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Introduction

Spin waves, the elementary low-energy excitation of magnetically ordered materials,
and their associated quasi-particle, magnons, can propagate spin angular momentum
and energy. In the so-called magnonic devices spin waves carry information coded into
their phase or amplitude [1]. Such devices present several advantages, among which we
can highlight the intrinsic versatility of magnetic materials that support the spin-waves,
allowing for agile and reconfigurable architectures; the lack of Joule heating, reducing
device energy consumption; the intrinsic non-linearity of magnetization dynamics and
the micrometer-scale coherence length, making them suitable to perform wave com-
puting [2]; and the ability to perform directly GHz and THz signal processing [3].

These properties make magnonic technology a suitable beyond CMOS alternative,
as identified by the International Technology Roadmap for Semiconductors [4]. How-
ever, in order to build magnonic devices, spin-wave propagation has to be controlled
efficiently. This task can be performed by magnonic crystals, periodic magnetic nanos-
tructures which can be used to build passive and active magnonic circuit elements [5, 6].
However, these structures involve complex fabrication processes. An alternative is given
by stable topological magnetic structures such as magnetic domain walls [7], vortices,
and skyrmions [8]. These textures, which can be seen as a static counterpart of the
dynamic spin-wave modes, influence directly spin-wave propagation. Moreover, the
magnetic textures are more versatile than the magnonic crystals, as their structure
can be easily modified, by a magnetic field, an electrical field/current, or even, in the
ultimate scheme of reconfigurable magnonic devices by spin waves themselves, as in
the case of domain walls [9]. These mutual interactions pave the way to the treatment
of information in all-magnon approach, which totally avoids energy losses by Joule
heating [10, 11].

In this context, we have studied the properties of spin waves interacting with nonuni-
form magnetic distributions. For that, we have studied two systems:

• Weak stripe domains, which are a magnetic texture that nucleates at low field
in films with perpendicular magnetic anisotropy (PMA). In this system, the
nonuniform distribution of the magnetization appears spontaneously at nucle-
ation. Their periodic character identifies these structures as one-dimensional
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magnonic crystals, while keeping the versatility of magnetic textures.

• A bilayer with contrast of saturation magnetization. Here, the inhomogeneity
imposed at fabrication results in a specific nonreciprocal type of propagation
which can be used for designing a magnonic diode.

Despite their differences, the two systems share several common characteristics:

• The specific broken-symmetries (periodic modulation and up-down broken sym-
metry) are fundamental to determine the spin-wave modes properties.

• The dipolar field, is a key ingredient that introduces complexity and makes these
systems nontrivial.

• The two systems are studied in the so-called Damon-Eshbach (DE) configuration
(applied field in the film plane, and spin-wave wave vector perpendicular to it). In
this configuration, spin waves present a specific chiral character and a tendency
toward flux closure which will be of major importance for the effects investigated.

These two systems were investigated in the framework of two projects, SWANGATE
and MAGMATCH. Both projects included the participation of multiple researchers,
and their collaboration was fundamental to the realization of this work.

SWANGATE

The ANR project “Spin-wave nanochannels for reprogrammable logic gates” (ANR-16-
CE24-0027) involves three partners: Institut Jean Lamour (IJL), Centre de Nanosciences
et de Nanotechnologies (C2N), and Institut de Physique et Chimie des Matériaux de
Strasbourg (IPCMS). The Technical University of Kaiserslautern (TUK) was also in-
volved as associated partner.

This project proposed to use domain walls —the interface between magnetic do-
mains with different orientation of the magnetization— as reconfigurable spin-wave
waveguides [7]. In this context, we have studied the spin-wave modes in magnetic
stripe domains, which can be thought as an array of parallel domain walls.

Within this project, we have studied ferromagnetic thin films with PMA, which
is a property required for the nucleation of stripe domains. In a first approach, the
spin-wave propagation in multilayers of Co/Ni, a material with a strong PMA, has
been studied in the saturated state by M. Sushruth, a postdoc in C2N [12]. Later, the
project has focused on the spin-wave dynamics in films of CoFeB, as they present a
lower damping, making them better candidates for the study of spin-wave propagation.
The static properties of the stripe domains of CoFeB have been extensively studied by
K. Ait Oukaci, during his PhD at IJL. High-resolution scanning transmission x-ray
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microscopy (STXM) and magnetic force microscopy (MFM) provided information on
their precise structure [13, 14]. Based on this knowledge, micromagnetic simulations
were done to explore the related dynamics, finding that the spin-wave modes adapt
to the symmetries imposed by the texture. All these studies served as background for
the realization of this work, where we have focused on the experimental study of the
dynamic properties and analytical understanding of the stripes.

The fabrication of all thin films, magnetometry and high-resolution magnetic imag-
ing was done by K. Ait Oukaci, D. Lacour and M. Hehn, at IJL. BLS measurements
were done in TUK by M. Geilen and P. Pirro, but the author of this work also traveled
to Kaiserslautern to participate in the measurements. Mumax3 micromagnetic simu-
lations were performed by D. Stoeffler at IPCMS. FMR and PSWS measurements and
the analytical modeling were done at IPCMS.

MAGMATCH

The project “The spin-wave dioptre: towards magnon matching” was funded by the
Laboratoire d’excellence “Nanostructures in interaction with their environment” (ANR-
11-LABX-0058-NIE). Its primary aim was to understand how spin-wave can propagate
in the presence of abrupt changes of the magnetic properties. More specifically, we
focused our attention on ferromagnetic bilayers with thicknesses of several tens of
nanometers where both the exchange and dipolar interaction play a fundamental role.

The samples used in this project were grown by D. Lacour and M. Hehn at IJL.
D. Louis, initiated the fabrication of devices and the inductive measurements during
his Post-Doc at IPCMS, but in the later steps he was substituted by the author of
this work. BLS measurements were performed at TUK by M. Geilen and P. Pirro. D.
Louis and the author of this work participated in the thermal and micro-focus BLS
measurements, respectively. Mumax3 and SWIIM simulations were performed by D.
Stoeffler and Y. Henry at IPCMS.

About this manuscript

This work was entirely written in LATEX. Figures were mostly done using Inkscape,
Origin and GNUplot. The analytical calculations were performed using Mathematica.
Spin-wave simulations in the saturated state were performed using SWIIM [15].

The contents are organized in five chapters and a final general conclusion. The
first two chapters are introductory and give the basics on statics and dynamics of
magnetization. Chapter 3 presents the experimental techniques used in this work. The
last two chapters show the results obtained on the ferromagnetic bilayers (Chapter 4)
and on films presenting magnetic stripe domains (Chapter 5).



Chapter 1

Magnetization statics

This chapter introduces the physics of mesoscopic magnetic systems. The main inter-
actions that affect the spatial distribution of the magnetization are reviewed. Then, a
particular static texture is presented: the magnetic stripe domains.

1.1 Magnetic moments and magnetization

Different materials could present a variety of magnetic properties. This depends mostly
on the interaction between the constituent magnetic moments µ, which can have two
different origins: charge particles with an angular moment L —in particular atomic
valence electrons—, and the electron intrinsic spin S. In general, µ depends on both
contributions and can be expressed as

µ = γJ (1.1)

where J = L + 2S is the total angular moment, and γ is the gyromagnetic ratio
which is a material property that depends on the proportion between S and L in
the total angular moment. For most transition metals the main contribution is given
by S and it is possible to take L = 01. For this case, γ ≈ 1.75 1011 rad/(T·s), or
equivalently, γ

2π ≈ 28 GHz/T.
Depending on the material structure, these magnetic moments could interact in

different ways as it will be reviewed in Section 1.2. If they present little interaction
between them, the material display a para- or diamagnetic behavior. On the contrary,
if the exchange2 is strong enough, long range order could develop. Depending on the
nature of the exchange interaction, ferro, ferri or antiferromagnetic behaviors will be

1This phenomenon is known as the quenching of orbital angular momentum. It results from the
effects of the strong electric fields from neighboring ions [16].

2Short range interaction appearing as a consequence of quantum mechanics. It will be reviewed in
Section 1.2.2.

1



1.2 Magnetic interactions 2

favored. This work will focus on different phenomena involving materials that present
a ferromagnetic order, in which exchange promotes configurations with parallel mag-
netic moments. In such configurations, in absence of other interactions, all magnetic
moments remain aligned in a certain direction.

For studying these materials at intermediate length- and time-scales, one uses a
mesoscopic approach to study the dynamics of the magnetic moments. To do so, the
material is divided in regions of volume V that are big enough to contain several
magnetic moments but sufficiently small to ensure that they are parallel. Within this
approach, the mesoscopic magnetization density M — or magnetization, for short—
is defined as

M =
∑
V

µ(r′)
V

, (1.2)

where r′ ∈ V . M can be interpreted as a classical pseudovector, neglecting the
quantum properties of µ. In the International System of Units (SI)M is expressed in
A/m, while is expressed in emu/cm3 in CGS. In our case, we will treat the magneti-
zation density as a continuous parameter defining a smoothly varying magnetization
field M (r), and we will think V as much smaller than all relevant dimensions in the
considered problem.

The value of |M | is generally constant and can be considered a material property.
We will use the standard notation and write |M | = MS, which is known as saturation
magnetization. Nevertheless, the direction of M can change within the sample. The
field which studies the behavior of the magnetization in the mesoscopic scale is called
micromagnetism.

1.2 Magnetic interactions

The spatial distribution of the magnetization in a ferromagnetic sample will be given
by the configuration which minimizes the total energy ET of the studied system. In the
next sections, the different interactions which contribute to ET will be reviewed. For
these interactions, an explicit expression for the energy density E will be found. The
two quantities are related as E =

∫
V E(r) dr. Near the energy minimum which defines

the static configuration, a generalized force that drags M to the equilibrium can be
defined. We will refer to this force as an effective magnetic field Heff, which can be
calculated as3

Heff = − 1
µ0

∂ET
∂M

, (1.3)

This description is similar to the study of a particle in a potential. However,

3Calculate the partial derivative of the energy with respect to M is analogous to calculate the
gradient in the real space as ∇ = ∂

∂R , where R is the position vector.



1.2 Magnetic interactions 3

the evolution of the magnetization towards the energy minimum is not direct. As a
consequence of the constant module of M , its trajectory must remain confined to a
sphere, as shown in Fig. 1.1. Therefore, only the component of the effective field that
is perpendicular to the magnetization, Heff

⊥ , will have an effect on M .

� M

z

y

x

Heff

Heff

Figure 1.1: The magnetization vector M can move on the surface of the sphere |M | = MS .
Because it must behave as an angular moment, the force F generates a torque τ that induces
the precession of M around Heff.

Another constrain is thatM is associated to the total angular moment J and their
dynamics must coincide. Hence, the time evolution will be given by a torque τ = ∂J

∂t
.

An expression of this torque can be intuitively understood from the classical mechanics
point of view. In this case, the force is calculated as the opposite of the gradient ∂

∂r
of

the total energy of the system. Comparing with equation 1.3, the substitution r →M

seems adequate to go from a mechanical system to the studied magnetic system, taking
M as a generalized coordinate. From here, it is possible to propose the following torque
expression

τ = ∂J

∂t
= −µ0M ×Heff. (1.4)

In general, the static magnetic configurations can be obtained by minimizing the
total energy of the magnetic system, or equivalently, by finding the zero-torque config-
urations.

1.2.1 Zeeman interaction

Let us consider an external field H which is applied on a magnetization distribution.
For a point with magnetizationM , the corresponding energy density can be expressed
as [17]

EZ = −µ0 M ·H , (1.5)



1.2 Magnetic interactions 4

where µ0 = 4π 10−7 kg m A−2 s−2 is the vacuum permeability. This contribution
to the energy is called Zeeman interaction, after Pieter Zeeman who discovered the
splitting of the spectral line of some elements when applying a magnetic field. This
energy has one unique minimum, which leads to only one stable equilibrium point,
where M ‖ H . From Eqs. 1.4 and 1.5 we observe that the effective field associated
with the Zeeman interaction is H. This justifies the interpretation of the generalized
force as an effective magnetic field.

Using the constant module of the magnetization |M | = MS and writing the mag-
netic field as H = H ŷ, the scalar product from definition 1.5 can be developed as

EZ = µ0M ·H = µ0HMy = µ0H
√
M2

S −M2
x −M2

z . (1.6)

This expression, which relates the Zeeman energy to of the transversal components
of the magnetization, will be used in Section 1.3.

1.2.2 Exchange interaction

The ferromagnetic exchange is an interaction which favors single domain configura-
tions, as it introduces a penalty for any deviation of the magnetization from a uniform
distribution. It is a short range interaction and it has purely quantum origins, as it
is a consequence of the permutation symmetry of fermionic —in our case, electronic—
systems.

In a mesoscopic ferromagnetic system, the contribution of the exchange to the
energy density can be written as4

Eex = Aex

M2
S

∑
i

(
∂M

∂xi

)2

(1.7)

where xi = x, y, z, and Aex is the exchange constant5. For most metallic ferro-
magnetic compounds, it takes values of the order of 10 pJ/m[19, 20]. The associated
effective field can be calculated as

Hex
eff = − 1

µ0

∂Eex
∂M

= Λ2∇2M (1.8)

where Λ = 1
MS

√
2Aex

µ0
is the exchange length, typically of the order of some

4This formula is not only valid in the case of direct exchange but, with different coefficients, it also
describes some indirect exchanges as super-exchange, double-exchange or RKKY.

5Some times this parameter is called exchange stiffness constant, in order to underline difference
with the exchange constant J , from Heisenberg’s model. These two parameters are related by Aex =
nS2

a J , where n is the number of nearest neighbors, a is the lattice parameter, and S is the spin number
[18].
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nanometers [19], and ∇2 is the vector Laplacian6. The exchange length can be inter-
preted as the typical maximum distance below which the exchange interaction between
two magnetic moments is stronger that the dipolar interaction.

1.2.3 Dipolar interaction

Each magnetic moment can be thought as a source of dipolar field that interacts with
the other magnetic moments. From the mesoscopic point of view, we can take all points
of the sample with a given magnetization as a source of dipolar field.

This interaction depends strongly on the relative position between these magnetic
moments and it will be determined by the geometry of the sample. From the micro-
magnetic point of view, it is the most difficult interaction to compute, as it is highly
anisotropic and long ranged, implying integrals over the whole sample. Nevertheless,
in some simple geometries, the resulting effective field Hd can be calculated analyt-
ically. We note that the effective field of the dipolar interaction is the dipolar field
itself: Heff

d = Hd.
There are several ways of calculate Hd. We will focus on one that is particularly

intuitive as it is based on the concept of magnetic charge. From the constituent relations
and Maxwell’s equations the magnetic field satisfies

∇ ·B = µ0∇ · (Hd +M) = 0. (1.9)

As a useful notation, we will define

∇ ·Hd = ρM , (1.10)

where ρM = −∇·M is the magnetic-charge density, and is analogous to the conven-
tional electric-change density. In the boundaries of the sample, where the magnetiza-
tion vanish abruptly, this expression defines the surface magnetic charges σM = n̂ ·M ,
where n̂ is the outward versor normal to the surface.

In addition, in the magnetostatic regime and in absence of free currents, Ampère’s
law reduces to

∇×Hd = 0, (1.11)

which implies that Hd is a conservative field. Therefore, it follows the same laws
than the static electric field, but instead of electric charges, the source of dipolar field
is the magnetic charge distribution given by ρM(r) and σM(r).

For a point of the space where the dipolar field is Hd, the dipolar energy density

6The vector Laplacian is defined as ∇2A = (∇ ·∇Ax,∇ ·∇Ay,∇ ·∇Az), where ∇ ·∇ is the
scalar Laplacian.
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can be calculated in the two equivalent forms,

Ed = µ0

2 H
2
d = µ0Hd ·M , (1.12)

and its minimization leads to magnetic-charge free magnetization distributions,
where magnetic charges are avoided. These configurations are also known as stray-
field free, as the field that a ferromagnetic sample irradiates is dipolar.

Due to the nonlocal nature of this interaction, the calculation of the total dipolar
energy Ed involves two integrations. First from the distribution M (r), the magnetic
charges are obtained, and the dipolar field can be calculated from Eq. 1.10 and the
boundary conditions. Finally, the integration of 1.12 can be performed.

As an example, let us take an infinite single domain ferromagnetic medium, where
M is constant in all the volume. In this case, ∇ ·M = 0, then, no magnetic charges
are present and, as a consequence, the dipolar field is null. However, if the sample is
not infinite, at the boundaries the magnetization will change abruptly, creating surface
magnetic charges. Thus, for homogeneous magnetization samples, boundaries are the
generators of magnetic charges and dipolar field. For this reason, the effects of the
dipolar interaction on the magnetization are known as shape anisotropy.

In a single domain sample, volume charges are null and surface charges are the only
source of dipolar field. From Eq. 1.10, the dipolar field inside H i

d and outside Ho
d the

sample satisfies
(H i

d −Ho
d) · n̂ = σM . (1.13)

This condition, in addition to the other boundary conditions7 defines the dipolar
field in all the space. Moreover, σM is linear on M , and Hd is linear on σM . This
implies that, in the case of a uniform-magnetized sample, the dipolar field and the
magnetization are proportional. Thus, it is possible to write8

Hd(r) = −N(r)M , (1.14)

where N is the demagnetizing tensor [21]. For the most general case, the functional
dependence of N with the spatial coordinate r can be very complicated to calculate,
as depicted in Figure 1.2. This is the reason why we will focus on certain geometries
where its expression can be obtained analytically.

For the particular case of a uniformly magnetized ellipsoid, the dipolar field will be
also constant in all the sample volume[22, 23], and N can be calculated analytically.

7The component of Hd parallel to the surface must be continuous and in most systems Hd goes
to zero at infinity.

8The case of nonuniform magnetization can be analytically solved in a few configurations. In the
next Chapter, we will find an expression for the dipolar tensor in the case of thin films with sinusoidal
distributions.
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Figure 1.2: Schematic illustration of the dipolar field generated by a uniform magnetization
M in a sample with an arbitrary shape. It is possible to see that N strongly depends on the
position.

Moreover, if the main axes of the ellipse are chosen as the xyz coordinates, the tensor
is diagonal. For the case of a sphere, all directions are equivalent, leading to Nxx =
Nyy = Nzz. All three components are also equal to 1/3 because N has a unitary trace
[21][23]. While ellipsoids are difficult to fabricate at the nanoscale9, a thin film can be
viewed as an asymptotic ellipsoid in which one of the axes is much smaller than the
others.

Thin films are easy to grow, and they are highly symmetric implying that N can
be obtained from symmetry considerations. The in-plane (IP) directions are quite
different from the out-of-plane (OOP) direction. If ẑ is the OOP direction, Mx and
My do not produce magnetic charges, thus Nxx = Nyy = 0 and the unitary trace
imposes Nzz = 1. The last expression can be easily understood: the dipolar field
in a uniformly magnetized thin film is equal to −Mz. Consequently, in the absence
of other interactions, the dipolar interaction favors an IP equilibrium magnetization
configuration. To overcome this thin film shape anisotropy and fully magnetize the
film OOP, it is necessary to apply an OOP external field larger than the saturation
magnetization MS, which is able of compensating for the dipolar field, leading to
Heff, z = Hd +H > 0.

1.2.4 Uniaxial anisotropies

Due to the crystal structure, the magnetization could reduce the energy of the system
when pointing in particular directions. This phenomenon originates from the spin-orbit
interaction, that links the crystal anisotropy to the magnetization. As an example, the
iron cubic structure generates a cubic magnetic anisotropy, implying that the magne-
tization will be energetically promoted to point in directions related to those of the
crystal bonds. These directions are known as easy axes.

A particular case arises when there is only one easy axis, defining a hard plane. In

9Nevertheless, YIG spheres are widely used for technical purposes, as filters and resonators in
radiofrequency devices.
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this case the anisotropy is called uniaxial. At first order, the energy density can be
written as

EK1 = K1 sin2θ = K1 −K1

(
Mi

MS

)2
, (1.15)

where K1 is the first order uniaxial anisotropy constant, expressed in J/m3, θ is the
angle between the magnetization and the easy axis, and Mi is the component of the
magnetization along this axis. The effective field that results is

Ha
eff = − 1

µ0

∂Ea
∂M

= 2K1Mi

µ0M2
S

êi. (1.16)

In thin films, perpendicular magnetic anisotropy (PMA), i.e. uniaxial anisotropy
along the film normal, is particularly relevant. When it is of easy-axis type (K1 > 0),
it has an effect opposite to that of the demagnetization field −Mz (see Section 1.2.3),
leading to an effective OOP demagnetization factor

Nzz = 1− 2K1

µ0M2
S

= 1−Q. (1.17)

Here, Q is the quality factor, which indicates how efficiently the PMA opposes to
the thin film shape anisotropy. If Q > 1, in the single domain configuration, Meq

will point OOP at remanence (H = 0). However, if the magnetization is not con-
strained to be uniform in all the sample, it will break apart in the form of magnetic
stripe domains, which will be described in details in the next sections. Another quan-
tity widely used in the magnetic community is the effective saturation magnetization
Meff = MS −

2 K1

µ0MS

= MS (1−Q).
The energy of the system can also contain anisotropy terms of higher order. In the

case of an uniaxial anisotropy, the energy can be developed as

Ea = K1 sin2θ +K2 sin4θ + ..., (1.18)

where Kn are the n-order uniaxial anisotropy constants.

1.2.5 Magnetic textures

The interplay between the different contributions to the total energy results in a large
variety of static configurations. The spatially uniform magnetic distribution, which is
also called saturated state, is favored by the exchange and Zeeman interactions. From
the experimental point of view, such saturated configurations are easy to obtain, as a
sufficiently strong applied magnetic field H ensures their realization.

The dipolar-field energy favors stay-field free configurations. In general, at low ap-
plied fields, specially if dealing with confined structures, the magnetization is no longer
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saturated. One possibility is that the sample divides itself in uniformly magnetized
regions called magnetic domains. Also, depending on the symmetries of the interac-
tions involved, more complex structures can be nucleated. These non-saturated states
are grouped together under the name of magnetic textures. Some of these structures
are particularly interesting as they are robust and can be manipulated. We can men-
tion, among others, the magnetic domain walls, vortices, Skyrmions and spiral helical
structures [8, 24]. Due to the complex profile of these textures, in order to execute a
complete analysis, micromagnetic simulations should be performed.

In the following section a particular magnetic texture will be introduced: the mag-
netic stripe domains10. Their static properties will be reviewed, serving as background
to study the dynamic approach to the stripe domain nucleation and the stripe dynam-
ics, that will be discussed in Chapter 5.

1.3 Stripe domain structure

Modulated phases, in which the order parameter is not constant but oscillates in the
space, are ubiquitous in physics [25]. They appear in several systems, including ferro-
electric materials [26], superconductors [27], organic macro-molecules [28] and confined
ferrofluids [29], among others. These phases show up as a response to competing in-
teractions favoring spatial inhomogeneities in an otherwise uniform ground state.

In this work, we are interested in a particular modulation of the magnetization
which appears in thin films with PMA (perpendicular magnetic anisotropy) described
by the parameter Q (Eq. 1.17). In absence of anisotropies, the static configuration that
is energetically favored is totally in-plane (IP), because the out-of-plane (OOP) com-
ponent of the magnetization generates surface magnetic charges leading to an increase
of the dipolar energy.

However, if the sample presents a PMA, a competition between it and the dipolar-
induced shape anisotropy appears. Both contributions can be satisfied if the OOP-
component alternates between positive and negative values on a short length-scale.
However, this configuration has a high cost in exchange energy. The so-called mag-
netic stripe domains constitute a compromise between these three interactions. In this
magnetic texture both IP and OOP transversal components of the magnetization are
periodically modulated along one direction, as shown in Fig. 1.3.

The spatial distribution of the magnetization within stripe domains depends on the
magnetic parameters of the sample —K1, Aex, MS, and t— and the applied field H.
The latter is usually oriented in the film plane, its direction setting that of the stripes.
One can distinguish two types of stripe domains. On one hand, weak stripes are textures

10In this context, magnetic stripes should not be mistaken with magnetic strips. The later are also
known as buses, which consist in a long narrow piece of magnetic material.
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y

x

z

Figure 1.3: Magnetization distribution for thin film with weak stripes (Q → 0) and strong
stripes (Q → 1) at nucleation. The green area in the weak stripe configuration show the Néel
caps, while the blue water regions in the strong stripes indicate the OOP magnetic domains. The
yellow points indicate the stripe core position. The distribution of the weak stripes was obtained
by the dynamic approach for CoFeB 180nm, while for the strong stripes it was extracted form
Ref. [24].

in which the magnetic flux is nearly closed [24] (Fig. 1.3(a)). It is an almost stray-free
configuration with very small dipolar energy. On the other hand, in strong stripes the
magnetic flux is not closed, and the dipolar interaction contributes significantly to the
texture energy (Fig. 1.3(b)). While the weak-stripe configuration is favored as Q→ 0,
when increasing Q, the system softly transitions to a strong-stripe configuration, as the
OOP component of the magnetization Mz increases creating magnetic charges. These
zones where the magnetization points almost uniformly OOP can be recognized as up
and down magnetic domains (see Fig. 1.3(b)), and the interface region as a domain
wall. As Q increases, these domains are better defined, however, the magnetization
at the center of the domain wall is always saturated in the direction of the applied
magnetic field. These particular points, which are common to both weak and strong
stripes, are denominated cores of the stripes. As the film is translation invariant, the
position of the cores in the direction perpendicular to H is determined at the stripe
nucleation by a spontaneous symmetry breaking. For the case of weak stripes, the
zones where M points IP to close the magentic flux are well defined and they are
called Néel caps.

Historically, magnetic stripe domains were first proposed theoretically by Muller in
1961 [30]. He studied the magnetization distribution in a thin slab with a normal easy-
axis and an IP external magnetic field by solving the zero-torque equation,M×H = 0.
For thinner films, similar results were obtained by Brown [31] who performed energy-
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variational calculations. Experimentally, the stripes were evidenced indirectly by their
effect of rotatable anisotropy [32–34], as once nucleated, the stripes generate an effective
anisotropy with an easy axis oriented in the direction on which they are aligned. Later,
the stripe domains were directly observed by Spain [35] (in Ni80.5Fe17.5Co2) and Saito
et al. [36] (in Permalloy) using Bitter decoration. Both experiments revealed that
stripes could develop only if the thickness was larger than a critical thickness tc. This
behavior was explained by Murayama [37], who extended Brown’s variational method
to find the dependence of tc and the corresponding stripe period λ as function of Q.
He obtained analytical results in the case where Q → 0. Up to our knowledge, there
is no analytical solution to fully describe the magnetization distribution for arbitrary
magnetic parameters. In this case, it is necessary to perform numerical calculations.

1.3.1 Energy minimization

In this section we will focus on the study of weak stripes, i.e. Q → 0. For that, we
will first calculate analytically the total energy of such magnetic texture to find the
parameters that minimize it. We will consider three interactions: dipolar, exchange
and PMA.

By definition, if Q → 0, the PMA energy density (∼ K1) is much smaller than
the typical dipolar energy in thin films (∼ µ0M

2
S/2). As for the exchange interaction,

it is proportional to the square of the modulation wave vector, and each oscillating
component of the magnetization contributes to the energy. Therefore, this contribution
can not be minimized in an oscillatory texture. Consequently, the dipole interaction
would become the most relevant contribution to the energy that can be minimized by
correctly choosing the stripe shape.

Hence, as suggested in Ref. [24], we can propose a surface-charge-free ansatz. De-
veloping the texture as a perturbation from the uniform configuration M = −MS ŷ,
the transversal components are written as11

mx = A sin(k x + φ) sin (κ z) ,

mz = B cos(k x+ φ) cos (κ z) ,
(1.19)

where k = 2π
λ

and κ, are the IP and OOP wave vectors, respectively, and mi =
Mi/MS are the normalized components of the magnetization12. The OOP coordinate
is z, while the non-homogeneous IP coordinate is x (see Fig. 1.4). For a given sample
with a defined thickness, we will consider κ(t) as a constant. The phase φ is an extra
degree of freedom. It will be omitted (φ = 0) in this part of the discussion as it does

11In this definition A should not be confused with the exchange constant Aex.
12The magnetization components of the stripes are static. However, we will refer to them in lower-

case when normalized.
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not contribute to the stripe energy.
To ensure surface charges are zero (mz(z = ±t/) = 0), we assume that κ = π/t. For

the distribution to be stray-field free, it must also be free of volume magnetic charges,
and it must satisfy

ρM = ∂mx

∂x
+ ∂mz

∂z
= 0. (1.20)

Substituting in this expression, the proposed ansatz yields to

(A k −B κ) cos(k x) sin (κ z) = 0

B = A
k

κ

(1.21)

Thus, the following profile is obtained

mx = A sin(k x+ φ) sin (κ z)

mz = A
k

κ
cos(k x+ φ) cos (κ z) .

(1.22)

One period of the obtained magnetization profile is shown in Figure 1.4.

Figure 1.4: Distribution of the traversal components of the magnetization of the proposed
magnetic-charge-free ansatz. Note that the magnetic flux is totally closed.

To simplify the energy calculations, the one-period-average energy density will be
calculated. This average will be indicated by the symbol 〈 〉. As dipolar energy is
required to be zero, the total energy for the calculated configuration present three
terms

〈ET 〉 = 〈EK1 + Eex + EZ〉 ; (1.23)

which correspond to the PMA, the exchange and the Zeeman interactions, given
by Equations 1.15, 1.7 and 1.6, respectively. Developing each term and defining h =
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H/MS, it reads13

2
µ0M2

S

〈ET 〉 = −Q
〈
m2
z

〉
+ Λ2

〈
(~∇~m)2

〉
− 2h

〈√
1−m2

x −m2
z

〉
. (1.24)

Following Landau theory of second-order phase transitions [38], this expression can
be expressed as Taylor series around A = 0 as

2
µ0M2

S

〈ET 〉 = 2h+ a(h, k)A2 + b(h, k)A4 +O(A6). (1.25)

The explicit calculation of the coefficients a and b is detailed in Appendix A.0.1.
Let us now consider the coefficient describing the quadratic part of this energy, is given
by

a(h, k) = −Q
(
k

2κ

)2

+ Λ2

4

2 k2 + κ2 +
(
k2

κ

)2
+ h

1
4

1 +
(
k

κ

)2
 . (1.26)

From here, we clearly note that if Q = 0, the energy always increases with the
squared amplitude A2 of the excitation, meaning that stripe domains cost more energy
than the uniform state. On the contrary, for Q > 0, there may be situations for which
stripes domain cost less energy than the uniform state. Therefore, there must exist a
point where the cost difference is null. This point defines the stripe nucleation, to be
identified to a second-order phase transition. This is equivalent to impose

∂2 〈ET 〉
∂A2 = a(h, k) = 0. (1.27)

This equation determines a quadratic equation for k2 as function of κ2 and h:

k4
[
−Λ2

2κ2

]
+ k2

[
Q′

2κ2 −
Λ2

2

]
−
[

Λ2 κ2

8 + h

4

]
= 0, (1.28)

where Q′ = Q− h. Solving the quadratic equation on k2, we obtain

k2 =

(
Q′

2κ2 − Λ2

2

)
±
√(

Q′

2κ2 − Λ2

2

)2
− Λ4

4 −
Λ2 h
2κ2

Λ2

κ2

. (1.29)

We note that the reduced magnetic field h enters in the square root (in the last term
and in Q′) with a negative coefficient. The biggest its value, the smaller the argument
of the square root. Thus, the largest value of h that ensures k2 ∈ R is given when
the square root vanishes. We define hc and kc as the critical field and critical wave
vector that fulfill those conditions, and Q′c = Q − hc. Therefore, the null square-root

13(~∇~m)2 expresses a short notation for the operation shown in Eq. 1.7.
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condition can be written as (
Q′c
2κ2 −

Λ2

2

)2

= Λ4

4 + Λ2 h

2κ2 ,

Q′2c
2κ2 −Q

′
c Λ2 = Λ2 hc,

Q′2c
2κ2 −QΛ2 = 0.

(1.30)

From here, the critical field hc for a given thin-film thickness t can be written as

hc = Q− 2πΛ
√
Q

t
. (1.31)

The minimum thickness necessary to develop stripes in a sample with a certain
PMA is given when hc = 0. In this case, we obtain tmin = 2π Λ√

Q
= 2π∆, where

∆ =
√
A/K1 is nominal domain-wall width [39], and the factor 2π accounts for the

sinusoidal shape of the oscillation. Thus, even with Q > 0, if the thickness of the
sample is not sufficiently big in relation with the exchange length, stripes will not
develop. This stripe-forbidden area is shown in Figure 1.5(a). The two samples that
will be described in Chapter 5 are in the region where they are supposed to present
stripes domains.

CoFeB 180nm

CoFeB 150nm

20

40

60

0.1 0.2 0.3 0.4 0.50

Stripe domains

Saturated state

0

0.5

-0.5

1.0

-1.0

(mT)

(b)(a)

y

2 µm

-30 -20 -10 0 10 20 30

CoFeB 300nm

Figure 1.5: (a) Phase diagram indicating which parameters allow stripe nucleation at hc ≥ 0.
The line indicates t/Λ for hc = 0. The two crosses show the parameters of two samples studied in
this work. (b) Hysteresis loop of a sample (CoFeB 300nm) presenting weak stripes and measured
by VSM. The inset shows an MFM image of the stripe domains on the same sample at remanence.
The hysteresis loop and the image were measured at IJL [40].

Substituting Expression 1.31 in Equation 1.29, we obtain

k2
c = κ2

2
Q+ hc
Q− hc

, and λc = 2 t
√
Q− hc
Q+ hc

= 2 t

√√√√ πΛ
√
Q

Qt− πΛ
√
Q

. (1.32)
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The same results are found in Refs. [24] and [41], which use the same ansatz, but
do not report the explicit calculation.

We note that the derivative of the IP component of the ansatz (Eq. 1.22, first line) is
not zero at the film surfaces, as required by the Rado-Weertman boundary conditions,
which will be explained in detail in Section 2.3.2. The corrections required to cancel
out these derivatives are given by hyperbolic cosine contributions [24], which remain
small as Q < 0.1, and can be safely ignored when dealing with the total energy.

To conclude this section, for illustration purposes, a typical hysteresis loop is shown
in Fig. 1.5(b). In this example, if µ0H > µ0Hc = 27 mT, the magnetization is saturated
in the y direction, because the uniform magnetization distribution has less energy than
the stripe configuration. At the critical field, the stripes nucleate, and when decreasing
the field from this point the stripe amplitude A increases, reducing the value of My.

1.3.2 Zero-torque approach

The minimization of the energy allows to find the parameters of a certain ansatz. As
we have seen, at Q → 0, the magnetic profile takes a particular simple expression
(see Eq. 1.22). Nevertheless, when increasing Q, dipolar energy can not be ignored
and more complex profiles have to be proposed. For that we must specify the torque
that each interaction produces on the magnetization and propose an ansatz likely to
fulfill the zero total torque condition. We will follow a procedure similar to that of
Refs. [24, 42, 43], which were inspired by Muller’s work.

Stripes are static structures, therefore the magnetization profile must satisfy ∂M
∂t

= 0.
From linearized LL equation, this condition reduces to14

m×Heq +Meq × heff =

= m×H ŷ +MS ŷ ×
[
Λ2∇2m+Qmz ẑ −∇ψ

] (1.33)

where the axis are orientated as Fig. 1.3 shows and, as we are departing from an
IP uniform magnetization, H is the IP external applied field. Only terms linear on mi

were kept, and the magnetization profile along ŷ is considered to be constant, leading
to ∂/∂y = 0. With these considerations, the restoring field in each component can be
calculated as

torque in x̂→ (h−Q) mz − Λ2∇2mz + ∂ψ

∂z
= 0,

torque in ẑ → hmx − Λ2∇2mx + ∂ψ

∂x
= 0,

(1.34)

where h = H
MS

. In addition, the magnetic potentials inside, and outside (φ and ψ̃,

14As in the previous section, lowercase variables do not depend on time, but they remain smaller
than their capital-letter counterparts. Also, heff is still produced by m, the deviations from the
saturated state.
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respectively) the film relate to the magnetization as

∇2ψ = ρM = ∂mx

∂x
+ ∂mz

∂z
,

∇2ψ̃ = 0.
(1.35)

For this case, magnetostatic and exchange boundary conditions 1.13 and 2.32 at
the surfaces (z = ± t/2) are written as

ψ = ψ̃,
∂ψ̃

∂z
− ∂ψ

∂z
= −mz,

∂mz

∂z
= ∂mx

∂z
= 0. (1.36)

All quantities must remain finite at x, z → ∞ and the magnetic potential ψ̃ must
go to zero at z → ∞. As we are searching solutions with a periodic-IP behavior, we
propose the to build the solution as a linear combination of the following functions

(mx,mz, ψ) = (B,C, U)ei(kx+κz)
∣∣∣
inside

ψ̃ = Ũei(k̃x+κ̃z)
∣∣∣
outside

,
(1.37)

where k is IP and κ the effective OOP wave vector which can take real or imaginary
values. We must note that the final dependence on the OOP coordinate will be given
by a combination of exponentials, leading to cosines and hyperbolic cosine functions.
Substituting the last expression in equations 1.35 and 1.36 leads to a linear equation
system, where non-trivial solutions are given by a vanishing determinant. This func-
tion combination generates a functional space much larger than the one used in the
approximation Q→ 0. Therefore it can adapt properly to satisfy the increasing dipolar
field that appears when increasing Q. Once the new ansatz is obtained the procedure
is similar to the one already explained: the critical parameters are found by minimizing
the energy.

The results are shown in Fig. 1.6. Knowing the thickness of the sample, the exchange
constant Aex, the PMA K1, and the saturation magnetization MS, the reduced critical
field hc = hc/Q can be found. As Q increases also does the dipolar field enabling the
creation of magnetic charges σM in order to compensate the anisotropy torque. When
Q approaches the unity, the anisotropy field compensates the dipolar field issued form
the surface charges. From this limit the stripe nucleation is always possible.

We observe that this approach agrees with the stray-free ansatz simplification for
Q→ 0 (compare Eq. 1.32 and the Q = 0 limit in Fig. 1.6(b) for hc = 0).

1.3.3 Magnetic stripe measurements

From the experimental point of view, stripes can be measured by several techniques.
Magnetometry experiments could reveal their presence. By observing the hysteresis
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Figure 1.6: Stripe nucleation. (a) Reduced critical thickness as function of the quality factor Q
and the reduced nucleation field hc = h/Q. (b) Ratio between the thickness and the stripe period
at nucleation λc. The orange area marks out the region where stripe nucleation is impossible.
Adapted form Asti et al. [43].

loop, some of their properties, as the nucleation field, can be revealed. In particular
the linear and reversible —closed loop— decrease of the longitudinal IP magnetization
is a characteristic signature from stripes, as shown in Fig. 1.5(b).

The magnetic force microscopy (MFM) is a useful tool to directly visualize their
static configuration. It can resolve details of the order of 10 nm, making it suitable to
study stripe systems, which have typical lengths of the order of the thin film thickness.
This technique is sensitive to the stray field produced by the stripes. Therefore, our
stray-free ansatz for Q → 0 should not be visible using this technique. However,
the mentioned hyperbolic corrections to this ansatz lead to the creation of surface
charges, ensuring a minimum stray field. To access the stripe static internal structure,
both transmission x-ray microscopy (TXM) and scanning-TXM (STXM) are suitable
techniques, as the x-rays can penetrate some depth of the material. A detailed study
using this technique can be found in Ref. [13].



Chapter 2

Magnetization dynamics

This chapter introduces the dynamics of the magnetization M in the presence of the
interactions reviewed in the former chapter. In particular, the physics of spin waves,
the central topic of this thesis, are reviewed. Special attention will be paid to spin-
wave propagation in thin films with a spatially-uniform distribution of the equilibrium
magnetization.

2.1 Larmor precession

In the previous chapter we have seen that the effective magnetic field acts on the
magnetization as a torque affects an angular moment. This torque can be obtained
from Equation 1.4. Multiplying this expression by the gyromagnetic radio γ from
Eq. 1.1, the well-know lossless form of the Landau-Lifshitz (LL) equation [44, 45] is
obtained1:

∂M

∂t
= −µ0γM ×Heff. (2.1)

This is a first order differential equation, from which the temporal evolution of
M can be calculated. We can notice that it does conserve |M | during its temporal
evolution, as required.

The simplest magnetic system whose temporal evolution can be studied is a single
magnetization M in a static and spatially uniform magnetic field H . Here, the only
contribution to effective magnetic field is given by the Zeeman interaction, and Heff =
H . In order to solve the LL equation, the magnetization can be separated in its static
and dynamical components as

M (t) = Meq +m(t), (2.2)

1This equation can be also derived from the quantum properties of µ as explained in Refs. [46]
and [47].

18
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where Meq, is the equilibrium magnetization. Knowing that ∂Meq
∂t

= 0 and Meq ×
H = 0, it is possible to substitute M (t) by m(t), and equation 2.1 can be written as

∂m

∂t
= −µ0γ m×H . (2.3)

Given the form of the equation, the exponential solution m = m0e
iωt can be

proposed. Replacing this proposal in equation 2.3, we obtain ω = ωH = γ µ0H which
is called the Larmor frequency. Therefore, the magnetizationM will precess with this
frequency around the direction defined by the applied field.

2.2 Ferromagnetic resonance

The interactions described in Chapter 1 modify the magnetization dynamics with re-
spect to those obtained in the previous section, where the only interaction considered
was the Zeeman one. Therefore, M will no longer precess at the Larmor frequency
ωH . We will first describe the uniform precession in highly symmetric confined struc-
tures: ellipsoids, including the particular case of a thin film. In this case, the dipolar
field plays a predominant role. The study and understanding of uniform precession
is quite relevant, specially when the excitation field is constant within the magnetic
sample volume —or equivalently, when it has zero linear momentum2. Historically, the
uniform modes are called Ferromagnetic Resonance modes (FMR) or Kittel modes.

In order to be able of analytically solving the complexities introduced by the new
interactions, the static (uppercase) and dynamic (lowercase)3 parts of both the mag-
netization and the effective field are explicitly separated as

Heff(t) = Heff
eq + heff(t),

M (t) = Meq +m(t).
(2.4)

BothHeff
eq and heff(t) include all magnetic interactions that are being considered to

solve the problem. With this notation, the LL equation is written

∂m(t)
∂t

= −µ0γ
[
m(t)×Heff

eq +Meq × heff(t) +m(t)× heff(t)
]
. (2.5)

If |m(t)| is much smaller than Ms and Heff
eq ‖Meq ‖ ŷ, at first order, Meq ≈MS ŷ.

Additionally, if bothm and heff are small respect their static components, the last term
of equation 2.5 can be neglected at first order. As result, the linearized LL equation is

2This is also the case of polar-incidence Brillouin Light Scattering (BLS), which will be introduced
in Chapter 3.

3In this chapter, the lowercase notation does not indicate normalization.
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obtained:
∂m(t)
∂t

= −µ0γ
[
m(t)×Heff

eq ŷ +MS ŷ × heff(t)
]
. (2.6)

This expression describes a precession of m in the plane xz. As in the case of
the Larmor precession, we are searching for time-periodic solutions. Consequently, the
dynamic magnetization can be expressed as m(t) = m0 e

iωt, where m0 and ω are
unknowns.

2.2.1 Ellipsoids and thin films

With these simplifications, let us analyze the dynamics of a uniform ellipsoid with
a diagonal demagnetization tensor. Taking as referential system the main axes, the
dipolar field can be calculated as

hdx

Hd
y

hdz

 = −


Nxx 0 0

0 Nyy 0
0 0 Nzz



mx

MS

mz

 . (2.7)

In addition to the dipolar field, the effective field also includes the external magnetic
field H = H ŷ. Therefore, the static effective field can be written as Heff

y = H +Hd
y =

H − NyyMS. As the mode is uniform, the exchange field is null. On the other hand,
the dynamic effective field will be given by the dipolar field:

heffx = −Nxxmx,

heffz = −Nzzmz.
(2.8)

Replacing both static and dynamic components of the effective field in Equation
2.6, we obtain

iω

m0
x

m0
z

 = γµ0

 0 1
−1 0

m0
x

m0
z

 (H −NyyMS) +MS

Nxxm
0
x

Nzzm
0
z

 , (2.9)

where the operator ×ŷ was substituted by a rotation matrix multiplicated at left.
From here, a 2× 2 equation system is obtained, iω ωx

−ωz iω

m0
x

m0
z

 = 0. (2.10)

Here, the off-diagonal terms are ωx,z = γµ0 [H + (Nxx,zz −Nyy)MS]. This system
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has a non-trivial solution if and only if

det
 iω ωx

−ωz iω

 = 0. (2.11)

Solving this equation, we find that the system will resonate if |ω| = √ωxωz. This
expression is known as the Kittel formula. By calculating the eigenvectors, the ratio
between the dynamic components can be expressed as

m0
z

m0
x

= −i
√
ωx
ωz
. (2.12)

The ratio is imaginary, signaling that both components are π/2 out of phase.
Lets us take a look on some relevant examples. In a sphere, Nnn = 1/3 leading to

a resonance frequency equal to ωH , the Larmor frequency.
Another interesting case is the case of an IP magnetized thin film. Here, the two

in-plane components of tensor Nxx and Nyy are null, while the OOP component is
Nzz = 1, as explained in Section 1.2.3. The resonance frequency will be given by

ω‖res = γµ0

√
H(H +MS). (2.13)

The thin film is anisotropic, thus the IP and OOP components are expected to
behave differently. Therefore, the precession becomes elliptic depending on the applied

field as m
0
z

m0
x

= mOOP

mIP
∝
√

H

MS +H
. When H → 0, the precession is polarized linearly

in the plane of the sample. As the applied magnetic field H increases, the precession
becomes more circular and the shape anisotropy becomes less important.

y

x

z

z

H

y

x

(a) (b)

Figure 2.1: Uniform modes in a thin film.(a) Both magnetization M and applied field H are
out-of-plane. (b) In-plane M and H, at low applied field the precession is linear with m0

z → 0
as Hy → 0. Note that the frame of reference rotates between the IP and OOP configurations,
keeping H = H ŷ.

In a normally magnetized thin film, Nx = Nz = 0, and Ny = 1, leading to the
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following resonance frequency

ω⊥res = γµ0(H −MS). (2.14)

In this configuration, the two in-plane coordinates x and z (Fig. 2.1(a)) are sym-
metric. Consequently, the precession remains circular as in an isotropic medium.

If the thin film presents a OOP uniaxial anisotropy, Equations 2.13 and 2.14 are
still valid if the saturation magnetization MS is substituted with Meff = MS (1−Q).

2.3 Spin waves

Until now, we have restricted the study of magnetization dynamics to the case of uni-
form precession. Nevertheless, as the magnetization can depend on the position, a
ferromagnetic sample also holds non-uniform modes, called spin waves. For a uni-
form (translation invariant) equilibrium configuration, the dynamic components of the
magnetization oscillate in space, in addition to their oscillatory dependence on time.
Therefore, the dynamic magnetization can be expressed as m = m0 e

i(k·r−ωt), where
k is the wave vector of the spin wave and m0 is its complex amplitude vector.

The FMR, can be considered as a particular case of a spin wave with k = 0. For
the case of thin films, we will call FMR-modes all modes with null IP wave vector,
even if these modes are not uniform across the film thickness. In the next sections we
will focus on the calculation of the functional relation between ω and k, that is, the
dispersion relation.

k

Figure 2.2: Magnetization dynamics of a spin wave. When k 6= 0 the magnetization distribu-
tion at a given time is not uniform, but it precesses as one moves along the direction of the wave
vector.

2.3.1 Magnetostatic waves

For the moment, only the dipolar interaction will be considered, as it is the driving
phenomenon for most effects described in this work. Dipolar effects are long-ranged,
meaning that the magnetization of all the sample will contribute to the dipolar field at
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the point r. In the case of a non-uniform magnetization distributions, equation 1.14
and can be written as a non-local (integral) equation,

Hd(r) =
∫
V
G(r, r′) M(r′) d3r′, (2.15)

where G(r, r′) is the tensorial magnetostatic Green’s function [48]. To calculate
this kernel, we will work in the magnetostatic limit4. As Hd(r) is a conservative field
(see Eq. 1.11), it can be calculated from a scalar potential as

Hd(r) = −∇ψ(r). (2.16)

Looking at the expression of equation 1.10, in analogy with the electric potential,
ψ must fulfill the magnetostatic Poisson equation,

∇2ψ(r) = ρM . (2.17)

Its solution (see [17] p. 196) is given by

ψ(r) = −1
4π

∫
V

∇′ ·M(r′)

|r − r′|
dr′ + surface charge distribution. (2.18)

Integration by parts yields

ψ(r) = 1
4π

∫
V
M (r′) ·∇′

(
1

|r − r′|

)
dr′. (2.19)

Replacing this expression in 2.16,

Hd(r) = −1
4π

∫
V
M (r′) ·

[
∇∇′

(
1

|r − r′|

)]
dr′. (2.20)

Finally, by comparing the obtained expression with 2.15, it is possible to express G
in Cartesian coordinates as

Gij(r, r′) = −1
4π

∂2

∂xi∂x′j

1
|r − r′|

. (2.21)

This expression is totally general and can be applied in non-homogeneous magnetic
configurations, for both the static and dynamic components of the magnetization. As a
Dirac delta distribution, this expression has not well-defined physical meaning until it
is integrated. That means that when considering different samples geometries, partial
integrations will lead to simplified versions of this function. Some examples can be

4The limits where this approximation remains valid are studied in Ref. [49] p.26.
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seen in Refs. [50] (thin film stripes), [51] (dot arrays), [52] (parallel stripes), [53, 54]
(rectangular elements) and [55] (thin films).

In the linear regime, the dynamic magnetization can be decomposed as m(r, t) =∑
n anmn(r)eiωnt, with ωn being the frequency of the n mode with spatial profilemn(r)

and amplitude an. Limiting ourselves to a uniform magnetized sample, for example, in
the ŷ direction, the LL equation 2.6 reads

i
ωn
ωM
mn(r) = mn(r)×

[
N + ωH

ωM

]
ŷ + ŷ ×

∫
V
G(r, r′) mn(r′) d3r′. (2.22)

where ωM = γµ0MS. Excepted the one of the dynamic dipolar interaction, all
the operators are local, thus their eigenfunctions mn(r) are trivial (no conditions are
imposed on the dependence on r). As a consequence, this eigenvalue problem reduces
to that of only one non-trivial operator, which is

λnmn(r) =
∫
V
G(r, r′) mn(r′) d3r′. (2.23)

The frequencies ωn will be simple functions of the eingenvalue λn. Unfortunately,
this integral is generally not analytical[48]. However, when considering particular prob-
lems, boundary conditions can simplify this expression. Also, by taking account the
symmetries of the system, partial integration can be performed over the expression of
G, yielding to closed expressions.

As a particular case of interest in this thesis, the thin film Green’s function will
be obtained. Later, it will be used in the calculation of ωn(k) in the most relevant
configurations. The studied system is sketched in Fig. 2.4. In the following, we shall
determine the spatial Fourier transform of the Green’s function, named Gk. In a thin
film, the parallel surfaces break the spatial isotropy, as only the OOP m component
creates surface magnetic charges. Therefore, we will separate the IP wave vector,
defined as k = kxx̂+kyŷ and the IP position ρ = xx̂+yŷ from their OOP counterparts.

In order to calculate the Fourier transform of expression 2.21, let us use the following
identity[17],

1
|r − r′|

= 1
2π

∫
S

e−|k(z−z′)|

|k|
eik·(ρ−ρ

′) d2k, (2.24)

that represents the decomposition of 1/r in the IP reciprocal space. In this ex-
pression, the integrand can be interpreted as the decay along ẑ of the magnetostatic
potential generated by a magnetic surface charge density localized at z = z′, and
oscillating with a wave vector k [56].

Then, by applying the derivatives, we are able of finding the components of Gi,j .
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Separating ẑ from the other coordinates α, β = x, y, we obtain

Gαβ(r, r′) = −1
8π2

∫ kαkβ e
−|k(z−z′)|

|k|
eik·(ρ−ρ

′) d2k;

Gαz(r, r′) = −i sign(z − z′)
8π2

∫
kα e

−|k(z−z′)|eik·(ρ−ρ
′) d2k α 6= z; (2.25)

Gzz(r, r′) = 1
8π2

∫ [
|k| e−|k(z−z′)| − 2δ(r − r′)

]
eik·(ρ−ρ

′) d2k.

As the x̂, ŷ plane is isotropic, we can choose to set the wave vector along the x̂
direction. In that case, k = kxx̂ and Gαy(r, r′) = 0. From the usual definition of
the 2D Fourier transform fk = (2π)−2 ∫

S fρ e
ik·ρ d2k, and expressions 2.25, the Green’s

tensor in the reciprocal space can be written as (see Ref. [48] p.2421 for details)

Gk(z − z′) =


−GP (z − z′) 0 iGQ(z − z′)

0 0 0
iGQ(z − z′) 0 GP (z − z′)− δ(z − z′)

 , (2.26)

with GP (z − z′) = |k|
2 e−|k(z−z′)| and GQ(z − z′) = sign(z − z′) GP (z − z′). This

tensor describes the dipolar field created by an IP sheet of oscillating magnetization.
Their components are depicted schematically in 2.3. The imaginary unit here expresses
a π/2 dephasing between one component of the magnetization and other component
of the dipolar field that it creates. This dephasing can be easily understood when
representing the spatial distribution of the dipole field, as shown in Figure 2.3.

�
M

z

x

Figure 2.3: Magnetostatic Green’s function representation in a thin film. The magnetization
is depicted in black, the dipolar field is represented by the red arrows and the volume charges
are shown in blue. The thin film surfaces are shown as a reference, but they are not included in
the model before integration of Gk(z − z′).

Knowing the explicit form of the Green’s function allows to solve the eigenvalue
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problem from Equation 2.23 in the case of a thin film of thickness t. There are three
high-symmetry magnetic configurations, depicted in Fig. 2.4.

y

x

z

HBV

HDE

HFV

k

t 2
t 2

Figure 2.4: Schematic representation of the three high-symmetry configurations of spin-wave
propagation in a thin film. The wave vector is depicted parallel to the x̂ axis, while the three pos-
sible orientations of the magnetic field are indicated in different colors: green (Damon-Eshbach),
orange (Backward-Volume) and red (Forward-Volume).

First, we will consider the case where the magnetization is in-plane and k ‖M eq.
This spin wave is calledMagnetostatic Backward-Volume Wave (BV). The back-
ward behavior —the wave has a negative group velocity, vg = ∂ω

∂k
< 0— can be under-

stood by studying two extreme cases: k = 0 and k →∞. If k = 0 (Fig. 2.5(a)) all m
in the volume are aligned and Nzz (k = 0) = 1 as shown to deduce expression 2.13. A
totally different situation is found when k →∞. In this extreme case we will consider
that neighbor dynamic momentsm are antiparallel, as shown in Fig. 2.5 (b). Here, the
dipolar field generatedmz is canceled by the hd generated by the neighborm, resulting
in an effective demagnetization factor Nzz (k → ∞) = 0, leading to a lower resonance
frequency ω(k → ∞) = ωH <

√
ωH(ωM + ωH). Being the normal components of m

the only source of charges, the transition between these two configurations must be
continuous and it is possible to grasp the origin of the backward character of the BV
spin waves.

Analytically, Equation 2.23 can be solved as the BV configuration symmetries sim-
plify its expression. First, the precession is in the plane {yz}, so mx = 0. Also, the IP
magnetization do not generate magnetic charges, as Gαy(z, z′) = 0. As an approxima-
tion, it is possible to consider a constant depth profile for the dynamic magnetization:
mz(z) = 1√

t
(where

√
t serves for amplitude normalization). By applying

∫ t/2
−t/2mz(z) dz

on equation 2.23, we obtain the eigenvalue for the first thickness mode as5

λBV1 = 1
t

∫ t/2

−t/2

∫ t/2

−t/2
[GP (z − z′)− δ(z − z′)] dz dz′ = 1− e−|k|t

|k|t
. (2.27)

5Calculation of this kind of integrals can be found in the Appendix of Ref. [57].
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(a)

(b)

M

(c)

(d)

    =  mdh

�M

    = 0dh

BV DEM

Figure 2.5: Demagnetization field (red arrows) in a thin film. In the Backward-Volume
configuration, when of k = 0 (a) the dipolar field is equal to the OOP component of the dynamic
magnetization. In the case of k →∞ (b), no net magnetic surface charge σM are created, and in
consequence, the shape anisotropy “disappears” leading to a smaller resonance frequency. In the
Damon-Eshbach configuration, the situation is quite different, the in-planem component creates
volume magnetic charges ρM (c) and an in-plane dipolar field exists even for k →∞. Also in this
configuration, when taking account both components, we notice an asymmetry in the resultant
hd,as seen in (d).

This term can be considered as an effective k-dependent demagnetization factor
that reduces the effect of the surface magnetic charges when k increases. By replacing
it in the LL equation, we obtain the BV relation dispersion that reads

ω2
BV = ωH

[
ωH + ωM

(
1− e−|k|t
|k|t

)]
. (2.28)

As an extension of what happened in the k = 0 case, the ellipticity also depends
on the wave vector. As k increases, the precession becomes more circular. In the limit
case of k →∞, the Larmor frequency is recovered.

Another relevant case is when the magnetization is normal to the thin film surface.
Spin waves excited in this configuration are called Magnetostatic Foward Volume
Wave (FV). Here, the dynamic components of m produce volume charges instead
of producing surface charges. As mz is null, equation 2.23 reduces also to a single-
component equation. Using the same approximation as above, one gets

λFV1 = 1
t

∫ t/2

−t/2

∫ t/2

−t/2
Gp(z − z′) dz dz′ = 1− 1− e−|k|t

|k|t
, (2.29)

leading to the following dispersion relation

ω2
FV = ωH

[
ωH + ωM

(
1− 1− e−|k|t

|k|t

)]
. (2.30)

The third relevant case is the so-calledMagnetostatic Surface Wave orDamon-
Eshbach Wave (DE), which corresponds to the green-color magnetic field shown in
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Figure 2.4. The first name came from the fact that spin waves with opposite k are
localized at the two different surfaces of the thin film6. The second name —that is the
one that will be used across this work— is given after J. R. Eshbach and R. W. Damon,
who described this configuration first [58]. As the static magnetization is in-plane, it
can seem tempting to think about it as similar to the BV spin waves. However, there
is a fundamental difference: the in-plane magnetization mx, (see Fig. 2.5(c)) produces
volume magnetic charges. As a consequence, the backward signature presented by
the BV waves is lost. Another difference is that this configuration breaks an extra
symmetry by localizing the modes with opposite k in different surfaces. An intuitive
picture of how this happens is shown in Figure 2.5(d). At k 6= 0 both surface and
volume magnetic charges are created by OOP and IP components of m, respectively.
While in the bottom half the dipolar field that they create add up, in the top half they
cancel each other. The result of this is that the profile of the dynamic magnetization,
in order to adjust itself to this asymmetry, becomes asymmetric with a typical shape
of evanescent decay from one of the surface.

Another interesting consequence arises when considering the OOP uniaxial anisotropy
in the DE configuration. This interaction has the opposite effect than the dipole-
induced shape anisotropy. Therefore, it does increase the ratio mz/my, decreasing
the effect of the volume magnetic charges produced by my. As a consequence, if the
PMA is sufficiently large, we expect to recover the backward behavior from the BV
configuration. This fact will prove quite relevant when studying the magnetic stripe
nucleation in Chapter 5.

To finish this section, it is important to point that the case of an arbitrary non-
uniform static magnetization distribution is much more complicated to solve, as volume
magnetic charges ρM have to be calculated, along with σM . Usually, micromagnetic
simulations are required to study the dynamics of this kind of systems.

2.3.2 Dipole-exchange waves

The magnetostatic regime described in the previous section remains a good approxima-
tion in the limit of millimeter-scale samples and millimeter-long wave vectors. However,
it does not take in account the exchange interaction, that is always present in the ferro-
magnetic materials. This interaction dominates over the dipolar field for scales under
Λ. Nevertheless, exchange can also play an important role in the spin-wave dynamics
at scale lengths of the order of several tens of Λ [57, 59, 60], i.e. up to the micrometer
scale.

In particular, in thin films, exchange plays an important role as it increases the res-

6As it will be seen in Chapter 4, this localization is modified when the exchange interaction is
taken into account.
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onance frequency of the different thickness modes at null in-plane wave vector (k = 0),
which we call perpendicular standing spin-wave modes (PSSW). To fulfill the LL equa-
tion the thickness dependence7 m(z) has to be an eigenfunction of the exchange op-
erator, leading to sinusoidal profiles characterized by a transversal wave vector κ, as
show in Figure 2.6.

z

x

Figure 2.6: Dipole-exchange spin wave in a thin film. The thickness profiles are sinusoidal,
and the boundary conditions are influenced by the surface anisotropy, determining the pinning
of the modes and defining the transversal wave vectors κn of the different PSSWs. The IP wave
vector k is also depicted.

These profiles have to satisfy the boundary conditions imposed by the surfaces,
where the magnetization may sense a different environment due to extra magnetic
interactions. The typical example is an uniaxial surface magnetic anisotropy with an
axis oriented along the surface normal. Its magnitude Ks is expressed in J/m2. As the
exchange interaction introduces a second-order differential operator, extra boundary
conditions are needed. This problem is solved in Ref. [61], which finds the following
boundary conditions

2A
MS

(
M × ∂M

∂z

)
+ T = 0 (2.31)

where T represents all the surface torque densities other than the exchange, in
particular the surface anisotropy. If T = 0, both components ofM have zero derivative
at the surface of the thin film and the mode is totally unpinned. In the case of a nonzero
surface magnetic anisotropy, the boundary conditions simplify to

∂Mα

∂z
= 0,

A
∂Mz

∂z
−Ks Mz = 0,

(2.32)

where Mα is any component of the magnetization (dynamic or static) that is not
normal to the thin-film surface.

The different eigenfunctions of the exchange operator that satisfy the boundary
conditions can be enumerated using the index n. For k = 0, if the applied magnetic
field is perpendicular to the film surface (H ‖ ẑ), the relation between κn and Ks is

7Even if these modes are not uniform across the thickness we will refer at them as a FMR modes,
because they can be measured by FMR spectroscopy.
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given by [62]
tan(κn t) = 2AKs κn

(Aκn)2 −K2
s

, (2.33)

where n ∈ [0, 1, ...] is the mode number, and t is the thickness of the film. From
this expression it is possible to calculate the set of OOP wave vectors κn that describes
the profile of the n-PSSW-mode. When M is OOP, the two IP components of m are
symmetric and the exchange contribution to the dynamic effective field corresponding
to each of these modes can be easily calculated asHex

n = Λ2κ2
nMsẑ. Thus, at a certain

resonance frequency, at k = 0, the PSSW modes will appear with a field shift of Hex
n .

In addition to introduce a shift between the FMR modes, the exchange also modifies
the dispersion relation. For k 6= 0 the LL equation can be solved by using the dipole-
exchange theory [57, 63] developed by Kalinikos and Slavin (KS). From it, it is possible
to calculate the dispersion relation ωn(k) of spin waves in a thin film taking account
the effects of the exchange interaction.

To resolve the LL equation, Kalinikos and Slavin propose to express the dynamic
magnetization as m(r) = MS η(z) ei(ωt−kxx), and develop the thickness profile η(z) in
a complete basis of functions {S(z)}, that are eigenfunctions of the exchange operator
and satisfy the boundary conditions. Then, it is possible to solve the matrix eigenvalue
problem obtained when truncating the development a certain order.

z

x

Figure 2.7: Fully unpinned modes with zero surface anisotropy. The self- and mutual-dipolar
interaction are depicted by the arrows.

As an example, we will obtain the Damon-Eshbach dispersion relation in the totally
unpinned condition (Ks = 0). In a first approximation we will consider the first two
basis functions, the fully homogeneous (n = 0) and fully antisymmetric (n = 1) modes,
as shown in Figure 2.7. This defines a four element basis {S0x̂, S0ẑ, S1x̂, S1ẑ}, with
S0(z) = 1√

t
and S1(z) =

√
2
t
sin(π z

t
). In this basis, η(z) can be decomposed in a four

element vector: η = (η0,x, η0,z, η1,x, η1,z)T .
Replacing in the LL equation, we obtain

iωη(z) = γµ0 [−Heq η(z) + heff(z)]× ŷ, (2.34)

where the effective field has the contributions of the exchange and dipolar field, and
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it is written as
heff(z) = Λ2∇2m(z) + hdip(m, z). (2.35)

Expressing the dynamic dipolar field in the Green’s function formalism and defining
Heq/MS = h, we find

iωη =ωM [−hη(z) + Λ2
(
∂2

∂z2 − k
2
)
η(z)+

+
∫ t/2

−t/2
G(z, z′)η(z) dz′]× ŷ

(2.36)

which is an eigenvalue equation. Applying the operator,
∫ t/2
−t/2 Sndz in both terms

we obtain a 4× 4 equation system than can be expressed in a matricial form as iΩη =
Cη × ŷ, where Ω = ω/ωM and

C̄ =


Ωx0 0 0 −i2Q
0 Ωy0 −i2Q 0
0 i2Q Ωx1 0
i2Q 0 0 Ωy1

 . (2.37)

The matrix elements are

Ω0,x = P00 + h+ Λ2k2,

Ω0,z = 1− P00 + h+ Λ2k2,

Ω1,x = P11 + h+ Λ2k2 + Λ2π2

l2
,

Ω1,z = 1− P11 + h+ Λ2k2 + Λ2π2

l2
,

(2.38)

where 1−P00, P00, 1−P11, and P11 are k-dependent self-demagnetizing factors for
the S0x̂, S0ẑ, S1x̂, and S1ẑ basis components, respectively. They can be found by
integration of the Green’s function

P00 = 1
t

∫ t/2

−t/2

∫ t/2

−t/2
GP (z − z′) dz dz′ = 1− 1− e−|k|t

|k|t
,

P11 = 2
t

∫ t/2

−t/2

∫ t/2

−t/2
GP (z − z′)cos(zπ

t
)cos(z

′π

t
) dz dz′ =

= (kt)2

π2 + (kt)2

[
1− 2(kt)2

π2 + (kt)2
1 + e−|k|t

|k|t

]
,

(2.39)

The coupling between the uniform (η = (η0,x, η0,z, 0, 0)T ) and antisymmetric (η =
(0, 0, η1,x, η1,z)T ) precession modes is described through the off-diagonal terms i2Q,
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which involve the mutual demagnetizing factor

Q=
√

2
t

∫ t/2

−t/2

∫ t/2

−t/2
GQ(z − z′)cos(zπ

t
) dz dz′ =

√
2kt

π2 + (kt)2 (1 + e−|k|t). (2.40)

The cross product ×ŷ can be interpreted as a π/2 rotation operator around the ŷ
axis, and corresponds to the cross interaction between the components of the magneti-

zation that allows its precession. It is possible to express it as ×ŷR =
 0 1
−1 0

 in the

real space basis R = {x̂, ẑ} . In the 4× 4 space where C belongs, it is expressed as

(×ŷ) =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , (2.41)

Doing the multiplication, we get

C ′ = C × ŷ =


0 Ωz0 −i2Q 0
−Ωx0 0 0 i2Q
−i2Q 0 0 Ωx1

0 i2Q −Ωx1 0

 (2.42)

Solving for det
(
C ′−iΩII

)
= 0, where II is the identity matrix, yields the eigenfre-

quencies of the first two hybrid DE modes in a single layer.
If we consider Q = 0, the two modes (n = 0 and n = 1) would be independent. In

that case we obtain the following two eigenfrequencies

ωnn = ωMΩnn = ωM
√

Ωn,x Ωn,z. (2.43)

However, if we take the whole expression, including the corresponding Q 6= 0, we
obtain

Ω2
0,1 = Ω2

00+ Ω2
11

2 −Q2 ∓ 1
2

√√√√(Ω2
11− Ω2

00)2 + 4Q2

[
(P00−P11)2−Λ4π4

t4

]
. (2.44)

The sign of Q depends on the sign of k. Nevertheless, it appears always squared in
the expression of Ω0,1, leading to reciprocal dispersions (f(k) = f(−k)).

As an example, the dispersion relation of a thin film of Permalloy with t = 50 nm
was calculated using the KS approach and the results are shown in Fig. 2.8. It is
clear that the interaction mostly affects the points of the dispersion relation where
the different modes cross. While at k = 0 the modes are purely symmetric and anti-
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symmetric, near the crossing we observe that both DE0 and DE1 have symmetric and
antisymmetric components. We also note that, as the applied magnetic field is small
compared with MS, DE0 is almost linearly polarized at k = 0.
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Figure 2.8: Dispersion relation calculated with the dipole-exchange method and SWIIM of the
first two spin-waves modes in the DE configuration. The values of η for k = 0 and k = 10 rad/µm
are shown. The thin film thickness is t = 50nm. Permalloy’s magnetic parameters were used:
MS = 800 kA/m , A = 10 pJ/m [64], and µ0 Heq = 5 mT.

SWIIM

The KS approach depends strongly on the basis proposed. The more elements this
basis has, more exact the results will be. When working with a small basis, it has to
be carefully chosen to take into account the physical symmetries of the system. On the
contrary, a more generic basis could be used. Following this idea, a numerical treatment
was proposed by Y. Henry et al. [15]: an in-house developed finite difference method,
which performs a plane spin-wave normal-mode analysis and which we will denominate
SWIIM — Spin Wave fInite dIfference Modeling. In this approach, the proposed
basis is the set of N adjacent rectangular gate-functions that covers the thickness of the
sample. This is equivalent to divide the thin film in N parallel slices of equal thickness.
From this procedure a 2N × 2N matrix is obtained. When numerically solving this
system, the eigenvalues provide the mode frequencies. The 2N -element eigenvector
gives the thickness profile of the two components of the dynamic magnetization.

SWIIM will be used several times in this work along with analytical calculations,
as it provides a more precise description of the dynamic magnetization profile. In
particular, this numerical method proves quite useful to calculate the dispersion relation



2.4 External excitation 34

in samples with inhomogenous distributions of the magnetic parameters. For the case
of homogeneousMS, the results are similar to the ones obtained with the KS approach,
as shown in Fig. 2.8.

2.4 External excitation

Spin-wave modes can be excited by introducing an oscillating external field h(t, r) = h0(r) eiωt

with the correct spatial modulation. This field will contribute to heff(t), producing a
coupling with the mode m(r) proportional to h0(r) ·m(r).

In the case of the FMR modes, if only the Zeeman interaction is considered —
condition equivalent to the Larmor precession—, Equation 2.6 becomes

iωmx = ωMhz − ωHmz;

iωmz = −ωMhx + ωHmx,
(2.45)

where ωH = γµ0H is the Larmor frequency, and ωM = γµ0MS. From these rela-
tions, the magnetization dependence on the variable magnetic field can be written as
m = χh, where

χ =
 χ iκ

−iκ χ

 (2.46)

is the Polder susceptibility tensor. Its components are κ = ω ωM

ω2
H−ω2 and, χ = ωH ωM

ω2
H−ω2

and they diverge when ω = ωH . The divergence of the system response can be un-
derstood as a resonance, where even a vanishing excitation field h is able of drive a
precession of finite amplitude.

2.5 Damping

Until now, we have studied the dissipationless dynamics of the magnetization given by
the Landau-Lifshitz equation. However, dynamic magnetization modes have a finite
lifetime as their energy leaks to the environment and the system tends to return to the
equilibrium configuration when the excitation ceases. Several dissipative interactions
can be identified, such as magnon-magnon scattering, where energy flows from one
spin-wave mode to another; magnon-phonon interaction; and relaxation via impurities
[65, 66].

Even if they are mediated at the quantum level, these processes lead to a global
dissipation which can be integrated in a mesoscopic description. The simplest form
can be derived from an analogy with viscous friction: the dissipative term will be
proportional to the precession velocity, and it can be added as an effective force toHeff
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as
∂M

∂t
= −M ×

[
γ µ0 Heff + α

MS

∂M

∂t

]
, (2.47)

where α is the dimensionless Gilbert damping parameter, which sums up all dissi-
pation terms. This equation is known as the Landau-Lifshitz-Gilbert (LLG) equation
after T. Gilbert, who redefined the damping term8 in his thesis in 1956 [67]. This
equation implies that in absence of excitation, the magnetization will spiral towards
the equilibrium position defined by Heff, as shown in Fig. 2.9.

Figure 2.9: Magnetization trajectory on the |M | = MS sphere in absence of external exci-
tation. From its initial position Mi, it spirals to the equilibrium configuration M ‖ Heff. The
green arrow indicates the direction of the torque induced by the damping term.

Performing linearization and taking temporal Fourier transform, this equation reads

iωm = − (Meq +m)×
[
γ µ0

(
Heff

eq + heff
)

+ α

MS

iωm
]

= −
[
γ µ0Meq × heff +m×

(
γµ0H

eff
eq + iαω

Meq

MS

)]
.

(2.48)

Thus, the damping parameter enters as an imaginary static magnetic field, and it
can be included in all the obtained expressions by replacing ωH → ωH + iαω. For
example, neglecting α2 terms, the damping modifies the diagonal term in the Polder
tensor described in Section 2.4 as

χ = ωM(ωH + iαω)
ω2
H − ω2 + i 2αωωH

. (2.49)

Nearby the resonance, when ω ≈ ωH this equation defines a complex Lorentzian

8Originally, Landau and Lifshitz have defined the damping term as λ
γM2

S
M ×Heff, which leads to

identical dynamics if the gyromagnetic constant is adjusted between the two expressions.
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function, whose imaginary part can be approximated as

Im(χ) ≈ − ωM ∆ω
(ωH − ω)2 + ∆ω2 , (2.50)

with ∆ω ≈ αωH
9. Both components of χ are shown in Fig. 2.10. The half-width

at half-maximum on the imaginary part is given by ∆ω, which may be interpreted as
the reciprocal of the lifetime, τ = ∆ω−1. This can be understood by analyzing the
time response of the mi(t), with i = x, y when applying an impulse of magnetic field
hi(t) = h0 δ(t),

mi(t) ∝
∫ ∞
−∞

eiωt

[ω − (ωH − i α ωH)][ω − (−ωH − i α ωH)]dω, (2.51)

where the Dirac’s delta has been developed in the frequency space, and the de-
nominator of expression 2.49 is expressed as two complex poles. Applying the residue
theorem, we obtain mi(t) ∝ e±iωH |t|e−αωH |t| —for details, see Ref. [68] Appendix B or
[16] p. 51. The first term gives the oscillatory dependence, while the second shows the
exponential decay with the expected τ .
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Figure 2.10: Susceptibility Lorentzian dependence on the excitation frequency with ωM = ωH ,
α = 0.1 and a consequent ∆ω/ωH = 0.1.

As the resonance frequency goes to zero, the damping term becomes less important.
Nevertheless, the experimental line-width often does not extrapolates to zero. The ex-
tra contribution is called inhomogeneous-width ∆H0, and it is an extrinsic contribution
due to the distribution of effective magnetic field in the sample, caused mostly by its
imperfections.

9For k 6= 0, the derivation of these expressions follows the same logic. As an example, Appendix
A of Ref. [12] makes the explicit calculation for the FV configuration.
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From the concept of τ , it is possible to define a spin-wave attenuation length as
Latt = vg τ , with vg the group velocity of the studied spin waves. Latt describes
the distance from a time-steady source at which the amplitude of the spin waves has
decreased by a factor e−1.



Chapter 3

Experimental methods

In this chapter we review the main experimental techniques used in this work. Special
attention is paid to the two inductive techniques, as they constitute the core of the
work done at IPCMS. The magneto-optic techniques are also reviewed. While Brillouin
Light Scattering measurements where done at TUK by M. Geilen and P. Pirro, Kerr
microscopy measurements were performed at IPCMS with the supervision of S. Cherifi.

The lithography techniques described were used to fabricate devices for Propagating-
Spin-Wave Spectroscopy and micro-focus Brillouin Light Scattering experiments.

3.1 Ferromagnetic Resonance

The susceptibility calculated in Section 2.4 characterizes the coupling between an ex-
ternal oscillating field h and the magnetization precession represented by m. Because
the gyromagnetic ratio is of the order of tens of GHz/T, and typical effective fields are
of the order of magnitude of some fraction of Tesla, microwave (MW) electromagnetic
waves with frequencies between 100 MHz and 100 GHz are generally chosen to directly
excite spin waves. This technique shares several characteristics with Nuclear Magnetic
Resonance (NMR) and Electron Paramagnetic Resonance (EPR). Nevertheless, impor-
tant differences are found. First, due to the strong dipolar interaction, FMR signal
depends strongly on the shape of the sample. Secondly, FMR transverse susceptibilities
are much larger, as magnetization is larger than in a paramagnet or a system of nuclei
[69].

The spin wave-electromagnetic wave coupling can be measured by placing the ferro-
magnetic sample in a microwave cavity and sensing the change in reflected power when
applying an external magnetic field H , which can be tuned such that the resonance
frequency match the natural frequency of the cavity. The absorbed MW power is given
by

38
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Pabs ∝ χii h
2
i , (3.1)

where χii is the susceptibility of the material in the direction of the MW pumping
field hi. At first order, this direction has to be transversal to the equilibrium magne-
tization M to obtain a non-zero value of χii. The utilization of cavity presents the
advantage that its quality factor can greatly increase the signal measured. However, it
forces one to work at a specific frequency and do magnetic field scans. Therefore, this
is not a good technique to measure magnetic textures, whose structure depends on the
applied field.

To overcome this problem, we have used a broadband FMR set-up, where the sample
is coupled to a non-resonant coplanar waveguide (CPW), providing a large frequency
range to work [70–72]. Fig. 3.1 shows a schematic view of the used CPW. The MW
signal is conducted by the central conductor (S), while the two lateral and bottom
planes serve as grounds (G). To ensure that the three ground planes are at the same
potential, they are connected by via fences. The ferromagnetic sample is positioned
on the top of this configuration, at a position where the CPW presents a constriction
of its width (W ) and thickness (T -R). The film is in contact with the grounds, but a
gap separates it from the signal line.

(rad/     )
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m

0

1

0.5

0 0.01 0.02
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G

G

S

Figure 3.1: Schematic view of the coplanar waveguide (brown) coupled to the ferromagnetic
sample (blue) by the electromagnetic field. The approximate distribution of excitation magnetic
field h is depicted by the red lines. The dimensions are: W = 200 µm, E = 110 µm, F = 120 µm
and T = 50 µm. The bottom ground plane is connected to the top ground planes by via
fences. The Fourier transform of h is shown for the two possible distances R between the central
conductor and the sample. It is normalized by h0 = h(k = 0).

As the studied samples are metallic, the oscillating electromagnetic field induces
Eddy currents that produce a shielding effect, which concentrates the electromagnetic
field in the gap between the sample and the central line [73], as shown in Fig. 3.1. Due
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to this shielding the electromagnetic field distribution is not longer the one of a CPW,
and the inductance per length unit increases. This produces an impedance mismatch
which implies unwanted reflections, hindering the signal from the sample. To prevent
this effect, the impedance of the waveguide under the sample is artificially increased by
the width constriction of the central line. Another consequence of the shielding is that
the magnetic field decreases rapidly inside the sample1. Therefore, h distribution is
not homogeneous and it can couple to modes with nonzero OOP wave vector (κ 6= 0).

The coupling between the magnetization precession modes and h is given by χ.
This coupling changes the complex self-inductance ∆L of the waveguide, which can be
measured by a Vector Network Analyzer (VNA). To obtain a quantitative approxima-
tion of the magnetic susceptibility, a proper de-embedding technique has to be used.
In our case, we have used a 2-port VNA, which allows to measure the four complex
S-parameters, which are given by the following expression

Vi = ΣjSijVj (3.2)

where Vj is the applied voltage at port j = 1, 2 and Vi is the measured voltage at
port i = 1, 2. The VNA have access to the phase and the magnitude of the voltages,
thus, the elements Sij are represented in the complex plane.

In order to eliminate unwanted reflections from the wires and connectors, a full
two-port calibration was performed, using a Thru-Reflect-Line calibration kit fabri-
cated with the same printed circuit board geometry as the CPWs serving for FMR
measurements. From the S-matrix, it is possible to calculate the complex propagation
index neff (Sij) of the loaded CPW, as shown in Ref. [74]. We can approximate the
effective relative permeability of the waveguide loaded by the ferromagentic film µ̃r as

µ̃r = n2
eff
ε̃r
, (3.3)

where ε̃r is the effective relative permittivity of the loaded waveguide, assumed con-
stant2. Finally, we extract the effective susceptibility as

χ̃ = µ̃r − µ̃refr , (3.4)

where µ̃r is the measured effective permeability and µ̃refr is a reference permeability
measured far from the ferromagnetic resonance condition. The effective susceptibility
χ̃ is proportional to the film susceptibility tensor χ, however, the calculation of the
proportionality factor is quite complex, as it requires to simulate the exact distribution

1In a scale much smaller than the typical skin depth [73].
2The used samples are conductors, and as the imaginary part of the permittivity in low-loss di-

electrics is small it can be neglected. It is the real part which is found to remain constant, as shown
in Ref. [71].
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of the electromagnetic field in the configuration formed by the CPW and the sample.
The FMR addresses primarily the spin-wave mode with k = 0, also known as

FMR-mode. Nevertheless, due to the finite dimension of the waveguide, non-zero wave-
vector spin waves could also be excited. The maximum wave-vector kmax is imposed
by the width of the central track of the coplanar waveguide used. This determines a
kmax ≈ π/300µm= 0.01 rad/µm.

In this work, two FMR configurations have been implemented. In the standard
transverse pumping configuration, the excitation field is perpendicular to the applied
DC field, h ⊥ H . We will also use the so-called longitudinal pumping configuration,
in which h ‖H .

3.2 Propagating-Spin-Wave Spectroscopy

Using lithography techniques, it is possible to fabricate waveguides that are much
smaller than the ones used in FMR set-ups, reaching the hundreds-of-nanometers scale.
Therefore, single waveguide measurements can access different parts of the dispersion
relation, being limited by the lithography resolution. Nevertheless, no information
about the actual propagation of spin waves could be extracted from this method. To
obtain such information it is necessary to perform an experiment of excitation and
detection using two spatially separated microwave transducers: one to generate the
oscillating magnetic field and another one to probe inductively the electromagnetic
field created by the propagating spin wave. This technique is called Propagating-Spin-
Wave Spectroscopy (PSWS).

3.2.1 Preliminary works on this technique

The coupling of the electromagnetic waves with the spin waves would be efficient only if
they have similar spatial distributions. In the microwave range, electromagnetic waves
have a wavelength larger than 1 mm, so if the antennas generate plane waves, this
will be the smaller spin wave length that could be detected or measured. To couple to
smaller wavelength spin waves, it is necessary to modulate the spatial distribution of
the electromagnetic field by fabricating antennas with a proper size.

This technique has been used to excite and detect propagating spin waves for the
first time in 1967 by Olson et al. [75]. The experiment has been performed in Yttrium
Iron Garnet (YIG) rods, connecting each end to different resonant cavities. When
injecting an MW signal in one cavity, a local magnetic field is generated, which couples
to the surface and volume spin wave modes. These spin waves propagate along the
rod and induce an MW voltage in the other cavity. The same concept was used by
Brundle and Freedman to excite DE modes in millimeter-scale YIG thin films [76].
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But in their case, instead of using two cavities, they extended the center wires of two
coaxial cables along the two sides of the film. By measuring the coupling between the
wires they were able of observing the propagation of the DE spin-waves. In this case
they do not use two closed cavities, and the magnetic field is not applied locally. As
a consequence, the transmitted microwave signal contains two contributions. On the
one hand, as the dynamic applied magnetic field decays slowly, it excites spin waves
in the whole extension of the film, even nearby the second wire. At resonance, when
the permeability of the ferromagnetic medium diverges, the second wire will pick up
a signal to be associated to “non-propagating spin waves”. On the other hand, spin
waves excited nearby one of the wire will propagate until the other extreme of the slab
and produce a signal which corresponds to the true “propagating spin waves”.

The main difference between these two signals is their propagation velocity, the non-
propagating spin-wave signal at the speed of light, while the second one many proceeds
more slowly. This implies that the two contributions have a different time delay. By
using an excitation pulse shorter than the propagation time3 Brundle and Freedman
could separate these two contributions, confirming the presence of true propagating
spin waves. Even in some devices used if this work, it is necessary to separate the two
contributions [12].

In the following years, more experiments were performed in YIG samples. This ma-
terial has many advantages, as having a low damping (FMR linewidth generally smaller
than 5 10−2 mT [77]), and being an electrical insulator (reducing capacity losses). Nev-
ertheless, ferromagnetic materials that are conductors present several characteristics
that are interesting to study. In particular, ferromagnetic metals can reach a much
higher saturation magnetization than YIG 4. Moreover, conducting films can be eas-
ily deposited with nanometer-scale thickness, giving experimental access to the sub-
micrometer scale dipole-exchange regime. In the metallic film case antennas have to
be separated by a insulating layer and the lithography process has to be improved to
reduce the capacity loses. The first experiment on such films was performed by Bailleul
et al. in 2001 [78]. While the mentioned work used micrometer-scale antennas, im-
provements on e-beam lithography allowed to miniaturize the fabricated antennas to
the nano-scale [79, 80]. At this scale, it is possible to explore a larger range of the
dispersion relation. This is fundamental to explore phenomena that scales with the
spin-wave wave vector k, as current-induced spin-wave Doppler shift [81], frequency
nonreciprocity due to asymmetric surface anisotropy [82] or Dzyaloshinkii-Moriya con-
stant determination [83]. Now, we will describe experimental method used in the

3By this year they had access to the theoretical work of Damon and Eshbach [58], allowing them
to make the delay predictions.

4As an example, the saturation magnetization of cobalt is one order of magnitude bigger than YIG
(1400 kA/m vs 140 kA/m).
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present work. The basic set-up is shown in Fig. 3.2. In this case, two shorted CPW
are used as antennas, but the versatility of lithography process allows to change the
geometry depending on studied system.

G

G
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VNA 
Port 1 

VNA 
Port 2 

Figure 3.2: Schematic view of the basic PSWS set-up. Two antennas with the typical size of
the wavelength of the spin wave to be measured are fabricated on a ferromagnetic strip which
serves as bus. The MW magnetic field distribution under one CPW antenna is shown in the
top-left corner.

From the MW device characterization, a typical PSWS experiment has some com-
mon points with the VNA-FMR. As in the FMR experiments, a VNA is connected to
the antennas to serve both as a generator and detector for determining the complex
scattering parameters Sij of the antenna pair. Upon injection of an MW-current with
a certain frequency f in the emitting antenna (index j), this couples inductively to
the magnetization of the waveguides and spin waves are excited. If those waves travel
far enough and reach the receiving antenna (index i) before being fully damped, a mi-
crowave magnetic flux with frequency f is picked up5. The ratio of the measured flux
to the injected current defines the mutual inductance Lij of interest, which is extracted
from Sij. In practice, in order to extract spin-wave related signals more accurately,
relative measurements are systematically taken: a background signal acquired at much
larger applied magnetic field so that no spin wave resonance occurs, is subtracted from
the raw data.

3.2.2 Device fabrication

The main function of a PSWS device is to connect the VNA signal ports with the typ-
ically much smaller antennas. This implies a transition between two different scales:
the millimeter-scale pico-probe connected with the VNA; and the nanometer-scale an-
tennas. To work at the correct resolution for each scale, both laser and electronic

5This technique is therefore sensitive to linear processes in which the magnon has the same fre-
quency as the excitation field.
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lithography were used. An image of a typical device is shown in Fig. 3.3.

Figure 3.3: Electronic image of the one PSWS device. (a) Zoom on the two shorted CPW
antennas. The vertical track at the center is the ferromagnetic bus line. (b) Transition with the
micrometer-sized CPW pads to connect the pico-probes. The crosses are used for the alignment
of the antennas and the bus line.

Film fabrication

All ferromagnetic films used in this work were fabricated at IJL. They were deposited by
DC magnetron sputtering on silicon substrates. To limit possible capacitive losses it is
recommendable to use high-resistivity intrinsic silicon, but in some cases doped silicon
was also used. To ensure a good adhesion of the deposited metal on the substrate, an
extra layer of a few nanometers could be deposited in between. For example, 3nm of
tantalum were used as interface between Si and CoFeB. Also, a protective layer could
be deposited on the top of the stack to avoid oxidation and general degradation. For
CoFeB and Permalloy, this layer was made of platinum and gold, respectively. The
composition of each used stack will be detailed in the corresponding chapters.

Bus etching

In order to minimize the capacitance between the ferromagnetic metallic layer and the
antenna pads, all nonessential parts of the metallic layer were removed, leaving only a
strip (also called bus) where spin waves will propagate. Because this strip has a typical
size of several micrometers, it is possible to use optical lithography to pattern it. This
process is done in two steps: firstly an auxiliary hard mask with the desired shape
is deposited; secondly the sample is etched, leaving only the ferromagnetic material
protected by the hard mask. The first step is schematically shown in Fig. 3.4.

The first step is achieved using a resist bilayer made of AZ1505 (top layer) and
LOR3A (bottom layer). The first one is a photosensitive resist that when exposed by
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Figure 3.4: Patterning of the hard mask. (a) The resist bilayer spread on the ferromagnetic
film is exposed with a laser to pattern the desired structure. The developer removes the exposed
part of the top layer (b) and dissolves also part of the bottom layer (c), producing the “overhang”
profile. (d) A hard-to-etch material is evaporated on the top of all the structure. (e) After lift-off,
the resist is removed, leaving the hard mask pattern.

the µPG100 laser lithography system can be removed by an AZ-726-MIF solvent in the
development step. The second layer is not photosensitive and will be dissolved by the
solvent only in the areas where the AZ1505 has been removed. Because the bottom
layer dissolves relatively fast, an overhang profile is ensured (Fig. 3.4(c)).

Once the development was completed, a hard-to-etch material, in our case titanium,
is deposited in a Plassys 550S e-beam. By leaving the sample one hour in a Remover
PG bath at 60 degrees, the resist bilayer is removed. The advantage of the overhang
resist profile is that it avoids the continuity between the evaporated material in the
developed areas and the one on top of the resist, which facilitates the "lift-off" process.
The remaining titanium will serve as hard mask to protect the ferromagnetic material
under it. The next step, the etching, is also performed in the Plassys 550S loadlock,
using an argon ion beam gun. The etching time and the deposited titanium thickness
are calculated after doing calibration tests.

Insulating spacer deposition

Once etching process is finished, a protective silicon oxide (SiO2) layer is deposited
by magnetron sputtering. Its thickness depends on the thickness of the ferromagnetic
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material, because it is intended to smooth out the height step between the substrate,
where the pads are going to be deposited, and the top surface of the strips, where the
antennas will be deposited. This layer has also an electric isolation function separating
the antennas from the conducting film. Here, the thickness also plays a relevant role
defining the capacitance between the antennas and the ferromagnetic material.

Pad lithography

The pads will serve as interface between the micro-probes and the ebeam-fabricated
antennas. They are patterned using the same resist bilayer and exposing process as
described in Fig. 3.4. But in this case, 50nm of gold are deposited on 10nm of titanium.
The gold is resistant to mechanic pressure, preventing scratches when connecting the
pico-probe, and the titanium guarantees a good adhesion with the SiO2 layer under-
neath.

Antenna lithography

Antenna typical size is of order of hundred nanometers. Thus, optical lithography is no
longer suitable to fabricate them and another technique is required. The electron-beam
(or e-beam) lithography equipment available at IPCMS enables to fabricate structures
as small as 50 nm in good conditions. In this case an electron sensitive positive tone
resist bilayer All Resist PMMA 600K/ PMMA 950K was used. This bilayer has the
same function as the one used for optical lithography, which is to produce an overhang
profile facilitating lift-off. The two resists were deposited by spin coating at 4000 rpm
and each of them was baked for 90 s at 180◦C. The bilayer exposition was performed
using a Zeiss Supra 40 Scanning Electron Microscope equipped with a Raith Elphy
Plus pattern generator. An acceleration voltage of 20 keV and a beam current of the
order of 300 pA were used. The electron dose (in the range of 200 to 350 µC/cm2)
was determined by preliminary tests before each lithography. After exposure, the
sample is developed for 30 s in All Resist 600.56 developer followed immediately by its
immersion in All Resist 600.60 Stopper for another 30 s. Before evaporation the sample
is cleaned by an Oxygen Plasma for 45 s with an applied power of 30 W. This step
removes possible contamination or even remains of resist in the exposed area. Later,
the Plassys 550S e-beam evaporator is used to deposit 10 nm of titanium and 90 nm
of aluminum. Titanium is chosen to act as barrier between gold and aluminum, two
materials that, when put in contact, diffuse in each other reducing the conductivity.
Aluminum is chosen because it presents a low resistivity for nanometer-scale films.
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3.2.3 Device characterization

The fabricated device can be modeled as a resistance and an inductance in series. The
capacitive losses are represented by a capacitor connected in parallel to the ground.
To estimate the value of these components the device is connected and characterized
by a previously calibrated two-port VNA (Agilent PNA E8364B). This calibration
is performed with a SOLT6 calibration kit CS-5 from GGB industries in the desired
frequency range. The maximum frequency span of this VNA is from 10MHz to 50GHz.

The device characterization is done by measuring the S-parameters defined in Sec-
tion 3.1 as a function of the frequency. In general, the elements Sij with i = j are
called “reflection parameters” and if i 6= j they are called "transmission parameters".

From the S-parameters, it is possible to calculate the impedance matrix Zij that
relates the current I with the voltage V as

Zij = Vi
Ij

∣∣∣∣∣
Ii=0

, (3.5)

it can be calculated from the S-parameters as

Zii = Z0
(1 + Sii)(1− Sjj) + S12S21

(1 + Sii)(1− Sjj)− S12S21
,

Zij = Z0
2Sij

(1 + Sii)(1− Sjj)− SijSji
, if i 6= j (3.6)

where Z0 = 50Ω is the VNA characteristic impedance.
During a PSWS experiement, all S-parameters are measured twice as a function of

the frequency. One time at the desired measurement magnetic field Hm and a second
time at a reference magnetic field Href. This last field has to be chosen in a way that
no resonance occurs in the measured frequency range. From this data, the differential
inductance matrix can be calculated as

∆Lij(ω) = 1
iω

[Zij(ω,Hm)− Zij(ω,Hr)]. (3.7)

Following this method, all electric resonances that were not eliminated in the cali-
bration are erased in ∆Lij(ω); leaving only the resonances of magnetic origin.

3.3 Kerr Microscopy

Magneto-optic interactions, i.e. interactions between magnetic materials and light,
are known since 1845. In that year, M. Faraday observed that, in some transparent
materials, the birefringence could be changed by an external magnetic field [84]. Today,

6Shortening of the four calibration standards used: Short, Open, 50Ω Load and a Through.
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two main magneto-optic effects can be noted: the Kerr [85] and Faraday effects. They
affect the polarization upon interaction with magnetized materials of the reflected and
transmitted light, respectively.

These effects originate from the non-diagonals terms of the permittivity tensor of
the material. It can be understood as the effect of a Lorentz force which modifies
the dynamic response of electric charges in the oscillating electric field of the light.
As a consequence, if the incident light is linearly polarized in a given direction, after
reflection this polarization rotates in an angle proportional to the sample magnetization
[86, 87]. This rotation can be detected using a second polarizer (usually called analyzer)
and a camera (normally a charge-coupled device). A schematic view of the used set-up
is presented in Fig. 3.5(a). This configuration allows to measure the spatial distribution
of the static magnetization at the micrometer-scale.

In this work we have studied IP magnetized samples. To measure this component
of the magnetization, the light path is chosen to arrive to the sample in angle with
its normal, defining an optical plane. In the so-called longitudinal Kerr configuration,
one probes the IP magnetization component directed along the optical plane. This
criterion is used to define the sensitivity axis. Figures 3.5(b) and (c) show the effect of
rotating this axis by 90 degrees. If the intensity of the obtained images is integrated,
the averaged magnetization of the surface of the observed region can be obtained as a
function of the applied field. With this, the surface magnetization hysteresis loop can
be obtained.

Detector L4 P2

P1

L3

L2

L1

D2

D2

Diode

(a)

(b)

(c)

Figure 3.5: (a) Schematic set-up of the used Kerr microscope. The optical path is depicted in
red. The light is emitted by the diode and passes a linear polarizer P1, then it is reflected by the
sample to pass through the analyzer P2 and be measured by the detector. The lens system (L1
to L4) form an optical microscope. An IP magnetic field can be applied at the position of the
sample. (b) and (c) show an example of a typical Kerr microscopy image of magnetic domains
(adapted from [24]). In (b) the sensitivity axis is horizontal, while in (c) it is vertical.
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3.4 Brillouin Light Scattering

As does Kerr microscopy, this technique relies on the dependence of the non-diagonal
terms of the permittivity on the local magnetization [88]. In the case of spin-waves,
the dynamic components of the magnetization produce a periodic modulation of the
permittivity of the medium [89]. These fluctuations induce an inelastic scattering of
light, leading to an effective coupling between light and spin waves.

At the quantum level, this implies a magnon-photon interaction. In general, in-
teractions between photons and pseudoparticles in matter in the frequency range of
1-100 GHz enter in the category of Brillouin scattering7. This gives the name to the
experimental technique able of measuring the frequency shift of the photons at those
energies: Brillouin Light Scattering (BLS) or Brillouin spectroscopy. The microscopic
details of the photon-magnon coupling are governed by the spin-orbit and the exchange
interaction[89]. As a consequence, the BLS contrast depends strongly on the exact na-
ture of the sample. In the case of metals, the optical skin-depth is of the order of several
tens of nanometers giving to the film coating a relevant role, as it can substantially
modify both the intensity of optical scattering and the spin-orbit effects at the surface.

As a consequence of this interaction, photons could couple to the magnonic system.
Inasmuch as the system is time- and space-translation invariant, the linear moment
and energy are conserved in the scattering process. The frequency fs and wavevector
ks of the light inelastically scattered from spin waves with f and k are given by

fs = fi ± f

ks = ki ± k
(3.8)

where fi and ki correspond to the frequency and wave vector of the incident photons.
The± signs represent the two possible processes: the creation of a magnon and decrease
of photon frequency (Stokes); and the absorption of a magnon and increase of the
photon frequency (anti-Stokes). The intensity of the two processes depends on the
availability of a preexisting magnon, prior to the arrival of the photon. As magnons
are bosons, they follow the Bose-Einstein distribution, and their density is given by
the product of it with the density of states given by the spin wave dispersion relation.

Incoherent magnons are induced by thermal fluctuations. On the contrary, coherent
magnons can be also excited by others sources as antennas. This difference in the source
of magnons defines two variant of the technique: thermal BLS [90] and coherent BLS

7This phenomenon is similar to Raman scattering (and its associated spectroscopy), although
the frequencies involved are much greater (>THz). Originally, the difference of between the two
processes was their target, while Raman scattering designates the interaction with optical phonons
(and vibrational modes of molecules), Brillouin scattering designates the one with acoustic phonons.
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[91, 92]. The last method is particularly useful to measure non-linear phenomena,
as the frequency of the backscattered photons could be different from the excitation
frequency in presence of non-linearities

Another difference in the technique is the focusing of the light on the sample. If the
light is collimated towards the sample (quasi-parallel beam with an angle of incidence
θ) and if the light is collected in the backscattering geometry (θs = θi), then the
transferred wave-vector is

k = 4π
λ
sin(θ), (3.9)

where λ is the wavelength of the incident photons. This variant of the technique
is called k-resolved BLS. On the other hand, in the micro-focus BLS the light beam is
focused on a point on the sample. In this case, one obtains a spatial resolution of the
order of the wavelength of light, but a broad range of wave vector is probed. These
two variants are illustrated in Fig. 3.6.

(a) (b)

Figure 3.6: BLS scattering configurations. (a) In the k-resolved BLS a parallel light beam
arrives at the sample with an incidence angle θ, and the scattered light is collected in the same
direction. (b) In micro-focus BLS, the light is focused covering a range of angles of incidence
and, therefore, a range of wave vectors.

In all mentioned cases, to measure the frequency shift, a Fabry-Pérot interferom-
eter is used. Several technical difficulties have to be overcome in order to detect the
small amount of back scattered photons. In particular, the laser amplitude has to be
controlled by a loop system in order to obtain consistent data during the scans and the
room temperature should be constant.



Chapter 4

Spin-wave propagation in a
ferromagnetic bilayer

In ferromagnetic materials, broken symmetries affect the excitation and propagation
of spin waves, leading to a number of intriguing phenomena. In this chapter, we study
how spin-wave propagation is affected by a symmetry breaking in the transverse plane,
namely an up-down asymmetry across a thin film. We will see that this asymme-
try leads to a nonreciprocal hybridization of the fully symmetric and anti-symmetric
thickness modes.

More specifically, we study the propagation of spin-waves in a bilayer with a sat-
uration magnetization contrast in the Damon-Eshbach (DE) configuration. We find,
by means of simulations and experiments (Propagating Spin Wave Spectroscopy and
Brillouin Light Scattering), that this system holds a strong nonreciprocity which can
be used for the realization of a spin-wave diode. While the experimental data is iden-
tical to Ref. [93], a more pedagogical interpretation of the origin of the nonreciprocity
is given below.

4.1 Motivation

This chapter presents both fundamental and technological motivations. On the one
hand, a bilayer can be seen as a perturbation of a well-known system —the ferromag-
netic thin film— in which a controlled symmetry breaking can be introduced. This
allows to study new spin-wave physics, departing from a well-establish background.
On the other hand, spin-waves could serve as data carriers in magnonic circuits as
future wave-based computing architectures [8]. In this context, the development of a
diode-like device capable of transmitting spin-waves in only one direction, thus allow-
ing controlled signal routing, is an essential step. Indeed, the isolator, or wave diode,
is an essential building block in wave-computing architectures, which is necessary to

51
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mitigate unwanted reflections and prevent signal backflow [94].
Designs of magnonic diodes [95] and unidirectional spin-wave emitters [96] relying

on the chiral Dzyaloshinskii-Moriya interaction for producing nonreciprocity have been
proposed theoretically but have not been realized yet. Recently, another type of uni-
directional spin-wave emitter has been demonstrated experimentally [97], the working
principle of which is based on the nonreciprocal magneto-dipolar coupling between
a nanoscale grating made of hard ferromagnetic nanowires and a magnetically softer
ultrathin film. In this scheme, the emitter (the grating) plays an essential role in
producing nonreciprocity. In contrast, the system studied in this chapter, presents a
sizeable frequency non-reciprocity in the absence of any patterning.

4.2 Nonreciprocity on bilayers

Reciprocity is the property of a physical system to behave equally in one direction
(say left to right) than in the opposite (say right to left), and nonreciprocity is the
lack of it. In electromagnetism, dealing with a reciprocal system means to obtain the
same signal if the emitter and the receptor are swapped [98]. Equivalently, if working
with sinusoidal signals, changing the sign of the wave vector k leaves the equations
of a reciprocal system invariant. As Maxwell’s equations in vacuum are reciprocal,
obtaining nonreciprocity requires the use of a material with specific properties. In
magnetic systems, the time-reversal (T ) symmetry is broken as the precession of the
magnetic moments around the effective field has a unique direction defined by the
cross product of the LL equation. As a consequence, counterpropagating spin waves
are chiral, that is the spatial distribution of m(k) is the mirror image of m(−k), as
shown in Fig. 4.1. Nevertheless, if no other symmetry-braking takes place, this chirality
is not translated in a difference of behavior for counterpropagating spin-waves. This is
explained by the fact that in highly-symmetric systems, the dynamic effective magnetic
field created bym also changes its handedness, resulting in equal excitation frequencies
for both propagation directions.

We can distinguish two kinds of nonreciprocity: amplitude and frequency nonre-
ciprocity. The first is trivially obtained in DE configurations, because, as explained in
Section 2.3.1, modes with opposite sign of k are localized in different surfaces of the
thin film. This leads to an amplitude nonreciprocity when the excitation is stronger
in one of the thin film surfaces. Also in this configuration, the spin-waves chirality
changes with the sign of k. Thus, if the excitation field —the one produced by an
antenna, for example— has an intrinsic chirality, it will couple better with the spin
waves with a given sing of k, generating an amplitude nonreciprocity.

On the other hand, frequency nonreciprocity implies ω(k) 6= ω(−k), and is not
always obtained in the DE configuration. An extra symmetry has to be broken. For
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kk(a) (b)

Figure 4.1: Nonreciprocity. (a) Schematic definition of nonreciprocity, if the emitter is placed
in A and the receptor in B, the pick up signal will be different if they are exchanged. (b)
The dynamic components of the magnetization of counterpropagating spin waves have different
handedness.

example, at the millimeter-scale, using films in which top-bottom symmetry is broken
either by adding a nonmagnetic conductor to one side of the film [99], or by using
a magnetic bilayer stack [100], one can even reach an extreme situation in which, at
some frequencies, propagation is possible only in one direction. In the above situations,
the effect can be described simply in terms of localized magnetostatic DE spin waves
traveling through different materials. When scaling-down the film thickness to the
nanometer scale, however, this description becomes incorrect as exchange interaction
starts to play a crucial role and spin-wave modes lose their surface character. An
adapted strategy to achieve spin-wave unidirectionality then needs to be devised.

In this context, frequency nonreciprocity could be introduced by an interaction
which does not change its handedness when inverting the propagation direction of
spin-waves. If so, such interaction would couple strongly to the spin-waves presenting
the same handedness. As we will show in this section, this is the case of the dipolar
interaction in the DE configuration in a nanometer-scale thin film composed by two
different materials with a contrast of saturation magnetization1. In our description,
this effect shows up as a nonreciprocal hybridization between the first low frequency
exchange modes. In the case of fully unpinned boundary conditions, these two modes
correspond to a symmetric (κ = 0) and an asymmetric (κ = π

t
) modes across the

thickness.
To understand which role the hybridization plays to produce frequency nonreciproc-

ity, we will first study the interaction between the first modes in a single layer. In the
Kalinikos-Slavin approach, this interaction is given by Q (see Eq. 2.40), and can be
conceptually understood from Fig. 4.2(a). The OOP components of the asymmetric
mode generate magnetic charges that produce an IP dipolar field that couples to the
symmetric mode2.

1Layers with constrast of any magnetic parameter, as exchange or PMA, would be also suitable to
obtain nonreciprocity.

2A similar coupling exists between the IP components of the asymmetric mode and the OOP
dynamic magnetization of the symmetric mode (not shown).
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The case of a bilayer with saturation magnetization contrast is quite different. As
shown in Fig. 4.2(b), the dynamic magnetization in the top layer is larger than in the
bottom layer3. Consequently, the magnetic charge distribution is asymmetric in the
thickness, inducing an additional OOP magnetic field. Thus, the OOP magnetization
creates both IP and OOP dipolar fields, which has the same handedness4 for both
propagation directions. This will translate in a nonreciprocal coupling, leading to a
nonreciprocal hybridization.

(a)

(b)

(c)

Figure 4.2: Hybridization of the symmetric and asymmetric modes in the DE configuration.
We represent there the symmetric part of the dipole field generated by the antisymmetric OOP
m component. In the case of a single layer (a), the hybridization is governed by two mutually
orthogonal components of the dynamic magnetization: an antisymmetric OOP component mz,1
generates an IP dipolar field which couples to a symmetric IP component mx,0. Therefore,
this interaction does not favor a particular handedness. On the contrary, in the bilayer (b), an
extra component of hd is introduced by the asymmetric distribution of the magnetic charges.
The new dipolar field is totally out-of-plane. Thus, the combination of the single-layer and
bilayer components of hd, shown by the red arrows (c), has a handedness that depends solely
on the magnetic contrast of the bilayer, leading to a nonreciprocal hybridization. The self-
demagnetization terms of each component have be omitted for the sake of visualization.

We must note that when working with samples relatively thin, because the ex-
change plays an important role, the typical spin-wave surface-localization of the DE
spin-waves [58] does not apply. Therefore, the spin-wave nonreciprocity should not
be interpreted as counterpropagating waves traveling through different media. Indeed,
even if the source of the nonreciprocity is the dipolar interaction, the exchange inter-
action controls the position of the avoided crossing in the dispersion relation. If the

3This is true if the precession angle is the same in both bilayers. In the dipole-exchange approach
this is assured by choosingm(r) = MS(z)η(z) ei(ωt−kxx) and imposing the symmetric and asymmetric
profile to η(z).

4The handedness sign depends on which layer, top or bottom, has the largest MS .
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exchange is small (or the thickness large), the crossing happens at low k, and the hand-
edness is weakly defined, as the IP component of hd becomes fainter. In this case, the
nonreciprocity would be too weak to be measured. On the other hand, if we consider
the limit of high exchange constant (or very thin films), the crossing takes place at
large k, being out-of-scope of the measurements techniques and having no practical
use.

4.3 Theoretical model

We now describe the bilayer magnetization dynamics using the Kalinikos-Slavin ap-
proach [57], already introduced in Chapter 2. To simplify the calculations, we will
consider two layers with equal thickness t/2, as shown in Fig. 4.3. If each layer has a
saturation magnetization MS,1 and MS,2, the magnetization as a function of the OOP
coordinate z can be expressed as5

MS(z) = 〈MS〉 [1 + β sg(z)] , (4.1)

where 〈MS〉 = (MS,1 +MS,2) /2 is the average magnetization, β = MS,1−MS,2
MS,1+MS,2

is the
magnetization contrast and sg(z) is the sign function. We will also assume that the
ratio of the exchange constant to the saturation magnetization has a constant value, i.e.
A1/MS,1 = A2/MS,2 = 〈A〉 / 〈MS〉. The dynamic magnetization can be expressed as
m(x, z, t) = MS(z)η(z) ei(ωt−kz). With these simplifications, the linearized LL equation
can be written as

iωη(z)=− γµ0H0 η(z)× ŷ + γ
2〈A〉
〈MS〉

(
∂2

∂z2 − k
2
)
η(z)× ŷ

+ γµ0〈MS〉
∫ t/2

−t/2

¯̄Gk(z−z′)[1+ β sg(z′)](η(z′)× ŷ) dz′, (4.2)

where γ is the gyromagnetic ratio, µ0 is the permeability of vacuum, ŷ is a unit vec-
tor along the applied magnetic field H0, and ¯̄Gk is the magnetostatic Green’s function
Eq. 2.26. We note that the bilayer asymmetry only affects the dynamic dipolar field,
as ∂2

∂z2 sg(z) = 0. We propose to use the same vector basis as the one used for a single
layer, which consists of the x and z components of the first two unpinned exchange
modes with homogeneous (n=0) and fully antisymmetric (n=1).

When β 6=0, the dynamic matrix ¯̄
C ′ of Eq. 2.42 acquires new elements with differ-

ent symmetries, namely the diagonal elements in the ¯̄
C ′nn blocks and the off-diagonal

5Note that the coordinates axis are rotated with respect to those of [93], in order to maintain a
consistent convention between the different chapters of the manuscript.
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Figure 4.3: Schematic representation of the bilayer system considered in the analytical model.

elements in the ¯̄
C ′n6=m’s are no longer zero and the dynamic matrix becomes6

¯̄
C ′(β) = ¯̄

C ′(0) +


−iP ′00 0 0 Q′

0 iP ′00 Q′−I ′ 0
0 Q′ −iP ′11 0

Q′−I ′ 0 0 iP ′11

 , (4.3)

where ¯̄
C ′(0) is given by Eq. 2.42 and

P ′00 = 1
kl

[
sinh(|k|l)− 2 sinh

(
|k|l
2

)]
β,

P ′11 = 2kl
(π2+k2l2)2

(
π−|k|l e−|k|l/2

)2
β

I ′ = 2
√

2
π

β,

Q′ = 2
√

2
π2+k2l2

[
π
(
1−e−|k|l/2

)
+ k2l2

(
1
π
− 1−e−|k|l

2|k|l

)]
β.

(4.4)

Not surprisingly, all newly non-zero matrix elements are proportional to the contrast
in saturation magnetization β. The coefficients Q′ and I ′ account for the additional
mutual-demagnetizing effects produced in the presence of magnetic asymmetry. They
describe how hybridization between the symmetric and fully antisymmetric modes is
affected in a bilayer. The coefficient I ′, in particular, corresponds to the term δ(z−z′) in
the Green’s tensor, and is the one responsible for the extra OOP dipolar field explained
in the previous section (compare Figs. 2.3 and 4.2(b)).

The coefficients P ′nn, on the other hand, describe the additional self-demagnetizing

6For details on the matrix element calculation, see Appendix A in Ref. [93].
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effects produced by the magnetic asymmetry on uncoupled modes η̄n (n = 0, 1). As
revealed by the imaginary character of the corresponding matrix elements in the ¯̄

C ′nn

blocks, these take the form of transverse dipole fields, which oscillate with a phase dif-
ference of π/2 with respect to the dynamic magnetization components creating them.
In the sample studied in the next sections, these terms contribute little to the nonre-
ciprocity.

From the dynamic matrix it is possible to calculate analytically the dispersion
relation. As done in the case of a single layer, the value of frequencies can be obtained
from det[ ¯̄

C ′(β)−iΩ¯̄1]= 0. The Figure 4.4 shows the dispersions calculated for a single
layer and a bilayer. The magnetic parameters of the latter were chosen to obtain
a zero group velocity for positive k while keeping a finite value for negative k in a
certain frequency range. In both cases we observe two different modes, that we will
call DE-mode 0 and DE-mode 1 7.
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Figure 4.4: Implementation of the Kalinikos-Slavin theoretical model for a single layer (left)
and a bilayer (right) with β = 0.2. The gray circles indicate the reciprocal anticrossing.
Calculations were performed using the following parameters: t = 46nm, 〈A〉 = 15pJ/m and
µ0 〈MS〉 = 1.32T.

It is also possible to obtain an approximated expression for the frequency nonre-
ciprocity. Keeping only terms up to first order in β, yields the following dispersion
relation for the two lowest DE modes in a bilayer8

(Ω2
0 − Ω2)(Ω2

1 − Ω2) (4.5)

−2QΩ [(Q′−I ′)(Ω1,x − Ω0,x) +Q′(Ω1,z − Ω0,z)] = 0.

Treating further QQ′ and QI ′ as small parameters, in a perturbative manner, the
7In some published works, including Ref. [93], these modes are called MSSW-mode 0 and MSSW-

mode 1, respectively.
8P ′nn coefficients only appear in this relation at second order in β.
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eigenfrequencies of these modes can be obtained as

Ω0,1(β) = Ω0,1(0)±∆Ω(β). (4.6)

Here, Ω0(0) and Ω1(0) are the reduced oscillation frequencies corresponding to the
single layer obtained in the introduction(Eq. 2.44). By substituting the last expression
in 4.5, a closed expression is obtained

∆Ω(β) = Q

Ω2
1(0)−Ω2

0(0) [(I ′−Q′)(Ω1,z−Ω0,z)−Q′(Ω1,x−Ω0,x)].

The expression of ∆Ω involves two products of dipolar matrix elements, QQ′ and
QI ′. In both of them, one term (Q′ or I ′) is even in k and the other (Q) is odd. Then
∆Ω is odd in k and, since Ω0(0) and Ω1(0) are fully reciprocal, |2∆Ω| is a measure of
the frequency nonreciprocities for the two hybrid DE modes. These elements, QQ′ and
QI ′, verify the conceptual explanation given in the previous section: I ′ and Q′ produce
a dipolar field which has the same component (x or z) thatm but different symmetry
(symmetric or antisymmetric), while Q mixes both components and symmetries. The
combination of these dipolar fields has a given handedness, as shown in Fig. 4.2(c).

4.4 Experimental results

Until now we have explained how the nonreciprocity appears in a bilayer with MS

contrast. The next section has two goals. Firstly, we experimentally verify the proposed
model. Secondly, we proceed to implement this nonreciprocity to create a material
which acts as a spin-wave diode.

4.4.1 Sample fabrication

The bilayer films used in the present work have been fabricated in the Institute Jean
Lamour, Nancy, by M. Hehn. They were deposited on natively oxidized intrinsic (100)Si
substrates by DC magnetron sputtering from material targets with nominal composi-
tions Co40Fe40B20 and Ni80Fe20. Deposition of the magnetic stack was preceded by
that of a 3 nm thick Ta seed layer, for ensuring low layer roughness, and followed by
that of a 3 nm thick Au overlayer, for protecting the magnetic alloys against oxidation.
Using SWIIM simulations, we have selected the thicknesses of each layer to maximize
the diode behavior shown in Fig. 4.4.

The devices used in PSWS and µ-BLS where fabricated in by the author of this
thesis following the procedures explained in Section 3.2.2.
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The magnetic parameters of each layer —saturation magnetization MS and ex-
change constant A— were measured by Damien Louis during his PostDoc at IPCMS,
by means of AGFM and FMR on single layers of Co40Fe40B20 and Ni80Fe20.

4.4.2 Nonreciprocal dispersion relations

The dispersion relations of thermally excited spin-waves in the Co40Fe40B20(20nm)/
Ni80Fe20(26nm) bilayer system have been determined using wave-vector resolved BLS
experiments carried out on a plain film. These measurements were performed in the
Technical University of Kaiserslautern by M. Geilen and D. Louis. To evidence the
nonreciprocal character of these dispersions, both Stokes and anti-Stokes peaks have
been recorded for the two possible polarities of the applied magnetic field, in the DE
configuration. Figure 4.5 shows a BLS spectra obtained when measuring the frequency
shift of the backscattered photons. From here, it is possible to extract four magnon
frequencies: the two modes with positive k (red) and the two modes with negative k
(black).

k>0k<0

𝑀𝑀

Stokes anti-Stokes

Figure 4.5: Typical BLS spectra measured for a given photon-incidence angle. While the
Stokes process create magnons with the same propagation direction than the incident photon,
the anti-Stokes does it in the opposite direction. For both positive and negative k two peaks are
observed. They correspond to the DE-mode 1 and 0.

In order to obtain the full dispersion relation, a scan in angle was performed. Fig-
ure 4.6(a-c) shows BLS spectra obtained with µ0H0 = +30 mT, at different values of
the in-plane wave vector k. Again, the four different peaks, two Stokes and two anti-
Stokes, can be identified, which are related to the first (red) and second (blue) DE
branches. These peaks have been fitted to Lorentzian lines in order to extract their
central frequencies and thereby reconstruct the f(k) curves. The obtained dispersion
relations were compared with theoretical results calculated with SWIIM. This method
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of calculation is more precise than the theoretical model proposed in the previous sec-
tion, as it does not assume a particular thickness profile. We see that these numerical
results are in very good agreement with the measurements (Fig. 4.6(d)). As required
to fulfill our ambition to build a magnonic diode, a well-defined frequency plateau
is present at about 12.5 GHz in the dispersion of DE-mode 0, which corresponds to
the anti-Stokes peak with k-independent position in Fig. 4.6(a-c). This constitutes
a clear experimental evidence for the occurrence of nonreciprocal zero-velocity group
spin-waves in our system.
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Figure 4.6: (a-c) BLS spectra recorded in the DE configuration (µ0H0 = +30 mT) on a
Co40Fe40B20(20nm)/Ni80Fe20(26nm) bilayer film (symbols), for three different values of the in-
plane wave vector: (a) |k|=8.1 rad/µm, (b) |k|=11.8 rad/µm, and (c) |k|=15.2 rad/µm. Lines
are Lorentzian fits. (d) Dispersion relations of the two lowest DE modes deduced from BLS data
(open symbols) and comparison with predictions from SWIIM numerical simulations (lines).
Solid symbols correspond to data from a complementary ferromagnetic resonance experiment.
(e) Frequency nonreciprocities ∆fn(k) = fn(−|k|) − fn(+|k|) of DE modes 0 and 1. As in (d),
symbols and lines correspond to experimental and numerical data, respectively.

From Fig. 4.6(a-c) we note that the anti-Stokes peak with the highest frequency has
a small amplitude, whatever k. The peak even becomes undetectable for wave-vector
values exceeding 17 rad/µm, hence the lack of some (blue) data points in Fig. 4.6(d,e).
This is attributed to the fact that, as verified in numerical simulations (see Section 4.5),
DE-mode 1 has very small amplitude in the upmost part of the bilayer film, whose
magneto-optic contribution dominates the BLS signal. In Fig. 4.6(e) we also note that
the frequency nonreciprocities of the two DE modes, ∆fn(k) = fn(−|k|) − fn(+|k|)
(n= 0, 1) show very specific behaviors. First, ∆f0(k) and ∆f1(k) are almost equal in
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absolute value and opposite in sign, which comes naturally in our analytical theory of
the nonreciprocal hybridization. Second, these quantities do not vary monotonously
as a function of k. Instead, they exhibit a local extreme followed by a change of sign
at about 5 rad/µm. This behavior reveals the transition between a regime dominated
by exchange across the film thickness, in the k→ 0 limit, to a regime where in-plane
dipole fields gain importance, at larger k. Here, we must insist that both the dipolar
field and the hybridization between the symmetric and asymmetric mode are necessary
to obtain the nonreciprocity. However, as in the case of the reciprocal hybridization in
the single layer (see last term of Eq. 2.44), contains both an exchange part (Λ2π2/t2)
and a dipole part (P00 − P11), the former being the dominant one at low k.

4.4.3 Magnonic diode behavior

Propagating spin-wave spectroscopy

In order to clearly demonstrate the diode-like behavior of the studied bilayer system,
propagating spin-wave spectroscopy (PSWS) experiments have been performed. The
used devices are shown in Figure 4.7(a). Each one of them contains a pair of 50µm-
long, 10µm-wide bilayer waveguides and two pairs of single-wire antennas connected
in parallel. This device layout, in which spin-waves are traveling simultaneously along
two magnetic buses, ensures a good symmetry match with the Ground-Signal-Ground
(GSG) microwave probes used for connection to the VNA. Importantly, the 200nm
wide single-wire antennas used here can couple inductively to spin-waves with a broad
range of wave vectors, 0≤|k|. 12 rad/µm, as shown in the spatial Fourier transform
of the excitation field in Fig. 4.7(b). The distance between the emitting and receiving
antennas (D= 2 µm or 5 µm) is adapted to the typical attenuation length expected for
surface spin-waves with such k values in a Co40Fe40B20(20nm)/Ni80Fe20(26nm) bilayer.

Figure 4.8(a) shows the real part of the spin-wave-induced change in mutual induc-
tance ∆L12 and ∆L21 as a function of frequency for a device with a relatively large
distance between the emitting and receiving antennas [D = 5µm, see Fig. 4.7(a)],
submitted to a transverse in-plane magnetic field µ0H0 = +30 mT. The two data
sets presented correspond to opposite directions of spin-wave propagation. Comparing
them, one immediately sees that the spin-wave signal at 12.5 GHz≤ f ≤ 14.5 GHz is
vanishingly small for k > 0 (red symbols), meaning that no spin wave travel from the
left antennas to the right antennas, whereas it is comparatively large for k< 0 (black
symbols) as spin-waves do propagate effectively from the right antennas to the left
ones. This nonreciprocal behavior is of course related to the presence of a plateau in
the positive-k part of the dispersion relation of DE-mode 0 [Fig. 4.6(d)], which has two
main consequences. First, rightward propagating spin-waves with f ∼ 12.5 GHz and
0≤k≤kmax are excited by the left antennas but, due to their very low group velocity,
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Figure 4.7: Propagating spin-wave spectroscopy. (a) False color scanning electron micrograph
of a PSWS device with a distance D = 5 µm between the emitting and receiving antennas.
(b) Normalized Fourier transform of the IP magnetic field produced by a current uniformly
distributed over a W =200 nm width at a distance S=120 nm. These dimensions correspond to
the width of the antenna and the SiO2 thickness of the device depicted in panel (a).

they die out under the effect of magnetic damping before reaching the receiving anten-
nas. Second, due to the large extension of the plateau, the group velocity of DE-mode
0 becomes sizable again only for k values, which lie far beyond the k range accessible
with the used antennas, meaning that rightward propagating DE 0 spin-waves with
frequency well above 12.5 GHz are simply not produced. For f≥14.5 GHz, DE-mode
1 eventually gets excited so that a clear spin-wave signal is transmitted again for both
directions of propagation. An effective forbidden gap with a width of about 2 GHz is
thus formed for rightward propagating spin-waves (shaded zone in Fig. 4.8(a)). In view
of the possible application of this phenomenon, it is worth mentioning that the gap
can naturally be shifted up and down in frequency by adjusting the amplitude of the
applied magnetic field. A tunability of the order of 50 MHz/mT could be measured
experimentally over the 10-50 mT range, as shown in Figure 4.8(b).

Because the wave vector k is constrained to change according to the dispersion
relation k(f), the phase delay kD acquired by spin-waves after propagation over the
distance D varies continuously as the frequency f is swept. This variation in phase
delay translates into pronounced oscillations of the recorded spin-wave signal as the
ones appearing in Fig. 4.8(a). As we shall describe below, this provides us with a way
to extract the wave vector value corresponding to each driving frequency f . For that,
one needs to record both the real and imaginary parts of the spin-wave induced change
in mutual inductance over a large range of frequencies [Fig. 4.9(a,c)] encompassing
the ferromagnetic resonance frequency (FMR), fFMR = f0(k = 0), which corresponds
to the onset of the oscillations 9. From such data, the spin-wave wave vector can be

9The short-period small-amplitude oscillations of the mutual inductance observed at frequencies
between 6 and 7 GHz are related to reflections of the spin waves at the extremities of the magnetic
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Figure 4.8: (a) Real part of the spin-wave induced change in mutual inductance ∆Lij as
a function of the excitation frequency f (µ0H0 = +30 mT), for spin-waves propagating from
antennas 1 to antennas 2 (k>0, red squares) and vice versa (k<0, black circles), in the device
shown in 4.7(a). Upper limit (fmax, blue circles) and lower limit (fmin, red squares) of the
frequency gap for rightward propagating spin-waves as a function of the applied magnetic field,
as deduced from PSWS data such as shown in panel (a).

determined as

k(f) = ±φij(f)− φ0

D
. (4.7)

In this expression, the ± sign accounts for the change of sign of k upon reversing
the direction of spin-wave propagation [+ corresponding to spin-waves travelling from
the left antennas (j = 1) to the right ones (i = 2)], φ0 = π

2 is the reference phase
at fFMR, where ∆Lij is purely imaginary (pure absorption), and, more important,
φij(f) = arg[∆Lij(f)] + 2nπ (with n integer) is the spin-wave phase, which must be
unwrapped in a continuous manner, starting from fFMR.

The open symbols in Fig. 4.9(b) show the dispersion relation of DE mode 0 recon-
structed by applying the above method (Eq. 4.7) to ∆Lij data recorded between 5.8
and 14.5 GHz. As expected, for k>0, the dispersion can only be followed up to approx-
imately +7 rad/µm, which corresponds to the lower edge of the frequency plateau. In
contrast, for k<0, it can be followed down to -12 rad/µm, thus confirming the ability
of our PSWS device to probe the expected wave-vector range [−kmax,+kmax]. As a sup-
port to our conclusions, Figure 4.9(b) also displays in the background the "weighted"
dispersion relation computed for a CoFeB(20nm)/Py(26nm) bilayer with the mumax3
software using space and time Fourier transforms of in-plane magnetization traces ob-
tained under square pulse excitation of 10 ps duration. The simulations have been
performed by D. Stoeffler. They use elementary cell sizes hx = 0.5 nm, hy = 10 nm,
hz = 4 nm and periodic boundary conditions in both longitudinal (z) and transverse
(y) in-plane directions, include a realistic spatial distribution for the excitation field
produced by the antenna and account for magnetic losses through Gilbert damping

waveguides.
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Figure 4.9: Spin-wave propagation in a device with D = 2 µm. (a,c) Real and imaginary
parts of ∆Lij as a function of frequency for k < 0 (a) and k > 0 (c). (b) Dispersion relations
of the lowest (open symbols) and second lowest (solid symbols) DE branches deduced from the
experimental spin-wave signals shown in (a) and (c), and spin-wave spectral weight (color map)
as obtained from mumax3 micromagnetic simulations. See text for details.

factors of 0.008 and 0.012 for CoFeB and Py, respectively. A very good agreement
between the two kinds of data may be observed, particularly regarding the asymmetric
way in which the amplitude of the transmitted spin-wave vanishes upon increasing f .
Figure 4.10(b) shows a cross-sectional map of the dynamic magnetization as simulated
under continuous-wave excitation at f = 13 GHz, which illustrates how this nonre-
ciprocity translates in real space: Once the excitation frequency enters the gap, the
dynamic magnetization profile becomes essentially evanescent on the right side of the
source as the far-field coupling of the antenna to the magnetic precession vanishes. The
same figure, in the panel (a), also shows the the nonreciprocal hybridization outside
the gap. The propagation to the left is mostly symmetric, while to the right we can
clearly observe the antisymmetric component.

Micro-focus Brillouin Light scattering

To visualize directly the spatial decay of spin-waves, we have performed micro-focus
BLS imaging [101] (credit M. Geilen TUK) on a similar device as used for PSWS
[Fig. 4.7(a)]. In those experiments, the spin-wave intensity has been mapped next to
an antenna while microwave power (-5 dBm) was continuously injected into it. In the
DE configuration, switching the direction of the equilibrium magnetization is equiva-
lent to reversing the wave vector k [102, 103]. Then, instead of looking on both sides of
the source for imaging counterpropagating waves, we have concentrated ourselves on
one side and recorded spin-wave intensity maps for the two polarities of the transver-
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Figure 4.10: MuMax simulations of the spin-wave propagation. Simulated cross-sectional
map of the in-plane component of the normalized dynamic magnetization, ηx =mx/MS, for an
excitation frequency of 12 GHz (a) and 13GHz (b). Both emitter (E) and receptor (R1 and R2)
antennas are shown. The AC current assumed in the emitter antenna is 3 mA, which yields an
in-plane magnetic field of about 3 mT at the top surface of the bilayer, right beneath the source.
The two receptors show where the pick-up of the signal was performed when using the device
displayed in Fig. 4.7(a). The experimental data form the spin-wave propagation signal measured
by R1(c) and R2(d) is shown. The arrows indicate the frequencies at which the simulations were
performed.

sally applied magnetic field. Accordingly, the data obtained for H0 < 0 are mirrored
horizontally in Fig. 4.11(a,c). The benefit of this experimental strategy is that it al-
lows us probing counterpropagating spin-waves in the very same optical conditions,
thus avoiding artifacts related, for instance, to differences in the surface state of the
waveguide.

To support these observations, mumax3 simulations have also been performed for
a finite, 50 µm-long, 10 µm-wide bilayer strip. The expected BLS signal has been
calculated by assuming that it is mostly related to the out-of-plane component of the
dynamic magnetization (mz) at the top surface of the magnetic medium. As in the
experiments, spin-waves were excited by an alternating magnetic field with frequency f
produced by a 100 nm thick, 200 nm wide antenna, located 120 nm above the spin-wave
conduit. For each magnetic cell (with size hz=4 nm, hy=40 nm, hx=8 nm 10), the time
dependence of mz was recorded over a full period 1/f , in the steady excitation regime,

10Here, the cell size in the transverse (y) direction is larger than the exchange length. However,
tests performed using cells 10 times smaller allowed us to check that this does not affect the obtained
static configuration.



4.4 Experimental results 66

0 5 10 15 20

5

0

-5

11 12 13 14

1

0.2

6

L D
(µ

m
)

f (GHz)

(f)

0 5 10 15

5

0

-5

15 10 5 0

5

0

-5

y
(�

m
)

20 15 10 5 0

5

0

-5
y

(�
m

)
(a) (b)

0 5 10 15 2020 15 10 5 0

103

104

x (µm)

In
te

gr
a

te
d

 B
LS

 
in

te
ns

ity
 (

ar
b.

u
ni

t)

x (µm)

(g) (h)

(c) (d)

x (�m) x (�m)

(i)

BLS intensity
(arb. unit)

100

1000

|m0,z/max(m0,z)|2

1

0.1

(e)

5 µm

5 µm

Figure 4.11: (a-d) Experimental BLS intensity maps for excitation frequencies of 11 GHz
(a,b) and 13 GHz (c,d) and applied magnetic fields µ0H0 =−30 mT (a,c) and µ0H0 = +30 mT
(b,d) (logarithmic scale). The dashed lines indicate the position of the waveguide edges. (e,f)
Computed BLS intensity maps for f = 11 GHz (e) and f = 13 GHz (f), µ0H0 = +30 mT.
The current assumed in the antenna is 0.1 mA (linear regime). In each panel, the upper part
shows raw data whereas the lower part shows pixelated data obtained by averaging raw data
over 1.6µm × 0.8µm rectangular areas. See text for further details. (g,h) y-profiles of the BLS
intensity integrated over the width of the waveguide as deduced from the maps shown in panels
(a-d). Open and solid symbols correspond to f=11 GHz and f=13 GHz, respectively. The lines
are fits of the experimental data to the expression I(x) = I0 exp(−x/LD) + INoise. (i) Variation
of the decay length of the spin-wave intensity, LD, with the excitation frequency f for spin-waves
propagating to the right (H0>0, red) and to the left (H0<0, black). The symbols and the solid
lines are data derived from experiments and simulations, respectively. The horizontal dashed
line indicates the smallest spin-wave wavelength compatible with the chosen antenna design.

and analyzed to extract its maximum value m0,z. Finally, normalized intensity maps
were constructed, which show |m0,z/max(m0,z)|2, either with the full resolution of the
simulations [top panels in Fig. 4.11(e,f)] or with a degraded resolution mimicking that of
micro-focussed BLS images [bottom panels in Fig. 4.11(e,f)]. Overall, a good agreement
is obtained between experimental and computed images, assuming damping values of
0.008 and 0.012 for CoFeB and Py, respectively. Quite naturally, upon pixelation, sharp
features, like those related to localized edge modes, tend to be washed out. Yet, we
note that for f = 11 GHz, a long oblique contrast arising from the interference between
the fundamental and higher-order width modes of the waveguide remain discernible
[Fig. 4.11(a,e)].

Expectedly, for frequencies in the range 6-12 GHz (i.e. below the frequency plateau),
significant spin-wave intensity is systematically detected up to distances of several mi-
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crometers from the antenna [Fig. 4.11(a,b,e)]. We note that although plateau-related
spin-wave filtering is not yet active, a difference in intensity may be observed between
the two directions of propagation. This is nothing but the usual amplitude nonre-
ciprocity described in Section 4.2. When the frequency reaches 13 GHz (above the
frequency plateau), on the other hand, the spin-wave intensity remains relatively large
for one direction of propagation [Fig. 4.11(c,f)] but drops abruptly for the opposite one
[Fig. 4.11(d,f)]. Based on the discussion above, we naturally attribute this fast drop in
intensity to the phenomenon of spin-wave slow-down associated with the presence of a
plateau in the positive-k part of the dispersion relation of DE mode 0.

This phenomenon is best illustrated by extracting the spin-wave decay length LD

from the BLS data. For this, one may average the spin-wave intensity over the width of
the waveguide (i.e. along y) to mitigate finite-width effects, plot the integrated intensity
as a function of the space coordinate along the direction of propagation, x, and fit this
dependence to an exponential decay of the form I(x) = I0 exp(−x/LD) + INoise [see
Fig. 4.11(g,h)]. Figure 4.11(i) shows the variation of LD with f obtained treating both
experimental and numerical data in this manner. A clear difference in behavior may be
observed depending on the sign of k. For spin-waves travelling to the left (k<0, black
circles and line), LD decreases steadily with increasing f . For spin-waves travelling to
the right (k>0, red squares and line), in contrast, this steady decay is interrupted by a
sudden drop in LD as f reaches the frequency of the plateau, fp. Beyond fp, LD becomes
smaller than the minimum spin-wave wavelength 2π/kmax ' 0.5 µm attainable with
our single-wire antenna. This reveals the evanescent character of the magnetization
dynamics induced when the frequency falls into the effective gap, also evidenced in the
micromagnetic simulation of Fig. 4.9(b).

4.5 Spin-wave modal profiles

For completion, we present examples of spin-waves eigenmodes [Fig. 4.12] obtained as
solutions to the CoFeB(20nm)/Py(26nm) bilayer problem, using the SWIIM numerical
method [15]. The magnetic parameters are the same as those used to calculate the
dispersion relation of Fig.4.6(d) and the modal profiles discussed here are those for
|k| = 20 rad/µm. We start by considering only |η|, that is, the amplitude of the
oscillating magnetization normalized toMS [Fig. 4.12(a,b)]. Two important conclusions
can be drawn from these data.

i) First, the mode with the lowest frequency, DE0, has maximum amplitude at the
top surface for both directions of propagation [see red lines in panels (a) and (b)].
This is different from the behavior of DE modes in thicker films (l > 100nm), where
leftward and rightward travelling spin-waves are confined near opposite surfaces [104].
This clearly shows that one cannot relate directly the frequency nonreciprocity that
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we observe to a preferential localization of counterpropagating spin-waves in the two
different materials which constitute the bilayer.

ii) Second, for k > 0, the second lowest frequency mode, DE1, always has a small
amplitude near the top surface of the film. This amplitude reaches virtually zero for
k ∼ +20 rad/µm [see blue line in Fig. 4.12(a)]. This explains why the anti-Stokes peak
corresponding to DE1 is globally much weaker than its Stokes counterpart [Fig.4.6(a-
c)] and why, as mentioned in Sec. 4.4.1, it hardly becomes discernible for k in the range
17− 25 rad/µm.

If instead of looking at mode amplitudes, we now consider the in-plane (ηx) and
out-of plane (ηz) components of the variable magnetization separately, as is done in
[Fig. 4.12(c)] for mode DE0 with k < 0, the hybrid character of this mode appears very
clearly: the modal profile contains both a uniform (non-zero-average, S0-like) contri-
bution and an antisymmetric (cosine, S1-like) contribution. Noticeably, the relative
weights of these contributions are not the same for the two components, which trans-
lates into nodes located at different depths for ηx and ηz. This justifies the need for
using a set of four vectors (as opposed to a set of only two vectors) as a basis for the
dynamic matrix model developed in Sec. 4.3.

4.6 Chapter conclusion

A new concept of spin-wave diode is proposed, which makes use of the particular
dynamic dipolar interactions in the DE configuration. The device is made from a thin
film consisting of two exchange-coupled layers with different saturation magnetization
values. Our theoretical analysis reveals that, in such a film, chiral dipolar couplings
develop, which results in nonreciprocal hybridization. Using this phenomenon, we
engineer carefully the dispersion of surface waves to reduce the group velocity of waves
traveling in a particular direction to a very low value (slow waves) while maintaining
a large value for those propagating the other way.

These results are experimentally verified by combining PSWS with thermal-k-
resolved-BLS and micro-focus BLS. The three techniques verify that the spin-wave
modes excited by a source of finite size take the form of propagating waves in the
forward direction of the diode and reduce to evanescent waves in the reverse one. In
addition, we have validated the phase unwrapping method to obtain the spin-wave
dispersion relation from the PSWS experiments. This technique has been used in the
millimeter-scale [105], but up to our knowledge, this work represents its first imple-
mentation at the nanometer-scale.

This spin-wave diode is quite versatile as its operational frequency window can be
adjusted by tuning the amplitude of the applied magnetic field. Moreover, the forward
and reverse directions can be interchanged by switching the polarity of the field. In
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Figure 4.12: Depth profiles of modes DE0 and DE1 in the CoFeB(20nm)/Py(26nm) bilayer
stack as computed using the SWIIM numerical method (µ0H0 = +30 mT). (a,b) Amplitude of
the dynamic magnetization normalized to MS versus vertical coordinate z, for k = +20 rad/µm
(a) and k = −20 rad/µm (b). Red (resp. blue) lines correspond to DE0 (resp. DE1). (c)
In-plane (solid line) and out-of-plane (dash-dotted line) components of the reduced dynamic
magnetization in mode DE0 as a function of the vertical coordinate z, for k = −20 rad/µm.

addition, engineering of unidirectionally slow spin waves could also prove useful in more
general situations where long interaction times are needed within a limited space, for
instance, for promoting nonreciprocal nonlinear coupling in the channel of a magnonic
transistor [11].



Chapter 5

Statics and dynamics of magnetic
stripe domains

The present chapter presents a study of the dynamics of the stripe domains that were
introduced in Section 1.3. We show how their spin-wave spectrum can be interpreted as
an extension of the Damon-Eshbach (DE) spectrum of the saturated state, but adapted
to the symmetry breaking occurring at nucleation. In order to compare these theories
with experimental data, we have studied these modes in CoFeB ferromagnetic films,
which present weak stripe domains at low magnetic field.

First, we will present a characterization of the CoFeB samples, allowing one to
determine the values of the relevant magnetic parameters. Later, the static properties
of the stripes —amplitude and period— will be theoretically described by including
fourth-order terms in the energy-calculations for the stray-free ansatz, described by
Expression 1.22. By doing so, we arrive at an elementary description of the stripes
in terms of a complex order parameter and an energy potential having the shape
of a “Mexican hat” (Ginzburg-Landau-type theory). This description of the statics
allows one to predict the apparition of two different dynamic modes: a zero-frequency
Goldstone-mode which corresponds to the rigid translation of the stripe system; and
an amplitude precession mode, which can be identified as a Higgs-mode.

We also show how the Kalinikos-Slavin method can be adapted to describe the
evolution of the fundamental spin-wave mode upon approaching stripe nucleation, and
the emergence of the Higgs mode. Finally, by means of BLS and FMR measurements,
we observe the softening of the DE mode, and we measure the frequency of the Higgs
mode.
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5.1 Sample fabrication and characterization

A suitable material for studying the dynamics of stripes domains should have a suffi-
ciently strong PMA while presenting a low damping α, as a big damping would prevent
the detection of low-frequency dynamics. Unfortunately, such magnetic material is not
easy to obtain; normally, a strong PMA requires an important interaction of the mag-
netization with the molecular or atomic orbitals of the material, and this is usually
accompanied by a large damping. Therefore, we have chosen to work with samples
presenting a weak PMA (Q → 0). As a consequence, in order to allow the stripe nu-
cleation, the thickness of the sample must be quite large. With these restrictions, we
have chosen to work with Co40Fe40B20. Despite its amorphous structure, it presents an
uniaxial-OOP anisotropy, probably from magnetostrictive origin [40, 106, 107].

5.1.1 VSM and MFM

The Co40Fe40B20 sample was grown by M. Hehn at IJL using magnetron sputtering.
Intrinsic silicon substrates were used, together with a buffer layer of Ta of 3 nm and
a capping layer of Pt of 5 nm. The static magnetic properties of these films were
characterized in detail in the framework of the PhD work of K. Ait-Oukaci (dir. D.
Lacour and M. Hehn) using magnetometry (mostly VSM) and magnetic imaging (MFM
and STXM) [14, 40]. To summarize the findings of this work, a sizable PMA can
be inferred from the presence of stripes, which were observed for thicknesses over
126 nm by MFM, as shown in Fig. 5.1(b). Vibrating sample magnetometry (VSM)
measurements display the typical signature of stripe-domains (see Fig. 5.1(a)): My

decreases linearly and reversibly under the stripe nucleation field Hc [108, 109]. A
magnetization reversal of the cores can be observed at a lower field (the coercive is
µ0Hcoe = 2.8 mT in the example shown). It is possible to observe that this reversal
implies an abrupt change inMy, as expected from a first-order phase transition. Finally,
the saturation magnetization, MS = 1331 kA/m (µ0MS = 1.67 T), was determined as
an average of several VSM, PPMS-VSM and SQUIID-VSM measurements.

Some measurements were performed within a period of few weeks from the film de-
position (including the VSM and MFM measurements described above and the trans-
verse FMR measurements described below). Nevertheless, other measurements were
done in the last months of this PhD work, which is at least one year later (includ-
ing the MOKE, BLS and longitudinal FMR measurements described below). From
these measurements, it has been observed that the nucleation field decreases from
µ0Hc = 17.5 mT to 12 mT. This behavior was observed in several samples of CoFeB
180nm which were stored at room temperature but in different rooms. Given the high
mobility of boron it is possible that it has migrated, rearranging the amorphous struc-



5.1 Sample fabrication and characterization 72

-20 -10 0 10 20

0

1.0

0.5

-0.5

1.0

-1.0 1.0µm

(a)
(b)

z
y

x

Figure 5.1: (a) VSM measurements showing the hysteresis cycle of a Co40Fe40B20 film of a
thickness of 180 nm. The nucleation field is indicated by the dashed lines at µ0Hc = ±17.5 mT.
(b) MFM image taken at remanence on the same sample [40].

ture, and in consequence, changing the value of K1 and Q. Figure 5.2(a) shows the
change of the VSM hysteresis cycle for two samples. While one was measured immedi-
ately before its deposition (new), the other was measured two years later (old). In the
following, we shall therefore use reduced values of PMA for measurements carried out
long after film deposition
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Figure 5.2: VSM measurements on aged and annealed CoFeB films. (a) Both CoFeB-180nm
samples had the same properties at after the deposition. While the new sample was measured
shortly after deposition, the hysteresis loop of the old sample was measured two years after
deposition. Coercive fields are 2.85 mT (new) and 1.4 mT (old). (b) The hysteresis cycle also
changes if the sample is heated at 180◦. The inset shows that, after the thermal process the
stripe domains are still found at remanence, although with a reduced contrast. The brighter
domain could show a wall separating landau IP domains. This image was taken at IPCMS with
the help of H. Majjad.
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VSM measurements have also evidenced a change of the magnetic properties of
Co40Fe40B20 with the temperature. In particular, a baking at 180◦C for 90s repeated
two times produces a decrease of the nucleation field Hc, as shown in Fig 5.2(b). How-
ever, the stripe structure at remanence observed by MFM implies thatK1 is big enough
to keep Hc > 0. A similar behavior which was already identified in CoFeB [110] and
in another amorphous compound, Co89−xFexZr11 [109]. We believe this is the main
reason why we could not observe any clear signature of stripe domains in PSWS and
microfocus-BLS measurements, because of the relatively large temperature applied
during the lithography process required for producing devices adapted to these mea-
surement techniques.

5.1.2 Kerr microscopy

Kerr microscopy measurements were performed on Co40Fe40B20 films with t = 150 nm
and t = 180 nm. These measurements were performed with the set-up mounted by
S. Cherifi and counting with her help. For both thicknesses, it was observed that the
core reversal process is dominated by the motion of domain walls, which separate zones
where the magnetization of the cores has opposite directions. If the IP anisotropy is
null, the domain wall must be aligned with the core magnetization and the external
applied field. However, as Fig. 5.3(c) shows, this is not the general case, as for some
IP angles the observed domain wall was not aligned with the applied field H .
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Figure 5.3: (a) Longitudinal-Kerr integrated-intensity as function of the IP applied magnetic
field. (b) The variation of Mr/MS with the applied field angle is shown in the polar plot.
(c) Kerr-microscope image obtained at the coercive field for an IP intermediate angle. All the
measurements were performed in a full-plane sample —without any lithography or etching.

In order to determine the IP anisotropy, the hysteresis cycle ofMy at the surface was
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measured by integrating the intensity of the recorded images for different applied fields.
The results obtained for the sample with t = 180 nm are shown in Fig. 5.3. We have
observed that there was some dependence of the hysteresis loop as function of the IP
angle of the applied field. This is summarized in the polar plot of Figure 5.3(b), where
the angular dependence of the normalized remanence magnetizationMr is shown. From
the variation of Mr with the angle, we conclude that some IP anisotropy is present.
The hysteresis loop corresponding to the easiest IP direction is shown in Fig. 5.3(a). In
it, it is possible to identify the nucleation field at µ0H = 12.5(1) mT, and the reversible
linear decrease of Msur as function of H at low field.

The Kerr measurements done for CoFeB 150nm show a larger IP anisotropy, which
affects significantly the magnetic state at remanence. These measurements are shown
in Appendix B. From these measurements, we have chosen to focus our studies on the
sample with t = 180 nm as the IP anisotropy affects less the stripe properties. Also, it
presents a larger saturation field, assuring a broader range of magnetic field where the
stripe behavior can be studied. When possible, measurements have been done with the
external field applied parallel to the IP easy axis, in order to avoid extra complications.

5.1.3 Transverse FMR

In order to obtain the magnetic parameters of Co40Fe40B20 180nm (in particular the
gyromagnetic ratio and the exchange constant), we have performed FMRmeasurements
using our broadband set-up (see Section 3.1) in the standard mode; which is under a
magnetic field strong enough to saturate the sample, and in the transverse pumping
geometry (excitation field h perpendicular to the applied field H).
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Figure 5.4: OOP-FMR-spectroscopy measurements. (a) Imaginary and real parts of the
effective susceptibility at f =26 GHz as function of the OOP applied field H. The numbers
correspond to the perpendicular wave vector κn. The inset shows the detail of the smaller peaks
at low field. (b) Position of the minimum of the imaginary part extracted from field-scans for
different frequencies. This minimum corresponds to κn = κ0, the biggest amplitude peak in
panel (a).
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In the OOP configuration, in which H is along the film normal, magnetization is
saturated if µ0H

⊥
S ≥ 2 T. In this magnetic field range, the FMR-resonance frequency

is given by Eq. 2.14. At a given frequency, several additional peaks of resonances
are found, as shown in Fig. 5.4(a). They correspond to the perpendicular standing
spin-wave modes with different κn, determined from Eq. 2.33. For the higher frequen-
cies as many as six peaks could be identified, allowing a precise determination of the
surface anisotropy Ks and the exchange constant Aex, as explained in Appendix C.
The fit shown in Fig. 5.4(b) and Eq. 2.14 allows to determine the PMA K1, and the
gyromagnetic ratio γ. Therefore, the values of the measured parameters are:

• µ0Meff = 1.59(2)T→ K1 = 50(15)kJ/m3 → Q = 0.04(2)

• Aex = 16.6(1) pJ/m.

• Ks = 0.18(3)mJ/m2

• γ

2π = 29.9(2)GHz
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Figure 5.5: IP FMR spectroscopy measurements. (b) Example of a field scan for an excitation
frequency f = 30 GHz. (c) Position of the minimum of the imaginary part extracted from field-
scans as a function of the frequency. The fit was performed with the points corresponding to the
saturated state using Eq. 2.13.

The error in Q is quite large, but it remains consistent with Q = 0.036, the ex-
pected value from the nucleation field µ0Hc = 17.5 mT (see Fig. 5.1) and Eq. 1.31.
This anisotropy value also determines that the minimum thickness which allows stripe
nucleation is tmin = 127 nm, which agrees with the MFM measurements. The fit of the
IP line-width as a function of H gives α = 5 10−3 and ∆H0 = 1.6(4) mT1

The results for the IP configuration (m oriented in the film plane) are shown in
Fig. 5.5.

1Note that in our broadband measurement mode, this inhomogeneous broadening is primarily due
to the finite width of the coplanar waveguide used.
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From the IP-FMR fit a different gyromagnetic constant is obtained. In this case
γ/2π = 28.9(2) GHz/T. This difference could be explained from an anisotropic gy-
romagnetic factor. For the fits and calculations of this work, we will take γ/2π =
29.0 GHz/T, as it is consistent with BLS measurements that will be shown in the next
sections.

5.2 Stripe amplitude

In Section 1.3.1 a certain ansatz of stripe domains was proposed, and its energy cost
was determined. For Q → 0, the stray-free ansatz proves to be a realistic approxi-
mation, allowing the calculation of the nucleation field Hc. At the critical condition,
when H = Hc, the second derivative of the energy is zero. If the applied magnetic
field continues to decrease, this derivative becomes negative, implying an amplitude
divergence. However, the stripe amplitude A remains finite if higher-order terms in the
energy are included in the calculation.

Using the same notation as in Section 1.3, the total stripe energy density, including
the fourth-order terms, can be written as

2
µ0M2

S

〈ET 〉 = 2h+ a(h, k)A2 + b(h, k)A4 +O(A6). (5.1)

The coefficient a(h, k) vanishes at the reduced nucleation field hc and becomes neg-
ative at smaller fields. On the other hand, the coefficient b(h, k) remains positive for all
fields. It includes the fourth-order terms from the exchange and Zeeman interactions.
These terms are a consequence of the fixed norm of the magnetization |M | = MS. This
constrain imposes a relation between the three components of M , and determines the
value of My, which, at fourth-order can be expressed as

My = Ms

√
1−m2

x −m2
z ≈MS

(
1− 1
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(
m2
x +m2

z

)
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8
(
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2
z +m4

z

))
.

(5.2)
From here we can define the normalized longitudinal deviation from saturation as

my = My/MS − 1. Thus, the fourth-order energy terms are calculated as2

b(h, k2)A4 = Λ2
〈
(~∇my)2

〉
+ 2 h8

〈
m4
x + 2m2

xm
2
z +m4

z

〉
(5.3)

This expression can be modified to include a nonzero second-order anisotropy. In
our case, the fits done on the FMR data from CoFeB are compatible with K2 = 0, and
micromagnetic analysis on the hysteresis loop also suggest this parameter is null [13].
Therefore, these terms are not explicitly written, but they can be found in Appendix A.

2(~∇my)2 expresses a short notation for the operation shown in Eq. 1.7.
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The explicit calculation of the average values is also developed in Appendix A.
Following these calculations, a and b parameters of Eq. 5.1 read

a(h, k) = −Q
(
k

2κ

)2

+ Λ2

4

2 k2 + κ2 +
(
k2

κ

)2
+ h

1
4

1 +
(
k

κ

)2
 ; (5.4)

b(h, k) = Λ2

64

(
k2 + k4

κ2 + 3 k
6

κ4 + 3κ2
)

+ h

256

[
9
(

1 + k4

κ4

)
+ 2 k2

κ2

]
. (5.5)

These calculations define an energy landscape that depends on several parameters. As
h and κ are imposed, minimization of the energy gives the equilibrium values of A and
k, that will be named Ae and ke. For fields higher than Hc, the minimum is trivially
located at A = 0. When decreasing the value of the applied magnetic field, Ae becomes
finite. Differentiating Eq. 5.1 with respect to A, one obtains 2 aA + 4 bA3 = 0, which
results in

Ae(h, ke) =

√√√√−a(h, ke)
2 b(h, ke)

. (5.6)
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Figure 5.6: (a) Equilibrium stripe amplitude Ae as function of the applied field H. (b)
Equilibrium wave vector and wavelength of the stripes versus the applied field. The red line
shows the value of kc. The vertical black line in (a) and (b) shown the minimum applied field at
which the ansatz is valid. On the top, the direction of ke with respect to an MFM image is shown.
The parameters used are: MS = 1331 kA/m (µ0 MS = 1.67 T), Λ = 3.85 nm (A = 16.5 pJ/m),
t = 180 nm and Q = 0.03 (K1 = 33.4 kJ/m3).

The equilibrium amplitude Ae depends on ke. Therefore, we must first find the
equilibrium value of k for each magnetic field. In the general case, ke can be found
from3

∂ 〈ET 〉
∂k

∣∣∣∣∣
ke

= 0. (5.7)

3This derivative can also be performed as function of k2, simplifying the calculations.
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The two former equations have a mutual dependence, i.e. Ae(ke) and ke(Ae), leading
to an equation system that is not solvable analytically. Nevertheless, this system can
be solved easily with numerical methods. The obtained results are shown in Fig. 5.6.

Exactly at nucleation, the value ke coincides with kc, as expected. However, when
decreasing the magnetic field, ke 6= kc. Thus, the period of the stripe system is not
fixed but varies slightly with H. Near the nucleation, the same tendency was observed
in MFM measurements done by K. Ait-Oukaci [40]4. The value obtained for Ae is
shown in Fig. 5.6(a). This figure also shows the value for Ae under the approximation
ke = kc. We notice that near the nucleation field, the exact and approximated solution
do not differ significantly.

Finally, we can calculate 〈ET 〉 (h) as a function of A. For that, the calculated ke(h)
is substituted in Eq. 5.1. The results are shown in Fig. 5.7. We can observe that energy
adopts the shape of the well-known Ginzburg–Landau-theory potential. As expected,
under the nucleation field Hc, the energy minimum is localized at Ae 6= 0.
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Figure 5.7: One-period averaged energy as a function of A for different values of µ0H at
k = ke. At µ0Hc = 11.8 mT the second derivative vanishes. At lower fields, the minimum is
found at Ae 6= 0, as indicated by the black dash. Same magnetic parameters as in Fig. 5.6.

Substituting ke and Ae in the stray-free ansatz (expressions 1.22) gives the magne-
tization profile as a function of the applied magnetic field. A clear limitation to our
approach appears when any component of the magnetization exceeds MS. In our case,
mz > mx, and this limit is expressed as

mz = Ae(h)2 ke(h)
κ

< 1. (5.8)

For the parameters of CoFeB 180nm, the field range where this approach is valid
is µ0H > 6.5mT. To explore lower fields, an extension of the theory would be needed,

4We must note that fourth-order terms play a crucial role to perform this calculation under nucle-
ation. If they are omitted, ke = kc is a monotonically increasing function of h.
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for example, by introducing a suitable Lagrange multiplier, but this is left for future
work.

5.3 Stripe-dynamics theory

From the description of the statics, it is clear that the wave vector related with the
critical behavior is kc. In order to understand the dynamics of the system before
and after the nucleation, we will study the dispersion relation of spin waves in CoFeB
180nm, focusing our attention on the range around kc.

5.3.1 Dynamic approach to the nucleation

As mentioned in Section 2.3.1, the PMA in the DE configuration reduces the resonance
frequency of the uniform magnetic modes when k is increased. As a consequence,
the group velocity becomes negative like in the BV case. Nevertheless, an important
difference can be noticed between these two configurations: in the BV configuration
the dynamic magnetic flux can never be closed and the dipolar field always produces
some torque, leading to a non-null frequency. On the contrary, in the DE configuration
with PMA, the dynamic magnetic flux can be closed, even in the limit of Q → 0. In
this case, in the magnetostatic approximation, the frequency could be zero for a certain
wave vector k.

z

x

Figure 5.8: Distribution of the dynamic magnetization corresponding to the eigenvalue η =
(1, 0, 0, i)T in the sine-cosine basis.

To include the exchange in this magnetostatic picture, the dispersion relation at
H > Hc in the DE configuration should be calculated using the Kalinikos-Slavin (KS)
approach already used in this manuscript. Nevertheless, the thickness profile basis used
there (uniform and antisymetric modes) is not suitable to characterize the stripes. We
expect that at kc the mode profile coincides with the static ansatz proposed in the
energy-minimization approach. Consequently, we have used the “sine-cosine” basis:

{S(z)x̂, S(z)ẑ, C(z)x̂, C(z)ẑ}, (5.9)

with S(z) =
√

2
t
sin (κ z) and C(z) =

√
2
t
cos (κ z). We can observe that the first

and last elements of the basis can combine in a closed-flux configuration, as shown
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in Fig. 5.8. As a notation, we will name the combination of these two elements A-
component because it coincides with the static ansatz, whose amplitude is given by
the parameter A. The other two elements (S(z)x̂ and C(z)ẑ) can not close the mag-
netic flux and are forced to create magnetic charges. We will name their combination
T -component (from transversal)5. We must note that, individually, these two compo-
nents cannot form precession modes —in contrast with the uniform and antisymmetric
components of Section 2.3.1, (S0x, S0z) and (S1x, S1z), respectively— as they combine
functions with a different symmetry.
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Figure 5.9: (a) CoFeB 180nm spin-wave dispersion relation in the Damon-Eshbach configura-
tion calculated with the KS approach at µ0H = 15 mT > µ0Hc. (b) The precession ellipses of
the dynamic magnetization of the two modes are shown. The arrows show the dynamic magneti-
zation distribution at a given time. While DE0 closes the magnetic flux at k = kc, DE1 produces
surface magnetic charges and oscillates with a higher frequency.

This change of basis affects the expression of the dynamic matrix found in the intro-
duction, but the procedures to perform the calculations reviewed in the Section 2.3.2
remain valid. Details on this calculation can be found in Appendix D.

By solving analytically the corresponding eigenvalue problem, the dispersion re-
lation of the two modes is calculated, as shown in Fig. 5.9(a). An analysis of the
resulting eigenvectors shows that the DE0-mode is mainly composed of A-components,
and in the DE1-mode, the T -components are predominant. However, to build a true
precession mode, both DE0- and DE1-modes present also small T - and A-components,
respectively. From the energy minimization calculations, we already know that the
dipolar energy, if not brought to zero by suitable flux closure, is by far the largest
among the different contributions. As the T -components are associated with nonzero
charges, these components increase significantly the frequency of the modes.

If the applied magnetic field is reduced, the DE0-mode at kc becomes softer. At
5The naming of these components will become clearer in next section.
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Figure 5.10: (a) DE0-mode dispersion for different applied magnetic fields. When decreasing
the field, the mode becomes soft for k = kc ≈ 22 rad/µm. At µ0Hc = 11.77 mT, f(kc) = 0 and
stripes nucleate. (b) Components of the eigenvector obtained in the KS approach for the DE0
at k = ke(h).

the nucleation field Hc its frequency vanishes, giving rise to the stripe nucleation.
These results are shown in Fig. 5.10(a). From an intuitive point of view, we can think
the stripes as “frozen” spin-waves with a wave vector defined by the minimum of the
dispersion. From Fig. 5.10(b), we see that the T -components of the DE0 mode vanish
at nucleation. Therefore, near nucleation, we expect the dynamic mode to be linearly
polarized, becoming a pure amplitude mode to be identified to the static ansatz used
in the energy approach.

This way of calculating the nucleation of stripes is a natural extension of solving
the LL equation with the zero-torque condition. The softening of spin-waves was also
invoked to explain domain nucleation in ferromagnetic Co-bars, where the size effects
substitute the PMA [111], and in transversely magnetized strips [112]. Quite generally,
domain structure nucleation is usually accompanied by the occurrence of soft spin-wave
modes at the critical point [113]. In this work, we will proceed one step further and
consider the dynamics of the stripes, once they are nucleated. For this purpose, we will
combine our understanding of the statics of stripe domains and that of the dynamics
of saturated PMA films. In particular, we shall use the following “side-product” of our
Kalinikos-Slavin calculation.

If H < Hc, the DE0 modes with a wave vector near kc present a calculated fre-
quency which is totally imaginary, as shown in Fig. 5.11. This can be interpreted as
the amplitude-divergence obtained when only the first order terms of the total energy
are considered: in the absence of higher-order terms (not considered in the linearized
dipole-exchange spin-wave theory), the dynamic magnetization would grow exponen-
tially. The exponential growth rate is to be identified with the imaginary part of the
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angular frequency. In the next pages we will give a precise interpretation to the max-
imum of this imaginary frequency, but before that, let us come back to our energy
approach.
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Figure 5.11: Imaginary part of the frequency for magnetic field values under Hc. The wave
vector of the maximum of these imaginary parts coincides with that of the minimum of the real
parts of the frequencies above saturation, which is k = 22 rad/µm (see Fig. 5.9).

5.3.2 Stripe modes

Magnetic stripe nucleation is a second-order phase transition, which is accompanied by
a spontaneous symmetry-breaking when the stripe phase φ takes a defined value φe6.
Above nucleation, this phase is not defined. The global phase of the stripe system can
be physically represented as a position: a change of φe rigidly moves the stripes in the
direction of their wave vector.

The stripe texture is completely defined by the combination of this static phase and
the amplitude A. In other words, it is described by a complex scalar order-parameter
ψ = Aeiφ which defines a U(1) symmetry-group. In this parameter space, the energy
density defines a “Mexican hat” potential, as shown by Fig. 5.12. This energy does
not depend on the phase, thus phase-oscillations are Goldstone modes7. On the other
hand, amplitude oscillations define a so-called Higgs mode. Both Goldstone and Higgs
modes appear in all systems that present a broken U(1) symmetry. They were firstly
described in the context of particle physics [115, 116], but they are also relevant in

6For the definition of this phase, see Expression 1.22.
7In general, for each broken continuous symmetry a gapless (Goldstone) mode develops. For

example, the solid crystal violates translational and rotational invariance, and possesses phonons;
liquid helium violates (in a certain sense only) gauge invariance, and possesses a longitudinal phonon;
ferro-magnetism violates spin rotation symmetry, and possesses spin waves; superconductivity violates
gauge invariance, and would have a zero-mass collective mode in the absence of long-range Coulomb
forces [114].
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Figure 5.12: Total energy surfaces of the system at H > Hc (yellow) and at H < Hc (blue)
in the space defined by the amplitude parameter A and the global phase φ. The system position
is represented by the black dot, located in the minimum A = Ae at an arbitrary phase φe. The
Goldstone and Higgs modes of the stripe systems are indicated by the magenta and red arrows,
respectively.

condensed-matter studies [117]. They can be found in superconductors [118], Bose-
Einstein condensates [119], phonons in structural-phase transitions [120] and magnetic
systems [121, 122], among others.

In order to visualize the Golstone and Higgs modes, we can introduce the amplitude
and phase perturbations, ∆A and ∆φ, in the static ansatzm defined in Expression 1.22.
The normalized dynamic magnetization of the Higgs and Goldstone modes is obtained
from the difference ∆mH = m(Ae)−m(Ae + ∆A) and ∆mG = m(φe)−m(φe + ∆φ),
respectively. For small perturbations, these expressions coincide with the derivatives
with respect to A and φ. Therefore, the components of the dynamic magnetization of
the Higgs mode are

∆mH
x = ∆A sin(ke x) sin (κ z) ,

∆mH
z = ∆A ke

κ
cos(ke x) cos (κ z) ,

(5.10)

while for the Goldstone mode they read
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Figure 5.13: The color scale (red positive, blue negative, white zero) show the value of the
dynamic components of the magnetization corresponding to the Goldstone and Higgs modes at
k = kc. The black arrows depict the static stripe magnetization distribution. For both modes,
the components are shown at the moment of the precession when they have maximal amplitude.
Thus, the T -components of the Higgs mode are not shown.

∆mG
x = ∆φAe cos(ke x) sin (κ z) ,

∆mG
z = −∆φAe

ke
κ

sin(ke x) cos (κ z) .
(5.11)

Figure 5.13 shows, in color, the calculated dynamic components of the two modes.
While the Higgs mode is in phase with the background stripe structure shown by the
arrows, the Golstone mode presents a π/2 phase shift in the x direction. Consequently,
∆mG

z is maximum at the stripe cores, while the maximum of ∆mG
x is localized in

between the Néel caps.

Higgs mode frequency

The mode described in Eq. 5.10 is linearly polarized, and therefore, its frequency should
be zero. However, we know that the Higgs-mode frequency is not zero, as it is related
to the radial second derivative of the energy in the minimum (see Figs. 5.7 and 5.12).
This apparent paradox can be solved by introducing another degree of freedom allowing
the magnetization to precess. For this purpose, we define a local system of coordinates
(see Fig. 5.14). We set A as the local amplitude coordinate (in red), which is parallel
to the direction defined by the static magnetization of stripes (in black), and T as the
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local transverse coordinate (in blue). These two coordinates are the extension of the
A- and T -components of 5.9 once the symmetry-breaking defines the static phase φe.

z

x

Figure 5.14: Local frame of reference defined by the stripes. In each point of the stripe profile
an orthogonal set of coordinates is defined. A-direction is parallel to the magnetization direction
in the xz plane, while T -direction is perpendicular to it.

In the A − T space, in the same way the frequencies are calculated in the satu-
rated state, the frequency of the Higgs mode is given by a Kittel formula which reads
ωHiggs ∝

√
KH
A KH

T . Here, KH
A = ∂2〈ET 〉

∂A2 is the stiffness related to a motion of the
magnetization distribution in the A-direction and KH

T is the same in the T -direction.

Stripe-state

Saturated 
state

e

Figure 5.15: Schematic potential in the A− T space. The KS approach is able of calculating
the “oscillation” frequency around A = T = 0 (saturated state). When the stripes are nucleated,
the saturated state becomes unstable and the minimum is displaced to Ae. The precession
associated to the Higgs mode is depicted by the red oval. The Hessian at this point defines
the Higgs frequency. For visualization reasons, A and T coordinates are not at scale, as the
T -curvature must be much larger.

A schematic view of the energy potential in the A−T space is presented in Fig. 5.15.
At H < Hc, two regions can be identified: the saturated state at A = T = 0, which is
unstable below the nucleation field; and the stable stripe-state in the energy minimum
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at A = Ae, T = 0. The calculations done in the KS approach are performed in the
saturated state, and the calculated imaginary frequency can also be related to a Kittel
formula, ωDE0(kc) ∝

√
K0
AK

0
T , where the index 0 designates the point A = T = 0.

We will proceed to demonstrate that the stiffnesses in the (unstable) saturated state
(K0

A,T ) and in the (stable) stripe state (KH
A,T ) are related. As explained in Section 5.3.1,

excursions of the magnetization distribution along the T -direction induce significant
magnetostatic charges which translate into a high-demagnetizing energy cost, much
larger than the other contributions to the energy. As a consequence, the stiffness
along the T -direction is much larger that the one along the A-direction and it does
not depend on the exact state around which the excursions occur. In other terms,
KH
T ≈ K0

T >> KH,0
A .

As far as the KA are concerned, we can derive them directly from the Landau-type
expansion of the energy Eq. 5.1, inserting the value of the stripe amplitude of Eq. 5.6.
Doing so, they read

K0
A = ∂2 〈ET 〉

∂A2

∣∣∣∣∣
0

= 2 a,

KH
A = ∂2 〈ET 〉

∂A2

∣∣∣∣∣√−a
2b

= 2 a+ 12 b
√−a

2 b

2

= −4 a.
(5.12)

From here, we obtain KH
A = −2K0

A. In conclusion, the Higgs-mode frequency can
be calculated from the KS approach as

ωHiggs = i
√

2 ωDE0(kc). (5.13)

This relation is valid in the same range where the energy approach holds. It is
limited by the saturation of the OOP magnetization component. For the case of CoFeB
180nm, this limit imposes 6.5mT < µ0H < µ0Hc.

5.3.3 Mode splitting and phase

The KS approach can also help to understand the splitting of one single mode around
kc for H > Hc into two separate modes for H < Hc: Higgs and Goldstone modes.

In general, at saturation (H > Hc), the dynamic magnetization can be written in
the sine-cosine basis as

m ∝ (ηx,S S(z)x̂+ ηz,S S(z)ẑ + ηx,C C(z)x̂+ ηz,C C(z)ẑ) ei(kx−ωt+φ), (5.14)

with φ a global phase determined by the initial conditions of the system. However,
in absence of external excitation, φ is not determined. We can represent the four-
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Figure 5.16: Representation of the eigenvectors of the DE0 modes with at k = kc in the KS
approach. (a) At saturation A- and T -components vectors are dephased by π/2, but the global
phase φ is not defined. At nucleation, the spontaneous symmetry-break defines a global phase
φe. Two combinations are possible, (b) the A-components are in phase with φ leading to a Higgs
mode, and (c) the A-components are at π/2 from φe in the Goldstone mode. As the Goldstone
frequency is zero, the magnetization displacements follows the A-direction and the T -components
magnitude vanish.

element vector η in a two-dimensional space by defining the A-component ηx,C + ηz,S

and the T -component ηz,C + ηx,C . As ηx,S, ηx,C are in quadrature with respect to
ηz,S, ηz,C , the vector can be represented in a complex plane, as shown in Fig 5.16(a).

At nucleation, the spontaneous symmetry-breaking fixes the global phase of the
DE0-mode in a particular value φe, as shown in Figs. 5.16(b,c). Therefore, two possible
configurations of high-symmetry arise. If A-components are aligned with φe, we obtain
a Higgs mode8. On the other hand, if the A-components have a relative phase of
π/2 with respect to φe, then the Goldstone mode is obtained. Therefore, it is the
spontaneous symmetry-break which introduces a global phase creating two modes that
emerge from a single one with an arbitrary global phase at saturation.

5.4 Stripe-dynamics measurements

In the last section we have developed several hypotheses regarding the magnetic stripe
domains:

• Stripe nucleation is given by the softening of a spin-wave mode in the DE con-
figuration.

• At nucleation this soft mode splits in two: a Goldstone/phase- and a Higgs/amplitude-
mode.

• Higgs-mode frequency can be calculated within the KS approach.

8The Higgs mode has small but non-zero T components, which can be viewed as inertial terms
arising from its non-zero freqeuncy.



5.4 Stripe-dynamics measurements 88

To verify these hypothesis, we have performed BLS and FMR measurements on the
aged-CoFeB 180nm sample.

5.4.1 k-resolved BLS

Thermal-k-resolved-BLS, does not require any thermal treatment that would damage
temperature sensitive properties of the CoFeB 180nm film. Therefore, it is an ideal
tool to measure the spin-wave dispersion of this film. The experiments presented in
this section were performed at TUK by M. Geilen and P. Pirro.

We must notice that CoFeB behaves as a metal, and it has two important conse-
quences. First, a high thermal-conductivity is expected, which, in addition to the large
thickness of the sample, should dissipate the heat from the laser, preventing a local
temperature increase and the consequent anisotropy variations. Secondly, skin depth
in metallic samples is restrained to tens of nanometers. Therefore, photons interact
mainly with the superficial components of the magnetization, which are mostly IP.
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Figure 5.17: k-resolved-BLS spectra obtained at 30 mT (left) and 14 mT (right). The color
scale indicates the number of BLS counts. The red lines show the dispersion relation of modes
DE0, DE1, DE2, DE3, DE4 and DE5 calculated with SWIIM. CoFeB magnetic parameters were
used to perform the simulation, using K1 = 32.7 kJ/m3.

To investigate the spin-wave dispersion in the saturated state, constant-field BLS
measurements were performed while varying the laser incidence angle, and therefore
the excited spin-wave wave vector. A laser with a wavelength λ = 532 nm (green)
and a power of 200 mW was used. Figure 5.17 shows the results at µ0H = 30 mT
and 14 mT. At these fields the magnetization is saturated and several perpendicular
standing spin-wave modes can be distinguished. The lowest frequency branch of the
dispersion corresponds to DE0. It presents the negative slope expected from a sample
with PMA. The minima at k = 22 rad/µm is out of scope, but we can extrapolate easily
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that it comes closer to f = 0 as H approaches the nucleation field. In order to simulate
these results, SWIIM simulations were performed using the CoFeB parameters. The
large basis that is used in this simulation allows to obtain all the high-frequency modes.
The simulation results show a good agreement with the experimental data.
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Figure 5.18: Stokes BLS-spectra corresponding to k = 21 rad/µm. (a) Experimental BLS-
intensity raw data. The peak indicated by the white oval is an artifact due to the laser modes.
The vertical white line indicates the measurement halt performed to correct this laser mode. The
frequency sign has been changed to help data interpretation. (b) Example of the BLS intensity
spectra measured at 29mT. The two main peaks corresponding to the two lower-frequency modes
at saturation are indicated. The DE0-peak is fitted by a Lorenz function to determine its fre-
quency. The peaks at 2 GHz and 0 GHz are produced by the elastic scattering of the photons on
the sample and its filtering. (c) Symbols correspond to the frequency of the soft mode extracted
from Lorentzian fits of the BLS data shown in panel (a). The line shows the frequency calculated
by the KS approach. The extrapolated nucleation field is µ0Hc = 11.8 mT. Fit parameters:
k = 21 rad/µm, K1 = 33.4 kJ/m3, MS = 1.67 T, Λ = 3.85 nm.

To verify that the DE0-mode softening is the precursor of the stripe domain nu-
cleation, BLS measurements at k ≈ kc were performed using a laser with wavelength
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λ = 451 nm (blue). Figure 5.18 summarizes these results. Panel (a) shows the raw
data obtained by measuring the frequency shift of the back-scattered photons with
an incidence angle of 50 degrees. This corresponds to a wave vector k = 21 rad/µm.
The softening of the mode is clearly visible. The frequency of the DE0-mode peak for
different applied magnetic-fields was extracted and compared with SWIIM simulations
at the same wave vector. The agreement is good, and the extrapolation shows that the
frequency of the mode vanishes at Hc, as expected.

To study the dispersion relation of the stripe domain modes, k-resolved measure-
ments were performed at µ0H = 7 mT< µ0Hc ≈ 12 mT. The experimental method is
identical to the one used to measure the data of Fig. 5.17. The results are presented in
Fig. 5.19(a). The Stokes and anti-Stokes signals show a low frequency branch that can
be associated to the Goldstone mode (frequency extrapolating to zero at kc). The anti-
Stokes spectrum shows an additional branch with higher frequency that can be related
to the Higgs mode (frequency not extrapolating to zero at kc). These two branches
represent the same Goldstone and Higgs modes that we have studied in the previous
sections.

The weak amplitude of the signal could be explained by the laser-spot diameter,
which is of the order of 50 µm. Indeed, if the stripes are not perfectly aligned in this
range, decoherence effects could appear and reduce the measured signal. The signal-to-
noise rate could be improved by using a non-aged CoFeB sample, which should present
better defined stripes.

To better understand these results, mumax3 simulations have been performed by D.
Stoeffler at IPCMS to generate the spin wave dispersions in the stripe phase. The mag-
netic parameters of CoFeB 180nm were used (see Section 5.1.3), including an anisotropy
K1 = 32.7 kJ/m3. This simulation used elementary cell sizes hx=2.86 nm, hy=100 nm,
hz = 3 nm and periodic boundary conditions. The number of cells in the x̂ direction
was chosen to fit exactly one stripe domain period. After relaxation to the equilibrium
state, a very local and very short impulse excitation was applied and the x- and t-
Fourier transform of the excited OOP magnetization component mz(x, z, t) was calcu-
lated. The results are shown in Fig. 5.19(c) and compared to the experimental data. It
is possible to observe the same two branches. The Goldstone-branch has zero frequency
at k = kc, as expected. As for the Higgs-branch, it has a nonzero frequency for all the
simulated wave vectors. At k = kc, we can calculate analytically its frequency using
Eq. 5.13. The obtained value, fHiggs(7 mT) = 3.5 GHz, is indicated by a black cross in
Fig. 5.19(c).

From these the BLS data, a coherent picture arises. When approaching the nu-
cleation field Hc from saturation, the DE0 mode gets soft at kc. Once the stripes are
nucleated, the mode DE0 splits is two, giving rise to the Higgs- and Goldstone-branches.

A similar experiment had been previously performed by Banerjee et al. [123, 124]
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Figure 5.19: (a) k-resolved-BLS spectra obtained at 7 mT after saturate the sample at 30 mT.
The color scale indicates the number of BLS counts. (b) The BLS intensity corresponding to
k = 9 rad/µm. Goldstone and Higgs modes are labeled with G and H letters, respectively.
The raw data (gray points) were smoothed by performing a 3-point average. (c) Simulated
susceptibility at 7 mT. The black points correspond to the experimental data from (a). The
black cross shows the Higgs mode at kc, the signal measured by longitudinal FMR.

on Co/Pd thin film multilayers with Q = 0.3. They have identified theoretically the
Goldstone mode related to the rigid oscillation of the stripes9. Nevertheless, they have
worked with a much thinner film (t = 42.5 nm), which presents smaller-period stripes.
In consequence, the softening lies far away from the BLS wave-vector range and could
not be measured. Within our knowledge, our experiments are the first to show the
existence of Goldstone and Higgs modes in magnetic stripes systems.

5.4.2 Longitudinal FMR

BLS measurements were not able of resolving the Higgs mode at k = kc (see Fig. 5.19(a)
and Fig. 5.18(a) at H < Hc). However, this mode presents an interesting property:
the distribution of my (the dynamic magnetization component in the direction of H)
has a non-vanishing integral in one stripe period, as shown in Fig. 5.20. Therefore, this
mode could be excited when performing FMR experiments in the (non-conventional)

9Goldstone modes representing rigid motion of an otherwise static structure have been founded in
several magnetic systems, as skirmions or single domain walls [125]. However, none of these works
have identified the corresponding Higgs mode.
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longitudinal pumping configuration. In contrast, the my component of the Goldstone
mode presents a vanishing integral over one period, thus it is invisible to FMR.

Goldstone Higgs

z

x

Figure 5.20: Distribution of the y component of the dynamic magnetization of the Higgs- and
Goldstone modes. Calculation done using Eqs. 5.10 and 5.11, and my =

√
1−m2

x −m2
z.

In the saturated state, the longitudinal terms of the susceptibility are zero at first
order. That means that an external excitation field h applied in the same direction
thatM does not induce any magnetization dynamics in the linear regime10. Therefore,
we expect no longitudinal-FMR signal at H > Hc.

Figure 5.21 shows the microwave effective susceptibility measured in this configura-
tion as function of the frequency and the magnetic field. As expected, a strong signal
appears below the nucleation point. In order to verify that it corresponds to the Higgs
mode, we have also plotted the expected frequency given by relation 5.13. The analyt-
ical model agrees with the measured points in the expected field range. For doing the
KS calculations we have used the constant value kc = 22 rad/µm. As we are working
on the maximum of the imaginary frequency (see Fig. 5.11), the small changes on the
equilibrium wave vector ke(H) predicted in the energy approach do not significantly
modify the frequency.

Longitudinal pumping FMR measurements have been reported for stripe domains
systems in Refs. [128–134]. However, the interpretation given is completely different
from ours. In particular, in the work by Camara et al. [128], several avoided cross-
ings are observed, yielding a much more complex classification and preventing the
identification of the Higgs mode as a single mode. Vukadinovic et al. and Ebels et
al. [130, 131, 133] identified the Higgs mode as a single entity, but without unveiling its
signature as an amplitude mode. Similar results were also found in FMR experiments
on strong stripes [135, 136]. In this case, domains and domain walls are well-defined.
Therefore, the k = 0 point on the Goldstone branch is identified as a wall mode and
the Higgs mode with k = kc is recognized as a domain mode.

10However, non-linear effects are expected in some conditions [126, 127].



5.4 Stripe-dynamics measurements 93

-15

-10

-5

0

-20 -10 0 10 20

2

3

4

5

0 5 10 15

2

3

4

5
6.5 mT

Figure 5.21: Longitudinal FMR performed on CoFeB 180nm. (Left) Full susceptibility map
in the field-frequency space. The field scan was done in the direction indicated by the arrow.
(Right) Zoom of the region of interest where the Higgs mode can be fitted by i

√
2ωDE0(kc). The

dashed line indicates the lower field limit where this method is valid.

In addition to the Higgs mode, other interesting features are present in the FMR
measurement and highlighted in Fig 5.22. As shown in Fig. 3.1, the dynamic applied
field h presents an unavoidable OOP component due to the finite size of the central strip
of the coplanar waveguide. This small component couples to the transverse component
of the susceptibility and excites the modes with k = 0 in the saturated states. In
particular, the DE0-mode, that is slightly visible at saturation (I in Fig. 5.22(a)),
becomes much stronger once the stripes are nucleated (III in Fig. 5.22(a)). To verify
the origin of I and III , we also examine the transverse IP FMR measurement shown
in Fig. 5.22(d). There, we observe the DE0-mode at k = 0, and we recognize features
I and III.

Another relevant point on these data is the gap measured at negative fields on the
Higgs mode (II in Fig. 5.22(a)) but not in the positive field. Mumax simulations (not
shown) show that the stripes can present a small misalignment with respect to the
applied field after magnetization reversal (at µ0H = −1.4 mT in Fig. 5.22(a)). This
angle difference between positive and negative fields can explain the asymmetry of the
feature II.

To better understand the origin of this gap, mumax3 simulations of the longitudinal
dynamic response of oblique stripes were performed by D. Stoeffler at IPCMS. In these
simulations the static stripes were forced to define an angle of 10◦ with the applied field.
With this constrain the static magnetization distribution of the stripes was simulated.
Then, for a given applied field, a step excitation field of µ0h = 0.1 mT was applied
in the longitudinal direction (ŷ). By performing a temporal Fourier transform, the
longitudinal susceptibility as function of the frequency was obtained. This procedure
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Figure 5.22: (a) Extra features in the longitudinal FMR data: (I) DE0 at k = 0 at H > Hc

(II) Obliques stripes hybridized with the Higgs mode with DE0 at k = 0. (III) DE0 at k = 0
at H < Hc. (IV) Linear excitation of DE0 at kc. (b) Mumax3 simulation of the longitudinal
susceptibility at k = 0 with stripes in an angle respect to the applied field. (c) Comparison with
the BLS data from Fig. 5.18. (d) Transverse FMR in the IP configuration.

was repeated for a range of magnetic field. The results of these simulations are shown
in Fig. 5.22(b). We can observe that the gap II is present, confirming that this is a
consequence of the angle between the stripes and H 11. Therefore, we can interpret
this gap as an anticrossing between the DE0 at k = 0 and the Higgs mode. We can
observe that the same gap is present in Fig. 5.22(d), which confirms the participation
of the DE0 mode at k = 0.

Finally, we observe a mode of low frequency in the saturated state (IV in Fig. 5.22(a)).
The fact that it seems to get soft at nucleation suggest that it is the mode DE0 at
k = kc. As it is a mode of low frequency, it could be excited by a non-linear process.

11In the same simulation is done with stripes aligned with H, no gap is found.
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Nevertheless, it does not appear at the double or 3/2 of the soft mode frequency, as usu-
ally observed in parametric pumping experiments [126, 127], but exactly at the same
frequency. This appears clearly in Fig. 5.22(c) where the position of the DE0-mode at
k = 21 rad/µm extracted from the BLS data is plotted onto the longitudinal suscepti-
bility map. This suggests that feature IV corresponds to a linear-regime excitation of
the DE0-mode at k = kc. However, in a uniform magnetization distribution nothing
couples the uniform excitation field h with a high-wave-vector spin-wave. However,
as the minimum at kc exhibits a strong transverse-susceptibility12, a small inhomo-
geneity of a magnetic parameter could be enough to lead to a considerable microwave
absorption. For example, if the value of K1 is not homogeneous in the sample, as usu-
ally assumed, but it fluctuates around a mean value 〈K1〉 it could present a non-zero
Fourier-component at kc. These fluctuations would act as a transducer to couple the
uniform h to high k spin-waves.

5.5 Chapter conclusions

The static properties of CoFeB 180nm, were calculated analytically by taking in account
the fourth-order terms in the total energy. This sample proves to be a good system to
study the dynamics of stripe domains in the limit of Q→ 0.

We demonstrate, both theoretically and experimentally, that the minimum of the
DE0-mode is the precursor of the stripe nucleation. We showed that the spontaneous
symmetry-breaking splits this soft mode in two different modes that can be identified
as a Goldstone and a Higgs mode. These results were verified by FMR and BLS mea-
surements. This work simplifies the analysis of the complex spin-wave modes present
in stripe domains, and paves the way to their utilization in reprogrammable magnonic
crystals [3, 137, 138].

Goldstone and Higgs modes were measured previously in other condensed-matter
systems which present phase transitions. Nevertheless, stripe domains present the
advantage that their order parameter can be easily understood as it has a simple,
visible, physical interpretation: the amplitude and the phase of the stripes. Therefore,
this system could be used as a platform to study the symmetry-breaking physics.

The theory presented in this chapter is quite generic and should be valid to predict
the dynamic properties of the magnetization of weak stripes in other system.

12Mumax simulations show that the susceptibility at kc near the nucleation field is hundredfold
larger than the one at k = 0.



Chapter 6

General conclusions

The goal of this work was to study how inhomogenous magnetization distributions in
thin films affect the spin-wave modes. For that, we have studied two systems: a stripe
domains magnetic texture where the nonuniform distribution of the magnetization
appears spontaneously; and a bilayer, where the contrast of saturation magnetization
is imposed by fabrication.

Both systems were studied in the DE configuration, which presents the particularity
that the anisotropic precession (m) takes place in the plane delimited by the direction
of propagation (k) and that of confinement (film normal), leading to complex dynamic
magnetization profiles. Moreover, the dipolar interaction plays a fundamental role in
the physics of both structures. In the bilayer, it is responsible for the nonreciprocal
hybridization of the low frequency modes. In the weak stripes, the dipolar energy
minimization imposes a closed-flux structure which determines, in ultimate instance,
the static magnetization profile and the related dynamics.

In both cases, symmetry breaking plays a fundamental role. On the one hand,
for the case of a bilayer, the up-down broken symmetry translates into a left-right
nonreciprocity due to the dipolar interaction, which mixes the IP and OOP coordinates.
On the other hand, stripe nucleation imposes a spontaneous symmetry breaking, which
can be described by a scalar complex order parameter, related to a U(1) symmetry.
The identification of this symmetry allows one to distinguish phase oscillations, to be
identified with a Golstone mode (translation invariance), and amplitude oscillations,
which correspond to a Higgs mode.

The two reported studies contribute to the long-term scientific aim of a better
control of spin-wave propagation. The bilayer was engineered to perform as a magnonic
diode, which could be used as a basic block in all-magnonic circuits to avoid unwanted
reflections. As for the stripe domains, their configuration depends on field history
and can be modified by electric currents [139]. This permits their implementation as
reprogrammable magnonic crystals [8]. Besides, this work represents a step forward in
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the study of the spin-wave modes in magnetic textures. By revisiting the static stripe
domain texture as a particular case of a spin-wave mode, the complexity of the problem
is reduced. In other words, we proved that the dynamic approach to the nucleation of
textures is a useful tool to understand the dynamics of the texture once nucleated.

Perspectives

The present study tackles several questions. However, as usually happens, it also opens
the door to many questions which remain unsolved. Here, we propose some experiments
related with the results obtained.

In CoFeB 180nm thin films, the soft mode at kc seems to couple linearly with a
homogeneous excitation field at saturation (see Fig. 5.22(c)). The mechanism of this
process is not clear, but its study may reveal interesting physics, as high wave-vector
spin-waves are excited without any intrinsic modulation. Also, due to the low frequency
of this mode, it could be a good candidate to perform nonlinear experiments. The
threshold to excite this mode with a parametric excitation depends on the frequency
gap [126], which can be make as small as desired when approaching the nucleation
field.

The bilayer studied in Chapter 4 constitutes also an interesting platform to study
nonlinear physics. In particular, in reciprocal systems, parametric excitation creates
two counterpropagating magnons with same |k|. The bilayer nonreciprocity should
alter this scheme, introducing new physics.

In the stripe system, no spin-wave propagation experiments could be done. This
was due to the dependence of the studied material on annealing, which hinders the
lithography process. However, by adapting the fabrication processes to avoid the high-
temperature treatment, it would be possible to perform inductive experiments with
sub-micrometer-sized antennas. Three PSWS experiments are proposed:

• In the DE configuration, at H > Hc, hundred-nanometer-scale antennas could
be fabricated in order to excite the soft mode at kc. This mode could present
interesting features due to its large lifetime and susceptibility.

• Also in the DE configuration, at H < Hc, an experiment similar to longitudinal
FMR could be performed with micron-sized antennas. These antennas could
couple to the Higgs mode at ∼ kc. This would be a simple way of measuring the
propagation of nanometer-scale spin-waves with relatively large antennas.

• In the BV configuration, at H < Hc, spin waves could be excited at nonzero
but relatively low wave vector. This low-frequency mode corresponds to the
Goldstone mode with a certain modulation along the stripes direction.



Chapter 7

Résumé en français

Les ondes de spin, les excitations fondamentales des matériaux qui présentent un or-
dre magnétique et leur pseudo-particule associée, les magnons, peuvent propager du
moment angulaire et de l’énergie. Donc, dans les dispositifs magnoniques, les ondes
de spin transportent des informations codifiées dans leur phase ou amplitude [1]. Ces
dispositifs présentent plusieurs avantages, entre lesquelles nous pouvons souligner la
versatilité intrinsèque des matériaux magnétiques qui servent de substrat aux ondes de
spin, permettant ainsi la conception des architectures reconfigurables ; l’absence de dis-
sipation de Joule, qui réduit le gaspillage énergétique ; les non-linéarités intrinsèques de
la dynamique de l’aimantation et une longueur de cohérence à l’échelle micrométrique,
les rendant adéquats pour la computation en parallèle (wave-computing) [2] ; et finale-
ment, la possibilité de traiter les signaux dans la gamme de GHz et THz [3].

Ces propriétés font de la technologie magnonique une alternative bien adaptée
pour remplacer l’actuel CMOS, comme il a été identifié par l’International Technology
Roadmap for Semiconductors [4]. Or, pour la conception des dispositifs magnoniques,
la propagation des ondes de spin doit être contrôlée efficacement. Cette tâche peut
être réalisée par des cristaux magnoniques, nanostructures magnétiques qui peuvent
être utilisées pour construire les éléments passifs et actifs dans les circuits magnon-
iques [5, 6]. Pourtant, ces structures ont besoin d’un processus de fabrication com-
plexe. Une alternative est donnée par les structures topologiques, comme les parois
de domaines magnétiques, les tourbillons (vortex) et les skirmions [8]. Ces textures,
qui peuvent être comprises comme la partie statique des modes dynamiques —les on-
des de spin—, influencent directement la propagation des ondes de spin. En outre,
les textures magnétiques sont plus polyvalentes que les cristaux magnoniques, car leur
structure peut être facilement modifiée par un champ magnétique, un champ/courant
électrique ou même, dans le schéma ultime des dispositifs magnoniques reconfigurables,
par les ondes de spin elles-mêmes, comme dans le cas des parois de domaine. [9]. Ces
interactions mutuelles ouvrent la voie au traitement des informations dans le schéma
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purement magnonique, qui évite les pertes par dissipation Joule [10, 11].
Dans ce contexte, nous avons étudié les propriétés des ondes de spin qui interagissent

avec des distributions non-uniformes. Dans ce but, nous avons étudié deux systèmes :

• Domaines à rubans, une texture qui nuclée à bas champ dans les films avec une
anisotropie perpendiculaire (PMA, de l’anglais Perpendicular Magnetic Anisotropy).
Dans ce système la distribution non-homogène apparait spontanément à la nu-
cléation. Grâce à leur périodicité, ils sont identifiés comme des cristaux magnon-
ique unidimensionnels, mais ils conservent la versatilité des textures magnétiques.

• Une bicouche avec un contraste d’aimantation de saturation. Ici, l’inhomogénéité
imposée lors de la fabrication entraîne un type de propagation non-réciproque,
qui peut être utilisée pour concevoir une diode magnonique.

Malgré leurs différences, les deux systèmes partagent plusieurs caractéristiques :

• Les brisures de symétrie (modulation périodique et brisure du symétrie haut/bas)
jouent un rôle fondamentale pour déterminer les propriétés des ondes de spin.

• Le champ dipolaire, est un ingrédient clé qui introduit de la complexité et rend
ces systèmes non-triviales.

• Les deux systèmes sont étudiés dans la configuration appelée Damon-Eshbach
(champ magnétique appliqué dans le plan de l’échantillon et perpendiculaire à la
direction de propagation des ondes de spin). Dans cette configuration, les ondes
de spin présentent une chiralité donnée et une tendance à la fermeture du flux
magnétique qui seront de vital importance pour les effets étudiés.

Ces deux systèmes ont été étudiés dans le cadre de deux projets, SWANGATE et
MAGMATCH. Tous les deux ont inclut la participation de plusieurs chercheurs et leur
collaboration a été fondamentale pour la réalisation de ce travail.

Propagation des ondes de spin dans une bicouche

Dans la plupart des systèmes de la physique des ondes, les relations de dispersion sont
réciproques, c.-à-d., f(k) = f(−k). Les systèmes magnétiques, qui ont la particu-
larité de briser la symétrie d’inversion du temps, peuvent présenter, à l’inverse, des
fortes non-réciprocités [103]. C’est le cas en particulier pour des ondes de spin dans
un film ferromagnétique asymétrique dans la configuration Damon-Eshbach. Dans le
cadre du projet MAGMATCH, nous avons étudié cette non-réciprocité [93]. Elle peut
être mise à profit dans le cas d’une bicouche ferromagnétique qui présente un con-
traste d’aimantation de saturation pour construire une diode magnonique, c.-à-d., un
matériau qui permet la propagation des ondes de spin dans une seule direction.
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Notre objectif était de concevoir une diode magnonique à onde lente où les ondes
ne peuvent se propager que dans une seule direction, car dans la direction opposée la
vitesse de groupe est beaucoup plus lente. Dans ce but, à l’aide des simulations SWIIM,
nous avons choisi les paramètres magnétiques de la bicouche de façon que, pour une
certaine gamme de fréquences, la vitesse de groupe soit nulle dans une direction.

La Figure 7.1 montre la relation de dispersion obtenue à partir de simulations
SWIIM. On n’observe le plateau (vitesse de groupe nulle) que pour les ondes avec k
positif.

Figure 7.1: Relation de dispersion simulée par SWIIM. Les lignes continues (pointillés) mon-
trent le premier (deuxième) mode des ondes de spin dans une bicouche CoFeB(20nm)/Py(26nm).
On observe, à cause de l’hybridation non-réciproque, que les modes qui correspondent à un
vecteur d’onde k positif présentent une vitesse de groupe nulle.

Nous avons aussi développé un modèle analytique simplifié qui nous a permis de
comprendre que l’interaction entre le mode homogène au fil de l’épaisseur (mode acous-
tique) et le mode asymétrique (mode optique) dans une bicouche dépend de la chiralité
des modes, qui dépend aussi de que l’on obtient une non-réciprocité si forte.

Pour vérifier expérimentalement le comportement de diode magnonique, plusieurs
dispositifs constitués de deux antennes de 200 nm de largeur et séparées par une dis-
tance variable D ont été fabriquées par lithographie optique et électronique sur une
bicouche CoFeB(20nm)/Py(26nm). Nous les avons utilisé pour réaliser des expériences
de spectroscopie d’ondes de spin propagatives. Le changement de l’inductance mutuelle
associé à la propagation des ondes de spin entre les deux antennes a été mesuré en fonc-
tion de la fréquence pour les deux sens de propagation (Fig. 7.2(a)). La relation de
dispersion a ensuite été extraite de ces données et comparée au résultat d’une simu-
lation micromagnétique (Fig. 7.2(b)) et à des mesures de diffusion Brillouin (ne sont
pas montrées). On reconnaît un plateau (vitesse de groupe nulle) uniquement pour
des ondes se propageant vers la droite. Ainsi, au-dessus de cette fréquence, la propa-
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gation s’effectue uniquement vers la gauche, confirmant le comportement de diode de
ce système, qui pourrait être utilisé pour réaliser une des briques de base des circuits
magnoniques.

Figure 7.2: Au milieu, schéma du dispositif utilisé pour les mesures inductives. (a) Signal de
propagation d’ondes de spin mesuré sous un champ magnétique µ0H = 30 mT. À partir de f = 13
GHz aucun signal n’est détecté pour une propagation vers la droite (carrés rouges). (b) Relation
de dispersion extraite de la phase du signal de propagation (symboles). La carte colorée montre
le résultat d’une simulation micromagnétique mumax3.

Statique et dynamique des domaines en rubans

Dans le cadre du projet SWANGATE, en collaboration avec l’Institut Jean Lamour, à
Nancy et l’Université Paris-Sud/Institut d’Electronique Fondamentale nous avons com-
mencé à étudier l’utilisation des parois de domaine magnétique comme guide d’onde
magnonique. Afin de mieux comprendre la propagation des ondes de spin dans les
parois de domaines, nous nous sommes intéressés aux domaines magnétiques en rubans,
qui présentent une grande quantité de parois alignées parallèlement, permettant a
priori la transmission d’un signal plus fort qu’une seule paroi isolée. Un matériau
adéquat pour réaliser nos mesures de propagation des ondes de spin dans les rubans
doit présenter une PMA suffisamment importante pour développer des rubans mag-
nétiques en même temps qu’il présente un amortissement faible. Par contre, un tel
milieu magnétique n’est pas facile à obtenir : pour avoir une PMA forte il faut une
interaction importante des ondes de spin avec le moment orbital du matériau ; cela
est normalement accompagné d’un amortissement grand. Donc, nous avons choisi de
travailler avec des matériaux qui ont une PMA faible. Or, pour avoir des rubans mag-
nétiques, ce type de matériaux doivent être suffisamment épais pour éviter que les
charges magnétiques de surface créés par les rubans ne les déstabilisent complètement.
Ainsi, avec ces restrictions, nous avons étudié des échantillons de Co40Fe40B20 fabriqués
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à Nancy. Même si le CoFeB est un matériau ferromagnétique amorphe, il présente une
PMA faible, d’origine magnetostrictive [40]. Les films que nous utilisons présentent des
rubans magnétiques lorsque leur épaisseur dépasse la centaine de nanomètres. En par-
ticulier, nous avons choisi de travailler avec une épaisseur de 180nm car ces échantillons
présentent des rubans magnétiques bien alignés avec le champ magnétique externe ~H,
comme montrent les Figs. 7.3(a) et 7.3(b). Puisque leur anisotropie est relativement
faible par rapport à l’interaction dipolaire (facteur de qualité Q = 0.034), il est possible
de l’introduire comme une perturbation à l’état fondamental d’une couche mince où les
moments magnétiques sont saturés dans le plan. Dans cette situation, on trouve que
les composantes perpendiculaires au champ magnétique définissent une configuration
de fermeture de flux magnétique, comme est montré dans la Fig. 7.3(c), pendant que
la composante principale de l’aimantation reste dans la direction définie par de ~M à la
saturation. Ce genre de rubans sont appelés faibles (weak stripes), en contraste avec
les rubans forts (strong stripes) dans lesquels l’aimantation pointe largement hors du
plan dans les domaines qui sont séparés par de parois.

Approche dynamique de la nucléation des rubans magnétiques

La dynamique de l’aimantation est donnée par l’équation de Landau-Lifshitz (LL) [45],

∂ ~M(t)
∂t

= −µ0γ ~M(t)× ~Heff , (7.1)

où ~Heff est le champ magnétique effectif qui prend en compte tous les interac-
tions qui contribuent à l’énergie des moments magnétiques, µ0 est la perméabilité du
vide et γ est le rapport gyromagnétique du matériau, qui ne ne joue ici que le rôle
d’une constante. Donc, pour les cas des structures magnétiques statiques (comme les
rubans), ∂ ~M(t)

∂t
= 0. Mais, contrairement à la plupart des autres textures magnétiques,

les rubans ont une forme sinusoïdale dans la direction perpendiculaire à la composante
principale de ~M (voir Fig. 7.3(c)). Étant donné que les ondes de spin ont égale-
ment une dépendance spatiale sinusoïdale, et qu’elles satisfont l’équation de LL ; il
est possible de se représenter les rubans comme des ondes de spin de fréquence zéro
à un vecteur d’onde ~k différent de zéro. L’idée de penser aux rubans magnétiques
comme une solution de l’équation de LL est largement connue dans la communauté
scientifique [24]. Néanmoins, il n’y a pas d’étude sur l’approche dynamique, c.-à-d.,
sur le comportement de ce mode à fréquence non-nulle dans l’état saturé. Les seules
études que lui ressemblent[111, 113] concernent des systèmes nanostructurés et non des
couches minces infinies.

Dans ce contexte, nous avons réalisé des simulations en utilisant le code SWIIM
[15], développé à l’IPCMS. Il permet de trouver les modes normaux de l’aimantation
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(a)

(c)

(b)

Figure 7.3: Statique des rubans magnétiques dans l’échantillon Co40Fe40B20 180nm. (a) Cycle
d’hystérésis de l’aimantation dans le plan du film mesuré par magnétométrie à échantillon vibrant
(VSM ). (b) Image du microscope de force magnétique (MFM) prise en rémanance après avoir
apliqué un champ magnétique dans la direction indiquée par la flèche blanche. (c) Schéma 3D
de l’aimantation normaliséeM(x, y, z)/MS des rubans magnétiques une fois nucléés. À l’arrière-
plan, les composantes du plan xy sont montrées.

des couches minces en résolvant l’équation de Landau-Lifshitz linéarisée en utilisant
de la méthode de la matrice dynamique. Car les rubans sont toujours nucléés dans
la direction du champ magnétique ~H, le vecteur d’onde correspondant est orienté per-
pendiculairement à ~H (voir Figs. 7.3(b) et 7.3(c)). Donc, nous avons étudié la relation
de dispersion des couches minces dans la configuration appelé « Damon-Eshbach »,
c’est-à-dire, ~k ⊥ ~H et ~H dans le plan de l’échantillon. Ces simulations ont été réalisées
dans l’état saturé, en absence de rubans.

Les résultats sont montrés dans la Fig. 7.4(a), où la branche de la relation de
dispersion de plus basse fréquence a été tracée pour différents champs magnétiques.
On voit que, effectivement, un mode devient mou1 à ~k 6= 0. En outre, nous avons
trouvé que pour les systèmes avec une anisotropie faible, c’est l’hybridation entre les
deux premiers modes dans l’épaisseur qui est à l’origine du mode mou. Le champ

1Par analogie avec un ressort, quand sa raideur devient faible, sa fréquence d’oscillation devient
nulle.
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vectoriel de ~m que l’on obtient est montré dans la Fig. 7.4(b), où la structure de
fermeture de flux typique des rubans faibles est obtenue. Finalement, nous avons
constaté que le vecteur d’onde ~k de ce minimum correspond à la période λ des rubans,
soit λ = 2π

k
. En conséquence, d’après de ces simulations nous pouvons conclure que

le mode de fréquence zéro dans la configuration Damon-Eshbach est responsable de la
nucléation des rubans magnétiques2.

Nous avons aussi développé une approche analytique simplifiée pour pouvoir cal-
culer ces relations de dispersion. Pour ce faire, nous avons utilisé l’approche de la
matrice dynamique avec une base inspirée des résultats de SWIIM : la composante
hors du plan totalement ancrée tandis que la composante dans le plan peut osciller
librement sur les surfaces du film. Avec ces combinaisons, nous avons pu obtenir un
mode mou au champ de nucléation. Aussi, nous avons inclus dans ce modèle les effets
de deuxième ordre introduits par le module constante de l’aimantation. Cela nous a
permis de développer un modèle pour calculer l’amplitude des rubans magnétiques une
fois nucléés.

(a) (b)

Figure 7.4: Simulations SWIIM sur les modes normales des ondes de spin du
Co40Fe40B20(180nm). (a) Branche de basse fréquences de la relation de dispersion à différents
champs magnétiques appliqués. À 11 mT la branche présente un mode de fréquence zéro. (b)
Champ vectoriel correspondant à l’aimantation dynamique du mode mou. Le flux magnétique
est totalement fermé, donc il n’y a pas de charges magnétiques de volume.

Du point de vue expérimental, ces simulations ont été mises à l’épreuve par des
mesures de diffusion de Brillouin résolues en vecteur d’onde (k-resolved BLS) réal-
isées avec nos collègues de l’équipe du Pr. Hillebrands, Université de Kaiserslautern.
Dans ces expériences de diffusion inélastique de lumière, l’écart en fréquence des pho-
tons rétrodiffusés par l’échantillon est mesuré à l’aide d’un interféromètre Fabry-Perot.
Cette différence de fréquence est causée par la création ou destruction des magnons,
et elle correspond à leur fréquence d’excitation. Le vecteur d’onde de ces magnons

2Nous avons vérifié que cette approche prédit correctement la période des rubans dans la multi-
couche de [Co/Ni] (50nm), même si elle développe des rubans forts.
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est donné par la relation k = 4π
λlaser

sin(θi), où θi est l’angle d’incidence du laser et
λlaser = 532nm. Donc, en variant cet angle, différentes valeurs de k sont sondées.
Ainsi, la relation de dispersion des ondes de spin est obtenue. La Fig. 7.5(a) montre
schématiquement la configuration expérimentale utilisée. Les résultats de ces mesures
à deux champs magnétiques différents sont montrés dans les Figs. 7.5(b) et 7.5(c).
Les données expérimentales coïncident avec les simulations, et pour µ0H = 14 mT,
on observe que la branche de basse fréquence devient molle. Donc, ces mesures véri-
fient d’origine dynamique de la nucléation des rubans magnétiques dans l’échantillon
de Co40Fe40B20.

(a) (c)(b)

Figure 7.5: Expériences de diffusion de Brillouin. (a) Configuration dans laquelle les mesures
ont été réalisées. Les relations de dispersion des ondes de spin de Co40Fe40B20(180nm) à µ0H =
30mT (b) et µ0H = 14mT (c) ont été mesurées par BLS. Les données de simulations SWIIM
sont aussi montrées (lignes solides). Il est possible d’extrapoler l’existence du mode mou qui est
à l’origine de la nucléation des rubans.

Modes de rubans magnétiques

La nucléation des rubans est une transition de deuxième ordre qui est accompagnée
par une brisure spontanée de la symétrie quand leur phase prend une valeur bien
définie. Cette phase φ peut être représentée comme un movement rigide des rubans
dans la direction du vecteur d’onde. La texture magnétique est totalement définie par
la combinaison de cette phase et son amplitude A. C’est-à-dire, elle est décrite par un
paramètre d’ordre scalaire et complexe ψ = Aeiφ associé au groupe de symétrie U(1).
Dans cet espace paramétrique, la densité d’énergie vient donnée par un potentiel du
type “chapeau mexicain”. Cette énergie ne dépend pas de la phase, et en conséquence,
les oscillations de phase sont un mode de Goldstone. Les oscillations de l’amplitude
auront une fréquence non-nulle et peuvent être interprétées comme le mode d’Higgs
correspondant. Cette interprétation nous permet de réinterpréter plusieurs travaux sur
la dynamique de rubans magnétiques [128–134].

Pour mettre en évidence ces modes nous avons réalisé des mesures BLS résolues en
vecteur d’onde. Comme est montre dans les Figs. 7.6(a,b), nous avons pu trouver deux
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branches une fois les rubans sont nucléés. Pour confirmer la nature de ces modes, nous
avons comparé ces mesures aux simulations mumax3 réalisées par D. Stoeffler (voir Fig.
7.6(c)). Il est possible d’observer que la branche de plus basse fréquence correspond au
mode de Goldstone tandis que la deuxième branche, correspond au mode d’amplitude
(Higgs, ne pas montré dans le résumé).
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Figure 7.6: Mesures BLS et simulations mumax3 du système de rubans du CoFeB. (a) mesures
BLS qui montrent la relation de dispersion à 7 mT après avoir saturé l’échantillon à 30 mT. (b)
Intensité de mesures BLS correspondant à k = 9 rad/µm. Les modes de Goldstone et Higgs
sont étiquetés avec les lettres G et H, respectivement. Les données crues (points grises) ont été
moyennées chaque trois points. (c) Simulation mumax3 de la relation de dispersion à 7 mT. Les
points noirs montrent les données expérimentales de (a).

Conclusion générales

Le but de ce travail était de comprendre comment les distributions inhomogènes de
l’aimantation affectent les modes des ondes de spin. Pour cela, nous avons étudié deux
systèmes : les rubans magnétiques, où la distribution non uniforme de la magnetisa-
tion apparaisse de façon spontanée ; et la bicouche, où le contraste d’aimantation de
saturation est imposée par fabrication.

Les deux systèmes ont été étudiés dans la configuration Damon-Eshbach, qui présent
la particularité de définir la précession anisotropique (m) dans le plan délimité par la
direction de propagation (k) et la droite normale au film. Ceci conduit à des profils
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d’aimantation dynamiques complexes. En outre, l’interaction dipolaire joue un rôle
fondamental dans la physique des deux structures. Dans la bicouche, elle est respon-
sable de l’hybridation non réciproque des modes de basse fréquence. Dans les rubans
faibles, la minimisation de l’énergie dipolaire impose structures de fermeture de flux,
qui détermine, en dernière instance, le profil d’aimantation statique et la dynamique
associée.

Dans les deux cas, la rupture de symétrie joue un rôle fondamental. D’une part,
dans le cas d’une bicouche, la symétrie verticale brisée se traduit par une non-réciprocité
gauche-droite due à l’interaction dipolaire, qui mélange les composantes dans le plan
et hors du plan. D’autre part, la nucléation en bandes impose une rupture de symétrie
spontanée, qui peut être décrite par un paramètre d’ordre complexe scalaire, lié à une
symétrie U(1). L’identification de cette symétrie permet de distinguer des oscillations
de phase, à identifier avec un mode de Golstone, des oscillations d’amplitude, qui
correspondent à un mode d’Higgs.

Les deux études rapportées contribuent à l’objectif scientifique à long terme d’un
meilleur contrôle de la propagation des ondes de spin. La bicouche a été conçue pour
fonctionner comme une diode magnonique, qui pourrait être utilisée dans les circuits
entièrement magnétiques pour éviter les réflexions indésirables. Pour les domaines en
rubans, leur configuration dépend de l’histoire du champ et peut être modifiée par
des courants électriques [139]. Ceci permet leur implémentation en tant que cristaux
magnoniques reprogrammables [8]. En outre, ce travail représente un pas en avant
dans l’étude des modes d’onde de spin dans les textures magnétiques. En revisitant la
texture statique du domaine des bandes comme un cas particulier de mode d’onde de
spin, la complexité du problème est réduite. En d’autres termes, nous avons prouvé que
l’approche dynamique de la nucléation des textures est un outil utile pour comprendre
la dynamique des textures une fois nucléées.



Appendix A

Stripe-energy integration

This Appendix presents the explicit calculation of the energy density averaged over one
period of magnetic stripes. The total stripe energy normalized by the dipolar energy
is given by
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where Q is the first order PMA, Λ is the exchange length, h = H/MS and mi =
Mi/MS are given by Eq. 1.22.

A.0.1 Second-order calculation
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At second order the Zeeman energy can be approximated as
√
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A.0.2 Fourth-order calculation

The energy also presents terms depending on higher powers of the amplitude. In
particular, fourth-order terms (m4

i ) can be calculated from Eq. 5.3 as
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and K2 is the second-order anisotropy constant. Developing

my = m2
x+m2

z

2 , we calculate
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t λ
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k sin(k x) cos(k x) sin2 (κ z)− k3

κ2 sin(k x) cos(k x) cos2 (κ z)
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κ sin2(k x) sin (κ z) cos (κ z)− k2

κ
cos2(k x) cos (κ z) sin (κ z)

]2
 dxdz

(A.6)

This expression can be integrated using the following identities
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1
2π

∫ 2π

0
cos4(x) dx = 3/8,

1
2π

∫ 2π

0
cos2(x) sin2(x) dx = 1/8.

(A.7)

Applying them, we finally obtain

〈
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= A4
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8
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6
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(A.8)

It can be noticed that this term is positive for all real values of k and κ. The fourth
order terms of the Zeeman and second-order anisotropy interaction are

〈
m4
x + 2m2

xm
2
z +m4

z

〉
= A4

t λ

∫ t

0
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0
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+ 2
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+
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k

κ
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cos(k x) cos (κ z)
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= 9
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k4

κ4A
4. (A.10)



Appendix B

Extra Kerr measurements

Kerr hysteresis loop CoFeB 150nm

Kerr microscopy measurements were performed on CoFeB 150nm. As this thickness
is closer to the critical thickness (tc = 127 nm) than the CoFeB 180nm sample, the
nucleation field is lower.

We have observed that the hysteresis loops of this sample present a much more
complicated inner structure, meaning that the anisotropies that affect Msur are more
important. This fact is also visible in the polar plot in Fig. B.1. This increase of the
IP anisotropy was also shown in Ref. [40].
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Figure B.1: Tranversal-Kerr integrated-intensity as function of the IP applied magnetic field.
Sample thickness: t = 150 nm. The variation of Mr/MS with the applied field angle is shown in
the polar plot.

Kerr microscopy CoFeB 150nm

In the same sample Kerr images were acquired at remanence after applying a mag-
netic field in a certain direction. If this direction coincides with the IP easy axis,
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then a unique domain wall which is well-aligned with this axis is found (Fig. B.2(a)).
However, if the magnetic field is applied in the perpendicular direction a much more
complicated magnetic structure appears (Fig. B.2(c)). This shows that in the studied
sample (CoFeB 150nm) the IP plane anisotropy affects the magnetic textures at low
field.

Figure B.2(b) shows the magentic configuration if the field was applied in the di-
rection perpendicular to the easy axis, but the sensitivity is parallel to it. In this case
a modulated structure appears. We suppose that this is a signature of a modulation
of the magnetic stripe domains, which are too small to be resolved by the microscope.

Figure B.2: Kerr microscope images at H = 0 after saturation at 30 mT in the direction
indicated by the red arrow. The blue arrow indicates the sensitivity axis. The easy axis is along
the vertical direction. The scale is the same for the three images.



Appendix C

Exchange determination from
OOP-FMR

To calculate the exchange and the surface anisotropy in thin films, a variant of the
method suggested Talagala et al. [62] was used. For that, the field shifts between the
PSSW modes measured with the OOP FMR were extracted. Figure 5.4 shows an
example of the peaks that can be identified. Each of these peaks corresponds to a
different OOP wave vector κn, which can be found using Equation 2.33, that depends
on the surface anisotropy Ks and the exchange constant A. These two parameters are,
a priori, unknown parameters.

However, we can measure the field shift between each of these peaks and the one
corresponding to κ0. In our case, this is the peak with the biggest amplitude. IfKs = 0,
the field shift should follow

µ0(Hn −H0) = 2A
MS

(
nπ

t

)2
. (C.1)

However, this is not our case. Thus, we conclude that Ks 6= 0. If we consider
κ0 << κn6=0, we can approximate κ0 = 0. In this case, the field shift is given by
Equation C.1. By introducing it into 2.33, the shift ∆Hn = (Hn−H0) can be calculated
from

tg
t
√

∆HnMS

2A

 = 2Ks

√
2 ∆HnMSA

∆HnMSA− 2K2
s

. (C.2)

This non-linear equation can fit the measured ∆Hn graphically. For that, both
terms of this expression are plotted as functions of ∆H. By adjusting the two unknown
parameters A andKs, it is possible to obtain that the crossing of the two curves happens
at the measured ∆Hn. The graphical solution using the ∆Hn from Fig. 5.4 is presented
in Fig. C.1. The difference between the two terms of Eq. C.2 at the measured ∆Hn

can be minimized numerically.
With this first approximation, A andKs are calculated. Using these parameters, the
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Figure C.1: Graphic solution to find A and Ks. (a) Right (red) and left (black) terms of
equation C.2 are plotted. The values of A = 16.5 pJ/m and Ks = 0.18 mJ/m2 have been chosen
to make the intersection of these two curves coincide with the experimental ∆Hn, indicated in
blue. (b) Detail of the first cross, which corresponds to κ0.

value of κ0 can be estimated. For CoFeB this value shifts up the resonance frequency
of the first mode by ∆H0 = 2.1 mT. By adding this field to ∆Hn the true shifts from
the mode with Ks = 0 are found. Then the minimization process performed previously
is repeated for the values of ∆Hn + ∆H0. This procedure results in a more precise
value of A and Ks.

This calculation can be iterated several times to converge to the correct values of A
and Ks. For small values of Qs = 2Ks

t µ0M2
s

, two iterations are enough to obtain reliable
parameters.

If Ks > 0, then the surface uniaxial anisotropy is OOP. In the opposite case, the
surface anisotropy defines an easy plane.



Appendix D

Kalinikos-Slavin stray-free
calculations

The basis used in the Kalinikos-Slavin (KS) approach has to be chosen in agreement
with the symmetries of the studied system. For the case of thin films with PMA that
present stripe domains, we already know that there is one static modulated solution to
the LL equation at Hc. If Q→ 0, the profile of the mode is given by the stray-field free
ansatz of Expression 1.22. To find the complete branch of the dispersion relation from
which this static mode belongs, the basis has to include this ansatz. Therefore, we can
propose the decomposition of the dynamic magnetization in the following orthonormal
basis

{S(z)x̂, S(z)x̂, C(z)ẑ, C(z)x̂}, (D.1)

with S(z) =
√

2
t
sin (κ z) and C(z) =

√
2
t
cos (κ|, z). In this basis, one of the com-

ponents is fully pinned, while the other its totally unpinned. The first and the last
element of the basis can be combined to obtain the stray-field free ansatz.

z

x

Figure D.1: Sine-cosine basis. The self- and mutual-interaction are depicted by the green and
blue arrows, respectively.

As this basis is different from the fully unpinned basis used in Chapters 2 and 4,
the dynamic matrix elements may change. The exchange interaction field does not
change, since the four profiles contribute with the same effective field proportional to
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Λ2
(
π

t

)2
.

On the other hand, the dipolar interaction between the dynamical components of
the magnetization is affected by this change of basis. One relevant fact is that the
dipolar self-interaction is different for cosine and sine profiles. They can be obtained
from the Appendix in Ref. [140]. For each profile, they read

PC
11(k) = (kt)2

π2 + (kt)2

[
1 + 2π2

π2 + (kt)2
1 + e−|k|t

|k|t

]
(D.2)

P S
11(k) = (kt)2

π2 + (kt)2

[
1− 2(kt)2

π2 + (kt)2
1 + e−|k|t

|k|t

]
. (D.3)

Here PC
11 and P S

11 are the k-dependent self-demagnetizing factors corresponding
to the totally pinned and unpinned profiles, respectively. The mutual-demagnetizing
factor is also different from the previously calculated one. It can be extracted from
the convolution of both profiles with the magnetostatic Green’s function GQ(z, z′) =
k
2e
−|k(z−z′)|sg(z − z′) as

QSC(k) = 2
t

k

2

∫ t/2

−t/2
dz
∫ t/2

−t/2
dz′e−|k(z−z′)| sg(z − z′) sin

(
κz

2

)
cos

(
κz′

2

)
, (D.4)

where sg(x) is the sign function defined as x/|x|. This integral can be solved by
using the following identity

∫ t/2

−t/2
dz
∫ t/2

−t/2
dz′sg(z − z′)f [|(z − z′)|] =

∫ t/2

−t/2
dz
∫ z

−t/2
dz′f [(z − z′)] −∫ t/2

−t/2
dz
∫ t/2

z
dz′f [−(z − z′)] ,

(D.5)

which leads to

QSC(k) = πkt
π2 + kt (−2− 2e−kt + kt)

2(π2 + (kt)2)2 . (D.6)

The others terms in the dynamic matrix are the same that for the fully unpinned
basis. Hence, it reads

C̄ ′ =


0 Ωx0 −i2QSC 0
−Ωz0 0 0 i2QSC

−i2QSC 0 0 Ωx1

0 i2QSC −Ωz1 0

 (D.7)
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where
Ωx,C =PC

11 + h+ Λ2k2 + Λ2π2

t2
,

Ωz,C =1−Q− PC
11 + h+ Λ2k2 + Λ2π2

t2
,

Ωx,S =P S
11 + h+ Λ2k2 + Λ2π2

t2
,

Ωz,S =1−Q− P S
11 + h+ Λ2k2 + Λ2π2

t2
,

(D.8)

Q= 2K1
µ0M2

S
, h = H0/MS and Λ =

√
2Aex
µ0M2

s
is the exchange length. We note that the factor

(1−Q) is the effective demagnetization field produced by the surfaces of the thin film
and reduced by the PMA.

By solving the equation det(|C̄ ′− IIΩ|) = 0, the normal mode frequencies ω = ωMΩ
can be calculated. The results are shown in Fig. D.2, and they match quite well the
SWIIM frequencies for the lower mode.
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Figure D.2: In orange dashed lines, the two dispersion relations obtained by the KS approach
using the sine-cosine basis at the nucleation field µ0Hc = 11.77 mT. In black, the first modes
calculated with SWIIM for µ0H = 12.43 mT. The two SWIIM modes that can be described with
a sine and a cosine are highlighted with a wider line.

We observe that this toy model captures the fundamental physics behind the nu-
cleation process, and it can be used to give a better understanding of the softening
mechanism.

The eigenvectors obtained as solutions to the eigenvalue problem have the following
structure
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ηk =


ηx,C

ηz,C

ηx,S

ηz,S

 . (D.9)

The results show that the two pinned component are in quadrature with respect to
each other (same for the two unpinned components), that means that the coefficients
ηz,C and ηz,S are purely imaginary, while ηx,C and ηx,S are purely real. At nucleation,
(k = kc = 22 rad/µm and µ0H = µ0Hc = 11.8 mT), both ηz,C and ηx,S become null.

In addition to the KS-approach, any other method to calculate the dispersion re-
lation is valid to find the nucleation field. In particular, SWIIM would give a better
approximation, because their thickness profiles are not constrained to be an exact sine
and cosine. Figure D.3 shows the softening of the minima calculated with KS and
SWIIM. For the used parameters, while KS gives µ0H = 11.77 mT, SWIIM mini-
mum frequency vanishes at µ0H = 12.45 mT. This figure also shows the behavior of√
K0
A (see Section 5.3.2), calculated by the energy minimization. Stripe nucleation

is expected when K0
A changes of sign and

√
K0
A becomes imaginary. Using the same

parameters as in the dynamic approaches, we obtain µ0H = 11.25 mT. This last value
must coincide with the one calculated from 1.31 and it should be less precise than the
other two, as the used ansatz does not fulfill the LL equation.
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Figure D.3: Softening of the DE0 minimum. On the left axis, frequency of the DE0 mode at
k = 21.9 rad/µm calculated using SWIIM and KS analytical approach. On the right axis, the
value of

√
K0
A for the same magnetic parameters. We observe that the nucleation field is slightly

different for the three methods. Same magnetic parameters that Fig. 5.6. For SWIIM, surface
anisotropy Ks = 0.
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Matías Pablo GRASSI 

 

Ondes de spin dans des distributions 
de l’aimantation inhomogènes 

 

 

Résumé 

Des distributions inhomogènes de l’aimantation existent lorsque le matériau n’est pas uniforme, ou lorsqu’une 
texture magnétique se forme dans un matériau homogène. Dans les deux cas, les symétries brisées modifient 
l’excitation et la propagation des ondes de spin et donnent lieu à des phénomènes surprenants. 

Dans ce contexte, nous avons étudié la propagation des ondes de spin dans une bicouche avec un contraste 
de l’aimantation de saturation dans la configuration Damon-Eshbach. Nous avons trouvé, à l’aide de 
simulations et expériences (spectroscopie d'ondes de spin propagatives et diffusion de Brouillon), que le 
système montre une très forte non-réciprocité en fréquence qui peut être utilisée pour réaliser une diode 
magnonique. 

Par ailleurs, nous avons étudié la dynamique des ondes de spin dans des couches minces qui présentent des 
domaines magnétiques en rubans faibles.  Nous avons montré que ces ondes de spin peuvent être 
interprétées comme une extension des modes de Damon-Eshbach dans l’état saturé, qui s’adaptent à la 
brisure de symétrie. Nous avons également montré que les deux modes d’ondes de spin de plus basse 
fréquence correspondent aux modes de Goldstone et Higgs de la texture en rubans. Ces résultats ont été 
confirmés par des mesures de diffusion Brillouin et de résonance ferromagnétique. 

Mot clés : ondes de spin, dynamique de spins, non-réciprocité, domaines en rubans, modes de Higgs et 
Goldstone.  

 

Abstract 

Inhomogeneous magnetization distributions may exist because the magnetic parameters are distributed, or 
because magnetic textures nucleate in homogenous materials. In both cases, the broken symmetries affect 
the spin-wave excitation and propagation, leading to a number of intriguing phenomena. 

In this context, we have studied the propagation of spin waves in a bilayer with a saturation magnetization 
contrast for the Damon-Eshbach configuration. We have found, by means of simulations and experiments 
(Propagating Spin Wave Spectroscopy and Brillouin Light Scattering), that this system shows a strong 
frequency non-reciprocity which can be used for the realization of a spin-wave diode. 

We have also studied the spin-wave dynamics in thin films which exhibit weak magnetic stripe domains. We 
have shown how these modes can be interpreted as an extension of the Damon-Eshbach spectrum of the 
saturated state, which adapts to the symmetry breaking.  Furthermore, we have identified the two lowest 
frequency modes to the Goldstone- and Higgs- modes of the stripe texture. These results were confirmed by 
Brillouin Light Scattering and Ferromagnetic Resonance experiments. 

Keywords: spin waves, spin dynamics, non-reciprocity, stripe domains, Higgs and Goldstone modes.  


	Contents
	Abbreviation table
	Acknowledgments
	Introduction
	Magnetization statics
	Magnetic moments and magnetization
	Magnetic interactions
	Zeeman interaction
	Exchange interaction
	Dipolar interaction
	Uniaxial anisotropies
	Magnetic textures

	Stripe domain structure
	Energy minimization
	Zero-torque approach
	Magnetic stripe measurements


	Magnetization dynamics
	Larmor precession
	Ferromagnetic resonance
	Ellipsoids and thin films

	Spin waves
	Magnetostatic waves
	Dipole-exchange waves

	External excitation
	Damping

	Experimental methods
	Ferromagnetic Resonance
	Propagating-Spin-Wave Spectroscopy
	Preliminary works on this technique
	Device fabrication
	Device characterization

	Kerr Microscopy
	Brillouin Light Scattering

	Spin-wave propagation in a ferromagnetic bilayer
	Motivation
	Nonreciprocity on bilayers
	Theoretical model
	Experimental results
	Sample fabrication
	Nonreciprocal dispersion relations
	Magnonic diode behavior

	Spin-wave modal profiles
	Chapter conclusion

	Statics and dynamics of magnetic stripe domains
	Sample fabrication and characterization
	VSM and MFM
	Kerr microscopy
	Transverse FMR

	Stripe amplitude
	Stripe-dynamics theory
	Dynamic approach to the nucleation
	Stripe modes
	Mode splitting and phase

	Stripe-dynamics measurements
	k-resolved BLS
	Longitudinal FMR

	Chapter conclusions

	General conclusions
	Résumé en français
	Stripe-energy integration
	Second-order calculation
	Fourth-order calculation


	Extra Kerr measurements
	Exchange determination from OOP-FMR
	Kalinikos-Slavin stray-free calculations 
	Bibliography

