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Abstract

In this thesis, we study the Hodge-Tate structure of the proétale cohomology of Shimura varieties.
This document is divided in four main issues.

First, we construct an integral model of the perfectoid modular curve. Using this formal scheme,
we prove some vanishing results for the coherent cohomology of the perfectoid modular curve, we
also provide a description of the dual completed cohomology as an inverse limit of integral modular
forms of weight 2 by normalized traces.

Secondly, we construct theoverconvergent Eichler-Shimura map for the first coherent cohomol-
ogy group, complementing the work of Andreatta-Iovita-Stevens. More precisely, we construct a
map from the overconvergent cohomology with compact support of Boxer-Pilloni to the locally an-
alytic modular symbols of Ash-Stevens. We reinterpret the construction of these maps in terms of
the Hodge-Tate period map and the perfectoid modular curve. We also reprove the classical Falt-
ings’s Eichler-Shimura decomposition using the Hodge-Tate period map, and the dual BGG resolu-
tion of irreducible representations of GL,. We show that the overconvergent Eichler-Shimura maps are
compatible with the U ,-operator, and that their small slope vectors interpolate the classical Eichler-
Shimura maps.

Thirdly, in a joint work with Joaquin Rodrigues Jacinto, we develop the classical theory of locally
analytic representations of p-adic Lie groups in the context of condensed mathematics. Inspired from
foundational works of Lazard, Schneider-Teitelbaum and Emerton, we define a notion of solid locally
analytic representation for a compact p-adic Lie group. We prove that the category of solid locally
analytic representations can be described as modules over algebras of analytic distributions. As an
application, we prove a cohomological comparison theorem between solid group cohomology, solid
group cohomology of the (derived) locally analytic vectors, and Lie algebra cohomology.

Finally, we generalize the work of Lue Pan to arbitrary Shimura varieties. We construct a geometric
Sen operator for a class of proetale 0-modules .Z which we call relative locally analytic. We prove
that this Sen operator is related with the p-adic Simpson correspondence, and that it computes the
proétale cohomology of .%. We apply this theory to Shimura varieties, obtaining that the computation
of proétale cohomology can be translated in terms of Lie algebra cohomology over the flag variety
via the Hodge-Tate period map. In particular, we prove that the C,-extension of scalars of the locally
analytic completed cohomology can be described as the analytic cohomology of the infinite-at-p
level Shimura variety, of the locally analytic sections of the structural sheaf. This implies a rational
version of the Calegari-Emerton conjectures for any Shimura variety without the hypothesis of the
infinite-at-p level Shimura variety to be perfectoid. Then, we study the A-isotypic part of the locally
analytic completed cohomology for the action of a Borel subalgebra. Using the interpretation as Lie
algebra cohomology over the flag variety, we construct overconvergent BGG maps generalizing the
previous work for the modular curve. In addition, we give a local proof of the classical Hodge-Tate
decompositions for Shimura varieties, using the dual BGG resolution and the Hodge-Tate period map.

Résumeé

Dans ce manuscrit, nous étudions la structure de Hodge-Tate de la cohomologie proétale des variétés
de Shimura. Cette these est divisée dans quatre parties.

D’abord, nous construisons un modele entiere de la courbe modulaire perfectoide. Avec ce schema
formel, on montre quelques résultats d’annulation de la cohomologie cohérente en niveau infini, et



Abstract

nous donnons une description du dual de la cohomologie completée en termes de formes modulaires
intégrales de poids 2 et de traces normalisées.

Dans un second temps, on construit 1’application surconvergente d’Eichler-Shimura pour le pre-
mier groupe de cohomologie cohérente, il s’agit d’'un morphisme de la cohomologie surconvergente
a support compact de Boxer-Pilloni vers les symboles modulaires localement analytiques d’Ash-
Stevens, qui interpole I’application d’Eichler-Shimura classique. Nous réinterprétons les construc-
tions précédentes en termes du morphisme des périodes de Hodge-Tate et de la courbe perfectoide.
Avec cette technique, on donne une nouvelle demonstration d’un théoreme de Faltings sur la décomposition
d’Eichler-Shimura classique en utilisant le morphisme des périodes et la resolution BGG-dual de GL,.
On prouve que les applications d’Eichler-Shimura surconvergentes sont compatibles avec 1’action de
I’opérateur U, et que les petites pentes interpolent la décomposition d’Eichler-Shimura classique.

Ensuite, dans un travail un commun avec Joaquin Rodrigues Jacinto, nous introduisons le concept
de représentation localement analytique solide pour un groupe de Lie p-adique compact G. Nous
nous inspirons des travaux de Lazard, Schneider-Teitelbaum et Emerton pour réinterpréter la propriété
localement analytique dans la catégorie des représentations solides de G, et nous voyons que les objets
obtenus peuvent étre décrit en termes de modules sur des algebres de distributions analytiques. En
guise d’une application, nous démontrons quelques théoréemes de comparaison entre la cohomologie
solide des groupes et la cohomologie de 1’algebre de Lie des vecteurs localement analytiques derivés.

Pour finir, nous généralisons a des variétés de Shimura quelconque les travaux de Lue Pan sur la
cohomologie complétée localement analytique des courbes modulaires. Le premier point technique
est ’existence d’un opérateur de Sen géométrique qui est li€ a la correspondence de Simpson p-
adique. On montre que cet opérateur calcule la cohomologie proétale des 0-modules dans un sens
précis. En appliquant cette théorie dans le cas des variétés de Shimura, nous arrivons a réduire le
calcule de la cohomologie proétale de certains faisceaux de O-modules 2 celui de la cohomologie
de Lie des D-modules sur la variété de drapeaux. En particulier, nous prouvons que I’extension des
scalaires a C,, de la cohomologie completée localement analytique se calcule comme la cohomologie
des sections localement analytiques du faisceau structural de la variété de Shimura de niveau infini
en p sur le site analytique. Comme corollaire, on en déduit une version rationnelle des conjectures de
Calegari-Emerton sur 1’annulation de la cohomologie completée. Ensuite, nous étudions la partie A-
isotypique de la cohomologie completée localement analytique pour 1’action d’un Borel. En utilisant
le dictionnaire entre cohomologie proétale et cohomologie de Lie des faisceaux sur la variété de
drapeaux, on arrive a construire des applications de BGG surconvergentes. De plus, nous donnons
une preuve locale de la décomposition de Hodge-Tate avec coefficients, en utilisant la résolution
BGG-dual et le morphisme des périodes de Hodge-Tate.
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General introduction

This thesis concerns the study of the Hodge-Tate structure of the proétale cohomology of Shimura
varieties. More precisely, we use perfectoid techniques to describe the Hodge-Tate structure of Emer-
ton’s completed cohomology. Before addressing the general case, let us explain what can be done for
modular curves.

0.1. The case of modular curves

Let us fix p a prime number, and let C = C, be the p-adic completion of an algebraic closure of Q,.
We let A7 denote the ring of finite adeles (resp. Ag’p denote the ring of finite prime-to-p adeles). Let
K c GL,(Ag) be a neat compact open subgroup. The modular curve of level K is the algebraic curve
Yk over Q parametrlzmg elliptic curves and torsion structure of level K. For instance, let N > 3 be
an integer and denote F(N ) = ker(GLz(Z)) — GL,(Z/N), then Y(N) := F(N) is the modular curve
parametrizing elliptic curves E and a trivialization of the N-torsion ¥ : (Z/N)*> = E[N].

Let H* = C\R be the upper and lower half planes, and consider the left action of GL,(R) on H*
by Mobius transformations. The complex analytic variety associated to Y is the locally symmetric
space

Yk(C) = GLo(Q\H* X GL2(AQ)/K,

where GL,(Q) acts diagonally, and K only acts on the second factor. This implies that Yx(C) is a

disjoint union of finitely many quotients of HH* by congruence subgroups. For example, let uy C @X
be the subgroup of N-th roots of unity, one has that

Y(N)(C) = || Tv)\H*
MN

where I'(NV) = ker(GL,(Z) — GL,(Z/N)) is the princi;zgl congruence subgroup of level N.

We fix a tame level K? C GLZ(A(‘S”’), e.g. KP :=T(N)n GLZ(AfQj’p) for N > 3 prime to p, and
given an open compact subgroup K, ¢ GL,(Q,) we will denote by Yx»x, the modular curve of level
K?K,. From now on we will see the modular curves as schemes over Q,, and we will denote by Y the
analytification of Yk to an adic space over Spa(Q,,, Z,), cf. [ ]. We let Xx be the compactification
of Yk by adding cusps [ ], and let E¥"/ Xk be the semiabelian scheme extending the elliptic curve
E. We let X denote the analytification of the compact modular curve . Let e : Xy — E*" be the unit
section and wg := e*Q] be the modular sheaf. For k € Z we denote w¥, = w%".

Esm|Xg

0.1.1. Completed cohomology and an integral model of the perfectoid
modular curve

We fix N > 3 prime to p, and consider the modular curves Y(Np") and X(Np") over Spec Q, for

n > 0. We shall follow the theory of [ ]. The schemes Y(Np") and X(Np") admit integral

models Y(Np")z, and X(Np")z, which are constructed as moduli spaces of Drinfeld basis of elliptic
curves.

il



General introduction

Definition 0.1.1. Let R be a Z,-algebra and E an elliptic curve over R. Let M > 1 be an integer, a
Drinfeld basis of E[M] is a map of finite flat group schemes over R

¥ : (Z/M)* —> E[M]

such that we have an equality of divisors over E

EMI= > ).

Vve(Z/M)?
Remark 0.1.2. If M is invertible in R, a Drinfeld basis is the same as a trivialization of E[M].

The moduli problem sending R to the isomorphism classes of elliptic curves E and Drinfeld basis
Y : (Z/M)* — E[M] is representable for M > 3 by a regular scheme Y(M)z, whose generic fiber
is the modular curve of level M. The j-invariant of the universal elliptic curve over Y(M)z, defines
amap j : Y(M)z, - A} C P17 whose normalization is the compactified curve X(M)z,. We let
X(M)/ SptZ, be the p- adlc completlon of X(M)z,.

The p- multlphcatlon of Drinfeld basis mduces finite flat maps X(Np"*') — X(Np"), we are in-
terested in the tower {X(Np")},>;. Let X(Np®~) = llnn X(Np") be the infinite level modular curve
seen as a p-adic formal scheme over Spf Z,. The Weil pairing of the Drinfeld basis (y(1,0), (0, 1))
turns out to be a primitive N p”-th root of unity in the sense that it is killed by the Np"-th cyclotomic
polynomial. Taking the inverse limit one has a map ¥(Np®) — Spf Z;“[uy]. We have the following
theorem

Theorem 0.1.3 (Part I Theo. 3.2.1). The formal scheme X(Np®) is a perfectoid formal scheme over
Spf Z;“[un]. Moreover; the rigid analytic fiber of ¥(Np®) is naturally isomorphic to the perfectoid
modular curve X(Np®) = h;n X(Np™.

Remark 0.1.4. The construction of X(Np*) was also given by Lurie [ ] using the language of
stacks. Lurie reduces the proof of perfectoidness to the ordinary locus by a mixed characteristic
analogue of Kunz theorem. The study of the ordinary locus in both approaches is similar an better
explained in Part I §3.3.

The proof of Theorem 0.1.3 is rather elementary and reduces to the study of the deformation rings
of the finite level modular curves by faitfully flat descent. In the ordinary locus we use the Serre-Tate
coordinates [ ], for the cusps we use the Tate curve [ ], and for the supersingular points we
use some explicit generators of the maximal ideal of the completed local ring and the formal group
law.

With the integral perfectoid modular curve we can prove some vanishing results for the coherent
cohomology at infinite level. Let wg, be the modular sheaf over X(Np"), and let D, C X(Np") be
the cusp divisor. We let wf, , = (lim Wi ,)" 7 and o (=Dy) = (lim w}. (=D,))""P be the p-adic
completions of the colimits of the modular sheaves as n — oco. These are quasi-coherent sheaves over
X(Np™), and w}, , is equal to the pullback of wf; , for any n. The sheaf Oy p=)(~De) := W} . (~Ds) is
the ideal defining the boundary divisor of X(Np™) and one has wj; . (~De) = W . ®p o, Oxnp=)(=Deo)-

Let p'/7 € Z;° be such that |p'/?| = |p|'/?. The perfectoid nature of X(Np>) shows that the
Frobenius map is an isomorphism

¢ : X(Np™)/p — X(Np™)/p"',

such that ¢*(w}, . /p'/?) = wEOO/p and ¢*(wf, (~De)/p''?) = cquo( D..)/p. This fact, together with
the vanishing of H'(X¥(Np"), wE,n) and H(X(Np"), wE,n) for k >> 0 (resp. for the sheaves wE,n( D,))
imply the following theorem

Theorem 0.1.5 (Part I Theo. 5.2.4). The cohomology complexes RI'(X(Np*), w’,‘im(—DOO)) and
RIU(X(Np®), wgw) are concentrated in degrees [0, 1]. Moreover,

v



General introduction

1. H'(X(Np*), ) = H'(X(Np®), w} . (-Do)) = 0 for k = 1.
2. H'(X(Np™),wh, ) = HY(X(Np*), ol ,(-Dw)) = 0 for k < —1.

Remark 0.1.6. What could be surprising is the vanishing for the H' cohomology of the sheaves w}am
and wy, . (-Ds). Indeed, the H' cohomology at finite levels in non zero for all n; this follows by Serre
duality that there are modular forms of weight 1. This phenomena is a consequence of the fact that
the pullbacks of the H'(X(Np"), wy, ,/p) are duals to the traces of H'(X(Np"), w} ,(=D,)/p) whose
composition is eventually zero in the tower.

It is left to study the coherent cohomology of the structural sheaf and the ideal of the cusps. It
is clear that H'(X(Np®), Oxip=)) = Z [pa] and HY(X(Np>), Oxp=(—Dw)) = 0, so we only care
about the H'! cohomology; this one is related with completed cohomology.

Definition 0.1.7. We define the following completed cohomology groups of tame level K = T(N) c
GLo(AT")

HU(K?,Z,) = limlim H, (Y(Np")c, Z/p’)
H'(K?,Z,) = limlim Hy(X(Np")c, Z/ p).

N n

Theorem IV.2.1 of | ] gives a GL,(Q,)-equivariant almost quasi-isomorphism
H!(K?,Z,)80c¢ =* Hop(X(NP™)c, Oxip(—Deo)),

where X(Np™)c is the C-base change of the modular curve, and Ox(y,~)(—Ds) is the ideal defining
the cusps in X(Np*)c. It turns out that the same argument gives the following proposition

Proposition 0.1.8. We have a GL,(Q))-equivariant almost isomorphism
H'(K?,Z,)80c =* Hy(X(NP™)c, Oxnp)).

Taking an affine cover of ¥(Np*) and Cech cohomology, one also has GL,(Qp)-equivariant almost
isomorphisms

H;n(X(NPOO)C’ ﬁX(Np‘”)(_Doo)) =% Hl(%(NPOO)Oc, ﬁ;{(Np"o)(_Doo))
HL (X(NP™)e, Oxvp=y) =% H'(X(NDP™)oes Oxp))-
The modular curves X(Np") are local complete intersections over Z,, in particular they admit a

dualizing sheaf which turns out to be isomorphic to wé’n(—Dn). Serre duality at finite level provides
the following description for the dual of completed cohomology

Theorem 0.1.9 (Part I Theo. 5.3.1). There are GL,(Q))-equivariant almost isomorphisms

Homg, (H\(K",Z,),Z,)80c =* li;nHO(%(Np”)OC, WE )
Tr
Homy, (H' (K", Z,), Z,)®0c = lim H'(X(Np")oc, W ,(~Dy))
Tr

where Tr are normalized traces.

The previous theorem relates completed cohomology with coherent cohomology at finite levels. In
the rest of the document we will encounter with analogous descriptions of the locally analytic vectors
of the completed cohomology in terms of overconvergent modular forms as in [ ].
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0.1.2. Classical Eichler-Shimura maps via myr

In Parts II and IV we will work with the pro-Kummer-étale site as in [ ]. It is a generalization
of the proétale site of [ ] to (fs) log adic spaces, allowing some controlled ramification at
the boundary. One of the main achievements of [ ] is that the pro-Kummer-étale site and the
proétale site behave formally in the same way; both sites have natural fiber products, they have enough
perfectoid spaces, and after adding enough ramification one ends up working with the proétale site
of a perfectoid space. In particular, there is a purity on torsion local systems for complements of
normal crossings divisors [ , Theo. 4.6.1], and a primitive comparison theorem for proper fs
log smooth adic spaces [ , Theo. 6.2.1]. Moreover, by [ ] the pro-Kummer-étale site
has period sheaves B, Bar, OBy |,p» OBar oz and €Cioq 1= gr' OBgR jog.-

We have fixed a neat compact open subgroup K? C GLZ(AS"” ), and for K, € GL,(Q,) a compact
open subgroup we let Vg , and Xg» K, denote the modular curves of level K”K,,, seen as adic spaces

over Spa(Q,,Z,). We let Yk, = yLnKp Yok, and Xg» = li;nKpr Xkrk, be the perfectoid modular
curves and gy : Xx» — P! the Hodge-Tate period map, see [ ]. The map ng, : Xg»r — Xgog, 18
a pro-Kummer-étale (right) K,-torsor. From now on we write ) and O™ for the uncompleted and
the completed structural sheaves of Xg» K, prokét-

Let B ¢ GL, be the upper triangular Borel, N its unipotent radical consisting on upper triangular
unipotent matrices and T the diagonal torus. Let A : T — G,, be a character that we identify as a pair
A = (ky, ky) such that A (8 g) = t’l“ téz. We say that A is dominant if k; > k,, and we let X*(T)* denote
the cone of dominant characters. The irreducible representations of GL, are parametrized by X*(T)*.
More precisely, let St be the standard representation of GL, and det the determinant, the irreducible
representation of highest weight A is then

V, = Sym" ™ St @(det)*.

By an abuse of notation we will see V, as a representation over Q,.

Let V,¢ be the proétale local system over Y, k, attached to V; via the K -torsor ng, : Y —
Yk, Let j: Yok, C Xk, be the inclusion map and jyroket © Y kv, prost = Xkrk, proket the induced
map of sites. By purity of torsion local systems, the complex R jprokesi « Ve 18 @ pro-Kummer-étale local
system concentrated in degree 0, which we denote as V. The sheaf V) x4 is the pro-Kummer-étale
local system attached to V; by the pro-Kummer-étale K,-torsor Tk, X & X kvK,- Lhe previous
shows that

R pros(Y krk,.05 Vae) = Rl prokat(Xkrk,.c0 Vakeds

namely, we can compute the proétale cohomology of V,  in the pro-Kummer-étale site of Xxr, -
We can recover V), with the Hodge-Tate period map. First of all, let us recall its construction.

Let T,E = l(lnn E[p"] be the Tate module of the universal elliptic curve over Y, k,» by an abuse of

notation we write in the same way its extension to a pro-Kummer-étale local system over Xx,x,. We

have the Hodge-Tate exact sequence of O-sheaves over X KPK, prokét
0-w;' ®0(1) > TyE® O — wy® 0 — 0. (0.1.1)

Taking pullbacks via the universal trivialization ¢ : Zf, - T,E over Xk», one has a line subbundle

Y (wy' ® o) Xgp.an) C G Xgran)® Which defines the map 7yr : Xg» — P'. By construction, the map
myt 18 GL,(Q),)-equivariant. Moreover, it pullbacks the constant GL,(Q,)-equivariant local system V,
over .Z#{ to the GL,(Q,,)-equivariant local system V xlx,,. The Weyl pairing induces an isomorphism
detT,E = Z,(1), hence one finds that

Vike = Sym" ™2 T,E ® Q,(k2).

vi
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The Hodge-Tate decompositions of the proétale cohomology of the sheaves V, ¢ can be described
in terms of modular forms. Let us recall the following theorem of Faltings, see [ ].

Theorem 0.1.10 (Faltings). The maps w k'®ﬁ(k1) - Vika ® O and Vike ® 0 — a) ) 5(1@)
arising from symmetric powers and a Tate twist of (0.1.1) induce surjective (resp. m]ectlve) Eichler-
Shimura maps

ES : H! twm s Vi) ® C = Ho (X, 0o 0 ) @ Clhy — 1)

proé

ESY: Hy(Xkrg,co ™) ® Clky) — Hyy oo (Yxok,.c. Vae) ® C.

Furthermore, the maps ES and ES" are naturally split and provide the Eichler-Shimura (ES) decom-
position

H;l,roét(prK,),c, Vaie) = (XKPK,, c W kl TR Clk, - 1) @ a}n(z\’Kpr,C, wlg_k‘) ® C(ky).

Our first goal is to give a purely local proof of Faltings’s Eichler-Shimura decomposition using the
geometry of myr.

Convention. Given a K ,-equivariant sheaf .# over P! (or a K,-equivariant Op:i-sheaf), we will iden-
tify 7, () with the pro-Kummer-étale sheaf over Xk, it defines by descending along the torsor
Tk, - X](p i X[(p[(p.

By the primitive comparison theorem, we have that
R proket(Xkrk,.05 Vaka) = R prokel X krk,.cr Vaxe ® O).

The sheaf V¢, ® € can also be described as the pullback by myr of the GL,-equivariant vector bundle
Vi ® Op over P!, Our strategy to study the Hodge-Tate structure of proétale cohomology, and in
particular to prove Faltings’s ES decomposition, is to understand the pullbacks of GL,-equivariant
quasi-coherent sheaves of P! by . We need some notation.

Let P! be written as the quotient P! = B\ GL,, by taking the base point e = [0 : 1]. This provides an
equivalence of categories between finite dimensional B-representations and GL,-equivariant vector
bundle over P!'; explicitly one maps a B-representation V to the vector bundle V := GL, xBV :=
B\(GL, xV) over P!. Note that this construction can be extended to Ind-algebraic representations of
B.

1 0
element of the Weyl group of GL,. We define the GL,-equivariant line bundle over P! of weight « as

Definition 0.1.11. Let x = (k;,k;) € X*(T) be a character, and let wy = (O 1) be the non trivial
L(k) = GLy XPwy(k).

The line bundles £(x) have the property that, if A is a dominant character, then ['(P!, £(1)) = V,.
They also admit a different description in terms of a T-torsor.

Definition 0.1.12. Let Tpi = N\ GL, be the natural (left) T-torsor over P!, where N c B is the
unipotent radical. We let x; denote the left regular action of T on Tgi and let k : Tpi — P! be the
natural projection, we have that

L(K) = k* ﬁTP] [_WO(K)*l]-
The B-filtration of the standard representation is given by

0—-(1,0) > St—(0,1) — 0.

vii
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Taking the associated vector bundle over P! and pullbacks via it one recovers the Hodge-Tate exact
sequence of T, E. This shows that

Te(L£0,1)) = w' ® 6(1) and 75,1(L(1,0)) = wp ® 0.

Therefore, if k = (ki, k), one has that 7} .(L(x)) = wlg ) 5(1@). This gives a complete description
of the pullbacks of GL,-equivariant vector bundle over P! arising from semisimple representations of
B. It is left to understand the case of non-semisimple representations.

Let O(N) be the ring of algebraic regular functions of the unipotent group N, it has a natural action
of T given by ¢ - f(n) = f(t"'nt) for f € O(N) and ¢ € T. Moreover, the right regular action of N on
O'(N) is faithful. This endows &'(N) with a structure of B-module. The ring &'(B) of algebraic regular
functions of B endowed with the right regular action is isomorphic to

O(B) = EB k® O(N).

keX*(T)

Thus, we only need to consider the GL,-equivariant quasi-coherent sheaf over P! arising from the
B-module &'(N). We have the following theorem.

Theorem 0.1.13 (Part IT Prop. 10.1.3). Let &(N) be the GL,-equivariant quasi-coeherent sheaf over
P! associated to O(N). Let O(N)=! be the GL,-equivariant sheaf associated to the subrepresentation
ON)=! ¢ O(N) of polynomials of degree < 1. Then

T (OMN)) = gr! OBy 10, ® O(-1). 0.1.2)
In particular, taking n-th symmetric powers and colimits as n — oo we have that
Tr(O(N)) = OCioq.

Remark 0.1.14. The equality (0.1.2) was already known by Faltings [ , Theo. 5 ] and Lue Pan
[ , Theo. 4.2.2]. Indeed, let Q!(log) be the sheaf of log differentials of X, k,» and consider the
short exact sequence of B-modules

0-Q, > ON) - (LieN)" - 0, (0.1.3)

where in the last arrow we identify the elements of (Lie N)* with homogeneous linear forms of N.
Faltings and Pan have shown, in our terminology, that the pullback by myt of the GL,-equivariant
complex associated to (0.1.3) is isomorphic to (minus) the Faltings extension

0— 6 — gr' OBl 10, ® O(=1) > Q'(log) ® G(-1) - 0.

Once we have understood the pullbacks of GL,-equivariant quasi-coherent sheaves by myt, we can
reprove Faltings’s ES decomposition using the dual BGG resolution. Let b = Lie B be the Borel
subalgebra of gl, and b the opposite Borel subalgebra of lower triangular matrices. We let h = Lie T
be the Cartan subalgebra.

Definition 0.1.15. Let« : h — Q, be a weight of b, we define the Verma module of (g, b) of weight «
to be the coinduction
Ver%(K) = U(9) ®y) -

We let V(—«k) C Home(Ver%(K), Q) be the admissible dual consisting of h-finite vectors, seen as a
g-module.
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Remark 0.1.16. The Verma module Ver%(/() is an object in the category O, i.e. the category O with

respect to b. Then, its dual V(—«) is an object in the category O with respect to b. If « arises as the
derivation of a character of T, the b-action on V(—«) can be integrated to an Ind-algebraic B-action.
As B-module we have an isomorphism

V(=k) = (=k) ® O(N).

Definition 0.1.17. Let A € X*(T)* be a dominant weight, and consider the BGG resolution of V) in
the category O
0— Ver%(—wo(/l) +a) — Ver%(—/l) - V] -0, 0.1.4)

where a@ = (1, —1) € X*(T). The dual BGG resolution of V), is the admissible dual of (0.1.4)
0—-V,—-> VW - Viwy(l) —a) — 0. (0.1.5)
We have the following theorem

Theorem 0.1.18 (Part I Theo. 10.1.5). The pullback by myr of the GL,-equivariant complex defined
by the B-representation (0.1.5) is quasi-isomorphic to

0— V,]’ké[ ® 5—> (,4)122_](l ® ﬁCbg(kl) — wlg—k2+2 ® ﬁclog(kz - 1) - 0.

We call this resolution of V& ® O the Hodge-Tate dual BGG complex, c.f. [ , Prop. VI.5.4].
Let v : Xgrk, cprokét = Xkrk,.cxe be the projection of sites, then

Rv.(Viya ® 0) = 0271 @ Clky) @ w72 @ Cky — 1)[-1].

Taking projections to the analytic site and H'-cohomology one recovers Faltings’s Eichler-Shimura
decomposition

Hy (Y ok, 0o Vae) ® C = H' (Xok,, ™) © Clky) ® H' (X ok, wy *) @ Clhy = 1) (0.1.6)

As one can appreciate from the previous theorem, the key step to understanding the Hodge-Tate
decompositions is the computation of the derived projection Rv.(V k¢ ® % ). Following this idea, we
Can construct p-adic 1nterpolat10ns of (O 1.6) by first constructmg p-adic interpolations of the maps

kg ﬁ(kl) — Vika ® & and Vike ® 0 — w 1k @ ﬁ(kw) appearing in Theorem 0.1.10.

0.1.3. Interpolation of the Eichler-Shimura maps

Our next goal is to p-adically interpolate the maps (0.1.6). This requires a p-adic variation of the
modular sheaves w’;: and the local systems V. The former will be given by sheaves of overcon-
vergent modular forms as in [ ]. Let us explain how to interpolate the later. Let &(GL,) be the
ring of regular functions of GL,, it is a GL, X GL,-representation given by the left x; and right *,
regular actions respectively. In other words, [g2 %2 (g1 *1 /)I(h) = f(g;'hg) for f € O(GL,) and
g1, 82, h € GL,. As GL, X GL,-representation &'(GL,) is isomorphic to ( [ D

oGL)= P viev,

AeX*(T)*

where we map a tensor f ® v € V) ® V, to the regular function g — f(gv). Recall that V = V_,, ),
hence
V, = O(GL,)Pr=7"W, (0.1.7)

Let us take K, € GL,(Q,) an open compact subgroup admitting an Iwahori decomposition K, =
NKP Tk, Nk, as product of lower triangular unipotent matrices, diagonal matrices, and upper triangular
unipotent matrices. We denote By, = T, Ng,. Let (R, R*) be an uniform affinoid Q,-algebra and
x : Tk, = R* a character. We need the following easy lemma

X
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Lemma 0.1.19. There is 6 > 0 such that y enhances to a character of rigid spaces
X : TKp(l + paGa) - Gm,R‘
We say that x is a locally analytic character of Tk,

Definition 0.1.20. Let C“(K, R) be the space of locally analytic functions of K, with values in R.
The locally analytic principal series of K, of weight y is the space

A} = CU(K,, R)Pirma=00,

In other words, A)l(“ is the space of locally analytic functions f : K, — R such that f(xb) =
wo()(b™ ) f(x) for all x € K, and b € Tk N, .

If r : R — Q, is a specialization of R such that r o y = A is a dominant weight of GL,, we have a
diagram

§R,er

l l
Ale > Al

ﬁ(GLz)B’Q:_WOM) =V.

Therefore, the spaces A)lf are good candidates to interpolate the algebraic representations V,. We can
define the following p-adic variations of the proétale cohomology of the local systems V) 4.

Definition 0.1.21. Let C'“(K s R)ke and A)l(‘fkét be the pro-Kummer-étale sheaves over Xg», associated
to C"(K,,R) and A)l(“ respectively, where these spaces are endowed with the *;-action of K.

1. The locally analytic completed cohomology with coefficients in R is the complex

Rrproét(yKl’,C’ R)la = Rrproét(XKl’Kl,,C’ Cla(Kp’ R)ét)

2. The derived Bg, = —wo(x) isotipic part of the locally analytic completed cohomology is the
complex
Rrproét(yKP,C, R)lu’RBKﬁv*z:—Wo(X) — Rrproét(XKPKp,C’ A,l\zkét)-

Remark 0.1.22. As the previous notation suggests, the locally analytic completed cohomology is
independent of K. This follows from Shapiro’s lemma, and the fact that C“(K »» R) can be written as
an induction of C"(K7, R) for K, C K,,.

Remark 0.1.23. We saw in §0.1.1 that Emerton’s completed cohomology (with coefficients in R)
can be computed as the cohomology groups of the complex RI'pos(Ykr ¢, R). Moreover, Emerton
proved that the completed cohomology groups are admissible representations of GL,(Q,,). By Part III
Proposition 14.5.3, this implies that the cohomology groups of RT e (Y c, R)' are nothing but the
locally analytic vectors of Emerton’s completed cohomology.

Similarly as for V, k¢, the pro-Kummer-étale sheaf A)’fkét can be constructed using the Hodge-Tate

period map, namely, A%

ket is the pullback by 7yt of the K,-equivariant constant sheaf A)’(“ over P!. In
order to interpolate the ES maps, we need to study the Hodge-Tate structure of the locally analytic

completed cohomology. More precisely, we want to study the complex

R oY g0, R) P2 =0 WQC = RE pyora( X KPK,» A)leét)@C .



General introduction

By the primitive comparison theorem, and a devisage in terms of finite local systems, we have that

Rrprokét(X KPK,> A/I\Zkét)@C = Rrprokét(X KPK),> A)l(a@ﬁ ),
and the sheaf A)l(‘@g is the pullback by myr of the K,-equivariant quasi-coherent sheaf A)l(‘@ﬁpl over
P!.

In the following we will construct interpolations of the maps of pro-Kummer-étale sheaves of
Theorem 0.1.10 by studying the restriction of the sheaves Aj(a@ﬁ]pl to overconvergent neighbourhoods
of 1 and wy in P!. In the process, we also construct sheaves of overconvergent modular forms 2 la
higher Coleman theory [ ]. We need some notations.

For an affine scheme Z over Q, let Z*" denote the analytification of Z to an adic space over
Spa(Q,,Z,). Let w € {1,wy} be an element in the Weyl group of GL,, and let us consider a basis
of K,-equivariant neighbourhoods U, (€) of [w] € P! converging to the K »-orbit of w. For instance, let

N (e) € N*" be the open subgroup of elements ((1) )16) with x =0 mod p¢, and let N(e) = woN(e)wy.

Then, we can take U,(e) = [I]N(G)K,, and U,,, = [woIN(€)K,. By [ , Theo. II1.3.18] the in-
verse images 7 (U, (€)) are affinoid perfectoid subspaces of X», and there are open affinoid spaces
X,.x,(€) C Xgrk, such that ﬂl‘vln Xy, (€) = n;I‘T(UW(e)). These affinoid spaces are overconvergent

neighbourhoods of the w-ordinary locus of Xk, i.e. the locus X ‘I){rf,g = Tkr (ﬂ;IIT( [WIK})).
Over the neighbourhoods U,,(€) we a a trivialization of the T-torsor Tz = N\ GL,, namely, by the
Iwahori decomposition we have isomorphisms of adic spaces

Ui(e) = N(e)Nk, and U, (€) = woN(e)Nk,,

we can then take a section to GL, whose image to Tp: gives the desired trivialization. It will be useful
to work with overconvergent neighbourhoods of the trivialization. More precisely, let § > 0 and let
7 (6) C T be the open subgroup of diagonal matrices which are congruent to the identity modulo p°.

Definition 0.1.24. We let 7,,51(6) be the K,-equivariant (left) Tk, 7 (6)-torsor over U,,(€) defined as
the quotient

NN (T, TO)N(ONK,)  ifw =1,

g1 (6) 1= N"\N" (T, T O)N (WK}, = {Nan\NanTKpT(a)wO(N(e)NKp) if w = wo.

The torsors 7, p1(6) admit a left Tx, 7 (6)-action x; and a right K, action %, we let C(7,,1(9))
denote the algebra of functions of 7, z1(6) over U,,(¢), this is an affinoid algebra over 0y, (., endowed
with locally analytic actions of Tk, and K,.

Definition 0.1.25. Let y : T k, — R* be a -analytic character, i.e. a character which extends to a
rigid function of Tk, 7 (6), we define the line bundle of weight y over U,,(€) to be the ﬁUW(E@R-line
bundle £,,(y) := C(7,,1(6))[=wo(x)«, ]. The sheaves L, (x) are independent of ¢ and e.

With these line bundles attached to locally analytic characters we can finally construct overconver-
gent modular sheaves

Definition 0.1.26. Let 7 : X, x,(€)cproer = Xy k,(€)can be the projection of sites. The pullback

i (Lw(x)) defines an E@R—line bundle over XWJ(I)(E)prOkét, we define the sheaf of overconvergent
modular forms of weight y over X,, k,(€)¢ to be the projection

0,)/]\;- = n*ﬂik—[T(l:w(X))

Xi
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Remark 0.1.27. The reader might ask why we did take the pushforward for the extension of scalars
to C if the overconvergent modular sheaves are objects that actually live over X, ,(€). The reason
is that, in order to descend to a Banach sheaf over X,k (€), we need to take a Tate twist. More
precisely, let us write y = (y1,x2), and let wi'™* be the overconvergent modular sheaf of weight
X1 —x2of [ 1 (equivalently be the sheaf w}' ™ = n.75:(L,(x1 — x2,0))). Let R(x>) be the Galois
representation given as the composition of the cyclotomic character and y,. We have that

afl\;" — a))gl—)(z Ok R(XZ)
We will keep working with the overconvergent modular sheaves wf' ™.

Let 2 = (kl,kz) € X*(T)Jr be a dominant weight, the maps w h g ﬁ(kl) - Vika ® ¢ and
Vaike ® 0 - w R g O (k») are the pullbacks by myr of the map of GL,-equivariant maps over P!

Lwo(D) = Vi® Oz and V, ® Opr — L(A).

They are attached to the highest weight vector injection 4 — V,, and the lowest weight vector quotient
V1 = wo(Q) respectively. Using this idea, we can construct interpolations by restricting to U,,(e€). The
construction is divided in two cases:

i. Over U (e), the sheaves A)l(“@ﬁul(e) and L;(y) can be constructed as the K,-equivariant sheaf
attached to the locally analytic representations wy(y) and A)’(“ of Bk, by a procedure analogous
to that of GL,-equivariant vector bundles. In particular, the highest weight vector map y — A)‘i
induces a K ,-equivariant map of sheaves L;(wy(y)) — A)l(“@ﬁ’m(e). The map y — A)l(“ factors
through the Nk, -invariants of A)’(“.

1. Let EK = NK Tx,. Over U,,(¢), the sheaves Al‘@ﬁ’y RE) and L, (y) are constructed from the
analytic BK -representations y and A’“ by taking as base point [wy] € U,,(€). In this case, we

have a BK -equivariant quotient map AI“ — x which factors through the N k,-coinvariants of
A This induces a map AY®@0y, (o — £WOCV).

Remark 0.1.28. The phenomena of taking invariants and coinvariants for different unipotent sub-
groups, depending on w, is just an incarnation of taking n°-cohomology, where n°(x) = x~! Lie Nx for
x € P!, is the horizontal unipotent Lie algebra. See §0.2.3 and §0.2.4 down below.

Taking pullbacks by myr and pushforwards to the analytic site we get the following theorem
Theorem 0.1.29 (Part Il Theo. 10.3.2). There are maps of pro-Kummer-étale sheaves
WO (y1) — A)lzkét@b’\ over X1, (€)
A)lzkét@ﬁ - wl™e 5’\(/@) over X, k,(€)

interpolating the two extremes of the Hodge-Tate filtration of Vaxa. Let n : Xk, cproket = Xk,.can be
the projection of sites. We have Galois equivariant maps

WP @R(y1) = R (AY ®0)x, o0 over Xix (€)

xokét

R (A" 80)\x, 1 00 = Wi 7 P8R(: — DI-1] over Xk, (€)-

Taking cohomology and cohomology with closed supports, we have interpolations of the ES maps
(0.1.6)

o ESY _—~ _ES B —
H), (Xgrg,c 0§ " )BR(1) — Hb oo (Yo, ADBC — H(X,y, k,(6), 0 @Ry — 1),

where the first is a cohomology group with closed supports as in [ ], and the third is a space of
overconvergent modular forms.
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More can be said about the overconvergent ES maps. For instance, one can define an action of
the U ,-operator on all the cohomologies involved, and show that ESy and ES 4 are U ,-equivariant.
Analogous staments hold for the pro-Kummer-étale cohomology with compact supports of A° > SE€
Part I1 §10.3 "

0.2. Generalization to Shimura varieties

In the generalization to Shimura varieties, we will study the Hodge-Tate structure of the locally an-
alytic completed cohomology. This requires a series of technical preparations which will reduce the
problem to the study of some D-modules over flag varieties.

The objects we work with are naturally topological Q,-vector spaces, in order to deal with com-
mutative algebra and topology we shall work in the category of solid Q,-vector spaces, defined by
Clausen and Scholze via condensed mathematics, c.f. [ ]. Moreover, the locally analytic com-
pleted cohomology is a complex which should be considered as a locally analytic representation of
the p-adic Lie group K,. In the joint work with Joaquin Rodrigues Jacinto [ ], we develop
a solid foundation of the theory of locally analytic representations. We use this theory in the cur-
rent paper to formalize the notion of a locally analytic representation in the derived category of solid
K ,-representations over Q,,, and to deal with the technical passage from group cohomology to Lie
algebra cohomology of the locally analytic vectors, see §0.2.1 for a brief introduction and Part III for
the complete document.

We also need to extend Lue Pan’s construction of the geometric Sen operator [ , §3.3 and
3.4] to arbitrary (log) smooth rigid analytic spaces, and to a larger class of sheaves. We use a gen-
eralized version of the Berger-Colmez’s Sen formalism [ ], which can be applied to semilinear
representations arising from locally analytic representations. Then, by a glueing process, we define
the geometric Sen operator as a Higgs bundle of &-modules which is related with the p-adic Simp-
son correspondence. We show in particular that the Sen bundle computes proétale cohomology in a
precise sense; this is one of the most important tools we use to understand the Hodge-Tate structure
of proétale cohomology. We refer to §0.2.2 down below for an introduction to the subject, and Part
IV Chapters 19 and 20 for a complete treatment.

Finally, we specialize to Shimura varieties. We compute the Sen operator, and prove that it arises
from a G-equivariant Lie algebra over the flag variety .#¢ = P,\G via the Hodge-Tate period map
nmyr- This provides a dictionary between Lie algebra cohomology of locally analytic sheaves over
F¢, and proétale cohomology of their pullbacks by myr. We consider the b = A isotypic part of the
locally analytic completed cohomology for the action of a Borel subalgebra, and invoking the previous
dictionary, we construct the overconvergent BGG maps by studying the Lie algebra cohomology of
the corresponding locally analytic sheaf over .#¢. See §0.2.3 and §0.2.4 for an introduction, and Part
IV Chapters 21-23 for the original work.

0.2.1. Solid locally analytic representations

Let G be a compact p-adic Lie group. The theory of locally analytic representations dates back to
the work of Lazard | ], Schneider-Teitelbaum [ , ], Emerton [ ], et. al. Roughly
speaking, a locally analytic representation of G on a complete locally convex Q,-vector space V is a
continuous representation such that, for all v € V the orbit map O, : G — V can be written as a power
series, locally for the choice of some coordinates of G. Using Emerton’s approach to define locally
analytic vectors, one can extend this notion to arbitrary solid Q,-vector spaces.

Let s#,06 be the proétale site of a geometric point, namely, the category of profinite sets with covers
given by finitely many jointly surjective maps.
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Definition 0.2.1 ([ , Def. 11.7] ). Let % be a category that admits all (small) colimits and finite
limits. The category of condensed ¢ ’-objects Cond(%) is the category of sheaves T : #pr0st — €.

Thus, one has the category of condensed sets Cond(Set), the category of condensed abelian groups
Cond(Ab), the category of condensed rings Cond(Ring), etc.

On the other hand, by [ , Prop. 1.2] there is a fully faithful embedding from the category of
compactly generated weak Hausdorff spaces to Cond(Set) given by mapping X to the condensed set

X wproge — Set, S = Cont(S, X).

In order to do algebraic geometry and p-adic functional analysis, Clausen and Scholze have con-
structed the category Solid(Z) of solid abelian groups. Let § = {ln S be a profinite set written as an
inverse limit of finite sets, we define

Definition 0.2.2. A solid abelian group is an object A € Cond(Ab) such that, for all § € *p,¢ one has
A[S] = Hom(Za[S ], A).

By Theorem [ , Theo. 5.8], the category of Solid abelian groups is an abelian full subcategory
of Cond(Ab) stable by colimits, limits and extensions. It satisfies some Grothendieck axioms, and the
objects Zg[S] for § € xpr0¢ form a family of compact projective generators. The category Solid(Z)
also has an internal Hom which is the same internal Hom of Cond(Ab), and a solid tensor product
®z.a- Furthermore, its derived category if the full subcategory of D(Cond(Ab)) of objects C such that
H'(C) € Solid(Z) for all i € Z. In addition, there is a symmetric monoidal solidification functor

(—)m : D(Cond(Ab)) — D(Solid(Z))

which is uniquely determined by (Z[S |)a = Za[S ] for all § € 04

We let Q, be considered as a condensed field via the functor X +— X. The field Q, can be written
as Q, = h_r)nn p"Zy,, and Z, = liins Z/p*. In particular, Q, € Solid(Z). We let Solid(Q,) denote the
category of Q,-modules in Solid(Z), we call Solid(Q,) the category of solid Q,-vector spaces. More
generally, for any ring A € Solid(Z) let us denote by Solid(A) the category of A-modules in Solid(Z),
and by D(A) the category of solid A-modules.

Definition 0.2.3. A solid G-representation over Q, is a G-module in Solid(Q,). Equivalently, let
QpalGl = ZalG] ®za Q, be the Iwasawa algebra of G. A solid G-representation is an object in
Solid(Q, u[G]).

In short, we have replaced the category of continuous G-representations on complete locally convex
Qp-vector spaces by the category Solid(Q,, u[G]), it has the advantage to be an abelian category stable
under all limits, colimits and extensions in the category of G-modules on condensed abelian groups.

Let us now discuss the notion of locally analytic representation. By the work of Lazard, a compact
p-adic Lie group G has local coordinates, this means that we can find a normal open subgroup Gy C G,
and elements gy,..., g € Gy such that:

1. The map ¢ : Z — G, sending (x1,...,x) = g}' ... g is a homeomorphism.

2. The multiplication law (g, h) — gh™! is written as a power series with bounded coefficients in
the coordinates .
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The choice of ¢ allows us to embed G in a rigid analytic group G as a Zariski dense subspace. The
group G is constructed by adding polydiscs of radius 1 around each coset of G/Gy. Moreover, we
can define a decreasing family of rigid analytic groups G c G with (), G” = G, where each G" is
constructed by adding finitely many polydiscs of radius p™" in cosets G/ Ggh (modulo a rescaling of
the valuation of G(). We have the following definition

Definition 0.2.4. We let C(G", Q,) be the ring of global functions of G, and let
DG, Q,) = Hom,, (C (G™,Q,), Q,) be the algebra of h-analytic distributions.

The ring C(G",Q,) has a natural structure of analytic ring in the sense of [ , Def. 7.4]
provided by its subring of bounded functions. We let C(G", Q,)q denote this analytic ring structure.

Definition 0.2.5. Let V € Solid(Q,a[G]). The derived G™-analytic vectors of V is the G-solid
representation

" —an h
‘/RG = RHOI’HQP’_[G] (Qp’ (V ®Qp,l C(G(l )9 Qp)l)*1,3)a

where ®q, uC (GP, Qp)a 18 the base change of analytic rings (see [ , Prop. 7.7]), and the * 3
action is given by g x13 f(x) = g f(g'x) (see [ ] for a precise definition). The G-module
structure on VRE”'~ is induced by the right regular action *, on C(G®,Q,). We let V"~ =

HO(VRE"=an) denote the G™-analytic vectors of V. We also define VA6 = li_r)nh VRE"=an (4 e the

derived locally analytic vectors of V, and V¢~ = HO(VRGa) the locally analytic vectors.

When V is a Banach representation (or an LF representation in more generality), the previous
definition coincides with the one of Emerton [ ].
The following theorem relates the locally analytic vectors with the distribution algebras

Theorem 0.2.6 (Part III Theo. 14.3.9). Let V € Solid(Q,, u[G]), then

RGM—an _ (h)
1% = RHom, _-(D"(G,Q,). V),

where we see D (G, Qp) as a Q, u[G]-module via the left multiplication.

The Theorem 0.1.3 is an application of the adjunction of the shriek functors for the map G —
Spa(Q,,Z,). An informal way to read the previous theorem is that the G™-analytic vectors of V are
those for which the action of G enhances to an action of D(G, Q,). In order to relate locally analytic
vectors with modules over distribution algebras we need to consider a variant of G®. Let G¥" =
Upsn G”) be the Stein neighbourhood of G by adding open polydiscs of radius p~" on finitely many
cosets. Let us denote by C(G"",Q,) = lim C(G",Q,) its global functions and by D"(G,Q,) =

Hom,, (C (G",Q,),Q,) the algebra of G*-analytic distributions. Notice that

Z)(hﬂ(G, Qp) — li_r)ni)(h')(G, Qp)

h>h
The algebra D""(G, Q,) has the advantage to be a localization of Q, 4[G], namely, that

D(k*)(G’ Qp) ®{(‘2;>,-[G] D(},*)(G’ Qp) = D(}”)(G, Qp)’

see [ , Prop. 5.9]. In particular, D(D"(G, Q,)) is a full subcategory of D(Q,[G]). Let us
define the derived G"-analytic vectors of V to be

VRG(h+)—an = Rlim VRG(h,)—an
— k]
h>h

we set V&' -an = [O(yRE"—any
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Hence, Theorem 0.2.6 implies that

() _
yRE" —an — RHom

—Qp,l [G] (D(]1+)(G’ Qp)’ V) .

We obtain the following corollary

Corollary 0.2.7. A solid G-representation V over Q,, is G -analytic (i.e. ver = V) if and only if
it is derived G")-analytic (i.e. V"’ = V) if and only if V € Solid(D" (G, Qp)).

In other words, the notion of being an analytic representation (for an open radius of analyticity) is
equivalent to being a module over a distribution algebra! This fact suggests the following definition

Definition 0.2.8. The category Solidg, (G') of solid locally analytic representations is the full subcat-
egory of Solid(Q, u[G]) generated by all the DG, Qp)-modules for all 7 > 0. We define derived
category DQP(G’“) of locally analytic representations of G to be the derived category of Solidg, (G").

Remark 0.2.9. Being precise, one first has to define the categories of k-small locally analytic represen-
tations for « an uncountable strong limit cardinal, and then take colimits along all the «, this requires
the use of co-categories. The previous definition does not appear in [ ], and the study of the
derived category DQP(G’“) is still work in progress with J. Rodrigues Jacinto.

One has the following corollary

Corollary 0.2.10. A representation V € Solid(Q, a[G]) is locally analytic (i.e. VE=" = V) if and only
if it is derived locally analytic (i.e. VR®™ = V) if and only if V € Solidg, (G™).

We can finally state the cohomological comparison theorems which are going to be applied in Sen
theory

Theorem 0.2.11 (Part III Theo. 15.2.1 and 15.2.3 ). Let V € Solid(Q,a[G]), we have quasi-
isomorphisms of solid Q,-vector spaces

—_la —la
RHom,, ;(Qy, V) = RHom, :(Q,, V*™) = RHom, ;. ;(Q,, V)7,

where in the last equality we use the fact that RHom, . -(Q,, VRG=Iay s a smooth representation of
G, and that taking G-invariants is exact for smooth G representations in characteristic 0 since G is
compact.

0.2.2. Geometric Sen theory over rigid spaces: the p-adic Simpson
correspondence

We go back to rigid analytic geometry. For simplicity in the exposition we are only going to discuss
the case of rigid spaces, all the relevant constructions and the main theorems extend to log adic spaces
as is shown in Part IV §20.

Let (K, K") be a complete nonarchimedean extension of Q, with K a discretely valued field, let

C = K be the p-adic completion of an algebraic closure of K. Let X be a smooth locally noetherian
adic space over Spa(K, K*), we let O™ and 0 denote the completed and uncompleted sheaves of
Xproa Tespectively. Let Q; be the sheaf of differential forms of X. Let us begin with the statement of
the main theorem of Part IV §20, we need a definition.

Definition 0.2.12. A proétale O-module .7 over X is said relative locally analytic if there is an étale
cover {U;};¢; of X such that, for all i, the restriction .# |, admits a p-adically complete &*-lattice ,?io,
and there is € > 0 (depending on i) such that %/ p® =% &, 0/ p*.
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Theorem 0.’2\.13 (Part IV Theo. 20.1.15). Let .% be a relative locally analytic O-module over X.
There is an O-linear map _
O :F - F Q0 0(-1)
called the Sen operator of .%. The map 0x satisfies the following properties
1. The formation of 6y is functorial on % and compatible with pullbacks.
2. Ox is a Higgs bundle, namely, 6x N 0x = 0.
3. Let v : Xcprost — Xc @ be the projection of sites, then
Rv.(%) = v.RI (0, F).
In other words, R'v,.F = v.H'(RT (0, F)).

4. Letn : Xcprost = Xcan be the projection of sites. If in addition we can take the cover {U,}ic; to
be a cover in the analytic topology, then

The property of being a relative locally analytic 0-module might look a bit mysterious. Never-
theless, these sheaves arise naturally when studying locally analytic vectors of proétale cohomology.
Let us explain in which context they appear. Let G be a compact p-adic Lie group and X — X a
G-torsor (e.g. take X a finite level modular curve and X the perfectoid modular curve). Let V be a
Qp-Banach locally analytic representation of G, for example, we can take V = C(G,Q,) for some
group affinoid neighbourhood G of G. Then V defines a proétale sheaf Vi over X by descending the
G-representation V along the torsor X - X. By Part IV Corollary 17.2.6, there is a lattive V° C V,
€ > 0, and an open subgroup Gy C G, such that Gy stabilizes V?, and that the action of Gy on V°/p¢
is trivial. Therefore, the proetale £-module Vet®ﬁ is a relative locally analytic sheaf. Indeed, the
restriction of V t®6’ to Xg, := X /Gy satisfies the conditions of Definition 0.2.12. Furthermore, in this
situation we have a more refined result

Theorem 0.2.14 (Part IV Theo. 20.1.15). | We keep the previous notation. Let ¢ = Lie G endowed
with the adjoint action, and let V be a Q,-Banach locally analytic representation of G. We have an
action of g on V by derivations. Then, the Sen operator 0x of Vé;ég factors through a morphism of
sheaves '

72 @ Z 00l e0(-1) > Zo0L e b(-1)
where the second map is induced by the derivation g ® V. — V, and 0 is the Sen operator of the

G-torsor X — X: _ _
0:0 — g ®Qy® O(-1). (0.2.1)

Moreover, let 11 : X¢prost — Xcan be the projection of sites. Then Rm(V@ﬁ ) = n.(RI(6, Veo ).

As an example of the previous theorems, let’s perform the construction of the Sen operator for the
simplest case of a torus T = Spa(K(T*'y, K*(T*'y).

One of the main ideas of [ ] is to use the axiomatic framework of Sen theory a la Berger-
Colmez [ ], to compute proétale cohomology of O-sheaves over T. Let .7 be a relative locally
analytic sheaf over T, suppose in addition that U = T satifies the condition of Definition 0.2.12.
In other words, there is a p-adically complete lattice . #° C .%, and € > 0, such that .#°/p¢
b, o /re.

We want to compute the (geometric) proétale cohomology RI proe(Tc, -#). Let

T,k = Spa(K(T*'/7"y, K*(T*"""y),
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and let T, x = @ T, x be the preperfectoid torus. The perfectoid torus T, ¢ is a Galois cover of T¢

with group I' = Z,,(1). By Scholze’s almost acyclicity of &*/p in affinoid perfectoid spaces [ ,
Prop. 7.13], one deduces that

R poei(Te, %) = RHomp(Q), # (Teo 0)).
Using Theorem 0.2.11 one has

Rrproét(TC, F) = RHomr(Qp, y(TW’C)RF—la)
= RHOInLie]—(Qp’ ﬁ(Tm’c)Rr—la)l".

In other words, we have separated the problem of computing proétale cohomology in three steps:
first, we need to compute the derived locally analytic vectors of .# (T« ). Second, we take the Lie
algebra cohomology of .# (T ), and finally, we take the I'-invariants of a smooth representation.

Let us focus in the first step which seems to be the more subtle. For n > m there are normalized
traces

mn

R . C(T*P"y — c(T*!""y

where R}, = 5 Yl epnrypr 0 These extend to Tate traces
Ry, : C(T*77y — (117"

such that, for any f € C(T*!/P"), the sequence (R, (f)), converges to f. Furthermore, the tuple
(C(T*'/P"),T) satisfies the Colmez-Sen-Tate axioms of [ ], see Part IV §19.1 for a generalization.

Let ({,»), be a compatible system of primitive p-th power roots of unity, and let y : Z, = I be
the induced isomorphism. Using ¢ we define the affinoid group G, which is a copy of the additive
group of radius p™ (i.e. G,(Q,) = p"Z,). We will keep using the expression “p"I'-analytic” instead
of G,-analytic. The following theorem is a generalization of [ , Prop. 3.3.1] to relative e-analytic
representations, it can be seen as a decompletion theorem a la Kedlaya-Liu [ ].

Theorem 0.2.15 (Part IV Theo. 19.3.3). There exists m >> 0 depending on € such that
F (Teoc) = CCT* V7Y@ a1y T (Too o).
Moreover, we have that

F (T = F(Towe) ™ = ﬁ_f>nC(Til/pn)@qul/pm>9(Tm,c)pmr‘“”,

n

The previous theorem shows that, under certain conditions on .%#, the derived locally analytic vec-
tors of .# (T ) are concentrated in degree 0, and that all the relevant information is already encoded
in the p"I'-analytic vectors for some m >> 0. In particular, we have that

RTprost(Toocs ) = RT1ier(Qy, F(Too ) M. (0.2.2)

Thus, the problem of computing proétale cohomology has been reduced to a problem of computing
Lie algebra cohomology. The module .% (T, ¢)? T~ is not mysterious at all, it is basically the p-adic
Simpson correspondence of .%, see Part IV §20.2.3 for a discussion in this direction.

Now, the action of Lie I' is C(T*!/7")-linear and I'-equivariant. It induces a [-equivariant C(T*!/7")-
linear action on .%# (T ) by extending scalars. Moreover, this action is Galg-equivariant, where Galg
acts on Lie I via the cyclotomic character. On the other hand, we can identify Lie ' ® C(T*!/7") =
QLY (T) ® C(T*'/P"y ® Z,,(1). This shows that the action of Lie " defines an O'-linear map of proétale
sheaves over T _

0:: Q.70 0(1) > 7,
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equivalently, it defines the Sen operator
Or: F > F o0l O-1).

Thus, the equation (0.2.2) implies that Rn.(#) = n.R[(0x, %), obtaining Theorem 0.2.13 for the
torus.

Remark 0.2.16. The notion of relative locally analytic O-module given in this document is ad hoc,
but it suffices for the main objective of the paper. We believe that there should be a (derived) category
of solid relative locally analytic &-modules over X for which Theorem 0.2.13 holds.

0.2.3. The classical BGG decompositions of Shimura varieties

We specialize to Shimura varieties. Let G be a reductive group over Q and (G, X) a Shimura datum.
Let E be the reflex field of (G, X) and i : G,, — G a fixed Hodge cocharacter. Let K C G(Ag) be a
neat compact open subgroup and Shg/ Spec E the canonical model of the Shimura variety of level K.
The complex points of Shg is the locally symmetric space

Shg(C) = G(Q\X X G(Ag)/K.

For simplicity in the exposition, let us suppose that the Shimura varieties are compact, and that the
maximal Q-rational non split subtorus in the center of G which is R-split is trivial. The second
condition guarantees that, if K* C K is an open normal subgroup, then Shx, — Shy is a Galois cover
of group K/K'.

From now on we fix K? C G(Ag’p ) a neat compact open subgroup, and given K, C G(Q,,) compact
open subgroup we let Shx,k, denote the Shimura variety of level K”K),. Let L/Q,, be a finite extension
for which G is split, and such that there is an immersion £ — L. We will let Shg; denote the
analytification of the L-extension of scalars of the Shimura variety Shg.

Consider the infinite level-at-p Shimura variety Shg»; = li;nK Shgrk, 1, it is a proétale right K-
p
torsor over Shgri, - Let Rep,(G) be the category of algebraic representations of G over L. Given

V € Rep, (G) we denote by V the proétale local system over Sh» k.. defined as
Vs = Sh[(pJJ XK” V.

By [ ], the sheaves Vi are de Rham, and the associated filtered vector bundle with integrable
connection Vgg, which is provided by the p-adic Riemann-Hilbert correspondence, is compatible with
the formation of the Betti local system over Shg»x,(C), and the classical Riemann-Hilbert correspon-
dence.

Let P, and Pf}d denote the parabolic subgroups

P,={geG,| 1in3 Ad(u(t))(g) converges}
-
Pztd ={g e Gy | tlirg Ad(u(1))(g) converges}.

Equivalently, let Fil, (1) and Fil®(u) be the decreasing and ascending filtrations of Rep, (G) defined as

where V = P iz Vi 18 the decomposition in isotypic components with respect to the action of u, with
u(ryv = t*v for t € G,, and v € V;. Then P, (resp. Pffd) is the parabolic subgroup stabilizing Fil,(u)
(resp. Fil*(u)). We let M, be the centralizer of y in G;.
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The Hodge filtration Fil® of the vector bundle Vgr defines a right Pf}d—torsor P;‘,‘fm, we let M, 4r
denote its pushforward by the map Pj}d — M,,. It will be convenient to consider M, qr as a left
M ,-torsor by redefining the action mx := xm™' for (m,x) € M, X M, qr. Thanks to the p-adic
Riemann-Hilbert correspondence, we can define an ascending Hodge-Tate filtration for Vg ® 0, see
Part IV §22.1.1. The graded pieces of the Hodge filtration and the Hodge-Tate filtration are related
by the formula

gr (Ve ® 0) = gr' Vg ® O(—i). (0.2.3)

Let FL = P,\G; and FL* = PY\G_ be the flag varieties, and denote by .7 and F their

analytification to adic spaces over Spa(L, O, ). The Hodge-Tate filtration defines a G(Q,)-equivariant
map of diamonds over Spd L (c.f. [ D

0 . Qpo
ﬂ'HT.Sl’le’L

— F°,

inducing a morphism of ringed topoi 7yt : (Shgvr 1 prosts 5) — (P, O 7). Therefore, similarly as in
the case of the modular curve, the map myr pullbacks G-equivariant quasi-coherent sheaves over %€ to
G(Q,)-equivariant 0-modules over Shgr 1. We will identify the pullback 77;(V) of a G-equivariant
quasi-coherent sheaf V with the proétale #-module over Shgri, . obtained by descending 7j,.(V)
along the K),-torsor ng, : Shir 1 — Shgek, 1.

Let N, c P, be the unipotent radical and M, 7, = N,\G_, the natural M,,-torsor over .%{. The equa-
tion (0.2.3) provides an isomorphism of G(Q,)-equivariant tosors over Shg» ;. (see Part IV Corollary
22.1.5)

ﬂ';IT(M#,y[) = ﬂ";(p(M,u,dR) xH Zp(—l)x. (0.2.4)

Let us explain what this isomorphism means in terms of automorphic sheaves. Let B C P, be a Borel
subgroup and T C B a maximal torus contained in My, let Byy, = M, N B be the Borel subgroup of
M,,. We let X*(T)" and X *(T)f(,[# denote the cone of dominant characters for G, and M, respectively.
Given A € X*(T)* (resp. k € X*(M,)*) we let V, (resp. W,) denote the irreducible representation of
G of highest weight A (resp. the irreducible representation of M,, of highest weight «). We let W and
Ww, denote the Weyl groups of G, and M, respectively, and let wy € W and won, € W, denote the
longest elements.

Definition 0.2.17. Letk € X *(T)f{a,,-

1. We define the G-equivariant vector bundle of weight « over .Z¢ to be W(x) = G xt« WY

—wo(k)*

Equivalently, denote k : M, 7y — .#( and let %, be the left regular action of M,, on k*(ﬁMﬂm),
then

W(k) = k(Owm, 5)[—wo(K)x]

where we take isotypic parts with respect to Byy, .

2. We define the automorphic vector bundle of weight x over Shg» K,.L tO be M(k) = M, ar XMy
wY Equivalently, let f : M qr — Shgrk, 1, then

-wo(K)*

M) = fi(Om, ) [=Wo(K) 4, 1.
Thus, the equation (0.2.4) says that

(W) = M) ® Glwo(K)(w)). (0.2.5)

Remark 0.2.18. The convention on ‘W (k) is made in such a way that, if 1 € X*(T)*, the global sections
['(Ft, W(AQ)) are isomorphic to V,. Thus, myr preserves the weights between G-equivariant vector

bundles of .#¢ and automorphic vector bundles. In the notation of [ ] we have M(x) = (VYWO(K).
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Our strategy to give a local proof of the classical Hodge-Tate decompositions of the proétale co-
homology of the local systems V¢ (see. [ ]), is first to compute the pullback by myr of all the
G-equivariant vector bundles over .%¢, and then apply this construction to the dual BGG resolution.

Recall that the category of G-equivariant vector bundles over .#¢ is equivalent to the category
Rep, (P,) of algebraic representations of P,. By (0.2.5), we already know how the semisimple rep-
resentations of P, are transformed via myr, it is left to understand the pullback of non-semisimple
representations. Let &'(N,) be the ring of algebraic functions of N, it is endowed with an action of
M,, by conjugation, and with the right regular action of N,. This provides an action of P, on O(N,).
Let O(P,) be the ring of algebraic functions of P, endowed with the right regular action, we have an
isomorphism as P,-modules

o®)= B Wnew,eoN,),

XD,

where P, acts trivially on (W}),. Therefore, it suffices to compute the pullback by myr of the G-
equivariant sheaf associated to &'(N,,). We have the following theorem

Theorem 0.2.19 (Part IV Theo. 22.2.2). Let O'(N,) be the G-equivariant quasi-coherent sheaf over

P defined by O(N,), and let O(N,)s' c O(N,) denote the subrepresentation of polynomials of
degree < 1. Let gr' OB}, be the Faltings extension of Shyrk, 1, and OC = g’ OB the Hodge-Tate
period sheaf. We have a short exact sequence of P,-representations

0—-L— 0N, - (LieN,)" — 0, (0.2.6)

where we see (LieN,)" as homogeneous linear forms of N,. Then, the pullback by myr of the G-
equivariant complex associated to (0.2.6) is isomorphic to (minus) the Faltings extension

0> 0 — grlﬁBgR ® 5(—1) - Q'® 5(—1) — 0,

where Q! is the sheaf of differentials of Shy» k,- laking n-th symmetric powers and colimits as n — co
we have a natural isomorphism

nr(O(N,)) = OC.

Having understanding the pullbacks of G-equivariant sheaves over .#¢ by myr, we can prove the
BGG decomposition for the local systems V), . Let us briefly introduce the dual BGG resolution, we
let g, p, p and m denote the Lie algebras of G, P, P;td and M, respectively.

Definition 0.2.20. Letx € X *(T)qu be a dominant weight for the Levi subgroup. The Verma module
of (g, p) of weight « is the coinduction

Ver%(K) = U(g) ®ue) Wa-
We let (Ver%(lc))v denote the admissible dual of m-finite vectors.

Remark 0.2.21. As in the case of GL,, the Verma module Ver%(K) is an object in the relative category

OP, cf. Part IV Definition 21.3.9. Its admissible dual is an object in the category O, in particular, the
action of p integrates to an Ind-algebraic action of P,. As P,-modules we have

(Verl(k)" = W) ® O(N,) = Weyyyi0 ® O(N,).

Definition 0.2.22. Let A € X*(T):r be a dominant weight for G;. Let BGG(—w((1)) be the BGG
resolution of V) in the category O°

0— Ver%(—wO,M#(wgq" ) > - @ Ver%(—wo,Mﬂ(w D)= > Ver%(—wo,M#(/l)) - V] -0,

weMuw
t(w)=k

where
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1. MW is the set of minimal length representatives of Wy, \W, and ¢ is the length function of W.

2. Let p be the sum of the positive roots with respect to the Borel B, then w - k = w(k + p) — p is
the dot action.

3. whl € MW is the longest element.
The dual BGG resolution of V) is the admissible dual BGG"(—wy(1)) of the BGG resolution of VY.

Remark 0.2.23. In Part IV Corollary 21.3.22 we show that the dual BGG resolution of V), is iso-
morphic as P,-module to the following complex concentrated in degrees [0, d], with d = dim %€ =
dim Sh:

BGG" (-wo() = W, ® ON,) = - > P Wya® ON) > -+ > W ® ON,).

weMuw
(w)=k

We can finally state the main theorem of this section

Theorem 0.2.24 (Part. IV Theo. 22.2.6). Let A € X*(T)* be a dominant weight. Let BGG" (—w((1))
be the dual BGG resolution of V, and BGG" (—wq(Q)) its associated G-equivariant complex over FL.
The following hold

1. The Hodge-Tate dual BGG complex F;IT(BGGV(—W()(/U)) is a resolution of V, 4 ® 5 whose k-th
term is isomorphic to

D M (=wow - 1)) ® ET(w - Aw).

weMuw
t(w)=k

2. Letng, : Shg» K,.Cproét = Shgr K,.Can be the projection of sites. Then

Riti,«(Vaa ® 0) = P M’ (=wo(w - 1)) @ Cow - A)[~L(w)].

weMuw

Taking analytic cohomology and applying the primitive comparison theorem we obtain the
Hodge-Tate BGG decomposition

H} s (Shiog,c. Vi) © C = D Hir ™ (Shyok, e MY (=wo(w - 1)) @ COw - ). (0.2.7)

weMuw

0.2.4. The geometric Sen operator of Shimura varieties and the
overconvergent BGG maps

Using Theorem 0.2.19 one can compute the Sen operator of the Shimura varieties Shgrg, .. Let us
denote by g, p, 1, m, b, by, and [) the Lie algebras of G, P, N, M, B, By, and T respectively. We
let n° and p° be the subbundles of &z ® g given by 1 = G, xP«» nand p° = G, xP» p. Equivalently,
n® and p° are the subbundles whose fiber at x € .Z( is equal to Lie ¥ 'n¥ and X' pX respectively, with
X € Gy any lift of x. The lie algebra g acts on Oz by derivations, this induces an action of the Lie
algebroid 0z ® g. Since FL = P,\G,, one easily shows that P’ C Oz ® g acts trivially on 0 z.

Let Shgrp = hm Shg» Ky be the infinite-at-p level Shimura variety, it is a proétale K,-torsor of

Shirk,.L- Theorem 0 2.14 says that the Sen operator of the torsor Shg» ; is given by a map of proétale
sheaves - _

0:0 - ga®Q' ® 0(-1),
or equivalently, . .

0: Q" ®0(1) > g4® 0.

The following is a consequence of Theorem 0.2.19.
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Theorem 0.2.25 (Part IV Theo. 22.2.1). The Sen operator 8 of the K ,-torsor ng, : Shgr — SthKp,L
is isomorphic to the pullback by myt of the niorphism of G;equivariant vector bundles W’ € Oz ® g.
In other words, the Sen operator 6 : QY ® O(1) — g4 ® O factors through

QVeO(1) — 9400

SO

(),

and the map Q" ® o (1) - 73,0 (n°) is an isomorphism of proétale sheaves.

The previous theorem provides a way to compute proétale cohomology of Shirk,c in terms of
Lie algebra cohomology. More precisely, let V be a locally analytic representation of K, and V the
proétale sheaf over Shg», k,.. it defines. Let g, : Shgr K,.C.proét — Shgr k,.Cc.an D€ the projection of sites,
Theorem 0.2.13 implies that

Rk, (Ve ® O) = i, T (RTOC, V ® O 3)).

Applying this result to the sheaf V = C*(K),, L) endowed with the left regular action %, one obtains
the following generalization of [ , Theo. 4.4.6]

Theorem 0.2.26 (Part IV Theo. 22.3.16 ). Let & é“h be the subsheaf of locally analytic sections of
@Shl(l’,aan for the action of G(Q,). Let Rl“pmét(Sth,C,L)l“ := Rlprost(Shirk, c Cl”(Kp,L)ét) be the
locally analytic completed cohomology with coefficients over L. We have a Gal, X G(Q,)-equivariant
quasi-isomorphism

RT proe(Shio ¢, L)*®.C = RTu(Shgo c, O%). (0.2.8)

Remark 0.2.27. Let us briefly justify the equality (0.2.8). We denote C*(K ,, ) = C'“(K,, L)4s®0. By
Theorem 0.2.25 we know that Rijg, .(C*(K,, 0)) = 1k, .(RT(n°, C"(K,, 0 7))) where n” acts via the

* 3-action gx 3 f(h) = gf(g"'h). ButRT(n’, C(K,, ﬁgrQ) is equal to the invariants Cé“(Kp, ﬁy{»)"glﬁ =0
by the Poincaré lemma. This implies that Rk, .(C*(K ,, 0)) = ng, .5 (C(K,p, Oz)"™15 =) is concen-

. . .. . % a ng =0
trated in degree 0. Taking colimits as K, — 1, one can show that the sheaf h_n}Kp_)l UKP,,JTHT(CI (Kp, Oz¢) *1377)
is equal to & fg"h. Finally, taking analytic cohomology over Shg» ¢ one recovers (0.2.8).

As a corollary one deduces a rational version of the Calegari-Emerton conjectures (cf. [ ]
and [HJ20])

Corollary 0.2.28 (Part IV Coro. 22.3.17 ). The completed cohomology complex RI proe(Shir ¢, Q))
is concentrated in degrees [0, d].

A sketch of the proof of the previous corollary is the following: first, since the completed coho-
mology groups are admissible representations of G(Q,), in order to prove vanishing for degrees > d,
it is enough to prove the vanishing for the locally analytic completed cohomology. Then, Theorem
0.2.26 implies that the locally anlaytic completed cohomology can be computed as the analytic co-
homology of some sheaf over Shg» . But the topological space |Shg» | can be written as an inverse
limit of noetherian spaces of dimension d (e.g. by writing |Shg» ¢| as the inverse limit of the formal
models of finite level Shimura varieties). One obtains the vanishing by Grothendieck’s bound on the
cohomology of noetherian spaces, c.f. [ , Coro. IV. 2.2].

We finish this introduction with the definition of the overconvergent BGG maps, generalizing The-
orem (.1.29. To motivate this construction, let us write down the classical BGG decomposition inde-
pendently of K,,, we need some more notation:
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Definition 0.2.29. The space of algebraic functions of g with coefficients in L is the colimit of the
spaces of locally algebraic functions C¥¢(g, L) = lim 1Cl“lg(Kp,L)- Analogously, the space of

locally analytic functions of g with coefficients in L is the colimit C(g, L) = li_r)nK 1 C"(K,,L).
p—

Convention. Let (91(],)1(], be a family of proétale sheaves over Shyrk, ;. with compatible transition
maps f/’KplsflK,,K],}vL — F, for K, C K,. Letng, : Shirk,cprost = Shirk, can be the projection of
sites. Let us write .% = li_r)nK F, for a formal inductive limit of the F , we define

4

RUprosi(Shgv ¢, F) i= ll_n)l Rrproét(ShKl’Kp,C’ 919) and Rie.(F) = li_f)nRT]Kp,*(pr),
K,—1 K,

where the last is a sheaf in the analytic site of Shg» .

Let 1 € X*(T)* be a dominant weight, it is not hard to check that V, = C98(g, L)*=""@W a5
g-module via the left regular action %, compare with equation (0.1.7). Hence, we have that

=-wp(4d)

a Dy .
Rrproét(ShKl’,C’ C lg(g’ L)étz ) = h_H}RFprOét(ShKPKp,Ca V/l,ét)-

K

Thus, in order to interpolate the BGG decomposition (0.2.7), we have to study the isotypic parts of
the locally analytic completed cohomology for the action of the Borel subalgebra b. Let 1 : ) — C be
a (not necessarily algebraic) character, by applying the primitive comparison theorem and projecting
to the analytic site, one finds that

=-wo(D)\=

RTprosc(Shio ¢ LY*R=""VGC := R proei(Shio e, C(s, L)y~ " y&C
= Rl pros(Shi ¢, C(g, 0)"=Y)
= RTan(Shgv ¢, RNjo . C(s, E)b*f—wou)).

Theorems 0.2.13 and 0.2.25 allow us to compute the projection
Rijes .C(g, )= = g i (RT(, L, C1(g, O0) =70,

This suggests that the overconvergent BGG maps should appear naturally by studying the locally
anlaytic sheaf RT(n§, |, C"(q, O5)*>=7"W) over F¢. This is indeed the case, and the maps are
parametrized by the Bruhat stratification of .#¢.

Letw € M«W and let C,, = . \P,wB be the w-Bruhat cell of #(. Fori = 0,...,d = dimSh =

dim .%¢ denote
Yi = I_I CW.
weMu W
L(w)=>i
We have an open filtration of #¢: 0 c Y, Cc Y;.; C ---Yy = %€ with graded pieces Y;\Y;;; =
|_|weMll w CW'
tw)=i

Definition 0.2.30 (Part IV §18). For w € MW we let j, : n5(C,,) C Shg» ¢ be the inclusion. Let &
be a sheaf over Shg» ¢, we define the following cohomology with compact supports

ch,w(ShKl’,Ca rg.) = Rran(ShKf’,C’ jw,!jg;l g)
We have the following theorem

Theorem 0.2.31 (Part IV Theo. 23.2.1). Consider the open filtration O C n\(Y,) C -+ C mp(Yo) =
Shgrc.
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1. We have
R pro(Shio ¢, L™= WQC = RT(Shr.c, Ot "),

2. For w € MW the complex j;vl(ﬁ?éRb:_WO(l)) is concentrated in degrees [0,d — €(w)].

3. Let (w) = womwwy be the involution of MW so that £( w)) = d — {(w). There are surjective
highest weight vector maps

. -l la,Rb=—w(d O 1
Ty Ja (O ") = CMY, | ) Men =700 [— )],

where C(Mj(w) Gr) IS an overconvergent automorphic sheaf endowed with an horizontal left

regular action % of m.

4. There is an spectral sequence

EM = @D HI(Shio e, 04" = H (RT pos(Shic ¢, L)“F= VO,
weMuw
tw)=p
and overconvergent BGG maps induced by (',

BGGi() : RT ) Shxo.c, O ") = RT0(Shigr.c, COMY ) )™ =N D) ()],

Many other interesting properties can be said about the locally analytic completed cohomology. For
example, it admits an arithmetic Sen operator which is given by the horizontal action of 8, = Lie u
(Part IV Theo. 22.3.18). We expect that the BGG maps are the only terms contributing to the
b = —wy(Q) isotypic part of the locally analytic completed cohomology for generic A. Further-
more, we expect that if A is algebraic, the cohomologies RI. ) (Shkr ¢, ﬁg;Rb:_WOM)) can be com-
pletely described in terms of overconvergent automorphic forms. The idea behind is that the complex
RI(n°, C"(g, O 7,)*+>=""@W) has an additional horizontal action by the centralizer Z(m) of the en-
veloping algebra of m. The action of Z(m) is determined, via a polynomial equation, by the action
of the center Z(g) of the enveloping algebra U(g), which is given by the infinitesimal character y,.
Then, imposing some regularity conditions on A, we can take isotypic parts for the action of Z(m)
obtaining a more refined complex; this is still work in progress.

0.3. An overview of the thesis

This thesis is divided in four Parts, each one corresponds to a different paper of the author. Because of
this, the notations might differ all across the document. Each part has its own introduction, we hope
this helps the reader who is interested in a particular work addressed in this thesis.

Parts I, II and III are divided in sections, and their sections are divided in subsections. Part IV is
divided in chapters, the chapters are divided in sections, and the sections are divided in subsections.

Part | is the content of the paper [ ], it studies the integral model of the perfecoid modular
curve and its relation with completed cohomology. Part II is the submitted version of [ ], it
concerns the overconvergent Eichler-Shimura maps of the modular curve. Part III is a joint work with
Joaquin Rodrigues Jacinto [ ], it develops the theory of solid locally analytic representations
of a compact p-adic Lie group. Part IV is a paper in preparation, it involves geometric Sen theory of
rigid spaces, and the construction of the overconvergent BGG maps for Shimura varieties.
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Part I.

An integral model of the perfectoid
modular curve



1. Introduction

Throughout this document we fix a prime number p, C, the p-adic completion of an algebraic closure
of Q,, and {{u}men C C, a compatible system of primitive roots of unity. Given a non-archimedean
field K we let Og denote its valuation ring. We let Fp be the residue field of Oc, and Zp = W(F[,) cC,
the ring of Witt vectors. Let Z3° and Z; denote the p-adic completions of the p-adic cyclotomic
extensions of Z, and Zp in C, respectively.

Let M > 1 be an integer and I'(M) c GL,(Z) the principal congruence subgroup of level M. We
fix N > 3 an integer prime to p. For n > 0 we denote by Y(Np")/ Spec Z, the integral modular curve
of level I'(Np") and X(Np") its compactification, cf. [ ]. We denote by X(Np") the completion
of X(Np") along its special fiber, and by X(Np") its analytic generic fiber seen as an adic space over
Spa(Q,, Z,), cf. [ ].

In[ ], Scholze constructed the perfectoid modular curve of tame level I'(N). He proved that
there exists a perfectoid space X(Np™), unique up to a unique isomorphism, satisfying the tilde limit
property

X(Np*) ~ {%1X(Np )»
see definition 2.4.1 of [ ] and definition 2.4.2 of [ ].

The first result of this paper is the existence of a Katz-Mazur integral model of the perfectoid
modular curve. More precisely, we prove the following theorem, see Section 3 for the notion of a
perfectoid formal scheme

cyc

Theorem 1.0.1. The inverse limit X(Np™) = 121 X(Np") is a perfectoid formal scheme over Spf Z;

whose analytic generic fiber is naturally isomorphic to the perfectoid modular curve X(N p®).

The integral perfectoid modular curve X(N p™) was previously constructed by Lurie in [ ], his
method reduces the proof of perfectoidness to the ordinary locus via a mixed characteristic version
of Kunz Theorem. The strategy in this paper is more elementary: we use faithfully flat descent to
deduce perfectoidness of X(Np*) from the description of the stalks at the Fp—points. Then, we deal
with three different kind of points:

e The ordinary points where we use the Serre-Tate parameter to explicitly compute the deforma-
tion rings, cf. [ , §2].

e The cusps where we have explicit descriptions provided by the Tate curve, cf. [ , §8-10].

e The supersingular points where even though we do not compute explicitly the stalk, one can
proves that the Frobenius map is surjective modulo p.

It worth to mention that the study of the ordinary locus in Lurie’s approach and the one presented in
this document are very related, see Proposition 2.2 of | ] and Proposition 2.2.2 down below.

As an application of the integral model we can prove vanishing results for the coherent cohomology
of the perfectoid modular curve. Let E*"/X(N) be the semi-abelian scheme extending the universal
elliptic curve over Y(N), cf. [ ]. Lete : X(N) — E*" be the unit section and wg = e*Q}Em JXV)
the sheaf of invariant differentials. For n > 0 we denote by wg, the pullback of wg to X(Np"), and
D, c X(Np") the reduced cusp divisor. Let k € Z, we denote w}, | = w3’ and of,, = wf (=D,).
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Let w , be the pullback of wj; to X(Np*), and wj , ., the p-adic completion of the direct limit of

k

the cuspidal modular sheaves wy, , .-

Lyc

In the following we consider almost mathematics with respect
to the maximal ideal of Z;;

— )k k + _ T + ; ;
Theorem 1.0.2. Let = wy , or Wy, ., and F,7 = F @by, Oxy ) There is an almost quasi-
isomorphism of complexes

RI . (X(Np®™), 7-7) ~% RI(X(Np™), F).
Moreover, the following holds

1. The cohomology complex RT'(X(Np®™), F) is concentrated in degree 0 if k > 0, degree [0, 1] for
k =0, and degree 1 if k < 0.

2. qu keZandi,s > 0, we have H(X(Np™), F)/p* = H(X(Np>),F |/ p*) and
H'(X(Np*),F) = liLﬂs H'(X(Np>), F | p°).

3. The cohomology groups H(X(Np®), ) are torsion free.

Next, we use Serre duality and Pontryagin duality to construct a local duality theorem for the
modular curves at finite level. In the limit one obtains the following theorem

Theorem 1.0.3. Let X, be the connected component of X(Np");  defined as the locus where the

Weil pairing of the universal basis of E[N] is equal to {y. We denote X, = linn X,. Let ¥ = w’g’m or

k

k — 0k
Cll’ldﬁ - wE,n or wE,n,cusp

W o cusp respectively. There is a natural GL,(Q,)-equivariant isomorphism

Homzj;"” H' (X, F), ZZyC) = lﬂl H'7(X,, F. ® w?:",n,cuw)’

nTr,
where the transition maps in the RHS are given by normalized traces, and F,) is the dual sheaf of F,,.

Finally, we specialize to the case # = Ox, where the completed cohomology appears. Let
X, be a connected component of X(Np"); as in the previous theorem. Let /i > 0 and let H =
hm l1m Het(ch ,Z|p*Z) be the completed i-th cohomology group, where X,c, = X, Xgpec?,(24)
Spec C " Note that this is a slightly different version of Emerton’s completed cohomology [ 1,
where one considers the €tale cohomology with compact supports of ¥, c, C X, c,. Nevertheless, both
cohomologies are related via the open and closed immersions Y, C X, D D,. Following the same

ideas of [ , §4.2] one can show that ﬁ"@ZpOcp is almost equal to H (X 0,Cp> ﬁ;m), in particular
it vanishes for i > 2 and H® = Z,. Using the theorem above we obtain the following result

Theorem 1.0.4. There is a GL,(Q))-equivariant almost isomorphism of almost Oc,-modules

Homo, (H'®z,0c,,Oc,) =* lim H (X, WF o cusp)-

n,Tr,

The outline of the paper is the following. In Section 2 we recall the construction of the integral
modular curves at finite level; they are defined as the moduli space parametrizing elliptic curves
endowed with a Drinfeld basis of the torsion subgroups, we will follow [ ]. Then, we study
the deformation rings of the modular curves at R,—points. For ordinary points we use the Serre-Tate
parameter to describe the deformation ring at level ['(Np"). We show that it represents the moduli
problem parametrizing deformations of the p-divisible group E[p™], and a split of the connected-
étale short exact sequence

0 E — E[p™] = E[p™]” — 0.
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For cusps we refer to the explicit computations of [ , §8 and 10]. Finally, in the case of a
supersingular point we prove that any element of the local deformation ring at level ['(Np") admits a
p-th root modulo p at level [(Np").

In Section 3 we introduce the notion of a perfectoid formal scheme. We prove Theorem 1.0.1
reducing to the formal deformation rings at Fp—points via faithfully flat descent. We will say some
words regarding Lurie’s construction of X(Np®). It is worth to mention that the tame level I['(N) is
taken only for a more clean exposition, by a result of Kedlaya-Liu about quotients of perfectoid spaces
by finite group actions (Theorem 3.3.26 of [ 1), there are integral models of any tame level.

In Section 4, we use Serre and Pontryagin duality to define a local duality pairing for the coherent
cohomology of vector bundles over an Ici projective curve over a finite extension of Z,,.

In Section 5, we compute the dualizing complexes of the modular curves at finite level. We prove
the cohomological vanishing of Theorem 1.0.2 and its comparison with the cohomology of the per-
fectoid modular curve. We prove the duality theorem at infinite level, Theorem 1.0.3, and specialize
to = Ox_ to obtain Theorem 1.0.4.



2. A brief introduction to the Katz-Mazur
integral modular curves

Let N > 3 be an integer prime to p and n € N. Let I'(Np") C GL,(Z) be the principal congruence
subgroup of level Np".

2.1. Drinfeld bases

We recall the definition of a Drinfeld basis for the M-torsion of an elliptic curve

Definition 2.1.1. Let M be a positive integer, S a scheme and E an elliptic curve over S. A Drinfeld
basis of E[M]is a morphism of group schemes y : (Z/MZ)*> — E[M] such that the following equality
of effective divisors holds

EMI= »  yab). 2.1.1)

(a,b)E(Z/MZ)?

We also write (P, Q) = (¥/(1,0), (0, 1)) for the Drinfeld basis .

Remark 2.1.2. The left-hand-side of (2.1.1) is an effective divisor of E/S being a finite flat group
scheme over S. The right-hand-side is a sum of effective divisors given by the sections ¥(a, b) of S
to E. Furthermore, if M is invertible over S, a homomorphism ¢ : Z/M7Z — E[M] is a Drinfeld basis
if and only if it is an isomorphism of group schemes, cf. [ , Lem. 1.5.3].

Proposition 2.1.3. Let E/S be an elliptic curve. Let (P, Q) be a Drinfeld basis of E[M] and ey :
E[M] x E[M] — py the Weil pairing. Then ey (P, Q) € uy,(S) is a primitive root of unity , i.e. a root
of the M-th cyclotomic polynomial.

Proof. | , Theo. 5.6.3]. O

Let M > 3. From Theorem 5.1.1 and Scholie 4.7.0 of [ ], the moduli problem parametrizing
elliptic curves E/S and Drinfeld bases (P, Q) of E[M] is representable by an affine and regular curve
over Z. We denote this curve by Y (M) and call it the (affine) integral modular curve of level T'(M).
By an abuse of notation, we will write Y (M) for its scalar extension to Z,.

The j-invariant is a finite flat morphism of Z,-schemes j : Y(M) — Al . The compactified

integral modular curve of level T'(M), denoted by X(M), is the normalization of P in Y(M) via the
J- 1nvar1ant The cusps or the boundary divisor D is the closed reduced subscheme of X(M) defined
by ;= 0. The curve X(M) is projective over Z, and a regular scheme. We refer to X(M) and Y(M)
simply as the modular curves of level I'(M).

Let E,.,/Y(M) be the universal elliptic curve and (P,iyn, Quniv.r) the universal Drinfeld ba-
sis of E,;y[M]. Let ®y(X) be the M-th cyclotomic polynomial, and let Z,[u},] denote the ring
Zp[ X1/ (DPy(X)). The Weil pairing of (Pypiv.pm, Quniv,u) induces a morphism of Z,-schemes

ey : Y(M) — Spec Z,[uy].

The map e), extends uniquely to a map ey : X(M) — Spec Z,[u},] by normalization. In addition,
ey 1s geometrically reduced, and has geometrically connected fibers.
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Taking N as in the beginning of the section, and n € N varying, we construct the commutative
diagram

s X(Np™) ——— X(Np") —— X(Np™) —— -

l l l

o = Spec(Zpluy i) —> Spec(Z,luy 1) —> Spec(Zyluy D) — -+,
the upper horizontal arrows being induced by the map

(Puniv,Np"+1 s Quniv,Np”“) 4 (pPuniv,Np"+1 > pQuniv,Np””) = (Puniv,Np" > Quniv,Np”)’

and the lower horizontal arrows by the natural inclusions. In fact, the commutativity of the diagram
is a consequence of the compatibility of the Weil pairing with multiplication by p

ENprl (ppz,miv,Np”*1 > pQuniv,Np”+1 ) = énpr (Pum'v,Np" s Quniv,Np” )p

cf. Theorems 5.5.7 and 5.6.3 of | ].

2.2. Deformation rings at F,-points

Letk = Fp be an algebraic closure of F,. Let {{y,}.enr be a fixed sequence of compatible primitive
Np"-th roots of unity, set {,, = { xpn- Let Zp = W(k) denote the ring of integers of the p-adic
completion of the maximal unramified extension of Q,. In the next paragraphs we will study the
deformation rings of the modular curve at the closed points X(Np™)(k). We let X(N p”)zp denote

the compactified modular curve over Zp of level I'(Np"). Proposition 8.6.7 of [ ] implies that
X(Np");, = X(Np") Xspecz, Spec Z.

There is an isomorphism Zp[,uf\,pn] = [Tz~ Zl,[§ »1 given by fixing a primitive N-th root of
unity in Z,,. Let X(N p”)%p be the connected component of the modular curve which corresponds to
the root {y. In other words, X(N p")%p is the locus of X(N p”)zp where ey (Punivnprs QuaivNpr) = Enpr-

We denote P™ := N Pyivnpn and o" =N Quniv N p-

univ univ

Finally, given an elliptic curve E/S, we denote by E the completion of E along the identity section.

The ordinary points

Let Art; be the category of local artinian rings with residue field k&, whose morphisms are the local
ring homomorphisms compatible with the reduction to k. Any object in Art;, admits an unique algebra
structure over Zp. Let Zp [{,»]- Arty denote the subcategory of Art, of objects endowed with an algebra
structure of Zp [£,»] compatible with the reduction to k. Following [ ], we use the Serre-Tate
parameter to describe the deformation rings at ordinary k-points of X(Np") .

Let Ey be an ordinary elliptic curve over k and R an object in Art,. A deformation of Ey to R is a
pair (E,¢) consisting of an elliptic curve E/R and an isomorphism ¢ : E Qg k — E;. We define the
deformation functor Ellg, : Art, — Sets by the rule

R = {(E,1) : deformation of Ey to R}/ ~ .

Then Ellg, sends an artinian ring R to the set of deformations of E, to R modulo isomorphism.

Let Q be a generator of the physical Tate module T,E¢(k) = T,(Eo[p™]?). Let G,, be the mul-
tiplicative group over ZP and @m its formal completion along the identity. We have the following
pro-representability theorem
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Theorem 2.2.1. [ , Theo. 2.1]

1. The Functor Ellg, is pro-representable by the formal scheme
Homg, (T, Eo(k) ® T,Eq(k), G,).

The isomorphism is given by the Serre-Tate parameter g, which sends a deformation E /R of E,
to a bilinear form _
q(E/R;-,) : TyEo(k) X T,Eo(k) = Gu(R).

By evaluating at the fixed generator Q of T ,E(k), we obtain the more explicit description
Ellg, = Spf(Z,[[X1])
where X = q(Euniv/ EHEO; Q7 Q) - 1

2. Let Eq and Ej be ordinary elliptic curves over k, let ny . Ey — E( be a homomorphism and
ny : Ej — Ey its dual. Let E and E’ be liftings of Ey and E, to R respectively. A necessary
and sufficient condition for ny to lift to a homomorphism n : E — E’ is that

q(E/R;a, ' (B)) = q(E’|R; (), B)
forevery a € T,E(k) and 8 € T,E’ (k).
We deduce the following proposition describing the ordinary deformation rings of finite level:

Proposition 2.2.2. Let x € X(N p”)% (k) be an ordinary point, say given by a triple (Ey, Py, Qo), and
P
write (P("), Q(()")) = (NPy, NQy). Let A, denote the deformation ring of X(N p")% at x. Then there is
'p

an isomorphism § 5
Ay = 2L IXNT/ (A + T = (1 + X)) = Z,[Z][[T]] (2.2.1)

such that:

i. the map (2.2.1) is Zp[gpn]—linear.
ii. the variable 1 + X is equal to the Serre-Tate parameter q(E,,;,/Axz; O, Q);

iii. the variable 1 + T is equal to the Serre-Tate parameter q(E’ . |As, (") (Q), (") (Q)) of the

universal deformation n : E,,;, — E’ . of the étale isogeny ny : Ey — Ey/Cy, with Cy =
Eo[p"]“.

’
univ

Proof. The group scheme E,[N] is finite étale over k, which implies that a deformation of (Ey, Py, Qo)
is equivalent to a deformation of (Ey, P(()"), é")). The group SL,(Z/p"Z) acts transitively on the set of
Drinfeld bases of Ey[p"] with Weil pairing {,,». Without loss of generality, we can assume that Pg‘) =0
and that Qg’) generates Ey[p"](k), see Theorem 5.5.2 of [ ]. Let E,,;;, denote the universal elliptic
curve over A, and C C E,,;,[p"] the subgroup generated by Qi’;)iv, it is an étale group lifting the étale

group Cy = Ey[p"]*. The base P™ 0" ) provides a splitting of the exact sequence

univ’ univ
Q(")
univ

— ‘RN
0 —> Eum'v H Euniv[pn] > CO > 0.

Conversely, let R be an object in Zp [£,»]- Art and E/R a deformation of Ej. Let C be an étale subgroup
of E[p"] of rank p". Then there exists a unique Q™ € C reducing to Qf)") modulo the maximal ideal.

By Cartier duality, there is a unique P € E[p"] such that e(P™, Q™) = £,.. The pair (P™, Q™) is
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then a Drinfeld basis of E[p"] lifting (P{", 01" (cf. Proposition 1.11.2 of [ 1). We have proved
the equivalence of functors of Zp [{n]- Arty

{Deformations E of Ey and

Drinfeld bases of E[p"] } s { Deformations E of E, and } I~

with Weil pairing £, étale subgroup C C E[p"] of rank p”

We also have a natural equivalence
Deformations E of E, and Jm s Deformations of the étale isogeny /~
étale subgroup C C E[p"] of rank p” o Ey — Ey/Cy )
(1)

univ

Let E;m.v/zp[{ »1[[T1] denote the universal deformation of Ey/Cy. The universal étale point Q

induces an étale isogeny of degree p" over A,

’
univ

ﬂ:Euniv - F

lifting the quotient 7y : Ey — E/Cy. Furthermore, the dual morphism n* : E/ . — E,,; induces an

isomorphism of the physical Tate modules o' : T,E’ . (k) S T,E,.i(k). Let Q € T,E,;;,(k) be the

fixed generator, and Q" € T,E’ . (k) its inverse under n'. Theorem 2.2.1 implies
Q(Euniv; Q’ Q) = Q(Euniv; Q7 ﬂ'l(Q,)) = Q(E;nwa ﬂ'(Q)’ Q,) = Q(E;nlw Q,’ Q,)pn-

We obtain the isomorphism

Ay =2 Z X TN/ + TY = (1+ X)) = Z,[ 11T
where X = g(Eni; @, Q) — 1and T = g(E,,,; O', Q") — 1. =

univ’®

Remark 2.2.3. Let x € X(Np")(k) be a closed ordinary point. The special fiber of the map ey, :
X(Np") — SpecZ,[un,] is a union of Igusa curves with intersections at the supersingular points
[ , Theo. 13.10.3]. The Igusa curves are smooth over F, [ , Theo. 12.6.1], which implies
that the deformation ring of X(Np") at x is isomorphic to a power series ring Zp[[Tn]] (cf. discus-
sion after Remark 3.4.4 of [ ]). The content of the previous proposition is the explicit relation
between the variables 7, in the modular tower, see also Proposition 2.2 of [ ].

The cusps
Let Tate(q)/Z,((q)) be the Tate curve, we recall from [ , Ch. 8.8] that it has j-invariant equal to
1/g+744 + --- .

We consider the ring Z,[[q]] as the completed stalk of Plzp at infinity. The Tate curve provides a
description of the modular curve locally around the cusps, for that reason one can actually com-

pute the formal deformation rings by means of this object, see [ ] and [ ]. In fact, let
Cusps[I'(Vp")] be the completion of the modular curve X(Np"); along the cusps. From the theory
developed in [ , Ch. 8 and 10], more precisely Theorems 8.11.10 and 10.9.1, we deduce the

following proposition:

Proposition 2.2.4. We have an isomorphism of formal Zp[[q]]—schemes

Cusps([T(Np")]) = | ] SPEZ,15,111g""™"" 1D.

AeHomSurj(Z/Np"Z)%,ZINp"Z)/+1
The morphism Cﬂs\ps[l"(N phH] — Cﬂs\ps[l" (Np™")] is induced by the natural inclusion
A 14 | (R | Pt [ R

on each respective connected component.
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The supersingular points

Let (x, € X(N pn)Zp)neN be a sequence of compatible supersingular points and E the elliptic curve
defined over x,. We denote by A, the deformation ring of X(N p”)Zp at x,. Let E,;;, /A, be the

universal elliptic curve and (P(u';)iv, QEZ)I.V) the universal Drinfeld basis of E,,;,[p"]. We fix a formal

parameter T of Euiv. Since x, is supersingular, any p-power torsion point belongs to Eoniv. We will
use the following lemma as departure point:

Lemma 2.2.5. [ , Theo. 5.3.2]. The maximal ideal of the local ring A, is generated by T(Pi’;)iv)
and T(Q™.).

univ

By the Serre-Tate Theorem [ , Theo. 1.2.1], and the general moduli theory of 1-dimensional
formal groups over k [ I, the deformation ring of X(N); at a supersingular point is isomorphic
to Z,,[[X]]. Moreover, the p-multiplication modulo p can be written as [p](T) = V(T?) mod p, with
V € k[[X]][[T]] the Verschiebung map V : E(()’7 N E,. Without loss of generality we assume that V
has the form

V(T)=XT+---u(X)T" +-- -,

with V(T) = T? mod X. Using the Weierstrass Preparation Theorem we factorize V(T') as
V(T)=TX +---a(X)T"" (1 + XTR(X, T)), (2.2.2)
where @1(0) = 1 and R € k[[X, T]].

Proposition 2.2.6. The parameter X is a p-power in A,, [p. Moreover, the generators T(P™.) and

T(Q™ ) of the maximal ideal of A,, are p-powers in A, /p.

univ

Proof. The second claim follows from the first and the equality [p](T) = V(T?) mod p. Consider
n = 1 and write P = Pz(Aln)iv and 0= OV LetF: Ey — E(()”) and V : Ef)") — E, denote the Frobenius

and Verschiebung homomorphisms respectively. Using the action of GL,(Z/pZ), we can assume that
P and F(Q) are generators of ker F' and ker V respectively (cf. Theorem 5.5.2 of [ 1). We have

the equality of divisors on E? | (A, /p)

univ

p-1
kerV = Z[i - F(Q)]. (2.2.3)
i=0

The choice of the formal parameter 7 gives a formal parameter of E'” such that T(F(Q)) =T(Q).

univ

Therefore, from (2.2.3) we see that the roots of V(T)/T are {[i]”(T(Q)")}<i<p-1 Where [i]?)(T) is the
i-multiplication of the formal group of E'” 'We obtain from (2.2.2)

univ*®

X i p-1 ‘ p-1 ‘ P
2o = 0 ];[([z](”)(T(Q)”)) = (D[l](T(Q))] :
proving that -£- is a p-power in Ay, /p. As k[[X]] = k[[X/@#(X)]] we are done. O

n(X)

Corollary 2.2.7. The Frobenius ¢ : 11_n>1n A, /p— h_r)nn A, /p is surjective.

Proof. By induction on the graded pieces of the filtration defined by the ideal (T(P"), T(Q")), one
shows that A, /p is in the image of the Frobenius restricted to A,, , /p. m]



2. A brief introduction to the Katz-Mazur integral modular curves

Remark 2.2.8. The completed local ring at a geometric supersingular point x of X(Np") is difficult
to describe. For example, its reduction modulo p is the quotient of the power series ring k[[X, Y]] by
some explicit principal ideal which is written in terms of the formal group law of E at x [ , Theo.
13.8.4]. Weinstein gives in [ ] an explicit description of the deformation ring at a supersingu-
lar point of the modular curve at level ['(Np®). In fact, Weinstein finds an explicit description of
the deformation ring at infinite level of the Lubin-Tate space parametrizing 1-dimensional formal
Ok-modules of arbitrary height. In particular, he proves that the m, -adic completion of the direct
limit li_n}n A, is a perfectoid ring. The Corollary 2.2.7 says that the p-adic completion of h_n)ln A, 1is
perfectoid, which is a slightly stronger result.

10



3. Construction of the perfectoid integral
model

3.1. Perfectoid Formal spaces

In this section we introduce a notion of perfectoid formal scheme which is already considered in
[ , Lemma 3.10], though not explicitly defined. We start with the affine pieces

Definition 3.1.1. An integral perfectoid ring is a topological ring R containing a non zero divisor &
such that p € 7R, satisfying the following conditions:

i. the ring R is endowed with the m-adic topology. Moreover, it is separated and complete.
ii. the Frobenius morphism ¢ : R/7R — R/n”R is an isomorphism.
We call r satisfying the previous conditions a pseudo-uniformizer of R.

Remark 3.1.2. The previous definition of integral perfectoid rings is well suited for p-adic comple-
tions of formal schemes. We do not consider the case where the underlying topology is not generated
by a non-zero divisor, for example, the ring W(F,)[[X"/?", Y'/?"]] which is the (p, X, ¥)-adic com-
pletion of the ring W(F,)[X'/?", Y!/P"]. As is pointed out in Remark 3.8 of [ ], the notion of
being integral perfectoid does not depend on the underlying topology, however to construct a formal
scheme it is necessary to fix one.

Let R be an integral perfectoid ring with pseudo-uniformizer &, we attach to R the formal scheme
Spf R defined as the m-adic completion of Spec R. We say that Spf R is a perfectoid formal affine
scheme. The following lemma says that the standard open subschemes of Spf R are perfectoid

Lemma 3.1.3. Let f € R. Then R(f~!) = lim R/m"[f~"] is an integral perfectoid ring.

Proof. Letn,k > 0, as m is not a zero divisor we have a short exact sequence
k
0— R/ 5 R/ = R/7* > 0.
Localizing at f and taking inverse limits on n we obtain

0 R 5 RUY - RIZTS™M - 0.

Then R(f!) is m-adically complete and 7 is not a zero-divisor. On the other hand, localizing at f the
Frobenius map ¢ : R/m — R/n” one gets

¢ R/alf™'] = R/’ [f 7] = R[]
which proves that R(f~') is an integral perfectoid ring. O

Definition 3.1.4. A perfectoid formal scheme X is a formal scheme which admits an affine cover
X = |J; U; by perfectoid formal affine schemes.

11



3. Construction of the pertfectoid integral model

Let F be equal to Q, or F,((#)), O denote the ring of integers of F' and @ be a uniformizer of OF.
Let 3nt-Perfy,, be the category of perfectoid formal schemes over Or whose structural morphism is
adic, i.e. the category of perfectoid formal schemes X/ Spf O such that @wO% is an ideal of definition
of O%. Let Perfr be the category of perfectoid spaces over Spa(F, Or).

Proposition 3.1.5. Let R be an integral perfectoid ring and n a pseudo-uniformizer. The ring R[}T]
is a perfectoid ring in the sense of Fontaine [ |. Furthermore, there is a unique “generic fiber”
functor

(=), : Int-Perfy, — Perfr
4 4

X a perfectoid formal schenﬁ{e over O, its generic fiber is universal for morphgms from perfectoid
spaces to X. Namely, if Y is a perfectoid space and (Y, 05) — (X, O%) is a morphism of locally
and topologically ringed spaces, then there is a unique map Y — X, making the following diagram
commutative

extending Spf R ~» Spa(R[=],R*), where R* is the integral closure of R in R[—]. Moreover, given

Y. O3 —— (X,.0%)
N

(%’ ﬁX)

Remark 3.1.6. The universal property of the functor (-), is Huber’s characterization of the generic
fiber of formal schemes in the case of perfectoid spaces, see [ , Prop. 4.1].

Proof. The first statement is Lemma 3.21 of [ ]. For the construction of the functor, let X
be a perfectoid formal scheme over Or. One can define X, to be the glueing of the affinoid spaces
Spa(R[Eif], ,R*) for Spf R C X an open perfectoid formal afine subscheme, this is well defined after
Lemma 3.1.3.

We prove the universal property of the generic fiber functor. Let Y € Perfg and let f : (Y, O}) —
(X, O%) be a morphism of locally and topologically ringed spaces. First, if Y = Spa(S, S*) is affinoid
perfectoid and X = Spf R is perfectoid formal affine, f is determined by the global sections map
J* 1 R — S7. Then, there exists a unique map of affinoid perfectoid rings f; : (R[é],RJf ) — (S5,8%)
extending f*. By glueing morphisms from affinoid open subsets for a general Y/, one gets that X,, :=
Spa(R[é], R") satisfies the universal property. For an arbitrary X, one can glue the generic fibers of
the open perfectoid formal affine subschemes of X. O

We end this subsection with a theorem which reduces the proof of the perfectoidness of the integral
modular curve at any tame level to the level I'(Np®).

Theorem 3.1.7 (Kedlaya-Liu). Let A be a perfectoid ring on which a finite group G acts by continuous
ring homomorphisms. Then the invariant subring AS is a perfectoid ring. Moreover, if R C A is an
open integral perfectoid subring of A then RC is an open integral perfectoid subgring of A°.

Proof. The first statement is Theorem 3.3.26 of [ ]. The second statement follows from the
description of open perfectoid subrings of A as p-power closed subrings of A°, i.e open subrings of
A’ such that x” € R implies x € R, see Corollary 2.2 of [ ]. m|

3.2. The main construction

Let X(Np™) denote Scholze’s perfectoid modular curve [ ]. Let Z,° be the p-adic completion
of the p-adic cyclotomic integers h_r)n Zpluyy]. Let X(Np") be the completion of X(Np") along its
special fiber. We have the following theorem

12
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Theorem 3.2.1. The inverse limit X(Np~) := lilnn X(Np") is a p-adic perfectoid formal scheme, it

admits a structural map to Spf Z;[uy], and its generic fiber is naturally isomorphic to the perfectoid
modular curve X(Np*). F urthermore letn > 0, let Spec R € X(Np") be an aﬁine open subscheme,
Spf R its p-adic completion and Spf R the inverse image in X(N p™). Then Re (R [= ]) and

_ 1 -
(Spf R..), = Spa(Roo[l—?],Roo).

Remark 3.2.2. The previous result gives a different proof of Scholze’s theorem that the generic fiber

X(Np®) is a perfectoid space by more elementary means.

Proof. The maps between the (formal) modular curves are finite and flat. Then X(Np*) := l(in X(Np")
is a flat p-adic formal scheme over Z,. Fix ny > 0, let Spec R € X(Np™) and Spf Rc X(Np™) be as

in the theorem. For n > ny, let Spec R, (resp. Spf R,) denote the inverse image of Spec R (resp. Spf R)

in Spec X(Np") (resp. X(Np")). Let R, := h_r)n R, and let R, be its p-adic completion.

Claim. R, is an integral perfectoid ring, equal to (Ew[é])?

Suppose that the claim holds, it is left to show that X(Np®), is the perfectoid modular curve
X(Np®). There are natural maps of locally and topologically ringed spaces

(X(NDP"), Oxinmy) = (X(ND"), Oxnpm).

We have X(Np™) ~ yiln X(Np™), where we use the notion of tilde limit [ , Def. 2.4.1]. Then,
by p-adically completing the inverse limit of the tower, we obtain a map of locally and topologically
ringed spaces

(X(ND®), Oxypy) = (X(NP®), Ox(NpP®)).

This provides a map f : X(Np*~) — (X(Np*)),. Since

(SPf Rew)y = Spa(Re[1/pl, Re) ~ lim Spa(R,[1/p1, R,

n

and the tilde limit is unique in the category of perfectoid spaces [ , Prop. 2.4.5], the map f is
actually an isomorphism. O
Proof of the Claim. First, by Lemma A.2.2.3 of [ ] the ring (k\n[ll—?])" is the integral closure of
R, in its generic fiber. By Lemma 5.1.2 of [ ] and the fact that R, is a regular ring one gets

that k\n = (k\n[%])" for all n > ny. As R is faithfully flat over R, for all n, one easily checks that
R N En[%] = R,. Moreover, R., is integrally closed in its generic fiber, and by Lemma 5.1.2 of /oc.
cit. again one obtains that Eoo is integrally closed in E [ 1] Letx € ﬁ [ L] be power bounded in ﬁ [ L]

then px' € R.. for all s € N, in particular {px*}sen C R which 1mp11es that x € R This shows that
hm R, is dense in (R [ ])°, taking p-adic completions one gets R, = (R [L ])

The Weil pairings evaluated at the universal Drinfeld basis (P,m,v Np's Qumv ~pr) of E[Np"] induce
compatible morphisms X(Np") — SpfZ,[un,»]. Takmg inverse limits one gets the structural map
X(Np*) — Spf Z;“[un]. In particular, there exists 7 € R such that 77 = pa witha € Z). To prove
that R is integral perfectoid we need to show that the absolute Frobenius map

¢:Ro/m— R./p

is an isomorphism. The strategy is to prove this fact for the completed local rings of the stalks of
Spec R,/ p and use faithfully flat descent.

13
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Injectivity is easy, it follows from the fact that R, is integrally closed in R.,[1/p]. To show that

@ is surjective, it is enough to prove that the absolute Frobenius is surjective after a profinite étale

base change. Indeed, the relative Frobenius is an isomorphism for profinite étale base changes. Let

S = R®g, Z and let § = R®Z Z be the p-adic completion of S. We use similar notation for
Ly

Sy =R, ®z, S S o and S «- We have to show that the absolute Frobenius
oS8/ > So/p

is surjective.

Let x = (X5, Xpgs1> 7" > Xn,-+) bE @ Fp-point of Spf §w which is an inverse limit of Fp-points
of Spf §n. Write x,, simply by xo. Then, it is enough to show that ¢ is surjective after taking the
stalk at x. Let S, be the localization of S, at the prime x, and S, = h_r)n Snx,. Let S/,; be the
completlon of S,., along its maximal ideal. Recall that the ring S, is finite flat over §, this implies
thatSnx = Snx ®s,, Sxo

The scheme X(Np") is of finite type over Z,, in particular every point has a closed point as
specialization. Thus, by faithfully flat descent, we are reduced to prove that for every Fp—point
x€eSpfS/p= @SpfSn/p, the LST;()—base change of

/2 S<>0,x/7r_> SOO,x/p

is surjective (even an isomorphism). We have the following commutative diagram

@®id —

oox/ﬂ'®$x(J Sxo —> Soox/p ®<,DSXO Sxo
I I
M S, /10— (S, /P &5 S x)-

The ring R, is of finite type over Z, so that the absolute Frobenius ¢ : R,/m — R,/p is finite. This
implies that S, /p is a finite S ,,-module via the module structure induced by the Frobenius. Then,
the following composition is an isomorphism

nxn/p®¢,s S — hrnSnx [(p, ") = S, /D,
where my is the maximal ideal of §,,. Thus, we are reduced to prove that the absolute Frobenius
@ h_r)n S, [T — h_r)n S,/ p 18 surjective. Finally, we deal with the cusps, the supersingular and
the ordinary points separately; we use the descriptions of Section 2:

¢ In the ordinary case, the local ring S/n\x is isomorphic to Zp[§ »1[[X,]]. From the proof of
Proposition 2.2.2, one checks that the inclusion S, ,, — § ,:L\xnﬂ is givenby X, = (1+X,,,1)"—1.
Then, one obtains the surjectivity of Frobenius when reducing modulo p.

e The supersingular case is Corollary 2.2.7.

e Finally, if we are dealing with a cusp x, the ring S/n: is isomorphic to Z,[Z,1[[¢""?"]] and
Sux, =S ,:1? ., 1s the natural inclusion by Proposition 2.2.4. The surjectivity of ¢ is clear.

14



3. Construction of the pertfectoid integral model

3.3. Relation with Lurie’s stack
In this subsection we make more explicitly the relation between Lurie’s construction of X(Np*) and
the one presented in this document. The key result is the following theorem

Theorem 3.3.1 ( [ , Theo. 1.9]). Let m € Z,[u,2] be a pseudo-uniformizer such that n” = ap
where a is a unit. For n > 3 there exists a unique morphism 0 : X(Np™)/n — X(Np"~")/p making the
following diagram commutative’

X(Np"/p —E— X(Np")/n
|
X(WNp™H/p —£ ¥(Np"")/n

where ¢ is the absolute Frobenius.

This tlleorem can be deduced from the local c_omputations made in Section 2. Indeed, let x,, €
X(Np")(F)) be a F,-point and x,_; € X(N p”‘l)(IF'p) its image. We have proven that there exists a
unique map of the deformation rings at the points x,_; and x,

0 : ﬁx(zvp"-l),xn,l/P - ﬁx(Np"),xn/ﬂ

making the following diagram commutative

—_ (p* —_—
OxNpy | P $———— Oxvpmy, I T

T

—_— (p* —_—
OxNp-1yun [P S Oxuprty,, I

This corresponds to Propositions 2.2.2, 2.2.4 and 2.2.6 for x, ordinary, a cusp and a supersingular
point respectively. Then, one constructs 6 using faithfully flat descent from the completed local rings
to the localized local rings at x,,, and glueing using the uniqueness of 6.

!'The assumption n > 3 is only to guarantee that &(X(Np"~!)) contains 7.

15



4. Cohomology and local duality for
curves over O

Let K be a finite extension of Q,, and Ok its valuation ring. In this section we recall the Grothendieck-
Serre duality theorem for local complete intersection (Ici) projective curves over Ok, we will follow
[ ]. Then, we use Pontryagin duality to define a local duality paring of coherent cohomologies.

Let X be a locally noetherian scheme and D(X) the derived category of Oy-modules. We use
subscripts ¢, gc on D(X) for the derived category of Ox-modules with coherent and quasi-coherent
cohomology, the subscript f7'd refers to the subcategory of complexes with finite Tor dimension.
We use superscripts +, —, b for the derived category of bounded below, bounded above and bounded
complexes respectively. For instance, D?(X) 7,4 is the derived category of bounded complexes of Oy-
modules of finite Tor dimension and coherent cohomology. If X = Spec A is affine, we set D(A) :=
D,.(X), the derived category of A-modules.

Definition 4.0.1. Let f : X — Y be a morphism of schemes.

1. The map f is embeddable if it factors as X 5 S — Y where ¢ is a finite morphism and § is
smooth over Y.

2. The map f is projectively embeddable if it factors as composition X 5 P} — Y for some n > 0,
where ¢ a finite morphism.

3. The map f is a local complete intersection if locally on Y and X it factors as X 58 5 Y,
where § is a smooth Y-scheme, and ¢ is a closed immersion defined by a regular sequence of S .
The length of the regular sequence is called the codimension of X in §.

Theorem 4.0.2 (Hartshorne). Let f : X — Y be a projectively embeddable morphism of noetherian
schemes of finite Krull dimension. Then there exist an exceptional inverse image functor f' : D(Y) —
D(X), a trace map Tr : Rf,f — 1in D,.(Y), and an adjunction

0 : Rf.Romx(F, f'G) » R omy(Rf.F,G)

for #Z € D_.(X) and 4 € D (Y).
Moreover, the formation of the exceptional inverse image is functorial. More precisely, given a

composition X ! s Y —2% Z with f,g and g f projectively embeddable, there is a natural iso-
morphism (gf)' = f'g'. This functor commutes with flat base change. Namely, letu : Y’ — Y be a
flat morphism, f' : X’ — Y’ the base change of X to Y’ and v : X’ — X the projection. Then there is
a natural isomorphism of functors v f* = f"'u*.

Proof. We refer to [ , Theo. 1I1. 8.7] for the existence of f', its functoriality and compatibility
with flat base change. See Theorems III. 10.5 and III 11.1 of loc. cit. for the existence of Tr and the
adjunction 6 respectively. O

Example 4.0.3. Let f : X — Y be a morphism of finite type of noetherian schemes of finite Krull
dimension.
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4. Cohomology and local duality for curves over Ok

1. We can define the functor f' for finite morphisms as
f'F = fIRA omo, (f.Ox, F) for F € D(Y).

The duality theorem in this case is equivalent to the (derived) ®-Hom adjunction, see [ ,
§III. 6].

2. Let f be smooth of relative dimension n, then one has f'¥ = ¥ ® wy ylnl where wy ), =
A" Q;(/Y’ see [ , SIIL.2].

Lemma 4.04. Let f : X — Y be an Ici morphism of relative dimension n between locally noetherian
schemes of finite Krull dimension. Then f' Oy = w‘;{/Y[n] with w;’(/y an invertible Ox-module.

Proof. Working locally on Y and X, we may assume that f factors as X — S =5 v, where gis
a smooth morphism of relative dimension m, and ¢ is a regular closed imersion of codimension m — n
defined by an ideal & = (fi,..., fi-n). Letwg,, = A" QL /v be the sheaf of m-differentials of S over
Y, then

f! Oy = L!g!ﬁY
= L_lRﬁomﬁS (L. Ox, wg,y[m])
= ('R omy,(Os] .7, wgy)m]
Let K( ]_‘) be the Koszul complex of the regular sequence f = (fi,..., fu—n). Then K( I) is a flat

resolution of Os /.7, its dual K(f)" = Fomg,(K(f), Os) is a flat resolution of (& /.%)[—(m — n)].
Therefore B B

[0y = Tloms (K(f), w5,y)lm]
= 'K(f)’ ® wg,ylm]
~ (Nog) I @F wg yln])
= (WS /AN = Cws,yln
which is an invertible sheaf of &'y-modules as required. m|

Remark 4.0.5. Let f : X — Y be a regular closed immersion of codimension n defined by the ideal
#. From the proof of Lemma 4.0.4 one can deduce that 'Oy = A" f*(#/.#%)'[-n] is the normal
sheaf concentrated in degree n.

The compatibility of f* with tensor products allows us to compute f*.% in terms of f*F and f' Oy:

Proposition 4.0.6 ([ , Prop. 1I1.8.8]). Let f : X — Y be an embeddable morphism of locally
noetherian schemes of finite Krull dimension. Then there are functorial isomorphisms

I f'F & f*G — f{(F & G) for F € D} (Y) and G € D! (Y) sr4.
2. RAomy(Lf*F, f'G) = f'RA omy(F,G)) for F € D (Y) and G € D} (Y).

C

Moreover, if f is an Ici morphism, then f'Oy is invertible and we have f'G = f'Oy ® Lf*G for
G e DZC(Y)de. We call f' Oy the dualizing sheaf of f.
We now prove the local duality theorem for vector bundles over Ici projective curves:

o

Proposition 4.0.7. Let f : X — Spec Ok be an Ici projective curve, and let w5, 10, e the dualizing

sheaf of f, i.e. the invertible sheaf such that w3, [1] = f 'Ok. Let F be a locally free Ox-module of
finite rank, then:

17



4. Cohomology and local duality for curves over Ok

1. Rf.F is representable by a perfect complex of lenght [0, 1];

2. we have a perfect pairing

H(X, F ® K/Og) x H'(X, F¥ ® wy,0,) = K/Ok

given by the composition of the cup product and the trace Tr : Rf.w§ o — Ok.

Proof. As ¥ 1is a vector bundle and f is projective of relative dimension 1, the cohomology groups
R'f.F are finitely generated over Ok and concentrated in degrees 0 and 1. Then, Rf,¥ is quasi-

isomorphic to a complex 0 — M, i) M, — 0 with M, and M, finite free Ox-modules. More-

over, the complex 0 — M, ® K/Ox 48y M, ® K/Ox — 0 is quasi-isomorphic to Rf.(F ®K/Ok)
in D(Ok), see [ , Theo. 5.2].
Duality theorem 4.0.2 gives a quasi-isomorphism

Rf(F" ® wy o)1 = RE.RA omx(F, f'Ox) =~ RHomg, (Rf.F, Ok).

This implies that Rf.(F* ® wg ) is quasi-isomorphic to 0 — MY AN My —> 0O . Finally, Pon-

tryagin duality for O implies Homy, (ker(d ® 1), K/Ox) = cokerd", which translates in the desired
statement. ]

Remark 4.0.8. The previous proposition relates two notions of duality. Namely, Serre and Pontryagin
duality. We can deduce the following facts:

1. The Og-module H(X, F ® K/Oy) is co-free of rank r, that is isomorphic to (K/Oy)", if and
only if H'(X, F" ® w‘;(/OK) is free of rank r. In that case, the module H(X, ¥) is free and

H(X,F)/p" — H°X,¥/p") is an isomorphism for all n € N. Furthermore, Serre duality
provides a perfect pairing

H'X, ) x H'(X, F' ® w,,) = Ok.

2. The Ox-module H(X, 7) (resp. H'(X, ¥ ® K/Oy)) is free (resp. co-free) for any finite locally
free Ox-module.

3. In the notation of the previous proof, Pontryagin duality implies
Homy, (coker(d ® 1), K/Ok) = kerd",
which is equivalent to a perfect pairing

H'(X, F ® K/Og) x H'X, F¥ ® w,0,) = K/Ok.

18



5. Cohomology of modular sheaves

Let N > 3 be an integer prime to p. Let X(Np") be the modular curve over Z, of level I'(Np"). Let

Z,, = W(F,) and let X(N P”)z,, be the extension of scalars of X(Np") to Zp. We denote by X,

X(N p”)f’Z the connected component of X(N P")z,, given by fixing the Weil pairing ey(Py, On) = .
P

where (Py, Qy) is the universal basis of E[N] and {y € Z,, a primitive N-th root of unity. We also
write X = Xj. Let O, Zp [1,7] be the n-th cyclotomic extension of Z , O9° the p-adic completion of
hm On, K, and K¢ the field of fractions of O, and O“¢ respectlvely We set O = Z and K = O[ ].

Let 7, « X, = Spec O, denote the structural map defined by the Weyl pairing of the universal basis of
E[p"]. We also denote p, : X, — X,_; the natural morphism induced by p-multiplication of Drinfeld
bases.

Let E°"/X be the semi-abelian scheme over X extending the universal elliptic curve to the cusps,
cf [ ]. Lete : X — E*" be the unit section and wg := e*QEy,,, /x the modular sheaf, i.e., the sheaf
of invariant differentials of E*" over X. For k € Z we define w* B = w®" the sheaf of modular forms of
weight k, we denote by “)]E,n the pullback of ‘”lfz to X,. Let D, C X, be the (reduced) cusp divisor and
w’,‘i,n’cw = w’g’n(—Dn) the sheaf of cusp forms of weight k over X,,. By an abuse of notation we will
also write D, for the pullback p; ., D, to X,., by Proposition 2.2.4 we have that D,, = pD,.;.

Finally, we let X,, be the completion of X,, along its special fiber and X, = iinn X, the integral
perfectoid modular curve, see Theorem 3.2.1. Let X, be the analytic generic fiber of X, and X, ~
1i_n>1n X, the Scholze’s perfectoid modular curve.

5.1. Dualizing sheaves of modular curves

Consider the tower of modular curves

Pn+l1 Pn

> Xun1 > X > Xpog ——— -

lﬂn : l l’rn l’rn ) l

- — Spec(0,11) ——> Spec(0,) —— Spec(O,_)) — -~

Since X, is regular of finite type over O,, it is a local complete intersection. This implies that the
sheaf w; := 7r' 0O, is invertible. The modular curve X/O is smooth of relative dimension 1, then we
have that w; = Q;( 10> ¢f. Example 4.0.3 (2). On the other hand, the Kodaira-Spencer map provides
an isomorphism KS : wg .., = Qy 0.

Let X! | = X,-1 Xspeco,., Spec O,, and by an abuse of notation p, : X, — X’ | the induced map.
Letn/_, : X!, — O, be the structural map and pr| : X | — X,_; the first projection. We also write
Wb, | for the pullback of w’g to X’ _,. Note that the compatibility of the exceptional inverse image

E.nn
functor with flat base change (Theorem 4.0.2) implies that 7r 0, =priw’_| = w | ®o, , O,

Proposition 5.1.1. There exists a natural isomorphism &, . p,(w,_)(D,-1 — D,) > w, induced by

the normalized trace iTrn : Ox, — Pi;ﬁX;,,y Moreover, the composition of &, o -+ o & with the

2

Kodaira-Spencer map gives an isomorphism wy, , ... = w,.

Proof. By Proposition 4.0.6 we have an isomorphism

& pyOx | ® Phw | = patwn_; = w;. (5.1.1)
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5. Cohomology of modular sheaves

The map p, is finite flat, then p,Ox = p,'Homg, (pn.Ox,, Ox ) by Example 4.0.3 (1). By
n- n—1 n-
Lemma 4.0.4, the sheaf p! Oy is invertible as X7_, is an lci projective curve. We claim that the trace
Tr, : Ox, — p;ﬁx;_] induces an isomorphism %Trn : Ox, (D, —D,) = pi,ﬁx';_]. It suffices to consider
the ordinary points and the cusps, indeed, the supersingular points are of codimension 2 in X,,.
Let x € X _|(F,) be an ordinary point. We have a cartesian square

|_|)Cn|—>X Spf 5Xn,xn % Xn

l lpn (5.1.2)

Spt Oxr v —— X!_,.
By Proposition 2.2.2 we have isomorphisms
Oy =2 WE Tl Oy, = WE T,

with relations (1 + 7,)? = 1+ T,_,. Taking the different ideal of the finite flat extension 7 X, x,/ 0, X
one finds

— — 1 ~
ji”omgx, X(ﬁxn,xn’ Ox_ x) = I—?ﬁxn’xn -Tr, .
n—1"

On the other hand, let x € X’ | (Fp) be a cusp. We have a cartesian square (5.1.2) and by Proposition
2.2.4 isomorphisms
Oy =2 WEGIG" N, Ox,., = WENE "),
Taking the different ideal we obtain the equality
1 n n—-1 -
_ql/p -1/p ﬁxn,xn
p

The previous computations show that the trace of O,/ induces an isomorphism of invertible
sheaves

IR

%Omé}, X(ﬁ’xmxn, Ox_ x) -Tr,, .
n—1"

1

Il)TI’n : Ox,(Dy-y — Dy) - Piﬁx;f .
Then, from (5.1.1) we have an isomorphism

&nt Ox,(Dy-1 — Dy) ® pyw, | = w,
with &, = & o (% Tr, ®1).

n

The isomorphism wj., .« s = w, follows by a straightforward induction on the composition &, o

--- 0 £, and the Kodaira-Spencer map KS : wg, , = Q) 0" o

Lemma 5.1.2. Let x € X;_](Fp) be an an ordinary point or a cusp. Let ﬁn : pnsOx,(Dyy — D) —
Oy, be the normalized trace map éTr,,. Then the completed localization of Tr, at x is surjective.

Moreover, if ¥ is a quasi-coherent sheaf over X! _,, the composition ¥ — p,.py¥ — F is multipli-
cation by p.

Proof. Localizing at x we find
—_ 1 . - 1/p"-1/ n—1 =
Tr, = &( Tr,) @ O,y ® (@7 = Oy

where ¢!/ 7" is invertible if x is ordinary, or a generator of D,,_; if itis a cusp. The explicit descriptions
found in the previous proposition show that Tr, is surjective on each direct summand. Finally, looking
at an ordinary point x, it is clear that there are p different points x, in the fiber of x, this implies
Tr,(1) = p. O
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5. Cohomology of modular sheaves

5.2. Vanishing of coherent cohomology

In order to prove vanishing theorems for the coherent cohomology over the perfectoid modular curve,
we first need some vanishing results at finite integral level. We have the following proposition

Proposition 5.2.1. For all n € N the following holds

1. HY(X,,, w’g,n ®o, K./0,) = H'(X,, ®o, K./O,) = 0 fork < 0.

k
wE,n,cusp

2. H'(X,, w’g,n) = H'\(X,, w']f:’n’mp) = 0fork > 2.

3. H(X,,, Ox,(=Dn)®0,K,/0,) = H'(X,,, w},,) = 0 and H(X,,, Ox,®0,K,/0,) = H' (X,, W, )0,

Proof. By Propositions 4.0.7 and 5.1.1, (1) and (2) are equivalent. Similarly, by (1) of Remark 4.0.8,
and Proposition 5.1.1, it is enough to show (3) for O, and Ox (-D,).

Let v, be the closed point of Spec O, and w € O, a uniformizer, we write v = v, for the closed
point of Spec O. It suffices to prove H'(X,,, o}, ,/@) = H'(X,,,,, w}. ) = 0 for k < 0. Indeed, for s > 1,
the short exact sequence

0 - /@ LA Wi o > W, /T > 0
induces a left exact sequence in global sections
0 — H'(X,, /@) = HX,,, o,/ 7" = H(X,, ),/ @).

An inductive argument on s shows H'(X,,, o}, ,/@*) = 0 for all s > 1.

Let 1 € HO(Xn,Vn,w’E’n) be non-zero. Applying the action of SL,(Z/p"Z), we can assume that
A is non-zero in an open dense subscheme of X, . In fact, this holds for some linear combina-
tion ¥ csi,z/pz,) @y A With a, € F,. The norm Ny, /x,(wf,) of wk  to X, is v, where d =
deg(X,,,/X,). Hence if k < 0, the sheaf Ny, /Xv(a)/g’n) has negative degree in the smooth curve
X,. This implies that HO(XV,NXW /Xv(w’gﬂ)) = 0 and Ny, /x,(41) = 0, a contradiction. Therefore
H(X,.,,, w§,) = 0 for k < 0. Since w';:’n’wsp = W, (=D,), we trivially deduce H'(X,,,., a)’;:’n’cusp) =0.

The results for O and Ox (—-D,) are clear as X,,/O, is proper, flat, geometrically connected and
has geometrically reduced fibers.

O

Remark 5.2.2. Strictly speaking, we can apply Proposition 4.0.7 only for projective curves over a finite
extension of Z,. However, as the formation of coherent cohomology is compatible with affine flat base
change of the base, the conclusion of /oc. cit. holds in the situation of the previous proposition.

Corollary 5.2.3. Let ¥ = w’fg’n or w’é’n’cusp for k # 1, the following holds

1. The cohomology groups H*(X,,, ¥ ® K/O) and H'(X,,, F) are cofree and free O,-modules re-
spectively.

2. We have a perfect duality pairing

H(X,,F ® K/O) x H(X,, F' ® v’

n,cusp

) = Ky/Oy.

Proof. Part (2) is Proposition 4.0.7. Part (1) follows from Remark 4.0.8 1) and the previous propo-
sition. Indeed, if k < 0, the vanishing of H’(X,,, ¥ ® K,,/O,) implies that H'(X,, ) is torsion free.
As the cohomology group is of finite type over O, it is a finite free O,-module. The other cases are
proved in a similar way.

m]
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5. Cohomology of modular sheaves

Next, we will prove some cohomological vanishing results for the modular sheaves w}, and w}, . »
at infinite level. Particularly, we will show that the cohomology of w’fg over X, 1s concentrated in
degree 0 if £k > 0. The case k > 2 will follow from Proposition 5.2.1, one can also argue directly for
k = 2. What is remarkable is the vanishing for k = 1, in which case we use the perfectoid nature of
Xo.

Let o £ e the pullback of Wk to X,. Let m > n, note that we have an inequality of divisors
D,, < D,. Then, Ox (-D,) C Ox (-D,,), and the pullback of w’g’n’mp injects into w’g’m’mp. We define

. . . . k . _ . .
wh E.cocusp 48 the p-adic completion of the direct limit h_n)ln Wk . cuspr I kK = 0 we simply write O (—De)
for w% corcusp* The sheaf w’fg cocusp 15 1O longer a coherent sheaf over X.; its reduction modulo p is a
direct limit of line bundles which is not stationary at the cusps. One way to think about an element
in w’é’w’cus , 18 via g-expansions: the completed localization of w’g,w atacusp x = (xg, X1, --) € X 18
isomorphic to
cyc 1/p*11 .= Lim(lim O 1/p" s
O*[1g"" 1) := lim(lim O™ [ T/ (p, 9)".

N n

Then, an element f € %  _can be written as a power series

f= Z amq”

meZl ;150

satisfying certain convergence conditions. The element f belongs to the localization at x of w’g corcusp
if and only if ap = 0. For a detailed treatment of the cusps at perfectoid level we refer to [ 1,
particularly Theorem 3.17.

Theorem 5.2.4. The following holds

1. The cohomology complexes RI“(%(X,,wEOO) and RI' (X,
[0, 1] for all k € Z.

wEoocm ) are concentrated in degree

2. Forallm,i > 0andk € Z, we have H (¥, w’g’w/pm) = li_n>1n H(X,, w’g’n/pm) and H (X, wg’oo,cusp/pm) =
lim H(X, 0, /P

3. The sheaves w’é’w and wgw’m » have cohomology concentrated in degree O for k > 0. Similarly,

k
E,

4. H(X., Ox (D)) = 0 and H (X, Ox ) = O“°.

the sheaves w7, _ and w’g’m’cmp have cohomology concentrated in degree 1 for k < 0.

Proof. Let ¥ = wj, or Wy . and F, = wf, or oy, . respectively. We show (1) assuming
part (2). By evaluating F at formal affine perfectoids of X, arising from finite level, one can use
Lemma 3.18 of [ ] to deduce that ¥ = Rhm F/p’: the case F = wE is clear as it is a line

bundle. Otherwise, we know that F/p° = hm 7"/ p’ = hm (7: /p* ®x, Ox.) is a direct limit of

Ox._ [ p*-line bundles, so that it is a quasi- coherent sheaf over %m, and the system {7/ p*}an satisfies
the Mittag-Leffler condition on formal affine perfectoids. One obtains the quasi-isomorphism

RI(X.,F)=R EiLnRF(Xm, F/p?)
whose cohomology translates into short exact sequences

17 i-1 s i : i s
0— R limH™ (Xe, F/p") = H(Xe,F) = lImH'(X, 5/p") — 0. (5.2.1)

s N

But part (2) implies that H'(X,,, ¥ /p*) = h_n} H/(X,,, F,/p®) for all s € N. As X,, is a curve over O, and
¥,/ p’ is supported in its special fiber, we know that H'(X,,, ¥,/p®) = 0 for i > 2 and that the inverse
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5. Cohomology of modular sheaves

system {H'(X,,, ¥,/ p°®)}sen satisfies the ML condition. This implies that H (X, ¥ /p*) = 0 fori > 2
and that the ML condition holds for {H'(X.,, ¥ /p*)}sen. From (5.2.1) one obtains that H(¥,,,F) = 0
fori > 2.

We prove part (2). Let U = {U,},¢; be a finite affine cover of X, let 1, (resp. ) be its pullback to
X, (resp. X.,). As F/p* = h_r)nn F./p’ is a quasi-coherent Oy _/p*-module, and the (formal) schemes
X, and X, are separated, we can use the Cech complex of 2, (resp. l,,) to compute the cohomology
groups. By definition we have

U F/p) = imE W, Fofp),

n

then (2) follows as filtered direct limits are exact.

The vanishing results of Proposition 5.2.1 imply (3) fork < Oand k > 2. Letk = 1,2 and p'/? € 0°°
be such that [p!/?| = |p|'/?. As X, is integral perfectoid the Frobenius F : X, / p — X./p'?is an
isomorphism. Moreover, F*(w}, ./p'/?) = wEm/p and F*(wEoomp/p””) = wEmcusp/p (notice that
F*(D,) = pD, = D,_). Then, Proposition 5.2.1 (2) implies

H' (XYoo, wh oo /p"?) 2 H' (X, ) /P) = (5.2.2)

similarly for wj, .- By induction on s, one shows that H'(¥., w}; ./p*) = 0 and that H*(¥.,, w}; ./ p**') —
H(X.., w’,} /D) 1s surjective for all s € N (resp. for w’]}’mgcusp). Taking derived inverse limits one gets
H' (X, wf ) = H' (X, 0, 5ps) = 0 and HO(Xeo, w0y ) = lim H(Xw, W) ./ p*) (resp. for wi , ,0)-
This proves (3) for k = 1, 2.
Finally, part (4) follows from part (2), Proposition 5.2.1 (3), and the fact that

H'(Xs, Ox,) = limH'(Xe, O, /")

N

by (5.2.1) (resp. for O%_(—D.)).
O

Corollary 5.2.5. Let F = w}, or o, ., for k € Z. Then H'(¥.,,F)/p* = H(Xs,F/p*) and
HX.,F) = l&n H(X.,, F/p®) for all i, s > 0. In particular, the cohomology groups H'(X,, F) are
p-adically complete and separated. Moreover, they are all torsion free.

Proof. The case k # 0 follows since the cohomology complexes RI'(X.,, ¥ /p®) are concentrated in
only one degree, and R['(X.,,F) = Rh£1 RI(X.,F /p®). The case k = O follows by part (4) of the

previous theorem. Namely, H*(X,,, Ox_(-D.)/p*) = 0 and HY(X.,, Ox_/p*) = O“¢/p* for all s > 0.
Hence, the inverse system of H°-cohomology groups satisfy the Mittag-Leffler condition, and the
R! 1&“ appearing in the derived inverse limit disappears for the H!-cohomology. O

As an application of the previous vanishing theorem, we obtain vanishing results for the coherent
cohomology of the perfectoid modular curve. Let (X, Oy ) — (X, Ogy ) be the natural map of
locally and topologically ringed spaces provided by the generic fiber functor, see Proposition 3.1.5
and Theorem 3.2.1. We define culg; = wh , ®g, O and w’étuépn = wh cmp@f/k O, Where the
completed tensor product is with respect to the p-adic topology. As usual, we denote Oy (—De) =

0,+
U‘)E cusp®

Corollary 5.2.6. The following holds

In the following we consider almost mathematics with respect to the maximal ideal of O“°.

1. The cohomology complexes RI (X, a) ) and RI (X,
concentrated in degrees [0, 1] for all k € Z

C‘)E cusp.) Of almost O““-modules are
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5. Cohomology of modular sheaves

2. The sheaves a)];: and wE cusp have cohomology almost concentrated in degree O for k > Q.

Similarly, the sheaves w and Wb Eww have cohomology almost concentrated in degree 1 for
k <O.

3. H), (X, O3 (=Dy)) = 0 and H), (X, 0% ) = 0.

Proof. We first prove the corollary for = w’f;,w Let #," denote the pullback of  to (X, O ). Let
U = {U;};c; be an open cover of X, given by formal affine perfectoids arising from finite level such
that wg «lq, is trivial. By Theorem 3.2.1, the generic fiber U, of U; is an open affinoid perfectoid
subspace of X.. Let 2, := {U;,}i;, note that I, is a covering of X and that the restriction of
¥, to U, is trivial. By Scholze’s Almost Acyclicity Theorem for affinoid perfectoids, F, |4, is
almost acyclic for all i € I. The Cech-to-derived functor spectral sequence gives us an almost quasi-
isomorphism

(U, Fr) = RU (KXo 7).
On the other hand, by the proof of Theorem 5.2.4 there is a quasi-isomorphism

¢, F)~Rl(Xs, F).

But by definition of 7—7, and the fact that ﬁj\im (U;,) = Ox (U;) by Theorem 3.2.1, we actually have
an almost equality ¢*(U,, ") =* €*(U,F). In other words, there is an almost quasi-isomorphism
R (X, F)) =% RTU(Xoo, F).
Let Feusp = Wi, cusp @0d F o, its pullback to (Xw, Oy ). To prove that

RT’ an(Xw,?'C;Sp ,7) ~a€ Rl"(%oo, Feusp) We argue as follows: note that we can write Fouyp = F Qg
Ox.(—Dc). To apply the same argument as before we only need to show that &} (—Ds) is almost
acyclic over affinoid perfectoids of X.. Let V(D) C X be the perfectoid closed subspace defined
by the cusps. Note that Ox_(—D.,) is the ideal sheaf of V(D.,), see the proof of [ , Theo. IV.2.1]
or the explicit description of the completed stalks at the cusps of the integral perfectoid modular curve.

Then, we have an almost short exact sequence for all s € N
0 — Ox (=D&)/p* = Ox_[|p* = Oyp,/p* — 0. (5.2.3)

As the intersection of an affinoid perfectoid of X, with V(D) is affinoid perfectoid, and the second
map of (5.2.3) is surjective when evaluating at affinoid perfectoids of X, Scholze’s almost acyclicity
implies that 0 (-Dg)/p* is almost acyclic in affinoid perfectoids. Taking inverse limits and noticing
that {ﬁ;x (=Ds)/p*}sen satisfies the ML condition in affinoid perfectoids, we get that ﬁ;m (=Dy) is
almost acyclic in affinoid perfectoids of X. The corollary follows from the vanishing results at the
level of formal schemes. O

Remark 5.2.77. As it was mentioned to me by Vincent Pilloni, the cohomological vanishing of the
modular sheaves at infinite level provides many different exact sequences involving modular forms
and the completed cohomology of the modular tower (to be defined in the next subsection). Namely,
the primitive comparison theorem permits to compute the C,-scalar extension of the completed coho-
mology as H! (X w.C,» Ux,,)- On the other hand, the Hodge-Tate exact sequence

0—>a)E®gXﬁX—>TE ﬁx—>a)E®ﬁXﬁX—>0
gives a short exact sequence over X,
0— a);n — ﬁj‘\fi’cp - wg, =0 (5.2.4)

via the universal trivialization of T),E. Then, taking the cohomology of (5.2.4) one obtains an exact
sequence

0 — C% = H, (Xwc,» wey) = Hy,(Xeoc,, 0p,) = Hy(Xog,, Ox ) — 0.
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Another is example is given by tensoring (5.2.4) with wg and taking cohomology. One finds

0 — C, = H),(Xec, wen)® = H),(Xaog,» 0,) = Hy, (X, Ox.,) = 0.

an

It may be interesting a more careful study of these exact sequences.

5.3. Duality at infinite level

LetF = wy, O Wy, o, fOTk € Z, 1t F, = i, or ., respectively. Let C be a non archimedean
field extension of K¢ and Oc its valuation ring. Let X, ¢ be the extension of scalars of the integral
modular curve to O¢. Corollary 5.2.5 says that the cohomology groups H'(X.,, ) are torsion free,
p-adically complete and separated. In particular, we can endow H'(X, ¢, 7:)[%] with an structure of

C-Banach space with unit ball H' (X, ¢, ). The local duality theorem extends to infinite level in the
following way

Theorem 5.3.1. Let ¥ and F, be as above, and let ) = 7 omg, (F,, Ox,) be the dual sheaf of F,.
There is a GLy(Q))-equivariant isomorphism of topological Oc-modules

HomOC (Hl(%fx),c, T)’ OC) = liil Hl_i(Xn,OC’ ?dnv ® a)é’n’cusp)' (5'3' 1)

n,Tr,

The LHS is endowed with the weak topology, the RHS is endowed with the inverse limit topology,
Tr, are the normalized traces of Proposition 5.1.1, and the extension of scalars is given by X, 0. =
X, Xspeco, Spec Oc.
Remark 5.3.2. 1. We could restate the previous theorem using w? = 7,0, instead of w%’n’cusp, the

trace Tr, would be replaced by the Serre duality trace relative to the morphism X110, — Xy0.-
Note that even though the ring O¢ is not noetherian, all the objects involved are defined as
pullbacks of objects which live over a finite extension of Z,,, see Remark 5.2.2.

2. Let 7:77+ = ?—'@@.m ﬁ;gw be the pullback of ¥ to X, denote ¥, = T;[%]‘ By Corollary 5.2.6 we
know that

. . 1
H'(Xo, ) = H’(%w,T)[I;]-
Thus, H/(X« ¢, F,) can be endowed with an structure of C-Banach space. Its dual is given by

) , . 1
HI(XOO,C’ T-7,'])>‘< = (m Hl (Xn,Oc, T;lv ® w%’n’cusp))[;]'

m,Tr,

3. LetR, : Z,[{n]?° — Z,[{n,] denote the n-th normalized Tate trace, and let X, be the connected
component of X(N, p")z ¢, corresponding to . There is a natural injective map

yLn H]_i(XI;,Zp[{N]QT’ Tnv ® w%,n,cusp) - lin Hl_i(Xrlz’ ]@nV ® w%,n,cusp)'
m»ﬁn n,R,,O"I:r,,
However, this map is not surjective in general; the RHS is profinite while the LHS is not com-
pact.
Before proving Theorem 5.3.1 let us say some words about the inverse limit of (5.3.1), it can be
described as the kernel of the map

. 1-Tr, .

l_l Hl_l(Xn’OC’ ﬂv ® w%,n,cusp) EE— 1—[ Hl I(Xn,OC’ ?_-n\/ ® w%i',n,cusp)'
Moreover, the Corollary 5.2.5 says that the factors in the products are p-adically complete, separated
and torsion free. The following lemma implies that the inverse limit is always p-adically complete

and separated
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Lemma 5.3.3. Let N, M be torsion free, p-adically complete and separated Z,-modules, and f :
N — M a Z,-linear map. Then Ker f is torsion free, p-adically complete and separated.

Proof. 1t is clear that ker f is torsion free. The map f is continuous for the p-adic topology, in
particular ker f C N is a closed sub-module. Since M is torsion free, one has that ker f N p°N =
p’ker f forall s > 1. Then,

ker f = liin(kerf/(kerf N p°N)) = liLnkerf/pskerf

N N
proving the lemma. o

Next, we recall the GL,(Q,)-action in both sides of (5.3.1). Without loss of generality we take
C = K9 Let y : Gal(0“¢/O) — Z;, be the cyclotomic character. We define ¢ : GL,(Q,) —
Gal(0?°/0) to be y(g) = x~'(p~**'® det g), where v, : Q; — Z denotes the p-adic valuation. Fix
g € GL,(Q,) and n > 0. Let m > 1 be such that I'(p™) C T'(p") N gl(pMg™!, write ¢, : GLy(Qp) —
GL(Q,) for the conjugation x — gxg~'. We denote by X(Np").( be the modular curve of level
C(N)NT(p")Ngl(phg™!, let X,.c(g) be the locus where the Weil pairing of the universal basis of E[N]
is equal tody € Z We let w® be the dualizing sheaf of X, ., 1.€. the exceptional inverse image of
Oycte) := H' Xo1.0(0)» O, .,,) OVEr Xonc,-

The maps

n.c(g)

T(p™) < T(p") N gl(p")g ™~ g ' T(p")g NT(P") = T(p")

induce maps of modular curves

q g q
X = Xpee) = Xnee ) — Xos

,c(g (g™

with g an isomorphism. Notice that the modular sheaves ¥ are preserved by the pullbacks of g1, ¢

and g. Let ¥ and 7, be as in Theorem 5.3.1, we have induced maps of cohomology

RU(X,,. F/p") == RF(Xm,T /P°).

Taking direct limits we obtain a map

RT (X, F/P°) 55 RU (X, /).

Finally, taking derived inverse limits one gets the action of g € GL,(Q,,) on the cohomology RI'(X.,, ).
The action of GL,(Q,) on cohomology is not O“-linear. In fact, it is y-semi-linear; this can be
shown by considering the Cartan decomposition

GLA(Q)) = | | GLx(Z,) (”O pgz)GLz(Zp)

ny>ny

and using the compatibility of the Weil pairing with the determinant.
The action of GL,(Q,) on hm & H'™ (X, 00c, F,) ® wEnmp) is defined in such a way that the

n

isomorphism (5.3.1) is equlvanant Namely, there is a commutative diagram of local duality pairings
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5. Cohomology of modular sheaves

provided by the functoriality of Serre duality

H (X000, ot ® W 00) X H (X000, iy ® KJO) ——— K909
H'" (X, 00000, (8 © ¢2)*F,) @ 0°) X H' (X, 090005 (8 © ¢2)*Fr ® K/O) = K JO°F
L T Mg)T (5.3.2)

Hl_i(Xn,c(g"),O"‘)'Ca qunv ® wo) X Hi(Xn,c(g"),O"‘)'Ca C];T ® K/O) — Kcyc/Ocyc

_ A
"
Try, 9
~

H'7 (X000, 7 ® 0y cusp) X H (X 0e, T ® K/ O) ———— KO /O

The maps "Frql and ﬁqz are induced by the Serre duality traces of ¢g; and g, respectively, cf. Remark
5.3.2 (1). Thus, the right action of g € GL,(Q,) on a tuple f = (f,) € @ = H'"™ (X, 000, FY ®

WE peusp) 18 given by flg = ((flg)n)ners, where

(fln = Try 087" o Try (f)
for m big enough, and ¢q;, ¢, as in (5.3.2).

Proof of Theorem 5.3.1. Without loss of generality we take C = K. Let ¥ = wj; , or W}, ,c,- BY

Corollary 5.2.5 we have
H' (X, F) ® (K/O) = H(X, F ® K/O).

Therefore

Hompo(H' (X, F), 09°) Hompo:(H' (X, F) ® K/O, K¢/ O%°)

HOmOCyz:(Hi(%oo’ 7—‘ R K/O), KCyC/Ocyc).

On the other hand, we have

H'(X., 7 ® K/O) = lim H'(X,, 0, ,, ® K/O)

n.p;,

where the transition maps are given by pullbacks. By local duality, Proposition 4.0.7, we have a
natural isomorphism

Homge:(H (Xo, F), 07¢)

lim Homgee (H'(X,, o, F, ® K/O), K /O°°)
n,py

: 1-i % 2
= 1(&1 H I(Xn’Ocyc’ T;,l ® wE,n,cuSp)‘

n,Tr,
The isomorphism is GL,(Q,)-equivariant by the diagram (5.3.2). O
We end this section with an application of the local duality theorem at infinite level to the completed
cohomology. We let X,, ,,.; be the pro-étale site of the finite level modular curve as in §3 of [ ],
and X -0 the pro-étale site of the perfectoid modular curve as in Lecture 8 of [ ].

Definition 5.3.4. Let i > 0. The i-th completed cohomology group of the modular tower {X,},>o is
defined as _
H' :=limlimH.(X,c,, Z/p*Z).

—
S n

27



5. Cohomology of modular sheaves

Remark 5.3.5. The previous definition of completed cohomology is slightly different from the one
of [ ]. Indeed, Emerton consider the étale cohomology with compact support of the affine
modular curve Y,. Let j : ¥, — X, be the inclusion and ¢ : D, — X, be the cusp divisor, both
constructions are related by taking the cohomology of the short exact sequence

0— j(Z/p°Z) > Z|p’Z — 1."Z]p*Z — O.

Moreover, the cohomology at the cusps can be explicitely computed, and many interesting cohomol-
ogy classes already appear in H!.

We recall some important completed sheaves in the pro-étale site. Let ‘W denote X, or X,

e We denote ZP = @ Z/p*Z, the p-adic completion over ‘W ,,,,, of the locally constant sheaf Z.

o Let 5;4/ = lln 03,/ p* be the p-adic completion of the structural sheaf of bounded functions
over W oer.

By Lemma 3.18 of [ ] the sheaf 5’;*4, is the derived inverse limit of the projective system
{03,/P°}s. On the other hand, the repleteness of the proétale site and Proposition 3.1.10 of [ ]

implies that ip is also the derived inverse limit of {Z/p*Z},. We have the following proposition

Proposition 5.3.6. Let i > 0, there is a short exact sequence

0= R'limH, (X, Z/p°Z) — H,,.(Xwc,  Z,) = H — 0.

N

Proof. As ZP =R lln 7| p*Z, the Grothendieck spectral sequence for derived limits gives short exact
sequences for i > 0

proet
s N

0- Rl @Hi_l (XOO,CP$ Z/pSZ) . H;roet(Xm,Cp’ip) - @Héroet(xoo,@p’ Z/pSZ) — 0.

Lemma 3.16 of [ 1 implies that H,,, ,(Xec,.Z/p*Z) = H,(Xwc,.Z/p*Z). On the other hand,
Corollary 7.18 of [ ] gives an isomorphism

H,(Xec,. Z/p'Z) = lim H,(X,.c,, Z/p*Z),

e
n

the proposition follows. O

Next, we relate the completed cohomologies H' with the coherent cohomology of X, via the Prim-
itive Comparison Theorem. This strategy is the same as the one presented by Scholze in Chapter IV
of [ ] for Emerton’s completed cohomology. In the following we work with the almost-setting
with respect to the maximal ideal of Oc,

Proposition 5.3.7 ([ , Theo. IV.2.1]). There are natural almost isomorphisms
H'®;,0c, = H',,,,(Xwg,, Ox ) =" H(X, Ox )®0:Ok,. (5.3.3)

In particular, H = 0 for i > 2, the R! lim of Proposition 5.3.6 vanishes, and the H' are torsion free,
p-adically complete and separated.

Proof. By the Primitive Comparison Theorem [ , Theo. 5.1], there are almost quasi-isomorphisms

foralln,s,i e N . .
H, (X.c,.2/p'Z) ®z, Oc, =* H,(X,c,, Ox | D).
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5. Cohomology of modular sheaves

Taking direct limits on n, and using Corollary 7.18 of [ ] one gets
H.(Xwc,.Z/p'Z,) ®z, Oc, =* H,(Xwc,. O%_/ D). (5.3.4)

Namely, we have ﬁ;m /pt = li_r)nn ﬁ;ﬂ /p® as sheaves in the étale site of X.. In fact, let U, be an
affinoid perfectoid in the étale site of X, which factors as a composition of rational localizations and
finite étale maps. By Lemma 7.5 of [ ] there exists ny > 0 and an affinoid space U,, € X, such
that Uy, = Xo X Xoo U,,. For n > ny denote the pullback of U,, to X,,., by U,, then Uy, ~ lim U,

«—n=>ng
and 07 (Us)/p* = lim _ O*(U,)/p’.
n>ng
The sheaf &5 /p® is almost acyclic on affinoid perfectoids, this implies that the RHS of (5.3.4)

is equal to HZ,,(XOO,CP, O%_/p*). Then, the proof of Corollary 5.2.6 allows us to compute the above
complex using the formal model X,

H.,(Xwc,, Ox_/p*) = H(Xw, Ox_/p*) ®0 Oc,. (5.3.5)

The Corollary 5.2.5 shows that the inverse system {H'(X,, O%_/p*)}, satisfy the Mittag-Leffler con-
dition. As O@p /p® is a faithfully flat Z/p*Z-algebra, the inverse system {Hit(Xoo,@p,Z/ p’2)}, also
satisfies the Mittag-Lefller condition. One deduces from Proposition 5.3.6 that

H, . (Xwc, Z,) = H. (5.3.6)

We also obtain that H’ /p’ = Hi,(Xoo,@p,Z/ p°Z) for all i € N. Taking inverse limits in (5.3.4), and
using (5.3.5) and (5.3.6) one obtains the corollary. O

We obtain a description of the dual of the completed cohomology in terms of cuspidal modular
forms of weight 2:

Theorem 5.3.8. There is a GL,(Q))-equivariant isomorphism of almost Oc,-modules

ol : 0 2
HomOCp (H ®ZpOCp ’ OCP) = lﬂl H (Xn,Ocp ’ (")E,n,cusp)'

n,Tr,

Proof. This is a consequence of Proposition 5.3.7 and the particular case of Theorem 5.3.1 when
¥ = Ox, and C = C,. m|
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6. Introduction

Let p be a prime number, AS the finite adeles of Q, AE”’ the finite prime-to-p adeles, and Z,, the ring of
p-adic integers. Let C, be the p-adic completion of an algebraic closure of Q,, and Go, = Gal(C,/Q,)
the absolute Galois group. From now on we fix a neat compact open subgroup K? C GLz(AS"’7 ). Let

K, c GL,(Q,) be an open compact subgroup, we denote by Y,"?I‘? the modular curve over Spec Q, of

level KPK, ¢ GLy(A3) = GLz(Ag’p ) X GL,(Q,), and by X;‘gf its compactification by adding cusps.
Let Yk, and Xk, be the rigid analytic varieties attached to the modular curves, seen as adic spaces over
Spa(Q,,Zp), cf. [ I. Let D = Xk, \Yg, be the cusp divisor. We endow X, with the log-structure
defined by D.

Given an fs log adic space Z and ? € {an, ét, két, proét, prokét}, we denote by Z, its analytic, étale,
Kummer-étale, proétale and pro-Kummer-étale sites respectively, see [ Jand [ ].

In [ ], Faltings computed the Hodge-Tate decomposition of the étale cohomology (with coef-
ficients) of the modular curve Y . More precisely, let E be the universal elliptic curve over Yk, it
admits an extension to a semi-abelian adic space E*" over Xk, (cf. [ D. Lete : Xk, — E be
the unit section, wg = e*Q}w /X the modular sheaf and T,E = liiln E[p"] the Tate module over Yg,.
Let Yk, c, and Xk, c, denote the extension of scalars of the modular curves, we have the following
theorem

Theorem 6.0.1 (Faltings). Let k > 0, there exists a Galois and Hecke equivariant isomorphism
Hy (Y, c,.Sym' T,E) ®g, C,(1) = Hy(Xx, c,, i) ® Hy (Xk, e, wg )k + 1) (6.0.1)
called the Eichler-Shimura (ES) decomposition.

The first result of this paper is a new proof of Faltings’ ES decomposition using BGG methods and
the Hodge-Tate period map. Our proof is the proétale analogue of the BGG decomposition for the de
Rham cohomology of Faltings-Chai [ , Ch. 5 Theo. 5.5]. Let us develop the ideas behind:

Let X, := limK Xk, be Scholze’s perfectoid modular curve and 7yt @ Xeo — P(IQ,, the Hodge-Tate
P

period map [ ]. The morphism mryt 1s GL,(Q),)-equivariant where we see P(IQ,, as the left quotient
of GL, by the upper triangular Borel B. Let g, : Xoo — X, be the natural map, we can see X, as a

pro-Kummer-étale K ,-torsor over Xk, . We let Zp and EXKP denote the p-adic completions of the con-

stant sheaf Z, and the structural sheaf respectively, seen as sheaves over Xk, proker- Let zp(l) = yiln M

be the Tate twist and 5;%(1') the i-th twist of 5&,,- We see the Tate module as a ip—local system over
Yk, proct- By [ , Theo. 4.6.1], T,E admits a natural extension to the pro-Kummer-étale site
of Xk, which we denote in the same way. From now on we fix the level K, and write ¥ = Yx, and
X = XK .

P

The Hodge-Tate map is defined from the Hodge-Tate exact sequence

0 - wi' ®, Ox(1) — T,E ®; Oy — wg ®g, Ox — 0, (6.0.2)
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6. Introduction

which is the variation in families of the Hodge-Tate decomposition for elliptic curves (cf. [ D,
via the universal trivialization of the Tate module V : Zf, — T,E over X.

The GL,(Q,)-equivariance of myr recovers (6.0.2) from a short exact sequence of GL,-equivariant
sheaves over P&p. Indeed, let Alg-B-Rep be the category of finite dimensional algebraic repre-

sentations of B, GL, —VB% the category of GL,-equivariant vector bundles (VB) over Pll, and
P J

GLZ(QP)—gxm—Mod the category of GL,(Q,)-equivariant 5xm—sheaves over X.,. We have the fol-
lowing functors

Alg-B-Rep — GL,-VBys My GLy(Q,)-Oy.-Mod —— Gx-Mod

V —— GL, xBv i — U (6.0.3)

Vg «<——V

with GL, xBV being the quotient of GL, XV by the left diagonal action of B. Let V be a GL,-
equivariant VB over P! , in the following we shall denote Y'(“V) for the sheaf (ﬂklj,*(ﬂ;{T((V)))KP over

X prokét-

Let T c B be the diagonal torus and « = (k;,k;) € X*(T) be a character, we see x as a B-
representation by letting the unipotent radical of B act trivially. Let W = {1, wy} be the Weyl group
of GL,. We denote by .Z (k) the GL,-equivariant sheaf over P!, obtained from wy(x) via (6.0.3). The
standard representation St has a B-filtration '

0—-(1,00Q, —» St— (0,)Q, — 0. (6.0.4)

By construction of myr, the pullback of (6.0.4) via T is equal to the Hodge-Tate-exact sequence

(6.0.2). In particular, one obtains that T(Sym* St®@%1) = Sym* T,E ® Ox and that Y(Z(x)) =
ki ko ~

wp " Boy Ox(ky).

Let LAlg-B- Rep be the cateogory of locally algebraic representations of B, in other words, the
category of those representations which are written as colimits of finite dimensional representations. It
is straightforward to check that the functor (6.0.3) naturally extends to the category LAlg-B- Rep. Let
k = (k1, k) € X*(T) be a dominant weight (i.e. such that k; > k,) and V, the irreducible representation
of GL, of highest weight  (isomorphic to Sym" ™ St ®(det)*>). We have the following theorem, cf.
Theorem 10.1.5

Theorem 6.0.2. Let a = (1,-1) € X*(T), and BGG(k) be the dual BGG complex of k (see §8.4)
0—-V,—> V) - Viwy(k) —a) — 0.
The pullback of BGG(k) via the functor (6.0.3) is a short exact sequence
0 — Sym" ™2 T,E ® ®0x(ky) = 0™ © OC)u5(k1) = 01722 @ OC,00(ky — 1) — 0,

where OCyyy = gr? OBr 1og and OBr jog 1s Scholze’s relative (log) de Rham period sheaf (see [ ,
§5]or [ , §2.2]). Furthermore, let vy, : Xc, proket — Xc,.an be the projection of sites. Then

RV (Sym* T,E ® Ox(1)) = wi(k + D[0] ® wl2[~1].

Taking H'-cohomology in the analytic site of Xc, we recover the Eichler-Shimura decomposition of
Theorem 6.0.1.
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The proof of the previous theorem is a consequence of the isomorphism between T,E ® EX ® wg
and the Faltings extension gr' OB log , cf. Proposition 10.1.3. This isomorphism was already known
by Faltings, and used in his proof of the ES decomposition. This new proof provides a more explicit
definition of the ES maps in terms of cocycles and can be generalized to Siegel varieties. Moreover, it
shows immediately the degeneration of the spectral sequence appearing in [ ], as well as its nat-
ural splitting without using the Galois equivariance. However, notice that the existence of the period
sheaf @B;Rl is subject to the hypothesis that our rigid space is defined over a discretely valued field.
It is worth to mention that the isomorphism between the twist of the Tate module and the Faltings

extension was used by Lue Pan in [ ] to compute the relative Sen operator of the modular curve.

The second goal of this paper is the interpolation of the Eichler-Shimura decomposition (6.0.1).
The H of the overconvergent ES maps was previously constructed by Andreatta-lovita-Stevens
in [ ]. The strategy followed in this document is close to the construction of the ES map for
Shimura curves in [ ]. Roughly speaking, we apply a variant of the functor (6.0.3) to certain lo-
cally analytic sheaves over P}Q In this way, we interpolate all the terms appearing in the Hodge-Tate
exact sequence (6.0.2): we get overconvergent modular sheaves whose cohomology are the object of
study in higher Coleman theory developed by Boxer-Pilloni [ , ]. The interpolation of the
symmetric powers will be given by locally analytic principal series or locally analytic distributions as
in [ ]. Finally, the Hodge-Tate maps HT and HT" can be put in families, obtaining the dlog map
of [ ] as a particular case.

Let us sketch the main steps of the construction. Let n > 1 be an integer and

z 7
o— p 14
Iw, : (p”Zp Z[X,)

be the Iwahori group modulo p". We will take X = X, , in such a way that m,,, : Xoo — X 18
Galois of Galois group Iw,. Let € > 6 > n be rational numbers and (R, R") a uniform Tate alge-

bra over Q, which we may assume to be sheafy (i.e. such that the pre-sheaf of rational functions
in Spa(R,R") is an actual sheaf). Let T = T(Z,) denote the Z,-points of the diagonal torus and

x = (x1,x2) : T — R** a §-analytic character (cf. Proposition 8.2.1). We denote by R*@Z O th
p-adically complete tensor product in the Kummer-étale site of X, and by R*®C ¥ its inverse image
t0 Xproker- We let R*'®0 v be the p-adically complete tensor product of R" and the completed sheaf

O%. We warn that R+@@’ v # R+§E >, Given a character A : Z; — R™* we denote by R*(4) the

Xceye

Gq,-module induced by the composition Gg, — Z; 2 R . Finally, we write ﬁ*(/l) = R+(/1)®ﬁ+
We use similar notations and definitions for the structural sheaves &’y and ﬁx.

We begin with the construction of all the sheaves over P(IQ,,: forw e W = {1, wy} we define a family
of overconvergent neighbourhoods {U,,(¢) Iw,}.., of wlw, in Rl@p' The affinoid spaces U, (¢€)Iw,
admit sections of the quotient map GL, — Pl In particular, the T-torsor N\ GL, — Pl , where N is
the unipotent radical of B, has a tr1v1ahzat10n over U,,(¢€)Iw,. We define a R®ﬁpl hne bundle ZL(x)

in the analytic site of U,,(€) Iw, in the same way we have defined the line bundles .,2” («) for k € X*(T).
Then, we define the space of d-analytic principal series of weight y to be the R-Banach space

= T (U, (6) Iw,, L (X)),

we let Df( be its dual. The space A)‘i has a natural action of Iw,, so that it defines a constant Iw,-
equivariant sheaf on I%p. Concretely, we see A)‘i and D)‘i as sheaves in the proétale site of P! ’ denoted

by A and D respectively, as in Definition 7.2.3.
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It is easy to construct maps

YR 5 Af( equivariant for the action of B(Z,) N Iw,

evy,
A)‘i SN XR equivariant for the action of w;, lB(Zp)wo NIw,,

with ¢ being the highest weight vector, and ev,,, the evaluation at wy. We prove that these maps give
rise morphisms of proétale Iw,-equivariant sheaves

LWox))®s, On — A% Oy over U,(e) Iw,
PQP QI’ X P Q[)

s~ = o~ (6.0.5)
ﬂX®@p ﬁ%p - & (,\/)<§§>ﬁPé ,, ﬁ%p over Uy, (€) Iw, .

The next step is to translate all the previous constructions to the modular curve X. We start by defin-
ing the strict neighbourhoods of the w-ordinary locus {X, 1w, (€)}e-n; they are equal to 7y, (n;IIT(U Ww(€)Iw))).
The second object we descend to X are the overconvergent modular sheaves w}; they are R®Cx-line
bundles in the étale site of X, 1w, (€). We refer to [ ] for the general construction of these sheaves.
We will follow essentially the same idea of loc. cit., except that in some occasions we use more
classical arguments involving the canonical group. The dictionary (6.0.3) gives then

(L) = Wl ® Brzg, Ox(x2). (6.0.6)

We continue with the pullback of the 6-analytic principal series and distributions, seen as Iw,-
equivariant proétale sheaves over P}QP. They define sheaves over X, Which we keep denoting as &Zlf(

and Z))f respectively. Finally, we pullback the maps (6.0.5) obtaining Gq,-equivariant overconvergent
Hodge-Tate maps of pro-Kummer-étale sheaves

- HTV ——
wgo(x) ®e, ﬁx(Xl) N ﬂ)‘i@ﬁx over Xl,lwn(f)

—~—~ HT —~
ﬂ)i@ﬁx — Wy, ®gy Ox(x2) over X, 1w, (€),

similarly for Z))‘i after applying R&0; x-duals. Taking pro-Kummer-étale cohomology one obtains the
following theorem, which we state only for J-analytic principal series and the transpose of the U -
operator, see Theorem 10.3.2.

Theorem 6.0.3. There are overconvergent Eichler-Shimura maps

w ESY —_— ES a
0 = H} (Xc,, 0™ )e(x1) — H)ya(Xe, A®Oy) — HY) (Xc,, wE 2= 1) > 0 (6.0.7)

satisfying the following properties:

1. The composition ES 7 o ES 7, is zero.

2. Assume that V = Spa(R,R") is an affinoid subspace of the weight space Wr of T, and let
k = (ki,ky) € V be a dominant weight of T. Let « = (1,-1) € X*(T) and let x = x7, be the
universal character of V. Then there is a commutative diagram
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ES q

W ESY —_ @
H} (Xc,, 0y )e(x1) —=> H}, o o(Xe,, ATROY) —=5 Hy) (Xe,, 0 )elra = 1)

H;,C(XCP’ wgo(K))E(kl) — H;rokét(XCp’ ﬂﬁ@ﬁx) — H?vo(XCp, W) e(ky = 1)
Cor Res

~

H! (Xe,, ™) (k) —2— HL(Yc,, V) ® C, —=— HY (Xc,, i) (ky — 1)

3. The maps of (2) are Galois and U, equivariant with respect to the good nomalizations of the
; : . . : .
U p—operatqrs. In particular, the diagram above restricts to the finite slope part with respect to
the U,,-action.

4. Let h < ki —ky + 1. There exists an open affinoid V' C V containing k such that the (< h)-slope
part of the restriction of (6.0.7) to V' is a short exact sequence of finite free C,,@Qp oV')-
modules.

5. Keep the hypothesis of (4), and let y be the universal character of V'. Lety = x1 —x2+ 1 :
Z, > R andb = %I,zl)?(t). Then we have a Galois-equivariant split after inverting b

H! o Xe,, RO = [H] (Xc,, 0" )Ty )]y @ [HY, (Xe,, 05 )2 (002 = Dl

Remark 6.0.4. 1. The group H?V(ch, —)e s the overconvergent cohomology and HSV,C(XC,,, —)c the
overconvergent cohomology with closed supports around the w-ordinary locus of X, see [ ]
and Definition 9.2.9 down below.

2. A similar statement holds for the distribution sheaves Z)f(, in this case the overconvergent
Eichler-Shimura map of [ 1is ES 5.

3. Note that if k = (ky, ky) with k; + 1 # ks, i.e. when the Hodge-Tate weights are not equal, one
can choose V’ small enough such that b # 0.

We finish the paper with the compatibility of the oveconvergent ES maps (6.0.7) with the Poincaré
and Serre pairings. One can define a Poincaré pairing between the overconvergent proétale coho-
mologies

(== ¢ Hye (Yo, DY) X Hyp oo (Y, AY) = O(V) (6.0.8)

where the left hand side is the proétale cohomology with compact supports. On the other hand, one
also has Serre pairings between overconvergent coherent cohomologies

(= =)s 1 Hy (X0 (=D))e X H)(X, w§™)e = O(V) (6.0.9)
(= =)s ¢ HyL X0 x HY(X, 0™ (D)) = 6(V").
We have the following theorem

Theorem 6.0.5. . The Theorem 6.0.3 holds for the cohomology with compact supports H Iﬁmf,:t’c(Y@p, D)‘i)

and the overconvergent cohomologies HSV(XCF, w;mtv)w(_D))e and H,, (Xc,, w; (=D))e.

2. The Poincaré and Serre pairings (6.0.8) and (6.0.9) are compatible with the U ,-operators and
the overconvergent Eichler-Shimura maps.
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3. LetV C Wy be an open affinoid, and let y be the universal character of V. Let k = (ki,ky) € V
be a dominant weight and fix h < ky — k, + 1. There exists an open affinoid V' C V containing
Kk such that the (< h)-part of the pairings (6.0.8) and (6.0.9) are perfect pairings of finite free
C,,@ﬁ (V')-modules compatible with the Eichler-Shimura decomposition.

The outline of the document is the following. In Section 7 we briefly recall the period sheaves over
the pro-Kummer-étale site of an fs log adic space, cf. [ , , ]. Then, we set the
conventions of the representation theory of GL, and construct the dictionary (6.0.3).

In Section 8 we develop the overconvergent theory over the flag variety. We define the affinoid sub-
spaces U, (€) Iw, and the sheaves .Z(y). We construct the d-analytic principal series A)‘i and the maps
(6.0.5). We recall some facts of the BGG theory for irreducible representations of GL,, in particular
we define the dual BGG complex BGG(«).

Then in Section 9, we translate all the previous constructions from Pl to the modular curves via
myr. We define the strict neighbourhoods of the w-ordinary locus, the overconvergent modular sheaves
and the overconvergent Hodge-Tate maps. We give the good normalizations of the Hecke operators
and show that the HT-maps are compatible with the normalized U ,-correspondance.

Finally, in Section 10, we show how to obtain the classical ES decomposition from the dual BGG
complex, proving Theorems 6.0.2 and 6.0.1. We prove the analogous theorem for the cohomology
with compact supports, and prove the compatibility of the pairings for the classical ES decomposition.
Next, we construct the overconvergent ES maps and obtain Theorem 6.0.3. We prove the analogous
theorem for the cohomology with compact supports and the compatibility of Poincaré and Serre
duality for the overconvergent ES maps obtaining Theorem 6.0.5.

Notation

Throughout this document we fix a prime number p, we fix an algebraic closure of Q, and denote by
C, its p-adic completion. We will work with adic spaces over Spa(Q,,Z,) which are either locally
topologically of finite type over a non-archimedean extension K of Q,, or with perfectoid spaces. An
adic space will be denote by Roman font letters X, Y, Z, W, V, etc. except in Definition 8.2.3 where
we will use Wy for the weight space attached to a finite Z,-module II. In general, we will denote
by V an affinoid admitting a character of II, i.e. an affinoid endowed with a map V — Wp. We
will denote the algebraic schemes over K as Xdlg yag 7zalg etc in such a way that X is the p-adic
analytification of X% to an adic space over Spa(K, Ox). We will use Calligraphy font .7, ¢, 7, etc.
for sheaves over different sites of our spaces.

For affine algebraic groups over Q, we will use bold font H, G, B, T, etc., we denote its analytifi-
cation to an adic space over Spa(Q,,,Z,) by H, G, B, T, etc. Moreover, if H admits an integral model
Hz, over Spec Z,,, we denote by H O the rigid generic fibre of the p-adic completion of Hz,. We have
an open immersion H° c H. In addition, we will write H = Hz, (Z,) for its Z,-points. We define
in a similar way the profinite groups G, B, T, etc. if any of these algebraic groups admit an integral
model.
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7.1. Period sheaves in the pro-Kummer-étale site

Let K be a complete discretely valued field extension of Q, with ring of integers Ok and perfect
residue field F. Let C/K denote the p-adic completion of the algebraic closure of K, and let Gx =
Gal(C/K) denote its absolute Galois group. Throughout this document we will work with adic spaces
which are either locally topologically of finite type over a non archimedean field, or perfectoid spaces
over Spa(Q,,Z,). All of them are étale sheafy in the sense that their €tale site admits a basis by affinoid
adic spaces stable under rational localizations and finite étale maps (cf. [ , 81.7] and [ ,
§1.7]). We consider the proétale site as in [ ] and its extension to the pro-Kummer-étale site
in [ ].

Let X be an adic space as before, we denote by X,,, Xs and X, the analytic, étale and proétale
sites of X respectively. If X is endowed with a log structure we let Xy and Xoxge be the Kummer-
étale and the pro-Kummer-étale sites. For ? € {an, ét, két} we denote by ﬁ;’? and Oy, the structural
sheaves. Let v : X061 — X be the natural projection of sites, we briefly recall the definition of the
period sheaves over the proétale site of X, see §6 of [ ]:

0) The structural sheaves 0y = v='(0y ) and Ox = v~ (Ox ).
1) The completed structural sheaves @’* = hm O%/p’° and ﬁx ﬁ*[ ].
. = S =5 1 .
2) The tilted sheaves 0" = m@ Oy = h;nq) Ox/pand O, = @(D O+ where @ : x — xP.

3) The Fontaine’s period sheaf A;, x defined as the derived p-adic completion of the Witt vectors
W(Oy"), the sheaf Biyr.x = Aurx[L].

There is a natural surjective map 6 : Bjrx — 5’;, which locally on perfectoid objects Spa(R, R*) is
the Fontaine’s map

5: W(Rb*)[%] SR O6((x)]) = lim &,

where (X, € R”* = lim R*/p and X, is any lift of x, to R*. The kernel of 6 is, locally proétale,

cyc cyc
p b 17 )’
isa generator

generated by a non zero d1v1sor £. For example, if Spa(R, R") € X6 admits a map to Spa(Q
and € = ({;»),en 1s a compatible sequence of p-th power roots of unit, then w = [e[]ﬁ]/p_
of ker(0).

4) We have the de Rham period sheaf BQR’X = EiﬁlsBinf x/(ker 0)°. We endow BgRX with the

decreasing adic filtration defined by ker 6. We set Bgr x = B ] and define Fil’ Bgg x = ¢'BY dRX
locally proétale.

We denote by Z,(1) = gn 1 (C) the Tate twist, where G acts via the cyclotomic character yy. :

Gk — ZX We will denote by Z, the constant sheaf over X4, we will write Z = lim Z|p"Z for
the p- adlc completion of Z, on the proetale site. Let .% be a sheaf over Xproet, we denote by Z(i) =
F @z, Lp(i) its i-th Tate twist, if .7 is aZ -module then .% (i) = <8% Zp(z) Let Bj; = Bi:(C,O¢)
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be the Fontaine’s de Rham period ring, the element log([€]) converges to an element ¢ € B, for
which Gg acts as multiplication by the cyclotomic character. Moreover, ¢ generates ker 6§ so that

gr'Barx = Ox(i).

5) Let OB  be the sheafification of the pre-sheaf which sends an affinoid perfectoid Spa(R, R™) =

@_ Spa(R;, R!) to the direct limit of the (ker 6)-adic completion of
— 1
(R ®wEAini x(R, R+))[;],

where 6 is the map sending r; ® a — r,6(er), and the completed tensor product is with respect

to the p-adic topology. We endow OB, , with the (ker 6)-adic filtration. We define OB x =

@BgR’X[é] and Fil" OB x = Y, -, & Fill OB},

dR,X*

In the following we shall omit the subscript X. Let X be an fs log-smooth adic space over Spa(K, Ok),
whose log structure is given by a morphism of sheaves of monoids @ : Mg — Ox¢ over the étale

site of X, see Definition 2.2.2 of | ]. Let Mg : Xwet — S ets be the sheaf of monoids of the
Kummer-étale site mapping U ~» M y(U).
We define the following sheaves over the pro-Kummer-étale site of X, cf. [ , ].

0) Let M, 05, and Ox be the inverse image of Mg, O

vk And Ox e from the Kummer-étale to
the pro-Kummer-étale site respectively.

1) Let 5;; = lln Oy /p’ and Oy =0, ;[;17] be the completed structural sheaves of the pro-Kummer-

— — ~1
étale site. Let M be the completed log structure of X, i.e. the pushout 0% - 0% Zs Mof
saturated monoids.

We can recover the sheaf M, from the sheaf M:

Lemma 7.1.1. Let v : X0t — Xis be the projection of sites. We have V*M = Mg

Proof. As 05 and 075 are sheaves on groups, and M is a saturated monoid, M is equal to the quotient

(5; @& M)/ 0% with respect to the inclusion (¢, @™"). Then, since Rv..0% = O

% ke ONE gets

V(O & M) OY) = (v.(G) & Mye)] O3y = Mhar

O

—_—

2) We define the tilted sheaves 62" = lim_&¢ = lim_ 0} /p, 0% = lim_Oy and M’ = lim M.
—o —o XX o —0
We have a natural map of multiplicative monoids o’ : M — 0.

3) The Fontaine’s period sheaves Ajy;, Biyy By and Bgr are defined in the same way as for the
proétale site. Moreover, there is a 6-map onto Oy whose kernel is locally proétale generated by
anon-zero divisor &, and the sheaves Bj; and B are filtered with graded pieces gr'Bar = Ox(i).

+
dR Jog.X and OBgrjogx OVer

and OBgg 1o if X is clear from the context.

Next, we recall the construction of the relative de Rham sheaves B

Xoproke [ , §2.2]. We write @B;R’log

Construction 7.1.2. We see M as a multiplicative monoid. Let Spa(R, R") be a log perfectoid affinoid
space in Xproket, and Spa(R, R™) = lin Spa(R;, R!) a pro-Kummer-étale presentation over X modeled
in a p-divisible monoid M = lln M;. Consider the monoid algebra

- 1
(R®weeAint(R, RM)[M; X M (R, R*)][l—)], (7.1.1)

M(R,RY)
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the completed tensor product being with respect to the p-adic topology. Given an element a €

M; X5z p0) M"(R, R*) we denote by €'°2¢ its image in (7.1.1). Let .# be the ideal of (7.1.1) gen-

erated by {a(a) ® 1 — (1 ® [@"(a)])e"8}, for a € M; X5 M. Let S, denote the quotient of 7.1.1 by

#. We consider the map élog - S - 5X(R, R*) = R sending €'°¢¢ — 1, and whose restriction to
R,@W(F)Ainf(R, R*) is the map 6. Let S; denote the (ker 910g)—adic completion of §;.

We define the relative log de Rham period sheaf ﬁBgRJOg to be the sheafification of the presheaf

+ : )
Spa(R,R") — h_g)lS,.

We endow @B;R,log with the (ker élog)-ﬁltration. We define OByr jop = @Bgmog[é] endowed with the

convolution filtration as for the de Rham sheaf in the proétale case. Finally, we denote OCo,(i) =

griﬁBdR,log and mlog = mlog(o)-

Remark 7.1.3. We do not work with the completed de Rham sheaf OBgg jos Of [ ]. Indeed,

the main results of loc. cit. hold for the sheaf @B;R’bg[f‘l], proper log-smooth maps and the higher

derived images of the constant sheaf Zp. In fact, the same arguments of [ ] can be applied to
this situation. Moreover, the sheaves we are interested in are constructed in this way, see §2.2 and
§5.1 down below.

Let Q;((log) denote the sheaf of log differentials of X [ , §3]. The log connection (d, ¢) :
OxIM] — Q}(log) has a natural extension to OB g 10g 1 the following way: for x = (s ®7)e'°¢4 in the

monoid algebra (7.1.1) we define V(x) = ye'%“ds + (s ® y)5(a)e'**, where 6(a) = §(pr,(a)) is applied
to the projection in the first component. As ker 4 is generated by ker @ and the elements €2 — 1

with a € M; X5 M’, one easily ch~ecks that V(ker ,,)" C ker 9{‘0; ®oy, Qx(10g) C §; ®g, Qr(l0g).
By completing with respect to ker 6., and taking direct limits on i, one obtains an integrable log-
connection

Vieg ﬁBgR,log - ﬁBgRJog N Q}((log)
satisfying Griffiths transversality. We get a log de Rham complex

Vlov V[O,
0—- B;R - @BgR,log —% ﬁB;R,log ®ﬁx Q;((log) — _% @BgR,log ®ﬁx 'Q‘?((log) - 0. (712)

By inverting & one has a log connection for OBy 1o, Then, taking graded pieces one gets a Higgs
bundle structure for OC, [ ].

One of the most important features of (7.1.2) is that the Poincaré lemma holds [ , Cor.
2.4.2]. It is a formal consequence of the fact that locally pro-Kummer-étale, the ring @Bgmog is a
power series ring over B, [ , Prop. 2.3.15] and [ , Prop. 6.10].

7.2. The geometric setup

Let A(‘S be the finite adeles of Q and AE”’ the prime-to-p finite adeles. From now on we fix a neat
compact open subgroup K” C GLQ(Ag’p ). Let n > 0, we denote by I'(p"), I'1(p") and I'y(p") the
principal congruence subgroups

I'(p") ={g € GLy(Z,) : g =1 mod p"}

%

[(p") ={geGLyZ,) : g = ((1) 1) mod p"}

Fo(p") = g € GLa(Z,) : g = (;’; :) mod p").
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Let K, € GL,(Q,) be a compact open subgroup, we denote by Y;]f and X;lf the modular and compact-

ified modular curves of level K*K, over Spec Q, [ 1. Welet Y¥&(p), Y} '2(p") and Yglg( p™) denote
the modular curves of level KT'(p"), KPT';(p") and K”T'o(p") respectively (similarly for the compact-
ified modular curves). We let Y, and Xk, denote their p-adic analytification to adic spaces over
Spa(Q,,Z,) [ ]. We endow X, with the log structure defined by the cusp divisor D = Xk \Yk, .

Let £/ Y,* be the universal elliptic curve and E*&™/X?* its extension to a semi-abelian scheme.
P 4

Lete: X?;f — E¥25™ be the unit section and wg = ¢*Q! the modular sheaf. The semi-abelian

Ealg,sm/xalg

scheme E¥&5™ has a relative compactification to a log smooth morphism f : E® S X;‘(lf [ 1.
— —al —

The analytification E of E *isa log adic space, and the map f : E — Xk, is a proper log smooth

morphism of adic spaces. Given an integer k € Z we denote by . = w%k the modular sheaf of weight

k.

Let E[p"]/ Yk, be the local system of p"-torsion points of the universal elliptic curve. The étale
sheaf E[p"] has a natural extension to a Kummer-€tale local system over Xk, which by an abuse of
notation we also write as E[p"]. Indeed, let jig : Yk, & — Xk, ke be the natural map of sites, then, by
purity on p-torsion local systems ( [ , Theo. 4.6.1]), Rjxe.E[p"] 1s concentrated in degree O
and jie - E[p"] 1s a Kummer-étale local system. Moreover, let 1, 7 be the local system of p"-th roots

of unity over E. Using the principal polarization of E, and purity on local systems, one obtains
E[p"] = Pic®(E/X)[P"] = R frers(tt p 7)-

The Tate module is the sheaf over X1 defined as the inverse limit 7,E = @ E[p"]. By Lemma

3.18 of [ ]one has T,E = Rh£1 E[p"]. Moreover, we have

TyE = R fyokets Tp G, 50

where T,G, 7 = limu , 7 = Z,(1).
m, — P,
From now on an space without underlying log structure will be endowed with the trivial one. Fiber
products are always fiber products of fs log adic spaces unless otherwise specified, cf. [ , Prop.
2.3.27].

7.2.1. The Hodge-Tate period map

Let Q) be the p-adic completion of the p-adic cyclotomic field Q,(u,~). Scholze proved in [ ]
that the inverse limit X(p*) = “ gn X(p™)” has a natural structure of a perfectoid space. Furthermore,

he constructed a Hodge-Tate period map nyy : X(p*™) — P}QP parametrizing the Hodge-Tate filtration
of elliptic curves at geometric points. More precisely, we have the following theorem

Theorem 7.2.1 (Theorem I11.3.18 [ D). There exists a prefectoid space X(p*) over Q' satisfying
the tilde limit property of [ , Def. 2.4.1]

X(p™) ~ lim X (p").

n

Moreover, there is a GL,(Q,)-equivariant Hodge-Tate period map
mur 2 X(p) — Py,

such that for any open rational subset U of Uy = {[x : ylllx/y| < 1} or U; = {[x : yllly/x| < 1} of P! K

the inverse image ﬂﬁlr(U ) C X(p*) is an affinoid perfectoid subspace, and there is n >> 0 and an
open affinoid V,, C X(p") whose inverse image to X(p®) is equal to ﬂ;IIT(U ).
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For simplicity let us fix the level K, and write X = Xg,. We briefly recall how myr is defined. Let

f : E — X be the relative compactification of the universal elliptic curve. The primitive comparison
Theorem ( [ ,Cor. 5.11] or [ , Theo. 6.2.1]) gives an isomorphism

R fonokero(TyGin @5, Op) = T,E ®z Ox.
On the other hand, we have a natural boundary map
R funeOF @5, Ox(1) = R firokero(T,Gr ®3 OF).
Deformation theory provides an isomorphism
R'f.0z = Lie E*" = wy',
taking 5x(1)—duals, and using the principal polarization of E one obtains a map

T,E @ ﬁx—mE@ﬁx Ox.

Joining both arrows one obtains the Hodge-Tate exact sequence (see [ ] and [ , Prop.
11.3.1])
0 — W' ®sy Ox(1) — T,E ®; Oy — wg ®g, Ox — 0. (7.2.1)

Now, the perfectoid space X(p™) trivializes the Tate module T,E. Let y"" : Zﬁ - T,E be the

universal trivialization, the pullback of (7.2.1) by ¥" ® Ox(,~ gives a line subbundle Zyr C ﬁx(pm)
which defines the morphism myr.

7.2.2. Representation theory of GL,

Let B ¢ GL; be the Borel subgroup of upper triangular matrices, N C B its unipotent radical and
T c B the diagonal torus. Let B and N be the opposite Borel of lower triangular matrices and its
unipotent radical respectively. We let W = {1, w,} denote the Weyl group of GL,, it acts on T by
permutations of the diagonal components, we take wy = ({ }) as a representative of wy.

Let X*(T) be the character group of 7, it is identified with Z x Z via the isomorphism G2 — T :
(t, 1) — diag(t;,1,). We see a character k € X*(T) as a character of B or B by extending trivially
to the unipotent radicals. We write g, b, b, n, 1 and b for the Lie algebras of GL,, B, B,N.Nand T
respectively. We see g as a GL,-representation via the adjoint action (g, X) — gXg~' for g € GL, and
X € g. Its restriction to T admits a weight decomposition g = 1® b & n, where T acts on n and 1 by
the character & = (1, —1) and —a respectively. Let ¥ : G,, — T be the cocharacter a(f) = diag(z,t™}),
we say that a character (or a weight) k = (k{, k) € X*(T) is dominant if (k,a") > 0, i.e. if k; > k,.
We denote by X*(T)* the cone of dominant weights. A dominant weight is of the form ka ® det’® for
unique k € Nand s € Z.

Let GL, / Spa(Q,, Z,) be the analytification of GL, / Spec(Q,), and gﬁ; Cc GL, the open subgroup
whose (R, R")-points are given by

GLYR,R*) = GLy(R).

We use similar notation for the upper and lower triangular Borel subgroups of GL,, their unipotent
radicals and the diagonal torus. Let G, Al " be the analytic additive group and G} c G, the unit
disc subgroup, i.e. G} = Spa(Q,(T'), Z,(T)).

Let FL := B\ GL, be the flag variety of GL,, we denote by .#¢ its analytification. There is a
GL,-equivariant isomorphism FL = Pl Q, induced by the right action

[x:y](z Z):[ax+cy:bx+dy],
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and taking [0 : 1] € P}QP as a base point. Since FL is proper, there are isomorphisms of adic spaces
[ , Prop. 1.9.6]
Ft=8\GL) = B\GL, .
Let St be the left standard representation of GL,. There is a complete description of the isomor-
phism classes of irreducible algebraic representation of GL, in terms of dominant weights [ ]
X (T)* «— Ir-Rep GL,/ ~
k= (ki k) +— V.:=Sym" ™ St@deth.
The representation V, is the irreducible representation of highest weight k = (k;,k;). Let V be a

representation of GL,, we denote by V" its contragradient representation: given f € V¥ and g € GL,,
then (gf)(v) = f(g~'v) for v € V. For irreducible representations we have isomorphisms

VY=V 0 =Sym" ™ St@det ™. (7.2.2)

A representative of V, can be constructed as a Borel induction:

Ve =1{f :GL, —» A'| f(bg) = wo(x)(b)f(g) for b € B}. (7.2.3)
Indeed, let vy € V.’ be a highest weight vector, and (—, —) denote the natural pairing of V! and V,.
Then

vie f, g (v, 8V
defines an isomorphism as in (7.2.3). We can describe V, using the opposite Borel instead:
Ve =1{f: GLy - Allf(bg) = k(b)f(g) for b € B},

the isomorphism being f — L, f, where (L, f)(g) = f(wog).

Let VBy, denote the category of vector bundles (VB) over FL with linear morphisms. We let
GL,-VBpf, be the subcategory of VB, whose objects are GL,-equivariant vector bundles, and whose
morphisms are GL,-equivariant linear maps. Let Alg-B-Rep be the category of finite dimensional
algebraic representations of B. There is an equivalence of categories

Alg-B-Rep & GL,-VBp, (7.2.4)

V —» V:=GL,x*V
V::(Vl[l] — YV

Where GL, xBV is the quotient of GL, XV by the left B-action: (g,v) ~ (bg, bv), and [1] € FL is the
class of 1 € GL,. Let k = (k;, k) € X*(T), we denote by .Z (k) the GL,-equivariant line bundle over
FL given by GL, xBw (). Note that if « is dominant then V, is equal to the global sections of .Z (k). If
V is the restriction of a GL,-representation to B, then V is isomorphic to ﬁ’gif‘ V'as a VB over FL, but
not as a GL,-equivariant VB in general. In particular, the line bundle .Z’(det) attached to det = (1, 1)
is trivial. Moreover, the isomorphism class of .Z'(k) only depends on k; — k»; it is isomorphic to the
twisted sheaf O'(k, — k») over P@p.

Let FL = N\ GL, be the natural left T torsor over FL, and let = : FL — FL be the projection map.
We have
LK) = 1. O [-wo(K)].

Indeed, let U C FL be an open subscheme, then &'z (U) is the ring of regular functions f € BU c GL,
such that f(nx) = f(x) for all x € BU and n € N. The action of T over 07 (U) is given by the left
regular action:

(t- f)x) = f( " %)
Therefore, f € £ (x) if and only if (¢ - f) = —wy(k)(¢)f. The previous shows that

FL = Isom(0r;, £(0, 1)) X Isom(Gp, Z(1,0))

as GL,-equivariant left T-torsors over FL.
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7.2.3. Pullbacks via myt

Let X = Xk, be the modular curve of level KPK), so that nrg, : X(p™) — X is a pro-Kummer-€tale
torsor of Galois group K,.

Construction 7.2.2. Let K,-Sh(X(p™)proket) be the category of K,-equivariant sheaves over the pro-
Kummer-étale site of the prefectoid modular curve. There is a natural equivalence of categories

Sh(Xprokét) 2 Kp‘Sh(X(poo)prokét)
T = Tl
(”Kps*g)Kp A g

On the other hand, the myr-map gives rise a functor

T : Kp-Sh(yfpmét) - Kp'Sh(X(poo)prokét) = Sh(Xproket)

T = g F) > (g, (T (T

If we restrict to GL,-equivariant 5 z¢-vector bundles and compose with the functor (7.2.4) one gets

”Kp,*( )Kp _

T : Alg-B-Rep — GL, -VB 7 -5 GLy(Q,)-0-VByy~) ——— &-VBy.
with 75 (W) = Oxp) @41 5, (W),

Definition 7.2.3. Let K, C GL,(Q,) be a compact open subgroup and S be a topological space
endowed with a continuous action of K,. We define the sheaf § on X, to be the K,-equivariant
sheaf over X(p™) whose points at an object U € X(p™)pro¢; are

S(U) = (UL S).

Let V be a finite dimensional GL,-representation, we write V for the pro-Kummer-étale local sys-
tem defined by V via X(p*) — X, in this case we have V(V) =V ®3, Ox.

Example 7.2.4. Let St be the standard representation of GL,, and consider its B-filtration
0—-(1,00Q - St— (0,1)Q — 0.
It induces a short exact sequence of GL,-equivariant VB
0—- Z20,1) > SteCz — Z£(1,0) - 0 (7.2.5)

which is the universal filtration of ﬁzﬁ over .#{. Then, by construction of 7y, the pullback of (7.2.5)
is the Hodge-Tate filtration (7.2.1). In particular,

T(L(1,0) = w ® Oy, T(ZL(0,1)) = wj' ® Ox(1) and T(St®C 7) = T,E ® Oy.

For a character « = (k, k) € X*(T) we denote

W = wlg o
with this convention we have _
T(ZL (k) = W g, Ox(ky). (7.2.6)
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8. Overconvergent theory over the flag
variety

Let W denote the Weyl group of GL,. The goal of this section is to introduce some overconvergent
affinoid neighbourhoods of w € W in G£, and in the flag variety. Then, over these affinoids, we define
locally analytic line bundles interpolating the .Z’(«) of the previous section. We define the locally
analytic principal series as the global sections of these line bundles, and show that there are highest
weight vector and lowest weight vector maps. Finally, we put these weight vector maps in families
over the overconvergent neighbourhoods of the flag variety, and show that they are compatible with
respect to the Hecke action.

Throughout this section we follow the conventions of §7.2. Let C, be the p-adic completion of an
algebraic closure of Q, and O, its valuation ring. Given ¢ € Q we denote p° € C, an element with
p-adic valuation |p°| = |p|°; we will only consider valuations of this form.

Definition 8.0.1. Let H be an affine group scheme over SpecZ,. We let H the analytification of
Hg, and H O the rigid generic fiber of the p-adic completion of H. We denote the profinite group
H = H(Z,). Define the following groups:

1. Let m > 1 be a positive integer, we set H,, := ker(H(Z,) — H(Z/p"Z)).
2. Let 6 € Q., we define H(5) c H° as the open subgroup whose (R, R*)-points are given by
H(O)(R,R) = ker(H(R*) — H(R*/p°R")).
We call H(6) the 5-neighbourhood of the identity in H.

Let Z be an fs log adic space over Spa(Q,,, Z,), we the following group-sheaves over the pro-Kummer-
étale site of Z:

Hy := H(Oy), Hy:=H(Oy), HY:=H(O}) and HY := H(O})
(3) We define the 6-neighbourhoods of the identity in H; and 7’_72 to be the subgroups
H(6); := ker(H(0}) — H(O} [ p®)) and H(S); := ker(H(O}) — H(T [ p)).

We say that ﬁz (resp. ﬁg and H (0)z) is the completion of H; (resp. 7{3 and H(6);) in the
pro-Kummer-étale site of Z.

(4) Let W be an adic space topologically of finite type over Spa(Q,,Z,). Let Z be an fs log adic
space over Spa(Q,,Z,). We denote by W the inverse image t0 Zps Of the sheaf represented
by W in the Kummer-étale site of Z. We let W, be the completion of Mgy in Wik, in

other words, W is the sheafification of the pre-sheaf whose points at an affinoid perfectoid
Spa(R, R") € Zpyoxe are equal to W(R, R™).

If Z is clear from the context we omit the subscript in the sheaves of (3) and (4) above.
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8. Overconvergent theory over the flag variety

Remark 8.0.2. Let W and Z as in (4), let U € Z,e be an affinoid perfectoid with U = Spa(R, R")
and U = @,Spa(R,-,Rj) a pro-Kummer-étale presentation. Then W;(U) = li_r)n,W(R,-,R;f) while

VVZ(U ) = W(R, R"), that’s the reason we think of WZ as a completion of W.
Example 8.0.3. 1. Let H be the diagonal torus T or the upper unipotent N, we have

1+p°GF 0 1 p°G
7‘(5):( g a 1+p5@+)andN(6):(0 pla).

Let m > 1 be an integer, we have

0
0 1+p"Z, 0 1

ande:(1 p Zp).
2. Let 6 > 0, then

1 6G+ 6G+

PGy 1+p°Gy)
Definition 8.0.4. Let H be an analytic group over Spa(Q,,Z,) and Z an adic space.

1. Let 9t be a H-torsor over Z ks, we define its completion as the H-torsor M = H, x™Mz M.

2. Let f Z' — Zbea morphlsm of adic ¢ spaces and M a 7—( torsor on Zy1s. We define its pullback
to a H-torsor on Z, e @ I* M) = Hy /') F71() (similar definition for H-torsors).

X

7z Z . )

Let n > 1 and Iw, = (p,é Zi) C GLy(Z,) so that the perfectoid modular curve X(p*) is a
P 14

pro-Kummer-étale Iw,-torsor over Xy(p").

Definition 8.0.5. Let € > ¢ be positive rational numbers.

1. We denote .
GLy(€,6) := N(6) x T(6) X N(€) C GL5 .

2. Suppose that § > n. The §-neighbourhood of Iw, in G£) is the open subgroup
IW,,((S) = Iw, QLZ(é) = g-£2(5) Iw, .

The analytic group Zw,,(6) will be called an affinoid Iwahori subgroup of GL5.

8.1. Open affinoid subspaces of the flag variety

Let W = {1,wy} be the Weyl group of GL, and w € W. Let € > 0 be rational and consider the
e-analytic neighbourhood of w

wGL,(€) € GLY,

we denote by U, (€) its image into .Z#¢.

Lemma 8.1.1.  [. The collection {U,(€)}. of open affinoid subspaces of F€ is a basis of open
affinoid neighbourhoods of w € Ft. Moreover, we have a decomposition

GL,(e) = N(€) X T (e) x N(€) = GLy (€, ©).

and a natural isomorphism

)V(e)w > U,(e).
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8. Overconvergent theory over the flag variety

2. The Iwahori subgroups admit Iwahori decompositions (cf Definition 8.0.1 for the conventions)

Iw,(€) = (N N(€) X (TT (€)) X (NN(€))

3. Let e > 6 > n > 1. We have Iwahori decompositions

GLy(€,6)Iw, = (NN(6)) X (TT(8)) X (N, N(€))
GLy(e, S)wo Iw, = (N,N(8) X (TT(6)) X (NN (€)wo.
Proof. We prove (2), the points (1) and (3) are done in a similar way. It suffices to show the equality
at (R, R")-points, with (R, R") a uniform affinoid (Q,, Z,)-algebra. By definition we have
ZX(1 + pG) Z,+ pGH
— p a P a
Awale) = ( P'Z, + pG; Zi(1+ pG))
Then

Iwn(é)(R,R+):(ZP(1+pR ) Zp+pR )

P'Z, + p°R* Z,(1+ pR")

= 16 ) )

and solving the equations one finds x3 € p"Z, + p°R*, x; and x4 € Z;j(l + pR"),and x, € Z, + p°R"
which gives (1). O

Let g € Iw,(e)(R,R*). Writing

In a first approximation to describe the dynamics of the U ,-operators (cf. §9.1), we need to under-
stand the action of T(Q,) over .F#{ = P<1Qp' This action has only two fixed points, represented by the
elements of the Weyl group W = {1, wy}. We have the following lemma

Lemma 8.1.2. Let w = diag(1, p). The following holds
1. U(e)w =U(e-1)and U, (e)w = U,, (e + 1).
2. Lete>n>1,thenU(e)Iw,w = Uy(e — 1)Iw,_; and U,, () Iw, @ = U, (€ + 1)N;.

Proof. 1t follows from Lemma 8.1.1 and the computation
I O0\(fa b\(1 O\ ([ a pb
0 p\e dJ)\0 p] \p7lce d)

— — —0
Let FL = N\ GL, be the natural T-torsor over FL. We denote .#t = N\ GL, and .Zt = N°\ QLg.

— — ~0
The 7 -torsor .7 is the rigid space defined by the generic fiber of FL, while the 7°-torsor .7 is the
rigid generic fiber of the p-adic completion of FL.

O

Definition 8.1.3. Let w € W and € > ¢ > n be positive rational numbers. We define the following
trivial 7 (9)-torsor over U,,(€)

U,(€,6) := N6\ GLy(€, 5)w = NON T (SN (e)w — T(5) X N(e)w.

The space ﬁw(e, 0) Iw, is a trivial T7 (6)-torsor over U, (€) Iw,,.
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8. Overconvergent theory over the flag variety

Remark 8.1.4. Suppose that 6 > n, by Lemma 8.1.1 we have the decomposition

0 = L
ﬁw(e,é)lwn — {TT (0) X N,N(e) %fw_ 1 |
wo(TT(8) X NN(€)) if w = wy

Furthermore, there are commutative diagrams of torsors

U,(e,6) — FC U,(e.6)Iw, — FC
TT((S)\L \L‘Tﬂ TT((;)\L lr]-o (8 1.1 )
U, () — F° U,(e)Iw, —> Z(°.

Let A c T(Q)) be the subgroup generated by ¢ = diag(p, p) and @ = diag(1, p). Let A* C A be the
multiplicative monoid generated by ¢*!' and @. To interpolate the U, operators we have to normalize

the action of A over the torsors (8.1.1). We normalize the action of A over Tt by considering the
quotient A\.Z¢, note that it is a A\7 -torsor over .Z¢.

Lemma 8.1.5. The maps
U,(€,6) = NA\NA GLy(e, 6)w € A\FL
U,(€,0) Tw, = NA\NA GL, (e, 5)wIw, C A\Z¢
are isomorphisms of adic spaces. Moreover,
Ui(e,6)Iw, @ = U(e — 1,6)Iw,_, and U, (€,6)Iw, @ = Uy, (€ + 1,6)TN,

where in the first equation we assume 6 < € — 1.

Proof. The second statement follows from Lemma 8.1.2. To prove the first statement, it suffices
to take w = 1. Note that NAT (O)N(€) = |ea NAT (6)N(€). Then, it is enough to show that
NOANT (6N (€) = N\NT (6)N(€) which is obvious by the Iwahori decomposition. |

8.2. Overconvergent line bundles

Let T = T(Z,) be the Z,-points of the diagonal torus. Let V = Spa(R, R*) be an affinoid adic space
with R an uniform Tate Q,-algebra and y : T — R™ a continuous character. We need the following
elementary proposition

Proposition 8.2.1. Let V and y as above. There exists 6 > 0 such that y extends to a character
X:TT () XV — G,. (8.2.1)

If the previous holds we say that y is a 6-analytic character of T.

Proof. Writing T as product of multiplicative groups, it is enough to prove the proposition for a
character y : ZX — R™*. By continuity, there is n > 2 such that [y(1 + p") — 1| < |p|"/?"". On the

lo
other hand, we have an isomorphism of groups 1 + p"Z, N p"Z, mapping 1 + p" to a generator.
Then, for x € Z,,, we have

XA+ = (1 +p)* = ) (z)wa +p -1

k>0
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8. Overconvergent theory over the flag variety

The bound on |y(1 + p") — 1] implies that

(1 +p") - 1[f
k!

—0ask — oo.

This shows that the function x — y((1 + p")") is analytic, and defines a character
x:(1+p"GHXV — G,.
O

Remark 8.2.2. The same proof shows that given a finite Z,-module II of rank s and a character
x : I = R, there exists a family of free elements {e;,...,e;} C IT and 6 > 0 such that y extends to
an analytic character

X: H[H(l + p5@;)ei) XV = G
i=1

Definition 8.2.3. Let II be a finite Z,-module and let Wy = Spf Z,[[I1]] denote the weight space of
its Iwasawa algebra. We denote by “Wr its rigid generic fiber over Spa(Q,,Z,). The space Wi is
described in (S, S *)-points by

Wn(S,5%) = ) Homeon(IL, S ) = Homeen(IT, S )
S()CS+

where S runs over all the subrings of definition of S contained in S* (the last equality is follows
from the fact that I1 is finitely generated over Z),).

In the following we will take IT = T' = T(Z,) or Il = Z;. Let V = Spa(R,R") € W7 be an open
affinoid subspace. The universal character y*" : T — Z,[[T]]* restricts to a character Xy T — R
which, by the previous proposition, extends to a 5-neighbourhood of T in 7 for some 6§ > 0. The
same holds for open affinoid subspaces of the weight space Wzx.

Definition 8.2.4. Let e > 6 > n > 1. Let V = Spa(R,R") be an uniform affinoid space over
Spa(Q,,Z,) and y : T — R** a 6-analytic character. Let w € W = {1, w,} be an element in the Weyl
group of GL,, consider the open neighbourhood U,,(€) Iw, of w of §8.1. We define the R+§Zp }}&m—
line bundle .Z*(y). over U,,(¢) Iw, to be the quotient

L (e = TTO\(Un(€,6) W, Xwo(x)R")
(see Definition 8.1.3). Equivalently, let f : U,(€,6)Iw, = U, (5) be the projection map, then
LW = L% BRO-wolp)).
We denote Z(y). := ,,5,”%\/)6[1—17].

Remark 8.2.5. The sheaf .Z*(y). is completely determined by its global sections as lA]dw(e, 0)is a
trivial 77 (6)-torsor. Indeed -Z*(x). is the trivial line bundle whose global sections are functions
f :wlw, — R satisfying the following conditions:

i. f extends to an analytic function of G£, (€, o)w Iw,,.
ii. f(bx) = wo()(b)f(x) forb € BN w Iw,(O)w.

From now on all the affinoid pairs (R, R*) endowed with a character of 7 will be supposed to
be sheafy, i.e. we suppose that Spa(R, R") is an adic space. In fact, we will be only interested in
V = Spa(R, R") an open affinoid of the weight space of T, or (R, R*) = (K, Ok) a non-archimedean
extension of Q,,.
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8. Overconvergent theory over the flag variety

Proposition 8.2.6. Keep the notation of Definition 8.2.4. The following holds
1. Let € be fixed. The formation of £*(x). is independent of € > &' > 0.
2. IfE, > €, then ‘$+(X)5|Uw(f,)lwn = $+(X)Er.

3. Let ¢ : (R,R*) = (R',R™) be a map of uniform affinoid rings, then $+W)E§R+,¢R/+ = ZL*(po
Xe-

Proof. The proposition follows from the compatibility with respect to ¢ and € of the isomorphisms

N, N(e)ifw =1
NN(e)if w = wy

TT(6) X NoN(e)if w = 1
wo(TT (6) X NN (e)) if w = wy

b

5(6, 0)lw, = { U, (€) = {

and the obvious functoriality with respect to the affinoid algebra (R, R"). m|

As the above proposition shows, the line bundle .Z(y). is independent of € and ¢ provided we work
over a small enough neighbourhood of w € W. In the following we will simply write .Z"*(y) instead of
Z*(x)e. Let ¢ = diag(p, p) and @ = diag(1, p). We now define a normalized action of A* = (c*', @)
over .Z*(y). By Lemma 8.1.5 we can see U, (¢, 6) Iw, as a subspace of A\:@TZ

Definition 8.2.7. We let ¢*! act trivially on 2" (y). We let @ act on .Z"*(y) as the pullback of right
multiplication on U, (€, ) Iw, C A\.Z#C. More precisely, let f : U, (¢€,6) — U, (€) be the projection
and consider the right multiplication by @

Ry : Ui(e,6)Iw, = U(e — 1,8)Iw, and R,, : U, (€,6)Iw, — U, (€ + 1,8) Iw,.

Since the map R, commutes with the left action of 77 (9), it induces a pullback map between the

sheaves .Z*(y) = f*(ﬁli] (oI ®R*)[-wo(y)] which we define to be the action of w. Notice that,

depending on w, @ expands or contracts de domain of .Z*(y).

8.3. Locally analytic principal series

Let 6 > n > 1. Let V = Spa(R, R") be an uniform affinoid space over Spa(Q,,Z,) and y : T — R™
a d-analytic character. We use the line bundles .Z(y) over U, (6) Iw, to define 6-analytic principal
series and distributions of weight y. We will follow the conventions of [ ].

Definition 8.3.1. We define the left R*[[Iw,]]-module of d-analytic principal series of weight y as the
global sections of .Z*(y)

AV = T () Wy, (1)), Ay = D(U,(8) W, Z (1))

endowed with the right regular action. Suppose that y is ¢’-analytic for 6 > ¢’, by remark 8.2.5 we
can describe A)‘?J' as the R"-module of functions f : Iw, — R* such that

i. f extends to an analytic function of G£,(9, 8" )wg Iw,,
ii. f(bx) = wo(x)(b)f(x) for b € BN wy Iw,,(é')w(‘)l.

The left R*[[Iw,]]-module of §-analytic distributions of weight y is by definition
1
D%* := Homg:(A2*,R"), D) = ij[l—)]

endowed with the contragradient action.
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8. Overconvergent theory over the flag variety

Remark 8.3.2. The space NN(9) is a disjoint union of closed discs (cf. Example 8.0.3), in partic-
ular OF(NN(9)) is an ON Z,-algebra. Let {e;};c; be an ON basis of &"(NN(6)), using the Iwahori
decomposition one has isomorphisms of R*-modules

At = @ R*e; and D** = HR*eY.
X iel X !

i€l
Remark 8.3.3. It is easy to compare the d-analytic principal series and distributions defined above

with those used in [ ]. Let y : T — R** be a d-analytic character written as ¥ = (x1,x2)-
Consider the set Z; X Z, endowed with the right multiplication by Iw, and the left multiplication by

Z,. We let A)‘i’f_xz be the space of functions f : Z; X Z, — R satisfying the following conditions

i. flixz, extends to an analytic function of Z, + p‘SGZ,
il. f(tx) = (xy1 —x2)(@®) f(x) fort e Z;j and x € Z; X Zp.

Note that Z; X Z,, endowed with the action of Iw, and Z7 is isomorphic to the quotient

1 0 z Z 1 0
zxz, =, \(n,, ):( )\Iw,,.
p b (pr Z;f) Pz, Z, Pz, Z,
Thus, we have an isomorphism
S+ _ A,
AYT =AD" ® (det)*.

Let ¢ = diag(p, p), @ = diag(l, p), A = (¢*,@*") c T(Q,), A* = (c*, @) and A~ = (c*', @ ").
We want to endow Affr with an action of A* compatible with the one of Iw, (dually, we want to
endow Di* with an action of A7). Let € > 6, by Lemma 8.1.5 we can see U, (€, 6) Iw, as a subspace

of A\;dz;{’ . Moreover, we have
Uy (€,6) Iw, @ Iw, = U, (€ + 1,8)Iw, C U, (€, 6) Iw,,
this leads to the following lemma

Lemma 8.34. Let 6 > ¢ and y : T — R" a ¢-analytic character. There is an action of

the multiplicative monoid ¥+ = Iw, A" Iw, over Affr which is induced by right multiplication on

U, (6,06")Iw,. Furthermore, the action of @ on A)f“* factors through A)‘?Jr. Dually, there is an action

of X := Iw, A~ Iw, over D}*, and the action of @™ on DY* factors through D3*"*. In particular, @
-1 o+ 0,+ .

and w™" are compact operators of Ay" and Dy respectively.

Proof. To define the action of X* over Aff' it is enough to extend the character y to A by setting

x(c) = x(@w) = 1. Note that the inclusion l7w0(6, o) C A\% is stable by multiplication of X*.
Then, the action is defined by taking pulbacks of —wy(y)-equivariant functions of the 77 (¢")-torsor
U,,(6,0") = U,,(9) (i.e. of the sheaf .Z*(y)).

It remains to study the action of @w. We have a commutative diagram

Uy (6,6) Iw, —Z= U, (6 +1,8) Iw,

l |

Uy (8) TW, —Z—5 U, (6 + D Iw,,.

Taking global sections of the line bundle .Z*(y) we get an action of @ over A)‘i* which is explicitly
given by

(@) = f(@ xw).
Moreover, it factors through @ : AJ™"* — A" ¢ AJ"*, which shows that it is a compact operator as
U,,(6+1)— U,,(9)is a strict immersion. The statements for fo are clear by taking duals. |
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In the definition of overconvergent modular symbols we are going to consider A)‘?Jr and D)‘i”r as
sheaves over the pro-Kummer-€tale site of X,(p"), the strategy is to use Construction 7.2.2 and Defi-
nition 7.2.3. In order to study the pro-Kummer-étale cohomology of these sheaves we need a devis-
age in finite local systems of the modular curve. We know that A)‘?Jr and fo have natural underlying
topologies (the p-adic topology and the weak topology respectively). Furthermore, they have presen-
tations as projective limits of inductive limits of finite Iw,-modules. Using such a presentation we can
describe the sheaves Affr and fo over F s as projective limits of inductive limits of finite constant
sheaves. Then, we take the inverse image via iyt : X(p*) — € and the Iw,-equivariance to define
the local systems over Xy(p"). We need a couple of lemmas.

Lemma 8.3.5. Let (F,OF) be a non archimedean field. Let H = Spa(A,A*") be an affinoid adic
analytic group over F, and Z = Spa(R, R") an affinoid adic space topologically of finite type over
Spa(F,OF). Let ® : H X Z — Z be an action of H over Z. Then for all N > 0 there exists a
neighbourhood 1 € U C H such that forallg € U, z € Zand f € 0*(Z), we have |f(z)—- f(g2)| < |p|".

Proof. As 0*(Z) = R* is topologically of finite type over O, it suffices to prove the proposition for a
single f € R*. Let ®* : R* — (A*®0, R*)* be the pullback of the multiplication map. Let V ¢ H x Z
be the open affinoid subspace defined by the equation

1® f -0 () <Ipl.

As V contains 1 X Z and this is a quasi-compact closed subset of H X Z, there exists 1 € Uy C U such
that Uy X Z c V. Therefore, for all g € U, and z € Z we have |f(z) — f(g2)| < Ip|". O

s+r) —

ker(GLx(Z,) — GLa(Z/p**'Z)) acts trivially on A)‘i’+ / pSA)‘i’Jr. In particular, we can write A)‘i* =

lim lim F; where F; are finite Iw,-modules.
—s5s —i

Lemma 8.3.6. Let s > 1 be an integer. There exists a positive integer r such that T'(p

Proof. 1t is enough to show that there exists r > 0 such that 7', ,Ny,, acts trivially on Aff/ pSA)‘i’Jr. Let
f e Aj?* and g = tn € TN, then (gf)(x) = (&) f(t ' xtn) for all x € NN(6) = U,,,(6) Iw,. Since y is
continuous, we can find r; >> 0 such that xy(r) = 1 mod p* forall t € T,,. Applying Lemma 8.3.5,
one finds r, >> 0 such that f(r"'xtn) = f(x) mod p* for all x € NN(J) and tn € T,,N,,. Taking
r = max{r;, r.} we have the first statement of the lemma. The second statement follows from the fact
that Iw,, /['(p**") is a finite group. O

In order to write D)‘?J“ as a projective limit of inductive limits of finite Iw,-modules we first give a
filtration defining the weak topology

Definition 8.3.7. We let Fil* D) be the kernel of D" — DY /psDJ™!*

Lemma 8.3.8. We have an isomorphism D3* = lim DY/ Fil* DS*. Moreover, D" | Fil® DS is a finite

R*-module and the inverse limit topology is the weak topology. In particular, writing fo’/ Fil® for =

li_n)li F; with F ; a finite Iw,-module, we get D)‘i’ = @; h_r)nl F .

Proof. This follows from the fact that the injective map D$* — D} ™" is the dual of a compact map
of ON R*-modules. O

Corollary 8.3.9. Let F denote A($+ or D(S+ and let F = hm hm F,; be the presentation as a pro-

jective limit of a direct limit of finite Iw,-modules of Lemmas 8 3.6 and 8.3.8. Then the sheaf F of
Definition 7.2.3 can be written as

F =limlim Fy;
- —

in the proétale site of Ft.
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8. Overconvergent theory over the flag variety

Proof. Let U € Fp¢ be an affinoid perfectoid. As the presentation F = hm hm F; is compatible
with the topology of each sheaf (the p-adic or the weak topology), it is enough to show that

CM(UL limlim Fy) = lim lim C**"(|U], F),
s i s i
but this is clear as |U] is a spectral space and h_n>1 F,;is a discrete set. O
l

We end this subsection relating the d-analytic principal series and distributions with the algebraic
representations of GL,. Let 6 > ¢’, we have an Iw,-equivariant map of torsors

~ ~0
U,,(6,0)Iw, —— Ft

TT(S,)\L lTO (8.3.1)

U, (0)Iw, —— Z¢.

Let k € X*(T) be a dominant weight, -Z () the line bundle over .#¢ defined by the character wy(x) and
the functor (7.2.4). Moreover, let £*(k) C £ (k) be the 0’7, -subsheaf defined by the lattice wy(k)Z, C
wo(k)Q,, via :?}%O — FL. We set V! := I[(F, £ (k)). Recall from §7.2 that V, = ['(F#(, L (x)) is the
irreducible representation of GL, of highest weight «.

Proposition 8.3.10. Let « € X*(T) be a dominant weight.
1. There is a natural Iw,-equivariant inclusion V| — A% for all § > n.

2. There is a natural Iw,-equivariant map D" — V"V = v*

"o Which becomes surjective after
inverting p.

Proof. From diagram (8.3.1), taking global sections of the line bundle .Z’(x) we obtain a natural Iw,-
equivariant map V! — A2" which is clearly an inclusion. The map D)* — V2, o0 1s defined by taking
duals. O

Remark 8.3.11. Let ¢ = diag(p, p) and @ = diag(l, p), let A* = (c¢*!, @) and A~ = (¢*', @ ') be
multiplicative monoids. Set £* = Iw, A*Iw, and ¥~ = Iw,, A" Iw,. In order to make the maps
of Proposition 8.3.10 X*-equivariant we have to normalize the action of A on V. Namely, we let
t € Aacton V! by (¢f)(x) := $ f(xt). Thus, under this normalization, the maps V; — A% and

DY - vt

T oto Are XT and X -equivariant respectively.

Definition 8.3.12. Let (R, R") be an uniform Tate Q,-algebra and y : T — R*™* a ¢-analytic character.
We define the following Iw,-equivariant sheaves over F#€poe

1. The sheaf of 6-analytic principal series

1
AT = = lim (A2 /p*AS*) and A = ﬂ?[l—)] = A_;i.
We let ﬂ?@z ﬁ’ &, be the completed tensor product with respect to the p-adic topology.
2. The sheaf of ¢-analytic distributions
1
S+ _ Ot — Tim DO/ S 5 — Y N
Z)X+ = QX+ = @DXJ'/ Fil’ and D = Z);[;] = &

N

We let Z)ff'@z ﬁ’ % be the completed tensor product with respect to the filtration of Z)‘H.
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8. Overconvergent theory over the flag variety

Proposition 8.3.13. The sheaves ﬂ“@ﬁ e and Z)6+®ﬁ’ e admit an fv\vn(é)—equivariant action com-
patible with the Iw,(5)-action over the ﬂag variety.

Proof. See Definition 8.0.1 for the description of the completed sheaf _/Z;vn(é)yg. First, we show that
the sheaf fv\vn(é) ¢ 18 compatible with the action of Iw,(6) over .Z¢ and the right multiplication. It
is enough to prove that QLZ ¢ 18 GL,-equivariant for the right multiplication and the action over .#¢.
Consider the following diagram

F X GL,

Pry x‘
F F

where pr, is the projection onto the first factor and m the multiplication map. A GL,-equivariant
action over GL, g is the same as an isomorphism

Pﬁ(ézz,%) - m*(ézz,%)

of g/zz—torsors over (F X GL,)pot satisfying a cocycle condition. Let Spa(S,S*) be a perfectoid
affinoid space in (€ X GL,)proet, We have induced maps x, : Spa(S,S*) — F€and g, : Spa(S,S*) —
GL,. We define the isomorphism

GLo(S) = pri(GLy,57)(S,8") = m'(GLs 5) = GLy(S,S ™) = GLa(S)
8§ 880
It is straightforward to check that this isomorphism provides the desired action.

Assume that y is ¢'- analytlc for 6 > ¢’. We want to describe the sheaf ﬂ“@ﬁ s 5;€—Valued

functions over the sheaf QLz(cS, 6" )wolw,, satisfying the conditions of Definition 8.3.1. By Lemma
8.1.1, we have an Iwahori decomposition

GLA(6.8 wolw, = (N N(8)) 5 X (TT ) 50 X (NN(S)) sew.

We define ﬁﬂff over F{ s to be the sheaf whose points at an affinoid perfectoid U = Spa(S,S*) —
1 is the space of functions f € ﬁﬂjﬁ“’(U ) € Hom(GL,(0, 6" )wolw |y, OY)) satisfying:

i. fisinduced by an analytic function Hom(GZL, (6, 6" )wo Iw,,, G;)@Zp % 5= 0 (GLy (5,0 )wyg Iwn)@g -

ii. f(bx) = wo(x)(b)f(x) for b € BN wofx\vn(é’)wally.
The Iwahori decomposition of GL,(6, 6" )wy Iw, shows that we have an isomorphism of sheaves over
F fproét
OAY = O (woNN(6)®0 %,
By Remark 8.3.2, we see that the natural map ﬂ‘“@ﬁ P ﬂi* is in fact an isomorphism of Iw,-
equivariant sheaves. Since ﬁﬂx has a natural Iwn(c‘)‘) equwariant action induced by the right regular
action, we have proven the proposition for ﬂ6’+§ﬁ - We obtain the result for Z)‘”@ﬁ % by taking

ﬁ ,~duals (recall that the completion in this case is with respect to the weak topology, cf. Lemma
8. 3 8) ]

Corollary 8.3.14. Let x € X*(T) be a dominant character. The maps V' — AS* and DY+ — V*

—wo (k)

induce morphisms of Iwn(é)—eqmvarlant sheaves over F o

+ o+ S+ o O+ o+ + ot
Vi ®z, 05 = AT and D@05 — V2, () ®z, O 5.
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8. Overconvergent theory over the flag variety

Proof. In the notation of the previous proposition, it is enough to consider the inclusion of sheaves
over Flpros

ézz(@ 6 )wolw,, C ézz

and take analytic functions with values in 5}{) satisfying f(bx) = wo(k)(b) f(x) for b € B. |

8.4. The dual BGG complex and highest weight vector maps

We begin this subsection with a brief construction of the dual BGG complexes for GL,, we refer
to [ ] for a more general treatment of the subject. Let W = {1, w,} be the Weyl group of GL,
and BwoN c GL, the big cell. We have a commutative diagram of torsors

BM@N-————$ GL2

Bl lB (8.4.1)

B\BwyN —— FL

where the left vertical arrow is in fact a trivial B-torsor. Let x € X*(T) be a character and .Z(«)/FL
the line bundle attached to wy(x) by the functor (7.2.4), in other words, the line bundle given by the
quotient B\(GL, Xw(k)). If k is dominant, let V, := I'(Z¢, £ (k)) be the irreducible representation of
GL, of highest weight «.

Definition 8.4.1. We define the (g, B)-representation V (k) := I'(B\Bw(N, -Z(x)), where the action of
(g9, B) 1s induced by the right regular action on the big cell.

As B-module, V (k) is a twist of the algebra of regular functions of woN. Indeed, there is an isomor-
phism B\BwyN = woN, and one has

Vk) =k ® V(1) = k @ T(woN, On), (8.4.2)

where the action of B over I'(wgN, Oy) is induced by the adjoint action (n, b) +— b~'nb for (n,b) €
N x B.

Remark 8.4.2. The (g, B)-module V(«x) is in fact the admissible dual of the Verma module of highest
weight «, see §3.10 of [ ].

Let « be a dominant weight. Taking the global sections of .Z’(k) in the diagram (8.4.1), one obtains
a map
V. = V(x).

Writing « = (k;,k,) € Z?, and G, = N via X (1) )1(), the map of V, in V(k) is identified in (8.4.2)

with the inclusion Q,[X1i,—, € Q,[X] = C(wyN, Q,) of polynomials of degree < k; — k. We have
the following proposition

Proposition 8.4.3. Let a = (1,—1) € Z> = X*(T) and k = (ki, k») a dominant weight. There is a short
exact sequence of (g, B)-representations

BGGk): 0—- V> V() > Viwg(k) —a) - 0

called the dual BGG complex of weight k. As B-representations it is identified with the short exact

sequence

_d \kj—kp+1
dXI2

0= «®Qp[X]ety—k, = k®Qp[X] ——— (wo(k) — ) ® Q,[X] — 0. (8.4.3)
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8. Overconvergent theory over the flag variety

Proof. We have a weight decomposition of V(«) with respect to T

V() = (P - na)a,,

n=0
where (k — na)Q, is identified with k ® Q,X" under the isomorphism (8.4.2). As V, is the irreducible
representation of highest weight «, it has a weight decomposition V, = @OSn <ty i, (K = n@)Q,,. This

shows that V, C V(x) is identified with the inclusion x ® Q,[X]<t, -1, C k ® Q,[X]. As k ® X" 7*2*! has
weight (wy(k) — @), the isomorphism of BGG(k) with (8.4.3) as B-representations is clear. O

Let k € X*(T) be a character, note that there are natural maps

K— V(x) as B-modules, and V(k) ev—0> k as b-modules. (8.4.4)

In fact, the action of ((1) 8) € maps k®X" to (k; —k, —n)(k®X"™*!). They are the highest weight vector

and lowest weight quotient of V(x) with respect to the actions of B and b respectively. Futhermore,
recall that the 6-analytic principal series A° is by definition the global sections of . () restricted to the
open analytic subspace U, (6) Iw, C #(. Let B = B(Z,), since U,,,(6) Iw,, C (B\BwoN)*" C .Z¢, there
is a natural (g, B)-inclusion V(x) C A% which can be improved to an equivariant (g, BA*)-inclusion by
normalizing the action of ¢ = diag(p, p) and @ = diag(l, p) on V() as in Remark 8.3.11. The maps
(8.4.4) can be extended to maps between d-analytic characters and -analytic principal series:

Proposition 8.4.4. Lete > 6 > n. Let (R, R") be a uniform Tate Q,-algebraand y : T = T(Z,) — R**
a d-analytic character as in §8.3.

1. There is a B N Iw,(5)-equivariant map ¢ : yR* — Affr (the highest weight vector map). More-
over, it induces a morphism of Iw,(€)-equivariant sheaves over U;(€) Iw,,.

L wo)8pr, Oy — ATROY,,.
Dually, we have equivariant maps D)(?Jr — (=x)R" and Z)ff'@a =L +(—W0(X))@@+W 5’\ -

2. Thereisa BN Iw,(6)-equivariant map ev,,, : A)‘?Jr — YR (the lowest weight vector quotient).
Moreover, it induces a morphism of Iw,(€)-equivariant sheaves over U,, (€) Iw,

AROY, — ,%*(X)Fé% Oy

Dually, we have equivariant maps (—y)R* — Df(’+ and L (—x)®¢ 5;{, — Z))‘?Jr@é’\;g.

Ft
Proof. Letw € W = {1,wp}. By duality it is enough to construct the maps for the §-analytic prin-
cipal series. It is obvious that the maps ¢ and ev,,, are morphisms of B N Iw, and B N Iw,-modules
respectively. Moreover, it is clear that they extend to a morphism of 8 N fw,(5) and BN Iw,(0)-
representations in the sense that for any affinoid ring (S, S™*), the extension of scalars to S* of the
maps ¢ and ev,,, commutes with the action of (8 N Iw,(0))(S,S*) and (Z_B N Iw,(0))(S,S™) respec-
tively. Denote Z,, := GL, (€, 6)w Iw,,, the quotient maps

BN I, (O\(Z) X YR") = BN Iw,()\(Z; X AT")
(BN wo W (6)Wy N\ (Zy, X ALY = (B N wo Tw,u(S)wy I\(Zwy X wo(x)R)

induce maps -2 (wy(y)) — ﬂjﬁ*lan@ﬁ, z¢ and ﬂjﬁ*lan@ﬁ 70 — L (y) over the analytic site of U, (¢) Iw,
and U, (¢€) Iw, respectively. Their p-adic completions in the pro-étale site give rise the maps of the
proposition. O
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8. Overconvergent theory over the flag variety

Second proof. Let us provide a slightly different proof whose ideas are used in the forthcoming sec-
tions. We assume that y is ¢’-analytic for 6 > ¢’. We saw in Proposition 8.3.13 that the sheaf ﬂi’r@ﬁ;

occurs as the sheaf of wy(y)-equivariant functions of a trivial sheaf éZZ(é, 6’)wolﬂ—sheaf for the left

action of B N wof\\vn(d’)wa !. In the next we will construct the maps of the abelian sheaves by first
constructing maps between analytic spaces over U, (€) Iw,,.
Let Z,, = GL,(€)w Iw,, consider the following map of left B N w Iw,(e)w'-spaces

Z, X (NN GL, (8,8 Ywo Iw, wh) — Z,, x (NN GL, (8,8 )wo Iw,)o

(8.4.5)
(x,8) = (x,8X)

where the action of b € 8N w Iw,(e)w™! is b(x, g) = (bx, gb™") in the left hand side, and b(x, g) =
(bx, g) in the right hand side!. By the Iwahori decomposition (Lemma 8.1.1) we know that

NONC GL (8,8 Yo Iw, = (TT(8)) X (NN(S))wp.

Therefore, the map (8.4.5) is well defined and it is in fact an isomorphism. On the other hand, we
have maps of B N w Iw,(e)w'-equivariant spaces

Zoy X TT(6") = Zyy X NN(§N\BB(S') C Zyy X (IN\N GL(S, 8 Yo Iw, wy")

Zi X (NN GL,y (8,6 Wo Iw,,) = Zi X (NN GL,y (8, 6 )wo Iw, NOIN®) = Zy x woTT (6")
Composing the previous maps with the isomorphism (8.4.5) we obtain 8 N w Iw,(e)w™'-equivariant
maps

Zyy X TT(8) = Zyyy X NN GLy(6, 6" )wo Iw,)o
(x, 1) = (Wox, 1x)
Zy x (NN GL, (8,6 Ywo Iw, g = Zy X woT T (6)
(x,wpg) — (x, wogx_l) = (X, Wolly gl oMy ) H> (X, Woly ),

1 1

where gx™ = n, g, o0, is the Iwahori decomposition of gx™, and the action of the upper triangular
Borel on T7(6) is b - t = 11, with #, the image of b in the torus. Dividing by the action of the Borel
we obtain maps of 7w, (€)-equivariant spaces over U,,(€) Iw,

Uy, (€,6)Iw, = U,,(€) Iw, XN \N° GL, (8, 8 )wg Iw,,

o - (8.4.6)
Ui(e)Iw, XN\N" GL, (6,6 )wo Iw, — Ui(€,6") Iw,, .

Indeed, we have an isomorphism Tt = B\(GL, XT") where the action of b € Bon (g,1) € GL, XT
is given by b(g,7) = (bg,1t,;"). Notice that the first map is equivariant for the left multiplication of
T7 (6) while the second map is wy-equivariant. Taking completions in the proétale site of U, (€) Iw,,
and analytic functions in Hom, 2 5 (—, wo(x) 5’\;@5), one obtains the desired maps

ﬂ?@ﬁ;{, - & +(X)§ﬁ;[ 5;{, over U, (€) Iw,
LW )Bos, Oy — ALTRO S, over Uy(€) Iw, .
O

Let k € X*(T) be a dominant weight and V, the irreducible representation of GL, of highest weight
k. The highest and lowest weight vectors of V, induce maps of B-representations

Vi = wo(k)Q, and kQ, — V,.

I'The zero subscript in the right hand side meaning that the action of the Borel is trivial in that component

56



8. Overconvergent theory over the flag variety

Passing through the functor (7.2.4) one gets maps of GL,-equivariant sheaves over .7
VK ®QP ﬁgzg - g(K) and g(WO(K)) - VK ®Qp ﬁyg.

Recall that we have integral structures .2 *(«x) and V| = I'(%#{, £*(x)) which are compatible with the
previous maps . We have the following corollary

Corollary 8.4.5. Let k € X*(T) be a dominant character. There are commutative diagrams of Z”v\v,,(d)-
equivariant sheaves

RO, —— LK) @y, O, L (wo(k) @, O — AVRO™,
Vieos Vie oy

A similar statement holds for D",

Proof. Itis enough to prove the commutativity of the diagrams at the level of BNZw,(6)-representations
for w = 1 (resp. as B N Iw,(d)-representations for w = wy) which is easy to check. O

Corollary 8.4.6. Let € > 6 > n. Let (R, R") be an uniform affinoid Tate algebra over Q, and y : T —

R** a & -analytic character. The maps of Proposition 8.4.4 are compatible with the action of A" for
A%, and with the action of A~ for D}

Proof. Assume that the character is ¢’-analytic for 6 > ¢’. It is enough to check that the maps of
spaces in (8.4.6) are compatible with the action of A. But this follows from the normalization of the
action of A in A\.%#¢ and Lemma 8.1.5. O
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9. Overconvergent theory over the
modular curves

The theory of the canonical group is fundamental in the construction of the overconvergent modular
forms and the perfectoid modular curve. One of the main ideas of the recent work of Boxer-Pilloni
in higher Coleman theory [ ] is to use the Hodge-Tate period map and the perfectoid Shimura
variety to define an overconvergent theory of automorphic forms. Following their method, one can
describe the overconvergent modular forms only via the Hodge-Tate period morphism, not using
explicitly the canonical group but in the construction of the perfectoid modular curve.

The goal of this section is to translate the overconvergent (or locally analytic) objects over .F¢
defined in §8 into overconvergent objects over the modular curves via the Hodge-Tate period map. We
will define the sheaves of overconvergent modular forms of [ ] and [ ], the overconvergent
modular symbols of [ 1, and the overconvergent dlog map of [ ] interpolating the Hodge-
Tate map HT* : Sym* T,E® ﬁ’X - Wk ®gy ﬁx Moreover, we also construct a “dual” of the above

map interpolating HTVk w™* ®g, ﬁx(k) — Sym* T,E® ﬁx Later in §10, we will use these maps
to construct the interpolations of the Elchler—Shlmura decomposition, recovering the “first half” of
[ I

We keep the conventions of §7. Throughout this section we shall denote X = X,(p") for the modular
curve of level K” Iw,, and X, = X(p*) for the perfectoid modular curve.

9.1. Overconvergent neighbourhoods of the ordinary locus

We start with the definition of the overconvergent of neighbourhoods of the ordinary locus of X. Let
mur ¢ Xeo = FC = P}QP be the Hodge-Tate period map and ny,, : X — X the natural projection

map. Let X4 C X, be the closure of the ordinary locus of the perfectoid modular curve, and X° the
closure of the ordinary locus of X. By [ ] we know that Xod = Jr;IIT(ﬁf(Qp)). In particular, we

can see the topological space X° as pr(mL(:-#€(Q,)))

Let Ci™ c E[p"] be the canonical subgroup over X and w € W = {1, w,}. We let XW w, C X°rd
denote the w-ordinary locus, i.e. the ordinary locus where C;*" has relative position w with respect

—ord
to the universal group H, C E[p"]. In other words, X, 1s the ordinary locus where C;*" = H,

. d
and XWO 1w, the locus where C;*" N H, = 0. We can also describe the closed subspace )_(jilwn as

Tw, (7T HT (W IW,,)) .
Lete>n>1andw e W = {I,wy}. In §8.1 we have defined overconvergent affinoid neighbour-
hoods {U,,(€) Iw,} s, of w € ZL.

Proposition/Deﬁnition 9.1.1. There exists a unique open affinoid subspace X,, 1y, (€) C X such that
7TIW Xov1w, (€)) = my (Uw(e) Iw,). Moreover, it satisfies the following properties:

1. Xy 1w, (€") C X, 1w,(€) 1s a strict immersion for €’ > €.

—ord
1. {X, 1w, (€)}e 1s a basis of strict neighbourhoods of X ;.-
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Proof. By Theorem III 3.18 of [ ] we know that ﬂﬁlT(Uw(e) Iw,) is an affinoid perfectoid sub-
space, and that there is some finite level K, € GL,(Z,) and some open affinoid subset U C Xk, whose
preimage to X is 751(U,.(€) Iw,,). As the underlying topological space of the affinoid perfectoid is
Iw,-invariant, we can actually take K, = Iw, so that X, 1,,(€) = U. Let € > €. Since X is proper,
to see that X, 1w, (€') C X,,1w,(€) is a strict immersion it suffices to prove that X,, 1y, (€/) C X, 1w, (€).
This is a consequence of the construction and the fact that U (e’) Iw, c U,(e) Iw,. Finally, to prove

that {X,, 1w, (€)}e>n 15 a basis of strict neighbourhoods of X it is enough to notice that they are

w,Iw,
quasi-compact open subsets of a qcqs adic space, and that (. X,,(€) = X 1, . The last equality is a
consequence of the equality (in %) w Iw, = N U,(€) Iw,, and the description of the ordinary locus
of the perfectoid modular curve as 7 (JK(QP)) O

We briefly recall some properties of the canonical group in the overconvergent neighbourhoods of
the canonical locus, see [ ] and [ , SIIL.2].

Theorem 9.1.1. The following holds

1. Let m > n be an integer. There exists € > n such that X,, 1y, (€) admits a canonical subgroup of
order p™.

2. Let X = Xo(p") be the formal integral modular curve of level K? Iw, over SpfZ,, cf. [ J
Let wg x be the modular sheaf over X, and wgx ®¢, Oy the induced integral structure of weg.

The map HT : T,E ® ﬁx — WE B, ﬁx restricts to a map
T,EQ® ﬁ; — we x O, 6”;
with cokernel of p-torsion.

3. Let m > n and € > n such that X,,1,(€) admits a canonical subgroup of order p™. There is
0 < r < 1 such that the restriction of the Hode-Tate map to X,, 1w, (€) factors through

TE® 0 —— wpx®p, O}

l |

™' ® 5;/ P —— wrx/p™

where Cyi™" is the Cartier dual of the canonical group C<™.

Proof. Part (1) is of Théoreme 6 (1) in [ ] where there are explicit bounds for €. Parts (2) and (3)
follows by Théoreme 6 (7) and Théoreme 4 of loc. cit., see [ , §3] for more details. O

The affine modular curve Y C X parametrises triples (E, H,,¥y) where E is an elliptic curve
E, Yy is some prime-to-p level structure, and H, C E[p"] is a cyclic subgroup of order p". Let
w = diag(1, p). We finish this subsection with the dynamics of the U ,-correspondance of X,,.

Definition 9.1.2. The U ,-correspondance of X is the finite flat correspondance C

C
pi P 9.1.1)
X / \ X

parametrising (E, ¥y, H,, H), where (E,H,,y¥y) € X and H" C E[p] is a cyclic subgroup of or-
der p such that H, " H' = 0. We define p\(E, ¥y, H,,H") = (E,¥y,H,) and p,(E,¥n,H,,H") =
(E/H', Wy, H,), where ¢, and H, are the images of ¥y and H, in the quotient E/H’. Let  : p'E —
p5E be the universal isogeny over C and ¥ : p;E — pjE its dual. For a subspace Z C X we denote
U,(Z) = pi(p;'(2)) and UL(Z) = pa(p7'(Z)).
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9. Overconvergent theory over the modular curves

Lemma 9.1.3. Let € > n, the following holds
1. U;,(Xl,lw,,(e)) C X],IW,,(G + 1) and UP(X17IWII(€)) D) Xl,Iwn(e - 1) l:fE >n+ 1.
2. U,(Xyy1w,(€)) C Xy 1w, (e + 1) and U;(XWO,IW,I(E)) D Xyw,(e—1)ife>n+ 1.

Proof. The perfectoid modular curve X, parametrises (E, Yy, (e, e;)) where (E,yy) € X(1) and
(e1,er)isabasisof T,E. Let Co = XooXx pp, C. The perfectoid curve C,, parametrizes (E, Yy, (ey, e2), H')
where (E, Yy, (e1,e2)) € X, and H' C E[p"] is a cyclic subgroup of oder p such that (¢;) " H = 0
mod p. Write Coo = | lep, Cooe With Cooy the locus where H' = (e + ae;). Note that the map
D1 ¢ Cooq — X 1 an isomorphism for all a. We have a diagram

Lo Cooa

Xoo Xeo

Wlth pl(Ea le9 (61, 62)5 H,) = (E’ wNa (el’ 62)) and pZ(E’ wNa (el’ 62)9 H,) = (E/H,9 IZN’ (ﬂ-(el)a 52))9 SuCh
that the restriction of p, to Cw, 1s given by &, = %(n(ez) +an(e;)) for 0 < a < p lifting a. Let U, :=

0
diagram

(1 —pa). Composing with the Hodge-Tate period map myr : Xoo — %€ we have a commutative

o

Cooa
THT .Dp/ ﬁopz
. Upa

T < ’ Tt .

By Lemma 8.1.2 we obtain

[(rar © p1)((ur © p2) ' (Uyy(€) Iw,)] - Iw, € Uy (€ + 1) Iw,
[(rar © p1)((rur © p2) ' (Ui(e) Iw,)] - Iw, D Uy (e — 1) Iw,
[t © p2)(tur © p) " Uy (€) Iw,)] - Iw, D U,y (e — 1) Iw,
[(7tur © p2)(mtur © p)~ (Ui (€) Iw,)] - Iw,, € Ui(e + D Iw,, .

9.1.2)

1

On the other hand, there is a natural map of correspondances
Xoo

Co
o]
X C

with both squares being cartesian. The lemma follows from the equations (9.1.2) and the equality
Xovtw, (€) = M, (W (U (€) Iwy)). O

P2
> Xeo

T

s=]

P2

, P
S
, P
N

> X

—ord
Corollary 9.1.4. Let X(l)flwn C U be an open quasi-compact overconvergent neighbourhood of the

d
1-ordinary locus of X. Suppose that )_((:Vro’lwn C X\U is an overconvergent neighbourhood. Then there

exists M >> 0 such that (U [’,)M (U) c U is a strict open immersion. We have a similar behaviour with
U, and exchanging 1 and wy.

Proof. The affinoids X,, 1y, (€) form a basis of oveconvergent neighbourhoods of )_((:Vi(liwn. Hence, there

is € > n such that X, 1v,(€) C X\U and X| y,(e) C U. It is enough to show that there exists M >> 0
such that X \(U’p’M (Xyoaw,(€))) C Xiw,(e + 1). Working over the perfectoid modular curve and the
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9. Overconvergent theory over the modular curves

perfectoid finite flat correspondance of the previous lemma, the question is reduced to show that there
exists M >> 0 such that
M

T\ (UWO(G) w, (po (1))) C Uy(e + 1) Iw,.

Let F# — P(lzp be the isomorphism mapping a matrix (Z Z) to (¢ : d). Then U, (€) Iw, contains the
locus {(x : y) [ [y/x] < [pl}. We get

M
(Ce: ) |y < 1plf) (”0 (1’) = {9 |/l < I,

its complement is the locus {(x : ) | |x/y| < |p|~¢}, taking M > 2€ + 1 we have the desired result. O

9.2. The sheaf of overconvergent modular forms

The goal of this subsection is to define the sheaf of overconvergent modular forms at the overconver-
gent neighbourhoods of the w-ordinary locus of X. Given an uniform affinoid Tate algebra (R, R*) and
a d-analytic character y : T = T(Z,) — R™, we construct (for € >> n) a R@ﬁxlw(e),an-line bundle wy,
over X,, 1y, (€) interpolating the classical modular sheaves w}. for k € X*(T). To achieve this goal, we
first construct an overconvergent torsor of modular forms 7 ,0q4(6) whose —w(y)-equivariant sections
give the line bundle w?, cf Definition 9.2.7. The torsor 7 ,,4(d) is essentially the image of the torsor

‘I‘(U w(€,0)) 1= My, (nHT(U w(€,0))™, obtained by Construction 7.2.2, from the pro-Kummer-étale
site of X, 1w,(€) to the étale site, cf. Proposition 9.2.1. As a consequence we will prove that the
sheaves over X, 1, (€)proket arising from .Z’(y) via the functor Y of §7.2 are written in terms of w)g and
Tate twists, cf. Proposition 9.2.8.

—~0 —
Let .Z( be the flag variety of GL,, # = N°\ GL) and .#€ = N\ GL, the natural 7° and 7 torsors
over .#t. We see both torsors as QL(Z) (resp. GL,)-equivariant sheaves in the étale site of .7¢ as usual.

—_—
—_—

—~0
We denote in the same way their extension to the proétale site and by .#¢ and .#¢ their completions,

~0
see Definition 8.0.1. Let f : #¢ — Z€ be the projection map and x € X*(T) an algebraic weight. By
definition we have .Z*(x) = f. (ﬁ * 0)[ wo(x)] with respect to the left regular action of 77°. In other

words, we have isomorphisms of torsors
ﬁf = Isom(0%,, £7(0, 1)) x Isom(0'%,, £*(1,0)). (9.2.1)
F = Isom(0 7, £(0, 1) X Isom(0 7, Z(1,0)).
Let K, € GL,(Z,) be an open subgroup and Xk, the modular curve of level KK,.
Definition 9.2.1. We define the modular 7 -torsor over the analytic site of X, as
Tmodan := Isom(Fy, , wg') X Isom(Oy, , wg)

whose left 7 -action is induced by the actions of G,, over w;' and wg respectively. The torsor has a
natural enhancement to a torsor over the étale (resp. Kummer-étale) site of Xg, denoted by T o
(resp. Tmodxer)- We see the torsor as a sheaf 7,04 in the pro-Kummer-€tale site by taking the inverse
image of T noqxe Via the projection map X, proket — Xk, ket-

We let T (1, 0) denote the Tate twist

F1.0) =T oD V)
0 Z

where Z,(1)* = Isom(Z,, Z,(1)).
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9. Overconvergent theory over the modular curves

Proposition 9.2.2 ([ , Prop. 2.3.9]). There is a Galois-equivariant isomorphism of T -torsors

Y(Z) = T(1,0) x” Tiou.

Proof. Let St be the standard representation of GL, and consider the short exact sequence of GL,-
equivariant sheaves over .%¢ (Example 7.2.4)

0—-Z20,1) > Stel0 4 — Z(1,0) — 0.

We have T(Z(0, 1) = w;' ®, O, (1) and Y(ZL(1,0)) = w, ®g,_ O, . The proposition follows
P P P P
from the equation (9.2.1) and the definition of 7 4. |

In order to construct overconvergent modular sheaves we have to find refinements of the torsor
T mod.an- 1t turns out that the torsor 7 ,,q admits an integral reduction to an étale torsor as is shown in
the following theorem

Theorem 9.2.3 ( [ , §4.6]). There exists an étale T -torsor T 1. Over Xk, such that

and Y(FC) = T(1,0) x74 70

mod,ét*

790
Tmod,ét = 7~é X a TO

mod,ét

We denote by 7"1?1
image of ‘7’;’1

. L . 0 .
odkét IS pullback to a torsor over the Kummer-étale site and by T, the inverse

od ket [0 the pro-Kummer-étale site of X,

Remark 9.2.4. The existence of the integral torsor holds in greater generality for Shimura varieties
when the reductive group G is quasi-split over Q,. We will sketch the original construction involving
the canonical subgroup, see [ ] for more details.

Before proving Theorem 9.2.3 we need to define some sheaves over the pro-Kummer-étale site of
the modular curve.

Definition 9.2.5. Let HT : T,E ® 5;% — W By, 5’\;% be the Hodge-Tate period map. We define
P
the integral modular sheaves over Xk, proker as

wp =HT(T,E® 5’}&7) and wy, 1= wg N Wy

Proposition 9.2.6. 1. The sheaf wy is a locally free Oy, -module.
P’
2. We have wz[é] = wg and W}, ®ﬁ;1(l) 5;1(17 = wy, over Xyokar. In particular, w}/p* = wy/p’ for
all s > 0.

Proof. Let Xg, be the completion along the special fibre of the integral modular curve of level KPK,.
Let D denote the cusp divisor. By Theorem 9.1.1 the Hodge-Tate map restricts to a map

HT:T,E® ﬁ;g[{p = Wiy, Oy, ﬁ;Kp
with torsion cokernel. In particular, by Nakayama’s lemma the restriction of wy, to X K, XX(1) X(p)\D)
is locally free for the analytic topology. It remains to show that it is locally free for the étale topology
around the cusps. Let D ¢ D C X;(p) be the locus of the cusps where the universal group is not
canonical. Then X;(p)\D“ is étale surjective over X(1) and by Nakayama’s lemma the restriction of
wy, t0 Xg, Xx(1) (X1(p)\D“) is locally free around the cusps, this proves (1). Part (2) is clear because
Wy C Wxy E B0y, ﬁ;Kp has torsion cokernel and w}, C wj, is dense when restricted to the perfectoid
modular curve. O
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9. Overconvergent theory over the modular curves

Proof of Theorem 9.2.3. Define the 7°-torsor over Xg, proket
Tod = Isom(O%, wp ™) x Isom(y, , wp).
By Proposition 9.2.6 the torsor Trgo 4 1s trivial locally for the étale topology of Xk, . Moreover, since

wg[llg] = wp we have Tipog = T X7 T Y 4 On the other hand, by Example 7.2.4 we have

T(Z£*(1,0)) = wy and Y(Z*(0, 1)) = wi(1).

By the equation (9.2.1) one obtains the isomorphism of torsors

0 .
Y(F)=T7°0,00x" 72 ..
O

We do not expect that the torsor Trgo 4 can be refined to a smaller torsor over the whole modular
curve. This phenomenon already appears over the flag variety where to find reductions of the torsor

~0
Fl over .F we need to restrict to affinoid subspaces admitting a section to G£).

Recall that X = X(p") denotes the modular curve of level K? Iw,. The strategy of constructing ob-
jects over the modular curves via pullbacks from the flag variety carries us to the following definition

Proposition/Definition 9.2.1. Lete > 6 >n > 1 and w € W = {1, w,}. Consider the trivial 77 (9)-
torsor of §8.1 _
Uy(€,6)Iw, — U,(€)

and its completion to an Z”/:(E)—torsor

U,(€,6)Iw, := TT(6) X'7@ U, (€,6) Iw, .

The restriction of Trgo 4 10 X,y 1w, (€) admits a reduction to an €tale T7 (6)-torsor 7 no4(6) such that

‘r(ﬁw(e, &) Iw,) = TT(6)(1,0) X™7@ F7.04(5), (9.2.2)

=~ . . —~ Z,(1)* 0
where T7 (6)(1,0) is the Tate twist of 77 (9) by .

7%
0 Z,
Proof. Similarly as for the torsor 7 1?10 4> one can construct 7 mq(6) by a pro-finite-€tale descent ar-
gument on topological spaces, cf. [ ]. We provide the more classical construction involving the
canonical subgroup, see [ ] and [ ] for more details.

Let m > 6 + 2 be an integer, by Theorem 9.1.1 there exists € > ¢ > n such that X,, 1, (€) admits a
canonical subgroup of order p™. The same theorem says that we have a factorization

T,E®OF — % wpx®p, OF

l l

HT

Ci™' ® 0/p™! —F—y wi/p.
Define the étale sheaf
W) := {v € wgx | v € HT(C™Y)* mod p°},

where (C,,;"")* denotes the points of order p”. By Proposition 9.2.6, w}(6) is an étale Z%(1 + p°G})-
torsor over X,, 1w, (€). Let
w;™'(8) = Isom(w(6), Z,(1 + p°Gy))
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9. Overconvergent theory over the modular curves

be the dual torsor. We define the 77 (6)-torsor
T mod(6) := W5 (6) X WE(S).

Then T moa(6) is an étale T (6)-torsor which by construction satisfies 70 = 70 x"7@ T,4(6).
Finally, since w},/p° = @}./p° and the pullback of

0— Z£%0,1) - Stelz — £*(1,0) = 0
via T = 7y, (5 (=)™ is equal to
0> @' (1) > T,E® Of - @} — 0,

one deduces .
V(U (e, 6)Iw,) = TT(6)(1,0) X7 Tr0a(6).

O

Definition 9.2.7. Let (R, R") be a uniform affinoid Tate Q,-algebra, and y : T = T(Z,) - R™™ a
o-analytic character. We define the overconvergent modular sheaf of weight y over X,, 1y, (€)« as the
space of equivariant functions

—~ 1
X + + —_ X
Wi = Homy o (Tinoa(0), Wo(R™®@ 0% ), Wi = Wy ]_)]'
+x : +x £ : +
We denote by w,* and w}, the extension of w, %, and w, , to the pro-Kummer-étale site as & and Ox-

modules respectively. We also let R+5§ﬁ; be the inverse image of R*®0}, . to the pro-Kummer-étale

Xkét
site. Note that R*®0} # R*®0. Indeed, if U = lln U, is an affinoid perfectoid with pro-Kummer-
étale presentation then

(R'BO;)(U) = lim R'®C5(U) and (R'B)(U) = R'8OX(U).

1

Proposition 9.2.8. Let (R, R") and 6 be as in Definition 9.2.7, write x = (x1,X2)- Let xcye : Go, = Z,
be the cyclotomic character and x> o xeye : Gg, — R™ its composition with y,. We denote the

Tate twist 05 (x2) := R* (Y2 © Xeye)®O5. There is a Galois equivariant isomorphism of sheaves over
XW,IW,, (E)prokét

Wi Bpegor Ox(x2) = T(L* (V).
Proof. This follows from (9.2.2) of Proposition 9.2.1, see Definition 8.2.4. O

We can finally define the overconvergent modular forms and the overconvergent cohomology
classes appearing in Coleman and higher Coleman theory. We refer to [ ] for the notion of
perfect Banach complexes and compact operators of perfect Banach complexes. See [ , Tag
0A39] for the definition of cohomology with supports in a closed subspace.

Definition 9.2.9. Let (R, R") be a uniform Tate Q,-algebra and y : Z, — R™* a d-analytic character.
Letwe W ={1,wg}.

1. The overconvergent modular forms of weight y over X, 1y, (€) is the cohomology complex
RFW(X’ ('U)Iz")s = Rran(Xw,Iwn (6)7 w/]\;)

We denote HO(X, wg)e := HO(Xo 1w, (€), ).
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9. Overconvergent theory over the modular curves

2. Let Xy 1w, (> €) = Uese Xwiw, (€7). We define the overconvergent cohomology with supports to
be the complex

Rrw,c(Xa (U)()s ‘=R XwIwn(E) w)()

an X Iwn (>e+1)(

We denote H,, (X, w})e = (XW 1w, (€), Wh).

Xw JIwn (>

Remark 9.2.10. We can define the previous cohomologies for any complex in the analytic site of X.

Proposition 9.2.11. 1. The restriction of w, to the analytic site of X, 1, (€) is an ON Banach sheaf
attached to their global sections.

2. The cohomology complexes RT,(X, w%). and R, (X, wy). are represented by perfect Banach
complexes of length [0, 1]. Moreover, we have quasi-isomorphisms

HO(X, w$).[0] = RT,(X, Wb, and H, (X, %) [~1] = RT,, (X, w})..

Proof. Part (2) is a consequence of part (1) as is shown in [ , Lem. 5.2]. For part (1) we can
assume that the character y is the universal character of an open affinoid V of the weight space of
T = T(Z,). Then, one uses the fact that wg’)‘ is trivial locally étale over U, (€) Iw, and the main
result of [ ] to prove that af]g can be seen as a line bundle over (U,,(¢) Iw,) X V, the proposition
follows. ]

9.2.1. Classical Hecke operators

We end this section with the definition of the U ,-operators for the overconvergent modular forms.

First, let us recall the definition for the classical modular sheaves. Let X 2B Xbethe U -
correspondance. We let 7 : p{E — pJE be the umversal isogeny over Cand 7" : piE — piE its
dual. We denote by n* : piwr — pjwg and 7, : ple - psz the pullback and pushforward
maps of 7 (resp. for JTV). For a quasicoherent sheaf .7 over X we let Tr,, : p;.p;.# — % be the
trace map of p;. Let k = (k,ky) € X*(T) be a weight of T, recall that we have made the convention

K _ Kk -ky _  ki—k
Wy =W QW =w, .

Definition 9.2.12. The Hecke operator U, acting over RI',,(X, w?,) is the composition

(nv,*,—1)®k| ®(7T;1 )®k2

5 Tr
R, (X, wp) — 5 RT.(C, PrWE) RT,(C, piwt) —% RTu(X, w5).

We define the Uj,, operator shifting the roles of p; and p,, and composing with the map (rV)Ph @
(ﬂ*)®k2-

Remark 9.2.13. The U, above is equal to the operator p™* U;alilve K, Of [ ]. Indeed, (nV-*~ 1%k =

p~F ()% and (n7)®2 = (7*)®*2. In other words, U;jive = Up0.-)-

Let us justify this definition of the Hecke operators, they are normalized by the GL,(Q,)-equivariance
of myr : Xoo — F#L. Let E be the universal elliptic curve and EY its dual, in the next discussion
we will not identify both elliptic curves. For « = (ki,k;) € X*(T) is an algebraic weight, we set
W = a) L ® Wy *>_Then, the Hodge-Tate exact sequence of E has the form

- HTV —~ HT -
0—- w(o oD Qo Ox(1) — T,E® Ox — wg,m ®p, Ox — 0.

Let s : Z) — T,E be the universal trivialization over X.,, and V,E = T,E [%]. Let g € GL,(Q)),
the action of g on X, is given by right composition ¢ - i o g. Let g.E be the image of the universal
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9. Overconvergent theory over the modular curves

elliptic curve by the action of g. Then, there exists a unique quasi-isogeny n : E --> g.E making the

following diagram commutative

Qf; % Vyg.E

gT Tvp,r 9.2.3)

QG — V,E.

Let ¥ : g.EY --> EY be the dual of 7. We have a commutative square of Hodge-Tate exact sequences

0 — oV @4, Ox(1) 3 V,E® Oy —3 0¥ ®,, Oy — 0

lm lvpﬂ i (9.2.4)

0 — &} ®0, Ox(1) = V,8.E® Oy — w7 ®5, Ox — 0,

similarly for 7¥. Let St be the left standard representation of GL,, recall from §7.2 that we have a
right GL,-equivariant exact sequence of sheaves over %

0—- Z0,1) » Stelz — £(1,0) - 0,

whose pullback via T = ﬂlwm*(ﬂ;n(—))lw" is the upper row of (9.2.4). The action of g : StQ0 7, —
2.(St®0 7)) = St®g.0 7 is given by left multipication on St and the usual action over ¢'z,. Thus,
the action of g over the Hodge-Tate exact sequence translates in the diagram (9.2.4). In particular, the
actions of g over “)g  and a)g)’]) are given by 7'"* and 7, respectively.

In the situation of Definition 9.2.12, we can work at perfectoid level with the correspondance Co,

of Lemma 9.1.3. There are maps
Q% — VopE

Up,aT TVPTI

Q) — V,piE

0
and is induced by (7V*)®" @ (1,)%% : ptwf — pjwk. Dually, the action of U, is defined using
the quasi-isogeny 7!, equivalently it is given by the double coset [Iw, @ ' Iw,], and induced by
(" Heh @ (r.)®e 1 piwf — plwk.

with U, , = (1 —pa) and 0 < a < p. Thus, the action of U ;, is given by the double coset [Iw, @ Iw,]

Remark 9.2.14. We highlight that to define the Hecke action over the modular sheaves we have to fix
a GL,(Q,) action at infinite level, this action arises naturally from the pullback of a GL,-equivariant
sheaf over the flag variety. In particular, % for k € Z can be endowed with different Hecke actions,
all of them differing by a power of p, the choice of an isomorphism %, = a)g‘] %) with ky — k» = k fixes

such an action.

Before defining the U ,-operators for overconvergent modular forms let us show how the operators
U, . are described using the torsor T oq = Isom(Ox, a)gl) x Isom(O%, wg). By Proposition 9.2.2 we
have

T(1,0) X Trnod = 7igr (FL)

where .
F = Isom(O 7z, £(0, 1)) x Isom(T #z, Z(1,0)). (9.2.5)
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9. Overconvergent theory over the modular curves

Let g € GL,(Q),), from diagram (9.2.3) one deduces that the action of g on 7,04 1S given by
T, X P AR T mod — g*Tmod-

Letk = (ki, ko) € X*(T) be an algebraic weight, taking wo(k)-equivariant functions Hom_ (-, O an(wo(k)))
in (9.2.5) and then taking duals, one recovers the map (7"*)®" ® (1.)%% : W% — g.w¥.

9.2.2. Overconvergent Hecke operators

Let € > 6 > n. By Lemma 9.1.3 the U ,-correspondance restricts to the following diagrams

p;l(Xl,Iwn(E)) pgl(Xwo,Iwn(E))

Xl,IW,, (6) Xl,IW,, (E + 1) XW(),IW,, (E + 1) XW(),IW,, (6)

Moreover, we have the inclusions p;( pgl(X 11w, (€))) D X 1w, (e=1) and ps( p[l(XWO,IWn(e))) D Xivg.iw, (€=
1). Let Thoa(6) be the TT ()-torsor of overconvergent modular forms (see Definition 9.2.1), and

ﬁw(e, 0) Iw, the TT (6)-torsor over U,,(€) C .#C (see Definition 8.1.3).
Let ¢ = diag(p, p), w = diag(l, p), A = {¢*!, @*"), A* = (¢*', @) and A~ = (¢*', @ !). We have

proven in Lemma 8.1.5 that

U, (€,0) = NA\NA GL, (€, 5)wo Iw,, C A\.ZC.

Proposition/Definition 9.2.2. There are well defined maps of torsors

*

1 _

;nv X 711 Py Tmod(8)) = P}(Tmoa(6)) over pi' (X, 1y, (€))
1 * * * -

m’ % il Py Tim0d(8) = P (Tmoa(8)) over py' (Xu 1w, o)-

Let (R,R") be an uniform Tate Q,-algebra and y : T — R* a d-analytic character. Taking wy(y)-
equivariant functions HomT,r( 6)(—, ﬁ;,ét(wo(/y))) with respect to the above maps, and then taking duals,
we obtain the overconvergent U, correspondances

ly Piwp) = pi(wpt™) and my < pi(wi™) = pilw”).

1. We define the U ,-operator over RI'; (X, cufg)e to be the composition

RFI(X’ w/};‘)e Rran(Xl,Iw,l(e), w/};)
Rran(pgl(Xl,Iwn), PZW{-)

RFan(PEI (Xl,lwn)» PT(U/E)

Rran(X],Iw,,(e - 1)’ CJE)

P
__)
03
H
Try, -1
— Rran(Pl(Pz (Xl,IW,,(E)))7 ('J}/;)
Res
—
= RIN(X, Wp))e-1-

We define in a similar way the operator U 1’, : RI,, (X, u)jg’+)6 — R, (X, ufg’J')E_l switching the

roles of p; and p,, and using ﬂ; instead of 7, .
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2. We define the U ,-operator over RI',, (X, cu),g)E to be the composition
RT,, (X, wi)e = R, %D Koo w, (€)5 wy)
P5 _ .
= Ry o (P2 Ko, (), P3w)

T -1 *
i Rran,pgl(xwo,lwn (>e+l)) (Pz (XWO,IW,, (6))5 P (U)g)

Trp, _1

B Fan,pl (75" Kug wm (>E+1)))(P1 (py Xovpaw, (€))), w/l\;)
Cor

- Rran,XwO(>e+2) (XWO,IWn (€), w/l\;)

RFWQ,C(X9 a)/é)e+l .
We define in a similar way the operator U ; : R[N (X, a))g)e — R[N (X, aig)fﬂ switching the
roles of p; and p,, and using 7(;(/ instead of 7, .

Remark 9.2.15. In the definition of the Hecke operators we always consider analytic cohomology, i.e.

cohomology in the analytic site of X.
Proof. By the discussion before Remark 9.2.14 and Proposition 9.2.1, one reduces the problem to

translating the actionof U, , = ((1) —a) over ﬁw(e, 0) Iw,, to T 1moa(0) via myr. Indeed, the Hecke oper-

ators for modular forms are constructed via the wy(y)-equivariant functions HomTT( 6)(—, ﬁ;’ét(wo()()))

of a Hecke correspondence between the torsors. From Proposition 9.2.1 we have that Z‘T’ (0)(=1,0)xT7®
Tmoa(8) = Y(U,(€,6) Iw,) with

~ {NA\(N) % (ATT(6)) x (N N(€)) if w = 1
U,(e,6)Iw, = " .
NAVN) X (ATT(S)) x (NN (€)wo if w = w.

Then, the normalized action of U, on U w(€,0)Iw, is given by

_ -1, -1
x-Upg=ww w xU,,

when seen as a subspace of Ft=N \GL,.

As Ft = Isom(O #, £(0, 1)) x Isom(0 z, £(1,0)), the equation (9.2.2) and the diagram (9.2.3)
show that the normalized action of U, , pullbacks via Y to the Ox-extension of scalars of the isomor-

phisms

1 .
m, : plwy — pywy and ;nv’* i piwg — prwpifw=1
1 .
—7, 1 plwg = piwg' and 1V : plwp — piwg if w = wy.

Taking the inverses one obtains the desired isomorphisms of torsors

1 )
I;ﬂi X7 Py (Tmod(0)) = P1(Tmoea(6)) if w =1

1 )
m) X ;ﬂ* 2 Py (Tmod(8)) = P} (Tmoa(6)) if w = wy.
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9. Overconvergent theory over the modular curves
Lemma 9.2.16. The U ,-operators acting on overconvergent modular forms and overconvergent co-
homology classes are compact operators of Banach complexes.

Proof. This follows from the fact that the restriction and correstriction maps

R (X, w)ert — RT,(X, wf)e and REy (X, e = Ry o(X, 0h)ers
are compact maps of Banach complexes. O

Corollary 9.2.17. The finite slope part of H)(X, w})e (resp. of H, (X, w})e) with respect to the U,-
operators is independent of e.

We end this section with some bounds for the finite slope cohomology.

Lemma 9.2.18 ( | , Lemma 5.3] ). Let k = (k,k;) € X*(T) be an algebraic weight.
1. The U, operator has slopes > 1 — k; on RU' (X, w')e and slopes > —k, on RI',, (X, w})e.
2. The U;,,K operator has slopes > —k, on RI'; (X, w')e and slopes > 1 — k; on RI',, (X, w})e.

Proof. 1t follows from the bounds of loc. cit., Remark 9.2.13, and the fact that U;, is the dual of
U,. m|

Definition 9.2.19. Let (R, R") be a uniform Tate Q,-algebra and y : T — R™ a d-analytic character.
Let « € X*(T). We define normalizations of U, and U,

%Up,x over RI'{ (X, w})e,
U[é;ood — Up,)( over RFWO,C(Xy a)/g‘)é >
p-mintl-hikly o over RT (X, wh)
1_17 U, over R, (X, w})e,
U;,gOOd — U;V\/ over RF]’(;(X’ UJ/‘E/‘)E

pmintihllyt o over R (X, wf).
Theorem 9.2.20. Let k = (ky, k) € X*(T) be an algebraic weight.

1. The Uff"'d—operator has slopes > 0 on H)(X, %) and H., (X, %)..

w0,C
2. The Ult,’gwd operator has slopes > 0 on H?VO(X, wy)e and Hll,c(X, Wy )e
Futhermore, we have isomorphisms of small slope cohomologies

d
o <k1—k2—

1 0 K \US <y —kp—1
= Han(X’ wE) b )

8
HO(X, )

good od
1 «\Up <l+ky—k _ 1 K U3 <14+ky—k;
HWO,C(X’ wE)E - Han(X’ a)E) b )

Ur’g00d<k1 —ky—1 0

0 U5sed <y —ky—1
HWO(Xﬂ w’é)é g = Han(X7 w%) P = : 9

£500d 1 4 ky—k)

1 U 1 1800d | L ky—k
H| (X, )" = H! (X,wh)Vr <!tk

Proof. The theorem is an immediate consequence of Lemma 9.2.18, Corollary 9.1.4, and the distin-
guished triangle

+1
RFan,X\X (e)(Xa wg) - Rran(X’ w’;g) - Rran(Xw,Iw,, (E), wg) .

w,Iwp

69



9. Overconvergent theory over the modular curves

9.3. Overconvergent modular symbols

Let (R, R") be a uniform Tate Q,-algebra and y : T = T(Z,) — R™* a ¢-analytic character. Let A)‘i’J’
be the ¢-analytic principal series of weight y defined in §8.3, and D)‘?Jr = Homg-+ (A)‘?Jr,R*) its dual.
We have associated to A>* and DJ* Tw,,-equivariant sheaves A+ and D} over Flpoq, cf. Definition
8.3.12. Let myr : X — € be the Hodge-Tate period map. By an abuse of notation we will write
ﬂff' and Z)ffr for the pro-Kummer-étale sheaves over X defined by the Iw,-equivariant pro-Kummer-
étale sheaves L (AYY) and m;L (DY) respectively, i.e. the sheaves T(A™) and T(D) over Xprokars
see Construction 7.2.2. We denote A5 = A5’+[ 1] and D5 D5+[ ]. By Lemmas 8.3.6 and 8.3.8 we

have a devisage of the R*-modules A‘er and D‘SJr of the form hm l1m F,.i, where the .Z,; are finite

Iw,-modules. Then, we have finite local systems JS, over Xpmket and one can write ﬂ“ or DM
lim lim .%;, see Corollary 8.3.9.
—s —I

Definition 9.3.1. We define the overconvergent modular symbols as the cohomology complexes
Rrprokét(X(Cpa ﬂf() and Rrprokét(XCp > Df()

We want to show that the modular symbols are represented by good topological complexes. We
need the following theorem of Borel-Serre.

Theorem 9.3.2 (| 1. LetT € GL,(Z) denote the level of the algebraic modular curve X“¢. There
exists a finite free resolution of the trivial representation I' by a complex P* — 7Z of the form

0-Z[IT" > --- > Z[IT" - Z[I']" - Z — 0.
Proposition 9.3.3 ([ 1). The overconvergent modular symbols are represented by the complexes
RUproret(Xc,» AL°) = Homp(P*, A)
RUproret(Xc,» D)%) =~ Homp(P*, D))
Proof. Let.% denote ﬂ)‘? or Z))(?Jr, we let .%, denote ﬂi’* /p* or D5+/ Fil*. We can write . %, = hm Fi
where %, are finite local systems over X. By Lemma 3.18 of [ ], and the Mittag- Lefﬂer
property for the inverse system (.%)an, We have .% = Rlimg hocolim; .Z#;; (see [ , Tag 0A5K]

for the definition of homotopic colimits).
Let C, = C be an isomorphism of fields, we have

Rrprokét(XCp’ y )

R gn hocolim; R jore(Xc, » F i)

= Rlimhocolim; RT¢(Ye,, Z,)

= Rlimhocolim; RT (Y™, Fii)
—

= Rlimhocolim; RT(Y*¥(C), Z,,)
—

= Rlimhocolim; Homp(P*, %)
P

= Homp(P°*,.%).

The first equality is formal from the definition of derived limits and homotopic colimits, and the
fact that X is gqcgs in the pro-Kummer-€tale site, see [ , Tag 0739]. The second equality is the
purity of torsion local systems [ , Theo. 4.6.1]. The third equality is the comparison of étale
cohomology between an algebraic scheme and its p-adic analytification [ ]. The fourth equality
is Artin’s comparison theorem [ ]. Finally, the last two equalities are a consequence of Theorem
9.3.2, the fact that 7;(Y*#(C)) = I and that the universal cover of Y*¢(C) is contractible. |
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9. Overconvergent theory over the modular curves

Corollary 9.3.4. Let .?I?@ZP 5;; and Z)?@ZP 5’\; denote the completed tensor products with respect
to the p-adic topology of y()iﬁr and the filtration of Z))‘i“r. There are almost quasi-isomorphisms

RUpoxat(Xe,, AY®,, O%) = Homp(P*, A>*®Or,)
RUpoke(Xc,, D)i’Jr@Zp Oy) = Homr(P*, D)(?Jr@()c,,)-

Proof. The corollary follows from the devisage in the proof of the previous proposition and the prim-
itive comparison theorem [ , Theo. 5.1] and [ , Theo. 6.2.11]. ]

Next, we define the U ,-operators for overconvergent modular symbols. To keep the construction
in the same direction as for overconvergent modular forms, we will use the U ,-correspondance and
certain sheaves over X« defined by the open subspaces GL, (9, 6" )wy Iw,, C GLY, see Definition 8.0.5
for the affinoids G£,(9, &").

Definition 9.3.5. Let 6 > ¢’ > n. We see GL,(9, 0" )wy Iw,, as a right Iw,(6)-equivariant sheaf over
Ft, we denote by GL, (6, 6" )wolw, its completion to a proctale sheaf, see Definition 8.0.1. We define
the sheaf over X0k

Tort, 6o = T(GLAS, 8 Wolw,) = M3 (GL (6, 8 Ywolw,)/ I,

equivalently, as the quotient sheaf (X, X ézz(é, 6" )wolw,,)/ Iw, with respect to right multiplication in

both components. We also write Tory, ) = 7071w, 5.)-

Remark 9.3.6. The sheaf ﬁlw,,(é,é’) has a left action by @g} N wofv\v,,(é’)xwa ! which at perfectoid level
is given by left multiplication on GL,(6, 6" )wolw,.
Let H, C E[p"] be the universal subgroup over X. The sheaf Fo\rlwn(a) has the following modular

description:

Proposition 9.3.7. Let ﬁlwn be the pro-Kummer-étale sheaf over X given by the quotient (X, X
wolﬂ) [ Iw,. There is a natural isomorphism of left wo Iw, wy U torsors

Torw, = Isom((H,, T,E), (0 ®Z/p"Z,72)). (9.3.1)

J——

_ ) L
Furthermore, woIw,(8)xwy' X" ™™ Tory,, = Tori, ).

Proof. Lety : ZI% — T, E be the universal trivialization over X,,. Write 7/'07;% for the right-hand-side
of (9.3.1). Let f € ﬁ;wn, note that the isomorphism foy : Zf, — ZIZ, is induced by left multiplication
by an element of wy Iw,,. This provides a map

710\r;w,,|xw - X X wolﬂ

which descends to (9.3.1). O

Remark 9.3.8. Let 6 > 8 > nand y : T — R a ¢ -analytic character. In §8.3 we have proven

that the sheaf ﬂ?@@}f over F o is constructed by taking the analytic functions of the sheaf
(922(6, (5')WOI&) ¢ wWhich are wy(y)-equivariant with respect to the left multiplication of gﬂwof;vn (6")w, !
see Definitions 8.3.1 and Proposition 8.3.13. The same holds for the abelian sheaf ﬂ?@b’\; and the
sheaf 7/.(;"]“,”(5’&). More precisely, ﬂ;i*@ﬁ; is the sheaf of functions f : 7/‘0\1"1%(5,5/) - R+§>5; satisfy-
ing the following conditions

i, flx. : Torweolx. = GL(6, 8 )wolw, — R*®C} is a function in

O(GL(S, 8o Iw,)B(RTBO).

i, f(bx) = wo(y)(b)f(x) for x € Tory, sy and b € B N woIw,(8)xwy'.
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9. Overconvergent theory over the modular curves

9.3.1. Hecke operators

LetX & ¢ 5 Xbethe U y-correspondance. To define the U ,-operator of modular symbols we need
to construct a map of sheaves following the idea of Definition 9.2.2.

Proposition 9.3.9. Let 6 > ¢’ > n. There is a left Z(’i: (0")-equivariant map of sheaves
Tyt PSINANENT 0T 1w557) = Py NGN(ENT 0Tty 51,6) (9.3.2)

induced by the right multiplication ﬁWO(d, 0w C ﬁwo(d +1,0).

Proof. Let C, = C X, x X, be the correspondance over X, constructed in the proof of Lemma 9.1.3.
It is enough to define a 77 (9) equivariant map of sheaves

Twy,

N N@ENGL G + 1,8 )Wolwa)e = pi(Torm, e+1.5)) —
— Pi(Torw,6)) = NaN©EWNGLAS, & Iwolw,)c

Let0 <a < pandlet Cs, C C, be the locus where we have the commutative diagram

Ceoa
F 4 Ft

F 4

Upa

with U, = ((1) —pa . The action by U, , over the constant sheaf NN(6")\ GL,(6, 6" )wy Iw,, over F

translates to the right multiplication by U, , over Cq, 4:
— —_— — - Um,a
NN (NP3 (Tor,s)lc. = NaN(0)\NGLAS, 6 IWolw,)c,, —
— N NEGLS + 1,8 Wolwa)e., = NaN(E NP (Tort,61.0)lc..-
Taking Iw,-invariants from C,, to C one gets the map (9.3.2). O

Corollary 9.3.10. Let 6 > 6" > n. Let (R,R") be a uniform Tate algebra and y : T — R™ a
¢’-analytic character. We have maps

T PIATTROY) — Py (AT®OY)
Ty 1 py(DYTROY) — pi (D ROY).
arising from the map my,, in (9.3.2).

Proof. Taking analytic Z‘?(é’)—equivariant functions with values in & +(Wo(x)) in the equation (9.3.2)
we obtain the map 7. The map 7y is obtained by taking duals. O

Remark 9.3.11. The proof of Proposition 9.3.9 also works for the proétale sheaves ﬂff and Z)ji“r and
the torsor Tory,, (9.3.1) of Proposition 9.3.7. In particular, we also have maps 7y, : p’l‘ﬂiﬂ* —

Py A and mp : DT — DYF. Furthermore their extensions of scalars by ¢ are equal to the maps
of the previous corollary.
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9. Overconvergent theory over the modular curves

Definition 9.3.12. 1. We define the U ;—operator acting over Rl ke (Xc,» ﬂfg*) to be the composi-
tion

P2

Pl . b
R proee(Xe,» ALY = Rl ket Ce,, p1(AZ) = RUpokar(Ce,» poAAl, ) —
— Rl prokar(Xc,, Ap, ) — Rrpmkéxxc,,, A ).

Similarly for A ®0}.
2. We define the U ,-operator acting over RI ok (Xc,, Z)ji*) to be the composition

Trp,

p* * z *
Rrprokét(XCp’ @)(i,+) _2> Rrprokét(CCpa pz(@i’Jr)) _D> Rrprokét(CCpa p]Df\:J&) E—

— Rl prora(Xe,» Diy ™) = R proka(Xe,» D ).

Similarly for DX*®07%.
Lemma 9.3.13. The U ,-operators on overconvergent modular symbols are compact.

Proof. Tt follows from Proposition 9.3.3 and the fact that A°™' — A? and D' — D are compact
maps. |

Corollary 9.3.14. We have isomorphisms of finite slope cohomology

erket(X(Cp’ ﬂ:\i)fs — erket(XCp’ ﬂ6+l)fs
X DN = Hpa O DY)

proket proket

Similarly for ﬂi@g x and Z)i@ﬁ x- Moreover, we have isomorphisms

proket (ch ’ ﬂé )f ) ®Z =H ;rokét(XCp ’ ﬂi@ﬁx )fS
prokét(XCp’ z)f{)fs ®Zp CP = le)rokét(XCp’ Z),(\i@ﬁ)()fs'

Proof. The first assertion follows from Lemma 9.3.13 and the finite slope theory of compact operators
of Banach complexes, cf. [ Jor[ ]. The second statement follows from the almost quasi-
isomorphisms

RT kX, , AT )®O:, = R proved X, , AL T®OY)
RT proker(Xe, ,@“)@0@ = RL prora(Xc,» D ®OY)

P’

O

The following lemma provides a bound for the action of the U ,-operators for overconvergent mod-
ular symbols.

Lemma 9.3.15 ( | , Theo. 3.11.1]). Let w = diag(1, p), let k = (ki,k>) € X*(T)* be a dominant
weight and V, the irreducible representation of GL, of highest weight k. Let y, : V., — A° be the
natural inclusion and ! : D° — V_,, (o its dual. Then

ki—ky+1 -1 ki—ky+1
@ lcokery, < 1PI" 72 and |@™ |lkeryy < IpIM 727

Proof. Let V(k) = k ® [(BwN), it is a dense subrepresentation of A’ whose action by @ is given by
(@ - f)(x) = f(w 'xw). We proved in Proposition 8.4.3 that V, C V(k). In particular, V(k)/V, is a
dense subspace of coker ,. We have the weight decomposition

V/Ve= P xeq,r"

n>ky—ky+1

where O(N) = Q,[T]. Since @+ (k®T") = p"(k®T"), we obtain by density that ||@]|cokery, < |2+
One deduces the second inequality by taking duals. O
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9. Overconvergent theory over the modular curves

We deduce the following classicity result for modular symbols

Theorem 9.3.16. Ler k = (ki,ky) € X*(T)* be a dominant weight. The maps D — V_, ., and
Vi — A induce isomorphisms of the (< ki — ky + 1)-slope part for the action of the (normalized)
U,-operators

1 O\Up<ki—ka+1 1 U,<ki—ky+1
H roket()(C ’D ) e _) H rokét(XCp’ V—WO(K)) PR

1 Ut,<k —kp+1 ~ 1 ON\UL <ki—ko+1
Hprokét(XCp’VK)l e _)I_Iprokét(‘)((j ﬂl() PR

P’

Proof. This follows from Lemma 9.3.15 and the definition of the Hecke operators via correspon-
dances. Notice that we are considering the U, and U ; on R poke(Xc,» Vi) by normalizing the action
of @ as in Remark 8.3.11. O

9.4. The overconvergent Hodge-Tate maps

We end with this section with the definition of overconvergent HT-maps interpolating the morphisms
HT" : Sym* T,E ® Ox — ok ®oy Oy and HT*V : Wt ®g, Ox(k) — Sym* T,E ® Oy.

Definition 9.4.1. Let € > 6 > n, (R,R") a uniform affinoid Tate Q,-algebra and y = (x1,x2) : T =
T(Z,) — R™ a 5-analytic character.

1. We define the map over X 1y, (€)
HTX’V . WO()() ﬁ ﬂ ﬁ
a - Brzoy Ox(x1) = A ®0x

to be the pullback of the highest weight vector map .Z(wy(y)) — 3{2@5 ‘70 over Uy(e)Iw, C
Fvia Y = mwm*(ﬂ;T(—))K", cf. Proposition 8.4.4. We define the map HT’Z() : Dj@ﬁx -
W @xg0, Ox(—x1) as the dual of HT,.

2. We define the map over X, 1w, (€)
HTY, : A'®0x — W @z, Ox(x2)

to be the pullback of the lowest weight vector map ﬂj@é’\ 70 — ZL(x) over U, (e)Iw, c F#C
via Y. We define the map HTY," : w,! ®ggg, Ox(~x2) — D)‘i@gx as the dual of HTY,.

Proposition 9.4.2. Let € > 6 > & > n and denote Tmea(8') := TT(5)(1,0) xT7) T0a(6"). The
maps HTY and HTY" are compatible with respect to the U ,-correspondance. More precisely, we have
TT (6)-equivariant maps of sheaves

HT : &]\7(6’)\‘710\7’1%(5,5/) - (}:mod(él) over X 1w, (€)
HTY : woT moa(6) — &7\\/ (O NT 01w (5.5) OVer X 1w, (€)

satisfying the following commutative diagrams

PN NOENT 0T, 6560) % P (Timoa(d)) P 0T moa @) 5 pi (NN NT 01, 65)
”IW"T Tﬁn}fxn* %H*XRL/T men
PN NENT 01, 660) % p3(Tmoa () Pi0T o)) T PN NG NT 01, 5.)-
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9. Overconvergent theory over the modular curves

Proof. The maps HT and HT" are defined as the pullbacks via Y’ of the (completion of the) maps of

sheaves _
Uyy(€,6") Iy = U,y (€) I, XNO\N® GL, (6, 6 )wo Iw,,

Ui(€) Iw, xXNOANC GL, (6,8 )wo Iw, — Uj(€,8) Iw, .

of the equation (8.4.6) in the proof of Proposition 8.4.4. Indeed, by Definition/Propostion 9.2.1 we
have

(9.4.1)

T(Ew(fa 8)Iw,) = TT(0)(1,0) X"7 T104(6),

and by definition ‘7/'071%(575/) = T((g/Zz((s, 6" )wolw,) z¢). The equivariance with respect to the U,-
correspondance follows from the compatibility of (9.4.1) with respect to right multiplication by
>* = Iw, A" Iw,. Finally, one obtains the compatibility of the Hecke correspondance between the
overconvergent modular sheaves and the d-analytic principal series or the d-analytic distributions by
taking analytic wy(y)-equivariant functions in Ho_mz,;( 6)(—, 5X(wo()())). O

Corollary 9.4.3. The maps HTX and HTY"" of Definition 9.4.1 are Galois equivariant.

Proof. This follows from the fact that the maps HT and HT" of the previous proposition are Galois
equivariant, since they are constructed as the pullback of a Iw,-equivariant map of Iw,-sheaves over
T fproét- O
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10. p-adic Eichler-Shimura
decompositions

Let K? C GL,(Ag~,) be a neat compact open subgroup. Given K, € GL,(Q,) an open compact
subgroup we let ¥ = Yx and X = Xk, be the affine and compactified modular curves of level K”K),
over Spa(Q,,Z,). We denote by D = X\Y the cusp divisor. Let f : E — X be the semi-abelian
scheme extending the universal elliptic curve over Y, and E its relative compactification to a log
smooth adic space over X. We denote by DRy (E) the relative log de Rham complex of E over X, and
%’fﬂl? := R' fun..(DRx(E)) the first relative de Rham cohomology group. The sheaf %11% is endowed
with a log connection
V: Hg — Ak ®ox Qx(log)

and the Hodge filtration 0 — wy — % — w;! — 0 with Fil’ 22}, = 5L, Fil' ), = wr and
Fil® Hy = 0, satisfying Griffiths transversality. This last section is dedicated to the construction of
the Eichler Shimura decomposition for the étale cohomology of the modular curves. We start with
a new proof of Faltings’ Eichler-Shimura (ES) decomposition of the local systems V, (cf. [ 1)
involving the Hodge-Tate period map and the dual BGG resolution of V, of §8.4. Next, we use the
overconvergent HT maps of §9.4 to define overconvergent ES maps. We will recover the results
of [ ] as well as a new map from the H'-cohomology with compact supports of overconvergent
modular forms to overconvergent modular symbols. Finally, we show that the overconvergent ES
maps are compatible with the Poincaré and Serre duality pairings, and that, for small slope, we have
a perfect pairing.

10.1. A proétale Eichler Shimura decomposition

Let k = (k1,k;) € X*(T)* be a dominant weight and V, the irreducible representation of highest weight
k, by an abuse of notation we denote by V, the pro-Kummer-étale local system over X defined by V,.
Leta = (1,—1) € X*(T). We state the main theorem of the section

Theorem 10.1.1 (Faltings). There is a Hecke and Galois equivariant isomorphism

H}(Ye,. V) ®z, C, = Hy(Xe,, ") (ki) ® HY\(Xc,, wi)(ky = 1)

n

The main ingredient of the proof is an explicit relation between the Faltings extension gr!' OB}, log
and the Tate module T ,E.

Remark 10.1.2. The next proposition is the key tool necessary to compute the relative Sen operator
for the modular curve in Lue Pan’s locally analytic vectors, cf. [ ].

Proposition 10.1.3 ( [ , Theo. 5]). There is an isomorphism of extensions

0 — ox(1) M3 TVE® Op @ wp —3 w2 ® Oy —— 0

l/id lag i—KS
0 — Ox(l) —— gr' B, — Qh(log) ® Gy — 0

where KS is the Kodaira-Spencer isomorphism.
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10. p-adic Eichler-Shimura decompositions

Proof. We provide a modern proof of this theorem using the pro-Kummer-étale site and the com-
parison between (Kummer-)étale local systems and filtered vector bundles with integral connection
(satisfying Griffiths transversality). We refer to §7.1 for the definition of the period sheaves we use
down below. Let 6 : B, , — 5;( be the Fontaine’s map and & a generator of ker 6. First, let us recall
how the de Rham compairison theorem for the Tate module is deduced using the period sheaves (and
the main results of §8 in [ D.

Let .# be a sheaf endowed with an integral log connection V, we denote by DR(.#, V) the log de
Rham complex of .7 . We have a quasi-isomorphism of complexes over Eprokét

T,Gn ® Barg = TpGm ®z DR(OB g 1o, 7> d) = DR(OB g 10, 7> (D).

4

Taking R! Jorokeét,« One obtains by [ , Theo 3.2.7 (5)] or [ , Theo. 8.8]
T,E®Bwx ~T,E ®z, DR(OBgR jog.x> d) = DR(%’% ® OByr jog,x> V)(1). (10.1.1)

Let M := T,E(-1) ® By y = (T,E(=1) ® OBy, |, ()" and My = (A, ® OB\, )" - Both M

and M are B:;R,X—lattices of T,E(—1) ® B4r x. The Hodge Filtration of %’fﬂz is concentrated in degrees
0 and 1, and equal to
O—>wE—>¢%’j1}Q—>w;;l — 0.

This implies that M ¢ M, ¢ M, and that (Fil' (/) ® @BgR’log’X))VZO = ¢éM. Then, Proposition 7.9
of | ] implies
Mo/gM = gl’o%ﬁ ® EX = Q)El &® 5){
M/M, = gr' % ® Ox(~1) = wg ® Ox(~1).
In particular,
0 > EMo/EM — EM/EM — EM/EM — 0

is just the Hodge-Tate exact sequence of T,E ® @} (note the multiplication by ¢ induced by the Tate
twist in (10.1.1)), and
0 — EM/EM) — My/EMy — My/EM — 0

is the Hodge exact sequence of .77}, ® é’},
Consider the map of short exact sequences

0

> M® OBY, 10, 4 v M OB 1opx ® Qy(log) — 0

T T T (10.1.2)

5
0 S M, > Mo ® OBl 10, x —4 s My ® OB 10p.x ® Qy(log) —> 0

and let 0 : ﬁBgR,log,x — O be the Fontaine’s map.

Taking the first graded piece in the upper short exact sequence one finds

+

M ® (ker 6) i M® @BdR,log,x
M ® (ker 6)? M ® (ker 6)

0 — EM/EM — ® Qi (log) — 0.

Since EM C M, taking the intersection with the image of the lower short exact sequence in (10.1.2)

one obtains a short exact sequence

M Mo ® (ker 0) + EM ® OB Riogx v Mo ® OBy 10.x
H

T EM T My ®(kerd) + eM ® (kerd) Mo ® (kerd) + eM ® OB

dR,log,X

0

® Q)l((log) -0
(10.1.3)
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The right term of (10.1.3) is equal to My/éM ® Qy(log) = w;' ® Q}(log) ® Oy. The middle term is
equal to
grl (jfii%{ ® @B;;R,log,X) =W ® ﬁX ® w;il ® grl @ER,log,X'

Note that the restriction of V to wg ® 5’; is the Kodaira-Spencer map by definition. Indeed, if V :
Hop — A ® Qi (log) is the connection, taking the first graded piece we get the map

KS : wp — w;' ® Qx(log).
Therefore, we have constructed a short exact sequence

—~ HT& o~ _ KSeV  _ ~
0->T,E® Oy —S wp® Oy ®w; ®gr' OBiRiogx — wy' ® Q(log) ® Ox — 0.

Thus, we have a commutative diagram

HT N

0 — w;'® Ox(1) — 5 T,E® Oy b wp® Oy ———— 0

b | L

0 — wj' ® Ox(1) — wj' ® @' OBl . x —— w5 ® Q(log) ® Oy — 0

which gives the proposition. O

In §7.1 we defined the period sheaf OC,,, as the 0-th graded piece of OBgros. It can also be

described as
mlog = h_r)ng_ngrn@%g&log‘

Let g, b, n and b denote the Lie algebra of GL,, B, N and T respectively. We refer to §8.4 for the
definition of the dual BGG short exact sequence and §7.2 for the conventions regarding pullbacks
of GL,-equivariant sheaves over the flag variety via myr. For a character k € X(T), let V(k) = {f :
Bw¢oB — Aé,, | f(bg) = k(b)f(g)} be the (admissible) dual of the Verma module of highest weight «,
and denote by 7(k) the GL,-equivariant quasi-coherent sheaf over .%¢ defined by V(wy(k)) via the
functor (7.2.4). Let Y = ﬂKI,,*(n;‘{T(—))Kﬁ be the functor of Construction 7.2.2. We have the following
lemma

Lemma 10.1.4. There is a natural isomorphism of sheaves over Xyroke
T(7(0)) = OC,y,.

Proof. Let k = (ki,ky) € X*(T)" be a dominant weight and V, the irreducible representation of
highest weight k. By Proposition 8.4.3 we have an inclusion V, C V(k), where under the identification
V(k) = k ® O(woN), the representation V, maps bijectively onto the polynomials of degree < k; — k.
Let ko = (1,0) and V,, = St be the standard representation. The previous implies that we have an
isomorphism of B-modules

V() = h_r)n Sym"(S't ® —«kp)
where, if vy denotes the function in V(k,) whose restriction to woN is constant equal to 1, the transition
maps are given by v — v ® vo(—kp). We obtain a GL,-equivariant isomorphism of quasi-coherent
sheaves over .#(
Y (0) = h_r)n Sym"(St®7(0, —1)).

n
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Taking pullbacks by my7 and using Proposition 10.1.3, we obtain an isomorphism of sheaves over
Xprokét

T(7(0))

lim Sym"(T,E ® O ® w(~1))
_ . nye—1 1
- h_n}Sym (f gr ﬁB:i—R,]og)

= h_I)l’l é_«—ngrn @BgR,log
= mlog(o)-
O

Theorem 10.1.5. Let « = (1,-1). Let k = (ky, k) € X*(T)* be a dominant weight and BGG(«) the
BGG complex of Section 8.4

BGG(x): [0 —> V, > V(k) > V(wy(k) —a) — 0].

Let BGG(k) g, be the GL,-equivariant complex of sheaves defined by BGG(k). We have an isomor-
phism of complexes over Xprokst

T(BGGK) ) = [0 = V,® Ox — WP ® OCog(k)) = W™ ® OT)pe(ky — 1) — 0]

Proof. Note that V(k) = «® V(0) as B-module. The theorem follows from Lemma 10.1.4 and the fact
that V(2 (k) = w}, ® Ox(ky). O

Corollary 10.1.6. Let v : Xc, proket — Xc, ke be the projection of sites. In the notation of the previous
theorem we have

Rv.(V, ® Oy) = 0y ® (k))[0] @ W (ks — D[-1].

Proof. By [ ,Lem. 3.3.15] or [ , Prop. 6.16] we know that Ry, 0C,,, = ﬁxcp,két. There-
fore, _
Rv.(V,® O%) = [a)g‘)('() - Wi,

but the above map is zero, as the sheaf ;' already factors through V, ® Oy via HT* : W' ®

gx(kl) - V.® é’}. The corollary follows. O
Proof of Theorem 10.1.1. By the previous corollary we have
Rv,(V, ® O) = 02" (kp)[0] © s (ky — 1)[~1] (10.1.4)

over the Kummer-¢étale site of Xc,. Projecting to the analytic site, and using that the modular sheaves
are coherent, the equation (10.1.4) holds true over Xc,.,. By taking analytic cohomology for Xc,,
using purity on torsion local systems [ , Theo 4.6.1] and the primitive comparison theorem,
one obtains

Rrét(YCp’ VK) ®Qp Cp = Rrprokét(XCpa VK ® EX)
= Rlu(Xc,, wg"(0)(k1) & RUu(Xe,, i) (ka — D-11.

The theorem follows by taking H'-cohomology. O
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10.1.1. Etale cohomology with compact supports

In the next paragraph we prove the Eichler-Shimura decomposition for the cohomology with compact
supports. Let j : ¥ — X and ¢ : D — X be the immersions of the affine modular curve and the cusps
divisors in X. Let &} be the uncompleted bounded structural sheaf of Dok and 7 = ker(0y —
1,0} the bounded elements of the ideal of definition of Dy, we let . = [é]. We warn that
Ip # Ox(—D) is not defined by the boundary divisor as the ramification at the cusps is not stable in
the Kummer-étale site of X. For instance, if D,, ¢ X(p™) denotes the (reduced) cusps divisor for all
m > 0and X, ~ gnm X, is the perfectoid modular curve, then Zply_ = h_r)nm Ox, an(—=Dy,). We let

j:;r denote the p-adic completion of .#;; and f; = f?;r [i]. Since O} is torsion free, the sheaf j:;r is
equal to the kernel of 5’}; - L, 5’\5 (similarly for JZ)).

Let L be a finite €tale local system over Y, and let RT'¢.(Yc,,L) = Rl«(Xc,, ja L) be the étale
cohomology with compact supports. Lemma 4.4.27 of [ ] implies that this cohomology can

be computed in the Kummer-étale site, i.e. that we have a quasi-isomorphism
RT4(Xc,, ja L) = Rl'va(Xc,, Jrer L)

Let .# be a sheaf over Y, Which is written as .# = lim _lim .%,; where .%,,; are étale local
—seN —>i ’ ’

systems of Y, and such that the projective limit satisfies the Mittag-Leffler property. We can define
JF = 1im lim a7 and R proge(Ye,, F) := Rl proka(Xc,, j1F)- As jiay is exact, one gets
N 4

RUprokste(Yc,, F) = Rlimhocolim; RTe(Xc, , jxet1-7s.0)-

N

Following the ideas of Scholze in [ , Theo. IV 2.1] for describing the completed cohomology
in terms of the perfectoid modular curve, one obtains the following proposition

Proposition 10.1.7. Let .% be a proétale sheaf over Y as before. The inclusion map j,.% — % @@j;;
induces an almost quasi-isomorphism

—~L - —
RDproec(Ye,, #)®z,0c, =* Rlyora(Xe,, F @z Ip),
where the completed tensor products are taken with respect to the filtration of % .

Proof. We have a commutative diagram with short exact rows

0 > W F > 7 > .Flp — 0

l | l

0 — F&I; — F&O; — F&u0} — 0.
The primitive comparison theorem for log-smooth adic spaces gives us almost quasi-isomorphisms

e —L
RI ks (X, F®0y) = Rl proka(Xc,» - F)® Oc,
e —L
RIcoxat(De,» Z p®0) =* Rl pore(De,» -F 1p)® Oc,.

P’ P’

The proposition follows by taking the corresponding distinguished triangles in cohomology. O

Lemma 10.1.8. Let = (1,-1), let k = (ki,ky) € X*(T)" be a dominant character and V, the
irreducible representation of highest weight k. Let vy, @ Xc, prokst — Xc,.an denote the projection of
sites, then

RV (Ve ® 1.0p) = 05 (k1)[0] ® | p(ky — 1)[-1] (10.1.5)
RV (Vi ® 1.7p) = 02" (=D)(k))[0] @ Wl (~D)(ky — 1)[~1]. (10.1.6)
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Proof. The projection (10.1.6) follows from (10.1.5) and Corollary 10.1.6 by taking Rv,,. of the
distinguished triangle

0— Vk®j,\) - VK®5X — VK®L*5D - 0.
To prove (10.1.5) it is enough to work over a geometric cusp £ € Dc¢,. Let Ng C K, be its unipotent
monodromy. Let X, denote the perfectoid modular curve, then & admits a lift to X, ¢, /N, by fixing a
compatible system of roots of unity. Let &= Xeoc, Xx.

«c,/Ne & be the log perfectoid point lying over &.
Then Gal(é/&) = N, and

Rrprokét(XC VK ® Ly ﬁf) = Rrprokét(fa VK ® ﬁ){) = RF(N&" VK ®Zp Cp)

P’

Consider the short exact sequence provided by the dual BGG complex (Theorem 10.1.5)
0 - V®0x = ' @4, OCi05(k)) = ' @y OCing(ky — 1) — 0.

The sheaf OC,q, is a free 5X—sheaf locally pro-Kummer-étale on X, hence it remains exact after ten-

soring with 0. By Lemma 10.1.4 one has that ﬁc1og|g = CP"I(Nf, C,) is isomorphic to the ring of of
polynomial functions of N with coefficients in C,,. Thus, one computes

RU(N;,V, ®z,C,) = RT(Ng, [} le(k) ®c, CP (N, C)) = wle( = 1) ®c, CP(N, C,)))
W le(k)I0] @ Wi |e(ky — DI-1],

the lemma follows. O

Theorem 10.1.9 (ES case of compact supports). Let @ = (1,-1), let k = (k1, k) € X*(T)" be a
dominant weight and V, the irreducible representation of highest weight k. There is a natural Hecke
and Galois equivariant isomorphism

H (Ye,, V) = Hby(Xe,, 0" (-D))(ky) ® H'(Xc,, 0§ (-D))(k> — 1).

Proof. The theorem follows by Proposition 10.1.7 and (10.1.6) of Lemma 10.1.8 by taking H'-
cohomology in the analytic site of X . O

10.2. Classical p-adic Eichler-Shimura decomposition and
duality

To prove the compatibility of Poincaré and Serre duality in the ES decomposition it suffices to show
the compatibility of Poincaré and Serre duality traces for algebraic curves in the pro-étale framework.
We recall the Lemma 3.24 of [ ]

Lemma 10.2.1. Let Z be a proper smooth adic space over Spa(C,, Oc,). Consider the exact sequence
in meet
0—-7Z,(1)—-I1limG, -G, — 0.
F
p

The boundary map G, ., — R'v.Z,(1) induces a commutative diagram of sheaves over ‘W,

Gm,et — Rl V*Zp( 1)

o

QL,, — 5 Ry, Ox(D).

Furthermore, the lower horizontal map is induced by the Faltings’s extension if Z arises from a base
change of a rigid space over Spa(Q,,,Z,).

81
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Proposition 10.2.2. Let Z"¢ be a proper smooth curve over Spec(C,), and let Z be its analytification
over Spa(C,, O@p). Let v : Zyost — Zg be the projection of sites. The following holds

1. H2 (Z, Ox(1)) = H.(Z,R'v.Ox(1)).

proét

2. Let Trp : Hé(Z, Z,(1)) = Z, denote the Poincaré duality trace. Then the composition

FE - Trp
H'(Z,Q) 55 H2,,,(Z, 65(1)) = HA(Z,Z,(1)) &, C, — C,
is the Serre duality Trace.

3. Let D¥¢ C Z¥2 be a reduced divisor given by finitely many points. Let U¥ = Z¥2\ D¢ pe its
complement and U its analytification as adic space over Spa(C,, Oc,). Then the natural map

HZ (U, Z,(1)) - HA(Z,Z,(1)) (10.2.1)

is an isomorphism.

Proof. Consider the spectral sequence

HY(Z,R1v.0(1)) = H'X(Z, G,(1)).

proét

We know that R”v, 5’\(14;(1) is a coherent sheaf for all p, then H.(Z, R”v*g’z(l)) = 0 for g > 1. The
degeneracy of the spectral sequence implies part (1).
For (2) recall that the isomorphism Hgt(Z, Z,1))®z,C, =H 2 (Z, 0,(1)) is induced by the inclu-

proét

sion Z,(l) — Ez(l). By Lemma 10.2.1 we have a commutative diagram

HI(Z9,G,,) —— HA(Z",Z,(1))

\Ldlog \L Trp

H)(Z.Q ) —E HA(Z.6,(1) — C,

Since the image of dlog is dense (as Z arises from an algebraic curve), it suffices to show that for
« € H'(Z"¢,G,,), the composition Trp o FE(dlog(a)) is the Serre duality trace. Let .Z/Z¥¢ be a line
bundle, we can see .Z as a subsheaf of the rational functions .#.. of Z¥¢. Let {U,}; be a covering of

Z¥¢ by affine schemes trivializing .%, and .% ly, = Oy,e; C Hza. a trivialization. We write as usual
dC,'j

U,‘j =U;N U, Let Cij = €,’€;-1 S ﬁi;ij’ then leg(g) = (_)ij S Hét(Z, Qé,et)' We have that

cij
Trp £ = Z V(D)
xeZ3lg

where for x € U;, v,(.€) = v,(e;) is the valuation at x. On the other hand, the Serre trace of dlog(.¥)
is

Z res,(dlog(.¥))

xeX

where res,(dlog(?)) is the residue at x of dloge¢; for x € U;. But we know that
res,(dloge;) = v.(e;),

which finishes the proof of (2).

82



10. p-adic Eichler-Shimura decompositions

Finally, let j : U — Z and ¢ : D — Z denote the immersion maps. As the étale cohomology with
and without supports of F, of U and Z is concentrated in degrees [0, 2], it is enough to show that the
natural map
(U,F,(1)) = HL(Z,F,(1)) (10.2.2)

etc

is an isomorphism. But the fundamental exact sequence
0—-jF,—>F,—>.F,—0

and the fact that Hét(Z, t.F,) = Hét(D, F,) = 0fori > 1 as D is a disjoint union of geometric points,
imply that (10.2.2) is an isomorphism. O

Corollary 10.2.3. The Poincaré pairing

Hy(Ye,, V() X Hy (Yo, Vo) - H; (Yc,,Qp(1)) = Q,
and the Serre pairing

x cta KSoU Tr,
H, (Xc,, wg) X HoO\(Xe,, 0§ (=D)) — Hy(Xe,, Qy) —> C,,

(resp. w EO( )( —-D) and w, wolk) ) are compatible with the Eichler-Shimura decomposition.

Proof. Leta = (1,-1) € X*(T). By functoriality of the Yoneda pairing, one is reduce to show that the
Poincaré and Serre duality traces are compatible over X, which is exactly Proposition 10.2.2. Indeed,
let vay @ Xc, proket = Xc,.an be the projection of sites and [ : Xc, — Spa(CP,OCp) the structural
morphism. By the compatibility of the cup product with compositions [ , Tag OFP6], the cup
product

f Van

R(f © van)s(Ve(1) ® Gx) ®" R(f 0 Van)o (Vi ® Fx) —— RI(f 0 van).(F (1)

is equal to the composition of cup products

— —~ U — —
RﬁkRvan,*(VK(l) ® ﬁx) ®L Rf*RVan,*(V—wo(K) ® jX) _f) Rf*(RVan,*(VK(l) ® ﬁx) ®L RVan,*(V—wo(K) ® fx))

and

Van

Rvan,*(vk(l) ® EX) ®L RVan *(V—W()(K) ® jD) E— Rvan *('jD(l))

But using the formulas
WPk + DI0] ® W (k)[-1]

W (=D)(~k)[0] ® W, (~D)(—k; — D[-1]
Ox(-D)(D[0] & wi(-D)[-1]

RVann(V(1) ® O)
Rvan,*(v—wo(/() ® V%;))
RV (Ip(1))

one deduces that the projection of U, onto the factor wi.(—D)[—1] is given by the Yoneda pairings

Van

Wy ky + 1) @ Wy (=D)(=ki — 1) > wi(-D) =X O
W (~D)(~ky) 8" W (ky) = wi(-D) =X Qf,

proving that the pairings of the corollary with image in
H (Yc,,Q,(1)® C, = H} (Xc,, Q) =*° H) (Xc,, 0" (-D))

are compatible. The corollary follows from (2) and (3) of Proposition 10.2.2. O
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10.3. The overconvergent Eichler-Shimura maps

Let n > 1 be a fixed integer. In the next two sections we will take ¥ = Yy(p") and X = Xo(p")

the modular curves of level K” Iw,. Let € > 6 > n be rational numbers, (R, R*) a uniform affinoid
Tate Qp-algebra and y = (x1,x2) : T — R™ a ¢-analytic character. Let w € W = {1,w} be an
element in the Weyl group of GL, and X,, 1y, (€) the e-neighbourhood of the w-ordinary locus defined
in §9.1. Let w, be the sheaf of overconvergent modular forms over X,, 1, (€) (§9.2), ﬂ)‘j and Z))‘i the
sheaves of ¢-analytic principal series and distributions (§9.3). In Section 9.4 we have defined HT
morphisms between the previous sheaves, interpolating the HT maps V, ® é’; - W ® 0 x(ky—1) and

wZO(K)(kl) ® 0 x = V,® O x. We have the following lemma

Lemma 10.3.1. Let @ = (1,-1) € X*(T). The overconvergent Hodge-Tate maps (Definition 9.4.1)
give rise Galois and U’ -equivariant maps of cohomology groups (with the good normalizations for
the overconvergent modular forms, see Definition 9.2.19)

—_— S
H! aXc, FBOY) E—“"‘> H°0<ch, W= 1)
R (10.3.1)
H%C(XC W O(X)) (Xl) —’ ;rokét(XCp’ﬂf/®ﬁX)-

Dually, we have Galois and U ,-equivariant maps of cohomology groups

ES
W() L(XCP, O‘)E )e(_XZ) —> proket(XCp’ 1)6@6))())

(Xe,, DBOY) —2 HY(Xc,, w3 ") (= — 1),

proket

Proof. Let vy, @ Xc, proket = Xc,.an be the natural projection. First, let us show that
RVan (i ®0) = W[0] ® Wi (= D[-1]. (10.3.2)

By Theorem 9.2.3 the sheaf angr is an ON-Oy  sheaf locally for the étale topology of X. Let
ket * Xc, proket = Xc, ke be the natural projection of sites. Then, locally étale, we can write w)g’+®5 X =
D.G;ei. Thus, we get

Ry (W®0Y)

+= A+ 1
Ry (W ®ﬁx)[;]

. 1
Rlim Rue, (€D /pIen] )

. pay s 1
= R{in @(Rvkét,*ﬁ;/p )ei[E]

—L —
wW® Rvie. Ox.

Then, by Therorem 10.1.5 we know that R%kété’\x = Oxxal0] ® w(=1)[-1]. Lemmas [ , 5.5]

or [ , 6.17] imply that the integral structure obtained by Rvys .(Oy) defines the same topology
of the one given by 0%, [0] ® w} " (=1)[-1]. Therefore

RV (W®0x) = w[0] @ 0™ (—1)[0]

over the Kummer-étale site of X, 1y, (€). Finally, let pyg : Xc,x&e — Xc,.an be the projection map.
In order to descend to the analytic site we recall that w?, is a projective Banach sheaf over X,, 1w, (€)

(cf. [ , §5.5.2]). Thus, it is a direct summand of an ON Banach sheaf @iﬁx over X,, 1w, (€). But
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we know that the Kummer-étale cohomology of & in affinoids admitting a Kummer-étale map to a
torus T = Spa(Qp(Tﬂ),Zp(Til)) or a disc D = Spa(Q,(U),Z,(U)) has bounded torsion (using the
Lemma 5. Sof [ |3a] for example). A similar argument as before using derived limits shows that

Ritis(B,0x1) = D, Oxans Whence Ryt = .
Consider the overconvergent HT maps of §9.4

wgm)@gx(,\(l) - ﬂi@gx over X 1y, (€)
ﬂfwn§5x - w{_@é’\x(xz) over X, 1w, (€).
Taking the projection from the pro-Kummer-€étale site to the analytic site, one gets maps
WP VRV . Ox(x1) = RV (ASBOy) over X, 1y, (€)
Rvan,*(ﬂ)(@ﬁ’x) — WBRV . Ox(x2) OVer Xy 1, (€).
Taking the cohomologies of Definition 9.2.9 and using (10.3.2) we obtain maps
RT (Xc,, 0 )e(x1) = R (X, Rvan (A'BOY))
RFWO(XC,,’RVan,*(ﬂ(S@gX))f — RT,,,(Xc,, Wi )elx2 = DI-11.

On the other hand, we have restriction and correstriction maps

— Cor —_— Res —
RFI,C(XC,,a Rvan,*(ﬂ(S@ﬁX))e — Rrprokét(XCp ’ ﬂf(@ﬁ;(—) — Rrwo (XCP ) Rvan,*(ﬂ6®ﬁX))E- (1033)

Taking H'-cohomology and the composition of the previous morphisms, on obtains the maps (10.3.1).
A similar construction yields for the distributions Z))f. The Galois equivariance is clear as the HT-
maps are Galois equivariant. The compatibility with respect to the good normalization of the U,,-
operators follows from Proposition 9.4.2 and the equality US%" = U, see Definition 9.2.19. mi

We can finally state the main theorem of this paper. We will focus in the case of the d-analytic
principal series, the statements and the proof for the d-analytic distributions being totally analogous,
cf. [ , Theo. 6.1].

Theorem 10.3.2. Let € > 6 > n, (R, R") an uniform affinoid Tate Q,-algebra and  : T = T(Z,) —
R** a §-analytic character. The following holds

1. The composition of the Eichler-Shimura maps ES # o ES ¥, is zero:

—~—~ _ ES @
o« (Xc,, A®OY) — HY) (Xe,, wh )ely2 = 1) = 0.
(10.3.4)

0 — H{ (Xc,, o) (x1) LNy ke

2. Assume that V = Spa(R,R") is an affinoid subspace of the weight space ‘Wr of T, an let
k = (ki,kz) € V be a dominant weight of T. Let a = (1,—1) € X*(T) and let x = x7, be the
universal character of V. The following diagram commutes

Wi ES} ES a
H, (X, @ )elr) —> Hyo(Xe, ABOY) — WO(XC,,, Wi ez -
> I e
H]I’C(X(Cp ’ Rvan,*(ﬂf/®ﬁX))e HJVO (XCI, ) Rvan,*(ﬂ)(®ﬁX))s
H! (Xc,, wp"™)e(ki) — H! | (Xc,, ABOy) — HY) (Xc,, ™) c(ka = 1)
Cor Res

H! (Xe,, 0 (ky) —2— HL(Ye,, V) ® C, —2— HY (Xc,, ™)k = 1)
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3. The maps of (2) are Galois and U), equivariant with respect to the good nomalizations (Defi-
nition 9.2.19). In particular, the diagram above restricts to the finite slope part with respect to
the U, action.

4. Let h < ki —ky + 1. There exists an open affinoid V' C V containing k such that the (< h)-slope
part of the restriction of (10.3.4) to V' is a short exact sequence of finite free C,,@QP oV')-
modules.

5. Keep the hypothesis of (4), and let y be the universal character of V'. Letx = x1 —x2 + 1 :
Z, > R, and b = %I,zl;\/'(t). Then we have a Galois-equivariant split after inverting b

H) o(Xc, AROY)S" = [H) (Xe,, w2 (0)]y & [HY, (Xc, )2 (02 = Dy

Proof. Part (1) follows from the fact that the composition of the restriction and correstriction maps
(10.3.3) is zero.

Parts (2) and (3) follows from Lemma 10.3.1, and the compatibility of the formation of ﬂf( and
wy. with the character y. The commutation of the lower diagram is a direct consequence of the
constructions and Corollary 8.4.5.

For part (4) we follow the same arguments of [ ]: the finite slope theory (cf. [ , )]
implies that there is an affinoid open subspace V’ C V containing « such that the (< h)-part of the
sequence (10.3.4) restricted to V"’ is a sequence of finite free (C,,@Qp O'(V’)-modules. Moreover, by
the classicity theorems 9.2.20 and 9.3.16, and the classical Eichler-Shimura decomposition (Theorem
10.1.1), we can take V’ such that the sequence (10.3.4) is short and exact.

Finally, we briefly sketch the argument for part (5). Let V’ be as in (4), let R = &(V’), and consider
the short exact sequence of the (< h)-part of (10.3.4). Taking basis and tensoring with the Tate twist
R(1 — x») we are left to prove that the localization by b of H I(GQp’ C,féR(Xl — x2 + 1)) vanishes. By
almost étale descent one has

H'(Gq,,C,®R(x1 — x> + 1)) = H'(Gal(Q}°/Q,), Q) ®q,R(x1 — x2 + 1)). (10.3.5)

We identify Gal(Q};“/Q,) with Z via x.y.. By Sen theory, to show that (10.3.5) is of b-torsion it is
enough to prove that H'(Lie Z, R(x1 — x2 + 1)), = 0, but this is clear as H'(Lie Z), R(x1 — x> + 1)) =
R/bR.

O

10.4. Compatibility with Poincaré and Serre duality

We finish this paper with a construction of the Poincaré paring for overconvergent modular symbols,
then we prove its compatibility with the Eichler-Shimura maps and the Serre pairing of overconver-
gent modular forms. We need a couple of lemmas

Lemma 10.4.1. Ler .% denote ﬂ)‘i or Z)f(. Then the complex RU ot o(Yc,, F) admits, locally on the
weight space, finite slope decompositions.

Proof. This follows from the distinguished triangle

+

Rrproét,c(YCpa ﬁ) — Rrproét(Y(Cp’ ﬂ) — Rrprokét(D(Cpa ﬂ) -
and the fact that RT oke(Dc,» ) is represented by direct sums of complexes of the form
~  ng—1 ~
F&— 7@

where & € D, & € X,, is a log perfectoid point over &, and ng € Ne C Iw, is the monodromy of Eover

3 o
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10. p-adic Eichler-Shimura decompositions

We have short exact sequences over X,, 1y, (€)
0 > Wi®pyIp = WiBs, Ox — Wipt.Op — 0

where the completed tensor products are with respect to the integral modular sheaves aXé’Jr and the
p-adic topology.

Lemma 10.4.2. Let v,y : Xy 1w, (€)proket = Xowtw, (€)an be the projection of sites, then
RYun (80, Ip) = wi(~D)[0] & w™ (=D)(~1)[~1].

Proof. This follows from the proof of Lemma 10.3.1 which gives Rvan,*(w’g@ﬁxﬁx) = wi[0] ®
afg(—l)[—l], and (10.1.5) of Lemma 10.1.8 which implies that RVan’*((IJ/E@ﬁXL*ﬁD) = afélD[O] @
W (=Dlp[-1]. m

On the other hand, Proposition 10.1.7 provides an isomorphism of distinguished triangles

= — — +
Rrproét,c(Y(C,,a §)®Cp — Rrproét(YC,,’ g)@)Cp — Rrprokét(D(C,,, ﬁ)(x)cp -

RFprokét,c(XCp’ g@%) — Rrprokét(XC ng@gX) — Rrprokét(DCP, ggﬁD) l)

P’

where the completed tensor products are with respect to the filtrations of ﬂji* and Z))‘i*. We deduce
the following analogous of Theorem ?? for the cohomology with compact supports

Corollary 10.4.3. With the hypothesis of Theorem ??, we have Galois and Hecke equivariant Eichler-
Shimura maps

ES

ES, —~ "
0 = H{ (Xc,, 0™ (=D)elx1) = Hyoo (Ye,, ADBC, —5 HY) (Xc,» wh " (=D)elya — 1) —> 0

- ESy Py —W a
(Xe, w7 (=D)e(~x2) ~ H' o (Yo, DOBC, = HO(Xc,, wy" ™ (=D))(~x1 = 1) = 0.
(10.4.1)

0> H!

wo,C

where D is the cusp divisor. Furthermore, the following holds

1. The maps (10.4.1) are a sequence, i.e. the composition of two consecutive arrows is zero.

2. Let 'V C Wy be an open affinoid of the weight space of T = T(Z,), let R = O(V) and y be the
universal character over V. Let k = (ki,k;) € V be a dominant weight and h < ky — k, + 1.
Then there exists an affinoid subspace V' C V containing k such that the (< h)-slope part of
(10.4.1) is a short exact sequence of finite free C,,@ﬁ (V")-modules.

3. With the hypothesis as in (2), suppose thatV = V', Let y = x1 — x>+ l and b = %Itzl}'(t).
Then, after inverting b, the (< h)-slope part of (10.4.1) splits as a Galois representation.

Proof. This is a consequence of Lemmas 10.4.1 and 10.4.2 and the proof of Theorem ??. O
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10. p-adic Eichler-Shimura decompositions

10.4.1. The pairings

Let e > 6 > n, (R,R") and y be as in previous sections. By construction there is a natural pairing
between the -principal series and distributions

s 5
Al XD, - R.
It is easy to see that it induces a Poincaré pairing

(= =)p : Hyposr (Yo, DY) X Hy o (Ye,, AY) — proetC(Yc,,,l’?(l))—ﬂ’?

Tr
where the first arrow is a Yoneda pairing, and the last arrow is induced by the Poincaré trace H lt (Ye,,Z,(1)) -

Zpbn the other hand, in [ ] the authors define overconvergent Serre pairings in families
(= =)s : H,, (Xc,, g (=D))e X Hy(Xc,, Wy )e = R
compatible with the classical Serre pairings. They are constructed by taking the Yoneda’s product
U: H, (Xc,, 0 (=D))e X H)(Xc,, wt™). > H,, (Xc,, wi(-D)) = H,, .(Xc, Q®R).

and composing with the Serre trace map of X

Trs : H,, (Xc,, Qx®R). Lo, Hy,(Xc,, Qy®R) — R.
Theorem 10.4.4. Keep the notation of Theorem ??. The following holds

1. The Poincaré and Serre pairings of overconvergent cohomologies are compatible with the good
normalizations of the U ,-operators (Definition 9.2.19). Moreover, they are compatible with the
Eichler-Shimura maps of Corollary 10.4.3.

2. Let 'V c Wy be an open affinoid, and let x = xz; be the universal character of V. Let
k = (ki,ky) € Vandfix h < k; —k, + 1. There exists an open affinoid V' C °V containing k such
that we have perfect pairings of finite free C @ﬁ (V')-modules

(==p: proetc(YCp’Dé(l))<h X H) t(YC,,, ﬂi)s}l - ﬁ((V’)

proé
and
<—,—>s- H! (Xc,, w/ (-D)Z" x HY(Xc,, 0™ — O(V)
(= =)s : <ch,wEM>><”xH°<ch, W=D = OV,

compatible with the overconvergent Eichler-Shimura maps.

Proof. The Hecke operators are compatible with the pairings by their definition via finite flat corre-
spondances, see Definitions 9.2.2 and 9.3.12.

In the following we forget the Galois action. Let vy, : Xc, proket — Xc,.an be the projection of sites.
We have a commutative diagram of Yoneda’s products

H! (Xc,, RVar ()" 8OX)) X H(Xc, RVan (03" 8 Ip))e = H: (X, RVan-(ROIp))e

L Jo

proket(XCp’ ‘?[ ®ﬁX) X Hl ket()(C ’ Dd@jl)) — proket(XCp’ R®fD)

I o

HVIVO(XCP,RVan,*(a)/\é@EX))E X Hl (X(CpaRVan *(0) ®jD))e % H2 (X(cp, Rvan *(R®jD))E

wo,¢ wo,C
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10. p-adic Eichler-Shimura decompositions

On the other hand, we also have compatible pairings provided by the Faltings extension

H! (Xc,, w (=D))e x HY(Xc,, w™). Y s Hl(Xc,, ROQL)

l T I

H!, (Xc,, RVan (0 ®Ip))e X H) (X, RVan J(058OK))e ~2% H2 . (Xc,, R®Ip).

wo prokét

The compatibility of Poincaré and Serre traces (Proposition 10.2.2) implies part (1). Part (2) follows
the same lines of the proof of Theorem ?? and Corollary 10.4.3 using the fact that the pairings are
perfect for the classical Eichler-Shimura decomposition. O
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11. Introduction

The theory of p-adic representations of p-adic groups has a long history and it has played a key role
in the field of Number Theory during the last decades, as witnessed, e.g., in the study of the p-adic
Langlands correspondence [ 1. ].

In this article, we intend to reformulate the theory of locally analytic representations of p-adic Lie
groups as developed in [ 1, [ 1, [ 1, [ 1, [ ], using the theory of condensed
mathematics developed by Clausen and Scholze. We define and study the notions of analytic and
locally analytic representations of p-adic Lie groups on solid modules. One of our main new re-
sults, which was the departing point of our investigations, is a generalisation of Lazard’s comparison
theorem [ ] between continuous and locally analytic cohomology of a finite dimensional repre-
sentation of a compact p-adic Lie group over Q, to arbitrary solid locally analytic representations’.
Generalisations of Lazard’s comparison between locally analytic and Lie algebra cohomology have
already been considered in [ LI 1 ]. We also give, following the lines of [ 1,
a proof of this result in the solid context. Our second main new result is a comparison between con-
tinuous cohomology of solid representation and the continuous cohomology of its locally analytic
vectors. This results can be seen as a p-adic analogue of a theorem of G. D. Mostow [ ]and P.
Blanc [ 1.

11.1. Background

Let p be a prime number and G a compact p-adic Lie group. The theory of p-adic representations
of G comes in different flavours: one has the notion of continuous, analytic and locally analytic rep-
resentations V of G according to whether the orbit mapo, : G - V, g — g-v (v € V fixed) is a
continuous, resp. analytic, resp. locally analytic function of the p-adic variety G.

One usual way of studying such representations is through their cohomology. In a good situation,
the cohomology groups are Ext-groups in certain abelian categories. For instance, one defines the
cohomology of an abstract group H by working on the abelian category of Z[H]-modules: if M is
an H-module, the cohomology groups H'(H, M) are by definition Ext%[ m(Z, M), where Z denotes the
trivial representation.

In the case where V is a continuous representation of G, it is natural to consider continuous group
cohomology. Unfortunately, the category of topological abelian groups is not abelian. The absence of
a good formalism leads to ad-hoc definitions and conditions to get some basic results. For instance,
the restriction to strict short exact sequences in order to obtain a long exact sequence in cohomol-
ogy, or the necessity of proving by hand certain results such as Hochschild-Serre’s spectral sequence
(cf. [ 1), which would otherwise be formal consequences of a well behaved theory.

A possible way to remedy this issue is to cut out some subcategory of objects which is better be-
haved. Let us focus on a case of special interest to us. Let K be a finite extension of Q,. The category

'In particular, to any complete compactly generated locally convex vector space, e.g. metrizable.
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11. Introduction

of locally analytic representations of G is not abelian. But one can consider the subcategory of ad-
missible locally analytic representations [ ]. These objects carry a natural topology and form an
abelian category.

The theory of condensed mathematics developed by Clausen and Scholze [ 1, [ 1, [CS]
also provides a natural approach to deal with these kind of difficulties. Very vaguely, the condensed
objects in a category % can be defined as sheaves on the proétale site of a point with values in €. It
is shown in [ ] that the category of condensed abelian groups is an abelian category satisfying
Grothendieck’s axioms. Hence, one is on a good footing for doing homological algebra. Notice that,
as opposed to the approach described in the previous paragraph, this one consists not in imposing re-
strictions but rather enlarging the universe where several topological problems disappear, thus giving
a very general theory.

11.2. Statement of the main results

Let us now describe with some more detail what is carried out in this article.

11.2.1. Solid non-archimedean functional analysis

Let K be a finite extension of Q,. The field K naturally defines a condensed ring which, moreover,
has an analytic ring structure Ky in the sense of [ ], usually called the solid ring structure on
K. We let Solid(K) be the category of solid K-vector spaces. This category is stable under limits,
colimits and extensions, it has a tensor product ®, and an internal Hom denoted by Hom (-, —) [CS].
Let us point out that all the important spaces in the classical theory of non-archimedean functional
analysis [ ] live naturally in Solid(K). Indeed, there is a natural functor

LCk — Solid(K) (11.2.1)

from the category of complete locally convex K-vector spaces to solid K-vector spaces, as any com-
plete locally convex K-vector space can be written as a cofiltered limit of Banach spaces. Moreover,
it is fully faithful on a very large class of complete locally convex K-vector spaces, e.g. all com-
pactly generated ones, e.g. all metrizable ones. The main notions of the theory of condensed non-
archimedean functional analysis we use are due to Clausen and Scholze [ 1, [CS], [ ]. All
the vector spaces considered in this text are solid K-vector spaces, unless otherwise specified.

Our first result is an anti-equivalence between two special families of solid K-vector spaces. Let
us first give some definitions. A Smith space is a K-vector space of the form Hom (V, K), where V
is a Banach space. In classical terms, a Smith space is the dual of a Banach space equipped with
the compact-open topology. An LS space is a countable filtered inductive limit of Smith spaces with
injective transition maps. We then have the following result.

Theorem 11.2.1 (Theorem 13.3.13). The functor V + V" := Hom (V, K) induces an anti-equivalence
between Fréchet and LS spaces such that Hom (V, V") = Hom,(V"", V").

Remark 11.2.2. The previous theorem restricts in particular to an anti-equivalence between classical
nuclear Fréchet spaces and LB spaces of compact type (see, e.g., [ , Theorem 1.3]).

11.2.2. Representation theory

Let G be a compact p-adic Lie group. A representation of G on a solid K-vector space V is a map
of condensed sets G X V — V satisfying the usual axioms. Define the Iwasawa algebra of G with
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11. Introduction

coeflicients in K as Kg[G]; explicitly,

. 1
Ka[G] = (&%lOK[G/N])[;],

where N runs over all the open normal subgroups of G. This is the solid algebra defined by the clas-
sical Iwasawa algebra endowed with the weak topology. The category of G-representations on solid
K-vector spaces is equivalent to the category Solid(Kg[G]) of solid Kg[G]-modules. Observe that the
category of continuous representations of G on complete locally convex K-vector spaces lives natu-
rally in Solid(Kg[G]) via the functor (11.2.1).

Inspired by Emerton’s treatment [ ], we define analytic and locally analytic vectors of solid
representations of G. Roughly speaking, they are defined as those vectors whose induced orbit map
is analytic or locally analytic. One advantage of our approach is that definitions make sense at the
level of derived categories, so one can speak about derived (locally) analytic vectors of complexes
C € D(Kg[G])) in the derived category of Kg[G]-modules. The derived functors of the locally analytic
vectors (for Lie groups over finite extensions of Q,) for admissible representations have been consid-
eredin [ ].

More precisely, let G be an analytic affinoid group over Spa(Q,,Z,) such that G = G(Q,,Z,)
and suppose in addition that G is isomorphic to a finite disjoint union of polydiscs. In practice,
the group G will be constructed using some local charts of G, see Remark 11.2.4 below for a more
detailed description. Let C(G,K) := 0(G) ®q, K be the algebra of functions of G. The affinoid
algebra C(G, K) has a natural analytic ring structure denoted by C(G, K)g, see [ ]. We denote
by D(G, K) = 0(G)" ®q, K the distribution algebra of the affinoid group G. We define the derived
G-analytic vectors of an object C € D(Ka[G]) to be the complex?

C*5 .= RHom,_ (K, C &, C(G, K)a) (11.2.2)

where K is the trivial representation, and the G-action on C ®§_ C(G, K)q is the diagonal one in-
duced by the action on C and the left regular action on C(G, K). We endow CRS~*" with the right
regular action of G. It turns out that there is a natural map C°* — C, and we say that C is
derived G-analytic if this map is a quasi-isomorphism. If V is a Banach G-representation, then
Vv ®§(_ C(G,K)a = V ®k, C(G,K) coincides with the projective tensor product of Banach spaces.
Thus, our definition of derived G-analytic vectors is the derived extension of [ , Definition
3.3.13].

Now let G be a Stein analytic group over Spa(Q,,Z,) such that G = @(QP, Zp,). Suppose in addition
that G = |J, G™ is written as an increasing union of affinoid groups G*, where each G® is as
in the previous paragraph. In practice, G will be as in Remark 11.2.4 below. We also denote by
DG, K) = OG)Y ®g, K = lim D(G™), K) the distribution algebra of G. Then the derived G-
analytic vectors of C € D(Kg[G]) are defined as the complex

CRG—an ‘= Rlim CRGW—G”, (11.2.3)
U

and we say that C is derived G-analytic if the natural map CRG-an _, Cis a quasi-isomorphism.
Again, if V is a Banach G-representation, this definition is compatible with the G-analytic vectors

of [ , Definition 3.4.1]. The main theorem is the following:
2The tensor product ®k, C(G, K)g is the derived base change of modules over analytic rings, see [ , Proposition
7.71.
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Theorem 11.2.3 (Theorem 10.3.2). A complex C € D(Kg|G])) is derived @-analytic if and only if it is
a module over D(G, K).

This theorem is a generalisation of the integration map constructed by Schneider and Teitelbaum
to solid G-modules, cf. [ , Theorem 2.2]. It will serve us as a bridge between solid analytic
representations and solid modules over the distribution algebras.

Remark 11.2.4. Suppose that G is a uniform pro-p-group and ¢ : Z;’ — G is an analytic chart given by
a basis of the group (e.g. Example 14.1.5). Using this chart, one can define for any & € Q. affinoid
groups G in such a way that the p’-analytic functions on Z¢ coincide with the rigid functions on
G™ after taking pullbacks by ¢. In this situation, the G™-analytic vectors are those whose orbit map
is p"-analytic. Given & > 0, the group G”" := | J,..,, G* is a Stein group. In the definition of derived
analytic vectors of equations (11.2.2) and (11.2.3) we will take G = G® and G = G""). The locally
analytic functions on G are

la — 1 (h) — 1 (")
C“G,K) = h_r)n C(G",K) = h_r)n C(G" ', K).

h—+o0 h—+00

Now let D(G, K) = C%(G, K)" be the algebra of locally analytic distributions. We point out that the
analogous statement of Theorem 11.2.3 does not hold in general for locally analytic representations
and D(G, K)-modules. In the particular case of locally analytic representations on LB spaces of
compact type, this is nevertheless true, and was already known by [ ].

11.2.3. Comparison theorems in cohomology

We finish this introduction by describing the main applications of Theorems 11.2.1 and 11.2.3 to the
study of the cohomology of continuous representations.

For C € D(Kg[G]), we define the solid group cohomology of C to be the complex
RHomK_[G](K, O).

Let g be the Lie algebra of G and U(g) its universal enveloping algebra. Let G be a Stein group
neighbourhood of G as in Theorem 11.2.3 and D(@, K) the distribution algebra of G. If in addition
Cis G-analytic, we define the G-analytic cohomology of C as RHom,, s (K, C), and its Lie algebra
cohomology to be RHom,, (K, C). Using Bar resolutions and Theorem 11.2.3, one verifies that these

definitions recover the usual continuous, analytic, and Lie algebra cohomology groups.

Our first new result compares continuous cohomology of a solid representation and the continuous
cohomology of its locally analytic vectors. This result can be seen as a p-adic analogue of a theorem
of P. Blanc [ ] and G. D. Mostow [ ] in the archimedean setting, which compares continu-
ous and differentiable cohomology of a real Lie group G.

Let C € D(Kq[G]), we define the derived locally analytic vectors of C as the homotopic colimit

C*' = hocolim CR"
G

where G runs over all the affinoid neighbourhoods of G. We say that C is derived locally analytic if
CRla = C. If V is a Banach representation, then H°(V&) coincides with the locally analytic vectors
of V in the sense of [ , Definition 3.5.3]. We have the following theorem.

Theorem 11.2.5 (Theorem 15.2.1). Let C € D(Ka[G]) and let CR be the complex of derived locally
analytic vectors of C. Then

~ Rla
RHomK_[G](K, C)= RHomK_[G](K, ™.
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In particular, if V € Solid(Ka[G)) then, setting VR := H/(VR) for i > 0 there is a spectral sequence
of solid K-vector spaces

Ey = Exty 1, (K, VE') = Exty/(K. V).

We give an application in the classical context. Let V be a continuous representation of G on
a complete locally convex K-vector space. Denote H., (G, V) the usual continuous cohomology
groups. These coincide with the underlying sets of the solid cohomology groups Ext; ..(K, V). We

say that V has no higher locally analytic vectors if VR = 0 for all i > 0. This is the case for
admissible representations (cf. [ ] or Proposition 14.5.3). One deduces the following corollary.

Corollary 11.2.6. If V has no higher locally analytic vectors, then for all i > 0,
Hiont(G’ V) = H(iont(Gy Vla).

Our last result concerns a generalisation of Lazard’s comparison between continuous, (locally)
analytic and Lie algebra cohomology from finite dimensional representations V to arbitrary solid
derived (locally) analytic representations. We have the following theorem.

Theorem 11.2.7 (Continuous vs. analytic vs. Lie algebra cohomology, Theorem 15.2.3). Let C €
D(Ka[G)) be a derived G-analytic complex. Then’

~ ~ G
RHomK_[G](K, C) = RHomD(@,K)(K, C) = (RHomU(g)(K, O)".

11.3. Organisation of the paper

In Section 12 we review very briefly the theory of condensed mathematics and solid abelian groups.
We recall the notion of analytic ring and give some examples that will be used throughout the text.

In Section 13 we develop the theory of solid K-vector spaces following the appendix of [ ].
Most of the results exposed in this section will be presented in the forthcoming work [CS]. We review
in particular the main properties of classical vector spaces: Banach, Fréchet, LB and LF spaces. Our
main original result is Theorem 11.2.1 generalising the classical anti-equivalence between LB spaces
of compact type and nuclear Fréchet vector spaces.

In Section 14 we introduce the different analytic neighbourhoods G™® of our p-adic Lie group G.
We begin in §14.1 by introducing spaces of analytic functions, following [ ] closely. Then, we
define the algebras of distributions as the duals of the spaces of analytic functions. We also intro-
duce another class of distribution algebras, used already in [ ], which are more adapted to the
coordinates of the Iwasawa algebra. In §14.3, we define the notion of analytic and derived analytic
representation, we prove Theorem 11.2.3, except for a technical lemma whose proof is postponed to
Section 15. We finish the section with some applications to locally analytic and admissible represen-
tations.

Finally, in Section 15, we recall (Theorem 15.3.1) a lemma of Serre used by Lazard to construct
finite free resolutions of the trivial representation when G is a uniform pro-p-group. We use this result,
as well as its enhancement due to Kohlhaase (Theorem 15.3.2) to prove the technical lemma necessary
for Theorem 11.2.3. We state Theorems 11.2.5 and 11.2.7 in §15.2 and give a proof in §15.4. We
conclude with some formal consequences, namely by showing a solid version of Hochschild-Serre
and proving a duality between group homology and cohomology.

3The Lie algebra cohomology RHom,, (K, C) lands naturally in the derived category of smooth representations of G on
solid K-vector spaces. Since K is of characteristic 0, taking G-invariants in this category is exact and the superscript
G means the composition with this functor, cf. Remark 15.2.4.
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12. Recollections in condensed
mathematics

First, we review some elementary notions in condensed mathematics: we recall the definitions of
condensed sets, solid abelian groups and analytic rings. In the future we will be only interested in the
categories of solid modules, and modules of analytic rings over Z.

12.0.1. Condensed objects

In their recent work [ ] and [ ], Clausen and Scholze have introduced the new world of
condensed mathematics, which aims to be the good framework where algebra and topology live to-
gether. Roughly speaking, a condensed set/group/ring is a sheaf in sets/groups/rings in the pro-étale
site of a geometric point *p¢. It is equivalent to the category of profinite sets and continuous maps,
with coverings given by finitely many continuous maps which are jointly surjective.

Definition 12.0.1 ( [ , Definitions 2.1 and 2.11]). A condensed set/group/ring/... ¥ is a sheaf
OVer *pr06t With values in Sets, Groups, Rings,... We denote by Cond the category of condensed sets
and Cond(Ab) that of condensed abelian groups. If R is a condensed ring, we denote by Cond(R) the
category of condensed R-modules'.

There is a functor from topological spaces to condensed sets whose restriction to the category of
compactly generated Hausdorff topological spaces is fully faithful. First recall that a topological space
X is compactly generated if a map X — Y to another topological space Y is continuous if and only
if the composition S — X — Y is continuous for all maps § — X from a compact Hausdorff space.
A compact Hausdorff space can be written as a quotient of a profinite set. Indeed, if S is a compact
Hausdorff space, let S ;;; denote the underlying set with the discrete topology, and S 4 its Stone-
Cech compactification. Then S 4, is profinite and the natural map 3S s, — S is a surjective map of
compact Hausdorft spaces. In particular, we can test if a topological space is compactly generated by
restricting to the profinite sets.

Let T denote the category of topological spaces, we define the functor (_) : T — Cond mapping a
topological space T to the condensed set

T:S—T()=Cont(S,T)

where Cont(S, T) is the set of continuous functions from S to 7. Recall that a condensed set X is
called quasi-compact if there is a profinite set S and a surjective map S — X. Similarly, a condensed
set X is quasi-separated if for any pair of profinite sets S and S’ over X the fiber product § Xx S’
is quasi-compact. From now on we identify a profinite set S with the condensed set S. Given a
condensed set X and a profinite set S we define Cont(S, X) to be the condensed set whose value at a
profinite set S is

Cont(S, X)(S") = Homeonase(S X §', X) = X(S x S').

We have the following result.

IThere are set theoretical issues with this definition as *progt 18 Mot small, what [ ] does is to cut-off by a large
cardinal «, considering the category of sheaves of k-small profinite sets *pr¢ and take the direct limit. Hence the
category of condensed sets is not the category of sheaves of a site.
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12. Recollections in condensed mathematics

Proposition 12.0.2 ( [ , Proposition 1.2]). Consider the functior T — T from T to Cond

1. The functor has a left adjoint X — X(*)p Sending any condensed set X to the set X(x) equipped
with the quotient topology arising from the map

|_| S — X(*)

S.aeX(S)
with S profinite.
2. Restricted to compactly generated topological spaces, the functor is fully faithful.

3. The functor induces an equivalence between the category of compact Hausdorff spaces and
qcqs condensed sets.

4. The functor induces a fully faithful functor from the category of compactly generated weak
Hausdorff spaces, to quasi-separated condensed sets. The category of quasi-separated con-
densed sets is equivalent to the ind-category of compact Hausdorff spaces “li_r)nl_ T;” where all
transition maps T; — T are closed immersions. If Xy — X, — --- is a sequence of compact
Hausdorff spaces with closed immersions and X = h_n)ln X, as topological spaces, then the map

IimX — X
—=n =

n

is an isomorphism of condensed sets.

Among the class of profinite sets there is the special class of extremally disconnected sets, which
are the projective objects in the category s#,.0s. Moreover, all of them are retractions of a Stone-Cech
compactification of a discrete set. Let Extdis denote the full subcategory of extremally disconnected
sets. The condensed sets can be defined using only this kind of profinites

Proposition 12.0.3 ( [ , Prop. 2.7]). Consider the site of extremally disconnected sets with
covers given by finite families of jointly surjective maps. Its category of sheaves is equivalent to the
category of condensed sets via the restriction from profinite sets. Hence, a condensed set is a functor
X : Extdis — Set such that X(0) = * and X(S1| |S>) = X(S1) X X(S»).

Extremally disconnected sets play a similar role as points do for locally ringed spaces. Namely,
if F — G is a map of condensed sets, it is injective (resp. surjective) if and only if it is so after
evaluating at all extremally disconnected sets.

The inclusion Cond(Ab) — Cond admits a left adjoint 7 +— Z[T], where Z[T] is the sheafification
of § — Z[T(S)]. Let S be an extremally disconnected set, Proposition 12.0.3 implies that the object
Z[S] is projective in the category Cond(Ab). We have a tensor product in Cond(Ab) given by the
sheafification of the usual tensor product at the level of points. We also have an internal Hom in
Cond(Ab) defined as

Hom(M, N)(S) = Hom(M ® Z[S ], N)

for § extremally disconnected. If R is a condensed ring we write R[S]| := R® Z[S]. They form a
family of compact projective generators of Cond(R). Then, if X is a condensed abelian group and
S is a profinite set we have Cont(S, X) = Hom, (Z[S ], X). All the nice properties of the category of
condensed abelian groups are summarised in the following theorem

Theorem 12.0.4 ( [ , Theo. 2.2]). The category of condensed abelian groups is an abelian
category which satisfies the Grothendieck axioms (AB3), (AB4), (ABS), (AB6), (AB3*) and (AB4*):
all limits (AB3") and colimits (AB3) exist, arbitrary products (AB4"), arbitrary direct sums (AB4) and
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filtered colimits (ABS) are exact, and (AB6): for all index sets J and filtered categories I;, j € J, with
functor i — M, from I; to condensed abelian groups, the natural map

lim | |M,-. — | |limM,~.
—_ J — J
([jE[j)jEJ jEJ j€] ijEIj

is an isomorphism. Moreover, the category of condensed abelian groups is generated by compact
projective objects given by Z[S ]| with S an extremally disconnected set.

12.0.2. Analytic rings
Next, we recall the notion of analytic ring

Definition 12.0.5 ( | ] Def. 7.1, 7.4 and [ ] Def. 6.12). A pre-analytic ring (A, M) is the
data of a condensed ring A (called the underlying condensed ring of the analytic ring) equipped with
a functor

Extdis —» Cond(A) S — M[S],

called the functor of measures? of (A, M), that sends finite disjoint union into products, and a natural
transformation of functors S — M[S].

A pre-analytic ring is said to be analytic, if for any complexC: ... - C; = ... - C; - Cy = 0
of A-modules such that each C; is a direct sum of objects of the form M[T] for varying extremally
disconnected sets 7', the map

RHom _(M[S],C) — RHom ,(A[S],C)

is an isomorphism for all extremally disconnected sets S. An analytic ring (A, M) is normalized if
A — M[x] is an isomorphism.

Example 12.0.6.

1. Solid modules ( [ , Theorem 5.8]). We define the analytic ring Zg to have underlying
ring Z, and functor of measures mapping an extremally disconnected S = lim §;, written as an

inverse limit of finite sets, to the condensed abelian group Zg[S] := gn Z[S(_,-]l.

2. ([ , Theorem 8.1]). More generally, let A be a discrete commutative algebra, and let
S = lln S be an extremally disconnected set. We have an analytic ring Aq with underlying
condensed ring A, and with functor of measures given by

AulS] = lim lim B[S ]
BcA i
where B runs over all the Z-algebras of finite type in A.

3. Let p be a prime number, K a finite extension of Q, and Ok its valuation ring. Let S = @ S

be an extremally disconnected set. We have analytic structures for the rings Ok and K, denoted
Ok and Ky respectively, given by

OkalS]:=1limOk[S;] and Ka[S] := OK,-[S][l] = K ®o, OkalS 1.
< p

1

Note that Og[S] is profinite for all S.

’This terminology is justified as follows. If (A, M) is an analytic ring, P is an (A, M)-module, S is an extremally
disconnected set, f € Cont(S, P) and u € M[S] then, using the isomorphism Hom#(M][S ], P) = Cont(S, P), one can
evaluate f at u and define f f-u = f(u) € P, which allows to see u as a linear functional on the space of functions
f € Cont(S, P).
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4. ([ , Theorem 1.5]) Let (A,A*) be a Huber pair. Andreychev defines an analytic ring
(A, A")g associated to (A, A*), whose underlying ring is A, and with functor of measures

e
(A, ANN[S] = lim lim MS ],
B—oATM i

where the colimit is taken over all the finitely generated subrings B C A* and all the quasi-
finitely generated B-submodules M of A. If A" = A° we simply write Ag for (A, A°)g.

5. A particular example of the previous case is the analytic ring associated to the Tate algebra
(K(T),Ox(T)), namely, the analytic ring K(T )g Wwhose functor of measures is given by

K(T)alS] = K(T) @0, ( lim (Ok/p*Ok[TDIS D).

seN,iel
In the previous equation, O /p*Ox[T] is the polynomial ring over O/ p*Og in the variable 7.
The following theorem explains the importance of the analytic rings
Theorem 12.0.7 ([ , Prop. 7.5]). Let (A, M) be an analytic ring.

1. The full subcategory
Cond(A, M) c Cond(A)

of all A-modules M such that for all extremally disconnected set S, the map
Homg(M([S ], M) - Homz#(A[S ], M)

is an isomorphism, is an abelian subcategory stable under all limits, colimits and extensions.
Objects of the form M[S], where S is an extremally disconnected profinite set, constitute a
Sfamily of compact projective generators of Cond(A, M). The inclusion functor admits a left
adjoint

Cond(A) — Cond(A, M), M- MQz (A, M)

which is the unique colimit preserving extension of the functor given by A[S] — M[S]. Fi-
nally, if A is commutative, there is a unique symmetric monoidal tensor product — @ a pm, — on
Cond(A, M) making the functor — @ # (A, M) symmetric monoidal.

2. The functor of derived categories
D(Cond(A, M)) — D(Cond(A))

is fully faithful and its essential image is stable under all limits and colimits and given by those
C € D(Cond(A)) for which the map

RHom#(MI[S],C) - RHom#(A[S],C)
is an isomorphism for all extremally disconnected set S. In that case, the map
RHom _(M[S],C) — RHom ,(A[S], C)

is also an isomorphism.

An object C € D(Cond(A)) lies in D(Cond(A, M)) if and only if for each n € Z, the cohomol-
ogy group H"(C) lies in Cond(A, M). The inclusion functor D(Cond(A, M)) ¢ D(Cond(A))
admits a left adjoint

D(Cond(A)) — D(Cond(A, M)), C + C &5 (A M)

which is the left derived functor of M — M®a (A, M). Finally, if A is commutative, there is a
unique symmetric monoidal tensor product — ®(Lﬂ wm — on D(Cond(A, M) making the functor
- ®% (A, M) symmetric monoidal.
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Remark 12.0.8. The functor — ®(Lﬂ’ o — 18 the derived functor of —®a ) — if and only if M[S’] ®(Lﬂ, M)
M[S"] = A[S xS'] ®§q (A, M) sits in degree O, cf. [ , Warning 7.6]. This is the case for the
analytic rings of Example 12.0.6, and in fact for all analytic ring over Z.

In the following we shall write D(A, M) for the derived category D(Cond(A, M)). The functor
- ®§1 (A, M) should be thought as a completion with respect to the measures M.

One of the main theorems of [ ] is the proof that Zg is an analytic ring, it has as input several
non trivial computations of Ext-groups of locally compact abelian groups. The category Solidy is
called the category of solid abelian groups.

Let p be a prime number, then Z, is a solid abelian group (being an inverse limit of discrete abelian
groups) and for § extremally disconnected we have (cf. [ , Proposition 7.9])

ZyulS1=7Z,Q% ZalS]1=Z,®z, ZalS]. (12.0.1)

Definition 12.0.9. Let K be a finite extension of Q, and Ok its ring of integers, we denote by
Solid(Ok) (resp. Solid(K)) the category of solid Og-modules (resp. the category of solid K-vector
spaces) and D(Ok.a), D(Ky) their respective derived categories. Given a solid algebra A € Solid(Ok)
we let D(A) denote the derived category of solid A-modules. If (A, M) is an analytic ring over Zy,
we let Solid(A, M) denote the category of (A, M)-solid modules.

Remark 12.0.10. An object in Solid(Ok) (resp. Solid(K)) is the same as an object in Solid(Z) endowed
with an action of Ok (resp. K). Indeed, this follows directly from Theorem 12.0.7 and (12.0.1).

12.0.3. Analytic rings attached to Tate algebras

In the case of a Tate algebra (A, M) = Og(T}, ..., T,)a We have the following key description of the
completion functor which follows from the observations of [ , Lecture VIII].

Proposition 12.0.11 ([ , Proposition 3.13]). Let Ox(T) := Ox(T\,. .., Ty4). We denote Ox(T)" =
HomQK(OK(Z), Ok). For any C,W € D(Oga), there is a functorial isomorphism

RHom,, (W,C ®, _ Ox(T)a) = RHom,, (W &g, Ox(T)"’,C).

Proof. By [ , Proposition 3.13], for any C € D(Zy), there is an isomorphism
Z(T™)
C ®%_ Z[T]a = RHom,( T2 ,O).
In particular, if C € D(Ok u), from [ , Lemma 4.7] we have Og(T )a = Ok ®2_ Z|T]a as analytic
rings, one gets
Ox(T™")
C ®ék,l OK<T>. = RHOIHQK(W, C)

Let W € D(Ok). Applying the functor RHom,, (W, -) and the adjunction between ®" and RHom, we
get

Ox((T™!
RHom,, (W,C ®, _ Ox(T)a) = RHom,, (W &, I D) ¢,
’ = TOk[T]
Noting that OTK%T[_T]]» = Ox(T)" as Og(T)-modules, this finishes the proof for the case of one variable.

The case of several variables is treated by induction noticing that if A is a discrete algebra of finite
type over Z then

A((T™Y)
RHom, (W, C ®, A[T]a) = RHom (W &}, Tarm " ©
for C, W € D(Ag), which follows easily from [ , Proposition 3.13]. O

Remark 12.0.12. Proposition 12.0.11 can be seen as an instance of the six functor formalism of
[ , Theorem 8.2].
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13. Non-archimedean condensed
functional analysis

The main purpose of this section is to state a duality between two classes of solid vector spaces over
a finite extension of Q,,, namely Fréchet spaces and LS spaces (to be defined below), generalising the
duality between Banach spaces and Smith spaces (c.f. [ , Theorem 3.8]), and the duality between
nuclear Fréchet spaces and LB spaces of compact type (see, e.g., [ , Theorem 1.3]). For doing so,
we will use many results on the theory of condensed non-archimedean functional analysis developed
by Clausen and Scholze. Since results haven’t yet appeared in the literature, we give a detailed
account with proofs included. The reader should be aware that many of the results in this chapter
must be attributed to Clausen and Scholze [CS], and the only original results are those concerning
duality, principally Theorem 13.3.13.

13.1. Banach and Smith spaces

Let K and Oy be as in the previous section, and let @ be a uniformiser of Ok. In this paragraph we
focus our attention in the category of solid K-vector spaces (or Kg-vector spaces), i.e. the category
Solid(K). We start with some basic concepts

Definition 13.1.1.
1. A solid K-Banach space (or simply a Banach space) is a solid K-vector space V admitting a
w-adically complete O g-module V° C V such that
a) V=V'gg.K.
b) V°/@*V? is discrete for all s € N.
We say that V is a lattice of V.

2. A solid K-Smith space (or simply a Smith space) is a solid K-vector space W admitting a
profinite O u-submodule W° such that W = W° ®;,, K. We say that W is a lattice of W.

Remark 13.1.2. Over R, a Smith space ( [ , Def. 3.6]) is a complete locally convex topological
R-vector space W containing a compact absolutely convex subset C € V such that V = J,.oaC. As
its p-adic analogue, we define a K-Smith space to be a topological K-vector space W containing a
compact Og-module W° ¢ W such that W = W[ 1].

Proposition 13.1.3. The functor V — V(*).p induces an equivalence of categories between solid and
classical K-Banach spaces (resp. between solid and classical K-Smith spaces).

Proof. Let V be a Banach space over K in the classical sense, and let V® C V be the unit ball. Then
VY is endowed with the w-adic topology, i.e. it is the inverse limit V° = lim V0w V0, with VO /@ VO
discrete for all s € N. By Proposition 12.0.2 we know that

1 . 0 sy/70 -n _ /0
K—h_r)n(lan/wV)w =V Qo K,
neN seN
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13. Non-archimedean condensed functional analysis

so that V' is a solid K-Banach space. Conversely, if V is a solid Banach space then V(x),, is clearly a
K-Banach space in the classical sense.

Let W be a (classical) K-Smith space and W° c W a lattice. As W is compact, it is profinite and
Proposition 12.0.2 implies that W = W° ®, . K is a solid Smith space as in our previous definition.
The converse is clear. O

Proposition 13.1.4. There is a natural functor
LCk — Solid(K) : VeV
from the category of complete locally convex K-vector spaces to solid K-vector spaces.

Proof. This follows from the fact that any complete locally convex K-vector space can be written as a
cofiltered limit of Banach spaces [ , Chap. I, §4], and the adjunction of Proposition 12.0.2. 0O

From now, all the complete locally convex K-vector spaces will be considered as solid K-vector
unless otherwise specified. The following result shows that solid Banach and Smith spaces over K
have orthonormal basis.

Lemma 13.1.5.

1. A solid K-vector space is Banach if and only if it is of the form

J—

P, K = (im @ Ox/a =1,

K i€l
for some index set .

2. A solid K-vector space is Smith if and only if it is of the form

(oot

for some index set 1. In particular, by [ , Corollary 5.5] and Theorem 12.0.7, Smith
spaces form a family of compact projective generators of the category Solid(K) of solid K-
vector spaces.

Proof. By definition, an object of the form é\}ie ,K is a solid K-Banach space. Conversely, let V be a
Ka-Banach space and V° c V a lattice. By Proposition 13.1.3 V(x),, is a Banach space with unit ball
V0(>x<)t0p C V(*)op and V(*)p = V. But then VO(*)top has an orthonormal Og-basis by taking any lift

of a Ok /wOk-basis of V°/w. This proves (1).
To prove (2), let W be a Smith space and W° ¢ W a lattice. Since W is a profinite Ok g-module,
WO = WO(x)p with WO(x), a profinite Og-module in the usual sense. Moreover, Wo(x), is flat

and the topological Nakayama’s lemma implies that W°(x),,, must be of the form [;;; Ok ([ ,
Exposé VIlg, 0.3.8]). O

We will need the following useful proposition
Proposition 13.1.6 ( [CS]). Let V be a solid K-vector space. The following statements are equivalent

1. 'V is a Smith space

2. Vis quasi-separated, and there is a compact Og-submodule M C V such that V = M [é].
Moreover, the class of Smith spaces is stable under extensions, closed subobjects and quotients by
closed subobjects.
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Proof. The equivalence between (1) and (2) follows immediately from the characterisation of Smith
spaces of Lemma 13.1.5. The fact that Smith spaces are stable under extensions follows from the fact
that they are projective, and hence every extension splits. The stability under closed subobjects and
quotients follows from the description of a Smith space as in (2) of the equivalence. m|

The next lemma provides a anti-equivalence between Banach and Smith spaces for solid K-vector
spaces, c.f. [ ] (or also [ , Theorem 3.8]) for the analogous statement over the real or
complex numbers.

Lemma 13.1.7 ( [CS]). The assignment V +— V" induces an anti-equivalence between K-Banach
spaces and K-Smith spaces. More precisely, the following holds.

1. Hom()K(@ioKaOK) = [1; Ok and HomK(é;ie,K, K) = ([1ies OK)[i].

2. M()K(Hiel Ok,Ok) = @ieloK and Hom ([ T;¢ OK)[I‘I,],K) = @ielK'

Proof. To prove (1), notice that

Hom,, ((P)0x.0x) = limHom, .((}) Ox/a*. Ox/*)

= lim n Ok/w
= n OK.
To prove the second equality it is enough to show that

™~ ™ 1
Hom, ((P) K. K) = Hom,, ((]) Ox. 00l —].

Let S be an extremally disconnected set, by adjunction it is enough to show that

Homx(E) K. Cont(s, K)) = Homo, () Or. Cont(S, 0~ .

But all the solid spaces involved arise as the condensed set associated to a compactly generated
Hausdorff topological space, the claim follows from the fact that lattices are mapped to lattices for
continuous maps of classical Banach spaces.

Part (2) follows from the fact that an object of the form [],.; Ok is a retraction of a compact pro-
jective generator Ok g[S ] for S extremally disconnected, and the fact that

Hom, (OkulS1,Ok) = Cont(S, Ok).

This finishes the proof of the Lemma. O

Remark 13.1.8. Part (2) of the previous lemma also holds with RHom since [],;; Ok is a projec-
tive Ok g-module. The same proof of the first assertion of (1) can also be adapted to show that

RHomjK@iOK, Ok) = [],; Ok. The authors ignore how to calculate RHomK(@ielK, K).

We now study the behaviour of the tensor product.

Proposition 13.1.9. Let V = [],; O and W = [] ;c; Ok. Then

ves W= [] ok

(i,))elxJ
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Proof. See [ , Proposition 6.3]. O

The following useful result shows that the solid tensor product coincides with the projective tensor
product of K-Banach spaces.

Lemma 13.1.10 ( [CS]). Let V and V' be classical Banach spaces over K, and let VRyV’ denote its
projective tensor product. Then V@xV' =V &k, V'.

Proof. Fix an isomorphism V = é\)
different from O, we can write

K. As a convergent series }’; a; has only countably many terms

where I’ runs over all the countable subsets of /. Therefore, we can assume that V = V' = @%NK .
Let . denote the direct set of functions f : N — 7Z such that f(n) — +oco0 as n — +oo, endowed with
the order f < g iff f(n) > g(n) for all n € N. Thus, we can write

JE——

@nGNK = lim ﬂ Ox’™. (13.1.1)

fe” neN

Indeed, by evaluating at an extremally disconnected set S, V(S) = Cont(S,V) = EBn o Cont(S, K)
has a natural Banach space structure, for which a function ¢ : S — V can be written in a unique way
as asum ¢ = ., ¢, with ¢, € Cont(S, K), such that |¢,] - 0 as n — oco. Then, from (13.1.1) and
Proposition 13.1.9 we deduce that

Veg V' = lim HOwa(m 8050 HOng(m) = lim l_l O/ M.

—_— .- — 3
f-ge” neN meN f.ge” n,meNxXN

Given f,g € . define the function Az, : NXN — Z as hy,(n,m) = f(n) + g(m). Let #” be the
direct set of functions & : N X N — 7Z such that A(n,m) — +o0 as max{n,m} — +oo. Then the set
{hfe}fees 18 a cofinal family in .. Indeed, given & : N X N — Z, if we define f(n) = %minm h(n,m)
and g(m) = %minn h(n,m), then h < hy,. Therefore,

J——

i [] 0o = tim [ [Ox - @ &
— — n,m

£.g6.% n,meNxN hes" nm
O

Let us recall the concept of a nuclear solid K-vector space.
Definition 13.1.11 ( [ , Definition 13.10]). Let V € Solid(K). We say that V is nuclear if, for all

extremally disconnected set S, we have
Hom, (Ka[S], V) = Hom, (Ka[S], K) ®k, V

Remark 13.1.12. We warn the reader that this notion of nuclearity differs from the classical one, say
in [ ]. Indeed, if a Banach space is nuclear in the classical sense then it is finite dimensional (cf.
loc. cit. §19). On the other hand, solid K-Banach spaces are always nuclear in the condensed sense.

Corollary 13.1.13 ( [CS]). Let V be a Banach space over K, then V is a nuclear K-vector space.

Proof. The result follows from Lemma 13.1.10 by applying the ® and Hom adjuntion, and the duality
between Banach and Smith spaces. O
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Corollary 13.1.14. Let V € Solid(K) be a Banach space and W € Solid(K) be Smith. Then
Hom, (V, W) = V" ®, W.
Hom (W, V) = W' &, V.

Proof. The second equality follows from nuclearity of V. For the first equality, tensor-Hom adjunc-
tion gives
Hom (V, W) = Hom,(V ®k, W', K),

and the results follows immediately from the description of the tensor product of two Banach spaces
(Lemma 13.1.10) and duality between Banach and Smith spaces (Lemma 13.1.7). O

We finish this section with an elementary lemma that will be needed later.

Lemma 13.1.15.

1. Let V be a solid K-vector space such that the maximal quasi-separated quotient V¥° is zero.
Then Hom(V, K) = 0.

2. A map of Banach spaces V. — V' is injective (resp. with dense image) if and only if its dual
V'V — VY has dense image (resp. is injective).

Proof. Let S be a extremally disconnected set, then
Hom, (V, K)(S) = Homg(V ® Ka[S ], K) = Homg(V, Cont(S, K)).
But Cont(S, K) is a Banach space. Then, by adjunction (Proposition 12.0.2), we get
Hom, (V, K)(S) = Homg(V (%)0p, Cont(S, K)).
Since V% = 0, the maximal Hausdorfl quotient of V(%) is zero. This implies that
Homg (V()0p, Cont(S, K)) = 0
proving (1).
To prove (2), let f : V — V’ be a map of Banach spaces. Suppose that f has not dense image and

let f(V) c V’ be the closure of its image. Then V’/f(V) is a non zero Banach space and we have a
short exact sequence

0— f(V) >V = V/f(V)—=0

which splits as any Banach space over a local field is orthonormalizable. Taking duals we get a short
exact sequence

0 (V) - VY = F(V) - 0.

Since f¥ : V'Y — VY factors through WV, the map f" is not injective. Conversely, suppose that
the map f" is not injective, then its kernel ker f is a closed subspace of V' which is a Smith space
by Proposition 13.1.6. Since the quotient V’V/ker(f") is also a Smith space, there is a retraction
r: V"V — ker(f"). Taking duals one sees that the composition V — V' — ker(f")" is zero and that
the last map is surjective (because of r), this implies that f has not dense image.

Finally, suppose that f : V — V' is injective. If f¥ : V'Y — V" does not have dense image,
f(V’V) c VY is a closed Smith subspace and its quotient V¥ / f(V’V) is a non zero Smith space. Taking
duals we get a short exact sequence

0= (VY/FVT)Y = V = FV% = 0.
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But f : V — V’ factors through f (V’V)V, this is a contradiction with the injectivity of f. Conversely,
Suppose that f¥ : V'Y — VY has dense image, consider the quotient

0>V >V -50-0
Taking duals one obtains an exact sequence
0 — Hom,(Q,K) » V - V.

But part (1) implies that Hom (Q, K) = 0, proving that f is injective. O

13.2. Quasi-separated solid K-vector spaces

We shall use the following results throughout the text without explicit mention. They are due to
Clausen and Scholze, and explained to us by Guido Bosco in the study group of La Tourette.

Proposition 13.2.1 ( [CS]). Let V be a solid K-vector space. The following are equivalent,
1. V is quasi-separated.
2. V is equal to the filtered colimit of its Smith subspaces.

Proof. Let V be a quasi-separated Kg-vector space, let Wi, W, be Smith subspaces of V. As V is
quasi-separated, W; N W, is a closed Smith subspace of Wy, and the sum W; + W, C V is isomorphic
to (W, @ W,)/W; N W,. This shows that the Smith subspaces of V form a direct system, let V|, denote
their colimit. We claim that V/V, = 0, let W’ be a Smith space and f : W — V/V; a map of solid
Ka-vector spaces. As W’ is projective, there is a lift f* : W — V. But ker f’ ¢ W’ is a closed Smith
subspace since V is quasi-separated. This implies that f” factors through V|, and that f = 0. Since
the Smith spaces form a family of compact projective generators of Kg-vector spaces, one must have
V/Vy = 0 proving (1) = (2).

Conversely, let V = li_r)niel Vi be a vector space written as a filtered colimit of Smith spaces by
injective transition maps. Let S, S, be two profinite sets and f; : §; — V be two maps for j = 1,2.
As the §; are profinite, there exists i € I such that f; factors through V; for j = 1,2. Then, as the map
V; — V is injective, one has

S1XyS2=81 Xy, 5,.

The implication (2) = (1) follows as a Smith space is quasi-separated. O

Lemma 13.2.2 ( [CS]). A quasi-separated K-solid space is flat. In other words, if V is a quasi-
separated Kgq-vector space, then — ®g, V = — ®§(_ V.

Proof. Let V be a quasi-separated Kg-vector space. Since filtered colimits are exact in the category
of condensed abelian groups, and the solid tensor product commutes with colimits, by Proposition
13.2.1 it is enough to prove the lemma for V =[], OK[%] a Smith space. Let W € Solid(K). We want
to show that V ®I,;_ W is concentrated in degree zero. As the Smith spaces are compact projective
generators, W can be written as a quotient 0 - W’ — W' — W — 0 where W’ is a direct sum of
Smith spaces. Then we are reduced to showing that 0 — W”®g, V — W’ ®k, V is injective. Since W”
is quasi-separated, by Proposition 13.2.1, it can be written as filtered colimit of its Smith subspaces.
Therefore, by compacity of Smith spaces, the arrow W” — W’ is a filtered colimit of injections of
Smith spaces. It is hence enough to show that if [T, OK[%] - [1,, OK[%] 1s an injective map, then

1 1
l_[ Okl[=]1®k, V — 1—[ Okl=1®«, V
7 p - p
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is injective. This follows from the tensor product of two Smith Spaces (Proposition 13.1.9)
1 1 1
(| [oxl=Dex (| [oxl=D =] | OxI-1.
1 P J p IxJ p

This finishes the proof. O

13.3. Fréchet and LS spaces

Our next goal is to extend the duality between Banach and Smith spaces to a larger class of solid
K-vector spaces. We need a definition

Definition 13.3.1.

1. A solid Fréchet space (or simply a Fréchet space) is a solid K-vector space which can be written
as a countable cofiltered limit of Banach spaces.

2. A solid LS (resp. LB, resp. LF) space is a solid K-vector space which can be written as a
countable filtered colimit of Smith (resp. Banach, resp. Fréchet) spaces with injective transition
maps.

Lemma 13.3.2.

1. The functor V. V(*)p induces an equivalence of categories between solid and classical
Fréchet spaces and V = V(%) op.

2. An LS space is quasi-separated. Conversely, a quasi-separated Kg-vector space W is an LS
space if and only if it is countably compactly generated, i.e. for every surjection @ie] P,->W
by direct sums of Smith spaces, there is a countable index subset Iy C I such that P., P; > W
is surjective.

i€ly

Proof. Part (1) follows from the fact that a classical Fréchet space is complete for a countable family
of seminorms (i.e. it can be written as a countable cofiltered limit of Banach spaces), Proposition
12.0.2 (1), and Proposition 13.1.3. For part (2), the fact that an LS space is quasi-separated fol-
lows from Proposition 13.2.1. Let W be quasi-separated Kg-vector space. Assume it is countably
compactly generated. Write W = li_n)lw/cw W’ as a the colimit of its Smith subspaces. As W is quasi-
separated, the sum of two Smith subspaces is Smith, so the colimit is filtered. By hypothesis, there

are countably many W’ such that W = li_r)nseN W;. Moreover, we can assume that Wy ¢ W, C ---.
This proves that W is an LS space. Conversely, let W be an LS space and let @i g Pi — Whbea
surjective map with P; Smith. The image P; of P; in W is a Smith space since W is quasi-separated,
hence W = 3, P!. Thus, without loss of generality we can assume that li_r)niel P! is filtered and equal to
W.Let W = limsE W, be a presentation as a countable colimit of Smith spaces by injective transition
maps. By compactness of the Smith spaces, for all s there exists i; such that M, C P; C M. We can

assume that P; C P; forall s € N. Thus, D, Pi, = W is surjective, this finishes the lemma. O

The following lemma says that we can always choose a presentation of a Fréchet spaces as an
inverse limit of Banach spaces with dense transition maps.

Lemma 13.3.3. Let V be a solid Fréchet space, then we can write V = lim __V, with V,, Banach

spaces such that V(x)p, — V,(*)op has dense image for all n € N. Convenifsely, let {V,},eny be a
cofiltered limit of Banach spaces such that V,.1(*)p — Va(*)wop has dense image, and let V = l&n vV,
be its inverse limit. Then V(x)p — V,(*)op has dense image for all n € N.
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Proof. LetV = li;nneN V. be a presentation of the Fréchet space as an inverse limit of Banach spaces.
Changing V, by the completion of the image of V, we obtain a desired presentation with V(%) —
Va(*)op of dense image. Conversely, let {V,},an be an inverse system of Banach spaces with maps
V.e1 — V, of dense image, let V = Elnn V. be a Fréchet space, we want to show that the image of
V(#)op = Va(*)iop is dense for all n € N. Fix ny € N, let w € V,,j(*)op and 1 > € > 0. Let | - |, denote
the norm of V,,(*)p, Without loss of generality we assume that |-|, < [-|,+;. By density of the transition
maps ¢! : Vis1(5)iop = Via($)iop, there exists v, 41 € V,p1(*)iop such that |¢"°+l(vn0+1) -w| < e. By
induction, for all n > ng + 1 we can find v, € V,(*),p such that |¢”“(vn+1 —v)| <€ Letn>ny+ 1
be fixed and let k > 0, then by construction the sequence {¢”+k(vn+k)} converges in V,(*),p to an
element v,. Moreover, it is immediate to check that ¢ﬁ+‘(v,’1 +1) = vasothat V' = (v;) € V(x)p, and
|¢>”°+1(v,’10 .1 — W)| < e. This proves the lemma. o

13.3.1. Properties of Fréchet spaces

We now present some basic properties of Fréchet spaces, most of the results in the context of con-
densed mathematics are due to Clausen and Scholze [CS].

Lemma 13.3.4 (Topological Mittag-Leffler [CS]). Let V = Eln V., be Fréchet space written as an
inverse limit of Banach spaces with dense transition maps. Then

R/1limV, =0
(—

n

forall j > 0. In particular, V = RHom (V", K).
Proof. See [ , Lemma A.18]. O

Lemma 13.3.5 ([CS]). Let (V)),en and (W,) e be countable families of Banach spaces.

([ [k (] [wn=]]viexw

2. More generally, if V = gn V,and W = lln W,, are Fréchet spaces written as inverse limits
n m
of Banach spaces by dense transition maps, one has

1. We have

Ve W= lim V, @k, Wi.

n,m

Proof. Property (AB6) of Theorem 12.0.4 and Proposition 13.2.1 imply that products of quasi-separated
solid K-vector spaces are quasi-separated. Then, by Lemma 13.2.2, all the derived tensor products
in the statements are already concentrated in degree 0. By Lemma 13.3.4 we have a short exact
sequences

O—>liLnVn—>nVn—>l—[Vn—>O

O—>li£1Wm—>l_[Wm—>l_[Wm—>O.

m

Then (2) follows from (1) by taking the tensor product of the above sequences.
For (1), suppose that the statement is true for all V,, and W, posseding countable orthonormal basis.

Let V, = EBIKand W, = EBJ K for all n,m € N. We write V, = lim @I,K and W,

’
I)l n
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li_r)nj/ - EB ;K with I} and J;, running among all the countable subsets of /, and J,, respectively.

Then
( [vo e |ww

o 85,100 et 85,0

n I,cl, m  J,Clpy

lim [1—[(@ K)l &, ]—[(@ Kl

Y(n, m)GNXN n
I xJ;, clyxJy

- h—n>l n(@l,ng,’nl()

Y(n,m)eNxXN n,m
I xJ;, clyxJy

J——

- l_l( h—n>1 @I,QXJ,’nK)

nm I xJ,ClyXJy,

= [ ]vaex W)

n,m

Hence, we are left to prove (1) for W,, =V, = @NI( for all n,m € N. Let .¥ be the filtered set of
functions f : N — Z such that f(k) — +o0 as k — +o0. For all n,m € N we can write

V,= @ K = lim 1_[0 w/n®

f,,ej’ keN

W, = @NK = lim [Toxase.

gmeS sEN

Therefore we get

[ Jvoex | |ww

[ lim 1_“—[0 o V) o, [ lim 1—“—10 )]

Vn, f,,e}” n Vm, gmGV m s

[ hm l_[(l_[() @ ®y x (HO @& )],

V(n m) n,m
fll gmey

Given f,g € . wedefine hy, : N XN — Z as hy4(k, s) = f(k) + g(s). Let .7 be the set of functions
h : N XN — Z such that h(n,m) — oo as min{n, m} — oco. Then the family of functions {/,s} (e 18
cofinal in .’ (see the proof of Lemma 13.1.10). One obtains

(n Vi) ®x, (n W,.) h_n>1 n n O ®)

Y(n,m) nm ks
hn,mey !

— [ ] 3 hn.m(kss)
= [ ]t tim [ ]oxa’=®

nm hy e ks

—

= K
k,s
n,m

= [ v, ek W),

n,m

this finishes the proof. O

Proposition 13.3.6 ( [CS]). A Fréchet space is a nuclear Kgq-vector space.
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Proof. LetV = @ V., be a Fréchet space written as an inverse limit of Banach spaces with dense
transition maps. Let § be an extremally disconnected set, then by Corollary 13.1.13

Hom, (Ka[S].V)

lim Hom,_(Ka[S1, V)

= lim(Hom, (Ka[S1,K) &, V)

= Ho_mK_(K.[S], K) ®k, (lln V)

= Hom, (KalS1,K)®x, V,
this finishes the proof. O
The following two lemmas describe the maps between LF, Fréchet and Banach spaces

Lemma 13.3.7. Let V = gn V., be a Fréchet space written as a countable cofiltered limit of Banach
spaces with projection maps V. — 'V, of dense image. Let W be a Banach space. Then any con-

tinuous linear map f : V. — W factors through some V,. More generally, we have Hom, (V, W) =
li_r)n Hom , (V,,, W).

Proof. First, evaluating Hom(V, W) at an extremally disconnected set, using adjunction and the nu-
clearity of W, one reduces to showing that Homg(V, W) = h_r)nn Homg(V,, W). Since all the spaces
involved come from compactly generated topological K-vector spaces, we might assume that V and
W are classical Fréchet and Banach spaces respectively. Let | - |, be the seminorm of V given by V,,
without loss of generality we may assume that | - |, < |- |,+;. We denote the norm of W by || - ||. The

map f factors through V,, if and only if it is continuous with respect to the seminorm | - |,. Suppose
that f does not factor through any n, then there exist sequences of vectors (v,,), in V for all n such
that

Wl —— 0 and [|[f (vl > 1 Vm.

Moreover, we may assume that [v,,,|, < % Then the sequence (v,,,), converges to O in V but || f(v,,,)|| =
1 for all n, which is a contradiction with the continuity of f. O

m

Lemma 13.3.8. Let W = h_n)l W,and W = h_n)l W' be LF spaces presented as a filtered colimit of
Fréchet spaces by injective transition maps. Then

Hom (W, W) = llnh_rgHomK(Wn, W).

n m

Proof. First observe that formally

Hom (W, W’) = lln Hom  (W,, W),

n

so we can assume that W = W, is a Fréchet space. Let S be an extremally disconnected set, then by
nuclearity of W’

Hom (W, h_n} W )(S) = Homg(W ®k K[S], h_n} W) = Homg(W, h_n)q W, ®k, Cont(S, K)),
which shows that one can reduce to proving

Hom(W,lim W) ) = lim Hom(W, W, ).
— —

m m

So let
W — lim W),
—

m
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be a map of solid K-vector spaces. Evaluating at an extremally disconnected set S, we get a map

£ W(S) = lim Wy(S)

m

between a (classical) Fréchet space and a (classical) LF space. We claim that this map factors through
some m. Indeed, this follows from [ , Corollary 8.9], but we also give a direct argument. Assume
not. Then there exists a sequence (x,,),>1 1n W(S) such that f(x,,) ¢ W, (S). Multiplying x,, by big
powers of p, we can assume x,, — 0 as m — +oo. This translates into the existence of a map

N U {oo} = lim W;,(S), m > f(m), 00 0

m

from the profinite set N U {co} into an LF-space. Since N U {oo} is profinite, this maps must factorise
through some m, which is a contradiction. This shows that, for each extremally disconnected set S,
there exists a smallest n(S) € N such that the map

W(S) — lim W;,(S)

factors through W(§) — W, (S) — li)nm W, (S). We conclude the proof by showing that the
n(S)’s are uniformly bounded. We argue again by contradiction. Assume that there are extremally
dlsconnected sets S1,55,...such that n(S;) —» +oc0asi — +co. Let S = [];S;, whichisa proﬁmte
set. Let S be an extremally disconnected set surjecting to S. Let i € N be such that n(S;) > n(S) and
letS; — S be a section of the surjection S —>S — S;. Then the map W(S;) — hm W’ »(S;) factors
through

W(S:) — W) = W < (S) > W - (S)),

n(8) n(s)

which is a contradiction. This finishes the proof.

13.3.2. Spaces of compact type

Before proving the duality between Fréchet and LS spaces let us recall the definition of (classical)
nuclear Fréchet space and a LB space of compact type. Due to the fact that Fréchet spaces are always
nuclear in the world of solid K-vector spaces (Proposition 13.3.6), we will say that a classical nuclear
Fréchet space is a Fréchet space of compact type. We recall the definition of trace class maps and
compact maps for Kg-vector spaces.

Definition 13.3.9 ( | , Definition 13.11]).

1. A trace class map of Smith spaces is a K-linear map f : Q; — Q; such that there is a map

1
g : K — Q) ®k Q5 such that f is the composition Q, =, 0:1®0/®0, = 0,
2. A map of Banach spaces is compact if its dual is a trace class map.
Definition 13.3.10.

1. A Fréchet space V is of compact type if it has a presentation V = h;n V., as an inverse limit of
n
Banach spaces where the maps V,,; — V, are compact.

2. A LS space is of compact type if it admits a presentation W = h_r)n . W, by injective trace class
maps of Smith spaces.
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3. Let W be a Smith space with lattice W ¢ W. We denote by W2 the Banach space whose
underlying space is
1
W = im(WO()ais/ @) —]-
< ()

In other words, W2 is the Banach space structure attached to the underlying set W(x) with unit
ball Wo(x). Note that there is a natural injective map with dense image W2 — W.

4. Let V be a Banach space, we denote V5 = (V¥#)" and call this space the “Smith completion of
V. Note that there is an injective map with dense image V — V5.

The following two results will be very useful later when studying spaces of compact type. The
reader can compare them to the ideas appearing in [ , §16] (see, e.g., the discussion after [ ,
Proposition 16.5]).

Lemma 13.3.11.

1. A map of Smith spaces W — W' is trace class if and only if it factors as W — W8 — W,
Dually, a map of Banach spaces V. — V' is of compact type if and only of it can be extended to

VoV SV,
2. Let f : V. — W be amap from a Banach space to a Smith space, then f extends to a commutative
diagram
V—— VS
W8 —— W.

Proof. (1) The factorization for a morphism of Banach spaces follows from the one of Smith spaces.
Let f : W — W’ be a map of Smith spaces and suppose that it factors through W’2, Then f belongs
to Hom(W, W’8) = WY @k, W' as W’% is Banach. This shows that f if a trace class map. Conversely,
let f: W — W’ be trace class, then there is g : K — WY ® W’ such that f factors as a composition
w 1o, WeWYe®W — W. But taking w-completions of the underlying discrete objects, the map g
factors through K — WY ® W’ so that f factors through W’8 as expected.

(2) Clearly f factors as V. — W? — W. Taking duals we see that f¥ : WY — V" factors as
WY — V¥ — V, taking duals again one gets the factorization f : V — V5 — W. O

Corollary 13.3.12.

1. Let V = lim V, be a Fréchet space of compact type. Then we can write V = @ . VS as

«—n
an inverse limit of Smith spaces with trace class transition maps. Conversely, any such vector
space is a Fréchet space of compact type.

2. LetW = h_n)ln W, be an LS space of compact type, then W = li_r)nn W2 can be written as a filtered
colimit of Banach spaces with injective compact maps. Conversely, a colimit of Banach spaces
by injective compact maps is an LS space of compact type. In particular, being a LB or a LS
space of compact type is equivalent.

13.3.3. Duality

We conclude with the main result of this chapter.

Theorem 13.3.13.
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1. The functor V = Hom,(V, K) induces an antiequivalence between Fréchet and LS spaces such
that Hom,(V, V') = Hom (V"",VY), extending the one between Banach and Smith spaces.
Moreover, V is Fréchet of compact type if and only if V" is an LS space of compact type.

2. Let V=1im V, be a Fréchet space and W,, =lim _ W, an LS space. Then
«—neN —>neN
Hom (W, V) = W' ®x, V and Hom (V, W) = V" @, W.
In particular, if V.and V' are Fréchet spaces (resp. LS spaces) then

(Ve V) =V e V.

Proof. (1) Let V be a Fréchet space and let V = lln V. be a presentation as an inverse limit of

n
Banach spaces with transition maps of dense image. Let S by an extremally disconnected set, we
want to compute

Hom (V, K)(S) = Homg(V ®q,, OkalS1.K) = Homk(yil V., Cont(S, K)).

n

By Lemma 13.3.7 we have

HomK(l(iLn V., Cont(S, K)) = hén Homg(V,, Cont(S, K)) = h_r)n Homg(V, ®0,. OxulS1, K).

n n n

In other words, we have a natural isomorphism

Hom (V,K) = h_r)n /A8

n

By Lemma 13.1.15 (2), the transition maps V,/ — V", are injective, proving that V" is an LS space.
Conversely, let W be an LS space and W = h_r)n W, a presentation as a colimit of Smith spaces

with injective transition maps. Then if follows formally that

_ v
Hom, (W, K) = @Wn.

n

By Lemma 13.1.15 (2) again, the transition maps W' , — W,’ have dense image. It is clear from the
construction that (VY)Y = V and (WY)" = W for V Fréchet and W an LS space. This implies formally
that Homg(V, V') = Homg(V'Y, VV), which gives the antiequivalence between Fréchet and LS spaces.
Finally, by Corollary 13.3.12 and the previous computation, the duality restricts to Fréchet and LS
spaces of compact type.

We now extend the equality of homomorphisms to the internal Hom. Let V and V' be Fréchet
spaces and S an extremally disconnected set. We have

Hom, (V, V')(S) Homg(V ®k, KulS1, V')

= Homg(V, Cont(S, K) ®, V')

= Homg((Cont(S, K) ®, V)", V")
= Homg(V" @k, Ka[S1, V")

= Hom, (V",VY)(S).
The second equality follows from adjunction and nuclearity of V’. The third equality is the duality

between Fréchet and LS spaces. The fourth equality follows from the compatibility of the tensor
product and duality between Fréchet and LS spaces of part (2).
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(2)LetV = m V,and W = h_n)l W,, be a Fréchet and an LS space respectively. We can write

Hom (W,V) = liLnHomK(Wm, V)
= lim W,;; ®K. \%4
(—

= WV ®K. \%

where the first equality is formal, the second equality follows from nuclearity of Fréchet spaces, and
the third equality from the tensor product of Fréchet spaces (Proposition 13.3.5). Dually, we have

Hom (V, W)

HOIDK(V ®[(- WV, K)
= HomK(liLn V, @k, W, K)
= limHom,(V, &, W,.K)
= lim Vr\z/ ®K. Wm

—)

= VvV OKky W,

where the first equality follows from self duality of LS spaces and the tensor-Hom adjunction, the
second equality from the tensor product of Fréchet spaces, the third equality from Lemma 13.3.7,
and the last two equalities from Corollary 13.1.14 and the commutativity between tensor product and
colimits.

O
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Let G be a compact p-adic Lie group. In this section we translate the theory of analytic and locally
analytic representations of G from the classical framework to condensed mathematics. We hope that
this new point of view could simplify some proofs and provide a better understanding of the theory.
Our main sources of inspiration are the works of Lazard [ ], Schneider-Teitelbaum [ , ]
and Emerton [ ].

We begin with the introduction of different algebras of distributions, each one serves to a particular
purpose in the theory. Namely, there are distribution algebras arising from affinoid groups which
appear naturally in the analytification functor of Proposition 12.0.11, distribution algebras which are
localizations of the Iwasawa algebra, and distribution algebras algebras attached to Stein analytic
groups relating the previous two.

Next, we introduce the category of solid G-modules, it is a generalisation of the category of non-
archimedean topological spaces endowed with a continuous action of G (Banach, Fréchet, LB, LF,
)

We continue with the definition of analytic representations for the affinoid and Stein analytic groups
of Definition 14.1.4. We recall how the analytic vectors for a Banach representation are defined, and
how it serves as motivation for the derived analytic vectors of solid G-modules. We prove the main
Theorem 14.3.9 which, roughly speaking, says that being analytic for a Stein analytic group as in
Definition 14.1.4 is the same as being a module over its distribution algebra.

We end with an application to locally analytic representations, reproving a theorem of Schneider-
Teitelbaum describing a duality between locally analytic representations on LB spaces of compact
type, and Fréchet modules of compact type over the algebra of locally analytic distributions, cf.
Proposition 14.4.2. We state a conjectural generalisation to a duality between locally analytic bounded
complexes of LB compact type and bounded Fréchet complexes of compact type endowed with an
action of the algebra of locally analytic distributions.

14.1. Function spaces and distribution algebras

In the following paragraph we define different classes of spaces of functions and distributions that
will be used throughout this text. These are algebras already appearing in the literature ( [ ,
$41, [ , §5]) that we introduce in a way adapted to our interests and purposes.

Let G be a compact p-adic Lie group of dimension d.

Definition 14.1.1. The Iwasawa algebra of G is defined as the solid ring

OxalG] = lim Ok[G/H] € Solid(Ox),

H<G
Ka[G] = OgalGl1/p] = (lim Ok[G/HD[1/p] € Solid(K),
H<G
where H runs over all the open and normal subgroups of G.
Remark 14.1.2. Classically, the Iwasawa algebra is denoted by A(G,Ok) and A(G, K). We decide

to adopt the new notations from the theory of condensed mathematics to best fit our results in this
language.
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Remark 14.1.3. According to the notations of Example 12.0.6, the Iwasawa algebra corresponds pre-
cisely to the evaluation at G of the functor of measures of the analytic rings (O, Ok)a and (K, Ok )a
which, in turn, are commonly denoted by Ok u and Ky respectively.

In order to define the space of locally analytic functions attached to G, we need to work with

coordinates locally around the identity. By [ , Cor. 8.34], there exists an open normal

subgroup G, of G which is a uniform pro-p group '. Such a group can be equipped with a valuation

w and an ordered basis gi,...,8s € Go. By [ , 1II 3.1.3, Proposition], after shrinking G if

necessary, we can assume that w(g;) = ... = w(gy) = wo > 1 is an integer. This basis induces charts
¢:Zi - Gy, (x1,....,x) &' .8

such that ¢ is an homeomorphism between G, and Zi with w(g)f1 S gj’f ) = Wo +minj ;<4 V,(x;), and

such that the map ¢ : Gy X Gy — Gy, (g, h) — gh™', defining the group structure of G, is given by an
analytic function ¢ : Zf, X Zf, - ZZ with coefficients in Z,. By further shrinking G if necessary we
can also assume that conjugation on G, by any element of g € G is given by a family of power series
with bounded coefficients.

Letr = p~* > 0for s € Q, and Dfép(r) C Aép the affinoid polydisc of radius r. If s € Z then Dép(r)

is the affinoid space defined by the algebra Qp(%, .. %), where T, ..., T, are the coordinates of Aép.
We let DY(r) = |,., D) denote the open polydisc of radius .

Definition 14.1.4. We define the following rigid analytic groups

1. Gy = (]Dfép(l), ); the affinoid group defined by the group law ¢ of G,.

2. For any h € Qs, the affinoid groups G, = (]Dép(p‘h), ¥) of radius p~". We also denote G =
G()Gh C Go.

3. For any h € Q5 the Stein groups G+ = U+, Gy and Ggﬁ) = GGy = Uh/>hGéh) .

Example 14.1.5. If G = GL,(Z,), an example of a uniform pro-p-subgroup Gy is

Go = 1 +p'2, p"Z,
0 p"Z, 1 +p"Z,

forn>2if p=2andn > 1if p > 2. Let’s take p > 2 and n = 1. In this case Gy, is the rigid analytic
group

1+D6p(p_h_l) Dl (p—h 1) 1+ph+1D1 (1) ph+lD(lQp(l)
h — D(l@p(p—h—l) 1+D1p(p—h 1) h+lDl (1) 1+ph+1Dé2p(l)

whereas the Stein group G+ 1s equal to

G 1+ph+1®1 (1) thD(lQl,(l)
ht = h+lD1 (1) 1+ph+1]]°)(}2]7(1)

The following lemma says that the rigid spaces of Definition 14.1.4 are indeed rigid analytic groups.

Lemma 14.1.6. The affinoid Gy, is an open normal subgroup of Gy stable by conjugation of G.

Recall that a uniform pro-p group H is a pro-p group which is finitely generated, torsion free and powerful, i.e.,
[H H CHPifp>2or[H H CH"'ifp=2.
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Proof. By simplicity we suppose that 4 € N. The map
Y:GyxGy— Gy : (x,y)F xy!

is defined by a family of power series (Q(X,Y),..., Q4(X, Y)) with integral coefficients satisfying
the group axioms. In particular, one has Q;(0,0) = 0. The inclusion G, — Gy is given by the map

QTy,....Tq) > Q, %, cees %). Thus, the image of % by the multiplication map ¢ is equal to
1 1 X a Yy B
—0: - ayB — h(al+lg-1) [ 22 -
o =5 2, @iXV = ), duop (p”) (ph) '
(@B)#0 (@B)#0

This shows that ¢ restricts to a map G;, X G, — Gy, proving that Gy, is a subgroup of G,. A similar
argument shows that Gy, is normal in G, and that it is stable by the conjugation of elements of G. O

14.1.1. Analytic distributions

Classically, the analytic vectors of Banach representations are defined via the affinoid algebras of the
analytic groups of Definition 14.1.4, see [ , §3]. In order to develop properly this theory for
solid K-vector spaces we shall need to introduce some notation for the algebras of the analytic groups,
as well as for their analytic distributions. Recall once more that we see all complete locally convex
K-vector spaces as solid objects.

Definition 14.1.7.
1. We consider the following spaces of functions

1. C(Gg’),OK) = O*(Ggh)) ®z, Ok; the power bounded analytic functions of the affinoid
group.
i. C (Gf)h), K) = O(Gg’)) ®q, K; the regular functions of the affinoid group.

iii. C(G)",K):=1lim  C(G{’, K); the regular functions of the Stein group.
2. We define the following spaces of distributions
i. D"(Go,O) := Hom,, (C(G{”,O), Ox).
ii. D"(Gy, K) := Hom (C(G", K), K).
iii. DGy, K) := Hom (C(GI", K), K).

Remark 14.1.8. Let h € N, the algebra C (Gg’), K) is the space of functions on G, with values in
K which are analytic of radius p‘h. More precicely, using the coordinates gi,...,8; € Gy, and
identifying G, with Z¢, C (Gréh), K) is the space of functions f : Z;’, — K whose restriction at cosets
X+ phZf, is given by a convergent power series with coefficients in K.

Remark 14.1.9. Observe that, by Theorem 13.3.13, one has C(Gg’),K) = DN(Gy, K)¥ as well as
DGy, K) = ﬁ_n)lh, hD(h’)(Go, K).

Lemma 14.1.10. The solid Ox-module D" (G, Ox) has a natural structure of associative unital
Ok-algebra induced by the multiplication map Gg’) X Gg’) — Gg’). In particular, D"(Gy, K) and
DGy, K) are associative unital Og-algebras.

Proof. The multiplication Gg’) X Gg’) - Gg’) defines a comultiplication map
V : C(Gy’, Ox) = C(Gy’, Ok) ®oy, C(Gy", Ox).

As C(Gg’), Ok) is an orthonormalizable Banach Og-module, taking the dual of V one obtains a map
DGy, Ok) ®oya DM (Go, Ox) > D"(Gy, O) which is easily seen to be the convolution product.
m|
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14.1.2. Localizations of the lwasawa algebra

Recall that we have fixed an open normal subgroup G, which is a uniform pro-p-group with basis
g1, .-,&q of constant valuation wy > 1. Let b; = [g;] — 1 € Okxul[Go](*), one has [ , 84]

OxalGol = | | Okb”

aeN?

where b® = b{' --- b}’ for @ = (i, ..., ) € N

Remark 14.1.11. Taking Mahler expansion of continuous functions on ¢ : Gy = Zf,, an explicit
computation of finite differences shows that the elements b* correspond to the dual basis of the Mahler
basis (z) i.e., b*(f) = ¢, for any continuous function f € Cont(Gy, K) such that ¢*(f) = > ,cpe ca(j).

We now introduce a second family of distribution algebras using the basis (b;)<;<4, these can be
thought of as localizations of the Iwasawa algebra Kg[Gy].

Definition 14.1.12. Let 2 > 0 be rational. We define the condensed rings D) (G, Ok) and D, (Gy, K)
so that, for any extremaly disconnected set S, one has

ph

o D (Go, O)(S) = {Spere aab® 1 sup,flanlp” ™} < 1, a, € Cont(S,O)},

p—/z
o Dyy(Go, K)(S) = {Tpew aab? : sup,ilaglp™ 77} < +o0, a, € Cont(S, K)},

Remark 14.1.13. The condensed module D, (Gy,Ok) is in fact a profinite Ox-module provided

b(h) = % € v,(K)®z Q. Indeed, if b(h) is the valuation of an element of K, we have an isomorphism
of profinite Ox-modules

b] [e3] bd [¢7/]
o0 o2 (2]

aeNd

Remark 14.1.14. The distribution algebras D,)(Gy, K) are variations of the (p-adic completions of
the) rings A™ of [ , §5.2], adapted to the Iwasawa algebra instead of the enveloping algebra of
LieG.

Lemma 14.1.15. The multiplication map of Ka|Go)] extends uniquely to a multiplication map of
D (Go, Ok).

Proof. This follows directly from Proposition 4.2 of [ ]. O

One can describe the analytic distributions of Definition 14.1.7 in terms of the the basis b; of the
Iwasawa algebra.

Proposition 14.1.16. Let S be an extremally disconnected set, then

P Mel=s(@)

DGy, K)(S) = { 3 b - supllaglp™ ) < +oo, a, € Cont(S,K)},

aeNd
where s(@) = Y 1<i<q S(a;) and s(a;) is the sum of the p-adic digits of «;. In particular, one has
_ p~Mat-s@

Z)W)(Go, K)S) = { Z a,b® : suplla.lp” » T} < +oo for some h’ > h, a, € Cont(S,K)}.

aeNd
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Proof. Let ¢ : ZZ — Gy be the chart defined by the basis gy, ..., g;. By a theorem of Amice (c.f. [?,
II1.(1.3.8)]), a continuous function f : Gy — K is h-analytic (i.e. belongs to C(G(h), K)) if and only if

—h _
plal = s@)

V(Ca) - p- 1

whenever @« — +oo, where ¢*f(g) = D e ca(;). After dualizing this gives the claimed result as the
algebra of analytic distributions is attached to its underlying topological space. O

Remark 14.1.17. Using the formula

|| = s(a)

vlal) = =,

one can rewrite the above condition on the valuation of the coeflicients as

sup{laq!| p ™y < oo,

a

p-1
p-1-

where a(h) =
Corollary 14.1.18. There is an isomorphism of solid Og-algebras

() ~ i ,
D (GO,K)—};_H);D(M(GO,K)

Proof. Let h” > h’, then one can write

_p"’,lwl—sm) —ikﬂ _(p_h,_/)—h”)la‘_s((l)
p p-1 =p p-1 p p-1
Since p™" — p™" > 0, we see that (p™" — p™"")|a| - s(ar) = +o0 as |a] — +oo. This implies that for
any i’/ > h’ we have
Dur(Go, K) € D"(Go, K) € Dyry(Go, K).

Taking limits as * — h* and i — h* one obtains the corollary. O

14.1.3. Distribution algebras over G

The algebras we have defined can be extended to the whole compact group G in a obvious way.
Indeed, by Lemma 14.1.6 the spaces D"(Gy, K) and D, (G, K) admit an action of G extending the
inner action of Kg[Gy]. Let us define the distributions

DM(G, K) = KalG] ®k,16 D™ (Go, K),

DG, K) = 1lim D" (G, K)
—
W >h
D (G, K) = KalG] ®k,1601 Di(Go, K),

where in the tensor products we see D) (Go, K) as a left Kg[Gol]-module. They are unital associative
algebras admitting Kg[G] as a dense subspace. Notice that even though the distributions algebras over
G depend on the choice of the open normal subgroup G, C G, the projective systems {D™(G, K)};»0
and {D,)(G, K)},-0 do not. We define the algebra of locally analytic distributions of G as the Fréchet
algebra
DG, K) = lim D")(G, K) = lim D"(G, K).
«— —

h—oo h—o0
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For future reference let us introduce algebras of analytic functions over G. Let & > 0 be a rational
number and Gg‘) the rigid analytic groups of Definition 14.1.4, recall that they are stable under con-

jugation by G. Let G™ be the rigid analytic group given by GG", ie.if si,...,s, are representatives
0
of the cosets G/G then
h) _ (h)
6" =| |saGyp.
i=1
We also define U
| |g®.
W>h

Let C(G",K) = 0(G™) ®q, K be the affinoid algebra of analytic functions of G over K of radius
p", it is immediate to check that D"(G,K) = Hom, (C(G™, K), K). We define C(G", O) and
C(G"", K) in the obvious way.

14.2. Solid G-modules

Let G be a profinite group and Ok 4[G] its Iwasawa algebra over Ok.
Lemma 14.2.1. Let V be a solid Og-module. The following are equivalent.
1. 'V has a structure of Ok u|Gl-module

2. For any extremally disconnected set S there is a functorial Og-linear action

C(S,G)xV(S)— V().

In this case, we say that V is a solid G-module over Og. We denote the category of solid Ok a|G]-
modules by Solid(Ok u[G]) and its derived category by D(Ok u[G]).

Proof. Let V be an Ok g[G]-module and S an extremally disconnected set. There is a natural map
of condensed sets [-] : G — OkalG]. The action of Ok a[G] over V is provided by a linear map
OkulG] ®o,. V — V satisfying the usual axioms. Composing with [-] and evaluating at S we obtain
amap C(S,G) X V(S) — V(S), it is easy to check that this provides a functorial action as in (2).
Conversely, to have such a functorial action is equivalent to having a map of condensed sets G X
V — V making the usual diagrams commutative. By adjunction of the functor X — Z[X], this
provides a linear map Z[G] ®2 V — V. As V is a solid Ox-module it extends uniquely to a map
OkalG] ®o,, V — V which is easily seen to satisfy the obvious diagrams of an Ok e[G]-module. O

Let us extend the definition of the condensed set of “continuous functions” to complexes:

Definition 14.2.2. Let V be a solid Og-module and S a profinite set, we denote by Cont(S, V) the
Ok-module Hom(Z[S],V) = HomDK(OK,.[S],V). More generally, for C € D(Oku), We denote
Cont(S,C) := RHomQK(OK.[S ], C), which is consistent with the previous definition as Ok g[S] is
a projective module.

Proposition 14.2.3. The functor V — Cont(G, V) is exact and factors through a functor Solid(Ok) —
Solid(Ok u[G?)) induced by the left and right regular actions respectively. Moreover, it extends to an
exact functor of derived categories D(Ox.a) — D(Ok a[G*]).

Proof. As G is profinite, Ok 4[G] is a compact projective Ok g-module. This makes the functor
Cont(G, V) exact. Thus, the second statement reduces to the first one. We prove the first statement.
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Let S be an extremally disconnected set, then Cont(G, V)(S) = Cont(G X §,V) = V(G x §). Let us
define a map
Cont(S,GH) x V(Gx S) = V(G X S)

as in (2) of Lemma 14.2.1. Let f = (fi, ) : S = G*and v : G x S — V be objects in Cont(S, G?)
and V(G x §) respectively. We define the product f - v to be the composition

SXG — S XG >V
(5,8) > (5, fi(s) '8 fa(5)) > V(s, fi(s) " g fo(s)).

It is immediate so check that this endows Cont(G, V) with a action of G* which is the left and right
regular action on the first and second component respectively. O

Remark 14.2.4. 1f we suppose in addition that V is a Ok g[G]-module, then Cont(G, V) is naturally
a Ok a[G’]-module. Namely, for S be an extremally disconnected set, fi, f>, f3 € Cont(S,G) and
v € V(G x S), we have the action

[(fi, oo 5) - V1(8s 8) = f(V(fi(8) "' gfo(5), ).

This action induces an exact functor of derived categories D(Ox a[G]) — D(Ox a[G>]).

—
Definition 14.2.5. Let V be a solid G" = G X - - - X G-representation over Ok. Given I C {1,2,...,n}
we denote by *; the diagonal action of G on V induced by the embedding ¢; : G — G" in the
components of /. We denote by V,, the module V endowed with the action x,. If I = 0 we write
Vo := Vj for the Ok g-module V endowed with the trivial action of G.

The following proposition basically says that any action on a solid module is continuous (compare
it with [ , Definition 3.2.8]).

Proposition 14.2.6. Let C be an object in D(Ok u|G]). Then there is a natural quasi-isomorphism of
Ok .ulG]-modules
RHom,, (O, Cont(G, C),,,) > C, (14.2.1)

where the action of Ok u|G] in the left-hand-side is via the x,-action. The inverse of this map is called
the orbit map of C.

Proof. First, we claim that there exists a natural quasi-isomorphism Cont(G, C),,, = Cont(G, C),,
for C € D(Ok a[G]). Suppose that the previous is true, then we have
RHom,, _;(Ok,Cont(G,C),,;) =~ RHom, . (O, Cont(G,C),,)
= RHomjK’_[G] (O, RHom,, (OkulGl,C)y,)
= RHomoK(OK ®éK,I[G] OK,I [G]7 C)
= RHomjk(OK, C)=C.
To prove the claim, it is enough to define a natural isomorphism Cont(G, V), — Cont(G, V), for
V € Solid(Ok a[G]). Let S be an extremally disconnected set, and take v € V(G x §). Consider the

inverse mapu : G —» G g +— g ! and the multiplication map my : G x V — V. Define ¢y(v) to be
the composition

() :GxS =5 Gx VISV
The application

Uy V(G xS) = V(G xS)
v dy(v)
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induces an isomorphism of solid Ox-modules ¥y : Cont(G, V) — Cont(G, V). It is easy to check that
it transfers the % 3-action to the *;-action and the *,-action to the *; ;-action. This proves the claim
and that the isomorphism (14.2.1) is G-equivariant. O

Remark 14.2.7. The previous proof shows that if V is a Ok g[G]-module arising from a topological
space, the isomorphism V — (Cont(G, V), , )¢ is given by the usual orbit map.

14.3. Analytic representations

Let & > 0 and G™ the rigid analytic group of §14.1 extending the group law of G. We recall that
G™ depends on the choice of an open normal uniform pro-p-subgroup G, € G. To motivate the
forthcoming definitions of analytic vectors let us first recall how this works for Banach spaces, where
we follow [ , 83].

Let V be a K-Banach space endowed with a continuous action of G, the space of V-valued G-
analytic functions is by definition the p-adically complete tensor product C(G", V) := C(G?, K)®xV.
As V and C(G", K) are Banach spaces, the p-adically complete tensor product coincides with the
solid tensor product C(G"®, K) ®, V (Lemma 13.1.10). This space has an action of G* given by the
left and right regular actions of G, and an extra action of G induced by the one of V. Following the
notation of Definition 14.2.5, the G -analytic vectors of V is the Banach space

yO©-an ._ (C@G™, V)*l,s)G- (14.3.1)

There is a natural map V®"~% — V given by evaluating at 1 € G®, and V is G®-analytic if the
previous arrow is an isomorphism.

To generalise the previous construction of analytic vectors to solid Kg[G]-modules we need to
rewrite (14.3.1) in a slightly different way. Consider the affinoid ring (C(G", K), C(G™, O)), it is a
finite product of Tate power series rings in d-variables. In Example 12.0.6 (4) and (5), we saw how
the affinoid ring provides a natural analytic ring that we denote as C(G", K)a. We also denote by
C(G™,Ok)a the analytic ring attached to its subalgebra of power-bounded elements. Now, as V is a
K-Banach vector space, one has

C(@G", V) =C(G",K)®, V=C@G",K)a®, V,

where the last tensor product is the completion functor with respect to the measures of C(G™, K)g,
see Theorem 12.0.7 and Proposition 12.0.11. Hence, we can write the G“‘)—analytic vectors of V in
the form
" _an h
Ve = Hom, (K, (C(G", K)a ®k, V)4,,)-

In order to generalise the construction of analytic vectors we need some basic properties of the
tensor C(G", Ox)u ®0xa —

Proposition 14.3.1. Consider the functor V > C(G™,Ok)a®o,, V for V € Solid(Ox). The following
statements hold.

1. The functor is exact.

2. It induces an exact functor of derived categories D(Og,) — D(OulG?]) given by the left and
right regular actions.

3. There is a functorial map C(G”,Ok)a ®I(3K C — Cont(G, C) for C € D(Og,) compatible with
the left and right regular actions.
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Proof. Exactness follows from Proposition 12.0.11. Indeed, as G™ is a finite disjoint union of poly-
discs one has
C(G",0x)a ®;,, V = RHom,, (D"(G,0x),V). (14.3.2)

But D(G, Ok) is a projective Og-module, this implies that
C(G(h)’ OK)I ®5)K’. V = Hom(‘)K (-Z)(h)(Ga OK)7 V) = C(G(h), OK). ®()K‘- V

1s exact.

To prove (2), it is enough to show that C(G", Ok )a ®o,,. V has natural left and right regular actions
for V € Solid(Ok). Writing V as a quotient P; — Py — V of objects of the form P; = P . [1,, Ok,
we have an exact sequence

C(G, 05)n B0, P1 5> C(GP,01)a 80, Po — C(G™, Ox)a 0, V = 0.

The functor C(G™, Ok)a ®o, — commutes with colimits and, by Equation (14.3.2), it also commutes
with products. Hence
C@",0pmePi=PH | |c@®, ox
i Ui
and these modules are equipped with the natural left and right regular actions of G. Moreover, the
map f is equivariant for these actions. We endow C(G™, Og)a ®o, V with the action induced by the
quotient map. It is easy to check that this action is independent of the presentation of V, and that it is
functorial.
For the last statement, it is enough to construct a functorial equivariant map

C(G™,0k)a ®0, V — Cont(G, V)

for V e Solid(Ok). Recall that by definition Cont(G, V) = HomjK(OK,.[G], V). Similarly as before,
we are reduced to constructing the map for an object of the form P = € , [1, Ok. As both functors
commute with colimits and products, one reduces to treat the case P = Ok, for which we have the
natural inclusion C(G™, Og) — Cont(G, Ok) provided by G ¢ G, which is equivariant for the left
and right regular actions of G. This ends the proof. O

Remark 14.3.2. Tt is clear that if V is a solid G-module then C(G", Ox)u ®0,. V can be endowed with
an action of G°.

Definition 14.3.3. Let 2 > 0
1. Let V € Solid(K4[G]), the space of G™-analytic vectors of V is the solid Kq[G]-module

" —an
Ve = Homy (K, (C(G", K)a ®, V), ;)

where the action of G is induced by the x,-action. Similarly, we define the G""-analytic vectors
of V to be
VGv(/#)—an -= lim VG(h/)—an
= lim )
n>h
2. Given a complex C € D(Kq[G]) we define the derived G"-analytic vectors of C as the complex
in D(Ka[G]) )
CFE"=m = RHom,_ (K. (C(G", K)a®%,"C)s.,.)

where the action of G is induced by the x,-action. Similarly, we define the derived G*"-analytic
vectors of C to be
CRE"=an .= Rlim CRE"on,
H
n>h
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Remark 14.3.4. As C(G", K)q ®, — is exact, C — CRE"~a is the right derived functor of V
v&®=an_Similarly, C — CR®"'~an is the right derived functor of V - V& '~an,
Lemma 14.3.5. Let h > 0 and C € D(Kg[G]). There is a natural morphism of objects in D(Kq[G])
CRG(,‘)—Lm > C.
Proof. Notice that we have a natural map
C(G",K)g ®% C — Cont(G,C)

which commutes with the three actions of G. Taking % 3-invariant one gets the lemma by Proposition
14.2.6. m]

Definition 14.3.6. Let 2 >0

1. A solid Ku[G]-module V is called G™-analytic if the natural map V®"'~** — V is an isomor-
phism. Similarly, it is called G*"-analytic if VE" =" — V is an isomorphism.

2. A complex C € D(Ka[G)) is called derived G™-analytic if the natural map CR¢"- — C
is a quasi-isomorphism. Similarly, it is derived G*"-analytic if the map C*®" '~ — Cisa
quasi-isomorphism.

So far we have introduced two definitions of analytic vectors depending on whether we choose the
radius to be closed or open. It turns out that to actually have a theory in terms of distribution algebras,
we need to work with the Stein analytic groups G*". We will need the following Lemma (to be
proved in §15.3, see Corollary 15.3.5).

Lemma 14.3.7. One has D"(G, K) ® 5, D" (G, K) = D" (G, K).
An immediate consequence of the previous result is the following fully-faithfulness property.

Corollary 14.3.8. The category Solid(D" (G, K)) (resp. D(D" (G, K))) is a full subcategory of
Solid(Ka[G]) (resp. D(Ka[G))). In other words, if V, V' € Solid(D" (G, K)) and C,C’ € D(D""(G, K))
then

HOl’l’lK.[G](V, V) = Homz)(h‘f)((;’]()(v’ V')
RHom,_..(C, )= RHom, 5+, 4(C, ).

Proof. It follows from the usual extension of scalars:

RHom, .(C.C") = RHom,.; (D"(G.K) &, C.C')

= RHOM 0 1 (D"(G, K) 8,16 (D"(G, K) @1, .4 €): C')
= RHom, s, ; 1, (D" (G, K) &) D"(G. K)) &%, 60 GC)
= RHom, 1 (D"(G, K) & C.C)

DING,K)
= RHOmD(;ﬁ)(G’K)(C, C’)-

We can now state the main theorem of this section.

Theorem 14.3.9. Let W € D(Kg) and C € D(Kg|G)). The following holds.
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1. There are a natural isomorphisms of Kg[G|-modules

RHO_mI<.[G] DO"(G, K )®§<_ W, C) = RHom, (W, CRG(h)—an)
RHﬂlK.[G](Z)(h")(G’ K)(X)%{.VV, C) = RHOmK(W CRG("H—M)

The Ka[G]-module structure of the terms inside the RHom, .. in the LHS are the left multipli-
cation on the distribution algebras and the action of C. The G-action of the LHS RHom,_.(—, —)
is induced by the right multiplication on the distribution algebras.

2. The category of G")-analytic representations of G is equal to Solid(D" (G, K)). In other
words, a Ka[Gl-module V is G -analytic if and only if the action of Ka[G] extends to an
action of D'NG, K).

3. Furthermore, a complex C € D(Ka[G)) is derived G -analytic if and only if for all n € Z the
cohomology groups H'(C) are G""-analytic. Equivalently, C is derived G" -analytic if and
only if it belongs to the essential image of D(D""(G, K)).

Proof. (1) Let W € D(Kg) and C € D(Kgx[G]), by Proposition 12.0.11 there is a natural quasi-
isomorphism
RHom, (D"(G, K) ®_ W, C) = RHom (W, C(G", K)a &% C). (14.3.3)

It is easy to verify that the left and right regular actions of the RHS are translated in the left and
right multiplication of the distributions in the LHS. Indeed, one can reduce to W = []; OK[i] and
C = Ka[G] in which case it is straightforward. Then, the x, 3-action in the RHS translates in the
left multiplication on the distributions and the action on C in the LHS. Taking RHom, (K, -) in
(14.3.3) one gets

RHom

Hom,_;,(D"(G, K)®%, W, C) = RHom, (W, C**"~"),

Taking derived inverse limits and using that RHom commutes with colimits in the first factor and
limits in the second factor, one gets

RHO_mK_[G](Z)(h*)(G, K)@é.W, C) = RHomK(W, CRGW*)—an).

(2) Consider the pre-analytic ring (Kq[G], M"") such that for any extremally disconnected S one
has
M8 = D" NG, K) ®x, KalS].
Corollary 14.3.8 implies that it is in fact an analytic ring. Indeed, let P* be a complex of Kg[G]-

modules concentrated in positive homological degrees whose terms are direct sums of M*"[S ] for
{S ;}ie; a family of profinite sets. Let S be a profinite set, then

RHom, . (M®’[S],P*) = RHom, . ((M"[S1, P*)
RHom (Ka[S1, P*).

Moreover, the category of solid (Ka[G], M""))-modules is equal to the category of solid D" (G, K)-
modules. More precisely, by Theorem 12.0.7, a family of compact projective generators of Solid(Ka[G], M*")
is given by M"")(S) for S extremally disconnected, which are naturally D")(G, K)-modules, and any
Ka[G]-linear map between these objects is automatically D")(G, K)-linear again by Corollary 14.3.8
again. Hence, part (1) and Theorem 12.0.7 imply that a Kq[G]-module V is G""-analytic if and only
if it is a D*(G, K)-module.

(3) Theorem 12.0.7 and the same argument as before tells us that a complex C € D(Kg[G])) is
derived G"-analytic if and only if it belongs to the essential image of D(D""(G, K)), if and only if
for all n € Z the module H"(C) is a D""(G, K)-module, finishing the proof. o
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14.4. Locally analytic representations

We finish this section with some applications of Theorem 14.3.9 to the theory of locally analytic
representations. Let us begin with the definition of the locally analytic vectors.

Definition 14.4.1.

1. Let V be a solid Kq[G]-module, the space of locally analytic vectors of V' is the solid Kg[G]-
module
Vla -= lim VG(h)—an = lim VG("+)—an
= lim lim .

h—oo h—oo

We say that V is locally analytic if the natural map V% — V is an isomorphism.

2. Let C € D(Kg[G)), the derived locally analytic vectors of C is the complex

. (h) _ . "ty _
CRa .= hocolim CR%"~“" = hocolim CR®" —,

h—o0 h— o0
We say that C is derived locally analytic if the natural map C® — C is a quasi-isomorphism.

In §14.1.3 we defined the algebra of locally analytic distributions of G as the Fréchet algebra of

compact type
D“(G,K) = lim D"(G,K) = lim D" (G, K).
hovoo hovoo

Since a locally analytic representation V is a (homotopic) colimit of G*")—analytic representations,
Theorem 14.3.9 implies that V is naturally a 9(G, K)-module. Furthermore, this structure is unique
as D(G, K) ®_ 5, D"“(G, K) = D'(G, K), see Corollary 15.3.5. Nevertheless, not all the D'(G, K)-
modules are locally analytic representations of G, e.g. D'(G, K) is not a locally analytic represen-
tation as it cannot be written as a colimit of D”")(G, K)-modules. Indeed, if D'*(G, K) was locally
analytic then 1 € D(G, K) would be analytic for certain group G, this would provide a section
of the map D“(G,K) — DG, K) which is a contradiction as it is never surjective. In the follow-
ing propositions we will try to give some conditions for a D(G, K)-module to be a locally analytic
representation of G.

Proposition 14.4.2. Let V be a Banach Kg|G]-module. The following are equivalent.
1. the Ka[Gl-module structure of V extends to D'(G, K).
2. the Ka[G]-module structure of V" extends to D'(G, K).
3. Vis G"-analytic for some h > 0.

Proof. Formally, (1) and (2) are equivalent as the dual of a solid D'*(G, K) module is naturally a solid
DG, K)-module, (3) implies (1) is clear from the previous discussion. Let us show that (1) implies
(3). Suppose that V is a D'(G, K)-module. Consider the multiplication map my : D'(G, K)®x,V —
V. As V is Banach and D%(G, K )®k,V 1s a Fréchet space, Lemma 13.3.7 implies that there exists
h > 0 such that my factors as

DG, K)ek,V — D"(G, K)ok, V — V.

It is immediate to check that this endows V with an structure of D"’(G, K)-module. By Theorem
14.3.9 V is G¥-analytic for &’ > h. O

Proposition 14.4.3 (Schneider-Teitelbaum). Let V be an LS space of compact type, cf. Definition
13.3.10. The following are equivalent

126



14. Representation Theory

1. the Ka[Gl-module structure of V extends to D'(G, K)-module.
2. the Ka[G]-module structure of V" extends to D'(G, K)-module.
3. Vs a locally analytic representation of G.

Proof. By Theorem 13.3.13, (1) and (2) are equivalent. It is also clear that (3) implies (1). Suppose
that V is a ©(G, K)-module which is an LS space of compact type. The multiplication map my :
DG, K)®k, V — V gives an element of Hom(D"“(G, K)®x, V, V). Let V = h_r)n V,, be a presentation
as a colimit of Smith spaces by injective transition maps, and let VZ be the underlying Banach space
of V, (cf. Definition 13.3.10). As V is of compact type we have V = h_n)l VB. Therefore

Hom (DG, K) ®, V, V)

lim Hom, (D"(G, K) ®, V,/, V)

. la
= lim Hom,(D“(G, K), (VE) @k, V)
= lim C"(G, K) ®, (V?) ®, V

H
_ . . la B\V B
= limlim C*(G, K) ®, (V,))" ®k, V,,,

n m

where the first equality is formal, the second follows from the fact that V is nuclear, and the third
equality follows from Theorem 13.3.13. This shows that given n € N there is m € N such that the
map my : DG, K) ®, VB — V factors through my : DG, K) ®x, VZ — V5. By lemma 13.3.7
there exists 4 > 0 such that my factors as D(G, K)®, VZ — D"(G, K)®k, VE — VE. Equivalently,
there is & > 0 (maybe different) such that my factors as D'(G, K) ®k, V, = D"(G, K)®k, V;, = V.
Let V! be the image of D"(G,K) ®k, V, — V,,, it is a Smith space endowed with an action of
DM (G, K) extending the one of D'(G, K). It is immediate to see that V = lim V. this shows that V

is written as a colimit of D" (G, K)-modules (for &’ > h), which implies that it is a locally analytic
representation of G by Theorem 14.3.9. O

One may wonder whether the previous propositions can be extended to the bounded derived cate-
gory. One way to attack the problem is to use the derived enhancement of Lemma 13.3.7, which we
do not know whether is true or not

Conjecture 1. Let V = lln V.. be a Fréchet space of compact type written as a limit of Banach spaces
n
with compact and dense transition maps, then

RHom, (V, K) = hocolim RHom (V,,, K)

Corollary 14.4.4. Suppose that Conjecture 1 is true. Let V = lln V., be a Fréchet space of compact
type and B a Banach space, then
1. RHom (V, B) = hocolim, RHom . (V,,, B).

2. We have
RHom,(V,B) = V¥ ®x, B.

In particular V" is the derived dual of V.

3. The duality Theorem 13.3.13 gives a derived duality between bounded complexes of Fréchet
spaces of compact type and bounded complexes of LS spaces of compact type.
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4. Let C be a bounded complex of Fréchet spaces of compact type and D a bounded complex of
LS spaces of compact type. Then
L
RHom (C, D) = RHom (C, K) ®_ D

and
RHom (D, C) = RHom, (D, K) ®%, C.

5. Let C and C’ be bounded complexes of Fréchet spaces of compact type. Then
RHom (C, C") = RHom,(C",C").
Proof. Part (1) follows from Conjecture 1 using the fact that Kg[S] ®§(_ KalS’] = KalS X S’] for S
and S’ profinite sets, that
RHom, (V, K)(S) = RHom(V &, Ka[S ], K) = RHom(V, Cont(S, K))

and that any Banach space over K is a direct sumand of a space of the form Cont(S, K) for S a profinite
set.

If V is Fréchet of compact type, we can write V = h;n VS where V5 is the Smith completion of V,,
(cf. Corollary 13.3.12). Then

RHom (V, B)

hocolim RHom (V,,, B)
= hocolim RHomK(V;f ,B)
= hocolim (V3)"®k,B

— : Vv _ Vv
= ll_I)nVn®K.B =V ®[(. B.

Part (3) follows immediately from part (2) and an easy induction via the stupid truncation. For part
(4), notice that if C is a bounded Fréchet complex of compact type, and D is a bounded LS complex
of compact type, then

RHom,(C,D) = RHom (C &g, D", K)
= C'e D
since C ®§(_ DY is a bounded Fréchet compact type complex. Similarly one shows RHom (D, C) =
DY &% C.
Finally, by a devisage using the stupid filtration, (5) is reduced to showing that if V and V’ are
Fréchet spaces of compact type then
RHom,(V, V') = RHom(V"Y, V").
Writing V' = gnn V! one gets, by (1),
RHom, (V, V') = REiLnRHomK(V, V) = RliLn(Vv ®k, V).

Dually, we have that

RHom (V"", V")

R liLnRHomK(Vn’v, 749)
= RIm(V @, V")
H

n

which gives the desired equality. O
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Under the assumption of the previous Conjecture we could improve Propositions 14.4.2 and 14.4.3
to bounded derived complexes:

Proposition 14.4.5. Suppose that Conjecture 1 holds. Let C € D(D'(G, K)a)" be a bounded solid
DG, K)-module. Assume that either

(a) C is quasi-isomorphic to a bounded complex of K-Banach spaces as Kq-complex.
(b) C is quasi-isomorphic to a bounded complex of LS spaces of compact type as Kg-complex.

Then C is a derived locally analytic representation of G. In particular there is a derived duality
between locally analytic complexes quasi-isomorphic to bounded complexes of LS spaces of compact
type, and D'(G, K)-complexes quasi-isomorphic to bounded complexes of Frechét spaces of compact

type.
Proof. We will prove in Corollary 15.3.5 that

DG, K) &5, D'(G, K) = DG, K). (14.4.1)

Let C be a complex in D(D'(G, K)) which is quasi-isomorphic to a bounded complex of Banach
spaces as Kg-complex. By Corollary 14.4.4 (1) we have

RHom, (D"(G, K), C) = hocolim RHom (D")(G, K), ).
Taking Kg[G]-invariants one gets that

RHom,_,(D"(G, K), C) = hocolim RHom,_ (D" (G, K), C).

But (14.4.1) implies that the LHS is equal to C while Theorem 14.3.9 implies that the RHS is equal
to hocolim;, CR®"”. This shows that C is derived locally analytic.

Now suppose that C is quasi-isomorphic to a bounded complex of LS spaces of compact type.
Then from Corollary 14.4.4 (3) and (4) one has

RHom(D"(G, K), C) = C*(G, K) ®_ C = hocolim C(G", K)a &, C.

Taking Ka[G]-invariants one gets again by (14.4.1) that C = CR, i.e. that C is a derived locally
analytic representation of G. O

Remark 14.4.6. In the situation (a) of the previous proposition, one can show in addition that C is
derived G""-analytic for some 2 > 0. Indeed, it is enough to prove that for all n € Z there is h > 0
such that H"(C) is derived G(m—analytic. As C is bounded, we are left to show that if V is a D'*(G, K)-
module which is a quotient of two K-Banach spaces (not necessarily D'*(G, K)-modules), then V is
already a D""(G, K)-module for some i > 0. Let my : D'(G,K) ®k, V — V be the multiplication
map, by Corollary 14.4.4 (4) one has that

RHom, (D'(G, K) ®, V. V) = hocolimRHom (DG, K) &, V. V).

Thus, my factors as my : DG, K) ®, V — V for some h > 0. After taking ' > h one shows
that the map D(G""), K) ®k, V — V is in fact an action of D(G*"), K), proving that V is derived
G""-analytic as desired.
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14.5. Admissible representations

Before writing down the statements of the cohomological comparison results, let us show how the
theory developed till now together with some algebraic facts about the Iwasawa and the distribution
algebras, provide a description of the locally analytic vectors of an admissible representation in terms
of its dual. All results in this sections were already known ( [ 11 D.

Definition 14.5.1. A Banach representation V of G is admissible if its dual is a finite module over the
Iwasawa algebra. Equivalently, if V admits a closed immersion into a finite direct sum of Cont(G, K).

We recall the following important results of the classical Iwasawa and distribution algebras
Theorem 14.5.2 (Lazard, Schneider-Teitelbaum). The following holds

1. The (classical) Iwasawa algebra Kg|G](*) is a coherent algebra.

2. The (classical) distribution algebras DING, K)(x) are flat over Ok u|G(*) algebraically.

3. Let W > h, then D" (G, K)(%) is a flat algebra over DING, K)(x) algebraically.

4. The (classical) locally analytic distribution algebra D'(G, K)(x) is faithfully flat over Kq[G]

algebraically.
Proof. Part (1) is [ , Rem. 4.6], part (2) is [ , Prop. 4.7], part (3) is [ , Theo. 4.9] and
part (4) is [ , Theo. 4.11]. O

Proposition 14.5.3. Let V be a Banach G-representation, then
VRS- — RHom (D"(G, K) ®% 6, V", K).
In particular, if V is admissible then
VRG(h+)—an _ VG(h+)—an _ I{()_mK(Z)(h+)(G, K) ®x.c) V", K).
Furthermore, V' = HO_mK(Z)l“(G, K) ®ki61 VY, K).
Proof. By Theorem 14.3.9 we have

h*)_
yRGT —an - — RHom

Hom, . (D""(G,K),V)
= RHom

Hom,;,(D""(G, K), RHom,(V", K))
= RHom, (D"(G,K) & i, V", K).
Moreover, if V is admissible then V" is a finite Kq[G]-module. By flatness of the distribution algebra
one gets that D")(G, K) ®§(_[G] VY = DG, K) Qk.ic) V" is concentrated in degree 0 (we warn that

the flatness is only algebraic, and that we use the fact that V" is a finite module over the Iwasawa
algebra), this implies the second claim. For the last statement, one gets by Lemma 13.3.7 that

) ) _
Vi = lim V& o

—

h— o0

= lim Hom(D""(G, K) ®k,1 V" K)

h—oo
= Hom (D"“(G, K) ®x,ic1 V", K).
O

Corollary 14.5.4. Let V be an admissible Banach G-representation, then V' C V is a dense subspace.
Proof. As the category of admissible representations is an abelian category, and a closed subrepre-
sentation of an admissible representation is admissible, one is left to prove that the functor V + V%

is non zero. This follows from Proposition 14.5.3 and the fact that D'(G, K) is faithfully flat over
KalG]. O
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In this last chapter we present our main applications to group cohomology. We obtain in particular

1. An isomorphism between the continuous cohomology and the cohomology of the derived lo-
cally analytic vectors for solid representations. This can be seen as a p-adic version of theorems
of P. Blanc and G. D. Mostow for real Lie groups, cf. [ , ].

2. A comparison theorem, for a locally analytic G-representation V, between its continuous and its
locally analytic cohomology. This generalises the classical result of Lazard [ ] for finite
dimensional Q,-representations to arbitrary solid K-vector spaces.

3. A comparison theorem between locally analytic cohomology and Lie algebra cohomology. This

recovers and generalises a result of Tamme [ ] (cf. also [ ]and [ 1), which in
turns was a generalisation of the other main result of Lazard for finite dimensional representa-
tions.

The proof of (1) is an immediate consequence of our main Theorem 14.3.9 and a result of Kohlhaase
(Theorem 15.3.2).

The key input for the comparison result in (2) is the existence of a finite free resolution of the trivial
representation, as a module over the Iwasawa algebra of a small neighbourhood of 1 in G. This is an
application of a lemma of Serre used by Lazard in [ , V Def. 2.2.2]. We shall also need a version
of the lemma proved by Koohlhase for distribution algebras, cf. [ , Theo. 4.4]. Once one has
this lemma at hand, the proof of (2) is rather formal using the machinery developed throughout this
text.

Finally, to show (3) we follow the proof of Tamme constructing a resolution of the trivial repre-
sentation in terms of the de Rham complex of the analytic groups. Then, we apply the same formal
computation as before.

15.1. Continuous, analytic and locally analytic cohomology

In this section we define different cohomology groups, they correspond to continuous, analytic and lo-
cally analytic cohomology in the literature. Indeed, using the Bar resolutions and Proposition 12.0.11,
one verifies that whenever V is a solid representation coming from a “classical space” (i.e. a Banach,
Fréchet, LB or LF space) our definitions coincide with the usual ones.

In the following we will use the conventions of Section 14.1. In particular, we fix a compact
p-adic Lie group G and an open normal uniform pro-p-group Gy C G, we denote the h-analytic
neighbourhood of G as G, and define its open A-analytic neighbourhood as G*" = ., G".
Recall from Lemma 14.2.1 that a solid Ox-module V is an Ok-linear G-representation if and only if it
is a module over the Iwasawa algebra Ok o[G]. If V is in addition a G*"-analytic representation, by
the main Theorem 14.3.9, V is naturally equipped with a D" (G, K)-module structure.

Definition 15.1.1.
1. Let C € D(OkalG]). We define the continuous group cohomology of C as RHomjK_[G](OK, O).

2. Let C € D(OkulG)) be a derived G""-analytic representation. We define the G -analytic
cohomology of C as RHom .+, G. K)(K, O).
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3. Let C € D(OkulG]) be a derived locally analytic representation. We define the locally analytic
cohomology of C as hocolimRHom ) ; 1 (K, C).

h—c0

15.2. Comparison results

Next we state the main theorems of this section, which will be proved in §15.4.

Theorem 15.2.1. Let C € D(Kg[G)), then

RHom, ..(K,C) = RHom, .(K,C").

Remark 15.2.2. More concretely, we will show that

)—an

RHom, .. (K.C) = RHom. .. (K,C*"

——Ka[G]

KalG] )
for h >> 0.

Theorem 15.2.3 (Continuous vs. analytic vs. Lie algebra cohomology). Let C € D(Kgl[G]) be a
derived G")-analytic representation. Then

RHom, .. (K, C) = RHom ;s (K, C) = (RHom,, (K, C))°.

Remark 15.2.4. The RHS term of the equation above means the following: if C is a derived G*"-
analytic complex, then there is an open normal subgroup H C G such that

RHomU(g)(K, C) = RHomK_[H](K, 0),

and the group G/H acts on the previous cohomology complex. As we are working in characteristic
0 and G/H is a finite group, taking invariants in the category of solid K[G/H]-modules is exact and
one can form the complex

G ._ G/H
RHom,, (K, C)° := RHom, (K, C)/".

15.3. Key lemmas

In the following we will work with complexes with equal terms but different differential maps. To
make explicit the differentials we use the following notation: let C be a (homological) complex of
Ok a-modules with i-th term C; and i-th differential d; : C; — C;_;, we note

C=[—>Ciu>C>Cy—--d]

15.3.1. lwasawa and distribution algebras

The following result is the main input for our calculations.

Theorem 15.3.1 (Lazard-Serre). Let Gy a uniform pro-p group of dimension d. Then there exists a
projective resolution of the trivial module Z, of the form

P:=[0— Z,,,.[GO](Z) e s Zp,I[GO](i) NN Zp,l[GO](g);at]-
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Proof. We briefly sketch how the complex P is constructed from [ , Définition 2.2.2.1, Lemme
2.1.1]. Let gi,...,84 € Go be a basis of the group and b; = [g;] — 1 € Z,a[Gol(*). The valu-
ation of Gy defines a filtration in Z, o[Gol(*) whose graded algebra gr*(Z, u[Gol(*)) is isomorphic
to Fp[r] [by,...,by), where F[x] = gr*(Z,) is the graduation of Z, for the filtration induced by (p).
Then, the Koszul complex of F[p] [El, el Ed] with respect to the regular sequence (51, e Ed) can be
lifted by approximations to the complex P of the theorem. Furthermore, the proof also lifts a chain
homotopy 3, between the identity and the augmentation map € : K[by, ..., bs] — F,[x], to a chain
homotopy s, between the identity and the augmentation map € : Z, u[Go] — Z,,. O

Theorem 15.3.2 (Kohlhaase). Let Gy a uniform pro-p group of dimension d and h > 0. Then

Ok ®ék,-[Go] DGy, K) = K.

More precisely, the differentials «; : OK,.[GO](?) — OK,.[GO](ifl) of the resolution given by Theorem
15.3.1 extend to maps «; : Dy)(Go, K)(?) — Dauy(Go, K)(fiil), inducing a resolution of the trivial
module K of the form

Py := [0 = Dyy(Go, K)@ — -+ > D(h)(GO,K)({il) NN Z)(h)(Go,K)(g);a.].

Proof. This is essentially [ , Theorem 4.4]. Let gy, ..., 84 € Gy be a basis and b; € Z, u[Go](*).
The idea of the proof is to show that the differentials @, and the chain homotopy s, of Theorem
15.3.1 are continuous with respect to the norms |}, a,b?|, = sup, lag|r' for £ < r < 1. Thus, the
differentials @, and the chain homotopy s. extend to the weak completion of these norms (i.e. the
completion with respect to a radius r seen as a subspace in the completion of a slightly bigger radius
r < r" < 1). Note that the distribution algebras constructed in this way are precisely the algebras
Dy(Go, K) of Definition 14.1.12. m]

Remark 15.3.3. By definition DG, K) = KalG] ®k,1651 Diny(Go, K). Therefore Dy (G, K) Bk, 16
K = Dy (G, K) ®k,16,1 K = K, as K is of characteristic 0. This implies that

D (G, K) &%, 161 Din(G. K) = KalG1 &% 6,1 (Diny(Go, K) &%, 161 Din(Go, K)).
With the help of the previous theorem we can compute the following derived tensor product

Proposition 15.3.4. We have
DG, K) ®§_[G] DG, K) = Dy (G, K).

Proof. First, we reduce to the case when G is a uniform pro-p-group by Remark 15.3.3. By Theorem
15.3.1 we can write
[0 - Ka[G] = -+ = Kal[G]! = KalGl;a] ~ K.

Tensoring with D, (G, K) over K we get
[0 = KalG1®k Diy(G, K) = - - KalG1’ @k Diy(G, K) = KalG1®k Diiy(G, K); @@ 1] = Dy (G, K).

The quasi-isomorphism above is of Kg[G]-modules for the diagonal action of G in the terms of the
complex.

Let ¢ : Kq[G] — Ka[G] be the antipode, i.e. the map induced by the inverse of the group, and
denote in the same way its extension to the distribution algebra D, (G, K). Consider the composition

(1ol 1®m

KalG] ®k Diy(G, K) —— Ku[G] @k KualGl ®k Di(G, K) — Ka[G] @k Diy(G, K),
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where m is the left multiplicaiton of Kg[G] on the distribution algebra. This map defines a G-
equivariant isomorphism

¢ : KalG] ®k D (G, K) = Ka[G] ®x Diy(G, K)o

where the action of G in the image is left multiplication on Kg[G] and trivial on Dk (G, K)y. Notice
that ¢ can be extended naturally to a G-equivariant isomorphism

¢ Dy (G, K) @k Dy (G, K) = Dy (G, K) @k Dy (G, K)o.
We define the complex
[0 = Ka[G] ®x Dy(G,K)g — -+ = KalG] ®k D1y(G, K)o; ] (15.3.1)

to be the complex whose differentials are given by 8, = ¢ o . o ¢~!. Notice that the maps 3 extend to
respective complex with terms direct sums of D, (G, K) ®x Di)(G, K).

Using this complex one can easily compute the derived tensor product by replacing the right
Dy (G, K) with (15.3.1):

1R

[+ = Du(G, K) ®k,c (K-[G](l'{) ®k Diuy(G,K)p) — -+ ;1 @]
[... = Dun(G, K)D @k Dyy(G, K)o — -+ 18]

[ = Diy(G, K)D @k D(G.K) = -+ sa 1]
Dwy(G, K),

D (G, K) &%, 161 Din(G, K)

1

1R

In the above sequence of isomorphisms, the first quasi-isomorphism follows from the observation that
the action of G on the complex (15.3.1) representing D, (G, K) is trivial on the factor D, (G, K)o.
The second step is trivial. The third one follows by applying ¢~!. The fourth quasi-isomorphism
follows from Theorem 15.3.2. This finishes the proof.

m]

Corollary 15.3.5. We have
DG, K) &% 1 D" (G, K) = D")(G,K)
DG, K) & 16, DG, K) = D“G,K).

Proof. This follows from the previous proposition and the fact that D" (G, K) can be written as a
colimit of distribution algebras D,(G, K), cf. Corollary 14.1.18. The case of DG, K) follows
from the same proof of Proposition 15.3.4 knowing that the complex of Theorem 15.3.2 extends to
DG, K). ]

15.3.2. Enveloping and distribution algebras

Let g = Lie G be the Lie algebra of G and U(g) its enveloping algebra. Let G;, be a rigid analytic
group of Definition 14.1.4) and let G, = G,(Q,) be its rational points. Note that G, C G is an open
compact subgroup. We denote by D(Gy, K) the distribution algebra of G -analytic functions, i.e.
the dual of C(Gy, K). We also denote D(Gy+, K) = h_r)n] . D(Gyy, K), in other words, the distribution

algebra of the rigid analytic group defined by the open unit polydisc G+ = |-, G,». We assume that
G+ (Qp) = G

Proposition 15.3.6 (Tamme). Keep the above notation, and let
CE(g):=[0 - U@ ®Ag— - = U@ ®g — U(g);d]

be the Chevalley-Eilenberg complex resolving the trivial representation K. Then D(Gy,+, K) ®F
K. Moreover, the complex D(Gy+, K) &%
complex of Gy+.

v K=

U CE(9) is the dual of the global sections of the de Rham
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Proof. Let [Q(‘GH ,d] be the de Rham complex of G+, notice that the global sections of Qé@H are equal

to C(Gy+, K) ®k N'(g¥). As Gy« is a open polydisc, the Poincaré lemma holds and the global sections
of the de Rham complex is

d
CGye, K) 5 CGye, K) @ 8" 5 -5 CGye, Ky @k [\ 0¥ =0, (1532)

which is quasi-isomorphic to K via the inclusion of the constant functions K € C(Gy+, K). Itis easy to
show that the dual of (15.3.2) is equal to D(Gy+, K) Q4 CE(g). Finally, the fact that D(Gy+, K) ®yyq)
CE(g) is a projective resolution of K as D(Gy,+, K)-module follows from the exactness of (15.3.2) and
the duality Theorem 13.3.13. m|

Remark 15.3.7. The same proof of Proposition 15.3.4 applies in this situation. In particular, one can

show that D(Gy+, K) ®5(g) D(Gy+, K) = D(Gy+, K) and that Solid(D(Gy+, K)) is a full subcategory of

the category of solid U(g)-modules.

15.4. Proofs

Proof of Theorem 15.2.1. Let C € D(Kg[G]). By Theorem 14.3.9 we have

(h

CRS""-an — pHom (DG, K),C).

————KalG

We now compute
(/m_an +
RHom,_(K,C*®" =) = RHom, ., (K,RHom, .(D""(G,K),C))
= RHom, .(K & D"(G.K).C)
= RHom (K,O),

—Kal[G]

where the second equality is the tensor-Hom adjunction, and the third one follows from Theorem
15.3.2. =

Proof of Theorem 15.2.3. Let C be a derived G”-analytic representation of G. Theorem 14.3.9 says
that C is a D""(G, K)-module. By Theorem 15.3.2 one has

RHom, .(K.C) = RHom, . (D"(G.K) ® i K.C)
= RHom, . (K. C).

On the other hand, since D" (G, K) = Ox a[G] ®0,ai6,] D(Gi+, K), one has
RHOM 5 4 (K, €) = RHom,, (K, ©)Y/%".
By Proposition 15.3.6 we get

_ L
RHomU( g)(K, C) = RHomD(th K)(Z)(Gh+ » K) ®) K, C)
RHomD(thK)(K, O).

Putting all together we obtain
RHom, (K, C) = RHom ., ; (K, C) = RHom,, (K, C)°

as we wanted. O
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15.5. Further Applications

We conclude by stating and showing some formal consequences that might be of interest for applica-
tions.

15.5.1. Shapiro’s lemma and Hochschild-Serre

Let G be a compact p-adic Lie group of dimension d and H a closed subgroup of dimension e. One
can find an open uniform pro-p-group G, C G satisfying the following conditions:

1. Hy := H N Gy is an uniform pro-p-group.

2. There are charts ¢g, : ZZ — Go and ¢y, : Z; — Hj such that ¢g, ot, = ¢g,, where ¢, : ZZ - Zf,
is the inclusion in the last e-components.

Indeed, taking gp C g a small enough lattice as in §5.2 [ ] and by := h N g, one can take
Gy := exp(go) and Hy := exp(by). The profinite groups H, and G allow us to define compatible rigid
analytic neighbourhoods H*" and G*" of H and G respectively, with G"")/H"" is a finite disjoint
union of open polydiscs of dimension d — e, and such that

C(@"), K) = (@™ /H™, K) @k, C(H", K).

In other words, if D”(G/H, K) denotes the dual of C(G”"/H®, K), we have an isomorphism of
right D" (H, K)-modules

DG, K) = D")(G/H, K) @, D" (H,K).
One has a similar description as left D" (H, K)-modules.

Definition 15.5.1. For C € D(Kg[H]) we define the solid induction and coinduction of C from H to
G as
indf(C) := KalG] &% i C.,

coindj(C) := RHom,,.(Ka[G], C),

where the action of G is given by left multiplication on Kg[G] for the induction, and by right multipli-
cation on Kg[G] for the coinduction. If C is derived H”’”—analytic, define the analytic induction and
coinduction as
h-ind§(C) := DG, K) &L 11, 1, C
h-coindf}(C) := RHom, e, (D" (G, K), C).

Proposition 15.5.2. (Shapiro’s lemma) Let C € D(Kgl[G]), C' € D(Kg[H]). Then indg (resp. Coindg )
is the left (resp. right) adjoint of the restriction map D(Kg[G]) — D(Kg[H)). In other words,

RHom, . (indj;(C"),C) = RHom,_,.(C’, C),

RHom,_.(C, coind3;(C")) = RHom,_,..(C, C").

Analogously, if C and C’ are derived G"-analytic and H""-analytic representations, then
RHom, ;. ; 4, (h-ind3(C’), C) = RHom, ;. 1 (C', ©),

RHom, ;. 4, (C, h-coind(C")) = RHOm 1.y 1 (C, C').
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Proof. The first statement follows formally:
RHom,_..(Kua[G] ®§_[H] C.C)H= RHom, . .(C,RHom, . (Ka[G], ) = RHom,_,,.(C, ).
The rest of the statements are proved in a similar way. O

Proposition 15.5.3. (Hochschild-Serre) Let H C G be a normal closed subgroup and C € D(Kg[G])).
Then
RHomK_[G](K, C) = RHomK_[G/H](K, RHomK_[H](K, Q0)).

If C is derived G -analytic, then
RHomD(,m(G’K)(K, C) = RHomD(,m(G/H’K)(K, RHomD(,m(H’K)(K, 0)).
Proof. By Shapiro’s lemma we have
RHom, (K, C) = RHom,_ . (KalG] &, K. C).

——Ka[H]

Applying the functor RHom
usual adjunction one obtains

K_[G/H](K, —) to both sides, using Kg[G] ®§(_[H] K = Ka[G/H] and the

RHomK_[G/H](K, RHomK_[H](K, 0) = RHomK_[G] (K,C),

as desired. The rest of the statements are proved in a similar way. O

15.5.2. Homology and duality
Definition 15.5.4. Let C € D(Kg4[G]). We define the solid group homology of C as

Analogously, if C is derived G”"-analytic, define its G*"-analytic homology as

L
K ® 6.1 C.
We have the following formal duality between homology and cohomology.

Lemma 15.5.5. Let C € D(Ka[G])). Then

RHom, (K &}, C, K) = RHom, . (K, RHom, (C, K)).

If C is G")-analytic, then

RHom (K ®é)<’l+)(G,K) C, K) = RHom -+ ; (K, RHom  (C, K)).

Let K(v) = A%g” denote the determinant of the dual adjoint representation of G. Using Lazard-
Serre’s Theorem 15.3.1 one easily deduces that RHo_mK_[G](K, Kal[G]), endowed with the right mul-
tiplication of G, is a character concentrated in degree —d. Moreover, using the de Rham complex of
G“" one can even prove that

RHom, (K, Ka[G1) = RHom 1 (K, D"(G, K)) = K(x)[~d]. (15.5.1)

The following theorem relates cohomology and homology in a more interesting way.
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Theorem 15.5.6. Let C € D(Kg[G]). Then there is a natural quasi-isomorphism

RHom, (K, C) = K(x)[~d] &, C.

Furthermore, if C is derived G")-analytic, we have

Proof. First observe that, given any G-equivariant map « : Kq[G],, — Ka[G],,, one has a commuta-
tive diagram

RHom,_, (Ka[Gl.,,C) <—— Hom,_.(Ka[Gl.,, KalG]) ®%_ ¢, C

l‘“ l‘ml (15.5.2)

RHOITIK.[G](K. [G]*] ’ C) <~— HomK.[G](KI [G]*l s Kl [G]) ®§(. [G] C7

where the action of G on the RHom’s of the right hand side terms is induced by the x;-action on
Ka[G]. Notice that there is a natural identification of right Kg[G]-modules

RHom,_ . (Ka[G.,, Ka[G]) = Ka[Gl...
d
Recall that, by Theorem 15.3.1, we have a projective resolution K =~ [Kg [G],(;l); a,.]. We obtain

RHom, ..(K,C) = RHom; . ([Ka [G]S:l); @], C)
= [Hom,_,(Ka[Gl.,. KalGD®); s ® 1] ®% ;) C
= RHom,_ . ([Ke [G]&‘l); a.], Ka[G]) &) C
= RHom, (K, Ka[G]) ®§<.[G] C
= K([-d1®f, C.

where the second equality follows by (15.5.2), and the last one by (15.5.1). The statement for G*")-
analytic cohomology is proven in the same way. m|
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Locally analytic completed cohomology of
Shimura varieties and overconvergent
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16. Introduction

Let p be a prime number and C = C, the p-adic completion of an algebraic closure of Q,, we let O¢
denote the ring of integers of C. The main subject of this article is the study of the Hodge-Tate theory
of the proétale cohomology of Shimura varieties. Indeed, we generalize Lue Pan’s description of
the locally analytic completed cohomology of modular curves in terms of a sheaf of locally analytic
functions [ ], to arbitrary Shimura varieties. The most important technical tool is a slightly more
general version of the axiomatic Sen theory a la Berger-Colmez [ ], which can be applied to
locally analytic representations of p-adic Lie groups.

16.1. The main results

The Calegari-Emerton conjecture

As a motivation we recall the definition of Emerton’s completed cohomology for Shimura varieties
and the Calegari-Emerton conjectures. Let G be a reductive group over Q and (G, X) a Shimura
datum, i.e. X is a G(R)-conjugacy class of cocharacters / : Resg(Gm) — Gy satisfying certain
axioms (cf. [ ,2.1.1] or [ , Def. 5.5]). For simplicity, we will suppose that the center of
G has no non-split subtorus which is split over R. Let Ag’p denote the prime-to-p finite adeles of Q
and fix from now on a neat compact open subgroup K” C G(Ag’p ). Given a compact open subgroup
K, c G(Q,) we let Shgrg,(C) denote the level KK, complex analytic Shimura variety

Shirk,(C) = GQ\G(AY) X X)/K"K,

where G(Q) acts diagonally and K”K, only acts on G(Ag). The complex analytic Shimura varieties
have algebraic models over the reflex field E of the Shimura datum, we denote this scheme by Shg, K-
For any inclusion of open compact subgroups K, C K, of G(Q,) we have a finite étale map of
Schemes SthK[g — Shgrg,, if K, is normal in K, then this map is Galois with group K,/ K.

Let Shg»g, ¢ be the base change to C. Emerton’s completed cohomology groups are defined as

H*(K?,Z,) := lim lim Hi(Shkok,c,Z/p*D).

s—o0 K)—1

Fixing an isomorphism of fields C = C, the Artin’s comparison theorem of étale and Betti cohomology
(cf. [ ]) provides an isomorphism of cohomology groups

H (Shgrg,c, 2/ p’Z) = Hy,;(Shgrk,(C), Z/ p°Z),

so that _
H*(K?,Z,) = 221 h_r)n Hy.i(Shirk,(C), Z/ p*Z).
s—00 K),—1

This is Emerton’s original definition of completed cohomology, which can be extended to general
locally symmetric spaces, see [Emec00]. There is also a version with compact supports, which we
denote by H;(K”,Z,). The spaces H;, (K", Z,) are p-adically complete representations of G(Q,)xG,
where Gp is the absolute Galois group of E. Most of the Calegari-Emerton conjecture for Shimura
varieties can be stated as follows:
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Conjecture 2. The completed cohomology groups ﬁ‘(Kp,Zp) and ﬁ;(K”,Z,,) are concentrated in
degrees [0,d], where d is the dimension of the Shimura varieties.

The first major step towards this conjecture was made by Scholze in [ ], where he proves the
vanishing for the compactly supported cohomology of Shimura varieties of Hodge-type. Scholze’s
proof uses the primitive comparison theorem to write down ﬁ;(K”,Z,,)@OC in terms of the ana-
lytic cohomology of the perfectoid Shimura variety, then it uses Grothendieck’s dimension bound for
sheaf cohomology to deduce the vanishing. It turns our that using the perfectoid toroidal compacti-
fications at infinite level of Pilloni-Stroh [ ], and the pro-Kummer-étale theory of Diao-Lan-Liu-
Zhu [ ], the same strategy of Scholze can be applied to prove the vanishing of H *(K?,Z,) for
Shimura varieties of Hodge-type.

The next and most recent advance towards this conjecture is due to Hansen-Johansson [ ].
Restricted to Shimura varieties, they proved the conjecture for groups G such that G admits a
connected Shimura datum of pre-abelian type. A sketch of their proof is the following: first, they
extend Scholze’s theorem of perfectoidness of infinite level Shimura varieties to Shimura varieties of
pre-abelian type. Then, using Scholze’s proof for Hodge type one obtains the vanishing of ﬁ;(K” Lp).
Finally, they perform a careful topological study of the boundary of the Borel-Serre compactification
of the Shimura varieties to obtain the vanishing for H “(K?,Z,).

As it can be noticed, the common strategy is showing that the infinite level Shimura varieties are
perfectoid, then the proétale or pro-Kummer-étale cohomology and the primitive comparison theorem
will do the job for translating the completed cohomologies in terms of the analytic cohomology of a
perfectoid space of cohomological dimension < d = dim Sh. Unfortunately, we still do not know if
any infinite level-at-p Shimura variety is perfectoid. Nonetheless, using the theory of locally analytic
vectors and the admissibility of the completed cohomology proven by Emerton, we can actually prove
a rational version of Conjecture 2.

Theorem 16.1.1. The rational Calegari-Emerton con]ecture holds for any Shimura variety. In other
words, the cohomology groups H’(Kp Qy) = H’(Kp Zp)[ ] and H’(Kp Qy) = H’(Kp Zp)[ | vanish
fori>d.

The strategy of the proof is very similar to the other ones: first, since taking locally analytic vectors
of admissible representations is exact, we can study the locally analytic vectors of the completed
cohomology. In fact, it turns out that ﬁ{c)(K”,Q,,) is a complete Banach space over Q, endowed
with an unitary action of G(Q,) X Gg, whose restriction to G(Q),) is admissible. Then, to prove the
conjecture it is enough to prove that ﬁ('cti“(K”, Q,) is concentrated in degrees [0, d]; here V" means
the space of locally analytic vectors for the action of G(Q,). One can translate the process of taking
locally analytic vectors as taking proétale cohomology over the rigid analytic Shimura variety, of the
local system C*(K,, Q,) of locally analytic functions of K, for any K, ¢ G(Q,) small enough. The
primitive comparison theorem implies that the C-scalar extension of the locally analytic completed
cohomology can be computed as the pro-Kummer-étale cohomology over Shi; K,.C of C*(K,, 0),

where Sh; k,.c 18 some toroidal compactification of the Shimura variety, and 0 is the completed
structural sheaf of the pro-Kummer-étale site. Then, one uses relative Sen theory to compute the
projection of sites of the sheaf C*(K,, % ) from the pro-Kummer-étale to the analytic site; it boils
down that this is concentrated in degree 0. Taking colimits as K, — 1, one gets that the completed
cohomology can be computed as the analytic cohomology of some sheaf over the analytic site of
Shi, ¢, the infinite level Shimura variety. This proves the vanishing since the analytification of Shi;
has cohomological dimension < d.

In order to write down more precise statements let us fix some other notation. Let L/Q,, be a finite
extension for which the group G is split, and let u : G,, — G¢ be the Hodge cocharacter, i.e. the
restriction of 4 : G, X G,, = G to the first component. We fix a conjugate of u which is defined over
L. We let E — L be some fixed map of fields and let Shg» k.. denote the analityfication of the Shimura
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variety to an adic space over Spa(L,Oy), cf. [ ]. By [ ], we have toroidal compactifications
Shig; &, Of Shxrk,, we let Shig; x,,.. D€ its analytification over L. Once we fix a K, we can take toroidal
compactifications for a decreasing sequence --- C K € K}, C K), of compact open subgroups such
that the map Shi; kL Shi; KoL is a finite Kummer-étale map of adic spaces, cf. [ ]. We let
Shgry = &nK 1 Sth k,.L be the infinite level Shimura variety seen as an object in Shg» 1 progt, and

p—>
let Sh; , be the inverse limit of the toroidal compactifications seen as an object in Shi, .. The

KPK,,L,prokét
space Sh‘lg,r,’ ; is then a K,-torsor over Shi;, . ,. We have the following theorem (Theorem 22.3.16)

KPKp,L
Theorem 16.1.2. Let U, be the restriction of the completed sheaf of Shi, K,.C.prokét 10 Shigy can and
let O 51 denote the subsheaf of locally analytic sections for the action of K,. We have an isomorphism’

RUpros(Shir ¢, Q) “®C = RUju(SHE o, 6%).

For K, let ij denote the ideal sheaf of the boundary over Shi, K,.C

and let . = lim Fx
—K,—1 ’

be its colimit seen as a sheaf over Shy, ... Let O denote the smooth vectors of ﬁ’g"h, equivalently,
the colimit of the structural sheaves of the finite level Shimura varieties. We have the following
isomorphism

ch,proét(ShKP,C’ @p)la§c = Rran(S t[?f’,ca ﬁl h®ﬁ‘m eﬂ)
where the completed tensor product is as LB spaces’ see Definition 17.1.6.

Remark 16.1.3. We also prove a version for the dual locally analytic completed cohomology, in that
scenario ﬁ"sah is replaced by a a sheaf of locally analytic distributions Z)’“ over Shy; ., see Theorem
22.3.16.

The overconvergent BGG maps

Next, we explain the main motivation that led us to the theory of Lue Pan of locally analytic vectors,
namely the BGG decompositions. These are nothing but the Hodge-Tate structure of the pro-étale
cohomology of @p—local systems of Shimura varieties. The BGG decompositons in the complex ana-
lytic setting are due to Faltings [ ], and for étale cohomology of Siegel varieties (or PEL Shimura
varieties more generally) to Faltings-Chai [ ]. Faltings’s proof for the étale cohomology depends
on the BGG spectral sequence for the de Rham cohomology and the “étale-de Rham™ comparison
theorem. Nevertheless, he also gave a purely local proof for modular curves in [ ]. It turns out
that an analogous of Faltings’s BGG method for de Rham cohomology also holds for the proétale co-
homology via the myr period map. To illustrate the general statement, let us sketch the main steps of
the BGG decompostion for the modular curves (also know as the Eichler-Shimura decompositions).
Let G = GL, and Y KPK, = Shgr k,.. be the modular curve of level K”K), seen as an adic space
over Q,. We let Xkrk, be its natural compactification ( [ D. Let E > Yy k, be the universal
elliptic curve and E*" — Xk, its extension to a semiabelian scheme. Let wg denote the sheaf of
invariant differentials of E over Yg» k,» we denote in the same way its canonical extension to Xkr K,
(i.e. the sheaf of invariant differentials of E*"). For an integer k we shall denote a)’fE = w%" Let
T,E = hm E[p"] be the Tate module of E seen as a proétale local system of Y KPK,> WE also let
T,E denote its natural extension to the pro-Kummer-étale site of X»g,. Let B C GL, be the Borel

subgroup of upper triangular matrices and N its unipotent radical. Let Xgr = h;nK 1X krk, be
P

'The upper script la in the LHS refers to the derived locally analytic vectors of the complex as explained in §17.2. Its
cohomology groups are just the locally analytic vectors of the completed cohomologies since these are admissible
representations.

%i.e. countable filtered colimits of Banach spaces by injective transition maps.
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Scholze’s perfectoid modular curve and 7y : Xg» — F€ = P! the Hode-Tate period map. The
application mryr is GL,(Q))-equivariant and is defined via the Hodge-Tate exact sequence

0 - wy' ®g, Ox(1) = T,E®z Ox = wp 8, Ox — 0 (16.1.1)

and the universal trivialization of the Tate module « : ZZ = T,E over Xg».

Given V a finite dimensional B-representation, one can define V := B\(GL, XV) a GL,-equivariant
vector bundle over .#¢. Let T C B be the diagonal and (k,k;) : T — G,, a character, we define a
line bundle L(ky, ky) := B\(GL, X(k,, k1)); the convention is made in such a way that if 4 = (ky, k) is
dominant, then I'(#¢, L(«)) = V, is the irreducible representation of GL, of highest weight A.

The sequence (16.1.1) encodes the pullbacks of GL,-equivariant vector bundles of .7#¢ by myr.
Indeed, let St denote the standard representation of GL,, the B-filtration of St is

0—-(1,0) > St—(0,1) = 0. (16.1.2)

Passing to GL,-equivariant sheaves over .#¢, one obtains a short exact sequence of GL,-equivariant
vector bundles
0— L0,1) - St®0z — L(1,0) - 0

whose pullback via myr is (16.1.1).
Let wy be the non trivial element of the Weyl group of GL,, and let C,,, = B\Bw(B be the big
Bruhat cell of .%¢. One has a short exact sequence of B-representations

0>V, - 0(C,)®1— O(C,,))®(wy-4) =0 (16.1.3)

where wy - 4 is the dot action of the Weyl group. The sequence (16.1.3) is nothing but the T-finite
vectors of the algebraic dual of the BGG-resolution of V) with respect to the opposite Borel, see
[ , Prop. 3.4.3] and §21.3 in this document. One of the main results of loc. cit. 1is that, taking
the GL,-equivariant associated sheaves of (16.1.3) and pulling back by myt, one obtains a short exact
sequence

0= V,® Ox = W™ (Cige(k1) = W™+ GC105(ka — 1) - 0

where OCy,, = gr’ OBr 10 1 a period sheaf in the pro-Kummer-étale site, cf. [ ]. Projecting
to the analytic site and taking cohomology one recovers Faltings’s ES decomposition:

H;roét(prKp,C, V) ®C = Hy (Xkrk,.c» w’,‘f”“) ®Ck) @ H;;l(XKnKp,c, w]g_kﬁz) ®C(ky, — 1).

In general, let P, C G be the parabolic subgroup defined by P, = {x € G : lim,_,o Ad(u(?))(x) exists}.
Let M, C P, denote a Levi factor. Let #¢ = P,\G, be the flag variety and myr : ShY,, — F
the Hodge-Tate period map which is deduced from the p-adic Riemman Hilbert correspondence
of [ ], see [ , §4.4.38]. Let T ¢ M, be a maximal torus and for 4 € X*(T) a domi-
nant weight of M, (resp. G) let W, (resp. V) denote the irreducible representation of highest weight
A. Let wy denote the longest element of the Weyl group of G, we write ‘W(A1) for the G-equivariant
vector bundle over .Z#¢ given as

W) = PG X W, ).

The convention is chosen so that I'(#€, W(A)) = V, if A is dominant for G. Given K,, let Tk, :

Shigsc = Shig ¢ be the natural map. Attached to W(A), there is an automorphic vector bundle

M(Q) over ShY, k., Satisfying the relation

Tr(WW) = 7 M) ®7, Osn(wo(D(w)).

We have the following theorem (Theorem 22.2.6)

143



16. Introduction

Theorem 16.1.4. The dual BGG resolution of V,, denoted as BGG(Q)", defines a G-equivariant sheaf
over F whose pullback by myr is of the form

M (=wo() ® OC10g(A(1) = -+ = D) M (=wo(w - ) ® OC15(w - ) —
e = MY wo(wp! - ) ® ECi05(w5 - A)]
where:

1. MW is the set of minimal length representatives of the quotient of Weyl groups Wn, \ W, .

2. wylis the longest element in MW.

. tor tor
Furthermore, let vk, : ShK,,Kp’C’pmkét - SthKP’C’két

projection RVKP,* gves rise a quasz-tsomorphzsm

be the natural projection of sites. Then, the

Rvk,.(Va® 0) = (D) M (=wo(w - 1)) & Cow - A)[—Ew)].

weMw

In particular, projecting to the analytic site and taking global cohomology one obtains the BGG
decomposition

H sl (Shicoi, e, V) @ C = @) Hi"(Shigh e oo MY (=wio(w - 1) @ Cw - Au)). (16.1.4)

weMWw

Remark 16.1.5. The reason for the action —wy in the formulas of the previous theorem is due to the
normalization of the automorphic vector bundles M(x). If instead we would have chosen V, :=
M(=wy(k)) = P,\G x W, as normalization, we would get

il (Shicoi, e, Vo) = €5 Har ™ (Shighy Vi) ® Clw - ),

weMWw

a formula which is closer to Faltings-Chai BGG decomposition [ , Theo. 6.2]. Note that in loc.
cit. , V, corresponds to V(12)"; this is because, for Siegel varieties X, the standard representation St
defines the Tate module T',A of the universal abelian variety A via i, and the attached vector bundle
with connection of T',A is (a Tate twist of) %’;}Q(AV/ X).

A natural question arises from Theorem 16.1.4, namely, is it possible to interpolate the BGG maps
of (16.1.4)? There are instances of an affirmative answer to this question, let us recall some of them.

e The first work on this direction is due to Andreatta-Iovita-Stevens [ ] for the H° ES map of
the modular curve. They constructed a map from a proétale H'-cohomology group of modular
symbols over Y (p") towards a space of overconvergent modular forms.

e In [ ], Chojecki-Hansen-Johansson reinterpretates AIS work in terms of the perfectoid
modular curve and the mryr period map, they also generalize de H° ES map to Shimura curves.

e There is also the work of Barrera and Gao [ ] on unitary Shimura curves over totally real
fields which follows closely the construction of AIS.

¢ In the Siegel case, one has the construction due to Diao-Rosso-Wu [ ] of the H° BGG
map. Their ideas follow those of CHJ and AIS.

e For higher BGG maps, one finds the previous work of the author [ ] for the H' ES map
of modular curves. Some of the strategies of loc. cit. shall be used throughout this document.
The main idea is that the BGG maps should be first constructed at the level of the flag variety,
and then pulled back to the Shimura varieties via myr.
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It was the recent work of Lue Pan [ ] the one which led this problem to the right direction.
Pan’s theory of locally analytic vectors of completed cohomology provided an exhausting description
of the b = A isotypic part of the completed cohomology of a modular curve, in terms of overconver-
gent modular forms, where b = Lie B. He managed to discover a bridge between -modules over
the flag variety, and pro-étale cohomology of modular curves (much like the one provided by the
Borel embedding in the complex analytic situation), a relation which is non trivial since the sheaf of
differentials of a perfectoid space is zero.

We keep writing P = P, and M = M,,. Let B C G, be a Borel subgroup contained in P, and
containing the maximal torus T. Let %€ = | |, omy C,, be the decomposition of .Z¢ in Bruhat cells, let
Z,, = C,, be the Schubert varieties and Z; = Ueawy=a—i Zw. We have a filtration of closed subspaces of
F

0cZzZ,cZ;C---CZy=F.

The complement of this filtration U; = %€ \Z,_; gives rise to an open filtration of .#¢ with graded
pieces U\Uj1 = | gon=i Cw-

The inverse image by myr of the U;’s induce an open filtration of Sh}‘{’ﬁﬁc, we let j; : n;IIT(Ui) C
ShY, K,.C and j, : mgp(Cy) C Shig, .- Let F be a sheaf over Shy, ..., we define the following

overconvergent cohomologies with partial compact supports (see §18)
RLc\(Shigs ¢+ F) 1= RUan(Shigy ¢ i iy F) (16.1.5)

where j,, is the extension by zero functor. We also denote H;,W(Sh}gf,,c, ) for the cohomology
groups of RT..,,(Shi; -, 7). The filtration of .7 induces a decreasing filtration of the sheaf .# with
Fil'.Z = j;, j7'.7 and graded pieces P tovymi ! Jj,L.F. Taking cohomology, one obtains a “higher

Coleman theory” spectral sequence

EP = (P HE(SHE 0 F) = Hi'(SHg o, ).
{w)=p

For all w € W one can define a sheaf of overconvergent automorphic forms C(va, 4r) 1N Overcon-
vergent neighbourhoods of ﬂl‘{lT(C w) (see §23.1). They contain naturally all the sheaves of overconver-
gent automorphic forms of higher Coleman theory of [ ]. Let us sketch the definition of the sheaf
C (ij r)- First, one constructs a decreasing family of overconvergent neighbourhoods {C,,(€)}c-0 of
C,. Over C,.(¢€) one constructs a trivialization s : C,,(€) — Mg of the M,-torsor Mz := N,\G,.
Let M}, = {M,(¥)},>0 be a basis of open affinoid subgroups of 1 in the analytification of M, using the
trivialization s one can construct a trivial M'-torsor (i.e. a inverse system of M(y)-torsors for y > 0)
which we denote by ij’ﬂ. We let C (MLQ,) denote the O, -sheaf of functions of ML%, which is

just the colimit of the sheaf of functions of the M(y)-torsors. Then, locally on C,,(¢), C (Mi%) can be
written as a colimit of locally analytic K,-equivariant sheaves. Moreover, it has an horizontal action
m,, of m = Lie M, induced by the compatible (left regular) M(y)-actions of the torsors. One defines
the sheaf of overconvergent modular forms as

—

CM, 1) = @ (COM, 5 )8t (050 Osi) 7"
Letb =LieBandlet A : b — C be a character. The interpolations of the BGG maps are constructed
by taking the A-isotypic part of the locally analytic completed cohomology as follows (see Theorems

23.2.1)

Theorem 16.1.6. Let & fs“h be the sheaf of locally analytic sections at infinite level and by = Lie M,NB
the Lie algebra of the Borel subgroup of M,,. Let p and pm be a half of the sum of the positive roots
of G, and M respectively, set p™ = p — pu.
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1. The derived b = A isotypic part of the locally analytic completed cohomology can be computed
as
(RU proc(Shir,c, Q) “®C) ™ = RT 4 (Shig;, o, RHomy(4, Og)).

2. Let € >> 0, then RHomy(A, O é“h)lzr;{;(cw@» is concentrated in cohomological degrees [0, d—€(w)].
Furthermore, we have a highest vector map

T,y 1 RHomy (A, 651 ) = COME )™ =42 [£(w) — d],

Mo
surjective in H*="™-cohomology.

3. The open Bruhat filtration of %€ induces a spectral sequence

EN = @D HEASH ¢ RHomy(4, 604) = HP(RT pos(Shie, ¢ ) BC)™ ).
weMw

tw)=p

In addition, the map (', induces an overconvergent BGG map

BGG,, : RT.,,(Shig; o, RHomy(4, 0,)) = RT ¢, (Shigy o, COM[, o)™ =20 [ o(w) — ).

4. Let I C O3 be the ideal defining the cusps for any finite level. Arfizlogous statements hold
by O§®pmS and CM' ) by

. . la
for cohomology with compact supports after exchanging O R

Sh
C(ij,dR)®ﬁ§Z .

Remark 16.1.7. We also prove a version of this theorem for the dual locally analytic completed coho-
mology, see Theorem 23.2.2. It involves a sheaf of “differential operators” over Sh; . and the duals
of the overconvergent autormorphic sheaves.

16.2. An overview of the paper

The main new tool we use is a generalization of relative Sen theory of Berger-Colmez [ ] to
locally analytic representations of p-adic Lie groups. The theory of locally analytic representations is
briefly reviewed in Section 17; in order to use some comparison results between continuous and Lie
algebra cohomology, we follow the approach of solid locally analytic representations introduced by J.
Rodrigues Jacinto and the author in [ ]. In Section 18 we prove some devisage of cohomology
with partial compact supports which will be use later on to relate the cohomologies (16.1.5) with the
overconvergent cohomologies of higher Coleman theory [ ]. In Section 19 we generalize the Sen
theory axioms of Berger-Colmez allowing higher dimensional Sen traces. We prove that Sen theory
can be apply to locally analytic representations.

Following the ideas of [ ] and [ ], we study the Hodge-Tate cohomology of Shimura
varieties, namely, the proétale cohomology of £-modules. Given a compact p-adic Lie group G, and
a pro-Kummer-€tale G-torsor X — X, we use Sen theory to construct a universal Sen bundle which
is nothing but the p-adic Simpson correspondance of the G-torsor X. We prove that the projection
from the pro-Kummer-étale site to the analytic site can be computed as the G-invariant vectors of the
Koszul complex defined by the Sen bundle on X, in other words, the G-invariant vectors of the Higgs
bundle over X obtained by the p-adic Simpson correspondance. This is the content of Chapter 20.

Chapter 21 is dedicated to some computations over the flag variety which will be used later on in
the construction of the overconvergent BGG maps. In Chapter 22 we set up the theory of Shimura
varieties as in [ ]; using the p-adic Riemman-Hilbert correspondances of loc. cit. , we briefly
explain rephrasing [ , §4.4] how an abstract myr period map can be constructed at the level of
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diamonds. We compute the Sen bundle in terms of a G-equivariant sheaf over the flag variety and use
the theory of §20 to obtain Theorem 16.1.2, we deduce Theorem 16.1.1 as a corollary. We also prove
the classical p-adic BGG decompositions of Theorem 16.1.4.

Finally, in Chapter 23, we define the sheaves of overconvergent automorphic forms C (M; aR):
Then, we use the machinery of §20 to study the derived A-isotypic part of the locally analytic com-
pleted cohomology for the action of b, in terms of the derived A-isotypic part of the sheaf ﬁé"h. This
last is studied in terms of D-modules over Ft, with D thE sheaf of universal twisted differential
operators. By studying the derived A-isotypic part of these 9-modules in the overconvergent neigh-
bourhoods C,,(¢) of C,,, we deduce Theorem 16.1.6.
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17. Locally analytic representations of
p-adic Lie groups

The main objective of this chapter is to introduce the tools in non-archimedean functional analysis
and representation theory that will be used in the rest of the document. Our approach to these subjects
“lives” in between two worlds: the classical one, as in [ Jor| ], and the recently developed
condensed mathematical world of Clausen and Scholze [CS], cf. Appendix A of [ ]. In fact, we
will be only interested in classical topological spaces (i.e. Banach, Fréchet, LB and LF spaces),
but the use of condensed mathematics helps us to treat the theory algebraically without topological
issues. The principal reason to use condensed mathematics in this work is to apply the theory of
solid locally analytic representations of Joaquin Rodrigues Jacinto and the author [ ]. More
precisely, we need the notion of derived locally analytic vectors, whose “underlying set” was already
studied in [ ]. We also need some comparison results for group cohomology in the solid setting,
generalizing previous work of Lazard [ ], Schneider-Teitelbaum [ , ], Tamme | ],
et al. Moreover, the condensed framework allows us to work in a derived category, which will be
necessary for the correct statement of the theorems.

From now on we fix p a prime number, we let Q, be the field of p-adic numbers and let C = C,, be
the p-adic completion of an algebraic closure of Q,,.

17.1. Classical definitions

Let K be a non-archimedean extension of Q,, i.e., a field extension endowed with a multiplicative
valuation | - | : K — R;( extending the p-adic valuation of Q,, for which K is complete. The classical
approach to the theory of non-archimedean functional analysis is via locally convex vector spaces
over K, see for example [ ]. Throughout this section we will be only interested in the subclass of
LF spaces, which contains all Banach and Fréchet spaces, and all the countable filtered colimits (with
injective transition maps) between them, cf. [ ]. We wont be concern in topological questions
like cokernels of maps of these objects since condensed mathematics ( [ ], [CS]) already solves
this problem.

One of the main purposes of this section is to recall how to work formally with LF spaces, in
particular, how the continuous homomorphisms are defined, and how to compute the completed tensor
product of two LF spaces. The second main goal is to define locally analytic representations and the
analytic distribution algebras, we will follow [ , §3 and 4] for the notations.

17.1.1. Non-archimedean functional analysis

Definition 17.1.1. 1. A Banach space is a topological K-vector space V such that there exists
an open Og-submodule V° C V endowed with the p-adic topology, which is complete and
separated. We say that V° is a lattice of V.

2. A Fréchet space is a topological K-vector space which can be written as a (topological) count-
able cofiltered limit of Banach spaces.
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17. Locally analytic representations of p-adic Lie groups

3. Given V and V' two Fréchet spaces over K, we denote by Homg(V, V') the space of continuous
maps from V to V'

In nature, one often encounters locally convex vector spaces which are written in terms of Banach
and Fréchet spaces. The next definition provides a formal way to work with those arising as countable
colimits:

Definition 17.1.2. 1. Let f: V — W be a map between Banach spaces. We say that f is compact
if for some lattices V° ¢ V and W° ¢ W such that £(V°) ¢ W°, and for all n > 0, the image of
V9 in W°/p" is isomorphic to a finite Ok /p"-module’.

2. An LB space is a countable filtered system {V,,},cv of Banach spaces with injective transition
maps. By an abuse of notation we write V = h_n)l V, for the LB-space.

3. An LF space is a countable filtrered system {F,},cv of Fréchet spaces with injective transition
maps. By an abuse of notation we write F = h_r)n F, for the LF space.
n

4. Let F = hm F,and F' = h_n)l F; be LF spaces. We define the set of continuous homomor-
phisms frorn F to F’ to be

Homg(F, F') := &lnh_r)nHomK(Fn, F,).

n m

Remark 17.1.3. Notice that a Banach space is a Fréchet space, and that an LB space is an LF space.
The definition of LF spaces and the Homg set above is justified by [ , Cor. 8.9] and [ ,
Lem. 3.25].

Definition 17.1.4. 1. A Fréchet space V is called of compact type (or a compact Fréchet space) if
it is written as cofiltered limit of Banach spaces with compact transition maps.

2. An LB space is of compact type (or a compact LB space) if it is written as a filtered colimit of
Banach spaces by compact transition maps.

Remark 17.1.5. In the classical literature, a compact Fréchet space is called a nuclear Fréchet space.
We have changed this nomination due to the fact that Fréchet spaces are always nuclear in the sense
of solid K-vector spaces, see [ , Cor. A.22].

Definition 17.1.6. 1. Let V and W be Banach spaces with lattices V° and W° respectively. We
define the projective tensor product of Banach spaces as

Vi = lim((V° 8o, W)/ ")

n

2. LetV = lin V,and W = 121 W,, be Fréchet spaces. Their projective tensor product is the
Fréchet space
VexW = lim V,@xW,,.
P

3. Finally, let F = h_r)n F,and F’ = h_r)n F’ be LF spaces, we define their tensor product as
F®KF = hLl’an®[(Fm.

Remark 17.1.7. Itis important to highlight that the projective tensor product of Fréchet spaces matches
with the solid tensor product, see [ , Prop. A.25].

IThis is not the usual definition of compactness found in the literature, e.g. [ , §12], but it is equivalent if K is a
finite extension of Q,.
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17. Locally analytic representations of p-adic Lie groups

17.1.2. A quick review on compact p-adic Lie groups

Let G be a compact p-adic Lie group and g = LieG its Lie algebra. Let C(G,Z,) be the space
of continuous functions of G with values in Z, endowed with the p-adic topology. Let Z,[[G]] =
Homg, (C(G,Z,), Z,) be the algebra of continuous distributions of G endowed with the weak topology.
In other words, Z,[[G]] is the Iwasawa algebra of G over Z,,.

In order to define locally analytic functions on G we need to fix some coordinates locally around
the identity. By [ , Cor. 8.34], there exists a compact open subgroup G, C G which is a
uniform pro-p-group. By a theorem of Lazard [ , Prop. III. 3.1.3], the group G, admits a discrete
valuation with rational values w : Gy — Q, and a basis gy, ..., gs € Gy with d = dim G inducing an
homeomorphism

¢:Z) - Go, (x1,...,x) > g -+ &F, (17.1.1)

such that the pullback by ¢ of the multiplication law (g, ) — gh™! in G is given by power series with
coeflicients in Z,:

¢~ (@x1, - X)W, Ya) ) = (F1(xY)s -, Fa(x, ) with Fi(X, Y) € Z,(X, ). (17.1.2)

Furthermore, after shrinking Gy if necessary, we can assume that w(g;) =r > 1 foralli=1,...,d.
From now on let us fix a uniform open normal subgroup G, of G, and a chart ¢ : Zi — Gy as in
(17.1.1). The chart ¢ defines an affinoid group whose Q,-points are equal to Gy:

Definition 17.1.8. Let G, be the affinoid group whose underlying adic space is a polydisc Dép =

Spa(Q (T, ..., Ty), Zy(T,...,Tq)), and whose multiplicative law (g, h) +— gh™! is provided by the
map
®: 0(Gy) — O(Gy % Gy) (17.1.3)

defined by the power series F; of (17.1.2).

By taking smaller radius in Gy, one can defines a family of affinoid groups which encodes the
infinitesimal p-adic Lie group structure of G.

Lemma 17.1.9. Let h > 0 be rational, and let G, be the affinoid subspace of G, given by
T T,
Gon = Go<—;l, e —Z>-
pP p

Then Gy, is a normal subgroup of G.

Proof. To prove that Gy, is a subgroup, it is enough to show that the map © of (17.1.3) sends T;/p"
to 0*(Gy,; X Gop). But the power series F; does not have constant term, therefore @(7;/ ph = F;/p"
is an element in (G, X Go,). The fact that Gy, is a normal subgroup of Gy is shown in a similar
way considering the morphism Gy X G, — G given by conjugation: (g, k) — ghg™". O

Definition 17.1.10. Let 2 > 0 be rational, we define the following rigid analytic neighbourhoods of
G and their spaces of functions:

1. The affinoid group G® = GGy ), which is a finite disjoint union of polydiscs of radius p™. We
let
C@G",K) = 0(G")&q, K

be the space of rigid analytic functions of G® over K, and
D(G", K) = Homg, (C(G",Q,), K)

its weak dual.

We call C(G™, K) (resp. D(G™, K)) the space of K-valued G"-analytic functions (resp. G-
analytic distributions) of G.
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17. Locally analytic representations of p-adic Lie groups

2. The Stein group G"*) = | J,,_,+ G"”, which is a disjoint union of open polydiscs of radius p~".
We let
(") — 1; (")
C(G"’,K) = hlfﬂ; C(G"’,K)

be the space of rigid analytic functions of G, which is naturally a compact Fréchet space. We

also let
DG, K) = lim DG™), K)
H
' —h*
be the dual of C(G"", K), which is an LB space of compact type, see [ , Cor. 1.4]
and [ , Theo. 3.30] for the duality between compact Fréchet spaces and LB spaces
of compact type.

We call C(G""), K) (resp. D(G"", K)) the space of K-valued G”"-analytic functions (resp.
G“"-analytic distributions) of G.

3. We define the space of K-valued locally analytic functions of G as the LB space of compact
type
C'(G,K) := lim C(G",K) = lim C(G", K).
e e
Dually, we define the space of K-valued locally analytic distributions of G as the compact
Fréchet space
DG, K) = lim DGP, K) = lim DG, K).
— —

h—oo h—oo

Remark 17.1.11. The rigid analytic groups G and G" depend on the uniform pro-p-group Gy ¢ G
and the chart ¢. The same is true for their spaces of analytic functions and distributions. Nonetheless,
the (co)filtered systems of analytic functions and distributions as 4 — oo are independent of those
choices.

The previous algebras of distributions are adapted to the rigid analytic neigbbourhoods of G.
However, only the family D(G"", K) is well adapted to the study of locally analytic vectors of G-
representations. The only “difficulty” with these distribution algebras appears if one wants to stay in
the category of LF spaces. In fact, the G”")-analytic vectors of LF representations are inverse limits
of LF spaces, which in turn have a perfect sense as solid K-vector spaces, but that are no easy to track
as topological K-vector spaces. A way to avoid this, and keep working with LF representations, is to
use a different class of distributions algebras adapted to the chart ¢.

Let ¢ : Z‘; — Gy be a chart defined by a basis gi,...,g4. Let b; = g; — 1 € Z,[[G]] be elements in
the Iwasawa algebra. For a = (..., a;) € N we denote b? := by --- by’

Proposition 17.1.12 ( [ , §41). We have an isomorphism of profinite Z,-modules

Definition 17.1.13. Let & > 0. We define the space of distributions D, (G, Z,) as

ph o
Din(Go, Zp) =D | aab” € | | Q" : supllalp™!} < 1.

aeN
a aeNd

—h

Remark 17.1.14. Let b(h) = L= If K is a finite extension of Q, and b(h) is a valuation in K, then one
has

bS]

b(l’
Di(Go, Zp) ®z, O = 1_[ Ok Pl

aeNd
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17. Locally analytic representations of p-adic Lie groups

This implies that, if b(h) € Q, then D, (Go, Z,) 1s a profinite Z,-module. Furthermore, by Proposition
4.2 of [ ] the space D) (Go,Z),) is a profinite algebra admitting Z,[[Go]] as a dense subalgebra.
We set D,y (Go, Qp) := Dy(Go, Zp)[i] endowed with the weak topology.

From now on we will assume that b(h) is rational whenever we work with the algebra D ,)(Go, Q,).

Definition 17.1.15. 1. Let & > 0, we define the distribution algebras

DGy, Qp) = Z,[IG]] @z, 116011 Diy(Go, Qp)
DGy, Zyp) = ZplIG]] Bz, 11601 Diiny(Go, Zp)-

We let C(G ), Q,) denote the dual of D(G,), Q,) seen as a Banach space over Q,,.

2. Let K be a non archimedean extension of Q,. We define the distribution algebra

D(Gpy, Ok) = liLn(OK/Pn ®z)z DGy, Zp)/ p")

n

1
D(G(h), K) = D(G(h), OK)[;L

where we see D(G;), Z,)/p" as a profinite Z,-module and Ok/p" ®z/z DGy, Z),)/p" as an
Ind-profinite Z,-module. We let C(G ), K) denote the strong dual of D(G, K).

3. We define the Iwasawa algebra over Ok (resp. K) to be
OklIG]] := lim Ok /p" ®z;pz Z,[[G1]

1
K[IG]] == OK[[G]]I—)-
Remark 17.1.16. 1. The symbol G, for the previous distributions algebras is purely notational;
there is not an underlying rigid analytic group whose distribution algebra is equal to D(G ), K).
By an abuse of notation, we call C(G;), K) the space of “analytic functions of G,”.

2. The definition of D(G;), K) is made in such a way that matches with the solid tensor product
D (G,Q,) ®q,, K. Furthermore, the K-Banach space C(G,, K) is equal to the projective
tensor product C(G ), Q,)®q, K. Similarly for the definition of the Iwasawa algebra over K.

The relation between the previous three families of distribution algebras is described in the follow-

ing proposition

Proposition 17.1.17 ( | , Cor. 4.18)). Let h > 0. We have a natural isomorphism of LB spaces
of compact type . ,
DG, K) = lim DG, K) = lim DG, K).
W —h* W —h*
Finally, let us recall the notion of a continuous G-representation in LF spaces. Again, the reader
can check that it matches with the notion of a solid action of G on an LF space, or with the classical
notion of continuous representation of [ ], cf. [ , Lem. 4.19].

Definition 17.1.18. 1. A continuous Fréchet representation of G is a Fréchet space V endowed
with a continuous K-linear action
GxV -V

2. A continuous LF representation of G is an LF space F' endowed with a K-linear action of G
such that there is a presentation of LF space F = 1i_r>nF +» Where F, is a continuous Fréchet
representation of G.

3. A morphism of continuous LF representations of G is a G-equivariant continuous map of LF
spaces.
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17. Locally analytic representations of p-adic Lie groups

17.1.3. Classical locally analytic representations

Next, we recall the definition notion of analytic representations on LF' spaces, cf. [ ]. First, we
introduce some spaces of analytic functions:

Definition 17.1.19. Let F be an LF space.

1. The space of continuous functions of G with values in F is the LF space

C(G,F) := C(G, K)®F.

2. Let h > 0 and G™ denote the h-affinoid neighbourhood of G. The space of G™-analytic
functions with values in F is the LF space

C(GM F):= C(G", K)®kF.

3. Let h > 0 and G*" the h-Stein analytic neighbourhood of G. The space of G""-analytic
functions with values in F is the Proj-LF space

# By = 1 (H)
C(G" ', F) ._@C(G ,F).

W —h
Notice that if V is a Féchet G-representation then C(G"", V) is a Fréchet space as well.

4. Let h > 0, the space of G(,-analytic functions with values in F is the LF space

C(Guy, F) := C(Ggy, K)®kF.

Lemma 17.1.20 ( [ , Prop. 4.21 and 4.26]). Let F be an LF representation of G and C(F) a
space of functions of the Definition 17.1.19. Then C(F) is endowed with a natural action of GXG X G
given by

(815 82.83) - p(h) = g3 - $(g7 ' hgo).

Remark 17.1.21. The Definition 17.1.19 is motivated by the the duality between the distributions and
the spaces of functions. In fact, if 9 denotes the Iwasawa algebra, or any of the analytic distributions
defined above, the spaces of functions C(F) of the previous definition coincide with the underlying
topological space of the internal Hom in solid K-vector spaces:

C(F) = Hom, (D, F)(*).

n-times
Notation 1. Let F be a representation of G" = G x --- X G. Let I c {1,...,n} be a subset, we denote
by F,, the representation G given by restricting F to the /-diagonal embedding of G. If I = 0 we
denote by Fy = F, the space F' endowed with the trivial action of G. In the situation of Lemma
17.1.20, we call %, and %, the left and right regular action respectively.

Definition 17.1.22. Let F be a continuous LF representation of G.

1. Let G denote G, G"" or G ;). We define the G-analytic vectors of F to be the LF space (resp.
Proj-LF space if G = G"")
FS~" = (C(G, F)x,,)°

endowed with the %,-action of G.
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2. We define the space of locally analytic vectors of F' to be the LF space

. hy_ . (h*) . -
F% = lim F® " = lim F¢" ' = lim Fé»~",
—> — —>

h—oo h—oo h—oo

In fact, we have that F* = (C"(G, K)®xF)¢

*13°

Lemma 17.1.23. Let F be a continuous LF representation of G. Let G denote G", G") or G,.
There is a natural inclusion
F9 " - F.

Proof. This follows from the fact that (C(G, F )*IJ)G = F and that we have continuous inclusions
C(G, F) c C(G, F), see Proposition 4.26 of [ ] for a more general statement. O

Definition 17.1.24. Let F be an LF representation of G, let & > 0 and let G denote G®, G*" or Gy,.
We say that F is G-analytic if the natural map F9~“* — F is an isomorphism of LF spaces. We say
that F is locally anlaytic if the natural map F — F is an isomorphism of LF spaces.

17.2. Derived locally analytic representations

The notion of derived locally analytic vectors for Banach representations was firstly considered by
Lue Pan in [ ]. In fact, given a Banach representation V of G, Pan studies the cohomology
groups Homg(K, C!(K, V),,,) in a set-theoretical level (i.e. without topology). In the joint work with
Joaquin Rodrigues Jacinto [ ], we develop this idea in the condensed framework obtaining a
more conceptual understanding of locally analytic representations in terms of distribution algebras.
The goal of this section is to briefly introduce this notion for LF representations, and to state how the
locally analyticity condition is translated in terms of the distribution algebras defined in §17.1.1. We
shall also define the notion of locally analyticity with respect to the action of the Lie algebra of G.

17.2.1. Locally analytic representations of G
Definition 17.2.1. Let F* be a complex of LF representations of G. Let & > 0 and G denote G,
G" or G.
1. The derived G-analytic vectors of F* is the complex
F*R¢=" .= RHomg(K, C(G, F*),,)

endowed with the *,-action of G. We say that F* is derived G-analytic if the natural map
F*RG-an 5 F* is a quasi-isomorphism.

2. The derived locally analytic vectors of F*° is the colimit

. () _ . ) _ . _
Fo,Rla = hm F.’RG an _ hm Fo,RG an _ hm Fo,RG(;,) an'
— — —

h—oo h—oo h—o0

3. We say that F* is derived G-analytic if the natural map F*®¢ — F* is a quasi-isomorphism. We
say that F* is derived locally analytic if F*f — F* is a quasi-isomorphism.

Remark 17.2.2. If G = G or G;), then F**5~" is represented by a complex of LF spaces. Indeed, by
alemma of Lazard and Serre, K admits a finite free resolution as Z,[[G]]-module provided G is small
enough (see [ , Définition 2.2.2.1]). Then, the map F*R9~%" — F* being a quasi-isomorphism
means that the cone is strictly acyclic (equivalently, acyclic as a solid K-vector space). In the case
of G = G", the complex of derived G“"-analytic vectors is no longer represented by LF spaces
in general, so the meaning of F*f5~%" — F* being a quasi-isomorphism must be considered in the
category of solid K-vector spaces.
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The main result relating the derived analytic vectors and the distribution algebras is the following
theorem

Theorem 17.2.3 ( [ , Theo. 4.34]). Let h > 0 and G denote G, G"" or G,,. Let F* be a
complex of LF representations of G. There are natural quasi-isomorphisms of G-representations

F*R6=a — RHomg(D(G, K), F*), (17.2.1)

where D(G, K) is seen as a G-module via the left multiplication of G. The G module structure of the
RHS is induced by the right multiplication of G on the distributions.

Furthermore, let G denote G or G, then F* is derived G-analytic if and only if F* is a complex
of continuous D(G, K)-modules.

Remark 17.2.4. The previous theorem says, in particular, that if F is a D(G;), K)-module for some
h > 0, then FRGw =4 = F for all i’ > h, i.e. it is derived Gy,-analytic for all A" > h.

Example 17.2.5. 1. One of the most important examples is the case of admissible representations.
Suppose that K is a finite extension of Q,. We say that a unitary Banach representation V' of
G is admissible if its continuous dual V" is a finite module over the Iwasawa algebra K[[G]] =
OK[[G]][i]. If V is admissible, one has that

VRGw=a = RHomg (K, RHomg(D(G 1y, K), V).

But D(G, K) is a projective solid K-vector space, this fact and the duality for Banach and
Smith spaces (see. [ , §3]) imply that

VRGO~ = RHom g (D(Gwy, K) ey V> K).

But the theory of distributions of Schneider-Teitelbaum [ ] says that the algebra D(G ), K)
is flat (algebraically) over K[[G]]. Since V" is a finite K[[G]]-module one gets that

VRGw= = RHomgx(D(G gy, K) &gy V> K) = Homg(D(Gpy, K) ®kiay V", K).

In particular, VRGm=an = yGw-an[()] is concentrated in degree 0. Taking colimits as 7 — co one
obtains the formula
V" = Homg(D"(G, K) ®kyioyy V"> K).

2. Itis easy to see that taking derived locally analytic vectors is an idempotent functor. Indeed, let
F* be a complex of LF representations of G. Then

(Fo,Rla)Rla — h_n)l (FRG(w)—an)RG(h)—an

h,h’—)oo

lim (FRG(h) —an)RG(h)—an
h— oo
= lim FROm=
—
h—oo

Rla
=F R

where in the first equality we use that taking derived locally analytic vectors commute with col-
imits, and in the third equality we use Theorem 17.2.3 to get that (FRCw=am)RGum=an — pRGa=an,

3. The most basic spaces which only have locally analytic vectors in higher level are K[[G]] and
DG, K). Indeed, one can show that

(K[[GIDR = (D'“(G, K))F* = C'*(G, K) ® y[-dim G],
where y = detLie(G)".
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17. Locally analytic representations of p-adic Lie groups

From Theorem 17.2.3 we also obtain the following well known result giving a criterion when a
Banach representation is locally analytic:

Corollary 17.2.6. Let V be a Banach representation of G. Then V is locally analytic if and only if for
any G-stable lattice V° C V (eq. for some G-stable lattice) the action of G on V°/p factors through
a finite quotient. Furthermore, if this is the case, V is G"-analytic for some h > 0 (eq. G"" or
Gy-analytic for maybe a different h > 0).

Proof. Let V be a locally analytic Banach representation. Then V = V% = li_r)nh vE"-an a5 LB spaces.

By [ , Cor. 8.9] we must have V = V&= for some h > 0 (cf. [ , Lem. 3.23]). This
implies that V admits a G closed immersion

V — C(@G",V),, = C(G", K),,8V,.

Then, it is easy to see that G acts through a finite quotient on C(G",O)/p, which implies the
necessary condition.

Conversely, let VO c V be any G-stable lattice of V, and let G’ C G be an open normal subgroup
such that G’ acts trivially on V°/p. Without loss of generality, we can assume that Go ¢ G’. By
Theorem 17.2.3, it suffices to show that there is # > 0 such that the action of G, on V° extends
naturally to a continuous action of D,y (Go,Z,). Let g1, ..., g4 € Go be a basis and b; € Z,[[Go]] the
topological basis of the Iwasawa algebra. Let f(b) = 3, a,b* € D)(Go,Z,). By definition we have

—h

sup,,(|a,| p~ 7% < 1. But the condition on V° implies that ||b;|| < p~! as operators of V°. This shows
that the multiplication of f(b) on V° is well defined for 4 big enough, which provides the action of
D(h)(Go, Zp) on VO. O

17.2.2. Locally analytic representations of g

In the applications to the flag variety, we will work with sheaves that are not G-equivariant, but which
admit an equivariant action of the Lie algebra of G. To define properly the locally analytic condition
in this case, we use a variant of the distribution algebras of §17.1.1, which were already considered
by Emerton in [ ]. Let ¢ = Lie G and let g° C g be a Z,-lattice satisfying [a°, g°] € pg°. Let
Yy,...,Y; be a Z,-basis of a’. Let U(g) be the enveloping algebra of g. Given @ € N¢ we denote
Y* =Y. Y}, by the Poicaré-Birkhoff-Witt theorem one has that

U@ = Pa,r

aeNd

Definition 17.2.7. Let 4 > 0 be rational, we define the following distribution algebras

DionZp) = { )| @a¥" : supllaslp™!} < 1)

aeNd

and D(gr, Qp) = D(gs, Z,)[ ;1. We also set

. \ 1
D(gn, K) := @(OK/P ®zpz D(8n» Zp)/ p )[1—)]

n

Remark 17.2.8. Similarly as for the distribution algebras D, (Go, Z,), the algebra D(g;, Z,,) is profi-
nite. Indeed, if 4 is rational and KX is a finite extension of Q, having an element p” of p-adic valuation
Ip"| = p~", then we have

D(gn, Zp) ®z, Ok = 1_[ Okp"™'y”.

aeNd
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17. Locally analytic representations of p-adic Lie groups

Inspired by Theorem 17.2.3 we make the following definition:
Definition 17.2.9. Let F* be an LF complex of g-modules.

1. The derived gj-analytic vectors of F* is the complex
FeRoan .= RHomy(D(gp, K), F*).
We say that F* is derived g,-analytic if the natural map F*f%~9" — F* is a quasi-isomorphism.
2. The derived locally analytic vectors of F* is the complex

Fo,Rla = lim F.’Rgh_an.
—

h—o0

We say that F* is derived locally analytic if the natural map F** — F* is a quasi-isomorphism.

The same proof of Theorem 17.2.3 ([ , Theo. 4.34]) implies the following version with the
Lie algebra.

Theorem 17.2.10. Let F* be an LF complex of g-modules. Then F* is derived g,-analytic if and only
if F* is a complex of D(g;,, K)-modules.

One easily deduces the following analogous of Corollary 17.2.6.

Corollary 17.2.11. Let V be a Banach space endowed with an action of 3. Then V is a locally analytic
g-module, even g, analytic for some h > 0.

Finally, let us define the locally analytic distribution algebra of g as the Fréchet-Stein algebra
Dl(g, K) = lim (g K). We also denote C(g, K) := Homg(D(g). K), K) and Cl(g,K) =
Homg(D*(a,K), K) = li—n}h_m C(ay, K). The space C'(g, K) is nothing but the space of germs at
the identity of C'*(G, K).

Definition 17.2.12. A G'-representation is a direct system V = lim V, of G,-modules with equivari-
—>n
ant transition maps, where G, — 1 as n — oo.

Remark 17.2.13. A g-locally analytic representation is a G'-representation since the g,-analyticity
condition implies that the action of g can be integrated to some neighbourhood G’ € G of 1.

17.2.3. Cohomological comparison theorems
As an application of Theorem 17.2.3 one has the following comparison results in group cohomology.

Theorem 17.2.14 ( , 5.2]). Let F* be a complex of LF representations of G, then there is a
natural quasi-isomorphism of cohomology complexes

RHomg(K, F*) = RHomg(K, F*f). (17.2.2)
In particular, if F is an LF representation and F¥' = F%[0], we have that
RHomg(K, F) = RHomg(K, F').

Remark 17.2.15. The proof of the theorem also shows an analytic version: let 2 > 0 and let G denote
G(h+) or G(h), then
RHomg(K, F*) = RHomg(K, F**9~").

In fact, one of the main technical ingredients is the equality D(G ), K )®§HGJ 1 DGy, K) = D(Gy, K),
where the thensor product is taken in the category of solid K-vector spaces. The previous theorem

follows formally from this, and the description of F *-RGw=an i terms of D(Gapy, K).
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17. Locally analytic representations of p-adic Lie groups

Let U(g) be the enveloping algebra of g. Another application of Theorem 17.2.3 is the comparison
of cohomologies for locally analytic representations.

Theorem 17.2.16 ( | , Theo. 5.4]). Let G denote G"" or G, and let F* be an LF complex of
derived G-analytic representations. Then there are quasi-isomorphisms of cohomology complexes

RHomg(K, F*) = RHomypg (K, F*) = RHomy,,(K, F*)°.
In particular, if F is an locally analytic LF representation of G then
RHomg(K, F) = RHomy (g, F)°.

Remark 17.2.17. The invariants RHomy (K, F*)¢ are well defined as the Lie algebra cohomology
complex RHomy (K, F*) lands in the category of smooth K-representations of G. Since K is of
characteristic 0 and G is compact, taking invariants is an exact functor for smooth representations.

Another key ingredient in the proof of the previous theorem is the flatness of the distribution alge-
bras D(G ), K) over the Iwasawa algebra, and the flatness of D(g;, K) over (g). In fact, we only need
to know that tensoring with the distribution algebras preserves the trivial representation. We have the
following version of the previous theorems for the enveloping algebra:

Theorem 17.2.18. Let F* be an LF module over U(g). Then

RHOmU(g)(K, F.) = RHomU(g)(K, F.’Rla) = RHomD(gh,K)(K, F',Rgh—an).

17.3. Locally analytic sheaves over rigid spaces

In this section we define a notion of LF sheaf over adic space. We impose some quasi-coherent
conditions for the sheaves to be acyclic on affinoid spaces. Then, we give an ad-hoc definition of a
locally analytic equivariant action of a p-adic Lie group G on LF sheaves.

17.3.1. LF sheaves over adic spaces
Definition 17.3.1. Let X be a adic space over Spa(K, Ok).

1. An LF sheaf of O ,,-modules is a topological O ,,-sheaf .# such that there exists a basis 8 of
X.n by quasi-compact open subspaces such that .% (U) is an LF space for all U € 8.

2. An LF sheaf .7 of Oy ,,-modules is said quasi-coherent if there exists an open cover {U,}ic;
of X,, by affinoids, such that for all i € I and V c U, an open affinoid we have .7 (V) =
F(U)®6y () Ox,an(V).

3. A quasi-coherent Banach sheaf .7 of Oy ,,-modules is called locally projective if there is a
covering {U,}ie; of X,, by affinoids as in (2) satisfying the following condition: .#(U;) is a
projective Banach O ,,(U;)-module, i.e., a direct sumand of an ON Oy ,,(U;)-module.

4. A quasi-coherent Fréchet sheaf .% on X is said squarable if there exists an open cover {U;}ic;
of X,, by affinoids as in (2) satisfying the following condition: .#(U;) = m B;,, with dense
transition maps, where the B, are projective Banach Oy ,,(U;)-modules. We sgy that the cover
{U;}ier squares % and that .% is squared on U,.

Lemma 17.3.2. Let ¥ be a quasi-coherent Fréchet sheaf over X and let U C X be an open affinoid
such that . is squared on U. Then RU,,(U, %) = .Z (U).
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17. Locally analytic representations of p-adic Lie groups

Proof. Let Z(U) = lin B, be a presentation of .%#(U) as an inverse limit of projective Banach
Ox.an(U)-modules with dense transition maps. Let %, be the sheaf over U mapping V c U to
B,(V) = ane?ﬁxvan([]) Ox.an(V). Then %, is a locally projective Banach sheaf over U. Formally one
gets that

RU (U, #) = Rlim RT (U, %,,).
—

n

Thus, by topological Mittag-Lefller [ , Remarque 13.2.4], it is enough to show that RI",,(U, £,) =
RU.(U, #,) = B,. But B, is a direct summand of an orthonormalizable Banach Oy ,,(U)-module.
Hence it suffices to show that

Ju——

Rran(U’ @ielﬁx’an) = @ielﬁX,an(U)

which follows from Tate’s acycliclity theorem. O

17.3.2. Locally analytic sheaves over adic spaces

Definition 17.3.3 ( [ , Def. 2.1]). Let X be an adic space and G a profinite group. An action
of G on X is said to be continuous if for any open affinoid U = Spa(A,A*) C X there exists an open
subgroup G’ C G stabilizing U such that the action morphism G’ X A — A is continuous.

Lemma 17.3.4. Let X be a locally noetherian adic space over Spa(K, Ok) endowed with a continuous
action of G. Let U = Spa(A, A*) C X be an open affinoid and Gy the stabilizer of U in G. Then the
action of Gy on A is locally analytic.

Proof. Let Ay C A" be a ring of definition. As X is locally noetherian over Spa(K,Og), we can
assume that Ay is topologically finitely generated over Ok by fi,..., f; € A*. Moreover, without loss
of generality we can assume that G, acts on Ayg. By Corollary 17.2.6, it is enough to show that Gy
acts through a finite quotient on Ay/p. But Ay/p is a finitely generated algebra over Ok/p, generated
by fi,...,f; mod p. As the action of Gy on Ay/p is continuous, we know that there exists an open
subgroup G’ C Gy fixing fi,..., f; mod p. This proves the lemma. O

Let X be a locally noetherian adic space over Spa(K, Ok) endowed with a continous action of G.
By Lemma 17.3.4, the action of G on the structural sheaf of X is locally analytic after taking sections
in open quasi-compact subspaces of X. This leads to the following definition:

Definition 17.3.5. Let .7 be a G-equivariant LF sheaf over X,,. We say that .# is locally analytic if
for any quasi-compact open subset U C X the LF space .# (U) is a locally analytic Gy -representation.

Remark 17.3.6. Notice that for a general LF sheaf over X one needs to check the locally analyticity
condition in a base for the analytic topology. If in addition .% is quasi-coherent, the locally analyticity
only needs to be checked on an affinoid covering as in Definition 17.3.1 (2).

Definition 17.3.7. Let g = Lie G.

1. A g-equivariant LF sheaf over X,, is an LF sheaf of O ,,-modules endowed with an infinitesi-
mal action of g such that for any f € Oy, v € % and Y € g, one has

Y-(fv)y=@ - fiv+ f(Y- )
2. A g-equivariant sheaf .% over X,, is said locally analytic if there exists a basis of affinoid

neighbourhoods {U,},c; of X such that .% (U,) is a locally analytic g-module for all 7, in the sense
of Definition 17.2.9.
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17. Locally analytic representations of p-adic Lie groups

Let X be a locally noetherian fs log adic space over Spa(K, Ok), see [ ] for the definition of
a log adic space and the (pro-)Kummer-étale site. Let G be a compact p-adic Lie group and X — X a
G-pro-Kummer-étale torsor. For a closed subgroup H C G the quotient X/H is a profinite-Kummer-
étale covering of X, if H is open it is actually finite Kummer-étale over X. For a log adic space Y we let

Yisiqeqs denote the site of geqs Kummer-étale adic spaces over Y. By construction ( [ ,$85.1)D
one has _ .
(X/H)két,chs =2- m (X/G,)két,chs’ (1731)
HcG’

where G runs over all the compact open subgroups of G containing H. In particular, an object
Ue (X)ket qegs Das a G’-equivariant action over X for some compact open subgroup G" C G. We will
need the following definition later on:

Definition 17.3.8. Let é‘;x denote the completed structural sheaf over Xproke:.

1. The completed sheaf ﬁx is by definition the restriction of 5)} to Xir. The sheaf of locally

analytic sections of ﬁX « 18 the sheaf sending U € Xket qegs tO

Jkét

0%, () = Ox(U)° "

X két

where Gy C G’ is an open compact subgroup acting on U. We will denote by ﬁ)’?“ the restriction
of ﬁ}’?"két to the analytic site of X.

2. We let ﬁ)i(”]’(ét C @(-J(et denote the subsheaf of smooth section in qcqs open subsets. Let ﬁ%’" be

the restriction of ﬁ‘m to Xan, equivalently, ﬁ’ sm-—= h_r)nG o ﬁ;(/G, . Where G’ runs over all the
/C 9

open subgroups of G

3. An LF sheaf over )~(két is a topological sheaf over )?két such that for all U € )?két,chs the space
Z(U) is an LF space. We say that & is G' equivariant if there exists a basis B of objects in
Xket .acqs Such that for all U € B, the sheaf .7 can be written as a colimit of G,-equivariant LF
sheaves .|y = h_r)nn F, over U, where G' = {G,},,e is a decreasing basis of open compact sub-
groups of G stabilizing U. We refer to the equivariant action of the decreasing open subgroups
{G,} as the G"-action.

4. A G'-equivariant LF sheaf is said locally analytic if for any U € Xy the action of G on .Z (U)
is locally analytic.

Remark 17.3.9. By (17.3.1), the equivariant action over an object U € fkét is only well defined
infinitesimally closed to 1. Namely, if G; and G, are two compact open subgroups of G action
equivariantly on U, then there exists G; C G; N G; compact open such that the action of G, and G,
agree on G3. Therefore, only the action of G' is well defined in objects of fkét,chs, in other words,
there is not a well defined stabilizer G. In particular, as the locally analyticity condition only depends
on G', parts (1) and (3) of the previous definition make sense.
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18. Cohomology of a filtered space

In this chapter we recall the notions of cohomology with compact and closed supports of a topological
space. Then, given a topological space filtered by finitely many open subsets, we attach two spectral
sequences which heuristically are dual in their construction. The results presented here are technical,
and will be used in the construction of the BGG maps of §23. As a better reference we send to [ ,
Tag 01DW].

18.1. Cohomology with closed and compact supports

Let X be a topological space, ¢t : Z C X a closed subspace and j : U = X\Z c X. For a topological
space Y, let Aby denote the category of abelian sheaves over Y, and D(Aby) its derived category. We
denote by Ab = Ab, the category of abelian groups. The inclusions ¢ : Z C X and j : U C X induce
pairs of adjoint functors

' D(Aby) 2 D(Aby) : 1., j': D(Aby) 2 D(Aby) : Rj.

called the restriction and the (derived) pushforward respectively. Moreover, the functor ¢, (resp. the
functor j~') has a right adjoint (resp. a left adjoint)

t. : D(Aby) 2 D(Aby) : R/, j,: D(Aby) 2 D(Aby) : j ',

where R is the derived sections with supports at Z (resp. ji is the extension by zero). The definition
of j is standard, let us explain how R¢' is constructed. Consider the functor of “sections with closed
supports in Z”

I'z(X,-) : Aby > Ab

F —— [X,.%) :={s € #(X) : supp(s) C Z},

where supp(s) is the support of the section s. One defines the functor of “sections with support in Z”
to be the functor (' : Aby — Aby, sending a sheaf .# to

VcZe [ FW) =TwU,.Z),

for U C X any open subset such that U N Z = V. The functor R:' is then the right derived functor of
¢'. It is not hard to see that given an object M € D(Aby) we have fundamental exact triangles

M s M- ucM S
LRIM > M > Rj.j'MS .

Definition 18.1.1. Let X be a topological space and ¢ : C C X a locally closed subspace. Let
Jj : U c X be an open subset such that k : C c U is closed. The lower and upper shriek functors are
given by

1 = jiok, : D(Abc) — D(Aby), R.' =Rk'o j7': D(Abyx) — D(Aby).

In this situation we have pairs of adjoint functors

t' : D(Aby) 2 D(Abc) : Ric., tcy: D(Abc) 2 D(Aby) : Rug.
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We can now define the cohomology with compact and closed supports in a locally closed subspace
Cof X.

Definition 18.1.2. Let X be a topological space and (¢ : C C X a locally closed subspace. Let
M € D(Aby).

1. We define the cohomology of M with compact supports on C to be the complex
RT.c(X, M) := RU(X, tcyis' M).

2. We define the cohomology of M with closed supports on C to be the complex
RT (X, M) := RT(X, Ric..Ri-M).

We also write Hé,C(X, —) = H(RT.c(X, -)) and H.(X,-) = H'(RT'¢(X, -)) for i € Z.
The cohomologies with compact and closed supports satisfy the following properties:

Proposition 18.1.3. Let X be a topological space and ic : C C X a locally closed subspace. The
following hold

I. Let Y C X be a locally closed subspace containing an open neighbourhood of C in X. Then
Rl (X, —) = RUc(Y, —). Similarly, if Y contains C then RI'; (X, —) = RU. (Y, -).

2. Let C = C | | C; be a disjoint union of locally closed subsets of X such that there exists an open
U c X containing both C| and C, as closed subspaces. We have

RU c(X,—) =Rl c,(X,—) @ Rl ¢,(X, )
RFC(X3 _) = RFC[ (Xa _) 2] RFCz(X’ _)'
3. Let C' ¢ C C X be another locally closed subspace. If C' C C is closed we have functorial

restriction/correstriction maps

Rl .c(X,-) = Rl c/(X, -)
chr(X, —) g ch(X, —).

If C' C C is open we have functorial correstriction/restriction maps
RUcc/(X,—) = Rl c(X, )
ch(X, —) —d RFC/(X, —).
Proof. In the following we write In(V, W) : V.c W for the inclusion map.

1. Let .# € Aby, if Y contains a neighbourhood of C, we can write C C U C Y with U an open
subspace of X. Then

RIn(C, X),RIn(C,X)' = RIn(U, X),RIn(C, U).RIn(C, U)'In(U, X)™".
RIn(C, Y).RIn(C,Y)' = RIn(U, Y).RIn(C, U),RIn(C, U)'In(U, Y)".

Taking cohomology one gets

RFC(X, ﬁ) = RFC(U, 52|U) = RFC(Y» §|Y)-

Similarly, if ¥ contains C, one has

In(C, X),In(C, X)™! = In(C, X).In(C, C),In(C, X)~*
In(C, Y),In(C, Y)™" = In(C, Y),In(C, C),In(C, ¥)™'

Taking cohomology we find
RT (X, ) = RT,.(C, Z|z) = RT.c(Y, Zy).
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2. The inclusions In(C;, U) (with i = 1,2) and In(C, U) are closed immersions. Thus

In(C, X)In(C,X)™" = In(U, X)In(C;, U)In(Cy, X)™" & In(U, X),In(C3, U)In(Cy, X)™'
RIn(C, X).RIn(C, X)' = RIn(C;, X).RIn(C;, U)'In(U, X)~' & RIn(C,, X).RIn(C,, U)'In(U, X)~",

taking cohomology one gets (2).

3. Let us first suppose that In(C’,C) is a closed immersion. Then In(C’,C), = In(C’,C). =
RIn(C’, C)., and given .% € Aby we have a natural maps

Res : In(C, X)"\.% — In(C’, C).In(C", X)™!
Cor : In(C’, C)*RIn(C ,X)'.F — RIn(C, X)‘

Composing with In(C, X), and RIn(C, X). respectively, one obtains maps

- In(C, X),In(C, X)"".Z — In(C’, X),In(C’, X)""
Cor : RIn(C’, X).RIn(C’, X)'.# — RIn(C, X).RIn(C, X)".F

Taking cohomology one obtains the restriction/correstriction maps. The case when C’ C C is
open is similar.

O

We will need the following lemma which says that the cohomologies defined above can be approx-
imated by “smaller cohomologies” under certain overconvergent hypothesis.

Lemma 18.1.4. Let X be a spectral space and C C X a locally closed subspace. Suppose that the
following hypothesis hold

1. There exists a family {U"},cq., of decreasing open neighbourhoods of C such that

(a) C = (Nyso U and C is closed in all U”.
(b) Forall @ > 0 we have U* N U° =N, ., U

2. There exists an increasing covering by gcqs open subspaces U° = Upeaso Ug satisfying:
(a) The intersection Uy = U* N Ug is geqs for all o, > 0.
(b) The intersections Cg := C N Ug are qcqs subspaces of C.
(c) Forall a,B > 0 we have U_g = ﬂ%;sg Ug

Given a,3 > 0 let us denote Uy = | g5 Uy and Ug+ = Uysa Ug'. Then, given a sheaf F on U°,
there are natural quasi-isomorphisms

RU (X, 7) = lim RUyo (Ug,, F)

(lﬁ—)oo

RI'c(X,.#)=R hm RI'——

afﬁ—mo

(UL ).
ﬁ

a+l+

Proof. As notation, let us write In(Z, Y) : Z C Y for the inclusion maps. By conditions 2.(b) and 2.(c)

we have o
c=Je=JG

B—o0 B—oo
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18. Cohomology of a filtered space

This implies that

. -1~ -1
;1_r>n In(Cg, X)1In(Cg, X)™" — In(C, X),In(C, X)

|~ . !
RIn(C, X),RIn(C, X)' = R lim RIn(Cg, X).RIn(Cg, X)

L—oo

where the maps are the correstriction and restriction maps respectively. Indeed, as Cs C Cp is open
for §/ > B, these maps exist. Then, it suffices to check the equality after evaluating at a sheaf and
for the non-derived functors, in such a case one can just go to the stalks and prove that the arrows
above are isomorphisms. As X is a spectral space, it is qcqs and admits a basis of quasi-compact
objects, this implies that taking global cohomology commutes with filtered colimits. Therefore, taking
cohomology over X one finds

RU.c(X,.7) = lim R, (U, .7) (18.1.1)
p—oo
RTc(X, ) = R lim RU¢, (U, F) (18.1.2)

L—oo

for any a > 0.
Next, we are going to approximate RI.c,(U®,.%) and RI'¢,(U“, #) with “smaller cohomologies”,
we split the problem in two cases:

(a) Case of RI'c,. It is enough to show that there is an isomorphism commuting with the restriction
maps along

RIn(Cy, U).RIn(Cy, U") = R @ RIn(Ug' N Uy, U")*RIn(Ug’ NUZ, U%). (18.1.3)

a’ — oo

Indeed, taking cohomology over U* we would get RI'¢,(U®,.%) = R 1&11 . _RI Us, 7).

o «
Uﬁ ﬂUﬁ
’

. —a” —a’ . . ..
Since Cgy c U s N U g cU 5 N U g are closed immersions for @ < @’ < @”, we have correstriction
maps

RIn(Cg, U").RIn(Cg, U")' — RIn(U§" N U, U").RIn(Ug N U, U)' —
- RIn(Ug' N Ug, U“)*Rln(Ug' N Ug, U,
this induces the map (18.1.3). To show that it is an isomorphism it is enough to do it for the

non-derived functors, and for .# a sheaf over Ug. But then 7 applied to the LHS of (18.1.3)
is the subsheaf of .# of sections supported in Cg, and the RHS applied to .% is the subsheaf of

sections supported on ﬂa,(Ug' N Up) = Cp, proving what we wanted.

(b) Case of RT'. ¢, It is enough to show that there is an isomorphism commuting with the restriction
maps along 3

In(Cg, U")In(Cp, UM~ = lim RIn(U", U).In(Ug , U )In(Ug , U")™". (18.1.4)

' —o0

Indeed, taking cohomology over U one would get

RFC,C[g(Ua, y) = h_n>l ch,Ug,(Ua , cg;).

a’ —o00
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18. Cohomology of a filtered space

Since U*" N Uy" = Ug" for &’ < a”, one has pullback maps on the RHS of (18.1.4)
In(Ug ,U”), —» RIn(U™", U").In(U§ ", U"")..
As Cg C Ug' is closed, we have restriction maps commuting with the direct system
RIn(U*, U").In(U; , U )In(Uy , U™ — In(Cg, U)In(Cg, U)™".

This proves the existence of the map (18.1.4). To show that it is an isomorphism one argues as
for Cg in (a).

Using the previous computations, (18.1.1) and (18.1.2) we find

RT.c(X, 7) = lim RT. (U, F) = lim RTcy;(Ug,,, %)

L0 a,f—o0
RTc(X,#)=R @ R {ln Rl (U*,.7) =R lin RF@ng(UZ’ F).
p—ooo B0 B.a—o0
Replacing Uy by Uif or Ug. when necessary one gets the lemma. O

18.2. Spectral sequences attached to a filtered space

The cohomologies with closed and compact supports appear naturally when one tries to compute
sheaf cohomology of a filtered space. In the following we shall denote by In(V, W) the inclusion map
Vcw.

Definition 18.2.1. Let X be a topological space, and 0 = Uy, c U, € --- c Uy c Uy = X a
decreasing filtration consisting of open subspaces. Let us take Z; := X\U,_; for i € N so that we
also have a filtration 0 = Z;,; C Z;--- C Z; C Zy = X consisting of closed subspaces. Let us denote
Cv = Z\Zis1 = Ugui\Ugir -

1. There are natural correstriction morphisms of functors
In(U g1, X)In(U 11, X)™ = In(Uq, X)In(Uyg, X)™' = -+ = In(Ug, X)In(Up, X)™'
fitting in distinguished triangles
(U1, X0In(Ups1, X)™ = In(Us, X)In(Uy, X)™' = In(Cyp, X)In(Cyp, X) ™' 5 .
In particular, one has a spectral sequence of cohomologies with compact supports
EM = Hggj_p(x, -) = HPY(X, -).
2. There are natural correstriction morphisms of functors
RIn(Zy41, X).RIn(Zy41, X)' = RIn(Z,, X).RIn(Z,, X)' — --- — RIn(Zy, X).RIn(Zy, X)'
fitting in distinguished triangles
RIn(Z;.1, X).RIN(Z,1, X)! — RIn(Zs, X).RIn(Z;, X)' — RIn(Cy, X).RIn(Cy, X)' = .
In particular, one has a spectral sequence of cohomologies with closed supports

E}Y = HZM(X, ) = H'M(X, -).
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19. Sen theory

Sen theory has shown to be a powerful tool in the Galois theory of p-adic fields. For example, it is
used to compute Galois cohomology over period rings:

Proposition 19.0.1 ( [ , Prop. 8] ). Let C, denote the p-adic completion of an algebraic closure
of Q,, and let Gq, denote the absolute Galois group. For i € Z we let C (i) denote the i-th Tate twist.
Then

0 ifi#0
HYGq,,C,(i) =4Q, ifi=0andk =0
Qplogxeye ifi=0andk=1.
In[ ], Berger-Colmez define an axiomatic framework where Sen theory can be applied. Using

this formalism, different constructions attached to finite dimensional Galois representations become
formally the same: the Sen module (relative to Q;yc), the overconvergent (¢, I')-module (relative to
@T(Q;yc)), the module Dy of differential equations (relative to Bgr(Q),“)). Moreover, using Sen
theory, Berger-Colmez describe in [ ] the locally analytic vectors of completed Galois extensions
of Q, with group isomorphic to a p-adic Lie group.

The work of Lue Pan [ ] is another very important application of this tool. Inspired from
the work of Berger-Colmez, Pan describes the p-adic Simpson correspondance of the GL,(Q))-
equivariant local systems of the modular curve in terms of the flag variety. Furthermore, using the
strategy of [ ] of approximating the space of locally analytic functions of (an open compact
subgroup of) GL,(Q,) by finite dimensional subrepresentations, he manages to use the axiomatic
Sen theory to compute the p-adic Simpson correspondance of this “interpolation” of finite rank local
systems.

The main goal of this chapter is to provide a more conceptual understanding of this interpolation
process that occurs in the work of Pan and Berger-Colmez. More precisely, we will prove that the
construction of the Sen module holds not only for finite rank representations of the profinite group II
(which is Gg, in classical Sen theory), but for a larger class of locally analytic representations (under
some orthonormal assumptions). The theory developed here is not yet in its greater generality, but it

will suffice for the purposes of this paper.

19.1. Colmez-Sen-Tate axioms

Let us introduce the terminology. Let (A, A™) be a uniform affinoid Q,-algebra, given B C A a closed
subalgebra we denote B* := BN A". Letd > 1 be an integer, I a profinite group and y : IT — Zﬁ a
surjective continuous character with kernel H. Given I1” C II an open subgroup and H’ := H N II" we
define the following objects:

e [et Ny be the normalizer of H in II.

e Letl'y = Ny /H and Cy C 'y its center. By Lemma 3.1.1 of [ ] the group Cy is open
in er.

e We let n;(H’) € N be the smallest integer n such that y(Cy) contains p”Z‘;.
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19. Sen theory

e More generally, given an open subgroup C’ C Cp such that kery N C’” = 1, we denote by
n(C’) € N the smallest integer such that p”Z‘; c x(C).

e Let C’/ beasabove. Letey,...,e; € ZZ be the standard basis, for n > n(C”) we let yﬁ"), ... ,y;")
denote the inverse image of p”ey,..., p"e; in C’. Thus, if k > 0, we have that y§”+k) = (yl(”))Pk.

(n)

™ ...,%") and (y™) c C’ the generated subgroup.

We shall write ™ = (y

Let us suppose that IT acts continuously on (A, A*). Notice that the action of IT on A*/p* is smooth

for any s > 1 since this last ring is discrete, we suppose in addition that A*/p* = h_r)nH HAH"Jr /P’
'C

where H’ runs over all the open subgroups of H. Let I C Qs be a dense additive submonoid contain-
ing N, suppose that there are topologically nilpotent units {@*}.c;, in A? such that

1. For any x € Spa(A, A™) we have |@"|, = |@¢|,|@°|,.

2. Let|| -]l : A — R be the norm making A* the unit ball and @wA* the ball of radius p~¢. Then
|| - || is a submultiplicative non-archimedean norm, i.e. it satisfies

o byl < llxliiyll-
o lx +yll < supfllxll, [Iyll}.

3. II acts by isometries on (A, || - ||). We have ||p|| < ||@’|| and ||p~!|| < |l@~""|| for some ¢ > 0.

Condition (1) implies that the elements w* are multiplicative units for the norm || - ||. Moreover, the
ideal of topologically nilpotent elements of A is equal to A™ = | J.; , @“A". From now on we always
take € € I. In the following we consider almost mathematics with respect to the sequence {@*}c>o.
Remark 19.1.1. In the main application of the paper the units @w® will be algebraic numbers over
Q, with p-adic valuation |w|® = |p|°. We have decided to develop the theory in this slightly more
general situation where @w* might not be algebraic over Q,, in order to include the framework of
overconvergent (¢, ')-modules, where the elements w* arise as Teichmiiller lifts [7"€] of p-power
rootsof 1 = [e] — 1 € Q;y C’b, where € = ({,»)n>1 1s a compatible sequence of p-power roots of unit,
see [ ].

Definition 19.1.2 (Colmez-Sen-Tate axioms). We define the following axioms for the triple (A, I, y).

(CSTO) Almost purity. For Hy ¢ H, C H open subgroups, the trace map Try, /g, : ATH 5 AH g
almost surjective.

(CST1) Tate’s normalized traces. There is ¢, > 0, for all open subgroup H’ C H an integer n(H’) >
ni(H"), a sequence of closed subalgebras (Ay: ,)nsncary Of A" and forn > n(H’) Qp-linear maps
Ry, : AH — Ay, satisfying the following conditions :

0. We can write I = |J,y 1, as colimit of additive submonoids such that for any A’ and
n > n(H") we have {w}ee;, C A .

1. If H, € H, C H are open subgroups, then Ay, , = Agf’n and Ry, ylat, = Ry, p-

2. Ry, 1s an Ay ,-linear projection onto Ay ,,. We let Xg, denote the kernel of Ry, and
XI-;’,n = XH’,n NA™".

3. A, = Agrg1, and gRy y(X) = Rypprg1 ,(gx) for all g € Il and x € A7

4. Foralln > n(H') and x € A*"', we have Ry ,(x) € @ A}, . In other words [|Rg,,(x)|| <
|<|||x|| for x € A",

5. Given x € A" we have lim,_,, Ry ,(x) = x.

6. The action of 'y on the Banach algebra Ay, is locally analytic. Equivalently, there is an
open subgroup IT" € IT with IT" " H = H’ such that the action of II" on A, /@ is trivial.
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(CST2) Bounds for the vanishing of cohomology. There exists c; > 0, and for an open subgroup
IT" c II an integer n(I1") > ny(H’) such that if n > n(Il"), and C’ C Cy is an open subgroup
satisfying C’ Nkery = 1 and n(C’) < n, then for all n(C’) < m < n the cohomology groups
H'((y"™), wX};,) are @“-torsion for i = 0,1,2 and € € +1I.

In the application to rigid spaces we will have the following stronger axioms

(CST1*) Decomposable traces. Let I1" C 11 be an open subgroup and H’ = II' N H. There exists ¢, and
an integer n(H") > ny(H’) satisfying:
1. Forn > n(H')and i = 1,...,d, there are closed Q,-subalgebras A’  OF A" and qu,’n—
linear projections Ry,  : A" — A%, Welet Xj,  denote the kernel of R}, , and Xj;, , =
X, NA™

2. For g € Cy we have that gA, | = A%, and gR}, (x) = Ri, (gx) for all x € A" and all
i=1,...,d.

3. For x € A*"" we have R, (x) € @ A}, . In other words,

IRe (Ol < o™ 1x]].

4. Given a fixed H' and n, the maps Riq, , commute for i = 1,...,d, and their composition
Ryn:=R§, o---o R}H,’n satisfies the axiom (CST1).

(CST2*) Strong bounds for the vanishing of cohomology. There exists c3 > 0, and for an open subgroup
IT" c IT an integer n(I1") > ny(H’), such that if n > n(Il"), and C’ C Cy is an open subgroup
with C' Nker y = 0 and n(C’) < n, then for all n(C’) < m < n we have:

— Xi, is invertible with [|(y\" — 1)7!|| < |@~|,

i

e The multiplication map y?m) -1: X;{n

ie. " - 1)7'(x) e m Xy, forx € X, .

Remark 19.1.3. The w®-torsion on (CST2) means the following: let y™ = (y(lm), . ,y;m)) the coho-

mology RT((y"™), @*X}, ) is represented by a Koszul complex Kos(y™, @*Xj,, ). Then H'(y"™, Xy ,) =
0 fori = 0,1,2 and if B is a i-cocycle for wa;;,,’n for i = 0,1,2, the exists a (i — 1)-cochain g’ of
@ Xy, such that d(8) = B. The condition for i = 2 guarantees that we can a lift a 1-cocycle S of
Xy o/@* to a l-cocycle B of Xy, , which agrees with f modulo @*™.

Remark 19.1.4. The axioms (CSTO), (CST1) and (CST2) above are generalizations of the axioms
(TS1), (TS2) and (TS3) of [ ] respectively. There is a subtle difference between (CST1) and
(TS2), which are the additional properties (0) and (6). Condition (6) hold in the context of classical
arithmetic Sen theory and for overconvergent (¢, I')-modules, it arises from the intuition that one is
decompleting the algebra A"’ by its locally analytic vectors for I'y,. The condition (0) says that the
topologically nilpotent units for which the almost setting is defined are locally analytic. The axioms
(CST1%*) and (CST2*) are stronger generalizations of (TS2) and (TS3) which we will encounter in
the geometric applications, see Example 19.1.7.

Lemma 19.1.5. Suppose that (CSTI1%*) holds. Then (CST2%*) implies (CST2). Moreover, under
(CST2%*) the group cohomology RT' ({y™), @ X}, ) is @w-torsion for n(C’) < m < n.

Proof. With out loss of generality let us take € = 0, the argument for arbitrary € is the same. For
ay,...,aq € {x}seta = (ay,...,a;). We define

Xg = (| | Rp0(| [ =R AT
ai=+

j=—

168
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Let (+) = (+,...,+), by (CST1¥) (4) we have Ay, = X, and Xpr, = B, ;) X5, as Cr-modaules.

Notice that if a; = —, then XZ’,n C X}'{, and the restriction of y( ™ _1to X7, , s still an isomorphism.
Without loss of generality we can take @; = —. Define the following maps for 0<i<d-1
i+1
/\(Xg] n)EBd N /\(XZ n)e)d

( ) Oify =1
-xL ..... L/ <...<tj = _ .
1 ] ((71 - 1) l-x],“ ,,,,, L,')L1<...<L; OtherWISe'

The group cohomology RT'({y"™), X7, ) is represented by the Koszul complex Kos(y"™, X§, ). A di-
rect computation shows that the map 4°* is a chain homotopy between the identity and 0 on Kos(y"™, Xi )

in particular RC((y"™), X, ) = 0. To see that RC((y"™), Xy;" ) is @ torsion, notice that the homotopy
h* is bounded by || || by (CST2*). This proves the lemma. O

Definition 19.1.6. A Sen theory (in characteristic 0) is a triple (A, I, y) as above satisfying (CSTO)-
(CST2). If in addition we can take ¢, and c; arbitrarily small as n — oo, and (A, Il, y) satisfies
(CST1#) (resp. (CST1*) and (CST2%)) we say that (A, I, x) is a decomposable Sen theory (resp. a
strongly decomposable Sen theory).

Example 19.1.7. The most important example for this paper is given by products of perfectoid torus
and discs. Let Tc, := Spa(C,(T*"),Oc,(T*")) and D¢, := Spa(C,(S),Oc,(S)), we denote Sg]’)d_e) =
ngp xDé;e. Let T¢,, and D¢, , be the finite (Kummer-)étale covers of the torus and the disc defined by
taking a p"-th root of 7 and § respectively. Let Tc, o = h;n Tec,, and D¢, o = lim De,.» denote the
perfectoid torus and perfectoid unit disc. We denote Sg:f’;e) =Tg, de ¢, and S(ed e) = 1 im Sgp‘ln )=
T(%p Dé;,eoo'

We setIT = Z,(1)%, A = O (Sg]f:)) and let y : I1 — Z{ be the isomorphism provided by a
compatible system of p-th power roots of unit ({»),en. Let fi,..., fz, be the standard basis of ny SO
that

pr _ IITP
fsp _ 5!/S/)"

where 0, ; = 1if i = j and O otherwise. Then (A, II, x) is a strongly decomposable Sen theory. Indeed,
for n € N define

1

+h
Al = C(T" LT, T £ yifl1<i<e
" e AT " STO S”" Sr)otherwme

One has normalized Sen traces R' : A — Al which are given as the unique continuous extension to A

of the normalized traces ,
R = Z Ty = A = A

Therefore, if n > m and 1 < i < e one gets

1 1
L +7

G T =TT = (- DT,

1

whence f " 1 1is invertible on X! := ker R, and bounded by |¢,»-» — 1|. A similar property holds for
the S ;'s. Now, defining A, = O(S£%), and R, = Rj o -+ o R}, one immediately verifies (CST1*)
and (CST2%).

169



19. Sen theory

19.2. Relative locally analytic representations

We keep the conventions of the triple (A, I1, y) as in the beginning of the previous section. In the next
paragraph we will give an ad-hoc definition of a relative locally analytic representation over a Sen
theory. The motivation is provided by Corollary 17.2.6, saying that, a continuous action of a compact
p-adic Lie group G on a Banach space V is locally analytic if and only if there is a G-stable lattice
VY c V such that G acts through a finite quotient on V°/p.

To adapt the devisages of [ ] we need to consider continuous 1-cocycles of infinite rank A-
modules. In other words, we will want to consider continuous maps from II to some Aut(V), where
V is an ON Banach A-module. In order to endow Aut(V) with the good topology (i.e. the one which
appears naturally when considered as a condensed set) let us show the following lemma:

Lemma 19.2.1. Let V = @ Avi, W= é\} ,Aw; be ON Banach A-modules, and let v{ : V — A be the
projection onto the i-th component (resp. w]V. : W — A). Then

~ 1
Homa(w) = (| [P ,Awie vl )
I

W Z Z(wjv-, Yv)w; v, .
T 7

We endow the A-module Hom,(V, W) with the compact open topology, equivalently, with the natural
topology of the RHS of the equation (19.2.1).

(19.2.1)

Proof. We have

Hom,(V, W)

T~ ~ 1
HomA(@1A+vi, @JAJer)[I—)]

1
. + s + N
(lim Hom, (P A*/p*vi, H A"/ p W)l
seEN I J

1
(tim | | Homy(A"/pvis DA/ pwid L]

seN [ J
1
_ : + Sy VNT
= (im| [P A /pwievdl]
seN 1 J

(U @Jﬁwjmy)[i].

O

Definition 19.2.2. Let V be an ON Banach A-module. We endow the group Aut, (V) with the subspace
topology of the inclusion

Auts(V) — Ends(V) X Endy(V)
Yo Wy,
One immediately verifies the following proposition

Proposition 19.2.3. The group Auty(V) is a topological group, i.e. the multiplication and the inverse
maps are continuous. The inclusion Aut,(V) — Ends(V)XEnds(V) is closed and equal to the inverse
image of (idy, idy) of the multiplication map
EndA(V) X Ends(V) — Enda(V) X Enda(V)
W,y - W oy .y oy).
In particular, a sequence (,),eny in Auty(V) converges to an element € Auty(V) if and only if
Y, = Yand y;' = ¢ in Endy(V) as n — oo.

(19.2.2)
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Proof. It is easy to show that the composition map

End4(V) x End,(V) — End,(V)
Wy) - oy

is continuous for the compact open topology of End4(V), e.g. by computing the matrix composition in

a presentation End, (V) = ([, @ 1A+)[%], or by knowing that this map extends to a map of condensed
sets. Thus, it is enough to show that Aut,(V) is identified with the pre-image of (idy, idy) via the map
(19.2.2), which is clear by definition. O

The following lemma will be useful to construct invertible elements in Auts(V).

Lemma 19.2.4. Let M € End,(V) be an endomorphism whose norm operator satisfies ||M|| < |@*| for
some € > 0 and some lattice V° C V. Then 1 — M € Auty(V) and its inverse is given by the convergent
series (1 = M)™' =30 M".

Proof. Write V = @IA so that Ends(V) = (], @IAJr)[II—?]. By Proposition 19.2.3, it is enough to
show that ) ;> M" converges in End,(V), and that the sequence ((1 — M) Y,""; M"),,en converges to
idy. But by hypothesis M’ = #M is an operator of V°, thus Y22  M" = Y*°, @' M’ converges as

End+ (V%) =[], é; /AT is p-adically complete, and both w* and p are topologically nilpotent units
of A. One shows in a similar way that the sequence ((1 — M) >,y M").en converges to idy finishing
the proof. O

Given an index set / let us denote GL;(A) the topological group AutA(é; A (T é; 1A+)[%]. It
has a natural action of IT on the coefficients. Whence, ON Banach A-semilinear representations of

“rank I” are equivalent to 1-cocycles of IT on GL;(A). We denote by e; the standard basis of 5 A

Definition 19.2.5. An ON Banach A-semilinear representation p : I1 X V — V is said relative locally
analytic if there exists a basis {v;};c; generating a lattice V° such that:

e There is IT" C II an open subgroup stabilizing V° and € > 0 such that the action of II" on {v,
mod @}, 1s trivial.

We say that {v;},c; is a relative locally analytic basis of V.
The previous definition can be rewritten in terms of 1-cocycles.

Definition 19.2.6. Let V be an ON Banach A-module and p an A-semilinear action of IT on V. Let

v = {v;};c; be an ON basis of V, let Y : @i A — V denote the A-linear isomorphism provided by the
basis v, and let oy be the A-semilinear action of I1 fixing v. We define the 1-cocycle of p attached to
(V,v) to be the continuous map U : IT — GL,(A) given by

g+ T op(g)ooy(g) o T.

An ON basis v of V is relative locally analytic if and only if there exists € > 0 and IT" c IT an open
subgroup such that the 1-cocycle Ul has values in GL;(A") and is trivial modulo @w*¢. We say that U
is a locally analytic 1-cocycle.

The following lemma says that composing by matrices in Aut,(V) which are closed enough to 1
preserves relative locally analytic basis.

Lemma 19.2.7. Let V be an ON locally analytic representation of Il and v = {v;},c; a relative locally
analytic basis, let V° be the lattice spanned by {v;}. Let v € Ends(V) be an operator such that
11 — || < |@€| for some € > 0. Then y(v) = {y(v))}ies is a relative locally analytic basis of V.
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Proof. Let I c II be an open subgroup stabilizing V°, and let € > 0 such that the action of I’
on {v; mod @} is trivial. Let €’ = minle, €}, then ¥(v;,) = v; mod @* and IT’ acts on {Y(v;)
mod @* };¢; trivially. This proves the lemma. o

Example 19.2.8. 1. Let IT = G be a compact p-adic Lie group and W be a Banach locally ana-
lytic representation over Q,. Then, by Corollary 17.2.6, W@QPA is a relative locally analytic
representation of I1.

2. Slightly more generally, suppose that IT admits by quotient I — G a compact p-adic Lie
group. Let W be a Banach locally analytic representation of G over Q,. Then W@QPA is a
relative locally analytic representation of I1. This is the situation we will face in the application
to Shimura varieties.

Let us finish this section with an ad hoc generalization of relative locally analytic representations
to LF spaces.

Definition 19.2.9. 1. A squarable Fréchet A-module is a topological A-module F admitting a pre-
sentation F' = lln V, with V,, ON Banach A-modules and dense transition maps. A squarable
LF A-module is a countable filtered colimit of squarable Fréchet A-modules by injective tran-
sition maps.

2. A relative pro-locally analytic Fréchet A-semilinear representation of II is a continuous A-
semilinear representation of I1 on a squarable Frechét A-module F, which can be written as
F = linn V., with V,, relative locally analytic A-Banach representations of II. We say that F' is
locally analytic if the € of Definition 19.2.5 can be chosen uniform for all the V,,’s. A relative
locally analytic LF representation of I1 is a countable filtered colimit of relative locally analytic
Fréchet representations.

19.3. The Sen functor

Let (A, I1, y) be a Sen theory. Our next goal is to define the Sen functor, which is nothing but a derived
functor of locally analytic vectors, and to show that the Sen functor has a very good behaviour for
relative locally analytic ON Banach representations of II. The strategy is to generalize the devisage
of | ] from finite rank A modules to ON Banach A-modules.

Definition 19.3.1 (The Sen functor). 1. Let F be a relative locally analytic LF representation of
I, and H' C H an open subgroup. We define the Sen module of F' to be

S y(F) := (FT)lw-la,

2. Let C* be a complex of relative locally analytic LF representations of I1, and H’ C H an open
subgroup. We define the derived Sen module of C* to be

RS 1(C*) := RT(H', C*)fw e,
Remark 19.3.2. The Sen functor in [ ] is denoted as Dy, since we are already using D and D for
derived categories and distributions we prefer to use the letter S for the Sen functor.
Let us state the main theorem of this section, cf. Proposition 3.3.1 of [ ].
Theorem 19.3.3. Let (A,11, x) be a Sen theory. Let V be a relative locally analytic ON Banach
representation of Il and v = {v;};c; a relative locally analytic basis. Let U : I1 — GL;(A) be the
locally analytic 1-cocycle induced by v (see Definition 19.2.6). Let s > 2c, +2c3 and let TI' C 1 be an

open normal subgroup such that Uiy = 1 mod @’. Let H = 11" N H and n > n(H"). The following
holds
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1. 'V contains a unique ON Banach Ay ,-submodule Sy ,(V), and there is a basis V' = {v'}ie; of
Sy #(V) such that:

(a) The Ay ,-module S i (V) is fixed by H' and stable by 11. Moreover, S ,(V) is a locally
analytic representation of Iy, = I1/H’.
(b) We have A§AH/,nS wa(V) =V as an A-semilinear representation of I1. The matrix M of

base change from v to V' is trivial modulo @+,

(c) Let U’ denote the 1-cocycle with respect to the basis v'. For y € II'/H’, the matrix
U, € GL{(Aw ) is trivial modulo "

2. Suppose in addition that (A, 11, y) is strongly decomposable. Let F be a relative locally analytic
LF representation of I1. Then

RS 1 (F) = S (F) = lim S . ,(F),

n

in other words, the derived Sen functor is concentrated in degree 0.

From now on we suppose that (A, I, y) is a Sen theory, i.e., that it satisfies the axioms (CSTO)-
(CST2) of Definition 19.1.2. In order to prove Theorem 19.3.3 we need a series of technical lemmas.
We first start with a devisage which is nothing but almost étale descent.

Lemma 19.3.4. Let H C H be an open subgroup and V a relative locally analytic ON A-Banach
representation of II. Let v = {v;}ie; be a relative locally analytic basis generating a lattice V°. Let
r > 0 and 11" C 11 an open subgroup with H' = 1" N H, suppose that 11" acts trivially on v modulo
w@’. The following hold.

1. Let 0 < a < r, there is a basis {V}ie; of V' contained in V*"' such that v; = v, mod @™ and
VO,H//wr—a _ae @ie] A+,Hf/w_r—a)vl{ as H’/H’-module.

2. Forall s > 0 we have RHomy (1, VO/w*) =% (VO /w*) =% VOH' |55, Taking derived inverse
limits we have RHomy (1, V0) =% VOH',

Proof. First, we claim that RHomy (1, V°/@*®) =% (V°/@*)" for all s > 0. By taking short exact
sequences
0— VO/wm E_> VO/wr(rH—l) — VO/wr -0

it is enough to take s = r. By hypothesis, we have an isomorphism of semilinear H’-representations

provided by the basis {v;}ics
Vo = @AJ“/wr.
1

Then, it suffices to show that RHomy (1, A*/w") =% A*H /@, By hypothesis we can write A™/@" =

li_n}H y AP " where H” runs over all the open normal subgroups of H’. Then
//C ’

RHomy (1,A*/w") = lim RHomy (1, A*"" /o).
H""CH’

Let € > 0, by (CTS0) there exists @ € A*#" such that Tr/; (¢) = @*. Let A*"'[H’/H"] be the
semilinear group ring of H'/H”, and & : A*""[H'/H"] — A*!" the augmentation map, which is a
morphism of left A*#"[H’/H"]-modules. Then @ws admits a section h, : A™"" — ASH'[H'/H"]
given by x > Y, v xg(@) - g. This proves that A*” is almost A**"[H" /H']-projective, which
implies the claim. Taking derived inverse limits we see that RHomy: (1, V°) is almost concentrated in
degree 0. Finally, taking cohomology of the short exact sequences for s > 0

0—>V0i>VO—>V0/wS—>O
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one gets (2).

To prove (1), let 0 < a < r and let @V, € V' be a lift of (@*; mod @") € V* /", Then
vi € VO and v/ = {1/} is an ON basis of V#" such that v/ = v; mod @' ™. This proves the
lemma. O

Lemma 19.3.5. Let 6,a,b € R, such that a > ¢, + ¢z + 6 and b > supf{a + ¢,2¢c; + 2¢3 + 6). Let
H' C H be an open subgroup, n > n(H), and y = (y1,...,v4) a sequence of linearly independent
elements in Cyy, let (y) be the subgroup generated by the y;’s. Let (Uy,...,U,) be a 1-cocycle of (y)
in GL(AY!") satisfying

i. U= 1+ U,"l + U,‘,z where Ui,l € HI @IA;-—I',n and Ui’g S H[ @1A+’H/.
ii. Uy; =0 mod @“and U =0 mod @?.
Then there exists M € GL;(A*" ) with M = 1 mod @w” =% such that
i, M~ Usy(M) = 1 + Vi, + Vio with Vi, € [1, 8,45, and Vi, € TT, @,A.
ii. We have V;; =0 mod @w” and V;; =0 mod @"*.

Proof. Let Ry, : A" — Ay, be the projection map and X, its kernel. Since we have the decom-
position A”" = Ay, ® Xy, the following space decomposes via Ry ,:

~ .1 =~ =~
(H PRI e (]j DAL e (Fll DXl

Then, using the bound of (CST1), we can write U;, = Ry ,(U;2) + W; with W; € []; @X;In and
W; =0 mod @’ . The cocycle condition of (U J')d'—l is equivalent to the equality
=
0=Ujy(U)—-Uyi(U))
=Uj+Ujp+yj(Ui) +yjUp) = Uiy = Uip = yi(Uj1) = vi(Uj2) + O1 + O
forall 1 < i, < d, with @ € [1,@,A},,[L]. and 0, € @ [1,@,A*". Applying 1~ Ry, we
find
0=W;+vy;(W) =W, —y(W)) + Ry ,(Q>)
where Ry ,,(Q2) = 0 mod @, Therefore, (W;)", defines a 1-cocycle of [, D ,(X, ,/@*"?).
By (CST2), there exists a 1-cocycle (W;.)j?= ,in[1; €B,X;,, , such that (W;.);?z = (Wj)j.’=1 mod z?”: b=cr=cs,
In particular, (W’ ‘;:1 = (Wj)j?:1 = 0 mod @’ . Again by (CST2), there exists My € [], DX},
such that W;. =My —vyijMyfor j=1,...,dand My =0 mod @b, Taking M = 1 + M, we get
the lemma. o

Corollary 19.3.6. Let 6 > 0and b > 2¢o+2c3+9. Let H' C H be an open subgroup and U, ..., U, €
GL(A™") a 1-cocycle verifying U; =1 mod @® for j = 1,...,d. Then there exists M € GL;(A*"")
with M =1 mod @’ such that

M™'Ujyi(M) € GLi(A},,) for j=1,....d.
Proof. By the previous lemma there exists M) € GL;(A™) with MV = 1 mod @’ >~ such that
UL = MO Upy(MD) € GLi(A},,) mod @"*.

Let k € N, by induction we can find matrices M® € GL;(A*#") with M® = 1 mod w’**-D-c2=c3
with

U® = MOy Dy, (M®) e GLi(AT,,) mod w”**.
Taking k — co, and M := MVM®@ ... one sees that the 1-cocycle (U))L, := (M~'Uyy:(M)) takes
values in GL,(A}, ), and that (U))’, =1 mod @, |
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Lemma 19.3.7. Let H' C H be an open subgroup, n > n(H"), y = (y1,...,va4) a sequence of linearly
independent elements of Cyr, and B € GL; (A" "). Suppose that we are givenwithV, ;,V, ; € GLI(A;;,’n)
with V=V, ;=1 mod @w®* for some € > 0, and that yj(B) = V;1BV,. Then B € GL;(Ap' ).

Proof. Consider C = B — Ry ,(B), then y;(C) = V;,CV;,. We have
Yi(CO)=C=V;; —=DCVip, +V;;C(Vja —1)=(V;; = DC(Vj, = 1).

Then C € @' []; @IA“H’ implies y;(C) — C € @w'** [], @IAJ“H' fori = 1,...,d. On the other
hand, (CST2) provides an isomorphism ¢ between Xy, and the 1-cocycles Z'(Xy ) C x4 ' such

that . (Z' (@™ X}, ) € @*X}, . Therefore, y;(C) — C € @™ ], @ A for j=1,....d
implies C € @™ [[, P IA*’H'. On deduces that C = 0 and that B = Ry ,(B) € GL;(A}, ). O

Proof of Theorem 19.3.3 (1). Let U : I1 — GL;(A*) be the 1-cocycle defined by the basis {v;};. By
hypothesis Uy = 1 mod @w* with s > 2¢;, + 2¢3. Let € > 0 such that 5" 1= 5 — € > 2¢; + 2c;.
By Lemma 19.3.4 we have R[(H’, V) = V', and there exists a matrix M’ € GL;(A*) with M’ = 1
mod @ such that the cocycle U}, := M ~'U,g(M’) is trivial over H'.

Then, U’ is a 1-cocycle over GL(A*"") satisfying U'|y = 1 mod @*. Let n(H') < m < n
and y = (yﬁm),...,y;m)) be a pre-image of (p™e;){; via y : Cpv — ZJ. Let § > 0 be such that
s’ > 2¢, +2c3 + 6, by Corollary 19.3.6 there exists M’ € GL;(A**") with M” =1 mod @* %~ such
that

M U, v/(M") € GL(Aj}, ) for j=1,....d.

Define U7 := M Uzg(M"), and let us show that U” is a 1-cocycle of ITin GL,(4}, ). Let g € II/H’,
asy;j € Cy forall j=1,...,d we see that
Uy, = Uy
U, g(UV_/) = UV_/yf(Ug )-
Thus, y,(UY) = U;’]_“Ué’g(U;’j). But U;j‘l,g(U;’j) € GL,(A}, ) are congruent to 1 modulo @* =",
and 8" —c3 — ¢, > ¢3 + c;. By lemma 19.3.7 we have Ug,’ € GL;(Ay ) proving that U” is a 1-
cocycle in GL;(Ay, ) whose restriction to I1” is congruent to 1 modulo w“*. Setting M := M'M"
and ¢ : V — V the associated isomorphism of A-modules, let {vi} := y({v}), S g (V) be the ON
Apr ,-module spanned by {v}}; and S H,’,,(VO) the lattice generated. Then Sy ,(V) C V is stable by I1
and the action factors through I'y, = [1/H’. Furthermore, by construction we have an isomorphism of
semilinear A-representations of I1
A®a,, Swa(V)=V.

It 1s left to show that Sy ,(V) is a locally analytic representation of I'y. But this follows from
Corollary 17.2.6, the fact that the elements 1, ..., y4 act trivially on the basis {v}; mod @%", and
that the action on the Banach algebra Ay, is already locally analytic. O

We still need an additional technical lemma for proving part (2). Roughly speaking, it says that the
Koszul complexes of the spaces Xy, for the action of Cy- kill the locally analytic representations. In
the rest of the section we suppose that (A, I, y) is a strongly decomposable Sen theory.

Lemma 19.3.8. Let C' C Cy be torsion free and n > n(C’). Let n(C) <m <k <nandy = ()/Ek))f.l:l
the inverse image of(pkei)lf’:] viay :C' — Zf,. Suppose that IIyZ(.k) = Ula,,,, <|@|foralli. Let V be a

locally analytic ON Ay ,-Banach representation of I'y such that ||y§k) —1llv < |@®| fori=1,...,d.
Then
RT((y), Xpy @4,y V) = 0.
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Proof. For simplicity let us write A,, = Ay . Given @ = (ay,...,a,) € {#}“ consider the decompo-

sition of Lemma 19.1.5
= DX,
ac(+)d

so that
Ay =X and Xy, = EB Xe, .

a#(+)

Then, it suffices to show that for all @ # (+) one has

RT((y), X3, 84, V) = 0.

Without loss of generality we can assume that @; = —. Sety = y(lk). By the proof of Lemma 19.1.5 it

is enough to show that y — 1 is invertible as an operator of the tensor product.
First, let us assume that V' is isomorphic to V = A,,®q, W with W a locally analytic Banach I'y.-

representation over Q, for which |ly—1||, v < |@*|. Then, we have an explicit inverse over X@Am V=
X§QP W:
- ==Yy - ey -1y (193.1)
i=0
which converges by the hypothesis on the bounds of y — 1.
Write G = 'y, and let us use the notation of §17.1.1 for the analytic group neighbourhoods of G
and their distribution algebras. Then A,, is a G;)-analytic representation for some 4 > 0. Furthermore,

by the bound of ||y — 1|| on A,,, we can assume that ||y — 1||C(G<m,Am)*l < |w*3|.
For a general G;)-analytic representation V we have a closed embedding provided by the orbit map

oy : V= C(Gp, Qp)n@Qp Vo

where V| has the trivial action of G. The image of oy is identified with the *; 3-invariants. Write
V = A,®q, W as the extension of scalars of a Banach space over Q,. Rewriting C(G ), Q,)x,®g, Vo =
C(Guwy, An)x, ®q, W, and composing with the isomorphism

C(G(h)’Am)*g = C(G(h)’AM)*l,S
[ (g efe).

the orbit oy identifies V with a closed A,,-module of
C(Guy, Amdxs ®g, Wo = C(G, Qp)ﬂ@@pvm (19.3.2)

where V, is the semilinear G-representation provided by the extension of scalars V = Am§QP W. The
evaluation at 1 gives a retraction of (19.3.2) onto V, this implies that the quotient

Q = (C(Gny, Qp)s,®g, V) [ov(V)

is an ON A,,-Banach representation of G which is G, -analytic with the same bounds for y — 1 that
V. Repeating this procedure we find a resolution of V

0>V > A,&,W - A,8,W > =A4,8,W

by representations of the form A,, ®q, W¢, with W a locally analytic representation of G for which
lly = Ula,awe < l@®| for all £ > 1. This implies that

RT((y), X®a,V) = RT((y), X®,W*) = 0

where in the last equality we use the first case considered above. This finishes the lemma. O
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Proof of Theorem 19.3.3 (2). Write G = 'y, and consider the notations of distribution algebras of
§17.1.1. First, let V be an ON relative locally analytic representation of IT over A. By part (1) we
already know that V' = RI'(H’, V), and that V" = A"'®,,, Sy (V) for some m >> 0 depending
only on the analyticity condition of V. Thus, we can write

VI = lim Xy, ®a,,S 10 (V) @ im Apy 14, S 1.m(V):

n n

As S (V) and Ay, are locally analytic representations of G, Theorem 17.2.3 implies that

Um Ap @y, S (V)™ = im Apy @4y, S 1.m(V).

n n

Even more, we know that for a fixed n there is 4 > 0 only depending on V such that
(AH',nEéAH/,,,,S o m(V))REm=an = AH',nZéAH@mS wm(V).

We want to show that
(li_n} X n®ay S wn(V)RET = 0.

Indeed, it is enough to show that for any /4 > 0 there exists n > 0 such that
RI'((y), XH',nzéAH,,mSH',m(V)&SQPC(G(h), Q) =0 (19.3.3)

with the notations as in Lemma 19.3. But this follows by loc. cit. and the fact that c¢; can be choosen
arbitrarily small provided n >> 0.
We have proven that if V is a relative locally analytic ON A-Banach representation of IT then

RSH/(V) = SHf(V) = COlimn SH/’n(V)

Let F = @k Vi be a squarable relative locally analytic Fréchet representation of I1. Then the V,, are
ON Banach relative locally analytic representations of IT with an uniform € as in Definition 19.2.9,
and the transition maps V;,; — V; are dense. Using part (1) for the V;’s, there exists m € N such that
we can write

F = h_r)n(lln Xun®a, S 5m(Vi) © liLnAH’,n®AH/V,,,SH’,m(Vk))-
n k k
Using Theorem 17.2.3 and (19.3.3) one obtains that

RSH(F)::SH(F):1EEE§P4Hﬁ@MMMSHWAVD. (19.3.4)

Furthermore, by construction of the Sen functors Sy ,(—), the transition maps of the projective limits
of (19.3.4) are dense for all n and k big enough.

Finally, the case of a locally analytic LF representation follows formally from the Fréchet case
since RS i (—) commutes with filtered colimits. O

19.4. Group cohomology via Sen theory

Throughout this section (A, I1, y) will denote a strongly decomposable Sen theory. We finish this
chapter with some formal consequences of Theorems 17.2.3 and 19.3.3 regarding the group coho-
mology of relative locally analytic representations of I1.

Corollary 19.4.1. Let F be a relative locally analytic LF A-representation of I1. Let II" C 11 be an
open subgroup and H = 1" N H. Let ny: := Lie l[1/H’ Then

RU(IT, F) = (RC(ny, S g (F)))W/H.
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Proof. By Hochschild-Serre, almost purity (Lemma 19.3.4) and Theorems 17.2.14 and 17.2.16 we
have that

RU(IT'/H', F™)
RU(I1'/H', S g (F))
RT (e, S g (F)) 1

RT(IT, F)

O

We will consider a last hypothesis which holds in the Hodge-Tate situation, i.e., for the Sen theory
of the sheaf Oy, where X is a log smooth adic space over Spa(K, Ok). In the arithmetic case over Q,,
this hypothesis is nothing but the Ax-Sen-Tate theorem.

(AST) Let II" c II' be an open subgroup and H” = II' N H. A Sen theory (A,Il, y) satisfies the
Ax-Sen-Tate property if the following conditions hold:

i. Ag, = A" where Il , is the inverse image of P'Zyviay : II" — Zﬁ for all n >> 0.

ii. The traces Ry, : A" — Ay, are constructed from normalized traces

m .
RH’,I’! . AH’,m — AH',n

p,,ll_n Z g(x).

genH',m/HH’.n

X =

Remark 19.4.2. Notice that this axiom makes the proof of Lemma 19.3.8 slightly easier, as the dis-
played equation (19.3.1) can be applied directly to XHf,,q@AH,,mV since the action of (y) on Ay, 1S
trivial.

A Sen theory satisfying the Ax-Sen-Tate axiom can be endowed with a Sen operator as follows.

Definition 19.4.3. Suppose that (A, II, y) satisfies (AST). Let F be a relative locally analytic LF
A-representation of I1. Let H” C H be an open subgroup. The Sen operator of F is the A-linear map

Sen(F) : F — F ®g, 1y,
given by the A-extension of scalars of the derivations
SHf(F) - SHf(F) ®Qp TII\;,.

In the rest of the section we suppose that (A, I1, y) satisfies the Ax-Sen-Tate axiom. The following
results describe some cohomological properties of A-semilinear [1-representations in terms of their
Sen operators. We fix I1" C II an open subgroup and set H' = II' N H.

Lemma 19.4.4. Let C* be a complex of relative locally analytic LF A-representations of I1 with I1-
equivariant differential maps. Suppose that the Sen map C* — C*®q, 1y, is homotopically equivalent
to 0 as topological A[[I1]]-modules. Then H'(S :(C*)) is a trivial ng.-module for all i € Z and

d J
RU(IT, C*) = DS w(C)® /\ i)™ 1-j1.
=0
In particular, for all i € Z we have

d J
RI(Y, H/(C™) = (DH/S w(C) ® [\ m)" " [=]1. (194.1)
j=0
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Proof. By Corollary 19.4.1 we have
RU(IT,C*) = RU(ng,S g (CHOHV/H,

But the cohomology RI'(ny, S /(C*®)) is represented by the total complex of the Koszul bicomplex
Kos(1y,,, S 5(C))>* whose terms are

l
Kos(ny., § (O = S (O @ \ my.

Then, the homotopy between 0 and the map Sen(C®) : C* — C* ® n" provides a homotopy between
0 and the morphism of the row complexes

Kos(ny;,, C)*' — Kos(,,, €)™

which is just a twist of Sen(C*®). Taking total complexes and locally analytic vectors this provides a
homotopy between 0 and the identity of the complex RI (g, S i (C*)). Furthermore, it provides an
explicit splitting

d J
RT(v, S (C*) = P S (€ @ A\ mil=i1
j=0

This shows in particular that the cohomology groups of S 5/ (C*) have a trivial action of 1y, so that
taking I1'/H’-invariants is well defined as derived objects. This finishes the lemma. O

Definition 19.4.5. Let C* be a complex as in Lemma 19.4.4. Suppose that the Sen map Sen(C*®) :
C* — C ®ny, is homotopically equivalent to zero. We denote

(€ = (S ()M
Nonetheless, by the previous lemma we have that H'(C*)" = HI(S 1, (C*))"/#") for all i € Z.

Remark 19.4.6. The previous definition is provisory for this paper. In general, Theorem 19.3.3 should
hold in a larger category of “relative locally analytic” solid modules over an analytic ring attached to
A, and its content should be that the Sen functor is exact. Then, Lemma 19.4.4 should generalize to
the statement that taking I1’-invariants for relative locally analytic solid A-modules with trivial Sen
operators is exact. In that context, Kos(n},,C*)!" would have an honest meaning without passing
through the Sen module.

Proposition 19.4.7. Let C* be a bounded complex of relative locally analytic LF representations of
I1. Then
RU(IT,C*) = RU(ny, C*)Y.

Remark 19.4.8. The cohomology group RI'(ny, C*) is represented by the total complex of the Koszul
bicomplex Kos(1;,,, C*). The II-invariants of the total complex are well defined by Lemma 19.4.4.

Proof. By Corollary 19.4.1 we have
RT(T',C*) = RU(y, S s (C)M

The complex RI' (1, S (C)*) is represented by Kos(i),, S (C))**. On the other hand, Theorem
19.3.3 implies that we can write S 5/ (C*®) = h_r)n S 1 x(C®) as a colimit of analytic subspaces defined
over Ay . Let Ay o 1= h_r)n Ap ,, the theorem says in addition that

S i (C*)®a,, A 1= lim § wa(C*)®s,,,A = C".

n
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Then, one gets that
RU(ny, C*) = RU(yr, S g (C*)®p,, A.

It is easy to construct an explicit homotopy between the identity and the Sen operator map
RT (1, C*) = RU (g, C*) ®q, M.
By Lemma 19.4.4, we know that
RT (g, CY = RU (g, S (C*)H

this proves the proposition.
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20. Hodge-Tate theory over rigid spaces

Let (K, K") be a complete non-archimedean discretely valued extension of Q,, let C be the p-adic
completion of an algebraic closure of K. Let X be an fs log smooth adic space over (K, K*), for
? € {an, ét, két, proét, prokét} we let X, denote the corresponding site over X. We write X for the
C-extension of scalars of X. Throughout this chapter we denote by O the completed (bounded)
structural sheaf of Xs, we also let @E” denote the uncompleted (bounded) structural sheaves over

X>. We refer to | ] for the formalism of the Kummer-€tale site. We let Bfi;) and @8;210 .
be the de (log) Rham period sheaves over X,og. We also consider the Hodge-Tate period sheaf
OCrog = gr'(OBar 100, s€€ [ 1.

The main goal of this chapter is to apply the Sen theory formalism of §19 to Hodge-Tate coho-
mology in rigid analytic geometry. More precisely, let G be a compact p-adic Lie group and X a
pro-Kummer-€étale G-torsor of X. Let V be a locally analytic representation of G over Q,, we can
consider the local system V of X defined by the torsor X. We want to prove the following theorem

Theorem 20.0.1. There exists a natural O -Higgs bundle attached to V, namely, there is a O-linear
map . _
Ox(V) : V&5 O(1) = V&5 0 ®5 Qx(log)

with Ox(V) A 0x(V) = 0 satisfying the following properties.

1. The formation V +— 0x(V) is functorial on V.

2. The operator 6y only depends on the Sen bundle
Seny : 0(1) — Lie G&0 ® Qk(log),
where the RHS acts by derivations on V.

3. Let v : Xcprokst = Xcxe be the projection of sites. Then one has

—

Rv.(V®0) = v.(RT(8y, VD)),

in particular, R"v*(K@g) = V*H"(HV,K@E)for alli € Z.

In §20.1 we construct the Sen bundle Seny using the results of §19. Roughly speaking, we first
perform local computations depending only on Kummer-étale charts of X, where we essentially re-
duce to the Sen theory of a product of tori and discs as in Example 19.1.7. The next task is to show
that these local constructions of the Sen bundle glue to Seny, where an explicit change of variables is
made.

Finally in §20.2, we use the results of the previous section to prove Theorem 20.0.1. Then, under
certain non-degeneracy hypothesis of Seny, we take V = C'(G,Q,) the space of locally analytic
functions of G and compute the projection Rv,C(G, gx) from the pro-Kummer-étale to the Kummer-
étale site. We finish this section with another proof of the p-adic Simpson correspondance, as stated
in [ , , ] using our formalism.
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20.1. The Sen bundle

Many of the ideas of this section come from the work of Lue Pan [ ]. The method of Sen was
already used in [ ] to prove the p-adic Simpson correspondance for local systems, which is at the
same time an application of Kedlaya-Liu decompletions in [ ].

20.1.1. The set-up

We keep the notation of the beginning of the chapter, namely (K, K*) is a complete non-archimedean
discretely valued extension of Q,, and C the p-adic completion of an algebraic closure. We let X be
an fs log smooth adic space over (K, K*), let G be a compact p-adic Lie group and X > Xa pro-
Kummer-étale G-torsor. All the fiber products are as fs log adic spaces in the sense of [ , Prop.
2.3.27], we highlight that it may differ from the fiber product of usual adic spaces.

In the following we will suppose that X is affinoid and that it has logarithmic coordinates, i.e. that
there exists a Kummer-étale map ¢ : X — S;?d_e) which factors as a finite composition of rational
localizations and finite étale maps, and that the log structure of X is the pullback of the log structure
of S4=¢) defined by the normal crossing divisor S, ---S4 = 0, cf. Example 19.1.7. We let S

be the relative perfectoid product of tori and polydiscs over Sgg’d_e), and let I" denote its Galois group.
Notice that T' = Z,(1)? is a p-adic Lie group isomorphic to Z;‘ﬂ after fixing a compatible system of p-th

power roots of 1. We let I', = p"I" and let S(”’ 9 = S("d OIT,.

Remark 20.1.1. In [ , Definition 5.3.1] a log affinoid perfectoid is modeled in n-divisible
monoids for all n € N. Thus, D¢ is not log affinoid following this convention as we have not
taken n-th roots of S for (n, p) = 1. Nevertheless, since we are only interested in p-adic Hodge
theory, all the abelian sheaves we work with are p-adically complete in some sense (more precisely,
all these sheaves are solid Z,-modules). In particular, when taking pro-Kummer-€tale cohomology
it is enough to trivialize at log affinoid perfectoid objects modeled in p-divisible monoids, so D¢ o
suffices for computations.

Given an open subgroup G’ C G we let Xg = X/G’. The space X is finite Kummer-étale over X
and if G’ is normal it is Galois with group G/G’. We have a presentation as objects in X,k

X = lim XG’~
H
G'cG

Givenn e NU {oo} and G’ € G we let X, = X X p 500 S%‘f—e) and X¢, = X Xx X,. We also denote

)~(n = XX x X, and X = XX x Xo-. The following diagram illustrates the relation between these spaces
as profinite-Kummer-étale objects in Xprosc

Xoo
Fn
G'xI', XG’
v N
— 20.1.1
e XG . ( )
/T,
\ .
G/G'xT/T,
c% 4 /
X
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20. Hodge-Tate theory over rigid spaces
We make the following hypothesis which says, rougly speaking, that the only ramification at the
boundary is given by taking p-th power roots:

(HYP) For any open subgroup G’ C G the map X5 — X is, locally étale, modeled in a morphism of fs
monoids Q — P such that the kernel and the cokernel of Q% — P$? are finite p-groups.

Remark 20.1.2. As X is a G-torsor and G is a p-adic Lie group, there exists G’ C G an open subgroup
such that for all open subgroup G” C G’ the map Xg» — X satisfies (HYP). In fact, this holds if G
is a uniform pro-p-group, and follows by the description of the Kummer-étale fundamental group of
a log geometric point, see [ , Coro. 4.4.22].

We fix the following notation for the global functions of the C-scalar extension of the previous
spaces for G’ € G and n € N U {oo}:

En = 5){(?0,11), B = E(XC,G/,n)’ Bg = 5(XC,G’),
similarly for the spaces of bounded functions. Notice that, as Oisa pro-Kummer-étale sheaf, we have
(Bo)'™™ = B, and (B,)? = By .
If G' € G is open and n € N we also have
Bn = OXeors) = Oia(Xcon) = OunXegr ).

The Abhyankar’s lemma tells us that the map X — X becomes étale after adding enough ramifi-
cation at the cusps':

Lemma 20.1.3 ([ , Lem. 4.2.2.]). Let G’ C G be an open subgroup, then there exists n > 0
such that for all m > n the map X¢',, — X, is finite étale.

One deduces the following consequence from [ ,Lem. 6.1.9] or | , Lem. 4.5]

Proposition 20.1.4. The space X¢ o is affinoid perfectoid and the map X — X¢' . IS profinite-étale.
Furthermore, we have the following relations between the rings of functions

i Bg = (li_r)nn B, )P is an integral perfectoid ring.
.o ~+ — . + /\_p — . + /\_p — . ~+ /\_p . . . .
ii BY, (h_r)nG,’n B, ) (11%/ B, ) (h_r)nn B)\7P is an integral perfectoid ring.

iii The ring B.. is Galois over B¢ o of group G'.

We saw in Example 19.1.7 that the tower {S(Cﬁf_e)}neN of products of tori and polydiscs gives rise a
strongly decomposable Sen theory. Our next task is to show that their pullback to Xpe satisfy the
Colmez-Tate-Sen axioms

Proposition 20.1.5. The triple (B.,G X T, pr,) is a strongly decomposable Sen theory.

Proof. By Proposition 20.1.4 the triple (B, GXT, pr,) satisfies the almost purity condition (CSTO). It
is left to see that the pullbaks of the traces of Example 19.1.7 viay : X — S(Ce’d_e) satisfy (CST1%*) and
(CST2%*) with ¢, and c3 arbitrarily small. Given G' C G an open subgroup we let n(G”) be the smallest

'In fact, this is a consequence of [ , Prop. 4.2.1] after refining the argument of Lemma 4.2.3 in loc. cit. allowing
only p-th power ramification.
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20. Hodge-Tate theory over rigid spaces

integer n such that X, — X, 1s étale for all m > n, by Lemma 20.1.3 we know that n(G") < co. Let
n>n(G") and 1 < i <d, recall that

=._
:"—‘

A, = 0SSy = C(T*m,87)
A= ﬁ(S(ed e)) — <Z % i%)

1

I+
I+

P

(T, ... T,.‘f”, e
1
C(T*7

|OJ

. fl1<i<
A = - ~Yyifl <i<e

1 7
P P P H
e+1,...,Sl. ,...,Sd ) otherwise.

H—’_‘

Let {%}f-l:l be the standard basis of I', given by fixing a compatible sequence of p-th power roots of
unity. Let us define
B, = (B ,®a,A))" ™"
where the tensor product is as Banach algebras, and the u-completion is nothing but the p-adic com-
pletion with unit ball the integral closure of BE,J;G?A;AT.
We claim that the traces R, : A — A, extend to R;, , : Bo'wo = By, , With [[Rg || < |p~?|.for ¢;
arbitrarily small as n — oo. Indeed, we have that

Bg oo = (Bgr n®a,A)" ™",
i i1
and R;, extends to By, -linear maps
i ) S Al i
RG’,n . BG’,n®A,1A - BG’,n®AnAn - BG’,n

such that ||Rg || < [p~|. We have to show that the image of (BG/,,,@A;AJr)* is bounded in Bé}’,n‘ But
Lemma 4.5 of | ] imply that, given € > 0, there exists n > n(G”) such that for all m > n, the
cokernel of the map Bg/’m@?A;nA* — B¢, , is killed by p€, this implies the claim and that ¢, can be
taken arbitrary small as n — oo.

Finally, we have to show that for n(G) < m < n the map 7f’ "1_1 over X’Gn := ker R, 1s invertible,
with inverse bounded by |p~|, and that we can take c; arbitrarily small when n — co. Indeed, this
follows by the same argument as before and the analogous property for the Sen theory (A,I',idr). O

As a consequence of Theorem 19.3.3, we have the following corollary:

Corollary 20.1.6. The Sen functor V +— S (V) restricts to the category of locally analytic represen-
tations of G'. More precisely, given F an LF locally analytzc representation of G’ over Q,, the space
Bw®Q F is a relative locally analytic representation of B, and

RS (Eoo@Q,, F) = ((Eoo@@g,, F)GX1RI=la ((Eoo@(@], F)Ox1y-la,
In particular, we have a G' X I'-equivariant action of the Sen operators
Sen(F) : Bo®q,F — (LieD)" ®q, (Bu®q, F). (20.1.2)
Remark 20.1.7. As the action of I" on F and LieI is trivial, the Sen operator factors through
Sen(F) : B&¢F — (Liel)" ®q, (B&CF)

Remark 20.1.8. By taking colimits as G' — 1, we can define the Sen module of a locally analytic
representation of g (see Definition 17.2.9). Indeed, let F be an LF locally analytic representation of
g, and write F = colimy,_., F}, as a colimit of g,-analytic representations. Let G' = {G' C G} be
the overconvergent neighbourhood of 1 in G, see Definition 17.3.8. Since F is a g-locally analytic
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20. Hodge-Tate theory over rigid spaces

representation it admits a natural action of G', which is nothing but the integration of g to an action
of some G’ C G on each F,. Then we define the Sen module of F as the BS ™™ “_LF space

So(F) = lim S (Fy).
h,G'cG

One has that EwécF = E@Eg_sm,r_mSg(F ). The construction of Sen operators is the same as for G-
analytic representations. The cohomological computations of §19.4 hold if one takes the smooth
G'-vectors:

RU(G' X T, (Bo&cF)) = (RT(W’, B&F))° ",

where we identify all the ng for G’ ¢ G with n° := LieT.

20.1.2. Glueing

In this paragraph we show that the Sen operators (20.1.2) factor through the O-linear action of the
Lie algebra g = Lie G, and that they glue to a map of pro-Kummer-€tale sheaves over Xproks

Seny : Qy(log)’ ® (1) > g & O, (20.1.3)

where Q, (log) is the sheaf of log differential forms over X, and g is seen as a pro-Kummer-étale local

system via the G-torsor X — X and the adjoint action of G. Let C"(g, C) denote the germs of locally
analytic functions of G at 1, cf. §17.2.2. We need a lemma

Lemma 20.1.9. Let F be an LF locally analytic representation of g over Q, (cf. Definition 17.2.9).
Then F admits a closed immersion via the orbit map

F - Cla(g’ Qp)*2§QpFO’
where C*(q, Qp)x, is endowed with the right regular action and Fy = F with the trivial action.

Proof. This follows formally by writing F as a colimit of analytic representations and Theorems
17.2.3 and 17.2.10. O

The following is a local version of the theorem we want to prove
Proposition 20.1.10. Let F be a locally analytic representation of §. Then the Sen action
Sen(F) : B®g,F — (LieD)" ®q, (B8, F)

factors through a Galois equivariant map Sen € (LieI)" ®q, (§6§ng) making the following diagram
commutative

By, F ~2%% (Liel)" ®g, (B®q,9) ®q, F
m il@(’)
(LieD)" ®q, (B&q, F),
where § : § ®q, F' — F is the derivation map.

Proof. By Lemma 20.1.9 and the functoriality of the Sen operators, it is enough to consider F' =
C"(g,Q,). Then, the Sen map is a G x I'-equivariant map

Sen(C"(g,Q,)) : Bo®g,C"(8,Q))x, = (LieT)” ®q, Bu®q,C(, Q).

Moreover, the Sen operators satisfy the Leibniz rule by construction, and are invariant under the *-
action of g. Therefore, they must factor through x-invariant derivations Sen : Lie " — (B.,)" ®qg, § =

B ®q, 8 where g acts via the x,-action on C la(q, Q). The proposition follows. O
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20. Hodge-Tate theory over rigid spaces

Remark 20.1.11. The previous proposition implies that, in order to compute the Sen operators, it is
only necessary to consider a faithful representation of g.

Our next task is to understand the behaviour of the Sen operators in families after changing the
chart ¢, and show that they glue to a morphism (20.1.3). The idea of the proof is to use explicit local
coordinates for the Sen modules attached to C*(g, Q) from two different charts, and compute directly
the Sen operators.

CaseG =T

In a first approximation we consider the case when G = I' = Z,(1)? is a torsor arising from a
perfectoid chart. We have to introduce some notation. Let X be an fs log smooth affinoid space
over Spa(K, K*), and y1,¢, : X — Sgﬁ’d_e) two étale charts which factor as compositions of rational

localizations and finite étale maps. Let X := Sg?:i_e)xsgg,d—e)’ s, X and Xo o 1= XX wz’ss?d—e)sggi_e), and let
I'; and I'; denote the Galois groups of X, and X . over X respectively. We let X oo 1= X0 Xx X000
be the pro-Kummer-étale torsor of group I'} X I';. Let B := 5X(Xc,oo,0), By = é’;(XC,O,OO) and
Boow = 5X(Xcgm,m). One can then consider the Sen module associated to C'(Lie I'',Q,)4, and
C"(Lie Iy, Q,),, respectively. Furthermore, we have by definition

Stier, (C*(Lie T1, Booo)uys) = Bulo ™ = Stiery(CU(Lie T, Boowo)ay)-
Theorem 19.3.3 also says that the orbit maps provide B, «.-linear isomorphisms
C"“(LieT |, Buowo) = Boooo® grprs-an BRI = C*(Lie Ty, Beoyoo).

Let us fix a compatible system of p-th power roots of unity ({,),ey and let yy 1), ...veq) € 't and
Y1) ---Yae € T2 denote the standard basis. We let 6,; € Liel’; denote the derivative in the
direction y;; for j=1,...,dand i =1,2.

Let Tl,(l), ey Te,(l), Se+1,(1), e Sd,(l) S ﬁan(X) and Tl,(Z), ey Te’(g), Se+1’(2), cen Sd,(2) S ﬁan(X) be the
coordinates given by the charts ¢; and i, respectively. We have two basis for the log differentials of
X

j=e+1

e d
Q}(log) = € Oundlog T & ] dlog § ;.
j=1

Let ;; denote the dual basis of {dlog T, dlog S ;} fori = 1,2, and

d
iy = Z a;xOk,2) (20.1.4)
k=1
with ax € 0,,(X) the base change matrix.
Proposition 20.1.12. The following hold
1. We have 0]"(1) = — ZZ:I aj,ka,(g).
2. There are elements z1,...,74 € BQLFZ_[“ such that

0i2(zr) = 0, and 6;1)(zx) = a.

Proof. Consider the Faltings extension

0— O(1) > gr' OB o, = Qx(log) ®, 0 — 1
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20. Hodge-Tate theory over rigid spaces

and the elements

/(1) : :
<j<
Tl) ifl<j<e

i = .
(S’“)) ife+l1<j<d

in @BSR,log(X‘x’vO) (resp. Y () for X ). Let & = ({»)neny and t = log[e] € B},. Then

— leg Tk,(l) ifl <k<e

. (20.1.5)
—dlogSk,(l) ife+l1<k<d

’)/j,(l)Yk,(l) = Yk,(l) + 6]',/{1‘ and dYk’(l) = {
(resp. for Y (). Let us consider the reduction of the variables Y, in gr' OB dR o g(XCOW,) Then

gr' OBt &R 1Og(Xc,oo,cx,) is a faithful representation of both I'; and I';, and it determines the action of the
Sen operators 61y and €, ,). By definition, we have 6;1,(r) = 0;2)(t) = 0 and

0;0y(Yi) = 6k = 0j,0)(Yi2)-

Therefore, by (20.1.4) and (20.1.5) one obtains

d
Oy = Z ~ajk0k ),
k=1
this proves (1).

To prove (2), notice that the elements ¢, Y, 5) € OB, | (Xc.w0.00) provide an isomorphism

dR,log
d
Buooot @ () BuooY i) = OB o (Xcoo). (20.1.6)

Taking I'>-invariants, and a lift ¥ k(2) € OB, 1og(XC°°0) of dYy ) (e.g. k(2) = e bieYe ) with (b j)ie

the inverse of (ay¢)r.r), One can write
Yl;,(Z) = Yk,(2) —zt with z; € Boo’oo.

’
The invariance of Y] e

by the action of I'; implies the relation
0i0)(2k) = 0.

Finally, it is clear that we can choose the z;’s to be I'j-locally analytic (eg. with ¥} o= =2 breYey as

before), and part (1) implies that 6;(;y(zx) = a;,. This finishes the proposition. O
Corollary 20.1.13. Let M > 0, n = n(M) € N and 73 € Bplr]Xpnrz " be an element such that
lze — zeml < |pM| forallk = 1,...,d. Then we can write
BLydla = lim BTy — ey s 1 <k < d). (20.1.7)
M—oo

as an LB space.

Proof. Itis clear that the RHS is included in the LHS as the elements z; and z; j, are analytic for some
subgroup p™I'; X p™I,. Conversely, given f € B2 . ?"™™" the Sen operators 6., satisfy

0.2 (e seprry—an < Clf lpmr spmry—an

where C is a constant that only depends on m, and the norm | - | ,»r,xp»r,-an 18 the norm of the Banach
space Bfi,,;‘ xp"Ty=an Taking M such that Cp™ << 1, one can consider the series for j = 1,...,d

D, ()= (- 1)"(Z’ Z’M) 02 ().

keN
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Then D;(z) (f)is al'y x I';-locally analytic vector and one has the bound for M >> 0

1Dy, (I < 11

Furthermore, a direct computation shows that Qi,(z)(Dé(z)( f)) = 0 proving that it is (y;))-smooth.
Define

Dﬁ(z)(f) = Dga) ©---0 Dz(Z) °© D(])(Z)(f)'

Then, as the Sen operators commute with each other, we have that Dy, (f) € Bé’w,r APt for ml >>
0 depending only on the radius of analyticity of f.
For @ € N? define

bo.2(f)
fa/ = DQ(Z) (T .
where 6, 2) := (042))% 0 -+ 0 (61,2))"". A direct computation gives that
f=) flz—z)" (20.1.8)
a@eN?

where (z—2y)” = (z1—21.1)" - - - (za—2a.mr)™. One checks that (20.1.8) is an element of Bg’j};‘““”’”“ (zp—

zem - 1 <k <d) for M,n >> 0 depending only on the radius of analyticity of f. O
Notation 2. We shall write the direct limit (20.1.7) as

BDXFg—la — BF]—la,Fz—Sm{z _ ZM}
knowing that z; 5, varies as M — oo.

The proof of Proposition 20.1.12 can be adapted to the case when ¥, is not necessarily a chart.
Welety, : X — Sgg A=) be a map of adic spaces (not necessarily €tale), and keep the notations
introduced above for the induced coordinates over X.

Proposition 20.1.14. Let (b; ;); ; € Oum(X)"* be the d’xd transformation matrix from z//;Q; wa-on10g) =
K
Ql(log) = lﬁTQé@,d_e)(lOg) induced by the dlog differentials of the coordinates of ¥, and .
K
1. Let(a;)ij € On(X Y4 be the dual matrix of (bij)i,j and consider the Sen operators
Sen : Liel'; = Bu o ® LieI.
Then Sen(H,-,(l)) = — Zj (li,jej’(z).
2. Moreover, there are elements
Lse--s2ad € Blc;]»,gz_la = SLiCFz(Cla(Lie FZ’ Boo,oo)*m)

such that
91‘,(2)(Zj) = 51‘,]' and 91‘,(1)(Zj) = da,j.

Proof. We have a map of Faltings’s extensions

0 —— Ox(1) —— OBl ————— Ox®Ql(log) —— 0

dR,logx

‘@T %T 1 ;T

0 H ﬁs(g/,dug/)(l) H @S{Rlogg("'/,d/*e,) H ﬁs(e/,dug/) ®Ql(e’4d""’)(10g) H O
K > K K Sk’
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Then, since OB, | s is a faithful representation of I',, the proof of (1) of Proposition 20.1.12
’ K

implies that
Sen(Qi,(l)) == Z ai,jgj,@)

J

as wanted. Furthermore, one can construct the elements z; as in (2) of Proposition 20.1.12 by per-
forming the same argument with the pullback of the Faltings extension of Sgﬁ 4=, m|

General G

We want to prove the following theorem.

Theorem 20.1.15. Let X be an fs log smooth adic space over Spa(K, K™) with log structure given by
normal crossing divisors, G a p-adic Lie group and X — X a pro-Kummer-étale G-torsor. Then the
Sen operators given by local charts of X glue to a morphism of Ox-vector bundles over Xpoxa

Seny : Qy(log)’ ®, Ox(1) - g®5 Ox.

Moreover, let H be a p-adic Lie group, Y be another adic space as above and Y — Y’ an H-torsor.
Let H — G be a morphism of groups and suppose that we have a commutative diagram compatible
with the actions of the groups

—
(20.1.9)

~ <~
D — |

VAN

Then the following square is commutative

FQlog) &5, (NGy =% fa@y Oy

T T (20.1.10)

Seny

Q}(log)" ®, Oy ——— h &g Oy
Remark 20.1.16. The Sen operator can be written equivalently as a map
Oy : Ox(1) = g 85 Ox ® Q(log).

Note that by construction of the Sen operator one has 8x A 8x = 0, this proves the first two points of
Theorem 20.0.1.

First, we formally reduce the statement to the case when X is affinoid admiting a chart ¢ : X —
5.

Lemma 20.1.17. Suppose that Theorem 20.1.15 holds for fs log affinoid spaces admitting a chart to
S(I?d_e). Then it holds for an arbitrary X.

Proof. Let U, be an hypercover of X by objects in X¢ satistying the hypothesis of the lemma. Let
U, := U, Xx X be the G-torsor over U,. By hypothesis on the existence and functoriality of Sen for
the affinoids, we have a map of &y, -sheaves on U, proke

Seny, : Q,,(10g)" @, Ou.(1) > g &g O,

By glueing we obtain the desired map Seny. Functoriality of Seny for arbitrary adic spaces is proven
in the same way. O
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Thus, we can assume that X and Y are fs log smooth affinoid spaces over Spa(K, K*) admitting
charts to Sgs’d_e) for some e,d € N. We first show the existence of the map Seny. Let us keep the
notation of §20.1.1, and let us introduce some more:

e We denote ioo’() = Xoo,O Xx Y, i()’oo = g Xx )(()’Oo and ioo"x, = Xoo,0 Xx Y Xx XO’(X,.
e We denote Eoo’o = EX()A(‘C,OO,O), EO,OO = 5)(()?(:,0,00) and Eoo,oo = Ex(fc,m,m).
We have the following proposition

Proposition 20.1.18. Let 6, () and 0; ;) denote the Sen operators arising from the charts y, and Y,
respectively. Let A = (a; ;) denote the base change matrix from i, to Yy of Q}(log)" corresponding to
the stantard basis of Qé(g,d_e)(log) (cf. (20.1.4)). Then the following diagram commutes

~ . ) —
B®g, Liel'| —— B®q, g

oL AT

B®g, Liel,

where we identify Liel'; = Liel, = Qp(l)d via their standard basis. In particular, the local Sen
operators glue to Seny.

Remark 20.1.19. The reason to the —A in the proposition is the —1 of Proposition 20.1.12, which
is a consequence of (20.1.5). Notice that a priori this is a statement over the C-extension of X.
Nonetheless, the Sen operators are Galois equivariant and Gal(C/K) acts via the cyclotomic character
on Liel’;.

Proof. By Theorem 19.3.3, the orbit maps provide Lie(I'y X G X I';)-equivariant and Ew,m-linear
isomorphisms

Cla(Lie It xg, EDO,OO)*L@(z) = Eoo,w@@xcxrzﬂm@’fxrz"“ = Cla(g x LieI’, Eoo,oo)*z,em' (20.1.11)

,00

We also have B, «-linear isomorphisms

Boo oo®3r1x6-m BL 3T = C'(8, Boo.oo) = Boooo®3oxrs-sn By a2 . (20.1.12)
0,0 ’ 0,00 ’

Recall that, by definition, the Sen operators are constructed as the derivations of LieI'; and Lie I,
in the spaces of locally analytic vectors, the idea of the proof is to use the above isomorphisms to
compare both.

By Proposition 20.1.12, there are I'; X I';-locally analytic elements zy, ..., z; in By such that

0:(z)) = 6 and 6" (z)) = a; . (20.1.13)
By the proof of Corollary 20.1.13, we can find elements z; ), € BE;,E{Z‘”" with |z; — ziyl < |pY] as

M — oo, such that

ETI XG—la,Fz—sm{

~T1><G><l"2—la _
Boo,oo — Hoo,00 - ZM}'

Let f € C(g,Q,) C C"(g, B.oo). We want to show that

0,0y (f) = Z —a; j0;)(f).

J
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By (20.1.12), there are r; € By and vy € Eg:orz_l“ such that

£l@) =D ng - vie

3
Notice that by definition of the Sen action
02 (f) = Z 18 - 02 (Vi)
3
There exists M >> 0 such that
Vi = Z —vak(z —zy)"

QEN“'

with vy i = Dy, (B,2)(v1)) as in Corollary 20.1.13. Moreover, vqx € BEJ,QG_’“’FZ_S"’ for all k and . We

deduce that
flg) = Z T Z il Vo (Z — Zp)”.

aeNd

By definition of 6, one gets that
r(z—zy)”
0y (f)(g) = Z Z k—Mg i) (Vark)-

k  aeNd

But by definition

—1)l
Vak = Z ( ) (Z = 2y1)" 00, 2)(ViD)-

@eNd

By (20.1.13), and the fact that the 6, 2)(v¢) are I';-smooth, the previous implies that

d
9i,(1)(Va,k) == Z a;,jVa+1k-

J=1

A direct computation shows that

d
T (z —Zy)”
gi,(l)(f)(g) = Z ai,j Z Z £ Y 8 Va+l;k
=1 k. aeNd !
d
= Zauzrkg 8.2 (vi)
J=1 k
d
== > a,0,0(H)e)
=1
as wanted. O

Finally, we prove the functoriality with respect to the group. We first prove the version when X = Y.

Lemma 20.1.20. In Theorem 19.3.3, suppose that X = Y is affinoid, then the commutativity of
(20.1.10) holds.

Proof. Let X; — X and Xy — X denote the G and H-torsors respectively, and let f : Xy - X be
the equivariant map. Let X, be the I'-torsor given by a system of coordinates, let B, and A, be the
rings of functions of X; Xx X and Xy Xx X respectively. Then f induces a map

f*:Cg, Bo) — C (b, A)

equivariant for the action I', and compatible with the homomorphism H — G. The lemma follows by
the definition of the Sen operators as derivations of Lie I in the Sen modules. O
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Next, we prove the version when the square (20.1.9) is cartesian

Lemma 20.1.21. In Theorem 19.3.3, suppose that X and Y are affinoids admitting charts and that
Y=Y Xy X. Then (20.1.10) is commutative.

Proof. Let yx and ¢y be system of coordinates of X and Y respectlvely, and let X, X and Yo o denote
the 'y and I'y torsors induced by the perfectoid coordinates. Let Y00 6 = Yoo gX YY and Xw 6 = XXxXeoys
consider the following diagram of torsors

Yoo’qj Xx Xoo,w
y X
'fw’d) TyxGxT Y Xy Xoos

Y

By Lemma (20.1.20) we have a commutative diagram of Sen morphisms

(8@Liel,) &5 Oy

Ql(log)" ®g, Oy(1)

m

9®;g, Oy

But Lie Fw® ﬁy = Q! (log)v®5~yﬁy(1) We claim that the projection of Sengr, onto f* Ql +(102)'®g,

ﬁy(l) is the pushforward of tangent vectors. Indeed, this follows from the commutativity of Faltings’s
extensions

0 — Oy(l) —— ' OB, . —— QL®y Oy —> 0

dR,logy

I ! d

0 — Oy(1) —> frer'oB* —— QL e, Oy — 0,

dR,logx

from Proposition 20.1.14, and from the proof of Proposition 20.1.18. O

Proposition 20.1.22. In Theorem 19.3.3, suppose that X and Y are affinoid admitting charts. Then
(20.1.10) is commutative.

Proof. This follows from Lemmas 20.1.20 and 20.1.21 after writing the diagram (20.1.9) as a com-
position YooY Xx X > X. |

The Sen morphism encodes the directions of perfectoidness of systems of coordinates of X. We
have the following conjecture, which is a generalization of a theorem of Sen saying that a p-adic Ga-
lois representation of a finite extension of Q, has vanishing Sen operator if and only if it is potentially
unramified, see Corollary 3.32 of [FO].

Conjecture 3. The Sen morphism Seny : Q}((log)v ® 5(1) — 9®g, EX isa Ex—subbundle (i.e. itis
injective with locally free quotient) if and only if Xcisa perfectoid space.
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20. Hodge-Tate theory over rigid spaces

As we will show in §22, the pro(Kummer)étale torsors defining the infinite level Shimura varieties
satisfy this subbundle condition. The proof of this fact never uses the perfectoidness of the Shimura
variety, but the p-adic Riemman-Hilbert correspondance of [ ].

Notation 3. From now on, we will write 6x for the Sen operator Seny (or 6 is X is clear from the
context). Given F' alocally analytic LF g-representation over Q,,, we let 6x(F) denote the Sen operator

of the G" equivariant Og-sheaf F®q, .

20.2. Application to proétale cohomology

We keep the previous notations, i.e., X is an fs log smooth adic space over K with log structure given
by normal crossing divisors, and X a pro-Kummer-étale G-torsor over X. In this last section we apply
the globalization of the Sen operators of §20.1 and the computations of group cohomology via Sen
theory of §19.4 to finally prove part (3) of Theorem 20.0.1. In the process, we also prove a version of
this theorem with coefficients over the completed structural sheaf of the boundary divisor, this will be
used in §22 for the cohomology with compact supports. We finish by explaining the relation between
the Sen operator 8y, and the p-adic Simpson correspondance of [ , , ].

20.2.1. Pro-Kummer-étale cohomology of relative locally analytic
0-modules

Let X and X — X be as before. Let D C X be the boundary divisor. Etale locally on X, D can be
written as a disjoint union of irreducible components D = | J ,; D,, where the finite intersections of the
D,’s are smooth. If this holds locally analytic over X we say that D is a strict normal crossing divisor,
for simplicity let us assume that this is the case. Given J C I a finite subset we let D; = () ,¢; D, and
ty: Dy C X, we will simply write 5"3;]) for the sheaf ¢ J,*ﬁgj) over Xproke-

Consider the following scenario. Let W be a locally noetherian adic space over (K, K*) endowed
with an action of G. Let 7§, : X° - Webea G-equivariant map of diamonds over Spd K. In particular,

as the map of diamonds respect the untilts, we have a map of ringed sites
Tty - (Xprokét’ ﬁf() - (Wan’ ﬁW,an)

Definition 20.2.1. 1. Let .% be a squarrable LF sheaf over W (see Definition 17.3.1). We define
the pullback 7j,(.%) to be the @g-sheaf mapping a log affinoid perfectoid U = Spa(R, R") the
LF space
LU, 703 (F)®rit 04y O)-

In particular, if .% is of the form h_r)n {El B, with B, ,, ON Banach sheaves, we have that

n

* T . 1 — ~
ﬂw(’gz) = h_r)nh;nﬂw (%n,m)®7r;‘}(ﬁ‘w)ﬁ >
nom

where the last tensor product is given by the projective tensor product (or just the solid tensor
product) of Banach spaces on affinoid perfectoids.

2. Let G’ C G be an open subgroup, we denote by vi : Xcorprost — X6 ke the projection of
sites. Let G = {G’ C G} denote the overconvergent neighbourhood of 1 in G. Let .% be a
G'-equivariant squarrable LF sheaf over W which can be written, locally on W,,, as a colimit
of G’-equivariant squarrable LF sheaves for G’ — 1, say % = li_r%,%] Fc. We define the

following projection living in Xiar:

RVeo iy (F) := h_r)n Rvg .7ty (For).
G —1
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20. Hodge-Tate theory over rigid spaces

Recall some notations from Definition 17.3.8. Let ? € {két, an} and @( , the restriction of 5;( to
ch) The sections of the sheaves ﬁX , at qcgs objects admit an action of G', we let ﬁl“ , denote the
subsheaf of locally analytic sections. We also define 6’1’" to be the subsheaf of smooth sectlons Note
that ﬁ}’: = h_n)l Ox g2

G’ —1

Theorem 20.2.2. Let .% be a squarrable LF sheaf over W endowed with a locally analytic action
of 6. . Assume that, locally on Wy, F is of the form F = hm F. with F, squarrable Fréchet

and %, = lim %,,, is a presentation with dense transition maps where the B, are projective
m

Banach sheaves endowed with a g-equivariant action over W which is analytic for a uniform radius
of analyticity as m — oo and n is fixed. Let 1 : Xcyxer — Xcan be the projection, then

RVeo. (7 F) = RU(bx, (xyy F)lz. ) " (20.2.1)
R(A 0 veo)(nyy F) = Ry, (3 F)lz, )C ~™. (20.2.2)

Moreover, for J C I a finite subset we have
RV (myy F® . Op,) = RO, (myy Pz, )G“S'"Ee?;m O

R © o).y P85, 0p,) = RTOx. (g Py, )* " @pom O3

Dyj,an*

sm — |1
where O, =1im  Op xxg .-

Proof. The statement is local on the analytic topology of X. Then, we can assume without lose of
generality that X is affinoid and that it admits a chart  : X — S(;’d_e) and that .# can be written as
a colimit of squarrable Fréchet spaces. Since X, for ? € {két,an} admits a basis consisting in gcqs
objects, the derived pushforwards Ry . commute with limits and filtered colimits. Then,

N NNET . *
RVG’,*(NWJ) - ﬁnllnRVG’,*(ﬂW%n,m)-

n m

Let X, denote the I'-torsor obtained by taking the pullback of the perfectoid coordinates. Then, for
an affinoid U € X ke We have by Proposition 19.4.7

RU prokei (U 0y Bum) = RUG' X T, 0ty By X Xx,, U Xx Xoo))
= RT(Ox, 7ly Boum(X xx,, UNT

Now, let U € Xy be a gcgs object arising from an affinoid Uy € Xg.. For G” € G’ let U denote
the pullback to Xs~. Then we have that

Rveo (70, F)U) = lim R prokei (U Ty Fn)

G".n

= ll_l’)l’l m Rrprokét( UG” ’ ﬂ';/%n,m)
G’'n m

= lim lim RT(6, 70y Bram(U))C
G".n m

= lim(RT(6x, 73 F,)(U)"
G".n

= lim RT(0x, 7}y 7,) (D)7 "

= RT(0x, 7y F)(U)% ™.
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20. Hodge-Tate theory over rigid spaces

This proves (20.2.1). Notice that the same computation holds for a qcgs object U € Xpn arising as the
pullback of an open affinoid subspace U C X¢, this implies (20.2.2).

Finally, the statement for n*‘},ﬁ’@ﬁfx Op, can be reduced to the case .7 = Cle(g, Ow)+,, by first
reducing to the ON Banach case, and then using the same strategy of Lemma 19.3.8. This last situation
will be handle in Theorem 20.2.4. m|

Remark 20.2.3. The condition imposed on the sheaf .% is ad hoc, but it suffices for the applications of
this article. The proof of Lemma 19.3.8 suggests that there should be a category of “relative locally
analytic Oy sheaves over X”, generated by the sheaves of locally analytic functions of pro-Kummer-
étale G-torsors where G is a p-adic Lie group. Then, the (rational) p-adic Simpson correspondance
could be seen as the construction of a natural Sen operator 6x(.#) for .# a sheaf in this category.

20.2.2. Locally analytic vectors of 7

We make the following non-degeneracy hypothesis for the Sen operators

(BUN) The Sen morphism 6y : Q}((log)V Ry 5";(1) g ®@p 5"} is a subbundle. In other words, 6y is

injective and its cokernel is an Oy-vector bundle.

Theorem 20.2.4. Let v : Xcprokst — Xcke and A Yakét - 5('C,an denote the projection of sites. Then

Rvoo,*(cla(g’ Qp)*1§@l) 5){) = ﬁla

X¢ két
R(A0ve).(C*(3,Q))x®3,0x) = OF. -

Moreover, let J C I, then
la S N pla S sm

va’*(c (g’ Qp)h@@? ﬁDj) B ﬁic,két®ﬁ)i(’g,két ﬁD/’két

R(A0v0).(C'(8, Q)+ 85, 0p,) = O ®cw O

Xean Dj,an

Proof. The statement is local on Yr_; for ? € {két, an}, so we can assume that X is affinoid and that it
admits a chart ¢ : X — Sgg’d_e). Let U € ic’két be a qcgs object arising from an affinoid U € X¢ o ket
with G" ¢ G. For G” c G’ we shall denote Ug» := Xcg» Xx., U. LetJ C {fe+1,...,d} and
consider D; the divisor defined by (S, : a € J). Without loss of generality we can assume that
J=1{k+1,...,d}. Let X, be the pullback over X of the perfectoid coordinates of Sf,?d_e), and let us

denote 1700 =U Xx X&. Then, since Uoo is perfectoid, we have that
RTposa(U, C(G', Qp)x,85, Op,) = RTG' X T, C*(G', Q)1 85, 0, (Us)).
Therefore

Rvoo,*(cla(gv Qp)*1§5Dj)(ﬁ) = h_n;l Rrproét(UG”a Cla(G”’ Qp)*1§gD1)
G’'—1
= lim RI(G' T, C*(G',Q,).,Bq, Op,(Us)).
G’ —1

But the triple (5’\1),(500), G’ X I'je,prje) is a Sen theory, where I'ye C I' correspond to the J°-th
components with J° = {e + 1,...,d}\J. Indeed, the Sen traces of Example 19.1.7 specializes to Sen
traces of the boundary (S, = 0 : a € J), and the proof of Proposition 20.1.5 still holds in this situation.
However, D, also has monodromy given by the action of I';, the J-th components of I', and LieI’;

195



20. Hodge-Tate theory over rigid spaces

acts via the reduction of the Sen map to the boundary: 6y : Liel — Q}C(log)&SﬁD ,. Therefore, by
Proposition 19.4.7 one finds that
RU(G' X T,C"(G",Q))s,8g,0p,(Us)) = RT(6x, C*(G”, Op,(U)s, )"
= RT(0x, C"(G", Ox(U))x, )" @40 O, (Ug).

For the second equality one uses the description of RT'(6x, C'*(G”, é’\x)ﬂj)G” as the I'-invariants of the
Lie I'-Koszul complex of the Sen module of C la(G”, OY), see Definition 19.4.5. Hence, one deduces

Res,.(C(8.2,)1,80)(U) = RT(Ox. C* (8, Q) 8Ox(UN" " pon 7, O3

This proves the final part of Theorem 20.2.2.
Finally, if the hypothesis (BUN) holds, we can suppose that the image of 8y admits a complement
given by a subspace V C g. In particular, the Poincaré lemma implies that

RT(6x, C"(9, Q). ®0x(0)) = C(s, Ox(U)2.

But then, the G'-smooth vectors of C(g, 5’;([7 ))inzo are nothing but the G'-smooth and I'-invariant
vectors of C/(q, 5;(([700))*13, which are precisely the locally analytic vectors ﬁ}’?“két(ﬁ ). Notice that

the previous argument does not change if we take instead U e Xam, this ends the proof of the
theorem. O

20.2.3. The p-adic Simpson correspondance

In this paragraph we explain the relation between the Sen operator and the p-adic Simpson corre-
spondance of [ , , ]. Let us recall (part) of one of the main theorems of [ ,

1.

Theorem 20.2.5 ( [ , Theo. 2.1] and [ , Theo. 3.2.4] ). Let X be an fs log smooth adic
space over Spa(K, K™) and let L be a pro-Kummer-étale Q,-local system admitting a lisse lattice
L° c L. Let OCioy = grOﬁBdRJOg be the Hodge-Tate period sheaf, and v : Xcproker — Xcxe be the
projection of sites. Then

H(L) := Rv.(L ® OCyyy)
is a Gal(C/K)-equivariant log Higgs bundle concentrated in degree 0. Let 0 denote the Higgs operator
of H(L). Then one has

Rv,L®0x = RT(0, H(L)).

It turns out that using the theory we have developed so far we can deduce the previous theorem. In
fact, let us suppose without loss of generality that L is of rank n. Define the GL,(Z,)-torsor

X := Isom(Z!, L°).

Thus, L is constructed from the standard representation of GL, via the torsor X. In particular, by
Theorem 20.1.15, L ® O has a Sen operator €x. On the other hand, the sheaf &C,,, can be written as

. 1
mlog = 11_1’)1’1 Symk(;grl @BZI—R,Iog)’

k—c0
where gr! OBix log is the Faltings extension and ¢ = log([€]) € Bj;. But we have proven that the Sen
operator acts on % gr' OB |, . by

1 —~ ~ 1 = 1
Oy : ;grlﬁBgRJog ® Qi (log)’ ® Ox(1) — Qi (log) ® QL (log)’ ® Oy 5 Gy c ;grlﬁBgRJog
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20. Hodge-Tate theory over rigid spaces

where the second arrow is the trace map. Thus, by Theorem 20.2.2 one gets that
Rv,.(L ® OCy) = v.RI'(6x,L ® OC,q,).

Hence, we are left to show that RI'(0y,L ® OC,,) is concentrated in degree 0, and that it admits
a reduction to a vector bundle. We need the following lemma, which is essentially Lemma 2.15
of [ ].

Lemma 20.2.6. The image of 0x : Q;((log)"@é’\x(l) - gln®5x is contained in a nilpotent subalgebra.

Proof. It is enough to prove that the action of €y on L is nilpotent. But the coefficients of its charac-
teristic polynomial are given by

o : Qy(log)’ ® Ox(1) > Endz,(/\ L® &x) = Oy,
and the o; are Galois equivariant. This forces o; = 0 proving that fy is nilpotent. O

Now, knowing that the action of y is nilpotent on L, one can show by taking perfectoid coordinates
with Galois group I', that the action of a basis of LieI" on L@ﬁ@log can be integrated. Therefore,
RI'(Ox,L ® OCioq) = (L ® OC109)"*=" and

W(L) =v.(L® mlog)gxzo-

The fact that H (L) is a vector bundle can be deduced by a more careful study of the Sen module
Sy (L ® OCyy,) in local coordinates .

Finally, let us mention the relation with the work of Wang [ ]. Let X be a rigid analytic space
over C, admitting a liftable good reduction X over Oc, (this means that X admits a lifting over Ajn¢/ £

where & = ([e] — 1)/ ([6%] — 1)). We have the following theorem

Theorem 20.2.7 (| , Theo. 5.3]). Let @Crog denote the overconvergent Hodge-Tate period sheaf
of Wang. Leta > 1/(p — 1) and v : Xyroxee — X be the projection of sites. Then the functor
H(L) = v.(L® OC )

log

induces an equivalence from the category of a-small generalized representations to the category of
a-small Higgs bundles.

Remark 20.2.8. An a-small generalized representation of rank / is a locally free 5"\X-module L admit-
ting a lattice £° such that there is b > a + val(p) with £L°/p” =% (0% /p")' (pk is an element in mc,
depending on the ramification of a discretely valued subfield).

The way how Wang constructs the sheaf ﬁCITOg is by considering a particular lattice of the Faltings
extension provided by the lifting of X to A,, cf. [ , Coro. 2.19]. Locally on coordinates, the
ring ﬁ@f@g is nothing but the completion of a polynomial algebra to an overconvergent polydisc of
radius |o| (cf. [ , Theo. 2.27]). The a-smallness condition is a finite rank version of the relative
locally analytic condition of Definition 19.2.5, where one imposes a fixed radius of analyticity. Then,
the decompletion used by Wang in [ , §3.1] is the integral version of the decompletion provided
by Berger-Colmez axiomatic Sen theory [ ].
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21. The flag variety

In the application to Shimura varieties, in order to compute the geometric Sen operator and the Hodge-
Tate cohomology of locally analytic local systemes, it is important to first study the analogous problem
over the flag variety.

We begin with a set up of the terminology of reductive groups and their representation theory. We
recall the Bruhat decomposition of partial flag varieties, and the equivalence between G-equivariant
vector bundles of FL = P\G and P-representations, where P is a parabolic subgroup of G. Then,
we recall some properties of the category O and its relative version O°. We sketch how the BGG
complexes of finite dimensional representations of G are constructed, we follow [ ]. Finally,
we define the sheaf of twisted differential operators of Beilinson-Bernstein [ ] and we study the
Lie algebra cohomology of two g-equivariant sheaves over the analytification .#¢ of the flag variety,
namely, the sheaf C*(g, 0 ) and its dual D'(g, O z).

21.1. Conventions

Let K be a field of characteristic 0 and G a split reductive group over K. In the applications K will
be a finite extension of Q, or C,. Let B C G be a Borel subgroup and N its unipotent radical, let
T c B be a fixed maximal torus. We denote by B and N~ the oposite Borel and its unipotent radical
respectively.

Let X*(T) be the group of characters of T, and ® c X*(T) the roots of (G, T). We let ®* denote
the positive and negative roots. Let g, b, B, n*", n” and b be the Lie algebras of G, B, E, N*, N~ and
T respectively. Let h* denote the K-dual of I), we identify in the natural way X*(T) ®2 K = b*, so
that a “weight” is an element in h*, and an “algebraic weight” is an element in X*(T). By definition,
the adjoint representation of G has a weight decomposition g = ) @ @QELD n,, with each n, a 1-
dimensional K-vector space. We have n* = @aeqﬁ n,. Let X*(T)q := X*(T) ®2 Q, and X*(T)& the
cone of positive weights, we denote X*(T)* := X*(T)@ N X*(T).

Let W be the Weyl group of G, for each @ € ® we let s, € W denote the simple reflection mapping
a — —a. The Weyl group has a length function £ : W — [0, |®*|] whose value at w is defined as the
minimal length of a presentation as product of simple reflections. The Weyl group acts on weights by
the formula w(k)(¢) = k(w™'tw) for w € W and « € h*. The length of an element w € W is also equal
to {(w) = |w(®") N ®*|. Let wy € W denote the longest element of length |®*|, it has the property
that wo(®~) = @* or, equivalently, that woN*wo™' = N7, in particular w} = 1. Letp = 1 Y cqr @
be a half of the sum of the positive roots, we define the dot action of W on the weight space as
w-k:=w(k+p)—p.

Let B ¢ P c G be a parabolic subgroup and N its unipotent radical. Let M C P be a Levi factor
containing T. Let P be the opposite Parabolic with respect to M and N the unipotent radical. We
denote p, p, n, n and m for the Lie algebras of P, P,N,Nand M respectively. Let @y € © denote
the root system of (M, T), let ®j; be their positive and negative roots, and write oM = O\ Dy, Let
X*(T)KLQ be the cone of positive weights of M and X" (T)y, := X *(T)KLQ,HX *(T), notice that X *(T)& -
X*(T)&’M. Let Wy be the Weyl group of M and wyy its longest element. The quotient Wy \W has a
natural set of representatives MW C W (called the Kostant representatives) which are those of minimal
length. An element w in the Weyl group belongs to MW if and only if @}, c w(®*). The set W has an
involution given by w > woywwy, it satisfies the property £(wopwwo) = |®M| — £(w). In particular,
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21. The flag variety
wyl := womwo € MW is the longest element with £(wh) = ®@*M. We let py := 3 Yacay, @ be a half of
the sum of the positive roots of M, and write p™ = p — py1.

21.1.1. The Bruhat decomposition

Let FL := P\G be the partial flag variety. The Bruhat decomposition of FL is the decomposition in
the locally closed subschemes given by its B-orbits

FL = |_| C,,

weMw

where C,, = P\PwB is the w-Bruhat cell. Let d = dimg FL = |[0~M|, we let Z,, := C,, be the schematic
closure of C,,. The scheme Z, is written in terms of Bruhat cells as Z,, = | |,-,, C,, with < being the
Bruhat order of the Weyl group. The Bruhat stratification of FL is the decreasing filtration of closed
subschemes

0=Z4,,CcZ;C---CZy=FL

where
2= 2= | e
weMw weMw
t(w)=d—i C(w)<d-i

Notice that Z\Z;,; = || ,empy Cy.
t(w)=d—i
Given @ € ® we let N, ¢ G denote the root subgroup of @ so that n, = LieN,. As a group

scheme, N,, 1s isomorphic to the additive group G, x. The Bruhat cells have coordinates in terms of
root subgroups:

Lemma 21.1.1. The projection map G — FL induces an isomorphism of schemes over K

w(N,, N N*) = w ]_[ N, > C,

aedtnw-1p-M
where N,, = w'Nw.

Proof. By definition, C,, is the B-orbit of w. Since wITw™' = T, C,, is equal to the N*-orbit of w. The
group N7 is equal as a scheme to the product of its root subgroups in any order, one can write

N* = (P, NN*) x (N, N N*¥)
with P,, = w™'Pw. The lemma follows. O

We will also consider the complement of the Bruhat stratification, namely, for w € MW we let
Y, = [],s»C,. The subscheme Y, is open in FL containing C,, as a closed subspace. Let ¥; =
Ueaw=i Yw = U= Ci» we have a filtration by open subspaces @ = Y, C Y, C --- C ¥y = FL.

21.2. G-equivariant vector bundles over the flag variety

Given H an algebraic group over K, we denote by Repfg(H) the category of finite dimensional K-
linear representations of H. Let X be a scheme over K endowed with an action of H, we denote by
H-VBy the category of H-equivariant vector bundles (VB) over X.

Let FL* = B\G be the full flag variety of G. We have the following well known result
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21. The flag variety

Proposition 21.2.1. There is a natural equivalence of categories

Rep?lg (B) «— G-VBp.-+
V ~ GxBv
(V|[1] o Vv

where G x® V is the quotient B\(G X V) by the diagonal action, and V|, is its fiber at 1.

Remark 21.2.2. Let RepII‘(Alg(B) be the category of Ind-algebraic representations of B. The functor

of Proposition 21.2.1 extends naturally to a functor from Rep];(Alg(B) to the category of G-equivariant

quasi-coherent sheaves over FL*.

The projection map B — T induces a fully faithful functor Repfg(T) - Rep?lg(B), composing

with the functor of Proposition 21.2.1 one has the following construction

Definition 21.2.3. Let x € X*(T) be an algebraic weight, we denote by L(k) the G-equivariant line
bundle over FL*given by G x® (wy(x)K).

Remark 21.2.4. Following this conventions, the global sections of £(x) are the functions f : G — A!
such that f(bg) = wo(k)(b)f(g). In fact, an element f € I'(FL* L(k)) can be identified with a function
g — (g, f(g) € G x wy(k)K for g € G. This function must descent to the quotient G x® wy(k)K, in
other words it must satisfy

(bg, f(bg)) ~ b(g, f(2) = (bg, wo(k)(D)f(2)),

for b € B, i.e. f(bg) = wo(k)(b)f(g). Hence, if x € X*(T)* the global sections I'(FL*, L(k)) = V, is
isomorphic to the irreducible representation of highest weight «.

We can construct the sheaves £(«) in the following way. Let Tg + := N*\G be the natural T-torsor
over FL", and denote 7" : Tg+ — FL the projection map. Then 7} Oy, ., is endowed with a left
regular action of T given as ¢ *; f(g) = f(t"'g). Therefore, there is a natural isomorphism

LK) = 7 Oryy [-wo(K)w, 1.

The coherent cohomology of the G-equivariant line bundles over FL* is perfectly known by the
Borel-Weil-Bott Theorem:

Theorem 21.2.5 ([ , Cor. 5.5]). Let k € X*(T).
1. Ifthere is now € W such that w - k is dominant then RT'(FL*, L(k)) = 0.

2. Ifthereisw € W such that w-k is dominant, then such a w is unique and we have RT' (FL*, L(k)) =
Vii[—€W)], where V,,, is the irreducible representation of G of highest weight w - k.

Let P ¢ G be the parabolic subgroup, N C P its unipotent radical and M a Levi factor containing
T. Let FL = P\G be the partial flag variety. The previous constructions and statements can be
generalized to this case. Indeed, there is a natural equivalence of categories

Repp®(P) «— G-VBp
V w GxXPVv
(V|[1] o V.

Definition 21.2.6. Let k € X*(T)y, be a dominant weight for M.

1. We denote by W, the irreducible representation of M of highest weight «.
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21. The flag variety

2. We let W(«k) be the G-equivariant VB over FL given by

W) = G < Wy = G X WY, .
Remark 21.2.7. Similarly as in Remark 21.2.4, the sheaf ‘W(«) is chosen in such a way that ['(FL, ‘W(x)) =
V.. Moreover, let 7 : FL* — FL be the projection of flag varieties, one has that ,.L(k) = W(x). We
also have the following alternative construction of W (k): let Mg = N\P be the natural M-torsor over

FL and 7 : My, — FL its natural projection. The sheaf .0y, has a natural left regular action of M
given as m x; f(g) = f(m~'g). Then, there is a natural isomorphism

(W(K) = ﬁ-* ﬁMFL [_WO(K)*I]

where the isotypic part in the RHS is with respect to the Borel subgroup BN M c M.
One gets the following corollary of Theorem 21.2.5

Corollary 21.2.8. Let x € X*(T)y,.

1. If there is no w € MW such that w - k is dominant with respect to G, then RT'(FL, W(k)) = 0.

2. If there is w € MW such that w - k is dominant with respect to G, then such a w is unique and
RU(FL, W(k)) = V,,..[-t(w)].

Proof. Let k € X*(T)3; and consider the projection of flag varieties 7 : FL* — FL. Then 7 is a locally
trivial fibration with fiber FLy; = (M N B)\M the flag variety of M. By Theorem 21.2.5 we have

Rr.L(k) = W(k).

Therefore, we get that
RI'(FL, W(x)) = RT(FL*, L(«)).

Again, by the Borel-Weil-Bott theorem, if there is no w € W such that w - x is dominant for G then
the cohomology complex vanishes. Conversely, suppose that there is w € W with w - k dominant, it is
enough to show that w € MW. Indeed, we can write uniquely w = w'w” with w’ € Wy and w” € MW.
Then w” -k € X*(T)y, and w' - A = w' -y A for 4 € X*(T). Thus, by the Borel-Weil-Bott theorem
again, we must have w’ = 1 and w € MW. The corollary follows. O

21.3. The dual BGG resolution

In this section we introduce the relative BGG complexes that will be used later on to compute the
Hodge-Tate decompositions of Shimura varieties. For sake of completeness, we begin with a brief
introduction of the category O constructed from the data (g, b) of the Lie algebras of G and B. We state
some important properties of this category, and sketch the construction of the BGG complexes. Then,
we introduce the relative category OF as a full subcategory of O satisfying some finiteness properties
with respect to m = Lie M. We finish with a more geometric construction of the dual BGG resolution
via the de Rham complex of the flag variety. We follow [ ].

Given a Lie algebra t we let U(¥) denote its enveloping algebra over K, and we let Z(f) denote the
center of U(}).

Definition 21.3.1. The BGG category O is the full subcategory of Mod(U(g)) whose objects are the
modules M satisfying:

O1 M is a finitely generated U(g)-module.
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21. The flag variety

02 M is h-semisimple, that is, it has a weight decomposition

M:@Mﬂ.

Aeh

O3 M is locally n*-finite: for every v € M the space U(n*)v is finite dimensional.

The following axioms are deduced from the previous ones
O4 All weight spaces of M are finite dimensional.

O5 The set of weights I1(M) of M is contained in the union of finitely many sets of the form A — T,
where I is the additive monoid generated by ®@™.

It turns out that the category O is an abelian category satisfying very nice properties:

Theorem 21.3.2 (Ch. §1 [ 1). The category O is an abelian category which satisfies:
(a) O is a noetherian category, i.e. every module is a noetherian U(g)-module.
(b) O is closed under submodules, quotients, and finite direct sums.
(¢) If M € O and L is a finite dimensional U(g)-module, then L ® M also lies in O.
(d) If M € O, then M is Z(g)-finite.
(e) If M € O, then M is finitely generated as U(n™)-module.

Among the objects in O, the Verma modules are the first examples not arising from algebraic
representations.

Definition 21.3.3. Let A € h*. The Verma module of weight A is the induced representation
Verd() = U(9) ®u K().
We let L(1) denote the irreducible quotient of Verg(/l).

Let A € h* and v* € Ver}(2) the highest weight vector. The Poincaré-Birkhoff-Witt theorem implies
that Ver}(1) is a free U(n")-module of rank one with generator v*. The action of Z(g) on v* is given
by a character y, : Z(g) — K, called the infinitesimal character, this implies that Z(g) acts on Ver}(1)
via y, as well. Moreover, let ¢ : Z(g) — U(b) be the Harisch-Chandra homomorphism, then one has

Xi=Ao&.

The Harisch-Chandra map is an isomorphism onto U(h)", where W acts via the dot action. As a
consequence, one obtains that y,,, = y, forall 41 e h* and w € W.
For constructing the BGG decomposition we need to recall the relative left standard resolution.

Definition 21.3.4. For 0 < k < |®F| = e set Dy = U(g) ®uw /\k g/b. The relative left standard
resolution is the complex
DRY(a.b) := [D, 2% ... = D; 25 Dy

with differentials

k —_—

OUREN---N&) = Z(_l)lﬂuzz‘@fl Ao ANENNE
i=1 _ . (21.3.1)
+ Z ED"u [z, ]I NET A NEN-NE N N&,

1<i<j<k

where z; is any lift of & € g/b to g.
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21. The flag variety

Remark 21.3.5. 1t will be useful to write the terms of DR" (g, b) in a different order, namely,

k
Dy = /\ b\g ®uw) U(9)

with differentials

k
HEN - NE®W =Y (D& NEN £ @z
i=1

+ Z (“D)E N NENNEN-NE A2zl ®u.

I<i<j<k

This is the relative right standard resolution, using the involution mapping X — —X for X € g, it can
be seen as a left U(g)-complex which is naturally isomorphic to the standard resolution of Definition
21.3.4.

Proposition 21.3.6 ( Ch. §9 [ 1). Let € : Dy — K be the augmentation map. Then € induces a
quasi-isomorphism DR"(g,b) =~ K.

Definition 21.3.7. Let 1 € X*(T)* be a dominant weight, the BGG-resolution of V), is the complex
BGG(g, b, 1) obtained by taking the (generalized) y,-eigenspace with respect to Z(g) of the complex
V, ®x DR (g, b), where the action of g in the latter is the diagonal action.

Theorem 21.3.8 (Bernstein-Gelfand-Gelfand). The complex BGG(g, b, A) is a direct summand of
V1 ®x DRY(g,b) and a resolution of V. Moreover, it is of the form

BGG(g,b, 4) = [Verd(wp - ) = -+ = ) Verd(w- 1) > -+ = Verl(D)|.
L(w)=k
Let us now introduce the relative category O and the relative BGG resolution.
Definition 21.3.9. The category O is the full subcategory of Mod(U(g)) of objects M satisfying
OP1 M is a finitely generated U(g)-module.

O"2 As U(m)-module, M is a semisimple representation whose irreducible factors are finite dimen-
sional m-modules.

O3 M is locally n-finite.
One can also describe the category OF in terms of O:

Proposition 21.3.10 (Ch. §9.2 [ 1. Let M € O has set of weights ITI(M). The following are
equivalent.

(@) M is locally ny, = m N ™ -finite.

(b) Forall w € Wy and u € TI(M), we have dimg M* = dimg M*®,
(c) The set II(M) is stable under Wy.

(d) MeO".

Furthermore, the following holds

1. OF is closed under finite direct sums, submodules, quotients and extensions in O.
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21. The flag variety

2. O is stable under tensor of finitely dimensional representations of U(g).

3. If A € X*(T), and the simple module L(A) lies in O, then A € X*(T)y

The relative version of the Verma modules is the following:

Definition 21.3.11. Let 4 € X*(T)y; and let W, be the irreducible representation of M of highest
weight 4. We define the parabolic Verma module as the induction

Verjy(A) := U(8) ®up) Wa.

In the relative case we also have a standard resolution, namely, for 0 < k < |®g| = d let Di =
U(g) Qu) /\k a/p, then the de relative standard complex is

34
DRY(g,p) = [D), = --- — D]

with differentials given by the formula (21.3.1).

Let 4 € X*(T)" be a dominant weight of G and V), its irreducible representation of highest weight
A. The relative BGG complex of weight A is the complex obtained from V,; ®x DR" (g, p) by taking
(generalized) y,-eigenspaces. We have the following theorem of Lepowsky and Rocha

Theorem 21.3.12 ( | , 1 ). Let A € X*(T)*. Then the BGG complex BGG(g, v, A) is direct
summand of DR (g, p) and a resolution of V,. Moreover, it has the form

BGG(g, p. D) = [Verdwd' - ) > -+ = @ Verlw- 1) > -+ > Verl(1)].
weMw
E(w)=k

In the applications to the Hodge-Tate decomposition of Shimura varieties, we shall use the admis-
sible dual of the relative BGG resolution.

Definition 21.3.13. Let M € O, the admissible dual of M is the subvector space M¥ C Homg(M, K)
of h-finite vectors. In other words, if M = @ et M* is the weight decomposition of M, then M"Y =

@ e Homg (M4, K). We endow M" with the g-action

(XH(m) = f(—Xm)
forXeg, feM'andme M.

Lemma 21.3.14. Let M € O and let M" be its admissible dual, then the action of w~ on M" is locally
finite. Moreover, the functor M — M" is exact.

Proof. The exactness of the functor is clear as the weight spaces of M are finite dimensional. The
finiteness of the action of n~ follows from O5. i

Remark 21.3.15. Itis not hard to prove that M" belongs to the category O of the opposite Borel b, say
O. Moreover, the functor M — M" induces an antiequivalence of categories O°? — O.

Proposition 21.3.16. Ler M € O and suppose that the weight decomposition of M is algebraic, i.e.
M* # 0 implies A € X*(T). Then the action of b on M" integrates to an Ind-algebraic action of

B=NT.

Proof. As n” is a split unipotent algebra over a field of characteristic 0, a locally finite representation
of n” integrates to an Ind-algebraic representation of N™. The fact that the weights of M are algebraic
implies that the action can be actually extended to B. O
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21. The flag variety

Corollary 21.3.17. Let M € O" and suppose that the m-decomposition of M is algebraic. Then the
action of p on M" integrates to an action of P.

Proof. By Proposition 21.3.16, the action of 7z extends to N. As the m-decomposition is algebraic one
verifies that the action of D on MY can be extend to an action of P. O

Definition 21.3.18. Let 4 € X*(T)" be a dominant weight of G. The relative dual BGG resolution of
VY is the (P, g)-resolution V; — BGG" (g, p, A), where

BGG"(g, », ) = | Verl(1)" — -+ = ) Verd(w- )" — Verlwh' - 1)” .
weMw
£(w)=k
The dual BGG resolution can be constructed in a slightly more geometric way. Let FL. = P\G be
the flag variety, and consider the de Rham complex

DR(FL) =[G 5 QL — -+ — Q.
We have the following proposition

Proposition 21.3.19. Consider the big cell C' = P\PP = P\PN c FL. Then
DR(FL)(C') = (DR"(g, »))".
Proof. By Remark 21.3.5 we have
DRY(g,p) = [Dg = --- = Dy]

with D, = /\k pP\g ®um U(g). On the other hand, the global sections of Q{:{L over C! are

k
Qf(CY) = Or(CH ek /\(P\9)’
where we see an element w € (p\g)" as the differential form acting on a vector field X, € Tg (C') as
w(X)(x) = wAE)EA (X)),

with 72(x) € N being the unique representative of x € C'. In other words, given x € C' the
fiber of tangent space Trp at x is given by 7(x)"'pn(x)\g, thus a vector field X € T (C') satisfies
r_l(x)%xﬁ_l(x) € p\g and the pairing w(X) is well defined. More explicitly, we have a natural isomor-
phism given by right derivations O ® 1 = Tg|-1. Let X € 1 = p\g and define the vector bundle over
Cl
X, :=n(x) "' Xn(x) € Op ®T,
then w(¥)(x) = w@(x)¥n(x)"") = w(X) is constant over C'.
Consider the pairing for 0 < k < d,

Gt QL (CHYXx Dy = K
(fOwW,&E N NE®U) - w(é A+ ANEN(u*, (1),

where u x; f is the right regular action. Then (-, -); is a g-equivariant perfect pairing for the admissible
dual:
QL (ChH =Dy,

One easily checks that the the dual of d; is the differential d : Qf (C') — Qf'(C"), this shows the
proposition. O
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21. The flag variety

Corollary 21.3.20. Let A € X*(T)* be a dominant weight. The dual BGG resolution BGG" (g, p, 1)
of V) is equal to the Z(8) = x-wy-€igenspace of the de Rham complex V) ®x DR(FL)(C"). Equiva-
lently, let VY ®k Oy, be the G-equivariant vector bundle with integrable connexion V over FL defined
by VY. Then

BGG"(g, p, 1) = DR(VY ®k O, V)(C')EOH 0w,

Proof. This follows by Proposition 21.3.19 and the construction of the BGG complex in Definition
21.3.11. O

Remark 21.3.21. Letk € X*(T)y;, as P-module Velrg(K)V is isomorphic to W ® 0(C 1. More precisely,
we have an isomorphism of p-modules Verg(K) = Very(1) ® W,, taking duals one has Verf,(K)v =

W/ ® Verj(1)" as P-modules. On the other hand, there is a natural g-equivariant pairing
() oCHeVerd(l) » K

given by (f, u) = t(u)*, f(1) where ¢ : U(g) — U(g) is the involution sending X — —X for X € g. This
pairing induces an isomorphism of g-modules Ver}(1)" = &/(C 1) which integrates to an isomorphism

of (E g)-modules.

Now, let (CY)=! c O(C") be the subspace of polynomials of degree < 1 given by the coordinates
of the root groups N,. For n € N, €(C")*" = Sym" 0(C")*! is the space of polynomials of degree
< n, whence 0(C") = li_r)nn Sym”" &(C")='. We have a short exact sequence of P-modules

0> K- oCHs -n’" -0,

the action of p is trivial on K (as it its just given by derivations on &'(C')), the sequence is split for
the action of the Levi m, T acts on ¢(C")=' through the projection onto i1’ and the derivation map by
considering ' c O0(C"). If n is abelian, the action of T on ¢(C")=! factors through the trace map

TeOC)! > ien - K c o(ChH=,
Summarizing, the dual BGG resolution of V) is isomorphic as P-module to

BGG"(g, 1. ) = [Wy @ O(C1) = -+ = (D Wy, 0 O(CY) > - Wiy, ®k O(CH).
weMw
t(w)=k

We are actually interested in the dual BGG resolution of VAV seen as a (P, g)-module, for this, we
need to understand the combinatorics of the Weyl groups and the Kostant representatives when M
is considered as a quotient of P. First of all, ‘we want to keep the same Borel subgroup of the Levi,
namely, Byy = M N B. Thus, we will take B := wg‘ng"_1 c P as a Borel subgroup. Then, the

possitive roots with respect to B are ®* = oM || @y Let MW" denote the Kostant representatives
with respect to the opposite parabolic, one verifies that

MWOP = {WO,MWWO,M twe MW}
The dot action of an element w € W with respect to B is given by
w A=w@+pm—p" —pm + oM.

Let V; be the irreducible representation of G of highest weight A with respect to B. Then, the highest
weight with respect to B is equal to w)'(1). Finally, the open Bruhat cell of FL = P\G associated

to P is equal to C = P\PP = P\PN. One has the following corollary
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21. The flag variety

Corollary 21.3.22. There is a quasi isomorphism of (P, g)-modules V) ~ BGG'(g,p, wgd(/l)). More-
over, we have that

_ —1 —1 —1
BGG'(g, ¥, ng(/l)) = [W.y®O(C ) —> - — @ W cwoap @ O(C ) — -+ ng/l-(—wo(/l))‘8 o(C)).
weMw
t(w)=k

Proof. We have W,/ = W_,, ... Thus, by Remark 21.3.21 it is enough to show that

—womWomwwom -~ Wol (D) = w - (=wo(A)).

This follows from
—womWonWwon -~ WhH(A) = —wom(Womwwo(d) + wonw(—pm — p™) — pm + p™)
= w(=wo(D) + w(p) + —py — P

= w(=wo(d) +p) —p
=w - (—wo()).

21.4. D-modules over the flag variety

In this section, we study the quasi-coherent sheaf of germs at 1 of locally analytic functions of G with
values in & z. Later on, in Chapters 22 and 23, we shall translate some Lie algebra cohomology com-
putations of this sheaf into their analogue for the locally analytic vectors of the completed structural
sheaf of the infinite level Shimura variety.

21.4.1. The sheaf of twisted differential operators
Definition 21.4.1. We define the following G-equivariant subbundles of O ® g

1. We let p° denote the subbundle of T ® g consisting on the vector fields X € O ® g such that
X, € p, = Lie P, for x € FL, where P, is the Parabolic defined by the point x € FL.

2. We let 1 denote the subbundle of T ® g consisting on the vector fields X € Of_ ® g such that
X, € n, = Lie N, for x € FL, where N, is the unipotent radical of P,.

3. We let m° denote the quotient p°/n°.

Remark 21.4.2. The sheaves p° and n’ can be constructed via the functor of Proposition 21.2.1. In-
deed, the Lie algebras p and n are sub P-representations of g for the adjoint action of P. Then

"’ =GxPpandn’ =G xPn.

Note that the quotient (O ® g)/p° is naturally isomorphic to the tangent space of FL.
The sheaf O ® g has a natural structure of Lie algebroid over FL with bracket

[fOX. [ ®X]=fXx )X - (X % )X+ ff @[X,X'].

Lemma 21.4.3. The subbundles p° and n° are ideals of O ® g.
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21. The flag variety

Proof. Notice that the action of O ® g on O by derivations
(feX)xy [ = f(X %2 f)
factors through a morphism of Lie algebroids
Op®8 — Tr (21.4.1)

with Ty the tangent bundle of FL. But the kernel of (21.4.1) is p°, this implies that p° is an ideal of
ﬁFL ® g.
On the other hand, the left regular action of G on N\G induces a morphism of Lie algebroids

ﬁN\G ®qg— TN\G- (2142)

But n° can be recovered as the M-invariants of the kernel of (21.4.2) for the left regular action. This
implies that n” is an ideal of Jp ® q. O

Corollary 21.4.4. The sheaf of differential operators D of FL is naturally isomorphic to the quotient

OrL ® U(9)/(OpL ® U(9))p’.
Proof. This follows by Lemma 21.4.3 and the fact that the map (21.4.1) is surjective. O

Definition 21.4.5. We define the sheaf of universal twisted differential operators of FL to be the
algebra .
D= 0 ® U®)/(0r ® U’

Remark 21.4.6. Notice that D can be recovered as the M-invariant sections for the left regular action
of the sheaf of differential operators of N\G.

Let U(m°) be the enveloping algebra of m® seen as a Lie algebra over Oy, it is contained naturally
in O. If P = B is a Borel subgroup, then m® = B° is the horizontal Cartan subalgebra of 0 ® g and
one has U(h) = ['(FL, U(H")). In general, we have the following result which is a consequence of a
theorem of Kostant [ , Theo. 0.13]

Proposition 21.4.7. Let Z(m) be the center of the enveloping algebra of m, and let E C U(g) be
the vector space generated by all the powers x* of nilpotent elements x € m. Let Z(m®) and & be
the G-equivariant vector bundles over FL obtained from the adjoint action of M. Then we have a
decomposition of G-equivariant Z(m°)-modules

Um®) = Zm°) ®,, &.
In particular, one has T(FL, U(m")) = Z(m) ® ['(FL, &).

Remark 21.4.8. Kostant’s theorem also provides the decomposition of & as direct sum of G-equivariant
vector bundles, as well as the degrees of the isotypic parts of the symmetric algebra Sym*(m®) =

grrU(mO).

Remark 21.4.9. In the application to Shimura varieties, the previous proposition will translate to the

fact that there exists an horizontal action of Z(m) on the locally analytic completed cohomology

(actually one would have an action of the global sections of U(m")). As for the case of the modular

curve of Lue Pan, this action will be related with the Hodge-Tate weights of the Galois representation.

Remark 21.4.10. The algebra D is difficult to study directly; it is an algebraic interpolation of distri-
bution algebras attached to the G-equivariant vector bundles over FL arising from M-representations.
A way to overcome this problem is to work with smaller twisted distribution algebras as in the the-
ory of Beilinson-Bernstein [ ]. More precisely, let 4 : U(m) — K be a character and define
Dy = A®ywmwy D, then D, is a twisted sheaf of differential operators which has been studied by
Soergel [ ], Holland and Polo [ ], et. al, proving for example a localization theorem for
antidominant regular weights.
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21.4.2. Locally analytic sheaves over the flag variety

From now on we assume that G is a reductive group over Q, and that K/Q, is a complete nonar-
chimedean extension for which G is split. We let .#¢ be the analytification of FL = P\Gg as an adic
space over Spa(K,Og). We assume in addition that n = Lie N is abelian (this shall be the case for
Shimura varieties). In the rest of the chapter we will only work in the analytic site of adic spaces.

Notation 4. Let H be an affine algebraic group over Spec K, we denote in calligraphic font H its
analytification to an adic space over Spa(K,Ok). Suppose that H has an integral model H° over
Spec Ok. We denote by H° C H the open subgroup whose value at an affinoid pair (R, R*) is

HO(R,R") = H'(R").
Let € > 0 be a rational number, we let H(e) denote the open subgroup of H whose value at (R, R*) is
H(e) = ker(H(R") — H'(R*/p9)),

where p© € C, is an element with valuation |p€| = |pl©.

Let g = Lie G, and let C'(g, K) be the germs at 1 of locally analytic functions of G with values in
K. We consider the following sheaf over .#¢,,

Clll(g’ ﬁ?‘\f) = Clll(g’ K)ZéKﬁgff

Equivalently, let ¢ : F€ — Z XG be the unit section, then C*(g, O z) = 17 O 7 1g.
Dually, let gy C g be a lattice such that [gg, o] C pgo. Consider the following completion of the
enveloping algebra

D(g, O5) = lim D(gs, ) = lim (e, Q,)Ba, O

h—oo h—oo

where D(g;, Q) are the analytic distribution algebras of Definition 17.2.7.

Definition 21.4.11. Let n° € 0z ® g be the subbundle of Definition 21.4.1. We define the locally
analytic twisted sheaf of differential operators to be the algebra

@la = Z)la(g, O 7) QuU(ng) I=1 Buao) @la(g, O 7).

For h > 0 let us also define D'~ := D(8h, O 7¢) ®uoy 1. In particular Dl = l(ith Ph-an,

Let b be the Lie algebra of the Borel subgroup, and 2 € h*. The goal of the following sections is to
provide a better description of the 9'-modules

RT(m} | X b,,,C(a, O5) ® K(=A)s,)

Rr(n‘lm, D', Oz) ®5(b*2) Q). (21.4.3)
Remark 21.4.12. Unfortunately, we are not able to give a complete answer to this question, and
only some bounds in terms of the Bruhat stratification are obtained, as well as the highest weight
subquotients that one expects to appear in the Hodge-Tate decompositions. In order to provide a
detailed description of (21.4.3), it would be useful to translate this problem in terms of twisted Harish-
Chandra sheaves and Whittaker modules, cf. [ ]. Indeed, in this theory one has avaliable an
explicit description of the irreducible objects, and any twisted Harish-Chandra sheaf is an extension
of those.

As a first step to describe (21.4.3), let us show that the n’-cohomology is concentrated in degree 0.
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Proposition 21.4.13. We have RT(n), , C*(3, O.7)) = C"(g, 050157, Dually, RU(S, |, D(g, Oz)) =

D @, detn®[~d)].
Moreover, let V C F€ be an affinoid such that 2|y is trivial and has a complement in O 7 ® g given
by a parabolic subgroup v’ C gk. Then

D(g, O0) = lim D(m)&xD(py) and  C(g, Oy) = lim D(y) & D(py)", (21.4.4)
h—oo h—oo

where the sheaves Z)(ng) and Z)(p;l) are analytic distributions algebras of n° and p’ respectively,
obtained by completing the enveloping algebras with respect to some lattices ng and p;) of W’ and '
respectively. The duals of (21.4.4) are with respect to OY.

Proof. Let us first prove (21.4.4). Let n) c n° be a &, -lattice given by a fixed basis (Xi,.... X,
Since 1 is abelian and 1° is & #-linear, we have [1’,n°] = 0. Thus, we can define the distribution
algebras (which are nothing but completions of the symmetric algebra of n%)

DY) := {Z aoX : ay € Oy and supfla,|p"} < o).

aeN
aeNd

Equivalently we can define

ya 1
DY) = 1’[ [ﬁ; ﬁ'a'] [1—9]

aeN

endowed with the product topology. On the other hand, let p;) C p be a lattice satisfying [p;), pz)] C
pp,- Then we can define distribution algebras D(p,) as in Definition 17.2.7. Let D"(g,K) =
C'(g, K)", by the Poincaré-Birkhoff-Witt theorem we get that

D(g, KY®Oy = lim D)@k D(p),)-

h—o0

Taking Oy -duals one finds that

(0. O50) = lim D) B D(v))"- (21.4.5)
h—oco

Finally, let gy C g be a lattice satisfying [g9, go] C pgo. One also has

C(g, Oy) = lim D(g;) @k Oy. (21.4.6)
h—oo

Since the direct systems of lattices { phng op'0)® D;)}h>o and {p" 0} ® 9o} -0 are cofinal in each other,
one has an isomorphism between the direct systems of the colimits (21.4.5) and (21.4.6). Taking
n’-cohomology one obtains that

RU(’, D() ' ®xD(v;)") = RHomg, (Oy &0 D)@k D(p,,), O)
= D(p,) ®kOy.
By taking limits as 4 — oo one has
RIS, |, C"(g, Oy)) = C"(s, O )"~
Dually, we have
RT(W, |, D"(g, O)) = (18}, D, Oy)) ® detn®"
= D" @ det "®V[~d].
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21. The flag variety

Remark 21.4.14. The Poincaré-Birkhoff-Witt theorem also implies that
RL(by,, C(8, O5) ® K(=2)) = C(g, O )"~
D8, Oz0) @y A = D3, O7) Quey A.

In particular, the difficulty of computing (21.4.3) arises from the relation between the derivations of
n® and b.

21.4.3. b-cohomology

The next step is the study of the b,,-cohomology of Cl(g, O gzg)naw =0 and the b,,-homology of D@
detn®". The heuristics behind the computations are the following: the Lie algebra b is “vertical” while
n® is “horizontal” over .Z¢. This means that b is constant and acts by derivations on &z, while n° is
O z;-linear and moves according to the points of .#¢. Therefore, when comparing the cohomologies
of n° and b, one expects that their difference depend on the relative position of n° with respect to b.
This last is parametrized precisely by the Bruhat stratification of .%¢.

Fix integral models H° over Ok of the algebraic groups H = Gg,P,M, etc. Let us recall that
N* c B and N~ c B are the unipotent radicals of the Borel subgroups, while N ¢ P and N c P are
the unipotent radicals of the parabolics'. Given a € @, we denote by N, C Gk the a-root subgroup
so that Lie N, = 1,. Let w € MW and j,, : C,, € .Z¢ be the w-Bruhat cell, we have an isomorphism of
adic spaces

= wNT AW INW).

Definition 21.4.15. For € > 0 define the following family of overconvergent neighbourhoods of C,,:
Cu(€) = Cy - IN"(&) N W 'NW) =2 wN" Nw 'AW)N~(€) N w™'Nw),

where N7 (e) ¢ N~ is the affinoid polydisc of radius p~©. Given 6 > 0 let N*(-0) € N* be the
affinoid polydisc of radius p°. We define the following affinoid subsapces

C,(00,8) = wIN*(=8) N w™'Nw)
C,(€,6) = wINT(=8) N w ' NwWYN~(6) N w™ ' Nw).
We also let .#,, denote the ideal O, ., defining C,,.

Remark 21.4.16. The family of affinoids {C,,(€, 0)}cs-0 satisfies the hypothesis of Lemma 18.1.4. This
will be used later on to relate certain cohomologies with compact or closed supports over the infinite
level Shimura variety, with the cohomologies with supports of higher Coleman theory.

The following definition is motivated from the relation between n° and n* in the neighbourhoods
C,(e).

Definition 21.4.17. Let us identify C,(6) = wN* N w Nw)(N~(e) N w'Nw), and write x =
wnt(x)n~(x) with n*(x) € N*Nnw'Nw and n(x) € N () N w!'Nw for x € C,(¢). Letw € ®
and X, € n, a basis, we define the following vector fields over C,,(¢)

X, (x) 1= (wn* (0) " Xown™ (x)
X,(%) := (wn (O)n~ ()" X, wnt (0n™ (x).

Since n*(x) € N*, one easily verifies that

. _
Oco®n' = (P OcoXa and e = P Oc,0¥e

aew(d*) aed+M

Let us define the following subbundles of O, ® b:

ITo justify this non standard notation, note that Lie N* = n* and that Lie N = n.
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21. The flag variety

1. n = @QEQ)+~MﬁW(®+) ﬁcw(e)%a.

_+ p—
2. nW - @(IECD_’MQW(@+) ﬁcw(f)%(l

3. Let by be the Borel subalgebra of m, we let by, be the subbundle of O, ® b whose fiber at
x1is

=+

b (x) = (wn* (x) ™ bywn™ (x).
4. We will denote p := it ® by, and P, := T, & by,
Remark 21.4.18. Note that O¢,, ® b = 1! @ by, ® ;. Moreover, since n*(x) € N* N w™'Nw one
has T_I:—V = ﬁCW(e) ® (n+ N W_lﬁW).

Lemma 21.4.19. We have n', c '’ + %, ® g and v}, c p°® .#, ® g. Let j, : C, C C,(€) be the
inclusion, then jin!, = (Oc, @ n*) N jin® and ji pt = (Oc, ®b) N jip°.

Proof. We can write

X, = (WX ()
= X, + [logn” (x), X,] + O((log n”(0))*),
where log is the inverse of the exponential map expg — G. But the coefficients of log n™(x) in any
basis of g generate the ideal .#,, this implies the first statement of the lemma.

Taking pullbacks to C,, one sees that X, = X, mod .#, for all @ € ®. The second part of the
lemma follows by definition of 11}, and p;, and the fact that @y, C w(®™). ]

Using the previous lemma one deduces the following vanishing of b-(co)homology.

Lemma 21.4.20. The following hold

1. Let € > 0, the complex RI(b,,, C"(g, ﬁcw(f))n(l'ﬁ:o ® K(—A)) is concentrated in degrees [0,d —
{(w)]. Similarly, the complex (Z)Z“ICW(E) ® detn®Y) ®fj(b*2) A is concentrated in degrees [—d +
{(w),0].

2. The cohomology group H‘")(b,,, C"(q, ﬁ’cw(e))nngo) has support in C,,. Similarly, the ho-
mology group Hy_ ) (Dxyr DIc, ) ® detn®Y ® K(—A)y,) has support in C,,.

Proof. Let us consider

0+ ._ ¥ 0,— ._ X
nw+ = @ ﬁcw(e)%a and n, = @ ﬁcw(e)%a

acd+Mny(d+) acd+Mny(d-)

so that 10|¢, o = 1" @1l . Write W = D Oc,0Xe C Oc,e ® g, then

ae(@=-MUDy)NW(D")
ﬁCW(e) g = TI?V’_ eWwWe ﬁcw(g) ®Db.
The Poincaré-Birkhoff-Witt theorem implies that

D"(8, Oc,0) = lim D@} )@, DW)8x D(by)

h—oo

C"(g, Oc,0) = li_r)n(D(n?;,;)@?@w@@(Wh)§Kﬂ(bh))v

h—o0
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21. The flag variety

where we take completions with respect to the lattices provided by the basis X, and X,, and duals
with respect to O¢, (). Therefore

IIO = a
RT(b,,, (8, Oc,)"™13 ™ ® K(=A)) = RT (b, x 1, C"(a, Oc, ) ® K(-2))
= lim RT(b,, X 15, (D, )@D(W)@D(by))” ® K(=))

h—oo
= lim RT3, . (18,0 D01,y @D(W)BD(by) @i K(A))Y)
h—oo
0- _ _
= RT(n)  C1(g, O, )13 "™,
(21.4.7)
Similarly, one finds that
(D¢, (o ® det 1Y) ®§,(b*2) 1=1e} ooy (1 8y (D“(g, O, ) ® det ™) @y, ) D). (21.4.8)

But n3:+ is an O, () -vector bundle of rank d—£¢(w). One obtains part (1) by taking the Koszul complex.

To prove part (2), recall that Y,, = | |,,,, C, is an open subspace of .#¢ containing C,, as a closed
subspace. Lemma 1 of [ , §I] implies that C,,(¢) C Y, for € > 0. Indeed, it implies that the
opposite Schubert variety X* = C* with C* = P\PwB is contained in Y,,, cf. Lemma 3.12 of [ ].
This shows that C,,(e)\C,, € Y,,\C,, is contained in an union of Bruhat cells C, with £(v) > £(w). In
particular, the restriction of the complexes of part (1) to C,,(¢)\C,, are concentrated in cohomological
degrees < d — {(w) (resp. homological degrees < d — £(w)). This proves the lemma. O

For computations, it will be convenient to take a change of variables which will move the actions
of n° and b to the same side. Consider the map

Y FUXG —> FLXG

(21.4.9)
(x,8) = (xg,9).

The following lemma describes how the x-actions on &z xg change after applying ‘P’

Lemma 21.4.21. Let X € Og45 ®q, 8, X € gand f € Ogxg. Define ¥.(X)(.q) = g“%(xg-l,g)g, then
Y.(X) € Ozrng ® 5, W if and only if X € Ozrxg ®¢ 5, n°. Moreover

1. WX %13 f) = =V.(X) % P (f),
2. V(X *,; f) = X %3 P(f).
Proof. Let X be a vector field in 0z vg ® g satisfying X, 4 € n%(x) = n, for all (x,g) € X X G. Then,
lI’>i<(%)(x,g) = g_lx(xg’l,g)g € g_lnnglg =My,

proving that ¥.(X) € O zxg ®0 ., n°. The converse is proven in the same way.
Finally, one directly computes (1) and (2):

(X %13 )X, 8) = (X x5 xg™,g)

d _

= d_llt:Of(xg : eXp(t%(xg’l,g))’ eXp(_tx(xg",g))g)
d

= d_tlt:OlP*(f)(X, exp(_t%(xg’l,g))g)

d
= Elt:OlP*(f)()@ 8 exp(_t\P*(%)(x,g)))
= _\P*(%) *) \Ij*(f)(x’ g)
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21. The flag variety

(X *y (X, 8) = (X %2 f)(xg™", 8)
d
= d—tlzzof(Xg_‘,geXp(tX))
d
= o f(xexp(X)(g exp(tX))™", g exp(tX))

d
= E":OT*( Fxexp(rX), g exp(tX))
=X *23 \P*(f)(x’ g)

m]
n(l =0 nd_=0 112 =0
Corollary 21.4.22. We have ¥.(0 %);g )=05.5=0 ﬂzig )

Proof. The first equality follows directly from the previous Lemma. The second holds since n° is
O zp-linear. |

What the previous lemma achieves is to transport the left regular action of n° to the right regular
action. Notice that the subspace .F#¢x1 C Z#€XG is invariant under ¥. Thus, we have induced
quasi-isomorphisms

RT(b,,,C"(g, 07)"*15° ® K(~1)) = RT(b,,,, C(a, O50)" ™" & K(~1))

=~ 0. L Y. = 0, L
(D @ detn™) &), ) 1 — (D @ detn™) &, 4.

In the equations (21.4.7) and (21.4.8) we have first computed b-cohomology and then n’-cohomology.
If we reverse the order of computations, one deduces the following lemma

Lemma 21.4.23. Let € > 0, we have quasi-isomorphisms

n) =
RL(by,,, C(g, Oc ) ™23~ @ K(=A)) =

0 =07 =1 d 0 o _ 1 d
[C(8, Ocy @)™ 7237 5 (C(8, Oci0) ™7 @)™ S

J o d—{(w) .,
RN (Cla(g, ﬁcw(e))ﬂ*zézo ® /\ n:—v,\/)pw,*z’3=/1]

concentrated in cohomological degrees [0,d — {((w)], and

(D", ® detn™) ®yq,, ) A =
d—t(w) ) d—E(w)-1 J
=l 0.v + ~la 0,v +
[(D“®@detn™’ ® /\ n,) ®U@*2)S) A= (D" @detn™" ® /\ n,) ®U@;,*23) A—

d —_—
4 (Dla ® det no’v) ®U( ) /l

—+
pw,*2’3

concentrated in cohomological degrees [{(w) — d, 0].

Remark 21.4.24. The duality between Lie algebra homology and cohomology provides and isomor-
phism of sheaves

Homg,, ., (Haton(Bxy» D @det 1™ @ K(=)), Oc, o) = H ' (b,,, C"(g, ﬁCW(E))“Qm “@detn’ @ K(—1)).
(21.4.10)

—_~ no
Thus, instead of studying the homology of D"®det n>" we can study the cohomology of C*(g, O¢, (o) *37'®

1.
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21. The flag variety

By Lemma 21.4.19, the differentials d' : V; — V. of the Koszul complexes of Lemma 21.4.23
have image in .%, V.., N kerd™'. The highest weight vector subquotients of C*(g, Oc, ) are con-
structed as follows:

Proposition 21.4.25. We have natural surjective maps

nd_ =
Hd—f(w)(b*w Cla( 8, 0c.)) 3 =0 ® K(=2)) »

(Cla(g ﬁc )“22’3 :0’5;:,*2'3 :W—] (W'/1+2pM)) (21 .4. 1 1)
H*(b,,,,C(a, Oc,0)"" ™ ® detn® @ K(=1)) »
’ o . » (21.4.12)
(C1(g, Oe,)"23™0)Prraa ™ 040
where pM = p — py is a half of the sum of the roots of @M,
Proof. By Lemma 21.4.23 we have
- - d—L(w)-1 .,
H ) (b,,,,C(9, Oc, )™ ® K(=1) = coker[(C"(s, Oc,0)™» " ®  \ ni¥) =

d—t(w)
%,,=0 P, .=
(Cla(g’ ﬁcw(f))n > ® /\ TI\’-'\—/’V))]p 23 .
0 _
By Lemma 21.4.19, 1, C n°+.%, ®g, this implies that the image of d is contained in C"(g, .%,)"*3 ' ®
AT 1Y and that the cohomology admits a surjective map
d—L(w)

H"(b,,,,C*(g, ﬁcw(e))ngz'3 ~® K(-1)) » (C(, ﬁcw)n(iz’3 ) /\ TI:;’V)B':’*“ -,

Note that the algebra P, N O, ® n* acts nilpotently on the basis {¥, : @ € w(®*)} of O, ® n* via the
adjoint representation. Consider the short exact sequence

0>, N0, " — O, @n" -1, — 0,

then A“7“® n" is a rank 1 subbundle of O-, ® AY ‘™ n*V stable under the action of p.,, and has
a generator killed by p,, N O, ® n*, namely A,cq+Mawo+) X.. Furthermore, A nhY has weight
—X = = Dgew-l(@Mne+ @. This shows that

d—Lw) .
(C(g, 0c,)™ ™ ® [\ e = (C(y, O, ) a0
But y = w™(wp + p — 2pm) and
A+x =wlwd+wp—p+20M)
=wlw-1+20M)

where pM = p — py. This proves (21.4.11).
To prove (2), by the same argument as before, we have a surjective map

H0) b, Cl(g, Oc,0)™ ™ @ detn® ® K(-1)) = (C(g, Oc,)"™>3™° @ detn®)™+25~ (21 4.13)

But detn|¢, ¢ = O, v where v : C,,(€) — detn is the constant function mapping to a fixed non-zero
vector. Therefore, for X € b one has X x, v = 2w~ (o™M)(X). Then, the RHS of (21.4.13) is equal to

Cla(g, Oc )naz,a =0.Byx, , =X =207" (™) .
w

Since A + y + 2w~ pM = w=l(w - 1) we are done. |
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21. The flag variety

Taking pullbacks of (21.4.11) and (21.4.12) by ¥ : #{ XG — F#{ XG, one obtains maps of com-
plexes
RU(, | X b,,,C"(a, Oc,0) ® K(=2)) —
Cl(g, Oyriie, )™= D eow) - d)
(21.4.14)
RU(n, | X by,,C(g, Oc, o) ® detn’ ® K(-1)) >

nd  =0,by,=w" (-
(Cl(g, Ogore, ) 13~ p(w) — d,

where ¥~'(C,,) c .Z xG is a twisted Bruhat cell.

Remark 21.4.26. The maps (21.4.11) and (21.4.12) are independent of €; they factor through the
colimit as € — co. One has an isomorphism of inverse sistems

(P (Cule,6) X GMNey = {Ciul€,6) X G(Y))ey

for any ¢ > 0. This shows that the arrows (21.4.14) are well defined.

The RHS of the equations (21.4.14) can be computed as functions of an overconvergent torsor over
C..(6). We need some notation, let Mz := N\Gk be the natural M-torsor over .#¢, we define the
following overconvergent torsors

Definition 21.4.27. 1. For vy > 0 consider M(y)-torsor over C,,(€)

pr,, : My.z(y) := NO\P@WN' nw™ 'Nw)N~(e) N w™ Nw)
— C(€) = PO\PHIWNT N w 'Nw)N~(6) N w ' Nw).

Let M' = {M(y)},- be the overconvergent neighbourhood of 1 in M. We let ij PR
{M,, 7¢(¥)}y- denote the overconvergent torsor over C,,(€).

2. We set C(M,, 7(¥)) := pr,,.(Om, 5)- Taking colimits as y — oo we define C(ij, )
li_r)ny_m CM,. 7c(y)).

3. We set D(M,, z(y)) := C(M,, 2(y))", where the dual is as sheaves over O¢, (. Taking limits
as y — oo we define Z)(ML ) = 121 DM, z(y)).
> y—00

Remark 21.4.28. Note that, locally on affinoids of C,,(€), the torsor M(y) admits a right overconver-
gent action of G', and a left action of M(y). These translate into a locally analytic right (resp. left)
regular action of g (resp. m) on the sheaves C (ij, ) and D(ML’W). We denote these actions by g,,
and m,, respectively.

Proposition 21.4.29. Let by = Lie M N B be the Lie algebra of the Borel subgroup of M. We have a
g-equivariant isomorphism of sheaves over C,,(€)

Cla(g’ ﬁly_l(CW))ngm:O,b*z:w’l)( — C(MT [)DM,*|=){’ (21415)

w,.Z
where the first term is endowed with the g, ,-action, and the second term with the g,,-action.

Proof. Let G' = {G(¥)},>0 be the overconvergent neighbourhood of the identity on G and let CL =
{C,,(€)}e. Over the affinoid subspaces C,, (¢, 6) C C,,(€) we have an action of G(y) for some y > 0, this
is not true over the whole C,,(¢€) in general (take w = wl(}4 to be the longest element, then C,,G(y) = #¢
for any y > 0). By an abuse of language we will say that C}, has a action of G'. In the following we
will freely take quotients by subgroups of C}, x G, knowing that the real meaning is taking quotients
on affinoid subspaces by affinoid subgroups, and then taking the inverse system they define.
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21. The flag variety

We have the following diagram of overconvergent spaces (i.e. maps of inverse systems of spaces)

CixG" —2= Cixgh < C,x G

l,rw

CT

where t,, is the Zariski closed immersion and 7,,(x,g) = xg~!. Recall that, by Lemma 21.4.21, the
actions of n(,{L3 and g,, are transformed to the actions of ngm and g,,, after taking the pushforward
by W. Let N c (C] x G") be the subgroup whose fiber over x € C, is N., the unipotent group
fixing x (in other words, N'*' is the image of n° via the exponential map). Then, taking n° invariants
is equivalent to taking the following quotients of spaces

NONCE x gf —X CL x GT/NOT <2 ¢, x GTINOT

lﬂ "

olf

The new map r,, is well defined since xNV. ; = x for all x € .Z#¢. Moreover, we have a commutative
diagram

NO,T\CIV X QT g_lotw C, X g?/NO,%

\ lmv

A
C,y,.

In the quotient (C,,(c0,5) X G")/ N, the action of 1}, is already trivial because n', = n°N O, ®b. We
are left to study the action of p,, = T, @ byy,,. B
We have an isomorphism of affine spaces C,, = w(N* N w~' Nw). The map r,, factors as

(Cy X GHIN 25 NN N w NG = PN nw  Nw)G = CF,

where 7, (wn*(x), g) = wn*(x)g! for x € C,, and g € G'. Since t, = O, ® (n* N w™'nw), taking

n;’* ,,-invariants is equivalent to taking the right diagonal quotient by the action of the overconvergent

subgroup N:T of neighbourhoods of 1 in N* Nw™'Nw. It is easy to see that this quotient is naturally
identified with 7r,,. But
NOAWNT N w ' NwG = ML%
by definition.
It remains to take the A-isotypic part for the action of byy,,. As w € MW we have w(®*) > @ , in
other words we have that by; C wbw™!. Let By denote the Borel subgroup of M, and let BITV[ be the

overconvergent subgroup at 1. For m € w‘leww, the %, 3 action commutes with 7,, as follows?:

1 1

(W, g) %23 m) = Tyr(wm™ xm, gm) = wm™' xg™" = wm™'wlwxg™".

In other words, the %, 5 action of by, becomes the left multiplication by by, on the M torsor ij 7
The previous computation shows that the by w.«,, = w™'y isotypic component of the algebra of func-

tions of (C}, x G")/(NOT, N;’S is identified with the space

0 =0,b,, = -1 _
Cla(g, ﬁ‘lﬁl(cw))n*l’z’ WX o C(ij,gzg)bMv*l X

—t .

2To define the action properly, one has to work with the normalizer of NV,, in W’IBI‘VIW. However, as w™lbyyw = b >

w‘ln;/[w, we can find a filtration f; c f, ¢ ---f = wlbyw with f; = T_I:rv and f; an ideal in ;. ;. This allows us to make
the quotients step by step.
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21. The flag variety

It is also clear from the construction that the %3 action of g is transformed to the g,, action of
cCM! 7)™+ 7. This finishes the proof. |

Remark 21.4.30. The sheaf C'(g, 0'z) can be endowed with an equivariant action of &, namely, for
g€ Gand f € C"(g, O 7) the action g % ».3 f is well defined. The sheaf RHom(n) | xDb,,, C*(a, O 7))
is clearly a B-equivariant sheaf over .#¢ under x| 5 3; the subbundle 1’ C &z ®q is an ideal, and B acts
on b by the adjoint action. It turns out that the sheaf C(M;%) can be endowed with a 8-equivariant
structure such that the maps (21.4.15) are B-equivariant for all w.

More precisely, let us write C,, = w(N* N w_lﬁw), given a point x € C,, we denote x = wn*(x).
For an element b € 8 we have xb = wn™ (xb), this endows (N* N w™'AN'w) with an action of 8. Then,
for wn"(x)g € ML’% = N'\wN* N w INw)G?, we have

(wn*(x)g) *» b = wn* (xb)(b~' gb).

This action is well defined by Proposition 21.4.29.
We can finally state the main theorem of this section

Theorem 21.4.31. Let w € MW be a Kostant representative and C,, C F€ the w-Bruhat cell. Let
€ > 0 and C,,(€) the e-neighbourhood of the Bruhat cell.

1. The restrictions to C,,(€) of the complexes RT(nY X b,,, C"(g, O7) ® K(-Q)) and

*13

RF(n‘im, Dle(g, O yg)@%](b*z)ﬂ) are concentrated in degrees [0, d—€(w)] and [£(w), d] respectively.
Moreover, the cohomology group HY="™ (resp. H'™) has support in C,,.

2. There are (8B, g)-equivariant (dual) highest weight vector maps

Tyt RTY, | X by, (g, Oc, ) ® K(—1) = COM! )™M= 2 [ (w) — d]
Ty 2 W ) By, DM, 2)I=EW)] = RT(G, |, D(8, Oz0) iy, D)

w,Fl
which are surjective (resp. injective) in degree d — €(w) (resp. degree {(w)).

Proof. Part (1) was already proven in Lemma 21.4.23. Part (2) is a consequence of Propositions
21.4.25 and 21.4.29 and the duality between Lie algebra homology and cohomology (21.4.10). O

21.5. An example: GL,

In the following we provide an example of the previous computations on Lie algebra cohomology of
sheaves over the flag variety of GL,. We will see that the descriptions obtained from this point of
view are equivalent to the explicit computations of Lue Pan in [ , 85].

Let B ¢ GL, be the Borel subgroup of upper triangular matrices, and N its unipotent radical. We
let T c B be the diagonal torus, B be the opposite Borel and N its unipotent radical. The flag variety

Z)and [x:y]-g=1lax+cy: bx+dy]. The
0 1
-1 0

is isomorphic to P! via g +— [0 : 1] - g, where g = (CCI

Weyl group of GL, has two elements: W = {1, w,}, where wy = ( ) The Bruhat decomposition

of P! is
P'=C,UC,, =[0:1]U[l:0]N==+UA"

Let g = Lie GL, be the Lie algebra, let ) C g be the Cartan subalgebra, 1 = Lie N and n = Lie N.
Then
g=neéhen
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21. The flag variety

0 1 00 1 O 1 0
x=(o o 7= (1 o) =[5 ) 206 1)
Thenh) = K-H®K-Z,n=K-Xand n = K -Y. One has the relations [Z,g] = 0, [H, X] = 2X,
[H,Y] = -2Y,[X,Y] = H.

From now on we see P! as an adic space over Spa(K), and denote co = [0 : 1]. Let1: b — K be a
character written as A = (k;, k»). We are interested in the D'“-module

Let us denote

RHom(1) | X by,, C*(g, Op1) ® (—A),,). (21.5.1)

Theorem 21.4.31 tells us that the restriction of (21.5.1) to C,,, 1s simply

Cla(g, IPI)]‘[(’]‘IQ’IJ’*Z:/1 >~ C(MI )b*lz(kz,kl).

wo,P!

It is left to compute (21.5.1) in overconvergent neighbourhoods of co. Let € > 0 and consider the
neighbourhood of co:

e i 1 0
Ci(e):={lt:1]:ltl<p™c}=1[0: H(p‘D}( 1).
By Corollary 21.4.22 it is enough to compute
RHom, (A, C(3, Oc )™ ™). (21.5.2)

By Lemma 21.4.23, the cohomology (21.5.2) is quasi-isomorphic to the complex

:()’I):/] dX
e

Cl(a, Oy )™ Cl(g, Oye)" 0% (21.5.3)

To describe this complex exhaustively we need some coordinates. Let us write G' = {G(Y)}y—o0 fOr
the overconvergent neighbourhood of 1 in GL,. An element in C;(€) X G can be written uniquely as
(t, g) where

B 1+ 0 (1 0y (1 y\(l O\ (1+zy 'y
g‘(l”)( x (1+s)_1)y(t) and y(’)‘(—t 1)(0 1)(r 1)_(—t2y l—ty)'
Under this presentation, C(g, ﬁc,(e))n%ﬁ = is identified with K (t/ p)s, z, x}, where

A{T} = lim ACT/p®)

E—00

for an affinoid algebra A. Since Z is in the center of g, we can take Z = A(Z) = (4 + p)(Z) isotypic
parts and replace (21.5.3) by

(1 + 27VK() p)s, () s (1 4 22D (1) po(s, x)H=AE2, (21.5.4)

Without loss of generality we can take Z(1) = 0. Next, we want to compute the action of H and X on
the variables ¢, s and x.

Lemma 21.5.1. We have
1. H*2,3l:2Z,H*2,3S: 1+sandH*2,3x:x.

2
2. X *o31 = —tz, X *23 8 = —(1+s)tand X *23 X = ﬁ —Ix.

s
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21. The flag variety

Proof. Notice that

[ +e) 0 ~ _
[t.l]( 0 (1+8)_1)—[(1+8)2t.1],

1+s 0 (1+e) 0 (A +e)d + ) 0
x  (1+s)! 0 (1+e)7 )™ (1+e)x (1+e)7'A+ 957!

Deriving with respect to € and evaluating at € = 0 one gets (1).
To prove (2), note that
r:1 = 11,
e: 1] (O 1) [1 + &t ]

deriving and evaluating at & = 0 one gets X %,3 ¢ = —t>. To compute the other two derivatives, we

have to write the product
I+s 0 1 ¢
x  (1+s71\0 1

1+5 0 -
(fc (1+§)-1)y(’)'

Then X %53 5 = d%s*lgzo and X *,3 x = d%)’élg:o. Expanding both products we find the equations

in the form

ay apz\ (l1+s e(l+ys) B (1 + 35 +1y) 1+ 35y
ay an) \ x ex+0+) T \FI+5H)-5A+5H F+A+HNA-15)
Dividing the a,, by the a;; equation one gets
5) =
1+t

Deriving and evaluating at € = 0, one finds by the chain rule that (%y)l‘gzo = 1. Deriving and
evaluating at € = 0 in the equation a;;, one gets by the chain rule that X x,3 s = —(1 + s)¢. Finally,

. e . . . 2
deriving with respect to & and evaluating at & = 0 in a,; one gets X x53 x = {— — tx. O

2

_t R
Corollary 21.5.2. We have H *23 arsE = =H *23 1+ =0 X *23 (1+ e =X *23 T = (2

Now, we have an equality K(t/p){s, x} = K{ Ns, 7=} Thus,

(1+S)21DE

! X

e H=A(H) _ A(H)
K(t/p)s, x} =1+ K<(1 n S)2p€>{1 —

The complex (21.5.4) becomes

t X
(I+s)2ps’ 1+s

ACH) ! XX AH)+2
(I+s) K<(1+s)2pf>{1+s} (I+s) K{

(21.5.5)

We have the following proposition (cf. [ , Prop. 5.2.10 and Prop. 5.2.12])
Proposition 21.5.3. The following hold

(ker 1) Suppose that A(H) ¢ N, then li_r)né_)o0 H(ng, |, C(g, Oc,0)™™) =0

(ker 2) Suppose that A(H) € N, then h_r)n Ho(n*1 » C'(g, Oc,)™™") = ‘I’*(NV/Pl
where N’ B is the conormal bundle of o C Py, and ¥ : P, X GL, — P} X GL, is the map
(x,8) = (xg 8)-
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21. The flag variety

(coker 1) The group lim _ H ', ,, C1(@, Oc, ()"~ is an extension of the form

0> M, — hm H' ), 4 C'(q, Oc, )" — C(M1 ST 0,

E—)OO

(coker 2) Suppose that A(H) ¢ N and that

1 1 (mn) m+1 m+k 1 nem)
Sup{l/l(H) s @ e t) )T

Then M, =

(coker 3) Suppose that A(H) € N. Then My =¥ (N, )2 @y C (Mr )b*l‘w()“) In particular, since
AH) # -1 (i.ewy - A # A), we have a direct sum decomposztlon

lim H'(0,., €49, 0, 0)"™) = COM 1174 @ W NP1 @ COMG 170

€—00

Proof. Given f € (1 + s)"®K( 7=} let us write

(1+s)2

— A(H) f ' * Y
f(t,xas)_(l-i_s) Zan,m((1+s)2) (1+S)

n,m=>0

with a,,, € K satisfying some convergence conditions. An explicit computation shows that

X3 f(t,x,5) = (145" Z((n—l—/l(H))a,,_Lm+(m+l)an_z,mﬂ)( ’ ) ()" e1se

= (1+s)?
Then, f € kerdX if and only if
(n—AH))a,;m + (m+ ay,_1me1 =0 Yn,m > 0. (21.5.7)
Suppose that A(H) ¢ N, then n — A(H) # O foralln > 0 and a,,,, = m1 ap-1m+1- Taking n = O this

A(H)—n
implies that ag,, = 0 for all m > 0. By an inductive argument one has that a,,,, = 0 for all n,m > 0,

this shows (ker 1).
Suppose that A(H) € N. The same argument shows that for n < A one has a,,, = 0 for all m > 0.
Taking n = A1in (21.5.7) the equality is trivial, so we move to n > 4. We have that

m+1 m+1 m+2
Unm = T 7~ Qn—-1m+1 = Ap2.m+2 =
M AH) —n T T\ AEH) = n)\A@EH) =+ 1) TR

_( m+ 1 )( m+k )m(m+n—ﬁ(H))
\AH) -n AH) -n+k-1 1 A m+n-2

B (_Dn_ﬂ(H)(m +n-— /l(H))
B m

a/l,r11+n—/l .

Therefore, if f(s,t, x) € ker dX one has that

e m+n— A(H) t Trox o\
fGs.t0) = (14 9 (=1 “”( N )aﬂ,mm_a( ) ()

2
S (1+s) 1+

m=0

=1+ s)/l(H>( o )A(H) Z (- l)n(n i m)a ( ! )"( i )m
(1 + 5)? ) Y 1+ 9)2) \1+s

= (1 + 5)"® (—l )A(H) Z a Z( bl m( )( )k_m
d+s2) &7 (1+s)2

( : )m

1+s
P k

_1 /l(H)/l(H) )

(L) Zak 1+s (1+s)2

k>0
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21. The flag variety

Consider the multiplication map of Proposition 21.4.29

711 : Ci(€) X B(y) = N(e) x B(y) = N\NT (y)N(e)

@.D) > 7ib
.. ..— (10 - I+s 0
for 6 >> 0. Explicitly, if n = (t 1) and b = (1 + z)( x (4 S)_l) one has
. - T S(a+9t 0 1 0
ﬂ(n,b)=(1+z)l( x :
1 0 L+ (1+ts)2 1 |

Then, the conormal bundle of oo C P} in the coordinate 7 is given by K - 7, thus N e DRAH) = K AUD,

On the other hand, the space C 1(M‘L )" =@ on the coordinate is 1dent1ﬁed with the
functions

<1+ 1+s? (1+)

k
t
,5, %) = (14 20"91 + 5y :
s, t,0) =1 +2)77(1 +5) ; 1+s T
this proves (ker 2).
The point (coker 1) was already proven in Theorem 21.4.31, and can be seen again in the formula
(21.5.6). Hence, we have that

Xk fs,t0) = (U 901 ) (= ACHD e+ O+ Dty ( : ) ( n )m

Pt 1+ \1+s
Given b,,,, we want to solve the recursive equation
bym = m—AH))ay, +(m+ 1)ay_1m1 Yn,m > 0. (21.5.8)

Suppose that A(H) ¢ N, then

nm — o +1 n—1,m _bnm-
an, /l(H)—n((m )an-1m+1 = bpm)

Taking n = O one sees that ay,, = ——=bo, for all m > 0. An inductive argument shows that

/l(H)

1 1 m+ 1 m+k
nm — _—bnm_— bn— m+k-
n AH)—n " /l(H)—nkZ:;(/l(H)—n+l) (/I(H)—n+k) ek

The convergence condition of (coker 2) guarantees that the series

_ ACH) r) (Y
Jt,x,5) = (1 +5) Z “"”"((1+s)2) (1”)

n,m=>0

converges for € >> 0, proving that h_r)n My(e) =

Finally, suppose that A(H) € N. The | prev1ous computatlon shows that we can solve the equation
(21.5.8) uniquely for all n < A(H). Therefore, we may assume that b, ,, = 0 for n < A(H). The input
n = A(H)in (21.5.8) would imply b, = O for all m > 0, and if this holds we can solve the equation
for all n > A(H). Therefore, M, is represented by the power series

fls.t,x) =1+ s)”“"’(;)m mzwbm( n )m

(1+ )2 1+s

= (14 syt 3, ()
+ s

m=>0
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21. The flag variety

But taking the multiplication map as before

11 Cy X B(y) = 1 x B(y) » N\NT (Y)N()
(1.b) Db .

this space is identified with W*(N _)®*+ @, C (MTW D=0 ag wanted. o

/P!
Remark 21.5.4. The %3 action is trivial on ‘I’*(NOVO /Pl), but b,, acts via 2p. Therefore, the highest
weight of W' (N )® ™ @ C(M, )1 =W is wo(2) + 2A(H)p = A. However, ¥* (N . )*'" @
c (M}g,l)[’*lzwow +C (MI@{,’I)I’*IZ’l as G'-equivariant sheaves over C;(€). Indeed, the horizontal ac-
tion b23 differs on both sheaves as it is trivial on ¥*(N?, /IPI)’ and it is different on C( M;m)m:A and
CM;, )= unless A(H) = 0, i.e. wo(2) = A.
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22. Shimura varieties

In this chapter, we apply the machinery of Sen theory of §20 to Shimura varieties. We describe
the locally analytic vectors of the completed cohomology in terms of the locally analytic vectors of
the completed structural sheaf at infinite level. As a first application, we deduce that the rational
completed cohomology is concentrated in degrees [0, d], where d is the dimension of the Shimura
variety, proving in this way a rational version of the Calegary-Emerton conjectures [ ] for any
Shimura variety. If the Shimura datum if of abelian type, this follows from Theorem 5.3 of [ ] as
the infinite level Shimura variety is perfectoid (see [ ]), in fact, the Calegari-Emerton conjectures
hold with integral coefficients in this situation. In [ ], Hansen-Johansson prove many cases of the
conjectures reducing to pre-abelian Shimura varieties. What is remarkable in our proof is that it never
uses the perfectoidness of the Shimura variety; the important input is the non vanishing of the Sen
operators.

We begin in §22.1 with the general set up of Shimura varieties, we will follow the conventions of
51 ]. In §22.1.1, we define the infinite level Shimura variety and recall the construction of
the Hodge-Tate period map of diamonds as in §4.4 of [ ]. In §22.2 we make the preparations for
proving the main theorem of the chapter, namely, in §22.2.1 we show that the Sen bundle of a toroidal
compactification of a Shimura variety is identified with the pullback via myy of the G-equivariant
subbundle 1’ C Oz ® g of §21.4. As an application, we give a purely local proof of the classical
Hodge-Tate decompositions of Shimura varieties in §22.2.2; the idea is to use Faltings’s BGG method
and the myr period map. Finally, in §22.3, we recall the definition of Emerton’s completed cohomol-
ogy and how it can be computed in terms of pro-étale cohomology. We prove the main theorem of
the chapter (Theorem 22.3.16), and in §22.3.1 we compute the arithmetic Sen operator in terms of the
horizontal action 6,, arising from the center of U(m°), cf. Proposition 21.4.7.

In the following we will omit the subscript in the structural sheaves of the Shimura varieties unless
otherwise specified, namely, we denote by ¢ and & the uncompleted and completed structural
sheaves of the Shimura varieties in the pro(-Kummer-)étale site. We also let @E” for ? € {an, ét, két}
denote the structural sheaves of the Shimura varieties in the analytic, étale and Kummer-étale site
respectively.

22.1. The set-up

Let (G, X) be a Shimura datum, that is, G is a reductive group over Q and X a G(R)-conjugacy class
of cocharacters
h: RCSC/RGm,(C g GR.

satisfying the axioms ( [ ,2.1.1]or [ , Def. 5.5]):
SV1. Forall h € X, the Hodge structure on Lie(Gy) defined by Adoh is of type {(—1, 1), (0,0), (1, -1)}.
SV2. For all h € X, ad(h(7)) is a Cartan involution of G]aRd.

SV3. G* has no simple Q-factors with compact real points.

Let E£/Q be the reflex field of (G, X), and for K C G(AS) a neat compact open subgroup, let Shg
denote the canonical model of the Shimura variety of level K over Spec E. Recall that the C-points of
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22. Shimura varieties

Shg are equal to
Shg(C) = GQ\(X x G(Ag))/K.

From now on we will fix K C G(AQ”’ ) a neat compact subgroup of level prime to p. Given
K, c G(Q,) a compact open subgroup we let Shg,k, denote the Shimura variety of level K”K,. We
will be interested in the tower

{Shgrk, }k,co@,)-

Let Z be the center of G and Z, C Z the maximal Q-anisotropic torus which is R-split. Given two
levels K ¢ K C G(Aa’) with K’ normal in K, the map of Shimura varieties Shy: — Shg is finite

étale with Galois group isomorphic to K/(K’, K NZ(Q)), where Z(Q) is the closure of Z(Q) in Z(AS),

cf [ , §2.19]. Since K is neat, K N Z(Q) C ZC(AS). In particular, the infinite-at-p level Shimura

variety Shgy, := yLnK Shgrg, is a Galois cover of Shgg, of group

K, := K’K,/(K", K"K, N Z(Q)).

Thus, if K.; C K, is normal, the Galois cover SthK;, — Shgrg, has group EP/E;,. Let us denote
3 =LiekK -

Let G denote the quotient of G by Z,, and let g° = Lie Gpr. From our previous discussion, there
is amap g — g, the obstruction for this map being an isomorphism depends on the Leopoldt’s
conjecture, in fact, this map is an isomorphism of Lie algebras if and only if the image of Z(Q) in
Z(Q,) generates an open subgroup. Given a subgroup H of G we denote by H¢ its image in G¢,
similarly for the subgroups K ¢ G(Ag), K” and K,,.

Let u : G,,c — Gc be the Hodge cocharacter, i.e. the restriction of & to the first factor of
(Resc/rGpc)e = Gy X Gy c. Associated to p, we have two parabolic subgroups Pf}d ={g € Gc:
lim,_,, Ad(u(?))g exists} and P, = {g € G¢ : lim,_,o Ad(u(?))g exists}, we denote by N, C P, the
unipotent radical. Let FL = G¢ /PS“jl and FL = P,\Gc denote the flag varieties. We recall that the
conjugacy class of u is defined over E, so the same holds true for FL*“ and FL. Note that we have a
surjective map K - K whose kernel is in the center of K for K, small enough.

Given a Shlmura variety Shg, we denote by Shy its mlnlmal compactlﬁcatlon and given an aux-
iliary cone decomposition ¥ we shall denote by Sh¢" its toroidal compactification as in [ ]
(see [ ] for an algebraic construction in the Siegel case). We can and will assume that the toroidal
compactification is projective smooth and that the boundary divisor is a strict normal crossings divisor.
Even if the toroidal compactification depends on the cone decomposition, we shall omit the subscript
Y in the notation; this will not be important in our results as the coherent cohomology is unchanged
after refining the cone decomposition (see [ ,82]and [ , Prop. 7.5]). Besides, the Kummer-
étale cohomology only depends on the open Shimura variety by a purity theorem [ , Theo.
4.6.1]. Given K’ C K, we can always modify the toroidal compactification of Shir for the map
Shir — Sh¥" to be finite Kummer-étale (e.g. by the Abhyankar’s lemma [ , Prop. 4.2.1]).
Furthermore, after fixing K,,, one can take toroidal compactifications adapted to a decreasing sequence
of subgroups --- C Kf, cK ; C K, in the sense that the maps of the tower {Sh,?; KH}K;cKP are finite
Kummer-étale.

Let L/Q, be a finite extension containing the reflex field £ and such that G is split over L. We let
Shk,;. denote the p-adic analytification of Shg; := Shg Xspec £ Spec L to an adic space over Spa(L, O,),
cf. [ 1. We denote by Shy; and Shy; the analytification of the minimal and toroidal compact-
ifications. As is explained in [ , §3], given V € Rep,(G°) a finite dimensional representation,
we can attach an automorphic étale local system Vi over Shg ;. By purity of torsion local sys-
tems [ , Prop. 4.2.1], Vi has a natural extension to a Kummer étale local system over Sh}?fL

which we denote by Vig. Let Sh, , := link;) Shigsx. , be the toroidal infinite level Shimura vari-

ety, seen as an object in Sh'o; Essentlally by definition, Vi 1s the local system attached to

KPK,,L,prokét*

225



22. Shimura varieties

the K,-representation V and the K ,-torsor mg, : Shigs 1, = Shigog 1

varieties as schemes over L, and we shall denote by F*Y and .Z¢ their analytifications.
By the p-adic Riemman-Hilbert correspondance [ , Theo. 5.3.1], there is a filtered vector

bundle with integral log connection (Vgg, V) defined over ShtK°fL, and a natural isomorphism

From now on we will see the flag

Viet ®F OBar10g = Var ®6 10 OBaR log (22.1.1)

tor
hK.L

as sheaves over the pro-Kummer-étale site of ShY", , compatible with filtrations and the log connection.

We say that the triple (Vgg, V, Fil®) is a filtered integrable connection. By GAGA [ ], V4r defines
a filtered integrable connection over the algebraic Shimura variety Sh";.

By definition, the formation V' ~» V4 preserves the monoidal structure of Rep, (V) so that the
same holds true for V. ~» Vgr. By the Tannakian formalism [ ], there is a G{-torsor G§, over
Shi", parametrizing all the vector bundles Vyr. By [ , Theo. 5.3.1], the Hodge cocharacter
u defines the decreasing filtration of Vgg, applying the Tannakian formalism again we obtain a right
Pffd’c torsor P;t"fiﬁ over Sht,?fL, as well as an inclusion of torsors P;t,(:f}g — G- In particular, we have
a G¢-equivariant morphism 7gr : G$, — FL}“. Let M C P5*“ be the Levi factor, we define the

std,e  PSide std,c
modul.ar tohrsor M; 4 to be the pushout Pﬂ, ar X' * M. We denote by G, Pﬂ’dR and M; « the
analytification of the torsors seen as spaces over Shy, .
Remark 22.1.1. 1t will be convenient for us to see MI‘J 4r as a left M -torsor. This can be easily done
by defining the left action m - x := xm™! for m € M, and x € M{ ;.

Definition 22.1.2. Let T ¢ B ¢ G, be a maximal torus and a Borel subgroup respectively. Suppose
that T ¢ M, and B C P, we let Byy = BNM,, denote the Borel subgroup of the Levi. Let wy and wom
be the longest elements of the Weyl group of G and M, respectively. Let x € X*(T¢)y; be a dominant
weight for M, and let W, denote the irreducible representation of highest weight x. We define the
automorphic sheaf over Shg» k,.. of weight « to be

M(k) = M, g XM WY

—wo(k)?
where we see M; as a left torsor.

Remark 22.1.3. Let us explain the convention of the automorphic sheaves in terms of the functions
of the torsor. Let ¢ : M;’ 4 — Shg be the natural projection of the torsor. If M;’ 4r 18 seen as a left
torsor, the sheaf M(k) is given as (see Remark 21.2.7)

M(x) = f*ﬁM;,dR[—Wo(K)*l]-
In other words, its sections in affine subschemes U C Shg; are equal to
M) = {f : 7'(U) = A" | f(b™'m) = wo(k)(b™") f(m) for all b € By }.
Equivalently, if we see M ;. as a right torsor we have
M@U) = {f : 7' (U) = Al| f(mb) = wo(k)(b™") f(m) for all b € By }.

In the notation of [ , §4.1.1] we have M(x) = VY

—wo(k)*

22.1.1. Infinite level Shimura varieties

Let Shgrp = lln Shgrk, . be the infinite level Shimura variety. Let us fix K, ¢ G(Q,) a

K,cG(Qp)
compact open subgroup and ShY; KL & smooth projective toroidal compactification as in the previous

) or 1 ’ by . . . o
section. Let Sh, , = me %, Sh, KoL be the infinite level toroidal Shimura variety. We highlight
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22. Shimura varieties

or

that, while Shg, ;, has an action of G(Q,), the toridal compactification Sh}(,,, ; only has an action of K,.
Nevertheless, the projective system SA'SS := {Sh'>"> )} of all the toroidal compactifications (induced

P P
by cone decompositions X) has a naturzli(l ’gction oflanp) via Hecke correspondances.

In [ I, Scholze proved that for Hodge-type Shimura varieties, the inverse limit Shy, ; :=
@K,, Shy, KoL of the minimal compactifications of the Shimura varieties has a natural structure of a
perfectoid space'. In [ ], Pilloni an Stroh have shown that the same holds true for Siegel varieties
and the toroidal compactifications, using [ ] one deduces the same result for Shimura varieties of
Hodge type. Furthermore, in the situation of Hodge-type Shimura varieties, Caraiani-Scholze [ ]

have constructed a G(Q,)-equivariant Hodge-Tate period map
YT - Sl’le’L - F

which is affine in a precise sense (see [ , Theo. II1.3.18] and Proposition 22.1.8 down below).
They also proved that pullbacks of G-equivariant vector bundles of .7¢ induced from the Levi My, are
naturally isomorphic to G(Q,)-equivariant vector bundles of Shg, ; obtained from M¢ ., see [ ,

u,dR?
Prop. 2.3.9]. As is pointed out in [ , §4.4], for general Shimura varieties one can construct a
Hodge-Tate period map of diamonds over Spd L
7T - Sh}?,r% — F° (22.1.2)

which pullbacks G-equivariant vector bundles of .#¢ to K ,-equivariant O-vector bundles over Shtl‘(’,r,’ L prokét”
Let us explain how (22.1.2) is defined. Let V € Rep; G° be a finite dimensional representation, Vig
its Kummer étale local system over Sht,‘g’rL and (Vgg, V, Fil®) its associated filtered integral connexion

via the p-adic Riemman-Hilbert correspondance. We have a natural isomorphism

Viet ® OBar 1og = Var ® ¢ OBaR jog

compatible with the filtrations and the log-connexion. This isomorphism defines two B lattices in

Vie ® Bar, namely, M = Vi ®; Bl and My = (Vir ®¢ @BQRJOg)V:O. We define Fil' M := &M and

Fil' M, := é'M| for i € Z, where ¢ is a local generator of 6 : B — O These two lattices are related
in the following way:

Proposition 22.1.4 ( [ , Prop. 7.9]). The lattices M and M, satisfy

(M N Fil' Mo)/(M 0 Fil'*! M) = Fil ™ Vag ®0,,,, Oy,

h}g'L
forallieZ.

With this two filtrations we can define the increasing Hodge-Tate filtration of Vi ®7 0. sner 1O be:

Fil(Vie ® Osper) = (M N Fil ™ Mo)/(Fil' M 1 Fil ™/ Mo) (22.1.3)

with graded pieces R .

gri(Via ® Osper)) = gr'(Var) ® O(=)). (22.1.4)
Let Gj;; be the K ,-equivariant Gj-torsor over Shtlgi’fz obtained by the formation of V ~» Vi ®7 0.
By the functoriality of the p-adic Riemman-Hilbert correspondance, the formation of the Hodge-Tate

filtration is compatible with the Tannakian formalism, and we have defined a K),-equivariant P, -

torsor P;’HT over Sht,‘(’i’fz endowed with an equivariant map to Gj;;. The inclusion P;’HT C Gy defines
a period map G}, — Zt°. But Sh;?;’i has a natural K,-equivariant section to G, as it already

trivializes all the local systems Vig. One obtains the following corollary, which is a consequence
of [ , Theo. 5.3.1]

5

I'To be precise, he proved that the image of Sh KoK, .L in a perfectoid Siegel variety is strongly Zariski closed, so perfectoid.
However, by [ , Prop. 5.14] the former is also represented by a perfectoid space.
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22. Shimura varieties

Corollary 22.1.5. The Hodge-1ate filtration of G} induces a K,-equivariant Hodge-Tate period map
of diamonds over Spd L
THT ShtlgﬁoL — F°

satisfying the following properties:

1. The pullback M;,HT of the Mj,-torsor N)\G* — F via nyy is canonically isomorphic to a Tate

twist of the pullback of M,  to Sht;;ﬁ(z More precisely, let ng, : Shig, , — Shg, k,. be the
projection and . : G,, — Gy, the Hodge cocharacter, then?
M ur = 7, (M‘ )X”Z (=D~ (22.1.5)

Given a G°-equivariant vector bundle ‘W over Ft, we will confuse nj (‘W) with the O-vector

t .
bundle over Shi, K, L prokeét that it defines.

2. The formation of myr is compatible with Hecke correspondances at p. In other words, the maps
mut glue to a G(Q,)-equivariant map

t
TyT - ShKolr)ooo yfo

Remark 22.1.6. In the previous construction of myr, we have considered vector bundles over dia-
monds, a concept which is not very clear as diamonds are quotients of perfectoid spaces in character-
istic p. Nevertheless, if X is a diamond over Spd L, the structural map X — Spd L defines an untilt
of X over Spa L, and in particular a structural sheaf in the proétale site: Xt = (Xprost» @(n) Then,
for an algebraic group H over L, a H torsor over X°/Spd L is a functor V +— <V from algebraic
representations of H to ﬁxu vector bundles over X* preserving duals and tensor products.

Notice that, since myr is a map of diamonds over Spd L, we have an induced morphism in the
untilts:

TtHT - (ShtI?; ,L,prokét> ﬁ) - (ggam ﬁy&’)’

which pullbacks the MC torsor M¢ ot 10 (a Tate twist of) the torsor M, qz. From now on, when we
mention the myr morphlsm we always refer to this last map of ringed sites, unless otherwise specified.
Remark 22.1.7. We explain in more detail how the Tate twist (22.1.5) translates in the automorphic
vector bundles. Let k € X *(T"’)f{d; be a positive weight for M¢, and let ‘W(x) and M(«) be the associ-
ated vector bundles of weight k over .#¢ and Shi; KL (see Definitions 21.2.6 and 22.1.2). First, for-
getting the Galois action, we have K,-equivariant 1somorphisms (W) = n’,‘(p (M(k)) preserving
tensor products and duals®. To find the correct Tate twist one can argue as follows: let 1 € X*(T¢)* be
a dominant weight for G{ and V), the irreducible representation of highest weight A. The Hodge-Tate
filtration of Vx4 ® 0 is induced from the P°filtration of V, by taking the corresponding G-equivariant
vector bundles over .%¢ and their pullbacks via ryr. Moreover, by (22.1.3) the Hodge-Tate filtration
is concentrated in degrees [—A(u), —wo(A)()] since the Hodge filtration of V, 4 is concentrated in
degrees [wy(A)(u), A(u)] by definition. The representation V,; admits W, as subrepresentation. Hence,
since ‘W (Wo (1)) = N \(G X W), one has that

(W) = Fil_ i (Vi ® ) = M) ® G(A(w)).

Therefore, for all x € X*(T¢);,. we have

T (W) = M(K) ® O (wo(k)()).

2Let G be a group acting on the left on two sheaves X and Y, by definition X x° ¥ = G\(X x Y).
3This is why the convention taken in this paper and the convention of [ ] differ, cf. Remark 22.1.3.
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22. Shimura varieties

Following [ ], affiness of the Hodge-Tate period map provides some vanishing theorems for the
cohomology with partial supports of overconvergent automorphic sheaves. We will use the following
proposition in Chapter 23.

Proposition 22.1.8 ( [ , Prop. 4.4.53]). Let (G, X) be an abelian type Shimura datum (eg.

of Hodge type). Let Shy,, = liLnK;cK,, Shy, K).L be the minimal compactification of the perfectoid

Shimura variety. Then the Hodge-Tate period map myr : Shtlgi’fz — F° factors through Sh;’ﬁ’L.
Furthermore, there exists an affinoid cover {V;}ic; of #€ such that, for each i € I, there exists a level

K, and an affinoid U; C Sh’,‘(,,KP’L satisfying

me (Vi) = 7T1_<,1,(Ui)-

22.2. Classical BGG decompositions of Shimura varieties

Let C = C, be the p-adic completion of an algebraic closure of L. Let g = Lie Gq,, g = Lie E,,
and g° = Lie Gg,. Let 3 := ker(g — g°), recall that, by the discussion at the beginning of §22.1, the
obstruction for 3 being 0 depends on the closure of Z.(Q) in Z.(Q,) being open. For simplicity in
the exposition, we will assume in the rest of the chapter that 3 = 0, the proofs and the main theorems
will hold in the general situation under some minor changes, only Theorem 22.3.18 requires an extra
argument which we will explain in §22.3.1.

From now on we shall write P, N and M for the groups P;,, N, and Mj, respectively. We will use
the same group theoretical conventions of §21, namely, we let p, 1 and m denote the Lie algebras of
P, N and M respectively. We will denote by P and N the opposite parabolic and its unipotent radical,
and by p and n their Lie algebras. We fix B ¢ P a Borel subgroup and T c B a maximal torus
contained in M, let N* be the unipotent radical of B. We write b, n* and ) for the Lie algebras of
B, N* and T respectively. We also let &® (resp. ©*) denote the uncompleted (resp. completed)

structural sheaves over Shi, Ky Loprokét” We write Q'(log) for the log differentials of Sh'% KL (which

are preserved by pullbacks of Kummer-étale maps), and let s, : Q!(log)” ® 0 (1) = g, ® O be the
Sen operator.

22.2.1. The Sen bundle of a Shimura variety

In this paragraph we compute the Sen operator of a Shimura variety. Let n° C 0 ® g¢ be the
subbundle given by n® = G, x¥ n, in other words, the subbundle whose fiber at x € .%¢ is Lie N, =
Lie x ' Nx. We also define p° = G; x¥ pand m® = p°/n°. Let myr : Shi, , — FL;, be the Hodge-Tate
period map and g, : Shig, ;| — Shi, KoL the natural projection.
Theorem 22.2.1. The pullback by gy of W° C O 7 ® §° is naturally isomorphic to the pullback by K,
of the Sen operator 0, : Q'(log)¥ ® 5(1) — iy ® afor any K, C G(Q)).

The strategy to prove this theorem is to construct the Faltings extension via myy. More precisely,
we will show the following

Theorem 22.2.2. Let C = P\PP = P\PN be the big cell of FL*Y and 0 (61) its ring of regular func-
tions seen as a P-module. , cf. Remark 21.3.21 for a more explicit description of this representation.

—1
Let O(C) denote the associated G°-equivariant quasi-coherent sheaf over Ft. There is a natural

4 4 tor
isomorphism of sheaves over Shi, K, Lprokeét

Ty (ﬁ(_al)) = OCioq
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22. Shimura varieties

Proof. Let g; . be the Kummer-étale local system attached to the adjoint representation, and g its
associated filtered integrable connexion. The Hodge filtration of g, is concentrated in degrees [—1, 1]
by (SV1). Moreover, by (22.1.4) we know that

gr (65 ® O0(1) = i),
2GR ®0 = mjpm’),
gr'(a5p) ® O(=1)

),

mhr(n

where in the last equality we have used the Killing form to identify g¢/p with n¥. Let M = O © Bir

and My = (6r ® OB g)VzO, and consider the exact sequence

0 — M N My — Fil’(g§ ® OBy ) = Fil’(05; ® OB 1o, ® Q' (log)) — -
Taking O-th graded pieces we obtain a short exact sequence
0— % — gr'(gy ® OBz 10g) = g (g ® OB g 1og ® Q'(log)) — 0.
By Proposition 22.1.4 and the Hodge-Tate filtration (22.1.3), one finds that
M N M,
Fil' M N M,
grO(QSR ® @B;;R,log) = g”_l(ggR) ®gr' ﬁBgR,log ® gro(ggR) 80
() ® gr! @Bgmog(—l) & ()
gr‘l(ggR) ®0® Ql(log)
= mip(®) ® O(=1) ® Q' (log).

= ﬂ;{T(pO)

2r'(aig ® OB o, ® Q'(l0g))

Therefore, we obtain a short exact sequence
. . . VeKS
0— ﬂHT(pO) - ﬂHT(nO)(_l) ® grl @BSR,log 2] ﬂHT(mO) — ﬂHT(nO)(_l) ® Ql(log) — 0,

where V is the tensor of V : gr! @BgR,log — Ql(log) ® 0 with ﬂl’fIT(nO)(—l), and KS is the &-extension

of scalars of the Kodaira-Spencer map

KS : gr(a5) — gr ' (g5p) ® Q' (log).
This extension defines a class 7 € Ext%(n;T(nO)(—l) ® Q'(log), (%)) Tensoring with the identity
of 77, (1Y) we obtain a class n ® id,ov € Ext}g(n;‘ﬂ(no ® n*)(-1) ® Q'(log), mj:(r° @ ™). We see

n" as a subspace of & (61) via the exponential map exp : n — N, and the identification 6] = N.
Let 0 (61)Sl be the space of polynomials of degree < 1. We have P-equivariant maps 1 — n® n",

and ' ®p » O (61)51, where the first is the dual of the trace map n® n¥ — 1, and the second is
given by derivations of p. Taking pushout and pullback diagrams of 7 ® id,o.v, one obtains a class

e Exté(ﬁ (-1 ® Q'(log), 7y (6" (El )Sl)). Following the explicit pushout and pullback extensions,

one finds that 77 is the extension

—1 .\ @ . VRS _
0= iy (ﬁ(cl)—l) EB, g OB 1og(~1) @ T () s Q(log) @ G(—1) — 0,

where KS is the &' (—1)-extension of scalars of the Kodaira-Spencer isomorphism

KS : grl(ggR) = Ql(log).
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22. Shimura varieties

This implies that the map « is an isomorphism. Taking symmetric powers and direct limits one gets
that

min(0©h) = tim Sy zip (0CH)

_ . n 1
= h_n}Sym gr ﬁB:i—R,]og(_l)

n
= OC,
as wanted. O

Remark 22.2.3. The previous proof works in the general situation where X > Xisa pro-Kummer-
étale G°-torsor, with G’ ¢ G(Q,) an open compact subgroup of the Q,-points of a reductive group,
under the following conditions:

1. The G°-torsor X — X is de Rham, and the Hodge-Tate filtration is induced by a minuscule
cocharacter u : G,, — Ge,.

2. The Kodaira-Spencer map KS : Jr;T(nO’V) — Qllog) ® 5(—1) is an isomorphism.

Proof of Theorem 22.2.1. LetV € Rep, G¢, since gr, (Vs ® % ) =gr'"(Var) ® 0 (—n) for all n € Z, the
geometric Sen action of the graded pieces gr, (Vi ® &) must be trivial. Hence, it sends Fil, ; (Vi ® O)
to Fil;(Vyg ® ©). By the Tannakian formalism, this implies that the Sen operator factors through

Osy - Q'(log)’ ® O(1) = mip(n®) C ¢, ® 0.

But 7, ( @) = OC,og by Theorem 22.2.2, and we know that the Sen action on the Faltings exten-
sion
0— 0 — gr' OB (1) > O(-1)® Q' (log) > 0
maps 0 10 0 and factors through the trace map Q!(log)" ® Q'(log) — &. On the other hand, we have
a short exact sequence
0—>L—> ﬁ(al)Sl - n’' -0,

and the action of n by derivations on & (61)Sl kills L, and factors through the trace map n®n" — L C
ﬁ(al)ﬁ. Since gr'(OBr j0e)(—1) = 7y (ﬁ(fl)ﬁ), the Sen map induces an isomorphism

Oy : Q'(log)" ® O(1) = miyp(n®)
as wanted. O

Remark 22.2.4. A careful proofreading of the constructions shows that the dual of 6g;, : Q!'(log)¥ ®
O(1) - mi (%) is the composition of 75, (n*Y) = gr (s, ® O) — gr'(gSx) ® O(~1), and the O(-1)-
extension of scalars of the Kodaira-Spencer isomorphism KS : gr'(g5e) — Ql(log).

We have shown that the condition (BUN) of §20.2.2 holds in our situation, so we can refer to s,
as the Sen bundle. One obtains the following corollary from Theorem 20.2.4

Corollary 22.2.5. Let vk, : ShY, — Sh' and A : Sh' — Sh'¥

KPK,,C,prokét KPK,,Ckét K7 ,Ckét K?,C,an
jection of sites. Let v . = limK vk, be the colimit of the pushforwards of finite levels. We have a
> P

: o : tor
natural Galois equivariant isomorphism of sheaves over Shy, . ..

be the pro-

R(A 0 v).(C (o5, 0)) = 04,

where ﬁé“h is the subsheaf of locally analytic sections of the completed structural sheaf at infinite
level, see Definition 17.3.8.
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22. Shimura varieties

22.2.2. Classical Hodge-Tate decompositions via myt

We keep the notation of §21, namely, for 4 € X*(T)* (resp. 4 € X*(T);,) we let V, (resp. W,) denote
the irreducible representation of G (resp. of M) of highest weight 1. Let W(x) = G¢ x? WWOM(K) and

tor

M(k) = M;’ &R xM nga(,() denote the associated vector bundles of weight x over .7¢; and Shi, KoL

respectively. Let myr : Sht,‘;;’ ; — Z{ be the Hodge-Tate period map, we shall confuse K p-equivariant

tor 1 A 1 tor
sheaves over Shy, L prokét with the pro-Kummer-étale sheaf it defines over ShY), KoL

The goal of this section is to describe the Hodge-Tate decompositions of the local systems V).,
more precisely, we will prove the following theorem:
Theorem 22.2.6. Let A € X*(T)" be a dominant weight, and nga = P\Pw)IN c FL be the big cell of

the flag variety. Let BGG" (1) the dual BGG complex of VY as (¢°,P)-module, see Definition 21.3.18.
By Corollary 21.3.22 we have an isomorphism of P-representations

—1 —1 —1
BGGY (1) = [Wouyy ® O(C ) = -+ = ) Wancupan ® OC) = -+ > Wt Ly ® OCH1.
™M
22.2.1)

Let BGG" () be the associated G*-equivariant quasi-coherent complex over Ft. The following hold:

—_

1. We have a quasi-isomorphism VAV,két ® 0[0] ~ ﬂ;T(BGGV(/l)) of complexes over Sh, K. Lprokét’
The (d — k)-th term of ﬂ;T(BGGV(/l)) is of the form

P M=wotw - 1) ® w &y ECTiog(w - Au™) = ).

weMw
tw)=k

where w = Q%(log). Furthermore, let A o vk, : Shy, K,.Cprokét Sh, K,.Can be the projection of

sites, then

R(A0 vk, (Ve ® O) = ) M(=wo(w - 1) @ w ® Z,,(w - Au™") = d)[t(w) — d.

weMWw

By taking cohomology over Sh, K,.Can and using the primitive comparison theorem, one gets

RU proei(Shiri, 0, Vy)®L.C = ) RTa(Shighy e M(=wo(w-)@w)@C(w-A(™ ) =d)[E(w)—d].

weMw
2. We have a quasi-isomorphism j;VXé;CSg [0] ~ jyzp@r;T(BGGv(/l)). Furthermore,

R(A 0 vi, .1V B0) = ) M=wo(w - 1) ® oy ® Z,(w - ™) = d)Lw) — ]

weMwy

tor

where Weysp = Qj‘é . In particular, taking cohomology over Sh, K,.Can O11€ 8€1S

tor
hkpk,,,L

RU et o(Shiek, e, Vie)®.C = ) RTan(Shighy, e M(=wo(w-0)8weusp)@C(w-A(u =) E(w)~d].

weMw

Proof of Theorem 22.2.6. By Theorem 22.2.2 we know that 7}, .(& (El)) = OCyg, and by Corollary

22.1.5 that m (W) = M(x) ®¢ O (wo(k)(w)). Moreover, Wy g (-wottyy = W' oM = Wy en'.
Then, the BGG complex can be written as

®nv®ﬁ(51)—>~-- N @ WV%®nV®ﬁ(€1)—>~~-W}®nv®ﬁ(fl)].

w
weMWe(w)=d—k

(W

M
0 4
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22. Shimura varieties

Since 7} (n°) = w0 (~d) and W (k) = G"XPW_VWO(K), the previous equation shows that 7j;,.(BGG" (1))

is of the shape described in the theorem. By the projection formula R(A 0 VKP)*(ﬁCIOg) = O} one finds
that R(1 o VKP)*JT;{T(BGGV (1)) has (d — k)-th term

P Mwotw- D)@ w R Z,(w- A" - d).

wePw
{(w)=k

It is left to see that the connecting map

B Mwow- @ weZ,w- A -d) > B Mwotw- 1) @ wSZ,(w - Aw™") - d)

weMw wer W
f(w)=k f(w)=k—1

is zero. For this, it suffices to see that the composition

W(wo(w - 1)) — (M)d—k — (M)d—k+l,

weMwenlv
t(w)=k

is zero, but it is the associated G¢-equivariant morphism over .%¢ of the P-equivariant map

D wyen’ - BGG ()™ — (BGG (1) !

weMw
t(w)=k

which is 0. This finishes the proof of part (1).

For part (2), let D = | J,; D. be the decomposition of the cusps as union of their irreducible
components. We can take our toroidal compactification in such a way that that any finite intersection
of the D, is smooth. For J c I we set D; = (),c; D,, and denote ¢, : D; C Shy; KL Consider the
long exact sequence

O—>jfZ;7 —>fo1, - @La,jz}, — > @LJ’*ZP — e —>L1,;ZT,, -0
a =t
and its completed tensor with Ty, KP(BGGV(/l)). It is enough to show that for all J C I one has
R(X0vi,).(t1.0p,8 5731 (BGGY (K))) = EH) M(=wo(w- 1)@ w®0,, 11, Op,an(w- A" =) L(w) —d).
weMwy
By Theorem 22.2.2, it is enough to prove that
R(/l © VKP)*(LJ,* gDJ ®§ mlog) = lyx ﬁD},ana
but this follows from the projection formula [ , Prop. 3.3.3]. O

Remark 22.2.7. The previous theorem applied to V), tells us that
R0 vi)(Vaa® 0) = (D M’ (=wolw - D) @ Zy(w - A)I=Lw)].  (22.2.2)
weMw

Indeed, one has V; = V_VWO( 2 SO that the dual BGG complex for V, is isomorphic to

(W8 0C) == (D Wa®0C) > > Wy, ® 6CHI.

weMw
{ow)=k
We can write W,,.. = W_,, w2 Recall that ‘W (k) the VB over .Z¢ attached to W_VWO (> thus the VB

attached to W,,.; is WY (—=wy(w - 2)). But Corollary 22.1.5 implies that
T (WY (=wo(w - 1)) = MY (=wo(w - 1)) ® OC,o5(w - A1),

taking projections to the analytic site one obtains (22.2.2).
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22. Shimura varieties

22.3. Locally analytic vectors of completed cohomology

We let j : SthKp,L C Shtl‘{’i KoL denote the open immersion of Shimura varieties. In this section we

make explicit the relation between the locally analytic vectors of the completed cohomology, and the
sheaf &’ gh. First, let us recall the definition of Emerton’s completed cohomology, we follow [ ].

Definition 22.3.1. Let i € Z and A a p-adically complete ring. We define the i-th completed coho-
mology group of {Shg»g, c}k, to be

ﬁi(K[J’ A) = yth_rngét(SthKp,C’ A/psA)
s Ky

We also define the completed cohomology with compact supports*

H{(K?, A) := limlim H, (Shxrx,.c, A/p).
s Ky

One can compute the completed cohomology with A/p’-coefficients using the infinite level toroidal
compactification as follows.

Proposition 22.3.2. We have

H'(K?, A/ p*) = H., s (Shigs. A/ p)
HU(K?, A[p*) = H o (SHG. jiA/ D).

Proof. By, GAGA for étale cohomology with torsion coefficients [ ], putiry of torsion local
systems [ , Theo. 4.6.1], and Lemma 4.5.3 of loc. cit. we have

RU«(Shgrk, ¢, A/P*) = RTxa(Shigrg s A/ D)
RU(Shgrk,c, A/P*) = RUia(Shigog ¢ A DY)

On the other hand, by Lemma 3.16 of [ ] we have that

Rrprokét(ShtI({);,C, A/PS) = li_r)nRFprokét(Sht[?;Kp,C, A/ps)
K,
Rrprokét(Sht](();,C9 J'A/Pv) = h_r>nRFprokét(Sht]({);Kp,C’ ]'A/PY)

KI’
This proves the proposition. O

We want to show that the completed cohomology with Z, coefficients can also be computed as the

pro-Kummer-étale cohomology with 2p-coefﬁcients of Sh}?;,c. Since 721, = R{iils Z[/p® and jfZTP =

R &n J1Z]p’, one has a short exact sequence
N

0 > R'im(H} o (Shihe, o Z/p") — Hj

prokét

(ShS . Z,) — H'(K?,Z,) — 0,

rokét
K

(resp. for cohomology with compact supports). Therefore, we only need to show that the R! lln
appearing above vanishes. This is a consequence of admissibility of completed cohomology:

4The maps between Shimura varieties are finite, hence there are natural pullback maps between the cohomologies with
compact support.
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22. Shimura varieties

Theorem 22.3.3 (Emerton). Let s € N and A denote Z,, or Z/ p*. The complexes
Rrprokét(Shtlc();vc’ K) and Rrprokét(Shtlc();,C, ]'X)

are represented by a bounded complex of admissible Ep—representations with terms isomorphic to
(Shigy o> ) and HE, (Sh, ¢ JiN) are admis-

rokét rokét

finitely many copies of C (Ep, A). In particular, H[’;
sible A[[Ep]]-modules.

Proof. Let us first show the case of torsion coefficients. By Shaphiro’s lemma and a Hochshild-Serre
spectral sequence, there is a natural quasi-isomorphism

R ok (SIS ¢ 2/ p*) = R puokea(Shi, ¢ C(K 2/ ) (22.3.1)

(resp. for jiZ/p*). By purity of torsion local systems, and GAGA for étale cohomology, the RHS of
22.3.1is equal to

RUs(Shxok, c, C(Ky 2/ p*)) = RUe(Shgok, ¢, C(K,, 2/ p*))

(resp. for j, and cohomology with compact supports). Fix an isomorphism C = C, by Artin’s com-
parison theorem [ ] we have

RT(Shgrk, . C(Kp, Z/p*)) = RUpeqi(Shgo, (C,), C(K,, Z/ p*))

(resp. for cohomology with compact supports).

Let SthK,,(C)BS be a Borel-Serre compactification of Shgyx,(C) (cf. [ ]), it is a compact CW
complex which is homotopocally equivalent to Shg»g,(C). Let S, be a finite simplicial resolution of
Sh[(p[(p (C)BS, then

RUgei(Shgok, (C), C(K,, Z/p*)) = RUpewi(Shxo, (C)FS, C(K . Z/ p*))
= Hom"(Z[S.], C(K,,Z/p"))

is a bounded complex whose terms are finite direct sums of C(fp,Z/ p*), in particular a bounded
complex of admissible Z/p*[[K,]]-modules. Taking derived limits as s — oo, one has

RU ok (SR ¢, Z,,) = Hom*(Z[S .1, C(K,,, Z,,))

proving that it is a bounded complex of admissib}g Zp[[K,]l-modules.

It remains to prove that Rl geyi..(Shgrk,(C), C(K,, Z/ p*)) is admissible. By Poincaré duality, coho-
mology~ with compact supports with coefficients C(K),, Z/p*) is dual to cohomology with coefficients
Z/p°[[K,]], hence

RTgei o(Shirk, (C), C(K, Z/ p*)) = RTpeui o(Shirk, (O, C(K,, Z/ p*)
= RHomg,,»(Hom*(Z[S.], Z/ p°[[K,]]), Z/ p*)[-2d]
= Z[S.]® C(K,, Z/ p*)[-2d],

this shows that the completed cohomology complex with compact supports and Z/p*-coefficients is
bounded and admissible. Taking derived inverse limits as s — oo one finds that

RU prore(SHS o, J1Z,y) = Z[S 1 ® C(K,, Z,)[-2d],

proving that it is a bounded complex of admissible Z,,[[E »]]-modules. O
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22. Shimura varieties

Corollary 22.3.4. We have isomorphisms

(ShS -, Z,) =H(K",Z,)

proket
proket(ShtI(();,C’ j!ZI’) = Hé(Kp’ Zl’)
Proof. This is a consequence of Proposition 1.2.12 of [ ] knowing that the cohomology com-
plexes are represented by bounded complexes of admissible Z,[[K,]]-modules. O

The admissibility of completed cohomology implies the vanishing of higher locally analytic vec-
tors, cf. [ , Theo. 7.1], [ , Theo. 2.2.3] and [ , Prop. 4.43].

Corollary 22.3.5. Let i € Z, we have

Hl(Rrproet(ShKP C» Qp)RK la) - roet(ShK/’ C» Qp)Kp la
Hl (Rrproét,c(ShKl’,C, Qp)RKlrla) proet L(ShKP C» Qp)K la

Remark 22.3.6. Since the property of locally analycity is local on the group, the cohomology groups
of the previous corollary are independent of K,,. We call these complexes the locally analytic com-

pleted cohomologies and we denote them by RI o6 (Shgr ¢, @ p)l“ and R prost o (Shkr ¢, @p)l“,

We also need a version of this theorem relating the dual of the completed cohomology.

Proposition 22.3.7. Consider the dual completed cohomologies

RU pros(Shir 0, Z,)" := RHomz, (R pros(Shir ¢, Z,), Z,)

— — . (22.3.2)
Rrproét,c(ShKP,Ca Zp)v = RHomZp (Rrproét,c (ShKP,C, Zp), Zp)

The complexes (22.3.2) are represented by bounded complexes of coadmissible Zp[[Ep]]—modules
with finite free terms. In particular, the cohomology groups of (22.3.2) are coadmissible Z7.,[[K,]]-
modules and are in duality as topological Z,-modules with the completed cohomology groups. In

other words, if H:Y (Shgr cs p) denotes the i-th cohomology group of RFprOét(ShK,;,c,Zp)V, one has

proét

a perfect pairing .
Hyyo(Shr.cs Qp/Zy) X Hotoet (Shicnc, Zy) = Q,/Z,

proét

(resp. for the cohomology with compact supports).

Proof. The proposition follows from the proof of Theorem 22.3.3 and the equality
RHomg, (C(K,,Z,),Z,) = Z,[[K,]].

This last equality follows from the fact that C (K »Zp,) has a ON basis as a p-adically complete Z,-
module and that

RHomZp(@Zp,Zp) = R@RHomZp(@zp,Z/pS)
R yLnRHomZ,,,s(@ Z/p*,Z]p")

N

—Rhml—[Z/p

_nz
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22. Shimura varieties

Remark 22.3.8. By Poincaré duality, the dual of the completed cohomology is equal to the inverse
limit of the finite level cohomologies RIos(Shgri, c»Z,) via the traces induced by the finite €tale
maps Shgrk; c = Shxek, c for K}, € K, (resp. for the cohomology with compact supports).

Let us define Rl pros(Shir c, @,,)V = RFproét(ShK,;,C,Zp)V[i] (resp. for the cohomology with com-
pact supports). One has the following corollary

Corollary 22.3.9. Let DK 1, Q,) denote the locally analytic distribution algebra of K ». We have

H(D"(K;. Q) 85 2 RTpuoee(Shir.c. ©p)") = DK Q) 817,11 Hypoar Shirc2 Q)
H'(D"(K,, Q) ®Q,,[[1?,,n RT proet (Shicr ,@p)") = D(K,, Qp) 8, 17,1y Hiegy (Shicr 5 Q)

Proof This follows from the previous proposition and the fact that D" (E . Qp)1s flat over Qp[[f b1l =
Z,[l ,,]][ ], cf. [ , Theo. 5.2]. O

Definition 22.3.10. The complexes of the previous corollary are called the dual locally analytic com-
pleted cohomologies. We denote them as Rl"pmét(Sth ¢, Q)" and RT o6t (Shgr ¢, Q,)V, and their

cohomology groups are denoted as H; . (Shk» c, Qp)l” Vand H!

proét,c

(Shgrc, @p)’“’v respectively.

Corollary 22.3.11. We have a duality between locally analytic and dual locally analytic completed
cohomologies

(H;l;roét(ShK”,C’ @p)la) Hgi)elt(ShKP,C, @p)la’v
(Hli)roét,c(ShK",C’ @P)la) sz)z)elt c(ShKP,Ca @p)la’v-
Our next goal is to relate the locally analytic vectors of completed cohomology with the sheaf

of locally analytic vectors at infinite level. In order to do this, let us first relate the C-extension of

scalars of the completed cohomology with the proétale cohomology of 0. The following is essentially
Theorem IV.2.1 of [ ].

Proposition 22.3.12. There are natural almost quasi-isomorphisms

Rrproét(ShKP,C» Zp)§OC =% Rrprokét(Shtlc();,c, 5+)
Rrproét,c(ShKl’,C’ ip)§OC =% Rrprokét(ShtI(()/rJ,C’ ]'ip§ﬁ+)

Remark 22.3.13. If Shy, . is perfectoid (e.g. for Shimura varieties of abelian type), the pro-Kumer-
étale cohomology of the RHS terms of the proposition can be computed in the analytic site, and the
restriction of j!Zp§ﬁ+ to the analytic site is the intersection of the ideal defining the boundary and
"5y

KP .C,an

Proof. Let s > 1, by purity of torsion local systems we have
RU prosi(Shirk,.c. Zp/P*) = Rrprokét(Sht]?fpr,c, Zp|P*).
The primitive comparison theorem ( [ , Theo. 5.1] and [ , Theo. 6.2.1]) implies that
RTy(ShY; k,.c» L/ p") ® Oc = RTy(ShY; K,» 0" |p).

Taking inductive limits as K, — 1, and derived inverse limits as s — oo, one obtains the first almost
equality.
For the cohomology with compact supports we argue as in Lemma 3.15 of [ ]. Let Dg, C

ShY, K, C denote the boundary divisor, and write Dg, = (J.e; D, as a union of irreducible divisors.

237



22. Shimura varieties

For J c I we let D; := (,; D, endowed with the pullback log structure of Sh'cs Letey : Dy —

KPK,,C*
Sh, . - denote the strict closed immersion. Then, we have a long exact sequence
P

0> JZ/p' = Z/p* = P utasZip' = -+ > P uZ/p > -+ > u.Z/p' > 0. (2233)

ael |J|=k

By Lemma 3.14 of [ ] we have ¢;.Z/p* @ O | p* = 1. ﬁgj/ps for all J c I. Tensoring (22.3.3)

with 0 and taking inverse limits as s — co, we obtain a long exact sequence

0> JZ,80" = 0" = (PO} — - > 1.0}, = 0. (22.3.4)

But for any J C I we have
Rrproké[(Sh}?;Kp,Ca L ﬁg,) = Rrprokét(DJ, ﬁ;—) —ae Rrprokét(Dj, Zp)§OC,

where in the last equality we use the primitive comparison theorem as the D, are proper log smooth
over Spa(C, O¢). The proposition for the cohomology with compact supports follows by taking coho-
mology of the sequence (22.3.4). O

Before stating the main theorem of this section, we need to define a sheaf of locally analytic distri-

3 tor
butions over Shig, ..

Definition 22.3.14. We define the sheaf f){;‘h of locally analytic distributions over Sh'

Kr.C.an L0 be the

sheaf mapping a qcqs open U to
DE(0) = (1 @0 DK, L O3,

tor

where U = ﬂ}l(U ) is the pullback of a qcqs open subspace U C Sh, K,.C*
Remark 22.3.15. The previous sheaf is well defined, i.e. it is independent of K. Indeed, if K;, CcK,
there is a natural isomorphism

(D(K,, 6(0)) ®yuoy, )13 = (D(K,, O(U)) @y 1)Kesia

given by the trace f — ng;p /R, f®g.

Theorem 22.3.16. Let O} be the uncompleted structural sheaf at infinite level and 7" C O3 the

ideal defining the boundary of Shy K,.C for all K,. There are natural quasi-isomorphisms for the

locally analytic completed cohomology

RUpros(Shir ¢, Q) “®C = RUp(SHS -, 64
RT proceo(Shir.c, Q) “®C = RUun(SHgh ¢, 0% B 7™,

Similarly, there are natural quasi-isomorphisms for the dual locally analytic completed cohomology

RTproct(Shgr.c, @) V8C = RUon( Sy 0, D%, ® 0 @y 5 ™[d]
R proeto(Shio ¢, Q) “V&C = RT4(SH: -, D4 ® w)[d]

where w = det Q! (log).
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22. Shimura varieties

Proof for the completed cohomology. Let us first show the non compact support case. By Shapiro’s
lemma one has

Rrprokét(ShtI?;,c’ @p)la = Rrprokét(ShtI({)lr?Kp,ca Cla(gp’ Qp))
= h_r)n Rrprokét(ShtI?;Kp,C’ CIQ(EP’ QP))’

K,—1

.. ) . ) )  ortor o
where all the transition maps in the colimit are isomorphisms. Let VK, ShK,, K,.Cprokét ShK,, K, Ckét

and A : SK) <o — S ., be the projection of sites. Let us write ve,, = li_n>1Kp Vi, By Corollary

22.2.5 one has that’ _
R(10v).C(q", 0) = 0%,
The primitive comparison theorem implies that
(RT ok (Shigh ¢ @p)BCY = lim RT prokea( S, ¢ C“(K)p, 0))
K,—1

= lim RTu(ShRig, oo R(A 0 vi,).(C(K), 0)))

Kp—>1
= RTan(SHE ¢, R(A 0 ), (C(g¢, O)))
= RT,(SHG ¢, O%).

This proves the case of non compact supports. For the case of compact supports, one argues as in
Proposition 22.3.12 to reduce to the equalities

RT proed(SHES ¢ Op)" = RUon( Shgh ¢, 0% @ O31), (22.3.5)

where &' », 18 the sheaf of smooth sections of gl,,;(l (,)- But then, by Theorem 20.2.4 one has
P

R(A 0 v (CH(g°, Op,)) = 0% @y O3,
taking analytic cohomology over Sh}?,r,’c one gets (22.3.5). i
Proof for the dual completed cohomology. First, note that the proof of Theorem 22.3.3 implies
R s (Shicr.c, @) = RT prosto(Shico, s DKy, Qp))[2d)
R prosto(Shir ¢, @) = R pros( Sk, D*(K,, Q)24

The primitive comparison theorem gives

R proce o (Shio, . D (K, Q)BC = R ok S o J1Z,8D" (K, 6))
RT proc(Shiri, 2 (K, Qp)BC = R proged(Shighy o D(K,p, 0)).

Writing DK, Q,) = Rlim _ D"~*(K, Q,) one finds that

RT prost(Shirk, e D(Kp, Qp)) = R im R prosi(Shicrk, ¢ D" (K, Q).

h—o0

(resp. for the cohomology with compact supports). But the sheaf Z)ht“”(fp, % ) is the pullback via
ngr of a squarrable locally analytic LB-sheaf over .%¢. By Theorem 20.2.2 we know that
R(A 0 v) (D" ~"(K,, 0)) = (RT(", D"~ (K,, Oy, T

KP ,C,an

= (1 ®ygny D"~ "(K,, O sper NI w.

KP Cai

Recall that we have made the assumption Lie K » =g
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22. Shimura varieties

t
Let U C SH, .

U be its pullback to infinite level. Then

be an affinoid subspace admitting coordinates to a product of tori and polydiscs, let

RT s U, D(K . ) = lim (1 @0, D" (K, O(0)) " ® w(U)

h—o0
= (1 ®yuoy DK, O(0)))" ® w(U)
= D4 (U) ® w(U).

Taking Cech cohomology one obtains that
RT o (Shighi ¢ D (K, 0)) = RT(Shigs . D%, ® w),

proving the case of the dual locally analytic completed cohomology with compact supports. To prove
the case of the dual locally analytic completed cohomology, one argues as for the locally analytic
completed cohomology with compact supports, reducing to a computation in terms of the structural
sheaf of the smooth intersections of the boundary divisor, where one can apply Theorem 20.2.2 again.

]

Corollary 22.3.17. The rational completed cohomologies H(K”,Q,) and H/(K”,Q,) vanish for i >
d.

Proof. The argument is essentially the same of [ , Theo. 5.3]. By Theorem 22.3.16, the locally
analytic vectors of the C-scalar extension of the completed cohomology complexes can be computed
as the analytic cohomology of sheaves over ShY; . But |Sh; .| has cohomological dimension < d
being the inverse limit by qcqs maps of noetherian spaces of dimension < d. Then, the vanishing for
the locally analytic completed cohomology follows by Grothendieck’s bound for the cohomology of
noetherian spaces. Finally, as the completed cohomology groups are admissible by Theorem 22.3.3,
their locally analytic vectors are dense (dually, Z)l“(Kp,Qp) is fully faithful over Qp[[fp]]), which

implies the corollary. O

22.3.1. The arithmetic Sen operator via 6,,

We end this chapter with the computation of the arithmetic Sen operator for ﬁg‘h, cf. [ , §5.1].

Letg = Lie K »» We no longer assume that g = g¢, we letz = ker(q — g°). Theorem 22.3.16 tells us that
R prokel(Shgr ¢ % )¢ = RTo(Shgrc, O fg“h). Moreover, the action of g on the former term is computed
via its action on the sheaf ﬁé“h. By construction, the sheaf ﬁé“h also admits an action of the Lie
algebra 0z ® g which is trivial when restricted to n°. In particular, & é“h carries an horizontal action
of m® = p®/n® and afortriori an action of Z(m), this last extends to the locally analytic completed
cohomology®. Let u : G,, — G be the Hodge cocharacter, since M is the centralizer of u in G¢, one
has a natural operator 6, € Z(m) given as 6, = Lie u(1).
We have the following theorem

Theorem 22.3.18. The cohomologies RI poe(Shir ¢, @p)’”‘@C and R proe o(Shgo ¢, @p)l‘@C admit an
arithmetic Sen operator 0;. More precisely, the locally analytic cohomology is a relative locally
analytic representation of Gal, = Gal(C/L) in the sense of Definition 19.2.5, whence it admits a
C-linear Sen operator in the sense of Definition 19.4.3. Moreover, we have that 0, = 6,.

Proof. Let us first show the existence of the arithmetic Sen operator. We only treat the case without
compact supports, the other being similar. We have that

R prost(Shin ¢, €)' = RUon(SH o, 614).

5This action arises as the O x,-action of Cl(y, 5) which is equal to —6,, 4,.
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22. Shimura varieties

The LHS can be computed as the colimit along all the Cech complexes of the RHS with respect to
hypercovers of Sh; ¢ by qcgs open subspaces. Hence, it suffices to show that locally on Shgy -t ¢ the
sheaf ﬁé‘lh is a relative locally analytic representation of Gal;. For this, note that in order to apply
the geometric Sen theory formalism of §20, it is enough to extend scalars to L?¢, namely, we need
enough ramification for the Colmez-Sen-Tate axioms of §19.1 to hold. Therefore, if ﬁ’é“h 1oc denote
the locally analytic sections of the completed structural sheaf restricted to Sh; .., one has that
o é”h an(Uc) = C®L O g‘h LCyC(U ) for U C Shig; 1o @ qcqs open subspace. Then, it is enough to show
that locally on Sh‘;g,r, Jac» the sheaf & fgh 1o 18 relative locally analytic for the action of I'; = Gal(L?“/L).

Let U ¢ Sh®

KPKp,L

tori and polydiscs. Let U C Shgy 1o

be an open affinoid which admits a chart ¢ : U — S(e’d_e) to a product of

denote the pullback of U to Sh; .., U = U Xgted-o S(ed o

and Uy, = U Xy U. Let us write K% = {E’}g, <%, for the overconvergent neighbourhood of 1
in Ep, and I' = Gal(U,/U). By definition, the Sen module attached to C%(g, Qp) is the space
S5(C') = O(U.)Krlal=la of KT x T-locally analytic functions of &(Us). Furthermore, T'; acts
on I' via multiplication by the cyclotomic character, which gives us an action of K; X (T, =T)on
S3(C lay But S 3(C lay admits a closed E; X (I'y = I')-equivariant L““-semilinear closed embedding

S5(C") = C*(gx T, L™)®. Vo,
where V|, is some LB space over L, and I'; acts as

(o * f)(g,y) = a(f(g.a ' ).

Taking a Banach subspace V, c V, and a radius of analyticity 4 > 0, the space C"~*"(g x T, LY)®V,,
is Banach. It is clear that the reduction modulo p€ of a lattice is isomorphic to €5 ; Oroc/ p© for some
€ > 0. Therefore, the devisage Lemma 19.3.5 holds and we can apply the decompletion given by Sen
theory for the pair (L?¢,I',). In particular, there exists a C-linear arithmetic Sen operator 6, acting on
0& as wanted.

It is left to show that 6, = 6,. Let Og;, denote the restriction of the completed structural sheaf
to ShY, . Since the action of 6, on &g is trivial (this sheaf is just the C-scalar extension of the
finite level structural sheaves), the arithmetic Sen operator extends to a Ogj-linear derivation on

—_ 0 _ -~
Cla(g, Og;,)™15 =0 = ﬁs;,@ﬁgz % é“h. In addition, 6, is a right g-invariant derivation by functoriality of its

construction. This implies that 6, factors through a map of sheaves on Sh; K, Lprokét

6, : L — ﬂET(nO)\(5®@.
But ﬂl’fIT(nO)\(ﬁ ®'g) fits in a short exact sequence
0 = T (i’ ® O ®3) = T (OO ®F) — 7jgr(n™*) — 0,

where ﬂ}"qT(mO) has Hodge-Tate weight O and n;T(nO’V) has Hodge-Tate weight 1. Besides, rj;1(O. 7®3)
has Hodge-Tate weight 0 since G acts trivially on 3.

This implies that 6, factors through 6; : Q, — n;‘{T(mO ® Oz @ 3), this last acting on @’S“h via *;.
Let Z, be a faithful representation of G,/ Gier whose action of g factors through g. Then Z; is a K »
-module for K, small enough. Let x € X*(T)y;, to compute the image of 6, it is enough to know the
Hodge-Tate weight of 7 (W (k) ® Zpxs ® 5 let us first focus on W(k). By Corollary 22.1.5 we
know that _

T W) = Mwg' (1) ® O (woi) ().

But 6, ., acts on W(«) via the left regular action on the sections. By definition, the sections of W («x)
are the functions f : Mz — A! such that f(b~'x) = wy(k)(b~") f(x) for b € Byy. This implies that the
action of 6 on 7, (W («)) is equal t0 =0, 4, = 6, +, = 6,.
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22. Shimura varieties

To compute the Sen action of Zje ® 0. , by functoriality we can reduce to the case of a torus T
after taking a special point of (G, X) as in [ , §2.2.4]. Let E be the reflex field and resg : Galg —
Gn(AY) the arithmetic reciprocity map (i.e. resg maps Frobenius of unramified primes over ¢ to
uniformizers in the places dividing ¢). In this case, the action of o~ € Gal, on

Shirc = T(AZ)/K'T(Q)

is by right multiplication of NE/Q(/J(I'CSEI(O'))), where Ngjq : T(A}) — T(Ag) is the norm map, see
§2.2.3 of loc. cit. Let p be a place over p and L = E,, the reciprocity map resg is compatible with the
local reciprocity map res; : Gal, — L*, and the completed cohomology is nothing but the continuous
functions of |Shg» | to Q,. Let f : [Shg»r | — C be alocally analytic function, and let o~ € Gal;, we
have that

a(f)x) = f(o'(x) = f(xNysq, (ures (0))))-

Thus, if f satisfies f(xt) = tf(x) fort € K?K,/(K?, KPK,NT(Q)) = Ep, one has o(f) = Nyq,(res (o)) f
for o € Gal, close enough to 1. But the representation Nijg, oresy @ Galp — Q; has Hodge-Tate
weight 1, this proves that 6; = 6, as wanted. O
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23. Overconvergent Hodge-Tate
decompositions

This last chapter concerns one of the main applications of the theory we have developed so far, namely,
the definition of the overconvergent BGG maps for the locally analytic completed cohomology. We
start in §23.1 with the definition of sheaves of overconvergent automorphic forms, following essen-
tially the same construction of [ ]. We define cohomologies with closed and compact supports
of these sheaves at infinite level, and relate these cohomology complexes with those of finite level
appearing in higher Coleman theory. Then, in §23.2, using the computations of §21.4.3 we construct
the overconvergent BGG maps for the derived b = A isotypic part of the locally analytic cohomol-
ogy, generalizing in this way previous works of Andreatta-lovita-Stevens [ ], Chojecki-Hansen-
Johansson [ ], Barrera-Gao [ ], Diao-Rosso-Wu [ ], and the author [ 1. We
prove that these overconvergent BGG maps are compatible with the classical BGG decompositions
of §22.2. .

Throughout this chapter we will assume for simplicity that Lie K, = g¢, in the case this equality
does not hold, the main theorems remain true under some minor modifications that we left to the
careful reader.

23.1. Sheaves of overconvergent automorphic forms

The objective of this section is to introduce the sheaves of overconvergent automorphic forms ap-
pearing in the description of b-isotypic parts of the locally analytic completed cohomology. We will
see that these sheaves include the sheaves of overconvergent automorphic forms of higher Coleman
theory of [ ]. We keep the notation of §21 and 22.

Let u : G, — Gi be a fixed Hodge cocharacter and P = P, C GY the parabolic subgroup
in G{ defined by u. Let M be the centralizer of ¢ in G and N the unipotent radical of P. Let
FL = P\G_ denote the flag variety over L and .% its analytification to an adic space over Spa(L, Oy).
Let Mz = N\G; — . be the natural M-torsor over the flag variety and Mg = M; « the

analytification of the automorphic M-torsor over Sh; KL parametrizing automorphic vector bundles.

By Corollary 22.1.5 one has an isomorphism of K p-equivariant torsors over Sh‘lg,f,’ L

(M) = i (Mar) X Zy(=1)". (23.1.1)

The equality (23.1.1) translates G¢-equivariant vector bundles over .#¢ arising from finite dimen-
sional representations of M, to automorphic vector bundles over the Shimura variety. Indeed, let
k € X*(T)y; be a dominant weight for the Levi subgroup and W, the irreducible representation
of M of highest weight «, let W(x) = G x* WM be the G-equivariant sheaf over .#¢ and

Mg, (k) = Mar xM Wime the automorphic VB over ShY, KL We have a natural Ep—equivariant
isomorphism of sheaves over Sh}?,r,’ Lan
* Ki—sm :
T (W)™ = lim M, (<) ® Z,(wo(1)(1))- (23.1.2)
K,—1

The construction of overconvergent automorphic sheaves has as input the reduction of the torsor
Mg to a torsor over some overconvergent neighbourhood of 1 in M. This reduction is provided by

243



23. Overconvergent Hodge-Tate decompositions

p-adic Hodge theory, namely, in the case of modular curves or Siegel varieties, the reduction of the

torsors are obtained via the Hodge Tate exact sequence of the universal abelian variety, cf. [ ]
and [ ]. In general, the reductions of the automorphic torsor are constructed from the flag variety
and the 7 period map as is shown in the next section, see also [ , §4.6].

23.1.1. Construction of the overconvergent modular sheaves

Definition 23.1.1. Let H be an analytic group over a complete non archimedean field F and H' =
{H,,} et be a decreasing family of open subgroups of . Let X be an adic space over F. A H-torsor
over X, with ? € {an, ét, két} is a decreasing sequence 7—(; = {Hy,,} of H,-torsors such that the maps
Hx i1 = Hyx,, are Hy,.1-equivariant for all n € N.

Let U C .Z¢ be an open subspace stable by Ep, and let M = {M(y)}y>0 be a basis of over-
convergent neighbourhoods of 1 in M. Suppose that we are given with a reduction of M|y to a

KT -equivariant M’ -torsor Mq, v = = (Mg, U(y)}y>0 In other words, we have a decreasing sequence

of K. »(y)-equivariant torsors Mz (y) with K »(y) = 1 asy — oo. The overconvergent space M U

defines a locally analytic K, K -equivariant LB O -algebra which we denote as C(M", , ); it is given as

FU
the colimit of all the algebras of functions C(Mz (y)) of the M(y)-torsors converging to M

Ft,U"
Definition 23.1.2. Let (U, M, ) be as above, and set V = (V). Let Ogr = lim, Osugy,

be the sheaf of K -smooth functions of ShY; Can’

vergent automorphic forms defined by (U, M’ #p) 18 the LB O"-sheaf given as

and ﬁ;’" its restriction to V. The sheaf of overcon-

CM ) = T (COMT, ). (23.1.3)

We can also make a dual construction which is more adapted to the dual locally analytic com-
pleted cohomology. Indeed, for any Kp C K, small enough and any y >> 0 consider the space

M ngg,u(y)IA(; C Mgly. Let C(M y[’u(’)/)g;j) be the Oy-algebra of functions of M yg,u()/)l?p and
DM yg,u()/)l?p) its Oy-dual. We denote

DM, K,) = lim DM, v (VK.

’}/—)OO

The spaces Mg, U(y)K have a natural K -equivariant action over U, so that Z)(M K ) is a Kp—

equivariant LF O)- sheaf over U.

F,U

Definition 23.1.3. Keep the previous notation, and let V = 75 (U). We define the sheaf of dual
automorphic forms over V to be the inverse limit

DM arv) = hm ﬂHT(Z)(M%U p)) r

K cK
where the transition maps are given by trace maps.

Remark 23.1.4. Let 5’\3;1 be the completed structural sheaf of Sh}gf, can- The sheaves C M 7. ) and
Z)(M

1) are Dla-modules in a natural wa , being constructed from open subspaces of M. In
F,U y g P P
partlcular Theorems 19.3.3 and 20.2.2 imply that

Osilv®ay CMiy ) = Tin(COM z1.0).
Dually, for any K ,C K »-small enough one has
ﬁSh|V® K, Z)(MdR 1% ;7) - ﬂHT(D(MygU p))

Sh
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23. Overconvergent Hodge-Tate decompositions
Taking limits as K , — | one obtains

dR,V™"p 2

Osilv@oyp DMy ) = @(Es;zlv@ﬁfgﬂw K<) = mip(DM, ).

I?;—»l
where the transition maps in the limit are trace maps.

Example 23.1.5. Let W be the Weyl group of G$ and w € MW be a Kostant representative. Let
C,, C Z{ be the w-Bruhat cell, and for € > 0 let C,,(€) the e-overconvergent neighbourhood of C,, as
in Definition 21.4.15. For y > 0 consider the M(y)-torsor M,, z(y) over C,,(€) of Definition 21.4.27,
set ij g = My 2ze(¥)},>0. We have sheaves of overconvergent automorphic forms over Jr;IIT(CW(e))
which we denote by C (ML’dR) and Z)(ML’ aR)

Let 6 > 0 and consider the open polydisc C,,(c0,d) C C,, of radius p°, cf. Definition 21.4.15. For
v > 0, we will also consider the following sheaves over ﬂ;IIT(CW(e, 0)):

CM,.z()) := T (CMy 5())S ™" and DMy ar(y)) = T (DM 7 (7))~

Notice that C(ij’dR) = li_n}y C(M,,4r(y)) while Z)(ij’dR) = &iLny_)l D(MW’dR(y))EP(V), where the

transition maps are trace maps and Ep(y) — lasy — oo.

23.1.2. Relation with higher Coleman theory

In the following we relate the cohomology of the sheaves of overconvergent automorphic forms con-
structed above, with the overconvergent cohomology classes of higher Coleman theory, cf. [ ,
§6.3]. We define the following cohomologies with compact and closed supports, cf. §18.

Definition 23.1.6. Let w € MW and let C,, C .%¢ be the w-Bruhat cell. In particular, we define the
w-overconvergent cohomologies of automorphic forms as!

RFC,W(ShtKO;;’C, C(Mju,dR)) = ch,ﬂ;[lT(Cw)(ShtKolr’,C,an’ C(M:rv,dR))
R, (Shig, ¢ Z)(ij,dR)) = Rl 1 ¢, (Sl ¢, D(ij,dR))'

We want to use Lemma 18.1.4 to obtain a devisage of the cohomology complexes of the previous
definition, in terms of “smaller” overconvergent cohomology complexes arising from finite level. In
order to make this precise we need to introduce some more notation. The following are essentially
the overconvergent cohomologies in families considered in [ ].

Definition 23.1.7. Let C,,(€ + 1%,0) = Ueser) Cu(€,0)NC(€,6) and C,(€,67) = Ugse Cu(€,07). Let
K, c G(Q,) be a compact open subgroup fixing C,,(e + 1,6) and C,,(€, 6). Given a K -invariant open

subspace U C .Z we let my;1-(U)/ K, denote its quotient seen as an open subspace of Sh'e; K,.C"

1. Let y > 0 and let M,, z(y) € Mg be the reduction of the natural M torsor over .#( to a
M(y)-torsor over C,,(€). We let

C(Mk, v () 1= COMy e ()K,)*
be the sheaf over ﬂl‘{lT(CW(e, 0))/ K » of K p-invariant sections.

2. Dually, we define D(M,, k,ar(Y)) := Z)(Mw,dR(y)E p)E,, seen as a sheaf over Jr;[lT(CW(e, 0))/ K -

"More generally, for a sheaf .# over S, ¢.an We define RT¢ (S, -, F) and RT,(ShY; ., F) in a similar way.
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23. Overconvergent Hodge-Tate decompositions

3. Lete, o,y > 0, we define the following overconvergent cohomologies with compact and closed
supports

RUE (Shghk, e COM, ¢ ) = BT, o1 ¢, e, iir (€€, + 1)/ Ky COMy ik, ()
RT3 (Shigr, cr DM, . ae)) 1= R ¢ 1.0, (T (Cu(€, 0)/ K, DMk, ar(7))-

Remark 23.1.8. The sheaves

CMyk,ar(y")) = lim C(M,.k,ar(¥')) and DMk, s (y")) = lim DM, k,.ar(¥'))

>y Y>>y

are squarrable LB sheaves over ﬂl‘{lT(Cw(e, 0))/ K ». Then, by [ , Theo. 4.1.8]%, the cohomology
complexes er;é,y(Sh‘I;); K,.C* F) with ¥ = C(ML K,,,dR)’ D(ML’ Kp,dR) are independent of the toroidal
compactification.

Proposition 23.1.9. For €,6,y > 0 let K,(€,6,y) € G(Q,) be an open compact subgroup fixing
C,(€,0), C,(e +1,0) and M,, z(y), such that K,(€,6,y) — 1 asy — oo for € and ¢ fixed.

1. We have natural quasi-isomorphisms

ch,w(ShtI?Ir’,c’ C(ML,dR)) = h_r,nRrifv’y(Shtlg;Kp(e,é,y),C’ C(ML,Kp(e,é,y),dR)) (23.1.4)
€,0,y
R, (SH ¢, DO, gp)) = RUMRTE (S s DM 50 ) (23.1.5)
€0,y

where the transition maps for € and 6 are correstriction and restriction maps as in Lemma
18.1.4, and the transition maps for y are the inclusions (resp. trace) maps.

2. Let J C 03 be the ideal defining the cusps at any level, and let Zx, C 7 be its K ,-invariant
sections. Then (23.1.4) (resp. (23.1.5)) also holds for C (ML dR)@/fg'; F andC (ij K dR)@ﬁ&m Ik,
’ P "KPKp.C
(resp. Z)(ij’ dR)@[)’g]’; F and Z)(ij, K. dR)TéﬁSh% Ik,)-

Kp.C
Proof. We will only prove (1), the proof of (2) being similar. By Lemma 18.1.4 we know that

RT ., (Shigs o COM, 1)) = M RT ot ¢, ey (T (Gl 8 + 1), COM], )
€,0

RT(SHigh ¢ DM, ) = RUMRT ¢ 7.5 (n(Cul€, ), DM, ).

€,0

The cohomology complexes of the RHS are represented by a cone of cohomologies on qcgs locally

closed subspaces of Sh‘,?;,c. To deal with the case of C(va’ 4r)» notice that we have the following

presentation of qcqs subspaces at infinite level as inverse limit of finite level ones

7' (Cule.6 + 1) = im RO (Cu(e, 6 + 1)/K,
K,
7N (Cu(€,6 + D\Cu(€,67)) = {iLnﬂ’l(Cw(e, 8 + D\Cy(e,6))/K,.

Kp

Moreover, we have that '
C(MCV,dR) = h_r)n C(MW,K,,(y),dR(Y))

Y

2 Actually, by its references in [ ].
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23. Overconvergent Hodge-Tate decompositions

where K,(y) — 1 asy — oo. This formally implies that, for X = 77'(C,,(¢,6 + 1)) or 77'(C,,(&,6 +
D\C,,(e,67)), one has

RTu(X, CM], ) = lim RT(X/K, (1), CMov . ar (1)),

Y

this proves (23.1.4).
To prove the case of Z)(ML’ 4r)» 1t is enough to show the following lemma

Lemma 23.1.10. Let U C Sh¥, K,.C be a gcgs open subspace, let U be its pullback to infinite level,
and for K, C K), let Uk, be its pullback to level K},. Then

RU(U, DM, 1)) = R1im RT (U, (s DM k,00. 0 (7)) (23.1.6)
Y

where K,(y) = 1 asy — oo.

Proof. Notice that U is qcgs of sheaf-cohomological dimension < d and that the derived limit is
countably filtered. Let V, be a finite hypercover of U, and without loss of generality assume that it
arises as the pullback of a finite hypercover V, of U. For K, C K, let V, ; be its pullback to Ug,. We
have that

RT(Va, DM, ) = RUmRT(V. k., 7 (DM], 5, K})))

K

= RUm RT (V. i, T (DM, 5, (0K )*9))
K.y
= RUM RT(V. k, ), DMy k,00.ar (1))
Y

where the first and second equalities are given by Definition 23.1.3 and the last equality by Definition
23.1.7. The maps with respect to K}, are isomorphisms induced by traces. Finally, by Theorems 19.3.3
and 20.2.2, one deduces that the sheaves D(M,,, k,n.dr(Y)) over Uk () are squarrable LF sheaves (eg.
look over affinoids admitting charts). Hence, the hypercohomologies over V. k) already compute
the cohomology complex of the RHS of (23.1.6). Taking colimits along all the V. one obtains the
equality of (23.1.6) proving the lemma. O

O

Remark 23.1.11. The sheaves C(ij,dR) and D(ij,dR) are endowed with a natural action of m =
Lie M arising from the M'-action on the torsor Mlv 7~ We denote this action by m,,.

23.2. The overconvergent BGG maps

We can finally state the main theorems of this chapter. Let b C g be a Borel subalgebra and by; = bnm
the Borel subalgebra of m. Let h C b be the diagonal torus. We let o™ = p — py be a half of the sum
of the roots of n C »p.

Theorem 23.2.1 (BGG maps for completed cohomology). Consider the Bruhat filtration of #t by

open subspaces O = Y4,y C Y, C -+ C Yy = F with graded pieces Yi\Yi.1 = | |, emy Cy. Let A € b,
t(w)=k
be a weight.

1. The derived b = A isotypic part of the locally analytic completed cohomology can be computed
as
(Rrproét(ShKP,C, (Qp)la?e?CW)Rh:/l = Rran(Sht[?;’C» RHomb(/L ﬁglh))
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23. Overconvergent Hodge-Tate decompositions

2. Let € > 0, then RHomy(A, & &’S“h)l,r;llT (Cu(e)) 18 concentrated in cohomological degrees [0,d — {(w)].
Furthermore, we have a highest weight vector map

Y : RHOmy (4, Ot ¢,y = COM )™= () = d],

surjective in H*=‘")-cohomology.

3. The open Bruhat filtration of F€ induces a spectral sequence

EM = P HE(SH, ¢, RHomy(4, 64)) = H”™((RT yoat(Shier ¢, @) B,
weMw

tw)=p

In addition, the map (', induces an overconvergent BGG map

BGG,, : RT,.,,(Sh ¢, RHomy(4, 6%)) = RT, (SHE ¢, COM, ™= 42" [ e(4p) - ).

4. Let 7 C O, be the ideal defining the cusps for any finite level. Analogous statements hold
for cohomology with compact supports after exchanging O fg"h by O l”‘@ﬁgz F and C (ij’dR) by
i
CM, &)@y 7 -
Theorem 23.2.2 (BGG maps for dual completed cohomology). Consider the Bruhat filtration of F#€
by closed subspaces O = Zy.1 C Z; C --- C Zy = FL with graded pieces Zi\Zy1 = || ,,emy C,. Let

wy=d—k
A € b be a weight.

1. The derived b = A co-isotypic part of the dual locally analytic completed cohomology can be
computed as

Rrproét,c(ShKP,C’ @p)la,v ®5(b) A= Rran(ShtI?;,ca (f)?h ® ‘U) ®%]([,) /l)[d]
with w = Q4(log).

2. Lete > 0, then ((Z~)f§1h®cu)(>z>§(b)/1)I,TI-{lT (C.(e) IS concentraded in cohomological degrees [£(w)—d, 0].
Furthermore, we have a dual highest weight vector map

T o (W D) Quvyry) @(M;dR)[d —tw)] - ((f)f?h ® w) By, Dlrt Cuten

which is injective for H"")~4-cohomology.

3. The closed Bruhat filtration of #€ induces a spectral sequence

E}! = EB HEY(ShE, ¢, (D, ® ©) ey D) = H " (RT progt (Shir.c, Q)™ &y A)
weMw
t(w)=d-p
In addition, the map (), induces a dual BGG map

BGG;, : RT,(Shigh ¢, (W + D) ®yoy.ey) DM, ))d — Ew)] — RT,(Shigh ¢, (D%, ® w) &%) D).

4. Analogous statements hold for the dual of the completed cohomology after exchanging Z~)f§‘h by
D ®ow F and DM, o) by DM, )@pw 7.
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23. Overconvergent Hodge-Tate decompositions

Proofs of Theorems 23.2.1 and 23.2.2. They follow from Theorems 20.2.2 and 21.4.31, and the con-
struction of the overconvergent modular sheaves in Definitions 23.1.2 and 23.1.3 and Example 23.1.5.
Indeed, the proof of Theorem 22.3.3 implies that

(RT proce(Shicr @) “®CY™ " = RT o Shighe ¢ CU(K,p, 0271,

Projecting the RHS to the analytic site of Sh%, K,.C and taking colimits as K, — 1, one has by Theorem
20.2.2
(RT proce(Shio ¢, Q) “BO™ = R4y (ShgS ¢, TGS, ), C(o, Gigy)"2Kr=m)

*13

= RTan(SHig ¢ RT(, | X by, C(, Osp)*2~H57")

*13

= RTu(Shigy o, RHomy(1, O)).

An analogous argument holds for the dual completed cohomology. This proves (1).

Part (2) follows from the Definitions 23.1.2 and 23.1.3, and from the construction of the highest
weight vector maps over #¢ in Theorem 21.4.31, after applying the pullback to ShY; ., and the
projection to the analytic site as in Theorem 20.2.2. Notice that n° act trivially on the sheaves involved,
so that the Sen operator vanishes and taking K »,-smooth vectors is exact.

Part (3) is an application of the spectral sequence of a filtered space as in Definition 18.2.1. Finally,

part (4) follows from the previous steps and by the second part of Theorem 20.2.2. O

Remark 23.2.3. A more careful study of the ©'-module RHomy(A, C'(gf, ﬁ%)ng'ﬁ:o) of §21.4.3
should provide a better description of the A isotypic part of the locally analytic completed coho-
mology in terms of overconvergent autormophic forms. More precisely, the cohomologies

RT.,(Shig; -, RHomy(4, %)) for we ™MW

should admit a filtration purely in terms of overconvergent automorphic cohomology classes, this
would prove that the eigenvariety arising from completed cohomology is “the same” as the eigenva-
riety arising from overconvergent modular forms (modulo some degeneracy of an spectral sequence).
Furthermore, one would expect that, generically in A, the only cohomology classes appearing in the
locally analytic completed cohomology are those occurring via the overconvergent BGG maps. See
Proposition 21.5.3 for the example of GL,.

23.2.1. Relation with classical Hodge-Tate decompositions

Let us explain in what sense Theorems 23.2.1 and 23.2.2 interpolate the classical BGG (or Hodge-
Tate) decompositions of §22.2.2. Let C*¢(g¢, L) be the germs at 1 of the locally algebraic functions
of K ». Let H, € b be the coroot of @ € ®. As g° X g°-module via the left and right regular action
respectively, the representation C“¢(g¢, L) is isomorphic to

b viev

Aeh*
(AL,Hp)>0 VY acd*

Let A € h* be a dominant weight. Taking A-isotypic parts for the right regular action of the inclusion
C(g%, L) C C%(g°, L) one gets that

V) c Cl(g", L), (23.2.1)
Taking pro-étale cohomology for the E;—local systems defined by (23.2.1) one gets a map

1im R proer(Shirk,,c, VY) = RU proe(Shgr ¢ L)F™4,
K,
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23. Overconvergent Hodge-Tate decompositions

Tensoring with C, we obtain by Theorem 23.2.1 a map
RTu(SHE 0, R(A 0 vio). (VY ® 0)) = RUun(Shigh -, RHomy (1, 0%,)).
But now, Theorem 22.2.6 implies that
R(Aove) (V) ® 6) = P M(=wo(w- 1))@ w® C(w - A™") = d)[L(w) - d], (23.2.2)
weMw
where M(x) = li_n)lK Mk, («) is the colimit of all the automorphic sheaves of finite level attached to

WV

A Following (2) of Theorem 23.2.1, let us restrict to ﬂ;IIT(CW(e)). We can write

g, (Mg, (=wo(w - 1)) @ w) ® Ow- ™) = d) = Tyr(W(=wo(w - ) @ n®),

and this last sheaf is attached to WVZ. LiapM via the torsor M g, over .#{. More precisely, W(—wy(w -

) ® 1Y is equal to the sheaf Oy, [(w- A + 2,0M)BM’*1 ]. This induces a natural Ez-equivariant map
over C,,(€) | )
W(—wo(w - 1) @ n*¥ — C( M;ﬂ)bM,ﬂ:w-mp .

Taking pullbacks by myr and projections to the analytic site, one obtains a commutative diagram of
sheaves over 7;,1.(C,,(€))

TW

RHomy(4, 6') > COME o)™ =22 [ f(w) — d]

T [

R(A0v). (VY ® 0) =% M(=wo(w - 1) ® w® C(w - Au™") — d)[£(w) — d].

Taking RI'.,, cohomology one obtains maps compatibles with the spectral sequence of Theorem
23.2.1 (3), proving that loc. cit. is an interpolation of the BGG decompositions as expected. One
can make analogous constructions for the A co-isotypic part of the dual locally analytic completed
cohomology.
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