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Abstract

In this thesis, we study the Hodge-Tate structure of the proétale cohomology of Shimura varieties.

This document is divided in four main issues.

First, we construct an integral model of the perfectoid modular curve. Using this formal scheme,

we prove some vanishing results for the coherent cohomology of the perfectoid modular curve, we

also provide a description of the dual completed cohomology as an inverse limit of integral modular

forms of weight 2 by normalized traces.

Secondly, we construct theoverconvergent Eichler-Shimura map for the first coherent cohomol-

ogy group, complementing the work of Andreatta-Iovita-Stevens. More precisely, we construct a

map from the overconvergent cohomology with compact support of Boxer-Pilloni to the locally an-

alytic modular symbols of Ash-Stevens. We reinterpret the construction of these maps in terms of

the Hodge-Tate period map and the perfectoid modular curve. We also reprove the classical Falt-

ings’s Eichler-Shimura decomposition using the Hodge-Tate period map, and the dual BGG resolu-

tion of irreducible representations of GL2. We show that the overconvergent Eichler-Shimura maps are

compatible with the Up-operator, and that their small slope vectors interpolate the classical Eichler-

Shimura maps.

Thirdly, in a joint work with Joaquı́n Rodrigues Jacinto, we develop the classical theory of locally

analytic representations of p-adic Lie groups in the context of condensed mathematics. Inspired from

foundational works of Lazard, Schneider-Teitelbaum and Emerton, we define a notion of solid locally

analytic representation for a compact p-adic Lie group. We prove that the category of solid locally

analytic representations can be described as modules over algebras of analytic distributions. As an

application, we prove a cohomological comparison theorem between solid group cohomology, solid

group cohomology of the (derived) locally analytic vectors, and Lie algebra cohomology.

Finally, we generalize the work of Lue Pan to arbitrary Shimura varieties. We construct a geometric

Sen operator for a class of proetale bO-modules F which we call relative locally analytic. We prove

that this Sen operator is related with the p-adic Simpson correspondence, and that it computes the

proétale cohomology of F . We apply this theory to Shimura varieties, obtaining that the computation

of proétale cohomology can be translated in terms of Lie algebra cohomology over the flag variety

via the Hodge-Tate period map. In particular, we prove that the Cp-extension of scalars of the locally

analytic completed cohomology can be described as the analytic cohomology of the infinite-at-p

level Shimura variety, of the locally analytic sections of the structural sheaf. This implies a rational

version of the Calegari-Emerton conjectures for any Shimura variety without the hypothesis of the

infinite-at-p level Shimura variety to be perfectoid. Then, we study the �-isotypic part of the locally

analytic completed cohomology for the action of a Borel subalgebra. Using the interpretation as Lie

algebra cohomology over the flag variety, we construct overconvergent BGG maps generalizing the

previous work for the modular curve. In addition, we give a local proof of the classical Hodge-Tate

decompositions for Shimura varieties, using the dual BGG resolution and the Hodge-Tate period map.

Résumé

Dans ce manuscrit, nous étudions la structure de Hodge-Tate de la cohomologie proétale des variétés

de Shimura. Cette thèse est divisée dans quatre parties.

D’abord, nous construisons un modèle entière de la courbe modulaire perfectoı̈de. Avec ce schema

formel, on montre quelques résultats d’annulation de la cohomologie cohérente en niveau infini, et
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Abstract

nous donnons une description du dual de la cohomologie completée en termes de formes modulaires

intégrales de poids 2 et de traces normalisées.

Dans un second temps, on construit l’application surconvergente d’Eichler-Shimura pour le pre-

mier groupe de cohomologie cohérente, il s’agit d’un morphisme de la cohomologie surconvergente

à support compact de Boxer-Pilloni vers les symboles modulaires localement analytiques d’Ash-

Stevens, qui interpole l’application d’Eichler-Shimura classique. Nous réinterprétons les construc-

tions précédentes en termes du morphisme des périodes de Hodge-Tate et de la courbe perfectoı̈de.

Avec cette technique, on donne une nouvelle demonstration d’un théorème de Faltings sur la décomposition

d’Eichler-Shimura classique en utilisant le morphisme des périodes et la resolution BGG-dual de GL2.

On prouve que les applications d’Eichler-Shimura surconvergentes sont compatibles avec l’action de

l’opérateur Up, et que les petites pentes interpolent la décomposition d’Eichler-Shimura classique.

Ensuite, dans un travail un commun avec Joaquı́n Rodrigues Jacinto, nous introduisons le concept

de représentation localement analytique solide pour un groupe de Lie p-adique compact G. Nous

nous inspirons des travaux de Lazard, Schneider-Teitelbaum et Emerton pour réinterpréter la propriété

localement analytique dans la catégorie des représentations solides de G, et nous voyons que les objets

obtenus peuvent être décrit en termes de modules sur des algèbres de distributions analytiques. En

guise d’une application, nous démontrons quelques théorèmes de comparaison entre la cohomologie

solide des groupes et la cohomologie de l’algèbre de Lie des vecteurs localement analytiques derivés.

Pour finir, nous généralisons à des variétés de Shimura quelconque les travaux de Lue Pan sur la

cohomologie complétée localement analytique des courbes modulaires. Le premier point technique

est l’existence d’un opérateur de Sen géométrique qui est lié à la correspondence de Simpson p-

adique. On montre que cet opérateur calcule la cohomologie proétale des bO-modules dans un sens

précis. En appliquant cette théorie dans le cas des variétés de Shimura, nous arrivons à réduire le

calcule de la cohomologie proétale de certains faisceaux de bO-modules à celui de la cohomologie

de Lie des D-modules sur la variété de drapeaux. En particulier, nous prouvons que l’extension des

scalaires à Cp de la cohomologie completée localement analytique se calcule comme la cohomologie

des sections localement analytiques du faisceau structural de la variété de Shimura de niveau infini

en p sur le site analytique. Comme corollaire, on en déduit une version rationnelle des conjectures de

Calegari-Emerton sur l’annulation de la cohomologie completée. Ensuite, nous étudions la partie �-

isotypique de la cohomologie completée localement analytique pour l’action d’un Borel. En utilisant

le dictionnaire entre cohomologie proétale et cohomologie de Lie des faisceaux sur la variété de

drapeaux, on arrive à construire des applications de BGG surconvergentes. De plus, nous donnons

une preuve locale de la décomposition de Hodge-Tate avec coefficients, en utilisant la résolution

BGG-dual et le morphisme des périodes de Hodge-Tate.
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General introduction

This thesis concerns the study of the Hodge-Tate structure of the proétale cohomology of Shimura

varieties. More precisely, we use perfectoid techniques to describe the Hodge-Tate structure of Emer-

ton’s completed cohomology. Before addressing the general case, let us explain what can be done for

modular curves.

0.1. The case of modular curves

Let us fix p a prime number, and let C = Cp be the p-adic completion of an algebraic closure of Qp.

We let A1
Q

denote the ring of finite adèles (resp. A
1,p

Q
denote the ring of finite prime-to-p adèles). Let

K ⇢ GL2(A1
Q

) be a neat compact open subgroup. The modular curve of level K is the algebraic curve

YK over Q parametrizing elliptic curves and torsion structure of level K. For instance, let N � 3 be

an integer and denote bΓ(N) := ker(GL2(bZ)) ! GL2(Z/N), then Y(N) := YbΓ(N) is the modular curve

parametrizing elliptic curves E and a trivialization of the N-torsion  : (Z/N)2
� E[N].

Let H± = C\R be the upper and lower half planes, and consider the left action of GL2(R) on H±

by Möbius transformations. The complex analytic variety associated to YK is the locally symmetric

space

YK(C) = GL2(Q)\H± ⇥ GL2(A1Q )/K,

where GL2(Q) acts diagonally, and K only acts on the second factor. This implies that YK(C) is a

disjoint union of finitely many quotients ofH+ by congruence subgroups. For example, let µN ⇢ Q
⇥

be the subgroup of N-th roots of unity, one has that

Y(N)(C) =
G

µN

Γ(N)\H+

where Γ(N) = ker(GL2(Z)! GL2(Z/N)) is the principal congruence subgroup of level N.

We fix a tame level K p ⇢ GL2(A
1,p

Q
), e.g. K p := bΓ(N) \ GL2(A

1,p

Q
) for N � 3 prime to p, and

given an open compact subgroup Kp ⇢ GL2(Qp) we will denote by YK pKp
the modular curve of level

K pKp. From now on we will see the modular curves as schemes overQp, and we will denote byYK the

analytification of YK to an adic space over Spa(Qp,Zp), cf. [Hub96]. We let XK be the compactification

of YK by adding cusps [DR73], and let E sm/XK be the semiabelian scheme extending the elliptic curve

E. We let XK denote the analytification of the compact modular curve . Let e : XK ! E sm be the unit

section and !E := e⇤Ω1
Esm/XK

be the modular sheaf. For k 2 Z we denote !k
E
= !⌦k

E
.

0.1.1. Completed cohomology and an integral model of the perfectoid

modular curve

We fix N � 3 prime to p, and consider the modular curves Y(N pn) and X(N pn) over SpecQp for

n � 0. We shall follow the theory of [KM85]. The schemes Y(N pn) and X(N pn) admit integral

models Y(N pn)Zp
and X(N pn)Zp

which are constructed as moduli spaces of Drinfeld basis of elliptic

curves.
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General introduction

Definition 0.1.1. Let R be a Zp-algebra and E an elliptic curve over R. Let M � 1 be an integer, a

Drinfeld basis of E[M] is a map of finite flat group schemes over R

 : (Z/M)2 ! E[M]

such that we have an equality of divisors over E

E[M] =
X

v2(Z/M)2

 (v).

Remark 0.1.2. If M is invertible in R, a Drinfeld basis is the same as a trivialization of E[M].

The moduli problem sending R to the isomorphism classes of elliptic curves E and Drinfeld basis

 : (Z/M)2 ! E[M] is representable for M � 3 by a regular scheme Y(M)Zp
whose generic fiber

is the modular curve of level M. The j-invariant of the universal elliptic curve over Y(M)Zp
defines

a map j : Y(M)Zp
! A1

Zp
⇢ P1

Zp
whose normalization is the compactified curve X(M)Zp

. We let

X(M)/Spf Zp be the p-adic completion of X(M)Zp
.

The p-multiplication of Drinfeld basis induces finite flat maps X(N pn+1) ! X(N pn), we are in-

terested in the tower {X(N pn)}n�1. Let X(N p1) := lim
 ��n
X(N pn) be the infinite level modular curve

seen as a p-adic formal scheme over Spf Zp. The Weil pairing of the Drinfeld basis h (1, 0), (0, 1)i

turns out to be a primitive N pn-th root of unity in the sense that it is killed by the N pn-th cyclotomic

polynomial. Taking the inverse limit one has a map X(N p1) ! Spf Z
cyc
p [µN]. We have the following

theorem

Theorem 0.1.3 (Part I Theo. 3.2.1). The formal scheme X(N p1) is a perfectoid formal scheme over

Spf Z
cyc
p [µN]. Moreover, the rigid analytic fiber of X(N p1) is naturally isomorphic to the perfectoid

modular curve X(N p1) = lim
 ��n
X(N pn).

Remark 0.1.4. The construction of X(N p1) was also given by Lurie [Lur20] using the language of

stacks. Lurie reduces the proof of perfectoidness to the ordinary locus by a mixed characteristic

analogue of Kunz theorem. The study of the ordinary locus in both approaches is similar an better

explained in Part I §3.3.

The proof of Theorem 0.1.3 is rather elementary and reduces to the study of the deformation rings

of the finite level modular curves by faitfully flat descent. In the ordinary locus we use the Serre-Tate

coordinates [Kat81], for the cusps we use the Tate curve [DR73], and for the supersingular points we

use some explicit generators of the maximal ideal of the completed local ring and the formal group

law.

With the integral perfectoid modular curve we can prove some vanishing results for the coherent

cohomology at infinite level. Let !E,n be the modular sheaf over X(N pn), and let Dn ⇢ X(N pn) be

the cusp divisor. We let !k
E,1
= (lim
��!n

!k
E,n

)^�p and !k
E,1

(�D1) = (lim
��!n

!k
E,n

(�Dn))^�p be the p-adic

completions of the colimits of the modular sheaves as n! 1. These are quasi-coherent sheaves over

X(N p1), and!k
E,1

is equal to the pullback of!k
E,n

for any n. The sheaf OX(N p1)(�D1) := !0
E,1

(�D1) is

the ideal defining the boundary divisor of X(N p1) and one has!k
E,1

(�D1) = !k
E,1
⌦OX(N p1)

OX(N p1)(�D1).

Let p1/p 2 Z
cyc
p be such that |p1/p| = |p|1/p. The perfectoid nature of X(N p1) shows that the

Frobenius map is an isomorphism

' : X(N p1)/p
⇠
�! X(N p1)/p1/p,

such that '⇤(!k
E,1
/p1/p) = !

kp

E,1
/p and '⇤(!k

E,1
(�D1)/p1/p) = !

kp

E,1
(�D1)/p. This fact, together with

the vanishing of H1(X(N pn),!k
E,n

) and H0(X(N pn),!�k
E,n

) for k >> 0 (resp. for the sheaves !k
E,n

(�Dn))

imply the following theorem

Theorem 0.1.5 (Part I Theo. 5.2.4). The cohomology complexes RΓ(X(N p1),!k
E,1

(�D1)) and

RΓ(X(N p1),!k
E,1

) are concentrated in degrees [0, 1]. Moreover,
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General introduction

1. H1(X(N p1),!k
E,1

) = H1(X(N p1),!k
E,1

(�D1)) = 0 for k � 1.

2. H0(X(N p1),!k
E,1

) = H0(X(N p1),!k
E,1

(�D1)) = 0 for k  �1.

Remark 0.1.6. What could be surprising is the vanishing for the H1 cohomology of the sheaves !1
E,1

and !1
E,1(�D1). Indeed, the H1 cohomology at finite levels in non zero for all n; this follows by Serre

duality that there are modular forms of weight 1. This phenomena is a consequence of the fact that

the pullbacks of the H1(X(N pn),!1
E,n/p) are duals to the traces of H0(X(N pn),!1

E,n(�Dn)/p) whose

composition is eventually zero in the tower.

It is left to study the coherent cohomology of the structural sheaf and the ideal of the cusps. It

is clear that H0(X(N p1),OX(N p1)) = Z
cyc
p [µn] and H0(X(N p1),OX(N p1)(�D1)) = 0, so we only care

about the H1 cohomology; this one is related with completed cohomology.

Definition 0.1.7. We define the following completed cohomology groups of tame level K p =bΓ(N) ⇢

GL2(A
1,p

Q
)

bH1
c (K p,Zp) = lim

 ��
s

lim
��!

n

H1
ét,c(Y(N pn)C,Z/p

s)

bH1(K p,Zp) = lim
 ��

s

lim
��!

n

H1
ét(X(N pn)C,Z/p

s).

Theorem IV.2.1 of [Sch15] gives a GL2(Qp)-equivariant almost quasi-isomorphism

bH1
c (K p,Zp)b⌦OC =

ae H1
an(X(N p1)C,OX(N p1)(�D1)),

where X(N p1)C is the C-base change of the modular curve, and OX(N p1)(�D1) is the ideal defining

the cusps in X(N p1)C. It turns out that the same argument gives the following proposition

Proposition 0.1.8. We have a GL2(Qp)-equivariant almost isomorphism

bH1(K p,Zp)b⌦OC =
ae H1

an(X(N p1)C,OX(N p1)).

Taking an affine cover of X(N p1) and Čech cohomology, one also has GL2(Qp)-equivariant almost

isomorphisms

H1
an(X(N p1)C,OX(N p1)(�D1)) =ae H1(X(N p1)OC

,OX(N p1)(�D1))

H1
an(X(N p1)C,OX(N p1)) =

ae H1(X(N p1)OC
,OX(N p1)).

The modular curves X(N pn) are local complete intersections over Zp, in particular they admit a

dualizing sheaf which turns out to be isomorphic to !2
E,n(�Dn). Serre duality at finite level provides

the following description for the dual of completed cohomology

Theorem 0.1.9 (Part I Theo. 5.3.1). There are GL2(Qp)-equivariant almost isomorphisms

HomZp
(bH1

c (K p,Zp),Zp)b⌦OC =
ae lim
 ��
eTr

H0(X(N pn)OC
,!2

E,n)

HomZp
(bH1(K p,Zp),Zp)b⌦OC =

ae lim
 ��
eTr

H0(X(N pn)OC
,!2

E,n(�Dn))

where eTr are normalized traces.

The previous theorem relates completed cohomology with coherent cohomology at finite levels. In

the rest of the document we will encounter with analogous descriptions of the locally analytic vectors

of the completed cohomology in terms of overconvergent modular forms as in [Pan20].
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General introduction

0.1.2. Classical Eichler-Shimura maps via ⇡HT

In Parts II and IV we will work with the pro-Kummer-étale site as in [DLLZ19]. It is a generalization

of the proétale site of [Sch13a] to (fs) log adic spaces, allowing some controlled ramification at

the boundary. One of the main achievements of [DLLZ19] is that the pro-Kummer-étale site and the

proétale site behave formally in the same way; both sites have natural fiber products, they have enough

perfectoid spaces, and after adding enough ramification one ends up working with the proétale site

of a perfectoid space. In particular, there is a purity on torsion local systems for complements of

normal crossings divisors [DLLZ19, Theo. 4.6.1], and a primitive comparison theorem for proper fs

log smooth adic spaces [DLLZ19, Theo. 6.2.1]. Moreover, by [DLLZ18] the pro-Kummer-étale site

has period sheaves B+
dR

, BdR, OB+
dR,log

, OBdR,log and OClog := gr0OBdR,log.

We have fixed a neat compact open subgroup K p ⇢ GL2(A
1,p

Q
), and for Kp ⇢ GL2(Qp) a compact

open subgroup we let YK pKp
and XK pKp

denote the modular curves of level K pKp, seen as adic spaces

over Spa(Qp,Zp). We let YK p = lim
 ��Kp

YK pKp
and XK p = lim

 ��K pKp

XK pKp
be the perfectoid modular

curves and ⇡HT : XK p ! P1 the Hodge-Tate period map, see [Sch15]. The map ⇡Kp
: XK p ! XK pKp

is

a pro-Kummer-étale (right) Kp-torsor. From now on we write O (+) and bO (+) for the uncompleted and

the completed structural sheaves of XK pKp,prokét.

Let B ⇢ GL2 be the upper triangular Borel, N its unipotent radical consisting on upper triangular

unipotent matrices and T the diagonal torus. Let � : T! Gm be a character that we identify as a pair

� = (k1, k2) such that �

 
t1 0

0 t2

!
= t

k1

1
t
k2

2
. We say that � is dominant if k1 � k2, and we let X⇤(T)+ denote

the cone of dominant characters. The irreducible representations of GL2 are parametrized by X⇤(T)+.

More precisely, let St be the standard representation of GL2 and det the determinant, the irreducible

representation of highest weight � is then

V� = Symk1�k2 St⌦(det)k2 .

By an abuse of notation we will see V� as a representation over Qp.

Let V�,ét be the proétale local system over YK pKp
attached to V� via the Kp-torsor ⇡Kp

: YK p !

YK pKp
. Let j : YK pKp

⇢ XK pKp
be the inclusion map and jprokét : YK pKp,proét ! XK pKp,prokét the induced

map of sites. By purity of torsion local systems, the complex R jprokét,⇤V�,ét is a pro-Kummer-étale local

system concentrated in degree 0, which we denote as V�,két. The sheaf V�,két is the pro-Kummer-étale

local system attached to V� by the pro-Kummer-étale Kp-torsor ⇡Kp
: XK p ! XK pKp

. The previous

shows that

RΓproét(YK pKp,C,V�,ét) = RΓprokét(XK pKp,C,V�,két),

namely, we can compute the proétale cohomology of V�,ét in the pro-Kummer-étale site of XK pKp
.

We can recover V�,két with the Hodge-Tate period map. First of all, let us recall its construction.

Let TpE = lim
 ��n

E[pn] be the Tate module of the universal elliptic curve over YK pKp
, by an abuse of

notation we write in the same way its extension to a pro-Kummer-étale local system over XK pKp
. We

have the Hodge-Tate exact sequence of bO-sheaves over XK pKp,prokét

0! !�1
E ⌦

bO(1)! TpE ⌦ bO ! !E ⌦ bO ! 0. (0.1.1)

Taking pullbacks via the universal trivialization  : Z2
p

⇠
�! TpE over XK p , one has a line subbundle

 ⇤(!�1
E ⌦

bO(1)|XK p ,an) ⇢ ( bO |XK p ,an
)2 which defines the map ⇡HT : XK p ! P1. By construction, the map

⇡HT is GL2(Qp)-equivariant. Moreover, it pullbacks the constant GL2(Qp)-equivariant local system V�

over F` to the GL2(Qp)-equivariant local system V�,két|XK p . The Weyl pairing induces an isomorphism

det TpE = Zp(1), hence one finds that

V�,két = Symk1�k2 TpE ⌦ Qp(k2).

vi



General introduction

The Hodge-Tate decompositions of the proétale cohomology of the sheaves V�,ét can be described

in terms of modular forms. Let us recall the following theorem of Faltings, see [Fal87].

Theorem 0.1.10 (Faltings). The maps !k2�k1

E
b⌦ bO(k1) ! V�,két ⌦ bO and V�,két ⌦ bO ! !k1�k2

E
⌦ bO(k2)

arising from symmetric powers and a Tate twist of (0.1.1) induce surjective (resp. injective) Eichler-

Shimura maps

ES : H1
proét(YK pKp,C,V�,ét) ⌦C ! H0

an(XK pKp,C,!
k1�k2+2
E

) ⌦C(k2 � 1)

ES _ : H1
an(XK pKp,C,!

k2�k1

E
) ⌦C(k1)! H1

proét(YK pKp,C,V�,ét) ⌦C.

Furthermore, the maps ES and ES _ are naturally split and provide the Eichler-Shimura (ES) decom-

position

H1
proét(YK pKp,C,V�,ét) = H0

an(XK pKp,C,!
k1�k2+2
E

) ⌦C(k2 � 1) � H1
an(XK pKp,C,!

k2�k1

E
) ⌦C(k1).

Our first goal is to give a purely local proof of Faltings’s Eichler-Shimura decomposition using the

geometry of ⇡HT.

Convention. Given a Kp-equivariant sheaf F over P1 (or a Kp-equivariant OP1-sheaf), we will iden-

tify ⇡⇤HT(F ) with the pro-Kummer-étale sheaf over XK pKp
it defines by descending along the torsor

⇡Kp
: XK p ! XK pKp

.

By the primitive comparison theorem, we have that

RΓprokét(XK pKp,C,V�,két) = RΓprokét(XK pKp,C,V�,két ⌦ bO).

The sheaf V�,ét ⌦ bO can also be described as the pullback by ⇡HT of the GL2-equivariant vector bundle

V� ⌦ OP1 over P1. Our strategy to study the Hodge-Tate structure of proétale cohomology, and in

particular to prove Faltings’s ES decomposition, is to understand the pullbacks of GL2-equivariant

quasi-coherent sheaves of P1 by ⇡HT. We need some notation.

Let P1 be written as the quotient P1 = B\GL2, by taking the base point e = [0 : 1]. This provides an

equivalence of categories between finite dimensional B-representations and GL2-equivariant vector

bundle over P1; explicitly one maps a B-representation V to the vector bundle V := GL2 ⇥
BV :=

B\(GL2 ⇥V) over P1. Note that this construction can be extended to Ind-algebraic representations of

B.

Definition 0.1.11. Let  = (k1, k2) 2 X⇤(T) be a character, and let w0 =

 
0 1

1 0

!
be the non trivial

element of the Weyl group of GL2. We define the GL2-equivariant line bundle over P1 of weight  as

L() = GL2 ⇥
Bw0().

The line bundles L() have the property that, if � is a dominant character, then Γ(P1,L(�)) = V�.

They also admit a different description in terms of a T-torsor.

Definition 0.1.12. Let TP1 = N\GL2 be the natural (left) T-torsor over P1, where N ⇢ B is the

unipotent radical. We let ?1 denote the left regular action of T on TP1 and let k : TP1 ! P1 be the

natural projection, we have that

L() = k⇤OT
P1

[�w0()?1
].

The B-filtration of the standard representation is given by

0! (1, 0)! St! (0, 1)! 0.
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Taking the associated vector bundle over P1 and pullbacks via ⇡HT one recovers the Hodge-Tate exact

sequence of TpE. This shows that

⇡⇤HT(L(0, 1)) = !�1
E ⌦

bO(1) and ⇡⇤HT(L(1, 0)) = !E ⌦ bO .

Therefore, if  = (k1, k2), one has that ⇡⇤HT(L()) = !k1�k2

E
⌦ bO(k2). This gives a complete description

of the pullbacks of GL2-equivariant vector bundle over P1 arising from semisimple representations of

B. It is left to understand the case of non-semisimple representations.

Let O(N) be the ring of algebraic regular functions of the unipotent group N, it has a natural action

of T given by t · f (n) = f (t�1nt) for f 2 O(N) and t 2 T. Moreover, the right regular action of N on

O(N) is faithful. This endows O(N) with a structure of B-module. The ring O(B) of algebraic regular

functions of B endowed with the right regular action is isomorphic to

O(B) =
M

2X⇤(T)

 ⌦ O(N).

Thus, we only need to consider the GL2-equivariant quasi-coherent sheaf over P1 arising from the

B-module O(N). We have the following theorem.

Theorem 0.1.13 (Part II Prop. 10.1.3). Let O(N) be the GL2-equivariant quasi-coeherent sheaf over

P1 associated to O(N). Let O(N)1 be the GL2-equivariant sheaf associated to the subrepresentation

O(N)1 ⇢ O(N) of polynomials of degree  1. Then

⇡⇤HT(O(N)1) = gr1OB+dR,log ⌦
bO(�1). (0.1.2)

In particular, taking n-th symmetric powers and colimits as n! 1 we have that

⇡⇤HT(O(N)) = OClog.

Remark 0.1.14. The equality (0.1.2) was already known by Faltings [Fal87, Theo. 5 ] and Lue Pan

[Pan20, Theo. 4.2.2]. Indeed, let Ω1(log) be the sheaf of log differentials of XK pKp
, and consider the

short exact sequence of B-modules

0! Qp ! O(N)! (Lie N)_ ! 0, (0.1.3)

where in the last arrow we identify the elements of (Lie N)_ with homogeneous linear forms of N.

Faltings and Pan have shown, in our terminology, that the pullback by ⇡HT of the GL2-equivariant

complex associated to (0.1.3) is isomorphic to (minus) the Faltings extension

0! bO ! gr1OB+dR,log ⌦
bO(�1)! Ω1(log) ⌦ bO(�1)! 0.

Once we have understood the pullbacks of GL2-equivariant quasi-coherent sheaves by ⇡HT, we can

reprove Faltings’s ES decomposition using the dual BGG resolution. Let b = Lie B be the Borel

subalgebra of gl2 and b the opposite Borel subalgebra of lower triangular matrices. We let h = Lie T

be the Cartan subalgebra.

Definition 0.1.15. Let  : h! Qp be a weight of h, we define the Verma module of (g, b) of weight 
to be the coinduction

Verg
b
() = U(g) ⌦U(b) .

We let V(�) ⇢ HomQp
(Verg

b
(),Qp) be the admissible dual consisting of h-finite vectors, seen as a

g-module.
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Remark 0.1.16. The Verma module Verg
b
() is an object in the category O, i.e. the category O with

respect to b. Then, its dual V(�) is an object in the category O with respect to b. If  arises as the

derivation of a character of T, the b-action on V(�) can be integrated to an Ind-algebraic B-action.

As B-module we have an isomorphism

V(�) = (�) ⌦ O(N).

Definition 0.1.17. Let � 2 X⇤(T)+ be a dominant weight, and consider the BGG resolution of V_� in

the category O

0! Verg
b
(�w0(�) + ↵)! Verg

b
(��)! V_� ! 0, (0.1.4)

where ↵ = (1,�1) 2 X⇤(T). The dual BGG resolution of V� is the admissible dual of (0.1.4)

0! V� ! V(�)! V(w0(�) � ↵)! 0. (0.1.5)

We have the following theorem

Theorem 0.1.18 (Part II Theo. 10.1.5). The pullback by ⇡HT of the GL2-equivariant complex defined

by the B-representation (0.1.5) is quasi-isomorphic to

0! V�,két ⌦ bO ! !k2�k1

E
⌦ OClog(k1)! !k1�k2+2

E
⌦ OClog(k2 � 1)! 0.

We call this resolution of V�,ét ⌦ bO the Hodge-Tate dual BGG complex, c.f. [FC90, Prop. VI.5.4].

Let ⌫ : XK pKp,C,prokét ! XK pKp,C,két be the projection of sites, then

R⌫⇤(V�,két ⌦ bO) = !k2�k1

E
⌦C(k1) � !k1�k2+2

E
⌦C(k2 � 1)[�1].

Taking projections to the analytic site and H1-cohomology one recovers Faltings’s Eichler-Shimura

decomposition

H1
proét(YK pKp,C,V�,ét) ⌦C = H1(XK pKp

,!k2�k1

E
) ⌦C(k1) � H0(XK pKp

,!k1�k2+2
E

) ⌦C(k2 � 1). (0.1.6)

As one can appreciate from the previous theorem, the key step to understanding the Hodge-Tate

decompositions is the computation of the derived projection R⌫⇤(V�,két ⌦ bO). Following this idea, we

can construct p-adic interpolations of (0.1.6) by first constructing p-adic interpolations of the maps

!k2�k1

E
⌦ bO(k1)! V�,két ⌦ bO and V�,két ⌦ bO ! !k1�k2

E
⌦ bO(kw) appearing in Theorem 0.1.10.

0.1.3. Interpolation of the Eichler-Shimura maps

Our next goal is to p-adically interpolate the maps (0.1.6). This requires a p-adic variation of the

modular sheaves !k
E

and the local systems V�,két. The former will be given by sheaves of overcon-

vergent modular forms as in [Pil13]. Let us explain how to interpolate the later. Let O(GL2) be the

ring of regular functions of GL2, it is a GL2 ⇥GL2-representation given by the left ?1 and right ?2

regular actions respectively. In other words, [g2 ?2 (g1 ?1 f )](h) = f (g�1
1 hg2) for f 2 O(GL2) and

g1, g2, h 2 GL2. As GL2 ⇥GL2-representation O(GL2) is isomorphic to ( [Mil17])

O(GL2) =
M

�2X⇤(T)+

V_� ⌦ V�,

where we map a tensor f ⌦ v 2 V_� ⌦ V� to the regular function g 7! f (gv). Recall that V_� = V�w0(�),

hence

V� = O(GL2)B?2
=�w0(�). (0.1.7)

Let us take Kp ⇢ GL2(Qp) an open compact subgroup admitting an Iwahori decomposition Kp =

NKp
TKp

NKp
as product of lower triangular unipotent matrices, diagonal matrices, and upper triangular

unipotent matrices. We denote BKp
= TKp

NKp
. Let (R,R+) be an uniform affinoid Qp-algebra and

� : TKp
! R⇥ a character. We need the following easy lemma
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Lemma 0.1.19. There is � > 0 such that � enhances to a character of rigid spaces

� : TKp
(1 + p�Ga)! Gm,R.

We say that � is a locally analytic character of TKp
.

Definition 0.1.20. Let Cla(Kp,R) be the space of locally analytic functions of Kp with values in R.

The locally analytic principal series of Kp of weight � is the space

Ala
� = Cla(Kp,R)BKp ,?2

=�w0(�).

In other words, Ala
� is the space of locally analytic functions f : Kp ! R such that f (xb) =

w0(�)(b�1) f (x) for all x 2 Kp and b 2 TKp
NKp

.

If r : R ! Qp is a specialization of R such that r � � = � is a dominant weight of GL2, we have a

diagram

Ala
� Ala

�

O(GL2)B?2
=�w0(�) = V�.

b⌦R,rQp

Therefore, the spaces Ala
� are good candidates to interpolate the algebraic representations V�. We can

define the following p-adic variations of the proétale cohomology of the local systems V�,ét.

Definition 0.1.21. Let Cla(Kp,R)két and Ala
�,két

be the pro-Kummer-étale sheaves overXK pKp
associated

to Cla(Kp,R) and Ala
� respectively, where these spaces are endowed with the ?1-action of Kp.

1. The locally analytic completed cohomology with coefficients in R is the complex

RΓproét(YK p,C,R)la := RΓproét(XK pKp,C,C
la(Kp,R)két)

2. The derived BKp
= �w0(�) isotipic part of the locally analytic completed cohomology is the

complex

RΓproét(YK p,C,R)la,RBKp ,?2
=�w0(�) := RΓproét(XK pKp,C, A

la
�,két).

Remark 0.1.22. As the previous notation suggests, the locally analytic completed cohomology is

independent of Kp. This follows from Shapiro’s lemma, and the fact that Cla(Kp,R) can be written as

an induction of Cla(K0p,R) for K0p ⇢ Kp.

Remark 0.1.23. We saw in §0.1.1 that Emerton’s completed cohomology (with coefficients in R)

can be computed as the cohomology groups of the complex RΓproét(YK p,C,R). Moreover, Emerton

proved that the completed cohomology groups are admissible representations of GL2(Qp). By Part III

Proposition 14.5.3, this implies that the cohomology groups of RΓproét(YK p,C,R)la are nothing but the

locally analytic vectors of Emerton’s completed cohomology.

Similarly as for V�,két, the pro-Kummer-étale sheaf Ala
�,két

can be constructed using the Hodge-Tate

period map, namely, Ala
�,két

is the pullback by ⇡HT of the Kp-equivariant constant sheaf Ala
� over P1. In

order to interpolate the ES maps, we need to study the Hodge-Tate structure of the locally analytic

completed cohomology. More precisely, we want to study the complex

RΓproét(YK p,C,R)la,RBKp ,?2
=�w0(�)b⌦C = RΓprokét(XK pKp

, Ala
�,két)b⌦C.
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By the primitive comparison theorem, and a devisage in terms of finite local systems, we have that

RΓprokét(XK pKp
, Ala

�,két)b⌦C = RΓprokét(XK pKp
, Ala

�
b⌦ bO),

and the sheaf Ala
�
b⌦ bO is the pullback by ⇡HT of the Kp-equivariant quasi-coherent sheaf Ala

�
b⌦OP1 over

P1.

In the following we will construct interpolations of the maps of pro-Kummer-étale sheaves of

Theorem 0.1.10 by studying the restriction of the sheaves Ala
�
b⌦OP1 to overconvergent neighbourhoods

of 1 and w0 in P1. In the process, we also construct sheaves of overconvergent modular forms à la

higher Coleman theory [BP21]. We need some notations.

For an affine scheme Z over Qp let Zan denote the analytification of Z to an adic space over

Spa(Qp,Zp). Let w 2 {1,w0} be an element in the Weyl group of GL2, and let us consider a basis

of Kp-equivariant neighbourhoods Uw(✏) of [w] 2 P1 converging to the Kp-orbit of w. For instance, let

N(✏) ⇢ Nan be the open subgroup of elements

 
1 x

0 1

!
with x ⌘ 0 mod p✏ , and letN(✏) = w0N(✏)w0.

Then, we can take U1(✏) = [1]N(✏)Kp and Uw0
= [w0]N(✏)Kp. By [Sch15, Theo. III.3.18] the in-

verse images ⇡�1
HT(Uw(✏)) are affinoid perfectoid subspaces of XK p , and there are open affinoid spaces

Xw,Kp
(✏) ⇢ XK pKp

such that ⇡�1
Iwn

(Xw,Kp
(✏)) = ⇡�1

HT(Uw(✏)). These affinoid spaces are overconvergent

neighbourhoods of the w-ordinary locus of XK pKp
, i.e. the locus Xord,w

K pKp
= ⇡K p(⇡�1

HT ([w]Kp)).

Over the neighbourhoods Uw(✏) we a a trivialization of the T-torsor TP1 = N\GL2, namely, by the

Iwahori decomposition we have isomorphisms of adic spaces

U1(✏) � N(✏)NKp
and Uw0

(✏) � w0N(✏)NKp
,

we can then take a section to GL2 whose image to TP1 gives the desired trivialization. It will be useful

to work with overconvergent neighbourhoods of the trivialization. More precisely, let � > 0 and let

T (�) ⇢ Tan be the open subgroup of diagonal matrices which are congruent to the identity modulo p�.

Definition 0.1.24. We let Tw,P1(�) be the Kp-equivariant (left) TKp
T (�)-torsor over Uw(✏) defined as

the quotient

Tw,P1(�) := Nan\Nan(TKp
T (�))N(✏)wKp =

8>><>>:
Nan\Nan(TKp

T (�))(N(✏)NKp
) if w = 1,

Nan\NanTKp
T (�)w0(N(✏)NKp

) if w = w0.

The torsors Tw,P1(�) admit a left TKp
T (�)-action ?1 and a right Kp action ?2, we let C(Tw,P1(�))

denote the algebra of functions of Tw,P1(�) over Uw(✏), this is an affinoid algebra over OUw(✏) endowed

with locally analytic actions of TKp
and Kp.

Definition 0.1.25. Let � : TKp
! R⇥ be a �-analytic character, i.e. a character which extends to a

rigid function of TKp
T (�), we define the line bundle of weight � over Uw(✏) to be the OUw(✏)b⌦R-line

bundle Lw(�) := C(Tw,P1(�))[�w0(�)?1
]. The sheaves Lw(�) are independent of � and ✏.

With these line bundles attached to locally analytic characters we can finally construct overconver-

gent modular sheaves

Definition 0.1.26. Let ⌘ : Xw,Kp
(✏)C,proét ! Xw,Kp

(✏)C,an be the projection of sites. The pullback

⇡⇤HT(Lw(�)) defines an bOb⌦R-line bundle over Xw,Kp
(✏)prokét, we define the sheaf of overconvergent

modular forms of weight � over Xw,Kp
(✏)C to be the projection

!
�
E

:= ⌘⇤⇡
⇤
HT(Lw(�)).
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Remark 0.1.27. The reader might ask why we did take the pushforward for the extension of scalars

to C if the overconvergent modular sheaves are objects that actually live over Xw,Kp
(✏). The reason

is that, in order to descend to a Banach sheaf over Xw,Kp
(✏), we need to take a Tate twist. More

precisely, let us write � = (�1, �2), and let !
�1��2

E
be the overconvergent modular sheaf of weight

�1 � �2 of [Pil13] (equivalently be the sheaf !
�1��2

E
= ⌘⇤⇡

⇤
HT(Lw(�1 � �2, 0))). Let R(�2) be the Galois

representation given as the composition of the cyclotomic character and �2. We have that

!
�
E
= !

�1��2

E
⌦R R(�2).

We will keep working with the overconvergent modular sheaves !
�1��2

E
.

Let � = (k1, k2) 2 X⇤(T)+ be a dominant weight, the maps !k2�k1

E
⌦ bO(k1) ! V�,két ⌦ bO and

V�,két ⌦ bO ! !k1�k2

E
⌦ bO(k2) are the pullbacks by ⇡HT of the map of GL2-equivariant maps over P1

L(w0(�))! V� ⌦ OP1 and V� ⌦ OP1 ! L(�).

They are attached to the highest weight vector injection �! V�, and the lowest weight vector quotient

V� ! w0(�) respectively. Using this idea, we can construct interpolations by restricting to Uw(✏). The

construction is divided in two cases:

i. Over U1(✏), the sheaves Ala
�
b⌦OU1(✏) and L1(�) can be constructed as the Kp-equivariant sheaf

attached to the locally analytic representations w0(�) and Ala
� of BKp

by a procedure analogous

to that of GL2-equivariant vector bundles. In particular, the highest weight vector map �! A�
�

induces a Kp-equivariant map of sheaves L1(w0(�)) ! Ala
�
b⌦OU1(✏). The map � ! Ala

� factors

through the NKp
-invariants of Ala

� .

ii. Let BKp
= NKp

TKp
. Over Uw0

(✏), the sheaves Ala
�
b⌦OUw0

(✏) and Lw0
(�) are constructed from the

analytic BKp
-representations � and Ala

� by taking as base point [w0] 2 Uw0
(✏). In this case, we

have a BKp
-equivariant quotient map Ala

� ! � which factors through the NKp
-coinvariants of

Ala
� . This induces a map Ala

�
b⌦OUw0

(✏) ! Lw0
(�).

Remark 0.1.28. The phenomena of taking invariants and coinvariants for different unipotent sub-

groups, depending on w, is just an incarnation of taking n0-cohomology, where n0(x) = x�1 Lie Nx for

x 2 P1, is the horizontal unipotent Lie algebra. See §0.2.3 and §0.2.4 down below.

Taking pullbacks by ⇡HT and pushforwards to the analytic site we get the following theorem

Theorem 0.1.29 (Part II Theo. 10.3.2). There are maps of pro-Kummer-étale sheaves

!
�2��1

E
b⌦ bO(�1)! Ala

�,két
b⌦ bO over X1,Kp

(✏)

Ala
�,két

b⌦ bO ! !
�1��2

E
⌦ bO(�2) over Xw0,Kp

(✏)

interpolating the two extremes of the Hodge-Tate filtration of V�,két. Let ⌘ : XKp,C,prokét ! XKp,C,an be

the projection of sites. We have Galois equivariant maps

!
�2��1

E
b⌦R(�1)! R⌘⇤(A

la
�,két

b⌦ bO)|X1,Kp (✏) over X1,Kp
(✏)

R⌘⇤(A
la
�,két

b⌦ bO)|Xw0 ,Kp (✏) ! !
�1��2+2

E
b⌦R(�2 � 1)[�1] over Xw0,Kp

(✏).

Taking cohomology and cohomology with closed supports, we have interpolations of the ES maps

(0.1.6)

H1
w,✏(XK pKp,C,!

�2��1

E
)b⌦R(�1)

ES _
A

���! H1
proét(YK pKp,C, A

la
� )b⌦C

ES A

���! H0(Xw0,Kp
(✏),!�1��2+2)b⌦R(�2 � 1),

where the first is a cohomology group with closed supports as in [BP20], and the third is a space of

overconvergent modular forms.
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More can be said about the overconvergent ES maps. For instance, one can define an action of

the Up-operator on all the cohomologies involved, and show that ES _A and ES A are Up-equivariant.

Analogous staments hold for the pro-Kummer-étale cohomology with compact supports of A�
�,két

, see

Part II §10.3.

0.2. Generalization to Shimura varieties

In the generalization to Shimura varieties, we will study the Hodge-Tate structure of the locally an-

alytic completed cohomology. This requires a series of technical preparations which will reduce the

problem to the study of someD-modules over flag varieties.

The objects we work with are naturally topological Qp-vector spaces, in order to deal with com-

mutative algebra and topology we shall work in the category of solid Qp-vector spaces, defined by

Clausen and Scholze via condensed mathematics, c.f. [Sch19]. Moreover, the locally analytic com-

pleted cohomology is a complex which should be considered as a locally analytic representation of

the p-adic Lie group Kp. In the joint work with Joaquı́n Rodrigues Jacinto [RJRC21], we develop

a solid foundation of the theory of locally analytic representations. We use this theory in the cur-

rent paper to formalize the notion of a locally analytic representation in the derived category of solid

Kp-representations over Qp, and to deal with the technical passage from group cohomology to Lie

algebra cohomology of the locally analytic vectors, see §0.2.1 for a brief introduction and Part III for

the complete document.

We also need to extend Lue Pan’s construction of the geometric Sen operator [Pan20, §3.3 and

3.4] to arbitrary (log) smooth rigid analytic spaces, and to a larger class of sheaves. We use a gen-

eralized version of the Berger-Colmez’s Sen formalism [BC08], which can be applied to semilinear

representations arising from locally analytic representations. Then, by a glueing process, we define

the geometric Sen operator as a Higgs bundle of bO-modules which is related with the p-adic Simp-

son correspondence. We show in particular that the Sen bundle computes proétale cohomology in a

precise sense; this is one of the most important tools we use to understand the Hodge-Tate structure

of proétale cohomology. We refer to §0.2.2 down below for an introduction to the subject, and Part

IV Chapters 19 and 20 for a complete treatment.

Finally, we specialize to Shimura varieties. We compute the Sen operator, and prove that it arises

from a G-equivariant Lie algebra over the flag variety F` = Pµ\G via the Hodge-Tate period map

⇡HT. This provides a dictionary between Lie algebra cohomology of locally analytic sheaves over

F`, and proétale cohomology of their pullbacks by ⇡HT. We consider the b = � isotypic part of the

locally analytic completed cohomology for the action of a Borel subalgebra, and invoking the previous

dictionary, we construct the overconvergent BGG maps by studying the Lie algebra cohomology of

the corresponding locally analytic sheaf over F`. See §0.2.3 and §0.2.4 for an introduction, and Part

IV Chapters 21-23 for the original work.

0.2.1. Solid locally analytic representations

Let G be a compact p-adic Lie group. The theory of locally analytic representations dates back to

the work of Lazard [Laz65], Schneider-Teitelbaum [ST02, ST03], Emerton [Eme17], et. al. Roughly

speaking, a locally analytic representation of G on a complete locally convex Qp-vector space V is a

continuous representation such that, for all v 2 V the orbit map Ov : G ! V can be written as a power

series, locally for the choice of some coordinates of G. Using Emerton’s approach to define locally

analytic vectors, one can extend this notion to arbitrary solid Qp-vector spaces.

Let ⇤proét be the proétale site of a geometric point, namely, the category of profinite sets with covers

given by finitely many jointly surjective maps.
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Definition 0.2.1 ( [Sch20, Def. 11.7] ). Let C be a category that admits all (small) colimits and finite

limits. The category of condensed C -objects Cond(C ) is the category of sheaves T : ⇤proét ! C .

Thus, one has the category of condensed sets Cond(Set), the category of condensed abelian groups

Cond(Ab), the category of condensed rings Cond(Ring), etc.

On the other hand, by [Sch20, Prop. 1.2] there is a fully faithful embedding from the category of

compactly generated weak Hausdorff spaces to Cond(Set) given by mapping X to the condensed set

X : ⇤proét ! Set, S 7! Cont(S , X).

In order to do algebraic geometry and p-adic functional analysis, Clausen and Scholze have con-

structed the category Solid(Z) of solid abelian groups. Let S = lim
 ��i

S i be a profinite set written as an

inverse limit of finite sets, we define

Z⌅[S ] := lim
 ��

i

Z[S i].

Definition 0.2.2. A solid abelian group is an object A 2 Cond(Ab) such that, for all S 2 ⇤proét one has

A[S ] = Hom(Z⌅[S ], A).

By Theorem [Sch19, Theo. 5.8], the category of Solid abelian groups is an abelian full subcategory

of Cond(Ab) stable by colimits, limits and extensions. It satisfies some Grothendieck axioms, and the

objects Z⌅[S ] for S 2 ⇤proét form a family of compact projective generators. The category Solid(Z)

also has an internal Hom which is the same internal Hom of Cond(Ab), and a solid tensor product

⌦Z,⌅. Furthermore, its derived category if the full subcategory of D(Cond(Ab)) of objects C such that

Hi(C) 2 Solid(Z) for all i 2 Z. In addition, there is a symmetric monoidal solidification functor

(�)⌅ : D(Cond(Ab))! D(Solid(Z))

which is uniquely determined by (Z[S ])⌅ = Z⌅[S ] for all S 2 ⇤proét.

We let Qp be considered as a condensed field via the functor X 7! X. The field Qp can be written

as Qp = lim
��!n

p�nZp, and Zp = lim
 ��s
Z/ps. In particular, Qp 2 Solid(Z). We let Solid(Qp) denote the

category of Qp-modules in Solid(Z), we call Solid(Qp) the category of solid Qp-vector spaces. More

generally, for any ring A 2 Solid(Z) let us denote by Solid(A) the category of A-modules in Solid(Z),

and by D(A) the category of solid A-modules.

Definition 0.2.3. A solid G-representation over Qp is a G-module in Solid(Qp). Equivalently, let

Qp,⌅[G] = Z⌅[G] ⌦Z,⌅ Qp be the Iwasawa algebra of G. A solid G-representation is an object in

Solid(Qp,⌅[G]).

In short, we have replaced the category of continuous G-representations on complete locally convex

Qp-vector spaces by the category Solid(Qp,⌅[G]), it has the advantage to be an abelian category stable

under all limits, colimits and extensions in the category of G-modules on condensed abelian groups.

Let us now discuss the notion of locally analytic representation. By the work of Lazard, a compact

p-adic Lie group G has local coordinates, this means that we can find a normal open subgroup G0 ⇢ G,

and elements g1, . . . , gk 2 G0 such that:

1. The map  : Zk
p ! G0 sending (x1, . . . , xk) 7! g

x1

1
. . . g

xk

k
is a homeomorphism.

2. The multiplication law (g, h) 7! gh�1 is written as a power series with bounded coefficients in

the coordinates  .
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The choice of  allows us to embed G in a rigid analytic group G as a Zariski dense subspace. The

group G is constructed by adding polydiscs of radius 1 around each coset of G/G0. Moreover, we

can define a decreasing family of rigid analytic groups G(h) ⇢ G with
T

hG
(h) = G, where each G(h) is

constructed by adding finitely many polydiscs of radius p�h in cosets G/G
ph

0
(modulo a rescaling of

the valuation of G0). We have the following definition

Definition 0.2.4. We let C(G(h),Qp) be the ring of global functions of G, and let

D(h)(G,Qp) = Hom
Qp

(C(G(h),Qp),Qp) be the algebra of h-analytic distributions.

The ring C(G(h),Qp) has a natural structure of analytic ring in the sense of [Sch19, Def. 7.4]

provided by its subring of bounded functions. We let C(G(h),Qp)⌅ denote this analytic ring structure.

Definition 0.2.5. Let V 2 Solid(Qp,⌅[G]). The derived G(h)-analytic vectors of V is the G-solid

representation

VRG(h)�an = RHom
Qp,⌅[G]

(Qp, (V ⌦Qp,⌅ C(G(h),Qp)⌅)?1,3
),

where ⌦Qp,⌅C(G(h),Qp)⌅ is the base change of analytic rings (see [Sch19, Prop. 7.7]), and the ?1,3

action is given by g ?1,3 f (x) = g f (g�1x) (see [RJRC21] for a precise definition). The G-module

structure on VRG(h)�an is induced by the right regular action ?2 on C(G(h),Qp). We let VG
(h)�an =

H0(VRG(h)�an) denote the G(h)-analytic vectors of V . We also define VRG�la = lim
��!h!1

VRG(h)�an to be the

derived locally analytic vectors of V , and VG�la = H0(VRG�la) the locally analytic vectors.

When V is a Banach representation (or an LF representation in more generality), the previous

definition coincides with the one of Emerton [Eme17].

The following theorem relates the locally analytic vectors with the distribution algebras

Theorem 0.2.6 (Part III Theo. 14.3.9). Let V 2 Solid(Qp,⌅[G]), then

VRG(h)�an = RHom
Qp,⌅[G]

(D(h)(G,Qp),V),

where we seeD(h)(G,Qp) as a Qp,⌅[G]-module via the left multiplication.

The Theorem 0.1.3 is an application of the adjunction of the shriek functors for the map G(h) !

Spa(Qp,Zp). An informal way to read the previous theorem is that the G(h)-analytic vectors of V are

those for which the action of G enhances to an action ofD(h)(G,Qp). In order to relate locally analytic

vectors with modules over distribution algebras we need to consider a variant of G(h). Let G(h+) =S
h0>hG

(h0) be the Stein neighbourhood of G by adding open polydiscs of radius p�h on finitely many

cosets. Let us denote by C(G(h+),Qp) = lim
 ��h0>h

C(Gh,Qp) its global functions and by D(h+)(G,Qp) =

Hom
Qp

(C(G(h+),Qp),Qp) the algebra of G(h+)-analytic distributions. Notice that

D(h+)(G,Qp) = lim
��!
h0>h

D(h0)(G,Qp).

The algebraD(h+)(G,Qp) has the advantage to be a localization of Qp,⌅[G], namely, that

D(h+)(G,Qp) ⌦L
Qp,⌅[G] D

(h+)(G,Qp) = D(h+)(G,Qp),

see [RJRC21, Prop. 5.9]. In particular, D(D(h+)(G,Qp)) is a full subcategory of D(Qp,⌅[G]). Let us

define the derived G(h+)-analytic vectors of V to be

VRG(h+)�an = R lim
 ��
h0>h

VRG(h0)�an,

we set VG
(h+)�an = H0(VRG(h+)�an).
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Hence, Theorem 0.2.6 implies that

VRG(h+)�an = RHom
Qp,⌅[G]

(D(h+)(G,Qp),V).

We obtain the following corollary

Corollary 0.2.7. A solid G-representation V over Qp is G(h+)-analytic (i.e. VG
(h+)

= V) if and only if

it is derived G(h+)-analytic (i.e. VRG(h+)

= V) if and only if V 2 Solid(D(h+)(G,Qp)).

In other words, the notion of being an analytic representation (for an open radius of analyticity) is

equivalent to being a module over a distribution algebra! This fact suggests the following definition

Definition 0.2.8. The category SolidQp
(Gla) of solid locally analytic representations is the full subcat-

egory of Solid(Qp,⌅[G]) generated by all the D(h+)(G,Qp)-modules for all h > 0. We define derived

category DQp
(Gla) of locally analytic representations of G to be the derived category of SolidQp

(Gla).

Remark 0.2.9. Being precise, one first has to define the categories of -small locally analytic represen-

tations for  an uncountable strong limit cardinal, and then take colimits along all the , this requires

the use of 1-categories. The previous definition does not appear in [RJRC21], and the study of the

derived category DQp
(Gla) is still work in progress with J. Rodrigues Jacinto.

One has the following corollary

Corollary 0.2.10. A representation V 2 Solid(Qp,⌅[G]) is locally analytic (i.e. VG�la = V) if and only

if it is derived locally analytic (i.e. VRG�la = V) if and only if V 2 SolidQp
(Gla).

We can finally state the cohomological comparison theorems which are going to be applied in Sen

theory

Theorem 0.2.11 (Part III Theo. 15.2.1 and 15.2.3 ). Let V 2 Solid(Qp,⌅[G]), we have quasi-

isomorphisms of solid Qp-vector spaces

RHom
Qp,⌅[G]

(Qp,V) = RHom
Qp,⌅[G]

(Qp,V
RG�la) = RHom

Lie G
(Qp,V

RG�la)G,

where in the last equality we use the fact that RHom
Lie G

(Qp,V
RG�la) is a smooth representation of

G, and that taking G-invariants is exact for smooth G representations in characteristic 0 since G is

compact.

0.2.2. Geometric Sen theory over rigid spaces: the p-adic Simpson

correspondence

We go back to rigid analytic geometry. For simplicity in the exposition we are only going to discuss

the case of rigid spaces, all the relevant constructions and the main theorems extend to log adic spaces

as is shown in Part IV §20.

Let (K,K+) be a complete nonarchimedean extension of Qp with K a discretely valued field, let

C =
b
K be the p-adic completion of an algebraic closure of K. Let X be a smooth locally noetherian

adic space over Spa(K,K+), we let bO (+) and O (+) denote the completed and uncompleted sheaves of

Xproét respectively. Let Ω1
X be the sheaf of differential forms of X. Let us begin with the statement of

the main theorem of Part IV §20, we need a definition.

Definition 0.2.12. A proétale bO-module F over X is said relative locally analytic if there is an étale

cover {Ui}i2I of X such that, for all i, the restriction F |Ui
admits a p-adically complete bO+-lattice F 0

i
,

and there is ✏ > 0 (depending on i) such that F 0
i
/p✏ =ae

L
I
O+/p✏ .
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Theorem 0.2.13 (Part IV Theo. 20.1.15). Let F be a relative locally analytic bO-module over X.

There is an bO-linear map

✓X : F ! F ⌦Ω1
X ⌦

bO(�1)

called the Sen operator of F . The map ✓X satisfies the following properties

1. The formation of ✓X is functorial on F and compatible with pullbacks.

2. ✓X is a Higgs bundle, namely, ✓X ^ ✓X = 0.

3. Let ⌫ : XC,proét ! XC,ét be the projection of sites, then

R⌫⇤(F ) = ⌫⇤RΓ(✓X,F ).

In other words, Ri⌫⇤F = ⌫⇤Hi(RΓ(✓X,F )).

4. Let ⌘ : XC,proét ! XC,an be the projection of sites. If in addition we can take the cover {Ui}i2I to

be a cover in the analytic topology, then

R⌘⇤(F ) = ⌘⇤(RΓ(✓X,F )).

The property of being a relative locally analytic bO-module might look a bit mysterious. Never-

theless, these sheaves arise naturally when studying locally analytic vectors of proétale cohomology.

Let us explain in which context they appear. Let G be a compact p-adic Lie group and eX ! X a

G-torsor (e.g. take X a finite level modular curve and eX the perfectoid modular curve). Let V be a

Qp-Banach locally analytic representation of G, for example, we can take V = C(G,Qp) for some

group affinoid neighbourhood G of G. Then V defines a proétale sheaf Vét over X by descending the

G-representation V along the torsor eX ! X. By Part IV Corollary 17.2.6, there is a lattive V0 ⇢ V ,

✏ > 0, and an open subgroup G0 ⇢ G, such that G0 stabilizes V0, and that the action of G0 on V0/p✏

is trivial. Therefore, the proétale bO-module Vétb⌦ bO is a relative locally analytic sheaf. Indeed, the

restriction of Vétb⌦ bO to XG0
:= eX/G0 satisfies the conditions of Definition 0.2.12. Furthermore, in this

situation we have a more refined result

Theorem 0.2.14 (Part IV Theo. 20.1.15). ] We keep the previous notation. Let g = Lie G endowed

with the adjoint action, and let V be a Qp-Banach locally analytic representation of G. We have an

action of g on V by derivations. Then, the Sen operator ✓X of Vétb⌦ bO factors through a morphism of

sheaves

F
id⌦✓
���! gét ⌦F ⌦Ω1

X ⌦
bO(�1)! F ⌦Ω1

X ⌦
bO(�1)

where the second map is induced by the derivation g ⌦ V ! V, and ✓ is the Sen operator of the

G-torsor eX ! X:

✓ : bO ! gét ⌦Ω
1
X ⌦

bO(�1). (0.2.1)

Moreover, let ⌘ : XC,proét ! XC,an be the projection of sites. Then R⌘⇤(Vb⌦ bO) = ⌘⇤(RΓ(✓,Vb⌦ bO)).

As an example of the previous theorems, let’s perform the construction of the Sen operator for the

simplest case of a torus T = Spa(KhT±1i,K+hT±1i).

One of the main ideas of [Pan20] is to use the axiomatic framework of Sen theory à la Berger-

Colmez [BC08], to compute proétale cohomology of bO-sheaves over T. Let F be a relative locally

analytic sheaf over T, suppose in addition that U = T satifies the condition of Definition 0.2.12.

In other words, there is a p-adically complete lattice F 0 ⇢ F , and ✏ > 0, such that F 0/p✏ =ae

L
I
O+/p✏ .

We want to compute the (geometric) proétale cohomology RΓproét(TC,F ). Let

Tn,K = Spa(KhT±1/pn

i,K+hT±1/pn

i),
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and let T1,K = lim
 ��n
Tn,K be the preperfectoid torus. The perfectoid torus T1,C is a Galois cover of TC

with group Γ = Zp(1). By Scholze’s almost acyclicity of O+/p in affinoid perfectoid spaces [Sch12,

Prop. 7.13], one deduces that

RΓproét(TC,F ) = RHomΓ(Qp,F (T1,C)).

Using Theorem 0.2.11 one has

RΓproét(TC,F ) = RHomΓ(Qp,F (T1,C)RΓ�la)

= RHomLieΓ(Qp,F (T1,C)RΓ�la)Γ.

In other words, we have separated the problem of computing proétale cohomology in three steps:

first, we need to compute the derived locally analytic vectors of F (T1,C). Second, we take the Lie

algebra cohomology of F (T1,C), and finally, we take the Γ-invariants of a smooth representation.

Let us focus in the first step which seems to be the more subtle. For n � m there are normalized

traces

Rn
m : ChT±1/pn

i ! ChT±1/pm

i

where Rn
m =

1
pn�m

P
�2pmΓ/pnΓ �. These extend to Tate traces

Rm : ChT±1/p1i ! ChT±1/pm

i

such that, for any f 2 ChT±1/p1i, the sequence (Rm( f ))m converges to f . Furthermore, the tuple

(ChT±1/p1i,Γ) satisfies the Colmez-Sen-Tate axioms of [BC08], see Part IV §19.1 for a generalization.

Let (⇣pn)n be a compatible system of primitive p-th power roots of unity, and let  : Zp

⇠
�! Γ be

the induced isomorphism. Using  we define the affinoid group Gn which is a copy of the additive

group of radius p�n (i.e. Gn(Qp) = pnZp). We will keep using the expression “pn
Γ-analytic” instead

of Gn-analytic. The following theorem is a generalization of [BC08, Prop. 3.3.1] to relative ✏-analytic

representations, it can be seen as a decompletion theorem à la Kedlaya-Liu [KL19].

Theorem 0.2.15 (Part IV Theo. 19.3.3). There exists m >> 0 depending on ✏ such that

F (T1,C) = ChT±1/p1ib⌦ChT±1/pm
iF (T1,C)pm

Γ�an.

Moreover, we have that

F (T1,C)RΓ�la = F (T1,C)Γ�la = lim
��!

n

ChT±1/pn

ib⌦ChT±1/pm
iF (T1,C)pm

Γ�an.

The previous theorem shows that, under certain conditions on F , the derived locally analytic vec-

tors of F (T1,C) are concentrated in degree 0, and that all the relevant information is already encoded

in the pm
Γ-analytic vectors for some m >> 0. In particular, we have that

RΓproét(T1,C,F ) = RΓLieΓ(Qp,F (T1,C)pm
Γ�an)Γ. (0.2.2)

Thus, the problem of computing proétale cohomology has been reduced to a problem of computing

Lie algebra cohomology. The module F (T1,C)pm
Γ�an is not mysterious at all, it is basically the p-adic

Simpson correspondence of F , see Part IV §20.2.3 for a discussion in this direction.

Now, the action of LieΓ is ChT±1/pm

i-linear and Γ-equivariant. It induces a Γ-equivariant ChT±1/p1i-

linear action on F (T1,C) by extending scalars. Moreover, this action is GalK-equivariant, where GalK

acts on Lie Γ via the cyclotomic character. On the other hand, we can identify Lie Γ ⌦ ChT±1/p1i =

Ω
1,_
T

(T) ⌦ChT±1/p1i ⌦ Zp(1). This shows that the action of Lie Γ defines an bO-linear map of proétale

sheaves over T

✓T : Ω1,_
T
⌦F ⌦ bO(1)! F ,
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equivalently, it defines the Sen operator

✓T : F ! F ⌦Ω1
T ⌦

bO(�1).

Thus, the equation (0.2.2) implies that R⌘⇤(F ) = ⌘⇤RΓ(✓X,F ), obtaining Theorem 0.2.13 for the

torus.

Remark 0.2.16. The notion of relative locally analytic bO-module given in this document is ad hoc,

but it suffices for the main objective of the paper. We believe that there should be a (derived) category

of solid relative locally analytic bO-modules over X for which Theorem 0.2.13 holds.

0.2.3. The classical BGG decompositions of Shimura varieties

We specialize to Shimura varieties. Let G be a reductive group over Q and (G, X) a Shimura datum.

Let E be the reflex field of (G, X) and µ : Gm ! GE a fixed Hodge cocharacter. Let K ⇢ G(A1
Q

) be a

neat compact open subgroup and ShK/Spec E the canonical model of the Shimura variety of level K.

The complex points of ShK is the locally symmetric space

ShK(C) = G(Q)\X ⇥G(A1Q )/K.

For simplicity in the exposition, let us suppose that the Shimura varieties are compact, and that the

maximal Q-rational non split subtorus in the center of G which is R-split is trivial. The second

condition guarantees that, if K0 ⇢ K is an open normal subgroup, then ShK0 ! ShK is a Galois cover

of group K/K0.

From now on we fix K p ⇢ G(A
1,p

Q
) a neat compact open subgroup, and given Kp ⇢ G(Qp) compact

open subgroup we let ShK pKp
denote the Shimura variety of level K pKp. Let L/Qp be a finite extension

for which G is split, and such that there is an immersion E ,! L. We will let ShK,L denote the

analytification of the L-extension of scalars of the Shimura variety ShK .

Consider the infinite level-at-p Shimura variety ShK p,L = lim
 ��Kp

ShK pKp,L, it is a proétale right Kp-

torsor over ShK pKp,L. Let RepL(G) be the category of algebraic representations of G over L. Given

V 2 RepL(G) we denote by Vét the proétale local system over ShK pKp,L defined as

Vét = ShK p,L ⇥
Kp V.

By [DLLZ18], the sheaves Vét are de Rham, and the associated filtered vector bundle with integrable

connection VdR, which is provided by the p-adic Riemann-Hilbert correspondence, is compatible with

the formation of the Betti local system over ShK pKp
(C), and the classical Riemann-Hilbert correspon-

dence.

Let Pµ and Pstd
µ denote the parabolic subgroups

Pµ = {g 2 GL | lim
t!0

Ad(µ(t))(g) converges}

Pstd
µ = {g 2 GL | lim

t!1
Ad(µ(t))(g) converges}.

Equivalently, let Fil•(µ) and Fil•(µ) be the decreasing and ascending filtrations of RepL(G) defined as

Fili V =
M

k��i

Vk

Fili V =
M

k�i

Vk,

where V =
L

k2Z
Vk is the decomposition in isotypic components with respect to the action of µ, with

µ(t)v = tkv for t 2 Gm and v 2 Vk. Then Pµ (resp. Pstd
µ ) is the parabolic subgroup stabilizing Fil•(µ)

(resp. Fil•(µ)). We let Mµ be the centralizer of µ in GL.
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The Hodge filtration Fil• of the vector bundle VdR defines a right Pstd
µ -torsor Pstd

µ,dR
, we let Mµ,dR

denote its pushforward by the map Pstd
µ ! Mµ. It will be convenient to consider Mµ,dR as a left

Mµ-torsor by redefining the action mx := xm�1 for (m, x) 2 Mµ ⇥ Mµ,dR. Thanks to the p-adic

Riemann-Hilbert correspondence, we can define an ascending Hodge-Tate filtration for Vét ⌦ bO , see

Part IV §22.1.1. The graded pieces of the Hodge filtration and the Hodge-Tate filtration are related

by the formula

gri(Vét ⌦ bO) = griVdR ⌦ bO(�i). (0.2.3)

Let FL = Pµ\GL and FLstd = Pstd
µ \GL be the flag varieties, and denote by F` and F`std their

analytification to adic spaces over Spa(L,OL). The Hodge-Tate filtration defines a G(Qp)-equivariant

map of diamonds over Spd L (c.f. [CS17])

⇡⌃
HT

: Sh⌃
K p,L
! F`⌃,

inducing a morphism of ringed topoi ⇡HT : (ShK p,L,proét, bO) ! (F`an,OF`). Therefore, similarly as in

the case of the modular curve, the map ⇡HT pullbacks G-equivariant quasi-coherent sheaves over F` to

G(Qp)-equivariant bO-modules over ShK p,L. We will identify the pullback ⇡⇤HT(V) of a G-equivariant

quasi-coherent sheaf V with the proétale bO-module over ShK pKp,L obtained by descending ⇡⇤HT(V)

along the Kp-torsor ⇡Kp
: ShK p,L ! ShK pKp,L.

Let Nµ ⇢ Pµ be the unipotent radical and Mµ,F` = Nµ\GL the natural Mµ-torsor over F`. The equa-

tion (0.2.3) provides an isomorphism of G(Qp)-equivariant tosors over ShK p,L (see Part IV Corollary

22.1.5)

⇡⇤HT(Mµ,F`) = ⇡
⇤
Kp

(Mµ,dR) ⇥µ Zp(�1)⇥. (0.2.4)

Let us explain what this isomorphism means in terms of automorphic sheaves. Let B ⇢ Pµ be a Borel

subgroup and T ⇢ B a maximal torus contained in Mµ, let BMµ = Mµ \ B be the Borel subgroup of

Mµ. We let X⇤(T)+ and X⇤(T)+
Mµ

denote the cone of dominant characters for GL and Mµ respectively.

Given � 2 X⇤(T)+ (resp.  2 X⇤(Mµ)
+) we let V� (resp. W) denote the irreducible representation of

GL of highest weight � (resp. the irreducible representation of Mµ of highest weight ). We let W and

WMµ denote the Weyl groups of GL and Mµ respectively, and let w0 2 W and w0,Mµ 2 WMµ denote the

longest elements.

Definition 0.2.17. Let  2 X⇤(T)+
Mµ

.

1. We define the G-equivariant vector bundle of weight  over F` to beW() = GL ⇥
Pµ W_

�w0().

Equivalently, denote k : Mµ,F` ! F` and let ?1 be the left regular action of Mµ on k⇤(OMµ,F`
),

then

W() = k⇤(OMµ,F`
)[�w0()?]

where we take isotypic parts with respect to BMµ .

2. We define the automorphic vector bundle of weight  over ShK pKp,L to beM() = Mµ,dR ⇥
Mµ

W_
�w0(). Equivalently, let f : Mµ,dR ! ShK pKp,L, then

M() = f⇤(OMµ,dR
)[�w0()?1

].

Thus, the equation (0.2.4) says that

⇡⇤HT(W()) =M() ⌦ bO(w0()(µ)). (0.2.5)

Remark 0.2.18. The convention onW() is made in such a way that, if � 2 X⇤(T)+, the global sections

Γ(F`,W(�)) are isomorphic to V�. Thus, ⇡HT preserves the weights between G-equivariant vector

bundles of F` and automorphic vector bundles. In the notation of [BP20] we haveM() = V_
�w0().
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Our strategy to give a local proof of the classical Hodge-Tate decompositions of the proétale co-

homology of the local systems V�,ét (see. [FC90]), is first to compute the pullback by ⇡HT of all the

G-equivariant vector bundles over F`, and then apply this construction to the dual BGG resolution.

Recall that the category of G-equivariant vector bundles over F` is equivalent to the category

RepL(Pµ) of algebraic representations of Pµ. By (0.2.5), we already know how the semisimple rep-

resentations of Pµ are transformed via ⇡HT, it is left to understand the pullback of non-semisimple

representations. Let O(Nµ) be the ring of algebraic functions of Nµ, it is endowed with an action of

Mµ by conjugation, and with the right regular action of Nµ. This provides an action of Pµ on O(Nµ).

Let O(Pµ) be the ring of algebraic functions of Pµ endowed with the right regular action, we have an

isomorphism as Pµ-modules

O(Pµ) =
M

�2X⇤(T)+
Mµ

(W_
� )0 ⌦W� ⌦ O(Nµ),

where Pµ acts trivially on (W_
� )0. Therefore, it suffices to compute the pullback by ⇡HT of the G-

equivariant sheaf associated to O(Nµ). We have the following theorem

Theorem 0.2.19 (Part IV Theo. 22.2.2). Let O(Nµ) be the G-equivariant quasi-coherent sheaf over

F` defined by O(Nµ), and let O(Nµ)
1 ⇢ O(Nµ) denote the subrepresentation of polynomials of

degree  1. Let gr1OB+
dR

be the Faltings extension of ShK pKp,L, and OC = gr0OBdR the Hodge-Tate

period sheaf. We have a short exact sequence of Pµ-representations

0! L! O(Nµ)
1 ! (Lie Nµ)

_ ! 0, (0.2.6)

where we see (Lie Nµ)
_ as homogeneous linear forms of Nµ. Then, the pullback by ⇡HT of the G-

equivariant complex associated to (0.2.6) is isomorphic to (minus) the Faltings extension

0! bO ! gr1OB+dR ⌦
bO(�1)! Ω1 ⌦ bO(�1)! 0,

where Ω1 is the sheaf of differentials of ShK pKp
. Taking n-th symmetric powers and colimits as n! 1

we have a natural isomorphism

⇡⇤HT(O(Nµ)) = OC.

Having understanding the pullbacks of G-equivariant sheaves over F` by ⇡HT, we can prove the

BGG decomposition for the local systems V�,ét. Let us briefly introduce the dual BGG resolution, we

let g, p, p and m denote the Lie algebras of GL, Pµ, Pstd
µ and Mµ respectively.

Definition 0.2.20. Let  2 X⇤(T)+
Mµ

be a dominant weight for the Levi subgroup. The Verma module

of (g, p) of weight  is the coinduction

Verg
p
() = U(g) ⌦U(p) W.

We let (Verg
p
())_ denote the admissible dual of m-finite vectors.

Remark 0.2.21. As in the case of GL2, the Verma module Verg
p
() is an object in the relative category

Op, cf. Part IV Definition 21.3.9. Its admissible dual is an object in the category Op, in particular, the

action of p integrates to an Ind-algebraic action of Pµ. As Pµ-modules we have

(Verg
p
())_ = W_

 ⌦ O(Nµ) = W�w0,M() ⌦ O(Nµ).

Definition 0.2.22. Let � 2 X⇤(T)+ be a dominant weight for GL. Let BGG(�w0(�)) be the BGG

resolution of V_� in the category Op

0! Verg
p
(�w0,Mµ(w

Mµ

0
· �))! · · ·

M

w2MµW
`(w)=k

Verg
p
(�w0,Mµ(w · �))! · · ·! Verg

p
(�w0,Mµ(�))! V_� ! 0,

where
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General introduction

1. MµW is the set of minimal length representatives of WMmu
\W, and ` is the length function of W.

2. Let ⇢ be the sum of the positive roots with respect to the Borel B, then w ·  = w( + ⇢) � ⇢ is

the dot action.

3. wM
0 2

MµW is the longest element.

The dual BGG resolution of V� is the admissible dual BGG_(�w0(�)) of the BGG resolution of V_� .

Remark 0.2.23. In Part IV Corollary 21.3.22 we show that the dual BGG resolution of V� is iso-

morphic as Pµ-module to the following complex concentrated in degrees [0, d], with d = dim F` =
dimSh:

BGG_(�w0(�)) = [W� ⌦ O(Nµ)! · · ·!
M

w2MµW
`(w)=k

Ww·� ⌦ O(Nµ)! · · ·! W
w

Mµ

0
·�
⌦ O(Nµ).

We can finally state the main theorem of this section

Theorem 0.2.24 (Part. IV Theo. 22.2.6). Let � 2 X⇤(T)+ be a dominant weight. Let BGG_(�w0(�))

be the dual BGG resolution of V� and BGG_(�w0(�)) its associated G-equivariant complex over F`.
The following hold

1. The Hodge-Tate dual BGG complex ⇡⇤HT(BGG_(�w0(�))) is a resolution of V�,ét⌦ bO , whose k-th

term is isomorphic to M

w2MµW
`(w)=k

M_(�w0(w · )) ⌦ OC(w · �(µ)).

2. Let ⌘Kp
: ShK pKp,C,proét ! ShK pKp,C,an be the projection of sites. Then

R⌘Kp,⇤(V�,ét ⌦ bO) =
M

w2MµW

M_(�w0(w · �)) ⌦C(w · �(µ))[�`(w)].

Taking analytic cohomology and applying the primitive comparison theorem we obtain the

Hodge-Tate BGG decomposition

H•proét(ShK pKp,C,V�,ét) ⌦C =
M

w2MµW

H•�`(w)
an (ShK pKp,C,M

_(�w0(w · �))) ⌦C(w · �(µ)). (0.2.7)

0.2.4. The geometric Sen operator of Shimura varieties and the

overconvergent BGG maps

Using Theorem 0.2.19 one can compute the Sen operator of the Shimura varieties ShK pKp,L. Let us

denote by g, p, n, m, b, bMµ and h the Lie algebras of GL, Pµ, Nµ, Mµ, B, BMµ and T respectively. We

let n0 and p0 be the subbundles of OF` ⌦ g given by n0 = GL ⇥
Pµ n and p0 = GL ⇥

Pµ p. Equivalently,

n0 and p0 are the subbundles whose fiber at x 2 F` is equal to Lie x̃�1nx̃ and x̃�1px̃ respectively, with

x̃ 2 GL any lift of x. The lie algebra g acts on OF` by derivations, this induces an action of the Lie

algebroid OF` ⌦ g. Since FL = Pµ\GL one easily shows that p0 ⇢ OF` ⌦ g acts trivially on OF`.

Let ShK p,L = lim
 ��Kp

ShK pKp,L be the infinite-at-p level Shimura variety, it is a proétale Kp-torsor of

ShK pKp,L. Theorem 0.2.14 says that the Sen operator of the torsor ShK p,L is given by a map of proétale

sheaves

✓ : bO ! gét ⌦Ω
1 ⌦ bO(�1),

or equivalently,

✓ : Ω1,_ ⌦ bO(1)! gét ⌦ bO .
The following is a consequence of Theorem 0.2.19.
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Theorem 0.2.25 (Part IV Theo. 22.2.1). The Sen operator ✓ of the Kp-torsor ⇡Kp
: ShK p,L ! ShK pKp,L

is isomorphic to the pullback by ⇡HT of the morphism of G-equivariant vector bundles n0 ⇢ OF` ⌦ g.

In other words, the Sen operator ✓ : Ω1,_ ⌦ bO(1)! gét ⌦ bO factors through

Ω
1,_ ⌦ bO(1) gét ⌦ bO

⇡⇤HT(n0),

✓

and the map Ω1,_ ⌦ bO(1)! ⇡⇤HT(n0) is an isomorphism of proétale sheaves.

The previous theorem provides a way to compute proétale cohomology of ShK pKp,C in terms of

Lie algebra cohomology. More precisely, let V be a locally analytic representation of Kp and Vét the

proétale sheaf over ShK pKp,L it defines. Let ⌘Kp
: ShK pKp,C,proét ! ShK pKp,C,an be the projection of sites,

Theorem 0.2.13 implies that

R⌘Kp,⇤(Vét ⌦ bO) = ⌘Kp,⇤⇡
⇤
HT(RΓ(n0,V ⌦ OF`)).

Applying this result to the sheaf V = Cla(Kp, L) endowed with the left regular action ?1, one obtains

the following generalization of [Pan20, Theo. 4.4.6]

Theorem 0.2.26 (Part IV Theo. 22.3.16 ). Let O la
Sh

be the subsheaf of locally analytic sections of

bO |ShK p ,C,an
for the action of G(Qp). Let RΓproét(ShK p,C, L)la := RΓproét(ShK pKp,C,C

la(Kp, L)ét) be the

locally analytic completed cohomology with coefficients over L. We have a GalL ⇥G(Qp)-equivariant

quasi-isomorphism

RΓproét(ShK p,C, L)lab⌦LC = RΓan(ShK p,C,O
la
Sh). (0.2.8)

Remark 0.2.27. Let us briefly justify the equality (0.2.8). We denote Cla(Kp, bO) = Cla(Kp, L)étb⌦ bO . By

Theorem 0.2.25 we know that R⌘Kp,⇤(C
la(Kp, bO)) = ⌘Kp,⇤(RΓ(n

0,Cla(Kp,OF`))) where n0 acts via the

?1,3-action g?1,3 f (h) = g f (g�1h). But RΓ(n0,Cla(Kp,OF`)) is equal to the invariants Cla(Kp,OF`)
n0
?1,3
=0

by the Poincaré lemma. This implies that R⌘Kp,⇤(C
la(Kp, bO)) = ⌘Kp,⇤⇡

⇤
HT(Cla(Kp,OF`)

n0
?1,3
=0

) is concen-

trated in degree 0. Taking colimits as Kp ! 1, one can show that the sheaf lim
��!Kp!1

⌘Kp,⇤⇡
⇤
HT(Cla(Kp,OF`)

n0
?1,3
=0

)

is equal to O la
Sh

. Finally, taking analytic cohomology over ShK p,C one recovers (0.2.8).

As a corollary one deduces a rational version of the Calegari-Emerton conjectures (cf. [Sch15]

and [HJ20])

Corollary 0.2.28 (Part IV Coro. 22.3.17 ). The completed cohomology complex RΓproét(ShK p,C,Qp)

is concentrated in degrees [0, d].

A sketch of the proof of the previous corollary is the following: first, since the completed coho-

mology groups are admissible representations of G(Qp), in order to prove vanishing for degrees > d,

it is enough to prove the vanishing for the locally analytic completed cohomology. Then, Theorem

0.2.26 implies that the locally anlaytic completed cohomology can be computed as the analytic co-

homology of some sheaf over ShK p,C. But the topological space |ShK p,C | can be written as an inverse

limit of noetherian spaces of dimension d (e.g. by writing |ShK p,C | as the inverse limit of the formal

models of finite level Shimura varieties). One obtains the vanishing by Grothendieck’s bound on the

cohomology of noetherian spaces, c.f. [Sch15, Coro. IV. 2.2].

We finish this introduction with the definition of the overconvergent BGG maps, generalizing The-

orem 0.1.29. To motivate this construction, let us write down the classical BGG decomposition inde-

pendently of Kp, we need some more notation:
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Definition 0.2.29. The space of algebraic functions of g with coefficients in L is the colimit of the

spaces of locally algebraic functions Calg(g, L) = lim
��!Kp!1

Clalg(Kp, L). Analogously, the space of

locally analytic functions of g with coefficients in L is the colimit Cla(g, L) = lim
��!Kp!1

Cla(Kp, L).

Convention. Let (FKp
)Kp

be a family of proétale sheaves over ShK pKp,L with compatible transition

maps FKp
|ShK pK0p ,L

! FK0p for K0p ⇢ Kp. Let ⌘Kp
: ShK pKp,C,proét ! ShK pKp,C,an be the projection of

sites. Let us write F = lim
��!Kp

FKp
for a formal inductive limit of the FKp

, we define

RΓproét(ShK p,C,F ) := lim
��!

Kp!1

RΓproét(ShK pKp,C,FKp
) and R⌘1,⇤(F ) := lim

��!
Kp

R⌘Kp,⇤(FKp
),

where the last is a sheaf in the analytic site of ShK p,C.

Let � 2 X⇤(T)+ be a dominant weight, it is not hard to check that V� = Calg(g, L)b?2
=�w0(�) as

g-module via the left regular action ?1, compare with equation (0.1.7). Hence, we have that

RΓproét(ShK p,C,C
alg(g, L)

b?2
=�w0(�)

ét
) = lim
��!
Kp

RΓproét(ShK pKp,C,V�,ét).

Thus, in order to interpolate the BGG decomposition (0.2.7), we have to study the isotypic parts of

the locally analytic completed cohomology for the action of the Borel subalgebra b. Let � : h! C be

a (not necessarily algebraic) character, by applying the primitive comparison theorem and projecting

to the analytic site, one finds that

RΓproét(ShK p,C, L)la,Rb=�w0(�)b⌦C := RΓproét(ShK p,C,C
la(g, L)

b?2
=�w0(�)

ét
)b⌦C

= RΓproét(ShK p,C,C
la(g, bO)b?2

=�w0(�))

= RΓan(ShK p,C,R⌘1,⇤C
la(g, bO)b?2

=�w0(�)).

Theorems 0.2.13 and 0.2.25 allow us to compute the projection

R⌘1,⇤C
la(g, bO)b?2

=�w0(�) = ⌘1,⇤⇡
⇤
HT(RΓ(n0

?1,3
,Cla(g,OF`)

b?2
=�w0(�))).

This suggests that the overconvergent BGG maps should appear naturally by studying the locally

anlaytic sheaf RΓ(n0
?1,3
,Cla(g,OF`)

b?2
=�w0(�)) over F`. This is indeed the case, and the maps are

parametrized by the Bruhat stratification of F`.
Let w 2 MµW and let Cw = Pµ\PµwB be the w-Bruhat cell of F`. For i = 0, . . . , d = dimSh =

dim F` denote

Yi =
G

w2MµW
`(w)�i

Cw.

We have an open filtration of F`: ; ⇢ Yd ⇢ Yd�1 ⇢ · · ·Y0 = F` with graded pieces Yi\Yi+1 =F
w2MµW
`(w)=i

Cw.

Definition 0.2.30 (Part IV §18). For w 2 MµW we let jw : ⇡�1
HT(Cw) ⇢ ShK p,C be the inclusion. Let F

be a sheaf over ShK p,C, we define the following cohomology with compact supports

RΓc,w(ShK p,C,F ) := RΓan(ShK p,C, jw,! j�1
w F ).

We have the following theorem

Theorem 0.2.31 (Part IV Theo. 23.2.1). Consider the open filtration ; ⇢ ⇡�1
HT(Yd) ⇢ · · · ⇢ ⇡�1

HT(Y0) =

ShK p,C.
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1. We have

RΓproét(ShK p,C, L)la,Rb=�w0(�)b⌦C = RΓan(ShK p,C,O
la,Rb=�w0(�)

Sh
).

2. For w 2 MµW the complex j�1
w (O la,Rb=�w0(�)

Sh
) is concentrated in degrees [0, d � `(w)].

3. Let ◆(w) = w0,Mww0 be the involution of MµW so that `(◆(w)) = d � `(w). There are surjective

highest weight vector maps

Υ◆(w) : j�1
◆(w)(O

la,Rb=�w0(�)

Sh
)! C(M†

◆(w),dR
)bMµ,?1

=�w0,M(w·�)[�`(w)],

where C(M†
◆(w),dR

) is an overconvergent automorphic sheaf endowed with an horizontal left

regular action ?1 of m.

4. There is an spectral sequence

E
p,q

1
=

M

w2MµW
`(w)=p

Hp+q
c,w (ShK p,C,O

la,Rb=�w0(�)

Sh
)) Hp+q(RΓproét(ShK p,C, L)la,Rb=�w0(�)b⌦C),

and overconvergent BGG maps induced by Υ◆(w)

BGG◆(w) : RΓc,◆(w)(ShK p,C,O
la,Rb=�w0(�)

Sh
)! RΓc,◆(w)(ShK p,C,C(M†

◆(w),dR
)bMµ,?1

=�w0,M(w·�))[�`(w)].

Many other interesting properties can be said about the locally analytic completed cohomology. For

example, it admits an arithmetic Sen operator which is given by the horizontal action of ✓µ = Lie µ

(Part IV Theo. 22.3.18). We expect that the BGG maps are the only terms contributing to the

b = �w0(�) isotypic part of the locally analytic completed cohomology for generic �. Further-

more, we expect that if � is algebraic, the cohomologies RΓc,◆(w)(ShK p,C,O
la,Rb=�w0(�)

Sh
) can be com-

pletely described in terms of overconvergent automorphic forms. The idea behind is that the complex

RΓ(n0,Cla(g,OF`)
b?2
=�w0(�)) has an additional horizontal action by the centralizer Z(m) of the en-

veloping algebra of m. The action of Z(m) is determined, via a polynomial equation, by the action

of the center Z(g) of the enveloping algebra U(g), which is given by the infinitesimal character ��.
Then, imposing some regularity conditions on �, we can take isotypic parts for the action of Z(m)

obtaining a more refined complex; this is still work in progress.

0.3. An overview of the thesis

This thesis is divided in four Parts, each one corresponds to a different paper of the author. Because of

this, the notations might differ all across the document. Each part has its own introduction, we hope

this helps the reader who is interested in a particular work addressed in this thesis.

Parts I, II and III are divided in sections, and their sections are divided in subsections. Part IV is

divided in chapters, the chapters are divided in sections, and the sections are divided in subsections.

Part I is the content of the paper [RC21b], it studies the integral model of the perfecoid modular

curve and its relation with completed cohomology. Part II is the submitted version of [RC21a], it

concerns the overconvergent Eichler-Shimura maps of the modular curve. Part III is a joint work with

Joaquı́n Rodrigues Jacinto [RJRC21], it develops the theory of solid locally analytic representations

of a compact p-adic Lie group. Part IV is a paper in preparation, it involves geometric Sen theory of

rigid spaces, and the construction of the overconvergent BGG maps for Shimura varieties.
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Part I.

An integral model of the perfectoid

modular curve
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1. Introduction

Throughout this document we fix a prime number p, Cp the p-adic completion of an algebraic closure

of Qp, and {⇣m}m2N ⇢ Cp a compatible system of primitive roots of unity. Given a non-archimedean

field K we let OK denote its valuation ring. We let Fp be the residue field of OCp
and Z̆p = W(Fp) ⇢ Cp

the ring of Witt vectors. Let Z
cyc
p and Z̆

cyc
p denote the p-adic completions of the p-adic cyclotomic

extensions of Zp and Z̆p in Cp respectively.

Let M � 1 be an integer and Γ(M) ⇢ GL2(Z) the principal congruence subgroup of level M. We

fix N � 3 an integer prime to p. For n � 0 we denote by Y(N pn)/SpecZp the integral modular curve

of level Γ(N pn) and X(N pn) its compactification, cf. [KM85]. We denote by X(N pn) the completion

of X(N pn) along its special fiber, and by X(N pn) its analytic generic fiber seen as an adic space over

Spa(Qp,Zp), cf. [Hub96].

In [Sch15], Scholze constructed the perfectoid modular curve of tame level Γ(N). He proved that

there exists a perfectoid space X(N p1), unique up to a unique isomorphism, satisfying the tilde limit

property

X(N p1) ⇠ lim
 ��

n

X(N pn),

see definition 2.4.1 of [SW13] and definition 2.4.2 of [Hub96].

The first result of this paper is the existence of a Katz-Mazur integral model of the perfectoid

modular curve. More precisely, we prove the following theorem, see Section 3 for the notion of a

perfectoid formal scheme

Theorem 1.0.1. The inverse limit X(N p1) = lim
 ��n
X(N pn) is a perfectoid formal scheme over Spf Z

cyc
p

whose analytic generic fiber is naturally isomorphic to the perfectoid modular curve X(N p1).

The integral perfectoid modular curve X(N p1) was previously constructed by Lurie in [Lur20], his

method reduces the proof of perfectoidness to the ordinary locus via a mixed characteristic version

of Kunz Theorem. The strategy in this paper is more elementary: we use faithfully flat descent to

deduce perfectoidness of X(N p1) from the description of the stalks at the Fp-points. Then, we deal

with three different kind of points:

• The ordinary points where we use the Serre-Tate parameter to explicitly compute the deforma-

tion rings, cf. [Kat81, §2].

• The cusps where we have explicit descriptions provided by the Tate curve, cf. [KM85, §8-10].

• The supersingular points where even though we do not compute explicitly the stalk, one can

proves that the Frobenius map is surjective modulo p.

It worth to mention that the study of the ordinary locus in Lurie’s approach and the one presented in

this document are very related, see Proposition 2.2 of [Lur20] and Proposition 2.2.2 down below.

As an application of the integral model we can prove vanishing results for the coherent cohomology

of the perfectoid modular curve. Let E sm/X(N) be the semi-abelian scheme extending the universal

elliptic curve over Y(N), cf. [DR73]. Let e : X(N) ! E sm be the unit section and !E = e⇤Ω1
Esm/X(N)

the sheaf of invariant differentials. For n � 0 we denote by !E,n the pullback of !E to X(N pn), and

Dn ⇢ X(N pn) the reduced cusp divisor. Let k 2 Z, we denote !k
E,n
= !⌦k

E,n
and !k

E,n,cusp
= !k

E,n
(�Dn).
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1. Introduction

Let !k
E,1

be the pullback of !k
E

to X(N p1), and !k
E,1,cusp

the p-adic completion of the direct limit of

the cuspidal modular sheaves !k
E,n,cusp

. In the following we consider almost mathematics with respect

to the maximal ideal of Z
cyc
p .

Theorem 1.0.2. Let F = !k
E,1

or !k
E,1,cusp

and F +µ = Fb⌦OX(N p1)
O+
X(N p1)

. There is an almost quasi-

isomorphism of complexes

RΓan(X(N p1),F +µ ) 'ae RΓ(X(N p1),F ).

Moreover, the following holds

1. The cohomology complex RΓ(X(N p1),F ) is concentrated in degree 0 if k > 0, degree [0, 1] for

k = 0, and degree 1 if k < 0.

2. For k 2 Z and i, s � 0, we have Hi(X(N p1),F )/ps = Hi(X(N p1),F /ps) and

Hi(X(N p1),F ) = lim
 ��s

Hi(X(N p1),F /ps).

3. The cohomology groups Hi(X(N p1),F ) are torsion free.

Next, we use Serre duality and Pontryagin duality to construct a local duality theorem for the

modular curves at finite level. In the limit one obtains the following theorem

Theorem 1.0.3. Let Xn be the connected component of X(N pn)Z̆p
defined as the locus where the

Weil pairing of the universal basis of E[N] is equal to ⇣N . We denote X1 = lim
 ��n
Xn. Let F = !k

E,1
or

!k
E,1,cusp

and Fn = !
k
E,n

or !k
E,n,cusp

respectively. There is a natural GL2(Qp)-equivariant isomorphism

HomZ̆cyc
p

(Hi(X1,F ), Z̆cyc
p ) = lim

 ��
n,eTrn

H1�i(Xn,F
_

n ⌦ !
2
E,n,cusp),

where the transition maps in the RHS are given by normalized traces, and F _n is the dual sheaf of Fn.

Finally, we specialize to the case F = OX1 where the completed cohomology appears. Let

Xn be a connected component of X(N pn)Z̆p
as in the previous theorem. Let i � 0 and let eHi =

lim
 ��s

lim
��!n

Hi
et(Xn,Cp

,Z/psZ) be the completed i-th cohomology group, where Xn,Cp
= Xn ⇥Spec Z̆p[⇣pn ]

SpecCp. Note that this is a slightly different version of Emerton’s completed cohomology [Eme06],

where one considers the étale cohomology with compact supports of Yn,Cp
⇢ Xn,Cp

. Nevertheless, both

cohomologies are related via the open and closed immersions Yn ⇢ Xn � Dn. Following the same

ideas of [Sch15, §4.2] one can show that eHib⌦Zp
OCp

is almost equal to Hi
an(X1,Cp

,O+
X1

), in particular

it vanishes for i � 2 and eH0 = Zp. Using the theorem above we obtain the following result

Theorem 1.0.4. There is a GL2(Qp)-equivariant almost isomorphism of almost OCp
-modules

HomOCp
(eH1b⌦Zp

OCp
,OCp

) =ae lim
 ��
n,eTrn

H0(Xn,Cp
,!2

E,1,cusp).

The outline of the paper is the following. In Section 2 we recall the construction of the integral

modular curves at finite level; they are defined as the moduli space parametrizing elliptic curves

endowed with a Drinfeld basis of the torsion subgroups, we will follow [KM85]. Then, we study

the deformation rings of the modular curves at Fp-points. For ordinary points we use the Serre-Tate

parameter to describe the deformation ring at level Γ(N pn). We show that it represents the moduli

problem parametrizing deformations of the p-divisible group E[p1], and a split of the connected-

étale short exact sequence

0! bE ! E[p1]! E[p1]et ! 0.

3



1. Introduction

For cusps we refer to the explicit computations of [KM85, §8 and 10]. Finally, in the case of a

supersingular point we prove that any element of the local deformation ring at level Γ(N pn) admits a

p-th root modulo p at level Γ(N pn+1).

In Section 3 we introduce the notion of a perfectoid formal scheme. We prove Theorem 1.0.1

reducing to the formal deformation rings at Fp-points via faithfully flat descent. We will say some

words regarding Lurie’s construction of X(N p1). It is worth to mention that the tame level Γ(N) is

taken only for a more clean exposition, by a result of Kedlaya-Liu about quotients of perfectoid spaces

by finite group actions (Theorem 3.3.26 of [KL19]), there are integral models of any tame level.

In Section 4, we use Serre and Pontryagin duality to define a local duality pairing for the coherent

cohomology of vector bundles over an lci projective curve over a finite extension of Zp.

In Section 5, we compute the dualizing complexes of the modular curves at finite level. We prove

the cohomological vanishing of Theorem 1.0.2 and its comparison with the cohomology of the per-

fectoid modular curve. We prove the duality theorem at infinite level, Theorem 1.0.3, and specialize

to F = OX1 to obtain Theorem 1.0.4.
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2. A brief introduction to the Katz-Mazur

integral modular curves

Let N � 3 be an integer prime to p and n 2 N. Let Γ(N pn) ⇢ GL2(Z) be the principal congruence

subgroup of level N pn.

2.1. Drinfeld bases

We recall the definition of a Drinfeld basis for the M-torsion of an elliptic curve

Definition 2.1.1. Let M be a positive integer, S a scheme and E an elliptic curve over S . A Drinfeld

basis of E[M] is a morphism of group schemes  : (Z/MZ)2 ! E[M] such that the following equality

of effective divisors holds

E[M] =
X

(a,b)2(Z/MZ)2

 (a, b). (2.1.1)

We also write (P,Q) = ( (1, 0), (0, 1)) for the Drinfeld basis  .

Remark 2.1.2. The left-hand-side of (2.1.1) is an effective divisor of E/S being a finite flat group

scheme over S . The right-hand-side is a sum of effective divisors given by the sections  (a, b) of S

to E. Furthermore, if M is invertible over S , a homomorphism  : Z/MZ! E[M] is a Drinfeld basis

if and only if it is an isomorphism of group schemes, cf. [KM85, Lem. 1.5.3].

Proposition 2.1.3. Let E/S be an elliptic curve. Let (P,Q) be a Drinfeld basis of E[M] and eM :

E[M] ⇥ E[M]! µM the Weil pairing. Then eM(P,Q) 2 µ⇥
M

(S ) is a primitive root of unity , i.e. a root

of the M-th cyclotomic polynomial.

Proof. [KM85, Theo. 5.6.3]. ⇤

Let M � 3. From Theorem 5.1.1 and Scholie 4.7.0 of [KM85], the moduli problem parametrizing

elliptic curves E/S and Drinfeld bases (P,Q) of E[M] is representable by an affine and regular curve

over Z. We denote this curve by Y(M) and call it the (affine) integral modular curve of level Γ(M).

By an abuse of notation, we will write Y(M) for its scalar extension to Zp.

The j-invariant is a finite flat morphism of Zp-schemes j : Y(M) �! A1
Zp

. The compactified

integral modular curve of level Γ(M), denoted by X(M), is the normalization of P1
Zp

in Y(M) via the

j-invariant. The cusps or the boundary divisor D is the closed reduced subscheme of X(M) defined

by 1
j
= 0. The curve X(M) is projective over Zp and a regular scheme. We refer to X(M) and Y(M)

simply as the modular curves of level Γ(M).

Let Euniv/Y(M) be the universal elliptic curve and (Puniv,M,Quniv,M) the universal Drinfeld ba-

sis of Euniv[M]. Let ΦM(X) be the M-th cyclotomic polynomial, and let Zp[µ⇥
M

] denote the ring

Zp[X]/(ΦM(X)). The Weil pairing of (Puniv,M,Quniv,M) induces a morphism of Zp-schemes

eM : Y(M)! SpecZp[µ⇥M].

The map eM extends uniquely to a map eM : X(M) ! SpecZp[µ⇥
M

] by normalization. In addition,

eM is geometrically reduced, and has geometrically connected fibers.
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2. A brief introduction to the Katz-Mazur integral modular curves

Taking N as in the beginning of the section, and n 2 N varying, we construct the commutative

diagram

· · · X(N pn+1) X(N pn) X(N pn�1) · · ·

· · · Spec(Zp[µ⇥
N pn+1]) Spec(Zp[µ⇥

N pn]) Spec(Zp[µ⇥
N pn�1]) · · · ,

the upper horizontal arrows being induced by the map

(Puniv,N pn+1 ,Quniv,N pn+1) 7! (pPuniv,N pn+1 , pQuniv,N pn+1) = (Puniv,N pn ,Quniv,N pn),

and the lower horizontal arrows by the natural inclusions. In fact, the commutativity of the diagram

is a consequence of the compatibility of the Weil pairing with multiplication by p

eN pn+1(pPuniv,N pn+1 , pQuniv,N pn+1) = eN pn(Puniv,N pn ,Quniv,N pn)p

cf. Theorems 5.5.7 and 5.6.3 of [KM85].

2.2. Deformation rings at Fp-points

Let k = Fp be an algebraic closure of Fp. Let {⇣N pn}n2N be a fixed sequence of compatible primitive

N pn-th roots of unity, set ⇣pn = ⇣N
N pn . Let Z̆p = W(k) denote the ring of integers of the p-adic

completion of the maximal unramified extension of Qp. In the next paragraphs we will study the

deformation rings of the modular curve at the closed points X(N pn)(k). We let X(N pn)Z̆p
denote

the compactified modular curve over Z̆p of level Γ(N pn). Proposition 8.6.7 of [KM85] implies that

X(N pn)Z̆p
= X(N pn) ⇥SpecZp

Spec Z̆p.

There is an isomorphism Z̆p[µ⇥
N pn] �

Q
k2(Z/NZ)⇥ Z̆p[⇣pn] given by fixing a primitive N-th root of

unity in Z̆p. Let X(N pn)�
Z̆p

be the connected component of the modular curve which corresponds to

the root ⇣N . In other words, X(N pn)�
Z̆p

is the locus of X(N pn)Z̆p
where eN pn(Puniv,N pn ,Quniv,N pn) = ⇣N pn .

We denote P
(n)

univ
:= NPuniv,N pn and Q

(n)

univ
:= NQuniv,N pn .

Finally, given an elliptic curve E/S , we denote by bE the completion of E along the identity section.

The ordinary points

Let Artk be the category of local artinian rings with residue field k, whose morphisms are the local

ring homomorphisms compatible with the reduction to k. Any object in Artk admits an unique algebra

structure over Z̆p. Let Z̆p[⇣pn]- Artk denote the subcategory of Artk of objects endowed with an algebra

structure of Z̆p[⇣pn] compatible with the reduction to k. Following [Kat81], we use the Serre-Tate

parameter to describe the deformation rings at ordinary k-points of X(N pn)Z̆p
.

Let E0 be an ordinary elliptic curve over k and R an object in Artk. A deformation of E0 to R is a

pair (E, ◆) consisting of an elliptic curve E/R and an isomorphism ◆ : E ⌦R k ! E0. We define the

deformation functor EllE0
: Artk ! Sets by the rule

R 7! {(E, ◆) : deformation of E0 to R}/ ⇠ .

Then EllE0
sends an artinian ring R to the set of deformations of E0 to R modulo isomorphism.

Let Q be a generator of the physical Tate module TpE0(k) = Tp(E0[p1]et). Let Gm be the mul-

tiplicative group over Z̆p and bGm its formal completion along the identity. We have the following

pro-representability theorem

6



2. A brief introduction to the Katz-Mazur integral modular curves

Theorem 2.2.1. [Kat81, Theo. 2.1]

1. The Functor EllE0
is pro-representable by the formal scheme

HomZp
(TpE0(k) ⌦ TpE0(k),bGm).

The isomorphism is given by the Serre-Tate parameter q, which sends a deformation E/R of E0

to a bilinear form

q(E/R; ·, ·) : TpE0(k) ⇥ TpE0(k)! bGm(R).

By evaluating at the fixed generator Q of TpE0(k), we obtain the more explicit description

EllE0
= Spf(Z̆p[[X]])

where X = q(Euniv/EllE0
; Q,Q) � 1.

2. Let E0 and E00 be ordinary elliptic curves over k, let ⇡0 : E0 �! E00 be a homomorphism and

⇡t
0

: E00 �! E0 its dual. Let E and E0 be liftings of E0 and E00 to R respectively. A necessary

and sufficient condition for ⇡0 to lift to a homomorphism ⇡ : E �! E0 is that

q(E/R;↵, ⇡t(�)) = q(E0/R; ⇡(↵), �)

for every ↵ 2 TpE(k) and � 2 TpE0(k).

We deduce the following proposition describing the ordinary deformation rings of finite level:

Proposition 2.2.2. Let x 2 X(N pn)�
Z̆p

(k) be an ordinary point, say given by a triple (E0, P0,Q0), and

write (P
(n)

0
,Q

(n)

0
) = (NP0,NQ0). Let Ax denote the deformation ring of X(N pn)�

Z̆p
at x. Then there is

an isomorphism

Ax � Z̆p[⇣pn][[X]][T ]/((1 + T )pn

� (1 + X)) = Z̆p[⇣pn][[T ]] (2.2.1)

such that:

i. the map (2.2.1) is Z̆p[⇣pn]-linear.

ii. the variable 1 + X is equal to the Serre-Tate parameter q(Euniv/Ax; Q,Q);

iii. the variable 1 + T is equal to the Serre-Tate parameter q(E0univ/Ax, (⇡
t)�1(Q), (⇡t)�1(Q)) of the

universal deformation ⇡ : Euniv ! E0univ of the étale isogeny ⇡0 : E0 ! E0/C0, with C0 =

E0[pn]et.

Proof. The group scheme E0[N] is finite étale over k, which implies that a deformation of (E0, P0,Q0)

is equivalent to a deformation of (E0, P
(n)

0
,Q

(n)

0
). The group SL2(Z/pnZ) acts transitively on the set of

Drinfeld bases of E0[pn] with Weil pairing ⇣pn . Without loss of generality, we can assume that P
(n)

0
= 0

and that Q
(n)

0
generates E0[pn](k), see Theorem 5.5.2 of [KM85]. Let Euniv denote the universal elliptic

curve over Ax and C ⇢ Euniv[pn] the subgroup generated by Q
(n)

univ
, it is an étale group lifting the étale

group C0 = E0[pn]et. The base (P
(n)

univ
,Q

(n)

univ
) provides a splitting of the exact sequence

0 bEuniv Euniv[pn] C0 0.

Q
(n)
univ

Conversely, let R be an object in Z̆p[⇣pn]- Artk and E/R a deformation of E0. Let C be an étale subgroup

of E[pn] of rank pn. Then there exists a unique Q(n) 2 C reducing to Q
(n)

0
modulo the maximal ideal.

By Cartier duality, there is a unique P(n) 2 bE[pn] such that e(P(n),Q(n)) = ⇣pn . The pair (P(n),Q(n)) is

7



2. A brief introduction to the Katz-Mazur integral modular curves

then a Drinfeld basis of E[pn] lifting (P
(n)

0
,Q

(n)

0
) (cf. Proposition 1.11.2 of [KM85]). We have proved

the equivalence of functors of Z̆p[⇣pn]- Artk

8>><>>:
Deformations E of E0 and

Drinfeld bases of E[pn]
with Weil pairing ⇣pn

9>>=>>;/⇠ !
⇢

Deformations E of E0 and
étale subgroup C ⇢ E[pn] of rank pn

�
/⇠ .

We also have a natural equivalence
⇢

Deformations E of E0 and
étale subgroup C ⇢ E[pn] of rank pn

�
/⇠ !

⇢
Deformations of the étale isogeny

⇡0 : E0 ! E0/C0

�
/⇠ .

Let E0univ/Z̆p[⇣pn][[T ]] denote the universal deformation of E0/C0. The universal étale point Q
(n)

univ

induces an étale isogeny of degree pn over Ax

⇡ : Euniv ! E0univ

lifting the quotient ⇡0 : E0 ! E0/C0. Furthermore, the dual morphism ⇡t : E0univ ! Euniv induces an

isomorphism of the physical Tate modules ⇡t : TpE0univ(k)
⇠
�! TpEuniv(k). Let Q 2 TpEuniv(k) be the

fixed generator, and Q0 2 TpE0univ(k) its inverse under ⇡t. Theorem 2.2.1 implies

q(Euniv; Q,Q) = q(Euniv; Q, ⇡t(Q0)) = q(E0univ; ⇡(Q),Q0) = q(E0univ; Q0,Q0)pn

.

We obtain the isomorphism

Ax � Z̆p[⇣pn][[X,T ]]/((1 + T )pn

� (1 + X)) = Z̆p[⇣pn][[T ]]

where X = q(Euniv; Q,Q) � 1 and T = q(E0univ; Q0,Q0) � 1. ⇤

Remark 2.2.3. Let x 2 X(N pn)(k) be a closed ordinary point. The special fiber of the map eN pn :

X(N pn) ! SpecZp[µN pn] is a union of Igusa curves with intersections at the supersingular points

[KM85, Theo. 13.10.3]. The Igusa curves are smooth over Fp [KM85, Theo. 12.6.1], which implies

that the deformation ring of X(N pn) at x is isomorphic to a power series ring Z̆p[[Tn]] (cf. discus-

sion after Remark 3.4.4 of [Wei13]). The content of the previous proposition is the explicit relation

between the variables Tn in the modular tower, see also Proposition 2.2 of [Lur20].

The cusps

Let Tate(q)/Zp((q)) be the Tate curve, we recall from [KM85, Ch. 8.8] that it has j-invariant equal to

1/q + 744 + · · · .

We consider the ring Zp[[q]] as the completed stalk of P1
Zp

at infinity. The Tate curve provides a

description of the modular curve locally around the cusps, for that reason one can actually com-

pute the formal deformation rings by means of this object, see [KM85] and [DR73]. In fact, let
[Cusps[Γ(N pn)] be the completion of the modular curve X(N pn)Z̆p

along the cusps. From the theory

developed in [KM85, Ch. 8 and 10], more precisely Theorems 8.11.10 and 10.9.1, we deduce the

following proposition:

Proposition 2.2.4. We have an isomorphism of formal Z̆p[[q]]-schemes

[Cusps(
⇥
Γ(N pn)

⇤
)
⇠
�!

G

Λ2HomSurj((Z/N pnZ)2,Z/N pnZ)/±1

Spf(Z̆p[⇣pn][[q1/N pn

]]).

The morphism [Cusps[Γ(N pn+1)]! [Cusps[Γ(N pn)] is induced by the natural inclusion

Z̆p[⇣pn][[q1/N pn

]]! Z̆p[⇣pn+1][[q1/N pn+1

]]

on each respective connected component.
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2. A brief introduction to the Katz-Mazur integral modular curves

The supersingular points

Let (xn 2 X(N pn)Z̆p
)n2N be a sequence of compatible supersingular points and E0 the elliptic curve

defined over xn. We denote by Axn
the deformation ring of X(N pn)Z̆p

at xn. Let Euniv/Axn
be the

universal elliptic curve and (P
(n)

univ
,Q

(n)

univ
) the universal Drinfeld basis of Euniv[pn]. We fix a formal

parameter T of bEuniv. Since xn is supersingular, any p-power torsion point belongs to bEuniv. We will

use the following lemma as departure point:

Lemma 2.2.5. [KM85, Theo. 5.3.2]. The maximal ideal of the local ring Axn
is generated by T (P

(n)

univ
)

and T (Q
(n)

univ
).

By the Serre-Tate Theorem [Kat81, Theo. 1.2.1], and the general moduli theory of 1-dimensional

formal groups over k [LT66], the deformation ring of X(N)Z̆p
at a supersingular point is isomorphic

to Z̆p[[X]]. Moreover, the p-multiplication modulo p can be written as [p](T ) ⌘ V(T p) mod p, with

V 2 k[[X]][[T ]] the Verschiebung map V : E
(p)

0
! E0. Without loss of generality we assume that V

has the form

V(T ) = XT + · · · u(X)T p + · · · ,

with V(T ) ⌘ T p mod X. Using the Weierstrass Preparation Theorem we factorize V(T ) as

V(T ) = T (X + · · · ũ(X)T p�1)(1 + XTR(X,T )), (2.2.2)

where ũ(0) = 1 and R 2 k[[X,T ]].

Proposition 2.2.6. The parameter X is a p-power in Ax1
/p. Moreover, the generators T (P

(n)

univ
) and

T (Q
(n)

univ
) of the maximal ideal of Axn

are p-powers in Axn+1
/p.

Proof. The second claim follows from the first and the equality [p](T ) ⌘ V(T p) mod p. Consider

n = 1 and write P = P
(1)

univ
and Q = Q

(1)

univ
. Let F : E0 ! E

(p)

0
and V : E

(p)

0
! E0 denote the Frobenius

and Verschiebung homomorphisms respectively. Using the action of GL2(Z/pZ), we can assume that

P and F(Q) are generators of ker F and ker V respectively (cf. Theorem 5.5.2 of [KM85]). We have

the equality of divisors on E
(p)

univ
/(Axn

/p)

ker V =

p�1X

i=0

[i · F(Q)]. (2.2.3)

The choice of the formal parameter T gives a formal parameter of E
(p)

univ
such that T (F(Q)) = T (Q)p.

Therefore, from (2.2.3) we see that the roots of V(T )/T are {[i](p)(T (Q)p)}1ip�1 where [i](p)(T ) is the

i-multiplication of the formal group of E
(p)

univ
. We obtain from (2.2.2)

X

ũ(X)
= (�1)p�1

p�1Y

i=1

([i](p)(T (Q)p)) =

0BBBBBB@
p�1Y

i=1

[i](T (Q))

1CCCCCCA

p

,

proving that X
ũ(X)

is a p-power in Ax1
/p. As k[[X]] = k[[X/ũ(X)]] we are done. ⇤

Corollary 2.2.7. The Frobenius ' : lim
��!n

Axn
/p! lim

��!n
Axn
/p is surjective.

Proof. By induction on the graded pieces of the filtration defined by the ideal (T (Pn),T (Qn)), one

shows that Axn
/p is in the image of the Frobenius restricted to Axn+1

/p. ⇤

9



2. A brief introduction to the Katz-Mazur integral modular curves

Remark 2.2.8. The completed local ring at a geometric supersingular point x of X(N pn) is difficult

to describe. For example, its reduction modulo p is the quotient of the power series ring k[[X,Y]] by

some explicit principal ideal which is written in terms of the formal group law of E at x [KM85, Theo.

13.8.4]. Weinstein gives in [Wei16] an explicit description of the deformation ring at a supersingu-

lar point of the modular curve at level Γ(N p1). In fact, Weinstein finds an explicit description of

the deformation ring at infinite level of the Lubin-Tate space parametrizing 1-dimensional formal

OK-modules of arbitrary height. In particular, he proves that the mx0
-adic completion of the direct

limit lim
��!n

Axn
is a perfectoid ring. The Corollary 2.2.7 says that the p-adic completion of lim

��!n
Axn

is

perfectoid, which is a slightly stronger result.

10



3. Construction of the perfectoid integral

model

3.1. Perfectoid Formal spaces

In this section we introduce a notion of perfectoid formal scheme which is already considered in

[BMS18, Lemma 3.10], though not explicitly defined. We start with the affine pieces

Definition 3.1.1. An integral perfectoid ring is a topological ring R containing a non zero divisor ⇡
such that p 2 ⇡pR, satisfying the following conditions:

i. the ring R is endowed with the ⇡-adic topology. Moreover, it is separated and complete.

ii. the Frobenius morphism ' : R/⇡R! R/⇡pR is an isomorphism.

We call ⇡ satisfying the previous conditions a pseudo-uniformizer of R.

Remark 3.1.2. The previous definition of integral perfectoid rings is well suited for p-adic comple-

tions of formal schemes. We do not consider the case where the underlying topology is not generated

by a non-zero divisor, for example, the ring W(Fp)[[X1/p1 ,Y1/p1]] which is the (p, X,Y)-adic com-

pletion of the ring W(Fp)[X1/p1 ,Y1/p1]. As is pointed out in Remark 3.8 of [BMS18], the notion of

being integral perfectoid does not depend on the underlying topology, however to construct a formal

scheme it is necessary to fix one.

Let R be an integral perfectoid ring with pseudo-uniformizer ⇡, we attach to R the formal scheme

Spf R defined as the ⇡-adic completion of Spec R. We say that Spf R is a perfectoid formal affine

scheme. The following lemma says that the standard open subschemes of Spf R are perfectoid

Lemma 3.1.3. Let f 2 R. Then Rh f �1i = lim
 ��n

R/⇡n[ f �1] is an integral perfectoid ring.

Proof. Let n, k � 0, as ⇡ is not a zero divisor we have a short exact sequence

0! R/⇡n ⇡k

�! R/⇡n+k ! R/⇡k ! 0.

Localizing at f and taking inverse limits on n we obtain

0! Rh f �1i
⇡k

�! Rh f �1i ! R/⇡k[ f �1]! 0.

Then Rh f �1i is ⇡-adically complete and ⇡ is not a zero-divisor. On the other hand, localizing at f the

Frobenius map ' : R/⇡
⇠
�! R/⇡p one gets

' : R/⇡[ f �1]
⇠
�! R/⇡p[ f �p] = R/⇡p[ f �1]

which proves that Rh f �1i is an integral perfectoid ring. ⇤

Definition 3.1.4. A perfectoid formal scheme X is a formal scheme which admits an affine cover

X =
S

i Ui by perfectoid formal affine schemes.

11



3. Construction of the perfectoid integral model

Let F be equal to Qp or Fp((t)), OF denote the ring of integers of F and $ be a uniformizer of OF .

Let Int-PerfOF
be the category of perfectoid formal schemes over OF whose structural morphism is

adic, i.e. the category of perfectoid formal schemes X/Spf OF such that $OX is an ideal of definition

of OX. Let PerfF be the category of perfectoid spaces over Spa(F,OF).

Proposition 3.1.5. Let R be an integral perfectoid ring and ⇡ a pseudo-uniformizer. The ring R[ 1
⇡
]

is a perfectoid ring in the sense of Fontaine [Fon13]. Furthermore, there is a unique “generic fiber”

functor

(�)⌘ : Int-PerfOF
! Per fF

extending Spf R { Spa(R[ 1
$

],R+), where R+ is the integral closure of R in R[ 1
$

]. Moreover, given

X a perfectoid formal scheme over OF , its generic fiber is universal for morphisms from perfectoid

spaces to X. Namely, if Y is a perfectoid space and (Y,O+
Y

) ! (X,OX) is a morphism of locally

and topologically ringed spaces, then there is a unique map Y ! Xµ making the following diagram

commutative

(Y,O+
Y

) (Xµ,O+Xµ)

(X,OX)

Remark 3.1.6. The universal property of the functor (�)µ is Huber’s characterization of the generic

fiber of formal schemes in the case of perfectoid spaces, see [Hub94, Prop. 4.1].

Proof. The first statement is Lemma 3.21 of [BMS18]. For the construction of the functor, let X

be a perfectoid formal scheme over OF . One can define X⌘ to be the glueing of the affinoid spaces

Spa(R[ 1
$

], ,R+) for Spf R ⇢ X an open perfectoid formal afine subscheme, this is well defined after

Lemma 3.1.3.

We prove the universal property of the generic fiber functor. LetY 2PerfK and let f : (Y,O+
Y

)!

(X,OX) be a morphism of locally and topologically ringed spaces. First, if Y = Spa(S , S +) is affinoid

perfectoid and X = Spf R is perfectoid formal affine, f is determined by the global sections map

f ⇤ : R ! S +. Then, there exists a unique map of affinoid perfectoid rings f ⇤⌘ : (R[ 1
$

],R+) ! (S , S +)

extending f ⇤. By glueing morphisms from affinoid open subsets for a general Y, one gets that X⌘ :=

Spa(R[ 1
$

],R+) satisfies the universal property. For an arbitrary X, one can glue the generic fibers of

the open perfectoid formal affine subschemes of X. ⇤

We end this subsection with a theorem which reduces the proof of the perfectoidness of the integral

modular curve at any tame level to the level Γ(N p1).

Theorem 3.1.7 (Kedlaya-Liu). Let A be a perfectoid ring on which a finite group G acts by continuous

ring homomorphisms. Then the invariant subring AG is a perfectoid ring. Moreover, if R ⇢ A is an

open integral perfectoid subring of A then RG is an open integral perfectoid subgring of AG.

Proof. The first statement is Theorem 3.3.26 of [KL19]. The second statement follows from the

description of open perfectoid subrings of A as p-power closed subrings of A�, i.e open subrings of

A� such that xp 2 R implies x 2 R, see Corollary 2.2 of [Mor17]. ⇤

3.2. The main construction

Let X(N p1) denote Scholze’s perfectoid modular curve [Sch15]. Let Z
cyc
p be the p-adic completion

of the p-adic cyclotomic integers lim
��!n
Zp[µpn]. Let X(N pn) be the completion of X(N pn) along its

special fiber. We have the following theorem

12



3. Construction of the perfectoid integral model

Theorem 3.2.1. The inverse limit X(N p1) := lim
 ��n
X(N pn) is a p-adic perfectoid formal scheme, it

admits a structural map to Spf Z
cyc
p [µN], and its generic fiber is naturally isomorphic to the perfectoid

modular curve X(N p1). Furthermore, let n � 0, let Spec R ⇢ X(N pn) be an affine open subscheme,

Spf bR its p-adic completion and Spf bR1 the inverse image in X(N p1). Then bR1 =
⇣bR1[ 1

p
]
⌘�

and

(Spf bR1)⌘ = Spa(bR1[
1

p
],bR1).

Remark 3.2.2. The previous result gives a different proof of Scholze’s theorem that the generic fiber

X(N p1) is a perfectoid space by more elementary means.

Proof. The maps between the (formal) modular curves are finite and flat. Then X(N p1) := lim
 ��n
X(N pn)

is a flat p-adic formal scheme over Zp. Fix n0 � 0, let Spec R ⇢ X(N pn0) and Spf bR ⇢ X(N pn0) be as

in the theorem. For n � n0, let Spec Rn (resp. Spf bRn) denote the inverse image of Spec R (resp. Spf bR)

in Spec X(N pn) (resp. X(N pn)). Let R1 := lim
��!n

Rn and let bR1 be its p-adic completion.

Claim. bR1 is an integral perfectoid ring, equal to (bR1[ 1
p
])�.

Suppose that the claim holds, it is left to show that X(N p1)⌘ is the perfectoid modular curve

X(N p1). There are natural maps of locally and topologically ringed spaces

(X(N pn),O+X(N pn))! (X(N pn),OX(N pn)).

We have X(N p1) ⇠ lim
 ��n
X(N pn), where we use the notion of tilde limit [SW13, Def. 2.4.1]. Then,

by p-adically completing the inverse limit of the tower, we obtain a map of locally and topologically

ringed spaces

(X(N p1),O+X(N p1))! (X(N p1),OX(N p1)).

This provides a map f : X(N p1)! (X(N p1))⌘. Since

(Spf bR1)⌘ = Spa(bR1[1/p],bR1) ⇠ lim
 ��

n

Spa(bRn[1/p],bRn),

and the tilde limit is unique in the category of perfectoid spaces [SW13, Prop. 2.4.5], the map f is

actually an isomorphism. ⇤

Proof of the Claim. First, by Lemma A.2.2.3 of [Heu19] the ring (bRn[ 1
p
])� is the integral closure of

bRn in its generic fiber. By Lemma 5.1.2 of [Bha17] and the fact that Rn is a regular ring one gets

that bRn = (bRn[ 1
p
])� for all n � n0. As R1 is faithfully flat over Rn for all n, one easily checks that

bR1 \ bRn[ 1
p
] = bRn. Moreover, R1 is integrally closed in its generic fiber, and by Lemma 5.1.2 of loc.

cit. again one obtains that bR1 is integrally closed in bR1[ 1
p
]. Let x 2 bRn[ 1

p
] be power bounded in bR1[ 1

p
],

then pxs 2 bR1 for all s 2 N, in particular {pxs}s2N ⇢ bRn which implies that x 2 bRn. This shows that

lim
��!n

bRn is dense in (bR1[ 1
p
])�, taking p-adic completions one gets bR1 = (bR1[ 1

p
])�.

The Weil pairings evaluated at the universal Drinfeld basis (Puniv,N pn ,Quniv,N pn) of E[N pn] induce

compatible morphisms X(N pn) ! Spf Zp[µN pn]. Taking inverse limits one gets the structural map

X(N p1)! Spf Z
cyc
p [µN]. In particular, there exists ⇡ 2 bR1 such that ⇡p = pa with a 2 Z

cyc,⇥
p . To prove

that bR1 is integral perfectoid we need to show that the absolute Frobenius map

' : R1/⇡ �! R1/p

is an isomorphism. The strategy is to prove this fact for the completed local rings of the stalks of

Spec R1/p and use faithfully flat descent.
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3. Construction of the perfectoid integral model

Injectivity is easy, it follows from the fact that R1 is integrally closed in R1[1/p]. To show that

' is surjective, it is enough to prove that the absolute Frobenius is surjective after a profinite étale

base change. Indeed, the relative Frobenius is an isomorphism for profinite étale base changes. Let

S = R ⌦Zp
Z̆p and let bS = bRb⌦Zp

Z̆p be the p-adic completion of S . We use similar notation for

S n = Rn ⌦Zp
Z̆p, bS n, S1 and bS1. We have to show that the absolute Frobenius

' : S1/⇡! S1/p

is surjective.

Let x = (xn0
, xn0+1, · · · , xn, · · · ) be a Fp-point of Spf bS1 which is an inverse limit of Fp-points

of Spf bS n. Write xn0
simply by x0. Then, it is enough to show that ' is surjective after taking the

stalk at x. Let S n,xn
be the localization of S n at the prime xn and S1,x = lim

��!n
S n,xn

. Let dS n,xn
be the

completion of S n,xn
along its maximal ideal. Recall that the ring S n is finite flat over S , this implies

that dS n,xn
= S n,xn

⌦S x0

cS x0
.

The scheme X(N pn) is of finite type over Zp, in particular every point has a closed point as

specialization. Thus, by faithfully flat descent, we are reduced to prove that for every Fp-point

x 2 Spf S1/p = lim
 ��

Spf S n/p, the cS x0
-base change of

' : S1,x/⇡! S1,x/p

is surjective (even an isomorphism). We have the following commutative diagram

S1,x/⇡ ⌦S x0

cS x0
S1,x/p ⌦',S x0

cS x0

lim
��!

dS n,xn
/⇡ lim

��!
( dS n,xn

/p ⌦',dS x0

cS x0
).

'⌦id

The ring Rn is of finite type over Zp, so that the absolute Frobenius ' : Rn/⇡ ! Rn/p is finite. This

implies that dS n,xn
/p is a finite cS x0

-module via the module structure induced by the Frobenius. Then,

the following composition is an isomorphism

dS n,xn
/p ⌦',dS x0

cS x0
! lim
 ��

m

dS n,xn
/(p,m

mp

S
) � dS n,xn

/p,

where mS is the maximal ideal of S x0
. Thus, we are reduced to prove that the absolute Frobenius

' : lim
��!n

dS n,xn
/⇡ ! lim

��!n

dS n,xn
/p is surjective. Finally, we deal with the cusps, the supersingular and

the ordinary points separately; we use the descriptions of Section 2:

• In the ordinary case, the local ring dS n,xn
is isomorphic to Z̆p[⇣pn][[Xn]]. From the proof of

Proposition 2.2.2, one checks that the inclusion dS n,xn
! [S n+1,xn+1

is given by Xn = (1+Xn+1)p�1.

Then, one obtains the surjectivity of Frobenius when reducing modulo p.

• The supersingular case is Corollary 2.2.7.

• Finally, if we are dealing with a cusp x, the ring dS n,xn
is isomorphic to Z̆p[⇣pn][[q1/N pn

]] and
dS n,xn
! [S n+1,xn+1

is the natural inclusion by Proposition 2.2.4. The surjectivity of ' is clear.

⇤
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3. Construction of the perfectoid integral model

3.3. Relation with Lurie’s stack

In this subsection we make more explicitly the relation between Lurie’s construction of X(N p1) and

the one presented in this document. The key result is the following theorem

Theorem 3.3.1 ( [Lur20, Theo. 1.9]). Let ⇡ 2 Zp[µp2] be a pseudo-uniformizer such that ⇡p = ap

where a is a unit. For n � 3 there exists a unique morphism ✓ : X(N pn)/⇡! X(N pn�1)/p making the

following diagram commutative1

X(N pn)/p X(N pn)/⇡

X(N pn�1)/p X(N pn�1)/⇡

'

✓

'

where ' is the absolute Frobenius.

This theorem can be deduced from the local computations made in Section 2. Indeed, let xn 2

X(N pn)(Fp) be a Fp-point and xn�1 2 X(N pn�1)(Fp) its image. We have proven that there exists a

unique map of the deformation rings at the points xn�1 and xn

✓⇤ : bOX(N pn�1),xn�1
/p! bOX(N pn),xn

/⇡

making the following diagram commutative

bOX(N pn),xn
/p bOX(N pn),xn

/⇡

bOX(N pn�1),xn�1
/p bOX(N pn�1),xn�1

/⇡

'⇤

✓⇤

'⇤

This corresponds to Propositions 2.2.2, 2.2.4 and 2.2.6 for xn ordinary, a cusp and a supersingular

point respectively. Then, one constructs ✓ using faithfully flat descent from the completed local rings

to the localized local rings at xn, and glueing using the uniqueness of ✓⇤.

1The assumption n � 3 is only to guarantee that O(X(N pn�1)) contains ⇡.
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4. Cohomology and local duality for

curves over OK

Let K be a finite extension of Qp and OK its valuation ring. In this section we recall the Grothendieck-

Serre duality theorem for local complete intersection (lci) projective curves over OK , we will follow

[Har66]. Then, we use Pontryagin duality to define a local duality paring of coherent cohomologies.

Let X be a locally noetherian scheme and D(X) the derived category of OX-modules. We use

subscripts c, qc on D(X) for the derived category of OX-modules with coherent and quasi-coherent

cohomology, the subscript f Td refers to the subcategory of complexes with finite Tor dimension.

We use superscripts +,�, b for the derived category of bounded below, bounded above and bounded

complexes respectively. For instance, Db
c(X) f Td is the derived category of bounded complexes of OX-

modules of finite Tor dimension and coherent cohomology. If X = Spec A is affine, we set D(A) :=

Dqc(X), the derived category of A-modules.

Definition 4.0.1. Let f : X ! Y be a morphism of schemes.

1. The map f is embeddable if it factors as X
◆
�! S ! Y where ◆ is a finite morphism and S is

smooth over Y .

2. The map f is projectively embeddable if it factors as composition X
◆
�! Pn

Y
! Y for some n � 0,

where ◆ a finite morphism.

3. The map f is a local complete intersection if locally on Y and X it factors as X
◆
�! S ! Y ,

where S is a smooth Y-scheme, and ◆ is a closed immersion defined by a regular sequence of S .

The length of the regular sequence is called the codimension of X in S .

Theorem 4.0.2 (Hartshorne). Let f : X ! Y be a projectively embeddable morphism of noetherian

schemes of finite Krull dimension. Then there exist an exceptional inverse image functor f ! : D(Y)!

D(X), a trace map Tr : R f⇤ f ! ! 1 in D+qc(Y), and an adjunction

✓ : R f⇤RH omX(F , f !G)
⇠
�! RH omY(R f⇤F ,G)

for F 2 D�qc(X) and G 2 D+qc(Y).

Moreover, the formation of the exceptional inverse image is functorial. More precisely, given a

composition X Y Z
f g

with f , g and g f projectively embeddable, there is a natural iso-

morphism (g f )!
� f !g!. This functor commutes with flat base change. Namely, let u : Y 0 ! Y be a

flat morphism, f 0 : X0 ! Y 0 the base change of X to Y 0 and v : X0 ! X the projection. Then there is

a natural isomorphism of functors v⇤ f ! = f 0!u⇤.

Proof. We refer to [Har66, Theo. III. 8.7] for the existence of f !, its functoriality and compatibility

with flat base change. See Theorems III. 10.5 and III 11.1 of loc. cit. for the existence of Tr and the

adjunction ✓ respectively. ⇤

Example 4.0.3. Let f : X ! Y be a morphism of finite type of noetherian schemes of finite Krull

dimension.
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4. Cohomology and local duality for curves over OK

1. We can define the functor f ! for finite morphisms as

f !F = f �1RH omOY
( f⇤OX,F ) for F 2 D(Y).

The duality theorem in this case is equivalent to the (derived) ⌦-Hom adjunction, see [Har66,

§III. 6].

2. Let f be smooth of relative dimension n, then one has f !F = F ⌦ !�
X/Y

[n] where !�
X/Y
=Vn

Ω
1
X/Y

, see [Har66, §III.2].

Lemma 4.0.4. Let f : X ! Y be an lci morphism of relative dimension n between locally noetherian

schemes of finite Krull dimension. Then f !OY = !
�
X/Y

[n] with !�
X/Y

an invertible OX-module.

Proof. Working locally on Y and X, we may assume that f factors as X S Y
◆ g

, where g is

a smooth morphism of relative dimension m, and ◆ is a regular closed imersion of codimension m � n

defined by an ideal I = ( f1, . . . , fm�n). Let !�
S/Y
=

Vm
Ω

1
S/Y

be the sheaf of m-differentials of S over

Y , then

f !OY = ◆!g!OY

= ◆�1RH omOS
(◆⇤OX,!

�
S/Y[m])

= ◆�1RH omOS
(OS /I ,!

�
S/Y)[m]

Let K( f ) be the Koszul complex of the regular sequence f = ( f1, . . . , fm�n). Then K( f ) is a flat

resolution of OS /I , its dual K( f )_ = H omOS
(K( f ),OS ) is a flat resolution of (OS /I )[�(m � n)].

Therefore

f !OY ' ◆�1H omOS
(K( f ),!�S/Y)[m]

= ◆�1K( f )_ ⌦ !�S/Y[m]

' ◆�1(OS /I ⌦
L !�S/Y[n])

= ◆�1((!�S/Y/I )[n]) = ◆⇤!�S/Y[n]

which is an invertible sheaf of OX-modules as required. ⇤

Remark 4.0.5. Let f : X ! Y be a regular closed immersion of codimension n defined by the ideal

I . From the proof of Lemma 4.0.4 one can deduce that f !OY =
Vn f ⇤(I /I 2)_[�n] is the normal

sheaf concentrated in degree n.

The compatibility of f ! with tensor products allows us to compute f !F in terms of f ⇤F and f !OY :

Proposition 4.0.6 ( [Har66, Prop. III.8.8]). Let f : X ! Y be an embeddable morphism of locally

noetherian schemes of finite Krull dimension. Then there are functorial isomorphisms

1. f !F ⌦L f ⇤G! f !(F ⌦L G) for F 2 D+qc(Y) and G 2 Db
qc(Y) f Td.

2. RH omX(L f ⇤F , f !G)! f !(RH omY(F ,G)) for F 2 D�c (Y) and G 2 D+qc(Y).

Moreover, if f is an lci morphism, then f !OY is invertible and we have f !G � f !OY ⌦ L f ⇤G for

G 2 Db
qc(Y) f Td. We call f !OY the dualizing sheaf of f .

We now prove the local duality theorem for vector bundles over lci projective curves:

Proposition 4.0.7. Let f : X ! SpecOK be an lci projective curve, and let !�
X/OK

be the dualizing

sheaf of f , i.e. the invertible sheaf such that !�
X/OK

[1] = f !OK . Let F be a locally free OX-module of

finite rank, then:

17



4. Cohomology and local duality for curves over OK

1. R f⇤F is representable by a perfect complex of lenght [0, 1];

2. we have a perfect pairing

H0(X,F ⌦ K/OK) ⇥ H1(X,F _ ⌦ !�X/OK
)! K/OK

given by the composition of the cup product and the trace Tr : R f⇤!
�
X/OK
! OK .

Proof. As F is a vector bundle and f is projective of relative dimension 1, the cohomology groups

Ri f⇤F are finitely generated over OK and concentrated in degrees 0 and 1. Then, R f⇤F is quasi-

isomorphic to a complex 0 M0 M1 0
d

with M1 and M2 finite free OK-modules. More-

over, the complex 0 M0 ⌦ K/OK M1 ⌦ K/OK 0
d⌦1

is quasi-isomorphic to R f⇤(F ⌦K/OK)

in D(OK), see [Mum08, Theo. 5.2].

Duality theorem 4.0.2 gives a quasi-isomorphism

R f⇤(F
_ ⌦ !�X/OK

)[1] = R f⇤RH omX(F , f !OK) ' RHomOK
(R f⇤F ,OK).

This implies that R f⇤(F
_ ⌦ !�

X/OK
) is quasi-isomorphic to 0 M_

1 M_
0 0

d_

. Finally, Pon-

tryagin duality for OK implies HomOK
(ker(d ⌦ 1),K/OK) = coker d_, which translates in the desired

statement. ⇤

Remark 4.0.8. The previous proposition relates two notions of duality. Namely, Serre and Pontryagin

duality. We can deduce the following facts:

1. The OK-module H0(X,F ⌦ K/OK) is co-free of rank r, that is isomorphic to (K/OK)r, if and

only if H1(X,F _ ⌦ !�
X/OK

) is free of rank r. In that case, the module H0(X,F ) is free and

H0(X,F )/pn ! H0(X,F /pn) is an isomorphism for all n 2 N. Furthermore, Serre duality

provides a perfect pairing

H0(X,F ) ⇥ H1(X,F _ ⌦ !�X/OK
)! OK .

2. The OK-module H0(X,F ) (resp. H1(X,F ⌦ K/OK)) is free (resp. co-free) for any finite locally

free OX-module.

3. In the notation of the previous proof, Pontryagin duality implies

HomOK
(coker(d ⌦ 1),K/OK) = ker d_,

which is equivalent to a perfect pairing

H1(X,F ⌦ K/OK) ⇥ H0(X,F _ ⌦ !�X/OK
)! K/OK .
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5. Cohomology of modular sheaves

Let N � 3 be an integer prime to p. Let X(N pn) be the modular curve over Zp of level Γ(N pn). Let

Z̆p = W(Fp) and let X(N pn)Z̆p
be the extension of scalars of X(N pn) to Z̆p. We denote by Xn :=

X(N pn)�
Z̆p

the connected component of X(N pn)Z̆p
given by fixing the Weil pairing eN(PN ,QN) = ⇣N ,

where (PN ,QN) is the universal basis of E[N] and ⇣N 2 Z̆p a primitive N-th root of unity. We also

write X = X0. Let On = Z̆p[µpn] be the n-th cyclotomic extension of Z̆p, Ocyc the p-adic completion of

lim
��!n
On, Kn and Kcyc the field of fractions of On and Ocyc respectively. We set O = Z̆p and K = O[ 1

p
].

Let ⇡n : Xn ! SpecOn denote the structural map defined by the Weyl pairing of the universal basis of

E[pn]. We also denote pn : Xn ! Xn�1 the natural morphism induced by p-multiplication of Drinfeld

bases.

Let E sm/X be the semi-abelian scheme over X extending the universal elliptic curve to the cusps,

cf [DR73]. Let e : X ! E sm be the unit section and !E := e⇤Ω1
Esm/X

the modular sheaf, i.e., the sheaf

of invariant differentials of E sm over X. For k 2 Z we define !k
E
= !⌦k

E
the sheaf of modular forms of

weight k, we denote by !k
E,n

the pullback of !k
E

to Xn. Let Dn ⇢ Xn be the (reduced) cusp divisor and

!k
E,n,cusp

:= !k
E,n

(�Dn) the sheaf of cusp forms of weight k over Xn. By an abuse of notation we will

also write Dn for the pullback p⇤
n+1Dn to Xn+1, by Proposition 2.2.4 we have that Dn = pDn+1.

Finally, we let Xn be the completion of Xn along its special fiber and X1 = lim
 ��n
Xn the integral

perfectoid modular curve, see Theorem 3.2.1. Let Xn be the analytic generic fiber of Xn and X1 ⇠

lim
��!n
Xn the Scholze’s perfectoid modular curve.

5.1. Dualizing sheaves of modular curves

Consider the tower of modular curves

· · · Xn+1 Xn Xn�1 · · ·

· · · Spec(On+1) Spec(On) Spec(On�1) · · · .

pn+1

⇡n+1

pn

⇡n ⇡n�1

Since Xn is regular of finite type over On, it is a local complete intersection. This implies that the

sheaf !�n := ⇡!
nOn is invertible. The modular curve X/O is smooth of relative dimension 1, then we

have that !�0 = Ω
1
X0/O

, cf. Example 4.0.3 (2). On the other hand, the Kodaira-Spencer map provides

an isomorphism KS : !2
E,cusp � Ω

1
X/O

.

Let X0
n�1 = Xn�1 ⇥SpecOn�1

SpecOn, and by an abuse of notation pn : Xn ! X0
n�1 the induced map.

Let ⇡0
n�1 : X0

n�1 ! On be the structural map and pr1 : X0
n�1 ! Xn�1 the first projection. We also write

!k
E,n�1

for the pullback of !k
E,n�1

to X0
n�1. Note that the compatibility of the exceptional inverse image

functor with flat base change (Theorem 4.0.2) implies that ⇡
0!
n�1
On � pr⇤1!

�
n�1 = !

�
n�1 ⌦On�1

On.

Proposition 5.1.1. There exists a natural isomorphism ⇠n : p⇤n(!�
n�1)(Dn�1 � Dn)

⇠
�! !�n induced by

the normalized trace 1
p

Trn : OXn
! p!

nOX0
n�1

. Moreover, the composition of ⇠n � · · · � ⇠1 with the

Kodaira-Spencer map gives an isomorphism !2
E,n,cusp � !

�
n.

Proof. By Proposition 4.0.6 we have an isomorphism

⇠0n : p!
nOX0

n�1
⌦ p⇤n!

�
n�1

⇠
�! p!

n!
�
n�1 = !

�
n. (5.1.1)
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5. Cohomology of modular sheaves

The map pn is finite flat, then p!
nOX0

n�1
= p�1

n H omOX0
n�1

(pn,⇤OXn
,OX0

n�1
) by Example 4.0.3 (1). By

Lemma 4.0.4, the sheaf p!
nOX0

n�1
is invertible as X0

n�1 is an lci projective curve. We claim that the trace

Trn : OXn
! p!

nOX0
n�1

induces an isomorphism 1
p

Trn : OXn
(Dn�1�Dn) � p!

nOX0
n�1

. It suffices to consider

the ordinary points and the cusps, indeed, the supersingular points are of codimension 2 in Xn.

Let x 2 X0
n�1(Fp) be an ordinary point. We have a cartesian square

F
xn 7!x Spf bOXn,xn

Xn

Spf bOX0
n�1
,x X0

n�1.

pn (5.1.2)

By Proposition 2.2.2 we have isomorphisms

bOX0
n�1
,x � W(Fp)[⇣pn][[Tn�1]], bOXn,xn

� W(Fp)[⇣pn][[Tn]]

with relations (1+Tn)p = 1+Tn�1. Taking the different ideal of the finite flat extension bOXn,xn
/ bOX0

n�1
,x,

one finds

H om bOX0
n�1
,x
( bOXn,xn

, bOX0
n�1
,x) �

1

p
bOXn,xn

· Trn .

On the other hand, let x 2 X0
n�1(Fp) be a cusp. We have a cartesian square (5.1.2) and by Proposition

2.2.4 isomorphisms

bOX0
n�1
,x � W(Fp)[⇣pn][[q1/pn�1

]], bOXn,xn
� W(Fp)[⇣pn][[q1/pn

]].

Taking the different ideal we obtain the equality

H om bOX0
n�1
,x
( bOXn,xn

, bOX0
n�1
,x) �

1

p
q1/pn�1/pn�1 bOXn,xn

· Trn .

The previous computations show that the trace of OXn
/OX0

n�1
induces an isomorphism of invertible

sheaves
1

p
Trn : OXn

(Dn�1 � Dn)
⇠
�! p!

nOX0
n�1
.

Then, from (5.1.1) we have an isomorphism

⇠n : OXn
(Dn�1 � Dn) ⌦ p⇤n!

�
n�1 ! !�n

with ⇠n = ⇠
0
n � ( 1

p
Trn ⌦1).

The isomorphism !2
E,n,cusps � !�n follows by a straightforward induction on the composition ⇠n �

· · · � ⇠1, and the Kodaira-Spencer map KS : !2
E,cusp � Ω

1
X/O

. ⇤

Lemma 5.1.2. Let x 2 X0
n�1(Fp) be an an ordinary point or a cusp. Let eTrn : pn,⇤OXn

(Dn�1 � Dn) !

OX0
n�1

be the normalized trace map 1
p

Trn. Then the completed localization of eTrn at x is surjective.

Moreover, if F is a quasi-coherent sheaf over X0
n�1, the composition F ! pn,⇤p

⇤
nF

eTrn

��! F is multipli-

cation by p.

Proof. Localizing at x we find

eTrn = �(
1

p
Trn) :

M

xn 7!x

bOXn,xn
⌦ (q1/pn�1/pn�1

)! bOX0
n�1
,x

where q1/pn�1

is invertible if x is ordinary, or a generator of Dn�1 if it is a cusp. The explicit descriptions

found in the previous proposition show that eTrn is surjective on each direct summand. Finally, looking

at an ordinary point x, it is clear that there are p different points xn in the fiber of x, this implies
eTrn(1) = p. ⇤
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5. Cohomology of modular sheaves

5.2. Vanishing of coherent cohomology

In order to prove vanishing theorems for the coherent cohomology over the perfectoid modular curve,

we first need some vanishing results at finite integral level. We have the following proposition

Proposition 5.2.1. For all n 2 N the following holds

1. H0(Xn,!
k
E,n
⌦On

Kn/On) = H0(Xn,!
k
E,n,cusp

⌦On
Kn/On) = 0 for k < 0.

2. H1(Xn,!
k
E,n

) = H1(Xn,!
k
E,n,cusp

) = 0 for k > 2.

3. H0(Xn,OXn
(�Dn)⌦On

Kn/On) = H1(Xn,!
2
E,n) = 0 and H0(Xn,OXn

⌦On
Kn/On) = H1(Xn,!

2
E,n,cusp)⌦On

(Kn/On) = Kn/On.

Proof. By Propositions 4.0.7 and 5.1.1, (1) and (2) are equivalent. Similarly, by (1) of Remark 4.0.8,

and Proposition 5.1.1, it is enough to show (3) for OXn
and OXn

(�Dn).

Let ⌫n be the closed point of SpecOn and $ 2 On a uniformizer, we write ⌫ = ⌫0 for the closed

point of SpecO. It suffices to prove H0(Xn,!
k
E,n
/$) = H0(Xn,⌫n

,!k
E,n

) = 0 for k < 0. Indeed, for s � 1,

the short exact sequence

0! !k
E,n/$

s $
�! !k

E,n/$
s+1 ! !k

E,n/$! 0

induces a left exact sequence in global sections

0! H0(Xn,!
k
E,n/$

s)! H0(Xn,!
k
E,n/$

s+1)! H0(Xn,!
k
E,n/$).

An inductive argument on s shows H0(Xn,!
k
E,n
/$s) = 0 for all s � 1.

Let � 2 H0(Xn,⌫n
,!k

E,n
) be non-zero. Applying the action of SL2(Z/pnZ), we can assume that

� is non-zero in an open dense subscheme of Xn,⌫n
. In fact, this holds for some linear combina-

tion
P
�2SL2(Z/pnZp) an�

⇤� with an 2 Fp. The norm NXn,⌫n/X⌫
(!k

E,n
) of !k

E,n
to X⌫ is !kd

E
, where d =

deg(Xn,⌫n
/X⌫). Hence if k < 0, the sheaf NXn,⌫n/X⌫

(!k
E,n

) has negative degree in the smooth curve

X⌫. This implies that H0(X⌫,NXn,⌫n/X⌫
(!k

E,n
)) = 0 and NXn,⌫n/X⌫

(�) = 0, a contradiction. Therefore

H0(Xn,⌫n
,!k

E,n
) = 0 for k < 0. Since !k

E,n,cusp
= !k

E,n
(�Dn), we trivially deduce H0(Xn,⌫n

,!k
E,n,cusp

) = 0.

The results for OXn
and OXn

(�Dn) are clear as Xn/On is proper, flat, geometrically connected and

has geometrically reduced fibers.

⇤

Remark 5.2.2. Strictly speaking, we can apply Proposition 4.0.7 only for projective curves over a finite

extension of Zp. However, as the formation of coherent cohomology is compatible with affine flat base

change of the base, the conclusion of loc. cit. holds in the situation of the previous proposition.

Corollary 5.2.3. Let F = !k
E,n

or !k
E,n,cusp

for k , 1, the following holds

1. The cohomology groups H0(Xn,F ⌦ K/O) and H1(Xn,F ) are cofree and free On-modules re-

spectively.

2. We have a perfect duality pairing

H0(Xn,F ⌦ K/O) ⇥ H1(Xn,F
_ ⌦ !2

n,cusp)! Kn/On.

Proof. Part (2) is Proposition 4.0.7. Part (1) follows from Remark 4.0.8 i) and the previous propo-

sition. Indeed, if k < 0, the vanishing of H0(Xn,F ⌦ Kn/On) implies that H1(Xn,F ) is torsion free.

As the cohomology group is of finite type over On, it is a finite free On-module. The other cases are

proved in a similar way.

⇤
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5. Cohomology of modular sheaves

Next, we will prove some cohomological vanishing results for the modular sheaves !k
E

and !k
E,cusp

at infinite level. Particularly, we will show that the cohomology of !k
E

over X1 is concentrated in

degree 0 if k > 0. The case k > 2 will follow from Proposition 5.2.1, one can also argue directly for

k = 2. What is remarkable is the vanishing for k = 1, in which case we use the perfectoid nature of

X1.

Let !k
E,1

be the pullback of !k
E

to X1. Let m � n, note that we have an inequality of divisors

Dm  Dn. Then, OXm
(�Dn) ⇢ OXm

(�Dm), and the pullback of !k
E,n,cusp

injects into !k
E,m,cusp

. We define

!k
E,1,cusp

as the p-adic completion of the direct limit lim
��!n

!k
E,n,cusp

, if k = 0 we simply write OX1(�D1)

for !0
E,1,cusp

. The sheaf !k
E,1,cusp

is no longer a coherent sheaf over X1; its reduction modulo p is a

direct limit of line bundles which is not stationary at the cusps. One way to think about an element

in !k
E,1,cusp

is via q-expansions: the completed localization of !k
E,1

at a cusp x = (x0, x1, · · · ) 2 X1 is

isomorphic to

Ocyc[[q1/p1]] := lim
 ��

s

(lim
��!

n

Ocyc[[q1/pn

]])/(p, q)s.

Then, an element f 2 !k
E,1,x

can be written as a power series

f =
X

m2Z[ 1
p

]�0

amqm

satisfying certain convergence conditions. The element f belongs to the localization at x of !k
E,1,cusp

if and only if a0 = 0. For a detailed treatment of the cusps at perfectoid level we refer to [Heu20],

particularly Theorem 3.17.

Theorem 5.2.4. The following holds

1. The cohomology complexes RΓ(X1,!
k
E,1

) and RΓ(X1,!
k
E,1,cusp

) are concentrated in degree

[0, 1] for all k 2 Z.

2. For all m, i � 0 and k 2 Z, we have Hi(X1,!
k
E,1
/pm) = lim

��!n
Hi(Xn,!

k
E,n
/pm) and Hi(X1,!

k
E,1,cusp

/pm) =

lim
��!n

Hi(Xn,!
k
E,n,cusp

/pm).

3. The sheaves !k
E,1

and !k
E,1,cusp

have cohomology concentrated in degree 0 for k > 0. Similarly,

the sheaves !k
E,1

and !k
E,1,cusp

have cohomology concentrated in degree 1 for k < 0.

4. H0(X1,OX1(�D1)) = 0 and H0(X1,OX1) = Ocyc.

Proof. Let F = !k
E,1

or !k
E,1,cusp

and Fn = !k
E,n

or !k
E,n,cusp

respectively. We show (1) assuming

part (2). By evaluating F at formal affine perfectoids of X1 arising from finite level, one can use

Lemma 3.18 of [Sch13a] to deduce that F = R lim
 ��s
F /ps: the case F = !k

E,1
is clear as it is a line

bundle. Otherwise, we know that F /ps = lim
��!n
Fn/p

s = lim
��!n

(Fn/p
s ⌦Xn

OX1) is a direct limit of

OX1/p
s-line bundles, so that it is a quasi-coherent sheaf over X1, and the system {F /ps}s2N satisfies

the Mittag-Leffler condition on formal affine perfectoids. One obtains the quasi-isomorphism

RΓ(X1,F ) = R lim
 ��

s

RΓ(X1,F /p
s)

whose cohomology translates into short exact sequences

0! R1 lim
 ��

s

Hi�1(X1,F /p
s)! Hi(X1,F )! lim

 ��
s

Hi(X1,F /p
s)! 0. (5.2.1)

But part (2) implies that Hi(X1,F /p
s) = lim
��!n

Hi(Xn,Fn/p
s) for all s 2 N. As Xn is a curve overOn and

Fn/p
s is supported in its special fiber, we know that Hi(Xn,Fn/p

s) = 0 for i � 2 and that the inverse
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5. Cohomology of modular sheaves

system {H1(Xn,Fn/p
s)}s2N satisfies the ML condition. This implies that Hi(X1,F /p

s) = 0 for i � 2

and that the ML condition holds for {H1(X1,F /p
s)}s2N. From (5.2.1) one obtains that Hi(X1,F ) = 0

for i � 2.

We prove part (2). Let U = {Ui}i2I be a finite affine cover of X, let Un (resp. U1) be its pullback to

Xn (resp. X1). As F /ps = lim
��!n
Fn/p

s is a quasi-coherent OX1/p
s-module, and the (formal) schemes

X1 and Xn are separated, we can use the Čech complex of Un (resp. U1) to compute the cohomology

groups. By definition we have

C •(U1,F /p
s) = lim

��!
n

C •(Un,Fn/p
s),

then (2) follows as filtered direct limits are exact.

The vanishing results of Proposition 5.2.1 imply (3) for k < 0 and k > 2. Let k = 1, 2 and p1/p 2 Ocyc

be such that |p1/p| = |p|1/p. As X1 is integral perfectoid, the Frobenius F : X1/p ! X1/p
1/p is an

isomorphism. Moreover, F⇤(!k
E,1
/p1/p) = !

pk

E,1
/p and F⇤(!k

E,1,cusp
/p1/p) = !

pk

E,1,cusp
/p (notice that

F⇤(Dn) = pDn = Dn�1). Then, Proposition 5.2.1 (2) implies

H1(X1,!
k
E,1/p

1/p) � H1(X1,!
pk

E,1
/p) = 0, (5.2.2)

similarly for!k
E,1,cusp

. By induction on s, one shows that H1(X1,!
k
E,1
/ps) = 0 and that H0(X1,!

k
E,1
/ps+1)!

H0(X1,!
k
E,1
/ps) is surjective for all s 2 N (resp. for !k

E,1,cusp
). Taking derived inverse limits one gets

H1(X1,!
k
E,1

) = H1(X1,!
k
E,1,cusps

) = 0 and H0(X1,!
k
E,1

) = lim
 ��s

H0(X1,!
k
E,1
/ps) (resp. for !k

E,1,cusp
).

This proves (3) for k = 1, 2.

Finally, part (4) follows from part (2), Proposition 5.2.1 (3), and the fact that

H0(X1,OX1) = lim
 ��

s

H0(X1,OX1/p
s)

by (5.2.1) (resp. for OX1(�D1)).

⇤

Corollary 5.2.5. Let F = !k
E,1

or !k
E,1,cusp

for k 2 Z. Then Hi(X1,F )/ps = Hi(X1,F /p
s) and

Hi(X1,F ) = lim
 ��s

Hi(X1,F /p
s) for all i, s � 0. In particular, the cohomology groups Hi(X1,F ) are

p-adically complete and separated. Moreover, they are all torsion free.

Proof. The case k , 0 follows since the cohomology complexes RΓ(X1,F /p
s) are concentrated in

only one degree, and RΓ(X1,F ) = R lim
 ��s

RΓ(X1,F /p
s). The case k = 0 follows by part (4) of the

previous theorem. Namely, H0(X1,OX1(�D1)/ps) = 0 and H0(X1,OX1/p
s) = Ocyc/ps for all s � 0.

Hence, the inverse system of H0-cohomology groups satisfy the Mittag-Leffler condition, and the

R1 lim
 ��

appearing in the derived inverse limit disappears for the H1-cohomology. ⇤

As an application of the previous vanishing theorem, we obtain vanishing results for the coherent

cohomology of the perfectoid modular curve. Let (X1,O+X1) ! (X1,OOX1
) be the natural map of

locally and topologically ringed spaces provided by the generic fiber functor, see Proposition 3.1.5

and Theorem 3.2.1. We define !k,+

E,⌘ := !k
E,1
⌦OX1 O+

X1
and !k,+

E,cusp,⌘ := !k
E,1,cusp

b⌦OX1O+
X1

, where the

completed tensor product is with respect to the p-adic topology. As usual, we denote O+
X1

(�D1) =

!0,+
E,cusp

. In the following we consider almost mathematics with respect to the maximal ideal of Ocyc.

Corollary 5.2.6. The following holds

1. The cohomology complexes RΓan(X1,!
k,+

E,⌘) and RΓan(X1,!
k,+

E,cusp,⌘) of almost Ocyc-modules are

concentrated in degrees [0, 1] for all k 2 Z.
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5. Cohomology of modular sheaves

2. The sheaves !k,+

E,⌘ and !k,+

E,cusp,⌘ have cohomology almost concentrated in degree 0 for k > 0.

Similarly, the sheaves !k,+

E,⌘ and !k,+

E,cusp,⌘ have cohomology almost concentrated in degree 1 for

k < 0.

3. H0
an(X1,O+X1(�D1)) = 0 and H0

an(X1,O+X1) = Ocyc.

Proof. We first prove the corollary for F = !k
E,1

. Let F +⌘ denote the pullback of F to (X1,O+X1). Let

U = {Ui}i2I be an open cover of X1 given by formal affine perfectoids arising from finite level such

that !E,1|Ui
is trivial. By Theorem 3.2.1, the generic fiber Ui,⌘ of Ui is an open affinoid perfectoid

subspace of X1. Let U⌘ := {Ui,⌘}i2I , note that U⌘ is a covering of X1 and that the restriction of

F +⌘ to Ui,⌘ is trivial. By Scholze’s Almost Acyclicity Theorem for affinoid perfectoids, F +⌘ |Ui,⌘
is

almost acyclic for all i 2 I. The Čech-to-derived functor spectral sequence gives us an almost quasi-

isomorphism

C •(U⌘,F
+
⌘ ) ' RΓan(X1,F

+
⌘ ).

On the other hand, by the proof of Theorem 5.2.4 there is a quasi-isomorphism

C •(U,F ) ' RΓ(X1,F ).

But by definition of F +⌘ , and the fact that O+
X1

(Ui,⌘) = OX1(Ui) by Theorem 3.2.1, we actually have

an almost equality C •(U⌘,F +⌘ ) =ae C •(U,F ). In other words, there is an almost quasi-isomorphism

RΓan(X1,F
+
⌘ ) 'ae RΓ(X1,F ).

Let Fcusp = !
k
E,1,cusp

and F +cusp,⌘ its pullback to (X1,O+X1). To prove that

RΓan(X1,F
+

cusp,⌘) '
ae RΓ(X1,Fcusp) we argue as follows: note that we can write Fcusp = F ⌦OX1

OX1(�D1). To apply the same argument as before we only need to show that O+
X1

(�D1) is almost

acyclic over affinoid perfectoids of X1. Let V(D1) ⇢ X1 be the perfectoid closed subspace defined

by the cusps. Note that OX1(�D1) is the ideal sheaf of V(D1), see the proof of [Sch15, Theo. IV.2.1]

or the explicit description of the completed stalks at the cusps of the integral perfectoid modular curve.

Then, we have an almost short exact sequence for all s 2 N

0! O+X1(�D1)/ps ! O+X1/p
s ! O+V(D1)/p

s ! 0. (5.2.3)

As the intersection of an affinoid perfectoid of X1 with V(D1) is affinoid perfectoid, and the second

map of (5.2.3) is surjective when evaluating at affinoid perfectoids of X1, Scholze’s almost acyclicity

implies that O+
X1

(�D1)/ps is almost acyclic in affinoid perfectoids. Taking inverse limits and noticing

that {O+
X1

(�D1)/ps}s2N satisfies the ML condition in affinoid perfectoids, we get that O+
X1

(�D1) is

almost acyclic in affinoid perfectoids of X1. The corollary follows from the vanishing results at the

level of formal schemes. ⇤

Remark 5.2.7. As it was mentioned to me by Vincent Pilloni, the cohomological vanishing of the

modular sheaves at infinite level provides many different exact sequences involving modular forms

and the completed cohomology of the modular tower (to be defined in the next subsection). Namely,

the primitive comparison theorem permits to compute the Cp-scalar extension of the completed coho-

mology as H1
an(X1,Cp

,OX1). On the other hand, the Hodge-Tate exact sequence

0! !�1
E ⌦OX

bOX ! TpE ⌦bZp

bOX ! !E ⌦OX
bOX ! 0

gives a short exact sequence over X1

0! !�1
E,⌘ ! O�2

X1,Cp
! !E,⌘ ! 0 (5.2.4)

via the universal trivialization of TpE. Then, taking the cohomology of (5.2.4) one obtains an exact

sequence

0! C�2
p ! H0

an(X1,Cp
,!E,⌘)! H1

an(X1,Cp
,!�1

E,⌘)! H1
an(X1,Cp

,OX1)�2 ! 0.
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5. Cohomology of modular sheaves

Another is example is given by tensoring (5.2.4) with !E and taking cohomology. One finds

0! Cp ! H0
an(X1,Cp

,!E,⌘)
�2 ! H0

an(X1,Cp
,!2

E,⌘)! H1
an(X1,Cp

,OX1)! 0.

It may be interesting a more careful study of these exact sequences.

5.3. Duality at infinite level

Let F = !k
E,1

or !k
E,1,cusp

for k 2 Z, let Fn = !
k
E,n

or !k
E,ncusp

respectively. Let C be a non archimedean

field extension of Kcyc and OC its valuation ring. Let X1,C be the extension of scalars of the integral

modular curve to OC. Corollary 5.2.5 says that the cohomology groups Hi(X1,F ) are torsion free,

p-adically complete and separated. In particular, we can endow Hi(X1,C,F )[ 1
p
] with an structure of

C-Banach space with unit ball Hi(X1,C,F ). The local duality theorem extends to infinite level in the

following way

Theorem 5.3.1. Let F and Fn be as above, and let F _n = H omOXn
(Fn,OXn

) be the dual sheaf of Fn.

There is a GL2(Qp)-equivariant isomorphism of topological OC-modules

HomOC
(Hi(X1,C,F ),OC) � lim

 ��
n,eTrn

H1�i(Xn,OC
,F _n ⌦ !

2
E,n,cusp). (5.3.1)

The LHS is endowed with the weak topology, the RHS is endowed with the inverse limit topology,
eTrn are the normalized traces of Proposition 5.1.1, and the extension of scalars is given by Xn,OC

=

Xn ⇥SpecOn
SpecOC.

Remark 5.3.2. 1. We could restate the previous theorem using !�n = ⇡
!
nOn instead of !2

E,n,cusp, the

trace eTrn would be replaced by the Serre duality trace relative to the morphism Xn+1,OC
! Xn,OC

.

Note that even though the ring OC is not noetherian, all the objects involved are defined as

pullbacks of objects which live over a finite extension of Zp, see Remark 5.2.2.

2. Let F +⌘ = Fb⌦OX1O+
X1

be the pullback of F to X1, denote F⌘ = F
+
⌘ [ 1

p
]. By Corollary 5.2.6 we

know that

Hi(X1,F⌘) = Hi(X1,F )[
1

p
].

Thus, Hi(X1,C,F⌘) can be endowed with an structure of C-Banach space. Its dual is given by

Hi(X1,C,F⌘)
⇤ = ( lim

 ��
m,eTrn

H1�i(Xn,OC
,F _n ⌦ !

2
E,n,cusp))[

1

p
].

3. Let Rn : Zp[⇣N]cyc ! Zp[⇣N pn] denote the n-th normalized Tate trace, and let X0n be the connected

component of X(N, pn)Zp[⇣N ] corresponding to ⇣N . There is a natural injective map

lim
 ��
m,eTrn

H1�i(X0n,Zp[⇣N ]cyc ,F
_

n ⌦ !
2
E,n,cusp)! lim

 ��
n,Rn�eTrn

H1�i(X0n,F
_

n ⌦ !
2
E,n,cusp).

However, this map is not surjective in general; the RHS is profinite while the LHS is not com-

pact.

Before proving Theorem 5.3.1 let us say some words about the inverse limit of (5.3.1), it can be

described as the kernel of the map

Y

n

H1�i(Xn,OC
,F _n ⌦ !

2
E,n,cusp)

1�eTrn

����!
Y

n

H1�i(Xn,OC
,F _n ⌦ !

2
E,n,cusp).

Moreover, the Corollary 5.2.5 says that the factors in the products are p-adically complete, separated

and torsion free. The following lemma implies that the inverse limit is always p-adically complete

and separated
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5. Cohomology of modular sheaves

Lemma 5.3.3. Let N, M be torsion free, p-adically complete and separated Zp-modules, and f :

N ! M a Zp-linear map. Then ker f is torsion free, p-adically complete and separated.

Proof. It is clear that ker f is torsion free. The map f is continuous for the p-adic topology, in

particular ker f ⇢ N is a closed sub-module. Since M is torsion free, one has that ker f \ psN =

ps ker f for all s � 1. Then,

ker f = lim
 ��

s

(ker f /(ker f \ psN)) = lim
 ��

s

ker f /ps ker f

proving the lemma. ⇤

Next, we recall the GL2(Qp)-action in both sides of (5.3.1). Without loss of generality we take

C = Kcyc. Let � : Gal(Ocyc/O)
⇠
�! Z⇥p be the cyclotomic character. We define  : GL2(Qp) !

Gal(Ocyc/O) to be  (g) = ��1(p�vp(det g) det g), where vp : Q⇤p ! Z denotes the p-adic valuation. Fix

g 2 GL2(Qp) and n � 0. Let m � 1 be such that Γ(pm) ⇢ Γ(pn) \ gΓ(pn)g�1, write cg : GL2(Qp) !

GL2(Qp) for the conjugation x 7! gxg�1. We denote by X(N pn)c(g) be the modular curve of level

Γ(N)\Γ(pn)\ gΓ(pn)g�1, let Xn,c(g) be the locus where the Weil pairing of the universal basis of E[N]

is equal to ⇣N 2 Z̆p. We let !� be the dualizing sheaf of Xn,c(g), i.e. the exceptional inverse image of

On,c(g) := H0(Xn,c(g),OXn,c(g)
) over Xn,cg

.

The maps

Γ(pm) ,! Γ(pn) \ gΓ(pn)g�1
c

g�1

���! g�1
Γ(pn)g \ Γ(pn) ,! Γ(pn)

induce maps of modular curves

Xm

q1

�! Xn,c(g)

g
�! Xn,c(g�1)

q2

�! Xn,

with g an isomorphism. Notice that the modular sheaves !k
E

are preserved by the pullbacks of q1, q2

and g. Let F and Fn be as in Theorem 5.3.1, we have induced maps of cohomology

RΓ(Xn,Fn/p
s)

q⇤
1
�g⇤�q⇤

2

������! RΓ(Xm,Fm/p
s).

Taking direct limits we obtain a map

RΓ(X1,F /p
s)

g⇤

�! RΓ(X1,F /p
s).

Finally, taking derived inverse limits one gets the action of g 2 GL2(Qp) on the cohomology RΓ(X1,F ).

The action of GL2(Qp) on cohomology is not Ocyc-linear. In fact, it is  -semi-linear; this can be

shown by considering the Cartan decomposition

GL2(Qp) =
G

n1�n2

GL2(Zp)

 
pn1 0

0 pn2

!
GL2(Zp)

and using the compatibility of the Weil pairing with the determinant.

The action of GL2(Qp) on lim
 ��n,eTrn

H1�i(Xn,Ocyc ,F _n ⌦ !
2
E,n,cusp) is defined in such a way that the

isomorphism (5.3.1) is equivariant. Namely, there is a commutative diagram of local duality pairings
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5. Cohomology of modular sheaves

provided by the functoriality of Serre duality

H1�i(Xm,Ocyc ,F _m ⌦ !
2
E,m,cusp) ⇥ Hi(Xm,Ocyc ,Fm ⌦ K/O) Kcyc/Ocyc

H1�i(Xn,c(g),Ocyc , (g � q2)⇤F _n ⌦ !
�) ⇥ Hi(Xn,c(g),Ocyc , (g � q2)⇤Fn ⌦ K/O) Kcyc/Ocyc

H1�i(Xn,c(g�1),Ocyc , q⇤2F
_

n ⌦ !
�) ⇥ Hi(Xn,c(g�1),Ocyc , q⇤2F ⌦ K/O) Kcyc/Ocyc

H1�i(Xn,Ocyc ,F _n ⌦ !
2
E,n,cusp) ⇥ Hi(Xn,Ocyc ,Fn ⌦ K/O) Kcyc/Ocyc.

eTrq1

g�1⇤

q⇤
1

eTrq2

g⇤  (g)

q⇤
2

(5.3.2)

The maps eTrq1
and eTrq2

are induced by the Serre duality traces of q1 and q2 respectively, cf. Remark

5.3.2 (1). Thus, the right action of g 2 GL2(Qp) on a tuple f = ( fn) 2 lim
 ��n,eTrn

H1�i(Xn,Ocyc ,F _n ⌦

!2
E,n,cusp) is given by f |g = (( f |g)n)n2N, where

( f |g)n = eTrq2
� g�1⇤ � eTrq1

( fm)

for m big enough, and q1, q2 as in (5.3.2).

Proof of Theorem 5.3.1. Without loss of generality we take C = Kcyc. Let F = !k
E,1

or !k
E,1,cusp

. By

Corollary 5.2.5 we have

Hi(X1,F ) ⌦ (K/O) = Hi(X1,F ⌦ K/O).

Therefore

HomOcyc(Hi(X1,F ),Ocyc) = HomOcyc(Hi(X1,F ) ⌦ K/O,Kcyc/Ocyc)

= HomOcyc(Hi(X1,F ⌦ K/O),Kcyc/Ocyc).

On the other hand, we have

Hi(X1,F ⌦ K/O) = lim
��!
n,p⇤n

Hi(Xn,Ocyc ,Fn ⌦ K/O)

where the transition maps are given by pullbacks. By local duality, Proposition 4.0.7, we have a

natural isomorphism

HomOcyc(Hi(X1,F ),Ocyc) = lim
 ��
n,p⇤n

HomOcyc(Hi(Xn,Ocyc ,Fn ⌦ K/O),Kcyc/Ocyc)

= lim
 ��
n,eTrn

H1�i(Xn,Ocyc ,F _n ⌦ !
2
E,n,cusp).

The isomorphism is GL2(Qp)-equivariant by the diagram (5.3.2). ⇤

We end this section with an application of the local duality theorem at infinite level to the completed

cohomology. We let Xn,proet be the pro-étale site of the finite level modular curve as in §3 of [Sch13a],

and X1,proet the pro-étale site of the perfectoid modular curve as in Lecture 8 of [SW20].

Definition 5.3.4. Let i � 0. The i-th completed cohomology group of the modular tower {Xn}n�0 is

defined as
eHi := lim

 ��
s

lim
��!

n

Hi
et(Xn,Cp

,Z/psZ).
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Remark 5.3.5. The previous definition of completed cohomology is slightly different from the one

of [Eme06]. Indeed, Emerton consider the étale cohomology with compact support of the affine

modular curve Yn. Let j : Yn ! Xn be the inclusion and ◆ : Dn ! Xn be the cusp divisor, both

constructions are related by taking the cohomology of the short exact sequence

0! j!(Z/p
sZ)! Z/psZ! ◆⇤◆

⇤Z/psZ! 0.

Moreover, the cohomology at the cusps can be explicitely computed, and many interesting cohomol-

ogy classes already appear in eH1.

We recall some important completed sheaves in the pro-étale site. LetW denote Xn or X1

• We denote bZp = lim
 ��s
Z/psZ, the p-adic completion overWproet of the locally constant sheaf Z.

• Let bO+
W
= lim
 ��s

O+
W
/ps be the p-adic completion of the structural sheaf of bounded functions

overWproet.

By Lemma 3.18 of [Sch13a] the sheaf bO+
W

is the derived inverse limit of the projective system

{O+
W
/ps}s. On the other hand, the repleteness of the proétale site and Proposition 3.1.10 of [BS14]

implies that bZp is also the derived inverse limit of {Z/psZ}s. We have the following proposition

Proposition 5.3.6. Let i � 0, there is a short exact sequence

0! R1 lim
 ��

s

Hi�1
et (X1,Cp

,Z/psZ)! Hi
proet(X1,Cp

,bZp)! eHi ! 0.

Proof. As bZp = R lim
 ��s
Z/psZ, the Grothendieck spectral sequence for derived limits gives short exact

sequences for i � 0

0! R1 lim
 ��

s

Hi�1
proet(X1,Cp

,Z/psZ)! Hi
proet(X1,Cp

,bZp)! lim
 ��

s

Hi
proet(X1,Cp

,Z/psZ)! 0.

Lemma 3.16 of [Sch13a] implies that Hi
proet(X1,Cp

,Z/psZ) = Hi
et(X1,Cp

,Z/psZ). On the other hand,

Corollary 7.18 of [Sch12] gives an isomorphism

Hi
et(X1,Cp

,Z/psZ) = lim
��!

n

Hi
et(Xn,Cp

,Z/psZ),

the proposition follows. ⇤

Next, we relate the completed cohomologies eHi with the coherent cohomology of X1 via the Prim-

itive Comparison Theorem. This strategy is the same as the one presented by Scholze in Chapter IV

of [Sch15] for Emerton’s completed cohomology. In the following we work with the almost-setting

with respect to the maximal ideal of OCp

Proposition 5.3.7 ( [Sch15, Theo. IV.2.1]). There are natural almost isomorphisms

eHib⌦Zp
OCp
=ae Hi

proet(X1,Cp
, bO+X1) =ae Hi(X1,OX1)b⌦OcycOCp

. (5.3.3)

In particular, eHi = 0 for i � 2, the R1 lim
 ��s

of Proposition 5.3.6 vanishes, and the eHi are torsion free,

p-adically complete and separated.

Proof. By the Primitive Comparison Theorem [Sch13a, Theo. 5.1], there are almost quasi-isomorphisms

for all n, s, i 2 N

Hi
et(Xn,Cp

,Z/psZ) ⌦Zp
OCp
=ae Hi

et(Xn,Cp
,O+Xn
/ps).
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Taking direct limits on n, and using Corollary 7.18 of [Sch12] one gets

Hi
et(X1,Cp

,Z/psZp) ⌦Zp
OCp
=ae Hi

et(X1,Cp
,O+X1/p

s). (5.3.4)

Namely, we have O+
X1
/ps = lim

��!n
O+
Xn
/ps as sheaves in the étale site of X1. In fact, let U1 be an

affinoid perfectoid in the étale site of X1 which factors as a composition of rational localizations and

finite étale maps. By Lemma 7.5 of [Sch12] there exists n0 � 0 and an affinoid space Un0
2 Xn,et such

that U1 = X1 ⇥Xn0
Un0

. For n � n0 denote the pullback of Un0
to Xn,et by Un, then U1 ⇠ lim

 ��n�n0

Un

and O+(U1)/ps = lim
��!n�n0

O+(Un)/ps.

The sheaf O+
X1
/ps is almost acyclic on affinoid perfectoids, this implies that the RHS of (5.3.4)

is equal to Hi
an(X1,Cp

,O+
X1
/ps). Then, the proof of Corollary 5.2.6 allows us to compute the above

complex using the formal model X1

Hi
an(X1,Cp

,O+X1/p
s) =ae Hi(X1,OX1/p

s) ⌦Ocyc OCp
. (5.3.5)

The Corollary 5.2.5 shows that the inverse system {Hi(X1,OX1/p
s)}s satisfy the Mittag-Leffler con-

dition. As OCp
/ps is a faithfully flat Z/psZ-algebra, the inverse system {Hi

et(X1,Cp
,Z/psZ)}s also

satisfies the Mittag-Leffler condition. One deduces from Proposition 5.3.6 that

Hi
proet(X1,Cp

,bZp) = eHi. (5.3.6)

We also obtain that eHi/ps = Hi
et(X1,Cp

,Z/psZ) for all i 2 N. Taking inverse limits in (5.3.4), and

using (5.3.5) and (5.3.6) one obtains the corollary. ⇤

We obtain a description of the dual of the completed cohomology in terms of cuspidal modular

forms of weight 2:

Theorem 5.3.8. There is a GL2(Qp)-equivariant isomorphism of almost OCp
-modules

HomOCp
(eH1b⌦Zp

OCp
,OCp

) =ae lim
 ��
n,eTrn

H0(Xn,OCp
,!2

E,n,cusp).

Proof. This is a consequence of Proposition 5.3.7 and the particular case of Theorem 5.3.1 when

F = OX1 and C = Cp. ⇤
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6. Introduction

Let p be a prime number,A1
Q

the finite adeles ofQ,A
1,p

Q
the finite prime-to-p adeles, and Zp the ring of

p-adic integers. Let Cp be the p-adic completion of an algebraic closure ofQp, and GQp
= Gal(Cp/Qp)

the absolute Galois group. From now on we fix a neat compact open subgroup K p ⇢ GL2(A
1,p

Q
). Let

Kp ⇢ GL2(Qp) be an open compact subgroup, we denote by Y
alg

Kp
the modular curve over SpecQp of

level K pKp ⇢ GL2(A1
Q

) = GL2(A
1,p

Q
) ⇥ GL2(Qp), and by X

alg

Kp
its compactification by adding cusps.

Let YKp
and XKp

be the rigid analytic varieties attached to the modular curves, seen as adic spaces over

Spa(Qp,Zp), cf. [Hub96]. Let D = XKp
\YKp

be the cusp divisor. We endow XKp
with the log-structure

defined by D.

Given an fs log adic space Z and ? 2 {an, ét, két, proét, prokét}, we denote by Z? its analytic, étale,

Kummer-étale, proétale and pro-Kummer-étale sites respectively, see [Sch13a] and [DLLZ19].

In [Fal87], Faltings computed the Hodge-Tate decomposition of the étale cohomology (with coef-

ficients) of the modular curve YKp
. More precisely, let E be the universal elliptic curve over YKp

, it

admits an extension to a semi-abelian adic space E sm over XKp
(cf. [DR73]). Let e : XKp

! E sm be

the unit section, !E = e⇤Ω1
Esm/X

the modular sheaf and TpE = lim
 ��n

E[pn] the Tate module over YKp
.

Let YKp,Cp
and XKp,Cp

denote the extension of scalars of the modular curves, we have the following

theorem

Theorem 6.0.1 (Faltings). Let k � 0, there exists a Galois and Hecke equivariant isomorphism

H1
ét(YKp,Cp

,Symk TpE) ⌦Qp
Cp(1) = H0

an(XKp,Cp
,!k+2

E ) � H1
an(XKp,Cp

,!�k
E )(k + 1) (6.0.1)

called the Eichler-Shimura (ES) decomposition.

The first result of this paper is a new proof of Faltings’ ES decomposition using BGG methods and

the Hodge-Tate period map. Our proof is the proétale analogue of the BGG decomposition for the de

Rham cohomology of Faltings-Chai [FC90, Ch. 5 Theo. 5.5]. Let us develop the ideas behind:

Let X1 := lim
 ��Kp

XKp
be Scholze’s perfectoid modular curve and ⇡HT : X1 ! P

1
Qp

the Hodge-Tate

period map [Sch15]. The morphism ⇡HT is GL2(Qp)-equivariant where we see P1
Qp

as the left quotient

of GL2 by the upper triangular Borel B. Let ⇡Kp
: X1 ! XKp

be the natural map, we can see X1 as a

pro-Kummer-étale Kp-torsor over XKp
. We let bZp and bOXKp

denote the p-adic completions of the con-

stant sheaf Zp and the structural sheaf respectively, seen as sheaves over XKp,prokét. LetbZp(1) = lim
 ��n
µpn

be the Tate twist and bOXKp
(i) the i-th twist of bOXKp

. We see the Tate module as a bZp-local system over

YKp,proét. By [DLLZ19, Theo. 4.6.1], TpE admits a natural extension to the pro-Kummer-étale site

of XKp
which we denote in the same way. From now on we fix the level Kp and write Y = YKp

and

X = XKp
.

The Hodge-Tate map is defined from the Hodge-Tate exact sequence

0! !�1
E ⌦OX

bOX(1)
HT_

���! TpE ⌦bZp

bOX

HT
��! !E ⌦OX

bOX ! 0, (6.0.2)

31



6. Introduction

which is the variation in families of the Hodge-Tate decomposition for elliptic curves (cf. [Tat67]),

via the universal trivialization of the Tate module Ψ : bZ2
p

⇠
�! TpE over X1.

The GL2(Qp)-equivariance of ⇡HT recovers (6.0.2) from a short exact sequence of GL2-equivariant

sheaves over P1
Qp

. Indeed, let Alg -B- Rep be the category of finite dimensional algebraic repre-

sentations of B, GL2 -VBP1
Qp

the category of GL2-equivariant vector bundles (VB) over P1
Qp

, and

GL2(Qp)- bOX1- Mod the category of GL2(Qp)-equivariant bOX1-sheaves over X1. We have the fol-

lowing functors

Alg -B- Rep GL2 -VBP1
Qp

GL2(Qp)- bOX1- Mod bOX- Mod

V GL2 ⇥
BV F (⇡Kp,⇤F )Kp

V|[B] V

⇡⇤
HT

(6.0.3)

with GL2 ⇥
BV being the quotient of GL2 ⇥V by the left diagonal action of B. Let V be a GL2-

equivariant VB over P1
Qp

, in the following we shall denote Υ(V) for the sheaf (⇡Kp,⇤(⇡
⇤
HT(V)))Kp over

Xprokét.

Let T ⇢ B be the diagonal torus and  = (k1, k2) 2 X⇤(T) be a character, we see  as a B-

representation by letting the unipotent radical of B act trivially. Let W = {1,w0} be the Weyl group

of GL2. We denote by L () the GL2-equivariant sheaf over P1
Qp

obtained from w0() via (6.0.3). The

standard representation St has a B-filtration

0! (1, 0)Qp ! St! (0, 1)Qp ! 0. (6.0.4)

By construction of ⇡HT, the pullback of (6.0.4) via Υ is equal to the Hodge-Tate-exact sequence

(6.0.2). In particular, one obtains that Υ(Symk St⌦OP1) = Symk TpE ⌦ bOX and that Υ(L ()) =

!k1�k2

E
⌦OX

bOX(k2).

Let LAlg-B- Rep be the cateogory of locally algebraic representations of B, in other words, the

category of those representations which are written as colimits of finite dimensional representations. It

is straightforward to check that the functor (6.0.3) naturally extends to the category LAlg-B- Rep. Let

 = (k1, k2) 2 X⇤(T) be a dominant weight (i.e. such that k1 � k2) and V the irreducible representation

of GL2 of highest weight  (isomorphic to Symk1�k2 St⌦(det)k2). We have the following theorem, cf.

Theorem 10.1.5

Theorem 6.0.2. Let ↵ = (1,�1) 2 X⇤(T), and BGG() be the dual BGG complex of  (see §8.4)

0! V ! V()! V(w0() � ↵)! 0.

The pullback of BGG() via the functor (6.0.3) is a short exact sequence

0! Symk1�k2 TpE ⌦ ⌦ bOX(k2)! !k2�k1

E
⌦ OClog(k1)! !k1�k2+2

E
⌦ OClog(k2 � 1)! 0,

where OClog = gr0OBdR,log and OBdR,log is Scholze’s relative (log) de Rham period sheaf (see [Sch13a,

§5] or [DLLZ18, §2.2]). Furthermore, let ⌫an : XCp,prokét ! XCp,an be the projection of sites. Then

R⌫an,⇤(Symk TpE ⌦ bOX(1)) = !�k
E (k + 1)[0] � !k+2

E [�1].

Taking H1-cohomology in the analytic site of XCp
we recover the Eichler-Shimura decomposition of

Theorem 6.0.1.
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The proof of the previous theorem is a consequence of the isomorphism between TpE ⌦ bOX ⌦ !E

and the Faltings extension gr1OB+
dR,log

, cf. Proposition 10.1.3. This isomorphism was already known

by Faltings, and used in his proof of the ES decomposition. This new proof provides a more explicit

definition of the ES maps in terms of cocycles and can be generalized to Siegel varieties. Moreover, it

shows immediately the degeneration of the spectral sequence appearing in [Fal87], as well as its nat-

ural splitting without using the Galois equivariance. However, notice that the existence of the period

sheaf OB+
dR,log

is subject to the hypothesis that our rigid space is defined over a discretely valued field.

It is worth to mention that the isomorphism between the twist of the Tate module and the Faltings

extension was used by Lue Pan in [Pan20] to compute the relative Sen operator of the modular curve.

The second goal of this paper is the interpolation of the Eichler-Shimura decomposition (6.0.1).

The H0 of the overconvergent ES maps was previously constructed by Andreatta-Iovita-Stevens

in [AIS15]. The strategy followed in this document is close to the construction of the ES map for

Shimura curves in [CHJ17]. Roughly speaking, we apply a variant of the functor (6.0.3) to certain lo-

cally analytic sheaves over P1
Qp

. In this way, we interpolate all the terms appearing in the Hodge-Tate

exact sequence (6.0.2): we get overconvergent modular sheaves whose cohomology are the object of

study in higher Coleman theory developed by Boxer-Pilloni [BP20, BP21]. The interpolation of the

symmetric powers will be given by locally analytic principal series or locally analytic distributions as

in [AS08]. Finally, the Hodge-Tate maps HT and HT_ can be put in families, obtaining the dlog map

of [AIS15] as a particular case.

Let us sketch the main steps of the construction. Let n � 1 be an integer and

Iwn :=

 
Z⇥p Zp

pnZp Z
⇥
p

!

be the Iwahori group modulo pn. We will take X = XIwn
, in such a way that ⇡Iwn

: X1 ! X is

Galois of Galois group Iwn. Let ✏ � � � n be rational numbers and (R,R+) a uniform Tate alge-

bra over Qp which we may assume to be sheafy (i.e. such that the pre-sheaf of rational functions

in Spa(R,R+) is an actual sheaf). Let T = T(Zp) denote the Zp-points of the diagonal torus and

� = (�1, �2) : T ! R+,⇥ a �-analytic character (cf. Proposition 8.2.1). We denote by R+b⌦Zp
O+

X,két
the

p-adically complete tensor product in the Kummer-étale site of X, and by R+b⌦O+X its inverse image

to Xprokét. We let R+b⌦ bO+X be the p-adically complete tensor product of R+ and the completed sheaf
bO+X . We warn that R+b⌦O+X , R+b⌦ bO+X . Given a character � : Z⇥p ! R+,⇥ we denote by R+(�) the

GQp
-module induced by the composition GQp

�cyc

��! Z⇥p
�
�! R+,⇥. Finally, we write bO+X (�) := R+(�)b⌦ bO+X .

We use similar notations and definitions for the structural sheaves OX and bOX.

We begin with the construction of all the sheaves over P1
Qp

: for w 2 W = {1,w0} we define a family

of overconvergent neighbourhoods {Uw(✏) Iwn}✏>n of w Iwn in P1
Qp

. The affinoid spaces Uw(✏) Iwn

admit sections of the quotient map GL2 ! P
1
Qp

. In particular, the T-torsor N\GL2 ! P
1
Qp

, where N is

the unipotent radical of B, has a trivialization over Uw(✏) Iwn. We define a Rb⌦OP1
Qp

line bundle L (�)

in the analytic site of Uw(✏) Iwn in the same way we have defined the line bundles L () for  2 X⇤(T).

Then, we define the space of �-analytic principal series of weight � to be the R-Banach space

A�
� = Γ(Uw0

(�) Iwn,L (�)),

we let D�
� be its dual. The space A�

� has a natural action of Iwn, so that it defines a constant Iwn-

equivariant sheaf on P1
Qp

. Concretely, we see A�
� and D�

� as sheaves in the proétale site of P1
Qp

, denoted

byA�
� andD�

� respectively, as in Definition 7.2.3.
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It is easy to construct maps

�R
◆
�! A�

� equivariant for the action of B(Zp) \ Iwn

A�
�

evw0

���! �R equivariant for the action of w�1
0 B(Zp)w0 \ Iwn,

with ◆ being the highest weight vector, and evw0
the evaluation at w0. We prove that these maps give

rise morphisms of proétale Iwn-equivariant sheaves

L (w0(�))b⌦O
P1
Qp

bOP1
Qp
! A�

�
b⌦bQp

bOP1
Qp

over U1(✏) Iwn

A�
�
b⌦bQp

bOP1
Qp
! L (�)b⌦O

P1
Qp

bOP1
Qp

over Uw0
(✏) Iwn .

(6.0.5)

The next step is to translate all the previous constructions to the modular curve X. We start by defin-

ing the strict neighbourhoods of the w-ordinary locus {Xw,Iwn
(✏)}✏>n; they are equal to ⇡Iwn

(⇡�1
HT(Uw(✏) Iwn)).

The second object we descend to X are the overconvergent modular sheaves !
�
E
; they are Rb⌦OX-line

bundles in the étale site of Xw,Iwn
(✏). We refer to [BP21] for the general construction of these sheaves.

We will follow essentially the same idea of loc. cit., except that in some occasions we use more

classical arguments involving the canonical group. The dictionary (6.0.3) gives then

Υ(L (�)) = !
�
E
⌦b⌦Rb⌦OX

bOX(�2). (6.0.6)

We continue with the pullback of the �-analytic principal series and distributions, seen as Iwn-

equivariant proétale sheaves over P1
Qp

. They define sheaves over Xprokét which we keep denoting asA�
�

andD�
� respectively. Finally, we pullback the maps (6.0.5) obtaining GQp

-equivariant overconvergent

Hodge-Tate maps of pro-Kummer-étale sheaves

!
w0(�)

E
⌦OX

bOX(�1)
HT_

���! A�
�
b⌦ bOX over X1,Iwn

(✏)

A�
�
b⌦ bOX

HT
��! !

�
E
⌦OX

bOX(�2) over Xw0,Iwn
(✏),

similarly for D�
� after applying Rb⌦ bOX-duals. Taking pro-Kummer-étale cohomology one obtains the

following theorem, which we state only for �-analytic principal series and the transpose of the Up-

operator, see Theorem 10.3.2.

Theorem 6.0.3. There are overconvergent Eichler-Shimura maps

0! H1
1,c(XCp

,!
w0(�)

E
)✏(�1)

ES _
A

���! H1
prokét(XCp

,A�
�
b⌦ bOX)

ESA
���! H0

w0
(XCp
,!

�+↵
E

)✏(�2 � 1)! 0 (6.0.7)

satisfying the following properties:

1. The composition ESA � ES _
A

is zero.

2. Assume that V = Spa(R,R+) is an affinoid subspace of the weight space WT of T , and let

 = (k1, k2) 2 V be a dominant weight of T. Let ↵ = (1,�1) 2 X⇤(T) and let � = �un
V

be the

universal character ofV. Then there is a commutative diagram
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H1
1,c(XCp

,!
w0(�)

E
)✏(�1)

H1
1,c(XCp

,!w0()
E

)✏(k1)

H1
an(XCp

,!w0()
E

)(k1)

H1
prokét

(XCp
,A�

�
b⌦ bOX)

H1
prokét

(XCp
,A�


b⌦ bOX)

H1
ét

(YCp
,V) ⌦ Cp

H0
w0

(XCp
,!

�+↵
E

)✏(�2 � 1)

H0
w0

(XCp
,!+↵

E
)✏(k2 � 1)

H0
an(XCp

,!+↵
E

)(k2 � 1)

ES _
A ESA

ES _ ES

Cor Res

3. The maps of (2) are Galois and U t
p equivariant with respect to the good nomalizations of the

U t
p-operators. In particular, the diagram above restricts to the finite slope part with respect to

the U t
p-action.

4. Let h < k1� k2+1. There exists an open affinoidV0 ⇢ V containing  such that the ( h)-slope

part of the restriction of (6.0.7) to V0 is a short exact sequence of finite free Cpb⌦Qp
O(V0)-

modules.

5. Keep the hypothesis of (4), and let � be the universal character of V0. Let e� = �1 � �2 + 1 :

Z⇥p ! R+,⇥, and b = d
dt
|t=1e�(t). Then we have a Galois-equivariant split after inverting b

H1
prokét(XCp

,A�
�
b⌦ bOX)h

b
= [H1

1,c(XCp
,!

w0(�)

E
)h
✏ (�1)]b � [H0

w0
(XCp
,!

�+↵
E

)h
✏ (�2 � 1)]b.

Remark 6.0.4. 1. The group H0
w(XCp

,�)✏ is the overconvergent cohomology and H1
w,c(XCp

,�)✏ the

overconvergent cohomology with closed supports around the w-ordinary locus of X, see [BP20]

and Definition 9.2.9 down below.

2. A similar statement holds for the distribution sheaves D�
�, in this case the overconvergent

Eichler-Shimura map of [AIS15] is ESD.

3. Note that if  = (k1, k2) with k1 + 1 , k2, i.e. when the Hodge-Tate weights are not equal, one

can chooseV0 small enough such that b , 0.

We finish the paper with the compatibility of the oveconvergent ES maps (6.0.7) with the Poincaré

and Serre pairings. One can define a Poincaré pairing between the overconvergent proétale coho-

mologies

h�,�iP : H1
proét,c(YCp

,D�
�(1)) ⇥ H1

proét(YCp
,A�

�)! O(V0) (6.0.8)

where the left hand side is the proétale cohomology with compact supports. On the other hand, one

also has Serre pairings between overconvergent coherent cohomologies

h�,�iS : H1
w,c(X,!

��
E

(�D))✏ ⇥ H0
w(X,!

�+↵
E

)✏ ! O(V0) (6.0.9)

h�,�iS : H1
w,c(X,!

w0(�)

E
)✏ ⇥ H0

w(X,!
�w0(�)+↵
E

(�D))✏ ! O(V0).

We have the following theorem

Theorem 6.0.5. 1. The Theorem 6.0.3 holds for the cohomology with compact supports H1
proét,c

(YCp
,D�

�)

and the overconvergent cohomologies H0
w(XCp

,!
�w0(�)+↵
E

(�D))✏ and H1
w,c(XCp

,!
��
E

(�D))✏ .

2. The Poincaré and Serre pairings (6.0.8) and (6.0.9) are compatible with the Up-operators and

the overconvergent Eichler-Shimura maps.
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3. LetV ⇢WT be an open affinoid, and let � be the universal character ofV. Let  = (k1, k2) 2 V

be a dominant weight and fix h < k1 � k2 + 1. There exists an open affinoidV0 ⇢ V containing

 such that the ( h)-part of the pairings (6.0.8) and (6.0.9) are perfect pairings of finite free

Cpb⌦O(V0)-modules compatible with the Eichler-Shimura decomposition.

The outline of the document is the following. In Section 7 we briefly recall the period sheaves over

the pro-Kummer-étale site of an fs log adic space, cf. [Sch13a, DLLZ18, DLLZ19]. Then, we set the

conventions of the representation theory of GL2 and construct the dictionary (6.0.3).

In Section 8 we develop the overconvergent theory over the flag variety. We define the affinoid sub-

spaces Uw(✏) Iwn and the sheaves L (�). We construct the �-analytic principal series A�
� and the maps

(6.0.5). We recall some facts of the BGG theory for irreducible representations of GL2, in particular

we define the dual BGG complex BGG().

Then in Section 9, we translate all the previous constructions from P1
Qp

to the modular curves via

⇡HT. We define the strict neighbourhoods of the w-ordinary locus, the overconvergent modular sheaves

and the overconvergent Hodge-Tate maps. We give the good normalizations of the Hecke operators

and show that the HT-maps are compatible with the normalized Up-correspondance.

Finally, in Section 10, we show how to obtain the classical ES decomposition from the dual BGG

complex, proving Theorems 6.0.2 and 6.0.1. We prove the analogous theorem for the cohomology

with compact supports, and prove the compatibility of the pairings for the classical ES decomposition.

Next, we construct the overconvergent ES maps and obtain Theorem 6.0.3. We prove the analogous

theorem for the cohomology with compact supports and the compatibility of Poincaré and Serre

duality for the overconvergent ES maps obtaining Theorem 6.0.5.

Notation

Throughout this document we fix a prime number p, we fix an algebraic closure of Qp and denote by

Cp its p-adic completion. We will work with adic spaces over Spa(Qp,Zp) which are either locally

topologically of finite type over a non-archimedean extension K of Qp, or with perfectoid spaces. An

adic space will be denote by Roman font letters X, Y , Z, W, V , etc. except in Definition 8.2.3 where

we will useWΠ for the weight space attached to a finite Zp-module Π. In general, we will denote

by V an affinoid admitting a character of Π, i.e. an affinoid endowed with a map V ! WΠ. We

will denote the algebraic schemes over K as Xalg, Yalg, Zalg, etc., in such a way that X is the p-adic

analytification of Xalg to an adic space over Spa(K,OK). We will use Calligraphy font F , G , H , etc.

for sheaves over different sites of our spaces.

For affine algebraic groups over Qp we will use bold font H, G, B, T, etc., we denote its analytifi-

cation to an adic space over Spa(Qp,Zp) byH , G, B, T , etc. Moreover, if H admits an integral model

HZp
over SpecZp, we denote byH0 the rigid generic fibre of the p-adic completion of HZp

. We have

an open immersion H0 ⇢ H . In addition, we will write H = HZp
(Zp) for its Zp-points. We define

in a similar way the profinite groups G, B, T , etc. if any of these algebraic groups admit an integral

model.

36



7. Preliminaries

7.1. Period sheaves in the pro-Kummer-étale site

Let K be a complete discretely valued field extension of Qp with ring of integers OK and perfect

residue field F. Let C/K denote the p-adic completion of the algebraic closure of K, and let GK =

Gal(C/K) denote its absolute Galois group. Throughout this document we will work with adic spaces

which are either locally topologically of finite type over a non archimedean field, or perfectoid spaces

over Spa(Qp,Zp). All of them are étale sheafy in the sense that their étale site admits a basis by affinoid

adic spaces stable under rational localizations and finite étale maps (cf. [Hub96, §1.7] and [SW20,

§1.7]). We consider the proétale site as in [Sch13a] and its extension to the pro-Kummer-étale site

in [DLLZ19].

Let X be an adic space as before, we denote by Xan, Xét and Xproét the analytic, étale and proétale

sites of X respectively. If X is endowed with a log structure we let Xkét and Xprokét be the Kummer-

étale and the pro-Kummer-étale sites. For ? 2 {an, ét, két} we denote by O+
X,? and OX,? the structural

sheaves. Let ⌫ : Xproét ! Xét be the natural projection of sites, we briefly recall the definition of the

period sheaves over the proétale site of X, see §6 of [Sch13a]:

0) The structural sheaves O+X = ⌫
�1(O+

X,ét
) and OX = ⌫

�1(OX,ét).

1) The completed structural sheaves bO+X = lim
 ��s

O+X/p
s and bOX = O+X [ 1

p
].

2) The tilted sheaves bO[,+
X
= lim
 ��Φ

bO+X = lim
 ��Φ

O+X/p and bO[
W
= lim
 ��Φ

bOW where Φ : x 7! xp.

3) The Fontaine’s period sheaf Ainf,X defined as the derived p-adic completion of the Witt vectors

W( bO[,+
X

), the sheaf Binf,X = Ainf,X[ 1
p
].

There is a natural surjective map ✓ : Binf,X ! bOX, which locally on perfectoid objects Spa(R,R+) is

the Fontaine’s map

✓ : W(R[,+)[
1

p
]! R ✓([(xn)]) = lim

n
x̃pn

n ,

where (xn)n2N 2 R[,+ = lim
 ��Φ

R+/p and x̃n is any lift of xn to R+. The kernel of ✓ is, locally proétale,

generated by a non zero divisor ⇠. For example, if Spa(R,R+) 2 Xproét admits a map to Spa(Q
cyc
p ,Z

cyc
p ),

and ✏ = (⇣pn)n2N is a compatible sequence of p-th power roots of unit, then ! = [✏]�1

[✏]1/p�1
is a generator

of ker(✓).

4) We have the de Rham period sheaf B+
dR,X
= lim
 ��s
Binf,X/(ker ✓)s. We endow B+

dR,X
with the

decreasing adic filtration defined by ker ✓. We set BdR,X = B
+
dR

[ 1
⇠
] and define Filr BdR,X = ⇠

rB+
dR,X

locally proétale.

We denote by Zp(1) = lim
 ��n
µpn(C) the Tate twist, where GK acts via the cyclotomic character �cyc :

GK ! Z
⇥
p . We will denote by Zp the constant sheaf over Xét, we will write bZp = lim

 ��n
Z/pnZ for

the p-adic completion of Zp on the proétale site. Let F be a sheaf over Xproét, we denote by F (i) =

F ⌦Zp
Zp(i) its i-th Tate twist, if F is a bZp-module then F (i) = F ⌦bZp

bZp(i). Let B+
dR
= B+

dR
(C,OC)
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be the Fontaine’s de Rham period ring, the element log([✏]) converges to an element t 2 B+
dR

for

which GK acts as multiplication by the cyclotomic character. Moreover, t generates ker ✓ so that

griBdR,X = bOX(i).

5) Let OB+
dR,X

be the sheafification of the pre-sheaf which sends an affinoid perfectoid Spa(R,R+) =

lim
 ��i

Spa(Ri,R
+
i ) to the direct limit of the (ker ✓̃)-adic completion of

(R+i b⌦W(F)Ainf,X(R,R+))[
1

p
],

where ✓̃ is the map sending ri ⌦ ↵ 7! ri✓(↵), and the completed tensor product is with respect

to the p-adic topology. We endow OB+
dR,X

with the (ker ✓̃)-adic filtration. We define OBdR,X =

OB+
dR,X

[ 1
⇠
] and Filr OBdR,X =

P
i+ j=r ⇠

i Fil j OB+
dR,X

.

In the following we shall omit the subscript X. Let X be an fs log-smooth adic space over Spa(K,OK),

whose log structure is given by a morphism of sheaves of monoids ↵ : Mét ! OX,ét over the étale

site of X, see Definition 2.2.2 of [DLLZ19]. LetMkét : Xkét ! S ets be the sheaf of monoids of the

Kummer-étale site mapping U  Mét,U(U).

We define the following sheaves over the pro-Kummer-étale site of X, cf. [DLLZ18, DLLZ19].

0) LetM, O+X , and OX be the inverse image ofMkét, O+
X,két

and OX,két from the Kummer-étale to

the pro-Kummer-étale site respectively.

1) Let bO+X = lim
 ��s

O+X/p
s and bOX = bO+X [ 1

p
] be the completed structural sheaves of the pro-Kummer-

étale site. Let cM be the completed log structure of X, i.e. the pushout bO⇥
X

◆
 � O⇥

X

↵�1

��! M of

saturated monoids.

We can recover the sheafMkét from the sheaf cM:

Lemma 7.1.1. Let ⌫ : Xprokét ! Xkét be the projection of sites. We have ⌫⇤cM =Mkét.

Proof. As bO⇥
X

and O⇥
X

are sheaves on groups, andM is a saturated monoid, cM is equal to the quotient

( bO⇥
X
�M)/O⇥

X
with respect to the inclusion (�◆,↵�1). Then, since R⌫⇤O⇥X = O⇥

X,két
, one gets

⌫⇤(( bO⇥X �M)/O⇥X ) = (⌫⇤( bO⇥X ) �Mkét)/O
⇥
W,két =Mkét.

⇤

2) We define the tilted sheaves bO[,+
X
= lim
 ��Φ

bO+X = lim
 ��Φ

O+X/p, bO[
X
= lim
 ��Φ

bOX and cM[ = lim
 ��Φ

cM.

We have a natural map of multiplicative monoids ↵[ : cM! bO[
X
.

3) The Fontaine’s period sheaves Ainf, Binf B
+
dR

and BdR are defined in the same way as for the

proétale site. Moreover, there is a ✓-map onto bOX whose kernel is locally proétale generated by

a non-zero divisor ⇠, and the sheavesB+
dR

andBdR are filtered with graded pieces griBdR = bOX(i).

Next, we recall the construction of the relative de Rham sheaves OB+
dR,log,X

and OBdR,log,X over

Xprokét [DLLZ18, §2.2]. We write OB+
dR,log

and OBdR,log if X is clear from the context.

Construction 7.1.2. We seeM as a multiplicative monoid. Let Spa(R,R+) be a log perfectoid affinoid

space in Xprokét, and Spa(R,R+) = lim
 ��i

Spa(Ri,R
+
i ) a pro-Kummer-étale presentation over X modeled

in a p-divisible monoid M = lim
 ��i

Mi. Consider the monoid algebra

(Rib⌦W(F)Ainf(R,R
+))[Mi ⇥cM(R,R+)

cM[(R,R+)][
1

p
], (7.1.1)
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the completed tensor product being with respect to the p-adic topology. Given an element a 2

Mi ⇥cM(R,R+)
cM[(R,R+) we denote by elog a its image in (7.1.1). Let I be the ideal of (7.1.1) gen-

erated by {↵(a) ⌦ 1 � (1 ⌦ [↵[(a)])elog a}a for a 2 Mi ⇥cM
cM[. Let S̃ i denote the quotient of 7.1.1 by

I . We consider the map ✓̃log : S̃ i ! bOX(R,R+) = R sending elog a 7! 1, and whose restriction to

Rib⌦W(F)Ainf(R,R
+) is the map ✓̃. Let S i denote the (ker ✓̃log)-adic completion of S̃ i.

We define the relative log de Rham period sheaf OB+
dR,log

to be the sheafification of the presheaf

Spa(R,R+) 7! lim
��!

i

S i.

We endow OB+
dR,log

with the (ker ✓̃log)-filtration. We define OBdR,log = OB+
dR,log

[ 1
⇠
] endowed with the

convolution filtration as for the de Rham sheaf in the proétale case. Finally, we denote OClog(i) =

griOBdR,log and OClog = OClog(0).

Remark 7.1.3. We do not work with the completed de Rham sheaf OBdR,log of [DLLZ18]. Indeed,

the main results of loc. cit. hold for the sheaf OB+
dR,log

[⇠�1], proper log-smooth maps and the higher

derived images of the constant sheaf bZp. In fact, the same arguments of [Sch13a] can be applied to

this situation. Moreover, the sheaves we are interested in are constructed in this way, see §2.2 and

§5.1 down below.

Let Ω1
X(log) denote the sheaf of log differentials of X [DLLZ19, §3]. The log connection (d, �) :

OX[M]! Ω1
X(log) has a natural extension to OB+

dR,log
in the following way: for x = (s⌦�)elog a in the

monoid algebra (7.1.1) we define r(x) = �elog ads+ (s⌦ �)�(a)elog a, where �(a) = �(pr1(a)) is applied

to the projection in the first component. As ker ✓̃log is generated by ker ✓̃ and the elements elog a � 1

with a 2 Mi ⇥cM
cM[, one easily checks that r(ker ✓̃log)k ⇢ ker ✓̃k�1

log
⌦OX
Ω

1
X(log) ⇢ S i ⌦OX

Ω
1
X(log).

By completing with respect to ker ✓̃log, and taking direct limits on i, one obtains an integrable log-

connection

rlog : OB+dR,log ! OB+dR,log ⌦OX
Ω

1
X(log)

satisfying Griffiths transversality. We get a log de Rham complex

0! B+dR ! OB+dR,log

rlog

��! OB+dR,log ⌦OX
Ω

1
X(log)! · · ·

rlog

��! OB+dR,log ⌦OX
Ω

d
X(log)! 0. (7.1.2)

By inverting ⇠ one has a log connection for OBdR,log. Then, taking graded pieces one gets a Higgs

bundle structure for OClog [DLLZ18].

One of the most important features of (7.1.2) is that the Poincaré lemma holds [DLLZ18, Cor.

2.4.2]. It is a formal consequence of the fact that locally pro-Kummer-étale, the ring OB+
dR,log

is a

power series ring over B+
dR

, [DLLZ18, Prop. 2.3.15] and [Sch13a, Prop. 6.10].

7.2. The geometric setup

Let A1
Q

be the finite adeles of Q and A
1,p

Q
the prime-to-p finite adeles. From now on we fix a neat

compact open subgroup K p ⇢ GL2(A
1,p

Q
). Let n � 0, we denote by Γ(pn), Γ1(pn) and Γ0(pn) the

principal congruence subgroups

Γ(pn) = {g 2 GL2(Zp) : g ⌘ 1 mod pn}

Γ1(pn) = {g 2 GL2(Zp) : g ⌘

 
1 ⇤

0 1

!
mod pn}

Γ0(pn) = {g 2 GL2(Zp) : g ⌘

 
⇤ ⇤

0 ⇤

!
mod pn}.
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Let Kp ⇢ GL2(Qp) be a compact open subgroup, we denote by Y
alg

Kp
and X

alg

Kp
the modular and compact-

ified modular curves of level K pKp over SpecQp [DR73]. We let Yalg(pn), Y
alg

1
(pn) and Y

alg

0
(pn) denote

the modular curves of level K p
Γ(pn), K p

Γ1(pn) and K p
Γ0(pn) respectively (similarly for the compact-

ified modular curves). We let YKp
and XKp

denote their p-adic analytification to adic spaces over

Spa(Qp,Zp) [Hub96]. We endow XKp
with the log structure defined by the cusp divisor D = XKp

\YKp
.

Let Ealg/Y
alg

Kp
be the universal elliptic curve and Ealg,sm/X

alg

Kp
its extension to a semi-abelian scheme.

Let e : X
alg

Kp
! Ealg,sm be the unit section and !E = e⇤Ω1

Ealg,sm/Xalg the modular sheaf. The semi-abelian

scheme Ealg,sm has a relative compactification to a log smooth morphism f : E
alg
! X

alg

Kp
[DR73].

The analytification E of E
alg

is a log adic space, and the map f : E ! XKp
is a proper log smooth

morphism of adic spaces. Given an integer k 2 Z we denote by !k
E
= !⌦k

E
the modular sheaf of weight

k.

Let E[pn]/YKp
be the local system of pn-torsion points of the universal elliptic curve. The étale

sheaf E[pn] has a natural extension to a Kummer-étale local system over XKp
, which by an abuse of

notation we also write as E[pn]. Indeed, let jkét : YKp,ét ! XKp,két be the natural map of sites, then, by

purity on p-torsion local systems ( [DLLZ19, Theo. 4.6.1]), R jkét,⇤E[pn] is concentrated in degree 0

and jkét,⇤E[pn] is a Kummer-étale local system. Moreover, let µpn,E be the local system of pn-th roots

of unity over E. Using the principal polarization of E, and purity on local systems, one obtains

E[pn] = Pic0(E/X)[pn] = R1 fkét,⇤(µpn,E).

The Tate module is the sheaf over Xprokét defined as the inverse limit TpE = lim
 ��n

E[pn]. By Lemma

3.18 of [Sch13a] one has TpE = R lim
 ��n

E[pn]. Moreover, we have

TpE = R1 fprokét,⇤TpGm,E,

where TpGm,E = lim
 ��
µpn,E =

bZp(1).

From now on an space without underlying log structure will be endowed with the trivial one. Fiber

products are always fiber products of fs log adic spaces unless otherwise specified, cf. [DLLZ19, Prop.

2.3.27].

7.2.1. The Hodge-Tate period map

Let Q
cyc
p be the p-adic completion of the p-adic cyclotomic field Qp(µp1). Scholze proved in [Sch15]

that the inverse limit X(p1) = “ lim
 ��n

X(pn)” has a natural structure of a perfectoid space. Furthermore,

he constructed a Hodge-Tate period map ⇡HT : X(p1) ! P1
Qp

parametrizing the Hodge-Tate filtration

of elliptic curves at geometric points. More precisely, we have the following theorem

Theorem 7.2.1 (Theorem III.3.18 [Sch15]). There exists a prefectoid space X(p1) overQ
cyc
p satisfying

the tilde limit property of [SW13, Def. 2.4.1]

X(p1) ⇠ lim
 ��

n

X(pn).

Moreover, there is a GL2(Qp)-equivariant Hodge-Tate period map

⇡HT : X(p1)! P1
Qp

such that for any open rational subset U of U0 = {[x : y]||x/y|  1} or U1 = {[x : y]||y/x|  1} of P1
Qp

,

the inverse image ⇡�1
HT(U) ⇢ X(p1) is an affinoid perfectoid subspace, and there is n >> 0 and an

open affinoid Vn ⇢ X(pn) whose inverse image to X(p1) is equal to ⇡�1
HT(U).
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For simplicity let us fix the level Kp and write X = XKp
. We briefly recall how ⇡HT is defined. Let

f : E ! X be the relative compactification of the universal elliptic curve. The primitive comparison

Theorem ( [Sch13a, Cor. 5.11] or [DLLZ19, Theo. 6.2.1]) gives an isomorphism

R1 fprokét,⇤(TpGm ⌦bZp

bOE) = TpE ⌦bZp

bOX.

On the other hand, we have a natural boundary map

R1 fan,⇤OE ⌦OX
bOX(1)! R1 fprokét,⇤(TpGm ⌦bZp

bOE).

Deformation theory provides an isomorphism

R1 f⇤OE = Lie E sm = !�1
E ,

taking bOX(1)-duals, and using the principal polarization of E one obtains a map

TpE ⌦bZp

bOX ! !E ⌦OX
bOX.

Joining both arrows one obtains the Hodge-Tate exact sequence (see [Tat67] and [Sch15, Prop.

III.3.1])

0! !�1
E ⌦OX

bOX(1)
HT_

���! TpE ⌦bZp

bOX

HT
��! !E ⌦OX

bOX ! 0. (7.2.1)

Now, the perfectoid space X(p1) trivializes the Tate module TpE. Let  un : bZ2
p

⇠
�! TpE be the

universal trivialization, the pullback of (7.2.1) by  un ⌦ OX(p1) gives a line subbundle LHT ⇢ O�2
X(p1)

which defines the morphism ⇡HT.

7.2.2. Representation theory of GL2

Let B ⇢ GL2 be the Borel subgroup of upper triangular matrices, N ⇢ B its unipotent radical and

T ⇢ B the diagonal torus. Let B and N be the opposite Borel of lower triangular matrices and its

unipotent radical respectively. We let W = {1,w0} denote the Weyl group of GL2, it acts on T by

permutations of the diagonal components, we take w0 =
�

0 1
1 0

�
as a representative of w0.

Let X⇤(T ) be the character group of T , it is identified with Z ⇥ Z via the isomorphism G2
m ! T :

(t1, t2) 7! diag(t1, t2). We see a character  2 X⇤(T) as a character of B or B by extending trivially

to the unipotent radicals. We write g, b, b, n, n and h for the Lie algebras of GL2, B, B, N, N and T

respectively. We see g as a GL2-representation via the adjoint action (g, X) 7! gXg�1 for g 2 GL2 and

X 2 g. Its restriction to T admits a weight decomposition g = n � h � n, where T acts on n and n by

the character ↵ = (1,�1) and �↵ respectively. Let ↵_ : Gm ! T be the cocharacter ↵(t) = diag(t, t�1),

we say that a character (or a weight)  = (k1, k2) 2 X⇤(T ) is dominant if h,↵_i � 0, i.e. if k1 � k2.

We denote by X⇤(T)+ the cone of dominant weights. A dominant weight is of the form k↵ ⌦ dets for

unique k 2 N and s 2 Z.

Let GL2 /Spa(Qp,Zp) be the analytification of GL2 /Spec(Qp), and GL0
2 ⇢ GL2 the open subgroup

whose (R,R+)-points are given by

GL0
2(R,R+) = GL2(R+).

We use similar notation for the upper and lower triangular Borel subgroups of GL2, their unipotent

radicals and the diagonal torus. Let Ga � A
1,an
Qp

be the analytic additive group and G+a ⇢ Ga the unit

disc subgroup, i.e. G+a = Spa(QphT i,ZphT i).

Let FL := B\GL2 be the flag variety of GL2, we denote by F` its analytification. There is a

GL2-equivariant isomorphism FL = P1
Qp

induced by the right action

[x : y]

 
a b

c d

!
= [ax + cy : bx + dy],
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and taking [0 : 1] 2 P1
Qp

as a base point. Since FL is proper, there are isomorphisms of adic spaces

[Hub96, Prop. 1.9.6]

F` = B0\GL0
2 = B\GL2 .

Let St be the left standard representation of GL2. There is a complete description of the isomor-

phism classes of irreducible algebraic representation of GL2 in terms of dominant weights [Mil17]

X⇤(T)+  ! Irr-Rep GL2 / ⇠

 = (k1, k2) 7! V := Symk1�k2 St⌦ det k2 .

The representation V is the irreducible representation of highest weight  = (k1, k2). Let V be a

representation of GL2, we denote by V_ its contragradient representation: given f 2 V_ and g 2 GL2,

then (g f )(v) = f (g�1v) for v 2 V . For irreducible representations we have isomorphisms

V_ � V�w0() = Symk1�k2 St⌦ det �k1 . (7.2.2)

A representative of V can be constructed as a Borel induction:

V = { f : GL2 ! A
1 | f (bg) = w0()(b) f (g) for b 2 B}. (7.2.3)

Indeed, let v_0 2 V_ be a highest weight vector, and h�,�i denote the natural pairing of V_ and V.

Then

v 7! fv : g 7! hv_0 , gvi

defines an isomorphism as in (7.2.3). We can describe V using the opposite Borel instead:

V = { f : GL2 ! A
1| f (bg) = (b) f (g) for b 2 B},

the isomorphism being f 7! Lw0
f , where (Lw0

f )(g) = f (w0g).

Let VBFL denote the category of vector bundles (VB) over FL with linear morphisms. We let

GL2-VBFL be the subcategory of VBFL whose objects are GL2-equivariant vector bundles, and whose

morphisms are GL2-equivariant linear maps. Let Alg-B-Rep be the category of finite dimensional

algebraic representations of B. There is an equivalence of categories

Alg -B- Rep ⌧ GL2 -VBFL (7.2.4)

V 7! V := GL2 ⇥
BV

V := V|[1]  [ V

Where GL2 ⇥
BV is the quotient of GL2 ⇥V by the left B-action: (g, v) ⇠ (bg, bv), and [1] 2 FL is the

class of 1 2 GL2. Let  = (k1, k2) 2 X⇤(T), we denote by L () the GL2-equivariant line bundle over

FL given by GL2 ⇥
Bw0(). Note that if  is dominant then V is equal to the global sections of L (). If

V is the restriction of a GL2-representation to B, thenV is isomorphic to Odim V
FL

as a VB over FL, but

not as a GL2-equivariant VB in general. In particular, the line bundle L (det) attached to det = (1, 1)

is trivial. Moreover, the isomorphism class of L () only depends on k1 � k2; it is isomorphic to the

twisted sheaf O(k1 � k2) over P1
Qp

.

Let fFL = N\GL2 be the natural left T torsor over FL, and let ⇡ : fFL! FL be the projection map.

We have

L () = ⇡⇤OfFL[�w0()].

Indeed, let U ⇢ FL be an open subscheme, then OfFL(U) is the ring of regular functions f 2 BU ⇢ GL2

such that f (nx) = f (x) for all x 2 BU and n 2 N. The action of T over OfFL(U) is given by the left

regular action:

(t · f )(x) = f (t�1x).

Therefore, f 2 L () if and only if (t · f ) = �w0()(t) f . The previous shows that

fFL � Isom(OFL,L (0, 1)) ⇥ Isom(OFL,L (1, 0))

as GL2-equivariant left T-torsors over FL.
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7.2.3. Pullbacks via ⇡HT

Let X = XKp
be the modular curve of level K pKp, so that ⇡Kp

: X(p1) ! X is a pro-Kummer-étale

torsor of Galois group Kp.

Construction 7.2.2. Let Kp-Sh(X(p1)prokét) be the category of Kp-equivariant sheaves over the pro-

Kummer-étale site of the prefectoid modular curve. There is a natural equivalence of categories

Sh(Xprokét) � Kp-Sh(X(p1)prokét)

F 7! F |X(p1)

(⇡Kp,⇤G )Kp  [ G .

On the other hand, the ⇡HT-map gives rise a functor

Υ : Kp-Sh(F`proét)! Kp-Sh(X(p1)prokét) = Sh(Xproket)

F 7! ⇡�1
HT(F ) 7! (⇡Kp,⇤(⇡

�1
HT(F )))Kp .

If we restrict to GL2-equivariant bOF`-vector bundles and compose with the functor (7.2.4) one gets

Υ : Alg -B- Rep! GL2 -VBF`

⇡⇤
HT

��! GL2(Qp)- bO-VBX(p1)

⇡Kp ,⇤( )Kp

�������! bO-VBX.

with ⇡⇤HT(W) = bOX(p1) ⌦⇡�1
HT

bOF`
⇡�1

HT(W).

Definition 7.2.3. Let Kp ⇢ GL2(Qp) be a compact open subgroup and S be a topological space

endowed with a continuous action of Kp. We define the sheaf S on Xproét to be the Kp-equivariant

sheaf over X(p1) whose points at an object U 2 X(p1)proét are

S (U) = Ccont(|U |, S ).

Let V be a finite dimensional GL2-representation, we write V for the pro-Kummer-étale local sys-

tem defined by V via X(p1)! X, in this case we have Υ(V) = V ⌦bQp

bOX.

Example 7.2.4. Let St be the standard representation of GL2, and consider its B-filtration

0! (1, 0)Q! St! (0, 1)Q! 0.

It induces a short exact sequence of GL2-equivariant VB

0! L (0, 1)! St⌦OF` ! L (1, 0)! 0 (7.2.5)

which is the universal filtration of O2
F`

over F`. Then, by construction of ⇡HT, the pullback of (7.2.5)

is the Hodge-Tate filtration (7.2.1). In particular,

Υ(L (1, 0)) = !E ⌦ bOX, Υ(L (0, 1)) = !�1
E ⌦

bOX(1) and Υ(St⌦OF`) = TpE ⌦ bOX.

For a character  = (k1, k2) 2 X⇤(T) we denote

!
E := !k1�k2

E
,

with this convention we have

Υ(L ()) = !
E ⌦OX

bOX(k2). (7.2.6)
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variety

Let W denote the Weyl group of GL2. The goal of this section is to introduce some overconvergent

affinoid neighbourhoods of w 2 W in GL2 and in the flag variety. Then, over these affinoids, we define

locally analytic line bundles interpolating the L () of the previous section. We define the locally

analytic principal series as the global sections of these line bundles, and show that there are highest

weight vector and lowest weight vector maps. Finally, we put these weight vector maps in families

over the overconvergent neighbourhoods of the flag variety, and show that they are compatible with

respect to the Hecke action.

Throughout this section we follow the conventions of §7.2. Let Cp be the p-adic completion of an

algebraic closure of Qp and OCp
its valuation ring. Given � 2 Q we denote p� 2 Cp an element with

p-adic valuation |p�| = |p|�; we will only consider valuations of this form.

Definition 8.0.1. Let H be an affine group scheme over SpecZp. We let H the analytification of

HQp
and H0 the rigid generic fiber of the p-adic completion of H. We denote the profinite group

H = H(Zp). Define the following groups:

1. Let m � 1 be a positive integer, we set Hm := ker(H(Zp)! H(Z/pmZ)).

2. Let � 2 Q>0, we defineH(�) ⇢ H0 as the open subgroup whose (R,R+)-points are given by

H(�)(R,R+) = ker(H(R+)! H(R+/p�R+)).

We callH(�) the �-neighbourhood of the identity inH .

Let Z be an fs log adic space over Spa(Qp,Zp), we the following group-sheaves over the pro-Kummer-

étale site of Z:

HZ := H(OZ), bHZ := H( bOZ), H0
Z := H(O+Z ) and bH0

Z := H( bO+Z )

(3) We define the �-neighbourhoods of the identity inHZ and bHZ to be the subgroups

H(�)Z := ker(H(O+Z )! H(O+Z /p
�)) and bH(�)Z := ker(H( bO+Z )! H(O+Z /p

�)).

We say that bHZ (resp. bH0
Z

and bH(�)Z) is the completion of HZ (resp. H0
Z

and H(�)Z) in the

pro-Kummer-étale site of Z.

(4) Let W be an adic space topologically of finite type over Spa(Qp,Zp). Let Z be an fs log adic

space over Spa(Qp,Zp). We denote by WZ the inverse image to Zprokét of the sheaf represented

by W in the Kummer-étale site of Z. We let bWZ be the completion of MW in Wprokét, in

other words, bWZ is the sheafification of the pre-sheaf whose points at an affinoid perfectoid

Spa(R,R+) 2 Zprokét are equal to W(R,R+).

If Z is clear from the context we omit the subscript in the sheaves of (3) and (4) above.
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Remark 8.0.2. Let W and Z as in (4), let U 2 Zprokét be an affinoid perfectoid with U = Spa(R,R+)

and U = lim
 ��i

Spa(Ri,R
+
i ) a pro-Kummer-étale presentation. Then WZ(U) = lim

��!i
W(Ri,R

+
i ) while

bWZ(U) = W(R,R+), that’s the reason we think of bWZ as a completion of WZ.

Example 8.0.3. 1. Let H be the diagonal torus T or the upper unipotent N, we have

T (�) =

 
1 + p�G+a 0

0 1 + p�G+a

!
and N(�) =

 
1 p�G+a
0 1

!
.

Let m � 1 be an integer, we have

Tm =

 
1 + pmZp 0

0 1 + pmZp

!
and Nm =

 
1 pmZp

0 1

!
.

2. Let � > 0, then

GL2(�) =

 
1 + p�G+a p�G+a

p�G+a 1 + p�G+a

!
.

Definition 8.0.4. LetH be an analytic group over Spa(Qp,Zp) and Z an adic space.

1. LetM be aHZ-torsor over Zprokét, we define its completion as the bH-torsor bM := bHZ ⇥
HZ M.

2. Let f : Z0 ! Z be a morphism of adic spaces and bM a bH-torsor on Zprokét. We define its pullback

to a bH-torsor on Z0
prokét

as f ⇤(bM) = bHZ0 ⇥
f �1( bHZ ) f �1(bM) (similar definition forHZ-torsors).

Let n � 1 and Iwn =

 
Z⇥p Zp

pnZp Z
⇥
p

!
⇢ GL2(Zp) so that the perfectoid modular curve X(p1) is a

pro-Kummer-étale Iwn-torsor over X0(pn).

Definition 8.0.5. Let ✏ � � be positive rational numbers.

1. We denote

GL2(✏, �) := N(�) ⇥ T (�) ⇥N(✏) ⇢ GL0
2 .

2. Suppose that � � n. The �-neighbourhood of Iwn in GL0
2 is the open subgroup

Iwn(�) := IwnGL2(�) = GL2(�) Iwn .

The analytic group Iwn(�) will be called an affinoid Iwahori subgroup of GL0
2.

8.1. Open affinoid subspaces of the flag variety

Let W = {1,w0} be the Weyl group of GL2 and w 2 W. Let ✏ > 0 be rational and consider the

✏-analytic neighbourhood of w

wGL2(✏) ⇢ GL0
2,

we denote by Uw(✏) its image into F`.

Lemma 8.1.1. 1. The collection {Uw(✏)}✏ of open affinoid subspaces of F` is a basis of open

affinoid neighbourhoods of w 2 F`. Moreover, we have a decomposition

GL2(✏) = N(✏) ⇥ T (✏) ⇥N(✏) = GL2(✏, ✏).

and a natural isomorphism

N(✏)w
⇠
�! Uw(✏).
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8. Overconvergent theory over the flag variety

2. The Iwahori subgroups admit Iwahori decompositions (cf Definition 8.0.1 for the conventions)

Iwn(✏) = (NnN(✏)) ⇥ (TT (✏)) ⇥ (NN(✏))

3. Let ✏ � � � n � 1. We have Iwahori decompositions

GL2(✏, �) Iwn = (NN(�)) ⇥ (TT (�)) ⇥ (NnN(✏))

GL2(✏, �)w0 Iwn = (NnN(�)) ⇥ (TT (�)) ⇥ (NN(✏))w0.

Proof. We prove (2), the points (1) and (3) are done in a similar way. It suffices to show the equality

at (R,R+)-points, with (R,R+) a uniform affinoid (Qp,Zp)-algebra. By definition we have

Iwn(✏) =

 
Z⇥p(1 + p✏G+a ) Zp + p✏G+a
pnZp + p✏G+a Z⇥p(1 + p✏G+a )

!
.

Then

Iwn(✏)(R,R+) =

 
Z⇥p(1 + p✏R+) Zp + p✏R+

pnZp + p✏R+ Z⇥p(1 + p✏R+)

!

Let g 2 Iwn(✏)(R,R+). Writing

g =

 
1 x2

0 1

!  
x1 0

0 x4

!  
1 0

x3 1

!

and solving the equations one finds x3 2 pnZp + p✏R+, x1 and x4 2 Z
⇥
p(1 + p✏R+), and x2 2 Zp + p✏R+

which gives (1). ⇤

In a first approximation to describe the dynamics of the Up-operators (cf. §9.1), we need to under-

stand the action of T(Qp) over F` = P1
Qp

. This action has only two fixed points, represented by the

elements of the Weyl group W = {1,w0}. We have the following lemma

Lemma 8.1.2. Let $ = diag(1, p). The following holds

1. U1(✏)$ = U1(✏ � 1) and Uw0
(✏)$ = Uw0

(✏ + 1).

2. Let ✏ � n � 1, then U1(✏) Iwn $ = U1(✏ � 1) Iwn�1 and Uw0
(✏) Iwn $ = Uw0

(✏ + 1)N1.

Proof. It follows from Lemma 8.1.1 and the computation

 
1 0

0 p�1

!  
a b

c d

!  
1 0

0 p

!
=

 
a pb

p�1c d

!
.

⇤

Let fFL = N\GL2 be the natural T-torsor over FL. We denote fF` = N\GL2 and fF`
0
= N0\GL0

2.

The T -torsor fF` is the rigid space defined by the generic fiber of fFL, while the T 0-torsor fF`
0

is the

rigid generic fiber of the p-adic completion of fFL.

Definition 8.1.3. Let w 2 W and ✏ � � � n be positive rational numbers. We define the following

trivial T (�)-torsor over Uw(✏)

eUw(✏, �) := N(�)\GL2(✏, �)w = N0\N0T (�)N(✏)w
⇠
 � T (�) ⇥N(✏)w.

The space eUw(✏, �) Iwn is a trivial TT (�)-torsor over Uw(✏) Iwn.
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8. Overconvergent theory over the flag variety

Remark 8.1.4. Suppose that � � n, by Lemma 8.1.1 we have the decomposition

eUw(✏, �) Iwn

⇠
 �

8>><>>:
TT 0(�) ⇥ NnN(✏) if w = 1

w0(TT (�) ⇥ NN(✏)) if w = w0

.

Furthermore, there are commutative diagrams of torsors

eUw(✏, �) fF`
0 eUw(✏, �) Iwn

fF`
0

Uw(✏) F`0 Uw(✏) Iwn F`0
.

TT (�) T 0
TT (�) T 0 (8.1.1)

Let Λ ⇢ T(Qp) be the subgroup generated by c = diag(p, p) and $ = diag(1, p). Let Λ+ ⇢ Λ be the

multiplicative monoid generated by c±1 and $. To interpolate the Up operators we have to normalize

the action of Λ over the torsors (8.1.1). We normalize the action of Λ over fF` by considering the

quotient Λ\fF`, note that it is a Λ\T -torsor over F`.

Lemma 8.1.5. The maps

eUw(✏, �)! NΛ\NΛGL2(✏, �)w ⇢ Λ\fF`

eUw(✏, �) Iwn ! NΛ\NΛGL2(✏, �)w Iwn ⇢ Λ\fF`

are isomorphisms of adic spaces. Moreover,

eU1(✏, �) Iwn $ = eU1(✏ � 1, �) Iwn�1 and eUw0
(✏, �) Iwn $ = eUw0

(✏ + 1, �)T N1

where in the first equation we assume �  ✏ � 1.

Proof. The second statement follows from Lemma 8.1.2. To prove the first statement, it suffices

to take w = 1. Note that NΛT (�)N(✏) =
F

�2ΛN�T (�)N(✏). Then, it is enough to show that

N0\N0T (�)N(✏) = N\NT (�)N(✏) which is obvious by the Iwahori decomposition. ⇤

8.2. Overconvergent line bundles

Let T = T(Zp) be the Zp-points of the diagonal torus. Let V = Spa(R,R+) be an affinoid adic space

with R an uniform Tate Qp-algebra and � : T ! R+,⇥ a continuous character. We need the following

elementary proposition

Proposition 8.2.1. LetV and � as above. There exists � > 0 such that � extends to a character

� : TT (�) ⇥V ! Gm. (8.2.1)

If the previous holds we say that � is a �-analytic character of T .

Proof. Writing T as product of multiplicative groups, it is enough to prove the proposition for a

character � : Z⇥p ! R+,⇥. By continuity, there is n � 2 such that |�(1 + pn) � 1| < |p|1/(p�1). On the

other hand, we have an isomorphism of groups 1 + pnZp

log
��! pnZp mapping 1 + pn to a generator.

Then, for x 2 Zp, we have

�((1 + pn)x) = (�(1 + pn))x =
X

k�0

 
x

k

!
(�(1 + pn) � 1)k.
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8. Overconvergent theory over the flag variety

The bound on |�(1 + pn) � 1| implies that

|�(1 + pn) � 1|k

|k!|
! 0 as k ! 1.

This shows that the function x 7! �((1 + pn)x) is analytic, and defines a character

� : (1 + pnG+a ) ⇥V ! Gm.

⇤

Remark 8.2.2. The same proof shows that given a finite Zp-module Π of rank s and a character

� : Π ! R+,⇥, there exists a family of free elements {e1, . . . , es} ⇢ Π and � > 0 such that � extends to

an analytic character

� : Π

0BBBBB@
sY

i=1

(1 + p�G+a )ei

1CCCCCA ⇥V ! Gm.

Definition 8.2.3. Let Π be a finite Zp-module and let WΠ = Spf Zp[[Π]] denote the weight space of

its Iwasawa algebra. We denote by WΠ its rigid generic fiber over Spa(Qp,Zp). The space WΠ is

described in (S , S +)-points by

WΠ(S , S +) =
[

S 0⇢S +

Homcont(Π, S
⇥
0 ) = Homcont(Π, S

+)

where S 0 runs over all the subrings of definition of S contained in S + (the last equality is follows

from the fact that Π is finitely generated over Zp).

In the following we will take Π = T = T(Zp) or Π = Z⇥p . Let V = Spa(R,R+) ⇢WT be an open

affinoid subspace. The universal character �un : T ! Zp[[T ]]⇥ restricts to a character �un
V

: T ! R+,⇥

which, by the previous proposition, extends to a �-neighbourhood of T in T 0 for some � > 0. The

same holds for open affinoid subspaces of the weight spaceWZ⇥p .

Definition 8.2.4. Let ✏ � � � n � 1. Let V = Spa(R,R+) be an uniform affinoid space over

Spa(Qp,Zp) and � : T ! R+,⇥ a �-analytic character. Let w 2 W = {1,w0} be an element in the Weyl

group of GL2, consider the open neighbourhood Uw(✏) Iwn of w of §8.1. We define the R+b⌦Zp
O+F`,an

-

line bundle L +(�)✏ over Uw(✏) Iwn to be the quotient

L +(�)✏ = TT (�)\(eUw(✏, �) Iwn ⇥w0(�)R+)

(see Definition 8.1.3). Equivalently, let f : eUw(✏, �) Iwn ! Uw(�) be the projection map, then

L +(�)✏ = f⇤(O
+

eUw(✏,�) Iwn

b⌦R+)[�w0(�)].

We denote L (�)✏ := L +(�)✏[
1
p
].

Remark 8.2.5. The sheaf L +(�)✏ is completely determined by its global sections as eUw(✏, �) is a

trivial TT (�)-torsor. Indeed L +(�)✏ is the trivial line bundle whose global sections are functions

f : w Iwn ! R+ satisfying the following conditions:

i. f extends to an analytic function of GL2(✏, �)w Iwn.

ii. f (bx) = w0(�)(b) f (x) for b 2 B \ wIwn(�)w�1.

From now on all the affinoid pairs (R,R+) endowed with a character of T will be supposed to

be sheafy, i.e. we suppose that Spa(R,R+) is an adic space. In fact, we will be only interested in

V = Spa(R,R+) an open affinoid of the weight space of T , or (R,R+) = (K,OK) a non-archimedean

extension of Qp.
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Proposition 8.2.6. Keep the notation of Definition 8.2.4. The following holds

1. Let ✏ be fixed. The formation of L +(�)✏ is independent of ✏ � �0 � �.

2. If ✏0 � ✏, then L +(�)✏ |Uw(✏0) Iwn
= L +(�)✏0 .

3. Let � : (R,R+) ! (R0,R
0+) be a map of uniform affinoid rings, then L +(�)✏b⌦R+,�R

0+ = L +(� �
�)✏ .

Proof. The proposition follows from the compatibility with respect to � and ✏ of the isomorphisms

eU(✏, �) Iwn �

8>><>>:
TT (�) ⇥ NnN(✏) if w = 1

w0(TT (�) ⇥ NN(✏)) if w = w0

Uw(✏) �

8>><>>:
NnN(✏) if w = 1

NN(✏) if w = w0

,

and the obvious functoriality with respect to the affinoid algebra (R,R+). ⇤

As the above proposition shows, the line bundle L (�)✏ is independent of ✏ and � provided we work

over a small enough neighbourhood of w 2 W. In the following we will simply write L +(�) instead of

L +(�)✏ . Let c = diag(p, p) and $ = diag(1, p). We now define a normalized action of Λ+ = hc±1,$i

over L +(�). By Lemma 8.1.5 we can see Uw(✏, �) Iwn as a subspace of Λ\fF`

Definition 8.2.7. We let c±1 act trivially on L +(�). We let $ act on L +(�) as the pullback of right

multiplication on eUw(✏, �) Iwn ⇢ Λ\fF`. More precisely, let f : eUw(✏, �) ! Uw(✏) be the projection

and consider the right multiplication by $

R$ : eU1(✏, �) Iwn ! eU1(✏ � 1, �) Iwn and R$ : eUw0
(✏, �) Iwn ! eUw0

(✏ + 1, �) Iwn .

Since the map R$ commutes with the left action of TT (�), it induces a pullback map between the

sheaves L +(�) = f⇤(O+eUw(✏,�) Iwn

b⌦R+)[�w0(�)] which we define to be the action of $. Notice that,

depending on w, $ expands or contracts de domain of L +(�).

8.3. Locally analytic principal series

Let � � n � 1. LetV = Spa(R,R+) be an uniform affinoid space over Spa(Qp,Zp) and � : T ! R+,⇥

a �-analytic character. We use the line bundles L (�) over Uw0
(�) Iwn to define �-analytic principal

series and distributions of weight �. We will follow the conventions of [AS08].

Definition 8.3.1. We define the left R+[[Iwn]]-module of �-analytic principal series of weight � as the

global sections of L +(�)

A�,+
� := Γ(Uw0

(�) Iwn,L
+(�)), A�

� = Γ(Uw0
(�) Iwn,L (�))

endowed with the right regular action. Suppose that � is �0-analytic for � � �0, by remark 8.2.5 we

can describe A
�,+
� as the R+-module of functions f : Iwn ! R+ such that

i. f extends to an analytic function of GL2(�, �0)w0 Iwn,

ii. f (bx) = w0(�)(b) f (x) for b 2 B \ w0 Iwn(�0)w�1
0 .

The left R+[[Iwn]]-module of �-analytic distributions of weight � is by definition

D�,+
� := HomR+(A

�,+
� ,R

+), D�
� = D�,+

� [
1

p
]

endowed with the contragradient action.
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Remark 8.3.2. The space NN(�) is a disjoint union of closed discs (cf. Example 8.0.3), in partic-

ular O+(NN(�)) is an ON Zp-algebra. Let {ei}i2I be an ON basis of O+(NN(�)), using the Iwahori

decomposition one has isomorphisms of R+-modules

A�,+
� �

dM
i2I

R+ei and D�,+
� �

Y

i2I

R+e_i .

Remark 8.3.3. It is easy to compare the �-analytic principal series and distributions defined above

with those used in [AIS15]. Let � : T ! R+,⇥ be a �-analytic character written as � = (�1, �2).

Consider the set Z⇥p ⇥ Zp endowed with the right multiplication by Iwn and the left multiplication by

Z⇥p . We let A
�,+
�1��2

be the space of functions f : Z⇥p ⇥ Zp ! R+,⇥ satisfying the following conditions

i. f |1⇥Zp
extends to an analytic function of Zp + p�G+a ,

ii. f (tx) = (�1 � �2)(t) f (x) for t 2 Z⇥p and x 2 Z⇥p ⇥ Zp.

Note that Z⇥p ⇥ Zp endowed with the action of Iwn and Z⇥p is isomorphic to the quotient

Z⇥p ⇥ Zp =

 
1 0

pnZp Z
⇥
p

!
\

 
Z⇥p Zp

pnZp Z
⇥
p

!
=

 
1 0

pnZp Z
⇥
p

!
\ Iwn .

Thus, we have an isomorphism

A�,+
� = A�,+

�1��2
⌦ (det)�2 .

Let c = diag(p, p), $ = diag(1, p), Λ = hc±1,$±1i ⇢ T(Qp), Λ+ = hc±1,$i and Λ� = hc±1,$�1i.

We want to endow A
�,+
� with an action of Λ+ compatible with the one of Iwn (dually, we want to

endow D
�,+
� with an action of Λ�). Let ✏ � �, by Lemma 8.1.5 we can see eUw0

(✏, �) Iwn as a subspace

of Λ\fF`. Moreover, we have

eUw0
(✏, �) Iwn $ Iwn = eUw0

(✏ + 1, �) Iwn ⇢ eUw0
(✏, �) Iwn,

this leads to the following lemma

Lemma 8.3.4. Let � � �0 and � : T ! R+,⇥ a �0-analytic character. There is an action of

the multiplicative monoid Σ+ := IwnΛ
+ Iwn over A

�,+
� which is induced by right multiplication on

Uw0
(�, �0) Iwn. Furthermore, the action of $ on A

�+1,+
� factors through A

�,+
� . Dually, there is an action

of Σ� := IwnΛ
� Iwn over D

�,+
� , and the action of $�1 on D

�,+
� factors through D

�+1,+
� . In particular, $

and $�1 are compact operators of A
�,+
� and D

�,+
� respectively.

Proof. To define the action of Σ+ over A
�,+
� it is enough to extend the character � to Λ by setting

�(c) = �($) = 1. Note that the inclusion eUw0
(�, �0) ⇢ Λ\fF` is stable by multiplication of Σ+.

Then, the action is defined by taking pulbacks of �w0(�)-equivariant functions of the TT (�0)-torsor
eUw0

(�, �0)! Uw0
(�) (i.e. of the sheaf L +(�)).

It remains to study the action of $. We have a commutative diagram

eUw0
(�, �0) Iwn

eUw0
(� + 1, �0) Iwn

Uw0
(�) Iwn Uw0

(� + 1) Iwn .

$

$

Taking global sections of the line bundle L +(�) we get an action of $ over A
�,+
� which is explicitly

given by

($ f )(x) = f ($�1x$).

Moreover, it factors through $ : A
�+1,+
� ! A

�,+
� ⇢ A

�+1,+
� , which shows that it is a compact operator as

Uw0
(� + 1)! Uw0

(�) is a strict immersion. The statements for D
�,+
� are clear by taking duals. ⇤
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In the definition of overconvergent modular symbols we are going to consider A
�,+
� and D

�,+
� as

sheaves over the pro-Kummer-étale site of X0(pn), the strategy is to use Construction 7.2.2 and Defi-

nition 7.2.3. In order to study the pro-Kummer-étale cohomology of these sheaves we need a devis-

age in finite local systems of the modular curve. We know that A
�,+
� and D

�,+
� have natural underlying

topologies (the p-adic topology and the weak topology respectively). Furthermore, they have presen-

tations as projective limits of inductive limits of finite Iwn-modules. Using such a presentation we can

describe the sheaves A
�,+
� and D

�,+
� over F`proét as projective limits of inductive limits of finite constant

sheaves. Then, we take the inverse image via ⇡HT : X(p1) ! F` and the Iwn-equivariance to define

the local systems over X0(pn). We need a couple of lemmas.

Lemma 8.3.5. Let (F,OF) be a non archimedean field. Let H = Spa(A, A+) be an affinoid adic

analytic group over F, and Z = Spa(R,R+) an affinoid adic space topologically of finite type over

Spa(F,OF). Let Θ : H ⇥ Z ! Z be an action of H over Z. Then for all N > 0 there exists a

neighbourhood 1 2 U ⇢ H such that for all g 2 U, z 2 Z and f 2 O+(Z), we have | f (z)� f (gz)|  |p|N .

Proof. As O+(Z) = R+ is topologically of finite type over OF , it suffices to prove the proposition for a

single f 2 R+. Let Θ⇤ : R+ ! (A+b⌦OK
R+)+ be the pullback of the multiplication map. Let V ⇢ H ⇥ Z

be the open affinoid subspace defined by the equation

|1 ⌦ f � Θ⇤( f )|  |p|N .

As V contains 1⇥Z and this is a quasi-compact closed subset ofH ⇥Z, there exists 1 2 U f ⇢ U such

that U f ⇥ Z ⇢ V . Therefore, for all g 2 U f and z 2 Z we have | f (z) � f (gz)|  |p|N . ⇤

Lemma 8.3.6. Let s � 1 be an integer. There exists a positive integer r such that Γ(ps+r) =

ker(GL2(Zp) ! GL2(Z/ps+rZ)) acts trivially on A
�,+
� /p

sA
�,+
� . In particular, we can write A

�,+
� =

lim
 ��s

lim
��!i

Fs,i where Fs,i are finite Iwn-modules.

Proof. It is enough to show that there exists r > 0 such that Ts+rNs+r acts trivially on A
�,+
� /p

sA
�,+
� . Let

f 2 A
�,+
� and g = tn 2 T N, then (g f )(x) = �(t) f (t�1xtn) for all x 2 NN(�) � Uw0

(�) Iwn. Since � is

continuous, we can find r1 >> 0 such that �(t) ⌘ 1 mod ps for all t 2 Tr1
. Applying Lemma 8.3.5,

one finds r2 >> 0 such that f (t�1xtn) ⌘ f (x) mod ps for all x 2 NN(�) and tn 2 Tr2
Nr2

. Taking

r = max{r1, r2} we have the first statement of the lemma. The second statement follows from the fact

that Iwn /Γ(ps+r) is a finite group. ⇤

In order to write D
�,+
� as a projective limit of inductive limits of finite Iwn-modules we first give a

filtration defining the weak topology

Definition 8.3.7. We let Fils D
�,+
� be the kernel of D

�,+
� ! D

��1,+
� /psD

��1,+
� .

Lemma 8.3.8. We have an isomorphism D
�,+
� = lim

 ��s
D
�,+
� /Fils D

�,+
� . Moreover, D

�,+
� /Fils D

�,+
� is a finite

R+-module and the inverse limit topology is the weak topology. In particular, writing D
�,+
� /Fils D

�,+
� =

lim
��!i

F0s,i with F0s,i a finite Iwn-module, we get D
�,+
� = lim

 ��s
lim
��!i

F0s,i.

Proof. This follows from the fact that the injective map D
�,+
� ! D

��1,+
� is the dual of a compact map

of ON R+-modules. ⇤

Corollary 8.3.9. Let F denote A
�,+
� or D

�,+
� , and let F = lim

 ��s
lim
��!i

Fs,i be the presentation as a pro-

jective limit of a direct limit of finite Iwn-modules of Lemmas 8.3.6 and 8.3.8. Then the sheaf F of

Definition 7.2.3 can be written as

F = lim
 ��

s

lim
��!

i

Fs,i

in the proétale site of F`.
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Proof. Let U 2 F`proét be an affinoid perfectoid. As the presentation F = lim
 ��s

lim
��!i

Fs,i is compatible

with the topology of each sheaf (the p-adic or the weak topology), it is enough to show that

Ccont(|U |, lim
 ��

s

lim
��!

i

Fs,i) = lim
 ��

s

lim
��!

i

Ccont(|U |, Fs,i),

but this is clear as |U | is a spectral space and lim
��!i

Fs,i is a discrete set. ⇤

We end this subsection relating the �-analytic principal series and distributions with the algebraic

representations of GL2. Let � � �0, we have an Iwn-equivariant map of torsors

eUw0
(�, �0) Iwn

fF`
0

Uw0
(�) Iwn F` .

TT (�0) T 0 (8.3.1)

Let  2 X⇤(T) be a dominant weight, L () the line bundle over F` defined by the character w0() and

the functor (7.2.4). Moreover, let L +() ⇢ L () be the O+F`
-subsheaf defined by the lattice w0()Zp ⇢

w0()Qp via fF`
0
! F`. We set V+ := Γ(F`,L +()). Recall from §7.2 that V = Γ(F`,L ()) is the

irreducible representation of GL2 of highest weight .

Proposition 8.3.10. Let  2 X⇤(T) be a dominant weight.

1. There is a natural Iwn-equivariant inclusion V+ ! A
�,+
 for all � � n.

2. There is a natural Iwn-equivariant map D
�,+
 ! V

+,_
 = V+

�w0() which becomes surjective after

inverting p.

Proof. From diagram (8.3.1), taking global sections of the line bundle L () we obtain a natural Iwn-

equivariant map V+ ! A
�,+
 which is clearly an inclusion. The map D

�,+
 ! V+

�w0() is defined by taking

duals. ⇤

Remark 8.3.11. Let c = diag(p, p) and $ = diag(1, p), let Λ+ = hc±1,$i and Λ� = hc±1,$�1i be

multiplicative monoids. Set Σ+ = IwnΛ
+ Iwn and Σ� = IwmΛ

� Iwn. In order to make the maps

of Proposition 8.3.10 Σ±-equivariant we have to normalize the action of Λ on V+ . Namely, we let

t 2 Λ act on V+ by (t f )(x) := 1
(t)

f (xt). Thus, under this normalization, the maps V+ ! A
�,+
 and

D
�,+
 ! V+

�w0() are Σ+ and Σ�-equivariant respectively.

Definition 8.3.12. Let (R,R+) be an uniform Tate Qp-algebra and � : T ! R+,⇥ a �-analytic character.

We define the following Iwn-equivariant sheaves over F`proét

1. The sheaf of �-analytic principal series

A�,+
� = A�,+

� = lim
 ��

s

(A�,+
� /p

sA�,+
� ) andA�

� = A
�,+
� [

1

p
] = A�

�.

We letA�,+
� b⌦Zp

bO+F`
be the completed tensor product with respect to the p-adic topology.

2. The sheaf of �-analytic distributions

D�,+
� = D�,+

� = lim
 ��

s

D�,+
� /Fils andD�

� = D
�,+
� [

1

p
] = D�

�.

We letD�,+
� b⌦Zp

bO+F`
be the completed tensor product with respect to the filtration ofD�,+

� .
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Proposition 8.3.13. The sheavesA
�,+
� b⌦ bO+F`

andD
�,+
� b⌦ bO+F`

admit an cIwn(�)-equivariant action com-

patible with the Iwn(�)-action over the flag variety.

Proof. See Definition 8.0.1 for the description of the completed sheaf cIwn(�)F`. First, we show that

the sheaf cIwn(�)F` is compatible with the action of Iwn(�) over F` and the right multiplication. It

is enough to prove that cGL2,F` is GL2-equivariant for the right multiplication and the action over F`.
Consider the following diagram

F`⇥GL2

F` F`

pr1 m

where pr1 is the projection onto the first factor and m the multiplication map. A GL2-equivariant

action over cGL2,F` is the same as an isomorphism

pr⇤1(cGL2,F`)
⇠
�! m⇤(cGL2,F`)

of cGL2-torsors over (F`⇥GL2)proét satisfying a cocycle condition. Let Spa(S , S +) be a perfectoid

affinoid space in (F`⇥GL2)proét, we have induced maps x0 : Spa(S , S +)! F` and g0 : Spa(S , S +)!

GL2. We define the isomorphism

GL2(S ) � pr⇤1(cGL2,F`)(S , S
+)

⇠
�! m⇤(cGL2,F`) � cGL2(S , S +) � GL2(S )

g 7! gg0

It is straightforward to check that this isomorphism provides the desired action.

Assume that � is �0-analytic for � � �0. We want to describe the sheaf A�,+
� b⌦ bO+F`

as bO+F`
-valued

functions over the sheaf cGL2(�, �0)w0Iwn satisfying the conditions of Definition 8.3.1. By Lemma

8.1.1, we have an Iwahori decomposition

cGL2(�, �0)w0Iw
n
= (N

n
bN(�0))F` ⇥ (T bT (�0))F` ⇥ (N bN(�))F`w0.

We define OA�,+
� over F`proét to be the sheaf whose points at an affinoid perfectoid U = Spa(S , S +)!

F` is the space of functions f 2 OA�,+
� (U) ⇢ Hom(cGL2(�, �0)w0Iw

n
|U , bO+U) satisfying:

i. f is induced by an analytic function Hom(GL2(�, �0)w0 Iwn,G
+
a )b⌦Zp

bO+U = O+(GL2(�, �0)w0 Iwn)b⌦ bO+U .

ii. f (bx) = w0(�)(b) f (x) for b 2 bB \ w0
cIwn(�0)w�1

0 |U .

The Iwahori decomposition of GL2(�, �0)w0 Iwn shows that we have an isomorphism of sheaves over

F`proét

OA�,+
� � O+(w0NN(�))b⌦ bO+F`.

By Remark 8.3.2, we see that the natural map A�,+
� b⌦ bO+F`

! OA�,+
� is in fact an isomorphism of Iwn-

equivariant sheaves. Since OA�,+
� has a natural cIwn(�)-equivariant action induced by the right regular

action, we have proven the proposition for A�,+
� b⌦ bO+F`

. We obtain the result for D�,+
� b⌦ bO+F`

by taking

bO+F`
-duals (recall that the completion in this case is with respect to the weak topology, cf. Lemma

8.3.8). ⇤

Corollary 8.3.14. Let  2 X⇤(T) be a dominant character. The maps V+ ! A
�,+
 and D

�,+
 ! V+

�w0()

induce morphisms of cIwn(�)-equivariant sheaves over F`proét

V+ ⌦Zp
bO+F` ! A

�,+


b⌦ bO+F` andD�,+


b⌦ bO+F` ! V+�w0() ⌦Zp
bO+F`.
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Proof. In the notation of the previous proposition, it is enough to consider the inclusion of sheaves

over F`proét

cGL2(�, �0)w0Iw
n
⇢ cGL2

and take analytic functions with values in bO+F`
satisfying f (bx) = w0()(b) f (x) for b 2 bB. ⇤

8.4. The dual BGG complex and highest weight vector maps

We begin this subsection with a brief construction of the dual BGG complexes for GL2, we refer

to [Hum08] for a more general treatment of the subject. Let W = {1,w0} be the Weyl group of GL2

and Bw0N ⇢ GL2 the big cell. We have a commutative diagram of torsors

Bw0N GL2

B\Bw0N FL

B B (8.4.1)

where the left vertical arrow is in fact a trivial B-torsor. Let  2 X⇤(T) be a character and L ()/FL

the line bundle attached to w0() by the functor (7.2.4), in other words, the line bundle given by the

quotient B\(GL2 ⇥w0()). If  is dominant, let V := Γ(F`,L ()) be the irreducible representation of

GL2 of highest weight .

Definition 8.4.1. We define the (g,B)-representation V() := Γ(B\Bw0N,L ()), where the action of

(g,B) is induced by the right regular action on the big cell.

As B-module, V() is a twist of the algebra of regular functions of w0N. Indeed, there is an isomor-

phism B\Bw0N � w0N, and one has

V() =  ⌦ V(1) =  ⌦ Γ(w0N,ON), (8.4.2)

where the action of B over Γ(w0N,ON) is induced by the adjoint action (n, b) 7! b�1nb for (n, b) 2

N ⇥ B.

Remark 8.4.2. The (g,B)-module V() is in fact the admissible dual of the Verma module of highest

weight , see §3.10 of [AS08].

Let  be a dominant weight. Taking the global sections of L () in the diagram (8.4.1), one obtains

a map

V ! V().

Writing  = (k1, k2) 2 Z2, and Ga � N via X 7!

 
1 X

0 1

!
, the map of V in V() is identified in (8.4.2)

with the inclusion Qp[X]k1�k2
⇢ Qp[X] � C(w0N,Qp) of polynomials of degree  k1 � k2. We have

the following proposition

Proposition 8.4.3. Let ↵ = (1,�1) 2 Z2
� X⇤(T) and  = (k1, k2) a dominant weight. There is a short

exact sequence of (g,B)-representations

BGG() : 0! V ! V()! V(w0() � ↵)! 0

called the dual BGG complex of weight . As B-representations it is identified with the short exact

sequence

0!  ⌦ Qp[X]k1�k2
!  ⌦ Qp[X]

( d
dX

)k1�k2+1

��������! (w0() � ↵) ⌦ Qp[X]! 0. (8.4.3)
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Proof. We have a weight decomposition of V() with respect to T

V() =
M

n�0

( � n↵)Qp,

where ( � n↵)Qp is identified with  ⌦ QpXn under the isomorphism (8.4.2). As V is the irreducible

representation of highest weight , it has a weight decomposition V �
L

0nk1�k2
( � n↵)Qp. This

shows that V ⇢ V() is identified with the inclusion  ⌦Qp[X]k1�k2
⇢  ⌦Qp[X]. As  ⌦ Xk1�k2+1 has

weight (w0() � ↵), the isomorphism of BGG() with (8.4.3) as B-representations is clear. ⇤

Let  2 X⇤(T) be a character, note that there are natural maps


◆
�! V() as B-modules, and V()

evw0

���!  as b-modules. (8.4.4)

In fact, the action of

 
0 0

1 0

!
2 nmaps ⌦Xn to (k1�k2�n)(⌦Xn+1). They are the highest weight vector

and lowest weight quotient of V() with respect to the actions of B and b respectively. Futhermore,

recall that the �-analytic principal series A�
 is by definition the global sections of L () restricted to the

open analytic subspace Uw0
(�) Iwn ⇢ F`. Let B = B(Zp), since Uw0

(�) Iwn ⇢ (B\Bw0N)an ⇢ F`, there

is a natural (g, B)-inclusion V() ⇢ A�
 which can be improved to an equivariant (g, BΛ+)-inclusion by

normalizing the action of c = diag(p, p) and $ = diag(1, p) on V() as in Remark 8.3.11. The maps

(8.4.4) can be extended to maps between �-analytic characters and �-analytic principal series:

Proposition 8.4.4. Let ✏ � � � n. Let (R,R+) be a uniform TateQp-algebra and � : T = T(Zp)! R⇥,+

a �-analytic character as in §8.3.

1. There is a B \ Iwn(�)-equivariant map ◆ : �R+ ! A
�,+
� (the highest weight vector map). More-

over, it induces a morphism of cIwn(✏)-equivariant sheaves over U1(✏) Iwn.

L +(w0(�))b⌦O+
F`

bO+F` ! A
�,+
�

b⌦ bO+F`.

Dually, we have equivariant maps D
�,+
� ! (��)R+ andD

�,+
� b⌦ bO+F`

! L +(�w0(�))b⌦O+
F`

bO+F`
.

2. There is a B \ Iwn(�)-equivariant map evw0
: A

�,+
� ! �R+ (the lowest weight vector quotient).

Moreover, it induces a morphism of cIwn(✏)-equivariant sheaves over Uw0
(✏) Iwn

A�,+
�

b⌦ bO+F` ! L +(�)b⌦O+
F`

bO+F`.

Dually, we have equivariant maps (��)R+ ! D
�,+
� and L +(��)b⌦O+

F`

bO+F`
! D

�,+
� b⌦ bO+F`

.

Proof. Let w 2 W = {1,w0}. By duality it is enough to construct the maps for the �-analytic prin-

cipal series. It is obvious that the maps ◆ and evw0
are morphisms of B \ Iwn and B \ Iwn-modules

respectively. Moreover, it is clear that they extend to a morphism of B \ Iwn(�) and B \ Iwn(�)-
representations in the sense that for any affinoid ring (S , S +), the extension of scalars to S + of the

maps ◆ and evw0
commutes with the action of (B \ Iwn(�))(S , S +) and (B \ Iwn(�))(S , S +) respec-

tively. Denote Zw := GL2(✏, �)w Iwn, the quotient maps

B \ Iwn(�)\(Z1 ⇥ �R+)! B \ Iwn(�)\(Z1 ⇥ A�,+
� )

(B \ w0 Iwn(�)w�1
0 )\(Zw0

⇥ A�,+
� )! (B \ w0 Iwn(�)w�1

0 )\(Zw0
⇥ w0(�)R+)

induce maps L (w0(�))! A�,+
� |anb⌦OF` andA�,+

� |anb⌦OF` ! L +(�) over the analytic site of U1(✏) Iwn

and Uw0
(✏) Iwn respectively. Their p-adic completions in the pro-étale site give rise the maps of the

proposition. ⇤
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Second proof. Let us provide a slightly different proof whose ideas are used in the forthcoming sec-

tions. We assume that � is �0-analytic for � � �0. We saw in Proposition 8.3.13 that the sheafA�,+
� b⌦ bO+�

occurs as the sheaf of w0(�)-equivariant functions of a trivial sheaf cGL2(�, �0)w0Iwn-sheaf for the left

action of bB \ w0
cIwn(�0)w�1

0 . In the next we will construct the maps of the abelian sheaves by first

constructing maps between analytic spaces over Uw(✏) Iwn.

Let Zw = GL2(✏)w Iwn, consider the following map of left B \ wIwn(✏)w�1-spaces

Zw ⇥ (N0\N0GL2(�, �0)w0 Iwn w�1)! Zw ⇥ (N0\N0GL2(�, �0)w0 Iwn)0

(x, g) 7! (x, gx)
(8.4.5)

where the action of b 2 B \ wIwn(✏)w�1 is b(x, g) = (bx, gb�1) in the left hand side, and b(x, g) =

(bx, g) in the right hand side1. By the Iwahori decomposition (Lemma 8.1.1) we know that

N0\N0GL2(�, �0)w0 Iwn � (TT (�0)) ⇥ (NN(�))w0.

Therefore, the map (8.4.5) is well defined and it is in fact an isomorphism. On the other hand, we

have maps of B \ wIwn(✏)w�1-equivariant spaces

Zw0
⇥ TT (�0) = Zw0

⇥ NN(�0)\BB(�0) ⇢ Zw0
⇥ (N\N GL2(�, �0)w0 Iwn w�1

0 )

Z1 ⇥ (N0\N0GL2(�, �0)w0 Iwn)! Z1 ⇥ (N0\N0GL2(�, �0)w0 IwnN
0/N0) � Z1 ⇥ w0TT (�0)

Composing the previous maps with the isomorphism (8.4.5) we obtain B \ wIwn(✏)w�1-equivariant

maps

Zw0
⇥ TT (�)! Zw0

⇥ (N0\N0GL2(�, �0)w0 Iwn)0

(x, t) 7! (w0x, tx)

Z1 ⇥ (N0\N0GL2(�, �0)w0 Iwn)0 ! Z1 ⇥ w0TT (�)

(x,w0g) 7! (x,w0gx�1) = (x,w0nx,gtx,gnx,g) 7! (x,w0tx,g),

where gx�1 = nx,gtx,gnx,g is the Iwahori decomposition of gx�1, and the action of the upper triangular

Borel on TT (�) is b · t = tt�1
b

with tb the image of b in the torus. Dividing by the action of the Borel

we obtain maps of Iwn(✏)-equivariant spaces over Uw(✏) Iwn

eUw0
(✏, �0) Iwn ! Uw0

(✏) Iwn ⇥N
0\N0GL2(�, �0)w0 Iwn

U1(✏) Iwn ⇥N
0\N0GL2(�, �0)w0 Iwn ! eU1(✏, �0) Iwn .

(8.4.6)

Indeed, we have an isomorphism fF` � B\(GL2 ⇥T ) where the action of b 2 B on (g, t) 2 GL2 ⇥T

is given by b(g, t) = (bg, tt�1
b

). Notice that the first map is equivariant for the left multiplication of

TT (�) while the second map is w0-equivariant. Taking completions in the proétale site of Uw(✏) Iwn,

and analytic functions in Hom
T bT (�)

(�,w0(�) bO+F`
), one obtains the desired maps

A�,+
�

b⌦ bO+F` ! L +(�)b⌦O+
F`

bO+F` over Uw0
(✏) Iwn

L +(w0(�))b⌦O+
F`

bO+F` ! A
�,+
�

b⌦ bO+F` over U1(✏) Iwn .

⇤

Let  2 X⇤(T) be a dominant weight and V the irreducible representation of GL2 of highest weight

. The highest and lowest weight vectors of V induce maps of B-representations

V ! w0()Qp and Qp ! V.

1The zero subscript in the right hand side meaning that the action of the Borel is trivial in that component
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8. Overconvergent theory over the flag variety

Passing through the functor (7.2.4) one gets maps of GL2-equivariant sheaves over F`

V ⌦Qp
OF` ! L () and L (w0())! V ⌦Qp

OF`.

Recall that we have integral structures L +() and V+ = Γ(F`,L +()) which are compatible with the

previous maps . We have the following corollary

Corollary 8.4.5. Let  2 X⇤(T) be a dominant character. There are commutative diagrams of cIwn(�)-
equivariant sheaves

A
�,+
 b⌦ bO+F`

L +() ⌦O+
F`

bO+F`
L +(w0()) ⌦O+

F`

bO+F`
A

�,+
 b⌦ bO+F`

V+ ⌦
bO+F`

V+ ⌦
bO+F`

A similar statement holds forD
�,+
 .

Proof. It is enough to prove the commutativity of the diagrams at the level ofB\Iwn(�)-representations

for w = 1 (resp. as B \ Iwn(�)-representations for w = w0) which is easy to check. ⇤

Corollary 8.4.6. Let ✏ � � � n. Let (R,R+) be an uniform affinoid Tate algebra over Qp and � : T !

R+,⇥ a �0-analytic character. The maps of Proposition 8.4.4 are compatible with the action of Λ+ for

A
�,+
� , and with the action of Λ� forD

�,+
� .

Proof. Assume that the character is �0-analytic for � � �0. It is enough to check that the maps of

spaces in (8.4.6) are compatible with the action of Λ. But this follows from the normalization of the

action of Λ in Λ\fF` and Lemma 8.1.5. ⇤
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modular curves

The theory of the canonical group is fundamental in the construction of the overconvergent modular

forms and the perfectoid modular curve. One of the main ideas of the recent work of Boxer-Pilloni

in higher Coleman theory [BP20] is to use the Hodge-Tate period map and the perfectoid Shimura

variety to define an overconvergent theory of automorphic forms. Following their method, one can

describe the overconvergent modular forms only via the Hodge-Tate period morphism, not using

explicitly the canonical group but in the construction of the perfectoid modular curve.

The goal of this section is to translate the overconvergent (or locally analytic) objects over F`
defined in §8 into overconvergent objects over the modular curves via the Hodge-Tate period map. We

will define the sheaves of overconvergent modular forms of [Pil13] and [AIS14], the overconvergent

modular symbols of [AS08], and the overconvergent dlog map of [AIS15] interpolating the Hodge-

Tate map HTk : Symk TpE ⌦ bOX ! !k
E
⌦OX

bOX. Moreover, we also construct a “dual” of the above

map interpolating HT_,k : !�k ⌦OX
bOX(k) ! Symk TpE ⌦ bOX. Later in §10, we will use these maps

to construct the interpolations of the Eichler-Shimura decomposition, recovering the “first half” of

[AIS15].

We keep the conventions of §7. Throughout this section we shall denote X = X0(pn) for the modular

curve of level K p Iwn, and X1 = X(p1) for the perfectoid modular curve.

9.1. Overconvergent neighbourhoods of the ordinary locus

We start with the definition of the overconvergent of neighbourhoods of the ordinary locus of X. Let

⇡HT : X1 ! F` = P1
Qp

be the Hodge-Tate period map and ⇡Iwn
: X1 ! X the natural projection

map. Let Xord
1 ⇢ X1 be the closure of the ordinary locus of the perfectoid modular curve, and Xord the

closure of the ordinary locus of X. By [Sch15] we know that Xord
1 = ⇡

�1
HT(F`(Qp)). In particular, we

can see the topological space Xord as pr(⇡�1
HT(F`(Qp)))

Let Ccan
n ⇢ E[pn] be the canonical subgroup over Xord and w 2 W = {1,w0}. We let X

ord

w,Iwn
⇢ Xord

denote the w-ordinary locus, i.e. the ordinary locus where Ccan
n has relative position w with respect

to the universal group Hn ⇢ E[pn]. In other words, X
ord

1,Iwn
is the ordinary locus where Ccan

n = Hn

and X
ord

w0,Iwn
the locus where Ccan

n \ Hn = 0. We can also describe the closed subspace X
ord

w,Iwn
as

⇡Iwn
(⇡�1

HT(w Iwn)).

Let ✏ � n � 1 and w 2 W = {1,w0}. In §8.1 we have defined overconvergent affinoid neighbour-

hoods {Uw(✏) Iwn}✏>n of w 2 F`.

Proposition/Definition 9.1.1. There exists a unique open affinoid subspace Xw,Iwn
(✏) ⇢ X such that

⇡�1
Iwn

(Xw,Iwn
(✏)) = ⇡�1

HT(Uw(✏) Iwn). Moreover, it satisfies the following properties:

i. Xw,Iwn
(✏0) ⇢ Xw,Iwn

(✏) is a strict immersion for ✏0 > ✏.

ii. {Xw,Iwn
(✏)}✏ is a basis of strict neighbourhoods of X

ord

w,Iwn
.
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9. Overconvergent theory over the modular curves

Proof. By Theorem III 3.18 of [Sch15] we know that ⇡�1
HT(Uw(✏) Iwn) is an affinoid perfectoid sub-

space, and that there is some finite level Kp ⇢ GL2(Zp) and some open affinoid subset U ⇢ XKp
whose

preimage to X1 is ⇡�1
HT(Uw(✏) Iwn). As the underlying topological space of the affinoid perfectoid is

Iwn-invariant, we can actually take Kp = Iwn so that Xw,Iwn
(✏) = U. Let ✏0 > ✏. Since X is proper,

to see that Xw,Iwn
(✏0) ⇢ Xw,Iwn

(✏) is a strict immersion it suffices to prove that Xw,Iwn
(✏0) ⇢ Xw,Iwn

(✏).
This is a consequence of the construction and the fact that Uw(✏0) Iwn ⇢ Uw(✏) Iwn. Finally, to prove

that {Xw,Iwn
(✏)}✏>n is a basis of strict neighbourhoods of X

ord

w,Iwn
it is enough to notice that they are

quasi-compact open subsets of a qcqs adic space, and that
T

✏ Xw(✏) = X
ord

w,Iwn
. The last equality is a

consequence of the equality (in F`) w Iwn =
T

✏ Uw(✏) Iwn, and the description of the ordinary locus

of the perfectoid modular curve as ⇡�1
HT(F`(Qp)). ⇤

We briefly recall some properties of the canonical group in the overconvergent neighbourhoods of

the canonical locus, see [Far11] and [Sch15, §III.2].

Theorem 9.1.1. The following holds

1. Let m � n be an integer. There exists ✏ � n such that Xw,Iwn
(✏) admits a canonical subgroup of

order pm.

2. Let X = X0(pn) be the formal integral modular curve of level K p Iwn over Spf Zp, cf. [KM85].

Let !E,X be the modular sheaf over X, and !E,X ⌦OX O+X the induced integral structure of !E.

The map HT : TpE ⌦ bOX ! !E ⌦OX
bOX restricts to a map

TpE ⌦ bO+X ! !E,X ⌦OX
bO+X

with cokernel of p-torsion.

3. Let m � n and ✏ � n such that Xw,Iwn
(✏) admits a canonical subgroup of order pm. There is

0 < r < 1 such that the restriction of the Hode-Tate map to Xw,Iwn
(✏) factors through

TpE ⌦ bO+X !E,X ⌦OX
bO+X

C
can,_
m ⌦ bO+X/pm�r !E,X/p

m�r

where C
can,_
m is the Cartier dual of the canonical group Ccan

m .

Proof. Part (1) is of Théorème 6 (1) in [Far11] where there are explicit bounds for ✏. Parts (2) and (3)

follows by Théorème 6 (7) and Théorème 4 of loc. cit., see [AIP15, §3] for more details. ⇤

The affine modular curve Y ⇢ X parametrises triples (E,Hn, N) where E is an elliptic curve

E,  N is some prime-to-p level structure, and Hn ⇢ E[pn] is a cyclic subgroup of order pn. Let

$ = diag(1, p). We finish this subsection with the dynamics of the Up-correspondance of Xn.

Definition 9.1.2. The Up-correspondance of X is the finite flat correspondance C

C

X X

p1 p2 (9.1.1)

parametrising (E, N ,Hn,H
0), where (E,Hn, N) 2 X and H0 ⇢ E[p] is a cyclic subgroup of or-

der p such that Hn \ H0 = 0. We define p1(E, N ,Hn,H
0) = (E, N ,Hn) and p2(E, N ,Hn,H

0) =

(E/H0, N ,Hn), where  N and Hn are the images of  N and Hn in the quotient E/H0. Let ⇡ : p⇤1E !

p⇤2E be the universal isogeny over C and ⇡_ : p⇤2E ! p⇤1E its dual. For a subspace Z ⇢ X we denote

Up(Z) = p1(p�1
2 (Z)) and U t

p(Z) = p2(p�1
1 (Z)).
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9. Overconvergent theory over the modular curves

Lemma 9.1.3. Let ✏ � n, the following holds

1. U t
p(X1,Iwn

(✏)) ⇢ X1,Iwn
(✏ + 1) and Up(X1,Iwn

(✏)) � X1,Iwn
(✏ � 1) if ✏ � n + 1.

2. Up(Xw0,Iwn
(✏)) ⇢ Xw0,Iwn

(✏ + 1) and U t
p(Xw0,Iwn

(✏)) � Xw0,Iwn
(✏ � 1) if ✏ � n + 1.

Proof. The perfectoid modular curve X1 parametrises (E, N , (e1, e2)) where (E, N) 2 X(1) and

(e1, e2) is a basis of TpE. Let C1 = X1⇥X,p1
C. The perfectoid curve C1 parametrizes (E, N , (e1, e2),H0)

where (E, N , (e1, e2)) 2 X1 and H0 ⇢ E[pn] is a cyclic subgroup of oder p such that he1i \ H0 = 0

mod p. Write C1 =
F

a2Fp
C1,a with C1,a the locus where H0 = he2 + ae1i. Note that the map

p1 : C1,a ! X1 is an isomorphism for all a. We have a diagram

F
a C1,a

X1 X1

p1 p2

with p1(E, N , (e1, e2),H0) = (E, N , (e1, e2)) and p2(E, N , (e1, e2),H0) = (E/H0, N , (⇡(e1), ẽ2)), such

that the restriction of p2 to C1,a is given by ẽ2 =
1
p
(⇡(e2) + a⇡(e1)) for 0  a < p lifting a. Let Up,a := 

1 �a

0 p

!
. Composing with the Hodge-Tate period map ⇡HT : X1 ! F` we have a commutative

diagram

C1,a

F` F` .

⇡HT�p1 ⇡HT�p2

Up,a

By Lemma 8.1.2 we obtain

[(⇡HT � p1)((⇡HT � p2)�1(Uw0
(✏) Iwn)] · Iwn ⇢ Uw0

(✏ + 1) Iwn

[(⇡HT � p1)((⇡HT � p2)�1(U1(✏) Iwn)] · Iwn � U1(✏ � 1) Iwn

[(⇡HT � p2)((⇡HT � p1)�1(Uw0
(✏) Iwn)] · Iwn � Uw0

(✏ � 1) Iwn

[(⇡HT � p2)((⇡HT � p1)�1(U1(✏) Iwn)] · Iwn ⇢ U1(✏ + 1) Iwn .

(9.1.2)

On the other hand, there is a natural map of correspondances

X1 C1 X1

X C X

pr

p1 p2

pr

p1 p2

with both squares being cartesian. The lemma follows from the equations (9.1.2) and the equality

Xw,Iwn
(✏) = ⇡Iwn

(⇡�1
HT(Uw(✏) Iwn)). ⇤

Corollary 9.1.4. Let X
ord

1,Iwn
⇢ U be an open quasi-compact overconvergent neighbourhood of the

1-ordinary locus of X. Suppose that X
ord

w0,Iwn
⇢ X\U is an overconvergent neighbourhood. Then there

exists M >> 0 such that (U t
p)M(U) ⇢ U is a strict open immersion. We have a similar behaviour with

Up and exchanging 1 and w0.

Proof. The affinoids Xw,Iwn
(✏) form a basis of oveconvergent neighbourhoods of X

ord

w,Iwn
. Hence, there

is ✏ > n such that Xw0,Iwn
(✏) ⇢ X\U and X1,Iwn

(✏) ⇢ U. It is enough to show that there exists M >> 0

such that X\(U t,M
p (Xw0,Iwn

(✏))) ⇢ X1,Iwn
(✏ + 1). Working over the perfectoid modular curve and the
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9. Overconvergent theory over the modular curves

perfectoid finite flat correspondance of the previous lemma, the question is reduced to show that there

exists M >> 0 such that

F` \

 
Uw0

(✏) Iwn

 
pM 0

0 1

!!
⇢ U1(✏ + 1) Iwn .

Let F` ! P1
Qp

be the isomorphism mapping a matrix

 
a b

c d

!
to (c : d). Then Uw0

(✏) Iwn contains the

locus {(x : y) | |y/x|  |p|✏}. We get

{(x : y) | |y/x|  |p|✏}

 
pM 0

0 1

!
= {(x : y) | |y/x|  |p|✏�M},

its complement is the locus {(x : y) | |x/y| < |p|M�✏}, taking M > 2✏ +1 we have the desired result. ⇤

9.2. The sheaf of overconvergent modular forms

The goal of this subsection is to define the sheaf of overconvergent modular forms at the overconver-

gent neighbourhoods of the w-ordinary locus of X. Given an uniform affinoid Tate algebra (R,R+) and

a �-analytic character � : T = T(Zp)! R+,⇥, we construct (for ✏ >> n) a Rb⌦OXIwn (✏),an-line bundle !
�
E

over Xw,Iwn
(✏) interpolating the classical modular sheaves !

E
for  2 X⇤(T). To achieve this goal, we

first construct an overconvergent torsor of modular forms Tmod(�) whose �w0(�)-equivariant sections

give the line bundle !
�
E
, cf. Definition 9.2.7. The torsor Tmod(�) is essentially the image of the torsor

Υ(
beUw(✏, �)) := ⇡Iw⇤(⇡

⇤
HT(

beUw(✏, �)))Iwn , obtained by Construction 7.2.2, from the pro-Kummer-étale

site of Xw,Iwn
(✏) to the étale site, cf. Proposition 9.2.1. As a consequence we will prove that the

sheaves over Xw,Iwn
(✏)prokét arising from L (�) via the functor Υ of §7.2 are written in terms of !

�
E

and

Tate twists, cf. Proposition 9.2.8.

Let F` be the flag variety of GL2, fF`
0
= N0\GL0

2 and fF` = N\GL2 the natural T 0 and T torsors

over F`. We see both torsors as GL0
2 (resp. GL2)-equivariant sheaves in the étale site of F` as usual.

We denote in the same way their extension to the proétale site and by
dfF`

0
and

cfF` their completions,

see Definition 8.0.1. Let f : fF`
0
! F` be the projection map and  2 X⇤(T) an algebraic weight. By

definition we have L +() = f⇤(O+fF`
0)[�w0()] with respect to the left regular action of T 0. In other

words, we have isomorphisms of torsors

fF`
0
= Isom(O+F`,L

+(0, 1)) ⇥ Isom(O+F`,L
+(1, 0)). (9.2.1)

fF` = Isom(OF`,L (0, 1)) ⇥ Isom(OF`,L (1, 0)).

Let Kp ⇢ GL2(Zp) be an open subgroup and XKp
the modular curve of level K pKp.

Definition 9.2.1. We define the modular T -torsor over the analytic site of XKp
as

Tmod,an := Isom(OXKp
,!�1

E ) ⇥ Isom(OXKp
,!E)

whose left T -action is induced by the actions of Gm over !�1
E and !E respectively. The torsor has a

natural enhancement to a torsor over the étale (resp. Kummer-étale) site of XKp
denoted by Tmod,ét

(resp. Tmod,két). We see the torsor as a sheaf Tmod in the pro-Kummer-étale site by taking the inverse

image of Tmod,két via the projection map XKp,prokét ! XKp,két.

We let bT (1, 0) denote the Tate twist

bT (1, 0) = bT ⌦
 bZp(1)⇥ 0

0 bZ⇥p

!
.

where bZp(1)⇥ = Isom(bZp,bZp(1)).
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9. Overconvergent theory over the modular curves

Proposition 9.2.2 ( [CS17, Prop. 2.3.9]). There is a Galois-equivariant isomorphism of bT -torsors

Υ(
cfF`) = bT (1, 0) ⇥T Tmod.

Proof. Let St be the standard representation of GL2 and consider the short exact sequence of GL2-

equivariant sheaves over F` (Example 7.2.4)

0! L (0, 1)! St⌦OF` ! L (1, 0)! 0.

We have Υ(L (0, 1)) = !�1
E ⌦OXKp

bOXKp
(1) and Υ(L (1, 0)) = !E ⌦OXKp

bOXKp
. The proposition follows

from the equation (9.2.1) and the definition of Tmod. ⇤

In order to construct overconvergent modular sheaves we have to find refinements of the torsor

Tmod,an. It turns out that the torsor Tmod admits an integral reduction to an étale torsor as is shown in

the following theorem

Theorem 9.2.3 ( [BP20, §4.6] ). There exists an étale T 0
ét

-torsor T 0
mod,ét

over XKp
such that

Tmod,ét = Tét ⇥
T 0

ét T 0
mod,ét and Υ(

dfF`
0
) = bT (1, 0) ⇥T

0
ét T 0

mod,ét.

We denote by T 0
mod,két

its pullback to a torsor over the Kummer-étale site and by T 0
mod

the inverse

image of T 0
mod,két

to the pro-Kummer-étale site of XKp
.

Remark 9.2.4. The existence of the integral torsor holds in greater generality for Shimura varieties

when the reductive group G is quasi-split over Qp. We will sketch the original construction involving

the canonical subgroup, see [AIP15] for more details.

Before proving Theorem 9.2.3 we need to define some sheaves over the pro-Kummer-étale site of

the modular curve.

Definition 9.2.5. Let HT : TpE ⌦ bOXKp
! !E ⌦OXKp

bOXKp
be the Hodge-Tate period map. We define

the integral modular sheaves over XKp,prokét as

b!+E := HT(TpE ⌦ bO+XKp
) and !+E := !E \ b!+E.

Proposition 9.2.6. 1. The sheaf !+E is a locally free O+
XKp ,ét

-module.

2. We have !+E[ 1
p
] = !E and !+E ⌦O+

XKp

bO+XKp
= b!+E over Xprokét. In particular, !+E/p

s = b!+E/ps for

all s > 0.

Proof. Let XKp
be the completion along the special fibre of the integral modular curve of level K pKp.

Let D denote the cusp divisor. By Theorem 9.1.1 the Hodge-Tate map restricts to a map

HT : TpE ⌦ O+XKp
! !E,XKp

⌦OXKp

bO+XKp

with torsion cokernel. In particular, by Nakayama’s lemma the restriction of !+E to XKp
⇥X(1) (X(p)\D)

is locally free for the analytic topology. It remains to show that it is locally free for the étale topology

around the cusps. Let Dac ⇢ D ⇢ X1(p) be the locus of the cusps where the universal group is not

canonical. Then X1(p)\Dac is étale surjective over X(1) and by Nakayama’s lemma the restriction of

!+E to XKp
⇥X(1) (X1(p)\Dac) is locally free around the cusps, this proves (1). Part (2) is clear because

!+E ⇢ !XKp ,E
⌦OXKp

O+XKp
has torsion cokernel and !+E ⇢ b!+E is dense when restricted to the perfectoid

modular curve. ⇤
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Proof of Theorem 9.2.3. Define the T 0-torsor over XKp,prokét

T 0
mod = Isom(O+XKp

,!+,�1
E

) ⇥ Isom(O+XKp
,!+E).

By Proposition 9.2.6 the torsor T 0
mod

is trivial locally for the étale topology of XKp
. Moreover, since

!+E[ 1
p
] = !E we have Tmod = T ⇥

T 0

T 0
mod

. On the other hand, by Example 7.2.4 we have

Υ(L +(1, 0)) = b!+E and Υ(L +(0, 1)) = b!+E(1).

By the equation (9.2.1) one obtains the isomorphism of torsors

Υ(
dfF`

0
) = bT 0(1, 0) ⇥T

0

T 0
mod.

⇤

We do not expect that the torsor T 0
mod

can be refined to a smaller torsor over the whole modular

curve. This phenomenon already appears over the flag variety where to find reductions of the torsor

fF`
0

over F` we need to restrict to affinoid subspaces admitting a section to GL0
2.

Recall that X = X0(pn) denotes the modular curve of level K p Iwn. The strategy of constructing ob-

jects over the modular curves via pullbacks from the flag variety carries us to the following definition

Proposition/Definition 9.2.1. Let ✏ � � � n � 1 and w 2 W = {1,w0}. Consider the trivial TT (�)-
torsor of §8.1

eUw(✏, �) Iwn ! Uw(✏)

and its completion to an T dT (�)-torsor

beUw(✏, �) Iwn := T bT (�) ⇥TT (�) eUw(✏, �) Iwn .

The restriction of T 0
mod

to Xw,Iwn
(✏) admits a reduction to an étale TT (�)-torsor Tmod(�) such that

Υ(
beUw(✏, �) Iwn) = T bT (�)(1, 0) ⇥TT (�) Tmod(�), (9.2.2)

where T bT (�)(1, 0) is the Tate twist of T bT (�) by

 bZp(1)⇥ 0

0 bZ⇥p

!
.

Proof. Similarly as for the torsor T 0
mod

, one can construct Tmod(�) by a pro-finite-étale descent ar-

gument on topological spaces, cf. [BP20]. We provide the more classical construction involving the

canonical subgroup, see [AIS14] and [AIP15] for more details.

Let m � � + 2 be an integer, by Theorem 9.1.1 there exists ✏ � � � n such that Xw,Iwn
(✏) admits a

canonical subgroup of order pm. The same theorem says that we have a factorization

TpE ⌦ bO+X !E,X ⌦OX
bO+X

C
can,_
m ⌦ O/p�+1 !X/p

�+1.

HT

HT

Define the étale sheaf

!⇥E(�) := {v 2 !E,X | v 2 HT((Ccan,_
m )⇥ mod p�},

where (Ccan,_
m )⇥ denotes the points of order pm. By Proposition 9.2.6, !⇥

E
(�) is an étale Z⇥p(1 + p�G+a )-

torsor over Xw,Iwn
(✏). Let

!⇥,�1
E

(�) = Isom(!⇥E(�),Z⇥p(1 + p�G+a ))
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9. Overconvergent theory over the modular curves

be the dual torsor. We define the TT (�)-torsor

Tmod(�) := !⇥,�1
E

(�) ⇥ !⇥E(�).

Then Tmod(�) is an étale TT (�)-torsor which by construction satisfies T 0
mod
= T 0 ⇥TT (�) Tmod(�).

Finally, since !+E/p
� = b!+E/p� and the pullback of

0! L +(0, 1)! St⌦OF` ! L +(1, 0)! 0

via Υ = ⇡Iwn
(⇡⇤HT(�))Iwn is equal to

0! b!+,�1
E

(1)! TpE ⌦ bO+X ! b!+E ! 0,

one deduces

Υ(
beUw(✏, �) Iwn) = T bT (�)(1, 0) ⇥TT (�) Tmod(�).

⇤

Definition 9.2.7. Let (R,R+) be a uniform affinoid Tate Qp-algebra, and � : T = T(Zp) ! R+,⇥ a

�-analytic character. We define the overconvergent modular sheaf of weight � over Xw,Iwn
(✏)ét as the

space of equivariant functions

!
+,�

E,ét
:= Hom

TT (�)
(Tmod(�),w0(�)R+b⌦O+X,ét), !

�

E,ét
= !

+,�

E,ét
[
1

p
].

We denote by !
+,�
E

and !
�
E

the extension of !
+,�

E,ét
and !

�

E,ét
to the pro-Kummer-étale site as O+X and OX-

modules respectively. We also let R+b⌦O+X be the inverse image of R+b⌦O+
X,két

to the pro-Kummer-étale

site. Note that R+b⌦O+X , R+b⌦ bO+X . Indeed, if U = lim
 ��

Ui is an affinoid perfectoid with pro-Kummer-

étale presentation then

(R+b⌦O+X )(U) = lim
��!

i

R+b⌦O+X (Ui) and (R+b⌦ bO+X )(U) = R+b⌦ bOX(U).

Proposition 9.2.8. Let (R,R+) and � be as in Definition 9.2.7, write � = (�1, �2). Let �cyc : GQp
! Z⇥p

be the cyclotomic character and �2 � �cyc : GQp
! R+,⇥ its composition with �2. We denote the

Tate twist bO+X (�2) := R+(�2 � �cyc)b⌦ bO+X . There is a Galois equivariant isomorphism of sheaves over

Xw,Iwn
(✏)prokét

!
+,�
E
⌦R+b⌦O+

X

bO+X (�2) = Υ(L +(�)).

Proof. This follows from (9.2.2) of Proposition 9.2.1, see Definition 8.2.4. ⇤

We can finally define the overconvergent modular forms and the overconvergent cohomology

classes appearing in Coleman and higher Coleman theory. We refer to [Urb11] for the notion of

perfect Banach complexes and compact operators of perfect Banach complexes. See [Sta20, Tag

0A39] for the definition of cohomology with supports in a closed subspace.

Definition 9.2.9. Let (R,R+) be a uniform Tate Qp-algebra and � : Zp ! R+,⇥ a �-analytic character.

Let w 2 W = {1,w0}.

1. The overconvergent modular forms of weight � over Xw,Iwn
(✏) is the cohomology complex

RΓw(X,!
�
E
)✏ := RΓan(Xw,Iwn

(✏),!
�
E
).

We denote H0
w(X,!

�
E
)✏ := H0

an(Xw,Iwn
(✏),!

�
E
).
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9. Overconvergent theory over the modular curves

2. Let Xw,Iwn
(> ✏) =

S
✏0>✏ Xw,Iwn

(✏0). We define the overconvergent cohomology with supports to

be the complex

RΓw,c(X,!
�
E
)✏ := RΓan,Xw,Iwn (>✏+1)(Xw,Iwn

(✏),!
�
E
).

We denote H1
w,c(X,!

�
E
)✏ = H1

an,Xw,Iwn (>✏+1)
(Xw,Iwn

(✏),!
�
E
).

Remark 9.2.10. We can define the previous cohomologies for any complex in the analytic site of X.

Proposition 9.2.11. 1. The restriction of !
�
E

to the analytic site of Xw,Iwn
(✏) is an ON Banach sheaf

attached to their global sections.

2. The cohomology complexes RΓw(X,!
�
E
)✏ and RΓw,c(X,!

�
E
)✏ are represented by perfect Banach

complexes of length [0, 1]. Moreover, we have quasi-isomorphisms

H0
w(X,!

�
E
)✏[0] ' RΓw(X,!

�
E
)✏ and H1

w,c(X,!
�
E
)✏[�1] ' RΓw,c(X,!

�
E
)✏ .

Proof. Part (2) is a consequence of part (1) as is shown in [BP20, Lem. 5.2]. For part (1) we can

assume that the character � is the universal character of an open affinoid V of the weight space of

T = T(Zp). Then, one uses the fact that !
+,�
E

is trivial locally étale over Uw(✏) Iwn and the main

result of [BG98] to prove that !
�
E

can be seen as a line bundle over (Uw(✏) Iwn) ⇥V, the proposition

follows. ⇤

9.2.1. Classical Hecke operators

We end this section with the definition of the Up-operators for the overconvergent modular forms.

First, let us recall the definition for the classical modular sheaves. Let X
p1

 � C
p2

�! X be the Up-

correspondance. We let ⇡ : p⇤1E ! p⇤2E be the universal isogeny over C and ⇡_ : p⇤2E ! p⇤1E its

dual. We denote by ⇡⇤ : p⇤2!E ! p⇤1!E and ⇡⇤ : p⇤1!
�1
E ! p⇤2!

�1
E the pullback and pushforward

maps of ⇡ (resp. for ⇡_). For a quasicoherent sheaf F over X we let Trpi
: pi,⇤p

⇤
i F ! F be the

trace map of pi. Let  = (k1, k2) 2 X⇤(T) be a weight of T, recall that we have made the convention

!
E
= !k1

E
⌦ !�k2

E
= !k1�k2

E
.

Definition 9.2.12. The Hecke operator Up, acting over RΓan(X,!
E
) is the composition

RΓan(X,!
E
) RΓan(C, p⇤2!


E
)

(⇡_,⇤,�1)⌦k1⌦(⇡�1
⇤ )⌦k2

��������������! RΓan(C, p⇤1!

E
) RΓan(X,!

E
).

p⇤
2

Trp1

We define the U t
p, operator shifting the roles of p1 and p2, and composing with the map (⇡_,⇤)⌦k1 ⌦

(⇡⇤)
⌦k2 .

Remark 9.2.13. The Up, above is equal to the operator p�k1Unaive
p,k1�k2

of [BP20]. Indeed, (⇡_,⇤,�1)⌦k1 =

p�k1(⇡⇤)⌦k1 and (⇡�1
⇤ )⌦k2 = (⇡⇤)⌦�k2 . In other words, Unaive

p,k
= Up,(0,�k).

Let us justify this definition of the Hecke operators, they are normalized by the GL2(Qp)-equivariance

of ⇡HT : X1 ! F`. Let E be the universal elliptic curve and E_ its dual, in the next discussion

we will not identify both elliptic curves. For  = (k1, k2) 2 X⇤(T) is an algebraic weight, we set

!
E
= !k1

E_
⌦ !�k2

E
. Then, the Hodge-Tate exact sequence of E has the form

0! !(0,1)

E
⌦OX

bOX(1)
HT_

���! TpE ⌦ bOX

HT
��! !(1,0)

E
⌦OX

bOX ! 0.

Let  : Z2
p ! TpE be the universal trivialization over X1, and VpE = TpE[ 1

p
]. Let g 2 GL2(Qp),

the action of g on X1 is given by right composition  7!  � g. Let g⇤E be the image of the universal
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9. Overconvergent theory over the modular curves

elliptic curve by the action of g. Then, there exists a unique quasi-isogeny ⇡ : E d g⇤E making the

following diagram commutative

Q2
p Vpg⇤E

Q2
p VpE.

g⇤ 

g

 

Vp⇡ (9.2.3)

Let ⇡_ : g⇤E
_
d E_ be the dual of ⇡. We have a commutative square of Hodge-Tate exact sequences

0 !(0,1)

E
⌦OX

bOX(1) VpE ⌦ bOX !(1,0)

E
⌦OX

bOX 0

0 !(0,1)

g⇤E
⌦OX

bOX(1) Vpg⇤E ⌦ bOX !(1,0)

g⇤E
⌦OX

bOX 0,

HT_

⇡⇤

HT

Vp⇡ ⇡_,⇤

HT_ HT

(9.2.4)

similarly for ⇡_. Let St be the left standard representation of GL2, recall from §7.2 that we have a

right GL2-equivariant exact sequence of sheaves over F`

0! L (0, 1)! St⌦OF` ! L (1, 0)! 0,

whose pullback via Υ = ⇡Iwn,⇤(⇡
⇤
HT(�))Iwn is the upper row of (9.2.4). The action of g : St⌦OF` !

g⇤(St⌦OF`) = St⌦g⇤OF` is given by left multipication on St and the usual action over OF`. Thus,

the action of g over the Hodge-Tate exact sequence translates in the diagram (9.2.4). In particular, the

actions of g over !(1,0)

E
and !(0,1)

E
are given by ⇡_,⇤ and ⇡⇤ respectively.

In the situation of Definition 9.2.12, we can work at perfectoid level with the correspondance C1
of Lemma 9.1.3. There are maps

Q2
p Vp p⇤2E

Q2
p Vp p⇤1E

Up,a Vp⇡

with Up,a =

 
1 �a

0 p

!
and 0  a < p. Thus, the action of U t

p is given by the double coset [Iwn $ Iwn]

and is induced by (⇡_,⇤)⌦k1 ⌦ (⇡⇤)
⌦k2 : p⇤1!


E
! p⇤2!


E
. Dually, the action of Up is defined using

the quasi-isogeny ⇡�1, equivalently it is given by the double coset [Iwn $
�1 Iwn], and induced by

(⇡_,⇤,�1)⌦k1 ⌦ (⇡�1
⇤ )⌦k2 : p⇤2!


E
! p⇤1!


E
.

Remark 9.2.14. We highlight that to define the Hecke action over the modular sheaves we have to fix

a GL2(Qp) action at infinite level, this action arises naturally from the pullback of a GL2-equivariant

sheaf over the flag variety. In particular, !k
E

for k 2 Z can be endowed with different Hecke actions,

all of them differing by a power of p, the choice of an isomorphism !k
E
� !(k1,k2)

E
with k1� k2 = k fixes

such an action.

Before defining the Up-operators for overconvergent modular forms let us show how the operators

Up, are described using the torsor Tmod = Isom(OX,!
�1
E ) ⇥ Isom(OX,!E). By Proposition 9.2.2 we

have
bT (1, 0) ⇥T Tmod = ⇡

⇤
HT (

cfF`)

where
fF` = Isom(OF`,L (0, 1)) ⇥ Isom(OF`,L (1, 0)). (9.2.5)
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Let g 2 GL2(Qp), from diagram (9.2.3) one deduces that the action of g on Tmod is given by

⇡⇤ ⇥ ⇡
_,⇤ : Tmod ! g⇤Tmod.

Let  = (k1, k2) 2 X⇤(T) be an algebraic weight, taking w0()-equivariant functions Hom
T

(�,OX,an(w0()))
in (9.2.5) and then taking duals, one recovers the map (⇡_,⇤)⌦k1 ⌦ (⇡⇤)

⌦k2 : !
E
! g⇤!


E
.

9.2.2. Overconvergent Hecke operators

Let ✏ � � � n. By Lemma 9.1.3 the Up-correspondance restricts to the following diagrams

p�1
1 (X1,Iwn

(✏)) p�1
2 (Xw0,Iwn

(✏))

X1,Iwn
(✏) X1,Iwn

(✏ + 1) Xw0,Iwn
(✏ + 1) Xw0,Iwn

(✏).

p1 p2 p1 p2

Moreover, we have the inclusions p1(p�1
2 (X1,Iwn

(✏))) � X1,Iwn
(✏�1) and p2(p�1

1 (Xw0,Iwn
(✏))) � Xw0,Iwn

(✏�
1). Let Tmod(�) be the TT (�)-torsor of overconvergent modular forms (see Definition 9.2.1), and
eUw(✏, �) Iwn the TT (�)-torsor over Uw(✏) ⇢ F` (see Definition 8.1.3).

Let c = diag(p, p), $ = diag(1, p), Λ = hc±1,$±1i, Λ+ = hc±1,$i and Λ� = hc±1,$�1i. We have

proven in Lemma 8.1.5 that

eUw(✏, �) = NΛ\NΛGL2(✏, �)w0 Iwn ⇢ Λ\fF`.

Proposition/Definition 9.2.2. There are well defined maps of torsors

1

p
⇡_⇤ ⇥ ⇡

⇤ : p⇤2(Tmod(�))! p⇤1(Tmod(�)) over p�1
1 (X1,Iwn

(✏))

⇡_⇤ ⇥
1

p
⇡⇤ : p⇤2(Tmod(�))! p⇤1(Tmod(�)) over p�1

2 (Xw0,Iwn(✏)).

Let (R,R+) be an uniform Tate Qp-algebra and � : T ! R+,⇥ a �-analytic character. Taking w0(�)-

equivariant functions Hom
TT (�)

(�,O+
X,ét

(w0(�))) with respect to the above maps, and then taking duals,

we obtain the overconvergent Up correspondances

⇡_�� : p⇤1(!
��,+
E

)! p⇤2(!
��,+
E

) and ⇡� : p⇤2(!
�,+
E

)! p⇤1(!
�,+
E

).

1. We define the Up-operator over RΓ1(X,!
�
E
)✏ to be the composition

RΓ1(X,!
�
E
)✏ = RΓan(X1,Iwn

(✏),!
�
E
)

p⇤
2

�! RΓan(p�1
2 (X1,Iwn

), p⇤2!
�
E
)

⇡�
�! RΓan(p�1

2 (X1,Iwn
), p⇤1!

�
E
)

Trp1

���! RΓan(p1(p�1
2 (X1,Iwn

(✏))),!
�
E
)

Res
��! RΓan(X1,Iwn

(✏ � 1),!
�
E
)

= RΓ1(X,!
�
E
))✏�1.

We define in a similar way the operator U t
p : RΓw0

(X,!
�,+
E

)✏ ! RΓw0
(X,!

�,+
E

)✏�1 switching the

roles of p1 and p2, and using ⇡_� instead of ⇡�.
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2. We define the Up-operator over RΓw0,c(X,!
�
E
)✏ to be the composition

RΓw0,c(X,!
�,+
E

)✏ = RΓan,Xw0 ,Iwn (>✏+1)(Xw0,Iwn
(✏),!

�
E
)

p⇤
2

�! RΓan,p�1
2

(Xw0 ,Iwn (>✏+1))(p�1
2 (Xw0,Iwn

(✏)), p⇤2!
�
E
)

⇡�
�! RΓan,p�1

2
(Xw0 ,Iwn (>✏+1))(p�1

2 (Xw0,Iwn
(✏)), p⇤1!

�
E
)

Trp1

���! RΓan,p1(p�1
2

(Xw0 ,Iwn (>✏+1)))(p1(p�1
2 (Xw0,Iwn

(✏))),!
�
E
)

Cor
��! RΓan,Xw0

(>✏+2)(Xw0,Iwn
(✏),!

�
E
)

= RΓw0,c(X,!
�
E
)✏+1.

We define in a similar way the operator U t
p : RΓ1,c(X,!

�
E
)✏ ! RΓ1,c(X,!

�
E
)✏+1 switching the

roles of p1 and p2, and using ⇡_� instead of ⇡�.

Remark 9.2.15. In the definition of the Hecke operators we always consider analytic cohomology, i.e.

cohomology in the analytic site of X.

Proof. By the discussion before Remark 9.2.14 and Proposition 9.2.1, one reduces the problem to

translating the action of Up,a =

 
1 �a

0 p

!
over eUw(✏, �) Iwn to Tmod(�) via ⇡HT. Indeed, the Hecke oper-

ators for modular forms are constructed via the w0(�)-equivariant functions Hom
TT (�)

(�,O+
X,ét

(w0(�)))

of a Hecke correspondence between the torsors. From Proposition 9.2.1 we have that T bT (�)(�1, 0)⇥TT (�)

Tmod(�) = Υ(
beUw(✏, �) Iwn) with

eUw(✏, �) Iwn �

8>><>>:
NΛ\(N) ⇥ (ΛTT (�)) ⇥ (NnN(✏)) if w = 1

NΛ\(N) ⇥ (ΛTT (�)) ⇥ (NN(✏))w0 if w = w0.

Then, the normalized action of Up,a on eUw(✏, �) Iwn is given by

x · Up,a = w$�1w�1xUp,a

when seen as a subspace of fF` = N\GL2.

As fF` = Isom(OF`,L (0, 1)) ⇥ Isom(OF`,L (1, 0)), the equation (9.2.2) and the diagram (9.2.3)

show that the normalized action of Up,a pullbacks via Υ to the bOX-extension of scalars of the isomor-

phisms

⇡⇤ : p⇤1!
�1
E ! p⇤2!

�1
E and

1

p
⇡_,⇤ : p⇤1!E ! p⇤2!E if w = 1

1

p
⇡⇤ : p⇤1!

�1
E ! p⇤2!

�1
E and ⇡_,⇤ : p⇤1!E ! p⇤2!E if w = w0.

Taking the inverses one obtains the desired isomorphisms of torsors

1

p
⇡_⇤ ⇥ ⇡

⇤ : p⇤2(Tmod(�))! p⇤1(Tmod(�)) if w = 1

⇡_⇤ ⇥
1

p
⇡⇤ : p⇤2(Tmod(�))! p⇤1(Tmod(�)) if w = w0.

⇤
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Lemma 9.2.16. The Up-operators acting on overconvergent modular forms and overconvergent co-

homology classes are compact operators of Banach complexes.

Proof. This follows from the fact that the restriction and correstriction maps

RΓw(X,!
�
E
)✏+1

Res
��! RΓw(X,!

�
E
)✏ and RΓw,c(X,!

�
E
)✏

Cor
��! RΓw,c(X,!

�
E
)✏+1

are compact maps of Banach complexes. ⇤

Corollary 9.2.17. The finite slope part of H0
w(X,!

�
E
)✏ (resp. of H1

w,c(X,!
�
E
)✏) with respect to the Up-

operators is independent of ✏.

We end this section with some bounds for the finite slope cohomology.

Lemma 9.2.18 ( [BP20, Lemma 5.3] ). Let  = (k1, k2) 2 X⇤(T) be an algebraic weight.

1. The Up, operator has slopes � 1 � k1 on RΓ1(X,!
E
)✏ and slopes � �k2 on RΓw0,c(X,!


E
)✏ .

2. The U t
p, operator has slopes � �k2 on RΓ1,c(X,!


E
)✏ and slopes � 1 � k1 on RΓw0

(X,!
E
)✏ .

Proof. It follows from the bounds of loc. cit. , Remark 9.2.13, and the fact that U t
p is the dual of

Up. ⇤

Definition 9.2.19. Let (R,R+) be a uniform Tate Qp-algebra and � : T ! R+,⇥ a �-analytic character.

Let  2 X⇤(T). We define normalizations of Up and U t
p

Ugood
p =

8>>>>><>>>>>:

1
p
Up,� over RΓ1(X,!

�
E
)✏ ,

Up,� over RΓw0,c(X,!
�
E
)✏

p�min{1�k1,�k2}Up, over RΓan(X,!k)

,

U t,good
p =

8>>>>><>>>>>:

1
p
U t

p,� over RΓw0
(X,!

�
E
)✏ ,

U t
p,� over RΓ1,c(X,!

�
E
)✏

p�min{1�k1,�k2}U t
p, over RΓan(X,!

E
).

Theorem 9.2.20. Let  = (k1, k2) 2 X⇤(T) be an algebraic weight.

1. The U
good
p -operator has slopes � 0 on H0

1
(X,!

E
)✏ and H1

w0,c
(X,!

E
)✏ .

2. The U
t,good
p operator has slopes � 0 on H0

w0
(X,!

E
)✏ and H1

1,c(X,!

E
)✏ .

Futhermore, we have isomorphisms of small slope cohomologies

H0
1(X,!

E)
U

good
p <k1�k2�1

✏ = H0
an(X,!

E)U
good
p <k1�k2�1,

H1
w0,c

(X,!
E)

U
good
p <1+k2�k1

✏ = H1
an(X,!

E)U
good
p <1+k2�k1 ,

H0
w0

(X,!
E)

U
t,good
p <k1�k2�1

✏ = H0
an(X,!

E)U
t,good
p <k1�k2�1,

H1
1,c(X,!


E)

U
t,good
p <1+k2�k1

✏ = H1
an(X,!

E)U
t,good
p <1+k2�k1 .

Proof. The theorem is an immediate consequence of Lemma 9.2.18, Corollary 9.1.4, and the distin-

guished triangle

RΓan,X\Xw,Iwn (✏)(X,!

E)! RΓan(X,!

E)! RΓan(Xw,Iwn
(✏),!

E)
+1
��! .

⇤
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9.3. Overconvergent modular symbols

Let (R,R+) be a uniform Tate Qp-algebra and � : T = T(Zp) ! R+,⇥ a �-analytic character. Let A
�,+
�

be the �-analytic principal series of weight � defined in §8.3, and D
�,+
� = HomR+(A

�,+
� ,R

+) its dual.

We have associated to A
�,+
� and D

�,+
� Iwn-equivariant sheavesA�,+

� andD�,+
� over F`proét, cf. Definition

8.3.12. Let ⇡HT : X1 ! F` be the Hodge-Tate period map. By an abuse of notation we will write

A
�,+
� andD�,+

� for the pro-Kummer-étale sheaves over X defined by the Iwn-equivariant pro-Kummer-

étale sheaves ⇡�1
HT(A�,+

� ) and ⇡�1
HT(D�,+

� ) respectively, i.e. the sheaves Υ(A�,+
� ) and Υ(D�,+

� ) over Xprokét,

see Construction 7.2.2. We denote A�
� = A

�,+
� [ 1

p
] and D�

� = D
�,+
� [ 1

p
]. By Lemmas 8.3.6 and 8.3.8 we

have a devisage of the R+-modules A
�,+
� and D

�,+
� of the form lim

 ��s
lim
��!i

Fs,i, where the Fs,i are finite

Iwn-modules. Then, we have finite local systems Fs,i over Xprokét and one can write A�,+
� or D�,+

� as

lim
 ��s

lim
��!i

Fs,i, see Corollary 8.3.9.

Definition 9.3.1. We define the overconvergent modular symbols as the cohomology complexes

RΓprokét(XCp
,A�

�) and RΓprokét(XCp
,D�

�).

We want to show that the modular symbols are represented by good topological complexes. We

need the following theorem of Borel-Serre.

Theorem 9.3.2 ( [BS73]). Let Γ ⇢ GL2(Z) denote the level of the algebraic modular curve Xalg. There

exists a finite free resolution of the trivial representation Γ by a complex P• ! Z of the form

0! Z[Γ]rd ! · · ·! Z[Γ]r1 ! Z[Γ]r0 ! Z! 0.

Proposition 9.3.3 ( [AS08]). The overconvergent modular symbols are represented by the complexes

RΓprokét(XCp
,A+,�� ) ' HomΓ(P

•, A�,+
� )

RΓprokét(XCp
,D+,�� ) ' HomΓ(P

•,D�,+
� )

Proof. Let F denoteA�,+
� orD�,+

� , we let Fs denoteA�,+
� /p

s or D
�,+
� /Fils. We can write Fs = lim

��!i
Fs,i

where Fs,i are finite local systems over X. By Lemma 3.18 of [Sch13a], and the Mittag-Leffler

property for the inverse system (Fs)s2N, we have F = R lims hocolimi Fs,i (see [Sta20, Tag 0A5K]

for the definition of homotopic colimits).

Let Cp � C be an isomorphism of fields, we have

RΓprokét(XCp
,F ) = R lim

 ��
s

hocolimi RΓprokét(XCp
,Fs,i)

= R lim
 ��

s

hocolimi RΓét(YCp
,Fs,i)

= R lim
 ��

s

hocolimi RΓét(Y
alg

C
,Fs,i)

= R lim
 ��

s

hocolimi RΓét(Y
alg(C),Fs,i)

= R lim
 ��

s

hocolimi HomΓ(P
•,Fs,i)

= HomΓ(P
•,F ).

The first equality is formal from the definition of derived limits and homotopic colimits, and the

fact that X is qcqs in the pro-Kummer-étale site, see [Sta20, Tag 0739]. The second equality is the

purity of torsion local systems [DLLZ19, Theo. 4.6.1]. The third equality is the comparison of étale

cohomology between an algebraic scheme and its p-adic analytification [Hub96]. The fourth equality

is Artin’s comparison theorem [Art68]. Finally, the last two equalities are a consequence of Theorem

9.3.2, the fact that ⇡1(Yalg(C)) = Γ and that the universal cover of Yalg(C) is contractible. ⇤
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9. Overconvergent theory over the modular curves

Corollary 9.3.4. Let A
�,+
� b⌦Zp

bO+X and D
�,+
� b⌦Zp

bO+X denote the completed tensor products with respect

to the p-adic topology ofA
�,+
� and the filtration ofD

�,+
� . There are almost quasi-isomorphisms

RΓprokét(XCp
,A�,+

�
b⌦Zp

bO+X ) =ae HomΓ(P
•, A�,+

�
b⌦OCp

)

RΓprokét(XCp
,D�,+

�
b⌦Zp

bO+X ) =ae HomΓ(P
•,D�,+

�
b⌦OCp

).

Proof. The corollary follows from the devisage in the proof of the previous proposition and the prim-

itive comparison theorem [Sch13a, Theo. 5.1] and [DLLZ19, Theo. 6.2.1 ]. ⇤

Next, we define the Up-operators for overconvergent modular symbols. To keep the construction

in the same direction as for overconvergent modular forms, we will use the Up-correspondance and

certain sheaves over Xproét defined by the open subspaces GL2(�, �0)w0 Iwn ⇢ GL
0
2, see Definition 8.0.5

for the affinoids GL2(�, �0).

Definition 9.3.5. Let � � �0 � n. We see GL2(�, �0)w0 Iwn as a right Iwn(�)-equivariant sheaf over

F`, we denote by cGL2(�, �0)w0Iwn its completion to a proétale sheaf, see Definition 8.0.1. We define

the sheaf over Xprokét

dTorIwn(�,�0) := Υ(cGL2(�, �0)w0Iwn) = ⇡⇤HT(cGL2(�, �0)w0Iwn)/ Iwn,

equivalently, as the quotient sheaf (X1 ⇥ cGL2(�, �0)w0Iwn)/ Iwn with respect to right multiplication in

both components. We also write dTorIwn(�) = dTorIwn(�,�).

Remark 9.3.6. The sheaf dTorIwn(�,�0) has a left action by bB0
X
\w0

cIwn(�0)Xw�1
0 which at perfectoid level

is given by left multiplication on cGL2(�, �0)w0Iwn.

Let Hn ⇢ E[pn] be the universal subgroup over X. The sheaf dTorIwn(�) has the following modular

description:

Proposition 9.3.7. Let dTorIwn
be the pro-Kummer-étale sheaf over X given by the quotient (X1 ⇥

w0Iwn)/ Iwn. There is a natural isomorphism of left w0 Iwn w�1
0 -torsors

dTorIwn
= Isom((Hn,TpE), (0 � Z/pnZ,Z2

p)). (9.3.1)

Furthermore, w0
cIwn(�)Xw�1

0 ⇥
w0 Iwn w�1

0 dTorIwn
= dTorIwn(�).

Proof. Let  : Z2
p ! TpE be the universal trivialization over X1. Write dTor

0

Iwn
for the right-hand-side

of (9.3.1). Let f 2 dTor
0

Iwn
, note that the isomorphism f � : Z2

p ! Z
2
p is induced by left multiplication

by an element of w0 Iwn. This provides a map

dTor
0

Iwn
|X1 ! X1 ⇥ w0Iwn

which descends to (9.3.1). ⇤

Remark 9.3.8. Let � � �0 � n and � : T ! R+,⇥ a �0-analytic character. In §8.3 we have proven

that the sheaf A�,+
� b⌦ bO+F`

over F`proét is constructed by taking the analytic functions of the sheaf

(cGL2(�, �0)w0Iwn)F` which are w0(�)-equivariant with respect to the left multiplication of bB\w0
cIwn(�0)w�1

0 ,

see Definitions 8.3.1 and Proposition 8.3.13. The same holds for the abelian sheaf A�,+
� b⌦ bO+X and the

sheaf dTorIwn(�,�0). More precisely,A�,+
� b⌦ bO+X is the sheaf of functions f : dTorIwn(�,�0) ! R+b⌦ bO+X satisfy-

ing the following conditions

i. f |X1 : dTorIwn(�,�0)|X1 �
cGL2(�, �0)w0Iwn ! R+b⌦ bO+X is a function in

O(GL2(�, �0)w0 Iwn)b⌦(R+b⌦ bO+X ).

ii. f (bx) = w0(�)(b) f (x) for x 2 dTorIwn(�,�0) and b 2 bB \ w0
cIwn(�)Xw�1

0 .
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9.3.1. Hecke operators

Let X
p1

 � C
p2

�! X be the Up-correspondance. To define the Up-operator of modular symbols we need

to construct a map of sheaves following the idea of Definition 9.2.2.

Proposition 9.3.9. Let � � �0 � n. There is a left T bT (�0)-equivariant map of sheaves

⇡Iwn
: p⇤2(Nn

bN(�0)\dTorIwn(�,�0))
⇠
�! p⇤1(Nn

bN(�0)\dTorIwn(�+1,�0)) (9.3.2)

induced by the right multiplication eUw0
(�, �0)$ ⇢ eUw0

(� + 1, �0).

Proof. Let C1 = C ⇥p1,X X1 be the correspondance over X1 constructed in the proof of Lemma 9.1.3.

It is enough to define a T bT (�) equivariant map of sheaves

N
n
bN(�0)\(cGL2(� + 1, �0)w0Iwn)C = p⇤2(dTorIwn(�+1,�0))

⇡Iwn

���!

! p⇤1(dTorIwn(�,�0)) = Nn
bN(�0)\(cGL2(�, �0)w0Iwn)C.

Let 0  a < p and let C1,a ⇢ C1 be the locus where we have the commutative diagram

C1,a

F` F`

⇡HT�p2⇡HT�p1

Up,a

with Up,a =

 
1 �a

0 p

!
. The action by Up,a over the constant sheaf NN(�0)\GL2(�, �0)w0 Iwn over F`

translates to the right multiplication by Up,a over C1,a:

Nn
bN(�0)\p⇤2(dTorIwn(�,�0))|C1 = Nn

bN(�0)\(cGL2(�, �0)w0Iwn)C1

U1,a
���!

! Nn
bN(�0)\(cGL2(� + 1, �0)w0Iwn)C1 = Nn

bN(�0)\p⇤1(dTorIwn(�+1,�0))|C1 .

Taking Iwn-invariants from C1 to C one gets the map (9.3.2). ⇤

Corollary 9.3.10. Let � � �0 � n. Let (R,R+) be a uniform Tate algebra and � : T ! R+,⇥ a

�0-analytic character. We have maps

⇡_A : p⇤1(A�+1,+
�

b⌦ bO+X )! p⇤2(A�,+
�

b⌦ bO+X )

⇡D : p⇤2(D�,+
�

b⌦ bO+X )! p⇤1(D�+1,+
�

b⌦ bO+X ).

arising from the map ⇡Iwn
in (9.3.2).

Proof. Taking analytic T bT (�0)-equivariant functions with values in bO+X (w0(�)) in the equation (9.3.2)

we obtain the map ⇡_
A

. The map ⇡D is obtained by taking duals. ⇤

Remark 9.3.11. The proof of Proposition 9.3.9 also works for the proétale sheavesA�,+
� andD�,+

� and

the torsor dTorIwn
, (9.3.1) of Proposition 9.3.7. In particular, we also have maps ⇡_

A
: p⇤1A

�+1,+
� !

p⇤2A
�,+
� and ⇡D : D�+1,+

� ! D
�,+
� . Furthermore their extensions of scalars by bO+X are equal to the maps

of the previous corollary.
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9. Overconvergent theory over the modular curves

Definition 9.3.12. 1. We define the U t
p-operator acting over RΓprokét(XCp

,A
�,+
� ) to be the composi-

tion

RΓprokét(XCp
,A�,+

� )
p⇤

1

�! RΓprokét(CCp
, p⇤1(A�,+

� ))
⇡_
A

��! RΓprokét(CCp
, p⇤2A

��1,+
Iwn

)
Trp2

���!

! RΓprokét(XCp
,A

��1,+
Iwn

)! RΓprokét(XCp
,A

�,+
Iwn

).

Similarly forA�,+
� b⌦ bO+X .

2. We define the Up-operator acting over RΓprokét(XCp
,D

�,+
� ) to be the composition

RΓprokét(XCp
,D�,+

� )
p⇤

2

�! RΓprokét(CCp
, p⇤2(D�,+

� ))
⇡D
��! RΓprokét(CCp

, p⇤1D
�+1,+
Iwn

)
Trp1

���!

! RΓprokét(XCp
,D

�+1,+
Iwn

)! RΓprokét(XCp
,D

�,+
Iwn

).

Similarly forD�,+
� b⌦ bO+X .

Lemma 9.3.13. The Up-operators on overconvergent modular symbols are compact.

Proof. It follows from Proposition 9.3.3 and the fact that A��1
� ! A�

� and D�+1
� ! D�

� are compact

maps. ⇤

Corollary 9.3.14. We have isomorphisms of finite slope cohomology

H1
prokét(XCp

,A�
�)

f s = H1
prokét(XCp

,A�+1
� ) f s

H1
prokét(XCp

,D�+1
� ) f s = H1

prokét(XCp
,D�

�)
f s.

Similarly forA�
�
b⌦ bOX andD�

�
b⌦ bOX. Moreover, we have isomorphisms

H1
prokét(XCp

,A�
�)

f s ⌦Zp
Cp = H1

prokét(XCp
,A�

�
b⌦ bOX) f s

H1
prokét(XCp

,D�
�)

f s ⌦Zp
Cp = H1

prokét(XCp
,D�

�
b⌦ bOX) f s.

Proof. The first assertion follows from Lemma 9.3.13 and the finite slope theory of compact operators

of Banach complexes, cf. [Buz07] or [Urb11]. The second statement follows from the almost quasi-

isomorphisms

RΓprokét(XCp
,A�,+

� )b⌦OCp
=ae RΓprokét(XCp

,A�,+
�

b⌦ bO+X )

RΓprokét(XCp
,D�,+

� )b⌦OCp
=ae RΓprokét(XCp

,D�,+
�

b⌦ bO+X )

⇤

The following lemma provides a bound for the action of the Up-operators for overconvergent mod-

ular symbols.

Lemma 9.3.15 ( [AS08, Theo. 3.11.1]). Let $ = diag(1, p), let  = (k1, k2) 2 X⇤(T)+ be a dominant

weight and V the irreducible representation of GL2 of highest weight . Let   : V ! A�
 be the

natural inclusion and  _ : D�
 ! V�w0() its dual. Then

||$||coker   |p|
k1�k2+1 and ||$�1||ker _  |p|

k1�k2+1.

Proof. Let V() =  ⌦ Γ(Bw0N), it is a dense subrepresentation of A�
 whose action by $ is given by

($ · f )(x) = f ($�1x$). We proved in Proposition 8.4.3 that V ⇢ V(). In particular, V()/V is a

dense subspace of coker . We have the weight decomposition

V()/V =
M

n�k1�k2+1

 ⌦ QpT n

where O(N) = Qp[T ]. Since $ · (⌦T n) = pn(⌦T n), we obtain by density that ||$||coker   |p|
k1�k2+1.

One deduces the second inequality by taking duals. ⇤
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We deduce the following classicity result for modular symbols

Theorem 9.3.16. Let  = (k1, k2) 2 X⇤(T)+ be a dominant weight. The maps D�
 ! V�w0() and

V ! bA�
 induce isomorphisms of the (< k1 � k2 + 1)-slope part for the action of the (normalized)

Up-operators

H1
prokét(XCp

,D�
)

Up<k1�k2+1 ⇠
�! H1

prokét(XCp
,V�w0())

Up<k1�k2+1

H1
prokét(XCp

,V)
U t

p<k1�k2+1 ⇠
�! H1

prokét(XCp
,A�

)
U t

p<k1�k2+1.

Proof. This follows from Lemma 9.3.15 and the definition of the Hecke operators via correspon-

dances. Notice that we are considering the Up and U t
p on RΓprokét(XCp

,V) by normalizing the action

of $ as in Remark 8.3.11. ⇤

9.4. The overconvergent Hodge-Tate maps

We end with this section with the definition of overconvergent HT-maps interpolating the morphisms

HTk : Symk TpE ⌦ bOX ! !k
E
⌦OX

bOX and HTk,_ : !�k
E
⌦OX

bOX(k)! Symk TpE ⌦ bOX.

Definition 9.4.1. Let ✏ � � � n, (R,R+) a uniform affinoid Tate Qp-algebra and � = (�1, �2) : T =

T(Zp)! R+,⇥ a �-analytic character.

1. We define the map over X1,Iwn
(✏)

HT
�,_
A

: !
w0(�)

E
⌦Rb⌦OX

bOX(�1)! A�
�
b⌦ bOX

to be the pullback of the highest weight vector map L (w0(�)) ! A�
�
b⌦ bOF` over U1(✏) Iwn ⇢

F` via Υ = ⇡Iwn,⇤(⇡
⇤
HT(�))Kp , cf. Proposition 8.4.4. We define the map HT

�
D

: D�
�
b⌦ bOX !

!
�w0(�)

E
⌦Rb⌦OX

bOX(��1) as the dual of HT
�
A

.

2. We define the map over Xw0,Iwn
(✏)

HT
�
A

: A�
�
b⌦ bOX ! !

�
E
⌦Rb⌦OX

bOX(�2)

to be the pullback of the lowest weight vector map A�
�
b⌦ bOF` ! L (�) over Uw0

(✏) Iwn ⇢ F`

via Υ. We define the map HT
�,_
D

: !
��
E
⌦Rb⌦OX

bOX(��2)! D�
�
b⌦ bOX as the dual of HT

�
A

.

Proposition 9.4.2. Let ✏ � � � �0 � n and denote bTmod(�0) := T bT (�0)(1, 0) ⇥TT (�0) Tmod(�0). The

maps HT� and HT�,_ are compatible with respect to the Up-correspondance. More precisely, we have

T bT (�)-equivariant maps of sheaves

HT : Nn
bN(�0)\dTorIwn(�,�0) ! bTmod(�0) over X1,Iwn

(✏)

HT_ : w0
bTmod(�0)! Nn

bN(�0)\dTorIwn(�,�0) over Xw0,Iwn
(✏)

satisfying the following commutative diagrams

p⇤1(Nn
bN(�0)\dTorIwn(�,�0)) p⇤1(bTmod(�0)) p⇤1(w0

bTmod(�0)) p⇤1(Nn
bN(�0)\dTorIwn(�,�0))

p⇤2(N
n
bN(�0)\dTorIwn(�,�0)) p⇤2(bTmod(�0)) p⇤2(w0

bTmod(�0)) p⇤2(Nn
bN(�0)\dTorIwn(�,�0)).

HT HT_

HT

⇡Iwn
1
p
⇡_⇤ ⇥⇡

⇤

HT_

1
p
⇡⇤⇥⇡_⇤ ⇡Iwn
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Proof. The maps HT and HT_ are defined as the pullbacks via Υ of the (completion of the) maps of

sheaves
eUw0

(✏, �0) Iwn ! Uw0
(✏) Iwn ⇥N

0\N0GL2(�, �0)w0 Iwn

U1(✏) Iwn ⇥N
0\N0GL2(�, �0)w0 Iwn ! eU1(✏, �0) Iwn .

(9.4.1)

of the equation (8.4.6) in the proof of Proposition 8.4.4. Indeed, by Definition/Propostion 9.2.1 we

have

Υ(
beUw(✏, �) Iwn) = T bT (�)(1, 0) ⇥TT (�) Tmod(�),

and by definition dTorIwn(�,�0) = Υ((cGL2(�, �0)w0Iwn)F`). The equivariance with respect to the Up-

correspondance follows from the compatibility of (9.4.1) with respect to right multiplication by

Σ
+ = IwnΛ

+ Iwn. Finally, one obtains the compatibility of the Hecke correspondance between the

overconvergent modular sheaves and the �-analytic principal series or the �-analytic distributions by

taking analytic w0(�)-equivariant functions in Hom
T bT (�)

(�, bOX(w0(�))). ⇤

Corollary 9.4.3. The maps HT� and HT�,_ of Definition 9.4.1 are Galois equivariant.

Proof. This follows from the fact that the maps HT and HT_ of the previous proposition are Galois

equivariant, since they are constructed as the pullback of a Iwn-equivariant map of Iwn-sheaves over

F`proét. ⇤
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10. p-adic Eichler-Shimura

decompositions

Let K p ⇢ GL2(AQ1,p) be a neat compact open subgroup. Given Kp ⇢ GL2(Qp) an open compact

subgroup we let Y = YKp
and X = XKp

be the affine and compactified modular curves of level K pKp

over Spa(Qp,Zp). We denote by D = X\Y the cusp divisor. Let f : E sm ! X be the semi-abelian

scheme extending the universal elliptic curve over Y , and E its relative compactification to a log

smooth adic space over X. We denote by DRX(E) the relative log de Rham complex of E over X, and

H 1
dR

:= R1 fan,⇤(DRX(E)) the first relative de Rham cohomology group. The sheaf H 1
dR

is endowed

with a log connection

r : H 1
dR !H 1

dR ⌦OX
Ω

1
X(log)

and the Hodge filtration 0 ! !E ! H 1
dR
! !�1

E ! 0 with Fil0 H 1
dR
= H 1

dR
, Fil1 H 1

dR
= !E and

Fil2 H 1
dR
= 0, satisfying Griffiths transversality. This last section is dedicated to the construction of

the Eichler Shimura decomposition for the étale cohomology of the modular curves. We start with

a new proof of Faltings’ Eichler-Shimura (ES) decomposition of the local systems V (cf. [Fal87])

involving the Hodge-Tate period map and the dual BGG resolution of V of §8.4. Next, we use the

overconvergent HT maps of §9.4 to define overconvergent ES maps. We will recover the results

of [AIS15] as well as a new map from the H1-cohomology with compact supports of overconvergent

modular forms to overconvergent modular symbols. Finally, we show that the overconvergent ES

maps are compatible with the Poincaré and Serre duality pairings, and that, for small slope, we have

a perfect pairing.

10.1. A proétale Eichler Shimura decomposition

Let  = (k1, k2) 2 X⇤(T)+ be a dominant weight and V the irreducible representation of highest weight

, by an abuse of notation we denote by V the pro-Kummer-étale local system over X defined by V.

Let ↵ = (1,�1) 2 X⇤(T). We state the main theorem of the section

Theorem 10.1.1 (Faltings). There is a Hecke and Galois equivariant isomorphism

H1
ét(YCp

,V) ⌦Zp
Cp = H1

an(XCp
,!w0()

E
)(k1) � H0

an(XCp
,!+↵

E )(k2 � 1)

The main ingredient of the proof is an explicit relation between the Faltings extension gr1OB+
dR,log

and the Tate module TpE.

Remark 10.1.2. The next proposition is the key tool necessary to compute the relative Sen operator

for the modular curve in Lue Pan’s locally analytic vectors, cf. [Pan20].

Proposition 10.1.3 ( [Fal87, Theo. 5]). There is an isomorphism of extensions

0 bOX(1) TpE ⌦ bOE ⌦ !E !2
E ⌦

bOX 0

0 bOX(1) gr1OB+
dR,log

Ω
1
X(log) ⌦ bOX 0

HT_

id

HT

↵ �KS

where KS is the Kodaira-Spencer isomorphism.
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Proof. We provide a modern proof of this theorem using the pro-Kummer-étale site and the com-

parison between (Kummer-)étale local systems and filtered vector bundles with integral connection

(satisfying Griffiths transversality). We refer to §7.1 for the definition of the period sheaves we use

down below. Let ✓ : B+
dR,X
! bOX be the Fontaine’s map and ⇠ a generator of ker ✓. First, let us recall

how the de Rham comparison theorem for the Tate module is deduced using the period sheaves (and

the main results of §8 in [Sch13a]).

Let F be a sheaf endowed with an integral log connection r, we denote by DR(F ,r) the log de

Rham complex of F . We have a quasi-isomorphism of complexes over Eprokét

TpGm ⌦bZp
BdR,E ' TpGm ⌦bZp

DR(OBdR,log,E, d) = DR(OBdR,log,E, d)(1).

Taking R1 fprokét,⇤ one obtains by [DLLZ18, Theo 3.2.7 (5)] or [Sch13a, Theo. 8.8]

TpE ⌦ BdR,X ' TpE ⌦bZp
DR(OBdR,log,X, d) � DR(H 1

dR ⌦ OBdR,log,X,r)(1). (10.1.1)

Let M := TpE(�1) ⌦ B+
dR,X
= (TpE(�1) ⌦ OB+

dR,log,X
)r=0 and M0 = (H 1

dR
⌦ OB+

dR,log,X
)r=0. Both M0

andM are B+
dR,X

-lattices of TpE(�1) ⌦ BdR,X. The Hodge Filtration of H 1
dR

is concentrated in degrees

0 and 1, and equal to

0! !E !H 1
dR ! !�1

E ! 0.

This implies that ⇠M ⇢ M0 ⇢ M, and that (Fil1(H 1
dR
⌦ OB+

dR,log,X
))r=0 = ⇠M. Then, Proposition 7.9

of [Sch13a] implies

M0/⇠M = gr0H 1
dR ⌦

bOX = !
�1
E ⌦

bOX

M/M0 = gr1H 1
dR ⌦

bOX(�1) = !E ⌦ bOX(�1).

In particular,

0! ⇠M0/⇠
2M! ⇠M/⇠2M! ⇠M/⇠M0 ! 0

is just the Hodge-Tate exact sequence of TpE ⌦ bOX (note the multiplication by ⇠ induced by the Tate

twist in (10.1.1)), and

0! ⇠M/⇠M0 ! M0/⇠M0 ! M0/⇠M! 0

is the Hodge exact sequence of H 1
dR
⌦ bOX.

Consider the map of short exact sequences

0 M M ⌦ OB+
dR,log,X

M ⌦ OB+
dR,log,X

⌦Ω1
X(log) 0

0 M0 M0 ⌦ OB+
dR,log,X

M0 ⌦ OB+
dR,log,X

⌦Ω1
X(log) 0

d

d

(10.1.2)

and let ✓̃ : OB+
dR,log,X

! bOX be the Fontaine’s map.

Taking the first graded piece in the upper short exact sequence one finds

0! ⇠M/⇠2M!
M ⌦ (ker ✓̃)

M ⌦ (ker ✓̃)2

r
�!
M ⌦ OB+

dR,log,X

M ⌦ (ker ✓̃)
⌦Ω1

X(log)! 0.

Since ⇠M ⇢ M0, taking the intersection with the image of the lower short exact sequence in (10.1.2)

one obtains a short exact sequence

0!
⇠M

⇠2M
!
M0 ⌦ (ker ✓̃) + ⇠M ⌦ OB+

dR,log,X

M0 ⌦ (ker ✓̃)2 + ⇠M ⌦ (ker ✓̃)

r
�!

M0 ⌦ OB+
dR,log,X

M0 ⌦ (ker ✓̃) + ⇠M ⌦ OB+
dR,log,X

⌦Ω1
X(log)! 0

(10.1.3)
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The right term of (10.1.3) is equal to M0/⇠M ⌦ Ω
1
X(log) = !�1

E ⌦ Ω
1
X(log) ⌦ bOX. The middle term is

equal to

gr1(H 1
dR ⌦ OB+dR,log,X) = !E ⌦ bOX � !

�1
E ⌦ gr1OB+dR,log,X.

Note that the restriction of r to !E ⌦ bOX is the Kodaira-Spencer map by definition. Indeed, if r :

H 1
dR
!H 1

dR
⌦Ω1

X(log) is the connection, taking the first graded piece we get the map

KS : !E ! !�1
E ⌦Ω

1
X(log).

Therefore, we have constructed a short exact sequence

0! TpE ⌦ bOX

HT�↵
����! !E ⌦ bOX � !

�1
E ⌦ gr1OB+dR,log,X

KS�r
����! !�1

E ⌦Ω
1
X(log) ⌦ bOX ! 0.

Thus, we have a commutative diagram

0 !�1
E ⌦

bOX(1) TpE ⌦ bOX !E ⌦ bOX 0

0 !�1
E ⌦

bOX(1) !�1
E ⌦ gr1OB+

dR,log,X
!�1

E ⌦Ω
1
X(log) ⌦ bOX 0

id

HT_ HT

↵ �KS

r

which gives the proposition. ⇤

In §7.1 we defined the period sheaf OClog as the 0-th graded piece of OBdR,log. It can also be

described as

OClog = lim
��!

n

⇠�ngrnOB+dR,log.

Let g, b, n and h denote the Lie algebra of GL2, B, N and T respectively. We refer to §8.4 for the

definition of the dual BGG short exact sequence and §7.2 for the conventions regarding pullbacks

of GL2-equivariant sheaves over the flag variety via ⇡HT. For a character  2 X(T), let V() = { f :

Bw0B ! A1
Qp
| f (bg) = (b) f (g)} be the (admissible) dual of the Verma module of highest weight ,

and denote by V () the GL2-equivariant quasi-coherent sheaf over F` defined by V(w0()) via the

functor (7.2.4). Let Υ = ⇡Kp,⇤(⇡
⇤
HT(�))Kp be the functor of Construction 7.2.2. We have the following

lemma

Lemma 10.1.4. There is a natural isomorphism of sheaves over Xprokét

Υ(V (0)) � OClog.

Proof. Let  = (k1, k2) 2 X⇤(T)+ be a dominant weight and V the irreducible representation of

highest weight . By Proposition 8.4.3 we have an inclusion V ⇢ V(), where under the identification

V() �  ⌦ O(w0N), the representation V maps bijectively onto the polynomials of degree  k1 � k2.

Let 0 = (1, 0) and V0
= St be the standard representation. The previous implies that we have an

isomorphism of B-modules

V(0) = lim
��!

n

Symn(S t ⌦ �0)

where, if v0 denotes the function in V(0) whose restriction to w0N is constant equal to 1, the transition

maps are given by v 7! v ⌦ v0(�0). We obtain a GL2-equivariant isomorphism of quasi-coherent

sheaves over F`
V (0) = lim

��!
n

Symn(St⌦V (0,�1)).
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Taking pullbacks by ⇡HT and using Proposition 10.1.3, we obtain an isomorphism of sheaves over

Xprokét

Υ(V (0)) = lim
��!

n

Symn(TpE ⌦ bOX ⌦ !E(�1))

= lim
��!

n

Symn(⇠�1gr1OB+dR,log)

= lim
��!

n

⇠�ngrnOB+dR,log

= OClog(0).

⇤

Theorem 10.1.5. Let ↵ = (1,�1). Let  = (k1, k2) 2 X⇤(T)+ be a dominant weight and BGG() the

BGG complex of Section 8.4

BGG() : [0! V ! V()! V(w0() � ↵)! 0].

Let BGG()F` be the GL2-equivariant complex of sheaves defined by BGG(). We have an isomor-

phism of complexes over Xprokét

Υ(BGG()F`) = [0! V ⌦ bOX ! !w0()
E
⌦ OClog(k1)! !+↵

E ⌦ OClog(k2 � 1)! 0].

Proof. Note that V() = ⌦V(0) as B-module. The theorem follows from Lemma 10.1.4 and the fact

that Υ(L ()) = !
E
⌦ bOX(k2). ⇤

Corollary 10.1.6. Let ⌫ : XCp,prokét ! XCp,két be the projection of sites. In the notation of the previous

theorem we have

R⌫⇤(V ⌦ bOX) = !w0()
E

(k1)[0] � !+↵
E (k2 � 1)[�1].

Proof. By [DLLZ18, Lem. 3.3.15] or [Sch13a, Prop. 6.16] we know that R⌫⇤OClog = OXCp ,két. There-

fore,

R⌫⇤(V ⌦ bOX) = [!w0()
E
! !+↵

E ],

but the above map is zero, as the sheaf !w0()
E

already factors through V ⌦ bOX via HT,_ : !w0()
E
⌦

bOX(k1)! V ⌦ bOX. The corollary follows. ⇤

Proof of Theorem 10.1.1. By the previous corollary we have

R⌫⇤(V ⌦ bOX) = !w0()
E

(k1)[0] � !+↵
E (k2 � 1)[�1] (10.1.4)

over the Kummer-étale site of XCp
. Projecting to the analytic site, and using that the modular sheaves

are coherent, the equation (10.1.4) holds true over XCp,an. By taking analytic cohomology for XCp
,

using purity on torsion local systems [DLLZ19, Theo 4.6.1] and the primitive comparison theorem,

one obtains

RΓét(YCp
,V) ⌦Qp

Cp = RΓprokét(XCp
,V ⌦ bOX)

= RΓan(XCp
,!w0

E
())(k1) � RΓan(XCp

,!+↵
E )(k2 � 1)[�1].

The theorem follows by taking H1-cohomology. ⇤
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10.1.1. Étale cohomology with compact supports

In the next paragraph we prove the Eichler-Shimura decomposition for the cohomology with compact

supports. Let j : Y ! X and ◆ : D ! X be the immersions of the affine modular curve and the cusps

divisors in X. Let O+D be the uncompleted bounded structural sheaf of Dprokét and I +
D := ker(O+X !

◆⇤O+D) the bounded elements of the ideal of definition of Dkét, we let ID = I +
D [ 1

p
]. We warn that

ID , OX(�D) is not defined by the boundary divisor as the ramification at the cusps is not stable in

the Kummer-étale site of X. For instance, if Dm ⇢ X(pm) denotes the (reduced) cusps divisor for all

m � 0 and X1 ⇠ lim
 ��m

Xn is the perfectoid modular curve, then ID|X1,an
= lim
��!m

OXm,an(�Dm). We let

bI +
D denote the p-adic completion of I +

D and bID = bI +
D [ 1

p
]. Since O+D is torsion free, the sheaf bI +

D is

equal to the kernel of bO+X ! ◆⇤ bO+D (similarly for bID).

Let L be a finite étale local system over Y , and let RΓét,c(YCp
,L) = RΓét(XCp

, jét,!L) be the étale

cohomology with compact supports. Lemma 4.4.27 of [DLLZ19] implies that this cohomology can

be computed in the Kummer-étale site, i.e. that we have a quasi-isomorphism

RΓét(XCp
, jét,!L) = RΓkét(XCp

, jkét,!L).

Let F be a sheaf over Yproét which is written as F = lim
 ��s2N

lim
��!i

Fs,i where Fs,i are étale local

systems of Y , and such that the projective limit satisfies the Mittag-Leffler property. We can define

j!F := lim
 ��s

lim
��!i

jkét,!Fs,i and RΓproét,c(YCp
,F ) := RΓprokét(XCp

, j!F ). As jkét,! is exact, one gets

RΓprokét,c(YCp ,F ) = R lim
 ��

s

hocolimi RΓkét(XCp
, jkét,!Fs,i).

Following the ideas of Scholze in [Sch15, Theo. IV 2.1] for describing the completed cohomology

in terms of the perfectoid modular curve, one obtains the following proposition

Proposition 10.1.7. Let F be a proétale sheaf over Y as before. The inclusion map j!F ! Fb⌦bZp

bI +
D

induces an almost quasi-isomorphism

RΓproét,c(YCp
,F )b⌦L

Zp
OCp
=ae RΓprokét(XCp

,Fb⌦bZp

bI +
D ),

where the completed tensor products are taken with respect to the filtration of F .

Proof. We have a commutative diagram with short exact rows

0 j!F F ◆⇤F |D 0

0 Fb⌦ bI +
D Fb⌦ bO+X Fb⌦◆⇤ bO+D 0.

The primitive comparison theorem for log-smooth adic spaces gives us almost quasi-isomorphisms

RΓprokét(XCp
,Fb⌦ bO+X ) =ae RΓprokét(XCp

,F )b⌦L
OCp

RΓprokét(DCp
,F |Db⌦ bO+D) =ae RΓprokét(DCp

,F |D)b⌦L
OCp
.

The proposition follows by taking the corresponding distinguished triangles in cohomology. ⇤

Lemma 10.1.8. Let ↵ = (1,�1), let  = (k1, k2) 2 X⇤(T)+ be a dominant character and V the

irreducible representation of highest weight . Let ⌫an : XCp,prokét ! XCp,an denote the projection of

sites, then

R⌫an,⇤(V ⌦ ◆⇤ bOD) = !w0()
E
|D(k1)[0] � !+↵

E |D(k2 � 1)[�1] (10.1.5)

R⌫an,⇤(V ⌦ ◆⇤ bID) = !w0()
E

(�D)(k1)[0] � !+↵
E (�D)(k2 � 1)[�1]. (10.1.6)
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Proof. The projection (10.1.6) follows from (10.1.5) and Corollary 10.1.6 by taking R⌫an,⇤ of the

distinguished triangle

0! V ⌦ bID ! V ⌦ bOX ! V ⌦ ◆⇤ bOD ! 0.

To prove (10.1.5) it is enough to work over a geometric cusp ⇠ 2 DCp
. Let N⇠ ⇢ Kp be its unipotent

monodromy. Let X1 denote the perfectoid modular curve, then ⇠ admits a lift to X1,Cp
/N⇠ by fixing a

compatible system of roots of unity. Let e⇠ = X1,Cp
⇥X1,Cp/N⇠

⇠ be the log perfectoid point lying over ⇠.

Then Gal(e⇠/⇠) = N⇠ and

RΓprokét(XCp
,V ⌦ ◆⇤ bO⇠) = RΓprokét(⇠,V ⌦ bO�) = RΓ(N⇠,V ⌦Zp

Cp).

Consider the short exact sequence provided by the dual BGG complex (Theorem 10.1.5)

0! Vb⌦ bOX ! !w0()
E
⌦OX

OClog(k1)! !+↵
E ⌦OX

OClog(k2 � 1)! 0.

The sheaf OClog is a free bOX-sheaf locally pro-Kummer-étale on X, hence it remains exact after ten-

soring with bO⇠. By Lemma 10.1.4 one has that OClog|e⇠ � Cpol(N⇠,Cp) is isomorphic to the ring of of

polynomial functions of N⇠ with coefficients in Cp. Thus, one computes

RΓ(N⇠,V ⌦Zp
Cp) ' RΓ(N⇠,

h
!w0()

E
|⇠(k1) ⌦Cp

Cpol(N⇠,Cp)! !+↵
E |⇠(k2 � 1) ⌦Cp

Cpol(N⇠,Cp)
i
)

= !w0()
E
|⇠(k1)[0] � !+↵

E |⇠(k2 � 1)[�1],

the lemma follows. ⇤

Theorem 10.1.9 (ES case of compact supports). Let ↵ = (1,�1), let  = (k1, k2) 2 X⇤(T)+ be a

dominant weight and V the irreducible representation of highest weight . There is a natural Hecke

and Galois equivariant isomorphism

H1
ét,c(YCp

,V) = H1
an(XCp

,!w0()
E

(�D))(k1) � H0(XCp
,!+↵

E (�D))(k2 � 1).

Proof. The theorem follows by Proposition 10.1.7 and (10.1.6) of Lemma 10.1.8 by taking H1-

cohomology in the analytic site of XCp
. ⇤

10.2. Classical p-adic Eichler-Shimura decomposition and

duality

To prove the compatibility of Poincaré and Serre duality in the ES decomposition it suffices to show

the compatibility of Poincaré and Serre duality traces for algebraic curves in the pro-étale framework.

We recall the Lemma 3.24 of [Sch13b]

Lemma 10.2.1. Let Z be a proper smooth adic space over Spa(Cp,OCp
). Consider the exact sequence

in Zproet

0! bZp(1)! lim
 ��

p

Gm ! Gm ! 0.

The boundary map Gm,et ! R1⌫⇤Zp(1) induces a commutative diagram of sheaves overWet

Gm,et R1⌫⇤bZp(1)

Ω
1
Z,et R1⌫⇤ bOX(1).

dlog

FE

Furthermore, the lower horizontal map is induced by the Faltings’s extension if Z arises from a base

change of a rigid space over Spa(Qp,Zp).
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Proposition 10.2.2. Let Zalg be a proper smooth curve over Spec(Cp), and let Z be its analytification

over Spa(Cp,OCp
). Let ⌫ : Zproét ! Zét be the projection of sites. The following holds

1. H2
proét

(Z, bOX(1)) = H1
ét

(Z,R1⌫⇤ bOX(1)).

2. Let TrP : H2
ét

(Z,Zp(1))! Zp denote the Poincaré duality trace. Then the composition

H1(Z,Ω1
Z)

FE
��! H2

proet(Z,
bOZ(1)) = H2

et(Z,Zp(1)) ⌦Zp
Cp

TrP

��! Cp

is the Serre duality Trace.

3. Let Dalg ⇢ Zalg be a reduced divisor given by finitely many points. Let Ualg = Zalg\Dalg be its

complement and U its analytification as adic space over Spa(Cp,OCp
). Then the natural map

H2
ét,c(U,Zp(1))! H2

ét(Z,Zp(1)) (10.2.1)

is an isomorphism.

Proof. Consider the spectral sequence

H
p

ét
(Z,Rq⌫⇤ bOZ(1))) H

p+q

proét
(Z, bOZ(1)).

We know that Rp⌫⇤ bOW(1) is a coherent sheaf for all p, then H
p
et(Z,R

p⌫⇤ bOZ(1)) = 0 for q > 1. The

degeneracy of the spectral sequence implies part (1).

For (2) recall that the isomorphism H2
ét

(Z,Zp(1)) ⌦Zp
Cp = H2

proét
(Z, bOZ(1)) is induced by the inclu-

sion bZp(1) ,! bOZ(1). By Lemma 10.2.1 we have a commutative diagram

H1(Zalg,Gm) H2
ét

(Zalg,Zp(1))

H1
ét

(Z,Ω1
Z,ét

) H2
ét

(Z, bOZ(1)) Cp

dlog TrP

FE TrP

Since the image of dlog is dense (as Z arises from an algebraic curve), it suffices to show that for

↵ 2 H1(Zalg,Gm), the composition TrP �FE(dlog(↵)) is the Serre duality trace. Let L /Zalg be a line

bundle, we can see L as a subsheaf of the rational functions KZalg of Zalg. Let {Ui}i be a covering of

Zalg by affine schemes trivializing L , and L |Ui
= OUi

ei ⇢ KZalg a trivialization. We write as usual

Ui j = Ui \ U j. Let ci j = eie
�1
j 2 O⇥

Ui j
, then dlog(L ) = (

dci j

ci j
)i j 2 H1

ét
(Z,Ω1

Z,et). We have that

TrP L =
X

x2Zalg

vx(L )

where for x 2 Ui, vx(L ) = vx(ei) is the valuation at x. On the other hand, the Serre trace of dlog(L )

is X

x2X

resx(dlog(L ))

where resx(dlog(L )) is the residue at x of dlog ei for x 2 Ui. But we know that

resx(dlog ei) = vx(ei),

which finishes the proof of (2).
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Finally, let j : U ! Z and ◆ : D ! Z denote the immersion maps. As the étale cohomology with

and without supports of Fp of U and Z is concentrated in degrees [0, 2], it is enough to show that the

natural map

H2
ét,c(U,Fp(1))! H2

ét(Z,Fp(1)) (10.2.2)

is an isomorphism. But the fundamental exact sequence

0! j!Fp ! Fp ! ◆⇤Fp ! 0

and the fact that Hi
ét

(Z, ◆⇤Fp) = Hi
ét

(D,Fp) = 0 for i � 1 as D is a disjoint union of geometric points,

imply that (10.2.2) is an isomorphism. ⇤

Corollary 10.2.3. The Poincaré pairing

H1
ét(YCp

,V)(1) ⇥ H1
ét,c(YCp

,V�w0())
[
�! H2

ét,c(YCp
,Qp(1))

TrP

��! Qp

and the Serre pairing

H1
an(XCp

,!�E ) ⇥ H0
an(XCp

,!+↵
E (�D))

KS �[
����! H1

an(XCp
,Ω1

X)
TrS

��! Cp

(resp. !w0()
E

(�D) and !�w0()
E

) are compatible with the Eichler-Shimura decomposition.

Proof. Let ↵ = (1,�1) 2 X⇤(T). By functoriality of the Yoneda pairing, one is reduce to show that the

Poincaré and Serre duality traces are compatible over X, which is exactly Proposition 10.2.2. Indeed,

let ⌫an : XCp,prokét ! XCp,an be the projection of sites and f : XCp
! Spa(Cp,OCp

) the structural

morphism. By the compatibility of the cup product with compositions [Sta20, Tag 0FP6], the cup

product

R( f � ⌫an)⇤(V(1) ⌦ bOX) ⌦L R( f � ⌫an)⇤(V�w0() ⌦ bIX)
[ f�⌫an

����! RΓ( f � ⌫an)⇤( bI (1))

is equal to the composition of cup products

R f⇤R⌫an,⇤(V(1) ⌦ bOX) ⌦L R f⇤R⌫an,⇤(V�w0() ⌦ bIX)
[ f

��! R f⇤(R⌫an,⇤(V(1) ⌦ bOX) ⌦L R⌫an,⇤(V�w0() ⌦ bIX))

and

R⌫an,⇤(V(1) ⌦ bOX) ⌦L R⌫an,⇤(V�w0() ⌦ bID)
[⌫an

���! R⌫an,⇤( bID(1)).

But using the formulas

R⌫an,⇤(V(1) ⌦ bOX) = !w0()
E

(k1 + 1)[0] � !+↵
E (k2)[�1]

R⌫an,⇤(V�w0() ⌦ bID) = !�E (�D)(�k2)[0] � !�w0()
E

(�D)(�k1 � 1)[�1]

R⌫an,⇤( bID(1)) = OX(�D)(1)[0] � !↵
E(�D)[�1]

one deduces that the projection of [⌫an
onto the factor !↵

E
(�D)[�1] is given by the Yoneda pairings

!�w0()
E

(k1 + 1) ⌦L !w0()+↵
E

(�D)(�k1 � 1)! !↵
E(�D) �KS

Ω
1
X

!�E (�D)(�k2) ⌦L !+↵
E (k2)! !↵

E(�D) �KS
Ω

1
X,

proving that the pairings of the corollary with image in

H2
ét,c(YCp

,Qp(1)) ⌦ Cp � H1
an(XCp

,Ω1
X) �KS H1

an(XCp
,!↵(�D))

are compatible. The corollary follows from (2) and (3) of Proposition 10.2.2. ⇤
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10.3. The overconvergent Eichler-Shimura maps

Let n � 1 be a fixed integer. In the next two sections we will take Y = Y0(pn) and X = X0(pn)

the modular curves of level K p Iwn. Let ✏ � � � n be rational numbers, (R,R+) a uniform affinoid

Tate Qp-algebra and � = (�1, �2) : T ! R+,⇥ a �-analytic character. Let w 2 W = {1,w0} be an

element in the Weyl group of GL2 and Xw,Iwn
(✏) the ✏-neighbourhood of the w-ordinary locus defined

in §9.1. Let !
E

be the sheaf of overconvergent modular forms over Xw,Iwn
(✏) (§9.2), A�

� and D�
� the

sheaves of �-analytic principal series and distributions (§9.3). In Section 9.4 we have defined HT

morphisms between the previous sheaves, interpolating the HT maps V ⌦ bOX ! !
E
⌦ bOX(k2 � 1) and

!w0()
E

(k1) ⌦ bOX ! V ⌦ bOX. We have the following lemma

Lemma 10.3.1. Let ↵ = (1,�1) 2 X⇤(T). The overconvergent Hodge-Tate maps (Definition 9.4.1)

give rise Galois and U t
p-equivariant maps of cohomology groups (with the good normalizations for

the overconvergent modular forms, see Definition 9.2.19)

H1
prokét(XCp

,A�
�
b⌦ bOX)

ESA
���! H0

w0
(XCp
,!

�+↵
E

)✏(�2 � 1)

H1
1,c(XCp

,!
w0(�)

E
)✏(�1)

ES _
A

���! H1
prokét(XCp

,A�
�
b⌦ bOX).

(10.3.1)

Dually, we have Galois and Up-equivariant maps of cohomology groups

H1
w0,c

(XCp
,!
��
E

)✏(��2)
ES _
D

���! H1
prokét(XCp

,D�
�
b⌦ bOX))

H1
prokét(XCp

,D�
�
b⌦ bOX)

ESD
���! H0

1(XCp
,!
�w0(�)+↵
E

)✏(�1 � 1).

Proof. Let ⌫an : XCp,prokét ! XCp,an be the natural projection. First, let us show that

R⌫an,⇤(!
�
E
b⌦ bOX) = !

�
E
[0] � !

�+↵
E

(�1)[�1]. (10.3.2)

By Theorem 9.2.3 the sheaf !
�,+
E

is an ON-O+
X,ét

sheaf locally for the étale topology of X. Let

⌫két : XCp,prokét ! XCp,két be the natural projection of sites. Then, locally étale, we can write!
�,+
E
⌦ bOX =

cL
i
bO+X ei. Thus, we get

R⌫két,⇤(!
�
E
b⌦ bOX) = R⌫két,⇤(!

�,+
E

b⌦ bO+X )[
1

p
]

= R lim
 ��

s

R⌫két,⇤(
M

(O+X/p
s)ei)[

1

p
]

= R lim
 ��

s

M

s

(R⌫két,⇤
bO+X/ps)ei[

1

p
]

= !
�
E
b⌦L

R⌫két,⇤
bOX.

Then, by Therorem 10.1.5 we know that R⌫,két
bOX = OX,két[0] � !↵

E
(�1)[�1]. Lemmas [Sch13a, 5.5]

or [DLLZ19, 6.17] imply that the integral structure obtained by R⌫két,⇤( bO+X ) defines the same topology

of the one given by O+
X,két

[0] � !↵,+
E

(�1)[�1]. Therefore

R⌫két,⇤(!
�
E
b⌦ bOX) = !

�
E
[0] � !

�+↵
E

(�1)[0]

over the Kummer-étale site of Xw,Iwm
(✏). Finally, let µkét : XCp,két ! XCp,an be the projection map.

In order to descend to the analytic site we recall that !
�
E

is a projective Banach sheaf over Xw,Iwn
(✏)

(cf. [BP20, §5.5.2]). Thus, it is a direct summand of an ON Banach sheaf cL
i
OX over Xw,Iwn

(✏). But
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we know that the Kummer-étale cohomology of O+X in affinoids admitting a Kummer-étale map to a

torus T = Spa(QphT
±1i,ZphT

±1i) or a disc D = Spa(QphUi,ZphUi) has bounded torsion (using the

Lemma 5.5 of [Sch13a] for example). A similar argument as before using derived limits shows that

Rµkét,⇤(
cL

i
OX,két) =

cL
i
OX,an, whence Rµkét,⇤!

�
E
= !

�
E
.

Consider the overconvergent HT maps of §9.4

!
w0(�)

E
b⌦ bOX(�1)! A�

�
b⌦ bOX over X1,Iwn

(✏)

A�
Iwn

b⌦ bOX ! !
�
E
b⌦ bOX(�2) over Xw0,Iwn

(✏).

Taking the projection from the pro-Kummer-étale site to the analytic site, one gets maps

!
w0(�)

E
b⌦R⌫an,⇤

bOX(�1)! R⌫an,⇤(A
�
�
b⌦ bOX) over X1,Iwn

(✏)

R⌫an,⇤(A
�
�
b⌦ bOX)! !

�
E
b⌦R⌫an,⇤

bOX(�2) over Xw0,Iwn
(✏).

Taking the cohomologies of Definition 9.2.9 and using (10.3.2) we obtain maps

RΓ1,c(XCp
,!

w0(�)

E
)✏(�1)! RΓ1,c(XCp

,R⌫an,⇤(A
�b⌦ bOX))✏

RΓw0
(XCp
,R⌫an,⇤(A

�b⌦ bOX))✏ ! RΓw0
(XCp
,!

�+↵
E

))✏(�2 � 1)[�1].

On the other hand, we have restriction and correstriction maps

RΓ1,c(XCp
,R⌫an,⇤(A

�b⌦ bOX))✏
Cor
��! RΓprokét(XCp

,A�
�
b⌦ bO+X )

Res
��! RΓw0

(XCp
,R⌫an,⇤(A

�b⌦ bOX))✏ . (10.3.3)

Taking H1-cohomology and the composition of the previous morphisms, on obtains the maps (10.3.1).

A similar construction yields for the distributions D�
�. The Galois equivariance is clear as the HT-

maps are Galois equivariant. The compatibility with respect to the good normalization of the Up-

operators follows from Proposition 9.4.2 and the equality U
good
p,↵ = Up,↵, see Definition 9.2.19. ⇤

We can finally state the main theorem of this paper. We will focus in the case of the �-analytic

principal series, the statements and the proof for the �-analytic distributions being totally analogous,

cf. [AIS15, Theo. 6.1].

Theorem 10.3.2. Let ✏ � � � n, (R,R+) an uniform affinoid Tate Qp-algebra and � : T = T(Zp) !

R+,⇥ a �-analytic character. The following holds

1. The composition of the Eichler-Shimura maps ESA � ES _
A

is zero:

0! H1
1,c(XCp

,!
w0(�)

E
)✏(�1)

ES _
A

���! H1
prokét(XCp

,A�
�
b⌦ bOX)

ESA
���! H0

w0
(XCp
,!

�+↵
E

)✏(�2 � 1)! 0.

(10.3.4)

2. Assume that V = Spa(R,R+) is an affinoid subspace of the weight space WT of T , an let

 = (k1, k2) 2 V be a dominant weight of T. Let ↵ = (1,�1) 2 X⇤(T) and let � = �un
V

be the

universal character ofV. The following diagram commutes

H1
1,c(XCp

,!
w0(�)

E
)✏(�1)

H1
1,c(XCp

,!w0()
E

)✏(k1)

H1
an(XCp

,!w0()
E

)(k1)

H1
prokét

(XCp
,A�

�
b⌦ bOX)

H1
prokét

(XCp
,A�


b⌦ bOX)

H1
ét

(YCp
,V) ⌦ Cp

H0
w0

(XCp
,!

�+↵
E

)✏(�2 � 1)

H0
w0

(XCp
,!+↵

E
)✏(k2 � 1)

H0
an(XCp

,!+↵
E

)(k2 � 1)

H1
1,c(XCp

,R⌫an,⇤(A
�
�
b⌦ bOX))✏ H1

w0
(XCp
,R⌫an,⇤(A

�
�
b⌦ bOX))✏

ES _
A ESA

ES _ ES

Cor Res

Cor Res
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3. The maps of (2) are Galois and U t
p equivariant with respect to the good nomalizations (Defi-

nition 9.2.19). In particular, the diagram above restricts to the finite slope part with respect to

the U t
p action.

4. Let h < k1� k2+1. There exists an open affinoidV0 ⇢ V containing  such that the ( h)-slope

part of the restriction of (10.3.4) to V0 is a short exact sequence of finite free Cpb⌦Qp
O(V0)-

modules.

5. Keep the hypothesis of (4), and let � be the universal character of V0. Let e� = �1 � �2 + 1 :

Z⇥p ! R+,⇥, and b = d
dt
|t=1e�(t). Then we have a Galois-equivariant split after inverting b

H1
prokét(XCp

,A�
�
b⌦ bOX)h

b
= [H1

1,c(XCp
,!

w0(�)

E
)h
✏ (�1)]b � [H0

w0
(XCp
,!

�+↵
E

)h
✏ (�2 � 1)]b.

Proof. Part (1) follows from the fact that the composition of the restriction and correstriction maps

(10.3.3) is zero.

Parts (2) and (3) follows from Lemma 10.3.1, and the compatibility of the formation of A�
� and

!
�
E

with the character �. The commutation of the lower diagram is a direct consequence of the

constructions and Corollary 8.4.5.

For part (4) we follow the same arguments of [AIS15]: the finite slope theory (cf. [Urb11, Buz07])

implies that there is an affinoid open subspace V0 ⇢ V containing  such that the ( h)-part of the

sequence (10.3.4) restricted to V0 is a sequence of finite free Cpb⌦Qp
O(V0)-modules. Moreover, by

the classicity theorems 9.2.20 and 9.3.16, and the classical Eichler-Shimura decomposition (Theorem

10.1.1), we can takeV0 such that the sequence (10.3.4) is short and exact.

Finally, we briefly sketch the argument for part (5). LetV0 be as in (4), let R = O(V0), and consider

the short exact sequence of the ( h)-part of (10.3.4). Taking basis and tensoring with the Tate twist

R(1 � �2) we are left to prove that the localization by b of H1(GQp
,Cpb⌦R(�1 � �2 + 1)) vanishes. By

almost étale descent one has

H1(GQp
,Cpb⌦R(�1 � �2 + 1)) = H1(Gal(Q

cyc
p /Qp),Q

cyc
p b⌦Qp

R(�1 � �2 + 1)). (10.3.5)

We identify Gal(Q
cyc
p /Qp) with Z⇥p via �cyc. By Sen theory, to show that (10.3.5) is of b-torsion it is

enough to prove that H1(LieZ⇥p ,R(�1 � �2 + 1))b = 0, but this is clear as H1(LieZ⇥p ,R(�1 � �2 + 1)) �

R/bR. ⇤

10.4. Compatibility with Poincaré and Serre duality

We finish this paper with a construction of the Poincaré paring for overconvergent modular symbols,

then we prove its compatibility with the Eichler-Shimura maps and the Serre pairing of overconver-

gent modular forms. We need a couple of lemmas

Lemma 10.4.1. Let F denote A�
� or D�

�. Then the complex RΓproét,c(YCp
,F ) admits, locally on the

weight space, finite slope decompositions.

Proof. This follows from the distinguished triangle

RΓproét,c(YCp
,F ) RΓproét(YCp

,F ) RΓprokét(DCp
,F )

+
�!

and the fact that RΓprokét(DCp
,F ) is represented by direct sums of complexes of the form

F (⇠̃)
n⇠�1

���! F (⇠̃)

where ⇠ 2 D, ⇠̃ 2 X1 is a log perfectoid point over ⇠, and n⇠ 2 N⇠ ⇢ Iwn is the monodromy of e⇠ over

⇠. ⇤
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10. p-adic Eichler-Shimura decompositions

We have short exact sequences over Xw,Iwn
(✏)

0! !
�
E
b⌦OX

bID ! !
�
E
b⌦OX

bOX ! !
�
E
b⌦OX

◆⇤ bOD ! 0

where the completed tensor products are with respect to the integral modular sheaves !
�,+
E

and the

p-adic topology.

Lemma 10.4.2. Let ⌫an : Xw,Iwn
(✏)prokét ! Xw,Iwn

(✏)an be the projection of sites, then

R⌫an,⇤(!
�
E
b⌦OX

bID) = !
�
E
(�D)[0] � !

�+↵
E

(�D)(�1)[�1].

Proof. This follows from the proof of Lemma 10.3.1 which gives R⌫an,⇤(!
�
E
b⌦OX

bOX) = !
�
E
[0] �

!
�
E
(�1)[�1], and (10.1.5) of Lemma 10.1.8 which implies that R⌫an,⇤(!

�
E
b⌦OX

◆⇤ bOD) = !
�
E
|D[0] �

!
�+↵
E

(�1)|D[�1]. ⇤

On the other hand, Proposition 10.1.7 provides an isomorphism of distinguished triangles

RΓproét,c(YCp
,F )b⌦Cp RΓproét(YCp

,F )b⌦Cp RΓprokét(DCp
,F )b⌦Cp

+
�!

RΓprokét,c(XCp
,Fb⌦ bID) RΓprokét(XCp

,Fb⌦ bOX) RΓprokét(DCp
,Fb⌦ bOD)

+
�!

where the completed tensor products are with respect to the filtrations of A�,+
� and D�,+

� . We deduce

the following analogous of Theorem ?? for the cohomology with compact supports

Corollary 10.4.3. With the hypothesis of Theorem ??, we have Galois and Hecke equivariant Eichler-

Shimura maps

0 H1
1,c(XCp

,!
w0(�)

E
(�D))✏(�1) H1

proét,c
(YCp
,A�

�)b⌦Cp H0
w0

(XCp
,!

�+↵
E

(�D))✏(�2 � 1) 0

0 H1
w0,c

(XCp
,!
��
E

(�D))✏(��2) H1
proét,c

(YCp
,D�

�)b⌦Cp H0
1
(XCp
,!
�w0(�)+↵
E

(�D))(��1 � 1) 0.

ES _
A ESA

ES _
D ESD

(10.4.1)

where D is the cusp divisor. Furthermore, the following holds

1. The maps (10.4.1) are a sequence, i.e. the composition of two consecutive arrows is zero.

2. LetV ⇢WT be an open affinoid of the weight space of T = T(Zp), let R = O(V) and � be the

universal character over V. Let  = (k1, k2) 2 V be a dominant weight and h < k1 � k2 + 1.

Then there exists an affinoid subspace V0 ⇢ V containing  such that the ( h)-slope part of

(10.4.1) is a short exact sequence of finite free Cpb⌦O(V0)-modules.

3. With the hypothesis as in (2), suppose that V = V0. Let e� = �1 � �2 + 1 and b = d
dt
|t=1e�(t).

Then, after inverting b, the ( h)-slope part of (10.4.1) splits as a Galois representation.

Proof. This is a consequence of Lemmas 10.4.1 and 10.4.2 and the proof of Theorem ??. ⇤
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10.4.1. The pairings

Let ✏ � � � n, (R,R+) and � be as in previous sections. By construction there is a natural pairing

between the �-principal series and distributions

A�
� ⇥ D�

� ! R.

It is easy to see that it induces a Poincaré pairing

h�,�iP : H1
proét,c(YCp

,D�
�(1)) ⇥ H1

proét(YCp
,A�

�)! H2
proét,c(YCp

,R(1))
TrP

��! R

where the first arrow is a Yoneda pairing, and the last arrow is induced by the Poincaré trace H1
ét,c

(YCp
,Zp(1))

TrP

��!

Zp.

On the other hand, in [BP20] the authors define overconvergent Serre pairings in families

h�,�iS : H1
w,c(XCp

,!
��
E

(�D))✏ ⇥ H0
w(XCp

,!
�+↵
E

)✏ ! R

compatible with the classical Serre pairings. They are constructed by taking the Yoneda’s product

[ : H1
w,c(XCp

,!
��
E

(�D))✏ ⇥ H0
w(XCp

,!
�+↵
E

)✏
[
�! H1

w,c(XCp
,!↵

E(�D))✏ � H1
w,c(XCp

Ω
1
X
b⌦R)✏

and composing with the Serre trace map of X

TrS : H1
w,c(XCp

,Ω1
X
b⌦R)✏

Cor
��! H1

an(XCp
,Ω1

X
b⌦R)! R.

Theorem 10.4.4. Keep the notation of Theorem ??. The following holds

1. The Poincaré and Serre pairings of overconvergent cohomologies are compatible with the good

normalizations of the Up-operators (Definition 9.2.19). Moreover, they are compatible with the

Eichler-Shimura maps of Corollary 10.4.3.

2. Let V ⇢ WT be an open affinoid, and let � = �un
V

be the universal character of V. Let

 = (k1, k2) 2 V and fix h < k1� k2+1. There exists an open affinoidV0 ⇢ V containing  such

that we have perfect pairings of finite free Cpb⌦O(V0)-modules

h�,�iP : H1
proét,c(YCp

,D�
�(1))h ⇥ H1

proét(YCp
,A�

�)
h ! O(V0)

and

h�,�iS : H1
w,c(XCp

,!
��
E

(�D))h
✏ ⇥ H0

w(XCp
,!

�+↵
E

)h
✏ ! O(V0)

h�,�iS : H1
w,c(XCp

,!
w0(�)

E
)h
✏ ⇥ H0

w(XCp
,!
�w0(�)+↵
E

(�D))h
✏ ! O(V0),

compatible with the overconvergent Eichler-Shimura maps.

Proof. The Hecke operators are compatible with the pairings by their definition via finite flat corre-

spondances, see Definitions 9.2.2 and 9.3.12.

In the following we forget the Galois action. Let ⌫an : XCp,prokét ! XCp,an be the projection of sites.

We have a commutative diagram of Yoneda’s products

H1
1,c(XCp

,R⌫an,⇤(!
w0(�)

E
b⌦ bOX))✏ ⇥ H1

1(XCp
,R⌫an,⇤(!

�w0()
E

b⌦ bID))✏ H2
1,c(XCp

,R⌫an,⇤(Rb⌦ bID))✏

H1
prokét

(XCp
,A�

�
b⌦ bOX) ⇥ H1

prokét
(XCp
,D�

�
b⌦ bID) H2

prokét
(XCp
,Rb⌦ bID)

H1
w0

(XCp
,R⌫an,⇤(!

�
E
b⌦ bOX))✏ ⇥ H1

w0,c
(XCp
,R⌫an,⇤(!

��
E

b⌦ bID))✏ H2
w0,c

(XCp
,R⌫an,⇤(Rb⌦ bID))✏

Cor

Cor
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On the other hand, we also have compatible pairings provided by the Faltings extension

H1
w,c(XCp

,!
��
E

(�D))✏ ⇥ H0
w(XCp

,!
�+↵
E

)✏ H1
an(XCp

,Rb⌦Ω1
X)

H1
w0,c

(XCp
,R⌫an,⇤(!

��
E

b⌦ bID))✏ ⇥ H1
w0

(XCp
,R⌫an,⇤(!

�
E
b⌦ bOX))✏ H2

prokét
(XCp
,Rb⌦ bID).

Cor�[

FE

Cor�[

The compatibility of Poincaré and Serre traces (Proposition 10.2.2) implies part (1). Part (2) follows

the same lines of the proof of Theorem ?? and Corollary 10.4.3 using the fact that the pairings are

perfect for the classical Eichler-Shimura decomposition. ⇤
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Part III.

Solid locally analytic representations of

p-adic Lie groups
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11. Introduction

The theory of p-adic representations of p-adic groups has a long history and it has played a key role

in the field of Number Theory during the last decades, as witnessed, e.g., in the study of the p-adic

Langlands correspondence [Col10], [CDP14].

In this article, we intend to reformulate the theory of locally analytic representations of p-adic Lie

groups as developed in [ST02], [ST01], [ST03], [ST05], [Eme17], using the theory of condensed

mathematics developed by Clausen and Scholze. We define and study the notions of analytic and

locally analytic representations of p-adic Lie groups on solid modules. One of our main new re-

sults, which was the departing point of our investigations, is a generalisation of Lazard’s comparison

theorem [Laz65] between continuous and locally analytic cohomology of a finite dimensional repre-

sentation of a compact p-adic Lie group over Qp to arbitrary solid locally analytic representations1.

Generalisations of Lazard’s comparison between locally analytic and Lie algebra cohomology have

already been considered in [HKN11], [Lec12], [Tam15]. We also give, following the lines of [Tam15],

a proof of this result in the solid context. Our second main new result is a comparison between con-

tinuous cohomology of solid representation and the continuous cohomology of its locally analytic

vectors. This results can be seen as a p-adic analogue of a theorem of G. D. Mostow [Mos61] and P.

Blanc [Bla79].

11.1. Background

Let p be a prime number and G a compact p-adic Lie group. The theory of p-adic representations

of G comes in different flavours: one has the notion of continuous, analytic and locally analytic rep-

resentations V of G according to whether the orbit map ov : G ! V , g 7! g · v (v 2 V fixed) is a

continuous, resp. analytic, resp. locally analytic function of the p-adic variety G.

One usual way of studying such representations is through their cohomology. In a good situation,

the cohomology groups are Ext-groups in certain abelian categories. For instance, one defines the

cohomology of an abstract group H by working on the abelian category of Z[H]-modules: if M is

an H-module, the cohomology groups Hi(H,M) are by definition Exti
Z[H](Z,M), where Z denotes the

trivial representation.

In the case where V is a continuous representation of G, it is natural to consider continuous group

cohomology. Unfortunately, the category of topological abelian groups is not abelian. The absence of

a good formalism leads to ad-hoc definitions and conditions to get some basic results. For instance,

the restriction to strict short exact sequences in order to obtain a long exact sequence in cohomol-

ogy, or the necessity of proving by hand certain results such as Hochschild-Serre’s spectral sequence

(cf. [Ser94]), which would otherwise be formal consequences of a well behaved theory.

A possible way to remedy this issue is to cut out some subcategory of objects which is better be-

haved. Let us focus on a case of special interest to us. Let K be a finite extension of Qp. The category

1In particular, to any complete compactly generated locally convex vector space, e.g. metrizable.

91
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of locally analytic representations of G is not abelian. But one can consider the subcategory of ad-

missible locally analytic representations [ST03]. These objects carry a natural topology and form an

abelian category.

The theory of condensed mathematics developed by Clausen and Scholze [Sch19], [Sch20], [CS]

also provides a natural approach to deal with these kind of difficulties. Very vaguely, the condensed

objects in a category C can be defined as sheaves on the proétale site of a point with values in C . It

is shown in [Sch19] that the category of condensed abelian groups is an abelian category satisfying

Grothendieck’s axioms. Hence, one is on a good footing for doing homological algebra. Notice that,

as opposed to the approach described in the previous paragraph, this one consists not in imposing re-

strictions but rather enlarging the universe where several topological problems disappear, thus giving

a very general theory.

11.2. Statement of the main results

Let us now describe with some more detail what is carried out in this article.

11.2.1. Solid non-archimedean functional analysis

Let K be a finite extension of Qp. The field K naturally defines a condensed ring which, moreover,

has an analytic ring structure K⌅ in the sense of [Sch19], usually called the solid ring structure on

K. We let Solid(K) be the category of solid K-vector spaces. This category is stable under limits,

colimits and extensions, it has a tensor product ⌦K⌅ and an internal Hom denoted by Hom
K

(�,�) [CS].

Let us point out that all the important spaces in the classical theory of non-archimedean functional

analysis [Sch02] live naturally in Solid(K). Indeed, there is a natural functor

LCK ! Solid(K) (11.2.1)

from the category of complete locally convex K-vector spaces to solid K-vector spaces, as any com-

plete locally convex K-vector space can be written as a cofiltered limit of Banach spaces. Moreover,

it is fully faithful on a very large class of complete locally convex K-vector spaces, e.g. all com-

pactly generated ones, e.g. all metrizable ones. The main notions of the theory of condensed non-

archimedean functional analysis we use are due to Clausen and Scholze [Sch19], [CS], [Bos21]. All

the vector spaces considered in this text are solid K-vector spaces, unless otherwise specified.

Our first result is an anti-equivalence between two special families of solid K-vector spaces. Let

us first give some definitions. A Smith space is a K-vector space of the form Hom
K

(V,K), where V

is a Banach space. In classical terms, a Smith space is the dual of a Banach space equipped with

the compact-open topology. An LS space is a countable filtered inductive limit of Smith spaces with

injective transition maps. We then have the following result.

Theorem 11.2.1 (Theorem 13.3.13). The functor V 7! V_ := Hom
K

(V,K) induces an anti-equivalence

between Fréchet and LS spaces such that Hom
K

(V,V 0) = Hom
K

(V 0_,V_).

Remark 11.2.2. The previous theorem restricts in particular to an anti-equivalence between classical

nuclear Fréchet spaces and LB spaces of compact type (see, e.g., [ST02, Theorem 1.3]).

11.2.2. Representation theory

Let G be a compact p-adic Lie group. A representation of G on a solid K-vector space V is a map

of condensed sets G ⇥ V ! V satisfying the usual axioms. Define the Iwasawa algebra of G with

92
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coefficients in K as K⌅[G]; explicitly,

K⌅[G] =
�

lim
 ��

N

OK[G/N]
�
[
1

p
],

where N runs over all the open normal subgroups of G. This is the solid algebra defined by the clas-

sical Iwasawa algebra endowed with the weak topology. The category of G-representations on solid

K-vector spaces is equivalent to the category Solid(K⌅[G]) of solid K⌅[G]-modules. Observe that the

category of continuous representations of G on complete locally convex K-vector spaces lives natu-

rally in Solid(K⌅[G]) via the functor (11.2.1).

Inspired by Emerton’s treatment [Eme17], we define analytic and locally analytic vectors of solid

representations of G. Roughly speaking, they are defined as those vectors whose induced orbit map

is analytic or locally analytic. One advantage of our approach is that definitions make sense at the

level of derived categories, so one can speak about derived (locally) analytic vectors of complexes

C 2 D(K⌅[G]) in the derived category of K⌅[G]-modules. The derived functors of the locally analytic

vectors (for Lie groups over finite extensions of Qp) for admissible representations have been consid-

ered in [Sch09].

More precisely, let G be an analytic affinoid group over Spa(Qp,Zp) such that G = G(Qp,Zp)

and suppose in addition that G is isomorphic to a finite disjoint union of polydiscs. In practice,

the group G will be constructed using some local charts of G, see Remark 11.2.4 below for a more

detailed description. Let C(G,K) := O(G) ⌦Qp
K be the algebra of functions of G. The affinoid

algebra C(G,K) has a natural analytic ring structure denoted by C(G,K)⌅, see [And21]. We denote

by D(G,K) = O(G)_ ⌦Qp
K the distribution algebra of the affinoid group G. We define the derived

G-analytic vectors of an object C 2 D(K⌅[G]) to be the complex2

CRG�an := RHom
K⌅[G]

(K,C ⌦L
K⌅

C(G,K)⌅) (11.2.2)

where K is the trivial representation, and the G-action on C ⌦L
K⌅

C(G,K)⌅ is the diagonal one in-

duced by the action on C and the left regular action on C(G,K). We endow CRG�an with the right

regular action of G. It turns out that there is a natural map CG�an ! C, and we say that C is

derived G-analytic if this map is a quasi-isomorphism. If V is a Banach G-representation, then

V ⌦L
K⌅

C(G,K)⌅ = V ⌦K⌅ C(G,K) coincides with the projective tensor product of Banach spaces.

Thus, our definition of derived G-analytic vectors is the derived extension of [Eme17, Definition

3.3.13].

Now let G̊ be a Stein analytic group over Spa(Qp,Zp) such that G = G̊(Qp,Zp). Suppose in addition

that G̊ =
S

hG
(h) is written as an increasing union of affinoid groups G(h), where each G(h) is as

in the previous paragraph. In practice, G̊ will be as in Remark 11.2.4 below. We also denote by

D(G̊,K) := O(G̊)_ ⌦Qp
K = lim

��!h
D(G(h+),K) the distribution algebra of G̊. Then the derived G̊-

analytic vectors of C 2 D(K⌅[G]) are defined as the complex

CRG̊�an := R lim
 ��

h

CRG(h)�an, (11.2.3)

and we say that C is derived G̊-analytic if the natural map CRG̊�an ! C is a quasi-isomorphism.

Again, if V is a Banach G-representation, this definition is compatible with the G̊-analytic vectors

of [Eme17, Definition 3.4.1]. The main theorem is the following:

2The tensor product ⌦K⌅C(G,K)⌅ is the derived base change of modules over analytic rings, see [Sch19, Proposition

7.7].
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Theorem 11.2.3 (Theorem 10.3.2). A complex C 2 D(K⌅[G]) is derived G̊-analytic if and only if it is

a module overD(G̊,K).

This theorem is a generalisation of the integration map constructed by Schneider and Teitelbaum

to solid G-modules, cf. [ST02, Theorem 2.2]. It will serve us as a bridge between solid analytic

representations and solid modules over the distribution algebras.

Remark 11.2.4. Suppose that G is a uniform pro-p-group and � : Zd
p ! G is an analytic chart given by

a basis of the group (e.g. Example 14.1.5). Using this chart, one can define for any h 2 Q>0 affinoid

groups G(h) in such a way that the ph-analytic functions on Zd
p coincide with the rigid functions on

G(h) after taking pullbacks by �. In this situation, the G(h)-analytic vectors are those whose orbit map

is ph-analytic. Given h > 0, the group G(h+) :=
S

h0>hG
(h) is a Stein group. In the definition of derived

analytic vectors of equations (11.2.2) and (11.2.3) we will take G = G(h) and G̊ = G(h+). The locally

analytic functions on G are

Cla(G,K) = lim
��!

h!+1

C(G(h),K) = lim
��!

h!+1

C(G(h+),K).

Now letDla(G,K) = Cla(G,K)_ be the algebra of locally analytic distributions. We point out that the

analogous statement of Theorem 11.2.3 does not hold in general for locally analytic representations

and Dla(G,K)-modules. In the particular case of locally analytic representations on LB spaces of

compact type, this is nevertheless true, and was already known by [ST02].

11.2.3. Comparison theorems in cohomology

We finish this introduction by describing the main applications of Theorems 11.2.1 and 11.2.3 to the

study of the cohomology of continuous representations.

For C 2 D(K⌅[G]), we define the solid group cohomology of C to be the complex

RHom
K⌅[G]

(K,C).

Let g be the Lie algebra of G and U(g) its universal enveloping algebra. Let G̊ be a Stein group

neighbourhood of G as in Theorem 11.2.3 and D(G̊,K) the distribution algebra of G̊. If in addition

C is G̊-analytic, we define the G̊-analytic cohomology of C as RHom
D(G̊,K)

(K,C), and its Lie algebra

cohomology to be RHom
U(g)

(K,C). Using Bar resolutions and Theorem 11.2.3, one verifies that these

definitions recover the usual continuous, analytic, and Lie algebra cohomology groups.

Our first new result compares continuous cohomology of a solid representation and the continuous

cohomology of its locally analytic vectors. This result can be seen as a p-adic analogue of a theorem

of P. Blanc [Bla79] and G. D. Mostow [Mos61] in the archimedean setting, which compares continu-

ous and differentiable cohomology of a real Lie group G.

Let C 2 D(K⌅[G]), we define the derived locally analytic vectors of C as the homotopic colimit

CRla = hocolim
G

CRG�an

where G runs over all the affinoid neighbourhoods of G. We say that C is derived locally analytic if

CRla = C. If V is a Banach representation, then H0(VRla) coincides with the locally analytic vectors

of V in the sense of [Eme17, Definition 3.5.3]. We have the following theorem.

Theorem 11.2.5 (Theorem 15.2.1). Let C 2 D(K⌅[G]) and let CRla be the complex of derived locally

analytic vectors of C. Then

RHom
K⌅[G]

(K,C) � RHom
K⌅[G]

(K,CRla).
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In particular, if V 2 Solid(K⌅[G]) then, setting VRila := Hi(VRla) for i � 0 there is a spectral sequence

of solid K-vector spaces

E
i, j

2
:= Exti

K⌅[G]
(K,VR jla) =) Ext

i+ j

K⌅[G]
(K,V).

We give an application in the classical context. Let V be a continuous representation of G on

a complete locally convex K-vector space. Denote Hi
cont(G,V) the usual continuous cohomology

groups. These coincide with the underlying sets of the solid cohomology groups Exti
K⌅[G]

(K,V). We

say that V has no higher locally analytic vectors if VRila = 0 for all i > 0. This is the case for

admissible representations (cf. [Pan20] or Proposition 14.5.3). One deduces the following corollary.

Corollary 11.2.6. If V has no higher locally analytic vectors, then for all i � 0,

Hi
cont(G,V) = Hi

cont(G,V
la).

Our last result concerns a generalisation of Lazard’s comparison between continuous, (locally)

analytic and Lie algebra cohomology from finite dimensional representations V to arbitrary solid

derived (locally) analytic representations. We have the following theorem.

Theorem 11.2.7 (Continuous vs. analytic vs. Lie algebra cohomology, Theorem 15.2.3). Let C 2

D(K⌅[G]) be a derived G̊-analytic complex. Then3

RHom
K⌅[G]

(K,C) � RHom
D(G̊,K)

(K,C) � (RHom
U(g)

(K,C))G.

11.3. Organisation of the paper

In Section 12 we review very briefly the theory of condensed mathematics and solid abelian groups.

We recall the notion of analytic ring and give some examples that will be used throughout the text.

In Section 13 we develop the theory of solid K-vector spaces following the appendix of [Bos21].

Most of the results exposed in this section will be presented in the forthcoming work [CS]. We review

in particular the main properties of classical vector spaces: Banach, Fréchet, LB and LF spaces. Our

main original result is Theorem 11.2.1 generalising the classical anti-equivalence between LB spaces

of compact type and nuclear Fréchet vector spaces.

In Section 14 we introduce the different analytic neighbourhoods G(h) of our p-adic Lie group G.

We begin in §14.1 by introducing spaces of analytic functions, following [Eme17] closely. Then, we

define the algebras of distributions as the duals of the spaces of analytic functions. We also intro-

duce another class of distribution algebras, used already in [ST03], which are more adapted to the

coordinates of the Iwasawa algebra. In §14.3, we define the notion of analytic and derived analytic

representation, we prove Theorem 11.2.3, except for a technical lemma whose proof is postponed to

Section 15. We finish the section with some applications to locally analytic and admissible represen-

tations.

Finally, in Section 15, we recall (Theorem 15.3.1) a lemma of Serre used by Lazard to construct

finite free resolutions of the trivial representation when G is a uniform pro-p-group. We use this result,

as well as its enhancement due to Kohlhaase (Theorem 15.3.2) to prove the technical lemma necessary

for Theorem 11.2.3. We state Theorems 11.2.5 and 11.2.7 in §15.2 and give a proof in §15.4. We

conclude with some formal consequences, namely by showing a solid version of Hochschild-Serre

and proving a duality between group homology and cohomology.

3The Lie algebra cohomology RHom
U(g)

(K,C) lands naturally in the derived category of smooth representations of G on

solid K-vector spaces. Since K is of characteristic 0, taking G-invariants in this category is exact and the superscript

G means the composition with this functor, cf. Remark 15.2.4.
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12. Recollections in condensed

mathematics

First, we review some elementary notions in condensed mathematics: we recall the definitions of

condensed sets, solid abelian groups and analytic rings. In the future we will be only interested in the

categories of solid modules, and modules of analytic rings over Z⌅.

12.0.1. Condensed objects

In their recent work [Sch19] and [Sch20], Clausen and Scholze have introduced the new world of

condensed mathematics, which aims to be the good framework where algebra and topology live to-

gether. Roughly speaking, a condensed set/group/ring is a sheaf in sets/groups/rings in the pro-étale

site of a geometric point ⇤proét. It is equivalent to the category of profinite sets and continuous maps,

with coverings given by finitely many continuous maps which are jointly surjective.

Definition 12.0.1 ( [Sch19, Definitions 2.1 and 2.11]). A condensed set/group/ring/... F is a sheaf

over ⇤proét with values in Sets, Groups, Rings,... We denote by Cond the category of condensed sets

and Cond(Ab) that of condensed abelian groups. If R is a condensed ring, we denote by Cond(R) the

category of condensed R-modules1.

There is a functor from topological spaces to condensed sets whose restriction to the category of

compactly generated Hausdorff topological spaces is fully faithful. First recall that a topological space

X is compactly generated if a map X ! Y to another topological space Y is continuous if and only

if the composition S ! X ! Y is continuous for all maps S ! X from a compact Hausdorff space.

A compact Hausdorff space can be written as a quotient of a profinite set. Indeed, if S is a compact

Hausdorff space, let S dis denote the underlying set with the discrete topology, and �S dis its Stone-

Čech compactification. Then �S dis is profinite and the natural map �S dis ! S is a surjective map of

compact Hausdorff spaces. In particular, we can test if a topological space is compactly generated by

restricting to the profinite sets.

Let x denote the category of topological spaces, we define the functor ( ) : x! Cond mapping a

topological space T to the condensed set

T : S 7! T (S ) = Cont(S ,T )

where Cont(S ,T ) is the set of continuous functions from S to T . Recall that a condensed set X is

called quasi-compact if there is a profinite set S and a surjective map S ! X. Similarly, a condensed

set X is quasi-separated if for any pair of profinite sets S and S 0 over X the fiber product S ⇥X S 0

is quasi-compact. From now on we identify a profinite set S with the condensed set S . Given a

condensed set X and a profinite set S we define Cont(S , X) to be the condensed set whose value at a

profinite set S 0 is

Cont(S , X)(S 0) = HomCondS et(S ⇥ S 0, X) = X(S ⇥ S 0).

We have the following result.

1There are set theoretical issues with this definition as ⇤proét is not small, what [Sch19] does is to cut-off by a large

cardinal , considering the category of sheaves of -small profinite sets ⇤proét and take the direct limit. Hence the

category of condensed sets is not the category of sheaves of a site.
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Proposition 12.0.2 ( [Sch20, Proposition 1.2]). Consider the functior T 7! T from x to Cond

1. The functor has a left adjoint X 7! X(⇤)top sending any condensed set X to the set X(⇤) equipped

with the quotient topology arising from the map

G

S ,a2X(S )

S ! X(⇤)

with S profinite.

2. Restricted to compactly generated topological spaces, the functor is fully faithful.

3. The functor induces an equivalence between the category of compact Hausdorff spaces and

qcqs condensed sets.

4. The functor induces a fully faithful functor from the category of compactly generated weak

Hausdorff spaces, to quasi-separated condensed sets. The category of quasi-separated con-

densed sets is equivalent to the ind-category of compact Hausdorff spaces “lim
��!i

Ti” where all

transition maps Ti ! T j are closed immersions. If X0 ! X1 ! · · · is a sequence of compact

Hausdorff spaces with closed immersions and X = lim
��!n

Xn as topological spaces, then the map

lim
��!

n

X
n
! X

is an isomorphism of condensed sets.

Among the class of profinite sets there is the special class of extremally disconnected sets, which

are the projective objects in the category ⇤proét. Moreover, all of them are retractions of a Stone-Čech

compactification of a discrete set. Let Extdis denote the full subcategory of extremally disconnected

sets. The condensed sets can be defined using only this kind of profinites

Proposition 12.0.3 ( [Sch19, Prop. 2.7]). Consider the site of extremally disconnected sets with

covers given by finite families of jointly surjective maps. Its category of sheaves is equivalent to the

category of condensed sets via the restriction from profinite sets. Hence, a condensed set is a functor

X : Extdis! Set such that X(;) = ⇤ and X(S 1

F
S 2) = X(S 1) ⇥ X(S 2).

Extremally disconnected sets play a similar role as points do for locally ringed spaces. Namely,

if F ! G is a map of condensed sets, it is injective (resp. surjective) if and only if it is so after

evaluating at all extremally disconnected sets.

The inclusion Cond(Ab)! Cond admits a left adjoint T 7! Z[T ], where Z[T ] is the sheafification

of S 7! Z[T (S )]. Let S be an extremally disconnected set, Proposition 12.0.3 implies that the object

Z[S ] is projective in the category Cond(Ab). We have a tensor product in Cond(Ab) given by the

sheafification of the usual tensor product at the level of points. We also have an internal Hom in

Cond(Ab) defined as

Hom(M,N)(S ) = Hom(M ⌦ Z[S ],N)

for S extremally disconnected. If R is a condensed ring we write R[S ] := R ⌦ Z[S ]. They form a

family of compact projective generators of Cond(R). Then, if X is a condensed abelian group and

S is a profinite set we have Cont(S , X) = Hom
Z
(Z[S ], X). All the nice properties of the category of

condensed abelian groups are summarised in the following theorem

Theorem 12.0.4 ( [Sch19, Theo. 2.2]). The category of condensed abelian groups is an abelian

category which satisfies the Grothendieck axioms (AB3), (AB4), (AB5), (AB6), (AB3⇤) and (AB4⇤):

all limits (AB3⇤) and colimits (AB3) exist, arbitrary products (AB4⇤), arbitrary direct sums (AB4) and
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filtered colimits (AB5) are exact, and (AB6): for all index sets J and filtered categories I j, j 2 J, with

functor i 7! Mi, from I j to condensed abelian groups, the natural map

lim
��!

(i j2I j) j2J

Y

j2J

Mi j
!

Y

j2J

lim
��!
i j2I j

Mi j

is an isomorphism. Moreover, the category of condensed abelian groups is generated by compact

projective objects given by Z[S ] with S an extremally disconnected set.

12.0.2. Analytic rings

Next, we recall the notion of analytic ring

Definition 12.0.5 ( [Sch19] Def. 7.1, 7.4 and [Sch20] Def. 6.12). A pre-analytic ring (A,M) is the

data of a condensed ringA (called the underlying condensed ring of the analytic ring) equipped with

a functor

Extdis! Cond(A) S 7!M[S ],

called the functor of measures2 of (A,M), that sends finite disjoint union into products, and a natural

transformation of functors S !M[S ].

A pre-analytic ring is said to be analytic, if for any complex C : . . . ! Ci ! . . . ! C1 ! C0 ! 0

of A-modules such that each Ci is a direct sum of objects of the formM[T ] for varying extremally

disconnected sets T , the map

RHom
A

(M[S ],C)! RHom
A

(A[S ],C)

is an isomorphism for all extremally disconnected sets S . An analytic ring (A,M) is normalized if

A!M[⇤] is an isomorphism.

Example 12.0.6.

1. Solid modules ( [Sch19, Theorem 5.8]). We define the analytic ring Z⌅ to have underlying

ring Z, and functor of measures mapping an extremally disconnected S = lim
 ��i

S i, written as an

inverse limit of finite sets, to the condensed abelian group Z⌅[S ] := lim
 ��i
Z[S i].

2. ( [Sch19, Theorem 8.1]). More generally, let A be a discrete commutative algebra, and let

S = lim
 ��i

S i be an extremally disconnected set. We have an analytic ring A⌅ with underlying

condensed ring A, and with functor of measures given by

A⌅[S ] = lim
��!
B⇢A

lim
 ��

i

B[S i]

where B runs over all the Z-algebras of finite type in A.

3. Let p be a prime number, K a finite extension of Qp and OK its valuation ring. Let S = lim
 ��i

S i

be an extremally disconnected set. We have analytic structures for the rings OK and K, denoted

OK,⌅ and K⌅ respectively, given by

OK,⌅[S ] := lim
 ��

i

OK[S i] and K⌅[S ] := OK,⌅[S ][
1

p
] = K ⌦OK

OK,⌅[S ].

Note that OK[S ] is profinite for all S .

2This terminology is justified as follows. If (A,M) is an analytic ring, P is an (A,M)-module, S is an extremally

disconnected set, f 2 Cont(S , P) and µ 2M[S ] then, using the isomorphism HomA(M[S ], P) = Cont(S , P), one can

evaluate f at µ and define
R

f · µ = f (µ) 2 P, which allows to see µ as a linear functional on the space of functions

f 2 Cont(S , P).

98



12. Recollections in condensed mathematics

4. ( [And21, Theorem 1.5]) Let (A, A+) be a Huber pair. Andreychev defines an analytic ring

(A, A+)⌅ associated to (A, A+), whose underlying ring is A, and with functor of measures

(A, A+)⌅[S ] = lim
��!

B!A+,M

lim
 ��

i

M[S i],

where the colimit is taken over all the finitely generated subrings B ⇢ A+ and all the quasi-

finitely generated B-submodules M of A. If A+ = A� we simply write A⌅ for (A, A�)⌅.

5. A particular example of the previous case is the analytic ring associated to the Tate algebra

(KhT i,OKhT i), namely, the analytic ring KhT i⌅ whose functor of measures is given by

KhT i⌅[S ] = KhT i ⌦OKhT i ( lim
 ��

s2N,i2I

(OK/p
sOK[T ])[S i]).

In the previous equation, OK/p
sOK[T ] is the polynomial ring over OK/p

sOK in the variable T .

The following theorem explains the importance of the analytic rings

Theorem 12.0.7 ( [Sch19, Prop. 7.5]). Let (A,M) be an analytic ring.

1. The full subcategory

Cond(A,M) ⇢ Cond(A)

of allA-modules M such that for all extremally disconnected set S , the map

HomA(M[S ],M)! HomA(A[S ],M)

is an isomorphism, is an abelian subcategory stable under all limits, colimits and extensions.

Objects of the form M[S ], where S is an extremally disconnected profinite set, constitute a

family of compact projective generators of Cond(A,M). The inclusion functor admits a left

adjoint

Cond(A)! Cond(A,M), M 7! M ⌦A (A,M)

which is the unique colimit preserving extension of the functor given by A[S ] 7! M[S ]. Fi-

nally, ifA is commutative, there is a unique symmetric monoidal tensor product � ⌦(A,M) � on

Cond(A,M) making the functor � ⌦A (A,M) symmetric monoidal.

2. The functor of derived categories

D(Cond(A,M))! D(Cond(A))

is fully faithful and its essential image is stable under all limits and colimits and given by those

C 2 D(Cond(A)) for which the map

RHomA(M[S ],C)! RHomA(A[S ],C)

is an isomorphism for all extremally disconnected set S . In that case, the map

RHom
A

(M[S ],C)! RHom
A

(A[S ],C)

is also an isomorphism.

An object C 2 D(Cond(A)) lies in D(Cond(A,M)) if and only if for each n 2 Z, the cohomol-

ogy group Hn(C) lies in Cond(A,M). The inclusion functor D(Cond(A,M)) ⇢ D(Cond(A))

admits a left adjoint

D(Cond(A))! D(Cond(A,M)), C 7! C ⌦L
A (A,M)

which is the left derived functor ofM 7!M⌦A (A,M). Finally, ifA is commutative, there is a

unique symmetric monoidal tensor product � ⌦L
(A,M)

� on D(Cond(A,M)) making the functor

� ⌦L
A

(A,M) symmetric monoidal.
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12. Recollections in condensed mathematics

Remark 12.0.8. The functor �⌦L
(A,M)

� is the derived functor of �⌦(A,M)� if and only ifM[S 0]⌦L
(A,M)

M[S 00] = A[S ⇥ S 0] ⌦L
A

(A,M) sits in degree 0, cf. [Sch19, Warning 7.6]. This is the case for the

analytic rings of Example 12.0.6, and in fact for all analytic ring over Z⌅.

In the following we shall write D(A,M) for the derived category D(Cond(A,M)). The functor

� ⌦L
A

(A,M) should be thought as a completion with respect to the measuresM.

One of the main theorems of [Sch19] is the proof that Z⌅ is an analytic ring, it has as input several

non trivial computations of Ext-groups of locally compact abelian groups. The category SolidZ is

called the category of solid abelian groups.

Let p be a prime number, then Zp is a solid abelian group (being an inverse limit of discrete abelian

groups) and for S extremally disconnected we have (cf. [Sch19, Proposition 7.9])

Zp,⌅[S ] = Zp ⌦
L
Z⌅
Z⌅[S ] = Zp ⌦Z⌅ Z⌅[S ]. (12.0.1)

Definition 12.0.9. Let K be a finite extension of Qp and OK its ring of integers, we denote by

Solid(OK) (resp. Solid(K)) the category of solid OK-modules (resp. the category of solid K-vector

spaces) and D(OK,⌅), D(K⌅) their respective derived categories. Given a solid algebra A 2 Solid(OK)

we let D(A) denote the derived category of solid A-modules. If (A,M) is an analytic ring over Z⌅,

we let Solid(A,M) denote the category of (A,M)-solid modules.

Remark 12.0.10. An object in Solid(OK) (resp. Solid(K)) is the same as an object in Solid(Z) endowed

with an action of OK (resp. K). Indeed, this follows directly from Theorem 12.0.7 and (12.0.1).

12.0.3. Analytic rings attached to Tate algebras

In the case of a Tate algebra (A,M) = OKhT1, . . . ,Tdi⌅ we have the following key description of the

completion functor which follows from the observations of [Sch19, Lecture VIII].

Proposition 12.0.11 ( [And21, Proposition 3.13] ). LetOKhT i := OKhT1, . . . ,Tdi. We denoteOKhT i
_ =

Hom
OK

(OKhT i,OK). For any C,W 2 D(OK,⌅), there is a functorial isomorphism

RHom
OK

(W,C ⌦L
OK,⌅
OKhT i⌅) = RHom

OK
(W ⌦L

OK,⌅
OKhT i

_,C).

Proof. By [And21, Proposition 3.13], for any C 2 D(Z⌅), there is an isomorphism

C ⌦L
Z⌅
Z[T ]⌅ = RHom

Z
(
Z((T�1))

TZ[T ]
,C).

In particular, if C 2 D(OK,⌅), from [And21, Lemma 4.7] we have OKhT i⌅ = OK,⌅⌦
L
Z⌅
Z[T ]⌅ as analytic

rings, one gets

C ⌦L
OK,⌅
OKhT i⌅ = RHom

OK
(
OK((T�1))

TOK[T ]
,C).

Let W 2 D(OK). Applying the functor RHom
OK

(W,�) and the adjunction between ⌦L and RHom, we

get

RHom
OK

(W,C ⌦L
OK,⌅
OKhT i⌅) = RHom

OK
(W ⌦L

OK,⌅

OK((T�1))

TOK[T ]
,C).

Noting that OK ((T�1))

TOK [T ]
= OKhT i

_ as OKhT i-modules, this finishes the proof for the case of one variable.

The case of several variables is treated by induction noticing that if A is a discrete algebra of finite

type over Z then

RHom
A
(W,C ⌦L

A⌅
A[T ]⌅) = RHom

A
(W ⌦L

A⌅

A((T�1))

T A[T ]
,C)

for C,W 2 D(A⌅), which follows easily from [And21, Proposition 3.13]. ⇤

Remark 12.0.12. Proposition 12.0.11 can be seen as an instance of the six functor formalism of

[Sch19, Theorem 8.2].
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13. Non-archimedean condensed

functional analysis

The main purpose of this section is to state a duality between two classes of solid vector spaces over

a finite extension of Qp, namely Fréchet spaces and LS spaces (to be defined below), generalising the

duality between Banach spaces and Smith spaces (c.f. [Sch20, Theorem 3.8]), and the duality between

nuclear Fréchet spaces and LB spaces of compact type (see, e.g., [ST02, Theorem 1.3]). For doing so,

we will use many results on the theory of condensed non-archimedean functional analysis developed

by Clausen and Scholze. Since results haven’t yet appeared in the literature, we give a detailed

account with proofs included. The reader should be aware that many of the results in this chapter

must be attributed to Clausen and Scholze [CS], and the only original results are those concerning

duality, principally Theorem 13.3.13.

13.1. Banach and Smith spaces

Let K and OK be as in the previous section, and let $ be a uniformiser of OK . In this paragraph we

focus our attention in the category of solid K-vector spaces (or K⌅-vector spaces), i.e. the category

Solid(K). We start with some basic concepts

Definition 13.1.1.

1. A solid K-Banach space (or simply a Banach space) is a solid K-vector space V admitting a

$-adically complete OK,⌅-module V0 ⇢ V such that

a) V = V0 ⌦OK,⌅
K.

b) V0/$sV0 is discrete for all s 2 N.

We say that V0 is a lattice of V .

2. A solid K-Smith space (or simply a Smith space) is a solid K-vector space W admitting a

profinite OK,⌅-submodule W0 such that W = W0 ⌦OK,⌅
K. We say that W0 is a lattice of W.

Remark 13.1.2. Over R, a Smith space ( [Sch20, Def. 3.6]) is a complete locally convex topological

R-vector space W containing a compact absolutely convex subset C ⇢ V such that V =
S

a>0 aC. As

its p-adic analogue, we define a K-Smith space to be a topological K-vector space W containing a

compact OK-module W0 ⇢ W such that W = W0[ 1
$

].

Proposition 13.1.3. The functor V 7! V(⇤)top induces an equivalence of categories between solid and

classical K-Banach spaces (resp. between solid and classical K-Smith spaces).

Proof. Let V be a Banach space over K in the classical sense, and let V0 ⇢ V be the unit ball. Then

V0 is endowed with the $-adic topology, i.e. it is the inverse limit V0 = lim
 ��s

V0/$sV0, with V0/$sV0

discrete for all s 2 N. By Proposition 12.0.2 we know that

V = lim
��!
n2N

(lim
 ��
s2N

V0/$sV0)$�n = V0 ⌦OK,⌅
K,
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13. Non-archimedean condensed functional analysis

so that V is a solid K-Banach space. Conversely, if V is a solid Banach space then V(⇤)top is clearly a

K-Banach space in the classical sense.

Let W be a (classical) K-Smith space and W0 ⇢ W a lattice. As W0 is compact, it is profinite and

Proposition 12.0.2 implies that W = W0 ⌦OK,⌅
K is a solid Smith space as in our previous definition.

The converse is clear. ⇤

Proposition 13.1.4. There is a natural functor

LCK ! Solid(K) : V 7! V

from the category of complete locally convex K-vector spaces to solid K-vector spaces.

Proof. This follows from the fact that any complete locally convex K-vector space can be written as a

cofiltered limit of Banach spaces [Sch02, Chap. I, §4], and the adjunction of Proposition 12.0.2. ⇤

From now, all the complete locally convex K-vector spaces will be considered as solid K-vector

unless otherwise specified. The following result shows that solid Banach and Smith spaces over K

have orthonormal basis.

Lemma 13.1.5.

1. A solid K-vector space is Banach if and only if it is of the form

dM
i2I

K :=
�

lim
 ��

s

(
M

i2I

OK/$
s)
�
[

1

$
],

for some index set I.

2. A solid K-vector space is Smith if and only if it is of the form

(
Y

i2I

OK)[
1

$
],

for some index set I. In particular, by [Sch19, Corollary 5.5] and Theorem 12.0.7, Smith

spaces form a family of compact projective generators of the category Solid(K) of solid K-

vector spaces.

Proof. By definition, an object of the form cL
i2I

K is a solid K-Banach space. Conversely, let V be a

K⌅-Banach space and V0 ⇢ V a lattice. By Proposition 13.1.3 V(⇤)top is a Banach space with unit ball

V0(⇤)top ⇢ V(⇤)top and V(⇤)top = V . But then V0(⇤)top has an orthonormal OK-basis by taking any lift

of a OK/$OK-basis of V0/$. This proves (1).

To prove (2), let W be a Smith space and W0 ⇢ W a lattice. Since W0 is a profinite OK,⌅-module,

W0 = W0(⇤)top with W0(⇤)top a profinite OK-module in the usual sense. Moreover, W0(⇤)top is flat

and the topological Nakayama’s lemma implies that W0(⇤)top must be of the form
Q

i2I OK ( [SGA70,

Exposé VIIB, 0.3.8]). ⇤

We will need the following useful proposition

Proposition 13.1.6 ( [CS]). Let V be a solid K-vector space. The following statements are equivalent

1. V is a Smith space

2. V is quasi-separated, and there is a compact OK-submodule M ⇢ V such that V = M[ 1
$

].

Moreover, the class of Smith spaces is stable under extensions, closed subobjects and quotients by

closed subobjects.
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13. Non-archimedean condensed functional analysis

Proof. The equivalence between (1) and (2) follows immediately from the characterisation of Smith

spaces of Lemma 13.1.5. The fact that Smith spaces are stable under extensions follows from the fact

that they are projective, and hence every extension splits. The stability under closed subobjects and

quotients follows from the description of a Smith space as in (2) of the equivalence. ⇤

The next lemma provides a anti-equivalence between Banach and Smith spaces for solid K-vector

spaces, c.f. [Smi52] (or also [Sch20, Theorem 3.8]) for the analogous statement over the real or

complex numbers.

Lemma 13.1.7 ( [CS]). The assignment V 7! V_ induces an anti-equivalence between K-Banach

spaces and K-Smith spaces. More precisely, the following holds.

1. Hom
OK

(c
L

i
OK ,OK) =

Q
iOK and Hom

K
(c
L

i2I
K,K) = (

Q
i2I OK)[ 1

p
].

2. Hom
OK

(
Q

i2I OK ,OK) = cL
i2I
OK and Hom

K
((
Q

i2I OK)[ 1
p
],K) = cL

i2I
K.

Proof. To prove (1), notice that

Hom
OK

(
dM

i
OK ,OK) = lim

 ��
s

Hom
OK/$s(

M

i

OK/$
s,OK/$

s)

= lim
 ��

s

Y

i

OK/$
s

=
Y

i

OK .

To prove the second equality it is enough to show that

Hom
K

(
dM

i
K,K) = Hom

OK
(
dM

i
OK ,OK)[

1

$
].

Let S be an extremally disconnected set, by adjunction it is enough to show that

HomK(
dM

i
K,Cont(S ,K)) = HomOK

(
dM

i
OK ,Cont(S ,OK))[

1

$
].

But all the solid spaces involved arise as the condensed set associated to a compactly generated

Hausdorff topological space, the claim follows from the fact that lattices are mapped to lattices for

continuous maps of classical Banach spaces.

Part (2) follows from the fact that an object of the form
Q

i2I OK is a retraction of a compact pro-

jective generator OK,⌅[S ] for S extremally disconnected, and the fact that

Hom
OK

(OK,⌅[S ],OK) = Cont(S ,OK).

This finishes the proof of the Lemma. ⇤

Remark 13.1.8. Part (2) of the previous lemma also holds with RHom since
Q

i2I OK is a projec-

tive OK,⌅-module. The same proof of the first assertion of (1) can also be adapted to show that

RHom
OK

(b�iOK ,OK) =
Q

iOK . The authors ignore how to calculate RHom
K

(c
L

i2I
K,K).

We now study the behaviour of the tensor product.

Proposition 13.1.9. Let V =
Q

i2I OK and W =
Q

j2J OK . Then

V ⌦L
OK,⌅

W =
Y

(i, j)2I⇥J

OK .
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13. Non-archimedean condensed functional analysis

Proof. See [Sch19, Proposition 6.3]. ⇤

The following useful result shows that the solid tensor product coincides with the projective tensor

product of K-Banach spaces.

Lemma 13.1.10 ( [CS]). Let V and V 0 be classical Banach spaces over K, and let Vb⌦KV 0 denote its

projective tensor product. Then Vb⌦KV 0 = V ⌦K⌅ V 0.

Proof. Fix an isomorphism V = cL
i2I

K. As a convergent series
P

i ai has only countably many terms

different from 0, we can write

V = lim
��!
I0⇢I

dM
i2I0

K

where I0 runs over all the countable subsets of I. Therefore, we can assume that V � V 0 � cL
n2N

K.

Let S denote the direct set of functions f : N! Z such that f (n)! +1 as n! +1, endowed with

the order f � g iff f (n) � g(n) for all n 2 N. Thus, we can write

dM
n2N

K = lim
��!
f2S

Y

n2N

OK$
f (n). (13.1.1)

Indeed, by evaluating at an extremally disconnected set S , V(S ) = Cont(S ,V) = cL
n2N

Cont(S ,K)

has a natural Banach space structure, for which a function � : S ! V can be written in a unique way

as a sum � =
P

n �n with �n 2 Cont(S ,K), such that |�n| ! 0 as n ! 1. Then, from (13.1.1) and

Proposition 13.1.9 we deduce that

V ⌦K⌅ V 0 = lim
��!

f ,g2S

Y

n2N

OK$
f (n) ⌦OK,⌅

Y

m2N

OK$
g(m) = lim

��!
f ,g2S

Y

n,m2N⇥N

OK$
f (n)+g(m).

Given f , g 2 S define the function h f ,g : N ⇥ N ! Z as h f ,g(n,m) = f (n) + g(m). Let S 0 be the

direct set of functions h : N ⇥ N ! Z such that h(n,m) ! +1 as max{n,m} ! +1. Then the set

{h f ,g} f ,g2S is a cofinal family in S 0. Indeed, given h : N ⇥N! Z, if we define f (n) = 1
2

minm h(n,m)

and g(m) = 1
2

minn h(n,m), then h � h f ,g. Therefore,

lim
��!

f ,g2S

Y

n,m2N⇥N

OK$
h f ,g(n,m) = lim

��!
h2S 0

Y

n,m

OK$
h(n,m) =

dM
n,m

K.

⇤

Let us recall the concept of a nuclear solid K-vector space.

Definition 13.1.11 ( [Sch20, Definition 13.10]). Let V 2 Solid(K). We say that V is nuclear if, for all

extremally disconnected set S , we have

Hom
K

(K⌅[S ],V) = Hom
K

(K⌅[S ],K) ⌦K⌅ V

Remark 13.1.12. We warn the reader that this notion of nuclearity differs from the classical one, say

in [Sch02]. Indeed, if a Banach space is nuclear in the classical sense then it is finite dimensional (cf.

loc. cit. §19). On the other hand, solid K-Banach spaces are always nuclear in the condensed sense.

Corollary 13.1.13 ( [CS]). Let V be a Banach space over K, then V is a nuclear K-vector space.

Proof. The result follows from Lemma 13.1.10 by applying the ⌦ and Hom adjuntion, and the duality

between Banach and Smith spaces. ⇤
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13. Non-archimedean condensed functional analysis

Corollary 13.1.14. Let V 2 Solid(K) be a Banach space and W 2 Solid(K) be Smith. Then

Hom
K

(V,W) = V_ ⌦K⌅ W.

Hom
K

(W,V) = W_ ⌦K⌅ V.

Proof. The second equality follows from nuclearity of V . For the first equality, tensor-Hom adjunc-

tion gives

Hom
K

(V,W) = Hom
K

(V ⌦K⌅ W_,K),

and the results follows immediately from the description of the tensor product of two Banach spaces

(Lemma 13.1.10) and duality between Banach and Smith spaces (Lemma 13.1.7). ⇤

We finish this section with an elementary lemma that will be needed later.

Lemma 13.1.15.

1. Let V be a solid K-vector space such that the maximal quasi-separated quotient Vqs is zero.

Then Hom(V,K) = 0.

2. A map of Banach spaces V ! V 0 is injective (resp. with dense image) if and only if its dual

V 0_ ! V_ has dense image (resp. is injective).

Proof. Let S be a extremally disconnected set, then

Hom
K

(V,K)(S ) = HomK(V ⌦ K⌅[S ],K) = HomK(V,Cont(S ,K)).

But Cont(S ,K) is a Banach space. Then, by adjunction (Proposition 12.0.2), we get

Hom
K

(V,K)(S ) = HomK(V(⇤)top,Cont(S ,K)).

Since Vqs = 0, the maximal Hausdorff quotient of V(⇤)top is zero. This implies that

HomK(V(⇤)top,Cont(S ,K)) = 0

proving (1).

To prove (2), let f : V ! V 0 be a map of Banach spaces. Suppose that f has not dense image and

let f (V) ⇢ V 0 be the closure of its image. Then V 0/ f (V) is a non zero Banach space and we have a

short exact sequence

0! f (V)! V 0 ! V 0/ f (V)! 0

which splits as any Banach space over a local field is orthonormalizable. Taking duals we get a short

exact sequence

0! (V 0/ f (V))_ ! V 0_ ! f (V)
_
! 0.

Since f _ : V 0_ ! V_ factors through f (V)
_
, the map f _ is not injective. Conversely, suppose that

the map f _ is not injective, then its kernel ker f _ is a closed subspace of V 0_ which is a Smith space

by Proposition 13.1.6. Since the quotient V 0_/ ker( f _) is also a Smith space, there is a retraction

r : V 0_ ! ker( f _). Taking duals one sees that the composition V ! V 0 ! ker( f _)_ is zero and that

the last map is surjective (because of r), this implies that f has not dense image.

Finally, suppose that f : V ! V 0 is injective. If f _ : V 0_ ! V_ does not have dense image,

f (V 0_) ⇢ V_ is a closed Smith subspace and its quotient V_/ f (V 0_) is a non zero Smith space. Taking

duals we get a short exact sequence

0! (V_/ f (V 0_))_ ! V ! f (V 0_)
_
! 0.
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But f : V ! V 0 factors through f (V 0_)
_
, this is a contradiction with the injectivity of f . Conversely,

Suppose that f _ : V 0_ ! V_ has dense image, consider the quotient

0! V 0_ ! V_ ! Q! 0

Taking duals one obtains an exact sequence

0! Hom
K

(Q,K)! V ! V 0.

But part (1) implies that Hom
K

(Q,K) = 0, proving that f is injective. ⇤

13.2. Quasi-separated solid K-vector spaces

We shall use the following results throughout the text without explicit mention. They are due to

Clausen and Scholze, and explained to us by Guido Bosco in the study group of La Tourette.

Proposition 13.2.1 ( [CS]). Let V be a solid K-vector space. The following are equivalent,

1. V is quasi-separated.

2. V is equal to the filtered colimit of its Smith subspaces.

Proof. Let V be a quasi-separated K⌅-vector space, let W1,W2 be Smith subspaces of V . As V is

quasi-separated, W1 \W2 is a closed Smith subspace of W1, and the sum W1 +W2 ⇢ V is isomorphic

to (W1 �W2)/W1 \W2. This shows that the Smith subspaces of V form a direct system, let V0 denote

their colimit. We claim that V/V0 = 0, let W 0 be a Smith space and f : W 0 ! V/V0 a map of solid

K⌅-vector spaces. As W 0 is projective, there is a lift f 0 : W 0 ! V . But ker f 0 ⇢ W 0 is a closed Smith

subspace since V is quasi-separated. This implies that f 0 factors through V0 and that f = 0. Since

the Smith spaces form a family of compact projective generators of K⌅-vector spaces, one must have

V/V0 = 0 proving (1)) (2).

Conversely, let V = lim
��!i2I

Vi be a vector space written as a filtered colimit of Smith spaces by

injective transition maps. Let S 1, S 2 be two profinite sets and f j : S j ! V be two maps for j = 1, 2.

As the S i are profinite, there exists i 2 I such that f j factors through Vi for j = 1, 2. Then, as the map

Vi ! V is injective, one has

S 1 ⇥V S 2 = S 1 ⇥Vi
S 2.

The implication (2)) (1) follows as a Smith space is quasi-separated. ⇤

Lemma 13.2.2 ( [CS]). A quasi-separated K-solid space is flat. In other words, if V is a quasi-

separated K⌅-vector space, then � ⌦K⌅ V = � ⌦L
K⌅

V.

Proof. Let V be a quasi-separated K⌅-vector space. Since filtered colimits are exact in the category

of condensed abelian groups, and the solid tensor product commutes with colimits, by Proposition

13.2.1 it is enough to prove the lemma for V =
Q

I OK[ 1
p
] a Smith space. Let W 2 Solid(K). We want

to show that V ⌦L
K⌅

W is concentrated in degree zero. As the Smith spaces are compact projective

generators, W can be written as a quotient 0 ! W 00 ! W 0 ! W ! 0 where W 0 is a direct sum of

Smith spaces. Then we are reduced to showing that 0! W 00⌦K⌅V ! W 0⌦K⌅V is injective. Since W 00

is quasi-separated, by Proposition 13.2.1, it can be written as filtered colimit of its Smith subspaces.

Therefore, by compacity of Smith spaces, the arrow W 00 ! W 0 is a filtered colimit of injections of

Smith spaces. It is hence enough to show that if
Q

J1
OK[ 1

p
]!

Q
J2
OK[ 1

p
] is an injective map, then

Y

J1

OK[
1

p
] ⌦K⌅ V !

Y

J2

OK[
1

p
] ⌦K⌅ V
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is injective. This follows from the tensor product of two Smith Spaces (Proposition 13.1.9)

(
Y

I

OK[
1

p
]) ⌦K⌅ (

Y

J

OK[
1

p
]) =

Y

I⇥J

OK[
1

p
].

This finishes the proof. ⇤

13.3. Fréchet and LS spaces

Our next goal is to extend the duality between Banach and Smith spaces to a larger class of solid

K-vector spaces. We need a definition

Definition 13.3.1.

1. A solid Fréchet space (or simply a Fréchet space) is a solid K-vector space which can be written

as a countable cofiltered limit of Banach spaces.

2. A solid LS (resp. LB, resp. LF) space is a solid K-vector space which can be written as a

countable filtered colimit of Smith (resp. Banach, resp. Fréchet) spaces with injective transition

maps.

Lemma 13.3.2.

1. The functor V 7! V(⇤)top induces an equivalence of categories between solid and classical

Fréchet spaces and V = V(⇤)top.

2. An LS space is quasi-separated. Conversely, a quasi-separated K⌅-vector space W is an LS

space if and only if it is countably compactly generated, i.e. for every surjection
L

i2I
Pi ! W

by direct sums of Smith spaces, there is a countable index subset I0 ⇢ I such that
L

i2I0
Pi ! W

is surjective.

Proof. Part (1) follows from the fact that a classical Fréchet space is complete for a countable family

of seminorms (i.e. it can be written as a countable cofiltered limit of Banach spaces), Proposition

12.0.2 (1), and Proposition 13.1.3. For part (2), the fact that an LS space is quasi-separated fol-

lows from Proposition 13.2.1. Let W be quasi-separated K⌅-vector space. Assume it is countably

compactly generated. Write W = lim
��!W0⇢W

W 0 as a the colimit of its Smith subspaces. As W is quasi-

separated, the sum of two Smith subspaces is Smith, so the colimit is filtered. By hypothesis, there

are countably many W 0 such that W = lim
��!s2N

W 0
s. Moreover, we can assume that W0 ⇢ W1 ⇢ · · · .

This proves that W is an LS space. Conversely, let W be an LS space and let
L

i2I
Pi ! W be a

surjective map with Pi Smith. The image P0i of Pi in W is a Smith space since W is quasi-separated,

hence W =
P

i P0i . Thus, without loss of generality we can assume that lim
��!i2I

P0i is filtered and equal to

W. Let W = lim
��!s2N

Ws be a presentation as a countable colimit of Smith spaces by injective transition

maps. By compactness of the Smith spaces, for all s there exists is such that Mn ⇢ P0is
⇢ M. We can

assume that P0is
⇢ P0is+1

for all s 2 N. Thus,
L

s2N
Pis
! W is surjective, this finishes the lemma. ⇤

The following lemma says that we can always choose a presentation of a Fréchet spaces as an

inverse limit of Banach spaces with dense transition maps.

Lemma 13.3.3. Let V be a solid Fréchet space, then we can write V = lim
 ��n2N

Vn with Vn Banach

spaces such that V(⇤)top ! Vn(⇤)top has dense image for all n 2 N. Conversely, let {Vn}n2N be a

cofiltered limit of Banach spaces such that Vn+1(⇤)top ! Vn(⇤)top has dense image, and let V = lim
 ��

Vn

be its inverse limit. Then V(⇤)top ! Vn(⇤)top has dense image for all n 2 N.
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Proof. Let V = lim
 ��n2N

Vn be a presentation of the Fréchet space as an inverse limit of Banach spaces.

Changing Vn by the completion of the image of V , we obtain a desired presentation with V(⇤)top !

Vn(⇤)top of dense image. Conversely, let {Vn}n2N be an inverse system of Banach spaces with maps

Vn+1 ! Vn of dense image, let V = lim
 ��n

Vn be a Fréchet space, we want to show that the image of

V(⇤)top ! Vn(⇤)top is dense for all n 2 N. Fix n0 2 N, let w 2 Vn0
(⇤)top and 1 > ✏ > 0. Let | · |n denote

the norm of Vn(⇤)top, without loss of generality we assume that |· |n  |· |n+1. By density of the transition

maps �n+1
n : Vn+1(⇤)top ! Vn(⇤)top, there exists vn0+1 2 Vn+1(⇤)top such that |�n0+1

n0
(vn0+1) � w|  ✏. By

induction, for all n � n0 + 1 we can find vn 2 Vn(⇤)top such that |�n+1
n (vn+1 � vn)|  ✏n. Let n � n0 + 1

be fixed and let k � 0, then by construction the sequence {�n+k
n (vn+k)} converges in Vn(⇤)top to an

element v0n. Moreover, it is immediate to check that �n+1
n (v0

n+1) = vn so that v0 = (v0n) 2 V(⇤)top, and

|�n0+1
n0

(v0
n0+1 � w)|  ✏. This proves the lemma. ⇤

13.3.1. Properties of Fréchet spaces

We now present some basic properties of Fréchet spaces, most of the results in the context of con-

densed mathematics are due to Clausen and Scholze [CS].

Lemma 13.3.4 (Topological Mittag-Leffler [CS]). Let V = lim
 ��n

Vn be Fréchet space written as an

inverse limit of Banach spaces with dense transition maps. Then

R j lim
 ��

n

Vn = 0

for all j > 0. In particular, V = RHom
K

(V_,K).

Proof. See [Bos21, Lemma A.18]. ⇤

Lemma 13.3.5 ( [CS]). Let (Vn)n2N and (Wm)m2N be countable families of Banach spaces.

1. We have �Y

n

Vn

�
⌦L

K⌅

�Y

m

Wm

�
=

Y

n,m

Vn ⌦K⌅ Wm.

2. More generally, if V = lim
 ��n

Vn and W = lim
 ��m

Wm are Fréchet spaces written as inverse limits

of Banach spaces by dense transition maps, one has

V ⌦L
K⌅

W = lim
 ��
n,m

Vn ⌦K⌅ Wm.

Proof. Property (AB6) of Theorem 12.0.4 and Proposition 13.2.1 imply that products of quasi-separated

solid K-vector spaces are quasi-separated. Then, by Lemma 13.2.2, all the derived tensor products

in the statements are already concentrated in degree 0. By Lemma 13.3.4 we have a short exact

sequences

0! lim
 ��

n

Vn !
Y

n

Vn !
Y

n

Vn ! 0

0! lim
 ��

m

Wm !
Y

m

Wm !
Y

m

Wm ! 0.

Then (2) follows from (1) by taking the tensor product of the above sequences.

For (1), suppose that the statement is true for all Vn and Wn posseding countable orthonormal basis.

Let Vn �
cL

In
K and Wm �

cL
Jm

K for all n,m 2 N. We write Vn = lim
��!I0n⇢In

cL
I0n

K and Wm =
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lim
��!J0m⇢Jm

cL
J0m

K with I0n and J0m running among all the countable subsets of In and Jm respectively.

Then

(
Y

n

Vn) ⌦K⌅ (
Y

m

Wm) = [
Y

n

(lim
��!
I0n⇢In

dM
I0n

K)] ⌦K⌅ [
Y

m

( lim
��!

J0m⇢Jm

dM
J0m

K)]

= lim
��!

8(n,m)2N⇥N
I0n⇥J0m⇢In⇥Jm

[
Y

n

(
dM

I0n
K)] ⌦K⌅ [

Y

m

(
dM

J0m
K)]

= lim
��!

8(n,m)2N⇥N
I0n⇥J0m⇢In⇥Jm

Y

n,m

(
dM

I0n⇥J0m
K)

=
Y

n,m

( lim
��!

I0n⇥J0m⇢In⇥Jm

dM
I0n⇥J0m

K)

=
Y

n,m

(Vn ⌦K⌅ Wm).

Hence, we are left to prove (1) for Wm = Vn =
cL
N

K for all n,m 2 N. Let S be the filtered set of

functions f : N! Z such that f (k)! +1 as k ! +1. For all n,m 2 N we can write

Vn =
dM

N
K = lim

��!
fn2S

Y

k2N

OK$
fn(k)

Wm =
dM

N
K = lim

��!
gm2S

Y

s2N

OK$
gm(s).

Therefore we get

(
Y

n

Vn) ⌦K⌅ (
Y

m

Wm) = [ lim
��!

8n, fn2S

Y

n

Y

k

OK$
fn(k)] ⌦K⌅ [ lim

��!
8m, gm2S

Y

m

Y

s

OK$
gm(s)]

= [ lim
��!
8(n,m)

fn,gm2S

Y

n,m

(
Y

k

OK$
fn(k)) ⇥ (

Y

s

OK$
gm(s))].

Given f , g 2 S we define h f ,g : N ⇥ N! Z as h f ,g(k, s) = f (k) + g(s). Let S 0 be the set of functions

h : N ⇥ N ! Z such that h(n,m) ! 1 as min{n,m} ! 1. Then the family of functions {h f ,g} f ,g2S is

cofinal in S 0 (see the proof of Lemma 13.1.10). One obtains

(
Y

n

Vn) ⌦K⌅ (
Y

m

Wm) = lim
��!
8(n,m)

hn,m2S 0

Y

n,m

Y

k,s

OK$
hn,m(k,s)

=
Y

n,m

[ lim
��!

hn,m2S 0

Y

k,s

OK$
hn,m(k,s)]

=
Y

n,m

dM
k,s

K

=
Y

n,m

(Vn ⌦K⌅ Wm),

this finishes the proof. ⇤

Proposition 13.3.6 ( [CS]). A Fréchet space is a nuclear K⌅-vector space.
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Proof. Let V = lim
 ��n

Vn be a Fréchet space written as an inverse limit of Banach spaces with dense

transition maps. Let S be an extremally disconnected set, then by Corollary 13.1.13

Hom
K⌅

(K⌅[S ],V) = lim
 ��

n

Hom
K⌅

(K⌅[S ],Vn)

= lim
 ��

n

(Hom
K⌅

(K⌅[S ],K) ⌦K⌅ Vn)

= Hom
K⌅

(K⌅[S ],K) ⌦K⌅ (lim
 ��

n

Vn)

= Hom
K⌅

(K⌅[S ],K) ⌦K⌅ V,

this finishes the proof. ⇤

The following two lemmas describe the maps between LF, Fréchet and Banach spaces

Lemma 13.3.7. Let V = lim
 ��n

Vn be a Fréchet space written as a countable cofiltered limit of Banach

spaces with projection maps V ! Vn of dense image. Let W be a Banach space. Then any con-

tinuous linear map f : V ! W factors through some Vn. More generally, we have Hom
K

(V,W) =

lim
��!n

Hom
K

(Vn,W).

Proof. First, evaluating Hom
K

(V,W) at an extremally disconnected set, using adjunction and the nu-

clearity of W, one reduces to showing that HomK(V,W) = lim
��!n

HomK(Vn,W). Since all the spaces

involved come from compactly generated topological K-vector spaces, we might assume that V and

W are classical Fréchet and Banach spaces respectively. Let | · |n be the seminorm of V given by Vn,

without loss of generality we may assume that | · |n  | · |n+1. We denote the norm of W by || · ||. The

map f factors through Vn if and only if it is continuous with respect to the seminorm | · |n. Suppose

that f does not factor through any n, then there exist sequences of vectors (vn,m)m in V for all n such

that

|vn,m|n
m!1
����! 0 and || f (vn,m)|| � 1 8m.

Moreover, we may assume that |vn,n|n <
1
n
. Then the sequence (vn,n)n converges to 0 in V but || f (vn,n)|| �

1 for all n, which is a contradiction with the continuity of f . ⇤

Lemma 13.3.8. Let W = lim
��!n

Wn and W 0 = lim
��!m

W 0
m be LF spaces presented as a filtered colimit of

Fréchet spaces by injective transition maps. Then

Hom
K

(W,W 0) = lim
 ��

n

lim
��!

m

Hom
K

(Wn,W
0
m).

Proof. First observe that formally

Hom
K

(W,W 0) = lim
 ��

n

Hom
K

(Wn,W
0),

so we can assume that W = W0 is a Fréchet space. Let S be an extremally disconnected set, then by

nuclearity of W 0

Hom
K

(W, lim
��!

m

W 0
m)(S ) = HomK(W ⌦K K[S ], lim

��!
m

W 0
m) = HomK(W, lim

��!
m

W 0
m ⌦K⌅ Cont(S ,K)),

which shows that one can reduce to proving

Hom(W, lim
��!

m

W 0
m) = lim

��!
m

Hom(W,W 0
m).

So let

W ! lim
��!

m

W 0
m
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be a map of solid K-vector spaces. Evaluating at an extremally disconnected set S , we get a map

f : W(S )! lim
��!

m

W 0
m(S )

between a (classical) Fréchet space and a (classical) LF space. We claim that this map factors through

some m. Indeed, this follows from [Sch02, Corollary 8.9], but we also give a direct argument. Assume

not. Then there exists a sequence (xm)m�1 in W(S ) such that f (xm) < W 0
m(S ). Multiplying xm by big

powers of p, we can assume xm ! 0 as m! +1. This translates into the existence of a map

N [ {1}! lim
��!

m

W 0
m(S ), m 7! f (m),1 7! 0

from the profinite set N [ {1} into an LF-space. Since N [ {1} is profinite, this maps must factorise

through some m, which is a contradiction. This shows that, for each extremally disconnected set S ,

there exists a smallest n(S ) 2 N such that the map

W(S )! lim
��!

m

W 0
m(S )

factors through W(S ) ! W 0
n(S )(S ) ! lim

��!m
W 0

m(S ). We conclude the proof by showing that the

n(S )0s are uniformly bounded. We argue again by contradiction. Assume that there are extremally

disconnected sets S 1, S 2, . . . such that n(S i) ! +1 as i ! +1. Let S =
Q

i S i, which is a profinite

set. Let eS be an extremally disconnected set surjecting to S . Let i 2 N be such that n(S i) > n(eS ) and

let S i ! eS be a section of the surjection eS ! S ! S i. Then the map W(S i) ! lim
��!m

W 0
m(S i) factors

through

W(S i)! W(eS )! W 0

n(eS )
(eS )! W 0

n(eS )
(S i),

which is a contradiction. This finishes the proof.

⇤

13.3.2. Spaces of compact type

Before proving the duality between Fréchet and LS spaces let us recall the definition of (classical)

nuclear Fréchet space and a LB space of compact type. Due to the fact that Fréchet spaces are always

nuclear in the world of solid K-vector spaces (Proposition 13.3.6), we will say that a classical nuclear

Fréchet space is a Fréchet space of compact type. We recall the definition of trace class maps and

compact maps for K⌅-vector spaces.

Definition 13.3.9 ( [Sch20, Definition 13.11]).

1. A trace class map of Smith spaces is a K-linear map f : Q1 ! Q2 such that there is a map

g : K ! Q_1 ⌦K Q2 such that f is the composition Q1

1⌦g
��! Q1 ⌦ Q_1 ⌦ Q2 ! Q2.

2. A map of Banach spaces is compact if its dual is a trace class map.

Definition 13.3.10.

1. A Fréchet space V is of compact type if it has a presentation V = lim
 ��n

Vn as an inverse limit of

Banach spaces where the maps Vn+1 ! Vn are compact.

2. A LS space is of compact type if it admits a presentation W = lim
��!n2N

Wn by injective trace class

maps of Smith spaces.
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3. Let W be a Smith space with lattice W0 ⇢ W. We denote by WB the Banach space whose

underlying space is

WB = lim
 ��
s2N

(W0(⇤)dis/$
s)[

1

$
].

In other words, WB is the Banach space structure attached to the underlying set W(⇤) with unit

ball W0(⇤). Note that there is a natural injective map with dense image WB ! W.

4. Let V be a Banach space, we denote VS = (V_,B)_ and call this space the “Smith completion of

V”. Note that there is an injective map with dense image V ! VS .

The following two results will be very useful later when studying spaces of compact type. The

reader can compare them to the ideas appearing in [Sch02, §16] (see, e.g., the discussion after [Sch02,

Proposition 16.5]).

Lemma 13.3.11.

1. A map of Smith spaces W ! W 0 is trace class if and only if it factors as W ! W 0B ! W 0.

Dually, a map of Banach spaces V ! V 0 is of compact type if and only of it can be extended to

V ! VS ! V 0.

2. Let f : V ! W be a map from a Banach space to a Smith space, then f extends to a commutative

diagram

V VS

WB W.

Proof. (1) The factorization for a morphism of Banach spaces follows from the one of Smith spaces.

Let f : W ! W 0 be a map of Smith spaces and suppose that it factors through W 0B. Then f belongs

to Hom(W,W 0B) = W_ ⌦K⌅ W 0B as W 0B is Banach. This shows that f if a trace class map. Conversely,

let f : W ! W 0 be trace class, then there is g : K ! W_ ⌦W 0 such that f factors as a composition

W
1⌦g
��! W ⌦W_ ⌦W 0 ! W 0. But taking $-completions of the underlying discrete objects, the map g

factors through K ! W_ ⌦W 0B, so that f factors through W 0B as expected.

(2) Clearly f factors as V ! WB ! W. Taking duals we see that f _ : W_ ! V_ factors as

W_ ! V_,B ! V , taking duals again one gets the factorization f : V ! VS ! W. ⇤

Corollary 13.3.12.

1. Let V = lim
 ��n

Vn be a Fréchet space of compact type. Then we can write V = lim
 ��n2N

VS
n as

an inverse limit of Smith spaces with trace class transition maps. Conversely, any such vector

space is a Fréchet space of compact type.

2. Let W = lim
��!n

Wn be an LS space of compact type, then W = lim
��!n

WB
n can be written as a filtered

colimit of Banach spaces with injective compact maps. Conversely, a colimit of Banach spaces

by injective compact maps is an LS space of compact type. In particular, being a LB or a LS

space of compact type is equivalent.

13.3.3. Duality

We conclude with the main result of this chapter.

Theorem 13.3.13.
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1. The functor V 7! Hom
K

(V,K) induces an antiequivalence between Fréchet and LS spaces such

that Hom
K

(V,V 0) = Hom
K

(V 0_,V_), extending the one between Banach and Smith spaces.

Moreover, V is Fréchet of compact type if and only if V_ is an LS space of compact type.

2. Let V = lim
 ��n2N

Vn be a Fréchet space and Wm = lim
��!n2N

Wn an LS space. Then

Hom
K

(W,V) = W_ ⌦K⌅ V and Hom
K

(V,W) = V_ ⌦K⌅ W.

In particular, if V and V 0 are Fréchet spaces (resp. LS spaces) then

(V ⌦K⌅ V 0)_ = V_ ⌦K⌅ V 0_.

Proof. (1) Let V be a Fréchet space and let V = lim
 ��n

Vn be a presentation as an inverse limit of

Banach spaces with transition maps of dense image. Let S by an extremally disconnected set, we

want to compute

Hom
K

(V,K)(S ) = HomK(V ⌦OK,⌅
OK,⌅[S ],K) = HomK(lim

 ��
n

Vn,Cont(S ,K)).

By Lemma 13.3.7 we have

HomK(lim
 ��

n

Vn,Cont(S ,K)) = lim
��!

n

HomK(Vn,Cont(S ,K)) = lim
��!

n

HomK(Vn ⌦OK,⌅
OK,⌅[S ],K).

In other words, we have a natural isomorphism

Hom
K

(V,K) = lim
��!

n

V_n .

By Lemma 13.1.15 (2), the transition maps V_n ! V_
n+1 are injective, proving that V_ is an LS space.

Conversely, let W be an LS space and W = lim
��!n

Wn a presentation as a colimit of Smith spaces

with injective transition maps. Then if follows formally that

Hom
K

(W,K) = lim
 ��

n

W_
n .

By Lemma 13.1.15 (2) again, the transition maps W_
n+1 ! W_

n have dense image. It is clear from the

construction that (V_)_ = V and (W_)_ = W for V Fréchet and W an LS space. This implies formally

that HomK(V,V 0) = HomK(V
0_,V_), which gives the antiequivalence between Fréchet and LS spaces.

Finally, by Corollary 13.3.12 and the previous computation, the duality restricts to Fréchet and LS

spaces of compact type.

We now extend the equality of homomorphisms to the internal Hom. Let V and V 0 be Fréchet

spaces and S an extremally disconnected set. We have

Hom
K

(V,V 0)(S ) = HomK(V ⌦K⌅ K⌅[S ],V 0)

= HomK(V,Cont(S ,K) ⌦K⌅ V 0)

= HomK((Cont(S ,K) ⌦K⌅ V 0)_,V_)

= HomK(V
0_ ⌦K⌅ K⌅[S ],V_)

= Hom
K

(V
0_,V_)(S ).

The second equality follows from adjunction and nuclearity of V 0. The third equality is the duality

between Fréchet and LS spaces. The fourth equality follows from the compatibility of the tensor

product and duality between Fréchet and LS spaces of part (2).

113



13. Non-archimedean condensed functional analysis

(2) Let V = lim
 ��n

Vn and W = lim
��!m

Wm be a Fréchet and an LS space respectively. We can write

Hom
K

(W,V) = lim
 ��

m

Hom
K

(Wm,V)

= lim
 ��

m

W_
m ⌦K⌅ V

= W_ ⌦K⌅ V

where the first equality is formal, the second equality follows from nuclearity of Fréchet spaces, and

the third equality from the tensor product of Fréchet spaces (Proposition 13.3.5). Dually, we have

Hom
K

(V,W) = Hom
K

(V ⌦K⌅ W_,K)

= Hom
K

(lim
 ��
n,m

Vn ⌦K⌅ W_
m,K)

= lim
��!
n,m

Hom
K

(Vn ⌦K⌅ W_
m,K)

= lim
��!
n,m

V_n ⌦K⌅ Wm

= V_ ⌦K⌅ W,

where the first equality follows from self duality of LS spaces and the tensor-Hom adjunction, the

second equality from the tensor product of Fréchet spaces, the third equality from Lemma 13.3.7,

and the last two equalities from Corollary 13.1.14 and the commutativity between tensor product and

colimits.

⇤
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Let G be a compact p-adic Lie group. In this section we translate the theory of analytic and locally

analytic representations of G from the classical framework to condensed mathematics. We hope that

this new point of view could simplify some proofs and provide a better understanding of the theory.

Our main sources of inspiration are the works of Lazard [Laz65], Schneider-Teitelbaum [ST02,ST03]

and Emerton [Eme17].

We begin with the introduction of different algebras of distributions, each one serves to a particular

purpose in the theory. Namely, there are distribution algebras arising from affinoid groups which

appear naturally in the analytification functor of Proposition 12.0.11, distribution algebras which are

localizations of the Iwasawa algebra, and distribution algebras algebras attached to Stein analytic

groups relating the previous two.

Next, we introduce the category of solid G-modules, it is a generalisation of the category of non-

archimedean topological spaces endowed with a continuous action of G (Banach, Fréchet, LB, LF,

...).

We continue with the definition of analytic representations for the affinoid and Stein analytic groups

of Definition 14.1.4. We recall how the analytic vectors for a Banach representation are defined, and

how it serves as motivation for the derived analytic vectors of solid G-modules. We prove the main

Theorem 14.3.9 which, roughly speaking, says that being analytic for a Stein analytic group as in

Definition 14.1.4 is the same as being a module over its distribution algebra.

We end with an application to locally analytic representations, reproving a theorem of Schneider-

Teitelbaum describing a duality between locally analytic representations on LB spaces of compact

type, and Fréchet modules of compact type over the algebra of locally analytic distributions, cf.

Proposition 14.4.2. We state a conjectural generalisation to a duality between locally analytic bounded

complexes of LB compact type and bounded Fréchet complexes of compact type endowed with an

action of the algebra of locally analytic distributions.

14.1. Function spaces and distribution algebras

In the following paragraph we define different classes of spaces of functions and distributions that

will be used throughout this text. These are algebras already appearing in the literature ( [ST03,

§4], [Eme17, §5]) that we introduce in a way adapted to our interests and purposes.

Let G be a compact p-adic Lie group of dimension d.

Definition 14.1.1. The Iwasawa algebra of G is defined as the solid ring

OK,⌅[G] = lim
 ��
HEG

OK[G/H] 2 Solid(OK),

K⌅[G] = OK,⌅[G][1/p] = (lim
 ��
HEG

OK[G/H])[1/p] 2 Solid(K),

where H runs over all the open and normal subgroups of G.

Remark 14.1.2. Classically, the Iwasawa algebra is denoted by Λ(G,OK) and Λ(G,K). We decide

to adopt the new notations from the theory of condensed mathematics to best fit our results in this

language.
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Remark 14.1.3. According to the notations of Example 12.0.6, the Iwasawa algebra corresponds pre-

cisely to the evaluation at G of the functor of measures of the analytic rings (OK ,OK)⌅ and (K,OK)⌅
which, in turn, are commonly denoted by OK,⌅ and K⌅ respectively.

In order to define the space of locally analytic functions attached to G, we need to work with

coordinates locally around the identity. By [DdSMS99, Cor. 8.34], there exists an open normal

subgroup G0 of G which is a uniform pro-p group 1. Such a group can be equipped with a valuation

w and an ordered basis g1, . . . , gd 2 G0. By [Laz65, III 3.1.3, Proposition], after shrinking G0 if

necessary, we can assume that w(g1) = . . . = w(gd) = w0 > 1 is an integer. This basis induces charts

� : Zd
p ! G0, (x1, . . . , xd) 7! g

x1

1
· . . . · g

xd

d

such that � is an homeomorphism between G0 and Zd
p with w(gx1

1
· . . . · g

xd

d
) = w0 +min1id vp(xi), and

such that the map  : G0 ⇥G0 ! G0, (g, h) 7! gh�1, defining the group structure of G0, is given by an

analytic function  : Zd
p ⇥ Z

d
p ! Z

d
p with coefficients in Zp. By further shrinking G0 if necessary we

can also assume that conjugation on G0 by any element of g 2 G is given by a family of power series

with bounded coefficients.

Let r = p�s > 0 for s 2 Q, and Dd
Qp

(r) ⇢ Ad
Qp

the affinoid polydisc of radius r. If s 2 Z then Dd
Qp

(r)

is the affinoid space defined by the algebra Qph
T1

ps , . . .
Td

ps i, where T1, . . . ,Td are the coordinates of Ad
Qp

.

We let D̊d(r) =
S

r0<r D
d(r0) denote the open polydisc of radius r.

Definition 14.1.4. We define the following rigid analytic groups

1. G0 = (Dd
Qp

(1), ); the affinoid group defined by the group law  of G0.

2. For any h 2 Q�0, the affinoid groups Gh = (Dd
Qp

(p�h), ) of radius p�h. We also denote G
(h)

0
=

G0Gh ⇢ G0.

3. For any h 2 Q�0 the Stein groups Gh+ = [h0>hGh0 and G
(h+)

0
= G0Gh+ = [h0>hG

(h)

0
.

Example 14.1.5. If G = GL2(Zp), an example of a uniform pro-p-subgroup G0 is

G0 =

 
1 + pnZp pnZp

pnZp 1 + pnZp

!

for n � 2 if p = 2 and n � 1 if p > 2. Let’s take p > 2 and n = 1. In this case Gh is the rigid analytic

group

Gh =

0BBBB@
1 + D1

Qp
(p�h�1) D1

Qp
(p�h�1)

D1
Qp

(p�h�1) 1 + D1
Qp

(p�h�1)

1CCCCA =
0BBBB@

1 + ph+1D1
Qp

(1) ph+1D1
Qp

(1)

ph+1D1
Qp

(1) 1 + ph+1D1
Qp

(1)

1CCCCA ,

whereas the Stein group Gh+ is equal to

Gh+ =

0BBBBB@
1 + ph+1D̊1

Qp
(1) ph+1D̊1

Qp
(1)

ph+1D̊1
Qp

(1) 1 + ph+1D̊1
Qp

(1)

1CCCCCA .

The following lemma says that the rigid spaces of Definition 14.1.4 are indeed rigid analytic groups.

Lemma 14.1.6. The affinoid Gh is an open normal subgroup of G0 stable by conjugation of G.

1Recall that a uniform pro-p group H is a pro-p group which is finitely generated, torsion free and powerful, i.e.,

[H,H] ✓ Hp if p > 2 or [H,H] ✓ H4 if p = 2.
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Proof. By simplicity we suppose that h 2 N. The map

 : G0 ⇥ G0 ! G0 : (x, y) 7! xy�1

is defined by a family of power series (Q1(X,Y), . . . ,Qd(X,Y)) with integral coefficients satisfying

the group axioms. In particular, one has Qi(0, 0) = 0. The inclusion Gh ! G0 is given by the map

QphT1, . . . ,Tdi ! Qph
T1

ph , . . . ,
Td

ph i. Thus, the image of Ti

ph by the multiplication map  is equal to

1

ph
Qi(X,Y) =

1

ph

X

(↵,�),0

a↵,�X
↵Y� =

X

(↵,�),0

a↵,�ph(|↵|+|�|�1)

 
X

ph

!↵  
Y

ph

!�
.

This shows that  restricts to a map Gh ⇥ Gh ! Gh, proving that Gh is a subgroup of G0. A similar

argument shows that Gh is normal in G0 and that it is stable by the conjugation of elements of G. ⇤

14.1.1. Analytic distributions

Classically, the analytic vectors of Banach representations are defined via the affinoid algebras of the

analytic groups of Definition 14.1.4, see [Eme17, §3]. In order to develop properly this theory for

solid K-vector spaces we shall need to introduce some notation for the algebras of the analytic groups,

as well as for their analytic distributions. Recall once more that we see all complete locally convex

K-vector spaces as solid objects.

Definition 14.1.7.

1. We consider the following spaces of functions

i. C(G
(h)

0
,OK) := O+(G

(h)

0
) ⌦Zp

OK; the power bounded analytic functions of the affinoid

group.

ii. C(G
(h)

0
,K) := O(G

(h)

0
) ⌦Qp

K; the regular functions of the affinoid group.

iii. C(G
(h+)

0
,K) := lim

 ��h0>h+
C(G

(h)

0
,K); the regular functions of the Stein group.

2. We define the following spaces of distributions

i. D(h)(G0,OK) := Hom
OK

(C(G
(h)

0
,OK),OK).

ii. D(h)(G0,K) := Hom
K

(C(G
(h)

0
,K),K).

iii. D(h+)(G0,K) := Hom
K

(C(G
(h+)

0
,K),K).

Remark 14.1.8. Let h 2 N, the algebra C(G
(h)

0
,K) is the space of functions on G0 with values in

K which are analytic of radius p�h. More precicely, using the coordinates g1, . . . , gd 2 G0, and

identifying G0 with Zd
p, C(G

(h)

0
,K) is the space of functions f : Zd

p ! K whose restriction at cosets

x + phZd
p is given by a convergent power series with coefficients in K.

Remark 14.1.9. Observe that, by Theorem 13.3.13, one has C(G
(h)

0
,K) = D(h)(G0,K)_ as well as

D(h+)(G0,K) = lim
��!h0>h

D(h0)(G0,K).

Lemma 14.1.10. The solid OK-module D(h)(G0,OK) has a natural structure of associative unital

OK-algebra induced by the multiplication map G
(h)

0
⇥ G

(h)

0
! G

(h)

0
. In particular, D(h)(G0,K) and

D(h+)(G0,K) are associative unital OK-algebras.

Proof. The multiplication G
(h)

0
⇥ G

(h)

0
! G

(h)

0
defines a comultiplication map

r : C(G
(h)

0
,OK)! C(G

(h)

0
,OK) ⌦OK,⌅

C(G
(h)

0
,OK).

As C(G
(h)

0
,OK) is an orthonormalizable Banach OK-module, taking the dual of r one obtains a map

D(h)(G0,OK) ⌦OK,⌅
D(h)(G0,OK)! D(h)(G0,OK) which is easily seen to be the convolution product.

⇤
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14.1.2. Localizations of the Iwasawa algebra

Recall that we have fixed an open normal subgroup G0 which is a uniform pro-p-group with basis

g1, . . . , gd of constant valuation w0 > 1. Let bi = [gi] � 1 2 OK,⌅[G0](⇤), one has [ST03, §4]

OK,⌅[G0] =
Y

↵2Nd

OKb↵

where b↵ = b
↵1

1
· · · b

↵d

d
for ↵ = (↵1, . . . ,↵d) 2 Nd.

Remark 14.1.11. Taking Mahler expansion of continuous functions on � : G0 � Z
d
p, an explicit

computation of finite differences shows that the elements b↵ correspond to the dual basis of the Mahler

basis
⇣

x

↵

⌘
i.e., b↵( f ) = c↵ for any continuous function f 2 Cont(G0,K) such that �⇤( f ) =

P
↵2Nd c↵

⇣
x

↵

⌘
.

We now introduce a second family of distribution algebras using the basis (bi)1id, these can be

thought of as localizations of the Iwasawa algebra K⌅[G0].

Definition 14.1.12. Let h > 0 be rational. We define the condensed ringsD(h)(G0,OK) andD(h)(G0,K)

so that, for any extremaly disconnected set S , one has

• D(h)(G0,OK)(S ) = {
P
↵2Nd a↵b↵ : sup↵{|a↵|p

�
p�h

p�1 |↵|}  1, a↵ 2 Cont(S ,OK)},

• D(h)(G0,K)(S ) = {
P
↵2Nd a↵b↵ : sup↵{|a↵|p

�
p�h

p�1 |↵|} < +1, a↵ 2 Cont(S ,K)},

Remark 14.1.13. The condensed module D(h)(G0,OK) is in fact a profinite OK-module provided

b(h) =
p�h

p�1
2 vp(K)⌦ZQ. Indeed, if b(h) is the valuation of an element of K, we have an isomorphism

of profinite OK-modules

D(h)(G0,OK) =
Y

↵2Nd

OK

 
b1

pb(h)

!↵1

. . .

 
bd

pb(h)

!↵d

.

Remark 14.1.14. The distribution algebras D(h)(G0,K) are variations of the (p-adic completions of

the) rings Â(m) of [Eme17, §5.2], adapted to the Iwasawa algebra instead of the enveloping algebra of

Lie G.

Lemma 14.1.15. The multiplication map of K⌅[G0] extends uniquely to a multiplication map of

D(h)(G0,OK).

Proof. This follows directly from Proposition 4.2 of [ST03]. ⇤

One can describe the analytic distributions of Definition 14.1.7 in terms of the the basis bi of the

Iwasawa algebra.

Proposition 14.1.16. Let S be an extremally disconnected set, then

D(h)(G0,K)(S ) =

⇢ X

↵2Nd

a↵b↵ : sup
↵

{|a↵|p
�

p�h |↵|�s(↵)
p�1 } < +1, a↵ 2 Cont(S ,K)

�
,

where s(↵) =
P

1id s(↵i) and s(↵i) is the sum of the p-adic digits of ↵i. In particular, one has

D(h+)(G0,K)(S ) =

⇢ X

↵2Nd

a↵b↵ : sup
↵

{|a↵|p
�

p�h |↵|�s(↵)
p�1 } < +1 for some h0 > h, a↵ 2 Cont(S ,K)

�
.
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Proof. Let � : Zd
p ! G0 be the chart defined by the basis g1, . . . , gd. By a theorem of Amice (c.f. [?,

III.(1.3.8)]), a continuous function f : G0 ! K is h-analytic (i.e. belongs to C(G
(h)

0
,K)) if and only if

v(c↵) �
p�h|↵| � s(↵)

p � 1
! +1

whenever ↵ ! +1, where �⇤ f (g) =
P
↵2Nd c↵

⇣
x

↵

⌘
. After dualizing this gives the claimed result as the

algebra of analytic distributions is attached to its underlying topological space. ⇤

Remark 14.1.17. Using the formula

vp(↵!) =
|↵| � s(↵)

p � 1
,

one can rewrite the above condition on the valuation of the coefficients as

sup
↵

{|a↵↵!| p�a(h)|↵|} < +1,

where a(h) =
p�h�1

p�1
.

Corollary 14.1.18. There is an isomorphism of solid OK-algebras

D(h+)(G0,K) � lim
��!
h0>h

D(h0)(G0,K).

Proof. Let h00 > h0, then one can write

p�
p�h0 |↵|�s(↵)

p�1 = p�
p�h00

p�1 |↵|p�
(p�h0 �p�h00 )|↵|�s(↵)

p�1 .

Since p�h0 � p�h00 > 0, we see that (p�h0 � p�h00)|↵| � s(↵) ! +1 as |↵| ! +1. This implies that for

any h00 > h0 we have

D(h00)(G0,K) ✓ D(h0)(G0,K) ⇢ D(h0)(G0,K).

Taking limits as h0 ! h+ and h00 ! h+ one obtains the corollary. ⇤

14.1.3. Distribution algebras over G

The algebras we have defined can be extended to the whole compact group G in a obvious way.

Indeed, by Lemma 14.1.6 the spaces D(h)(G0,K) and D(h)(G0,K) admit an action of G extending the

inner action of K⌅[G0]. Let us define the distributions

D(h)(G,K) = K⌅[G] ⌦K⌅[G0] D
(h)(G0,K),

D(h+)(G,K) = lim
��!
h0>h

D(h0)(G,K)

D(h)(G,K) = K⌅[G] ⌦K⌅[G0] D(h)(G0,K),

where in the tensor products we seeD(h)(G0,K) as a left K⌅[G0]-module. They are unital associative

algebras admitting K⌅[G] as a dense subspace. Notice that even though the distributions algebras over

G depend on the choice of the open normal subgroup G0 ⇢ G, the projective systems {D(h)(G,K)}h>0

and {D(h)(G,K)}h>0 do not. We define the algebra of locally analytic distributions of G as the Fréchet

algebra

Dla(G,K) = lim
 ��
h!1

D(h+)(G,K) = lim
 ��
h!1

D(h)(G,K).
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For future reference let us introduce algebras of analytic functions over G. Let h � 0 be a rational

number and G
(h)

0
the rigid analytic groups of Definition 14.1.4, recall that they are stable under con-

jugation by G. Let G(h) be the rigid analytic group given by GG
(h)

0
, i.e. if s1, . . . , sn are representatives

of the cosets G/G0 then

G(h) =

nG

i=1

siG
(h)

0
.

We also define

G(h+) =
[

h0>h

G(h).

Let C(G(h),K) = O(G(h)) ⌦Qp
K be the affinoid algebra of analytic functions of G over K of radius

p�h, it is immediate to check that D(h)(G,K) = Hom
K

(C(G(h),K),K). We define C(G(h),OK) and

C(G(h+),K) in the obvious way.

14.2. Solid G-modules

Let G be a profinite group and OK,⌅[G] its Iwasawa algebra over OK .

Lemma 14.2.1. Let V be a solid OK-module. The following are equivalent.

1. V has a structure of OK,⌅[G]-module

2. For any extremally disconnected set S there is a functorial OK-linear action

C(S ,G) ⇥ V(S )! V(S ).

In this case, we say that V is a solid G-module over OK . We denote the category of solid OK,⌅[G]-

modules by Solid(OK,⌅[G]) and its derived category by D(OK,⌅[G]).

Proof. Let V be an OK,⌅[G]-module and S an extremally disconnected set. There is a natural map

of condensed sets [·] : G ! OK,⌅[G]. The action of OK,⌅[G] over V is provided by a linear map

OK,⌅[G] ⌦OK,⌅
V ! V satisfying the usual axioms. Composing with [·] and evaluating at S we obtain

a map C(S ,G) ⇥ V(S )! V(S ), it is easy to check that this provides a functorial action as in (2).

Conversely, to have such a functorial action is equivalent to having a map of condensed sets G ⇥

V ! V making the usual diagrams commutative. By adjunction of the functor X ! Z[X], this

provides a linear map Z[G] ⌦Z V ! V . As V is a solid OK-module it extends uniquely to a map

OK,⌅[G] ⌦OK,⌅
V ! V which is easily seen to satisfy the obvious diagrams of an OK,⌅[G]-module. ⇤

Let us extend the definition of the condensed set of “continuous functions” to complexes:

Definition 14.2.2. Let V be a solid OK-module and S a profinite set, we denote by Cont(S ,V) the

OK-module Hom(Z[S ],V) = Hom
OK

(OK,⌅[S ],V). More generally, for C 2 D(OK,⌅), we denote

Cont(S ,C) := RHom
OK

(OK,⌅[S ],C), which is consistent with the previous definition as OK,⌅[S ] is

a projective module.

Proposition 14.2.3. The functor V 7! Cont(G,V) is exact and factors through a functor Solid(OK)!

Solid(OK,⌅[G
2]) induced by the left and right regular actions respectively. Moreover, it extends to an

exact functor of derived categories D(OK,⌅)! D(OK,⌅[G
2]).

Proof. As G is profinite, OK,⌅[G] is a compact projective OK,⌅-module. This makes the functor

Cont(G,V) exact. Thus, the second statement reduces to the first one. We prove the first statement.
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Let S be an extremally disconnected set, then Cont(G,V)(S ) = Cont(G ⇥ S ,V) = V(G ⇥ S ). Let us

define a map

Cont(S ,G2) ⇥ V(G ⇥ S )! V(G ⇥ S )

as in (2) of Lemma 14.2.1. Let f = ( f1, f2) : S ! G2 and v : G ⇥ S ! V be objects in Cont(S ,G2)

and V(G ⇥ S ) respectively. We define the product f · v to be the composition

S ⇥G S ⇥G V

(s, g) (s, f1(s)�1g f2(s)) v(s, f1(s)�1g f2(s)).

It is immediate so check that this endows Cont(G,V) with a action of G2 which is the left and right

regular action on the first and second component respectively. ⇤

Remark 14.2.4. If we suppose in addition that V is a OK,⌅[G]-module, then Cont(G,V) is naturally

a OK,⌅[G
3]-module. Namely, for S be an extremally disconnected set, f1, f2, f3 2 Cont(S ,G) and

v 2 V(G ⇥ S ), we have the action

[( f1, f2, f3) · v](g, s) = f3(s)v( f1(s)�1g f2(s), s).

This action induces an exact functor of derived categories D(OK,⌅[G])! D(OK,⌅[G
3]).

Definition 14.2.5. Let V be a solid Gn =

nz        }|        {
G ⇥ · · · ⇥G-representation over OK . Given I ⇢ {1, 2, . . . , n}

we denote by ?I the diagonal action of G on V induced by the embedding ◆I : G ! Gn in the

components of I. We denote by V?I
the module V endowed with the action ?I . If I = ; we write

V0 := V; for the OK,⌅-module V endowed with the trivial action of G.

The following proposition basically says that any action on a solid module is continuous (compare

it with [Eme17, Definition 3.2.8]).

Proposition 14.2.6. Let C be an object in D(OK,⌅[G]). Then there is a natural quasi-isomorphism of

OK,⌅[G]-modules

RHom
OK,⌅[G]

(OK ,Cont(G,C)?1,3
)
⇠
�! C, (14.2.1)

where the action of OK,⌅[G] in the left-hand-side is via the ?2-action. The inverse of this map is called

the orbit map of C.

Proof. First, we claim that there exists a natural quasi-isomorphism Cont(G,C)?1,3
' Cont(G,C)?1

for C 2 D(OK,⌅[G]). Suppose that the previous is true, then we have

RHom
OK,⌅[G]

(OK ,Cont(G,C)?1,3
) ' RHom

OK,⌅[G]
(OK ,Cont(G,C)?1

)

= RHom
OK,⌅[G]

(OK ,RHom
OK

(OK,⌅[G],C)?1
)

= RHom
OK

(OK ⌦
L
OK,⌅[G] OK,⌅[G],C)

= RHom
OK

(OK ,C) = C.

To prove the claim, it is enough to define a natural isomorphism Cont(G,V)?1,3
! Cont(G,V)?1

for

V 2 Solid(OK,⌅[G]). Let S be an extremally disconnected set, and take v 2 V(G ⇥ S ). Consider the

inverse map u : G ! G g 7! g�1 and the multiplication map mV : G ⇥ V ! V . Define  V(v) to be

the composition

 V(v) : G ⇥ S
u⇥v
��! G ⇥ V

mV

��! V.

The application

 V : V(G ⇥ S )! V(G ⇥ S )

v 7!  V(v)
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induces an isomorphism of solid OK-modules  V : Cont(G,V)! Cont(G,V). It is easy to check that

it transfers the ?1,3-action to the ?1-action and the ?2-action to the ?2,3-action. This proves the claim

and that the isomorphism (14.2.1) is G-equivariant. ⇤

Remark 14.2.7. The previous proof shows that if V is a OK,⌅[G]-module arising from a topological

space, the isomorphism V ! (Cont(G,V)?1,3
)G is given by the usual orbit map.

14.3. Analytic representations

Let h � 0 and G(h) the rigid analytic group of §14.1 extending the group law of G. We recall that

G(h) depends on the choice of an open normal uniform pro-p-subgroup G0 ⇢ G. To motivate the

forthcoming definitions of analytic vectors let us first recall how this works for Banach spaces, where

we follow [Eme17, §3].

Let V be a K-Banach space endowed with a continuous action of G, the space of V-valued G(h)-

analytic functions is by definition the p-adically complete tensor product C(G(h),V) := C(G(h),K)b⌦KV .

As V and C(G(h),K) are Banach spaces, the p-adically complete tensor product coincides with the

solid tensor product C(G(h),K) ⌦K⌅ V (Lemma 13.1.10). This space has an action of G2 given by the

left and right regular actions of G, and an extra action of G induced by the one of V . Following the

notation of Definition 14.2.5, the G(h)-analytic vectors of V is the Banach space

VG
(h)�an := (C(G(h),V)?1,3

)G. (14.3.1)

There is a natural map VG
(h)�an ! V given by evaluating at 1 2 G(h), and V is G(h)-analytic if the

previous arrow is an isomorphism.

To generalise the previous construction of analytic vectors to solid K⌅[G]-modules we need to

rewrite (14.3.1) in a slightly different way. Consider the affinoid ring (C(G(h),K),C(G(h),OK)), it is a

finite product of Tate power series rings in d-variables. In Example 12.0.6 (4) and (5), we saw how

the affinoid ring provides a natural analytic ring that we denote as C(G(h),K)⌅. We also denote by

C(G(h),OK)⌅ the analytic ring attached to its subalgebra of power-bounded elements. Now, as V is a

K-Banach vector space, one has

C(G(h),V) = C(G(h),K) ⌦K⌅ V = C(G(h),K)⌅ ⌦K⌅ V,

where the last tensor product is the completion functor with respect to the measures of C(G(h),K)⌅,

see Theorem 12.0.7 and Proposition 12.0.11. Hence, we can write the G(h)-analytic vectors of V in

the form

VG
(h)�an = Hom

K⌅[G]
(K, (C(G(h),K)⌅ ⌦K⌅ V)?1,3

).

In order to generalise the construction of analytic vectors we need some basic properties of the

tensor C(G(h),OK)⌅ ⌦OK,⌅
�.

Proposition 14.3.1. Consider the functor V 7! C(G(h),OK)⌅⌦OK,⌅
V for V 2 Solid(OK). The following

statements hold.

1. The functor is exact.

2. It induces an exact functor of derived categories D(OK⌅) ! D(OK,⌅[G
2]) given by the left and

right regular actions.

3. There is a functorial map C(G(h),OK)⌅ ⌦
L
OK

C ! Cont(G,C) for C 2 D(OK⌅) compatible with

the left and right regular actions.
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Proof. Exactness follows from Proposition 12.0.11. Indeed, as G(h) is a finite disjoint union of poly-

discs one has

C(G(h),OK)⌅ ⌦
L
OK,⌅

V = RHom
OK

(D(h)(G,OK),V). (14.3.2)

ButD(h)(G,OK) is a projective OK-module, this implies that

C(G(h),OK)⌅ ⌦
L
OK,⌅

V = Hom
OK

(D(h)(G,OK),V) = C(G(h),OK)⌅ ⌦OK,⌅
V

is exact.

To prove (2), it is enough to show that C(G(h),OK)⌅⌦OK,⌅
V has natural left and right regular actions

for V 2 Solid(OK). Writing V as a quotient P1 ! P0 ! V of objects of the form Pi =
L

Ii

Q
Ji
OK ,

we have an exact sequence

C(G(h),OK)⌅ ⌦OK
P1

f
�! C(G(h),OK)⌅ ⌦OK

P0 ! C(G(h),OK)⌅ ⌦OK
V ! 0.

The functor C(G(h),OK)⌅ ⌦OK
� commutes with colimits and, by Equation (14.3.2), it also commutes

with products. Hence

C(G(h),OK)⌅ ⌦ Pi =
M

Ii

Y

Ji

C(G(h),OK)

and these modules are equipped with the natural left and right regular actions of G. Moreover, the

map f is equivariant for these actions. We endow C(G(h),OK)⌅ ⌦OK
V with the action induced by the

quotient map. It is easy to check that this action is independent of the presentation of V , and that it is

functorial.

For the last statement, it is enough to construct a functorial equivariant map

C(G(h),OK)⌅ ⌦OK
V ! Cont(G,V)

for V 2 Solid(OK). Recall that by definition Cont(G,V) = Hom
OK

(OK,⌅[G],V). Similarly as before,

we are reduced to constructing the map for an object of the form P =
L

I

Q
J OK . As both functors

commute with colimits and products, one reduces to treat the case P = OK , for which we have the

natural inclusion C(G(h),OK) ! Cont(G,OK) provided by G ⇢ G(h), which is equivariant for the left

and right regular actions of G. This ends the proof. ⇤

Remark 14.3.2. It is clear that if V is a solid G-module then C(G(h),OK)⌅⌦OK,⌅
V can be endowed with

an action of G3.

Definition 14.3.3. Let h � 0

1. Let V 2 Solid(K⌅[G]), the space of G(h)-analytic vectors of V is the solid K⌅[G]-module

VG
(h)�an := Hom

K⌅[G]
(K, (C(G(h),K)⌅ ⌦K⌅ V)?1,3

)

where the action of G is induced by the?2-action. Similarly, we define theG(h+)-analytic vectors

of V to be

VG
(h+)�an := lim

 ��
h0>h

VG
(h0)�an.

2. Given a complex C 2 D(K⌅[G]) we define the derived G(h)-analytic vectors of C as the complex

in D(K⌅[G])

CRG(h)�an := RHom
K⌅[G]

(K, (C(G(h),K)⌅⌦K⌅
LC)?1,3

)

where the action of G is induced by the?2-action. Similarly, we define the derivedG(h+)-analytic

vectors of C to be

CRG(h+)�an := R lim
 ��
h0>h

CRG(h0)�an.
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Remark 14.3.4. As C(G(h),K)⌅ ⌦K⌅ � is exact, C 7! CRG(h)�an is the right derived functor of V 7!

VG
(h)�an. Similarly, C 7! CRG(h+)�an is the right derived functor of V 7! VG

(h+)�an.

Lemma 14.3.5. Let h � 0 and C 2 D(K⌅[G]). There is a natural morphism of objects in D(K⌅[G])

CRG(h)�an ! C.

Proof. Notice that we have a natural map

C(G(h),K)⌅ ⌦
L
K C ! Cont(G,C)

which commutes with the three actions of G. Taking ?1,3-invariant one gets the lemma by Proposition

14.2.6. ⇤

Definition 14.3.6. Let h � 0

1. A solid K⌅[G]-module V is called G(h)-analytic if the natural map VG
(h)�an ! V is an isomor-

phism. Similarly, it is called G(h+)-analytic if VG
(h+)�an ! V is an isomorphism.

2. A complex C 2 D(K⌅[G]) is called derived G(h)-analytic if the natural map CRG(h)�an ! C

is a quasi-isomorphism. Similarly, it is derived G(h+)-analytic if the map CRG(h+)�an ! C is a

quasi-isomorphism.

So far we have introduced two definitions of analytic vectors depending on whether we choose the

radius to be closed or open. It turns out that to actually have a theory in terms of distribution algebras,

we need to work with the Stein analytic groups G(h+). We will need the following Lemma (to be

proved in §15.3, see Corollary 15.3.5).

Lemma 14.3.7. One hasD(h+)(G,K) ⌦L
K⌅[G] D

(h+)(G,K) = D(h+)(G,K).

An immediate consequence of the previous result is the following fully-faithfulness property.

Corollary 14.3.8. The category Solid(D(h+)(G,K)) (resp. D(D(h+)(G,K))) is a full subcategory of

Solid(K⌅[G]) (resp. D(K⌅[G])). In other words, if V,V 0 2 Solid(D(h+)(G,K)) and C,C0 2 D(D(h+)(G,K))

then

Hom
K⌅[G]

(V,V 0) = Hom
D(h+)(G,K)

(V,V 0)

RHom
K⌅[G]

(C,C0) = RHom
D(h+)(G,K)

(C,C0).

Proof. It follows from the usual extension of scalars:

RHom
K⌅[G]

(C,C0) = RHom
D(h+)(G,K)

(D(h+)(G,K) ⌦L
K⌅[G] C,C0)

= RHom
D(h+)(G,K)

(D(h+)(G,K) ⌦L
K⌅[G] (D(h+)(G,K) ⌦L

D(h+)(G,K)
C),C0)

= RHom
D(h+)(G,K)

((D(h+)(G,K) ⌦L
K⌅[G] D

(h+)(G,K)) ⌦L

D(h+)(G,K)
C,C0)

= RHom
D(h+)(G,K)

(D(h+)(G,K) ⌦L

D(h+)(G,K)
C,C0)

= RHom
D(h+)(G,K)

(C,C0).

⇤

We can now state the main theorem of this section.

Theorem 14.3.9. Let W 2 D(K⌅) and C 2 D(K⌅[G]). The following holds.
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1. There are a natural isomorphisms of K⌅[G]-modules

RHom
K⌅[G]

(D(h)(G,K)⌦L
K⌅

W,C) = RHom
K

(W,CRG(h)�an)

RHom
K⌅[G]

(D(h+)(G,K)⌦L
K⌅

W,C) = RHom
K

(W,CRG(h+)�an)

The K⌅[G]-module structure of the terms inside the RHom
K⌅[G]

in the LHS are the left multipli-

cation on the distribution algebras and the action of C. The G-action of the LHS RHom
K⌅[G]

(�,�)

is induced by the right multiplication on the distribution algebras.

2. The category of G(h+)-analytic representations of G is equal to Solid(D(h+)(G,K)). In other

words, a K⌅[G]-module V is G(h+)-analytic if and only if the action of K⌅[G] extends to an

action ofD(h+)(G,K).

3. Furthermore, a complex C 2 D(K⌅[G]) is derived G(h+)-analytic if and only if for all n 2 Z the

cohomology groups Hn(C) are G(h+)-analytic. Equivalently, C is derived G(h+)-analytic if and

only if it belongs to the essential image of D(D(h+)(G,K)).

Proof. (1) Let W 2 D(K⌅) and C 2 D(K⌅[G]), by Proposition 12.0.11 there is a natural quasi-

isomorphism

RHom
K

(D(h)(G,K) ⌦L
K⌅

W,C) = RHom
K

(W,C(G(h),K)⌅ ⌦
L
K C). (14.3.3)

It is easy to verify that the left and right regular actions of the RHS are translated in the left and

right multiplication of the distributions in the LHS. Indeed, one can reduce to W =
Q

iOK[ 1
p
] and

C = K⌅[G] in which case it is straightforward. Then, the ?1,3-action in the RHS translates in the

left multiplication on the distributions and the action on C in the LHS. Taking RHom
K⌅[G]

(K,�) in

(14.3.3) one gets

RHom
K⌅[G]

(D(h)(G,K)⌦L
K⌅

W,C) = RHom
K

(W,CRG(h)�an).

Taking derived inverse limits and using that RHom commutes with colimits in the first factor and

limits in the second factor, one gets

RHom
K⌅[G]

(D(h+)(G,K)⌦L
K⌅

W,C) = RHom
K

(W,CRG(h+)�an).

(2) Consider the pre-analytic ring (K⌅[G],M(h+)) such that for any extremally disconnected S one

has

M(h+)(S ) = D(h+)(G,K) ⌦K⌅ K⌅[S ].

Corollary 14.3.8 implies that it is in fact an analytic ring. Indeed, let P• be a complex of K⌅[G]-

modules concentrated in positive homological degrees whose terms are direct sums ofM(h+)[S i] for

{S i}i2I a family of profinite sets. Let S be a profinite set, then

RHom
K⌅[G]

(M(h+)[S ], P•) = RHom
D(h+)(G,K)

(M(h+)[S ], P•)

= RHom
K

(K⌅[S ], P•).

Moreover, the category of solid (K⌅[G],M(h+))-modules is equal to the category of solidD(h+)(G,K)-

modules. More precisely, by Theorem 12.0.7, a family of compact projective generators of Solid(K⌅[G],M(h+))

is given byM(h+)(S ) for S extremally disconnected, which are naturallyD(h+)(G,K)-modules, and any

K⌅[G]-linear map between these objects is automaticallyD(h+)(G,K)-linear again by Corollary 14.3.8

again. Hence, part (1) and Theorem 12.0.7 imply that a K⌅[G]-module V is G(h+)-analytic if and only

if it is aD(h+)(G,K)-module.

(3) Theorem 12.0.7 and the same argument as before tells us that a complex C 2 D(K⌅[G]) is

derived G(h+)-analytic if and only if it belongs to the essential image of D(D(h+)(G,K)), if and only if

for all n 2 Z the module Hn(C) is aD(h+)(G,K)-module, finishing the proof. ⇤
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14.4. Locally analytic representations

We finish this section with some applications of Theorem 14.3.9 to the theory of locally analytic

representations. Let us begin with the definition of the locally analytic vectors.

Definition 14.4.1.

1. Let V be a solid K⌅[G]-module, the space of locally analytic vectors of V is the solid K⌅[G]-

module

V la := lim
��!
h!1

VG
(h)�an = lim

��!
h!1

VG
(h+)�an.

We say that V is locally analytic if the natural map V la ! V is an isomorphism.

2. Let C 2 D(K⌅[G]), the derived locally analytic vectors of C is the complex

CRla := hocolim
h!1

CRG(h)�an = hocolim
h!1

CRG(h+)�an.

We say that C is derived locally analytic if the natural map CRla ! C is a quasi-isomorphism.

In §14.1.3 we defined the algebra of locally analytic distributions of G as the Fréchet algebra of

compact type

Dla(G,K) = lim
 ��
h!1

D(h)(G,K) = lim
 ��
h!1

D(h+)(G,K).

Since a locally analytic representation V is a (homotopic) colimit of G(h+)�analytic representations,

Theorem 14.3.9 implies that V is naturally aDla(G,K)-module. Furthermore, this structure is unique

asDla(G,K) ⌦L
K⌅[G]D

la(G,K) = Dla(G,K), see Corollary 15.3.5. Nevertheless, not all theDla(G,K)-

modules are locally analytic representations of G, e.g. Dla(G,K) is not a locally analytic represen-

tation as it cannot be written as a colimit of D(h+)(G,K)-modules. Indeed, if Dla(G,K) was locally

analytic then 1 2 Dla(G,K) would be analytic for certain group G(h+), this would provide a section

of the map Dla(G,K) ! D(h+)(G,K) which is a contradiction as it is never surjective. In the follow-

ing propositions we will try to give some conditions for a Dla(G,K)-module to be a locally analytic

representation of G.

Proposition 14.4.2. Let V be a Banach K⌅[G]-module. The following are equivalent.

1. the K⌅[G]-module structure of V extends toDla(G,K).

2. the K⌅[G]-module structure of V_ extends toDla(G,K).

3. V is G(h+)-analytic for some h � 0.

Proof. Formally, (1) and (2) are equivalent as the dual of a solidDla(G,K) module is naturally a solid

Dla(G,K)-module, (3) implies (1) is clear from the previous discussion. Let us show that (1) implies

(3). Suppose that V is a Dla(G,K)-module. Consider the multiplication map mV : Dla(G,K)⌦K⌅V !

V . As V is Banach and Dla(G,K)⌦K⌅V is a Fréchet space, Lemma 13.3.7 implies that there exists

h � 0 such that mV factors as

Dla(G,K)⌦K⌅V ! D
(h)(G,K)⌦K⌅V ! V.

It is immediate to check that this endows V with an structure of D(h)(G,K)-module. By Theorem

14.3.9 V is G(h0+)-analytic for h0 > h. ⇤

Proposition 14.4.3 (Schneider-Teitelbaum). Let V be an LS space of compact type, cf. Definition

13.3.10. The following are equivalent
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1. the K⌅[G]-module structure of V extends toDla(G,K)-module.

2. the K⌅[G]-module structure of V_ extends toDla(G,K)-module.

3. V is a locally analytic representation of G.

Proof. By Theorem 13.3.13, (1) and (2) are equivalent. It is also clear that (3) implies (1). Suppose

that V is a Dla(G,K)-module which is an LS space of compact type. The multiplication map mV :

Dla(G,K)⌦K⌅V ! V gives an element of Hom(Dla(G,K)⌦K⌅V,V). Let V = lim
��!n

Vn be a presentation

as a colimit of Smith spaces by injective transition maps, and let VB
n be the underlying Banach space

of Vn (cf. Definition 13.3.10). As V is of compact type we have V = lim
��!n

VB
n . Therefore

Hom
K

(Dla(G,K) ⌦K⌅ V,V) = lim
 ��

n

Hom
K

(Dla(G,K) ⌦K⌅ VB
n ,V)

= lim
 ��

n

Hom
K

(Dla(G,K), (VB
n )_⌦K⌅V)

= lim
 ��

n

Cla(G,K) ⌦K⌅ (VB
n )_ ⌦K⌅ V

= lim
 ��

n

lim
��!

m

Cla(G,K) ⌦K⌅ (VB
n )_ ⌦K⌅ VB

m,

where the first equality is formal, the second follows from the fact that V is nuclear, and the third

equality follows from Theorem 13.3.13. This shows that given n 2 N there is m 2 N such that the

map mV : Dla(G,K) ⌦K⌅ VB
n ! V factors through mV : Dla(G,K) ⌦K⌅ VB

n ! VB
m. By lemma 13.3.7

there exists h � 0 such that mV factors asDla(G,K)⌦K⌅ VB
n ! D

(h)(G,K)⌦K⌅ VB
n ! VB

m. Equivalently,

there is h � 0 (maybe different) such that mV factors asDla(G,K)⌦K⌅ Vn ! D
(h)(G,K)⌦K⌅ Vn ! Vm.

Let V 0n be the image of D(h)(G,K) ⌦K⌅ Vn ! Vm, it is a Smith space endowed with an action of

D(h)(G,K) extending the one of Dla(G,K). It is immediate to see that V = lim
��!n

V 0n, this shows that V

is written as a colimit of D(h0+)(G,K)-modules (for h0 > h), which implies that it is a locally analytic

representation of G by Theorem 14.3.9. ⇤

One may wonder whether the previous propositions can be extended to the bounded derived cate-

gory. One way to attack the problem is to use the derived enhancement of Lemma 13.3.7, which we

do not know whether is true or not

Conjecture 1. Let V = lim
 ��n

Vn be a Fréchet space of compact type written as a limit of Banach spaces

with compact and dense transition maps, then

RHom
K

(V,K) = hocolim
n

RHom
K

(Vn,K)

Corollary 14.4.4. Suppose that Conjecture 1 is true. Let V = lim
 ��n

Vn be a Fréchet space of compact

type and B a Banach space, then

1. RHom
K

(V, B) = hocolimn RHom
K

(Vn, B).

2. We have

RHom
K

(V, B) = V_ ⌦K⌅ B.

In particular V_ is the derived dual of V.

3. The duality Theorem 13.3.13 gives a derived duality between bounded complexes of Fréchet

spaces of compact type and bounded complexes of LS spaces of compact type.

127



14. Representation Theory

4. Let C be a bounded complex of Fréchet spaces of compact type and D a bounded complex of

LS spaces of compact type. Then

RHom
K

(C,D) = RHom
K

(C,K) ⌦L
K⌅

D

and

RHom
K

(D,C) = RHom
K

(D,K) ⌦L
K⌅

C.

5. Let C and C0 be bounded complexes of Fréchet spaces of compact type. Then

RHom
K

(C,C0) = RHom
K

(C
0_,C_).

Proof. Part (1) follows from Conjecture 1 using the fact that K⌅[S ] ⌦L
K⌅

K⌅[S
0] = K⌅[S ⇥ S 0] for S

and S 0 profinite sets, that

RHom
K

(V,K)(S ) = RHom(V ⌦K⌅ K⌅[S ],K) = RHom(V,Cont(S ,K))

and that any Banach space over K is a direct sumand of a space of the form Cont(S ,K) for S a profinite

set.

If V is Fréchet of compact type, we can write V = lim
 ��n

VS
n where VS

n is the Smith completion of Vn

(cf. Corollary 13.3.12). Then

RHom
K

(V, B) = hocolim
n

RHom
K

(Vn, B)

= hocolim
n

RHom
K

(VS
n , B)

= hocolim
n

(VS
n )_⌦K⌅B

= lim
��!

n

V_n ⌦K⌅B = V_ ⌦K⌅ B.

Part (3) follows immediately from part (2) and an easy induction via the stupid truncation. For part

(4), notice that if C is a bounded Fréchet complex of compact type, and D is a bounded LS complex

of compact type, then

RHom
K

(C,D) = RHom
K

(C ⌦L
K⌅

D_,K)

= C_ ⌦L
K⌅

D

since C ⌦L
K⌅

D_ is a bounded Fréchet compact type complex. Similarly one shows RHom
K

(D,C) =

D_ ⌦L
K C.

Finally, by a devisage using the stupid filtration, (5) is reduced to showing that if V and V 0 are

Fréchet spaces of compact type then

RHom
K

(V,V 0) = RHom
K

(V
0_,V_).

Writing V 0 = lim
 ��n

V 0n one gets, by (1),

RHom
K

(V,V 0) = R lim
 ��

n

RHom
K

(V,V 0n) = R lim
 ��

n

(V_ ⌦K⌅ V 0n).

Dually, we have that

RHom
K

(V
0_,V_) = R lim

 ��
n

RHom
K

(V
0,_
n ,V

_)

= R lim
 ��

n

(V 0n ⌦K⌅ V_)

which gives the desired equality. ⇤
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Under the assumption of the previous Conjecture we could improve Propositions 14.4.2 and 14.4.3

to bounded derived complexes:

Proposition 14.4.5. Suppose that Conjecture 1 holds. Let C 2 D(Dla(G,K)⌅)
b be a bounded solid

Dla(G,K)-module. Assume that either

(a) C is quasi-isomorphic to a bounded complex of K-Banach spaces as K⌅-complex.

(b) C is quasi-isomorphic to a bounded complex of LS spaces of compact type as K⌅-complex.

Then C is a derived locally analytic representation of G. In particular there is a derived duality

between locally analytic complexes quasi-isomorphic to bounded complexes of LS spaces of compact

type, andDla(G,K)-complexes quasi-isomorphic to bounded complexes of Frechét spaces of compact

type.

Proof. We will prove in Corollary 15.3.5 that

Dla(G,K) ⌦L
K⌅[G] D

la(G,K) = Dla(G,K). (14.4.1)

Let C be a complex in D(Dla(G,K)) which is quasi-isomorphic to a bounded complex of Banach

spaces as K⌅-complex. By Corollary 14.4.4 (1) we have

RHom
K

(Dla(G,K),C) = hocolim
h!1

RHom
K

(D(h+)(G,K),C).

Taking K⌅[G]-invariants one gets that

RHom
K⌅[G]

(Dla(G,K),C) = hocolim
h!1

RHom
K⌅[G]

(D(h+)(G,K),C).

But (14.4.1) implies that the LHS is equal to C while Theorem 14.3.9 implies that the RHS is equal

to hocolimh CRG(h+)

. This shows that C is derived locally analytic.

Now suppose that C is quasi-isomorphic to a bounded complex of LS spaces of compact type.

Then from Corollary 14.4.4 (3) and (4) one has

RHom
K

(Dla(G,K),C) = Cla(G,K) ⌦L
K⌅

C = hocolim
h!1

C(G(h),K)⌅ ⌦
L
K⌅

C.

Taking K⌅[G]-invariants one gets again by (14.4.1) that C = CRla, i.e. that C is a derived locally

analytic representation of G. ⇤

Remark 14.4.6. In the situation (a) of the previous proposition, one can show in addition that C is

derived G(h+)-analytic for some h > 0. Indeed, it is enough to prove that for all n 2 Z there is h > 0

such that Hn(C) is derivedG(h+)-analytic. As C is bounded, we are left to show that if V is aDla(G,K)-

module which is a quotient of two K-Banach spaces (not necessarily Dla(G,K)-modules), then V is

already a D(h+)(G,K)-module for some h > 0. Let mV : Dla(G,K) ⌦K⌅ V ! V be the multiplication

map, by Corollary 14.4.4 (4) one has that

RHom
K

(Dla(G,K) ⌦K⌅ V,V) = hocolim
h!1

RHom
K

(D(G(h),K) ⌦K⌅ V,V).

Thus, mV factors as mV : D(G(h),K) ⌦K⌅ V ! V for some h > 0. After taking h0 > h one shows

that the map D(G(h0+),K) ⌦K⌅ V ! V is in fact an action of D(G(h0+),K), proving that V is derived

G(h+)-analytic as desired.
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14.5. Admissible representations

Before writing down the statements of the cohomological comparison results, let us show how the

theory developed till now together with some algebraic facts about the Iwasawa and the distribution

algebras, provide a description of the locally analytic vectors of an admissible representation in terms

of its dual. All results in this sections were already known ( [ST03], [Pan20]).

Definition 14.5.1. A Banach representation V of G is admissible if its dual is a finite module over the

Iwasawa algebra. Equivalently, if V admits a closed immersion into a finite direct sum of Cont(G,K).

We recall the following important results of the classical Iwasawa and distribution algebras

Theorem 14.5.2 (Lazard, Schneider-Teitelbaum). The following holds

1. The (classical) Iwasawa algebra K⌅[G](⇤) is a coherent algebra.

2. The (classical) distribution algebrasD(h+)(G,K)(⇤) are flat over OK,⌅[G](⇤) algebraically.

3. Let h0 > h, thenD(h0+)(G,K)(⇤) is a flat algebra overD(h+)(G,K)(⇤) algebraically.

4. The (classical) locally analytic distribution algebra Dla(G,K)(⇤) is faithfully flat over K⌅[G]

algebraically.

Proof. Part (1) is [ST03, Rem. 4.6], part (2) is [ST03, Prop. 4.7], part (3) is [ST03, Theo. 4.9] and

part (4) is [ST03, Theo. 4.11]. ⇤

Proposition 14.5.3. Let V be a Banach G-representation, then

VRG(h+)�an = RHom
K

(D(h+)(G,K) ⌦L
K⌅[G] V_,K).

In particular, if V is admissible then

VRG(h+)�an = VG
(h+)�an = Hom

K
(D(h+)(G,K) ⌦K⌅[G] V_,K).

Furthermore, V la = Hom
K

(Dla(G,K) ⌦K⌅[G] V_,K).

Proof. By Theorem 14.3.9 we have

VRG(h+)�an = RHom
K[G]

(D(h+)(G,K),V)

= RHom
K[G]

(D(h+)(G,K),RHom
K

(V_,K))

= RHom
K

(D(h+)(G,K) ⌦L
K⌅[G] V_,K).

Moreover, if V is admissible then V_ is a finite K⌅[G]-module. By flatness of the distribution algebra

one gets thatD(h+)(G,K) ⌦L
K⌅[G] V_ = D(h+)(G,K) ⌦K⌅[G] V_ is concentrated in degree 0 (we warn that

the flatness is only algebraic, and that we use the fact that V_ is a finite module over the Iwasawa

algebra), this implies the second claim. For the last statement, one gets by Lemma 13.3.7 that

V la = lim
��!
h!1

VG
(h+)�an

= lim
��!
h!1

Hom
K

(D(h+)(G,K) ⌦K⌅[G] V_,K)

= Hom
K

(Dla(G,K) ⌦K⌅[G] V_,K).

⇤

Corollary 14.5.4. Let V be an admissible Banach G-representation, then V la ⇢ V is a dense subspace.

Proof. As the category of admissible representations is an abelian category, and a closed subrepre-

sentation of an admissible representation is admissible, one is left to prove that the functor V 7! V la

is non zero. This follows from Proposition 14.5.3 and the fact that Dla(G,K) is faithfully flat over

K⌅[G]. ⇤
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In this last chapter we present our main applications to group cohomology. We obtain in particular

1. An isomorphism between the continuous cohomology and the cohomology of the derived lo-

cally analytic vectors for solid representations. This can be seen as a p-adic version of theorems

of P. Blanc and G. D. Mostow for real Lie groups, cf. [Bla79, Mos61].

2. A comparison theorem, for a locally analytic G-representation V , between its continuous and its

locally analytic cohomology. This generalises the classical result of Lazard [Laz65] for finite

dimensional Qp-representations to arbitrary solid K-vector spaces.

3. A comparison theorem between locally analytic cohomology and Lie algebra cohomology. This

recovers and generalises a result of Tamme [Tam15] (cf. also [HKN11] and [Lec12]), which in

turns was a generalisation of the other main result of Lazard for finite dimensional representa-

tions.

The proof of (1) is an immediate consequence of our main Theorem 14.3.9 and a result of Kohlhaase

(Theorem 15.3.2).

The key input for the comparison result in (2) is the existence of a finite free resolution of the trivial

representation, as a module over the Iwasawa algebra of a small neighbourhood of 1 in G. This is an

application of a lemma of Serre used by Lazard in [Laz65, V Def. 2.2.2]. We shall also need a version

of the lemma proved by Koohlhase for distribution algebras, cf. [Koh11, Theo. 4.4]. Once one has

this lemma at hand, the proof of (2) is rather formal using the machinery developed throughout this

text.

Finally, to show (3) we follow the proof of Tamme constructing a resolution of the trivial repre-

sentation in terms of the de Rham complex of the analytic groups. Then, we apply the same formal

computation as before.

15.1. Continuous, analytic and locally analytic cohomology

In this section we define different cohomology groups, they correspond to continuous, analytic and lo-

cally analytic cohomology in the literature. Indeed, using the Bar resolutions and Proposition 12.0.11,

one verifies that whenever V is a solid representation coming from a “classical space” (i.e. a Banach,

Fréchet, LB or LF space) our definitions coincide with the usual ones.

In the following we will use the conventions of Section 14.1. In particular, we fix a compact

p-adic Lie group G and an open normal uniform pro-p-group G0 ⇢ G, we denote the h-analytic

neighbourhood of G as G(h), and define its open h-analytic neighbourhood as G(h+) =
S

h0>hG
(h0).

Recall from Lemma 14.2.1 that a solid OK-module V is an OK-linear G-representation if and only if it

is a module over the Iwasawa algebra OK,⌅[G]. If V is in addition a G(h+)-analytic representation, by

the main Theorem 14.3.9, V is naturally equipped with aD(h+)(G,K)-module structure.

Definition 15.1.1.

1. Let C 2 D(OK,⌅[G]). We define the continuous group cohomology of C as RHom
OK,⌅[G]

(OK ,C).

2. Let C 2 D(OK,⌅[G]) be a derived G(h+)-analytic representation. We define the G(h+)-analytic

cohomology of C as RHom
D(h+)(G,K)

(K,C).

131



15. Cohomology

3. Let C 2 D(OK,⌅[G]) be a derived locally analytic representation. We define the locally analytic

cohomology of C as hocolim
h!1

RHom
D(h+)(G,K)

(K,C).

15.2. Comparison results

Next we state the main theorems of this section, which will be proved in §15.4.

Theorem 15.2.1. Let C 2 D(K⌅[G]), then

RHom
K⌅[G]

(K,C) = RHom
K⌅[G]

(K,CRla).

Remark 15.2.2. More concretely, we will show that

RHom
K⌅[G]

(K,C) = RHom
K⌅[G]

(K,CRG(h+)�an

).

for h >> 0.

Theorem 15.2.3 (Continuous vs. analytic vs. Lie algebra cohomology). Let C 2 D(K⌅[G]) be a

derived G(h+)-analytic representation. Then

RHom
K⌅[G]

(K,C) � RHom
D(h+)(G,K)

(K,C) � (RHom
U(g)

(K,C))G.

Remark 15.2.4. The RHS term of the equation above means the following: if C is a derived G(h+)-

analytic complex, then there is an open normal subgroup H ⇢ G such that

RHom
U(g)

(K,C) = RHom
K⌅[H]

(K,C),

and the group G/H acts on the previous cohomology complex. As we are working in characteristic

0 and G/H is a finite group, taking invariants in the category of solid K[G/H]-modules is exact and

one can form the complex

RHom
U(g)

(K,C)G := RHom
U(g)

(K,C)G/H.

15.3. Key lemmas

In the following we will work with complexes with equal terms but different differential maps. To

make explicit the differentials we use the following notation: let C be a (homological) complex of

OK,⌅-modules with i-th term Ci and i-th differential di : Ci ! Ci�1, we note

C = [· · ·! Ci+1 ! Ci ! Ci�1 ! · · · ; d•].

15.3.1. Iwasawa and distribution algebras

The following result is the main input for our calculations.

Theorem 15.3.1 (Lazard-Serre). Let G0 a uniform pro-p group of dimension d. Then there exists a

projective resolution of the trivial module Zp of the form

P := [0! Zp,⌅[G0](
d
d) ! · · ·! Zp,⌅[G0](

d
i) ! · · ·! Zp,⌅[G0](

d
0);↵•].
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Proof. We briefly sketch how the complex P is constructed from [Laz65, Définition 2.2.2.1, Lemme

2.1.1]. Let g1, . . . , gd 2 G0 be a basis of the group and bi = [gi] � 1 2 Zp,⌅[G0](⇤). The valu-

ation of G0 defines a filtration in Zp,⌅[G0](⇤) whose graded algebra gr•(Zp,⌅[G0](⇤)) is isomorphic

to Fp[⇡][b1, . . . , bd], where F[⇡] = gr•(Zp) is the graduation of Zp for the filtration induced by (p).

Then, the Koszul complex of F[p][b1, . . . , bd] with respect to the regular sequence (b1, . . . , bd) can be

lifted by approximations to the complex P of the theorem. Furthermore, the proof also lifts a chain

homotopy s̃• between the identity and the augmentation map ✏ : K[b1, . . . , bd] ! Fp[⇡], to a chain

homotopy s• between the identity and the augmentation map ✏ : Zp,⌅[G0]! Zp. ⇤

Theorem 15.3.2 (Kohlhaase). Let G0 a uniform pro-p group of dimension d and h > 0. Then

OK ⌦
L
OK,⌅[G0] D(h)(G0,K) = K.

More precisely, the differentials ↵i : OK,⌅[G0](
d
i) ! OK,⌅[G0](

d
i�1) of the resolution given by Theorem

15.3.1 extend to maps ↵i : D(h)(G0,K)(
d
i) ! D(h)(G0,K)(

d
i�1), inducing a resolution of the trivial

module K of the form

P(h) := [0! D(h)(G0,K)(
d
d) ! · · ·! D(h)(G0,K)(

d
i) ! · · ·! D(h)(G0,K)(

d
0);↵•].

Proof. This is essentially [Koh11, Theorem 4.4]. Let g1, . . . , gd 2 G0 be a basis and bi 2 Zp,⌅[G0](⇤).

The idea of the proof is to show that the differentials ↵• and the chain homotopy s• of Theorem

15.3.1 are continuous with respect to the norms |
P
↵ a↵b↵|r = sup↵ |a↵|r

|↵| for 1
p
< r < 1. Thus, the

differentials ↵• and the chain homotopy s• extend to the weak completion of these norms (i.e. the

completion with respect to a radius r seen as a subspace in the completion of a slightly bigger radius

r < r0 < 1). Note that the distribution algebras constructed in this way are precisely the algebras

D(h)(G0,K) of Definition 14.1.12. ⇤

Remark 15.3.3. By definition D(h)(G,K) := K⌅[G] ⌦K⌅[G0] D(h)(G0,K). Therefore D(h)(G,K) ⌦K⌅[G]

K = D(h)(G0,K) ⌦K⌅[G0] K = K, as K is of characteristic 0. This implies that

D(h)(G,K) ⌦L
K⌅[G] D(h)(G,K) = K⌅[G] ⌦L

K⌅[G0] (D(h)(G0,K) ⌦L
K⌅[G] D(h)(G0,K)).

With the help of the previous theorem we can compute the following derived tensor product

Proposition 15.3.4. We have

D(h)(G,K) ⌦L
K⌅[G] D(h)(G,K) = D(h)(G,K).

Proof. First, we reduce to the case when G is a uniform pro-p-group by Remark 15.3.3. By Theorem

15.3.1 we can write

[0! K⌅[G]! · · ·! K⌅[G]d ! K⌅[G];↵] ' K.

Tensoring withD(h)(G,K) over K we get

[0! K⌅[G]⌦KD(h)(G,K)! · · ·K⌅[G]d ⌦KD(h)(G,K)! K⌅[G]⌦KD(h)(G,K);↵⌦ 1] ' D(h)(G,K).

The quasi-isomorphism above is of K⌅[G]-modules for the diagonal action of G in the terms of the

complex.

Let ◆ : K⌅[G] ! K⌅[G] be the antipode, i.e. the map induced by the inverse of the group, and

denote in the same way its extension to the distribution algebraD(h)(G,K). Consider the composition

K⌅[G] ⌦K D(h)(G,K)
(1⌦◆)⌦1
�����! K⌅[G] ⌦K K⌅[G] ⌦K D(h)(G,K)

1⌦m
���! K⌅[G] ⌦K D(h)(G,K),
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where m is the left multiplicaiton of K⌅[G] on the distribution algebra. This map defines a G-

equivariant isomorphism

� : K⌅[G] ⌦K D(h)(G,K) � K⌅[G] ⌦K D(h)(G,K)0

where the action of G in the image is left multiplication on K⌅[G] and trivial on DK(G,K)0. Notice

that � can be extended naturally to a G-equivariant isomorphism

� : D(h)(G,K) ⌦K D(h)(G,K) � D(h)(G,K) ⌦K D(h)(G,K)0.

We define the complex

[0! K⌅[G] ⌦K D(h)(G,K)0 ! · · ·! K⌅[G] ⌦K D(h)(G,K)0; �•] (15.3.1)

to be the complex whose differentials are given by �• = � � ↵• � �
�1. Notice that the maps � extend to

respective complex with terms direct sums ofD(h)(G,K) ⌦K D(h)(G,K)0.

Using this complex one can easily compute the derived tensor product by replacing the right

D(h)(G,K) with (15.3.1):

D(h)(G,K) ⌦L
K⌅[G] D(h)(G,K) ' [· · ·! D(h)(G,K) ⌦K⌅[G] (K⌅[G](

d
i) ⌦K D(h)(G,K)0)! · · · ; 1 ⌦ �]

= [. . .! D(h)(G,K)(
d
i) ⌦K D(h)(G,K)0 ! · · · ; �]

' [· · ·! D(h)(G,K)(
d
i) ⌦K D(h)(G,K)! · · · ;↵ ⌦ 1]

' D(h)(G,K),

In the above sequence of isomorphisms, the first quasi-isomorphism follows from the observation that

the action of G on the complex (15.3.1) representing D(h)(G,K) is trivial on the factor D(h)(G,K)0.

The second step is trivial. The third one follows by applying ��1. The fourth quasi-isomorphism

follows from Theorem 15.3.2. This finishes the proof.

⇤

Corollary 15.3.5. We have

D(h+)(G,K) ⌦L
K⌅[G] D

(h+)(G,K) = D(h+)(G,K)

Dla(G,K) ⌦L
K⌅[G] D

la(G,K) = Dla(G,K).

Proof. This follows from the previous proposition and the fact that D(h+)(G,K) can be written as a

colimit of distribution algebras D(h0)(G,K), cf. Corollary 14.1.18. The case of Dla(G,K) follows

from the same proof of Proposition 15.3.4 knowing that the complex of Theorem 15.3.2 extends to

Dla(G,K). ⇤

15.3.2. Enveloping and distribution algebras

Let g = Lie G be the Lie algebra of G and U(g) its enveloping algebra. Let Gh be a rigid analytic

group of Definition 14.1.4) and let Gh = Gh(Qp) be its rational points. Note that Gh ⇢ G is an open

compact subgroup. We denote by D(Gh,K) the distribution algebra of G(h)-analytic functions, i.e.

the dual of C(Gh,K). We also denote D(Gh+ ,K) = lim
��!h0>h

D(Gh0 ,K), in other words, the distribution

algebra of the rigid analytic group defined by the open unit polydisc Gh+ =
S

h0>hGh0 . We assume that

Gh+(Qp) = Gh.

Proposition 15.3.6 (Tamme). Keep the above notation, and let

CE(g) := [0! U(g) ⌦ ^dg! · · ·! U(g) ⌦ g! U(g); d]

be the Chevalley-Eilenberg complex resolving the trivial representation K. ThenD(Gh+ ,K)⌦L
U(g) K =

K. Moreover, the complex D(Gh+ ,K) ⌦L
U(g) CE(g) is the dual of the global sections of the de Rham

complex of Gh+ .
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Proof. Let [Ω•
Gh+
, d] be the de Rham complex of Gh+ , notice that the global sections of Ωi

Gh+
are equal

to C(Gh+ ,K) ⌦K

Vi(g_). As Gh+ is a open polydisc, the Poincaré lemma holds and the global sections

of the de Rham complex is

C(Gh+ ,K)
d
�! C(Gh+ ,K) ⌦K g

_ d
�! · · ·

d
�! C(Gh+ ,K) ⌦K

d̂

g_ ! 0, (15.3.2)

which is quasi-isomorphic to K via the inclusion of the constant functions K ⇢ C(Gh+ ,K). It is easy to

show that the dual of (15.3.2) is equal toD(Gh+ ,K)⌦U(g) CE(g). Finally, the fact thatD(Gh+ ,K)⌦U(g)

CE(g) is a projective resolution of K asD(Gh+ ,K)-module follows from the exactness of (15.3.2) and

the duality Theorem 13.3.13. ⇤

Remark 15.3.7. The same proof of Proposition 15.3.4 applies in this situation. In particular, one can

show that D(Gh+ ,K) ⌦L
U(g) D(Gh+ ,K) = D(Gh+ ,K) and that Solid(D(Gh+ ,K)) is a full subcategory of

the category of solid U(g)-modules.

15.4. Proofs

Proof of Theorem 15.2.1. Let C 2 D(K⌅[G]). By Theorem 14.3.9 we have

CRG(h+)�an = RHom
K⌅[G]

(D(h+)(G,K),C).

We now compute

RHom
K⌅[G]

(K,CRG(h+)�an) = RHom
K⌅[G]

(K,RHom
K⌅[G]

(D(h+)(G,K),C))

= RHom
K⌅[G]

(K ⌦L
K⌅[G] D

(h+)(G,K),C)

= RHom
K⌅[G]

(K,C),

where the second equality is the tensor-Hom adjunction, and the third one follows from Theorem

15.3.2. ⇤

Proof of Theorem 15.2.3. Let C be a derived G(h+)-analytic representation of G. Theorem 14.3.9 says

that C is aD(h+)(G,K)-module. By Theorem 15.3.2 one has

RHom
K⌅[G]

(K,C) = RHom
D(h+)(G,K)

(D(h+)(G,K) ⌦L
K⌅[G] K,C)

= RHom
D(h+)(G,K)

(K,C).

On the other hand, sinceD(h+)(G,K) = OK,⌅[G] ⌦OK,⌅[Gh] D(Gh+ ,K), one has

RHom
D(h+)(G,K)

(K,C) = RHom
D(Gh+ ,K)

(K,C)G/Gh .

By Proposition 15.3.6 we get

RHom
U(g)

(K,C) = RHom
D(Gh+ ,K)

(D(Gh+ ,K) ⌦L
U(g) K,C)

= RHom
D(Gh+ ,K)

(K,C).

Putting all together we obtain

RHom
K⌅[G]

(K,C) = RHom
D(h+)(G,K)

(K,C) = RHom
U(g)

(K,C)G

as we wanted. ⇤
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15.5. Further Applications

We conclude by stating and showing some formal consequences that might be of interest for applica-

tions.

15.5.1. Shapiro’s lemma and Hochschild-Serre

Let G be a compact p-adic Lie group of dimension d and H a closed subgroup of dimension e. One

can find an open uniform pro-p-group G0 ⇢ G satisfying the following conditions:

1. H0 := H \G0 is an uniform pro-p-group.

2. There are charts �G0
: Zd

p ! G0 and �H0
: Ze

p ! H0 such that �G0
� ◆e = �H0

, where ◆e : Ze
p ! Z

d
p

is the inclusion in the last e-components.

Indeed, taking g0 ⇢ g a small enough lattice as in §5.2 [Eme17] and h0 := h \ g0, one can take

G0 := exp(g0) and H0 := exp(h0). The profinite groups H0 and G0 allow us to define compatible rigid

analytic neighbourhoods H(h+) and G(h+) of H and G respectively, with G(h+)/H(h+) is a finite disjoint

union of open polydiscs of dimension d � e, and such that

C(G(h+),K) = C(G(h+)/H(h+),K) ⌦K⌅ C(H(h+),K).

In other words, if D(h+)(G/H,K) denotes the dual of C(G(h+)/H(h),K), we have an isomorphism of

rightD(h+)(H,K)-modules

D(h+)(G,K) = D(h+)(G/H,K) ⌦K⌅ D
(h+)(H,K).

One has a similar description as leftD(h+)(H,K)-modules.

Definition 15.5.1. For C 2 D(K⌅[H]) we define the solid induction and coinduction of C from H to

G as

indG
H(C) := K⌅[G] ⌦L

K⌅[H] C,

coindG
H(C) := RHom

K⌅[H]
(K⌅[G],C),

where the action of G is given by left multiplication on K⌅[G] for the induction, and by right multipli-

cation on K⌅[G] for the coinduction. If C is derived H(h+)-analytic, define the analytic induction and

coinduction as

h-indG
H(C) := D(h+)(G,K) ⌦L

D(h+)(H,K)
C,

h-coindG
H(C) := RHom

D(h+)(H,K)
(D(h+)(G,K),C).

Proposition 15.5.2. (Shapiro’s lemma) Let C 2 D(K⌅[G]), C0 2 D(K⌅[H]). Then indG
H (resp. coindG

H)

is the left (resp. right) adjoint of the restriction map D(K⌅[G])! D(K⌅[H]). In other words,

RHom
K⌅[G]

(indG
H(C0),C) = RHom

K⌅[H]
(C0,C),

RHom
K⌅[G]

(C, coindG
H(C0)) = RHom

K⌅[H]
(C,C0).

Analogously, if C and C0 are derived G(h+)-analytic and H(h+)-analytic representations, then

RHom
D(h+)(G,K)

(h-indG
H(C0),C) = RHom

D(h+)(H,K)
(C0,C),

RHom
D(h+)(G,K)

(C, h-coindG
H(C0)) = RHom

D(h+)(H,K)
(C,C0).
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Proof. The first statement follows formally:

RHom
K⌅[G]

(K⌅[G] ⌦L
K⌅[H] C,C0) = RHom

K⌅[H]
(C,RHom

K⌅[G]
(K⌅[G],C0)) = RHom

K⌅[H]
(C,C0).

The rest of the statements are proved in a similar way. ⇤

Proposition 15.5.3. (Hochschild-Serre) Let H ⇢ G be a normal closed subgroup and C 2 D(K⌅[G]).

Then

RHom
K⌅[G]

(K,C) = RHom
K⌅[G/H]

(K,RHom
K⌅[H]

(K,C)).

If C is derived G(h+)-analytic, then

RHom
D(h+)(G,K)

(K,C) = RHom
D(h+)(G/H,K)

(K,RHom
D(h+)(H,K)

(K,C)).

Proof. By Shapiro’s lemma we have

RHom
K⌅[H]

(K,C) = RHom
K⌅[G]

(K⌅[G] ⌦L
K⌅[H] K,C).

Applying the functor RHom
K⌅[G/H]

(K,�) to both sides, using K⌅[G] ⌦L
K⌅[H] K = K⌅[G/H] and the

usual adjunction one obtains

RHom
K⌅[G/H]

(K,RHom
K⌅[H]

(K,C)) = RHom
K⌅[G]

(K,C),

as desired. The rest of the statements are proved in a similar way. ⇤

15.5.2. Homology and duality

Definition 15.5.4. Let C 2 D(K⌅[G]). We define the solid group homology of C as

K ⌦L
K⌅[G] C.

Analogously, if C is derived G(h+)-analytic, define its G(h+)-analytic homology as

K ⌦L

D(h+)(G,K)
C.

We have the following formal duality between homology and cohomology.

Lemma 15.5.5. Let C 2 D(K⌅[G]). Then

RHom
K

(K ⌦L
K⌅[G] C,K) = RHom

K⌅[G]
(K,RHom

K
(C,K)).

If C is G(h+)-analytic, then

RHom
K

(K ⌦L

D(h+)(G,K)
C,K) = RHom

D(h+)(G,K)
(K,RHom

K
(C,K)).

Let K(�) =
Vd
g_ denote the determinant of the dual adjoint representation of G. Using Lazard-

Serre’s Theorem 15.3.1 one easily deduces that RHom
K⌅[G]

(K,K⌅[G]), endowed with the right mul-

tiplication of G, is a character concentrated in degree �d. Moreover, using the de Rham complex of

G(h+) one can even prove that

RHom
K⌅[G]

(K,K⌅[G]) = RHom
D(h+)(G,K)

(K,D(h+)(G,K)) = K(�)[�d]. (15.5.1)

The following theorem relates cohomology and homology in a more interesting way.
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Theorem 15.5.6. Let C 2 D(K⌅[G]). Then there is a natural quasi-isomorphism

RHom
K⌅[G]

(K,C) = K(�)[�d] ⌦L
K⌅[G] C.

Furthermore, if C is derived G(h+)-analytic, we have

RHom
D(h+)(G,K)

(K,C) = K(�)[�d] ⌦L

D(h+)(G,K)
C.

Proof. First observe that, given any G-equivariant map ↵ : K⌅[G]?1
! K⌅[G]?1

, one has a commuta-

tive diagram

RHom
K⌅[G]

(K⌅[G]?1
,C) Hom

K⌅[G]
(K⌅[G]?1

,K⌅[G]) ⌦L
K⌅[G] C

RHom
K⌅[G]

(K⌅[G]?1
,C) Hom

K⌅[G]
(K⌅[G]?1

,K⌅[G]) ⌦L
K⌅[G] C,

↵⇤ ↵⇤⌦1

⇠

⇠
(15.5.2)

where the action of G on the RHom’s of the right hand side terms is induced by the ?2-action on

K⌅[G]. Notice that there is a natural identification of right K⌅[G]-modules

RHom
K⌅[G]

(K⌅[G]?1
,K⌅[G]) = K⌅[G]?2

.

Recall that, by Theorem 15.3.1, we have a projective resolution K ' [K⌅[G]
(d
•)
?1

;↵•]. We obtain

RHom
K⌅[G]

(K,C) = RHom
K⌅[G]

([K⌅[G]
(d
•)
?1

;↵•],C)

= [Hom
K⌅[G]

(K⌅[G]?1
,K⌅[G])(

d
•);↵⇤• ⌦ 1] ⌦L

K⌅[G] C

= RHom
K⌅[G]

([K⌅[G]
(d
•)
?1

;↵•],K⌅[G]) ⌦L
K⌅[G] C

= RHom
K⌅[G]

(K,K⌅[G]) ⌦L
K⌅[G] C

= K(�)[�d] ⌦L
K⌅[G] C,

where the second equality follows by (15.5.2), and the last one by (15.5.1). The statement for G(h+)-

analytic cohomology is proven in the same way. ⇤
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16. Introduction

Let p be a prime number and C = Cp the p-adic completion of an algebraic closure of Qp, we let OC

denote the ring of integers of C. The main subject of this article is the study of the Hodge-Tate theory

of the proétale cohomology of Shimura varieties. Indeed, we generalize Lue Pan’s description of

the locally analytic completed cohomology of modular curves in terms of a sheaf of locally analytic

functions [Pan20], to arbitrary Shimura varieties. The most important technical tool is a slightly more

general version of the axiomatic Sen theory à la Berger-Colmez [BC08], which can be applied to

locally analytic representations of p-adic Lie groups.

16.1. The main results

The Calegari-Emerton conjecture

As a motivation we recall the definition of Emerton’s completed cohomology for Shimura varieties

and the Calegari-Emerton conjectures. Let G be a reductive group over Q and (G, X) a Shimura

datum, i.e. X is a G(R)-conjugacy class of cocharacters h : ResCR(Gm) ! GR satisfying certain

axioms (cf. [Del79, 2.1.1] or [Mil05, Def. 5.5]). For simplicity, we will suppose that the center of

G has no non-split subtorus which is split over R. Let A
1,p

Q
denote the prime-to-p finite adèles of Q

and fix from now on a neat compact open subgroup K p ⇢ G(A
1,p

Q
). Given a compact open subgroup

Kp ⇢ G(Qp) we let ShK pKp
(C) denote the level K pKp complex analytic Shimura variety

ShK pKp
(C) = G(Q)\G(A1Q ) ⇥ X)/K pKp

where G(Q) acts diagonally and K pKp only acts on G(A1
Q

). The complex analytic Shimura varieties

have algebraic models over the reflex field E of the Shimura datum, we denote this scheme by ShK pKp
.

For any inclusion of open compact subgroups K0p ⇢ Kp of G(Qp) we have a finite étale map of

Schemes ShK pK0p ! ShK pKp
, if K0p is normal in Kp then this map is Galois with group Kp/K

0
p.

Let ShK pKp,C be the base change to C. Emerton’s completed cohomology groups are defined as

bH•(K p,Zp) := lim
 ��
s!1

lim
��!

Kp!1

H•ét(ShK pKp,C,Z/p
sZ).

Fixing an isomorphism of fields C � C, the Artin’s comparison theorem of étale and Betti cohomology

(cf. [Art68]) provides an isomorphism of cohomology groups

H•ét(ShK pKp,C,Z/p
sZ) � H•Betti(ShK pKp

(C),Z/psZ),

so that
bH•(K p,Zp) = lim

 ��
s!1

lim
��!

Kp!1

H•Betti(ShK pKp
(C),Z/psZ).

This is Emerton’s original definition of completed cohomology, which can be extended to general

locally symmetric spaces, see [Eme06]. There is also a version with compact supports, which we

denote by bH•c (K p,Zp). The spaces bH•(c)(K
p,Zp) are p-adically complete representations of G(Qp)⇥GE,

where GE is the absolute Galois group of E. Most of the Calegari-Emerton conjecture for Shimura

varieties can be stated as follows:
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Conjecture 2. The completed cohomology groups bH•(K p,Zp) and bH•c (K p,Zp) are concentrated in

degrees [0, d], where d is the dimension of the Shimura varieties.

The first major step towards this conjecture was made by Scholze in [Sch15], where he proves the

vanishing for the compactly supported cohomology of Shimura varieties of Hodge-type. Scholze’s

proof uses the primitive comparison theorem to write down bH•c (K p,Zp)b⌦OC in terms of the ana-

lytic cohomology of the perfectoid Shimura variety, then it uses Grothendieck’s dimension bound for

sheaf cohomology to deduce the vanishing. It turns our that using the perfectoid toroidal compacti-

fications at infinite level of Pilloni-Stroh [PS16], and the pro-Kummer-étale theory of Diao-Lan-Liu-

Zhu [DLLZ19], the same strategy of Scholze can be applied to prove the vanishing of bH•(K p,Zp) for

Shimura varieties of Hodge-type.

The next and most recent advance towards this conjecture is due to Hansen-Johansson [HJ20].

Restricted to Shimura varieties, they proved the conjecture for groups G such that Gder admits a

connected Shimura datum of pre-abelian type. A sketch of their proof is the following: first, they

extend Scholze’s theorem of perfectoidness of infinite level Shimura varieties to Shimura varieties of

pre-abelian type. Then, using Scholze’s proof for Hodge type one obtains the vanishing of bH•c (K p,Zp).

Finally, they perform a careful topological study of the boundary of the Borel-Serre compactification

of the Shimura varieties to obtain the vanishing for bH•(K p,Zp).

As it can be noticed, the common strategy is showing that the infinite level Shimura varieties are

perfectoid, then the proétale or pro-Kummer-étale cohomology and the primitive comparison theorem

will do the job for translating the completed cohomologies in terms of the analytic cohomology of a

perfectoid space of cohomological dimension  d = dim Sh. Unfortunately, we still do not know if

any infinite level-at-p Shimura variety is perfectoid. Nonetheless, using the theory of locally analytic

vectors and the admissibility of the completed cohomology proven by Emerton, we can actually prove

a rational version of Conjecture 2.

Theorem 16.1.1. The rational Calegari-Emerton conjecture holds for any Shimura variety. In other

words, the cohomology groups bHi(K p,Qp) = bHi(K p,Zp)[ 1
p
] and bHi

c(K
p,Qp) = bHi

c(K
p,Zp)[ 1

p
] vanish

for i > d.

The strategy of the proof is very similar to the other ones: first, since taking locally analytic vectors

of admissible representations is exact, we can study the locally analytic vectors of the completed

cohomology. In fact, it turns out that bH•(c)(K
p,Qp) is a complete Banach space over Qp endowed

with an unitary action of G(Qp) ⇥ GE, whose restriction to G(Qp) is admissible. Then, to prove the

conjecture it is enough to prove that bH•,la
(c)

(K p,Qp)la is concentrated in degrees [0, d]; here V la means

the space of locally analytic vectors for the action of G(Qp). One can translate the process of taking

locally analytic vectors as taking proétale cohomology over the rigid analytic Shimura variety, of the

local system Cla(Kp,Qp) of locally analytic functions of Kp for any Kp ⇢ G(Qp) small enough. The

primitive comparison theorem implies that the C-scalar extension of the locally analytic completed

cohomology can be computed as the pro-Kummer-étale cohomology over Shtor
K pKp,C

of Cla(Kp, bO),

where Shtor
K pKp,C

is some toroidal compactification of the Shimura variety, and bO is the completed

structural sheaf of the pro-Kummer-étale site. Then, one uses relative Sen theory to compute the

projection of sites of the sheaf Cla(Kp, bO) from the pro-Kummer-étale to the analytic site; it boils

down that this is concentrated in degree 0. Taking colimits as Kp ! 1, one gets that the completed

cohomology can be computed as the analytic cohomology of some sheaf over the analytic site of

Shtor
K p,C, the infinite level Shimura variety. This proves the vanishing since the analytification of Shtor

K p,C

has cohomological dimension  d.

In order to write down more precise statements let us fix some other notation. Let L/Qp be a finite

extension for which the group G is split, and let µ : Gm ! GC be the Hodge cocharacter, i.e. the

restriction of h : Gm ⇥Gm ! GC to the first component. We fix a conjugate of µ which is defined over

L. We let E ! L be some fixed map of fields and letShK pKp,L denote the analityfication of the Shimura
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variety to an adic space over Spa(L,OL), cf. [Hub96]. By [Pin90], we have toroidal compactifications

Shtor
K pKp

of ShK pKp
, we let Shtor

K pKp,L
be its analytification over L. Once we fix a Kp, we can take toroidal

compactifications for a decreasing sequence · · · ⇢ K00p ⇢ K0p ⇢ Kp of compact open subgroups such

that the map Shtor
K pK00p ,L

! Shtor
K pK0p,L

is a finite Kummer-étale map of adic spaces, cf. [DLLZ19]. We let

ShK p,L = lim
 ��Kp!1

ShK pKp,L be the infinite level Shimura variety seen as an object in ShK p,L,proét, and

let Shtor
K p,L

be the inverse limit of the toroidal compactifications seen as an object in Shtor
K pKp,L,prokét

. The

space Shtor
K p,L

is then a Kp-torsor over Shtor
K pKp,L

. We have the following theorem (Theorem 22.3.16)

Theorem 16.1.2. Let bOSh be the restriction of the completed sheaf of Shtor
K pKp,C,prokét

to Shtor
K p,C,an, and

let O la
Sh

denote the subsheaf of locally analytic sections for the action of Kp. We have an isomorphism1

RΓproét(ShK p,C,bQp)lab⌦C = RΓan(Shtor
K p,C,O

la
Sh).

For Kp let IKp
denote the ideal sheaf of the boundary over Shtor

K pKp,C
, and let I = lim

��!Kp!1
IKp

be its colimit seen as a sheaf over Shtor
K p,C

. Let O sm
Sh

denote the smooth vectors of O la
Sh

, equivalently,

the colimit of the structural sheaves of the finite level Shimura varieties. We have the following

isomorphism

RΓc,proét(ShK p,C,bQp)lab⌦C = RΓan(Shtor
K p,C,O

la
Sh

b⌦Osm
Sh

I )

where the completed tensor product is as LB spaces2 see Definition 17.1.6.

Remark 16.1.3. We also prove a version for the dual locally analytic completed cohomology, in that

scenario O la
Sh

is replaced by a a sheaf of locally analytic distributions Dla
Sh

over Shtor
K p,C

, see Theorem

22.3.16.

The overconvergent BGG maps

Next, we explain the main motivation that led us to the theory of Lue Pan of locally analytic vectors,

namely the BGG decompositions. These are nothing but the Hodge-Tate structure of the pro-étale

cohomology of Qp-local systems of Shimura varieties. The BGG decompositons in the complex ana-

lytic setting are due to Faltings [Fal83], and for étale cohomology of Siegel varieties (or PEL Shimura

varieties more generally) to Faltings-Chai [FC90]. Faltings’s proof for the étale cohomology depends

on the BGG spectral sequence for the de Rham cohomology and the “étale-de Rham” comparison

theorem. Nevertheless, he also gave a purely local proof for modular curves in [Fal87]. It turns out

that an analogous of Faltings’s BGG method for de Rham cohomology also holds for the proétale co-

homology via the ⇡HT period map. To illustrate the general statement, let us sketch the main steps of

the BGG decompostion for the modular curves (also know as the Eichler-Shimura decompositions).

Let G = GL2 and YK pKp
= ShK pKp,L be the modular curve of level K pKp seen as an adic space

over Qp. We let XK pKp
be its natural compactification ( [DR73]). Let E ! YK pKp

be the universal

elliptic curve and E sm ! XK pKp
its extension to a semiabelian scheme. Let !E denote the sheaf of

invariant differentials of E over YK pKp
, we denote in the same way its canonical extension to XK pKp

(i.e. the sheaf of invariant differentials of E sm). For an integer k we shall denote !k
E
= !⌦k

E
. Let

TpE = lim
 ��n

E[pn] be the Tate module of E seen as a proétale local system of YK pKp
, we also let

TpE denote its natural extension to the pro-Kummer-étale site of XK pKp
. Let B ⇢ GL2 be the Borel

subgroup of upper triangular matrices and N its unipotent radical. Let XK p = lim
 ��Kp!1

XK pKp
be

1The upper script la in the LHS refers to the derived locally analytic vectors of the complex as explained in §17.2. Its

cohomology groups are just the locally analytic vectors of the completed cohomologies since these are admissible

representations.
2i.e. countable filtered colimits of Banach spaces by injective transition maps.
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Scholze’s perfectoid modular curve and ⇡HT : XK p ! F` = P1 the Hode-Tate period map. The

application ⇡HT is GL2(Qp)-equivariant and is defined via the Hodge-Tate exact sequence

0! !�1
E ⌦OX

cOX(1)! TpE ⌦bZp

bOX ! !E ⌦OX
cOX ! 0 (16.1.1)

and the universal trivialization of the Tate module ↵ : bZ2
p � TpE over XK p .

Given V a finite dimensional B-representation, one can defineV := B\(GL2 ⇥V) a GL2-equivariant

vector bundle over F`. Let T ⇢ B be the diagonal and (k1, k2) : T ! Gm a character, we define a

line bundle L(k1, k2) := B\(GL2 ⇥(k2, k1)); the convention is made in such a way that if � = (k1, k2) is

dominant, then Γ(F`,L()) = V� is the irreducible representation of GL2 of highest weight �.

The sequence (16.1.1) encodes the pullbacks of GL2-equivariant vector bundles of F` by ⇡HT.

Indeed, let St denote the standard representation of GL2, the B-filtration of St is

0! (1, 0)! St! (0, 1)! 0. (16.1.2)

Passing to GL2-equivariant sheaves over F`, one obtains a short exact sequence of GL2-equivariant

vector bundles

0! L(0, 1)! St⌦OF` ! L(1, 0)! 0

whose pullback via ⇡HT is (16.1.1).

Let w0 be the non trivial element of the Weyl group of GL2, and let Cw0
= B\Bw0B be the big

Bruhat cell of F`. One has a short exact sequence of B-representations

0! V� ! O(Cw0
) ⌦ �! O(Cw0

) ⌦ (w0 · �)! 0 (16.1.3)

where w0 · � is the dot action of the Weyl group. The sequence (16.1.3) is nothing but the T-finite

vectors of the algebraic dual of the BGG-resolution of V_� with respect to the opposite Borel, see

[RC21a, Prop. 3.4.3] and §21.3 in this document. One of the main results of loc. cit. is that, taking

the GL2-equivariant associated sheaves of (16.1.3) and pulling back by ⇡HT, one obtains a short exact

sequence

0! V� ⌦ bOX ! !k2�k1

E
OClog(k1)! !k1�k2+2

E
OClog(k2 � 1)! 0

where OClog = gr0OBdR,log is a period sheaf in the pro-Kummer-étale site, cf. [DLLZ18]. Projecting

to the analytic site and taking cohomology one recovers Faltings’s ES decomposition:

H•proét(YK pKp,C,V�) ⌦C = H•an(XK pKp,C,!
k2�k1

E
) ⌦C(k1) � H•�1

an (XK pKp,C,!
k1�k2+2
E

) ⌦C(k2 � 1).

In general, let Pµ ⇢ G be the parabolic subgroup defined by Pµ = {x 2 G : limt!0 Ad(µ(t))(x) exists}.

Let Mµ ⇢ Pµ denote a Levi factor. Let F` = Pµ\GL be the flag variety and ⇡HT : Shtor
K p,L
! F`

the Hodge-Tate period map which is deduced from the p-adic Riemman Hilbert correspondence

of [DLLZ18], see [BP21, §4.4.38]. Let T ⇢ Mµ be a maximal torus and for � 2 X⇤(T) a domi-

nant weight of Mµ (resp. G) let W� (resp. V�) denote the irreducible representation of highest weight

�. Let w0 denote the longest element of the Weyl group of G, we writeW(�) for the G-equivariant

vector bundle over F` given as

W(�) = Pµ\(G ⇥W_
�w0(�)).

The convention is chosen so that Γ(F`,W(�)) = V� if � is dominant for G. Given Kp, let ⇡Kp
:

Shtor
K p,C
! Shtor

K pKp,C
be the natural map. Attached to W(�), there is an automorphic vector bundle

M(�) over Shtor
K pKp,L

satisfying the relation

⇡⇤HT(W(�)) = ⇡⇤Kp
M(�) ⌦ bOSh

bOSh(w0(�)(µ)).

We have the following theorem (Theorem 22.2.6)
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Theorem 16.1.4. The dual BGG resolution of V�, denoted as BGG(�)_, defines a G-equivariant sheaf

over F` whose pullback by ⇡HT is of the form

[M_(�w0(�)) ⌦ OClog(�(µ))! · · ·!
M

w2MW
`(w)=k

M_(�w0(w · �)) ⌦ OClog(w · �(µ))!

· · ·!M_(�w0(wM
0 · �)) ⌦ OClog(wM

0 · �(µ))]

where:

1. MW is the set of minimal length representatives of the quotient of Weyl groups WMµ\WGL
.

2. wM
0 is the longest element in MW.

Furthermore, let ⌫Kp
: Shtor

K pKp,C,prokét
! Shtor

K pKp,C,két
be the natural projection of sites. Then, the

projection R⌫Kp,⇤ gives rise a quasi-isomorphism

R⌫Kp,⇤(V� ⌦ bO) =
M

w2MW

M_(�w0(w · �)) ⌦C(w · �(µ))[�`(w)].

In particular, projecting to the analytic site and taking global cohomology one obtains the BGG

decomposition

H•proét(ShK pKp,C,V�) ⌦C =
M

w2MW

H•�`(w)
an (Shtor

K pKp,C
,M_(�w0(w · �)) ⌦C(w · �(µ)). (16.1.4)

Remark 16.1.5. The reason for the action �w0 in the formulas of the previous theorem is due to the

normalization of the automorphic vector bundles M(). If instead we would have chosen V :=

M(�w0()) = Pµ\G ⇥W_
 as normalization, we would get

H•proét(ShK pKp,C,V�) =
M

w2MW

H•�`(w)
an (Shtor

K pKp,C
,V_w·�) ⌦C(w · �(µ)),

a formula which is closer to Faltings-Chai BGG decomposition [FC90, Theo. 6.2]. Note that in loc.

cit. , V� corresponds to V(�)_; this is because, for Siegel varieties X, the standard representation St

defines the Tate module TpA of the universal abelian variety A via ⇡HT, and the attached vector bundle

with connection of TpA is (a Tate twist of) H 1
dR

(A_/X).

A natural question arises from Theorem 16.1.4, namely, is it possible to interpolate the BGG maps

of (16.1.4)? There are instances of an affirmative answer to this question, let us recall some of them.

• The first work on this direction is due to Andreatta-Iovita-Stevens [AIS15] for the H0 ES map of

the modular curve. They constructed a map from a proétale H1-cohomology group of modular

symbols over Y0(pn) towards a space of overconvergent modular forms.

• In [CHJ17], Chojecki-Hansen-Johansson reinterpretates AIS work in terms of the perfectoid

modular curve and the ⇡HT period map, they also generalize de H0 ES map to Shimura curves.

• There is also the work of Barrera and Gao [BG21] on unitary Shimura curves over totally real

fields which follows closely the construction of AIS.

• In the Siegel case, one has the construction due to Diao-Rosso-Wu [DRW21] of the H0 BGG

map. Their ideas follow those of CHJ and AIS.

• For higher BGG maps, one finds the previous work of the author [RC21a] for the H1 ES map

of modular curves. Some of the strategies of loc. cit. shall be used throughout this document.

The main idea is that the BGG maps should be first constructed at the level of the flag variety,

and then pulled back to the Shimura varieties via ⇡HT.
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It was the recent work of Lue Pan [Pan20] the one which led this problem to the right direction.

Pan’s theory of locally analytic vectors of completed cohomology provided an exhausting description

of the b = � isotypic part of the completed cohomology of a modular curve, in terms of overconver-

gent modular forms, where b = Lie B. He managed to discover a bridge between D-modules over

the flag variety, and pro-étale cohomology of modular curves (much like the one provided by the

Borel embedding in the complex analytic situation), a relation which is non trivial since the sheaf of

differentials of a perfectoid space is zero.

We keep writing P = Pµ and M = Mµ. Let B ⇢ GL be a Borel subgroup contained in Pµ and

containing the maximal torus T. Let F` =
F

w2MW Cw be the decomposition of F` in Bruhat cells, let

Zw = Cw be the Schubert varieties and Zi =
S

`(w)=d�i Zw. We have a filtration of closed subspaces of

F`
; ⇢ Zd ⇢ Zd�1 ⇢ · · · ⇢ Z0 = F` .

The complement of this filtration Ui = F` \Zd�i gives rise to an open filtration of F` with graded

pieces Ui\Ui+1 =
F

`(w)=i Cw.

The inverse image by ⇡HT of the Ui’s induce an open filtration of Shtor
K p,C

, we let ji : ⇡�1
HT(Ui) ⇢

Shtor
K pKp,C

and jw : ⇡�1
HT(Cw) ⇢ Shtor

K p,C
. Let F be a sheaf over Shtor

K p,C,an, we define the following

overconvergent cohomologies with partial compact supports (see §18)

RΓc,w(Shtor
K p,C,F ) := RΓan(Shtor

K p,C, jw,! j�1
w F ), (16.1.5)

where jw,! is the extension by zero functor. We also denote H•c,w(Shtor
K p,C
,F ) for the cohomology

groups of RΓc,w(Shtor
K p,C
,F ). The filtration of F` induces a decreasing filtration of the sheaf F with

Fili F = ji,! j�1
i F and graded pieces

L
`(w)=i

jw,! j�1
w F . Taking cohomology, one obtains a “higher

Coleman theory” spectral sequence

E
p,q

1
=

M

`(w)=p

Hp+q
c,w (Shtor

K p,C,F )) H
p+q
an (Shtor

K p,C,F ).

For all w 2 W one can define a sheaf of overconvergent automorphic forms C(M†
w,dR

) in overcon-

vergent neighbourhoods of ⇡�1
HT(Cw) (see §23.1). They contain naturally all the sheaves of overconver-

gent automorphic forms of higher Coleman theory of [BP21]. Let us sketch the definition of the sheaf

C(M†
w,dR

). First, one constructs a decreasing family of overconvergent neighbourhoods {Cw(✏)}✏>0 of

Cw. Over Cw(✏) one constructs a trivialization s : Cw(✏) ! MF` of the Mµ-torsorMF` := Nµ\GL.

LetM†µ = {Mµ(�)}�>0 be a basis of open affinoid subgroups of 1 in the analytification of Mµ, using the

trivialization s one can construct a trivialM†-torsor (i.e. a inverse system ofM(�)-torsors for � > 0)

which we denote byM†
w,F`

. We let C(M†F`
) denote the OCw(✏)-sheaf of functions ofM†

w,F`
, which is

just the colimit of the sheaf of functions of theM(�)-torsors. Then, locally on Cw(✏), C(M†F`
) can be

written as a colimit of locally analytic Kp-equivariant sheaves. Moreover, it has an horizontal action

m?1
of m = Lie Mµ induced by the compatible (left regular)M(�)-actions of the torsors. One defines

the sheaf of overconvergent modular forms as

C(M†
w,dR

) = (⇡�1
HT(C(M†

w,F`
))b⌦⇡�1

HT
(OF`)

bOSh)Kp�sm.

Let b = Lie B and let � : b! C be a character. The interpolations of the BGG maps are constructed

by taking the �-isotypic part of the locally analytic completed cohomology as follows (see Theorems

23.2.1 )

Theorem 16.1.6. Let O la
Sh

be the sheaf of locally analytic sections at infinite level and bM = Lie Mµ\B

the Lie algebra of the Borel subgroup of Mµ. Let ⇢ and ⇢M be a half of the sum of the positive roots

of GL and M respectively, set ⇢M = ⇢ � ⇢M.
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1. The derived b = � isotypic part of the locally analytic completed cohomology can be computed

as

(RΓproét(ShK p,C,bQp)lab⌦C)Rb=� = RΓan(Shtor
K p,C,RHomb(�,O

la
Sh)).

2. Let ✏ >> 0, then RHomb(�,O la
Sh

)|⇡�1
HT

(Cw(✏)) is concentrated in cohomological degrees [0, d�`(w)].

Furthermore, we have a highest vector map

Υw : RHomb(�,O
la
Sh)|⇡�1

HT
(Cw(✏)) ! C(M†

w,dR
)bM,?1

=w·�+2⇢M

[`(w) � d],

surjective in Hd�`(w)-cohomology.

3. The open Bruhat filtration of F` induces a spectral sequence

E
p,q

1
=

M

w2MW
`(w)=p

Hp+q
c,w (Shtor

K p,C,RHomb(�,O
la
Sh))) Hp+q((RΓproét(ShK p,C,bQp)lab⌦C)Rb=�).

In addition, the map Υw induces an overconvergent BGG map

BGGw : RΓc,w(Shtor
K p,C,RHomb(�,O

la
Sh))! RΓc,w(Shtor

K p,C,C(M†
w,dR

)bM,?1
=w·�+2⇢M

)[`(w) � d].

4. Let I ⇢ O sm
Sh

be the ideal defining the cusps for any finite level. Analogous statements hold

for cohomology with compact supports after exchanging O la
Sh

by O la
Sh

b⌦O sm
Sh

I and C(M†
w,dR

) by

C(M†
w,dR

)b⌦O sm
Sh

I .

Remark 16.1.7. We also prove a version of this theorem for the dual locally analytic completed coho-

mology, see Theorem 23.2.2. It involves a sheaf of “differential operators” over Shtor
K p,C

and the duals

of the overconvergent autormorphic sheaves.

16.2. An overview of the paper

The main new tool we use is a generalization of relative Sen theory of Berger-Colmez [BC08] to

locally analytic representations of p-adic Lie groups. The theory of locally analytic representations is

briefly reviewed in Section 17; in order to use some comparison results between continuous and Lie

algebra cohomology, we follow the approach of solid locally analytic representations introduced by J.

Rodrigues Jacinto and the author in [RJRC21]. In Section 18 we prove some devisage of cohomology

with partial compact supports which will be use later on to relate the cohomologies (16.1.5) with the

overconvergent cohomologies of higher Coleman theory [BP21]. In Section 19 we generalize the Sen

theory axioms of Berger-Colmez allowing higher dimensional Sen traces. We prove that Sen theory

can be apply to locally analytic representations.

Following the ideas of [BC16] and [Pan20], we study the Hodge-Tate cohomology of Shimura

varieties, namely, the proétale cohomology of bO-modules. Given a compact p-adic Lie group G, and

a pro-Kummer-étale G-torsor eX ! X, we use Sen theory to construct a universal Sen bundle which

is nothing but the p-adic Simpson correspondance of the G-torsor eX. We prove that the projection

from the pro-Kummer-étale site to the analytic site can be computed as the G-invariant vectors of the

Koszul complex defined by the Sen bundle on eX, in other words, the G-invariant vectors of the Higgs

bundle over eX obtained by the p-adic Simpson correspondance. This is the content of Chapter 20.

Chapter 21 is dedicated to some computations over the flag variety which will be used later on in

the construction of the overconvergent BGG maps. In Chapter 22 we set up the theory of Shimura

varieties as in [DLLZ18]; using the p-adic Riemman-Hilbert correspondances of loc. cit. , we briefly

explain rephrasing [BP21, §4.4] how an abstract ⇡HT period map can be constructed at the level of
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diamonds. We compute the Sen bundle in terms of a G-equivariant sheaf over the flag variety and use

the theory of §20 to obtain Theorem 16.1.2, we deduce Theorem 16.1.1 as a corollary. We also prove

the classical p-adic BGG decompositions of Theorem 16.1.4.

Finally, in Chapter 23, we define the sheaves of overconvergent automorphic forms C(M†
w,dR

).

Then, we use the machinery of §20 to study the derived �-isotypic part of the locally analytic com-

pleted cohomology for the action of b, in terms of the derived �-isotypic part of the sheaf O la
Sh

. This

last is studied in terms of eD-modules over F`, with eD the sheaf of universal twisted differential

operators. By studying the derived �-isotypic part of these eD-modules in the overconvergent neigh-

bourhoods Cw(✏) of Cw, we deduce Theorem 16.1.6.
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17. Locally analytic representations of

p-adic Lie groups

The main objective of this chapter is to introduce the tools in non-archimedean functional analysis

and representation theory that will be used in the rest of the document. Our approach to these subjects

“lives” in between two worlds: the classical one, as in [Sch02] or [Eme17], and the recently developed

condensed mathematical world of Clausen and Scholze [CS], cf. Appendix A of [Bos21]. In fact, we

will be only interested in classical topological spaces (i.e. Banach, Fréchet, LB and LF spaces),

but the use of condensed mathematics helps us to treat the theory algebraically without topological

issues. The principal reason to use condensed mathematics in this work is to apply the theory of

solid locally analytic representations of Joaquı́n Rodrigues Jacinto and the author [RJRC21]. More

precisely, we need the notion of derived locally analytic vectors, whose “underlying set” was already

studied in [Pan20]. We also need some comparison results for group cohomology in the solid setting,

generalizing previous work of Lazard [Laz65], Schneider-Teitelbaum [ST02,ST03], Tamme [Tam15],

et al. Moreover, the condensed framework allows us to work in a derived category, which will be

necessary for the correct statement of the theorems.

From now on we fix p a prime number, we let Qp be the field of p-adic numbers and let C = Cp be

the p-adic completion of an algebraic closure of Qp.

17.1. Classical definitions

Let K be a non-archimedean extension of Qp, i.e., a field extension endowed with a multiplicative

valuation | · | : K ! R�0 extending the p-adic valuation of Qp, for which K is complete. The classical

approach to the theory of non-archimedean functional analysis is via locally convex vector spaces

over K, see for example [Sch02]. Throughout this section we will be only interested in the subclass of

LF spaces, which contains all Banach and Fréchet spaces, and all the countable filtered colimits (with

injective transition maps) between them, cf. [Eme17]. We wont be concern in topological questions

like cokernels of maps of these objects since condensed mathematics ( [Sch19], [CS]) already solves

this problem.

One of the main purposes of this section is to recall how to work formally with LF spaces, in

particular, how the continuous homomorphisms are defined, and how to compute the completed tensor

product of two LF spaces. The second main goal is to define locally analytic representations and the

analytic distribution algebras, we will follow [RJRC21, §3 and 4] for the notations.

17.1.1. Non-archimedean functional analysis

Definition 17.1.1. 1. A Banach space is a topological K-vector space V such that there exists

an open OK-submodule V0 ⇢ V endowed with the p-adic topology, which is complete and

separated. We say that V0 is a lattice of V .

2. A Fréchet space is a topological K-vector space which can be written as a (topological) count-

able cofiltered limit of Banach spaces.

148



17. Locally analytic representations of p-adic Lie groups

3. Given V and V 0 two Fréchet spaces over K, we denote by HomK(V,V 0) the space of continuous

maps from V to V 0

In nature, one often encounters locally convex vector spaces which are written in terms of Banach

and Fréchet spaces. The next definition provides a formal way to work with those arising as countable

colimits:

Definition 17.1.2. 1. Let f : V ! W be a map between Banach spaces. We say that f is compact

if for some lattices V0 ⇢ V and W0 ⇢ W such that f (V0) ⇢ W0, and for all n � 0, the image of

V0 in W0/pn is isomorphic to a finite OK/p
n-module1.

2. An LB space is a countable filtered system {Vn}n2N of Banach spaces with injective transition

maps. By an abuse of notation we write V = lim
��!n

Vn for the LB-space.

3. An LF space is a countable filtrered system {Fn}n2N of Fréchet spaces with injective transition

maps. By an abuse of notation we write F = lim
��!n

Fn for the LF space.

4. Let F = lim
��!n

Fn and F0 = lim
��!m

F0m be LF spaces. We define the set of continuous homomor-

phisms from F to F0 to be

HomK(F, F0) := lim
 ��

n

lim
��!

m

HomK(Fn, Fm).

Remark 17.1.3. Notice that a Banach space is a Fréchet space, and that an LB space is an LF space.

The definition of LF spaces and the HomK set above is justified by [Sch02, Cor. 8.9] and [RJRC21,

Lem. 3.25].

Definition 17.1.4. 1. A Fréchet space V is called of compact type (or a compact Fréchet space) if

it is written as cofiltered limit of Banach spaces with compact transition maps.

2. An LB space is of compact type (or a compact LB space) if it is written as a filtered colimit of

Banach spaces by compact transition maps.

Remark 17.1.5. In the classical literature, a compact Fréchet space is called a nuclear Fréchet space.

We have changed this nomination due to the fact that Fréchet spaces are always nuclear in the sense

of solid K-vector spaces, see [Bos21, Cor. A.22].

Definition 17.1.6. 1. Let V and W be Banach spaces with lattices V0 and W0 respectively. We

define the projective tensor product of Banach spaces as

Vb⌦KW = lim
 ��

n

((V0 ⌦OK
W0)/pn)[

1

p
].

2. Let V = lim
 ��n

Vn and W = lim
 ��m

Wm be Fréchet spaces. Their projective tensor product is the

Fréchet space

Vb⌦KW = lim
 ��
n,m

Vnb⌦KWm.

3. Finally, let F = lim
��!n

Fn and F0 = lim
��!m

F0m be LF spaces, we define their tensor product as

Fb⌦KF0 := lim
��!
n,m

Fnb⌦KF0m.

Remark 17.1.7. It is important to highlight that the projective tensor product of Fréchet spaces matches

with the solid tensor product, see [Bos21, Prop. A.25].

1This is not the usual definition of compactness found in the literature, e.g. [Sch02, §12], but it is equivalent if K is a

finite extension of Qp.
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17.1.2. A quick review on compact p-adic Lie groups

Let G be a compact p-adic Lie group and g = Lie G its Lie algebra. Let C(G,Zp) be the space

of continuous functions of G with values in Zp endowed with the p-adic topology. Let Zp[[G]] =

HomZp
(C(G,Zp),Zp) be the algebra of continuous distributions of G endowed with the weak topology.

In other words, Zp[[G]] is the Iwasawa algebra of G over Zp.

In order to define locally analytic functions on G we need to fix some coordinates locally around

the identity. By [DdSMS99, Cor. 8.34], there exists a compact open subgroup G0 ⇢ G which is a

uniform pro-p-group. By a theorem of Lazard [Laz65, Prop. III. 3.1.3], the group G0 admits a discrete

valuation with rational values w : G0 ! Q>0, and a basis g1, . . . , gd 2 G0 with d = dim G inducing an

homeomorphism

� : Zd
p ! G0, (x1, . . . , xd) 7! g

x1

1
· · · g

xd

d
, (17.1.1)

such that the pullback by � of the multiplication law (g, h) 7! gh�1 in G0 is given by power series with

coefficients in Zp:

��1(�(x1, . . . , xd)�(y1, . . . yd)�1) = (F1(x, y), . . . , Fd(x, y)) with Fi(X,Y) 2 ZphX,Yi. (17.1.2)

Furthermore, after shrinking G0 if necessary, we can assume that w(gi) = r > 1 for all i = 1, . . . , d.

From now on let us fix a uniform open normal subgroup G0 of G, and a chart � : Zd
p ! G0 as in

(17.1.1). The chart � defines an affinoid group whose Qp-points are equal to G0:

Definition 17.1.8. Let G0 be the affinoid group whose underlying adic space is a polydisc Dd
Qp
=

Spa(QphT1, . . . ,Tdi,ZphT1, . . . ,Tdi), and whose multiplicative law (g, h) 7! gh�1 is provided by the

map

Θ : O(G0)! O(G0 ⇥ G0) (17.1.3)

defined by the power series Fi of (17.1.2).

By taking smaller radius in G0, one can defines a family of affinoid groups which encodes the

infinitesimal p-adic Lie group structure of G0.

Lemma 17.1.9. Let h > 0 be rational, and let G0,h be the affinoid subspace of G0 given by

G0,h = G0h
T1

ph
, . . . ,

Td

ph
i.

Then G0,h is a normal subgroup of G0.

Proof. To prove that G0,h is a subgroup, it is enough to show that the map Θ of (17.1.3) sends Ti/p
h

to O+(G0,h ⇥ G0,h). But the power series Fi does not have constant term, therefore Θ(Ti/p
h) = Fi/p

h

is an element in O+(G0,h ⇥ G0,h). The fact that G0,h is a normal subgroup of G0 is shown in a similar

way considering the morphism G0 ⇥ G0 ! G0 given by conjugation: (g, h) 7! ghg�1. ⇤

Definition 17.1.10. Let h � 0 be rational, we define the following rigid analytic neighbourhoods of

G and their spaces of functions:

1. The affinoid group G(h) = GG0,(h), which is a finite disjoint union of polydiscs of radius p�h. We

let

C(G(h),K) = O(G(h))b⌦Qp
K

be the space of rigid analytic functions of G(h) over K, and

D(G(h),K) = HomQp
(C(G(h),Qp),K)

its weak dual.

We call C(G(h),K) (resp. D(G(h),K)) the space of K-valued G(h)-analytic functions (resp. G(h)-

analytic distributions) of G.
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17. Locally analytic representations of p-adic Lie groups

2. The Stein group G(h+) =
S

h0!h+ G
(h0), which is a disjoint union of open polydiscs of radius p�h.

We let

C(G(h+),K) := lim
 ��

h0!h+

C(G(h0),K)

be the space of rigid analytic functions of G(h+), which is naturally a compact Fréchet space. We

also let

D(G(h+),K) = lim
��!

h0!h+

D(G(h+),K)

be the dual of C(G(h+),K), which is an LB space of compact type, see [ST02, Cor. 1.4]

and [RJRC21, Theo. 3.30] for the duality between compact Fréchet spaces and LB spaces

of compact type.

We call C(G(h+),K) (resp. D(G(h+),K)) the space of K-valued G(h+)-analytic functions (resp.

G(h+)-analytic distributions) of G.

3. We define the space of K-valued locally analytic functions of G as the LB space of compact

type

Cla(G,K) := lim
��!
h!1

C(G(h),K) = lim
��!
h!1

C(G(h+),K).

Dually, we define the space of K-valued locally analytic distributions of G as the compact

Fréchet space

Dla(G,K) = lim
 ��
h!1

D(G(h),K) = lim
 ��
h!1

D(G(h+),K).

Remark 17.1.11. The rigid analytic groups G(h) and G(h+) depend on the uniform pro-p-group G0 ⇢ G

and the chart �. The same is true for their spaces of analytic functions and distributions. Nonetheless,

the (co)filtered systems of analytic functions and distributions as h ! 1 are independent of those

choices.

The previous algebras of distributions are adapted to the rigid analytic neigbbourhoods of G.

However, only the family D(G(h+),K) is well adapted to the study of locally analytic vectors of G-

representations. The only “difficulty” with these distribution algebras appears if one wants to stay in

the category of LF spaces. In fact, the G(h+)-analytic vectors of LF representations are inverse limits

of LF spaces, which in turn have a perfect sense as solid K-vector spaces, but that are no easy to track

as topological K-vector spaces. A way to avoid this, and keep working with LF representations, is to

use a different class of distributions algebras adapted to the chart �.

Let � : Zd
p ! G0 be a chart defined by a basis g1, . . . , gd. Let bi = gi � 1 2 Zp[[G]] be elements in

the Iwasawa algebra. For ↵ = (↵1, . . . ,↵d) 2 Nd we denote b↵ := b
↵1

1
· · · b

↵d

d
.

Proposition 17.1.12 ( [ST03, §4]). We have an isomorphism of profinite Zp-modules

Zp[[G0]] =
Y

↵2Nd

Zpb↵.

Definition 17.1.13. Let h > 0. We define the space of distributionsD(h)(G0,Zp) as

D(h)(G0,Zp) = {
X

↵

a↵b↵ 2
Y

↵2Nd

Qpb↵ : sup
↵2N

{|a↵|p
�

p�h

p�1 |↵|} < 1}.

Remark 17.1.14. Let b(h) =
p�h

p�1
. If K is a finite extension of Qp and b(h) is a valuation in K, then one

has

D(h)(G0,Zp) ⌦Zp
OK =

Y

↵2Nd

OK

b↵

pb(h)|↵|
.
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This implies that, if b(h) 2 Q, thenD(h)(G0,Zp) is a profinite Zp-module. Furthermore, by Proposition

4.2 of [ST03] the space D(h)(G0,Zp) is a profinite algebra admitting Zp[[G0]] as a dense subalgebra.

We setD(h)(G0,Qp) := D(h)(G0,Zp)[ 1
p
] endowed with the weak topology.

From now on we will assume that b(h) is rational whenever we work with the algebraD(h)(G0,Qp).

Definition 17.1.15. 1. Let h > 0, we define the distribution algebras

D(G(h),Qp) := Zp[[G]] ⌦Zp[[G0]] D(h)(G0,Qp)

D(G(h),Zp) := Zp[[G]] ⌦Zp[[G0]] D(h)(G0,Zp).

We let C(G(h),Qp) denote the dual ofD(G(h),Qp) seen as a Banach space over Qp.

2. Let K be a non archimedean extension of Qp. We define the distribution algebra

D(G(h),OK) = lim
 ��

n

(OK/p
n ⌦Z/pnZ D(G(h),Zp)/pn)

D(G(h),K) = D(G(h),OK)[
1

p
],

where we see D(G(h),Zp)/pn as a profinite Zp-module and OK/p
n ⌦Z/pnZ D(G(h),Zp)/pn as an

Ind-profinite Zp-module. We let C(G(h),K) denote the strong dual ofD(G(h),K).

3. We define the Iwasawa algebra over OK (resp. K) to be

OK[[G]] := lim
 ��

n

OK/p
n ⌦Z/pnZ Zp[[G]]

K[[G]] := OK[[G]]
1

p
.

Remark 17.1.16. 1. The symbol G(h) for the previous distributions algebras is purely notational;

there is not an underlying rigid analytic group whose distribution algebra is equal toD(G(h),K).

By an abuse of notation, we call C(G(h),K) the space of “analytic functions of G(h)”.

2. The definition of D(G(h),K) is made in such a way that matches with the solid tensor product

D(h)(G,Qp) ⌦Qp,⌅
K. Furthermore, the K-Banach space C(G(h),K) is equal to the projective

tensor product C(G(h),Qp)b⌦Qp
K. Similarly for the definition of the Iwasawa algebra over K.

The relation between the previous three families of distribution algebras is described in the follow-

ing proposition

Proposition 17.1.17 ( [RJRC21, Cor. 4.18]). Let h > 0. We have a natural isomorphism of LB spaces

of compact type

D(G(h+),K) = lim
��!

h0!h+

D(G(h0),K) = lim
��!

h0!h+

D(G(h0),K).

Finally, let us recall the notion of a continuous G-representation in LF spaces. Again, the reader

can check that it matches with the notion of a solid action of G on an LF space, or with the classical

notion of continuous representation of [Eme17], cf. [RJRC21, Lem. 4.19].

Definition 17.1.18. 1. A continuous Fréchet representation of G is a Fréchet space V endowed

with a continuous K-linear action

G ⇥ V ! V.

2. A continuous LF representation of G is an LF space F endowed with a K-linear action of G

such that there is a presentation of LF space F = lim
��!

Fn, where Fn is a continuous Fréchet

representation of G.

3. A morphism of continuous LF representations of G is a G-equivariant continuous map of LF

spaces.
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17.1.3. Classical locally analytic representations

Next, we recall the definition notion of analytic representations on LF spaces, cf. [Eme17]. First, we

introduce some spaces of analytic functions:

Definition 17.1.19. Let F be an LF space.

1. The space of continuous functions of G with values in F is the LF space

C(G, F) := C(G,K)b⌦KF.

2. Let h > 0 and G(h) denote the h-affinoid neighbourhood of G. The space of G(h)-analytic

functions with values in F is the LF space

C(G(h), F) := C(G(h),K)b⌦KF.

3. Let h > 0 and G(h+) the h-Stein analytic neighbourhood of G. The space of G(h+)-analytic

functions with values in F is the Proj-LF space

C(G(h+), F) := lim
 ��

h0!h0

C(G(h0), F).

Notice that if V is a Féchet G-representation then C(G(h+),V) is a Fréchet space as well.

4. Let h > 0, the space of G(h)-analytic functions with values in F is the LF space

C(G(h), F) := C(G(h),K)b⌦KF.

Lemma 17.1.20 ( [RJRC21, Prop. 4.21 and 4.26]). Let F be an LF representation of G and C(F) a

space of functions of the Definition 17.1.19. Then C(F) is endowed with a natural action of G⇥G⇥G

given by

(g1, g2, g3) · �(h) = g3 · �(g�1
1 hg2).

Remark 17.1.21. The Definition 17.1.19 is motivated by the the duality between the distributions and

the spaces of functions. In fact, ifD denotes the Iwasawa algebra, or any of the analytic distributions

defined above, the spaces of functions C(F) of the previous definition coincide with the underlying

topological space of the internal Hom in solid K-vector spaces:

C(F) = Hom
K

(D, F)(⇤).

Notation 1. Let F be a representation of Gn =

n-timesz        }|        {
G ⇥ · · · ⇥G. Let I ⇢ {1, . . . , n} be a subset, we denote

by F?I
the representation G given by restricting F to the I-diagonal embedding of G. If I = ; we

denote by F0 = F; the space F endowed with the trivial action of G. In the situation of Lemma

17.1.20, we call ?1 and ?2 the left and right regular action respectively.

Definition 17.1.22. Let F be a continuous LF representation of G.

1. Let G denote G(h), G(h+) or G(h). We define the G-analytic vectors of F to be the LF space (resp.

Proj-LF space if G = G(h+))

FG�an := (C(G, F)?1,3
)G

endowed with the ?2-action of G.
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2. We define the space of locally analytic vectors of F to be the LF space

F la = lim
��!
h!1

FG
(h)�an = lim

��!
h!1

FG
(h+)

= lim
��!
h!1

FG(h)�an.

In fact, we have that F la = (Cla(G,K)b⌦KF)G
?1,3

.

Lemma 17.1.23. Let F be a continuous LF representation of G. Let G denote G(h), G(h+) or G(h).

There is a natural inclusion

FG�an ! F.

Proof. This follows from the fact that (C(G, F)?1,3
)G = F and that we have continuous inclusions

C(G, F) ⇢ C(G, F), see Proposition 4.26 of [RJRC21] for a more general statement. ⇤

Definition 17.1.24. Let F be an LF representation of G, let h > 0 and let G denote G(h), G(h+) or G(h).

We say that F is G-analytic if the natural map FG�an ! F is an isomorphism of LF spaces. We say

that F is locally anlaytic if the natural map F la ! F is an isomorphism of LF spaces.

17.2. Derived locally analytic representations

The notion of derived locally analytic vectors for Banach representations was firstly considered by

Lue Pan in [Pan20]. In fact, given a Banach representation V of G, Pan studies the cohomology

groups HomG(K,Cla(K,V)?1,3
) in a set-theoretical level (i.e. without topology). In the joint work with

Joaquı́n Rodrigues Jacinto [RJRC21], we develop this idea in the condensed framework obtaining a

more conceptual understanding of locally analytic representations in terms of distribution algebras.

The goal of this section is to briefly introduce this notion for LF representations, and to state how the

locally analyticity condition is translated in terms of the distribution algebras defined in §17.1.1. We

shall also define the notion of locally analyticity with respect to the action of the Lie algebra of G.

17.2.1. Locally analytic representations of G

Definition 17.2.1. Let F• be a complex of LF representations of G. Let h > 0 and G denote G(h),

G(h+) or G(h).

1. The derived G-analytic vectors of F• is the complex

F•,RG�an := RHomG(K,C(G, F•)?1,3
)

endowed with the ?2-action of G. We say that F• is derived G-analytic if the natural map

F•,RG�an ! F• is a quasi-isomorphism.

2. The derived locally analytic vectors of F• is the colimit

F•,Rla := lim
��!
h!1

F•,RG
(h)�an = lim

��!
h!1

F•,RG
(h+)�an = lim

��!
h!1

F•,RG(h)�an.

3. We say that F• is derived G-analytic if the natural map F•,RG ! F• is a quasi-isomorphism. We

say that F• is derived locally analytic if F•,Rla ! F• is a quasi-isomorphism.

Remark 17.2.2. IfG = G(h) or G(h), then F•,RG�an is represented by a complex of LF spaces. Indeed, by

a lemma of Lazard and Serre, K admits a finite free resolution as Zp[[G]]-module provided G is small

enough (see [Laz65, Définition 2.2.2.1]). Then, the map F•,RG�an ! F• being a quasi-isomorphism

means that the cone is strictly acyclic (equivalently, acyclic as a solid K-vector space). In the case

of G = G(h+), the complex of derived G(h+)-analytic vectors is no longer represented by LF spaces

in general, so the meaning of F•,RG�an ! F• being a quasi-isomorphism must be considered in the

category of solid K-vector spaces.
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17. Locally analytic representations of p-adic Lie groups

The main result relating the derived analytic vectors and the distribution algebras is the following

theorem

Theorem 17.2.3 ( [RJRC21, Theo. 4.34]). Let h > 0 and G denote G(h), G(h+) or G(h). Let F• be a

complex of LF representations of G. There are natural quasi-isomorphisms of G-representations

F•,RG�an = RHomG(D(G,K), F•), (17.2.1)

where D(G,K) is seen as a G-module via the left multiplication of G. The G module structure of the

RHS is induced by the right multiplication of G on the distributions.

Furthermore, let G denote G(h+) or G(h), then F• is derived G-analytic if and only if F• is a complex

of continuousD(G,K)-modules.

Remark 17.2.4. The previous theorem says, in particular, that if F is a D(G(h),K)-module for some

h > 0, then FRG(h0)�an = F for all h0 � h, i.e. it is derived G(h0)-analytic for all h0 � h.

Example 17.2.5. 1. One of the most important examples is the case of admissible representations.

Suppose that K is a finite extension of Qp. We say that a unitary Banach representation V of

G is admissible if its continuous dual V_ is a finite module over the Iwasawa algebra K[[G]] =

OK[[G]][ 1
p
]. If V is admissible, one has that

VRG(h)�an = RHomG(K,RHomK(D(G(h),K),V)).

But D(G(h),K) is a projective solid K-vector space, this fact and the duality for Banach and

Smith spaces (see. [RJRC21, §3]) imply that

VRG(h)�an = RHomK(D(G(h),K) ⌦L
K[[G]] V_,K).

But the theory of distributions of Schneider-Teitelbaum [ST03] says that the algebraD(G(h),K)

is flat (algebraically) over K[[G]]. Since V_ is a finite K[[G]]-module one gets that

VRG(h)�an = RHomK(D(G(h),K) ⌦L
K[[G]] V_,K) = HomK(D(G(h),K) ⌦K[[G]] V_,K).

In particular, VRG(h)�an = VG(h)�an[0] is concentrated in degree 0. Taking colimits as h ! 1 one

obtains the formula

V la = HomK(Dla(G,K) ⌦K[[G]] V_,K).

2. It is easy to see that taking derived locally analytic vectors is an idempotent functor. Indeed, let

F• be a complex of LF representations of G. Then

(F•,Rla)Rla = lim
��!

h,h0!1

(FRG(h0)�an)RG(h)�an

= lim
��!
h!1

(FRG(h)�an)RG(h)�an

= lim
��!
h!1

FRG(h)�an

= FRla,

where in the first equality we use that taking derived locally analytic vectors commute with col-

imits, and in the third equality we use Theorem 17.2.3 to get that (FRG(h)�an)RG(h)�an = FRG(h)�an.

3. The most basic spaces which only have locally analytic vectors in higher level are K[[G]] and

Dla(G,K). Indeed, one can show that

(K[[G]])Rla = (Dla(G,K))Rla = Cla(G,K) ⌦ �[� dim G],

where � = det Lie(G)_.
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17. Locally analytic representations of p-adic Lie groups

From Theorem 17.2.3 we also obtain the following well known result giving a criterion when a

Banach representation is locally analytic:

Corollary 17.2.6. Let V be a Banach representation of G. Then V is locally analytic if and only if for

any G-stable lattice V0 ⇢ V (eq. for some G-stable lattice) the action of G on V0/p factors through

a finite quotient. Furthermore, if this is the case, V is G(h)-analytic for some h > 0 (eq. G(h+) or

G(h)-analytic for maybe a different h > 0).

Proof. Let V be a locally analytic Banach representation. Then V = V la = lim
��!h

VG
(h)�an as LB spaces.

By [Sch02, Cor. 8.9] we must have V = VG
(h)�an for some h > 0 (cf. [RJRC21, Lem. 3.23]). This

implies that V admits a G closed immersion

V ,! C(G(h),V)?2
= C(G(h),K)?2

b⌦V0.

Then, it is easy to see that G acts through a finite quotient on C(G(h),OK)/p, which implies the

necessary condition.

Conversely, let V0 ⇢ V be any G-stable lattice of V , and let G0 ⇢ G be an open normal subgroup

such that G0 acts trivially on V0/p. Without loss of generality, we can assume that G0 ⇢ G0. By

Theorem 17.2.3, it suffices to show that there is h > 0 such that the action of G0 on V0 extends

naturally to a continuous action of D(h)(G0,Zp). Let g1, . . . , gd 2 G0 be a basis and bi 2 Zp[[G0]] the

topological basis of the Iwasawa algebra. Let f (b) =
P
↵ a↵b↵ 2 D(h)(G0,Zp). By definition we have

sup↵(|a↵|p
�

p�h

p�1 |↵|) < 1. But the condition on V0 implies that ||bi||  p�1 as operators of V0. This shows

that the multiplication of f (b) on V0 is well defined for h big enough, which provides the action of

D(h)(G0,Zp) on V0. ⇤

17.2.2. Locally analytic representations of g

In the applications to the flag variety, we will work with sheaves that are not G-equivariant, but which

admit an equivariant action of the Lie algebra of G. To define properly the locally analytic condition

in this case, we use a variant of the distribution algebras of §17.1.1, which were already considered

by Emerton in [Eme17]. Let g = Lie G and let g0 ⇢ g be a Zp-lattice satisfying [g0, g0] ⇢ pg0. Let

Y1, . . . ,Yd be a Zp-basis of g0. Let U(g) be the enveloping algebra of g. Given ↵ 2 Nd we denote

Y↵ := Y
↵1

1
· · · Y

↵d

d
, by the Poicaré-Birkhoff-Witt theorem one has that

U(g) =
M

↵2Nd

QpY↵.

Definition 17.2.7. Let h > 0 be rational, we define the following distribution algebras

D(gh,Zp) = {
X

↵2Nd

a↵Y↵ : sup
↵

{|a↵|p
h|↵|}  1}

andD(gh,Qp) = D(gh,Zp)[ 1
p
]. We also set

D(gh,K) := lim
 ��

n

(OK/p
n ⌦Z/pnZ D(gh,Zp)/pn)[

1

p
]

Remark 17.2.8. Similarly as for the distribution algebras D(h)(G0,Zp), the algebra D(gh,Zp) is profi-

nite. Indeed, if h is rational and K is a finite extension of Qp having an element ph of p-adic valuation

|ph| = p�h, then we have

D(gh,Zp) ⌦Zp
OK =

Y

↵2Nd

OK ph|↵|Y↵.
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17. Locally analytic representations of p-adic Lie groups

Inspired by Theorem 17.2.3 we make the following definition:

Definition 17.2.9. Let F• be an LF complex of g-modules.

1. The derived gh-analytic vectors of F• is the complex

F•,Rgh�an := RHomg(D(gh,K), F•).

We say that F• is derived gh-analytic if the natural map F•Rgh�an ! F• is a quasi-isomorphism.

2. The derived locally analytic vectors of F• is the complex

F•,Rla := lim
��!
h!1

F•,Rgh�an.

We say that F• is derived locally analytic if the natural map F•,Rla ! F• is a quasi-isomorphism.

The same proof of Theorem 17.2.3 ( [RC21a, Theo. 4.34]) implies the following version with the

Lie algebra.

Theorem 17.2.10. Let F• be an LF complex of g-modules. Then F• is derived gh-analytic if and only

if F• is a complex ofD(gh,K)-modules.

One easily deduces the following analogous of Corollary 17.2.6.

Corollary 17.2.11. Let V be a Banach space endowed with an action of g. Then V is a locally analytic

g-module, even gh analytic for some h > 0.

Finally, let us define the locally analytic distribution algebra of g as the Fréchet-Stein algebra

Dla(g,K) = lim
 ��h!1

D(gh,K). We also denote C(gh,K) := HomK(D(gh,K),K) and Cla(g,K) =

HomK(Dla(g,K),K) = lim
��!h!1

C(gh,K). The space Cla(g,K) is nothing but the space of germs at

the identity of Cla(G,K).

Definition 17.2.12. A G†-representation is a direct system V = lim
��!n

Vn of Gn-modules with equivari-

ant transition maps, where Gn ! 1 as n! 1.

Remark 17.2.13. A g-locally analytic representation is a G†-representation since the gh-analyticity

condition implies that the action of g can be integrated to some neighbourhood G0 ⇢ G of 1.

17.2.3. Cohomological comparison theorems

As an application of Theorem 17.2.3 one has the following comparison results in group cohomology.

Theorem 17.2.14 ( [RJRC21, 5.2]). Let F• be a complex of LF representations of G, then there is a

natural quasi-isomorphism of cohomology complexes

RHomG(K, F•) = RHomG(K, F•,Rla). (17.2.2)

In particular, if F is an LF representation and FRla = F la[0], we have that

RHomG(K, F) = RHomG(K, F la).

Remark 17.2.15. The proof of the theorem also shows an analytic version: let h > 0 and let G denote

G(h+) or G(h), then

RHomG(K, F•) = RHomG(K, F•,RG�an).

In fact, one of the main technical ingredients is the equalityD(G(h),K)⌦L
K[[G]]⌅

D(G(h),K) = D(G(h),K),

where the thensor product is taken in the category of solid K-vector spaces. The previous theorem

follows formally from this, and the description of F•,RG(h)�an in terms ofD(G(h),K).
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17. Locally analytic representations of p-adic Lie groups

Let U(g) be the enveloping algebra of g. Another application of Theorem 17.2.3 is the comparison

of cohomologies for locally analytic representations.

Theorem 17.2.16 ( [RJRC21, Theo. 5.4]). Let G denote G(h+) or Gh and let F• be an LF complex of

derived G-analytic representations. Then there are quasi-isomorphisms of cohomology complexes

RHomG(K, F•) = RHomD(G,K)(K, F
•) = RHomU(g)(K, F

•)G.

In particular, if F is an locally analytic LF representation of G then

RHomG(K, F) = RHomU(g)(g, F)G.

Remark 17.2.17. The invariants RHomU(g)(K, F
•)G are well defined as the Lie algebra cohomology

complex RHomU(g)(K, F
•) lands in the category of smooth K-representations of G. Since K is of

characteristic 0 and G is compact, taking invariants is an exact functor for smooth representations.

Another key ingredient in the proof of the previous theorem is the flatness of the distribution alge-

brasD(G(h),K) over the Iwasawa algebra, and the flatness ofD(gh,K) over (g). In fact, we only need

to know that tensoring with the distribution algebras preserves the trivial representation. We have the

following version of the previous theorems for the enveloping algebra:

Theorem 17.2.18. Let F• be an LF module over U(g). Then

RHomU(g)(K, F
•) = RHomU(g)(K, F

•,Rla) = RHomD(gh,K)(K, F
•,Rgh�an).

17.3. Locally analytic sheaves over rigid spaces

In this section we define a notion of LF sheaf over adic space. We impose some quasi-coherent

conditions for the sheaves to be acyclic on affinoid spaces. Then, we give an ad-hoc definition of a

locally analytic equivariant action of a p-adic Lie group G on LF sheaves.

17.3.1. LF sheaves over adic spaces

Definition 17.3.1. Let X be a adic space over Spa(K,OK).

1. An LF sheaf of OX,an-modules is a topological OX,an-sheaf F such that there exists a basis B of

Xan by quasi-compact open subspaces such that F (U) is an LF space for all U 2 B.

2. An LF sheaf F of OX,an-modules is said quasi-coherent if there exists an open cover {Ui}i2I

of Xan by affinoids, such that for all i 2 I and V ⇢ Ui an open affinoid we have F (V) =

F (U)b⌦OX,an(U)OX,an(V).

3. A quasi-coherent Banach sheaf F of OX,an-modules is called locally projective if there is a

covering {Ui}i2I of Xan by affinoids as in (2) satisfying the following condition: F (Ui) is a

projective Banach OX,an(Ui)-module, i.e., a direct sumand of an ON OX,an(Ui)-module.

4. A quasi-coherent Fréchet sheaf F on X is said squarable if there exists an open cover {Ui}i2I

of Xan by affinoids as in (2) satisfying the following condition: F (Ui) = lim
 ��n

Bi,n with dense

transition maps, where the Bi,n are projective Banach OX,an(Ui)-modules. We say that the cover

{Ui}i2I squares F and that F is squared on Ui.

Lemma 17.3.2. Let F be a quasi-coherent Fréchet sheaf over X and let U ⇢ X be an open affinoid

such that F is squared on U. Then RΓan(U,F ) = F (U).
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17. Locally analytic representations of p-adic Lie groups

Proof. Let F (U) = lim
 ��n

Bn be a presentation of F (U) as an inverse limit of projective Banach

OX,an(U)-modules with dense transition maps. Let Bn be the sheaf over U mapping V ⇢ U to

Bn(V) := Bnb⌦OX,an(U)OX,an(V). Then Bn is a locally projective Banach sheaf over U. Formally one

gets that

RΓan(U,F ) = R lim
 ��

n

RΓan(U,Bn).

Thus, by topological Mittag-Leffler [SGA70, Remarque 13.2.4], it is enough to show that RΓan(U,Bn) =

RΓan(U,Bn) = Bn. But Bn is a direct summand of an orthonormalizable Banach OX,an(U)-module.

Hence it suffices to show that

RΓan(U,
dM

i2I
OX,an) =

dM
i2I

OX,an(U)

which follows from Tate’s acycliclity theorem. ⇤

17.3.2. Locally analytic sheaves over adic spaces

Definition 17.3.3 ( [Sch18, Def. 2.1]). Let X be an adic space and G a profinite group. An action

of G on X is said to be continuous if for any open affinoid U = Spa(A, A+) ⇢ X there exists an open

subgroup G0 ⇢ G stabilizing U such that the action morphism G0 ⇥ A! A is continuous.

Lemma 17.3.4. Let X be a locally noetherian adic space over Spa(K,OK) endowed with a continuous

action of G. Let U = Spa(A, A+) ⇢ X be an open affinoid and GU the stabilizer of U in G. Then the

action of GU on A is locally analytic.

Proof. Let A0 ⇢ A+ be a ring of definition. As X is locally noetherian over Spa(K,OK), we can

assume that A0 is topologically finitely generated over OK by f1, . . . , fs 2 A+. Moreover, without loss

of generality we can assume that GU acts on A0. By Corollary 17.2.6, it is enough to show that GU

acts through a finite quotient on A0/p. But A0/p is a finitely generated algebra over OK/p, generated

by f1, . . . , fs mod p. As the action of GU on A0/p is continuous, we know that there exists an open

subgroup G0 ⇢ GU fixing f1, . . . , fs mod p. This proves the lemma. ⇤

Let X be a locally noetherian adic space over Spa(K,OK) endowed with a continous action of G.

By Lemma 17.3.4, the action of G on the structural sheaf of X is locally analytic after taking sections

in open quasi-compact subspaces of X. This leads to the following definition:

Definition 17.3.5. Let F be a G-equivariant LF sheaf over Xan. We say that F is locally analytic if

for any quasi-compact open subset U ⇢ X the LF space F (U) is a locally analytic GU-representation.

Remark 17.3.6. Notice that for a general LF sheaf over X one needs to check the locally analyticity

condition in a base for the analytic topology. If in addition F is quasi-coherent, the locally analyticity

only needs to be checked on an affinoid covering as in Definition 17.3.1 (2).

Definition 17.3.7. Let g = Lie G.

1. A g-equivariant LF sheaf over Xan is an LF sheaf of OX,an-modules endowed with an infinitesi-

mal action of g such that for any f 2 OX,an, v 2 F and Y 2 g, one has

Y · ( f v) = (Y · f )v + f (Y · f ).

2. A g-equivariant sheaf F over Xan is said locally analytic if there exists a basis of affinoid

neighbourhoods {Ui}i2I of X such that F (Ui) is a locally analytic g-module for all i, in the sense

of Definition 17.2.9.
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17. Locally analytic representations of p-adic Lie groups

Let X be a locally noetherian fs log adic space over Spa(K,OK), see [DLLZ19] for the definition of

a log adic space and the (pro-)Kummer-étale site. Let G be a compact p-adic Lie group and eX ! X a

G-pro-Kummer-étale torsor. For a closed subgroup H ⇢ G the quotient eX/H is a profinite-Kummer-

étale covering of X, if H is open it is actually finite Kummer-étale over X. For a log adic space Y we let

Ykét,qcqs denote the site of qcqs Kummer-étale adic spaces over Y . By construction ( [DLLZ19, §5.1])

one has

(eX/H)két,qcqs = 2- lim
 ��
H⇢G0

(eX/G0)két,qcqs, (17.3.1)

where G0 runs over all the compact open subgroups of G containing H. In particular, an object

U 2 (eX)két,qcqs has a G0-equivariant action over eX for some compact open subgroup G0 ⇢ G. We will

need the following definition later on:

Definition 17.3.8. Let bOX denote the completed structural sheaf over Xprokét.

1. The completed sheaf bOeX,két is by definition the restriction of bOX to eXket. The sheaf of locally

analytic sections of bOeX,két is the sheaf sending U 2 eXkét,qcqs to

O la
eX,két

(U) = bOX(U)GU�la

where GU ⇢ G0 is an open compact subgroup acting on U. We will denote by O la
eX the restriction

of O la
eX,két

to the analytic site of eX.

2. We let O sm
eX,két
⇢ eOeX,két denote the subsheaf of smooth section in qcqs open subsets. Let O sm

eX be

the restriction of O sm
eX,két

to eXan, equivalently, O sm
eX = lim

��!G0⇢G
OeX/G0,an where G0 runs over all the

open subgroups of G.

3. An LF sheaf over eXkét is a topological sheaf over eXkét such that for all U 2 eXkét,qcqs the space

F (U) is an LF space. We say that F is G† equivariant if there exists a basis B of objects in
eXkét,qcqs such that for all U 2 B, the sheaf F |U can be written as a colimit of Gn-equivariant LF

sheaves F |U = lim
��!n

Fn over U, where G† = {Gn}n2N is a decreasing basis of open compact sub-

groups of G stabilizing U. We refer to the equivariant action of the decreasing open subgroups

{Gn} as the G†-action.

4. A G†-equivariant LF sheaf is said locally analytic if for any U 2 eXkét the action of G† on F (U)

is locally analytic.

Remark 17.3.9. By (17.3.1), the equivariant action over an object U 2 eXkét is only well defined

infinitesimally closed to 1. Namely, if G1 and G2 are two compact open subgroups of G action

equivariantly on U, then there exists G3 ⇢ G1 \ G3 compact open such that the action of G1 and G2

agree on G3. Therefore, only the action of G† is well defined in objects of eXkét,qcqs, in other words,

there is not a well defined stabilizer GU . In particular, as the locally analyticity condition only depends

on G†, parts (1) and (3) of the previous definition make sense.
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18. Cohomology of a filtered space

In this chapter we recall the notions of cohomology with compact and closed supports of a topological

space. Then, given a topological space filtered by finitely many open subsets, we attach two spectral

sequences which heuristically are dual in their construction. The results presented here are technical,

and will be used in the construction of the BGG maps of §23. As a better reference we send to [Sta20,

Tag 01DW].

18.1. Cohomology with closed and compact supports

Let X be a topological space, ◆ : Z ⇢ X a closed subspace and j : U = X\Z ⇢ X. For a topological

space Y , let AbY denote the category of abelian sheaves over Y , and D(AbY) its derived category. We

denote by Ab = Ab⇤ the category of abelian groups. The inclusions ◆ : Z ⇢ X and j : U ⇢ X induce

pairs of adjoint functors

◆�1 : D(AbX)� D(AbZ) : ◆⇤, j�1 : D(AbX)� D(AbU) : R j⇤

called the restriction and the (derived) pushforward respectively. Moreover, the functor ◆⇤ (resp. the

functor j�1) has a right adjoint (resp. a left adjoint)

◆⇤ : D(AbZ)� D(AbX) : R◆!, j! : D(AbU)� D(AbX) : j�1,

where R◆! is the derived sections with supports at Z (resp. j! is the extension by zero). The definition

of j! is standard, let us explain how R◆! is constructed. Consider the functor of “sections with closed

supports in Z”

ΓZ(X,�) : AbX Ab

F ΓZ(X,F ) := {s 2 F (X) : supp(s) ⇢ Z},

where supp(s) is the support of the section s. One defines the functor of “sections with support in Z”

to be the functor ◆! : AbX ! AbZ sending a sheaf F to

V ⇢ Z 7! ◆!F (V) = ΓV(U,F ),

for U ⇢ X any open subset such that U \ Z = V . The functor R◆! is then the right derived functor of

◆!. It is not hard to see that given an object M 2 D(AbX) we have fundamental exact triangles

j! j�1M ! M ! ◆⇤◆
�1M

+
�!

◆⇤R◆
!M ! M ! R j⇤ j�1M

+
�! .

Definition 18.1.1. Let X be a topological space and ◆C : C ⇢ X a locally closed subspace. Let

j : U ⇢ X be an open subset such that k : C ⇢ U is closed. The lower and upper shriek functors are

given by

◆! = j! � k⇤ : D(AbC)! D(AbX), R◆! = Rk! � j�1 : D(AbX)! D(AbZ).

In this situation we have pairs of adjoint functors

◆�1
C : D(AbX)� D(AbC) : R◆C,⇤, ◆C,! : D(AbC)� D(AbX) : R◆!C.
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18. Cohomology of a filtered space

We can now define the cohomology with compact and closed supports in a locally closed subspace

C of X.

Definition 18.1.2. Let X be a topological space and ◆C : C ⇢ X a locally closed subspace. Let

M 2 D(AbX).

1. We define the cohomology of M with compact supports on C to be the complex

RΓc,C(X,M) := RΓ(X, ◆C,!◆
�1
C M).

2. We define the cohomology of M with closed supports on C to be the complex

RΓC(X,M) := RΓ(X,R◆C,⇤R◆
!
C M).

We also write Hi
c,C

(X,�) = Hi(RΓc,C(X,�)) and Hi
C

(X,�) = Hi(RΓC(X,�)) for i 2 Z.

The cohomologies with compact and closed supports satisfy the following properties:

Proposition 18.1.3. Let X be a topological space and ◆C : C ⇢ X a locally closed subspace. The

following hold

1. Let Y ⇢ X be a locally closed subspace containing an open neighbourhood of C in X. Then

RΓC(X,�) = RΓC(Y,�). Similarly, if Y contains C then RΓc,C(X,�) = RΓc,C(Y,�).

2. Let C = C1

F
C2 be a disjoint union of locally closed subsets of X such that there exists an open

U ⇢ X containing both C1 and C2 as closed subspaces. We have

RΓc,C(X,�) = RΓc,C1
(X,�) � RΓc,C2

(X,�)

RΓC(X,�) = RΓC1
(X,�) � RΓC2

(X,�).

3. Let C0 ⇢ C ⇢ X be another locally closed subspace. If C0 ⇢ C is closed we have functorial

restriction/correstriction maps

RΓc,C(X,�)! RΓc,C0(X,�)

RΓC0(X,�)! RΓC(X,�).

If C0 ⇢ C is open we have functorial correstriction/restriction maps

RΓc,C0(X,�)! RΓc,C(X,�)

RΓC(X,�)! RΓC0(X,�).

Proof. In the following we write In(V,W) : V ⇢ W for the inclusion map.

1. Let F 2 AbX, if Y contains a neighbourhood of C, we can write C ⇢ U ⇢ Y with U an open

subspace of X. Then

RIn(C, X)⇤RIn(C, X)! = RIn(U, X)⇤RIn(C,U)⇤RIn(C,U)!In(U, X)�1.

RIn(C,Y)⇤RIn(C,Y)! = RIn(U,Y)⇤RIn(C,U)⇤RIn(C,U)!In(U,Y)�1.

Taking cohomology one gets

RΓC(X,F ) = RΓC(U,F |U) = RΓC(Y,F |Y).

Similarly, if Y contains C, one has

In(C, X)!In(C, X)�1 = In(C, X)⇤In(C,C)!In(C, X)�1

In(C,Y)!In(C,Y)�1 = In(C,Y)⇤In(C,C)!In(C,Y)�1

Taking cohomology we find

RΓc,C(X,F ) = RΓc,C(C,F |C) = RΓc,C(Y,F |Y).
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2. The inclusions In(Ci,U) (with i = 1, 2) and In(C,U) are closed immersions. Thus

In(C, X)!In(C, X)�1 = In(U, X)!In(C1,U)!In(C1, X)�1 � In(U, X)!In(C2,U)!In(C2, X)�1

RIn(C, X)⇤RIn(C, X)! = RIn(C1, X)⇤RIn(C1,U)!In(U, X)�1 � RIn(C2, X)⇤RIn(C2,U)!In(U, X)�1,

taking cohomology one gets (2).

3. Let us first suppose that In(C0,C) is a closed immersion. Then In(C0,C)! = In(C0,C)⇤ =

RIn(C0,C)⇤, and given F 2 AbX we have a natural maps

Res : In(C, X)�1F ! In(C0,C)⇤In(C0, X)�1F

Cor : In(C0,C)⇤RIn(C0, X)!F ! RIn(C, X)!F .

Composing with In(C, X)! and RIn(C, X)⇤ respectively, one obtains maps

Res : In(C, X)!In(C, X)�1F ! In(C0, X)!In(C0, X)�1F

Cor : RIn(C0, X)⇤RIn(C0, X)!F ! RIn(C, X)⇤RIn(C, X)!F .

Taking cohomology one obtains the restriction/correstriction maps. The case when C0 ⇢ C is

open is similar.

⇤

We will need the following lemma which says that the cohomologies defined above can be approx-

imated by “smaller cohomologies” under certain overconvergent hypothesis.

Lemma 18.1.4. Let X be a spectral space and C ⇢ X a locally closed subspace. Suppose that the

following hypothesis hold

1. There exists a family {U↵}↵2Q�0
of decreasing open neighbourhoods of C such that

(a) C =
T

↵>0 U↵ and C is closed in all U↵.

(b) For all ↵ > 0 we have U↵ \ U0 =
T

↵0<↵ U↵.

2. There exists an increasing covering by qcqs open subspaces U0 =
S

�2Q�0
U0
� satisfying:

(a) The intersection U↵
� = U↵ \ U0

� is qcqs for all ↵, � � 0.

(b) The intersections C� := C \ U↵
� are qcqs subspaces of C.

(c) For all ↵, � > 0 we have U↵
� =

T
↵0<↵
�0>�

U↵0

�0 .

Given ↵, � > 0 let us denote U↵
�� =

S
�0<� U↵

�0 and U↵+

� =
S

↵0>↵ U↵0

� . Then, given a sheaf F on U0,

there are natural quasi-isomorphisms

RΓc,C(X,F ) = lim
��!
↵,�!1

RΓc,U↵
��

(U↵
�+1,F )

RΓC(X,F ) = R lim
 ��
↵,�!1

RΓ
U↵+1+

� \U↵
�

(U↵
� ,F ).

Proof. As notation, let us write In(Z,Y) : Z ⇢ Y for the inclusion maps. By conditions 2.(b) and 2.(c)

we have

C =
[

�!1

C� =
[

�!1

C�.
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This implies that

lim
��!
�!1

In(C�, X)!In(C�, X)�1 ⇠
�! In(C, X)!In(C, X)�1

RIn(C, X)⇤RIn(C, X)! ⇠�! R lim
 ��
�!1

RIn(C�, X)⇤RIn(C�, X)!

where the maps are the correstriction and restriction maps respectively. Indeed, as C� ⇢ C�0 is open

for �0 > �, these maps exist. Then, it suffices to check the equality after evaluating at a sheaf and

for the non-derived functors, in such a case one can just go to the stalks and prove that the arrows

above are isomorphisms. As X is a spectral space, it is qcqs and admits a basis of quasi-compact

objects, this implies that taking global cohomology commutes with filtered colimits. Therefore, taking

cohomology over X one finds

RΓc,C(X,F ) = lim
��!
�!1

RΓc,C�
(U↵,F ) (18.1.1)

RΓC(X,F ) = R lim
 ��
�!1

RΓC�
(U↵,F ) (18.1.2)

for any ↵ � 0.

Next, we are going to approximate RΓc,C�
(U↵,F ) and RΓC�

(U↵,F ) with “smaller cohomologies”,

we split the problem in two cases:

(a) Case of RΓC�
. It is enough to show that there is an isomorphism commuting with the restriction

maps along �

RIn(C�,U
↵)⇤RIn(C�,U

↵)! ! R lim
 ��
↵0!1

RIn(U↵0

� \ U↵
� ,U

↵)⇤RIn(U↵0

� \ U↵
� ,U

↵)!. (18.1.3)

Indeed, taking cohomology over U↵ we would get RΓC�
(U↵,F ) = R lim

 ��↵0!1
RΓ

U↵0

� \U↵
�

(U↵
� ,F ).

Since C� ⇢ U
↵00

� \U↵
� ⇢ U

↵0

� \U↵
� are closed immersions for ↵ < ↵0 < ↵00, we have correstriction

maps

RIn(C�,U
↵)⇤RIn(C�,U

↵)! ! RIn(U↵00

� \ U↵
� ,U

↵)⇤RIn(U↵0

� \ U↵
� ,U

↵)! !

! RIn(U↵0

� \ U↵
� ,U

↵)⇤RIn(U↵0

� \ U↵
� ,U

↵)!,

this induces the map (18.1.3). To show that it is an isomorphism it is enough to do it for the

non-derived functors, and for F a sheaf over U↵
� . But then F applied to the LHS of (18.1.3)

is the subsheaf of F of sections supported in C�, and the RHS applied to F is the subsheaf of

sections supported on
T

↵0(U
↵0

� \ U↵
� ) = C�, proving what we wanted.

(b) Case of RΓc,C�
It is enough to show that there is an isomorphism commuting with the restriction

maps along �

In(C�,U
↵)!In(C�,U

↵)�1 = lim
��!
↵0!1

RIn(U↵0 ,U↵)⇤In(U↵0

� ,U
↵0)!In(U↵0

� ,U
↵)�1. (18.1.4)

Indeed, taking cohomology over U↵ one would get

RΓc,C�
(U↵,F ) = lim

��!
↵0!1

RΓc,U↵0

�
(U↵0 ,F ).
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Since U↵00 \ U↵0

� = U↵00

� for ↵0 < ↵00, one has pullback maps on the RHS of (18.1.4)

In(U↵0

� ,U
↵0)! ! RIn(U↵00 ,U↵0)⇤In(U↵00

� ,U
↵00)!.

As C� ⇢ U↵0

� is closed, we have restriction maps commuting with the direct system

RIn(U↵0 ,U↵)⇤In(U↵0

� ,U
↵0)!In(U↵0

� ,U
↵)�1 ! In(C�,U

↵)!In(C�,U
↵)�1.

This proves the existence of the map (18.1.4). To show that it is an isomorphism one argues as

for C� in (a).

Using the previous computations, (18.1.1) and (18.1.2) we find

RΓc,C(X,F ) = lim
��!
�!1

RΓc,C�
(U↵,F ) = lim

��!
↵,�!1

RΓc,U↵
�
(U↵

�+1,F )

RΓC(X,F ) = R lim
 ��
�!1

R lim
 ��
�!1

RΓC�
(U↵,F ) = R lim

 ��
�,↵!1

RΓ
U↵+1
� \U↵

�

(U↵
� ,F ).

Replacing U↵
� by U↵+

� or U↵
�� when necessary one gets the lemma. ⇤

18.2. Spectral sequences attached to a filtered space

The cohomologies with closed and compact supports appear naturally when one tries to compute

sheaf cohomology of a filtered space. In the following we shall denote by In(V,W) the inclusion map

V ⇢ W.

Definition 18.2.1. Let X be a topological space, and 0 = Ud+1 ⇢ Ud ⇢ · · · ⇢ U1 ⇢ U0 = X a

decreasing filtration consisting of open subspaces. Let us take Zi := X\Ud+1�i for i 2 N so that we

also have a filtration 0 = Zd+1 ⇢ Zd · · · ⇢ Z1 ⇢ Z0 = X consisting of closed subspaces. Let us denote

Ck = Zk\Zk+1 = Ud�k\Ud+1�k.

1. There are natural correstriction morphisms of functors

In(Ud+1, X)!In(Ud+1, X)�1 ! In(Ud, X)!In(Ud, X)�1 ! · · ·! In(U0, X)!In(U0, X)�1

fitting in distinguished triangles

In(Uk+1, X)!In(Uk+1, X)�1 ! In(Uk, X)!In(Uk, X)�1 ! In(Cd�k, X)!In(Cd�k, X)�1 +�! .

In particular, one has a spectral sequence of cohomologies with compact supports

E
p,q

1
= H

p+q

c,Cd�p
(X,�)) Hp+q(X,�).

2. There are natural correstriction morphisms of functors

RIn(Zd+1, X)⇤RIn(Zd+1, X)! ! RIn(Zd, X)⇤RIn(Zd, X)! ! · · ·! RIn(Z0, X)⇤RIn(Z0, X)!

fitting in distinguished triangles

RIn(Zk+1, X)⇤RIn(Zk+1, X)! ! RIn(Zk, X)⇤RIn(Zk, X)! ! RIn(Ck, X)⇤RIn(Ck, X)! +�! .

In particular, one has a spectral sequence of cohomologies with closed supports

E
p,q

1
= H

p+q

Cp
(X,�)) Hp+q(X,�).

165



19. Sen theory

Sen theory has shown to be a powerful tool in the Galois theory of p-adic fields. For example, it is

used to compute Galois cohomology over period rings:

Proposition 19.0.1 ( [Tat67, Prop. 8] ). Let Cp denote the p-adic completion of an algebraic closure

of Qp, and let GQp
denote the absolute Galois group. For i 2 Z we let Cp(i) denote the i-th Tate twist.

Then

Hk(GQp
,Cp(i)) =

8>>>>><>>>>>:

0 if i , 0

Qp if i = 0 and k = 0

Qp log �cyc if i = 0 and k = 1.

In [BC08], Berger-Colmez define an axiomatic framework where Sen theory can be applied. Using

this formalism, different constructions attached to finite dimensional Galois representations become

formally the same: the Sen module (relative to Q
cyc
p ), the overconvergent (',Γ)-module (relative to

eB†(Qcyc
p )), the module Ddiff of differential equations (relative to BdR(Q

cyc
p )). Moreover, using Sen

theory, Berger-Colmez describe in [BC16] the locally analytic vectors of completed Galois extensions

of Qp with group isomorphic to a p-adic Lie group.

The work of Lue Pan [Pan20] is another very important application of this tool. Inspired from

the work of Berger-Colmez, Pan describes the p-adic Simpson correspondance of the GL2(Qp)-

equivariant local systems of the modular curve in terms of the flag variety. Furthermore, using the

strategy of [BC16] of approximating the space of locally analytic functions of (an open compact

subgroup of) GL2(Qp) by finite dimensional subrepresentations, he manages to use the axiomatic

Sen theory to compute the p-adic Simpson correspondance of this “interpolation” of finite rank local

systems.

The main goal of this chapter is to provide a more conceptual understanding of this interpolation

process that occurs in the work of Pan and Berger-Colmez. More precisely, we will prove that the

construction of the Sen module holds not only for finite rank representations of the profinite group Π

(which is GQp
in classical Sen theory), but for a larger class of locally analytic representations (under

some orthonormal assumptions). The theory developed here is not yet in its greater generality, but it

will suffice for the purposes of this paper.

19.1. Colmez-Sen-Tate axioms

Let us introduce the terminology. Let (A, A+) be a uniform affinoid Qp-algebra, given B ⇢ A a closed

subalgebra we denote B+ := B \ A+. Let d � 1 be an integer, Π a profinite group and � : Π ! Zd
p a

surjective continuous character with kernel H. Given Π0 ⇢ Π an open subgroup and H0 := H \Π0 we

define the following objects:

• Let NH0 be the normalizer of H0 in Π.

• Let ΓH0 = NH0/H
0 and CH0 ⇢ ΓH0 its center. By Lemma 3.1.1 of [BC08] the group CH0 is open

in ΓH0 .

• We let n1(H0) 2 N be the smallest integer n such that �(CH0) contains pnZd
p.
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19. Sen theory

• More generally, given an open subgroup C0 ⇢ CH0 such that ker � \ C0 = 1, we denote by

n(C0) 2 N the smallest integer such that pnZd
p ⇢ �(C0).

• Let C0 be as above. Let e1, . . . , ed 2 Z
d
p be the standard basis, for n � n(C0) we let �(n)

1
, . . . , �(n)

d

denote the inverse image of pne1, . . . , p
ned in C0. Thus, if k � 0, we have that �(n+k)

i
= (�(n)

i
)pk

.

We shall write γ(n) = (�(n)

1
, . . . , �(n)

d
) and hγ(n)i ⇢ C0 the generated subgroup.

Let us suppose that Π acts continuously on (A, A+). Notice that the action of Π on A+/ps is smooth

for any s � 1 since this last ring is discrete, we suppose in addition that A+/ps = lim
��!H0⇢H

AH0,+/ps

where H0 runs over all the open subgroups of H. Let I ⇢ Q�0 be a dense additive submonoid contain-

ing N, suppose that there are topologically nilpotent units {$✏}✏2I>0
in AH such that

1. For any x 2 Spa(A, A+) we have |$✏+�|x = |$
✏ |x|$

�|x.

2. Let || · || : A ! R be the norm making A+ the unit ball and $✏A+ the ball of radius p�✏ . Then

|| · || is a submultiplicative non-archimedean norm, i.e. it satisfies

• ||xy||  ||x||||y||.

• ||x + y||  sup{||x||, ||y||}.

3. Π acts by isometries on (A, || · ||). We have ||p||  ||$t|| and ||p�1||  ||$�1/t|| for some t > 0.

Condition (1) implies that the elements $✏ are multiplicative units for the norm || · ||. Moreover, the

ideal of topologically nilpotent elements of A is equal to A++ =
S

✏2I>0
$✏A+. From now on we always

take ✏ 2 I. In the following we consider almost mathematics with respect to the sequence {$✏}✏>0.

Remark 19.1.1. In the main application of the paper the units $✏ will be algebraic numbers over

Qp with p-adic valuation |$|✏ = |p|✏ . We have decided to develop the theory in this slightly more

general situation where $✏ might not be algebraic over Qp, in order to include the framework of

overconvergent (',Γ)-modules, where the elements $✏ arise as Teichmüller lifts [⇡[,✏] of p-power

roots of ⇡ = [✏] � 1 2 Q
cyc,[
p , where ✏ = (⇣pn)n�1 is a compatible sequence of p-power roots of unit,

see [CC98].

Definition 19.1.2 (Colmez-Sen-Tate axioms). We define the following axioms for the triple (A,Π, �).

(CST0) Almost purity. For H1 ⇢ H2 ⇢ H open subgroups, the trace map TrH2/H1
: A+,H1 ! A+,H2 is

almost surjective.

(CST1) Tate’s normalized traces. There is c2 > 0, for all open subgroup H0 ⇢ H an integer n(H0) �

n1(H0), a sequence of closed subalgebras (AH0,n)n�n(H0) of AH0 , and for n � n(H0) Qp-linear maps

RH0,n : AH0 ! AH0,n, satisfying the following conditions :

0. We can write I =
S

n2N In as colimit of additive submonoids such that for any H0 and

n � n(H0) we have {$✏}✏2In
⇢ AH0,n.

1. If H1 ⇢ H2 ⇢ H are open subgroups, then AH2,n = A
H2

H1,n
and RH1,n|AH2 = RH2,n.

2. RH0,n is an AH0,n-linear projection onto AH0,n. We let XH0,n denote the kernel of RH0,n and

X+H0,n := XH0,n \ A+.

3. gAH0,n = AgH0g�1,n and gRH0,n(x) = RgH0g�1,n(gx) for all g 2 Π and x 2 AH0 .

4. For all n � n(H0) and x 2 A+,H
0

, we have RH0,n(x) 2 $�c2 A+H0,n. In other words ||RH0,n(x)|| 

|$�c2 |||x|| for x 2 AH0 .

5. Given x 2 AH0 we have limn!1 RH0,n(x) = x.

6. The action of ΓH0 on the Banach algebra AH0,n is locally analytic. Equivalently, there is an

open subgroup Π0 ⇢ Π with Π0 \ H = H0 such that the action of Π0 on A+H0,n/$ is trivial.

167
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(CST2) Bounds for the vanishing of cohomology. There exists c3 > 0, and for an open subgroup

Π
0 ⇢ Π an integer n(Π0) � n1(H0) such that if n � n(Π0), and C0 ⇢ CH is an open subgroup

satisfying C0 \ ker � = 1 and n(C0)  n, then for all n(C0)  m  n the cohomology groups

Hi(hγ(m)i,$✏X+H,n) are $c3-torsion for i = 0, 1, 2 and ✏ 2 ±I.

In the application to rigid spaces we will have the following stronger axioms

(CST1*) Decomposable traces. Let Π0 ⇢ Π be an open subgroup and H0 = Π0 \ H. There exists c2 and

an integer n(H0) � n1(H0) satisfying:

1. For n � n(H0) and i = 1, . . . , d, there are closed Qp-subalgebras Ai
H0,n

of AH0 , and Ai
H0,n

-

linear projections Ri
H0,n

: AH0 ! Ai
H0,n

. We let Xi
H0,n

denote the kernel of Ri
H0,n

and X
i,+

H0,n
=

Xi
H0,n
\ A+.

2. For g 2 CH0 we have that gAi
H0,n
= Ai

H0,n
and gRi

H0,n
(x) = Ri

H0,n
(gx) for all x 2 AH0 and all

i = 1, . . . , d.

3. For x 2 A+,H
0

we have Ri
H0,n

(x) 2 $�c2 A
i,+

H0,n
. In other words,

||RH0,n(x)||  |$�c2 |||x||.

4. Given a fixed H0 and n, the maps Ri
H0,n

commute for i = 1, . . . , d, and their composition

RH0,n := Rd
H0,n
� · · · � R1

H0,n satisfies the axiom (CST1).

(CST2*) Strong bounds for the vanishing of cohomology. There exists c3 > 0, and for an open subgroup

Π
0 ⇢ Π an integer n(Π0) � n1(H0), such that if n � n(Π0), and C0 ⇢ CH is an open subgroup

with C0 \ ker � = 0 and n(C0)  n, then for all n(C0)  m  n we have:

• The multiplication map �(m)

i
� 1 : Xi

H0,n
! Xi

H0,n
is invertible with ||(�(m)

i
� 1)�1||  |$�c3 |,

i.e. (�(m)

i
� 1)�1(x) 2 $�c3 X

i,+

H0,n
for x 2 X

i,+

H0,n
.

Remark 19.1.3. The $c3-torsion on (CST2) means the following: let γ(m) = (�(m)

1
, . . . , �(m)

d
) the coho-

mology RΓ(hγ(m)i,$✏X+H0,n) is represented by a Koszul complex Kos(γ(m),$✏X+H0,n). Then Hi(γ(m), XH0,n) =

0 for i = 0, 1, 2 and if � is a i-cocycle for $✏X+H0,n for i = 0, 1, 2, the exists a (i � 1)-cochain �0 of

$✏�c3 XH0,n such that d(�0) = �. The condition for i = 2 guarantees that we can a lift a 1-cocycle � of

X+H0,n/$
✏ to a 1-cocycle �0 of X+H0,n which agrees with � modulo $✏�c3 .

Remark 19.1.4. The axioms (CST0), (CST1) and (CST2) above are generalizations of the axioms

(TS1), (TS2) and (TS3) of [BC08] respectively. There is a subtle difference between (CST1) and

(TS2), which are the additional properties (0) and (6). Condition (6) hold in the context of classical

arithmetic Sen theory and for overconvergent (',Γ)-modules, it arises from the intuition that one is

decompleting the algebra AH0 by its locally analytic vectors for ΓH0 . The condition (0) says that the

topologically nilpotent units for which the almost setting is defined are locally analytic. The axioms

(CST1*) and (CST2*) are stronger generalizations of (TS2) and (TS3) which we will encounter in

the geometric applications, see Example 19.1.7.

Lemma 19.1.5. Suppose that (CST1*) holds. Then (CST2*) implies (CST2). Moreover, under

(CST2*) the group cohomology RΓ(hγ(m)i,$✏X+H0,n) is $c3-torsion for n(C0)  m  n.

Proof. With out loss of generality let us take ✏ = 0, the argument for arbitrary ✏ is the same. For

↵1, . . . ,↵d 2 {±} set α = (↵1, . . . ,↵d). We define

X↵
H0,n := (

Y

↵i=+

Ri
H0,n)(

Y

↵ j=�

(1 � R
j

H0,n
))AH0 .
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Let (+) = (+, . . . ,+), by (CST1*) (4) we have AH0,n = X
(+)

H0,n
, and XH0,n =

L
α,(+)

Xα
H0,n

as CH0-modules.

Notice that if ↵i = �, then Xα
H0,n
⇢ Xi

H0,n
and the restriction of �(m)

i
� 1 to Xα

H0,n
is still an isomorphism.

Without loss of generality we can take ↵1 = �. Define the following maps for 0  i  d � 1

hi :

î

(XαH0,n)�d !

i+1̂

(XαH0,n)�d

(x◆1,...,◆i)◆1<...<◆i 7!

8>><>>:
0 if ◆1 = 1

((�1 � 1)�1x1,◆1,...,◆i)◆1<...<◆i otherwise.

The group cohomology RΓ(hγ(m)i, Xα
H0,n

) is represented by the Koszul complex Kos(γ(m), Xα
H0,n

). A di-

rect computation shows that the map h• is a chain homotopy between the identity and 0 on Kos(γ(m), Xα
H0,n

),

in particular RΓ(hγ(m)i, Xα
H0,n

) = 0. To see that RΓ(hγ(m)i, X
α,+

H0,n
) is$c3 torsion, notice that the homotopy

h• is bounded by ||$�c3 || by (CST2*). This proves the lemma. ⇤

Definition 19.1.6. A Sen theory (in characteristic 0) is a triple (A,Π, �) as above satisfying (CST0)-

(CST2). If in addition we can take c2 and c3 arbitrarily small as n ! 1, and (A,Π, �) satisfies

(CST1*) (resp. (CST1*) and (CST2*)) we say that (A,Π, �) is a decomposable Sen theory (resp. a

strongly decomposable Sen theory).

Example 19.1.7. The most important example for this paper is given by products of perfectoid torus

and discs. Let TCp
:= Spa(CphT

±1i,OCp
hT±1i) and DCp

:= Spa(CphS i,OCp
hS i), we denote S

(e,d�e)

Cp
:=

Te
Cp
⇥Dd�e

Cp
. Let TCp,n andDCp,n be the finite (Kummer-)étale covers of the torus and the disc defined by

taking a pn-th root of T and S respectively. Let TCp,1 = lim
 ��n
TCp,n and DCp,1 = lim

 ��n
DCp,n denote the

perfectoid torus and perfectoid unit disc. We denote S
(e,d�e)

Cp,n
= Te

Cp,n
⇥Dd�e

Cp,n
and S

(e,d�e)

Cp,1
:= lim
 ��n
S

(e,d�e)

Cp,n
=

Te
Cp,1
⇥ Dd�e

Cp,1
.

We set Π = Zp(1)d, A = O(S
(e,d�e)

Cp,1
) and let � : Π

⇠
�! Zd

p be the isomorphism provided by a

compatible system of p-th power roots of unit (⇣pn)n2N. Let f1, . . . , fd, be the standard basis of Zd
p so

that

fiT
1

pn

j
= ⇣

�i, j

pn T
1

pn

j

fiS
1

pn

j
= ⇣

�i, j

pn S
1

pn

j

where �i, j = 1 if i = j and 0 otherwise. Then (A,Π, �) is a strongly decomposable Sen theory. Indeed,

for n 2 N define

Ai
n =

8>>><>>>:
CphT

± 1
p1

1
, . . . ,T

± 1
pn

i
, . . . ,T

± 1
p1

e , S
1

p1 i if 1  i  e

CphT
± 1

p1 , S
1

p1

e+1
, . . . , S

1
pn

i
, . . . , S

1
p1

d
i otherwise.

One has normalized Sen traces Ri
n : A! Ai

n which are given as the unique continuous extension to A

of the normalized traces

Ri
n,m =

1

pn�m
TrAi

n/A
i
m

: Ai
n ! Ai

m.

Therefore, if n > m and 1  i  e one gets

( f
pm

i
) · T

± 1
pn

i
� T

± 1
pn

i
= (⇣±1

pn�m � 1)T
± 1

pn

i
,

whence f
pm

i
� 1 is invertible on Xi

n := ker Ri
n and bounded by |⇣pn�m � 1|. A similar property holds for

the S j’s. Now, defining An = O(S
(e,d�e)

Cp,n
), and Rn = Rd

n � · · · � R1
n, one immediately verifies (CST1*)

and (CST2*).
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19.2. Relative locally analytic representations

We keep the conventions of the triple (A,Π, �) as in the beginning of the previous section. In the next

paragraph we will give an ad-hoc definition of a relative locally analytic representation over a Sen

theory. The motivation is provided by Corollary 17.2.6, saying that, a continuous action of a compact

p-adic Lie group G on a Banach space V is locally analytic if and only if there is a G-stable lattice

V0 ⇢ V such that G acts through a finite quotient on V0/p.

To adapt the devisages of [BC08] we need to consider continuous 1-cocycles of infinite rank A-

modules. In other words, we will want to consider continuous maps from Π to some Aut(V), where

V is an ON Banach A-module. In order to endow Aut(V) with the good topology (i.e. the one which

appears naturally when considered as a condensed set) let us show the following lemma:

Lemma 19.2.1. Let V = cL
I
Avi, W = cL

J
Aw j be ON Banach A-modules, and let v_i : V ! A be the

projection onto the i-th component (resp. w_j : W ! A). Then

HomA(V,W) = (
Y

I

dM
J
A+w j ⌦ v_i )[

1

p
]

 7!
X

I

X

J

hw_j , (vi)iw j ⌦ v_i .
(19.2.1)

We endow the A-module HomA(V,W) with the compact open topology, equivalently, with the natural

topology of the RHS of the equation (19.2.1).

Proof. We have

HomA(V,W) = HomA(
dM

I
A+vi,

dM
J
A+w j)[

1

p
]

= (lim
 ��
s2N

HomA(
M

I

A+/psvi,
M

J

A+/psw j))[
1

p
]

= (lim
 ��
s2N

Y

I

HomA(A+/psvi,
M

J

A+/psw j))[
1

p
]

= (lim
 ��
s2N

Y

I

M

J

A+/psw j ⌦ v_i )[
1

p
]

= (
Y

I

dM
J
A+w j ⌦ v_i )[

1

p
].

⇤

Definition 19.2.2. Let V be an ON Banach A-module. We endow the group AutA(V) with the subspace

topology of the inclusion

AutA(V) ! EndA(V) ⇥ EndA(V)

 7! ( , �1).

One immediately verifies the following proposition

Proposition 19.2.3. The group AutA(V) is a topological group, i.e. the multiplication and the inverse

maps are continuous. The inclusion AutA(V)! EndA(V)⇥EndA(V) is closed and equal to the inverse

image of (idV , idV) of the multiplication map

EndA(V) ⇥ EndA(V)! EndA(V) ⇥ EndA(V)

( , 0) 7! ( �  0, 0 �  ).
(19.2.2)

In particular, a sequence ( n)n2N in AutA(V) converges to an element  2 AutA(V) if and only if

 n !  and  �1
n !  �1 in EndA(V) as n! 1.
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Proof. It is easy to show that the composition map

EndA(V) ⇥ EndA(V)! EndA(V)

( , 0) 7!  �  0

is continuous for the compact open topology of EndA(V), e.g. by computing the matrix composition in

a presentation EndA(V) � (
Q

I
cL

I
A+)[ 1

p
], or by knowing that this map extends to a map of condensed

sets. Thus, it is enough to show that AutA(V) is identified with the pre-image of (idV , idV) via the map

(19.2.2), which is clear by definition. ⇤

The following lemma will be useful to construct invertible elements in AutA(V).

Lemma 19.2.4. Let M 2 EndA(V) be an endomorphism whose norm operator satisfies ||M||  |$✏ | for

some ✏ > 0 and some lattice V0 ⇢ V. Then 1�M 2 AutA(V) and its inverse is given by the convergent

series (1 � M)�1 =
P1

n=0 Mn.

Proof. Write V = cL
I
A so that EndA(V) � (

Q
I
cL

I
A+)[ 1

p
]. By Proposition 19.2.3, it is enough to

show that
P1

n=0 Mn converges in EndA(V), and that the sequence ((1 � M)
Pm

n=0 Mn)m2N converges to

idV . But by hypothesis M0 = 1
$✏ M is an operator of V0, thus

P1
n=0 Mn =

P1
n=0 $

✏nM0 converges as

EndA+(V
0) �

Q
I
cL

I
A+ is p-adically complete, and both $✏ and p are topologically nilpotent units

of A. One shows in a similar way that the sequence ((1 � M)
Pm

n=0 Mn)m2N converges to idV finishing

the proof. ⇤

Given an index set I let us denote GLI(A) the topological group AutA(c
L

I
A) ⇢ (

Q
I
cL

I
A+)[ 1

p
]. It

has a natural action of Π on the coefficients. Whence, ON Banach A-semilinear representations of

“rank I” are equivalent to 1-cocycles of Π on GLI(A). We denote by ei the standard basis of cL
I
A.

Definition 19.2.5. An ON Banach A-semilinear representation ⇢ : Π ⇥ V ! V is said relative locally

analytic if there exists a basis {vi}i2I generating a lattice V0 such that:

• There is Π0 ⇢ Π an open subgroup stabilizing V0 and ✏ > 0 such that the action of Π0 on {vi

mod $✏}i2I is trivial.

We say that {vi}i2I is a relative locally analytic basis of V .

The previous definition can be rewritten in terms of 1-cocycles.

Definition 19.2.6. Let V be an ON Banach A-module and ⇢ an A-semilinear action of Π on V . Let

v = {vi}i2I be an ON basis of V , let Υ : cL
i2I

A! V denote the A-linear isomorphism provided by the

basis v, and let �v be the A-semilinear action of Π fixing v. We define the 1-cocycle of ⇢ attached to

(V, v) to be the continuous map U : Π! GLI(A) given by

g 7! Υ�1 � ⇢(g) � �v(g)�1 � Υ.

An ON basis v of V is relative locally analytic if and only if there exists ✏ > 0 and Π0 ⇢ Π an open

subgroup such that the 1-cocycle U |Π0 has values in GLI(A
+) and is trivial modulo $✏ . We say that U

is a locally analytic 1-cocycle.

The following lemma says that composing by matrices in AutA(V) which are closed enough to 1

preserves relative locally analytic basis.

Lemma 19.2.7. Let V be an ON locally analytic representation of Π and v = {vi}i2I a relative locally

analytic basis, let V0 be the lattice spanned by {vi}. Let  2 EndA(V) be an operator such that

||1 �  ||  |$✏ | for some ✏ > 0. Then  (v) = { (vi)}i2I is a relative locally analytic basis of V.
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Proof. Let Π0 ⇢ Π be an open subgroup stabilizing V0, and let ✏0 > 0 such that the action of Π0

on {vi mod $✏0}i2I is trivial. Let ✏00 = min{✏, ✏0}, then  (vi) ⌘ vi mod $✏00 and Π0 acts on { (vi)

mod $✏00}i2I trivially. This proves the lemma. ⇤

Example 19.2.8. 1. Let Π = G be a compact p-adic Lie group and W be a Banach locally ana-

lytic representation over Qp. Then, by Corollary 17.2.6, Wb⌦Qp
A is a relative locally analytic

representation of Π.

2. Slightly more generally, suppose that Π admits by quotient Π ! G a compact p-adic Lie

group. Let W be a Banach locally analytic representation of G over Qp. Then Wb⌦Qp
A is a

relative locally analytic representation of Π. This is the situation we will face in the application

to Shimura varieties.

Let us finish this section with an ad hoc generalization of relative locally analytic representations

to LF spaces.

Definition 19.2.9. 1. A squarable Fréchet A-module is a topological A-module F admitting a pre-

sentation F = lim
 ��

Vn with Vn ON Banach A-modules and dense transition maps. A squarable

LF A-module is a countable filtered colimit of squarable Fréchet A-modules by injective tran-

sition maps.

2. A relative pro-locally analytic Fréchet A-semilinear representation of Π is a continuous A-

semilinear representation of Π on a squarable Frechét A-module F, which can be written as

F = lim
 ��n

Vn with Vn relative locally analytic A-Banach representations of Π. We say that F is

locally analytic if the ✏ of Definition 19.2.5 can be chosen uniform for all the Vn’s. A relative

locally analytic LF representation of Π is a countable filtered colimit of relative locally analytic

Fréchet representations.

19.3. The Sen functor

Let (A,Π, �) be a Sen theory. Our next goal is to define the Sen functor, which is nothing but a derived

functor of locally analytic vectors, and to show that the Sen functor has a very good behaviour for

relative locally analytic ON Banach representations of Π. The strategy is to generalize the devisage

of [BC08] from finite rank A modules to ON Banach A-modules.

Definition 19.3.1 (The Sen functor). 1. Let F be a relative locally analytic LF representation of

Π, and H0 ⇢ H an open subgroup. We define the Sen module of F to be

S H0(F) := (FH0)ΓH0�la.

2. Let C• be a complex of relative locally analytic LF representations of Π, and H0 ⇢ H an open

subgroup. We define the derived Sen module of C• to be

RS H0(C
•) := RΓ(H0,C•)RΓH0�la.

Remark 19.3.2. The Sen functor in [BC08] is denoted as DH0 , since we are already using D andD for

derived categories and distributions we prefer to use the letter S for the Sen functor.

Let us state the main theorem of this section, cf. Proposition 3.3.1 of [BC08].

Theorem 19.3.3. Let (A,Π, �) be a Sen theory. Let V be a relative locally analytic ON Banach

representation of Π and v = {vi}i2I a relative locally analytic basis. Let U : Π ! GLI(A) be the

locally analytic 1-cocycle induced by v (see Definition 19.2.6). Let s > 2c2+2c3 and let Π0 ⇢ Π be an

open normal subgroup such that U |Π0 ⌘ 1 mod $s. Let H0 = Π0 \ H and n � n(H0). The following

holds
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1. V contains a unique ON Banach AH0,n-submodule S H0,n(V), and there is a basis v0 = {v0i}i2I of

S H0,n(V) such that:

(a) The AH0,n-module S H0,n(V) is fixed by H0 and stable by Π. Moreover, S H0,n(V) is a locally

analytic representation of ΓH0 = Π/H
0.

(b) We have Ab⌦AH0 ,n
S H0,n(V) = V as an A-semilinear representation of Π. The matrix M of

base change from v to v0 is trivial modulo $c3+c2 .

(c) Let U0 denote the 1-cocycle with respect to the basis v0. For � 2 Π0/H0, the matrix

U0� 2 GLI(AH0,n) is trivial modulo $c3+c2 .

2. Suppose in addition that (A,Π, �) is strongly decomposable. Let F be a relative locally analytic

LF representation of Π. Then

RS H0(F) = S H0(F) = lim
��!

n

S H0,n(F),

in other words, the derived Sen functor is concentrated in degree 0.

From now on we suppose that (A,Π, �) is a Sen theory, i.e., that it satisfies the axioms (CST0)-

(CST2) of Definition 19.1.2. In order to prove Theorem 19.3.3 we need a series of technical lemmas.

We first start with a devisage which is nothing but almost étale descent.

Lemma 19.3.4. Let H0 ⇢ H be an open subgroup and V a relative locally analytic ON A-Banach

representation of Π. Let v = {vi}i2I be a relative locally analytic basis generating a lattice V0. Let

r > 0 and Π0 ⇢ Π an open subgroup with H0 = Π0 \ H, suppose that Π0 acts trivially on v modulo

$r. The following hold.

1. Let 0 < a < r, there is a basis {v0i}i2I of VH0 contained in V0,H0 such that vi ⌘ v0i mod $r�a and

V0,H0/$r�a =ae
L

i2I
(A+,H

0

/$r�a)v0i as Π0/H0-module.

2. For all s � 0 we have RHomH0(1,V
0/$s) =ae (V0/$s)H0 =ae V0,H0/$s. Taking derived inverse

limits we have RHomH0(1,V
0) =ae V0,H0 .

Proof. First, we claim that RHomH0(1,V
0/$s) =ae (V0/$s)H0 for all s > 0. By taking short exact

sequences

0! V0/$rn ⇥$r

���! V0/$r(n+1) ! V0/$r ! 0

it is enough to take s = r. By hypothesis, we have an isomorphism of semilinear H0-representations

provided by the basis {vi}i2I

V0/$r
�

M

I

A+/$r.

Then, it suffices to show that RHomH0(1, A
+/$r) =ae A+,H

0

/$r. By hypothesis we can write A+/$r =

lim
��!H00⇢H0

A+,H
00

/$r where H00 runs over all the open normal subgroups of H0. Then

RHomH0(1, A
+/$r) = lim

��!
H00⇢H0

RHomH0/H00(1, A
+,H00/$r).

Let ✏ > 0, by (CTS0) there exists ↵ 2 A+,H
00

such that TrH00

H0 (↵) = $✏ . Let A+,H
00

[H0/H00] be the

semilinear group ring of H0/H00, and " : A+,H
00

[H0/H00] ! A+,H
00

the augmentation map, which is a

morphism of left A+,H
00

[H0/H00]-modules. Then $✏" admits a section h✏ : A+,H
00

! A+,H
00

[H0/H00]

given by x 7!
P

g2H0/H00 xg(↵) · g. This proves that A+,H
00

is almost A+,H
00

[H00/H0]-projective, which

implies the claim. Taking derived inverse limits we see that RHomH0(1,V
0) is almost concentrated in

degree 0. Finally, taking cohomology of the short exact sequences for s > 0

0! V0 $s

��! V0 ! V0/$s ! 0
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one gets (2).

To prove (1), let 0 < a < r and let $av0i 2 V0,H0 be a lift of ($avi mod $r) 2 V0,H0/$r. Then

v0i 2 V0,H0 and v0 = {v0i}i2I is an ON basis of VH0 such that v0i ⌘ vi mod $r�a. This proves the

lemma. ⇤

Lemma 19.3.5. Let �, a, b 2 R>0 such that a � c2 + c3 + � and b � sup{a + c2, 2c2 + 2c3 + �}. Let

H0 ⇢ H be an open subgroup, n � n(H), and γ = (�1, . . . , �d) a sequence of linearly independent

elements in CH0 , let hγi be the subgroup generated by the �i’s. Let (U1, . . . ,Ud) be a 1-cocycle of hγi

in GLI(A
+,H0) satisfying

i. Ui = 1 + Ui,1 + Ui,2 where Ui,1 2
Q

I
cL

I
A+H0,n and Ui,2 2

Q
I
cL

I
A+,H

0

.

ii. Ui,1 ⌘ 0 mod $a and Ui,2 ⌘ 0 mod $b.

Then there exists M 2 GLI(A
+,H0) with M ⌘ 1 mod $b�c2�c3 such that

i. M�1Ui�i(M) = 1 + Vi,1 + Vi,2 with Vi,1 2
Q

I
cL

I
A+H0,n and Vi,2 2

Q
I
cL

I
A+,H

0

.

ii. We have Vi,1 ⌘ 0 mod $a and Vi,2 ⌘ 0 mod $b+�.

Proof. Let RH0,n : AH0 ! AH0,n be the projection map and XH0,n its kernel. Since we have the decom-

position AH0 = AH0,n � XH0,n, the following space decomposes via RH0,n:

(
Y

I

dM
I
A+)[

1

p
] = (

Y

I

dM
I
AH0,+)[

1

p
] � (

Y

I

dM
I
X+H0,n)[

1

p
].

Then, using the bound of (CST1), we can write Ui,2 = RH0,n(Ui,2) + Wi with Wi 2
Q

i
cLX+H0,n and

Wi ⌘ 0 mod $b�c2 . The cocycle condition of (U j)
d
j=1

is equivalent to the equality

0 = U j� j(Ui) � Ui�i(U j)

= U j,1 + U j.2 + � j(Ui,1) + � j(Ui,2) � Ui,1 � Ui,2 � �i(U j,1) � �i(U j,2) + Q1 + Q2

for all 1  i, j  d, with Q1 2
Q

I
cL

I
A+H0,n[ 1

p
], and Q2 2 $

a+b
Q

I
dL

I
A+,H

0

. Applying 1 � RH0,n we

find

0 = W j + � j(Wi) �Wi � �i(W j) + RH0,n(Q2)

where RH0,n(Q2) ⌘ 0 mod $a+b�c2 . Therefore, (Wi)
d
i=1

defines a 1-cocycle of
Q

I

L
I
(X+H0,n/$

a+b�c2).

By (CST2), there exists a 1-cocycle (W 0
j)

d
j=1

in
Q

I
cL

I
X+H0,n such that (W 0

j)
d
j=1
⌘ (W j)

d
j=1

mod $a+b�c2�c3 .

In particular, (W 0
j)

d
j=1
⌘ (W j)

d
j=1
⌘ 0 mod $b�c2 . Again by (CST2), there exists M0 2

Q
I
cLX+H0,n

such that W 0
j = M0 � � jM0 for j = 1, . . . , d and M0 ⌘ 0 mod $b�c2�c3 . Taking M = 1 + M0 we get

the lemma. ⇤

Corollary 19.3.6. Let � > 0 and b � 2c2+2c3+�. Let H0 ⇢ H be an open subgroup and U1, . . . ,Ud 2

GLI(A
+,H0) a 1-cocycle verifying U j ⌘ 1 mod $b for j = 1, . . . , d. Then there exists M 2 GLI(A

+,H0)

with M ⌘ 1 mod $b�c3�c2 such that

M�1U j� j(M) 2 GLI(A
+
H0,n) for j = 1, . . . , d.

Proof. By the previous lemma there exists M(1) 2 GLI(A
+,H0) with M(1) ⌘ 1 mod $b�c2�c3 such that

U
(1)

i
:= M(1),�1Ui�i(M(1)) 2 GLI(A

+
H0,n) mod $b+�.

Let k 2 N�1, by induction we can find matrices M(k) 2 GLI(A
+,H0) with M(k) ⌘ 1 mod $b+�(k�1)�c2�c3

with

U
(k)

i
:= M(k),�1U

(k�1)

i
�i(M(k)) 2 GLI(A

+
H0,n) mod $b+�k.

Taking k ! 1, and M := M(1)M(2) · · · one sees that the 1-cocycle (U0i )
d
i=1

:= (M�1Ui�i(M)) takes

values in GLI(A
+
H0,n), and that (U0i )

d
i=1
⌘ 1 mod $b�c2�c3 . ⇤
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Lemma 19.3.7. Let H0 ⇢ H be an open subgroup, n � n(H0), γ = (�1, . . . , �d) a sequence of linearly

independent elements of CH0 , and B 2 GLI(A
H0). Suppose that we are given with V1, j,V2, j 2 GLI(A

+
H0,n)

with V1, j ⌘ V2, j ⌘ 1 mod $c3+✏ for some ✏ > 0, and that � j(B) = V j,1BV j,2. Then B 2 GLI(AH0,n).

Proof. Consider C = B � RH0,n(B), then � j(C) = V j,1CV j,2. We have

� j(C) �C = (V j,1 � 1)CV j,2 + V j,1C(V j,2 � 1) � (V j,1 � 1)C(V j,2 � 1).

Then C 2 $r
Q

I
cL

I
A+,H

0

implies �i(C) � C 2 $r+c3+✏
Q

I
cL

I
A+.H

0

for i = 1, . . . , d. On the other

hand, (CST2) provides an isomorphism ◆ between XH0,n and the 1-cocycles Z1(XH0,n) ⇢ Xd
H0,n

such

that ◆�1(Z1($r+c3+✏X+H0,n)) ⇢ $r+✏X+H0,n. Therefore, � j(C) � C 2 $r+c3+✏
Q

I
cL

I
A+,H

0

for j = 1, . . . , d

implies C 2 $r+✏
Q

I
cL

I
A+,H

0

. On deduces that C = 0 and that B = RH0,n(B) 2 GLI(A
+
H0,n). ⇤

Proof of Theorem 19.3.3 (1). Let U : Π ! GLI(A
+) be the 1-cocycle defined by the basis {vi}I . By

hypothesis U |Π0 ⌘ 1 mod $s with s > 2c2 + 2c3. Let ✏ > 0 such that s0 := s � ✏ > 2c2 + 2c3.

By Lemma 19.3.4 we have RΓ(H0,V) = VH0 , and there exists a matrix M0 2 GLI(A
+) with M0 ⌘ 1

mod $s0 such that the cocycle U0g := M
0�1Ugg(M0) is trivial over H0.

Then, U0 is a 1-cocycle over GLI(A
+,H0) satisfying U0|Π0 ⌘ 1 mod $s0 . Let n(H0)  m  n

and γ = (�(m)

1
, . . . , �(m)

d
) be a pre-image of (pmei)

d
i=1

via � : CΠ0 ! Z
d
p. Let � > 0 be such that

s0 � 2c2+2c3+ �, by Corollary 19.3.6 there exists M0 2 GLI(A
+,H0) with M00 ⌘ 1 mod $s0�c3�c2 such

that

M
00�1U0� j

� j(M00) 2 GLI(A
+
H0,n) for j = 1, . . . , d.

Define U00g := M
00�1U0gg(M00), and let us show that U00 is a 1-cocycle ofΠ in GLI(A

+
H0,n). Let g 2 Π/H0,

as � j 2 CH0 for all j = 1, . . . , d we see that

U00g� j
= U00� jg

U00g g(U00� j
) = U00� j

� j(U
00
g ).

Thus, � j(U
00
g ) = U00� j

�1U00g g(U00� j
). But U

00�1
� j
, g(U00� j

) 2 GLI(A
+
H0,n) are congruent to 1 modulo $s0�c3�c2 ,

and s0 � c3 � c2 > c3 + c2. By lemma 19.3.7 we have U00g 2 GLI(AH0,n) proving that U00 is a 1-

cocycle in GLI(A
+
H0,n) whose restriction to Π0 is congruent to 1 modulo $c3+c2 . Setting M := M0M00

and  : V ! V the associated isomorphism of A-modules, let {v0i} :=  ({vi}), S H0,n(V) be the ON

AH0,n-module spanned by {v0i}I and S H0,n(V0) the lattice generated. Then S H0,n(V) ⇢ V is stable by Π

and the action factors through ΓH0 = Π/H
0. Furthermore, by construction we have an isomorphism of

semilinear A-representations of Π

Ab⌦AH0 ,n
S H0,n(V) = V.

It is left to show that S H0,n(V) is a locally analytic representation of ΓH0 . But this follows from

Corollary 17.2.6, the fact that the elements �1, . . . , �d act trivially on the basis {v0i}I mod $c3+c2 , and

that the action on the Banach algebra AH0,n is already locally analytic. ⇤

We still need an additional technical lemma for proving part (2). Roughly speaking, it says that the

Koszul complexes of the spaces XH0,n for the action of CH0 kill the locally analytic representations. In

the rest of the section we suppose that (A,Π, �) is a strongly decomposable Sen theory.

Lemma 19.3.8. Let C0 ⇢ CH0 be torsion free and n � n(C0). Let n(C)  m  k  n and γ = (�(k)

i
)d
i=1

the inverse image of (pkei)
d
i=1

via � : C0 ! Zd
p. Suppose that ||�(k)

i
� 1||AH0 ,m

< |$c3 | for all i. Let V be a

locally analytic ON AH0,m-Banach representation of ΓH0 such that ||�(k)

i
� 1||V < |$

c3 | for i = 1, . . . , d.

Then

RΓ(hγi, XH0,nb⌦AH0 ,m
V) = 0.
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Proof. For simplicity let us write Am = AH0,m. Given α = (↵1, . . . ,↵d) 2 {±}d consider the decompo-

sition of Lemma 19.1.5

AH0 =
M

α2{±}d

XαH0,n

so that

An = X
(+)

H0,n
and XH0,n =

M

α,(+)

XαH0,n.

Then, it suffices to show that for all ↵ , (+) one has

RΓ(hγi, XαH0,nb⌦Am
V) = 0.

Without loss of generality we can assume that ↵1 = �. Set � = �(k)

1
. By the proof of Lemma 19.1.5 it

is enough to show that � � 1 is invertible as an operator of the tensor product.

First, let us assume that V is isomorphic to V = Amb⌦Qp
W with W a locally analytic Banach ΓH0-

representation overQp for which ||��1||Amb⌦V < |$
c3 |. Then, we have an explicit inverse over Xb⌦Am

V =

Xb⌦Qp
W:

(� � 1)�1 = �

1X

i=0

��1(��1 � 1)�(i+1) ⌦ (� � 1)i (19.3.1)

which converges by the hypothesis on the bounds of � � 1.

Write G = ΓH0 , and let us use the notation of §17.1.1 for the analytic group neighbourhoods of G

and their distribution algebras. Then Am is a G(h)-analytic representation for some h > 0. Furthermore,

by the bound of ||� � 1|| on Am, we can assume that ||� � 1||C(G(h),Am)?1
< |$c3 |.

For a general G(h)-analytic representation V we have a closed embedding provided by the orbit map

oV : V ! C(G(h),Qp)?2
b⌦Qp

V0

where V0 has the trivial action of G. The image of oV is identified with the ?1,3-invariants. Write

V = Amb⌦Qp
W as the extension of scalars of a Banach space over Qp. Rewriting C(G(h),Qp)?2

b⌦Qp
V0 =

C(G(h), Am)?2
⌦Qp

W, and composing with the isomorphism

C(G(h), Am)?2
� C(G(h), Am)?1,3

f 7! (g 7! g f (g�1)).

the orbit oV identifies V with a closed Am-module of

C(G(h), Am)?1,3
⌦Qp

W0 = C(G(h),Qp)?1
b⌦Qp

V�, (19.3.2)

where V� is the semilinear G-representation provided by the extension of scalars V = Amb⌦Qp
W. The

evaluation at 1 gives a retraction of (19.3.2) onto V , this implies that the quotient

Q := (C(G(h),Qp)?1
b⌦Qp

V�)/oV(V)

is an ON Am-Banach representation of G which is G(h)-analytic with the same bounds for � � 1 that

V . Repeating this procedure we find a resolution of V

0! V ! Amb⌦Qp
W1 ! Amb⌦Qp

W2 ! · · · =: Amb⌦Qp
W•

by representations of the form Am ⌦Qp
W`, with W` a locally analytic representation of G for which

||� � 1||Amb⌦W` < |$c3 | for all ` � 1. This implies that

RΓ(hγi, Xb⌦Am
V) ' RΓ(hγi, Xb⌦Qp

W•) = 0

where in the last equality we use the first case considered above. This finishes the lemma. ⇤
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Proof of Theorem 19.3.3 (2). Write G = ΓH0 , and consider the notations of distribution algebras of

§17.1.1. First, let V be an ON relative locally analytic representation of Π over A. By part (1) we

already know that VH0 = RΓ(H0,V), and that VH0 = AH0b⌦AH0 ,m
S H0,m(V) for some m >> 0 depending

only on the analyticity condition of V . Thus, we can write

VH0 = lim
��!

n

XH0,nb⌦AH0 ,m
S H0,m(V) � lim

��!
n

AH0,nb⌦AH0 ,m
S H0,m(V).

As S H0,m(V) and AH0,n are locally analytic representations of G, Theorem 17.2.3 implies that

(lim
��!

n

AH0,nb⌦AH0 ,m
S H0,m(V))RG�la = lim

��!
n

AH0,nb⌦AH0 ,m
S H0,m(V).

Even more, we know that for a fixed n there is h > 0 only depending on V such that

(AH0,nb⌦AH0 ,m
S H0,m(V))RG(h)�an = AH0,nb⌦AH0 ,m

S H0,m(V).

We want to show that

(lim
��!

n

XH0,nb⌦AH0 ,m
S H0,m(V))RG�la = 0.

Indeed, it is enough to show that for any h > 0 there exists n � 0 such that

RΓ(hγi, XH0,nb⌦AH0 ,m
S H0,m(V)b⌦Qp

C(G(h),Qp)?1
)) = 0 (19.3.3)

with the notations as in Lemma 19.3. But this follows by loc. cit. and the fact that c3 can be choosen

arbitrarily small provided n >> 0.

We have proven that if V is a relative locally analytic ON A-Banach representation of Π then

RS H0(V) = S H0(V) = colimn S H0,n(V).

Let F = lim
 ��k

Vk be a squarable relative locally analytic Fréchet representation ofΠ. Then the Vn are

ON Banach relative locally analytic representations of Π with an uniform ✏ as in Definition 19.2.9,

and the transition maps Vk+1 ! Vk are dense. Using part (1) for the Vk’s, there exists m 2 N such that

we can write

F = lim
��!

n

(lim
 ��

k

XH,nb⌦AH0 ,m
S H0,m(Vk) � lim

 ��
k

AH0,nb⌦AH0 ,m
S H0,m(Vk)).

Using Theorem 17.2.3 and (19.3.3) one obtains that

RS H0(F) = S H0(F) = lim
��!

n

lim
 ��

k

AH0,nb⌦AH0 ,m
S H0,m(Vk). (19.3.4)

Furthermore, by construction of the Sen functors S H0,n(�), the transition maps of the projective limits

of (19.3.4) are dense for all n and k big enough.

Finally, the case of a locally analytic LF representation follows formally from the Fréchet case

since RS H0(�) commutes with filtered colimits. ⇤

19.4. Group cohomology via Sen theory

Throughout this section (A,Π, �) will denote a strongly decomposable Sen theory. We finish this

chapter with some formal consequences of Theorems 17.2.3 and 19.3.3 regarding the group coho-

mology of relative locally analytic representations of Π.

Corollary 19.4.1. Let F be a relative locally analytic LF A-representation of Π. Let Π0 ⇢ Π be an

open subgroup and H0 = Π0 \ H. Let nH0 := LieΠ/H0 Then

RΓ(Π0, F) = (RΓ(nH0 , S H0(F)))Π
0/H0 .
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19. Sen theory

Proof. By Hochschild-Serre, almost purity (Lemma 19.3.4) and Theorems 17.2.14 and 17.2.16 we

have that

RΓ(Π0, F) = RΓ(Π0/H0, FH0)

= RΓ(Π0/H0, S H0(F))

= RΓ(nH0 , S H0(F))Π
0/H0 .

⇤

We will consider a last hypothesis which holds in the Hodge-Tate situation, i.e., for the Sen theory

of the sheaf bOX, where X is a log smooth adic space over Spa(K,OK). In the arithmetic case over Qp,

this hypothesis is nothing but the Ax-Sen-Tate theorem.

(AST) Let Π0 ⇢ Π0 be an open subgroup and H0 = Π0 \ H. A Sen theory (A,Π, �) satisfies the

Ax-Sen-Tate property if the following conditions hold:

i. AH0,n = AΠH0 ,n , where ΠH0,n is the inverse image of pnZp via � : Π0 ! Zd
p for all n >> 0.

ii. The traces RH0,n : AH0 ! AH0,n are constructed from normalized traces

Rm
H0,n : AH0,m ! AH0,n

x 7!
1

pm�n

X

g2ΠH0 ,m/ΠH0 ,n

g(x).

Remark 19.4.2. Notice that this axiom makes the proof of Lemma 19.3.8 slightly easier, as the dis-

played equation (19.3.1) can be applied directly to XH0,nb⌦AH0 ,m
V since the action of hγi on AH0,m is

trivial.

A Sen theory satisfying the Ax-Sen-Tate axiom can be endowed with a Sen operator as follows.

Definition 19.4.3. Suppose that (A,Π, �) satisfies (AST). Let F be a relative locally analytic LF

A-representation of Π. Let H0 ⇢ H be an open subgroup. The Sen operator of F is the A-linear map

Sen(F) : F ! F ⌦Qp
n_H0

given by the A-extension of scalars of the derivations

S H0(F)! S H0(F) ⌦Qp
n_H0 .

In the rest of the section we suppose that (A,Π, �) satisfies the Ax-Sen-Tate axiom. The following

results describe some cohomological properties of A-semilinear Π-representations in terms of their

Sen operators. We fix Π0 ⇢ Π an open subgroup and set H0 = Π0 \ H.

Lemma 19.4.4. Let C• be a complex of relative locally analytic LF A-representations of Π with Π-

equivariant differential maps. Suppose that the Sen map C• ! C•⌦Qp
n_H0 is homotopically equivalent

to 0 as topological A[[Π]]-modules. Then Hi(S H0(C
•)) is a trivial nH0-module for all i 2 Z and

RΓ(Π0,C•) =

dM

j=0

(S H0(C
•) ⌦

ĵ

n_H0)
Π
0/H0[� j].

In particular, for all i 2 Z we have

RΓ(Π0,H j(C•)) =

dM

j=0

(H j(S H0(C
•)) ⌦

ĵ

n_H0)
Π
0/H0[� j]. (19.4.1)
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Proof. By Corollary 19.4.1 we have

RΓ(Π0,C•) = RΓ(nH0 , S H0(C
•))Π

0/H0 .

But the cohomology RΓ(nH0 , S H0(C
•)) is represented by the total complex of the Koszul bicomplex

Kos(n_H0 , S H0(C))•,• whose terms are

Kos(n_H0 , S H0(C)•)k,l = S H0(C)k ⌦

l̂

n_H0 .

Then, the homotopy between 0 and the map Sen(C•) : C• ! C• ⌦ n_ provides a homotopy between

0 and the morphism of the row complexes

Kos(n_H0 ,C)•,l ! Kos(n_H0 ,C)•,l+1

which is just a twist of Sen(C•). Taking total complexes and locally analytic vectors this provides a

homotopy between 0 and the identity of the complex RΓ(nH0 , S H0(C
•)). Furthermore, it provides an

explicit splitting

RΓ(nH0 , S H0(C
•)) =

dM

j=0

S H0(C
•) ⌦

ĵ

n_H0[� j].

This shows in particular that the cohomology groups of S H0(C
•) have a trivial action of nH, so that

taking Π0/H0-invariants is well defined as derived objects. This finishes the lemma. ⇤

Definition 19.4.5. Let C• be a complex as in Lemma 19.4.4. Suppose that the Sen map Sen(C•) :

C• ! C ⌦ n_H0 is homotopically equivalent to zero. We denote

(C•)Π
0

:= (S H0(C
•))Π

0/H0 .

Nonetheless, by the previous lemma we have that Hi(C•)Π
0

= Hi(S H0(C
•))Π

0/H0) for all i 2 Z.

Remark 19.4.6. The previous definition is provisory for this paper. In general, Theorem 19.3.3 should

hold in a larger category of “relative locally analytic” solid modules over an analytic ring attached to

A, and its content should be that the Sen functor is exact. Then, Lemma 19.4.4 should generalize to

the statement that taking Π0-invariants for relative locally analytic solid A-modules with trivial Sen

operators is exact. In that context, Kos(n_H0 ,C
•)Π

0

would have an honest meaning without passing

through the Sen module.

Proposition 19.4.7. Let C• be a bounded complex of relative locally analytic LF representations of

Π. Then

RΓ(Π0,C•) = RΓ(nH0 ,C
•)Π

0

.

Remark 19.4.8. The cohomology group RΓ(nH0 ,C
•) is represented by the total complex of the Koszul

bicomplex Kos(n_H0 ,C
•). The Π-invariants of the total complex are well defined by Lemma 19.4.4.

Proof. By Corollary 19.4.1 we have

RΓ(Π0,C•) = RΓ(nH0 , S H0(C
•))Π

0/H0 .

The complex RΓ(nH0 , S H0(C)•) is represented by Kos(n_H0 , S H0(C))•,•. On the other hand, Theorem

19.3.3 implies that we can write S H0(C
•) = lim

��!n
S H0,n(C•) as a colimit of analytic subspaces defined

over AH0,n. Let AH0,1 := lim
��!n

AH0,n, the theorem says in addition that

S H0(C
•)b⌦AH0 ,1

A := lim
��!

n

S H0,n(C•)b⌦AH0 ,n
A = C•.
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Then, one gets that

RΓ(nH0 ,C
•) = RΓ(nH0 , S H0(C

•))b⌦AH0 ,1
A.

It is easy to construct an explicit homotopy between the identity and the Sen operator map

RΓ(nH0 ,C
•)! RΓ(nH0 ,C

•) ⌦Qp
n_H0 .

By Lemma 19.4.4, we know that

RΓ(nH0 ,C
•)Π

0

= RΓ(nH0 , S H0(C
•))Π

0/H0 ,

this proves the proposition. ⇤
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20. Hodge-Tate theory over rigid spaces

Let (K,K+) be a complete non-archimedean discretely valued extension of Qp, let C be the p-adic

completion of an algebraic closure of K. Let X be an fs log smooth adic space over (K,K+), for

? 2 {an, ét, két, proét, prokét} we let X? denote the corresponding site over X. We write XC for the

C-extension of scalars of X. Throughout this chapter we denote by bO (+) the completed (bounded)

structural sheaf of Xprokét, we also let O (+)

?
denote the uncompleted (bounded) structural sheaves over

X?. We refer to [DLLZ19] for the formalism of the Kummer-étale site. We let B
(+)

dR
and OB(+)

dR,log

be the de (log) Rham period sheaves over Xprokét. We also consider the Hodge-Tate period sheaf

OClog = gr0(OBdR,log), see [DLLZ18].

The main goal of this chapter is to apply the Sen theory formalism of §19 to Hodge-Tate coho-

mology in rigid analytic geometry. More precisely, let G be a compact p-adic Lie group and eX a

pro-Kummer-étale G-torsor of X. Let V be a locally analytic representation of G over Qp, we can

consider the local system V of X defined by the torsor eX. We want to prove the following theorem

Theorem 20.0.1. There exists a natural bO-Higgs bundle attached to V, namely, there is a bO-linear

map

✓X(V) : Vb⌦bQp

bO(1)! Vb⌦bQp

bO ⌦O Ω
1
X(log)

with ✓X(V) ^ ✓X(V) = 0 satisfying the following properties.

1. The formation V 7! ✓X(V) is functorial on V.

2. The operator ✓V only depends on the Sen bundle

SenX : bO(1)! Lie Gb⌦ bO ⌦Ω1
X(log),

where the RHS acts by derivations on V.

3. Let ⌫ : XC,prokét ! XC,két be the projection of sites. Then one has

R⌫⇤(Vb⌦ bO) = ⌫⇤(RΓ(✓V ,Vb⌦ bO)),

in particular, Ri⌫⇤(Vb⌦ bO) = ⌫⇤H
i(✓V ,Vb⌦ bO) for all i 2 Z.

In §20.1 we construct the Sen bundle SenX using the results of §19. Roughly speaking, we first

perform local computations depending only on Kummer-étale charts of X, where we essentially re-

duce to the Sen theory of a product of tori and discs as in Example 19.1.7. The next task is to show

that these local constructions of the Sen bundle glue to SenX, where an explicit change of variables is

made.

Finally in §20.2, we use the results of the previous section to prove Theorem 20.0.1. Then, under

certain non-degeneracy hypothesis of SenX, we take V = Cla(G,Qp) the space of locally analytic

functions of G and compute the projection R⌫⇤C
la(G, bOX) from the pro-Kummer-étale to the Kummer-

étale site. We finish this section with another proof of the p-adic Simpson correspondance, as stated

in [LZ17, DLLZ18, Wan21] using our formalism.
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20.1. The Sen bundle

Many of the ideas of this section come from the work of Lue Pan [Pan20]. The method of Sen was

already used in [LZ17] to prove the p-adic Simpson correspondance for local systems, which is at the

same time an application of Kedlaya-Liu decompletions in [KL19].

20.1.1. The set-up

We keep the notation of the beginning of the chapter, namely (K,K+) is a complete non-archimedean

discretely valued extension of Qp, and C the p-adic completion of an algebraic closure. We let X be

an fs log smooth adic space over (K,K+), let G be a compact p-adic Lie group and eX ! X a pro-

Kummer-étale G-torsor. All the fiber products are as fs log adic spaces in the sense of [DLLZ19, Prop.

2.3.27], we highlight that it may differ from the fiber product of usual adic spaces.

In the following we will suppose that X is affinoid and that it has logarithmic coordinates, i.e. that

there exists a Kummer-étale map  : X ! S
(e,d�e)

K
which factors as a finite composition of rational

localizations and finite étale maps, and that the log structure of X is the pullback of the log structure

of S(e,d�e) defined by the normal crossing divisor S e+1 · · · S d = 0, cf. Example 19.1.7. We let S
(e,d�e)

K,1

be the relative perfectoid product of tori and polydiscs over S
(e,d�e)

K
, and let Γ denote its Galois group.

Notice that Γ = Zp(1)d is a p-adic Lie group isomorphic to Zd
p after fixing a compatible system of p-th

power roots of 1. We let Γn = pn
Γ and let S

(e,d�e)

K,n
= S

(e,d�e)

K,1
/Γn.

Remark 20.1.1. In [DLLZ19, Definition 5.3.1] a log affinoid perfectoid is modeled in n-divisible

monoids for all n 2 N. Thus, DC,1 is not log affinoid following this convention as we have not

taken n-th roots of S for (n, p) = 1. Nevertheless, since we are only interested in p-adic Hodge

theory, all the abelian sheaves we work with are p-adically complete in some sense (more precisely,

all these sheaves are solid Zp-modules). In particular, when taking pro-Kummer-étale cohomology

it is enough to trivialize at log affinoid perfectoid objects modeled in p-divisible monoids, so DC,1

suffices for computations.

Given an open subgroup G0 ⇢ G we let XG0 = eX/G0. The space XG0 is finite Kummer-étale over X

and if G0 is normal it is Galois with group G/G0. We have a presentation as objects in Xprokét

eX = lim
 ��
G0⇢G

XG0 .

Given n 2 N [ {1} and G0 ⇢ G we let Xn = X ⇥ ,S(e,d�e)
K
S

(e,d�e)

K,n
and XG0,n = XG0 ⇥X Xn. We also denote

eXn = eX ⇥X Xn and eX1 = eX ⇥X X1. The following diagram illustrates the relation between these spaces

as profinite-Kummer-étale objects in Xprokét

eX1

eXn XG0,1

eX XG0,n X1

XG0 Xn

X

Γn G0

G0⇥Γn

Γ/Γn G0 Γn G/G0

G0

G/G0⇥Γ/Γn

Γ/Γn G/G0

Γn

G/G0 Γ/Γn

(20.1.1)
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We make the following hypothesis which says, rougly speaking, that the only ramification at the

boundary is given by taking p-th power roots:

(HYP) For any open subgroup G0 ⇢ G the map XG0 ! X is, locally étale, modeled in a morphism of fs

monoids Q! P such that the kernel and the cokernel of Qgp ! Pgp are finite p-groups.

Remark 20.1.2. As eX is a G-torsor and G is a p-adic Lie group, there exists G0 ⇢ G an open subgroup

such that for all open subgroup G00 ⇢ G0 the map XG00 ! XG0 satisfies (HYP). In fact, this holds if G

is a uniform pro-p-group, and follows by the description of the Kummer-étale fundamental group of

a log geometric point, see [DLLZ19, Coro. 4.4.22].

We fix the following notation for the global functions of the C-scalar extension of the previous

spaces for G0 ⇢ G and n 2 N [ {1}:

eBn = bOX(eXC,n), BG0,n := bO(XC,G0,n), BG0 := bO(XC,G0),

similarly for the spaces of bounded functions. Notice that, as bO is a pro-Kummer-étale sheaf, we have

(eB1)Γn = eBn and (eB1)G0 = BG0,1.

If G0 ⇢ G is open and n 2 N we also have

BG0,n = bO(XC,G0,n) = Okét(XC,G0,n) = Oan(XC,G0,n).

The Abhyankar’s lemma tells us that the map XG0 ! X becomes étale after adding enough ramifi-

cation at the cusps1:

Lemma 20.1.3 ( [DLLZ19, Lem. 4.2.2.]). Let G0 ⇢ G be an open subgroup, then there exists n � 0

such that for all m � n the map XG0,m ! Xm is finite étale.

One deduces the following consequence from [DLLZ19, Lem. 6.1.9] or [Sch13a, Lem. 4.5]

Proposition 20.1.4. The space XG0,1 is affinoid perfectoid and the map eX1 ! XG0,1 is profinite-étale.

Furthermore, we have the following relations between the rings of functions

i B+G0,1 = (lim
��!n

B+G,n)^�p is an integral perfectoid ring.

ii eB+1 = (lim
��!G0,n

B+G0,n)^�p = (lim
��!G0

B+G0,1)^�p = (lim
��!n

eB+n )^�p is an integral perfectoid ring.

iii The ring eB1 is Galois over BG0,1 of group G0.

We saw in Example 19.1.7 that the tower {S
(e,d�e)

C,n
}n2N of products of tori and polydiscs gives rise a

strongly decomposable Sen theory. Our next task is to show that their pullback to Xprokét satisfy the

Colmez-Tate-Sen axioms

Proposition 20.1.5. The triple (eB1,G ⇥ Γ, pr2) is a strongly decomposable Sen theory.

Proof. By Proposition 20.1.4 the triple (eB1,G⇥Γ, pr2) satisfies the almost purity condition (CST0). It

is left to see that the pullbaks of the traces of Example 19.1.7 via  : X ! S
(e,d�e)

C
satisfy (CST1*) and

(CST2*) with c2 and c3 arbitrarily small. Given G0 ⇢ G an open subgroup we let n(G0) be the smallest

1In fact, this is a consequence of [DLLZ19, Prop. 4.2.1] after refining the argument of Lemma 4.2.3 in loc. cit. allowing

only p-th power ramification.
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integer n such that XG0,m ! Xm is étale for all m � n, by Lemma 20.1.3 we know that n(G0) < 1. Let

n � n(G0) and 1  i  d, recall that

An = O(S
(e,d�e)

C,n
) = ChT

± 1
pn , S

1
pn i

A = O(S
(e,d�e)

C,1
) = ChT

± 1
p1 , S

1
p1 i

Ai
n =

8>>><>>>:
ChT

± 1
p1

1
, . . . ,T

± 1
pn

i
, . . . ,T

± 1
p1

e , S
1

p1 i if 1  i  e

ChT
± 1

p1 , S
1

p1

e+1
, . . . , S

1
pn

i
, . . . , S

1
p1

d
i otherwise.

Let {�i}
d
i=1

be the standard basis of Γ, given by fixing a compatible sequence of p-th power roots of

unity. Let us define

Bi
G0,n := (BG0,nb⌦An

Ai
n)^�u

where the tensor product is as Banach algebras, and the u-completion is nothing but the p-adic com-

pletion with unit ball the integral closure of B+G0,nb⌦A+n A
i,+
n .

We claim that the traces Ri
n : A ! Ai

n extend to Ri
G0,n

: BG0,1 ! Bi
G0,n

with ||RG0,i||  |p
�c2 |,for c2

arbitrarily small as n! 1. Indeed, we have that

BG0,1 = (BG0,nb⌦An
A)^�u,

and Ri
n extends to Bi

G0,n
-linear maps

Ri
G0,n : BG0,nb⌦An

A! BG0,nb⌦An
Ai

n ! Bi
G0,n

such that ||RG0,n||  |p
�c2 |. We have to show that the image of (BG0,nb⌦A+n A+)+ is bounded in Bi

G0,n
. But

Lemma 4.5 of [Sch13a] imply that, given ✏ > 0, there exists n � n(G0) such that for all m � n, the

cokernel of the map B+G0,mb⌦A+m A+ ! B+G0,1 is killed by p✏ , this implies the claim and that c2 can be

taken arbitrary small as n! 1.

Finally, we have to show that for n(G)  m  n the map �
pm�1

i
�1 over Xi

G0,n
:= ker RG0,n is invertible,

with inverse bounded by |p�c3 |, and that we can take c3 arbitrarily small when n ! 1. Indeed, this

follows by the same argument as before and the analogous property for the Sen theory (A,Γ, idΓ). ⇤

As a consequence of Theorem 19.3.3, we have the following corollary:

Corollary 20.1.6. The Sen functor V 7! S G0(V) restricts to the category of locally analytic represen-

tations of G0. More precisely, given F an LF locally analytic representation of G0 over Qp, the space
eB1b⌦Qp

F is a relative locally analytic representation of eB1, and

RS G0(eB1b⌦Qp
F) = ((eB1b⌦Qp

F)G0⇥1)RΓ�la = ((eB1b⌦Qp
F)G0⇥1)Γ�la.

In particular, we have a G0 ⇥ Γ-equivariant action of the Sen operators

Sen(F) : eB1b⌦Qp
F ! (LieΓ)_ ⌦Qp

(eB1b⌦Qp
F). (20.1.2)

Remark 20.1.7. As the action of Γ on F and LieΓ is trivial, the Sen operator factors through

Sen(F) : eBb⌦CF ! (LieΓ)_ ⌦Qp
(eBb⌦CF)

Remark 20.1.8. By taking colimits as G0 ! 1, we can define the Sen module of a locally analytic

representation of g (see Definition 17.2.9). Indeed, let F be an LF locally analytic representation of

g, and write F = colimh!1 Fh as a colimit of gh-analytic representations. Let G† = {G0 ⇢ G} be

the overconvergent neighbourhood of 1 in G, see Definition 17.3.8. Since F is a g-locally analytic
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representation it admits a natural action of G†, which is nothing but the integration of g to an action

of some G0 ⇢ G on each Fh. Then we define the Sen module of F as the eBG�sm,Γ�la
1 -LF space

S g(F) := lim
��!

h,G0⇢G

S G0(Fh).

One has that eB1e⌦CF = eBb⌦eBG�sm,Γ�la
1

S g(F). The construction of Sen operators is the same as for G-

analytic representations. The cohomological computations of §19.4 hold if one takes the smooth

G†-vectors:

RΓ(G† ⇥ Γ, (eB1b⌦CF)) = (RΓ(n0, eBb⌦F))G†�sm,

where we identify all the nG0 for G0 ⇢ G with n0 := LieΓ.

20.1.2. Glueing

In this paragraph we show that the Sen operators (20.1.2) factor through the bO-linear action of the

Lie algebra g = Lie G, and that they glue to a map of pro-Kummer-étale sheaves over Xprokét

SenX : Ω1
X(log)_ ⌦ bO(1)! g ⌦bQp

bO , (20.1.3)

where Ω1
X(log) is the sheaf of log differential forms over X, and g is seen as a pro-Kummer-étale local

system via the G-torsor eX ! X and the adjoint action of G. Let Cla(g,C) denote the germs of locally

analytic functions of G at 1, cf. §17.2.2. We need a lemma

Lemma 20.1.9. Let F be an LF locally analytic representation of g over Qp (cf. Definition 17.2.9).

Then F admits a closed immersion via the orbit map

F ! Cla(g,Qp)?2
b⌦Qp

F0,

where Cla(g,Qp)?2
is endowed with the right regular action and F0 = F with the trivial action.

Proof. This follows formally by writing F as a colimit of analytic representations and Theorems

17.2.3 and 17.2.10. ⇤

The following is a local version of the theorem we want to prove

Proposition 20.1.10. Let F be a locally analytic representation of g. Then the Sen action

Sen(F) : eBb⌦Qp
F ! (LieΓ)_ ⌦Qp

(eBb⌦Qp
F)

factors through a Galois equivariant map Sen 2 (LieΓ)_ ⌦Qp
(eBb⌦Qp

g) making the following diagram

commutative

eBb⌦Qp
F (LieΓ)_ ⌦Qp

(eBb⌦Qp
g) ⌦Qp

F

(LieΓ)_ ⌦Qp
(eBb⌦Qp

F),

Sen⌦1

Sen(F)
1⌦@

where @ : g ⌦Qp
F ! F is the derivation map.

Proof. By Lemma 20.1.9 and the functoriality of the Sen operators, it is enough to consider F =

Cla(g,Qp). Then, the Sen map is a G† ⇥ Γ-equivariant map

Sen(Cla(g,Qp)) : eB1b⌦Qp
Cla(g,Qp)?2

! (LieΓ)_ ⌦Qp
eB1b⌦Qp

Cla(g,Qp)?2
.

Moreover, the Sen operators satisfy the Leibniz rule by construction, and are invariant under the ?1-

action of g. Therefore, they must factor through ?1-invariant derivations Sen : LieΓ! (eB1)Γ ⌦Qp
g =

eB ⌦Qp
g where g acts via the ?2-action on Cla(g,Qp). The proposition follows. ⇤
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Remark 20.1.11. The previous proposition implies that, in order to compute the Sen operators, it is

only necessary to consider a faithful representation of g.

Our next task is to understand the behaviour of the Sen operators in families after changing the

chart  , and show that they glue to a morphism (20.1.3). The idea of the proof is to use explicit local

coordinates for the Sen modules attached to Cla(g,Qp) from two different charts, and compute directly

the Sen operators.

Case G = Γ

In a first approximation we consider the case when G = Γ � Zp(1)d is a torsor arising from a

perfectoid chart. We have to introduce some notation. Let X be an fs log smooth affinoid space

over Spa(K,K+), and  1, 2 : X ! S
(e,d�e)

K
two étale charts which factor as compositions of rational

localizations and finite étale maps. Let X1,0 := S
(e,d�e)

K,1
⇥
S

(e,d�e)
K

, 1
X and X0,1 := X⇥ 2,S

(e,d�e)
K
S

(e,d�e)

K,1
, and let

Γ1 and Γ2 denote the Galois groups of X1,0 and X0,1 over X respectively. We let X1,1 := X1,0 ⇥X X0,1

be the pro-Kummer-étale torsor of group Γ1 ⇥ Γ2. Let B1,0 := bOX(XC,1,0), B0,1 := bOX(XC,0,1) and

B1,1 := bOX(XC,1,1). One can then consider the Sen module associated to Cla(LieΓ1,Qp)?1
and

Cla(LieΓ2,Qp)?1
respectively. Furthermore, we have by definition

S LieΓ1
(Cla(LieΓ1, B1,1)?1,3

) = BΓ1⇥Γ2�la
1,1 = S LieΓ2

(Cla(LieΓ2, B1,1)?1,3
).

Theorem 19.3.3 also says that the orbit maps provide B1,1-linear isomorphisms

Cla(LieΓ1, B1,1) � B1,1b⌦B
Γ1⇥Γ2�sm
1,1

BΓ1⇥Γ2�la
1,1 � Cla(LieΓ2, B1,1).

Let us fix a compatible system of p-th power roots of unity (⇣pn)n2N and let �1,(1), . . . �d,(1) 2 Γ1 and

�1,(2), . . . , �d,(2) 2 Γ2 denote the standard basis. We let ✓ j,(i) 2 LieΓi denote the derivative in the

direction � j,(i) for j = 1, . . . , d and i = 1, 2.

Let T1,(1), . . . ,Te,(1), S e+1,(1), . . . S d,(1) 2 Oan(X) and T1,(2), . . . ,Te,(2), S e+1,(2), . . . S d,(2) 2 Oan(X) be the

coordinates given by the charts  1 and  2 respectively. We have two basis for the log differentials of

X

Ω
1
X(log) =

eM

j=1

Oan dlog T j,(i) �

dM

j=e+1

dlog S j,(i).

Let @ j,(i) denote the dual basis of {dlog T j,(i), dlog S j,(i)} for i = 1, 2, and

@ j,(1) =

dX

k=1

a j,k@k,(2) (20.1.4)

with a j,k 2 Oan(X) the base change matrix.

Proposition 20.1.12. The following hold

1. We have ✓ j,(1) = �
Pd

k=1 a j,k✓k,(2).

2. There are elements z1, . . . , zd 2 B
Γ1⇥Γ2�la
1,1 such that

✓ j,(2)(zk) = � j,k and ✓ j,(1)(zk) = a j,k.

Proof. Consider the Faltings extension

0! bO(1)! gr1OB+dR,log ! Ω
1
X(log) ⌦Oan

bO ! 1
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and the elements

Y j,(1) =

8>>><>>>:
log(

[T [
j,(1)

]

T j,(1)
) if 1  j  e

log(
[S [

j,(1)
]

S j,(1)
) if e + 1  j  d

in OB+
dR,log

(X1,0) (resp. Y j,(2) for X0,1). Let " = (⇣pn)n2N and t = log["] 2 B+
dR

. Then

� j,(1)Yk,(1) = Yk,(1) + � j,kt and dYk,(1) =

8>><>>:
� dlog Tk,(1) if 1  k  e

� dlog S k,(1) if e + 1  k  d
(20.1.5)

(resp. for Yk,(2)). Let us consider the reduction of the variables Yk,(i) in gr1OB+
dR,log

(XC,1,1). Then

gr1OB+
dR,log

(XC,1,1) is a faithful representation of both Γ1 and Γ2, and it determines the action of the

Sen operators ✓ j,(1) and ✓ j,(2). By definition, we have ✓ j,(1)(t) = ✓ j,(2)(t) = 0 and

✓ j,(1)(Yk,(1)) = � j,k = ✓ j,(2)(Yk,(2)).

Therefore, by (20.1.4) and (20.1.5) one obtains

✓ j,(1) =

dX

k=1

�a j,k✓k,(2),

this proves (1).

To prove (2), notice that the elements t,Y j,(2) 2 OB+
dR,log

(XC,1,1) provide an isomorphism

B1,1t �

dM

j=1

B1,1Y j,(2) = OB+dR,log(XC,1,1). (20.1.6)

Taking Γ2-invariants, and a lift Y 0
k,(2)
2 OB+

dR,log
(XC,1,0) of dYk,(2) (e.g. Y 0

k,(2)
=

P
` bk,`Y`,(1) with (bk, j)k,`

the inverse of (ak,`)k,`), one can write

Y 0k,(2) = Yk,(2) � zkt with zk 2 B1,1.

The invariance of Y 0
k,(2)

by the action of Γ2 implies the relation

✓ j,(2)(zk) = � j,k.

Finally, it is clear that we can choose the zk’s to be Γ1-locally analytic (eg. with Y 0
k,(2)
=

P
` bk,`Y`,(1) as

before), and part (1) implies that ✓ j,(1)(zk) = a j,k. This finishes the proposition. ⇤

Corollary 20.1.13. Let M > 0, n = n(M) 2 N and zk,M 2 B
pn
Γ1⇥pn

Γ2�sm
1,1 be an element such that

|zk � zk,M |  |p
M | for all k = 1, . . . , d. Then we can write

BΓ1⇥Γ2�la
1,1 = lim

��!
M!1

Bpn
Γ1�an,pn

Γ2
1,1 hzk � zk,M : 1  k  di. (20.1.7)

as an LB space.

Proof. It is clear that the RHS is included in the LHS as the elements zk and zk,M are analytic for some

subgroup pm
Γ1 ⇥ pm

Γ2. Conversely, given f 2 B
pm
Γ1⇥pm

Γ2�an
1,1 , the Sen operators ✓k,(2) satisfy

|✓k,(2)( f )|pmΓ1⇥pmΓ2�an  C| f |pmΓ1⇥pmΓ2�an

where C is a constant that only depends on m, and the norm | · |pmΓ1⇥pmΓ2�an is the norm of the Banach

space B
pm
Γ1⇥pm

Γ2�an
1,1 . Taking M such that Cp�M << 1, one can consider the series for j = 1, . . . , d

Di
✓(2)

( f ) :=
X

k2N

(�1)k (zi � zi,M)k

k!
(✓i,(2))

k( f ).
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Then Di
✓(2)

( f ) is a Γ1 ⇥ Γ2-locally analytic vector and one has the bound for M >> 0

|Di
✓(2)

( f )|  | f |.

Furthermore, a direct computation shows that ✓i,(2)(D
i

✓(2)( f )) = 0 proving that it is h�i,(2)i-smooth.

Define

D✓(2)
( f ) := Dd

✓(2)
� · · · � D2

✓(2)
� D1

✓(2)
( f ).

Then, as the Sen operators commute with each other, we have that D✓(2)
( f ) 2 B

pm0
Γ1�an⇥pm0

Γ2
1,1 for m0 >>

0 depending only on the radius of analyticity of f .

For ↵ 2 Nd define

f↵ := D✓(2)

 
✓↵,(2)( f )

↵!

!
,

where ✓↵,(2) := (✓d,(2))
↵d � · · · � (✓1,(2))

↵1 . A direct computation gives that

f =
X

↵2Nd

f↵(z � zM)↵ (20.1.8)

where (z�zM)↵ := (z1�z1,M)↵1 · · · (zd�zd,M)↵d . One checks that (20.1.8) is an element of B
pn
Γ1�an,pn

Γ2
1,1 hzk�

zk,M : 1  k  di for M, n >> 0 depending only on the radius of analyticity of f . ⇤

Notation 2. We shall write the direct limit (20.1.7) as

BΓ1⇥Γ2�la
1,1 = BΓ1�la,Γ2�sm

1,1 {z � zM},

knowing that zk,M varies as M ! 1.

The proof of Proposition 20.1.12 can be adapted to the case when  2 is not necessarily a chart.

We let  2 : X ! S
(e0,d0�e0)

K
be a map of adic spaces (not necessarily étale), and keep the notations

introduced above for the induced coordinates over X.

Proposition 20.1.14. Let (bi, j)i, j 2 Oan(X)d0⇥d be the d0⇥d transformation matrix from  ⇤2Ω
1

S
(e0 ,d0�e0)
K

(log)!

Ω
1
X(log) =  ⇤1Ω

1

S
(e,d�e)
K

(log) induced by the dlog differentials of the coordinates of  2 and  1.

1. Let (ai, j)i, j 2 Oan(X)d⇥d0 be the dual matrix of (bi, j)i, j, and consider the Sen operators

Sen : LieΓ1 ! B1,1 ⌦ LieΓ2.

Then Sen(✓i,(1)) = �
P

j ai, j✓ j,(2).

2. Moreover, there are elements

z1, . . . , zd0 2 BΓ1⇥Γ2�la
1,1 = S LieΓ2

(Cla(LieΓ2, B1,1)?1,3
)

such that

✓i,(2)(z j) = �i, j and ✓i,(1)(z j) = ai, j.

Proof. We have a map of Faltings’s extensions

0 bOX(1) OB+
dR,logX

bOX ⌦Ω
1
X(log) 0

0 bO
S

(e0 ,d0�e0)
K

(1) OB+
dR,logS

(e0 ,d0�e0)
K

bO
S

(e0 ,d0�e0)
K

⌦Ω1

S
(e0 ,d0�e0)
K

(log) 0.

 ⇤
2  ⇤

2
 ⇤

2

188



20. Hodge-Tate theory over rigid spaces

Then, since OB+
dR,logS

(e0 ,d0�e0)
K

is a faithful representation of Γ2, the proof of (1) of Proposition 20.1.12

implies that

Sen(✓i,(1)) = �
X

j

ai, j✓ j,(2)

as wanted. Furthermore, one can construct the elements zi as in (2) of Proposition 20.1.12 by per-

forming the same argument with the pullback of the Faltings extension of S
(e0,d0�e0)

K
. ⇤

General G

We want to prove the following theorem.

Theorem 20.1.15. Let X be an fs log smooth adic space over Spa(K,K+) with log structure given by

normal crossing divisors, G a p-adic Lie group and eX ! X a pro-Kummer-étale G-torsor. Then the

Sen operators given by local charts of X glue to a morphism of bOX-vector bundles over Xprokét

SenX : Ω1
X(log)_ ⌦OX

cOX(1)! g ⌦bQp

bOX.

Moreover, let H be a p-adic Lie group, Y be another adic space as above and eY ! Y 0 an H-torsor.

Let H ! G be a morphism of groups and suppose that we have a commutative diagram compatible

with the actions of the groups

eY eX

Y X
f

. (20.1.9)

Then the following square is commutative

f ⇤Ω1
X(log)_ ⌦OY

(1) bOY f ⇤g ⌦bQp

bOY

Ω
1
Y(log)_ ⌦OY

bOY h ⌦bQp

bOY

f ⇤ SenX

SenY

(20.1.10)

Remark 20.1.16. The Sen operator can be written equivalently as a map

✓X : bOX(1)! g ⌦cQp

bOX ⌦Ω
1
X(log).

Note that by construction of the Sen operator one has ✓X ^ ✓X = 0, this proves the first two points of

Theorem 20.0.1.

First, we formally reduce the statement to the case when X is affinoid admiting a chart  : X !

S
(e,d�e)

K
.

Lemma 20.1.17. Suppose that Theorem 20.1.15 holds for fs log affinoid spaces admitting a chart to

S
(e,d�e)

K
. Then it holds for an arbitrary X.

Proof. Let U• be an hypercover of X by objects in Xét satisfying the hypothesis of the lemma. Let
eU• := U• ⇥X

eX be the G-torsor over U•. By hypothesis on the existence and functoriality of Sen for

the affinoids, we have a map of bOU•-sheaves on U•,prokét

SenU• : Ω1
U•

(log)_ ⌦OU•

bOU•(1)! g ⌦bQp

bOU• .

By glueing we obtain the desired map SenX. Functoriality of SenX for arbitrary adic spaces is proven

in the same way. ⇤
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Thus, we can assume that X and Y are fs log smooth affinoid spaces over Spa(K,K+) admitting

charts to S
(e,d�e)

K
for some e, d 2 N. We first show the existence of the map SenX. Let us keep the

notation of §20.1.1, and let us introduce some more:

• We denote eX1,0 = X1,0 ⇥X
eX, eX0,1 = eX ⇥X X0,1 and eX1,1 = X1,0 ⇥X

eX ⇥X X0,1.

• We denote eB1,0 := bOX(eXC,1,0), eB0,1 = bOX(eXC,0,1) and eB1,1 = bOX(eXC,1,1).

We have the following proposition

Proposition 20.1.18. Let ✓i,(1) and ✓i,(2) denote the Sen operators arising from the charts  1 and  2

respectively. Let A = (ai, j) denote the base change matrix from  2 to  1 of Ω1
X(log)_ corresponding to

the stantard basis of Ω1

S
(e,d�e)
C

(log) (cf. (20.1.4)). Then the following diagram commutes

eB ⌦Qp
LieΓ1

eB ⌦Qp
g

eB ⌦Qp
LieΓ2

�A

✓(1)

✓(2)

where we identify LieΓ1 � LieΓ2 � Qp(1)d via their standard basis. In particular, the local Sen

operators glue to SenX.

Remark 20.1.19. The reason to the �A in the proposition is the �1 of Proposition 20.1.12, which

is a consequence of (20.1.5). Notice that a priori this is a statement over the C-extension of X.

Nonetheless, the Sen operators are Galois equivariant and Gal(C/K) acts via the cyclotomic character

on LieΓi.

Proof. By Theorem 19.3.3, the orbit maps provide Lie(Γ1 ⇥ G ⇥ Γ2)-equivariant and eB1,1-linear

isomorphisms

Cla(LieΓ1 ⇥ g, eB1,1)?2,✓(2)
= eB1,1b⌦eBΓ1⇥G⇥Γ2�sm

1,1

eBΓ1⇥G⇥Γ2�la
1,1 = Cla(g ⇥ LieΓ2, eB1,1)?2,✓(1)

. (20.1.11)

We also have eB1,1-linear isomorphisms

eB1,1b⌦eBΓ1⇥G�sm

1,0

eBΓ1⇥G�la

1,0
= Cla(g, eB1,1) = eB1,1b⌦eBG⇥Γ2�sm

0,1

eBG⇥Γ2�la

0,1
. (20.1.12)

Recall that, by definition, the Sen operators are constructed as the derivations of LieΓ1 and LieΓ2

in the spaces of locally analytic vectors, the idea of the proof is to use the above isomorphisms to

compare both.

By Proposition 20.1.12, there are Γ1 ⇥ Γ2-locally analytic elements z1, . . . , zd in B1,1 such that

✓(2)

i
(z j) = �i, j and ✓(1)

i
(z j) = ai, j. (20.1.13)

By the proof of Corollary 20.1.13, we can find elements zi,M 2 B
Γ1⇥Γ2�sm
1,1 with |zi � zi,M | < |p

M | as

M ! 1, such that
eBΓ1⇥G⇥Γ2�la
1,1 = eBΓ1⇥G�la,Γ2�sm

1,1 {z � zM}.

Let f 2 Cla(g,Qp) ⇢ Cla(g, eB1,1). We want to show that

✓i,(1)( f ) =
X

j

�ai, j✓ j,(2)( f ).
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By (20.1.12), there are rk 2 eB0,1 and vk 2 eBG⇥Γ2�la

0,1
such that

f (g) =
X

k

rkg · vk.

Notice that by definition of the Sen action

✓ j,(2)( f ) =
X

k

rkg · ✓ j,(2)(vk).

There exists M >> 0 such that

vk =
X

↵2Nd

1

↵!
v↵,k(z � zM)↵

with v↵,k = D✓(2)

�
✓↵,(2)(vk)

�
as in Corollary 20.1.13. Moreover, v↵,k 2 B

Γ1⇥G�la,Γ2�sm
1,1 for all k and ↵. We

deduce that

f (g) =
X

k

rk

X

↵2Nd

1

↵!
g · v↵,k(z � zM)↵.

By definition of ✓1 one gets that

✓i,(1)( f )(g) =
X

k

X

↵2Nd

rk(z � zM)↵

↵!
g · ✓i,(1)(v↵,k).

But by definition

v↵,k =
X

↵2Nd

(�1)|↵|

↵!
(z � zM)↵✓↵,(2)(vk).

By (20.1.13), and the fact that the ✓↵,(2)(vk) are Γ1-smooth, the previous implies that

✓i,(1)(v↵,k) = �

dX

j=1

ai, jv↵+1 j,k.

A direct computation shows that

✓i,(1)( f )(g) = �

dX

j=1

ai, j

X

k

X

↵2Nd

rk(z � zM)↵

↵!
g · v↵+1 j,k

= �

dX

j=1

ai, j

X

k

rkg · ✓ j,(2)(vk)

= �

dX

j=1

ai, j✓ j,(2)( f )(g)

as wanted. ⇤

Finally, we prove the functoriality with respect to the group. We first prove the version when X = Y .

Lemma 20.1.20. In Theorem 19.3.3, suppose that X = Y is affinoid, then the commutativity of

(20.1.10) holds.

Proof. Let eXG ! X and eXH ! X denote the G and H-torsors respectively, and let f : eXH ! eXG be

the equivariant map. Let X1 be the Γ-torsor given by a system of coordinates, let eB1 and eA1 be the

rings of functions of eXG ⇥X X1 and eXH ⇥X X1 respectively. Then f induces a map

f ⇤ : Cla(g, eB1)! Cla(h, eA1)

equivariant for the action Γ, and compatible with the homomorphism H ! G. The lemma follows by

the definition of the Sen operators as derivations of LieΓ in the Sen modules. ⇤
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Next, we prove the version when the square (20.1.9) is cartesian

Lemma 20.1.21. In Theorem 19.3.3, suppose that X and Y are affinoids admitting charts and that
eY = Y ⇥X

eX. Then (20.1.10) is commutative.

Proof. Let  X and �Y be system of coordinates of X and Y respectively, and let X1, and Y1,� denote

the ΓX and ΓY torsors induced by the perfectoid coordinates. Let eY1,� = Y1,�⇥Y
eY and eX1,� = eX⇥XX1, ,

consider the following diagram of torsors

eY1,� ⇥X
eX1, 

eY1,� eY ⇥X X1, 

Y

Γ�Γ 

Γ�⇥G⇥Γ 

Γ�⇥G G⇥Γ 

By Lemma (20.1.20) we have a commutative diagram of Sen morphisms

(g � LieΓ ) ⌦bQp

bOY

Ω
1
Y(log)_ ⌦OY

bOY(1)

g ⌦bQp

bOY

SenG⇥Γ 

SenG

But LieΓ ⌦bQp

bOY = f ⇤Ω1
X(log)_⌦OY

bOY(1). We claim that the projection of SenG⇥Γ onto f ⇤Ω1
X(log)_⌦OY

bOY(1) is the pushforward of tangent vectors. Indeed, this follows from the commutativity of Faltings’s

extensions

0 bOY(1) gr1OB+
dR,logY

Ω
1
Y ⌦OY

bOY 0

0 bOY(1) f ⇤gr1OB+
dR,logX

f ⇤Ω1
X ⌦OY

bOY 0,

f ⇤

from Proposition 20.1.14, and from the proof of Proposition 20.1.18. ⇤

Proposition 20.1.22. In Theorem 19.3.3, suppose that X and Y are affinoid admitting charts. Then

(20.1.10) is commutative.

Proof. This follows from Lemmas 20.1.20 and 20.1.21 after writing the diagram (20.1.9) as a com-

position eY ! Y ⇥X
eX ! eX. ⇤

The Sen morphism encodes the directions of perfectoidness of systems of coordinates of X. We

have the following conjecture, which is a generalization of a theorem of Sen saying that a p-adic Ga-

lois representation of a finite extension of Qp has vanishing Sen operator if and only if it is potentially

unramified, see Corollary 3.32 of [FO].

Conjecture 3. The Sen morphism SenX : Ω1
X(log)_ ⌦ bO(1) ! g ⌦bQp

bOX is a bOX-subbundle (i.e. it is

injective with locally free quotient) if and only if eXC is a perfectoid space.
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As we will show in §22, the pro(Kummer)étale torsors defining the infinite level Shimura varieties

satisfy this subbundle condition. The proof of this fact never uses the perfectoidness of the Shimura

variety, but the p-adic Riemman-Hilbert correspondance of [DLLZ18].

Notation 3. From now on, we will write ✓X for the Sen operator SenX (or ✓ is X is clear from the

context). Given F a locally analytic LF g-representation overQp, we let ✓X(F) denote the Sen operator

of the G† equivariant bOeX-sheaf Fb⌦Qp
bOeX.

20.2. Application to proétale cohomology

We keep the previous notations, i.e., X is an fs log smooth adic space over K with log structure given

by normal crossing divisors, and eX a pro-Kummer-étale G-torsor over X. In this last section we apply

the globalization of the Sen operators of §20.1 and the computations of group cohomology via Sen

theory of §19.4 to finally prove part (3) of Theorem 20.0.1. In the process, we also prove a version of

this theorem with coefficients over the completed structural sheaf of the boundary divisor, this will be

used in §22 for the cohomology with compact supports. We finish by explaining the relation between

the Sen operator ✓X, and the p-adic Simpson correspondance of [LZ17, DLLZ18, Wan21].

20.2.1. Pro-Kummer-étale cohomology of relative locally analytic
bO-modules

Let X and eX ! X be as before. Let D ⇢ X be the boundary divisor. Étale locally on X, D can be

written as a disjoint union of irreducible components D =
S

a2I Da, where the finite intersections of the

Da’s are smooth. If this holds locally analytic over X we say that D is a strict normal crossing divisor,

for simplicity let us assume that this is the case. Given J ⇢ I a finite subset we let DJ =
T

a2I Da and

◆J : DJ ⇢ X, we will simply write bO (+)

DJ
for the sheaf ◆J,⇤ bO (+)

DJ
over Xprokét.

Consider the following scenario. Let W be a locally noetherian adic space over (K,K+) endowed

with an action of G. Let ⇡⌃
W

: eX⌃ ! W⌃ be a G-equivariant map of diamonds over Spd K. In particular,

as the map of diamonds respect the untilts, we have a map of ringed sites

⇡W : (eXprokét, bOeX)! (Wan,OW,an).

Definition 20.2.1. 1. Let F be a squarrable LF sheaf over W (see Definition 17.3.1). We define

the pullback ⇡⇤W(F ) to be the bOeX-sheaf mapping a log affinoid perfectoid U = Spa(R,R+) the

LF space

Γ(U, ⇡�1
W (F )b⌦⇡�1

W
(OW )OU).

In particular, if F is of the form lim
��!n

lim
 ��m

Bn with Bn,m ON Banach sheaves, we have that

⇡⇤w(F ) = lim
��!

n

lim
 ��

m

⇡�1
W (Bn,m)b⌦⇡�1

W
(OW )

bOeX,

where the last tensor product is given by the projective tensor product (or just the solid tensor

product) of Banach spaces on affinoid perfectoids.

2. Let G0 ⇢ G be an open subgroup, we denote by ⌫G0 : XC,G0,proét ! XC,G0,két the projection of

sites. Let G† = {G0 ⇢ G} denote the overconvergent neighbourhood of 1 in G. Let F be a

G†-equivariant squarrable LF sheaf over W which can be written, locally on Wan, as a colimit

of G0-equivariant squarrable LF sheaves for G0 ! 1, say F = lim
��!G0!1

FG0 . We define the

following projection living in eXkét:

R⌫1,⇤⇡
⇤
W(F ) := lim

��!
G0!1

R⌫G0,⇤⇡
⇤
W(FG0).

193



20. Hodge-Tate theory over rigid spaces

Recall some notations from Definition 17.3.8. Let ? 2 {két, an} and bOeXC ,?
the restriction of bOX to

eXC,?. The sections of the sheaves bOeX,? at qcqs objects admit an action of G†, we let O la
eXC ,?

denote the

subsheaf of locally analytic sections. We also define O sm
eXC ,?

to be the subsheaf of smooth sections. Note

that O sm
eXC ,?
= lim
��!G0!1

OXC,G0 ,?.

Theorem 20.2.2. Let F be a squarrable LF sheaf over W endowed with a locally analytic action

of g. . Assume that, locally on Wan, F is of the form F = lim
��!n

Fn with Fn squarrable Fréchet

and Fn = lim
 ��m

Bn,m is a presentation with dense transition maps, where the Bn,m are projective

Banach sheaves endowed with a g-equivariant action over W which is analytic for a uniform radius

of analyticity as m! 1 and n is fixed. Let � : eXC,két ! eXC,an be the projection, then

R⌫1,⇤(⇡
⇤
WF ) = RΓ(✓X, (⇡

⇤
WF )|eXkét

)G†�sm (20.2.1)

R(� � ⌫1)⇤(⇡
⇤
WF ) = RΓ(✓X, (⇡

⇤
WF )|eXan

)G†�sm. (20.2.2)

Moreover, for J ⇢ I a finite subset we have

R⌫1,⇤(⇡
⇤
WFb⌦ bOX

bODJ
) = RΓ(✓X, (⇡

⇤
WF )|eXkét

)G†�smb⌦L

O sm
eX,két

O sm
DJ ,két

R(� � ⌫1)⇤(⇡
⇤
WFb⌦ bOX

bODJ
) = RΓ(✓X, (⇡

⇤
WF )|eXan

)G†�smb⌦L

O sm
eX,két

O sm
DJ ,an.

where O sm
DJ ,?
= lim
��!G0!1

ODJ⇥X XG0 ,?.

Proof. The statement is local on the analytic topology of eX. Then, we can assume without lose of

generality that X is affinoid and that it admits a chart  : X ! S
(e,d�e)

K
and that F can be written as

a colimit of squarrable Fréchet spaces. Since X? for ? 2 {két, an} admits a basis consisting in qcqs

objects, the derived pushforwards R⌫G0,⇤ commute with limits and filtered colimits. Then,

R⌫G0,⇤(⇡
⇤
WF ) = lim

��!
n

lim
 ��

m

R⌫G0,⇤(⇡
⇤
WBn,m).

Let X1 denote the Γ-torsor obtained by taking the pullback of the perfectoid coordinates. Then, for

an affinoid U 2 XC,G0,két we have by Proposition 19.4.7

RΓprokét(U, ⇡
⇤
WBn,m) = RΓ(G0 ⇥ Γ, ⇡⇤WBn,m(eX ⇥XG0

U ⇥X X1))

= RΓ(✓X, ⇡
⇤
WBn,m(eX ⇥XG0

U))G0 .

Now, let eU 2 eXkét be a qcqs object arising from an affinoid UG0 2 XG0 . For G00 ⇢ G0 let UG00 denote

the pullback to XG00 . Then we have that

R⌫1,⇤(⇡
⇤
WF )(eU) = lim

��!
G00,n

RΓprokét(UG00 , ⇡
⇤
WFn)

= lim
��!
G00,n

lim
 ��

m

RΓprokét(UG00 , ⇡
⇤
WBn,m)

= lim
��!
G00,n

lim
 ��

m

RΓ(✓X, ⇡
⇤
WBn,m(eU))G00

= lim
��!
G00,n

(RΓ(✓X, ⇡
⇤
WFn)(eU))G00

= lim
��!

n

RΓ(✓X, ⇡
⇤
WFn)(eU)G†�sm

= RΓ(✓X, ⇡
⇤
WF )(eU)G†�sm.
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This proves (20.2.1). Notice that the same computation holds for a qcqs object eU 2 eXan arising as the

pullback of an open affinoid subspace U ⇢ XG0 , this implies (20.2.2).

Finally, the statement for ⇡⇤WFb⌦ bOX

bODJ
can be reduced to the case F = Cla(g,OW)?1,3

by first

reducing to the ON Banach case, and then using the same strategy of Lemma 19.3.8. This last situation

will be handle in Theorem 20.2.4. ⇤

Remark 20.2.3. The condition imposed on the sheaf F is ad hoc, but it suffices for the applications of

this article. The proof of Lemma 19.3.8 suggests that there should be a category of “relative locally

analytic bOX sheaves over X”, generated by the sheaves of locally analytic functions of pro-Kummer-

étale G-torsors where G is a p-adic Lie group. Then, the (rational) p-adic Simpson correspondance

could be seen as the construction of a natural Sen operator ✓X(F ) for F a sheaf in this category.

20.2.2. Locally analytic vectors of bO
We make the following non-degeneracy hypothesis for the Sen operators

(BUN) The Sen morphism ✓X : Ω1
X(log)_ ⌦OX

bOX(1) ! g ⌦bQp

bOX is a subbundle. In other words, ✓X is

injective and its cokernel is an bOX-vector bundle.

Theorem 20.2.4. Let ⌫ : XC,prokét ! XC,két and � : eXC,két ! eXC,an denote the projection of sites. Then

R⌫1,⇤(C
la(g,Qp)?1

b⌦bQp

bOX) = O la
eXC ,két

R(� � ⌫1)⇤(C
la(g,Qp)?1

b⌦bQp

bOX) = O la
eXC ,an
.

Moreover, let J ⇢ I, then

R⌫1,⇤(C
la(g,Qp)?1

b⌦bQp

bODJ
) = O la

eXC ,két
b⌦O sm

eXC ,két
O sm

DJ ,két

R(� � ⌫1)⇤(C
la(g,Qp)?1

b⌦bQp

bODJ
) = O la

eXC ,an
b⌦O sm

eXC ,an
O sm

DJ ,an.

Proof. The statement is local on eX? for ? 2 {két, an}, so we can assume that X is affinoid and that it

admits a chart  : X ! S
(e,d�e)

K
. Let eU 2 eXC,két be a qcqs object arising from an affinoid U 2 XC,G0,két

with G0 ⇢ G. For G00 ⇢ G0 we shall denote UG00 := XC,G00 ⇥XC,G0
U. Let J ⇢ {e + 1, . . . , d} and

consider DJ the divisor defined by (S a : a 2 J). Without loss of generality we can assume that

J = {k + 1, . . . , d}. Let X1 be the pullback over X of the perfectoid coordinates of S
(e,d�e)

K
, and let us

denote eU1 := eU ⇥X X1. Then, since eU1 is perfectoid, we have that

RΓprokét(U,C
la(G0,Qp)?1

b⌦bQp

bODJ
) = RΓ(G0 ⇥ Γ,Cla(G0,Qp)?1

b⌦bQp

bODJ
(eU1)).

Therefore

R⌫1,⇤(C
la(g,Qp)?1

b⌦ bODJ
)(eU) = lim

��!
G00!1

RΓproét(UG00 ,C
la(G00,Qp)?1

b⌦ bODJ
)

= lim
��!

G00!1

RΓ(G0 ⇥ Γ,Cla(G0,Qp)?1
b⌦Qp

bODJ
(eU1)).

But the triple ( bODJ
(eU1),G0 ⇥ ΓJc , prJc) is a Sen theory, where ΓJc ⇢ Γ correspond to the Jc-th

components with Jc = {e + 1, . . . , d}\J. Indeed, the Sen traces of Example 19.1.7 specializes to Sen

traces of the boundary (S a = 0 : a 2 J), and the proof of Proposition 20.1.5 still holds in this situation.

However, DJ also has monodromy given by the action of ΓJ, the J-th components of Γ, and LieΓJ
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acts via the reduction of the Sen map to the boundary: ✓X : Lie Γ ! Ω1
x(log)b⌦ bODJ

. Therefore, by

Proposition 19.4.7 one finds that

RΓ(G0 ⇥ Γ,Cla(G00,Qp)?1
b⌦Qp

bODJ
(eU1)) = RΓ(✓X,C

la(G00, bODJ
(eU))?1,3

)G00

= RΓ(✓X,C
la(G00, bOX(eU))?1,3

)G00b⌦OX(UG00 )ODJ
(UG00).

For the second equality one uses the description of RΓ(✓X,C
la(G00, bOX)?1,3

)G00 as the Γ-invariants of the

LieΓ-Koszul complex of the Sen module of Cla(G00, bOX), see Definition 19.4.5. Hence, one deduces

R⌫1,⇤(C
la(g,Qp)?1

b⌦ bODJ
)(eU) = RΓ(✓X,C

la(g,Qp)?1
b⌦ bOX(eU))G†�smb⌦O sm

eX
(eU)O

sm
DJ

(eU).

This proves the final part of Theorem 20.2.2.

Finally, if the hypothesis (BUN) holds, we can suppose that the image of ✓X admits a complement

given by a subspace V ⇢ g. In particular, the Poincaré lemma implies that

RΓ(✓X,C
la(g,Qp)?1

b⌦ bOX(eU)) = Cla(g, bOX(eU))✓X=0
?1,3
.

But then, the G†-smooth vectors of Cla(g, bOX(eU))✓X=0
?1,3

are nothing but the G†-smooth and Γ-invariant

vectors of Cla(g, bOX(eU1))?1,3
, which are precisely the locally analytic vectors O la

eX,két
(eU). Notice that

the previous argument does not change if we take instead eU 2 eXC,an, this ends the proof of the

theorem. ⇤

20.2.3. The p-adic Simpson correspondance

In this paragraph we explain the relation between the Sen operator and the p-adic Simpson corre-

spondance of [LZ17, DLLZ18, Wan21]. Let us recall (part) of one of the main theorems of [LZ17,

DLLZ18].

Theorem 20.2.5 ( [LZ17, Theo. 2.1] and [DLLZ18, Theo. 3.2.4] ). Let X be an fs log smooth adic

space over Spa(K,K+) and let L be a pro-Kummer-étale Qp-local system admitting a lisse lattice

L0 ⇢ L. Let OClog = gr0OBdR,log be the Hodge-Tate period sheaf, and ⌫ : XC,prokét ! XC,két be the

projection of sites. Then

H(L) := R⌫⇤(L ⌦ OClog)

is a Gal(C/K)-equivariant log Higgs bundle concentrated in degree 0. Let ✓ denote the Higgs operator

ofH(L). Then one has

R⌫⇤Lb⌦ bOX = RΓ(✓,H(L)).

It turns out that using the theory we have developed so far we can deduce the previous theorem. In

fact, let us suppose without loss of generality that L0 is of rank n. Define the GLn(Zp)-torsor

eX := Isom(Zn
p,L

0).

Thus, L is constructed from the standard representation of GLn via the torsor eX. In particular, by

Theorem 20.1.15, L ⌦ bOX has a Sen operator ✓X. On the other hand, the sheaf OClog can be written as

OClog = lim
��!
k!1

Symk(
1

t
gr1OB+dR,log),

where gr1OB+
dR,log

is the Faltings extension and t = log([✏]) 2 B+
dR

. But we have proven that the Sen

operator acts on 1
t
gr1OB+

dR,log
by

✓X :
1

t
gr1OB+dR,log ⌦Ω

1
X(log)_ ⌦ bOX(1)! Ω1

X(log) ⌦Ω1
X(log)_ ⌦ bOX

Tr
�! bOX ⇢

1

t
gr1OB+dR,log
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where the second arrow is the trace map. Thus, by Theorem 20.2.2 one gets that

R⌫⇤(L ⌦ OClog) = ⌫⇤RΓ(✓X,L ⌦ OClog).

Hence, we are left to show that RΓ(✓X,L ⌦ OClog) is concentrated in degree 0, and that it admits

a reduction to a vector bundle. We need the following lemma, which is essentially Lemma 2.15

of [LZ17].

Lemma 20.2.6. The image of ✓X : Ω1
X(log)_⌦ bOX(1)! gln⌦ bOX is contained in a nilpotent subalgebra.

Proof. It is enough to prove that the action of ✓X on L is nilpotent. But the coefficients of its charac-

teristic polynomial are given by

�i : Ω1
X(log)_ ⌦ bOX(1)! End bOX

(

î

L ⌦ bOX)
Tr
�! bOX,

and the �i are Galois equivariant. This forces �i = 0 proving that ✓X is nilpotent. ⇤

Now, knowing that the action of ✓X is nilpotent on L, one can show by taking perfectoid coordinates

with Galois group Γ, that the action of a basis of LieΓ on Lb⌦OClog can be integrated. Therefore,

RΓ(✓X,L ⌦ OClog) = (L ⌦ OClog)✓X=0 and

H(L) = ⌫⇤(L ⌦ OClog)✓X=0.

The fact that H(L) is a vector bundle can be deduced by a more careful study of the Sen module

S  (L ⌦ OClog) in local coordinates  .

Finally, let us mention the relation with the work of Wang [Wan21]. Let X be a rigid analytic space

over Cp admitting a liftable good reduction X over OCp
(this means that X admits a lifting over Ainf/⇠

2

where ⇠ = ([✏] � 1)/([✏
1
p ] � 1)). We have the following theorem

Theorem 20.2.7 ( [Wan21, Theo. 5.3]). Let OC†
log

denote the overconvergent Hodge-Tate period sheaf

of Wang. Let a � 1/(p � 1) and ⌫ : Xprokét ! Xkét be the projection of sites. Then the functor

H(L) := ⌫⇤(L ⌦ OC†
log

)

induces an equivalence from the category of a-small generalized representations to the category of

a-small Higgs bundles.

Remark 20.2.8. An a-small generalized representation of rank l is a locally free bOX-module L admit-

ting a lattice L0 such that there is b > a + val(⇢k) with L0/pb =ae (O+X/p
b)l (⇢K is an element in mCp

depending on the ramification of a discretely valued subfield).

The way how Wang constructs the sheaf OC†
log

is by considering a particular lattice of the Faltings

extension provided by the lifting of X to A2, cf. [Wan21, Coro. 2.19]. Locally on coordinates, the

ring OC†
log

is nothing but the completion of a polynomial algebra to an overconvergent polydisc of

radius |⇢k| (cf. [Wan21, Theo. 2.27]). The a-smallness condition is a finite rank version of the relative

locally analytic condition of Definition 19.2.5, where one imposes a fixed radius of analyticity. Then,

the decompletion used by Wang in [Wan21, §3.1] is the integral version of the decompletion provided

by Berger-Colmez axiomatic Sen theory [BC08].
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21. The flag variety

In the application to Shimura varieties, in order to compute the geometric Sen operator and the Hodge-

Tate cohomology of locally analytic local systems, it is important to first study the analogous problem

over the flag variety.

We begin with a set up of the terminology of reductive groups and their representation theory. We

recall the Bruhat decomposition of partial flag varieties, and the equivalence between G-equivariant

vector bundles of FL = P\G and P-representations, where P is a parabolic subgroup of G. Then,

we recall some properties of the category O and its relative version Op. We sketch how the BGG

complexes of finite dimensional representations of G are constructed, we follow [Hum08]. Finally,

we define the sheaf of twisted differential operators of Beilinson-Bernstein [BB81] and we study the

Lie algebra cohomology of two g-equivariant sheaves over the analytification F` of the flag variety,

namely, the sheaf Cla(g,OF`) and its dualDla(g,OF`).

21.1. Conventions

Let K be a field of characteristic 0 and G a split reductive group over K. In the applications K will

be a finite extension of Qp or Cp. Let B ⇢ G be a Borel subgroup and N+ its unipotent radical, let

T ⇢ B be a fixed maximal torus. We denote by B and N� the oposite Borel and its unipotent radical

respectively.

Let X⇤(T) be the group of characters of T, and Φ ⇢ X⇤(T) the roots of (G,T). We let Φ± denote

the positive and negative roots. Let g, b, b, n+, n� and h be the Lie algebras of G, B, B, N+, N� and

T respectively. Let h⇤ denote the K-dual of h, we identify in the natural way X⇤(T) ⌦Z K = h⇤, so

that a “weight” is an element in h⇤, and an “algebraic weight” is an element in X⇤(T). By definition,

the adjoint representation of G has a weight decomposition g = h �
L

↵2Φ
n↵, with each n↵ a 1-

dimensional K-vector space. We have n± =
L

↵2Φ±
n↵. Let X⇤(T)Q := X⇤(T) ⌦Z Q, and X⇤(T)+

Q
the

cone of positive weights, we denote X⇤(T)+ := X⇤(T)+
Q
\ X⇤(T).

Let W be the Weyl group of G, for each ↵ 2 Φ we let s↵ 2 W denote the simple reflection mapping

↵ 7! �↵. The Weyl group has a length function ` : W ! [0, |Φ+|] whose value at w is defined as the

minimal length of a presentation as product of simple reflections. The Weyl group acts on weights by

the formula w()(t) = (w�1tw) for w 2 W and  2 h⇤. The length of an element w 2 W is also equal

to `(w) = |w(Φ�) \ Φ+|. Let w0 2 W denote the longest element of length |Φ+|, it has the property

that w0(Φ�) = Φ+ or, equivalently, that w0N+w0
�1 = N�, in particular w2

0 = 1. Let ⇢ = 1
2

P
↵2Φ+ ↵

be a half of the sum of the positive roots, we define the dot action of W on the weight space as

w ·  := w( + ⇢) � ⇢.

Let B ⇢ P ⇢ G be a parabolic subgroup and N its unipotent radical. Let M ⇢ P be a Levi factor

containing T. Let P be the opposite Parabolic with respect to M and N the unipotent radical. We

denote p, p, n, n and m for the Lie algebras of P, P, N, N and M respectively. Let ΦM ⇢ Φ denote

the root system of (M,T), let Φ±
M

be their positive and negative roots, and write Φ±,M = Φ±\Φ±
M

. Let

X⇤(T)+
M,Q,

be the cone of positive weights of M and X+(T)+
M

:= X⇤(T)+
M,Q,
\X⇤(T), notice that X⇤(T)+

Q
⇢

X⇤(T)+
Q,M

. Let WM be the Weyl group of M and w0,M its longest element. The quotient WM\W has a

natural set of representatives MW ⇢ W (called the Kostant representatives) which are those of minimal

length. An element w in the Weyl group belongs to MW if and only ifΦ+
M
⇢ w(Φ+). The set MW has an

involution given by w 7! w0,Mww0, it satisfies the property `(w0,Mww0) = |Φ+,M| � `(w). In particular,
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21. The flag variety

wM
0 := w0,Mw0 2

MW is the longest element with `(wM
0 ) = Φ+,M. We let ⇢M := 1

2

P
↵2Φ+

M
↵ be a half of

the sum of the positive roots of M, and write ⇢M = ⇢ � ⇢M.

21.1.1. The Bruhat decomposition

Let FL := P\G be the partial flag variety. The Bruhat decomposition of FL is the decomposition in

the locally closed subschemes given by its B-orbits

FL =
G

w2MW

Cw,

where Cw = P\PwB is the w-Bruhat cell. Let d = dimK FL = |Φ�,M|, we let Zw := Cw be the schematic

closure of Cw. The scheme Zw is written in terms of Bruhat cells as Zw =
F

v�w Cv, with � being the

Bruhat order of the Weyl group. The Bruhat stratification of FL is the decreasing filtration of closed

subschemes

; = Zd+1 ⇢ Zd ⇢ · · · ⇢ Z0 = FL

where

Zi =
[

w2MW
`(w)=d�i

Zw =
G

w2MW
`(w)d�i

Cw.

Notice that Zi\Zi+1 =
F

w2MW
`(w)=d�i

Cw.

Given ↵ 2 Φ we let N↵ ⇢ G denote the root subgroup of ↵ so that n↵ = Lie N↵. As a group

scheme, N↵ is isomorphic to the additive group Ga,K . The Bruhat cells have coordinates in terms of

root subgroups:

Lemma 21.1.1. The projection map G! FL induces an isomorphism of schemes over K

w(Nw \ N+) � w
Y

↵2Φ+\w�1Φ�,M

N↵

⇠
�! Cw

where Nw = w�1Nw.

Proof. By definition, Cw is the B-orbit of w. Since wTw�1 = T, Cw is equal to the N+-orbit of w. The

group N+ is equal as a scheme to the product of its root subgroups in any order, one can write

N+ = (Pw \ N+) ⇥ (Nw \ N+)

with Pw = w�1Pw. The lemma follows. ⇤

We will also consider the complement of the Bruhat stratification, namely, for w 2 MW we let

Yw =
F

v⌫w Cv. The subscheme Yw is open in FL containing Cw as a closed subspace. Let Yi =S
`(w)=i Yw =

S
`(w)�i Ci, we have a filtration by open subspaces ; = Yd+1 ⇢ Yd ⇢ · · · ⇢ Y0 = FL.

21.2. G-equivariant vector bundles over the flag variety

Given H an algebraic group over K, we denote by Rep
Alg

K
(H) the category of finite dimensional K-

linear representations of H. Let X be a scheme over K endowed with an action of H, we denote by

H-VBX the category of H-equivariant vector bundles (VB) over X.

Let FL+ = B\G be the full flag variety of G. We have the following well known result
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21. The flag variety

Proposition 21.2.1. There is a natural equivalence of categories

Rep
Alg

K
(B)  ! G-VBFL+

V  G ⇥B V

V|[1] f V

where G ⇥B V is the quotient B\(G ⇥ V) by the diagonal action, andV|[1] is its fiber at 1.

Remark 21.2.2. Let Rep
LAlg

K
(B) be the category of Ind-algebraic representations of B. The functor

of Proposition 21.2.1 extends naturally to a functor from Rep
LAlg

K
(B) to the category of G-equivariant

quasi-coherent sheaves over FL+.

The projection map B ! T induces a fully faithful functor Rep
Alg

K
(T) ! Rep

Alg

K
(B), composing

with the functor of Proposition 21.2.1 one has the following construction

Definition 21.2.3. Let  2 X⇤(T) be an algebraic weight, we denote by L() the G-equivariant line

bundle over FL+given by G ⇥B (w0()K).

Remark 21.2.4. Following this conventions, the global sections of L() are the functions f : G! A1

such that f (bg) = w0()(b) f (g). In fact, an element f 2 Γ(FL+L()) can be identified with a function

g 7! (g, f (g)) 2 G ⇥ w0()K for g 2 G. This function must descent to the quotient G ⇥B w0()K, in

other words it must satisfy

(bg, f (bg)) ⇠ b(g, f (g)) = (bg,w0()(b) f (g)),

for b 2 B, i.e. f (bg) = w0()(b) f (g). Hence, if  2 X⇤(T)+ the global sections Γ(FL+,L()) = V is

isomorphic to the irreducible representation of highest weight .
We can construct the sheaves L() in the following way. Let TFL+ := N+\G be the natural T-torsor

over FL+, and denote ⇡̃+ : TFL+ ! FL+ the projection map. Then ⇡̃+⇤OTFL+
is endowed with a left

regular action of T given as t ?1 f (g) = f (t�1g). Therefore, there is a natural isomorphism

L() = ⇡̃+⇤OTFL+
[�w0()?1

].

The coherent cohomology of the G-equivariant line bundles over FL+ is perfectly known by the

Borel-Weil-Bott Theorem:

Theorem 21.2.5 ( [Jan03, Cor. 5.5]). Let  2 X⇤(T).

1. If there is no w 2 W such that w ·  is dominant then RΓ(FL+,L()) = 0.

2. If there is w 2 W such that w· is dominant, then such a w is unique and we have RΓ(FL+,L()) =
Vw·[�`(w)], where Vw· is the irreducible representation of G of highest weight w · .

Let P ⇢ G be the parabolic subgroup, N ⇢ P its unipotent radical and M a Levi factor containing

T. Let FL = P\G be the partial flag variety. The previous constructions and statements can be

generalized to this case. Indeed, there is a natural equivalence of categories

Rep
Alg

K
(P)  ! G-VBFL

V  G ⇥P V

V|[1] f V.

Definition 21.2.6. Let  2 X⇤(T)+
M

be a dominant weight for M.

1. We denote by W the irreducible representation of M of highest weight .
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21. The flag variety

2. We letW() be the G-equivariant VB over FL given by

W() = G ⇥P WwM
0

() = G ⇥P W_
�w0().

Remark 21.2.7. Similarly as in Remark 21.2.4, the sheafW() is chosen in such a way that Γ(FL,W()) =
V. Moreover, let ⇡ : FL+ ! FL be the projection of flag varieties, one has that ⇡⇤L() =W(). We

also have the following alternative construction ofW(): let MFL = N\P be the natural M-torsor over

FL and ⇡̃ : MFL ! FL its natural projection. The sheaf ⇡̃⇤OMFL
has a natural left regular action of M

given as m ?1 f (g) = f (m�1g). Then, there is a natural isomorphism

W() = ⇡̃⇤OMFL
[�w0()?1

]

where the isotypic part in the RHS is with respect to the Borel subgroup B \M ⇢M.

One gets the following corollary of Theorem 21.2.5

Corollary 21.2.8. Let  2 X⇤(T)+
M

.

1. If there is no w 2 MW such that w ·  is dominant with respect to G, then RΓ(FL,W()) = 0.

2. If there is w 2 MW such that w ·  is dominant with respect to G, then such a w is unique and

RΓ(FL,W()) = Vw·[�`(w)].

Proof. Let  2 X⇤(T)+
M

and consider the projection of flag varieties ⇡ : FL+ ! FL. Then ⇡ is a locally

trivial fibration with fiber FLM = (M \ B)\M the flag variety of M. By Theorem 21.2.5 we have

R⇡⇤L() =W().

Therefore, we get that

RΓ(FL,W()) = RΓ(FL+,L()).

Again, by the Borel-Weil-Bott theorem, if there is no w 2 W such that w ·  is dominant for G then

the cohomology complex vanishes. Conversely, suppose that there is w 2 W with w ·  dominant, it is

enough to show that w 2 MW. Indeed, we can write uniquely w = w0w00 with w0 2 WM and w00 2 MW.

Then w00 ·  2 X⇤(T)+
M

, and w0 · � = w0 ·M � for � 2 X⇤(T). Thus, by the Borel-Weil-Bott theorem

again, we must have w0 = 1 and w 2 MW. The corollary follows. ⇤

21.3. The dual BGG resolution

In this section we introduce the relative BGG complexes that will be used later on to compute the

Hodge-Tate decompositions of Shimura varieties. For sake of completeness, we begin with a brief

introduction of the categoryO constructed from the data (g, b) of the Lie algebras of G and B. We state

some important properties of this category, and sketch the construction of the BGG complexes. Then,

we introduce the relative category Op as a full subcategory of O satisfying some finiteness properties

with respect to m = Lie M. We finish with a more geometric construction of the dual BGG resolution

via the de Rham complex of the flag variety. We follow [Hum08].

Given a Lie algebra k we let U(k) denote its enveloping algebra over K, and we letZ(k) denote the

center of U(k).

Definition 21.3.1. The BGG category O is the full subcategory of Mod(U(g)) whose objects are the

modules M satisfying:

O1 M is a finitely generated U(g)-module.
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21. The flag variety

O2 M is h-semisimple, that is, it has a weight decomposition

M =
M

�2h

M�.

O3 M is locally n+-finite: for every v 2 M the space U(n+)v is finite dimensional.

The following axioms are deduced from the previous ones

O4 All weight spaces of M are finite dimensional.

O5 The set of weights Π(M) of M is contained in the union of finitely many sets of the form � � Γ,
where Γ is the additive monoid generated by Φ+.

It turns out that the category O is an abelian category satisfying very nice properties:

Theorem 21.3.2 (Ch. §1 [Hum08]). The category O is an abelian category which satisfies:

(a) O is a noetherian category, i.e. every module is a noetherian U(g)-module.

(b) O is closed under submodules, quotients, and finite direct sums.

(c) If M 2 O and L is a finite dimensional U(g)-module, then L ⌦ M also lies in O.

(d) If M 2 O, then M isZ(g)-finite.

(e) If M 2 O, then M is finitely generated as U(n�)-module.

Among the objects in O, the Verma modules are the first examples not arising from algebraic

representations.

Definition 21.3.3. Let � 2 h⇤. The Verma module of weight � is the induced representation

Verg
b
(�) = U(g) ⌦U(b) K(�).

We let L(�) denote the irreducible quotient of Verg
b
(�).

Let � 2 h⇤ and v+ 2 Verg
b
(�) the highest weight vector. The Poincaré-Birkhoff-Witt theorem implies

that Verg
b
(�) is a free U(n�)-module of rank one with generator v+. The action of Z(g) on v+ is given

by a character �� : Z(g)! K, called the infinitesimal character, this implies thatZ(g) acts on Verg
b
(�)

via �� as well. Moreover, let ⇠ : Z(g)! U(h) be the Harisch-Chandra homomorphism, then one has

�� = � � ⇠.

The Harisch-Chandra map is an isomorphism onto U(h)W,·, where W acts via the dot action. As a

consequence, one obtains that �w·� = �� for all � 2 h⇤ and w 2 W.

For constructing the BGG decomposition we need to recall the relative left standard resolution.

Definition 21.3.4. For 0  k  |Φ+| = e set Dk = U(g) ⌦U(b)

Vk
g/b. The relative left standard

resolution is the complex

DR_(g, b) := [De

@d

�! · · ·! D1

@1

�! D0]

with differentials

@k(u ⌦ ⇠1 ^ · · · ^ ⇠k) =

kX

i=1

(�1)i+1uzi ⌦ ⇠1 ^ · · · ^b⇠i ^ · · · ^ ⇠k

+
X

1i< jk

(�1)i+ ju ⌦ [zi, z j] ^ ⇠1 ^ · · · ^b⇠i ^ · · · ^b⇠ j ^ · · · ^ ⇠k,

(21.3.1)

where zi is any lift of ⇠i 2 g/b to g.
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21. The flag variety

Remark 21.3.5. It will be useful to write the terms of DR_(g, b) in a different order, namely,

Dk =

k̂

b\g ⌦U(b) U(g)

with differentials

@k(⇠k ^ · · · ^ ⇠1 ⌦ u) =

kX

i=1

(�1)i+1⇠k ^ · · · ^b⇠i ^ · · · ⇠1 ⌦ ziu

+
X

1i< jk

(�1)i+ j⇠k ^ · · · ^b⇠ j ^ · · · ^b⇠i ^ · · · ^ ⇠1 ^ [[z j, zi] ⌦ u.

This is the relative right standard resolution, using the involution mapping X 7! �X for X 2 g, it can

be seen as a left U(g)-complex which is naturally isomorphic to the standard resolution of Definition

21.3.4.

Proposition 21.3.6 ( Ch. §9 [Hum08]). Let ✏ : D0 ! K be the augmentation map. Then ✏ induces a

quasi-isomorphism DR_(g, b) ' K.

Definition 21.3.7. Let � 2 X⇤(T)+ be a dominant weight, the BGG-resolution of V� is the complex

BGG(g, b, �) obtained by taking the (generalized) ��-eigenspace with respect toZ(g) of the complex

V� ⌦K DR_(g, b), where the action of g in the latter is the diagonal action.

Theorem 21.3.8 (Bernstein-Gelfand-Gelfand). The complex BGG(g, b, �) is a direct summand of

V� ⌦K DR_(g, b) and a resolution of V�. Moreover, it is of the form

BGG(g, b, �) =

26666664Verg
b
(w0 · �)! · · ·!

M

`(w)=k

Verg
b
(w · �)! · · ·! Verg

b
(�)

37777775 .

Let us now introduce the relative category Op and the relative BGG resolution.

Definition 21.3.9. The category Op is the full subcategory of Mod(U(g)) of objects M satisfying

Op1 M is a finitely generated U(g)-module.

Op2 As U(m)-module, M is a semisimple representation whose irreducible factors are finite dimen-

sional m-modules.

Op3 M is locally n-finite.

One can also describe the category Op in terms of O:

Proposition 21.3.10 (Ch. §9.2 [Hum08]). Let M 2 O has set of weights Π(M). The following are

equivalent.

(a) M is locally n�
M
= m \ n�-finite.

(b) For all w 2 WM and µ 2 Π(M), we have dimK Mµ = dimK Mw(µ).

(c) The set Π(M) is stable under WM.

(d) M 2 Op.

Furthermore, the following holds

1. Op is closed under finite direct sums, submodules, quotients and extensions in O.
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2. Op is stable under tensor of finitely dimensional representations of U(g).

3. If � 2 X⇤(T), and the simple module L(�) lies in Op, then � 2 X⇤(T)+
M

The relative version of the Verma modules is the following:

Definition 21.3.11. Let � 2 X⇤(T)+
M

and let W� be the irreducible representation of M of highest

weight �. We define the parabolic Verma module as the induction

Vergp(�) := U(g) ⌦U(p) W�.

In the relative case we also have a standard resolution, namely, for 0  k  |Φ+
P
| = d let D

g

k
=

U(g) ⌦U(p)

Vk
g/p, then the de relative standard complex is

DR_(g, p) = [Dp
d

@d

�! · · ·! D
p

0
]

with differentials given by the formula (21.3.1).

Let � 2 X⇤(T)+ be a dominant weight of G and V� its irreducible representation of highest weight

�. The relative BGG complex of weight � is the complex obtained from V� ⌦K DR_(g, p) by taking

(generalized) ��-eigenspaces. We have the following theorem of Lepowsky and Rocha

Theorem 21.3.12 ( [Lep77, RC80] ). Let � 2 X⇤(T)+. Then the BGG complex BGG(g, p, �) is direct

summand of DR_(g, p) and a resolution of V�. Moreover, it has the form

BGG(g, p, �) =

26666666666664
Vergp(w

M
0 · �)! · · ·!

M

w2MW
`(w)=k

Vergp(w · �)! · · ·! Vergp(�)

37777777777775
.

In the applications to the Hodge-Tate decomposition of Shimura varieties, we shall use the admis-

sible dual of the relative BGG resolution.

Definition 21.3.13. Let M 2 O, the admissible dual of M is the subvector space M_ ⇢ HomK(M,K)

of h-finite vectors. In other words, if M =
L

�2h⇤
M� is the weight decomposition of M, then M_ =L

�2h⇤
HomK(M�,K). We endow M_ with the g-action

(X f )(m) = f (�Xm)

for X 2 g, f 2 M_ and m 2 M.

Lemma 21.3.14. Let M 2 O and let M_ be its admissible dual, then the action of n� on M_ is locally

finite. Moreover, the functor M 7! M_ is exact.

Proof. The exactness of the functor is clear as the weight spaces of M are finite dimensional. The

finiteness of the action of n� follows from O5. ⇤

Remark 21.3.15. It is not hard to prove that M_ belongs to the category O of the opposite Borel b, say

O. Moreover, the functor M 7! M_ induces an antiequivalence of categories Oop ! O.

Proposition 21.3.16. Let M 2 O and suppose that the weight decomposition of M is algebraic, i.e.

M�
, 0 implies � 2 X⇤(T). Then the action of b on M_ integrates to an Ind-algebraic action of

B = N�T.

Proof. As n� is a split unipotent algebra over a field of characteristic 0, a locally finite representation

of n� integrates to an Ind-algebraic representation of N�. The fact that the weights of M are algebraic

implies that the action can be actually extended to B. ⇤
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Corollary 21.3.17. Let M 2 Op and suppose that the m-decomposition of M is algebraic. Then the

action of p on M_ integrates to an action of P.

Proof. By Proposition 21.3.16, the action of n extends to N. As them-decomposition is algebraic one

verifies that the action of p on M_ can be extend to an action of P. ⇤

Definition 21.3.18. Let � 2 X⇤(T)+ be a dominant weight of G. The relative dual BGG resolution of

V_� is the (P, g)-resolution V_� ! BGG_(g, p, �), where

BGG_(g, p, �) =

26666666666664
Vergp(�)_ ! · · ·!

M

w2MW
`(w)=k

Vergp(w · �)_ ! Vergp(w
M
0 · �)_

37777777777775
.

The dual BGG resolution can be constructed in a slightly more geometric way. Let FL = P\G be

the flag variety, and consider the de Rham complex

DR(FL) = [OFL

d
�! Ω1

FL ! · · ·! Ω
d
FL].

We have the following proposition

Proposition 21.3.19. Consider the big cell C1 = P\PP = P\PN ⇢ FL. Then

DR(FL)(C1) = (DR_(g, p))_.

Proof. By Remark 21.3.5 we have

DR_(g, p) = [D0 ! · · ·! Dd]

with Dk =
Vk
p\g ⌦U(b) U(g). On the other hand, the global sections of ΩK

FL over C1 are

Ω
k
FL(C1) = OFL(C1) ⌦K

k̂

(p\g)_

where we see an element ! 2 (p\g)_ as the differential form acting on a vector field Xx 2 TFL(C1) as

!(X)(x) = !(n(x)Xxn
�1

(x)),

with n(x) 2 N being the unique representative of x 2 C1. In other words, given x 2 C1 the

fiber of tangent space TFL at x is given by n(x)�1pn(x)\g, thus a vector field X 2 TFL(C1) satisfies

n(x)Xxn
�1

(x) 2 p\g and the pairing !(X) is well defined. More explicitly, we have a natural isomor-

phism given by right derivations OC1 ⌦ n � TFL|C1 . Let X 2 n � p\g and define the vector bundle over

C1

Xx := n(x)�1Xn(x) 2 OC1 ⌦ n,

then !(X)(x) = !(n(x)Xn(x)�1) = !(X) is constant over C1.

Consider the pairing for 0  k  d,

h·, ·ik : Ωk
FL(C1) ⇥ Dk ! K

( f ⌦ !, ⇠k ^ · · · ^ ⇠1 ⌦ u) 7! !(⇠k ^ · · · ^ ⇠1)(u ?2 f )(1),

where u?2 f is the right regular action. Then h·, ·ik is a g-equivariant perfect pairing for the admissible

dual:

Ω
k
FL(C1) = D_k .

One easily checks that the the dual of @k is the differential d : Ωk
FL

(C1) ! Ωk+1
FL

(C1), this shows the

proposition. ⇤

205
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Corollary 21.3.20. Let � 2 X⇤(T)+ be a dominant weight. The dual BGG resolution BGG_(g, p, �)

of V_� is equal to theZ(g) = ��w0(�)-eigenspace of the de Rham complex V_� ⌦K DR(FL)(C1). Equiva-

lently, let V_� ⌦K OFL be the G-equivariant vector bundle with integrable connexion r over FL defined

by V_� . Then

BGG_(g, p, �) = DR(V_� ⌦K OFL,r)(C1)Z(g)=��w0(�) .

Proof. This follows by Proposition 21.3.19 and the construction of the BGG complex in Definition

21.3.11. ⇤

Remark 21.3.21. Let  2 X⇤(T)+
M

, as P-module Vergp()
_ is isomorphic to W_

 ⌦O(C1). More precisely,

we have an isomorphism of p-modules Vergp() � Vergp(1) ⌦ W, taking duals one has Vergp()
_
�

W_
 ⌦ Vergp(1)_ as P-modules. On the other hand, there is a natural g-equivariant pairing

h·, ·i : O(C1) ⌦ Vergp(1)! K

given by h f , ui = ◆(u)?2 f (1) where ◆ : U(g)! U(g) is the involution sending X 7! �X for X 2 g. This

pairing induces an isomorphism of g-modules Vergp(1)_ = O(C1) which integrates to an isomorphism

of (P, g)-modules.

Now, let O(C1)1 ⇢ O(C1) be the subspace of polynomials of degree  1 given by the coordinates

of the root groups N↵. For n 2 N, O(C1)n = Symn O(C1)1 is the space of polynomials of degree

 n, whence O(C1) = lim
��!n

Symn O(C1)1. We have a short exact sequence of P-modules

0! K ! O(C1)1 ! n
_
! 0,

the action of p is trivial on K (as it its just given by derivations on O(C1)), the sequence is split for

the action of the Levi m, n acts on O(C1)1 through the projection onto n
_

and the derivation map by

considering n
_
⇢ O(C1). If n is abelian, the action of n on O(C1)1 factors through the trace map

n ⌦ O(C1)1 ! n ⌦ n
_ Tr
�! K ⇢ O(C1)1.

Summarizing, the dual BGG resolution of V_� is isomorphic as P-module to

BGG_(g, p, �) = [W_
� ⌦K O(C1)! · · ·!

M

w2MW
`(w)=k

W_
w·� ⌦K O(C1)! · · ·W_

wM
0
·�
⌦K O(C1)].

We are actually interested in the dual BGG resolution of V_� seen as a (P, g)-module, for this, we

need to understand the combinatorics of the Weyl groups and the Kostant representatives when M

is considered as a quotient of P. First of all, we want to keep the same Borel subgroup of the Levi,

namely, BM = M \ B. Thus, we will take eB := wM
0 Bw

M,�1
0

⇢ P as a Borel subgroup. Then, the

possitive roots with respect to eB are eΦ+ = Φ�,M F
Φ
+
M

. Let MW
op

denote the Kostant representatives

with respect to the opposite parabolic, one verifies that

MW
op
= {w0,Mww0,M : w 2 MW}.

The dot action of an element w 2 W with respect to eB is given by

w ·
0

� = w(� + ⇢M � ⇢
M) � ⇢M + ⇢

M.

Let V� be the irreducible representation of G of highest weight � with respect to B. Then, the highest

weight with respect to eB is equal to wM
0 (�). Finally, the open Bruhat cell of FLstd = P\G associated

to P is equal to C
1
= P\PP = P\PN. One has the following corollary
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21. The flag variety

Corollary 21.3.22. There is a quasi isomorphism of (P, g)-modules V_� ' BGG_(g, p,wM
0 (�)). More-

over, we have that

BGG_(g, p,wM
0 (�)) = [W�w0(�) ⌦O(C

1
)! · · ·!

M

w2MW
`(w)=k

Ww·(�w0(�)) ⌦O(C
1
)! · · ·WwM

0
·(�w0(�)) ⌦O(C

1
)].

Proof. We have W_
 = W�w0,M(). Thus, by Remark 21.3.21 it is enough to show that

�w0,M(w0,Mww0,M ·
0 wM

0 (�)) = w · (�w0(�)).

This follows from

�w0,M(w0,Mww0,M ·
0 wM

0 (�)) = �w0,M(w0,Mww0(�) + w0,Mw(�⇢M � ⇢
M) � ⇢M + ⇢

M)

= w(�w0(�)) + w(⇢) + �⇢M � ⇢
M

= w(�w0(�) + ⇢) � ⇢

= w · (�w0(�)).

⇤

21.4. eD-modules over the flag variety

In this section, we study the quasi-coherent sheaf of germs at 1 of locally analytic functions of G with

values in OF`. Later on, in Chapters 22 and 23, we shall translate some Lie algebra cohomology com-

putations of this sheaf into their analogue for the locally analytic vectors of the completed structural

sheaf of the infinite level Shimura variety.

21.4.1. The sheaf of twisted differential operators

Definition 21.4.1. We define the following G-equivariant subbundles of OFL ⌦ g

1. We let p0 denote the subbundle of OFL ⌦ g consisting on the vector fields X 2 OFL ⌦ g such that

Xx 2 px = Lie Px for x 2 FL, where Px is the Parabolic defined by the point x 2 FL.

2. We let n0 denote the subbundle of OFL ⌦ g consisting on the vector fields X 2 OFL ⌦ g such that

Xx 2 nx = Lie Nx for x 2 FL, where Nx is the unipotent radical of Px.

3. We let m0 denote the quotient p0/n0.

Remark 21.4.2. The sheaves p0 and n0 can be constructed via the functor of Proposition 21.2.1. In-

deed, the Lie algebras p and n are sub P-representations of g for the adjoint action of P. Then

p0 = G ⇥P p and n0 = G ⇥P n.

Note that the quotient (OFL ⌦ g)/p
0 is naturally isomorphic to the tangent space of FL.

The sheaf OFL ⌦ g has a natural structure of Lie algebroid over FL with bracket

[ f ⌦ X, f 0 ⌦ X0] = f (X ?2 f 0) ⌦ X0 � f 0(X0 ?2 f ) ⌦ X + f f 0 ⌦ [X, X0].

Lemma 21.4.3. The subbundles p0 and n0 are ideals of OFL ⌦ g.
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21. The flag variety

Proof. Notice that the action of OFL ⌦ g on OFL by derivations

( f ⌦ X) ?2 f 0 = f (X ?2 f 0)

factors through a morphism of Lie algebroids

OFL ⌦ g! TFL (21.4.1)

with TFL the tangent bundle of FL. But the kernel of (21.4.1) is p0, this implies that p0 is an ideal of

OFL ⌦ g.

On the other hand, the left regular action of G on N\G induces a morphism of Lie algebroids

ON\G ⌦ g! TN\G. (21.4.2)

But n0 can be recovered as the M-invariants of the kernel of (21.4.2) for the left regular action. This

implies that n0 is an ideal of OFL ⌦ g. ⇤

Corollary 21.4.4. The sheaf of differential operatorsD of FL is naturally isomorphic to the quotient

OFL ⌦ U(g)/(OFL ⌦ U(g))p0.

Proof. This follows by Lemma 21.4.3 and the fact that the map (21.4.1) is surjective. ⇤

Definition 21.4.5. We define the sheaf of universal twisted differential operators of FL to be the

algebra
eD = OFL ⌦ U(g)/(OFL ⌦ U(g))n0.

Remark 21.4.6. Notice that eD can be recovered as the M-invariant sections for the left regular action

of the sheaf of differential operators of N\G.

Let U(m0) be the enveloping algebra of m0 seen as a Lie algebra over OFL, it is contained naturally

in eD. If P = B is a Borel subgroup, then m0 = h0 is the horizontal Cartan subalgebra of OFL ⌦ g and

one has U(h) = Γ(FL,U(h0)). In general, we have the following result which is a consequence of a

theorem of Kostant [Kos63, Theo. 0.13]

Proposition 21.4.7. Let Z(m) be the center of the enveloping algebra of m, and let E ⇢ U(g) be

the vector space generated by all the powers xk of nilpotent elements x 2 m. Let Z(m0) and E be

the G-equivariant vector bundles over FL obtained from the adjoint action of M. Then we have a

decomposition of G-equivariantZ(m0)-modules

U(m0) = Z(m0) ⌦OFL
E .

In particular, one has Γ(FL,U(m0)) = Z(m) ⌦ Γ(FL,E ).

Remark 21.4.8. Kostant’s theorem also provides the decomposition of E as direct sum of G-equivariant

vector bundles, as well as the degrees of the isotypic parts of the symmetric algebra Sym⇤(m0) =

gr⇤U(m0).

Remark 21.4.9. In the application to Shimura varieties, the previous proposition will translate to the

fact that there exists an horizontal action of Z(m) on the locally analytic completed cohomology

(actually one would have an action of the global sections of U(m0)). As for the case of the modular

curve of Lue Pan, this action will be related with the Hodge-Tate weights of the Galois representation.

Remark 21.4.10. The algebra eD is difficult to study directly; it is an algebraic interpolation of distri-

bution algebras attached to the G-equivariant vector bundles over FL arising from M-representations.

A way to overcome this problem is to work with smaller twisted distribution algebras as in the the-

ory of Beilinson-Bernstein [BB81]. More precisely, let � : U(m) ! K be a character and define

D� := � ⌦U(m0)
eD, then D� is a twisted sheaf of differential operators which has been studied by

Soergel [Soe90], Holland and Polo [HP96], et. al, proving for example a localization theorem for

antidominant regular weights.
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21.4.2. Locally analytic sheaves over the flag variety

From now on we assume that G is a reductive group over Qp and that K/Qp is a complete nonar-

chimedean extension for which G is split. We let F` be the analytification of FL = P\GK as an adic

space over Spa(K,OK). We assume in addition that n = Lie N is abelian (this shall be the case for

Shimura varieties). In the rest of the chapter we will only work in the analytic site of adic spaces.

Notation 4. Let H be an affine algebraic group over Spec K, we denote in calligraphic font H its

analytification to an adic space over Spa(K,OK). Suppose that H has an integral model H0 over

SpecOK . We denote byH0 ⇢ H the open subgroup whose value at an affinoid pair (R,R+) is

H0(R,R+) = H0(R+).

Let ✏ > 0 be a rational number, we letH(✏) denote the open subgroup ofH whose value at (R,R+) is

H(✏) = ker(H0(R+)! H0(R+/p✏)),

where p✏ 2 Cp is an element with valuation |p✏ | = |p|✏ .

Let g = Lie G, and let Cla(g,K) be the germs at 1 of locally analytic functions of G with values in

K. We consider the following sheaf over F`an

Cla(g,OF`) := Cla(g,K)b⌦KOF`.

Equivalently, let ◆ : F` ! F`⇥G be the unit section, then Cla(g,OF`) = ◆
�1OF`⇥G.

Dually, let g0 ⇢ g be a lattice such that [g0, g0] ⇢ pg0. Consider the following completion of the

enveloping algebra

Dla(g,OF`) = lim
 ��
h!1

D(gh,OF`) = lim
 ��
h!1

D(gh,Qp)b⌦Qp
OF`,

whereD(gh,Qp) are the analytic distribution algebras of Definition 17.2.7.

Definition 21.4.11. Let n0 ⇢ OF` ⌦ g be the subbundle of Definition 21.4.1. We define the locally

analytic twisted sheaf of differential operators to be the algebra

eDla := Dla(g,OF`) ⌦U(n0) 1 = 1 ⌦U(n0) D
la(g,OF`).

For h > 0 let us also define eDh�an := D(gh,OF`) ⌦U(n0) 1. In particular eDla = lim
 ��h

eDh�an.

Let b be the Lie algebra of the Borel subgroup, and � 2 h⇤. The goal of the following sections is to

provide a better description of the eDla-modules

RΓ(n0
?1,3
⇥ b?2

,Cla(g,OF`) ⌦ K(��)?2
)

RΓ(n0
?1,3
,Dla(g,OF`) ⌦

L
U(b?2

) �).
(21.4.3)

Remark 21.4.12. Unfortunately, we are not able to give a complete answer to this question, and

only some bounds in terms of the Bruhat stratification are obtained, as well as the highest weight

subquotients that one expects to appear in the Hodge-Tate decompositions. In order to provide a

detailed description of (21.4.3), it would be useful to translate this problem in terms of twisted Harish-

Chandra sheaves and Whittaker modules, cf. [MS14]. Indeed, in this theory one has avaliable an

explicit description of the irreducible objects, and any twisted Harish-Chandra sheaf is an extension

of those.

As a first step to describe (21.4.3), let us show that the n0-cohomology is concentrated in degree 0.
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21. The flag variety

Proposition 21.4.13. We have RΓ(n0
?1,3
,Cla(g,OF`)) = Cla(g,OF`)

n0
?1,3
=0

. Dually, RΓ(n0
?1,3
,Dla(g,OF`)) =

eDla ⌦OF`
det n0,_[�d].

Moreover, let V ⇢ F` be an affinoid such that n0|V is trivial and has a complement in OF` ⌦ g given

by a parabolic subgroup p0 ⇢ gK . Then

Dla(g,OF`) = lim
 ��
h!1

D(n0
h)b⌦KD(p

0

h) and Cla(g,OV) = lim
��!
h!1

D(n0
h)_b⌦KD(p

0

h)_, (21.4.4)

where the sheaves D(n0
h
) and D(p

0

h
) are analytic distributions algebras of n0 and p0 respectively,

obtained by completing the enveloping algebras with respect to some lattices n0
0

and p
0

0 of n0 and p0

respectively. The duals of (21.4.4) are with respect to OV .

Proof. Let us first prove (21.4.4). Let n0
0
⇢ n0 be a O+V -lattice given by a fixed basis {eX1, . . . , eXd}.

Since n is abelian and n0 is OF`-linear, we have [n0, n0] = 0. Thus, we can define the distribution

algebras (which are nothing but completions of the symmetric algebra of n0)

D(n0
h) := {

X

↵2Nd

a↵eX
↵

: a↵ 2 OV and sup
↵2N

{|a↵|p
h|↵|} < 1}.

Equivalently we can define

D(n0
h) =

Y

↵2N

0BBBBB@O+V
eX↵

ph|↵|

1CCCCCA [
1

p
]

endowed with the product topology. On the other hand, let p
0

0 ⇢ p
0

be a lattice satisfying [p
0

0, p
0

0] ⇢

pp
0

0. Then we can define distribution algebras D(p
0

h
) as in Definition 17.2.7. Let Dla(g,K) =

Cla(g,K)_, by the Poincaré-Birkhoff-Witt theorem we get that

Dla(g,K)b⌦OV = lim
 ��
h!1

D(n0
h)b⌦KD(p

0

h).

Taking OV-duals one finds that

Cla(g,OF`) = lim
��!
h!1

D(n0
h)_b⌦KD(p

0

h)_. (21.4.5)

Finally, let g0 ⇢ g be a lattice satisfying [g0, g0] ⇢ pg0. One also has

Cla(g,OV) = lim
��!
h!1

D(g+h )_b⌦KOV . (21.4.6)

Since the direct systems of lattices {phn0
0
� phO+V ⌦ p

0

0}h>0 and {phO+V ⌦ g0}h>0 are cofinal in each other,

one has an isomorphism between the direct systems of the colimits (21.4.5) and (21.4.6). Taking

n0-cohomology one obtains that

RΓ(n0,D(n0
h)_b⌦KD(p

0

h)_) = RHomOV
(OV ⌦

L

U(n0)
D(n0

h)b⌦KD(p
0

h),OV)

� D(p
0

h)_b⌦KOV .

By taking limits as h! 1 one has

RΓ(n0
?1,3
,Cla(g,OV)) = Cla(g,OF`)

n0
1,3
=0.

Dually, we have

RΓ(n0
?1,3
,Dla(g,OF`)) = (1 ⌦L

U(n0)
Dla(g,OV)) ⌦ det n0,_

= eDla ⌦ det n0,_[�d].

⇤
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Remark 21.4.14. The Poincaré-Birkhoff-Witt theorem also implies that

RΓ(b?2
,Cla(g,OF`) ⌦ K(��)) = Cla(g,OF`)

b?2
=�

Dla(g,OF`) ⌦
L
U(b) � = D

la(g,OF`) ⌦U(b) �.

In particular, the difficulty of computing (21.4.3) arises from the relation between the derivations of

n0 and b.

21.4.3. b-cohomology

The next step is the study of the b?2
-cohomology of Cla(g,OF`)

n0
?1,3
=0

and the b?2
-homology of eDla ⌦

det n0,_. The heuristics behind the computations are the following: the Lie algebra b is “vertical” while

n0 is “horizontal” over F`. This means that b is constant and acts by derivations on OF`, while n0 is

OF`-linear and moves according to the points of F`. Therefore, when comparing the cohomologies

of n0 and b, one expects that their difference depend on the relative position of n0 with respect to b.

This last is parametrized precisely by the Bruhat stratification of F`.
Fix integral models H0 over OK of the algebraic groups H = GK ,P,M, etc. Let us recall that

N+ ⇢ B and N� ⇢ B are the unipotent radicals of the Borel subgroups, while N ⇢ P and N ⇢ P are

the unipotent radicals of the parabolics1. Given ↵ 2 Φ, we denote by N↵ ⇢ GK the ↵-root subgroup

so that Lie N↵ = n↵. Let w 2 MW and jw : Cw ⇢ F` be the w-Bruhat cell, we have an isomorphism of

adic spaces

Cw � w(N+ \ w�1Nw).

Definition 21.4.15. For ✏ > 0 define the following family of overconvergent neighbourhoods of Cw:

Cw(✏) = Cw · (N
�(✏) \ w�1Nw) � w(N+ \ w�1Nw)(N�(✏) \ w�1Nw),

where N�(✏) ⇢ N� is the affinoid polydisc of radius p�✏ . Given � > 0 let N+(��) ⇢ N+ be the

affinoid polydisc of radius p�. We define the following affinoid subsapces

Cw(1, �) = w(N+(��) \ w�1Nw)

Cw(✏, �) = w(N+(��) \ w�1Nw)(N�(✏) \ w�1Nw).

We also let Iw denote the ideal OCw(✏) defining Cw.

Remark 21.4.16. The family of affinoids {Cw(✏, �)}✏,�>0 satisfies the hypothesis of Lemma 18.1.4. This

will be used later on to relate certain cohomologies with compact or closed supports over the infinite

level Shimura variety, with the cohomologies with supports of higher Coleman theory.

The following definition is motivated from the relation between n0 and n+ in the neighbourhoods

Cw(✏).

Definition 21.4.17. Let us identify Cw(✏) � w(N+ \ w�1Nw)(N�(✏) \ w�1Nw), and write x =

wn+(x)n�(x) with n+(x) 2 N+ \ w�1Nw and n�(x) 2 N�(✏) \ w�1Nw for x 2 Cw(✏). Let ↵ 2 Φ
and X↵ 2 n↵ a basis, we define the following vector fields over Cw(✏)

X↵(x) := (wn+(x))�1X↵wn+(x)

eX↵(x) := (wn+(x)n�(x))�1X↵wn+(x)n�(x).

Since n+(x) 2 N+, one easily verifies that

OC1(✏) ⌦ n
+ =

M

↵2w(Φ+)

OC1(✏)X↵ and n0|C1(✏) =
M

↵2Φ+,M

OCw(✏)
eX↵.

Let us define the following subbundles of OC1(✏) ⌦ b:

1To justify this non standard notation, note that Lie N+ = n+ and that Lie N = n.
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1. n+w :=
L

↵2Φ+,M\w(Φ+)
OCw(✏)X↵.

2. n
+

w :=
L

↵2Φ�,M\w(Φ+)
OCw(✏)X↵

3. Let bM be the Borel subalgebra of m, we let bM,w be the subbundle of OCw(✏) ⌦ b whose fiber at

x is

bM,w(x) = (wn+(x))�1bMwn+(x).

4. We will denote p+w := n+w � bM,w and p
+

w := n
+

w � bM,w.

Remark 21.4.18. Note that OCw(✏) ⌦ b = n
+
w � bM,w � n

+

w. Moreover, since n+(x) 2 N+ \ w�1Nw one

has n
+

w = OCw(✏) ⌦ (n+ \ w�1nw).

Lemma 21.4.19. We have n+w ⇢ n
0 + Iw ⌦ g and p+w ⇢ p

0 � Iw ⌦ g. Let jw : Cw ⇢ Cw(✏) be the

inclusion, then j⇤wn
+
w = (OCw

⌦ n+) \ j⇤wn
0 and j⇤wp

+
w = (OCw

⌦ b) \ j⇤wp
0.

Proof. We can write

X↵ = n�(x)eX↵(n�(x))�1

= eX↵ + [log n�(x), eX↵] + O((log n�(x))2),

where log is the inverse of the exponential map exp g ! G. But the coefficients of log n�(x) in any

basis of g generate the ideal Iw, this implies the first statement of the lemma.

Taking pullbacks to Cw one sees that X↵ ⌘ eX↵ mod Iw for all ↵ 2 Φ. The second part of the

lemma follows by definition of n+w and p+w and the fact that Φ+
M
⇢ w(Φ+). ⇤

Using the previous lemma one deduces the following vanishing of b-(co)homology.

Lemma 21.4.20. The following hold

1. Let ✏ > 0, the complex RΓ(b?2
,Cla(g,OCw(✏))

n0
?1,3
=0
⌦ K(��)) is concentrated in degrees [0, d �

`(w)]. Similarly, the complex (eDla|Cw(✏) ⌦ det n0,_) ⌦L
U(b?2

) � is concentrated in degrees [�d +

`(w), 0].

2. The cohomology group Hd�`(w)(b?2
,Cla(g,OCw(✏))

n0
?1,3
=0

) has support in Cw. Similarly, the ho-

mology group Hd�`(w)(b?2
, eDla|Cw(✏) ⌦ det n0,_ ⌦ K(��)?2

) has support in Cw.

Proof. Let us consider

n0,+
w :=

M

↵2Φ+,M\w(Φ+)

OCw(✏)
eX↵ and n0,�

w :=
M

↵2Φ+,M\w(Φ�)

OCw(✏)
eX↵

so that n0|Cw(✏) = n
0,+
w � n

0,�
w . Write W =

L
↵2(Φ�,M[ΦM)\w(Φ�)

OCw(✏)X↵ ⇢ OC1(✏) ⌦ g, then

OCw(✏) ⌦ g = n
0,�
w �W � OCw(✏) ⌦ b.

The Poincaré-Birkhoff-Witt theorem implies that

Dla(g,OCw(✏)) = lim
 ��
h!1

D(n0,�
w,h

)b⌦OCw(✏)
D(Wh)b⌦KD(bh)

Cla(g,OCw(✏)) = lim
��!
h!1

(D(n0,�
w,h

)b⌦OCw(✏)
D(Wh)b⌦KD(bh))_
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21. The flag variety

where we take completions with respect to the lattices provided by the basis eX↵ and X↵, and duals

with respect to OCw(✏). Therefore

RΓ(b?2
,Cla(g,OCw(✏))

n0
?1,3
=0
⌦ K(��)) = RΓ(b?2

⇥ n0
?1,3
,Cla(g,OCw(✏)) ⌦ K(��))

= lim
��!
h!1

RΓ(b?2
⇥ n0

?1,3
, (D(n0,�

w,h
)b⌦D(Wh)b⌦D(bh))_ ⌦ K(��))

= lim
��!
h!1

RΓ(n0,+
w,?1,3
, (1 ⌦D(n0,�

w,h
) D(n0,�

w,h
)b⌦D(Wh)b⌦D(bh) ⌦D(bh) K(�))_)

= RΓ(n0,+
w,?1,3
,Cla(g,OCw(✏))

n
0,�
w,?1,3

=0, b?2
=�

).

(21.4.7)

Similarly, one finds that

(eDla|Cw(✏) ⌦ det n0,_) ⌦L
U(b?2

) � = 1 ⌦L

U(n0,+
w )

(1 ⌦U(n0,�
w ) (Dla(g,OCw(✏)) ⌦ det n0,_) ⌦U(b?2

) �). (21.4.8)

But n0,+
w is an OCw(✏)-vector bundle of rank d�`(w). One obtains part (1) by taking the Koszul complex.

To prove part (2), recall that Yw =
F

v⌫w Cv is an open subspace of F` containing Cw as a closed

subspace. Lemma 1 of [BL03, §I] implies that Cw(✏) ⇢ Yw for ✏ > 0. Indeed, it implies that the

opposite Schubert variety Xw = Cw with Cw = P\PwB is contained in Yw, cf. Lemma 3.12 of [BP21].

This shows that Cw(✏)\Cw ⇢ Yw\Cw is contained in an union of Bruhat cells Cv with `(v) > `(w). In

particular, the restriction of the complexes of part (1) to Cw(✏)\Cw are concentrated in cohomological

degrees < d � `(w) (resp. homological degrees < d � `(w)). This proves the lemma. ⇤

For computations, it will be convenient to take a change of variables which will move the actions

of n0 and b to the same side. Consider the map

Ψ : F`⇥G! F`⇥G

(x, g) 7! (xg, g).
(21.4.9)

The following lemma describes how the ?-actions on OF`⇥G change after applying Ψ.

Lemma 21.4.21. Let X 2 OF`⇥G ⌦Qp
g, X 2 g and f 2 OF`⇥G. Define Ψ⇤(X)(x,g) = g�1X(xg�1,g)g, then

Ψ⇤(X) 2 OF`⇥G ⌦OF`
n0 if and only if X 2 OF`⇥G ⌦OF`

n0. Moreover

1. Ψ⇤(X ?1,3 f ) = �Ψ⇤(X) ?2 Ψ⇤( f ),

2. Ψ⇤(X ?2 f ) = X ?2,3 Ψ⇤( f ).

Proof. Let X be a vector field in OF`⇥G ⌦ g satisfying X(x,g) 2 n
0(x) = nx for all (x, g) 2 X ⇥ G. Then,

Ψ⇤(X)(x,g) = g�1X(xg�1,g)g 2 g�1nxg�1g = nx,

proving that Ψ⇤(X) 2 OF`⇥G ⌦OF`
n0. The converse is proven in the same way.

Finally, one directly computes (1) and (2):

Ψ⇤(X ?1,3 f )(x, g) = (X ?1,3 f )(xg�1, g)

=
d

dt
|t=0 f (xg�1 exp(tX(xg�1,g)), exp(�tX(xg�1,g))g)

=
d

dt
|t=0Ψ⇤( f )(x, exp(�tX(xg�1,g))g)

=
d

dt
|t=0Ψ⇤( f )(x, g exp(�tΨ⇤(X)(x,g)))

= �Ψ⇤(X) ?2 Ψ⇤( f )(x, g).
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21. The flag variety

Ψ⇤(X ?2 f )(x, g) = (X ?2 f )(xg�1, g)

=
d

dt
|t=0 f (xg�1, g exp(tX))

=
d

dt
|t=0 f (x exp(tX)(g exp(tX))�1, g exp(tX))

=
d

dt
|t=0Ψ⇤( f )(x exp(tX), g exp(tX))

= X ?2,3 Ψ⇤( f )(x, g)

⇤

Corollary 21.4.22. We have Ψ⇤(O
n0
?1,3
=0

F`⇥G
) = O

n0
?2
=0

F`⇥G
= O

n0
?2,3
=0

F`⇥G
.

Proof. The first equality follows directly from the previous Lemma. The second holds since n0 is

OF`-linear. ⇤

What the previous lemma achieves is to transport the left regular action of n0 to the right regular

action. Notice that the subspace F`⇥1 ⇢ F`⇥G is invariant under Ψ. Thus, we have induced

quasi-isomorphisms

RΓ(b?2
,Cla(g,OF`)

n0
?1,3
=0
⌦ K(��))

Ψ⇤

��! RΓ(b?2,3
,Cla(g,OF`)

n0
?2,3
=0
⌦ K(��))

(eDla ⌦ det n0,_) ⌦L
U(b?2

) �
Ψ⇤

��! (eDla ⌦ det n0,_) ⌦L
U(b?2,3

) �.

In the equations (21.4.7) and (21.4.8) we have first computed b-cohomology and then n0-cohomology.

If we reverse the order of computations, one deduces the following lemma

Lemma 21.4.23. Let ✏ > 0, we have quasi-isomorphisms

RΓ(b?2,3
,Cla(g,OCw(✏))

n0
?2,3
=0
⌦ K(��)) =

[Cla(g,OCw(✏))
n0
?2,3
=0,p

+
w,?2,3

=� d
�! (Cla(g,OCw(✏))

n0
?2,3
=0
⌦ n+,_w )

p
+
w,?2,3

=� d
�!

· · ·
d
�! (Cla(g,OCw(✏))

n0
?2,3
=0
⌦

d�`(w)^
n+,_w )

p
+
w,?2,3

=�
]

concentrated in cohomological degrees [0, d � `(w)], and

(eDla|Cw(✏) ⌦ det n0,_) ⌦U(b?2,3
) � =

[(eDla ⌦ det n0,_ ⌦

d�`(w)^
n+w) ⌦U(p

+
w,?2,3

) �
d
�! (eDla ⌦ det n0,_ ⌦

d�`(w)�1^
n+w) ⌦U(p

+
w,?2,3

) �
d
�!

· · ·
d
�! (eDla ⌦ det n0,_) ⌦U(p

+
w,?2,3

) �

concentrated in cohomological degrees [`(w) � d, 0].

Remark 21.4.24. The duality between Lie algebra homology and cohomology provides and isomor-

phism of sheaves

HomOCw(✏)
(Hd�`(w)(b?2

, eDla⌦det n0,_⌦K(��)),OCw(✏)) = Hd�`(b?2
,Cla(g,OCw(✏))

n0
?1,3
=0
⌦det n0⌦K(��)).

(21.4.10)

Thus, instead of studying the homology of eDla⌦det n0,_ we can study the cohomology of Cla(g,OCw(✏))
n0
?1,3=0⌦

n0.
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21. The flag variety

By Lemma 21.4.19, the differentials di : Vi ! Vi+1 of the Koszul complexes of Lemma 21.4.23

have image in IwVi+1 \ ker di+1. The highest weight vector subquotients of Cla(g,OCw(✏)) are con-

structed as follows:

Proposition 21.4.25. We have natural surjective maps

Hd�`(w)(b?2,3
,Cla(g,OCw(✏)))

n0
?2,3
=0
⌦ K(��))⇣

(Cla(g,OCw
)
n0
?2,3
=0,p

+
w,?2,3

=w�1(w·�+2⇢M)
)

(21.4.11)

Hd�`(w)(b?2,3
,Cla(g,OCw(✏))

n0
?2,3
=0
⌦ det n0 ⌦ K(��))⇣

(Cla(g,OCw
)
n0
?2,3
=0

)
p
+
w,?2,3

=w�1(w·�)
(21.4.12)

where ⇢M = ⇢ � ⇢M is a half of the sum of the roots of Φ+,M.

Proof. By Lemma 21.4.23 we have

Hd�`(w)(b?2,3
,Cla(g,OCw(✏))

n0
?2,3
=0
⌦ K(��)) = coker[(Cla(g,OCw(✏))

n0
?2,3
=0
⌦

d�`(w)�1^
n+,_w ))

d
�!

(Cla(g,OCw(✏))
n0
?2,3
=0
⌦

d�`(w)^
n+,_w ))]

p
+
w,?2,3

=�
.

By Lemma 21.4.19, n+w ⇢ n
0+Iw⌦g, this implies that the image of d is contained in Cla(g,Iw)

n0
?2,3
=0
⌦Vd�`(w)

n
+,_
w and that the cohomology admits a surjective map

Hd�`(w)(b?2,3
,Cla(g,OCw(✏))

n0
?2,3
=0
⌦ K(��))⇣ (Cla(g,OCw

)
n0
?2,3
=0
⌦

d�`(w)^
n+,_w )

p
+
w,?2,3

=�
.

Note that the algebra p
+

w \OCw
⌦ n+ acts nilpotently on the basis {X↵ : ↵ 2 w(Φ+)} of OCw

⌦ n+ via the

adjoint representation. Consider the short exact sequence

0! p
+

w \ OCw
⌦ n+ ! OCw

⌦ n+ ! n+w ! 0,

then
Vd�`(w)

n
+,_
w is a rank 1 subbundle of OCw

⌦
Vd�`(w)

n+,_ stable under the action of p
+

w, and has

a generator killed by p
+

w \ OCw
⌦ n+, namely

V
↵2Φ+,M\w(Φ+) X

_
↵ . Furthermore,

V`(w)
n
+,_
w has weight

�� = �
P
↵2w�1(Φ+,M)\Φ+ ↵. This shows that

(Cla(g,OCw
)
n0
?2,3
=0
⌦

d�`(w)^
n+,_w )

p
+
w,?2,3

=�
= (Cla(g,OCw

)
n0
?2,3
=0,p

+
w,?2,3

=�+�
.

But � = w�1(w⇢ + ⇢ � 2⇢M) and

� + � = w�1(w� + w⇢ � ⇢ + 2⇢M)

= w�1(w · � + 2⇢M)

where ⇢M = ⇢ � ⇢M. This proves (21.4.11).

To prove (2), by the same argument as before, we have a surjective map

Hd�`(w)(b?2,3
,Cla(g,OCw(✏))

n0
?2,3
=0
⌦ det n0 ⌦ K(��))! (Cla(g,OCw

)
n0
?2,3
=0
⌦ det n0)

p
+
w,?2,3

=�+�
(21.4.13)

But det n0|Cw(✏) � OCw(✏)v where v : Cw(✏)! det n is the constant function mapping to a fixed non-zero

vector. Therefore, for X 2 b one has X ?2 v = 2w�1(⇢M)(X). Then, the RHS of (21.4.13) is equal to

Cla(g,OCw
)
n0
?2,3
=0,p

+
w,?2,3

=�+��2w�1(⇢M)
.

Since � + � + �2w�1⇢M = w�1(w · �) we are done. ⇤
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21. The flag variety

Taking pullbacks of (21.4.11) and (21.4.12) by Ψ : F`⇥G ! F`⇥G, one obtains maps of com-

plexes

RΓ(n0
?1,3
⇥ b?2

,Cla(g,OCw(✏)) ⌦ K(��))!

Cla(g,OΨ�1(Cw))
n0
?1,3
=0,b?2

=w�1(w·�+2⇢M)
[`(w) � d]

RΓ(n0
?1,3
⇥ b?2

,Cla(g,OCw(✏)) ⌦ det n0 ⌦ K(��))!

(Cla(g,OΨ�1(Cw)))
n0
?1,3
=0,b?2

=w�1(w·�)
[`(w) � d],

(21.4.14)

where Ψ�1(Cw) ⇢ F`⇥G is a twisted Bruhat cell.

Remark 21.4.26. The maps (21.4.11) and (21.4.12) are independent of ✏; they factor through the

colimit as ✏ ! 1. One has an isomorphism of inverse sistems

{Ψ�1(Cw(✏, �) ⇥ G(�))}✏,� = {Cw(✏, �) ⇥ G(�)}✏,�

for any � > 0. This shows that the arrows (21.4.14) are well defined.

The RHS of the equations (21.4.14) can be computed as functions of an overconvergent torsor over

Cw(✏). We need some notation, letMF` := N\GK be the naturalM-torsor over F`, we define the

following overconvergent torsors

Definition 21.4.27. 1. For � > 0 considerM(�)-torsor over Cw(✏)

prw :Mw,F`(�) := N(�)\P(�)w(N+ \ w�1Nw)(N�(✏) \ w�1Nw)

! Cw(✏) = P(�)\P(�)w(N+ \ w�1Nw)(N�(✏) \ w�1Nw).

Let M† = {M(�)}�!1 be the overconvergent neighbourhood of 1 in M. We let M†
w,F`

:=

{Mw,F`(�)}�!1 denote the overconvergent torsor over Cw(✏).

2. We set C(Mw,F`(�)) := prw,⇤(OMw,F`(�)). Taking colimits as � ! 1 we define C(M†
w,F`

) =

lim
��!�!1

C(Mw,F`(�)).

3. We set D(Mw,F`(�)) := C(Mw,F`(�))_, where the dual is as sheaves over OCw(✏). Taking limits

as � ! 1 we defineD(M†
w,F`

) = lim
 ���!1

D(Mw,F`(�)).

Remark 21.4.28. Note that, locally on affinoids of Cw(✏), the torsorM(�) admits a right overconver-

gent action of G†, and a left action ofM(�). These translate into a locally analytic right (resp. left)

regular action of g (resp. m) on the sheaves C(M†
w,F`

) andD(M†
w,F`

). We denote these actions by g?2

and m?1
respectively.

Proposition 21.4.29. Let bM = Lie M \ B be the Lie algebra of the Borel subgroup of M. We have a

g-equivariant isomorphism of sheaves over Cw(✏)

Cla(g,OΨ�1(Cw))
n0
?1,3
=0,b?2

=w�1�
= C(M†

w,F`
)bM,?1

=�, (21.4.15)

where the first term is endowed with the g?1,3
-action, and the second term with the g?2

-action.

Proof. Let G† = {G(�)}�>0 be the overconvergent neighbourhood of the identity on G and let C
†
w =

{Cw(✏)}✏ . Over the affinoid subspaces Cw(✏, �) ⇢ Cw(✏) we have an action of G(�) for some � > 0, this

is not true over the whole Cw(✏) in general (take w = wM
0 to be the longest element, then CwG(�) = F`

for any � > 0). By an abuse of language we will say that C
†
w has a action of G†. In the following we

will freely take quotients by subgroups of C
†
w ⇥G

†, knowing that the real meaning is taking quotients

on affinoid subspaces by affinoid subgroups, and then taking the inverse system they define.
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We have the following diagram of overconvergent spaces (i.e. maps of inverse systems of spaces)

C
†
w ⇥ G

† C
†
w ⇥ G

† Cw ⇥ G
†

C
†
w

Ψ ◆w

⇡w

where ◆w is the Zariski closed immersion and ⇡w(x, g) = xg�1. Recall that, by Lemma 21.4.21, the

actions of n0
?1,3

and g?2
are transformed to the actions of n0

?2,3
and g?2,3

after taking the pushforward

by Ψ. Let N0,† ⇢ (C†w ⇥ G
†) be the subgroup whose fiber over x 2 C

†
w is N†x , the unipotent group

fixing x (in other words, N0,† is the image of n0 via the exponential map). Then, taking n0 invariants

is equivalent to taking the following quotients of spaces

N0,†\C
†
w ⇥ G

† C
†
w ⇥ G

†/N0,† Cw ⇥ G
†/N0,†

C
†
w

Ψ ◆w

⇡w

The new map ⇡w is well defined since xN
†
x = x for all x 2 F`. Moreover, we have a commutative

diagram

N0,†\C
†
w ⇥ G

† Cw ⇥ G
†/N0,†

C
†
w.

pr1

Ψ
�1�◆w

⇡w

In the quotient (Cw(1, �)⇥G†)/N0,†, the action of n+w is already trivial because n+w = n
0\OCw

⌦ b. We

are left to study the action of p
+

w = n
+

w � bM,w.

We have an isomorphism of affine spaces Cw = w(N+ \ w�1Nw). The map ⇡w factors as

(Cw ⇥ G
†)/N0,+ e⇡w

��! N†\w(N+ \ w�1Nw)G† ! P†\w(N+ \ w�1Nw)G† = C†w,

where e⇡w(wn+(x), g) = wn+(x)g�1 for x 2 Cw and g 2 G†. Since n
+

w = OCw
⌦ (n+ \ w�1nw), taking

n
+

w,?2,3
-invariants is equivalent to taking the right diagonal quotient by the action of the overconvergent

subgroupN
+,†

w of neighbourhoods of 1 inN+ \w�1Nw. It is easy to see that this quotient is naturally

identified with e⇡w. But

N†\w(N+ \ w�1Nw)G† =M†
w,F`

by definition.

It remains to take the �-isotypic part for the action of bM,w. As w 2 MW we have w(Φ+) � Φ+
M

, in

other words we have that bM ⇢ wbw�1. Let BM denote the Borel subgroup ofM, and let B†
M

be the

overconvergent subgroup at 1. For m 2 w�1B
†

M
w, the ?2,3 action commutes with e⇡w as follows2:

e⇡w((wx, g) ?2,3 m) = e⇡HT(wm�1xm, gm) = wm�1xg�1 = wm�1w�1wxg�1.

In other words, the ?2,3 action of bM,w becomes the left multiplication by bM on theM† torsorM†
w,F`

.

The previous computation shows that the bM,w,?2,3
= w�1� isotypic component of the algebra of func-

tions of (C†w ⇥ G
†)/hN0,†,N

+,†

w i is identified with the space

Cla(g,OΨ�1(Cw))
n0
?1,3
=0,b?2

=w�1�
� C(M†

w,F`
)bM,?1

=�.

2To define the action properly, one has to work with the normalizer of N
+

w in w�1B
†

M
w. However, as w�1bMw = h o

w�1n+
M

w, we can find a filtration k1 ⇢ k2 ⇢ · · · kl = w�1bMw with k1 = n
+
w and kl an ideal in kl+1. This allows us to make

the quotients step by step.
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21. The flag variety

It is also clear from the construction that the ?1,3 action of g is transformed to the g?2
action of

C(M†
w,F`

)bM,?1
=�. This finishes the proof. ⇤

Remark 21.4.30. The sheaf Cla(g,OF`) can be endowed with an equivariant action of G, namely, for

g 2 G and f 2 Cla(g,OF`) the action g?1,2,3 f is well defined. The sheaf RHom(n0
?1,3
⇥b?2
,Cla(g,OF`))

is clearly aB-equivariant sheaf over F` under ?1,2,3; the subbundle n0 ⇢ OF`⌦g is an ideal, andB acts

on b by the adjoint action. It turns out that the sheaf C(M†
w,F`

) can be endowed with a B-equivariant

structure such that the maps (21.4.15) are B-equivariant for all w.

More precisely, let us write Cw � w(N+ \ w�1Nw), given a point x 2 Cw we denote x = wn+(x).

For an element b 2 B we have xb = wn+(xb), this endows (N+ \ w�1Nw) with an action of B. Then,

for wn+(x)g 2M†
w,F`
= N†\w(N+ \ w�1Nw)G†, we have

(wn+(x)g) ?2 b = wn+(xb)(b�1gb).

This action is well defined by Proposition 21.4.29.

We can finally state the main theorem of this section

Theorem 21.4.31. Let w 2 MW be a Kostant representative and Cw ⇢ F` the w-Bruhat cell. Let

✏ > 0 and Cw(✏) the ✏-neighbourhood of the Bruhat cell.

1. The restrictions to Cw(✏) of the complexes RΓ(n0
?1,3
⇥ b?2

,Cla(g,OF`) ⌦ K(��)) and

RΓ(n0
?1,3
,Dla(g,OF`)⌦

L
U(b?2

)�) are concentrated in degrees [0, d�`(w)] and [`(w), d] respectively.

Moreover, the cohomology group Hd�`(w) (resp. H`(w)) has support in Cw.

2. There are (B, g)-equivariant (dual) highest weight vector maps

Υw : RΓ(n0
?1,3
⇥ b?2

,Cla(g,OCw(✏)) ⌦ K(��))! C(M†
w,F`

)bM,?1
=w·�+2⇢M

[`(w) � d]

Υ
_
w : (w · �) ⌦U(bM,?1

) D(M†
w,F`

)[�`(w)]! RΓ(n0
?1,3
,Dla(g,OF`) ⌦

L
U(b?2

) �)

which are surjective (resp. injective) in degree d � `(w) (resp. degree `(w)).

Proof. Part (1) was already proven in Lemma 21.4.23. Part (2) is a consequence of Propositions

21.4.25 and 21.4.29 and the duality between Lie algebra homology and cohomology (21.4.10). ⇤

21.5. An example: GL2

In the following we provide an example of the previous computations on Lie algebra cohomology of

sheaves over the flag variety of GL2. We will see that the descriptions obtained from this point of

view are equivalent to the explicit computations of Lue Pan in [Pan20, §5].

Let B ⇢ GL2 be the Borel subgroup of upper triangular matrices, and N its unipotent radical. We

let T ⇢ B be the diagonal torus, B be the opposite Borel and N its unipotent radical. The flag variety

is isomorphic to P1 via g 7! [0 : 1] · g, where g =

 
a b

c d

!
and [x : y] · g = [ax + cy : bx + dy]. The

Weyl group of GL2 has two elements: W = {1,w0}, where w0 =

 
0 1

�1 0

!
. The Bruhat decomposition

of P1 is

P1 = C1 tCw0
= [0 : 1] t [1 : 0]N � ⇤ t A1.

Let g = Lie GL2 be the Lie algebra, let h ⇢ g be the Cartan subalgebra, n = Lie N and n = Lie N.

Then

g = n � h � n.
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21. The flag variety

Let us denote

X =

 
0 1

0 0

!
, Y =

 
0 0

1 0

!
, H =

 
1 0

0 �1

!
, Z =

 
1 0

0 1

!
.

Then h = K · H � K · Z, n = K · X and n = K · Y . One has the relations [Z, g] = 0, [H, X] = 2X,

[H,Y] = �2Y , [X,Y] = H.

From now on we see P1 as an adic space over Spa(K), and denote 1 = [0 : 1]. Let � : b ! K be a

character written as � = (k1, k2). We are interested in the eDla-module

RHom(n0
?1,3
⇥ b?2

,Cla(g,OP1) ⌦ (��)?2
). (21.5.1)

Theorem 21.4.31 tells us that the restriction of (21.5.1) to Cw0
is simply

Cla(g,P1)
n0
?1,3
,b?2
=�
� C(M†

w0,P1)
h?1
=(k2,k1).

It is left to compute (21.5.1) in overconvergent neighbourhoods of 1. Let ✏ > 0 and consider the

neighbourhood of1:

C1(✏) := {[t : 1] : |t|  p�✏} = [0 : 1]

 
1 0

p✏D1
K 1

!
.

By Corollary 21.4.22 it is enough to compute

RHomb?2,3
(�,Cla(g,OC1(✏))

n0
?2,3
=0

). (21.5.2)

By Lemma 21.4.23, the cohomology (21.5.2) is quasi-isomorphic to the complex

Cla(g,OC1(✏))
n0
?2,3
=0,h=� dX

��! Cla(g,OC1(✏))
n0
?2,3
=0,h=�+2⇢

. (21.5.3)

To describe this complex exhaustively we need some coordinates. Let us write G† = {G(�)}�!1 for

the overconvergent neighbourhood of 1 in GL2. An element in C1(✏) ⇥ G† can be written uniquely as

(t, g) where

g = (1 + z)

 
1 + s 0

x (1 + s)�1

!
y(t) and y(t) =

 
1 0

�t 1

!  
1 y

0 1

!  
1 0

t 1

!
=

 
1 + ty y

�t2y 1 � ty

!
.

Under this presentation, Cla(g,OC1(✏))
n0
?2,3
=0

is identified with Kht/p✏i{s, z, x}, where

A{T } = lim
��!
✏!1

AhT/p✏i

for an affinoid algebra A. Since Z is in the center of g, we can take Z = �(Z) = (� + ⇢)(Z) isotypic

parts and replace (21.5.3) by

(1 + z)Z(�)Kht/p✏i{s, x}H=�(H) dX
��! (1 + z)Z(�)Kht/p✏i{s, x}H=�(H)+2. (21.5.4)

Without loss of generality we can take Z(�) = 0. Next, we want to compute the action of H and X on

the variables t, s and x.

Lemma 21.5.1. We have

1. H ?2,3 t = 2t, H ?2,3 s = 1 + s and H ?2,3 x = x.

2. X ?2,3 t = �t2, X ?2,3 s = �(1 + s)t and X ?2,3 x = t2

1+s
� tx.
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21. The flag variety

Proof. Notice that

[t : 1]

 
(1 + ") 0

0 (1 + ")�1

!
= [(1 + ")2t : 1],

 
1 + s 0

x (1 + s)�1

!  
(1 + ") 0

0 (1 + ")�1

!
=

 
(1 + ")(1 + s) 0

(1 + ")x (1 + ")�1(1 + s)�1

!
.

Deriving with respect to " and evaluating at " = 0 one gets (1).

To prove (2), note that

[t : 1]

 
1 "
0 1

!
= [

t

1 + "t
: 1],

deriving and evaluating at " = 0 one gets X ?2,3 t = �t2. To compute the other two derivatives, we

have to write the product  
1 + s 0

x (1 + s)�1

!  
1 "
0 1

!

in the form  
1 + s̃ 0

x̃ (1 + s̃)�1

!
ỹ(t).

Then X ?2,3 s = d
d"

s̃|"=0 and X ?2,3 x = d
d"

x̃|"=0. Expanding both products we find the equations

 
a11 a1,2

a21 a22

!
:

 
1 + s "(1 + s)

x "x + (1 + s)�1

!
=

 
(1 + s̃)(1 + tỹ) (1 + s̃)ỹ

x̃(1 + tỹ) � t2ỹ(1 + s̃)�1 x̃ỹ + (1 + s̃)�1(1 � tỹ)

!

Dividing the a12 by the a11 equation one gets

ỹ

1 + tỹ
= ".

Deriving and evaluating at " = 0, one finds by the chain rule that ( d
d"

ỹ)|"=0 = 1. Deriving and

evaluating at " = 0 in the equation a11, one gets by the chain rule that X ?2,3 s = �(1 + s)t. Finally,

deriving with respect to " and evaluating at " = 0 in a21 one gets X ?2,3 x = t2

1+s
� tx. ⇤

Corollary 21.5.2. We have H ?2,3
t

(1+s)2 = H ?2,3
x

1+s
= 0, X ?2,3

t

(1+s)2 = X ?2,3
x

1+s
= t2

(1+s)2 .

Now, we have an equality Kht/p✏i{s, x} = Kh t

(1+s)2 p✏
i{s, x

1+s
}. Thus,

Kht/p✏i{s, x}H=�(H) = (1 + s)�(H)Kh
t

(1 + s)2 p✏
i{

x

1 + s
}.

The complex (21.5.4) becomes

(1 + s)�(H)Kh
t

(1 + s)2 p✏
i{

x

1 + s
}

dX
��! (1 + s)�(H)+2Kh

t

(1 + s)2 p✏
i{

x

1 + s
}. (21.5.5)

We have the following proposition (cf. [Pan20, Prop. 5.2.10 and Prop. 5.2.12])

Proposition 21.5.3. The following hold

(ker 1) Suppose that �(H) < N, then lim
��!✏!1

H0(n0
?1,3
,Cla(g,OC1(✏))

b?2
=�) = 0.

(ker 2) Suppose that �(H) 2 N, then lim
��!✏!1

H0(n0
?1,3
,Cla(g,OC1(✏))

b?2
=�) = Ψ⇤(N_

1/P1)
⌦�(H)⌦KC(M†F`,1

)h?1
=w0(�),

where N_
1/P1 is the conormal bundle of 1 ⇢ P1

K , and Ψ : P1
K ⇥ GL2 ! P

1
K ⇥ GL2 is the map

(x, g) 7! (xg, g).
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21. The flag variety

(coker 1) The group lim
��!✏!1

H1(n0
?1,3
,Cla(g,OC1(✏))

b?2
=�) is an extension of the form

0!M� ! lim
��!
✏!1

H1(n0
?1,3
,Cla(g,OC1(✏))

b?2
=�)! C(M†

1,F`
)h?1
=�+2⇢ ! 0.

(coker 2) Suppose that �(H) < N and that

sup
n,m

{|
1

�(H) � n
|1/(m+n), sup

1kn

{|

 
m + 1

�(H) � n + 1

!
· · ·

 
m + k

�(H) � n + k

!
|}1/(n+m)} < 1.

ThenM� = 0.

(coker 3) Suppose that �(H) 2 N. ThenM� = Ψ
⇤(N_

1/P1)
⌦�(H)+1 ⌦K C(M†F`,1

)h?1
=w0(�). In particular, since

�(H) , �1 (i.e w0 · � , �), we have a direct sum decomposition

lim
��!
✏!1

H1(n0
?1,3
,Cla(g,OC1(✏))

b?2
=�) = C(M†F`,1

)h?1
=�+2⇢ � Ψ⇤(N_

1/P1)
⌦�(H)+1 ⌦K C(M†F`,1

)h?1
=w0(�).

Proof. Given f 2 (1 + s)�(H)Kh t

(1+s)2 p✏
i{ x

1+s
} let us write

f (t, x, s) = (1 + s)�(H)
X

n,m�0

an,m

 
t

(1 + s)2

!n ✓
x

1 + s

◆m

with an,m 2 K satisfying some convergence conditions. An explicit computation shows that

X?2,3 f (t, x, s) = (1+s)�(H)+2
X

n,m�0

((n�1��(H))an�1,m+(m+1)an�2,m+1)

 
t

(1 + s)2

!n ✓
x

1 + s

◆m

. (21.5.6)

Then, f 2 ker dX if and only if

(n � �(H))an,m + (m + 1)an�1,m+1 = 0 8n,m � 0. (21.5.7)

Suppose that �(H) < N, then n � �(H) , 0 for all n � 0 and an,m =
m+1

�(H)�n
an�1,m+1. Taking n = 0 this

implies that a0,m = 0 for all m � 0. By an inductive argument one has that an,m = 0 for all n,m � 0,

this shows (ker 1).

Suppose that �(H) 2 N. The same argument shows that for n < � one has an,m = 0 for all m � 0.

Taking n = � in (21.5.7) the equality is trivial, so we move to n > �. We have that

an,m =
m + 1

�(H) � n
an�1,m+1 =

 
m + 1

�(H) � n

!  
m + 2

�(H) � n + 1

!
an+2,m+2 = · · ·

· · · =

 
m + 1

�(H) � n

!
· · ·

 
m + k

�(H) � n + k � 1

!
· · ·

 
m + n � �(H)

�1

!
a�,m+n��

= (�1)n��(H)

 
m + n � �(H)

m

!
a�,m+n��.

Therefore, if f (s, t, x) 2 ker dX one has that

f (s, t, x) = (1 + s)�(H)
X

n��(H)
m�0

(�1)n��(H)

 
m + n � �(H)

m

!
a�,m+n��

 
t

(1 + s)2

!n ✓
x

1 + s

◆m

= (1 + s)�(H)

 
t

(1 + s)2

!�(H) X

n,m�0

(�1)n

 
n + m

m

!
a�,m+n

 
t

(1 + s)2

!n ✓
x

1 + s

◆m

= (1 + s)�(H)

 
t

(1 + s)2

!�(H) X

k�0

a�,k

kX

m=0

(�1)k�m

 
k

m

!  
t

(1 + s)2

!k�m ✓
x

1 + s

◆m

= (1 + s)��(H)t�(H)
X

k�0

a�,k

 
x

1 + s
�

t

(1 + s)2

!k

.
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Consider the multiplication map of Proposition 21.4.29

⇡̃1 : C1(✏) ⇥ B(�) � N(✏) ⇥ B(�)! N\NT (�)N(✏)

(n, b) 7! nb
�1

for � >> 0. Explicitly, if n =

 
1 0

t 1

!
and b = (1 + z)

 
1 + s 0

x (1 + s)�1

!
one has

⇡̃1(n, b) = (1 + z)�1

 
(1 + s)�1 0

0 1 + s

!  
1 0

t

(1+s)2 �
x

1+s
1

!
.

Then, the conormal bundle of1 ⇢ P1
K in the coordinate t is given by K · t, thus (N_

1/P1)
⌦�(H) = K · t�(H).

On the other hand, the space C1(M†
1,F`

)h1=w0(�) on the coordinate t

(1+s)2 �
x

(1+s)
is identified with the

functions

f (z, s, t, x) = (1 + z)�(Z)(1 + s)��(H)
X

k�0

bk

 
x

1 + s
�

t

(1 + s)2

!k

,

this proves (ker 2).

The point (coker 1) was already proven in Theorem 21.4.31, and can be seen again in the formula

(21.5.6). Hence, we have that

X ?2,3 f (s, t, x) = (1 + s)�(H)t
X

n,m�0

(n � �(H))an,m + (m + 1)an�1,m+1

 
t

(1 + s)2

!n ✓
x

1 + s

◆m

.

Given bn,m we want to solve the recursive equation

bn,m = (n � �(H))an,m + (m + 1)an�1,m+1 8n,m � 0. (21.5.8)

Suppose that �(H) < N, then

an,m =
1

�(H) � n
((m + 1)an�1,m+1 � bn,m).

Taking n = 0 one sees that a0,m = �
1

�(H)
b0,m for all m � 0. An inductive argument shows that

an,m = �
1

�(H) � n
bn,m �

1

�(H) � n

nX

k=1

 
m + 1

�(H) � n + 1

!
· · ·

 
m + k

�(H) � n + k

!
bn�k,m+k.

The convergence condition of (coker 2) guarantees that the series

f (t, x, s) = (1 + s)�(H)
X

n,m�0

an,m

 
t

(1 + s)2

!n ✓
x

1 + s

◆m

converges for ✏ >> 0, proving that lim
��!✏!1

M�(✏) = 0.

Finally, suppose that �(H) 2 N. The previous computation shows that we can solve the equation

(21.5.8) uniquely for all n < �(H). Therefore, we may assume that bn,m = 0 for n < �(H). The input

n = �(H) in (21.5.8) would imply b�(H),m = 0 for all m � 0, and if this holds we can solve the equation

for all n > �(H). Therefore,M� is represented by the power series

f (s, t, x) = (1 + s)�(H)t

 
t

(1 + s)2

!�(H) X

m�0

bm

✓
x

1 + s

◆m

= (1 + s)��(H)t�(H)+1
X

m�0

bm

✓
x

1 + s

◆m

.

222



21. The flag variety

But taking the multiplication map as before

⇡̃1 : C1 ⇥ B(�) � 1 ⇥ B(�)! N\NT (�)N(�)

(1, b) 7! b
�1
,

this space is identified with Ψ⇤(N_
1/P1)

⌦�(H)+1 ⌦K C(M†F`,1
)h?1
=w0(�) as wanted. ⇤

Remark 21.5.4. The ?1,3 action is trivial on Ψ⇤(N_
1/P1), but b?2

acts via 2⇢. Therefore, the highest

weight of Ψ⇤(N_
1/P1)

⌦�(H) ⌦K C(M†F`,1
)h?1
=w0(�) is w0(�) + 2�(H)⇢ = �. However, Ψ⇤(N_

1/P1)
⌦�(H) ⌦K

C(M†F`,1
)h?1
=w0(�)

, C(M†F`,1
)h?1
=� as G†-equivariant sheaves over C1(✏). Indeed, the horizontal ac-

tion h0?3
differs on both sheaves as it is trivial on Ψ⇤(N_

1/P1), and it is different on C(M†F`,1
)h1=� and

C(M†F`,1
)h1=w0(�) unless �(H) = 0, i.e. w0(�) = �.
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22. Shimura varieties

In this chapter, we apply the machinery of Sen theory of §20 to Shimura varieties. We describe

the locally analytic vectors of the completed cohomology in terms of the locally analytic vectors of

the completed structural sheaf at infinite level. As a first application, we deduce that the rational

completed cohomology is concentrated in degrees [0, d], where d is the dimension of the Shimura

variety, proving in this way a rational version of the Calegary-Emerton conjectures [CE12] for any

Shimura variety. If the Shimura datum if of abelian type, this follows from Theorem 5.3 of [Sch15] as

the infinite level Shimura variety is perfectoid (see [She17]), in fact, the Calegari-Emerton conjectures

hold with integral coefficients in this situation. In [HJ20], Hansen-Johansson prove many cases of the

conjectures reducing to pre-abelian Shimura varieties. What is remarkable in our proof is that it never

uses the perfectoidness of the Shimura variety; the important input is the non vanishing of the Sen

operators.

We begin in §22.1 with the general set up of Shimura varieties, we will follow the conventions of

§5 [DLLZ18]. In §22.1.1, we define the infinite level Shimura variety and recall the construction of

the Hodge-Tate period map of diamonds as in §4.4 of [BP21]. In §22.2 we make the preparations for

proving the main theorem of the chapter, namely, in §22.2.1 we show that the Sen bundle of a toroidal

compactification of a Shimura variety is identified with the pullback via ⇡HT of the G-equivariant

subbundle n0 ⇢ OF` ⌦ g of §21.4. As an application, we give a purely local proof of the classical

Hodge-Tate decompositions of Shimura varieties in §22.2.2; the idea is to use Faltings’s BGG method

and the ⇡HT period map. Finally, in §22.3, we recall the definition of Emerton’s completed cohomol-

ogy and how it can be computed in terms of pro-étale cohomology. We prove the main theorem of

the chapter (Theorem 22.3.16), and in §22.3.1 we compute the arithmetic Sen operator in terms of the

horizontal action ✓m arising from the center of U(m0), cf. Proposition 21.4.7.

In the following we will omit the subscript in the structural sheaves of the Shimura varieties unless

otherwise specified, namely, we denote by O (+) and Ô (+) the uncompleted and completed structural

sheaves of the Shimura varieties in the pro(-Kummer-)étale site. We also let O (+)

?
for ? 2 {an, ét, két}

denote the structural sheaves of the Shimura varieties in the analytic, étale and Kummer-étale site

respectively.

22.1. The set-up

Let (G, X) be a Shimura datum, that is, G is a reductive group over Q and X a G(R)-conjugacy class

of cocharacters

h : ResC/RGm,C ! GR.

satisfying the axioms ( [Del79, 2.1.1] or [Mil05, Def. 5.5]) :

SV1. For all h 2 X, the Hodge structure on Lie(GR) defined by Ad�h is of type {(�1, 1), (0, 0), (1,�1)}.

SV2. For all h 2 X, ad(h(i)) is a Cartan involution of Gad
R

.

SV3. Gad has no simple Q-factors with compact real points.

Let E/Q be the reflex field of (G, X), and for K ⇢ G(A1
Q

) a neat compact open subgroup, let ShK

denote the canonical model of the Shimura variety of level K over Spec E. Recall that the C-points of
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22. Shimura varieties

ShK are equal to

ShK(C) = G(Q)\(X ⇥G(A1Q ))/K.

From now on we will fix K p ⇢ G(A
1,p

Q
) a neat compact subgroup of level prime to p. Given

Kp ⇢ G(Qp) a compact open subgroup we let ShK pKp
denote the Shimura variety of level K pKp. We

will be interested in the tower

{ShK pKp
}Kp⇢G(Qp).

Let Z be the center of G and Zc ⇢ Z the maximal Q-anisotropic torus which is R-split. Given two

levels K0 ⇢ K ⇢ G(A1
Q

) with K0 normal in K, the map of Shimura varieties ShK0 ! ShK is finite

étale with Galois group isomorphic to K/(K0,K\Z(Q)), where Z(Q) is the closure of Z(Q) in Z(A1
Q

),

cf [Del79, §2.19]. Since K is neat, K \ Z(Q) ⇢ Zc(A
1
Q

). In particular, the infinite-at-p level Shimura

variety ShK p := lim
 ��Kp

ShK pKp
is a Galois cover of ShK pKp

of group

eKp := K pKp/(K
p,K pKp \ Z(Q)).

Thus, if K0p ⇢ Kp is normal, the Galois cover ShK pK0p ! ShK pKp
has group eKp/eK0p. Let us denote

eg = Lie eKp.

Let Gc denote the quotient of G by Zc, and let gc = Lie Gc
Qp

. From our previous discussion, there

is a map eg ! gc, the obstruction for this map being an isomorphism depends on the Leopoldt’s

conjecture, in fact, this map is an isomorphism of Lie algebras if and only if the image of Z(Q) in

Z(Qp) generates an open subgroup. Given a subgroup H of G we denote by Hc its image in Gc,

similarly for the subgroups K ⇢ G(A1
Q

), K p and Kp.

Let µ : Gm,C ! GC be the Hodge cocharacter, i.e. the restriction of h to the first factor of

(ResC/RGm,C)C = Gm,C ⇥ Gm,C. Associated to µ, we have two parabolic subgroups Pstd
µ = {g 2 GC :

limt!1Ad(µ(t))g exists} and Pµ = {g 2 GC : limt!0 Ad(µ(t))g exists}, we denote by Nµ ⇢ Pµ the

unipotent radical. Let FLstd = GC/P
std
µ and FL = Pµ\GC denote the flag varieties. We recall that the

conjugacy class of µ is defined over E, so the same holds true for FLstd and FL. Note that we have a

surjective map eKp ! eKp whose kernel is in the center of eKp for Kp small enough.

Given a Shimura variety ShK , we denote by Sh⇤K its minimal compactification, and given an aux-

iliary cone decomposition Σ we shall denote by Shtor
K its toroidal compactification as in [Pin90]

(see [FC90] for an algebraic construction in the Siegel case). We can and will assume that the toroidal

compactification is projective smooth and that the boundary divisor is a strict normal crossings divisor.

Even if the toroidal compactification depends on the cone decomposition, we shall omit the subscript

Σ in the notation; this will not be important in our results as the coherent cohomology is unchanged

after refining the cone decomposition (see [Har90, §2] and [Lan17, Prop. 7.5]). Besides, the Kummer-

étale cohomology only depends on the open Shimura variety by a purity theorem [DLLZ19, Theo.

4.6.1]. Given K0 ⇢ K, we can always modify the toroidal compactification of Shtor
K0 for the map

Shtor
K0 ! Shtor

K to be finite Kummer-étale (e.g. by the Abhyankar’s lemma [DLLZ19, Prop. 4.2.1]).

Furthermore, after fixing Kp, one can take toroidal compactifications adapted to a decreasing sequence

of subgroups · · · ⇢ K2
p ⇢ K1

p ⇢ Kp, in the sense that the maps of the tower {Shtor
K pKn

p
}Kn

p⇢Kp
are finite

Kummer-étale.

Let L/Qp be a finite extension containing the reflex field E and such that G is split over L. We let

ShK,L denote the p-adic analytification of ShK,L := ShK⇥Spec E Spec L to an adic space over Spa(L,OL),

cf. [Hub96]. We denote by Sh⇤K,L and Shtor
K,L

the analytification of the minimal and toroidal compact-

ifications. As is explained in [LS18, §3], given V 2 RepL(Gc) a finite dimensional representation,

we can attach an automorphic étale local system Vét over ShK,L. By purity of torsion local sys-

tems [DLLZ19, Prop. 4.2.1], Vét has a natural extension to a Kummer étale local system over Shtor
K,L

which we denote by Vkét. Let Shtor
K p,L

:= lim
 ��K0p⇢Kp

Shtor
K pKp,L

be the toroidal infinite level Shimura vari-

ety, seen as an object in Shtor
K pKp,L,prokét

. Essentially by definition, Vkét is the local system attached to
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22. Shimura varieties

the eKp-representation V and the eKp-torsor ⇡Kp
: Shtor

K p,L
! Shtor

K pKp,L
. From now on we will see the flag

varieties as schemes over L, and we shall denote by F`std and F` their analytifications.

By the p-adic Riemman-Hilbert correspondance [DLLZ18, Theo. 5.3.1], there is a filtered vector

bundle with integral log connection (VdR,r) defined over Shtor
K,L

, and a natural isomorphism

Vkét ⌦bL OBdR,log = VdR ⌦O
Shtor

K,L

OBdR,log (22.1.1)

as sheaves over the pro-Kummer-étale site ofShtor
K,L

, compatible with filtrations and the log connection.

We say that the triple (VdR,r,Fil•) is a filtered integrable connection. By GAGA [Con06], VdR defines

a filtered integrable connection over the algebraic Shimura variety Shtor
K,L.

By definition, the formation V  Vkét preserves the monoidal structure of RepL(V) so that the

same holds true for V  VdR. By the Tannakian formalism [DM82], there is a Gc
L
-torsor Gc

dR
over

Shtor
K,L parametrizing all the vector bundles VdR. By [DLLZ18, Theo. 5.3.1], the Hodge cocharacter

µ defines the decreasing filtration of VdR, applying the Tannakian formalism again we obtain a right

Pstd,c
µ torsor Pstd,c

µ,dR
over Shtor

K,L, as well as an inclusion of torsors Pstd,c
µ,dR
! Gc

dR
. In particular, we have

a Gc
L
-equivariant morphism ⇡dR : Gc

dR
! FLstd

L . Let Mc
µ ⇢ Pstd,c

µ be the Levi factor, we define the

modular torsor Mc
µ,dR

to be the pushout Pstd,c
µ,dR
⇥P

std,c
µ Mc

µ. We denote by Gc
dR

, Pstd,c
µ,dR

and Mc
µ,dR

the

analytification of the torsors seen as spaces over Shtor
K,L

.

Remark 22.1.1. It will be convenient for us to see Mc
µ,dR

as a left Mc
µ-torsor. This can be easily done

by defining the left action m · x := xm�1 for m 2Mc
µ and x 2Mc

µ,dR
.

Definition 22.1.2. Let T ⇢ B ⇢ GL be a maximal torus and a Borel subgroup respectively. Suppose

that T ⇢Mµ and B ⇢ Pµ, we let BM = B\Mµ denote the Borel subgroup of the Levi. Let w0 and w0,M

be the longest elements of the Weyl group of Gc
L

and Mc
µ respectively. Let  2 X⇤(Tc)+

M
be a dominant

weight for Mc
µ, and let W denote the irreducible representation of highest weight . We define the

automorphic sheaf over ShK pKp,L of weight  to be

M() :=Mc
µ,dR ⇥

Mc
µ W_

�w0(),

where we see Mc
µ as a left torsor.

Remark 22.1.3. Let us explain the convention of the automorphic sheaves in terms of the functions

of the torsor. Let t : Mc
µ,dR
! ShK,L be the natural projection of the torsor. If Mc

µ,dR
is seen as a left

torsor, the sheafM() is given as (see Remark 21.2.7)

M() = t⇤OMc
µ,dR

[�w0()?1
].

In other words, its sections in affine subschemes U ⇢ ShK,L are equal to

M()(U) = { f : t�1(U)! A1 | f (b�1m) = w0()(b�1) f (m) for all b 2 Bc
Mµ
}.

Equivalently, if we see Mc
µ,dR

as a right torsor we have

M()(U) = { f : t�1(U)! A1 | f (mb) = w0()(b�1) f (m) for all b 2 Bc
Mµ
}.

In the notation of [BP21, §4.1.1] we haveM() = V_
�w0().

22.1.1. Infinite level Shimura varieties

Let ShK p,L = lim
 ��Kp⇢G(Qp)

ShK pKp,L be the infinite level Shimura variety. Let us fix Kp ⇢ G(Qp) a

compact open subgroup and Shtor
K pKp,L

a smooth projective toroidal compactification as in the previous

section. Let Shtor
K p,L
= lim
 ��K0p⇢Kp

Shtor
K pKp,L

be the infinite level toroidal Shimura variety. We highlight
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22. Shimura varieties

that, while ShK p,L has an action of G(Qp), the toridal compactification Shtor
K p,L

only has an action of Kp.

Nevertheless, the projective system Sh
tor,1
K p,L

:= {Sh
tor,Σ
K p,L
}Σ of all the toroidal compactifications (induced

by cone decompositions Σ) has a natural action of G(Qp) via Hecke correspondances.

In [Sch15], Scholze proved that for Hodge-type Shimura varieties, the inverse limit Sh⇤K p,L :=

lim
 ��Kp

Sh⇤K pKp,L
of the minimal compactifications of the Shimura varieties has a natural structure of a

perfectoid space1. In [PS16], Pilloni an Stroh have shown that the same holds true for Siegel varieties

and the toroidal compactifications, using [Lan19] one deduces the same result for Shimura varieties of

Hodge type. Furthermore, in the situation of Hodge-type Shimura varieties, Caraiani-Scholze [CS17]

have constructed a G(Qp)-equivariant Hodge-Tate period map

⇡HT : ShK p,L ! F`

which is affine in a precise sense (see [Sch15, Theo. III.3.18] and Proposition 22.1.8 down below).

They also proved that pullbacks of G-equivariant vector bundles of F` induced from the Levi Mc
µ are

naturally isomorphic to G(Qp)-equivariant vector bundles of ShK p,L obtained from Mc
µ,dR

, see [CS17,

Prop. 2.3.9]. As is pointed out in [BP21, §4.4], for general Shimura varieties one can construct a

Hodge-Tate period map of diamonds over Spd L

⇡HT : Sh
tor,⌃
K p,L
! F`⌃ (22.1.2)

which pullbacks G-equivariant vector bundles of F` to Kp-equivariant bO-vector bundles overShtor
K p,L,prokét

.

Let us explain how (22.1.2) is defined. Let V 2 RepL Gc be a finite dimensional representation, Vkét

its Kummer étale local system over Shtor
K,L

and (VdR,r,Fil•) its associated filtered integral connexion

via the p-adic Riemman-Hilbert correspondance. We have a natural isomorphism

Vkét ⌦bL OBdR,log = VdR ⌦O OBdR,log

compatible with the filtrations and the log-connexion. This isomorphism defines two B+
dR

lattices in

Vkét ⌦bL BdR, namely, M = Vkét ⌦bL B
+
dR

and M0 = (VdR ⌦O OB+
dR,log

)r=0. We define FiliM := ⇠iM and

FiliM0 := ⇠iM0 for i 2 Z, where ⇠ is a local generator of ✓ : B+
dR
! bO . These two lattices are related

in the following way:

Proposition 22.1.4 ( [Sch13a, Prop. 7.9]). The latticesM andM0 satisfy

(M \ FiliM0)/(M \ Fili+1M0) = Fil�i VdR ⌦O
Shtor

K,L

bOShtor
K,L

for all i 2 Z.

With this two filtrations we can define the increasing Hodge-Tate filtration of Vkét ⌦bL
bOShtor

K,L
to be:

Fil j(Vkét ⌦bL
bOShtor

K,L
) = (M \ Fil� jM0)/(Fil1M \ Fil� jM0) (22.1.3)

with graded pieces

gr j(Vkét ⌦bL
bOShtor

K,L
) = gr j(VdR) ⌦O

bO(� j). (22.1.4)

Let Gc
HT

be the Kp-equivariant Gc
L
-torsor over Sh

tor,⌃
K p,L

obtained by the formation of V  Vkét ⌦bL
bO .

By the functoriality of the p-adic Riemman-Hilbert correspondance, the formation of the Hodge-Tate

filtration is compatible with the Tannakian formalism, and we have defined a Kp-equivariant Pc
µ-

torsor Pc
µ,HT

over Sh
tor,⌃
K p,L

endowed with an equivariant map to Gc
HT

. The inclusion Pc
µ,HT
⇢ Gc

HT
defines

a period map Gc
HT
! F`⌃. But Sh

tor,⌃
K p,L

has a natural Kp-equivariant section to Gc
HT

as it already

trivializes all the local systems Vkét. One obtains the following corollary, which is a consequence

of [DLLZ18, Theo. 5.3.1]

1To be precise, he proved that the image ofSh⇤
K pKp,L

in a perfectoid Siegel variety is strongly Zariski closed, so perfectoid.

However, by [HJ20, Prop. 5.14] the former is also represented by a perfectoid space.
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22. Shimura varieties

Corollary 22.1.5. The Hodge-Tate filtration of Gc
HT

induces a Kp-equivariant Hodge-Tate period map

of diamonds over Spd L

⇡HT : Sh
tor,⌃
K p,L
! F`⌃

satisfying the following properties:

1. The pullback Mc
µ,HT

of the Mc
µ-torsor Nc

µ\G
c ! F` via ⇡HT is canonically isomorphic to a Tate

twist of the pullback of Mc,

µ,dR
to Sh

tor,⌃
K p,L

. More precisely, let ⇡Kp
: Shtor

K p,L
! Shtor

K pKp,L
be the

projection and µ : Gm ! GL the Hodge cocharacter, then2

Mc
µ,HT = ⇡

⇤
Kp

(Mc,⌃

µ,dR
) ⇥µ bZp(�1)⇥. (22.1.5)

Given a Gc-equivariant vector bundleW over F`, we will confuse ⇡⇤HT(W) with the bO-vector

bundle over Shtor
K pKp,L,prokét

that it defines.

2. The formation of ⇡HT is compatible with Hecke correspondances at p. In other words, the maps

⇡HT glue to a G(Qp)-equivariant map

⇡HT : Sh
tor,1,⌃
K p,L

! F`⌃ .

Remark 22.1.6. In the previous construction of ⇡HT, we have considered vector bundles over dia-

monds, a concept which is not very clear as diamonds are quotients of perfectoid spaces in character-

istic p. Nevertheless, if X is a diamond over Spd L, the structural map X ! Spd L defines an untilt

of X over Spa L, and in particular a structural sheaf in the proétale site: X] = (Xproét, bOX]). Then,

for an algebraic group H over L, a H torsor over X}/Spd L is a functor V 7! V from algebraic

representations of H to bOX]-vector bundles over X] preserving duals and tensor products.

Notice that, since ⇡HT is a map of diamonds over Spd L, we have an induced morphism in the

untilts:

⇡HT : (Shtor
K p,L,prokét,

bO)! (F`an,OF`),

which pullbacks the Mc
µ-torsor Mc

µ,HT
to (a Tate twist of) the torsor Mµ,dR. From now on, when we

mention the ⇡HT morphism we always refer to this last map of ringed sites, unless otherwise specified.

Remark 22.1.7. We explain in more detail how the Tate twist (22.1.5) translates in the automorphic

vector bundles. Let  2 X⇤(Tc)+
Mc
µ

be a positive weight for Mc
µ, and letW() andM() be the associ-

ated vector bundles of weight  over F` and Shtor
K pKp,L

(see Definitions 21.2.6 and 22.1.2). First, for-

getting the Galois action, we have Kp-equivariant isomorphisms ⇡⇤HT(W()) = ⇡⇤Kp
(M()) preserving

tensor products and duals3. To find the correct Tate twist one can argue as follows: let � 2 X⇤(Tc)+ be

a dominant weight for Gc
L

and V� the irreducible representation of highest weight �. The Hodge-Tate

filtration of V�,két⌦ bO is induced from the Pc-filtration of V� by taking the corresponding G-equivariant

vector bundles over F` and their pullbacks via ⇡HT. Moreover, by (22.1.3) the Hodge-Tate filtration

is concentrated in degrees [��(µ),�w0(�)(µ)] since the Hodge filtration of V�,dR is concentrated in

degrees [w0(�)(µ), �(µ)] by definition. The representation V� admits W� as subrepresentation. Hence,

sinceW(wM
0 (�)) = Nc

µ\(G
c ⇥W�), one has that

⇡⇤HT(W(wM
0 (�))) = Fil��(µ)(Vkét ⌦ bO) =M(wM

0 (�)) ⌦ bO(�(µ)).

Therefore, for all  2 X⇤(Tc)+
Mc
µ

we have

⇡⇤HT(W()) =M() ⌦ bO(w0()(µ)).

2Let G be a group acting on the left on two sheaves X and Y , by definition X ⇥G Y = G\(X ⇥ Y).
3This is why the convention taken in this paper and the convention of [BP21] differ, cf. Remark 22.1.3.
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22. Shimura varieties

Following [BP21], affiness of the Hodge-Tate period map provides some vanishing theorems for the

cohomology with partial supports of overconvergent automorphic sheaves. We will use the following

proposition in Chapter 23.

Proposition 22.1.8 ( [BP21, Prop. 4.4.53]). Let (G, X) be an abelian type Shimura datum (eg.

of Hodge type). Let Sh⇤K p,L = lim
 ��K0p⇢Kp

Sh⇤
K pK0p,L

be the minimal compactification of the perfectoid

Shimura variety. Then the Hodge-Tate period map ⇡HT : Sh
tor,⌃
K p,L
! F`⌃ factors through Sh

⇤,⌃

K p,L
.

Furthermore, there exists an affinoid cover {Vi}i2I of F` such that, for each i 2 I, there exists a level

Kp and an affinoid Ui ⇢ Sh⇤K pKp,L
satisfying

⇡�1
HT(Vi) = ⇡

�1
Kp

(Ui).

22.2. Classical BGG decompositions of Shimura varieties

Let C = Cp be the p-adic completion of an algebraic closure of L. Let g = Lie GQp
, eg = Lie eKp

and gc = Lie GQp
. Letez := ker(eg ! gc), recall that, by the discussion at the beginning of §22.1, the

obstruction for ez being 0 depends on the closure of Zc(Q) in Zc(Qp) being open. For simplicity in

the exposition, we will assume in the rest of the chapter thatez = 0, the proofs and the main theorems

will hold in the general situation under some minor changes, only Theorem 22.3.18 requires an extra

argument which we will explain in §22.3.1.

From now on we shall write P, N and M for the groups Pc
µ, Nc

µ and Mc
µ respectively. We will use

the same group theoretical conventions of §21, namely, we let p, n and m denote the Lie algebras of

P, N and M respectively. We will denote by P and N the opposite parabolic and its unipotent radical,

and by p and n their Lie algebras. We fix B ⇢ P a Borel subgroup and T ⇢ B a maximal torus

contained in M, let N+ be the unipotent radical of B. We write b, n+ and h for the Lie algebras of

B, N+ and T respectively. We also let O (+) (resp. bO (+)) denote the uncompleted (resp. completed)

structural sheaves over Shtor
K pKp,L,prokét

. We write Ω1(log) for the log differentials of Shtor
K pKp,L

(which

are preserved by pullbacks of Kummer-étale maps), and let ✓Sh : Ω1(log)_ ⌦ bO(1) ! gc
két
⌦ bO be the

Sen operator.

22.2.1. The Sen bundle of a Shimura variety

In this paragraph we compute the Sen operator of a Shimura variety. Let n0 ⇢ OF` ⌦ g
c be the

subbundle given by n0 = GL ⇥
P n, in other words, the subbundle whose fiber at x 2 F` is LieNx =

Lie x�1N x. We also define p0 = GL ⇥
P p and m0 = p0/n0. Let ⇡HT : Shtor

K p,L
! F`L be the Hodge-Tate

period map and ⇡Kp
: Shtor

K p,L
! Shtor

K pKp,L
the natural projection.

Theorem 22.2.1. The pullback by ⇡HT of n0 ⇢ OF` ⌦ g
c is naturally isomorphic to the pullback by ⇡Kp

of the Sen operator ✓Sh : Ω1(log)_ ⌦ bO(1)! gc
két
⌦ bO , for any Kp ⇢ G(Qp).

The strategy to prove this theorem is to construct the Faltings extension via ⇡HT. More precisely,

we will show the following

Theorem 22.2.2. Let C
1
= P\PP = P\PN be the big cell of FLstd and O(C

1
) its ring of regular func-

tions seen as a P-module. , cf. Remark 21.3.21 for a more explicit description of this representation.

Let O(C
1
) denote the associated Gc-equivariant quasi-coherent sheaf over F`. There is a natural

isomorphism of sheaves over Shtor
K pKp,L,prokét

⇡⇤HT

✓
O(C

1
)

◆
= OClog
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Proof. Let gc
két

be the Kummer-étale local system attached to the adjoint representation, and gc
dR

its

associated filtered integrable connexion. The Hodge filtration of gc
dR

is concentrated in degrees [�1, 1]

by (SV1). Moreover, by (22.1.4) we know that

gr�1(gcdR) ⌦ bO(1) = ⇡⇤HT(n0),

gr0(gcdR) ⌦ bO = ⇡⇤HT(m0),

gr1(gcdR) ⌦ bO(�1) = ⇡⇤HT(n0,_),

where in the last equality we have used the Killing form to identify gc/p with n_. LetM = gc
két
⌦ B+

dR

andM0 = (gdR ⌦ OB+
dR,log

)r=0, and consider the exact sequence

0! M \M0 ! Fil0(gcdR ⌦ OB+dR,log)! Fil0(gcdR ⌦ OB+dR,log ⌦Ω
1(log))! · · · .

Taking 0-th graded pieces we obtain a short exact sequence

0!
M \M0

Fil1M \M0

! gr0(gcdR ⌦ OB+dR,log)! gr0(gcdR ⌦ OB+dR,log ⌦Ω
1(log))! 0.

By Proposition 22.1.4 and the Hodge-Tate filtration (22.1.3), one finds that

M \M0

Fil1M \M0

= ⇡⇤HT(p0)

gr0(gcdR ⌦ OB+dR,log) = gr�1(gcdR) ⌦ gr1OB+dR,log � gr0(gcdR) ⌦ bO
= ⇡⇤HT(n0) ⌦ gr1OB+dR,log(�1) � ⇡⇤HT(m0)

gr0(gcdR ⌦ OB+dR,log ⌦Ω
1(log)) = gr�1(gcdR) ⌦ bO ⌦Ω1(log)

= ⇡⇤HT(n0) ⌦ bO(�1) ⌦Ω1(log).

Therefore, we obtain a short exact sequence

0! ⇡⇤HT(p0)! ⇡⇤HT(n0)(�1) ⌦ gr1OB+dR,log � ⇡
⇤
HT(m0)

r�KS
����! ⇡⇤HT(n0)(�1) ⌦Ω1(log)! 0,

where r is the tensor of r : gr1OB+
dR,log

! Ω1(log) ⌦ bO with ⇡⇤HT(n0)(�1), and KS is the bO-extension

of scalars of the Kodaira-Spencer map

KS : gr0(gcdR)! gr�1(gcdR) ⌦Ω1(log).

This extension defines a class ⌘ 2 Ext1
bO(⇡⇤HT(n0)(�1) ⌦ Ω1(log), ⇡⇤HT(p0)). Tensoring with the identity

of ⇡⇤HT(n0,_) we obtain a class ⌘ ⌦ idn0,_ 2 Ext1
bO(⇡⇤HT(n0 ⌦ n0,_)(�1) ⌦ Ω1(log), ⇡⇤HT(p0 ⌦ n0,_)). We see

n_ as a subspace of O(C
1
) via the exponential map exp : n ! N, and the identification C

1
� N.

Let O(C
1
)1 be the space of polynomials of degree  1. We have P-equivariant maps 1 ,! n ⌦ n_,

and n_ ⌦ p ⇣ O(C
1
)1, where the first is the dual of the trace map n ⌦ n_ ! 1, and the second is

given by derivations of p. Taking pushout and pullback diagrams of ⌘ ⌦ idn0,_ , one obtains a class

⌘̃ 2 Ext1
bO

✓
bO(�1) ⌦Ω1(log), ⇡⇤HT

✓
O(C

1
)1

◆◆
. Following the explicit pushout and pullback extensions,

one finds that ⌘̃ is the extension

0! ⇡⇤HT

✓
O(C

1
)1

◆
(↵,�)
���! gr1OB+dR,log(�1) � ⇡⇤HT(n0,_)

(r,fKS)
����! Ω1(log) ⌦ bO(�1)! 0,

where fKS is the bO(�1)-extension of scalars of the Kodaira-Spencer isomorphism

fKS : gr1(gcdR)
⇠
�! Ω1(log).
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This implies that the map ↵ is an isomorphism. Taking symmetric powers and direct limits one gets

that

⇡⇤HT

✓
O(C

1
)

◆
= lim
��!

n

Symn ⇡⇤HT

✓
O(C

1
)1

◆

= lim
��!

n

Symn gr1OB+dR,log(�1)

= OClog

as wanted. ⇤

Remark 22.2.3. The previous proof works in the general situation where eX ! X is a pro-Kummer-

étale G0-torsor, with G0 ⇢ G(Qp) an open compact subgroup of the Qp-points of a reductive group,

under the following conditions:

1. The G0-torsor eX ! X is de Rham, and the Hodge-Tate filtration is induced by a minuscule

cocharacter µ : Gm ! GCp
.

2. The Kodaira-Spencer map KS : ⇡⇤HT(n0,_)! Ω1(log) ⌦ bO(�1) is an isomorphism.

Proof of Theorem 22.2.1. Let V 2 RepL Gc, since grn(Vkét ⌦ bO) = grn(VdR) ⌦ bO(�n) for all n 2 Z, the

geometric Sen action of the graded pieces grn(Vkét⌦ bO) must be trivial. Hence, it sends Fili+1(Vkét⌦ bO)

to Fili(Vkét ⌦ bO). By the Tannakian formalism, this implies that the Sen operator factors through

✓Sh : Ω1(log)_ ⌦ bO(1)! ⇡⇤HT(n0) ⇢ gckét ⌦
bO .

But ⇡⇤HT

✓
O(C

1
)

◆
= OClog by Theorem 22.2.2, and we know that the Sen action on the Faltings exten-

sion

0! bO ! gr1OB+dR,log(�1)! bO(�1) ⌦Ω1(log)! 0

maps bO to 0 and factors through the trace map Ω1(log)_ ⌦Ω1(log)! O . On the other hand, we have

a short exact sequence

0! L! O(C
1
)1 ! n_ ! 0,

and the action of n by derivations on O(C
1
)1 kills L, and factors through the trace map n⌦ n_ ! L ⇢

O(C
1
)1. Since gr1(OBdR,log)(�1) = ⇡⇤HT

✓
O(C

1
)1

◆
, the Sen map induces an isomorphism

✓Sh : Ω1(log)_ ⌦ bO(1)! ⇡⇤HT(n0)

as wanted. ⇤

Remark 22.2.4. A careful proofreading of the constructions shows that the dual of ✓Sh : Ω1(log)_ ⌦
bO(1)! ⇡⇤HT(n0) is the composition of ⇡⇤HT(n0,_) = gr1(gc

két
⌦ bO)

⇠
�! gr1(gc

dR
) ⌦ bO(�1), and the bO(�1)-

extension of scalars of the Kodaira-Spencer isomorphism fKS : gr1(gc
dR

)
⇠
�! Ω1(log).

We have shown that the condition (BUN) of §20.2.2 holds in our situation, so we can refer to ✓Sh

as the Sen bundle. One obtains the following corollary from Theorem 20.2.4

Corollary 22.2.5. Let ⌫Kp
: Shtor

K pKp,C,prokét
! Shtor

K pKp,C,két
and � : Shtor

K p,C,két
! Shtor

K p,C,an be the pro-

jection of sites. Let ⌫1,⇤ = lim
��!Kp

⌫Kp,⇤ be the colimit of the pushforwards of finite levels. We have a

natural Galois equivariant isomorphism of sheaves over Shtor
K p,C,an

R(� � ⌫1)⇤(C
la(gc, bO)) = O la

Sh,

where O la
Sh

is the subsheaf of locally analytic sections of the completed structural sheaf at infinite

level, see Definition 17.3.8.
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22.2.2. Classical Hodge-Tate decompositions via ⇡HT

We keep the notation of §21, namely, for � 2 X⇤(T)+ (resp. � 2 X⇤(T)+
M

) we let V� (resp. W�) denote

the irreducible representation of G (resp. of M) of highest weight �. LetW() = Gc
L
⇥P WwM

0
() and

M() = Mc
µ,dR
⇥M WwM

0
() denote the associated vector bundles of weight  over F`L and Shtor

K pKp,L

respectively. Let ⇡HT : Shtor
K p,L
! F` be the Hodge-Tate period map, we shall confuse eKp-equivariant

sheaves over Shtor
K p,L,prokét

with the pro-Kummer-étale sheaf it defines over Shtor
K pKp,L

.

The goal of this section is to describe the Hodge-Tate decompositions of the local systems V_�,két
,

more precisely, we will prove the following theorem:

Theorem 22.2.6. Let � 2 X⇤(T)+ be a dominant weight, and CwM
0
= P\PwM

0 N ⇢ FL be the big cell of

the flag variety. Let BGG_(�) the dual BGG complex of V_� as (gc,P)-module, see Definition 21.3.18.

By Corollary 21.3.22 we have an isomorphism of P-representations

BGG_(�) = [W�w0(�) ⌦ O(C
1
)! · · ·!

M

w2MW
`(w)=k

Ww·(�w0(�)) ⌦ O(C
1
)! · · ·! WwM

0
·(�w0(�))) ⌦ O(C

1
)].

(22.2.1)

Let BGG_(�) be the associated Gc-equivariant quasi-coherent complex over F`. The following hold:

1. We have a quasi-isomorphism V_�,két
⌦ bO[0] ' ⇡⇤HT (BGG_(�)) of complexes over Shtor

K pKp,L,prokét
.

The (d � k)-th term of ⇡⇤HT (BGG_(�)) is of the form

M

w2MW
`(w)=k

M(�w0(w · �)) ⌦ ! ⌦O OClog(w · �(µ�1) � d).

where ! = Ωd(log). Furthermore, let � � ⌫Kp
: Shtor

K pKp,C,prokét
! Shtor

K pKp,C,an be the projection of

sites, then

R(� � ⌫Kp
)⇤(V

_
�,két ⌦

bO) =
M

w2MW

M(�w0(w · �)) ⌦ ! ⌦ Zp(w · �(µ�1) � d)[`(w) � d].

By taking cohomology over Shtor
K pKp,C,an, and using the primitive comparison theorem, one gets

RΓproét(ShK pKp,C,V
_
�,ét)⌦LC =

M

w2MW

RΓan(Shtor
K pKp,C

,M(�w0(w·�))⌦!)⌦C(w·�(µ�1)�d)[`(w)�d].

2. We have a quasi-isomorphism j!V
_
�,ét

b⌦ bO[0] ' j!
bZpb⌦⇡⇤HT(BGG_(�)). Furthermore,

R(� � ⌫Kp
)⇤( j!V

_
�,ét

b⌦ bO) =
M

w2MW

M(�w0(w · �)) ⌦ !cusp ⌦ Zp(w · �(µ�1) � d)[`(w) � d],

where !cusp = Ω
d

Shtor
K pKp ,L

. In particular, taking cohomology over Shtor
K pKp,C,an one gets

RΓproét,c(ShK pKp,C,V
_
�,ét)⌦LC =

M

w2MW

RΓan(Shtor
K pKp,C

,M(�w0(w·�))⌦!cusp)⌦C(w·�(µ�1)�d)[`(w)�d].

Proof of Theorem 22.2.6. By Theorem 22.2.2 we know that ⇡⇤HT(O(C
1
)) = OClog, and by Corollary

22.1.5 that ⇡⇤HT(W()) = M() ⌦O
bO(w0()(µ)). Moreover, Ww0,Mww0·(�w0(�)) = W_

w·�+2⇢M = W_
w·� ⌦ n

_.

Then, the BGG complex can be written as

[W_

wM
0
·�
⌦ n_ ⌦ O(C

1
)! · · ·!

M

w2MW`(w)=d�k

W_
w·� ⌦ n

_ ⌦ O(C
1
)! · · ·W_

� ⌦ n
_ ⌦ O(C

1
)].
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Since ⇡⇤HT(n0) = !⌦ bO(�d) andW() = Gc⇥PW_
�w0(), the previous equation shows that ⇡⇤HT(BGG_(�))

is of the shape described in the theorem. By the projection formula R(��⌫Kp
)⇤(OClog) = Okét one finds

that R(� � ⌫Kp
)⇤⇡
⇤
HT(BGG_(�)) has (d � k)-th term

M

w2PW
`(w)=k

M(�w0(w · �)) ⌦ ! ⌦ Zp(w · �(µ�1) � d).

It is left to see that the connecting map
M

w2MW
`(w)=k

M(�w0(w · �)) ⌦ ! ⌦ Zp(w · �(µ�1) � d)!
M

w2MW
`(w)=k�1

M(�w0(w · �)) ⌦ ! ⌦ Zp(w · �(µ�1) � d)

is zero. For this, it suffices to see that the composition
M

w2MW⌦n0,_

`(w)=k

W(�w0(w · �))! (BGG_(�))d�k ! (BGG_(�))d�k+1,

is zero, but it is the associated Gc-equivariant morphism over F` of the P-equivariant map
M

w2MW
`(w)=k

W_
w·� ⌦ n

_ ! (BGG_(�))d�k ! (BGG_(�))d�k+1

which is 0. This finishes the proof of part (1).

For part (2), let D =
S

a2I Da be the decomposition of the cusps as union of their irreducible

components. We can take our toroidal compactification in such a way that that any finite intersection

of the Da is smooth. For J ⇢ I we set DJ =
T

a2J Da, and denote ◆J : DJ ⇢ Shtor
K pKp,L

. Consider the

long exact sequence

0! j!
bZp ! bZp !

M

a

◆a,⇤bZp ! · · ·!
M

|J|=l

◆J,⇤bZp ! · · ·! ◆I,⇤bZp ! 0

and its completed tensor with ⇡⇤HT,Kp
(BGG_(�)). It is enough to show that for all J ⇢ I one has

R(��⌫Kp
)⇤(◆J,⇤ bODJ

b⌦ bO⇡
⇤
HT(BGG_())) =

M

w2MW

M(�w0(w ·�))⌦!⌦Oan
◆J,⇤ODJ ,an(w ·�(µ�1)�d)[`(w)�d].

By Theorem 22.2.2, it is enough to prove that

R(� � ⌫Kp
)⇤(◆J,⇤ bODJ

⌦ bO OClog) = ◆J,⇤ODJ ,an,

but this follows from the projection formula [DLLZ18, Prop. 3.3.3]. ⇤

Remark 22.2.7. The previous theorem applied to V� tells us that

R(� � ⌫Kp
)⇤(V�,ét ⌦ bO) =

M

w2MW

M_(�w0(w · �)) ⌦ Zp(w · �(µ))[�`(w)]. (22.2.2)

Indeed, one has V� = V_
�w0(�), so that the dual BGG complex for V� is isomorphic to

[W� ⌦ O(C
1
)! · · ·!

M

w2MW
`(w)=k

Ww·� ⌦ O(C
1
)! · · ·! WwM

0
·� ⌦ O(C

1
)].

We can write Ww·� = W�w0(�w0(w·�)). Recall thatW() the VB over F` attached to W_
�w0(), thus the VB

attached to Ww·� isW_(�w0(w · �)). But Corollary 22.1.5 implies that

⇡⇤HT(W_(�w0(w · �))) =M_(�w0(w · �)) ⌦ OClog(w · �(µ)),

taking projections to the analytic site one obtains (22.2.2).
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22. Shimura varieties

22.3. Locally analytic vectors of completed cohomology

We let j : ShK pKp,L ⇢ Shtor
K pKp,L

denote the open immersion of Shimura varieties. In this section we

make explicit the relation between the locally analytic vectors of the completed cohomology, and the

sheaf O la
Sh

. First, let us recall the definition of Emerton’s completed cohomology, we follow [Eme06].

Definition 22.3.1. Let i 2 Z and Λ a p-adically complete ring. We define the i-th completed coho-

mology group of {ShK pKp,C}Kp
to be

eHi(K p,Λ) := lim
 ��

s

lim
��!
Kp

Hi
ét(ShK pKp,C,Λ/p

s
Λ).

We also define the completed cohomology with compact supports4

eHi
c(K

p,Λ) := lim
 ��

s

lim
��!
Kp

Hi
ét,c(ShK pKp,C,Λ/p

s).

One can compute the completed cohomology withΛ/ps-coefficients using the infinite level toroidal

compactification as follows.

Proposition 22.3.2. We have

eHi(K p,Λ/ps) = Hi
prokét(Shtor

K p ,Λ/p
s)

eHi
c(K

p,Λ/ps) = Hi
prokét(Shtor

K p , j!Λ/p
s).

Proof. By, GAGA for étale cohomology with torsion coefficients [Hub96], putiry of torsion local

systems [DLLZ19, Theo. 4.6.1], and Lemma 4.5.3 of loc. cit. we have

RΓét(ShK pKp,C,Λ/p
s) = RΓkét(Shtor

K pKp,C
,Λ/ps)

RΓét,c(ShK pKp,C,Λ/p
s) = RΓkét(Shtor

K pKp,C
, j!Λ/p

s).

On the other hand, by Lemma 3.16 of [Sch13a] we have that

RΓprokét(Shtor
K p,C,Λ/p

s) = lim
��!
Kp

RΓprokét(Shtor
K pKp,C

,Λ/ps)

RΓprokét(Shtor
K p,C, j!Λ/p

s) = lim
��!
Kp

RΓprokét(Shtor
K pKp,C

, j!Λ/p
s).

This proves the proposition. ⇤

We want to show that the completed cohomology with Zp coefficients can also be computed as the

pro-Kummer-étale cohomology with bZp-coefficients of Shtor
K p,C

. Since bZp = R lim
 ��s
Z/ps and j!

bZp =

R lim
 ��s

j!Z/p
s, one has a short exact sequence

0! R1 lim
 ��

s

(Hi�1
prokét(Shtor

K pKp,C
,Z/ps))! Hi

prokét(Shtor
K p,C,

bZp)! eHi(K p,Zp)! 0,

(resp. for cohomology with compact supports). Therefore, we only need to show that the R1 lim
 ��s

appearing above vanishes. This is a consequence of admissibility of completed cohomology:

4The maps between Shimura varieties are finite, hence there are natural pullback maps between the cohomologies with

compact support.

234



22. Shimura varieties

Theorem 22.3.3 (Emerton). Let s 2 N and Λ denote Zp or Z/ps. The complexes

RΓprokét(Shtor
K p,C,

bΛ) and RΓprokét(Shtor
K p,C, j!

bΛ)

are represented by a bounded complex of admissible eKp-representations with terms isomorphic to

finitely many copies of C(eKp,Λ). In particular, Hi
prokét

(Shtor
K p,C
,bΛ) and Hi

prokét
(Shtor

K p,C
, j!

bΛ) are admis-

sible Λ[[eKp]]-modules.

Proof. Let us first show the case of torsion coefficients. By Shaphiro’s lemma and a Hochshild-Serre

spectral sequence, there is a natural quasi-isomorphism

RΓprokét(Shtor
K p,C,Z/p

s) = RΓprokét(Shtor
K pKp,C

,C(eKp,Z/p
s)) (22.3.1)

(resp. for j!Z/p
s). By purity of torsion local systems, and GAGA for étale cohomology, the RHS of

22.3.1 is equal to

RΓét(ShK pKp,C,C(eKp,Z/p
s)) = RΓét(ShK pKp,C,C(eKp,Z/p

s))

(resp. for j! and cohomology with compact supports). Fix an isomorphism C � C, by Artin’s com-

parison theorem [Art68] we have

RΓét(ShK pKp,C,C(eKp,Z/p
s)) = RΓBetti(ShK pKp

(Cp),C(eKp,Z/p
s))

(resp. for cohomology with compact supports).

Let ShK pKp
(C)BS be a Borel-Serre compactification of ShK pKp

(C) (cf. [BS73]), it is a compact CW

complex which is homotopocally equivalent to ShK pKp
(C). Let S • be a finite simplicial resolution of

ShK pKp
(C)BS, then

RΓBetti(ShK pKp
(C),C(eKp,Z/p

s)) = RΓBetti(ShK pKp
(C)BS,C(eKp,Z/p

s))

= Hom•(Z[S •],C(eKp,Z/p
s))

is a bounded complex whose terms are finite direct sums of C(eKp,Z/p
s), in particular a bounded

complex of admissible Z/ps[[eKp]]-modules. Taking derived limits as s! 1, one has

RΓprokét(Shtor
K p,C,

bZp) = Hom•(Z[S •],C(eKp,Zp))

proving that it is a bounded complex of admissible Zp[[eKp]]-modules.

It remains to prove that RΓBetti,c(ShK pKp
(C),C(eKp,Z/p

s)) is admissible. By Poincaré duality, coho-

mology with compact supports with coefficients C(eKp,Z/p
s) is dual to cohomology with coefficients

Z/ps[[eKp]], hence

RΓBetti,c(ShK pKp
(C),C(eKp,Z/p

s)) = RΓBetti,c(ShK pKp
(C)BS,C(eKp,Z/p

s))

= RHomZ/ps(Hom•(Z[S •],Z/p
s[[eKp]]),Z/ps)[�2d]

= Z[S •] ⌦C(eKp,Z/p
s)[�2d],

this shows that the completed cohomology complex with compact supports and Z/ps-coefficients is

bounded and admissible. Taking derived inverse limits as s! 1 one finds that

RΓprokét(Shtor
K p,C, j!

bZp) = Z[S •] ⌦C(eKp,Zp)[�2d],

proving that it is a bounded complex of admissible Zp[[eKp]]-modules. ⇤
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22. Shimura varieties

Corollary 22.3.4. We have isomorphisms

Hi
prokét(Shtor

K p,C,
bZp) = eHi(K p,Zp)

Hi
prokét(Shtor

K p,C, j!
bZp) = eHi

c(K
p,Zp).

Proof. This is a consequence of Proposition 1.2.12 of [Eme06] knowing that the cohomology com-

plexes are represented by bounded complexes of admissible Zp[[eKp]]-modules. ⇤

The admissibility of completed cohomology implies the vanishing of higher locally analytic vec-

tors, cf. [ST03, Theo. 7.1], [Pan20, Theo. 2.2.3] and [RJRC21, Prop. 4.43].

Corollary 22.3.5. Let i 2 Z, we have

Hi(RΓproét(ShK p,C,bQp)ReKp�la) = Hi
proét(ShK p,C,bQp)

eKp�la

Hi(RΓproét,c(ShK p,C,bQp)ReKp�la) = Hi
proét,c(ShK p,C,bQp)

eKp�la

Remark 22.3.6. Since the property of locally analycity is local on the group, the cohomology groups

of the previous corollary are independent of eKp. We call these complexes the locally analytic com-

pleted cohomologies and we denote them by RΓproét(ShK p,C,bQp)la and RΓproét,c(ShK p,C,bQp)la.

We also need a version of this theorem relating the dual of the completed cohomology.

Proposition 22.3.7. Consider the dual completed cohomologies

RΓproét(ShK p,C,bZp)_ := RHomZp
(RΓproét(ShK p,C,bZp),Zp)

RΓproét,c(ShK p,C,bZp)_ := RHomZp
(RΓproét,c(ShK p,C,bZp),Zp)

. (22.3.2)

The complexes (22.3.2) are represented by bounded complexes of coadmissible Zp[[eKp]]-modules

with finite free terms. In particular, the cohomology groups of (22.3.2) are coadmissible Zp[[eKp]]-

modules and are in duality as topological Zp-modules with the completed cohomology groups. In

other words, if H
i,_

proét
(ShK p,C,bZp) denotes the i-th cohomology group of RΓproét(ShK p,C,bZp)_, one has

a perfect pairing

Hi
proét(ShK p,C,Qp/Zp) ⇥ H

2d�i,_

proét
(ShK p,C,bZp)! Qp/Zp

(resp. for the cohomology with compact supports).

Proof. The proposition follows from the proof of Theorem 22.3.3 and the equality

RHomZp
(C(eKp,Zp),Zp) = Zp[[eKp]].

This last equality follows from the fact that C(eKp,Zp) has a ON basis as a p-adically complete Zp-

module and that

RHomZp
(
dM

i

Zp,Zp) = R lim
 ��

s

RHomZp
(
dM

i

Zp,Z/p
s)

= R lim
 ��

s

RHomZ/ps(
M

i

Z/ps,Z/ps)

= R lim
 ��

s

Y

i

Z/ps

=
Y

i

Zp.

⇤
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Remark 22.3.8. By Poincaré duality, the dual of the completed cohomology is equal to the inverse

limit of the finite level cohomologies RΓproét(ShK pKp,C,
bZp) via the traces induced by the finite étale

maps ShK pK0p,C ! ShK pKp,C for K0p ⇢ Kp (resp. for the cohomology with compact supports).

Let us define RΓproét(ShK p,C,bQp)_ := RΓproét(ShK p,C,bZp)_[ 1
p
] (resp. for the cohomology with com-

pact supports). One has the following corollary

Corollary 22.3.9. LetDla(eKp,Qp) denote the locally analytic distribution algebra of eKp. We have

Hi(Dla(eKp,Qp) ⌦L

Qp[[eKp]]
RΓproét(ShK p,C,bQp)_) = Dla(eKp,Qp) ⌦Qp[[eKp]] H

i,_

proét
(ShK p,C,bQp)

Hi(Dla(eKp,Qp) ⌦L

Qp[[eKp]]
RΓproét,c(ShK p,C,bQp)_) = Dla(eKp,Qp) ⌦Qp[[eKp]] H

i,_

proét,c
(ShK p,C,bQp)

Proof. This follows from the previous proposition and the fact thatDla(eKp,Qp) is flat overQp[[eKp]] :=

Zp[[eKp]][ 1
p
], cf. [ST03, Theo. 5.2]. ⇤

Definition 22.3.10. The complexes of the previous corollary are called the dual locally analytic com-

pleted cohomologies. We denote them as RΓproét(ShK p,C,bQp)la,_ and RΓproét,c(ShK p,C,bQp)la,_, and their

cohomology groups are denoted as H⇤
proét

(ShK p,C,bQp)la,_ and H⇤
proét,c

(ShK p,C,bQp)la,_ respectively.

Corollary 22.3.11. We have a duality between locally analytic and dual locally analytic completed

cohomologies

(Hi
proét(ShK p,C,bQp)la)_ = H2d�i

proét(ShK p,C,bQp)la,_

(Hi
proét,c(ShK p,C,bQp)la)_ = H2d�i

proét,c(ShK p,C,bQp)la,_.

Our next goal is to relate the locally analytic vectors of completed cohomology with the sheaf

of locally analytic vectors at infinite level. In order to do this, let us first relate the C-extension of

scalars of the completed cohomology with the proétale cohomology of bO . The following is essentially

Theorem IV.2.1 of [Sch15].

Proposition 22.3.12. There are natural almost quasi-isomorphisms

RΓproét(ShK p,C,bZp)b⌦OC =
ae RΓprokét(Shtor

K p,C,
bO+)

RΓproét,c(ShK p,C,bZp)b⌦OC =
ae RΓprokét(Shtor

K p,C, j!
bZpb⌦ bO+).

Remark 22.3.13. If Shtor
K p,C

is perfectoid (e.g. for Shimura varieties of abelian type), the pro-Kumer-

étale cohomology of the RHS terms of the proposition can be computed in the analytic site, and the

restriction of j!
bZpb⌦ bO+ to the analytic site is the intersection of the ideal defining the boundary and

bO+|Shtor
K p ,C,an

.

Proof. Let s � 1, by purity of torsion local systems we have

RΓproét(ShK pKp,C,Zp/p
s) = RΓprokét(Shtor

K pKp,C
,Zp/p

s).

The primitive comparison theorem ( [Sch13a, Theo. 5.1] and [DLLZ19, Theo. 6.2.1]) implies that

RΓkét(Shtor
K pKp,C

,Z/ps) ⌦ OC =
ae RΓkét(Shtor

K pKp
,O+/ps).

Taking inductive limits as Kp ! 1, and derived inverse limits as s ! 1, one obtains the first almost

equality.

For the cohomology with compact supports we argue as in Lemma 3.15 of [Sch13b]. Let DKp
⇢

Shtor
K pKp
,C denote the boundary divisor, and write DKp

=
S

a2I Da as a union of irreducible divisors.
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22. Shimura varieties

For J ⇢ I we let DJ :=
T

a2J Da endowed with the pullback log structure of Shtor
K pKp,C

. Let ◆J : DJ !

Shtor
K pKp,C

denote the strict closed immersion. Then, we have a long exact sequence

0! j!Z/p
s ! Z/ps !

M

a2I

◆a◆a,⇤Z/p
s ! · · ·!

M

|J|=k

◆J,⇤Z/p
s ! · · ·! ◆I,⇤Z/p

s ! 0. (22.3.3)

By Lemma 3.14 of [Sch13b] we have ◆J,⇤Z/p
s ⌦ O+/ps = ◆J,⇤O+DJ

/ps for all J ⇢ I. Tensoring (22.3.3)

with bO+ and taking inverse limits as s! 1, we obtain a long exact sequence

0! j!
bZpb⌦ bO+ ! bO+ !

M

a

◆a,⇤ bO+Da
! · · ·! ◆I⇤ bO+DI

! 0. (22.3.4)

But for any J ⇢ I we have

RΓprokét(Shtor
K pKp,C

, ◆J,⇤ bO+DJ
) = RΓprokét(DJ, bO+J ) =ae RΓprokét(DJ,bZp)b⌦OC,

where in the last equality we use the primitive comparison theorem as the DJ are proper log smooth

over Spa(C,OC). The proposition for the cohomology with compact supports follows by taking coho-

mology of the sequence (22.3.4). ⇤

Before stating the main theorem of this section, we need to define a sheaf of locally analytic distri-

butions over Shtor
K p,C

.

Definition 22.3.14. We define the sheaf eDla
Sh

of locally analytic distributions over Shtor
K p,C,an to be the

sheaf mapping a qcqs open eU to

eDla
Sh(eU) = (1 ⌦U(n0) D

la(eKp,O(eU)))
eKp,?1,3 ,

where eU = ⇡�1
Kp

(U) is the pullback of a qcqs open subspace U ⇢ Shtor
K pKp,C

.

Remark 22.3.15. The previous sheaf is well defined, i.e. it is independent of Kp. Indeed, if K0p ⇢ Kp

there is a natural isomorphism

(Dla(eK 0

p,O(eU)) ⌦U(n0) 1)
eK0p,?1,3 = (Dla(eKp,O(eU)) ⌦U(n0) 1)

eKp,?1,3

given by the trace f 7!
P

g2eKp/eK0p f ⌦ g.

Theorem 22.3.16. Let O sm
Sh

be the uncompleted structural sheaf at infinite level and I sm ⇢ O sm
Sh

the

ideal defining the boundary of Shtor
K pKp,C

for all Kp. There are natural quasi-isomorphisms for the

locally analytic completed cohomology

RΓproét(ShK p,C,bQp)lab⌦C = RΓan(Shtor
K p,C,O

la
Sh)

RΓproét,c(ShK p,C,bQp)lab⌦C = RΓan(Shtor
K p,C,O

la
Sh

b⌦O sm
Sh

I sm).

Similarly, there are natural quasi-isomorphisms for the dual locally analytic completed cohomology

RΓproét(ShK p,C,bQp)la,_b⌦C = RΓan(Shtor
K p,C,

eDla
Sh ⌦ ! ⌦O sm

Sh
I sm)[d]

RΓproét,c(ShK p,C,bQp)la,_b⌦C = RΓan(Shtor
K p,C,

eDla
Sh ⌦ !)[d]

where ! = detΩ1(log).
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22. Shimura varieties

Proof for the completed cohomology. Let us first show the non compact support case. By Shapiro’s

lemma one has

RΓprokét(Shtor
K p,C,

bQp)la = RΓprokét(Shtor
K pKp,C

,Cla(eKp,Qp))

= lim
��!

Kp!1

RΓprokét(Shtor
K pKp,C

,Cla(eKp,Qp)),

where all the transition maps in the colimit are isomorphisms. Let ⌫Kp
: Shtor

K pKp,C,prokét
! Shtor

K pKp,C,két

and � : Shtor
K p,C,két

! Shtor
K p,C,an be the projection of sites. Let us write ⌫1,⇤ = lim

��!Kp

⌫Kp,⇤. By Corollary

22.2.5 one has that5

R(� � ⌫1)⇤C
la(gc, bO) = O la

Sh.

The primitive comparison theorem implies that

(RΓprokét(Shtor
K p,C,

bQp)b⌦C)la = lim
��!

Kp!1

RΓprokét(Shtor
K pKp,C

,Cla(eKp, bO))

= lim
��!

Kp!1

RΓan(Shtor
K pKp,C

,R(� � ⌫Kp
)⇤(C

la(eKp, bO)))

= RΓan(Shtor
K p,C,R(� � ⌫1)⇤(C

la(gc, bO)))

= RΓan(Shtor
K p,C,O

la
Sh).

This proves the case of non compact supports. For the case of compact supports, one argues as in

Proposition 22.3.12 to reduce to the equalities

RΓprokét(Shtor
K p,C,

bODJ
)la = RΓan(Shtor

K p,C,O
la
Sh ⌦O sm

Sh
O sm

DJ
), (22.3.5)

where bO sm
DJ

is the sheaf of smooth sections of bO |⇡�1
Kp

(DJ). But then, by Theorem 20.2.4 one has

R(� � ⌫1)⇤(C
la(gc, bODJ

)) = O la
Sh ⌦O sm

Sh
O sm

DJ
,

taking analytic cohomology over Shtor
K p,C

one gets (22.3.5). ⇤

Proof for the dual completed cohomology. First, note that the proof of Theorem 22.3.3 implies

RΓproét(ShK p,C,bQp)la,_ = RΓproét,c(ShK pKp,C,D
la(eKp,Qp))[2d]

RΓproét,c(ShK p,C,bQp)la,_ = RΓproét(ShK pKp,C,D
la(eKp,Qp))[2d].

The primitive comparison theorem gives

RΓproét,c(ShK pKp,C,D
la(eKp,Qp))b⌦C = RΓprokét(Shtor

K pKp,C
, j!

bZpb⌦Dla(eKp, bO))

RΓproét(ShK pKp,C,D
la(eKp,Qp))b⌦C = RΓprokét(Shtor

K pKp,C
,Dla(eKp, bO)).

WritingDla(eKp,Qp) = R lim
 ��h!1

Dh+�an(eKp,Qp) one finds that

RΓproét(ShK pKp,C,D
la(eKp,Qp)) = R lim

 ��
h!1

RΓproét(ShK pKp,C,D
h+�an(eKp,Qp)).

(resp. for the cohomology with compact supports). But the sheaf Dh+�an(eKp, bO) is the pullback via

⇡HT of a squarrable locally analytic LB-sheaf over F`. By Theorem 20.2.2 we know that

R(� � ⌫1)⇤(D
h+�an(eKp, bO)) = (RΓ(n0,Dh+�an(eKp, bO |Shtor

K p ,C,an
)))

eKp�sm

= (1 ⌦U(n0) D
h+�an(eKp, bO |Shtor

K p ,C,an
))

eKp�sm ⌦ !.

5Recall that we have made the assumption Lie eKp = g
c.
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22. Shimura varieties

Let U ⇢ Shtor
K pKp,C

be an affinoid subspace admitting coordinates to a product of tori and polydiscs, let

eU be its pullback to infinite level. Then

RΓprokét(U,D
la(eKp, bO)) = lim

 ��
h!1

(1 ⌦U(n0) D
h+�an(eKp, bO(eU)))

eKp ⌦ !(U)

= (1 ⌦U(n0) D
la(eKp, bO(eU)))

eKp ⌦ !(U)

= eDla
Sh(eU) ⌦ !(U).

Taking Čech cohomology one obtains that

RΓproét(Shtor
K pKp,C

,Dla(eKp, bO)) = RΓan(Shtor
K p,C,

eDla
Sh ⌦ !),

proving the case of the dual locally analytic completed cohomology with compact supports. To prove

the case of the dual locally analytic completed cohomology, one argues as for the locally analytic

completed cohomology with compact supports, reducing to a computation in terms of the structural

sheaf of the smooth intersections of the boundary divisor, where one can apply Theorem 20.2.2 again.

⇤

Corollary 22.3.17. The rational completed cohomologies eHi(K p,Qp) and eHi
c(K

p,Qp) vanish for i >

d.

Proof. The argument is essentially the same of [Sch15, Theo. 5.3]. By Theorem 22.3.16, the locally

analytic vectors of the C-scalar extension of the completed cohomology complexes can be computed

as the analytic cohomology of sheaves over Shtor
K p,C

. But |Shtor
K p,C
| has cohomological dimension  d

being the inverse limit by qcqs maps of noetherian spaces of dimension  d. Then, the vanishing for

the locally analytic completed cohomology follows by Grothendieck’s bound for the cohomology of

noetherian spaces. Finally, as the completed cohomology groups are admissible by Theorem 22.3.3,

their locally analytic vectors are dense (dually, Dla(eKp,Qp) is fully faithful over Qp[[eKp]]), which

implies the corollary. ⇤

22.3.1. The arithmetic Sen operator via ✓m

We end this chapter with the computation of the arithmetic Sen operator for O la
Sh

, cf. [Pan20, §5.1].

Leteg = Lie eKp, we no longer assume thateg = gc, we letez = ker(eg! gc). Theorem 22.3.16 tells us that

RΓprokét(ShK p,C, bO)la = RΓan(ShK p,C,O la
Sh

). Moreover, the action of eg on the former term is computed

via its action on the sheaf O la
Sh

. By construction, the sheaf O la
Sh

also admits an action of the Lie

algebra OF` ⌦ g which is trivial when restricted to n0. In particular, O la
Sh

carries an horizontal action

of m0 = p0/n0 and afortriori an action of Z(m), this last extends to the locally analytic completed

cohomology6. Let µ : Gm ! G be the Hodge cocharacter, since M is the centralizer of µ in Gc
L
, one

has a natural operator ✓µ 2 Z(m) given as ✓µ = Lie µ(1).

We have the following theorem

Theorem 22.3.18. The cohomologies RΓproét(ShK p,C,bQp)lab⌦C and RΓproét,c(ShK p,C,bQp)lab⌦C admit an

arithmetic Sen operator ✓L. More precisely, the locally analytic cohomology is a relative locally

analytic representation of GalL = Gal(C/L) in the sense of Definition 19.2.5, whence it admits a

C-linear Sen operator in the sense of Definition 19.4.3. Moreover, we have that ✓L = ✓µ.

Proof. Let us first show the existence of the arithmetic Sen operator. We only treat the case without

compact supports, the other being similar. We have that

RΓproét(ShK p,C, bO)la = RΓan(Shtor
K p,C,O

la
Sh).

6This action arises as the ✓m,?2
-action of Cla(eg, bO) which is equal to �✓m,?1

.
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22. Shimura varieties

The LHS can be computed as the colimit along all the Čech complexes of the RHS with respect to

hypercovers of Shtor
K p,C

by qcqs open subspaces. Hence, it suffices to show that locally on Shtor
K p,C

the

sheaf O la
Sh

is a relative locally analytic representation of GalL. For this, note that in order to apply

the geometric Sen theory formalism of §20, it is enough to extend scalars to Lcyc, namely, we need

enough ramification for the Colmez-Sen-Tate axioms of §19.1 to hold. Therefore, if O la
Sh,Lcyc denote

the locally analytic sections of the completed structural sheaf restricted to Shtor
K p,Lcyc , one has that

O la
Sh,an

(eUC) = Cb⌦LcycO la
Sh,Lcyc(eU) for eU ⇢ Shtor

K p,Lcyc a qcqs open subspace. Then, it is enough to show

that locally on Shtor
K p,Lcyc , the sheaf O la

Sh,Lcyc is relative locally analytic for the action of ΓL = Gal(Lcyc/L).

Let U ⇢ Shtor
K pKp,L

be an open affinoid which admits a chart  : U ! S
(e,d�e)

L
to a product of

tori and polydiscs. Let eU ⇢ Shtor
K p,Lcyc denote the pullback of U to Shtor

K p,Lcyc , U1 = U ⇥
S

(e,d�e)
L
S

(e,d�e)

L,1
,

and eU1 = eU ⇥U U1. Let us write eK†p = {eK0p}eK0p⇢eKp
for the overconvergent neighbourhood of 1

in eKp, and Γ = Gal(U1/U). By definition, the Sen module attached to Cla(eg,Qp) is the space

Seg(C
la) := bO(eU1)

eK†p�la,Γ�la of eK†p ⇥ Γ-locally analytic functions of bO(eU1). Furthermore, ΓL acts

on Γ via multiplication by the cyclotomic character, which gives us an action of eK†p ⇥ (ΓL n Γ) on

Seg(C
la). But Seg(C

la) admits a closed eK†p ⇥ (ΓL o Γ)-equivariant Lcyc-semilinear closed embedding

Seg(C
la) ,! Cla(eg ⇥ Γ, Lcyc)b⌦LV0,

where V0 is some LB space over L, and ΓL acts as

(� ? f )(g, �) = �( f (g,��1(�))).

Taking a Banach subspace Vn ⇢ V0 and a radius of analyticity h > 0, the space Ch�an(eg ⇥ Γ, Lcyc)b⌦Vn

is Banach. It is clear that the reduction modulo p✏ of a lattice is isomorphic to
L

I
OLcyc/p✏ for some

✏ > 0. Therefore, the devisage Lemma 19.3.5 holds and we can apply the decompletion given by Sen

theory for the pair (Lcyc,ΓL). In particular, there exists a C-linear arithmetic Sen operator ✓L acting on

O la
Sh

as wanted.

It is left to show that ✓L = ✓µ. Let bOSh denote the restriction of the completed structural sheaf

to Shtor
K p,C

. Since the action of ✓L on O sm
Sh

is trivial (this sheaf is just the C-scalar extension of the

finite level structural sheaves), the arithmetic Sen operator extends to a bOSh-linear derivation on

Cla(eg, bOSh)
n0
?1,3
=0
= bOShb⌦O sm

Sh
O la
Sh

. In addition, ✓L is a right g-invariant derivation by functoriality of its

construction. This implies that ✓L factors through a map of sheaves on Shtor
K pKp,L,prokét

✓L : bL! ⇡⇤HT(n0)\( bO ⌦bg).

But ⇡⇤HT(n0)\( bO ⌦eg) fits in a short exact sequence

0! ⇡⇤HT (m0 � OF` ⌦ez)! ⇡⇤HT(n0)\( bO ⌦eg)! ⇡⇤HT(n0,_)! 0,

where ⇡⇤HT (m0) has Hodge-Tate weight 0 and ⇡⇤HT(n0,_) has Hodge-Tate weight 1. Besides, ⇡⇤HT(OF`⌦ez)
has Hodge-Tate weight 0 since G acts trivially onez.

This implies that ✓L factors through ✓L : bQp ! ⇡⇤HT(m0 � OF` ⌦ z), this last acting on O la
Sh

via ?1.

Let Z0 be a faithful representation of GL/G
der
L

whose action of g factors through eg. Then Z0 is a eKp

-module for Kp small enough. Let  2 X⇤(T)+
M

, to compute the image of ✓L, it is enough to know the

Hodge-Tate weight of ⇡⇤HT(W()) � Z0,két ⌦ bO , let us first focus on W(). By Corollary 22.1.5 we

know that

⇡⇤HTW() =M(wM
0 () ⌦ bO(w0()(µ)).

But ✓m,?1
acts onW() via the left regular action on the sections. By definition, the sections ofW()

are the functions f : MF` ! A1 such that f (b�1x) = w0()(b�1) f (x) for b 2 BM. This implies that the

action of ✓L on ⇡⇤HT(W()) is equal to �✓µ,?1
= ✓µ,?2

= ✓µ.
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22. Shimura varieties

To compute the Sen action of Z0,két ⌦ bO , by functoriality we can reduce to the case of a torus T

after taking a special point of (G, X) as in [Del79, §2.2.4]. Let E be the reflex field and resE : GalE !

Gm(A1E ) the arithmetic reciprocity map (i.e. resE maps Frobenius of unramified primes over ` to

uniformizers in the places dividing `). In this case, the action of � 2 GalL on

ShK p,C = T(A1Q )/K pT(Q)

is by right multiplication of NE/Q(µ(res�1
E (�))), where NE/Q : T(A1E ) ! T(A1

Q
) is the norm map, see

§2.2.3 of loc. cit. Let p be a place over p and L = Ep, the reciprocity map resE is compatible with the

local reciprocity map resL : GalL ! L⇥, and the completed cohomology is nothing but the continuous

functions of |ShK p,C | to Qp. Let f : |ShK p,C | ! C be a locally analytic function, and let � 2 GalL, we

have that

�( f )(x) = f (��1(x)) = f (xNL/Qp
(µ(resL(�)))).

Thus, if f satisfies f (xt) = t f (x) for t 2 K pKp/(K
p,K pKp\T(Q)) = eKp, one has�( f ) = NL/Qp

(resL(�)) f

for � 2 GalL close enough to 1. But the representation NL/Qp
� resL : GalL ! Q

⇥
p has Hodge-Tate

weight 1, this proves that ✓L = ✓µ as wanted. ⇤
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23. Overconvergent Hodge-Tate

decompositions

This last chapter concerns one of the main applications of the theory we have developed so far, namely,

the definition of the overconvergent BGG maps for the locally analytic completed cohomology. We

start in §23.1 with the definition of sheaves of overconvergent automorphic forms, following essen-

tially the same construction of [BP21]. We define cohomologies with closed and compact supports

of these sheaves at infinite level, and relate these cohomology complexes with those of finite level

appearing in higher Coleman theory. Then, in §23.2, using the computations of §21.4.3 we construct

the overconvergent BGG maps for the derived b = � isotypic part of the locally analytic cohomol-

ogy, generalizing in this way previous works of Andreatta-Iovita-Stevens [AIS15], Chojecki-Hansen-

Johansson [CHJ17], Barrera-Gao [BG21], Diao-Rosso-Wu [DRW21], and the author [RC21a]. We

prove that these overconvergent BGG maps are compatible with the classical BGG decompositions

of §22.2.

Throughout this chapter we will assume for simplicity that Lie eKp = g
c, in the case this equality

does not hold, the main theorems remain true under some minor modifications that we left to the

careful reader.

23.1. Sheaves of overconvergent automorphic forms

The objective of this section is to introduce the sheaves of overconvergent automorphic forms ap-

pearing in the description of b-isotypic parts of the locally analytic completed cohomology. We will

see that these sheaves include the sheaves of overconvergent automorphic forms of higher Coleman

theory of [BP21]. We keep the notation of §21 and 22.

Let µ : Gm ! GL be a fixed Hodge cocharacter and P = Pc
µ ⇢ Gc

L
the parabolic subgroup

in Gc
L

defined by µ. Let M be the centralizer of µ in Gc
L

and N the unipotent radical of P. Let

FL = P\GL denote the flag variety over L and F` its analytification to an adic space over Spa(L,OL).

Let MF` := N\Gc
L
! F` be the natural M-torsor over the flag variety and MdR = M

c
µ,dR

the

analytification of the automorphic M-torsor over Shtor
K pKp,L

parametrizing automorphic vector bundles.

By Corollary 22.1.5 one has an isomorphism of eKp-equivariant torsors over Shtor
K p,L

⇡⇤HT(MF`) = ⇡
⇤
Kp

(MdR) ⇥µ bZp(�1)⇥. (23.1.1)

The equality (23.1.1) translates Gc
L
-equivariant vector bundles over F` arising from finite dimen-

sional representations of M, to automorphic vector bundles over the Shimura variety. Indeed, let

 2 X⇤(T)+
M

be a dominant weight for the Levi subgroup and W the irreducible representation

of M of highest weight , let W() = Gc
L
⇥P WwM

0
() be the Gc

L
-equivariant sheaf over F` and

MKp
() = MdR ⇥

M WwM
0

() the automorphic VB over Shtor
K pKp,L

. We have a natural eKp-equivariant

isomorphism of sheaves over Shtor
K p,L,an

⇡⇤HT(W())
eK†p�sm = lim

��!
Kp!1

MKp
() ⌦ Zp(w0()(µ)). (23.1.2)

The construction of overconvergent automorphic sheaves has as input the reduction of the torsor

MdR to a torsor over some overconvergent neighbourhood of 1 inM. This reduction is provided by
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23. Overconvergent Hodge-Tate decompositions

p-adic Hodge theory, namely, in the case of modular curves or Siegel varieties, the reduction of the

torsors are obtained via the Hodge Tate exact sequence of the universal abelian variety, cf. [AIS15]

and [AIP15]. In general, the reductions of the automorphic torsor are constructed from the flag variety

and the ⇡HT period map as is shown in the next section, see also [BP21, §4.6].

23.1.1. Construction of the overconvergent modular sheaves

Definition 23.1.1. Let H be an analytic group over a complete non archimedean field F and H† =

{Hn}n2N be a decreasing family of open subgroups ofH . Let X be an adic space over F. AH†-torsor

over X? with ? 2 {an, ét, két} is a decreasing sequence H†
X
= {HX,n} of Hn-torsors such that the maps

HX,n+1 ! HX,n areHX,n+1-equivariant for all n 2 N.

Let U ⇢ F` be an open subspace stable by eKp, and let M† = {M(�)}�>0 be a basis of over-

convergent neighbourhoods of 1 in M. Suppose that we are given with a reduction of MF`|U to a
eK†p-equivariantM†-torsorM†F`,U

= {MF`,U(�)}�>0. In other words, we have a decreasing sequence

of eKp(�)-equivariant torsorsMF`,U(�) with eKp(�) ! 1 as � ! 1. The overconvergent spaceM†F`,U

defines a locally analytic eK†p-equivariant LB OU-algebra which we denote as C(M†F`,U
); it is given as

the colimit of all the algebras of functions C(MF`,U(�)) of theM(�)-torsors converging toM†F`,U
.

Definition 23.1.2. Let (U,M†F`,U
) be as above, and set V = ⇡�1

HT(U). Let O sm
Sh
= lim
��!Kp!1

OShtor
K pKp ,C

,an

be the sheaf of eKp-smooth functions of Shtor
K p,C,an, and O sm

V
its restriction to V . The sheaf of overcon-

vergent automorphic forms defined by (U,M†F`,U
) is the LB O sm

V
-sheaf given as

C(M†
dR,V

) := ⇡⇤HT(C(M†F`,U
))

eK†p�sm. (23.1.3)

We can also make a dual construction which is more adapted to the dual locally analytic com-

pleted cohomology. Indeed, for any eK 0

p ⇢
eKp small enough and any � >> 0 consider the space

MF`,U(�)eK 0

p ⇢ MF`|U . Let C(MF`,U(�)eK 0

p) be the OU-algebra of functions of MF`,U(�)eK 0

p and

D(MF`,U(�)eK 0

p) its OU-dual. We denote

D(M†F`,U
eK 0

p) := lim
 ��
�!1

D(MF`,U(�)eK 0

p).

The spacesMF`,U(�)eK 0

p have a natural eK 0

p-equivariant action over U, so that D(M†F`,U
eK 0

p) is a eK 0

p-

equivariant LF OU-sheaf over U.

Definition 23.1.3. Keep the previous notation, and let V = ⇡�1
HT(U). We define the sheaf of dual

automorphic forms over V to be the inverse limit

D(M†
dR,V

) := lim
 ��

eK0p⇢eKp

⇡⇤HT(D(M†F`,U
eK 0

p))
eK0p

where the transition maps are given by trace maps.

Remark 23.1.4. Let bOSh be the completed structural sheaf of Shtor
K p,C,an. The sheaves C(M†F`,U

) and

D(M†F`,U
) are eDla-modules in a natural way, being constructed from open subspaces of MF`. In

particular, Theorems 19.3.3 and 20.2.2 imply that

bOSh|Vb⌦O sm
V

C(M†
dR,V

) = ⇡⇤HT(C(MF`,U)).

Dually, for any eK0p ⇢ eKp-small enough one has

bOSh|Vb⌦
O

eK0p
Sh

D(M†
dR,V

eK0p)
eK0p = ⇡⇤HT(D(M†F`,U

eK 0

p)).
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Taking limits as eK0p ! 1 one obtains

bOSh|Vb⌦O sm
V
D(M†

dR,V
) := lim

 ��
eK0p!1

( bOSh|Vb⌦
O

eK0p
Sh

D(M†
dR,V

eK0p)
eK0p) = ⇡⇤HT(D(M†F`,U

)).

where the transition maps in the limit are trace maps.

Example 23.1.5. Let W be the Weyl group of Gc
L

and w 2 MW be a Kostant representative. Let

Cw ⇢ F` be the w-Bruhat cell, and for ✏ > 0 let Cw(✏) the ✏-overconvergent neighbourhood of Cw as

in Definition 21.4.15. For � > 0 consider theM(�)-torsorMw,F`(�) over Cw(✏) of Definition 21.4.27,

setM†
w,F`

:= {Mw,F`(�)}�>0. We have sheaves of overconvergent automorphic forms over ⇡�1
HT(Cw(✏))

which we denote by C(M†
w,dR

) andD(M†
w,dR

).

Let � > 0 and consider the open polydisc Cw(1, �) ⇢ Cw of radius p�, cf. Definition 21.4.15. For

� > 0, we will also consider the following sheaves over ⇡�1
HT(Cw(✏, �)):

C(Mw,dR(�)) := ⇡⇤HT(C(Mw,F`(�)))
eK†p�sm andD(Mw,dR(�)) := ⇡⇤HT(D(Mw,F`(�)))

eK†p�sm.

Notice that C(M†
w,dR

) = lim
��!�

C(Mw,dR(�)) while D(M†
w,dR

) = lim
 ���!1

D(Mw,dR(�))
eKp(�), where the

transition maps are trace maps and eKp(�)! 1 as � ! 1.

23.1.2. Relation with higher Coleman theory

In the following we relate the cohomology of the sheaves of overconvergent automorphic forms con-

structed above, with the overconvergent cohomology classes of higher Coleman theory, cf. [BP21,

§6.3]. We define the following cohomologies with compact and closed supports, cf. §18.

Definition 23.1.6. Let w 2 MW and let Cw ⇢ F` be the w-Bruhat cell. In particular, we define the

w-overconvergent cohomologies of automorphic forms as1

RΓc,w(Shtor
K p,C,C(M†

w,dR
)) := RΓc,⇡�1

HT
(Cw)(Shtor

K p,C,an,C(M†
w,dR

))

RΓw(Shtor
K p,C,D(M†

w,dR
)) := RΓ⇡�1

HT
(Cw)(Shtor

K p,C,D(M†
w,dR

)).

We want to use Lemma 18.1.4 to obtain a devisage of the cohomology complexes of the previous

definition, in terms of “smaller” overconvergent cohomology complexes arising from finite level. In

order to make this precise we need to introduce some more notation. The following are essentially

the overconvergent cohomologies in families considered in [BP21].

Definition 23.1.7. Let Cw(✏ + 1+, �) =
S

✏0>✏+1 Cw(✏0, �)\Cw(✏, �) and Cw(✏, ��) =
S

�>�0 Cw(✏, �0). Let

Kp ⇢ G(Qp) be a compact open subgroup fixing Cw(✏ + 1, �) and Cw(✏, �). Given a eKp-invariant open

subspace U ⇢ F` we let ⇡�1
HT(U)/eKp denote its quotient seen as an open subspace of Shtor

K pKp,C
.

1. Let � > 0 and let Mw,F`(�) ⇢ MF` be the reduction of the natural M torsor over F` to a

M(�)-torsor over Cw(✏). We let

C(Mw,Kp,dR(�)) := C(Mw,dR(�)eKp)
eKp

be the sheaf over ⇡�1
HT(Cw(✏, �))/eKp of eKp-invariant sections.

2. Dually, we defineD(Mw,Kp,dR(�)) := D(Mw,dR(�)eKp)
eKp seen as a sheaf over ⇡�1

HT(Cw(✏, �))/eKp.

1More generally, for a sheaf F over Shtor
K p,C,an

we define RΓc,w(Shtor
K p,C
,F ) and RΓw(Shtor

K p,C
,F ) in a similar way.
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23. Overconvergent Hodge-Tate decompositions

3. Let ✏, �, � > 0, we define the following overconvergent cohomologies with compact and closed

supports

RΓ✏,�,�c,w (Shtor
K pKp,C

,C(M†
w,Kp,dR

)) := RΓc,⇡�1
HT

(Cw(✏,��))/eKp
(⇡�1

HT(Cw(✏, � + 1))/eKp,C(Mw,Kp,dR(�)))

RΓ✏,�,�w (Shtor
K pKp,C

,D(M†
w,Kp,dR

)) := RΓ⇡�1(Cw(✏+1+,�))/eKp
(⇡�1

HT(Cw(✏, �))/eKp,D(Mw,Kp,dR(�))).

Remark 23.1.8. The sheaves

C(Mw,Kp,dR(��)) = lim
��!
�>�0

C(Mw,Kp,dR(�0)) and D(Mw,Kp,dR(�+)) = lim
��!
�0>�

D(Mw,Kp,dR(�0))

are squarrable LB sheaves over ⇡�1
HT(Cw(✏, �))/eKp. Then, by [BP21, Theo. 4.1.8]2, the cohomology

complexes RΓ
✏,�,�
w (Shtor

K pKp,C
,F ) with F = C(M†

w,Kp,dR
),D(M†

w,Kp,dR
) are independent of the toroidal

compactification.

Proposition 23.1.9. For ✏, �, � > 0 let Kp(✏, �, �) ⇢ G(Qp) be an open compact subgroup fixing

Cw(✏, �), Cw(✏ + 1, �) andMw,F`(�), such that Kp(✏, �, �)! 1 as � ! 1 for ✏ and � fixed.

1. We have natural quasi-isomorphisms

RΓc,w(Shtor
K p,C,C(M†

w,dR
)) = lim
��!
✏,�,�

RΓ✏,�,�c,w (Shtor
K pKp(✏,�,�),C,C(M†

w,Kp(✏,�,�),dR
)) (23.1.4)

RΓw(Shtor
K p,C,D(M†

w,dR
)) = R lim

 ��
✏,�,�

RΓ✏,�,�w (Shtor
K pKp(✏,�,�),C,D(M†

w,Kp(✏,�,�),dR
)) (23.1.5)

where the transition maps for ✏ and � are correstriction and restriction maps as in Lemma

18.1.4, and the transition maps for � are the inclusions (resp. trace) maps.

2. Let J ⇢ O sm
Sh

be the ideal defining the cusps at any level, and let JKp
⇢J be its Kp-invariant

sections. Then (23.1.4) (resp. (23.1.5)) also holds for C(M†
w,dR

)b⌦O sm
Sh

J and C(M†
w,Kp,dR

)b⌦O
Shtor

K pKp ,C

JKp

(resp. D(M†
w,dR

)b⌦O sm
Sh

J andD(M†
w,Kp,dR

)b⌦O
Shtor

K pKp ,C

JKp
).

Proof. We will only prove (1), the proof of (2) being similar. By Lemma 18.1.4 we know that

RΓc,w(Shtor
K p,C,C(M†

w,dR
)) = lim
��!
✏,�

RΓc,⇡�1
HT

(Cw(✏,��))(⇡
�1
HT(Cw(✏, � + 1)),C(M†

w,dR
))

RΓw(Shtor
K p,C,D(M†

w,dR
)) = R lim

 ��
✏,�

RΓ⇡�1
HT

(Cw(✏+1,�))(⇡
�1
HT(Cw(✏, �)),D(M†

w,dR
)).

The cohomology complexes of the RHS are represented by a cone of cohomologies on qcqs locally

closed subspaces of Shtor
K p,C

. To deal with the case of C(M†
w,dR

), notice that we have the following

presentation of qcqs subspaces at infinite level as inverse limit of finite level ones

⇡�1(Cw(✏, � + 1)) = lim
 ��
Kp

RΓ(⇡�1(Cw(✏, � + 1))/eKp

⇡�1(Cw(✏, � + 1)\Cw(✏, ��)) = lim
 ��
Kp

⇡�1(Cw(✏, � + 1)\Cw(✏, ��))/eKp.

Moreover, we have that

C(M†
w,dR

) = lim
��!
�

C(Mw,Kp(�),dR(�))

2Actually, by its references in [Har90].
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23. Overconvergent Hodge-Tate decompositions

where Kp(�) ! 1 as � ! 1. This formally implies that, for X = ⇡�1(Cw(✏, � + 1)) or ⇡�1(Cw(✏, � +
1)\Cw(✏, ��)), one has

RΓan(X,C(M†
w,dR

)) = lim
��!
�

RΓ(X/eKp(�),C(Mw,Kp(�),dR(�))),

this proves (23.1.4).

To prove the case ofD(M†
w,dR

), it is enough to show the following lemma

Lemma 23.1.10. Let U ⇢ Shtor
K pKp,C

be a qcqs open subspace, let eU be its pullback to infinite level,

and for K0p ⇢ Kp let UK0p be its pullback to level K0p. Then

RΓ(eU,D(M†
w,dR

)) = R lim
 ��
�

RΓ(UKp(�),D(Mw,Kp(�),dR(�))) (23.1.6)

where Kp(�)! 1 as � ! 1.

Proof. Notice that eU is qcqs of sheaf-cohomological dimension  d and that the derived limit is

countably filtered. Let eV• be a finite hypercover of eU, and without loss of generality assume that it

arises as the pullback of a finite hypercover V• of U. For K0p ⇢ Kp let V•,K0p be its pullback to UK0p . We

have that

RΓ(eV•,D(M†
w,dR

)) = R lim
 ��
K0p

RΓ(V•,Kp
, ⇡⇤HT(D(M†

w,F`
eK0p))

eK0p)

= R lim
 ��
K0p,�

RΓ(V•,Kp
, ⇡⇤HT(D(M†

w,F`
(�)eK0p))

eK0p))

= R lim
 ��
�

RΓ(V•,Kp(�),D(Mw,Kp(�),dR(�)))

where the first and second equalities are given by Definition 23.1.3 and the last equality by Definition

23.1.7. The maps with respect to K0p are isomorphisms induced by traces. Finally, by Theorems 19.3.3

and 20.2.2, one deduces that the sheavesD(Mw,Kp(�),dR(�)) over UKp(�) are squarrable LF sheaves (eg.

look over affinoids admitting charts). Hence, the hypercohomologies over V•,Kp(�) already compute

the cohomology complex of the RHS of (23.1.6). Taking colimits along all the eV• one obtains the

equality of (23.1.6) proving the lemma. ⇤

⇤

Remark 23.1.11. The sheaves C(M†
w,dR

) and D(M†
w,dR

) are endowed with a natural action of m =

Lie M arising from theM†-action on the torsorM†
w,F`

. We denote this action by m?1
.

23.2. The overconvergent BGG maps

We can finally state the main theorems of this chapter. Let b ⇢ gc be a Borel subalgebra and bM = b\m

the Borel subalgebra of m. Let h ⇢ b be the diagonal torus. We let ⇢M = ⇢ � ⇢M be a half of the sum

of the roots of n ⇢ p.

Theorem 23.2.1 (BGG maps for completed cohomology). Consider the Bruhat filtration of F` by

open subspaces ; = Yd+1 ⇢ Yd ⇢ · · · ⇢ Y0 = F` with graded pieces Yk\Yk+1 =
F

w2MW
`(w)=k

Cw. Let � 2 h⇤C

be a weight.

1. The derived b = � isotypic part of the locally analytic completed cohomology can be computed

as

(RΓproét(ShK p,C,bQp)lab⌦C)Rb=� = RΓan(Shtor
K p,C,RHomb(�,O

la
Sh)).
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23. Overconvergent Hodge-Tate decompositions

2. Let ✏ > 0, then RHomb(�,O la
Sh

)|⇡�1
HT

(Cw(✏)) is concentrated in cohomological degrees [0, d � `(w)].

Furthermore, we have a highest weight vector map

Υw : RHomb(�,O
la
Sh)|⇡�1

HT
(Cw(✏)) ! C(M†

w,dR
)bM,?1

=w·�+2⇢M

[`(w) � d].

surjective in Hd�`(w)-cohomology.

3. The open Bruhat filtration of F` induces a spectral sequence

E
p,q

1
=

M

w2MW
`(w)=p

Hp+q
c,w (Shtor

K p,C,RHomb(�,O
la
Sh))) Hp+q((RΓproét(ShK p,C,bQp)lab⌦C)Rb=�).

In addition, the map Υw induces an overconvergent BGG map

BGGw : RΓc,w(Shtor
K p,C,RHomb(�,O

la
Sh))! RΓc,w(Shtor

K p,C,C(M†
w,dR

)bM,?1
=w·�+2⇢M

)[`(w) � d].

4. Let J ⇢ O sm
Sh

be the ideal defining the cusps for any finite level. Analogous statements hold

for cohomology with compact supports after exchanging O la
Sh

by O lab⌦O sm
Sh

J and C(M†
w,dR

) by

C(M†
w,dR

)b⌦O sm
Sh

J .

Theorem 23.2.2 (BGG maps for dual completed cohomology). Consider the Bruhat filtration of F`
by closed subspaces ; = Zd+1 ⇢ Zd ⇢ · · · ⇢ Z0 = F` with graded pieces Zk\Zk+1 =

F
w2MW
`(w)=d�k

Cw. Let

� 2 h⇤C be a weight.

1. The derived b = � co-isotypic part of the dual locally analytic completed cohomology can be

computed as

RΓproét,c(ShK p,C,bQp)la,_ ⌦L
U(b) � = RΓan(Shtor

K p,C, (
eDla
Sh ⌦ !) ⌦L

U(b) �)[d]

with ! = Ωd(log).

2. Let ✏ > 0, then ((eDla
Sh
⌦!)⌦L

U(b)�)|⇡�1
HT

(Cw(✏)) is concentraded in cohomological degrees [`(w)�d, 0].

Furthermore, we have a dual highest weight vector map

Υ
_
w : (w · �) ⌦U(bM,?1) D(M†

w,dR
)[d � `(w)]! ((eDla

Sh ⌦ !) ⌦L
U(b) �)|⇡�1

HT
(Cw(✏))

which is injective for H`(w)�d-cohomology.

3. The closed Bruhat filtration of F` induces a spectral sequence

E
p,q

1
=

M

w2MW
`(w)=d�p

Hp+q
w (Shtor

K p,C, (
eDla
Sh ⌦ !) ⌦L

U(b) �)) Hp+q+d(RΓproét,c(ShK p,C,bQp)la,_ ⌦L
U(b) �)

In addition, the map Υ_w induces a dual BGG map

BGG_w : RΓw(Shtor
K p,C, (w · �) ⌦U(bM,?1) D(M†

w,dR
))[d � `(w)]! RΓw(Shtor

K p,C, (
eDla
Sh ⌦ !) ⌦L

U(b) �).

4. Analogous statements hold for the dual of the completed cohomology after exchanging eDla
Sh

by

eDla
Sh

b⌦O sm
Sh

J andD(M†
w,dR

) byD(M†
w,dR

)b⌦O sm
Sh

J .
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23. Overconvergent Hodge-Tate decompositions

Proofs of Theorems 23.2.1 and 23.2.2. They follow from Theorems 20.2.2 and 21.4.31, and the con-

struction of the overconvergent modular sheaves in Definitions 23.1.2 and 23.1.3 and Example 23.1.5.

Indeed, the proof of Theorem 22.3.3 implies that

(RΓproét(ShK p,C,bQp)lab⌦C)Rb=� = RΓprokét(Shtor
K pKp,C

,Cla(eKp, bO)b?2
=�).

Projecting the RHS to the analytic site ofShtor
K pKp,C

and taking colimits as Kp ! 1, one has by Theorem

20.2.2

(RΓproét(ShK p,C,bQp)lab⌦C)Rb=� = RΓan(Shtor
K p,C,RΓ(n

0
?1,3

),Cla(gc, bOSh)b?2
=�,eK†p�sm)

= RΓan(Shtor
K p,C,RΓ(n

0
?1,3
⇥ b?2

,Cla(gc, bOSh)b?2
=�)

eK†p�sm)

= RΓan(Shtor
K p,C,RHomb(�,O

la
Sh)).

An analogous argument holds for the dual completed cohomology. This proves (1).

Part (2) follows from the Definitions 23.1.2 and 23.1.3, and from the construction of the highest

weight vector maps over F` in Theorem 21.4.31, after applying the pullback to Shtor
K p,C

, and the

projection to the analytic site as in Theorem 20.2.2. Notice that n0 act trivially on the sheaves involved,

so that the Sen operator vanishes and taking eKp-smooth vectors is exact.

Part (3) is an application of the spectral sequence of a filtered space as in Definition 18.2.1. Finally,

part (4) follows from the previous steps and by the second part of Theorem 20.2.2. ⇤

Remark 23.2.3. A more careful study of the eDla-module RHomb(�,C
la(gc,OF`)

n0
?1,3
=0

) of §21.4.3

should provide a better description of the � isotypic part of the locally analytic completed coho-

mology in terms of overconvergent autormophic forms. More precisely, the cohomologies

RΓc,w(Shtor
K p,C,RHomb(�,O

la
Sh)) for w 2 MW

should admit a filtration purely in terms of overconvergent automorphic cohomology classes, this

would prove that the eigenvariety arising from completed cohomology is “the same” as the eigenva-

riety arising from overconvergent modular forms (modulo some degeneracy of an spectral sequence).

Furthermore, one would expect that, generically in �, the only cohomology classes appearing in the

locally analytic completed cohomology are those occurring via the overconvergent BGG maps. See

Proposition 21.5.3 for the example of GL2.

23.2.1. Relation with classical Hodge-Tate decompositions

Let us explain in what sense Theorems 23.2.1 and 23.2.2 interpolate the classical BGG (or Hodge-

Tate) decompositions of §22.2.2. Let Calg(gc, L) be the germs at 1 of the locally algebraic functions

of eKp. Let H↵ 2 h be the coroot of ↵ 2 Φ. As gc ⇥ gc-module via the left and right regular action

respectively, the representation Calg(gc, L) is isomorphic to
M

�2h⇤

h�,H↵i�0 8 ↵2Φ+

V_� ⌦ V�.

Let � 2 h⇤ be a dominant weight. Taking �-isotypic parts for the right regular action of the inclusion

Calg(gc, L) ⇢ Cla(gc, L) one gets that

V_� ⇢ Cla(gc, L)b?2
=�. (23.2.1)

Taking pro-étale cohomology for the eK†p-local systems defined by (23.2.1) one gets a map

lim
��!
Kp

RΓproét(ShK pKp,C,V
_
� )! RΓproét(ShK p,C,bL)Rb?2

=�.
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23. Overconvergent Hodge-Tate decompositions

Tensoring with C, we obtain by Theorem 23.2.1 a map

RΓan(Shtor
K p,C,R(� � ⌫1)⇤(V

_
� ⌦

bO))! RΓan(Shtor
K p,C,RHomb(�,O

la
Sh)).

But now, Theorem 22.2.6 implies that

R(� � ⌫1)⇤(V
_
� ⌦

bO) =
M

w2MW

M(�w0(w · �)) ⌦ ! ⌦C(w · �(µ�1) � d)[`(w) � d], (23.2.2)

whereM() = lim
��!Kp

MKp
() is the colimit of all the automorphic sheaves of finite level attached to

W_
�w0(). Following (2) of Theorem 23.2.1, let us restrict to ⇡�1

HT(Cw(✏)). We can write

⇡⇤Kp
(MKp

(�w0(w · �)) ⌦ !) ⌦ bO(w · �(µ�1) � d)) = ⇡⇤HT(W(�w0(w · �)) ⌦ n0,_),

and this last sheaf is attached to W_

w·�+2⇢M via the torsor MF` over F`. More precisely, W(�w0(w ·

�)) ⌦ n0,_ is equal to the sheaf OMF`
[(w · � + 2⇢M)BM,?1

]. This induces a natural eK†p-equivariant map

over Cw(✏)
W(�w0(w · �)) ⌦ n0,_ ! C(M†

w,F`
)bM,?1

=w·�+2⇢M

.

Taking pullbacks by ⇡HT and projections to the analytic site, one obtains a commutative diagram of

sheaves over ⇡�1
HT(Cw(✏))

RHomb(�,O la
Sh

) C(M†
w,dR

)bM,?1
=w·�+2⇢M

[`(w) � d]

R(� � ⌫1)⇤(V
_
� ⌦

bO) M(�w0(w · �)) ⌦ ! ⌦C(w · �(µ�1) � d)[`(w) � d].

Υw

prw

Taking RΓc,w cohomology one obtains maps compatibles with the spectral sequence of Theorem

23.2.1 (3), proving that loc. cit. is an interpolation of the BGG decompositions as expected. One

can make analogous constructions for the � co-isotypic part of the dual locally analytic completed

cohomology.
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