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Understanding and monitoring the agricultural activity of a territory requires the production of accurate crop type maps. Such maps identify the boundaries of each agricultural parcel along with the cultivated crop type. This information is valuable for a variety of stakeholders and has applications ranging from food supply prediction to subsidy allocation and environmental monitoring.

While early crop type maps required tedious in situ data collection, the advent of automated analysis of remote sensing data enabled large-scale mapping efforts. In this dissertation, we consider the problem of crop type mapping from multispectral satellite image time series. In most of the literature of the past decade, this problem is typically addressed with traditional machine learning models trained on hand-engineered descriptors. Meanwhile, in Computer Vision (CV) and Natural Language Processing (NLP), the ability to learn representations directly from raw data provoked a paradigm shift leading to unprecedented levels of performance on a variety of problems. Similarly, the application of deep learning models to remote sensing data significantly improved the state-of-the-art for crop type mapping as well as other tasks.

In this thesis, we hold that the direct application of CV and NLP methods to remote sensing tasks tends to ignore crucial particularities of the data at hand. Instead, we argue for the design of bespoke methods leveraging the complex spatial, spectral, and temporal structures of satellite time series. We successively formulate crop type mapping as parcel-based classification, semantic segmentation, and panoptic segmentation, three increasingly difficult tasks. For each of these tasks, we propose a novel deep learning architecture adapted to the task's specificities and inspired by recent advances in the deep learning literature. Our methods set a new state-of-the-art for each task while being more computationally efficient than competing approaches. Specifically, we introduce (i) the Pixel-Set Encoder, an efficient spatial parcel-based encoder, (ii) the Temporal Attention Encoder (TAE), a self-attention temporal encoder, (iii) U-net with TAE, a variation of the TAE for segmentation problems, and (iv) Parcel-as-Point, a lightweight instance segmentation module for the panoptic segmentation of parcels.

We also explore how these architectures can be adapted to multimodal image time series combining optical and radar information through well-chosen fusion schemes. Multimodality improves the mapping performance as well as the robustness to cloud obstruction. Lastly, we focus on the hierarchical tree that encapsulates the semantic relationships between crop classes. We introduce a method to include such structure in the learning process. For crop classification as well as other classification problems, we show that our method reduces the rate of errors between semantically distant classes.

Along with these methods, we introduce PASTIS, the first large-scale open-access dataset of multimodal satellite image time series with panoptic annotations of agricultural parcels. We hope that this dataset, along with the promising results presented in this dissertation, will encourage further research in this direction and help produce ever more accurate agricultural maps. Resumé L'analyse et le suivi de l'activité agricole d'un territoire nécessitent la production de cartes agricoles précises. Ces cartes identifient les bordures de chaque parcelle ainsi que le type de culture. Ces informations sont précieuses pour une variété d'acteurs et ont des applications allant de la prévision de la production alimentaire à l'allocation de subventions ou à la gestion environnementale.

Alors que les premières cartes agricoles nécessitaient un travail de terrain fastidieux, l'essors de l'analyse automatisée des données de télédétection a ouvert la voie à des cartographies à grande échelle. Dans cette thèse nous nous intéressons à la cartographie agricole à partir de séries temporelles d'images satellites multispectrales. Dans la plupart des travaux de la dernière décennie ce problème est abordé à l'aide de modèles d'apprentissage automatique entraînés sur des descripteurs conçus par des experts. Cependant, dans la littérature de vision par ordinateur (VO) et du traitement automatique de la langue (TAL), l'entrainement de modèles d'apprentissage profond à apprendre des représentations à partir des données brutes a constitué un changement de paradigme menant à des performances sans précédent sur une variété de problèmes. De même, l'application de ces modèles d'apprentissage profond aux données de télédétection a considérablement amélioré l'état de l'art pour la cartographie agricole ainsi que d'autres tâches de télédetection.

Dans cette thèse nous soutenons que les méthodes actuelles issues des littérature VO et TAL ignorent certaines des spécificités des données de télédétection et ne devraient pas être appliquées directement. Au contraire, nous pronons le developpement de méthodes adaptées, exploitant les structures spatiales, spectrales et temporelles spécifiques des séries temporelles d'images satellites. Nous caractérisons la cartographie agricole successivement comme une classification à la parcelle, une segmentation sémantique et une segmentation panoptique. Pour chacune de ces tâches, nous développons une nouvelle architecture d'apprentissage profond adaptée aux particularités de la tâche et inspirée des avancées récentes de l'apprentissage profond. Nous montrons que nos méthodes établissent un nouvel état de l'art tout en étant plus efficaces que les approches concurrentes. Plus précisément, nous présentons (i) le Pixel-Set Encoder, un encodeur spatial efficace, (ii) le Temporal Attention Encoder (TAE), un encodeur temporel utilisant la self-attention, (iii) le U-net avec TAE, une variation du TAE pour les problèmes de segmentation, et (iv) Parcel-as-Point, un module de segmentation d'instance conçu pour la segmentation panoptique des parcelles.

Nous étudions également comment exploiter des séries temporelles multimodales combinant des informations optiques et radar. Nous améliorons ainsi les performances de nos modèles ainsi que leur robustesse aux nuages. Enfin, nous considérons l'arbre hiérarchique qui décrit les relations sémantiques entre les types de culture. Nous présentons une méthode pour inclure cette structure dans le processus d'apprentissage. Sur la classification des cultures ainsi que d'autres problèmes de classification, notre méthode réduit le taux d'erreurs entre les classes sémantiquement éloignées.

En plus de ces méthodes, nous introduisons PASTIS, le premier jeu de données en accès libre de séries temporelles d'images satellites multimodales avec des annotations panoptiques de parcelles agricoles. Nous espérons que ce jeu de données, ainsi que les résultats prometteurs présentés dans cette thèse encourageront d'autres travaux de recherche et aideront à produire des cartes agricoles toujours plus précises. iv Leveraging the class hierarchy 130 4.1 Metric-guided prototype learning . . . . . . . . . .

Introduction

Crop type mapping provides spatially structured information on cultivated crops across all agricultural land of a given territory during a given period. This information is used for a variety of applications: extracting crop production statistics, predicting food supplies, or monitoring crop rotation practices to estimate soil nutrient availability. In some regions, crop type maps are also used for the yearly allocation of agricultural subsidies to farmers. In the European Union or in the United States of America, such subsidies amount to 50 billion euros and 22 billion dollars, respectively. Designing 1 methods to produce crop type maps at a large scale thus entails major economical and environmental interests. In the following sections, we first show how crop type mapping evolved over the last century.

In particular, we show that the challenges shifted from data collection to data analysis. In this perspective, the present manuscript presents novel data analysis methods for automated crop type mapping from satellite imagery.

In this thesis, we explore the potential of modern deep learning methods to automatically analyse large volumes of satellite images to predict crop type maps. Deep learning is a subfield of Machine Learning (ML), and is at the core of great advances during the past decade through impressive applicative achievements on Computer Vision (CV) and Natural Language Processing (NLP) problems [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Vaswani | Attention is all you need[END_REF][START_REF] Brown | Language models are few-shot learners[END_REF][START_REF] Alquraishi | AlphaFold at CASP13[END_REF] . The field of machine learning can be defined in general terms as the study of algorithms that can use experience in the form of observational data, to improve their performance on a given task, i.e., learn [START_REF] Tom | Machine Learning[END_REF] . Learning problems can often be formulated as the search for a function that maps a given set of input features to a desired outcome 166 . One of the specificity of deep learning methods is the nature of the features this function is applied on. Traditional ML methods typically operate on hand-engineered features and only learn to predict the output based on these features. In contrast, deep learning methods operate directly on the raw observed data and simultaneously learn to extract features and return predictions [START_REF] Goodfellow | Deep Learning[END_REF] . This paradigm led to a dramatic improvement in performance on a variety of CV or NLP tasks. In this dissertation, we leverage these advances for remote sensing tasks and data. To this aim, we first outline the precise framing of crop type mapping as a learning problem. In particular, we describe the remote sensing data that we use as input, and the annotations used to train our methods. We also formalize the problem of crop type mapping into three increasingly difficult problems. Lastly, we present an overview of the contributions of the present dissertation.

tions", or "[laying] a foundation for a scientific system for tax assessment". Yet, producing such maps required field data collection and tedious work by geographers [START_REF] Sauer | Mapping the utilization of the land[END_REF][START_REF] Fippin | Relation of soil surveys to crop surveys[END_REF] , which significantly limited the opportunity of using them at a large scale.

Remote sensing for large scale mapping. The development of Remote Sensing (RS) technologies around the turn of World War II opened the opportunity for efficient crop type mapping efforts at a larger scale in a short time. Airplanes equipped with optical sensors could indeed acquire observations spanning larger areas. A large corpus of work emerged to define photointerpretation techniques to produce forest and crop type maps from such observations 180,[START_REF] Avery | Identifying southern forest types on aerial photographs[END_REF][START_REF] Bomberger | Photointerpretation in agriculture[END_REF] . Photointerpretation consisted in formulating decision rules that expert interpreters could use to assess crop types based on the observed colour, texture, pattern, shape, size, and topographic site [START_REF] Bomberger | Photointerpretation in agriculture[END_REF] . Later, the scope of such mapping efforts widened dramatically with the advent of space-borne remote sensing [START_REF] Johnson | A system of regional agricultural land use mapping tested against small scale Apollo 9 color infrared photography of the Imperial Valley (California)[END_REF][START_REF] Kanani | Use of remote sensing for agricultural statistics[END_REF][START_REF] Hoffman | Identifying and measuring crop type using satellite imagery[END_REF] . In 1969, one of the first crop type maps based on satellite imagery [START_REF] Johnson | A system of regional agricultural land use mapping tested against small scale Apollo 9 color infrared photography of the Imperial Valley (California)[END_REF] was produced using photointerpreted images taken by the Apollo 9 mission (see Figure 2) . This landmark study already identified some of the key challenges of crop type mapping from satellite imagery. For example, it discussed the difficulty of having a consistent nomenclature of crop types across different geographical zones due to diet habits and cultural history.

Moreover, the Apollo 9 study identified that many of the features used for photointerpretation of aerial images, such as texture, are lost with space-borne sensing. Indeed, the higher altitude of satellite sensors compared to aerial sensors entails a decrease in spatial resolution. The authors concluded that spectral information (i.e., colour) was the only remaining reliable information. As we will see in the first chapter of this dissertation, this observation remains valid and insightful for some present day satellite data.

Evolution of sensors. After the early successes of space-borne remote sensing for crop type mapping, sustained technological efforts have been devoted to improve the quality and availability of re-mote sensing data. Along the last decades of the 20-th century and up until today, the spatial and spectral resolution as well as the geographical coverage of Earth Observation missions kept on improving. The spectral resolution was first increased with the adoption of multispectral instruments that measure the reflectance of the Earth's surface not only in the visible but also the infrared spectrum. With the launch of the Landsat mission in the 1972 the spatial resolution of multi-spectral images was improved to 30 meters per pixel, proving valuable for a variety of land cover mapping applications. Long-term satellite missions facilitated the production of multitemporal data: successive observations of the Earth's surface could show its evolution over time. The addition of the temporal dimension, as we will see in Chapter 1, was especially useful for crop type mapping as it enabled to observe the temporal dynamics of crop growth. Another line of development has been the diversification of sensors sent to orbit. Notably, in the last couple of decades, satellites equipped with Synthetic Aperture Radar (SAR) sensors were developed, providing complementary information with multispectral observations, as we will see in Chapter 3.

Automated analysis.

Along with the development of more sophisticated space-borne sensors, much effort has been devoted to design automated prediction methods and move away from labour-intensive photointerpretation. Early works proposed simple discriminant analysis of Gaussian mixture models [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF]166 to classify crop types based on the observed reflectance spectra [START_REF] Kolm | The identification of irrigated crop types and estimation of acreages from landsat imagery[END_REF][START_REF] Congalton | Mapping and monitoring agricultural crops and other land cover in the lower Colorado river basin[END_REF] , a method refered to Maximum Likelihood Classification in the remote sensing literature. Later on, the common approach for crop classification geared to training discriminative ML models such as Random Forest (RF) or Support Vector Machines (SVM) on handcrafted features 174,[START_REF] Inglada | Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery[END_REF]179 . For instance, the Normalised Difference Vegetation Index (NDVI) combining the red and near-infrared spectral bands has been widely used as it relates to crop photosynthetic activity [START_REF] Tucker | Red and photographic infrared linear combinations for monitoring vegetation[END_REF] . Certain work also includes phenological features derived from the study of the NDVI as well as external meteorological information [START_REF] Zhong | Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery[END_REF] . This kind of approaches combining hand-engineered expert features with discriminative model, remained the state-of-the-art up to recently.

Deep learning. In the past decade, successful advances in the CV and NLP literature [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Vaswani | Attention is all you need[END_REF] have provided efficient tools for both spatial and temporal feature extraction. In the context of crop type mapping from Satellite Image Time Series (SITS), the combination of large volumes of open-access data and of publicly available ground truth data (see next section) makes for a natural playground for deep learning approaches. In practice, the remote sensing community followed suit and is gradually adopting deep learning models for automated crop type mapping [START_REF] Kussul | Parcel based classification for agricultural mapping and monitoring using multi-temporal satellite image sequences[END_REF][START_REF] Rußwurm | Temporal vegetation modelling using long short-term memory networks for crop identification from medium-resolution multi-spectral satellite images[END_REF][START_REF] Ndikumana | Deep recurrent neural network for agricultural classification using multitemporal sar sentinel-1 for camargue, france[END_REF][START_REF] Ienco | Land cover classification via multitemporal spatial data by deep recurrent neural networks[END_REF] . Although some work only uses these tools as feature extractors [START_REF] Nijhawan | A deep learning hybrid CNN framework approach for vegetation cover mapping using deep features[END_REF] , or combine them with feature engineering [START_REF] Zhang | Mapping paddy rice using a convolutional neural network (CNN) with Landsat 8 datasets in the Dongting lake area, China. Remote Sensing[END_REF] , most current work follows the deep learning paradigm of end-to-end trainable architectures operating on raw data. More specifically, first studies [START_REF] Kussul | Parcel based classification for agricultural mapping and monitoring using multi-temporal satellite image sequences[END_REF][START_REF] Kussul | Parcel-based crop classification in ukraine using landsat-8 data and sentinel-1a data[END_REF] proposed to use a Multi Layer Perceptron (MLP) on raw observations instead of traditional RF of SVM. Further work sets out to leverage the spatial and temporal structures of time series of satellite images. Convolutional Neural Nets (CNNs) [START_REF] Lecun | Convolutional networks for images, speech, and time series. The Handbook of Brain Theory and Neural Networks[END_REF] appeared to be a natural choice to address the spatial dimensions of the data [START_REF] Kussul | Deep learning classification of land cover and crop types using remote sensing data[END_REF][START_REF] Rußwurm | Multi-temporal land cover classification with sequential recurrent encoders[END_REF] . Similarly, Recurrent Neural Networks (RNN) [START_REF] Hochreiter | Long short-term memory[END_REF] and self-attention [START_REF] Vaswani | Attention is all you need[END_REF] networks were successfully adopted from the NLP literature to model the temporal dimension of the data [START_REF] Rußwurm | Temporal vegetation modelling using long short-term memory networks for crop identification from medium-resolution multi-spectral satellite images[END_REF][START_REF] Ndikumana | Deep recurrent neural network for agricultural classification using multitemporal sar sentinel-1 for camargue, france[END_REF][START_REF] Rußwurm | Convolutional LSTMs for cloud-robust segmentation of remote sensing imagery[END_REF] , outperforming RF and SVM [START_REF] Ienco | Land cover classification via multitemporal spatial data by deep recurrent neural networks[END_REF] . As a results, the work presented here started in a context where the state-of-the-art for crop type mapping tasks was based on deep learning models.

Specificities of Remote Sensing. In this dissertation, we argue that remote sensing tasks such as crop type mapping should not only be seen as special cases of CV or NLP problems. Remote sensing tasks present some key differences in the observed data and phenomena. We hold that this represents a unique opportunity for tailored methods that go beyond applying generic approaches to specific problems.

We identify in Table 1 several of the specificities of remote sensing data compared to typical CV data. We consider satellite image time series of Sentinel-2, the main source of satellite data used in this dissertation. Sentinel-2 images are multispectral, providing information beyond the visible part of the spectrum as opposed to the red, green, and blue channels of ImageNet images [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] . In other RS settings images can even be obtained with other types of sensors such as hyperspectral or SAR sensors, see Figure 3b. The objects appearing on Sentinel-2 images do not occlude one another as the line of sight between the satellite and the Earth's surface is clear, except for the occurrence of clouds. Each pixel of a satellite-acquired image is geo-referenced and corresponds to an absolute position on the Earth's surface. This implies that satellite image time series can be constructed with an absolute and fixed frame of reference. In comparison, the sensor position and viewing angle are often moving in video data. Similarly, the observed objects over the Earth's surface do not move in space: the position of an agricultural parcel is fixed, eliminating the need for motion tracking that video analysis models typically need to address. On the contrary, the sensing dates of satellite image time series require more careful processing than the arbitrary acquisition times of videos. A satellite image captured in November does not convey the same insights into the status of a crop's growth cycle as an image captured in March. Furthermore, images in a satellite sequence are often irregularly sampled in time compared to the steady sampling rate of modern cameras. Additionally, in the context of crop type mapping, the relation between the spatial resolution of Sentinel-2 images and the typical dimension of textural information on the parcel's surface is significantly different than in the CV setting. While CNNs have been proven to rely heavily on the texture of objects in natural images [START_REF] Geirhos | Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness[END_REF] , the 10m per pixel resolution of Sentinel-2 does not allow to resolve most of the texture of agricultural fields such as rows of crops, or ploughing traces, see Figure 3a. Similarly, the relation between the temporal resolution of Sentinel-2, a 5-day revisit time, and the characteristic time of evolution of crops of around a week, is specific to the RS setting. In comparison, video data analysis often addresses the movement of objects with a characteristic time of evolution significantly larger than the sampling period of cameras.

Consequently, we argue that a crucial step in the design of deep learning methods for RS problems is a careful analysis of the specificities of the data and the problem at hand, for the design of an adapted method. Throughout this dissertation, we will try to show how this analysis can lead to the creation of original methods, or adaptations of existing deep learning methods that yield better performance than direct application. We will also see how this can bring significant improvement in terms of speed, precision, and memory usage.

year. The French Payment Agency estimates the accuracy of crop annotations via in situ control over 98% and the relative error in terms of surfaces under 0.3%. In this dissertation, we use the French LPIS as annotation to train models for predicting parcel crop types and boundaries. In the French LPIS, the crop type reported for a given year n, corresponds to the main cultivated crop between the beginning of fall of year n -1 and the end of summer of year n 1 . This temporal frame is denoted as an agricultural year in the rest of the manuscript.

Framing the problem. In this context, crop type mapping amounts to retrieving the information contained in the LPIS (extent and crop type of each agricultural parcel) from satellite observations of the corresponding agricultural year. More specifically, as summarised in Table 2 the problem can be framed in the following ways:

• Parcel-based classification: In this setting, the borders of each parcel are known and only the crop type needs to be determined by the classification method. Parcel-based classification methods thus focus on discriminating the different types of crops, and take advantage of the information that is available about the extent of the parcels.

• Pixel-based classification / Semantic segmentation: In these settings, the borders of the parcels are not known. The classification methods need to make a semantic prediction on the crop type for each pixel of a given area of interest. In pixel-based classification, the prediction for a given pixel is made only using the information of this pixel, whereas in semantic segmentations classification methods have also access to the information of the surrounding pixels of the pixel under consideration. Both approaches allow to quantify the total surface allocated to each crop type on a given territory and retrieve production statistics. However, the borders of each parcel are not predicted, which is limiting in contexts where parcels need to be attributed to their owner, such as for subsidy allocation. • Instance segmentation / Panoptic segmentation: The third setting is the most general one, as it aims at retrieving the borders of each parcel as well as their crop type from the SITS. A method that achieves a sufficient performance on this task can thus be used to recover the full LPIS from the satellite observations.

Challenges. The problem of crop type mapping from SITS with deep learning methods presents a variety of challenges. As mapping efforts are nowadays carried out at the scale of an entire country or continent, the employed methods should adapt to variations in the data that can be caused by changes in the meteorological context, farming practices, or growing seasons. The features learnt should also be robust to the occurrence of clouds in the observations. As seen in Figure 4, clouds can obstruct the observations and corrupt the pixel values. Moreover, satellite data providers such as THEIA * do not process satellite acquisitions with a fraction of cloudy pixels exceeding a certain threshold. As a result, the number of available observations changes from year to year and with the region under consideration. Crop type mapping methods should thus be able to process satellite image time series of varying lengths and be robust to their irregular sampling frequency. Crop type mapping also presents the problem of long-tailed distributed classes that can be challenging for learning methods.

The number of Meadow parcels, the most common crop type in the French territory, is around 250 * https://catalogue.theia-land.fr/ times the count of less common classes such as Rice [START_REF] Marie | Quelle cartographie de l'utilisation agricole du sol en france en 2010? les apports du recensement parcellaire graphique. 7èmes[END_REF] . Those rare classes are often harder to correctly predict as they are less frequent in the training data. For many downstream applications, it is nonetheless crucial that the classification performance is equally high on rare and frequent classes. Lastly, as crop type mapping methods are applied to large volumes of data, computational efficiency needs to be taken into account. In particular, the interest of novel methods should be assessed based on their performance/complexity trade-off.

Contributions

In the following section, we describe the content of the present manuscript. We assume that the reader is familiar with deep learning. More specifically, we assume that the following concepts are familiar to the reader: training a machine learning model by gradient descent, the deep learning paradigm of end-to-end training, the standard types of deep neural nets (perceptrons, convolutional, and recurrent nets) and training losses. We refer the reader to online available material if necessary † .

Parcel-based classification

In Chapter 1 we address crop type mapping as a parcel-based classification problem. We assume that the geo-referenced polygons delineating each parcel's border are already known. The methods we investigate thus focus on predicting the semantic label, i.e., the crop type cultivated in the parcel. Following the deep learning paradigm, we aim to design a neural architecture that can directly operate on the raw satellite image time series and learn to extract discriminative spatial, spectral, and temporal descriptors.

In Section 1.1, we present a preliminary study aiming at assessing the relative importance of the spatial and temporal structures of Sentinel-2 for crop type mapping. We show that the multitemporal nature of Sentinel-2 is key for an accurate crop type classification. We additionally show experimentally, that the convolutional features learnt on Sentinel-2 imagery are only marginally more discriminative than handcrafted features.

In Section 1.2, we leverage these insights to design the Pixel-Set Encoder (PSE). The coarse resolution of Sentinel-2, in the context of parcel classification, motivates us to consider images as unordered sets of pixels that can be encoded with a deep set-based encoder [START_REF] Qi | Pointnet: Deep learning on point sets for 3d classification and segmentation[END_REF] architecture. We show that such an approach outperforms convolutional encoding and favorably circumvents a costly preprocessing step, reducing both computation time and memory usage.

In Section 1.3, we adapt the Transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF] to address the temporal dimension of Sentinel-2 time series. Indeed, the Transformer achieved state-of-the-art performance on NLP problems involving sequential data. We analyse the key differences between the typical NLP setting and 

Segmentation methods

In Chapter 2, we successively broaden the problem statement to semantic segmentation and panoptic segmentation. Indeed, parcel-based methods are not applicable in locations where accurate parcel databases are not available. Such is actually the case for a majority of countries. The aim of this chapter is thus to design methods that are able to retrieve the full LPIS from the input satellite image time series: delineating each parcel's border and predicting its crop type.

We start in Section 2.1 by addressing crop type mapping as a semantic segmentation problem. In this setting, a semantic prediction is made for each pixel of a given region of interest. This requires a different treatment of the spatial dimensions of the satellite time series than in the parcel-based classification setting. To this aim, we introduce U-TAE (U-Net with TAE), a spatio-temporal encoding architecture for satellite image time series segmentation. We use a typical U-Net like structure of convolutional encoding and decoding. We encode each image of the time series with the shared convolutional encoder and obtain sequences of feature maps. We use the L-TAE to collapse the time series of feature maps into a single feature map. Relying on self-attention allows us to reuse the attention masks produced at a certain depth at other levels of the U-Net structure. We show experimentally that this feature gives the U-TAE an important edge over other existing methods, and thus sets a new state-of-the art for semantic segmentation of satellite image time series for crop type mapping.

In Section 2.3, to also retrieve the parcels' borders, we frame crop type mapping as panoptic segmentation, which corresponds to assigning each pixel of an image a single instance id and semantic label. Panoptic predictions are by design non-overlapping instance masks with associated class predictions. This is appropriate for crop type mapping as agricultural parcels do not overlap. Inspired by the recent computer vision literature on single-stage instance segmentation algorithms, we devise Parcel-as-Points (PaPs), an instance segmentation module that we combine with the U-TAE to perform panoptic segmentation of satellite image time series. Instance segmentation of satellite images has not, to the best of our knowledge, been explored on multitemporal data, and we thus set the first state-of-the-art on panoptic segmentation from SITS.

Leveraging multiple modalities

In Chapter 3, we explore the opportunity of leveraging multiple modalities to improve the performance of crop type mapping models. Specifically, we focus on the joint use of the optical imagery of Sentinel-2 with the C-band radar acquisitions of Sentinel-1. The latter produces open access observations containing complementary information to the multispectral measurements of Sentinel-2.

While the spectral channels of Sentinel-2 convey information on the physiological activity of crops, the radar measurements of Sentinel-1 capture information on the surface geometry of agricultural parcels. Moreover, SAR observations are not sensitive to cloud obstruction and can thus complement Sentinel-2 data during cloudy periods.

The joint use of optical and radar acquisitions for crop type mapping has been extensively explored by the remote sensing community 170,102,[START_REF] Campos-Taberner | A Copernicus Sentinel-1 and Sentinel-2 classification framework for the 2020+ european common agricultural policy: A case study in València (Spain)[END_REF] . However, few works use modern deep learning architectures yet [START_REF] Ienco | Combining Sentinel-1 and Sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture[END_REF] . We thus explore how to combine SITS from multiple modalities with the temporal attention models introduced in Chapters 1 and 2. We implement different feature fusion schemes commonly encountered in the literature and evaluate the schemes on parcel-based classification, semantic segmentation, and panoptic segmentation. We show that the addition of the radar modality improves the overall performance on these tasks, as well as the robustness to cloud obstruction.

Leveraging the class hierarchy

In the context of subsidy allocation, it can be valuable to reduce misclassifications between semantically distant classes (e.g., wheat and apple trees), as they also tend to have different subsidy levels. This motivates us to focus in Section 4 on the hierarchical structure of the different crop types, which can be efficiently captured by a tree structure designed by experts. This hierarchical tree induces a distance between the different classes, and this distance can be used to measure the severity of classification errors. We set out to develop a method to leverage this hierarchical knowledge to reduce the severity of errors. This endeavor is an active field of research in the ML and CV communities. Hence, in this section we widen our scope from crop type mapping to generic classification problems with a known hierarchical tree on the class set. We introduce a method based on prototype learning 147 , allowing us to incorporate the hierarchical structure between classes into the arrangement of their respective prototypes in the embedding space. We show experimentally that our method consistently reduces the severity of errors. Furthermore, our experiments demonstrate that our method also reduces the overall number of classification errors. This suggests that the hierarchical class tree of classes provides valuable information on the structure of the data, and that classification models' performance can be improved with the addition of a simple regularizer and no additional architectural or dataset changes.

In particular, the classification performance of crop type mapping models can be significantly improved using this hierarchical knowledge.

Publications

Most of the work presented in the following manuscript was published in international journals and conferences during the completion of the doctorate. learning literature, and accounting for the specificities of the problem at hand, we design tailored spatial and temporal encoders that outperform existing approaches both in classification performance and computational efficiency.

International Journal

In the first section, we carry out a preliminary study to explore the relative importance of the temporal and spatial structures of Satellite Image Time Series (SITS) for parcel-based crop type classification. We then present our two encoding modules: the Pixel-Set Encoder (PSE) and the Temporal Attention Encoder (TAE) for spatial and temporal encoding, respectively. Lastly, we present the L-TAE, a variant of our TAE temporal encoder with improved memory and computational efficiency.

We conduct extensive numerical experiments on a large dataset of 200k agricultural parcels. On this dataset, our combined spatial and temporal encoders improve the state-of-the-art for parcel-based classification by 9.6pts of mean Intersect over Union (mIoU).

Time-space tradeoff for parcel-based classification

In this section, we propose a preliminary study to help in the design of deep learning architectures for parcel-based crop type classification from SITS. In such architectures, one key design choice is the size of the different parts of the model dedicated to the different dimensions structuring the input data.

In the case of SITS, we aim at determining empirically the relative size of the spatial encoding and temporal encoding modules to achieve the best classification performance. Hence, we propose to answer the following question: given a fixed budget of trainable parameters, should one prioritize modeling the spatial structure (with CNN), temporal structure (with RNN), or address both with recurrent convolutional models? We compare the crop classification performance of several architectures with the same number of parameters on a Sentinel-2 dataset of agricultural parcels.

The key highlights of this experiment are as follows:

• We provide empirical evidence that the temporal structure of Sentinel-2 data is more discriminative than the spatial structure in the context of parcel-based crop type classification. Consequently, most of the model's trainable parameters should be devoted to temporal encoding.

• We show that recurrent architectures are acting as a memory combining multiple observations, as well as a model for temporal evolution. • CNN : We first implement a convolution-based neural network whose goal is to leverage the spatial structure of image time series. The images corresponding to each date are embedded independently through the same three layers composed of the following units: convolution with 3 × 3 kernel size and no padding, batch normalisation [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] , ReLu activation [START_REF] Glorot | Deep sparse rectifier neural networks[END_REF] and Max-Pool with 2 × 2 kernel size. We then compute a global embedding for the whole sequence by concatenating all the image embeddings and taking the maximum for each channel, in the manner of PointNet [START_REF] Qi | Pointnet: Deep learning on point sets for 3d classification and segmentation[END_REF] . Finally, the global embedding is passed to the classification module for prediction.

• RNN : Unlike the CNN network, the RNN architecture focuses purely on the temporal dimension of image sequences. For each image, we compute a vector of parcel-level handcrafted features. Following the common approach of using statistical descriptors [START_REF] Kussul | Parcel based classification for agricultural mapping and monitoring using multi-temporal satellite image sequences[END_REF] , we compute the spatial mean and standard deviation of each spectral band. These vectors are then processed in chronological order by a recurrent net. We choose a Gated Recurrent Unit (GRU) [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF] over

Long Short Term Memory (LSTM) [START_REF] Hochreiter | Long short-term memory[END_REF] for its better parameter efficiency. The last hidden state of the GRU is used as the embedding for classification with the classification module.

• CNN+GRU : Our first hybrid implementation successively extracts spatial and temporal embeddings. Each image of the sequence is first embedded with a shared CNN network. The resulting sequence of spatial embeddings is then processed by a recurrent GRU in chronological order. The last hidden state of the GRU is used as a spatio-temporal embedding for classification. We implement three such models with varying ratios of parameters allocated to the temporal structure. Indeed, we can reduce the number of convolutional kernels and chose a larger hidden state size to increase this ratio (see Table 1.1).

• ConvLSTM : Our second hybrid implementation follows the ConvLSTM architecture introduced by Xingjian et al. 183 . which directly performs spatial encoding within the recurrent cell.

ConvLSTM uses image-shaped hidden and cell states, as well as convolutions instead of MLP layers in an LSTM architecture [START_REF] Hochreiter | Long short-term memory[END_REF] . We refer the reader to Rußwurm & Körner [START_REF] Rußwurm | Multi-temporal land cover classification with sequential recurrent encoders[END_REF] for more details on this architecture.

We arbitrarily set the budget of trainable parameters to 100k, which proved sufficient for the models to generalize in our experiments. Table 1.1 summarizes the hyper-parameters used for the models:

the number of kernels for each of the convolutions and the size of the hidden state of the recurrent unit. We do not consider three-dimensional convolutional architectures to cover the spatial and temporal dimension of the data, contrarily to previous studies such as Ji et al. [START_REF] Ji | 3d convolutional neural networks for crop classification with multi-temporal remote sensing images[END_REF] . Indeed, convolutions are local computations, and hence are not as well suited for modeling long term dependencies as recurrent architectures. Additionally, applying convolutions along the temporal axis assumes that the images of the sequence are regularly sampled in time, which is not necessarily the case in practice. We present the performance of each model in Table 1.2. Given the high imbalance of the dataset under consideration (see Figure 1.4), we report the unweighted class-wise average F-score along with the Overall Accuracy (OA) of each model. We insist on the fact that all models are designed with approximately the same number of trainable parameters (see Table 1.1). Thus, the differences in performance can only be attributed to the way the spatial and temporal dimensions are handled and not to differences in model size. Surprisingly, the purely recurrent GRU model outperforms the ConvLSTM and the CNN+GRU 7 hybrid models. Only the CNN+GRU 8 and CNN+GRU 9 models achieve higher overall performance. This shows that extracting both spatial and temporal structures allows for a higher classification performance, provided that most of the parameters are allocated to the temporal structure. Only using 10% of the parameters budget for the spatial feature extractor seems sufficient for spatial feature extraction with convolutions.

This suggests that the features extracted by RNNs are more discriminative than those extracted by CNNs. Indeed, the purely convolutional model performs significantly worse than its purely recurrent counterpart (by 19 pts of F-score).

This performance gap can be explained by the fact that convolutional features are not completely Finally, to assess the importance of the temporal structure for the features extracted by the recurrent networks, we retrain several models with randomly shuffled input sequences, such that the temporal structure is lost. Table 1.4 summarizes the F-scores obtained.

Time-shuffling of the image sequence is detrimental to all models. This impact is all the more important as the ratio of temporal parameters is high. Yet, all models still outperform the purely convolutional model. These results suggest that the hidden states of the recurrent units act in two ways:

first, as a memory storing information regardless of their order, and second, as a model for the temporal evolution of the crops. As our dataset only covers a single year, this chronological evolution is most probably capturing the phenology of the crops.

Concluding Remarks

In this section, we compared the performance of four deep learning architectures extracting spatial, temporal, or spatio-temporal features for crop type mapping from SITS with a fixed budget of parameters. Our results showed that architectures with 90% of their parameters are allocated to the extraction of temporal patterns achieve the best classification performance.

This suggests that simple convolutional architectures are sufficient to extract expressive features from Sentinel-2 images. Moreover, this emphasizes the importance of the temporal dimension of Sentinel-2 data for crop type classification. We showed that RNNs can successfully leverage this structure by acting as a memory combining multiple observations and foremost by taking into account the temporal evolution of the different observations over a year.

More generally, our results highlight the potential of deep learning models for agricultural parcel classification: all RNN and RNN+CNN models outperform the RF baseline, which achieves an average F-score of 36.9 on the same dataset (not shown here).

Pixel-Set Encoder (PSE)

In this section, we present a spatial encoder architecture designed according to the previous conclusions and inspired by recent advances in the deep learning literature.

Motivation

Sentinel-2 has a spatial resolution of 10m per pixel. Such a level is considered high resolution in the remote sensing literature as other satellite sensors can have kilometer-sized pixels. Yet, in the context of crop type mapping, the resolution of Sentinel-2 is coarser than typical agricultural textural information such as furrows or crop rows. However, CNNs rely heavily on texture to extract spatial features [START_REF] Geirhos | Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness[END_REF] .

As a matter of fact, the results of the previous section showed that convolutional features outperform handcrafted descriptors by only a slight margin. Given this limitation, we propose to view coarse resolution images of agricultural parcels as unordered sets of pixels. Indeed, recent advances in 3D point cloud processing have spurred the development of powerful encoders for data comprised of sets of unordered elements [START_REF] Qi | Pointnet: Deep learning on point sets for 3d classification and segmentation[END_REF]189 .

We show in this section that set-based encoders can successfully extract learned statistics of the distribution of spectral observations across the spatial extent of the parcels. Furthermore, we show that this approach handles the highly variable size of parcels more efficiently than CNNs.

Methods

We denote the observations of a given parcel by a spatio-spectro-temporal tensor capturing the statistics of the whole parcel and which is invariant by permutation of the pixels' indices. We concatenate to this vector precomputed geometric features f: perimeter, pixel count N, cover ratio (N divided by the number of pixels in the bounding box) and the ratio between the perimeter and surface of the parcel.

[x (0) , • • • , x (T) ] T t=1 of size T × C × H × W,
iv) This vector is processed by another perceptron MLP 2 , as shown in Equation 1.3, to yield e (t) the parcel's spatio-spectral embedding at time t.

The PSE architecture is represented in Figure 1.6, and can be summarised by the following equations:

S = sample (S, N) (1.1) ê(t) s = MLP 1 x (t) s , ∀s ∈ S (1.
2)

e (t) = MLP 2 pooling {ê (t) s } s∈S , f . (1.3) 
Among possible pooling operations, we had the best results for the concatenation of the mean and the standard deviation across the sampled pixel dimension S. For parcels smaller than S, repeated pixels should be removed before pooling to obtain unbiased estimates.

Although only a limited amount of information per parcel is used by this encoder, the sampling being different at each training step ensures the learning of robust embeddings exploiting all available information. We provide extensive numerical experiments to assess the efficiency of the PSE in later Section 1.4.

Temporal Attention Encoder (TAE)

At the time of carrying out this work, hybrid neural architectures combining convolutions and recurrent units in a single architecture constituted the state-of-the-art for crop type classification [START_REF] Rußwurm | Convolutional LSTMs for cloud-robust segmentation of remote sensing imagery[END_REF][START_REF] Garnot | Time-space tradeoff in deep learning models for crop classification on satellite multi-spectral image time series[END_REF] .

In the previous section, we argued for shifting away from convolutions for spatial encoding. In this section, we advocate for using self-attention-based methods for temporal encoding.

Motivation

The results we presented in Section 1.1 established the significance of the temporal dimension for crop type classifyication [START_REF] Garnot | Time-space tradeoff in deep learning models for crop classification on satellite multi-spectral image time series[END_REF] . While RNNs have been widely used to analyse temporal sequences, recent work in NLP has introduced a promising new approach based on self-attention mechanisms [START_REF] Vaswani | Attention is all you need[END_REF] . The improved parallelism brought by this approach is particularly valuable for automated crop monitoring, as its typical spatial scale spans entire continents: one year of Sentinel-2 observations amounts to 25TB of data for agricultural areas in the European Union. Therefore, we propose to adapt attention-based approach for the classification of time series.

Methods

RNNs have proven efficient for encoding sequential information [START_REF] Lipton | A critical review of recurrent neural networks for sequence learning[END_REF] . However, since RNNs process the elements of the sequence successively, they prevent parallelisation and incur long training times.

Vaswani et al. [START_REF] Vaswani | Attention is all you need[END_REF] introduce the Transformer architecture, an attention-based network achieving equal or better performance than RNNs on text translation tasks, while being completely parallelizable and thus faster. We propose to adapt their ideas to the the encoding of satellite image time series.

Transformer Network. In the Transformer model, a query-key-value triplet q (t) , k (t) , v (t) is simultaneously computed for each element of the input sequence by three fully connected layers. For a given element of a sequence, the key k (t) conveys information about the nature of its content, while the value v (t) encodes the content itself. The output of a given element is defined as the sum of the values of previous elements weighted by an attention mask. This mask is defined as the compatibility (dot product) of the keys of the previous elements with the query q (t) , re-scaled through a modified softmax layer. In other words, each element indicates which kind of information it needs through its query, and what sort of information it contains through its key.

Since the computation of the triplets q (t) , k (t) , v (t) and their multiplications can be performed in parallel, the Transformer takes full advantage of modern GPU architecture and boasts a significant speed increase compared to recurrent architectures. This procedure can be computed several times in parallel with different sets of independent parameters, or heads. This approach, called multi-head attention, allows for the specialisation of different sets of query-key compatibility.

Positional Encoding. In their paper on text translation, Vaswani et al. [START_REF] Vaswani | Attention is all you need[END_REF] add order information to elements of the input sequence by adding a positional encoding tensor to each element. Equation 1.4

describes this positional encoding of the observation t, with d e the dimension of the input, and i the coordinates of the positional encoding. Since our considered sequences are typically shorter than the ones considered in NLP, we chose τ = 1 000-instead of 10 000. Additionally, instead of encoding the position in the sequence, we encode the date observation day(t), expressed in number of days since the beginning of the agricultural year. This helps to account for inconsistent temporal sampling (see Figure 1.1).

[p (t) ] de i=1 = sin day(t)\τ

2i de + π 2 mod(i, 2) (1.4)
End-to-End Encoding. The original Transformer network takes pretrained word embeddings as inputs, as depicted in Figure 1.7a. In our setting however, the parameters of the network producing the inputs are learnt simultaneously with the attention parameters. Therefore, we propose that each head only computes key-query pairs from the spatial embeddings (1.5) since these embeddings can directly serve as values: v (t) = e (t) + p (t) . This removes needless computations and avoids a potential information bottleneck when computing the values.

Sequence-to-Embedding Attention. While the original Transformer produces an output for each element of a sequence, our goal is to encode the entire time series into a single embedding. Consequently, we only retain the encoder part of the Transformer and define a single master query qh for each head h. Such a query, in combination with the keys of the elements of the sequence, determines which dates contain the most useful information. A first approach would be to select the query of a given date, such as the last one. However, the selected element of the sequence may not contain enough information to produce a meaningful query. Instead, we propose to construct the master query as a temporal average of the queries of all dates and processed by a single fully-connected layer (1.6). As shown in Equation 1.7, this query is then multiplied with the keys of all elements of the sequence to determine a single attention mask a (h) ∈ [0, 1] T , in turn weighting the input sequence of embeddings (1.8).

Multi-Head Self-Attention. We concatenate the output o h of each head h for the n h different heads and process the resulting tensor with MLP 3 , to obtain the final output ô of the Temporal Attention Encoder (TAE), as shown in Equation 1.9. Note that unlike the Transformer network, we directly use ô as the spatio-temporal embedding instead of using residual connections. This is a direct consequence of the TAE returning a single embedding, as opposed to the Transformer, which returns a sequence of embeddings (see Figure 1.7).

Competing Methods

We compare our approach to recent state-of-the-art deep learning algorithms operating on similar datasets, which we have reimplemented. All share the same decoding layer configuration MLP 4 . As in Section 1.1, we ensure a fair comparison by implementing models with around 150k parameters.

CNN+GRU We first use the CNN+GRU architecture introduced in Section 1.1.

CNN+TempCNN Pelletier et al. [START_REF] Pelletier | Temporal convolutional neural network for the classification of satellite image time series[END_REF] propose to use one-dimensional temporal convolution to address the sequential nature of the observations. While their approach is applied to a per-pixel classification task and therefore not comparable, we have implemented a variation of CNN+GRU in which the GRUs are replaced with one-dimensional convolutions as the closest translation of their ideas. Temporal convolutions have significantly lower processing times than RNNs. Yet, the ability to account for long-term dependencies requires deeper architectures. Furthermore, the fixed architecture of temporal CNN prevents the same network from being used on sequences of different lengths or with different acquisition dates. Random Forest Lastly, we use a Random Forest classifier with 100 trees as a non-deep learning baseline. The classifier operates on handcrafted features comprised of the mean and standard deviation of each band within the parcel, and concatenated along the temporal axis, as described by [START_REF] Bailly | Crop-rotation structured classification using multi-source sentinel images and lpis for crop type mapping[END_REF] .

Transformer

Implementation details

All architectures presented here are implemented in PyTorch and released on GitHub † . We trained all models on a machine with a single GPU (Nvidia 1080Ti) and an 8-core Intel i7 CPU for data loading from an SSD hard drive. We chose the hyperparameters of each architecture presented in the numerical experiments such that they all have approximately 150k trainable parameters. The exact configuration of our network and the competing methods are displayed in Table 1.5 and Table 1.6

respectively. We use the Adam optimizer [START_REF] Kingma | ADAM: A method for stochastic optimization[END_REF] with its default values (lr = 10 -3 , β = (0.9, 0.999))

and a batch size of 128 parcels. We train the models with focal loss [START_REF] Lin | Focal loss for dense object detection[END_REF] (γ = 1) and implement a 5fold cross-validation scheme: for each fold, the dataset is split into train, validation, and test set with a 3:1:1 ratio. The networks are trained for 100 epochs, which is sufficient for all models to achieve convergence. We use the validation step to select the best-performing epoch and evaluate it on the test set. For augmentation purpose, we add a random Gaussian noise to x (t) with standard deviation 10 -2 and clipped to 5.10 -2 on the values of the pixels, normalised channel-wise and for each date individually.

Dataset

We use the same dataset as in Section 1.1.2.1, with a slightly more fine-grained 20-class nomenclature (see Figure 1.10). In order to evaluate both ours and convolution-based methods, we organize the parcels into two different formats: patches and pixel sets. 

• d k = 32, d v = 64, d model = 128, d inner = 256 • n h = 4, n layer = 1 ConvLSTM 178 356
• Hidden feature maps: 64

RF

• Number of trees: 100

In the patch format, we resize each parcel into a tensor of size T × C × 32 × 32 by interpolating each spectral channel and temporal acquisition independently into patches of fixed size 32 × 32. We use nearest neighbor interpolation, and both the horizontal and vertical axes are rescaled so that the overall shape of the parcel may be altered. We use zero-padding outside the extent of the parcel (see Figure 1.1). This same size of 32 pixels was used in [START_REF] Garnot | Time-space tradeoff in deep learning models for crop classification on satellite multi-spectral image time series[END_REF] , while a larger 48 × 48 patch size was used in [START_REF] Rußwurm | Convolutional LSTMs for cloud-robust segmentation of remote sensing imagery[END_REF] , albeit for a pixel-wise classification task.

For the pixel-set format, the pixels of each parcel are stored in arbitrary order into a tensor of size T × C × N, with N the total number of pixels in a given parcel. Note that this format will neither loose nor create information, regardless of parcel size. Hence, this setup saves up to 70% disk space compared to the patch format (28.6GB vs. 98.1GB). Note that the geometric features f must be computed and saved before preparing the dataset, as all spatial structure is henceforth lost.

The classification labels are defined with respect to a 20 class nomenclature designed by the subsidy allocation authority of France. We show the class break-down on the AOI in Figure 1.10. The dataset is highly imbalanced as is often the case in such real word applications, and this motivates the use of the focal loss to train our models.

Results

Comparison with state-of-the-art

We present the results of our experiments in Table 1.10. Our proposed architecture outperforms the other deep learning models in Overall Accuracy (OA) by 0.4pt, and mean per-class Intersect over Union (mIoU) by 3 to 9pts. It also provides a four-fold speed-up over convolution-based methods, and a decrease in disk usage of over 70% for training, and close to 90% when considering the inference task alone, i.e., when only S pixels per parcel are kept. This speed-up is due to the improved loading time as the pixel set dataset is smaller, but also to the inference and backpropagation time, as detailed in Table 1.9. While the temporal convolutions of TempCNN are faster to train, they yield worse performance and suffer from the limitations discussed earlier. The Transformer method, which processes precomputed parcel means, is also faster to train, but only achieves a 46.3 mIoU score.

Beyond its poor precision, the RF classifier has a significant speed and memory advantage. This can explain its persisting popularity among practitioners. However, our approach bridges in part this performance gap and provides much higher classification rates, making it a compelling strategy for large-scale object-based crop type mapping.

Ablation Studies

In order to independently assess the contribution of the spatial and temporal components of our proposed architecture, we present in Table 1.8 the results obtained when alternatively replacing the PSE by a CNN (CNN+TAE) or the TAE by a GRU (PSE+GRU).

Table 1.8: Ablation study. We assess the impact of our different design choices.

OA mIoU PSE+TAE (ours) 94.2 ± 0.1 50.9 ± 0.8 q = q (T) 94.2 ± 0.1 50.7 ± 0.5 S = 16 94.3 ± 0.2 50.5 ± 0.8 q = max t q (t)

94. Contribution of the PSE. As seen in Table 1.8, the PSE accounts for an increase of 1.7pts of mIoU compared to the CNN-based model (CNN+TAE). This supports both the hypothesis that CNNs are only partly relevant for parcel classification on Sentinel-2 images, and that considering the image as an unordered set of pixels is a valid alternative. Not only does this approach yield better classification performance, but it also circumvents the problem of image batching, which leads to faster data loading (see Table 1.9). Additionally, we train a TAE on precomputed means and standard deviations of the spectral channels over the parcels (MS+TAE), which achieves a 48.9 mIoU score. We can thus conclude that the PSE learns statistical descriptors of the acquisitions' spectra which are more meaningful than simple means and variances or convolutional features.

Design of the PSE. We show in Table 1.8, the performance of our architecture without geometric features f. The resulting 0.9pt decrease in mIoU confirms that geometric information plays a role in the classification process. We note that, even without such features, our proposed approach out-Contribution of the TAE. Replacing the temporal attention encoder with a GRU (PSE+GRU) decreases the performance by 3.6pts mIoU (Table 1.8). The TAE not only produces a better classification but also trains faster thanks to parallelisation.

Unlike the comparison between Transformer and RNNs architectures in [START_REF] Rußwurm | Self-attention for raw optical satellite time series classification[END_REF] , our modified selfattention mechanism extracts more expressive features than the RNN-based approach.

We also evaluate the influence of the positional encoding p of the Transformer by adding p to the input tensors of the GRU unit (PSE+GRU+p). This reduces the gap with our method to 2.2pts mIoU. This shows that the improvement brought by the TAE is due to both its structure and the use of positional encoding. Design of the TAE. To evaluate the benefits of our different contributions over the Transformer, we adapted the architecture presented in [START_REF] Rußwurm | Self-attention for raw optical satellite time series classification[END_REF] to use a PSE network instead of spectral means for embedding parcels (PSE+Transformer), for a performance 4.3pts below our TAE. By replacing the proposed temporal max-pooling by our our master query forming scheme (PSE+Transformer+q), we observed an increase of 2.9pts mIoU. The remaining 1.4pts mIoU between this implementation and ours can thus be attributed to our direct use of inputs to compute the TAE's output instead of a smaller intermediary value tensor.

Finally, we compare our mean pooling strategy with max-pooling (q = max t q (t) ) and computing the master query from the last element of the sequence (q = q (T) ). While the mean query approach yields the best performance, the last element of the sequence in our dataset produces a meaningful query as well. However, this may not be the case for other regions or acquisition years.

On Figure 1.12, we show a qualitative illustration of head specialization in the TAE. We plot the average attention masks of each attention head for two classes of cereal parcels. We note that each head focuses on a different period of the agricultural year and can be adaptive to the time series being processed: head 4 focuses on the end of spring for Spring Cereal samples, and on the end of summer for Summer Cereal samples.

We also provide a breakdown of the processing times during training for the different architectures in Table 1.9. The average time per batch is decomposed into data loading time, forward pass, and gradient back-propagation. Note that the Transformer model operates on precomputed spatial descriptors and is hence significantly faster than the other models.

Concluding remarks

In this section, we considered the problem of object-based classification from time series of satellite images. We proposed to view such images as unordered sets of pixels to reflect the typical coarseness of their spatial resolution, and introduced a fitting encoder. To exploit the temporal dimension of such series, we adapted the Transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF] for embedding time sequences. We introduced a master query forming strategy and exploited the fact that our network learns end-to-end to simplify some operations.

Evaluated on our benchmark of agricultural parcels, our method produces a better classification than all other reimplemented methods. Furthermore, our network is several times faster and more parsimonious in memory than other state-of-the-art methods such as convolutional-recurrent hybrid networks.

Our results suggest that set-based encoders are a promising and overlooked paradigm for working with the coarser resolutions of remote sensing applications. Likewise, attention-based models are an interesting venue to explore for analysing the temporal profiles of satellite time series. However, they are also typically very large, and their analysis is resource-intensive. For example, the Sentinel-2 satellites gather over 25 TB of data every year in the EU. This motivates the design of parsimonious methods. In this section, we build on the previous adaptation of the Transformer to crop type classification. We aim for a lighter model, both in terms of computation and trainable parameters, without sacrificing on classification performance.

Methods

Throughout this section, we consider a generic input time series of length T comprised of d e -dimensional feature vectors e = [e [START_REF]PAC FAQ[END_REF] , • • • , e (T) ] ∈ R de×T . For example, such vectors can be PSE encodings of an input SITS (see Section 1.2).

We build on our efforts to adapt multi-headed self-attention (see Section 1.3) to the task of sequence embedding for crop type mapping. Our focus is on efficiency, both in terms of parameter count and computational load. We thus propose the following modifications to our TAE encoder.

Channel Grouping. we propose to split the d e channels of the input elements into n h groups of size d e ′ = d e /n h with n h being the number of heads ‡ , in the manner of Wu et al. [START_REF] Wu | Group normalization[END_REF] . We denote by

e (t)
h the groups of input channels for the h-th group of the t-th element of the input sequence (1.11).

As with the TAE, we encode the number of days elapsed since the beginning of the growing season into an d e ′ -dimensional positional vector p of characteristic scale τ = 1000 (1.12). Since this information is required by each head, p is duplicated and added to each channel group. Each head ‡ d e and n h are typically powers of 2 and d e > n h , ensuring that d e ′ remains integer.

heads.

Attention Masks. As a result, only the keys are obtained with a learned linear layer (Equation 1.13), while values are bypassed (v (t) = e (t) ), and the queries are model parameters. The attention masks a h ∈ [0, 1] T of each head h are defined as the scaled softmax of the dot-product between the keys and the master query (Equation 1.14). The outputs o h of each head are defined as the sum in the temporal dimension of the corresponding inputs weighted by the attention mask a h (Equation 1.15). Finally, the heads' outputs are concatenated into a vector of size d e and processed by a multi-layer perceptron MLP to the desired size (Equation 1.16).

In Figure 1.13, we represent a schematic representation of our network. The different steps of the L-TAE can also be condensed by the following operations, for

h = 1 • • • n h and t = 1 • • • T: e (t) h = e (t) [(h -1)d e ′ + i] d e ′ i=1
(1.11)

p (t) = sin day(t)/τ i d e ′ d e ′ i=1 (1.12) k (t) h = FC h (e (t) h + p (t) )
(1.13) We combine our L-TAE with a PSE into an end-to-end trainable architecture. We use the same dataset and competing methods as in Section 1.4. In order to perform a fair comparison, we chose configurations corresponding to around 150k parameters for all methods. We report the results in Table 1.10 alongside the theoretical number of floating point operations (in FLOPs) required for the sequence embedding modules to process a single sequence at the inference time.

a h = softmax 1 √ d k q h • k (t) h T t=1 (1.14) o h = T t=1 a h [t] e (t) h + p (t) (1.15) o = MLP([o 1 , • • • , o n h ]) . ( 1 
Moreover, we complement this first experiment by comparing the performance of different configurations of sequence embedding algorithms, and plot the performance with respect to the number of parameters. To remove the effects of the different spatial encoders, we use the same spatial encoder (a PSE) in all models for this experiment. We only adapt the last linear layer of the spatial encoder to produce embeddings of the desired dimensions.

Implementation details

All training and implementation details are the same as in Section 1.4. The hyperparameters of all models presented in this section are given in Table 1.11.

1.6.3 Results

Comparison with state-of-the-art

In Table 1.10, we report the performances of competing methods and L-TAE, all obtained with 5-fold cross-validation. Our L-TAE architecture outperforms other methods on this dataset both in overall accuracy and mIoU. While the OA is essentially unchanged compared to the TAE, the increase of We would like to emphasize that FLOP counts do not necessarily reflect the computational speed of the model in practice. In our non-distributed implementation, the total inference times are dominated by loading times and the spatial embedding module. However, this metric serves to illustrate the simplicity and efficiency of our network.

In Figure 1.14, we represent the average attention masks of a 16-head L-TAE for two different classes. We observe that the masks of the different heads focus on narrow and distinct time-extents, i.e., display a high degree of specialisation. We also note that the masks are adaptive to the parcels' crop types. This suggests that the attention heads are able to cater the learned features to the plant types considered. We argue that our channel grouping strategy, in which each head processes distinct timestamped features, allows for this specialisation and leads to an efficient use of trainable parameters. 

Parameter efficiency

Furthermore, our network maintains a high precision even with a drastic decrease in the parameter count, as illustrated in Figure 1.15. We evaluate the four best performing sequence embedding modules (L-TAE, TAE, GRU, TempCNN) in the previous experiment with different configurations, ranging from 9k to 3M parameters. These algorithms all operate with the same decoder and spatial module: a PSE and decoder layer, totaling 31k parameters. The smallest L-TAE configuration, with only 9k parameters, achieves a better mIoU score than a TAE with almost 110k parameters, a Tem-pCNN with over 700k parameters, and a GRU with 3M parameters. See Table 1.11 for the detailed configurations corresponding to each point. 

Ablation Study and Robustness Assessment

In Table 1.12, we report the performance of our proposed L-TAE architecture with different configurations of the following hyper-parameters: the number of heads n h , dimension of keys d k , and number of channels d e in the input sequence. We note that our model retains a consistent performance throughout all configurations.

Number of heads.

The number of heads seems to only have a limited effect on the performance. We hypothesize that while a higher number of heads n h is beneficial, a smaller group size d e ′ is, however, detrimental.

Key Dimension.

Our experiments show that smaller key dimensions than the typical values used in NLP or for the TAE (d k = 32) perform better on our problem. Even 2-dimensional keys allow for the L-TAE to achieve performances similar to the TAE.

Input Dimension. The variation in performance observed with larger input embeddings is expected: it corresponds to a richer representation. However, the returns are decreasing on the considered dataset with respect to the number of incurred parameters.

Query-as-Parameter. In order to evaluate the impact of our different design choices, we train a variation of our network with the same master query scheme than the TAE. The larger resulting linear layer increases the size of the model for a total of 170k parameters, resulting in a mIoU of only 49.7.

This indicates that the query-as-parameter scheme is not only beneficial in terms of compactness but also performance. 

O(n h T d k ) O(d e X) TAE O(T n h d e d k ) O(n h T d k ) O(n h d e X) Transformer O(T n h d e d k ) O(n h T 2 d k ) O(n h d e X) GRU O (T d r (d e + d r )) O(d r X)

Computational Complexity

In Table 1.13, we report the asymptotic complexity of different sequence embedding algorithms. For the L-TAE, the channel grouping strategy removes the influence of n h in the computation of keys and outputs compared to a TAE or a Transformer. Note as well, that the fact that a single query is computed in TAE and L-TAE removes the unnecessary quadratic complexity in sequence length T that hinders mask computation in the Transformer. The complexity of the L-TAE is also lower than the GRU's as M, the size of the hidden state, is typically larger than d k (130 vs 8 in the experiments presented in Table 1.10).

Concluding remarks

We presented a new lightweight network for embedding sequences of observations such as satellite time series. Thanks to a channel grouping strategy and the definition of the master query as a trainable parameter, our proposed approach is more compact and computationally efficient than other attention-based architectures. Evaluated on our open-access satellite dataset S2-Agri, the L-TAE performs better than state-of-the-art approaches, with significantly fewer parameters and a reduced computational load, opening the way for continent-scale automated analysis of Earth observation.

Conclusion

In this chapter, we considered the problem of crop type mapping as a parcel-based classification task.

We started our analysis with a study on the spatial and temporal structures of satellite image time series for crop type mapping. This study showed the significance of the temporal dimension of Sentinel-2 data for better classification performance. We also showed that convolutional nets only performed marginally better than handcrafted spatial features. We attributed this to the limited spatial resolution of Sentinel-2 compared to the typical scale of texture on agricultural parcels. This motivated our design of the PSE which, inspired by the PointNet architecture, considers images as unordered sets of pixels. We also adapted the Transformer, and taking into account the key differences between the typical NLP task and our crop type classification problem, we introduced the TAE and its more efficient variant the L-TAE. Together, these methods set a new state-of-the-art for parcel-based crop type mapping from SITS. These results show that advances in active fields of deep learning such as computer vision and natural language processing are also relevant for remote sensing applications. Moreover, we showed that adapting these methods, accounting for the specificities of the problem and the data at hand, is a key step to push the state-of-the-art forward. As a matter of fact, we show on Table 1.14 the results obtained by an independent research team [START_REF] Kondmann | DENETHOR: The dynamicearthnet dataset for harmonized, inter-operable, analysis-ready, daily crop monitoring from space[END_REF] for parcel-based crop type classification on DENETHOR, a new large-scale dataset they curate. Their experiments confirm the superior performance of our PSE+L-TAE compared to architectures combining "off-the-shelf" solutions for spatial (e.g., ResNet18) and temporal encoding (e.g., Transformer). Form and substance are one and the same. Form is the life expression and substance the living painting.

Asger Jorn
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Pixel-based segmentation methods

In this chapter, we cast crop type mapping as a segmentation problem. Indeed, in many countries the precise land parcel identification system is not available and parcel-based methods are thus not applicable. Our aim now consists in retrieving from the Satellite Image Time Series (SITS) all the information contained in the land parcel identification system: the shape of each individual parcel as well as its content.

In segmentation, predictions are made at pixel level, and thus require different encoders than 67 those seen previously for parcel-based classification. In a first section we present our U-Net with Temporal Attention Encoder (U-TAE) architecture for spatio-temporal encoding of SITS for segmentation problems. U-TAE allows to encode a sequence of images into a feature map with the same spatial resolution. We evaluate this architecture for semantic segmentation and set a new state-of-the-art on this task. Second, we combine this encoder with a single-stage instance segmentation module that we adapted to perform the desired task of retrieving non-overlapping instance masks with associated semantic predictions. This allows us to set the first state-of-the-art for the task of panoptic segmentation of agricultural parcels on SITS and tease out several key challenges of this task.

U-Net with Temporal Attention Encoder (U-TAE)

In this section, we introduce U-TAE, a novel spatio-temporal encoder combining multi-scale spatial convolutions [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] and a temporal self-attention mechanism [START_REF] Garnot | Lightweight temporal self-attention for classifying satellite images time series[END_REF] which learns to focus on the most salient acquisitions across the sequence. While convolutional-recurrent methods are limited to extracting temporal features at the highest [START_REF] Rußwurm | Convolutional LSTMs for cloud-robust segmentation of remote sensing imagery[END_REF] or lowest [START_REF] Rustowicz | Semantic segmentation of crop type in africa: A novel dataset and analysis of deep learning methods[END_REF] spatial resolutions, our proposed method can use the predicted temporal masks to extract specialised and adaptive spatio-temporal features at different resolutions simultaneously. Additionally, we introduce PASTIS, a large-scale dataset of SITS with semantic and panoptic annotations.

Motivation

Pixel-precise segmentation of satellite image time series entails producing a feature map of the same resolution as the input images. In this feature map, each pixel contains the embedding of the corresponding spatial location in the area of interest. Such a map can be obtained by encoding the sequence of observations for each pixel separately and assembling the resulting embeddings along the two spatial dimensions. However, in this scheme, the embedding of each pixel ignores the spatial structure of the acquisitions. This motivates the design of segmentation methods that encode all pixels of an area of interest together and thus leverage the spatial structure. In practice, in the computer vision literature, it has been observed [START_REF] Lin | Multi-scale context intertwining for semantic segmentation[END_REF] that allowing a segmentation model to access the spatial context at different scales or resolutions is key for performance.

In the context of Earth Observation, models are applied at a large scale to considerable volumes of data. Computational efficiency is thus a key aspect to consider when designing such algorithms. At Except for the first level, each block starts with a strided convolution, dividing the resolution of the feature maps by a factor 2.

For each time stamp t simultaneously, the encoder E l at level l takes as input the feature map of the previous level e l-1 t , and outputs a feature map e l t of size C l × H l × W l with H l = H/2 l-1 and

W l = W/2 l-1 .
The resulting feature maps are then temporally stacked into a feature map sequence

e l of size T × C l × H l × W l : e l = [E l (e l-1 t )] T t=0 for l ∈ [1, L] , (2.1) 
with e 0 = X and [ • ] the concatenation operator along the temporal dimension. When constituting batches, we flatten the temporal and batch dimensions. Since each sequence comprises images acquired at different times, the batches' samples are not identically distributed. To address this issue, we use Group Normalisation 181 with 4 groups instead of Batch Normalisation 67 in the encoder.

Temporal Encoding. To obtain a single representation per sequence, we need to collapse the temporal dimension of each feature map sequence e l before using them as skip connections. Convolutionalrecurrent U-Net networks 153,[START_REF] Rustowicz | Semantic segmentation of crop type in africa: A novel dataset and analysis of deep learning methods[END_REF][START_REF] Papadomanolaki | A deep multi-task learning framework coupling semantic segmentation and fully convolutional LSTM networks for urban change detection[END_REF] only process the temporal dimension of the lowest resolution feature map with a temporal encoder. The rest of the skip connections are collapsed with a simple temporal average. This prevents the extraction of spatially adaptive and parcel-specific temporal patterns at higher resolutions. Conversely, processing the highest resolution would result in small spatial receptive fields for the temporal encoder, and an increased memory requirement. Instead, we propose an attention-based scheme which only processes the temporal dimension at the lowest feature map resolution, but is able to utilize the predicted temporal attention masks at all resolutions simultaneously.

Based on its performance and computational efficiency, we choose the Lightweight-Temporal Attention Encoder (L-TAE) introduced in Section 1.5 to handle the temporal dimension. The L-TAE is a simplified multi-head self-attention network [START_REF] Vaswani | Attention is all you need[END_REF] in which the attention masks are directly applied to the input sequence of vectors instead of predicted values. Additionally, the L-TAE implements a channel grouping strategy similar to Group Normalisation [START_REF] Wu | Group normalization[END_REF] .

We apply a shared L-TAE with G heads independently at each pixel of e L , the feature map sequence at the lowest level resolution L. This generates G temporal attention masks for each pixel, which can be arranged into G tensors a L,g with values in [0, 1] and of shape T × H L × W L :

a L,1 , • • • , a L,G = L-TAE(e L ) , applied pixelwise. ( 2.2) 
In order to use these attention masks at all scale levels l of the encoder, we compute spatially-interpolated masks a l,g of shape T × H l × W l for all l in [1, L -1] and g in [1, G] with bilinear interpolation:

a l,g = resize a L,g to H l × W l . (2.3) 
The interpolated masks a l,g at level l of the encoder are then used as if they were generated by a temporal attention module operating at this resolution. We apply the L-TAE channel grouping strategy at all resolution levels: the channels of each feature map sequence e l are split into G contiguous groups

e l,1 , • • • , e l,G of identical shape T×C l /G × W l × H l .
For each group g, the feature map sequence e l,g is averaged on the spatial dimension using a l,g as weights. The resulting maps are concatenated along the channel dimension and processed by a shared 1 × 1 convolution layer Conv l 1×1 of width C l . We denote by f l the resulting map of size C l × W l × H l by : The decoder at level l produces a feature map d l of size D l × H l × W l . In a U-Net fashion, the encoder's map at level l is concatenated with the output of the decoder block at level l -1:

f l = Conv l 1×1   T t=1 a l,g t ⊙ e l,g t G g=1   , (2.4 
d l = D l ([D up l (d l+1 ), f l ]) for l ∈ [1, L -1] , (2.5) 
with d L = f L and [ • ] is the channelwise concatenation.

2.2 Numerical experiments: semantic segmentation

Implementation details

Our U-TAE has L = 4 resolution levels and a L-TAE with G = 16 heads and a key-query space of dimension d k = 4. We use Group Normalisation with 16 groups at the input and output of the L-TAE, meaning that that the inputs of each head are layer-normalised. To produce semantic predictions, the feature map d 1 with highest resolution is set to have K channels, with K the number of classes. We can then interpret d 1 as pixel-wise predictions to be supervised with the cross-entropy 

Competing methods

We reimplemented six of the top-performing SITS encoders proposed in the literature. We present them succinctly here and refer the reader to the cited references for more details. We also assess the spatial scale at which the spatial and temporal encoding modules of each approach operates, as summarised in Table 2.2. Lastly, we provide the hyper-parametrisation we used for each method, to obtain models of similar size.

• ConvLSTM [START_REF] Rußwurm | Convolutional LSTMs for cloud-robust segmentation of remote sensing imagery[END_REF][START_REF] Shi | Convolutional LSTM network: A machine learning approach for precipitation nowcasting[END_REF] and ConvGRU [START_REF] Ballas | Delving deeper into convolutional networks for learning video representations[END_REF] . These approaches are recurrent neural networks in which all linear layers are replaced by spatial convolutions. These convolutions only operate at full resolution, hence both spatial and temporal encoding are performed at a single spatial scale.

In our experiments, we set hidden sizes of 160 and 188 for the ConvLSTM and ConvGRU models respectively.

• U-ConvLSTM [START_REF] Rustowicz | Semantic segmentation of crop type in africa: A novel dataset and analysis of deep learning methods[END_REF] and U-BiConvLSTM [START_REF] Martinez | Fully convolutional recurrent networks for multidate crop recognition from multitemporal image sequences[END_REF] • FPN-ConvLSTM [START_REF] Martinez | Fully convolutional recurrent networks for multidate crop recognition from multitemporal image sequences[END_REF] . This model combines a Feature Pyramid Network (FPN) [START_REF] Lin | Feature pyramid networks for object detection[END_REF] to extract spatial features and a bidirectional ConvLSTM for the temporal dimension. For this architecture, the input sequence of images is first mapped to feature maps of 64 channels with two consecutive 3 × 3 convolution layers, followed by Group Normalisation and ReLu. A 5-level feature pyramid is then extracted for each date of the sequence by applying to the feature maps to reduce the number of channels of the feature pyramid by a factor 2. Producing a feature pyramid before passing it to a ConvLSTM network, ensures that the ConvLSTM extracts spatio-temporal features taking into account multiple spatial scales. Yet, this scheme is computationally costly as the depth of the feature maps extracted by the FPN increases with the number of spatial resolutions. This is all the more problematic as these feature pyramids are then processed sequentially by a recurrent net. In practice, the experiments of the next section show that this architecture is the slowest of all methods we evaluate.

• 3D-Unet [START_REF] Rustowicz | Semantic segmentation of crop type in africa: A novel dataset and analysis of deep learning methods[END_REF] . A U-Net in which the convolutions of the encoding branch are three-dimensional to handle simultaneously the spatial and temporal dimensions. For this network, we use the official PyTorch implementation * of Rustowicz et al. [START_REF] Rustowicz | Semantic segmentation of crop type in africa: A novel dataset and analysis of deep learning methods[END_REF] . This network is composed of five successive 3D-convolution blocks with spatial down-sampling after the second and fourth blocks. Cross-Validation. The 2, 433 selected patches are randomly subdivided into 5 splits, allowing us to perform cross-validation. The official 5-fold cross-validation scheme used for benchmarking is given in Table 2.3. To avoid heterogeneous folds, each fold is constituted of patches taken from all four Sentinel tiles. We also chose folds with comparable class distributions, as measured by their pairwise Kullback-Leiber divergence. We show the resulting class distribution for each fold in Figure 2.5. Finally, we prevent adjacent patches from being in different folds to avoid data contamination. Geo-referencing metadata of the patches and parcels is included in PASTIS, allowing for the constitution of geographically consistent folds to evaluate spatial generalisation. Comparison with the state of the art. In Table 2.4, we detail the performance obtained with 5-fold cross validation of our approach and the six reimplemented baselines. We report the Overall Accuracy (OA) as the ratio between correct and total predictions, and (mIoU) the class-averaged classification IoU. We observe that the convolutional-recurrent methods ConvGRU and ConvLSTM perform worse. Recurrent networks embedded in an U-Net or a FPN share similar performance, with a much longer inference time for FPN. Our approach significantly outperforms all other methods in terms of precision.

In Figure 2.6, we present the confusion matrix of U-TAE. Unsurprisingly, confusions seem to occur between semantically close classes such as different cereal types, or Sunflower and Fruits, Veg-(Skip Mean). This puts our method performance on par with its competing approaches. Adding a 1 × 1 convolutional layer after the temporal average reduces this drop to 4.2pts (Skip Mean + Conv).

Lastly, using interpolated masks but foregoing the channel grouping strategy by averaging the masks group-wise into a single attention mask per level results in a drop of 3.1pts (Mean Attention). This implies that our network is able to use the grouping scheme at different resolutions simultaneously. In conclusion, the main advantage of our proposed attention scheme is that the temporal collapse is controlled at all resolutions, in contrast to recurrent methods. The qualitative results shown in Figure 2.7, suggest that the temporal encoding performed by U-TAE at different spatial resolutions allows it to perform well both on large and small parcels, while other methods typically perform better on one of those two cases.

Using batch normalisation in the encoder leads to a severe degradation of the performance of 27.1pts (BatchNorm). We conclude that the temporal diversity of the acquisitions requires special considerations. This was observed for all U-Net models alike. We also train our model on a single acquisition date (with a classic U-Net and no temporal encoding) for two different cloudless dates in August and May (Single Date). We observe a drop of 24.8 and 42.5pts respectively, highlighting the crucial importance of the temporal dimension of Sentinel-2 for crop classification. We also observed that images with at least partial cloud cover received on average 58% less attention than their cloudfree counterparts. This suggests that our model is able to use the attention module to automatically filter out corrupted data.

Panoptic segmentation: Parcels-as-Points (PaPs)

In this section, we build on the U-TAE architecture and complement it with a module that allows for the prediction of the border of each individual parcel as well as its content. 

Motivation

The task of monitoring both the content and extent of agricultural parcels can be framed as the panoptic segmentation of an image sequence. Panoptic segmentation consists in assigning to each pixel a class and a unique instance label, and has become a standard visual perception task in computer vision [START_REF] Kirillov | Panoptic feature pyramid networks[END_REF]107 . However, panoptic segmentation is a fundamentally different task for SITS versus sequences of natural images or videos. Indeed, understanding videos requires tracking objects through time and space [START_REF] Tokmakov | Learning to segment moving objects[END_REF] . In yearly SITS, the targets are static in a geo-referenced frame, which removes the need for spatial tracking. Additionally, SITS share a common temporal frame of reference, which means that the time of acquisition itself contains information useful for modeling the underlying temporal dynamics. In contrast, the frame number in videos is often arbitrary. Finally, while objects on the Earth surface generally do not occlude one another, as is commonly the case for objects in natural images, varying cloud cover can make the analysis of SITS arduous. For the specific problem addressed in this section, individualizing agricultural parcels requires learning complex and specific temporal, spatial, and spectral patterns not commonly encountered in video processing, such as differences in plant phenological profiles, subpixel border information, and swift human interventions such as harvests or mowing.

The first step of panoptic segmentation is to delineate all individual instances, i.e., instance segmentation. Most remote sensing instanciation approaches operate on a single acquisition. For example, several methods have been proposed to detect individual instances of trees [START_REF] Qin | Individual tree segmentation over large areas using airborne lidar point cloud and very high resolution optical imagery[END_REF][START_REF] Zhao | Tree canopy differentiation using instance-aware semantic segmentation[END_REF] , buildings 175 , or fields [START_REF] Rieke | Deep learning for instance segmentation of agricultural fields[END_REF] . Plethora of algorithms start with a delineation step (border detection) [START_REF] Garcia-Pedrero | A machine learning approach for agricultural parcel delineation through agglomerative segmentation[END_REF][START_REF] Masoud | Delineation of agricultural field boundaries from Sentinel-2 images using a novel super-resolution contour detector based on fully convolutional networks[END_REF][START_REF] Waldner | Deep learning on edge: extracting field boundaries from satellite images with a convolutional neural network[END_REF] , and require postprocessing to obtain individual instances. Other methods use segmentation as a preprocessing step and compute cluster-based features [START_REF] Censi | Spatial-temporal GraphCNN for land cover mapping[END_REF][START_REF] Derksen | Spatially precise contextual features based on superpixel neighborhoods for land cover mapping with high resolution satellite image time series[END_REF] , but do not produce explicit cluster-to-object mappings.

Petitjean et al. [START_REF] Petitjean | Spatio-temporal reasoning for the classification of satellite image time series[END_REF] propose a segmentation-aided classification method operating on image time series.

However, their approach partitions each image separately and does not attempt to retrieve individual objects consistently across the entire sequence. In this section, we propose the first end-to-end framework for directly performing joint semantic and instance segmentation on SITS. Our approach, dubbed Parcels-as-Points (PaPs), is built upon the efficient CenterMask network [START_REF] Wang | Centermask: single shot instance segmentation with point representation[END_REF] , which we modify to fit our problem.

Methods

Our goal is to use the multi-scale feature maps {d l } L l=1 learnt by the U-TAE spatio-temporal encoder to perform panoptic segmentation of a sequence of satellite images over an area of interest. The first stage of panoptic segmentation is to produce instance proposals, which are then combined into a single panoptic instance map. Since an entire sequence of images (often over 50) must be encoded to compute {d l } L l=1 , we favor a simple approach for our panoptic segmentation module. Furthermore, given the relative simplicity of parcels' borders, we avoid complex region proposal networks such as Mask-RCNN. Instead, we adapt the single-stage CenterMask instance segmentation network [START_REF] Wang | Centermask: single shot instance segmentation with point representation[END_REF] , and detail our modifications in the following paragraphs. We name our approach Parcels-as-Points (PaPs) to highlight our inspiration from CenterNet/Mask [START_REF] Zhou | Objects as points[END_REF][START_REF] Wang | Centermask: single shot instance segmentation with point representation[END_REF] . Indeed, the original paper of CenterMask introduces the objects-as-points paradigm, where detection is addressed as centerpoint regression. This contrasts with region proposal approaches [START_REF] Redmon | YOLO9000: better, faster, stronger[END_REF][START_REF] He | Mask R-CNN[END_REF] in which candidate boxes are regressed from anchors in a first stage, and segmentation is performed in a second stage. CenterMask allows to perform detection in a single stage, and we choose to start from this approach to avoid the costly computations of two-stage approaches.

We denote by P the set of ground truth parcels in the image sequence X. Note that the position of these parcels is time-invariant and hence only defined by their spatial extent. Each parcel p is associated with (i) a centerpoint îp , ȷp with integer coordinates, (ii) a bounding box of size ĥp , ŵp , (iii) a binary instance maskŝ p ∈ {0, 1} H×W , (iv) a class kp ∈ [1, K] with K the total number of classes.

Centerpoint Detection. Following CenterMask, we perform parcel detection by predicting centerness heatmaps supervised by the ground truth parcels' bounding boxes. In the original approach [START_REF] Zhou | Objects as points[END_REF] , each class has its own heatmap: detection doubles as classification. This is a sensible choice for natural images, since the tasks of detecting an object's nature, location, and shape are intrinsically related.

In our setting, however, the parcels' shape and border characteristics are mostly independent of the cultivated crop. For this reason, we use a single centerness heatmap and postpone class identification to a subsequent specialised module. See Figure 2.9 for an illustration of our parcel detection method. As in Centermask, we associate each parcel p with a Gaussian kernel of deviations σ ver p and σ hor p taken respectively as 1/20 of the height and width of the parcels' bounding box (Figure 2.9b). Yet, we use heteroschedastic kernels to reflect the potential narrowness of parcels. We then define the target centerness heatmap m ∈ [0, 1] H×W as the maximum value of all parcel kernels at each pixel (i, j) in

H × W : mi,j = max p∈P exp - (i -îp ) 2 2(σ ver p ) 2 + (j -ȷp ) 2 2(σ hor p ) 2
(2.6)

A convolutional layer takes the highest-resolution feature map d 1 as input and predicts a centerness heatmap m ∈ [0, 1] H×W (Figure 2.9d). The predicted heatmap is supervised using a logistic regression loss with a focal factor as defined in (2.7) with β = 4:

L center = -1 |P| i=1•••H j=1•••W        log(m i,j ) if mi,j = 1
(1-mi,j ) β log(1-m i,j ) else.

(2.7)

We define the predicted centerpoints as the local maxima of m, i.e., pixels with larger values than their 8 adjacent neighbors. This set can be efficiently computed with a single max-pooling operation. ) to obtain a first local shape lc , which is then further refined with a residual convolutional network CNN (2.12). We denote the resulting predicted shape by l c :

lc = resize c (s c ) + crop c (z) (2.11) l c = sigmoid( lc + CNN( lc )) , (2.12) 
with resize c and crop c defined by the coordinates (i c , j c ) and predicted bounding box size (⌈h c ⌉, ⌈w c ⌉). 

For inference, we associate a binary mask with a predicted centerpoint c by thresholding l c with the value 0.4 as recommended in CenterMask.

Loss Function. These four losses are combined into a single loss with no weight and optimised end-to-end: Converting to Panoptic Segmentation. Panoptic segmentation consists in associating to each pixel a semantic label and, for non-background pixels (our only stuff class), an instance label [START_REF] Kirillov | Panoptic feature pyramid networks[END_REF] . Our predicted binary instance masks can have overlaps, which we resolve by associating to each predicted parcel a quality measure equal to the predicted centerness m at its associated centerpoint. Masks with higher quality overtake the pixels of overlapping masks with lesser predicted quality. If a mask loses more than 50% of its pixels through this process, it is entirely removed from the predicted instances.

L = L center + 1 |P ′ | p∈P ′ L p class + L p size + L p shape . ( 2 
Predicted parcels with a quality under a given threshold are dropped. This threshold can be tuned on a validation set to maximize the parcel detection F-score. All pixels not associated with a parcel mask are labelled as background. The void class is reserved for out-of-scope parcels, either because their crop type is not in our nomenclature or because their overlap with the selected square patch is too small. We remove these parcels from all semantic or panoptic metrics and losses. Predicted parcels which overlap with an IoU superior to 0.5 with a void parcel are not counted as false positive or true positive, but are simply ignored by the metric, as recommended in Kirillov et al. [START_REF] Kirillov | Panoptic feature pyramid networks[END_REF] .

Results

In Table 2.6, we report the class-averaged Segmentation Quality (SQ), Recognition Quality (RQ), and Panoptic Quality (PQ) [START_REF] Kirillov | Panoptic feature pyramid networks[END_REF] . We observe that while the network is able to correctly detect and classify most parcels, the task remains difficult. In particular, the combination of ambiguous borders and hard-to-classify parcel content makes for a challenging panoptic segmentation problem. We illustrate these difficulties in Figure 2.12, along with qualitative results.

Replacing the temporal encoder by a U-BiConvLSTM as described in Section 2.2 (U-BiConvLSTM+PaPs), we observe a noticeable performance drop of 8.4 RQ, which is consistent with the results of Table 2.4. As expected, our model's performance is not sensitive to changes in the size S of the shape patch (S = 24; 8). Indeed, the shape patches only determine the rough outline of parcels, while the pixel-precise instance masks are derived from the saliency map. Performing shape 96

Conclusion

We presented two segmentation methods for crop mapping without knowledge on parcel boundaries.

First, we designed a novel spatio-temporal encoder called U-TAE. This architecture builds on the successful results of the L-TAE (Section 1.5) and integrates it in a U-Net structure. By reusing the attention masks at different spatial resolutions, we ensure that temporal encoding is performed at different spatial resolutions, while keeping a reasonable computational load. This architecture can be readily used for semantic segmentation. We introduced PASTIS a large-scale dataset covering 1% of the French territory with semantic and instance annotations. We showed that our U-TAE outperforms existing approaches by a large margin evaluated on PASTIS. Our qualitative analysis showed that our method is able to make spatially consistent predictions both on large and small parcels, as opposed to other methods which seem to perform better at small scale (e.g., ConvLSTM) or large scale (e.g., U-ConvLSTM).

Second, we framed crop type mapping as a panoptic segmentation problem. In this setting, the aim is to recover the boundaries of each individual parcel as well as its crop type. Recovering both the extent and content of parcels is crucial for downstream applications such as subsidy allocation. Yet, we found no existing work to do this from satellite image time series. Our analysis of the differences between SITS and videos motivated us to design a dedicated instance segmentation module instead of applying an off-the-shelf solution from the Computer Vision literature on video panoptic segmentation. To this aim, we introduced PaPs, adapted from CenterMask [START_REF] Wang | Centermask: single shot instance segmentation with point representation[END_REF] . Combined with our U-TAE encoder, PaPs set the first state-of-the-art for panoptic segmentation from SITS. We also identified several challenges of this task such as the detection of small parcels, or ambiguities in the way parcels are grouped in the annotations. We hope that these qualitative and quantitative results, as well as our public benchmark dataset will foster further explorations on panoptic segmentation from SITS.

Fusion food as a concept is kind of trying to quite consciously fuse things that are sometimes quite contradictory, sometimes quite far apart, to see if they'd work.

Yottam Ottolenghi
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Leveraging multiple modalities

In this chapter, we explore the opportunity of leveraging multiple modalities to improve crop type mapping performance. Specifically, we focus on the joint use of the optical imagery of Sentinel-2 with the radar acquisitions of Sentinel-1. More specifically, multispectral time series contain highly relevant information for monitoring the evolution of plant phenology [START_REF] Vrieling | Vegetation phenology from Sentinel-2 and field cameras for a dutch barrier island[END_REF][START_REF] Segarra | Remote sensing for precision agriculture: Sentinel-2 improved features and applications[END_REF] . For example, the study of red and infrared reflectances helps monitoring photosynthetic activity [START_REF] Tucker | Red and photographic infrared linear combinations for monitoring vegetation[END_REF] . However, passive optical sensors are highly susceptible to cloud cover and atmospheric distortion [START_REF] Sudmanns | Assessing global sentinel-2 coverage dynamics and data availability for operational Earth Observation (EO) applications using the eo-compass[END_REF] . Conversely, due to the influence of extrinsic factors such as humidity and terrain, it is harder to extract discriminative information from radar images for crop mapping. On the other hand, the high revisit frequency and imperviousness to cloud cover makes them uniquely well-suited for monitoring the rapid-changing biological processes of agricultural parcels [START_REF] Mcnairn | Early season monitoring of corn and soybeans with terrasar-x and radarsat-2[END_REF] .

In the context of crop type mapping, the fusion of optical and radar time series has been extensively explored with traditional machine learning methods 170,[START_REF] Steinhausen | Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions[END_REF][START_REF] He | Multi-temporal Sentinel-1 and-2 data fusion for optical image simulation[END_REF][START_REF] Campos-Taberner | A Copernicus Sentinel-1 and Sentinel-2 classification framework for the 2020+ european common agricultural policy: A case study in València (Spain)[END_REF]117 , and more recently recurrent neural networks [START_REF] Ienco | Combining Sentinel-1 and Sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture[END_REF] . However, despite the significant performance gain offered by methods based on temporal attention [START_REF] Rußwurm | Self-attention for raw optical satellite time series classification[END_REF][START_REF] Garnot | Satellite image time series classification with pixel-set encoders and temporal self-attention[END_REF][START_REF] Kondmann | DENETHOR: The dynamicearthnet dataset for harmonized, inter-operable, analysis-ready, daily crop monitoring from space[END_REF][START_REF] Garnot | Lightweight temporal self-attention for classifying satellite images time series[END_REF] , these approaches are so far restricted to the analysis of optical Satellite Image Time Series (SITS). In this chapter, we propose to explore different strategies for combining SITS from multiple modalities in temporal attention models, with a focus on crop mapping and the Sentinel-1 and 2 satellites. We implement several fusion schemes commonly encountered in the literature and propose a novel strategy. We present simple enhancements such as auxiliary supervision and temporal dropout to improve performance.

In the context of crop type mapping, the fusion of optical and radar time series has been extensively explored with traditional machine learning methods 170,[START_REF] Steinhausen | Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions[END_REF][START_REF] He | Multi-temporal Sentinel-1 and-2 data fusion for optical image simulation[END_REF][START_REF] Campos-Taberner | A Copernicus Sentinel-1 and Sentinel-2 classification framework for the 2020+ european common agricultural policy: A case study in València (Spain)[END_REF]117,[START_REF] Giordano | Improved crop classification with rotation knowledge using sentinel-1 and-2 time series[END_REF] , and more recently recurrent neural networks [START_REF] Ienco | Combining Sentinel-1 and Sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture[END_REF] . However, despite the significant performance gain offered by methods based on temporal attention [START_REF] Rußwurm | Self-attention for raw optical satellite time series classification[END_REF][START_REF] Garnot | Satellite image time series classification with pixel-set encoders and temporal self-attention[END_REF][START_REF] Kondmann | DENETHOR: The dynamicearthnet dataset for harmonized, inter-operable, analysis-ready, daily crop monitoring from space[END_REF][START_REF] Garnot | Lightweight temporal self-attention for classifying satellite images time series[END_REF] , these approaches are mostly restricted to the analysis of optical Satellite Image Time Series (SITS). Recently, Ofori-Ampofo et al. 115 proposed a first exploration of the benefit of fusion strategies for parcel-based crop type classification from Sentinel-1 and Sentinel-2 time series with attention-based methods. In this chapter, we extend their analysis to the broader set of crop mapping tasks introduced in 1 and 2: parcel classification, semantic segmentation, and panoptic segmentation. We also study the performance benefit of standard enhancements such as auxiliary supervision and temporal dropout.

To train and evaluate our models, we augment our PASTIS dataset (Section 2.2.3) with corresponding Sentinel-1 radar acquisitions for each of the 2 433 time series for a total of 339 174 radar images. We demonstrate that the right choice of fusion scheme can lead to improvement across the board for all tasks, as well as an increased robustness to varying cloud cover.

The main contributions of this chapter are as follows:

• We present an exhaustive reformulation of fusion strategies in the context of temporal attentionbased SITS encoders, as well as common model enhancements.

• We present PASTIS-R, the first large-scale, multimodal, open-access SITS dataset with panoptic annotations.

• We evaluate all fusion schemes and their enhancements on parcel classification, and evaluate the best approaches for segmentation and panoptic segmentation, defining a new state-of-theart for all tasks.

• We show that combining optical and radar imagery grants significant improvement in terms of robustness to varying cloud cover across all tasks.

Related work

In the following paragraphs, we review the recent literature on fusion approaches for multitemporal fusion of SITS. In particular, we outline the different fusion strategies that are commonly implemented.

Traditional Approaches for Multi-modal SITS Multiple traditional machine learning approaches such as random forest or support vector machines have been adapted to handle information from optical and radar images. As highlighted by the review of Joshi et al. [START_REF] Joshi | A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring[END_REF] , the joint processing of both modalities can mitigate the sensitivity of optical images to cloud cover. Most methods use an early fusion scheme in which the radar and optical features are stacked before being processed by the model 170,102 .

This approach can be further improved by selecting the most relevant acquisitions [START_REF] Steinhausen | Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions[END_REF] or features [START_REF] Campos-Taberner | A Copernicus Sentinel-1 and Sentinel-2 classification framework for the 2020+ european common agricultural policy: A case study in València (Spain)[END_REF][START_REF] Giordano | Improved crop classification with rotation knowledge using sentinel-1 and-2 time series[END_REF] .

Orynbaikyzy et al. 117 compare this feature concatenation approach with a decision fusion approach in which two separate random forest classifiers predict posterior probabilities over classes, and the most confident prediction is retained as the final classification. Their results show that decision fusion performs slightly worse than early feature concatenation.

Deep learning for Multi-Modal SITS

The first multimodal deep learning models advocated for an early fusion scheme: the channels of all acquisitions from optical and radar time series are concatenated to form a single image with both multimodal and multitemporal pixel features. The re-sulting images are then processed pixelwise 159 or with convolutional networks [START_REF] Kussul | Deep learning classification of land cover and crop types using remote sensing data[END_REF] . In contrast, Ienco et al. [START_REF] Ienco | Combining Sentinel-1 and Sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture[END_REF] propose to encode each radar and an optical time series separately using a combination of dedicated convolutional and recurrent-convolutional networks. In a late-fusion fashion, all resulting embeddings are concatenated channelwise and classified pixelwise by a Multi-Layer Perceptron (MLP).

They observe that, as long as each branch is also supervised separately with auxiliary loss terms, this fusion scheme outperforms early fusion. More recently, Ofori-Ampofo et al. 115 studied four fusion strategies for parcel-based classification with a PSE-TAE architecture [START_REF] Garnot | Satellite image time series classification with pixel-set encoders and temporal self-attention[END_REF] . Early fusion yields the best improvement on their dataset of Sentinel-2 time series and Sentinel-1 observations in descending orbit. We extend their analysis by evaluating the impact of multimodality for different tasks, evaluate the effects of typical enhancements such as auxiliary classifiers, and use both Sentinel-1 orbits in our analysis.

Other Fusion settings In a different setting, Benedetti et al. [START_REF] Benedetti | M3Fusion: A deep learning architecture for multiscale multimodal multitemporal satellite data fusion[END_REF] use a late fusion approach to combine mono-temporal high spatial resolution images with low spatial resolution time series, and Tom et al. [START_REF] Tom | Learning a sensor-invariant embedding of satellite data: A case study for lake ice monitoring[END_REF] exploit three different mono-temporal modalities for lake ice monitoring by training three encoders to map the different acquisitions to a common feature space. Liu et al. [START_REF] Liu | A deep convolutional coupling network for change detection based on heterogeneous optical and radar images[END_REF] explore multimodal change detection on mono-temporal pairs. They propose to train two encoders in an unsupervised fashion to map simultaneously-acquired images of different modalities to a common feature space.

More broadly, the synergy between radar and optical SITS has motivated other exciting applications such as the regression of optical signals from radar images [START_REF] Garioud | On the joint exploitation of optical and SAR satellite imagery for grassland monitoring[END_REF]101,[START_REF] He | Multi-temporal Sentinel-1 and-2 data fusion for optical image simulation[END_REF] .

Radar processing Data analysis from Synthetic-Aperture Radar (SAR) relies on either extracting backscattering coefficients, interferometric, or polarimetric features from a measured radar signal [START_REF] Richards | Remote sensing with imaging radar[END_REF] . Backscattering coefficients are most commonly used for crop type mapping applications [START_REF] Orynbaikyzy | Crop type classification using a combination of optical and radar remote sensing data: a review[END_REF] .

These approaches derive information on the observed surface's geometric properties and dielectric constant from the amplitude of the complex SAR signal, and discard the phase information. In contrast, interferometric SAR measure phase shift to detect potentially small deformations between two acquisitions. Interferometric features are traditionally used in geodesy [START_REF] Simons | Interferometric synthetic aperture radar geodesy[END_REF] and surface [START_REF] Monserrat | A review of ground-based sar interferometry for deformation measurement[END_REF][START_REF] Tarchi | Landslide monitoring by using ground-based sar interferometry: an example of application to the tessina landslide in italy[END_REF] or structural [START_REF] Tomás | Subsidence damage assessment of a gothic church using differential interferometry and field data[END_REF][START_REF] Tarchi | Monitoring of structural changes by radar interferometry[END_REF]161 monitoring, but also proved discriminative for crop type mapping. Indeed, coeherence estimation in interferometry can help detecting mowing, harvesting, and seeding events 156,103,[START_REF] Shang | Detection of crop seeding and harvest through analysis of timeseries sentinel-1 interferometric sar data[END_REF] , as well as providing information on crop height and density 149 . Lastly, polarimetric SAR data analysis relies on target decomposition of polarimetric information [START_REF] Cloude | A review of target decomposition theorems in radar polarimetry[END_REF]184 to provide additional terrain information, and can be used for canopy structure estimation [START_REF] Srikanth | Comparison of various polarimetric decomposition techniques for crop classification[END_REF] , topography 139 , or land cover estimation 168,[START_REF] Kourgli | Land cover identification using polarimetric SAR images[END_REF] . However, such approaches require full polaristion radar images, i.e., acquired with a sensor emitting radar waves along both polarisation directions. In this chapter, we focus on crop type mapping from data of the open acces Sentinel-1 sensor which does not allow such full polarimetric analyses. Furthermore, to limit the complexity of our experiments and avoid downloading very large Single Look Complex datasets, we focus on SAR backscattering coefficients and leave the extension to interferometric features to further work.

Methods

We consider a set of M image time series {X m } M m=1 corresponding to M distinct modalities for a single geo-referenced patch containing one or several agricultural parcels. For simplicity's sake, we assume that all modalities are resampled to the same spatial resolution. Each time sequence X m can be expressed as a tensor of size T m ×C m ×H×W with T m the number of available temporal acquisitions for modality m, C m the number of channels for each pixel for the modality m, and H × W the spatial extent of the patch.

interpolate all modalities to a common temporal sampling. We denote by T † the number of time steps in the chosen temporal sampling and by X † the resulting aggregated tensor of size

T † × C † × H × W with C † = m C m as defined in Equation 3.1.
This interpolation step can be costly in terms of computation and memory. Furthermore, the relevance of temporal interpolation for a fast-changing process such as plant growth and harvesting is questionable. This is only made worse by clouds obstructing the optical modalities. However, an advantage of this approach is the simplicity of encoding X † : a single spatio-temporal encoder E spatio-temporal can be used to learn a truly cross-modal representation, and a unique decoder D produces the final prediction:

X † =merge (C) interpolate(X m ) to T † M m=1 (3.1)
y early =D • E spatio-temporal (X † ) . (3.2) 
Late Fusion This fusion scheme starts by encoding each modality m separately with dedicated spatio-temporal encoders E m spatio-temporal into embeddings of size F m . These vectors are then concatenated for all modalities along the channel dimension into a vector of size m F m , which is ultimately mapped to a prediction y late by a unique decoder D:

y late = D • merge (C) E m spatio-temporal (X m ) M m=1 , (3.3) 
with merge (C) the channelwise concatenation operator. While each latent feature is derived from a single modality, this method allows the decoder to make decisions taking all modalities into account simultaneously.

decoder D:

y mid = D • E temporal • merge (T) E m spatial (X m ) M m=0 , (3.5) 
with merge (T) the operator concatenating a set of tensors along the temporal dimension.

Auxiliary Supervision

We denote by criterion(• , •) the function used to compare the prediction y with the target signal ŷ. This is typically the cross-entropy for parcel or pixel classification, and can be more complex for panoptic or instance segmentation (Section 2.3). The resulting function L obj is called the objective loss and supervizes the prediction y of the network to realize the sought task:

L obj = criterion(y, ŷ) (3.6) 
A common problem in deep feature fusion is encountered when most (but not all) of the discriminative information is concentrated among a reduced number of modalities. In this case, the other modalities yield predictions and features which are less relevant for the task at hand. Consequently, the final decision taken by the multimodal network focuses on the better modalities, and the parts of the network operating on the lesser modalities receive a weaker supervisory signal. This results in a network that may not fully leverage the inter-modal patterns that would otherwise allow the multimodal prediction to outperform the best modality. This is typically the case for Sentinel SITS, as multispectral optical acquisitions are often more conductive to capture phenological patterns than SAR information. Sentinel-1 signal is indeed affected by local terrain angle [START_REF] Kaplan | Normalizing the local incidence angle in Sentinel-1 imagery to improve leaf area index, vegetation height, and crop coefficient estimations[END_REF] , humidity [START_REF] Garkusha | Research of influence of atmosphere and humidity on the data of radar imaging by sentinel-1[END_REF] , and is subject to speckle 3 .

To mitigate this issue, we can use auxiliary losses to supervise each modality independently on top of the objective loss L obj . This has been shown by Ienco et al. [START_REF] Ienco | Combining Sentinel-1 and Sentinel-2 satellite image time series for land cover mapping via a multi-source deep learning architecture[END_REF] to help combining optical and radar imagery. To this end, we associate a prediction y m to each modality, which is supervised by the auxiliary loss L aux :

L aux = M m=1 λ m criterion(y m , ŷ) , (3.7) 
with λ m the strength associated to each modality. Note that, depending on the chosen fusion scheme, computing the single-modality prediction y m may imply adding new modules to the backbone network. This requires M decoders D m , in the case of late fusion. For mid-fusion, we must add M

temporal encoders E m temporal as well. No additional modules are necessary for decision fusion as singlemodality predictions y m are already necessary to produce the final prediction y. In contrast, auxiliary supervision in the case of early fusion would amount to duplicating the entire network making it both fruitless and costly.

Temporal Dropout

To promote a multimodal model that leverages all available modalities, we propose a simple data augmentation strategy dubbed temporal dropout. Inspired by the classical dropout strategy [START_REF] Srivastava | Dropout: a simple way to prevent neural networks from overfitting[END_REF] , we randomly drop observations from the input sequences. The idea is to prevent the network from overrelying on a single modality since its presence is never assured. Formally, we associate a dropout prob-

ability p m ∈ [0, 1] for each modality m ∈ [1, M].
During training, each observation of the sequence is dropped with probability p m . At inference time, the network can use all available observations. Note that this technique can also be used on models operating on a single modality by randomly dropping some acquisitions.

Numerical Experiments: Fusion

In this section, we evaluate the different fusion strategies integrated in our temporal attention-based models on the three tasks we addressed in the previous chapters.

Implementation details

We use the official 5-fold cross-validation of PASTIS to evaluate the performance of the different models. We use the Adam optimizer [START_REF] Kingma | ADAM: A method for stochastic optimization[END_REF] with default parameters lr = 0.001, β = (0.9, 0.999) unless specified, and train all networks on a TESLA V100 GPU with 32Gb of VRAM.

Multimodality Configuration. We consider the two orbits of Sentinel-1 as separate modalities to account for their difference in incident angle, which corresponds to M = 3. When using auxiliary loss terms we set λ m = 0.5 for all modalities. When using temporal dropout, we set p 0 = 0.4 for the optical modality and p 1 = p 2 = 0.2 for the radar time series. For early fusion, we interpolate the Sentinel-1 observations to the dates of the Sentinel-2 time series. Indeed, the opposite interpolation strategy would imply tripling the temporal length of the Sentinel-2 time series, which would significantly increase the memory usage. Interpolation is computed on the fly when loading dataset samples.

Parcel Classification. We first implement the different fusion strategies for parcel-based crop type classification. In this setting, the contour of parcels is known in advance and the task is to classify the cultivated crop in a corresponding yearly SITS. We use Pixel-Set Encoders (PSE) and Lightweight

Temporal Attention Encoders (L-TAE) for spatial and temporal encoding. All spatio-temporal encoders E spatio-temporal are a combination of a PSE encoding all images of the time series simultaneously and an L-TAE processing the resulting sequence of embeddings. All decoders D are simple Multi-Layer Perceptrons (MLP). All models are trained with cross-entropy loss. We use the same hyperparameter configuration as in Section 1.6. For this problem, we train the models for 100 epochs in batches of 128 parcels. We use the 18 class nomenclature of PASTIS and report the classification Intersection over Union macro-averaged over the class set (mIoU) to evaluate the parcel-level predictions.

Semantic Segmentation. In this setting, we use U-TAE as spatio-temporal encoder with the same parametrisation as in Section 2.2. We use a 2-layer convolutional neural net as decoders D. The models are trained with cross-entropy loss. We train the semantic segmentation models for 100 epochs in batches of 4 temporal patches. In this setting, the models also predict background pixels, resulting in a 19 class nomenclature. We report the mIoU of the pixel-level predictions.

Panoptic Segmentation. For this task, we also use U-TAE for spatio-temporal encoding. To output panoptic predictions, we use as decoder the instance segmentation module Parcel-as-Points (PaPs) and its associated loss function for supervision (see Section 2.3). As in Section 2.4, we start with a higher learning rate of 0.01 for 50 epochs, and decrease it to 0.001 for the last 50 epochs. We report the class-averaged panoptic metrics introduced in Kirillov et al. [START_REF] Kirillov | Panoptic feature pyramid networks[END_REF] : Segmentation Quality (SQ), Recognition Quality (RQ), and Panoptic Quality (PQ).

Dataset -PASTIS-R

To evaluate the benefit of multimodality, we extend PASTIS dataset with the corresponding Sentinel-1 observations. As seen in Section 2.2, PASTIS is composed of 2433 time series of multi-spectral patches sampled in four different regions of France. Each patch has a spatial extent of 1.28km×1.28km and contains all available Sentinel-2 observations for the 2019 agricultural year for a total of 115k images.

We use Sentinel-1 in Ground Range Detected format processed into σ 0 backscatter coefficient in decibels, orthorectified at a 10m spatial resolution with Orfeo Toolbox 25 . We do not apply any spatial or temporal speckle filtering, nor radiometric terrain correction: following the deep learning paradigm, we limit data preprocessing to the minimum. We assemble each Sentinel-1 observation into a 3-channel image: vertical polarization (VV), horizontal polarisation (VH), and the ratio of vertical over horizontal polarization (VV/VH). We separate observations made in ascending and descending orbit into two distinct time series. Indeed, the incidence angle of space-borne radar can significantly influence the return signal [START_REF] Singhroy | Effects of relief on the selection of radarsat-1 incidence angle for geological applications[END_REF] . As represented in Figure 3.4, each time series comprises around 70 radar acquisitions for each of the 2433 patches. This amounts to a total of 339k added radar images.

We use the annotations of PASTIS: semantic class and instance identifier for each pixel, allowing us to evaluate models for parcel-based classification, semantic segmentation, and panoptic segmentation.

We make the PASTIS-R dataset publicly available at: github.com/VSainteuf/pastis-benchmark . 114 3.2.3 Results

Parcel Classification Experiment

We first implement and evaluate the different fusion schemes and enhancements in the case of parcel classification. Analysis. In Table 3.1, we report the performance of all fusion schemes with and without enhancements. We first observe that the optical satellite S2 outperforms significantly the two radar time series by a margin of almost 10 points of mIoU, confirming the relevance of Sentinel-2 for crop type mapping. We remark that, without enhancement, multimodal models trained with early or mid-fusion schemes improve the performance compared to optical-only networks, while decision and late fusion perform slightly worse. This highlights the benefit of learning to mix modality features early on. In contrast, auxiliary supervision and temporal dropout provide more improvement to the later models. This shows that these enhancements can promote learning to combine efficiently features and Following the insights of Wang et al. 177 , we consider the following first-order approximation of the decrease of L obj incurred by taking a gradient step:

ΔL obj = η ∇L, ∇L obj , (3.8) 
with η the current learning rate.The term ∇L of the scalar product in (3.8) corresponds to the step size in the gradient descent and the term ∇L obj to the slope of the objective loss. Their scalar product approximates the decrease in objective loss when taking a single gradient step. Note that this approximation, called gradient flow, is only valid when using stochastic gradient descent (SGD) and does not hold for momentum or adaptive optimization schemes such as ADAM [START_REF] Kingma | ADAM: A method for stochastic optimization[END_REF] . We thus retrain the late fusion model with SGD for parcel classification. By considering each term in the scalar product in Equation 3.8, we can estimate the contribution of each parameter of the network to the decrease of the objective loss L obj .

In Figure 3.6, we represent the evolution of the gradient flow for different modules of our architecture by summing the contribution of their corresponding parameters. We observe that, as expected, the gradient flow is concentrated in the modules dedicated to the optical modality. Interestingly, the spatial encoders contribute as much or even more than the temporal encoders despite having four times fewer parameters.

We remark that auxiliary losses lead the model to a different training regime. While auxiliary supervision results in an increase of the proportion of gradient flow in some radar modules such as PSE-S1A, the flow also increases in proportion in some optical modules as well. We conclude that auxiliary supervision affects all modalities, not only the weaker modalities.

Table 3.2: Semantic Segmentation Experiment. We evaluate the semantic segmentation performance of models operating on a single modality and of multimodal models. For each model, we evaluate its baseline performance and the impact of temporal dropout and/or auxiliary classifiers, when applicable. We report the 5-fold cross validated classification scores in terms of mean classwise Intersect over Union (-not applicable). Note that temporal dropout is necessary for the late and decision fusion models to fit in memory. of memory of our GPU with a batch size of 4 image time series. By reducing the size of the input sequences, temporal dropout allowed us to train this memory-intensive model. The late fusion model improves the performance of the unimodal models by 2.7 mIoU points. The performance is further improved by another 0.5 point with the addition of auxiliary supervision. The early fusion model performs slightly below late fusion, even with temporal dropout. As represented in Figure 3.7, the radar modality allows for prediction with crisper contours, in particular between adjacent or nearly adjacent parcels. This suggests that the image rugosity of the radar acquisitions is can be valuable to detect inter-parcel zones. These areas, often of sub-pixel extent, may display optical reflectances similar to their neighboring parcels but often present surfaces such as fences or groves with a volumetric scatter and thus a distinct radar response .

Base

Note that the performance of our models on semantic segmentation is around 10pts mIoU below that for parcel classification. This was expected as the semantic segmentation task prevents from exploiting knowledge about the contour of parcels, and adds the background class corresponding to non-agricultural land.

Expectedly, the performance of the S2-only model drops drastically as the number of available optical observations decreases for both parcel classification and semantic segmentation, performing worse than unimodal radar models for a ratio of 70% of artificial occlusion. Multimodal fusion models can maintain an almost constant level of performance for up to 50% missing optical acquisitions. For more extreme ratios, the performances of the multimodal models eventually drop. The magnitude of the drop seems to be related to the amount of interplay between modalities in the network. Early fusion proves the least robust to missing optical observations. Mid-fusion, and to a lesser extent the late fusion are also affected by obstruction. These models rely on multimodal encoders and decoders, which are likely to be affected by a severe decrease in the quality of the optical sequence. In contrast, the decision fusion scheme is composed of independent classifiers and proves to be the most resilient:

even with 90% of optical images removed, it still outperforms the radar modality by ∼ 5pts mIoU on parcel classification. We conclude that decision fusion should be favored in regions with pervasive or inconsistent cloud cover.

We also observe that auxiliary supervision and temporal dropout contribute to make both unimodal and multimodal models more resilient to missing optical acquisitions for semantic segmentation. The same phenomenon can be observed for parcel classification, but was not represented for the sake of clarity.

Panoptic segmentation experiment

In this section, we evaluate the performance of the early and late fusion schemes compared to single modality baselines for panoptic segmentation. We do not evaluate auxiliary losses on the late fusion model as the use of auxiliary decoders in this setting comes at a prohibitive computational cost. Indeed, the auxiliary decoders would be PaPs instance segmentation modules which already significantly impact training times on single modality architectures. Decision fusion is not evaluated here for the same reason. Like in the semantic segmentation experiment, temporal dropout proved necessary to train the late fusion model.

Analysis.

We report the results of this experiment on Table 3.3. Overall, the early and late fusion schemes increase the panoptic quality by 1.6pt and 1.2pt, respectively, compared to the optical baseline. This improvement is mostly driven by an increase in recognition quality, while the segmentation quality remains almost unchanged. This suggests that the radar modality helps in correctly detecting additional agricultural parcels, rather than refining the delineation of their boundaries. Although modest, this improvement is valuable for this notoriously complex task.

We show on Figure 3.9 the qualitative evaluation of the panoptic fusion model compared to the optical baseline. In practice, the fusion model seems to successfully retrieve more agricultural parcels, and also manages to retrieve small parcels that were missed by the optical model. We also display the predictions made by the unimodal models and compared to the predictions of the fusion model in Figure 3.10. These qualitative results show how the radar modality helps detecting more parcels than the optical baseline, or improving the semantic predictions of the fusion model. Additionally, given the relative noisiness of radar observations, the radar-only models retrieve surprisingly well the parcel boundaries. As mentioned previously, this could be attributed to the distinct volumetric radar response on parcel boundaries. We report the per-class performances on Figure 3.11.

In terms of robustness to clouds, when performing inference on only 30% of the optical observa-123

Conclusion

To conclude, we discuss the relevance of the different modality fusion strategies, with a focus on Sentinel-1 & 2 data for crop mapping. Our experiments showed that combining optical and radar imagery allowed for an increase in performance for all tasks considered (Table 3.1, Table 3.2, Table 3.3) as well as robustness to cloud cover (Figure 3.8). Our experiments showed that each fusion scheme has advantages and limitations influencing when its use is most relevant:

• Early Fusion. It is the most compact of the fusion models and shows competitive performance on all three tasks. The main drawback of this approach is the necessity of an expensive interpolation. As reported in Table 3.4, this preprocessing makes the early fusion scheme slower than late fusion despite relying on a smaller network for parcel classification and semantic segmentation. Early fusion is the least robust fusion scheme to cloud cover.

• Mid Fusion. Of all methods without preprocessing, this strategy leads to the fastest run time and the lowest memory requirement. It yields the second-best performance for parcel-based classification but suffers more than late and decision fusion when the cloud cover is extensive.

Its dependence on separate spatial and temporal encoders prevents its straightforward adaptation to pixel-based tasks. We recommend using this scheme for parcel classification in areas without extensive cloud cover and when inference speed is critical.

• Late Fusion. This fusion method, when combined with enhancement schemes, leads to the best performance and the highest adaptability, as well as excellent resilience to even extreme cloud cover. This method is our default recommendation when using temporal attention methods with multimodal time series.

• Decision Fusion. Despite having the highest parameter count, this method lags in terms of performance and is prohibitively costly for panoptic segmentation. However, it is the most resilient to cloud cover. We recommend using decision fusion when it is expected that only a few optical observations may be available for inference.

We also have evaluated the influence of two enhancement schemes:

• Auxiliary Supervision. This method consists in adding alongside the main prediction auxiliary predictions based on one modality alone. The rationale is to help each specialized module to learn meaningful features regardless of the interplay with other modalities. We observe a strong effect in precision for late and decision fusion, which have dedicated encoding modules for each modality.

• Temporal Dropout. This simple method consists in randomly dropping acquisitions of the time series considered. Its effect was beneficial to all fusion schemes and the optical baseline across our experiments. Another benefit of this scheme is that it reduces the memory footprint of networks during training.

Limitations.

Our study hinged on the PASTIS dataset, which contains annotated agricultural parcels from four different regions of the French metropolitan territory. In this regard, our results are most relevant for crop mapping applications with the same meteorological context, terrain conditions, and crop types as this region. Certain crop types not observed in PASTIS could benefit even more from the radar modality than our results show. For instance, rice fields are often filled with water and thus have a distinctive SAR response but are not represented in PASTIS. Furthermore, our evaluation of cloud robustness focused on assessing the effect of a reduced number of optical observations at inference time. This corresponds to artificially increasing the cloud cover in the test set without affecting crop growth. A more rigorous approach would constitute a dataset comprising truly observed cloud coverage by varying the regions and years of acquisition. This is complicated by the lack of harmonization between LPIS across different countries in nomenclature and open-access policy. Lastly, we only used backscattering coefficients from the SAR data in our experiments, as is commonly done in the crop type mapping literature [START_REF] Orynbaikyzy | Crop type classification using a combination of optical and radar remote sensing data: a review[END_REF] . Mestre-Quereda et al. 103 found that the addition of interferometric radar features is beneficial to crop classification when using only radar inputs. Further work is needed to assess the benefit of interferometric radar features in a fusion setting with optical imagery. Moreover, we chose to prepare the SAR inputs with limited preprocessing. We do not apply speckle filtering or radiometric terrain correction to compensate for the effect of the local incident angle. Interestingly, our experiments showed that this does not prevent the radar modality from benefiting crop mapping models. However, further studies could evaluate the benefit of adding speckle filtering, elevation information, or meteorological context to networks using radar images for crop mapping.
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Classifications are theories about the basis of natural order, not dull catalogues compiled only to avoid chaos.

Stephen Jay Gould

4

Leveraging the class hierarchy

In this section, we explore how we can use the hierarchical structure of the class set to improve the precision of classification models. As this concerns virtually any classification problem, we widen our scope to other computer vision problems and datasets. In particular, this also applies very well to our crop type mapping problem. Most classification models focus on maximizing the prediction accuracy, regardless of the semantic nature of errors. This can lead to high performing models, but puzzling errors such as confusing tigers and sofas, and casts doubt on what a model actually understands of the required task and data distribution. Neural networks in particular have been criticised for their tendency to produce improbable yet confident errors, notably when under adversarial attacks [START_REF] Akhtar | Threat of adversarial attacks on deep learning in computer vision: A survey[END_REF] . Training deep models to produce not only produce fewer but also better errors can increase their trustworthiness, which is crucial for downstream applications such as autonomous driving or land use and land cover monitoring [START_REF] Bertinetto | Making better mistakes: Leveraging class hierarchies with deep networks[END_REF][START_REF] Deng | What does classifying more than 10,000 image categories tell us? ECCV[END_REF] .

In many classification problems, the target classes can be organised according to a tree-shaped hierarchical structure. Such a taxonomy can be generated by domain experts, or automatically inferred from class names using the WordNet graph [START_REF] Miller | Introduction to WordNet: An on-line lexical database[END_REF] or from word embeddings [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF] . A step towards more reliable and interpretable algorithms would be to explicitly model the difference of gravity between errors, as defined by a hierarchical nomenclature. As pointed out by Bertinetto et al. [START_REF] Bertinetto | Making better mistakes: Leveraging class hierarchies with deep networks[END_REF] , the first step towards algorithms aware of hierarchical structures would be to generalize the use of cost-based metrics. For example, early iterations of the Ima-geNet challenge 129,[START_REF] Deng | What does classifying more than 10,000 image categories tell us? ECCV[END_REF] proposed to weight errors according to hierarchy-based costs. For a dataset indexed by N , the Average Hierarchical Cost (AHC) between class predictions y ∈ K N and the true more efficient learning, e.g., by leveraging common feature detectors. Such priors on the class structure may be especially crucial when dealing with a large taxonomy, as noted by Deng et al. [START_REF] Deng | What does classifying more than 10,000 image categories tell us? ECCV[END_REF] .

In this section, we introduce a method to integrate a pre-defined class hierarchy into a classification algorithm. We propose a new distortion-based regularizer for prototypical network [START_REF] Yang | Robust classification with convolutional prototype learning[END_REF][START_REF] Chen | This looks like that: deep learning for interpretable image recognition[END_REF] . This penalty allows the network to learn prototypes organised so that their pairwise distances reflect the error cost defined by a class hierarchy. The key contributions of this chapter are as follows:

• We introduce a scale-independent formulation of the distortion between two metric spaces and an associated smooth regularizer.

• This formulation allows us to incorporate knowledge of the class hierarchy into a neural network at no extra cost in trainable parameters and computation.

• We show on four public datasets (CIFAR100 , NYUDv2, S2-Agri, and iNaturalist-19) that our approach decreases the average cost of the prediction of standard backbones.

• As illustrated in Figure 4.1, we show that our approach can also lead to a better (unweighted)

precision, which we attribute to the useful priors contained in the hierarchy.

Related Work

Prototypical Networks. Our approach builds on the growing corpus of work on prototypical networks. These models are deep learning analogues of nearest centroid classifiers 160 and Learning Vector Quantisation networks [START_REF] Sato | Generalized learning vector quantization[END_REF][START_REF] Kohonen | Learning vector quantization[END_REF] , which associate to each class a representation, or prototype, and classify the observations according to the nearest prototype. These networks have been successfully used for few-shot learning 147,[START_REF] Dong | Few-shot semantic segmentation with prototype learning[END_REF] , zero-shot learning [START_REF] Jetley | Prototypical priors: From improving classification to zero-shot learning[END_REF] , and supervised classification [START_REF] Guerriero | DeepNCM: deep nearest class mean classifiers[END_REF][START_REF] Yang | Robust classification with convolutional prototype learning[END_REF]104,[START_REF] Chen | This looks like that: deep learning for interpretable image recognition[END_REF] .

In most approaches, the prototypes are directly defined as the centroid of the learnt representations of samples of their classes, and updated at each episode 147 or iteration [START_REF] Guerriero | DeepNCM: deep nearest class mean classifiers[END_REF] . In the work of Mettes et al. 104 and Jetley et al. [START_REF] Jetley | Prototypical priors: From improving classification to zero-shot learning[END_REF] , the prototypes are defined prior to learning the embedding function. In this work, we follow the approach of Yang et al. [START_REF] Yang | Robust classification with convolutional prototype learning[END_REF] and learn the prototypes simultaneously with the data embedding function.

Hierarchical Priors. The idea of exploiting the latent taxonomic structure of semantic classes to improve the accuracy of a model has been extensively explored [START_REF] Silla | A survey of hierarchical classification across different application domains[END_REF] , from traditional Bayesian modeling [START_REF] Gelman | Bayesian Data Analysis[END_REF] to adaptive deep learning architectures 185,[START_REF] Roy | Tree-CNN: a hierarchical deep convolutional neural network for incremental learning[END_REF][START_REF] Salakhutdinov | Learning with hierarchical-deep models[END_REF][START_REF] Ayub | ECG classification and abnormality detection using cascade forward neural network[END_REF] . However, for these neural networks, the hierarchy is discovered by the network itself to improve the overall accuracy of the model. In our setting, the hierarchy is defined a priori and serves both to evaluate the quality of the model and to guide the learning process towards a reduced prediction cost.

Srivastava and Salakhutdinov [START_REF] Srivastava | Discriminative transfer learning with tree-based priors[END_REF] propose to implement Gaussian priors on the weight of neurons according to a fixed hierarchy. Redmon & Farhadi 124 implements an inference scheme based on a treeshaped graphical model derived from a class taxonomy. Closest to our work, Hou et al. [START_REF] Hou | Squared earth mover's distance-based loss for training deep neural networks[END_REF] propose a regularisation based on the earth mover distance to penalize errors with high cost.

More recently, Bertinetto et al. [START_REF] Bertinetto | Making better mistakes: Leveraging class hierarchies with deep networks[END_REF] highlighted the relative lack of well-suited methods for dealing with hierarchical nomenclatures in the deep learning literature. They advocate for a more widespread use of the AHC for evaluating models, and detail two simple baseline classification modules able to decrease the AHC of deep models: Soft-Labels and Hierarchical Cross-Entropy. Following this objective, Karthik et al. [START_REF] Karthik | No cost likelihood manipulation at test time for making better mistakes in deep networks[END_REF] propose a an inference-time risk minimisation scheme to reduce the AHC of the predictions based on the predicted posteriors.

Hyperbolic Prototypes. Motivated by their capacity to embed hierarchical data structures into low-dimensional spaces [START_REF] De Sa | Representation tradeoffs for hyperbolic embeddings[END_REF] , hyperbolic spaces are at the center of recent advances in modeling hierar-chical relations [START_REF] Nickel | Poincaré embeddings for learning hierarchical representations[END_REF][START_REF] Khrulkov | Hyperbolic image embeddings[END_REF] . Closer to this work, Liu et al. [START_REF] Liu | Hyperbolic visual embedding learning for zero-shot recognition[END_REF] and Long et al. [START_REF] Long | Searching for actions on the hyperbole[END_REF] also propose to embed a class hierarchy into the latent representation space. However, both approaches embed the class hierarchy before training the data embedding network. In contrast, we argue that incorporating the hierarchical structure during the training of the model allows the network and class embeddings to share their respective insights, leading to a better trade-off between AHC and accuracy. In this section, we only explore Euclidean geometry, as this setting allows for the seamless integration of our method without changing the number of bits of precision or the optimizer [START_REF] De Sa | Representation tradeoffs for hyperbolic embeddings[END_REF] .

Finite Metric Embeddings. Our objective of computing class representations with pairwise distances determined by a cost matrix has links with finding an isometric embedding of the cost matrixseen as a finite metric. This problem has been extensively studied [START_REF] Indyk | Low-distortion embeddings of finite metric spaces[END_REF][START_REF] Bourgain | On Lipschitz embedding of finite metric spaces in Hilbert space[END_REF] and is at the center of the growing interest for hyperbolic geometry [START_REF] De Sa | Representation tradeoffs for hyperbolic embeddings[END_REF] . Here, our goal is simply to influence the learning of prototypes with a metric rather than necessarily seeking the best possible isometry.

Methods

We consider a generic dataset N of N elements x ∈ X N with ground truth classes z ∈ K N . The classes K are organised along a tree-shape hierarchical structure, allowing us to define a cost matrix D by considering the shortest path between nodes. The matrix thus defined is symmetric, with zero diagonal, strictly positive elsewhere, and respects the triangle inequality:

D[k, l] + D[l, m] ≥ D[k, m]
for all k, l, m in K. In other words, D defines a finite metric. We denote by Ω an embedding space which, when equipped with the distance function d : Ω × Ω → R + , forms a continuous metric space. Following the methodology of Snell et al. 147 , a prototypical network (f, π) associates to an observation x n the posterior probability over its class z n defined as follows:

p(z n = k|x n ) = exp (-d (f(x n ), π k )) l∈K exp (-d (f(x n ), π l )) , ∀k ∈ K (4.2)
We define an associated loss as the normalised negative log-likelihood of the true class:

L data (f, π) = 1 N n∈N d(f(x n ), π zn ) + log l∈K exp (-d(f(x n ), π l )) . (4.3) 
This loss encourages the representation f(x n ) to be close to the prototype of the class z n and far from the other prototypes. Conversely, the prototype π k is drawn towards the representations f(x n ) of samples n with true class k, and away from the representations of samples of other classes.

Following the insights of Yang et al. [START_REF] Yang | Robust classification with convolutional prototype learning[END_REF] , the embedding function f and the prototypes π are learned simultaneously. This differs from many works on prototypical networks which learn prototypes separately or define them as centroids of representations. We take advantage of this joint training to learn prototypes which take into account both the distribution of the data and the relationships between classes, as described in the next section.

Metric-Guided Penalisation

We propose to incorporate the cost matrix D into a regularisation term in order to encourage the prototypes' positions in the embedding space Ω to be consistent with the finite metric defined by D. Since the sample representations are attracted to their respective prototypes in (4.3), such regularisation will also affect the embedding network.

Metric Distortion. As described in De Sa et al. [START_REF] De Sa | Representation tradeoffs for hyperbolic embeddings[END_REF] , the distortion of a mapping k → π k between the finite metric space (K, D) and the continuous metric space (Ω, d) can be defined as the average relative difference between distances in the source and target space: 

disto(π, D) = 1 K(K -1) k,l∈K 2 , k̸ =l |d(π k , π l ) -D[k, l]| D[k, l] . ( 4 
d(f(x n ), π k ) ≥ d(π k , π l ) -d(f(x n ), π l )
, and consequently that d(f(x n ), π k ) must be large as well, which contradicts that (f, π) minimizes L data .

Scale-Free Distortion. For a prototype arrangement π to have a small distortion with respect to a finite metric D as defined in Equation 4.4, the distance between prototypes must correspond to the distance between classes. This imposes a specific scale on the distances between prototypes in the embedding space. This scale may conflict with the second term of L data which encourages the distance between embeddings and unrelated prototypes to be as large as possible. Therefore, lower distortion may also cause lower precision. To remove this conflicting incentive, we introduce a scale-independent formulation of the distortion (4.5) where s • π are the scaled prototypes, whose coordinates in Ω are multiplied by a scalar factor s.

disto scale-free (π, D) = min s∈R + disto(s • π, D) , (4.5) 
Computing the scale-free distortion defined in Equation 4.5 amounts to finding a minimizer of the following function f : R → R: 

f(s) = i∈I |sα i -1| , (4.6 
⋆ = 1/α k ⋆ with k ⋆ defined as: k ⋆ = min    k ∈ I i≤k α i ≥ i>k α i .    (4.7)
Proof. First, such k ⋆ exists as it is the smallest member of a discrete, non-empty set. Indeed, since all α i are nonnegative, the set contains at least k = |I|. We now verify that s ⋆ = 1/α ⋆ k is a critical point of f. By definition of k ⋆ we have that i≤k ⋆ α i ≥ i>k ⋆ α i and i<k ⋆ α i < i≥k ⋆ α i . By combining these two inequalities, we have that

- i<k ⋆ α i + i>k ⋆ α i ∈ [-α k ⋆ , α k ⋆ ] . (4.8) 
Since I orders the α i in increasing order, we can write the subgradient of f at s ⋆ under the following form:

∂ s f(s ⋆ ) = i<k ⋆ ∂ s |s ⋆ α i -1| + i>k ⋆ ∂ s |s ⋆ α i -1| + ∂ s |s ⋆ α k ⋆ -1| (4.9) = - i<k ⋆ α i + i>k ⋆ α i + [-α k ⋆ , α k ⋆ ]. (4.10) 
By using the inequality defined in Equation 4.8, we have that 0 ∈ ∂ s f(s ⋆ ) and hence s ⋆ is a critical point of f. Since f is convex, such s ⋆ is also a global minimizer of f, i.e., an optimal scaling. ■

This proposition gives us a fast algorithm to obtain an optimal scaling and hence a scale-free distortion: compute the cumulative sum of the α k,l sorted in ascending order until the equality in (4.7)

is first verified at index k ⋆ . The resulting optimal scaling is then given by 1/α k ⋆ .

Distortion-Based Penalisation. We propose to incorporate the error qualification D into the prototypes' relative arrangement by encouraging a low scale-free distortion between π and D. To this end, we define L disto , a smooth surrogate of disto scale-free (4.11).

L disto (π) = 1 K(K -1) min s∈R + k,l∈K 2 , k̸ =l sd(π k , π l ) -D[k, l] D[k, l] 2 . ( 4 

.11)

The minimisation problem with respect to s defined in Equation 4.11 can be solved in closed form and L disto can thus be directly used as a regularizer. :

s ⋆ = d(π k , π l ) D[k, l] d(π k , π l ) 2 D[k, l] 2 . ( 4 
.12)

End-to-end Training

We combine L data and L disto in a single loss L. L data allows to jointly learn the embedding function f and the class prototypes π, while L disto enforces a metric-consistent prototype arrangement, with λ ∈ R + an hyper-parameter setting the strength of the regularisation: 4.2). We use as backbone the established ResNet-18 [START_REF] He | Deep residual learning for image recognition[END_REF] as embedding network for this dataset.

L(f, π) = L data (f, π) + λL disto (π) . ( 4 
RGB-D Semantic Segmentation on NYUDv2. We use the standard split of 795 training and 654 testing pairs. We combine the 4 and 40 class nomenclatures of Gupta et al. [START_REF] Gupta | Perceptual organization and recognition of indoor scenes from RGB-D images[END_REF] and the 13 class system defined by Handa et al. [START_REF] Handa | Uunderstanding real world indoor scenes with synthetic data[END_REF] to construct a 3-level hierarchy (see Figure 4.3). We use FuseNet [START_REF] Hazirbas | Fusenet: Incorporating depth into semantic segmentation via fusion-based CNN architecture[END_REF] Scale-Free Distortion. Our method for automatically choosing the best scale in our smooth distortion surrogate leads to an improvement of 0.9 ER on the iNat-19 dataset, which amounts to half the improvement compared to the baseline. In the other datasets, the improvements were more limited. We attribute the impact of our scale-free distortion on iNat-19 in particular to the structure of its class hierarchy: at the lowest level, iNat-19 classes have on average 14 co-hyponyms (siblings), compared to only 2 to 5 for the other datasets. When minimizing the distortion with a fixed scale of 1, the prototypes of hyponyms are incentivised to be close with respect to d since hyponyms have a small hierarchical distance of 2. This clashes with the minimisation of the second part of L data as defined in periments, the squared-norm based model yields a worse performance. This is a notable result as it is the distance commonly used in most prototypical networks 147,[START_REF] Guerriero | DeepNCM: deep nearest class mean classifiers[END_REF] .

Rank-based Regularisation. Mettes et al. 104 use a rank-based loss [START_REF] Burges | Learning to rank using gradient descent[END_REF] to encourage prototype mappings whose pairwise distance follows the same order as an external qualification of errors D. Following theirs ideas, we also experiment with a RankNet-inspired loss [START_REF] Burges | Learning to rank using gradient descent[END_REF] which encourages the distances between prototypes to follow the same order as the costs between their respective classes, without imposing a specific scaling: We argue that our formulation of L disto provides a stronger supervision than only considering the order of distances, and allows the prototypes to find a more profitable arrangement in the embedding space. In Table 4.3, we observe that replacing our distortion-based loss by a rank-based one results in a slight decrease of overall performance.

L rank (π) = - 1 |T | k,l,m∈T
Robustness. As shown in Table 4.4, our presented method has low sensitivity with respect to regularisation strength: models trained with λ ranging from 0.5 to 3 yield sensibly equivalent performances. Choosing λ = 1 seems to be the best configuration in terms of AHC.

Conclusion

We introduced a new regularizer modeling the hierarchical relationships between the classes of a nomenclature. This approach can be incorporated into any classification network at no computational cost and with very little added code. We showed that our method consistently decreases the average hierarchical cost of three different backbone networks on different tasks and four datasets. Furthermore, our approach can reduce the rate of errors as well. In contrast to most recent works on hierarchical classification, we showed that this joint training is beneficial compared to the staged strategy of first positioning the prototypes and then training a feature extracting network.

In the context of crop type mapping, our metric guided prototypes 41 can be leveraged to reduce the hierarchical cost of parcel-based or pixel-based crop type classification. We believe that by reducing the severity of erroneous predictions, this can facilitate the adoption of deep learning methods for automated crop type mapping.

Table 5.1: Summary of results. We report the performances of all architectures presented in this dissertation, evaluated on the PASTIS dataset. When relevant, we report the semantic performances (OA and mIoU) computed at object level and at pixel level (resp. X obj and X pix ), and the panoptic metrics for the panoptic segmentation methods. We also report the performance of the state-of-the-art method prior to this thesis.

OA Tasks difficulty. Beyond our proposed methods, these results illustrate that the three tasks at hand have inherently different levels of difficulty. The knowledge of the parcel boundaries in parcel-based classification makes this problem the simplest of the three. Indeed, knowing the extent of parcels implies that pixels are already segmented into semantically homogeneous groups and dispenses with the classification of background pixels. In practice, the pixel-level metrics of the parcel classification models demonstrate how well the task is addressed: only ∼ 3% of pixels are incorrectly classified by our best fusion model. In contrast, addressing crop mapping as a semantic segmentation adds the challenge of making consistent predictions across the entire extent of agricultural parcels, and not to confuse agricultural land with surrounding areas, and vice versa. Expectedly, the performance of semantic segmentation is significantly lower. Lastly, our first exploration of panoptic segmentation of satellite image time series outlined the inherent difficulties of this task. Indeed, a valid prediction requires the model to detect the presence of an agricultural parcel, correctly delineate the parcel's shape, and predicting the true crop type. While the semantic predictions of U-TAE+PaPs are mostly correct, instance segmentation remains challenging: correctly detecting the position and dimensions of a parcel, and subsequently predicting a pixel precise mask proves difficult. We believe that this task requires further research efforts to be considered fully solved. Cityscapes 29 , a computer vision benchmark of natural images with a similar number of semantic classes as PASTIS, boasts a state-of-the-art performance of 69.6 PQ at the time of writing [START_REF] Chen | Scaling wide residual networks for panoptic segmentation[END_REF] . While not directly comparable, this score gives a sense of the progress that can be expected in future works.

5.2 Towards large-scale automated crop mapping.

The application of our methods to real world crop mapping at large-scale raises challenges that were not addressed in this dissertation. In this section, we discuss these issues and outline what we believe is within reach using our methods.

Type of mapping.

Given the previous discussion on task difficulty, we believe deep learning methods are mature for real life experimentation if the problem can be addressed as parcel classification or semantic segmentation. Parcel classification corresponds to applications where parcel boundaries are known, for example in regions with well established cadaster. Semantic segmentation would correspond to cases where parcel boundaries are not required in the final agricultural map, e.g., for the inventory of crop production over a region. In such cases, we argue for the use of PSE+L-TAE and U-TAE, respectively. For the more complex problem of retrieving parcel boundaries, some progress is still to be made for real life applications. We hope that the release of PASTIS will encourage further explorations of this challenging problem.

Mapping efforts with accessible annotation. Let us first consider the case of a crop mapping effort in a country for which annotations are accessible. This case is closer to the setting evaluated in this dissertation as the model can be both trained and applied to the same region. Yet, in the operational setting, annotations are usually not available for the on-going agricultural year, which poses the challenge of generalizing from past years to the current year. Quinton & Landrieu 123 showed that PSE-LTAE actually performs better when trained on all available historical years, rather than only the year under consideration, as was done in this thesis. Similar results can be expected for U-TAE as it is also based on the L-TAE architecture, hence this challenge does not seem to prevent real life applications of our methods. However, other challenges remain. First, the models should adapt to the temporally diverse data and by increasing the number of samples for rare classes. In addition, we argue that the increased variability of country-scale applications can also be addressed by increasing the size of our models. Our attention-based L-TAE showed, indeed, consistent improvements when scaled up (Figure 1.15). In the NLP literature, drastically increasing the size of attention-based models has proven a valid strategy to address ever more complex problems [START_REF] Brown | Language models are few-shot learners[END_REF] , and it could be similarly valid in our setting to adapt to the increased complexity of large-scale crop mapping.

Mapping efforts with scarce or no annotations.

A more difficult setting is met when ground truth data for the region of study are scarce or nonexistent. In practice, this setting is quite common as only a limited number of countries produce yearly consolidated agricultural maps. Addressing crop mapping in this setting with learning-based methods can imply training models in a region where annotations are available and applying them to the region of interest. Our experiments did not cover this situation, which raises the challenge of domain shift between the input and target space: both the distribution of the observed satellite time series and of crop types can significantly vary from one location to the other. This problem is at the core of on-going research on out of distribution robustness [START_REF] Xie | In-n-out: Pre-training and self-training using auxiliary information for out-of-distribution robustness[END_REF] , few-shot learning 134,[START_REF] Li | Meta-fseo: A meta-learning fast adaptation with self-supervised embedding optimization for few-shot remote sensing scene classification[END_REF] , and self-supervised pre-training methods [START_REF] Ghaffari | An efficient method for the classification of croplands in scarce-label regions[END_REF][START_REF] Vincenzi | The color out of space: learning self-supervised representations for Earth Observation imagery[END_REF][START_REF] Yuan | Self-supervised pre-training of transformers for satellite image time series classification[END_REF] for geographical generalisation of crop mapping models. In these frameworks, neural architectures such as PSE-LTAE and U-TAE act as backbone encoding networks, while geographical generalisation is tackled with a specific learning procedure, e.g., pre-training or few-shot learning. We believe that the performance demonstrated by our methods for within distribution parcel classification and semantic segmentation makes them solid candidates to be used as backbone networks to test methods addressing geographical generalisation.

Epilogue

Outcomes. This thesis was supported by the French Mapping Agency (IGN) and the French subsidy allocation authority (ASP). The objectives set by these stakeholders are to develop deep learning methods for large-scale crop mapping from SITS and assess the benefit of using optical radar multimodal time series. The broader aim of this project is to automatize, at least partially, the production of the French LPIS for subsidy allocation. Our methods for crop type classification both at parcel level with PSE-LTAE and at pixel level with U-TAE achieved significant performance improvements compared to previous approaches. In particular, we showed in Table 1.10 that PSE-LTAE outperforms Random Forest classifier by ∼ 20pts of mIoU. This highlights the potential gain associated to a shift from the traditional ML methods used in current automated crop type mapping systems such as iota2 [START_REF] Inglada | Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery[END_REF] , and SEN4CAP [START_REF] Bellemans | ATBD for L4A crop type mapping[END_REF] . Since large amount of annotations are available in France, we advocate for ASP to start evaluating our methods for their potential integration into their production line.

Ethics. The advent of deep learning-based analysis of satellite image time series for crop mapping was not disruptive in the sense that automated analysis of remote sensing data can be traced back to several decades ago [START_REF] Kolm | The identification of irrigated crop types and estimation of acreages from landsat imagery[END_REF] . Yet, as we have seen in this dissertation, learning representations from satellite time series to predict agricultural maps brought significant gains in terms of classification performance compared to traditional approaches. Deep learning-based approaches combined with present-day satellite imagery sources thus enable monitoring efforts at an unprecedented spatial scale and accuracy. In this regard, this may affect the balance of power in applications involving farmers such as subsidy allocation. Indeed, the increased performance of automated crop mapping provides additional monitoring capabilities to the subsidy allocating authority. Yet, an over reliance on such automated tools can be detrimental to farmers who may make honest mistakes or for whom the model made erroneous predictions. Hence, deep learning-based agricultural monitoring systems should provide structures for farmers to voice their potential concerns. This could take the form of an elected or randomly picked assembly of farmers involved in the decision making processes of the monitoring system. Additionally, ensuring transparency by open sourcing the involved code would give further guarantees.
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 a3 Figure 3: Sentinel image time series. Optical (left) and SAR (right) image time series of the same patch of agricultural land.

  our parcel-based classification task, and propose subsequent modifications to the original architecture. The resulting TAE temporal encoder, combined with the PSE, sets a new state-of-the-art for parcel-based classification while being faster and more memory efficient than other approaches. We also present in Section 1.5 an improvement to the TAE we developed. The new variant, dubbed Lightweight-TAE (L-TAE), outperforms the TAE while performing an order of magnitude fewer operations.
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 11 Figure 1.1: Input data. Example of Sentinel-2 time series (shown: RGB bands, 10m per pixel) for two parcels of the Winter cereal and Spring cereal classes. The dots on the horizontal axis represent the unevenly distributed acquisition dates over the period of interest.
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 111111 Neural Network ArchitecturesIn order to assess the influence of the temporal and spatial structure, we implement four neural network architectures. All of them follow the typical deep learning paradigm: first learn to extract an embedding -spatial, temporal or both -from the input image sequence and then to classify the sample based on this embedding. We show an illustration of each architecture on Figure1.2. The same design of classification module is used across all architectures: a Multi Layer Perceptron (MLP) with two hidden layers of dimension 128 and 64.

  with T the number of temporal observations, C the number of spectral channels, and H and W the dimension in pixels of a tight bounding box containing the spatial extent of the parcel. All values are set to 0 outside the parcel's borders, as shown in Figure 1.1.

  Rußwurm & Körner[START_REF] Rußwurm | Self-attention for raw optical satellite time series classification[END_REF] perform object-based classification with the encoder part of the Transformer network. They do not use a spatial encoder and compute the average values of the different spectral bands over each parcel. Furthermore they produce a single embedding for the whole sequence with a global maximum pooling through the temporal dimension of the output sequence. We reimplemented the same pipeline and simply modified the hyperparameters to match the 150k parameter constraint.ConvLSTM Rußwurm et al.[START_REF] Rußwurm | Convolutional LSTMs for cloud-robust segmentation of remote sensing imagery[END_REF] process the time series of patch images with a ConvLSTM network 183 for pixel-based classification. We adapt the architecture to the parcel-based setting by using the spatially-averaged last hidden state of the ConvLSTM cell to be processed by MLP 4 .
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 110 Figure 1.10: Class breakdown. We plot the number of agricultural parcels belonging to each class on a semi logarithmic scale.
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 112 Figure 1.12: Attention masks. Average attention masks of the TAE heads, obtained from 128 samples of spring (a), and summer (b) cereal parcels.
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 535 Lightweight Temporal Attention Encoder (L-TAE) 1.5.1 Motivation Time series of remote sensing data provide a wealth of useful information for Earth monitoring.
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 16 Numerical experiments: PSE+L-TAE 1.6.1 Experimental setting

Figure 1 . 15 :

 115 Figure 1.15: Performance complexity tradeoff. Performance (in mIoU, average over 5 runs) of different temporal encoders plotted with respect to the number of FLOPs necessary to process one sequence.The model size (number of trainable parameters) is represented by the size of the markers. The L-TAE outperforms other models across all model sizes and processing requirements. The smallest L-TAE instance-with under 9k parameters-outperforms all non-TAE configurations while only necessitating 58k FLOPs per sequence.

  the time of writing, existing methods for satellite image time series encoding for segmentation either rely on recurrent neural nets or convolutions for temporal encoding. As seen in Section 1.4, recurrent neural nets, incur long training and inference times, and temporal convolutions, although faster, map for each level, (iii) a spatial convolutional decoder produces a single feature map with the same resolution as the input images, see Figure2.1.Spatial Encoding.We consider a convolutional encoder E with L levels 1, • • • , L. Each level is composed of a sequence of convolutions, Rectified Linear Unit (ReLu) activations, and normalisations.

  ) with [ • ] the concatenation along the channel dimension and ⊙ the termwise multiplication with channel broadcasting. Spatial Decoding. We combine the feature maps f l learned at the previous step with a convolutional decoder to obtain spatio-temporal features at all resolutions. The decoder is composed of L -1 blocks D l for 1 ≤ l < L, with convolutions, ReLu activations, and BatchNorms[START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] . Each decoder block uses a strided transposed convolution D up l to up-sample the previous feature map.

  . To reproduce these UNet-based architectures, we replaced the L-TAE in our architecture by either a ConvLSTM 142 or a bidirectional Con-vLSTM. Skip connections are temporally averaged. In contrast to the original methods, we replaced the batch normalisation in the encoders with group normalisation, which significantly improved the results across-the-board. In these architectures, the successive downsampling operations in the U-Net ensure that spatial encoding is performed at different scales. Temporal encoding, on the other hand, only occurs at the lowest level. Indeed, since the skip connections on other levels are simple temporal means, only the feature maps with the coarsest spatial resolution are temporally encoded by the recurrent cell. The hidden state's size of the biCon-vLSTM is chosen as 32 in both directions, and 64 for ConvLSTM.

  Each convolutional block doubles the number of channels of the processed feature maps, and the innermost feature maps have a channel dimension of 128. Skip connections are also implemented with 3D-convolutions, ensuring that temporal encoding is performed at different spatial resolutions. Yet, as seen in Section 1.4, temporal convolutions are not as well suited as self-attention for unevenly sampled satellite image time series. This architecture uses Leaky ReLu, and 3D Batch Normalisations are used across its convolutional blocks. The sequence of feature maps is averaged along the temporal dimension to produce the final embedding of the image sequence. In their implementation, the authors used a linear layer to collapse the temporal dimension, yet this was not a valid option for our dataset: the sequences have highly variable lengths (see the next subsection) and the sequence indices do not correspond to the same acquisition date from one sequence to another. * https://github.com/roserustowicz/crop-type-mapping

Overview.

  The dataset is composed of 2433 square 128 × 128 patches with 10 spectral bands and at 10m resolution, obtained from the open-access Sentinel-2 platform † . For each patch, we stack all available acquisitions between September 2018 and November 2019, forming our four dimensional multi-spectral SITS:T × C × H × W.The publicly available French Land Parcel Identification System (LPIS) allows us to retrieve the extent and crop type of all parcels within the patches, as reported by the farmers. Each patch pixel is annotated with a semantic label corresponding to either the parcels' crop type or the background class.The pixels of each unique parcel in the patch receive a corresponding instance label. The French Payment Agency estimates the accuracy of the LPIS annotations as over 98% regarding crop types. While there are no official quantitative assessments regarding parcel surfaces, we performed an extensive visual inspection and failed to observe delineation errors.Dataset Extent. The SITS of PASTIS are taken from 4 different Sentinel-2 tiles in different regions of the French metropolitan territory as depicted in Figure2.3a. These regions cover a wide variety of climates and culture distributions. Sentinel tiles span 100 × 100km and have a spatial resolution of 10 meter per pixel. Each pixel is characterised by 13 spectral bands. We select all bands except the atmospheric bands B01, B09, and B10. Each of these tiles is subdivided in square patches of size 1.28 × 1.28km (128 × 128 pixels at 10m/pixel), for a total of around 24, 000 patches. We then select 2, 433 patches ( 10% of all available patches, see Figure 2.3b), favoring patches with rare crop types to decrease the otherwise extreme class imbalance of the dataset. Satellite Imagery. We use the L2A Sentinel-2 imagery prepared by THEIA. All bands are spatially resampled to a 10m/pixel resolution with bilinear interpolation. Nomenclature. The French LPIS uses a 73 class breakdown for crop types. We select classes with at least 400 parcels and with samples in at least 2 of the 4 Sentinel-2 tiles. This leads us to adopt a 18 classes nomenclature, presented in Figure 2.4. Parcels belonging to classes not in our 18-classes nomenclature are annotated with the void label.

Figure 2 . 8 :

 28 Figure 2.8: Overview. We propose an end-to-end, single-stage model for panoptic segmentation of agricultural parcels from time series of satellite images. Note the difficulty of resolving the parcels' borders from a single image, highlighting the need for modeling temporal dynamics.

Figure 2 . 9 :

 29 Figure 2.9: Centerpoint Detection. The ground truth instance masks (a) is used to construct a target heatmap (b). Our parcel detection module maps the raw sequence of observation (c) to a predicted heatmap (d). The predicted centerpoints (red crosses) are the local maxima of the predicted heatmap (d). The black dots are the true parcels centers.

  Replacing the max operator by argmax in (2.6) defines a mapping H × W → P between pixels and parcels. During training, we associate each true parcel p with the predicted centerpoint c(p) with highest predicted centerness m among the set of centerpoints which coordinates are mapped to p. If this set is empty, then c(p) is undefined: the parcel p is not detected. We denote by P ′ the subset of detected parcels, i.e., for which c(p) is well defined.Size and Class Prediction. We associate with a predicted centerpoint c of coordinate (i c , j c ) the multi-scale feature vector dc of size D 1 + • • • + D L by concatenating channelwise the pixel features at Shape Prediction. The idea of this step is to combine for a predicted centerpoint c a rough shape patch s c with a full-resolution global saliency map z to obtain a pixel-precise instance mask, see Figure 2.10. For a centerpoint c of coordinates (i c , j c ), the predicted shape patch s c of size S × S is resized to the predicted size ⌈h c ⌉ × ⌈w c ⌉ with bilinear interpolation. A convolutional layer maps the outermost feature map d 1 to a saliency map z of size H × W, which is shared by all predicted parcels. This saliency map is then cropped along the predicted bounding box (i c , j c , ⌈h c ⌉, ⌈w c ⌉). The resized shape and the cropped saliency are added(2.11

  The shape and saliency predictions are supervised for each parcel p in P ′ by computing the pixelwise binary cross-entropy (BCE) between the predicted shape l c(p) and the corresponding true binary instance maskŝ p cropped along the predicted bounding box (i c(p) , j c(p) , ⌈h c(p) ⌉, ⌈w c(p) ⌉): L p shape = BCE(l c(p) , crop c(p) (ŝ p )) .

. 14 )

 14 Differences with CenterMask. Our approach differs from CenterMask in several key ways: (i)We compute a single saliency map and heatmap instead of K different ones. This represents the absence of parcel occlusion and the similarity of their shapes. (ii) Accounting for the lower resolution of satellite images, centerpoints are computed at full resolution to detect potentially small parcels, thus dispensing us from predicting offsets. (iii) The class prediction is handled centerpoint-wise instead of pixel-wise for efficiency. (iv) Only the selected centerpoints predict shape, class, and size vectors, saving computation and memory. (v) We use simple feature concatenation to compute multi-scale descriptors instead of deep layer aggregation[START_REF] Yu | Deep layer aggregation[END_REF] or stacked Hourglass-Networks 112 . (vi) A convolutional network learns to combine the saliency and the mask instead of a simple termwise product.

Figure 3 . 1 :

 31 Figure 3.1: Multimodal time series. Optical (left) and radar (right) time series.

3. 1

 1 Multitemporal fusion3.1.1 MotivationC-band radar and optical images possess well-known synergies for automated crop mapping170,152,20 . 

Figure 3 . 4 :

 34 Figure 3.4: Pastis-R. We extend the PASTIS dataset with radar time series corresponding to ascending and descending orbits of Sentinel-1. For each square patch of 1.28km×1.28km, PASTIS-R thus provides the image time series of 3 different modalities, along with semantic and instance annotation for each pixel.

For a classification

  task over a set K of K classes, the hierarchy of errors can be encapsulated by a cost matrix D ∈ R K×K + , defined such that the cost of predicting class k when the true class is l is D[k, l] ≥ 0, and D[k, k] = 0 for all k = 1 • • • K. Among many other options 81 , one can define D[k, l] as the length of the shortest path between the nodes corresponding to classes k and l in the tree-shaped class taxonomy.

135 4. 1 . 3 . 1

 135131 Prototypical NetworksA prototypical network is characterised by an embedding function f : X → Ω, typically a neural network, and a set π ∈ Ω K of K prototypes. π must be chosen such that any sample x n of true class k has a representation f(x n ) which is close to π k and far from other prototypes.

. 4 )

 4 We argue that a network (f, π) trained to minimize L data and whose prototypes π have a low distortion with respect to D should produce errors with low hierarchical costs. To understand the intuition behind this idea, let us consider a sample x n of true class k and misclassified as class l. This tells us that the distance between f(x n ) and π l is small. If k and l have a high cost according to D, and since k → π k is of low distortion, then d(π k , π l ) must be large. The triangular inequality tells us that

Figure 4 . 2 :Figure 4 . 3 :S

 4243 Figure 4.2: CIFAR100 class hierarchy. The arcs at different radii represent the different classes of each level of the hierarchy. Unlabelled arcs share the same name as their parent class.

  Rk,l,m • log(R k,l,m ) + (1 -Rk,l,m ) • log(1 -R k,l,m ) ,(4.15)withT = {(k, l, m) ∈ K 3 | k = l, l = m, k = m}the set of ordered triplet of K, Rk,l,m the hard ranking of the costs between D k,l and D k,m , equal to 1 if D k,l > D k,m and 0 otherwise, and R k,l,m = sigmoid(d(π k , π l )d(π k , π m )) the soft ranking between d(π k , π l ) and d(π k , π m ). For efficiency reasons, we sample at each iteration only a S-sized subset of T . We use S = 10 in our experiments.

Results.

  In this dissertation, we developed deep learning methods to learn representations of satellite image time series and predict agricultural maps. Specifically, we addressed crop mapping successively as parcel classification, semantic segmentation, and panoptic segmentation. For each of these settings, our analysis of the specificities of the data and task, and of the recent developments in the deep learning literature, helped us significantly improve the state-of-the-art. We also defined a new state-of-the-art for panoptic segmentation of satellite image time series, a task which was not yet addressed by the crop mapping community. To conclude with a comprehensive view, we report on Table5.1 the performance of all architectures we introduced, consistently evaluated on PASTIS. For parcel classification, our Pixel-Set Encoder combined with the Lightweight Temporal Attention Encoder improved the state-of-the-art by 16.9pts of mIoU with 10 times fewer trainable parameters. For semantic segmentation, our U-Net with Temporal Attention Encoder improved the state-of-the-art by 4.7pts of mIoU. With Parcels-as-Points, we set the first milestone for panoptic segmentation of satellite image time series at 40.4 PQ. We also assessed how these performances could be improved by leveraging obstruction-resilient radar acquisitions through modality fusion models.

  variability of the observed satellite image time series across the entire country. Indeed, each region can have specific climate, terrain, and cultivating practices. Second, while PASTIS focuses on the 18 most common crop types, real world mapping efforts need to cover the complete set of crop types existing in the region of interest, including rare ones. Such rare types are challenging for learning-based methods as fewer training examples are available. Additionally, increasing the number of classes equally increases the difficulty of the classification problem. Yet, we argue that assembling a multi-year and country-scale training dataset would help mitigating these issues, by enabling training on spatially and

Table 1 : Specificities of remote sensing data.

 1 Summary of some specificities of remote sensing data as compared to typical data encountered in computer vision: natural images (left) and video (right).

		Sentinel-2 Image	Imagenet Image		SITS	Video
	Pixel position Absolute	Relative	Frame of reference	Absolute	Relative
	Channels	13	3	Acquisition time	Crucial information Arbitrary
	Sensor	MSI	Camera	Sampling rate	Uneven	Regular
	Occlusion	Clouds	Between objects	Objects	Fixed	Mobile

Table 2 :

 2 Crop type mapping tasks. Summary of the different crop type mapping tasks, in terms of input data shape, a priori knowledge required and prediction level. T: number of observations, C: number of spectral channels, HxW: spatial size of the area of interest, hxw: spatial size of a parcel.

			Input	A priori	Prediction
			shape	knowledge	level
	Classification	Parcel-based TxCxhxw Pixel-based TxC	Parcel boundaries -	Parcel Pixel
	Segmentation	Semantic Panoptic	TxCxHxW TxCxHxW	--	Pixel Parcel & Pixel

  • Garnot, V.S.F., Landrieu, L. and Chehata, N.,"Multi-Modal Temporal Attention Models for Crop Mapping from Satellite Time Series", ISPRS journal, 2021 Under Review

	0.3.6 Other Contributions
	Datasets. Along with the published articles, we released two benchmark datasets to encourage com-
	parable research in crop type mapping. Our ready-to-use benchmarks can hopefully benefit practi-
	tioners unfamiliar with RS data.
	• S2-Agri was released with our earliest work on parcel-based classification. It contains 200k
	agricultural parcels in a single region of France. For each parcel, we prepared a time series of
	24 Sentinel-2 observations during the 2017 agricultural year. This dataset was downloaded
	International Conferences around 50 times since its publication.
	Code. In an commitment to reproducible research, we made all our research code publicly available
	in the following repositories:
	lite Images Time Series", International Workshop on Advanced Analytics and Learning on Temporal Data, ECML/KDD 2020. • github.com/VSainteuf/pytorch-psetae • github.com/VSainteuf/lightweight-temporal-attention-pytorch • github.com/VSainteuf/utae-paps • github.com/VSainteuf/pastis-benchmark • github.com/VSainteuf/metric-guided-prototypes-pytorch

• Garnot, V.S.F. and Landrieu, L., "Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks", ICCV 2021 • Garnot, V.S.F. and Landrieu, L.,"Leveraging Class Hierarchies with Metric-Guided Prototype Learning", BMVC 2021 • Garnot, V.S.F., Landrieu, L., Giordano, S. and Chehata, N.,"Satellite Image Time Series Classification with Pixel-Set Encoders and Temporal Self-attention" CVPR 2020 • Garnot, V.S.F., Landrieu, L., Giordano, S. and Chehata, N., "Time-Space Tradeoff in Deep Learning Models for Crop Classification on Satellite Multi-Spectral Image Time Series", IGARSS 2019 International Workshop • Garnot, V.S.F. and Landrieu, L., "Lightweight Temporal Self-attention for Classifying Satel-• PASTIS (Panoptic Satellite image TIme Series) was released in 2021. While our first dataset could only be used to evaluate parcel-based classification approaches, PASTIS can be used as a benchmark for object-based classification, semantic segmentation, and panoptic segmentation. The dataset is composed of 2433 image time series of 128 × 128 resolution and with 10 spectral bands. For each patch, we gather all available acquisitions between September 2018

and November 2019 amounting to 115k Sentinel-2 images. The patches were selected in four different French regions and cover and area of 4000km 2 , and contain around 120k agricultural parcels. We also released PASTIS-R, which extends PASTIS with the corresponding Sentinel-1 radar acquisitions for each patch for a total of 339 174 radar images. At the time of writing, PASTIS was already downloaded more than 260 times.

Table 1 .1: Hyperparameters. Summary

 1 

			of the models' hyperparameters. When applicable, we show the
	number of kernels in the successive layers of the CNNs, the sizes of the hidden state of the GRU cells, the
	ratio of trainable parameters allocated to the temporal dimension of the data, as well as the total number of
	trainable parameters of each model.			
		Number of Hidden State	Temporal	Total Number
	Model	Kernels	Size	Parameter Ratio of Parameters
	CNN	16 : 32 : 96	-	0	92 899
	CNN+GRU 7 16 : 32 : 64	64	0.7	92 035
	CNN+GRU 8 16 : 32 : 36	96	0.8	93 807
	CNN+GRU 9 16 : 16 : 16	128	0.9	90 179
	GRU	-	156	1	94 587
	ConvLSTM	30 : 64	64	-	95 353

Table 1 .2: Classification experiment. Performance

 1 

	metrics of the different models. We report the Overall

Table 1 .3: Per-class performance. F

 1 -score on the test set reported per class.

				CNN+ Conv
		CNN GRU GRU 9 LSTM
	Undefined	0.0	45.1	35.4	38.2
	Meadows	92.9	95.8	96.0	96.0
	Cereal	93.3	97.1	97.5	97.5
	Hemp	21.6	60.5	64.4	72.7
	Leguminous Fodder	15.6	42.9	43.8	34.8
	Other Fodder	0.0	25.5	32.9	14.8
	Oilseed	93.1	95.9	96.0	95.1
	Protein Crop	79.2	87.9	89.1	87.6
	Industrial Crop	19.6	40.3	47.3	23.9
	Fruit, Vegetable, Flower	42.5	60.3	63.1	55.1
	Aromatic/Medicinal Plant	0.0	32.8	28.9	8.3
	Ligneous	5.5	39.8	38.6	32.1
	Orchard	0.0	8.0	6.0	2.5
	Grapevine	81.8 95.1	94.3	92.4
	Short Rotation Coppice	0.0	8.3	18.2	17.4
	Non Agricultural Area	46.7	54.9	59.1	55.2
	Other	1.2	24.0	27.0	14.1
	relevant for the problem at hand. CNNs are well suited for extracting shape and texture information,
	and it appears that parcels' shape does not strongly correlate with crop type. Furthermore, the resolu-
	tion of Sentinel-2 images may not allow to capture rich texture information (see Figure 1.3(b)). This
	would also explain why the ConvLSTM model -which relies on convolutions for spatial encoding
	-performs slightly worse that the CNN+GRU ones.			
	Additionally, these results highlight the importance of choosing a large hidden state size when us-
	ing RNNs to fully leverage the temporal structure of the data. Comparing the GRU and CNN+GRU 7
	models indicates that allocating too many parameters to extract convolutional features reduces the per-
	formance compared to a model operating on simple handcrafted features with a larger hidden state.
	We show the per-class performances of the four types of architectures in Table 1.3. For 11 out of

Table 1 .4: Time shuffling experiment.

 1 

	F-score while trained on the regular image sequences, and with
	randomly shuffled sequences.			
		Ordered Shuffled Δ
	ConvLSTM	49.2	47.9	-1.3
	CNN+GRU 7	53.2	52.0	-1.2
	CNN+GRU 9	55.1	48.8	-6.3
	GRU	53.8	45.3	-8.5

Table 1 .5: PSE+TAE hyperparameters.

 1 Configuration of our model chosen for the numerical experiments. The dimension of each successive feature space is given for MLPs and fully connected layers. We show the corresponding number of trainable parameters on the last column. In agreement with our conclusion of Section 1.1, most of the trainable parameters are allocated to temporal encoding.

	Modules Hyperparameters	Number of parameters
	PSE		19 936
	S	64	
	MLP 1 MLP 2	10 → 32 → 64 132 → 128	
	TAE		116 480
	d e , d k , n h 128, 32, 4	
	FC 1 FC 2 MLP 3	128 → (32 × 2) 32 → 32 512 → 128 → 128	
	Decoder		11 180
	MLP 4 Total	128 → 64 → 32 → 20	147 604

Table 1 .6: Hyperparameters of the competing architectures.

 1 For all models we use the same values for the decoder MLP 3 .

	Number of parameters
	CNN+GRU	144 204
	• 3 × 3 convolutions: 32, 32, 64 kernels • Global average pooling	
	• Fully connected layer: 128 neurons	
	• Hidden state size: 130	
	CNN+TempCNN	156 788
	• 3 × 3 convolutions: 32, 32, 64 kernels • Global average pooling	
	• Fully connected layer: 64 neurons	
	• Temporal convolutions:	
	32, 32, 64 kernels of size 3	
	• Flatten layer	
	Transformer	178 504

Table 1 .7: Classification experiment.

 1 Classification metrics and time benchmark of the different architectures. The inter-fold standard deviation of the OA and mIoU is given in smaller font. Additionally, the total time for one epoch of training, and for inference on the complete dataset are given on the third and fourth columns. 1 disk space required for training and pure inference, 2 time for the entire training step,[START_REF] Abramov | Speckle reducing for sentinel-1 sar data[END_REF] preprocessing and inference time,[START_REF] Akhtar | Threat of adversarial attacks on deep learning in computer vision: A survey[END_REF] dataset before and after preprocessing.

		OA	mIoU	Training Inference (s/epoch) (s/dataset)	Disk Size Gb
	PSE+TAE	94.2 ± 0.1 50.9 ± 0.8	158	149	28.6 / 12.3 1
	CNN+GRU (Section 1.1) 93.8 ± 0.3 48.1 ± 0.6	656	633	98.1
	CNN+TempCNN 119	93.3 ± 0.2 47.5 ± 1.0	635	608	98.1
	Transformer 133	93.0 ± 0.2 46.3 ± 0.9	13	420 + 4 3	28.6 / 0.22 4
	ConvLSTM 131	92.5 ± 0.5 42.1 ± 1.2	1 283	666	98.1
	Random Forest 8	91.6 ± 1.7 32.5 ± 1.4	293 2	420 + 4 3 28.6 / 0.44 4

  2 ± 0.2 50.3 ± 0.7 S = 32 94.2 ± 0.1 50.1 ± 0.5 No geometric features 93.9 ± 0.1 50.0 ± 0.7

	PSE+Transformer+q	94.1 ± 0.2 49.5 ± 0.7
	CNN+TAE	94.0

± 0.1 49.2 ± 1.1 MS+TAE 93.7 ± 0.1 48.9 ± 0.9 PSE+GRU+p 93.6 ± 0.2 48.7 ± 0.3 PSE+GRU 93.6 ± 0.2 47.3 ± 0.3 PSE+Transformer 93.4 ± 0.2 46.6 ± 0.9

Table 1 .9: Processing times.

 1 Comparison of processing time for different methods for batches of 128 parcels. We can see that the processing time is dominated by the loading time except for the Transformer which processes pre-computed means.

	Time in ms/batch	Total Loading Forward Backward
	PSE+TAE (ours)	107	85	11	11
	CNN+TempCNN 381	365	4	12
	CNN+GRU	437	365	14	58
	Transformer	8	1	2	5
	ConvLSTM	530	365	61	104

Table 1 .10: Classification experiment.

 1 Performance of our model and competing approaches parameterised to all have 150k parameters approximately. MFLOPs is the number of floating points operations (in 10 6 FLOPs) in the temporal feature extraction module and for one sequence. This only applies to networks which have a clearly separated temporal module.

	OA	mIoU	MFLOPs

0.8pt mIoU is noteworthy since our model is not only simpler but also less computationally demanding by almost an order of magnitude.

Table 1 .11: Hyperparameters.

 1 Configurations of the L-TAE, TAE, GRU, and TempCNN instances used to obtain Figure 1.15.

	Parameters	d e	n h	d k	MLP
	L-TAE				
	9 k		128	8	8	128
	34 k		128	16	8	128 -128
	112 k		256	16	8	256 -128
	288 k		512	32	8	512 -128
	740 k		1024	32	8	1024 -256 -128
	3840 k		2048	64	8	2048 -1024 -256 -128
	TAE				
	19 k		64	2	8	128 -128
	39 k		64	4	8	256 -128
	76 k		128	4	8	512 -128
	195 k		256	4	8	1024 -128
	360 k		256	4	8	1024 -256 -128
	641 k		256	8	8	2048 -256 -128
	2592 k		1024	8	16	8192 -256 -128
	Parameters	Hidden Size	Parameters	Kernels	FC
	15k	32		14k		16 -16 -16	16 -16
	37k	64		45k		32 -32 -32	32 -32
	134k	156		136k		64 -64	64
	296k	256		296k		128 -128	64
	636k	400		702k		128 -128 -128	180
	3545k	1024		3362k		64 -128 -256	512 -128
	GRU					TempCNN

Table 1 .12: Hyperparameter robustness.

 1 Impact of several hyper-parameters on the performance of our method. Underlined, the default parameters values in this study; in bold, the best performance.

	n h Params. mIoU	d k Params. mIoU	d e Params. mIoU
	2	114k	51.6	2	118k	50.7	32	46k	49.6
	4	118k	51.0	4	127k	51.3	64	59k	49.6
	8	127k	51.2	8	143k	51.7	128	65k	51.1
	16	143k	51.7	16	176k	50.8	256	143k	51.7
	32	176k	51.2	32	242k	51.2	512	254k	51.4

Table 1 .13: Computational complexity.

 1 Asymptotic complexity of different temporal extraction modules for the computation of keys, attention masks, and output vectors. For the GRU, the complexity of the memory update is given in the Keys and Mask columns. X is the size of the output vector. d r is the size of the hidden state of the GRU.

	Method	Keys	Mask	Output
	L-TAE	O(T d e d k )		

Table 1 .

 1 

	Spatial Encoder		Temporal Encoder
		TempCNN MSResNet LSTM Transformer
	ResNet18	52.2%	49.5%	44.6% 43.6%
	SqueezeNet	53.9%	49.8%	35.9% 42.6%
	MobileNetv3	53.2%	54.3%	43.5% 48.1%
	PixelAverage	64.5%	58.8%	48.4% 52.6%
			Pixel-Set Encoding and Self-Attention
	PSE+TAE		65.0%	
	PSE+L-TAE		67.3%

14: DENETHOR. Overall accuracies of different architectures on the DENETHOR dataset for parcel-based classification, taken from Kondmann et al.

[START_REF] Kondmann | DENETHOR: The dynamicearthnet dataset for harmonized, inter-operable, analysis-ready, daily crop monitoring from space[END_REF] 

. These experiments, led by an independant research team , confirm both the superior performance of our PSE+L-TAE method (see Section 1.5), and our finding that convolutional spatial encoders are not well suited for parcel-based classification (see Section 1.1).

Table 2 .1: Spatial encoding hyperparameters.

 2 Width of the feature maps outputted at each level of the encoding and decoding branches of the spatial module. . Note that we do not use the focal loss in this experiment, as the PASTIS dataset has a smaller class imbalance, see Section 2.2.3. In Table2.1, we report the width of the feature maps outputted by each level of the U-TAE's encoder and decoder. Across the network, we use the the same convolutional block shown in Figure2.2 and constituted of one 3 × 3 convolution from the input to the output's width, and one residual 3 × 3 convolution. In the encoding branch, we use Group Normalisation with 4 groups and Batch Normalisation in the decoding branch.

	Encoder	Decoder
	e 1 64	d 1 32
	e 2 64	d 2 32
	e 3 64	d 3 64
	e 4 128	d 4 128

lossFigure 2.2: Convolutional block. Structure of the convolutional block used in the spatial encoder-decoder network. This block maps a feature map with D in channels to a feature map with D out channels.

Table 2 .2: Review of recent methods.

 2 Summary of our analysis of existing approaches for satellite image time series encoding, regarding the spatial scale at which spatial and temporal encoding operates.

					Spatial encoding		Temporal encoding	
		ConvLSTM 131,142		Single scale		For every pixel	
		U-Net + ConvLSTM 98,135	Multi-scale	Only at coarsest spatial level	
		FPN-ConvLSTM 98		Multi-scale	Multiple spatial resolutions Costly	
		3D U-Net 135			Multi-scale	Multiple spatial resolutions convolutions<attention	
		Ours			Multi-scale	Multiple spatial resolutions Attention-based encoding	
	2.2.3 PASTIS dataset							
	The PASTIS dataset is designed for the evaluation of semantic and panoptic segmentation of agricul-
	tural	parcels	from	SITS.	We	made	it	publicly	available	at

github.com/VSainteuf/pastis-benchmark.

Table 2 .3: Cross validation.

 2 Official 5-fold cross validation scheme. Each line gives the repartition of the splits into train, validation and test set for each fold.

	Fold Train Val Test
	I	1-2-3 4	5
	II	2-3-4 5	1
	III 3-4-5 1	2
	IV 4-5-1 2	3
	V	5-1-2 3	4

Temporal Sampling. The temporal sampling of the sequences in PASTIS is irregular: depending on their location, patches are observed a different number of times and at different intervals. This is a result of both the orbit schedule of Sentinel-2 and the policy of Sentinel data providers not to process tile observations identified as covered by clouds for more than 90% of the tile's surface. As this corresponds to the real world setting, we decided to leave the SITS as is, and thus to encourage methods that can favourably address this technical challenge. As a result, the proposed SITS are constituted of 33 to 61 acquisitions. Cloud Cover. Even after the automatic filtering of predominantly cloudy acquisitions, some patches are still partially or completely obstructed by cloud cover. We opt to not apply further pre-processing or cloud detection, and produce the raw data in PASTIS. Our reasoning is that an adequate algorithm should be able to learn to deal with such acquisitions. Indeed, robustness to cloud-cover has been experimentally demonstrated for deep learning methods by Rußwurm and Körner

[START_REF] Rußwurm | Convolutional LSTMs for cloud-robust segmentation of remote sensing imagery[END_REF][START_REF] Rußwurm | Self-attention for raw optical satellite time series classification[END_REF] 

.

Table 2 .4: Semantic Segmentation.

 2 We report for our method and six competing methods the model size in trainable parameters, Overall Accuracy (OA), mean Intersection over Union (mIoU), and Inference Time for one fold of ∼ 490 sequences (IT). The second part of the table reports the results of our ablation study.

	Model	# param OA mIoU IT (s) ×1000
	U-TAE (Section 2.1)	1 087 83.2	63.1 25.7
	3D-Unet 135	1 554 81.3	58.4 29.5
	U-ConvLSTM 135	1 508 82.1	57.8 28.3
	FPN-ConvLSTM 98	1 261 81.6	57.1 103.6
	U-BiConvLSTM 98	1 434 81.8	55.9 32.7
	ConvGRU 9	1 040 79.8	54.2 49.0
	ConvLSTM 131,142	1 010 77.9	49.1 49.1
	Mean Attention	1 087 82.8	60.1 24.8
	Skip Mean + Conv	1 087 82.4	58.9 24.5
	Skip Mean	1 074 82.0	58.3 24.5
	BatchNorm	1 087 71.9	36.0 22.3
	Single Date (August)	1 004 65.6	28.3	1.3
	Single Date (May)	1 004 58.1	20.6	1.3

Table 2 .5: PaPs hyperparameters.

 2 Configuration of the three MLPs of PaPsAcross our experiments, we use Adam[START_REF] Kingma | ADAM: A method for stochastic optimization[END_REF] optimizer and a batch size of 4 sequences. We start with a learning rate of 0.01 for 50 epochs, and decrease it to 0.001 for the last 50 epochs.

	MLP Layers	Final Layer
	Shape 256 → 128 → S 2 Size 256 → 128 → 2 Class 256 → 128 → 64 → K	-Softplus Softmax
	2.4 Numerical Experiments: panoptic segmentation
	2.4.1 Implementation details	

We use the same U-TAE configuration as earlier as the encoding backbone and a PaPs module with 190k parameters. We set the shape patch size S to 16. The saliency and heatmap predictions are obtained with two separate convolutional blocks operating on the high resolution feature map d 1 with 32 channels. These blocks are composed of two convolutional layers of width 32 and 1 respectively.

We use Batch Normalisation and ReLu after the first convolution, and a sigmoid after the second.

The 256-dimensional multi-scale feature vector (128 + 64 + 32 + 32) is mapped to the shape, class and size predictions by three different MLPs described in Table

2

.5. The inner layers use Batch Normalisation and ReLu activation.

The residual CNN used for shape refinement is composed of three convolutional layers with kernel size: 1 → 16 → 16 → 1, with ReLu activation, and instance normalisation on the first layer only.

A Pytorch implementation is available at https://github.com/VSainteuf/utae-paps.

Table 2 .6: Panoptic Segmentation Experiment.

 2 We report class-averaged panoptic metrics: SQ, RQ, PQ.

		SQ RQ PQ
	U-TAE + PaPs	81.3 49.2 40.4
	U-ConvLSTM + Paps 80.9 40.8 33.4
	S = 24	81.3 48.5 39.9
	S = 8	81.0 48.6 39.8
	Multiplicative Saliency 74.5 47.2 35.5
	Single-image	72.3 16.9 12.4

Table 3 .1: Parcel Classification.

 3 We evaluate the performance of models operating on a single modality (top) and of different fusion strategies for parcel-based classification (bottom). For each model, we evaluate its baseline performance and the impact of the temporal dropout and/or auxiliary classifiers enhancements, when applicable. We report the 5-fold cross validated classification scores in terms of mean class-wise Intersect over Union, and the parameter count of the base model, and, when relevant, of the model with auxiliary classifiers.

		Base	Temp. dropout supervision Temp. dropout Auxiliary Auxiliary &	Parameter Count
		OA mIoU		mIoU		
	S2	91.7 73.9	74.5	-	-	114k
	S1D	87.0 64.5	64.7	-	-	114k
	S1A	86.4 63.3	62.9	-	-	114k
	Early Fusion	91.8 74.9	76.5	-	-	117k
	Mid Fusion	92.0 75.1	75.9	75.0	76.5	152k/185k
	Late Fusion	91.1 73.0	73.6	76.1	77.2	254k/287k
	Decision Fusion 91.0 72.5	72.8	75.2	75.8	259k

Table 3 .3: Panoptic Segmentation Experiment.

 3 We evaluate the panoptic segmentation performance of models operating on a single modality and multimodal models trained with the early and late fusion strategies with temporal dropout.

		SQ RQ PQ Parameter count
	S2	81.3 49.2 40.4	1 318k
	S1D	77.0 39.3 30.9	1 318k
	S1A	77.4 38.8 30.6	1 318k
	Early Fusion + Tdrop 82.2 50.6 42.0	1 791k
	Late Fusion + Tdrop 81.6 50.5 41.6	2 390k

Table 3 .4: Inference times.

 3 We report the inference times in seconds of Early and Late fusion for one fold of PASTIS (500 patches, 820km 2 ). We measure the combined data loading and prediction time, to accouint for the interpolation step in early fusion

	Parcel	Semantic	Panoptic
	classification segmentation segmentation
	Early	192	280	414
	Late	149*	259*	819
	* with auxiliary loss.		
	3.3.1 Recommendations.			

  .13) 4.1.3.4 Choosing a Metric Space Prototypical networks operating on Ω = R m typically use the squared Euclidean norm in the dis-tance function, motivated by its quality as a Bregman divergence 147 . However, given that the metric penalizers tend to produce prototypes which are further apart than their unguided counterparts, the square norm makes learning less stable. We observe that defining d with the Euclidean norm yields significantly better results. We define the cost matrix of these class sets as the length of the shortest path between nodes

	H(x) = δ(	x 2 /δ 2 + 1 -1) ,	(4.14)
	4.2 Numerical experiments		
	4.2.1 Datasets and backbones		
	We evaluate our approach with different tasks and public datasets with fine-grained class hierarchies:
	for image classification on CIFAR100 83 and iNaturalist-19 169 , RGB-D image segmentation on
	NYUDv2 110 , and parcel-based crop type classification on the dataset introduced in Chapter 1 (S2-
	Agri) † .		

The non-differentiability can be handled by composing with a Huber-like

[START_REF] Huber | Robust regression: asymptotics, conjectures and Monte Carlo[END_REF][START_REF] Charbonnier | Deterministic edgepreserving regularization in computed imaging[END_REF] 

function d = H( • ),

with H defined in Equation

4

.14 and δ ∈ R + a (small) hyper-parameter. The resulting metric d is asymptotically equivalent to the Euclidean norm for large distances and behaves like the smooth squared Euclidean norm for small distances. In Section 4.2.4.2, we investigate the effect of this change.

Table 4 .1: Datasets.

 4 Composition and taxonomies of the four studied datasets. IR stands for the Imbalance Ratio (largest over smallest class count), nodes and leaves denote respectively the total number of classes and leaf-classes in the tree-shape hierarchy, ABF stands for the Average Branching Factor, and D stands for the average pairwise distance. tree-shape taxonomies represented Figures 4.2 to 4.5. As shown in Table4.1, these datasets cover different settings in terms of data distribution and hierarchical structure.

	Dataset	Data			Hierarchical Tree		
		Volume (Gb) Samples IR	Depth Nodes (leaves) ABF	D
	NYUDv2	2.8	1449	93	3	57 (40)	5.0	4.3
	S2-Agri	28.2 189 971 617	4	83 (45)	5.8	6.5
	CIFAR100	0.2	60 000	1	5	134 (100)	3.8	7.0
	iNat-19	82.0 265 213	31	7	1189 (1010)	6.6 11.0
	in the associated							

Image Classification on CIFAR100. CIFAR100 is composed of 50 000 training images and 10 000 test images of size 32 × 32, evenly distributed across 100 classes. We use a super-class system inspired by Krizhevsky & Hinton

[START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] 

and form a 5-level hierarchical nomenclature of size: 2, 4, 8, 20, and 100 classes (see Figure

Table 4 .2: Numerical values of the experimental results

 4 Only the first 6 levels of the hierarchy are represented. At the time of writing, only the classes' obfuscated names were publicly available a meaningful class hierarchy in an unsupervised way. . Error Rate (ER) in % and Average Hierarchical Cost (AHC) on three datasets for our proposed method (top) and the competing approaches (bottom). The values are computed with the median over 5 runs for CIFAR100, the average over 5 cross-validation folds for S2-Agri, and a single run for NYUDv2 and iNat-19. (HSP: Hyperspherical Prototypes, GP: Guided Prototypes).
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	Figure 4.4: S2-Agri class hierarchy.						

  obj mIoU obj OA pix mIoU pix SQ RQ PQ #Param

	Parcel Classification								
	LSTM 130	84.2	56.8	89.5	66.2	-	-	-	1 458k
	PSE+TAE (1.4)	91.4	73.0	95.2	82.4	-	-	-	214k
	PSE+LTAE (1.5)	91.2	73.9	95.7	85.1	-	-	-	114k
	PSE+LTAE + Fusion (3.2)	92.7	77.2	96.7	88.2	-	-	-	287k
	Semantic segmentation								
	3D-UNet 135	-	-	81.3	58.4	-	-	-	1 554k
	U-TAE (2.1)	-	-	83.2	63.1	-	-	-	1 087k
	U-TAE + Fusion (3.2)	-	-	84.2	66.3	-	-	-	1 742k
	Panoptic segmentation								
	U-TAE + PaPs (2.3)	47.6	34.3	70.7	50.9	81.3 49.2 40.4 1 260k
	U-TAE + PaPs + Fusion (3.2) 52.2	35.0	74.8	60.0	82.2 50.6 42.0 1 791k
	5.1 Summary								

† https://www.deeplearningbook.org http://introtodeeplearning.com

† github.com/VSainteuf/pytorch-psetae

different 3 × 3 convolution of respective dilation rates of 1, 2, 4 and 8. We obtain the fifth level of the pyramid with the spatial global average of the feature map. These

maps are concatenated along the channel dimension, and processed by a ConvLSTM with a hidden state size of 88. We found it beneficial to use a supplementary convolution before the ConvLSTM

† https://scihub.copernicus.eu

* For a formal definition of scale-free distortion, see Section 4.1.3.2; the distortion is computed with respect to the means of class embeddings for the cross entropy.

† This work was carried out before the introduction of the PASTIS dataset.

Acknowledgments

these may well become great scarcities of tomorrow.

Edwin Way Teale 1

Spatial and Temporal encoding for parcel-based classification

In this chapter, we consider the problem of crop classification on optical multispectral time series, when the parcel segmentation is already known, i.e., parcel-based classification. In this setting, only the pixels contained in the parcel boundaries are considered as shown on Figure 1.1, and the parcel is classified based on the sequence of satellite observations. Leveraging recent advances in the deep

Dataset

We use the satellite imagery of the PASTIS dataset and instance annotations to test the performance of our panoptic segmentation approach. We also use the same 5-fold cross-validation scheme as for semantic segmantation.

Patch Boundaries. The French LPIS allows us to retrieve the pixel-precise borders of each parcel.

We also compute bounding boxes for each parcel. The parcels' extents are cropped along the extent of their 128 × 128 patch, and the bounding boxes are modified accordingly. Parcels whose surface is more than 50% outside of the patch are annotated with the void label, see Figure 2.3c.

Small parcels. To avoid degenerate cases where the size of the parcel is too small compared to the resolution of Sentinel-2, we chose to remove some agricultural parcels from the dataset based on the following geometrical criteria:

• Parcels that have a surface smaller that 800m 2 (i.e., 8 Sentinel-2 pixels)

• Parcels for which the ratio of the area over the perimeter is smaller than 10 meters.

Such parcels are annotated with the background label.

Void and Background Labels. Pixels which are not within the extent of any declared parcel are annotated with the background "stuff" label, corresponding to all non-agricultural land uses. In the panoptic setting, this label is associated with pixels not within the extent of any predicted parcel. We do not compute the panoptic metrics for the background class, since our focus is on retrieving the parcels' extent rather than an extensive land-cover prediction. In other words, the reported panoptic metrics are the "things" metrics, which already penalize parcels predicted on background pixels by counting them as false positives. fits from predictions with a low hierarchical cost. Indeed, payment agencies monitor the allocation of agricultural subsidies and whether crop rotations follow best practice recommendations [START_REF] Grant | The common agricultural policy[END_REF] . The monetary and environmental impact of misclassifications are typically reflected in the class hierarchy designed by domain experts [START_REF] Brankatschk | Modeling crop rotation in agricultural LCAschallenges and potential solutions[END_REF][START_REF] Bullock | Crop rotation[END_REF] . By achieving a low AHC, we ensure that these downstream tasks can be meaningfully realised from the predictions. Illustrative Example on MNIST. In Figure 4.1, we illustrate the difference in performance and embedding organisation of the embedding space for different approaches. We use a small 3-layer convolutional net trained on MNIST with random rotations (up to 40 degrees) and affine transformations (up to 1.3 scaling). For plotting convenience, we set the features' dimension to 2.

Fine-Grained Image Classification on iNaturalist-19 (iNat-19

Implementation details

CIFAR100 ResNet-18 is trained on CIFAR100 using SGD with initial learning rate l r = 10 -1 , momentum set to 0.9 and weight decay w d = 5 • 10 -4 . The network is trained for 200 epochs in batches of size 128, and the learning rate is divided by 5 at epochs 60, 120, and 160. The model is evaluated using its weights of the last epoch of training, and the results we report are median values over 5 runs.

NYUDv2

We train FuseNet on NYUDv2 using SGD with momentum set to 0.9. The learning rate is set initially to 10 -3 and multiplied at each epoch by a factor that exponentially decreases from 1 to 0.9. The network is trained for 300 epochs in batches of 4 with weight decay set to 5 • 10 -3 . We report the performance of the best-of-five last testing epochs.

S2-Agri

We train PSE+TAE on S2-Agri using Adam with l r = 10 -3 , β = (0.9; 0.999) and no weight decay. The dataset is randomly separated in five splits. For each of the five folds, 3 splits are used as training data on which the network is trained in batches of 128 samples for 100 epochs. The best epoch is selected based on its performance on the validation set, and we use the last split to measure the final performance of the model. We report the average performance over the five folds.

iNaturalist-19

Given the complexity of the dataset, we follow [START_REF] Bertinetto | Making better mistakes: Leveraging class hierarchies with deep networks[END_REF] and use a ResNet-18 pre-trained on ImageNet. The network is trained for 65 epochs in batches of 64 epochs using Adam with l r = 10 -4 , β = (0.9; 0.999) and no weight decay. The best epoch is selected based on the performance on the validation set, and we report the performance on the held-out test set.

MGP Hyper-Parameterisation. The embedding space Ω is chosen as R 512 for iNat-19 and R 64 for all other datasets. We chose d as the Euclidean norm. (see 4.2.4.2 for a discussion on this choice). We evaluate our approach (Guided-proto) with λ = 1 in (4.13) for all datasets. We use the same training schedules and learning rates as the backbone networks in their respective papers. In particular, the class imbalance of S2-Agri is handled with a focal loss [START_REF] Lin | Focal loss for dense object detection[END_REF] .

Competing methods

In the paper where they are introduced, all backbone networks presented in Section 4.2.1 use a linear mapping between the sample representation and the class scores, as well as the cross-entropy loss. The resulting performance defines a baseline, denoted as Cross-Entropy, and is used to estimate the gains in Average Hierarchical Cost (AHC) and Error Rate (ER) provided by different approaches.

We reimplemented other competing methods:

• Hierarchical Cross-Entropy (HXE): Bertinetto et al. [START_REF] Bertinetto | Making better mistakes: Leveraging class hierarchies with deep networks[END_REF] model the class structure with a hierarchical loss composed of the sum of the cross-entropies at each level of the class hierarchy. As suggested, a parameter α taken as 0.1 defines exponentially decaying weights for higher levels.

• Soft Labels (Soft-labels): Bertinetto et al. [START_REF] Bertinetto | Making better mistakes: Leveraging class hierarchies with deep networks[END_REF] propose as second baseline in which the the onehot target vectors are replaced by soft target vectors in the cross-entropy loss. These target vectors are defined as the softmin of the costs between all labels and the true label, with a temperature 1/β chosen as 0.1, as recommended in Bertinetto et al. [START_REF] Bertinetto | Making better mistakes: Leveraging class hierarchies with deep networks[END_REF] .

• Earth Mover Distance regularisation(XE+EMD): Hou et al. [START_REF] Hou | Squared earth mover's distance-based loss for training deep neural networks[END_REF] propose to account for the relationships between classes with a regularisation based on the squared earth mover distance.

We use D as the ground distance matrix between the probabilistic prediction p and the true class y. This regularizer is added along the cross-entropy with a weight of 0.5 and an offset μ of 3.

• Hierarchical Inference (YOLO): Redmon & Farhadi [START_REF] Redmon | YOLO9000: better, faster, stronger[END_REF] propose to model the hierarchical structure between classes into a tree-shaped graphical model. First, the conditional probability that a sample belongs to a class given its parent class is obtained with a softmax restricted to the class' co-hyponyms (i.e., siblings). Then, the posterior probability of a leaf class is given by the product of the conditional probability of its ancestors. The loss is defined as the cross-entropy of the resulting probability of the leaf classes.

• Hyperspherical Prototypes (Hyperspherical-proto): The method proposed by Mettes et al. 104 is closer to ours, as it relies on embedding class prototypes. They advocate to first position prototypes on the hypersphere using a rank-based loss (see Section 4.2.4.2) combined with a prototype separating term. They then use the squared cosine distance between the image embed-dings and prototypes to train the embedding network. Note that in our re-implementation, we used the finite metric defined by D instead of Word2Vec 105 embeddings to position prototypes. Lastly, we do not evaluate on S2-Agri as the integration of the focal loss is non-trivial.

• Deep Mean Classifiers (Deep-NCM): Guerriero et al. [START_REF] Guerriero | DeepNCM: deep nearest class mean classifiers[END_REF] present another prototype-based approach. Here, the prototypes are the cumulative mean of the embeddings of the classes' samples, updated at each iteration. The embedding network is supervised with L data with d defined as the squared Euclidean norm.

• Learnt-Proto: Lastly, we evaluate simple prototype learning [START_REF] Yang | Robust classification with convolutional prototype learning[END_REF] by setting λ = 0 in (4.13).

Results

Overall Performance. As displayed in Figure 4.6, the benefits provided by our approach can be appreciated on all datasets. Compared to the Cross-entropy baseline, our model improves the AHC by 3% on NYUDv2 and S2-Agri, and up to 9% and 14% for CIFAR100, and iNat-19 respectively.

The hierarchical inference scheme YOLO of Redmon & Farhadi 124 performs on par or better than our methods for NYUDv2 and S2-Agri, while Soft-labels perform well on CIFAR100 and NYUDv2.

Yet, metric-guided prototypes bring the most consistent reduction of the hierarchical cost across all tasks, datasets, and class hierarchies configurations. This suggest that arranging the embedding space consistently with the cost metric is a robust way of reducing a model's hierarchical error cost. We argue that these results, combined with its ease of implementation, make a strong case for our approach. While being initially designed to reduce the AHC, our method also provides a relative decrease of the ER by 3 to 4% across all datasets compared to the cross-entropy baseline. This indicates that cost matrices derived from the class hierarchies can indeed help neural networks to learn richer representations. Guided vs. fixed prototypes. As suggested by the lower performance of Hyperspherical-proto, jointly learning the prototypes and the embedding network can be advantageous. To confirm this observation, we altered our Guided-proto method to first learn the prototypes and then the embedding network. We observed a significant decrease in performance across the board, up to 5 more points of ER in iNat-19. This suggests that insights from the data distribution can conversely benefit the positioning of prototypes, and that they should be learned conjointly.

Choice of distance.

In Table 4.3, we report the performance of the Guided-proto model on the four datasets when replacing the Euclidean norm with the squared Euclidean norm. Across our ex- Hidden prototypes. In cases where the cost matrix D is derived from a tree-shaped class hierarchy, it is possible to also learn prototypes for the internal nodes of this tree, corresponding to super-classes of leaf-level labels. These prototypes do not appear in L data , but can be used in the prototype penalisation to instill more structure into the embedding space. In Table 4.4, line leaf-proto, we note a small but consistent improvement in terms of AHC, resulting in associating prototypes to classes corresponding to the internal nodes of the tree hierarchy as well.

There is no real ending. It's just the place where you stop the story.

Frank Herbert

5

Conclusion

In this last chapter, we present our concluding remarks. We wish to reward the reader who made it to here with a refreshing perspective on the work we presented, while also providing a good landing ground to the reader who likes jumping to conclusions.