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Introduction détaillée en français

Pour modéliser les produits financiers soumis au défaut en présence de chocs économiques qui ne sont pas prévisibles, nous proposons un modèle de Cox généralisé qui étend celui de Lando (1998) dans lequel le temps de défaut τ est le premier instant où un processus K croissant adapté à une filtration donnée (la filtration de référence) F, absolument continue par rapport à la mesure de Lebesgue passe par une barrière stochastique Θ indépendante de F. Il s'ensuit que ce temps de défaut évite tous les temps d'arrêt dans la filtration de référence F. Nous assouplissons l'hypothèse selon laquelle le processus croissant K est absolument continu. Ici, nous travaillons dans un cadre plus général, ce processus K étant adapté, croissant et continu à droite avec des limites à gauche ou continu à gauche avec des limites à droite. Cela nous conduit à un temps aléatoire qui n'évite pas les temps d'arrêt de F. Dans les deux cas, nous nous intéressons aux caractéristiques du temps de défaut comme la martingale de survie conditionnelle, la supermartingale Azéma, le compensateur du temps de défaut ainsi que son processus de réduction prévisible (présenté dans la Section 1.2) et la décomposition multiplicative de la supermartingale d'Azéma. Nous étudions également l'existence de densités conditionnelles dans le sens de Jacod (1985) que nous dénotons (CL), dans le sens de [START_REF] Jiao | Generalized density approach in progressive enlargement of filtrations[END_REF], dénoté par (GD) et l'hypothèse étendue de Jacod introduite dans [START_REF] Li | Progressive enlargements of filtrations with pseudo-honest times[END_REF]. On peut trouver une première tentative de généralisation dans [START_REF] Bélanger | A general framework for pricing credit risk[END_REF], où le processus croissant est prévisible et continu à droite. Contrairement au modèle de Jiao and Li (2018), dans le modèle généralisé de Cox, le processus de taux d'intensité peut exister.

Structure des chapitres de la partie 1

Cette première partie de la thèse est structurée comme suit.

Dans le chapitre 1, nous commençons par rappeler des faits bien connus sur la théorie des processus stochastiques et modèles de temps de défaut que nous utiliserons tout au long de cette partie, avant de traiter l'exemple du cas gaussien en densité conditionnelle. Nous définissons toutes les caractéristiques du temps de défaut, particulièrement la réduction prévisible de son compensateur. Nous mettons l'accent ensuite sur l'hypothèse d'existence de densité conditionnelle de Jacod que l'on notera (CL) en étudiant l'exemple explicite de densité gaussienne de El [START_REF] Karoui | Conditional default probability and density[END_REF]. Ensuite nous montrons, en utilisant divers techniques de calcul stochastique, que cet exemple de densité conditionnelle gaussienne est unique dans une large classe.

Dans le chapitre 2, nous généralisons le modèle de Jiao and Li (2018) qui est développé dans un contexte où le temps de défaut peut coïncider avec certains temps d'arrêt prévisibles (τ i ) i de F qui sont des temps de chocs exogènes prévisibles où ces chocs sont modélisés par un processus de Poisson N non homogène. Par conséquant l'hypothèse de Jacod n'est plus satisfaite. Notre généralisation consiste à relâcher l'hypothèse que les temps de chocs sont prévisibles et à remplacer le processus de Poisson par un processus plus général noté X. Nous étudions les caractéristiques du temps de défaut.

Dans ce cadre, nous considérons (Ω, G, F, P) un espace probabilisé filtré. Nous notons par Ψ la fonction croissante vérifiant P (X u ≤ 1) = e -Ψ(u) (avec Ψ(0) = 0 et Ψ(∞) = ∞) et par F X la filtration naturelle de X. Soit (τ i ) i une suite strictement croissante de temps d'arrêt de F telle que lim i→∞ τ i = ∞ et τ 0 = 0. Le temps de défaut τ est défini comme suit :

τ = θ ∧ ξ où θ est donné par θ = τ i on {X τi-1 ≤ 1 < X τi }, for i ≥ 1 et ξ := inf{t ≥ 0 : Γ t ≥ Θ} 1 {τi≤u} [Ψ(τ i ) -Ψ(τ i-1 )] -Γ u .
Ainsi la supermatingale d'Azéma Z s'exprime comme

Z t = exp - ∞ i=1 1 {τi≤t} [Ψ(τ i ) -Ψ(τ i-1 )] -Γ t .
Dans le cas où les temps d'arrêt (τ i ) i de F sont prévisibles, la réduction F-prévisible du compensateur Λ de τ est

Λ t = Γ t + ∞ i=1 1 {τi≤t} (1 -exp (-[Ψ(τ i ) -Ψ(τ i-1 )]
) , for all t ≥ 0 ce qui montre, comme dans Jiao and Li (2018), que le taux d'intensité du temps de défaut n'existe pas. Cependant, si certains des temps d'arrêt (τ i ) i de F ne sont pas prévisibles, on suppose connaître pour tout i, le F-compensateur de τ i , noté J i . Ainsi, la réduction F-prévisible du compensateur de τ vérifie

dΛ t = 1 Z t- dA p t = dΓ t + dζ t Q t- avec Q la supermartingale Q t := exp - ∞ i=1 1 {τi≤t} [Ψ(τ i ) -Ψ(τ i-1 )]
et ζ le processus croissant F-prévisible défini par

ζ t := ∞ i=0 t 0
e -Ψ(τi) -e -Ψ(s) dJ i+1 s .
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Nous montrons que, dans le cas particulier où les temps de chocs sont les temps de sauts d'un processus de Poisson homogène N (d'ntensité λ) engendrant la filtration F, la réduction prévisible du compensateur Λ est continue et que le processus de taux d'intensité existe et est égale, pour tout t ≥ 0 à

γ t + λ ∞ i=0 1 [τi,τi+1] (t) e -Ψ(τi) -e -Ψ(t) Q t- .
Dans le chapitre 3, nous incorporons le modèle étendu de Jiao et Li étudié dans le chapitre 2 dans un cadre beaucoup plus général de modèle de Cox généralisé. Nous travaillons toujours dans l'espace (Ω, G, F, P, G) où G est le grossissement progressif de F par τ . Le modèle de Cox (voir Lando, 1998) est le modèle le plus largement utilisé au marché financier où le temps de défaut (supposé être fini) est modélisé comme suit : τ = inf{t ≥ 0 : K t ≥ Θ} avec le processus K qui est supposé être continu croissant F-adapté tel que K 0 = 0 et Θ une v.a indépendante de F (de loi exponentielle de paramètre 1).

Dans ce modèle, le temps de défaut τ évite les temps d'arrêt de F et les hypothèses d'intensité et de Jacod sont satisfaites. Nous proposons d'étendre ce modèle afin que le temps de défaut τ puisse coïncider avec des temps d'arrêt de F. Notre généralisation consiste à relâcher l'hypothèse de continuité sur le processus K. Nous supposons que le processus K, croissant F-adapté, est continue à droite avec des limites à gauche (ou continu à gauche avec des limites à doite).

Dans un tel cadre, les temps de sauts de K (notés (τ i ) i ) sont les F-temps d'arrêt que τ n'évite pas et on a

P(τ = τ i |F t ) = E[e -Kτ i -(1 -e -∆Kτ i )|F t ].
L'étude de la réduction prévisible du compensateur de τ nécessite le résultat suivant (qui calcule la projection duale F-prévisible de τ ).

Lemme : Soit I la F-sous-martingale càdlàg I t = s≤t (1 -e -∆Ks ) et A I la partie prévisible de la décomposition de Doob-Meyer de I. Alors, la projection duale F-pévisible de τ vérifie dA p t = e -Kt-(dK c t + dA I t ), où K c est la partie continue de K.

Par conséquent, la réduction prévisible du compensateur de τ est Λ = K c + A I . Nous étudions également toutes les autres caractéristiques du temps de défaut, particulièrement la decomposition multiplicative de la super-martingale d'Azéma Z qui est donnée par : Ce résultat est établi en toute généralité dans [START_REF] Jeanblanc | Characteristics and constructions of default times Characteristics and constructions of default times[END_REF], où les auteurs "devinent" cette forme et la vérifient. Cependant, il semble intéressant de le retrouver sans deviner cette décomposition, et nous présentons une preuve dans ce manuscrit.

E(Y ) t E(-Λ) t = E(Y ) t e -Λt
Pour illustrer notre construction, nous donnons de nombreux exemples. Pour cela, Nous nous intéresserons à des processus croissant càdlàg partant de zéro qui nous permettent de construire le temps de défaut τ et ensuite d'expliciter toutes ses caractéristiques. Un exemple est la construction suivante où K est un shot noise.

Exemple du shot-noise : Soit F une filtration, (τ i ) i une suite croissante de F-temps d'arrêt, et (γ i ) i une suite de variables aléatoires avec γ i ∈ F τi . Soit µ la mesure aléatoire du processus marqué (τ i , γ i ) i et ν son compensateur. On pose μ = µ -ν. On définit le bruit quantique suivant (Shot-noise en anglais) :

K t = ∞ i=0 1 {τi≤t} G(t -τ i , γ i ) = t 0 R G(t -s, x)µ(ds, dx)
où la fonction G : R + × R → R + vérifie G(t, x) = G(0, x) + t 0 g(s, x)ds ∀ t ≥ 0, x ∈ R avec g une fonction borélienne positive de R + × R, telle que G est croissante dans la direction du temps. Dans cet exemple, nous montrons d'abord que K est une F-sous-martingale et sa décomposition de Doob-Meyer est K t = A K t + M K t avec A K sa partie prévisible (et croissante) donnée par

A K t = t u=0 u s=0 R g(u -s, x)µ(ds, dx) du + t s=0 R
G(0, x)ν(ds, dx)

et M K sa partie martingale qui a pour expression

M K t = t 0 R
G(0, x)μ(ds, dx).

Le processus de réduction prévisible du compensateur de τ est :

Λ t = t u=0 u s=0 R
g(u -s, x)e -G(u-s,x) µ(ds, dx) du

+ t 0 R
(1 -e -G(0,x) )ν(ds, dx) .

Si ν est déterministe, alors pour tout u ≥ t, la martingale de survie conditionnelle de τ s'exprime

P(τ > u|F t ) = c(u)L t (u)
où c(u) est une constante explicite et L(u) la martingale

L t (u) = exp - t 0 R G(u -s, x)µ(ds, dx) - t 0 R
(e -G(u-s, x) -1)ν(ds, dx) .

Dans le cas où le processus croissant K est continu à gauche (càglàd), nous modifions un peu la définition de τ dans le but d'obtenir un temps aléatoire avec de jolies propriétés. Ainsi, τ est défini comme suit :

τ := inf{t : K t > Θ}.
Cette définition nous permet d'être capable de caractériser l'ensemble {K t > Θ} et d'en déduire par la suite que {K t ≤ Θ} = {τ ≥ t}, ce qui implique que Z t = e -Kt et donc Z = e -K+ . Par conséquent, ce cadre peut être réduit au cas précédent sur la continuité à droite en utilisant le processus κ, vérifiant κ t = K t + pour tout t ≥ 0, à la place de K.

Dans le chapitre 4, nous étudions certaines applications du modèle généralisé de Cox dans le pricing des produits soumis au défaut. Nous donnons l'expression des prix des obligations zéro-coupon ainsi que leurs Introduction détaillée en français dynamiques à travers un cadre général. Nous nous intéresserons également aux impacts des sauts de K sur les prix avant défaut des obligations zéro-coupon soumis au défaut.

Partie 2: Le krigeage pour la construction de surfaces de volatilité Les surfaces de volatilité constituent des outils importants en gestion des risques. Elles constituent des composantes élémentaires pour la tarification et la couverture des produits dérivés financiers. Elles permettent par exemple d'estimer, à partir du prix d'options liquides, la valeur des produits financiers dont les caractéristiques sont non standards et dont le prix n'est pas observé sur le marché. La volatilité dépend des caractéristiques contractuelles de l'option (nature de l'actif sous-jacent, maturité, prix d'exercice) et n'est observée que pour un nombre limité de caractéristiques standard (couple maturité -prix d'exercice) et peut nécessiter la surface entière de prix ou le prix de certaines caractéristiques non observées pour certaines applications. En outre, la construction de ces surfaces est habituellement faite en respectant le principe d'absence d'opportunité d'arbitrage, i.e., les prix des options obtenus à partir de ces surfaces ne permettent pas de réaliser d'arbitrage financier. La construction d'une surface de prix sans arbitrage peut être transformée en un problème d'apprentissage fonctionnel avec des contraintes de forme et éventuellement des observations brutées.

Une fois la surface de prix interpolée, on peut utiliser la formule d'inversion de Black et Scholes (voir Black and Scholes, 1973) pour obtenir la surface de volatilité implicite. Pour obtenir la surface de volatilité locale, nous pouvons utiliser une approximation de différence finie de la formule de Dupire (voir Dupire, 1994). En outre, il est possible de construire la surface de volatilité locale en utilisant les volatilités implicites Il s'agit d'extraire la surface de volatilité locale de la volatilité implicite en utilisant la formule (1.10) de Gatheral (2011). Ces approches qui utilisent les prix observés (ou la volatilité implicite pour construire la volatilité locale) sont connues sous le nom d'approches indirectes. Au-delà de ces approches directes, il existe certaines qui paramétrent directement la volatilité non observée à travers une fonction dans laquelle ses paramètres peuvent être estimés en minimisant une fonction objective appropriée obtenue pour calibrer cette fonction aux données de marché. Il s'agit notamment de la méthode SVI qui paramétrent le smile de volatilité implicite et son extension (SSVI) pour la surface de volatilité implicite (voir [START_REF] Gatheral | Arbitrage-free SVI volatility surfaces[END_REF][START_REF] Gatheral | A parsimonious arbitrage-free implied volatility parameterization with application to the valuation of volatility derivatives[END_REF] Les techniques utilisées habituellement dans les approches indirectes reposent sur des splines contraintes (voir par exemple [START_REF] Fengler | Arbitrage-free smoothing of the implied volatility surface[END_REF][START_REF] Homescu | Implied volatility surface: Construction methodologies and characteristics[END_REF][START_REF] Laurini | Imposing no-arbitrage conditions in implied volatilities using constrained smoothing splines[END_REF]Wang, Yin, and Qi, 2004, etc.). Récemment, des techniques de réseaux de neuronnes ont été adoptées pour améliorer ces modèles habituels en enregistrant de meilleures performances de surface de prix sans arbitrage. Le travail de Dugas et al. (2009) est le point de départ de l'intégration de contraintes sans arbitrage dans les réseaux de neurones pour l'apprentissage des prix des options. [START_REF] Dugas | Incorporating functional knowledge in neural networks[END_REF] ont utilisé les contraintes dites hard à travers une architecture spéciale. Cette approche est différente de celle appelée approche par contraintes soft qui consiste à pénaliser certaines variables, dans la fonction objective, qui ne vérifient pas les contraintes (voir, par exemple, [START_REF] Itkin | Deep learning calibration of option pricing models: some pitfalls and solutions[END_REF]. La principale difficulté de l'approche de Dugas et al. (2009) s'appuie sur le fait, qu'en pratique, l'incorporation de contraintes hard dans les réseaux neuronaux réduit leur flexibilité et présente une transformation hautement non linéaire pour le calcul de prix des options à chaque itération. Selon [START_REF] Ackerer | Deep smoothing of the implied volatility surface[END_REF], les contraintes hard de Dugas sur les prix font perdre trop de précisions. Ainsi, pour la construction de la surface de volatilité locale, ces derniers ont proposé d'utiliser directement la surface de volatilité implicite au lieu de la surface de prix en appliquant l'approche soft. [START_REF] Chataigner | Deep Local Volatility[END_REF] ont proposé des architectures de réseaux de neurones simples pour les prix des options sans arbitrage et pour la volatilité implicite. Ils montrent que les contraintes hard réduisent la puissance du réseau et que les contraintes soft fournissent les meilleurs prix précis et les volatilités implicites. L'objectif de cette partie est d'adapter des techniques de krigeage contrainte développées dans Maatouk and Bay (2017) afin de quantifier l'incertitude associée à la construction de surfaces de volatilité (telles que la volatilité implicite et la surface de volatilité locale) dans un cadre qui respecte les conditions d'absence d'opportunités d'arbitrage. Nous utilisons les approches indirectes qui consistent à apprendre les prix par le krigeage et ensuite utiliser la formule d'inversion pour obtenir la surface de volatilité implicite et en déduire la surface de volatilité locale. Il n'est pas nécessaire d'étendre l'approche de Maatouk and Bay (2017) pour des contraintes d'inégalité plus générales, comme cela a été fait dans [START_REF] López-Lopera | Finite-dimensional Gaussian approximation with linear inequality constraints[END_REF], puisque nous nous limitons aux contraintes de convexité et de monotonie. L'idée est de supposer que la fonction prix est une réalisation d'un champ gaussien tronqué, vérifiant certaines contraintes. Comme pour les courbes de taux (voir Cousin, Maatouk, and Rullière, 2016), les contraintes de compatibilité avec les observations de marché (compatibilité aux prix des options européennes) se traduisent sous forme d'une relation linéaire sur le processus Gaussien. L'hypothèse d'absence d'arbitrages est équivalente à l'existence d'une mesure martingale : les réalisations du processus de krigeage doivent correspondre à des lois marginales de martingales. D'après le Th. 2.6 de [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], il s'agit alors de construire une famille de distributions marginales à partir d'un processus gaussien bivarié, indéxé par la maturité et le prix d'exercise, qui est :

• croissante par rapport à la direction des maturités,

• convexe par rapport à la direction des strikes,

• solution d'une relation linéaire sur certaines maturités et strikes.

Le krigeage (ou la regression par processus de Gauss) est une technique de géostatistique initialement introduite pour estimer la densité de minerais dans une zone pré-définie de l'espace, étant donné quelques observations issues d'expériences de forage à des points particuliers du sol. Le principe du krigeage repose sur la détermination de la distribution conditionnelle d'un champ aléatoire gaussien connaissant les valeurs de ce champ à certains points de l'espace, appelés points d'expérience (voir par exemple, [START_REF] Matheron | Principles of geostatistics[END_REF][START_REF] Cressie | The origins of kriging[END_REF][START_REF] Krige | Geostatistical case studies of the advantages of lognormal-de Wijsian Kriging with mean for a base metal mine and a gold mine[END_REF]. Le principal intérêt de cette approche est qu'elle permet d'estimer les valeurs de la variable de référence à d'autres points de l'espace en quantifiant l'incertitude associée à cette estimation. Par ailleurs, dans un contexte où les observations sont coûteuses à obtenir, le plan d'expérience (points du support où la variable d'intérêt est observée) peut être conçu de manière adaptative (voir [START_REF] Williams | Gaussian processes for machine learning[END_REF]. Cette technique a rapidement gagné en popularité suite aux travaux de Williams and Rasmussen (2006) et a été adaptée dans divers domaines tels que l'hydrologie, la météorologie ou l'épidémiologie, ect. Quelques travaux ont été récemment développés en sciences actuarielles.

Par exemple, [START_REF] Sousa | Machine learning Vasicek model calibration with Gaussian processes[END_REF] ont utilisé le krigeage pour estimer les paramètres du modèle d'apprentissage lors de l'étalonnage du modèle de taux d'intérêt Vasicek sous la mesure risque neutre. Ils ont considéré un prior gaussien sur les prix des obligations zéro-coupon et ont estimé les paramètres du modèle en maximisant la log de vraissemblance des données d'entraînement compte tenu des paramètres. [START_REF] Ludkovski | Kriging metamodels and experimental design for Bermudan option pricing[END_REF] pour améliorer la méthode des moindres carrés Monte-Carlo en valorisation d'option de type américain, a utilisé le krigeage pour améliorer l'étape de la régression qui consiste à faire rapprocher la valeur espérée de celle de continuation.

De [START_REF] Spiegeleer | Machine learning for quantitative finance: fast derivative pricing, hedging and fitting[END_REF] ont montré la rapidité du krigeage par rapport à la méthode de montecarlo pour l'approximation des prix d'options et de la volatilité implicite. Toutefois, ils n'ont pas tenu en compte les conditions d'arbitrage dans leur approche. En modélisation du portefeuille de produits, [START_REF] Dixon | Multivariate Gaussian Process Regression for Derivative Portfolio Modeling: Application to CVA[END_REF] ont considéré une technique de krigeage avec multi-réponses pour calculer la Credit Valuation Adjustment (CVA). Ils ont montré que le krigeage permet une approximation rapide de la valeur du portefeuille. [START_REF] Gonzalvez | Financial applications of Gaussian processes and Bayesian optimization[END_REF] ont exploré l'utilisation du krigeage en finance en montrant que ce dernier est un outil puissant pour ajuster la courbe de rendement des prix des actions. Cependant leur interpolation ne prend pas également en considération les conditions de non arbitrage du marché.
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Une première tentative d'utilisation du krigeage pour la volatilité locale est effectuée par [START_REF] Tegnér | A probabilistic approach to nonparametric local volatility[END_REF] qui placent un prior gaussien directement sur la surface de volatilité locale (pour garantir la positivité de la volatilité locale, ils attribuent une fonction positive sur le prior). Une telle approche conduit à une fonction de perte des moindres carrés non linéaires, car elle implique la transformation non linéaire de la volatilité locale en prix d'option vanille correspondants. Une telle fonction de perte n'est pas notoirement favorable à la descente de gradient (stochastique ou non), de sorte que les auteurs recourent à une optimisation MCMC. De plus, la performance de leur GPs est mesuré par RMSE en échantillon et ne semble pas être évalué pour le surapprentissage. En outre, ils ne comparent pas leur approche à d'autres approches alternatives. En fait, ajouter une telle contrainte de positivité ainsi que d'autres contraintes d'inégalité linéaire (telles que la monotonie, la convexité, les bornes) dans le krigeage n'est pas une tâche facile et constitue un grand défi. À cette fin, certains auteurs se sont récemment penchés sur cette question, connue sous le nom de krigeage contraint ou de régression par processus gaussien (GPs) contraints. Les cadres présentés dans Da [START_REF] Veiga | Gaussian process modeling with inequality constraints[END_REF], [START_REF] Golchi | Monotone emulation of computer experiments[END_REF], [START_REF] Riihimäki | Gaussian processes with monotonicity information[END_REF], and [START_REF] Wang | Estimating shape constrained functions using Gaussian processes[END_REF], entre autres, utilisent une subdivision de l'espace d'entrée. Cependant, ils se basent sur le fait que les contraintes ne sont satisfaites que sur des observations virtuelles et ne garantissent pas les contraintes dans l'ensemble du domaine. Par exemple, pour intégrer la contrainte de monotonie croissante dans le krigeage, [START_REF] Wang | Estimating shape constrained functions using Gaussian processes[END_REF] ont proposé de sélectionner les localisations avec de fortes probabilités d'avoir des dérivées négatives comme les localisations virtuelles dans lesquelles ils forcent les contraintes. L'approche d [START_REF] Agrell | Gaussian processes with linear operator inequality constraints[END_REF] est une extension de celle de [START_REF] Wang | Estimating shape constrained functions using Gaussian processes[END_REF] pour des contraintes multiples grâce à une méthode efficace de simulation du processus à postériori basé sur la dérivation de processus gaussien contraint à l'aide d'un opérateur linéaire.

Lorsque des contraintes d'inégalité sont ajoutées sur les quantités d'intérêt, le processus à postériori n'est plus gaussien et les contraintes sont habituellement infini-dimensionnelles. C'est ce qui a motivé [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF] à utiliser l'approximation fini-dimensionnelle des processus gaussiens pour lesquels les contraintes d'inégalité sont faciles à vérifier. Ils ont développé un schéma appelé rejection autour du mode (RSM) pour la simulation de la distribution gaussienne multivariée tronquée nécessaire à l'estimation du processus a postériori. Leur approche garantit les contraintes dans le domaine entier. [START_REF] Cousin | Kriging of financial term-structures[END_REF] utilisent les techniques de krigeage contraint mises au point dans [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF] pour construire des courbes de taux et des courbes CDS en respectant les conditions de non arbitrage et de contrôler des erreurs. [START_REF] López-Lopera | Finite-dimensional Gaussian approximation with linear inequality constraints[END_REF] ont étendu le cadre de [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF] pour des contraintes d'inégalité plus générales et ont proposé d'utiliser la méthode de Monte Carlo Hamiltonienne (HMC) de [START_REF] Pakman | Exact hamiltonian monte carlo for truncated multivariate gaussians[END_REF] qui est plus efficace que le rejet autour du mode de [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF] pour la simulation du processus a posteriori. Contrairement à l'interpolation par splines, et aux approches SSVI et réseau de neurones, le krigeage est une technique de regression permettant de quantifier l'incertitude dans l'estimation des variables d'intérêt. Il est possible par exemple d'obtenir des intervalles de confiance aux points de la surface où les observations sont indisponibles ou considérées comme peu fiables.

La principale contribution de cette partie de la thèse est de montrer que le krigeage est un outil approprié pour construire des prix d'option et pour quantifier l'incertitude dans l'estimation de la volatilité locale et implicite.

Structure des chapitres de la partie 2

Cette deuxième partie de la thèse est structurée en trois chapitres.

Le chapitre 5 est un chapitre introductif dans lequel on présente des outils du krigeage qui vont être utilisés dans les chapitres 6 et 7. Une attention particulière sera portée sur la simulation des coefficients gaussiens lorsque les contraintes de monotonie sont saturées et nous proposons une solution numérique à ce problème.

Le chapitre 6 porte sur la construction de la surface de volatilité implicite à l'aide du krigeage. Nous adoptons le krigeage contraint développé dans [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF] pour construire des prix sans arbitrage. Nous comparons les performances du krigeage classique et celles du krigeage contraint dans ce contexte à l'aide d'une étude empirique utilisant les données Euro Stoxx 50 du 10 janvier 2019. L'approche par krigeage contraint fournit les meilleures performances que celle par krigeage classique. Par contre, Les mesures de précision des estimateurs des MAP montrent qu'à un certain pourcentage des données utilisées, le MAP estimé à partir du krigeage classique fonctionne aussi bien que celui estimé à partir du krigeage contraint.

Le chapitre 7 est consacré à la construction de la surface de volatilité locale en utilisant le krigeage. Tout d'abord, nous étendons la construction de surface de prix d'option sans arbitrage dans le cas des dividendes et des taux d'intérêt. Avec une telle surface de prix, nous modélisons la surface de volatilité locale en utilisant l'équation aux dérivées partielles de Dupire. La quantification de l'incertitude fournit des intervalles de confiance dans les modèles de volatilité locale. Nous comparons les performances de notre modèle à celles des approches SSVI et réseaux de neurones. Nous utilisons un réseaux de neurones avec des contraintes dites "soft" sur la formule de variance implicite pour dériver la surface de volatilité locale à partir des volatilités implicites de Black-Scholes (voir la flèche bleue de la Fig. 7.1). L'ajustement du réseau de neurones est fait sur les donnés mid tandis que celui du krigeage s'est fait sur une réplication des données bid et ask. Cette propriété du krigeage permet d'obtenir une surface de prix qui respecte les contraintes des écarts de bid-ask. Autrement dit, la surface de prix obtenu se trouve entièrement entre les prix de bid et les prix ask. Le krigeage offre de meilleures performances pour le pricing des oprions et est la seule approche qui permet de quantifier l'incertitude, ce qui est utile pour l'analyse des risques. 
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This thesis treats two different parts which contribute in the modelisation and uncertainty quantification of financial risk. The first part deals with default time modeling in credit risks while the second one focuses on volatility surfaces construction using kriging.

Part 1: Models of default times

This part addresses issues related to default time modeling in credit risk. The two fundamental approaches for default models are the structural approach and the reduced form approach. The main difference between these two approaches is the choice of the filtration. In the structural approach (see [START_REF] Merton | On the pricing of corporate debt: The risk structure of interest rates[END_REF], the information is modeled by a filtration F in which the default time τ is a stopping time which can be predictable or totally inaccessible (in this case, one has to compute its compensator). Whereas, in the reduced form approach (see [START_REF] Duffie | Recursive valuation of defaultable securities and the timing of resolution of uncertainty[END_REF][START_REF] Lando | Three essays on contingent claims pricing[END_REF], one starts with a reference filtration F in which the default time τ is not a stopping time and one enlarges progressively F with τ to obtain G. The enlargement of filtration theory has been in operation since the 70's following the works of [START_REF] Itô | Extension of stochastic integrals[END_REF], [START_REF] Barlow | Study of a filtration expanded to include an honest time[END_REF], [START_REF] Jacod | Grossissement initial, hypothèse H et théorème de Girsanov[END_REF], [START_REF] Jeulin | Grossissement d'une filtration et semi-martingales: formules explicites[END_REF] and [START_REF] Yor | Grossissement d'une filtration et semi-martingales: théorèmes généraux[END_REF], it can be applied in several areas, particularly in finance and insurance.

Usually, the construction of τ is such that τ avoids the F-stopping times. However, recently some authors were interested in the case where this hypothesis is violated (see, e.g., [START_REF] Jiao | Generalized density approach in progressive enlargement of filtrations[END_REF]Jiao and Li, 2018). This fact can be considered, for instance, from the perspective of the need of modeling some defaultable claims under presence of economic shocks, in which the default time could coincide with one of the economic shocks times, which are stopping times.

In [START_REF] Gehmlich | Dynamic defaultable term structure modeling beyond the intensity paradigm[END_REF], as well as in [START_REF] Fontana | General dynamic term structures under default risk[END_REF], the authors do not make use of enlargement of filtration and consider a model where the G-stopping time τ does not avoid G-predictable stopping times. In their work, they assume the existence of the compensator of the default time, which is decomposed into an sum of absolutely continuous part and a (predictable) pure-jump part, but they did not construct of the associated stopping time. Jiao and Li (2018) developed a model under which the default time could coincide with some predictable shock times. They are interested in the compensator of the default time, by using the generalized density approach, they show that the intensity rate process does not exist in their setting. Moreover, their model allows one to capture the jumps in the prices of zero-coupon bonds as well as in the corresponding spreads.

One of the objectives of this work is to extend the model of Jiao and Li in the case where the shock times are not predictable. Despite its attractiveness in modeling defaultable claims under some predictable shocks, the model of Jiao and Li is difficult to implement if the shocks are not predictable and does not always allow to capture the jumps of the zero-coupon bond prices. Our extention allows one to model such claims.

To model defaultable claims under some economic shocks which are not predictable, we propose a generalized Cox model which extend the one of Lando (1998) in which the default time is the first time when an increasing process adapted to a given filtration, absolutely continuous with respect to Lebesgue's measure hits a certain level, which is a random variable independent of the given filtration. It follows that this random time avoids all stopping times in the reference filtration. We relax the assumption that the increasing process that hits the threshold level is absolutely continuous. Here we are working in a more general case, this process being adapted, increasing and continuous on right with limits on left or continuous on left with limits on right. This leads us to a random time which does not avoid F-stopping times. In both cases, we are interested in the characteristics of the default time such as the conditional survival martingale, the Azéma supermartingale and the compensator of the default time, as well as its predictable reduction process (presented in Section 1.2) and the multiplicative decomposition of the Azéma supermartingale. We also study the existence of conditional densities in the sense of [START_REF] Jacod | Grossissement initial, hypothèse H et théorème de Girsanov[END_REF], in the sense of [START_REF] Jiao | Generalized density approach in progressive enlargement of filtrations[END_REF] and the extended Jacod's hypothesis introduced in [START_REF] Li | Progressive enlargements of filtrations with pseudo-honest times[END_REF].

A first attempt to such a generalisation can be found in [START_REF] Bélanger | A general framework for pricing credit risk[END_REF] where the increasing process is predictable and right continuous.

Unlike the model of Jiao and Li, under the generalized Cox model, the intensity rate process may exist.

Organization of chapters

In Chapter 1, we begin by introducing well known facts about stochastic calculus and models of default times that we will used throughout this part of the thesis. We then illustrate an Gaussian example of conditional density. We define all the characteristics of the default time. In particular, we appoint the definition of what we call predictable reduction of the compensator of the default time, which is sometimes called F-compensator, where F is the reference filtration. We show that the Gaussian conditional density example is unique in a wide class.

In Chapter 2, we generalize the model of Jiao and Li (2018), which is developed in the context where the default time can coincide with some predictable stopping times, the latter are some predictable exogenous shock times where the shocks are modeled by an inhomogeneous Poisson process N . Our generalisation consists in relaxing the assumption that the shock times are predictable and in replacing the Poisson process by a more general process X. We investigate the characteristics of the default time. We show that, in the particular case where the shock times are the jump times of a Poisson process N which generates the filtration F, the predictable reduction of the compensator is continuous and the intensity rate process exists. Chapter 3 focuses on the generalized Cox model. We first present the classical Cox model of Lando (1998) where the default time is the first time when an increasing process K adapted to a given filtration and absolutely continuous with respect to Lebesgue's measure hits a level, which is a random variable independent of the given filtration. We then introduce the general case where the increasing process K is right continuous with left limits (càdlàg). We investigate the characteristics of the default time and we give many examples of our construction. A special attention will be paid to the shot-noise processes. We show that the model of Jiao and Li is a special one of the generalized Cox model. We end this chapter by introducing the case where the increasing process K is left continuous with right (càglàd) with a slight modification of the definition of the default time. We conclude that this model can be reduced to the case where K is right continuous.
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In Chapter 4, we investigate some applications of the generalized Cox model in credit risk. We give closed form expression for the prices of some claims and their dynamics through a general framework. We will also be interested in the impacts of the jumps of K on the pre-default prices of defaultable bonds.

Part 2: Kriging for volatility surfaces construction Volatility surfaces are important building blocks of risk management systems designed for pricing and hedging of financial derivatives or optional guarantees under market-consistent asset models. For a given underlying asset, the option value depends on the characteristics of the contract, i.e., the date of maturity and the strike price for equity options. However, the market value of such options is typically available (or reliable) for a limited number of standard characteristics (maturity, strike price) whereas one may require the whole price surface or the price for some unobserved characteristics for some applications. In addition, the construction of these surfaces is usually made in accordance with the principle of no arbitrage opportunity, i.e, the constructed options prices must be exempted financial arbitrage. Constructing no-arbitrage price surface can be cast into a functional learning problem with shape constraints and possibly noisy observations. Once the price surface is interpolated, we can use the inversion formula of Black and Scholes for obtaining the implied volatility surface. For getting the local volatility surface, we can use a finite difference approximation of Dupire's formula (see [START_REF] Dupire | Pricing with a smile[END_REF]. Besides it is possible to construct the local volatility surface using the implied volatilities rather than prices. This consists in extracting the local volatility surface from the implied volatility one using the formula (1.10) of [START_REF] Gatheral | A parsimonious arbitrage-free implied volatility parameterization with application to the valuation of volatility derivatives[END_REF]. These approaches that use the observed prices (or implied volatility for constructing local volatility) in the volatility surfaces construction are known as indirect. Beyond these direct approches, there exist some ones which parametrize directly the unobserved volatility through a function in which its parameters can be estimated by minimizing a suitable objective function obtained for calibrating that function to market data. These include among others the stochastic volatility inspired (SVI) which parametrize the implied volatility smile and its extension (SSVI) for the implied volatility surface (see [START_REF] Gatheral | Arbitrage-free SVI volatility surfaces[END_REF][START_REF] Gatheral | A parsimonious arbitrage-free implied volatility parameterization with application to the valuation of volatility derivatives[END_REF].

The most known techniques in the context of volatility surface construction using indirect approaches have been based on constrained splines, see for example, [START_REF] Fengler | Arbitrage-free smoothing of the implied volatility surface[END_REF], [START_REF] Homescu | Implied volatility surface: Construction methodologies and characteristics[END_REF][START_REF] Laurini | Imposing no-arbitrage conditions in implied volatilities using constrained smoothing splines[END_REF][START_REF] Wang | No-arbitrage interpolation of the option price function and its reformulation[END_REF] and so forth. Some techniques in deep learning have recently been developed in order to fill the gap in the usual models by recording better performances of learning arbitrage-free price surface. The work of [START_REF] Dugas | Incorporating functional knowledge in neural networks[END_REF] is the starting point for incorporating no-arbitrage constraints in neural networks (NN) for learning option prices. [START_REF] Dugas | Incorporating functional knowledge in neural networks[END_REF] used the so-called hard constraints approach through a special neural network architecture. This approach is different to the one called soft constraints approach which consists in penalizing some variables, in the objective function, that do not verify the constraints (see, e.g., [START_REF] Itkin | Deep learning calibration of option pricing models: some pitfalls and solutions[END_REF]. The main difficulty of the approach of [START_REF] Dugas | Incorporating functional knowledge in neural networks[END_REF] relies on the fact that incorporating inequality constraints in the neural networks reduces its flexibility in practice and presents highly non linear transformation for option pricing computation at each iteration as shown in [START_REF] Ackerer | Deep smoothing of the implied volatility surface[END_REF]. For constructing the local volatility surface, [START_REF] Ackerer | Deep smoothing of the implied volatility surface[END_REF] proposed to directly learn the implied volatility surface instead of prices surfaces by using the soft constraint approach. [START_REF] Chataigner | Deep Local Volatility[END_REF] proposed simple neural network architectures for both arbitrage-free option prices and implied volatility. They show that hard constraints reduce the power of the network and that soft constraints provide best accurate prices and implied volatilities. The main limit of these approaches lies on the fact that they do not allow to quantify uncertainty in the estimation of the variables of interest.

The aim of this part is to adopt the constrained kriging techniques developed in Maatouk and Bay (2017) for imposing hard constraints and quantifying the associated uncertainty in the context of volatility surfaces construction such as implied volatility and local volatility surfaces. We use the indirect approaches that consist in learning prices through kriging and then use the inversion formula in term of implied volatility surface and calibrate Dupire's formula in term of local volatility. There is no need to extend the approach of Maatouk and Bay (2017) for more general inequality constraints as it is done in [START_REF] López-Lopera | Finite-dimensional Gaussian approximation with linear inequality constraints[END_REF], since we limit ourselves to the convexity and monotonicity constraints. The idea is to assume that the distribution of the underlying process is a realization of a truncated Gaussian process, verifying a number of constraints. As for the rate curves (see [START_REF] Cousin | Kriging of financial term-structures[END_REF]), the compatibility constraints with the observations (price compatibility of European options) is translated into a linear relationship on the kriging process. The arbitrage-free hypothesis on option prices is equivalent to the existence of a martingale measure: the achievements of the kriging process must correspond to marginal distributions of martingales. According to Theorem 2.6 of [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], it is then necessary to build a family of marginal distributions from a bivariate Gaussian process which is conditionally:

• increasing with respect to the direction of maturities • convex with respect to the strike prices • solution of a linear relationship on certain maturities and the strike prices.

Therefore, the first two constraints correspond to the inequality constraints that must be taken into account by the kriging model. The third constraint makes the kriging model compatible with the observed European options with different maturities and exercise prices.

Kriging, known as Gaussian process (GPs) regression, is a spatial interpolation approach and its techniques have been developed in geostatistics for estimating the distribution of mineral resource in the ground given the relatively small set of boreholes (see, e.g., [START_REF] Matheron | Principles of geostatistics[END_REF][START_REF] Cressie | The origins of kriging[END_REF][START_REF] Krige | Geostatistical case studies of the advantages of lognormal-de Wijsian Kriging with mean for a base metal mine and a gold mine[END_REF]. It gains popularity with the works of [START_REF] Williams | Gaussian processes for machine learning[END_REF] and has been adapted into various areas such as hydrology, meteorology, epidemiology and among others. Recent works in kriging have been developed in quantitative finance. For instance, [START_REF] Sousa | Machine learning Vasicek model calibration with Gaussian processes[END_REF] used kriging for learning model parameters when calibrating the Vasicek interest rate model under the risk neutral measure. They made a Gaussian prior on the zero coupon bond log prices and learnt model parameters by maximizing the log likelihood of the training data given the parameters. [START_REF] Ludkovski | Kriging metamodels and experimental design for Bermudan option pricing[END_REF] improves the Monte Carlo Least square method for the valuation of Bermuda option by using kriging for the regression step which consists in approximating the expected value from continuation. De [START_REF] Spiegeleer | Machine learning for quantitative finance: fast derivative pricing, hedging and fitting[END_REF] show the speed up of kriging comparing to monte carlo method for pricing options and approximating implied volatility. However they do not take into account the arbitrage-free conditions in their approximation. In derivative portfolio modeling, Dixon and Crépey (2018) used a multi-response kriging in portfolio valuation through computation of credit valuation adjustment (CVA). They show that kriging provides fast approximation of portfolio value. [START_REF] Gonzalvez | Financial applications of Gaussian processes and Bayesian optimization[END_REF] explore the use of kriging in finance and show that this latter is a powerful tool for fitting the yield curve. However their interpolation does not take in consideration the arbitrage-free conditions too.

A first attempt at using kriging for local volatililty is done by [START_REF] Tegnér | A probabilistic approach to nonparametric local volatility[END_REF] who place a Gaussian prior directly on the local volatility surface (to guarantee the positivity of the local volatility, they assign a positive function on the prior). Such an approach leads to a nonlinear least squares training loss function, as it involves the nonlinear transformation of the local volatility into the corresponding vanilla option prices. Such a loss function is not obviously amenable to gradient descent (stochastic or not), so the authors resort to a MCMC optimization. Moreover, the performance of their GPs is measured by in-sample RMSE and does not seem to be assessed for overfitting. Furthermore, they do not benchmark their approach Introduction in english against alternatives. Actually, adding that positivity constraint and several others (such as monotonicity, convexity, boundedness) in kriging is not an easy task and constitutes a big challenge. Several approaches exist. The frameworks presented in Da [START_REF] Veiga | Gaussian process modeling with inequality constraints[END_REF], [START_REF] Golchi | Monotone emulation of computer experiments[END_REF], [START_REF] Riihimäki | Gaussian processes with monotonicity information[END_REF], and [START_REF] Wang | Estimating shape constrained functions using Gaussian processes[END_REF], among many others, are based on the fact that the constraints are only satisfied on a virtual observation locations and does not guarantee the constraints in the entire domain. For instance, for incorporating increasing monotonicity constraint in kriging, [START_REF] Wang | Estimating shape constrained functions using Gaussian processes[END_REF] proposed to select the locations with large probabilities of having negative derivatives as the virtual locations set in which they enforce the constraints. The approach of [START_REF] Agrell | Gaussian processes with linear operator inequality constraints[END_REF] extended that of [START_REF] Wang | Estimating shape constrained functions using Gaussian processes[END_REF] for multiple constraints through an efficient method for sampling the posterior process based on the derivation of the posterior of the constrained Gaussian process using a linear operator.

Adding some inequality constraints in the quantities of interest leads to the fact that the posterior process is no more Gaussian and these constraints are usually infinite-dimensional. This motivated [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF] to use the finite dimensional approximation of Gaussian processes for which the the inequality constraints are easy to check. They developed a sampling scheme called Rejection Sampling from the Mode (RSM) for sampling from truncated multivariate Gaussian distribution which is needed for estimating the posterior process. Their approach guarantees the constraints in the whole domain. [START_REF] Cousin | Kriging of financial term-structures[END_REF] show the extensions of classical spline interpolation by constrained kriging techniques developed in [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF] to ensure non-arbitrable and error-controlled yield-curve and CDS curve interpolation. [START_REF] López-Lopera | Finite-dimensional Gaussian approximation with linear inequality constraints[END_REF] extended the framework of [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF] for more general inequality constraints and proposed to use the Hamiltonian Monte Carlo (HMC) of [START_REF] Pakman | Exact hamiltonian monte carlo for truncated multivariate gaussians[END_REF] which is more efficient than the RSM of [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF] for sampling from truncated multivariate Gaussian distribution.

Unlike spline interpolation and NN approaches, kriging makes it possible to quantify the uncertainty in the estimation of the variables of interest. It is possible for example, to obtain confidence intervals at the points of the surface where the observations are unavailable or considered unsuitable.

The main contributions of the part is to show that kriging is a suitable tool for constructing option prices and quantifying uncertainty in the presence of noisy observation, and for computing the associated local and implied volatility.

Organization of chapters

The outline of the part is organized as follows.

In Chapter 5, we present some techniques in classical and constrained kriging that we use in the following chapters. A particular attention will be paid in the sampling of Gaussian random coefficients when some monotonicity constraints are saturated and we will propose a solution of this problem.

Chapter 6 focuses on the construction of implied volatility surface using kriging. We adopt the constrained kriging developed in [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF] for constructing no-arbitrage prices. We compare the performances of the classical and constrained kriging in this context through an empirical study using the Euro Stoxx 50 data of January 10, 2019. Constrained kriging provides, over the whole interpolation criteria, better performances than claissical kriging. Moreover, due to the shape constraints, the constrained kriging approach behave better in extrapolation than an classical kriging approach. However, when the percentage of the used data is too large the estimated MAP from classical kriging performs as well as the one estimated from the constrained kriging in interpolation. This is shown by studying the accuracy of the Maximum A Posterior (MAP) estimators using the RMSE measure.

Chapter 7 is devoted to the construction of local volatility surface using kriging. It makes several contributions to the literature. First, we extend the free-arbitrage option price surface construction in the case with dividends and interest rate. With such free-arbitrage extended price surface, we model the local volatility surface by using Dupire's partial differential equation. Uncertainty quantification provides confidence bounds in the local volatility models. We benchmark the performance of our model against the SSVI and the NN approaches. We use a soft-constrained NN local volatility implied variance formula to derive a local volatility surface from Black-Scholes implied volatilities (see blue arrow in Fig. 7.1). The fitting of the NN is done with mid-quotes while the one of the kriging is done with a replication of the bid and ask quotes. This is a nice property of Kriging which allows to obtain a price surface that respects the bid-ask spread constraints. In other terms, the obtained surface lies between the bid and the ask prices. Kriging provides better performances for pricing and is the only approach that gives uncertainty quantification, which is useful for risk analysis. 

Preliminaries

In this chapter, we recall some definitions and standard results which will be useful in the following chapters.

Stochastic processes

Let (Ω, G, H, P) be a filtered probability space with H a generic filtration which verifies the usual conditions (i.e., completed and right-continuous). For any process with limits on right and limits on left (làdlàg) Y , we denote its left jump by ∆Y and its right jump by ∆ + Y which are respectively given at time t by

∆Y t = Y t -Y t-and ∆ + Y t = Y t+ -Y t ,
where Y t-and Y t+ are its left and right limits at t. If Y is continuous on right with limit on left (càdlàg), one has ∆ + Y t = 0 for any t ≥ 0, if Y is continuous on left with limits on right (càglàd) ∆Y t = 0 for any t ≥ 0, and if Y is continuous ∆Y t = ∆ + Y t = 0, for any t ≥ 0. For any càdlàg increasing (or decreasing)1 process Y , we denote by Y c2 its continuous part, i.e., Y c t = Y t -s≤t ∆Y s . The Lebesgue-Stieltjes integral of a bounded process V with respect to a càdlàg increasing process X is, for

s < t, denoted t s V u dX u := ]s,t] V u dX u . Note that ]0,t] dX u = X t -X 0 and, with the convention X 0-= 0, that [0,t] dX u = X t -X 0 + ∆X 0 = X t .
In what follows, we recall the notion of semimartingale. More details about this notion can be found, e.g., in Aksamit and Jeanblanc, 2017, subsection 1.2;He, Wang, and Yan, 2018, Chapter 8.

Definition 1 An H-semimartingale is an H-adapted càdlàg process X with the following decomposition:

X = X 0 + N + V
where N is an H-local martingale with N 0 = 0 and V an H-adapted càdlàg process with finite variation and V 0 = 0. If, in addition, V is H-predictable, this decomposition is unique and in that case X is called a special semimartingale. If X is a continuous H-semimartingale, then X is a special semimartingale, with N and V being continuous. A càdlàg H-supermartingale (resp. H-submartingale) is a special semimartingale.

Definition 2 For any bounded H-predictable process H and any càdlàg H-special semimartingale X with decomposition X = X 0 + N + V , we denote by (H X) the stochastic integral of H w.r.t. X which is the H-special semimartingale given by (see He, Wang, and Yan, 2018, Definition 9.13)

(H X) t := H 0 X 0 + t 0 H s dX s = H 0 X 0 + t 0 H s dN s + t 0 H s dV s , ∀t ≥ 0.
Definition 3 Let X c and Y c be the continuous martingale parts of two H-semimartingales X and Y . The quadratic covariation process of X and Y is the H-adapted process with finite variation denoted by [X, Y ] such that (see He, Wang, and Yan, 2018, Definition 8

.2) [X, Y ] t := X 0 Y 0 + X c , Y c t + 0<s≤t ∆X s ∆Y s , ∀ t ≥ 0
where X c , Y c is the unique H-predictable process with finite variation such that X c Y c -X c , Y c is an

H-local martingale.
The following result is known as Yoeurp's lemma. We recall it as given in Aksamit and Jeanblanc, 2017, Proposition 1.16.

Lemma 4 ( Yoeurp's lemma). The quadratic covariation [X, V ] of a càdlàg H-semimartingale X and a finite variation H-adapted càdlàg process V verifies

[X, V ] t = X 0 V 0 + (∆X V ) t = X 0 V 0 + t 0 ∆X s dV s , ∀ t ≥ 0
and the integration by parts formula can be written as

X t V t = X 0 V 0 + t 0 X s dV s + t 0 V s-dX s , ∀ t ≥ 0. If in addition V is H-predictable, then [X, V ] t = X 0 V 0 + (∆V X) t and X t V t = X 0 V 0 + t 0 X s-dV s + t 0 V s dX s , ∀ t ≥ 0.
Definition 5 (see He, Wang, and Yan, 2018, Definition 3.15) We denote by O(H) (resp. P(H)) the H-optional (resp. H-predictable) σ-algebra on R + × Ω and by B(R + ) the Borelien sets of R + . Let V be a locally integrable variation process càdlàg with V 0 = 0. There exists a unique H-optional locally integrable variation process V o,H , called the H-dual optional projection of V , such that V o,H 0 = 0 and

E [0,∞[ X s dV s = E [0,∞[ X s dV o,H s for any bounded H-optional process X such that E [0,∞[ |X s |d|V | s < ∞.
There exists a unique H-predictable locally integrable variation process V p,H , called the H-dual predictable projection of V , such that V p,H 0 = 0 and

E [0,∞[ X s dV s = E [0,∞[ X s dV p,H s for any bounded H-predictable process X such that E [0,∞[ |X s |d|V | s < ∞. If V is H-adapted, then V -V p,H
is an H-martingale and V p,H is called the H-compensator of V .

Let us note that these projections depend on the filtration that one refers to.

We recall that any càdlàg H-supermartingale (resp. submartingale) X admits a unique Doob-Meyer decomposition, i.e., X = M X -A X (resp. X = M X + A X ) where M X is an H-martingale and A X an increasing H-predictable process with A X 0 = 0. We recall also that any strictly positive bounded càdlàg H-supermartingale Y admits a multiplicative decomposition of the form Y = N e -H , where N is an H-local martingale and H an increasing H-predictable process (see, e.g., Aksamit and Jeanblanc, 2017, Proposition 1.32).

Chapter 1. Preliminaries Definition 6 A filtration F is said to be immersed in a filtration H, with F ⊂ H if any F-martingale is an H-martingale (see Jeanblanc, Yor, and Chesney, 2009, p.316;[START_REF] Botev | The normal law under linear restrictions: simulation and estimation via minimax tilting Series B Statistical methodology[END_REF]). In the literature (see [START_REF] Botev | The normal law under linear restrictions: simulation and estimation via minimax tilting Series B Statistical methodology[END_REF], it is said that the H-hypothesis holds between F and H.

Note that the immersion property depends on the choice of the probability measure.

A trivial (and useful) example of immersion between two filtrations H and F is when H = F ∨ F where F is independent of F under P.

Lemma 7 Let H (1) , H (2) and H (3) be three filtrations. If H (1) ⊂ H (3) and Y is an H (3) -martingale which is

H (1)
-adapted, then Y is an H (1) -martingale. In particular, if H (1) is immersed in H (3) and H (1) ⊂ H (2) ⊂ H (3) , then H (1) is immersed in H (2) .

Proof: Let Y be an H (1) -adapted H (3) -martingale. For any 0 ≤ s ≤ t, one has by using the tower property

E[Y t |H (1) s ] = E[E[Y t |H (3) s ]|H (1) s ] = E[Y s |H (1) s ] = Y s
where we have used, in the second equality, the martingale property of Y with respect to H (3) and, in the last equality, the fact that Y is H (1) -adapted.

Lemma 8 Let F = (F t ) t≥0 , H 1 = (H 1 t ) t≥0 and H 2 = (H 2 t ) t≥0 be three filtrations such that H 1 is independent of H 2 and F t = H 1 t ∨ H 2 t , ∀t ≥ 0.
Then, for T ≥ t, H 1 T and H 2 T are conditionally independent with respect to F t .

Proof: Let X, Y be bounded random variables with X ∈ H 1 T and Y ∈ H 2 T . Then, from tower property

E[XY |F t ] = E[E[XY |H 2 T ∨ H 1 t ]|F t ] = E[Y E[X|H 2 T ∨ H 1 t ]|F t ]
where the second equality follows from the fact that

Y ∈ H 2 T ⊂ H 2 T ∨ H 1 t . Since H 1 is independent of H 2 , X ∈ H 1 T is independent of H 2 T and E[X|H 1 t ∨ H 2 T ] = E[X|H 1 t ]. Hence, E[XY |F t ] = E[Y E[X|H 1 t ]|F t ] = E[X|H 1 t ] E[Y |F t ] = E[X|F t ]E[Y |F t ].
The second equality is due to the fact that E[X|H 1 t ] is F t -measurable and the last one comes from the independence of H 1 and H 2 which allows to write, for

X ∈ H 1 T , E[X|H 1 t ] = E[X|H 1 t ∨ H 2 t ] = E[X|F t ].
We recall that the graph of a finite random time τ (i.e., a non-negative random variable) is the subset

[[τ ]] of Ω × R + defined as [[τ ]] = {(ω, t) : τ (ω) = t} .
Definition 9 A random time τ avoids all H-stopping times if P(τ = ζ < ∞) = 0, for any H-stopping time ξ.

Definition 10 (see [START_REF] He | Semimartingale theory and stochastic calculus[END_REF], Section 3, Chapter 3) An H-stopping time ϑ is said to be H-predictable if there exists an increasing sequence of H-stopping times

(ϑ i ) i≥1 converging to ϑ such that ϑ i < ϑ on the set {ϑ i > 0}, for all i. If ϑ is H-predictable, (1 {ϑ≤t} , t ≥ 0)
is a predictable process.

Default time

An H-stopping ϑ is said to be accessible if

[[ϑ]] ⊂ ∪ i [[ϑ i ]]
where (ϑ i ) i≥1 are H-predictable stopping times. An H-stopping time ϑ is said to be totally inaccessible if it avoids all H-predictable stopping times (i.e., P(ϑ = ξ < ∞) = 0 for any H-predictable stopping time ξ).

Default time

We consider a probability space (Ω, G, P) and τ a random time that we assume to be finite (except for some specific examples), defined on (Ω, G). We introduce the right-continuous increasing default process A t = 1 {τ ≤t} associated with τ and we denote by A = (A t ) t≥0 the filtration (completed and right-continuous) generated by this default process. We recall that, for any process X, one has

t u X s dA s = ]u,t] X s dA s = X τ 1 {u<τ ≤t} .
For a given filtration H on Ω, we introduce the H-dual predictable projection of the default process A, i.e., A p,H . By abuse of language, we shall sometimes say that A p,H is the H-dual predictable projection of τ .

If τ is an H-stopping time, the compensator of τ is by definition the unique H-predictable increasing process Jeanblanc, Yor, and Chesney, 2009, p.265). Note that J H t = J H t∧τ . This compensator J H of τ is nothing else than A p,H . This property extends as follows:

J H such that J H 0 = 0 and A t -J H t is an H-martingale (see
Lemma 11 For any H-predictable bounded process H, the process

H τ 1 {τ ≤t} - t∧τ 0 H s dA p,H s is an H-martingale.
Proof: This result follows from the fact that

H τ 1 {τ ≤t} = t 0 H s dA s = (H A) t ,
and, for H being H-predictable, the H-dual predictable projection of H A is H A p,H (see He, Wang, and Yan, 2018, p. 148, Theorem 5.23).

We now work on a filtered probability space (Ω, G, F, P) on which a random time τ is defined. We call F the reference filtration. We consider the links between the default time and the reference filtration. We denote by Z the Azéma supermartingale (see [START_REF] Azéma | Quelques applications de la théorie générale des processus. I[END_REF]Jeanblanc, Yor, and Chesney, 2009, Subsection 5.9.4;[START_REF] Nikeghbali | An essay on the general theory of stochastic processes[END_REF] associated with τ , which satisfies Z t := P(τ > t|F t ). Note that Z t > 0 on {τ > t} and Z t-> 0 on {τ ≥ t} (see Aksamit and Jeanblanc, 2017, Lemma 2.14). Then, A p,F , the F-dual predictable projection of A, is also the predictable part in the Doob-Meyer decomposition of

Z t := m t -A p,F t
where m is an F-martingale (see Aksamit and Jeanblanc, 2017, subsection 2.2, page 33). We introduce the so-called second Azéma's supermartingale Z associated to τ , which satisfies Zt := P(τ Aksamit and Jeanblanc, 2017, Proposition 1.46). Note that the Azéma supermartingale Z is right-continuous with left limits while the supermartingale Z is a process with right and left limits. [START_REF] Jeulin | Grossissement d'une filtration et semi-martingales: formules explicites[END_REF][START_REF] Yor | Grossissement d'une filtration et semi-martingales: théorèmes généraux[END_REF]. The filtration G is the smallest filtration satisfying the usual hypotheses containing F and turning out τ into a stopping time.

≥ t|F t ) = Z t -∆A o,F t (see
Definition 12 Let G = (G t ) t≥0 be the progressive enlargement of F with τ , i.e., G = F ∨ A, which means that G t = ∩ >0 G 0 t+ , with G 0 s = F s ∨ A s for every s ≥ 0 (see, e.g.,

Definition 13

The F-predictable reduction of the compensator of τ The process Λ given by

Λ t = t 0 1 {Zs->0} dA p,F s Z s- (1.2.1)
Chapter 1. Preliminaries is F-predictable and increasing, and, denoting by Λ τ the process Λ stopped at time τ , Aksamit and Jeanblanc, 2017, Proposition 2.15). The process Λ τ is the G-compensator of the default process A (we shall also say compensator of τ ) and we call Λ the F-predictable reduction of the G-compensator of τ .

A t -Λ t∧τ = A t -Λ τ t = A t - t∧τ 0 dA p,F s Z s- is a G-martingale (see
If Λ is absolutely continuous with respect to the Lebesgue measure, i.e., Λ t = t 0 λ s ds, then its derivative λ, which is a non-negative F-predictable process, is called the F-intensity rate.

We recall that the default time τ avoids all F-stopping times (resp. all F-predictable stopping times) if and only if A o,F (resp. A p,F ) is continuous (see Aksamit and Jeanblanc, 2017, Proposition 1.43). It can be proved that the jump times of A o,F are F-stopping times not avoided by τ .

The assumption that the default time τ avoids all F-stopping times is widely made in the literature of progressive enlargement of filtration (see, e.g., in [START_REF] Nikeghbali | An essay on the general theory of stochastic processes[END_REF].

In the case of progressive enlargement of filtration, the immersion property is easily characterized: Lemma 14 (see Aksamit and Jeanblanc, 2017, Lemma 3.8 ) The filtration F is immersed in G if and only if

P(τ > t|F t ) = P(τ > t|F ∞ ), ∀t ≥ 0.
We now give some definitions relative to the conditional law of τ Definition 15 A family of stochastic processes (M t (u)) u,t∈R + is called a (P, F)-martingale survival process if it satisfies (see El [START_REF] Karoui | Conditional default probability and density[END_REF], Section 2):

• for every u ∈ R + , for every t ∈ R + , the random variable M t (u) is valued in [0, 1],

• for every u ∈ R + , the process (M t (u)) t∈R + is a (P, F)-martingale,

• for every t ∈ R + , the family M t (u), u ∈ R + is decreasing with respect to u.

In a default setting, we will be interested with the conditional survival process of the default time τ , i.e., M t (u) = P(τ > u|F t ), which is a (P, F)-martingale survival process. It is shown in Jeanblanc and Song (2011a) that to any (P, F)-martingale survival process M , one can associate, on an extended probability space, a random time τ such that M is the conditional survival process of τ .

Definition 16 A family of non-negative O(F) B(R + )-measurable functions (ω, t, u) → p t (ω, u) is called a (P, F)-conditional density process if (see El Karoui et al., 2014, Condition (A)) • for every u ∈ R + , (p t (u)) t∈R + is a non-negative (P, F)-martingale, • for every t ∈ R + , ∞ 0 p t (u)η(du) = 1 a.s, where η is a probability law on R + . If M is a (P, F)-martingale survival process satisfying M t (0) = 1 for all t ≥ 0 and M t (u) = ∞ u p t (θ)η(dθ) a.
s, with η is a probability law on R + , then p is a conditional density process. The processes Z, Z, the F-dual predictable and optional projections A p,F , A o,F of τ , the compensator process Λ τ as well as its F-predictable reduction Λ and the conditional survival process (M t (u)) u,t∈R + are called the characteristics of the default time τ (see [START_REF] Jeanblanc | Characteristics and constructions of default times Characteristics and constructions of default times[END_REF] for more details). In what follows, F being the reference filtration, we shall simply denote by A p and A o the F-dual predictable and optional projections of A.

Lemma 17 Key Lemma 1 (see, e.g., Jeanblanc, Yor, and Chesney, 2009, Lemma 7.4.1.1) For any integrable random variable Y , one has

1 {τ >t} E[Y |G t ] = 1 {τ >t} E[Y 1 {τ >t} |F t ] Z t . (1.2.2) If furthermore Y ∈ F T , E[Y 1 {τ >T } |G t ] = 1 {τ >t} E[Y Z T |F t ] Z t . (1.2.3)
Lemma 18 Key Lemma 2 (see, e.g., Jeanblanc, Yor, and Chesney, 2009, Lemma 7.4.1.2) For any bounded F-predictable process R,

E[R τ 1 {τ ≤T } |G t ] = R τ 1 {τ ≤t} -1 {τ >t} E[ T t R u dZ u |F t ] Z t = R τ 1 {τ ≤t} + 1 {τ >t} E[ T t R u dA p u |F t ] Z t .
(1.2.4)

Conditional density approach

In this Section, we investigate the conditional density approach for credit risk modeling. We first introduce the density hypothesis within the meaning of Jacod (1985, Condition (A)), before tackling the so-called extended density hypothesis of Li and Rutkowski (2014, Proposition 2.5) and the so-called generalized density hypothesis of [START_REF] Jiao | Generalized density approach in progressive enlargement of filtrations[END_REF]. We also investigate some examples of conditional density processes.

In order to highlight the density approach rule in default modeling we first recall the general framework to valuate a defaultable claim.

General framework of valuation of defaultable claims

This paragraph is based on [START_REF] Bielecki | Credit risk: modeling, valuation and hedging[END_REF] and more details related to this topic can be found in [START_REF] Bielecki | Credit risk modeling[END_REF]; Jeanblanc, Yor, and Chesney, 2009, Chapter 7;[START_REF] Aksamit | Enlargement of filtration with finance in view[END_REF], Chapter 2.

The valuation formula of a defaultable claim with default payment (or recovery) h relies on some characteristics of the default time. Following [START_REF] Jeanblanc | Characteristics and constructions of default times Characteristics and constructions of default times[END_REF], if the recovery process h is F-predictable, then the pre-default value is obtained using the F-predictable projection A p of the default time or equivalently by the Azéma supermartingale Z, while when h is F-optional, the pre-default value of the claim is determined the F-dual optional projection A o . In what follows, we recall the pricing formula by considering predictable recovery. The case with optional recovery can be obtained in the same manner by letting A o to play the rule of A p in the first case. Consider a defaultable claim which consists in a single payment of a positive value V T (where V T is an F T -measurable integrable random variable) at maturity T when default does not occur before T and a payment of the recovery h (with h a bounded F-predictable process) evaluated at τ when default occurs before maturity T . When the payment of the recovery is made at hit, the discounted dividend process ζ at time t has the following expression

ζ := e -T t rsds V T 1 {τ >T } + e -τ t rsds h τ 1 {t<τ ≤T } ,
with r a non-negative F-adapted process which is the interest rate. By assuming that P is the pricing measure, the price of the defaultable claim is given by a direct application of Lemma 17 and 18 (see, e.g., Bielecki and Rutkowski, 2002, proposition 8.2.1;Bielecki, Jeanblanc, and Rutkowski, 2009, Lemma 7.4.1.2)

E[ζ|G t ] = E e -T t rsds V T Z T + T t e -u t rsds h u dA p,F u |F t Z t 1 {τ >t} . (1.3.1) Chapter 1. Preliminaries If the actualized payoff at time t is of the form ζ := e -T t rsds f (V T , τ )1 {τ <T }
, where f is a bounded function from R × R + into R, then the Azéma supermartingale Z does not allow to compute the quantity E [ζ|G t ] on the set {τ > t}. In such a case, the F-conditional density process p(u) of the default time τ , if it exists (see below the definition) provides the needed tool.

Definition 19

The default time τ satisfies the density hypothesis (CL) -which we mean classical density hypothesis -Jacod, 1985, Condition (A), if there exists a conditional density process (p t (u)) t,u∈R + (we call it (CL)-conditional density) such that for any bounded Borel function h

E[h(τ )|F t ] = ∞ 0 h(u)p t (u)η(du), ∀t ≥ 0, a.s
where η is a probability law on R + .

The existence of a (CL) conditional density is a strong hypothesis, not always satisfied, whereas the martingale survival process of the default time always exist. If this hypothesis is satisfied, one can always choose η = β, where β is the law of τ (see Jacod, 1985, Proposition 1.5). Furthermore, if β is no atomic, τ avoids F-stopping times (see El Karoui, Jeanblanc, and Jiao, 2010, Corollary 2.2). Nevertheless, if β has an atom at t * , then P(τ = t * ) > 0 and the constant stopping time t * is not avoided by τ . Under (CL) Aksamit and Jeanblanc, 2017, Corollary 5.27). Furthermore, F is immersed in G if and only if p t (u) = p u (u), for η-a.e. u satisfying u ≤ t. (see El Karoui, Jeanblanc, and Jiao, 2010, subsection 3.2) If the conditional density exists, then

A p t = [0,t] p u-(u)η(du) and A o t = [0,t] p u (u)η(du) (see
M t (u) := P(τ > u|F t ) = ∞ u p t (θ)η(dθ), a.s (1.3.2)
is the family of martingale survival process associated with τ .

The price of the defaultable claim ζ := f (V T , τ )1 {τ <T } paid at time T is given by (see El Karoui, Jeanblanc, and Jiao, 2010, Theorem 3.1) .3.3) This formula (1.3.3) implies the fact that knowing the conditional law of τ with respect to the reference filtration provides more support in the pricing derivatives.

E[ζ|G t ] = 1 {τ >t} E T t e -T t rsds f (V T , u)p T (u)η(du)|F t Z t . ( 1 
Li and Rutkowski, 2014, Definition 2.5 introduced the extended density hypothesis denoted by (ED) in order to overcome a non-degeneracy condition of the F-conditional law of τ . The following definition focusses on this extended density approach.

Definition 20 The default time τ satisfies the extended density hypothesis (ED) (see [START_REF] Li | Progressive enlargements of filtrations with pseudo-honest times[END_REF], if, for any u, there exists a family of non-negative martingales (m t (u) t≥u ) and an F-adapted, increasing process D, with D 0 = 0 such that for all 0 ≤ u ≤ t,

P(τ ≤ u|F t ) = u 0 m t (s)dD s , ∀t ≥ 0.
Under the classical density approach (CL), if the law of τ has no atoms, τ is a totally inaccessible Gstopping time which avoids all F-stopping times and this does not allow to model some credit risks where the default time can coincide with some F-predictable stopping times. That motivated Jiao and Li to introduce the generalized density hypothesis that we denote (GD) which postulates that the part of the random time τ which avoids a sequence of F-stopping times, admits an F-conditional density (see Jiao and Li, 2015, Assumption 2.4).

Definition 21

The default time τ satisfies the generalized density hypothesis (GD) (see [START_REF] Jiao | Generalized density approach in progressive enlargement of filtrations[END_REF] if there exists a non-atomic non-negative σ-finite Borel measure υ on R + , a strictly increasing sequence of F-stopping times (τ i ) i and a family (α t (u)) t,u∈R + of non-negative F-martingales (we call it (GD)-conditional density) such that for any bounded Borel function h ,

E   h(τ ) i≥1 1 {τ =τi} |F t   = R + h(u)α t (u)υ(du), ∀t ≥ 0, a.s.
Proposition 22 For any bounded Borel function h, if the Generalized density hypothesis is satisfied,

E[h(τ )|F t ] = ∞ 0 h(u)α t (u)υ(du) + ∞ i=1 E[h(τ i )p i t∨τi |F t ].
Proof:

E[h(τ )|F t ] = E[h(τ ) ∞ i=1 1 {τ =τi} |F t ] + ∞ i=1 E[h(τ )1 {τ =τi} |F t ].
Using the tower property, we obtain

E[h(τ )1 {τ =τi} |F t ] = E [h(τ i )P(τ = τ i |F τi∨t )|F t ] = E h(τ i )p i t∨τi |F t .
Comments :

• If τ avoids all F-stopping times, the existence of a (GD)-conditional density is equivalent to the existence of a (CL)-conditional density.

• If the (CL)-conditional density exists then the extended density hypothesis (ED) exists. The (ED) may exist while the (CL) and the (GD)-conditional density do not exist.

Gaussian example

1.3.2.1 El [START_REF] Karoui | Conditional default probability and density[END_REF] example

In this subsection, we recall the example of El [START_REF] Karoui | Conditional default probability and density[END_REF] (see also [START_REF] Zargari | Le risque de crédit et les produits dérivés de crédit: modélisation mathématique et numérique[END_REF], Chapter 2, subsection 2.2). Following El [START_REF] Karoui | Conditional default probability and density[END_REF], starting from a square integrable deterministic function g on R + and introducing the martingale µ as µ t = t 0 g(s)dB s , where B is a Brownian motion, one can construct a random time τ = l -1 (µ ∞ ), where l is a strictly increasing function, differentiable, from R + to R. By denoting F the Brownian filtration generated by B, it is shown in El [START_REF] Karoui | Conditional default probability and density[END_REF] that, for any .3.4) where ν(t) := ∞ t g 2 (s)ds is assumed to be strictly positive, and Φ is the standard Gaussian cumulative function. The family (M t (u)) t,u≥0 is a family of martingales, obviously valued in [0, 1] and decreasing w.r.t.

t, θ ≥ 0, M t (u) := P(τ > u|F t ) = Φ µ t -l(u) ν(t) , ( 1 
u with dynamics dM t (u) = ϕ µ t -l(u) ν(t) g(t) ν(t) dB t
where ϕ is the standard Gaussian density function, or setting

U t (u) = µt-l(u) ν(t) dM t (u) = M t (u) ϕ(U t (u)) Φ(U t (u)) g(t) ν(t) dB t (1.3.5)
which allows us to write M (u) as the exponential martingale of

• 0 ϕ(Ut(u)) Φ(Ut(u)) g(t) ν(t) dB t . The density of τ is obtained by differentiating M 0 (u) w.r.t. u, i.e., ρ(u) = 1 √ 2πν(0) l (u) exp - 1 2 µ 0 -l(u) ν(0) 2 where ν(0) := ∞ 0 g 2 (s)ds.
The conditional density process obtained by differentiating M t (u) w.r.t. u, (and taking η as the law of τ ) is

p t (u) = 1 ρ(u) √ 2πν(t) l (u) exp - 1 2 µ t -l(u) ν(t)
2 and its dynamics is given by

dp t (u) = -p t (u) µ t -l(u) ν 2 (t) g(t)dB t .

Starting from Φ

In the previous subsubsection, we have recalled a family of conditional laws constructed from the standard Gaussian cumulative function. One wonders whether it is possible to obtain, from this distribution function, additional conditional laws. In this subsubsection, we show that the previous example is unique in a wide class. As such, we look for a diffusion X satisfying the following differential stochastic equation

dX t = a(X t , t)dt + σ(X t , t)dB t , X 0 = θ
where B is a standard Brownian motion, and two deterministic functions f and h from R + to R such that

Z t (u) := Φ(X t -f (t)h(u))
defines a martingale survival process (see Definition 15). The decreasing property w.r.t. the parameter u is obtained if h is an increasing strictly positive function and f is a strictly positive function. The initial (resp. terminal) condition on Z t (•) imposes that Z 0 (0) = 1 and Z 0 (∞) = 0, hence we restrict our attention to the case

h(0) = -∞ and h(∞) = ∞.
We now determine some conditions on the coefficients of the diffusion X such that Z(u) is a martingale for any u. As such, by denoting U t := X t -f (t)h(u), the Itô formula shows that

dZ t (u) = Φ (U t )(-f (t)h(u) + a(X t , t)) + 1 2 Φ (U t )σ 2 (X t , t) dt + Φ (U t )σ(X t , t)dB t (1.3.6)
and by using the fact that Φ (x) = -xΦ (x), it follows that for all u ≥ 0, Z(u) is a local martingale if and only if

Φ (U t ) -f (t)h(u) + a(X t , t) - 1 2 U t σ 2 (X t , t) = 0. (1.3.7)
Note that Z being bounded will be a true martingale. This implies that for all u, t ≥ 0

h(u) -f (t) + 1 2 f (t)σ 2 (X t , t) + a(X t , t) - 1 2 X t σ 2 (X t , t) = 0.
Knowing that this last equality holds for all u ≥ 0, one obtains for any t ≥ 0

a(X t , t) - 1 2 X t σ 2 (X t , t) = 0 (1.3.8) -f (t) + 1 2 f (t)σ 2 (X t , t) = 0 . (1.3.9)
By assuming that the diffusion X is not degenerated (i.e., X is not constant), the equation (1.3.9) establishes that σ 2 (x, t) does not depend on x. Hence one denotes it by σ 2 (t). The equations (1.3.8) and (1.3.9) imply

a(x, t) - 1 2 xσ 2 (t) = 0 (1.3.10) -f (t) + 1 2 f (t)σ 2 (t) = 0 (1.3.11)
for all x which belongs to the support of X t . Therefore, it follows that

σ 2 (t) =2 f (t) f (t) a(x, t) = 1 2 xσ 2 (t) = x f (t) f (t)
and

dX t = X t f (t) f (t) dt + 2 f (t) f (t) dB t ,
for f such that f f ≥ 0 for all t ≥ 0, hence for f such that f ≥ 0 since f > 0. This line of thinking proves the following result:

Proposition 23 Let h be an increasing deterministic function from R + to R and f a strictly positive and differentiable increasing function. The set of diffusions X, such that

Z t (u) := Φ (X t -f (t)h(u))
(1.3.12) defines a martingale survival process, is the one of the form

dX t = X t f (t) f (t) dt + 2 f (t) f (t) dB t , X 0 = θ. (1.3.13)
One denotes by D the set of such diffusions X.

The Gaussian conditional density construction using the class D

We now investigate this class of diffusions D in the perspective of the result obtained in the previous subsubsection which stipulated that

Φ µ t -l(u) ν(t) ,
where ν(t) := ∞ t g 2 (s)ds and µ t = t 0 g(s)dB s , is a martingale survival process. We show that this result is driven by a class of diffusions denoted C, which is contained in the class D. As such, we take

X t = µt ν(t) , f (t) = 1 ν(t) and h = l, since for any u ≥ 0, Φ(X t -1 ν(t) h(u)
) is a martingale, the process X belongs to the Chapter 1. Preliminaries class D with X 0 = 0 and satisfies

dX t = -X t ν (t) ν(t) dt + g(t) ν ( t) dB t = -X t ν (t) ν(t) dt + 2(- ν (t) ν(t) )dB t =X t f (t) f (t) dt + 2 f (t) f (t) dB t .
By consequence, the class D is a little bit larger than C due to the choice of the initial value of X (it is rather obvious that, w.l.g., one can choose f (0) = 1).

Consider now an element X of the class D ( i.e., the dynamics of X is of the form (1.3.13)) with initial value θ. These dynamics are well known as a linear stochastic differential equation and admit the following solution

X t (θ) = exp[ s 0 f (u) f (u) du] θ + t 0 2 f (s) f (s) exp[- s 0 f (u) f (u) du]dB s . Since f (0) = 1, one has exp[ s 0 f (u) f (u) du] = f (t). Therefore, by denoting µ t := t 0 g(s)dB s where g(t) := 2 f (t) f (t) 1 f (t) and ν(t) := 1 f (t) (which implies, by simple computation, that ν 2 (t) = ∞ t g(s)ds), one has from P(τ > u|F t ) = Φ(X t -f (t)h(u)), that P(τ > u) = Φ(θ -h(u)
), which can be greater or smaller that the value obtained in the case θ = 0.

Dynamics of Z(u)

We have shown that for any martingale X of the form (1.3.12) (i.e., X belongs to the class D), the family Z t (u) := Φ (X t -f (t)h(u)), with h an increasing deterministic function from R + to R and f a strictly positive function, defines a martingale survival process. Using (1.3.6) and (1.3.7), the dynamics of Z(u) is of the form

dZ t (u) = ϕ (X t -f (t)h(u)) 2 f (t) f (t) dB t (1.3.14)
where ϕ is the standard Gaussian density function.

By setting Y t = X t -f (t)h(t), the dynamics of the supermartingale Z (which is given by Z

t = Φ (X t -f (t)h(t))
) has the following form, which is its Doob-Meyer decomposition,

dZ t = -ϕ(Y t )h (t)f (t)dt + ϕ(Y t ) 2 f (t) f (t) dB t , (1.3.15)
where we have applied Itô's formula to Z = Φ(Y ) and used (1.3.7).

We consider the multiplicative decomposition of Z, which is of the form Z = N e -H , where N is a positive local martingale and H an increasing predictable process. We have, by integration by parts, dZ t = -Z t dH t + e -Ht dN t , hence, by uniqueness of the Doob-Meyer decomposition, we obtain

dH t = ϕ(Y t ) Φ(Y t ) h (t)f (t)dt, dN t = ϕ(Y t ) Φ(Y t ) N t 2 f (t) f (t) dB t .
Note that the quantity 

M t (u) =    1 -(1 -Z t ) exp - t u Zs 1-Zs λ s ds , for u ≤ t E[ Z u |F t ],
for u > t, is a survival martingale process and its dynamics for u fixed is given for, t ≥ u, by

d M t (u) = 1 -M t (u) 1 -Z t e -Ht dN t . (1.3.16) Futhermore, if there exists ρ such that M0 (u) = E[ Z u ] = ∞ u ρ(θ)
dθ, then ρ is the density function of τ , and the family (p t (u)) t,u∈R + , given by

pt (u) =    (1 -M t (u)) Zu 1-Zu λu ρ(u) , for u ≤ t E[p u (u)|F t ],
for u > t, is a conditional density process associated with M (u). This result is first introduced by Gapeev et al. ( 2010) and later by Jeanblanc and Song (2011a) and Jeanblanc and Song (2011b).

We can apply this methodology to the Gaussian case with Z t = Φ(Y t ) and Y t = µt-l(t) ν(t) . We then obtain, for u ≤ t,

d M t (u) = 1 -M t (u) 1 -Φ(Y t ) e -Ht ϕ(Y t ) Φ(Y t ) N t 2 f (t) f (t) dB t = (1 -M t (u)) ϕ(Y t ) Φ(-Y t ) 2 f (t) f (t) dB t ,
where we have used the fact that Φ(-

Y t ) = 1 -Φ(Y t ). Note that M (u) is different from M (u) defined in the Gaussian case in (1.3.5).
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Generalization of the model of Jiao and Li

In the sovereign risk modeling, Jiao and Li (2018), by considering a reference filtration F, propose the following form of the default time:

τ = θ ∧ ξ where θ = τ i on {N τi-1 = 0} ∩ {N τi = 1}, for i ∈ {1, ..., n}
with N an inhomogeneous Poisson process independent of F, with deterministic intensity rate function

t → λ N (t) (i.e., a non-negative function λ N such that N t - t 0 λ N (s)ds is an F N -martingale
, where F N is the filtration generated by N ), (τ i ) i∈{1,...,n} an increasing sequence of F-predictable stopping times and

ξ := inf{t ≥ 0 : Γ t ≥ Θ}
with Γ an increasing F-adapted continuous process with Γ 0 = 0 and Θ a random variable, independent of F and F N , with a unit exponential law. The authors are interested in some characteristics of the default time such as its compensator and its Fconditional laws. They show that the intensity rate of τ does not exist in their setting. Our goal is to generalize this model. We modify the role of the Poisson process N by using an increasing càdlàg process X such that X 0 = 0, X ∞ = ∞, independent of F and relax the assumption of the predictability of the stopping times (τ i ) i≥1 . We investigate the characteristics of the default time. In particular, we compute the compensator of the default time which is more general than the one obtained by Jiao and Li (2018). As such, we consider (Ω, G, F, P) a filtered probability space. One denotes by Ψ the increasing deterministic function with Ψ(0) = 0 and Ψ(∞) = ∞ such that P (X u ≤ 1) = e -Ψ(u) . One denotes by F X the natural filtration of X. Let (τ i ) i be a strictly increasing sequence of finite F-stopping times such that lim i→∞ τ i = ∞ and set τ 0 = 0. We define a random time1 θ by

θ = τ i on {X τi-1 ≤ 1 < X τi }, for i ≥ 1.
Note that θ < ∞, a.s. since P(X ∞ ≤ 1) = 0. We also define:

ξ := inf{t ≥ 0 : Γ t ≥ Θ}
where Γ is an increasing F-adapted continuous process with Γ 0 = 0, Γ t < ∞ for all t, and Γ ∞ = ∞ and Θ a random variable, independent of F and F X , with a unit exponential law.

We define

τ = θ ∧ ξ.
By construction, τ does not avoid the F-stopping times (τ i ) i . By denoting G the smallest filtration containing F under which τ is a stopping time, one obtains the immersion property between F and G. Indeed, knowing that

G ⊂ F ∨ σ(Θ) ∨ F X and that F is immersed in F ∨ σ(Θ) ∨ F X (by the independence of F from Θ and X) implies that F is immersed in G (see Lemma 7).
In what follows, we first compute the F-conditional probability that the default time coincides with one of the F-stopping times τ i , before computing the F-conditional survival process of τ . We mimic the proofs of Jiao and Li.

We shall frequently use the equality

i≥1 1 {τi>t≥τi-1} e -U (τi-1) = exp   - i≥1 1 {τi>t≥τi-1} U (τ i-1 )   ,
(2.0.1) for any function U : R + → R. This is trivial since, for any i, on the set {τ i > t ≥ τ i-1 } the left and right-hand sides are both equal to e -U (τi-1) .

The F -conditional distributions of τ

Lemma 24 For all t ≥ 0, one has

P(τ = τ i |F t ) = E e -Γτ i e -Ψ(τi-1) -e -Ψ(τi) |F t , ∀i ≥ 1. (2.1.1)
In particular,

1 {τi≤t} P(τ = τ i |F t ) = e -Γτ i e -Ψ(τi-1) -e -Ψ(τi) 1 {τi≤t} , ∀i ≥ 1.
(2.1.2)

Proof: From the definition of τ , one has the following equality

{τ = τ i } = {ξ > τ i , X τi-1 ≤ 1 < X τi }.
Hence, by using the definition of ξ as well as the fact that (τ i ) i are F-stopping times, hence are F ∞ -measurable random variables and that the random variable X τi is, for any i, F ∞ ∨ F X ∞ measurable, one obtains

P(ξ > τ i , X τi-1 ≤ 1 < X τi |F ∞ ) =E P(ξ > τ i |F ∞ ∨ F X ∞ )1 {Xτ i-1 ≤1<Xτ i } |F ∞ =E P(Γ τi < Θ|F ∞ ∨ F X ∞ )1 {Xτ i-1 ≤1<Xτ i } |F ∞
where the first equality requires the tower property. Since Θ and X are mutually independent and are independent of F ∞ , then using the fact that Γ τi ∈ F ∞ leads to

P(Γ τi < Θ|F ∞ ∨ F X ∞ ) = P(Γ τi < Θ|F ∞ ) = e -Γτ i . (2.1.3)
Therefore, it follows τi) .

P(ξ > τ i , X τi-1 ≤ 1 < X τi |F ∞ ) =e -Γτ i P(X τi-1 ≤ 1 < X τi |F ∞ ) =e -Γτ i {P(X τi-1 ≤ 1|F ∞ ) -P(X τi ≤ 1|F ∞ )} =e -Γτ i e -Ψ(τi-1) -e -Ψ(
(2.1.4)
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The last equality is due to the fact that the random variables τ i are F ∞ -measurable and the process X is independent of F ∞ . Therefore

P(τ = τ i |F t ) = E[e -Γτ i e -Ψ(τi-1) -e -Ψ(τi) |F t ] .
Since the set {τ i ≤ t} is F t -measurable, by multiplying (2.1.4) by 1 {τi≤t} , one deduces that

1 {τi≤t} P(τ = τ i |F t ) = e -Γτ i e -Ψ(τi-1) -e -Ψ(τi) 1 {τi≤t} ,
where, in the last equality, we have used the fact that, on the set {τ i ≤ t}, the random variables Γ τi , Ψ(τ i ) and Ψ(τ i-1 ) are F t -measurable.

Lemma 25 The conditional survival process of τ is given by, for

t ∈ R + P(τ > u|F t ) = E exp - ∞ i=1 1 {τi≤u} [Ψ(τ i ) -Ψ(τ i-1 )] -Γ u |F t for u ∈ R + .
(2.1.5)

In particular, for t ≥ u,

P(τ > u|F t ) = exp - ∞ i=1 1 {τi≤u} [Ψ(τ i ) -Ψ(τ i-1 )] -Γ u .
(2.1.6)

Then, the Azéma supermartingale Z has the following expression

Z t = exp - ∞ i=1 1 {τi≤t} [Ψ(τ i ) -Ψ(τ i-1 )] -Γ t .
(2.1.7)

Proof: For all t, u ∈ R + ,

P(τ > u|F t ) = ∞ i=1 P(θ > u, ξ > u, θ = τ i |F t ) = ∞ i=1 P(τ i > u, ξ > u, X τi-1 ≤ 1 < X τi |F t ).
This implies that

P(τ > u|F t ) = ∞ i=1 P(τ i > u, ξ > u, X τi-1 ≤ 1|F t ) - ∞ i=1 P(τ i > u, ξ > u, X τi ≤ 1|F t ).
2.1. The F -conditional distributions of τ 33 By using the fact that τ 0 = 0 which implies that the set {τ 0 > u} is empty, one has

P(τ > u|F t ) = ∞ i=1 P(τ i > u, ξ > u, X τi-1 ≤ 1|F t ) - ∞ i=0 P(τ i > u, ξ > u, X τi ≤ 1|F t ) = ∞ i=1 P(τ i > u, ξ > u, X τi-1 ≤ 1|F t ) - ∞ k=1 P(τ k-1 > u, ξ > u, X τ k-1 ≤ 1|F t ) = ∞ i=1 P(τ i > u, ξ > u, X τi-1 ≤ 1|F t ) - ∞ i=1 P(τ i-1 > u, ξ > u, X τi-1 ≤ 1|F t ).
Therefore, it follows from the trivial equality 1 {τi>u} -1 {τi-1>u} = 1 {τi>u≥τi-1} that

P(τ > u|F t ) = ∞ i=1 P(τ i > u ≥ τ i-1 , ξ > u, X τi-1 ≤ 1|F t ) = ∞ i=1 E[1 {τi>u≥τi-1} P(ξ > u|F ∞ ∨ F X ∞ )1 {Xτ i-1 ≤1} |F t ] = ∞ i=1 E[1 {τi>u≥τi-1} e -Γu 1 {Xτ i-1 ≤1} |F t ],
where we have used, in the last equality, the fact that Θ is independent of F ∨ F X . This implies

P(τ > u|F t ) = ∞ i=1 E[1 {τi>u≥τi-1} e -Γu P(X τi-1 ≤ 1|F ∞ )|F t ] = ∞ i=1 E[1 {τi>u≥τi-1} e -Γu e -Ψ(τi-1) |F t ] =E exp - ∞ i=1 1 {τi>u≥τi-1} Ψ(τ i-1 ) e -Γu |F t =E exp - ∞ i=1 (1 {τi-1≤u} -1 {τi≤u} )Ψ(τ i-1 ) e -Γu |F t =E exp - ∞ i=0 1 {τi≤u} Ψ(τ i ) + ∞ i=1 1 {τi≤u} Ψ(τ i-1 ) e -Γu |F t . Since Ψ(τ 0 ) = 0, one has ∞ i=0 1 {τi≤u} Ψ(τ i ) = ∞ i=1 1 {τi≤u} Ψ(τ i ).
Hence, it follows

P(τ > u|F t ) =E exp - ∞ i=1 1 {τi≤u} [Ψ(τ i ) -Ψ(τ i-1 )] e -Γu |F t =E exp - ∞ i=1 1 {τi≤u} [Ψ(τ i ) -Ψ(τ i-1 )] -Γ u |F t .
If t ≥ u, the random variables e -Γu , 1 {τi≤u} and 1 {τi≤u} [Ψ(τ i ) -Ψ(τ i-1 )] are F t -measurable. Hence, one has
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P(τ > u|F t ) = exp - ∞ i=1 1 {τi≤u} [Ψ(τ i ) -Ψ(τ i-1 )] -Γ u .
In particular, one checks that

P(τ > u|F u ) = P(τ > u|F ∞ ) ,
which also follows from the immersion property. Note that Z is decreasing, which stems from the immersion property (it can also be seen from ( 2.1.7)).

The compensator of the default time τ

Now, we focus on the compensator of the default time τ . We first consider the case where the stopping times (τ i ) i are predictable and then consider the general case.

2.2.1

Case where the stopping times (τ i ) i are predictable

If the stopping times (τ i ) i are F-predictable, Z is F-predictable and the F-dual predictable projection of

A t = 1 {τ ≤t} is 1 -Z.
Hence, it is clear that dA p t = -dZ t and then using (1.2.1), the F-predictable reduction Λ of the compensator of τ verifies (note that Z -> 0):

dΛ t = - dZ t Z t- . (2.2.1)
Since the Azéma supermartingale Z has the explicit form Z t = e -Yt where Y is the increasing process

Y t = ∞ i=1 1 {τi≤t} [Ψ(τ i ) -Ψ(τ i-1 )] + Γ t ,
by applying Itô's formula for semimartingale (see Jeanblanc, Yor, and Chesney, 2009, Subsection 9.4.1) to e -Y , we obtain

dZ t = -Z t-dY t + Z t-(e -∆Yt -1) + Z t-∆Y t ,
and by plugging it in (2.2.1), one obtains the following expression of the F-predictable reduction of the compensator of τ

dΛ t = dY t -(e -∆Yt -1) -∆Y t = dY c t -(e -∆Yt -1).
Hence, it follows that, since Λ 0 = 0

Λ t = Γ t + ∞ i=1 1 {τi≤t} (1 -exp (-[Ψ(τ i ) -Ψ(τ i-1 )]
) , for all t ≥ 0.

(2.2.2) 2.2.2 Case where some of the stopping times (τ i ) i are not predictable

If some stopping times (τ i ) i are not predictable (which can occur only if the filtration F is not continuous 2 ), one assumes to know, for any i, the F-compensator of τ i , denoted by J i which is the F-dual predictable projection of the F-adapted process

A i = 1 {τi≤•} (note that if τ k is predictable, then J k = A k ).
In other terms, we consider the F-predictable increasing process J i , with J i 0 = 0, such that

(1 {τi≤t} -J i t∧τi , t ≥ 0) is an F-martingale.
In what follows, we give the F-dual predictable projection process A p as well as the F-predictable reduction of the compensator of τ . We first introduce the following Lemma.

Lemma 26 Consider, for i ≥ 1, the two F-adapted increasing processes Q 1,i t := 1 {τi≤t} e -Ψ(τi) and Q 2,i t := (τi) . Then the processes defined as

1 {τi+1≤t} e -Ψ
Q 1,i t - t 0 e -Ψ(s) dJ i s (2.2.3) and Q 2,i t - t 0 1 {τi<s} e -Ψ(τi) dJ i+1 s (2.2.4)
are F-martingales.

Proof: By applying Lemma 11 for the process A i , the predictable process H being the function

H t = e -Ψ(t) , it follows that Q 1,i t - t 0 e -Ψ(s) dJ i s is an F-martingale. The process Q 2,i which is Q 2,i t = t 0 e -Ψ(τi) dA i+1
s can be written as

Q 2,i t = t 0 e -Ψ(τi) 1 {τi<s} dA i+1 s .
Indeed, due to the strictly increasing property of the τ i ,

t 0 e -Ψ(τi) 1 {τi<s} dA i+1 s = e -Ψ(τi) t 0 1 {τi<s} dA i+1 s = e -Ψ(τi) 1 {τi<τi+1} 1 {τi+1≤t} = e -Ψ(τi) 1 {τi+1≤t} = Q 2,i t .
By setting Y s = 1 {τi<s} e -Ψ(τi) , which is left-continuous and adapted hence predictable, and by applying Lemma 11, the process

Y τi+1 1 {τi+1≤t} - t∧τi+1 0 Y s dJ i+1
s is an F-martingale, or equivalently, the process

1 {τi<τi+1} e -Ψ(τi) 1 {τi+1≤t} - t∧τi+1 0 Y s dJ i+1 s = Q 2,i t - t∧τi+1 0 Y s dJ i+1 s = Q 2,i t - t 0 1 {τi<s} e -Ψ(τi) dJ i+1 s is an F-martingale.
Lemma 27 The F-dual predictable projection A p of the default time τ verifies:

dA p t = Z t dΓ t + e -Γt dζ t , (2.2.5)
where ζ is the predictable increasing process defined as

ζ t := ∞ i=0 t 0 e -Ψ(τi) -e -Ψ(s) dJ i+1 s . (2.2.6)
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Proof: The process

Q t := exp - ∞ i=1 1 {τi≤t} [Ψ(τ i ) -Ψ(τ i-1 )] (2.2.7)
is decreasing, hence is a supermartingale. Using (2.0.1), we get

Q t = ∞ i=0 1 {τi≤t<τi+1} e -Ψ(τi) = ∞ i=0 1 {τi≤t} e -Ψ(τi) -1 {τi+1≤t} e -Ψ(τi) = ∞ i=0 Q 1,i t -Q 2,i t
where the processes Q 1,i and Q 2,i are the ones defined in Lemma 26. Therefore, from Lemma 26, it admits the decomposition Q = m Q -ζ, where m Q is a martingale and ζ the predictable process given as

ζ t = ∞ i=0 t 0 1 {τi<s} e -ψ(τi) dJ i+1 s - t 0 e -ψ(s) dJ i s . Since M i+1 = A i+1 -J i+1 is a martingale with M i+1 0 = 0 and A i+1 τi = 0, we obtain E[J i+1 τi ] = E[A i+1 τi -M i+1 τi ] = -E[M i+1 τi ] = 0
which implies that J i+1 τi = 0 and then due to the increasing property of J i+1 , J i+1 t = 0 on {t ≤ τ i }. This shows that the support of

J i+1 is [τ i , τ i+1 ]. Hence, it follows that t 0 1 {τi<s} e -Ψ(τi) dJ i+1 s = t 0 e -Ψ(τi) dJ i+1 s
, and then

ζ t = ∞ i=0 t 0 e -ψ(τi) dJ i+1 s - ∞ i=1 t 0 e -ψ(s) dJ i s = ∞ i=0 t 0 e -ψ(τi) -e -ψ(s) dJ i+1 s
where we have used the fact that J 0 = 0. Due to the form of the support of J i+1 , we have

ζ t = ∞ i=0 t 0 1 {s<τi} e -ψ(τi) -e -ψ(s) dJ i+1 s
, hence, since e -ψ(τi) -e -ψ(s) ≥ 0 for s > τ i , the process ζ is increasing. By integration by parts of the multiplicative decomposition of the supermartingale Z, which is (from (2.1.7))

Z t = e -Γt Q t = e -Γt (m Q t -ζ t ),
and by applying Yoeurp's lemma, we get

dZ t = -e -Γt (m Q t -ζ t )dΓ t + e -Γt (dm Q t -dζ t ) =e -Γt dm Q t -e -Γt (m Q t -ζ t )dΓ t -e -Γt dζ t =e -Γt dm Q t -(Z t dΓ t + e -Γt dζ t )
which leads to the Doob-Meyer decomposition of Z. Hence the F-dual predictable projection A p of τ verifies

dA p t = Z t dΓ t + e -Γt dζ t .
Finally, using 1.2.1 and the fact that Γ is continuous, the F-predictable reduction Λ of the compensator of τ is given by

dΛ t = 1 Z t- dA p t = dΓ t + dζ t Q t- .
(2.2.8)

Remark 28 Note that if all the stopping times (τ i ) i≥1 are predictable, then the supermartingale Q is predictable and Q t = 1 -ζ t , hence dQ t = -dζ t . Therefore, by noting that dQt Qt-= e -∆Kt -1, (2.2.8) becomes

dΛ t = dΓ t - dQ t Q t- = dΓ t + 1 -e -∆Kt
and which is the dynamic form of (2.2.2).

As an example, assume that the (τ i ) i≥1 are the jump times of a Poisson process N with constant intensity λ which generates the filtration F. Then

dJ i+1 t = λ1 [τi,τi+1] (t)dt.
Hence from Lemma 27, one has s) ds which is continuous. Therefore, if Γ t = t 0 γ s ds, with γ a non-negative F-adapted process, one has

ζ t = t 0 λ ∞ i=0 1 [τi,τi+1] (s) e -Ψ(τi) -e -Ψ(
dΛ t = γ t + λ ∞ i=0 1 [τi,τi+1] (t) e -Ψ(τi) -e -Ψ(t) Q t- dt (2.2.9)
where Q is given in (2.2.7). This implies that the intensity rate of the default time exists and is given at time t by

γ t + λ ∞ i=0 1 [τi,τi+1] (t) e -Ψ(τi) -e -Ψ(t) Q t- .
Chapter 3

Generalized Cox model

This chapter is based on the working paper Gueye, Jeanblanc, and Li (2019).

Introduction and motivations

In the works of default time modeling through Cox framework (see Lando, 1998), one usually starts with a reference filtration F and an F-adapted process Λ (absolutely continuous with respect to Lebesgue's measure and increasing). Then one defines the default time as the first time this process hits a stochastic barrier which is assumed to be independent of F. Hence one establishes that the process Λ is the F-predictable reduction of the compensator of τ , and shows that it can be calibrated, for instance from the credit default swap spread, in order to compute the prices of products subject to default risk. In this setting, the default time avoids F-stopping times and this does not allow to cover a wide range of modeling of these products, for example in the case which induces some economic shocks. The model of [START_REF] Bélanger | A general framework for pricing credit risk[END_REF] generalizes that of Lando (1998), but covers only the setting where the shock times are predictable. The model of [START_REF] Gehmlich | Dynamic defaultable term structure modeling beyond the intensity paradigm[END_REF], which is also the one of [START_REF] Fontana | General dynamic term structures under default risk[END_REF], is not a model of enlargement of filtration and presents an interesting case where the compensator of τ admits predictable jumps. In some sense, it is a structural model in which the default time is supposed to have nice properties, and there is no construction of such a default time. We shall extend the construction given in [START_REF] Bélanger | A general framework for pricing credit risk[END_REF] to a more general framework, constructing a default time which does not avoid a given sequence of F-stopping times.

We start from a right-continuous with left limits (or a left-continuous with right limits) increasing process K, adapted with respect to a given reference filtration F, not necessarily predictable and which jumps at some given F-stopping times and we define the default time τ as in Cox's paradigm, i.e., τ is the first hitting time of this process K of a stochastic barrier independent of the reference filtration. As before, G is the filtration F progressively enlarged with τ . In both cases, we compute the characteristics of the default time, i.e., the F-predictable reduction of the compensator of τ , the Azéma supermartingale and its multiplicative decomposition and the conditional survival process. We also study existence of conditional densities (i.e., the (CL), (ED) and (GD) conditions).

In what follows, we first present our model before illustrating our construction through many examples.

We consider a probability space (Ω, A, P), endowed with a filtration F satisfying usual hypotheses and a random time τ . We consider an increasing F-adapted process K with K 0 = 0 and Θ a unit exponential r.v. independent of F. Then, if K is right-continuous with left limits (càdlàg), we define the random time τ as τ = inf{t ≥ 0 : K t ≥ Θ}, 3.2. Case where K is continuous 39 and, if K is left-continuous with right limits (càglàd), one modifies a little bit the definition by setting (we shall see why later)

τ = inf{t ≥ 0 : K t > Θ}.
In both cases, immersion holds between F and G, since F is immersed in F ∨ σ(Θ) and F ⊂ G ⊂ F ∨ σ(Θ). This property implies that A o = 1 -Z (see Aksamit and Li, 2016, Th. 6), therefore, since Z = Z -∆A o , then Z = Z -, where as in the previous chapters A o is the F-optional projection of the process A = 1 {τ ≤•} and Z, Z the Azéma supermartingales.

Case where K is continuous

When the process K is continuous, we define τ = inf{t : K t ≥ Θ} and due to {K t < Θ} = {τ > t}, we obtain immediately that Z = e -K = 1 -A o = 1 -A p . From the fact that A o is continuous, we obtain

∆A o = 0, hence Z = Z. The Doob-Meyer decomposition of Z is Z t = 1 -(1 -e -Kt
), for all t ≥ 0. In that setting, A o being continuous, τ avoids F-stopping times (see Aksamit and Jeanblanc, 2017, Proposition 1.43). The survival probability of τ is P(τ > u) = E[e -Ku ], so that for any bounded Borel function h,

E[h(τ )] = E R + h(u)e -Ku dK u .
The conditional survival process is

P(τ > u|F t ) = Z u , for u < t = E[Z u |F t ], for t ≤ u ,
where the first equality is due to immersion property. If K is absolutely continuous w.r.t. Lebesgue's measure, i.e., K t = t 0 k u du, then, τ admits a density f (u) = E[k u e -Ku ] and a (CL)-conditional density (with η(du) = f (u)du) given by

p t (u) = k u e -Ku E[k u e -Ku ] , for u < t, = E[k u e -Ku |F t ] E[k u e -Ku ] , for t ≤ u , if E[k u e -Ku ] > 0 and p t (u) = 0 if E[k u e -Ku ] = 0.
In general, the (CL) conditional density may fail to exist. For example, let

K t = -ln(1-L t∧1 )+1 {t>1} (t-1)
where L is the local time at level 0 of a standard Brownian motion. Then P(τ

> t) = E[e -Kt ] = E[1 -
L t∧1 ]e -(t-1) + . The Tanaka formula (see Øksendal, 2003, Chap 4, p59 ), i.e.,

|W t | = t 0 sgn(W s )dW s + L t ,
where sgn is the sign function, i.e.,

sgn(x) =    +1, if x ≥ 0 -1, if x < 0 implies (the stochastic integral being a martingale) that E[L t ] = E[|W t |] = √ 2t √ π . Therefore, P(τ > t) =    1 - √ 2t √ π , if t ≤ 1 (1 - √ 2 √ π )e -t+1 , if t > 1 .

Chapter 3. Generalized Cox model

We deduce that τ has a density f w.r.t. Lebesgue's measure, where

f (t) =    1 √ 2tπ , if t ≤ 1 (1 - √ 2 √ π )e -t+1 , if t > 1 .
Therefore, if the classical density hypothesis is satisfied, then by choosing η(ds) = f (s)ds, one would have, for u < t

P(τ > u|F t ) = Z u = ∞ u p t (s)f (s)ds
and Z would be absolutely continuous w.r.t. Lebesgue's measure, which is not the case.

Case where K is càdlàg

We denote by (τ i ) i the jump times of K.

Lemma 29 For all t ≥ 0, the following equality

{K t ≥ Θ} = {τ ≤ t} (3.3.1)
holds, equivalently {K t < Θ} = {t < τ }.

Proof: In the proof, we proceed for ω fixed. The set

{K t ≥ Θ} is either of the form [a, ∞[ or of the form ]a, ∞[. If it is of the form [a, ∞[ it would mean that K a ≥ Θ and by definition of τ , τ = a. If it is of the form ]a, ∞[, it means that K a+ε ≥ Θ,
for any ε > 0, hence by right-continuity of K, letting ε go to 0, it follows that K a ≥ Θ and a ∈ {t ≥ 0 : K t ≥ Θ} which is contradictory.

Computation of the dual predictable projection of τ

Lemma 30 Let I be the càdlàg F-submartingale I t = s≤t (1 -e -∆Ks ) and A I be its predictable part in its Doob-Meyer decomposition. Then the F-dual predictable projection of τ satisfies dA p t = e -Kt-(dK c t + dA I t ), where K c is the continuous part of K and the F-predictable reduction of the compensator of τ is

Λ = K c + A I . (3.3.2)
Proof: By using the equality (3.3.1), the fact that K is F-adapted and the independence between Θ and F, one has from the exponential law of Θ

Z t := P(τ > t|F t ) = P(K t < Θ|F t ) = e -Kt .
Then, by Itô's formula, it follows that

dZ t = -e -Kt-dK t + e -Kt-(e -∆Kt -1) + e -Kt-∆K t (3.3.3) = -e -Kt-dK c t + e -Kt-(e -∆Kt -1)
where K c is the continuous part of K, i.e., K c t = K t -s≤t ∆K s . The process K c being increasing and continuous is a submartingale with Doob-Meyer's decomposition with no martingale part, i.e., K c t = 0 + K c t . The process I being increasing (indeed 1 -e -∆Ks ≥ 0) is a submartingale and admits a Doob-Meyer decomposition I = M I + A I . Finally

dZ t = -e -Kt-dK c t -e -Kt-dI t = -e -Kt-(dK c t + dM I t + dA I t ) = -e -Kt-dM I t -e -Kt-(dK c t + dA I t ) . (3.3.4)
Therefore

dA p t = e -Kt-(dK c t + dA I t ) (3.3.5)
and A t -Λ t∧τ is a G-martingale where

dΛ t = 1 Z t- dA p t = dK c t + dA I t or Λ t = K c t + A I t .

The conditional laws of the default time τ

Proposition 31 The conditional probability that the default occurs at time τ i is given by

p i t := P(τ = τ i |F t ) = E[e -Kτ i -(1 -e -∆Kτ i )|F t ], ∀t ≥ 0. (3.3.6) Proof: From (3.3.1), one has {s < τ ≤ t} = {K s < Θ ≤ K t } and for any F-stopping time ϑ, one obtains, denoting ϑ( ) = (ϑ -) ∨ 0, that {ϑ( ) < τ ≤ ϑ} = {K ϑ( ) < Θ ≤ K ϑ } and P(ϑ( ) < τ ≤ ϑ|F t ) = E[e -K ϑ( ) -e -K ϑ |F t ] .
Passing to the limit when goes to 0, one obtains

P(τ = ϑ|F t ) = E[e -K ϑ--e -K ϑ |F t ].
In particular,

p i t := P(τ = τ i |F t ) = E[e -Kτ i -(1 -e -∆Kτ i )|F t ] .
Note that on the set {τ i ≤ t}, one has p i t = e -Kτ i -(1 -e -∆Kτ i ) and the random variable p i t does not depend on t, as it must be, from immersion property (see El Karoui, Jeanblanc, and Jiao, 2010, Subsection 3.2. ).

Proposition 32 If the continuous part of K is absolutely continuous, i.e., K c t = t 0 k s ds, the generalized density hypothesis (GD) is satisfied, and α t (u) = E[k u e -Ku |F t ] together with υ the Lebesgue's measure.

Proof: For any bounded Borel function h, the process

X t = h(t) i 1 {t =τi} = h(t) i (1 {t<τi} + 1 {t>τi} ) is F-optional (Indeed, 1 {τi>•} = 1 -1 {τi≤•}
is right-continuous and F-adapted, hence F-optional and 1 {τi<•} is left-continuous and F-adapted hence F-predictable therefore F-optional). Hence,

E[h(τ ) i 1 {τ =τi} |F t ] = E[X τ |F t ] = E[ ∞ 0 X s dA o s |F t ] = -E[ ∞ 0 X s dZ c s |F t ] = E[ ∞ 0 h(s)k s e -Ks ds|F t ] = ∞ 0 h(s)E[k s e -Ks |F t ]ds .
The second equality is due to Aksamit and Jeanblanc, 2017, Corollary 2.10, the third equality is due to the fact that X vanishes on the discontinuities of Z, so that

∞ 0 X s dZ s = ∞ 0 X s dZ c
s , then we use the fact that, from (3.3.3) 

Z c t = 1 - t 0 e -Ks-dK c s = 1 - t 0 e -Ks dK c s = 1 - t 0 e -Ks k s ds.
Note that, in the case where the (τ i ) i are ordered, the same kind of computation leads to

E h(τ )1 {τi<τ <τi+1} |F t = E ∞ 0 1 {τi<s<τi+1} h(s)k s e -Ks ds|F t .
That is to consider X t = h(t)1 {τi<t<τi+1} = h(t)(1 {τi<t} -1 {τi+1≤t} ) which is F-optional and then since X vanishes on the discontinuities of Z, it follows that

E[h(τ )1 {τi<τ <τi+1} |F t ] = E[X τ |F t ] = -E[ ∞ 0 X s dZ c s |F t ] .
The classical density hypothesis (CL) may not be satisfied if the continuous part of K is not absolutely continuous (see, for example, the given counterexample in the case where K is continuous).

The extended density hypothesis (ED) is satisfied: it suffices to note that for u < t, P(τ ≤ u|F t ) = 1-e -Ku = u 0 dD s with D s = 1 -e -Ks and m t ≡ 1.

The multiplicative decomposition of Z

Lemma 33 The multiplicative decomposition of Z is 1

E(Y ) t E(-Λ) t = E(Y ) t e -Λt s≤t (1 -∆A I s )e ∆A I s where E(-Λ) is the decreasing F-predictable part and E(Y ) is the F-local martingale part, with Y t = t 0 1 Z s-(1 -∆A I s ) dM s ,
where M being the martingale part of Z in its Doob-Meyer decomposition and Λ being the F-predictable reduction of the compensator of τ given in (3.3.2).

Proof: This result is established in full generality in [START_REF] Jeanblanc | Characteristics and constructions of default times Characteristics and constructions of default times[END_REF], where the authors "guess" this form and check it. However, it seems interesting to recover that result without guessing this decomposition, and we present a proof. By using the multiplicative decomposition of Z as Z = N e -H , where H is a predictable càdlàg increasing process and N a local martingale and by applying the integration by parts formula using Yoeurp's lemma, we obtain dZ t = e -Ht dN t + N t-de -Ht .

1 We recall that the Doléans-Dade exponential of a càdlàg semimartingale X is

E(X)t = e X t -1 2 X c ,X c t 0<s≤t (1 + ∆Xs)e -∆Xs ,
where X c is the continuous martingale part of X.

By identifying this decomposition of Z and the DM decomposition of Z given in (3.3.4) The equality dN = e H dM can be written as

dN = N -Y dM with Y = e H N-= e ∆H Z-= 1 Z-(1-∆A I ) , hence, using the fact that Λ = K c + A I = K c + A I,c + s≤• ∆A I s = H c + s≤• ∆A I s , the proof is done.
One can check that 1 -∆A I ≥ 0. This follows from (3.3.7). Another proof can be given from One can also check that 1 + ∆N > 0. Indeed,

∆A I = p (∆I) = p (1 -e -∆K ) = 1 -p (e -∆K ) ≤ 1,
∆N = -e -(K-+H) ∆M I = -e -(K-+H) (1 -e -∆K -∆A I ) > -1 .

Particular case: K is càdlàg F -predictable

When the process K is càdlàg F-predictable, then Z = 1 -A p = 1 -A o . Furthermore, only the jump times of K, which are all predictable, are F-stopping times not avoided by τ . The same model was presented in [START_REF] Bélanger | A general framework for pricing credit risk[END_REF], in a slightly more general case when Θ is not a unit exponential random variable2 (but is still independent of F). We assume that

K t = t 0 k s ds + i≥1 1 {τi≤t} θ i
where (τ i ) i is a strictly increasing sequence of F-predictable stopping times, k is an F-adapted non-negative process with t 0 k s ds < ∞, ∀t ≥ 0 and (θ i ) i a sequence of non-negative random variables with

θ i ∈ F τi- such that ∞ i=1 θ i < ∞. Note that I = i 1 {τi≤•} (1 -e -θi
) is F-predictable and then A I = I and M I = 0.

Examples

In this subsection, we give some examples when the process K is càdlàg.

Brownian filtration

We construct a simple example where K is càdlàg (but not continuous) and predictable. Let F be a Brownian filtration, (T n , n ≥ 1) an increasing sequence of F-stopping times (e.g., T n = inf{t : W t = n}) and define

K t = t 0 k s ds + n 1 {Tn≤t} θ n where (θ n ) n≥1 is a sequence of non-negative random variables with θ n ∈ F Tn = F Tn-, i.e., θ n = c + Tn 0 ψ (n)
s dW s for an F-predictable process ψ (n) (such that θ n ≥ 0).

In this case, A

I = I = n 1 {Tn≤•} (1 -e -c-Tn 0 ψ (n)
s dWs ) and M I = 0.

Subordinator processes

Before going further, we recall the compensation formula for Lévy processes as described in Jeanblanc, Yor, and Chesney, 2009, Proposition 11.2.2.3. Proposition 34 Let X be a Lévy process with Lévy measure denoted by ν and let f be a non-negative function such that f (0) = 0. Then,

E   0<s≤t f (∆X s )   = t R f (x)ν(dx). Furthermore, if R f (x)ν(dx) < ∞, then 0<s≤t f (∆X s
) is a Lévy process and the process

0<s≤t f (∆X s ) -t R f (x)ν(dx)
is a martingale.

3.3.5.2.1 Case where K is a subordinator We consider the case where K is a pure subordinator, i.e., a càdlàg Lévy process without drift with increasing paths (see, e.g., Jeanblanc, Yor, and Chesney, 2009, Subsection 11.6;Cont and Tankov, 2004, Subsection 4.2.2). We denote by ν its Lévy measure, which is such that

∞ 0 (1 ∧ x)ν(dx) < ∞ . (3.3.9)
We consider ψ : R + → R + to be the Laplace exponent of K, i.e., ψ verifies E[e -uKt ] = e -tψ(u) , t, u ≥ 0 and has the following expression .3.10) Note that the restriction (3.3.9) implies that ψ is finite for all u ≥ 0.

ψ(u) = ∞ 0 (1 -e -ux )ν(dx), u ≥ 0. ( 3 
The natural filtration of K is denoted by F. Our goal is to use the result of Lemma 30 in order to make explicit the characteristics of the default time τ . For this purpose, since the continuous part of the process K is null, it suffices to compute the compensator A I of the process I t := s≤t (1 -e -∆Ks ).

By considering the non-negative function f (x) = 1 -e -x , ∀x ≥ 0, one can apply Proposition 34 which implies that

E   0<s≤t f (∆K s )   = E   s≤t (1 -e -∆Ks )   = t ∞ 0 (1 -e -x )ν(dx). Since ∞ 0 (1 -e -x )ν(dx) = ψ(1) < ∞, it
follows that the process I is a subordinator and

I t -t ∞ 0 (1 -e -x )ν(dx) = I t -tψ(1) (3.3.11) is an F-martingale.
By consequence, the F-predictable reduction of the compensator of τ is given by Λ t = tψ(1).

(3.3.12)

For any u, the process

n t (u) = e -uKt+tψ(u) (3.3.13)
is an F-martingale with E[n t (u)] = 1 (see, e.g., Cont and Tankov, 2004, Proposition 3.17). In particular, the process n, defined as

n t := n t (1) = e -Kt+tψ(1) (3.3.14) is an F-martingale.
Therefore, the survival probability of τ is given by

P (τ > t) = E[Z t ] = E[e -Kt ] = E[n t e -tψ(1) ] = e -tψ(1)
and its density is f (t) = ψ(1)e -tψ(1) , i.e., τ has an exponential law. For θ ≥ t, one has

P(τ > θ|F t ) = E[Z θ |F t ] = e -Kt E[e -K θ-t ] = e -Kt e -ψ(1)(θ-t) = n t e -θψ(1) = n t ∞ θ f (s)ds so that for θ ≥ t, P(τ ∈ dθ|F t ) = n t f (θ)dθ.
Since Z u is not absolutely continuous w.r.t. Lebesgue's measure, the (CL)-conditional density does not exist in this model. One can check the existence of the (GD)-conditional density by using Proposition 32 which implies that α(u) = 0 because K has no continuous part (k = 0). This can be confirmed by the fact that i P(τ = τ i ) = 1 which implies that, for any bounded Borel function h, one has E h(τ ) i 1 {τi =τ } = 0.

Remark 35 These results about subordinators cover a wide range of examples because of the large families of these kind of Lévy processes. This means that for any subordinator process that represents the process K in the generalized Cox model, it suffices to know its Lévy measure in order to obtain all the characteristics of the default time τ . In what follows, we present some examples of these processes.

Example 36 Compound Poisson process

We consider K a compound Poisson process with non-negative jumps (which is a subordinator), i.e., K t = Nt n=1 Y n , where N is a Poisson process with jump times (T n , n ≥ 1) and intensity λ and (Y n , n ≥ 1) non-negative random variables, i.i.d. and independent of N . Hence, the Lévy measure ν of K is given by ν(dy) = λF (dy), where F is the cumulative distribution function of Y 1 , and its Laplace exponent ψ is

ψ(u) = ∞ 0 (1 -e -uy )ν(dy) = λ ∞ 0 (1 -e -uy )F (dy) = λ(1 -E[e -uY1 ]
). Thus, from (3.3.12), the intensity rate of τ is

ψ(1) = λ(1 -E[e -Y1 ]).
In the particular case where Y 1 has exponential distribution with parameter γ, then the F-predictable reduction of the compensator of τ is tψ(1), where

ψ(1) = λ 1 + γ .
Example 37 Gamma process Let K be the Gamma process denoted by (G t (α, µ), t ≥ 0) which is a subordinator with Lévy measure

ν(dx) = α x e -µx 1 {x>0} dx Chapter 3. Generalized Cox model with α, µ > 0. Hence, ψ(1) = ∞ 0 (1 -e -x ) α
x e -µx dx and the F-predictable reduction of the compensator of τ is t ∞ 0

(1 -e -x ) α x e -µx dx.

Example 38 Tempered stable subordinator In the case where K is a tempered stable subordinator, its Lévy measure ν is given by (see [START_REF] Cont | Financial Modelling with jump processes[END_REF], Subsection 4.2.2)

ν(dx) = γe -λx x β+1 1 {x>0} dx,
where γ > 0, λ > 0, 0 ≤ β < 1. Therefore, the F-predictable reduction of the compensator of τ is then given by t ∞ 0 (1 -e -x ) γe -λx x β+1 dx.

3.3.5.2.2 Case where K is a subordinator plus an absolutely continuous part We set

K t = t 0 k s ds + X t
where k is a non-negative process adapted to the filtration F W generated by a Brownian motion W and X a pure subordinator process independent of F W . We denote by F X the natural filtration of X and by ν its Lévy measure. We define the reference filtration F as

F = F W ∨ F X .
The multiplicative decomposition of Z = e -K is given by the following equality

Z t = n t e -t 0 ksds-tψ(1) (3.3.15)
where n is the F X -martingale (hence an F-martingale) defined in (3.3.14) and ψ is the Laplace transform of X defined in (3.3.10). By integration by parts, one obtains the Doob-Meyer decomposition of Z: Thus, Λ, the F-predictable reduction of the compensator of τ is .3.19) This result can also be obtained by using Lemma 30. It suffices to note that I t = i (1 -e -∆Xτ i )1 {τi≤t} is a submartingale with F-predictable part A I t = ψ(1)t. The survival probability of τ is .3.20) This is due to the fact that the martingale n is independent of e -t 0 ksds and E[n t ] = 1. The default time admits a (GD) conditional density where the martingale family α is given by α t (u) = E[k u e -Ku |F t ], for all u, t ≥ 0 and the conditional survival process of τ is then given by for u ≥ t,

dZ t = e -t
dΛ t = (k t + ψ(1))dt. ( 3 
P(τ > t) = E[Z t ] = E n t e -t 0 ksds-tψ(1) = e -tψ(1) E e -t 0 ksds . ( 3 
P(τ ≥ u|F t ) = ∞ u α t (s)ds + i 1 {τi≥t} p i τi∨t ,
where p i t = P(τ = τ i |F t ) are given from (3.3.6) by

p i t = E e -τ i 0 ksds e -Xτ i-1 (1 -e -∆Xτ i )|F t .

Marked point process

If an increasing sequence (τ i ) i of F-stopping times and a sequence of non-negative random variables variables

(θ i ∈ F τi , i ≥ 1)
are given, as well as a non-negative F-adapted process k, one can construct an increasing càdlàg process K as K t = t 0 k s ds + i≥1 1 {τi≤t} θ i . This framework covers many cases of generalized Cox model, i.e., all those where the sequence of jump times of K is increasing and the continuous part is absolutely continuous w.r.t. the Lebesgue measure.

The associated random time τ does not avoid the stopping random times (τ i ) i≥1 and we set τ 0 = 0. We have

I t = i≥1 (1 -e -θi )1 {τi≤t} = i≥1 γ i 1 {τi≤t} = M I t + A I t .
We consider the marked point process (γ i , τ i ) i with jump measure µ defined as, for any Borel set

A µ(ω, [0, t], A) = i≥1 1 {τi(ω)≤t} (ω)1 {γi(ω)∈A}
and its compensator ν given by

ν(dt, dx) = i≥0 1 {τi<t≤τi+1} P(τ i+1 ∈ dt, γ i+1 ∈ dx|F τi ) P(τ i+1 > t|F τi )
(see Last and Brandt, 1995a, Section 1.10). Then

I t = t 0 R + xµ(ds, dx) = M I t + A I t
where M is the martingale t 0 R + x(µ(ds, dx) -ν(ds, dx)) and A I t = t 0 R + xν(ds, dx). Furthermore, dA p t = e -Kt-(dK c t + dA I t ).

A particular case of Marked point process

In the particular case of point process, i.e., K t = i≥1 1 {τi≤t} for an increasing sequence of (τ i ) i , denoting by F the natural filtration of K, one obtains dA p t = e Kt-dA I t where I = (1 -e -1 )K so that A I = (1e -1 ) i≥1 J i , where, for any i, the process J i is the F-compensator of A i = 1 {τi≤•} .

In the case where all the J i are continuous, the process N = Z exp Λ is a martingale, where

Λ t = t 0 dA p s Zs-= A I t .
Hence, e -K+(1-e -1 ) i≥1 J i is a martingale. One can recover the result of Giesecke and Zhu, 2013, Proposition 3.1 that, setting ψ(u) = 1 -e -u , the process e -uK+ψ(u) i≥1 J i t is a martingale by considering the increasing process K = uK. Note that, if all the τ i are predictable, K is predictable hence i≥1 J i t = K. Furthermore, as noticed in Subsection 3.3.4 dA p = dI = -dZ. One has also A I = I, so that Λ = (1 -e -1 )K.

Shot-noise processes

Shot-noise processes have been introduced by Campbell (1909a), Campbell (1909b) in the context of studying discontinuous phenomena and light emission and became popular in the whole physical domain with Chapter 3. Generalized Cox model [START_REF] Schottky | Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern[END_REF], which earned him the nomination Schottky-noise. A wide variety of studies of these processes have been developed in the actuarial sciences issues. These include the one of [START_REF] Schmidt | Catastrophe insurance modeled by shot-noise processes[END_REF] for modeling the aggregated losses process in catastrophe reinsurance. [START_REF] Dassios | Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity[END_REF], in pricing of catastrophe reinsurance and derivatives, used shot noise process for modeling the intensity catastrophe event times. [START_REF] Mikosch | Non-life insurance mathematics: an introduction with the Poisson process[END_REF] applied these processes in non life insurance. Recent works have been done in credit risk; these include [START_REF] Scherer | Shot-noise driven multivariate default models[END_REF] in portfolio default modeling where the authors used the first-passage times of the common clock across independent exponentially distributed threshold levels but they have not been interested in the default times characteristics. There is also the work of [START_REF] Herbertsson | Pricing basket default swaps in a tractable shot noise model[END_REF] in pricing basket default swaps.

Definition 39 Let F be a given filtration, (τ i ) i be a strictly increasing sequence of F-stopping times with τ 0 = 0, and (γ i ) a sequence of random variables with γ i ∈ F τi . We consider µ the random jumps measure of the marked point process (τ i , γ i ) i defined as µ(ω, [0, t], A) = i 1 {τi(ω)≤t} 1 {γi(ω)∈A} for A ∈ B(R) and ν its compensator. We denote by μ the compensated random measure μ = µ -ν. We define the shot-noise process X = (X t ) t≥0 (see [START_REF] Scherer | Shot-noise driven multivariate default models[END_REF] as

X t = ∞ i=1 1 {τi≤t} G(t -τ i , γ i ) = t 0 R G(t -s, x)µ(ds, dx), ∀t ≥ 0 (3.3.21)
where the function G : R + × R → R + , called shots' decay patterns, satisfies

G(t, x) = G(0, x) + t 0 g(s, x)ds ∀ t ≥ 0, x ∈ R (3.3.22)
with g a non-negative Borel function on R + × R, so that G is increasing with respect to its first variable. We assume that T 0 R (g(s, x)) 2 ν(ds, dx) < ∞, ∀ T, a.s (3.3.23) and there exists a non negative function ϕ such that .3.24) Note that ∆X τi = G(0, γ i ) for any i ≥ 1 and the continuous part of X is given by X

|g(s, x)| ≤ ϕ(x), ∀ (s, x) with T 0 R ϕ(x)ν(ds, dx) < ∞, ∀ T a.s. ( 3 
c t = i≥1 1 {τi≤t} [G(t- τ i , γ i ) -G(0, γ i )].
The configurations of the function G lead to some different specifications of the shot-noise process X. For instance, when G has the exponential structure, i.e., G(t, x) = xe αt 1 {x≥0} , for t ≥ 0 with α > 0, the process We aim to find the characteristics of the default time τ when K is the shot-noise process defined in (3.3.21) (i.e., when K = X). In the next lemma, we give the decomposition of the increasing F-adapted process (hence the F-submartingale) X which will be used later. Our result is similar to the one of Schmidt, 2014, Lemma 2 and we have an explicit form for the martingale part.

X
Lemma 40 The shot-noise process X is an F-submartingale and admits the following Doob-Meyer decomposition X t = M X t + A X t where the increasing F-predictable part A X is

A X t = t u=0 u s=0 R g(u -s, x)µ(ds, dx) du + t s=0 R G(0, x)ν(ds, dx)
and the F-martingale part M X has the following form:

M X t = t 0 R G(0, x)μ(ds, dx) . Proof: We extend the definition of G to R × R by setting G(u, x) = G(0, x), for u < 0. Introducing Y t (a) = t 0 R G(a -s, x)μ(ds, dx) for any a ∈ R, one has X t = Y t (t) + t 0 R G(t -s, x)ν(ds, dx).
We apply the Itô-Ventzell formula as developed in Øksendal and Zhang, 2007, Theorem 3.1 to the process Y t (a) with parameter a, where forward integral in [START_REF] Øksendal | The Itô-Ventzell formula and forward stochastic differential equations driven by Poisson random measures[END_REF] is usual integral in our setting, due to the fact that we integrate only deterministic functions with respect to compensated random measure.

The first derivative of Y t (a) with respect to the parameter a is (see [START_REF] Metivier | Pathwise differentiability with respect to a parameter of solutions of stochastic differential equations[END_REF] due to (3.3.24),

Y t (a) = t 0 R
g(a -s, x)μ(ds, dx).

Using Theorem 3.1 of [START_REF] Øksendal | The Itô-Ventzell formula and forward stochastic differential equations driven by Poisson random measures[END_REF], it follows that

Y t (t) = t u=0 Y u (u)du + t s=0 R
G(0, x)μ(ds, dx).

Note that t u=0 Y u (u)du is a continuous bounded variation adapted process, hence is a predictable process. Therefore,

X t = t u=0 u s=0 R g(u -s, x)μ(ds, dx) du + t 0 R G(0, x)μ(ds, dx) + t 0 R G(t -s, x)ν(ds, dx) = M X t + t 0 R G(t -s, x)ν(ds, dx) + t u=0 u s=0 R g(u -s, x)μ(ds, dx) du
where M X is the local martingale t 0 R G(0, x)μ(ds, dx). Using (3.3.22), one has

t 0 R G(t -s, x)ν(ds, dx) = t s=0 R t-s u=0 g(u, x)du ν(ds, dx) + t 0 R G(0, x)ν(ds, dx).
By making the change of variable y = u + s, one obtains Chapter 3. Generalized Cox model Therefore,

X t = M X t + t u=0 u s=0 R g(u -s, x) µ(ds, dx) du + t 0 R G(0, x)ν(ds, dx) = M X t + A X t where A X t = t u=0 u s=0 R g(u -s, x) µ(ds, dx) du + t 0 R G(0, x)ν(ds, dx).
Now, we are ready to compute the F-predictable reduction of the compensator of the default time τ . This is given in the next Lemma.

Lemma 41 If the process K is of the form (3.3.21), then the F-predictable reduction of the compensator of τ has the following expression:

Λ t = t u=0 R u s=0 g(u -s, x)µ(ds, dx) du + t 0 R
(1 -e -G(0,x) )ν(ds, dx) .

(3.3.25)

Proof: The predictable part of the submartingale

I t = i 1 {τi≤t} (1 -e -∆Kτ i ) = t 0 R
(1 -e -G(0,x) )µ(ds, dx) x) )ν(ds, dx). In addition, the continuous part K c of K is given by

is A I t = t 0 R (1 -e -G(0,
K c t = i≥1 1 {τi≤t} [G(t -τ i , γ i ) -G(0, γ i )] = t s=0 R t-s u=0 g(u, x)du µ(ds, dx) = t u=0 R u s=0
g(u -s, x)µ(ds, dx) du.

Therefore, from Lemma 3.3.1, the F-predictable reduction of the compensator of τ is K c + A I .

Remark 42 Note that the F-predictable reduction of the compensator of τ can also be recovered by using (1.2.1). Indeed, by Itô's formula for semimartingales, one has

dZ t = -e -Kt-dK t + e -Kt-(e -∆Kt -1) + e Kt-∆K t = e -Kt--dM K t -dA K t + e -∆Kt -1 + ∆K t .
Hence by denoting by m the martingale part of the Doob Meyer decomposition of Z, it follows that

dZ t = Z t--dM K t -dA K t + R (e -G(0,x) -1 + G(0, x))µ(dt, dx) = dm t -dA p t ,
where

dA p t = Z t-dA K t + R (1 -e -G(0,x) -G(0, x))ν(dt, dx) .
Hence by using (1.2.1), one obtains

dΛ t = dA K t + R 1 -e -G(0,x) -G(0, x) ν(dt, dx).
The result follows by replacing A K by its expression, which is

A K t = t u=0 u s=0 R g(u -s, x) µ(ds, dx) du + t 0 R G(0, x)ν(ds, dx).
The following result gives the F-conditional law of τ in the particular case where ν is deterministic. 

= τ . If it is of the form [a, ∞[ it would mean that a = τ is in the set {K t > Θ}, hence K τ > Θ. By left-continuity of K, one should have K τ -ε > Θ for ε small enough, hence a contradiction. It follows that {K t > Θ} =]τ, ∞] = {t > τ }.
Proposition 46 If K is càglàd, and τ = inf{t : K t > Θ} , one has Z = e -K+ , dΛ = e -∆ + K (dK c + dA C ) where A C is the predictable part of the supermartingale C t = s≤t e -∆ + Ks -1 .

Proof: Let κ t := K t+ = K t + ∆ + K t where ∆ + K t = K t+ -K t . Let J t = s≤t ∆ + K s , so that κ t = K c t + J t , where K c is the continuous part of K, defined as K c t = K t -s≤t ∆ + K s .
From Lemma 45, one has Z t = P(τ ≥ t|F t ) = P(Θ ≥ K t |F t ) = e -Kt and Z t = e -κt ( as Z + = Z + = Z (see Aksamit and Jeanblanc, 2017, Subsection 1.3.4)), one has dZ t = -e -κt-dκ t + (e -κt -e -κt-+ e -κt-∆κ t )

= -e -κt-dK c t + e -κt-(e -∆κt -1).

The decreasing càdlàg process C defined as C t := s≤t e -∆κs -1 = s≤t e -∆ + Ks -1 admits a Doob-Meyer decomposition C = M C -A C and

dZ t = e -κt-dM C t -e -κt-(dK c t + dA C t ) = e -Kt dM C t -e -Kt (dK c t + dA C t )
and

dA p t = e -Kt (dK c t + dA C t ), dΛ t = e ∆ + Kt (dK c t + dA C t ).
For u < t, the equality

P(τ ≤ u|F t ) = 1 -e -κu = u 0 dD s ,
where D s = 1 -e -κs , proves that the extended LR-conditional density exists.

Chapter 4. Application of the generalized Cox model in credit risk modeling and the one received by the protection seller

P leg t = E[ T t 1 {u<τ } κdu|G t ], i.e., CDS t (κ, δ, T ) = E[δ τ 1 {t<τ ≤T } -κ(T ∧ τ -t) + |G t ] . (4.1.1)
By definition of the CDS contract, one has CDS 0 (κ, δ, T ) = 0 which determines the value of κ.

We consider the default time τ to be a generalized Cox time, i.e.,

τ = inf{t ≥ 0 : K t ≥ Θ}, (4.1.2)
where K is an increasing càdlàg F-adapted process and Θ a unit exponential r.v. independent of F.

To make explicit the pre-default prices of the DB and the two legs of the CDS defined above, one needs to specify the situation in which we are, i.e., whether or not the process K is subject to some economic shocks, and if these shocks are predictable or not.

In what follows, we consider some different cases of the economy for which we compute the characteristics of τ before plugging them into the pricing formula.

The model

We consider an increasing sequence of F-stopping times (τ i ) i , with τ 0 = 0 and we define the increasing càdlàg F-adapted process K as

K t = t 0 k s ds + i≥1 1 {τi≤t} ∆K τi (4.2.1)
where k is a non-negative F-adapted process and ∆K t = K t -K t-is non-negative.

The financial intuition behind this model can be seen in the particular case where the claim (DB) is issued by an entity (E ) (which may be, for example, a firm or a sovereign country) with a risky asset S, tradable in the financial market, assumed to be F W -adapted, where F W is the filtration generated by a Brownian motion W , and F W ⊂ F. The asset S may be the total asset value of the entity (E ) when (E ) is a firm or its solvency process when (E ) is a sovereign country. The process k which is supposed to be F W -adapted, can be considered (as in Jiao and Li, 2018) to be a function of S, i.e., k = ϕ(S), where ϕ is a decreasing non-negative function and the jump times (τ i ) i of the process K as the times of some possible economic shocks which can affect the price of the claims. In this setting, the times of the shocks capture the exogenous shocks of the economy while the process k captures the possible losses effect in the asset S, a useful type of this process k being the so-called negative power process given as ϕ(S) = αS -p , with α and p some non-negative constants, used by [START_REF] Linetsky | Pricing equity derivatives subject to bankruptcy[END_REF] in the context of pricing equity derivatives. The case where the entity (E ) is a sovereign country and F W = F is studied by Jiao and Li (2018).

Case where the economic shocks are predictable

We consider the case where the jumps times (τ i ) i are F-predictable stopping times. An example of this modeling consists in considering a decreasing sequence of positive fixed barriers (b i ) i and defining each τ i as the first time the (positive) risky asset S (F-adapted and continuous), with S ∞ = 0, being below the barrier b i , i.e., τ i = inf{t ≥ 0 : S t ≤ b i }, with S 0 > b 1 . One can define the jumps size of the process K as follows:

K τi -K τi-= θ i , (4.2.2)
4.2. The model 55 where (θ i ) i≥1 is a sequence of non-negative random variables with θ i ∈ F τi-. In this case, the process K given by

K t = t 0 k s ds + i≥1 1 {τi≤t} θ i (4.2.3)
is increasing right-continuous F-predictable. This model which is the one of Bélanger, Shreve, and Wong ( 2004) is a particular case of the one described in 3.3. In the particular case where θ i = Ψ(τ i ) -Ψ(τ i-1 ), with Ψ an increasing function, we recover the generalized Jiao and Li model in which the associated K is

K t = Γ t + ∞ i=1 1 {τi≤t} [Ψ(τ i ) -Ψ(τ i-1 )] (4.2.4)
with Γ t = t 0 k s ds. Let us now investigate the pre-default price of the defaultable bond defined above under this setting (i.e., K predictable defined by (4.2.3)). Since K is F-predictable the F-dual projections A o and A p are the same and are equal to (1 -Z). This implies that the pricing of defaultable contingent claims can be done by using any of them. By identifying

K c t = t 0 k s ds and A I t = I t = ∞ i=1
(1 -e -θi )1 {τi≤t} (which is due to the fact that I is F-predictable and increasing hence M I = 0), one deduces, from Lemma 30, that the F-predictable reduction Λ of the compensator of τ is given by:

Λ t = t 0 k s ds + ∞ i=1 1 {τi≤t} (1 -e -θi ). (4.2.5)
From Proposition 32, the generalized density hypothesis is satisfied with α t (s) = E[e -Ks k s |F t ] and from Proposition 22 it follows

Z t = 1 -P(τ ≤ t|F t ) = 1 - ∞ 0 1 {u≤t} α t (u)du - ∞ i=1 1 {τi≤t} p i τi = 1 - t 0 α u (u)du - ∞ i=1 1 {τi≤t} p i t (4.2.6)
where we have used the fact that

1 {τi≤t} p i t = 1 {τi≤t} E[e -Kτ i -(1 -e -θi )|F t ] = 1 {τi≤t} e -Kτ i -(1 -e -θi )= 1 {τi≤t} p i τi
and the fact that α t (u) = α u (u) on {t ≥ u}.

Proposition 47 The pre-default price at time t, denoted D t (T ), of the defaultable bond has the following expression

D t (T ) = D t (T ) + D t (T ) (4.2.7)
where

D t (T ) = E exp - ∞ i=1 1 {t<τi≤T } θ i - T t k s ds |F t (4.2.8)
is the predefault price of the terminal payoff 1 and

D t (T ) = E T t h u α T (u)du + ∞ i=1 h τi p i τi 1 {t<τi≤T } |F t Z t (4.2.9)
is the predefault price of the recovery. 

D t (T ) = E Z T Z t |F t + E T t h u dA p u |F t Z t = D t (T ) + D t (T ), with D t (T ) =E Z T Z t |F t = E e Kt-K T |F t =E exp - ∞ i=1 1 {t<τi≤T } θ i - T t k s ds |F t and D t (T ) = E T t h u dA p u |F t Z t .
Since on the set {τ i ≤ t}, one has p i t = p i τi , and one obtains d(1 {τi≤t} p i t ) = p i τi dA i t , where

A i t = 1 {τi≤t} .
From the equality A p t = 1 -Z t , by using the fact that α t (u) = α u (u) on the set {t > u}, one has

dA p t = -dZ t = α t (t)dt + ∞ i=1 p i t dA i t
where we have used the equality (4.2.6). Therefore, it follows

T t h u dA p u = T t h u α u (u)du + ∞ i=1 T t h u p i u dA i u = T t h u α u (u)du + ∞ i=1 h τi p i τi 1 {t<τi≤T } . Since α T (u) = α u (u) on {u ≤ T }, one obtains E[ T t h u dA p u |F t ] =E T t h u α T (u)du + ∞ i=1 h τi p i τi 1 {t<τi≤T } |F t .
By consequence,

D t (T ) = E T t h u α T (u)du + ∞ i=1 h τi p i τi 1 {t<τi≤T } |F t Z t .
As we mentioned, we can construct the process K which jumps at the times (τ i ) i and in which we may assume to know the laws of its jump sizes, its jump times and its continuous part as well as the joint law of its jumps sizes. This allows us to get the F-predictable reduction of the compensator of τ given by (4.2.5) of the default time τ which also jumps at the times (τ i ) i with known jumps size. This construction leads to the same model as the model of Jiao and Li (2018) in context of modeling sovereign risks by means of the setting in (4.2.4), in the sense that the two models have two identical Azéma supermartingales and both verify the immersion property. Therefore, one can use our model in the modeling sovereign risks.

The inverse problem From (4.2.5), one has 1 -∆Λ τi = e -θi > 0 and

K t = Λ t - ∞ i=1 1 {τi≤t} (1 - e -θi -θ i ). Hence θ i = -ln(1 -∆Λ τi ) and K t = Λ t - ∞ i=1 1 {τi≤t} [∆Λ τi -ln(1 -∆Λ τi )] .
(4.2.10)

The model 57

Hence by giving a process Λ, increasing predictable continuous on right which jumps at some increasing predictable times (τ i ) i , with τ 0 = 0, and such that its jump size ∆Λ τi at τ i verifies 0 ≤ ∆Λ τi < 1 (see (3.3.8)), one can construct a default time τ which admits Λ as F-predictable reduction of the compensator of τ under the Cox framework by defining K as in (4.2.10).

4.2.2

Case where some economic shocks are not predictable

When the economic shocks are no more predictable, one can consider for example their times of occurrence as the jump times of a compound Poisson process or more generally a shot-noise process. Here, we give these two examples.

Example of the compound Poisson process

We consider the times of occurrence of the shocks (τ i ) i as the jump times of a Poisson process N with intensity λ and we introduce a Brownian motion W independent of N with natural filtration denoted by F W . We set the following form of K:

K t = t 0 k s ds + X t (4.2.11)
where k is an F W -adapted non-negative process and X t = Nt i=1 Y i is a compound Poisson process with (Y i , i ≥ 1) non-negative random variables i.i.d, independent of N and independent of F W . We denote by F X the filtration generated by X and define the reference filtration F as the one generated by X and W . This is a particular case of 3.3.5.2.2, where X t := Nt i=1 Y i admits the Laplace transform ψ defined, for all u ∈ R + , by ψ(u) = ∞ 0 (1 -e -uy )F (dy) with F the cumulative distribution function of Y 1 and the F-martingale n in the multiplicative decomposition of Z (3.3.15) is given by n t = exp (-X t + tλψ(1)).

The pricing formula We assume that the recovery process h is a bounded F-predictable process, then by using (3.3.17), one has

E T t h s dA o s |F t = E - T t h s dZ s |F t = E T t h s dA p s |F t .
The last equality is due to the fact that the conditional expectation of the integral w.r.t the martingale part of Z vanishes. Thus one can either use A o or A p in the valuation of claims when dealing with predictable recovery.

Proposition 48 The pre-default price D t (T ) at time t of the defaultable bond is given by

D t (T ) = D t (T ) + D t (T )
where the quantity D(T ) is given by

D t (T ) = e -(T -t)λψ(1) exp t 0 k s ds E exp - T 0 k s ds |F W t (4.2.12)
and D t (T ) has the following expression

D t (T ) = 1 Z t E T t (k u + λψ(1))h u Z u du|F t . ( 4 

.2.13)

Proof: The quantity D t (T ) is given by

D t (T ) = E e Kt-K T |F t = E exp - T t k s ds -(X T -X t ) |F t = E exp - T t k s ds E[exp (-(X T -X t )) |F W T ∨ F X t ]|F t
where we have used the tower property in the last equality. The fact that the compound Poisson process X is independent of F W and F X t ⊂ F t leads to

D t (T ) = E exp - T t k s ds E[exp (-(X T -X t )) |F X t ]|F t = E[exp (-(X T -X t )) |F X t ]E exp - T t k s ds |F t .
The compound Poisson process X being with independent and stationary increments, one has

D t (T ) = E[exp (-X T -t )]E exp - T t k s ds |F t .
Thus by using the fact that E 1) , with the martingale n given by n t = e -Kt+tλψ(1) , and the independence of k from F X , one has

[exp (-X T -t )] = E[e -(T -t)λψ(1) n T -t ] = e -(T -t)λψ(
D t (T ) = e -(T -t)λψ(1) E exp - T t k s ds |F W t .
The computation of D t (T ) follows by replacing dA p t = (k t + λψ(1))Z t dt in

D t (T ) = E T t h u dA p u |F t Z t , by means D t (T ) = E T t h u (k u + λψ(1))Z u du|F t Z t
Term structure of defaultable bond with zero recovery If the recovery is zero, i.e., h = 0, the pre-default price of the DB is given by

D t (T ) = e -(T -t)λψ(1) E exp - T t k s ds |F W t . ( 4 

.2.14)

Whenever k is an affine process, this leads to the following analytical solution

D t (T ) = e -λψ(1)(T -t) Qt (T ),
with Qt (T ) := E e -T t ksds |F t = e At(T )-Bt(T )kt , where A and B are differentiable functions with A T (T ) = 0 and B T (T ) = 0 and verify generalized Riccati ODEs (see [START_REF] Duffie | Affine processes and applications in finance[END_REF].
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The pre-default yield spread S t (T ) of the defaultable bond, which is the difference between the yield to maturity at time t of the defaultable zero-coupon bond and the one of a risk-free zero-coupon bond, which have the same maturity T , on {τ > t}, is given by

S t (T ) = - 1 T -t ln D t (T ) = λψ(1) - 1 T -t ln Qt (T ) . (4.2.15)
Furthermore, when the process k is affine, this leads to

S t (T ) =λψ(1) - 1 T -t [A t (T ) -B t (T )k t ] . (4.2.16)
For instance, we can consider the case where the process k is a CIR square root diffusion process, i.e., k verifies

dk t = γ(θ -k t )dt + σ √ k t dB t , k 0 = x,
where γ, θ, and σ are positive parameters. Then the quantities A t (T ) and B t (T ) are given by (see [START_REF] Maghsoodi | Solution of the extended CIR term structure and bond option valuation[END_REF]:

A t (T ) = 2 γθ σ 2 ln 2h e 1 2 (γ+h)(T -t) h-γ+e h(T -t) (h+γ) and B t (T ) = -2(e h(T -t) -1) h-γ+e h(T -t) (h+γ) , where h = γ 2 + 2σ 2 .
Comments 49 We note that, under this model (where the jumps of K constitute a compound Poisson process and the continuous part is adapted with respect to a Brownian motion, independent of the jump part), the pre-default price of a DB with null recovery is continuous. Note that the pre-default price of the defaultable bond is decreasing w.r.t. the intensity of the Poisson process N . Furthermore, one observes, for any 0 ≤ t ≤ T , an additional positive value in the spread of the defaultable bond which equals to λψ(1). This shows the impacts of the jumps of K (triggered by the economic shocks) on both the pre-default price and spread of the defaultable bond.

Example of shot-noise processes

Let X a shot noise process defined as in 3.3.21 of Chapter 3 with ν deterministic. One considers the filtration F W generated by a Brownian motion W independent of X and F X the filtration generated by the shot noise process X. We define the reference filtration F as the one generated by X and W .

We consider

K t = t 0 k s ds + X t (4.2.17)
where k is an F W -adapted non-negative process.

Proposition 50 Under the above hypotheses, the pre-default price D t (T ) of the defaultable bond with zerorecovery is given by

D t (T ) = exp T t R (e -G(T -s,x) -1)ν(ds, dx) - t 0 R [G(T -s, x) -G(t -s, x)]µ(ds, dx) Qt (T ), (4.2.18)
with Qt (T ) := E e -T t ksds |F t . Note that Q(T ) is continuous.

Proof: As in the proof of Proposition 48, one easily obtains

D t (T ) = E[e -X T +Xt |F t ] Qt (T ) = e Xt E[e -X T |F t ] Qt (T ).
The result follows by using Proposition 43 where one has

E[e -X T |F t ] = exp T t R (e -G(T -s,x) -1)ν(ds, dx) - t 0 R G(T -s, x)µ(ds, dx) .
Markovian shot-noise In the particular case where X has the following form

X t = ∞ i=0 1 {τi≤t} γ i e α(t-τi) (4.2.19)
with (γ i ) non-negative random variables and α > 0, one obtains -t) G(t -s, x). Furthermore, D(T ) has negative jump size at (τ i ) i given by

D t (T ) = exp T t R + (e -xe α(T -s) -1)ν(ds, dx) -(e α(T -t) -1)X t Qt (T ) . (4.2.20) This is due to the fact that G(T -s, x) := xe α(T -s) = e α(T
∆D τi (T )1 {τi≤T } = D τi-(T ) exp -e α(T -τi) -1 γ i -1 1 {τi≤T } .
The pre-default bond yield, denoted by S t (T ) is then given by

S t (T ) := - 1 T -t T t R + (e -xe α(T -s) -1)ν(ds, dx) -(e α(T -t) -1)X t + ln( Qt (T )) (4.2.21)
and has a positive jump's size at time τ i given on {τ i < T } by

∆S τi (T )1 {τi≤T } = 1 T -τ i (e α(T -τi) -1)∆X τi 1 {τi≤T } = 1 T -τ i (e α(T -τi) -1)γ i 1 {τi≤T } . (4.2.22)
Hence the jumps of K imply some negative jumps of the pre-default price of the defaultable bond and some positive jumps of its pre-default yield spread both at the same jump times of K.

Remark 51 Note, from (4.2.20), that if (γ i , τ i ) i is associated to an increasing compound Poisson process (hence ν(dt, dx) = λF (dx)dt, where F is the law of γ 1 ) and k = 0, between two jumps, i.e., on τ i < t < τ i+1 , the process D(T ) defined as -τi) and (e α(T -t) -1)X τi as well as -γ i e α(t-τi) are decreasing with respect to t.

D t (T ) = exp T t R + (e -xe α(T -s) -1)λF (dx)ds -(e α(T -t) -1)(X τi + γ i e α(t-τi ) is increasing. Indeed since e -xe α(T -t) -1 is non-positive, T t R + (e -xe α(T -s) -1)λF (dx)ds is increasing in t and (e α(T -t) -1)(X τi + γ i e α(t-τi) ) = (e α(T -t) -1)X τi + γ i e α(T -τi) -γ i e α(t

Valuation of the CDS under economic shocks

The same kind of computations as in the case of the defaultable bond allows to obtain the pre-default price of two legs of the CDS. 

D leg t = 1 {τ >t} E[δ τ 1 {τ ≤T } |G t ] = 1 {τ >t} E T t δ u α T (u)du + ∞ i=0 δ τi p i τi 1 {t<τi≤T } |F t Z t .
This computation is the same as in (4.2.9) of Proposition 47, where δ plays the rule of h. The price of the premium leg at time t is given, on {τ > t}, by

P leg t = 1 {τ >t} E[ T t 1 {u<τ } κdu|G t ] = 1 {τ >t} E κ T t Z u du|F t Z t .
The spread κ of the CDS is the one which verifies P leg 0 = D leg 0 and its expression is given by

κ = E T 0 δ u α T (u)du + ∞ i=0 δ τi p i τi 1 {τi≤T } E T 0 Z u du .

CDS price under surprising economic shocks: example of the compound Poisson process

Whenever the process K is given by ( 4.2.11) the price of the default payment leg at time t is given by

D leg t = 1 {τ >t} 1 Z t E T t (k u + λψ(1))δ u Z u du|F t
whereas the value of the premium leg at time t is given by

P leg t = 1 {τ >t} E κ T t Z u du|F t Z t = 1 {τ >t} E κ
T t e -Xu e -u 0 ksds du|F t Z t .

By using the Tower property one has

P leg t = 1 {τ >t} κ T t E e -u 0 ksds E e -Xu |F W u ∨ F X t |F t du Z t .
The fact that X is independent of F W and F X t ⊂ F t implies

P leg t = 1 {τ >t} κ T t E e -u 0 ksds |F t E e -Xu |F X t du Z t
Using the independence property of W and F X , we obtain

P leg t = 1 {τ >t} κ T t E e -Xu |F X t E e -u 0 ksds |F W t du Z t = 1 {τ >t} κ T t n t e -uψ(1) E e -u 0 ksds |F W t du Z t = 1 {τ >t} κ T t e -uψ(1) y t (u)du e -tψ(1)
where y t (u) = E e -u 0 ksds |F W t . Therefore, the spread κ can be computed from

P leg 0 = D leg 0 which leads to κ = E T 0 (k u + λψ(1))δ u Z u du
T 0 e -uψ(1) y 0 (u)du .

(4.2.23)

General framework of dynamics of defaultable Bond

In this subsection, we will be interested in the dynamics of the pre-default prices of defaultable bond with zero recovery, in a more general case, when the default time follows a generalized Cox time under which the process K is càdlàg. One knows that for any maturity T , the pre-default price D t (T ) at time t < T has the following form

D t (T ) = E[Z T |F t ] Z t =: Y t (T )e Kt where Y (T ) is the F-martingale defined by Y t (T ) := E[Z T |F t ].
When there is no ambiguity, we delete T in the notation (i.e., we denote for T fixed Y t instead of Y t (T ), for t < T ). By Itô's integration by parts, one has, for 0 ≤ t < T ,

dD t (T ) = Y t-de Kt + e Kt-dY t + d[Y, e K ] t = Y t-e Kt-dK c t + dJ t ) + e Kt-dY t + d[Y, e K ] t
where J is the increasing process (hence a submartingale with a Doob-Meyer decomposition)

J t = s≤t (e ∆Ks - 1) = M J t + A J t .
The covariation process [Y, e K ] t = t 0 ∆Y s de Ks is a semimartingale, that we assume to be special with decomposition [Y, e K ] = A * + M * where M * is a local martingale and A * a predictable process.

Therefore, the local martingale part M D (T ) of D(T ) is given by

M D t (T ) = t 0 Y s-e Ks-dM J s + t 0 e Ks-dY s + M * t (4.2.24)
and its predictable bounded variation part A D (T ) is given by

A D t (T ) = t 0 Y s-e Ks-dK c s + dA J s ) + A * t . (4.2.25)

Examples

In this subsection, we give some particular cases which lead to more explicit formulae. In addition, we analyse the impacts of the jumps times of the generalized Cox process K to the prices.

Example 52 If F is a continuous filtration, Y is continuous, hence [Y, e K ] = 0. Furthermore, since optional processes are predictable 1 , J is predictable and M J = 0, A J = J. Hence, 

dD t (T ) = Y t de Kt + e Kt-dY t = Y t e
M D t (T ) = t 0 e Ks-dY s , ∀ 0 ≤ t < T
1 In a continuous filtration, the two σ-algebra O(H) and P(H) are equal (see [START_REF] Jeanblanc | Mathematical methods for financial markets[END_REF], Page 512)).

The model

and a predictable part

A D t (T ) = t 0 Y s e Ks-dK c s + t 0 Y s e Ks-dA J s , ∀ 0 ≤ t < T.
It is clear, from (4.2.26), that the predefault-price D(T ) has predictable positive jumps at the jumps times (τ i ) i of K which are given by

∆D τi (T )1 {τi<T } = D τi-(T )∆A J τi 1 {τi<T } = D τi-(T )(e ∆Kτ i -1)1 {τi<T } .
Example 53 If K is predictable, M J ≡ 0 and A J = J, and by Yoeurp's lemma [Y, e K ] t = t 0 ∆e Ks dY s which is the local martingale that we have denoted M * . Then e Ks-dY s + dM * s = (e Ks-+ ∆e Ks )dY s = e Ks dY s and the local martingale part of D t (T ) is

M D t (T ) = t 0 e Ks dY s , ∀ 0 ≤ t < T. (4.2.27)
The predictable bounded variation part is

A D t (T ) = t 0 Y s-e Ks-dK c s + dJ s ), ∀ 0 ≤ t < T. (4.2.28)
Note that, for any 0 ≤ t < T , e Kt-dK c t + dJ t ) = e Kt dK c t + e Kt dI t = e Kt dΛ t so that the predictable part is

A D t (T ) = t 0 Y s-e Ks dΛ s , ∀ 0 ≤ t < T.
In this case, the predefault price D(T ) has jumps at the jump times of K with sizes given, for all 0 ≤ t < T , by

∆D τi (T )1 {τi<T } = D τi-(T ) e ∆Kτ i Y τi Y τi- -1 1 {τi<T } .
Example 54 If F is generated by a Brownian motion W (hence a continuous filtration) and K predictable, using the fact that Y (T ) is a strictly positive F-local martingale which can be written, thanks to the martingale representation theorem, as dY t (T ) = φ t (T )Y t (T )dW t , for an F-predictable process φ(T ), one obtains

dD t (T ) = D t (T ) (dΛ t + φ t (T )dW t ) . ( 4 

.2.29)

We recover the result of Bélanger, Shreve, and Wong, 2004, formula 5.3, Theorem 5.1 in the case of zero recovery.

Example 55 We assume to be in the case of shot-noise model presented in Subsection 4.2.2.2, and ν is deterministic. From the results of Subsection 4.2.2.2, it follows that if k = 0 then

D t (T ) = exp T t R (e -G(T -s,x) -1)ν(ds, dx) - t 0 R [G(T -s, x) -G(t -s, x)]µ(ds, dx) .
The dynamics of D(T ) can be deduced by Itô-Ventcell's formula. We prefer to make use of the general results presented in the first part of this section, with Y t = c(T )L t (T ), where c(T ) = exp

T 0 R (e -G(T -s,x) -1)ν(ds, dx) and L t (T ) = exp - t 0 R G(T -s, x)µ(ds, dx) - t 0 R (e -G(T -s, x) -1)ν(ds, dx) .
The jumps of Y and e K occur at times τ i . One has, from (3.3.28)

∆Y τi = Y τi-(e -G(T -τi,γi) -1) ∆(e K ) τi = e Kτ i -(e G(τi-τi,γi) -1) = e Kτ i -(e G(0,γi) -1) . Hence [Y, e K ] t = s≤t ∆Y s ∆(e K ) s = t 0 Y s-e Ks- R (e -G(T -s,x) -1)(e G(0,x) -1)µ(ds, dx) = M * t + t 0 Y s-e Ks- R (e -G(T -s,x) -1)(e G(0,x) -1)ν(ds, dx) . ( 4 

.2.30)

As in section 3.3.5.5 for the computation of A I , we obtain

A J t = t s=0 R
(e G(0,x) -1)ν(ds, dx), ∀t ≥ 0 , Therefore, the local martingale part of D(T ) is

M D t (T ) = t 0 Y s-e Ks-dM J s + t 0 e Ks-dY s + M * t where M * t = t 0 R
Y s-e Ks-(e -G(T -s,x) -1)(e G(0,x) -1) µ(ds, dx), ∀t ≥ 0

M J t = t 0 R
(e G(0,x) -1) µ(ds, dx), ∀t ≥ 0 so that the local martingale part reduces, after simple computation, to

M D t (T ) = t 0 R Y s-e Ks-e -(G(T -s,x)-G(0,x)) -1 µ(ds, dx) (4.2.31)
and the predictable bounded variation part is

A D t (T ) = t 0 R Y s-e Ks-e -G(T -s,x) (e G(0,x) -1)ν(ds, dx) .
In this case the predefault price D(T ) admits negative jumps at the jump times (τ i ) i of K which are given by

∆D τi (T )1 {τi<T } = D τi-(T ) e G(0,γi)-G(T -τi,γi) -1 1 {τi<T } (4.2.32)
which can be directly obtained from (4.2.31).

Example 56 In the case of the Compound Poisson process and a Brownian filtration as given subsection 4.2.2.1, one has D t (T ) which is given by (4.2.14) that shows that D(T ) is a continuous process. Setting As a remark, we can note that it is not difficult to obtain (up to K c ) the same form for the dynamics of D(T ) (with longer computation) using the previous equalities. Indeed, as noticed previously, the CCP correspond to the case when the shot noise is obtained from

y t (T ) = E[exp - T 0 k s ds |F W t ] and η t (T ) = e -(T -t)λψ(-1) exp t 0 k s ds , the dynamics of D t (T ) is dD t (T ) = η t (T )dy t (T ) + y t (T )η t (T )(λψ(-1) + k t )dt
G(t, x) = x. Then, Y t = e -Xt-(T -t)λψ(-1) E[exp - T 0 k s ds |F W t ]
and we obtain

[Y, e K ] t = s≤t ∆Y s ∆(e K ) s = M * t + t 0 Y s-e Ks-

R

(2 -e x -e -x )λF (dx)ds .

Illustrative example of the shot-noise case

Here, we present the simulation results of the generalized Cox model in the case of Markovian shot-noise introduced in 4.2.2.2. This choice is due to the fact that the Markovian shot-noise processes are preferable for the computational perspective thanks to their analytical tractability.

The simulation of the particular case (where (γ i ) i are i.i.d) of the process given in (4.2.19) is done by using the standard Algorithm 2.1 of [START_REF] Scherer | Shot-noise driven multivariate default models[END_REF]. In Figure 4.1, we illustrate one trajectory of K where, as in ( 4. -τi) , in between 0 and T = 6 years, with i.i.d exponential jumps (γ i ) i of parameter γ = 5, with parameter α = 0.5 and where the jumps times τ i are jumps of a Poisson process N independent of the (γ i ) i with intensity λ = 0.4. One can observe three jumps of the shot-noise at times τ 1 = 2.028, τ 2 = 2.994 and τ 3 = 4.254 with respectively sizes γ 1 = 0.045, γ 2 = 0.014, and γ 3 = 0.094. Figure 4.2 shows the corresponding time-varying Bond prices computed using (4.2.20) where k = 0 (with ν(ds, dx) = λF (dx)ds, where F is the law of γ 1 ). Unsurprisingly, one observes three negative jumps of the prices at the same jump times of the shot-noise. In addition, the bond price is increasing between the jumps times as we have shown in Subsection 4.2.2.2. We end this example by investigating the survival probability of the default time τ which can be computed by using (3.3.29). Part II

2.19), K t = ∞ i=0 1 {τi≤t} γ i e α(t

Kriging for volatility surfaces construction

Chapter 5

An introduction to kriging

In this chapter, we first, briefly recall some known facts about classical kriging before introducing the constrained kriging approach which extends the classical one in presence of some linear inequality constraints (such as monotonicity, bounded, convexity,...). More details about classical kriging can be found in [START_REF] Williams | Gaussian processes for machine learning[END_REF]. Among the existing approaches for constrained kriging, we adopt the technique from [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF] which is based on a finite dimensional approximation of the Gaussian processes prior. Note that this approach has been extended by [START_REF] López-Lopera | Finite-dimensional Gaussian approximation with linear inequality constraints[END_REF] to more general linear constraints. However, in this thesis, we limit ourselves to convexity and monotonicity constraints that can be treated using the model of [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF]. A particular interest is focused on the simulation of the Gaussian random coefficients when some monotonicity constraints are saturated (see Subsection 5.2.4.2), a problem that is frequent in practice. Indeed this saturation leads to problems of efficient samples when using the improved rejection sampling (the RMS algorithm) developed by Maatouk and Bay (2016). As such, we consider an adapted basis function grid for allowing the efficiency of this sample method. We illustrate this problem through an example.

Classical kriging

Assume a function f of d-dimensional variables x ∈ R d to be known only at some input locations x 1 , ..., x n , with x i ∈ R d , for i = 1, ..., n. In order to estimate the function f in the entire input domain, one can use kriging (also known as Gaussian process regression) which consists in considering the unknown function f as a realization of a Gaussian process (GPs) (Y (x), x ∈ R d ) and estimating the conditional process

Y |Y (x 1 ) = f (x 1 ), ...., Y (x n ) = f (x n ). The GPs Y (x),
x ∈ R d is a collection of random variables, any finite number of which have (consistent) joint Gaussian distributions (see [START_REF] Williams | Gaussian processes for machine learning[END_REF] and is characterized by its mean function

µ : x ∈ R d -→ E(Y (x)) ∈ R
and its covariance function (also called kernel)

K : (x, x ) ∈ R d × R d -→ Cov(Y (x), Y (x )) ∈ R.
We consider the covariance function K to be defined such that Y has almost surely continuous and differentiable paths. For instance, in the empirical investigation, we consider the d-dimensional isotropic covariance kernel given, for any x = (x 1 , ..., x d ) and x = (x 1 , ..., x d ) as

K(x, x ) = σ 2 d i=1 R i (x i -x i , θ x i )
5.1. Classical kriging 69 where θ = (θ x 1 , ..., θ x d ) ∈ R d and σ are respectively the length scale and the variance hyper-parameters of the kernel function K and the functions (R i ) i are kernel correlation functions. These hyper-parameters can be either specified (based on expert knowledge) or estimated by using some existing methods in the literature (see Subsection 5.1.2). Some usual kernel correlation functions are presented in Table 5.1, they are ranked by degree of regularity. Note that changing the kernel K means changing the initial belief on f (i.e., the prior). Figure 5.1 shows how the choice of the kernel affects the paths of the GPs.

1D kriging kernel

K(x, x ) Class Gaussian σ 2 exp -(x-x ) 2 2θ 2 C ∞ Matérn 5/2 σ 2 1 + √ 5|x-x | θ + 5(x-x ) 2 3θ 2 exp - √ 5|x-x | θ C 2 Matérn 3/2 σ 2 1 + √ 3|x-x | θ exp - √ 3|x-x | θ C 1 Exponential σ 2 exp -|x-x | θ C 0
Table 5.1: Some usual kernel correlation functions in kriging techniques. By denoting X = [x 1 , . . . , x n ] ∈ R n×d a d-dimensional design points, y = [y 1 , . . . , y n ] ∈ R n , the observed values of f at these points (i.e, y i = f (x i ), for i = 1, ..., n) and Y (X) = (Y (x 1 ), . . . , Y (x n )) the vector composed of Y at X, the conditional process (called the posterior process) Y |Y (X) = y is a GPs with mean function (see [START_REF] Williams | Gaussian processes for machine learning[END_REF] 

η(x) = µ(x) + c(x) C -1 (y -µ), x ∈ R d (5.1.1)
and covariance function K given by

K (x, x ) = K(x, x ) -c(x) C -1 c(x ), x, x ∈ R d (5.1.2) where µ = µ(X) = [µ(x 1 ), . . . , µ(x n )] , C is the covariance matrix of Y (X) and c(x) = [K (x, x 1 ) , . . . , K (x, x n )] .
Without consideration of any inequality constraint on the function f , kriging prediction and uncertainty quantification are made using the posterior process Y |Y (X) = y. This is known as classical kriging (or unconstrained kriging). In this case, the Best Linear Unbiased Estimator of Y (x) is the posterior mean function (5.1.1) which is also called (unconstrained) kriging mean (see [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF]. We can then use the conditional covariance function (5.1.2) to obtain confidence bands arround the predicted function. The hyperparmeters of the kernel function K can be either specified or estimated using, for instance, the maximum likelihood estimator (MLE) (see Subsection 5.1.2).

Presence of noise :

The previous framework can be extended to the case when y i = f (x i ) + ε i for i = 1, ...n, where ε i is assumed to be a zero-mean Gaussian random variable with homoscedastic variance ς 2 and ε i independent from Y . In this setting, the conditional process Y |Y (X) + ε = y, where ε = (ε 1 , ..., ε n ) ∈ R n is a zero-mean Gaussian vector with covariance matrix ς 2 I n (I n being the identity matrix of dimension n), is still a GPs with mean function (see [START_REF] Williams | Gaussian processes for machine learning[END_REF] 

η(x) = µ(x) + c(x) C + ς 2 I n -1 (y -µ), x ∈ R d
and covariance function K given by

K (x, x ) = K(x, x ) -c(x) C + ς 2 I n -1 c(x ), x, x ∈ R d .

Hyper-parameters learning :

Hyper-parameters consist in the length scale θ and the variance parameter σ of the kernel function K as well as the noise parameter ς. The most commonly used methods for estimating them are cross validation (CV) (see, e.g., [START_REF] Bachoc | Cross validation and maximum likelihood estimations of hyper-parameters of Gaussian processes with model misspecification[END_REF][START_REF] Zhang | Kriging and cross-validation for massive spatial data[END_REF] and Maximum Likelihood Estimators (MLE) (see [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF]. We only present the MLE which will be used later (we shall say why in the section dealing with the constrained kriging). By considering a Zero-mean Gaussian Y (i.e., µ = 0) the MLE consists in maximizing the marginal log likelihood for Y with respect to the parameter λ = [θ, σ, ς] . This log marginal likelihood has the following form (see [START_REF] Williams | Gaussian processes for machine learning[END_REF], section 2.2):

L(λ) = - 1 2 y (C + ς 2 I n ) -1 y - 1 2 log(det(C + ς 2 I n )) - n 2 log(2π) (5.1.3)
where y = [Y (x 1 ), . . . , Y (x n )] and X = (x 1 , . . . , x n ) . Hence the vector of estimated parameters λ verifies : λ = arg max λ L(λ) .

This can be solved by using, for example, the gradient ascent method.

5.2. Constrained kriging 71

Constrained kriging

In Machine Learning techniques, learning a function f of the data mapping when f is subjected to some inequality constraints is not an easy task most especially in Gaussian process regression. Suppose the unknown real function f is observed with some noises and such that f belongs to a set of inequality constraints

M, i.e., f : D → R such that f (X) + ε = y f ∈ M (5.2.1)
where M is a convex set of functions satisfying some shape properties.

For instance, M can be one of the following convex sets:

• M d 0 := {f ∈ C(R d , R) | y min ≤ f (x) ≤ y max , ∀x ∈ D} • M 1 1 := {f ∈ C(R, R) | f is non-decreasing} • M 1 2 = {f ∈ C(R, R) | f is convex} • M 2 12 = {f ∈ C(R 2 , R) | f is non-decreasing in x and convex in y}.
Because making a Gaussian prior in f leads to the fact that the posterior is no Gaussian anymore and the shape conditions are usually infinite-dimensional, we propose to use the finite dimensional approximation of the Gaussian prior on f (see [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF] for which the constraints can be imposed in the entire domain D with finite number of checks. In the next subsection, we present this approximation in one dimensional case. The two dimensional one can be directly obtained with little modifications of the one dimensional case and will be presented in Chapter 6.

Finite dimensional approximation of GPs in 1d

We consider the input domain D to be an interval in R of the form D = [x, x] of R and we make a Gaussian prior Y on f with covariance function K and (for simplicity) zero-mean. We discretize D on a regular subdivision u 0 < . . . < u N with a constant mesh δ. For each u i , we consider hat functions

φ i (x) := max 1 -|x-ui| δ , 0 .
The Gaussian process Y is approximated on D by the process Y N given by (see [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF][START_REF] Cousin | Kriging of financial term-structures[END_REF])

Y N (x) = N i=0 Y (u i )φ i (x).
(5.2.2)

The interest of using piecewise linear basis function is the fact that Y N is a piecewise and the inequality constraints are satisfied everywhere in the input domain whenever they are satisfied at the knots. Let Φ(x) denote the vector of size N + 1 given by Φ(x) = (φ 0 (x), ...., φ N (x)) and let Φ(X) denote the n × (N + 1) matrix of basis functions in which each row l corresponds to the vector Φ(x l ).

Proposition 57 (see [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF] The following results hold.

• The finite-dimensional process Y N (•) = N i=0 Y (u i )φ i (•) uniformly converges to Y on D as N → ∞, almost surely. • Y N (x) = Φ(X)ξ where ξ := (Y (u 0 ), . . . , Y (u N )
) is a zero-mean Gaussian vector with covariance matrix Γ N such that Γ N i,j = K(u i , u j ), for i, j = 1, ..., N .
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Hamiltonian Monte Carlo for sampling ξ, is the MAP of ξ (see [START_REF] López-Lopera | Finite-dimensional Gaussian approximation with linear inequality constraints[END_REF]. We will consider this sampling technique in Chapters 6 and 7.

The saturated monotonicity constraints problem when using the RMS algorithm

By saturated monotonicity constraints, we mean the region where outputs are close. This is characterized by the fact that the mode of the GPs lies in boundary of the constraints. That problem is frequent in practice and requires special attention when simulating the posterior process using the RMS algorithm.

The algorithm of improved rejection sampling from the MAP (RMS) of Maatouk and Bay ( 2016) is a generalization of the rejection technique of Von [START_REF] Neumann | 13. various techniques used in connection with random digits[END_REF] for simulating truncated multivariate Gaussian random variables. This method consists in simulating at first the conditional Gaussian vector ξ|Φ(X) • ξ + ε = y and then using an improved rejection sampling around the MAP of ξ (indeed this verifies the constraints in the whole domain) that selects only the random coefficients that belong to the convex set C ineq .

Although this algorithm outperforms Von Neumann's method for the simulation of such random variables, saturation of monotonicity constraints raises problems for efficient samples, in particular for large dimension vector. While using this algorithm, a very poor acceptance rate in the regions of the input state space is reached, where constraints are saturated. Indeed, as long as the updated value is different to the MAP in the saturation region, the algorithm will not work. A possible solution consists inusing a non-homogeneous adapted grid in order to get an efficient sample. For this purpose, we use a class of the so-called h-adaptivity scheme in which the mesh connectivity changes accordingly to the level of constraint saturation (see [START_REF] Löhner | Adaptive h-refinement on 3D unstructured grids for transient problems[END_REF][START_REF] Mitchell | Adaptive refinement for arbitrary finite-element spaces with hierarchical bases[END_REF]. In particular, it boils down to reduce the number of basis functions in the regions of the input state space where constraints are saturated. This consists in

• fixing a level of saturation constraints,

• detecting the saturation regions,

• reducing the number of basis functions in these regions for getting an adapted grid

• and using the sample technique in this adapted grid.

Illustrative example For illustrating the adaptive mesh refinement approach, we consider the curve construction of a non-negative and increasing function f which is only known at some inputs locations as given by Table 5.2. Without loss of generality, we assume that f is observed at x without noise.

x f (x) 0.22 103.050 0.32 128.925 0.57 129.025 0.82 141.825 1.32 175.700 1.82 175.800 2.81 204.700 We consider f as a sample of zero-mean Gaussian process Y with finite dimensional approximation given as in (5.2.2). We consider the Matérn 5/2 kernel function with length scale parameter θ = 1 and variance parameter σ = 100, we then choose N = 100 basis functions. The red curve in Figure 5.2 shows the Maximum a Posteriori of the constrained Gaussian Process which is the most likely curve. With a saturation level of order 1, we can observe two regions of constraints saturation which coincide with the respective input intervals [0.32, 0.57] (with outputs 129.025 and 129.025), [1.32, 1.82] (with outputs 175.800 and 175.700). In order to get an efficient sample of the truncated Gaussian vector ξ we reduce the number of basis functions in these two saturation regions. By this mean, we construct 95% confidence interval of the 100 simulated paths from the constrained Gaussian using the RMS algorithm ( dashed lines). The main advantage of this technique is the fact that it allows to get efficient sample and to reduce computational costs. But a caveat to take into account is the choice of the level of saturation constraints. It requires a careful reflection for solving this disadvantage and can be an open problem for improving the method. Fortunately, even if the Hamiltonian Monte Carlo method (HMC) could be time consuming when constraints are saturated, we demonstrate in the next chapter that this method is suitable for sampling the GP paths in the volatility surface construction. This is way we propose to use it in what follows.

In the next chapters, we will extend the kriging technique in two dimensions and we will show how to adapt this technique for the construction of option price and volatility surfaces which respect the no-arbitrage conditions.

Chapter 6

Kriging for implied volatility surface

This chapter is based on A. Cousin, D. Gueye, Kriging for implied volatility surface, working paper.

Introduction

Implied volatility surface is of crucial interest for risk management and exotic option pricing models. Its construction is usually carried out in accordance with the arbitrage-free principle. This condition leads to shape restrictions on the option prices such as monotonicity with respect to maturities and convexity with respect to strike prices. In this chapter, we propose a new arbitrage-free construction method that extends classical spline techniques by additionally allowing for quantification of uncertainty. The proposed method extends the constrained kriging techniques developed in [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF] and [START_REF] Cousin | Kriging of financial term-structures[END_REF] to the context of volatility surface construction. Assuming a Gaussian process prior, the posterior price surface becomes a truncated Gaussian field given shape constraints and market observations. Prices of illiquid instruments can also be incorporated when considered as noisy observations. Starting from a suitable finite-dimensional approximation of the Gaussian process prior, the no-arbitrage condition on the entire input domain is characterized by a finite number of linear inequality constraints. We define the most likely response surface and the most-likely noise values as the solution of a quadratic optimization problem. We use Hamiltonian Monte Carlo (HMC) techniques to simulate the posterior truncated Gaussian surface and build pointwise confidence bands. The Gaussian process hyper-parameters are estimated using the maximum likelihood estimator (MLE). The method is illustrated on Euro Stoxx 50 option prices by building no-arbitrage implied volatility surfaces and their corresponding confidence bands. This chapter is organized as follows. In section 6.2, we recall some well known facts concerning implied volatility. Section 6.3 emphasizes on constrained kriging and Section 6.4 is devoted to the numerical illustrations.

Option pricing in no-arbitrage models

The goal of this section is to recall the notion of implied volatility surface and explain the construction problem of such surface under the no-arbitrage assumptions. For this purpose, we discuss it through the standard model of Black-Scholes. More details can be founded in Jeanblanc, Yor, and Chesney (2009, subsection 2.3), Shreve (2004, subsection 4.5), Karatzas (1997, section 1.2).

Black-Scholes model

We consider an European option on a given asset S, with maturity T and strike price X. By denoting Φ its payoff function, the value of the option at time T is given, in term of Call option, by Φ(S T ) = (S T -X) + , where (S T -X) + = max(S T -X; 0). While, in term of put option, its value at time T is Φ(S T ) = max(X -S T ; 0).

Option pricing in no-arbitrage models
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In [START_REF] Black | The pricing of options and corporate liabilities[END_REF] model, the risky asset price S = (S) t≥0 defined on the filtered probability space (Ω, G, P, F) is assumed to follow a Geometric Brownian Motion, i.e., its dynamics are of the form :

dS t = µS t dt + σS t dB t , ∀t ≥ 0 (6.2.1)
where B = (B t ) t≥0 is a Brownian Motion defined on (Ω, G, P), µ represents the drift of the returns of S, σ its instantaneous volatility and S 0 > 0 the initial stock price. The interest rate r is assumed to be constant and positive so that the discounted stock price Ŝ has the following dynamics under the probability P :

d Ŝt = (µ -r) Ŝt dt + σ Ŝt dB t , ∀t ≥ 0 .
One can show from the Girsanov theorem that there exists a (unique) measure Q, equivalent to P, given by Q| Ft = e -θBt-1 2 θ 2 t P| Ft , with θ = µ-r σ Jeanblanc, Yor, and Chesney (2009, Proposition 2.3.1.1) and under which Ŝ is an F-martingale. The fundamental theorem of asset pricing provides that this existence of such a Q is equivalent to the absence of arbitrage opportunity of this market model. Therefore, under the arbitrage-free conditions, the value at time t, of the European option is the expected present value under the risk neutral measure Q of future payoffs, which has the following expression:

V t (S t , t) = E Q e -r(T -t) Φ(S T )|F t . (6.2.2)
The computation of the expression (6.2.2) leads to the famous Black-Scholes formula.

For instance, the value of a put option on S, denoted by P BS t is given by

P BS t (S t , T, X, σ, r) = Xe -r(T -t) N (-d 2 ) -S t N (-d 1 ), (6.2.3) 
where

d 1 = log(S t /X) + (r + 1 2 σ 2 )(T -t) σ √ T -t , d 2 = d 1 -σ √ T -t.
and N is the cumulative normal density function.

Implied volatility surface

The equality (6.2.3) links the European put option price to the underlying price S, the interest rate r, the volatility of the stock σ, the strike price X and the maturity T . All these parameters except the volatility σ may be directly observed in the market. Actually, the option price is a function of the volatility of the underlying asset and then, inverting it leads to the so called implied volatility, which is of crucial interest for risk management and exotic option pricing models. This means that for a given observed market option price P M arket t , quoted at the date t, with corresponding maturity T and Strike X, the implied volatility is the solution value σ IV t (T, X) of

P BS t (S t , T, X, σ IV t (T, X), r) = P M arket t . (6.2.4)
Accordingly, our interpolation problem consists in computing at any time t, the whole surface (T, X) → P BS t (T, X) of option prices which allows us to derive the implied volatility surface (T, X) → σ IV t (T, X) by using the inversion problem. However, this construction must take into account some characteristics such as :

• Incomplete information : the option price surface is only known or can only be estimated for few input locations (the observed couples Strike-maturity).

Comments 60 As mentioned in [START_REF] Cousin | Kriging of financial term-structures[END_REF], this framework which takes account of the presence of error noise being quite considerable inasmuch as it allows to construct implied volatility surface in presence of illiquid options. Accordingly a best way to incorporate some noises in the response variable is to investigate the main sources of these noises. In Hentschel, 2003 three kinds of sources of measurement errors have been referred in the option prices such as the finite quote precision which is based on the tick price that represents the minimum increment between bid and ask prices of an asset in the trading system which orients the prices movement in a discrete setting. However the real market prices move in a continuous way and this discrete increment should be a source of noisy observations. In addition to the finite quote precision, Hentschel invoques the non-synchronous prices and the bid-ask spread which is the difference between the ask (which represents the supply for a particular asset) and the bid (the demand for asset). The higher the bid-ask spread of an option, the more liquid this option becomes. In Chapter 7, we have considered bid and ask prices of the same option as two replicate noisy observations at the same input location.

Two approaches for choosing our observations and incorporating noises might be taken into account, the first one consists in considering the realizations of the Gaussian process to be the mid-point prices and assuming the noise variance term ς to be proportional to the magnitudes of the bid-ask spreads. The second one consists in considering both the bid and ask prices as two independent realizations of the Gaussian process and estimate ς by using an appropriate method of parameter estimation. This last approach allows to obtain a option price surface which lies between the free-arbitrage bid and ask surfaces and it will be further detailed in Chapter 7.

Classical GPs regression or kriging

We consider a zero-mean Gaussian process prior on the mapping P = P (T, X) (T,X)∈D with covariance function (kernel function) K. Then, the output vector P (X) has a normal distribution with zero mean and covariance matrix C with components cov(P (T i , X i ), P (T j , X j )) = K((T i , X i ), (T j , X j )). We consider a 2-dimensional isotropic covariance kernel given as a tensor product, i.e., for x = (T, X) and x = (T , X ) two elements of D,

K(x, x ) = σ 2 R T (T -T , θ T )R X (X -X , θ X )
where θ = (θ T , θ X ) and σ 2 correspond to the length scale and the variance hyper-parameters of the kernel function K and the functions R T and R X are kernel correlation functions. It is well known that the conditional process P | y = P (X) + ε is Gaussian with mean function η and covariance function K given respectively by (see [START_REF] Williams | Gaussian processes for machine learning[END_REF]:

η(x) = c(x) (C + ς 2 I n ) -1 y, x = (T, X) ∈ D (6.3.2) K (x, x ) = K(x, x ) -c(x) (C + ς 2 I n ) -1 c(x ), x, x ∈ D (6.3.3) where c(x) = [K(x, (T 1 , X 1 )), ..., K(x, (T n , X n ))] .
Without considering arbitrage-free conditions as described in Proposition 59, estimation of the price function P under this framework is known as classical GPs regression or classical kriging. In this setting, prediction and uncertainty quantification is made using the conditional distribution P | y = P (X) + ε. The Best Linear Unbiased Estimator (BLUE) of P is given as the kriging mean function (6.3.2). The conditional covariance function K * can be used to obtain confidence bands around the predicted price surface. The hyper-parameters of the kernel function K as well as the variance of the noise can be estimated using the maximum likelihood estimator (MLE) (see, e.g., [START_REF] Bachoc | Maximum likelihood estimation for Gaussian processes under inequality constraints[END_REF].

Imposing the no-arbitrage conditions

Conditionally to the market fit condition (6.3.1) and conditions (iii) and (iv) of Proposition 59, P is still Gaussian. However, conditionally to the inequality constraints (i.e, the monotonicity of the put price with respect to the maturities direction and its convexity with respect to the strike prices) by means (i) and (ii) of Proposition 59, the process P is no longer Gaussian and this issue obviously run across the difficulties of simulating the posterior process in the sense that the range of constraint check points is usually infinitedimensional in the simulation. We adopt the solution of [START_REF] Cousin | Kriging of financial term-structures[END_REF] that consists in constructing a finite-dimensional approximation P N of the Gaussian prior P for which the constraints can be checked in the entire domain D with a finite number of checks. We first consider a discretized version of the input space D as a N = (N T + 1) × (N X + 1) regular grid with knots (u i , v j ), i = 1, ..., N T , j = 1, ..., N X with u i = iδ T and v j = jδ X , where δ T = 1 N T and δ X = 1 N X . For each knot (u i , v j ), we introduce the hat basis function defined as the following tensor product

φ i,j (T, X) := max(1 - |T -u i | δ T , 0) max(1 - |X -v j | δ X , 0) .
Then, the process P is approximated on D by the process P N given by

P N (T, X) = N T i=0 N X j=0
P (u i , v j )φ i,j (T, X), for all (T, X) ∈ D (6. 3.4) which is a piecewise linear interpolation of P at knots (u i , v j ) i,j . If we denote ξ i,j = P (u i , v j ), for i = 1, ..., N T , j = 1, ..., N X , then ξ = [ξ 0,0 , ..., ξ i,j ..., ξ N T ,N X ] is a zero-mean Gaussian vector with N ×N covariance matrix Γ N such that Γ h ı1,ı2 = K((u i1 , v j1 ), (u i2 , v j2 )), for any two grid index pairs (i 1 , j 1 ) and (i 2 , j 2 ) corresponding to global indices ı 1 and ı 2 respectively and φ(T, X) a vector of size N given by φ(T, X) = [φ 0,0 (T, X), ..., φ i,j (T, X), ..., φ N T ,N X (T, X)].

The equality (6.3.4) can be written in the following matrix form P N (T, X) = φ(T, X) • ξ so that when denoting Φ(X) the n × N matrix of basis function in which, each row l corresponds to the vector φ(T l , X l ), one has P N (X) = Φ(X) • ξ, with P N (X) := [P N (X 1 ), ..., P N (X

n )] .
In what follows we use the shorthand Φ(X) = Φ.

Proposition 61 (see [START_REF] Maatouk | Finite-dimensional approximation of Gaussian processes with inequality constraints and errors measurements[END_REF] The following statements hold.

• The finite-dimensional process P N uniformly converges to P on D as N X → ∞ and N T → ∞, almost surely,

• P N (T, X) is non-decreasing function of T if and only if ξ i+1,j ≥ ξ i,j ,

• P N (T, X) is a convex function of X if and only if ξ i,j+2 -ξ i,j+1 ≥ ξ i,j+1 -ξ i,j .
Given the first statement of Proposition 61, by denoting M the convex set of inequality constraints, i.e., M is the set of 2-d continuous functions which are no-decreasing w.r.t. T and convex w.r.t. the X, our construction problem (we denote it (P)) consists in finding the conditional distribution of P N given y = P N (X) + ε P N ∈ M.

As a consequence, we define the most probable measurement noises to be ν ε and the most probable response surface m P N given by m P N := Φ • ν ξ . Distance to the data can be an effect of arbitrage opportunities within the data and/or the misspecification / lack of expressiveness of the kernel.

Sampling finite-dimensional GPs with shape constraints

As we mentioned in Subsection 6.3.2, the construction of the put price surface consists in sampling ξ truncated on C ineq . Known that the distribution of ξ given y = Φ • ξ + ε is multivariate Normal N (µ cond , Σ cond ) (see [START_REF] Williams | Gaussian processes for machine learning[END_REF] where

µ cond = Γ N Φ (ΦΓ N Φ + ς 2 I n ) -1 y (6.3.10)
and (6.3.11) Hence we are face to a problem of sampling from truncated multivariate Gaussian distribution, which we do by Hamiltonian Monte Carlo (see [START_REF] López-Lopera | Finite-dimensional Gaussian approximation with linear inequality constraints[END_REF], using the maximum a posteriori probability estimate (MAP) of ξ as initial vector (which must verify the constraints) in the algorithm, computed as explained in Chapter 5.

Σ cond = Γ N Φ (ΦΓ N Φ + ς 2 I n ) -1 ΦΓ N .

Numerical illustrations

The aim of this empirical investigation is to illustrate the construction methods introduced in the previous sections using real financial data. In particular, we construct the put prices surface from both classical and constrained kriging in such a way to use it for deriving the implied volatility surface from the inversion techniques. Our study turns out to be very interesting since the results would certainly be useful for no iliquid options pricing. It would also be possible through this study to understand the option prices consistency under bid ask spreads. In addition, a useful case study could be to investigate for instance, the liquidity measure which is one of the most important tools of a financial markets and characterizes the ability of market makers to execute trades at the determined market prices and for a large volume without affecting the stock price.

The illustrations are carried out on the Euro Stoxx 50. We present an approach which consists in constructing the put prices surface through the mid price by estimating the standard deviation of the noise by MLE.

Remark 62 One can also construct the whole put prices surface through the mid price by defining the standard deviation of the noise as the difference between the ask and mid prices. Another approach consists in considering both the bid and ask put prices as independent responses of a zero-mean Gaussian process Y and constructing a put prices surface by estimating the attributed noise variance. As such, we can study the behavior of this surface relatively to the surfaces constructed from the bid put prices and the ask put prices. This last approach is used in Chapter 7.

We observe at a particular market quotes t 0 as of January 10, 2019, a series of put option prices f (T i , X i ) = P (T i , X i ) for different characteristics (T i , X i ), i = 1, . . . , n = 1232 with T i the maturities in which, its range goes from January 18, 2019 to December 17, 2021 and X i the strike prices which range from 250 to 4000. The spot price is equal to S t0 = 3070.24. These observations are represented in Figure 6.1. Our goal is to construct the whole surface of the put option prices (using both classical and constrained kriging) that we use for computing the implied volatility surface by the inversion techniques.

To this end, we consider our input data which contains n T = 15 maturities and n X = 88 strike prices and which does not necessarily contain gridded data (as we may observe in Figure 6.1). We randomly choose 5% of these data as training set. Thus the unknown function is evaluated at only 5% of the input data observed. After scaling the input space D into [0, 1] × [0, 1], we choose N = 600 basis functions given by N = N T × N X where N T = 30 represents the number of nodes related to the time-tomaturities in [0, 1] and N X = 20 the number of nodes linked to the strike prices in [0, 1]. We consider a two dimensional Gaussian covariance function defined as

K(x, x ) = σ 2 exp - (X -X ) 2 θ 2 X - (T -T ) 2 θ 2 T
where the components of the two vectors x = (T, X) and x = (T , X ) represent respectively the vectors of strike prices and time to maturities. • We first construct a series of randomly chosen data subsets with increasing number of points,

• We apply classical kriging and shape-preserving kriging on these subsets by computing the two mode estimators,

• For each data size, we compute the Root Mean Square Error (RMSE) with respect to the original data set.

The results show that for a small percent of data size (less than 30 %), the MAP estimated from the constrained kriging outperforms the one estimated from the unconstrained kriging. However, when more than 30% of data points are used for training, the two estimated MAP present a similar accuracy with their RMSE which tend to zero.

We now generate 5000 paths from both the classical and the constrained kriging using the Exact Hamiltonian Monte Carlo algorithm (see [START_REF] Pakman | Exact hamiltonian monte carlo for truncated multivariate gaussians[END_REF]. Then we compute the whole implied volatility surface from the inversion of the Black and Scholes formula as described in Subsection 6.2.1 with the spot price S t0 and interest rate r = 1%. Figure 6.5 presents comparison results on the MAP estimator between classical and constrained kriging. One can see that the put prices surface constructed from constrained kriging (in left) clearly verifies the no-arbitrage constraints while the one constructed using classical kriging does not fulfill these constraints. Also Figure 6.6 represents the obtained implied volatility surface which shows that the constrained kriging allows to obtain some surfaces which are more smooth than the ones obtained in classical kriging. In Figure 6.7 which shows 5% and 95% estimated quantiles of the fitted GPs, one can see a large confidence interval in the case of classical kriging where there is no observation while this confidence interval becomes more restricted in the constrained kriging, due to the knowledge of the no-arbitrage conditions. In Figure 6.8, we present a 5% and 95% estimated pointwise quantiles of the constrained fitted Gaussian process with extrapolation in the time-to-maturities direction by adding two years. Unsurprisingly, this leads to an increase of the confidence interval due to the fact that no price is observed for maturities greater than two years. 

Conclusion

In this chapter we have adopted the constrained kriging techniques in the aim of constructing implied volatility surface. We have shown that constrained kriging techniques allow to estimate the option prices in a market where only noisy prices are available. Our approach incorporates all the characteristics of surface construction problem, such as incomplete information, indirect observation, noisy measurement and shape constraints. The most likely measurement noises have been computed. We have shown, through a comparison study, that constrained kriging is more adapted for implied volatility surface construction than the classical one. In this study, we did not incorporate dividends and interest rates in the kriging methods. This setting requires a small extension of the method. We do not also compare our method to the alternative approaches such as the SSVI and the constrained neural network. In our next chapter, we explore those issues in the SPX European puts data on 18th May 2019.

Chapter 7

Kriging vs Neural Network for local volatility construction

This chapter is a slightly modified version of the paper A. 

Introduction

Local volatility surface is an important tool used by practitioners for pricing and hedging exotic options. Its construction can be done in two ways. As explained in Figure 7.1, one can derive it either from the Black-Scholes implied volatility surface by using Gatheral formula, or from the no-arbitrage continuous surface of option prices through Dupire formula.

Deep learning and kriging for option pricing have emerged as novel methodologies for fast computations with applications in calibration and computation of sensitivities. However, most of these approaches do not enforce any no-arbitrage conditions, and the subsequent local volatility surface is never considered. As shown by results of Chapter 6, constrained kriging is a suitable tool for constructing option prices and quatifying incertainty in the presence of noisy data. In this chapter, we propose a fully viable benchmarking approach for kriging, by building on Ackerer, Tagasovska, and Vatter (2019) using a neural network approximation of the local volatility implied variance formula (i.e. the Dupire formula restated in terms of implied variance) to stabilize the local volatility surface. This approach is in contrast to [START_REF] Chataigner | Deep Local Volatility[END_REF] who consider the analogous approach of using the Dupire formula with price interpolation which is included in the numerical results section. Regularization tends to reduce static arbitrage violation on the training set but does not exclude violation on the testing set. This is a by product of using stochastic gradient descent. Unlike interior point methods, which use barrier functions to avoid leaving the feasible set (but are not applicable to neural networks), stochastic gradient descent does not ensure saturation of the penalization. A manifestation of the limitations of the soft constraints approach is the instability of the local volatility surface which has a tendency to be quite irregular, especially away from training points.

As a focal point of the chapter, we emphasize that a single optimization of a GPs or neural network jointly yields a shape-constrained price or implied volatility estimation together with the local volatility surface. The extraction of a nonparametric representation of the local volatility surface, is not only intrinsically useful for exotic option pricing, but also serves as a stabilization approach for price or implied volatility estimation in a neural network (such stabilization approach is not needed for the GPs approach).

In summary, we shall (i) use a hard-constrained kriging Dupire formula to derive a local volatility surface from prices; and (ii) a soft-constrained NN local volatility implied variance formula to derive a local volatility surface from Black-Scholes implied volatilities (see blue arrow in Fig. 7.1). As we illustrate later in this chapter, such a local volatility surface shall in fact be jointly derived and, at the same time, further regularized.

The remainder of the chapter is outlined as follows. Section 7.2 describes the kriging approach to probabilistic modeling of local volatility with no-arbitrage constraints. Then in Section 7.3 we introduce the neural network approach to local volatility modeling from implied volatility. Details of our numerical experiment setup and results comparing the performance of kriging are given in Section 7.4. Finally, Section 7.5 concludes with further directions for research. 

Kriging the Local Volatility from Prices

This section is devoted to the construction of local volatility surface using kriging. Since, we use dividends and interest rates, it will be interesting to understand how to extend the kriging techniques presented in the previous chapters for no-arbitrage option price surface construction in presence of dividends and interest rates. As such, we first introduce this extension in the next subsection before tackling the calibration of Dupire formula in the following one.

No-arbitrage conditions reformulation in Kriging framework

Given a stock S we consider an European vanilla put option on S, with maturity T and strike price X. We consider the following risk neutral dynamics of S dS t = S t [(r(t) -q(t))dt + σ(t, S t )dB t ], ∀t ≥ 0 (7.2.1)

where B = (B t ) t≥0 is a Brownian Motion, r(t) represents a deterministic short interest rate term structure of the corresponding economy and q(t) a deterministic continuous-dividend-yields on S and σ(t, S t ) the instantaneous volatility function of S and t. We denote respectively by D t = exp -t 0 r(s)ds and H t = exp -t 0 q(s)ds the discount and dividend factors. Without any restriction, we only pay particular attention to the put prices constraints since the the call prices constraints can be derived from the Call-Put parity. As such, let us denote by P (T, X) and C(T, X), the prices at time t = 0 of, respectively, the European put and the European Call options on the underlying asset S with maturity T and strike price X. We recall the Call-Put parity which can be expressed as

C(T, X) -P (T, X) = S 0 H(T ) -XD(T ) (7.2.2)
Once, we know C(T, X) -P (T, X) for T = T 1 , ..., T j , with j ∈ N, we can regress C(T, X) -P (T, X) on the direction of X, for X = X 1 , ..., X nj , with n j ∈ N in order to obtain an approximation of H(T j ) and D(T j ).

One further constructs H(T ) and D(T ), for any T by interpolation.

Definition 63 Under the arbitrage-free conditions, the transformed process M = (M t ) t≥0 , given by

M t = exp - t 0 (r(s) -q(s))ds S t ,
is a martingale (see, e.g., Shreve, 2004, Subsection 5.5.1) and the price at time t = 0 of the put option is given by

P (T, X) = E exp - T 0 r(s)ds (X -S T ) + . (7.2.3)
The equality (7.2.3) can be expressed as

P (T, X) = H T E D T H T X -M T + (7.2.4) with M T = D T H T S T .
By setting (7.2.5) one has, from (7.2.4), P (T, X) = H T P (T, k) (7.2.6)

k = D T H T X,
where

P (T, k) = E (k -M T ) + . (7.2.7)
Proposition 64 In presence of dividend and interest rate, a collection of Put prices P (T, X) T ≥0,X≥0 is arbitrage-free if and only if the process P (T, k) T,k given by (7.2.7) verifies the following conditions 1. P (T, .) is a convexe function, for any T ≥ 0, 2. P (., k) is an non-decreasing function, for any k ≥ 0,

3. P (T, 0) = 0, ∀ T ≥ 0, 4. ∂ ∂k P (T, 0) = 0, ∀ T ≥ 0, 5. lim k-→∞ ∂ ∂k P (T, k) = k -M 0 , 6. P (0, k) = (k -M 0 ) + , ∀k ≥ 0.
Accordingly, learning the put price function P (•, •) is equivalent to learning the reduced price P given the observations and the constraints. be done as follows. Recall from Eq. 7.2.9 that the Dupire formula in reduced variables (T, k) specifies the local half-variance surface dup ∈ W = H 0 (D). We construct a piecewise constant approximation of the local volatility. Note that the approach described in this section can be readily extended to smoother approximations, but requires more elaborate calculations. The finite dimensional linear solution subspace W N ⊂ W is spanned by N linearly independent basis functions so that W N = span{ψ 0,0 , . . . , ψ

N T -1,N k -1 } with dim(W N ) = N = N T × N k .
The piecewise constant basis functions are given as ψ i,j :

= 1 [ui,ui+1)×[vj ,vj+1) with supp(ψ i,j ) = [u i , u i+1 ) × [v j , v j+1 ) so that dup h (T, k) = i,j ψ i,j (T, k)dup i,j = ψ • dup. If P ∈ V ⊂ H 2 (D)
, then under a change of variables κ = ln k we could write the Dupire equation as:

∂ 2 κ 2 P (T, κ)dup(T, κ) = ∂ T P (T, κ). (7.2.12)
Instead, we must take the weak form of the Dupire equation to solve for the local half variance by integrating against a test function v N ∈ V N . Substituting P N for P and dup h for dup we write:

D ∂ 2 κ 2 P N (T, κ)dup h (T, κ)v N dκdT = D ∂ T P N (T, κ)v N dκdT, ∀v N ∈ V N ,
and after integration by parts to eliminate the second derivative on P ,

- D ∂ κ P N (T, κ)∂ κ (dup h (T, κ)v N )dκdT + T ∈(0,Tmax] ∂ κ P N (T, κ)dup h (T, κ)v N | κmax κmin dT = D ∂ T P N (T, κ)v N dκdT, ∀v N ∈ V N ,
where the second integral on the left hand side is a maturity boundary integral. Adopting global indices ı,  ∈ {0, . . . , N -1}, substituting the form of P N and choosing v N = φ  :

- ı ξ ı Ti+1 Ti-1 κj+1 κj-1 ∂ κ φ ı (T, κ)∂ κ dup h (T, κ)φ  (T, κ) dκdT + ı ξ ı Ti+1 Ti-1 ∂ κ φ ı (T, κ)dup h (T, κ)φ  (T, κ) | κmax κmin dT = ı ξ ı Ti+1 Ti-1 κj+1 κj-1 ∂ T φ ı (T, κ)φ  (T, κ)dκdT, ∀ı,  ∈ {0, . . . , N -1}.
Each double integral is defined over a quadrant consisting of four elements. Since dup h is only constant over each element in the quadrant, we can separate the double integral into integrals over each element to give the linear system (7.2.13) where the stiffness matrix H and RHS matrix F has a nine-stencil and 6-stencil respectively and are given in the appendix 8. This form is inconvenient for finding dup and we can rearrange the computations to solve for dup to give (7.2.14) where A ∈ R N ×N is a quad-diagonal rectangular matrix (see appendix for further details) and dup is found by the pseudo-inverse of A. The matrix A can be viewed as a combination of time weighted local differencing over ξ w.r.t. κ and subsequent averaging of dup h over the four elements in each quadrant. We further note that the linear system in Eq. 7.2.14 provides the opportunity for further regularization techniques such as, for examples, preconditioners.

H(dup)ξ = F ξ,
A(ξ)dup = F ξ,
In order to constrain the derivatives to be greater than zero during fitting, it is necessary to evaluate the weak form of the second derivative of P N w.r.t. k. The weak form of the first derivative of P N w.r.t. T is equivalent to the pointwise derivative because P N ∈ V N ⊂ H1 (D). Returning to grid indices (i, j) we see that

∂ T P N (T, k) = ij φ i (T )φ j (k)ξ ij = 1 h k (ξ i+1,j -ξ i,j ), (T, k) ∈ [T i , T i+1 ] × [k j , k j+1 ]
is just the 2-stencil corresponding to a forward difference over any element. Hence we may freely choose where to evaluate finite differences in each element. The weak second derivative

- kmax k=kmin P N (T, k)v N (T, k)dk = - ı ξ ı kj+1 kj-1 ∂ k φ ı (T, k)∂ k φ  (T, k)dk = ı H ,ı ξ ı ,
can be written as Hξ, where the stiffness matrix is a 3-stencil corresponding to a second order finite difference operator.

Neural networks implied volatility metamodeling

Our second goal is to use neural nets (NN) to construct a continuous Σ put surface Σ : R + × R → R + , interpolating Σ market quotes Σ * up to some error term, both being stated in terms of a put option maturity T and log-(forward) moneyness κ = log( k S0 ) = log X S0 -(r-q)T . The advantage of using implied volatilities rather than prices (as previously done in Chataigner, Crépey, and Dixon (2020)), both being in bijection via the Black-Scholes put pricing formula as well known, is their lower variability, hence better performance as we will see.

The corresponding local volatility surface σ is given by the following local volatility implied variance formula, i.e. the Dupire formula stated in terms of the implied total variance Θ(T, κ) = Σ 2 (T, κ)T (assuming

Θ of class C 1,2 on {T > 0}): 1 σ 2 (T, X) = ∂T Θ 1 -κ Θ ∂κΘ + 1 4 -1 4 -1 Θ + κ 2 Θ 2 (∂κΘ) 2 + 1 2 ∂ κ 2 Θ (T, κ) =: calT (Θ) butt k (Θ) (T, κ) (7.3.1)
We use a feedforward NN with weights W, biases b and smooth activation functions for parameterizing the Σ (hence the total variance), which we denote by

Σ = Σ Θ W,b = Θ W,b .
The terms cal T (Θ W,b ) and butt k (Θ W,b ) are available analytically, by automatic differentiation, which we exploit below to penalize calendar spread arbitrages, i.e. negativity of cal T (Θ), and butterfly arbitrage, i.e. negativity of butt k (Θ).

The training of NNs is a non-convex optimization problem and hence does not guarantee convergence to a global optimum. We must therefore guide the NN optimizer towards a local optima that has desirable properties in terms of interpolation error and arbitrage constraints. This motivates the introduction of an arbitrage penalty function into the loss function to select the most appropriate local minima. An additional challenge is that maturity-log moneyness pairs with quoted option prices are unevenly distributed and the NN may favor fitting to a cluster of quotes to the detriment of fitting isolated points. Consequently large pointwise errors may arise where the NN has favored a local minima with low interpolation accuracy and no arbitrage violation. To remedy this non-uniform data fitting problem, we propose a novel solution which involves re-weighting the observations by the Euclidean distance between neighboring points. More precisely, given n observations χ i = (T i , κ i ) of maturity-log moneyness pairs and of the corresponding market implied volatilities Σ * (χ i ), we construct the n × n distance matrix where each coefficient d(χ i , χ j ) is the euclidean distance between points :

d(χ i , χ j ) = (T j -T i ) 2 + (κ j -κ i ) 2 .
We then define the loss weighting w i for each point χ i as the distance with the closest point:

w i = min j,j =i d(χ i , χ j ).
This weighting aims at reducing error for any isolated points. In order to adjust the weight of penalization, we multiply our penalties by the weighting mean µ w := 1 h i w i . Learning the weights W and biases b to the data subject to no arbitrage soft constraints (i.e. with penalization of arbitrages), takes the form of the following (nonconvex) loss minimization problem:

arg min W,b 1 n i w i Σ W,b (χ i ) -Σ * (χ i ) Σ * (χ i ) 2 + µ w h ξ∈D h λ T R(Θ W,b )(ξ), (7.3.2) where λ = [λ 1 , λ 2 , λ 3 ] ∈ R 3 + and R(Θ) = [cal - T (Θ), butt - k (Θ), cal T butt k (Θ) -a + + cal T butt k (Θ) -a -]
is a regularization penalty vector evaluated over a penalty grid D h with h = 50 × 100 nodes, which extends well beyond the unit square domain of the IV interpolation. In the unscaled moneyness and maturity coordinates, the domain of the penalty grid is [0.5, 2] × [0.005, 10Y ]. This is intended so that the penalty term penalizes arbitrages outside of the domain used for IV Interpolation. Even on such an extended penalty grid, we found no arbitrage violation in our experiments (after training cal T (Θ W,b ) and butt k (Θ W,b ) are even > 0 at all nodes of D h ). Note that the the error criterion is calculated as a root mean square error on relative difference, chosen here, so that it does not discriminate high or low implied volatilities.

The first two elements in the penalty vector favor the no-arbitrage conditions and the third element favors desired lower and upper bounds 0 < a < a (constants or functions of T ) on the estimated local variance σ 2 (T, X). Suitable values of the "Lagrange multipliers" λ, ensuring the right balance between fit to the market implied volatilities and the constraints, is obtained by grid search. Of course a soft constraint (penalization) approach does not fully prevent arbitrages. However, for large λ, arbitrages are extremely unlikely to occur (except perhaps very far from D).

Numerical results

Experimental design

Our training set is prepared using SPX European puts with different available strikes and maturities ranging from 0.005 to 2.5 years, listed on 18th May 2019, with S 0 = $2859.53. Each contract is listed with a bid/ask price and an implied volatility corresponding to the mid-price. The associated interest rate is constructed from US treasury yield curve and dividend yield curve rates are then obtained from call/put parity applied to the option market prices and forward prices. We preprocess the data by removing the shortest maturity options, with T < 0.055, and the numerically inconsistent observations for which the gap between the listed implied volatility and the implied volatility calibrated from mid-price with our interest/dividend curves exceeds 5% of the listed implied volatility. But we do not remove arbitrable observations. The preprocessed approach yields constraint violations on 12.5% of the basis function nodes. The NN penalizations (cal T ) - and (butt k ) -vanish identically on D h in the constrained case, whereas in the unconstrained case their averages across grid nodes in D h are (cal T ) -= 3.91 × 10 -6 and (butt k ) -= 1.60 × 10 -2 with the IV based NN. Fig. 7.2(a-b) respectively compare the fitted IV surfaces and their errors with respect to the market mid-implied volatilities, among the constrained methods. The surface is sliced at various maturities and the IVs corresponding to the bid-ask price quotes are also shown -the blue and red points respectively denote training and test observations.

We generally observe good correspondence between the models and that each curve typically falls within the bid-ask spread, except for the shortest maturity contracts where there is some departure from the bid-ask spreads for observations with the lowest log-moneyness values. We see on Fig. 7.2(b) that the GP IV errors are small and mostly less than 5 volatility points whereas NN and SSVI exhibit IV error that may exceed 15 volatility points. The green line and the red shaded envelopes respectively denote the GP MAP estimates and the posterior uncertainty bands under 100 samples per observation. The support of the posterior GP process assessed on the basis of 100 simulated paths of the GP captures the majority of bid-ask quotes. The GP MAP estimate occasionally corresponds to the boundary of the support of the posterior simulation. This indicates that the posterior truncated Gaussian distribution is heavily skewed for some points, and that the MAP estimate consequently saturates the AOA constraints. This indicates a tension between the AOA constraint and the bid-ask constraint which cannot be fully reconciled, most likely because some of the (short maturity) data are arbitrable (they are at least illiquid and hence noisy). See notebook for location of arbitrages in the unconstrained approach.

All constrained methods find a no-arbitrage IV surface. Fig. 7.2(a-b) suggest that the data may exhibit arbitrage at the lowest maturities where the methods depart from the bid-ask spreads. These observations are further supported in Fig. 7.3(a-b) which shows the corresponding methods without the no-arbitrage constraints. In Fig. 7.3(a-b) we observe that the estimated IVs now fall within close proximity of the bid-ask spreads-all methods exhibit an error typically less than 5 volatility points. Note that the y-axis has been scaled for each plot in Fig. 7. 3(b) to accommodate the wide uncertainty band of the posterior for the unconstrained GP. Whereas the uncertainty band of the constrained GP spanned at most 10 volatility points, the uncertainty band of the unconstrained GP is an order of magnitude larger, sometimes spanning more than 100 volatility points. 

In-sample and out-of-sample calibration errors

The error between the prices of the calibrated models and the market data are evaluated on both the training and the out-of-sample data set. The first two rows of Table 7.1 compare the in-sample and out-of-sample RMSEs of the prices and implied volatilities across the different approaches. The differences between the training and testing RMSEs are small, suggesting that all approaches are not over-fitting the training set. We observe that the GP exhibits the lowest price RMSEs.

Backtesting results

The first repricing backtest estimates the prices of the European options corresponding to the testing set, by Monte Carlo sampling in each calibrated local volatility model (same methodology as described in Chataigner, Crépey, and Dixon (2020, Section 7.2)). The second approach uses finite differences (FD) to price the options with the calibrated local volatility surfaces. The pricing PDEs with local volatility are discretized using a Crank-Nicolson scheme implemented on a 100×100 backtesting grid. The last two rows in Table 7.1 compare the resulting price backtest RMSEs across the different approaches. The NN fitted to implied volatilities exhibit significantly lower errors in the backtests, followed by NN based on prices, SSVI and GP. To quantify discretization error in these backtesting results (as opposed to the part of the error stemming from a wrong local volatility), we ran the same backtests in a Black-Scholes model with 20% volatility and the associated prices. The corresponding Monte Carlo and PDE backtesting IV (price) RMSEs are 2.90% (1.56) and 0.846% (4.10).

Conclusion

In this chapter, we develop a finite dimensional kriging approach for no-arbitrage interpolation of European vanilla option prices which jointly yields the full surface of local volatilities with uncertainty bands, even in the presence of arbitrage in the data. We demonstrate the performance relative to SSVI and deep learning of implied volatilities. The latter uses shape constraint regularization through the local volatility implied variance formula to penalize arbitrages. The GPs is found to produce a better fit to out-of-sample prices than SSVI, with less evidence of overfitting, although the performance is less competitive than neural networks trained to implied volatilities. Backtesting results show that kriging is competitive although it suggests that fitting to implied volatilities would be advantageous. However, in contrast to the SSVI and neural networks, the GPs provides uncertainty quantification, which promises much potential for model risk aspects of local volatility construction (cf. Cont, 2006, Example 4.3) and no-arbitrage price interpolation. The best of all worlds could be GPs trained to implied volatilities.

Conslusions and perpectives

Conclusions

In this thesis, we have addressed some aspects which contribute in quantitative financial risk management through two different parts.

In the first part, we have guided our thinking about default times modeling. As such, after having recalled some well known results about stochastic calculus and models of default times in Chapter 1, we have investigated the Gaussian example in conditional densities by showing that this example is unique in a large class of diffusion processes. Very often, in credit risk modeling, the construction of the default time τ using the enlargement of filtration is based on the hypothesis that τ avoids the stopping times of the reference filtration. However, this framework does not allow to cover a wide range of situations, particularly in modeling defaultable claims under some economic shocks under which the default time could coincide with the shock times. This allows us to expand our thinking, in Chapter 2, toward the model of Jiao and Li (2018) which is designed for modeling default time which could coincide with some predictable stopping times in the reference filtration. By this way, we proposed an extension of that model when the stopping times in the reference filtration are no more predictable. We have concluded that despite its attractiveness in modeling defaultable claims under some predictable shocks, the model of Jiao and Li (2018) is difficult to implement if the shocks are not predictable and does not always allow to capture the jumps of the zero-coupon bond prices. We then proposed the generalized Cox model in Chapter 3 which extends the one of Lando (1998) in which the default time τ is the first time when an increasing process K adapted to a given filtration F, absolutely continuous with respect to Lebesgue's measure hits a level, which is a random variable independent of F. It follows that this random time avoids all F-stopping times. We have relaxed the assumption that K is absolutely continuous by working in a more general case, where that process K being adapted, increasing and continuous on right with limits on left or continuous on left with limits on right. This led us to a random time which does not avoid the stopping times of the reference filtration. We were interested in the computations of characteristics of the default time such as the conditional survival martingale, the Azéma supermartingale, the compensator of the default time as well as its predictable reduction process and the multiplicative decomposition of the Azéma supermartingale. We have also given many examples which illustrated our construction. The Generalized Cox model extends the one of Jiao and Li (2018) when K is F-predictable. In Chapter 4, we have investigated some applications of the generalized Cox model in credit risk. We were also interested in the effects of the jumps of the process K on the prices of the zero-coupon bonds through different configurations of K. The Generalized Cox model where K is a shot-noise allows to capture the jumps of the zero coupon bond when the stopping times of the reference filtration are not predictable.

In the second part of this thesis, we have presented the kriging techniques for solving some problems in quantitative finance such as option pricing and construction of volatility surfaces. Chapter 5 described some useful tools which have been used in Chapters 6 and 7. Particularly, we have recalled the constrained kriging in 1d using the finite dimensional approximation of GPs developed by [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF]. A particular attention has been paid in the simulation of the Gaussian coefficients when some monotonicity constraints are saturated and we have proposed a numerical solution to this problem which consists in reducing the number of basis function in the regions where constraints are saturated. Chapter 6 was devoted to the construction of prices and implied volatility surfaces under no-arbitrage constraints using kriging. A comparison of the classical and constrained kriging for this task has been done. It turned out that the surfaces constructed using constrained kriging respect the no arbitrage conditions while the ones fitted by the classical kriging can lead to some arbitrages. We have also proposed a method for identifying the locations with the most likely arbitrages (which are the ones with largest noises) in the data by computing the joint MAP of the truncated Gaussian coefficient and the Gaussian noise vector. We demonstrated our construction using the Euro Stoxx 50 data of January 10, 2019. Our results show that kriging is a suitable tool for constructing option prices and quantifying uncertainty in the presence of noisy data, and for computing the associated local and implied volatility. Hence a promised tool for quantifying model uncertainty. In Chapter 7, we have demonstrated the performance of kriging relative to various popular alternative interpolation techniques, we have benchmarked it against SSVI and deep learning techniques for local volatility surface construction. The fitting of kriging in the replication of bid ask data is an important result. Indeed, it allows to get a price surface which lies between the bid and ask prices. Backtesting results show that kriging is competitive although it suggests that fitting to implied volatilities would be advantageous. However, in contrast to the SSVI and neural networks, the Kriging provides uncertainty quantification, which promises much potential for model risk aspects of local volatility construction and no-arbitrage price interpolation.

Cette thèse traite différentes questions liées à la gestion quantitative des risques financiers. Nous nous intéressons, dans une première partie, aux modèles de temps de défaut en risque de crédit dans le cadre de la théorie de grossissement de filtrations. Nous proposons des modèles où le temps de défaut peut coïncider avec des instants de chocs économiques. Nous mettons l'accent, dans un premier temps, sur le modèle de Jiao et Li (2018) en risque souverain où le temps de dèfaut coïncide avec des temps de chocs prévisibles. Nous étendons ce modèle dans le cas où les chocs ne sont pas prévisibles en étudiant les caractéristiques du temps de défaut. Dans un second temps, nous présentons le modèle de Cox généralisé qui est une extention de celui de Lando (voir Lando, 1998). Nous proposons une large gamme d'exemples pour ullistrer notre construction. La seconde partie porte sur la construction de surfaces de volatilités des actifs financiers sous la condition d'absence d'opportunité d'arbitrage (AOA) en utilisant les méthodologies de krigeage (où la regression par processus Gaussien). Ces surfaces permettent par exemple d'estimer à partir du prix d'options liquides, la valeur des produits financiers dont les caractéristiques sont non-standard et dont le prix n'est pas observé sur le marché. La construction de telles surfaces est une étape importante dans certains processus de gestion des risques. Elle permet également de tarifer des actifs non-liquides. Notre approche consiste á mettre en oeuvre l'apprentissage du krigeage sur les prix d'options européennes en respectant les conditions de non-arbitrage. Ces conditions sont caractérisées par des contraintes de forme sur les prix, à savoir la monotonicité dans la direction des maturités et la convexité dans la direction des strikes. Etant donné que ces contraintes correspondent à un nombre fini d'inégalités linéaires, nous adoptons une technique de krigeage sous contraintes d'inégalités linéaires. Nous utilisons, pour cela, la méthode d'eveloppée par Maatouk et Bay (2016) 

  est la partie F-prévisible décroissante et E(Y ) la partie F-locale martingale, avec Y t = la partie martingale de la décomposition de Doob-Meyer de Z et Λ la réduction F-prévisible du compensateur de τ .

  La lecture de ce manuscrit peut se faire par le guide du diagramme suivant : pour la construction de surfaces de prix et de volatilité impliciteChap 7 : Krigeage vs Réseau de Neuronnes pour la construction de la surface de volatilité locale.

  , one gets e -H dN = dM, N -de -H = -Z -(dK c + dA I ) , hence dH c + 1 -e -∆H = dK c + dA I which leads to dH c = dK c + dA I,c and 1 -e -∆H = ∆A I . Finally, using the fact that Λ = K c + A I = K c + A I,c + s≤• ∆A I s , we obtain e -Ht = e -H c t e -s≤t ∆Hs = e -Λt s≤t

  where the first equality comes from Aksamit and Jeanblanc, 2017, Proposition 1.36 b. It follows that ∆Λ ≤ 1 .(3.3.8) 

  -s, x)dy , hence by using stochastic Fubini's theorem (seeProtter, 2005, Theorem 65) valid under(3.3.23), one getst 0 R G(t -s, x)ν(ds, dx) = t s=0 R t u=s g(u -s, x)du ν(ds, dx) + t 0 R G(0, x)ν(ds, dx) -s, x) ν(ds, dx) du + t 0 RG(0, x)ν(ds, dx).

Chapter 4 .

 4 Application of the generalized Cox model in credit risk modeling Proof: from the general pricing formula (1.3.1), one has

  T ) is a continuous F-martingale.
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 4 3 shows this survival probability for different values of the the decay rate α, and different values of the intensity λ of the Poisson process N . It is clear that the survival probability is decreasing with respect to the intensity λ of N . However the speed of the degrowth increases with respect to the decay rate α.
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 41 Figure 4.1: One path of K which is given as in the form (4.2.19)
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 4243 Figure 4.2: Predefault bond price for the corresponding path of the Fig 4.1
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 51 Figure 5.1: Sample paths of the Gaussian prior Y for different choices of kernel function with parameters σ 2 = 1 and θ = 0.2.
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 52 Figure 5.2: Illustration of learning f with two saturation regions.
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 61 Figure 6.1: Import input observed data
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 62 Figure 6.2: Convergence of optimal parameter as a function of N (number of basis functions).
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 65 Figure 6.5: Put prices surface constructed from classical kriging (left) vs put prices surface constructed from constrained kriging (right). The red points represent the 5% of the data used for training.

Figure 6 . 6 :

 66 Figure 6.6: Implied volatility surface obtained from classical kriging (left) vs Implied volatility surface obtained from constrained kriging (right). Implied volatility surface obtained from constrained kriging is more smoother.
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 67 Figure 6.7: 5% and 95% estimated pointwise quantiles of the fitted GPs with classical kriging (left) vs constrained kriging (right).

Figure 6

 6 Figure 6.8: 5% and 95% estimated pointwise quantiles of the constrained fitted GPs with extrapolation in the time-to-maturities direction (adding 2 years).
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 71 Figure 7.1: Mathematical connections between option prices, implied, and local volatility, and the goal of this chapter, namely to either use the Dupire formula with Gaussian processes to jointly approximate the vanilla price and local volatility surfaces, or use the Gatheral formula with neural networks to jointly approximate the implied volatility and local volatility surfaces.

  Fig. 7.4 shows the local volatility surfaces that stem from the three constrained approaches. Fig.7.4(a) shows the spiky local volatility surface generated by SSVI, capped at the 200% level for scaling convenience. Fig. 7.4(b) shows the capped local volatility surface constructed from the GP MAP price estimate. Fig. 7.4(c) shows the (complete) NN local volatility surface.

  (b) Fitted IV errors with respect to mid-price IVs.
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 72 Figure 7.2: Slices of constrained GP (green), NN (purple), and SSVI (black) models of SPX puts with training bid-asks IVs (+ ¯) and testing bid-asks IVs ( +) (the bid-ask IVs are reconstructed numerically from the corresponding bid-ask market prices). The shaded envelopes show 100 paths of the constrained GP's posterior.
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 73 Figure 7.3: Slices of unconstrained GP (green), NN (purple), and SSVI (black) models of SPX puts with training bid-ask IVs (+ ¯) and testing bid-ask IVs ( +) (the bid-ask IVs reconstructed numerically from the corresponding bid ask market prices). The shaded envelopes show 100 paths of the unconstrained GP's posterior.

( a )

 a The local volatility surface generated by SSVI with finite differences, capped at the 200% level. (b) The MAP estimate of the GP local volatility surface, capped at the 200% level.

( c )

 c The implied volatility based NN local volatility surface (with the local volatility penalization).

Figure 7 . 4 :

 74 Figure 7.4: The GP, SSVI, and NN local volatility estimate.

  qui est basée sur l'approximation fini-dimensionnelle du processus Gaussien. L'algorithme de Monte Carlo Hamiltonien de Pakman et Paninski (2014) sera utilisé pour simuler les coefficients Gaussiens. Nous proposons une méthode de calcul du Maximum a Posteriori (MAP) du processus Gaussien. Nous comparons notre méthode avec celles des réseaux de neuronne contraints et des SSVI. .unistra.fr irma@math.unistra.fr IRMA 2021/006 http://tel.archives-ouvertes.fr/tel-03269084

  Here we apply the result first introduced by[START_REF] Gapeev | Constructing random times with given survival processes and applications to valuation of credit derivatives[END_REF] and later byJeanblanc and Song (2011a) andJeanblanc and Song (2011b) to the Gaussian case. It consists in starting with a given supermartingale Z valued in [0, 1[ with the multiplicative decomposition N e -H , where N is a non-negative local martingale and dH t = λ t dt, and associate to it a martingale survival process ( M t (u)) t,u∈R + , hence a random time which admits that martingale survival probability. The process ( M t (u)) t,u∈R + , given by

	1.3. Conditional density approach	29
	1.3.3 Random times with supermartingale valued in [0, 1]	

ϕ(Yt) Φ(Yt) h (t)f (t)

is the intensity rate of τ .

  is Markovian (seeScherer, Schmid, and Schmidt, 2012, Example 2.1). Other varieties of the function G can be found in[START_REF] Scherer | Shot-noise driven multivariate default models[END_REF] and[START_REF] Schmidt | Catastrophe insurance modeled by shot-noise processes[END_REF]. The simple case G(t, x) = x leads to a compound Poisson process, if the (τ i ) i are the jumps of a Poisson process N and (γ i ) i are i.i.d. independent of N .

  As in Lemma 29, we proceed for ω fixed. The set {K t > Θ} is either of the form [a, ∞[ or of the form ]a, ∞[ and a

3.4. Case where K is càglàd

Proof:

  When the default time of the reference entity follows a generalized Cox model with K defined as in (4.2.1), with the assumption that the jump times of K are predictable, the value of the default payment leg at time t is given by

	4.2. The model	61
	4.2.3.1 The economic shock times are predictable	

  Kt-dK c t + dJ t ) + e Kt-dY t = Y t e Kt dΛ t + e Kt-dY t

	(4.2.26)
	and the special semimartingale D(T ) has a (continuous) local martingale part

Table 5 . 2 :

 52 Market data

  Cousin, S. Crepey, M.F. Dixon, and D. Gueye, Beyond Surrogate Modeling: Learning the Local Volatility Via Shape Constraints, under review, 2020.

  Table 7.1: The IV and price RMSEs of the SSVI, GP and NN approaches. Last line: computation times.

	IV RMSE (Price RMSE)	SSVI	GP	IV based NN	Price based NN	SSVI Unconstr.	GP Unconstr.	IV based NN Unconstr.	Price based NN Unconstr.
	Calibr. fit on	1.37%	0.58%	1.23%	13.70%	1.04%	0.60%	0.84%	5.65 %
	the training set	(2.574)	(0.338)	(2.897)	(9.851)	(2.691)	(0.321)	(2.163)	(2.456)
	Calibr. fit on	1.52%	0.57%	1.29%	14.27%	1.09%	0.57%	0.86%	6.14%
	the testing set	(2.892)	(0.355)	(2.966)	(10.347)	(2.791)	(0.477)	(2.045)	(2.888)
	MC backtest	8.69% (22.826)	19.76% (74.017)	2.95% (4.989)	6.37% (11.764)	N/A	N/A	N/A	N/A
	FD backtest	6.88% (33.545)	7.86% (35.270)	3.43% (11.976)	5.56% (26.785)	N/A	N/A	N/A	N/A
	Comput. time (seconds)	33	856	191	185	1	16	76	229

We say that a process Y is increasing (resp. decreasing) if for 0 ≤ s ≤ t, Yt ≥ Ys ( resp. Yt ≤ Ys) a.s.

This notation should be not confused with the notation X c , which, for a semimartingale X denotes the continuous martingale part of X.

The constant 1 in the definition can be changed in any constant, or even in any random variable independent of (X, F) and of the random variable Θ.

A filtration F is continuous if all F-martingales are continuous. In that case, every F-stopping time is predictable ( see, e.g.,Nikeghbali, 2006, Theorem 4.11).

There is no matter if Θ is not an exponential random variable, since one can always reduce attention to the case with exponential one by modifying K, thanks to the inverse transform sampling theorem, at least if Θ is a random variable with strictly monotone cumulative distribution function. The case where Θ is not independent of F can be studied using the F-conditional law of Θ (see El[START_REF] Karoui | Conditional default probability and density[END_REF].

This follows from the Dupire formula by simple transforms detailed inGatheral (2011, p.13).

When re-scaled back to the original input domain, the fitted length scale parameters of the 2D Matern ν = 5/2 are θk = 973.1901 and θT = 0.5594.

Building on https://www.mathworks.com/matlabcentral/profile/authors/4439546

(a) Implied volatilities.(b) Fitted IV errors with respect to mid-price IVs.

Remerciements

Proposition 43 If ν is deterministic, then for any u ≥ t, one has P(τ > u|F t ) = c(u)L t (u) (3.3.26) with c(u) = exp u 0 R (e -G(u-s,x) -1)ν(ds, dx) and L(u) is the martingale

G(u -s, x)µ(ds, dx) -

(e -G(u-s, x) -1)ν(ds, dx) .

For u < t, one has P(τ > u|F t ) = c(u)L u (u) thanks to the immersion property.

Proof: (u-s, x) -1)ν(ds, dx) for u ≥ t ≥ 0. By applying Itô's formula for semimartingales to the process L t (u) = e Vt(u) , one has (where we denote, for u fixed, L t and V t instead of L t (u) and V t (u)), dL t = L t-(dV t + e ∆Vt -1 -∆V t ). (3.3.27) By writing e ∆Vt -1 -∆V t = R e -G(u-t,x) -1 + G(u -t, x) µ(dt, dx), one obtains (u-t,x) -1)μ(dt, dx) (3.3.28) which implies that L is a local martingale. By (3.3.28), it is a true martingale.

If ν is deterministic, due to the fact that (u-s,x) )ν(ds, dx), one has for u > t (1 -e -G(u-s,x) )ν(ds, dx) . (3.3.29) in particular, we recover the special semimartingale feature of X proved in [START_REF] Altmann | A shot noise model for financial assets[END_REF], Proposition 2.1.

Remark 44 Note from (3.3.27) that ∆L t (u) = e Vt-(u) (e ∆Vt(u) -1) for 0 ≤ t < u.

Case where K is càglàd

We present the case where the increasing process K is left-continuous with right limits (càglàd) which implies its predictability. Under this setting, we define the random time τ = inf{t : K t > Θ} (3.4.1) to be able to characterize the set {K t > Θ}.

Lemma 45 If K is càglàd, then defining τ as above (3.4.1), for all t ≥ 0, the following equality

Chapter 4

Application of the generalized Cox model in credit risk modeling

In this chapter, as in the previous ones, we are working on a probability space (Ω, A, P), endowed with a filtration F where a generalized Cox time (see Chapter 3) τ is defined and we consider G the progressive enlarged filtration of F with τ . As in the previous chapters, we shall simply denote by A p and A o the F-dual predictable and optional projections of the process A = 1 {τ ≤•} .

The aim of this chapter is to highlight the importance of the generalized Cox framework. As such, we present some useful case studies in credit risk modeling through this model. We will be interested to the behavior of the prices at the jump times of the generalized Cox process K used in the definition of τ (4.1.2).

Framework

We consider a defaultable bond (in what follows, we shall only write a DB) with maturity T and payoff given by

where the recovery h is a bounded process which is either F-predictable or F-optional and which we suppose to be paid at the default time τ if τ ≤ T whereas the unit payoff is done at time T if no default has occured before. In what follows, we suppose that the probability P is the pricing measure and the interest rate is zero. By denoting by P t (T ), t ≤ T the price of the defaultable bond which is given, for any t ≥ 0, as

we define the pre-default price (see [START_REF] Elliott | On models of default risk[END_REF] of the defaultable bond as the Fadapted process D(T ) such that for any t ≥ 0,

We also consider a Credit Default Swap (we only write a CDS) of maturity T , with spread κ and F-predictable recovery δ which is a contract between two parties, the protection buyer and the protection seller having their payoffs which depend on the default time τ of a reference entity. Under this contract, the seller is committed to protect the buyer against the default of the entity by paying her δ τ , at the default time τ , if the default of the entity occurs before the maturity T . In exchange, the protection buyer pays a premium κ, at some predetermined dates, to the protection seller till τ ∧ T . For simplicity we assume that the premium is paid continuously, i.e., κdt is paid during

From the buyer point of view, the price at time t < τ ∧T of the CDS, denoted CDS t (κ, δ, T ), is the difference between the expected present value of the amount received by the protection buyer

Chapter 5. An introduction to kriging Some shape-preserving conditions :

1) Y N takes values on [y min , y max ] if and only if

In accordance with Proposition 57, kriging the unknown function f boils down to finding the conditional distribution of Y N given .2.3) This is equivalent to finding the distribution of the truncated Gaussian vector ξ ∼ N (0, Γ N ) given that

where C ineq is a set of linear inequality constraints on ξ as given in 2) and 3) of Proposition 57.

The most probable response curve and measurement noises

The maximum a Posteriori (MAP) of the Gaussian process Y N conditionally to (5.2.3) satisfies the inequality constraints on the entire domain of interest and corresponds to the most likely curve (see [START_REF] Cousin | Kriging of financial term-structures[END_REF]. Its expression is given by 5.2.5) where

is the MAP of the truncated Gaussian vector ξ which is the solution of the following convex optimization problem (see, e.g., [START_REF] Cousin | Kriging of financial term-structures[END_REF]: 5.2.6) where Γ N is the covariance matrix of ξ, where we have used the the shorthand Φ(X) = Φ.

The solution of the optimization problem (5.2.6) can also be obtained by maximizing the he density function of the conditional Gaussian vector ξ|ξ ∈ C ineq restricted to C ineq which leads to

where µ cond and Σ cond are respectively defined by (5.2.9) and (5.2.10). Therefore the MAP of the truncated Gaussian vector ξ is also given by

(5.2.7)

Remark 58 Note that in the case of noiseless (i.e., if ε = 0), the mode does not depend on the parameter σ of the covariance function K. Indeed, in this case, σ does not affect the the solution of (5.2.6) since σ 2 is a multiplicative constant in Γ N . However, in the case with noisy data, this is no more true.

Hyper-parameters learning in constrained kriging

There are two recent methods for estimating the hyper-parameters. The first one is the Adapted Cross-Validation (ACV) of [START_REF] Maatouk | Cross-validation estimations of hyper-parameters of Gaussian processes with inequality constraints[END_REF] which readjust the classical Leave-One-Out mean square error criterion by using the MAP instead of the (unconstrained) kriging mean for estimating the length scale hyper-parameter θ of the covariance function K. However, this method works only in the case of noiseless, because of the fact that the parameter σ does not depend on the MAP in the case without noise, as we mentioned in Remark 58.

The second one is the so-called constrained Maximum Likelihood Estimator (cMLE) of [START_REF] Bachoc | Maximum likelihood estimation for Gaussian processes under inequality constraints[END_REF] which is developed for taking into account the inequality constraints in the estimation of the hyper-parameters. However, in their study for asymptotic properties of cMLE, [START_REF] Bachoc | Maximum likelihood estimation for Gaussian processes under inequality constraints[END_REF] show that any consistency with unconstrained Gaussian process, is preserved when adding inequality constraints. This is because for large sample sizes the constraints slightly impact the log marginal likelihood. Hence the cMLE has the same asymptotic distribution as the MLE. In other terms, conditioning by the constraints (significantly increases the computational burden and) has a negligible impact on the MLE, unless perhaps the sample size is very small. In this line of thinking, we limit ourselves to the MLE in this work. By using the finite dimensional approximation (5.2.2) of the Gaussian process Y ,the log marginal likelihood defined in (5.1.3) is then given by

and the vector of estimated parameters γ verifies :

Sampling finite-dimensional GP with shape constraints

In this section, we present the technique of simulating the coefficients ξ. We present the problem of constraints saturation when using the improved rejection sampling technique of Maatouk and Bay (2016) and propose a numerical solution to that.

Sampling finite dimensional Gaussian processes under shape constraints

In view of (5.2.4), kriging the constrained function f consists in sampling Φ(X) [START_REF] Williams | Gaussian processes for machine learning[END_REF] where

and

(5.2.10)

Hence we face the problem of sampling from a truncated multivariate Gaussian distribution, which can be done by using different methods among them the Rejection Sampling from the Mode (RSM) developped by [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF]. [START_REF] López-Lopera | Finite-dimensional Gaussian approximation with linear inequality constraints[END_REF] have investigated the following methods : RSM [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF], Gibbs Sampling (Gibbs) [START_REF] Taylor | RestrictedMVN: multivariate normal restricted by affine constraints[END_REF], Exponential Tilting (ET) [START_REF] Botev | The normal law under linear restrictions: simulation and estimation via minimax tilting Series B Statistical methodology[END_REF], Metropolis-Hasting (MH) [START_REF] Robert | Machine learning, a probabilistic perspective[END_REF] and Hamiltonian Monte Carlo (HMC) [START_REF] Pakman | Exact hamiltonian monte carlo for truncated multivariate gaussians[END_REF] and it turns out that the Exact Hamiltonian Monte Carlo is the more efficient in term of Effective sample size (ESS) [START_REF] Thiébaux | The interpretation and estimation of effective sample size[END_REF] and less expensive in term of CPU time.

An appropriate choice of the initial vector (which must verify the constraints) in the algorithm of Exact Chapter 6. Kriging for implied volatility surface

• Noisy measurement : observed prices may not be fully reliable (ex : price of illiquid instruments).

• Smoothness constraints : the price surface should be differentiable (important for deriving the local volatility surface, see Chapter 7).

• Shape constraints : the price surface should not allow to generate arbitrage.

In this regard, we propose to use the kriging techniques for such construction. We discuss our methodology that requires the transition from classical kriging, which does not allow to obtain arbitrage-free option price surfaces, to the constrained kriging which does allow to get free-arbitrage option price surfaces. We present these techniques in the next section.

In what follows, we only consider Put option, Call option price can be recovered using the call-put parity. Before going further, we recall how no-arbitrage conditions translate into shape constraints on the put option price.

Proposition 59 We place ourselves at a fixed date of evolution t 0 and we consider S 0 the value of the underlying at t 0 . The put price surface (T, X) → P (T, X) is free of static arbitrage if and only if (i) X → P (T, X) is a convex function such that P (T, 0) = 0 and ∂P ∂X (T, 0) = 0, for any T ≥ 0.

(ii) T → P (T, X) is a non-decreasing function, for any X ≥ 0.

Proof: This follows by using the call-put parity formula in Roper (2010, Theorem 2.1).

Kriging for learning arbitrage-free put option price surfaces

In this suebsection, we present the classical kriging techniques which allow to construct option price surface by only incorporating the three first characteristics mentioned above (i.e, incomplete information, noisy measurement and smoothness constraints).

Given the input domain D in time and space, we aim at constructing, at a given quotation date, put price surface

satisfying arbitrage-free conditions given in Proposition 59 and given n noisy observations y = [y 1 , ..., y n ] of function P at input points X = [X 1 , ..., X n ] where X i = (T i , X i ), i = 1, . . . , n. Then, this construction should be compatible with market fit condition

where P (X) := [P (X 1 ), ..., P (X n )] . The additive noise term ε = [ε 1 , ..., ε n ] T is assumed to be a zero-mean Gaussian vector, independent from P , and with an homoscedastic covariance matrix given as ς 2 I n , where I n is the identity matrix of size n.

The last two statements of Proposition 61 justify the choice of the hat basis functions which is due to the fact that P N satisfies the inequality constraints in the entire domain D when it satisfies these constraints at the knots (see [START_REF] Maatouk | Gaussian Process Emulators for Computer Experiments with Inequality Constraints[END_REF], i.e., P N ∈ M if and only if ξ ∈ C ineq where C ineq is a set of linear inequality constraints on ξ as given by the two last points of Proposition 61. In this line of thinking, our construction problem (P) is equivalent to estimate ξ restricted to

Hyper-parameter learning

Hyper-parameters, namely the length scale θ and the variance parameter σ, of the kernel function K as well as the noise parameter ς can be either specified or estimated. By denoting λ the set of these parameters (i.e., λ = [θ, σ, ς] ), we propose to maximize the marginal log likelihood L(λ) for the process P N w.r.t. λ for parameters learning.

Under the finite dimensional approximation, the marginal log likelihood can be expressed as (see, e.g., [START_REF] Williams | Gaussian processes for machine learning[END_REF]:

(6.3.5)

The most probable response surface and measurement noises

The MAP of P N is given by

where

is the MAP of the Gaussian coefficients ξ. As we mentioned in Chapter 5, the MAP ν ξ of ξ is paramount in the sampling of ξ since it satisfies the inequality constraints hence it can be considered as the initial vector when using the sampling algorithm of HMC (see [START_REF] López-Lopera | Finite-dimensional Gaussian approximation with linear inequality constraints[END_REF]. As explained in Section 5.2.2 of Chapter 5, this can be obtained directly by maximizing the density function of the conditional Gaussian vector ξ|ξ ∈ C ineq restricted to C ineq which implies that

where µ cond and Σ cond are respectively defined by (6.3.10) and (6. 3.11). This is a quadratic optimization problem and it is equivalent to

with Γ N the covariance matrix of ξ.

In order to identify the locations x of the largest noises and their values, we compute the joint MAP (ν ξ , ν ε ) of the truncated gaussian vector ξ and the MAP of the Gaussian noise vector ε. This can be defined as solution of max ϑ,e

As (ξ, ν ε ) is Gaussian centered with block-diagonal covariance matrix with blocks Γ N and ς 2 I n , this implies that the mode (ν ξ , ν ε ) is a solution to the following quadratic problem

(6.3.9)

Chapter 6. Kriging for implied volatility surface

The GP hyperparameters θ X , θ T , σ and the standard deviation of the noise ς are estimated using the MLE. Figure 6.2 represents their stability relatively to the chosen number of basis functions. Here, we study the convergence of the parameters by increasing the number of basis function. It is clear that this convergence is achieved among from 250 basis functions. In short, parameters convergence is reached when the number of basis functions tends to infinity.

Then, as explained in Subsection 6.3.4, quadratic programming is used to find the most probable response surface and measurement noises, while enforcing the constraints, using the interior-point-convex iterative algorithm with a tolerance of 1 × 10 -12 . In Figure 6.3, we represent the most probable response surface (left) and measurement noises (right). It is clear that the surface of put prices respects the arbitrage-free conditions. The scattered noisy points show that low maturity options are associated with a significant error and therefore a high distance from the most probable non-arbitrable surface. 

GPs for calibration of Dupire formula

By considering the dynamics of S given in (7.2.1) with constant interest rate r and constant dividend-yieldsq, we obtain the [START_REF] Dupire | Pricing with a smile[END_REF] 

which establishes a relation between the put price and the volatility. The function σ : R + × R + → R + is known as local volatility and is consistent with no-arbitrage market prices for any options on S. Thus, the construction of σ(•, •) given the market put prices P (T 1 , X 1 ), ..., P (T n , X n ), observed for the finite number of pairs (T i , X i ) i=1,...,n can be done by first constructing a no-arbitrage put price surface P : R + × R + → R + which is compatible with these observed prices and then use the [START_REF] Dupire | Pricing with a smile[END_REF] formula to get the local volatility surface. As we show above, learning the put price surface P corresponds to leaning the reduced price P and using (7.2.7). Fortunately, the Dupire formula can be rewritten in term of P . Indeed, one has from the (7.2.6) the following derivatives

Replacing these derivatives into (7.2.8) leads to

(7.2.9) which implies that constructing the local volatility surface can be done by constructing the reduced pricesurface and using Dupire's formula to get the whole local volatility surface. Our construction consists in using the constrained kriging presented in Chapter 6 to learn the reduced price P , given in Proposition 64, which must be compatible to the market fit. In other terms, for a given quotation date, we construct reduced put price surfaces (T, k) → P (T, k) satisfying the arbitrage-free conditions in Proposition 64 from n noisy observations y = [y 1 , . . . , y n ] of function P at input points X = [X 1 , . . . , X n ].

The input points X i = (T i , k i ), i = 1, . . . , n correspond to observed term-to-maturities and reduced option strikes. Then, the construction of the reduced price function should be compatible with the following market fit condition y = P (X) + ε, (7.2.10)

where P (X) := [ P (X 1 ), . . . , P (X n )] is the vector composed of reduced put prices at observation points X 1 , . . . , X n . The additive noise term ε = [ε 1 , . . . , ε n ] T is assumed to be a zero-mean Gaussian vector, independent from P , and with an homoscedastic covariance matrix given as σ 2 noise I n , where I n is the identity matrix of dimension n.

The methodology of the construction

The construction of the local volatility consists first of all in kriging the reduced price P which is compatible with (7.2.10) and which respects the conditions of Proposition 64 and then using the Dupire's formula.

Chapter 7. Kriging vs Neural Network for local volatility construction

kriging the reduced price

Kriging the reduced price P can be done as explained in Section 6.3.2 of Chapter 6. By means, we consider a discretized version of the input space D as a N = (N T + 1) × (N k + 1) regular grid

For each knot (u i , v j ), we introduce the hat basis function φ(T, k) over D, as the following tensor product

denote the space of P and V N ⊂ V denote the finite dimensional linear subspace spanned by the N linearly independent basis functions so that

The surface P ∈ V is projected onto V N :

(7.2.11)

P N ∈ V N is a bilinear quadrilateral finite element approximation of the values of P at knots (u i , v j ) i,j . If we denote ξ i,j := P (u i , v j ), for i = 0, . . . , N T , j = 0, . . . , N k , then ξ = [ξ 0,0 , . . . , ξ i,j , . . . , ξ N T ,N k ] is a zero-mean Gaussian vector with N × N covariance matrix Γ N such that Γ h ı1,ı2 = κ((u i1 , v j1 ), (u i2 , v j2 )), for any two grid index pairs (i 1 , j 1 ) and (i 2 , j 2 ) corresponding to global indices ı 1 and ı 2 respectively. Let φ(T, k) denote the vector of size N given by

The equality (7.2.11) can be written in the following matrix form P N (T, k) = φ(T, k) • ξ so that when denoting Φ(X) the n × N matrix of basis function in which, each row corresponds to the vector φ(T , k ), one has P N (X) = Φ(X) • ξ, with P N (X) := [ P N (X 1 ), . . . , P N (X n )] .

The main steps of constructing the reduced price surface are 1. Find GPs hyperparameters by maximizing the marginal log-likelihood of the (made finite dimensional) put price surface P N with respect to a training dataset.

2. Find the MAP (mode of the posterior distribution) ξ of the (finite reduction of the) GPs put price surface ξ by quadratic minimization, using the hyperparameters found in step 1.

3. Use ξ to initialize a Hamilton MC sampler and sample realizations of ξ or, equivalently, P N , from the posterior distribution of the GPs put price surface.

Turning into local volatility surface

Once the kriging of P N has been done as presented above, the realizations of the local volatility surface can be obtained by deriving their corresponding finite element approximations for each realization of P N . For this purpose, the finite dimensional approximation P N should be convex with respect to the strike direction. However, note that P N is not differentiable, because our basis functions are only of class C 0 . To address this issue, we may use quite a large number of nodes in strike direction in order to get the local volatility surface. An other solution is to use a regularization technique which consists in formulating a weak form of the Dupire equation and construct the local volatility surface using this finite element method. This regularization can Chapter 7. Kriging vs Neural Network for local volatility construction training set is composed of 1720 market put prices. The testing set consists of a disjoint set of 1725 put prices.

All results for the GP method are based on using Matern ν = 5/2 kernels over a [0, 1] 2 domain with fitted kernel standard-deviation hyper-parameter σ = 185.7611, length-scale hyper-parameters θk = 0.3282 and θT = 0.2211, and homoscedastic noise standard deviation, ς = 0.6876. 2 The grid of basis functions for constructing the finite-dimensional process p h has 100 nodes in the modified strike direction and 25 nodes in the maturity direction.

Regarding the NN approach, we use a three layer architecture similar to the one based on prices (instead of implied volatilities in Section 7.3) in [START_REF] Chataigner | Deep Local Volatility[END_REF], to which we refer the reader for implementation details.

Arbitrage-free SVI

We benchmark the machine learning results with the industry standard provided by the arbitrage free stochastic volatility inspired (SVI) model of [START_REF] Gatheral | Arbitrage-free SVI volatility surfaces[END_REF]. Under the "natural parameterization" SVI = (∆, µ, ρ, ω, ζ), the implied total variance is given, for any fixed T , by

SSVI is the parameterization of a full surface given as SVI T = (0, 0, ρ, Θ T , φ(Θ T )) for each T , where Θ T is the at-the-money total implied variance and we use for φ a power law function φ Gatheral and Jacquier (2014, Remark 4.4) provides sufficient conditions on SSVI parameters (η(1 + |ρ|) ≤ 2 with γ = 0.5) that rule out butterfly arbitrage, whereas SSVI is free of calendar arbitrage when Θ T is nondecreasing.

We calibrate the model as in Gatheral and Jacquier (2014): 3 First, a guess on SVI is obtained by fitting the SSVI model; Second, for each maturity in the training grid, the five SVI parameters are calibrated (starting in each case from the SSVI calibrated values). The IV is obtained for new maturities by a weighted average of the parameters associated with the two closest maturities in the training grid, T and U , say, with weights determined by Θ T and Θ U . The corresponding local volatility is extracted by finite difference approximation of (7.3.1).

Note that as, in practice, no arbitrage constraints are implemented for SSVI by penalization (see Gatheral and Jacquier, 2014, Section 5.2), the SSVI approach is in fact only practically arbitrage-free, much like our NN approach, whereas it is only the GP approach that is proven arbitrage-free.

Calibration results

Training times for SSVI, GP, and NNs are reported in the last line of Table 7.1 which, for completeness, also includes numerical results obtained by NN interpolation of the prices as per [START_REF] Chataigner | Deep Local Volatility[END_REF]. Because price based NN results are outperformed by IV based NN results we only focus on the IV based NN in the figures that follow, referring to [START_REF] Chataigner | Deep Local Volatility[END_REF] for every detail on the price based NN approach. Again, in contrast to the SSVI and NNs which fit to mid-quotes, GPs fit to the bid-ask prices.

The GP implementation is in Matlab whereas the SSVI and NN approaches are implemented in Python. On our large dataset, the constrained GP has the longest training time. Training is longer for constrained SSVI than for unconstrained SSVI because of the ensuing amendments to the optimization routine. There are no static arbitrage violations observed for any of the constrained methods in neither the training or the testing grid. Unconstrained methods yield 18 violations with NN and 177 with SSVI on the testing set, out of a total of 1725 testing points, i.e. violations in 1.04% and 10.26% of the test nodes. The unconstrained GP

Perspectives

Here we present some new avenues for future researches.

Using Generalized Cox model for modeling catastrophe (CAT) bonds

The issuing of catastrophe (CAT) bonds is essential for insurance companies. These products allow them to hedge against the risks incurred following a natural disasters such as earthquakes, pandemics, etc. Recently, we are witnessing the occurrence of the Coronavirus disease COVID-19 pandemic that causes significant losses. A number of good examples have already been developed for catastrophe bonds. These include the model of [START_REF] Burnecki | Pricing of zero-coupon and coupon CAT bonds[END_REF] who used a compound doubly stochastic Poisson loss process for aggregate losses where the catastrophe event times are jump times of standard Poisson Process (i.e., with a constant intensity). Their approach has been extended by [START_REF] Ma | Pricing zero-coupon catastrophe bonds using EVT with doubly stochastic Poisson arrivals[END_REF] where they use a stochastic intensity rate of the Poisson process and provide an explicit intensity of the default time as well as a semi-analytical solution for evaluating zero-coupon CAT bonds. In the double stochastic Poisson loss model, default occurs when the aggregate claims process exceeds a specified level (called threshold value). Schmidt (2014) used shot-noise process for modeling the aggregated losses process. Jarrow (2010) has been based on the reduced form model for pricing credit derivatives. He modeled the time of the catastrophe event underlying the Cat bond as a standard Cox time (i.e., the case where the increasing adapted process K is continuous). However, his model can be applied only in the case of one occurrence of a catastrophe event in the time interval of the Bond contract. This can be understood through the illustrative example on his introduction where an insurance issues CAT-Bonds with the hurricane in Florida as the underlying catastrophe event for covering eventual losses that could be included in the amount insured for home insurance written by that company at the first occurrence of the hurricane in the time interval of the contract. However after the first event, the CAT-Bonds come to an end. Nevertheless, when one considers the case with possible successive catastrophe events in life time of a CAT-Bond contract, the model of [START_REF] Jarrow | A simple robust model for CAT bond valuation[END_REF] is not enable to cover this kind of framework, specially in the case of long maturity CAT-Bonds contracts. Indeed the default time in [START_REF] Jarrow | A simple robust model for CAT bond valuation[END_REF] represents only the Conslusions and perpectives first time of the ones of these events, while others severe losses can be noted after the nth occurrence of an event.

To bridge this gap, we can adopt the generalized Cox framework where the sequence of catastrophe events can be modeled as an increasing sequence of stopping times in the reference filtration which are not avoided by the default time. This setting may offer some nice mathematical perspectives to the CAT-Bonds. However, how it could be implemented from the practical point of view?

Kriging and theory of optimal martingale transport

We have seen that kriging is a suitable tool for constructing option prices and quantifying uncertainty in the presence of noisy data by constructing some confidence bounds. In addition, this latest example of kriging could offer new perspectives for studying risk model in quantitative finance. Recent works on the subject concern in particular the derivation of non-arbitrage bounds (and the identification of strategies of over-or under-replication to reach those boundaries) for option prices (path-dependent) knowing the marginal laws of the underlying at some maturities. This problem can for example be studied under the angle of theory of optimal martingale transport (see, e.g., [START_REF] Henry-Labordere | An explicit martingale version of Brenier's theorem[END_REF][START_REF] Hobson | Robust price bounds for the forward starting straddle[END_REF][START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF][START_REF] Beiglböck | Model-independent bounds for option prices-a mass transport approach[END_REF]. However, in this approach, the non-arbitrage bounds can be obtained efficiently only from the knowledge of all marginal distributions. In practice, the marginal law is only partially observed at some time horizons through the observation of traded European option prices. As we illustrated in Chap 6, 7, constrained kriging allows to quantify uncertainty on marginals laws of a martingale measures. A more realistic uncertainty quantification of path-dependent option prices could be achieved by combining our approach and the optimal martingale transport approach. This is a perspective for future research.

Chapter 8

Finite Element Approximation

The elements of the matrix F are given by F ı1,ı2 = Ti+1 Ti-1 κj+1 κj-1 ∂ T φ ı2 (T, κ)φ ı1 (T, κ)dκdT, ∀ı 1 , ı 2 ∈ {0, . . . , N -1}, (8.0.1) which simplifies to the following 6-diagonal square matrix, where the central tri-diagonal band is zero:

(8.0.

2)

The elements of the stiffness matrix H are given by H ı1,ı2 = - which evaluates to the 9-diagonal square matrix:

hκ (dup i 1 ,j 1 + dup i 1 -1,j 1 + dup i 1 ,j 1 -1 + dup i 1 -1,j 1 -1 ), ı2 = ı1, 1 3 h T hκ (dup i 1 ,j 1 + dup i 1 -1,j 1 ), i2 = i1, j2 = j1 + 1, 1 3 h T hκ (dup i 1 ,j 1 -1 + dup i 1 -1,j 1 -1 ), i2 = i1, j2 = j1 -1, -1 6 h T hκ (dup i 1 ,j 1 + dup i 1 ,j 1 -1 ), i2 = i1 -1, j2 = j1, -1 6 h T hκ (dup i 1 -1,j 1 + dup i 1 -1,j 1 -1 ), i2 = i1 + 1, j2 = j1,

If we multiply each side of the equation H(dup)ξ = F ξ by 3 2h T h k then the second line of the right hand side has terms similar to a first order central finite difference stencil ξi+1,j -ξi-1,j 2h T

. Additionally the stiffness matrix has terms which correspond to a second order finite difference stencil with local averaging of dup. To see this, suppose that dup were constant over each quadrant then the first three lines of the specification of H above correspond to the finite difference stencil ξi,j+1-2ξi,j +ξi,j-1 h 2 κ . The four-diagonal rectangular matrix A is given by

hκ ( 1 3 ξ i1,j1 -1 3 ξ i1+1,j1 + 1 6 ξ i1,j1+1 -1 6 ξ i1+1,j1+1 ), ı 1 = ı 2 , -h T hκ ( 1 3 ξ i1,j1 -1 3 ξ i1,j1-1 + 1 6 ξ i1+1,j1 -1 6 ξ i1+1,j1-1 ), ı 1 = ı 2 + N T , -h T hκ ( 1 3 ξ i1,j1 -1 3 ξ i1,j1+1 + 1 6 ξ i1-1,j1 -1 6 ξ i1-1,j1+1 ), ı 1 = ı 2 + 1, -h T hκ ( 1 3 ξ i1,j1 -1 3 ξ i1,j1-1 + 1 6 ξ i1-1,j1 -1 6 ξ i1-1,j1-1 ), ı 1 = ı 2 + N T + 1.

(8.0.4)