®𝑝4)𝛾𝜇(𝑔𝐿𝑃𝐿 + 𝑔𝑅𝑃𝑅)𝑢ℎ3
𝑒 (®𝑝3)]

𝑁𝐶, self-interactions

𝜈𝛼(1)𝜈𝛽(2)𝜈𝛼(3)𝜈𝛽(4) (1 + 𝛿𝛼𝛽) × [𝑢̄ℎ1
𝜈𝛼 (®𝑝1)𝛾𝜇𝑃𝐿𝑢

ℎ3
𝜈𝛼 (®𝑝3)][𝑢̄ℎ2

𝜈𝛽 (®𝑝2)𝛾𝜇𝑃𝐿𝑢ℎ4
𝜈𝛽 (®𝑝4)]

𝜈𝛼(1)𝜈̄𝛽(2)𝜈𝛼(3)𝜈̄𝛽(4) −(1 + 𝛿𝛼𝛽) × [𝑢̄ℎ1
𝜈𝛼 (®𝑝1)𝛾𝜇𝑃𝐿𝑢

ℎ3
𝜈𝛼 (®𝑝3)][𝑣̄ℎ4

𝜈𝛽 (®𝑝4)𝛾𝜇𝑃𝐿𝑣ℎ2
𝜈𝛽 (®𝑝2)]

𝜈𝛼(1)𝜈̄𝛼(2)𝜈𝛽(3)𝜈̄𝛽(4) (1 + 𝛿𝛼𝛽) × [𝑢̄ℎ1
𝜈𝛼 (®𝑝1)𝛾𝜇𝑃𝐿𝑣

ℎ2
𝜈𝛼 (®𝑝2)][𝑣̄ℎ4

𝜈𝛽 (®𝑝4)𝛾𝜇𝑃𝐿𝑢ℎ3
𝜈𝛽 (®𝑝3)]

Table 2.1 – Interaction matrix elements at lowest order in the expansion of the gauge
boson propagators (Fermi effective theory of weak interactions). We have not written
the matrix elements with (anti)muons which are exactly similar to the ones with elec-
trons/positrons with 𝜈𝑒 ↔ 𝜈𝜇. The neutral-current couplings are 𝑔𝐿 = −1/2 + sin2 𝜃𝑊
and 𝑔𝑅 = sin2 𝜃𝑊 , where sin2 𝜃𝑊 ≃ 0.231 is the weak-mixing angle. These expressions
are derived in the appendix C.1.
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2.2. Application to neutrinos in the early Universe

At leading order, the charged-current processes have been written as neutral-
current ones thanks to Fierz rearrangement identities (cf. example above). Therefore
one can write the global expression12 for all interactions between 𝜈𝑒 and 𝑒−:

𝑣̃𝜈𝛼(1)𝑒(2)
𝜈𝛽(3)𝑒(4) = 2

√
2𝐺𝐹 (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)
× [𝑢̄ℎ1

𝜈𝛼 (®𝑝1)𝛾𝜇𝑃𝐿𝑢
ℎ3
𝜈𝛽 (®𝑝3)] [𝑢̄ℎ2

𝑒 (®𝑝2)𝛾𝜇(𝐺𝛼𝛽
𝐿 𝑃𝐿 + 𝐺

𝛼𝛽
𝑅 𝑃𝑅)𝑢ℎ4

𝑒 (®𝑝4)] , (2.33)

with, in the Standard Model,

𝐺𝐿 = diag(𝑔𝐿 + 1, 𝑔𝐿 , 𝑔𝐿) , 𝐺𝑅 = diag(𝑔𝑅 , 𝑔𝑅 , 𝑔𝑅) . (2.34)

One can also introduce non-standard interactions which promote those couplings to
non-diagonal matrices [SP16].

2.2.3 Mean-field potential
With the set of all relevant 𝑣̃ 𝑖𝑘𝑗𝑙 , one can compute the mean-field potential from (2.13). This
procedure is outlined in [VVE13], and we continue the example of the charged-current
processes with electrons and positrons, leaving the other cases to the appendix C.1.

Example: mean-field due to charged-current interactions with 𝑒±

Following the definition (2.13), we have:

Γ𝜈𝑒 (®𝑝1 ,ℎ1)
𝜈𝑒 (®𝑝3 ,ℎ3) =

∑
ℎ2 ,ℎ4

∫
[d3®𝑝2][d3®𝑝4]𝑣̃𝜈𝑒 (1)𝑒(2)𝜈𝑒 (3)𝑒(4) × ⟨𝑎̂

†
𝑒 (®𝑝2 , ℎ2)𝑎̂𝑒(®𝑝4 , ℎ4)⟩

=
∑
ℎ2 ,ℎ4

∫
[d3®𝑝2][d3®𝑝4]𝑣̃𝜈𝑒 (1)𝑒(2)𝜈𝑒 (3)𝑒(4) × (2𝜋)

3 2𝐸𝑝2 𝛿
(3)(®𝑝2 − ®𝑝4) 𝛿ℎ2ℎ4 𝑓𝑒−(𝑝2) .

Let us now calculate the potentials arising from the three contributions to 𝑣̃.

Fermi order We use the matrix element (2.28), and write ®𝑝 = ®𝑝2 = ®𝑝4 (which is enforced
by the delta-function), such that

Γ𝜈𝑒 (®𝑝1 ,ℎ1)
𝜈𝑒 (®𝑝3 ,ℎ3) =

CC, Fermi
2
√

2𝐺𝐹 (2𝜋)3𝛿(3)(®𝑝1 − ®𝑝3)
∑
ℎ

∫
[d3®𝑝][𝑢̄ℎ1

𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢
ℎ3
𝜈𝑒 (®𝑝3)]

× [𝑢̄ℎ𝑒 (®𝑝)𝛾𝜇𝑃𝐿𝑢ℎ𝑒 (®𝑝)] 𝑓𝑒−(𝑝)

12To be precise, we should call these coupling matrices 𝐺𝐿,(𝑒) and 𝐺𝑅,(𝑒), with similarly for interactions
with muons 𝐺𝐿,(𝜇) = diag(𝑔𝐿 , 𝑔𝐿 + 1, 𝑔𝐿) and 𝐺𝑅,(𝜇) = diag(𝑔𝑅 , 𝑔𝑅 , 𝑔𝑅). We omit this heavy notation since
only interactions with 𝑒± are considered in the collision term.
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2. The Quantum Kinetic Equations

The spinor products can be simplified thanks to trace technology:∑
ℎ

[𝑢̄ℎ𝑒 (®𝑝)𝛾𝜇𝑃𝐿𝑢ℎ𝑒 (®𝑝)] =
∑
ℎ

[𝑢̄ℎ𝑒,𝑖(®𝑝)
(
𝛾𝜇𝑃𝐿

)
𝑖 𝑗 𝑢

ℎ
𝑒,𝑗(®𝑝)]

=

(∑
ℎ

𝑢ℎ𝑒 (®𝑝)𝑢̄ℎ𝑒 (®𝑝)
)
𝑗𝑖

(
𝛾𝜇𝑃𝐿

)
𝑖 𝑗

Next, we use the spin sum [PS95]
∑
ℎ 𝑢

ℎ
𝑒 (®𝑝)𝑢̄ℎ𝑒 (®𝑝) = /𝑝 + 𝑚𝑒 . Moreover, we are dealing

with ultra-relativistic neutrinos which have only one possible helicity state (−), the useful
formula being then the projection of the spin sum on spinors with definite helicity in
the ultra-relativistic limit13 𝑢(−)𝜈𝑒 (®𝑘)𝑢̄(−)𝜈𝑒 (®𝑘) = 𝑃𝐿/𝑘. With this, we can rewrite∑

ℎ

[𝑢̄ℎ𝑒 (®𝑝)𝛾𝜇𝑃𝐿𝑢ℎ𝑒 (®𝑝)] = tr
[(𝛾𝜈𝑝𝜈 + 𝑚𝑒)𝛾𝜇𝑃𝐿

]
= 2𝑝𝜇 ,

and

[𝑢̄(−)𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢
(−)
𝜈𝑒 (®𝑝1)] = tr[𝑃𝐿𝛾𝜈𝛾𝜇𝑃𝐿]𝑝1,𝜈 = 2𝑝𝜈1 ,

where we have used the identities recalled in equation (A.1.1). All in all, we have

Γ𝜈𝑒 (®𝑝1 ,−)
𝜈𝑒 (®𝑝3 ,−) =

CC, Fermi
2
√

2𝐺𝐹 (2𝜋)3𝛿(3)(®𝑝1 − ®𝑝3) × 4 ×
∫ d3®𝑝
(2𝜋)3 2𝐸𝑝

(𝑝1 · 𝑝)︸ ︷︷ ︸
𝑝1𝐸𝑝−®𝑝1·®𝑝

𝑓𝑒−(𝑝) . (2.35)

Because of isotropy, the integral
∫

d3®𝑝 · · · (®𝑝1 · ®𝑝) = 0,

Γ𝜈𝑒 (®𝑝1 ,−)
𝜈𝑒 (®𝑝3 ,−) =

CC, Fermi

√
2𝐺𝐹 (2𝜋)3 2𝑝1 𝛿

(3)(®𝑝1−®𝑝3)×2
∫ d3®𝑝
(2𝜋)3 𝑓𝑒−(𝑝) =

√
2𝐺𝐹𝑛𝑒− 𝜹®𝑝1®𝑝3 , (2.36)

where we recognized the electron number density from (1.19). We find back the well-
known mean-field potential (1.53) responsible, for instance, for the MSW effect [Wol78;
MS85] in stars.

Post-Fermi order,𝚫2
/𝒎2

𝑾 term With the matrix element (2.29), we can follow the same
steps as before to get

Γ𝜈𝑒 (®𝑝1 ,−)
𝜈𝑒 (®𝑝3 ,−) =

CC, Δ2/𝑚2
𝑊

8
√

2 𝐺𝐹
𝑚2
𝑊

(2𝜋)3 𝛿(3)(®𝑝1 − ®𝑝3) ×
∫ d3®𝑝
(2𝜋)3 2𝐸𝑝

(𝑝1 · 𝑝) × (𝑝1 − 𝑝)2 × 𝑓𝑒−(𝑝) .

We have (𝑝1−𝑝)2 = 𝑚2
𝑒 −2(𝑝1 ·𝑝). The first term is identical to the Fermi order calculation

with an overall multiplication by (𝑚𝑒/𝑚𝑊 )2. To compute the second contribution we
13See for instance equation (38.31) in [Sre07], being careful that it uses the metric (−,+,+,+) and the

convention {𝛾𝜇 , 𝛾𝜈} = −2𝜂𝜇𝜈 , hence the different sign for /𝑘.
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2.2. Application to neutrinos in the early Universe

use spherical coordinates aligned with ®𝑝1, such that 𝑝1 · 𝑝 = 𝑝1𝐸𝑝 − 𝑝1𝑝 cos𝜃. Therefore
we are left with the integral

−2𝑝2
1

∫ 2𝜋𝑝2d𝑝
(2𝜋)3 2𝐸𝑝

∫ 𝜋

0
sin𝜃d𝜃 (𝐸𝑝 − 𝑝 cos𝜃)2 𝑓𝑒−(𝑝) .

We need the three angular integrals:∫ 𝜋

0
sin𝜃d𝜃 = 2 ,

∫ 𝜋

0
sin𝜃 cos𝜃d𝜃 = 0 ,

∫ 𝜋

0
sin𝜃 cos2 𝜃d𝜃 =

2
3 ,

with which we obtain, using the thermodynamic formulas (1.19),

−2𝑝2
1

∫ 2𝜋𝑝2d𝑝
(2𝜋)3 2𝐸𝑝

∫ 𝜋

0
sin𝜃d𝜃 (𝐸𝑝 − 𝑝 cos𝜃)2 𝑓𝑒−(𝑝) = −𝑝2

1

∫ 4𝜋𝑝2d𝑝
(2𝜋)3

(
𝐸𝑝 + 𝑝2

3𝐸𝑝

)
𝑓𝑒−(𝑝)

= −1
2𝑝

2
1 (𝜌𝑒− + 𝑃𝑒−) .

Hence the second contribution to the mean-field potential

Γ𝜈𝑒 (®𝑝1 ,−)
𝜈𝑒 (®𝑝3 ,−) =

CC, Δ2/𝑚2
𝑊

√
2𝐺𝐹𝑛𝑒−

(
𝑚𝑒

𝑚𝑊

)2
𝜹®𝑝1®𝑝3 −

2
√

2𝐺𝐹𝑝1

𝑚2
𝑊

(𝜌𝑒− + 𝑃𝑒−) 𝜹®𝑝1®𝑝3 . (2.37)

The mean-field potentials up to first order in Δ2/𝑚2
𝑊 do not usually take into account

the non-relativistic nature of electrons and positrons [SR93; Man+05; SP16; GSP19;
AY20]. Instead, our expression involves both the energy density and the pressure of
charged leptons, as mentioned for instance in [NR88]. As expected, we recover the more
common expression in the ultra-relativistic limit 𝜌𝑒− + 𝑃𝑒− → (4/3)𝜌𝑒− .

Post-Fermi order, −𝚫𝝁𝚫𝝂
/𝒎2

𝑾 term We finally include the matrix element (2.30) in
the general expression of Γ. It reads

Γ𝜈𝑒 (®𝑝1 ,−)
𝜈𝑒 (®𝑝3 ,−) =

CC, −Δ𝜇Δ𝜈/𝑚2
𝑊

2
√

2 𝐺𝐹
𝑚2
𝑊

(2𝜋)3𝛿(3)(®𝑝1 − ®𝑝3)
∑
ℎ

∫
[d3®𝑝] (𝑝 − 𝑝1)𝜇(𝑝 − 𝑝1)𝜈

× [𝑢̄−𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢ℎ𝑒 (®𝑝)][𝑢̄ℎ𝑒 (®𝑝)𝛾𝜈𝑃𝐿𝑢−𝜈𝑒 (®𝑝3)] × 𝑓𝑒−(𝑝) .
As before, we rewrite the spinor product (enforcing once again ®𝑝1 = ®𝑝3):∑
ℎ

[𝑢̄−𝜈𝑒 (®𝑝1)𝛾𝜇𝑃𝐿𝑢ℎ𝑒 (®𝑝)][𝑢̄ℎ𝑒 (®𝑝)𝛾𝜈𝑃𝐿𝑢−𝜈𝑒 (®𝑝1)] = tr[𝑃𝐿𝛾𝜎𝑝1,𝜎𝛾
𝜇𝑃𝐿(𝛾𝜆𝑝𝜆 + 𝑚𝑒)𝛾𝜈𝑃𝐿]

= 𝑚𝑒𝑝1,𝜎 tr[𝛾𝜎𝛾𝜇𝛾𝜈𝑃𝐿]︸           ︷︷           ︸
=0

+ 𝑝1,𝜎𝑝𝜆tr[𝛾𝜎𝛾𝜇𝛾𝜆𝛾𝜈𝑃𝐿]

With the trace identities (A.1.1), we split the result into its imaginary and its real part.
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• The imaginary part of the mean-field contains the product:

(𝑝 − 𝑝1)𝜇(𝑝 − 𝑝1)𝜈︸                ︷︷                ︸
sym. 𝜇↔ 𝜈

× 𝜖𝜎𝜇𝜆𝜈︸︷︷︸
asym. 𝜇↔ 𝜈

= 0 .

• The real part reads after calculation:

(𝑝 − 𝑝1)𝜇(𝑝 − 𝑝1)𝜈𝑝1,𝜎𝑝𝜆 × 2
(
𝜂𝜎𝜇𝜂𝜆𝜈 − 𝜂𝜎𝜆𝜂𝜇𝜈 + 𝜂𝜎𝜈𝜂𝜇𝜆

)
= 2𝑚2

𝑒 (𝑝1 · 𝑝) .

Comparing with the expression (2.35) in the Fermi order calculation, we get

Γ𝜈𝑒 (®𝑝1 ,−)
𝜈𝑒 (®𝑝3 ,−) =

CC, −Δ𝜇Δ𝜈/𝑚2
𝑊

𝐺𝐹√
2
𝑛𝑒−

(
𝑚𝑒

𝑚𝑊

)2
𝜹®𝑝1®𝑝3 . (2.38)

Positron background Up until now, we have only considered the mean-field due to
the interaction with the bath of electrons. Without any additional calculation, we can
obtain the potential due to the positron background, simply looking at the additional
signs that appear along the derivation:

• due to the minus sign coming from the anti-commutation of 𝑏𝑒 , 𝑏†𝑒 (cf. for instance
the expression of the matrix element at Fermi order in table 2.1), the Fermi order
result for the 𝑒+ background is exactly the opposite of the 𝑒− one, with 𝑛𝑒− replaced
by 𝑛𝑒+ :

Γ𝜈𝑒 (®𝑝1 ,−)
𝜈𝑒 (®𝑝3 ,−)

[𝑒−]
=

CC, Fermi
−
√

2𝐺𝐹𝑛𝑒+ 𝜹®𝑝1®𝑝3 ;

• beyond Fermi order, the interaction being now an 𝑠−channel instead of a
𝑡−channel, Δ = (𝑝1 − 𝑝) is replaced by (𝑝1 + 𝑝). This changes the sign inside
Δ2 = 𝑚2

𝑒 −2(𝑝1 · 𝑝). Therefore the energy density and pressure contributions to the
mean-field get an additional minus sign (and end up with the same sign whether
it is an 𝑒− or 𝑒+ background), but not the density terms.

Full CC mean-field We can now gather all the previous contributions (2.36), (2.37),
(2.38) (and the corresponding potentials due to the interactions with positrons), which
leads to

Γ𝜈𝑒 (®𝑝1 ,−)
𝜈𝑒 (®𝑝3 ,−) =

{√
2𝐺𝐹(𝑛𝑒− − 𝑛𝑒+)

[
1 + 𝒪

(
𝑚2
𝑒

𝑚2
𝑊

)]
− 2
√

2𝐺𝐹𝑝1

𝑚2
𝑊

(𝜌𝑒− + 𝑃𝑒− + 𝜌𝑒+ + 𝑃𝑒+)
}
𝜹®𝑝1®𝑝3 .

(2.39)
The post-Fermi order contribution proportional to the charged lepton densities is neg-
ligible compared to the Fermi order one. Moreover, the asymmetry (𝑛𝑒− − 𝑛𝑒−+)/𝑛𝛾 ≃
𝜂 ∼ 6 × 10−10 is of the order of the baryon-to-photon ratio, hence completely negligible
compared to the (yet ”higher order") energy density/pressure term.
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Since, as expected given the assumptions of homogeneity and isotropy, Γ is diagonal
in momentum space, we only deal from now on with its diagonal part Γ(𝑝) (such
that Γ®𝑝,−®𝑝′,− = Γ(𝑝)𝜹®𝑝®𝑝′). Moreover, we restrict ourselves to the (−,−) helicity subspace
(otherwise we would just need to add some helicity Kronecker symbols). Finally, as
mentioned before, the exact same calculation can be made with 𝜈𝜇 − 𝜇±, which allows
to display the full charged-current contribution, showing the flavour matrix structure:

Γ𝜈𝛼𝜈𝛽 (𝑝) =CC

√
2𝐺𝐹(𝑛𝑒− − 𝑛𝑒+)𝛿𝛼𝑒 𝛿𝑒𝛽 −

2
√

2𝐺𝐹𝑝
𝑚2
𝑊

(𝜌𝑒− + 𝑃𝑒− + 𝜌𝑒+ + 𝑃𝑒+) 𝛿𝛼𝑒 𝛿𝑒𝛽

+
√

2𝐺𝐹(𝑛𝜇− − 𝑛𝜇+)𝛿𝛼𝜇𝛿𝜇𝛽 −
2
√

2𝐺𝐹𝑝
𝑚2
𝑊

(
𝜌𝜇− + 𝑃𝜇− + 𝜌𝜇+ + 𝑃𝜇+

)
𝛿𝛼𝜇𝛿

𝜇
𝛽 . (2.40)

Complete mean-field expression

In addition to the charged-current processes, one needs to take into account the neutral-
current processes with the background leptons and with (anti)neutrinos (so-called self-
interactions). Some elements of the calculation are outlined in the appendix C.1, and
lead to the following final expression:14

Γ𝛼𝛽 =
√

2𝐺𝐹(Nlep− − Nlep+)𝛼𝛽 +
√

2𝐺𝐹 (N𝜈 − N𝜈̄)𝛼𝛽

− 2
√

2𝐺𝐹𝑝
𝑚2
𝑊

(Elep− + Plep− + Elep+ + Plep+)𝛼𝛽 −
8
√

2𝐺𝐹𝑝
𝑚2
𝑍

(E𝜈 + E𝜈̄)𝛼𝛽 . (2.41)

The first two terms are the particle/antiparticle asymmetric mean-field potentials arising
from the V−A Hamiltonian. There is no contribution from the neutral-current processes
with the matter background as they are flavour-independent (see appendix C.1). As
shown in the example above, expanding the gauge boson propagators to next-to-leading
order in the exchange momentum leads to the symmetric terms proportional to the
neutrino momentum 𝑝. This expression is derived in the flavour basis in which 𝛿𝛼𝑒
is the Kronecker symbol. However it can be directly read in any basis, through the
contravariant (covariant) transformation of upper (lower) indices (2.9).

The various thermodynamic quantities involved are, where we use the standard
definitions (1.19) for the charged leptons,

Nlep− = diag(𝑛𝑒− , 𝑛𝜇− , 0)

N𝜈 |𝛼𝛽 =
∫ d3®𝑝
(2𝜋)3𝜚

𝛼
𝛽 (𝑝)

Elep− = diag(𝜌𝑒− , 𝜌𝜇− , 0) ,

E𝜈 |𝛼𝛽 =
∫ d3®𝑝
(2𝜋)3 𝑝 𝜚

𝛼
𝛽 (𝑝) ,

(2.42)

and the corresponding quantities for antiparticles are obtained by replacing 𝑓𝑒− → 𝑓𝑒+
and 𝜚𝛼𝛽 → 𝜚𝛼𝛽 . We define the total charged lepton energy density matrix Elep ≡ Elep− +

14The absence of extra complex conjugation on N𝜈̄ , i.e. on 𝜚 , compared to [VVE13] is due to the
transposed definition of the antineutrino density matrix (2.20).
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2. The Quantum Kinetic Equations

Elep+ , and likewise for the pressure. In the following, we will systematically neglect the
very small asymmetry of electrons/positrons, which is constrained to be of the order
of the baryon-to-photon ratio 𝜂 ∼ 10−9. Since electrons and positrons undergo very
efficient electromagnetic interactions with the photon background, ensuring that their
distribution function remains a Fermi-Dirac one at the photon temperature𝑇𝛾 [Tho+20].,
we will use as electron distribution function

𝑓𝑒−(𝑝) = 𝑓𝑒+(𝑝) = 1

𝑒
√
𝑝2+𝑚2

𝑒 /𝑇𝛾 + 1
≡ 𝑓𝑒(𝑝) . (2.43)

Note that the total neutrino energy density, that is the sum of the diagonal contribution
of E𝜈, reads:

𝜌𝜈 = Tr(E𝜈) . (2.44)

2.2.4 Collision integral
The remaining part of the QKE is the collision term, which is derived by inserting
all possible matrix elements in the general expression (2.19). This leads to collision
integrals previously derived in [SR93; BC16], and progressively included in numerical
computations, except for the self-interactions, whose off-diagonal components were
approximated by damping terms or discarded [Man+05; GV10; Vol20; SP16; GSP19].
In the following, we illustrate how our formalism applies by carrying out an explicit
derivation for neutrino-neutrino scattering, displaying the full matrix structure of the
statistical factor. The other contributions to the collision term are discussed in the
appendix C.2.

Neutrino self-interactions collision term

As an illustration of the use of the BBGKY formalism to derive the collision integrals, we
detail the steps to obtain the neutrino-neutrino scattering contribution to the expression
to come (2.52).

Neutrino-neutrino scattering processes correspond to the terms in (2.19) for which
the inner matrix elements are scattering ones 𝑣̃𝜈𝛿𝜈𝜎𝜈𝛿𝜈𝜎 . For simplicity, we focus here on the
first term in the expression of 𝒞 𝑖1𝑖′1 (2.19). Here, the index 𝑖1 will refer to 𝜈𝛼(®𝑝1) and 𝑖′1 to
𝜈𝛽(®𝑝1). We do not specify the helicity, which is necessarily ℎ = (−) for ultra-relativistic
neutrinos. Finally, we impose ®𝑝𝑘 = ®𝑝′𝑘 for all 𝑘, which is enforced by the assumption of
homogeneity (2.20). There are two non-zero contributions to this part of the collision
matrix.

• when 1 and 3 have the same flavour, that is for the following term:

1
4 𝑣̃

𝜈𝛼(1)𝜈𝛾(2)
𝜈𝛼(3)𝜈𝛾(4) × 𝜚

𝛼(3)
𝛿(3)𝜚

𝛾(4)
𝜎(4) × 𝑣̃

𝜈𝛿(3′)𝜈𝜎(4′)
𝜈𝛿(1′)𝜈𝜎(2′) × (1 − 𝜚)

𝛿(1)
𝛽(1)(1 − 𝜚)

𝜎(2)
𝛾(2) .

The scattering amplitude is then

𝑣̃
𝜈𝛼(1)𝜈𝛾(2)
𝜈𝛼(3)𝜈𝛾(4) × 𝑣̃

𝜈𝛿(3′)𝜈𝜎(4′)
𝜈𝛿(1′)𝜈𝜎(2′)
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2.2. Application to neutrinos in the early Universe

= 2𝐺2
𝐹 × (2𝜋)6𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)𝛿(3)(®𝑝1 − ®𝑝1)

× [𝑢̄𝜈𝛼 (1)𝛾𝜇𝑃𝐿𝑢𝜈𝛼 (3)][𝑢̄𝜈𝛿 (3)𝛾𝜈𝑃𝐿𝑢𝜈𝛿 (1)] × [𝑢̄𝜈𝛾 (2)𝛾𝜇𝑃𝐿𝑢𝜈𝛾 (4)][𝑢̄𝜈𝜎 (4)𝛾𝜈𝑃𝐿𝑢𝜈𝜎 (2)]
= 2𝐺2

𝐹 × (2𝜋)6𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)𝛿(3)(®𝑝1 − ®𝑝1)
× 𝑝3𝜂𝑝1𝜌tr[𝛾𝜌𝛾𝜇𝑃𝐿𝛾𝜂𝛾𝜈𝑃𝐿] × 𝑝𝜆4 𝑝𝜏2tr[𝛾𝜏𝛾𝜇𝑃𝐿𝛾𝜆𝛾𝜈𝑃𝐿]

= 25𝐺2
𝐹 × (2𝜋)6𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)𝛿(3)(®𝑝1 − ®𝑝1) × (𝑝1 · 𝑝2)(𝑝3 · 𝑝4) , (2.45)

while the matrix product associated to this scattering amplitude is

𝜚𝛼(3)
𝛿(3)𝜚

𝛾(4)
𝜎(4)(1 − 𝜚)

𝛿(1)
𝛽(1)(1 − 𝜚)

𝜎(2)
𝛾(2) =

[
Tr[𝜚4 · (1 − 𝜚2)] · 𝜚3 · (1 − 𝜚1)

]𝛼
𝛽
.

• when 1 and 4 have the same flavour, the scattering amplitude is

𝑣̃
𝜈𝛼(1)𝜈𝛾(2)
𝜈𝛾(3)𝜈𝛼(4) × 𝑣̃

𝜈𝛿(3′)𝜈𝜎(4′)
𝜈𝛿(1′)𝜈𝜎(2′)

= −2𝐺2
𝐹 × (2𝜋)6𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)𝛿(3)(®𝑝1 − ®𝑝1)

× [𝑢̄𝜈𝛼 (1)𝛾𝜇𝑃𝐿𝑢𝜈𝛼 (4)][𝑢̄𝜈𝜎 (4)𝛾𝜈𝑃𝐿𝑢𝜈𝜎 (2)][𝑢̄𝜈𝛾 (2)𝛾𝜇𝑃𝐿𝑢𝜈𝛾 (3)][𝑢̄𝜈𝛿 (3)𝛾𝜈𝑃𝐿𝑢𝜈𝛿 (1)]
= −2𝐺2

𝐹 × (2𝜋)6𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)𝛿(3)(®𝑝1 − ®𝑝1)
× 𝑝3𝜆𝑝1𝜌𝑝4𝜂𝑝2𝜏tr[𝛾𝜇𝑃𝐿𝛾𝜂𝛾𝜈𝑃𝐿𝛾𝜏𝛾𝜇𝑃𝐿𝛾𝜆𝛾𝜈𝑃𝐿𝛾𝜌]

= 25𝐺2
𝐹 × (2𝜋)6𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)𝛿(3)(®𝑝1 − ®𝑝1) × (𝑝1 · 𝑝2)(𝑝3 · 𝑝4) , (2.46)

and the matrix product reads

𝜚
𝛾(3)
𝛿(3)𝜚

𝛼(4)
𝜎(4)(1 − 𝜚)

𝛿(1)
𝛽(1)(1 − 𝜚)

𝜎(2)
𝛾(2) =

[
𝜚4 · (1 − 𝜚2) · 𝜚3 · (1 − 𝜚1)

]𝛼
𝛽
.

We chose the compact notation 𝜚 𝑘 ≡ 𝜚(𝑝𝑘) for brevity, and used 𝜚1 = 𝜚1 thanks to the
momentum-conserving function 𝛿(3)(®𝑝1 − ®𝑝1).

The scattering amplitudes of the four terms in (2.19) are identical, and their matrix
products arrange such that the final result has the expected “gain − loss + h.c.” struc-
ture. Note that we considered here a particular ordering of the indices, while the full
expression is symmetric through the exchange of the indices (1′, 2′). In other words,
one must take twice the previous results (2.45) and (2.46) to account for all non-zero
combinations.15 Therefore,

𝒞[𝜈𝜈↔𝜈𝜈] =(2𝜋)3𝛿(3)(®𝑝1 − ®𝑝1)
25𝐺2

𝐹

2

∫
[d3®𝑝2][d3®𝑝3][d3®𝑝4](2𝜋)4𝛿(4)(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4)

× (𝑝1 · 𝑝2)(𝑝3 · 𝑝4) × 𝐹sc(𝜈(1) , 𝜈(2) , 𝜈(3) , 𝜈(4))
(2.47)

15This symmetry vanishes if 𝛿 and 𝜎 represent the same flavour. However, this is exactly compensated
by the extra factor of 2 in the matrix elements for identical flavour, cf. table 2.1. This extra factor of 2
is already accounted for regarding the couple (𝛼, 𝛾) as it allows to treat the case 𝛼 = 𝛾 like the others
(i.e. separating a “trace“ and a “non-trace“ contributions).
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with the statistical factor:

𝐹sc(𝜈(1) , 𝜈(2) , 𝜈(3) , 𝜈(4)) = [𝜚4(1 − 𝜚2) + Tr(· · · )] 𝜚3(1−𝜚1)+(1−𝜚1)𝜚3 [(1 − 𝜚2)𝜚4 + Tr(· · · )]
− [(1 − 𝜚4)𝜚2 + Tr(· · · )] (1 − 𝜚3)𝜚1 − 𝜚1(1 − 𝜚3) [𝜚2(1 − 𝜚4) + Tr(· · · )] , (2.48)

where Tr(· · · )means the trace of the term in front of it.
A useful check consists in neglecting flavour mixing, i.e., assuming that the neutrino

density matrices are diagonal, the diagonal entries being the distribution functions. In
this case, we have 𝜚4(1−𝜚2)+Tr(· · · ) → 4 𝑓4(1− 𝑓2), hence a total amplitude for neutrino-
neutrino scatterings 25𝐺2

𝐹×4×(𝑝1 ·𝑝2)(𝑝3 ·𝑝4) = 27𝐺2
𝐹(𝑝1 ·𝑝2)(𝑝3 ·𝑝4). This is in agreement

with the results quoted in [Gro+16] (Table I), [DHS97] (Tables 1 and 2) or [FP17].

Final form of the QKE

The full expression of the collision integral is derived in the appendix C.2. As for
the mean-field term, it is diagonal in momentum space: 𝒞®𝑝1

®𝑝1
is proportional to 𝜹®𝑝1®𝑝1 .

Therefore, all the terms in the QKE are momentum-diagonal, and the actual equation
is obtained by removing the momentum-conserving delta-functions. Notably, we will
denote as the collision integral the quantity ℐ, related to 𝒞 via 𝒞®𝑝1

®𝑝1
= (2𝜋)3 2𝐸1 𝛿(3)(®𝑝1 −

®𝑝1)ℐ[𝜚], and the QKE reads:

i
d𝜚(𝑝)

d𝑡 = [𝑡 + Γ, 𝜚] + iℐ . (2.49)

2.3 QKEs for neutrinos in the early Universe
In this last section, we gather the previous elements of the QKE to introduce the precise
equations that will be numerically solved in various cases.

2.3.1 Set of Quantum Kinetic Equations
We present here the QKE for 𝜚(𝑝, 𝑡), obtained from (2.12) after dividing each term by the
momentum-conserving function 𝜹®𝑝®𝑝′ from (2.20). Moreover, the time derivative d/d𝑡
becomes 𝜕/𝜕𝑡 − 𝐻𝑝 𝜕/𝜕𝑝 to account for the expansion of the Universe, 𝐻 ≡ ¤𝑎/𝑎 being
the Hubble rate, given by Friedmann’s equation 𝐻2 = (8𝜋𝒢/3)𝜌. The QKEs read:

i
[
𝜕

𝜕𝑡
− 𝐻𝑝 𝜕

𝜕𝑝

]
𝜚 =

[
𝑈
M2

2𝑝 𝑈
† , 𝜚

]
+
√

2𝐺𝐹
[
N𝜈 − N𝜈̄ , 𝜚

]

− 2
√

2𝐺𝐹𝑝
[Elep + Plep

𝑚2
𝑊

+ 4
3
E𝜈 + E𝜈̄

𝑚2
𝑍

, 𝜚
]
+ iℐ (2.50)
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where we recall the definitions in flavour space Elep ≡ diag(𝜌𝑒− + 𝜌𝑒+ , 𝜌𝜇− + 𝜌𝜇+ , 0)
and likewise for Plep. Similarly, the QKEs for the antineutrino density matrix read
(cf. appendix B.2):

i
[
𝜕

𝜕𝑡
− 𝐻𝑝 𝜕

𝜕𝑝

]
𝜚 = −

[
𝑈
M2

2𝑝 𝑈
† , 𝜚

]
+
√

2𝐺𝐹
[
N𝜈 − N𝜈̄ , 𝜚

]

+ 2
√

2𝐺𝐹𝑝
[Elep + Plep

𝑚2
𝑊

+ 4
3
E𝜈 + E𝜈̄

𝑚2
𝑍

, 𝜚
]
+ iℐ̄ (2.51)

The collision term is the sum of the contributions from different physical pro-
cesses: scattering with charged leptons (𝜈𝑒± ↔ 𝜈𝑒±), annihilation (𝜈𝜈̄ ↔ 𝑒+𝑒−) and
self-interactions (involving only 𝜈 and 𝜈̄). Note that in the collision integral, we do
not take into account the interactions with muons whose number density is negligible
in the range of temperatures of interest. The expressions for the processes involving
charged leptons are exactly the same as the ones quoted in [SP16] [eqs. (2.4)–(2.10)], and
we do not report them here for brevity. This reference, however, does not contain the
full expressions for neutrino self-interactions, of which we derived explicitly a part in
the section 2.2.4. Our complete expression for the self-interactions contribution to the
collision integral reads:16

ℐ[𝜈𝜈] =1
2

25𝐺2
𝐹

2𝑝1

∫
[d3®𝑝2][d3®𝑝3][d3®𝑝4](2𝜋)4𝛿(4)(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4)[

(𝑝1 · 𝑝2)(𝑝3 · 𝑝4)𝐹sc(𝜈(1) , 𝜈(2) , 𝜈(3) , 𝜈(4))
+ (𝑝1 · 𝑝4)(𝑝2 · 𝑝3)

(
𝐹sc(𝜈(1) , 𝜈̄(2) , 𝜈(3) , 𝜈̄(4)) + 𝐹ann(𝜈(1) , 𝜈̄(2) , 𝜈(3) , 𝜈̄(4))

) ]
,

(2.52)

with the statistical factors for scattering and annihilation processes:

𝐹sc(𝜈(1) , 𝜈(2) , 𝜈(3) , 𝜈(4)) = [𝜚4(1 − 𝜚2) + Tr(· · · )] 𝜚3(1−𝜚1)+(1−𝜚1)𝜚3 [(1 − 𝜚2)𝜚4 + Tr(· · · )]
− [(1 − 𝜚4)𝜚2 + Tr(· · · )] (1 − 𝜚3)𝜚1 − 𝜚1(1 − 𝜚3) [𝜚2(1 − 𝜚4) + Tr(· · · )] , (2.53)

𝐹sc(𝜈(1) , 𝜈̄(2) , 𝜈(3) , 𝜈̄(4)) = [(1 − 𝜚2)𝜚4 + Tr(· · · )] 𝜚3(1−𝜚1)+(1−𝜚1)𝜚3 [𝜚4(1 − 𝜚2) + Tr(· · · )]
− [𝜚2(1 − 𝜚4) + Tr(· · · )] (1 − 𝜚3)𝜚1 − 𝜚1(1 − 𝜚3) [(1 − 𝜚4)𝜚2 + Tr(· · · )] , (2.54)

𝐹ann(𝜈(1) , 𝜈̄(2) , 𝜈(3) , 𝜈̄(4)) = [𝜚3𝜚4 + Tr(· · · )] (1−𝜚2)(1−𝜚1)+(1−𝜚1)(1−𝜚2) [𝜚4𝜚3 + Tr(· · · )]
− [(1 − 𝜚3)(1 − 𝜚4) + Tr(· · · )] 𝜚2𝜚1 − 𝜚1𝜚2 [(1 − 𝜚4)(1 − 𝜚3) + Tr(· · · )] , (2.55)

where, as before, we chose the more compact notation 𝜚 𝑘 = 𝜚(𝑝𝑘), and Tr(· · · ) means
the trace of the term in front of it.

16It is equivalent to eq. (96) of [BC16] (one only needs to swap the variables ®𝑝3 ↔ ®𝑝4 in the second and
fourth terms of (2.53)). Our expression highlights the “gain − loss + h.c.” structure of this collision term.
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2. The Quantum Kinetic Equations

2.3.2 Reduced equations
In this final section, we transform the QKE (2.50) and in particular the collision integral
into a form suitable for numerical resolution, which will be the topic of the next chapter.

Reduction of the collision integral The most time consuming part of the QKE is
the computation of the collision term. Thanks to the homogeneity and isotropy of
the early Universe, and the particular form of the scattering amplitudes, the nine-
dimensional collision integrals can be reduced to two-dimensional ones [HM95; ST97;
DHS97; Gro+16]. We follow here the reduction method of [DHS97]. The first idea is to
use the integral representation of the delta function:

𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4) =
∫

d3®𝜆
(2𝜋)3 𝑒

i®𝜆·(®𝑝1+®𝑝2−®𝑝3−®𝑝4) ,

and use spherical coordinates defined as follows: the “®𝑒z unit vector” for ®𝜆 is aligned
with ®𝑝1, while ®𝜆 is the “®𝑒z unit vector” for ®𝑝𝑖≥2, that is,

cos𝜃𝜆 ≡ ®𝑝1 · ®𝜆
𝑝1𝜆

; cos𝜃𝑖 ≡ ®𝑝𝑖 ·
®𝜆

𝑝𝑖𝜆
for 𝑖 = 2, 3, 4 ,

the associated azimuthal angles 𝜑𝜆 , 𝜑𝑖≥2 being defined as usual. Then, thanks to the
very simple form of the scattering amplitudes in the four-fermion approximation —
cf. for instance (2.45) and (2.46) —, we can perform all the 𝜑 and 𝜃 integrations. The
next step consists in performing the integration on 𝜆, whose result can be analytically
calculated [DHS97; BC16] (these are the so-called “𝐷−functions” of Dolgov, Hansen
and Semikoz [DHS97], which are piecewise quadrivariate polynomials). Finally, we are
left with a three-dimensional integral on the momentum moduli 𝑝2 , 𝑝3 , 𝑝4, and one of
them is done integrating out the energy delta function 𝛿(𝐸1 + 𝐸2 − 𝐸3 − 𝐸4), namely∫
𝑝4d𝑝4 𝛿(𝐸1 + 𝐸2 − 𝐸3 − 𝐸4) = 𝐸1 + 𝐸2 − 𝐸3, since 𝑝4d𝑝4 = 𝐸4d𝐸4. This procedure is

outlined in the Appendix C.3.

Equation in comoving variables In view of a numerical implementation, let us use
the comoving variables introduced in (1.42).

Therefore, the QKEs are rewritten:

𝜕𝜚(𝑥, 𝑦1)
𝜕𝑥

= − i
𝑥𝐻

(
𝑥
𝑚𝑒

) [
𝑈

M2

2𝑦1
𝑈† , 𝜚

]
+ i2
√

2𝐺𝐹
𝑥𝐻

𝑦1

(𝑚𝑒

𝑥

)5
[
Ēlep + P̄lep

𝑚2
𝑊

, 𝜚

]

− i
√

2𝐺𝐹
𝑥𝐻

(𝑚𝑒

𝑥

)3 [
N𝜈 − N𝜈̄ , 𝜚

] + i8
√

2𝐺𝐹
3𝑥𝐻 𝑦1

(𝑚𝑒

𝑥

)5
[
Ē𝜈 + Ē𝜈̄

𝑚2
𝑍

, 𝜚

]
+ 1
𝑥𝐻
ℐ , (2.56)
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with the two-dimensional collision integral (recall that we assume 𝑓𝑒 = 𝑓𝑒 , which re-
groups some terms):

ℐ =
𝐺2
𝐹

2𝜋3𝑦1

(𝑚𝑒

𝑥

)5 ∫
𝑦2d𝑦2 𝑦3d𝑦3 𝐸̄4 × 1

2

×
[
4 [2𝑑1 + 2𝑑3 + 𝑑2(1, 2) + 𝑑2(3, 4) − 𝑑2(1, 4) − 𝑑2(2, 3)]

×
(
𝐹𝐿𝐿sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4)) + 𝐹𝑅𝑅sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4))

)
− 4𝑥2 [𝑑1 − 𝑑2(1, 3)] /𝐸̄2𝐸̄4 ×

(
𝐹𝐿𝑅sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4)) + 𝐹𝑅𝐿sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4))

)
+ 4 [𝑑1 + 𝑑3 − 𝑑2(1, 4) − 𝑑2(2, 3)] ×

(
𝐹𝐿𝐿ann(𝜈(1) , 𝜈̄(2) , 𝑒(3) , 𝑒(4)) + 𝐹𝑅𝑅ann(𝜈(1) , 𝜈̄(2) , 𝑒(3) , 𝑒(4))

)
+ 2𝑥2 [𝑑1 + 𝑑2(1, 2)] /𝐸̄3𝐸̄4 ×

(
𝐹𝐿𝑅ann(𝜈(1) , 𝜈̄(2) , 𝑒(3) , 𝑒(4)) + 𝐹𝑅𝐿ann(𝜈(1) , 𝜈̄(2) , 𝑒(3) , 𝑒(4))

)
+ [𝑑1 + 𝑑3 + 𝑑2(1, 2) + 𝑑2(3, 4)] × 𝐹sc(𝜈(1) , 𝜈(2) , 𝜈(3) , 𝜈(4))
+ [𝑑1 + 𝑑3 − 𝑑2(1, 4) − 𝑑2(2, 3)] ×

(
𝐹sc(𝜈(1) , 𝜈̄(2) , 𝜈(3) , 𝜈̄(4)) + 𝐹ann(𝜈(1) , 𝜈̄(2) , 𝜈(3) , 𝜈̄(4))

) ]
(2.57)

The 𝑑−functions are 𝑑𝑖 = (𝑥/𝑚𝑒)𝑑DHS
𝑖 , with 𝑑DHS

𝑖 defined in[DHS97] as functions of the
momenta 𝑝, hence the prefactor 𝑥/𝑚𝑒 . It should be noted that [SP16; Ben+21] use a
different convention (4 times greater 𝐷−functions and opposite sign for 𝐷2). 𝐸̄ ≡ 𝐸/𝑇cm
is the comoving energy, and 𝐸4 stands for 𝐸1 + 𝐸2 − 𝐸3 by energy conservation. The full
expressions can be found in appendix A of [DHS97], appendix D of [BC16] or in the
appendix C.3 of this manuscript.

QKE for 𝝔̄ Similarly to the neutrino density matrix QKE, we rewrite (2.51) using the
comoving variables, which leads to:

𝜕𝜚(𝑥, 𝑦1)
𝜕𝑥

= + i
𝑥𝐻

(
𝑥
𝑚𝑒

) [
𝑈

M2

2𝑦1
𝑈† , 𝜚

]
− i2
√

2𝐺𝐹
𝑥𝐻

𝑦1

(𝑚𝑒

𝑥

)5
[
Ēlep + P̄lep

𝑚2
𝑊

, 𝜚

]

− i
√

2𝐺𝐹
𝑥𝐻

(𝑚𝑒

𝑥

)3 [
N𝜈 − N𝜈̄ , 𝜚

] − i8
√

2𝐺𝐹
3𝑥𝐻 𝑦1

(𝑚𝑒

𝑥

)5
[
Ē𝜈 + Ē𝜈̄

𝑚2
𝑍

, 𝜚

]
+ 1
𝑥𝐻
ℐ̄ . (2.58)

These equations are at the core of any study of (anti)neutrino evolution in the
early Universe, and allow to take into account mixing (via the vacuum term), refractive
matter effects (mean-field potentials, including the self-interaction one), and collisions
which notably drive the transfer of entropy from electron/positron annihilations to-
wards (anti)neutrinos throughout the decoupling era. In the following chapters, we
will adapt these equations to particular setups of interest: the “standard” calculation of
neutrino decoupling in chapter 3, and the evolution of primordial neutrino asymmetries
in chapter 5. We will systematically be focusing on the final neutrino spectra, which al-
low to compute the cosmological observables we are interested in (namely, 𝑁eff), before
exploring further the consequences on BBN in chapter 4.
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CHAPTER 3
Standard neutrino decoupling
including flavour oscillations

Sometimes I’ll start a sentence and I don’t
even know where it’s going. I just hope I
find it along the way.

Michael Scott, The Office [S05E12]
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3. Standard neutrino decoupling

The material of this chapter has been partly published in [FPV20].

Several effects take place during neutrino decoupling, with some of them leaving
signatures on cosmological observables. From the numerical resolution of the QKE
that was derived in the previous chapter, we can obtain the evolution of the density
matrix 𝜚 and fully characterize the neutrino spectra during BBN and later cosmological
stages. In particular, we present in this chapter the calculation of “standard” neu-
trino decoupling and notably the resulting value of 𝑁eff. Its previous reference value
was 𝑁eff = 3.045 [SP16], but this calculation did not include some important finite-
temperature QED corrections (see below) and approximated the off-diagonal compo-
nents of the self-interaction collision term as damping factors. We present the first
calculation relaxing completely the damping approximation and including all (known)
QED corrections.
This standard calculation is thus based on the following assumptions.

• The early Universe is considered homogeneous and isotropic. Hence, the dynam-
ical evolution of spacetime is entirely described by the evolution of the scale factor
through Friedmann equation. This hypothesis was made in the derivation of the
QKEs in chapter 2, and is discussed in section 3.4.2.

• There is no asymmetry between neutrinos and antineutrinos. Therefore, we will
only follow the evolution of the neutrino density matrix 𝜚 , which is justified in
section 3.1.1

• We do not include a CP phase in the PMNS matrix (mostly because of the uncer-
tainty on its value). However, as detailed in section 3.5.1, its value does not affect
𝜚 𝑒𝑒 nor 𝑁eff, that is the key physical parameters for BBN. More generally, the cos-
mological observables are not affected by the value of the Dirac CP-violating phase
— a wider discussion of this property when including asymmetries is presented
in chapter 5.

• The QED plasma differs from an ideal gas because of finite-temperature correc-
tions [Dic+82; Hec94; FKS97; LT99; BS01; Man+02; Ben+20]. The associated cor-
rections to the equation of state are included in the energy conservation equation
(see below). The modifications to the scattering rates are yet to be included, since
they add a considerable layer of complexity to the computation of the collision
integrals [Ben+21].

Under these assumptions, we can specify the set of equations we solve and the features
of the numerical code, NEVO, developed for that purpose. Our main focus being the
role of flavour oscillations in neutrino evolution, we additionally introduce a particular
approximation of the evolution equations, based on the large separation of time scales
in the problem. Its excellent accuracy provides a powerful framework to understand
how the final neutrino distributions depend on physical parameters.

1We have checked numerically that solving additionally the QKE on 𝜚 gives consistent results.
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3.1. Set of equations

3.1 Set of equations
We present here the set of differential equations one needs to solve to determine the
evolution of all relevant quantities (notably, the neutrino spectra) across the decoupling
era.

3.1.1 Neutrino sector
On the neutrino side, we are interested in determining the evolution of the density
matrix 𝜚 , which is given by the QKE (2.56). Given the above hypotheses, this equation
can be simplified, reducing the number of terms in the oscillation Hamiltonian.

Neutrino asymmetry mean-field Except in the subsection 3.5.1 specifically dedicated
to it, we neglect the Dirac CP phase in the PMNS matrix (A.8), therefore the Hamiltonian
is a real symmetric matrix (instead of a hermitian matrix in the general case). We show
in the appendix B.2.2 that the structure of the QKEs preserves the equality 𝜚 = 𝜚∗ if it is
true initially (note that 𝜚∗ = 𝜚𝑇 where 𝑇 stands for the transposed of the matrix). A key
result of this chapter (cf. section 3.2) is that 𝜚 is diagonal in the “matter” basis, that is the
basis in which the Hamiltonian is diagonal. Since the Hamiltonian is a real symmetric
matrix, the effective mixing matrix between the matter and flavour bases is orthogonal.
Therefore, 𝜚 and 𝜚 cannot have imaginary components and we can conclude that 𝜚 = 𝜚
at all times.2

We will thus neglect the term N𝜈 − N𝜈̄ in the mean-field Hamiltonian, and solve
only the QKE for 𝜚 instead of 𝜚 and 𝜚 .

Neutrino energy density mean-field We will also discard the mean-field term pro-
portional to Ē𝜈+ Ē𝜈̄, as the deviations of 𝜚 from the equilibrium distribution ∝ 1 are very
small (cf. numerical results below). Thus, such a mean-field term will give a negligible
contribution within the commutator compared to Ēlep.

Summary Therefore, the QKE for standard neutrino decoupling in the early Universe
reduces to

𝜕𝜚(𝑥, 𝑦1)
𝜕𝑥

= − i
𝑥𝐻

(
𝑥
𝑚𝑒

) [
𝑈

M2

2𝑦1
𝑈† , 𝜚

]
+ i2
√

2𝐺𝐹
𝑥𝐻

𝑦1

(𝑚𝑒

𝑥

)5
[
Ēlep + P̄lep

𝑚2
𝑊

, 𝜚

]
+ 1
𝑥𝐻
ℐ . (3.1)

For convenience in the forthcoming discussion, we write the effective Hamiltonian
𝒱 ≡ ℋ0 +ℋlep, with

2There may be a caveat in this reasoning in the inverted hierarchy case for which an instability might
lead to the growing of the imaginary off-diagonal components of 𝜚 − 𝜚 [HST21] — but this is only the case
if 𝜚 is not exactly diagonal in the matter basis. We discuss this case in section 3.5.4.
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• the vacuum contribution

ℋ0 ≡ 1
𝑥𝐻

(
𝑥
𝑚𝑒

)
𝑈

M2

2𝑦1
𝑈† , (3.2)

which is inversely proportional to the momentum 𝑦1 ;

• the lepton mean-field part

ℋlep ≡ − 1
𝑥𝐻

(𝑚𝑒

𝑥

)5
2
√

2𝐺𝐹𝑦1
Ēlep + P̄lep

𝑚2
𝑊

, (3.3)

which depends linearly on 𝑦1.

Introducing the dimensionless collision term𝒦 ≡ ℐ/𝑥𝐻, the QKE can be rewritten as

𝜕𝜚

𝜕𝑥
= −i[𝒱 , 𝜚] + 𝒦 . (3.4)

The mass matrix M2 differs depending on the mass ordering considered. Except in
the subsection 3.5.4, we will systematically consider a normal mass ordering, favoured
by current neutrino oscillation data [Sal+21; Est+20].

3.1.2 Electromagnetic plasma sector
In principle, one could also follow the evolution of the distribution functions of pho-
tons, electrons and positrons throughout the decoupling era via a Boltzmann equation.
The collision term would then contain QED interactions, which are extremely efficient
compared to weak ones. In other words, photons, electrons and positrons will always
be kept at equilibrium by these interactions. This explains why we have taken the 𝑒±
distribution functions to be equilibrium Fermi-Dirac ones in the derivation of the QKEs.

Therefore, all the information on the statistical distribution of these particles is
contained in the plasma temperature 𝑇𝛾, or equivalently the comoving temperature
𝑧 = 𝑇𝛾/𝑇cm. Its evolution is most simply obtained from the continuity equation ¤𝜌 =
−3𝐻(𝜌+𝑃)with𝜌 and𝑃 the total energy density and pressure, that is𝜌 = 𝜌𝛾+𝜌𝜈+𝜌𝜈̄+𝜌𝑒± .
Note that we do not include the (anti)muon energy density in this equation as it is
negligible compared to 𝜌𝑒± in the decoupling era. This choice is consistent with the
absence of interactions with muons and antimuons in the collision integral: the only
role 𝜇± play in this problem is at the Hamiltonian level, ensuring the coincidence
between the flavour and matter bases at high temperature. The reheating due to 𝜇−𝜇+
annihilations affects equally neutrinos and the QED plasma (as it happens when all
species are still coupled), so we do not take it into account — it amounts to a different
normalization of 𝑇cm.
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Energy conservation and QED equation of state

We rewrite the continuity equation as an equation on the dimensionless photon tem-
perature 𝑧(𝑥) [Man+02; Ben+20]:

d𝑧
d𝑥 =

𝑥
𝑧
𝐽(𝑥/𝑧) − 1

2𝜋2𝑧3
1
𝑥𝐻

∫ ∞

0
d𝑦 𝑦3 Tr [ℐ] + 𝐺1(𝑥/𝑧)

𝑥2

𝑧2 𝐽(𝑥/𝑧) + 𝑌(𝑥/𝑧) +
2𝜋2

15 + 𝐺2(𝑥/𝑧)
, (3.5)

with

𝐽(𝜏) ≡ 1
𝜋2

∫ ∞

0
d𝜔 𝜔2 exp (

√
𝜔2 + 𝜏2)

(exp (
√
𝜔2 + 𝜏2) + 1)2

, (3.6)

𝑌(𝜏) ≡ 1
𝜋2

∫ ∞

0
d𝜔 𝜔4 exp (

√
𝜔2 + 𝜏2)

(exp (
√
𝜔2 + 𝜏2) + 1)2

. (3.7)

In (3.5), the integral involving the neutrino collision integral comes from d𝜌̄𝜈/d𝑥, given
that 𝜌̄𝜈 = 1

2𝜋2

∫
d𝑦 𝑦3 Tr[𝜚].

The 𝐺1 and 𝐺2 functions account for the modifications of the plasma equation of
state (departure from an ideal gas) due to finite-temperature QED corrections [Hec94;
Man+02; Ben+20]. Indeed, this is part of the features encountered in interacting quan-
tum fields at finite temperature; often interpreted as a modification of the dispersion
relation of electrons/positrons and photons which get extra “thermal masses”.3 They
can be calculated order by order in an expansion in powers of 𝛼 = 𝑒2/4𝜋: starting from
an expansion of the partition function 𝑍 and therefore the free energy 𝐹 [KG11], one
gets the thermodynamical quantities 𝜌 and 𝑃 at the desired order, and the 𝐺−functions
after implementing these modified energy density/pressure in the continuity equation.
The expressions read

𝐺(2)1 (𝜏) = 2𝜋𝛼
[
𝐾′(𝜏)

3 + 𝐽
′(𝜏)
6 + 𝐽′(𝜏)𝐾(𝜏) + 𝐽(𝜏)𝐾′(𝜏)

]
, (3.8)

𝐺(2)2 (𝜏) = −8𝜋𝛼
[
𝐾(𝜏)

6 + 𝐽(𝜏)6 − 1
2𝐾(𝜏)

2 + 𝐾(𝜏)𝐽(𝜏)
]

+ 2𝜋𝛼𝜏
[
𝐾′(𝜏)

6 − 𝐾(𝜏)𝐾′(𝜏) + 𝐽
′(𝜏)
6 + 𝐽′(𝜏)𝐾(𝜏) + 𝐽(𝜏)𝐾′(𝜏)

]
, (3.9)

𝐺(3)1 (𝜏) = −
√

2𝜋𝛼3/2√𝐽(𝜏) × 𝜏

[
2𝑗(𝜏) − 𝜏𝑗′(𝜏) + 𝜏2 𝑗(𝜏)2

2𝐽(𝜏)
]
, (3.10)

𝐺(3)2 (𝜏) =
√

2𝜋𝛼3/2√𝐽(𝜏)
[ (

2𝐽(𝜏) + 𝜏2 𝑗(𝜏))2

2𝐽(𝜏) + 6𝐽(𝜏) + 𝜏2 (3𝑗(𝜏) − 𝜏𝑗′(𝜏))
]
, (3.11)

3One must however be very careful with this interpretation which can lead to a missing 1/2 factor
in the pressure correction as in [Gro+16]. This factor is emphasized in [Man+02] and notably discussed
in [Ben+20].
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where (· · · )′ = d(· · · )/d𝜏, and with the additional functions

𝑗(𝜏) ≡ 1
𝜋2

∫ ∞

0
d𝜔

exp (
√
𝜔2 + 𝜏2)

(exp (
√
𝜔2 + 𝜏2) + 1)2

, (3.12)

𝐾(𝜏) ≡ 1
𝜋2

∫ ∞

0
d𝜔 𝜔2
√
𝜔2 + 𝜏2

1
exp (
√
𝜔2 + 𝜏2) + 1

, (3.13)

𝑘(𝜏) ≡ 1
𝜋2

∫ ∞

0
d𝜔 1√

𝜔2 + 𝜏2

1
exp (
√
𝜔2 + 𝜏2) + 1

. (3.14)

We discarded a logarithmic contribution to 𝐺(2)1,2 that is insignificant compared to the
dominant contribution to 𝐺(2)1,2 and even compared to 𝐺(3)1,2 [Ben+20]. Note that our
expressions look formally different from those of previous literature. For instance
(3.8) is formally different from the equivalent equation in [Man+02; Ben+20], while (3.9)
matches formally with [Man+02], but not with [Ben+20]. Finally, (3.10) and (3.11) slightly
differ from expressions reported in [Ben+20]. All expressions are in fact identical, since
one can prove (after integrations by parts and rearrangements) the following identities:

𝐽′(𝜏) = −𝜏𝑗(𝜏) , 𝐾′(𝜏) = −𝜏𝑘(𝜏) , 𝑌′(𝜏) = −3𝜏𝐽(𝜏) , 2𝐾(𝜏) + 𝜏2𝑘(𝜏) = 𝐽(𝜏) . (3.15)

3.2 Adiabatic transfer of averaged oscillations
Solving the full QKE (3.1) is a priori a considerable numerical challenge because of the
need to resolve numerically both the effect of the mean-field terms and of computation-
ally expensive collision integrals. However, the previous numerical results including
flavour mixing [Man+05; SP16; AY20] seem to indicate that the expected oscillations are
somehow “averaged” while there is a comparatively slow evolution due to collisions.
Indeed, these studies solved the full QKE (except some approximations in the collision
term), hence the vacuum and matter effects must be fully included in their results.

We expect a clear separation of time-scales to hold between the fast oscillations and
the secular evolution due to the change of Hamiltonian and the collision term, which
would allow for an effective description correctly capturing the salient features of the
dynamical evolution. Let us start from the QKE written in its compact form (3.4). We
treat the 𝑦 dependence of𝒱 implicitly, as the following procedure must be applied for
each 𝑦. Since the Hamiltonian 𝒱 is Hermitian, it can be diagonalized by the unitary
transformation

𝒱 = 𝑈𝒱𝐷𝒱𝑈†𝒱 with (𝐷𝒱)𝑗𝑘 = (𝐷𝒱)
𝑗
𝑗 𝛿

𝑗
𝑘 . (3.16)

The density matrix in the matter basis reads 𝜚𝒱 = 𝑈†𝒱 𝜚𝑈𝒱 , and evolves according to

𝜕𝜚𝒱
𝜕𝑥

= −i [𝐷𝒱 , 𝜚𝒱] −
[
𝑈†𝒱

𝜕𝑈𝒱
𝜕𝑥

, 𝜚𝒱
]
+𝑈†𝒱𝒦𝑈𝒱 . (3.17)
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3.2. Adiabatic transfer of averaged oscillations

The first approximation that we consider is the adiabatic approximation [HTT12; GK07]
which consists in neglecting the time evolution of the matter PMNS matrix compared
to the inverse effective oscillation frequency:

Adiabatic approximation




𝑈†𝒱 𝜕𝑈𝒱

𝜕𝑥





 ≪ ∥𝐷𝒱 ∥ . (3.18)

This condition means that the effective mixing matrix elements vary very slowly com-
pared to the effective oscillation frequencies, so that the matter basis evolves adia-

batically. More specifically, we need to check that
����
(
𝑈†𝒱

𝜕𝑈𝒱
𝜕𝑥

) 𝑗
𝑘

���� ≪
���(𝐷𝒱)𝑗𝑗 − (𝐷𝒱)𝑘𝑘

���.
Such adiabaticity condition is particularly important in presence of Mikheev-Smirnov-
Wolfenstein (MSW) resonances [MS85; Wol78]. Note that the sign of the mean-field
contribution to 𝒱 (3.3) is opposite to the one encountered due to charged-current
neutrino-electron scattering at lowest order, important for astrophysical environments
(Sun, supernovae, binary neutron star mergers). We numerically check (Figure 3.1) that
the condition (3.18) is indeed satisfied throughout the range of temperatures of interest.

If we now assume that many oscillations take place before the collision term varies
substantially and write the collision term in matter basis 𝒦𝒱 ≡ 𝑈†𝒱𝒦𝑈𝒱 , its variation
frequency∼ 𝒦−1

𝒱 (𝜕𝒦𝒱/𝜕𝑥)must be small compared to the effective oscillation frequency
𝐷𝒱 . We also assume that the collision rate itself is small compared to the oscillation
frequencies, namely

Averaged oscillations ∥𝒦𝒱 ∥ ,




𝒦−1
𝒱

𝜕𝒦𝒱
𝜕𝑥





 ≪ ∥𝐷𝒱 ∥ . (3.19)

We check on Figure 3.2 that this separation of time-scales holds. Therefore, it is possible
to average the evolution of 𝜚𝒱 over many oscillations (the collision term produces at
constant rate neutrinos with random initial phases). The non-diagonal parts will then
be washed out if the collision rate is not too strong. More precisely, we can write

(𝜚𝒱)𝑗𝑘(𝑥, 𝑦) ≡ 𝑒
−i(𝐷𝒱 )𝑗𝑗𝑥𝑅 𝑗𝑘(𝑥, 𝑦)𝑒 i(𝐷𝒱 )𝑘𝑘𝑥 =⇒ 𝜕𝑅 𝑗𝑘

𝜕𝑥
= 𝑒 i(𝐷𝒱 )𝑗𝑗𝑥(𝒦𝒱)𝑗𝑘𝑒−i(𝐷𝒱 )𝑘𝑘𝑥 , (3.20)

where we also assumed a slow variation of 𝐷𝒱 , as a consequence of the adiabatic
approximation. If (3.19) holds, 𝜕𝑅 𝑗𝑘/𝜕𝑥 is integrated over many oscillations and the
off-diagonal parts vanish. This leaves us with the effective equation in matter basis:

Adiabatic Transfer of Averaged Oscillations


𝜕𝜚𝒱
𝜕𝑥

= 𝑈†𝒱𝒦𝑈𝒱
:

𝜚𝒱 = 𝜚𝒱
, (3.21)

where the tilde means that we only keep the diagonal terms of 𝜚𝒱 , then convert it to
the flavour basis to compute the collision term𝒦 and only keep the diagonal part of the
collision term𝑈†𝒱𝒦𝑈𝒱 when transforming back to the matter basis. In the flavour basis,
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Figure 3.1 – Evolution of the different quantities appearing in (3.17) in the normal
hierarchy of masses, for a comoving momentum 𝑦 = 5. The condition (3.18) is satisfied
throughout the evolution.

the density matrix 𝜚 = 𝑈𝒱𝜚𝒱𝑈†𝒱 has off-diagonal components, while 𝜚𝒱 is diagonal.
Therefore the collision term destroys the coherence between these components (since it
aims at a diagonal 𝜚 in flavour space, with equilibrium distributions), which modifies
in turn the diagonal values of 𝜚𝒱 (whose off-diagonal terms average out).

For clarity, we refer to this approximate numerical scheme to determine the neutrino
evolution “Adiabatic Transfer of Averaged Oscillations” (ATAO) and we then solve (3.21)
instead of (3.4). Note that we explained the procedure with𝒱, but it could be carried
out with any Hamiltonian ℋ , which will be relevant when dealing with asymmetries
(cf. chapter 5). The full designation of this scheme is thus rather ATAO-𝒱 but we will
simply call it “ATAO” in this chapter since there cannot be any confusion.

In the following section, we will numerically solve the QKEs in both the full “exact”
case and the ATAO approximation and discuss the validity of the approximate numerical
solution.
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Figure 3.2 – Comparison of the evolution of the collision term, its relative variation and
the effective oscillation frequencies in the normal hierarchy of masses, for a comoving
momentum 𝑦 = 5. We check that the condition (3.19) is satisfied with several orders of
magnitude.

3.3 Numerical implementation
We integrate numerically the QKE for neutrinos (3.1), or (3.21) in the ATAO approxima-
tion, along with the energy conservation equation (3.5). We developed the code NEVO
(Neutrino EVOlver), written in Python with the scipy and numpy libraries.4

4Time consuming functions are compiled with the just-in-time compiler numba.
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Solver and initial conditions The collision term consists most of the time in nearly
compensating gain and loss terms, and for temperatures larger than 0.1 MeV, the system
is very stiff. Hence, one must rely on an implicit method. We chose the LSODA method
which consists in a Backward Differentiation Formula (BDF) method (with adaptative
order and adaptative step) when the system is stiff, which switches to an explicit method
when not stiff (the Adams method). It was first distributed within the ODEPACK Fortran
library [Hin83], but we used the Python wrapper solve_ivpdistributed with the Python
scipymodule. We noticed that when setting the absolute and relative error tolerances to
10−𝑛 , the spectra are typically obtained with precision better than 10−𝑛+2, in agreement
with section B.5 of [GSP19]. Hence we fixed these error tolerances to 10−7 so as to obtain
results with numerical errors below 10−5.

The initial common temperature of all species, that is all types of neutrinos and the
electromagnetic plasma, is inferred from the conservation of total entropy. Choosing
the initial comoving temperature 𝑇cm,in = 20 MeV, the initial common temperature of all
species is slightly larger because of early 𝑒± annihilations, and given by 𝑇in = 𝑧in𝑇cm,in
with 𝑧in−1 = 7.42×10−6. Had we chosen to start at𝑇cm,in = 10 MeV, the initial comoving
temperature would have been 𝑧in−1 = 2.98×10−5, in agreement with [Man+05; DHS99].
As initial condition for the density matrix we take

𝜚(𝑥in , 𝑦) =
©­­
«
𝑓 (in)𝜈 (𝑦) 0 0

0 𝑓 (in)𝜈 (𝑦) 0
0 0 𝑓 (in)𝜈 (𝑦)

ª®®
¬

, with 𝑓 (in)𝜈 (𝑦) ≡ 1
𝑒𝑦/𝑧in + 1

. (3.22)

Momentum grid The neutrino spectra are sampled with 𝑁 points on a grid in the
reduced momentum 𝑦. When choosing a linear grid, we use the range 0.01 ≤ 𝑦 ≤
16 + [𝑁/20], and integrals are evaluated with the Simpson method. However, for
functions which decay exponentially for large 𝑦, it is motivated to use the Gauss-
Laguerre quadrature which was already proposed in [GSP19]. We confirm that this
method typically requires half of the grid points to reach the same precision as the one
obtained with a linear spacing. In practice, when choosing the nodes and weights of the
quadrature, we restrict to 𝑦 ≤ 20 + [𝑁/5]. When using 𝑁 = 80, we have thus restricted
nodes to 𝑦 ≤ 36, and we used Laguerre polynomials of order 439 to compute the weights
with Eq. (B.14) of [GSP19]. Since the tools provided in numpy are restricted to much
lower polynomial orders, we used Mathematica to precompute once and for all in a few
hours the nodes and weights. The results reported in the following were performed
with 𝑁 = 80 and the Gauss-Laguerre quadrature, checking that with 𝑁 = 100 the
differences are smaller than the desired precision.

For each momentum 𝑦𝑖 of the grid, and with 𝑁𝜈 flavours, each density matrix has
𝑁2

𝜈 independent degrees of freedom (𝑁𝜈(𝑁𝜈 + 1) real parts and 𝑁𝜈(𝑁𝜈 − 1) imaginary
parts). In practice we reorganize these independent matrix entries into a vector 𝐴 𝑗(𝑦𝑖)
with 𝑗 = 1, . . . , 𝑁2

𝜈 and we concatenate them with the 𝑦𝑖 spanning the momentum grid.
We thus solve for serialized variables, that is a giant vector of length 𝑁𝑁2

𝜈 . When
using the ATAO approximation, one needs only to keep the diagonal part in the matter
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basis, and the giant vector is of size 𝑁𝑁𝜈.5 Note that we do not store the binned density
matrix components 𝜚𝛼𝛽 (𝑦𝑖), which would be sub-optimal. Indeed, if neutrinos decoupled
instantaneously, their distribution function would then be

𝑓 (eq)
𝜈 (𝑥, 𝑦) ≡ 1

𝑒𝑦 + 1 . (3.23)

Therefore, we can parametrize the density matrix 𝜚𝛼𝛽 (𝑥, 𝑦) =
[
𝛿𝛼𝛽 + 𝑎𝛼𝛽 (𝑥, 𝑦)

]
× 𝑓 (eq)

𝜈 (𝑥, 𝑦),
and we store the values of 𝑎𝛼𝛽 , which encapsulate the deviation from instantaneous
decoupling.

Mixing parameters As specified at the end of section 3.1, we will solve the QKEs in
the normal ordering case and without a Dirac CP phase, therefore using the parameters
given in A.2. We specifically include the CP phase in section 3.5.1, and discuss the case
of the inverted hierarchy of masses in section 3.5.4.

Numerical optimization via Jacobian computation. The implicit method requires to
solve algebraic equations and thus to obtain the Jacobian of the differential system.
For the sake of this discussion, and to alleviate the notation, we ignore the different
flavours and consider that we have only one neutrino flavour with spectrum 𝑓 (𝑦).
Noting the grid points 𝑦𝑖 and the values of the spectra 𝑓𝑖 = 𝑓 (𝑦𝑖) on the grid, the
differential system is of the type 𝜕𝑥 𝑓𝑖 = 𝒦𝑖(𝑥, 𝑓𝑗). The implicit method requires the
Jacobian 𝐽𝑖 𝑗 ≡ 𝜕𝒦𝑖/𝜕 𝑓𝑗 . If no expression is provided, it is evaluated by finite differences
in the { 𝑓𝑖} at a given 𝑥. Since the collision term involves a two-dimensional integral for
each point of the grid, its computation on the whole grid is of order 𝒪(𝑁3). Hence, the
computation of the Jacobian with finite differences is of order 𝒪(𝑁4). Since algebraic
manipulations (mostly the LU decomposition) are at most of order 𝒪(𝑁3), reducing the
cost of the Jacobian numerical evaluation is crucial to improve the speed of the implicit
method. Fortunately, it is possible to compute the Jacobian with an 𝒪(𝑁3) complexity.
To use a simple example, let us only consider the contribution from the loss part of the
neutrino self-interactions, without including Pauli-blocking factors. This component of
the collision term, once computed numerically with a quadrature, is of the form

𝒦𝑖(𝑥, 𝑓𝑗) = −
∑
𝑗 ,𝑘

𝑤 𝑗𝑤𝑘 𝑔(𝑦𝑖 , 𝑦𝑗 , 𝑦𝑘) 𝑓𝑖 𝑓𝑗 . (3.24)

In this expression
∑
𝑗 𝑤 𝑗 (resp.

∑
𝑘 𝑤𝑘) accounts for the integration on 𝑦2 (resp. 𝑦3)

in (2.57) using a quadrature, and the function 𝑔 takes into account the specific form of
the factor multiplying the statistical function (which is for the contribution considered
𝑓𝑖 𝑓𝑗). Noting then that

𝜕 𝑓𝑖/𝜕 𝑓𝑗 = 𝛿𝑖 𝑗 , (3.25)

5Results are then only converted at the very end in the flavour basis if desired.
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the Jacobian associated with the contribution (3.24) is

𝐽𝑖𝑚 = 𝜕𝒦𝑖/𝜕 𝑓𝑚 = −𝛿𝑖𝑚
∑
𝑗 ,𝑘

𝑤 𝑗𝑤𝑘 𝑔(𝑦𝑖 , 𝑦𝑗 , 𝑦𝑘) 𝑓𝑗 −
∑
𝑘

𝑤𝑚𝑤𝑘 𝑔(𝑦𝑖 , 𝑦𝑚 , 𝑦𝑘) 𝑓𝑖 . (3.26)

The complexity of the second sum is of order 𝒪(𝑁), and since the Jacobian has 𝑁2

entries, it leads to a complexity of order 𝒪(𝑁3). The first term is not worse even though
the double sum is of order 𝒪(𝑁2), because it concerns only the diagonal entries of the
Jacobian due to the prefactor 𝛿𝑖𝑚 . More generally for all contributions to the collision
term, the complexity when computing the associated Jacobian is always of order 𝒪(𝑁3),
even when taking into account Pauli-blocking factors which bring terms which are
cubic or quartic in the density matrix. For instance, terms similar to (3.24), but with
factors 𝑓𝑖 𝑓𝑗 𝑓𝑘 , are handled with the same method and would lead to three contributions
instead of two in (3.26). As for terms with factor 𝑓𝑖 𝑓𝑗 𝑓𝑙 , they would be handled using
total energy conservation 𝑦𝑖 + 𝑦 𝑗 = 𝑦𝑘 + 𝑦𝑙 , which allows for instance to replace the
variables of summations (e.g.

∑
𝑗 ,𝑘 →

∑
𝑗 ,𝑙) when varying with respect to 𝑓𝑙 . Following

these arguments, one notices that the exponent of the complexity for both the collision
term and its associated Jacobian is given by the number of independent momenta
magnitudes, given that integrations on momenta directions have all been removed with
the integration reduction method using the isotropy of momentum distribution. In the
case at hand, we have only two-body collisions, for which total energy conservation
implies that only three momenta magnitudes are independent, hence the complexity in
𝒪(𝑁3).

When restoring the fact that we do not have a single flavour but density matrices,
the discussion is similar when using the serialized variables described above, and again
the complexity is of order 𝒪(𝑁3). In practice, we found that it takes roughly five times
more time to compute a Jacobian than a collision term. Hence, when compared with the
finite difference method, providing a numerical method for the Jacobian leads to a factor
𝑁/5 speed-up. Note that we must also integrate 𝑧 with eq. (3.5) jointly with the density
matrices, so that we must pad the Jacobian obtained with the previous description with
one extra line and one extra column. Again, the corresponding entries can be deduced
using (3.25) and their computation is also of order 𝒪(𝑁3).

It is worth mentioning that providing a method for the Jacobian is not specific to
the ATAO approximation. Indeed, when solving the full QKE one can also compute
the Jacobian of the collision term, and one only needs to add the contribution from the
vacuum and mean-field commutators whose complexity is simply of order 𝒪(𝑁2). The
precise description of the Jacobian calculation, also adequate for the case of non-zero
asymmetries (cf. chapter 5) is done in appendix D.

When compared with the full QKE method, the ATAO numerical resolution allows
to gain at least a factor 5 in time. Hence when using both a method for the Jacobian
and the ATAO approximation, we gain typically a factor 𝑁 and computations that
would otherwise last days on CPU clusters, are reduced to just few hours on a single
CPU. Moreover, nothing prevents the computation of collision terms and Jacobians to
be parallelized on the momentum grid, as we checked on the 4 or 8 CPUs of desktop
machines, reducing even further the computation time.
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3.4. Neutrino temperature and spectra after decoupling

3.4 Neutrino temperature and spectra after
decoupling

We use our code NEVO with the parameters given in the previous section to follow
neutrino evolution across the MeV era. The quantities we are most interested in are the
frozen-out spectra of neutrinos after decoupling, which allow to compute in particular
their energy density (hence 𝑁eff as we also know the final photon temperature).

3.4.1 Numerical results: benchmark value for 𝑵eff

Since the diagonal entries of the neutrino density matrix correspond to the generaliza-
tion of the distribution functions, we can use the same parameterization as (1.43) to
separate effective temperatures and residual distortions, namely,

𝜚𝛼𝛼(𝑥, 𝑦) ≡
1

𝑒𝑦/𝑧𝜈𝛼 + 1
[1 + 𝛿𝑔𝜈𝛼 (𝑥, 𝑦)] , (3.27)

where we recall that the reduced effective temperature 𝑧𝜈𝛼 ≡ 𝑇𝜈𝛼/𝑇cm is the reduced
temperature of the Fermi-Dirac spectrum with zero chemical potential which has the
same energy density as the real distribution:

1
2𝜋2

∫
d𝑦𝑦3𝜚𝛼𝛼(𝑦) = 𝜌̄𝜈𝛼 ≡

7
8
𝜋2

30 𝑧
4
𝜈𝛼 . (3.28)

The appeal of this parameterization lies in the clear separation between energy changes
compared to instantaneous decoupling (hence gravitational effects through the Hubble
parameter), and non-thermal distortions which can only affect the reaction rates. This
will be very useful to study the consequences of incomplete neutrino decoupling on
BBN in chapter 4.

We plot in Figure 3.3 the evolution of the neutrino effective temperatures, with
and without flavour oscillations (including all QED corrections to the plasma thermo-
dynamics), and in Figure 3.4 the non-thermal residual distortions. In the absence of
flavour mixing (dashed lines on Figures 3.3 and 3.4), we cannot distinguish between 𝜈𝜇
and 𝜈𝜏 since they have exactly the same interactions with 𝑒± (neutral-currents only) and
with (anti)neutrinos, thus nothing distinguishes these two flavours in the no-mixing
case. On the contrary, the higher effective temperatures or non-thermal distortions
for the electronic flavour are due to the charged-current processes, which increase the
transfer of entropy from electrons and positrons.

The final values of the comoving temperatures and 𝑁eff are given in Table 3.1. We
find that including the different corrections shifts 𝑁eff in agreement with the results
quoted in Table 5 of [Ben+21]:

• the 𝒪(𝑒2) finite-temperature QED correction to the plasma equation of state in-
creases 𝑁eff by ∼ 0.01 (fourth and fifth rows in Table 3.1) ;
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Figure 3.3 – Evolution of the effective neutrino temperatures, with and without oscilla-
tions. Long before decoupling, they remain equal to the photon temperature 𝑧, before
freezing-out at different values depending on the interaction with the electromagnetic
plasma. Without mixing, the distribution functions (and thus, the effective tempera-
tures) are identical for 𝜈𝜇 and 𝜈𝜏.

• the next order in the QED corrections, 𝒪(𝑒3) reduces 𝑁eff by ∼ 0.001 (fifth and
sixth rows in Table 3.1), as predicted in [Ben+20], and also observed in [AY20] ;

• flavour oscillations have a subdominant contribution compared to QED correc-
tions, namely + 6 × 10−4 (third and sixth rows in Table 3.1).

Flavour oscillations reduce the discrepancy between the different flavours, thus 𝑧𝜈𝑒
is reduced while 𝑧𝜈𝜇 and 𝑧𝜈𝜏 are increased, with a very slightly higher value for 𝑧𝜈𝜇 .
This enhanced entropy transfer towards 𝜈𝜇 compared to 𝜈𝜏 is due to the more important
𝜈𝑒 − 𝜈𝜇 mixing (cf. Figure 3.6 and the corresponding discussion).

Comparison with the literature The deviation of the dimensionless temperatures
with respect to 1 can be expressed as a relative change in the energy density, 𝛿𝜌̄𝜈𝛼 ≃
4(𝑧𝜈𝛼 − 1). Our values for the increase in the neutrino energy density are 𝛿𝜌̄𝜈𝑒 ≃ 0.70 %,
𝛿𝜌̄𝜈𝜇 ≃ 0.53 % and 𝛿𝜌̄𝜈𝑒 ≃ 0.52 %. This is in agreement with the results of [SP16] (Table
1) or [AY20] (Table 2), except for the relative variation of muon and tau flavours: these
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Figure 3.4 – Frozen-out effective spectral distortions, with and without oscillations, for
𝑥 𝑓 ≃ 51 (corresponding to 𝑇cm, 𝑓 = 0.01 MeV). The full QKE results are indistinguishable
from the ATAO approximate ones.

works obtain a higher reheating of 𝜈𝜏 compared to 𝜈𝜇, while we find the opposite.
This is due to a difference in the values of the mixing angles.6 Nevertheless, if we
use the mixing angles from [SP16], we obtain 𝛿𝜌̄𝜈𝑒 ≃ 0.694 %, 𝛿𝜌̄𝜈𝜇 ≃ 0.525 % and
𝛿𝜌̄𝜈𝜏 ≃ 0.530 %. Furthermore, if 𝒪(𝑒3) QED corrections are not included and only the
diagonal components of the self-interaction collision term are kept, the spectra reach
less flavour equilibration and the results of [SP16] are recovered (at the level of a few
10−5): 𝛿𝜌̄𝜈𝑒 ≃ 0.706 %, 𝛿𝜌̄𝜈𝜇 ≃ 0.515 % and 𝛿𝜌̄𝜈𝜏 ≃ 0.522 %.

We emphasize that our work is the first to include the full form of the self-interaction
collision term and QED corrections to the plasma thermodynamics up to 𝒪(𝑒3) order.
Compared to [SP16], the closeness of our results is due to a compensation between the
update in the value of physical parameters (namely 𝒢, 𝐺𝐹) and the new ingredients of
our calculation. Our results have been independently confirmed in [Ben+21], providing
the new reference value for 𝑁eff [Zyl+21].

Validity of the ATAO approximation Finally, the results in Table 3.1 show the striking
accuracy of the ATAO approximation, as expected since the conditions (3.18) and (3.19)

6For instance, the older values used in [Man+05] lead to higher distortions for 𝜈𝜇 than for 𝜈𝜏.
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Final values 𝑧 𝑧𝜈𝑒 𝑧𝜈𝜇 𝑧𝜈𝜏 𝑁eff

Instantaneous decoupling, no QED 1.40102 1.00000 1.00000 1.00000 3.00000
No oscillations (NO), QED 𝒪(𝑒3) 1.39800 1.00234 1.00098 1.00098 3.04338
ATAO, no QED 1.39907 1.00177 1.00134 1.00132 3.03463
ATAO, QED 𝒪(𝑒2) 1.39786 1.00175 1.00132 1.00130 3.04491
ATAO, QED 𝒪(𝑒3) 1.39797 1.00175 1.00132 1.00130 3.04396
Full QKE, QED 𝒪(𝑒3) 1.39797 1.00175 1.00132 1.00130 3.04396

Table 3.1 – Frozen-out values of the dimensionless photon and neutrino temperatures,
and the effective number of neutrino species. We detail the results of different imple-
mentations in order to assess the contribution of each correction w.r.t. the instantaneous
decoupling approximation. 𝑁eff differs between the ATAO and full QKE calculations
by a few 10−6, which we attribute mainly to numerical errors. The values quoted here
differ slightly from [FPV20] due to the updated value of 𝒢 [Zyl+21], which affects the
Hubble expansion rate.

are satisfied by several orders of magnitude (Figures 3.1 and 3.2). The frozen-out values
of the comoving temperatures and of 𝑁eff differ by 10−6, which is beyond our desired
accuracy, and beyond the expected effect of neglected contributions.

In chapter 5, we extend the ATAO approximation to the case of a non-zero neu-
trino/antineutrino asymmetry, showing once again its accuracy and how it provides a
very efficient numerical way to tackle the problem of neutrino evolution.

Increase of 𝑵eff due to mixing The numerical solution of the QKE shows a larger
𝑁eff value (Table 3.1) compared to the no-oscillation case. To understand this slight
increase of the total energy density of neutrinos, one should keep in mind that electron-
positron annihilations, which is the dominant energy-transferring process during de-
coupling [Gro+16], are more efficient in producing electronic type neutrinos (because
of the existence of charged-current processes). Now the mixing and mean-field terms
tend to depopulate 𝜈𝑒 and populate the other flavours, which frees some phase space
for the reactions which create 𝜈𝑒 , while increasing the effect of Pauli-blocking factors
for reactions creating 𝜈𝜇,𝜏. Since the former are the dominant reactions, the net effect
is a larger entropy transfer from 𝑒±, hence the larger value of 𝑁eff. We further clarify
the effect of mixing and mean-field terms in the light of the ATAO approximation in the
section 3.5.

Before discussing the various limitations to this calculation in the next section, we
can quote the main result, namely the value of 𝑁eff in the Standard Model of particle
physics and in the ΛCDM model of cosmology,

𝑁eff = 3.0440 , (3.29)
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read on the two last rows of Table 3.1. The uncertainty on this result will be discussed
in section 3.5.

3.4.2 Limitations of the calculation
Let us discuss the some physical features that are not taken into account in this calcula-
tion of neutrino decoupling.

Neglected corrections to the plasma thermodynamics As explained in section 3.1.2,
the energy density and pressure of 𝑒± and photons are modified at finite temperature,
which is taken into account via the functions 𝐺1 and 𝐺2 in (3.5). These functions are
computed from the partition function of the QED plasma, in an expansion in powers of
𝑒. In our calculation, we included the contributions at order 𝒪(𝑒2) and 𝒪(𝑒3).

However, we discarded at order𝒪(𝑒2) a “log-dependent” term, that is a contribution
to the energy density and pressure involving a double integral with a logarithmic
dependence on momenta. It was indeed estimated that it should lead to a negligible
variation Δ𝑁eff ∼ −5 × 10−5 (see Eq. (4.21) in [Ben+20]), a result confirmed in [Ben+21]
(Table 3).

We have shown that the 𝒪(𝑒3) contribution leads to a reduction of 𝑁eff by 10−3,
which naturally asks the question of the higher order contributions. We can safely
ignore them according to the estimate of [Ben+20], which found for the 𝒪(𝑒4) correction
a contribution Δ𝑁eff ∼ 3.5 × 10−6 in the ultra-relativistic limit. This departure from
𝑁eff = 3.044 is way beyond our uncertainty goal.

Therefore, the finite-temperature QED corrections to the plasma thermodynamics
can be considered as fully taken into account at the level of 10−4 for the value of 𝑁eff.

Finite-temperature corrections to the scattering rates In the problem we consider,
finite-temperature corrections do not appear only in bulk thermodynamic quantities,
but also in weak scattering rates. Therefore, they should be accounted for in the
collision integral ℐ, in reactions involving electrons and positrons. There are four types
of such corrections to the weak rates [TH20; Ben+21]: modification to the dispersion
relation (which also leads to the modifications of the energy density and pressure),
vertex corrections, real emission or absorption of photons, and closed fermion loops.
Including them consistently in the collision term is a very tedious task that has not been
done yet.

The only estimate of these effects in the literature has been done using the value
of the difference in the energy loss rate in 𝑒− + 𝑒+ → 𝜈 + 𝜈̄ due to the rate corrections
in [Esp+03], which would lead to Δ𝑁eff ∼ −0.001 according to [Esc20]. However,
the estimate of [Esp+03] uses “temperature-dependent wave-function renormalization”
techniques, which have led to disagreements in the literature (notably with detailed
balance requirements being missed [BS01]). We thus conclude that a specific study
of finite-temperature corrections to the scattering rates and their effect on neutrino
decoupling must be undertaken.
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Hypothesis of isotropy There is, finally, a global underlying assumption that simpli-
fies considerably the problem: isotropy. Indeed, without this hypothesis the density
matrices would depend on both the direction and the magnitude of ®𝑝. This leads, for
instance, to non-vanishing angular integrals in the self-interaction mean-field (that is
important in the asymmetric case, see chapter 5). Moreover, isotropy is also used in
the reduction of the collision integral down to two dimensions. For these reasons, the
calculation would be considerably more involved if one released this assumption.

We can quote the work [HST21], which tried to tackle this problem with a simplified
framework: two bins of neutrinos (left-moving and right-moving, as a very crude
anisotropic model), and a simplified collision term. Their results seem to indicate that
the mean-field asymmetric neutrino contribution that we discarded might sometimes
play a role. However, their treatment of anisotropies remains incomplete: even though
a simple anisotropic model might be necessary at this stage, one should also consistently
consider the anisotropic degrees of freedom in the metric, whose dynamics is governed
by Einstein equations.

3.4.3 Neutrinos today
The neutrino spectra obtained after decoupling remain frozen from that point onwards,
so our numerical results allow us to calculate the thermodynamic quantities expected
for neutrinos today.

Neutrino energy density

Given the value of the CMB temperature today 𝑇CMB = 2.7255 ± 0.0006 K = (2.3487 ±
0.0005) × 10−4 eV [Fix09; Zyl+21], we can estimate the temperature of the C𝜈B in the
instantaneous decoupling limit:7

𝑇C𝜈B =
(

4
11

)1/3
𝑇CMB = 1.945 K = 1.676 × 10−4 eV . (3.30)

Given the values of the mass-squared differences (A.9) Δ𝑚2
21 ≃ 7.5 × 10−5 eV2 and

|Δ𝑚2
31 | ≃ 2.5 × 10−3 eV2 , the two heaviest mass eigenstates have necessarily masses

𝑚𝜈𝑖 ≫ 𝑇C𝜈B today. We could be more precise by using the results from section 3.4.1 and
compare 𝑚𝜈𝑖 and the effective 𝑇𝜈𝑖 today, but the conclusion would be identical since 𝑇𝜈𝑖
and 𝑇C𝜈B differ by ≃ 0.1 % (cf. Table 3.1).

We can then write the total neutrino energy density parameter as

Ω𝜈 =
𝜌𝜈 + 𝜌𝜈̄

𝜌crit
≃ 2

∑
𝑖 (𝑚𝜈𝑖𝑛𝜈𝑖 )
𝜌crit

, (3.31)

where we assume a zero asymmetry and that all mass species are non-relativistic today.
Should this be wrong, the error made would be completely negligible since 𝜌𝜈 is strongly

7We do not transfer the uncertainties from 𝑇CMB since they are below the ∼ 0.1 % variation of 𝑇𝜈 due
to incomplete neutrino decoupling, and thus meaningless.
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dominated, in the matter-dominated era, by the contribution from the non-relativistic
neutrinos.

The critical density today is [Zyl+21]

𝜌crit =
3𝐻2

0
8𝜋𝒢 = 8.0959 × 10−11 × ℎ2 eV4 ≡ 𝜌100

crit × ℎ2

This value corresponds to the updated value for Newton’s constant of gravitation 𝒢 =
6.67430 × 10−11 m3 · kg−1 · s−2. ℎ is the present value of the Hubble parameter in units
of 100 km · s−1 ·Mpc−1.

The conversion between the comoving quantities and the physical ones is done in
the following way:

𝑛𝜈𝑖 = 𝑛̄𝜈𝑖 × 𝑇3
cm = 𝑛̄𝜈𝑖 ×

(
𝑇𝛾
𝑧𝛾

)3

Today 𝑇𝛾 = 𝑇CMB, so we rewrite

Ω𝜈 =
2
∑
𝑖 𝑚𝜈𝑖 𝑛̄𝜈𝑖

𝜌100
crit × ℎ2

× 𝑇
3

CMB

𝑧3
𝛾

. (3.32)

Instantaneous decoupling In the instantaneous decoupling limit,

Inst. Dec.



𝑧𝛾 =

(
11
4

)1/3

𝑛̄ID =
3𝜁(3)
4𝜋2

.

From that, we can compute

𝜌100
crit𝑧

3
𝛾

2𝑛̄ID𝑇3
CMB

=
𝜌100

crit × 11
4

2 × 3𝜁(3)
4𝜋2 × 𝑇3

CMB

≃ 94.06 eV .

Therefore (3.32) becomes:

ΩID
𝜈 =

∑
𝑖 𝑚𝜈𝑖

94.06 eV × ℎ2 . (3.33)

Incomplete neutrino decoupling Thanks to our results, rewritten in the mass basis in
Table 3.2, we can actually make a precise prediction for Ω𝜈.

As the differences between the different 𝑧𝜈𝑖 are very small (see Table 3.2), the
approximation 𝑛𝜈1 ≃ 𝑛𝜈2 ≃ 𝑛𝜈3 is often made, allowing to factorize out the sum of
neutrino masses

∑
𝑚𝜈𝑖 in (3.31). Alternatively, one can assume the neutrino masses to

be quasidegenerate, i.e. 𝑚0 ≡ 𝑚𝜈1 ≃ 𝑚𝜈2 ≃ 𝑚𝜈3 ≫ 𝑇0
𝜈 . In this case, the differences of

masses can be neglected and we can once again factorize them. We then have

𝜌100
crit𝑧

3
𝛾

2(𝑛̄𝜈1 + 𝑛̄𝜈2 + 𝑛̄𝜈3)𝑇3
CMB
≃ 31.04 eV .
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Final values 𝑧 𝑧𝜈1 𝑧𝜈2 𝑧𝜈3 𝑁eff

ATAO, QED 𝒪(𝑒3) 1.39797 1.00191 1.00143 1.00102 3.04396

Table 3.2 – Frozen-out values of the dimensionless photon and neutrino effective tem-
peratures, defined for the mass eigenstates. We only report the ATAO values, which
differ from the full QKE results at the level of 10−6.

Thus we can write the result as

Ω𝜈 =
3𝑚0

93.12 eV × ℎ2 =
∑
𝑖 𝑚𝜈𝑖

93.12 eV × ℎ2 , (3.34)

as long as we do not make a difference between the masses today. We can compare this
to the previous result [Man+05], whose denominator value was 93.14 eV. Although this
is extremely close to what our much more precise study of neutrino decoupling gives,
one must remember that some differences are hidden in the new values of the physical
constants. For instance, the instantaneous decoupling value derived in Eq. (3.33) above
(94.06 eV) was quoted to be 94.12 eV at the time of the study [Man+05].

In order to fully exploit the results of our study, we plot in Figure 3.5 the gener-
alization of this coefficient to any value of the masses. We vary the minimal neutrino
mass and deduce the other two given the values (A.9), depending on the choice of mass
ordering. The endpoints of each line correspond to the minimal sum of masses, respec-
tively reached for 𝑚𝜈1 = 0 (normal ordering) and 𝑚𝜈3 = 0 (inverted ordering). We also
show the exclusion zone obtained in [Agh+20], showing the current range of variation
of this coefficient, and thus, of Ω𝜈.

Neutrino number density

To obtain the neutrino energy density today, we have actually computed their number
density for each mass eigenstate. Summing over all states, the total number density
reads ∑

𝑖

(𝑛𝜈𝑖 + 𝑛𝜈̄𝑖 ) ≃ 339.5 cm−3 . (3.35)

This is, among all astrophysical and cosmological sources, the largest neutrino density
at Earth (cf. the Grand unified neutrino spectrum in [VTR20]). However, due to the
very small energy of these neutrinos today, their direct detection is a considerable
task [Les+13; Bar+18; Bet+19].

3.5 Dependence on the physical parameters
In this section, we discuss how the results obtained in section 3.4 depend on the various
physical parameters that enter in the calculation. This allows us to get a nominal
uncertainty on the main result (3.29). Moreover, we also explore the physical role
played by flavour oscillations, aided by the ATAO approximation.
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Figure 3.5 – Dependence of the neutrino energy density parameter today with the sum
of neutrino masses. The grey area is the 95 % excluded zone by [Agh+20],

∑
𝑚𝜈𝑖 <

0.12 eV. The brown dash-dotted line corresponds to the value quoted in [Man+05;
Zyl+21], for which 𝑚𝜈1 ≃ 𝑚𝜈2 ≃ 𝑚𝜈3 ≫ 𝑇0

𝜈 , cf. equation (3.34).

3.5.1 Effect of the CP phase
The standard calculation we presented does not include a non-zero Dirac CP phase,
while this is not excluded by oscillation data. Indeed, the analysis of the appearance
channels 𝜈𝜇 → 𝜈𝑒 and 𝜈̄𝜇 → 𝜈̄𝑒 (whose oscillation probabilities get opposite shifts due
to the CP phase) in long-baseline accelerator experiments (T2K, NO𝜈A) and in neutrino
atmospheric data (Super-Kamiokande) show a preference8 for values 𝛿 ≠ 0◦ , 180◦. We
show in this section why this is nevertheless a safe choice, as such a phase does not
affect our results.

The generalized parameterization of the PMNS matrix (A.8) when including a CP
violating phase9 reads

𝑈 = 𝑅23𝑆𝑅13𝑆†𝑅12 =
©­­­
«

𝑐12𝑐13 𝑠12𝑐13 𝑠13𝑒−i𝛿

−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒 i𝛿 𝑐12𝑐23 − 𝑠12𝑠23𝑠13𝑒 i𝛿 𝑠23𝑐13

𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒 i𝛿 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒 i𝛿 𝑐23𝑐13

ª®®®
¬
, (3.36)

8Note that there is a relative tension between the determinations of 𝛿 obtained from T2K and NO𝜈A
data in the normal mass ordering case, while there is an excellent agreement in the inverted ordering
scenario [Est+20; Kel+21].

9We do not include possible Majorana phases that have no effect on neutrino oscillations.
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where 𝑆 = diag(1, 1, 𝑒 i𝛿). The best-fit value quoted in [Zyl+21] is 𝛿 = 1.36𝜋 rad,
while [Sal+21] quotes 𝛿NO = 1.08𝜋 rad and 𝛿IO = 1.58𝜋 rad. We will use, as al-
ways in this manuscript, the value from [Zyl+21], but the conclusions remain the same
regardless of the value chosen.

Although this new phase affects the vacuum oscillation term in the QKEs, it is
actually possible to factorize this dependence and reduce the problem to the case 𝛿 = 0,
in some limits that we expose below. We revisit the derivation of [BGV08; GV08; GV10;
Vol20], where conditions under which the CP phase has an impact on the evolution of
𝜚 in matter were first uncovered.

In this section, we will note with a superscript 0 the quantities in the 𝛿 = 0 case. We
introduce a convenient unitary transformation

𝑆̌ ≡ 𝑅23𝑆𝑅†23 ,

and define 𝜚 ≡ 𝑆̌†𝜚 𝑆̌ (likewise for 𝜚). Let us now prove that 𝜚 = 𝜚0. First, we need to
show that 𝜚 has the same evolution equation as 𝜚0. Let us rewrite the QKE (3.1) in a
very compact way:

i
𝜕𝜚

𝜕𝑥
= 𝜆[𝑈M2𝑈† , 𝜚] + 𝜇[Ēlep + P̄lep , 𝜚] + i𝒦(𝜚 , 𝜚) , (3.37)

with coefficients 𝜆, 𝜇 which can be read from (3.1). Applying 𝑆̌†(· · · )𝑆̌ on both sides of
the QKE gives the evolution equation for 𝜚 .

First, using that 𝑆̌†𝑈 = 𝑈0𝑆† (we recall that 𝑈0 is the PMNS matrix without CP
phase) and that M2 and 𝑆 commute since they are diagonal, the vacuum term reads
𝑆̌†[𝑈M2𝑈† , 𝜚]𝑆̌ = [𝑈0M2𝑈0† , 𝜚].

Then, the mean-field term satisfies

𝑆̌†[Ēlep + P̄lep , 𝜚]𝑆̌ ≃ [Ēlep + P̄lep , 𝜚] . (3.38)

This equality would be exact if we completely neglected the mean-field contribution of
the background muons, as the energy density would read Ēlep ≃ diag(𝜌𝑒− + 𝜌𝑒+ , 0, 0)
(likewise for the pressure). This is justified since the energy density of muons is neg-
ligible compared to the electron one across the decoupling era, and it results in muon
and tau neutrinos having the very same interactions, a condition evidenced in [GV10].
Moreover, in the region of high temperatures where the muon energy density get closer
to the electron one (even though, at 20 MeV, muons are still largely non-relativistic), the
commutator of Ēlep with 𝜚 vanishes as 𝜚 ∝ 1. The density matrix differs from 1 only
when 𝑒± annihilations are effective, which is “too late” for the muon mean-field to have
an effect. Therefore, we can safely take (3.38) as exact.

Finally, the collision term contains products of density matrices and 𝐺𝐿,𝑅 cou-
pling matrices for the scattering/annihilation terms with electrons and positrons.
Since [𝐺𝐿,𝑅 , 𝑆̌(†)] = 0 (as we only consider standard interactions), we can write
𝑆̌†𝒦(𝜚 , 𝜚)𝑆̌ = 𝒦(𝜚 , ˇ̄𝜚). Once again, the fact that 𝜈𝜇 and 𝜈𝜏 have identical interactions is
key to this factorization, as pointed out in [GV10] and previously in [BGV08; GV08] in
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the astrophysical context. In [GV10], the collision term is approximated by a damping
factor ; the factorization then holds since the damping coefficients are identical whether
they involve 𝜈𝜇 or 𝜈𝜏.

Therefore, the QKE for 𝜚 reads:

i
𝜕𝜚

𝜕𝑥
= 𝜆[𝑈0M2𝑈0† , 𝜚] + 𝜇[Ēlep + P̄lep , 𝜚] + i𝒦(𝜚 , ˇ̄𝜚) , (3.39)

which is exactly the QKE for 𝜚0, i.e.the QKE without CP phase. Moreover, the initial
condition (3.22) is unaffected by the 𝑆̌ transformation: 𝜚(𝑥in , 𝑦) = 𝜚0(𝑥in , 𝑦). Since the
initial conditions and the evolution equations are identical for 𝜚 and 𝜚0, then at all times
𝜚0(𝑥, 𝑦) = 𝜚(𝑥, 𝑦). We can therefore write the relation between the density matrices with
and without CP phase,

𝜚(𝑥, 𝑦) = 𝑆̌𝜚0(𝑥, 𝑦)𝑆̌† . (3.40)

This relation has two major consequences:

1. The trace of 𝜚 is unaffected by 𝛿, therefore 𝑁eff = 𝑁eff(𝛿 = 0) ;
2. The first diagonal component is unchanged 𝜚 𝑒𝑒 = (𝜚0)𝑒𝑒 . Equivalently with the

parameterization (3.27), 𝑧𝜈𝑒 = 𝑧0
𝜈𝑒 and 𝛿𝑔𝜈𝑒 = 𝛿𝑔0

𝜈𝑒 .

Therefore, under the assumptions made above (in particular, the initial distribution has
no chemical potentials), the CP phase will have no effect on BBN, since light element
abundances are only sensitive to 𝑁eff, 𝑧𝜈𝑒 and 𝛿𝑔𝜈𝑒 (see chapter 4). Note that in presence
of initial degeneracies, the initial conditions do not necessarily coincide 𝜚(𝑥in , 𝑦) ≠
𝜚0(𝑥in , 𝑦) and signatures of a CP phase could in principle be found in the primordial
abundances [GV10; Vol20]. We discuss this topic in section 5.5.5.

A useful rewriting of (3.40) can be made with the final distributions (𝑥 = 𝑥 𝑓 ), when
mean-field effects are negligible. The correspondence between the 𝛿 = 0 and 𝛿 ≠ 0 cases
reads in the matter basis (which is then the mass basis):

𝜚ℋ0(𝑥 𝑓 , 𝑦) = 𝑆𝜚0
ℋ0
(𝑥 𝑓 , 𝑦)𝑆† . (3.41)

Note that the transformation involves now 𝑆 instead of 𝑆̌ (this is linked to the fact that
the transformation between 𝜚 and 𝜚ℋ0 is made through 𝑈 , while the transformation
between 𝜚0 and 𝜚0

ℋ0
involves 𝑈0). We can go further using the ATAO approximation,

which constrains the form of 𝜚 and allows to analytically estimate the effect of the CP
phase. In the ATAO approximation, 𝜚0

ℋ0
is diagonal, such that we get the result:

ATAO 𝜚ℋ0(𝑥 𝑓 , 𝑦) = 𝜚0
ℋ0
(𝑥 𝑓 , 𝑦) . (3.42)

Defining effective temperatures 𝑧𝜈𝑖 for the mass states (𝑖 = 1, 2, 3), we have then 𝑧𝜈𝑖 =
𝑧0
𝜈𝑖 . Using the PMNS matrix to express the results in the flavour basis, the effective
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temperatures read:10

𝑧𝜈𝑒 = 𝑧0
𝜈𝑒 ,

𝑧𝜈𝜇 = 𝑧0
𝜈𝜇 −

1
2 (𝑧𝜈1 − 𝑧𝜈2) sin (2𝜃12) sin (𝜃13) sin (2𝜃23) [1 − cos (𝛿)] ,

𝑧𝜈𝜏 = 𝑧0
𝜈𝜏 +

1
2 (𝑧𝜈1 − 𝑧𝜈2) sin (2𝜃12) sin (𝜃13) sin (2𝜃23) [1 − cos (𝛿)] .

(3.43)

These relations show that the CP phase only affects the muon and tau neutrino distribu-
tion functions, with a [cos (𝛿)−1] dependence. For the preferred values of 𝛿 = 1.36𝜋 rad
and the mixing angles [Zyl+21], and with the results for 𝛿 = 0 from section 3.4, we expect
|𝑧𝜈𝜇 − 𝑧0

𝜈𝜇 | = |𝑧𝜈𝜏 − 𝑧0
𝜈𝜏 | ≃ 4.7 × 10−5. This is in excellent agreement with the numerical

results obtained solving the QKE with a CP phase (see Table 3.3).

Final values 𝑧 𝑧𝜈𝑒 𝑧𝜈𝜇 𝑧𝜈𝜏 𝑁eff

𝛿 = 0 1.39797 1.00175 1.00132 1.00130 3.04396
𝛿 = 1.36𝜋 rad 1.39797 1.00175 1.00127 1.00135 3.04396

Table 3.3 – Frozen-out values of the dimensionless photon and neutrino temperatures,
and the effective number of neutrino species. We compare the results without CP phase
(see also Table 3.1) and with the average value for 𝛿 from [Zyl+21].

Finally, the antineutrino density matrices satisfy the same relation as for neutri-
nos (3.40) 𝜚(𝑥, 𝑦) = 𝑆̌𝜚0(𝑥, 𝑦)𝑆̌†. The QKEs in the absence of CP phase preserve the
property 𝜚0 = (𝜚0)∗ if it is true initially. The asymmetry with 𝛿 ≠ 0 would then read
𝜚 − 𝜚 = 𝑆̌(𝜚0 − 𝜚0∗)𝑆̌†. Therefore, CP violation effects in the 𝜈𝜇 and 𝜈𝜏 distributions
(which would be contributions ∝ sin 𝛿) can arise from the complex components of 𝜚0,
thus requiring the ATAO approximation to break down. Since in the cosmological con-
text without initial degeneracies the approximation is very well satisfied, there can be
no additional CP violation and the formulae (3.43) are equally valid for antineutrinos.

Let us mention that we also performed a calculation solving the full QKEs for both
neutrinos and antineutrinos, with a non-zero CP phase, and the results were once again
the same as the ATAO approximate ones and consistent with (3.41).

3.5.2 Role of flavour oscillations
As we have shown in section 3.4.1, flavour oscillations do not significantly affect the
value of 𝑁eff compared to, for instance, the inclusion of 𝒪(𝑒3) finite-temperature QED
corrections to the plasma thermodynamics, although they affect much more impor-
tantly the neutrino spectra (see Figures 3.3 and 3.4). Therefore, if one is interested in
understanding how flavour oscillations modify the physics at play during decoupling
— for instance because 𝑁eff is not the only relevant quantity (for BBN, for instance) —

10These expressions are rigorously exact for the energy densities, and they can be rewritten for the
effective temperatures since 𝑧𝜈 − 1 ≪ 1.
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a deeper study is called for. Notably, we will study precisely the changes brought by
the vacuum + mean-field terms in the QKE, and how the mixing parameters play a role
(through their values or their sign, for instance considering the inverted hierarchy of
masses).

ATAO transfer functions The ATAO approximation allows to get some insight on the
impact of the mixings and mean-field terms, as its extreme accuracy shows that flavour
oscillations “only act as” changes of matter basis across the evolution.

Let us define the “ATAO transfer function”

𝒯 (𝛼→ 𝛽, 𝑥 → 𝑥′, 𝑦) =
[
𝑈𝒱(𝑥′, 𝑦)

(
𝑈†𝒱(𝑥, 𝑦)𝐷(𝛼)𝑈𝒱(𝑥, 𝑦)

):
𝑈†𝒱(𝑥′, 𝑦)

]𝛽
𝛽

, (3.44)

where 𝐷(𝛼) is a diagonal matrix with a non-vanishing (unit) component, that is
[𝐷(𝛼)]𝛽𝛾 ≡ 𝛿

𝛽
𝛼𝛿

𝛼
𝛾 (no summation). Equation (3.44) corresponds to the probability for

a state of flavour 𝛼 and momentum 𝑦 generated at a pseudo scale factor 𝑥, “averaged”
according to the ATAO approximation, to re-emerge as a flavour 𝛽 at later 𝑥′, if it is
not affected by collisions in the meantime. When evaluated at 𝑥′ → ∞, the asymp-
totic 𝒯 (𝛼 → 𝛽, 𝑥, 𝑦) ≡ 𝒯 (𝛼 → 𝛽, 𝑥 → ∞, 𝑦) provide information on neutrino flavour
conversion from their last scattering with other species, until all neutrino spectra are
frozen since mean-field and collisions are then negligible. These asymptotic functions
are shown on Figure 3.6.

If mean-field effects can be ignored, the asymptotic ATAO transfer function con-
verges to the following expression

𝒯 vac(𝛼→ 𝛽) ≡
[
𝑈

(
𝑈†𝐷(𝛼)𝑈

):
𝑈†

]𝛽
𝛽

, (3.45)

which is independent of 𝑦 and where the PMNS matter matrix is replaced by the
vacuum one. Note that 𝒯 vac(𝛼 → 𝛽) = 𝒯 vac(𝛽 → 𝛼), as can be seen on Figure 3.6 at
small temperatures.

Proof that (only) mixing in vacuum matters

Due to the particular features of this standard calculation (no asymmetries, very small
corrections compared to the instantaneous decoupling limit), we will show that the
role of flavour mixing on neutrino spectra is essentially captured by considering solely
vacuum mixing. To gain this insight on the impact of the mixing and mean-field
terms, we have performed two schematic calculations, including either the neutrino
probabilities at the end of the evolution, i.e. 𝑇cm, 𝑓 = 0.01 MeV (“No osc., post-aver.”),
or keeping only the mixing and collision terms during the evolution (“Without mean-
field”). The corresponding results are shown in Table 3.4.
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Figure 3.6 – Asymptotic ATAO transfer function 𝒯 (𝛼 → 𝛽, 𝑥, 𝑦) for 𝑦 = 5. The
asymptotic values for large 𝑥 correspond to the vacuum oscillation averages (3.45).

Final values 𝑧 𝑧𝜈𝑒 𝑧𝜈𝜇 𝑧𝜈𝜏 𝑁eff

No oscillations, QED 𝒪(𝑒3) 1.39800 1.00234 1.00098 1.00098 3.04338
No osc., post-averaging, QED 𝒪(𝑒3) 1.39800 1.00173 1.00130 1.00127 3.04340
W/o mean-field, QED 𝒪(𝑒3) 1.39796 1.00175 1.00132 1.00131 3.04405
ATAO, QED 𝒪(𝑒3) 1.39797 1.00175 1.00132 1.00130 3.04396

Table 3.4 – Frozen-out values of the dimensionless photon and neutrino temperatures,
and the effective number of neutrino species. The no oscillations result is presented
here to facilitate the discussion. The post-averaging result corresponds to Eq. (3.46).

A crude treatment of flavour mixing: post-averaging method The goal of the first
schematic calculation is to start from the no-mixing results (Boltzmann equation, second
row in Table 3.1), and “post-average” them (in the ATAO sense), namely,

(𝜚post)𝛽𝛽 ≡
∑
𝛼

(𝜚NO)𝛼𝛼 𝒯 vac(𝛼→ 𝛽) . (3.46)

From Table 3.4 one can see that the electronic spectra are suppressed and other neutrino
types spectra are enhanced by this vacuum averaging procedure. Since one can nearly
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recover the exact oscillation case results by averaging the final results found without
oscillations, it proves that the different values of the effective neutrino temperatures
between the no-oscillation case and the full oscillation case are likely to be essentially
due to the effect of the mixings. However, the post-averaging of the no-oscillation case
preserves, by construction, the trace of 𝜚 hence the energy density 𝜌𝜈. Therefore, it
cannot capture the enhancement of 𝑁eff discussed at the end of section 3.4.1.

Role of the mean-field term In the second schematic calculation we have solved the
QKEs (3.1) without the mean-field term, i.e., keeping only the vacuum and collision
terms.11 This is somehow an improvement of the “post averaging” procedure, since
it neglects the variation of the transfer functions (which always have their asymptotic
vacuum values), but accounts correctly for the effect of collisions. The accuracy of the
results compared to the full treatment shows once more that the effect of the mean-field
is very mild in this case. Indeed, the mean-field contribution becomes effective when 𝜚
deviates from a matrix proportional to the identity, which only happens when 𝑥 ∼ 3 ×
10−1: however at this point the mean-field contribution is becoming negligible compared
to the vacuum one (cf. Figure 3.6). Note that this would not hold if we introduced
chemical potentials [BVW99; Dol+02; GV10; Mir+12; Sav+13; HTT12]. The higher value
obtained for 𝑁eff in this case can be qualitatively understood. Since 𝒯 vac(𝑒 → 𝑒) <
𝒯 (𝑥 ≪ 1, 𝑒 → 𝑒), 𝜈𝑒 produced by collisions will be more converted into other flavours
(in particular 𝜈𝜏) at early times compared to the full calculation. This frees some phase
space for the reheating of 𝜈𝑒 , which is the dominant process. More entropy is transferred
from 𝑒± annihilations, which increases slightly 𝑁eff.

3.5.3 Dependence on the mixing angles
The transfer functions introduced in the previous section also shed some light on the
importance of the precise value of the mixing angles, which explain some discrepancy
with previous results (see section 3.4.1). Indeed, varying 𝜃𝑖 𝑗 within their uncertainty
ranges slightly modify the 𝒯 (𝛼 → 𝛽) curves, which can cross each other. For instance,
with the set of parameters used in [SP16], the asymptotic value 𝒯 vac(𝑒 → 𝜏) is higher
than 𝒯 vac(𝑒 → 𝜇), contrary to Figure 3.6. This higher conversion of electron neutrinos
into tau neutrinos explains why their final temperatures are 𝑧𝜈𝜏 ≳ 𝑧𝜈𝜇 (the values
remaining very close).

The experimental uncertainties on the values of the mixing angles [Zyl+21] lead
to small variations of the neutrino distribution functions and 𝑁eff. The numerical
sensitivity of 𝑁eff to the variation of the mixing angles around their preferred values is
found to be:

𝜕𝑁eff
𝜕𝜃12

≃ 8 × 10−4 rad−1 ; 𝜕𝑁eff
𝜕𝜃13

≃ 9 × 10−4 rad−1 ;
����𝜕𝑁eff
𝜕𝜃23

���� ≪
����𝜕𝑁eff
𝜕𝜃12

���� ,
����𝜕𝑁eff
𝜕𝜃13

���� .
(3.47)

11We thus have, at all times,𝑈𝒱 = 𝑈 and the matter basis coincides with the mass basis.
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The sensitivity with respect to 𝜃23 is much smaller than for the other mixing angles,
and cannot be separated from numerical noise. Given the uncertainties at ±1𝜎 on the
mixing angles [Zyl+21], we estimate the associated variation of 𝑁eff to be Δ𝑁eff ≃ 10−5,
beyond our accuracy goal.

3.5.4 Inverted mass ordering case
In the inverted mass ordering, for which Δ𝑚2

31 < 0, we obtain an increase of 𝑁eff
by 5 × 10−6 when solving the QKE (3.1). To understand this, we plot on Figure 3.7
the transfer functions 𝒯 (𝛼 → 𝛽, 𝑥, 𝑦) in the inverted hierarchy case. Comparing this
plot with Figure 3.6, we see that electronic neutrinos can be generated above an MSW
resonance (e.g. at about 4 MeV for 𝑦 = 5), and are converted nearly entirely into 𝜈𝜇
and 𝜈𝜏 (solid lines on Figure 3.7). Again, this impacts subsequent collisions because it
frees some phase space for 𝜈𝑒 , which is beneficial for the total production of neutrinos.
However, since neutrino decoupling occurs mainly at temperatures which are below
the MSW resonance,12 the differences between normal and inverted hierarchies are
extremely small.
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Figure 3.7 – Asymptotic ATAO transfer function𝒯 (𝛼→ 𝛽, 𝑥, 𝑦) for 𝑦 = 5 in the inverted
hierarchy of neutrino masses.

12This is not the case for very large 𝑦 but they are subdominant in the total energy density budget.
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Given the discussion of the previous section, it appears that neutrino decoupling
is mostly sensitive to the neutrino mixings, whereas it has little sensitivity to the mass-
squared differences and therefore to the neutrino mass hierarchy.

However, a recent work by Hansen et al. [HST21] uncovered potential instabilities
that could occur during neutrino evolution. In particular, in the inverted ordering case
with symmetric initial conditions, the number densities of neutrinos and antineutrinos
are the same, but there can be an effect of different off-diagonal terms that build up and
trigger collective effects. Indeed, if there are non-zero off-diagonal imaginary terms
in 𝜚 , then 𝜚 − 𝜚 will be non-zero even though the number densities would be equal.
Therefore, including the asymmetric neutrino term in the QKE (which is not the case in
our calculation and in other standard studies of neutrino decoupling [SP16; Ben+21]),
it could be possible to see such imaginary parts grow exponentially. However, in the
“standard” calculation of 𝑁eff we performed there should be no such imaginary parts:
they are zero initially, and the validity of our ATAO approximation (which amounts to
say that 𝜚 is diagonal in the matter basis, hence notably real in the flavour basis) shows
that they should keep vanishing.

Imaginary parts in the flavour basis can physically only appear from the oscillatory
phases of 𝜚 (that is, from departures from the ATAO approximation). Given the values
of the oscillation frequencies and the fact that they are 𝑦-dependent, the oscillations of
the different 𝑦-modes will be dephased so one would need extremely many grid points
to follow the evolution and capture the cancellation — or not — of the imaginary parts
in N𝜈 − N𝜈̄.

The results of [HST21] nevertheless indicate that, even when the instability occurs,
𝑁eff is changed at most by 5 × 10−4. This is due to the very small difference between
the distributions of 𝜈𝑒 , 𝜈𝜇 and 𝜈𝜏: even if there are large flavour conversions due to this
instability, it will remain a higher order effect compared to the global reheating of the
three neutrino flavours.
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CHAPTER 4
Consequences for Big Bang

Nucleosynthesis

I’m too young to die! And too old to eat off
the kids’ menu! What a stupid age I am!

Jason Mendoza, The Good Place [S02E02]
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The material of this chapter was partly published in [FP20] and [FPV20].

During the MeV era, electron-positron annihilations and the subsequent distortions
of neutrino spectra throughout their decoupling leave some imprints that we dicussed
in the previous chapter: an increased energy density parameterized by 𝑁eff, and some
non-thermal distortions. However, we only focused on the lepton sector, completely
disregarding the baryons that are also present in the early Universe. There are indeed
in negligible number, as the baryon-to-photon ratio is estimated at 𝜂 = 𝑛𝑏/𝑛𝛾 ≃ 6.1 ×
10−10 [Fie+20]. Yet, the cooling of the Universe allows for the formation of light nuclides
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during the so-called Big Bang nucleosynthesis (BBN), topic of this chapter. Due to the
value of 𝜂, it is justified to take neutrino evolution as a background result and to study
how it affects BBN.

We show in Table 4.1 the latest experimental values of the primordial abundances,
and the ones predicted numerically. BBN numerical codes have indeed been developed
over the past decades since the pioneering work of Wagoner [WFH67], the most widely
used being PRIMAT [Pit+18], AlterBBN [Arb12; Arb+20] or PArthENoPE [Pis+08; Con+18;
Gar+22]. In this chapter, the values presented are updated from the works [FP20;
FPV20] and obtained with PRIMAT. We recall the notations introduced in 1.2.3: we call
𝑛𝑖 the number density of isotope 𝑖 and 𝑛𝑏 is the baryon density, which allow to define
the number fraction of isotope 𝑖, 𝑋𝑖 ≡ 𝑛𝑖/𝑛𝑏 . The mass fraction is therefore 𝑌𝑖 ≡ 𝐴𝑖𝑋𝑖 ,
where 𝐴𝑖 is the nucleon number. It is customary to define1 𝑌p ≡ 𝑌4He and 𝑖/H ≡ 𝑋𝑖/𝑋H.

Abundances 𝑌p D/H (×10−5) 3He/H (×10−5) 7Li/H (×10−10)

Observations 0.2453 ± 0.0034
[Ave+21]

2.527 ± 0.030
[CPS18]

≤ 1.1 ± 0.2
[BRB02; Coo+22]

1.6 ± 0.3
[Sbo+10]

This work 0.24721±0.00014 2.438 ± 0.037 1.039 ± 0.014 5.505 ± 0.220

Table 4.1 – Light element abundances: latest observations and results from this work.
3He stands for 3He+T, and 7Li stands for 7Li+7Be to account for slow radioactive decays.
The uncertainties on the predicted values are obtained assuming that the baryon density
is determined from CMB+BAO [Agh+20], and performing a Monte-Carlo method on
the posterior of this baryon abundance, but also on the uncertainties of nuclear rates
and the neutron lifetime, see [Pit+18; Pit+21a].

The broad agreement between predictions and observations, spanning about nine
orders of magnitude from helium-4 to lithium-7, has been a decisive argument towards
the validation of the hot Big Bang model. However, problems persist such as the famous
lithium problem, with no good explanation to this day [Fie11; FO22].

This chapter is a synthesis and update of results partly published in two papers.
In [FP20], we studied the various ways in which incomplete neutrino decoupling affects
BBN, without taking into account flavour oscillations. Yet we compared the results
depending on the corrections that we included in the BBN code. In [FPV20], all cor-
rections were included while we focused on the difference between the oscillation and
no-oscillation cases. In this chapter, we will always use the results with flavour mix-
ing, but we will study the interplay between neutrino decoupling and BBN without
weak rates corrections to keep the discussion simple, before giving the “full” results in
section 4.2.5.

Comparisons with respect to a fiducial cosmology, where neutrinos are artificially
decoupled instantaneously prior to electron-positron annihilations, require the ability
to map different homogeneous cosmologies. There is no unique way to perform this

1This notation originates from the old astrophysical practice to call the mass fraction of hydrogen 𝑋, 𝑌
for helium and 𝑍 for heavier elements (“metals”), while the index p stands for “primordial”.

86



4.1. Incomplete neutrino decoupling and BBN

cosmology mapping, that is, to compute variations, similarly to the gauge freedom that
exists when comparing a perturbed cosmology with a background cosmology. For
instance, we can compare the fiducial instantaneous decoupling with the full neutrino
decoupling physics, either using the same cosmological times or the same cosmological
factors, or even the same plasma temperatures. The fact that there is no unique choice
complicates the discussion of the physical effects at play, but the physical observables,
e.g., the final BBN abundances, do not depend on it. We will systematically specify
which variable is left constant (cosmic time, scale factor, or photon temperature) when
comparing the true Universe to the fiducial one. Quantities written with a superscript
(0) correspond to the fiducial (instantaneous decoupling) cosmology, and the variation
of a quantity 𝜓 will be written as

𝛿𝜓 ≡ Δ𝜓

𝜓(0)
≡ 𝜓 − 𝜓(0)

𝜓(0)
.

4.1 Incomplete neutrino decoupling and BBN
By modifying the expansion rate of the Universe and affecting the neutron/proton weak
reaction rates, incomplete neutrino decoupling will slightly modify the BBN abundances
of light elements [Pit+18; Man+05; Gro+16].

To get a clear understanding of the physics at play, it is useful to recall the standard
picture of BBN [KT90; PU13].

1. Neutrons and protons track their equilibrium abundances,

𝑛𝑛
𝑛𝑝

����
eq

= exp (−Δ/𝑇𝛾) , (4.1)

where Δ = 𝑚𝑛 − 𝑚𝑝 ≃ 1.293 MeV is the difference of nucleon masses, until the
so-called “weak freeze-out," when the rates of 𝑛 ↔ 𝑝 reactions drop below the
expansion rate,

𝜆 ≡ Λ𝑛→𝑝 +Λ𝑝→𝑛
𝐻

����
𝑇FO

≃ 1 . (4.2)

2. After the freeze-out, neutrons only undergo beta decay until the beginning of
nucleosynthesis, and a good approximation is

𝑋𝑛(𝑇Nuc) = 𝑋𝑛(𝑇FO) × exp
[
− 𝑡Nuc − 𝑡FO

𝜏𝑛

]
, (4.3)

where 𝜏𝑛 ≃ 879.4 s [Zyl+21] is the neutron mean lifetime. The nucleosynthesis
temperature is usually defined when the deuterium bottleneck is overcome, with the
criterion 𝑛𝐷/𝑛𝑏 ∼ 1 [PU13; Les+13]. It can also be associated with the maximum in
the evolution of the deuterium abundance [BBF89], which coincides with the drop
in the density of neutrons (converted into heavier elements). We will adopt this
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definition, which is very close to the other criterion. Note that 𝑡Nuc − 𝑡FO ≃ 𝑡Nuc,
since 𝑡FO ≪ 𝑡Nuc. Indeed, we have numerically 𝑇FO ≃ 0.67 MeV and 𝑡FO ≃ 1.7 s for
the freeze-out, and 𝑇Nuc ≃ 73 keV and 𝑡Nuc ≃ 245 s for the start of nucleosynthesis.
There is a caveat in this oversimplified description: as shown in [GF16], the evo-
lution of the neutron abundance is not ruled only by beta decay below 𝑇FO. On
the contrary, one needs to take into account all weak interactions even for smaller
temperatures to avoid making potentially large mistakes on 𝑌p (see for instance
Figure 8 in [GF16]). However, the approximation leading to (4.3) is eventually
valid for large enough times (below 𝑇 ≃ 0.28 MeV according to [Pit+18]): since
𝑡Nuc ≫ 𝑡FO, using this “beta decay” model will provide good results for the upcom-
ing semi-analytical analysis, namely the calculation of 𝛿𝑋[Δ𝑡]𝑛 (see equations (4.5)
and (4.33) below).

3. Almost all free neutrons are then converted into 4He, leading to

𝑌p ≃ 2𝑋𝑛(𝑇Nuc) . (4.4)

This indicates very precisely where incomplete neutrino decoupling will intervene.
Weak rates, and thus the freeze-out temperature, are modified through the changes in
the distribution functions (different temperatures and spectral distortions 𝛿𝑔𝜈𝑒 ). But the
changes in the energy density will also modify the relation 𝑡(𝑇𝛾), leaving more or less
time for neutron beta decay and light element production. This is the so-called clock
effect, originally discussed in [DT92; FDT93]. In summary, the neutron fraction at the
onset of nucleosynthesis is modified as

𝛿𝑋[Nuc]
𝑛 ≡ Δ𝑋𝑛(𝑇Nuc)

𝑋(0)𝑛 (𝑇Nuc)
=

Δ𝑋𝑛(𝑇FO)
𝑋(0)𝑛 (𝑇FO)

− Δ𝑡Nuc
𝜏𝑛

≡ 𝛿𝑋[FO]
𝑛 + 𝛿𝑋[Δ𝑡]𝑛 , (4.5)

with Δ𝑡Nuc ≡ 𝑡Nuc − 𝑡(0)Nuc (we neglected the variation of 𝑡FO). For freeze-out (𝛿𝑋[FO]
𝑛 ), it

is a variation at constant 𝜆 = 1, which we take as our definition of freeze-out. 𝛿𝑋[Nuc]
𝑛 is

the neutron abundance variation between the onset of nucleosynthesis in the “actual"
Universe and the one in the reference universe. Given our definition of𝑇Nuc, the constant
quantity here is d𝑋𝐷/d𝑡 = 0.

Note that this model of freeze-out is quite similar to the instantaneous decoupling
approximation for neutrinos, i.e., we condense a gradual process into a snapshot. Ac-
tually, in the range 4 ≳ 𝜆 ≳ 0.2, there is a smooth transition between nuclear statistical
equilibrium [Eq. (4.1)] and pure beta decay. For the sake of argument, we keep the cri-
terion 𝜆 ≃ 1, and we will point out the limits of this model in the following discussions
when necessary.
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4.2 Detailed analysis with PRIMAT
In order to check the qualitative predictions of section 4.1, we incorporate the results
of neutrino decoupling from chapter 3 into the BBN code PRIMAT and investigate the
associated modification of abundances.

4.2.1 Overview of the BBN code
PRIMAT is a Mathematica code developed from the Fortran code used for instance
in [Coc+06; CV10; Coc+15], designed to compute as precisely as possible the primordial
abundances by including the various corrections to the weak and nuclear reaction rates.
It is presented in [Pit+18; Pit+20], and is broadly designed as follows:

• it solves the dynamics of the background, first obtaining the scale factor as a
function of the temperature 𝑎(𝑇𝛾) (either from entropy conservation in the ap-
proximation of instantaneous neutrino decoupling, or taking into account the
entropy transfer — see below), then 𝑎(𝑡) via Friedmann equation;

• once the thermodynamics and cosmological expansion are known, the weak rates
are computed on a grid of plasma temperatures so as to interpolate them. Different
corrections can be included in order to determine these rates with great precision;

• finally, it builds and solves the system of differential equations that accounts for
the nuclear and weak reactions.

We already mentioned the two levels at which incomplete neutrino decoupling
intervenes: changing the relation 𝑡(𝑇𝛾) via the different energy density and Friedmann
equation, and affecting the weak rates via the different electronic (anti)neutrino distri-
bution functions. Let us thus focus on the weak interaction reactions and how they are
implemented in PRIMAT.

Weak interaction reactions

The reactions which determine the neutron-to-proton ratio are:

𝑛 + 𝜈𝑒 ←→ 𝑝 + 𝑒− (4.6a)
𝑛 ←→ 𝑝 + 𝑒− + 𝜈̄𝑒 (4.6b)

𝑛 + 𝑒+ ←→ 𝑝 + 𝜈̄𝑒 (4.6c)

The neutron and proton densities evolve according to

¤𝑛𝑛 + 3𝐻𝑛𝑛 = −𝑛𝑛Λ𝑛→𝑝 + 𝑛𝑝Λ𝑝→𝑛 and ¤𝑛𝑝 + 3𝐻𝑛𝑝 = −𝑛𝑝Λ𝑝→𝑛 + 𝑛𝑛Λ𝑛→𝑝 ,

where the rates Λ𝑛→𝑝 correspond to (4.6) from left to right, and conversely for Λ𝑝→𝑛 .
In the Born approximation (also called infinite nucleon mass approximation), the scattering
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matrix elements take a simple form and we can write schematically (the bar shows that
we are at the Born approximation level)

Λ = 𝐾
∫ ∞

0
𝑝2d𝑝 𝐸2

𝜈 × [Stat. fact.] , (4.7)

with 𝑝 the electron or positron momentum. The prefactor reads 𝐾 = 4𝐺2
𝐹 |𝑉𝑢𝑑 |2 (1 +

3𝑔2
𝐴)/(2𝜋)3 with 𝑉𝑢𝑑 the first entry of the Cabibbo-Kobayashi-Maskawa (CKM) ma-

trix [Cab63; KM73] and 𝑔𝐴 = 1.2753(13) the axial-vector constant2 of nucleons [Zyl+21].
The neutrino energy must satisfy the conservation condition, which actually limits the
domain of integration. The statistical factor part contains only the product of elec-
tron/positron and (anti)neutrino distribution functions (that is the entries 𝜚 𝑒𝑒 and 𝜚 𝑒𝑒 of
the density matrix when we take into account mixing), since we can neglect the baryon
Pauli-blocking factors due to the very small baryon-to-photon ratio, and the other neu-
tron or proton distribution function is integrated upon, giving the density which gets
factored out.

Let us consider reaction (4.6a). Energy conservation requires, in the infinite nucleon
mass approximation, 𝐸𝜈 = 𝑚𝑝+𝐸−𝑚𝑛 = 𝐸−Δ, with𝐸 the electron energy. Since we must
have 𝐸𝜈 > 0, the integral (4.7) is thus limited to the domain 𝐸 > Δ, that is 𝑝 >

√
Δ2 − 𝑚2

𝑒 .
The statistical factor is

[Stat. fact.] = [1 − 𝑓𝑒(𝐸)] 𝑓𝜈𝑒 (𝐸 − Δ) = 𝑓𝑒(−𝐸) × 1 + 𝛿𝑔𝜈𝑒 (𝐸 − Δ)
𝑒(𝐸−Δ)/𝑇𝜈𝑒 + 1

, (4.8)

where we used the functional property of equilibrium Fermi-Dirac spectra 1 − 𝑓𝑒(𝐸) =
𝑓𝑒(−𝐸), and the parameterization of neutrino spectral distortions (3.27). If we assume
instantaneous neutrino decoupling, the neutrino distribution function reads 𝑓 (eq)

𝜈 (i.e.
𝑇𝜈𝑒 = 𝑇cm and 𝛿𝑔𝜈𝑒 = 0), and the reaction rate can be written:

Λ𝑛+𝜈𝑒→𝑝+𝑒− = 𝐾
∫
𝐸>Δ

𝑝2d𝑝 (𝐸 − Δ)2 𝑓𝑒(−𝐸) 𝑓 (eq)
𝜈 (𝐸 − Δ) , (4.9)

A similar procedure can be applied to reaction (4.6b). Energy conservation requires
𝐸𝜈̄ = Δ − 𝐸 > 0 hence 𝐸 < Δ. The statistical factor reads

[Stat. fact.] = [1 − 𝑓𝑒(𝐸)][1 − 𝑓𝜈̄𝑒 (Δ − 𝐸)] = 𝑓𝑒(−𝐸) ×
[
1 − 1 + 𝛿𝑔𝜈̄𝑒 (Δ − 𝐸)

𝑒(Δ−𝐸)/𝑇𝜈̄𝑒 + 1

]
, (4.10)

which can also be simplified in the instantaneous decoupling limit, using 1− 𝑓 (eq)
𝜈 (Δ−𝐸) =

𝑓 (eq)
𝜈 (𝐸 − Δ), such that

Λ𝑛→𝑝+𝑒−+𝜈̄𝑒 = 𝐾
∫
𝐸<Δ

𝑝2d𝑝 (𝐸 − Δ)2 𝑓𝑒(−𝐸) 𝑓 (eq)
𝜈 (𝐸 − Δ) , (4.11)

2Several conventions exist regarding this constant. In [Zyl+21], the vector and axial weak coupling
constants 𝑐𝑉 and 𝑐𝐴 are defined such that the matrix elements include the term [𝛾𝜇(𝑐𝑉 + 𝑐𝐴𝛾5)], while 𝑐𝐴
is often defined with an opposite sign. With this convention however, we have 𝑔𝐴 = −𝑐𝑉/𝑐𝐴 > 0.
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Finally, for the reaction (4.6c), energy conservation gives 𝐸𝜈̄ = 𝐸+Δ which does not
put any constraint on 𝑝. The statistical factor reads

[Stat. fact.] = 𝑓𝑒(𝐸)[1 − 𝑓𝜈̄𝑒 (𝐸 + Δ)] = 𝑓𝑒(𝐸) ×
[
1 − 1 + 𝛿𝑔𝜈̄𝑒 (𝐸 + Δ)

𝑒(𝐸+Δ)/𝑇𝜈̄𝑒 + 1

]
, (4.12)

which we simplify in the instantaneous decoupling limit as

Λ𝑛+𝑒+→𝑝+𝜈̄𝑒 = 𝐾
∫ ∞

0
𝑝2d𝑝 (−𝐸 − Δ)2 𝑓𝑒(𝐸) 𝑓 (eq)

𝜈 (−𝐸 − Δ) . (4.13)

We therefore introduce the functions:

𝐸∓𝜈 (𝐸) ≡ 𝐸 ∓ Δ and 𝜒±(𝐸) ≡
[
𝐸∓𝜈 (𝐸)

]2
𝑓𝑒(−𝐸) 𝑓 (eq)

𝜈

(
𝐸∓𝜈 (𝐸)

)
. (4.14)

We can then gather all the contributions in a single expression for the Born rates:

Λ𝑛→𝑝 = 𝐾
∫ ∞

0
𝑝2d𝑝 [𝜒+(𝐸) + 𝜒+(−𝐸)] . (4.15)

The first term in the integrand comes from the sum of Λ𝑛+𝜈𝑒→𝑝+𝑒− and Λ𝑛→𝑝+𝑒−+𝜈̄𝑒 , and
the second term is Λ𝑛+𝑒+→𝑝+𝜈̄𝑒 . This expression coincides with Eq. (77) in [Pit+18].

The reaction rate for protons is obtained by replacing Δ → −Δ, that is 𝜒+ → 𝜒−,
which reads for completeness

Λ𝑝→𝑛 = 𝐾
∫ ∞

0
𝑝2d𝑝 [𝜒−(𝐸) + 𝜒−(−𝐸)] . (4.16)

In addition to these Born rates, several corrections are implemented: radiative
corrections at zero and finite temperature, finite nucleon mass corrections, weak mag-
netism... and incomplete neutrino decoupling. We now focus on this latter particular
feature, the extensive derivation above showing directly where to modify the rates to
include the results from chapter 3. Note that, unless stated otherwise, QED corrections
to the plasma thermodynamics are included in the calculation.

4.2.2 Implementation of incomplete neutrino decoupling in
PRIMAT

In the version of PRIMAT used in [Pit+18], the lack of effective temperatures and spectral
distortion values across the nucleosynthesis era required an approximate strategy to
include incomplete neutrino decoupling. It consisted in neglecting spectral distortions
𝛿𝑔𝜈 = 0 while considering that all neutrinos shared the same temperature, that is an
effective average temperature 𝑇𝜈 consistent with the energy transfer between the QED
plasma and neutrinos. We can define it from the effective temperatures 𝑇𝜈𝛼 :

𝜌̄𝜈 =
7
8
𝜋2

30

(
𝑧4
𝜈𝑒 + 𝑧4

𝜈𝜇 + 𝑧4
𝜈𝜏

)
≡ 3 × 7

8
𝜋2

30 × 𝑧̂
4
𝜈 with 𝑧̂𝜈 =

𝑇𝜈
𝑇cm

. (4.17)
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It is not necessary to have the individual values of 𝑇𝜈𝛼 to compute 𝑇𝜈, as one can use
another key quantity: the heating rate [Pis+08]

𝒩 ≡ 1
𝑧4

(
𝑥

d(𝜌̄𝜈 + 𝜌̄𝜈̄)
d𝑥

)
𝑥=𝑥(𝑧)

=
1
𝑧4

1
2𝜋2𝐻

∫
d𝑦𝑦3 Tr[ℐ + ℐ̄] . (4.18)

which is obtained from (2.44) and the QKE (3.1), noting that the trace of a commutator
is zero. 𝑇4

𝛾𝒩 can be viewed as the volume heating rate of the neutrino bath in units of
the Hubble rate [Pit+18]. The values of𝒩 were obtained from a fit given in PArthENoPE
[Pis+08] [Eqs. (A23)–(A25)], computed by Pisanti et al. from the results of [Man+02;
Man+05].

Note that we can also compute 𝒩 from the variation on the comoving photon
temperature 𝑧, which is more convenient if we want to treat our numerical results a
posteriori, since we keep the values of 𝑧(𝑥) across the decoupling era. Starting from (3.5),
we have:

𝒩(𝑥) = 2𝑥
𝑧

{
𝑥
𝑧
𝐽
( 𝑥
𝑧

)
+ 𝐺1

( 𝑥
𝑧

)
−

[
𝑥2

𝑧2 𝐽
( 𝑥
𝑧

)
+ 𝑌

( 𝑥
𝑧

)
+ 2𝜋2

15 + 𝐺2

( 𝑥
𝑧

)]
× d𝑧

d𝑥

}
. (4.19)

We plot on Figure 4.1 the quantity 𝒩 deduced from the neutrino decoupling results of
chapter 3, and the fit provided in PArthENoPE.

This approximate handling of incomplete neutrino decoupling in the earlier version
of PRIMAT correctly captures the changes in the expansion rate (since (4.17) shows that
the energy density is well computed from 𝑇𝜈), but a priori it handles the weak rates
poorly: electron neutrinos are too cold (𝑇𝜈𝑒 > 𝑇𝜈), and their spectrum is not distorted.
This should in principle have consequences for the neutron-to-proton ratio at freeze-out,
and thus on the final abundances.

We modified PRIMAT to introduce the results from neutrino transport analysis. Since
the useful variable in nucleosynthesis is the plasma temperature𝑇𝛾, all other quantities3

(𝑥, 𝑇𝜈𝛼 , 𝛿𝑔𝜈𝛼 (𝑦𝑖)) are interpolated. Depending on the options chosen, one can then use
the “real" effective neutrino temperatures or the average temperature for comparison
with the previous approach (keeping the total energy density unchanged in each case).

Summary of neutrino decoupling results We plot on Figure 4.2 the evolution of
different quantities that play a significant role for BBN, obtained through the numerical
resolution presented in chapter 3. The evolution of the comoving temperatures has
already been discussed in the previous chapter. The reheating of the different species
is due to the entropy transfer from electrons and positrons, which is visualized by
plotting the variation of their number density. For 𝑇𝛾 ≫ 𝑚𝑒 , electrons are relativistic
and 𝑛̄𝑒± ≡ (𝑛𝑒− + 𝑛𝑒+) × (𝑥/𝑚𝑒)3 is constant, while for 𝑇𝛾 ≪ 𝑚𝑒 the density drops to zero.
The variation between those two constants corresponds to the annihilation period,
which indeed starts around 𝑇𝛾 ∼ 𝑚𝑒 and is over for 𝑇𝛾 ∼ 30 keV. At the beginning

3The non-thermal distortions depend both on the momentum (sampling on a grid with points 𝑦𝑖) and
time, hence on the plasma temperature 𝑇𝛾 .
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Figure 4.1 – Comparison of the dimensionless heating rate𝒩 computed with the results
from NEVO and equation (4.19), and the fit given in PArthENoPE [Pis+08]. For consistency
with the results at the time, we did not include the 𝒪(𝑒3) finite-temperature corrections
to the plasma thermodynamics in this calculation.

of this period, neutrinos progressively decouple and there is a heat transfer from the
plasma, visualized through the dimensionless heating rate 𝒩 defined in (4.18). The
slight overlap between the two curves in the bottom panel of Fig. 4.2 is the very reason
why neutrinos are partly reheated.

Finally, we plot the evolution of 𝑁eff, from 3 before the MeV age to its frozen value
3.044. To do so, we define it such that we can compute its value across the decoupling
era and not only long after decoupling, via

𝜌𝜈 + 𝜌𝜈̄ =
7
8

(
𝑇cm
𝑇𝛾

)4
𝑁eff × 𝜌𝛾 hence 𝑁eff = 3

(
𝑧̂𝜈𝑧(0)

𝑧

)4

. (4.20)

In this expression, 𝑧(0) is the photon temperature in the instantaneous decoupling limit.
All these quantities are taken as functions of either the comoving temperature 𝑇cm or
the photon temperature 𝑇𝛾. Comparing with Fig. 5 in [Gro+16], we note that there is no
“plateau" before the freeze-out. This behavior can be considered as an artifact due to
plotting 𝑁eff as a function of 𝑥 = 𝑚𝑒/𝑇cm: the plateau is due to the difference between
𝑇cm and 𝑇(0)cm for a given 𝑇𝛾, and does not represent a meaningful physical effect (see also
Fig. 7 in [Esp+00]). In other words, the asymptotic values of 𝑁eff are meaningful, while
the intermediate ones depend on the reference chosen, which is less significant.
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Figure 4.2 – Evolution of relevant quantities for neutrino decoupling, as a function
of the plasma temperature. Top: Comoving (effective) temperatures of the plasma and
neutrinos. Middle: Effective number of neutrinos, as defined in Eq. (4.20). Bottom: Neu-
trino heating rate and variation of the comoving electron+positron density (derivative
taken with respect to 𝑧/𝑥 = 𝑇𝛾/𝑚𝑒).
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4.2. Detailed analysis with PRIMAT

Corrections to the Born rates

The weak rates are modified at the Born level by including the effective temperatures
and distortions of electronic (anti)neutrinos in the rates (4.15) and (4.16). First, we have
the same expressions where the neutrino distribution functions are replaced in 𝜒±

𝑓 (eq)
𝜈 (𝐸∓𝜈 , 𝑇cm) → 𝑓𝐹𝐷(𝐸∓𝜈 , 𝑇𝜈𝑒 ) i.e. 1

𝑒𝐸∓𝜈 /𝑇cm + 1
→ 1

𝑒𝐸∓𝜈 /𝑇𝜈𝑒 + 1
.

Then, we derive the contribution from the non-thermal distortions starting from the
expressions of the statistical factors.

(a) The case of eq. (4.8) is the simplest since the neutrino is in the initial state, we just
need to add the extra contribution

(𝐸 − Δ)2 𝑓𝑒(−𝐸) 𝛿𝑔𝜈𝑒 (𝐸 − Δ)
𝑒(𝐸−Δ)/𝑇𝜈𝑒 + 1

= (𝐸−𝜈 )2 𝑓𝑒(−𝐸)
𝛿𝑔𝜈𝑒 (𝐸−𝜈 )
𝑒𝐸−𝜈 /𝑇𝜈𝑒 + 1

,

and note that 𝐸−𝜈 = |𝐸−𝜈 | > 0.

(b) For the reaction 𝑛 → 𝑝 + 𝑒− + 𝜈̄𝑒 , i.e. the statistical factor (4.10), note that Δ − 𝐸 =
−𝐸−𝜈 (𝐸) = |𝐸−𝜈 (𝐸)|, such that the extra contribution reads

(𝐸 − Δ)2 𝑓𝑒(−𝐸) × (−1) × 𝛿𝑔𝜈̄𝑒 (Δ − 𝐸)
𝑒(Δ−𝐸)/𝑇𝜈̄𝑒 + 1

= −(𝐸−𝜈 )2 𝑓𝑒(−𝐸)
𝛿𝑔𝜈̄𝑒 (|𝐸−𝜈 |)
𝑒 |𝐸−𝜈 |/𝑇𝜈̄𝑒 + 1

.

(c) Finally, for (4.12), the extra contribution is

(𝐸 + Δ)2 𝑓𝑒(𝐸) × (−1) × 𝛿𝑔𝜈̄𝑒 (𝐸 + Δ)
𝑒(𝐸+Δ)/𝑇𝜈𝑒 + 1

= −(𝐸−𝜈 )2 𝑓𝑒(𝐸)
𝛿𝑔𝜈𝑒 (−𝐸−𝜈 )
𝑒−𝐸−𝜈 /𝑇𝜈𝑒 + 1

,

where 𝐸−𝜈 = −𝐸 − Δ is evaluated at −𝐸. Since 𝐸−𝜈 < 0, we can replace −𝐸−𝜈 = |𝐸−𝜈 |.
If, as assumed in standard neutrino decoupling, we consider that neutrinos and antineu-
trinos have the same distributions, we can gather the corrections under the common
equation (the case of 𝑝 → 𝑛 rates is treated in the same way):

ΔΛ𝑛→𝑝 = 𝐾
∫ ∞

0
𝑝2d𝑝 [𝛿𝜒+(𝐸) + 𝛿𝜒+(−𝐸)] , (4.21a)

ΔΛ𝑝→𝑛 = 𝐾
∫ ∞

0
𝑝2d𝑝 [𝛿𝜒−(𝐸) + 𝛿𝜒−(−𝐸)] , (4.21b)

with
𝛿𝜒±(𝐸) =

��𝐸∓𝜈 (𝐸)��2 𝑓𝑒(−𝐸) sgn (𝐸∓𝜈 ) × 𝛿𝑔𝜈𝑒 (|𝐸∓𝜈 |)
𝑒 |𝐸∓𝜈 |/𝑇𝜈𝑒 + 1

. (4.22)

As evidenced above, the sgn function accounts for the fact that 𝑓𝜈𝑒 (|𝐸∓𝜈 |) appears as part
of a Pauli blocking factor if 𝐸∓𝜈 < 0, i.e., the neutrino is in a final state.
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4. Consequences for Big Bang Nucleosynthesis

Analysis via different implementations

We consider three different implementations:

(i) The earlier PRIMAT approach (no distortions and an average neutrino temperature),
where 𝑇𝜈 is computed from the effective temperatures via (4.17), although we
checked that computing it from the heating rate 𝒩 deduced from NEVO gave the
same results. We call this approach “𝑇𝜈" in Tables 4.2 and 4.5 and Figs. 4.3 and 4.6.

(ii) The weak rates including the real electron neutrino temperature, but still without
spectral distortions. We call this approach “𝑇𝜈𝑒 , no distortions."

(iii) Full results from neutrino evolution. We call this approach “𝑇𝜈𝑒 ,with distortions."

Note that these three scenarios take place in identical cosmologies, with the same energy
density; using the proper 𝜈𝑒 temperature and including distortions only affect the weak
rates.

𝑌p D/H × 105 3He/H × 105 7Li/H × 1010

Inst. decoupling, no QED 0.24268 2.4027 1.0339 5.4690
𝑇𝜈 0.24281 2.4122 1.0353 5.4470
𝑇𝜈𝑒 , no distortions 0.24278 2.4120 1.0353 5.4466
𝑇𝜈𝑒 , with distortions 0.24278 2.4125 1.0354 5.4479

Inst. decoupling, with QED 0.24268 2.4052 1.0343 5.4620
𝑇𝜈 0.24280 2.4146 1.0357 5.4403
𝑇𝜈𝑒 , no distortions 0.24278 2.4145 1.0356 5.4399
𝑇𝜈𝑒 , with distortions 0.24286 2.4149 1.0357 5.4412

Table 4.2 – Light element abundances, at the Born approximation level, for various
implementations of neutrino-induced corrections. See section 4.2.5 for results with the
full corrections derived in [Pit+18]. The number of digits is larger than the nominal
uncertainty but is chosen here so as to show the variations.

We show in Table 4.3 the relative variations of abundances when taking into account
incomplete neutrino decoupling, i.e., when going from the instantaneous decoupling
to the “𝑇𝜈𝑒 , with distortions” row in Table 4.2. We also compare these variations with
previous results in the literature. We check that our results are in close agreement with
Grohs et al. [Gro+16], but with opposite signs of variation (except for 4He) compared to
the results of Mangano et al. [Man+05]. The extensive study in the next section sheds
a new light on the different phenomena involved: our aim is to justify physically these
results.
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Variation of abundances 𝛿𝑌p 𝛿 (D/H) 𝛿
(3He/H)

𝛿
(7Li/H)

No QED corrections
Grohs et al. [Gro+16] 4.636 × 10−4 3.686 × 10−3 1.209 × 10−3 −3.916 × 10−3

This work 7.707 × 10−4 4.086 × 10−3 1.369 × 10−3 −3.855 × 10−3

QED corrections included
Naples group [Man+05] 7.05 × 10−4 −2.8 × 10−3 −1.1 × 10−3 3.92 × 10−3

This work 7.648 × 10−4 4.043 × 10−3 1.355 × 10−3 −3.814 × 10−3

Table 4.3 – Comparison with previous results. Note that baseline values are different
in the cases that do or do not include QED corrections (see Table 4.2). The values given
by the Naples group in [Man+05] are absolute variations, and we need the baseline
values to compute relative variations; as these were not given, we use our own baseline
values. Besides, our results with QED corrections include the 𝒪(𝑒3) corrections which
were absent in [Man+05] ; however, we checked that the relative variations were the
same if we restricted to 𝒪(𝑒2) corrections.

4.2.3 Neutron fraction at the onset of nucleosynthesis
We now review the physics that allows us to understand the numerical results of
Table 4.2. We first detail the physics affecting the helium abundance, which is directly
related to the neutron fraction at the onset of nucleosynthesis, before turning to the
production of other light elements, for which the clock effect dominates.

Neutron/proton freeze-out

Previous articles [DT92; FDT93; Man+05] studied the variation of 𝑛 ↔ 𝑝 rates due to
incomplete neutrino decoupling at constant scale factor, claiming that the Hubble rate
𝐻 was left unchanged at a given 𝑥. This argument of constant total energy density,
namely Δ(𝜌𝜈 + 𝜌𝜈̄) = −Δ𝜌em with 𝜌em the energy density of the QED plasma, requires
𝑇𝛾 ≃ 𝑇𝜈, as proven in the Appendix 3 of [DT92]. However, by looking at the top panel of
Fig. 4.2 it appears that at freeze-out 𝑇𝛾 and 𝑇𝜈𝛼 differ by ∼ 1 %, which is the typical order
of magnitude of variations we are interested in. Moreover, the analysis of [FDT93] used
thermal-equivalent distortions of neutrinos spectra (i.e., only effective temperatures, no
𝛿𝑔𝜈), calling for a more precise study making full use of our numerical results.

Due to the rich interplay of the processes involved, an analytical estimate of 𝛿𝑋[FO]
𝑛

is particularly challenging. Since our goal is to provide a satisfactory physical picture
of the role of neutrinos in BBN, and thus in particular to check Eq. (4.5), we perform a
numerical evaluation.

Figure 4.3 shows the variation of 𝑋𝑛 and 𝑇𝜈𝑒 ,𝛾 for the different implementations of
neutrino-induced corrections around the time of freeze-out. In each case, incomplete
neutrino decoupling leads to a decrease of 𝑋𝑛 at freeze-out.

For each implementation of neutrino-induced corrections the evolution of the pho-
ton temperature 𝑧(𝑥) is the same; the difference lies in whether or not we include 𝑧𝜈𝑒
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Figure 4.3 – Neutron fraction (top) and temperature (bottom) variations with respect
to instantaneous decoupling, in the different implementations of neutrino-induced cor-
rections. These quantities are plotted as a function of the ratio of the total 𝑛 ↔ 𝑝
reaction rate and the Hubble expansion rate, which is approximately equal to 1 at weak
freeze-out.

and 𝛿𝑔𝜈𝑒 . But the quantities in Fig. 4.3 are plotted with respect to 𝜆, which is a different
function of 𝑥 in each case. For instance, when including the real 𝜈𝑒 temperature, weak
rates increase and freeze-out is delayed, leading to a smaller𝑇𝛾(𝜆 ≃ 1) ≡ 𝑇FO: the orange
curve is below the blue one in the bottom panel of Fig. 4.3. Adding the distortions
increases the rates even more, and slightly decreases 𝑇FO (green curve). One would
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4.2. Detailed analysis with PRIMAT

then expect a reduction of 𝑋𝑛 , which would track its equilibrium value longer. While
this is true for thermal corrections (orange curve below the blue one in the top panel of
Fig. 4.3), adding the distortions disrupts this picture.

Disruption of detailed balance Indeed, the main effect of including neutrino spec-
tral distortions is to alter the detailed balance relation Λ𝑝→𝑛 = 𝑒−Δ/𝑇Λ𝑛→𝑝 . Let us
parameterize this deviation from detailed balance as4

Λ𝑝→𝑛 = exp
(
−Δ
𝑇
+ 𝜎𝜈

)
Λ𝑛→𝑝 , (4.23)

with 𝜎𝜈 ≪ 1. Writing this in terms of the Born rates Λ (which satisfy the detailed
balance equation), we get

𝜎𝜈 =
ΔΛ𝑝→𝑛
Λ𝑝→𝑛

− ΔΛ𝑛→𝑝

Λ𝑛→𝑝

, (4.24)

leading to a change in the equilibrium neutron abundance,

𝛿𝑋(eq)
𝑛 = (1 − 𝑋𝑛)𝜎𝜈 , (4.25)

since 𝑋𝑛/(1 − 𝑋𝑛) = 𝑛𝑛/𝑛𝑝 and (𝑛𝑛/𝑛𝑝)eq = Λ𝑝→𝑛/Λ𝑛→𝑝 . Corrections to the Born rates
are shown in Fig. 4.4. Equations (4.23) and thus (4.25) are not absolutely valid for 𝜆 ≃ 1
because deviations from detailed balance start earlier, but we can nonetheless estimate
from this plot that 𝜎𝜈(𝜆 ≃ 1) ≃ 0.001. With 𝑋𝑛(𝜆 ≃ 1) ≃ 0.2, we find from Eq. (4.25) that
including the spectral distortions increases the neutron fraction at freeze-out by

𝛿𝑋[FO],𝛿𝑔𝜈𝑒
𝑛 ≲ 0.08 % , (4.26)

where the definition of this value corresponds to the shift from the orange curve to the
green curve in the top panel of Fig. 4.3:

𝛿𝑋[FO],𝛿𝑔𝜈𝑒
𝑛 ≡ 𝛿𝑋[FO]

𝑛,[𝑇𝜈𝑒 ,with dist.] − 𝛿𝑋[FO]
𝑛,[𝑇𝜈𝑒 ,no dist.] . (4.27)

The value (4.26) is overestimated because at 𝜆 = 1, the neutron-to-proton ratio has al-
ready deviated from nuclear statistical equilibrium. In fact, one can reasonably consider
that the shift in 𝛿𝑋[FO]

𝑛 is due to the deviation from detailed balance at higher temper-
atures, when nuclear statistical equilibrium was actually verified (namely, for 𝜆 ∼ 4).
Indeed, using Eq. (4.25) for 𝜆 ∼ 4, we obtain the observed shift 𝛿𝑋[FO],𝛿𝑔𝜈𝑒

𝑛 = 0.02 %.
We conclude this detailed analysis of neutron/proton freeze-out by stating the

obtained value for 𝛿𝑋[FO]
𝑛 , which can be read from Fig. 4.3 at 𝜆 ∼ 1 in the “𝑇𝜈𝑒 , with

distortions" case:
𝛿𝑋[FO]

𝑛 ≃ +0.014 % . (4.28)
4Note that a similar deviation from detailed balance would arise if electronic neutrinos had a chemical

potential (𝜎𝜈 would then be 𝜇𝜈𝑒 /𝑇). However, this is a coincidence: here, neutrinos and antineutrinos have
the same distributions, but the existence of non-thermal distortions lead to a disruption of detailed balance
that we parameterize, for convenience, like a chemical potential-like deviation.
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Figure 4.4 – Relative corrections to 𝑛 ↔ 𝑝 weak rates, with ΔΛ𝑛↔𝑝 defined in Eq. (4.21).
To ensure detailed balance requirements, we enforce 𝑇𝜈𝑒 = 𝑇𝛾.

Clock effect

The clock effect is due to the higher radiation energy density for a given plasma tempera-
ture, which reduces the time necessary to go from 𝑇FO to 𝑇Nuc. This leads to less neutron
beta decay, and thus a higher 𝑋𝑛(𝑇Nuc) and consequently a higher 𝑌p. To estimate this
contribution we will make several assumptions, justified by observing Fig. 4.2. Since
𝑡Nuc ∼ 245 s ≫ 𝑡FO, the freeze-out modification discussed previously will only result in
a very small change in duration; indeed, we find numerically that Δ𝑡FO ≃ 0.002 s. We
also checked that𝑇Nuc is almost not modified (𝛿𝑇Nuc ≃ −0.01 %), which is expected since
the onset of nucleosynthesis is essentially determined only by 𝑇𝛾. Therefore, the clock
effect is mainly described by the change of duration between 𝑇(0)FO and 𝑇Nuc ≃ 𝑇(0)Nuc.

An additional assumption is made by observing the time scale in Fig. 4.2: most of
the neutron beta decay takes place when neutrinos have decoupled and electrons and
positrons have annihilated. We will thus consider that between the freeze-out and the
beginning of nucleosynthesis, neutrinos are decoupled and 𝑁eff ≃ 𝑁fin

eff is constant.
Therefore, we can write 𝐻 ∝ 1/2𝑡 as we are in the radiation era, cf. (1.10). Using

Friedmann equation 𝐻2 ∝ 𝜌, we get

Δ𝑡Nuc

𝑡(0)Nuc

= −1
2

Δ𝜌

𝜌(0)

����
𝑇𝛾=𝑇Nuc

= − Δ𝜌𝜈

𝜌(0)𝜈

�����
𝑇Nuc

× 𝜌(0)𝜈
𝜌(0)

. (4.29)
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The factor 1/2 disappears since the variation of the energy density is Δ𝜌 = Δ𝜌𝜈 +Δ𝜌𝜈̄ =
2Δ𝜌𝜈 (we consider the standard case without asymmetry). This shift in the neutrino
energy density is parameterized by 𝑁eff, while the ratio of instantaneously decoupled
energy densities is, at 𝑇Nuc,

𝜌(0)𝜈
𝜌(0)

=
𝜌(0)𝜈

𝜌(0)𝛾 + 𝜌(0)𝜈 + 𝜌(0)𝜈̄
=

7
8
𝜋2

30 × 3 × ( 4
11

)4/3
𝑇4

Nuc

2 × 𝜋2
30𝑇

4
Nuc + 2 × 7

8
𝜋2
30 × 3 × ( 4

11
)4/3

𝑇4
Nuc

≃ 0.203 . (4.30)

This gives
Δ𝑡Nuc

𝑡(0)Nuc

≃ −0.203 × Δ𝑁eff
3 ≃ −3.0 × 10−3 ,

but since we included the QED corrections to the plasma thermodynamics at all stages
of the calculation, the reference value for 𝑁eff is not 3 but 𝑁 (0),QED

eff = 3.00965, which
leads to

Δ𝑡Nuc

𝑡(0)Nuc

≃ −0.203 × Δ𝑁eff

𝑁 (0),QED
eff

≃ −2.3 × 10−3 , (4.31)

This estimate is actually in very good agreement with the numerical result

Δ𝑡Nuc

𝑡(0)Nuc

�����
PRIMAT

≃ −2.1 × 10−3 . (4.32)

Hence, the estimate for the clock effect contribution is, from Eq. (4.5),

𝛿𝑋[Δ𝑡]𝑛 = −Δ𝑡Nuc

𝑡(0)Nuc

× 𝑡
(0)
Nuc
𝜏𝑛
≃ 0.064 % , (4.33)

where we recall that 𝑡(0)Nuc ≃ 245 s and 𝜏𝑛 = 879.4 s.

4.2.4 Primordial abundances
The previous results allow to estimate the changes to the primordial abundances. We
separate the discussion between the 4He abundance, which is essentially set by the
neutron fraction at freeze-out, and the other light element abundances, for which the
clock effect affects the nuclear reactions.

Helium abundance

The previous study allows us to estimate the change in the 4He abundance. Since
most neutrons are converted into 4He, by combining Eqs. (4.28) and (4.33) (“𝑇𝜈𝑒 , with
distortions" case) we get

𝛿𝑌p = 𝛿𝑋[Nuc]
𝑛 = 𝛿𝑋[FO]

𝑛 + 𝛿𝑋[Δ𝑡]𝑛 ≃ 0.078 % , (4.34)
which is in excellent agreement with the result in Table 4.3.

The different values of 𝑌p depending on the implementations (see Table 4.2) are
very well described by this explanation: since the energy density is always the same,
𝛿𝑋[Δ𝑡]𝑛 remains identical, while the varying 𝛿𝑋[FO]

𝑛 (Fig. 4.3) controls 𝛿𝑌p.
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Other abundances

We now focus on the other light elements produced during BBN, up to 7Be. To under-
stand the individual variations of abundances due to incomplete neutrino decoupling,
in Table 4.4 we separate the final abundances of 3He, T, 7Be, and 7Li.

D/H 3He/H T/H 7Be/H 7Li/H
(𝑖/H)(0),∞ 2.41 × 10−5 1.03 × 10−5 7.69 × 10−8 5.17 × 10−10 2.76 × 10−11

Δ(𝑖/H)∞ 9.7 × 10−8 1.4 × 10−8 3.3 × 10−10 −2.2 × 10−12 1.2 × 10−13

𝛿(𝑖/H)∞ 0.40 % 0.13 % 0.43 % −0.42 % 0.43 %

Table 4.4 – Neutrino-induced corrections to the primordial production of light elements
other than 4He. QED corrections to the plasma thermodynamics are included up to
order 𝒪(𝑒3), and the weak rates are computed at the Born level.

There are two contributions to the change in the final abundance of an element:

𝛿(𝑖/H)∞ = 𝛿𝑋∞𝑖 − 𝛿𝑋∞H ≃ 𝛿𝑋[Δ𝑡]𝑖 + 𝛿𝑋[Nuc]
𝑛 . (4.35)

The variation of the proton final abundance is directly related to 𝛿𝑋[Nuc]
𝑛 given in Eq. (4.5),

because an increase of 𝑋[Nuc]
𝑛 corresponds to a higher neutron-to-proton ratio and/or

less beta decay, and thus less protons. On the other hand, the variation of 𝑋∞𝑖 is entirely
encapsulated in the clock effect contribution 𝛿𝑋[Δ𝑡]𝑖 (it does not depend on 𝑋𝑛(𝑇Nuc)
at first order, since all light elements except 4He only appear at trace level). Indeed,
nucleosynthesis consists in elements being produced/destroyed until the reaction rates
(which depend only on 𝑇𝛾) become too small compared to the Hubble rate [SKM93].
Because of incomplete neutrino decoupling, a given value of 𝑇𝛾 is reached sooner and
the nuclear reactions have had less time to be efficient. In other words, there is less time
to produce or destroy the different elements.5

We can thus understand the values of Table 4.4 by looking at the evolution of
abundances at the end of nucleosynthesis, shown in Fig. 4.5. All elements except
7Be are mainly destroyed when the temperature drops below 𝑇Nuc. The very similar
evolutions of D, T, and 7Li explain their similar values of 𝛿𝑋∞𝑖 : their destruction rates
go to zero more quickly, resulting in a higher final abundance value. For 7Be it is the
opposite: it is more efficiently produced than destroyed, and the clock effect reduces
the possible amount formed (hence, the negative 𝛿𝑋∞7Be). Moreover, its evolution is even

sharper than that of tritium, and thus we expect
���𝛿𝑋∞7Be

��� > 𝛿𝑋∞T . Finally, 3He has much
smaller variations, with a small amplitude of abundance reduction from 𝑇Nuc. This
explains the comparatively small value of 𝛿𝑋∞3He.

To recover the aggregated variations of Table 4.3 (for 3He and T, and 7Be and 7Li),
one performs the weighted average of individual variations. Since (3He/H)∞ ≫ (T/H)∞,

5This argument does not apply to 4He since it is the most stable light element: for such small variations
of the expansion rate, almost all neutrons still end up in 4He, so 𝑌p is only affected by 𝛿𝑋[Nuc]

𝑛 .
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Figure 4.5 – Evolution of light element abundances computed with PRIMAT, including
incomplete neutrino decoupling corrections at the Born approximation level. To com-
pare the evolution for different elements, all abundances are rescaled by their frozen-out
value.

the contribution of 3He dominates, and this argument can be immediately applied to
7Be and 7Li.

4.2.5 Precision nucleosynthesis
Having thoroughly studied the physics at play by focusing on the Born approximation
level, we can now present the results incorporating all weak rates corrections derived
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4. Consequences for Big Bang Nucleosynthesis

in [Pit+18]. These additional contributions (radiative corrections, finite nucleon mass,
and weak magnetism) cannot in principle be added linearly, due to nonlinear feed-
back between them. Concerning incomplete neutrino decoupling, this means that we
also include radiative corrections inside the spectral distortion part of the rates: we
modify Eq. (4.21), following Eqs. (100) and (103) in [Pit+18]. Since the neutrino sector
physics was already “accurate” (given that we used results with QED corrections and
flavour mixing), the corrections to the weak rates are the last missing ingredient at the
nucleosynthesis level to have the most precise predictions of primordial abundances.

The results, once again for the three implementations of neutrino-induced correc-
tions, are given in Table 4.5.

𝑌p D/H × 105 3He/H × 105 7Li/H × 1010

Inst. decoupling, all corr. 0.24711 2.4291 1.0379 5.5270
𝑇𝜈 0.24716 2.4381 1.0392 5.5038
𝑇𝜈𝑒 , no distortions 0.24713 2.4380 1.0392 5.5033
𝑻𝝂𝒆 , with distortions 0.24721 2.4384 1.0393 5.5045

Table 4.5 – Light element abundances, including all weak rate corrections and QED cor-
rections to plasma thermodynamics, for various implementations of neutrino-induced
corrections. See Table 4.2 for results at the Born approximation level. The final row (in
boldface) gives the prediction for primordial abundances in the most accurate frame-
work ; the values were reported in Table 4.1.

Compared to the Born approximation level (Table 4.2), the additional corrections
result in higher final abundances, as discussed in [Pit+18]. Starting then from a baseline
where all of these corrections are included except for incomplete neutrino decoupling,
the shift in abundances due to neutrinos is slightly reduced by roughly − 0.03 %; for
instance 𝛿𝑌p = + 0.043 % instead of + 0.076 %. The other conclusions of the previous
sections remain valid: the average temperature implementation is close to the complete
one, we explain 𝑌p through 𝑋𝑛(𝑇Nuc), and the clock effect sources the variations of light
elements other than 4He.

Since the additional corrections like finite nucleon mass contributions only affect the
weak rates and not the energy density, we expect that the only difference compared to the
picture at the Born level will lie in 𝛿𝑋[FO]

𝑛 , while 𝜎𝜈 and 𝛿𝑋[Δ𝑡]𝑖 will remain unchanged.
This is indeed what we observe in Fig. 4.6: the reduction of the neutron fraction at
freeze-out due to incomplete neutrino decoupling is enhanced when including all weak
rates corrections. Moreover, by comparing Figs. 4.6 and 4.3 we find

𝛿𝑋[FO]
𝑛,All − 𝛿𝑋[FO]

𝑛,Born ≃ −0.03 % , (4.36)

which, by inserting this difference into Eqs. (4.34) and (4.35), explains the results of
Table 4.5.
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Figure 4.6 – Neutron fraction around freeze-out, in the different implementations
of neutrino-induced corrections. Compared to Fig. 4.3, all weak rate corrections are
included.

Concluding remarks
Neutrino decoupling is now included in the standard BBN codes, at least via the𝑁eff pa-
rameter [Arb12; Arb+20] or through the𝒩 heating function [Pis+08; Con+18; Gar+22].
Note that the very small difference between the “𝑇𝜈” and “𝑇𝜈𝑒 , with distortions” (way
below the experimental uncertainties) justifies that the 𝒩 method can give satisfac-
tory results. However, no change to the weak rates seems to be taken into account in
AlterBBN.

Our detailed analysis has evidenced that including incomplete neutrino decoupling
leads to an increase of helium-4, deuterium and helium-3 abundances, and a reduction
of lithium-7 abundance, in agreement with [Gro+16] but disagreeing with [Man+05].

Can we be satisfied with an approximate treatment of neutrino decoupling in a BBN
calculation? Looking at Tables 4.1 and 4.3, one can see that the scale of the variations due
to incomplete neutrino decoupling (compared to instantaneous decoupling) is below
the experimental uncertainties on the primordial abundances — except for deuterium
where the precision has reached the percent level. A possible tension concerning the
abundance of deuterium has been suggested [Pit+21a], which shows that an accurate
treatment of neutrino decoupling is crucial for precision nucleosynthesis and to make
conclusions regarding the cosmological model. Nevertheless, the very small variation
of abundances between the various implementations shows that a treatment that is not
completely exact, for instance via the heating rate𝒩 , can be satisfactory. But, given our

105



4. Consequences for Big Bang Nucleosynthesis

results that can be provided on demand, and the existence of other neutrino decoupling
public codes [Ben+21], one might as well be as precise as possible on this point.
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CHAPTER 5
Primordial neutrino asymmetry

evolution

It’s supposed to be a little asymmetrical.
Apparently a small flaw somehow improves it.

Sheldon Cooper, The Big Bang Theory [S11E24]
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The material of this chapter was published in [FP22].

The specific features of the cosmic neutrino background and its effects on primordial
nucleosynthesis have been studied in the previous chapters, assuming systematically
that neutrinos and antineutrinos kept the same distributions. This absence of asymme-
try — or rather, the extremely small asymmetry — between matter and antimatter is
measured for baryons via the parameter 𝜂 ∼ 10−9 [Fie+20]. Since, by charge conserva-
tion, 𝑛𝑒− − 𝑛𝑒+ = 𝑛𝑝 during BBN (H being by far the most numerous species), there can
be no sizable asymmetry in the charged lepton sector. However, thanks to their electric
neutrality, no such constraint exists for neutrinos.

In thermal and chemical equilibrium, the chemical potential of a given neutrino
flavour 𝛼 and the corresponding antineutrino chemical potential are related through
𝜇𝛼 = −𝜇̄𝛼. The initial asymmetry in a given flavour 𝛼, defined as the difference between
the neutrino and antineutrino comoving densities, is related to 𝜇𝛼, which is not con-
strained a priori for the reason explained above. One thus hopes to constrain them from
their impact on cosmological observables. More specifically, to take into account the ef-
fects of momenta redshifting due to cosmological expansion, we aim at constraining the
degeneracy parameters 𝜉𝛼 ≡ 𝜇𝛼/𝑇cm which are conserved by expansion. There is first an
effect of 𝜉𝑒 on the neutron/proton freeze-out, which affects Big-Bang Nucleosynthesis
(BBN). Indeed, the detailed balance relation (4.1) is shifted to

𝑛𝑛
𝑛𝑝

=
𝑛𝑛
𝑛𝑝

����
𝜉𝑒=0
× 𝑒−𝜉𝑒 . (5.1)

Also the total energy density of a given neutrino flavour and its corresponding antineu-
trino is supplemented by a term ∝ 𝜉2

𝛼, leading to a modification of 𝑁eff, and this has an
impact on cosmological expansion which affects both BBN and the cosmic microwave
background (CMB) anisotropies. Hence, assuming a full equilibration of neutrino asym-
metries with a common 𝜉, a constraint can be obtained from BBN alone [SS08; Fie+20],
from CMB alone [OS17; Agh+20], or using a combination of both [Pit+18] to give

𝜉 = 0.001 ± 0.016 . (5.2)
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If standard baryogenesis models involving sphalerons suggest that 𝜉 should be of the or-
der of the baryon asymmetry 𝜂 = 𝑛𝑏/𝑛𝛾 ≃ 6.1×10−10 [Les+13; DNN08], other proposed
models like [McD00; MMR99; Gu10] manage to combine a large lepton asymmetry
with the value of 𝜂. Therefore potentially “high” values of 𝜉 are not forbidden and
(5.2) motivates why we focus in this chapter on degeneracy parameters in the range
[10−3 , 10−1].

The total asymmetry, that is the sum over each flavour asymmetry, is preserved by
the physical processes at play. However, individual asymmetries can evolve towards the
average, in which case we can talk about “flavour equilibration”. The goal of this chapter
is to review the physics of this equilibration, that is the evolution of the degeneracy
parameters, accounting for all relevant physical effects at play during neutrino decou-
pling. To that end, it is necessary to solve the Quantum Kinetic Equations (QKEs) that
dictate the evolution of (anti)neutrino density matrices, taking into account vacuum
oscillations, mean-field effects with leptons and neutrinos (the latter being referred to
as self-interaction mean-field), and collision processes.

First, self-interactions have a crucial effect in delaying equilibration as they are
responsible for the so-called synchronous oscillations [PRS02; Dol+02; ABB02; Won02],
and we find that in general there is also a second regime with quasi-synchronous oscil-
lations having much larger frequencies. Furthermore we find that the complete form
of the neutrino collision term must be used, including the full matrix structure of both
reactions among neutrinos and with electrons/positrons.

Unless the chemical potential differences are very small, there is always a period
when self-interactions dominate over the lepton mean-field contribution and the vac-
uum Hamiltonian contribution. One of the dramatic consequences is that solving the
exact evolution of neutrino number densities involves very short time scales compared
to the cosmological time scale, which implies that it is numerically very difficult to treat
them exactly. So far, the main approach when considering non-vanishing degeneracies
consisted in using a damping approximation for the collision term [BVW99; Dol+02;
PPR09; GV10; Vol20; Man+11; Joh+16; BKP17], either for all its components or only
for its off-diagonal components. Indeed the computation of the collision term is the
time-consuming step with a 𝒪(𝑁3) complexity, where 𝑁 is the number of points used
to sample the neutrino spectra. We use none of these approximations, and we find from
the structure of the full collision term that it cannot efficiently damp all types of syn-
chronous oscillations, a feature that is lost when relying on damping approximations.

We have shown in chapter 3 that the numerical resolution could be considerably
improved, altering only subdominantly the precision of results, by using an approxi-
mate scheme which consisted in averaging over neutrino oscillations in the adiabatically
evolving matter basis. In this chapter, we extend this method with initial degeneracies,
that is taking into account the effect of the self-interaction mean-field. In section 5.1 we
summarize the formalism used to describe the evolution of neutrino and antineutrino
density matrices in the context of non-zero asymmetries, and in section 5.2 we detail the
various numerical schemes we developed, notably the extension of the ATAO scheme
when considering self-interactions. Restricting to oscillations with only two neutrinos
in section 5.3, we derive analytic expressions for synchronous and quasi-synchronous
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5. Primordial neutrino asymmetry evolution

oscillations. Two physically motivated cases with two-neutrino flavours are then inves-
tigated in details in section 5.4. They allow to understand the evolution of neutrino
asymmetry in the general case with three neutrinos, which is presented in section 5.5,
along with an assessment of the dependence on the main mixing parameters (mass
ordering, mixing angles, Dirac phase). Finally we discuss the main differences with
existing results in the literature in section 5.6.

5.1 Neutrino evolution in the primordial Universe
with degeneracies

In order to determine neutrino evolution in the early Universe, one must solve a set
of quantum kinetic equations in the expanding Universe, involving both neutrino os-
cillations and collisions. We present in this section all the variables relevant to this
problem, with a particular emphasis on the physical quantities related to the presence
of a neutrino/antineutrino asymmetry.

5.1.1 QKE with a non-zero neutrino/antineutrino asymmetry
Let us recall the general form of the QKE (2.56), valid in the early Universe:

𝜕𝜚(𝑥, 𝑦1)
𝜕𝑥

= − i
𝑥𝐻

(
𝑥
𝑚𝑒

) [
𝑈

M2

2𝑦1
𝑈† , 𝜚

]
+ i2
√

2𝐺𝐹
𝑥𝐻

𝑦1

(𝑚𝑒

𝑥

)5
[
Ēlep + P̄lep

𝑚2
𝑊

, 𝜚

]

− i
√

2𝐺𝐹
𝑥𝐻

(𝑚𝑒

𝑥

)3 [
N𝜈 − N𝜈̄ , 𝜚

] + i8
√

2𝐺𝐹
3𝑥𝐻 𝑦1

(𝑚𝑒

𝑥

)5
[
Ē𝜈 + Ē𝜈̄

𝑚2
𝑍

, 𝜚

]
+ 1
𝑥𝐻
ℐ , (5.3)

We will neglect the symmetric term proportional to (anti)neutrino energy densities,
as it is always negligible compared to the same term proportional to charged lepton
energy densities. Indeed, for initial Fermi-Dirac distributions at the same temperature
and without degeneracies, this term is purely proportional to the identity matrix, hence
it does not contribute to the dynamics of density matrices, which was the reason we
discarded this term in chapter 3. Considering initial degeneracies, we have 𝜌̄𝜈𝛼 + 𝜌̄𝜈̄𝛼 ∝
𝜉2
𝛼, therefore this contribution is typically smaller than 𝜌̄lep (for relativistic leptons) by

a factor which is of the order of the 𝜉2
𝛼 differences.

We rewrite the QKE for 𝜚 , along with the equation for 𝜚 , in a more concise way:
𝜕𝜚

𝜕𝑥
= −i[𝒱 + 𝒥 , 𝜚] + 𝒦 , (5.4a)

𝜕𝜚

𝜕𝑥
= +i[𝒱 − 𝒥 , 𝜚] + 𝒦 , (5.4b)

with 𝒱 = ℋ0 + ℋlep, where the different Hamiltonians have been defined in (3.2)
and (3.3). For convenience, we recall here the expressions:

ℋ0 ≡ 1
𝑥𝐻

(
𝑥
𝑚𝑒

)
𝑈

M2

2𝑦1
𝑈† , ℋlep ≡ − 1

𝑥𝐻

(𝑚𝑒

𝑥

)5
2
√

2𝐺𝐹𝑦1
Ēlep + P̄lep

𝑚2
𝑊

. (5.5)
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It proves convenient to separate the 𝑦−dependence in the Hamiltonian — see section
5.3. Hence we define

ℋ0 ≡ ℋ 0/𝑦 , ℋlep ≡ ℋ lep𝑦 . (5.6)

Contrary to the standard case studied in chapter 3, the self-interaction Hamiltonian
𝒥must be included when considering neutrino asymmetries. We introduce the notation

𝒥 =
1
𝑥𝐻

(𝑚𝑒

𝑥

)3√
2𝐺𝐹𝒜 , where 𝒜 ≡ (N𝜈 − N𝜈̄) =

∫
(𝜚 − 𝜚)𝒟𝑦 . (5.7)

Note that 𝒜, referred to as the “(integrated) neutrino asymmetry", is simply propor-
tional to the lepton number matrix 𝜂𝜈 ≡ 𝒜/𝑛𝛾 = 𝜋2/[2𝜁(3)𝑧3] × 𝒜. We introduced the
convenient notation𝒟𝑦 ≡ 𝑦2d𝑦/(2𝜋2).

The Hubble rate 𝐻 is given by the Friedmann equation, that we recall here to
highlight its dependence on 𝑥,

𝐻 =
𝑚𝑒

𝑚Pl
× 𝑚𝑒

𝑥2 ×
√

𝜌̄

3 where 𝜌̄ = 𝜌̄𝛾 + 𝜌̄𝜈,𝜈̄ + 𝜌̄𝑒± + 𝜌̄𝜇± , (5.8)

where we stress again that the “barred” energy densities are the comoving ones, differing
by a factor (𝑚𝑒/𝑥)4 from the physical ones. 𝑚Pl ≃ 2.435×1018 GeV is the reduced Planck
mass.

Mixing parameters We use the standard parameterization of the PMNS matrix (A.14)
and the values (A.9), unless otherwise specified. We do not take into account the CP
phase except in the dedicated subsection 5.5.5.

Dirac or Majorana neutrinos It could be natural to believe that an asymmetry between
neutrinos and antineutrinos is not possible if neutrinos are Majorana particles1. Indeed,
in that case “neutrinos are their own antiparticles”, which should lead necessarily to
N𝜈 = N𝜈̄. But this overlooks the fact that there are helicity degrees of freedom to take into
account. Due to the Majorana condition 𝜈 = 𝜈𝐶 (where 𝐶 denote charge conjugation),
there are twice as many degrees of freedom for Dirac neutrinos (left-handed2 and right-
handed neutrinos, left-handed and right-handed antineutrinos), while there are only
left-handed and right-handed neutrinos in the Majorana case. It is then common to
refer to right-handed neutrinos in the Majorana case as “antineutrinos”. However, all
these states are not in thermal equilibrium, since helicity-flip rates are suppressed by a
factor 𝒪(𝑚2

𝜈/𝐸2
𝜈) ≪ 1 compared to helicity-conserving reactions.

In summary, a positive asymmetry is interpreted:

• for Majorana neutrinos, as an excess of left-handed over right-handed neutrinos,

1For instance, the argument was raised in [Ber82] before being corrected in [LS82; LSS82] — the original
mistake was acknowledged in [Ber84].

2Left-handed (resp. right-handed) referring to a negative (resp. positive) helicity.
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• for Dirac neutrinos, as an excess of left-handed neutrinos over right-handed an-
tineutrinos.

The counting of degrees of freedom with details about 𝐶𝑃𝑇 transformations is
explained in [GK07], Section 6.2.2. The thermal population of the a priori two extra
degrees of freedom in the Dirac case is discussed in [LP12]: the “wrong-helicity” states
cannot be populated except if they had a mass at the keV scale [Dol02], which is excluded
for active neutrinos.

Evolution of the plasma temperature

For large temperatures, that is before we start the numerical resolution (𝑥 < 𝑥init), the
evolution of the comoving plasma temperature is estimated assuming that neutrino
spectra are thermal with the same temperature (𝑧𝜈 = 𝑧). Afterwards, the evolution of
𝑧 is computed using the full (anti)neutrino density matrices and the exact form for col-
lisions between neutrinos and electrons/positrons. Including QED corrections [Hec94;
Man+02; Ben+20], we use

d𝑧
d𝑥 =

𝑥
𝑧
𝐽(𝑥/𝑧) − 𝑆𝜈 + 𝐺1(𝑥/𝑧)

𝑥2

𝑧2 𝐽(𝑥/𝑧) + 𝑌(𝑥/𝑧) +
1
4

∑
𝛼

𝑌𝜈(𝜉𝛼/𝑧) + 2𝜋2

15 + 𝐺2(𝑥/𝑧)
, (5.9)

where we defined

𝑆𝜈 = 0 , 𝑌𝜈(𝜁𝛼) ≡ 1
𝜋2

∫ ∞

0
d𝜔 𝜔3(𝜔 − 𝜁𝛼) exp (𝜔 − 𝜁𝛼)

[exp (𝜔 − 𝜁𝛼) + 1]2 for 𝑥 ≤ 𝑥init ,

𝑌𝜈 = 0 , 𝑆𝜈 ≡ 1
4𝜋2𝑧3

∫ ∞

0
d𝑦 𝑦3

(
Tr[𝒦] + Tr[𝒦]

)
for 𝑥 > 𝑥init ,

(5.10)
the functions 𝐽 , 𝑌, 𝐺1 , 𝐺2 having been introduced in (3.5). The sum on 𝛼 in the denom-
inator of (5.9) runs on 2𝑁𝜈 elements, being all neutrinos and antineutrinos species.

The starting condition 𝑧init at 𝑥init is found by solving the differential equation (5.9),
with the initial condition 𝑧 = 1 at 𝑥 = 0.3 When there are no neutrino degeneracies,
it matches the condition found by all coupled species entropy conservation. However,
it gives a slightly different 𝑧init in the presence of initial degeneracies since entropy
conservation is then violated.

3In principle 𝑧 increases at each species annihilation, and in particular we should consider 𝜇± anni-
hilations since these leptons appear in the mean-field effects. This choice of initial conditions is however
consistent with neglecting the interactions with 𝜇± in the collision term, which therefore do not reheat the
plasma of neutrinos, photons and 𝑒±.
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5.1. Neutrino evolution in the primordial Universe with degeneracies

5.1.2 Neutrino asymmetry matrix𝒜
Long before neutrino decoupling, that is for temperatures much larger than 2 MeV,
neutrinos and antineutrinos are maintained at kinetic and chemical equilibrium, thus
generally following Fermi-Dirac (FD) distributions with a chemical potential

𝑔(𝑇𝜈 , 𝜇, 𝑝) ≡
[
𝑒(𝑝−𝜇)/𝑇𝜈 + 1

]−1
.

Introducing the reduced variables 𝑧𝜈 = 𝑇𝜈/𝑇cm and 𝜉 = 𝜇/𝑇cm, we rewrite this FD
distribution

𝑔(𝑧𝜈 , 𝜉, 𝑦) =
[
𝑒(𝑦−𝜉)/𝑧𝜈 + 1

]−1
.

In most of the temperature range of interest, since electrons and positrons have not
annihilated and all species are coupled, we can consider4 𝑧𝜈 = 1. We thus define
𝑔(𝜉, 𝑦) ≡ 𝑔(1, 𝜉, 𝑦), and the initial conditions read

𝜚 init = diag [𝑔(𝜉𝛼 , 𝑦)] , 𝜚 init = diag [𝑔(−𝜉𝛼 , 𝑦)] . (5.11)

Useful properties of Fermi-Dirac spectra In this chapter, we will often use the fol-
lowing relations:5 ∫

[𝑔(𝜉, 𝑦) − 𝑔(−𝜉, 𝑦)]𝒟𝑦 =
𝜉
6 +

𝜉3

6𝜋2 (5.12a)∫
𝑦 [𝑔(𝜉, 𝑦) + 𝑔(−𝜉, 𝑦)]𝒟𝑦 =

7𝜋2

120 +
𝜉2

4 +
𝜉4

8𝜋2 (5.12b)∫
𝑦−1 [𝑔(𝜉, 𝑦) + 𝑔(−𝜉, 𝑦)]𝒟𝑦 =

1
12 +

𝜉2

4𝜋2 (5.12c)∫
𝑦−2 [𝑔(𝜉, 𝑦) − 𝑔(−𝜉, 𝑦)]𝒟𝑦 =

𝜉

2𝜋2 (5.12d)

From equation (5.12a), the asymmetry matrix is initially

𝒜init =
1
6diag

[
𝜉𝛼 + 𝜉3

𝛼

𝜋2

]
. (5.13)

For reasons detailed in section 5.2, we also introduce the evolution equation for𝒜.
It is obtained by combining the QKE (5.4) with the definition (5.7),

d𝒜
d𝑥 = −i

∫
[𝒱 , 𝜚 + 𝜚]𝒟𝑦 +

∫ (
𝒦 −𝒦

)
𝒟𝑦 . (5.14)

In principle there is no need to solve this equation for 𝒜 because it is a simple conse-
quence of the definition (5.7) with equations (5.4). However, some approximate reso-
lution schemes promote 𝒜 to an independent variable, thus requiring this additional
equation to ensure the overall consistency.

4We only take 𝑧𝜈 = 1 for the analytical discussion in order to simplify the presentation. In the numerical
resolution, the spectra evolve following the QKEs and 𝑒± annihilations increase the neutrino temperatures.

5They respectively intervene in the calculation of the asymmetry, the sum of energy densities, the
leading and next-to-leading orders of the asymmetry oscillation frequency.
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5. Primordial neutrino asymmetry evolution

5.1.3 MSW transitions
Schematically, the lepton mean-field term scales as 𝑇5

cm, whereas the vacuum oscillation
Hamiltonian scales as 1/𝑇cm (discarding the common 1/𝑥𝐻 scaling). Hence there is
always a Mikheev-Smirnov-Wolfenstein (MSW) transition [Wol78; MS85] from lepton
mean-field domination to vacuum domination, which can be resonant or not depend-
ing on the mixing angles and the mass ordering. There are two differences with the
MSW transition in stars. First, the lepton mean-field term in stellar environments is√

2𝐺𝐹𝑛𝑒− , but it is cancelled here by the positron contribution −√2𝐺𝐹𝑛𝑒+ since the elec-
tron/positron asymmetry is negligible. Hence, in the cosmological case the dominant
lepton mean-field contribution is given by (5.5). Second, the role of the electron density
profile crossed by emitted neutrinos in a star is now played by the thermal evolution
of the Universe. In the cosmological context, there are three transitions which are
illustrated in Figure 5.1.

1. Since 𝑚𝜇/𝑚𝑒 ≃ 207, the first MSW transition, that we call the muon-driven MSW
transition, occurs when the 𝜇± mean-field effects become of the same order as the
vacuum Hamiltonian associated with the large mass gap Δ𝑚2

31 (or equivalently
Δ𝑚2

32), and this occurs around 𝑇(𝜇)MSW ≃ 12 MeV (see section 5.4.1), when muons are
not relativistic.

2. When the 𝑒± mean-field effects also become of the same order as the vacuum
Hamiltonian associated with the large mass gap Δ𝑚2

31, we encounter the first
electron-driven MSW transition around 𝑇(𝑒),1MSW ≃ 5 MeV (see section 5.4.2).

3. Finally, when the same mean-field term becomes of the same order as the vac-
uum Hamiltonian associated with the small mass gap Δ𝑚2

21, we reach the second
electron-driven MSW transition around 𝑇(𝑒),2MSW ≃ 2.8 MeV (see section 5.4.2).

The presence of a neutrino asymmetry modifies this picture because self-interaction
mean-field effects (abbreviated as self-interactions when it is clear that we do not refer
to collisions between (anti)neutrinos) scale as 𝑇3

cm and the traceless part of the neutrino
asymmetry is proportional to |𝜉𝛼−𝜉𝛽 |. Unless the degeneracy differences are very small,
there is always a period when self-interactions dominate over the lepton mean-field
contribution until they become smaller than the vacuum contribution (see Figure 5.1). At
the beginning of this period of self-interaction mean-field domination we can encounter
a Matter Neutrino Resonance (MNR) [MFM14; Joh+16], when lepton mean-field effects
become smaller than self-interaction effects. However in that early phase all matrix
densities and all mean-field contributions (save the negligible vacuum one), are diagonal
in flavour space, therefore no conversion can occur. Conversely, describing the end
of the self-interaction domination, when the vacuum Hamiltonian takes over the self-
interaction effects, is rather complicated owing to the physics of synchronous oscillations
which takes place, and which depends on the lepton-driven MSW transitions. One of
the goals of this chapter is precisely to revisit the physics of these oscillations and their
consequences for the equilibration of asymmetries.
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Figure 5.1 – Orders of magnitude of the different rates involved in the QKE, for
𝑦 = 𝑦eff = 3.15 (this averaged value will be justified in section 5.3.2). 𝒥 is plotted
with𝒜 given by (5.13) and 𝜉 = 0.01. The oscillation frequencies, set by the Hamiltonian
eigenvalues, are very large compared to the collision rate and its variation (see section 3.2
for this discussion). As the temperature decreases, the dominant contribution in the
Hamiltonian changes from 𝒥 to𝒱,𝒱 itself being dominated first byℋlep and then by
ℋ0. We estimate the magnitude of the collision rate as in Figure 1 of [Mir+12].

Finally, note that cases where degeneracies are so small that self-interactions are
at most of the order of the vacuum or lepton mean-field contributions around the
MSW transition, lead to rather different physical effects since this condition is largely
dependent on the magnitude of neutrino momenta. These low degeneracy regimes
have been investigated in [Joh+16], but we will not explore such small values, motivated
by the fact that BBN constraints are of the order of 10−2 on 𝜉𝑒 , see equation (5.2).

115



5. Primordial neutrino asymmetry evolution

5.2 Resolution schemes
The QKEs (5.4) are challenging to solve for various reasons, the main one being the
coexistence of multiple time scales: the different terms in the Hamiltonian correspond
to different oscillation frequencies, that need to be compared to the collision rate—
the latter being in addition particularly computationally expensive. The orders of
magnitude of the different terms involved in the QKE (5.4) are shown on Figure 5.1.

ATAO approximation The separation of these time scales allows for the use of effective
resolution schemes. In general, for a given Hamiltonian ℋ governing the evolution of
a density matrix 𝜚 , i.e., if 𝜕𝑥𝜚 = −i[ℋ , 𝜚], the eigenvalues of ℋ give the oscillation
frequencies of 𝜚 . More precisely, noting 𝑈ℋ the unitary matrix which diagonalizes
ℋ (that is ℋ = 𝑈ℋ𝐷ℋ𝑈†ℋ with 𝐷ℋ diagonal), the density matrix in the “ℋ -basis” is
𝑈†ℋ𝜚𝑈ℋ . The off-diagonal components of this matrix have oscillatory phases equal to
the differences of the diagonal components of 𝐷ℋ .

If 𝑈ℋ evolves slowly enough6, the oscillation frequencies are so large that the off-
diagonal components of𝑈†ℋ𝜚𝑈ℋ are averaged out. Therefore, transforming back to the
flavour basis, we define the averaged matrix ⟨𝜚⟩ℋ by

⟨𝜚⟩ℋ ≡ 𝑈ℋ
(
𝑈†ℋ𝜚𝑈ℋ

):
𝑈†ℋ . (5.15)

The wide overtilde notation means that we keep only the diagonal part—thus neglect-
ing the fast off-diagonal oscillatory evolution which averages to zero. This procedure
requires that the diagonalizing basis changes slowly relative to the oscillations, which is
a standard case of adiabatic approximation. Since oscillations are averaged throughout
the adiabatic evolution of the Hamiltonian, the adiabatic transfer of averaged oscillations
(ATAO) consists in the approximation

𝜚 ≃ ⟨𝜚⟩ℋ i.e. 𝜚 = 𝑈ℋ 𝜚̃ℋ𝑈†ℋ , (5.16)

with 𝜚̃ℋ diagonal. When including collisions, we account for their effects on time scales
much larger than the one set byℋ , which leads to the evolution equations

𝜕𝑥𝜚̃ℋ = 𝑈†ℋ ⟨𝒦⟩ℋ𝑈ℋ = 𝒦ℋ . (5.17)

Note that the collision term depends on 𝜚 , which is evaluated with the approxima-
tion (5.16).

Such a situation is encountered by neutrinos in the early universe: the results of
Figure 5.1 show that the Hamiltonian governing the evolution of 𝜚 is progressively
dominated, as the temperature decreases, by the self-potential (and the lepton mean-
field), then by the vacuum contribution, and we now detail the associated approximation
schemes.

6As explained in section 3.2,𝑈ℋ must evolve slowly compared to the inverse oscillation frequency, that
is schematically

���(𝑈†ℋ 𝜕𝑥𝑈ℋ )𝑖𝑗
��� ≪ ���(𝐷ℋ )𝑖𝑖 − (𝐷ℋ )𝑗𝑗

���, which corresponds roughly to comparing the Hubble
rate to the oscillation frequencies.
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5.2. Resolution schemes

5.2.1 ATAO-𝒱
If the self-potential can be ignored (for instance if we consider a case without neutrino
asymmetries), the fast scale is set by the Hamiltonian𝒱 and we will call this situation
the ATAO-𝒱 approximation, which was used in chapter 3. As previously explained,
we thus approximate7 𝜚 ≃ ⟨𝜚⟩𝒱 and 𝜚 ≃ ⟨𝜚⟩𝒱 , such that

𝜚 = 𝑈𝒱 𝜚̃𝒱 𝑈†𝒱 , 𝜚 = 𝑈𝒱 ˜̄𝜚𝒱 𝑈†𝒱 , (5.18)

with 𝜚̃𝒱 and ˜̄𝜚𝒱 being diagonal. Therefore, it is convenient to solve for the 𝑁𝜈 diago-
nal components of these variables instead of the 𝑁2

𝜈 variables of the density matrices
in flavour basis (which, in this approximation, are not independent). The evolution
equation (5.17) leads to

𝜕𝑥𝜚̃𝒱 = 𝒦𝒱[𝜚 , 𝜚] , 𝜕𝑥˜̄𝜚𝒱 = 𝒦̃𝒱[𝜚 , 𝜚] . (5.19)

Since the collision term depends on 𝜚 , 𝜚 , this means that the evolved variables 𝜚̃𝒱 and˜̄𝜚𝒱 are transformed to the flavour basis with (5.18), so as to evaluate the collision term
whose values in flavour space are eventually transformed back into the matter basis.
We then keep only their diagonal components through

𝒦𝒱 ≡
(
𝑈†𝒱𝒦𝑈𝒱

):
, 𝒦̃𝒱 ≡

(
𝑈†𝒱𝒦𝑈𝒱

):
. (5.20)

Actually,𝒱 depends on both 𝑥 and 𝑦, and so does𝑈𝒱 . Hence this averaging scheme
is momentum-dependent, which is a central feature to understand the evolution of
density matrices. When lepton mean-field effects can be ignored, then the 𝑦 dependence
is the same for all momenta (a 1/𝑦 prefactor in 𝒱 ≃ ℋ0) and the unitary matrices 𝑈𝒱
do not depend on 𝑦 anymore since they all reduce to the PMNS matrix.

5.2.2 ATAO-(𝒥 ±𝒱)
When neutrino asymmetries cannot be ignored, we see on Figure 5.1 that there is a
range of temperatures for which 𝒥 must necessarily be included in the Hamiltonian.
As can be seen in the QKEs (5.4), the Hamiltonian for 𝜚 is then 𝒥 +𝒱 while it is 𝒥 −𝒱
for 𝜚 . Therefore, the ATAO-(𝒥 ±𝒱) approximation reads 𝜚 ≃ ⟨𝜚⟩𝒥+𝒱 and 𝜚 ≃ ⟨𝜚⟩𝒥−𝒱 ,
such that

𝜚 = 𝑈𝒥+𝒱 𝜚̃𝒥+𝒱 𝑈†𝒥+𝒱 , 𝜚 = 𝑈𝒥−𝒱 ˜̄𝜚𝒥−𝒱 𝑈†𝒥−𝒱 , (5.21)

where 𝜚̃𝒥+𝒱 and ˜̄𝜚𝒥−𝒱 are diagonal. We solve the evolution of 𝜚 , 𝜚 on timescales much
larger than the one set by𝒥±𝒱, on which oscillations are averaged, hence the evolution
equation is given by (5.17)

𝜕𝑥𝜚̃𝒥+𝒱 = 𝒦𝒥+𝒱[𝜚 , 𝜚] , 𝜕𝑥˜̄𝜚𝒥−𝒱 = 𝒦̃𝒥−𝒱[𝜚 , 𝜚] . (5.22)
7Concerning 𝜚 , it is equivalent to average it around ±𝒱, hence our choice to use𝒱 for both 𝜚 and 𝜚 .
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5. Primordial neutrino asymmetry evolution

The method is similar to the ATAO-𝒱 case, but we need to handle the fact that the
Hamiltonian itself depends on 𝜚 , through the self-potential 𝒥 . In order to compute
it at each time step, we would need to keep track of the 𝑁2

𝜈 entries of each density
matrix in the flavour basis. A better possibility, which we choose, consists in promoting
𝒥 (actually, 𝒜) to be an independent variable with its own evolution equation (5.14).
Equation (5.7) is then only used to set the initial value of𝒥 from the initial conditions on
𝜚 , 𝜚 . In doing so, we go from 2×𝑁 ×𝑁2

𝜈 to 2×𝑁 ×𝑁𝜈+𝑁2
𝜈 variables, with 𝑁 the number

of momentum nodes (cf. section 5.2.4). We stress that the evolution of 𝒜 depends on
the full collision terms in flavour space, and not just on the diagonal components in the
matter basis𝒦𝒥±𝒱 , as is the case for 𝜚̃𝒥+𝒱 and ˜̄𝜚𝒥−𝒱 .

High temperatures: ATAO-𝒥 It is clear from Figure 5.1 that at large temperatures, 𝒥
largely dominates𝒱 ≃ ℋlep (except for very small 𝜉 that lie outside the range of values
we span here). That is why one could consider an even simpler ATAO-𝒥 approximation,
where 𝒥 ± 𝒱 is replaced by 𝒥 . In that case, the changes of basis for 𝜚 and 𝜚 are
achieved with the same matrix 𝑈𝒥 . In section 5.3.2, we show that this “leading order”
Hamiltonian leads to theoretical estimates of synchronous oscillations frequencies in
agreement with the existing literature, while using the full ATAO-(𝒥 ± 𝒱) allows to
get an important correction which is responsible for quasi-synchronous oscillations.
The weight of 𝒱 in the ATAO-(𝒥 ± 𝒱) scheme becomes more important when the
temperature decreases (i.e., 𝑥 increases), since 𝒥 ∝ 𝑥−2 andℋ0 ∝ 𝑥2.

5.2.3 QKE
The QKE method is not an approximation scheme, but consists instead in solving
exactly the neutrino and antineutrino evolutions, that is equations (5.4). However
these equations are very stiff at early times given that all terms except the vacuum one
increase for large temperatures. Therefore, integration times are typically much longer,
in addition to the fact that we need to keep track of the 𝑁2

𝜈 entries of each density matrix
in the flavour basis, contrary to the 𝑁𝜈 diagonal ones in the matter basis when using an
ATAO framework.

5.2.4 Numerical methods
The general method used to solve for the time evolution of density matrices is described
in section 3.3. The neutrino spectra are sampled on a grid and we have several possible
choices for the spacing of the reduced momenta 𝑦 in this grid. We found that in
the context of asymmetry equilibration, a linear spacing is much more adequate than
the Gauss-Laguerre quadrature. All numerical results presented in this chapter are
performed with an extension of the code NEVO, using a linear grid with𝑁 = 40 points, the
minimum and maximum momenta being chosen as described in section 3.3. We start the
numerical resolution at𝑇cm = 20 MeV, the final temperature depending on the particular
configuration investigated. For initial conditions, we set 𝑧init using that photons, 𝑒± and
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neutrinos are fully thermalized with a common temperature, see equation (5.9). In the
case of vanishing degeneracies, this determines 𝑧init − 1 ≃ 7.42 × 10−6.

In the general QKE method, the only difference in the code is the contribution of
commutators of the type [𝒜 , 𝜚] and [𝒜 , 𝜚] in (5.4). However, when using the ATAO-
(𝒥±𝒱)method, one needs to add𝑁2

𝜈 variables corresponding to the degrees of freedom
of𝒜 whose evolution is determined by (5.14).

When equations are stiff, we must rely on implicit methods that require the com-
putation of the Jacobian of the system of differential equations. The default method
consists in using a finite difference estimation. The complexity of the calculation of
the collision term is 𝒪(𝑁3) since for each momentum one must compute on a two-
dimensional integral [DHS97]. Hence with finite differences the complexity for the
Jacobian is 𝒪(𝑁4). However we can provide its explicit form to the solver and it reduces
its evaluation to 𝒪(𝑁3). This method was used in chapter 3 in both the QKE and the
ATAO-𝒱 schemes.

This powerful numerical technique can be extended to the ATAO-(𝒥 ±𝒱) scheme,
and the essential steps are described in appendix D. Since we only add 𝑁2

𝜈 variables,
the complexity remains 𝒪(𝑁3). All in all, we found that the code was at least ten times
faster with the ATAO-(𝒥 ± 𝒱) scheme, and even more at low temperatures where the
fast oscillations (see next section) slow even more the QKE algorithm.

5.3 Synchronous oscillations with two neutrinos
The presence (and domination) of the self-interaction mean-field in the QKEs radically
changes the phenomenology of neutrino evolution. This non-linear term notably leads
to oscillations of all momentum-modes at a common frequency, a phenomenon named
synchronous oscillations, studied both numerically [PRS02; Dol+02; Man+11] and analyt-
ically [ABB02; Won02]. In this section, we extend this theoretical work in the framework
of the ATAO approximations we developed: this allows to explicitly calculate the next-
to-leading order contribution to the oscillation frequency that was not considered in
previous works, and that we check numerically in the next section.

We restrict to a two-flavour case, which allows to easily perform the following
calculations thanks to the vector representation of 2 × 2 Hermitian matrices. We do not
specify yet the values of the mixing parameters, as they will be set for different physical
setups in section 5.4.

Let us thus consider in this section the vacuum Hamiltonian of the form

ℋ0 =
1
𝑥𝐻

(
𝑥
𝑚𝑒

)
𝑈

(
0 0
0 Δ𝑚2/2𝑦

)
𝑈† with 𝑈 =

(
cos𝜃 sin𝜃
− sin𝜃 cos𝜃

)
, (5.23)

along with the lepton mean-field contribution of the type

ℋlep = − 1
𝑥𝐻

(𝑚𝑒

𝑥

)5 2
√

2𝐺𝐹𝑦
𝑚2
𝑊

(
𝜌̄𝑙± + 𝑃̄𝑙± 0

0 0

)
. (5.24)

In order to maintain a similar expansion history as in the case of three neutrinos, we add
one fully decoupled thermalised neutrino flavour to the energy content of the Universe
when studying the case of only two neutrino oscillations.
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5. Primordial neutrino asymmetry evolution

5.3.1 Transformation to vectors
It is customary to rephrase the density matrix evolution as an evolution for vectors using
the relation between a Hermitian 2 × 2 matrix 𝑃, and a vector of R3 ®𝑃

𝑃 =
1
2𝑃

01 + 1
2
®𝑃 · ®𝜎 , (5.25)

where ®𝜎 =
(
𝜎x , 𝜎y , 𝜎𝑧

)
is the “vector” of Pauli matrices. Commutators of matrices are

then handled using [𝜎𝑖 , 𝜎𝑗] = 2i𝜖𝑖 𝑗𝑘𝜎𝑘 as we obtain

−i[𝑃, 𝑄] = 1
2

( ®𝑃 ∧ ®𝑄)
· ®𝜎 . (5.26)

The evolution of the neutrino and antineutrino density matrices in vector notations8 are
immediately obtained to be

𝜕𝑥 ®𝜚 =
( ®𝒱 + ®𝒥 )

∧ ®𝜚 + ®𝒦 , 𝜕𝑥 ®̄𝜚 =
(
− ®𝒱 + ®𝒥

)
∧ ®̄𝜚 + ®𝒦 , (5.27)

which we must supplement by

𝜕𝑥𝜚
0 = 𝒦 0 , 𝜕𝑥𝜚

0 = 𝒦 0
, (5.28)

to account for the evolution of the trace part of density matrices.
In the QKE (5.27), the vector form of the Hamiltonian ®𝒱 = ®ℋ0 + ®ℋlep is the sum of

the vacuum contribution obtained from (5.23)

®ℋ0 =
1
𝑥𝐻

(
𝑥
𝑚𝑒

)
Δ𝑚2

2𝑦
©­
«

sin(2𝜃)
0

− cos(2𝜃)
ª®
¬
, (5.29)

and the lepton mean-field one, derived from (5.24),

®ℋlep = − 1
𝑥𝐻

(𝑚𝑒

𝑥

)5 2
√

2𝐺𝐹𝑦
𝑚2
𝑊

©­
«

0
0

𝜌̄𝑙± + 𝑃̄𝑙±
ª®
¬
. (5.30)

Finally, the asymmetry vector evolves as

d ®𝒜
d𝑥 =

∫ ( ®𝒱 ∧ [®𝜚 + ®̄𝜚])𝒟𝑦 + ∫ (
®𝒦 − ®𝒦

)
𝒟𝑦 . (5.31)

This vector formalism allows for a more visual representation of the ATAO schemes.
Averaging 𝜚 with respect to an Hamiltonian ℋ corresponds to projecting ®𝜚 onto ®ℋ . To
see this, we first note that the restriction to the diagonal part of an Hermitian two-by-two

8For consistency, we write the “vector part” of the two-neutrino density matrix ®𝜚 , while it is common
in the literature to call this the polarization vector ®𝑃 [SR93; Dol+02; Joh+16].
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5.3. Synchronous oscillations with two neutrinos

matrix corresponds to a projection along ®𝑒z in vector notation. Hence when applying
the averaging definition (5.15), the first step is the rotation which aligns ®ℋ with ®𝑒z, then
the diagonal part restriction selects only the z-component of this rotation ®𝜚ℋ , and finally
it is rotated back into the initial frame. As a result one has, in the case of two neutrinos,

−→⟨𝜚⟩ℋ = (®𝜚 · ℋ̂ )ℋ̂ , (5.32)

where ℋ̂ is the unit vector in the direction of ®ℋ . Since the equations of motion (5.27)
correspond to instantaneous precessions set by ®ℋ (up to the collision term), the averag-
ing procedure corresponds to projecting along that precession vector, i.e. removing the
fast rotating part that is orthogonal to it.

5.3.2 Frequency of synchronous oscillations
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Figure 5.2 – Synchronous oscillations in a two-neutrino 𝜈𝜇 − 𝜈𝜏 case with Δ𝑚2 =
2.45× 10−3 eV2, 𝜃 = 0.831, without collisions. In blue 𝜚z = 𝜚

𝜇
𝜇 − 𝜚𝜏𝜏 and in orange 𝜚z. The

initial degeneracy parameters are 𝜉𝜇 = 0.01 and 𝜉𝜏 = 0.

In some setups where the non-linear self-potential term in the QKEs dominates,
such as dense neutrino gases or the early universe (for not too small asymmetries), it has
been shown in references [Sam93; KPS93; KS93; KS94; PRS02; Dol+02] that neutrinos
develop so-called momentum-independent synchronous oscillations, with all 𝑦−modes
being “locked” on the asymmetry vector ®𝒜. This is shown on Figure 5.2, where the
physical parameters are the same as in the upcoming section 5.4.1.

To understand this phenomenon and make quantitative predictions regarding the
behaviour of the system of neutrinos and antineutrinos in different setups, we will first
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5. Primordial neutrino asymmetry evolution

ignore the effect of collisions. The initial density matrices are given by equations (5.11).
Hence the initial vector components are𝜚z(𝑦) = 𝑔(𝜉1 , 𝑦)−𝑔(𝜉2 , 𝑦) and𝜚z(𝑦) = 𝑔(−𝜉1 , 𝑦)−
𝑔(−𝜉2 , 𝑦), and 𝜚x,y(𝑦) = 𝜚x,y(𝑦) = 0. Since we neglect collisions in this section, it is clear
from (5.27) that the norms of ®𝜚 and ®̄𝜚 are conserved. The adiabatic evolution of these
vectors thus consists in a rotation so as to follow the direction of their Hamiltonian.
Therefore, in the ATAO-(𝒥 ±𝒱) approximation, we can write the density matrix vectors

®𝜚 = |𝑔(𝜉1 , 𝑦) − 𝑔(𝜉2 , 𝑦)|�𝒥 +𝒱 ,

®̄𝜚 = − |𝑔(−𝜉1 , 𝑦) − 𝑔(−𝜉2 , 𝑦)|�𝒥 −𝒱 ,
(5.33)

where �𝒥 +𝒱 is the unit vector in the direction of ®𝒥+ ®𝒱. One must remember that at the
initial temperatures we consider (𝑇cm ∼ 20 MeV), the Hamiltonian is largely dominated
by 𝒥 . The ATAO-𝒥 approximation then corresponds to discarding 𝒱 in the above
expressions, and this will give the leading order behaviour of the asymmetry.

Evolution of the asymmetry vector

Leading order Let us then focus on this high temperature region first, when the
misalignment between ®𝜚 and ®̄𝜚 is negligible, i.e.,

®𝜚 = |𝑔(𝜉1 , 𝑦) − 𝑔(𝜉2 , 𝑦)| 𝒥 , ®̄𝜚 = − |𝑔(−𝜉1 , 𝑦) − 𝑔(−𝜉2 , 𝑦)| 𝒥 . (5.34)

Hence, the asymmetry vector is obtained from (5.7) and (5.12) and reads

®𝒜 =
1
6 |𝜉1 − 𝜉2 |

(
1 + 𝜉2

1 + 𝜉2
2 + 𝜉1𝜉2

𝜋2

)
𝒜 , (5.35)

with the unit vector definition𝒜 = 𝒥 , which is equal initially to sgn(𝜉1 − 𝜉2)®𝑒z. We can
use the expressions of ®𝜚 , ®̄𝜚 to explicitly compute the 𝑦−integral appearing in (5.31). It
is then particularly convenient to use the quantities (5.6) which isolate the momentum
dependence of the Hamiltonian. Therefore, using the integrals given in (5.12), we can
rewrite (5.31) as

d ®𝒜
d𝑥 = 𝐹(𝜉1 , 𝜉2) ®𝒱eff ∧ ®𝒜 where ®𝒱eff ≡

( ®ℋ 0 + 𝑦2
eff
®ℋ lep

)
, (5.36)

where we defined the slowness factor

𝐹(𝜉1 , 𝜉2) ≡ 3
2

𝜉1 + 𝜉2

𝜋2 + 𝜉2
1 + 𝜉2

2 + 𝜉1𝜉2
, (5.37)

in agreement with [ABB02; Won02]. The typical “average” momentum is

𝑦eff ≡ 𝜋

√
1 + 𝜉2

1 + 𝜉2
2

2𝜋2 ≃ 𝜋 , (5.38)

122



5.3. Synchronous oscillations with two neutrinos

in agreement with equation (33) in [Won02] or equation (2.19) in [ABB02] (derived in
the particular case 𝜉1 = 0).

This standard result allows to recover the key features of synchronous oscillations.
The evolution of all 𝑦−modes is locked on the evolution of ®𝒜, which precesses around
the effective Hamiltonian computed for 𝑦 = 𝑦eff. However, the oscillation frequency
is greatly reduced compared to standard oscillations set by the Hamiltonian 𝒱(𝑦eff),
since for small degeneracies 𝐹 ∝ (𝜉1 + 𝜉2) ≪ 1. Let us provide a numerical evaluation.
After muons and antimuons have annihilated (their remaining asymmetry is completely
negligible here), and before electrons and positrons did so, that is in the range 200 MeV ≥
𝑇cm ≥ 0.5 MeV, the Hubble parameter (5.8) reads

𝐻 ≃ 𝑚𝑒

𝑀Pl
× 𝑚𝑒

𝑥2

√
𝜋2

45 ×
[
1 + (𝑁𝜈 + 2)78

]
≃ 𝑚𝑒

𝑥2 × 2.278 · 10−22 , (5.39)

where in the last step we have taken 𝑁𝜈 = 3. When entering the correct numbers
and approximating the slowness factor by its lowest order in the 𝜉𝛼, that is 𝐹(𝜉1 , 𝜉2) ≃
3(𝜉1 + 𝜉2)/(2𝜋2), we estimate the precession frequency to be

Ω(𝑥) ≃ 1.28 × 106 𝑥2 |𝜉1 + 𝜉2 | Δ𝑚2

10−3 eV2 . (5.40)

Initially, all unit vectors are aligned 𝒜 ∥ 𝒱̂ ≃ ℋ̂lep ∥ ®𝑒z. Then, as the temperature
decreases, 𝒥 dominates less compared to 𝒱 and the vectors ®𝜚 and ®̄𝜚 become aligned
with different directions (namely, �𝒥 +𝒱 and �𝒥 −𝒱), leading to (5.33).

Next-to-leading order Let us therefore now account for the effect of𝒱, in that 𝜚 and
𝜚 do not get projected on the exact same directions. We will assume that | ®𝒱| ≪ | ®𝒥 |,
such that we can perform an expansion of the unit vector

�𝒥 +𝒱 ≃ 𝒥 + ®𝒱
| ®𝒥 |
−

( ®𝒱 · ®𝒥
| ®𝒥 |2

)
𝒥 + · · · (5.41)

For �𝒥 −𝒱 the expression is identical up to ®𝒱 → − ®𝒱. This expansion gives, in the
ATAO-(𝒥 ± 𝒱) approximation, the next-to-leading order (NLO) terms that were not
explicited in previous works (cf., for instance, equation (25) in [Won02]). Including this
expansion in equation (5.31), we can once again recast the evolution of the asymmetry
as a precession equation

d ®𝒜
d𝑥 = ®Ω ∧ ®𝒜 , (5.42)

where the oscillation frequency (in 𝑥 variable) reads, retaining only the vacuum contri-
bution𝒱 = ℋ0 for simplicity,9

®Ω = 𝐹(𝜉1 , 𝜉2) ®ℋ 0

[
1 − 12√

2𝐺𝐹

(
𝑥
𝑚𝑒

)3 𝑥𝐻 ®ℋ 0 · 𝒜
|𝜉1 − 𝜉2 |(𝜉1 + 𝜉2)

]
. (5.43)

9This is not an oversimplification. Indeed, as long asℋlep dominates overℋ0, all vectors are aligned
along ®𝑒z and no precession takes place.
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5. Primordial neutrino asymmetry evolution

The second term between brackets is the NLO term, which accounts for the difference
between purely synchronous and quasi-synchronous oscillations, given that its origin
is rooted in the orientation differences between ®𝜚 and ®̄𝜚 . Note that we also took the
lowest order contribution | ®𝒜| ≃ |𝜉1 − 𝜉2 | /6, valid for small degeneracy parameters (we
can use the leading order expression (5.35) since the evolution of ®𝒜 is a precession,
hence its norm is unchanged). The expression (5.43) leaves a priori the possibility of
divide-by-zero if 𝜉1 = ± 𝜉2. We discuss these special cases at the end of this section.

To estimate the precession frequency, we consider as before that initially 𝒜 =
sgn(𝜉1−𝜉2)®𝑒𝑧 and assume the transition betweenℋlep andℋ0 to be abrupt enough such
that we can estimate, using (5.23), 𝑥𝐻 ®ℋ 0 · 𝒜 = −sgn(𝜉1 − 𝜉2)(𝑥/𝑚𝑒)(Δ𝑚2/2) cos(2𝜃).
Therefore we get

| ®Ω| =
��𝐹(𝜉1 , 𝜉2)Δ𝑚2

��
2𝑚𝑒𝐻

×
�����1 +

(
𝑥
𝑥tr

)4 sgn(Δ𝑚2 cos(2𝜃))
𝜉2

1 − 𝜉2
2

����� , (5.44)

where we defined

𝑥tr ≡ 𝑚𝑒

( √
2𝐺𝐹

6|Δ𝑚2 cos(2𝜃)|
)1/4
≃ 3.7

(
10−3 eV2

|Δ𝑚2 cos(2𝜃)|
)1/4

. (5.45)

Given the scaling 𝐻 ∝ 𝑥−2 recalled in (5.8), the frequency of synchronous oscillations
keeps increasing as the Universe expands, first as Ω ∝ 𝑥2 (leading order) and then as
Ω ∝ 𝑥6 (NLO domination).

This second behaviour is a novel result of this thesis. Although one might expect
that the effect of 𝒱 would be completely subdominant compared to 𝒥 , the particular
form of the equation of motion changes this picture. Keeping the dominant term
in the expansion (5.41) (i.e., 𝒥 ) leads in the evolution equation (5.31) to an integral
symmetric under 𝜉1 → −𝜉1 and similarly for 𝜉2. Therefore, the associated contribution
is proportional to 𝜉2

1 − 𝜉2
2, which after dividing by the norm of ®𝒜 accounts for the

precession frequency ∝ 𝜉1 + 𝜉2 obtained in (5.37). However, the first order correction
in (5.41) is odd with respect to ®𝒱, hence an antisymmetric integral with respect to
𝜉1,2 → −𝜉1,2. The corresponding result is ∝ 𝜉1 − 𝜉2, which is enhanced compared to the
leading order term.

The transition from leading to next-to-leading order is then found to be around

𝑥NLO ≡ 𝑥tr |𝜉2
1 − 𝜉2

2 |1/4 . (5.46)

Note that depending on the sign of Δ𝑚2 cos(2𝜃)/(𝜉2
1 − 𝜉2

2) the frequency can go through
zero, which means that ®𝒜 can precess in one direction, slow down, and then precess in
the opposite direction with a frequency increasing as ∝ 𝑥6.
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5.3. Synchronous oscillations with two neutrinos

Particular cases While the previous calculation seemed fairly general, there are two
specific cases that deserve to be discussed.

• Equal asymmetries — if 𝜉1 = 𝜉2 the asymmetry vector ®𝒜 is strictly zero and the
previous formalism is inadequate (namely, (5.36) cannot be obtained anymore
since initially ®𝜚 = ®̄𝜚 = ®0).

• Equal but opposite asymmetries — if 𝜉1 = −𝜉2, the leading order term in (5.43)
vanishes (since 𝐹(𝜉1 , 𝜉2) ∝ 𝜉1+𝜉2), but not the next-to-leading order contribution,
a special case investigated at the end of section 5.4.1.

Summary: evolution of ®𝒜 Initially, at high temperatures (typically𝑇cm ∼ 20 MeV), the
lepton term dominates over the vacuum one and ®𝒜 ∝ ®ℋlep ∥ ®𝑒𝑧 . All vectors are aligned,
and this situation does not change until the MSW transition betweenℋlep-domination to
ℋ0-domination. If this transition is slow enough compared to the precession frequency,
then ®𝒜 keeps following ®𝒱eff and ends up aligned with ®ℋ 0. This corresponds to an
adiabatic evolution of the asymmetry vector itself. Conversely, if the transition is too
abrupt (that is much shorter than the precession timescale), ®𝒜 gets brutally misaligned
with ®ℋ0 and oscillations develop. Let us stress that the evolution of 𝜚 and 𝜚 is in general
adiabatic, but it is the evolution of the vector that they track, namely ®𝒥 , which can be
non-adiabatic depending on the value of the slowness factor (5.37).

If oscillations do develop, initially at the frequency (5.40), the increasing influence of
𝒱 compared to𝒥 leads to a new behaviour: beyond 𝑥NLO given by (5.46), the frequency
increases faster and Ω ∝ 𝑥6. These features are illustrated in section 5.4. Note that the
calculation of the NLO assumes | ®𝒱| ≪ | ®𝒜|, but at some point the vacuum term becomes
dominant over the self-potential one (cf. Figure 5.1) and the ATAO-(𝒥±𝒱) regime breaks
down. This is discussed in more detail in section 5.6.1.

Adiabaticity parameter

In the case with only two neutrinos, let us consider the evolution of the asymmetry
vector ®𝒜 without collisions and at leading order, which is dictated by equation (5.36). If
the transition from a mean-field dominated to a vacuum dominated Hamiltonian, that
is the MSW transition, is slow enough, then ®𝒜 evolves adiabatically and follows ®𝒱eff.
In order to assess the degree of (non-)adiabaticity, we thus need to quantify the speed
at which the transition takes place. Let us first define a tipping angle 𝛽, illustrated in
Figure 5.3, by

cos(2𝛽) = −𝒱̂eff · ®𝑒z since 𝒱̂eff(𝑥 ≪ 𝑥MSW) = −®𝑒z . (5.47)

Initially the tipping angle vanishes, and long after the transition it reaches 𝜃. We
define the location of the MSW transition 𝑥MSW as the moment when the tipping angle
takes half of its final value, 𝛽MSW = 𝜃/2, which corresponds to | ®ℋ 0 | = 𝑦2

eff | ®ℋ lep | (as
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5. Primordial neutrino asymmetry evolution

Figure 5.3 – Definition of the tipping angle 𝛽 on the left. The condition 𝛽 = 𝜃/2 shown
on the right corresponds to our definition of the MSW transition.

can be checked by trigonometric manipulations). Let us then define an adiabaticity
parameter as

𝛾 ≡ | ®Ω|
𝜕𝑥(2𝛽) , (5.48)

with ®Ω = 𝐹(𝜉1 , 𝜉2) ®𝒱eff, whose value is estimated from10 (5.36). A large 𝛾 corresponds to
a rate of change of the Hamiltonian direction (2𝜕𝑥𝛽) much smaller than the instantaneous
precession frequency (| ®Ω|), that is to a very adiabatic evolution. We find

𝛾−1 = − (ℋ⊥0 )2𝑦2
eff

|𝐹(𝜉1 , 𝜉2)| | ®𝒱eff |3
𝜕𝑥

©­
«
| ®ℋ lep |
ℋ⊥0

ª®
¬
, where ℋ⊥0 ≡ | ®ℋ 0 | sin(2𝜃) . (5.49)

We have used 𝜕𝑥(2𝛽) = − sin2(2𝛽)𝑦2
eff𝜕𝑥

(
| ®ℋ lep |/ℋ⊥0

)
and sin(2𝛽) = ℋ⊥0 /| ®𝒱eff |. In

order to assess the adiabaticity of the transition, we must estimate how large 𝛾 is
at the transition. Since | ®ℋ lep |/ℋ⊥0 ∝ 1/𝑥6, and using that at the transition we have

| ®𝒱eff | = 2| ®ℋ 0 | cos𝜃 (see the geometry on the right plot of Figure 5.3), the value of the
adiabaticity parameter at the transition reduces to

𝛾MSW = |𝐹(𝜉1 , 𝜉2)| 23
𝑥 | ®ℋ 0 | cos2 𝜃

sin𝜃

�����
𝑥=𝑥MSW

. (5.50)

Let us define the degree of non-adiabaticity through

𝑃n.a ≡ 1
2

(
1 ∓𝒜 · 𝒱̂eff

)
, (5.51)

10The next-to-leading order contribution to ®Ω is not relevant here as we focus on cases where 𝑥MSW ≪
𝑥NLO.
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5.3. Synchronous oscillations with two neutrinos

with a − sign (resp. + sign) if initially ®𝒜 is aligned (resp. anti-aligned) with ®𝒱eff (i.e.,
−®𝑒z). Its asymptotic value 𝑃∞n.a when 𝑥 ≫ 𝑥MSW estimates the misalignment of the
final asymmetry vector due to lack of adiabaticity. Indeed if the transition is perfectly
adiabatic, ®𝒜 keeps tracking ®𝒱eff and we always have 𝑃n.a = 0. In general, the degree of
non-adiabaticity needs not be much larger than unity to lead to a small 𝑃∞n.a, that is to a
very non-adiabatic transition—see for instance the Landau-Zener approximation (5.53).

We note from equation (5.50) that the adiabaticity parameter is of order
𝑥 |𝐹(𝜉1 , 𝜉2)| | ®ℋ 0 | evaluated at the transition, modulated by a geometric factor
(2/3) cos2 𝜃/sin𝜃. A transition is resonant when at some point the tipping angle goes
through 2𝛽 = 𝜋/2, that is through ®𝒱eff having no component along ®𝑒z. Hence, a very
non-resonant transition corresponds to 𝜃 ≪ 1, and in that case the geometric factor
is enhanced by 1/sin(𝜃). It is less likely to encounter a small adiabaticity parameter
because the tipping angle is small, and | ®Ω| at the transition is larger than its final value
(since | ®𝒱eff | keeps decreasing). Conversely for a very resonant transition, 𝜋/2 − 𝜃 ≪ 1,
and the geometric factor is reduced by cos2 𝜃 which is small, that is leads to a smaller
adiabaticity parameter. This is partly because of the large tipping angle, but also be-
cause | ®Ω| at the transition is much smaller than its final value (recall that at the transition
| ®𝒱eff | = 2| ®ℋ 0 | cos𝜃).

In the very resonant configuration (𝜋/2−𝜃 ≪ 1), the adiabaticity parameter for the
dynamics of ®𝒜 takes the simpler form

𝛾(𝜋/2−𝜃≪1)
MSW = |𝐹(𝜉1 , 𝜉2)| ℋ⊥0 Δ𝑥MSW , with 1

Δ𝑥MSW
≡ 𝑦2

eff 𝜕𝑥
©­
«
| ®ℋ lep |
ℋ⊥0

ª®
¬
������
𝑥=𝑥MSW

. (5.52)

Landau-Zener formula The Landau-Zener [Lan32; Zen32; Hax87; AFP01; Joh+16;
Wit05] formula is an approximation of the degree of non-adiabaticity in this very reso-
nant situation, using the approximation that the diagonal components of 𝒱 are linear
in 𝑥 and that off-diagonal ones are constant, which reads

𝑃∞n.a ≃ exp(−𝜋𝛾MSW/2) . (5.53)

Note that the factors 𝐹(𝜉1 , 𝜉2) and 𝑦2
eff in (5.52) are specific to the fact that we consider

the evolution of ®𝒜. If we had considered the evolution of ®𝜚 given by equation (5.27)
without self-interactions nor collisions, that is 𝜕𝑥 ®𝜚 = ®𝒱 ∧ ®𝜚 , we would have obtained
with a similar analysis (all quantities are written here for a given momentum 𝑦) the
usual expression for the Landau-Zener adiabatic parameter

𝛾(𝜋/2−𝜃≪1)
MSW = ℋ⊥0 Δ𝑥MSW , with 1

Δ𝑥MSW
≡ 𝜕𝑥

(
| ®ℋlep |
ℋ⊥0

)�����
𝑥=𝑥MSW

(5.54)

where ℋ⊥0 = ℋ0 sin(2𝜃). It is similar to equation (9b) of [Hax87] and equation (7.8) of
[AFP01], the only difference being that ℋ⊥0 is considered constant when dealing with
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5. Primordial neutrino asymmetry evolution

solar neutrinos, whereas in the cosmological context it scales as ∝ 𝑥, hence explaining
why the expression (5.54) for the transition width, Δ𝑥MSW, takes into account this
evolution. However, note that this necessary modification for the expression of the
adiabaticity parameter is absent from equation (28) of [Joh+16], although this impacts
only marginally the estimation of adiabaticity.

5.4 Relevant two-neutrino cases for the primordial
Universe

The previous results derived with only two neutrinos can shed some light on the physics
at play in the standard case with three neutrinos and a general PMNS matrix. After the
muon-driven MSW transition and before the electron-driven one, the oscillations only
take place in the 𝜈𝜇 − 𝜈𝜏 subspace since the unitary matrix 𝑈eff that diagonalizes 𝒱 is
approximately

𝑈eff = 𝑅23(𝜃eff
23 ) =

©­
«
1 0 0
0 cos𝜃eff

23 sin𝜃eff
23

0 − sin𝜃eff
23 cos𝜃eff

23

ª®
¬
, (5.55)

this form being rigorously valid in the limit 𝑚𝜇/𝑚𝑒 → ∞. Expanding in the ratio
𝜖 = Δ𝑚2

21/Δ𝑚2
32, we find

tan(2𝜃eff
23 ) = tan(2𝜃23) − 𝜖

sin(𝜃13) sin(2𝜃12)
cos2(𝜃13) cos2(2𝜃23) + 𝒪(𝜖

2) . (5.56)

Given the values (A.9) we find 𝜃eff
23 ≃ 𝜃23 with a difference of order 0.25 %. Hence, we

investigate the case Δ𝑚2 = Δ𝑚2
32 and 𝜃 = 𝜃23 in section 5.4.1 to study the evolution of

density matrices after the muon-driven transition.
Unfortunately, the system is not so easily reduced to a two-neutrino system when

it comes to the description of the subsequent electron-driven MSW transitions. For
simplicity, we choose to consider a fictitious configuration where 𝜃13 = 𝜃23 = 0 such
that oscillations take only place in the 𝜈𝑒 − 𝜈𝜇 subspace, with the electrons/positrons
being the relevant contribution to the lepton mean-field effects (5.24). This configuration
is detailed in section 5.4.2. For numerical applications we consider Δ𝑚2 = Δ𝑚2

21 and
𝜃 = 𝜃12. Although it is an ideal setup, it will provide important insight for the full
three-neutrino case in section 5.5.

5.4.1 Muon-driven MSW transition
Let us consider a muon-driven MSW transition with 𝜃 = 𝜃23 ≃ 0.831 and Δ𝑚2 = Δ𝑚2

32 ≃
2.453 × 10−3 eV2 for numerics [Zyl+21]. We restrict to normal ordering for simplicity,
and do not include collisions yet. This means that electrons and positrons are absent
from this description, except for their contribution to the energy density and thus the
Hubble parameter (5.8).
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5.4. Relevant two-neutrino cases for the primordial Universe

Description of the transition

As outlined before, synchronous oscillations of the neutrino ensemble can develop
when the MSW transition occurs, provided this transition is abrupt enough for ®𝒜 to get
suddenly misaligned with ®𝒱eff and precess around it. Let us first estimate the location
of this transition. The energy density of muons/antimuons drops very rapidly once
they become non-relativistic. In this limit, we get

𝜌𝜇± + 𝑃𝜇± = 4𝜎5/2
( 𝑥

2𝜋

)3/2
e−𝜎𝑥 × 𝑚

4
𝑒

𝑥3 (5.57)

with 𝜎 = 𝑚𝜇/𝑚𝑒 ≃ 206.77. Approximating 𝑦eff ≃ 𝜋, we find that the vacuum term is
equal in magnitude to the lepton term — which is our definition of the transition, — for
𝑥MSW ≃ 0.043, that is for 𝑇cm ≃ 12 MeV. Given the exponential drop exp(−𝜎𝑥) of muons
energy density, one can note that 𝑥MSW is very mildly sensitive to the value of Δ𝑚2.

The adiabaticity parameter given by (5.50) is then

𝛾MSW ≃ 100 × |𝜉1 + 𝜉2 | . (5.58)

For 𝜉1 + 𝜉2 of a few percent or smaller, we find 𝛾MSW < 1 and the transition is abrupt,
that is the evolution of ®𝒜 during the transition is very non-adiabatic. Hence we expect
that as the direction of the effective Hamiltonian moves away from the vertical axis, ®𝒜
will develop oscillations at the frequencyΩ. For much larger 𝜉1+𝜉2 such that 𝛾MSW > 1,
and considering the Landau-Zener estimation for the degree of adiabaticity (5.53), ®𝒜
should tend to follow adiabatically the transition to the vacuum Hamiltonian.

The evolution of asymmetry is illustrated in Figure 5.4. It is clear that the evolution
with the self-interaction mean-field is completely different from the evolution where this
has been ignored and which corresponds to the ATAO-𝒱 line: no synchronous oscilla-
tions take place in this scheme. These oscillations, in agreement with our adiabaticity
estimate, do develop significantly for initial degeneracies smaller than one percent. On
the contrary, for 𝜉1 + 𝜉2 = 0.1, the transition is quasi-adiabatic and ®𝒜 follows the di-
rection set by ®𝒱eff with oscillations of much smaller amplitude compared to the smaller
𝜉 cases (right plots). Furthermore, it appears that at small degeneracies, the ATAO-
𝒥 results differ from the more accurate ATAO-(𝒥 ± 𝒱) scheme, the latter matching
perfectly the QKE method. The difference between ATAO-𝒥 and ATAO-(𝒥 ±𝒱) can be
understood by considering the NLO contribution to the precession frequency: this ex-
tra contribution explains the “wrong” frequency in the ATAO-𝒥 case (see for instance
the bottom right plot on Figure 5.4), or even the wrong qualitative behaviour of the
asymmetry (top right plot).

Synchronous oscillation frequency To estimate the frequency from our runs we com-
pute (𝜕𝑥 ®𝒜∧ ®𝒜)/| ®𝒜|2 which gives, given the precession equation (5.42), the projection of
the rotation vector ®Ω orthogonally to ®𝒜. If the MSW transition is abrupt, the precession
takes place around ®ℋ0 with an angle 2𝜃, hence the former quantity should be equal
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Figure 5.4 – Evolution of the flavour asymmetries for a two-neutrino 𝜈𝜇 (green) -
𝜈𝜏 (red) system without collisions, with Δ𝑚2 = 2.45 × 10−3 eV2 and 𝜃 = 0.831. We
compare different numerical schemes: in solid line QKE, in dots ATAO-(𝒥 ±𝒱) (hidden
behind QKE), in dot-dashes ATAO-𝒥 , and in dashes ATAO-𝒱 . The initial degeneracy
parameters are on the first row 𝜉2 = 0 and 𝜉1 = 0.1, 0.01, 0.001 from left to right ; on
the second row 𝜉1 = 0 and 𝜉2 = 0.1, 0.01, 0.001. On the y-axis label, 𝜉 stands for the
non-zero initial 𝜉𝑖 .

to |sin(2𝜃) ®Ω|. Both frequencies are shown on Figure 5.5. We clearly see the transition
from the regime Ω ∝ 𝑥2 to Ω ∝ 𝑥6, that is the transition to the NLO regime, and in
particular how the ATAO-(𝒥 ± 𝒱) scheme fits the QKE results, while (as expected by
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5.4. Relevant two-neutrino cases for the primordial Universe

construction) the ATAO-𝒥 scheme completely misses this change of regime. In the
region 𝑥MSW < 𝑥 ≪ 𝑥NLO, 𝒥 largely dominates over𝒱 and all three schemes coincide.

Also, since 𝜃 = 0.831 > 𝜋/4, cos(2𝜃) < 0 and according to (5.44) the frequency can
go through zero for normal ordering (Δ𝑚2 > 0) with |𝜉1 | > |𝜉2 | or inverted ordering
(Δ𝑚2 < 0) with |𝜉2 | > |𝜉1 |. That is the case in the top right plot of Figure 5.4 (𝜉1 = 0.001,
𝜉2 = 0 and normal ordering): we observe a back and forth motion of 𝒜 for11 𝑇NLO ≃
2.8 MeV, which corresponds to Ω = 0 as visible on Figure 5.5, left plot. This transition
between two frequency regimes with a change of rotation direction is a feature also seen
in Figures 9 and 10 of [Joh+16].
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Figure 5.5 – Frequency of synchronous oscillations in the case 𝜉1 = 0.001, 𝜉2 = 0
(left) and the case 𝜉1 = 0, 𝜉2 = 0.001 (right). We consider a 𝜈𝜇 − 𝜈𝜏 system with
Δ𝑚2 = 2.45 × 10−3 eV2 and 𝜃 = 0.831. The vertical red line is the location of the MSW
transition. The dashed black line is |Ω sin(2𝜃)|, that is the analytic approximation (5.44).
The coloured lines correspond to |(𝜕𝑥 ®𝒜 ∧ ®𝒜)|/| ®𝒜|2, in the QKE method (blue), the
ATAO-𝒥 scheme in orange and the ATAO-(𝒥 ±𝒱) in green (hidden behind QKE).

If we consider smaller degeneracies, such that

|𝜉2
1 − 𝜉2

2 | <
𝑥4

MSW

𝑥4
tr
≃ 1.8 × 10−8

( |Δ𝑚2 cos(2𝜃)|
10−3 eV2

)
(5.59)

then the NLO contribution to the precession frequency will dominate already when the
MSW transition occurs. The adiabaticity parameter 𝛾MSW must be rescaled by multi-

11The value predicted using (5.46) is slightly different from the one obtained numerically, because (5.46)
assumes zero adiabaticity, such that the angle between ®𝒜 and ®ℋ0 is exactly 2𝜃, whereas in reality ®𝒜
partially follows the direction of ®Ω during the MSW transition (see the bottom right plot on Figure 5.10 for
a similar behaviour in an electron-driven transition).
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5. Primordial neutrino asymmetry evolution

plying it by the factor in square brackets in equation (5.43), and we get approximately

𝛾MSW =
4.1 × 10−7

|𝜉1 − 𝜉2 | , (5.60)

assuming the NLO contribution does dominate in (5.43), which amounts to multiply-
ing (5.58) by (𝑥MSW/𝑥tr)4/

��𝜉2
1 − 𝜉2

2
��. Therefore, if we satisfy the condition |𝜉1 − 𝜉2 | ≫

4.1 × 10−7, the transition is still abrupt and oscillations do develop. For even smaller
degeneracies, there is no clear region where | ®𝒥 | ≫ | ®𝒱|, and the subsequent phe-
nomenology can only be captured by a full QKE resolution as in [Joh+16].

Beginning of oscillations Provided the MSW transition is non-adiabatic, oscillations
of ®𝒜 appear, driving each individual mode. However, one can see on Figure 5.4 that
depending on the value of (𝜉1 , 𝜉2), the apparent “start” of these oscillations looks shifted
while 𝑥MSW is the same. We can estimate how oscillations develop, which provides an
additional check of our analytical developments.

The asymmetry evolves with a frequency Ω(𝑥), therefore the phase of the oscilla-
tions is at any time given by

dΦ
d𝑥 = Ω(𝑥) hence Φ(𝑥) = 1

3Ω(𝑥)𝑥 , (5.61)

where we used the fact that Ω ∝ 𝑥2, keeping only the leading order contribution (5.40).
Half a period of oscillation is reached when Φ(𝑥𝜋) = 𝜋, which happens for

𝑥𝜋 =
(

1
1.28 × 106 ×

10−3 eV2

|Δ𝑚2 | ×
1

|𝜉1 + 𝜉2 | × 3𝜋
)1/3
≃ 0.067 , (5.62)

for 𝜉1 = 0.01 and 𝜉2 = 0, which agrees with Figure 5.4, top middle plot.

Particular cases

In this subsection, we use the 𝜈𝜇 − 𝜈𝜏 framework to discuss the particular cases of equal
and equal but opposite asymmetries, for which the calculations of section 5.3.2 are no
longer valid.

If 𝜉1 = 𝜉2, the vector parts of 𝜚(𝑦), 𝜚(𝑦) and 𝒜 are all equal to zero, and will
therefore remain so. The self-potential term cancels in the QKE and the ATAO-𝒱 scheme
describes accurately the neutrino evolution.

The case 𝜉1 = −𝜉2 would correspond to a vanishing total lepton number density,
while each flavour could display large asymmetries. This would result in a possibly
significant contribution to the total energy density, hence the interest for this particular
case. It was shown in [PRS02; Dol+02] that in this scenario synchronous oscillations are
hampered as long as 𝒥 dominates. This is in perfect agreement with our theoretical
analysis: at leading order, as 𝐹(𝜉,−𝜉) = 0 the first term in (5.43) vanishes. However,
our calculation of the NLO contribution shows that oscillations can still take place, but
directly with a frequency ∝ 𝑥6.
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Figure 5.6 – Equal but opposite asymmetries 𝜉1 = −𝜉2 = 𝜉 = 0.001. We clearly see
that, if we discarded the next-to-leading order contribution in (5.33) (ATAO-𝒥 curve,
in dashed-dots), oscillations would be switched off. However, the lowest order term in
the frequency expression is now ∝ 𝑥6 and gives rise to quasi-synchronous oscillations
beyond 𝑥 ≃ 0.2, see equation (5.63).

To check this prediction, we plot the evolution of asymmetries for 𝜉1 = −𝜉2 = 𝜉 =
0.001 on Figure 5.6. In the ATAO-𝒥 scheme (which ignores the NLO contribution),
oscillations never appear, contrary to the actual QKE evolution, correctly captured by
the ATAO-(𝒥 ±𝒱) scheme. The onset of synchronous oscillations is delayed compared
for instance to the right plots of Figure 5.4, and we can estimate the location of this
starting point exactly as in the previous section, the only difference being that we use
the NLO part of (5.44) Ω ∝ 𝑥6. We find that the location of the first half-oscillation is

𝑥𝜋 =
(

8𝜋2

3 × 2.278 × 10−22 × 𝑚2
𝑒

|Δ𝑚2 | × 𝑥
4
tr × 𝜉 × 7𝜋

)1/7
≃ 0.20 , (5.63)

for 𝜉 = 0.001, in excellent agreement with Figure 5.6.

5.4.2 Electron-driven MSW transition
We now consider an electron/positron driven transition in the (fictitious) 𝜈𝑒 − 𝜈𝜇 sub-
space, with the mixing angle 𝜃 = 𝜃12 ≃ 0.587 and the small mass gap Δ𝑚2 = Δ𝑚2

21 ≃
7.53× 10−5 eV2 for numerics. The difference with the previous case comes from the fact
that the MSW transition now takes place when electrons are still relativistic. Moreover,
we show in the following section how the collision term is very different from the one
in the 𝜈𝜇 − 𝜈𝜏 subspace.
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5. Primordial neutrino asymmetry evolution

The relativistic limit is sufficient to estimate the location of the MSW transition,
therefore we use (we take the comoving plasma temperature 𝑧 = 1 for simplicity, which
is justified since 𝑒± annihilations are just beginning at this stage):

𝜌𝑒± + 𝑃𝑒± = 7𝜋2

45 (𝑚𝑒/𝑥)4 , (5.64)

to deduce that the transition takes place for

𝑥MSW =

(
𝑚6
𝑒𝐺𝐹

𝑚2
𝑊 |Δ𝑚2 |

28
√

2𝜋2𝑦2
eff

45

)1/6
= 0.118

(
10−3 eV2

|Δ𝑚2 |
)1/6

. (5.65)

For the numerical values chosen, we find 𝑥MSW ≃ 0.18, that is 𝑇cm ≃ 2.8 MeV12. We
estimate the adiabaticity of this transition with (5.50), and find

𝛾MSW ≃ 485 × |𝜉1 + 𝜉2 | . (5.66)

The larger prefactor compared to the estimate (5.58) in the muon-driven case makes the
transition adiabatic up to smaller degeneracies. This is in agreement with the results
of Figure 5.7: for instance, the transition is much more adiabatic (small amplitude of
synchronous oscillations) for 𝜉1 + 𝜉2 = 0.01 compared to Figure 5.4.

The frequency regimes outlined in section 5.3.2 are once again observed on Fig-
ure 5.8, where we plot the quantities |Ω sin(2𝜃)| and |(𝜕𝑥 ®𝒜 ∧ ®𝒜)|/| ®𝒜|2. We see the
transition from Ω ∝ 𝑥2 to Ω ∝ 𝑥6 and the possible cancellation of the frequency at
this transition. Contrary to the case studied in section 5.4.1, it happens now in normal
ordering for |𝜉2 | > |𝜉1 | because cos(2𝜃) > 0.

5.4.3 Effect of collisions
In the previous sections, we systematically discarded the collision term in the QKEs in
order to focus on the synchronous oscillation phenomenon and how approximate nu-
merical schemes (namely, the ATAO-(𝒥 ±𝒱)procedure) accurately capture the physics
at play.

Taking into account the scattering and annihilation processes is nevertheless cru-
cial for a precision calculation, not only since these processes will determine neutrino
decoupling and partial reheating [DHS97; Esp+00; Man+02; Man+05; SP16; Gro+16;
Gro+17; FP20; FPV20; Ben+21], but also because they can reduce flavour asymmetry
differences. This second effect was notably shown in references [Dol+02; Joh+16], but
these works used approximate expressions for the collision term (so-called damping ap-
proximation). We aim at showing the effect of the exact collision term, whose expression
was derived for instance in [SR93; BC16] and in chapter 2 of this manuscript.

For the following discussion, we only recall that the collision term 𝒦[𝜚 , 𝜚] is an
integral whose matrix structure is determined by the statistical factors associated to

12Note also that the first electron-driven transition associated with the large mass gap should be around
𝑇cm = 5 MeV by application of this estimate with Δ𝑚2 = Δ𝑚2

31.
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Figure 5.7 – Evolution of the flavour asymmetries for a two-neutrino 𝜈𝑒 (blue) - 𝜈𝜇
(green) system without collisions, with Δ𝑚2 = 7.53 × 10−5 eV2 and 𝜃 = 0.587. We
compare different numerical schemes: in solid line QKE, in dots ATAO-(𝒥 ±𝒱) (hidden
behind QKE), in dot-dashes ATAO-𝒥 , and in dashes ATAO-𝒱 . The initial degeneracy
parameters are on the first row 𝜉2 = 0 and 𝜉1 = 0.1, 0.01, 0.001 from left to right ; on the
second row 𝜉1 = 0 and 𝜉2 = 0.1, 0.01, 0.001.

two-body reactions (1) + (2) → (3) + (4). They read typically (we write 𝜚 𝑖 = 𝜚(𝑦𝑖) for
particle 𝑖):

[𝜚4(1 − 𝜚2) + Tr (𝜚4(1 − 𝜚2))] 𝜚3(1 − 𝜚1) − {loss} + h.c. , (5.67)
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Figure 5.8 – Same plot as Figure 5.5 for the 𝜈𝑒 − 𝜈𝜇 system with mixing parameters
𝜃 = 0.587 and Δ𝑚2 = 7.53 × 10−5 eV2.

for neutrino elastic scattering (this term corresponds to the process 𝜈(1)+𝜈(2) → 𝜈(3)+𝜈(4))
and

𝑓 (𝑒)4 (1 − 𝑓 (𝑒)2 )𝐺𝐿/𝑅𝜚3𝐺𝐿/𝑅(1 − 𝜚1) − {loss} + h.c. , (5.68)

for reactions with electrons and positrons (this particular terms stands for a scattering
𝜈(1) + 𝑒(2) → 𝜈(3) + 𝑒(4)). In the above expressions, the loss part corresponds to the
exchange {𝜚 𝑖 ↔ (1 − 𝜚 𝑖)} for all distributions, and h.c. stands for “hermitian conjugate”.
The coupling matrices 𝐺𝐿 and 𝐺𝑅 are diagonal in flavour space, and read in the full
three-neutrino framework

𝐺𝐿 = ©­
«
𝑔𝐿 + 1 0 0

0 𝑔𝐿 0
0 0 𝑔𝐿

ª®
¬
, 𝐺𝑅 = ©­

«
𝑔𝑅 0 0
0 𝑔𝑅 0
0 0 𝑔𝑅

ª®
¬
, (5.69)

with 𝑔𝐿 = − 1
2 + sin2 𝜃𝑊 , 𝑔𝑅 = sin2 𝜃𝑊 where 𝜃𝑊 is Weinberg’s angle. In the 𝑒𝑒 entry of

𝐺𝐿, the extra factor of 1 accounts for the charged currents between 𝑒± and 𝜈𝑒 . Since we
do not consider collisions with other charged leptons (due to their negligible density in
the range of temperatures of interest), this is the only additional factor in 𝐺𝐿. Therefore
the collision terms satisfy the general property

𝒦[𝑈s𝜚𝑈†s , 𝑈s𝜚𝑈†s ] = 𝑈s𝒦[𝜚 , 𝜚]𝑈†s , 𝒦[𝑈s𝜚𝑈†s , 𝑈s𝜚𝑈†s ] = 𝑈s𝒦[𝜚 , 𝜚]𝑈†s (5.70)

for constant unitary matrices of the type

𝑈s =
(
1 0
0 𝒰

)
, 𝒰 ∈ U(2) . (5.71)
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In general, the collision term 𝒦[𝜚 , 𝜚], being made of statistical factors like (5.67)
and (5.68), tends to make the density matrices in flavour basis diagonal, with entries
being Fermi-Dirac distributions — or 𝜚 and 𝜚 must be obtained from conjugation of such
matrices with a unitary matrix of the type (5.71). The degeneracies are not constrained
by processes like 𝜈𝛼 + 𝜈𝛽 → 𝜈𝛼 + 𝜈𝛽 or 𝜈𝛼 + 𝜈̄𝛼 → 𝜈𝛽 + 𝜈̄𝛽. The only constraint is due to
the processes 𝜈𝛼 + 𝜈̄𝛼 → 𝑒− + 𝑒+, which impose 𝜉𝛼 = −𝜉̄𝛼 at equilibrium. Therefore, if
collisions are strong enough, the density matrices are pushed towards

𝜚 ∼ diag[𝑔(𝜉𝛼 , 𝑦)] , 𝜚 ∼ diag[𝑔(−𝜉𝛼 , 𝑦)] , (5.72)

where ∼ stands for the possible conjugation by a matrix of the form (5.71).

Muon-driven transition In the framework of section 5.4.1, we considered a two-
neutrino case with only 𝜈𝜇 and 𝜈𝜏. When focusing on the 𝜈𝜇 − 𝜈𝜏 subspace of (5.69), the
𝐺𝐿 and 𝐺𝑅 matrices are proportional to the identity matrix.

Initially, the collision term vanishes since 𝜚 and 𝜚 are in the form (5.72). What may
come as a surprise is the fact that it keeps vanishing even though 𝜚 and 𝜚 evolve. Indeed,
at high temperature the ATAO-𝒥 scheme is valid and both 𝜚 and 𝜚 are diagonalized
by the same matrix 𝑈𝒥 , that is furthermore identical for all momenta 𝑦. This means
that we have13 𝜚 = 𝑈𝒥 𝜚̃𝑈†𝒥 (and similarly for 𝜚), so from the restriction of the general
property (5.70) we deduce the relations

𝒦[𝜚 , 𝜚] = 𝑈𝒥𝒦
[
𝜚̃ , ˜̄𝜚] 𝑈†𝒥 , 𝒦(𝜚 , 𝜚) = 𝑈𝒥𝒦̄

[
𝜚̃ , ˜̄𝜚] 𝑈†𝒥 . (5.73)

Thanks to this peculiar “factorization”, the collision term keeps vanishing as long as 𝜚̃
and ˜̄𝜚 are diagonal matrices (which they are by definition) of Fermi-Dirac distributions.
This is much less restrictive, and remains satisfied as long as 𝒥 ≫ 𝒱 since 𝒦 = 0
leads to 𝜕𝑥𝜚̃ = 0, hence the collision term keeps vanishing, and so on. With or without
collisions, the evolution of 𝜚 , 𝜚 is purely due to the change of direction of ®𝒜, which
oscillates more or less around ®𝒱 depending on the adiabaticity of the MSW transition.

Note that the previous argument is only exact for the part of 𝒦 corresponding to
neutrino self-interactions. It extends to the scattering with electrons/positrons as long
as all particles share the same temperature. But even beyond this, when 𝑒± annihilations
populate the neutrinos, they do so in creating pairs of neutrinos/antineutrinos, so the
collision term acts to maintain thermal distributions, but not to equilibrate asymmetries.

All in all, the asymmetries are not affected at all by the collision term as long as the
ATAO-𝒥 scheme is a good description of neutrino evolution. However, we have shown
that below ∼ 10 MeV the refined ATAO-(𝒥 ± 𝒱) scheme is necessary to capture the
physics. The very fact that 𝜚 and 𝜚 are not diagonalized with the same unitary matrix
(either 𝑈𝒥+𝒱 or 𝑈𝒥−𝒱), and furthermore the 𝑦-dependence of these matrices, means
that we lose the property (5.73), that is

𝒦[𝜚 , 𝜚] ≠ 𝑈𝒥+𝒱(𝑦)𝒦[𝜚̃ , ˜̄𝜚]𝑈†𝒥+𝒱(𝑦) , 𝒦[𝜚 , 𝜚] ≠ 𝑈𝒥−𝒱(𝑦)𝒦̄ [𝜚̃ , ˜̄𝜚]𝑈†𝒥−𝒱(𝑦) . (5.74)
13For clarity, we omit the subscript 𝒥 for the matter density matrix 𝜚̃𝒥 . More generally in this section,

𝜚̃ will be the diagonal density matrix, whether the Hamiltonian is 𝒥 , 𝒥 +𝒱, . . .
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5. Primordial neutrino asymmetry evolution

When this non-equality is not meaningless — it is necessarily suppressed by a factor
| ®𝒱|/| ®𝒥 | ∝ 𝑥4/|𝜉1 − 𝜉2 | — the collision term starts to have a mild effect, which is even
smaller for large 𝜉𝛼 differences. Therefore, only for rather small 𝜉𝛼 differences can a
slight equilibration effect due to collisions be expected. However, since the frequency
Ω of synchronous oscillations is then smaller, the actual start of oscillations is delayed
until a moment when collisions are inefficient. This is why we expect collisions to
have a negligible effect throughout the evolution in this 𝜈𝜇 − 𝜈𝜏 system. We check this
on Figure 5.9, left plot, where the evolution is indistinguishable from the one without
collisions (Figure 5.4, top right plot). On the right plot, we artificially multiplied the
collision term by 1000, and we do observe in that case the damping of quasi-synchronous
oscillations when |𝒱| ∼ |𝒥 |, which corresponds to a reduction of asymmetry differences
between the two flavours.
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Figure 5.9 – Effect of collisions on the muon-driven transition for 𝜉1 = 0.001, 𝜉2 = 0,
with the collision term set to its actual value (left) and artificially multiplied by 1000
(right). We only plot the result of two numerical schemes: ATAO-𝒱 (dashes) and ATAO-
(𝒥 ±𝒱) (solid, equivalent to QKE).

In principle, taking into account scattering and annihilations with muons and
antimuons invalidates this picture since the charged currents with the 𝜈𝜇 and 𝜈̄𝜇 make
𝐺𝐿 non-proportional to the identity, and the general property (5.73) would be lost.
However their density is so suppressed in this range of temperature that we were able
to check that the previous results are not affected.

Note also that the behaviour is very different if we ignore the self-interaction mean-
field and rely on the pure ATAO-𝒱 scheme. In that case, the system is made of pure
mass states ofℋ0 after the MSW transition (since each 𝜚 is diagonal in the mass basis).
However, given the 𝑦-dependence of 𝒱, this transition does not happen at the same
time for all momenta. Thus there cannot be a property of the type (5.73) with𝑈𝒥 → 𝑈𝒱
because there is no unique 𝒱, and furthermore 𝑈𝒱(𝑦) depends on 𝑦 which prevents
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5.4. Relevant two-neutrino cases for the primordial Universe

its factorization out of the collision integral. Therefore the collision term will tend to
restore diagonality in flavour space (that is reduce flavour coherence), and this can only
be compatible with pure mass states (a requirement of the ATAO-𝒱 approximation)
when all flavours have reached the same distributions, that is when the asymmetry
matrix 𝒜 is proportional to the identity and thus ®𝒜 = ®0. In other words, the collision
term is strongly incompatible with the evolution of asymmetries dictated by the ATAO-
𝒱 scheme, and thus damps them. We observe this behaviour on Figure 5.9: 𝒜z → 0 in
the presence of collisions, which was not the case on Figure 5.4.

To conclude, if we ignore the self-interaction mean-field, the collision term effi-
ciently damps the asymmetry differences, because the unitary adiabatic evolution is
not the same for density matrices at various momenta. When including the additional
self-interaction potential, as long as it dominates the vacuum and lepton mean-fields,
the density matrices at various momenta evolve adiabatically with the common unitary
matrix 𝑈𝒥 and this preserves the initial absence of effect of the collision term. It is
only when ATAO-𝒥 is insufficient and one has to rely on ATAO-(𝒥 ±𝒱) that one starts
to see the effect of the unitary evolution differing between momenta, but also between
neutrinos and antineutrinos. This allows the collision term to damp the asymmetry
vector. But this comes with a very large delay and the collision term is only able to
barely damp𝒜z.

Electron-driven transition In the framework of section 5.4.2, the difference with the
𝜈𝜇 − 𝜈𝜏 case is the fact that 𝐺𝐿 is no longer proportional to the identity: 𝐺𝐿 = diag(𝑔𝐿 +
1, 𝑔𝐿). Once oscillations develop and 𝑈𝒥 ≠ I, there is no property like (5.73). In
other words, the matrix 𝐺𝐿 sets the direction ®𝑒z towards which the collision term now
unavoidably attracts ®𝜚 and ®̄𝜚 (whereas before,𝒦 was blind to any global rotation of axes).
Therefore, the collision term tends to erase flavour coherence much more efficiently: it
damps oscillations but does not necessarily allow to fully reach a state where the two
neutrino flavours have identical distributions, because the collision term becomes too
weak at temperatures below the MSW transition.

The top left plot of Figure 5.10 is equivalent to the top right plot of Figure 5.7
(𝜉1 = 0.001, 𝜉2 = 0), but including collisions. As expected, the asymmetry is damped
by 𝒦 in both the ATAO-𝒱 and ATAO-(𝒥 ±𝒱) schemes, and the evolution looks quite
similar, suggesting that one could be satisfied with the simpler ATAO-𝒱 resolution
scheme. However, this misses some important physical features, as the other plots
on Figure 5.10 show. First, if one neglects the self-potential there is no precession of
®𝒜 around ®𝒱, but simply the alignment of all ®𝜚 , ®̄𝜚 with ®𝒱 which evolves from ℋlep

domination to ℋ0 domination. This is clearly seen on the top right plot of Figure 5.10
(dashed lines): the y-component of ®𝒜 is constantly equal to zero, which is expected as𝒜
evolves from ®𝑒z to ℋ̂0 that lies in the (x− z) plane. In the correct ATAO-(𝒥 ±𝒱) scheme
however, synchronous oscillations do develop when collisions are discarded. When one
takes them into account,𝒜y does not take sizeable values but starts an oscillation (that
is strongly damped by𝒦 ), see the insert plot.

The bottom plots of Figure 5.10 show respectively the norm of ®𝒜 and its alignment
with ®ℋ0. In the no-collision case (blue curves), the final angle between ®𝒜 and ®ℋ0 is
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Figure 5.10 – Effect of collisions on the evolution of the 𝜈𝑒 − 𝜈𝜇 system, with (𝜉1 =
0.001, 𝜉2 = 0). The dashed lines correspond to the ATAO-𝒱 scheme (no self-interactions
in the mean-field), and the solid lines to the ATAO-(𝒥 ± 𝒱) scheme (equivalent to the
full QKE resolution). Top left plot: evolution of electron and muon flavour asymmetries.
Top right plot: y−component of the asymmetry vector ®𝒜. Bottom left plot: norm of ®𝒜.
Bottom right plot: angle between ®𝒜 and the final precession direction ®ℋ0.

non-zero (bottom right plot), but different from its initial value due to the very small
adiabaticity of the MSW transition: ®𝒜 slightly rotates towards ®𝒱eff, and precesses with
an angle slightly different from 2𝜃. Concerning its norm, | ®𝒜| is conserved without
collisions.14 In contrast, we observe that including collisions (brown curves) ®𝒜 gets

14The small “trough” in the ATAO-𝒱 case (dashed blue line) around 3 MeV is not a numerical artefact.

140



5.5. Evolution with three flavours of neutrinos

aligned with ®ℋ0 (but in the opposite direction due to the value of 𝜃), while the asym-
metry differences are damped—a result of the competition between precession (which
sets the preferred direction ℋ̂0) and collisions (with the preferred direction ®𝑒z).

5.5 Evolution with three flavours of neutrinos
Having presented in the previous sections the salient features of two-neutrino evolution
in the presence of flavour asymmetries, we can now turn to the full three-neutrino
framework. Our goal is not to provide a thorough exploration of the parameter space,
but instead to highlight the main physical characteristics of neutrino evolution with
non-zero asymmetries.

5.5.1 Method
We have shown the accuracy of the ATAO-(𝒥 ±𝒱) scheme that we can confidently use
instead of a full QKE resolution, more computationally expensive. Therefore, the results
are here obtained with this method and are compared with the ATAO-𝒱 scheme where
we recall that the self-interactions are ignored in the mean-field, so as to highlight how
the self-potential changes the dynamics.

However, it is impossible to integrate correctly the evolution at low temperatures.
First, oscillations become too fast as their frequency grows as 𝑥6 when the NLO dom-
inates. Then, we reach the point where the ATAO-(𝒥 ± 𝒱) scheme starts to fail and
oscillations must become gradually not synchronized. Eventually the system must con-
verge to a state where fast oscillations disappear, that is an ATAO-𝒱 scheme. We chose
to switch to an ATAO-𝒱 scheme at low temperature to effectively capture this transition
from ATAO-(𝒥 ±𝒱) to ATAO-𝒱 . In principle one should use the full QKE scheme to
integrate numerically this phase, but for the same reasons it is numerically daunting. We
chose to switch to the ATAO-𝒱 scheme around 2 MeV, since the final MSW transition
is over and collisions become rather inefficient (except for electron/positron annihi-
lations). This method of instantaneous switching to the ATAO-𝒱 scheme necessarily
misses some physics since it hides the complexity of the transition, but as we discuss in
section 5.6.1 we expect that this does not significantly affect the results obtained for the
evolution of asymmetry.

5.5.2 Results with standard mixing parameters
Given the numerous possibilities for the values of the initial degeneracy parameters,
we chose to restrict to two types of initial conditions. First, we consider the case where
electronic flavour neutrinos have the largest degeneracy (𝜉𝑒 = 𝜉max), with 𝜉𝜏 = 𝜉𝑒/10.
Second we consider the case where muonic neutrinos have the largest non vanishing

Since in that case each individual ®𝜚(𝑦) changes its direction from ®ℋlep(𝑦) to ®ℋ0(𝑦) at different times (instead
of being all locked on ®𝒜), the norm of ®𝒜 can only be compared at early and late times.
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5. Primordial neutrino asymmetry evolution

initial degeneracy (𝜉𝜇 = 𝜉max), with 𝜉𝜏 = 𝜉𝜇/10. We do not report results where 𝜉𝜏 is
the largest, because it is qualitatively very similar to the case where 𝜉𝜇 is the largest
potential, since oscillations develop in exactly the same way. In any case, the third initial
degeneracy parameter is set to zero.
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Figure 5.11 – Initial conditions are 𝜉𝛼 = (0.1, 0, 0.01) (top left), 𝜉𝛼 = (0.005, 0, 0.0005)
(top right), 𝜉𝛼 = (0, 0.1, 0.01) (bottom left) and 𝜉𝛼 = (0, 0.005, 0.0005) (bottom right).
The solid lines are the ATAO-(𝒥 ±𝒱) schemes (extended into a simple ATAO-𝒱 below
2 MeV), and the dashed lines are ATAO-𝒱 schemes throughout.

Results are depicted in Figure 5.11 for both typically large (𝜉max = 0.1) and typically
small (𝜉max = 0.005) potentials. We can observe how synchronous oscillations develop
in the 𝜈𝜇 − 𝜈𝜏 space after the muon-driven transition. Their amplitude is reduced for
large initial potentials since the transition is then more adiabatic in that case, as detailed
in section 5.4.1. In the case of small initial potentials, the transition from leading order
to NLO oscillations is also clearly visible (right plots of Figure 5.11). Note that even
though the general behaviour is that asymmetries tend to converge, this trend stops
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5.5. Evolution with three flavours of neutrinos

before equilibration is complete, and is in general less complete than in the case where
the self-interaction mean-field is ignored. Furthermore in some cases, the ordering of
final asymmetry is not the same as the ordering of initial ones.

If we consider cases with much larger initial asymmetries in the muonic and tauic
neutrinos, typically such that 𝜉𝜇+𝜉𝜏 ≫ 0.1, the muon-driven transition is very adiabatic,
and oscillations do not develop at that transition as the asymmetry vector closely follows
the evolution of𝒱(𝑦eff). This is illustrated in the left plot of Figure 5.17.

We stress that in this section we always consider the full collision term, and even
though we show the results for the evolution of the asymmetry (since it is the relevant
quantity to discuss synchronized oscillations), neutrinos are also partially reheated
by electron/positron annihilations, which preserve the asymmetry. In Figure 5.12 we
show the energy density fractional difference with respect to the one of a completely
decoupled neutrino species with vanishing chemical potential 𝜌̄(0)𝜈 = 7𝜋2/240. In general
the final effective temperature and distortions of electronic (anti-)neutrinos, which have
a direct effect on neutron/proton freeze-out and thus BBN, depend on initial degeneracy
parameters. Hence the impact on BBN predictions is not straightforward and one should
perform a full BBN analysis for each set of initial conditions [Gro+17], as was done for
the standard case of vanishing potentials in chapter 4.
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Figure 5.12 – Fractional difference of the energy density with respect to a decoupled
neutrino without chemical potential. The solid lines are the ATAO-(𝒥±𝒱) schemes (ex-
tended into a simple ATAO-𝒱 below 2 MeV), and the dashed lines are ATAO-𝒱 schemes
throughout. The left plot is for neutrinos and the right plot for antineutrinos. Initial
conditions are 𝜉𝛼 = (0, 0.005, 0.0005).

It is beyond the scope of this chapter to perform a full exploration of parameters
with all initial degeneracy parameters and all mixing parameters. However we aim
here at highlighting how results are qualitatively modified when considering different
mixing parameters.

143



5. Primordial neutrino asymmetry evolution

5.5.3 Dependence on neutrino mass ordering
In Figure 5.13 we show the dependence on the neutrino mass ordering on two examples.
The main difference is the resonant nature of the first electron-driven MSW transition
at 𝑇(𝑒),1MSW ≃ 5 MeV in IO. It leads to a much faster evolution, a feature also observed in
Figure 1 of [Man+12]. On the examples of Figure 5.13, we see two consequences of
this resonant transition: the ordering of degeneracy parameters can be modified, and
collisions are much more efficient in damping the synchronous oscillations right after
the transition.
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Figure 5.13 – The normal ordering case in solid lines, is compared to the inverted
ordering case in dashed lines. Initial conditions are 𝜉𝛼 = (0.1, 0, 0.01) on the left, and
𝜉𝛼 = (0, 0.1, 0.01) on the right.

5.5.4 Dependence on mixing angles
In the two-neutrino case we have shown that ®ℋ0 sets the precession direction of ®𝒜;
in other words, the values of the mixing angles are key parameters to determine
the final asymmetry differences. Even though they are now better and better con-
strained [Zyl+21], let us explore qualitatively in this section their influence on the
equilibration process.

To that purpose, we compare in Figure 5.14 (upper plots) the standard case dis-
cussed above with modified setups. First, when 𝜃13 = 0 (the rest being unchanged),
we notice that equilibration is less efficient. Furthermore setting 𝜃12 = 𝜃23 = 𝜋/8, with
𝜃13 at its standard value, the equilibration is also much less efficient as depicted in
Figure 5.14 (lower plots). Therefore, the general result that asymmetries mostly tend to
equilibrate crucially depends on the values of the mixing angles. Typically, for small
values of the mixing angles 𝜃12 and 𝜃23, that is far away from 𝜋/4, equilibration is less
efficient, and a non-vanishing value for 𝜃13 also significantly helps the equilibration
process as highlighted in [Dol+02; Man+11; Man+12]. Also, using 𝜃23 = 𝜋/8 instead
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5.5. Evolution with three flavours of neutrinos

of the larger standard value (A.9) increases the geometric factor cos2 𝜃/sin𝜃 of the
adiabatic parameter (5.50) by a factor ≃ 3.6. Therefore, the muon-driven transition is
much more adiabatic and the resulting oscillations are suppressed (see the discussion
in section 5.4.1), as can be checked on the bottom plots of Figure 5.14.

Evidently, even though we do not report it here, when all mixing angles vanish,
equilibration entirely disappears. This highlights the importance of a consistent treat-
ment of neutrino mixing when studying flavour equilibration in the early Universe.

0.10.03 0.06 0.2 0.3
𝑥

110 2346820
𝑇cm (MeV)

0.0

2.5

5.0

7.5

10.0

10
0
×6
(N

𝜈
−N

𝜈
) 𝛼𝛼

𝜈𝑒

𝜈𝜇

𝜈𝜏

0.10.03 0.06 0.2 0.3
𝑥

110 2346820
𝑇cm (MeV)

0.0

2.5

5.0

7.5

10.0

10
0
×6
(N

𝜈
−N

𝜈
) 𝛼𝛼

𝜈𝑒

𝜈𝜇

𝜈𝜏

0.10.03 0.06 0.2 0.3
𝑥

110 2346820
𝑇cm (MeV)

0.0

2.5

5.0

7.5

10.0

10
0
×6
(N

𝜈
−N

𝜈
) 𝛼𝛼

𝜈𝑒

𝜈𝜇

𝜈𝜏

0.10.03 0.06 0.2 0.3
𝑥

110 2346820
𝑇cm (MeV)

0.0

2.5

5.0

7.5

10.0

10
0
×6
(N

𝜈
−N

𝜈
) 𝛼𝛼

𝜈𝑒

𝜈𝜇

𝜈𝜏

Figure 5.14 – Comparison of the standard case (solid lines) with a modified setup (in
dashed lines). In the upper plots, the modification is 𝜃13 = 0, and in the lower plots 𝜃12 =
𝜃23 = 𝜋/8, with everything else unchanged. Initial conditions are 𝜉𝛼 = (0.1, 0, 0.01) on
the left, and 𝜉𝛼 = (0, 0.1, 0.01) on the right. At low temperatures, the green lines overlap
on the top right subplot, and similarly for the red lines on the bottom left subplot.
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5.5.5 Dependence on the Dirac phase
We now examine the effect of the Dirac CP-violating phase 𝛿, that we discarded up
until now in the PMNS matrix. Unless stated otherwise, all quantities in this section are
considered in the case 𝛿 ≠ 0. 𝜚 (𝛿=0) and 𝜚 (𝛿=0) refer to the solutions with vanishing Dirac
phase, and we shall show how the general case with a non-zero phase can be deduced
from it. It has been shown in [BGV08; GV08; GV10; Vol20] (see also section 3.5.1) that
the evolution with a non-vanishing Dirac phase can be obtained from a transformation
of the result obtained with a vanishing phase. More precisely, defining 𝑆̌ ≡ 𝑅23𝑆𝑅†23
(cf. notations in section A.2), we can define

ℋ̌lep = 𝑆̌†ℋlep𝑆̌ , ℋ̌0 = 𝑆̌†ℋ0𝑆̌ , 𝜚 ≡ 𝑆̌†𝜚 𝑆̌ , ˇ̄𝜚 ≡ 𝑆̌†𝜚 𝑆̌ , (5.75)

and similar transformations for the collision terms. Since 𝑆̌ is of the type (5.71) (see
equation (5.80) below), we infer from the property (5.70) that

𝒦̌(𝜚 , 𝜚) = 𝒦(𝜚 , ˇ̄𝜚) and 𝒦̌(𝜚 , 𝜚) = 𝒦(𝜚 , ˇ̄𝜚) . (5.76)

Furthermore, given that
𝑆̌†𝑈 = 𝑈 (𝛿=0)𝑆† , (5.77)

and [M2 , 𝑆] = 0, we deduce that
ℋ̌0 = ℋ (𝛿=0)

0 . (5.78)

Therefore, the evolution of 𝜚 (resp. of ˇ̄𝜚) is the same as the evolution of 𝜚 (𝛿=0) (resp. of
𝜚 (𝛿=0)) when the replacementsℋlep → ℋ̌lep and 𝒥 → 𝒥̌ have been performed, that is

𝜕𝜚

𝜕𝑥
= −i[ℋ (𝛿=0)

0 + ℋ̌lep + 𝒥̌ , 𝜚] + 𝒦(𝜚 , ˇ̄𝜚) , 𝜕 ˇ̄𝜚
𝜕𝑥

= +i[ℋ (𝛿=0)
0 + ℋ̌lep − 𝒥̌ , ˇ̄𝜚] + 𝒦(𝜚 , ˇ̄𝜚) .

(5.79)
In the standard case, that is with vanishing initial chemical potentials, 𝜚 and 𝜚
have the same initial conditions. If we further neglect the mean-field effects of
muons/antimuons, then [𝑆̌,ℋlep] = 0, hence ℋ̌lep = ℋlep and 𝜚 = 𝜚 (𝛿=0) (likewise
for antineutrinos) at all times, as shown in [GV10; Vol20] and section 3.5.1. From
this property, we obtain 𝜚 from 𝜚 (𝛿=0) using the inverse transformation, that is we get
𝜚 = 𝑆̌𝜚 (𝛿=0)𝑆̌†, with a similar relation for antineutrinos. It is equivalent to saying that
both results are exactly equal in their respective mass basis.

However in the presence of initial degeneracies, the initial conditions for 𝜚 are not
necessarily equal to those of 𝜚 . It is interesting to note that going from 𝜚 to 𝜚 amounts
to a rotation in the vector description of the 𝜈𝜇 − 𝜈𝜏 subspace. Indeed, both 𝑆 and 𝑆̌ are
of the (5.71) type, and the associated𝒰𝑆 and𝒰𝑆̌ are expressed in terms of rotations as

𝒰𝑆 = ei𝛿/2ℛz(𝛿) , 𝒰𝑆̌ = ei𝛿/2ℛy(−2𝜃23) · ℛz(𝛿) · ℛ†y(−2𝜃23) . (5.80)

Forgetting the global ei𝛿/2 factor which plays no role, we can use the property (A.13) to
interpret𝒰𝑆̌ as a rotation, when using the vector representation (5.25). It corresponds

146



5.5. Evolution with three flavours of neutrinos

0.10.03 0.06 0.2 0.3
𝑥

110 2346820
𝑇cm (MeV)

0.0

2.5

5.0

7.5

10.0
10

0
×6
(N

𝜈
−N

𝜈
) 𝛼𝛼

𝜈𝑒

𝜈𝜇

𝜈𝜏

0.10.03 0.06 0.2 0.3
𝑥

110 2346820
𝑇cm (MeV)

0.0

2.5

5.0

7.5

10.0

10
0
×6
(N

𝜈
−N

𝜈
) 𝛼𝛼

𝜈𝑒

𝜈𝜇

𝜈𝜏

Figure 5.15 – Effect of 𝛿 ≠ 0 on the evolution of asymmetries. The solid lines correspond
to the standard case with 𝛿 = 0 (that is 𝜚 (𝛿=0) and 𝜚 (𝛿=0)). The dashed lines are the case
with 𝛿 = 245◦ (central value in the most recent constraints [Zyl+21]). The dotted lines
correspond to the standard case results on which the transformation 𝑆̌𝜚 (𝛿=0)𝑆̌† (and
similarly for antineutrinos) has been applied. Initial conditions are 𝜉𝛼 = (0.1, 0, 0.01)
on the left and 𝜉𝛼 = (0, 0.1, 0.01) on the right. Initially, the dashed lines are hidden
behind the solid ones (see text). In the final stages the dotted lines are hidden behind
the dashed lines hence showing that asymptotically 𝜚 ≃ 𝑆̌𝜚 (𝛿=0)𝑆̌†.

to a rotation of angle 𝛿 around an axis whose direction is obtained from the rotation
ℛy(−2𝜃23) of the z-axis. However, using that 𝜃eff

23 ≃ 𝜃23 from (5.56), this axis is approx-
imately the one subtended by the 𝜈𝜇 − 𝜈𝜏 restriction of the vacuum Hamiltonian. This
has interesting consequences.

• Before the electron-driven transitions, using (5.75) with 𝑈 of the effective
form (5.55), and (5.80) taking 𝜃eff

23 ≃ 𝜃23, we infer the approximate relations
(
ℋ̌0

)
𝛼𝛽
≃ (ℋ0)𝛼𝛽 ========⇒

using (5.78)
(ℋ0)𝛼𝛽 ≃

(
ℋ (𝛿=0)

0

)
𝛼𝛽

for 𝛼, 𝛽 ∈ {𝜇, 𝜏} .
(5.81)

Therefore at early times the evolution of 𝜚 and 𝜚 (𝛿=0) are nearly completely similar
(likewise for antineutrinos) as can be checked by comparing the solid and dashed
lines of Figure 5.15 at high temperatures.

• Since the asymmetry vector precesses around that precise direction after the
muon-driven transition, this amounts to the fact that after the muon-driven MSW
transition and before the electron-driven ones, the oscillations of 𝜚 (similarly for ˇ̄𝜚)
are simply phase shifted with respect to the ones of 𝜚 (𝛿=0) (resp. 𝜚 (𝛿=0)), by an angle
𝛿, as can be checked by comparing the dashed and dotted lines on Figure 5.15 (see
also the left plot of Figure 5.17).
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5. Primordial neutrino asymmetry evolution

Later, when the electron-driven transitions occur, the 𝛿-phase difference between 𝜚
and𝜚 (𝛿=0) (likewise for antineutrinos) can only have an extremely marginal effect because
the oscillation frequency keeps increasing, and the amount of damping incurred in the
magnitude of (the traceless part of) 𝒜 is essentially only sensitive to the amplitude
and axes of oscillations. Oscillations keep accelerating until synchronous oscillations
disappear as we reach an average set byℋ0, which is captured by the ATAO-𝒱 scheme.
Eventually the initial dephasing is lost, and it is impossible to distinguish between the
final values of 𝜚 and 𝜚 (𝛿=0) (likewise for antineutrinos), therefore we can relate the final
results to the case without Dirac phase by

𝜚 ≃ 𝑆̌𝜚 (𝛿=0)𝑆̌† , 𝜚 ≃ 𝑆̌𝜚 (𝛿=0)𝑆̌† . (5.82)

There are two differences with the standard case without initial chemical potentials. On
the one hand, (5.82) is an approximate result and not an equality, based on the following
approximations:

1. 𝜃eff
23 ≃ 𝜃23, which is guaranteed from equation (5.56) by |Δ𝑚2

21/Δ𝑚2
31 | ≪ 1 ;

2. the muon-driven MSW transition takes place well before the first electron-driven
transition (𝑇(𝜇)MSW ≫ 𝑇(𝑒),1MSW), which is the case since 𝑚𝑒/𝑚𝜇 ≪ 1 ;

3. the amplitude and directions of oscillations are not meaningfully affected by the 𝛿-
dephasing, and eventually this dephasing should not be observable as oscillations
are averaged at large 𝑥.

On the other hand, it is only valid at late times, whereas in the standard case it is valid
at all times. It can be checked on Figure 5.15 that it is very accurate, as the dashed lines
(𝜚) and dotted lines (𝑆̌𝜚 (𝛿=0)𝑆̌†) are nearly indistinguishable at late times, and are only
𝛿-dephased at early times if oscillations develop.
Finally the property (5.82) allows to understand the physical effects of the Dirac phase.

• When converted into mass basis components, the property (5.77) and the rela-
tion (5.82) imply the (approximate) relation 𝜚̃ ≃ 𝑆𝜚̃ (𝛿=0)𝑆†. This means that in the
ATAO-𝒱 approximation which holds at late times, we have 𝜚̃ = 𝜚̃ (𝛿=0) and likewise
for antineutrinos given that off-diagonal components in the matter basis vanish
— see section 3.5.1. Hence the difference in the final state, when interpreted in the
flavour basis, is (approximately) only due to the different mass bases depending
on the value of 𝛿. Structure formation, being sensitive to mass bases spectra, is
therefore not affected by the Dirac phase. In addition, the trace of density matrices
is conserved by (5.82) such that 𝑁eff is preserved, and cosmological expansion is
not modified. We conclude that there is no sizeable gravitational signature of the
Dirac phase.

• Since 𝑆̌ is of the (5.71) type, the transformation (5.82) affects the number densities
of 𝜈𝜇 and 𝜈𝜏, that is 𝜚

𝜇
𝜇 and 𝜚𝜏𝜏, but the number density for 𝜈𝑒 , that is 𝜚 𝑒𝑒 , is left

invariant (likewise for antineutrinos). Only the coherence between the 𝑒 states
and the 𝜇 and 𝜏 states, that is the 𝜚 𝑒𝜇 and 𝜚 𝑒𝜏 components, is affected. Therefore,
there is also no perceptible effect on BBN because the neutron/proton freeze-out
is sensitive only to the spectrum of electronic (anti)neutrinos.
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5.6. Discussion

5.5.6 Equal but opposite asymmetries
As noted in section 5.3.2, the case of equal but opposite asymmetries is special because
the leading order of synchronous oscillations vanishes — meaning that the asymmetry
should remain locked in its original configuration, — but not the next-to-leading order.
The results obtained in three-neutrino cases are depicted in Figure 5.16. When 𝜉𝜇+𝜉𝜏 =
0, we expect from the analysis of section 5.4.1 that oscillations in the 𝜈𝜇−𝜈𝜏 space should
start at 1.4 MeV, while we observe the first half-oscillation at 4 MeV. These oscillations
must therefore be triggered by the first electron-driven transition.

One can compare the left plot of Figure 5.16 with Figure 9 of [Dol+02]: the damp-
ing of synchronous oscillations is considerably reduced in our calculation, which we
attribute to the use of the exact collision term, instead of a damping approximation (see
also the discussion in section 5.6).
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Figure 5.16 – Special case of equal but opposite non-vanishing degeneracy parameters.
The initial conditions on the left are 𝜉𝛼 = (0,−0.1, 0.1), and 𝜉𝛼 = (0.1,−0.1, 0) on the
right. Numerical schemes: ATAO-(𝒥 ± 𝒱) in solid lines, ATAO-𝒱 in dashed lines. On
the left plot, we extended the ATAO-(𝒥 ± 𝒱) integration until 1.3 MeV to see further
the damping of the oscillations.

If the opposite initial degeneracy parameters are the electronic and muonic (or
tauic) ones, there is no substantial difference with the “standard” case (Figure 5.11).
Indeed, the 𝜈𝜇 − 𝜈𝜏 oscillations equilibrate partially (at least in the case of large 𝜉𝜏 taken
in the Figure) the asymmetries in the 𝜈𝜇 − 𝜈𝜏 subspace, and the common asymmetry is
then not the opposite of 𝜉𝑒 .

5.6 Discussion
5.6.1 Transition from ATAO-(𝒥 ±𝒱) to ATAO-𝒱
We have shown that the ATAO-(𝒥 ±𝒱) scheme works very well as long as |𝒱| ≪ |𝒥 |.
Let us discuss here in more details the end of the ATAO-(𝒥 ±𝒱) regime, in a simplified
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5. Primordial neutrino asymmetry evolution

case with only two flavours so as to use the vector formalism. When | ®𝒱| and | ®𝒥 | are
of the same order, quasi-synchronous oscillations cease to exist. Therefore, in principle,
only the QKE scheme can handle this regime. However, the individual ®𝜚(𝑦) then evolve
independently rather than collectively, so that extremely rapid precessions around ®𝒱
should take place for all momenta, and given the 𝑦-dependence of ®𝒱, they tend to have
different frequencies. Given that | ®𝒱| ∝ (Δ𝑚2/(2𝑦𝑚𝑒𝐻) ≃ (Δ𝑚2/10−3eV2)×8 ·106×𝑥2/𝑦,
the oscillating part in the spectrum is typically a trigonometric function whose phase
𝜙 ∝ 𝑥3/𝑦. This implies extremely fast oscillations in the spectrum (i.e. in the variable 𝑦)
whenever 𝑥 ≫ 1, that is at cosmological times. It is expected that even a mild collision
term can average them out. Even if this is not the case, we only aim at describing
the average of this incredibly fast oscillating spectrum, since this is the only part that
will survive any measurement or physical process. This means that after a transitory
regime, the ATAO-𝒱 scheme must become a good approximation. Sadly, given the
𝒪(𝑁3) complexity for computing the collision term, it becomes numerically impossible
to integrate this transitory regime. Furthermore the 𝑦-grid becomes necessarily too
sparse to account for these spectral oscillations. Hence one must rely on a certain
approximation to handle the transition from a period where the ATAO-(𝒥 ±𝒱) scheme
applies to a regime where ATAO-𝒱 is sufficient.

We chose to push the ATAO-(𝒥 ± 𝒱) scheme as far as possible, typically down to
2 MeV and then to switch immediately to a ATAO-𝒱 scheme. In doing so we necessarily
miss some features of the transitory regime. If ®𝒜 is already well aligned with ®𝒱eff, it is
nonetheless expected to be a very good approximation. Hence it misses some physics
essentially due to the oscillations in the 𝜈𝜇 − 𝜈𝜏 space which have developed right after
the muon-driven transition, and for which we have seen that the collision term is not
very effective in dampening these oscillations towards ®𝒱eff. We can however estimate the
nature of the error made. If we focus on the two-neutrino case describing the 𝜈𝜇−𝜈𝜏 space
after the muon-driven transition, the density matrices are in the ATAO-𝒱 scheme in the
form given by (5.33). If we neglect terms of order 𝒪(𝜉2), then |𝑔(−𝜉1 , 𝑦) − 𝑔(−𝜉2 , 𝑦)| ≃
|𝑔(𝜉1 , 𝑦) − 𝑔(𝜉2 , 𝑦)|, that is we have essentially ®𝜚 ∝ �𝒱 + 𝒥 and ®̄𝜚 ∝ �𝒱 − 𝒥 with the
same prefactor. When the ratio |𝒱|/|𝒥 | grows this tends to displace both ®𝜚 and ®̄𝜚 in the
same direction, namely, the projection of ®𝒱 in a plane orthogonal to ®𝒥 (in agreement
with the next-to-leading order term of the expansion (5.41) of 𝒥 ). The net result is that
around the end of validity of the ATAO-(𝒥 ± 𝒱) regime, neutrinos and antineutrinos
of one flavour are converted to neutrinos and antineutrinos of the other flavour, but in
similar proportions for neutrinos and antineutrinos, hence preserving the asymmetry.
Of course, since the ratio |𝒱|/|𝒥 | reaches unity earlier for small 𝑦, it is expected that this
concerns more the small momenta 𝑦. Also, the more ®𝒱 and ®𝒥 are misaligned in the end
of the ATAO-(𝒥 ±𝒱) regime, the more this phenomenon takes place. This is nicely seen
in Figure 9 of [Joh+16], a configuration solved numerically without collisions, where
we observe that both the number of neutrinos and antineutrinos of a given flavour
increase while the opposite takes place for the other flavour. By construction, our
approach based on an instantaneous switching from ATAO-(𝒥 ±𝒱) to ATAO-𝒱 cannot
capture this phenomenon. Finding a method to handle this transitory regime when
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including the collision term is an upcoming numerical challenge for the computation of
equilibration in the early universe.

5.6.2 Comparison with the literature
Our numerical results differ from the literature in several aspects, which we review
here.

Collision term It is clear that the muon-driven oscillations are less damped in our
case, compared to the results for instance reported in [Dol+02]. We explain this by
the fact that the general collision term satisfies the “factorization” property (5.70), and
thus (5.73) in the 𝜈𝜇 − 𝜈𝜏 subspace. This implies that oscillations developing in this
subspace are only very mildly damped, as detailed in section 5.4.3. When relying on an
approximate collision term, this property is lost. For computations where all entries of
the collision term are based on a damping approximation, it is the repopulation term
which fails to satisfy the property (5.70). On the other hand, for computations which
use the full collision term for on-diagonal components, but a damping approximation
for off-diagonal components (as is the case in [Dol+02]), the property is lost precisely
because not all components are computed in the same method and this introduces
preferred directions in the collision term. In all cases, using an approximation for the
collision term results in much more damping of the oscillations in the 𝜈𝜇 − 𝜈𝜏 space
compared to our results. We already mentioned the case where 𝜉𝜇 = −𝜉𝜏 of [Dol+02]
(Figure 9), compared to our results in Figure 5.16. One of the consequences is that it is
not possible to consider that by 10 MeV we would have generically achieved 𝜉𝜇 = 𝜉𝜏, as
is assumed for instance in [PPR09; Man+11; Cas+12].

Large mixing angle Note that in references [Dol+02; GV10], the large mixing angle
value 𝜃23 = 𝜋/4 was used, which adds extra properties. Since cos(2𝜃23) = 0 we cannot
use (5.56) to estimate 𝜃eff

23 after the muon-driven transition. Fortunately, in that case we
get exactly

tan(2𝜃eff
23 ) =

(𝜖−1 + 1) cos2(𝜃13) + sin2 𝜃12 sin2 𝜃13 − cos2 𝜃12
sin(𝜃13) sin(2𝜃12) , (5.83)

hence we also find from 𝜖 = Δ𝑚2
21/Δ𝑚2

32 ≪ 1 that 𝜃eff
23 ≃ 𝜋/4, and the vector repre-

sentation of the vacuum Hamiltonian restricted to the 𝜈𝜇 − 𝜈𝜏 space is approximately
along the x-axis. Therefore the precession direction corresponds to a state where the
asymmetry is the same for 𝜈𝜇 and 𝜈𝜏. In that case, and given the extra damping incurred
by the approximations in the collision term, it is expected that the equilibration of the
degeneracy parameters 𝜉𝜇 and 𝜉𝜏 is very efficient right after the muon-driven transition.
This is seen for instance in Figures (7-10) of [Dol+02], or Figure 3 of [GV10] whereas
in its counterpart here (the left plot of 5.17), 𝜉𝜇 ≠ 𝜉𝜏 after the muon-driven transition.
Also this special choice of mixing angle explains why 𝜉𝜇 and 𝜉𝜏 remain equal on Figure
1 of [Man+11] or [Man+12], whereas in the right plot of Figure 5.17 they differ once the
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Figure 5.17 – Left plot: 𝜉𝛼 = (0, 0, 0.5), with 𝛿 = 0 in solid line and 𝛿 = 𝜋 in dashed
line. Dotted lines correspond to the case 𝛿 = 0 on which the transformation 𝑆̌𝜚 (𝛿=0)𝑆̌†
has been applied, and are hidden behind dashed lines at late times. It can be compared
with Figure 3 of [GV10]. Right plot: 𝜉𝛼 = (1.0732,−0.833,−0.833), with 𝜃13 = 0.20 in
solid line and 𝜃13 = 0 in dashed line. It corresponds to Figure 1 of [Man+11], noting that
the initial conditions are 𝜂𝜇 = 𝜂𝜈 = −0.61 instead of the stated values 𝜂𝜇 = 𝜂𝜈 = −0.41.

electron-driven MSW transitions are crossed, which results in a full equilibration being
never achieved. Note that we find nonetheless the same influence of 𝜃13, as discussed
in section 5.5.4.

CP phase Furthermore our results about the effect of the Dirac phase differ with
respect to [GV10; Vol20]. Although we confirm that the effect of the Dirac phase must
be maximal when 𝛿 = 𝜋 (strictly speaking there is no CP-violation in that specific case,
as it is equivalent to 𝛿 = 0 and a change of sign in 𝜃13), we find that it must necessarily
be negligibly small given the structure of the equations (see section 5.5.5) whereas it is
found small but not negligible in [GV10]. To be specific, in Figure 3 of [GV10] there is
a small effect of the Dirac phase, whereas in the left plot of Figure 5.17 no perceptible
effect is found. Again these differences must find their origin in the differences for
the treatment of the collision term, given that the property (5.76) is not satisfied by an
approximate repopulation term.

Concluding remarks
The complexity of the physics of neutrino evolution in the early Universe considerably
increases when including initial degeneracies, a problem studied analytically and nu-
merically in the last two decades. The ATAO-𝒱 scheme, presented in chapter 5, which
relied on the adiabaticity of the evolution of the Hamiltonian governing the dynamics
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of 𝜚 , 𝜚 and the very fast scale of oscillations, was extended to the ATAO-(𝒥 ±𝒱) scheme
to account for non-vanishing chemical potentials.

A restriction to two-flavour systems showed the excellent accuracy of this method
compared to a much longer QKE resolution, which we found to be at least ten times
slower and even more when dealing with low temperatures. Even though our code
can perform this “exact” QKE resolution, it is thus sufficient, notably if one wants to
explore a wide range of parameters, to rely on the ATAO-(𝒥 ± 𝒱) scheme. Thanks
to the ATAO-(𝒥 ±𝒱) approximation, we recover the famous synchronous oscillations,
but also predict and understand new results such as the existence of a phase of quasi-
synchronous oscillations, that is an increased frequency regime (Ω(𝑥) ∝ 𝑥2 → 𝑥6) when
the vacuum + mean-field Hamiltonian 𝒱 contribution becomes substantial compared
to 𝒥 . The (non-)adiabaticity of the evolution of𝒜 during the lepton-driven transitions
— which depends on the degeneracies via the slowness factor (5.37) — also allows
to understand its qualitative behaviour, namely the (non-)efficiency of its alignment
towards the vacuum Hamiltonian. In addition to their frequency, we can thus also
estimate the beginning and the amplitude of the synchronous oscillations which develop
afterwards.

We have shown that it is crucial to rely on the exact form of the collision term to fully
take into account the physics of these oscillations — approximate expressions previously
overdamped degeneracy differences and led to a too rapid flavour equilibration. The
𝒪(𝑁3) complexity of the full collision term is the price to pay. Therefore, we argue that it
is crucial to rely on a direct computation of the Jacobian to avoid worsening the problem.
The method developed in the zero degeneracy case is extended to the situation with
initial chemical potentials. Although it requires many more steps to implement it, as
summarized in appendix D, it keeps the appealing 𝒪(𝑁3) complexity.

The ATAO-(𝒥 ± 𝒱) scheme fails when the vacuum potential is of the order of
the self-interaction potential. In principle, the transition from the ATAO-(𝒥 ± 𝒱) to
the ATAO-𝒱 regime should be solved numerically with the full QKE method, but in
practice this is numerically daunting. Nevertheless, by switching directly at sufficiently
low temperature from ATAO-(𝒥 ± 𝒱) to ATAO-𝒱 , we argued that errors incurred on
the neutrino asymmetry should be minimized.

In the standard case with three neutrinos, we have highlighted the influence of the
various mixing parameters. Notably, the Dirac phase is found to have no perceptible
effect as it essentially changes only the phase of synchronous oscillations, and its residual
effect is accurately captured by the transformation (5.82). In general, degeneracies tend
to equilibrate partially, and this is due to the fact that the mixing angles 𝜃12 and 𝜃23
are not so different from maximal mixing (𝜋/4), but this statement strongly depends
on the non-vanishing of 𝜃13. Given the complexity of the physics involved during the
evolution of density matrices, the degree of equilibration depends non-trivially on the
values of the initial degeneracies (e.g. equilibration is far from being achieved in the left
plot of Figure 5.17), and requires further systematic study.
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Conclusion

Mozart, Beethoven and Chopin never died.
They simply became music.

Dr. Robert Ford, Westworld [S01E10]

Cosmology has entered exciting times, with the launch of terrestrial and spatial
telescopes that will push always further our understanding of the Universe, and maybe
unveil in the coming decade some of the enduring mysteries that plague the ΛCDM
model: the nature of dark matter and dark energy, the 𝐻0 tension, etc. In this era of
“precision cosmology”, the physics of neutrinos is absolutely essential. Indeed, neutri-
nos intervene at all stages of cosmological expansion: relativistic in the early Universe,
they decouple from the plasma of photons, electrons and positrons precisely when pri-
mordial nucleosynthesis begins — the initial conditions of BBN being dependent on
the neutrino distributions! In the late Universe, massive neutrinos can become non-
relativistic and affect the formation of large-scale structure. Moreover, the neutrino
sector is an immense room for new physics: sterile states, non-standard interactions, ...

The aim of this PhD was to achieve new levels of precision in the study of neutrino
evolution in the early Universe, assuming no beyond-the-Standard-Model physics —
except for the crucial phenomenon of flavour oscillations.

We developed a new method to derive the QKE which drives neutrino evolution,
namely an extended-BBGKY hierarchy: the perturbative expansion of [SR93] is replaced
by a well-controlled hierarchy of (un)correlated contributions to the 1−, 2−, · · · 𝑛−body
density matrix. This method had been used to derive the mean-field terms of the
QKE in [VVE13], in the so-called Hartree-Fock approximation. We went beyond this
approximation and included higher order correlations in the molecular chaos ansatz
to obtain the collision term (that is all contributions from scattering and annihilations
between 𝜈, 𝜈̄ and with 𝑒−, 𝑒+) and thus the full QKE.

This allowed us to perform a calculation of neutrino decoupling with, for the first
time, the full collision term (and the aforementioned QED corrections). Thus, we set
a new recommended value of the cosmological observable 𝑁eff: 𝑁eff = 3.0440 with a
precision of a few 10−4. This precision is partly due to the experimental uncertainty
on the physical parameters (notably the mixing angle 𝜃12), but mostly the numerical
variability depending on the settings of our algorithm. The previous calculations taking
into account flavour oscillations, which led to the value 𝑁eff ≃ 3.045 [SP16], did not
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5. Primordial neutrino asymmetry evolution

consider the full collision term: its off-diagonal components were evaluated with a
damping approximation. Including this term without any approximation is a real
numerical challenge, in particular due to its stiffness and because it scales as 𝒪(𝑁3)
with 𝑁 the size of the momentum grid. We ensured a reasonable computation time
through a major improvement, namely the direct calculation of the Jacobian of the
differential system. Our result on 𝑁eff was later confirmed by [Ben+21].

We also introduced an effective description of flavour oscillations that gives results
indistinguishable from the ones obtained solving the exact equation. It also substantially
reduces the computation time, another key improvement of our code. This approxi-
mation relies on the existence of a large separation of scales between the oscillation
frequencies and the collision rate, which allows to average over these oscillations. In
other terms, the density matrix always remains diagonal in the matter basis (the basis of
eigenstates of the Hamiltonian taking into account vacuum and mean-field effects). We
named this simplified description the Adiabatic Transfer of Averaged Oscillations (ATAO)
approximation. Moreover, we used this approximation to get a deeper understand-
ing of some results like the (absence of) effects of the CP phase in standard neutrino
decoupling.

Solving the QKE, we obtain the frozen-out distributions of (anti)neutrinos, which
in turn give access to parameters like 𝑁eff (cf. above) or the neutrino energy density
parameter today Ω𝜈. Thus, we are in possession of the two parameters that set the
various effects of incomplete neutrino decoupling on the earliest probe of the history of
the Universe we dispose of — BBN —: the distribution of 𝜈𝑒 , 𝜈̄𝑒 and the energy density
parametrized by 𝑁eff.

We have also assessed the changes in the primordial abundances of helium, deu-
terium and lithium due to incomplete neutrino decoupling. First, the light element
abundances depend on the expansion rate of the Universe (hence on 𝑁eff, via the so-
called clock effect). Then, the neutron abundance at the beginning of BBN is among other
things set by the neutron-to-proton ratio which varies if one changes the distributions of
𝜈𝑒 , 𝜈̄𝑒 . We have studied in detail how those effects interplayed, comparing their relative
contributions and providing analytical estimates when possible. This theoretical work
was conducted hand-in-hand with a numerical study, combining our neutrino evolu-
tion code and the BBN code PRIMAT. In particular, we were able to resolve an existing
discrepancy in the literature between [Gro+16] and [Man+05] regarding the variation
of deuterium abundance due to incomplete neutrino decoupling.

The presence of non-zero neutrino asymmetries, a priori allowed, adds consider-
able complexity to the physics of neutrino evolution. Indeed, there is now an additional
self-interaction mean-field term in the QKE, which dominates throughout a large part
of the neutrino decoupling era for asymmetries 𝜇/𝑇 ∈ [10−3 , 10−1]. In line with our
work on the resolution of the QKE in the standard case with the full collision term,
we extended our code to the asymmetric case. Moreover, we generalized the ATAO
approximation to account for self-interactions, which make the Hamiltonian non-linear.
This ATAO framework allowed us to analytically recover known results about the col-
lective synchronous oscillations, but also to discover that this regime is generally followed
by quasi-synchronous oscillations with larger frequencies. We have provided numerous
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analytical and numerical checks of this new result, in the simplified two-flavour case
but also in the general three-flavour framework. We further explored the dependency of
the final neutrino configuration on the mixing parameters, and notably showed that the
CP-violating Dirac phase cannot substantially affect the final 𝑁eff nor the final electronic
(anti)neutrino spectrum, and thus should not affect cosmological observables.

Prospects The coming years will be exciting on the theoretical and experimental lev-
els [Aba+22]. Neutrino properties will be constrained by cosmology and laboratory
searches, these complementary results allowing to build a complete picture of the neu-
trino sector. On the cosmological side, the PTOLEMY experiment proposal [LLS14;
Bar+18] which aims at observing directly the C𝜈B is particularly exciting, as it would
provide the first direct observation of the physics of neutrino decoupling, instead of all
the “secondary” ones (BBN, effects on CMB, etc.). However, there has been some recent
debate on the possibility of using such a setup (based on the measure of the beta decay
and absorption processes of tritium bound to graphene), as this binding would lead to
fundamental quantum uncertainties on the spectrum of the emitted 𝑒−, well above the
required energy resolution to detect the C𝜈B [CCB21; App+22]. On the theoretical side,
the results obtained during this PhD pave the way to many more applications. First, in
the early Universe, we can explore some new physics, at the edge of the SM or including
new mechanisms. For example, it is very important to provide precise constraints on the
effect of sterile neutrinos of given masses and mixtures on cosmological observables, as
they are often proposed as solutions to anomalies in laboratory experiments. Second,
our thorough description of the evolution of primordial asymmetries is only the first
step towards establishing new refined limits on the chemical potentials of neutrinos.
Finally, the tools we have developed are not a priori limited to cosmology, and the study
of astrophysical environments such as binary neutron star mergers or core-collapse su-
pernovae, where anisotropies and collective behaviours provide very rich and complex
physics, is a clear path forward for research.





APPENDIX A
Elements of neutrino physics

The only thing I’m not good at is modesty.
Because I’m great at it.

Gina Linetti, Brooklyn Nine-Nine [S05E17]
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In this appendix, we summarize some useful results regarding the description of
neutrinos and their interactions. We first discuss the Standard Model case, before giving
the parameters that are commonly used to describe massive neutrino mixings.

A.1 Neutrinos in the Standard Model of particle
physics

The Standard Model (SM) is a gauge theory based on the local symmetry group SU(3)𝐶×
SU(2)𝐿 × U(1)𝑌 , where the subscripts 𝐶, 𝐿, 𝑌 denote respectively colour, left-handed
chirality and hypercharge. The interaction of neutrinos is determined by the electroweak
part of the SM, based on the gauge group SU(2)𝐿 ×U(1)𝑌 .
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A. Elements of neutrino physics

A.1.1 Tools for the Clifford algebra
We refer the reader to, e.g. [PS95; Sch14; Sre07] for a detailed introduction to quantum
field theory. Here, we simply recall the useful relations involving the 𝛾 matrices, which
as a reminder are defined such that

{𝛾𝜇 , 𝛾𝜈} = 2𝜂𝜇𝜈 , (A.1)

where 𝜂𝜇𝜈 is the Minkowski metric (here taken with signature (+—), for consistency
with the FLRW metric).

The left and right chiral parts of a Dirac spinor 𝜓 = 𝜓𝐿 + 𝜓𝑅 are obtained from the
projectors

𝑃𝐿 ≡ 1 − 𝛾5

2 , 𝑃𝑅 ≡ 1 + 𝛾5

2 , (A.2)

with the fifth gamma-matrix 𝛾5 ≡ i𝛾0𝛾1𝛾2𝛾3.
The useful identities read:

𝜂𝜇𝜈𝜂𝜇𝜈 = 4
tr [𝛾𝜇𝛾𝜈𝑃𝐿,𝑅] = 2𝜂𝜇𝜈

tr
[
𝛾𝜎𝛾𝜇𝛾𝜆𝛾𝜈𝑃𝐿,𝑅

]
= 2

(
𝜂𝜎𝜇𝜂𝜆𝜈 − 𝜂𝜎𝜆𝜂𝜇𝜈 + 𝜂𝜎𝜈𝜂𝜇𝜆

)
± 2𝑖𝜖𝜎𝜇𝜆𝜈

𝜖𝜇𝜈𝜌𝜎𝜖𝜇𝜈𝜏𝜆 = −2(𝛿𝜌𝜏𝛿𝜎𝜆 − 𝛿𝜌𝜆𝛿
𝜎
𝜏)

𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜇 = 4𝜂𝜈𝜌

𝛾𝜇𝛾𝜈𝛾𝜌𝛾𝜎𝛾𝜇 = −2𝛾𝜎𝛾𝜌𝛾𝜈

Note that any specific choice of matrices satisfying the fundamental anticommuta-
tion relations (A.1) constitutes a representation of the 𝛾 matrices. Two are often used:

• the Dirac basis, in which

𝛾0
𝐷 =

(
1 0
0 1

)
, 𝛾𝑖𝐷 =

(
0 𝜎𝑖

−𝜎𝑖 0

)
, 𝛾5

𝐷 =
(
0 1
1 0

)
,

with 𝜎𝑖 the Pauli matrices,

• the Weyl (chiral) basis, for which one choice is [PS95]

𝛾0
𝐶 =

(
0 1
1 0

)
, 𝛾𝑖𝐶 =

(
0 𝜎𝑖

−𝜎𝑖 0

)
, 𝛾5

𝐶 =
(−1 0

0 1

)
.

This is the choice consistent1 with the decomposition of the 4-component spinor
field 𝜓(𝑥) into the left-handed and right-handed two-component Weyl spinors:

𝜓𝐶 =
(
𝜓𝐿
𝜓𝑅

)
, 𝑃𝐿𝜓𝐶 =

1 − 𝛾5
𝐶

2 =
(
1 0
0 0

)
𝜓𝐶 = 𝜓𝐿 .

1By consistent, we mean “which makes clear”: we can always define 𝜓𝐿,𝑅 based on the actions of the
left and right projectors on 𝜓, but they do not separate into two Weyl spinors.
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A.1. Neutrinos in the Standard Model of particle physics

A.1.2 Neutrino interactions and Fermi theory
The relevant two-body interactions correspond to Standard Model interactions involv-
ing neutrinos and antineutrinos. In the early universe, they interact through weak pro-
cesses with electrons, positrons (also muons and antimuons) and other (anti)neutrinos.
Therefore, we must take as interaction Hamiltonian (2.7) the useful part of the SM
Hamiltonian of weak interactions, that is given by

𝐻̂int = 𝐻̂𝐶𝐶 + 𝐻̂mat
𝑁𝐶 + 𝐻̂𝜈𝜈

𝑁𝐶 , (A.3)

where we separate three contributions:

• the charged-current hamiltonian,

𝐻̂𝐶𝐶 = 2
√

2𝐺𝐹𝑚2
𝑊

∫
[d3®𝑝1][d3®𝑝2][d3®𝑝3][d3®𝑝4] (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)
× [𝜓𝜈𝑒

(®𝑝1)𝛾𝜇𝑃𝐿𝜓𝑒(®𝑝4)]𝑊𝜇𝜈(Δ)[𝜓𝑒(®𝑝2)𝛾𝜈𝑃𝐿𝜓𝜈𝑒 (®𝑝3)] , (A.4)

with 𝜓(®𝑝) =
∑
ℎ

[
𝑎̂(®𝑝, ℎ)𝑢ℎ(®𝑝) + 𝑏†(−®𝑝, ℎ)𝑣ℎ(−®𝑝)

]
the Fourier transform of the

quantum fields, and the gauge boson propagator

𝑊𝜇𝜈(Δ) =
𝜂𝜇𝜈 − Δ𝜇Δ𝜈

𝑚2
𝑊

𝑚2
𝑊 − Δ2

≃ 𝜂𝜇𝜈

𝑚2
𝑊

+ 1
𝑚2
𝑊

(
Δ2𝜂𝜇𝜈

𝑚2
𝑊

− Δ𝜇Δ𝜈

𝑚2
𝑊

)
. (A.5)

The lowest order in this expansion is the usual 4-Fermi effective theory. The
momentum transfer isΔ = 𝑝1−𝑝4 for a 𝑡-channel (𝜈𝑒−𝑒− scattering), andΔ = 𝑝1+𝑝2
for the 𝑠-channel (𝜈𝑒 − 𝑒+).

• the neutral-current interactions with the matter background (electrons and
positrons, we would write the same term for 𝜇±),

𝐻̂mat
𝑁𝐶 = 2

√
2𝐺𝐹𝑚2

𝑍

∑
𝛼

∫
[d3®𝑝1][d3®𝑝2][d3®𝑝3][d3®𝑝4] (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)

× [𝜓𝜈𝛼
(®𝑝1)𝛾𝜇𝑃𝐿𝜓𝜈𝛼 (®𝑝3)]𝑍𝜇𝜈(Δ)[𝜓𝑒(®𝑝2)𝛾𝜈(𝑔𝐿𝑃𝐿 + 𝑔𝑅𝑃𝑅)𝜓𝑒(®𝑝4)] , (A.6)

where 𝑍𝜇𝜈 is identical to 𝑊𝜇𝜈 with the replacement 𝑚𝑊 → 𝑚𝑍. The neutral-
current couplings are 𝑔𝐿 = −1/2+sin2 𝜃𝑊 and 𝑔𝑅 = sin2 𝜃𝑊 , where sin2 𝜃𝑊 ≃ 0.231
is the weak-mixing angle.

• the self-interactions of neutrinos,2

2To understand the different prefactor from 𝐻̂mat
𝑁𝐶 , start from the general neutral-current Hamiltonian:

𝐻̂𝑁𝐶 = 2
√

2𝐺𝐹𝑚2
𝑍

∑
𝑓 , 𝑓 ′

∫
· · ·

[
𝜓 𝑓 𝛾𝜇(𝑔

𝑓
𝐿𝑃𝐿 + 𝑔

𝑓
𝑅𝑃𝑅)𝜓 𝑓

]
𝑍𝜇𝜈(Δ)

[
𝜓 𝑓 ′𝛾𝜈(𝑔

𝑓 ′
𝐿 𝑃𝐿 + 𝑔

𝑓 ′
𝑅 𝑃𝑅)𝜓 𝑓 ′

]

Now the multiplicity of each term and the use of 𝑔𝜈𝐿 = 1/2, 𝑔𝜈𝑅 = 0 lead to the Hamiltonians above.
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A. Elements of neutrino physics

𝐻̂𝜈𝜈
𝑁𝐶 =

𝐺𝐹√
2
𝑚2
𝑍

∑
𝛼,𝛽

∫
[d3®𝑝1][d3®𝑝2][d3®𝑝3][d3®𝑝4] (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)

× [𝜓𝜈𝛼
(®𝑝1)𝛾𝜇𝑃𝐿𝜓𝜈𝛼 (®𝑝3)]𝑍𝜇𝜈(Δ)[𝜓𝜈𝛽

(®𝑝2)𝛾𝜈𝑃𝐿𝜓𝜈𝛽 (®𝑝4)] . (A.7)

In order to calculate the collision term, we will restrict to the low-energy 4-Fermi
theory (cf. section C.2), while the next-to-leading order must be used to obtain the
relevant mean-field terms in the Quantum Kinetic Equations.

A.2 Neutrino masses and mixings
PMNS mixing matrix For all numerical calculations in this work, we employ the
standard parameterization of the PMNS matrix which reads [GSP19; GK07; Zyl+21]

𝑈 = 𝑅23𝑅13𝑅12 = ©­
«

𝑐12𝑐13 𝑠12𝑐13 𝑠13
−𝑠12𝑐23 − 𝑐12𝑠23𝑠13 𝑐12𝑐23 − 𝑠12𝑠23𝑠13 𝑠23𝑐13
𝑠12𝑠23 − 𝑐12𝑐23𝑠13 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13 𝑐23𝑐13

ª®
¬
, (A.8)

with 𝑐𝑖 𝑗 = cos𝜃𝑖 𝑗 , 𝑠𝑖 𝑗 = sin𝜃𝑖 𝑗 and 𝜃𝑖 𝑗 the mixing angles. 𝑅𝑖 𝑗 is the real rotation matrix
of angle 𝜃𝑖 𝑗 in the 𝑖-𝑗 plane, namely, (𝑅𝑖 𝑗)𝑖𝑖 = (𝑅𝑖 𝑗)

𝑗
𝑗 = 𝑐𝑖 𝑗 , (𝑅𝑖 𝑗)𝑘𝑘 = 1 where 𝑘 ≠ 𝑖 , 𝑗,

(𝑅𝑖 𝑗)𝑖𝑗 = −(𝑅𝑖 𝑗)
𝑗
𝑖 = 𝑠𝑖 𝑗 and the other components are zero. Note that we do not introduce

here a CP-violating phase, postponing its treatment to specific sections of this thesis,
namely 3.5.1 and 5.5.5. We use the most recent values from the Particle Data Group
[Zyl+21]:(

Δ𝑚2
21

10−5 eV2 ,
Δ𝑚2

31

10−3 eV2 , 𝑠
2
12 , 𝑠

2
23 , 𝑠

2
13

)
NH

= (7.53, 2.53, 0.307, 0.546, 0.0220) , (A.9)

(
Δ𝑚2

21

10−5 eV2 ,
Δ𝑚2

31

10−3 eV2 , 𝑠
2
12 , 𝑠

2
23 , 𝑠

2
13

)
IH

= (7.53,−2.46, 0.307, 0.539, 0.0220) , (A.10)

where Δ𝑚2
𝑖 𝑗 ≡ 𝑚2

𝑖 − 𝑚2
𝑗 is the difference of the squared masses of the mass eigenstates

𝑖 and 𝑗. The associated values of the mixing angles are 𝜃12 = 0.587, 𝜃13 = 0.149 and
𝜃23 = 0.831 in normal ordering, the only different value is 𝜃23 = 0.824 in inverted
ordering.

For completeness, we also give the most recent values of the physical constants
used [Zyl+21]: the Fermi constant 𝐺𝐹 = 1.1663787 × 10−5 GeV−2 and the gravitational
constant 𝒢 = 6.70883 × 10−39 GeV−2.

Note that we could also use the values from the global fit of neutrino oscillation
data [Sal+21], a choice made in [Ben+21]. The results we get for the standard value 𝑁eff
are identical at the level of a few 10−6.
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A.2. Neutrino masses and mixings

Parameterizations of SU(2) and SO(3) In chapter 5, we study the case of two-flavour
mixing, for which a vector representation of density matrices is possible. This allows for
a more intuitive representation of their time evolution, namely in terms of precession.
Let us precise here some definitions concerning the useful matrix groups SU(2) and
SO(3).

Any matrix of SU(2) can be expressed in terms of Euler angles as

ℛ2(𝛼, 𝛽, 𝛾) = ℛz(𝛼) · ℛy(𝛽) · ℛz(𝛾) =
(
e−i(𝛼+𝛾)/2 cos(𝛽/2) −e−i(𝛼−𝛾)/2 sin(𝛽/2)
ei(𝛼−𝛾)/2 sin(𝛽/2) ei(𝛼+𝛾)/2 cos(𝛽/2)

)
(A.11)

with ℛ𝑖(𝜃) ≡ exp(−i𝜃𝜎𝑖/2). Similarly a SO(3)matrix is also expressed with Euler angles
as

𝑅3(𝛼, 𝛽, 𝛾) = 𝑅z(𝛼) · 𝑅y(𝛽) · 𝑅z(𝛾) (A.12)

where 𝑅 𝑗(𝜃) ≡ exp(−i𝜃𝒥 𝑗) and (𝒥 𝑖)𝑗𝑘 = −i𝜖𝑖 𝑗𝑘 . Both sets of matrices are related since
they share the same Lie algebra, thanks to

ℛ2 · 𝜎𝑖 · ℛ†2 = 𝜎𝑗 (𝑅3)𝑗 𝑖 , (A.13)

where it is implied that the Euler angles defining ℛ2 and 𝑅3 are the same. Therefore,
the conjugation of the traceless part of a two-neutrino density matrix by an element ℛ2
of SU(2) is equivalent to the associated rotation 𝑅3 applied on its vector representation
defined in equation (5.25).

Note that the PMNS matrix is thus defined as

𝑈 = 𝑅x(−𝜃23)𝑅y(𝜃13)𝑅z(−𝜃12) . (A.14)
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APPENDIX B
On the BBGKY formalism

But, for better or worse, the Crown has landed
on my head. And I say we go.

Queen Elizabeth II, The Crown [S01E08]
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In this Appendix, we give some technical details on the BBGKY formalism and how
it applies to (anti)neutrinos in the early Universe, in addition to the elements introduced
in chapter 2. First, we explicit the components of the density matrix and the interaction
potential, discussing some different presentations existing in the literature. Then, we
explain how antiparticles can be included without much effort in the framework we
presented in chapter 2.

B.1 Further details on the formalism
The BBGKY hierarchy is often used in nuclear physics [CM90; RT94; LAC04; LA14],
which corresponds to a slightly different physical context than neutrinos and antineu-
trinos in the early Universe. In particular, we have chosen to use systematically a second-
quantized approach (compared to the first-quantized formalism sometimes used), and
we give in this section the equivalence between the various formalisms.
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B. On the BBGKY formalism

B.1.1 Components of the density matrix
Let’s prove that the components of the 𝑠-body operator defined in (2.2) are given by
(2.3). We roughly follow [SAL08], Eqs. (12)–(15). For simplicity, we derive the result for
𝜚 (1) only, but it can be readily generalized.

We need the closure relation which reads

1̂𝑁 =
1
𝑁 !

∑
𝑘1···𝑘𝑁

|𝑘1 · · · 𝑘𝑁⟩⟨𝑘1 · · · 𝑘𝑁 | , (B.1)

following [SAL08], Eq. (A28). Moreover, the trace of a 𝑁−particle operator 𝐴̂ reads

Tr 𝐴̂ =
∑
𝑘1···𝑘𝑁

1√
𝑁 !
⟨𝑘1 · · · 𝑘𝑁 |𝐴̂|𝑘1 · · · 𝑘𝑁⟩ 1√

𝑁 !
, (B.2)

consistently with (A22) and (C3) in [SAL08]. The partial traces are given by:

Tr𝑠+1...𝑁 (𝐴̂)
��𝑖1···𝑖𝑠
𝑗𝑖 ···𝑗𝑠 =

∑
𝑘𝑠+1···𝑘𝑁

1√
𝑁 !
⟨𝑖1 · · · 𝑖𝑠 𝑘𝑠+1 · · · 𝑘𝑁 |𝐴̂| 𝑗1 · · · 𝑗𝑠 𝑘𝑠+1 · · · 𝑘𝑁⟩ 1√

𝑁 !
. (B.3)

Note that we have evidently Tr1...𝑁 𝐴̂ = Tr 𝐴̂.
Starting from (2.6), and inserting twice the closure relation (B.1),

⟨Ψ| 𝑎̂†𝑗 𝑎̂𝑖 |Ψ⟩ = ⟨Ψ|
1
𝑁 !

∑
𝑘1···𝑘𝑁

|𝑘1 · · · 𝑘𝑁⟩⟨𝑘1 · · · 𝑘𝑁 | 𝑎̂†𝑗 𝑎̂𝑖
1
𝑁 !

∑
𝑘′1···𝑘′𝑁

|𝑘′1 · · · 𝑘′𝑁⟩⟨𝑘′1 · · · 𝑘′𝑁 |Ψ⟩

=
1
(𝑁 !)2

∑
𝑘1···𝑘𝑁
𝑘′1···𝑘′𝑁

⟨𝑘′1 · · · 𝑘′𝑁 |Ψ⟩⟨Ψ|𝑘1 · · · 𝑘𝑁⟩ × ⟨𝑘1 · · · 𝑘𝑁 | 𝑎̂†𝑗 𝑎̂𝑖 |𝑘′1 · · · 𝑘′𝑁⟩

=
𝑁2

(𝑁 !)2
∑
𝑘2···𝑘𝑁
𝑘′2···𝑘′𝑁

⟨𝑖 𝑘′2 · · · 𝑘′𝑁 |Ψ⟩⟨Ψ| 𝑗 𝑘2 · · · 𝑘𝑁⟩ × ⟨𝑘2 · · · 𝑘𝑁 |𝑘′2 · · · 𝑘′𝑁⟩

Indeed,
∑
𝑘′2···𝑘′𝑁 ⟨𝑖 𝑘′2 · · · 𝑘′𝑁 |Ψ⟩ 𝑎̂𝑖 |𝑘′1 · · · 𝑘′𝑁⟩ = 𝑁 ⟨𝑖 𝑘′2 · · · 𝑘′𝑁 |Ψ⟩|𝑘′2 · · · 𝑘′𝑁⟩ since, due to an-

tisymmetry, only one of the 𝑘′𝑝 can be equal to 𝑖, and the minus signs appearing when
anticommuting 𝑎̂𝑖 and 𝑎̂†𝑘′1

· · · 𝑎̂†𝑘′𝑝 are compensated when 𝑘′𝑝 = 𝑖 is moved at the beginning
of the bra ⟨𝑖𝑘′2 · · · 𝑘′𝑁 |.

=
1

[(𝑁 − 1)!]2
∑
𝑘2···𝑘𝑁
𝑘′2···𝑘′𝑁

⟨𝑖 𝑘′2 · · · 𝑘′𝑁 |Ψ⟩⟨Ψ| 𝑗 𝑘2 · · · 𝑘𝑁⟩ × (𝑁 − 1)! · 𝛿𝑘2𝑘′2 · · · 𝛿𝑘𝑁 𝑘′𝑁

= 𝑁
∑
𝑘2···𝑘𝑁

1√
𝑁 !
⟨𝑖 𝑘2 · · · 𝑘𝑁 |Ψ⟩⟨Ψ| 𝑗 𝑘2 · · · 𝑘𝑁⟩ 1√

𝑁 !

= 𝑁 Tr2...𝑁 𝐷̂
��
𝑖 𝑗 , (B.4)

where we use the definition (B.3) of partial traces. We thus recover the expression (2.2).
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B.1.2 “Labelled particles” notation
It is very common in the literature [LAC04; SAL08; LA14] to adopt a notation that
overlooks — temporarily — the fact that the particles are indistinguishable. In other
words, one “labels” particles and introduces tensor product states. For instance, for
two particles, the ket |1 : 𝑖 , 2 : 𝑗⟩ allow to define the antisymmetrized version (valid for
fermions):1

|𝑖 𝑗⟩ ≡ 1√
2
(|1 : 𝑖 , 2 : 𝑗⟩ − |1 : 𝑗 , 2 : 𝑖⟩) . (B.5)

Consistency of definitions The interaction matrix elements are then usually defined
as 𝑣̃ 𝑖𝑘𝑗𝑙 = 𝑣

𝑖𝑘
𝑗𝑙 − 𝑣 𝑖𝑘𝑙 𝑗 , where

𝑣 𝑖𝑘𝑗𝑙 ≡ ⟨1 : 𝑖 , 2 : 𝑘 |𝐻̂int |1 : 𝑗 , 2 : 𝑙⟩ .

This definition is consistent with (2.8). Indeed, one has:

⟨𝑖𝑘 |𝐻̂int | 𝑗𝑙⟩ = 1√
2
(⟨1 : 𝑖 , 2 : 𝑘 | − ⟨1 : 𝑘, 2 : 𝑖 |) 𝐻̂int (|1 : 𝑗 , 2 : 𝑙⟩ − |1 : 𝑙 , 2 : 𝑗⟩) 1√

2

=
1
2 ⟨1 : 𝑖 , 2 : 𝑘 |𝐻̂int (|1 : 𝑗 , 2 : 𝑙⟩ − |1 : 𝑙 , 2 : 𝑗⟩)

+ 1
2 ⟨1 : 𝑘, 2 : 𝑖 |𝐻̂int (|1 : 𝑙 , 2 : 𝑗⟩ − |1 : 𝑗 , 2 : 𝑙⟩)︸                                                ︷︷                                                ︸

first term with 1↔2

= ⟨1 : 𝑖 , 2 : 𝑘 |𝐻̂int (|1 : 𝑗 , 2 : 𝑙⟩ − |1 : 𝑙 , 2 : 𝑗⟩)
= 𝑣 𝑖𝑘𝑗𝑙 − 𝑣 𝑖𝑘𝑙 𝑗 (B.6)

We used the fact that nothing changes if we rename 1↔ 2 (i.e. 𝑣 𝑖𝑘𝑗𝑙 = 𝑣
𝑘𝑖
𝑙 𝑗 ).

We prefer to use solely the definition (2.8) which uses only creation/annihilation
operators and no nonphysical labeling. We will however refer to it in this Appendix
when necessary, to connect our equations with the corresponding ones in the literature.

Two-body operators In this new “language”, the interaction Hamiltonian is not writ-
ten directly in second quantization, but in terms of two-body operators:

𝐻̂int =
1
2

∑
𝑞≠𝑞′

𝑉̂(𝑞, 𝑞′) =
∑
𝑞<𝑞′

𝑉̂(𝑞, 𝑞′) , (B.7)

where the indices 𝑞 and 𝑞′ label particles, and noting that 𝑉̂(𝑞, 𝑞′) = 𝑉̂(𝑞′, 𝑞). The matrix
elements of 𝑉̂ read

𝑣 𝑖𝑘𝑗𝑙 ≡ ⟨1 : 𝑖 , 2 : 𝑘 |𝑉̂(1, 2)|1 : 𝑗 , 2 : 𝑙⟩ ,
1The ket |𝑖 𝑗⟩ is, in second quantization, directly defined from the vacuum via |𝑖 𝑗⟩ ≡ 𝑎̂†𝑖 𝑎̂

†
𝑗 |0⟩, from

which the antisymmetry properties follow.
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B. On the BBGKY formalism

hence the same definition is valid with 𝐻̂int, i.e. 𝑣 𝑖𝑘𝑗𝑙 = ⟨1 : 𝑖 , 2 : 𝑘 |𝐻̂int |1 : 𝑗 , 2 : 𝑙⟩. Note
that this overlooks the fact that 𝐻̂int is a 𝑁-body operator and 𝑉̂(1, 2) a 2-body one, such
that they don’t act on the same spaces.

Finally, we emphasize that the expression (2.7), which involves annihilation and
creation operators, is valid for any number of particles, hence in the entire Fock
space [CDL17].

Traces and notation of the BBGKY hierarchy Finally, let us discuss the expression of
traces in this “labelled particles” notation — an important point as traces appear in all
equations of the BBGKY hierarchy.

An important relation is (we prove its consistency with the above definitions later,
and admit it for now):

Tr2

(
𝑉̂(1, 2)𝜚 (12)

) 𝑖
𝑗
≡

∑
𝑘,𝑙,𝑟

𝑣 𝑖𝑘𝑟𝑙𝜚
𝑟𝑙
𝑗𝑘 . (B.8)

The summations over 𝑙, 𝑟 come from the product operation, and the sum over 𝑘 is due
to the trace. Given the antisymmetry properties of 𝜚 (12), namely 𝜚 𝑟𝑙𝑗𝑘 = −𝜚 𝑙𝑟𝑗𝑘 , we get (with
a relabeling of the indices 𝑙, 𝑟 for one term):

Tr2

(
𝑉̂(1, 2)𝜚 (12)

) 𝑖
𝑗
=

1
2

∑
𝑘,𝑙,𝑟

(
𝑣 𝑖𝑘𝑟𝑙 − 𝑣 𝑖𝑘𝑙𝑟

)
𝜚 𝑟𝑙𝑗𝑘

=
1
2

∑
𝑘,𝑙,𝑟

𝑣̃ 𝑖𝑘𝑟𝑙𝜚
𝑟𝑙
𝑗𝑘

=
1
2Tr2

(
ˆ̃𝑣(12)𝜚 (12)

) 𝑖
𝑗

(B.9)

This relations explain why the BBGKY hierarchy looks a priori different depending on the
references, cf. for instance Eq. (88) in [SAL08], Eq. (3) in [LAC04] or Eq. (9) in [VVE13].

Let us now prove (B.8). From (B.2), we have

Tr2

(
𝑉̂(1, 2)𝜚 (12)

) 𝑖
𝑗
=

1
2!

∑
𝑘

⟨𝑖𝑘 |𝑉̂(1, 2)𝜚 (12) | 𝑗𝑘⟩

=
1
2!

1
2!

∑
𝑘,𝑙,𝑟

⟨𝑖𝑘 |𝑉̂(1, 2)|𝑟𝑙⟩︸           ︷︷           ︸
𝑣 𝑖𝑘𝑟𝑙 − 𝑣 𝑖𝑘𝑙𝑟

⟨𝑟𝑙 |𝜚 (12) | 𝑗𝑘⟩︸        ︷︷        ︸
𝜚 𝑟𝑙𝑗𝑘 − 𝜚 𝑟𝑙𝑘 𝑗

,

where the matrix elements are consistent with (B.6). With the antisymmetry property
of 𝜚 (12), we have

Tr2

(
𝑉̂(1, 2)𝜚 (12)

) 𝑖
𝑗
=

1
2!

1
2!

∑
𝑘,𝑙,𝑟

(𝑣 𝑖𝑘𝑟𝑙 − 𝑣 𝑖𝑘𝑙𝑟 ) × 2𝜚 𝑟𝑙𝑗𝑘
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=
∑
𝑘,𝑙,𝑟

𝑣 𝑖𝑘𝑟𝑙𝜚
𝑟𝑙
𝑗𝑘

thanks to the relabeling 𝑙 ↔ 𝑟 in one term.

B.2 Quantum kinetic equations with antiparticles
B.2.1 QKE for 𝝔̄
We present in this section the inclusion of antiparticles to the BBGKY formalism.

Generalized definitions One must adapt the definitions (2.3) and (2.7) to include the
annihilation and creation operators 𝑏, 𝑏†. Throughout this appendix, we will emphasize
the indices which are associated to antiparticles with a barred notation (𝚤, 𝚥). Therefore,
with capital indices 𝐼 being either 𝑖 or 𝚤, we have:

𝜚 𝐼1···𝐼𝑠𝐽1···𝐽𝑠 ≡ ⟨𝑐†𝐽𝑠 · · · 𝑐†𝐽1𝑐𝐼1 · · · 𝑐𝐼𝑠 ⟩ , (B.10)

𝐻̂0 =
∑
𝐼 ,𝐽

𝑡 𝐼𝐽 𝑐
†
𝐼 𝑐𝐽 , (B.11)

𝐻̂int =
1
4

∑
𝐼 ,𝐽 ,𝐾,𝐿

𝑣̃𝐼𝐾𝐽𝐿 𝑐
†
𝐼 𝑐
†
𝐾𝑐𝐿𝑐𝐽 , (B.12)

where 𝑐𝐼 = 𝑎̂𝑖 or 𝑏𝚤 depending on the index 𝐼 labelling a particle or an antiparticle.
The evolution equations (2.10) and (2.12) are naturally extended to the antiparticle

case thanks to the global indices. The downside of this strategy is that the transformation
law of tensors is now implicit: since 𝑎̂ transforms like 𝑏† under a unitary transformation
𝜓𝑎 = 𝒰 𝑎

𝑖 𝜓
𝑖 , the behaviour of upper and lower indices is inverted whenever they label

an antiparticle degree of freedom, for instance:

𝑡 𝑖𝑗 =𝒰†
𝑖
𝑎 𝑡

𝑎
𝑏 𝒰𝑏

𝑗 ; 𝑡𝚤𝚥 =𝒰 𝑎
𝑖 𝑡

𝑎̄
𝑏
𝒰† 𝑗𝑏 . (B.13)

Since we assume an isotropic medium, there are no “abnormal” or “pairing” den-
sities [VVE13; SV14; Vol15] such as ⟨𝑏𝑎̂⟩, which ensures the separation of the two-body
density matrix between the neutrino density matrix (for which we keep the notation 𝜚)
and the antineutrino one 𝜚 . In order for 𝜚 to have the same transformation properties
as 𝜚 , we need to take a transposed convention for its components:

𝜚 𝚤𝚥 = 𝜚
{𝐽=𝚥}
{𝐼=𝚤} = ⟨𝑐†𝚤 𝑐 𝚥⟩ = ⟨𝑏†𝑖 𝑏 𝑗⟩ . (B.14)

One could further take transposed conventions for the antiparticle indices in 𝑡 and 𝑣̃,
which would ensure a clear correspondence between index position and transformation
law — contrary to (B.13). For instance, 𝑡𝚤𝚥 ≡ 𝑡 𝚥𝚤 transforms as 𝑡 𝑖𝑗 . However, in order to
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B. On the BBGKY formalism

keep a unique expression for the mean-field potential or the collision term, we stick to
the general definitions above. For instance, we have:

Γ𝑖𝑗 =
∑
𝐾,𝐿

𝑣̃ 𝑖𝐾𝑗𝐿𝜚
𝐿
𝐾 =

∑
𝑘,𝑙

𝑣̃ 𝑖𝑘𝑗𝑙 𝜚
𝑙
𝑘 +

∑
𝑘,𝑙

𝑣̃ 𝑖𝑘
𝑗𝑙
𝜚 𝑘
𝑙
. (B.15)

Since the annihilation and creation operators do not appear naturally in normal order
in the Hamiltonian (A.3), recasting it in the form (B.12) leads to extra minus signs in 𝑣̃
involving antiparticles (cf. table 2.1).

These conventions being settled, we can include the full set of interaction matrix
elements and compute all relevant contributions to the neutrino QKEs (2.50). In the
following, we derive the QKE for 𝜚 .

QKE for antineutrinos Thanks to our conventions, the evolution equation for the
antineutrino density matrix 𝜚 is similarly obtained within the BBGKY formalism, with
some differences compared to the neutrino case. First and foremost, the evolution
equation for 𝜚 𝚤𝚥 correspond in the general formalism to the equation for 𝜚 𝚥𝚤 :

i
d𝜚 𝚤𝚥
d𝑡 = i

d𝜚 𝚥𝚤
d𝑡 =

( [
𝑡 𝚥𝐾 + Γ

𝚥
𝐾

]
𝜚𝐾𝚤 − 𝜚 𝚥𝐾

[
𝑡𝐾𝚤 + Γ𝐾𝚤

] ) + i 𝒞̂ 𝚥𝚤 , (B.16)

showing that taking the commutator with a transposed convention leads to a minus
sign. Moreover,

• we express the kinetic terms 𝑡 𝚥𝚤 , starting from the mass basis:

𝑡 𝚥𝚤 = 𝑈
𝑎
𝑗
M2

2𝑝

����
𝑎̄

𝑏
𝑈† 𝑖𝑏 = 𝑈†

𝑖
𝑏
M2

2𝑝

����
𝑏

𝑎
𝑈 𝑎
𝑗 = 𝑡

𝑖
𝑗 ; (B.17)

• 𝑣̃ 𝚥𝑘𝚤𝑙 is the coefficient in front of 𝑏†𝑗 𝑎̂
†
𝑘 𝑎̂𝑙𝑏𝑖 , so it will have the same expression (apart

from the interchange of 𝑢 and 𝑣 spinors for neutrinos, which leaves the result
identical) as the coefficient in front of 𝑎̂ 𝑗 𝑎̂†𝑘 𝑎̂𝑙 𝑎̂

†
𝑖 = −𝑎̂†𝑖 𝑎̂†𝑘 𝑎̂𝑙 𝑎̂ 𝑗 , that is−𝑣̃ 𝑖𝑘𝑗𝑙 . Therefore,

Γ𝚥𝚤 = −Γ𝑖𝑗 .
Including these two results in (B.16) show that, compared to the neutrino case, the
vacuum term gets a minus sign (from the reversed commutator), but not the mean-
field. Formally,

i
d𝜚 𝑖𝑗
d𝑡 =

[−𝑡 + Γ̂, ˆ̄𝜚] 𝑖𝑗 + i 𝒞̂ 𝚥𝚤 . (B.18)

Two additional remarks:

• 𝑠 and 𝑡 channels are inverted when the particle 1 is an antineutrino (2 and 4
left unchanged). For instance, the scattering between 𝜈̄𝑒 and 𝑒− is a 𝑠−channel
(exchanged momentum Δ = 𝑝1 + 𝑝2), contrary to the scattering between 𝜈𝑒 and 𝑒−
(Δ = 𝑝1 − 𝑝2). This changes the sign of Δ2, leading to another minus sign for Γ at
order 1/𝑚2

𝑊,𝑍;
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• the collision integral 𝒞̄ is obtained from 𝒞 through the replacements 𝜚 ↔ 𝜚 and
𝑔𝐿 ↔ 𝑔𝑅, as detailed in C.2.

Considering all these remarks, we obtained the QKE for 𝜚 (2.51).

B.2.2 Particle/antiparticle symmetry and consistency of the
QKEs

If there is no asymmetry, we expect that 𝜚 = 𝜚𝑇 where 𝑇 represents the transposed of the
matrix. Indeed, we recall that the definitions of 𝜚 and 𝜚 are transposed: 𝜚𝛼𝛽 ∝ ⟨𝑎̂†𝜈𝛽 𝑎̂𝜈𝛼⟩
and 𝜚𝛼𝛽 ∝ ⟨𝑏†𝜈𝛼𝑏𝜈𝛽⟩. Note that the density matrices being Hermitian, 𝜚𝑇 = 𝜚∗, but
talking about transposition will be more convenient here (essentially because of the
commutators in the QKEs).

A consistency check of the QKEs consists in verifying that, assuming 𝜚 = 𝜚𝑇 ,
equations (2.50) and (2.51) are equivalent. To do so, we transpose (2.51). We assume
that there is no CP-phase in the PMNS matrix, as its effect would naturally be to break
this equivalence.

Mean-field consistency

The key relation is [𝐴, 𝐵]𝑇 = (𝐴𝐵 − 𝐵𝐴)𝑇 = −[𝐴𝑇 , 𝐵𝑇]. Then, assuming 𝜚 = 𝜚𝑇 ,
(
𝑈
M2

2𝑝 𝑈
†
)𝑇

= 𝑈∗
M2

2𝑝 𝑈
𝑇 = 𝑈

M2

2𝑝 𝑈
† (the absence of CP phase is crucial),

(N𝜈 − N𝜈̄)𝑇 = N𝜈̄ − N𝜈 = −(N𝜈 − N𝜈̄) ,
(Elep + Plep)𝑇 = Elep + Plep because these matrices are diagonal,
(E𝜈 + E𝜈̄)𝑇 = E𝜈̄ + E𝜈 .

Therefore,

i
[
𝜕

𝜕𝑡
− 𝐻𝑝 𝜕

𝜕𝑝

]
𝜚𝑇 =

[ (
𝑈
M2

2𝑝 𝑈
†
)𝑇
, 𝜚𝑇

]
−
√

2𝐺𝐹
[
(N𝜈 − N𝜈̄)𝑇 , 𝜚𝑇

]

+ 2
√

2𝐺𝐹𝑝
[ (Elep + Plep)𝑇

𝑚2
𝑊

+ 4
3
(E𝜈 + E𝜈̄)𝑇

𝑚2
𝑍

, 𝜚𝑇
]
+ iℐ̄𝑇

=
[
𝑈
M2

2𝑝 𝑈
† , 𝜚

]
+
√

2𝐺𝐹
[
(N𝜈 − N𝜈̄ , 𝜚

]

+ 2
√

2𝐺𝐹𝑝
[Elep + Plep

𝑚2
𝑊

+ 4
3
E𝜈 + E𝜈̄

𝑚2
𝑍

, 𝜚
]
+ iℐ̄𝑇

This coincides with (2.50) if ℐ̄𝑇 = ℐ, which we check now.
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Collision term consistency

Let us show that ℐ̄𝑇 = ℐ if there is no asymmetry (i.e. if we assume that 𝝔 = 𝝔̄𝑻 ). We
will systematically observe that the processes in ℐ correspond to the ones in ℐ̄𝑇 where
particles are exchanged with their associated antiparticles. Let us show it on a few
processes:

Annihilation into charged leptons The process 𝜈 + 𝜈̄ ↔ 𝑒− + 𝑒+ indeed coincides
between both collision integrals:

ℐ̄𝑇[𝜈̄𝜈→𝑒−𝑒+] ∝
∫
[d3®𝑝2] · · · 4(𝑝1 · 𝑝3)(𝑝2 · 𝑝4) × 𝑓3 𝑓4︸︷︷︸

𝑓3 𝑓4

[𝐺𝐿(1 − 𝜚2)𝐺𝐿(1 − 𝜚1) + h.c.]𝑇 + · · ·

=
∫
[d3®𝑝2] · · · 4(𝑝1 · 𝑝3)(𝑝2 · 𝑝4) × 𝑓3 𝑓4

[(1 − 𝜚𝑇1 )𝐺𝐿(1 − 𝜚𝑇2 )𝐺𝐿 + h.c.
] + · · ·

=
∫
[d3®𝑝2] · · · 4(𝑝1 · 𝑝4)(𝑝2 · 𝑝3) × 𝑓4 𝑓3 [(1 − 𝜚1)𝐺𝐿(1 − 𝜚2)𝐺𝐿 + h.c.] + · · ·

= ℐ[𝜈𝜈̄→𝑒−𝑒+]

We recognize the second term of the statistical factor (C.23).

Scattering with charged leptons The process 𝜈 + 𝑒+ → 𝜈 + 𝑒+ in ℐ is “exchanged”
with 𝜈̄ + 𝑒− → 𝜈̄ + 𝑒− in ℐ̄. Indeed, we have:

𝐹𝐿𝐿sc (𝜈̄(1) , 𝑒(2) , 𝜈̄(3) , 𝑒(4))𝑇 = 𝑓4(1 − 𝑓2) [𝐺𝐿𝜚3𝐺𝐿(1 − 𝜚1) + h.c.]𝑇 − {loss}
= 𝑓4(1 − 𝑓2) [(1 − 𝜚1)𝐺𝐿𝜚3𝐺𝐿 + h.c.]𝑇 − {loss}
= 𝐹𝐿𝐿sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4))

and the prefactor of these statistical factors is identical in both collision integrals, namely
(𝑝1 · 𝑝4)(𝑝2 · 𝑝3).

(Anti)neutrino scattering The correspondence is now between 𝜈 + 𝜈 → 𝜈 + 𝜈 and
𝜈̄ + 𝜈̄→ 𝜈̄ + 𝜈̄. Indeed, let’s compare the statistical factors (2.53) and (C.31). Since

[(1 − 𝜚1)𝜚3(1 − 𝜚2)𝜚4]𝑇 = 𝜚4(1 − 𝜚2)𝜚3(1 − 𝜚1) ,
we do have ℐ[𝜈𝜈→𝜈𝜈] = ℐ̄𝑇[𝜈̄𝜈̄→𝜈̄𝜈̄].

This proves the consistency of the QKEs. If one adopts the opposite point of view,
this shows that if 𝜚 = 𝜚∗ initially, then this symmetry is preserved along the evolution.
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APPENDIX C
Computing the terms of the QKEs

The Game is On!

Sherlock Holmes, Sherlock

Contents
C.1 Interaction matrix elements and mean-field potential . . . . . . . . . . 174

C.1.1 Charged-current mean-field . . . . . . . . . . . . . . . . . . . . 174
C.1.2 Neutral-current mean-field . . . . . . . . . . . . . . . . . . . . 174

C.2 Collision term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
C.2.1 Neutrino-electron scattering . . . . . . . . . . . . . . . . . . . . 178
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C.2.3 Neutrino-antineutrino annihilation . . . . . . . . . . . . . . . . 180
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We provide here the derivation of the terms of the QKE that were not discussed
in chapter 2, that is the neutral-current mean-field potentia, the collision integral with
charged leptons, the antineutrino collision integral. We also detail the dimensional
reduction of the collision integral.
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C. Computing the terms of the QKEs

C.1 Interaction matrix elements and mean-field
potential

We have detailed the example of the calculation of the interaction matrix elements 𝑣̃ for
charged-current processes in the chapter 2. Let us show briefly how the other contri-
butions are computed and how they lead to the different terms in the full mean-field
potential (2.41). For brevity, we only treat the interactions in the four-Fermi approxi-
mation, but the contributions at order Δ2/𝑚2

𝑊,𝑍 can be computed following the same
procedure as in section 2.2.2. Moreover, once the matrix element is known for the inter-
action with a given particle, the result for the interaction for the associated antiparticle
is obtained exactly as in section 2.2.2.

C.1.1 Charged-current mean-field
The mean-field potential due to the forward coherent scattering with 𝑒± is discussed in
chapter 2.

C.1.2 Neutral-current mean-field
For neutral-current processes, the procedure is exactly similar to the charged-current
case, with the Hamiltonian

𝐻̂𝑁𝐶 =
𝐺𝐹√

2

∑
𝑓 , 𝑓 ′

∫
d3 ®𝑥

[
𝜓̄ 𝑓 𝛾

𝜇(𝑔 𝑓𝑉 − 𝑔
𝑓
𝐴𝛾

5)𝜓 𝑓

] [
𝜓̄ 𝑓 ′𝛾𝜇(𝑔 𝑓

′
𝑉 − 𝑔

𝑓 ′
𝐴 𝛾5)𝜓 𝑓 ′

]
, (C.1a)

= 2
√

2𝐺𝐹
∑
𝑓 , 𝑓 ′

∫
d3 ®𝑥

[
𝜓̄ 𝑓 𝛾

𝜇(𝑔 𝑓𝐿𝑃𝐿 + 𝑔
𝑓
𝑅𝑃𝑅)𝜓 𝑓

] [
𝜓̄ 𝑓 ′𝛾𝜇(𝑔 𝑓

′
𝐿 𝑃𝐿 + 𝑔

𝑓 ′
𝑅 𝑃𝑅)𝜓 𝑓 ′

]
,

(C.1b)

where the different couplings are related via (remember that 𝑃𝐿 = (1 − 𝛾5)/2 and
𝑃𝑅 = (1 + 𝛾5)/2)

𝑔𝐿 =
𝑔𝑉 + 𝑔𝐴

2 , 𝑔𝑅 =
𝑔𝑉 − 𝑔𝐴

2 . (C.2)

We split the Hamiltonian in the contributions involving neutrinos and the matter
background and only (anti)neutrinos, (A.6) and (A.7).

Matter background

We can follow the exact same steps as in the charged-current case. In the following we
deal with particles, but as show before considering antiparticles basically only require
to add a minus sign.

We find:

𝑣̃𝜈𝛼(1) 𝑓 (2)
𝜈𝛼(3) 𝑓 (4) =

𝐺𝐹√
2
(2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)
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C.1. Interaction matrix elements and mean-field potential

× [𝑢̄ℎ1
𝜈𝛼 (®𝑝1)𝛾𝜇(1 − 𝛾5)𝑢ℎ3

𝜈𝛼 (®𝑝3)] [𝑢̄ℎ2
𝑓 (®𝑝2)𝛾𝜇(𝑔 𝑓𝑉 − 𝑔

𝑓
𝐴𝛾

5)𝑢ℎ 𝑓𝑓 (®𝑝4)] . (C.3)

Assuming a homogeneous and unpolarized background for the fermion 𝑓 , we can use
the trace technology on the 𝑢 𝑓 spinor product:
∑
ℎ 𝑓

[𝑢̄ℎ 𝑓𝑓 (®𝑝)𝛾𝜇(𝑔
𝑓
𝑉 − 𝑔

𝑓
𝐴𝛾

5)𝑢ℎ 𝑓𝑓 (®𝑝)] = tr[(𝛾𝛼𝑝𝛼+𝑚 𝑓 )𝛾𝜇(𝑔 𝑓𝑉−𝑔
𝑓
𝐴𝛾

5)] = 𝑔 𝑓𝑉𝑝𝛼tr[𝛾𝛼𝛾𝜇] = 4𝑔 𝑓𝑉𝑝𝜇 ,

(C.4)
which leads to, writing 𝑓 𝑓 (𝑝) the distribution function of the fermion 𝑓 ,

Γ𝜈𝛼(®𝑝1 ,−)
𝜈𝛼(®𝑝3 ,−) =

NC, 𝑓

𝐺𝐹√
2
× (2𝜋)3𝛿(3)(®𝑝1 − ®𝑝3) ×

∫ d3®𝑝
(2𝜋)32𝐸𝑝

4 𝑔 𝑓𝑉 𝑝𝜇 × 𝑓 𝑓 (𝑝)

× [𝑢̄(−)𝜈𝛼 (®𝑝1)𝛾𝜇(1 − 𝛾5)𝑢(−)𝜈𝛼 (®𝑝3)]︸                              ︷︷                              ︸
4𝑝1𝜇

=
𝐺𝐹√

2
× (2𝜋)3𝛿(3)(®𝑝1 − ®𝑝3) × 4𝑝1 × 𝑔 𝑓𝑉 × 2

∫ d3®𝑝
(2𝜋)3 𝑓 𝑓 (𝑝)

= (2𝜋)32𝑝1𝛿
(3)(®𝑝1 − ®𝑝3) ×

√
2𝐺𝐹𝑔

𝑓
𝑉𝑛 𝑓

=
√

2𝐺𝐹𝑔
𝑓
𝑉𝑛 𝑓 𝜹®𝑝1®𝑝3 . (C.5)

We assumed that the fermions were spin-1/2 fermions, with 2 helicity states.
Therefore, in the early universe, including for completeness protons and neutrons,

the full mean-field potential due to neutral-current interactions with matter reads

Γ𝜈𝛼(®𝑝1 ,−)
𝜈𝛼(®𝑝3 ,−) =

NC, mat

√
2𝐺𝐹 𝜹®𝑝1®𝑝3

[
𝑔𝑒𝑉 (𝑛𝑒 − 𝑛̄𝑒) + 𝑔

𝑝
𝑉𝑛𝑝 + 𝑔𝑛𝑉𝑛𝑛

]
(C.6)

This term is the same for all three neutrino flavors, hence it is proportional to 1 and does
not contribute to the mean-field dynamics.1 Moreover, using 𝑔𝑝𝑉 = −𝑔𝑒𝑉 , 𝑔𝑛𝑉 = −1/2 and
the electric neutrality of the Universe 𝑛𝑒 − 𝑛̄𝑒 − 𝑛𝑝 = 0, we can write the final result:

Γ𝜈𝛼(®𝑝1 ,−)
𝜈𝛼(®𝑝3 ,−) =

NC, mat
−𝐺𝐹√

2
𝛿𝛼𝛽 𝜹®𝑝1®𝑝3 𝑛𝑛 . (C.7)

Neutrino self-interactions

To derive 𝑣̃𝜈𝛼𝜈𝛽𝜈𝛼𝜈𝛽 , we rewrite the Hamiltonian (A.7) in the form (2.7). For convenience, we
distinguish the diagonal and non-diagonal terms, and restrict to Fermi order.

1This is true only if there are no sterile species. Otherwise the mean-field matrix would be, noting
ΓNC the value (C.6), diag(ΓNC , ΓNC , ΓNC , 0, · · · , 0) with as many zero diagonal entries as there are sterile
neutrino species.
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C. Computing the terms of the QKEs

Non-diagonal terms The Hamiltonian contains the terms

𝐻̂𝜈𝜈
𝑁𝐶 ⊃

𝐺𝐹
4
√

2

∑
ℎ1 ...

∫
[d3®𝑝2 ] · · · (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4) × [𝑢̄ℎ1

𝜈𝛼 (®𝑝1)𝛾𝜇(1 − 𝛾5)𝑢ℎ4
𝜈𝛼 (®𝑝4))]

× [𝑢̄ℎ2
𝜈𝛽 (®𝑝2)𝛾𝜇(1 − 𝛾5)𝑢ℎ3

𝜈𝛽 (®𝑝3)] × 𝑎̂†𝜈𝛼 (®𝑝1 , ℎ1)𝑎̂𝜈𝛼 (®𝑝4 , ℎ4)𝑎̂†𝜈𝛽 (®𝑝2 , ℎ2)𝑎̂𝜈𝛽 (®𝑝3 , ℎ3) (C.8)

where all the possible contributions in normal ordering, so as to be in the form (2.7),
read

𝑎̂†𝜈𝛼 (1)𝑎̂𝜈𝛼 (4)𝑎̂†𝜈𝛽 (2)𝑎̂𝜈𝛽 (3) =
1
4

(
− 𝑎̂†𝜈𝛼 (1)𝑎̂†𝜈𝛽 (2)𝑎̂𝜈𝛼 (4)𝑎̂𝜈𝛽 (3) + 𝑎̂†𝜈𝛼 (1)𝑎̂†𝜈𝛽 (2)𝑎̂𝜈𝛽 (3)𝑎̂𝜈𝛼 (4)
+ 𝑎̂†𝜈𝛽 (2)𝑎̂†𝜈𝛼 (1)𝑎̂𝜈𝛼 (4)𝑎̂𝜈𝛽 (3) − 𝑎̂†𝜈𝛽 (2)𝑎̂†𝜈𝛼 (1)𝑎̂𝜈𝛽 (3)𝑎̂𝜈𝛼(4)

)
(C.9)

This term appears twice in 𝐻̂𝜈𝜈
𝑁𝐶 , therefore we can identify

𝑣̃
𝜈𝛼(1)𝜈𝛽(2)
𝜈𝛽(3)𝜈𝛼(4) =

𝐺𝐹
2
√

2
(2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)

× [𝑢̄ℎ1
𝜈𝛼 (®𝑝1)𝛾𝜇(1 − 𝛾5)𝑢𝜈𝛽 ℎ3(®𝑝3)] [𝑢̄ℎ2

𝜈𝛽 (®𝑝2)𝛾𝜇(1 − 𝛾5)𝑢ℎ4
𝜈𝛼 (®𝑝4)] (C.10)

Note that we used a Fierz identity to get this result (cancellation of two minus signs).
To get the mean-field, we follow the standard procedure,

Γ𝜈𝛼(®𝑝1 ,ℎ1)
𝜈𝛽(®𝑝3 ,ℎ3) =

NC, 𝜈

∑
ℎ2 ,ℎ4

∫
[d3®𝑝2][d3®𝑝4] 𝑣̃𝜈𝛼(1)𝜈𝛽(2)𝜈𝛽(3)𝜈𝛼(4) × 𝜚

𝜈𝛼(®𝑝4 ,ℎ4)
𝜈𝛽(®𝑝2 ,ℎ2)︸   ︷︷   ︸

(2𝜋)3 𝛿ℎ2ℎ4 2𝑝2 𝛿(3)(®𝑝2−®𝑝4)𝜚𝛼𝛽 (𝑝2)

. (C.11)

Using trace technology, we get the result:

Γ𝜈𝛼(®𝑝1 ,−)
𝜈𝛽(®𝑝3 ,−) =

NC, 𝜈

𝐺𝐹
2
√

2
× (2𝜋)3𝛿(3)(®𝑝1 − ®𝑝3) ×

∫ d3®𝑝2

(2𝜋)32𝑝2
16𝑝𝜇2 𝑝1,𝜇 × 𝜚𝛼𝛽 (𝑝2)

=
√

2𝐺𝐹 × (2𝜋)3 2𝑝1 𝛿
(3)(®𝑝1 − ®𝑝3) ×

∫ d3®𝑝2

(2𝜋)3 𝜚
𝛼
𝛽 (𝑝2)

=
√

2𝐺𝐹 N𝜈 |𝛼𝛽 𝜹®𝑝1®𝑝3 . (C.12)

where we have eliminated angular integrals involving ®𝑝2 · ®𝑝1, which vanish thanks to
isotropy.

There is yet another term to consider: the propagation 𝜈𝛼 → 𝜈𝛽 in a background of
antineutrinos, namely, the matrix elements ⟨𝜈𝛼 𝜈̄𝛼 |𝐻̂𝜈𝜈

𝑁𝐶 |𝜈𝛽 𝜈̄𝛽⟩. It is equivalently the co-
efficient in front of 𝑎̂†𝜈𝛼 (1)𝑏†𝜈𝛼 (2)𝑏𝜈𝛽 (4)𝑎̂𝜈𝛽 (3) in the expansion of the Hamiltonian, namely,

𝑣̃
𝜈𝛼(1)𝜈̄𝛽(2)
𝜈𝛽(3)𝜈̄𝛼(4) =

𝐺𝐹
2
√

2
(2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)
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C.2. Collision term

× [𝑢̄ℎ1
𝜈𝛼 (®𝑝1)𝛾𝜇(1 − 𝛾5)𝑣ℎ4

𝜈𝛼 (®𝑝4)] [𝑣̄ℎ2
𝜈𝛽 (®𝑝2)𝛾𝜇(1 − 𝛾5)𝑢ℎ3

𝜈𝛽 (®𝑝3)] (C.13)

We then multiply this term by

⟨𝑏†𝜈𝛼 (®𝑝4 , ℎ4)𝑏𝜈𝛽 (®𝑝2 , ℎ2)⟩ = (2𝜋)3𝛿ℎ2ℎ42𝑝2𝛿
(3)(®𝑝2 − ®𝑝4)𝜚𝛼𝛽 (𝑝2) . (C.14)

Note that it is 𝜚 , and not 𝜚∗ that appears, thanks to the transposed definition of 𝜚
compared to 𝜚 . Using again a Fierz identity, we get an extra minus sign such that

Γ𝜈𝛼(®𝑝1 ,−)
𝜈𝛽(®𝑝3 ,−) =

NC, 𝜈̄
− 𝐺𝐹

2
√

2
× (2𝜋)3𝛿(3)(®𝑝1 − ®𝑝3) ×

∫ d3®𝑝2

(2𝜋)32𝑝2
16𝑝𝜇2 𝑝1,𝜇 × 𝜚𝛼𝛽 (𝑝2)

= −
√

2𝐺𝐹 × (2𝜋)3 2𝑝1 𝛿
(3)(®𝑝1 − ®𝑝3) ×

∫ d3®𝑝2

(2𝜋)3 𝜚
𝛼
𝛽 (𝑝2)

= −
√

2𝐺𝐹 N𝜈̄ |𝛼𝛽 𝜹®𝑝1®𝑝3 . (C.15)

Diagonal terms In order to compute Γ𝜈𝛼𝜈𝛼 , two different interaction matrix elements are
needed:

• 𝑣̃
𝜈𝛼𝜈𝛽
𝜈𝛼𝜈𝛽 with 𝛼 ≠ 𝛽, which are given in C.10,

• 𝑣̃𝜈𝛼𝜈𝛼𝜈𝛼𝜈𝛼 , which are twice as great as the former matrix elements. Indeed, they
consider to only one term in the 𝐻̂𝜈𝜈

𝑁𝐶 , but since they only involve one species,
there is no rewriting (C.9), which leads to an extra factor of four — all in all, there
is an extra factor of 2.2

This allows to write the matrix elements gathered in Table 2.1.
Finally, the diagonal part of the self-interaction mean-field reads (we do not detail

the interaction with antiparticles, which as usual gives an extra minus sign)

Γ𝜈𝛼(®𝑝1 ,−)
𝜈𝛼(®𝑝3 ,−) =NC

√
2𝐺𝐹 × (2𝜋)3 2𝑝1 𝛿

(3)(®𝑝1 − ®𝑝3)
∑
𝛽

∫ d3®𝑝2

(2𝜋)3
(
𝜚
𝛽
𝛽(𝑝2) − 𝜚𝛽𝛽(𝑝2)

)
× [1 + 𝛿𝛼𝛽]

=
√

2𝐺𝐹 (N − N𝜈̄)𝛼𝛼 𝜹®𝑝1®𝑝3 +
√

2𝐺𝐹 Tr (N − N𝜈̄) 𝜹®𝑝1®𝑝3 . (C.16)

The second term being flavour-independent, it does not contribute to flavour evolution
(in other words, it is a contribution∝ 1 to the mean-field, hence its contribution vanishes
inside the commutators).

C.2 Collision term
We follow the same procedure as in section 2.2.4 to compute the remaining contributions
to the collision term, that is the parts involving charged leptons. We then present the
calculation of the antineutrino collision integral.

2In terms of Feynman diagrams, this corresponds to the possibility of coherent forward scattering with
a 𝑡− and a 𝑢− channel (or 𝑠−channel for the interaction with 𝜈̄𝛼), contrary to the off-diagonal case where
only one channel is available.
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C.2.1 Neutrino-electron scattering
We use the general interaction matrix element (2.33), such that our expression will be
valid even for non-standard interactions (which are not considered in our numerical
calculations):

𝑣̃𝜈𝛼(1)𝑒(2)
𝜈𝛽(3)𝑒(4) = 2

√
2𝐺𝐹 (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)
× [𝑢̄ℎ1

𝜈𝛼 (®𝑝1)𝛾𝜇𝑃𝐿𝑢
ℎ3
𝜈𝛽 (®𝑝3)] [𝑢̄ℎ2

𝑒 (®𝑝2)𝛾𝜇(𝐺𝛼𝛽
𝐿 𝑃𝐿 + 𝐺

𝛼𝛽
𝑅 𝑃𝑅)𝑢ℎ4

𝑒 (®𝑝4)] . (C.17)

Let us compute the contribution to the scattering kernel for which 2 = 𝑒− , 3 = 𝜈𝛾 , 3′ =
𝜈𝛿 , 1′ = 𝜈𝜎. We have:

𝑣̃𝜈𝛼(1)𝑒(2)
𝜈𝛾(3)𝑒(4) × 𝑣̃

𝜈𝛿(3′)𝑒(4′)
𝜈𝜎(1′)𝑒(2′) = 8𝐺2

𝐹(2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)(2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)∑
ℎ2 ,ℎ3 ,ℎ4

[𝑢̄ℎ1
𝜈𝛼 (®𝑝1)𝛾𝜇𝑃𝐿𝑢

ℎ3
𝜈𝛾 (®𝑝3)][𝑢̄ℎ3

𝜈𝛿 (®𝑝3)𝛾𝜈𝑃𝐿𝑢
ℎ1
𝜈𝜎 (®𝑝1)]

×[𝑢̄ℎ2
𝑒 (®𝑝2)𝛾𝜇(𝐺𝛼𝛾

𝐿 𝑃𝐿 + 𝐺𝛼𝛾
𝑅 𝑃𝑅)𝑢ℎ4

𝑒 (®𝑝4)][𝑢̄ℎ4
𝑒 (®𝑝4)𝛾𝜈(𝐺𝛿𝜎

𝐿 𝑃𝐿 + 𝐺𝛿𝜎
𝑅 𝑃𝑅)𝑢ℎ2

𝑒 (®𝑝2)]
= 8𝐺2

𝐹 (2𝜋)6𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)𝛿(3)(®𝑝1 − ®𝑝1)
× tr

[
𝛾𝜌𝑝1𝜌𝛾

𝜇𝑃𝐿𝛾𝜆𝑝3𝜆𝛾
𝜈𝑃𝐿

]
× tr

[(𝛾𝜏𝑝𝜏2 + 𝑚𝑒)𝛾𝜇(𝐺𝛼𝛾
𝐿 𝑃𝐿 + 𝐺𝛼𝛾

𝑅 𝑃𝑅)(𝛾𝜂𝑝𝜂4 + 𝑚𝑒)𝛾𝜈(𝐺𝛿𝜎
𝐿 𝑃𝐿 + 𝐺𝛿𝜎

𝑅 𝑃𝑅)
]

The first trace reads (we use {𝑃𝐿 , 𝛾𝜇} = 0):

𝑝1𝜌𝑝3𝜆tr
[
𝛾𝜌𝛾𝜇𝑃𝐿𝛾𝜆𝛾𝜈𝑃𝐿

]
= 2

[
𝑝𝜇1 𝑝

𝜈
3 + 𝑝𝜈1𝑝

𝜇
3 − (𝑝1 · 𝑝3)𝑔𝜇𝜈

] + 2i𝑝1𝜌𝑝3𝜆𝜖
𝜌𝜇𝜆𝜈 .

In the second, only even powers of 𝑚𝑒 survive:

tr
[(𝛾𝜏𝑝𝜏2 + 𝑚𝑒)𝛾𝜇(𝐺𝛼𝛾

𝐿 𝑃𝐿 + 𝐺𝛼𝛾
𝑅 𝑃𝑅)(𝛾𝜂𝑝𝜂4 + 𝑚𝑒)𝛾𝜈(𝐺𝛿𝜎

𝐿 𝑃𝐿 + 𝐺𝛿𝜎
𝑅 𝑃𝑅)

]
= 𝑝𝜏2𝑝

𝜂
4tr

[
𝛾𝜏𝛾𝜇𝛾𝜂𝛾𝜈(𝐺𝛼𝛾

𝐿 𝐺𝛿𝜎
𝐿 𝑃𝐿 + 𝐺𝛼𝛾

𝑅 𝐺𝛿𝜎
𝑅 𝑃𝑅)

] + 𝑚2
𝑒 tr

[
𝛾𝜇𝛾𝜈(𝐺𝛼𝛾

𝑅 𝐺𝛿𝜎
𝐿 𝑃𝐿 + 𝐺𝛼𝛾

𝐿 𝐺𝛿𝜎
𝑅 𝑃𝑅)

]
= 2

[
𝑝2𝜇𝑝4𝜈 + 𝑝2𝜈𝑝4𝜇 − (𝑝2 · 𝑝4)𝑔𝜇𝜈

] (𝐺𝛼𝛾
𝐿 𝐺𝛿𝜎

𝐿 + 𝐺𝛼𝛾
𝑅 𝐺𝛿𝜎

𝑅 )
+ 2i𝑝𝜏2𝑝

𝜂
4𝜖𝜏𝜇𝜂𝜈(𝐺

𝛼𝛾
𝐿 𝐺𝛿𝜎

𝐿 − 𝐺𝛼𝛾
𝑅 𝐺𝛿𝜎

𝑅 ) + 2𝑚2
𝑒 𝑔𝜇𝜈(𝐺𝛼𝛾

𝑅 𝐺𝛿𝜎
𝐿 + 𝐺𝛼𝛾

𝐿 𝐺𝛿𝜎
𝑅 )

The product of both terms reads:

• product of imaginary parts

− 4𝑝1𝜌𝑝3𝜆𝑝𝜏2𝑝
𝜂
4(𝐺

𝛼𝛾
𝐿 𝐺𝛿𝜎

𝐿 − 𝐺𝛼𝛾
𝑅 𝐺𝛿𝜎

𝑅 )𝜖𝜌𝜇𝜆𝜈𝜖𝜏𝜇𝜂𝜈
= 8(𝐺𝛼𝛾

𝐿 𝐺𝛿𝜎
𝐿 − 𝐺𝛼𝛾

𝑅 𝐺𝛿𝜎
𝑅 ) [(𝑝1 · 𝑝2)(𝑝3 · 𝑝4) − (𝑝1 · 𝑝4)(𝑝2 · 𝑝3)] ,

• product of real parts, 𝒪(𝑚0
𝑒 )

4(𝐺𝛼𝛾
𝐿 𝐺𝛿𝜎

𝐿 +𝐺𝛼𝛾
𝑅 𝐺𝛿𝜎

𝑅 )
[
𝑝𝜇1 𝑝

𝜈
3 + 𝑝𝜈1𝑝

𝜇
3 − (𝑝1 · 𝑝3)𝑔𝜇𝜈

] [
𝑝2𝜇𝑝4𝜈 + 𝑝2𝜈𝑝4𝜇 − (𝑝2 · 𝑝4)𝑔𝜇𝜈

]
= 8(𝐺𝛼𝛾

𝐿 𝐺𝛿𝜎
𝐿 + 𝐺𝛼𝛾

𝑅 𝐺𝛿𝜎
𝑅 ) [(𝑝1 · 𝑝2)(𝑝3 · 𝑝4) + (𝑝1 · 𝑝4)(𝑝2 · 𝑝3)] ,
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• product of real parts, 𝒪(𝑚2
𝑒 )

4(𝐺𝛼𝛾
𝑅 𝐺𝛿𝜎

𝐿 + 𝐺𝛼𝛾
𝐿 𝐺𝛿𝜎

𝑅 )
[
𝑝𝜇1 𝑝

𝜈
3 + 𝑝𝜈1𝑝

𝜇
3 − (𝑝1 · 𝑝3)𝑔𝜇𝜈

]
𝑚2
𝑒 𝑔𝜇𝜈

= −8(𝐺𝛼𝛾
𝑅 𝐺𝛿𝜎

𝐿 + 𝐺𝛼𝛾
𝐿 𝐺𝛿𝜎

𝑅 )(𝑝1 · 𝑝3)𝑚2
𝑒 .

Therefore,

𝑣̃𝜈𝛼(1)𝑒(2)
𝜈𝛾(3)𝑒(4) × 𝑣̃

𝜈𝛿(3′)𝑒(4′)
𝜈𝜎(1′)𝑒(2′) = 25𝐺2

𝐹 (2𝜋)6 𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4) 𝛿(3)(®𝑝1 − ®𝑝1)
×
[
4(𝑝1 · 𝑝2)(𝑝3 · 𝑝4)(𝐺𝛼𝛾

𝐿 𝐺𝛿𝜎
𝐿 ) + 4(𝑝1 · 𝑝4)(𝑝2 · 𝑝3)(𝐺𝛼𝛾

𝑅 𝐺𝛿𝜎
𝑅 )

− 2(𝑝1 · 𝑝3)𝑚2
𝑒 (𝐺𝛼𝛾

𝑅 𝐺𝛿𝜎
𝐿 + 𝐺𝛼𝛾

𝐿 𝐺𝛿𝜎
𝑅 )

]
All 𝑣̃𝑣̃∗ products in (2.19) are equal to this, the only difference being the indices 𝛼, 𝛾, 𝛿, 𝜎
which must respect the matrix structure. This expression is in perfect agreement with,
for instance, Eq. (2.10) of [SP16]. Schematically,

𝑣̃𝜈𝛼𝑒𝜈𝛾𝑒︸︷︷︸
→𝐺𝑎𝛼𝛾

𝜚
𝛾
𝛿 (3) 𝑓 (4)𝑒 𝑣̃𝜈𝛿𝑒𝜈𝜎𝑒︸︷︷︸

→𝐺𝑏𝛿𝜎

(1 − 𝜚 (1))𝜎𝛽 (1 − 𝑓 (2)𝑒 ) = 𝑓 (4)𝑒 (1 − 𝑓 (2)𝑒 )
[
𝐺𝑎 · 𝜚 (3) · 𝐺𝑏 · (1 − 𝜚 (1))

]𝛼
𝛽
.

Remember that we get the same contribution exchanging 3 and 4. Therefore :

𝒞[𝜈𝑒−→𝜈𝑒−] =(2𝜋)3𝛿(3)(®𝑝1 − ®𝑝1)
25𝐺2

𝐹

2

∫
[d3®𝑝2][d3®𝑝3][d3®𝑝4](2𝜋)4𝛿(4)(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4)[

4(𝑝1 · 𝑝2)(𝑝3 · 𝑝4)𝐹𝐿𝐿sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4))
+ 4(𝑝1 · 𝑝4)(𝑝2 · 𝑝3)𝐹𝑅𝑅sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4))
− 2(𝑝1 · 𝑝3)𝑚2

𝑒

(
𝐹𝐿𝑅sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4)) + 𝐹𝑅𝐿sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4))

) ]
.

(C.18)
The statistical factors read:

𝐹𝐴𝐵sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4)) = 𝑓4(1 − 𝑓2)
[
𝐺𝐴𝜚3𝐺𝐵(1 − 𝜚1) + (1 − 𝜚1)𝐺𝐵𝜚3𝐺𝐴

]
− (1 − 𝑓4) 𝑓2

[
𝐺𝐴(1 − 𝜚3)𝐺𝐵𝜚1 + 𝜚1𝐺𝐵(1 − 𝜚3)𝐺𝐴

]
, (C.19)

with the compact notations 𝑓𝑖 = 𝑓 (𝑖)𝑒 = 𝑓𝑒(𝑝𝑖) and 𝜚 𝑖 = 𝜚 (𝑖) = 𝜚(𝑝𝑖).

The other scattering amplitudes can all be obtained via “crossing symmetry” meth-
ods, as will be shown in the next two sections.
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C.2.2 Neutrino-positron scattering
Now note that the relevant matrix elements are (see Table 2.1)

𝑣̃𝜈𝛼(1)𝑒(2)
𝜈𝛽(3)𝑒(4) = −2

√
2𝐺𝐹 (2𝜋)3 𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)
× [𝑢̄ℎ1

𝜈𝛼 (®𝑝1)𝛾𝜇𝑃𝐿𝑢
ℎ3
𝜈𝛽 (®𝑝3)] [𝑣̄ℎ4

𝑒 (®𝑝4)𝛾𝜇(𝐺𝛼𝛽
𝐿 𝑃𝐿 + 𝐺

𝛼𝛽
𝑅 𝑃𝑅)𝑣ℎ2

𝑒 (®𝑝2)] (C.20)

Therefore, the matrix structure is exactly identical, but we have to interchange in the
matrix elements 𝑝2 ↔ 𝑝4.

All in all, the scattering with charged leptons reads:

𝒞[𝜈𝑒±→𝜈𝑒±] =(2𝜋)3𝛿(3)(®𝑝1 − ®𝑝1)
25𝐺2

𝐹

2

∫
[d3®𝑝2][d3®𝑝3][d3®𝑝4](2𝜋)4𝛿(4)(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4)[

4(𝑝1 · 𝑝2)(𝑝3 · 𝑝4)
(
𝐹𝐿𝐿sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4)) + 𝐹𝑅𝑅sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4))

)
+ 4(𝑝1 · 𝑝4)(𝑝2 · 𝑝3)

(
𝐹𝑅𝑅sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4)) + 𝐹𝐿𝐿sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4))

)
− 2(𝑝1 · 𝑝3)𝑚2

𝑒

(
𝐹𝐿𝑅sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4)) + 𝐹𝐿𝑅sc (𝜈(1) , 𝑒(2) , 𝜈(3) , 𝑒(4)) + {𝐿↔ 𝑅}

) ]
.

(C.21)

C.2.3 Neutrino-antineutrino annihilation
Now, the relevant matrix element is:

𝑣̃
𝜈𝛼(1)𝜈̄𝛽(2)
𝑒(3)𝑒(4) = −2

√
2𝐺𝐹 (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)
× [𝑢̄ℎ1

𝜈𝛼 (®𝑝1)𝛾𝜇𝑃𝐿𝑣
ℎ2
𝜈𝛽 (®𝑝2)] [𝑣̄ℎ4

𝑒 (®𝑝4)𝛾𝜇(𝐺𝛼𝛽
𝐿 𝑃𝐿 + 𝐺

𝛼𝛽
𝑅 𝑃𝑅)𝑢ℎ3

𝑒 (®𝑝3)] . (C.22)

Two remarks must be made:

• Thanks to the transposed definition of 𝜚 , the statistical factor keeps a simple
expression not involving extra transpositions. Indeed, we have:

𝑣̃
𝜈𝛼 𝜈̄𝛾
𝑒𝑒︸︷︷︸
→𝐺𝑎𝛼𝛾

𝑓 (3)𝑒 𝑓 (4)𝑒 𝑣̃𝑒𝑒𝜈𝛿 𝜈̄𝜎︸︷︷︸
→𝐺𝑏𝜎𝛿

(1 − 𝜚 (1))𝛿𝛽 (1 − 𝜚 (2))𝜎̄𝛾̄︸      ︷︷      ︸
=(1−𝜚 (2))𝛾𝜎

= 𝑓 (3)𝑒 𝑓 (4)𝑒
[
𝐺𝑎 · (1 − 𝜚 (2)) · 𝐺𝑏 · (1 − 𝜚 (1))

]𝛼
𝛽
.

• As can be seen with the associated Feynman diagrams, the amplitudes are ob-
tained from 𝜈 + 𝑒− scattering through:

𝑝1 → 𝑝1 ; 𝑝2 → −𝑝4 ; 𝑝3 → −𝑝2 ; 𝑝4 → 𝑝3 .

If we stay in our formalism, the product of 𝑣̃𝜈𝜈̄𝑒𝑒 × 𝑣̃𝑒𝑒𝜈𝜈̄ involves the combinations
𝑢ℎ3
𝑒 (®𝑝3)𝑢̄ℎ3

𝑒 (®𝑝3) and 𝑣ℎ4
𝑒 (®𝑝4)𝑣̄ℎ4

𝑒 (®𝑝4). Therefore the 𝑚2
𝑒 term reverses sign [product

(𝛾𝜌𝑝𝜌3 + 𝑚𝑒)(𝛾𝜔𝑝𝜔4 − 𝑚𝑒)].
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This leads to the following statistical factor:

𝐹𝐴𝐵ann(𝜈(1) , 𝜈̄(2) , 𝑒(3) , 𝑒(4)) = 𝑓3 𝑓4
[
𝐺𝐴(1 − 𝜚2)𝐺𝐵(1 − 𝜚1) + (1 − 𝜚1)𝐺𝐵(1 − 𝜚2)𝐺𝐴

]
− (1 − 𝑓3)(1 − 𝑓4)

[
𝐺𝐴𝜚2𝐺𝐵𝜚1 + 𝜚1𝐺𝐵𝜚2𝐺𝐴

]
, (C.23)

and the collision term contribution

𝒞[𝜈𝜈̄→𝑒−𝑒+] =(2𝜋)3𝛿(3)(®𝑝1 − ®𝑝1)
25𝐺2

𝐹

2

∫
[d3®𝑝2][d3®𝑝3][d3®𝑝4](2𝜋)4𝛿(4)(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4)[

4(𝑝1 · 𝑝4)(𝑝2 · 𝑝3)𝐹𝐿𝐿ann(𝜈(1) , 𝜈̄(2) , 𝑒(3) , 𝑒(4))
+ 4(𝑝1 · 𝑝3)(𝑝2 · 𝑝4)𝐹𝑅𝑅ann(𝜈(1) , 𝜈̄(2) , 𝑒(3) , 𝑒(4))
+ 2(𝑝1 · 𝑝2)𝑚2

𝑒

(
𝐹𝐿𝑅ann(𝜈(1) , 𝜈̄(2) , 𝑒(3) , 𝑒(4)) + 𝐹𝑅𝐿ann(𝜈(1) , 𝜈̄(2) , 𝑒(3) , 𝑒(4))

) ]
.

(C.24)

C.2.4 Antineutrino collision term
The antineutrino collision term 𝒞̄ for 𝜚 can be deduced from 𝒞 based on the transfor-
mations 𝜚 ↔ 𝜚 and 𝐿↔ 𝑅. Let us prove it explicitly.

As explained in section C.2, the evolution equation for 𝜚𝛼𝛽 is obtained similarly to

the one for 𝜚𝛽𝛼. In other words, 𝒞̄𝛼
𝛽 is calculated with the general formula (2.19), where

we take 𝑖1 = 𝜈̄𝛽(®𝑝1) and 𝑖′1 = 𝜈̄𝛼(®𝑝1).

Antineutrino - charged lepton scattering

The relevant matrix element is now (note the minus sign with respect to (C.17), as
explained in section B.2):

𝑣̃
𝜈̄𝛽(1)𝑒(2)
𝜈̄𝛼(3)𝑒(4) = −2

√
2𝐺𝐹 (2𝜋)3𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)
× [𝑣̄ℎ3

𝜈𝛼 (®𝑝3)𝛾𝜇𝑃𝐿𝑣
ℎ1
𝜈𝛽 (®𝑝1)] [𝑢̄ℎ2

𝑒 (®𝑝2)𝛾𝜇(𝐺𝛼𝛽
𝐿 𝑃𝐿 + 𝐺

𝛼𝛽
𝑅 𝑃𝑅)𝑢ℎ4

𝑒 (®𝑝4)] . (C.25)

When inserting it in the collision term formula (2.19), the only differences with respect
to the derivation of subsection C.2.1 are the transposition of the 𝐺 matrices — which
actually corresponds to the exchange of the first and second lines in (2.19) —, and most
importantly the exchange 𝑝1 ↔ 𝑝3. Therefore, the collision term reads

𝒞̄[𝜈̄𝑒−→𝜈̄𝑒−] =(2𝜋)3𝛿(3)(®𝑝1 − ®𝑝1)
25𝐺2

𝐹

2

∫
[d3®𝑝2][d3®𝑝3][d3®𝑝4](2𝜋)4𝛿(4)(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4)[

4(𝑝1 · 𝑝4)(𝑝2 · 𝑝3)𝐹𝐿𝐿sc (𝜈̄(1) , 𝑒(2) , 𝜈̄(3) , 𝑒(4))
+ 4(𝑝1 · 𝑝2)(𝑝3 · 𝑝4)𝐹𝑅𝑅sc (𝜈̄(1) , 𝑒(2) , 𝜈̄(3) , 𝑒(4))
− 2(𝑝1 · 𝑝3)𝑚2

𝑒

(
𝐹𝐿𝑅sc (𝜈̄(1) , 𝑒(2) , 𝜈̄(3) , 𝑒(4)) + 𝐹𝑅𝐿sc (𝜈̄(1) , 𝑒(2) , 𝜈̄(3) , 𝑒(4))

) ]
,

(C.26)
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which is indeed the neutrino collision term (C.18), with the replacement 𝜚 → 𝜚 and
𝐿↔ 𝑅. The statistical factor is given by (C.19) with antineutrino density matrices, that
is

𝐹𝐴𝐵sc (𝜈̄(1) , 𝑒(2) , 𝜈̄(3) , 𝑒(4)) = 𝑓4(1 − 𝑓2)
[
𝐺𝐴𝜚3𝐺𝐵(1 − 𝜚1) + (1 − 𝜚1)𝐺𝐵𝜚3𝐺𝐴

]
− (1 − 𝑓4) 𝑓2

[
𝐺𝐴(1 − 𝜚3)𝐺𝐵𝜚1 + 𝜚1𝐺𝐵(1 − 𝜚3)𝐺𝐴

]
. (C.27)

To avoid any confusion with the possible transpositions, let us justify one term of
the statistical factor. The first term in (2.19) reads

𝑣̃
𝜈̄𝛽𝑒
𝜈̄𝛾𝑒︸︷︷︸
→𝐺𝐴𝛾𝛽

𝜚𝛿𝛾(3)︷︸︸︷
𝜚
𝛾̄

𝛿̄
(3) 𝑓 (4)𝑒 𝑣̃ 𝜈̄𝛿𝑒𝜈̄𝜎𝑒︸︷︷︸

→𝐺𝐵𝜎𝛿

(1−𝜚 (1))𝛼𝜎︷      ︸︸      ︷
(1 − 𝜚 (1))𝜎̄𝛼̄(1 − 𝑓 (2)𝑒 ) = 𝑓 (4)𝑒 (1 − 𝑓 (2)𝑒 )

[
(1 − 𝜚 (1)) · 𝐺𝐵 · 𝜚 (3) · 𝐺𝐴

]𝛼
𝛽
,

which is the second term in (C.27).
The scattering with positrons is treated in the same fashion.

Antineutrino - neutrino annihilation

In this case, the appropriate exchange is 𝑝1 ↔ 𝑝2. The results then read

𝐹𝐴𝐵ann(𝜈̄(1) , 𝜈(2) , 𝑒(3) , 𝑒(4)) = 𝑓3 𝑓4
[
𝐺𝐴(1 − 𝜚2)𝐺𝐵(1 − 𝜚1) + (1 − 𝜚1)𝐺𝐵(1 − 𝜚2)𝐺𝐴

]
− (1 − 𝑓3)(1 − 𝑓4)

[
𝐺𝐴𝜚2𝐺𝐵𝜚1 + 𝜚1𝐺𝐵𝜚2𝐺𝐴

]
, (C.28)

and

𝒞̄[𝜈̄𝜈→𝑒−𝑒+] =(2𝜋)3𝛿(3)(®𝑝1 − ®𝑝1)
25𝐺2

𝐹

2

∫
[d3®𝑝2][d3®𝑝3][d3®𝑝4](2𝜋)4𝛿(4)(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4)[

4(𝑝1 · 𝑝3)(𝑝2 · 𝑝4)𝐹𝐿𝐿ann(𝜈̄(1) , 𝜈(2) , 𝑒(3) , 𝑒(4))
+ 4(𝑝1 · 𝑝4)(𝑝2 · 𝑝3)𝐹𝑅𝑅ann(𝜈̄(1) , 𝜈(2) , 𝑒(3) , 𝑒(4))
+ 2(𝑝1 · 𝑝2)𝑚2

𝑒

(
𝐹𝐿𝑅ann(𝜈̄(1) , 𝜈(2) , 𝑒(3) , 𝑒(4)) + 𝐹𝑅𝐿ann(𝜈̄(1) , 𝜈(2) , 𝑒(3) , 𝑒(4))

) ]
.

(C.29)
Once again, they correspond to Eqs. (C.23) and (C.24) with the changes 𝜚 ↔ 𝜚 and
𝐿↔ 𝑅.

Antineutrino self-interactions

Antineutrino-antineutrino scattering We can compare the relevant matrix element:

𝑣̃
𝜈̄𝛽(1)𝜈̄𝛼(2)
𝜈̄𝛽(3)𝜈̄𝛼(4) = (1 + 𝛿𝛼𝛽) ×

√
2𝐺𝐹 (2𝜋)3 𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4)
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× [𝑣̄ℎ3
𝜈𝛽 (®𝑝3)𝛾𝜇𝑃𝐿𝑣

ℎ1
𝜈𝛽 (®𝑝1)] [𝑣̄ℎ4

𝜈𝛼 (®𝑝4)𝛾𝜇𝑃𝐿𝑣ℎ2
𝜈𝛼 (®𝑝2)] (C.30)

with the one for neutrino-neutrino scattering given in Table 2.1. Apart from the replace-
ment of 𝑢 spinors by 𝑣 spinors, the appropriate exchanges are 1↔ 3 and 2↔ 4, which
leaves the scattering amplitude unchanged compared to neutrino-neutrino scattering
(see the calculation in section 2.2.4), i.e. it will still be (𝑝1 · 𝑝2)(𝑝3 · 𝑝4).

Concerning the statistical factor, we have for instance:

𝑣̃
𝜈̄𝛽 𝜈̄𝛾
𝜈̄𝛾 𝜈̄𝛽

𝜚
𝛾̄
𝜎̄(3)𝜚 𝛽̄𝛿̄(4)𝑣̃

𝜈̄𝜎 𝜈̄𝛿
𝜈̄𝜎 𝜈̄𝛿
(1 − 𝜚 (1))𝜎̄𝛼̄(1 − 𝜚 (2))𝛿̄𝛾̄ ∝

[
(1 − 𝜚 (1)) · 𝜚 (3) · (1 − 𝜚 (2)) · 𝜚 (4)

]𝛼
𝛽
,

such that the full statistical factor is identical to (2.53) with the replacement 𝜚 → 𝜚 , that
is

𝐹sc(𝜈̄(1) , 𝜈̄(2) , 𝜈̄(3) , 𝜈̄(4)) = [𝜚4(1 − 𝜚4) + Tr(· · · )] 𝜚3(1−𝜚1)+(1−𝜚1)𝜚3 [(1 − 𝜚2)𝜚4 + Tr(· · · )]
− [(1 − 𝜚4)𝜚2 + Tr(· · · )] (1 − 𝜚3)𝜚1 − 𝜚1(1 − 𝜚3) [𝜚2(1 − 𝜚4) + Tr(· · · )] . (C.31)

Antineutrino-neutrino scattering/annihilation Now the appropriate exchange from
the neutrino-antineutrino matrix elements is 𝑝1 ↔ 𝑝2 and 𝑝3 ↔ 𝑝4, such that the
prefactor (𝑝1 · 𝑝2)(𝑝3 · 𝑝4) is left invariant.

The expressions for the statistical factors are Eqs. (2.54) and (2.55) with 𝜚 ↔ 𝜚 :

𝐹sc(𝜈̄(1) , 𝜈(2) , 𝜈̄(3) , 𝜈(4)) = [(1 − 𝜚2)𝜚4 + Tr(· · · )] 𝜚3(1−𝜚1)+(1−𝜚1)𝜚3 [𝜚4(1 − 𝜚2) + Tr(· · · )]
− [𝜚2(1 − 𝜚4) + Tr(· · · )] (1 − 𝜚3)𝜚1 − 𝜚1(1 − 𝜚3) [(1 − 𝜚4)𝜚2 + Tr(· · · )] , (C.32)

𝐹ann(𝜈̄(1) , 𝜈(2) , 𝜈̄(3) , 𝜈(4)) = [𝜚3𝜚4 + Tr(· · · )] (1−𝜚2)(1−𝜚1)+(1−𝜚1)(1−𝜚2) [𝜚4𝜚3 + Tr(· · · )]
− [(1 − 𝜚3)(1 − 𝜚4) + Tr(· · · )] 𝜚2𝜚1 − 𝜚1𝜚2 [(1 − 𝜚4)(1 − 𝜚3) + Tr(· · · )] . (C.33)

Finally, the full self-interaction antineutrino collision term reads

𝒞̄[𝜈̄𝜈̄] =(2𝜋)3𝛿(3)(®𝑝1 − ®𝑝1)
25𝐺2

𝐹

2

∫
[d3®𝑝2][d3®𝑝3][d3®𝑝4](2𝜋)4𝛿(4)(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4)[

4(𝑝1 · 𝑝2)(𝑝3 · 𝑝4)𝐹sc(𝜈̄(1) , 𝜈̄(2) , 𝜈̄(3) , 𝜈̄(4))
+ (𝑝1 · 𝑝4)(𝑝2 · 𝑝3)

(
𝐹sc(𝜈̄(1) , 𝜈(2) , 𝜈̄(3) , 𝜈(4) + 𝐹ann(𝜈̄(1) , 𝜈(2) , 𝜈̄(3) , 𝜈(4))

) ]
.

(C.34)

C.3 Reduction of the collision integral
For completeness, we detail the reduction of the collision integral from nine to two
dimensions, following [DHS97].
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C.3.1 Method
The collision integral for each reaction reads generally, as shown in the calculations of
the previous sections (recall that 𝒞 = (2𝜋)3 2𝐸1 𝛿(3)(®𝑝1 − ®𝑝1)ℐ[𝜚]):

ℐ =
1

2𝐸1

∫
[d3®𝑝2][d3®𝑝3][d3®𝑝4] (2𝜋)4𝛿(4)(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4) × 𝑆⟨|ℳ|2⟩ × 𝐹[𝜚] , (C.35)

with 𝐹[𝜚] the statistical factor, ⟨|ℳ|2⟩ the reaction matrix element and 𝑆 the symmetriza-
tion factor.3 As explained in section 2.3.2, the key trick then consists in using the integral
representation of the Dirac delta function:

𝛿(3)(®𝑝1 + ®𝑝2 − ®𝑝3 − ®𝑝4) =
∫

d3®𝜆
(2𝜋)3 𝑒

i®𝜆·(®𝑝1+®𝑝2−®𝑝3−®𝑝4) ,

and decompose the entire collision integral with spherical coordinates. The “®𝑒z unit
vector” for ®𝜆 is aligned with ®𝑝1, while ®𝜆 is the “®𝑒z unit vector” for ®𝑝𝑖≥2, that is,

cos𝜃𝜆 ≡ ®𝑝1 · ®𝜆
𝑝1𝜆

; cos𝜃𝑖 ≡ ®𝑝𝑖 ·
®𝜆

𝑝𝑖𝜆
for 𝑖 = 2, 3, 4 ,

the associated azimuthal angles 𝜑𝜆 , 𝜑𝑖≥2 being defined as usual. Recalling that
[d3®𝑝] = d3®𝑝/(2𝜋)32𝐸 = 𝑝2d𝑝dΩ/(2𝜋)32𝐸, with dΩ = sin𝜃d𝜃d𝜑 for the solid angles, we
rewrite (C.35)

ℐ =
1

24𝐸1

1
(2𝜋)8

∫
𝜆2d𝜆dΩ𝜆

4∏
𝑖=2

𝑝2
𝑖 d𝑝𝑖dΩ𝑖

𝐸𝑖
𝑒 i®𝜆·(®𝑝1+®𝑝2−®𝑝3−®𝑝4)

× 𝛿(𝐸1 + 𝐸2 − 𝐸3 − 𝐸4) 𝑆⟨|ℳ|2⟩ 𝐹[𝜚]

=
1

26𝜋3𝐸1𝑝1

∫ 4∏
𝑖=2

𝑝𝑖d𝑝𝑖
𝐸𝑖

𝛿(𝐸1 + 𝐸2 − 𝐸3 − 𝐸4) 𝐹[𝜚] × 𝐷(𝑝1 , 𝑝2 , 𝑝3 , 𝑝4) ,

where we defined

𝐷(𝑝1 , 𝑝2 , 𝑝3 , 𝑝4) ≡ 𝑝1𝑝2𝑝3𝑝4

26𝜋5

∫ ∞

0
𝜆2d𝜆

∫
𝑒 i®𝑝1·®𝜆dΩ𝜆

∫
𝑒 i®𝑝2·®𝜆dΩ2∫

𝑒−i®𝑝3·®𝜆dΩ3

∫
𝑒−i®𝑝4·®𝜆dΩ4 𝑆⟨|ℳ|2⟩ . (C.36)

It is finally the particular form of the matrix elements 𝑆⟨|ℳ|2⟩ which allows for further
simplifications. Indeed, in the Fermi approximation of weak interactions, there are

3The symmetrization factor appears as part of the usual Feynman rules in diagrammatic Quantum
Field Theory. Within the BBGKY formalism, these numerical prefactors arise from the combination of the
interaction matrix elements 𝑣̃ — which is absolutely equivalent.
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only two kinds of matrix elements (see equations (2.47), (C.21), (C.24) and similarly for
antineutrinos):

𝐾(𝑞1 · 𝑞2)(𝑞3 · 𝑞4) = 𝐾(𝐸1𝐸2 − ®𝑞1 · ®𝑞2)(𝐸3𝐸4 − ®𝑞3 · ®𝑞4)
and 𝐾′𝑚2

𝑒 (𝑞3 · 𝑞4) = 𝐾′𝑚2
𝑒 (𝐸3𝐸4 − ®𝑞3 · ®𝑞4) ,

(C.37)

where each 𝑞𝑖 corresponds to one of the 𝑝𝑖 . The scalar products appearing in the matrix
elements are thus explicitly

®𝑞𝑖 · ®𝑞 𝑗 = 𝑞𝑖𝑞 𝑗(sin𝜃𝑖 sin𝜃𝑗 cos(𝜑𝑖 − 𝜑 𝑗) + cos𝜃𝑖 cos𝜃𝑗) ,
but the first term vanishes after the 𝜑 integration thanks to the isotropy of the system.4
With the second term, the 𝜑 integrations give factors of (2𝜋), which leads to two possible
kinds of integrals appearing in 𝐷 depending on the matrix element:∫

𝑒±i𝜆𝑞 cos𝜃 sin𝜃 d𝜃 =
2
𝜆𝑞

sin (𝜆𝑞) , (C.38a)∫
𝑒±i𝜆𝑞 cos𝜃 cos𝜃 sin𝜃 d𝜃 = ∓ 2i

𝜆𝑞

[
cos (𝜆𝑞) − sin (𝜆𝑞)

𝜆𝑞

]
. (C.38b)

With this intermediate result, we can perform all integrations except the 𝜆 one, and
obtain the expressions for the 𝐷−functions depending on the matrix element gathered
in Table C.1, where we define 𝐷1, 𝐷2 and 𝐷3.

When inserting the matrix elements (C.37) in the definition (C.36), we thus get5

𝐷 = 𝐾 [𝐸1𝐸2𝐸3𝐸4𝐷1 + 𝐷3 + 𝐸1𝐸2𝐷2(3, 4) + 𝐸3𝐸4𝐷2(1, 2)]
and 𝐷 = 𝐾′𝑚2

𝑒 [𝐸3𝐸4𝐷1 + 𝐷2(3, 4)] .
(C.39)

C.3.2 Expressions of the 𝐷−functions
As shown in the expressions of Table C.1, 𝐷1 and 𝐷3 are symmetric with respect to
permutations of any variables, while 𝐷2 is symmetric under the permutations 1 ↔ 2
and 3↔ 4. Therefore, we give in the following the expressions in the case 𝑞1 > 𝑞2 and
𝑞3 > 𝑞4, without loss of generality.

Distinguishing the following four physical cases, the integrals of Table C.1 can be
computed and simplified using, e.g., Mathematica.

Case (a) 𝑞1 + 𝑞2 > 𝑞3 + 𝑞4, 𝑞1 + 𝑞4 > 𝑞2 + 𝑞3 and 𝑞1 ≤ 𝑞2 + 𝑞3 + 𝑞4

𝐷1 =
1
2 (𝑞2 + 𝑞3 + 𝑞4 − 𝑞1) , (C.40a)

𝐷2 =
1
12

(
(𝑞1 − 𝑞2)3 + 2(𝑞3

3 + 𝑞3
4) − 3(𝑞1 − 𝑞2)(𝑞2

3 + 𝑞2
4)
)
, (C.40b)

4Simply stated, it comes from
∫ 2𝜋

0 cos 𝜑d𝜑 = 0.
5There is a typo in equation (A.14) of [DHS97].
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𝑆⟨|ℳ|2⟩ 𝐷(𝑞1 , 𝑞2 , 𝑞3 , 𝑞4)

1 𝐷1 =
4
𝜋

∫ ∞

0

d𝜆
𝜆2 sin (𝜆𝑞1) sin (𝜆𝑞2) sin (𝜆𝑞3) sin (𝜆𝑞4)

−®𝑞3 · ®𝑞4

𝐷2(3, 4) = 4𝑞3𝑞4

𝜋

∫ ∞

0

d𝜆
𝜆2 sin (𝜆𝑞1) sin (𝜆𝑞2)

×
[
cos (𝜆𝑞3) − sin (𝜆𝑞3)

𝜆𝑞3

] [
cos (𝜆𝑞4) − sin (𝜆𝑞4)

𝜆𝑞3

]

(®𝑞1·®𝑞2)(®𝑞3·®𝑞4) 𝐷3 =
4𝑞1𝑞2𝑞3𝑞4

𝜋

∫ ∞

0

d𝜆
𝜆2

[
cos (𝜆𝑞1) − sin (𝜆𝑞1)

𝜆𝑞1

]
· · ·

[
cos (𝜆𝑞4) − sin (𝜆𝑞4)

𝜆𝑞3

]

Table C.1 – Integral expression of the 𝐷−functions. It is important to emphasize that if
the two arguments of𝐷2 do not correspond to both incoming or both outgoing particles,
it changes sign — see equation (C.38).

𝐷3 =
1
60

(
𝑞5

1 − 5𝑞3
1𝑞

2
2 + 5𝑞2

1𝑞
3
2 − 𝑞5

2 − 5𝑞3
1𝑞

2
3 + 5𝑞3

2𝑞
2
3 + 5𝑞2

1𝑞
3
3 + 5𝑞2

2𝑞
3
3

−𝑞5
3 − 5𝑞3

1𝑞
2
4 + 5𝑞3

2𝑞
2
4 + 5𝑞3

3𝑞
2
4 + 5𝑞2

1𝑞
3
3 + 5𝑞2

2𝑞
3
4 + 5𝑞2

3𝑞
3
4 − 𝑞5

4

)
. (C.40c)

Having 𝑞1 > 𝑞2 + 𝑞3 + 𝑞4 would be unphysical, and yields 𝐷1 = 𝐷2 = 𝐷3 = 0.

Case (b) 𝑞1 + 𝑞2 > 𝑞3 + 𝑞4 and 𝑞1 + 𝑞4 < 𝑞2 + 𝑞3

𝐷1 = 𝑞4 , (C.41a)

𝐷2 =
1
3 𝑞

3
4 , (C.41b)

𝐷3 =
1
30 𝑞

3
4

(
5𝑞2

1 + 5𝑞2
2 + 5𝑞2

3 − 𝑞2
4

)
. (C.41c)

Case (c) 𝑞1 + 𝑞2 < 𝑞3 + 𝑞4, 𝑞1 + 𝑞4 < 𝑞2 + 𝑞3 and 𝑞3 ≤ 𝑞1 + 𝑞2 + 𝑞4

𝐷1 =
1
2 (𝑞1 + 𝑞2 + 𝑞3 − 𝑞4) , (C.42a)

𝐷2 =
1
12

(
−(𝑞1 + 𝑞2)3 − 2𝑞3

3 + 2𝑞3
4 + 3(𝑞1 + 𝑞2)(𝑞2

3 + 𝑞2
4)
)
, (C.42b)

𝐷3 =
1
60

(
−𝑞5

1 + 5𝑞3
1𝑞

2
2 + 5𝑞2

1𝑞
3
2 − 𝑞5

2 + 5𝑞3
1𝑞

2
3 + 5𝑞3

2𝑞
2
3 − 5𝑞2

1𝑞
3
3 − 5𝑞2

2𝑞
3
3

+𝑞5
3 + 5𝑞3

1𝑞
2
4 + 5𝑞3

2𝑞
2
4 − 5𝑞3

3𝑞
2
4 + 5𝑞2

1𝑞
3
4 + 5𝑞2

2𝑞
3
4 + 5𝑞2

3𝑞
3
4 − 𝑞5

4

)
. (C.42c)
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C.3. Reduction of the collision integral

The expression for 𝐷3 corresponds to case (a) with the exchanges 𝑞1 ↔ 𝑞3 and 𝑞2 ↔ 𝑞4.
The case 𝑞3 > 𝑞1 + 𝑞2 + 𝑞4 would be unphysical, and yields 𝐷1 = 𝐷2 = 𝐷3 = 0.

Case (d) 𝑞1 + 𝑞2 < 𝑞3 + 𝑞4 and 𝑞1 + 𝑞4 > 𝑞2 + 𝑞3

𝐷1 = 𝑞2 , (C.43a)

𝐷2 =
1
6 𝑞2

(
3𝑞2

3 + 3𝑞2
4 − 3𝑞2

1 − 𝑞2
2

)
, (C.43b)

𝐷3 =
1
30 𝑞

3
2

(
5𝑞2

1 + 5𝑞2
3 + 5𝑞2

4 − 𝑞2
2

)
. (C.43c)
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APPENDIX D
The numerical code NEVO

Is this an instrument of communication or torture?

Lady Violet Crawley, Downton Abbey [S02E05]
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During this PhD, we have developed the numerical code NEVO (Neutrino EVOlver)
to follow neutrino evolution in the early Universe. We presented its main features in
chapter 3, and give some additional information in this Appendix. First, we review
in more details how the degrees of freedom in density matrices are serialized. We
then provide an extensive description of our method of calculation of the Jacobian of
the differential system of equations, in particular how it is extended from the ATAO-
𝒱 (chapter 3) to the ATAO-(𝒥 ± 𝒱) scheme (chapter 5). Indeed, we show that this
implementation allows to gain an order of magnitude in computation time, whether we
consider the standard calculation or the asymmetric case.

D.1 Serialization of density matrices in flavour space
Since the spectra of density matrices are sampled on a grid of 𝑁 comoving momenta,
the {𝑦𝑛}, the variables which need to be solved for are the 𝜚𝛼𝛽(𝑦𝑛), and 𝜚𝛼𝛽(𝑦𝑛). In the
discretized numerical resolution, integrals are replaced by a quadrature method, that is
by a weighted sum on the 𝑦𝑛 , the weights depending on the chosen grid points.
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D. The numerical code NEVO

In order to alleviate the explanations, we will ignore the presence of antineutrinos
and we shall consider that the variables are just the 𝜚𝛼𝛽(𝑦𝑛), for which we use the
short notation 𝜚𝛼𝛽,𝑛 . In the ATAO-(𝒥 ± 𝒱)method, this is clearly wrong since an
asymmetry matrix𝒜𝛼𝛽 requires that neutrinos and antineutrinos should have different
distributions and one must always evolve both neutrinos and antineutrinos — but that
does not change the arguments presented here.

For each 𝑛, we serialize the matrix components. This requires to define a basis 𝑃𝑎
for hermitian matrices with 𝑁2

𝜈 elements. These are divided into 𝑁𝜈(𝑁𝜈 + 1)/2 basis
matrices for the real components and 𝑁𝜈(𝑁𝜈 − 1)/2 for the imaginary components. For
instance when 𝑁𝜈 = 2 the matrices are

𝑃1 =
(
1 0
0 0

)
, 𝑃2 =

(
0 0
0 1

)
, 𝑃3 =

(
0 1
1 0

)
, 𝑃4 =

(
0 −i
i 0

)
. (D.1)

An inner product between two hermitian matrices is (𝐴, 𝐵) ≡ Tr(𝐴 ·𝐵†), hence the norms
of the basis matrices are

∥𝑃𝑎 ∥2 =
∑
𝛼𝛽

|𝑃𝑎𝛼𝛽 |2 = Tr(𝑃𝑎 · 𝑃𝑎†) . (D.2)

Any density matrix is decomposed on serialized components as

𝜚𝛼𝛽,𝑛 ≡ 𝜚 𝑎,𝑛𝑃𝑎𝛼𝛽 . (D.3)

The serialized components are also related to the components in the matter basis through

𝜚̃ 𝑖 𝑗 ,𝑛 = 𝜚 𝑎,𝑛𝑃𝑎 𝑖𝑗(𝑛) with 𝑃𝑎 𝑖𝑗(𝑛) ≡ [𝑈†(𝑛) · 𝑃𝑎 ·𝑈(𝑛)]𝑖 𝑗 , (D.4)

where𝑈(𝑛) stands for𝑈ℋ (𝑦𝑛),ℋ being the appropriate Hamiltonian (it will depend on
the numerical scheme chosen). Note that we use the same notation 𝑃𝑎 in the matter (𝑃𝑎𝑖𝑗)
and flavour (𝑃𝑎𝛼𝛽) bases, the difference being identified through the indices. Conversely
the serialized components 𝜚 𝑎,𝑛 are obtained from

𝜚 𝑎,𝑛 = 𝜚𝛼𝛽,𝑛𝑃𝛼𝛽
𝑎(𝑛) =

𝜚̃ 𝑖 𝑗 ,𝑛𝑃𝑎 𝑗𝑖(𝑛)
∥𝑃𝑎 ∥2

with 𝑃𝛼𝛽
𝑎(𝑛) ≡

𝑃𝑎★𝛼𝛽(𝑛)
∥𝑃𝑎 ∥2

=
𝑃𝑎𝛽𝛼(𝑛)
∥𝑃𝑎 ∥2

. (D.5)

In any ATAO scheme, we are only interested in the diagonal components of the matter
basis, since by construction all off-diagonal components vanish, hence we define 𝜚̃ 𝑖 ,𝑛 ≡
𝜚̃ 𝑖𝑖 ,𝑛 and obtain the following relations between the serialized (flavour) basis and the
(diagonal) matter components

𝜚̃ 𝑖 ,𝑛 = 𝜚 𝑎,𝑛𝑇𝑎𝑖 (𝑛) with 𝑇𝑎𝑖 (𝑛) ≡ 𝑃𝑎 𝑖𝑖(𝑛) ,
𝜚 𝑎,𝑛 = 𝜚̃ 𝑖 ,𝑛𝑇 𝑖𝑎 (𝑛) with 𝑇 𝑖𝑎 (𝑛) ≡

1
∥𝑃𝑎 ∥2

𝑇𝑎𝑖 (𝑛) .
(D.6)

Since the 𝑈(𝑛) depend both on 𝑥 and on 𝑦𝑛 , the 𝑇𝑎𝑖 (𝑛) and 𝑇 𝑖𝑎 (𝑛) also depend on
these variables, that is for each time step they must be computed for all points of the
momentum grid.
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D.2. Direct computation of the Jacobian

D.2 Direct computation of the Jacobian
A key feature of the code NEVO is the calculation of the Jacobian of the system of
differential equations, which is performed directly instead of relying on the extremely
time-consuming default finite difference method.

Throughout this section we use a prime to denote a derivative with respect to 𝑥,
and we stress again that we do not mention antineutrinos for the sake of clarity, but all
developments must be carried out taking them into account.

D.2.1 QKE scheme
We must solve for the evolution of 𝑧 and of the flavour space serialized variables 𝜚 𝑎,𝑛 .
Equation (5.9) dictates the evolution of 𝑧. The evolution of the 𝜚 𝑎,𝑛 is governed by (5.4)

𝜚′𝑎,𝑛 = 𝑀𝑐
𝑎,𝑛𝜚 𝑐,𝑛 +𝒦𝑎,𝑛 , (D.7)

with
𝑀𝑐

𝑎,𝑛 ≡ (𝒱𝑏,𝑛 + 𝒥𝑏)𝐶𝑏𝑐 𝑎 and 𝐶𝑏𝑐 𝑎 ≡ −i[𝑃𝑏 , 𝑃𝑐]𝛼𝛽𝑃𝛼𝛽
𝑎 . (D.8)

The first term in (D.7) comes from mean-field effects and the second term from collisions.
The associated Jacobian has the general structure

©­­­
«

0 0
(
𝜕𝑀𝑐

𝑎,𝑛

𝜕𝑧
𝜚 𝑐,𝑛

) (
𝜕𝑀𝑐

𝑎,𝑛

𝜕𝜚𝑏,𝑚
𝜚 𝑐,𝑛 +𝑀𝑏

𝑎,𝑛𝛿
𝑛
𝑚

)ª®®®
¬
+

©­­­­­
«

𝜕𝑧′

𝜕𝑧
𝜕𝑧′

𝜕𝜚𝑏,𝑚

𝜕𝒦𝑎,𝑛
𝜕𝑧

𝜕𝒦𝑎,𝑛
𝜕𝜚𝑏,𝑚

ª®®®®®
¬

(D.9)

where, as before, the first matrix is due to mean-field effects, and the second to collisions.
The contributions from the mean-field effects require to calculate

𝜕𝑀𝑐
𝑎,𝑛

𝜕𝑧
=

𝜕𝒱𝑏,𝑛
𝜕𝑧

𝐶𝑏𝑐 𝑎 ,
𝜕𝑀𝑐

𝑎,𝑛

𝜕𝜚𝑏,𝑚
=

𝜕𝒥𝑑
𝜕𝜚𝑏,𝑚

𝐶𝑐𝑑𝑎 , (D.10)

and the quantity 𝜕𝒥𝑑/𝜕𝜚𝑏,𝑚 is read on the integral definition (5.7). The computation of
the Jacobian associated with mean-field effects is at most 𝒪(𝑁2) when self-interactions
are taken into account, and only 𝒪(𝑁) when they are ignored or when there is no
asymmetry. Let us now review the complexity of the remaining terms.

• 𝜕𝒦𝑎,𝑛/𝜕𝜚𝑏,𝑚 is the time-consuming part. Since the complexity for computing the
collision term is 𝒪(𝑁3), using a finite difference method would scale as 𝒪(𝑁4).
A method to reduce the complexity to 𝒪(𝑁2

𝜈𝑁
3) is detailed in [FPV20], hence

considerably speeding the numerical resolution.

• 𝜕𝒦𝑎,𝑛/𝜕𝑧 is just the collision term where the contribution coming from the distri-
butions of electrons/positrons is varied with respect to 𝑧. Hence it has the same
𝒪(𝑁3) complexity as the collision term.
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D. The numerical code NEVO

• 𝜕𝑧′/𝜕𝑧 can be obtained from equation (5.9). In practice we simply use a finite
difference method.

• 𝜕𝑧′/𝜕𝜚𝑏,𝑚 is obtained from the chain rule as

𝜕𝑧′

𝜕𝜚𝑏,𝑚
=

𝜕𝑧′

𝜕𝒦𝑎,𝑛
𝜕𝒦𝑎,𝑛
𝜕𝜚𝑏,𝑚

(D.11)

and we only need the variation 𝜕𝑧′/𝜕𝒦𝑎,𝑛 which is easily read on equation (5.9).
Indeed, since only the trace of the collision term sources 𝑧′, the only serialized
components 𝑎 leading to a non-vanishing 𝜕𝑧′/𝜕𝒦𝑎,𝑛 are those for which Tr(𝑃𝑎) ≠ 0.

D.2.2 ATAO-𝒱 scheme
In the ATAO-𝒱 scheme we integrate 𝑧 with (5.9), and the diagonal components 𝜚̃ 𝑖 with
(5.19), that is

𝜚̃′𝑖 ,𝑛 = 𝒦𝑖 ,𝑛 . (D.12)
Note that this is a very compact notation which hides the fact that what is known in
general are the 𝒦𝛼𝛽(𝑦𝑛) which depend on the 𝜚𝛼𝛽(𝑦𝑛). Hence at each step one must
transform the matter basis components 𝜚̃ 𝑖 ,𝑛 to the flavour basis, compute the collision
terms, and convert back into the matter basis, and keep only the diagonal terms. The
relation between the diagonal matter basis components and the (flavour basis) serialized
components reads

𝒦𝑖 ,𝑛 = 𝒦𝑎,𝑛𝑇𝑎𝑖 (𝑛). (D.13)
The general form of the Jacobian is then

©­­­­­
«

𝜕𝑧′

𝜕𝑧
𝜕𝑧′

𝜕𝜚̃ 𝑗 ,𝑚

𝜕𝒦𝑖 ,𝑛
𝜕𝑧

𝜕𝒦𝑖 ,𝑛
𝜕𝜚̃ 𝑗 ,𝑚

ª®®®®®
¬

(D.14)

since in this scheme there are no mean-field effects to solve for, as they are hidden in the
evolution of the matter basis. Again a finite difference method to compute 𝜕𝒦𝑖 ,𝑛/𝜕𝜚̃ 𝑗 ,𝑚
would be of complexity 𝒪(𝑁4), but using the method detailed in [FPV20] it is reduced
to a complexity 𝒪(𝑁𝜈𝑁3). This is even slightly faster (reduced by a factor 𝑁𝜈) than for
computing 𝜕𝒦𝑎,𝑛/𝜕𝜚𝑏,𝑚 because there are only 𝑁𝜈 diagonal matter components instead
of 𝑁2

𝜈 flavour components. Both Jacobian blocks are related thanks to

𝜕𝒦𝑖 ,𝑛
𝜕𝜚̃ 𝑗 ,𝑚

= 𝑇𝑎𝑖 (𝑛)
𝜕𝒦𝑎,𝑛
𝜕𝜚𝑏,𝑚

𝑇 𝑗𝑏 (𝑚) . (D.15)

Let us review the other blocks in (D.14). First we use the chain rule

𝜕𝑧′

𝜕𝜚̃ 𝑗 ,𝑚
=

𝜕𝑧′

𝜕𝒦𝑖 ,𝑛
𝜕𝒦𝑖 ,𝑛
𝜕𝜚̃ 𝑗 ,𝑚

, (D.16)
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D.2. Direct computation of the Jacobian

where 𝜕𝑧′/𝜕𝒦𝑖 ,𝑛 is easily read from equation (5.9) since only the trace of the collision
term sources 𝑧′. And finally 𝜕𝒦𝑖 ,𝑛/𝜕𝑧 is similar to the computation of a collision term,
but with the contribution from the 𝑒± distribution varied upon 𝑧.

D.2.3 ATAO-(𝒥 ±𝒱) scheme
The general ATAO-(𝒥 ± 𝒱) equation (5.22), when written explicitly in matter basis
components and using the previous notation, is also of the form (D.12). However in the
ATAO-(𝒥 ±𝒱)we also solve at the same time the evolution of𝒜𝛼𝛽 given by (5.14). Note
that it depends on the full collision term 𝒦𝛼𝛽(𝑦𝑛) (or the 𝒦𝑎,𝑛 in serialized basis) and
not just on the diagonal components in the matter basis 𝒦𝑖 ,𝑛 , contrary to the evolution
of the 𝜚̃ 𝑖 in (D.12).

Since we supplement 𝑧 and the 𝜚̃ 𝑖 ,𝑛 with the 𝑁2
𝜈 variables𝒜𝑎 , this extends the size

of the Jacobian. We now show how the new blocks in the Jacobian can be computed,
and that this preserves the 𝒪(𝑁3) complexity. The general form of the Jacobian is

©­­­­­­­­­­­
«

𝜕𝑧′

𝜕𝑧
𝜕𝑧′

𝜕𝜚̃ 𝑗 ,𝑚

𝜕𝑧′

𝜕𝒜𝑏

𝜕𝒦𝑖 ,𝑛
𝜕𝑧

𝜕𝒦𝑖 ,𝑛
𝜕𝜚̃ 𝑗 ,𝑚

𝜕𝒦𝑖 ,𝑛
𝜕𝒜𝑏

𝜕𝒜′𝑎
𝜕𝑧

𝜕𝒜′𝑎
𝜕𝜚̃ 𝑗 ,𝑚

𝜕𝒜′𝑎
𝜕𝒜𝑏

ª®®®®®®®®®®®
¬

, (D.17)

and only the blocks in the right column or the bottom line are specific to the ATAO-
(𝒥 ±𝒱) scheme. As detailed hereafter, in order to compute these new blocks we shall
need the computation of 𝜕𝒦𝑎,𝑛/𝜕𝜚𝑏,𝑚 , which is what is needed when computing the
Jacobian in the QKE method. The block 𝜕𝒦𝑖 ,𝑛/𝜕𝜚̃ 𝑗 ,𝑚 is then deduced through (D.15).

We also need to know how the 𝑈(𝑛) vary when the components of 𝒜 are varied.
Let us define the set of anti-hermitian matrices

𝑊 𝑎,𝑛 ≡ 𝜕𝑈(𝑛)
𝜕𝒜𝑎

·𝑈†(𝑛) = −𝑈(𝑛) · 𝜕𝑈
†(𝑛)

𝜕𝒜𝑎
. (D.18)

which allow to know how the flavour components vary when𝒜 varies, for fixed matter
basis components. They are obtained thanks to

(𝑊 𝑎,𝑛)𝑖 𝑗 =
√

2𝐺𝐹
(𝑥𝐻)

(𝑚𝑒

𝑥

)3
[
𝑈†(𝑛) · 𝑃𝑎 ·𝑈(𝑛)] 𝑖 𝑗

(𝒱𝑗 ,𝑛 + 𝒥𝑗 ,𝑛 −𝒱𝑖 ,𝑛 − 𝒥𝑖 ,𝑛) for 𝑖 ≠ 𝑗 , (D.19)

where the (𝑊 𝑎,𝑛)𝑖 𝑗 are the components of𝑊 𝑎,𝑛 in the matter basis, that is they are defined
as

[
𝑈†(𝑛) ·𝑊 𝑎,𝑛 ·𝑈(𝑛)] 𝑖 𝑗 . The (𝒱 + 𝒥)𝑗 ,𝑛 are the diagonal components of 𝒱 + 𝒥 in

the matter basis, which are by definition its eigenvalues. The 𝑊 𝑎,𝑛 are then found by
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transforming (D.19) to the flavour basis with 𝑈(𝑛). Using their definition (D.18), one
then finds

𝜕𝜚 𝑎,𝑛
𝜕𝒜𝑏

= 𝜚 𝑐,𝑛[𝑊 𝑏,𝑛 , 𝑃𝑐]𝛼𝛽𝑃𝛼𝛽
𝑎(𝑛) . (D.20)

We now have all the tools to compute the blocks in the Jacobian (D.17) that are specific
to the presence of𝒜.

• 𝜕𝒦𝑖 ,𝑛/𝜕𝒜𝑏

This is deduced from (D.13). Using the Leibniz rule, we deduce

𝜕𝒦𝑖 ,𝑛
𝜕𝒜𝑏

=
𝜕𝒦𝑎,𝑛
𝜕𝒜𝑏

𝑇𝑎𝑖 (𝑛)+𝒦𝑎,𝑛
𝜕𝑇𝑎𝑖 (𝑛)
𝜕𝒜𝑏

with
𝜕𝑇𝑎𝑖 (𝑛)
𝜕𝒜𝑏

= −
(
𝑈†(𝑛) · [𝑊 𝑏,𝑛 , 𝑃𝑎] ·𝑈(𝑛)

)
𝑖𝑖
.

(D.21)

• 𝜕𝑧′/𝜕𝐴𝑏
We only need to apply the chain rule using equation (D.21) since

𝜕𝑧′

𝜕𝒜𝑏
=

𝜕𝑧′

𝜕𝒦𝑖 ,𝑛
𝜕𝒦𝑖 ,𝑛
𝜕𝒜𝑏

, (D.22)

with 𝜕𝑧′/𝜕𝒦𝑖 ,𝑛 already needed for equation (D.16).

• 𝜕𝒜′𝑎/𝜕𝑧
This is similar to the treatment of equation (5.14) with the replacement 𝒱 →
𝜕𝒱/𝜕𝑧 and𝒦 → 𝜕𝒦/𝜕𝑧.

• 𝜕𝒜′𝑎/𝜕𝜚̃ 𝑗 ,𝑛
Let us define the following derivative :

𝜕𝒜′𝑎
𝜕𝜚𝑏,𝑛

≡
(
𝜕𝒜′𝑎
𝜕𝜚𝑏,𝑛

����
mf
+ 𝜕𝒜′𝑎

𝜕𝒦𝑐,𝑚
𝜕𝒦𝑐,𝑚
𝜕𝜚𝑏,𝑛

)
, (D.23)

where it is understood that the first term corresponds to the mean-field term, that
is the first term on the rhs of equation (5.14), and the second term is the indirect
contribution via the dependence of the collision term. Since the integrals appear-
ing in equation (5.14) are computed with a quadrature method, that is a sum on
the grid of comoving momenta with appropriate weights, these derivatives select
only one term in these sums (the one corresponding to the comoving momentum
𝑦𝑛). We then immediately get from equation (D.5) and the chain rule

𝜕𝒜′𝑎
𝜕𝜚̃ 𝑗 ,𝑛

=
𝜕𝒜′𝑎
𝜕𝜚𝑏,𝑛

𝑇 𝑗𝑏 (𝑛) . (D.24)
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• 𝜕𝒜′𝑎/𝜕𝒜𝑏

Finally, using again the derivative (D.23), we find a simple expression for the last
block

𝜕𝒜′𝑎
𝜕𝒜𝑏

=
𝜕𝒜′𝑎
𝜕𝜚 𝑐,𝑛

𝜕𝜚 𝑐,𝑛
𝜕𝒜𝑏

. (D.25)

In practice, pairs of indices like 𝑖 , 𝑛 or 𝑎, 𝑛 are also serialized (e.g. with 𝐼 = 𝑛𝑁𝜈 + 𝑖 and
𝐴 = 𝑛𝑁2

𝜈 + 𝑎), such that all products with implicit summations in this section appear as
matrix multiplications when implemented in the code.

To summarize we need to compute the Jacobian as in the QKE method, which gives
𝜕𝒦𝑎,𝑛/𝜕𝜚𝑏,𝑚 . It corresponds to the variation of all flavour components in the collision
term with respect to variations in all flavour components of the density matrices. We
also need to compute the 𝑇𝑎𝑖 (𝑛) from equation (D.4), and the𝑊 𝑎,𝑛 from equation (D.19).
We then deduce from equation (D.20) the 𝜕𝜚 𝑎,𝑛/𝜕𝒜𝑏 . Finally, knowing 𝜕𝑧′/𝜕𝒦𝑖(𝑛),
𝜕𝒜′𝑎/𝜕𝜚𝑏,𝑛 |mf and 𝜕𝒜′𝑎/𝜕𝒦𝑐,𝑚 from the equations governing the evolution of 𝑧 and𝒜𝛼𝛽,
we can compute the five new blocks of the Jacobian as described from equations (D.21)
to (D.25). The step which is the most time-consuming is the first one, that is the
computation of 𝜕𝒦𝑎,𝑛/𝜕𝜚𝑏,𝑚 , whose complexity is 𝒪(𝑁3). Since this is already the
longest step in the direct computation of the Jacobian in the QKE scheme, we deduce
that for large 𝑁 the direct computation of the Jacobian in the ATAO-(𝒥 ± 𝒱)method
takes roughly the same time as the direct computation of the Jacobian in the QKE
method.
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Sujet : L’Univers à l’ère du MeV : évolution des neutrinos et observables
cosmologiques

Résumé : La physique des neutrinos dans l’Univers primordial est un élément clé pour notre
compréhension des étapes cosmologiques ultérieures, telles que la nucléosynthèse primordiale
(BBN) ou la formation des grandes structures. La décennie qui s’ouvre annonce de nouveaux
résultats expérimentaux permettant d’explorer et de contraindre encore plus précisément les
modèles cosmologiques — ce qui nécessite des prédictions théoriques robustes. Cette thèse de
doctorat présente une étude de l’évolution des neutrinos dans les premières secondes après le
Big Bang, plus précisément lorsque la température de l’Univers est de l’ordre du mégaélectron-
volt. Cette évolution est obtenue numériquement en résolvant des équations cinétiques dont
nous proposons une nouvelle dérivation. Une première application est le calcul du découplage
dit "standard" afin de calculer le paramètre cosmologique quantifiant la densité d’énergie des
espèces relativistes primordiales, 𝑁eff, à une précision de quelques dix-millièmes. Cette étude
a mis en évidence la possibilité de décrire de manière effective le phénomène d’oscillations de
saveur, en tirant profit de la large séparation d’échelles temporelles en jeu. Une telle approxi-
mation est ensuite adaptée et validée dans le cas d’asymétries non-nulles entre les neutrinos et
les antineutrinos. Enfin, nous étudions semi-analytiquement les conséquences du découplage
incomplet des neutrinos sur la BBN, afin de comprendre comment les abondances primordiales
en hélium et deutérium sont affectées par cette physique.

Mots clés : Neutrinos, cosmologie, découplage

Subject : The Universe at the MeV era: neutrino evolution and
cosmological observables

Abstract: Neutrino physics in the early Universe is key to our understanding of later cosmolog-
ical stages, such as primordial nucleosynthesis (BBN) or the formation of large-scale structures.
The coming decade promises new experimental results to explore and constrain cosmological
models even more precisely — which requires robust theoretical predictions. This PhD thesis
presents a study of the evolution of neutrinos in the first seconds after the Big Bang, more
precisely when the temperature of the Universe is of the order of one mega-electronvolt. This
evolution is obtained numerically by solving kinetic equations for which we propose a new
derivation. A first application is the calculation of the so-called “standard” decoupling in order
to calculate the cosmological parameter quantifying the energy density of the primordial rel-
ativistic species, 𝑁eff, to a precision of a few ten-thousandths. This study has highlighted the
possibility of effectively describing the phenomenon of flavour oscillations, taking advantage
of the large separation of time scales involved. Such an approximation is then adapted and
validated in the case of non-zero asymmetries between neutrinos and antineutrinos. Finally, we
study semi-analytically the consequences of incomplete neutrino decoupling on BBN, in order
to understand how the primordial abundances of helium and deuterium are affected by this
physics.

Keywords : Neutrinos, cosmology, decoupling
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