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1

Introduction en français

Cette thèse s’articule autour de deux parties différentes qui contribuent à la gestion quantitative
des risques financiers : la modélisation du risque de crédit et la quantification de l’incertitude liée à
l’estimation des risques financiers. La première partie traite de la modélisation des temps de défaut
en risque de crédit, tandis que la seconde porte sur la construction de surfaces de volatilité à l’aide
du krigeage.

Partie 1: Modèlisation du temps de défaut

Dans la littérature du risque de crédit, la modélisation du temps de défaut repose essentiellement
sur deux approches fondamentales, à savoir l’approche structurelle et l’approche à forme réduite.
La principale différence entre ces deux approches est le choix de la filtration. Dans l’approche struc-
turelle (voir Merton, 1974), l’information est modélisée par une filtration F pour laquelle le temps
de défaut est un temps d’arrêt qui peut être prévisible ou totalement inaccessible (dans ce cas, il
est nécessaire de calculer son compensateur). Tandis que, dans l’approche à forme réduite (voir
Duffie, Schroder, and Skiadas, 1996; Lando, 1995), on commence par une filtration de référence F
dans laquelle le temps de défaut τ n’est pas un temps d’arrêt et on la grossit progressivement avec
τ pour obtenir une filtration G. La théorie de grossissement de filtration remonte aux années 70-80
suite aux travaux d’Itô (1978), Barlow (1978), Jeulin and Yor (1978), Yor (1978), Jacod (1985) et
s’applique dans plusieurs domaines notamment en finance et en assurance.

Très souvent, la construction des modèles de défaut dans l’approche à forme réduite conduit à
des temps de défauts qui évitent les temps d’arrêt de la filtration de référence F. Ce qui fait que
ces modèles deviennent inadaptés quand il s’agit de modéliser certains produits financiers soumis
au défaut en présence de chocs économiques, lorsque le temps de défaut τ peut être égal, avec une
probabilité strictement positive, à l’un des instants d’événement de chocs qui correspondent à des
temps d’arrêt de la filtration de référence. Ceci conduit certains auteurs à s’intéresser récemment
au cas où cette hypothèse est omise, en utilisant des modèles dits hybrides. Par exemple, Gehmlich
and Schmidt (2018) et Fontana and Schmidt (2018) n’utilisent pas le grossissement de filtration
et considèrent un modèle où le temps de défaut est un temps d’arrêt par rapport à une filtration
G qui n’évite pas les G-temps d’arrêt prévisibles. Dans leur travail, ils supposent l’existence du
compensateur du défaut qui peut être décomposé en une partie absolument continue et un saut pur
(prévisible). Mais ils ne font aucune construction du temps d’arrêt associé.
Dans cet ordre d’idées, Jiao and Li (2018) ont élaboré un modèle selon lequel le temps de défaut
peut coïncider avec des instants de chocs économiques prévisibles. Ils s’intéressent au compensateur
du temps de défaut en utilisant l’approche de densité généralisée et montrent que le processus de
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taux d’intensité n’existe pas dans leur cadre. En outre, leur modèle permet de capter les sauts de
prix des obligations zéro-coupon soumises au défaut ainsi que ceux des spreads correspondants.

Un des objectifs de cette thèse est d’étendre le modèle de Jiao and Li (2018) dans le cas où les
instants de chocs ne sont pas prévisibles. Malgré son attractivité dans la modélisation des produits
financiers soumis au défaut en présence de chocs économiques prévisibles, le modèle de Jiao and
Li (2018) est difficile à mettre en œuvre lorsque les chocs ne sont pas prévisibles (i.e., ces chocs
apparaissent par surprise) et ne permettent pas toujours de capter les sauts de prix des obligations
zéro-coupon.

Pour modéliser les produits financiers soumis au défaut en présence de chocs économiques qui ne
sont pas prévisibles, nous proposons un modèle de Cox généralisé qui étend celui de Lando (1998)
dans lequel le temps de défaut τ est le premier instant où un processus K croissant adapté à une
filtration donnée (la filtration de référence) F, absolument continue par rapport à la mesure de
Lebesgue passe par une barrière stochastique Θ indépendante de F. Il s’ensuit que ce temps de
défaut évite tous les temps d’arrêt dans la filtration de référence F. Nous assouplissons l’hypothèse
selon laquelle le processus croissant K est absolument continu. Ici, nous travaillons dans un cadre
plus général, ce processus K étant adapté, croissant et continu à droite avec des limites à gauche
ou continu à gauche avec des limites à droite. Cela nous conduit à un temps aléatoire qui n’évite
pas les temps d’arrêt de F. Dans les deux cas, nous nous intéressons aux caractéristiques du temps
de défaut comme la martingale de survie conditionnelle, la supermartingale Azéma, le compensa-
teur du temps de défaut ainsi que son processus de réduction prévisible (présenté dans la Section
1.2) et la décomposition multiplicative de la supermartingale d’Azéma. Nous étudions également
l’existence de densités conditionnelles dans le sens de Jacod (1985) que nous dénotons (CL), dans
le sens de Jiao and Li (2015), dénoté par (GD) et l’hypothèse étendue de Jacod introduite dans Li
and Rutkowski (2014).
On peut trouver une première tentative de généralisation dans Bélanger, Shreve, and Wong (2004),
où le processus croissant est prévisible et continu à droite.
Contrairement au modèle de Jiao and Li (2018), dans le modèle généralisé de Cox, le processus de
taux d’intensité peut exister.

Structure des Chapitres de la partie 1

Cette première partie de la thèse est divisée en quatre chapitres.

Dans le chapitre 1, nous commençons par rappeler des faits bien connus sur la théorie des proces-
sus stochastiques et modèles de temps de défaut que nous utiliserons tout au long de cette partie,
avant de traiter l’exemple du cas gaussien en densité conditionnelle. Nous définissons toutes les
caractéristiques du temps de défaut. En particulier, la réduction prévisible du compensateur du
temps de défaut, qui est parfois appelée F-compensateur, où F est la filtration de référence. Nous
montrons que l’exemple de densité conditionnelle gaussienne est unique dans une large classe.
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Dans le chapitre 2, nous généralisons le modèle de Jiao and Li (2018) qui est développé dans
le contexte où le temps de défaut peut coïncider avec certains temps d’arrêt prévisibles qui sont
des temps de chocs exogènes prévisibles où les chocs sont modélisés par un processus de Poisson
N non homogène. Notre généralisation consiste à relâcher l’hypothèse que les temps de chocs sont
prévisibles et à remplacer le processus de Poisson par un processus plus général X. Nous étudions
les caractéristiques du temps de défaut. Nous montrons que, dans le cas particulier où les temps
de chocs sont les temps de saut d’un processus de Poisson homogène N qui engendre la filtration
F, la réduction prévisible du compensateur est continue et que le processus de taux d’intensité existe.

Dans le chapitre 3, nous présentons le modèle généralisé de Cox. Nous revisitons d’abord le mod-
èle classique de Lando (1998) où le temps de défaut est le premier instant où un processus croissant
K adapté à une filtration donnée, absolument continue par rapport à la mesure de Lebesgue dé-
passe une barrière Θ qui est une variable aléatoire indépendante de la filtration de référence, avant
d’introduire le cas général où le processus croissant K est continu à droite avec des limites à gauche
(càdlàg). Nous étudions les caractéristiques du temps de défaut et nous donnons de nombreux
exemples pour illustrer notre construction. Une attention particulière sera accordée aux processus
de bruit de Schottky (en anglais, shot-noise).
Nous montrons que le modèle de Jiao et Li appartient à la classe des modèles généralisés de Cox.
Nous terminons ce chapitre en introduisant le cas où le processus croissant K est continu à gauche
(càglàd) avec une petite modification de la définition du temps de défaut. Nous concluons que ce
modèle peut être réduit au cas où K est continu à droite.

Dans le chapitre 4, nous étudions certaines applications du modèle généralisé de Cox dans le
pricing des produits soumis au défaut. Nous donnons l’expression des prix des obligations zéro-
coupon ainsi que leurs dynamiques à travers un cadre général. Nous nous intéresserons également
aux impacts des sauts de K sur les prix avant défaut des obligations zéro-coupon soumis au défaut.

Partie 2: Le krigeage pour la construction de surfaces de volatilité

Les surfaces de volatilité constituent des outils importants en gestion des risques. Elles constituent
des composantes élémentaires pour la tarification et la couverture des produits dérivés financiers.
Elles permettent par exemple d’estimer, à partir du prix d’options liquides, la valeur des produits fi-
nanciers dont les caractéristiques sont non standards et dont le prix n’est pas observé sur le marché.
La volatilité dépend des caractéristiques contractuelles de l’option (nature de l’actif sous-jacent,
maturité, prix d’exercice) et n’est observée que pour un nombre limité de caractéristiques standard
(couple maturité - prix d’exercice) et peut nécessiter la surface entière de prix ou le prix de cer-
taines caractéristiques non observées pour certaines applications. En outre, la construction de ces
surfaces est habituellement faite en respectant le principe d’absence d’opportunité d’arbitrage, i.e.,
les prix des options obtenus à partir de ces surfaces ne permettent pas de réaliser d’arbitrage fi-
nancier. La construction d’une surface de prix sans arbitrage peut être transformée en un problème
d’apprentissage fonctionnel avec des contraintes de forme et éventuellement des observations brutées.
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Une fois la surface de prix interpolée, on peut utiliser la formule d’inversion de Black et Scholes
(voir Black and Scholes, 1973) pour obtenir la surface de volatilité implicite. Pour obtenir la surface
de volatilité locale, nous pouvons utiliser une approximation de différence finie de la formule de
Dupire (voir Dupire, 1994). En outre, il est possible de construire la surface de volatilité locale
en utilisant les volatilités implicites Il s’agit d’extraire la surface de volatilité locale de la volatilité
implicite en utilisant la formule (1.10) de Gatheral (2011). Ces approches qui utilisent les prix
observés (ou la volatilité implicite pour construire la volatilité locale) sont connues sous le nom
d’approches indirectes.
Au-delà de ces approches directes, il existe certaines qui paramétrent directement la volatilité non
observée à travers une fonction dans laquelle ses paramètres peuvent être estimés en minimisant
une fonction objective appropriée obtenue pour calibrer cette fonction aux données de marché. Il
s’agit notamment de la méthode SVI qui paramétrent le smile de volatilité implicite et son extension
(SSVI) pour la surface de volatilité implicite (voir Gatheral and Jacquier, 2014; Gatheral, 2004.

Les techniques utilisées habituellement dans les approches indirectes reposent sur des splines
contraintes (voir par exemple Fengler, 2009; Homescu, 2011; Laurini, 2011; Wang, Yin, and Qi,
2004, etc.).
Récemment, des techniques de réseaux de neuronnes ont été adoptées pour améliorer ces modèles
habituels en enregistrant de meilleures performances de surface de prix sans arbitrage. Le travail
de Dugas et al. (2009) est le point de départ de l’intégration de contraintes sans arbitrage dans les
réseaux de neurones pour l’apprentissage des prix des options. Dugas et al. (2009) ont utilisé les con-
traintes dites hard à travers une architecture spéciale. Cette approche est différente de celle appelée
approche par contraintes soft qui consiste à pénaliser certaines variables, dans la fonction objec-
tive, qui ne vérifient pas les contraintes (voir, par exemple, Itkin, 2019). La principale difficulté de
l’approche de Dugas et al. (2009) s’appuie sur le fait, qu’en pratique, l’incorporation de contraintes
hard dans les réseaux neuronaux réduit leur flexibilité et présente une transformation hautement
non linéaire pour le calcul de prix des options à chaque itération. Selon Ackerer, Tagasovska, and
Vatter (2019), les contraintes hard de Dugas sur les prix font perdre trop de précisions. Ainsi, pour
la construction de la surface de volatilité locale, ces derniers ont proposé d’utiliser directement la
surface de volatilité implicite au lieu de la surface de prix en appliquant l’approche soft. Chataigner,
Crépey, and Dixon (2020) ont proposé des architectures de réseaux de neurones simples pour les
prix des options sans arbitrage et pour la volatilité implicite. Ils montrent que les contraintes hard
réduisent la puissance du réseau et que les contraintes soft fournissent les meilleurs prix précis et
les volatilités implicites.

L’objectif de cette partie est d’adapter des techniques de krigeage contrainte développées dans
Maatouk and Bay (2017) afin de quantifier l’incertitude associée à la construction de surfaces de
volatilité (telles que la volatilité implicite et la surface de volatilité locale) dans un cadre qui respecte
les conditions d’absence d’opportunités d’arbitrage. Nous utilisons les approches indirectes qui
consistent à apprendre les prix par le krigeage et ensuite utiliser la formule d’inversion pour obtenir
la surface de volatilité implicite et en déduire la surface de volatilité locale. Il n’est pas nécessaire
d’étendre l’approche de Maatouk and Bay (2017) pour des contraintes d’inégalité plus générales,
comme cela a été fait dans López-Lopera et al. (2018), puisque nous nous limitons aux contraintes
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de convexité et de monotonie.
L’idée est de supposer que la fonction prix est une réalisation d’un champ gaussien tronqué, vérifiant
certaines contraintes. Comme pour les courbes de taux (voir Cousin, Maatouk, and Rullière, 2016),
les contraintes de compatibilité avec les observations de marché (compatibilité aux prix des options
européennes) se traduisent sous forme d’une relation linéaire sur le processus Gaussien. L’hypothèse
d’absence d’arbitrages est équivalente à l’existence d’une mesure martingale : les réalisations du
processus de krigeage doivent correspondre à des lois marginales de martingales. D’après le Th. 2.6
de Beiglböck, Juillet, et al. (2016), il s’agit alors de construire une famille de distributions marginales
à partir d’un processus gaussien bivarié, indéxé par la maturité et le prix d’exercise, qui est :

• croissante par rapport à la direction des maturités,

• convexe par rapport à la direction des strikes,

• solution d’une relation linéaire sur certaines maturités et strikes.

Le krigeage (ou la regression par processus de Gauss) est une technique de géostatistique ini-
tialement introduite pour estimer la densité de minerais dans une zone pré-définie de l’espace,
étant donné quelques observations issues d’expériences de forage à des points particuliers du sol.
Le principe du krigeage repose sur la détermination de la distribution conditionnelle d’un champ
aléatoire gaussien connaissant les valeurs de ce champ à certains points de l’espace, appelés points
d’expérience (voir par exemple, Matheron, 1963; Cressie, 1990; Krige and Magri, 1982). Le princi-
pal intérêt de cette approche est qu’elle permet d’estimer les valeurs de la variable de référence à
d’autres points de l’espace en quantifiant l’incertitude associée à cette estimation. Par ailleurs, dans
un contexte où les observations sont coûteuses à obtenir, le plan d’expérience (points du support où
la variable d’intérêt est observée) peut être conçu de manière adaptative (voir Williams and Ras-
mussen, 2006). Cette technique a rapidement gagné en popularité suite aux travaux de Williams
and Rasmussen (2006) et a été adaptée dans divers domaines tels que l’hydrologie, la météorologie
ou l’épidémiologie, ect. Quelques travaux ont été récemment développés en sciences actuarielles.

Par exemple, Sousa, Esquível, and Gaspar (2012) ont utilisé le krigeage pour estimer les paramètres
du modèle d’apprentissage lors de l’étalonnage du modèle de taux d’intérêt Vasicek sous la mesure
risque neutre. Ils ont considéré un prior gaussien sur les prix des obligations zéro-coupon et ont es-
timé les paramètres du modèle en maximisant la log de vraissemblance des données d’entraînement
compte tenu des paramètres. Ludkovski (2018) pour améliorer la méthode des moindres carrés
Monte-Carlo en valorisation d’option de type américain, a utilisé le krigeage pour améliorer l’étape
de la régression qui consiste à faire rapprocher la valeur espérée de celle de continuation.

De Spiegeleer et al. (2018) ont montré la rapidité du krigeage par rapport à la méthode de
monte-carlo pour l’approximation des prix d’options et de la volatilité implicite. Toutefois, ils n’ont
pas tenu en compte les conditions d’arbitrage dans leur approche. En modélisation du portefeuille
de produits, Dixon and Crépey (2018) ont considéré une technique de krigeage avec multi-réponses
pour calculer la Credit Valuation Adjustment (CVA). Ils ont montré que le krigeage permet une
approximation rapide de la valeur du portefeuille.

Gonzalvez et al. (2019) ont exploré l’utilisation du krigeage en finance en montrant que ce dernier
est un outil puissant pour ajuster la courbe de rendement des prix des actions. Cependant leur
interpolation ne prend pas également en considération les conditions de non arbitrage du marché.
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Une première tentative d’utilisation du krigeage pour la volatilité locale est effectuée par Tegnér
and Roberts (2019) qui placent un prior gaussien directement sur la surface de volatilité locale (pour
garantir la positivité de la volatilité locale, ils attribuent une fonction positive sur le prior). Une
telle approche conduit à une fonction de perte des moindres carrés non linéaires, car elle implique
la transformation non linéaire de la volatilité locale en prix d’option vanille correspondants. Une
telle fonction de perte n’est pas notoirement favorable à la descente de gradient (stochastique ou
non), de sorte que les auteurs recourent à une optimisation MCMC. De plus, la performance de leur
GPs est mesuré par RMSE en échantillon et ne semble pas être évalué pour le surapprentissage. En
outre, ils ne comparent pas leur approche à d’autres approches alternatives.
En fait, ajouter une telle contrainte de positivité ainsi que d’autres contraintes d’inégalité linéaire
(telles que la monotonie, la convexité, les bornes) dans le krigeage n’est pas une tâche facile et
constitue un grand défi. À cette fin, certains auteurs se sont récemment penchés sur cette question,
connue sous le nom de krigeage contraint ou de régression par processus gaussien (GPs) contraints.
Les cadres présentés dans Da Veiga and Marrel (2012), Golchi et al. (2015), Riihimäki and Vehtari
(2010), and Wang and Berger (2016), entre autres, utilisent une subdivision de l’espace d’entrée.
Cependant, ils se basent sur le fait que les contraintes ne sont satisfaites que sur des observations
virtuelles et ne garantissent pas les contraintes dans l’ensemble du domaine. Par exemple, pour in-
tégrer la contrainte de monotonie croissante dans le krigeage, Wang and Berger (2016) ont proposé
de sélectionner les localisations avec de fortes probabilités d’avoir des dérivées négatives comme les
localisations virtuelles dans lesquelles ils forcent les contraintes. L’approche d’Agrell (2019) est une
extension de celle de Wang and Berger (2016) pour des contraintes multiples grâce à une méthode
efficace de simulation du processus à postériori basé sur la dérivation de processus gaussien contraint
à l’aide d’un opérateur linéaire.

Lorsque des contraintes d’inégalité sont ajoutées sur les quantités d’intérêt, le processus à
postériori n’est plus gaussien et les contraintes sont habituellement infini-dimensionnelles. C’est
ce qui a motivé Maatouk and Bay (2014) à utiliser l’approximation fini-dimensionnelle des proces-
sus gaussiens pour lesquels les contraintes d’inégalité sont faciles à vérifier. Ils ont développé un
schéma appelé rejection autour du mode (RSM) pour la simulation de la distribution gaussienne
multivariée tronquée nécessaire à l’estimation du processus a postériori. Leur approche garantit les
contraintes dans le domaine entier. Cousin, Maatouk, and Rullière (2016) utilisent les techniques
de krigeage contraint mises au point dans Maatouk and Bay (2014) pour construire des courbes de
taux et des courbes CDS en respectant les conditions de non arbitrage et de contrôler des erreurs.
López-Lopera et al. (2018) ont étendu le cadre de Maatouk and Bay (2014) pour des contraintes
d’inégalité plus générales et ont proposé d’utiliser la méthode de Monte Carlo Hamiltonienne (HMC)
de Pakman and Paninski (2014) qui est plus efficace que le rejet autour du mode de Maatouk and
Bay (2014) pour la simulation du processus a posteriori.

Contrairement à l’interpolation par splines, et aux approches SSVI et réseau de neurones, le
krigeage est une technique de regression permettant de quantifier l’incertitude dans l’estimation des
variables d’intérêt. Il est possible par exemple d’obtenir des intervalles de confiance aux points de
la surface où les observations sont indisponibles ou considérées comme peu fiables.
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La principale contribution de cette partie de la thèse est de montrer que le krigeage est un outil
approprié pour construire des prix d’option et pour quantifier l’incertitude dans l’estimation de la
volatilité locale et implicite.

Structure des Chapitres de la partie 2

Cette deuxième partie de la thèse est structurée en trois chapitres.

Le chapitre 5 est un chapitre introductif dans lequel on présente des outils du krigeage qui vont
être utilisés dans les chapitres 6 et 7. Une attention particulière sera portée sur la simulation des
coefficients gaussiens lorsque les contraintes de monotonie sont saturées et nous proposons une so-
lution numérique à ce problème.

Le chapitre 6 porte sur la construction de la surface de volatilité implicite à l’aide du krigeage.
Nous adoptons le krigeage contraint développé dans Maatouk and Bay (2014) pour construire des
prix sans arbitrage. Nous comparons les performances du krigeage classique et celles du krigeage
contraint dans ce contexte à l’aide d’une étude empirique utilisant les données Euro Stoxx 50 du 10
janvier 2019. L’approche par krigeage contraint fournit les meilleures performances que celle par
krigeage classique. Par contre, Les mesures de précision des estimateurs des MAP montrent qu’à un
certain pourcentage des données utilisées, le MAP estimé à partir du krigeage classique fonctionne
aussi bien que celui estimé à partir du krigeage contraint.

Le chapitre 7 est consacré à la construction de la surface de volatilité locale en utilisant le
krigeage. Tout d’abord, nous étendons la construction de surface de prix d’option sans arbitrage
dans le cas des dividendes et des taux d’intérêt. Avec une telle surface de prix, nous modélisons la
surface de volatilité locale en utilisant l’équation aux dérivées partielles de Dupire. La quantification
de l’incertitude fournit des intervalles de confiance dans les modèles de volatilité locale. Nous
comparons les performances de notre modèle à celles des approches SSVI et réseaux de neurones.
Nous utilisons un réseaux de neurones avec des contraintes dites "soft" sur la formule de variance
implicite pour dériver la surface de volatilité locale à partir des volatilités implicites de Black-Scholes
(voir la flèche bleue de la Fig. 7.1).
L’ajustement du réseau de neurones est fait sur les donnés mid tandis que celui du krigeage s’est
fait sur une réplication des données bid et ask. Cette propriété du krigeage permet d’obtenir une
surface de prix qui respecte les contraintes des écarts de bid-ask. Autrement dit, la surface de prix
obtenu se trouve entièrement entre les prix de bid et les prix ask.
Le krigeage offre de meilleures performances pour le pricing des oprions et est la seule approche qui
permet de quantifier l’incertitude, ce qui est utile pour l’analyse des risques.
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This thesis treats two different parts which contribute in the modelisation and uncertainty quan-
tification of financial risk. The first part deals with default time modeling in credit risks while the
second one focuses on volatility surfaces construction using kriging.

Part 1: Models of default times

This part addresses issues related to default time modeling in credit risk. The two fundamental
approaches for default models are the structural approach and the reduced form approach. The main
difference between these two approaches is the choice of the filtration. In the structural approach
(see Merton, 1974), the information is modeled by a filtration F in which the default time τ is a
stopping time which can be predictable or totally inaccessible (in this case, one has to compute its
compensator). Whereas, in the reduced form approach (see Duffie, Schroder, and Skiadas, 1996;
Lando, 1995), one starts with a reference filtration F in which the default time τ is not a stopping
time and one enlarges progressively F with τ to obtain G.
The enlargement of filtration theory has been in operation since the 70’s following the works of Itô
(1978), Barlow (1978), Jacod (1985), Jeulin and Yor (1978) and Yor (1978), it can be applied in
several areas, particularly in finance and insurance.

Usually, the construction of τ is such that τ avoids the F-stopping times. However, recently
some authors were interested in the case where this hypothesis is violated (see, e.g., Jiao and Li,
2015; Jiao and Li, 2018). This fact can be considered, for instance, from the perspective of the need
of modeling some defaultable claims under presence of economic shocks, in which the default time
could coincide with one of the economic shocks times, which are stopping times.

In Gehmlich and Schmidt (2018), as well as in Fontana and Schmidt (2018), the authors do not
make use of enlargement of filtration and consider a model where the G-stopping time τ does not
avoid G-predictable stopping times. In their work, they assume the existence of the compensator of
the default time, which is decomposed into an sum of absolutely continuous part and a (predictable)
pure-jump part, but they did not construct of the associated stopping time.

Jiao and Li (2018) developed a model under which the default time could coincide with some
predictable shock times. They are interested in the compensator of the default time, by using the
generalized density approach, they show that the intensity rate process does not exist in their set-
ting. Moreover, their model allows one to capture the jumps in the prices of zero-coupon bonds as
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well as in the corresponding spreads.

One of the objectives of this work is to extend the model of Jiao and Li in the case where the
shock times are not predictable. Despite its attractiveness in modeling defaultable claims under
some predictable shocks, the model of Jiao and Li is difficult to implement if the shocks are not
predictable and does not always allow to capture the jumps of the zero-coupon bond prices. Our
extention allows one to model such claims.

To model defaultable claims under some economic shocks which are not predictable, we propose
a generalized Cox model which extend the one of Lando (1998) in which the default time is the first
time when an increasing process adapted to a given filtration, absolutely continuous with respect to
Lebesgue’s measure hits a certain level, which is a random variable independent of the given filtra-
tion. It follows that this random time avoids all stopping times in the reference filtration. We relax
the assumption that the increasing process that hits the threshold level is absolutely continuous.
Here we are working in a more general case, this process being adapted, increasing and continuous
on right with limits on left or continuous on left with limits on right. This leads us to a random
time which does not avoid F-stopping times. In both cases, we are interested in the characteristics
of the default time such as the conditional survival martingale, the Azéma supermartingale and the
compensator of the default time, as well as its predictable reduction process (presented in Section
1.2) and the multiplicative decomposition of the Azéma supermartingale. We also study the exis-
tence of conditional densities in the sense of Jacod (1985), in the sense of Jiao and Li (2015) and
the extended Jacod’s hypothesis introduced in Li and Rutkowski (2014).

A first attempt to such a generalisation can be found in Bélanger, Shreve, and Wong (2004)
where the increasing process is predictable and right continuous.

Unlike the model of Jiao and Li, under the generalized Cox model, the intensity rate process
may exist.

Organization of chapters

In Chapter 1, we begin by introducing well known facts about stochastic calculus and models of
default times that we will used throughout this part of the thesis. We then illustrate an Gaussian
example of conditional density.
We define all the characteristics of the default time. In particular, we appoint the definition of what
we call predictable reduction of the compensator of the default time, which is sometimes called
F-compensator, where F is the reference filtration. We show that the Gaussian conditional density
example is unique in a wide class.

In Chapter 2, we generalize the model of Jiao and Li (2018), which is developed in the context
where the default time can coincide with some predictable stopping times, the latter are some pre-
dictable exogenous shock times where the shocks are modeled by an inhomogeneous Poisson process
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N . Our generalisation consists in relaxing the assumption that the shock times are predictable and
in replacing the Poisson process by a more general process X. We investigate the characteristics of
the default time. We show that, in the particular case where the shock times are the jump times of
a Poisson process N which generates the filtration F, the predictable reduction of the compensator
is continuous and the intensity rate process exists.

Chapter 3 focuses on the generalized Cox model. We first present the classical Cox model of
Lando (1998) where the default time is the first time when an increasing process K adapted to a
given filtration and absolutely continuous with respect to Lebesgue’s measure hits a level, which is
a random variable independent of the given filtration. We then introduce the general case where the
increasing process K is right continuous with left limits (càdlàg). We investigate the characteristics
of the default time and we give many examples of our construction. A special attention will be
paid to the shot-noise processes. We show that the model of Jiao and Li is a special one of the
generalized Cox model. We end this chapter by introducing the case where the increasing process
K is left continuous with right (càglàd) with a slight modification of the definition of the default
time. We conclude that this model can be reduced to the case where K is right continuous.

In Chapter 4, we investigate some applications of the generalized Cox model in credit risk. We
give closed form expression for the prices of some claims and their dynamics through a general
framework. We will also be interested in the impacts of the jumps of K on the pre-default prices of
defaultable bonds.

Part 2: Kriging for volatility surfaces construction

Volatility surfaces are important building blocks of risk management systems designed for pricing
and hedging of financial derivatives or optional guarantees under market-consistent asset models.
For a given underlying asset, the option value depends on the characteristics of the contract, i.e.,
the date of maturity and the strike price for equity options. However, the market value of such
options is typically available (or reliable) for a limited number of standard characteristics (matu-
rity, strike price) whereas one may require the whole price surface or the price for some unobserved
characteristics for some applications. In addition, the construction of these surfaces is usually made
in accordance with the principle of no arbitrage opportunity, i.e, the constructed options prices
must be exempted financial arbitrage. Constructing no-arbitrage price surface can be cast into a
functional learning problem with shape constraints and possibly noisy observations.
Once the price surface is interpolated, we can use the inversion formula of Black and Scholes for
obtaining the implied volatility surface. For getting the local volatility surface, we can use a finite
difference approximation of Dupire’s formula (see Dupire, 1994). Besides it is possible to construct
the local volatility surface using the implied volatilities rather than prices. This consists in extract-
ing the local volatility surface from the implied volatility one using the formula (1.10) of Gatheral
(2011). These approaches that use the observed prices (or implied volatility for constructing local
volatility) in the volatility surfaces construction are known as indirect.
Beyond these direct approches, there exist some ones which parametrize directly the unobserved
volatility through a function in which its parameters can be estimated by minimizing a suitable
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objective function obtained for calibrating that function to market data. These include among
others the stochastic volatility inspired (SVI) which parametrize the implied volatility smile and its
extension (SSVI) for the implied volatility surface (see Gatheral and Jacquier, 2014; Gatheral, 2004).

The most known techniques in the context of volatility surface construction using indirect ap-
proaches have been based on constrained splines, see for example, Fengler (2009), Homescu (2011),
Laurini (2011), and Wang, Yin, and Qi (2004) and so forth.
Some techniques in deep learning have recently been developed in order to fill the gap in the usual
models by recording better performances of learning arbitrage-free price surface. The work of Dugas
et al. (2009) is the starting point for incorporating no-arbitrage constraints in neural networks (NN)
for learning option prices. Dugas et al. (2009) used the so-called hard constraints approach through
a special neural network architecture. This approach is different to the one called soft constraints
approach which consists in penalizing some variables, in the objective function, that do not verify
the constraints (see, e.g., Itkin, 2019).
The main difficulty of the approach of Dugas et al. (2009) relies on the fact that incorporating
inequality constraints in the neural networks reduces its flexibility in practice and presents highly
non linear transformation for option pricing computation at each iteration as shown in Ackerer,
Tagasovska, and Vatter (2019).
For constructing the local volatility surface, Ackerer, Tagasovska, and Vatter (2019) proposed to
directly learn the implied volatility surface instead of prices surfaces by using the soft constraint
approach.
Chataigner, Crépey, and Dixon (2020) proposed simple neural network architectures for both
arbitrage-free option prices and implied volatility. They show that hard constraints reduce the
power of the network and that soft constraints provide best accurate prices and implied volatilities.
The main limit of these approaches lies on the fact that they do not allow to quantify uncertainty
in the estimation of the variables of interest.

The aim of this part is to adopt the constrained kriging techniques developed in Maatouk and
Bay (2017) for imposing hard constraints and quantifying the associated uncertainty in the context
of volatility surfaces construction such as implied volatility and local volatility surfaces. We use
the indirect approaches that consist in learning prices through kriging and then use the inversion
formula in term of implied volatility surface and calibrate Dupire’s formula in term of local volatility.
There is no need to extend the approach of Maatouk and Bay (2017) for more general inequality
constraints as it is done in López-Lopera et al. (2018), since we limit ourselves to the convexity and
monotonicity constraints.
The idea is to assume that the distribution of the underlying process is a realization of a truncated
Gaussian process, verifying a number of constraints. As for the rate curves (see Cousin, Maatouk,
and Rullière (2016)), the compatibility constraints with the observations (price compatibility of
European options) is translated into a linear relationship on the kriging process. The arbitrage-free
hypothesis on option prices is equivalent to the existence of a martingale measure: the achievements
of the kriging process must correspond to marginal distributions of martingales. According to
Theorem 2.6 of Beiglböck, Juillet, et al. (2016), it is then necessary to build a family of marginal
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distributions from a bivariate Gaussian process which is conditionally:

• increasing with respect to the direction of maturities

• convex with respect to the strike prices

• solution of a linear relationship on certain maturities and the strike prices.

Therefore, the first two constraints correspond to the inequality constraints that must be taken into
account by the kriging model. The third constraint makes the kriging model compatible with the
observed European options with different maturities and exercise prices.

Kriging, known as Gaussian process (GPs) regression, is a spatial interpolation approach and its
techniques have been developed in geostatistics for estimating the distribution of mineral resource
in the ground given the relatively small set of boreholes (see, e.g., Matheron, 1963; Cressie, 1990;
Krige and Magri, 1982). It gains popularity with the works of Williams and Rasmussen (2006)
and has been adapted into various areas such as hydrology, meteorology, epidemiology and among
others. Recent works in kriging have been developed in quantitative finance. For instance, Sousa,
Esquível, and Gaspar (2012) used kriging for learning model parameters when calibrating the Vasicek
interest rate model under the risk neutral measure. They made a Gaussian prior on the zero coupon
bond log prices and learnt model parameters by maximizing the log likelihood of the training data
given the parameters. Ludkovski (2018) improves the Monte Carlo Least square method for the
valuation of Bermuda option by using kriging for the regression step which consists in approximating
the expected value from continuation. De Spiegeleer et al. (2018) show the speed up of kriging
comparing to monte carlo method for pricing options and approximating implied volatility. However
they do not take into account the arbitrage-free conditions in their approximation. In derivative
portfolio modeling, Dixon and Crépey (2018) used a multi-response kriging in portfolio valuation
through computation of credit valuation adjustment (CVA). They show that kriging provides fast
approximation of portfolio value. Gonzalvez et al. (2019) explore the use of kriging in finance and
show that this latter is a powerful tool for fitting the yield curve. However their interpolation does
not take in consideration the arbitrage-free conditions too.

A first attempt at using kriging for local volatililty is done by Tegnér and Roberts (2019) who
place a Gaussian prior directly on the local volatility surface (to guarantee the positivity of the
local volatility, they assign a positive function on the prior). Such an approach leads to a nonlinear
least squares training loss function, as it involves the nonlinear transformation of the local volatility
into the corresponding vanilla option prices. Such a loss function is not obviously amenable to
gradient descent (stochastic or not), so the authors resort to a MCMC optimization. Moreover, the
performance of their GPs is measured by in-sample RMSE and does not seem to be assessed for
overfitting. Furthermore, they do not benchmark their approach against alternatives.
Actually, adding that positivity constraint and several others (such as monotonicity, convexity,
boundedness) in kriging is not an easy task and constitutes a big challenge. Several approaches
exist. The frameworks presented in Da Veiga and Marrel (2012), Golchi et al. (2015), Riihimäki
and Vehtari (2010), and Wang and Berger (2016), among many others, are based on the fact that
the constraints are only satisfied on a virtual observation locations and does not guarantee the con-
straints in the entire domain. For instance, for incorporating increasing monotonicity constraint in



Introduction in english 13

kriging, Wang and Berger (2016) proposed to select the locations with large probabilities of having
negative derivatives as the virtual locations set in which they enforce the constraints. The approach
of Agrell (2019) extended that of Wang and Berger (2016) for multiple constraints through an ef-
ficient method for sampling the posterior process based on the derivation of the posterior of the
constrained Gaussian process using a linear operator.

Adding some inequality constraints in the quantities of interest leads to the fact that the pos-
terior process is no more Gaussian and these constraints are usually infinite-dimensional. This
motivated Maatouk and Bay (2014) to use the finite dimensional approximation of Gaussian pro-
cesses for which the the inequality constraints are easy to check. They developed a sampling scheme
called Rejection Sampling from the Mode (RSM) for sampling from truncated multivariate Gaussian
distribution which is needed for estimating the posterior process. Their approach guarantees the
constraints in the whole domain. Cousin, Maatouk, and Rullière (2016) show the extensions of clas-
sical spline interpolation by constrained kriging techniques developed in Maatouk and Bay (2014) to
ensure non-arbitrable and error-controlled yield-curve and CDS curve interpolation. López-Lopera
et al. (2018) extended the framework of Maatouk and Bay (2014) for more general inequality con-
straints and proposed to use the Hamiltonian Monte Carlo (HMC) of Pakman and Paninski (2014)
which is more efficient than the RSM of Maatouk and Bay (2014) for sampling from truncated
multivariate Gaussian distribution.

Unlike spline interpolation and NN approaches, kriging makes it possible to quantify the uncer-
tainty in the estimation of the variables of interest. It is possible for example, to obtain confidence
intervals at the points of the surface where the observations are unavailable or considered unsuitable.

The main contributions of the part is to show that kriging is a suitable tool for constructing
option prices and quantifying uncertainty in the presence of noisy observation, and for computing
the associated local and implied volatility.

Organization of chapters

The outline of the part is organized as follows.
In Chapter 5, we present some techniques in classical and constrained kriging that we use in the
following chapters. A particular attention will be paid in the sampling of Gaussian random coef-
ficients when some monotonicity constraints are saturated and we will propose a solution of this
problem.

Chapter 6 focuses on the construction of implied volatility surface using kriging. We adopt the
constrained kriging developed in Maatouk and Bay (2014) for constructing no-arbitrage prices. We
compare the performances of the classical and constrained kriging in this context through an em-
pirical study using the Euro Stoxx 50 data of January 10, 2019. Constrained kriging provides, over
the whole interpolation criteria, better performances than claissical kriging. Moreover, due to the
shape constraints, the constrained kriging approach behave better in extrapolation than an classical
kriging approach. However, when the percentage of the used data is too large the estimated MAP
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from classical kriging performs as well as the one estimated from the constrained kriging in inter-
polation. This is shown by studying the accuracy of the Maximum A Posterior (MAP) estimators
using the RMSE measure.

Chapter 7 is devoted to the construction of local volatility surface using kriging. It makes several
contributions to the literature. First, we extend the free-arbitrage option price surface construction
in the case with dividends and interest rate. With such free-arbitrage extended price surface, we
model the local volatility surface by using Dupire’s partial differential equation. Uncertainty quan-
tification provides confidence bounds in the local volatility models. We benchmark the performance
of our model against the SSVI and the NN approaches. We use a soft-constrained NN local volatility
implied variance formula to derive a local volatility surface from Black-Scholes implied volatilities
(see blue arrow in Fig. 7.1).
The fitting of the NN is done with mid-quotes while the one of the kriging is done with a replication
of the bid and ask quotes. This is a nice property of Kriging which allows to obtain a price surface
that respects the bid-ask spread constraints. In other terms, the obtained surface lies between the
bid and the ask prices.
Kriging provides better performances for pricing and is the only approach that gives uncertainty
quantification, which is useful for risk analysis.
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Part 1: Models of default times
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Chapter 1

Preliminaries

In this chapter, we recall some definitions and standard results which will be useful in the following
chapters.

1.1 Stochastic processes

Let (Ω,G,H,P) be a filtered probability space with H a generic filtration which verifies the usual
conditions (i.e., completed and right-continuous). For any process with limits on right and limits on
left (làdlàg) Y , we denote its left jump by ∆Y and its right jump by ∆+Y which are respectively
given at time t by ∆Yt = Yt − Yt− and ∆+Yt = Yt+ − Yt, where Yt− and Yt+ are its left and right
limits at t. If Y is continuous on right with limit on left (càdlàg), one has ∆+Yt = 0 for any t ≥ 0,
if Y is continuous on left with limits on right (càglàd) ∆Yt = 0 for any t ≥ 0, and if Y is continuous
∆Yt = ∆+Yt = 0, for any t ≥ 0. For any càdlàg increasing (or decreasing)1 process Y , we denote
by Y c 2 its continuous part, i.e., Y c

t = Yt −
∑

s≤t ∆Ys.
The Lebesgue-Stieltjes integral of a bounded process V with respect to a càdlàg increasing process
X is, for s < t, denoted

∫ t
s VudXu :=

∫
]s,t] VudXu. Note that

∫
]0,t] dXu = Xt − X0 and, with the

convention X0− = 0, that
∫

[0,t] dXu = Xt −X0 + ∆X0 = Xt.
In what follows, we recall the notion of semimartingale. More details about this notion can be
found, e.g., in Aksamit and Jeanblanc, 2017, subsection 1.2; He, Wang, and Yan, 2018, Chapter 8.

Definition 1 An H-semimartingale is an H-adapted càdlàg process X with the following decompo-
sition :

X = X0 +N + V

where N is an H-local martingale with N0 = 0 and V an H-adapted càdlàg process with finite
variation and V0 = 0. If, in addition, V is H-predictable, this decomposition is unique and in that
case X is called a special semimartingale.
If X is a continuous H-semimartingale, then X is a special semimartingale, with N and V being
continuous.
A càdlàg H-supermartingale (resp. H-submartingale) is a special semimartingale.

Definition 2 For any bounded H-predictable process H and any càdlàg H-special semimartingale
X with decomposition X = X0 +N +V , we denote by (H �X) the stochastic integral of H w.r.t. X

1We say that a process Y is increasing (resp. decreasing) if for 0 ≤ s ≤ t, Yt ≥ Ys ( resp. Yt ≤ Ys) a.s.
2This notation should be not confused with the notation Xc, which, for a semimartingale X denotes the continuous

martingale part of X.
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which is the H-special semimartingale given by (see He, Wang, and Yan, 2018, Definition 9.13)

(H �X)t := H0X0 +

∫ t

0
HsdXs = H0X0 +

∫ t

0
HsdNs +

∫ t

0
HsdVs, ∀t ≥ 0.

Definition 3 Let Xc and Y c be the continuous martingale parts of two H-semimartingales X and
Y . The quadratic covariation process of X and Y is the H-adapted process with finite variation
denoted by [X,Y ] such that (see He, Wang, and Yan, 2018, Definition 8.2)

[X,Y ]t := X0Y0 + 〈Xc, Y c〉t +
∑

0<s≤t
∆Xs∆Ys, ∀ t ≥ 0

where 〈Xc, Y c〉 is the unique H-predictable process with finite variation such that XcY c − 〈Xc, Y c〉
is an H-local martingale.

The following result is known as Yoeurp’s lemma. We recall it as given in Aksamit and Jeanblanc,
2017, Proposition 1.16.

Lemma 4 ( Yoeurp’s lemma). The quadratic covariation [X,V ] of a càdlàg H-semimartingale X
and a finite variation H-adapted càdlàg process V verifies

[X,V ]t = X0V0 + (∆X � V )t = X0V0 +

∫ t

0
∆XsdVs, ∀ t ≥ 0

and the integration by parts formula can be written as

XtVt = X0V0 +

∫ t

0
XsdVs +

∫ t

0
Vs−dXs, ∀ t ≥ 0.

If in addition V is H-predictable, then [X,V ]t = X0V0 + (∆V �X)t and

XtVt = X0V0 +

∫ t

0
Xs−dVs +

∫ t

0
VsdXs, ∀ t ≥ 0.

Definition 5 (see He, Wang, and Yan, 2018, Definition 3.15)
We denote by O(H) (resp. P(H)) the H-optional (resp. H-predictable) σ-algebra on R+×Ω and by
B(R+) the Borelien sets of R+. Let V be a locally integrable variation process càdlàg with V0 = 0.
There exists a unique H-optional locally integrable variation process V o,H, called the H-dual optional
projection of V , such that V o,H

0 = 0 and

E

[∫
[0,∞[

XsdVs

]
= E

[∫
[0,∞[

XsdV
o,H
s

]

for any bounded H-optional process X such that E
[∫

[0,∞[ |Xs|d|V |s
]
<∞.

There exists a unique H-predictable locally integrable variation process V p,H, called the H-dual pre-
dictable projection of V , such that V p,H

0 = 0 and

E

[∫
[0,∞[

XsdVs

]
= E

[∫
[0,∞[

XsdV
p,H
s

]
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for any bounded H-predictable process X such that E
[∫

[0,∞[ |Xs|d|V |s
]
< ∞. If V is H-adapted,

then V − V p,H is an H-martingale and V p,H is called the H-compensator of V .

Let us note that these projections depend on the filtration that one refers to.

We recall that any càdlàg H-supermartingale (resp. submartingale) X admits a unique Doob-
Meyer decomposition, i.e., X = MX − AX (resp. X = MX + AX) where MX is an H-martingale
and AX an increasing H-predictable process with AX0 = 0.
We recall also that any strictly positive bounded càdlàgH-supermartingale Y admits a multiplicative
decomposition of the form Y = Ne−H , where N is an H-local martingale and H an increasing H-
predictable process (see, e.g., Aksamit and Jeanblanc, 2017, Proposition 1.32).

Definition 6 A filtration F is said to be immersed in a filtration H, with F ⊂ H if any F-martingale
is an H-martingale (see Jeanblanc, Yor, and Chesney, 2009, p.316; Brémaud and Yor (1978)). In
the literature (see Brémaud and Yor, 1978), it is said that the H-hypothesis holds between F and H.

Note that the immersion property depends on the choice of the probability measure.
A trivial (and useful) example of immersion between two filtrations H and F is when H = F∨ F̃

where F̃ is independent of F under P.

Lemma 7 Let H(1),H(2) and H(3) be three filtrations. If H(1) ⊂ H(3) and Y is an H(3)-martingale
which is H(1)-adapted, then Y is an H(1)-martingale. In particular, if H(1) is immersed in H(3) and
H(1) ⊂ H(2) ⊂ H(3), then H(1) is immersed in H(2).

Proof: Let Y be an H(1)-adapted H(3)-martingale. For any 0 ≤ s ≤ t, one has by using the tower
property

E[Yt|H(1)
s ] = E[E[Yt|H(3)

s ]|H(1)
s ] = E[Ys|H(1)

s ] = Ys

where we have used, in the second equality, the martingale property of Y with respect to H(3) and,
in the last equality, the fact that Y is H(1)-adapted. �

Lemma 8 Let F = (Ft)t≥0, H1 = (H1
t )t≥0 and H2 = (H2

t )t≥0 be three filtrations such that H1 is
independent of H2 and Ft = H1

t ∨ H2
t , ∀t ≥ 0. Then, for T ≥ t, H1

T and H2
T are conditionally

independent with respect to Ft.

Proof: Let X,Y be bounded random variables with X ∈ H1
T and Y ∈ H2

T . Then, from tower
property

E[XY |Ft] = E[E[XY |H2
T ∨H1

t ]|Ft]

= E[Y E[X|H2
T ∨H1

t ]|Ft]
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where the second equality follows from the fact that Y ∈ H2
T ⊂ H2

T ∨H1
t . Since H1 is independent

of H2, X ∈ H1
T is independent of H2

T and E[X|H1
t ∨H2

T ] = E[X|H1
t ]. Hence,

E[XY |Ft] = E[Y E[X|H1
t ]|Ft]

= E[X|H1
t ]E[Y |Ft]

= E[X|Ft]E[Y |Ft].

The second equality is due to the fact that E[X|H1
t ] is Ft-measurable and the last one comes

from the independence of H1 and H2 which allows to write, for X ∈ H1
T , E[X|H1

t ] = E[X|H1
t ∨H2

t ] =

E[X|Ft]. �

We recall that the graph of a finite random time τ (i.e., a non-negative random variable) is the
subset [[τ ]] of Ω× R+ defined as

[[τ ]] = {(ω, t) : τ(ω) = t} .

Definition 9 A random time τ avoids all H-stopping times if P(τ = ζ < ∞) = 0, for any H-
stopping time ξ.

Definition 10 (see He, Wang, and Yan, 2018, Section 3, Chapter 3)
An H-stopping time ϑ is said to be H-predictable if there exists an increasing sequence of H-stopping
times (ϑi)i≥1 converging to ϑ such that ϑi < ϑ on the set {ϑi > 0}, for all i. If ϑ is H-predictable,
(1{ϑ≤t}, t ≥ 0) is a predictable process.
An H-stopping ϑ is said to be accessible if [[ϑ]] ⊂ ∪i[[ϑi]] where (ϑi)i≥1 are H-predictable stopping
times.
An H-stopping time ϑ is said to be totally inaccessible if it avoids all H-predictable stopping times
(i.e., P(ϑ = ξ <∞) = 0 for any H-predictable stopping time ξ).

1.2 Default time

We consider a probability space (Ω,G,P) and τ a random time that we assume to be finite (except
for some specific examples), defined on (Ω,G). We introduce the right-continuous increasing default
process At = 1{τ≤t} associated with τ and we denote by A = (At)t≥0 the filtration (completed
and right-continuous) generated by this default process. We recall that, for any process X, one has∫ t
uXsdAs =

∫
]u,t]XsdAs = Xτ1{u<τ≤t}. For a given filtration H on Ω, we introduce the H-dual

predictable projection of the default process A, i.e., Ap,H. By abuse of language, we shall sometimes
say that Ap,H is the H-dual predictable projection of τ .
If τ is an H-stopping time, the compensator of τ is by definition the unique H-predictable increasing
process JH such that JH

0 = 0 and At − JH
t is an H-martingale (see Jeanblanc, Yor, and Chesney,

2009, p.265). Note that JH
t = JH

t∧τ . This compensator JH of τ is nothing else than Ap,H. This
property extends as follows :
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Lemma 11 For any H-predictable bounded process H, the process

Hτ1{τ≤t} −
∫ t∧τ

0
HsdA

p,H
s

is an H-martingale.

Proof: This result follows from the fact that

Hτ1{τ≤t} =

∫ t

0
HsdAs = (H �A)t,

and, for H being H-predictable, the H-dual predictable projection of H � A is H � Ap,H (see He,
Wang, and Yan, 2018, p. 148, Theorem 5.23). �

We now work on a filtered probability space (Ω,G,F,P) on which a random time τ is defined.
We call F the reference filtration. We consider the links between the default time and the reference
filtration. We denote by Z the Azéma supermartingale (see Azéma, 1972; Jeanblanc, Yor, and
Chesney, 2009, Subsection 5.9.4; Nikeghbali, 2006) associated with τ , which satisfies Zt := P(τ >

t|Ft). Note that Zt > 0 on {τ > t} and Zt− > 0 on {τ ≥ t} (see Aksamit and Jeanblanc, 2017,
Lemma 2.14). Then, Ap,F, the F-dual predictable projection of A, is also the predictable part in
the Doob-Meyer decomposition of Zt := mt − Ap,Ft where m is an F-martingale (see Aksamit and
Jeanblanc, 2017, subsection 2.2, page 33).
We introduce the so-called second Azéma’s supermartingale Z̃ associated to τ , which satisfies Z̃t :=

P(τ ≥ t|Ft) = Zt − ∆Ao,Ft (see Aksamit and Jeanblanc, 2017, Proposition 1.46). Note that the
Azéma supermartingale Z is right-continuous with left limits while the supermartingale Z̃ is a
process with right and left limits.

Definition 12 Let G = (Gt)t≥0 be the progressive enlargement of F with τ , i.e., G = F ∨ A, which
means that Gt = ∩ε>0G0

t+ε, with G0
s = Fs ∨As for every s ≥ 0 (see, e.g., Jeulin and Yor, 1978; Yor,

1978).
The filtration G is the smallest filtration satisfying the usual hypotheses containing F and turning
out τ into a stopping time.

Definition 13 The F-predictable reduction of the compensator of τ
The process Λ given by

Λt =

∫ t

0
1{Zs−>0}

dAp,Fs
Zs−

(1.2.1)

is F-predictable and increasing, and, denoting by Λτ the process Λ stopped at time τ ,

At − Λt∧τ = At − Λτt = At −
∫ t∧τ

0

dAp,Fs
Zs−

is a G-martingale (see Aksamit and Jeanblanc, 2017, Proposition 2.15).
The process Λτ is the G-compensator of the default process A (we shall also say compensator of τ)
and we call Λ the F-predictable reduction of the G-compensator of τ .
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If Λ is absolutely continuous with respect to the Lebesgue measure, i.e., Λt =
∫ t

0 λsds, then its
derivative λ, which is a non-negative F-predictable process, is called the F-intensity rate.

We recall that the default time τ avoids all F-stopping times (resp. all F-predictable stopping times)
if and only if Ao,F (resp. Ap,F) is continuous (see Aksamit and Jeanblanc, 2017, Proposition 1.43).
It can be proved that the jump times of Ao,F are F-stopping times not avoided by τ .
The assumption that the default time τ avoids all F-stopping times is widely made in the literature
of progressive enlargement of filtration (see, e.g., in Nikeghbali, 2006).

In the case of progressive enlargement of filtration, the immersion property is easily characterized
:

Lemma 14 (see Aksamit and Jeanblanc, 2017, Lemma 3.8 )
The filtration F is immersed in G if and only if

P(τ > t|Ft) = P(τ > t|F∞), ∀t ≥ 0.

We now give some definitions relative to the conditional law of τ

Definition 15 A family of stochastic processes (Mt(u))u,t∈R+ is called a (P,F)-martingale survival
process if it satisfies (see El Karoui et al., 2014, Section 2):

• for every u ∈ R+, for every t ∈ R+, the random variable Mt(u) is valued in [0, 1],

• for every u ∈ R+, the process (Mt(u))t∈R+ is a (P,F)-martingale,

• for every t ∈ R+, the family Mt(u), u ∈ R+ is decreasing with respect to u.

In a default setting, we will be interested with the conditional survival process of the default time τ ,
i.e.,Mt(u) = P(τ > u|Ft), which is a (P,F)-martingale survival process. It is shown in Jeanblanc and
Song (2011a) that to any (P,F)-martingale survival process M , one can associate, on an extended
probability space, a random time τ such that M is the conditional survival process of τ .

Definition 16 A family of non-negative O(F)
⊗
B(R+)-measurable functions (ω, t, u) → pt(ω, u)

is called a (P,F)-conditional density process if (see El Karoui et al., 2014, Condition (A))

• for every u ∈ R+, (pt(u))t∈R+ is a non-negative (P,F)-martingale,

• for every t ∈ R+,
∫∞

0 pt(u)η(du) = 1 a.s, where η is a probability law on R+.

If M is a (P,F)-martingale survival process satisfying Mt(0) = 1 for all t ≥ 0 and Mt(u) =∫∞
u pt(θ)η(dθ) a.s, with η is a probability law on R+, then p is a conditional density process.
The processes Z, Z̃, the F-dual predictable and optional projections Ap,F, Ao,F of τ , the compensator
process Λτ as well as its F-predictable reduction Λ and the conditional survival process (Mt(u))u,t∈R+

are called the characteristics of the default time τ (see Jeanblanc and Li, 2020 for more details).
In what follows, F being the reference filtration, we shall simply denote by Ap and Ao the F-dual
predictable and optional projections of A.
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Lemma 17 Key Lemma 1 (see, e.g., Jeanblanc, Yor, and Chesney, 2009, Lemma 7.4.1.1)
For any integrable random variable Y , one has

1{τ>t}E[Y |Gt] = 1{τ>t}
E[Y 1{τ>t}|Ft]

Zt
. (1.2.2)

If furthermore Y ∈ FT ,

E[Y 1{τ>T}|Gt] = 1{τ>t}
E[Y ZT |Ft]

Zt
. (1.2.3)

Lemma 18 Key Lemma 2 (see, e.g., Jeanblanc, Yor, and Chesney, 2009, Lemma 7.4.1.2)
For any bounded F-predictable process R,

E[Rτ1{τ≤T}|Gt] = Rτ1{τ≤t} − 1{τ>t}
E[
∫ T
t RudZu|Ft]

Zt
= Rτ1{τ≤t} + 1{τ>t}

E[
∫ T
t RudA

p
u|Ft]

Zt
.

(1.2.4)

1.3 Conditional density approach

In this Section, we investigate the conditional density approach for credit risk modeling. We first
introduce the density hypothesis within the meaning of Jacod (1985, Condition (A)), before tackling
the so-called extended density hypothesis of Li and Rutkowski (2014, Proposition 2.5) and the so-
called generalized density hypothesis of Jiao and Li (2015). We also investigate some examples of
conditional density processes.
In order to highlight the density approach rule in default modeling we first recall the general
framework to valuate a defaultable claim.

1.3.1 General framework of valuation of defaultable claims

This paragraph is based on Bielecki and Rutkowski (2002) and more details related to this topic
can be found in Bielecki, Jeanblanc, and Rutkowski (2009); Jeanblanc, Yor, and Chesney, 2009,
Chapter 7; Aksamit and Jeanblanc, 2017, Chapter 2.
The valuation formula of a defaultable claim with default payment (or recovery) h relies on some
characteristics of the default time. Following Jeanblanc and Li (2020), if the recovery process h
is F-predictable, then the pre-default value is obtained using the F-predictable projection Ap of
the default time or equivalently by the Azéma supermartingale Z, while when h is F-optional, the
pre-default value of the claim is determined the F-dual optional projection Ao. In what follows, we
recall the pricing formula by considering predictable recovery. The case with optional recovery can
be obtained in the same manner by letting Ao to play the rule of Ap in the first case.

Consider a defaultable claim which consists in a single payment of a positive value VT (where
VT is an FT -measurable integrable random variable) at maturity T when default does not occur
before T and a payment of the recovery h (with h a bounded F-predictable process) evaluated at
τ when default occurs before maturity T . When the payment of the recovery is made at hit, the
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discounted dividend process ζ at time t has the following expression

ζ := e−
∫ T
t rsdsVT1{τ>T} + e−

∫ τ
t rsdshτ1{t<τ≤T},

with r a non-negative F-adapted process which is the interest rate. By assuming that P is the
pricing measure, the price of the defaultable claim is given by a direct application of Lemma 17 and
18 (see, e.g., Bielecki and Rutkowski, 2002, proposition 8.2.1; Bielecki, Jeanblanc, and Rutkowski,
2009, Lemma 7.4.1.2)

E[ζ|Gt] =
E
[
e−

∫ T
t rsdsVTZT +

∫ T
t e−

∫ u
t rsdshudA

p,F
u |Ft

]
Zt

1{τ>t}. (1.3.1)

If the actualized payoff at time t is of the form ζ := e−
∫ T
t rsdsf(VT , τ)1{τ<T}, where f is a bounded

function from R × R+ into R, then the Azéma supermartingale Z does not allow to compute the
quantity E [ζ|Gt] on the set {τ > t}. In such a case, the F-conditional density process p(u) of the
default time τ , if it exists (see below the definition) provides the needed tool.

Definition 19 The default time τ satisfies the density hypothesis (CL) - which we mean classi-
cal density hypothesis - Jacod, 1985, Condition (A), if there exists a conditional density process
(pt(u))t,u∈R+ (we call it (CL)-conditional density) such that for any bounded Borel function h

E[h(τ)|Ft] =

∫ ∞
0

h(u)pt(u)η(du), ∀t ≥ 0, a.s

where η is a probability law on R+.

The existence of a (CL) conditional density is a strong hypothesis, not always satisfied, whereas
the martingale survival process of the default time always exist.
If this hypothesis is satisfied, one can always choose η = β, where β is the law of τ (see Jacod,
1985, Proposition 1.5). Furthermore, if β is no atomic, τ avoids F-stopping times (see El Karoui,
Jeanblanc, and Jiao, 2010, Corollary 2.2). Nevertheless, if β has an atom at t∗, then P(τ = t∗) > 0

and the constant stopping time t∗ is not avoided by τ .
Under (CL) Apt =

∫
[0,t] pu−(u)η(du) and Aot =

∫
[0,t] pu(u)η(du) (see Aksamit and Jeanblanc, 2017,

Corollary 5.27). Furthermore, F is immersed in G if and only if pt(u) = pu(u), for η-a.e. u satisfying
u ≤ t. (see El Karoui, Jeanblanc, and Jiao, 2010, subsection 3.2)
If the conditional density exists, then

Mt(u) := P(τ > u|Ft) =

∫ ∞
u

pt(θ)η(dθ), a.s (1.3.2)

is the family of martingale survival process associated with τ .
The price of the defaultable claim ζ := f(VT , τ)1{τ<T} paid at time T is given by (see El Karoui,
Jeanblanc, and Jiao, 2010, Theorem 3.1)

E[ζ|Gt] = 1{τ>t}
E
[∫ T
t e−

∫ T
t rsdsf(VT , u)pT (u)η(du)|Ft

]
Zt

. (1.3.3)
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This formula (1.3.3) implies the fact that knowing the conditional law of τ with respect to the
reference filtration provides more support in the pricing derivatives.

Li and Rutkowski, 2014, Definition 2.5 introduced the extended density hypothesis denoted by
(ED) in order to overcome a non-degeneracy condition of the F-conditional law of τ . The following
definition focusses on this extended density approach.

Definition 20 The default time τ satisfies the extended density hypothesis (ED) (see Li and Rutkowski,
2014), if, for any u, there exists a family of non-negative martingales (mt(u)t≥u) and an F-adapted,
increasing process D, with D0 = 0 such that for all 0 ≤ u ≤ t,

P(τ ≤ u|Ft) =

∫ u

0
mt(s)dDs,∀t ≥ 0.

Under the classical density approach (CL), if the law of τ has no atoms, τ is a totally inaccessible
G-stopping time which avoids all F-stopping times and this does not allow to model some credit risks
where the default time can coincide with some F-predictable stopping times. That motivated Jiao
and Li to introduce the generalized density hypothesis that we denote (GD) which postulates that
the part of the random time τ which avoids a sequence of F-stopping times, admits an F-conditional
density (see Jiao and Li, 2015, Assumption 2.4).

Definition 21 The default time τ satisfies the generalized density hypothesis (GD) (see Jiao and Li,
2015) if there exists a non-atomic non-negative σ-finite Borel measure υ on R+, a strictly increasing
sequence of F-stopping times (τi)i and a family (αt(u))t,u∈R+ of non-negative F-martingales (we call
it (GD)-conditional density) such that for any bounded Borel function h ,

E

h(τ)
∏
i≥1

1{τ 6=τi}|Ft

 =

∫
R+

h(u)αt(u)υ(du), ∀t ≥ 0, a.s.

Proposition 22 For any bounded Borel function h, if the Generalized density hypothesis is satisfied,

E[h(τ)|Ft] =

∫ ∞
0

h(u)αt(u)υ(du) +
∞∑
i=1

E[h(τi)p
i
t∨τi |Ft].

Proof:

E[h(τ)|Ft] = E[h(τ)
∞∏
i=1

1{τ 6=τi}|Ft] +
∞∑
i=1

E[h(τ)1{τ=τi}|Ft].

Using the tower property, we obtain

E[h(τ)1{τ=τi}|Ft] = E [h(τi)P(τ = τi|Fτi∨t)|Ft] = E
[
h(τi)p

i
t∨τi |Ft

]
.

�

Comments :
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• If τ avoids all F-stopping times, the existence of a (GD)-conditional density is equivalent to
the existence of a (CL)-conditional density.

• If the (CL)-conditional density exists then the extended density hypothesis (ED) exists. The
(ED) may exist while the (CL) and the (GD)-conditional density do not exist.

1.3.2 Gaussian example

1.3.2.1 El Karoui et al. (2014) example

In this subsection, we recall the example of El Karoui et al. (2014) (see also Zargari, 2011, Chapter
2, subsection 2.2).
Following El Karoui et al. (2014), starting from a square integrable deterministic function g on
R+ and introducing the martingale µ as µt =

∫ t
0 g(s)dBs, where B is a Brownian motion, one can

construct a random time τ = l−1(µ∞), where l is a strictly increasing function, differentiable, from
R+ to R. By denoting F the Brownian filtration generated by B, it is shown in El Karoui et al.
(2014) that, for any t, θ ≥ 0,

Mt(u) := P(τ > u|Ft) = Φ

(
µt − l(u)

ν(t)

)
, (1.3.4)

where ν(t) :=
∫∞
t g2(s)ds is assumed to be strictly positive, and Φ is the standard Gaussian cumu-

lative function. The family (Mt(u))t,u≥0 is a family of martingales, obviously valued in [0, 1] and
decreasing w.r.t. u with dynamics

dMt(u) = ϕ

(
µt − l(u)

ν(t)

)
g(t)

ν(t)
dBt

where ϕ is the standard Gaussian density function, or setting Ut(u) = µt−l(u)
ν(t)

dMt(u) = Mt(u)
ϕ(Ut(u))

Φ(Ut(u))

g(t)

ν(t)
dBt (1.3.5)

which allows us to write M(u) as the exponential martingale of
∫ ·

0
ϕ(Ut(u))
Φ(Ut(u))

g(t)
ν(t)dBt.

The density of τ is obtained by differentiating M0(u) w.r.t. u, i.e.,

ρ(u) =
1√

2πν(0)
l′(u) exp

{
−1

2

(
µ0 − l(u)

ν(0)

)2
}

where ν(0) :=
∫∞

0 g2(s)ds. The conditional density process obtained by differentiating Mt(u) w.r.t.
u, (and taking η as the law of τ) is

pt(u) =
1

ρ(u)
√

2πν(t)
l′(u) exp

{
−1

2

(
µt − l(u)

ν(t)

)2
}



26 Chapter 1. Preliminaries

and its dynamics is given by

dpt(u) = −pt(u)
µt − l(u)

ν2(t)
g(t)dBt.

1.3.2.2 Starting from Φ

In the previous subsubsection, we have recalled a family of conditional laws constructed from the
standard Gaussian cumulative function. One wonders whether it is possible to obtain, from this
distribution function, additional conditional laws. In this subsubsection, we show that the previous
example is unique in a wide class. As such, we look for a diffusion X satisfying the following
differential stochastic equation

dXt = a(Xt, t)dt+ σ(Xt, t)dBt, X0 = θ

where B is a standard Brownian motion, and two deterministic functions f and h from R+ to R
such that

Zt(u) := Φ(Xt − f(t)h(u))

defines a martingale survival process (see Definition 15).
The decreasing property w.r.t. the parameter u is obtained if h is an increasing strictly positive
function and f is a strictly positive function. The initial (resp. terminal) condition on Zt(·)
imposes that Z0(0) = 1 and Z0(∞) = 0, hence we restrict our attention to the case h(0) = −∞ and
h(∞) =∞.

We now determine some conditions on the coefficients of the diffusion X such that Z(u) is a
martingale for any u. As such, by denoting Ut := Xt − f(t)h(u), the Itô formula shows that

dZt(u) =

{
Φ′(Ut)(−f ′(t)h(u) + a(Xt, t)) +

1

2
Φ′′(Ut)σ

2(Xt, t)

}
dt+ Φ′(Ut)σ(Xt, t)dBt (1.3.6)

and by using the fact that Φ′′(x) = −xΦ′(x), it follows that for all u ≥ 0, Z(u) is a local martingale
if and only if

Φ′(Ut)

{
−f ′(t)h(u) + a(Xt, t)−

1

2
Utσ

2(Xt, t)

}
= 0. (1.3.7)

Note that Z being bounded will be a true martingale. This implies that for all u, t ≥ 0

h(u)

{
−f ′(t) +

1

2
f(t)σ2(Xt, t)

}
+ a(Xt, t)−

1

2
Xtσ

2(Xt, t) = 0.

Knowing that this last equality holds for all u ≥ 0, one obtains for any t ≥ 0

a(Xt, t)−
1

2
Xtσ

2(Xt, t) = 0 (1.3.8)

− f ′(t) +
1

2
f(t)σ2(Xt, t) = 0 . (1.3.9)

By assuming that the diffusion X is not degenerated (i.e., X is not constant), the equation (1.3.9)
establishes that σ2(x, t) does not depend on x. Hence one denotes it by σ2(t). The equations (1.3.8)
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and (1.3.9) imply

a(x, t)− 1

2
xσ2(t) = 0 (1.3.10)

− f ′(t) +
1

2
f(t)σ2(t) = 0 (1.3.11)

for all x which belongs to the support of Xt. Therefore, it follows that

σ2(t) =2
f ′(t)

f(t)

a(x, t) =
1

2
xσ2(t) = x

f ′(t)

f(t)

and

dXt = Xt
f ′(t)

f(t)
dt+

√
2
f ′(t)

f(t)
dBt,

for f such that f ′

f ≥ 0 for all t ≥ 0, hence for f such that f ′ ≥ 0 since f > 0.
This line of thinking proves the following result :

Proposition 23 Let h be an increasing deterministic function from R+ to R and f a strictly positive
and differentiable increasing function. The set of diffusions X, such that

Zt(u) := Φ (Xt − f(t)h(u)) (1.3.12)

defines a martingale survival process, is the one of the form

dXt = Xt
f ′(t)

f(t)
dt+

√
2
f ′(t)

f(t)
dBt, X0 = θ. (1.3.13)

One denotes by D the set of such diffusions X.

1.3.2.3 The Gaussian conditional density construction using the class D

We now investigate this class of diffusions D in the perspective of the result obtained in the previous
subsubsection which stipulated that

Φ

(
µt − l(u)

ν(t)

)
,

where ν(t) :=
∫∞
t g2(s)ds and µt =

∫ t
0 g(s)dBs, is a martingale survival process. We show that this

result is driven by a class of diffusions denoted C, which is contained in the class D. As such, we
take Xt = µt

ν(t) , f(t) = 1
ν(t) and h = l, since for any u ≥ 0, Φ(Xt − 1

ν(t)h(u)) is a martingale, the
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process X belongs to the class D with X0 = 0 and satisfies

dXt =−Xt
ν ′(t)

ν(t)
dt+

g(t)

ν(t)
dBt

=−Xt
ν ′(t)

ν(t)
dt+

√
2(−ν

′(t)

ν(t)
)dBt

=Xt
f ′(t)

f(t)
dt+

√
2
f ′(t)

f(t)
dBt.

By consequence, the class D is a little bit larger than C due to the choice of the initial value of X
(it is rather obvious that, w.l.g., one can choose f(0) = 1).

Consider now an element X of the class D ( i.e., the dynamics of X is of the form (1.3.13))
with initial value θ. These dynamics are well known as a linear stochastic differential equation and
admit the following solution

Xt(θ) = exp[

∫ s

0

f ′(u)

f(u)
du]

(
θ +

∫ t

0

√
2
f ′(s)

f(s)
exp[−

∫ s

0

f ′(u)

f(u)
du]dBs

)
.

Since f(0) = 1, one has exp[
∫ s

0
f ′(u)
f(u) du] = f(t). Therefore, by denoting µt :=

∫ t
0 g(s)dBs where

g(t) :=
√

2f
′(t)
f(t)

1
f(t) and ν(t) := 1

f(t) (which implies, by simple computation, that ν2(t) =
∫∞
t g(s)ds),

one has from P(τ > u|Ft) = Φ(Xt − f(t)h(u)), that P(τ > u) = Φ(θ − h(u)), which can be greater
or smaller that the value obtained in the case θ = 0.

1.3.2.4 Dynamics of Z(u)

We have shown that for any martingale X of the form (1.3.12) (i.e., X belongs to the class D), the
family Zt(u) := Φ (Xt − f(t)h(u)), with h an increasing deterministic function from R+ to R and
f a strictly positive function, defines a martingale survival process. Using (1.3.6) and (1.3.7), the
dynamics of Z(u) is of the form

dZt(u) = ϕ (Xt − f(t)h(u))

√
2
f ′(t)

f(t)
dBt (1.3.14)

where ϕ is the standard Gaussian density function.

By setting Yt = Xt − f(t)h(t), the dynamics of the supermartingale Z (which is given by
Zt = Φ (Xt − f(t)h(t))) has the following form, which is its Doob-Meyer decomposition,

dZt = −ϕ(Yt)h
′(t)f(t)dt+ ϕ(Yt)

√
2
f ′(t)

f(t)
dBt, (1.3.15)

where we have applied Itô’s formula to Z = Φ(Y ) and used (1.3.7).
We consider the multiplicative decomposition of Z, which is of the form Z = Ne−H , where N is
a positive local martingale and H an increasing predictable process. We have, by integration by
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parts, dZt = −ZtdHt+e
−HtdNt, hence, by uniqueness of the Doob-Meyer decomposition, we obtain

dHt =
ϕ(Yt)

Φ(Yt)
h′(t)f(t)dt, dNt =

ϕ(Yt)

Φ(Yt)
Nt

√
2
f ′(t)

f(t)
dBt.

Note that the quantity ϕ(Yt)
Φ(Yt)

h′(t)f(t) is the intensity rate of τ .

1.3.3 Random times with supermartingale valued in [0, 1]

Here we apply the result first introduced by Gapeev et al. (2010) and later by Jeanblanc and Song
(2011a) and Jeanblanc and Song (2011b) to the Gaussian case.
It consists in starting with a given supermartingale Ẑ valued in [0, 1[ with the multiplicative de-
composition Ne−H , where N is a non-negative local martingale and dHt = λtdt, and associate to
it a martingale survival process (M̂t(u))t,u∈R+ , hence a random time which admits that martingale
survival probability.
The process (M̂t(u))t,u∈R+ , given by

M̂t(u) =

1− (1− Ẑt) exp
(
−
∫ t
u

Ẑs
1−Ẑs

λsds
)
, for u ≤ t

E[Ẑu|Ft], for u > t,

is a survival martingale process and its dynamics for u fixed is given for, t ≥ u, by

dM̂t(u) =
1− M̂t(u)

1− Ẑt
e−HtdNt. (1.3.16)

Futhermore, if there exists ρ such that M̂0(u) = E[Ẑu] =
∫∞
u ρ(θ)dθ, then ρ is the density function

of τ , and the family (p̂t(u))t,u∈R+ , given by

p̂t(u) =

(1− M̂t(u)) Ẑu
1−Ẑu

λu
ρ(u) , for u ≤ t

E[p̂u(u)|Ft], for u > t,

is a conditional density process associated with M(u).
This result is first introduced by Gapeev et al. (2010) and later by Jeanblanc and Song (2011a) and
Jeanblanc and Song (2011b).
We can apply this methodology to the Gaussian case with Ẑt = Φ(Yt) and Yt = µt−l(t)

ν(t) .
We then obtain, for u ≤ t,

dM̂t(u) =
1− M̂t(u)

1− Φ(Yt)
e−Ht

ϕ(Yt)

Φ(Yt)
Nt

√
2
f ′(t)

f(t)
dBt

= (1− M̂t(u))
ϕ(Yt)

Φ(−Yt)

√
2
f ′(t)

f(t)
dBt,

where we have used the fact that Φ(−Yt) = 1 − Φ(Yt). Note that M̂(u) is different from M(u)

defined in the Gaussian case in (1.3.5).
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Chapter 2

Generalization of the model of Jiao and
Li

In the sovereign risk modeling, Jiao and Li (2018), by considering a reference filtration F, propose
the following form of the default time :

τ = θ ∧ ξ

where
θ = τi on {Nτi−1 = 0} ∩ {Nτi = 1}, for i ∈ {1, ..., n}

with N an inhomogeneous Poisson process independent of F, with deterministic intensity rate
function t→ λN (t) (i.e., a non-negative function λN such that Nt−

∫ t
0 λ

N (s)ds is an FN -martingale,
where FN is the filtration generated by N), (τi)i∈{1,...,n} an increasing sequence of F-predictable
stopping times and

ξ := inf{t ≥ 0 : Γt ≥ Θ}

with Γ an increasing F-adapted continuous process with Γ0 = 0 and Θ a random variable, indepen-
dent of F and FN , with a unit exponential law.
The authors are interested in some characteristics of the default time such as its compensator and
its F-conditional laws. They show that the intensity rate of τ does not exist in their setting.
Our goal is to generalize this model. We modify the role of the Poisson process N by using an
increasing càdlàg process X such that X0 = 0, X∞ = ∞, independent of F and relax the assump-
tion of the predictability of the stopping times (τi)i≥1. We investigate the characteristics of the
default time. In particular, we compute the compensator of the default time which is more general
than the one obtained by Jiao and Li (2018). As such, we consider (Ω,G,F,P) a filtered probability
space. One denotes by Ψ the increasing deterministic function with Ψ(0) = 0 and Ψ(∞) =∞ such
that P (Xu ≤ 1) = e−Ψ(u). One denotes by FX the natural filtration of X. Let (τi)i be a strictly
increasing sequence of finite F-stopping times such that limi→∞ τi = ∞ and set τ0 = 0. We define
a random time 1 θ by

θ = τi on {Xτi−1 ≤ 1 < Xτi}, for i ≥ 1.

Note that θ <∞, a.s. since P(X∞ ≤ 1) = 0.
We also define :

ξ := inf{t ≥ 0 : Γt ≥ Θ}
1The constant 1 in the definition can be changed in any constant, or even in any random variable independent of

(X,F) and of the random variable Θ.
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where Γ is an increasing F-adapted continuous process with Γ0 = 0, Γt <∞ for all t, and Γ∞ =∞
and Θ a random variable, independent of F and FX , with a unit exponential law.
We define

τ = θ ∧ ξ.

By construction, τ does not avoid the F-stopping times (τi)i. By denoting G the smallest filtration
containing F under which τ is a stopping time, one obtains the immersion property between F and
G. Indeed, knowing that G ⊂ F ∨ σ(Θ) ∨ FX and that F is immersed in F ∨ σ(Θ) ∨ FX (by the
independence of F from Θ and X) implies that F is immersed in G (see Lemma 7).
In what follows, we first compute the F-conditional probability that the default time coincides with
one of the F-stopping times τi, before computing the F-conditional survival process of τ . We mimic
the proofs of Jiao and Li.

We shall frequently use the equality

∑
i≥1

1{τi>t≥τi−1}e
−U(τi−1) = exp

−∑
i≥1

1{τi>t≥τi−1}U(τi−1)

 , (2.0.1)

for any function U : R+ → R. This is trivial since, for any i, on the set {τi > t ≥ τi−1} the left and
right-hand sides are both equal to e−U(τi−1).

2.1 The F -conditional distributions of τ

Lemma 24 For all t ≥ 0, one has

P(τ = τi|Ft) = E
[
e−Γτi

(
e−Ψ(τi−1) − e−Ψ(τi)

)
|Ft
]
, ∀i ≥ 1. (2.1.1)

In particular,

1{τi≤t}P(τ = τi|Ft) = e−Γτi

(
e−Ψ(τi−1) − e−Ψ(τi)

)
1{τi≤t}, ∀i ≥ 1. (2.1.2)

Proof: From the definition of τ , one has the following equality

{τ = τi} = {ξ > τi, Xτi−1 ≤ 1 < Xτi}.

Hence, by using the definition of ξ as well as the fact that (τi)i are F-stopping times, hence are F∞-
measurable random variables and that the random variable Xτi is, for any i, F∞ ∨FX∞ measurable,
one obtains

P(ξ > τi, Xτi−1 ≤ 1 < Xτi |F∞) =E
[
P(ξ > τi|F∞ ∨ FX∞)1{Xτi−1≤1<Xτi}|F∞

]
=E

[
P(Γτi < Θ|F∞ ∨ FX∞)1{Xτi−1≤1<Xτi}|F∞

]
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where the first equality requires the tower property.
Since Θ and X are mutually independent and are independent of F∞, then using the fact that
Γτi ∈ F∞ leads to

P(Γτi < Θ|F∞ ∨ FX∞) = P(Γτi < Θ|F∞) = e−Γτi . (2.1.3)

Therefore, it follows

P(ξ > τi, Xτi−1 ≤ 1 < Xτi |F∞) =e−ΓτiP(Xτi−1 ≤ 1 < Xτi |F∞)

=e−Γτi{P(Xτi−1 ≤ 1|F∞)− P(Xτi ≤ 1|F∞)}

=e−Γτi

{
e−Ψ(τi−1) − e−Ψ(τi)

}
. (2.1.4)

The last equality is due to the fact that the random variables τi are F∞-measurable and the process
X is independent of F∞.
Therefore

P(τ = τi|Ft) = E[e−Γτi

{
e−Ψ(τi−1) − e−Ψ(τi)

}
|Ft] .

Since the set {τi ≤ t} is Ft-measurable, by multiplying (2.1.4) by 1{τi≤t}, one deduces that

1{τi≤t}P(τ = τi|Ft) = e−Γτi

{
e−Ψ(τi−1) − e−Ψ(τi)

}
1{τi≤t},

where, in the last equality, we have used the fact that, on the set {τi ≤ t}, the random variables
Γτi , Ψ(τi) and Ψ(τi−1) are Ft-measurable.

�

Lemma 25 The conditional survival process of τ is given by, for t ∈ R+

P(τ > u|Ft) = E

[
exp

(
−
∞∑
i=1

1{τi≤u}[Ψ(τi)−Ψ(τi−1)]− Γu

)
|Ft

]
for u ∈ R+. (2.1.5)

In particular, for t ≥ u,

P(τ > u|Ft) = exp

(
−
∞∑
i=1

1{τi≤u}[Ψ(τi)−Ψ(τi−1)]− Γu

)
. (2.1.6)

Then, the Azéma supermartingale Z has the following expression

Zt = exp

(
−
∞∑
i=1

1{τi≤t}[Ψ(τi)−Ψ(τi−1)]− Γt

)
. (2.1.7)
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Proof: For all t, u ∈ R+,

P(τ > u|Ft) =

∞∑
i=1

P(θ > u, ξ > u, θ = τi|Ft)

=

∞∑
i=1

P(τi > u, ξ > u,Xτi−1 ≤ 1 < Xτi |Ft).

This implies that

P(τ > u|Ft) =
∞∑
i=1

P(τi > u, ξ > u,Xτi−1 ≤ 1|Ft)−
∞∑
i=1

P(τi > u, ξ > u,Xτi ≤ 1|Ft).

By using the fact that τ0 = 0 which implies that the set {τ0 > u} is empty, one has

P(τ > u|Ft) =
∞∑
i=1

P(τi > u, ξ > u,Xτi−1 ≤ 1|Ft)−
∞∑
i=0

P(τi > u, ξ > u,Xτi ≤ 1|Ft)

=
∞∑
i=1

P(τi > u, ξ > u,Xτi−1 ≤ 1|Ft)−
∞∑
k=1

P(τk−1 > u, ξ > u,Xτk−1
≤ 1|Ft)

=
∞∑
i=1

P(τi > u, ξ > u,Xτi−1 ≤ 1|Ft)−
∞∑
i=1

P(τi−1 > u, ξ > u,Xτi−1 ≤ 1|Ft).

Therefore, it follows from the trivial equality 1{τi>u} − 1{τi−1>u} = 1{τi>u≥τi−1} that

P(τ > u|Ft) =
∞∑
i=1

P(τi > u ≥ τi−1, ξ > u,Xτi−1 ≤ 1|Ft)

=

∞∑
i=1

E[1{τi>u≥τi−1}P(ξ > u|F∞ ∨ FX∞)1{Xτi−1≤1}|Ft]

=

∞∑
i=1

E[1{τi>u≥τi−1}e
−Γu1{Xτi−1≤1}|Ft],

where we have used, in the last equality, the fact that Θ is independent of F ∨ FX . This implies

P(τ > u|Ft) =

∞∑
i=1

E[1{τi>u≥τi−1}e
−ΓuP(Xτi−1 ≤ 1|F∞)|Ft]

=
∞∑
i=1

E[1{τi>u≥τi−1}e
−Γue−Ψ(τi−1)|Ft]

=E

[
exp

(
−
∞∑
i=1

1{τi>u≥τi−1}Ψ(τi−1)

)
e−Γu |Ft

]
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=E

[
exp

(
−
∞∑
i=1

(1{τi−1≤u} − 1{τi≤u})Ψ(τi−1)

)
e−Γu |Ft

]

=E

[
exp

(
−
∞∑
i=0

1{τi≤u}Ψ(τi) +
∞∑
i=1

1{τi≤u}Ψ(τi−1)

)
e−Γu |Ft

]
.

Since Ψ(τ0) = 0, one has
∞∑
i=0

1{τi≤u}Ψ(τi) =
∞∑
i=1

1{τi≤u}Ψ(τi).

Hence, it follows

P(τ > u|Ft) =E

[
exp

(
−
∞∑
i=1

1{τi≤u}[Ψ(τi)−Ψ(τi−1)]

)
e−Γu |Ft

]

=E

[
exp

(
−
∞∑
i=1

1{τi≤u}[Ψ(τi)−Ψ(τi−1)]− Γu

)
|Ft

]
.

If t ≥ u, the random variables e−Γu , 1{τi≤u} and 1{τi≤u}[Ψ(τi) − Ψ(τi−1)] are Ft-measurable.
Hence, one has

P(τ > u|Ft) = exp

(
−
∞∑
i=1

1{τi≤u}[Ψ(τi)−Ψ(τi−1)]− Γu

)
.

In particular, one checks that
P(τ > u|Fu) = P(τ > u|F∞) ,

which also follows from the immersion property. Note that Z is decreasing, which stems from the
immersion property (it can also be seen from (2.1.7)). �

2.2 The compensator of the default time τ

Now, we focus on the compensator of the default time τ . We first consider the case where the
stopping times (τi)i are predictable and then consider the general case.

2.2.1 Case where the stopping times (τi)i are predictable

If the stopping times (τi)i are F-predictable, Z is F-predictable and the F-dual predictable projection
of At = 1{τ≤t} is 1−Z. Hence, it is clear that dApt = −dZt and then using (1.2.1), the F-predictable
reduction Λ of the compensator of τ verifies (note that Z− > 0):

dΛt = − dZt
Zt−

. (2.2.1)
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Since the Azéma supermartingale Z has the explicit form Zt = e−Yt where Y is the increasing
process

Yt =
∞∑
i=1

1{τi≤t}[Ψ(τi)−Ψ(τi−1)] + Γt,

by applying Itô’s formula for semimartingale (see Jeanblanc, Yor, and Chesney, 2009, Subsection
9.4.1) to e−Y , we obtain

dZt = −Zt−dYt + Zt−(e−∆Yt − 1) + Zt−∆Yt,

and by plugging it in (2.2.1), one obtains the following expression of the F-predictable reduction of
the compensator of τ

dΛt = dYt − (e−∆Yt − 1)−∆Yt = dY c
t − (e−∆Yt − 1).

Hence, it follows that, since Λ0 = 0

Λt = Γt +

∞∑
i=1

1{τi≤t}(1− exp (−[Ψ(τi)−Ψ(τi−1)]) , for all t ≥ 0. (2.2.2)

2.2.2 Case where some of the stopping times (τi)i are not predictable

If some stopping times (τi)i are not predictable (which can occur only if the filtration F is not
continuous 2), one assumes to know, for any i, the F-compensator of τi, denoted by J i which is the
F-dual predictable projection of the F-adapted process Ai = 1{τi≤·} (note that if τk is predictable,
then Jk = Ak). In other terms, we consider the F-predictable increasing process J i, with J i0 = 0,
such that

(1{τi≤t} − J
i
t∧τi , t ≥ 0)

is an F-martingale. In what follows, we give the F-dual predictable projection process Ap as well as
the F-predictable reduction of the compensator of τ . We first introduce the following Lemma.

Lemma 26 Consider, for i ≥ 1, the two F-adapted increasing processes Q1,i
t := 1{τi≤t}e

−Ψ(τi) and
Q2,i
t := 1{τi+1≤t}e

−Ψ(τi). Then the processes defined as

Q1,i
t −

∫ t

0
e−Ψ(s)dJ is (2.2.3)

and

Q2,i
t −

∫ t

0
1{τi<s}e

−Ψ(τi)dJ i+1
s (2.2.4)

are F-martingales.

Proof: By applying Lemma 11 for the process Ai, the predictable process H being the function
Ht = e−Ψ(t), it follows that Q1,i

t −
∫ t

0 e
−Ψ(s)dJ is is an F-martingale.

2A filtration F is continuous if all F-martingales are continuous. In that case, every F-stopping time is predictable
( see, e.g., Nikeghbali, 2006, Theorem 4.11).
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The process Q2,i which is Q2,i
t =

∫ t
0 e
−Ψ(τi)dAi+1

s can be written as

Q2,i
t =

∫ t

0
e−Ψ(τi)1{τi<s}dA

i+1
s .

Indeed, due to the strictly increasing property of the τi,∫ t

0
e−Ψ(τi)1{τi<s}dA

i+1
s = e−Ψ(τi)

∫ t

0
1{τi<s}dA

i+1
s

= e−Ψ(τi)1{τi<τi+1}1{τi+1≤t} = e−Ψ(τi)1{τi+1≤t} = Q2,i
t .

By setting Ys = 1{τi<s}e
−Ψ(τi), which is left-continuous and adapted hence predictable, and by

applying Lemma 11, the process

Yτi+11{τi+1≤t} −
∫ t∧τi+1

0
YsdJ

i+1
s

is an F-martingale, or equivalently, the process

1{τi<τi+1}e
−Ψ(τi)1{τi+1≤t} −

∫ t∧τi+1

0
YsdJ

i+1
s = Q2,i

t −
∫ t∧τi+1

0
YsdJ

i+1
s

= Q2,i
t −

∫ t

0
1{τi<s}e

−Ψ(τi)dJ i+1
s

is an F-martingale. �

Lemma 27 The F-dual predictable projection Ap of the default time τ verifies :

dApt = ZtdΓt + e−Γtdζt, (2.2.5)

where ζ is the predictable increasing process defined as

ζt :=
∞∑
i=0

∫ t

0

(
e−Ψ(τi) − e−Ψ(s)

)
dJ i+1

s . (2.2.6)

Proof: The process

Qt := exp

(
−
∞∑
i=1

1{τi≤t}[Ψ(τi)−Ψ(τi−1)]

)
(2.2.7)

is decreasing, hence is a supermartingale. Using (2.0.1), we get

Qt =

∞∑
i=0

1{τi≤t<τi+1}e
−Ψ(τi) =

∞∑
i=0

(
1{τi≤t}e

−Ψ(τi) − 1{τi+1≤t}e
−Ψ(τi)

)
=
∞∑
i=0

(
Q1,i
t −Q

2,i
t

)
where the processes Q1,i and Q2,i are the ones defined in Lemma 26. Therefore, from Lemma 26,
it admits the decomposition Q = mQ − ζ, where mQ is a martingale and ζ the predictable process
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given as

ζt =
∞∑
i=0

(∫ t

0
1{τi<s}e

−ψ(τi)dJ i+1
s −

∫ t

0
e−ψ(s)dJ is

)
.

Since M i+1 = Ai+1 − J i+1 is a martingale with M i+1
0 = 0 and Ai+1

τi = 0, we obtain

E[J i+1
τi ] = E[Ai+1

τi −M
i+1
τi ] = −E[M i+1

τi ] = 0

which implies that J i+1
τi = 0 and then due to the increasing property of J i+1, J i+1

t = 0 on {t ≤ τi}.
This shows that the support of J i+1 is [τi, τi+1].
Hence, it follows that

∫ t
0 1{τi<s}e

−Ψ(τi)dJ i+1
s =

∫ t
0 e
−Ψ(τi)dJ i+1

s , and then

ζt =
∞∑
i=0

∫ t

0
e−ψ(τi)dJ i+1

s −
∞∑
i=1

∫ t

0
e−ψ(s)dJ is =

∞∑
i=0

∫ t

0

(
e−ψ(τi) − e−ψ(s)

)
dJ i+1

s

where we have used the fact that J0 = 0.
Due to the form of the support of J i+1, we have ζt =

∑∞
i=0

∫ t
0 1{s<τi}

(
e−ψ(τi) − e−ψ(s)

)
dJ i+1

s , hence,
since e−ψ(τi) − e−ψ(s) ≥ 0 for s > τi, the process ζ is increasing.
By integration by parts of the multiplicative decomposition of the supermartingale Z, which is (from
(2.1.7))

Zt = e−ΓtQt = e−Γt(mQ
t − ζt),

and by applying Yoeurp’s lemma, we get

dZt =− e−Γt(mQ
t − ζt)dΓt + e−Γt(dmQ

t − dζt)

=e−ΓtdmQ
t − e−Γt(mQ

t − ζt)dΓt − e−Γtdζt

=e−ΓtdmQ
t − (ZtdΓt + e−Γtdζt)

which leads to the Doob-Meyer decomposition of Z. Hence the F-dual predictable projection Ap of
τ verifies dApt = ZtdΓt + e−Γtdζt. �

Finally, using 1.2.1 and the fact that Γ is continuous, the F-predictable reduction Λ of the
compensator of τ is given by

dΛt =
1

Zt−
dApt = dΓt +

dζt
Qt−

. (2.2.8)

Remark 28 Note that if all the stopping times (τi)i≥1 are predictable, then the supermartingale Q
is predictable and Qt = 1 − ζt, hence dQt = −dζt. Therefore, by noting that dQt

Qt−
= e−∆Kt − 1,

(2.2.8) becomes

dΛt = dΓt −
dQt
Qt−

= dΓt + 1− e−∆Kt

and which is the dynamic form of (2.2.2).
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As an example, assume that the (τi)i≥1 are the jump times of a Poisson process N with constant
intensity λ which generates the filtration F. Then

dJ i+1
t = λ1[τi,τi+1](t)dt.

Hence from Lemma 27, one has

ζt =

∫ t

0

(
λ
∞∑
i=0

1[τi,τi+1](s)
(
e−Ψ(τi) − e−Ψ(s)

))
ds

which is continuous. Therefore, if Γt =
∫ t

0 γsds, with γ a non-negative F-adapted process, one has

dΛt =

(
γt +

λ
∑∞

i=0 1[τi,τi+1](t)
(
e−Ψ(τi) − e−Ψ(t)

)
Qt−

)
dt (2.2.9)

where Q is given in (2.2.7). This implies that the intensity rate of the default time exists and is
given at time t by

γt +
λ
∑∞

i=0 1[τi,τi+1](t)
(
e−Ψ(τi) − e−Ψ(t)

)
Qt−

.
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Chapter 3

Generalized Cox model

This chapter is based on the working paper Gueye, Jeanblanc, and Li (2019).

3.1 Introduction and motivations

In the works of default time modeling through Cox framework (see Lando, 1998), one usually starts
with a reference filtration F and an F-adapted process Λ (absolutely continuous with respect to
Lebesgue’s measure and increasing). Then one defines the default time as the first time this process
hits a stochastic barrier which is assumed to be independent of F. Hence one establishes that the
process Λ is the F-predictable reduction of the compensator of τ , and shows that it can be cali-
brated, for instance from the credit default swap spread, in order to compute the prices of products
subject to default risk. In this setting, the default time avoids F-stopping times and this does not
allow to cover a wide range of modeling of these products, for example in the case which induces
some economic shocks. The model of Bélanger, Shreve, and Wong (2004) generalizes that of Lando
(1998), but covers only the setting where the shock times are predictable. The model of Gehmlich
and Schmidt (2018), which is also the one of Fontana and Schmidt (2018), is not a model of enlarge-
ment of filtration and presents an interesting case where the compensator of τ admits predictable
jumps. In some sense, it is a structural model in which the default time is supposed to have nice
properties, and there is no construction of such a default time. We shall extend the construction
given in Bélanger, Shreve, and Wong (2004) to a more general framework, constructing a default
time which does not avoid a given sequence of F-stopping times.

We start from a right-continuous with left limits (or a left-continuous with right limits) increas-
ing process K, adapted with respect to a given reference filtration F, not necessarily predictable and
which jumps at some given F-stopping times and we define the default time τ as in Cox’s paradigm,
i.e., τ is the first hitting time of this process K of a stochastic barrier independent of the reference
filtration. As before, G is the filtration F progressively enlarged with τ . In both cases, we compute
the characteristics of the default time, i.e., the F-predictable reduction of the compensator of τ , the
Azéma supermartingale and its multiplicative decomposition and the conditional survival process.
We also study existence of conditional densities (i.e., the (CL), (ED) and (GD) conditions).
In what follows, we first present our model before illustrating our construction through many ex-
amples.
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We consider a probability space (Ω,A,P), endowed with a filtration F satisfying usual hypotheses
and a random time τ . We consider an increasing F-adapted process K with K0 = 0 and Θ a unit
exponential r.v. independent of F. Then, if K is right-continuous with left limits (càdlàg), we define
the random time τ as

τ = inf{t ≥ 0 : Kt ≥ Θ},

and, if K is left-continuous with right limits (càglàd), one modifies a little bit the definition by
setting (we shall see why later)

τ = inf{t ≥ 0 : Kt > Θ}.

In both cases, immersion holds between F and G, since F is immersed in F ∨ σ(Θ) and F ⊂ G ⊂
F∨σ(Θ). This property implies that Ao = 1−Z (see Aksamit and Li, 2016, Th. 6), therefore, since
Z̃ = Z −∆Ao, then Z̃ = Z−, where as in the previous chapters Ao is the F-optional projection of
the process A = 1{τ≤·} and Z, Z̃ the Azéma supermartingales.

3.2 Case where K is continuous

When the process K is continuous, we define τ = inf{t : Kt ≥ Θ} and due to {Kt < Θ} = {τ > t},
we obtain immediately that Z = e−K = 1 − Ao = 1 − Ap. From the fact that Ao is continuous,
we obtain ∆Ao = 0, hence Z̃ = Z. The Doob-Meyer decomposition of Z is Zt = 1 − (1 − e−Kt),
for all t ≥ 0. In that setting, Ao being continuous, τ avoids F-stopping times (see Aksamit and
Jeanblanc, 2017, Proposition 1.43). The survival probability of τ is P(τ > u) = E[e−Ku ], so that for
any bounded Borel function h, E[h(τ)] = E

[ ∫
R+ h(u)e−KudKu

]
. The conditional survival process

is

P(τ > u|Ft) = Zu, foru < t

= E[Zu|Ft], for t ≤ u ,

where the first equality is due to immersion property. IfK is absolutely continuous w.r.t. Lebesgue’s
measure, i.e., Kt =

∫ t
0 kudu, then, τ admits a density f(u) = E[kue

−Ku ] and a (CL)-conditional
density (with η(du) = f(u)du) given by

pt(u) =
kue
−Ku

E[kue−Ku ]
, foru < t,

=
E[kue

−Ku |Ft]
E[kue−Ku ]

, for t ≤ u ,

if E[kue
−Ku ] > 0 and pt(u) = 0 if E[kue

−Ku ] = 0.
In general, the (CL) conditional density may fail to exist. For example, let Kt = − ln(1− Lt∧1) +

1{t>1}(t− 1) where L is the local time at level 0 of a standard Brownian motion. Then P(τ > t) =
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E[e−Kt ] = E[1− Lt∧1]e−(t−1)+ . The Tanaka formula (see Øksendal, 2003, Chap 4, p59 ), i.e.,

|Wt| =
∫ t

0
sgn(Ws)dWs + Lt,

where sgn is the sign function, i.e.,

sgn(x) =

+1, if x ≥ 0

−1, if x < 0

implies (the stochastic integral being a martingale) that E[Lt] = E[|Wt|] =
√

2t√
π
. Therefore,

P(τ > t) =

1−
√

2t√
π
, if t ≤ 1

(1−
√

2√
π

)e−t+1, if t > 1 .

We deduce that τ has a density f w.r.t. Lebesgue’s measure, where

f(t) =


1√
2tπ
, if t ≤ 1

(1−
√

2√
π

)e−t+1, if t > 1 .

Therefore, if the classical density hypothesis is satisfied, then by choosing η(ds) = f(s)ds, one would
have, for u < t

P(τ > u|Ft) = Zu =

∫ ∞
u

pt(s)f(s)ds

and Z would be absolutely continuous w.r.t. Lebesgue’s measure, which is not the case.

3.3 Case where K is càdlàg

We denote by (τi)i the jump times of K.

Lemma 29 For all t ≥ 0, the following equality

{Kt ≥ Θ} = {τ ≤ t} (3.3.1)

holds, equivalently {Kt < Θ} = {t < τ}.

Proof: In the proof, we proceed for ω fixed. The set {Kt ≥ Θ} is either of the form [a,∞[ or of
the form ]a,∞[. If it is of the form [a,∞[ it would mean that Ka ≥ Θ and by definition of τ , τ = a.
If it is of the form ]a,∞[, it means that Ka+ε ≥ Θ, for any ε > 0, hence by right-continuity of K,
letting ε go to 0, it follows that Ka ≥ Θ and a ∈ {t ≥ 0 : Kt ≥ Θ} which is contradictory. �

3.3.1 Computation of the dual predictable projection of τ

Lemma 30 Let I be the càdlàg F-submartingale It =
∑

s≤t(1 − e−∆Ks) and AI be its predictable
part in its Doob-Meyer decomposition. Then the F-dual predictable projection of τ satisfies dApt =
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e−Kt−(dKc
t + dAIt ), where Kc is the continuous part of K and the F-predictable reduction of the

compensator of τ is
Λ = Kc +AI . (3.3.2)

Proof: By using the equality (3.3.1), the fact that K is F-adapted and the independence between
Θ and F, one has from the exponential law of Θ

Zt := P(τ > t|Ft) = P(Kt < Θ|Ft) = e−Kt .

Then, by Itô’s formula, it follows that

dZt =− e−Kt−dKt + e−Kt−(e−∆Kt − 1) + e−Kt−∆Kt (3.3.3)

=− e−Kt−dKc
t + e−Kt−(e−∆Kt − 1)

where Kc is the continuous part of K, i.e., Kc
t = Kt −

∑
s≤t ∆Ks.

The process Kc being increasing and continuous is a submartingale with Doob-Meyer’s decom-
position with no martingale part, i.e., Kc

t = 0 + Kc
t . The process I being increasing (indeed

1− e−∆Ks ≥ 0) is a submartingale and admits a Doob-Meyer decomposition I = M I +AI . Finally

dZt =− e−Kt−dKc
t − e−Kt−dIt

=− e−Kt−(dKc
t + dM I

t + dAIt )

=− e−Kt−dM I
t − e−Kt−(dKc

t + dAIt ) . (3.3.4)

Therefore
dApt = e−Kt−(dKc

t + dAIt ) (3.3.5)

and At − Λt∧τ is a G-martingale where

dΛt =
1

Zt−
dApt = dKc

t + dAIt

or Λt = Kc
t +AIt .

�

3.3.2 The conditional laws of the default time τ

Proposition 31 The conditional probability that the default occurs at time τi is given by

pit := P(τ = τi|Ft) = E[e−Kτi−(1− e−∆Kτi )|Ft], ∀t ≥ 0. (3.3.6)

Proof: From (3.3.1), one has {s < τ ≤ t} = {Ks < Θ ≤ Kt} and for any F-stopping time ϑ,
one obtains, denoting ϑ(ε) = (ϑ− ε) ∨ 0, that {ϑ(ε) < τ ≤ ϑ} = {Kϑ(ε) < Θ ≤ Kϑ} and

P(ϑ(ε) < τ ≤ ϑ|Ft) = E[e−Kϑ(ε) − e−Kϑ |Ft] .
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Passing to the limit when ε goes to 0, one obtains

P(τ = ϑ|Ft) = E[e−Kϑ− − e−Kϑ |Ft].

In particular,
pit := P(τ = τi|Ft) = E[e−Kτi−(1− e−∆Kτi )|Ft] .

�

Note that on the set {τi ≤ t}, one has pit = e−Kτi−(1 − e−∆Kτi ) and the random variable pit
does not depend on t, as it must be, from immersion property (see El Karoui, Jeanblanc, and Jiao,
2010, Subsection 3.2. ).

Proposition 32 If the continuous part of K is absolutely continuous, i.e., Kc
t =

∫ t
0 ksds, the

generalized density hypothesis (GD) is satisfied, and αt(u) = E[kue
−Ku |Ft] together with υ the

Lebesgue’s measure.

Proof: For any bounded Borel function h, the process

Xt = h(t)
∏
i

1{t6=τi} = h(t)
∏
i

(1{t<τi} + 1{t>τi})

is F-optional (Indeed, 1{τi>·} = 1−1{τi≤·} is right-continuous and F-adapted, hence F-optional and
1{τi<·} is left-continuous and F-adapted hence F-predictable therefore F-optional). Hence,

E[h(τ)
∏
i

1{τ 6=τi}|Ft] = E[Xτ |Ft] = E[

∫ ∞
0

XsdA
o
s|Ft] = −E[

∫ ∞
0

XsdZ
c
s |Ft]

= E[

∫ ∞
0

h(s)kse
−Ksds|Ft] =

∫ ∞
0

h(s)E[kse
−Ks |Ft]ds .

The second equality is due to Aksamit and Jeanblanc, 2017, Corollary 2.10, the third equality is
due to the fact that X vanishes on the discontinuities of Z, so that

∫∞
0 XsdZs =

∫∞
0 XsdZ

c
s , then

we use the fact that, from (3.3.3) Zct = 1−
∫ t

0 e
−Ks−dKc

s = 1−
∫ t

0 e
−KsdKc

s = 1−
∫ t

0 e
−Ksksds. �

Note that, in the case where the (τi)i are ordered, the same kind of computation leads to

E
[
h(τ)1{τi<τ<τi+1}|Ft

]
= E

[∫ ∞
0

1{τi<s<τi+1}h(s)kse
−Ksds|Ft

]
.

That is to consider Xt = h(t)1{τi<t<τi+1} = h(t)(1{τi<t} − 1{τi+1≤t}) which is F-optional and then
since X vanishes on the discontinuities of Z, it follows that

E[h(τ)1{τi<τ<τi+1}|Ft] = E[Xτ |Ft] = −E[

∫ ∞
0

XsdZ
c
s |Ft] .

The classical density hypothesis (CL) may not be satisfied if the continuous part of K is not abso-
lutely continuous (see, for example, the given counterexample in the case where K is continuous).
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The extended density hypothesis (ED) is satisfied: it suffices to note that for u < t, P(τ ≤ u|Ft) =

1− e−Ku =
∫ u

0 dDs with Ds = 1− e−Ks and mt ≡ 1.

3.3.3 The multiplicative decomposition of Z

Lemma 33 The multiplicative decomposition of Z is1

E(Y )tE(−Λ)t = E(Y )te
−Λt

∏
s≤t

(1−∆AIs)e
∆AIs

where E(−Λ) is the decreasing F-predictable part and E(Y ) is the F-local martingale part, with Yt =∫ t

0

1

Zs−(1−∆AIs)
dMs, where M being the martingale part of Z in its Doob-Meyer decomposition

and Λ being the F-predictable reduction of the compensator of τ given in (3.3.2).

Proof: This result is established in full generality in Jeanblanc and Li (2020), where the
authors "guess" this form and check it. However, it seems interesting to recover that result without
guessing this decomposition, and we present a proof. By using the multiplicative decomposition of
Z as Z = Ne−H , where H is a predictable càdlàg increasing process and N a local martingale and
by applying the integration by parts formula using Yoeurp’s lemma, we obtain

dZt = e−HtdNt +Nt−de
−Ht .

By identifying this decomposition of Z and the DM decomposition of Z given in (3.3.4), one gets

e−HdN = dM, N−de
−H = −Z−(dKc + dAI) ,

hence dHc + 1− e−∆H = dKc + dAI which leads to

dHc = dKc + dAI,c and 1− e−∆H = ∆AI .

Finally, using the fact that Λ = Kc +AI = Kc +AI,c +
∑

s≤·∆A
I
s, we obtain

e−Ht = e−H
c
t e−

∑
s≤t ∆Hs = e−Λt

∏
s≤t

(1−∆AIs)e
∆AIs . (3.3.7)

The equality dN = eHdM can be written as dN = N−Y dM with Y = eH

N−
= e∆H

Z−
= 1

Z−(1−∆AI)
,

hence, using the fact that Λ = Kc + AI = Kc + AI,c +
∑

s≤·∆A
I
s = Hc +

∑
s≤·∆A

I
s, the proof is

done. �

One can check that 1 −∆AI ≥ 0. This follows from (3.3.7). Another proof can be given from
∆AI = p(∆I) = p(1 − e−∆K) = 1 − p(e−∆K) ≤ 1, where the first equality comes from Aksamit

1We recall that the Doléans-Dade exponential of a càdlàg semimartingale X is

E(X)t = eXt−
1
2
〈Xc,Xc〉t

∏
0<s≤t

(1 + ∆Xs)e
−∆Xs ,

where Xc is the continuous martingale part of X.



3.3. Case where K is càdlàg 45

and Jeanblanc, 2017, Proposition 1.36 b. It follows that

∆Λ ≤ 1 . (3.3.8)

One can also check that 1 + ∆N > 0. Indeed,

∆N = −e−(K−+H)∆M I = −e−(K−+H)(1− e−∆K −∆AI) > −1 .

3.3.4 Particular case : K is càdlàg F -predictable

When the process K is càdlàg F-predictable, then Z = 1 − Ap = 1 − Ao. Furthermore, only the
jump times of K, which are all predictable, are F-stopping times not avoided by τ . The same model
was presented in Bélanger, Shreve, and Wong (2004), in a slightly more general case when Θ is not
a unit exponential random variable 2 (but is still independent of F). We assume that

Kt =

∫ t

0
ksds+

∑
i≥1

1{τi≤t}θi

where (τi)i is a strictly increasing sequence of F-predictable stopping times, k is an F-adapted non-
negative process with

∫ t
0 ksds < ∞, ∀t ≥ 0 and (θi)i a sequence of non-negative random variables

with θi ∈ Fτi− such that
∑∞

i=1 θi < ∞. Note that I =
∑

i 1{τi≤·}(1 − e−θi) is F-predictable and
then AI = I and M I = 0.

3.3.5 Examples

In this subsection, we give some examples when the process K is càdlàg.

3.3.5.1 Brownian filtration

We construct a simple example where K is càdlàg (but not continuous) and predictable. Let F be a
Brownian filtration, (Tn, n ≥ 1) an increasing sequence of F-stopping times (e.g., Tn = inf{t : Wt =

n}) and define Kt =
∫ t

0 ksds +
∑

n 1{Tn≤t}θn where (θn)n≥1 is a sequence of non-negative random
variables with θn ∈ FTn= FTn−, i.e., θn = c+

∫ Tn
0 ψ

(n)
s dWs for an F-predictable process ψ(n) (such

that θn ≥ 0).
In this case, AI = I =

∑
n 1{Tn≤·}(1− e−c−

∫ Tn
0 ψ

(n)
s dWs) and M I = 0.

3.3.5.2 Subordinator processes

Before going further, we recall the compensation formula for Lévy processes as described in Jean-
blanc, Yor, and Chesney, 2009, Proposition 11.2.2.3.

2There is no matter if Θ is not an exponential random variable, since one can always reduce attention to the case
with exponential one by modifying K, thanks to the inverse transform sampling theorem, at least if Θ is a random
variable with strictly monotone cumulative distribution function. The case where Θ is not independent of F can be
studied using the F-conditional law of Θ (see El Karoui et al., 2014).
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Proposition 34 Let X be a Lévy process with Lévy measure denoted by ν and let f be a non-negative
function such that f(0) = 0. Then,

E

 ∑
0<s≤t

f(∆Xs)

 = t

∫
R
f(x)ν(dx).

Furthermore, if
∫
R f(x)ν(dx) <∞, then

∑
0<s≤t f(∆Xs) is a Lévy process and the process

∑
0<s≤t

f(∆Xs)− t
∫
R
f(x)ν(dx)

is a martingale.

3.3.5.2.1 Case where K is a subordinator We consider the case where K is a pure subor-
dinator, i.e., a càdlàg Lévy process without drift with increasing paths (see, e.g., Jeanblanc, Yor,
and Chesney, 2009, Subsection 11.6; Cont and Tankov, 2004, Subsection 4.2.2). We denote by ν its
Lévy measure, which is such that ∫ ∞

0
(1 ∧ x)ν(dx) <∞ . (3.3.9)

We consider ψ : R+ → R+ to be the Laplace exponent of K, i.e., ψ verifies

E[e−uKt ] = e−tψ(u), t, u ≥ 0

and has the following expression

ψ(u) =

∫ ∞
0

(1− e−ux)ν(dx), u ≥ 0. (3.3.10)

Note that the restriction (3.3.9) implies that ψ is finite for all u ≥ 0.
The natural filtration of K is denoted by F. Our goal is to use the result of Lemma 30 in order to
make explicit the characteristics of the default time τ . For this purpose, since the continuous part of
the processK is null, it suffices to compute the compensatorAI of the process It :=

∑
s≤t(1−e−∆Ks).

By considering the non-negative function f(x) = 1− e−x, ∀x ≥ 0, one can apply Proposition 34
which implies that

E

 ∑
0<s≤t

f(∆Ks)

 = E

∑
s≤t

(1− e−∆Ks)

 = t

∫ ∞
0

(1− e−x)ν(dx).

Since
∫∞

0 (1− e−x)ν(dx) = ψ(1) <∞, it follows that the process I is a subordinator and

It − t
∫ ∞

0
(1− e−x)ν(dx) = It − tψ(1) (3.3.11)
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is an F-martingale.
By consequence, the F-predictable reduction of the compensator of τ is given by

Λt = tψ(1). (3.3.12)

For any u, the process
nt(u) = e−uKt+tψ(u) (3.3.13)

is an F-martingale with E[nt(u)] = 1 (see, e.g., Cont and Tankov, 2004, Proposition 3.17). In
particular, the process n, defined as

nt := nt(1) = e−Kt+tψ(1) (3.3.14)

is an F-martingale.
Therefore, the survival probability of τ is given by

P (τ > t) = E[Zt] = E[e−Kt ] = E[nte
−tψ(1)] = e−tψ(1)

and its density is f(t) = ψ(1)e−tψ(1), i.e., τ has an exponential law.
For θ ≥ t, one has

P(τ > θ|Ft) = E[Zθ|Ft] = e−KtE[e−Kθ−t ] = e−Kte−ψ(1)(θ−t) = nte
−θψ(1) = nt

∫ ∞
θ

f(s)ds

so that for θ ≥ t, P(τ ∈ dθ|Ft) = ntf(θ)dθ.
Since Zu is not absolutely continuous w.r.t. Lebesgue’s measure, the (CL)-conditional density does
not exist in this model.
One can check the existence of the (GD)-conditional density by using Proposition 32 which im-
plies that α(u) = 0 because K has no continuous part (k = 0). This can be confirmed by
the fact that

∑
i P(τ = τi) = 1 which implies that, for any bounded Borel function h, one has

E
[
h(τ)

∏
i 1{τi 6=τ}

]
= 0.

Remark 35 These results about subordinators cover a wide range of examples because of the large
families of these kind of Lévy processes. This means that for any subordinator process that represents
the process K in the generalized Cox model, it suffices to know its Lévy measure in order to obtain
all the characteristics of the default time τ . In what follows, we present some examples of these
processes.

Example 36 Compound Poisson process
We consider K a compound Poisson process with non-negative jumps (which is a subordinator),
i.e., Kt =

∑Nt
n=1 Yn, where N is a Poisson process with jump times (Tn, n ≥ 1) and intensity λ and

(Yn, n ≥ 1) non-negative random variables, i.i.d. and independent of N . Hence, the Lévy measure
ν of K is given by ν(dy) = λF (dy), where F is the cumulative distribution function of Y1, and its
Laplace exponent ψ is ψ(u) =

∫∞
0 (1− e−uy)ν(dy) = λ

∫∞
0 (1− e−uy)F (dy) = λ(1−E[e−uY1 ]). Thus,
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from (3.3.12), the intensity rate of τ is

ψ(1) = λ(1− E[e−Y1 ]).

In the particular case where Y1 has exponential distribution with parameter γ, then the F-predictable
reduction of the compensator of τ is tψ(1), where

ψ(1) =
λ

1 + γ
.

Example 37 Gamma process
Let K be the Gamma process denoted by (Gt(α, µ), t ≥ 0) which is a subordinator with Lévy measure

ν(dx) =
α

x
e−µx1{x>0}dx

with α, µ > 0. Hence, ψ(1) =
∫∞

0 (1− e−x)αx e
−µxdx and the F-predictable reduction of the compen-

sator of τ is

t

∫ ∞
0

(1− e−x)
α

x
e−µxdx.

Example 38 Tempered stable subordinator
In the case where K is a tempered stable subordinator, its Lévy measure ν is given by (see Cont and
Tankov, 2004, Subsection 4.2.2)

ν(dx) =
γe−λx

xβ+1
1{x>0}dx,

where γ > 0, λ > 0, 0 ≤ β < 1. Therefore, the F-predictable reduction of the compensator of τ is
then given by t

∫∞
0 (1− e−x)γe

−λx

xβ+1 dx.

3.3.5.2.2 Case where K is a subordinator plus an absolutely continuous part We set

Kt =

∫ t

0
ksds+Xt

where k is a non-negative process adapted to the filtration FW generated by a Brownian motion W
and X a pure subordinator process independent of FW . We denote by FX the natural filtration of
X and by ν its Lévy measure. We define the reference filtration F as F = FW ∨ FX .
The multiplicative decomposition of Z = e−K is given by the following equality

Zt = nte
−

∫ t
0 ksds−tψ(1) (3.3.15)

where n is the FX -martingale (hence an F-martingale) defined in (3.3.14) and ψ is the Laplace
transform of X defined in (3.3.10).
By integration by parts, one obtains the Doob-Meyer decomposition of Z :

dZt = e−
∫ t
0 ksds−tψ(1)dnt − (kt + ψ(1))Ztdt . (3.3.16)
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Hence, the F-dual optional projection Ao of τ , which is given by Ao = 1− Z, verifies

dAot = −e−
∫ t
0 ksds−tψ(1)dnt + (kt + ψ(1))Ztdt (3.3.17)

and the F-predictable part of this Doob-Meyer decomposition of Z which is the F-dual predictable
projection of τ , Ap satisfies

dApt = (kt + ψ(1))Ztdt. (3.3.18)

Thus, Λ, the F-predictable reduction of the compensator of τ is

dΛt = (kt + ψ(1))dt. (3.3.19)

This result can also be obtained by using Lemma 30. It suffices to note that It =
∑

i(1 −
e−∆Xτi )1{τi≤t} is a submartingale with F-predictable part AIt = ψ(1)t.
The survival probability of τ is

P(τ > t) = E[Zt] = E
[
nte
−

∫ t
0 ksds−tψ(1)

]
= e−tψ(1)E

[
e−

∫ t
0 ksds

]
. (3.3.20)

This is due to the fact that the martingale n is independent of e−
∫ t
0 ksds and E[nt] = 1.

The default time admits a (GD) conditional density where the martingale family α is given by
αt(u) = E[kue

−Ku |Ft], for all u, t ≥ 0 and the conditional survival process of τ is then given by for
u ≥ t,

P(τ ≥ u|Ft) =

∫ ∞
u

αt(s)ds+
∑
i

1{τi≥t}p
i
τi∨t,

where pit = P(τ = τi|Ft) are given from (3.3.6) by

pit = E
[
e−

∫ τi
0 ksdse−Xτi−1 (1− e−∆Xτi )|Ft

]
.

3.3.5.3 Marked point process

If an increasing sequence (τi)i of F-stopping times and a sequence of non-negative random variables
variables (θi ∈ Fτi , i ≥ 1) are given, as well as a non-negative F-adapted process k, one can construct
an increasing càdlàg process K as Kt =

∫ t
0 ksds+

∑
i≥1 1{τi≤t}θi. This framework covers many cases

of generalized Cox model, i.e., all those where the sequence of jump times of K is increasing and
the continuous part is absolutely continuous w.r.t. the Lebesgue measure.
The associated random time τ does not avoid the stopping random times (τi)i≥1 and we set τ0 = 0.
We have It =

∑
i≥1(1 − e−θi)1{τi≤t} =

∑
i≥1 γi1{τi≤t} = M I

t + AIt . We consider the marked point
process (γi, τi)i with jump measure µ defined as, for any Borel set A

µ(ω, [0, t], A) =
∑
i≥1

1{τi(ω)≤t}(ω)1{γi(ω)∈A}

and its compensator ν given by

ν(dt, dx) =
∑
i≥0

1{τi<t≤τi+1}
P(τi+1 ∈ dt, γi+1 ∈ dx|Fτi)

P(τi+1 > t|Fτi)
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(see Last and Brandt, 1995a, Section 1.10). Then

It =

∫ t

0

∫
R+

xµ(ds, dx) = M I
t +AIt

whereM is the martingale
∫ t

0

∫
R+ x(µ(ds, dx)−ν(ds, dx)) and AIt =

∫ t
0

∫
R+ xν(ds, dx). Furthermore,

dApt = e−Kt−(dKc
t + dAIt ).

3.3.5.4 A particular case of Marked point process

In the particular case of point process, i.e., Kt =
∑

i≥1 1{τi≤t} for an increasing sequence of (τi)i,
denoting by F the natural filtration of K, one obtains dApt = eKt−dAIt where I = (1 − e−1)K so
that AI = (1− e−1)

∑
i≥1 J

i, where, for any i, the process J i is the F-compensator of Ai = 1{τi≤·}.
In the case where all the J i are continuous, the process N = Z exp Λ is a martingale, where
Λt =

∫ t
0
dAps
Zs−

= AIt . Hence, e
−K+(1−e−1)

∑
i≥1 J

i

is a martingale.
One can recover the result of Giesecke and Zhu, 2013, Proposition 3.1 that, setting ψ(u) = 1−e−u,
the process e−uK+ψ(u)

∑
i≥1 J

i
t is a martingale by considering the increasing process K̂ = uK.

Note that, if all the τi are predictable, K is predictable hence
∑

i≥1 J
i
t = K. Furthermore, as

noticed in Subsection 3.3.4 dAp = dI = −dZ. One has also AI = I, so that Λ = (1− e−1)K.

3.3.5.5 Shot-noise processes

Shot-noise processes have been introduced by Campbell (1909a), Campbell (1909b) in the context
of studying discontinuous phenomena and light emission and became popular in the whole physical
domain with Schottky (1918), which earned him the nomination Schottky-noise. A wide variety
of studies of these processes have been developed in the actuarial sciences issues. These include
the one of Schmidt (2014) for modeling the aggregated losses process in catastrophe reinsurance.
Dassios and Jang (2003), in pricing of catastrophe reinsurance and derivatives, used shot noise
process for modeling the intensity catastrophe event times. Mikosch (2009) applied these processes
in non life insurance. Recent works have been done in credit risk; these include Scherer, Schmid,
and Schmidt (2012) in portfolio default modeling where the authors used the first-passage times of
the common clock across independent exponentially distributed threshold levels but they have not
been interested in the default times characteristics. There is also the work of Herbertsson, Jang,
and Schmidt (2011) in pricing basket default swaps.

Definition 39 Let F be a given filtration, (τi)i be a strictly increasing sequence of F-stopping times
with τ0 = 0, and (γi) a sequence of random variables with γi ∈ Fτi . We consider µ the random jumps
measure of the marked point process (τi, γi)i defined as µ(ω, [0, t], A) =

∑
i 1{τi(ω)≤t}1{γi(ω)∈A} for

A ∈ B(R) and ν its compensator. We denote by µ̃ the compensated random measure µ̃ = µ− ν. We
define the shot-noise process X = (Xt)t≥0 (see Scherer, Schmid, and Schmidt, 2012) as

Xt =

∞∑
i=1

1{τi≤t}G(t− τi, γi) =

∫ t

0

∫
R
G(t− s, x)µ(ds, dx), ∀t ≥ 0 (3.3.21)
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where the function G : R+ × R→ R+, called shots’ decay patterns, satisfies

G(t, x) = G(0, x) +

∫ t

0
g(s, x)ds ∀ t ≥ 0, x ∈ R (3.3.22)

with g a non-negative Borel function on R+ × R, so that G is increasing with respect to its first
variable. We assume that ∫ T

0

∫
R

(g(s, x))2ν(ds, dx) <∞, ∀ T, a.s (3.3.23)

and there exists a non negative function ϕ such that

|g(s, x)| ≤ ϕ(x), ∀ (s, x) with
∫ T

0

∫
R
ϕ(x)ν(ds, dx) <∞, ∀ T a.s. (3.3.24)

Note that ∆Xτi = G(0, γi) for any i ≥ 1 and the continuous part of X is given by Xc
t =∑

i≥1 1{τi≤t}[G(t− τi, γi)−G(0, γi)].
The configurations of the function G lead to some different specifications of the shot-noise process
X. For instance, when G has the exponential structure, i.e., G(t, x) = xeαt1{x≥0}, for t ≥ 0 with
α > 0, the process X is Markovian (see Scherer, Schmid, and Schmidt, 2012, Example 2.1). Other
varieties of the function G can be found in Scherer, Schmid, and Schmidt (2012) and Schmidt
(2014). The simple case G(t, x) = x leads to a compound Poisson process, if the (τi)i are the jumps
of a Poisson process N and (γi)i are i.i.d. independent of N .

We aim to find the characteristics of the default time τ when K is the shot-noise process defined
in (3.3.21) (i.e., when K = X). In the next lemma, we give the decomposition of the increasing
F-adapted process (hence the F-submartingale) X which will be used later. Our result is similar to
the one of Schmidt, 2014, Lemma 2 and we have an explicit form for the martingale part.

Lemma 40 The shot-noise process X is an F-submartingale and admits the following Doob-Meyer
decomposition Xt = MX

t +AXt where the increasing F-predictable part AX is

AXt =

∫ t

u=0

(∫ u

s=0

∫
R
g(u− s, x)µ(ds, dx)

)
du+

∫ t

s=0

∫
R
G(0, x)ν(ds, dx)

and the F-martingale part MX has the following form :

MX
t =

∫ t

0

∫
R
G(0, x)µ̃(ds, dx) .

Proof: We extend the definition of G to R × R by setting G(u, x) = G(0, x), for u < 0.
Introducing Yt(a) =

∫ t
0

∫
RG(a− s, x)µ̃(ds, dx) for any a ∈ R, one has

Xt = Yt(t) +

∫ t

0

∫
R
G(t− s, x)ν(ds, dx).

We apply the Itô-Ventzell formula as developed in Øksendal and Zhang, 2007, Theorem 3.1 to the
process Yt(a) with parameter a, where forward integral in Øksendal and Zhang (2007) is usual
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integral in our setting, due to the fact that we integrate only deterministic functions with respect
to compensated random measure.
The first derivative of Yt(a) with respect to the parameter a is (see Metivier, 1982) due to (3.3.24),

Y ′t (a) =

∫ t

0

∫
R
g(a− s, x)µ̃(ds, dx).

Using Theorem 3.1 of Øksendal and Zhang (2007), it follows that

Yt(t) =

∫ t

u=0
Y ′u(u)du+

∫ t

s=0

∫
R
G(0, x)µ̃(ds, dx).

Note that
∫ t
u=0 Y

′
u(u)du is a continuous bounded variation adapted process, hence is a predictable

process. Therefore,

Xt =

∫ t

u=0

(∫ u

s=0

∫
R
g(u− s, x)µ̃(ds, dx)

)
du+

∫ t

0

∫
R
G(0, x)µ̃(ds, dx) +

∫ t

0

∫
R
G(t− s, x)ν(ds, dx)

= MX
t +

∫ t

0

∫
R
G(t− s, x)ν(ds, dx) +

∫ t

u=0

(∫ u

s=0

∫
R
g(u− s, x)µ̃(ds, dx)

)
du

where MX is the local martingale
∫ t

0

∫
RG(0, x)µ̃(ds, dx). Using (3.3.22), one has∫ t

0

∫
R
G(t− s, x)ν(ds, dx) =

∫ t

s=0

∫
R

∫ t−s

u=0
g(u, x)du ν(ds, dx) +

∫ t

0

∫
R
G(0, x)ν(ds, dx).

By making the change of variable y = u+ s, one obtains∫ t−s

u=0
g(u, x)du =

∫ t

y=s
g(y − s, x)dy ,

hence by using stochastic Fubini’s theorem (see Protter, 2005, Theorem 65) valid under (3.3.23),
one gets∫ t

0

∫
R
G(t− s, x)ν(ds, dx) =

∫ t

s=0

∫
R

∫ t

u=s
g(u− s, x)du ν(ds, dx) +

∫ t

0

∫
R
G(0, x)ν(ds, dx)

=

∫ t

u=0

(∫ u

s=0

∫
R
g(u− s, x) ν(ds, dx)

)
du+

∫ t

0

∫
R
G(0, x)ν(ds, dx).

Therefore,

Xt = MX
t +

∫ t

u=0

(∫ u

s=0

∫
R
g(u− s, x) µ(ds, dx)

)
du+

∫ t

0

∫
R
G(0, x)ν(ds, dx) = MX

t +AXt

where AXt =
∫ t
u=0

(∫ u
s=0

∫
R g(u− s, x) µ(ds, dx)

)
du+

∫ t
0

∫
RG(0, x)ν(ds, dx). �

Now, we are ready to compute the F-predictable reduction of the compensator of the default
time τ . This is given in the next Lemma.
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Lemma 41 If the process K is of the form (3.3.21), then the F-predictable reduction of the com-
pensator of τ has the following expression :

Λt =

∫ t

u=0

(∫
R

∫ u

s=0
g(u− s, x)µ(ds, dx)

)
du+

∫ t

0

∫
R

(1− e−G(0,x))ν(ds, dx) . (3.3.25)

Proof: The predictable part of the submartingale

It =
∑
i

1{τi≤t}(1− e
−∆Kτi ) =

∫ t

0

∫
R

(1− e−G(0,x))µ(ds, dx)

is AIt =
∫ t

0

∫
R (1− e−G(0,x))ν(ds, dx). In addition, the continuous part Kc of K is given by

Kc
t =

∑
i≥1

1{τi≤t}[G(t− τi, γi)−G(0, γi)] =

∫ t

s=0

∫
R

(∫ t−s

u=0
g(u, x)du

)
µ(ds, dx)

=

∫ t

u=0

(∫
R

∫ u

s=0
g(u− s, x)µ(ds, dx)

)
du.

Therefore, from Lemma 3.3.1, the F-predictable reduction of the compensator of τ is Kc +AI . �

Remark 42 Note that the F-predictable reduction of the compensator of τ can also be recovered by
using (1.2.1). Indeed, by Itô’s formula for semimartingales, one has

dZt = −e−Kt−dKt + e−Kt−(e−∆Kt − 1) + eKt−∆Kt

= e−Kt−
(
− dMK

t − dAKt + e−∆Kt − 1 + ∆Kt

)
.

Hence by denoting by m the martingale part of the Doob Meyer decomposition of Z, it follows that

dZt = Zt−

(
−dMK

t − dAKt +

∫
R

(e−G(0,x) − 1 +G(0, x))µ(dt, dx)

)
= dmt − dApt ,

where dApt = Zt−
(
dAKt +

∫
R(1− e−G(0,x) −G(0, x))ν(dt, dx)

)
. Hence by using (1.2.1), one obtains

dΛt = dAKt +

∫
R

(
1− e−G(0,x) −G(0, x)

)
ν(dt, dx).

The result follows by replacing AK by its expression, which is

AKt =

∫ t

u=0

(∫ u

s=0

∫
R
g(u− s, x) µ(ds, dx)

)
du+

∫ t

0

∫
R
G(0, x)ν(ds, dx).

The following result gives the F-conditional law of τ in the particular case where ν is deterministic.

Proposition 43 If ν is deterministic, then for any u ≥ t, one has

P(τ > u|Ft) = c(u)Lt(u) (3.3.26)
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with c(u) = exp
(∫ u

0

∫
R(e−G(u−s,x) − 1)ν(ds, dx)

)
and L(u) is the martingale

Lt(u) = exp

(
−
∫ t

0

∫
R
G(u− s, x)µ(ds, dx)−

∫ t

0

∫
R

(e−G(u−s, x) − 1)ν(ds, dx)

)
.

For u < t, one has P(τ > u|Ft) = c(u)Lu(u) thanks to the immersion property.

Proof: Let Vt(u) = −
∫ t

0

∫
RG(u−s, x)µ(ds, dx)−

∫ t
0

∫
R(e−G(u−s, x)−1)ν(ds, dx) for u ≥ t ≥ 0.

By applying Itô’s formula for semimartingales to the process Lt(u) = eVt(u), one has (where we
denote, for u fixed, Lt and Vt instead of Lt(u) and Vt(u)),

dLt = Lt− (dVt + e∆Vt − 1−∆Vt). (3.3.27)

By writing e∆Vt − 1−∆Vt =
∫
R
(
e−G(u−t,x) − 1 +G(u− t, x)

)
µ(dt, dx), one obtains

dLt = Lt−

∫
R

(e−G(u−t,x) − 1)µ̃(dt, dx) (3.3.28)

which implies that L is a local martingale. By (3.3.28), it is a true martingale.

If ν is deterministic, due to the fact that −Ku = Vu −
∫ u

0

∫
R(1 − e−G(u−s,x))ν(ds, dx), one has

for u > t

E[e−Ku |Ft] = c(u)Lt

where
c(u) = E[e−Ku ] = exp

(
−
∫ u

0

∫
R

(1− e−G(u−s,x))ν(ds, dx)

)
. (3.3.29)

in particular, we recover the special semimartingale feature of X proved in Altmann, Schmidt, and
Stute, 2008, Proposition 2.1.

�

Remark 44 Note from (3.3.27) that ∆Lt(u) = eVt−(u)(e∆Vt(u) − 1) for 0 ≤ t < u.

3.4 Case where K is càglàd

We present the case where the increasing process K is left-continuous with right limits (càglàd)
which implies its predictability. Under this setting, we define the random time

τ = inf{t : Kt > Θ} (3.4.1)

to be able to characterize the set {Kt > Θ}.

Lemma 45 If K is càglàd, then defining τ as above (3.4.1), for all t ≥ 0, the following equality

{Kt ≤ Θ} = {τ ≥ t}

holds.
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Proof: As in Lemma 29, we proceed for ω fixed. The set {Kt > Θ} is either of the form [a,∞[

or of the form ]a,∞[ and a = τ . If it is of the form [a,∞[ it would mean that a = τ is in the set
{Kt > Θ}, hence Kτ > Θ. By left-continuity of K, one should have Kτ−ε > Θ for ε small enough,
hence a contradiction. It follows that {Kt > Θ} =]τ,∞] = {t > τ}. �

Proposition 46 If K is càglàd, and τ = inf{t : Kt > Θ} , one has Z = e−K+ , dΛ = e−∆+K(dKc+

dAC) where AC is the predictable part of the supermartingale Ct =
∑

s≤t

(
e−∆+Ks − 1

)
.

Proof: Let κt := Kt+ = Kt + ∆+Kt where ∆+Kt = Kt+ − Kt. Let Jt =
∑

s≤t ∆+Ks, so that
κt = Kc

t + Jt, where Kc is the continuous part of K, defined as Kc
t = Kt −

∑
s≤t ∆+Ks.

From Lemma 45, one has Z̃t = P(τ ≥ t|Ft) = P(Θ ≥ Kt|Ft) = e−Kt and Zt = e−κt ( as Z̃+ = Z+ =

Z (see Aksamit and Jeanblanc, 2017, Subsection 1.3.4)), one has

dZt = −e−κt−dκt + (e−κt − e−κt− + e−κt−∆κt)

= −e−κt−dKc
t + e−κt−(e−∆κt − 1).

The decreasing càdlàg process C defined as Ct :=
∑

s≤t e
−∆κs − 1 =

∑
s≤t e

−∆+Ks − 1 admits a
Doob-Meyer decomposition C = MC −AC and

dZt = e−κt−dMC
t − e−κt−(dKc

t + dACt )

= e−KtdMC
t − e−Kt(dKc

t + dACt )

and dApt = e−Kt(dKc
t + dACt ), dΛt = e∆+Kt(dKc

t + dACt ). �

For u < t, the equality

P(τ ≤ u|Ft) = 1− e−κu =

∫ u

0
dDs ,

where Ds = 1− e−κs , proves that the extended LR-conditional density exists.
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Chapter 4

Application of the generalized Cox
model in credit risk modeling

In this chapter, as in the previous ones, we are working on a probability space (Ω,A,P), endowed
with a filtration F where a generalized Cox time (see Chapter 3) τ is defined and we consider G the
progressive enlarged filtration of F with τ . As in the previous chapters, we shall simply denote by
Ap and Ao the F-dual predictable and optional projections of the process A = 1{τ≤·}.
The aim of this chapter is to highlight the importance of the generalized Cox framework. As such, we
present some useful case studies in credit risk modeling through this model. We will be interested to
the behavior of the prices at the jump times of the generalized Cox process K used in the definition
of τ (4.1.2).

4.1 Framework

We consider a defaultable bond (in what follows, we shall only write a DB) with maturity T and
payoff given by

ζ := 1{τ>T} + hτ1{τ≤T},

where the recovery h is a bounded process which is either F-predictable or F-optional and which
we suppose to be paid at the default time τ if τ ≤ T whereas the unit payoff is done at time T
if no default has occured before. In what follows, we suppose that the probability P is the pricing
measure and the interest rate is zero. By denoting by Pt(T ), t ≤ T the price of the defaultable bond
which is given, for any t ≥ 0, as

Pt(T ) = E[1{τ>T} + hτ1{t<τ≤T}|Gt],

we define the pre-default price (see Elliott, Jeanblanc, and Yor, 2000) of the defaultable bond as
the F-adapted process D(T ) such that for any t ≥ 0,

Dt(T )1{τ>t} = Pt(T )1{τ>t}.

We also consider a Credit Default Swap (we only write a CDS) of maturity T , with spread κ and
F-predictable recovery δ which is a contract between two parties, the protection buyer and the
protection seller having their payoffs which depend on the default time τ of a reference entity.
Under this contract, the seller is committed to protect the buyer against the default of the entity
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by paying her δτ , at the default time τ , if the default of the entity occurs before the maturity T . In
exchange, the protection buyer pays a premium κ, at some predetermined dates, to the protection
seller till τ ∧ T . For simplicity we assume that the premium is paid continuously, i.e., κdt is paid
during [t, t+ dt] if t+ dt ≤ τ ∧ T .
From the buyer point of view, the price at time t < τ ∧ T of the CDS, denoted CDSt(κ, δ, T ), is
the difference between the expected present value of the amount received by the protection buyer
Dleg
t = E[δτ1{t<τ≤T}|Gt] and the one received by the protection seller P legt = E[

∫ T
t 1{u<τ}κdu|Gt],

i.e.,
CDSt(κ, δ, T ) = E[δτ1{t<τ≤T} − κ(T ∧ τ − t)+|Gt] . (4.1.1)

By definition of the CDS contract, one has CDS0(κ, δ, T ) = 0 which determines the value of κ.

We consider the default time τ to be a generalized Cox time, i.e.,

τ = inf{t ≥ 0 : Kt ≥ Θ}, (4.1.2)

where K is an increasing càdlàg F-adapted process and Θ a unit exponential r.v. independent of F.
To make explicit the pre-default prices of the DB and the two legs of the CDS defined above, one
needs to specify the situation in which we are, i.e., whether or not the process K is subject to some
economic shocks, and if these shocks are predictable or not.
In what follows, we consider some different cases of the economy for which we compute the charac-
teristics of τ before plugging them into the pricing formula.

4.2 The model

We consider an increasing sequence of F-stopping times (τi)i, with τ0 = 0 and we define the increas-
ing càdlàg F-adapted process K as

Kt =

∫ t

0
ksds+

∑
i≥1

1{τi≤t}∆Kτi (4.2.1)

where k is a non-negative F-adapted process and ∆Kt = Kt −Kt− is non-negative.
The financial intuition behind this model can be seen in the particular case where the claim (DB)
is issued by an entity (E ) (which may be, for example, a firm or a sovereign country) with a risky
asset S, tradable in the financial market, assumed to be FW -adapted, where FW is the filtration
generated by a Brownian motion W , and FW ⊂ F. The asset S may be the total asset value of
the entity (E ) when (E ) is a firm or its solvency process when (E ) is a sovereign country. The
process k which is supposed to be FW -adapted, can be considered (as in Jiao and Li, 2018) to be
a function of S, i.e., k = ϕ(S), where ϕ is a decreasing non-negative function and the jump times
(τi)i of the process K as the times of some possible economic shocks which can affect the price of
the claims. In this setting, the times of the shocks capture the exogenous shocks of the economy
while the process k captures the possible losses effect in the asset S, a useful type of this process k
being the so-called negative power process given as ϕ(S) = αS−p, with α and p some non-negative
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constants, used by Linetsky (2006) in the context of pricing equity derivatives. The case where the
entity (E ) is a sovereign country and FW = F is studied by Jiao and Li (2018).

4.2.1 Case where the economic shocks are predictable

We consider the case where the jumps times (τi)i are F-predictable stopping times.
An example of this modeling consists in considering a decreasing sequence of positive fixed barriers
(bi)i and defining each τi as the first time the (positive) risky asset S (F-adapted and continuous),
with S∞ = 0, being below the barrier bi, i.e., τi = inf{t ≥ 0 : St ≤ bi}, with S0 > b1.
One can define the jumps size of the process K as follows :

Kτi −Kτi− = θi, (4.2.2)

where (θi)i≥1 is a sequence of non-negative random variables with θi ∈ Fτi−. In this case, the
process K given by

Kt =

∫ t

0
ksds+

∑
i≥1

1{τi≤t}θi (4.2.3)

is increasing right-continuous F-predictable. This model which is the one of Bélanger, Shreve,
and Wong (2004) is a particular case of the one described in 3.3. In the particular case where
θi = Ψ(τi)−Ψ(τi−1), with Ψ an increasing function, we recover the generalized Jiao and Li model
in which the associated K is

Kt = Γt +

∞∑
i=1

1{τi≤t} [Ψ(τi)−Ψ(τi−1)] (4.2.4)

with Γt =
∫ t

0 ksds.
Let us now investigate the pre-default price of the defaultable bond defined above under this

setting (i.e., K predictable defined by (4.2.3)).
Since K is F-predictable the F-dual projections Ao and Ap are the same and are equal to (1− Z).
This implies that the pricing of defaultable contingent claims can be done by using any of them. By
identifying Kc

t =
∫ t

0 ksds and AIt = It =
∑∞

i=1(1 − e−θi)1{τi≤t} (which is due to the fact that I is
F-predictable and increasing hence M I = 0), one deduces, from Lemma 30, that the F-predictable
reduction Λ of the compensator of τ is given by :

Λt =

∫ t

0
ksds+

∞∑
i=1

1{τi≤t}(1− e
−θi). (4.2.5)

From Proposition 32, the generalized density hypothesis is satisfied with αt(s) = E[e−Ksks|Ft] and
from Proposition 22 it follows

Zt = 1− P(τ ≤ t|Ft) = 1−
∫ ∞

0
1{u≤t}αt(u)du−

∞∑
i=1

1{τi≤t}p
i
τi

= 1−
∫ t

0
αu(u)du−

∞∑
i=1

1{τi≤t}p
i
t (4.2.6)
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where we have used the fact that

1{τi≤t}p
i
t = 1{τi≤t}E[e−Kτi−(1− e−θi)|Ft] = 1{τi≤t}e

−Kτi−(1− e−θi)= 1{τi≤t}p
i
τi

and the fact that αt(u) = αu(u) on {t ≥ u}.

Proposition 47 The pre-default price at time t, denoted Dt(T ), of the defaultable bond has the
following expression

Dt(T ) = D̃t(T ) + D̂t(T ) (4.2.7)

where

D̃t(T ) = E

[
exp

(
−
∞∑
i=1

1{t<τi≤T}θi −
∫ T

t
ksds

)
|Ft

]
(4.2.8)

is the predefault price of the terminal payoff 1 and

D̂t(T ) =
E
[∫ T
t huαT (u)du+

∑∞
i=1 hτip

i
τi1{t<τi≤T}|Ft

]
Zt

(4.2.9)

is the predefault price of the recovery.

Proof: from the general pricing formula (1.3.1), one has

Dt(T ) = E
[
ZT
Zt
|Ft
]

+
E
[∫ T
t hudA

p
u|Ft

]
Zt

= D̃t(T ) + D̂t(T ),

with

D̃t(T ) =E
[
ZT
Zt
|Ft
]

= E
[
eKt−KT |Ft

]
=E

[
exp

(
−
∞∑
i=1

1{t<τi≤T}θi −
∫ T

t
ksds

)
|Ft

]

and

D̂t(T ) =
E
[∫ T
t hudA

p
u|Ft

]
Zt

.

Since on the set {τi ≤ t}, one has pit = piτi , and one obtains d(1{τi≤t}p
i
t) = piτidA

i
t, where Ait =

1{τi≤t}. From the equality Apt = 1 − Zt, by using the fact that αt(u) = αu(u) on the set {t > u},
one has

dApt = −dZt = αt(t)dt+
∞∑
i=1

pitdA
i
t

where we have used the equality (4.2.6). Therefore, it follows∫ T

t
hudA

p
u =

∫ T

t
huαu(u)du+

∞∑
i=1

∫ T

t
hup

i
udA

i
u

=

∫ T

t
huαu(u)du+

∞∑
i=1

hτip
i
τi1{t<τi≤T}.
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Since αT (u) = αu(u) on {u ≤ T}, one obtains

E[

∫ T

t
hudA

p
u|Ft] =E

[∫ T

t
huαT (u)du+

∞∑
i=1

hτip
i
τi1{t<τi≤T}|Ft

]
.

By consequence,

D̂t(T ) =
E
[∫ T
t huαT (u)du+

∑∞
i=1 hτip

i
τi1{t<τi≤T}|Ft

]
Zt

.

�

As we mentioned, we can construct the process K which jumps at the times (τi)i and in which we
may assume to know the laws of its jump sizes, its jump times and its continuous part as well as the
joint law of its jumps sizes. This allows us to get the F-predictable reduction of the compensator
of τ given by (4.2.5) of the default time τ which also jumps at the times (τi)i with known jumps
size. This construction leads to the same model as the model of Jiao and Li (2018) in context of
modeling sovereign risks by means of the setting in (4.2.4), in the sense that the two models have
two identical Azéma supermartingales and both verify the immersion property. Therefore, one can
use our model in the modeling sovereign risks.

The inverse problem From (4.2.5), one has 1−∆Λτi = e−θi > 0 andKt = Λt−
∑∞

i=1 1{τi≤t}(1−
e−θi − θi). Hence θi = − ln(1−∆Λτi) and

Kt = Λt −
∞∑
i=1

1{τi≤t} [∆Λτi − ln(1−∆Λτi)] . (4.2.10)

Hence by giving a process Λ, increasing predictable continuous on right which jumps at some
increasing predictable times (τi)i, with τ0 = 0, and such that its jump size ∆Λτi at τi verifies
0 ≤ ∆Λτi < 1 (see (3.3.8)), one can construct a default time τ which admits Λ as F-predictable
reduction of the compensator of τ under the Cox framework by defining K as in (4.2.10).

4.2.2 Case where some economic shocks are not predictable

When the economic shocks are no more predictable, one can consider for example their times of
occurrence as the jump times of a compound Poisson process or more generally a shot-noise process.
Here, we give these two examples.

4.2.2.1 Example of the compound Poisson process

We consider the times of occurrence of the shocks (τi)i as the jump times of a Poisson process N
with intensity λ and we introduce a Brownian motion W independent of N with natural filtration
denoted by FW . We set the following form of K:

Kt =

∫ t

0
ksds+Xt (4.2.11)

where k is an FW -adapted non-negative process and Xt =
∑Nt

i=1 Yi is a compound Poisson process
with (Yi, i ≥ 1) non-negative random variables i.i.d, independent of N and independent of FW . We
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denote by FX the filtration generated by X and define the reference filtration F as the one generated
by X and W .
This is a particular case of 3.3.5.2.2, where Xt :=

∑Nt
i=1 Yi admits the Laplace transform ψ defined,

for all u ∈ R+, by ψ(u) =
∫∞

0 (1 − e−uy)F (dy) with F the cumulative distribution function of
Y1 and the F-martingale n in the multiplicative decomposition of Z (3.3.15) is given by nt =

exp (−Xt + tλψ(1)).

The pricing formula We assume that the recovery process h is a bounded F-predictable
process, then by using (3.3.17), one has

E
[∫ T

t
hsdA

o
s|Ft

]
= E

[
−
∫ T

t
hsdZs|Ft

]
= E

[∫ T

t
hsdA

p
s|Ft

]
.

The last equality is due to the fact that the conditional expectation of the integral w.r.t the martin-
gale part of Z vanishes. Thus one can either use Ao or Ap in the valuation of claims when dealing
with predictable recovery.

Proposition 48 The pre-default price Dt(T ) at time t of the defaultable bond is given by

Dt(T ) = D̃t(T ) + D̂t(T )

where the quantity D̃(T ) is given by

D̃t(T ) = e−(T−t)λψ(1) exp

(∫ t

0
ksds

)
E
[
exp

(
−
∫ T

0
ksds

)
|FWt

]
(4.2.12)

and D̂t(T ) has the following expression

D̂t(T ) =
1

Zt
E
[∫ T

t
(ku + λψ(1))huZudu|Ft

]
. (4.2.13)

Proof: The quantity D̃t(T ) is given by

D̃t(T ) = E
[
eKt−KT |Ft

]
= E

[
exp

(
−
∫ T

t
ksds− (XT −Xt)

)
|Ft
]

= E
[
exp

(
−
∫ T

t
ksds

)
E[exp (−(XT −Xt)) |FWT ∨ FXt ]|Ft

]
where we have used the tower property in the last equality. The fact that the compound Poisson
process X is independent of FW and FXt ⊂ Ft leads to

D̃t(T ) = E
[
exp

(
−
∫ T

t
ksds

)
E[exp (−(XT −Xt)) |FXt ]|Ft

]
= E[exp (−(XT −Xt)) |FXt ]E

[
exp

(
−
∫ T

t
ksds

)
|Ft
]
.
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The compound Poisson process X being with independent and stationary increments, one has

D̃t(T ) = E[exp (−XT−t)]E
[
exp

(
−
∫ T

t
ksds

)
|Ft
]
.

Thus by using the fact that E[exp (−XT−t)] = E[e−(T−t)λψ(1)nT−t] = e−(T−t)λψ(1), with the mar-
tingale n given by nt = e−Kt+tλψ(1), and the independence of k from FX , one has

D̃t(T ) = e−(T−t)λψ(1)E
[
exp

(
−
∫ T

t
ksds

)
|FWt

]
.

The computation of D̂t(T ) follows by replacing dApt = (kt + λψ(1))Zt dt in

D̂t(T ) =
E
[∫ T
t hudA

p
u|Ft

]
Zt

,

by means

D̂t(T ) =
E
[∫ T
t hu(ku + λψ(1))Zu du|Ft

]
Zt

�

Term structure of defaultable bond with zero recovery If the recovery is zero, i.e.,
h = 0, the pre-default price of the DB is given by

Dt(T ) = e−(T−t)λψ(1)E
[
exp

(
−
∫ T

t
ksds

)
|FWt

]
. (4.2.14)

Whenever k is an affine process, this leads to the following analytical solution

Dt(T ) = e−λψ(1)(T−t)Q̄t(T ),

with Q̄t(T ) := E
[
e−

∫ T
t ksds|Ft

]
= eAt(T )−Bt(T )kt , where A and B are differentiable functions with

AT (T ) = 0 and BT (T ) = 0 and verify generalized Riccati ODEs (see Duffie, Filipović, and Schacher-
mayer, 2003).
The pre-default yield spread St(T ) of the defaultable bond, which is the difference between the yield
to maturity at time t of the defaultable zero-coupon bond and the one of a risk-free zero-coupon
bond, which have the same maturity T , on {τ > t}, is given by

St(T ) = − 1

T − t
ln Dt(T ) = λψ(1)− 1

T − t
ln Q̄t(T ) . (4.2.15)

Furthermore, when the process k is affine, this leads to

St(T ) =λψ(1)− 1

T − t
[At(T )−Bt(T )kt] . (4.2.16)
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For instance, we can consider the case where the process k is a CIR square root diffusion process,
i.e., k verifies

dkt = γ(θ − kt)dt+ σ
√
ktdBt, k0 = x,

where γ, θ, and σ are positive parameters. Then the quantities At(T ) and Bt(T ) are given by (see

Maghsoodi, 1996) : At(T ) = 2 γθ
σ2 ln

(
2h e

1
2 (γ+h)(T−t)

h−γ+eh(T−t)(h+γ)

)
and Bt(T ) = −2(eh(T−t)−1)

h−γ+eh(T−t)(h+γ)
, where

h =
√
γ2 + 2σ2 .

Comments 49 We note that, under this model (where the jumps of K constitute a compound
Poisson process and the continuous part is adapted with respect to a Brownian motion, independent
of the jump part), the pre-default price of a DB with null recovery is continuous. Note that the
pre-default price of the defaultable bond is decreasing w.r.t. the intensity of the Poisson process N .
Furthermore, one observes, for any 0 ≤ t ≤ T , an additional positive value in the spread of the
defaultable bond which equals to λψ(1). This shows the impacts of the jumps of K (triggered by the
economic shocks) on both the pre-default price and spread of the defaultable bond.

4.2.2.2 Example of shot-noise processes

Let X a shot noise process defined as in 3.3.21 of Chapter 3 with ν deterministic. One considers the
filtration FW generated by a Brownian motionW independent of X and FX the filtration generated
by the shot noise process X. We define the reference filtration F as the one generated by X and W .

We consider

Kt =

∫ t

0
ksds+Xt (4.2.17)

where k is an FW -adapted non-negative process.

Proposition 50 Under the above hypotheses, the pre-default price Dt(T ) of the defaultable bond
with zero-recovery is given by

Dt(T ) = exp

(∫ T

t

∫
R

(e−G(T−s,x) − 1)ν(ds, dx)−
∫ t

0

∫
R

[G(T − s, x)−G(t− s, x)]µ(ds, dx)

)
Q̄t(T ),

(4.2.18)
with Q̄t(T ) := E

[
e−

∫ T
t ksds|Ft

]
. Note that Q(T ) is continuous.

Proof: As in the proof of Proposition 48, one easily obtains

Dt(T ) = E[e−XT+Xt |Ft]Q̄t(T ) = eXtE[e−XT |Ft]Q̄t(T ).

The result follows by using Proposition 43 where one has

E[e−XT |Ft] = exp

(∫ T

t

∫
R

(e−G(T−s,x) − 1)ν(ds, dx)−
∫ t

0

∫
R
G(T − s, x)µ(ds, dx)

)
.

�
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Markovian shot-noise In the particular case where X has the following form

Xt =
∞∑
i=0

1{τi≤t}γie
α(t−τi) (4.2.19)

with (γi) non-negative random variables and α > 0, one obtains

Dt(T ) = exp

(∫ T

t

∫
R+

(e−xe
α(T−s) − 1)ν(ds, dx)− (eα(T−t) − 1)Xt

)
Q̄t(T ) . (4.2.20)

This is due to the fact that G(T − s, x) := xeα(T−s) = eα(T−t)G(t − s, x). Furthermore, D(T ) has
negative jump size at (τi)i given by

∆Dτi(T )1{τi≤T} = Dτi−(T )
[
exp

(
−
(
eα(T−τi) − 1

)
γi

)
− 1
]
1{τi≤T}.

The pre-default bond yield, denoted by St(T ) is then given by

St(T ) := − 1

T − t

(∫ T

t

∫
R+

(e−xe
α(T−s) − 1)ν(ds, dx)− (eα(T−t) − 1)Xt + ln(Q̄t(T ))

)
(4.2.21)

and has a positive jump’s size at time τi given on {τi < T} by

∆Sτi(T )1{τi≤T} =
1

T − τi
(eα(T−τi) − 1)∆Xτi1{τi≤T} =

1

T − τi
(eα(T−τi) − 1)γi1{τi≤T}. (4.2.22)

Hence the jumps of K imply some negative jumps of the pre-default price of the defaultable bond
and some positive jumps of its pre-default yield spread both at the same jump times of K.

Remark 51 Note, from (4.2.20), that if (γi, τi)i is associated to an increasing compound Poisson
process (hence ν(dt, dx) = λF (dx)dt, where F is the law of γ1) and k = 0, between two jumps, i.e.,
on τi < t < τi+1, the process D(T ) defined as

Dt(T ) = exp

(∫ T

t

∫
R+

(e−xe
α(T−s) − 1)λF (dx)ds− (eα(T−t) − 1)(Xτi + γie

α(t−τi)

)
is increasing.
Indeed since e−xeα(T−t) − 1 is non-positive,

∫ T
t

∫
R+(e−xe

α(T−s) − 1)λF (dx)ds is increasing in t and

(eα(T−t) − 1)(Xτi + γie
α(t−τi)) = (eα(T−t) − 1)Xτi + γie

α(T−τi) − γieα(t−τi)

and (eα(T−t) − 1)Xτi as well as −γieα(t−τi) are decreasing with respect to t.

4.2.3 Valuation of the CDS under economic shocks

The same kind of computations as in the case of the defaultable bond allows to obtain the pre-default
price of two legs of the CDS.
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4.2.3.1 The economic shock times are predictable

When the default time of the reference entity follows a generalized Cox model with K defined as
in (4.2.1), with the assumption that the jump times of K are predictable, the value of the default
payment leg at time t is given by

Dleg
t = 1{τ>t}E[δτ1{τ≤T}|Gt] = 1{τ>t}

E
[∫ T
t δuαT (u)du+

∑∞
i=0 δτip

i
τi1{t<τi≤T}|Ft

]
Zt

.

This computation is the same as in (4.2.9) of Proposition 47, where δ plays the rule of h. The price
of the premium leg at time t is given, on {τ > t}, by

P legt = 1{τ>t}E[

∫ T

t
1{u<τ}κdu|Gt] = 1{τ>t}

E
[
κ
∫ T
t Zudu|Ft

]
Zt

.

The spread κ of the CDS is the one which verifies P leg0 = Dleg
0 and its expression is given by

κ =
E
[∫ T

0 δuαT (u)du+
∑∞

i=0 δτip
i
τi1{τi≤T}

]
E
[∫ T

0 Zudu
] .

4.2.3.2 CDS price under surprising economic shocks : example of the compound
Poisson process

Whenever the process K is given by (4.2.11) the price of the default payment leg at time t is given
by

Dleg
t = 1{τ>t}

1

Zt
E
[∫ T

t
(ku + λψ(1))δuZudu|Ft

]
whereas the value of the premium leg at time t is given by

P legt = 1{τ>t}
E
[
κ
∫ T
t Zudu|Ft

]
Zt

= 1{τ>t}
E
[
κ
∫ T
t e−Xue−

∫ u
0 ksdsdu|Ft

]
Zt

.

By using the Tower property one has

P legt = 1{τ>t}
κ
∫ T
t E

[
e−

∫ u
0 ksdsE

[
e−Xu |FWu ∨ FXt

]
|Ft
]
du

Zt
.

The fact that X is independent of FW and FXt ⊂ Ft implies

P legt = 1{τ>t}
κ
∫ T
t E

[
e−

∫ u
0 ksds|Ft

]
E
[
e−Xu |FXt

]
du

Zt

Using the independence property of W and FX , we obtain
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P legt = 1{τ>t}
κ
∫ T
t E

[
e−Xu |FXt

]
E
[
e−

∫ u
0 ksds|FWt

]
du

Zt

= 1{τ>t}
κ
∫ T
t nte

−uψ(1)E
[
e−

∫ u
0 ksds|FWt

]
du

Zt

= 1{τ>t}
κ
∫ T
t e−uψ(1)yt(u)du

e−tψ(1)

where yt(u) = E
[
e−

∫ u
0 ksds|FWt

]
. Therefore, the spread κ can be computed from P leg0 = Dleg

0 which
leads to

κ =
E
[∫ T

0 (ku + λψ(1))δuZudu
]

∫ T
0 e−uψ(1)y0(u)du

. (4.2.23)

4.2.4 General framework of dynamics of defaultable Bond

In this subsection, we will be interested in the dynamics of the pre-default prices of defaultable
bond with zero recovery, in a more general case, when the default time follows a generalized Cox
time under which the process K is càdlàg. One knows that for any maturity T , the pre-default
price Dt(T ) at time t < T has the following form

Dt(T ) =
E[ZT |Ft]

Zt
=: Yt(T )eKt

where Y (T ) is the F-martingale defined by Yt(T ) := E[ZT |Ft].
When there is no ambiguity, we delete T in the notation (i.e., we denote for T fixed Yt instead

of Yt(T ), for t < T ).
By Itô’s integration by parts, one has, for 0 ≤ t < T ,

dDt(T ) = Yt−de
Kt + eKt−dYt + d[Y, eK ]t

= Yt−e
Kt−
(
dKc

t + dJt) + eKt−dYt + d[Y, eK ]t

where J is the increasing process (hence a submartingale with a Doob-Meyer decomposition) Jt =∑
s≤t(e

∆Ks − 1) = MJ
t + AJt . The covariation process [Y, eK ]t =

∫ t
0 ∆Ysde

Ks is a semimartingale,
that we assume to be special with decomposition [Y, eK ] = A∗+M∗ where M∗ is a local martingale
and A∗ a predictable process.

Therefore, the local martingale part MD(T ) of D(T ) is given by

MD
t (T ) =

∫ t

0
Ys−e

Ks−dMJ
s +

∫ t

0
eKs−dYs +M∗t (4.2.24)

and its predictable bounded variation part AD(T ) is given by

ADt (T ) =

∫ t

0
Ys−e

Ks−
(
dKc

s + dAJs ) +A∗t . (4.2.25)
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4.2.4.1 Examples

In this subsection, we give some particular cases which lead to more explicit formulae. In addition,
we analyse the impacts of the jumps times of the generalized Cox process K to the prices.

Example 52 If F is a continuous filtration, Y is continuous, hence [Y, eK ] = 0. Furthermore, since
optional processes are predictable1 , J is predictable and MJ = 0, AJ = J . Hence,

dDt(T ) = Ytde
Kt + eKt−dYt = Yte

Kt−
(
dKc

t + dJt) + eKt−dYt = Yte
KtdΛt + eKt−dYt (4.2.26)

and the special semimartingale D(T ) has a (continuous) local martingale part

MD
t (T ) =

∫ t

0
eKs−dYs, ∀ 0 ≤ t < T

and a predictable part

ADt (T ) =

∫ t

0
Yse

Ks−dKc
s +

∫ t

0
Yse

Ks−dAJs , ∀ 0 ≤ t < T.

It is clear, from (4.2.26), that the predefault-price D(T ) has predictable positive jumps at the
jumps times (τi)i of K which are given by

∆Dτi(T )1{τi<T} = Dτi−(T )∆AJτi1{τi<T} = Dτi−(T )(e∆Kτi − 1)1{τi<T}.

Example 53 If K is predictable, MJ ≡ 0 and AJ = J , and by Yoeurp’s lemma [Y, eK ]t =∫ t
0 ∆eKsdYs which is the local martingale that we have denoted M∗. Then eKs−dYs + dM∗s =

(eKs− + ∆eKs)dYs = eKsdYs and the local martingale part of Dt(T ) is

MD
t (T ) =

∫ t

0
eKsdYs, ∀ 0 ≤ t < T. (4.2.27)

The predictable bounded variation part is

ADt (T ) =

∫ t

0
Ys−e

Ks−
(
dKc

s + dJs), ∀ 0 ≤ t < T. (4.2.28)

Note that, for any 0 ≤ t < T ,

eKt−
(
dKc

t + dJt) = eKtdKc
t + eKtdIt = eKtdΛt

so that the predictable part is

ADt (T ) =

∫ t

0
Ys−e

KsdΛs, ∀ 0 ≤ t < T.

1In a continuous filtration, the two σ-algebra O(H) and P(H) are equal (see (Jeanblanc, Yor, and Chesney, 2009,
Page 512)).
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In this case, the predefault price D(T ) has jumps at the jump times of K with sizes given, for all
0 ≤ t < T , by

∆Dτi(T )1{τi<T} = Dτi−(T )
(
e∆Kτi

Yτi
Yτi−

− 1
)
1{τi<T}.

Example 54 If F is generated by a Brownian motion W (hence a continuous filtration) and K

predictable, using the fact that Y (T ) is a strictly positive F-local martingale which can be written,
thanks to the martingale representation theorem, as dYt(T ) = φt(T )Yt(T )dWt, for an F-predictable
process φ(T ), one obtains

dDt(T ) = Dt(T ) (dΛt + φt(T )dWt) . (4.2.29)

We recover the result of Bélanger, Shreve, and Wong, 2004, formula 5.3, Theorem 5.1 in the
case of zero recovery.

Example 55 We assume to be in the case of shot-noise model presented in Subsection 4.2.2.2, and
ν is deterministic. From the results of Subsection 4.2.2.2, it follows that if k = 0 then

Dt(T ) = exp
(∫ T

t

∫
R

(e−G(T−s,x) − 1)ν(ds, dx)−
∫ t

0

∫
R

[G(T − s, x)−G(t− s, x)]µ(ds, dx)
)
.

The dynamics of D(T ) can be deduced by Itô-Ventcell’s formula. We prefer to make use of the
general results presented in the first part of this section, with Yt = c(T )Lt(T ), where c(T ) =

exp
(∫ T

0

∫
R(e−G(T−s,x) − 1)ν(ds, dx)

)
and

Lt(T ) = exp

(
−
∫ t

0

∫
R
G(T − s, x)µ(ds, dx)−

∫ t

0

∫
R

(e−G(T−s, x) − 1)ν(ds, dx)

)
.

The jumps of Y and eK occur at times τi. One has, from (3.3.28)

∆Yτi = Yτi−(e−G(T−τi,γi) − 1)

∆(eK)τi = eKτi−(eG(τi−τi,γi) − 1) = eKτi−(eG(0,γi) − 1) .

Hence

[Y, eK ]t =
∑
s≤t

∆Ys∆(eK)s =

∫ t

0
Ys−e

Ks−

∫
R

(e−G(T−s,x) − 1)(eG(0,x) − 1)µ(ds, dx)

= M∗t +

∫ t

0
Ys−e

Ks−

∫
R

(e−G(T−s,x) − 1)(eG(0,x) − 1)ν(ds, dx) . (4.2.30)

As in section 3.3.5.5 for the computation of AI , we obtain

AJt =

∫ t

s=0

∫
R

(eG(0,x) − 1)ν(ds, dx),∀t ≥ 0 ,

Therefore, the local martingale part of D(T ) is

MD
t (T ) =

∫ t

0
Ys−e

Ks−dMJ
s +

∫ t

0
eKs−dYs +M∗t



4.2. The model 69

where

M∗t =

∫ t

0

∫
R
Ys−e

Ks−(e−G(T−s,x) − 1)(eG(0,x) − 1)µ̃(ds, dx),∀t ≥ 0

MJ
t =

∫ t

0

∫
R

(eG(0,x) − 1)µ̃(ds, dx), ∀t ≥ 0

so that the local martingale part reduces, after simple computation, to

MD
t (T ) =

∫ t

0

∫
R
Ys−e

Ks−
(
e−(G(T−s,x)−G(0,x)) − 1

)
µ̃(ds, dx) (4.2.31)

and the predictable bounded variation part is

ADt (T ) =

∫ t

0

∫
R
Ys−e

Ks−e−G(T−s,x)(eG(0,x) − 1)ν(ds, dx) .

In this case the predefault price D(T ) admits negative jumps at the jump times (τi)i of K which
are given by

∆Dτi(T )1{τi<T} = Dτi−(T )
(
eG(0,γi)−G(T−τi,γi) − 1

)
1{τi<T} (4.2.32)

which can be directly obtained from (4.2.31).

Example 56 In the case of the Compound Poisson process and a Brownian filtration as given
subsection 4.2.2.1, one has Dt(T ) which is given by (4.2.14) that shows that D(T ) is a continuous
process. Setting yt(T ) = E[exp

(
−
∫ T

0 ksds
)
|FWt ] and ηt(T ) = e−(T−t)λψ(−1) exp

( ∫ t
0 ksds

)
, the

dynamics of Dt(T ) is

dDt(T ) = ηt(T )dyt(T ) + yt(T )ηt(T )(λψ(−1) + kt)dt

where y(T ) is a continuous F-martingale.

As a remark, we can note that it is not difficult to obtain (up to Kc) the same form for the
dynamics of D(T ) (with longer computation) using the previous equalities. Indeed, as noticed pre-
viously, the CCP correspond to the case when the shot noise is obtained from G(t, x) = x. Then,
Yt = e−Xt−(T−t)λψ(−1)E[exp

(
−
∫ T

0 ksds
)
|FWt ] and we obtain

[Y, eK ]t =
∑
s≤t

∆Ys∆(eK)s = M∗t +

∫ t

0
Ys−e

Ks−

∫
R

(2− ex − e−x)λF (dx)ds .

4.2.4.2 Illustrative example of the shot-noise case

Here, we present the simulation results of the generalized Cox model in the case of Markovian shot-
noise introduced in 4.2.2.2. This choice is due to the fact that the Markovian shot-noise processes
are preferable for the computational perspective thanks to their analytical tractability.
The simulation of the particular case (where (γi)i are i.i.d) of the process given in (4.2.19) is done
by using the standard Algorithm 2.1 of Scherer, Schmid, and Schmidt (2012). In Figure 4.1, we
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illustrate one trajectory of K where, as in (4.2.19), Kt =
∑∞

i=0 1{τi≤t}γie
α(t−τi), in between 0 and

T = 6 years, with i.i.d exponential jumps (γi)i of parameter γ = 5, with parameter α = 0.5

and where the jumps times τi are jumps of a Poisson process N independent of the (γi)i with
intensity λ = 0.4. One can observe three jumps of the shot-noise at times τ1 = 2.028, τ2 = 2.994

and τ3 = 4.254 with respectively sizes γ1 = 0.045, γ2 = 0.014, and γ3 = 0.094. Figure 4.2
shows the corresponding time-varying Bond prices computed using (4.2.20) where k = 0 (with
ν(ds, dx) = λF (dx)ds, where F is the law of γ1). Unsurprisingly, one observes three negative jumps
of the prices at the same jump times of the shot-noise. In addition, the bond price is increasing
between the jumps times as we have shown in Subsection 4.2.2.2.
We end this example by investigating the survival probability of the default time τ which can be
computed by using (3.3.29). Figure 4.3 shows this survival probability for different values of the
the decay rate α, and different values of the intensity λ of the Poisson process N . It is clear that
the survival probability is decreasing with respect to the intensity λ of N . However the speed of
the degrowth increases with respect to the decay rate α.

Figure 4.1: One path of K which is given as in the form (4.2.19)

Figure 4.2: Predefault bond price for the corresponding path of the Fig 4.1
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Figure 4.3: Survival probability of τ for different values of α with different values
of λ.
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Part II

Kriging for volatility surfaces
construction
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Chapter 5

An introduction to kriging

In this chapter, we first, briefly recall some known facts about classical kriging before introducing the
constrained kriging approach which extends the classical one in presence of some linear inequality
constraints (such as monotonicity, bounded, convexity,...). More details about classical kriging
can be found in Williams and Rasmussen (2006). Among the existing approaches for constrained
kriging, we adopt the technique from Maatouk and Bay (2014) which is based on a finite dimensional
approximation of the Gaussian processes prior. Note that this approach has been extended by López-
Lopera et al. (2018) to more general linear constraints. However, in this thesis, we limit ourselves
to convexity and monotonicity constraints that can be treated using the model of Maatouk and Bay
(2014). A particular interest is focused on the simulation of the Gaussian random coefficients when
some monotonicity constraints are saturated (see Subsection 5.2.4.2), a problem that is frequent
in practice. Indeed this saturation leads to problems of efficient samples when using the improved
rejection sampling (the RMS algorithm) developed by Maatouk and Bay (2016). As such, we
consider an adapted basis function grid for allowing the efficiency of this sample method. We
illustrate this problem through an example.

5.1 Classical kriging

Assume a function f of d-dimensional variables x ∈ Rd to be known only at some input locations
x1, ...,xn, with xi ∈ Rd, for i = 1, ..., n. In order to estimate the function f in the entire input
domain, one can use kriging (also known as Gaussian process regression) which consists in con-
sidering the unknown function f as a realization of a Gaussian process (GPs) (Y (x),x ∈ Rd) and
estimating the conditional process Y |Y (x1) = f(x1), ...., Y (xn) = f(xn). The GPs

(
Y (x),x ∈ Rd

)
is a collection of random variables, any finite number of which have (consistent) joint Gaussian
distributions (see Williams and Rasmussen, 2006) and is characterized by its mean function

µ : x ∈ Rd −→ E(Y (x)) ∈ R

and its covariance function (also called kernel)

K : (x,x′) ∈ Rd × Rd −→ Cov(Y (x), Y (x′)) ∈ R.

We consider the covariance function K to be defined such that Y has almost surely continuous and
differentiable paths. For instance, in the empirical investigation, we consider the d-dimensional
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isotropic covariance kernel given, for any x = (x1, ..., xd) and x′ = (x′1, ..., x′d) as

K(x,x′) = σ2
d∏
i=1

Ri(x
i − x′i, θxi)

where θ = (θx1 , ..., θxd) ∈ Rd and σ are respectively the length scale and the variance hyper-
parameters of the kernel function K and the functions (Ri)i are kernel correlation functions. These
hyper-parameters can be either specified (based on expert knowledge) or estimated by using some
existing methods in the literature (see Subsection 5.1.2). Some usual kernel correlation functions
are presented in Table 5.1, they are ranked by degree of regularity.
Note that changing the kernel K means changing the initial belief on f (i.e., the prior). Figure 5.1
shows how the choice of the kernel affects the paths of the GPs.

1D kriging kernel K(x, x′) Class
Gaussian σ2 exp

(
− (x−x′)2

2θ2

)
C∞

Matérn 5/2 σ2
(

1 +
√

5|x−x′|
θ + 5(x−x′)2

3θ2

)
exp

(
−
√

5|x−x′|
θ

)
C2

Matérn 3/2 σ2
(

1 +
√

3|x−x′|
θ

)
exp

(
−
√

3|x−x′|
θ

)
C1

Exponential σ2 exp
(
− |x−x

′|
θ

)
C0

Table 5.1: Some usual kernel correlation functions in kriging techniques.

By denoting X = [x1, . . . ,xn]> ∈ Rn×d a d-dimensional design points, y = [y1, . . . , yn]> ∈
Rn, the observed values of f at these points (i.e, yi = f(xi), for i = 1, ..., n) and Y (X) =

(Y (x1), . . . , Y (xn))> the vector composed of Y at X, the conditional process (called the poste-
rior process) Y |Y (X) = y is a GPs with mean function (see Williams and Rasmussen, 2006)

η(x) = µ(x) + c(x)>C−1(y − µ), x ∈ Rd (5.1.1)

and covariance function K? given by

K?(x,x′) = K(x,x′)− c(x)>C−1c(x′), x,x′ ∈ Rd (5.1.2)

where µ = µ(X) = [µ(x1), . . . , µ(xn)]> ,C is the covariance matrix of Y (X) and c(x) = [K (x,x1) , . . . ,K (x,xn)]>.

Without consideration of any inequality constraint on the function f , kriging prediction and
uncertainty quantification are made using the posterior process Y |Y (X) = y. This is known as
classical kriging (or unconstrained kriging). In this case, the Best Linear Unbiased Estimator of
Y (x) is the posterior mean function (5.1.1) which is also called (unconstrained) kriging mean (see
Jones, Schonlau, and Welch, 1998). We can then use the conditional covariance function (5.1.2) to
obtain confidence bands arround the predicted function. The hyperparmeters of the kernel function
K can be either specified or estimated using, for instance, the maximum likelihood estimator (MLE)
(see Subsection 5.1.2).
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Figure 5.1: Sample paths of the Gaussian prior Y for different choices of kernel
function with parameters σ2 = 1 and θ = 0.2.

5.1.1 Presence of noise :

The previous framework can be extended to the case when yi = f(xi) + εi for i = 1, ...n, where
εi is assumed to be a zero-mean Gaussian random variable with homoscedastic variance ς2 and
εi independent from Y . In this setting, the conditional process Y |Y (X) + ε = y, where ε =

(ε1, ..., εn)> ∈ Rn is a zero-mean Gaussian vector with covariance matrix ς2In (In being the identity
matrix of dimension n), is still a GPs with mean function (see Williams and Rasmussen, 2006)

η(x) = µ(x) + c(x)>
(
C + ς2In

)−1
(y − µ), x ∈ Rd

and covariance function K? given by

K?(x,x′) = K(x,x′)− c(x)>
(
C + ς2In

)−1
c(x′), x,x′ ∈ Rd.

5.1.2 Hyper-parameters learning :

Hyper-parameters consist in the length scale θ and the variance parameter σ of the kernel function
K as well as the noise parameter ς. The most commonly used methods for estimating them are
cross validation (CV) (see, e.g., Bachoc, 2013; Zhang and Wang, 2010) and Maximum Likelihood
Estimators (MLE) (see Jones, Schonlau, and Welch, 1998). We only present the MLE which will
be used later (we shall say why in the section dealing with the constrained kriging).
By considering a Zero-mean Gaussian Y (i.e., µ = 0) the MLE consists in maximizing the marginal
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log likelihood for Y with respect to the parameter λ = [θ, σ, ς]>. This log marginal likelihood has
the following form (see Williams and Rasmussen, 2006, section 2.2):

L(λ) = −1

2
y>(C + ς2In)−1y − 1

2
log(det(C + ς2In))− n

2
log(2π) (5.1.3)

where y = [Y (x1), . . . , Y (xn)]> and X = (x1, . . . ,xn)>. Hence the vector of estimated parameters
λ̂ verifies :

λ̂ = arg maxλL(λ) .

This can be solved by using, for example, the gradient ascent method.

5.2 Constrained kriging

In Machine Learning techniques, learning a function f of the data mapping when f is subjected
to some inequality constraints is not an easy task most especially in Gaussian process regression.
Suppose the unknown real function f is observed with some noises and such that f belongs to a set
of inequality constraintsM, i.e.,

f : D → R

such that {
f(X) + ε = y

f ∈M
(5.2.1)

whereM is a convex set of functions satisfying some shape properties.
For instance,M can be one of the following convex sets:

• Md
0 := {f ∈ C(Rd,R) | ymin ≤ f(x) ≤ ymax, ∀x ∈ D}

• M1
1 := {f ∈ C(R,R) | f is non-decreasing}

• M1
2 = {f ∈ C(R,R) | f is convex}

• M2
12 = {f ∈ C(R2,R) | f is non-decreasing in x and convex in y}.

Because making a Gaussian prior in f leads to the fact that the posterior is no Gaussian anymore
and the shape conditions are usually infinite-dimensional, we propose to use the finite dimensional
approximation of the Gaussian prior on f (see Maatouk and Bay, 2014) for which the constraints can
be imposed in the entire domain D with finite number of checks. In the next subsection, we present
this approximation in one dimensional case. The two dimensional one can be directly obtained with
little modifications of the one dimensional case and will be presented in Chapter 6.

5.2.1 Finite dimensional approximation of GPs in 1d

We consider the input domain D to be an interval in R of the form D = [x, x] of R and we make
a Gaussian prior Y on f with covariance function K and (for simplicity) zero-mean. We discretize
D on a regular subdivision u0 < . . . < uN with a constant mesh δ. For each ui, we consider
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hat functions φi(x) := max
(

1− |x−ui|δ , 0
)
. The Gaussian process Y is approximated on D by the

process Y N given by (see Maatouk and Bay, 2014; Cousin, Maatouk, and Rullière, 2016)

Y N (x) =

N∑
i=0

Y (ui)φi(x). (5.2.2)

The interest of using piecewise linear basis function is the fact that Y N is a piecewise and the
inequality constraints are satisfied everywhere in the input domain whenever they are satisfied at
the knots.

Let Φ(x) denote the vector of size N + 1 given by Φ(x) = (φ0(x), ...., φN (x))> and let Φ(X)

denote the n × (N + 1) matrix of basis functions in which each row l corresponds to the vector
Φ(xl).

Proposition 57 (see Maatouk and Bay, 2014)
The following results hold.

• The finite-dimensional process Y N (·) =
∑N

i=0 Y (ui)φi(·) uniformly converges to Y on D as
N →∞, almost surely.

• Y N (x) = Φ(X)ξ where ξ := (Y (u0), . . . , Y (uN ))> is a zero-mean Gaussian vector with co-
variance matrix ΓN such that ΓNi,j = K(ui, uj), for i, j = 1, ..., N .

Some shape-preserving conditions :

1) Y N takes values on [ymin, ymax] if and only if ymin ≤ ξi ≤ ymax, i = 0, . . . , N

2) Y N is non-decreasing on D if and only if ξi+1 ≥ ξi, i = 0, . . . , N − 1

3) Y N is convex on D if and only if ξi+2 − ξi+1 ≥ ξi+1 − ξi, i = 0, . . . , N − 2.

In accordance with Proposition 57, kriging the unknown function f boils down to finding the
conditional distribution of Y N given{

Y N (X) + ε = y

Y N ∈M
. (5.2.3)

This is equivalent to finding the distribution of the truncated Gaussian vector ξ ∼ N (0,ΓN ) given
that {

Φ(X) · ξ + ε = y

ξ ∈ Cineq
(5.2.4)

where Cineq is a set of linear inequality constraints on ξ as given in 2) and 3) of Proposition 57.

5.2.2 The most probable response curve and measurement noises

The maximum a Posteriori (MAP) of the Gaussian process Y N conditionally to (5.2.3) satisfies the
inequality constraints on the entire domain of interest and corresponds to the most likely curve (see
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Cousin, Maatouk, and Rullière, 2016). Its expression is given by

νY N (x) :=

N∑
i=0

νiξφi(x) (5.2.5)

where νξ =
(
ν0
ξ, . . .ν

N
ξ

)>
is the MAP of the truncated Gaussian vector ξ which is the solution of

the following convex optimization problem (see, e.g., Cousin, Maatouk, and Rullière, 2016):

min
Φ·ϑ+ε=y, ϑ∈Cineq

(
1

2
ϑ>(ΓN )−1ϑ), (5.2.6)

where ΓN is the covariance matrix of ξ, where we have used the the shorthand Φ(X) = Φ.
The solution of the optimization problem (5.2.6) can also be obtained by maximizing the he density
function of the conditional Gaussian vector ξ|ξ ∈ Cineq restricted to Cineq which leads to

νξ ∝ arg max
ϑ∈Cineq

exp{−1

2
(ϑ− µcond)>Σ−1

cond(ϑ− µcond)}

where µcond and Σcond are respectively defined by (5.2.9) and (5.2.10).
Therefore the MAP of the truncated Gaussian vector ξ is also given by

νξ = arg min
ϑ∈Cineq

(
1

2
ϑ>Σ−1

condϑ− ϑ
>Σ−1

condµcond). (5.2.7)

Remark 58 Note that in the case of noiseless (i.e., if ε = 0), the mode does not depend on the
parameter σ of the covariance function K. Indeed, in this case, σ does not affect the the solution of
(5.2.6) since σ2 is a multiplicative constant in ΓN . However, in the case with noisy data, this is no
more true.

5.2.3 Hyper-parameters learning in constrained kriging

There are two recent methods for estimating the hyper-parameters. The first one is the Adapted
Cross-Validation (ACV) of Maatouk, Roustant, and Richet (2015) which readjust the classical
Leave-One-Out mean square error criterion by using the MAP instead of the (unconstrained) kriging
mean for estimating the length scale hyper-parameter θ of the covariance function K. However, this
method works only in the case of noiseless, because of the fact that the parameter σ does not depend
on the MAP in the case without noise, as we mentioned in Remark 58.
The second one is the so-called constrained Maximum Likelihood Estimator (cMLE) of Bachoc,
Lagnoux, López-Lopera, et al. (2019) which is developed for taking into account the inequality
constraints in the estimation of the hyper-parameters. However, in their study for asymptotic
properties of cMLE, Bachoc, Lagnoux, López-Lopera, et al. (2019) show that any consistency with
unconstrained Gaussian process, is preserved when adding inequality constraints. This is because
for large sample sizes the constraints slightly impact the log marginal likelihood. Hence the cMLE
has the same asymptotic distribution as the MLE. In other terms, conditioning by the constraints
(significantly increases the computational burden and) has a negligible impact on the MLE, unless
perhaps the sample size is very small.
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In this line of thinking, we limit ourselves to the MLE in this work. By using the finite dimensional
approximation (5.2.2) of the Gaussian process Y ,the log marginal likelihood defined in (5.1.3) is
then given by

log(p(Y N |γ,X)) = −1

2
y>(ΦΓNΦ> + ς2I2

n)−1y − 1

2
log(det(ΦΓNΦ> + ς2I2

n))− n

2
log(2π) (5.2.8)

and the vector of estimated parameters γ̂ verifies :

γ̂ = arg maxγ log(p(Y N |γ,X)) .

5.2.4 Sampling finite-dimensional GP with shape constraints

In this section, we present the technique of simulating the coefficients ξ. We present the problem of
constraints saturation when using the improved rejection sampling technique of Maatouk and Bay
(2016) and propose a numerical solution to that.

5.2.4.1 Sampling finite dimensional Gaussian processes under shape constraints

In view of (5.2.4), kriging the constrained function f consists in sampling Φ(X)·ξ+ε = y truncated
on Cineq. The conditional distribution of ξ given Φ(X) · ξ + ε = y is multivariate Normal with
N (µcond,Σcond) (see Williams and Rasmussen, 2006) where

µcond = ΓNΦ>(ΦΓNΦ> + ς2In)−1y (5.2.9)

and
Σcond = ΓN − ΓNΦ>(ΦΓNΦ> + ς2In)−1ΦΓN . (5.2.10)

Hence we face the problem of sampling from a truncated multivariate Gaussian distribution, which
can be done by using different methods among them the Rejection Sampling from the Mode (RSM)
developped by Maatouk and Bay (2014). López-Lopera et al. (2018) have investigated the following
methods : RSM (Maatouk and Bay, 2014), Gibbs Sampling (Gibbs) (Taylor and Benjamini, 2016),
Exponential Tilting (ET) (Botev, 2017), Metropolis-Hasting (MH) (Robert, 2014) and Hamiltonian
Monte Carlo (HMC) (Pakman and Paninski, 2014) and it turns out that the Exact Hamiltonian
Monte Carlo is the more efficient in term of Effective sample size (ESS) (Thiébaux and Zwiers,
1984) and less expensive in term of CPU time.
An appropriate choice of the initial vector (which must verify the constraints) in the algorithm of
Exact Hamiltonian Monte Carlo for sampling ξ, is the MAP of ξ (see López-Lopera et al., 2018).
We will consider this sampling technique in Chapters 6 and 7.

5.2.4.2 The saturated monotonicity constraints problem when using the RMS algo-
rithm

By saturated monotonicity constraints, we mean the region where outputs are close. This is char-
acterized by the fact that the mode of the GPs lies in boundary of the constraints. That problem is
frequent in practice and requires special attention when simulating the posterior process using the
RMS algorithm.
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The algorithm of improved rejection sampling from the MAP (RMS) of Maatouk and Bay (2016)
is a generalization of the rejection technique of Von Neumann (1951) for simulating truncated mul-
tivariate Gaussian random variables. This method consists in simulating at first the conditional
Gaussian vector ξ|Φ(X) · ξ + ε = y and then using an improved rejection sampling around the
MAP of ξ (indeed this verifies the constraints in the whole domain) that selects only the random
coefficients that belong to the convex set Cineq.
Although this algorithm outperforms Von Neumann’s method for the simulation of such random
variables, saturation of monotonicity constraints raises problems for efficient samples, in particular
for large dimension vector. While using this algorithm, a very poor acceptance rate in the regions
of the input state space is reached, where constraints are saturated. Indeed, as long as the updated
value is different to the MAP in the saturation region, the algorithm will not work. A possible
solution consists inusing a non-homogeneous adapted grid in order to get an efficient sample. For
this purpose, we use a class of the so-called h-adaptivity scheme in which the mesh connectivity
changes accordingly to the level of constraint saturation (see Löhner and Baum, 1992; Mitchell,
1991). In particular, it boils down to reduce the number of basis functions in the regions of the
input state space where constraints are saturated. This consists in

• fixing a level of saturation constraints,

• detecting the saturation regions,

• reducing the number of basis functions in these regions for getting an adapted grid

• and using the sample technique in this adapted grid.

Illustrative example For illustrating the adaptive mesh refinement approach, we consider
the curve construction of a non-negative and increasing function f which is only known at some
inputs locations as given by Table 5.2. Without loss of generality, we assume that f is observed at

x f (x)
0.22 103.050
0.32 128.925
0.57 129.025
0.82 141.825
1.32 175.700
1.82 175.800
2.81 204.700

Table 5.2: Market data

x without noise.
We consider f as a sample of zero-mean Gaussian process Y with finite dimensional approximation
given as in (5.2.2).
We consider the Matérn 5/2 kernel function with length scale parameter θ = 1 and variance pa-
rameter σ = 100, we then choose N = 100 basis functions. The red curve in Figure 5.2 shows the
Maximum a Posteriori of the constrained Gaussian Process which is the most likely curve. With
a saturation level of order 1, we can observe two regions of constraints saturation which coincide
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with the respective input intervals [0.32, 0.57] (with outputs 129.025 and 129.025), [1.32, 1.82] (with
outputs 175.800 and 175.700). In order to get an efficient sample of the truncated Gaussian vector ξ
we reduce the number of basis functions in these two saturation regions. By this mean, we construct
95% confidence interval of the 100 simulated paths from the constrained Gaussian using the RMS
algorithm ( dashed lines).

Figure 5.2: Illustration of learning f with two saturation regions.

The main advantage of this technique is the fact that it allows to get efficient sample and to
reduce computational costs. But a caveat to take into account is the choice of the level of saturation
constraints. It requires a careful reflection for solving this disadvantage and can be an open problem
for improving the method. Fortunately, even if the Hamiltonian Monte Carlo method (HMC) could
be time consuming when constraints are saturated, we demonstrate in the next chapter that this
method is suitable for sampling the GP paths in the volatility surface construction. This is way we
propose to use it in what follows.
In the next chapters, we will extend the kriging technique in two dimensions and we will show how
to adapt this technique for the construction of option price and volatility surfaces which respect the
no-arbitrage conditions.
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Chapter 6

Kriging for implied volatility surface

This chapter is based on A. Cousin, D. Gueye, Kriging for implied volatility surface, working paper.

6.1 Introduction

Implied volatility surface is of crucial interest for risk management and exotic option pricing models.
Its construction is usually carried out in accordance with the arbitrage-free principle. This condition
leads to shape restrictions on the option prices such as monotonicity with respect to maturities and
convexity with respect to strike prices. In this chapter, we propose a new arbitrage-free construction
method that extends classical spline techniques by additionally allowing for quantification of uncer-
tainty. The proposed method extends the constrained kriging techniques developed in Maatouk and
Bay (2014) and Cousin, Maatouk, and Rullière (2016) to the context of volatility surface construc-
tion. Assuming a Gaussian process prior, the posterior price surface becomes a truncated Gaussian
field given shape constraints and market observations. Prices of illiquid instruments can also be
incorporated when considered as noisy observations. Starting from a suitable finite-dimensional ap-
proximation of the Gaussian process prior, the no-arbitrage condition on the entire input domain is
characterized by a finite number of linear inequality constraints. We define the most likely response
surface and the most-likely noise values as the solution of a quadratic optimization problem. We
use Hamiltonian Monte Carlo (HMC) techniques to simulate the posterior truncated Gaussian sur-
face and build pointwise confidence bands. The Gaussian process hyper-parameters are estimated
using the maximum likelihood estimator (MLE). The method is illustrated on Euro Stoxx 50 option
prices by building no-arbitrage implied volatility surfaces and their corresponding confidence bands.

This chapter is organized as follows. In section 6.2, we recall some well known facts concerning
implied volatility. Section 6.3 emphasizes on constrained kriging and Section 6.4 is devoted to the
numerical illustrations.

6.2 Option pricing in no-arbitrage models

The goal of this section is to recall the notion of implied volatility surface and explain the construc-
tion problem of such surface under the no-arbitrage assumptions. For this purpose, we discuss it
through the standard model of Black-Scholes. More details can be founded in Jeanblanc, Yor, and
Chesney (2009, subsection 2.3), Shreve (2004, subsection 4.5), Karatzas (1997, section 1.2).
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6.2.1 Black-Scholes model

We consider an European option on a given asset S, with maturity T and strike price X. By
denoting Φ its payoff function, the value of the option at time T is given, in term of Call option, by
Φ(ST ) = (ST −X)+, where (ST −X)+ = max(ST −X; 0). While, in term of put option, its value
at time T is Φ(ST ) = max(X − ST ; 0).
In Black and Scholes (1973) model, the risky asset price S = (S)t≥0 defined on the filtered probability
space (Ω,G,P,F) is assumed to follow a Geometric Brownian Motion, i.e., its dynamics are of the
form :

dSt = µStdt+ σStdBt, ∀t ≥ 0 (6.2.1)

where B = (Bt)t≥0 is a Brownian Motion defined on (Ω,G,P), µ represents the drift of the returns
of S, σ its instantaneous volatility and S0 > 0 the initial stock price. The interest rate r is assumed
to be constant and positive so that the discounted stock price Ŝ has the following dynamics under
the probability P :

dŜt = (µ− r)Ŝtdt+ σŜtdBt, ∀t ≥ 0 .

One can show from the Girsanov theorem that there exists a (unique) measure Q, equivalent to
P, given by Q|Ft = e−θBt−

1
2
θ2tP|Ft , with θ = µ−r

σ Jeanblanc, Yor, and Chesney (2009, Proposition
2.3.1.1) and under which Ŝ is an F-martingale. The fundamental theorem of asset pricing provides
that this existence of such a Q is equivalent to the absence of arbitrage opportunity of this market
model. Therefore, under the arbitrage-free conditions, the value at time t, of the European option
is the expected present value under the risk neutral measure Q of future payoffs, which has the
following expression:

Vt(St, t) = EQ
[
e−r(T−t)Φ(ST )|Ft

]
. (6.2.2)

The computation of the expression (6.2.2) leads to the famous Black-Scholes formula.
For instance, the value of a put option on S, denoted by PBSt is given by

PBSt (St, T,X, σ, r) = Xe−r(T−t)N(−d2)− StN(−d1), (6.2.3)

where

d1 =
log(St/X) + (r + 1

2σ
2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t.

and N is the cumulative normal density function.

6.2.2 Implied volatility surface

The equality (6.2.3) links the European put option price to the underlying price S, the interest rate
r, the volatility of the stock σ, the strike price X and the maturity T . All these parameters except
the volatility σ may be directly observed in the market. Actually, the option price is a function of
the volatility of the underlying asset and then, inverting it leads to the so called implied volatility,
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which is of crucial interest for risk management and exotic option pricing models. This means that
for a given observed market option price PMarket

t , quoted at the date t, with corresponding maturity
T and Strike X, the implied volatility is the solution value σIVt (T,X) of

PBSt (St, T,X, σ
IV
t (T,X), r) = PMarket

t . (6.2.4)

Accordingly, our interpolation problem consists in computing at any time t, the whole surface
(T,X) → PBSt (T,X) of option prices which allows us to derive the implied volatility surface
(T,X) → σIVt (T,X) by using the inversion problem. However, this construction must take into
account some characteristics such as :

• Incomplete information : the option price surface is only known or can only be estimated
for few input locations (the observed couples Strike-maturity).

• Noisy measurement : observed prices may not be fully reliable (ex : price of illiquid
instruments).

• Smoothness constraints : the price surface should be differentiable (important for deriving
the local volatility surface, see Chapter 7).

• Shape constraints : the price surface should not allow to generate arbitrage.

In this regard, we propose to use the kriging techniques for such construction. We discuss our
methodology that requires the transition from classical kriging, which does not allow to obtain
arbitrage-free option price surfaces, to the constrained kriging which does allow to get free-arbitrage
option price surfaces. We present these techniques in the next section.

In what follows, we only consider Put option, Call option price can be recovered using the
call-put parity. Before going further, we recall how no-arbitrage conditions translate into shape
constraints on the put option price.

Proposition 59 We place ourselves at a fixed date of evolution t0 and we consider S0 the value of
the underlying at t0.
The put price surface (T,X)→ P (T,X) is free of static arbitrage if and only if

(i) X → P (T,X) is a convex function such that P (T, 0) = 0 and ∂P
∂X (T, 0) = 0, for any T ≥ 0.

(ii) T → P (T,X) is a non-decreasing function, for any X ≥ 0.

(iii) lim
X→∞

P (T,X) = X − S0.

(iv) P (0, X) = (X − S0)+.

Proof: This follows by using the call-put parity formula in Roper (2010, Theorem 2.1).
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6.3 Kriging for learning arbitrage-free put option price surfaces

In this suebsection, we present the classical kriging techniques which allow to construct option price
surface by only incorporating the three first characteristics mentioned above (i.e, incomplete infor-
mation, noisy measurement and smoothness constraints).

Given the input domain D in time and space, we aim at constructing, at a given quotation date,
put price surface

P : D → R+

(T,X) 7→ P (T,X)

satisfying arbitrage-free conditions given in Proposition 59 and given n noisy observations y =

[y1, ..., yn]> of function P at input points X = [X1, ...,Xn] where Xi = (Ti, Xi), i = 1, . . . , n. Then,
this construction should be compatible with market fit condition

y = P (X) + ε (6.3.1)

where P (X) := [P (X1), ..., P (Xn)]>. The additive noise term ε = [ε1, ..., εn]T is assumed to be
a zero-mean Gaussian vector, independent from P , and with an homoscedastic covariance matrix
given as ς2In, where In is the identity matrix of size n.

Comments 60 As mentioned in Cousin, Maatouk, and Rullière (2016), this framework which takes
account of the presence of error noise being quite considerable inasmuch as it allows to construct
implied volatility surface in presence of illiquid options. Accordingly a best way to incorporate some
noises in the response variable is to investigate the main sources of these noises. In Hentschel, 2003
three kinds of sources of measurement errors have been referred in the option prices such as the finite
quote precision which is based on the tick price that represents the minimum increment between bid
and ask prices of an asset in the trading system which orients the prices movement in a discrete
setting. However the real market prices move in a continuous way and this discrete increment should
be a source of noisy observations. In addition to the finite quote precision, Hentschel invoques the
non-synchronous prices and the bid-ask spread which is the difference between the ask (which repre-
sents the supply for a particular asset) and the bid (the demand for asset). The higher the bid-ask
spread of an option, the more liquid this option becomes. In Chapter 7, we have considered bid and
ask prices of the same option as two replicate noisy observations at the same input location.

Two approaches for choosing our observations and incorporating noises might be taken into
account, the first one consists in considering the realizations of the Gaussian process to be the
mid-point prices and assuming the noise variance term ς to be proportional to the magnitudes of
the bid-ask spreads. The second one consists in considering both the bid and ask prices as two
independent realizations of the Gaussian process and estimate ς by using an appropriate method of
parameter estimation. This last approach allows to obtain a option price surface which lies between
the free-arbitrage bid and ask surfaces and it will be further detailed in Chapter 7.
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6.3.1 Classical GPs regression or kriging

We consider a zero-mean Gaussian process prior on the mapping P = P (T,X)(T,X)∈D with covari-
ance function (kernel function) K. Then, the output vector P (X) has a normal distribution with zero
mean and covariance matrix C with components cov(P (Ti, Xi), P (Tj , Xj)) = K((Ti, Xi), (Tj , Xj)).
We consider a 2-dimensional isotropic covariance kernel given as a tensor product, i.e., for x = (T,X)

and x′ = (T ′, X ′) two elements of D,

K(x,x′) = σ2RT (T − T ′, θT )RX(X −X ′, θX)

where θ = (θT , θX) and σ2 correspond to the length scale and the variance hyper-parameters of the
kernel function K and the functions RT and RX are kernel correlation functions.
It is well known that the conditional process P | y = P (X) + ε is Gaussian with mean function η
and covariance function K? given respectively by (see Williams and Rasmussen, 2006):

η(x) = c(x)>(C + ς2In)−1y, x = (T,X) ∈ D (6.3.2)

K?(x,x′) = K(x,x′)− c(x)>(C + ς2In)−1c(x′), x,x′ ∈ D (6.3.3)

where c(x) = [K(x, (T1, X1)), ...,K(x, (Tn, Xn))]>.

Without considering arbitrage-free conditions as described in Proposition 59, estimation of the
price function P under this framework is known as classical GPs regression or classical kriging. In
this setting, prediction and uncertainty quantification is made using the conditional distribution
P | y = P (X) + ε. The Best Linear Unbiased Estimator (BLUE) of P is given as the kriging mean
function (6.3.2). The conditional covariance function K∗ can be used to obtain confidence bands
around the predicted price surface. The hyper-parameters of the kernel function K as well as the
variance of the noise can be estimated using the maximum likelihood estimator (MLE) (see, e.g.,
Bachoc, Lagnoux, and López-Lopera, 2018).

6.3.2 Imposing the no-arbitrage conditions

Conditionally to the market fit condition (6.3.1) and conditions (iii) and (iv) of Proposition 59, P is
still Gaussian. However, conditionally to the inequality constraints (i.e, the monotonicity of the put
price with respect to the maturities direction and its convexity with respect to the strike prices) by
means (i) and (ii) of Proposition 59, the process P is no longer Gaussian and this issue obviously run
across the difficulties of simulating the posterior process in the sense that the range of constraint
check points is usually infinite-dimensional in the simulation. We adopt the solution of Cousin,
Maatouk, and Rullière (2016) that consists in constructing a finite-dimensional approximation PN

of the Gaussian prior P for which the constraints can be checked in the entire domain D with a
finite number of checks.
We first consider a discretized version of the input space D as a N = (NT + 1)× (NX + 1) regular
grid with knots (ui, vj), i = 1, ..., NT , j = 1, ..., NX with ui = iδT and vj = jδX , where δT = 1

NT

and δX = 1
NX

. For each knot (ui, vj), we introduce the hat basis function defined as the following
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tensor product

φi,j(T,X) := max(1− |T − ui|
δT

, 0) max(1− |X − vj |
δX

, 0) .

Then, the process P is approximated on D by the process PN given by

PN (T,X) =

NT∑
i=0

NX∑
j=0

P (ui, vj)φi,j(T,X), for all (T,X) ∈ D (6.3.4)

which is a piecewise linear interpolation of P at knots (ui, vj)i,j . If we denote ξi,j = P (ui, vj), for
i = 1, ..., NT , j = 1, ..., NX , then ξ = [ξ0,0, ..., ξi,j ..., ξNT ,NX ]> is a zero-mean Gaussian vector with
N ×N covariance matrix ΓN such that Γhı1,ı2 = K((ui1 , vj1), (ui2 , vj2)), for any two grid index pairs
(i1, j1) and (i2, j2) corresponding to global indices ı1 and ı2 respectively and φ(T,X) a vector of
size N given by

φ(T,X) = [φ0,0(T,X), ..., φi,j(T,X), ..., φNT ,NX (T,X)].

The equality (6.3.4) can be written in the following matrix form

PN (T,X) = φ(T,X) · ξ

so that when denoting Φ(X) the n ×N matrix of basis function in which, each row l corresponds
to the vector φ(Tl, Xl), one has PN (X) = Φ(X) · ξ, with PN (X) := [PN (X1), ..., PN (Xn)]>.

In what follows we use the shorthand Φ(X) = Φ.

Proposition 61 (see Maatouk, 2017)
The following statements hold.

• The finite-dimensional process PN uniformly converges to P on D as NX →∞ and NT →∞,
almost surely,

• PN (T,X) is non-decreasing function of T if and only if ξi+1,j ≥ ξi,j,

• PN (T,X) is a convex function of X if and only if ξi,j+2 − ξi,j+1 ≥ ξi,j+1 − ξi,j.

Given the first statement of Proposition 61, by denoting M the convex set of inequality con-
straints, i.e.,M is the set of 2-d continuous functions which are no-decreasing w.r.t. T and convex
w.r.t. the X, our construction problem (we denote it (P)) consists in finding the conditional distri-
bution of PN given {

y = PN (X) + ε

PN ∈M.

The last two statements of Proposition 61 justify the choice of the hat basis functions which is due
to the fact that PN satisfies the inequality constraints in the entire domain D when it satisfies these
constraints at the knots (see Maatouk and Bay, 2014), i.e., PN ∈M if and only if ξ ∈ Cineq where
Cineq is a set of linear inequality constraints on ξ as given by the two last points of Proposition 61.
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In this line of thinking, our construction problem (P) is equivalent to estimate ξ restricted to{
y = Φ · ξ + ε

ξ ∈ Cineq.

6.3.3 Hyper-parameter learning

Hyper-parameters, namely the length scale θ and the variance parameter σ, of the kernel function
K as well as the noise parameter ς can be either specified or estimated. By denoting λ the set of
these parameters (i.e., λ = [θ, σ, ς]>), we propose to maximize the marginal log likelihood L(λ) for
the process PN w.r.t. λ for parameters learning.
Under the finite dimensional approximation, the marginal log likelihood can be expressed as (see,
e.g., Williams and Rasmussen, 2006):

L(λ) = −1

2
y>(ΦΓNΦ> + ς2In)−1y − 1

2
log(det(ΦΓNΦ> + ς2In))− n

2
log(2π). (6.3.5)

6.3.4 The most probable response surface and measurement noises

The MAP of PN is given by

mPN (T,X) :=

NX∑
i=0

NT∑
j=0

νi,jξ φi,j(T,X) (6.3.6)

where νξ =
(
ν

(0,0)
ξ , . . .ν

(i,j)
ξ , · · · ,ν(Nx,Nt)

ξ

)>
is the MAP of the Gaussian coefficients ξ. As we

mentioned in Chapter 5, the MAP νξ of ξ is paramount in the sampling of ξ since it satisfies
the inequality constraints hence it can be considered as the initial vector when using the sampling
algorithm of HMC (see López-Lopera et al., 2018). As explained in Section 5.2.2 of Chapter 5,
this can be obtained directly by maximizing the density function of the conditional Gaussian vector
ξ|ξ ∈ Cineq restricted to Cineq which implies that

νξ = arg min
ϑ∈Cineq

(ϑ>Σ−1
condϑ− ϑ

>Σ−1
condµcond) (6.3.7)

where µcond and Σcond are respectively defined by (6.3.10) and (6.3.11). This is a quadratic opti-
mization problem and it is equivalent to

νξ := arg min
Φ·ϑ+e=Y ,ϑ∈Cineq

(ϑ>(ΓN )−1ϑ), (6.3.8)

with ΓN the covariance matrix of ξ.
In order to identify the locations x of the largest noises and their values, we compute the joint MAP
(νξ,νε) of the truncated gaussian vector ξ and the MAP of the Gaussian noise vector ε. This can
be defined as solution of

max
ϑ,e

P (ξ ∈ [ϑ,ϑ+ dϑ], ε ∈ [e, e+ de] | Φ · ξ + ε = ṽ, ξ ∈ Cineq) .
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As (ξ,νε) is Gaussian centered with block-diagonal covariance matrix with blocks ΓN and ς2In,
this implies that the mode (νξ,νε) is a solution to the following quadratic problem

min
Φ·ϑ+e=ṽ,ϑ∈Cineq

(
ϑ>(ΓN )−1ϑ+ e>(ς2In)−1e

)
. (6.3.9)

As a consequence, we define the most probable measurement noises to be νε and the most probable
response surface mPN given by mPN := Φ · νξ. Distance to the data can be an effect of arbitrage
opportunities within the data and/or the misspecification / lack of expressiveness of the kernel.

6.3.5 Sampling finite-dimensional GPs with shape constraints

As we mentioned in Subsection 6.3.2, the construction of the put price surface consists in sampling
ξ truncated on Cineq. Known that the distribution of ξ given y = Φ · ξ + ε is multivariate Normal
N (µcond,Σcond) (see Williams and Rasmussen, 2006) where

µcond = ΓNΦ>(ΦΓNΦ> + ς2In)−1y (6.3.10)

and

Σcond = ΓNΦ>(ΦΓNΦ> + ς2In)−1ΦΓN . (6.3.11)

Hence we are face to a problem of sampling from truncated multivariate Gaussian distribution,
which we do by Hamiltonian Monte Carlo (see López-Lopera et al., 2018), using the maximum a
posteriori probability estimate (MAP) of ξ as initial vector (which must verify the constraints) in
the algorithm, computed as explained in Chapter 5.

6.4 Numerical illustrations

The aim of this empirical investigation is to illustrate the construction methods introduced in the
previous sections using real financial data. In particular, we construct the put prices surface from
both classical and constrained kriging in such a way to use it for deriving the implied volatility
surface from the inversion techniques. Our study turns out to be very interesting since the results
would certainly be useful for no iliquid options pricing. It would also be possible through this
study to understand the option prices consistency under bid ask spreads. In addition, a useful case
study could be to investigate for instance, the liquidity measure which is one of the most important
tools of a financial markets and characterizes the ability of market makers to execute trades at the
determined market prices and for a large volume without affecting the stock price.
The illustrations are carried out on the Euro Stoxx 50. We present an approach which consists in
constructing the put prices surface through the mid price by estimating the standard deviation of
the noise by MLE.

Remark 62 One can also construct the whole put prices surface through the mid price by defining
the standard deviation of the noise as the difference between the ask and mid prices. Another
approach consists in considering both the bid and ask put prices as independent responses of a zero-
mean Gaussian process Y and constructing a put prices surface by estimating the attributed noise
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variance. As such, we can study the behavior of this surface relatively to the surfaces constructed
from the bid put prices and the ask put prices. This last approach is used in Chapter 7.

We observe at a particular market quotes t0 as of January 10, 2019, a series of put option
prices f(Ti, Xi) = P (Ti, Xi) for different characteristics (Ti, Xi), i = 1, . . . , n = 1232 with Ti the
maturities in which, its range goes from January 18, 2019 to December 17, 2021 and Xi the strike
prices which range from 250 to 4000. The spot price is equal to St0 = 3070.24. These observations
are represented in Figure 6.1. Our goal is to construct the whole surface of the put option prices
(using both classical and constrained kriging) that we use for computing the implied volatility
surface by the inversion techniques.

Figure 6.1: Import input observed data

To this end, we consider our input data which contains nT = 15 maturities and nX = 88 strike
prices and which does not necessarily contain gridded data (as we may observe in Figure 6.1).

We randomly choose 5% of these data as training set. Thus the unknown function is evaluated
at only 5% of the input data observed. After scaling the input space D into [0, 1]× [0, 1], we choose
N = 600 basis functions given by N = NT × NX where NT = 30 represents the number of nodes
related to the time-to-maturities in [0, 1] and NX = 20 the number of nodes linked to the strike
prices in [0, 1]. We consider a two dimensional Gaussian covariance function defined as

K(x,x′) = σ2 exp

(
−(X −X ′)2

θ2
X

− (T − T ′)2

θ2
T

)
where the components of the two vectors x = (T,X) and x′ = (T ′, X ′) represent respectively

the vectors of strike prices and time to maturities.
The GP hyperparameters θX , θT , σ and the standard deviation of the noise ς are estimated using

the MLE. Figure 6.2 represents their stability relatively to the chosen number of basis functions.
Here, we study the convergence of the parameters by increasing the number of basis function. It
is clear that this convergence is achieved among from 250 basis functions. In short, parameters
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Figure 6.2: Convergence of optimal parameter as a function of N (number of basis
functions).

convergence is reached when the number of basis functions tends to infinity.

Then, as explained in Subsection 6.3.4, quadratic programming is used to find the most probable
response surface and measurement noises, while enforcing the constraints, using the interior-point-convex
iterative algorithm with a tolerance of 1× 10−12.
In Figure 6.3, we represent the most probable response surface (left) and measurement noises (right).
It is clear that the surface of put prices respects the arbitrage-free conditions. The scattered noisy
points show that low maturity options are associated with a significant error and therefore a high
distance from the most probable non-arbitrable surface.

Figure 6.3: Most probable surface (left) vs most probable noise values (right).

Figure 6.4, illustrates the prediction accuracy of the mode estimator (MAP) which has been
carried out by the following way:
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Figure 6.4: Mode estimator - prediction accuracy

• We first construct a series of randomly chosen data subsets with increasing number of points,

• We apply classical kriging and shape-preserving kriging on these subsets by computing the
two mode estimators,

• For each data size, we compute the Root Mean Square Error (RMSE) with respect to the
original data set.

The results show that for a small percent of data size (less than 30 %), the MAP estimated from
the constrained kriging outperforms the one estimated from the unconstrained kriging. However,
when more than 30% of data points are used for training, the two estimated MAP present a similar
accuracy with their RMSE which tend to zero.

We now generate 5000 paths from both the classical and the constrained kriging using the
Exact Hamiltonian Monte Carlo algorithm (see Pakman and Paninski, 2014). Then we compute the
whole implied volatility surface from the inversion of the Black and Scholes formula as described in
Subsection 6.2.1 with the spot price St0 and interest rate r = 1%. Figure 6.5 presents comparison
results on the MAP estimator between classical and constrained kriging. One can see that the
put prices surface constructed from constrained kriging (in left) clearly verifies the no-arbitrage
constraints while the one constructed using classical kriging does not fulfill these constraints. Also
Figure 6.6 represents the obtained implied volatility surface which shows that the constrained kriging
allows to obtain some surfaces which are more smooth than the ones obtained in classical kriging.
In Figure 6.7 which shows 5% and 95% estimated quantiles of the fitted GPs, one can see a large
confidence interval in the case of classical kriging where there is no observation while this confidence
interval becomes more restricted in the constrained kriging, due to the knowledge of the no-arbitrage
conditions.
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Figure 6.5: Put prices surface constructed from classical kriging (left) vs put prices
surface constructed from constrained kriging (right). The red points represent the

5% of the data used for training.

Figure 6.6: Implied volatility surface obtained from classical kriging (left) vs Implied
volatility surface obtained from constrained kriging (right). Implied volatility surface

obtained from constrained kriging is more smoother.

In Figure 6.8, we present a 5% and 95% estimated pointwise quantiles of the constrained fit-
ted Gaussian process with extrapolation in the time-to-maturities direction by adding two years.
Unsurprisingly, this leads to an increase of the confidence interval due to the fact that no price is
observed for maturities greater than two years.
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Figure 6.7: 5% and 95% estimated pointwise quantiles of the fitted GPs with clas-
sical kriging (left) vs constrained kriging (right).

Figure 6.8: 5% and 95% estimated pointwise quantiles of the constrained fitted GPs
with extrapolation in the time-to-maturities direction (adding 2 years).

6.5 Conclusion

In this chapter we have adopted the constrained kriging techniques in the aim of constructing
implied volatility surface. We have shown that constrained kriging techniques allow to estimate
the option prices in a market where only noisy prices are available. Our approach incorporates
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all the characteristics of surface construction problem, such as incomplete information, indirect
observation, noisy measurement and shape constraints. The most likely measurement noises have
been computed. We have shown, through a comparison study, that constrained kriging is more
adapted for implied volatility surface construction than the classical one. In this study, we did
not incorporate dividends and interest rates in the kriging methods. This setting requires a small
extension of the method. We do not also compare our method to the alternative approaches such
as the SSVI and the constrained neural network. In our next chapter, we explore those issues in
the SPX European puts data on 18th May 2019.
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Chapter 7

Surrogate local volatility modeling from
option prices

This chapter is a slightly modified version of the paper A. Cousin, S. Crepey, M.F. Dixon, and D.
Gueye, Beyond Surrogate Modeling: Learning the Local Volatility Via Shape Constraints, under
review, 2020.

7.1 Introduction

Local volatility surface is an important tool used by practitioners for pricing and hedging exotic
options. Its construction can be done in two ways. As explained in Figure 7.1, one can derive
it either from the Black-Scholes implied volatility surface by using Gatheral formula, or from the
no-arbitrage continuous surface of option prices through Dupire formula.
Deep learning and kriging for option pricing have emerged as novel methodologies for fast compu-
tations with applications in calibration and computation of sensitivities. However, most of these
approaches do not enforce any no-arbitrage conditions, and the subsequent local volatility surface
is never considered. As shown by results of Chapter 6, constrained kriging is a suitable tool for
constructing option prices and quatifying incertainty in the presence of noisy data. In this chapter,
we propose a fully viable benchmarking approach for kriging, by building on Ackerer, Tagasovska,
and Vatter (2019) using a neural network approximation of the local volatility implied variance for-
mula (i.e. the Dupire formula restated in terms of implied variance) to stabilize the local volatility
surface. This approach is in contrast to Chataigner, Crépey, and Dixon (2020) who consider the
analogous approach of using the Dupire formula with price interpolation which is included in the
numerical results section.

Regularization tends to reduce static arbitrage violation on the training set but does not exclude
violation on the testing set. This is a by product of using stochastic gradient descent. Unlike interior
point methods, which use barrier functions to avoid leaving the feasible set (but are not applicable
to neural networks), stochastic gradient descent does not ensure saturation of the penalization.
A manifestation of the limitations of the soft constraints approach is the instability of the local
volatility surface which has a tendency to be quite irregular, especially away from training points.

As a focal point of the chapter, we emphasize that a single optimization of a GPs or neural
network jointly yields a shape-constrained price or implied volatility estimation together with the
local volatility surface. The extraction of a nonparametric representation of the local volatility
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surface, is not only intrinsically useful for exotic option pricing, but also serves as a stabilization
approach for price or implied volatility estimation in a neural network (such stabilization approach
is not needed for the GPs approach).

In summary, we shall (i) use a hard-constrained kriging Dupire formula to derive a local volatility
surface from prices; and (ii) a soft-constrained NN local volatility implied variance formula to derive
a local volatility surface from Black-Scholes implied volatilities (see blue arrow in Fig. 7.1). As we
illustrate later in this chapter, such a local volatility surface shall in fact be jointly derived and, at
the same time, further regularized.

The remainder of the chapter is outlined as follows. Section 7.2 describes the kriging approach
to probabilistic modeling of local volatility with no-arbitrage constraints. Then in Section 7.3 we
introduce the neural network approach to local volatility modeling from implied volatility. Details
of our numerical experiment setup and results comparing the performance of kriging are given in
Section 7.4. Finally, Section 7.5 concludes with further directions for research.

Figure 7.1: Mathematical connections between option prices, implied, and local
volatility, and the goal of this chapter, namely to either use the Dupire formula with
Gaussian processes to jointly approximate the vanilla price and local volatility sur-
faces, or use the Gatheral formula with neural networks to jointly approximate the

implied volatility and local volatility surfaces.

7.2 Kriging the Local Volatility from Prices

This section is devoted to the construction of local volatility surface using kriging. Since, we use
dividends and interest rates, it will be interesting to understand how to extend the kriging techniques
presented in the previous chapters for no-arbitrage option price surface construction in presence of
dividends and interest rates. As such, we first introduce this extension in the next subsection before
tackling the calibration of Dupire formula in the following one.



98 Chapter 7. Surrogate local volatility modeling from option prices

7.2.1 No-arbitrage conditions reformulation in Kriging framework

Given a stock S we consider an European vanilla put option on S, with maturity T and strike price
X. We consider the following risk neutral dynamics of S

dSt = St[(r(t)− q(t))dt+ σ(t, St)dBt], ∀t ≥ 0 (7.2.1)

where B = (Bt)t≥0 is a Brownian Motion, r(t) represents a deterministic short interest rate term
structure of the corresponding economy and q(t) a deterministic continuous-dividend-yields on S

and σ(t, St) the instantaneous volatility function of S and t. We denote respectively by Dt =

exp
(
−
∫ t

0 r(s)ds
)
and Ht = exp

(
−
∫ t

0 q(s)ds
)
the discount and dividend factors.

Without any restriction, we only pay particular attention to the put prices constraints since the the
call prices constraints can be derived from the Call-Put parity. As such, let us denote by P (T,X)

and C(T,X), the prices at time t = 0 of, respectively, the European put and the European Call
options on the underlying asset S with maturity T and strike price X. We recall the Call-Put parity
which can be expressed as

C(T,X)− P (T,X) = S0H(T )−XD(T ) (7.2.2)

Once, we know C(T,X)−P (T,X) for T = T1, ..., Tj , with j ∈ N, we can regress C(T,X)−P (T,X)

on the direction of X, for X = X1, ..., Xnj , with nj ∈ N in order to obtain an approximation of
H(Tj) and D(Tj). One further constructs H(T ) and D(T ), for any T by interpolation.

Definition 63 Under the arbitrage-free conditions, the transformed process M = (Mt)t≥0, given by

Mt = exp

(
−
∫ t

0
(r(s)− q(s))ds

)
St,

is a martingale (see, e.g., Shreve, 2004, Subsection 5.5.1) and the price at time t = 0 of the put
option is given by

P (T,X) = E
[
exp

(
−
∫ T

0
r(s)ds

)
(X − ST )+

]
. (7.2.3)

The equality (7.2.3) can be expressed as

P (T,X) = HTE

[(
DT

HT
X −MT

)+
]

(7.2.4)

with
MT =

DT

HT
ST .

By setting

k =
DT

HT
X, (7.2.5)
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one has, from (7.2.4),
P (T,X) = HT P̂ (T, k) (7.2.6)

where
P̂ (T, k) = E

[
(k −MT )+] . (7.2.7)

Proposition 64 In presence of dividend and interest rate, a collection of Put prices P (T,X)T≥0,X≥0

is arbitrage-free if and only if the process P̂ (T, k)T,k given by (7.2.7) verifies the following conditions

1. P̂ (T, .) is a convexe function, for any T ≥ 0,

2. P̂ (., k) is an non-decreasing function, for any k ≥ 0,

3. P̂ (T, 0) = 0,∀ T ≥ 0,

4. ∂
∂k P̂ (T, 0) = 0,∀ T ≥ 0,

5. lim
k−→∞

∂
∂k P̂ (T, k) = k −M0,

6. P̂ (0, k) = (k −M0)+, ∀k ≥ 0.

Accordingly, learning the put price function P (·, ·) is equivalent to learning the reduced price P̂
given the observations and the constraints.

7.2.2 GPs for calibration of Dupire formula

By considering the dynamics of S given in (7.2.1) with constant interest rate r and constant dividend-
yieldsq, we obtain the Dupire (1994) formula

σ2(T,X)

2
=
∂TP (T,X) + (r − q)X ∂XP (T,X) + qP (T,X)

X2∂2
X2P (T,X)

(7.2.8)

which establishes a relation between the put price and the volatility. The function σ : R+×R+ → R+

is known as local volatility and is consistent with no-arbitrage market prices for any options on S.
Thus, the construction of σ(·, ·) given the market put prices P (T1, X1), ..., P (Tn, Xn), observed for
the finite number of pairs (Ti, Xi)i=1,...,n can be done by first constructing a no-arbitrage put price
surface P : R+×R+ → R+ which is compatible with these observed prices and then use the Dupire
(1994) formula to get the local volatility surface.
As we show above, learning the put price surface P corresponds to leaning the reduced priceP̂ and
using (7.2.7). Fortunately, the Dupire formula can be rewritten in term of P̂ . Indeed, one has from
the (7.2.6) the following derivatives

∂TP (T,X) = ∂T [HT P̂ (T, k)] = ∂THT P̂ (T, k) +HT ∂T P̂ (T, k),

∂XP (T,X) = ∂X [HT P̂ (T, k)] = HT ∂kP̂ (T, k) ∂Xk = DT ∂kP̂ (T, k),

∂2
X2P (T,X) = ∂K [DT ∂kP̂ (T, k)] = DT∂

2
k2P̂ (T, k)∂Kk =

D2
T

HT
∂kP̂ (T, k).
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Replacing these derivatives into (7.2.8) leads to

σ2(T,X)

2
=

∂T P̂ (T, k)

k2∂2
k2P̂ (T, k)

:= dup(T, k). (7.2.9)

which implies that constructing the local volatility surface can be done by constructing the reduced
pricesurface and using Dupire’s formula to get the whole local volatility surface.
Our construction consists in using the constrained kriging presented in Chapter 6 to learn the
reduced price P̂ , given in Proposition 64, which must be compatible to the market fit. In other terms,
for a given quotation date, we construct reduced put price surfaces (T, k)→ P̂ (T, k) satisfying the
arbitrage-free conditions in Proposition 64 from n noisy observations y = [y1, . . . , yn]> of function
P̂ at input points X = [X1, . . . ,Xn]. The input points Xi = (Ti, ki), i = 1, . . . , n correspond to
observed term-to-maturities and reduced option strikes. Then, the construction of the reduced price
function should be compatible with the following market fit condition

y = P̂ (X) + ε, (7.2.10)

where P̂ (X) := [P̂ (X1), . . . , P̂ (Xn)]> is the vector composed of reduced put prices at observation
points X1, . . . ,Xn. The additive noise term ε = [ε1, . . . , εn]T is assumed to be a zero-mean Gaussian
vector, independent from P̂ , and with an homoscedastic covariance matrix given as σ2

noiseIn, where
In is the identity matrix of dimension n.

7.2.3 The methodology of the construction

The construction of the local volatility consists first of all in kriging the reduced price P̂ which is
compatible with (7.2.10) and which respects the conditions of Proposition 64 and then using the
Dupire’s formula.

7.2.3.1 kriging the reduced price

Kriging the reduced price P̂ can be done as explained in Section 6.3.2 of Chapter 6. By means,
we consider a discretized version of the input space D as a N = (NT + 1) × (Nk + 1) regular grid
DN := {(ui, vj) | ui = ihT , vj = jhk, i = 0, . . . , NT , j = 0, . . . , Nk}, where hT = 1

NT
and hk = 1

Nk
.

For each knot (ui, vj), we introduce the hat basis function φ(T, k) over D, as the following tensor
product

φi,j(T, k) := max(1− |T − ui|
hT

, 0) max(1− |k − vj |
hk

, 0) .

so that supp(φij) = [ki−1, ki+1]× [Tj−1, Tj+1].
Let V = H1(D) denote the space of P̂ and V N ⊂ V denote the finite dimensional linear subspace

spanned by the N linearly independent basis functions so that V N = span{φ0,0, . . . , φNT ,Nk} with
dim(V N ) = N .

The surface P̂ ∈ V is projected onto V N :

P̂N (T, k) =

NT∑
i=0

Nk∑
j=0

P̂ (ui, vj)φi,j(T, k), for any (T, k) ∈ D. (7.2.11)
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P̂N ∈ V N is a bilinear quadrilateral finite element approximation of the values of P̂ at knots
(ui, vj)i,j . If we denote ξi,j := P̂ (ui, vj), for i = 0, . . . , NT , j = 0, . . . , Nk, then ξ = [ξ0,0, . . . , ξi,j , . . . , ξNT ,Nk ]>

is a zero-mean Gaussian vector withN×N covariance matrix ΓN such that Γhı1,ı2 = κ((ui1 , vj1), (ui2 , vj2)),
for any two grid index pairs (i1, j1) and (i2, j2) corresponding to global indices ı1 and ı2 respectively.
Let φ(T, k) denote the vector of size N given by

φ(T, k) = [φ0,0(T, k), . . . , φi,j(T, k), . . . , φNT ,Nk(T, k)].

The equality (7.2.11) can be written in the following matrix form

P̂N (T, k) = φ(T, k) · ξ

so that when denoting Φ(X) the n×N matrix of basis function in which, each row ` corresponds
to the vector φ(T`, k`), one has P̂N (X) = Φ(X) · ξ, with P̂N (X) := [P̂N (X1), . . . , P̂N (Xn)]>.

The main steps of constructing the reduced price surface are

1. Find GPs hyperparameters by maximizing the marginal log-likelihood of the (made finite
dimensional) put price surface P̂N with respect to a training dataset.

2. Find the MAP (mode of the posterior distribution) ξ̃ of the (finite reduction of the) GPs put
price surface ξ by quadratic minimization, using the hyperparameters found in step 1.

3. Use ξ̃ to initialize a Hamilton MC sampler and sample realizations of ξ or, equivalently, P̂N ,
from the posterior distribution of the GPs put price surface.

7.2.3.2 Turning into local volatility surface

Once the kriging of P̂N has been done as presented above, the realizations of the local volatility
surface can be obtained by deriving their corresponding finite element approximations for each re-
alization of P̂N .
For this purpose, the finite dimensional approximation P̂N should be convex with respect to the
strike direction. However, note that P̂N is not differentiable, because our basis functions are only
of class C0. To address this issue, we may use quite a large number of nodes in strike direction in
order to get the local volatility surface.
An other solution is to use a regularization technique which consists in formulating a weak form
of the Dupire equation and construct the local volatility surface using this finite element method.
This regularization can be done as follows.
Recall from Eq. 7.2.9 that the Dupire formula in reduced variables (T, k) specifies the local half-
variance surface dup ∈ W = H0(D). We construct a piecewise constant approximation of the
local volatility. Note that the approach described in this section can be readily extended to
smoother approximations, but requires more elaborate calculations. The finite dimensional lin-
ear solution subspace WN ⊂ W is spanned by N linearly independent basis functions so that
WN = span{ψ0,0, . . . , ψNT−1,Nk−1} with dim(WN ) = N = NT ×Nk. The piecewise constant basis
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functions are given as ψi,j := 1[ui,ui+1)×[vj ,vj+1) with supp(ψi,j) = [ui, ui+1)× [vj , vj+1) so that

duph(T, k) =
∑
i,j

ψi,j(T, k)dupi,j = ψ · dup.

If P̂ ∈ V ⊂ H2(D), then under a change of variables κ = ln k we could write the Dupire equation
as:

∂2
κ2P̂ (T, κ)dup(T, κ) = ∂T P̂ (T, κ). (7.2.12)

Instead, we must take the weak form of the Dupire equation to solve for the local half variance by
integrating against a test function vN ∈ V N . Substituting P̂N for P̂ and duph for dup we write:∫

D
∂2
κ2P̂

N (T, κ)duph(T, κ)vNdκdT =

∫
D
∂T P̂

N (T, κ)vNdκdT, ∀vN ∈ V N ,

and after integration by parts to eliminate the second derivative on P̂ ,

−
∫
D
∂κP̂

N (T, κ)∂κ(duph(T, κ)vN )dκdT +

∫
T∈(0,Tmax]

∂κP̂
N (T, κ)duph(T, κ)vN |κmaxκmin dT

=

∫
D
∂T P̂

N (T, κ)vNdκdT, ∀vN ∈ V N ,

where the second integral on the left hand side is a maturity boundary integral. Adopting global
indices ı,  ∈ {0, . . . , N − 1}, substituting the form of P̂N and choosing vN = φ:

−
∑
ı

ξı

∫ Ti+1

Ti−1

∫ κj+1

κj−1

∂κφı(T, κ)∂κ

(
duph(T, κ)φ(T, κ)

)
dκdT +

∑
ı

ξı

∫ Ti+1

Ti−1

∂κφı(T, κ)duph(T, κ)φ(T, κ) |κmaxκmin dT

=
∑
ı

ξı

∫ Ti+1

Ti−1

∫ κj+1

κj−1

∂Tφı(T, κ)φ(T, κ)dκdT, ∀ı,  ∈ {0, . . . , N − 1}.

Each double integral is defined over a quadrant consisting of four elements. Since duph is only
constant over each element in the quadrant, we can separate the double integral into integrals over
each element to give the linear system

H(dup)ξ = Fξ, (7.2.13)

where the stiffness matrix H and RHS matrix F has a nine-stencil and 6-stencil respectively and
are given in the appendix A. This form is inconvenient for finding dup and we can rearrange the
computations to solve for dup to give

A(ξ)dup = Fξ, (7.2.14)

where A ∈ RN×N is a quad-diagonal rectangular matrix (see appendix for further details) and dup
is found by the pseudo-inverse of A. The matrix A can be viewed as a combination of time weighted
local differencing over ξ w.r.t. κ and subsequent averaging of duph over the four elements in each
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quadrant. We further note that the linear system in Eq. 7.2.14 provides the opportunity for further
regularization techniques such as, for examples, preconditioners.
In order to constrain the derivatives to be greater than zero during fitting, it is necessary to evaluate
the weak form of the second derivative of P̂N w.r.t. k. The weak form of the first derivative of P̂N

w.r.t. T is equivalent to the pointwise derivative because P̂N ∈ V N ⊂ H1(D). Returning to grid
indices (i, j) we see that

∂T P̂
N (T, k) =

∑
ij

φ′i(T )φj(k)ξij =
1

hk
(ξi+1,j − ξi,j), (T, k) ∈ [Ti, Ti+1]× [kj , kj+1]

is just the 2-stencil corresponding to a forward difference over any element. Hence we may freely
choose where to evaluate finite differences in each element. The weak second derivative

−
∫ kmax

k=kmin

P̂N (T, k)vN (T, k)dk = −
∑
ı

ξı

∫ kj+1

kj−1

∂kφı(T, k)∂kφ(T, k)dk =
∑
ı

H,ıξı,

can be written as Hξ, where the stiffness matrix is a 3-stencil corresponding to a second order finite
difference operator.

7.3 Neural networks implied volatility metamodeling

Our second goal is to use neural nets (NN) to construct a continuous Σ put surface Σ : R+×R→ R+,
interpolating Σ market quotes Σ∗ up to some error term, both being stated in terms of a put option
maturity T and log-(forward) moneyness κ = log( k

S0
) = log

(
X
S0

)
− (r − q)T . The advantage of

using implied volatilities rather than prices (as previously done in Chataigner, Crépey, and Dixon
(2020)), both being in bijection via the Black-Scholes put pricing formula as well known, is their
lower variability, hence better performance as we will see.

The corresponding local volatility surface σ is given by the following local volatility implied
variance formula, i.e. the Dupire formula stated in terms of the implied total variance Θ(T, κ) =

Σ2(T, κ)T (assuming Θ of class C1,2 on {T > 0}):1

σ2(T,X) =
∂TΘ

1− κ
Θ∂κΘ + 1

4

(
− 1

4 −
1
Θ + κ2

Θ2

)
(∂κΘ)2 + 1

2∂κ2Θ
(T, κ) =:

calT (Θ)

buttk(Θ)
(T, κ) (7.3.1)

We use a feedforward NN with weights W, biases b and smooth activation functions for param-
eterizing the Σ (hence the total variance), which we denote by

Σ = ΣΘ
W,b = ΘW,b.

The terms calT (ΘW,b) and buttk(ΘW,b) are available analytically, by automatic differentiation,
which we exploit below to penalize calendar spread arbitrages, i.e. negativity of calT (Θ), and but-
terfly arbitrage, i.e. negativity of buttk(Θ).

The training of NNs is a non-convex optimization problem and hence does not guarantee conver-
gence to a global optimum. We must therefore guide the NN optimizer towards a local optima that

1This follows from the Dupire formula by simple transforms detailed in Gatheral (2011, p.13).
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has desirable properties in terms of interpolation error and arbitrage constraints. This motivates
the introduction of an arbitrage penalty function into the loss function to select the most appro-
priate local minima. An additional challenge is that maturity-log moneyness pairs with quoted
option prices are unevenly distributed and the NN may favor fitting to a cluster of quotes to the
detriment of fitting isolated points. Consequently large pointwise errors may arise where the NN
has favored a local minima with low interpolation accuracy and no arbitrage violation. To remedy
this non-uniform data fitting problem, we propose a novel solution which involves re-weighting the
observations by the Euclidean distance between neighboring points.

More precisely, given n observations χi = (Ti, κi) of maturity-log moneyness pairs and of the
corresponding market implied volatilities Σ∗(χi), we construct the n×n distance matrix where each
coefficient d(χi, χj) is the euclidean distance between points :

d(χi, χj) =

√
(Tj − Ti)2 + (κj − κi)2.

We then define the loss weighting wi for each point χi as the distance with the closest point:

wi = min
j,j 6=i

d(χi, χj).

This weighting aims at reducing error for any isolated points. In order to adjust the weight of
penalization, we multiply our penalties by the weighting mean µw := 1

h

∑
i
wi. Learning the weights

W and biases b to the data subject to no arbitrage soft constraints (i.e. with penalization of
arbitrages), takes the form of the following (nonconvex) loss minimization problem:

arg min
W,b

√√√√ 1

n

∑
i

(
wi

ΣW,b(χi)− Σ∗(χi)

Σ∗(χi)

)2

+
µw
h

∑
ξ∈Dh

λTR(ΘW,b)(ξ), (7.3.2)

where λ = [λ1, λ2, λ3]> ∈ R3
+ and

R(Θ) = [cal−T (Θ), butt−k (Θ),
( calT
buttk

(Θ)− a
)+

+
( calT
buttk

(Θ)− a
)−

]>

is a regularization penalty vector evaluated over a penalty grid Dh with h = 50× 100 nodes, which
extends well beyond the unit square domain of the IV interpolation. In the unscaled moneyness and
maturity coordinates, the domain of the penalty grid is [0.5, 2] × [0.005, 10Y ]. This is intended so
that the penalty term penalizes arbitrages outside of the domain used for IV Interpolation. Even on
such an extended penalty grid, we found no arbitrage violation in our experiments (after training
calT (ΘW,b) and buttk(ΘW,b) are even > 0 at all nodes of Dh).

Note that the the error criterion is calculated as a root mean square error on relative difference,
chosen here, so that it does not discriminate high or low implied volatilities.

The first two elements in the penalty vector favor the no-arbitrage conditions and the third
element favors desired lower and upper bounds 0 < a < a (constants or functions of T ) on the
estimated local variance σ2(T,X). Suitable values of the “Lagrange multipliers" λ, ensuring the
right balance between fit to the market implied volatilities and the constraints, is obtained by
grid search. Of course a soft constraint (penalization) approach does not fully prevent arbitrages.
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However, for large λ, arbitrages are extremely unlikely to occur (except perhaps very far from D).

7.4 Numerical results

7.4.1 Experimental design

Our training set is prepared using SPX European puts with different available strikes and maturities
ranging from 0.005 to 2.5 years, listed on 18th May 2019, with S0 = $2859.53. Each contract is
listed with a bid/ask price and an implied volatility corresponding to the mid-price. The associated
interest rate is constructed from US treasury yield curve and dividend yield curve rates are then
obtained from call/put parity applied to the option market prices and forward prices. We preprocess
the data by removing the shortest maturity options, with T < 0.055, and the numerically inconsis-
tent observations for which the gap between the listed implied volatility and the implied volatility
calibrated from mid-price with our interest/dividend curves exceeds 5% of the listed implied volatil-
ity. But we do not remove arbitrable observations. The preprocessed training set is composed of
1720 market put prices. The testing set consists of a disjoint set of 1725 put prices.

All results for the GP method are based on using Matern ν = 5/2 kernels over a [0, 1]2 domain
with fitted kernel standard-deviation hyper-parameter σ̂ = 185.7611, length-scale hyper-parameters
θ̂k = 0.3282 and θ̂T = 0.2211, and homoscedastic noise standard deviation, ς̂ = 0.6876.2 The grid
of basis functions for constructing the finite-dimensional process ph has 100 nodes in the modified
strike direction and 25 nodes in the maturity direction.

Regarding the NN approach, we use a three layer architecture similar to the one based on prices
(instead of implied volatilities in Section 7.3) in Chataigner, Crépey, and Dixon (2020), to which
we refer the reader for implementation details.

7.4.2 Arbitrage-free SVI

We benchmark the machine learning results with the industry standard provided by the arbitrage
free stochastic volatility inspired (SVI) model of Gatheral and Jacquier (2014). Under the “natural
parameterization" SVI = (∆, µ, ρ, ω, ζ), the implied total variance is given, for any fixed T , by

ΘSVI(κ) = ∆ +
ω

2

(
1 + ρ(κ− µ)ζ +

√
(ζ(κ− µ) + ρ)2 + (1− ρ2)

)
. (7.4.1)

SSVI is the parameterization of a full surface given as SVIT = (0, 0, ρ,ΘT , φ(ΘT )) for each T ,
where ΘT is the at-the-money total implied variance and we use for φ a power law function
φ(ϑ) = η

ϑγ(1+ϑ)1−γ . Gatheral and Jacquier (2014, Remark 4.4) provides sufficient conditions on
SSVI parameters (η(1 + |ρ|) ≤ 2 with γ = 0.5) that rule out butterfly arbitrage, whereas SSVI is
free of calendar arbitrage when ΘT is nondecreasing.

We calibrate the model as in Gatheral and Jacquier (2014):3 First, a guess on SVI is obtained
by fitting the SSVI model; Second, for each maturity in the training grid, the five SVI parameters
are calibrated (starting in each case from the SSVI calibrated values). The IV is obtained for new

2When re-scaled back to the original input domain, the fitted length scale parameters of the 2D Matern ν = 5/2
are θ̂k = 973.1901 and θ̂T = 0.5594.

3Building on https://www.mathworks.com/matlabcentral/profile/authors/4439546
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maturities by a weighted average of the parameters associated with the two closest maturities in
the training grid, T and U , say, with weights determined by ΘT and ΘU . The corresponding local
volatility is extracted by finite difference approximation of (7.3.1).

Note that as, in practice, no arbitrage constraints are implemented for SSVI by penalization (see
Gatheral and Jacquier, 2014, Section 5.2), the SSVI approach is in fact only practically arbitrage-
free, much like our NN approach, whereas it is only the GP approach that is proven arbitrage-free.

7.4.3 Calibration results

Training times for SSVI, GP, and NNs are reported in the last line of Table 7.1 which, for complete-
ness, also includes numerical results obtained by NN interpolation of the prices as per Chataigner,
Crépey, and Dixon (2020). Because price based NN results are outperformed by IV based NN re-
sults we only focus on the IV based NN in the figures that follow, referring to Chataigner, Crépey,
and Dixon (2020) for every detail on the price based NN approach. Again, in contrast to the SSVI
and NNs which fit to mid-quotes, GPs fit to the bid-ask prices.

IV RMSE
(Price RMSE) SSVI GP IV based

NN
Price

based NN
SSVI

Unconstr.
GP

Unconstr.

IV based
NN

Unconstr.

Price
based NN
Unconstr.

Calibr. fit on
the training set

1.37%
(2.574)

0.58%
(0.338)

1.23%
(2.897)

13.70%
(9.851)

1.04%
(2.691)

0.60%
(0.321)

0.84%
(2.163)

5.65 %
(2.456)

Calibr. fit on
the testing set

1.52%
(2.892)

0.57%
(0.355)

1.29%
(2.966)

14.27%
(10.347)

1.09%
(2.791)

0.57%
(0.477)

0.86%
(2.045)

6.14%
(2.888)

MC backtest 8.69%
(22.826)

19.76%
(74.017)

2.95%
(4.989)

6.37%
(11.764) N/A N/A N/A N/A

FD backtest 6.88%
(33.545)

7.86%
(35.270)

3.43%
(11.976)

5.56%
(26.785) N/A N/A N/A N/A

Comput. time
(seconds) 33 856 191 185 1 16 76 229

Table 7.1: The IV and price RMSEs of the SSVI, GP and NN approaches. Last
line: computation times.

The GP implementation is in Matlab whereas the SSVI and NN approaches are implemented
in Python. On our large dataset, the constrained GP has the longest training time. Training is
longer for constrained SSVI than for unconstrained SSVI because of the ensuing amendments to the
optimization routine. There are no static arbitrage violations observed for any of the constrained
methods in neither the training or the testing grid. Unconstrained methods yield 18 violations with
NN and 177 with SSVI on the testing set, out of a total of 1725 testing points, i.e. violations in
1.04% and 10.26% of the test nodes. The unconstrained GP approach yields constraint violations
on 12.5% of the basis function nodes. The NN penalizations (calT )− and (buttk)− vanish identically
on Dh in the constrained case, whereas in the unconstrained case their averages across grid nodes
in Dh are (calT )− = 3.91× 10−6 and (buttk)− = 1.60× 10−2 with the IV based NN.

Fig. 7.2(a-b) respectively compare the fitted IV surfaces and their errors with respect to the
market mid-implied volatilities, among the constrained methods. The surface is sliced at various
maturities and the IVs corresponding to the bid-ask price quotes are also shown – the blue and red
points respectively denote training and test observations.
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We generally observe good correspondence between the models and that each curve typically
falls within the bid-ask spread, except for the shortest maturity contracts where there is some
departure from the bid-ask spreads for observations with the lowest log-moneyness values. We see
on Fig. 7.2(b) that the GP IV errors are small and mostly less than 5 volatility points whereas
NN and SSVI exhibit IV error that may exceed 15 volatility points. The green line and the red
shaded envelopes respectively denote the GP MAP estimates and the posterior uncertainty bands
under 100 samples per observation. The support of the posterior GP process assessed on the basis
of 100 simulated paths of the GP captures the majority of bid-ask quotes. The GP MAP estimate
occasionally corresponds to the boundary of the support of the posterior simulation. This indicates
that the posterior truncated Gaussian distribution is heavily skewed for some points, and that the
MAP estimate consequently saturates the AOA constraints. This indicates a tension between the
AOA constraint and the bid-ask constraint which cannot be fully reconciled, most likely because
some of the (short maturity) data are arbitrable (they are at least illiquid and hence noisy). See
notebook for location of arbitrages in the unconstrained approach.

All constrained methods find a no-arbitrage IV surface. Fig. 7.2(a-b) suggest that the data may
exhibit arbitrage at the lowest maturities where the methods depart from the bid-ask spreads. These
observations are further supported in Fig. 7.3(a-b) which shows the corresponding methods without
the no-arbitrage constraints. In Fig. 7.3(a-b) we observe that the estimated IVs now fall within
close proximity of the bid-ask spreads–all methods exhibit an error typically less than 5 volatility
points. Note that the y-axis has been scaled for each plot in Fig. 7.3(b) to accommodate the wide
uncertainty band of the posterior for the unconstrained GP. Whereas the uncertainty band of the
constrained GP spanned at most 10 volatility points, the uncertainty band of the unconstrained GP
is an order of magnitude larger, sometimes spanning more than 100 volatility points.

Fig. 7.4 shows the local volatility surfaces that stem from the three constrained approaches.
Fig. 7.4(a) shows the spiky local volatility surface generated by SSVI, capped at the 200% level for
scaling convenience. Fig. 7.4(b) shows the capped local volatility surface constructed from the GP
MAP price estimate. Fig. 7.4(c) shows the (complete) NN local volatility surface.

7.4.4 In-sample and out-of-sample calibration errors

The error between the prices of the calibrated models and the market data are evaluated on both
the training and the out-of-sample data set. The first two rows of Table 7.1 compare the in-sample
and out-of-sample RMSEs of the prices and implied volatilities across the different approaches. The
differences between the training and testing RMSEs are small, suggesting that all approaches are
not over-fitting the training set. We observe that the GP exhibits the lowest price RMSEs.

7.4.5 Backtesting results

The first repricing backtest estimates the prices of the European options corresponding to the test-
ing set, by Monte Carlo sampling in each calibrated local volatility model (same methodology as
described in Chataigner, Crépey, and Dixon (2020, Section 7.2)). The second approach uses finite
differences (FD) to price the options with the calibrated local volatility surfaces. The pricing PDEs
with local volatility are discretized using a Crank-Nicolson scheme implemented on a 100 × 100

backtesting grid. The last two rows in Table 7.1 compare the resulting price backtest RMSEs across
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(a) Implied volatilities.

(b) Fitted IV errors with respect to mid-price IVs.

Figure 7.2: Slices of constrained GP (green), NN (purple), and SSVI (black) models
of SPX puts with training bid-asks IVs (+

¯
) and testing bid-asks IVs (+̊) (the bid-ask

IVs are reconstructed numerically from the corresponding bid-ask market prices). The
shaded envelopes show 100 paths of the constrained GP’s posterior.
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(a) Implied volatilities.

(b) Fitted IV errors with respect to mid-price IVs.

Figure 7.3: Slices of unconstrained GP (green), NN (purple), and SSVI (black)
models of SPX puts with training bid-ask IVs (+

¯
) and testing bid-ask IVs (+̊) (the

bid-ask IVs reconstructed numerically from the corresponding bid ask market prices).
The shaded envelopes show 100 paths of the unconstrained GP’s posterior.
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(a) The local volatility surface generated by SSVI with finite differences,
capped at the 200% level.

(b) The MAP estimate of the GP local volatility surface, capped at the
200% level.

(c) The implied volatility based NN local volatility surface (with the local volatility penalization).

Figure 7.4: The GP, SSVI, and NN local volatility estimate.
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the different approaches. The NN fitted to implied volatilities exhibit significantly lower errors in
the backtests, followed by NN based on prices, SSVI and GP. To quantify discretization error in
these backtesting results (as opposed to the part of the error stemming from a wrong local volatil-
ity), we ran the same backtests in a Black-Scholes model with 20% volatility and the associated
prices. The corresponding Monte Carlo and PDE backtesting IV (price) RMSEs are 2.90% (1.56)

and 0.846% (4.10).

7.5 Conclusion

In this chapter, we develop a finite dimensional kriging approach for no-arbitrage interpolation of
European vanilla option prices which jointly yields the full surface of local volatilities with uncer-
tainty bands, even in the presence of arbitrage in the data. We demonstrate the performance relative
to SSVI and deep learning of implied volatilities. The latter uses shape constraint regularization
through the local volatility implied variance formula to penalize arbitrages. The GPs is found to
produce a better fit to out-of-sample prices than SSVI, with less evidence of overfitting, although
the performance is less competitive than neural networks trained to implied volatilities. Backtest-
ing results show that kriging is competitive although it suggests that fitting to implied volatilities
would be advantageous. However, in contrast to the SSVI and neural networks, the GPs provides
uncertainty quantification, which promises much potential for model risk aspects of local volatility
construction (cf. Cont, 2006, Example 4.3) and no-arbitrage price interpolation. The best of all
worlds could be GPs trained to implied volatilities.
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Conslusions and perpectives

Conclusions

In this thesis, we have addressed some aspects which contribute in quantitative financial risk man-
agement through two different parts.

In the first part, we have guided our thinking about default times modeling. As such, after
having recalled some well known results about stochastic calculus and models of default times in
Chapter 1, we have investigated the Gaussian example in conditional densities by showing that this
example is unique in a large class of diffusion processes.
Very often, in credit risk modeling, the construction of the default time τ using the enlargement
of filtration is based on the hypothesis that τ avoids the stopping times of the reference filtration.
However, this framework does not allow to cover a wide range of situations, particularly in modeling
defaultable claims under some economic shocks under which the default time could coincide with
the shock times.
This allows us to expand our thinking, in Chapter 2, toward the model of Jiao and Li (2018) which
is designed for modeling default time which could coincide with some predictable stopping times in
the reference filtration. By this way, we proposed an extension of that model when the stopping
times in the reference filtration are no more predictable. We have concluded that despite its at-
tractiveness in modeling defaultable claims under some predictable shocks, the model of Jiao and
Li (2018) is difficult to implement if the shocks are not predictable and does not always allow to
capture the jumps of the zero-coupon bond prices.
We then proposed the generalized Cox model in Chapter 3 which extends the one of Lando (1998)
in which the default time τ is the first time when an increasing process K adapted to a given fil-
tration F, absolutely continuous with respect to Lebesgue’s measure hits a level, which is a random
variable independent of F. It follows that this random time avoids all F-stopping times. We have
relaxed the assumption that K is absolutely continuous by working in a more general case, where
that process K being adapted, increasing and continuous on right with limits on left or continuous
on left with limits on right. This led us to a random time which does not avoid the stopping times
of the reference filtration. We were interested in the computations of characteristics of the default
time such as the conditional survival martingale, the Azéma supermartingale, the compensator of
the default time as well as its predictable reduction process and the multiplicative decomposition
of the Azéma supermartingale.
We have also given many examples which illustrated our construction. The Generalized Cox model
extends the one of Jiao and Li (2018) when K is F-predictable.
In Chapter 4, we have investigated some applications of the generalized Cox model in credit risk.
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We were also interested in the effects of the jumps of the process K on the prices of the zero-coupon
bonds through different configurations of K. The Generalized Cox model where K is a shot-noise
allows to capture the jumps of the zero coupon bond when the stopping times of the reference
filtration are not predictable.

In the second part of this thesis, we have presented the kriging techniques for solving some prob-
lems in quantitative finance such as option pricing and construction of volatility surfaces. Chapter
5 described some useful tools which have been used in Chapters 6 and 7. Particularly, we have
recalled the constrained kriging in 1d using the finite dimensional approximation of GPs developed
by Maatouk and Bay, 2014. A particular attention has been paid in the simulation of the Gaussian
coefficients when some monotonicity constraints are saturated and we have proposed a numerical
solution to this problem which consists in reducing the number of basis function in the regions
where constraints are saturated.
Chapter 6 was devoted to the construction of prices and implied volatility surfaces under no-arbitrage
constraints using kriging. A comparison of the classical and constrained kriging for this task has
been done. It turned out that the surfaces constructed using constrained kriging respect the no
arbitrage conditions while the ones fitted by the classical kriging can lead to some arbitrages. We
have also proposed a method for identifying the locations with the most likely arbitrages (which are
the ones with largest noises) in the data by computing the joint MAP of the truncated Gaussian
coefficient and the Gaussian noise vector. We demonstrated our construction using the Euro Stoxx
50 data of January 10, 2019. Our results show that kriging is a suitable tool for constructing option
prices and quantifying uncertainty in the presence of noisy data, and for computing the associated
local and implied volatility. Hence a promised tool for quantifying model uncertainty.
In Chapter 7, we have demonstrated the performance of kriging relative to various popular alterna-
tive interpolation techniques, we have benchmarked it against SSVI and deep learning techniques
for local volatility surface construction. The fitting of kriging in the replication of bid ask data is an
important result. Indeed, it allows to get a price surface which lies between the bid and ask prices.
Backtesting results show that kriging is competitive although it suggests that fitting to implied
volatilities would be advantageous. However, in contrast to the SSVI and neural networks, the
Kriging provides uncertainty quantification, which promises much potential for model risk aspects
of local volatility construction and no-arbitrage price interpolation.

Perspectives

Here we present some new avenues for future researches.

Using Generalized Cox model for modeling catastrophe (CAT) bonds

The issuing of catastrophe (CAT) bonds is essential for insurance companies. These products
allow them to hedge against the risks incurred following a natural disasters such as earthquakes,
pandemics, etc. Recently, we are witnessing the occurrence of the Coronavirus disease COVID-19
pandemic that causes significant losses. A number of good examples have already been developed for
catastrophe bonds. These include the model of Burnecki and Kukla (2003) who used a compound
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doubly stochastic Poisson loss process for aggregate losses where the catastrophe event times are
jump times of standard Poisson Process (i.e., with a constant intensity). Their approach has been
extended by Ma, Ma, and Xiao (2017) where they use a stochastic intensity rate of the Poisson
process and provide an explicit intensity of the default time as well as a semi-analytical solution
for evaluating zero-coupon CAT bonds. In the double stochastic Poisson loss model, default occurs
when the aggregate claims process exceeds a specified level (called threshold value). Schmidt (2014)
used shot-noise process for modeling the aggregated losses process.
Jarrow (2010) has been based on the reduced form model for pricing credit derivatives. He modeled
the time of the catastrophe event underlying the Cat bond as a standard Cox time (i.e., the case
where the increasing adapted process K is continuous). However, his model can be applied only in
the case of one occurrence of a catastrophe event in the time interval of the Bond contract. This
can be understood through the illustrative example on his introduction where an insurance issues
CAT-Bonds with the hurricane in Florida as the underlying catastrophe event for covering eventual
losses that could be included in the amount insured for home insurance written by that company
at the first occurrence of the hurricane in the time interval of the contract. However after the first
event, the CAT-Bonds come to an end.
Nevertheless, when one considers the case with possible successive catastrophe events in life time
of a CAT-Bond contract, the model of Jarrow (2010) is not enable to cover this kind of framework,
specially in the case of long maturity CAT-Bonds contracts. Indeed the default time in Jarrow
(2010) represents only the first time of the ones of these events, while others severe losses can be
noted after the nth occurrence of an event.
To bridge this gap, we can adopt the generalized Cox framework where the sequence of catastrophe
events can be modeled as an increasing sequence of stopping times in the reference filtration which
are not avoided by the default time. This setting may offer some nice mathematical perspectives to
the CAT-Bonds. However, how it could be implemented from the practical point of view?

Kriging and theory of optimal martingale transport

We have seen that kriging is a suitable tool for constructing option prices and quantifying uncer-
tainty in the presence of noisy data by constructing some confidence bounds.
In addition, this latest example of kriging could offer new perspectives for studying risk model
in quantitative finance. Recent works on the subject concern in particular the derivation of non-
arbitrage bounds (and the identification of strategies of over- or under- replication to reach those
boundaries) for option prices (path-dependent) knowing the marginal laws of the underlying at some
maturities. This problem can for example be studied under the angle of theory of optimal martin-
gale transport (see, e.g., Henry-Labordere and Touzi, 2013; Hobson and Klimmek, 2015; Beiglböck,
Juillet, et al., 2016; Beiglböck, Henry-Labordère, and Penkner, 2013). However, in this approach,
the non-arbitrage bounds can be obtained efficiently only from the knowledge of all marginal dis-
tributions.
In practice, the marginal law is only partially observed at some time horizons through the observa-
tion of traded European option prices.
As we illustrated in Chap 6, 7, constrained kriging allows to quantify uncertainty on marginals
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laws of a martingale measures. A more realistic uncertainty quantification of path-dependent op-
tion prices could be achieved by combining our approach and the optimal martingale transport
approach. This is a perspective for future research.
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Appendix A

Finite Element Approximation

The elements of the matrix F are given by

Fı1,ı2 =

∫ Ti+1

Ti−1

∫ κj+1

κj−1

∂Tφı2(T, κ)φı1(T, κ)dκdT, ∀ı1, ı2 ∈ {0, . . . , N − 1}, (A.0.1)

which simplifies to the following 6-diagonal square matrix, where the central tri-diagonal band is
zero:

Fı1,ı2 =


0, i1 = i2, |j1 − j2| ≤ 1,

±hk/3, i1 = i2 ± 1, j1 = j2,

±hk/12, i1 = i2 ± 1, |j1 − j2| = 1.

(A.0.2)

The elements of the stiffness matrix H are given by

Hı1,ı2 = −
∑
ı2

ξı2

∫ Ti+1

Ti−1

∫ κj+1

κj−1

∂κφı2(T, κ)∂κ

(
duph(T, κ)φı1(T, κ)

)
dκdT (A.0.3)

which evaluates to the 9-diagonal square matrix:

Hı1,ı2 =



− 1
3
hT
hκ

(dupi1,j1 + dupi1−1,j1
+ dupi1,j1−1 + dupi1−1,j1−1), ı2 = ı1,

1
3
hT
hκ

(dupi1,j1 + dupi1−1,j1
), i2 = i1, j2 = j1 + 1,

1
3
hT
hκ

(dupi1,j1−1 + dupi1−1,j1−1), i2 = i1, j2 = j1 − 1,

− 1
6
hT
hκ

(dupi1,j1 + dupi1,j1−1), i2 = i1 − 1, j2 = j1,

− 1
6
hT
hκ

(dupi1−1,j1
+ dupi1−1,j1−1), i2 = i1 + 1, j2 = j1,

1
6
hT
hκ

dupi1,j1 , i2 = i1 − 1, j1 = j2 + 1

1
6
hT
hκ

dupi1,j1−1, i2 = i1 − 1, j1 = j2 − 1,

1
6
hT
hκ

dupi1−1,j1
, i2 = i1 + 1, j1 = j2 + 1

1
6
hT
hκ

dupi1−1,j1−1, i2 = i1 + 1, j1 = j2 − 1,

If we multiply each side of the equation H(dup)ξ = Fξ by 3
2hT hk

then the second line of the right

hand side has terms similar to a first order central finite difference stencil ξi+1,j−ξi−1,j

2hT
. Additionally

the stiffness matrix has terms which correspond to a second order finite difference stencil with local
averaging of dup. To see this, suppose that dup were constant over each quadrant then the first
three lines of the specification of H above correspond to the finite difference stencil ξi,j+1−2ξi,j+ξi,j−1

h2
κ

.
The four-diagonal rectangular matrix A is given by
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Aı1,ı2 =



−hT
hκ

(1
3ξi1,j1 −

1
3ξi1+1,j1 + 1

6ξi1,j1+1 − 1
6ξi1+1,j1+1), ı1 = ı2,

−hT
hκ

(1
3ξi1,j1 −

1
3ξi1,j1−1 + 1

6ξi1+1,j1 − 1
6ξi1+1,j1−1), ı1 = ı2 +NT ,

−hT
hκ

(1
3ξi1,j1 −

1
3ξi1,j1+1 + 1

6ξi1−1,j1 − 1
6ξi1−1,j1+1), ı1 = ı2 + 1,

−hT
hκ

(1
3ξi1,j1 −

1
3ξi1,j1−1 + 1

6ξi1−1,j1 − 1
6ξi1−1,j1−1), ı1 = ı2 +NT + 1.

(A.0.4)
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Cette thèse traite différentes questions liées à la gestion quantitative des risques financiers. Nous
nous intéressons, dans une première partie, aux modèles de temps de défaut en risque de crédit dans le
cadre de la théorie de grossissement de filtrations. Nous proposons des modèles où le temps de défaut
peut coïncider avec des instants de chocs économiques. Nous mettons l’accent, dans un premier temps,
sur le modèle de Jiao et Li (2018) en risque souverain où le temps de dèfaut coïncide avec des temps de
chocs prévisibles. Nous étendons ce modèle dans le cas où les chocs ne sont pas prévisibles en étudiant
les caractéristiques du temps de défaut. Dans un second temps, nous présentons le modèle de Cox
généralisé qui est une extention de celui de Lando (voir Lando, 1998). Nous proposons une large gamme
d’exemples pour ullistrer notre construction. La seconde partie porte sur la construction de surfaces de
volatilités des actifs financiers sous la condition d’absence d’opportunité d’arbitrage (AOA) en utilisant
les méthodologies de krigeage (où la regression par processus Gaussien). Ces surfaces permettent
par exemple d’estimer à partir du prix d’options liquides, la valeur des produits financiers dont les
caractéristiques sont non-standard et dont le prix n’est pas observé sur le marché. La construction de
telles surfaces est une étape importante dans certains processus de gestion des risques. Elle permet
également de tarifer des actifs non-liquides. Notre approche consiste á mettre en œuvre l’apprentissage
du krigeage sur les prix d’options européennes en respectant les conditions de non-arbitrage. Ces
conditions sont caractérisées par des contraintes de forme sur les prix, à savoir la monotonicité dans la
direction des maturités et la convexité dans la direction des strikes. Etant donné que ces contraintes
correspondent à un nombre fini d’inégalités linéaires, nous adoptons une technique de krigeage sous
contraintes d’inégalités linéaires. Nous utilisons, pour cela, la méthode d’eveloppée par Maatouk et
Bay (2016) qui est basée sur l’approximation fini-dimensionnelle du processus Gaussien. L’algorithme
de Monte Carlo Hamiltonien de Pakman et Paninski (2014) sera utilisé pour simuler les coefficients
Gaussiens. Nous proposons une méthode de calcul du Maximum a Posteriori (MAP) du processus
Gaussien. Nous comparons notre méthode avec celles des réseaux de neuronne contraints et des SSVI.
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