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Mme. BROUET Véronique Paris-Saclay Université Rapportrice
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Abstract

English Version

The superconductor-insulator transition in two dimensions is a continuous quantum
phase transition at absolute zero temperature driven by external parameters like dis-
order, magnetic field, or carrier concentration. Such transitions have been induced in
a variety of two dimensional superconductors by tuning different external parameters
and studied with a finite-size scaling analysis. There is however not much uniformity
in the findings as both the superconducting systems and the tuning parameters are
diverse. In this thesis, we first fabricated high quality of one unit-cell BSCCO-2212
samples with anodic bonding technique, an original method of exfoliation developed
in our laboratory for preparing high quality 2D crystals from layered bulk materials.
Then we revealed the superconductor-insulator transition in the fabricated one unit-cell
Bi2.1Sr1.9CaCu2O8+x by space charge doping, which in an effective field effect electro-
static doping technique. We determined the related critical parameters and develop a
reliable way to estimate doping in the non-superconducting region, a crucial and central
problem in these materials. Finite-size scaling analysis yields a critical doping of 0.057
holes/Cu, a critical resistance of ∼ 6.85 kW and a scaling exponent product νz ∼ 1.57.
These results, together with earlier work in other materials, provide a coherent picture of
the superconductor-insulator transition and its bosonic nature in the underdoped regime
of emerging superconductivity in high critical temperature superconductors.

Then in the latter part of this thesis, we also investigated the effects of inhomogeneity
and fluctuations on superconducting transition on mesoscopic and nanoscopic scale both
with simulation and with simulations and with analysis of transport measurements. The
use of an ultra-thin sample also facilitates analysis on two fronts. Firstly, in two dimen-
sions fluctuation phenomena related to the superconducting transition are exacerbated,
making the analysis of changes in widths easier. Secondly aspects related to percolation
and clustering can be easily simulated and compared with analytical models. Especially,
the effects of fluctuations on the overdoped and underdoped side of the phase diagram
of one unit-cell BSCCO-2212 are discussed. We discovered that the fluctuation regime
in the underdoped part of the phase diagram is fundamentally different from that in
the part where p > 0.19. We discussed the possible behaviour of cooper pairs related
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to our experimental results, as well as one existing theoretical explanation (BEC-BCS
transition).

Version française

La transition supraconducteur-isolant en deux dimensions est une transition de phase
quantique continue à la température du zéro absolu provoquée par des paramètres ex-
ternes tels que le désordre, le champ magnétique ou la concentration de porteurs. De
telles transitions ont été induites dans une variété de supraconducteurs bidimensionnels
en ajustant différents paramètres externes et étudiées avec une analyse de renormaliza-
tion de taille finie. Il y a cependant assez peu d’uniformité dans les résultats car à la fois
les systèmes supraconducteurs et les paramètres externes sont divers. Dans cette thèse,
nous avons d’abord fabriqué des échantillons BSCCO-2212 d’épaisseur d’une cellule
unité et de grande qualité avec la technique de collage anodique, une méthode originale
d’exfoliation développée dans notre laboratoire pour préparer des cristaux 2D de haute
qualité à partir de matériaux lamellaires massifs. Ensuite, nous avons provoqué la tran-
sition supraconducteur-isolant dans les échantillons fabriqués de Bi2.1Sr1.9CaCu2O8+x

monocouche par dopage par charge d’espace, qui est une technique efficace de dopage
électrostatique à effet de champ. Nous avons déterminé les paramètres critiques associés
et développé un moyen fiable d’estimer le dopage dans la région non supraconductrice,
un problème crucial et central dans ces matériaux. L’analyse par renormalisation de
taille finie donne un dopage critique de 0,057 trous/Cu, une résistance critique de ∼
6.85 kW et un produit d’exposant critiques νz ∼ 1,57. Ces résultats, ainsi que des
travaux antérieurs sur d’autres matériaux, fournissent une image cohérente de la tran-
sition supraconducteur-isolant et de sa nature bosonique dans le régime sous-dopé de la
supraconductivité émergente dans les supraconducteurs à haute température critique.

Ensuite, dans la dernière partie de cette thèse, nous avons également étudié les ef-
fets de l’inhomogénéité et des fluctuations sur la transition supraconductrice à l’échelle
mésoscopique et nanoscopique à la fois avec des simulations et des mesures de trans-
port. L’utilisation d’un échantillon ultra-mince facilite également l’analyse sur deux
fronts. Tout d’abord, en deux dimensions, les phénomènes de fluctuation liés à la tran-
sition supraconductrice sont exacerbés, facilitant l’analyse des changements de largeurs.
Deuxièmement, les aspects liés à la percolation et au clustering peuvent être facilement
simulés et comparés à des modèles analytiques. En particulier, les effets des fluctuations
sur le côté surdopé et sous-dopé du diagramme de phase d’une monocouche de BSCCO-
2212 sont discutés. Nous avons découvert que le régime de fluctuation dans la partie
sous-dopée du diagramme de phase est fondamentalement différent de celui dans la partie
où p > 0,19. Nous avons discuté du comportement possible des paires de Cooper liées à
nos résultats expérimentaux, ainsi que d’une des théories pouvant l’expliquer (transition
BEC-BCS).
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Résumé

Les cuprates supraconducteurs à haute température ont été découverts pour la première
fois en 1986 et font depuis l’objet d’intenses recherches. Le diagramme de phase riche et
complexe de ces oxydes a déclenché une pléthore de travaux expérimentaux et théoriques
visant à dévoiler le mécanisme de la supraconductivité à haute température. Malgré tous
ces efforts, un consensus scientifique n’a pas encore été établi, notamment concernant le
mécanisme d’appariement supraconducteur, et sa relation avec l’insaisissable pseudo-gap
dans la partie sous-dopé du diagramme de phase. Dans cette thèse, nous revisitons ces
questions dans la limite bidimensionnelle en exploitant la nature lamellaire du cuprate
Bi2.1Sr1.9CaCu2O8+x et en utilisant une technique originale de dopage électrostatique
à haute densité de porteurs. Nous décrivons d’abord la transition supraconducteur-
isolant du côté extrêmement sous-dopé du diagramme de phase. Ensuite, nous utilisons
des expériences et des simulations pour discuter de l’effet des fluctuations et des in-
homogénéités dans ce matériau 2D.

La transition supraconducteur-isolant en deux dimensions est une transition de phase
quantique continue à la température du zéro absolu provoquée par des paramètres ex-
ternes tels que le désordre, le champ magnétique ou la concentration de porteurs. De
telles transitions ont été induites dans une variété de supraconducteurs bidimensionnels
en ajustant différents paramètres externes et étudiées avec une analyse de renormalisa-
tion de taille finie. Il y a cependant assez peu d’uniformité dans les résultats car à la fois
les systèmes supraconducteurs et les paramètres externes sont divers. Le contrôle de la
densité des porteurs est un moyen efficace de réaliser cette transition par des méthodes
de dopage chimique ou électrostatique. Le dopage chimique, la méthode habituelle et la
seule possible dans les échantillons massifs, a été largement utilisé dans les supraconduc-
teurs à haute température critique, à la fois en matériaux massifs et en chouche mince.
Cependant, cela dépend de l’échantillon et peut entrâıner du désordre et des changements
de structure. Le dopage électrostatique est la méthode de choix pour obtenir un résultat
continu et sans défaut de dopage dans un même échantillon ultra-mince à l’aide d’un
dispositif de type transistor à effet de champ. La longueur de corrélation ε et le temps de
corrélation τ , correspondant à une transition de phase, dépendent de la variation d’un
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paramètre externe x par rapport à un valeur xc. Dans notre cas, il s’agit de la variation
de la concentration en porteurs p par rapport au dopage critique à la phase transition
pc avec, ε ∝ |p − pc|−ν et τ ∝ εz où ν est l’exposant de longueur de corrélation et
z est l’exposant de corrélation dynamique. La variation de grandeurs physiques comme
la résistance de surface à travers la transition de phase dans une mesure de transport
peut être exprimée en termes de ces formes asymptotiques et d’une seule � loi d’échelle
� dépendant de |p − pc|−ν . Si les effets de la transition de phase quantique persistent
à des températures expérimentalement accessibles, faibles mais non nulles, il peut être
caractérisé par sa classe d’universalité donnée par la valeur numérique de νz, le produit
des exposants à échelle finie. Cette valeur, ainsi que les valeurs critiques du paramètre
moteur (dopage) et la grandeur physique mesurée (résistance de couche mince), con-
stitue l’information fondamentale qui peut être glanée à partir de la transition de phase
quantique en dimensions réduites.

Dans cette thèse, nous établissons et étudions la nature de la transition supraconducteur-
isolant en fonction du dopage en Bi2.1Sr1.9CaCu2O8+x (BSCCO) monocouche par dopage
par charge d’espace, qui est une technique efficace de dopage électrostatique à effet de
champ. D’abord, Les précurseurs de BSCCO ont été exfoliés à partir de cristaux massifs,
et déposé sur verre sodocalcique d’une épaisseur de 0,5 mm. Ensuite, la technique de col-
lage anodique a été utilisée pour fabriquer des échantillons de BSCCO en chouche mince.
Le précurseur sur le substrat de verre est placé entre deux électrodes et chauffé à ∼180 ◦C
pour activer la mobilité de Na+. Lors de l’application d’une tension de grille négative (∼
500 V) à l’arrière du substrat de verre, les ions Na+ dans le verre s’éloignent de l’interface
verre-échantillon, formant une charge d’espace O2− à l’interface échantillon-verre. Cet
espace de charge colle électrostatiquement les premiers nanomètres du précurseur sur
le substrat de verre. Du ruban adhésif est ensuite utilisé pour exfolier le précurseur.
Un échantillon BSCCO ultramince de grande surface, dont l’épaisseur est évaluée par
microscopie à force atomique et le contraste optique, est laissé sur la surface du verre.
L’échantillon est ensuite recuit sous air à 350 ◦C pendant 1 min pour réduire son niveau
de dopage par perte d’oxygène.

Alors, des contacts en or de soixante-dix nanomètres d’épaisseur ont été évaporés
sur l’échantillon à travers un masque de type pochoir en acier pour obtenir un dispositif
de géométrie van der Pauw après le processus de recuit. Nous avons découvert que les
procédés de lithographie à base de résine ainsi que les couches d’accroche en chrome
dégradent la qualité de l’échantillon. La qualité de l’échantillon et l’absence de contami-
nation sont vérifiées par la mesure de la résistance de la couche ultramince. Le substrat
de verre et le dispositif ont ensuite été collé sur une électrode de grille à l’arrière du
substrat par de la laque d’argent. Sur un échantillon sous-dopé par perte d’oxygène, la
résistance de la couche mince à quatre points mesurée à température ambiante a aug-
menté à 7 kW/�−1 contre 2 kW/�−1 mesurée dans des échantillons similaires préparés
sans recuit. Le niveau de dopage a été contrôlé à l’intérieur d’un cryostat à vide poussé
par dopage par charge d’espace. Au-dessus de la température ambiante (350-380 K), la
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mobilité des ions Na+ à l’intérieur du substrat de verre est activée. En appliquant une
tension de grille positive (ou négative) à l’arrière du substrat de verre, les ions Na+ mo-
biles dérivent vers (ou loin de) l’interface échantillon-substrat, créant une charge positive
(ou négative) et un dopage en électrons (ou en trous) correspondant dans l’échantillon.
Le temps de dopage pour le passage entre deux niveaux de dopage variait de 10 à 110
min selon le niveaux de dopage initial et final. Cette charge d’espace est gelée lors du
refroidissement à température ambiante ou en dessous par la perte de mobilité des ions
Na+. Dans certaines expériences antérieures, il a été démontré que les effets de dopage
par liquide ioniques induisent une dérive de l’oxygène dans des échantillons et qu’il en
résulte un dopage chimique, peut-être plus qu’un effet électrostatique. Dans les mono-
chouches BSCCO fortement sous-dopé, ce mécanisme n’est pas probable en raison de
l’absence d’oxygène faiblement lié ou interstitiel. De plus, la méthode de dopage par
charge d’espace fonctionne aussi très bien dans les matériaux sans oxygène.

Le défi immédiat, complexe même dans les supraconducteurs massifs à haute température
critique, est de déterminer le niveau de dopage. Dans un modèle simple à bande unique,
le coefficient de Hall RH et la charge élémentaire q donnent directement la concentra-
tion de porteurs de charge (de niveau de dopage) p = 1/qRH . Les supraconducteurs
à haute température critique ne peuvent certainement pas être classés comme tels et
en effet RH est anormalement dépendant de la température. Une autre estimation pos-
sible est le modèle classique de Drude où la conductivité est donnée par le produit
de la charge élémentaire, de la mobilité et de la concentration en porteurs. Sur cette
base, des tentatives ont été faites pour déterminer la concentration de porteurs en util-
isant p = S/RS(Tf ) où S est une constante déterminée empiriquement et RS(Tf ) la
résistance de couche mine à une température fixe bien au-dessus de Tc. La constante S
est déterminée par le maximum du supraconducteur dôme qui est nominalement réglé à
0,16 trous/Cu. Cependant, la forme générique du dôme s’avère aplatie et asymétrique
avec cette estimation pour monochouche de BSCCO, avec une supraconductivité com-
mençant à un faible dopage de 0,028 et s’étirant au-dessus de p = 0,3, bien au-delà
des limites du diagramme de phase générique. Nous concluons que cette estimation de
charge dopée n’est pas satisfaisante.

Une autre approche souvent utilisée cherche à estimer les trous dopés (p) par atome
de Cu avec une relation empirique Tc(p) pour la région du dôme supraconducteur.

Tc
Tc(max)

= 1− 82.6(p− 0.16)2, où Tc(popt) est la température critique maximale mesurée

correspondant au niveau de dopage optimal et Z est un facteur d’échelle déterminé
empiriquement à 82,6. Dans cette approche, en accord avec le diagramme de phase
générique, la supraconductivité existe dans la région p ∼ 0,05 à p ∼ 0,27 trous/Cu. La
forme de dôme impliquée par cette relation est vérifiée expérimentalement, en particulier
pour monochouche de BSCCO. Le problème dans notre cas est que le dopage doit être
déterminé pour les régions non supraconductrices ainsi que supraconductrices. Pour sur-
monter cet obstacle, nous nous inspirons des approches plus simples décrites ci-dessus.
Tout d’abord, nous remarquons que lorsque la Tc dans la région supraconductrice est
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tracée en fonction de la résistance de couche inverse à 200 K, une relation linéaire simple
est trouvée. En extrapolant cette relation à la région non supraconductrice voisine, nous
remplaçons Tc par S/RS(200K) dans la formule empirique où S est la valeur de la pente
de cette dépendance linéaire. Nous avons ainsi une estimation cohérente et continue de p
à travers la transition supraconducteur-isolant qui est compatible avec le diagramme de
phase générique à haute Tc. Cette méthode devrait être applicable à d’autres matériaux
à haute Tc. Pour BSCCO monocouche, la supraconductivité se développe selon cette
estimation à un dopage critique de p ∼ 0,057, qui est compatible avec le diagramme de
phase générique par construction et présente une variation douce avec un dopage optimal
de 0,16 trous/Cu.

Avec ces observations importantes, nous pouvons commencer à rechercher l’existence
de relations d’échelle possibles correspondant à une transition de phase quantique dans
notre BSCCO monocouche dispositif à la transition supraconducteur-isolant. Cela im-
plique que toutes les courbes de résistance de couche de notre BSCCO monocouche de-
vrait se ramener à une seule fonction d’échelle de taille finie RS = Rcf(| x−xc | T−1/νz),
où Rc est la résistance critique à la limite x → xc et T → 0. f est la fonction d’échelle
universelle et x est le paramètre de contrôle, dans notre cas le niveau de dopage p.
L’exposant de longueur de corrélation ν et l’exposant critique dynamique z, ainsi que
la résistance critique Rc codent la nature de cette transition. Dans notre cas, l’analyse
par renormalisation de taille finie donne un dopage critique de 0,057 trous/Cu, une
résistance critique de ∼ 6.85 kW et un produit d’exposant critiques νz ∼ 1,57. Quelle est
la nature de la transition supraconducteur-isolant trouvée ici ? L’état supraconducteur
est caractérisé par un paramètre d’ordre complexe. Une transition de phase quantique
continue est caractérisée par le changement continu de ce paramètre d’ordre à travers la
transition (donnant lieu à des lois de puissance et d’échelle) et des fluctuations critiques
de l’amplitude ou de la phase du paramètre d’ordre à la transition. Les fluctuations
d’amplitude impliquent la rupture de l’appariement au-dessus de la température cri-
tique et la transformation des bosons de la paire de Cooper en fermions comme dans
les supraconducteurs décrits par le scénario de Bardeen-Cooper-Schieffer (BCS). L’état
du fermion peut être un métal ou même un isolant si dans cette dernière éventualité
les fermions sont localisés par désordre ou interactions. Les fluctuations de phase dans
les supraconducteurs sont généralement décrites dans le scénario Berezinskii-Kosterlitz-
Thouless par la dualité entre les paires de Cooper et les vortex qui sont tous deux des
bosons. Dans l’état supraconducteur, les tourbillons (associés aux � glissements � de
phase et à la dissipation), sont liés par paires et localisés tandis que les paires de Cooper
sont mobiles. La situation inverse prévaut au-dessus de la température critique et le
système est isolant. Si cette dualité est parfaite, un argument simple établit le seuil
critique de résistance entre les états supraconducteur et isolant à la résistance quantique
avec charge de paire : RQ = h/(2e)2 = 6, 45 kW.�−1. Cependant, des écarts par
rapport à la dualité parfaite générés par la nature de l’interaction ou des facteurs tels
que le désordre sont à prévoir. Ainsi, la mesure de la résistance critique et des exposants
d’échelle finie de la transition de phase quantique continue peut nous renseigner sur la
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nature primordiale de l’état supraconducteur. Des modèles simples existent pour cer-
tains cas et sont utilisés pour définir la classe d’universalité, par exemple νz = 4/3 dans
le modèle de percolation classique, 7/3 dans le modèle de percolation quantique (Steiner,
M. A. et al. 2008) et 2/3 dans le modèle 3D XY ( Li, Y.-H. et al. 1989). Notre résultat
de Rc = 6, 85kW ± 0, 10 kW, qui est raisonnablement proche de RQ trouvé dans LSCO
(Bollinger, A. T. et al 2011), favorise l’image d’une transition entrâınée par fluctuation
de phase et une forte interaction d’appariement de couplage pour une supraconductivité
à Tc élevée à la limite sous-dopée par opposition à la scénario de couplage faible dans
les supraconducteurs BCS. On trouve νz = 1, 57 ± 0, 10 pour le produit d’exposant à
échelle finie décrivant la transition mesurée. Cela se compare à nouveau favorablement
à la valeur de 1,5 dans LSCO (Bollinger, A. T. et al. 2011) et de 1,53 dans un dispositif
BSCCO (Yu, Y. et al. 2019), ce qui implique la même classe d’universalité pour ces com-
posés. Un point critique quantique devrait impliquer que les données aux températures
les plus basses sont les plus indicatives de la physique en question, donc la mise à l’échelle
des données à des températures plus élevées doit être traitée avec prudence. Tout comme
les fluctuations quantiques critiques peuvent être effacés par les fluctuations thermiques,
l’état fondamental peut également être éclipsé à des températures plus basses par des
effets tels que la localisation faible. Cependant, la séparation claire dans nos données
entre les régimes isolant et supraconducteur à la conductivité critique correspondant à
RQ = h/(2e)2 fournit un support pour l’existence de la transition de phase quantique
et du point critique.

De plus, les mesures de transport sont macroscopiques mais la transition supra-
conductrice dépend inévitablement des détails mésoscopiques et nanoscopiques. Les
simulations de la transition supraconductrice, couplées à des mesures de transport,
peuvent-elles permettre de comprendre les phénomènes se déroulant à ces échelles ?
Pour répondre à cette question, nous nous sommes basés sur des mesures de la transi-
tion supraconductrice en fonction du dopage électrostatique dans des échantillons de
BSCCO monochouche et l’analyse de la largeur et de la forme de cette transition.
L’épaisseur de 3 nm permet un dopage électrostatique uniforme qui est un moyen pra-
tique de provoquer un changement continu du dopage dans le même échantillon sans
induire de défauts. L’utilisation d’un échantillon ultra-mince facilite également l’analyse
sur deux fronts. Tout d’abord, en deux dimensions, les phénomènes de fluctuation liés
à la transition supraconductrice sont exacerbés, facilitant l’analyse des changements de
largeurs. Deuxièmement, les aspects liés à la percolation et au clustering peuvent être
facilement simulés et comparés à des modèles analytiques. La transition supraconduc-
trice typique mesurée dans nos échantillons, comme on le voit dans la dépendance à la
température de la résistance de couche RS(T ), a une largeur clairement visible à partir de
la courbe dérivée dRS/dT . Les principales contributions mésoscopiques ou locales à cette
largeur sont les fluctuations et l’inhomogénéité. L’inhomogénéité de l’échantillon peut
provenir de défauts ou de dopage hétérogène entrâınant une distribution mesoscopique
du dopage et une variation locale de la température critique. Dans le cas extrême,
l’échantillon peut également comprendre des régions non supraconductrices. Nous avons
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établi sur la base de comparaisons systématiques entre l’expérience et les simulations
de supraconductivité 2D que les mesures de résistance de couche de la transition sont
marquées de manière indélébile par l’inhomogénéité et les fluctuations quantiques. Nous
avons en outre constaté que la dérivée de la résistance de couche normalisée en fonction
de la température (que nous abrégerons simplement par � dérivée �) présente un pic
asymétrique à la transition supraconductrice. La moitié LT (basse température) de ce pic
est dominée par des effets d’inhomogénéité tandis que la moitié HT (haute température)
du pic, notamment la queue asymétrique HT, est dominée par des fluctuations quan-
tiques.

Nous avons fait une analyse de l’effet de l’inhomogénéité en comparant des échantillons
homogènes et inhomogènes d’une part et un échantillon homogène dans lequel nous in-
troduisons l’inhomogénéité sous la forme d’un réseau ordonné de régions non supracon-
ductrices par l’application d’un champ magnétique. Pour étudier les effets des fluctua-
tions, nous nous sommes concentrés sur la partie HT de la courbe dérivée. Nous avons
présenté 5 échantillons monochouche de BSCCO-2212 (dont 2 du côté surdopé et 3 du
côté sous-dopé) et avons montré que le régime de fluctuation dans la partie sous-dopée
du diagramme de phase est fondamentalement différent de celui dans la partie où p >
0,19. Nous l’avons établi en analysant l’étendue de la partie HT du pic dérivé (étendue
de TC à Tf comme indiqué au chapitre 5) en fonction du dopage. Nous avons en-
suite discuté de la différence de régime de fluctuation pouvant être causée par la nature
différente de la transition supraconductrice. A p < 0,19, il semble que les fluctuations
s’étendent sur une large plage de température qui semble augmenter à mesure que le
dopage et la température critique diminuent. Pour p > 0,19, la plage de température
de fluctuation semble être constante même si Tc diminue à nouveau. Ce dernier pourrait
être compatible avec un scénario où des fluctuations d’amplitude sont présentes dans
une région limitée au-dessus de la transition. Cependant la transition supraconducteur-
isolant induite par dopage établie dans cette thèse est compatible avec un scénario où la
transition supraconducteur-isolant est une transition de boson où les paires de Cooper
existant à une température bien supérieure à Tc deviennent cohérentes en phase lorsque
la supraconductivité apparâıt. Le grand domaine d’existence de fluctuations bien au-
dessus de Tc dans la partie sous-dopée du diagramme de phase peut être compris dans
ce scénario. De tels régimes différents pourraient être imaginés à la lumière de la tran-
sition BEC-BCS discutée dans l’introduction, bien qu’on ne pense généralement pas à
l’heure actuelle qu’une supraconductivité à haute Tc pourrait être le système où une telle
transition pourrait être observée.
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Chapter 1

High Critical Temperature 2D
Superconductors

In this chapter, I will first give a brief introduction on the history of 2D superconductors
as well as experimental technique related. Then I will concentrate on the high critical
temperature cuprates and Bi2Sr2CaCu2O8+x which is the material studied in this thesis.

1.1 High critical temperature 2D materials

Superconductivity was first discovered in mercury at 4 K by H. Kamerlingh Onnes
in 1911 in Leiden [1]. The phenomenon was described phenomenologically by Vitaly
Ginzburg and Lev Landau in 1950 with the Ginzburg-Landau (GL) theory [1, 2]. The
GL theory defines a mathematical complex valued scalar field akin to a quantum wave-
function with non-zero average values below a critical temperature and responsible for
superconductivity, however at first without explaining the physical meaning of this wave-
function. Indeed, the microscopic mechanism of the phenomenon stayed unexplained un-
til the proposition of the “Bardeen–Cooper–Schrieffer (BCS) theory” in 1957 [3]. From
the microscopic point of view, the BCS theory explains superconductivity by the con-
densation of ‘Cooper’ pairs of electrons at low temperature in a non-dissipative quantum
ground state due to a weak effective attractive interaction between electrons. This in-
teraction is mediated by phonons in what is known as conventional superconductivity.
Superconductivity has seen several breakthroughs in the last few decades. First when
High Temperature Superconductivity (HTS or high-Tc) was discovered in 1986 [4] and
identified as non-conventional because of still unresolved questions about the nature of
the effective attractive interaction. The related material are called high temperature su-
perconductors (HTSC). Then when several intriguing results were obtained in interface
[5, 6] and two dimensional (2D) superconductivity [7, 8, 9, 10]. And finally with the
discovery of other non-conventional superconductors [11, 12, 13, 14, 15]. The study of
superconductivity in two dimensions has greatly benefited from advanced techniques of
material fabrication technology like molecular beam epitaxy (MBE), mechanical exfoli-
ation and field effect devices.
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1.1.1 Conventional and highly crystalline 2D superconductors

Superconductors with a thickness d much smaller than the coherence length of the quan-
tum mechanical wave-function in the superconductor ξGL are known as 2D supercon-
ductors [16]. The GL length at 0 K ξGL(0K) is of the magnitude of a few hundred
nanometres for conventional superconductors. A two dimensional conventional super-
conductor is thus relatively easy to make in the form of a thin film. In the case of
unconventional superconductors with high transition temperature, the ξGL can be as
small as a few nanometres, often corresponding to the thickness of one unit-cell layer
[16]. So the fabrication of large samples of ultra-thin superconducting materials is of
great significance for studying unconventional superconductivity in two dimensions. Su-
perconductivity in thin films was first measured by Shalnikov in 1938 [17]. Pb and Sn
thin films were condensed from vapour at 4.2 K on glass in a rather high vacuum pres-
sure. This method was adopted during the next decades for the fabrication of thin layer
samples which were amorphous or granular [18, 19, 20]. New fabrication techniques,
including molecular beam epitaxy (MBE), interface reconstruction and mechanical ex-
foliation have flourished in the 21st century [21]. Fig. 1.1 shows the evolution of film
thickness and morphology fabricated by different techniques since the 1980s [21]. Highly
crystalline 2D samples are now regularly obtained for all kinds of materials.

Figure 1.1: Thickness of 2D superconducting materials vs year [21].

A fascinating example of unconventional 2D superconductivity is that of one unit-cell
FeSe films grown on SrTiO3 by MBE with a superconducting transition around 77 K
[14], while Tc for bulk FeSe is only 8 K [22]. Soon after, a Tc over 100 K was announced
in this FeSe/STO system by means of in − situ four-point probe electrical transport
measurements [23], but unfortunately these results have not been confirmed since. This
also points to the delicate nature, both of 2D samples and the measurements connected
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with them, calling for great care in sample fabrication and in measurement.
High temperature superconductivity (high-Tc or HTS) was observed in 1986 in cuprate

compounds by Bednorz and Müller [4], for which they have been awarded the Nobel Prize
in 1987. Since then numerous different kinds of cuprate superconductors with increasing
transition temperatures have been discovered. Fig. 1.2 from the reference [24] shows the
date of discovery and critical temperatures of superconductors from 1904 to 2000.

Figure 1.2: Development of the critical temperature vs year since the discovery of superconductivity [24].

1.1.2 High critical temperature cuprates

The discovery of HTS in the La-Sr-Cu-O (LSCO) system with an onset critical tem-
perature at ∼ 35 K in 1986 by Bednorz and Müller [4] not only largely increased the
transition temperature, higher than any previously known superconductor, but also in-
troduced a class of copper oxide superconducting materials named cuprates. During the
next decade, high transition temperature has been observed in other cuprate composites
YBa2Cu3O7−x [25, 26, 27, 28, 29], BiSrCaCu2Ox [30] and Ti-Ca/Ba-Cu-O [31]. Since
then researchers have been working on the fabrication of ultrathin cuprate superconduc-
tors. We also note that with the advent of fabrication techniques like molecular beam
epitaxy (MBE) with ultrahigh vacuum (UHV) and mecanical exfoliation researchers
were able to fabricate highly crystalline superconducting cuprates on the atomic scale
[6, 32, 33]. This progress lead to a qualitative understanding of the nature of supercon-
ducting phenomenon and the nature of 2D physics.
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Crystal structure and electronic properties

A

B

X

Figure 1.3: Crystal structure of perovskite with the universal formula ABX3. Each cation B is surrounded by an
anion octahedron.

Cuprates are complex oxides that have layered perovskite structure. A perovskite
structure adopts a general formula ABX3 as shown in Fig. 1.3, A and B representing
cations, X an anion (often oxide) that bonds to both cations. For cuprates, the universal
composition formula can be given as

Bb+[(CuO2)2−δ−]nC
c+
n−1 (1.1)

where n = 1,2,3,..., c = 2 or 3, b = c+ n(2− δ− c) and δ represents the doping level
, which can be positive (hole doping) or negative (electron doping) [34]. The cationic
metal oxide layer B, together with either a single layer (CuO2)2−δ or a couple consisting
of n such layers, sandwiches the cations C in the middle. The cation C can be Ca2+ or
Y3+, La3+, or any trivalent cation of the lanthanides.

Fig. 1.4 from reference [35] shows the atomic structure of some high temperature
superconductor (HTSC) cuprates. As shown in the figure cuprates are consituted of
stacks of alternating doped conducting copper oxide planes, separated from each other
by varied insulating layers[16, 34]. The direction of stacking is usually considered as the
crystallographic c-direction.

Figure 1.4: Crystal structures for cuprates. a Crystal structures of four different cuprates. The way of varying
their hole concentration of this four kinds of cuprate is different. The hole concentration in the CuO2 layers of
Hg1201 YBCO and Tl2201 is modified by varying the density of interstitial oxygen atoms (each interstitial oxygen
atom provides maximum two holes into nearby CuO2 layers); while for LSCO, the hole concentration is altered
by means of replacing La3+ with Sr2+, so that its doping level p = x in this case. b Planar Cu (3dx2+y2 ) and O
(2px and 2py) orbitals are shown in the CuO2 layer. [35]

The CuO2 2D planes (Fig. 1.4b) with in-plane Cu (3dx2−y2) and O (2px and 2py) or-
bitals define the relevant electronic structure. In the undoped state this electronic struc-
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ture is characterized by strong electronic correlations leading to strong on-site Coulomb
repulsion between charge carriers [36, 37] despite what should be a half filled energy
band near the Fermi energy [36, 38]. As a consequence, an insulating energy gap of
2 eV in the undoped cuprates leads to an antiferromagnetic insulator [24, 36, 37, 38].
“Hole doping” (or “electron-doping”) is achieved by removing (or adding) electrons. The
phase diagram as a function of doping level p, defined as the number of holes per Cu
atom, and of critical temperature Tc, defined as the temperature at which the resistivity
vanishes, is shown in Fig. 1.5. All hole doped cuprates have the same generic phase
diagram. At the optimal doping level popt ∼ 0.16 [37, 38], we have the highest critical
temperature. For doping levels p < 0.16, the material is underdoped and for p > 0.16,
the material is overdoped (Fig. 1.5). As seen in Fig. 1.5, an antiferromagnetic phase
exists at p < 0.02-0.05 [37]; As doping increases, this phase is replaced by a ‘pseudo-gap’
phase. As doping increases, at low temperature superconductivity appears. Supercon-
ductivity exists from p ∼ 0.05 to below p ∼ 0.3 [37]. At very high doping p > 0.3, a
normal metal phase (or Fermi liquid phase) appears [37]. At temperatures higher than
those characterized by the existence of superconductivity, the succession of phases is
roughly that of the pseudo-gap phase in the underdoped region, a ‘strange metal’ phase
in the optimally doped region and the normal metal phase in the overdoped region. The
pseudo-gap phase is characterized by the suppression of low energy excitations as if a
gap or ’pseudo-gap’ existed in the electronic structure while the strange metal phase
possess some exotic properties like linear resistivity as a function of temperature. These
properties can be used in spectroscopic or transport measurements for delimiting the
corresponding regions of the phase diagram.

Phase diagram

Antiferromagnetic (AF) phase The stoichiometric undoped parent cuprate com-
pounds are “Mott insulators” with strong electron correlations in the CuO2 planes [39],
which means that a large energy (the Hubbard U [40]) is required to move an electron
from one site to another. These well localized electrons finally result in a strong AF
interaction between adjacent spins, thus representing an AF arrangement below a finite
Néel temperature [36, 41]. However, the AF phase is rapidly destroyed by increasing
hole doping in the copper oxides 2D layers. As mentioned before, the AF state just
exists at p < 0.02-0.05 (Fig. 1.5).

Pseudo-gap (PG) phase The “pseudo-gap” phase is observed in the underdoped
region above Tc [42]. Despite the fact that this regime is still not well understood, the
PG phenomenon has been observed in electronic spectra measured in Angle Resolved
Photoemission Spectroscopy (ARPES) as shown in Fig. 1.6, and Scanning Tunneling
Microscope (STM) as shown in Fig. 1.7. These experiments suggest that the pseudo-gap
is well distinguished from the superconducting gap, notably because it persists above
Tc and reaches values much higher than the superconducting gap. The superconduct-
ing gap is characterized by its dx2−y2 symmetry which implies a maximum value for
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Figure 1.5: Generic phase diagram of hole doped high temperature cuprate superconductors.

the gap along the crystallographic axes and a vanishing value on the nodes. Tunneling
experiments also verify the nodal-antinodal gap dichotomy and notably associate the
pseudo-gap with local inhomogeneities on the nanoscopic scale[43].

Superconducting (SC) phase The SC phase is identified with a critical tempera-
ture Tc, below which the sheet resistivity of a superconductor falls to zero. However, this
Tc depends on the hole concentration p of copper atoms. There is a maximum critical
temperature Tc(max) that appears at the doping level ∼ 0.16, which is generally taken
as the optimal doping level popt [24]. The Tc decreases smoothly in both directions away
from popt (Fig. 1.5), thus creating a superconducting dome which is empirically defined
by the formula:

Tc
Tc(max)

= 1− 82.6(p− 0.16)2 (1.2)

This empirical formula, introduced by Presland and co-workers in 1991 [45], reveals
the relation between Tc and doping level p.
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Figure 1.6: ARPES Fermi surface of YBa2Cu3O6.5 (< 1 monolayer) with an effective hole doping p = 0.11 per
planar Cu atom by evaporating potassium on the as-cleaved sample. The Fermi energy EF ARPES intensity
appears to be the 1D CuO-chain Fermi surface and four disconnected nodal CuO2 Fermi arcs. [44].

Figure 1.7: STM images (4×4 nm2) from ortho-II YBa2Cu3O6.5 confirm the ∼50–50 % CuO–BaO termination
of the cleaved surface, the ortho-II alternation of full and empty chains, and the preferential location on BaO of
evaporated K (red circle). [43]
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Strange metal (SM) phase and Fermi liquid phase In the strange metal phase,
transport measurements show that there is a linear dependence between resistivity and
temperature, which is different from Fermi liquid behaviour. This phenomenon has
inspired many theoretical models, for example the so-called “marginal” Fermi liquid
(MFL) model, introduced by Varma et al. in 1989 [46]. This particular theory supposes
that the temperature dependence can be explained by electrons scattering off bosonic
quasiparticles because the bosonic spectrum increases linearly in energy up to a charac-
teristic high energy scale T and is then constant above it [38, 46].

At higher doping in the overdoped region, the material transits to a Fermi liquid
phase, which is also known as the normal metal phase. According to the ARPES mea-
surements, the FL phase is characterized by a transition from a “Fermi-arc” type small
Fermi surface to a “normal” large Fermi surface [39].

1.1.3 2D Bi2Sr2CaCu2O8+δ

Crystal structure and electronic properties

Bismuth strontium calcium copper oxide, discovered in 1988 as a general class [30], is
the first HTSC without rare earth element. For Bi-Sr-Ca-Cu-O, there are three super-
conducting phases, forming a general formula Bi2Sr2Can−1CunO4+2n+δ (n=1,2 and 3)
with transition temperatures 20 K, 85 K and 110 K respectively [47]. The compound
Bi2Sr2CaCu2O8+δ (BSCCO-2212, Bi2212) is one of the most studied high temperature
cuprate superconductors, and is also the object of this thesis. Thus I will concentrate on
the introduction of BSCCO-2212 (BSCCO below) in the following. The crystal structure
of BSCCO is shown in Fig. 1.8 with the space group Fmmm [48]. The lattice parameters
are respectively a = b = 5.4 Å and c = 30.8 Å [48]. There are two CuO2 layers in the
unit cell of BSCCO, with the Ca atoms forming a layer within the interior. This “CuO2-
Ca-CuO2” structure, which is what we call a half unit-cell of BSCCO in this thesis, are
separated by insulating SrO and BiO layers. The BiO layers are typically where the
BSCCO crystal cleaves due to the weak coupling, caused by the large distance ∼3 Å,
between BiO layers [39, 49]. Different methods, including epitaxy, sputtering and pulsed
laser deposition [48, 50], have been used for the fabrication of thin film BSCCO samples.
During the last decades, inspired by the exfoliation fabrication method of graphene [51]
and the layer structure of BSCCO, mechanical exfoliation techniques with “scotch tape”
have been applied to get thin film BSCCO samples [52].

BSCCO is very anisotropic which makes it interesting for studying superconductiv-
ity. The magnitude of out-of-plane (c-axis) resistivity ρc is several orders (up to 105)
larger than that of in-plane (ab-plan) resistivity ρab [52]. Fig. 1.9 ([52]) shows the in-
plane resistivity ρc and the out-of-plane resistivity ρab of 30 nm-thick BSCCO and bulk
BSCCO samples. Before the superconducting transition, the temperature dependence of
in-plane resistivity ρab shows a metallic behaviour (dρab/dT > 0), while that of out-of-
plane resistivity ρc shows an insulating behaviour (dρab/dT < 0). Then ρc falls steeply
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Figure 1.8: The unit cell structure of Bi2Sr2CaCu2O8+δ.

and together with ρab becomes superconducting at Tc. We can also observe a suppres-
sion of Tc for thin BSCCO layer compared to that for bulk, which can be explained by
the loss of oxygen when reduced to few layer BSCCO samples. However recent research
[32] has reported the fabrication of exfoliated half-unit-cell BSCCO covered by graphene
with a sharp superconducting transition above 88 K. Another paper [53] obtained su-
perconducting half-unit-cell BSCCO by mechanical exfoliation on a cold stage (- 40 ◦C)
in an Ar-filled glove box and observed a superconducting transition at up to 91 K at the
optimal doping level (p = 0.16). A Superconductor-Insulator-Transition (SIT) was also
observed and this will be discussed in detail later. This thesis has focused on the study
of 1 unit-cell (3 nm-thick) BSCCO samples. We also adopted the mechanical exfoliation
technique to fabricate samples of good quality, and aim to study their properties with
the techniques in our lab.
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Figure 1.9: Temperature dependence of in-plane and out-of-plane resistivity for bulk and exfoliated 30-nm-thick
Bi2212 single crystals, with Tc = 87.2 K and 83.1 K respectively [52].

1.2 High Critical Temperature 2D physics

1.2.1 Electron correlation and superconductivity

Classic BCS theory

In 1957, the Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity was proposed
by Bardeen, Cooper and Schrieffer to explain the mechanism of conventional supercon-
ductors [3]. This theory is based on the assumption that electrons are bound into a
pair (Cooper pair with opposite spins and zero orbital momentum for singlet s-wave
pairing) as a result of a weak retarded attraction induced by the exchange of phonons
between quasi-particles [54, 55]. In the weak coupling limit (kTc << ~ω), the BCS
theory proposes the critical temperature Tc to be

kTc = 1.14~ωe−
1

N(0)V (1.3)

where N(0) is the density of electron states at the Fermi level, V is the electron-
phonon coupling potential, and ~ω is an energy shell around the Fermi surface, inside
which the electron-phonon coupling potential is non zero [3, 24, 39]. This formula intro-
duces the critical temperature Tc, below which the normal state electrons are unstable
compared to the formation of the condensate of Cooper pairs [39]. The proportional
dependence between Tc and ~ω is coherent with the isotope effect measured in conven-
tional superconductors (Tc is inversely proportional to the mass of the isotope of the
material) [3, 56]. The classical BCS theory is ideal for conventional superconductors
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and the predicted range of critical temperature is compatible with conventional super-
conductivity and low critical temperature of the order of 1-10K. For HTSC, which have
a critical temperature which is an order of magnitude higher, classical BCS theory is not
valid. Consequently mechanisms have been sought for interactions with higher energy
scales than the electron-phonon interaction, like for example, electronic correlation [24].
However the basic common feature of correlation of the critical temperature with the
energy scale of the interaction that induces electron pairing remains unknown [57].

Strong electron correlated system

a

b
+

+

Figure 1.10: Electronic structure of copper oxygen layer a CuO2 layer (left) and its single-band model (right);
Blue and red circles represent respectively copper atom and oxygen atom. Ud is the energy deeded to doubly
occupy Ed. b The copper d and oxygen p orbitals; A single hole of S = 1/2 occupies the copper d orbital in the
antiferromagnetic insulator [58].

The high-Tc cuprates are correlated electron systems [57, 58]. The parent (un-
doped) compound is generally classified as a “Mott insulator”. For a Mott insulator,
the conducting state is blocked by strong electron-electron repulsion instead of the Pauli
exclusion principle in the case of a conventional insulator [59]. In other words a conven-
tional insulator is characterized by a fully filled highest occupied electronic band and a
Fermi level in a gap while a Mott insulator may be insulating with a partially filled band
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because of localization due to Coulomb repulsion. In the case of CuO2 layer in cuprates,
the copper ion, doubly ionized, is in d9 configuration, which means that there is an odd
number of electrons and a single hole in the d shell per unit cell. Thus to put two elec-
trons on the same site, there is a strong repulsive energy. When this electron-electron
Coulomb repulsion (usually named U) dominates over the hopping energy t, the electron
motion is hindered and the ground state is an insulator [58, 59, 60]. Besides, neighbour-
ing spins are oppositely aligned so that the cuprates should be antiferromagnetic and
an electron acquires an exchange energy J = 4t2/U by virtual hopping (Fig. 1.10) [58].
However doping can provide sites for electrons to hop without cost of Coulomb repulsion
energy [59].

Although the mechanism of HTSC is not yet well understood, there are models
which are used as prototypes. One of the widely used simplified models is the single-
band Hubbard model on a 2D square lattice (Fig. 1.10) [57, 61, 62, 63, 64, 65]. In the
case of this single-band model, the Cu dx2+y2 is hybridized by the O anion network (Fig.
1.4b), which results in a single dx2+y2 band. The Hamiltonian for this single-band model
is written as

H = −
∑
ijs

tij(d
+
isdjs + d+

jsdis) + U
∑
i

ni↑ni↓ (1.4)

where tij is the tight binding one-electron hopping energy between sites i and j,
and d+

is/dis creates/annihilates an electron with spin s on site i, and ni↑ = d+
i↑di↑ is the

occupation number of electrons with spin up at lattice site i [65].

In this simple model, one ignores other orbital (e.g. p) degrees of freedom, long-range
Coulomb interaction, or electron-phonon coupling [66] but for Anderson this 2D single-
band Hubbard model on a square lattice is a minimal model that contains the essential
cuprate physics [67]. There are some investigations with variational cluster perturbation
theory [68, 69] which indicate that the ground-state phase diagram of the single-band
model, with consideration of second and third neighbour hopping (t′ and t′′ respectively),
is qualitatively similar to that of hole- (electron-) doped cuprates (Fig. 1.11). Also, in
weak coupling limit (where U/t→ 0), the doped single-band Hubbard model can lead to
a dx2+y2 superconducting phase [70, 71]. Recent publications [57, 72] have shown that
a superconducting phase in the ground state exists for the 2D single-band model.

Bose-Einstein condensation

Bose-Einstein condensation (BEC) was proposed as a mechanism of superfluidity in 4He
and superconductivity by Fritz London in 1938 [73]. BEC which describes the low tem-
perature ground state of bosons or paired fermion systems, is a common phenomenon
appearing in physics on all scales, including condensed matter, nuclear, elementary par-
ticles and astrophysics [74]. Compared with the BCS theory, the BEC is a model of
superconductivity which considers the electron pairs as bosons with a charge of 2e. The
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n

x

a

b

Figure 1.11: (Color online) Antiferromagnetic (AF) and superconducting (SC) order parameters m and ∆. a
Hole doping x dependence of AF and SC order parameters m and ∆. ∆, which is scaled by a factor of 5 for
convenience, is plotted for the AF+SC (green) and for pure SC homogeneous solutions (blue). For low doping,
both AF and SC order parameters m and ∆ are non-zero, indicating a coexistence of AF and d-wave SC order;
The system tends to separate as doping goes higher; And a homogeneous pure SC phase (m=0 and ∆¿0 ) is
attained or larger doping. b Same as a but for electron doping n. [66]

BCS theory accounts for superconductivity phenomenon in the weak-coupling or high-
density limit and is effectively observed in condensed systems with these charcteristics.
Conversely, BEC is valid for strong-coupling and low-density limit and is observed typ-
ically in low density, ultra-low temperature atomic gases [75]. From the GL point of
view the wave function of the condensed ground state is characterized by an amplitude
(proportional to the density of the bosons or the fermion pairs) and to a phase (which
characterize the existence of long-range coherence ). In the BCS model both the am-
plitude and the phase become non-zero at the same critical temperature. In the BEC
model bosons exist on both sides of the superconducting transition, which means that
the electrons first form pairs (bosons) and then undergo the BEC with the advent of
phase coherence, to the superconducting state. The pseudo-gap state of some exotic
superconductors has been linked to formation of electron pairs above Tc [76]. In the
case of BCS theory, the electrons condense into the equilibrium concentration of pairs
only below Tc [75, 76].
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In 1969, Eagles [77] discussed the possibility of the BCS-BEC crossover and electron
binding above the superconducting transition temperature for a low density of carriers
in bulk and thin-film Zr-doped SrTiO3. Since then, numerous works, both experimental
and theoretical, have been done with this aim [78, 79]. Nowadays, it is widely accepted
that the BCS and BEC are two extrema of one continuum [79], which can be explored by
tuning the interaction strength. Fig. 1.12 qualitatively shows the BCS-BEC crossover
phase diagram [79].

Figure 1.12: The qualitative BCS-BEC crossover phase diagram as a function of T/EF , where EF is the Fermi
energy, and of coupling 1/kF a, where kF is the Fermi momentum and a is the scattering length. The evolution of
the BCS limit with weak-coupling Cooper pairs to the BEC limit with strong-coupling Cooper pairs is represented.
Tc indicates the transition temperature, below which the blue region shows the superfluid state. T ∗ signifies the
pair-formation crossover scale, which diverges away from Tc as the attraction increases. [79]

1.2.2 Superconductor-Insulator Transition

When the electronic wave function in the ground state at the Fermi level is localized
an insulator is obtained. When the electronic wave function is delocalized a metallic
state results. Superconductivity appears in a metallic state as temperature is lowered,
but at zero (or very low) temperature, another parameter (e.g. magnetic field) may be
varied, localizing the electronic wavefunction and thus leading to a phase transition from
a superconductor directly to an insulator. This is called a a quantum phase transition
(QPT) as opposed to a phase transition accompanied by thermal fluctuations [76, 9],
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a

b

c

Figure 1.13: Finite-size scaling of QPT in ultra-thin LSCO. a Normalized sheet resistance curves R�/RQ as a
function of temperature, where RQ = h/(2e)2 = 6.45 kΩ is the quantum resistance for pairs. A SIT is realized
by varying the gate voltage from 0 V to 4.5 V with steps of 0.25 V. The inset emphasizes separatrix below 10 K.
The black dashed line corresponds to the critical point where R� = RQ. b Doping dependence of isothermal
sheet resistance from 4.5 K to 20 K with the same data as figure a. Here the doping level x is determined
by x = 0.33 kΩ/R�(T = 180 K). The crossing point indicates the critical doping level xc = 0.06±0.01, and
the corresponding critical sheet resistance Rc = 6.45±0.10 kΩ. c Universal finite-size scaling as a function of
µ = |x − xc|T 1/νz with the same data as before between 4.5 K and 10 K. With the critical exponent νz = 1.5,
the discrete groups of data from figure b collapse onto the single finite-size scaling function. [80]
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because the transition occurs at zero temperature. The superconductor-insulator tran-
sition (SIT), especially in 2D, is a prototype continuous quantum phase transition that
can be driven by external parameters such as disorder, magnetic field or carrier concen-
tration [53, 81, 80, 82].

For QPTs, a significant marker is that their behaviour follows finite-size scaling anal-
ysis [80, 82, 8]. Sheet resistance near a quantum critical point should collapse onto a
single finite-size scaling function RS = Rcf(|x − xc|T 1/νz), where Rc is the critical re-
sistance at the limit x→ xc and T → 0; f is the universal scaling function and x is the
tuning parameter, like disorder, magnetic field or carrier concentration. The correlation
length exponent ν and the dynamic critical exponent z, together with the critical resis-
tance Rc encode the nature of this transition [80, 82]. Fig. 1.13 shows the procedure of
the finite-size scaling in the case of LSCO [80].

Such transitions have been induced in a variety of 2D superconductors. There is
however not much uniformity in the findings since both the superconducting systems
and the tuning parameters are quite diverse. Magnetic field driven SIT studies have
reported a large variety of critical exponents and resistance at criticality: from νz ∼ 0.7
and Rc = 1.3 kΩ in NbSi thin films [83] to νz ∼ 2.3 and Rc = 6 kΩ in Indium oxide
thin films [84]. Furthermore, in quenched condensed bismuth thin films the magnetic
field driven SIT was shown to have νz ∼ 0.7 and Rc = 8 kΩ, while the thickness driven
SIT displayed νz ∼ 0.71.2 around the same critical resistance, indicating a fundamental
difference in their nature [81]. The high critical magnetic field of most high critical
temperature superconductors renders the study of the magnetic field driven SIT difficult
with the exception of the electron doped cuprate NdCeCuO [85]. However, improve-
ments in extreme electrostatic doping techniques have provided access to the carrier
density driven SIT in LSCO (with νz ∼ 1.5 and Rc = 6.4 kΩ) [80] and YBCO (with
νz ∼ 2.2 and Rc = 6 kΩ). In a recent paper about the result in half unit cell BSCCO
samples is remarkable but uses chemical doping with ozone. Their product of critical
exponents νz of BSCCO is between 1.5 and 2.4, and the critical sheet resistance also
varies from 2.8 to 10.2 kΩ [53]. In our case, we accomplish electrostatic doping with
our space charge doping technique on a one unit cell (1 u.c.) BSCCO device and indeed
observe a QPT, which will be introduced in detail in a later chapter.

32



CHAPTER 1. HIGH CRITICAL TEMPERATURE 2D SUPERCONDUCTORS

1.3 Transport properties of 2D high Tc cuprates

1.3.1 In-plane resistivity

For hole-doped high-Tc cuprates, the temperature dependence of in-plane resistivity
ρab(T ) changes systematically with doping. The hole-doped cuprate phase diagram as a
function of temperature and doping level from reference [86] in Fig. 1.14 is established
from the evolution of the in-plane resistivity ρab(T ) with doping. For the optimally
doped cuprates, ρab(T ) is perfectly linear with temperature, the most unusual transport
characteristic for cuprates [87, 88]. This is a ubiquitous feature for all the cuprate fami-
lies, indicating that it is intrinsic to the copper oxygen layers [86]. Yet the region where
the resistivity is strictly linear until low temperatures is only found very close to the
optimal doping level [89]. Ando et al. [89] came to the conclusion that the quantum
critical regime [59] with doping, if it exists, must be in a much narrower region in the
cuprates than in other systems [90].

ρ ~ T2

Figure 1.14: Hole-doped cuprate phase diagram on the basis of temperature as well as doping evolution of the
in-plane resistivity ρab(T ). The thick solid lines represents the boundaries between the normal state and the
superconducting phase (orange) or antiferromagnetic ground state (violet). The thick dashed lines (green, blue,
purple) illustrate the crossover between different in-plane resistivity ρab(T ) behaviour. The vertical dotted line
(red) indicates the optimal doping level, which separate the UD region (left) and OD region (right) on the phase
diagram. [86]

In the UD region, at high temperature ρab(T ) changes linearly with temperature in
the strange metal phase (Fig. 1.5). However, this T -linear behaviour deviates down-
wardly below a characteristic temperature T ∗ (Fig. 1.14), the value of which increases
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continuously while decreasing doping level p, thus leading to the crossover between the
pseudogap phase and the strange metal phase [89]. During this change of dρab(T )/dT ,
no clear evidence is found that it refers to a phase transition under T ∗ [86].

In the OD region on the phase diagram, the behaviour of ρab(T ) can be modeled
either by a single power law ρab(T ) = ρ0 + αTn, where n varies from the value 1 at
the OP to the value 2 for Tc = 0, or by fitting with a three-component polynomial
ρab(T ) = ρ0 +αT +AT 2 [91]. The T -linear behaviour is again observed at high temper-
ature in the strange metal phase above a coherent temperature Tcoh. This crossover line
Tcoh, found from the loss of coherence in the energy dispersion curve measured in thin
film BSCCO-2212 with ARPES, separates the OD region into two parts, which are the
coherent metal phase at lower temperature and higher doping and the incoherent metal
phase at higher temperature and lower doping [92]. In highly OD non-superconducting
single crystal LSCO samples, the strictly quadratic T 2 behaviour is observed below 50 K,
indicating the possible existence of a highly correlated Fermi-liquid ground state beyond
the superconducting dome [93].

Figure 1.15: Sheet resistance curves RS(T ) for the four ultra thin BSCCO-2212 samples at varying doping levels.
Curves corresponding to the initial doping are indicated with stars; the underdoped region corresponds to cyan-
blue curves whereas the overdoped region corresponds to yellow-brown curves; RS curves corresponding to the
optimal doping level are plotted in thick green lines. [94].
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Figure 1.16: Phase diagram of 2D space charge doped BSCCO-2212. The characteristic temperatures T ∗ (filled
symbols), Tm (open symbols), and Tc (filled symbols on the domes), extracted from 26 sheet resistance curves
RS(T ) measured on four thin BSCCO-2212 devices (labelled A, B, C, D), are plotted as a function of doping
(holes/Cu). They demarcate the boundaries of the pseudo-gap region (PG), the strange metal region (SM), the
Fermi liquid region (FM), and the superconducting dome (SC). The different colors of the domes reflect the
shrinking of the dome with disorder. [94]

Here in Fig. 1.15 and 1.16, I also present the previous work from our group, which
provides an overview of the RS(T ) characteristics as a function of space charge dop-
ing for four ultra-thin BSCCO-2212 samples (1-2.5 unit cell) [94]. The doping method
will be explained in detail in chapter 2. About 30 temperature dependence of sheet
resistance curves RS(T ) are recorded with these four BSCCO-2212 devices. T ∗ and Tm
are extracted from the temperatures corresponding to the deviations in linearity of the
sheet resistance curves to determine the domain of existence of the different phases in
the underdoped and overdoped regimes respectively. Tc are taken as the temperatures
where RS goes to zero. This phase diagram establishes remarkably coherent and well-
demarcated domains corresponding to the well-known cuprate phase diagram.

1.3.2 In-plane Hall coefficient

The Hall coefficient RH along the in-plane direction is an important parameter to obtain
information on the carrier densities. However there are problems for correlating RH with
the carrier density in high Tc and in many other materials, due to their complex physics
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a

b

Figure 1.17: Temperature dependence of Hall coefficient RH . a Hall coefficient RH as a function of temperature
up to 1000 K for doping level between 0 - 0.21 on a series of high-quality single crystal LSCO samples grown by
the traveling-solvent floating-zone method; the data are obtained by sweeping the magnetic field between ± 6 T
at each fixed temperature [95]. b Temperature dependence of RH measured on thin film LSCO grown by the
pulsed laser deposition technique with low-pressure pure ozone as an oxidant. The data are gotten by sweeping
the magnetic field between ± 1 T for 0.08≤x≤0.22, and ± 6 T for 0.24≤x≤0.40 [96].

structure. More details about the relation between the hall coefficient and carrier density
are given in chapter 2, section 2.3.2. Fig. 1.17 presents the temperature dependence
of the Hall coefficient RH for a wide range of doping levels, varying from 0 to 0.40 on
hole-doped thin film LSCO single crystals [95, 96]. As shown in these figures, RH varies
clearly with both T and doping level p (or x).

Can this temperature and doping dependence behaviour be a clue to understanding
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the underlying physics in cuprates? By analysing the data in Fig. 1.17a, Ono and
coworkers [95] found that at x=0, the behaviour of RH is quite easy to understand
by considering the strongest electron correlation effects in the parent insulator LSCO,
which leads to the Mott gap. Then at low doping level (0 ≤ x ≤ 0.05), RH(T ) shows
a remarkable decrease at high temperature. They proposed that this decrease may be
due to the thermally activated charge carriers over a gap, indicating that strong charge
fluctuations exist in slightly doped cuprates at high temperature. At higher doping level
(0.08 ≤ x ≤ 0.21), the data present qualitatively the same behaviour but not as clearly.
Another publication discussed the behaviour of temperature dependence of the in-plane
hall coefficient RH(T ) at higher doping level, from 0.08 to 0.40, as seen in Fig. 1.17b [96].
Tsukada et al. discovered that RH(T ) is nearly temperature independent around 300 K
at x ≥ 0.24. Besides, RH(T ) changes gradually from positive to negative at x = 0.28-
0.32, which means that cuprates can be continuously n-doped to the electron-dominant
regime. Moreover, the superconducting behaviour vanishes for x ≥ 0.32.

1.4 The work presented in this thesis

In this thesis I have worked on devices of one unit-cell BSCCO and measured transport
properties of these devices as a function of temperature and space charge doping. The
bulk crystal material was provided by Prof. Dr. Andreas Erb at the Walther Meissner
Institut für Tieftemperaturforschung of the Bayerische Akademie der Wissenschaften in
Garching. All devices and measurements were made by me and simulations of Chapter
4 were performed by Johan Biscaras. Below I give a short description of the following
chapters.

In Chapter 2, the methods and techniques used for ultra-thin BSCCO-2212 layers
fabrication, sample characterization, and device fabrication are presented. The electronic
transport measurements, including van der Pauw measurements, Hall measurements etc,
are explained. The principle of the electrostatic doping method, which is called space
charge doping, is as well described in chapter 2. A brief introduction to the experimental
apparatus is also included.

In Chapter 3, we established Superconductor-Insulator Transition (SIT) as a func-
tion of doping in two dimensional BSCCO-2212 by space charge doping. The related
critical parameters are determined, and a reliable way to estimate doping in the non-
superconducting region is also discussed in chapter 3.

In Chapter 4, first a brief introduction on the superconducting transition and the
underlying information extracted from its sheet resistance curves is given. Then I will
discuss the effects of inhomogeneity and fluctuations on the superconducting transition
in 1 unit-cell BSCCO-2212 both with simulations and with analysis of experimental re-
sults on the optimally doped 1 unit-cell BSCCO-2212 samples.
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In Chapter 5, I will concentrate on the superconducting transition both on the over-
doped region and the underdoped region of 1 unit-cell BSCCO-2212 samples. Especially,
I will discuss how superconducting fluctuations are affected by doping.
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Chapter 2

Experimental part

In this chapter, the methods and techniques used for ultra-thin BSCCO-2212 layers
fabrication and electronic transport measurements are presented. A brief introduction
to the experimental apparatus is also included. The first section is about the fabrication
and characterization of thin layer BSCCO-2212. Then the second section how introduces
how the samples are build into a device. The techniques and instruments about transport
measurements and space charge doping technique are discussed in the third and fourth
section respectively.

2.1 Sample fabrication and characterization techniques

2.1.1 Anodic bonding technique

Anodic bonding is the technique used in our laboratory for the fabrication of thin layer
samples. This technique has been successfully applied to fabricate ultra-thin graphene,
GaSe, GaS, InSe, MoS2, BSCCO on glass substrates[97, 98, 99, 100]. This is an effective
method for fabricating large area 2D samples with a lateral size up to hundreds of
microns. Before the explanation of the principle of anodic bonding, I will first give a
brief introduction on the glass substrates that we use.

Glass substrate

The substrates used in this thesis are all made of soda-lime glass. The main structure of
soda-lime glass is an amorphous network of about 70 % silicon dioxide (SiO2). Sodium
and calcium atoms are generally introduced during fabrication in the form of sodium
oxide (Na2O) and calcium oxide (CaO), which can result in the breaking of some Si-
O-Si bridges [101]. The cations Na+ and Ca2+, which serve as network modifiers, are
compensating the charge of the non-bridging oxygen atoms. The divalent alkaline-earth
ions is more strongly bound to the network than the monovalent alkali ions. Thus in
the case of soda-lime glass, the mobility of Na+ is considerably higher than that of Ca2+

[101]. Fig. 2.1 shows a schematized structure of soda-lime glass as discussed above.
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Na+

O2-

Si4+

Figure 2.1: The main atomic structure of soda-lime glass.

Anodic bonding

Na+

O2-

Si

Tip (Anode)

Cathode (-200V ~ -1000V)
Heat (200℃ - 400℃)

Figure 2.2: Schematics of anodic bonding principle.

The anodic bonding was first used to bond silicon wafer to a Pyrex substrate without
any intermediate glue [102]. Fig. 2.2 shows the principle of anodic bonding technique.
At high temperature (200 ◦C - 400 ◦C), the mobility of Na+ ions is activated by ther-
mal energy. By applying a negative voltage (-200 V ∼ -1000 V) at the back side of
the substrate, mobile Na+ ions will migrate across the substrate and accumulate at the
cathode side of the system. The static oxygen ions left behind forms a negative space
charge at the surface of the glass and a corresponding positive charge in the wafer. Thus
a high electrostatic field is created at the interface of the glass/wafer, which can “stick”
the thin layer material on the glass. In the case of glass/Si, chemical bonds Si-O-Si are
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formed at the interface [103].

Inspired by this technique and with a similar principle, our lab has successfully
fabricated large size single and few layer graphene from bulk graphite precursor [103].
Then other thin and large-area samples, such as GaSe, GaS, InSe, MoS2, BSCCO, are
obtained in our lab [98]. The quality of the different fabricated samples have been
studied by optical microscopy, atomic force microscopy and Raman spectroscopy, show-
ing that the samples are free from chemical changes and all with good optical contrast
[98, 99, 100, 103, 94]. For this thesis, I will focus on the fabrication of 2D BSCCO-2212
samples with anodic bonding technique.

Bulk BSCCO single crystal

Na+ O2- SiGlass:

E

Na+ accumulation

Na+ depletion
(O2- layer)

Electrostatic bonding

a b

c d

Figure 2.3: Schematic view of sample fabrication procedure. a BSCCO-2212 bulk single crystal precursor is
deposited on the soda-lime glass substrate. b The glass/sample is placed on the anodic bonding machine heated
to about 200 ◦C, and a negative voltage about -500 V is added at the cathode for a few minutes. c After anodic
bonding process, the bulk precursor is exfoliated with a soft adhesive tape. d The ultra-thin BSCCO-2212 layer
is left on the glass substrate due to the electrostatic field induced by anodic bonding.

Fig. 2.3 shows briefly the procedure of the fabrication of 2D BSCCO samples. The
substrate used here is soda-lime glass, as mentioned above. All the substrates are cut
into small square pieces with the size of about 8 mm x 8 mm, and then cleaned in an
ultrasound bath with acetone and ethanol for 5 minutes respectively at around 45 ◦C.
After drying with nitrogen flow, the substrate glass is put on a hot plate (∼ 100 ◦C),
and a thin precursor, exfoliated from bulk BSCCO-2212 with a soft adhesive tape, is
deposited on the top of the glass. The glass is then put on the anodic bonding device,
between two electrodes with an anvil below and a tip above, which has been heated to
180 ◦C to make Na+ ions mobile. After that, a negative voltage, (-450 V ∼ -500 V) is
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applied at the cathode, so that the mobile Na+ ions can drift towards the back side of
substrate, creating a negative space charge at the glass/material surface. This negative
space charge induces a positive charge in the sample, thus leading to an electrostatic
field, which can bind the thin BSCCO-2212 samples on the glass substrate. The whole
bonding process takes 10 minutes. Then the voltage is removed and the glass/material is
cooled down to room temperature. After the bonding, the upper layers of the precursor
material are exfoliated with a soft adhesive tape, leaving few-layer samples of the material
on the glass surface.

2.1.2 Optical microscopy

a b

Figure 2.4: Optical microscope a Optical microscope set-up. b 1 unit cell BSCCO sample photos taken by optical
microscope a with objective 50x.

Optical microscope provides us a direct view of the samples fabricated with anodic
bonding technique. Fig. 2.4 a shows the equipment we used in our lab, which is with a
Leica DM2500 with objectives of 5x, 10x, 20x, 50x, 100x and a CCD camera. BSCCO-
2212 fabricated by anodic bonding has always shown a good optical contrast, which
makes their identification and location very easy. Fig. 2.4 b shows the figures taken by
optical microscope of some ultrathin layers of BSCCO-2212 obtained in our lab. They
are of good quality, which means that the samples are homogeneous and with large
area. For BSCCO, the samples are usually multiple of half unit-cell, because they cleave
between the weakly bound BiO layers. The thickness can be measured more precisely
by atomic force microscope. After several years’ of fabrication of ultra-thin BSCCO,
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the number of layers of a BSCCO sample can be figured out directly by observing with
optical microscope.

2.1.3 Atomic Force Microscopy (AFM)

Atomic force microscopy, as a kind of scanning probe microscopy, was first invented in
1986 by Binnig, Quate and Gerber [104]. It is an instrument which allows to visualize
the topography of the surface down to atomic resolution, which is more than 1000 times
better than the optical diffraction limit. As shown in Fig. 2.5, an AFM consists in a
micro-fabricated tip placed at the end of a cantilever and an optical system with a laser
for the detection of the cantilever’s deflections, which are caused by the forces between
the tip and the sample surface according to Hooke’s law [105]. The tip and the forces are
controlled by the feedback system. The sample is positioned on a piezoelectric scanner,
which can moves in the z direction to control the sample’s distance from the probe and
in the x and y direction for scanning. When the tip gets close to the sample and moves
along the sample surface, the laser deviation on the photo-diode detector is used in the
feedback loop to track the surface for imaging and measuring the sample’s height profile.

Detector and
feedback
electronics

Piezoelectric scanner

Photo-diode
Laser

Cantilever and TipSample

Figure 2.5: Schematic view of AFM.

According to the nature of the tip motion, there are usually three described imaging
modes with an atomic force microscope: contact mode, non-contact mode and tapping
mode (or AC mode). In contact mode, the forces between the tip and the sample surface
are repulsive. A constant cantilever deflection is maintained by the feedback system.
Considering that the tip is in hard contact with the sample surface, the stiffness of the
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Figure 2.6: Operation regimes for contact mode, non-contact mode and tapping mode.

1 u.c.

Substrat
e

Figure 2.7: Left: image of 1 u.c. BSCCO-2212 sample taken by atomic force microscope. Right: Height profile
along the white arrow on the left photo, pointing from the BSCCO layer to the glass substrate. The thickness
appears to be ∼ 3 nm, which corresponds to that of 1 u.c. BSCCO-2212.

cantilever has to be soft enough (usually less than 1 N/m) to avoid damaging the probe
tip and sample surface. In non-contact mode, the probe tip doesn’t touch the sample
surface. The cantilever is oscillated at or near its resonance frequency with a small
amplitude of few nanometres (< 10 nm). The tip is kept typically several nanometres
away from the sample surface so that the forces between the probe and the surface
are attractive. The feedback loop system maintain a constant cantilever oscillation
frequency or amplitude. This non-contact mode is preferable for the measurement of
soft materials, because there is very low possible interaction between the surface and
the tip. However it takes challenge to keep the probe tip in the attractive force region
and requires high performance feedback control. The stiffness of the cantilever needed
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is with force constant higher than 25 N/m. In tapping mode, the cantilever is also
driven to oscillate at or near its resonance frequency with a piezoelectric actuator. The
difference from the non-contact mode is that in tapping mode, the cantilever has a larger
amplitude, and the probe tip slightly touches the sample surface at the lower end of the
cantilever oscillation. A constant cantilever oscillation amplitude is kept by the driven
signal with constant frequency and amplitude. The dominant forces between the probe
tip and the sample surface are repulsive (Fig. 2.6). Stiff cantilever with force constant
of 10-100 N/m is needed for tapping mode. The damage to the surface and the tip is
lessened compared to contact mode in ambient air. Fig. 2.7 shows the identification
of ultra-thin BSCCO-2212 samples with tapping mode of AFM. In this thesis, all the
identification work is accomplished with tapping mode.

2.2 Device fabrication

2.2.1 Gold contact deposition

After the fabrication of the ultra-thin layer BSCCO-2212 on the glass substrate, gold
contacts are deposited on the sample with the aim of carrying out electronic transport
measurements. To avoid un-necessary processing and contamination of the sample’s
surface we rejected any form of resin-based lithography to deposit the contacts. Hence,
the contacts are deposited by using a 0.15 mm thick steel stencil mask with 4 laser-cut
holes forming a van der Pauw geometry (Fig. 2.8). Each contact of the mask is made
of a strip about 10 µm wide near the sample, which gets wider away from the center to
allow wire-bonding (see below). In the center of the mask the end of the four contacts
form a square with a diagonal length of about 50 µm. The mask is stuck on the sample
with 0.1 mm thick double sided adhesive tape at the four corner (Fig 2.8). The deposi-
tion procedure is performed with an Edward thermal evaporator (Fig 2.8) in the clean
room of École Normale Supérieure de Paris. This evaporator can provide a vacuum of
10−6 mbar. The chamber of the evaporator is a cylinder with a height of about 40 cm
and a diameter of about 30 cm. The gold is placed in a tungsten crucible at the bottom
of the chamber and heated with an electrical current to the evaporation temperature
of gold. The samples with masks on them are fixed right above the crucible. Gold is
chosen for the contact deposition due to its very low resistivity to reduce its influence
on the low temperature transport measurement. The thickness of the gold deposition is
about 70 nm.

After the gold deposition, the sample is further shaped with a tungsten needle con-
trolled by a micro-manipulator under an optical microscope. The radius of the needle
tip is ∼10 µm. This step is to conform the shape of the sample to the cloverleaf van der
Pauw geometry and to destroy unwanted connection from other flakes left on the glass
during the anodic bonding. This basic technique of shaping was chosen as to avoid fur-
ther un-necessary processing such as plasma etching that could compromise the sample
quality. Fig. 2.9 shows some shaped BSCCO-2212 samples with gold contacts on them.
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b
Double scotch

a

c

~1cm

~2cm

Figure 2.8: a Steel stencil mask in van der Pauw geometry. b 1 u.c. BSCCO-2212 sample with ∼70 nm thick
gold contacts on it. The image is taken by the optical microscope introduced in this chapter with objective of 5x.
c Photo of the Edward thermal evaporator.

Figure 2.9: Optical images of scratched 1 u.c. BSCCO-2212 samples with objective 50x. Scratches by tungsten
needle can been clearly observed on the photos.
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2.2.2 Sample Mounting and Wire bonding

To perform transport measurements and apply a back gate for space charge doping (see
next section) the samples are glued with conducting silver paste to an insulating MgO
substrate covered with an evaporated gold film. The gold film act as a back-gate, while
the MgO is a spacer to isolate the back-gate from the sample holder. The MgO with the
sample on top is then glued with silver paste to the sample holder.

Wire bonding is used for making interconnections between the gold contacts on the
sample and the electrical pads on the sample holder. It is the very last step for device
fabrication before the transport measurements.

Figure 2.10: Photo of the wire bonding machine used in this thesis.

Fig. 2.10 shows the wire bonding machine WB-100 wire bonder. This WB-100 wire
bonder employs the basic ultrasonic bonding method. The wire chosen here is aluminium
wire. Bonding two metals using the ultrasonic method results from three variables: force,
ultrasonic energy and time. Force is introduced to promote plastic flow (deformation)
and intimate coupling between the bonding tool, the wire and the substrate. Ultrasonic
(62 kHz) scrubbing displaces surface contamination and insures metal to metal coupling.
Time is set long enough to cause solid state diffusion.
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2.3 Transport measurement

2.3.1 Sheet resistance and van der Pauw measurement

Sheet resistance, also known as surface resistance, is an electrical property usually used
to measure the resistance of thin samples with uniform thickness and is suitable for 2D
system such as our one unit-cell BSCCO-2212 samples. Sheet resistance is commonly
defined as the ratio between the resistivity (ρ) of a material and its thickness (t):

RS =
ρ

t
(2.1)

The common units used is W/� (ohms per square) as RS has the dimension of a re-
sistance. Sheet resistance is usually measured with four-point measurements techniques
to avoid measuring the contact resistance. For BSCCO-2212 few layers samples, we have
adopted the van der Pauw geometry.

The van der Pauw method, which is a kind of four-point measurement, is first in-
troduced by Leo J. van der Pauw in 1958 [106]. It’s a widely used technique for the
measurements of the resistivity and the Hall coefficient of samples in two dimensions.
The samples can adopt an arbitrary shape in the condition that they are homogeneous,
isotropic, uniform in thickness and without any isolated holes. In the original van der
Pauw design, the four contacts need to be located around the perimeter of the sample,
and each of them should be sufficiently small compared to the whole area of the sample.
However, in our experiments we use a cloverleaf geometry that allows for larger contacts
that are not strictly on the edge of the flake.

Figure 2.11: Schematic of the van der Pauw geometry used in this thesis. A, B, C, and D represent four gold
contacts.

Fig. 2.11 shows the configuration of the van der Pauw geometry used in this thesis.
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To determine the sheet resistance RS of the sample, firstly a current is injected to flow
from contact A to contact B IAB, and the voltage VCD = VD − VC is measured. Then
the current is injected from contact B to contact C IBC , and the voltage VDA = VA−VB
is measured. Thus the resistances R1 and R2 are defined using Ohm’s law:

R1 = RAB,CD =
VCD
IAB

R2 = RBC,DA =
VDA
IBC

(2.2)

The sheet resistance RS of the 2D material is related to the two resistances R1 and
R2 by the relation:

e
−πR1
RS + e

−πR2
RS = 1 (2.3)

This solution of equation (1.2) can be written in the form:

RS =
π

ln(2)

R1 +R2

2
f(R1/R2) (2.4)

where f(R1/R2) is a geometric factor depending on the measured electrical anisotropy
of the sample which cannot be derived analytically, but can be calculated numerically
[107]. This factor can be determined for 1≤R1/R2≤104 with high precision by the fol-
lowing equation [108]:

cosh(
R1 −R2

R1 +R2

ln(2)

f
) =

1

2
exp(

ln(2)

f
) (2.5)

However, for our measurements with 1 ≤ R1/R2 ≤ 102 a polynomial approximation
can be used.

2.3.2 Hall measurement

As mentioned above, the van der Pauw geometry can also provide possibility for Hall
measurement, so that the Hall carrier density and Hall charge mobility can also be
extracted from this method. When a magnetic field B is applied perpendicularly to a
2D conducting material, where there is an electric current flowing through, the charges
of the electric current will experience a Lorentz force Fm. For the electrons, the value of
the Lorentz force is:

Fm = evB (2.6)

where v is the drift velocity of the electrons. This Lorentz force, induced by the
magnetic field, will push the electrons to one side of the conductor, as shown in Fig.
2.12. Then to balance this magnetic effect, the buildup of charges at the two sides of the
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conductor will produce a voltage, which is called Hall voltage UHall, between the two
sides of the material, thus inducing another electric force Fe which is written as:

Fe = e
UHall
l

(2.7)

where l is the width of the 2D material (Fig. 2.12). When the magnetic force and
the electric force are balanced, the Hall voltage can be deduced:

UHall = vBl (2.8)

Fe Fm

e-

x
y

z

l

d

Figure 2.12: Schematic view of the Hall effect in a 2D conducting layer.

Considering the current I expressed in terms of the drift velocity I = env(ld) (n the
density of mobile charges per volume of the space, d the thickness of the conductor, and
ld the cross-section area), we extract the Hall voltage to be:

UHall =
BI

ned
(2.9)

In 2D samples, it is preferable to use the sheet charge density nS = nd. Therefore
the Hall resistance

RH =
UHall
I

=
B

enS
(2.10)

Here nS can also be called the Hall sheet carrier density, or nH . The Hall voltage sign
is determined by the charge polarity, because the voltage, the current and the magnetic
field form a direct trihedron.

However in cuprates, the relation between RH and nS is not as simple as in equation
2.10 because of the complex electronic band structure of these materials. Thus the Hall
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sheet carrier density nH is different from the real sheet carrier density nS , which should
be equivalent to the number of holes in the CuO2 planes (a.k.a. the hole doping level p).
As reported in the literature, we have found that the Hall resistance in thin BSCCO-2212
is temperature and doping dependent [109]. The maximum of RH at optimal doping
is found around 120 K [110], so we consider the values of RH at this temperature to
estimate semi-quantitatively the variation in carrier density after each doping performed.

In practice, Hall measurements for BSCCO-2212 are carried out at 120 K with a
magnetic field sweeping between ± 2 T. In the van der Pauw geometry the Hall voltage
is measured by injecting the current between two opposite corners of the square and
measuring the voltage between two others. We measure the two possible configurations
and take their average to eliminate sheet resistance contributions to the measured volt-
age. The Hall carrier density nH is deduced from the slope of RH as a function of B.

Combining sheet resistance and Hall measurements allows to calculate the mobility
of charge carriers. We first write the drift velocity of electrons v = µE, where E is
electric field along the direction of the current I. Then following the expression of
I = env(ld) = enSvl we can write:

I = enSµ
l

L
U =

l

L

U

RS
(2.11)

with L being the length of the material along the direction of the current and U the
voltage drop in that direction. Combined with the equation (2.10), the Hall mobility
µH is calculated as:

µH =
1

enHRS
(2.12)

2.3.3 Transport measurements apparatus

All the transport measurements are carried out in the apparatus shown in Fig. 2.13. The
sample is fixed at the bottom of the blue cryostat, which is inserted in the middle of a
2 T electromagnet. The vacuum of the chamber can be pumped to less than 10−6 mbar.
Liquid He flow is used to cool down the temperature, and a resistive heater is used to
increase or stabilize the temperature. The temperature of the system can be controlled
in the range from 3 K to 420 K. Excitation current injected into the sample and the
gate voltage applied at the back side of the sample/glass are provided by two Keithley
2400 source-meters (Fig. 2.13). The 4-Wire voltages are measured with a Keithley 2700
data acquisition multimeter equipped with a Keithley 7709 matrix relay card to switch
between the different van der Pauw/Hall configurations.

For transport measurements, sheet resistance curves are recorded usually from 330K
to the temperature below Tc of the material in case of a superconductor, or to the
minimum temperature limit of the system ∼ 3 K. All the data, including the four-wire
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resistance, two-wire resistance, gate voltage, gate current, correction factor, and sheet
resistance are recorded. Then, Hall measurements are taken at 120 K by sweeping
the magnetic field between ± 2 T. The space charge doping is performed at a fixed
temperature between 350 K - 400 K with the gate voltage in the range between ± 285 V.

Temperature
controller

Cable for electrical
connection

Connection for
liquid He flux

Vacuum pump tube

Electromagnet

Cryostat

Keithley 2400 to
apply gate voltage

Keithley 2400 to apply
excitation current

a

b

Figure 2.13: Set-up photos. a Photo of the apparatus used for the transport measurements. b Keithley used in
this thesis: the top one is used to apply gate voltage on the back side substrate and measure the gate current; the
lower one is to inject excitation current into the sample from each gold contact and measure the voltage between
gold contacts of the sample.
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2.4 Space charge doping

Space charge doping is a kind of high density electrostatic doping technique which is first
introduced by our group in 2015 [100, 111]. Its main idea is to dope two-dimensional
materials by exploiting the movement of the mobile ionic species (Na+ in our case) in the
substrate. It is a much simpler, “cleaner” and more efficient way to dope two-dimensional
samples, compared to the chemical doping method, as it will neither introduce new
species into the material, nor will it change the sample’s structure. Using an ionic liquid
as a dielectric is another electrostatic way to dope two-dimensional materials, which has
been applied to other cuprates such as YBCO [82] and LSCO [80]. However, recent
studies have then discovered that the ionic liquid Field-Effect Gating can cause oxy-
gen displacements in cuprates [112]. The space charge doping method avoids problems
which may arise in liquid dielectrics, ensures all measurements on a single, low disorder,
good quality sample, and removes the sample dependent uncertainty that comes from
chemical doping. Furthermore, the space charge doping technique can dope the sam-
ple in a reversible way without destroying the sample. Doping densities > 10−14 cm−2

have been reached in two-dimensional graphene [111], MoS2 [100] and BSCCO-2212 [94].

VG

Glass Substrate
Back gate

1 u.c.
BSCCO Au leads

a

b

E E

Figure 2.14: Space charge doping technique. a Schematic view of the device. b Illustration of the principle of
space charge doping technique. Details are explained in the main text.
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The space charge doping method is actually an extension of the anodic bonding
technique, which has been introduced in the former section. Fig. 2.14 explains schemat-
ically the principle of the space charge doping. The substrate is again soda-lime glass,
where there are plenty of mobile Na+ ions. At room temperature, all the sodium ions
are uniformly distributed inside the glass, bounded with the non-bridging oxygen atoms
(Fig. 2.14 b). By increasing the temperature to 350 K - 400 K, the mobility of the
Na+ is activated by thermal energy. Thus the soda-lime glass can be considered as a
negatively charged matrix of SiO2 with massive positively charged Na+ ions. Then if a
negative gate voltage is applied at the back side of the glass substrate, all the mobile
Na+ ions will drift towards the bottom of the substrate under the influence of the elec-
tric potential difference. This movement of Na+ ions creates a negatively charged space
layer below the interface as shown in Fig. 2.14 b. This negative space charge induces a
mirror positive charge inside the sample, so that the sample is p-doped (or hole-doped).
Similarly, to n-dope (or electron-dope) the sample, a positive gate voltage is added at
the back side of the substrate. The electric potential difference pushes the mobile Na+

ions towards the sample/glass interface, and creates an accumulation layer of Na+ ions
below the interface. This positively charged accumulation Na+ ions layer induces a neg-
ative charge in the sample, which is n-doping (or electron-doping). The doping can be
controlled by changing the temperature (from 305 K to 400 K), gate voltage (between
± 285 V) and the time (from several minutes to hours). This also indicates that the mo-
bility of Na+ ions remains relatively small in our experimental case. By cooling down to
room temperature or below, the mobility of the Na+ ions and the drift current will expo-
nentially decrease, thus “freezing” the Na+ ions (and the doping) inside the glass matrix.

This space charge doping technique has been successfully applied on graphene [111],
on MoS2 for Metal-Insulator transition [100], and on two-dimensional BSCCO-2212 for
the construction of the phase diagram around the optimal doping level [94].
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Chapter 3

Superconductor-Insulator
Transition in space charge doped
one unit cell Bi2.1Sr1.9CaCu2O8+x

In this chapter we will establish and investigate the nature of the superconductor-
insulator transition as a function of doping in two dimensional Bi2.1Sr1.9CaCu2O8+x

(BSCCO) and deduce the scaling parameters associated with this quantum phase tran-
sition. This work has been published in [113].

3.1 Introduction

A superconductor-insulator transition (SIT) in two dimensions is a continuous quantum
phase transition (QPT) at absolute zero temperature [114, 115] driven by external pa-
rameters like disorder, magnetic field or carrier concentration [81, 6, 116, 117, 80, 82,
94, 110, 53].

Such transitions have been induced in a variety of 2D superconductors by tuning
different external parameters and studied with a finite-size scaling analysis. There is
however not much uniformity in the findings as both the superconducting systems and
the tuning parameters are diverse. Magnetic field is a common, easily tunable and ac-
cessible external parameter. Magnetic field driven SIT studies have reported a large
variety of critical exponents and resistance at criticality: from νz ∼0.67 and Rc =1.3 kΩ
in NbSi thin films [83] to νz ∼2.3 and Rc = 6 kΩ in Indium oxide thin films [84]. Fur-
thermore, in quenched condensed bismuth thin films the magnetic field driven SIT was
shown to have νz ∼ 0.7 and Rc = 8 kΩ, while the thickness driven SIT displayed νz ∼1.2
around the same critical resistance, indicating a fundamental difference in their nature
[81]. It is therefore difficult to come to a general conclusion about the SIT in different
systems and induced by different tuning parameters. The high critical magnetic fields of
most high critical temperature superconductors renders the study of the magnetic field
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driven SIT difficult (with the exception of the electron doped cuprate NdCeCuO [85]).
However, improvements in extreme electrostatic doping techniques have provided access
to the carrier density driven SIT in La2−xSrxCuO4 (LSCO) and YBa2Cu3O7−x (YBCO).

Tuning carrier density is an effective way to realize this transition by chemical or
electrostatic doping methods. Chemical doping, the usual and only possible method in
bulk samples, has been widely used in high critical temperature superconductors, both
in bulk and thin films [118, 53]. However it is sample dependent and can lead to disorder
and structure change. Electrostatic doping is the method of choice to obtain a continuous
and defect free change in doping in the same ultra-thin sample in a field effect transistor
device [119, 80, 82]. Both the correlation length ε and correlation time τ corresponding
to a phase transition are dependent on the variation of an external parameter x with
respect to a critical value xc. In our case this is the variation of the carrier concentration
p with respect to the critical doping at the phase transition pc with, ε ∝ |p− pc|−ν and
τ ∝ εz where ν is the correlation length exponent and z is the dynamical-scaling expo-
nent. The variation of physical quantities like sheet resistance across the phase transition
in a transport measurement can be expressed in terms of these asymptotic forms and
a single ‘scaling’ formula dependent on |p− pc|−νz. If the effects of the QPT persist at
experimentally accessible, small, but non-zero temperatures, it can be characterized by
its universality class given by the numerical value of νz, the product of the finite-scaling
exponents. This value, along with the critical values of the driving parameter (doping)
and the measured physical quantity (sheet resistance), consitutes the fundamental in-
formation that can be gleaned from a quantum phase transition in reduced dimensions
and has been used in the past for studying high Tc superconductors [80, 82, 53].

In this chapter we establish and investigate the nature of the SIT as a function of
doping in two dimensional Bi2.1Sr1.9CaCu2O8+x (BSCCO) and deduce the scaling pa-
rameters associated with this QPT. This measurement has been rarely accomplished,
always with considerable experimental process. The QPT has been shown to exist in
two of the principal families of high Tc compounds, LSCO [80] and YBCO [82] using
ultra-thin samples and electrostatic doping. In BSCCO a recent result in single layer
(i.e. half unit cell) samples [53] is remarkable but uses chemical doping with ozone.
Here we accomplish electrostatic doping with our novel space charge doping technique
on a one unit cell (1 u.c.) BSCCO device and indeed observe a QPT. Earlier theoretical
work [7] predicted the existence of a material-independent quantum critical resistance
RQ = h/(2e)2 = 6.45 kΩ.�−1 for the insulator-superconductor transition. Experimental
results from the above works show some scatter, with near universal critical resistance
values in LSCO (6.4 kΩ) [80] and YBCO (6 kΩ) [82] but a variation of 2.8 to 10.2 kΩ in
BSCCO [53]. The critical doping associated with this crossover varies significantly, from
pc = 0.05 - 0.06 holes/Cu [80, 82], the value expected from the generic phase diagram,
to nearly 0.02 holes/Cu [53]. Finally the product of critical exponents νz also varies,
with 1.5 in LSCO [80], 2.2 in YBCO [120] and between 1.5 and 2.4 in BSCCO [53].
Universality of the QPT should imply Rc ∼ 6.45 kΩ, pc ∼ 0.05 - 0.06 and a similar value
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for νz in different materials. Thus establishing this benchmark in BSCCO is necessary
and the measurement should avoid pitfalls from sample dependent imperfections which
tend to overshadow material parameters.

A crucial aspect of this program is determining the doping since absolute determi-
nation of doping in high Tc compounds, whether bulk or few layer samples, remains
elusive. The Hall coefficient is notoriously variable with temperature. In LSCO and
YBCO [80, 82] the inverse sheet resistance at a fixed temperature well above the Tc is
proposed as a measure of the doping p, presupposing simple Drude-like behavior with
constant carrier mobility. An empirical relation, linking the dome shaped dependence
of the critical temperature on doping [45, 121, 94], has also been used. Can this be ex-
tended to the strongly undoped non-superconducting region? We show here that it can
and indeed gives a reliable, though not absolute, determination of doping which could
profitably be used in future work.

3.2 Sample preparation and transport measurements

3.2.1 Sample preparation

Bi2.1Sr1.9CaCu2O8+x precursors were exfoliated from bulk crystals (Tc = 89 K), and
deposited on soda-lime glass with a thickness of 0.5 mm and with an area of ∼ 8 mm x
8 mm. Then anodic bonding technique, which is explained in chapter 2, was used to fab-
ricate 1 u.c. BSCCO samples of ∼ µm lateral size. The precursor on the glass substrate
is placed between two electrodes and heated to ∼ 180 ◦C to activate the Na+ mobility
(Fig. 2.2). On the application of a negative gate voltage (∼ 500 V) at the back side of
the glass substrate, the Na+ ions in the glass move away from the glass/sample interface,
forming an O2− space charge at the sample-glass interface. This space charge sticks the
first few nm of the precursor electrostatically on the glass substrate. Adhesive tape is
used to exfoliate the precursor. A large area ultra thin BSCCO sample, the thickness
of which is evaluated by Atomic Force Microscopy and optical contrast, is left on the
glass surface. The sample is then annealed in air to reduce its doping level by oxygen loss.

70 nm thick gold contacts were evaporated onto the sample through a steel stencil
mask to achieve a van der Pauw geometry device after the annealing process. We have
found that both lithography and Cr buffer layers degrade sample quality. Sample qual-
ity and the absence of contamination are checked through the RS measurement. The
glass substrate and device was then glued on to the backgate by silver paste (Fig. 2.16 a).

To determine the annealing parameters to reach an initial value for doping close to the
superconductor-insulator transition, about 100 1 u.c. BSCCO samples were fabricated,
and about half of them were chosen, due to their bigger size and better homogeneity,
to put into the oven for trials of different annealing parameters. Bulk BSCCO samples
need several hours of annealing in a predetermined atmosphere of partial pressure of
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oxygen well above 400 ◦C. A 1 u.c. sample should need a much shorter time and at a
lesser annealing temperature because of the very small diffusion length corresponding to
the sample thickness. Some of the annealing parameters, as well as the corresponding
four-wire sheet resistance, are shown in Fig. 3.1. Here I also present the transport
measurements of two 1 u.c. BSCCO samples. The first 1 u.c. BSCCO sample was
annealed at 400 ◦C for 5 minutes in air (black curves in Fig. 3.2). This sample revealed
an insulating behaviour. Strong hole doping with space charge failed to push it into the
superconducting region. To obtain samples with higher doping 1 u.c. BSCCO samples
were annealed in the oven at 350 ◦C for 1 minute (red curves in Fig. 3.2). However
the sample chosen for transport measurements was still an insulator but came closer to
the underdoped part of the phase diagram after strong hole doping. As shown in Fig.
3.2, the two lower red curves became much less insulating at low temperature. With
these parameters however reaching the required doping value still needed trial and error.
I finally found that 350 ◦C and 1 minute are most likely to reduce the sample doping
to the superconductor-insulator transition point. I also came to the conclusion that
whether the sample actually reaches this point depends not only on the parameters of
the anneal, but also on the quality of the sample surface which is not very well controlled.

Figure 3.1: Table of some examples of the annealing parameters tried on 1 u.c. BSCCO samples and their
corresponding sheet resistance.

3.2.2 Space charge doped one unit cell Bi2.1Sr1.9CaCu2O8+x

Fig. 3.3 shows the sheet resistance curves RS of another 1 u.c. BSCCO sample annealed
at 350 ◦C for one minute in air. The four-point sheet resistance measured at room tem-
perature increased to ∼ 7 kΩ.�−1 compared to ∼ 2 kΩ.�−1 measured in similar devices
prepared without annealing.

The thick olive green curve indicates that the starting doping level p after annealing
is indeed near the beginning of the superconducting dome. The corresponding critical
temperature Tc (defined in this work as the temperature below which RS vanishes) is
near 10 K. The doping level was then tuned inside a high-vacuum cryostat by space
charge doping as explained in Chapter 2. Above room temperature (350 K - 380 K),
Na+ ion mobility inside the glass is activated. By applying a positive (or negative) gate
voltage at the back of the glass substrate, the mobile Na+ ions drift towards (or away
from) the sample/substrate interface, creating a positive (or negative) space charge and
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Initial doping

Initial doping

Figure 3.2: Sheet resistance curves of different doping level as a function of temperature. y-axis is en log scale.
The black curves correspond to the sample annealed in the oven at 400 ◦C for 5 minutes after being fabricated
with anodic bonding technique; the red curves refers to the sample annealed at 350 ◦C for just 1 minute.

corresponding electron (or hole) doping within the sample (Fig. 2.16). The doping
time at the doping temperature for moving between two neighbouring doping levels is
typically about 10-110 minutes. This space charge is frozen on cooling down to room
temperature or below by loss of Na+ ion mobility. Fig. 3.4 illustrates the behaviours of
gate current IG and sheet resistance RS during one n-doping (electron-doping) process.
As represented in Fig. 3.3, the SIT is attained by measuring the RS(T ) curve at each
fixed doping level.

Reversibility of space charge doping

The doping is tuned step by step as shown in Fig. 3.5. The temperature for doping
varies from 350 K to 380 K. A positive (or negative) voltage, applied to the back gate of
the device (Fig. 2.16), decreases (or increases) the doping level. The value of the voltage
varies from 100 V to 280 V. The time varies from 10 minutes to 110 minutes. These
doping procedures also present the reversibility of this electrostatic doping method.

Can the doping be due to oxygen diffusion rather than electrostatic charge?

In some electrostatic doping experiments with ionic liquids in oxide samples it has been
shown that diffusion of oxygen at sample interfaces can contribute greatly to the dop-
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Figure 3.3: Temperature dependence of RS curves induced by space charge doping with y-axis en log scale. The
thick olive green RS(T ) curve is the initial sheet resistance of the sample after annealing to reduce doping whereas
the dashed violet curve is representative of the optimal doping level of 1 u.c. BSCCO after fabrication by anodic
bonding. The inset shows a blow-up and the thick orange ‘horizontal’ curve approximately corresponding to the
critical doping.

ing since in oxides doping depends on the oxygen content. High-Tc superconductors
are oxides and in YBCO a material where such behaviour [122] is suspected, it is well
known that two structural entities exist, planes and chains. The oxygen in the chains is
weakly bound and this is the oxygen which is accumulated or depleted while doping with
stoichiometric change of oxygen. It is explicitly stated in [122] that the observed oxygen
diffusion related to strong electric fields is exclusively that of weakly bound chain oxygen
atoms and not that of strongly bound oxygen atoms in the CuO2 planes. In BSCCO no
chains exist. Eventual weakly bound oxygen can be accumulated in interstitial oxygen
in BiO planes, causing distortions and superstructure in the unit cell. There is quan-
titative information about this. Diffusion constants for oxygen have been measured in
BSCCO [123]. In the a-b plane (movement of interstitial oxygen) they are five orders
of magnitude higher than in the c direction, the direction of the space charge doping
electric field. Moreover, our sample has been pre-annealed so that oxygen content is
extremely low and corresponds to an initial chemical doping around p=0.06 leaving no
possibility of weakly bound oxygen which may be moved by an electric field.

In a liquid ion gated sample, the 2D sample is sandwiched between a substrate and
the liquid ion layer. In our experiment, the sample is on the glass substrate which also
serves as the gating material. Let us imagine that we induce oxygen diffusion in the
sample. Even if weakly bound oxygen is available, it cannot diffuse in and out of a 1
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Doping Quenching

a

b

Figure 3.4: Dynamics of space charge doping. a A positive gate voltage is added to the back of the device from
0 to 280 V with steps of 4 V (blue curve, left axis). The behaviour of the gate current IG (orange curve, right
axis) during the n-doping process at 350 K (red curve in b) is plotted as a function of time. b Sheet resistivity
(black line, left axis) vs doping time during space charge doping with positive gate voltage at T = 350 K and the
following quenching in temperature. The temperature is presented with the red curve (right axis), the vertical
black dash line marks the limit between the doping itself and the subsequent temperature quenching.

unit cell sample into the vacuum or the glass, reversibly. In a 3 unit cell sample sand-
wiched sample [122] oxygen diffusion can be imagined between different layers of the
thicker sample or eventually at or with the sample/liquid ion interface. In our case this
is not possible.

A further guaranty comes from the fact that we have successfully doped, with pre-
cisely the same space charge doping method and similar doping changes, samples such
as graphene [111] and MoS2 [100] which do not contain oxygen.
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Figure 3.5: Temperature dependence of sheet resistance driven by space charge doping method on a linear scale.
The thick olive RS(T ) curve indicates the starting doping level after annealing in the oven. The left-to-right
direction of the arrows shows the order of doping step by step, which shows the reversibility of this electrostatic
doping method.

3.2.3 Hall measurement

The principle of Hall measurement has been explained in section 2.3.2. The measure-
ments were performed with a DC current of 1 to 10 µA. An external magnetic field of
up to 2 T perpendicular to the sample plane was supplied by a resistive electromag-
net at ∼120 K. As described in section 2.3.2, the Hall coefficient (or Hall resistance)
RH = B/(enS), where e = 1.6×10−19 C stands for the charge value of an electron, and
nS indicates the sheet charge carrier density. With the value of the slope of the fitted red
curves in Fig. 3.6, the sheet carrier density of the sample can be calculated. Therefore for
the initial doping level after annealing, which corresponds to the thick olive green RS(T )
curve in Fig. 3.3, the carrier density of the sample nS0 ' 8.9139×1014 cm−2. While
the sheet carrier density of the highest n-doping level, represented by the highest red
RS(T ) curve in Fig. 3.3, nS(max) ' 0.7237×1014 cm−2. Therefore space charge doping
provides an effective electrostatic doping method for a wide range of carrier density in
2D materials.
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a

b

Figure 3.6: Hall coefficient as a function of magnetic field RH(B) for the initial doping a, which corresponds to
the thick olive green RS(T ) curve in Fig. 3.3, and for the highest n-doping b, which corresponds to the highest
red RS(T ) curve in Fig. 3.3. The thick red lines in both the two figures shows the linear fit with the program
Origin.
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3.3 Analysis and discussion

3.3.1 Determination of doping level

SIT is realized by tuning the sample’s doping level with space charge doping technique.
The immediate challenge, elusive even in bulk high Tc superconductors, is to determine
the doping level. In a simple single band model the Hall coefficient RH and the elemen-
tary charge q directly give the charge carrier concentration (or doping level) p = 1/qRH .
High Tc superconductors can certainly not be classified as such and indeed RH is anoma-
lously temperature dependent.

Drude model

One possible estimation is through the classical Drude model where conductivity σ is
given by the product of the elementary charge q, the mobility µ and the carrier density
n, that is σ = qµn. Based on this, attempts have been made to determine the carrier
concentration using p = S/RS(Tf ), where S is an empirically determined constant and
RS(Tf ) the sheet resistance at a fixed temperature well above Tc (we choose RS(200K)
in this thesis) [80, 82]. The constant S is determined by the maximum of the supercon-
ducting dome which is nominally set at 0.16 holes/Cu. In the inset of Fig. 3.7 a we show
the relation between the Hall (1/qRH) and Drude (1/RS(Tf )) estimates of doping for
device F (the sample studied in this thesis) and devices C, D and E used in the earlier
studies in our lab [94]. Two deductions can be made. The relation is linear, implying
simple proportionality. Device C, known to have high disorder and low mobility has a
markedly different slope, showing the importance of mobility. If the empirical constant
S is adjusted for each sample as in Fig. 3.7 a, we can hope to determine p = S/RS(Tf )
as shown on the x-axis while maintaining the near linear relation with inverse Hall co-
efficient. The following procedure is taken to check the feasibility of this estimation.
In Fig. 3.7 b the critical temperatures of these devices are shown as a function of the
above estimation of doped charge. The generic dome shape is flattened and skewed,
with superconductivity starting at a low doping of 0.028, and stretching above p = 0.3,
well beyond the limits of the generic phase diagram. Though this result is coherent with
a similar recent determination [53] we conclude that this estimate of doped charge is
unsatisfactory.

Empirical formula

Another often used approach seeks to estimate doped holes (p) per Cu atom with an
empirical Tc(p) relation [45] for the region of the superconducting dome.

Tc(p)/Tc(popt) = 1− Z(p− popt)2 (3.1)

where Tc(popt) is the maximum critical temperature measured corresponding to
the optimal doping level and Z is a scale factor empirically determined to be 82.6
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a

b

Figure 3.7: Hall coefficient and inverse sheet resistance for estimating doping. a Dependence of 1/qRH on
p = S/RS(Tf ) for device F of this work and devices C,D and E of our earlier works. Inset: Dependence of
1/qRH on 1/RS(200 K) showing linear behavior. b Superconducting dome as a function of Tc and of doping p as
calculated above for devices C, D, E and F. Inset: Critical temperature Tc as a function of 1/RS(200 K) showing
a linear dependence in the neighborhood of zero Tc.

[124, 121, 125]. In this approach, in accord with the generic phase diagram, super-
conductivity exists in the region p ∼ 0.05 to p ∼ 0.27 holes/Cu. The dome shape
implied by this relation is experimentally verified (notwithstanding local deviations for
example in YBCO around p = 0.12 doping), in particular for 1 u.c. BSCCO [94]. The
problem in our case is that doping has to be determined for non-superconducting as well
as superconducting regions. To overcome this hurdle we seek inspiration from the sim-
pler approaches discussed above. Firstly we remark (inset Fig. 3.7b) that when the Tc
in the superconducting region is plotted against the inverse sheet resistance at 200 K, a
simple linear relationship is found. Extrapolating this relation to the nearby non super-
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conducting region, we replace Tc by S/RS(200 K) in equation 3.1 where S is the value of
the slope of this linear dependence. We thus have a coherent and continuous estimation
of p across the SIT which is compatible with the generic high Tc phase diagram. This
method should be applicable to other high Tc materials. In Fig. 3.8 we show the part
of the phase diagram around the beginning of the superconducting dome, relevant to
device F. Superconductivity develops according to this estimation at a critical doping
of p ∼ 0.057. In the inset of Fig. 3.8 we show the superconducting phase diagrams for
devices C,D,E and F, which are compatible with the generic phase diagram by construc-
tion and exhibit a smooth variation with an optimum doping of 0.16 holes [94, 110].
Remarkably, in a recent study [126] an estimation of doped holes in bulk BSCCO using
Fermi surface volume measured by photoemission measurements finds that the dome in
BSCCO is smooth, with a range corresponding to our observations and in agreement
with the generic high Tc shape.

Figure 3.8: Superconducting dome (phase diagram) as a function of critical temperature and doping. Inset:
Superconducting phase diagram for four devices C,D,E and F.
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3.3.2 Finite-size scaling of QPT

a

b

c

Figure 3.9: Finite-size scaling of QPT. a Doping dependence of isothermal sheet resistance from 7 K to 20 K. The
dots are extracted from RS(T ) data and the lines are splined guides for the eye. b Universal finite-size scaling
function at the SIT with t = T−1/νz . c The linear relation between T and t and between 9 K and 15 K plotted
on a log-log scale. From the slope we obtain the critical exponent product νz = 1.57± 0.10.
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A superconductor-insulator transition (SIT) in two dimensions is a continuous quan-
tum phase transition (QPT) at absolute zero temperature driven by external parameters
like disorder, magnetic field or carrier concentration. In this thesis, the carrier concen-
tration is tuned by space charge doping technique to realize this QPT. Based on the
estimation method discussed in last section 1.3.1, we can set about investigating the
existence of possible scaling relations corresponding to a quantum phase transition in
our 1 u.c. BSCCO device at the SIT. This implies that all sheet resistance curves of Fig.
3.3 should collapse onto a single finite-size scaling function

RS = Rcf(|x− xc|T−
1
νz ) (3.2)

where Rc is the critical resistance at the limit x→xc and T → 0. f is the universal
scaling function and x is the tuning parameter, in our case the doping level p. The
correlation length exponent ν and the dynamic critical exponent z, together with the
critical resistance Rc encode the nature of this transition [80, 82].

Figure 3.10: Illustration of extraction of isothermal sheet resistance. The intersection points between the thick
black dotted line and all the sheet resistance curves represent all the sheet resistance values at the same temper-
ature.

Fig. 3.9 shows the results of finite-size scaling analysis of the SIT in device F. The
first indication of critical behaviour can be found by plotting the isothermal sheet re-
sistance of the data in Fig. 3.3, not as a function of temperature, but as a function of
the doping p. This is done in Fig. 3.9a. Each temperature dependence of the sheet
resistance curve in Fig. 3.3 is recorded at a fixed doping level, because the doping level,
tuned by space charge doping at high temperature, can be fixed by removing the mo-
bility of the Na+ ions when cooling to room temperature or below. So we can extract
the value of the sheet resistance at a fixed temperature from each RS curve (or each
doping level), and this procedure can be explained in Fig. 3.10. Then these isothermal
sheet resistance values can be plotted as a function of doping level, which constitutes
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one RS(p) curve in Fig. 3.9a. Fig. 3.9a shows the isothermal RS(p) curves between 9 K
and 20 K (a total of 30 different temperatures were used), all curves intersect at a single
point which corresponds to the critical doping pc ∼ 0.057 where superconductivity sets
in. The corresponding critical sheet resistance is ∼ 6.85 kΩ.�−1.

cba

Figure 3.11: Illustration of renormalization process for the extraction of the critical exponents. a Isothermal sheet
resistance as a function of p − pc, RS(p − pc). The thick dotted curve is the target curve f , on which all the
isothermal sheet resistance should collapse. Here, RS(12K) is chosen as the target. Red curve is the isothermal
sheet resistance curve at 12 K. b The same data as a, but as a function of |p− pc| with x-axis en log scale. c The
same data as b with the abscissa contracted by the coefficient t depending on the temperature. By definition,
t(12K)=1, and t(15K) is optimized to maximum the overlap of the two curves.

In Fig. 3.9b we investigate the existence of a single finite-size scaling function f for
data between 9 K and 15 K by using as the abscissa |p− pc|t. For each isothermal curve
in Fig. 3.9a (a total of 30 different temperatures), a scaling factor t is optimized such
that it collapses onto f , chosen as the 12 K sheet resistance variation, as discussed below
and shown by the dashed line. This renormalization process is explained in Fig. 3.11
with RS(15K) as an example. If the scaling is valid, the corresponding experimental
points of Fig. 3.9a should collapse onto the scaling function, as indeed observed in Fig.
3.9b.

The power law relation between T and t between 9 K to 15 K is shown in Fig. 3.9c.
A perfect linear relationship is seen in a double logarithmic plot since all scaling factors
t should be of the form t = T−1/νz based on the equation 3.2. From the slope we obtain
the critical exponent product νz = 1.57 ± 0.10 similar to the νz = 1.5 found in LSCO
[80]. However in YBCO (νz = 2.2 [82]) and BSCCO (νz = 1.53, 2.45 and 2.35 for three
different devices [53]) contrasting results have been found.
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Finite-size scaling from 7 K to 20 K

In Fig. 3.12 we show the same scaling analysis between 7 K and 20 K. All sheet resis-
tance collapse again onto a single function, which shows that critical sheet resistance Rc
= 6.85 ± 0.1 kΩ.�−1. Then we also plot the relation between T and t between 7 K and
20 K on a double logarithmic scale, as shown in Fig. 3.12b. We remark that deviations
from linearity are found at the two extremes. The possible reason can be that for higher
temperatures (> 15 K) thermal fluctuations may overshadow the QPT while at lower
temperatures (< 9 K) defect related weak localisation phenomena may alter it, justifying
our choice of the 12 K curve for the scaling function f .

b

a

Figure 3.12: Scaling analysis between 7 K and 20 K. a Scaling of the same sheet resistance data as in Fig. 3.9a
as a function of |p − pc|t with t = T−1/vz . b The linear relation between T and t from 7 K to 20 K on a
double logarithmic scale. Deviations from linearity are found at extremes. The possible reason can be thermal
fluctuations at high temperature and defect related to weak localization at low temperature.
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Validity of scaling at two extreme temperatures

The zero temperature quantum critical point should imply that data at the lowest tem-
peratures is the most indicative of the physics in question. However just as quantum
critical aspects may be blurred on the high temperature side by thermal fluctuations,
the ground state may also be overshadowed on the low temperature side by effects
such as weak localisation which can become dominant before this ground state can be
reached through the critical point and across the quantum phase transition. This or
other analogous effects will always be present in a real sample. So we argue for a domain
of temperatures not too low and not too high where the effects of the quantum phase
transition are the most evident. Moreover, it is the scaling process which allows us to
determine this domain as shown by the two ranges we have used (7K-20K and 9K-15K).
In particular for the data in the range 7K to 9K, it can be clearly seen (Fig. 3.12b), that
νz, which is given by the local slope, is much higher than 1.5. This directly results from
the RS of the insulating phases rising higher than the ‘expected value’ for temperatures
below 9K and indicating that it is indeed a localisation like phenomenon which causes
this discrepancy. In high Tc samples such behaviour is clearly visible in earlier work [82].

We cannot exclude the possibility of a flattening of the superconducting dip at lower
temperatures and a quantum superconductor-metal transition invoked by Kapitulnik et
al. [127]. But even this transition and interpretation is only valid untill a certain low
temperature limit. There is no guaranty that RS stays finite at still lower and unattained
temperatures and in fact for 2D samples it should become infinite as temperature is con-
tinuously lowered. However, as successfully argued in reference [117] this could mean
double critical points with no hierarchy of one critical point over the other but a change
in criticality according to the coherence length picked out by the temperature and the
control parameter in an inhomogeneous sample.

In high Tc samples with pairing in the underdoped region expected to persist to high
temperatures and a high Tc at optimal doping, we can expect quantum critical effects
to persist at temperatures higher than in metals where a superconducting transition is
achieved at a few Kelvin or a few tenths of a Kelvin. Indeed in YBCO [82] the low
temperature data is not used for scaling either.
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3.4 Conclusion

The superconductor-insulator transition has been uniquely characterized as having a
non-zero and finite resistance phase corresponding to a ‘horizontal’, temperature inde-
pendent resistance [76] which is also the critical resistance. What is the nature of the
superconductor-insulator transition found here?

The superconducting state is characterized by a complex order parameter. A con-
tinuous quantum phase transition is characterized by the continuous change of this
order parameter across the transition (giving rise to power laws and scaling) and criti-
cal fluctuations of the amplitude or the phase of the order parameter at the transition.
Amplitude fluctuations imply the breaking down of pairing above the critical temper-
ature and the transformation of Cooper pair bosons to fermions as in superconductors
described by the Bardeen-Cooper-Schieffer (BCS) scenario. The fermion state may be
a metal or even an insulator if in the latter eventuality the fermions are localized by
disorder or interactions. Phase fluctuations in superconductors are typically described
in the Berezinskii-Kosterlitz-Thouless scenario by the duality between Cooper pairs and
vortices which are both bosons. In the superconducting state, vortices (associated with
phase ‘slips’ and dissipation), are bound in pairs and localized while Cooper pairs are
mobile. The opposite situation prevails above the critical temperature and the system
is insulating. If this duality is perfect, a simple argument [7] establishes the critical
resistance threshold between the superconducting and insulating states at the quantum
resistance with pair charge: RQ = h/(2e)2 = 6.45 kΩ.�−1. However deviations from
perfect duality generated by the nature of the interaction or factors like disorder are to
be expected [76]. Thus the measurement of the critical resistance and the finite scaling
exponents of the continuous QPT can inform us about the all-important nature of the
superconducting state. Simple models exist for some cases and are used for defining the
universality class, for example νz = 4/3 in the classical percolation model, 7/3 in the
quantum percolation model [128, 84] and 2/3 in the 3D XY model [129].

Our result of Rc = 6.85 kΩ (± 0.10 kΩ) which is reasonably close to RQ found
in LSCO [80] favors the picture of a phase fluctuation driven transition and a strong
coupling pairing interaction for high Tc superconductivity at the underdoped limit as
opposed to the weak coupling scenario in BCS superconductors. We find νz = 1.57±0.10
for the finite scaling exponent product describing the measured transition. This again
compares favorably with the value of 1.5 [80] in LSCO and 1.53 in one BSCCO device
[53], implying the same universality class for these compounds. A quantum critical point
should imply that data at the lowest temperatures is the most indicative of the physics
in question, so scaling of data at higher temperatures should be treated with caution.
Just as quantum critical aspects may be washed out by thermal fluctuations, the ground
state may also be overshadowed at lower temperatures by effects such as weak localisa-
tion. Other effects such as a low temperature non-zero resistance metallic state instead
of a superconducting one [127] or a double critical point [117] may also appear. However
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the clear separation in our data between the insulating and the superconducting regimes
at the critical conductivity corresponding to RQ = h/(2e)2 provides support for the
existence of the quantum phase transition and critical point [130].

We retain several other positives from this work. The use of a 1 u.c. sample ensures
strict two dimensionality and makes a direct link with our earlier work on similar samples
[94, 110], notably with respect to the phase diagram and rigorous estimation of doping.
The space charge doping method avoids problems which may arise in liquid dielectrics
[119, 112, 23], ensures all measurements on a single, low disorder, good quality sample
and removes the sample dependent uncertainty that comes from chemical doping.

73



3.4. CONCLUSION

74



Chapter 4

2D superconductivity: Effects of
Inhomogeneity and Fluctuations
with Simulations and
Experiments

In this chapter, I will first give a brief introduction on the superconducting transition
and the underlying information extracted from its sheet resistance curves as well as the
corresponding derivative curves. Then Berezinskii-Kosterlitz-Thouless (BKT) transition
and the phenomena as well as the analytical method related will be described in section
4.1. In section 4.2, simulation process is explained. And finally, the analysis of transport
measurements data will be given in section 4.3. (Johan BISCARAS did the simulations
for the contents of this chapter.)

4.1 Introduction

Transport measurements are macroscopic but the superconducting transition is inevitably
dependent on mesoscopic and nanoscopic detail. Can simulations of the superconducting
transition, coupled with transport measurements, bring understanding about phenomena
happening at these scales? To answer this question, we base ourselves on measurements
of the superconducting transition as a function of electrostatic doping in 1 unit cell thick
samples and analysis of the width and shape of this transition. The 3 nm thickness
allows for uniform electrostatic doping which is a convenient and defect-free means of
bringing about continuous change in doping in the same sample. The use of an ultra-thin
sample also facilitates analysis on two fronts. Firstly, in two dimensions fluctuation phe-
nomena related to the superconducting transition are exacerbated, making the analysis
of changes in widths easier. Secondly aspects related to percolation and clustering can
be easily simulated and compared with analytical models.
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4.1.1 The superconducting transition

A superconducting transition in ideal bulk material is an abrupt transition with a van-
ishing width. As shown in Fig. 4.1, the typical measured superconducting transition
in our samples as seen in the temperature dependence of sheet resistance R(T ), has a
width clearly seen from the dRS/dT derivative curve. The main mesoscopic or local
contributions to this width are fluctuations and inhomogeneity. Sample inhomogeneity
can originate in defects or heterogeneous doping resulting in a macroscopic doping dis-
tribution and local variation of critical temperature. In the extreme case, the sample
may also include non-superconducting regions. To discuss the effects of fluctuations and
inhomogeneity, we identify two regions from the dRS/dT curve, the high temperature
(HT) and low temperature (LT) sides. These two sides are separated by the maximum
of the derivative curve as presented in Fig. 4.1. It is our working hypothesis that the LT
side is influenced principally by inhomogeneity and the HT side principally by fluctua-
tions. This chapter will examine this hypothesis by comparing extensive 2D simulations
of the superconducting transition in the presence of these local perturbations which will
be analysed in the background of measured transition.

HTLT

Tmax

Figure 4.1: Schematic view of temperature dependence of sheet resistance curve RS(T ) (left) and its related
derivative curve dRS/dT (right). The identified higher temperature (HT, red) and lower temperature (LT, blue)
are indicated on the right figure, separated by the green dotted line indicating the maximum of the derivative
curve.

The effect of fluctuations is always present in experiments. However this effect can
be included or excluded from the simulation based on established models. Thus by com-
paring the two the the effect of fluctuations can be quantified.

Inhomogeneity englobes different aspects. Defect induced inhomogeneity can deteri-
orate critical temperature and mobility. Heterogeneous doping which could be an intrin-
sic feature in these materials implies a probability distribution of critical temperatures
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which we have examined in detail in simulations later in this chapter. In experiment
an example of inhomogeneity from the reference [131] is shown in Fig. 4.2. We can
observe that in slightly underdoped BSCCO-2212, superconductivity is clearly granular
in nature, with homogeneous superconducting domains of ∼3 nm. The influence of such
non-superconducting domains on the superconducting transition can of course be exam-
ined in simulations and can be also studied experimentally using an external magnetic
field which generates vortices. These can then be switched on or off with the magnetic
field. We show later the influence of all these parameters.

Figure 4.2: STM gapmap of a slightly underdoped BSCCO-2212 sample (Tc = 79 K), showing an area of 56 ×
56 nm and colour scale spanning the range 20 ± 64 meV. [131]

4.1.2 Berezinskii-Kosterlitz-Thouless transition

The superconducting transition in two dimensions is expected to be a Berezinskii-
Kosterlitz-Thouless (BKT) transition [132, 133, 134], which is related to the non-trivial
topological defects (vortices) rather than continuous symmetry breaking. Such a transi-
tion has been experimentally observed in superfluid Helium films [135], layered magnets
[136], two dimensional conventional superconductors [137, 138, 139], as well as high-Tc
superconductors [140, 141]. The BKT transition is universally described by the 2D XY-
model as discussed in these references where the system is considered to be a simple
square lattice with spacing a. The Hamiltonian of the system is given as:

HXY = −J
∑
i,j

cos(θi − θj) (4.1)
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where θi is the angle relative to some fixed axis, i(j) represent the sites of the square
lattice in two dimensions, and J is the spin-spin coupling constant [133, 142]. The U(1)
symmetry of the phase field θ(r) is admitted in this XY-model, and it cannot be broken
at finite temperature [140]. However, at low temperature, the system can be described
as “stiff” with respect to the fluctuations of the variable θ [142]. The relevant transition
is driven by vortex-like topological excitations [141, 143]. If we consider a single vortex,
the Helmholtz free energy is given by

E = F − TS = (πJ − 2T )ln
L

a
(4.2)

where E is the energy and S is the entropy of a single vortex excitation [133, 142]. In
2D, both of them are logarithmically dependent on the size L of the system. A critical
temperature, which is called the BKT temperature, is extracted from this formula:

TBKT '
πJ

2
(4.3)

This is the temperature below which the vortices are bound together in vortex-
antivortex pairs. When T > TBKT , free vortices proliferate and destroy the quasi-long-
range order [142, 144].

For a 2D superconductor, the energy scale corresponding to the coupling J in the
XY-model is defined as the superfluid stiffness, which is associated with the areal density
ns

2d of the the superfluid electrons [141, 142, 145]:

Js =
~2ns

2d

4m
=

~2c2d

16πe2λ2
(4.4)

where d is the thickness of the 2D superconductor, m is the effective mass of the
carriers, and λ is the magnetic penetration depth. In the case of conventional 3D su-
perconductors, Js(T ) vanishes continuously to zero at the superconducting transition
temperature [145]. In 2D the BKT superconducting transition is governed by vortex-
antivortex proliferation, so that one would expect that the superfluid density discontin-
uously jumps to zero at TBKT [142, 145, 146].

4.1.3 Fluctuation phenomena and 2D HTS

Fluctuations are more easily observed in high-Tc superconductors than in conventional
superconductors due to the small coherence length of a few nm, or three lattice constants
in the plane, and even less in the perpendicular direction [147]. These fluctuations, which
have been proved to have a strong 2D character in several cuprates [141, 148, 149, 150],
are thought to be of Gaussian (amplitude and phase) nature [141, 147].
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Figure 4.3: Paraconductivity of LSCO film with doping level x= 0.07. a The green square symbols are temperature
dependence of ∆σ

σn
without magnetic field (H = 0), which are extracted from experimental data (details are

explained in [141]). The solid curve, as well as the dotted curve, is a fit to formula 4.5 with reasonable parameters
TBKT , A and b. b ρ(t) at H = 0. TBKT=3.9±0.1 K, is taken as the temperature of zero resistance on the curve.
GL temperature TC is determined to be the temperature where dρ/dT is maximum (inset).

In 2D, the theory to describe the correspondence between the paraconductivity (or
resistivity) in 2D superconductors and the fluctuation correlation length has been estab-
lished [140, 141]. When approaching the superconducting transition from T > TBKT ,
the formula which is usually used to describe the paraconductivity due to vortices [141]
is given by

∆σ

σn
=

(
ξ(T )

ξ0

)2

(4.5)

where ∆σ = 1
ρ(T )−

1
ρn(T ) is the temperature dependence of the contribution of super-

conducting fluctuations to paraconductivity (ρ and ρn are respectively the measured and
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normal-state resistivity), and ξ(T ) is the temperature dependence of superconducting
correlation length. Then if we follow the Aslamazov-Larkin [? ? ] (AL) contribution to
GL fluctuations, which is widely adopted for describing fluctuating Cooper pairs above
the mean-field temperature TC (also known as the Ginzburg Landau Temperature TGL),
the coherence length will diverge following a power-law ξ2 ∼ (T − TC)−1 [140, 141]. In
addition, in the scenario of the BKT transition, the correlation length can be defined in
terms of the inverse of the vortex density (nF ), thus we can have the relation ξ2≡ 1

2πnF
.

According to Halperin and Nelson’s observation, the BKT transition is supposed to occur
only in a range of temperature t � tC [151], where t and tC are defined as below

t =
T − TBKT
TBKT

, tC =
TC − TBKT
TBKT

. (4.6)

Halperin and Nelson also propose an interpolating formula to describe the transition
between the higher temperature GL and the lower temperature BKT regimes:

∆σ

σn
=

(
2

A
sinh

b√
t

)2

, T & TBKT (4.7)

where A and b are constants of order 1 [140, 141, 151].

Fig. 4.3 from [141] shows the above analysis applied to in-plane transport measure-
ments in thick LSCO films (d ≈ 103 Å), where it is argued that low dimensionality
intervenes because of the 2D nature even in bulk. The authors conclude that the BKT
regime exists at TBKT < T < TC and for T > TC , a crossover to the GL regime
occurs.

4.1.4 Effects inhomogeneity and 2D HTS

Mesoscopic inhomogeneity has a crucial effect on the BKT transition in two dimensions
by considerably broadening the transition width [140, 143]. Spatial variations can oc-
cur not only in the local density of states but also in the local superconducting energy
gap [152]. Such inhomogeneity on the nanoscopic scale has been revealed both in the
conventional superconductors [153] and in cuprates [154] by scanning tunneling spec-
troscopy (STS). However, in practice, the direct observation of the BKT transition is
rather challenging. Thus indirect analysis on the data of transport measurements, such
as temperature dependence of sheet resistance curves R(T ) and I-V curves, has been
intensively studied [140, 153, 154, 155, 156, 143]. Theoretical work [157, 140, 143] has
also been used for comparison with experimental results.

To study the effect of inhomogeneity, Benfatto and co-workers [140] proposed an in-
terpolation formula, based on the original interpolation formula introduced by Halperin
and Nelson [151] for paraconductivity, to describe the superconducting transition be-
tween the Ginzburg and Landau (GL) fluctuations at higher temperature and the BKT
fluctuations at lower temperature.
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Figure 4.4: Analysing different rgimes in the transition, from [140]. Above TBKT , the regime is governed by GL
fluctuations. BKT fluctuations are restricted to a narrow range of temperature. A considerable tail results from
inhomogeneity of the system.

R

RN
=

1

1 + (∆σ/σn)
=

1

1 + (ξ/ξ0)2
(4.8)

where RN is the resistance of the normal state, and ξ(T ) is the temperature depen-
dence of the superconducting correlation length. Here

ξ

ξ0
= e

µ(T )
2kBT

(
L

ξ

)πJ(T )
2T

, T . TBKT (4.9)

ξ

ξ0
=

2

A
sinh

(
b

√
TBKT

T − TBKT

)
, T & TBKT (4.10)

where the parameter A is a constant of order 1, and b = 2.1
√

(TGL − TBKY )/TBKT ,
which is deduced from renormalization-group theory calculation of ξ(T ) near TBKT [140].
This interpolation formula gives an idea of the relative values of TGL (or TC) and TBKT ,
and can be used to study the impact of inhomogeneity on the tail of the resistance
transition [140]. Fig. 4.4 represents this approach introduced by reference [140]. One
possible way to describe the spatial inhomogeneity of the system is to use a Gaussian
profile for the probablility distribution of critical temperatures[140, 141].
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P (J) =
1√
2πδ

e−
(J−J0)2

2δ2 (4.11)

where J0 is a constant value determined for the homogeneous case. In the homoge-
neous condition, the width of this Gaussian contribution is zero, and only the value J0 is
permitted. J0 refers to the density of superfluid electrons at zero temperature [140, 141]
and can be calculated using BCS theory, where the superconducting gap is evaluated to
be ∆(0) = 1.76kBTc.

J0 =
~2nS

2D

4m
≈ ~
e2RS

π∆(0)

4
(4.12)

where nS
2D is the superfluid density in two dimensions, and m is the effective mass

of the carriers. In this work we choose a gamma distribution for the probability distri-
bution of local Tc rather than a Gaussian distribution as it is more general, especially
in terms of asymmetry. The details are given in the next section.

Figure 4.5: Comparison between the resistivity (R(T )/Rn(T = 20 K) black) measured in LSCO films (x=0.07)
and the resistivity theoretically deduced from formula 4.8 both in the inhomogeneous (red) and homogeneous
(blue) case. The theoretical data R(t) is determined as the solution of a random-resistor-network problem in a
so-called effective-medium approximation. [141]

Fig. 4.5 from [141] shows this approach including both inhomogeneity and fluctua-
tions for analysing in-plane transport measurements in LSCO with x = 0.07. Though a
quantitative fit over the whole temperature range is not possible, it can be seen that the
contributions of inhomogeneity and fluctuations can be approached by such an analysis.

In conclusion, in 2D fluctuation phenomena and the effect of inhomogeneity are
exacerbated and significantly modify the shape of the superconducting transition. In
the following sections, we use a two dimensional grid of resistors for simulation and
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one unit cell thick BSCCO devices for the measurement of the width and shape of this
transition. Simulations using the explicit calculation of the sheet resistance of a 2D array
of resistors with resistance adjusted to different inhomogeneity landscapes is used along
with Effective Medium Theory for making deductions below the macroscopic scale. This
provides a means for using the superconducting transition as a tool for understanding
mechanisms related to fluctuations and inhomogeneity which are fundamental for many
superconductors.
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4.2 Simulations

In this section I will describe the model and results of simulations of 2D inhomogeneous
superconductivity, and then how the shape of the transition (width, tail) is affected by
different parameters. (Simulations done by Johan BISCARAS.)

4.2.1 Resistor network model

The resistor network

We model a 2D (super)conductor by a square grid of resistors. It is convenient to repre-
sent the network by a visual picture as shown in Fig. 4.6. On the picture each coloured
pixel represent simultaneously a node of the resistor network and the two resistors on
the right and below connected to it. For simplicity the two resistors within each pixels
have the same resistance value (i.e. each pixel is isotropic).

A

B

C

D

Figure 4.6: A resistance network represented by a bitmap image.

Without magnetic field, we can write Kirchhoff’s law of current conservation at each
node i, j:

Vi+1,j − Vi,j
Ri,j

+
Vi,j+1 − Vi,j

Ri,j
+
Vi+1,j − Vi,j
Ri−1,j

+
Vi,j−1 − Vi,j
Ri,j−1

= Ii,j (4.13)

where Vi,j is the potential voltage at the node i, j and Ii,j is the residual current in
the node. To calculate the global resistance of the whole network, we have to simulate
the injection of one unit of current on one node, and the extraction of the same current
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on another node. Which means Ii,j is zero for all i, j except for the injection and extrac-
tion nodes. Having set the Ii,j we can calculate the potentials Vi,j at each points.

In practice, the above image is 100 x 100 pixels, which means there are 10 000 nodes,
and so it forms a system of 10 000 linear equations, i.e. it is a matrix equation of type :

G·~V = ~I (4.14)

Where G is a 10 000 x 10 000 conductance matrix, and vector V and I represent the
vectors of potentials and residual intensities at each node.

To calculate the global resistance of the network we simulate a van der Pauw mea-
surement. The 4 corners of the network (A,B,C and D) are used as current leads and
voltage probes. In a first simulation, corners A and B are chosen as current injection
and extraction nodes respectively, while we “measure” the voltage drop between corners
C and D. Then a second simulation “measures” the resistance in the perpendicular di-
rection (by swapping the roles of corners B and C). The resistance is then calculated
with the standard vdP formula (section 2.3.1).

Superconductivity

To include superconductivity in the simulation, we first attribute to each pixel a value
of Tc, which is represented in the Fig. 4.7 in color scale of blue. Hence, considered
separately each pixel would have its own Resistance vs. Temperature characteristic, in
which we include Halperin-Nelson fluctuations (so Tc is really a TBKT ). For simplicity,
the normal resistance of each pixel is considered uniformly equal to 1, which gives:

R =
1

1 + [ 2
Asinh( b√

T/Tc−1
)]2

(4.15)

Where A is theoretically “of order 1”, and b is related to the vortex core energy. We
have chosen A=2 and b=0.1 uniformly across the grid.

We then choose a temperature T , and calculate the associated local conductivity
for each pixel since Kirchhoff’s law of current conservation concerns the conductance
matrix, not the resistance. Superconductivity is thus not invoked by zero resistance
pixels, but infinite conductivity. To avoid infinite values, the conductivity of each node
is limited to the maximum value of 1001, which is high enough compared to the nor-
mal state, but low enough to avoid numerical problems related to very large numbers.
Of course, we simulate as many temperatures as needed to obtain the global R(T ) curve.
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a

b

Figure 4.7: Same resistance network. a The shade of blue represent the local critical temperature of each pixel
from 0 to 1. On the right, the probability function (red line left) used to generate the colors of the resistance
network, and the actual histogram of the produced image (gray bars). The color bar indicate the correspondence
between color and temperature. b Two examples of R(T) for two pixels of local Tc = 0.85 (blue) and Tc = 1.0
(cyan).

4.2.2 Un-correlated Random Resistor Network

We first check the accuracy of our calculation. We simulate a non-random network, with
a known result, by setting all nodes homogeneously to a particular value of Tc. As shown
in Fig. 4.8, calculated resistance for a homogeneous Tc of 0.9 or 1.0 accurately represent
the continuous line of the Halperin-Nelson formula.

On Fig. 4.8, we have also represented the resistance calculated for the network with
each node having a randomly distributed Tc according to the probability distribution
shown in red. This distribution has been chosen because contrary to the more common
Gaussian distribution which extend to infinity, this distribution has a well-defined max-
imum critical temperature (here 1.0). It can also include various degrees of asymmetry,
a symmetric version would then resemble a Gaussian distribution. It is called a Gamma

86



CHAPTER 4. 2D SUPERCONDUCTIVITY: EFFECTS OF INHOMOGENEITY
AND FLUCTUATIONS WITH SIMULATIONS AND EXPERIMENTS

Figure 4.8: Simulation of RS(T ) curve (black) with 2 homogeneous networks with Tc = 0.9 (blue) and Tc =
1.0 (cyan). The simulated RS(T ) indicates an inhomogeneous network generated by the probability distribution
shown in red (right axis). Continuous curves are the direct Halperin Nelson formula for the homogeneous cases,
or the Effective Medium Theory calculation for the inhomogeneous case.

distribution whose formula involves Euler’s Γ function:

P (Tc) =
(Tc,max − Tc)k−1e

−(Tc,max−Tc)
θ

θkΓ
(4.16)

Finally, the black line in Fig. 4.8 has been calculated using the Effective Medium
Theory (EMT) [? ]. EMT gives an implicit relation between the randomly distributed
values of each nodes Ri with the global resistance R with the following formula:∑

i

P (Ri)
R−Ri
R+ αRi

= 0 (4.17)

Where P (Ri) is the probability distribution of the value Ri, and α = D − 1 with
D being the dimensionality. While an analytical formulation can be derived for specific
situations, we will compute it numerically. Given any distribution of Tc, we calculate
analytically at each temperature the actual resistance of each “node” from the actual
P (Ri). Then a simple dichotomy between 0 and 1 allows to converge to the solution R.
The resulting black curve closely matches the values obtained from the RN simulation.

Both models agree with conventional predictions of percolation in 2D that supercon-
ductivity sets in when half of the total cells are superconducting, i.e. the global transition
temperature is that of the median of the probability distribution. Fig. 4.9 presents the
results of EMT and RN for two probability distributions with the same transition tem-
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perature. The EMT and RN models also allow to disentangle the contributions from
fluctuations and spatial inhomogeneities. Indeed, we can see that above the maximum
Tc of the probability distribution, where all the paraconductivity comes from fluctua-
tions, the EMT and RN transition curves asymptotically match the transition from an
homogeneous sample with the same transition temperature with only fluctuations. This
result validates the approach to find the critical temperature of the inhomogeneous net-
work from high temperature paraconductivity alone, thus disregarding an eventual low
temperature tail in the transition.

Figure 4.9: EMT and RN comparison. a Two probability Gamma distributions of transition temperatures
generated to have the same median, but with different asymmetry and skewness. The median is designated by
the vertical dashed line. b Temperature dependence of uncorrelated Resistor Network calculation (RN symbols)
or Effective Medium Theory (EMT - lines) for the two probability distributions in a. An homogeneous sample
of same transition temperature (set at the median of P1 and P2) with only Halperion Nelson fluctuations is also
represented (dashed line). Inset Zoom of b in the fluctuation part.

Conversely, the presence or absence of a low temperature tail is not related to fluctua-
tions. Indeed, if fluctuations are excluded from the EMT calculations (i.e.: the transition
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of an homogeneous sample would be a sharp step from 0 to 1 as shown in Fig. 4.9) the
global transition temperature remains the same as with fluctuations and corresponds to
the temperature of the median probability as noted before. The absence of a pronounced
tail can thus be understood on the basis of inhomogeneities, which will be discussed fur-
ther below. In short, and as hypothesized in the introduction, the effect of fluctuations
should preponderantly be seen in the high temperature half of the derivative curve of the
transition while the effect of inhomogenity should be dominant in the low temperature
half of the derivative curve.

4.2.3 Inhomogeneous distribution and Temperature Derivative

Figure 4.10: Inhomogeneous distribution and Temperature Derivative. a and c Temperature dependence
of the resistance calculated from EMT with or without fluctuations for P1 distribution (a) and P2 distribution(c).
Symbols show the calculation directly from the integral of P1 (resp. P2) distribution with respect to temperature.
b and d Temperature derivative of the EMT curves from a (resp. c). The dashed line represent the P1 (resp.
P2) distribution with a factor 2.

Without fluctuations, the R(T ) curve can be calculated analytically directly from
the cumulative probability of critical temperatures, i.e. the mathematical primitive of
P (Tc), but restricted to above the median temperature (with a factor of 2 as we take
only half the weight of the distribution). This is summarized in the following equation:
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R(T > Tc) = 2

(∫ T

0
P (T )dT −

∫ Tc

0
P (T )dT

)
= 2

(∫ T

0
P (T )dT − 0.5

)
R(T < Tc) = 0

(4.18)

In other words, the derivative of the resistance with respect to temperature is a direct
probe of probability distribution, but only above the critical temperature as shown in
Fig. 4.10. Note that this only holds without fluctuations, but it still gives an important
result on the low temperature tail of the transition: if the median temperature is close
to the probability maximum of the distribution (which is the case for Gaussian and
Gamma distributions) the slope at the foot of the transition is high and there is no tail.
Conversely, a tail is bound to appear if the probability at the median temperature is
low/far from the probability distribution. This scenario cannot happen in a probability
distribution with only one mode, even with a very asymmetric Gamma distribution, as
it would mean that a substantial part of the density weight of the distribution is far
from the maximum.

Bi-modal distribution

As noted before, it is not possible to have a pronounced tail if all nodes in the EMT
are chosen in a probability distribution with only one mode. A probability distribution
with 2 modes (two local maxima) can however produce a tail. We consider here the ex-
treme case where the second maximum in the distribution represent non-superconducting
nodes with a critical temperature of zero. In this situation, the aforementioned relation
between cumulative probability and resistance (or equivalently probability density and
resistance derivative) holds provided we exclude fluctuations. We show in Fig. 4.11
that as the proportion of non-superconducting nodes increases from 0 to o.25 to o.5,
the median temperature shifts at lower temperature away from the maximum of the
distribution. Hence, a tail forms mechanically as the lower part of the transition now
coincides with the smaller probability weight. At 50% non superconducting nodes the
tail goes to zero temperature, and the derivative of the R(T ) curves describes completely
the probability distribution.

The agreement between EMT and RN simulations still holds with the inclusion of
fluctuations as shown in Fig. 4.12, in agreement with our previous statement that fluc-
tuations have little impact on the tail part of the transition.

Clearly it is not possible to completely de-correlate fluctuations from inhomogeneities
in experiments. However, by analyzing the derivative of EMT and RN simulations, it
does appear that the higher temperature part of the derivative peak in the experiments
is more related to fluctuations than inhomogeneity in the sample while fluctuations have
little effect on the appearance of the low temperature tail.
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Figure 4.11: Bi-modal distribution without fluctuation. a Temperature dependence of the resistance cal-
culated from EMT without fluctuations for P1 distribution, 75% of P1 and 50% of Pa (complementary weight is
set at zero temperature). b Temperature derivative of the EMT curves from a. The dashed lines represent the
P1 distribution with a factor 2 and 1.5. P1 is numerically identical to the 50% curve.

Spacial correlation effects

A bi-modal distribution of Tc is not the only mechanism for generating a low tempera-
ture tail in the R(T ) curve. We have performed several RN simulations with the same
probability distribution of Tc but with ordered or disordered spatial correlations which
of course decrease the randomness. With spatial correlations a pair of nearby nodes will
no more necessarily have a completely uncorrelated random Tc with a greater probability
of having similar local Tc.

In order to compare similar things, we will stick to the same size of network, and
the same probability distribution, but impose spatial correlations. In practice this is
achieved by taking a non-random network with a pattern and repeatedly twitching the
local Tc values until the probability distribution approximates the targeted distribution.
As we only change the local Tc by a small amount each time, the resulting pseudo-random
network conserve most of the features of the random network. The three networks shown
in Fig. 4.13 thus have almost the same distribution of Tc globally but are very different
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Figure 4.12: Simulation of RS(T ) curve with 2 inhomogeneous networks and their respective EMT calculations.
“100%” is the same network as in Fig. 4.8, while “50%” has been generated with the same shape of distribution
but with 50% of its weight moved to 0.

when comparing their spatial distributions.

The result of the simulation on these three networks is shown in Fig. 4.14. As shown
in Fig. 4.8, the uncorrelated network closely matches the result of the EMT calculation.
However, despite having almost the same Tc distribution, the correlated networks devi-
ate significantly from EMT. Note that since the only input of EMT is the distribution
of critical temperature, all three should have the same EMT result, which is evidently
not the case. This is explained by the fact that EMT ignores spatial correlations. In-
deed, the transition in the most “connected” network (blue diamonds) is steeper, while
it is broader in the less “connected” network (red circles). Remarkably, despite having
a steeper transition, the “connected” network shows a persistent low temperature tail.
Another important aspect is that all three coincide in the high temperature part, even
at temperatures below the purely fluctuating regime.

Of course correlated patterns can be infinitely varied but there is a common trend:
more “connected” networks have sharper transitions, with the exact shape depending on
the pattern. One special case is the case of “randomly” correlated network, in which we
only have short range correlations (patches) but no long range order. We give below two
examples of such randomly patchy networks (Fig. 4.15). The green symbols represent
a random network whose patches are allowed to superimpose on one another without
any correlation between patches (inset of Fig. 4.18 bottom right panel) while the or-
ange symbols represent quasi-uniformly distributed non-overlapping patches ( (inset of
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Tc

Figure 4.13: Two Examples of correlated-random resistor networks (left and right) having almost the same
probability density of Tc as the purely uncorrelated random resistor network (center), as shown by the plot. Note
that in some parts of the plots (0.4 to 0.8) all 3 are very closely matched, which is not an accident: the left and
right networks were generated using the actual histogram of the network shown in the center.

Figure 4.14: Simulations and EMT calculations of the uncorrelated network (black), and two spatially correlated
networks (red and blue) as shown in Fig. 4.13.
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Figure 4.15: Simulations of two networks with short range correlation but no long range order, compared with
the EMT. More explanations are given in the main text.

Fig. 4.18 bottom left panel)). It appears unsurprisingly that the random patch network
(green symbols) is quite close to the purely random network (represented here by the
EMT). However, the quasi-uniformly distributed patch network (orange symbols) has a
significantly “connected” characteristic.

In figure 4.16 we show the derivatives of the R(T ) curves obtained for 6 simulations
of resistor networks, with or without short/long range correlations and more or less
connectivity. As we will discuss later, the shape of the derivative in more “unconnected”
networks does not seem to be compatible with experimental results. However, the other
examples display only subtle differences.
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d

b

c

a

e f

Figure 4.16: Simulations of the R(T ) curves of 6 networks compared with the EMT, and their temperature
derivatives. a non-spatially correlated network. b short range correlation. c and d more “unconnected” networks.
e and f more “connected” networks
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4.2.4 Anisotropy

Since we are simulating the experimental van der Pauw measurement, we will also in-
vestigate the anisotropy between the horizontal Rh = VAB/ICD and vertical resistances
Rv = VBC/IDA (Fig. 2.13).

Firstly, we can safely say that an homogeneous resistor network is perfectly isotropic
throughout the transition. It follows that, as real samples do present anisotropy, they
are unlikely to be homogeneous.

Secondly, in theory a perfectly homogeneously randomized resistor network should
also be isotropic throughout the transition, but in practice, some non-spatially correlated
networks do appear to have significant anisotropy in the RN simulation. We show as
an example in Fig. 4.17 (top and middle pannels) two non spatially correlated networks
with the same probability distribution and displaying various degrees of anisotropy in
the middle of the transition. The presence of a bi-modal distribution (bottom panel)
gives similar results. This anisotropy may also result from the finite (and quite small)
size of the network that may allow substantial anisotropy to develop. However, more
simulations on bigger networks would be required to verify that possibility.

Finally, inhomogeneity does appear to enhance anisotropy but not in a systematic
way. Indeed, the anisotropy ratio appears quite unpredictable, as shown for several
spatially correlated networks in Fig. 4.18. Furthermore, these simulations may suffer
from the same size limitation problem as the non-spatially correlated ones. Hence, it is
difficult to draw conclusions on origin of the resistance anisotropy in real and simulated
samples.

In conclusion, the resistor network model is used to simulate the vdP resistance
measurement of inhomogeneous superconductivity in two dimensions. The EMT curve
accounts well for random inhomogeneity in 2D. The shape of the resulting supercon-
ducting transition is affected by multiple parameters: the probability distribution, the
eventual presence of non-superconducting parts, the presence of long-range or short
range correlations. A significant tail can result from a fraction of non-superconducting
part in the network and/or spatial correlations. The connected nature and eventual
long-range order of these correlations also influences the measurement. However, the
presence or absence of a tail seems not related to the fluctuations. Fluctuations mainly
appears in the higher temperature part of the derivative peak. To conclude this part
on simulations, the effect of fluctuations is preponderantly seen in the high temperature
half of the derivative curve of the transition. The effect of inhomogenity is dominant in
the low temperature half of the derivative curve.

In the next section, I will compare these models with the curves extracted from the
experimental data of our one u.c. BSCCO samples.
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Figure 4.17: Uncorrelated random networks, two different mono-modal networks (top, middle), and a bi-modal
half superconducting network(bottom).
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Figure 4.18: Simulation of several different spatially correlated networks. Note that in the following graphs we
kept all data for the Rh/Rv ratio, even below Tc (which is not possible in real samples).
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4.3 Simulation and experimental analysis comparison

In this section, we will analyse the data of three one u.c. BSCCO samples at their
optimal doping (∼0.16). The transport measurement data are studied using the ratio
RS(T )/RN (T ) (RN normal-state resistivity), the derivative of RS(T )/RN (T ), as well as
the anisotropy of the RS measurement for understanding mechanisms related to fluctua-
tions and inhomogeneity in the light of the understanding gained form the simuations in
the preceding sections. The samples used in this section were fabricated with the same
method introduced in the previous chapters, but without annealing in the air.

4.3.1 Temperature derivative

The temperature dependence of sheet resistance curves RS(T ) and normalized resistance
curves RS/RN of three one unit-cell BSCCO samples (labelled C, D, E) at their optimal
doping (∼0.16) are shown in Fig. 4.19. The form of the normal-state resistance RN (T )
is determined as RN (0) + BTm (B and m are constants). The critical transition tem-
peratures Tc, defined here as the temperature where the sheet resistance vanishes, are
respectively 50.4 K, 80.4 K and 80 K for sample C, D and E.

Sample C Sample D Sample E

Figure 4.19: Analysis of experimental data. above Temperature dependence of sheet resistance RS(T ) (left,
black) and its normalisation to the normal-state RN (right, red). below Temperature derivative of RS/RN from
the curves above. The dashed lines represent the maximum of the derivative curves.

The corresponding temperature dependence of the derivative curves is calculated
for sample C, D and E. The Tmax, which corresponds to the peak of the temperature
derivative curves, is respectively approximately 61 K, 86.2 K and 84.5 K respectively
for samples C, D and E. Sample C is a disordered inhomogeneous sample which leads
to a low critical temperature at optimal doping while both D and E are high quality
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samples [94] and can be compared to each other. The resistive transition in sample D
is also measured in the presence of a perpendicular magnetic field. When an external
magnetic field is applied normal state vortices corresponding to flux lines appear in an
ordered lattice penetrating the sample. The temperature dependence of the sheet resis-
tance curves and the normalization to the normal-state RS/RN is shown in Fig. 4.20. It
can be clearly observed that with higher magnetic field, both the width and the tail of
the sheet resistance curve increase. Hence Tc decreases a lot, with the values of 80.4 K
(B=0), 64 K (B=1 T), and 58 K (B=2 T). This change is qualitatively similar to that
in Fig. 4.11, which shows the effect of non-superconducting regions in the network.

a

b

c

Figure 4.20: Magnetic field and 2D superconductivity. a and b Temperature dependence of sheet resistance
RS and their normalisation to the normal-state RS/RN of 1 u.c. BSCCO sample (D) at optimal doping with
different magnetic field. c Temperature derivative of the curves RS/RN in b.
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Several qualitative conclusions may be reached by studying the transitions and the
derivatives, in the light of our earlier findings from simulations:

1) The transitions in the high quality samples D and E are sharp and imply not
only relatively homogeneous samples with a narrow probability distribution of critical
temperatures, but also eventually a ’connected’ nature of the underlying network for any
inhomogeneity if present.

2) The transition in sample C with a lower TC is logically broader. However the
derivative curve remains peaked implying underlying connectivity in the inhomogeniety.

3) The extent of the high temperature (HT) half of the peak of the derivative curve
is about 20K for the three samples. The extent of the low temperature (LT) half of
the peak is about 10K for sample C while it is 3-4K for samples D and E. This tells
us that the HT part of the derivative curve is unchanged in the three samples. Our
understanding being that this part is dominated by fluctuations, this means that the
associated fluctuation regime is identical, which is not a surprise given that the material
and the doping level are the same. When inhomogeneity increases it is the extent of
LT half of the peak of the derivative curve which increases substantially in going from
samples D and E to sample C, signifying that this part is dominated by the effects of
inhomogeneity.

4) This conclusion is reinforced by studying the derivative curves in Fig. 4.20. The
extent of the HT part of the derivative peak increases marginally by 2-4K from its
zero-field value of about 20K. However the extent of the LT part of the derivative peak
increases dramatically from about 4K to beyond 12K and 20K at 1T and 2T. Again
inhomogeneity (here an ordered network of normal state vortices) acts principally on
the LT part of the derivative peak.

These observations confirms our starting hypothesis as well as our intermediate con-
clusion reached from simulations: The effect of fluctuations is preponderantly seen in
the high temperature half of the derivative curve of the transition. The effect of inho-
mogenity is dominant in the low temperature half of the derivative curve.
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4.3.2 Anisotropy

The experimental results of measured anisotropy of sample C, D and E are shown here
in Fig. 4.21. A substantial anisotropy is measured on all 3 samples at temperature well
above Tc. Such pronounced anistropy is similar to the simulated anisotropy in spatially
correlated random networks of Fig 4.18. However in two similar samples, D and E, the
anisotropy is noticeably different. As noted previously, it is not possible to draw major
conclusions on the presence or shape of such correlations in real samples at this time.

Figure 4.21: Van der Pauw anisotropy for sample C, D and E, with R0 = VAB/ICD and R1 = VBC/IDA. The
ratio R1/R0 is fitted by the normal-state (R1/R0)N with the same type of the fitting formula as the normal-state
resistivity RN (T ) = RN (0) +BTm.

4.3.3 Conclusion

In this chapter, we discussed the effects of inhomogeneity and fluctuations on super-
conducting transition on mesoscopic and nanoscopic scale on the optimally doped one
unit-cell BSCCO-2212 samples. We prepared the groundwork and confirmed both with
simulations and with analysis of transport measurements. We investigated how the tem-
perature derivative of sheet resistance curve are affected by the effects of inhomogeneity
and fluctuations. Then we also did a small analysis of the effect of inhomogeneity by
comparing homogeneous and inhomogeneous samples on the one hand and an homoge-
neous sample in which we introduce inhomogeneity in the form of an ordered network
of non-superconducting regions. Finally we came to the conclusion that inhomogeneity
mainly influence the superconducting transition on the lower temperature part of the
derivative curve, while fluctuations on the higher temperature part of the derivative
curve. More details will be explained in chapter 5, where we discuss mainly the effects
of fluctuations.
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Chapter 5

Fluctuations, doping and high Tc
superconductivity

In this chapter, we will focus on the effects of fluctuations on the superconducting tran-
sition with 5 one u.c. BSCCO-2212 samples as function of doping. We will compare the
fluctuations effects between the overdoped and the underdoped regime.

5.1 What can we learn from experiment

In the last chapter we established on the basis of systematic comparisons between ex-
periment and simulations of 2D superconductivity that sheet resistance measurements
of the transition are indelibly marked by inhomogeneity and quantum fluctuations. We
found further that the derivative of the normalized sheet resistance as a function of
temperature (which we will abbreviate simply by ‘derivative’) presents an asymmetric
peak at the superconducting transition. The LT (low temperature) half of this peak
is dominated by effects of inhomogeneity while the HT (high temperature) half of the
peak, notably the asymmetric HT tail, is dominated by quantum fluctuations. In the
last chapter we studied the effects of inhomogeneity, mainly through simulations. In
this chapter we address the effects of fluctuations. In the 2D BSCCO system we have
earlier established the comprehensive phase diagram as a function of doping [94]. We
have notably pin-pointed the critical doping of p=0.19 which separates two parts of the
superconducting dome [110]. Though the nominal optimal doping is p=0.16, the critical
value could be associated to an underlying quantum critical point or to a transition be-
tween two different regimes identified roughly by the underdoped and overdoped parts
of the dome. In chapter 3 [113] we have measured another quantum phase transition,
the SIT as a function of doping, where strongly undoped 2D BSCCO transits from an
insulator to a superconductor. We concluded that this transition in the strongly under-
doped region is compatible with a superconducting state where Cooper pairs (bosons)
could exist both above and below the critical temperature, and a superconducting state
which corresponds to the development of phase coherence between these existing Cooper
pairs at the critical temperature. In this chapter we wish to take this analysis further
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5.2. ANALYSIS OF EXPERIMENTS

into the less underdoped and the overdoped regions. Indeed the superconducting wave
function is characterized [2] by an amplitude and a phase, both of which have to be well
defined for superconductivity to appear.

Isolated Cooper pairs may form at some ‘high’ temperature as a result of a strong
interaction (strong coupling). However these may not be compatible with a condensed
quantum ground state if there is no phase coherence which could develop only at a
lower temperature. The intermediate temperature range should hence be marked by
fluctuations of this phase [158, 159]. On the other hand, in a more ‘common’ scenario
of classical superconductivity (weak coupling), the superconducting condensate appears
with the simultaneous establishment of the amplitude and the phase of the supercon-
ducting wave function, at a single temperature which is the critical temperature, with
amplitude and phase fluctuations in a limited temperature range above it.

Fluctuations of the superconducting state above critical temperature can thus in-
form us about the nature of the superconducting state below TC . In the past [160, 161]
several works have examined the nature of fluctuations by examining the shape of the
superconducting transition in both 2D and bulk samples in classical and high TC su-
perconductors. Theories, more or less comprehensive, exist for describing the effects of
fluctuations both of phase and amplitude and the interplay between them [150, 162].
However we have seen in Chapter 4 that inhomogeneity, about which it is not possible
to have even cursory information in a macroscopic transport measurement, profoundly
influences the shape of this transition. It is not a surprise then that many of the above
works do not provide a conclusive picture.

In this chapter we approach this problem armed with several tools. Firstly we know
that quantum fluctuations are enhanced in 2D. Secondly the small coherence length of
high TC superconductivity also enhances fluctuations. This means that the effect of
fluctuations will be more marked in a measurement. Thirdly, our earlier work on the 2D
BSCCO system helps us to clearly establish the parameters of the study. Finally, space
charge doping provides us the means to electrostatically dope a given one u.c. BSCCO
sample over large regions of the phase diagram. However we confine our qualitative
analysis to the HT half of the derivative and do not parametrically fit our measurements
with available theoretical models, for the reasons given above.

5.2 Analysis of experiments

In this section we introduce the analysis of temperature dependence of sheet resistance
in both the overdoped and the underdoped side in one unit-cell BSCCO samples. We
develop here a simple criterion for measuring the temperature range of fluctuation above
Tc and analyse a large gamut of measurements from this and earlier works in our group
[94, 110, 113].
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CHAPTER 5. FLUCTUATIONS, DOPING AND HIGH TC
SUPERCONDUCTIVITY

Two temperatures can be identified on the HT half of the derivative. The maximum
temperature corresponding to the peak of the derivative and the maximum slope which
is roughly the midpoint of the transition and which we can identify with Tc in this chap-
ter because it signifies the onset of the superconducting phase. The other temperature
corresponds to the start of the high temperature tail of the derivative, which is defined
here arbitrarily at a threshold of 5 percent of the peak (Fig. 5.1). Since this is the tem-
perature at which the normalized sheet resistance starts deviating from its normal state
value, we identify it by Tf , the temperature at which fluctuations start to be detected.
Then, ∆T is given by Tf−TC and signifies the temperature range over which fluctuations
occur (as measured by our sheet resistance measurements) before superconductivity sets
in. We also introduce a normalized quantity ∆n = (Tf − TC)/TC . In this chapter we
will determine ∆T and ∆n for a variety of measurements across a wide doping range.

y = 5%y(TC)

TC

0.05

Tf

Figure 5.1: Determination of the TC and Tf temperatures. This normalized derivative curve is taken as an
example to show the dtermination of TC and Tf . It is extracted from Fig. 5.5d with p = 0.16 (black curve). TC
is the temperature where the curve arrives at the maximum, as shown by the blue dotted line. Tf is taken as the
cross point (red arrow) between the derivative curve and the horizontal solid line (y = 0.05), that is the 5% of
the maximum of the derivative curve. Thus for this curve, TC = 84.7 K and Tf = 100.6 ± 1 K.

5.2.1 Overdoped 2D BSCCO

Here we show the analysis of two one u.c. BSCCO samples, labeled respectively D and
G, on the overdoped side of the phase diagram. First for sample D, the initial doping
level is optimal (black curve in Fig. 5.2). With space charge doping we p-dope first to
the maximum hole-doping level and then n-dope the sample step by step back to the
optimal doping. The doping order is indicated in Fig. 5.2a with grey arrows from left
to right. The critical temperature Tc decreased from 81 K to 52 K The normalized sheet
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resistance curves RS(T )/RN (T ) are shown in Fig. 5.2b, with the normal-state resistivity
RN (T ) = RN (0)+BTm (B and m are constants). The corresponding derivative curves
are presented in Fig. 5.2c. The doping levels are calculated with the empirical formula
Tc(p)/Tc(popt) = 1−Z(p− popt)2, which has been introduced in chapter 3. In Fig. 5.2d,
the maximum of each derivative curve is normalized to value 1. This procedure is to
simplify the extraction of the start of the high temperature tail of the derivative curve,
as explained in Fig. 5.1. Sample G is subjected to a similar procedure as shown in
Fig. 5.3. The critical temperature changes between 82.7 K and 58.9 K. From these two
examples the following conclusions can be reached by analysing the derivative:

1) In this overdoped region, the shape of the derivatives at different doping show
that ∆T decreases slightly but observably as doping increases, as seen also through the
narrowing of the derivative peak (the area of which is normalised by construction since
the sheet resistance is normalized before the derivation).

2) Both Tf and TC shift almost rigidly (if we ignore the small decrease in ∆T ) to
lower temperature as doping increases.
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c

b

Sample D

a

d

Figure 5.2: Derivative and 2D superconductivity in overdoped region. a Temperature dependence of sheet
resistance curves RS(T ) of 1 u.c. BSCCO sample labelled D from 25 K to 300 K. The black curve shows the optimal
doping level, and the grey arrows from left to right indicate the order of doping. b Temperature dependence of
the normalised sheet resistance RS/RN on the same sample as a from 25 K to 150 K. RN (T ) = RN (0) +BTm

(B and m are constants). c Temperature derivative of the curves RS/RN in b. The dotted lines represent the
highest points of the derivative curves. d The maxima of curves from c are normalized to 1 respectively.
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c

b

a

Sample G

d

Figure 5.3: Derivative and 2D superconductivity in overdoped region. a Temperature dependence of sheet
resistance curves RS(T ) of 1 u.c. BSCCO sample labelled G from 50 K to 300 K. The black curve shows the optimal
doping level, and the grey arrows from left to right indicate the order of doping. b Temperature dependence of
the normalised sheet resistance RS/RN on the same sample as a from 50 K to 150 K. RN (T ) = RN (0) +BTm

(B and m are constants). c Temperature derivative of the curves RS/RN in b. The dotted lines represent the
highest points of the derivative curves. d The maxima of curves from c are normalized to 1 respectively.
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5.2.2 Underdoped 2D BSCCO

In this part, three one u.c. BSCCO samples C, E and F are presented respectively in Fig.
5.4, Fig. 5.5 and Fig. 5.6. The sheet resistance curves of sample C on the underdoped
side were shown in Fig. 5.4a. The sample was electron-doped step by step with space
charge doping with the order shown by grey arrows from left to right in Fig. 5.4a,
leading to a change of Tc between 26 K and 51 K. Then all the sheet resistance curves
were normalized by their normal-state resistance RN (T ) = RN (0) + aT − bT 2 (a and b
are constants). The resulting curves RS/RN are plotted in Fig. 5.4b. The corresponding
derivative curves are presented in Fig. 5.4c. The doping levels are calculated with the
empirical formula Tc(p)/Tc(popt) = 1 − Z(p − popt)

2. In Fig. 5.4d, the maximum of
each derivative curve is normalized to value 1. The same analysis for sample E and F
are shown in Fig. 5.5 and Fig. 5.6. The critical temperature changed from 76.5 K to
80 K for sample E, and from 12 K to 25.4 K for sample F. As in the overdoped case
the following conclusions can be reached by analysing the derivatives of the underdoped
region of the phase diagram:

1) As in the overdoped case, Tf and TC and ∆T and ∆n can be identified for further
analysis.

2) In this underdoped region, a visual examination show that ∆T increases sub-
stantially as doping increases, as seen also through the substantial broadening of the
derivative peak (the area of which is normalised by construction as mentionned for the
overdoped curves).

3) While Tf stays nearly the same, as p-doping is decreased TC shifts to lower values.
4) These observations are qualitatively and quantitatively different from those found

in the overdoped region.
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\i(p)=0.153

a

Sample C

c

b

d

Figure 5.4: Derivative and 2D superconductivity in underdoped region. a Temperature dependence of
sheet resistance curves RS(T ) of 1 u.c. BSCCO sample labelled C from 0 to 300 K. The black curve shows the op-
timal doping level, and the grey arrows from left to right indicate the order of doping. b Temperature dependence
of the normalised sheet resistance RS/RN on the same sample as a from 0 to 150 K. RN (T ) = RN (0)+aT −bT 2

(a and b are constants). c Temperature derivative of the curves RS/RN in b. The derivative curves are smoothed.
d The maxima of curves from c are normalized to 1 respectively.
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c

Sample E

b

a

d

Figure 5.5: Derivative and 2D superconductivity in underdoped region. a Temperature dependence
of sheet resistance curves RS(T ) of 1 u.c. BSCCO sample labelled E from 50 K to 300 K. The black curve
shows the optimal doping level, and the grey arrows from left to right indicate the order of doping. b Tem-
perature dependence of the normalised sheet resistance RS/RN on the same sample as a from 50 K to 150 K.
RN (T ) = RN (0) + aT − bT 2 (a and b are constants). c Temperature derivative of the curves RS/RN in b. The
derivative curves are smoothed. d The maxima of curves from c are normalized to 1 respectively.
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0

Sample F

d

a

Figure 5.6: Derivative and 2D superconductivity in highly underdoped region. a Temperature depen-
dence of sheet resistance curves RS(T ) of 1 u.c. BSCCO sample labelled F from 0 to 300 K. The grey arrows
from left to right indicate the order of doping. b Temperature dependence of the normalised sheet resistance
RS/RN on the same sample as in a from 0 to 125 K. RN (T ) = RN (0) + aT − bT 2 (a and b are constants). c
Temperature derivative of the curves RS/RN in b. The curves are smoothed. d The maxima of curves from c
are normalized to 1 respectively.
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5.2.3 Discussion

From the earlier analysis we have extracted ∆T and ∆n for our samples as a function
of doping. These quantities are plotted in Fig. 5.7 b and c. Below we list the principal
conclusions from this analysis.

1) The first observation is already well-known from various and numerous earlier
experiments, the underdoped and overdoped region of the the phase diagram of 2D-
BSCCO are fundamentally different. Though the dome for the critical temperature
roughly symmetrically decreases on each side of the optimal doping value, this does not
indicate a symmetric behaviour for the fluctuation regime in our case.

2) As seen from both Fig. 5.7 b and c, fluctuations appear well above the critical
temperature in the underdoped region, and the temperature range above which they
appear with respect to TC actually increases even as doping and TC decrease.

3) In the overdoped region however, it can be seen in Fig. 5.7 b and c that as
TC decreases with increasing doping, the temperature where fluctuations appear also
decreases, and appears to do so more and more as doping increases.

4) As discussed in the introduction to the chapter, fluctuations can provide precious
information on the nature of the underlying superconducting state. In particular here
we would like to concentrate on two aspects.

Firstly ∆T and∆n increase by a factor of 5 to 6 as doping decreases from optimal to
the underdoped limit. This implies that the temperature range over which fluctuations
exist increases sharply. A possible explanation for such a dramatic increase issues from
our measurements of the SIT in underdoped 2D-BSCCO (Chapter 3). These imply a
bosonic transition where strongly bound Cooper pairs exist on both sides of the SIT
and also above TC . An open question is to determine whether Cooper pairs exists well
above Tc even at higher doping levels close to the optimal. Indeed, one explanation for
the appearance of the pseudo-gap in cuprates, which has been put forward in several
papers [163, 164, 165], is the presence of strongly bound incoherent Cooper pairs in
the normal state. The superconducting state is then reached through phase coherence
of the pre-existing Cooper pairs. The fluctuations measured above Tc are then phase
fluctuations of the superconducting wave function. We should however mention that,
as noted is several studies [160, 166, 167, 168, 150], the temperature range for which
superconducting fluctuations are measured above Tc is far lower than the temperatures
at which the opening of the pseudo-gap is measured in spectroscopic experiments.

Secondly ∆T and∆n remain roughly constant as doping increases from the optimal
to the overdoped part of the phase diagram, even though TC decreases. Many previ-
ous works, both theoretical and experimental (see for example [169]) assert that the
overdoped part of the phase diagram corresponds to a ‘normal’ Fermi liquid. Our obser-
vations indicate that the associated fluctuation regime could correspond to fluctuations
expected in a weakly coupled BCS superconductor where phase and amplitude coherence
switch on simultaneously.

5) Finally, the above implies that these two regimes merge near the optimal doping.
One possibility of such a scenario is provided by the BEC-BCS transition recently seen
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[170] in ultra-cold atomic systems which permit the tuning of the interaction strength
through an applied magnetic field. Justifying such a scenario for high Tc superconduc-
tivity would need a microscopic explanation concerning interaction strengths and their
variation with doping and carrier concentration. It should also be noted [164] that the
pseudogap region can be interpreted as a region between the BCS-like overdoped region
and a BEC-like region which however is not attained in reality.

To conclude, it is important to point out that many theories for the existence of
the pseudogap region have been established, most of them being rooted in the physics
of doped Mott insulators. Notably, gaps associated to ordering (charge or spin) have
been observed in high-Tc superconductors [169, 171, 172] and these gaps are thought to
be related to, or responsible for, the pseudogap. It is not possible at this point to give
a comprehensive explanation of our observations. However intriguing possibilities are
raised by the spectacular change in fluctuation regime that we observe and it has been
our endeavour to consider these.

5.3 Conclusion

In this chapter we have concentrated on the fluctuations and the HT part. We show
with a number of samples (with various degrees of ihomogeneity, which does not have
a big impact on the HT part of the transition) that the fluctuation regime in the un-
derdoped part of the phase diagram is fundamentally different from that in the part
where p > 0.19. We discussed the possible behaviour of Cooper pairs related to our ex-
perimental results, as well as one existing theoretical explanation (BEC-BCS transition).
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a

b

c

Figure 5.7: a Phase diagram of one u.c. BSCCO-2212 as a function of doping, TC and Tf . b Doping dependence
of ∆T on five one u.c. BSCCO-2212 samples. c Doping dependence of ∆n.
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Conclusion

In this thesis, we studied the physics of one unit-cell (2D) BSCCO-2212 with innovative
techniques for sample fabrication and electrostatic doping. We concentrated on the
establishment of Superconductor-Insulator transition (SIT), and subsequently the 2D
characters related with the purpose of investigating the role of fluctuations.

Firstly, a great number of one unit-cell BSCCO-2212 samples, with lateral dimensions
of the order of 100 µm, were fabricated on soda-lime glass substrate by using anodic
bonding method. The samples used for investigating the SIT, were first put into the oven
in air for annealing to make them highly underdoped. And about 70 nm-thick of gold
contacts in a van der Pauw configuration were thermally evaporated through shadow
stencil masks previously aligned on the samples in the clean room. Then transport
measurements, such as temperature dependence of sheet resistance measurements and
Hall measurements, were carried out under a vacuum circumstance of 10−6 mbar.

The doping level was tuned by an effective and reversible electrostatic doping method,
which we call space charge doping method. the SIT transition was revealed in one unit-
cell BSCCO-2212 sample with by space charge doping. We determined the related critical
parameters and developed a reliable way to estimate doping in the non-superconducting
region, a crucial and central problem in these materials. Finite-size scaling analysis
yields a critical doping of 0.057 holes/Cu, a critical resistance of ∼6.85 kW and a scal-
ing exponent product νz ∼ 1.57. These results, together with earlier work in other
materials, provide a coherent picture of the superconductor-insulator transition and its
bosonic nature in the underdoped regime of emerging superconductivity in high critical
temperature superconductors.

In chapter 4 we investigated the effects of inhomogeneity and fluctuations on the
optimally doped one u.c. BSCCO-2212 samples. We prepared the groundwork and
confirmed both with simulations and with analysis of sheet resistance curves as well
as their temperature derivative curves. We separated the derivative curves into higher
temperature part (HT) and lower temperature part (LT) by the peak of the derivative
curve. Then we investigated how the derivative curve can tell us about inhomogeneity
in its LT part and about fluctuations in the HT part. We did also a small analysis of
the effect of inhomogeneity by comparing homogeneous and inhomogeneous samples on
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the one hand and an homogeneous sample in which we introduce inhomogeneity in the
form of an ordered network of non-superconducting regions.

Finally in chapter 5, we focused on the effects of fluctuations and the HT part of
the derivative curve. We presented with 5 one u.c. BSCCO-2212 samples (with 2 on
the overdoped side, and 3 on the underdoped side) that the fluctuation regime in the
underdoped part of the phase diagram is fundamentally different from that in the part
where p > 0.19. We established this using the extent of the HT part of the derivative
peak (extent from TC to Tf as shown in chapter 5) plotted as a function of the doping.
We then discussed the difference in the fluctuation regime may caused by the different
nature of the superconducting transition. At p < 0.19, it seems that fluctuations extend
over a big temperature range which seems to increase as doping and critical temperature
decrease. At p > 0.19, the fluctuation temperature range seems to be constant even
though Tc decreases again. This latter one is compatible with a more common scenario
where amplitude fluctuations are present in a limited region above the transition. While
the doping induced SIT established in this thesis is compatible with a scenario where
the SIT is a boson transition where Cooper pairs existing at temperature much higher
than Tc become phase coherent when superconductivity appears. The large domain of
existence of fluctuations much above Tc in the underdoped part of the phase diagram
can be understood in this scenario.

Finally such different regimes could be imagined in the light of BEC-BCS transition
discussed in the introduction, though it is not generally thought at this time that high
Tc superconductivity could be the system where such a transition could be observed.
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