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Summary

In the last decades, a lot of scientific and engineering efforts have been dedicated to

processing and storing large data-sets. This thesis focuses on the development of theo-

retical tools and algorithmic solutions which allow to ease the burden of the “big data

era”. In particular, we study fundamental tools of combinatorial data reduction: VC-

dimension, ε-nets, ε-approximations, low-discrepancy colorings, and matchings with low

crossing number.

The main algorithmic contribution of the thesis is an improved algorithm for con-

structing matchings with low crossing numbers. Matchings and spanning paths with

low crossing numbers were introduced by Welzl (1988) for geometric range searching.

Since then, they became a key structure in computational geometry and have found

many other applications in various fields such as discrepancy theory, algorithmic graph

theory, or learning theory. We propose a simple, randomized algorithm which given a

set system with dual VC-dimension D, constructs a matching of X with crossing number

Õ(|X|1−1/D) in time O(|X|1/D|S|), improving upon the previous-best construction of time

Õ(|X|2|S|). This contribution allows us to obtain improved algorithms for constructing

low-discrepancy colorings and ε-approximations of sub-quadratic size. Our method does

not use any input-specific tools, which makes it capable to handle abstract set systems

and geometric set systems in high dimensions, without additional complications.

We resolve a long standing central open problem of VC theory: bounding the VC-

dimension of k-fold unions and intersections of half-spaces in high dimensions. We show

that the set system induced by k-fold union of half-spaces in R
d have VC dimension

Ω(dk log k) if d ≥ 4. This settles the open problem of Blumer et al. (1989), studied by

Eisenstat and Angluin (2007); Eisenstat (2009). Furthermore, we show that asymptotic

lower bounds on the VC dimension of k-fold unions of set systems imply asymptotic lower

bounds on ε-net sizes.

Keywords: data approximation, sampling, VC-dimension
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Résumé

Au cours des dernières décennies, de nombreux efforts scientifiques et techniques ont été

consacrés au traitement et au stockage de grands ensembles de données. Cette thèse se

concentre sur le développement d’outils théoriques et de solutions algorithmiques qui per-

mettent d’alléger le fardeau de “l’ère des grandes données”. En particulier, nous étudions

les outils fondamentaux de la réduction combinatoire des données : La dimension VC,

les ε-réseaux, les ε-approximations, les colorations à faible discrépance, et les couplages à

faible nombre de croisements.

La principale contribution algorithmique de la thèse est un algorithme amélioré pour

construire des couplages avec un faible nombre de croisements. Les couplages et les

chemins couvrant à faible nombre de croisements ont été introduits par Welzl (1988) pour

le problème de la recherche par plage géométriques. Depuis, ils sont devenus une struc-

ture clé en géométrie computationnelle et ont trouvé de nombreuses autres applications

dans des domaines variés tels que la théorie de la discrépance, la théorie algorithmique des

graphes ou la théorie de l’apprentissage. Nous proposons un algorithme simple et aléatoire

qui, étant donné un système d’ensembles avec une dimension VC duale D, construit un

couplage de X avec un nombre de croisement Õ(|X|1−1/D) en temps O(|X|1/D|S|), amélio-

rant la meilleure construction précédente en temps Õ(|X|2|S|). Cette contribution nous

permet d’obtenir des algorithmes améliorés pour construire des colorations à faible dis-

crépance et des ε-approximations de taille sub-quadratique. Notre méthode n’utilise pas

d’outils spécifiques à l’entrée, ce qui la rend capable de traiter des systèmes d’ensembles

abstraits et des systèmes d’ensembles géométriques en haute dimension, sans complica-

tions supplémentaires.

Nous résolvons un problème ouvert central de la théorie VC: la borne de la dimension

VC des k-unions et k-intersections de demi-espaces en haute dimension. Nous montrons

que le système d’ensembles induit par les k-unions de demi-espaces dans R
d ont une

dimension VC Ω(dk log k) si d ≥ 4. Ceci résout le problème ouvert de Blumer et al.

(1989), étudié par Eisenstat and Angluin (2007); Eisenstat (2009). De plus, nous montrons

que les bornes inférieures asymptotiques sur la dimension VC des k-unions de systèmes

d’ensembles impliquent des bornes inférieures asymptotiques sur les tailles des ε-réseaux.

Mots clés: approximation des données, échantillonnage, dimension VC



Organization of the thesis

Chapter 1 highlights my main contributions and provides a high-level overview on the

essential background. Chapter 2 further elaborates on the studied notions and the fun-

damental links between them, and presents a detailed historic overview. The rest of the

manuscript is partitioned into four parts: Chapter 4 presents an improved algorithm for

constructing low-discrepancy colorings; Chapter 5 provides tight lower bounds for the VC-

dimension of k-fold unions of half-spaces; Chapter 6 studies the upper and lower bounds

on ε-net sizes by uniform sample; Chapter 7 present a simple and self-contained proof of

optimal ε-approximations by uniform sampling. The following works are at the core of

this thesis.

• Chapter 4

– M Csikós, N. H. Mustafa. “Escaping the Curse of Spatial Partitioning: Match-

ings With Low Crossing Numbers and Their Applications” 37th International

Symposium on Computational Geometry (SoCG 2021).

Csikós and Mustafa (2021)

– M. Csikós, N. H. Mustafa. “Practical Algorithm for Colorings with Optimal

Discrepancy” Submitted. Csikós and Mustafa (2022)

• Chapter 5

– M. Csikós, A. Kupavskii, N. H. Mustafa. “Tight Lower Bounds on the VC-

dimension of Geometric Set Systems” Journal of Machine Learning Research.

Csikós et al. (2019)

• Chapter 7

– M. Csikós, N. H. Mustafa. “Optimal Approximations Made Easy” Information

Processing Letters. Csikós and Mustafa (2022)

• Not included in the manuscript

– M. Axenovich, M. Csikós. “Induced Saturation of Graphs”. Discrete Mathe-

matics. Axenovich and Csikós (2019)
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Chapter 1

Introduction

With recent technical developments, processing and storing large data-sets became in-

creasingly important. As a consequence, the representation of massive data with com-

pact summaries became a key theme in many modern research areas. This thesis con-

tributes to fundamental tools of combinatorial data reduction: VC-dimension, ε-nets,

ε-approximations, low-discrepancy colorings, and matchings with low crossing number.

In this introductory chapter, we first give a brief, non-technical introduction to the topics

of the thesis and then state our main contributions. To keep the current chapter focused,

the presentation of technical details, examples, and extended historical overview is post-

poned to Chapter 2. Readers who are unfamiliar with the main notions appearing in the

context of set systems, might find it useful to first read Chapter 2 and then return to

Chapter 1.

1.1 Epsilon-approximations

We work with approximations of a general, abstract class of objects—set systems. A set

system is a pair (X,S), where X is a set of elements and S is a set of subsets of X.

Throughout this manuscript, we use the notation n = |X| and m = |S|. given a set

system (X,S) and a parameter ε ∈ (0, 1), we say that A ⊆ X is an ε-approximation of

(X,S) if for any S ∈ S, ∣
∣
∣
∣

|S|
|X| −

|S ∩ A|
|A|

∣
∣
∣
∣
≤ ε.

The notion of ε-approximation was initially introduced in one of the foundational

papers of learning theory (Vapnik and Chervonenkis, 1971) and since then it became a

fundamental tool in many areas. For instance, ε-approximations are used in geometric

computing to design efficient approximate combinatorial queries on geometric data (see
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e.g. Har-Peled, 2011) and play the key role in the core-set construction of Feldman and

Langberg (2011).

The pioneering work of Vapnik and Chervonenkis (1971) showed that if (X,S) has

bounded complexity, then it admits ε-approximations of size independent of |X| and

|S|, moreover, such an approximation can be constructed via uniform sampling. They

measured the complexity of a set system via its VC-dimension, which is defined as the

size of the largest Y ⊆ X such that

|{Y ∩ S : S ∈ S}| = 2|Y |.

The fundamental limits of approximations via uniform sampling was described by Li

et al. (2001). They showed that if (X,S) has VC-dimension at most d, then a uniform

random sample A ⊆ X of size O(d/ε2) is an ε-approximation with positive probability1,

moreover this bound is tight for uniform sampling guarantees.

The first problem we investigate in this thesis is developing efficient algorithms for

constructing ε-approximations of sub-quadratic size. A possible way to obtain o(d/ε2)-

sized approximations is by applying the iterative halving technique of Matoušek et al.

(1991). They observed that finding a set of |X|/2 elements with low approximation error

is essentially equivalent to the problem of finding a low-discrepancy coloring of (X,S).
Given a two-coloring χ : X → {−1, 1}, the discrepancy of χ with respect to S is defined

as

discS (χ) = max
S∈S

∣
∣
∣
∣
∣

∑

x∈S
χ (x)

∣
∣
∣
∣
∣
.

The halving method iteratively constructs a coloring with low discrepancy and pro-

ceeds with only half of the elements which belong to the same color class (for details see

Section 2.2.1). Let δ and T be functions such that for any Y ⊆ X, a coloring of Y with

discrepancy at most δ(|Y |) can be found in time T (|Y |). The halving method guarantees

that for any integer t ≥ 1, one can construct an εt-approximation of size n/2t in time

T (n) + T (n/2) + · · ·+ T (n/2t−1), where

εt ≤
2

n

(

δ(n) + 2δ
(n

2

)

+ · · ·+ 2t−1δ
( n

2t−1

))

. (1.1)

It is known that for any set system, a random two-coloring χ of X satisfies discS (χ) =

O
(√

n lnm
)

with probability at least 1/2. Furthermore, if no additional properties are

known for S and m = Ω(n2), then this bound is essentially optimal. Not so surprisingly,

a random coloring with discrepancy Õ(
√
n) is not enough to improve upon the uniform

1In Chapter 7, we give a simple proof of this result of Li et al. (2001).
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sampling guarantee for approximations: by Equation (1.1), if we want to use the halving

method to construct approximations of size o(d/ε2), we need to find colorings with dis-

crepancy is o
(√

n
)
. A series of research has demonstrated that if one assumes additional

structure on (X,S), then X admits colorings of lower-order discrepancy.

Bounded VC-dimension. Matoušek (1995) showed that if the VC-dimension of (X,S)
is at most d, then X has a coloring with discrepancy O

(√
n1−1/d

)

. This implies, by the

halving method (Equation (1.1)), that set systems with VC-dimension at most d admit

ε-approximations of size

O

((
1

ε2

) d
d+1

)

.

While this coloring result implies improved guarantees, its proof is solely existential—it

does not lead to an algorithm to construct an ε-approximation of the sub-quadratic size.

Bounded dual VC-dimension. The practical situation is better if one assumes the

finiteness of the dual VC-dimension. The dual VC-dimension of (X,S) is defined the

VC-dimension of its dual set system (S, X∗), where X∗ = {Rx : x ∈ X} and Rx =

{S ∈ S : x ∈ S} . If the dual VC-dimension of (X,S) is at most D, then one can find a

two-coloring of X with discrepancy O
(√

n1−1/D lnm
)

in time O(n3m) (Matoušek et al.,

1991). Thus, by the halving method, if (X,S) has dual VC-dimension at most D, then

one can find ε-approximations of size

(
cD ln 1

ε

ε2

) D
D+1

(1.2)

in time O(n3m). The key structure used to construct a coloring with Õ
(√

n1−1/D
)

discrepancy is a matching of X with low crossing number, which is also the algorithmic

bottleneck requiring O(n3m) time to find.

The first contribution of this thesis is an improved algorithm to construct matchings

with low crossing number. In the next section, we shall focus on this problem: we give

a formal definition, present previous algorithmic results, and state the guarantees of our

method.

1.2 Matchings with low crossing number

A matching of a set X is a partition of X into pairs, which we refer to as edges. We say

that a set S ∈ S crosses an edge {x, y} ∈ X if |S ∩ {x, y}| = 1. The crossing number of a
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matching M with respect to S is the maximum number of pairs in M that are crossed by

a set in S. Matchings and spanning paths2 with low crossing numbers were introduced

by Welzl (1988) for geometric range searching (see also Chazelle and Welzl, 1989; Welzl,

1992). Since then, they became key structures in computational geometry (see e.g. Pach

and Agarwal, 2011) and has found many applications in other fields such as algorithmic

graph theory (Ducoffe et al., 2020) or learning theory (Alon et al., 2016).

1.2.1 Previous constructions

The classical algorithm to construct a matching with low crossing number is based on the

multiplicative weight update (MWU) method (Welzl, 1988; Chazelle and Welzl, 1989).

Briefly, the algorithm maintains a weight function π on S, with initial weights set to 1. It

selects edges iteratively, always choosing an edge that is guaranteed to be crossed by sets

of low total weight in π; it then updates π based on the chosen edge. The algorithmic

bottleneck is in finding such an edge: for an abstract set system without additional

structure, this takes O(n2m) time for each of the n/2 iterations.

Another way of creating matchings in abstract set systems can be deduced using Linear

Programming. The starting point is the observation that a spanning tree of crossing

number O(n1−1/D) can be found by rounding the solution of an LP on
(
n
2

)
variables

and m + n constraints (Har-Peled, 2009). The resulting spanning tree then can be used

to construct a matching with crossing number O(n1−1/D) in linear time (see e.g. Pach

and Agarwal, 2011, Chapter 15). Combining this with an efficient approximate LP solver

(e.g., Chekuri and Quanrud (2018)) leads to a randomized Õ(mn2) time algorithm. While

this method has an improved running time, it is rather involved and requires an explicit

representation of a matrix storing the crossings between all the
(
n
2

)
edges on X and the

ranges in S.

In case of geometric set systems, improved bounds are made possible using spatial par-

titioning. The current-best algorithms for set systems induced by half-spaces recursively

construct simplicial partitions, stored in a hierarchical structure called the partition tree,

which then at its base level gives a matching with low crossing number. This approach

is used in the breakthrough result of Chan (2012) who gave an O(n log n) time algorithm

to build partition trees with respect to half-spaces in R
d, which then implies the same for

computing matchings with crossing number O(n1−1/d). However, optimal bounds for con-

structing spatial partitions are only known for the case of half-spaces. Even for half-space

2Spanning path is an ordering x1, . . . , xn of X, its edges are {xi, xi+1}n−1
i=1 , with analogous definition

of crossing number.
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ranges, practical implementation of spatial partitioning in R
d, d > 2 remains an open

problem in geometric computing. In particular, for d > 2, there were no previous imple-

mentations of low-crossing matchings; nor of constructing o
(

d
ε2

)
-sized ε-approximations

even for d = 3.

1.2.2 Our method

The first contribution of this thesis is an improved algorithm to construct a matching (or

spanning path) with low crossing number.

Contribution

Let (X,S) be a set system with dual VC-dimension at most D. Then there is

a randomized algorithm which returns a matching of X with expected crossing

number at most
36

D
· n1−1/D + 30 lnm lnn+ 26 ln2 n

with an expected O
(
mn1/D lnm ·min{D, lnn}+ n2+1/D lnn

)
calls to the member-

ship Oracle of (X,S).

This result implies that one can construct colorings with discrepancy Õ(
√
n1−1/D) and

ε-approximations of size O
((

ε−2 ln 1
ε

) D
D+1

)

in time Õ(n1/Dm + n2+1/D). Our method is

outlined in Algorithm 1.

Importantly, we do not not use spatial partitioning, which makes it possible to handle

abstract set systems and geometric set systems in R
d (not only in R

2) without additional

complications. The only black-box needed is the membership Oracle that returns for a

given x ∈ X and S ∈ S, if x ∈ S.

A preliminary multi-threaded implementation of our algorithm in C++ for set systems

induced on points by half-spaces in R
d is available on GitHub. It is approximately 200

lines of basic code without any non-trivial data-structures.

To further speed-up our algorithm, we implemented an accelerated version, where in-

stead of maintaining the weights on all the O(n2) edges, we work with an initial uniform

random sample of O (n1+α log n) edges, where 0 < α ≤ 1 is a parameter to be set. We

theoretically describe the trade-off between α and the expected crossing number guaran-

tees.
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Algorithm 1: SimpleMatching
(
(X,S), D

)

M ← ∅
while |X| ≥ 4 do

n← |X|, m← |S|
Set the weight of every set in S and every edge in E to 1 // E denotes

(
X
2

)

for i = 1, . . . , n/4 do

sample ei according to current edge weights

sample Si according to current set weights

set the weight of ei and of each edge adjacent to ei to zero

Ei ← sample of Õ(n1+1/D) edges from E

Si ← sample of Õ(mn−(1−1/D)) sets from S
foreach e ∈ Ei do

halve weight of e if Si crosses e

foreach S ∈ Si do
double weight of S if S crosses ei

M ←M ∪ {e1, . . . , en/4}
X ← X \ endpoints

(
e1, . . . , en/4

)

return M

Contribution

Let (X,S) be a set system with dual VC-dimension at most D, 0 < α ≤ 1, and

0 < δ < 1. Let E be a a uniform sample of Õ (n1+α + nα ln(1/δ)) edges from
(
X
2

)
.

Then with probability at least 1−δ, E contains a matching of size n/4 with crossing

number O
(
n1−α/D + ln |S|

)
.

Figure 1.1 shows the matchings constructed by our algorithm on different input and

query types. For reference, the last column contains randomly constructed matchings.

We emphasize that each of these figures contain exactly 2500 edges. Our method, that is

based only on sampling, gives a matching which adapts well to each specific instance. It is

also important to observe that, our method explicitly takes into account the information

about ranges, which leads to different outcomes for half-spaces as ranges (Left column)

and disks as ranges (Middle column). Meanwhile, random sampling is oblivious to ranges.
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Figure 1.1: Matchings on 5000 points with different input and query types.

This makes progress towards the goals expressed in the survey on range searching and

its applications (Agarwal, 2017): “...an interesting open question is to develop simple data

structures that work well under some assumptions on input points and query ranges”.

1.3 VC-dimension

Since the seminal work of Vapnik and Chervonenkis (1971), one of the key quantities

describing the complexity of a set system is the VC-dimension. As such, VC-dimension is

the foundation of many theoretical results in computational geometry (Matoušek, 2013)

and learning theory (Shalev-Shwartz and Ben-David, 2014). What is more important,
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it plays a central role in uniform sampling guarantees and is often required as an input

parameter of algorithms.

While for simple geometric set systems (e.g. ones induced by half-spaces), one can

bound the VC-dimension using elementary arguments, many applications require more

complex set systems. A long standing central open problem since 1989 was bounding

the VC-dimension of k-fold unions and intersections of half-spaces in high dimensions.

The k-fold union of a range set S is defined as Sk∪ = {S1 ∪ · · · ∪ Sk : S1, . . . , Sk ∈ S} .
Similarly, one can define the k-fold intersection of S, denoted by Sk∩, as the range set

consisting of all subsets derived from the common intersection of at most k sets of S.

The foundational paper of Blumer et al. (1989) showed that for any set system (X,S)
both VC-dimensions dVC

(
Sk∪) and dVC

(
Sk∩) are at most O(dVC(S) · k log k). They also

studied the question whether this general upper bound is tight for the basic geometric

case, where S consists of sets induced by half-spaces in R
d. It turned out that for di-

mensions 2 and 3, an improved bound of O(k) holds (Blumer et al., 1989; Dobkin and

Gunopulos, 1995). The prevailing conjecture was that the log k factor can also be removed

for dimensions d ≥ 4.

Despite several attempts to settle this conjecture, the resolution of the VC-dimension of

k-fold unions and intersections of half-spaces was left as one of the main open problems in

the PhD thesis of Johnson (2008), as well as in the papers Eisenstat and Angluin (2007),

and Eisenstat (2009). Yet, as it was pointed out by Bachem (2018), several papers in

learning theory and computational geometry literature assume that the VC-dimension of

k-fold unions and intersections of half-spaces in R
d is O(dk). For example, the coreset

size bounds in the constructions of Feldman and Langberg (2011), Balcan et al. (2013),

and Lucic et al. (2016) would require an additional log k factor in the coreset size if the

upper-bound of O(dk log k) was tight for the k-fold intersection of half-spaces.

We prove that in dimensions d ≥ 4, the log k factor is in fact necessary. In particular,

we describe a deterministic lower-bound construction, which shows that the O(dk log k)

bound is optimal for k-fold unions or intersections of half-spaces in dimensions at least 4.

Contribution

There exists a universal constant c such that for any positive integers k and d ≥ 4,

there exists a set P of at least c · dk log k points in R
d such that the set system H

induced on P by half-spaces satisfies dVC

(
P,Hk∪) = dVC

(
P,Hk∩) = |P |.

Apart from settling affirmatively the 30 year old problem posed by Blumer et al.

(1989), this statement provides the first non-probabilistic construction of a geometric
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set system for which dVC

(
Sk∪) = Ω (d · k log k)—previous lower bound constructions

were randomized and only proved the existence of an abstract set system for which the

dVC

(
Sk∪) = O (d · k log k) bound is tight (Eisenstat and Angluin, 2007; Eisenstat, 2009).

Set systems induced by Boolean combinations of geometric objects arise in other fields

as well. For instance, one of the basic set systems in computational geometry is defined

on a set of hyperplanes H in R
d with ranges

∆(H) =
{

H′ ⊆ H : ∃ an open d-dimensional simplex S in R
d such that

H ∈ H′ if and only if H intersects S
}

.

The importance of
(
H,∆(H)

)
derives from the fact that it is the set system underlying the

construction of cuttings via random sampling (Chazelle and Friedman, 1990). Cuttings

are the key tool for fast point-location algorithms and were studied in detail recently by

Ezra et al. (2020), who provided the best bounds so far for the VC-dimension of ∆(H).

Lemma 1 (Ezra et al. 2020). For d ≥ 9, we have

d (d+ 1) ≤ dVC (∆ (H)) ≤ 5 · d2 log d.

We close the asymptotic gap between the upper and lower bounds of Lemma 1 by estab-

lishing an Ω (d2 log d) bound on the VC-dimension of ∆(H).

Contribution

There is a universal constant c such that for any d ≥ 4 there exists a set H of

c · d2 log d hyperplanes in R
d such that dVC (H,∆(H)) = |H|.

1.4 Epsilon-nets.

Given a parameter 0 < ε < 1, a set N ⊆ X is an ε-net of (X,S) if any range S ∈ S with

size |S| > ε|X| contains at least one element of N . In contrast to ε-approximations that

uniformly approximate the proportion of points in each range, ε-nets guarantee only 1

representative element in each large range (no matter if the range contains 2ε · |X| or |X|
elements). For many application, this weaker property if sufficient: for example, ε-nets

(of the set system (H,∆(H)) studied in the previous section) can be used to de-randomize

sampling-based linear programming solvers (Chan, 2018) or to create cuttings (Clarkson,

1987; Chazelle and Friedman, 1990)—in the latter example, one uses an ε-net of the set
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system (H,∆(H)) studied in the previous section. Similar to the case of ε-approximations,

VC-dimension turned out to be the key parameter in the uniform sampling guarantees

for ε-nets. Haussler and Welzl (1987) showed if (X,S) has VC-dimension at most d, then

a random sample of

max

{
8d

ε
log

8d

ε
,
4

ε
log

2

δ

}

points from X forms an ε-net of (X,S) with probability at least 1 − δ. Later, Komlós

et al. (1992) removed the logarithmic dependence on d by proving that for any 0 < ε < ε0,

a uniform sample of
d

ε
log

1

ε
+ o

(
d

ε
log

1

ε

)

.

elements from X is an ε-net with large probability. Moreover, they showed that this

bound is asymptotically tight: for any d ≥ 2, that there exists of a set system with VC-

dimension d, in which any ε-net (ε < ε0) has size at least (1 − 2/d)(d/ε) log(1/ε). Thus,

in contrast to ε-approximation, uniform sampling yields optimal ε-nets.

In Chapter 6, we prove the following bound that has the current-best leading term up

to constant and guarantees arbitrarily large success probability.

Contribution

Let (X,S) be a set system with VC-dimension at most d, 0 < δ < 1, and 0 < ε <

ε0(d, δ). Then a uniform random sample N ⊆ X of size

d

ε

(

log
1

ε
+

1

d
log

1

δ
+ 2 log

(

log
1

ε
+

1

d
log

1

δ

)

+ 5

)

is an ε-net for (X,S) with probability at least 1− δ.

The aforementioned lower bound construction of Komlós et al. (1992) was of proba-

bilistic nature, proving the existence of an abstract set system of VC-dimension at most

d that does not have small ε-nets. The investigation of the tightness of O(d/ε log(1/ε))

upper-bound for set systems induced by geometric objects has been an active area and is

still ongoing. For instance, the current best lower and upper bounds for the ε-net sizes in

set systems induced by balls in R
3 are Ω(1/ε) and O(1/ε log(1/ε)) respectively.

Our last contribution is a lemma that can potentially help tackling the problem of

lower-bounding ε-net sizes as it gives a new tool to establish these bounds. In a way, it

can be seen as a complement to the above upper bounds: we show that asymptotic lower

bounds of the VC-dimension of (X,Sk∪) imply lower bounds for the sizes of ε-nets in a

sub-system of (X,S).
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Contribution

Let (X,S) be a set system, ε ∈ (0, 1) be a parameter, and f : N→ R be a function

that satisfies dVC

(
X,Sk∪) ≥ dVC(X,S) · k · f(k). Then there is a subset X ′ of X

so that any ε-net for (X ′, S|X′) must have size at least

dVC(X
′, S|X′)

4ε
· f
(

1

2ε

)

.

For example, the combination of the above result with the lower bound for VC-dimension

of k-fold unions of half-spaces presented in Section 1.3, immediately yields a lower bound

of Ω(d/ε log(1/ε)) on the ε-net sizes in set systems induced by half-spaces, recovering the

result of Pach and Tardos (2013).
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Chapter 2

Preliminaries on set systems and

approximations

In this part we further elaborate on the main concepts appearing in the previous chapter.

In particular, since the main contributions of this work have been already stated in Chap-

ter 1, we only give a (nearly) self-contained, pedagogical introduction to the necessary

background, giving some examples from the computational geometry and learning theory,

and provide a more detailed historic overview. The content of this chapter is relatively

standard and can generally be skipped by readers familiar with the subject at hand.

2.1 Set systems and epsilon-approximations

To motivate the notion of approximations, consider the following fundamental problem

from computational geometry.

Half-space counting. Given a set P of n points X in R
d and a query half-space H,

count the number of points in P , which lie in H.

A straightforward solution has linear complexity: we can simply test for each p ∈ P

whether it is contained in H. This trivial query time of O(n) can be significantly improved

to O(log n) by pre-processing P into a suitable (but rather involved) data-structure. There

has been a long line of research studying different query-time/space trade-offs for exact

half-space counting, see the survey of Agarwal (2017).

If we allow ourselves to make an error of 0.1%, there is a much simpler solution: we can

replace P with a smaller set A, which can be used to approximately count the number of
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points in any half-space H. In particular, a uniform random sample A ⊆ X of constant

size satisfies

|A ∩H| · |P ||A| ∈
[

|P ∩H| − 0.001 · |P |, |P ∩H|+ 0.001 · |P |
]

with high probability. This implies that for any half-space H, it is sufficient to count

|A∩H| (which we can do in a constant time with the naive linear-time algorithm) to get

an approximation of |P ∩H|.
In the approximate half-space counting example, the key property that the sample A

satisfies is that for any query half-space H, the proportion of points in A which lie in H

is close to the proportion of points in P that are in H . Formally, A is a subset of P such

that for any half-space H
∣
∣
∣
∣

|P ∩H|
|P | − |A ∩H|

|A|

∣
∣
∣
∣
≤ 0.001. (2.1)

We formalize this property for a more abstract class of objects—set systems. A set

system is a pair (X,S), where X is a set of elements and S is a set of subsets of X. We

refer to the elements of S as ranges. For instance, the half-space counting problem can

be modeled with a set system (P,H), where H consists of those subsets of P that can be

obtained as an intersection with a half-space.

The key property formulated in Equation (2.1) can be generalized to abstract set

systems as follows. Given a set system (X,S) and a parameter 0 < ε < 1, we say that

A ⊆ X is an ε-approximation of (X,S) if for each S ∈ S,
∣
∣
∣
∣

|S|
|X| −

|S ∩ A|
|A|

∣
∣
∣
∣
≤ ε.

We can obtain ε-approximations via uniform sampling. A first bound can be deduced

from the following two basic probabilistic ingredients:

Chernoff’s bound. Let X be a set of n elements and A be a uniform random sample

of X of size t. Then for any S ⊆ X and η > 0, we have

P

[

|A ∩ S| /∈
( |S|t

n
− η,

|S|t
n

+ η

)]

≤ 2 exp

(

− η2n

2|S|t+ ηn

)

. (2.2)

Union bound. For a countable set of events {Ei}∞i=1

P

[ ∞⋃

i=1

Ei

]

≤
∞∑

i=1

P [ Ei ] . (2.3)
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Indeed, applying Chernoff’s bound with η = εt, we get that a uniform random sample A

of size t fails to be an ε-approximation for a fixed S ∈ S with probability at most

2 exp

(

− ε2t2n

2|S|t+ εtn

)

≤ 2 exp

(

− ε2t
2|S|
n

+ ε

)

≤ 2 exp

(

−ε2 t

3

)

.

The quantity above bounds the probability of failure for an arbitrary, but fixed range in S.

In order to establish a uniform guarantee over all ranges S ∈ S, we use the union bound.

Hence, we obtain that a uniform random sample A of size t fails to be an ε-approximation

for (X,S) with probability at most

2|S| exp
(

−ε2 t

3

)

.

In other words, a uniform random sample from X of size

3

ε2
ln(4|S|) (2.4)

is an ε-approximation of (X,S) with probability at least 1/2.

A breakthrough in the study of approximations dates back to 1971 when Vapnik and

Chervonenkis described a key property which guarantees the existence of ε-approximations

of size independent of |X| or |S|. Before we present this property, let us introduce addi-

tional notions. For a set Y ⊆ X, define the projection of S onto Y as

S|Y := {S ∩ Y : S ∈ S} .

We say that the sets in S|Y are the subsets of Y induced by S, and that S shatters Y if

each of the 2|Y | subsets of Y are induced by S, that is,

|S|Y | = 2|Y |.

Vapnik and Chervonenkis (1971) characterized the complexity of a set system via its

shatter function. The shatter function πS : [ 1, |X| ]→ N is defined as

πS(k) := max
Y⊆X,|Y |=k

|S|Y | ,

that is, πS(k) is the maximum number of ranges that S can induce on a k-element subsets

of X. It is easy to see that if S contains every subset of X, then πS(k) = 2k for all k.

Why is this a good measurement of complexity? To get an intuition, observe that

in Equation (2.4), the dependence of the sample size on the input parameters arises
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from the application of the union bound over all ranges of S. However, if for in-

stance, the shatter function of (X,S) has polynomial growth, that is, πS(k) = O(kd)

for some constant d, then a uniform sample from X of size

O

(
d

ε2
log |X|

)

(2.5)

is an ε-approximation of (X,S) with positive probability. This is a more refined

description of failure probability, which can be used to remove the dependence on

|X| completely with more advanced probabilistic techniques.

Vapnik and Chervonenkis (1971) proved that the growth of the shatter function exhibits

a dichotomy.

Theorem 2. The shatter function πS(k) is either identically equals to 2k or else πS(k) ≤
kd+1 + 1, where d is the smallest positive number for which the equation πS(d) = 2d holds

and πS(d+ 1) < 2d+1.

For honoring their contribution, the ‘threshold’ d of Theorem 2 entered the community

as the Vapnik-Chervonenkis dimension, or shortly, the VC-dimension. This definition can

be rephrased as: the VC-dimension of (X,S) is the smallest positive d such that X has a

d-element subset which is shattered, but no d + 1-element subset of X can be shattered.

Observe that the property of ‘being shattered by S’ is monotone in the sense that if Y

is shattered, then each subset of Y is shattered. This implies that if the dVC(X,S) = d,

then no subset of X of size larger than d can be shattered. Therefore, the VC-dimension

of (X,S) can be defined as the largest d such that X has a subset of size d which is

shattered by S.

The notion of VC-dimension became a central tool in many fields including learning

theory, computational and combinatorial geometry. One of the most fundamental set

systems arising in these fields is the one induced by half-spaces (in learning theory this is

the underlying set systems of linear classifiers often deployed in practice). When bounding

the VC-dimension of set systems induced by geometric objects on points, we are usually

interested in the ‘worst-case scenario’, that is, what is the largest obtainable VC-dimension

induced by these objects on any set of points. Hence, in these cases, we often write dVC(S),
which denotes

max
X
{dVC(X,S)} .

For instance, the VC-dimension of half-spaces in R
d is d + 1—this means that for any

point-set P in R
d, the VC-dimension of the set system induced by half-spaces on P is at

most d+ 1.
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Vapnik and Chervonenkis (1971) also showed that if (X,S) has finite VC-dimension,

then it admits an ε-approximation of size independent of |X| or |S|. Moreover, such

approximations can be constructed simply by uniform sampling.

Theorem 3. Let (X,S) be a set system with VC-dimension d and 0 < ε < 1 be a

parameter. Then a uniform random sample A ⊂ X of size

O

(
d

ε2
log

d

ε

)

is an ε-approximation of (X,S) with positive probability.

30 years after the pioneering work of Vapnik and Chervonenkis (1971), Li et al. (2001)

proved optimal bounds on approximations via uniform sampling. In particular, they

showed that with a more careful analysis of the failure probability, the log(d/ε) factor

in Theorem 3 can be removed and that this is the best possible ε-approximation size

obtainable by uniform sampling.

Theorem 4 (Li et al. (2001)). There exists an absolute constant c ≥ 1 such that the

following holds. Let (X,S) be a set system with VC-dimension at most d and let 0 <

ε, γ < 1 be given parameters. Then for any integer t at least

c

ε2

(

d+ ln
1

γ

)

,

a uniform random sample A ⊆ X of size t is an ε-approximation for (X,S) with probability

at least 1− γ. Moreover, this bound is tight.

Remark. Li et al. (2001) work with a more general notion of approximations: (ε, δ)-

samples, for its definition and further details, see Chapter 7, where we also provide a

simpler proof of their result for finite set systems.

To appreciate the power of these guarantees, let us again have a look at a simple example1.

Public opinion poll. Imagine we are planning the election campaign of a party and

would like to understand its popularity within certain social groups. We can model

this problem as a set system, where X is the set of all citizens of our country and

each set in S represents voters of the party that belong to one of the social groups

of our interest. The ranges in S are unknown to us (yet, we can reasonably assume

that S is sufficiently simple), all we can do is to ask the preference of a random

1Special thanks to János Pach, who inspired this example with a similar one on ε-nets.
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citizen2. By Theorem 3, it is possible to create a 0.01-approximation A of (X,S)
by uniform sampling. This way, if our observations on A tell us that 70% of women

would vote for our party, then we know that the real proportion our supporters

among women is between 69% and 71%. Moreover, Theorem 3 also implies that the

number of people we need to ask to create such a representative set only depends

on the error parameter 0.01 and the VC-dimension of (X,S), which captures the

demographic structure of the our voters. Therefore, on a high level, we would need

to make the same number of polls to represent the citizens of France, Germany, or

the USA, even though the population of these countries largely differ.

2.1.1 VC-dimension in learning theory

In this subsection, we give a brief description of basic problems in learning theory, where

the notion of ε-approximations was originally introduced. While in computational geom-

etry we usually want to reduce a large, but finite input data-set, learning theory works

in a different setup, where we do not have access to the whole data. Instead, we only

have observations (samples) from an underlying unknown probability distribution. A ba-

sic problem is to determine, how many samples do we need to understand this unknown

distribution.

Realizable binary classification. Let (X,S) be a set system3 with each element of

the base set X labeled by 0 or 1. For each range S ∈ S, define a classifier

ℓS(x) = I(x ∈ S) =







1 if x ∈ S

0 if x /∈ S
.

In the realizable case of binary classification, we assume that there exists S∗ ∈ S
such that the label of each x ∈ X is given by ℓS∗(x). Naturally, we would like to find

or approximate the S∗, which assumed to be unknown. To do so, we can sample a

point x according to some unknown probability distribution P on X and observe its

associated label ℓS∗(x). In this setup, the goodness of a candidate range S is given

by its error—the average disagreement with S∗:

err(S) := P [ x : ℓS∗(x) 6= ℓS(x) ] .

2While in practice, it is challenging to create a uniform random sample of people without any bias,

assume now for simplicity that it is possible.
3In learning theory, the elements of S are also called concepts, and S is called a concept class on X.
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The above framework is often called PAC (Probably Approximately Correct) learning.

A fundamental question in this theory is: how many points does one need to sample in

order to guarantee the existence of an algorithm which finds a candidate range Ŝ with

err(Ŝ) ≤ ε (no matter P and S∗)?

S
∗

The true classifier S
∗

10 observations 100 observations

The answer to this question is known as the sample complexity of PAC learning. It was

shown in the foundational paper of Blumer et al. (1989) that in case of realizable binary

classification, the existence of such an algorithm is equivalent to the finiteness of the VC-

dimension of (X,S). Moreover, they showed that if dVC(X,S) = d, then for any ε ∈ (0, 1),

the sample complexity is

O

(
d

ε
log

d

ε

)

.

The main drawback of PAC learning lies in the realizability assumption—we explicitly

assumed that the label of each element in X is determined by a range S∗ ∈ S, which is

very restrictive in practice.

A more realistic setup is know as the agnostic PAC learning. In agnostic PAC learning

we no longer assume that there is a range that perfectly separates zeros and ones. While,

from the perspective of sample complexity, the situation changes drastically, the learn-

ability in this generalized setup is still equivalent to the finiteness of the VC-dimension

of (X,S). Let us also mention, without going into further details, that agnostic PAC

learnability is in some sense equivalent to a notion of ε-approximations. In particular,

one of the main results of Vapnik and Chervonenkis (1971) states that if dVC(X,S) = d,

then for any ε ∈ (0, 1), the sample complexity4 is

O

(
d

ε2
log

d

ε

)

.

For further bibliographic and methodological details related to learning theory, we refer

to (Shalev-Shwartz and Ben-David, 2014, Section 6).

4One needs to appropriately modify the notion of sample complexity for the agnostic PAC learning.
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2.1.2 Bounding the VC-dimension

In learning theory, using only half-space classifiers can be too restrictive. An interesting

and much more complex range space is the one induced by all convex polytopes. However,

the VC-dimension of the set system induced by these objects is infinity as one can shatter

the vertices of any convex polytope. Hence, recalling the results from Section 2.1.1,

learning these ranges with samples is impossible.

A very natural question is: what type of geometric range spaces are richer than half-

spaces but still have finite VC-dimension? This was one of the main motivations of Blumer

et al. (1989), who studied k-fold unions and intersections of set systems. Formally, the

k-fold union of a range set S is defined as

Sk∪ = {S1 ∪ · · · ∪ Sk : S1, . . . , Sk ∈ S} .

Similarly, one can define the k-fold intersection of S, denoted by Sk∩, as the set system

consisting of all subsets derived from the common intersection of at most k sets of S.

Note that as the subsets S1, . . . , Sk need not necessarily be distinct, we have S ⊆ Sk∪

and S ⊆ Sk∩. Among other contributions related to learning theory, Blumer et al. (1989)

established bounds on the asymptotic growth of dVC

(
Sk∪) and dVC

(
Sk∩) as a function

of k and dVC(X,S).

Theorem 5 (Blumer et al. 1989). For any set system (X,S) with finite VC-dimension

and integer k

dVC

(
Sk∪) = O

(

dVC (S) · k log k
)

,

dVC

(
Sk∩) = O

(

dVC (S) · k log k
)

.

Moreover, there are set systems such that dVC

(
Sk∪) = Ω(dVC (S) · k) and

dVC

(
Sk∩) = Ω(dVC (S) · k).

The upper bounds of Theorem 5 can be deduced from the following refinement of

Theorem 2 which is implicit in the work of Vapnik and Chervonenkis (1971) and was

independently discovered by Sauer (1972); Shelah (1972).

Lemma 6 (Sauer-Shelah lemma). Let (X,S) be a set system with VC-dimension at most

d. Then for any Y ⊆ X,

|S|Y | ≤ (e|Y |/d)d .
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In the subsequent works of Eisenstat and Angluin (2007) and Eisenstat (2009), the

authors proved that the upper bound of Theorem 5 is asymptotically optimal for k-fold

unions if dVC (S) ≥ 2 and that for dVC (S) = 1, a tight upper bound of O(k) holds.

Their lower bound constructions were of probabilistic nature, proving the existence of an

abstract set system (X,S) for which dVC

(
Sk∪) = Ω(dVC (S) · k log k).

2.2 Epsilon approximations and discrepancy

As it was shown by Li et al. (2001), the O(d/ε2) bound is optimal for uniformly sampled

approximations of set systems with VC-dimension at most d. In the last part of this

chapter, we present the halving method of Matoušek et al. (1991) which can be used to

obtain smaller-sized approximations.

2.2.1 Halving method

To better understand the method, let us first sketch a proof of Theorem 3 by halving.

Let (X,S) be a set system with VC-dimension at most d. For the sake of simplicity,

assume that n := |X| is a power of 2. Let A1 be a uniform random sample from X of size

n/2. Define the approximation error ε(A1, X,S) of A1 with respect to (X,S) as

ε(A1, X,S) := max
S∈S

∣
∣
∣
∣

|S ∩ A1|
|A1|

− |S|
n

∣
∣
∣
∣
.

By Chernoff’s bound (Equation (2.2)), for any fixed set S ∈ S

P

[ ∣
∣
∣
∣
|S ∩ A1| −

|S|
2

∣
∣
∣
∣
≤
√

2n log
2

γ

]

≥ 1− γ.

Combining this with the union bound (Equation (2.3)), we get that

P

[

max
S∈S

∣
∣
∣
∣
|S ∩ A1| −

|S|
2

∣
∣
∣
∣
≤
√

2n log
2|S|
γ

]

≥ 1− γ.

Therefore, with probability at least 1/2,

ε(A1, X,S) = 2

n
·max

S∈S

∣
∣
∣
∣
|S ∩ A1| −

|S|
2

∣
∣
∣
∣
≤ 2

n
·
√

2n log (4|S|) ≤
√

8

n
ln

(

4
(en

d

)d
)

,

where the last bound follows from the Sauer-Shelah lemma (Lemma 6). While the ex-

pected approximation error is very small O
(√

d
n
· lnn

)

, the size of A1 is rather large—we

have only halved the initial input size.
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We can reduce the approximation size by halving A1 again: let A2 be a random subset

from A1 of size |A1|/2. By our previous argument, with probability at least 3/4, A2 is an

ε(A2, A1,S|A1)-approximation of (A1,S|A1) with

ε(A2, A1,S|A1) ≤
√

16

n
ln

(

8
(en

2d

)d
)

.

We can easily bound the approximation error of A2 with respect to (X,S) using the

triangle inequality:

max
S∈S

∣
∣
∣
∣

|A2 ∩ S|
|A2|

− |S|
n

∣
∣
∣
∣
= max

S∈S

∣
∣
∣
∣

|A2 ∩ S|
|A2|

− |A1 ∩ S|
|A1|

+
|A1 ∩ S|
|A1|

− |S|
n

∣
∣
∣
∣

≤ max
S∈S

(∣
∣
∣
∣

|A2 ∩ S|
|A2|

− |A1 ∩ S|
|A1|

∣
∣
∣
∣
+

∣
∣
∣
∣

|A1 ∩ S|
|A1|

− |S|
n

∣
∣
∣
∣

)

≤ max
S∈S

∣
∣
∣
∣

|A2 ∩ S|
|A2|

− |A1 ∩ S|
|A1|

∣
∣
∣
∣
+max

S∈S

∣
∣
∣
∣

|A1 ∩ S|
|A1|

− |S|
n

∣
∣
∣
∣

≤ ε(A2, A1,S|A1) + ε(A1, X,S).

This calculation is summarized in the following well-known property of ε-approximations.

Property 1. Let (X,S) be a set system, A1 be an ε1-approximation of (X,S) and A2 be

an ε2-approximation of (A1,S|A1). Then A2 is an (ε1 + ε2)-approximation of (X,S).

Therefore, A2 is an (ε(A2, A1,S|A1) + ε(A1, X,S))-approximation of (X,S) with prob-

ability at least 1/4.

We see that each time we halve the size of our approximation, the error increases with

an additive term. Given an allowed error ε, we can continue halving until the accumulated

approximation error remains at most ε. One can verify that we can continue the process

until

t(ε, n) = Ω

(

log
ε2n

d ln 1
ε

)

halving steps. This implies that a random sample of size

n

2t(ε, n)
= O

(
d

ε2
ln

1

ε

)

is an ε-approximation of (X,S) with positive probability.
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The first idea leading to improved constructions is to follow the above halving method,

but at each step, halve along more carefully selected sets. Recall, that the approximation

error of a set A ⊂ X of size n/2 is defined as

ε(A,X,S) = 1

n
·max

S∈S
|2|S ∩ A| − |S|| . (2.6)

The next topic that we study is how small ε(A,X,S) can be for a set A ⊆ X of size n/2.

As we will see, this question can be reduced to the classical combinatorial discrepancy

problem.

2.2.2 Combinatorial discrepancy

Given a set system (X,S), the combinatorial discrepancy problem asks for a two-coloring

χ : X → {−1, 1}, that minimizes the discrepancy

discS (χ) = max
S∈S

∣
∣
∣
∣
∣

∑

x∈S
χ (x)

∣
∣
∣
∣
∣
.

In words, the discrepancy of χ measures how evenly it colors the ranges in S. For

instance, if discS (χ) = 0 then in every set S ∈ S precisely half of the elements have color

1, while the other half has color −1 assigned. We can express the discrepancy of χ as

discS (χ) = max
S∈S

∣
∣
∣
∣χ−1(1) ∩ S

∣
∣−
∣
∣χ−1(−1) ∩ S

∣
∣
∣
∣

= max
S∈S

∣
∣
∣
∣

∣
∣χ−1(1) ∩ S

∣
∣− |S|+ |S| −

∣
∣χ−1(−1) ∩ S

∣
∣

︸ ︷︷ ︸

|χ−1(1)∩S|

∣
∣
∣
∣

= max
S∈S

∣
∣2
∣
∣χ−1(1) ∩ S

∣
∣− |S|

∣
∣ .

Compare this formulation with Equation (2.6). We see that the approximation error of

A is precisely 1/n-times the discrepancy of the coloring

χA(x) =







1 if x ∈ A

−1 if x ∈ X \ A
.

Thus, a set A ⊂ X, |A| = n/2 with low approximation error can be used to construct a

coloring with low discrepancy.

On the other hand, let χ be a 2-coloring of X and let Aχ be a set of n/2 elements

from the larger color class of χ say, without loss of generality, Aχ ⊆ χ−1(1). Assume that
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S contains X as a range, which implies

∣
∣|Aχ| − |χ−1(1)|

∣
∣ =

1

2

∣
∣n− 2|χ−1(1)|

∣
∣ ≤ discS (χ)

2
.

In particular, we get that

max
S∈S
|2|S ∩ Aχ| − |S|| ≤ max

S∈S

∣
∣
∣
∣
2|S ∩ χ−1(1)| − |S|

2

∣
∣
∣
∣
+ 2max

S∈S

∣
∣|S ∩ χ−1(1)| − |S ∩ Aχ|

∣
∣

≤ discS (χ) + discS (χ) ,

and thus, the approximation error of Aχ with respect to (X,S) satisfies

ε(Aχ, X,S) ≤ 2

n
· discS (χ) .

In conclusion, the problem of finding a set of |X|/2 elements with low approxima-

tion error is essentially equivalent to the problem of finding a low-discrepancy coloring of

(X,S). This link between approximations and low-discrepancy colorings was first estab-

lished by Matoušek et al. (1991) and can be summarized as follows.

Lemma 7. Let (X,S) be a set system such that S contains the entire X as a range.

a) If χ is a coloring with discrepancy discS(χ) = δ, then there is a set Aχ of size |X|/2,
which is a (2δ/n)-approximation of (X,S).

b) If A ⊂ X is a δ-approximation of (X,S) of size n/2, then there is a coloring χA : X →
{−1, 1} with discrepancy nδ.

Let us return to the halving technique. Let δ be a function such that any Y ⊆
X has a coloring with discrepancy at most δ(|Y |) in time T (|Y |). Then, if at the ith

halving step, we use a coloring with discrepancy δ(n/2i−1) as described above, we get

that for any integer t ≥ 1, an εt-approximation of size n/2t can be constructed in time

T (n) + T (n/2) + · · ·+ T (n/2t−1) with

εt ≤
2

n

(

δ(n) + 2δ
(n

2

)

+ · · ·+ 2t−1δ
( n

2t−1

))

.

As we have already mention in Chapter 1, if the dual VC-dimension of (X,S) is at

most D, then one can find a two-coloring of X with discrepancy O
(√

n1−1/D lnm
)

in

time O(n3m) (Matoušek et al., 1991). Thus, if (X,S) has dual VC-dimension at most D,

then one can find ε-approximations of size
(
cD ln 1

ε

ε2

) D
D+1

(2.7)

in time O(n3m). In Chapter 4, we present an improved Õ(n1/Dm) time algorithm for

constructing colorings and approximation with the same guarantees.



Chapter 3

Introduction française

Avec les récents développements techniques, le traitement et le stockage de grands ensem-

bles de données sont devenus de plus en plus importants. En conséquence, la représenta-

tion de données massives par des résumés compacts est devenue un thème central dans de

nombreux domaines de recherche modernes. Cette thèse contribue aux outils fondamen-

taux de la réduction combinatoire des données : la dimension VC, les ε-réseaux (ε-nets),

les ε-approximations, les colorations à faible discrépance et les couplages à faible nombre

de croisements (par rapport aux ensembles).

3.1 Approximations de systèmes d’ensembles

Pour motiver la notion d’approximations, considérons le problème fondamental suivant

issu du traitement des données géométriques.

Comptage du demi-espace. Étant donné un ensemble P de n points X dans R
d et

un demi-espace H, comptez le nombre de points dans P ∩H.

Une solution simple a une complexité linéaire: nous pouvons simplement tester pour

chaque p ∈ P s’il est contenu dans H. Ce temps d’exécution trivial de O(n) peut être

considérablement amélioré à O(log n) en prétraitant P dans une structure de données

appropriée (mais plutôt complexe). De nombreuses recherches ont étudié les différents

trade-offs temps/espace pour le comptage du le demi-espace, voir l’étude de Agarwal

(2017).

Si nous nous autorisons une erreur de 0, 1%, il existe une solution beaucoup plus

simple: nous pouvons remplacer P par un ensemble plus petit A, qui peut être utilisé
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pour compter approximativement le nombre de points dans tout demi-espace H. En

particulier, un échantillon aléatoire uniforme A ⊂ X de taille constante satisfait à la

condition suivante

|A ∩H| · |P ||A| ∈
[

|P ∩H| − 0.001 · |P |, |P ∩H|+ 0.001 · |P |
]

avec une forte probabilité. Ceci implique que pour tout demi-espace H, il suffit de compter

|A∩H| (ce que nous pouvons faire en un temps constant avec l’algorithme naïf de temps

linéaire) pour obtenir une approximation de |P ∩H|.
Dans l’exemple du comptage approximatif dans le demi-espace, la propriété clé que

l’échantillon A satisfait est que pour n’importe quel demi-espace H, la proportion de

points dans A qui se trouvent dans H est proche de la proportion de points dans P qui

sont dans H . Formellement, A est un sous-ensemble de P tel que pour n’importe quel

demi-espace H
∣
∣
∣
∣

|P ∩H|
|P | − |A ∩H|

|A|

∣
∣
∣
∣
≤ 0.001. (3.1)

Nous formalisons cette propriété pour une classe d’objets plus abstraite: les sys-

tèmes d’ensembles. Un système d’ensembles est une paire (X,S), où X est un ensemble

d’éléments et S est un ensemble de sous-ensembles de X. Par exemple, le problème du

comptage des demi-espaces peut être modélisé par un système d’ensembles (P,H), où H
est constitué des sous-ensembles de P qui peuvent être obtenus par intersection avec un

demi-espace, nous disons que ce sont les sous-ensembles induits par H.

La propriété formulée dans Equation (3.1) peut être généralisée aux systèmes d’ensembles

abstraits comme suit. Étant donné un système d’ensembles (X,S) et un paramètre

0 < ε < 1, on dit que A ⊆ X est une ε-approximation de (X,S) si pour chaque S ∈ S,

∣
∣
∣
∣

|S|
|X| −

|S ∩ A|
|A|

∣
∣
∣
∣
≤ ε.

3.2 Dimension VC

Les travaux pionniers de Vapnik and Chervonenkis (1971) ont montré que si (X,S) a

une complexité bornée, alors il admet des ε-approximations de taille indépendante de

|X| et de |S|, de plus, une telle approximation peut être construite par échantillonnage
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uniforme. Ils ont mesuré la complexité d’un système d’ensembles par sa dimension VC,

qui est définie comme la taille du plus grand Y ⊆ X tel que

|{Y ∩ S : S ∈ S}| = 2|Y |.

La dimension VC est le fondement de nombreux résultats théoriques en géométrie

computationnelle (Matoušek, 2013) et en théorie de l’apprentissage (Shalev-Shwartz and

Ben-David, 2014). Plus important encore, elle joue un rôle central dans les garanties

d’échantillonnage uniforme et est souvent requise comme paramètre d’entrée des algo-

rithmes. Les limites fondamentales des approximations par échantillonnage uniforme ont

été décrites par Li et al. (2001). Ils ont montré que si (X,S) a une dimension VC

d’au plus d, alors un échantillon aléatoire uniforme A ⊆ X de taille O(d/ε2) est une

ε-approximation avec une probabilité positive1, de plus cette borne est optimale pour les

garanties d’échantillonnage uniforme.

3.2.1 k-union et k-intersection

Alors que pour les systèmes d’ensembles géométriques simples (par exemple ceux induits

par les demi-espaces), on peut déterminer la dimension VC à l’aide d’arguments élémen-

taires, de nombreuses applications nécessitent des systèmes d’ensembles plus complexes.

Un problème ouvert depuis 1989 était la borne de la dimension VC des unions et des inter-

sections de k demi-espaces en haute dimension. La k-union d’une collection d’ensembles

S est définie comme Sk∪ = {S1 ∪ · · · ∪ Sk : S1, . . . , Sk ∈ S} . De façon similaire, on peut

définir la k-intersection de S, dénotée par Sk∩, comme la collection d’ensembles consti-

tuées de tous les sous-ensembles dérivés de l’intersection commune d’au plus k ensem-

bles de S. L’article fondateur de Blumer et al. (1989) a montré que pour tout système

d’ensembles (X,S), dVC

(
Sk∪) et dVC

(
Sk∩) sont O(dVC(S) · k log k). Ils ont également

étudié la question de savoir si cette borne supérieure générale est optimale pour le cas

géométrique de base, où S est constitué d’ensembles induits par des demi-espaces dans Rd.

Il s’est avéré que pour les dimensions 2 et 3, une borne améliorée de O(k) tient (Blumer

et al., 1989; Dobkin and Gunopulos, 1995). La conjecture dominante était que le facteur

log k peut également être supprimé pour des dimensions d ≥ 4.

Nous prouvons qu’en dimension d ≥ 4, le facteur log k est en fait nécessaire. En

particulier, nous décrivons une construction déterministe de la borne inférieure, qui montre

que la borne O(dk log k) est optimale pour les k-unions ou k-intersections de demi-espaces

en dimensions au moins 4.
1En Chapitre 7, nous donnons une preuve simple de ce résultat de Li et al. (2001).
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Contribution

Il existe une constante universelle c telle que pour tout nombre entier positif k et

d ≥ 4, il existe un ensemble P d’au moins c · dk log k points dans R
d tel que le

système d’ensembles H induit sur P par les demi-espaces satisfasse

dVC

(
P,Hk∪) = dVC

(
P,Hk∩) = |P |.

Les systèmes d’ensembles induits par des combinaisons booléennes d’objets géométriques

sont également utilisés dans d’autres domaines. Par exemple, l’un des systèmes d’ensembles

fondamentaux en géométrie algorithmique est défini sur un ensemble d’hyperplansH dans

R
d avec des ensembles

∆(H) =
{

H′ ⊆ H : ∃ un simplex ouvert S de dimension d’ordre d dans R
d tel que

H ∈ H′ si et seulement si H intersecte S
}

.

L’importance du système d’ensembles
(
H,∆(H)

)
provient du fait qu’il s’agit du système

d’ensemble utilisé dans la construction de cuttings par l’échantillonnage aléatoire (Chazelle

and Friedman, 1990). Les cuttings sont l’outil central des algorithmes de localisation

rapide de points et ont été étudiés en détail récemment par Ezra et al. (2020), qui a

fourni les meilleures bornes à ce jour pour la dimension VC de ∆(H).

Lemma 8 (Ezra et al. 2020). Pour d ≥ 9, nous avons

d (d+ 1) ≤ dVC (∆ (H)) ≤ 5 · d2 log d.

Nous montrons que la borne supérieure de Lemma 8 est asymptotiquement optimale en

établissant une borne de Ω (d2 log d) sur la dimension VC de ∆(H) pour d ≥ 4.

Contribution

Il existe une constante universelle c telle que pour tout nombre entier positif k et

d ≥ 4, il existe un ensemble H de c · d2 log d hyperplans dans R
d tel que

dVC (H,∆(H)) = |H|.

3.3 Au-delà de l’échantillonnage uniforme

Rappelons que si (X,S) a une dimension VC d’au plus d, alors un échantillon aléatoire

uniforme A ⊆ X de taille O(d/ε2) est une ε-approximation avec une probabilité positive,

et que cette borne est optimale pour des garanties d’échantillonnage uniforme.
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Le principal problème algorithmique que nous étudions dans cette thèse est le développe-

ment d’algorithmes efficaces pour construire des ε-approximations de taille sub-quadratique.

Une façon possible d’obtenir des ε-approximations de taille o(d/ε2) est d’appliquer la

technique itérative de division en deux de Matoušek et al. (1991) : la méthode construit

itérativement une coloration avec une faible discrépance et procède avec seulement la

moitié des éléments qui appartiennent à la même classe de couleur (pour plus de détails

voir Section 2.2.1). Étant donné une bicoloration χ : X → {−1, 1}, la discrépance de χ

par rapport à S est définie comme suit

discS (χ) = max
S∈S

∣
∣
∣
∣
∣

∑

x∈S
χ (x)

∣
∣
∣
∣
∣
.

Dans ce qui suit, nous utiliserons la notation n = |X| et m = |S|. Il est connu que

pour tout système d’ensembles, une bicoloration aléatoire χ de X satisfait à discS (χ) =

O
(√

n lnm
)

avec une probabilité d’au moins 1/2. De plus, si aucune autre propriété n’est

connue pour S et m = Ω(n2), alors cette borne est essentiellement optimale. Il n’est pas

surprenant qu’une coloration aléatoire avec une discrépance de Õ(
√
n) n’est pas suffisante

pour améliorer la garantie d’échantillonnage uniforme des approximations: si nous voulons

utiliser la méthode itérative de division en deux pour construire des approximations de

taille o(d/ε2), nous devons trouver des colorations dont la discrépance est o
(√

n
)
. Une

série de recherches a démontré que si l’on suppose une structure supplémentaire sur (X,S),
alors X admet des colorations de discrépance d’ordre inférieur.

Dimension VC limitée. Matoušek (1995) a montré que si dVC(X,S) ≤ d, alors X a

une coloration avec une discrépance O
(√

n1−1/d
)

. Cela implique, par la méthode de divi-

sion en deux, que les systèmes d’ensembles de dimension VC au plus égale à d admettent

des ε-approximations de taille

O

((
1

ε2

) d
d+1

)

.

Bien que ce résultat de coloration implique des garanties améliorées, sa preuve est unique-

ment existentielle—elle ne conduit pas à un algorithme permettant de construire une

ε-approximation de taille subquadratique.

Dimension VC duale limitée. La situation pratique est meilleure si l’on suppose la

finitude de la dimension VC duale. La dimension VC duale de (X,S) est définie comme

la dimension VC de son système d’ensembles dual (S, X∗). Le système d’ensembles dual

de (X,S) est le système d’ensembles sur S, où chaque point de x ∈ X induit un ensemble
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constitué des éléments de S qui contiennent x. Formellement, c’est une paire (S, X∗),

où X∗ = {Rx : x ∈ X} et Rx = {S ∈ S : x ∈ S} . Si la dimension VC duale de

(X,S) est au plus égale à D, alors on peut trouver un bicolore de X avec une discrépance

O
(√

n1−1/D lnm
)

en temps O(n3m) (Matoušek et al., 1991). Ainsi, par la méthode de

division en deux, si (X,S) a une dimension VC duale d’au plus D, alors on peut trouver

des approximations de ε de taille

(
cD ln 1

ε

ε2

) D
D+1

en temps O(n3m). La structure clé utilisée pour construire une coloration avec une

discrépance de Õ
(√

n1−1/D
)

est un couplage de X avec un nombre de croisement faible,

qui est aussi le goulot d’étranglement algorithmique nécessitant O(n3m) de temps pour

être trouvé.

La principale contribution algorithmique de cette thèse est un algorithme amélioré

pour construire des couplages avec un nombre de croisement faible. Dans la section

suivante, nous nous concentrons sur ce problème : nous donnons une définition formelle,

nous présentons les résultats algorithmiques précédents, et nous énonçons les garanties de

notre méthode.

3.4 Couplages avec un nombre de croisement faible

Un couplage d’un ensemble X est une partition de X en paires, que nous appelons des

arêtes. Nous disons qu’un ensemble S ∈ S croise une arête {x, y} si |S ∩ {x, y}| = 1.

Le nombre de croisements d’un couplage M par rapport à S est le nombre maximal

de paires dans M qui sont croisées par un ensemble dans S. Les graphes (couplages,

chemins couvrants, arbres couvrants) à faible nombre de croisement ont été introduites

par Welzl (1988) pour les algorithmes de recherche géométrique (voir aussi Chazelle and

Welzl, 1989; Welzl, 1992). Depuis, elles sont devenues des structures clés en géométrie

computationnelle (voir par exemple Pach and Agarwal, 2011) et ont trouvé de nombreuses

applications dans d’autres domaines tels que la théorie algorithmique des graphes (Ducoffe

et al., 2020) ou la théorie de l’apprentissage (Alon et al., 2016).

3.4.1 Constructions précédentes

L’algorithme classique pour construire un couplage à faible nombre de croisements est

basé sur la méthode des poids multiplicatifs (Welzl, 1988; Chazelle and Welzl, 1989)
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et a une complexité temporelle O(mn3). Les arbres couvrants à faible croisement des

systèmes d’ensembles abstraits peuvent également être trouvés en arrondissant (rounding)

la solution d’un LP sur
(
n
2

)
variables et m+n contraintes (Har-Peled, 2009). En combinant

cette méthode avec un solveur de LP approximatif efficace (par exemple, Chekuri and

Quanrud (2018)), on obtient un algorithme aléatoire en temps Õ(mn2). Bien que cette

méthode ait un temps d’exécution amélioré, elle est plutôt complexe et nécessite une

représentation explicite d’une matrice stockant les croisements entre toutes les
(
n
2

)
arêtes

sur X et les emsembles dans S.

Dans le cas des systèmes d’ensembles géométriques, des bornes améliorées sont possi-

bles grâce au partitionnement spatial. Les meilleurs algorithmes actuels pour les systèmes

d’ensembles induits par les demi-espaces construisent récursivement des partitions sim-

pliciales, stockées dans une structure hiérarchique appelée l’arbre de partition, qui donne

ensuite à son niveau de base une couplage avec un nombre de croisement faible. Cette

approche est utilisée dans le résultat révolutionnaire de Chan (2012) qui a donné un al-

gorithme en temps O(n log n) pour construire des arbres de partition par rapport aux

demi-espaces dans R
d, ce qui implique ensuite la même chose pour construire des cou-

plages avec un nombre de croisement O(n1−1/d). Cependant, l’implémentation pratique

du partitionnement spatial dans R
d, d > 2 reste un problème ouvert majeur en calcul

géométrique. En particulier, pour d > 2, il n’y a pas eu d’implémentations précédentes

de couplages à faible croisement, ni de construction de ε-approximations de la taille de

o
(

d
ε2

)
, même pour d = 3.

3.4.2 Notre méthode

Nous proposons un algorithme amélioré pour construire un couplage (ou chemin couvrant)

avec un faible nombre de croisements.

Contribution

Soit (X,S) un système d’ensembles avec une dimension VC duale d’au plus D. Il

existe alors un algorithme aléatoire qui produit un couplage de X avec un nombre

de croisements attendu d’au plus

36

D
· n1−1/D + 30 lnm lnn+ 26 ln2 n

avec un nombre attendu de O
(
mn1/D lnm ·min{D, lnn}.+ n2+1/D lnn

)
appels à

l’Oracle d’appartenancea de (X,S).
aUn Oracle d’appartenance de (X,S) décide si x ∈ S est vrai pour x ∈ X et S ∈ S.
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Ce résultat implique que l’on peut construire des colorations avec discrépance Õ(
√
n1−1/D)

et des ε-approximations de taille O
((

ε−2 ln 1
ε

) D
D+1

)

en temps Õ(n1/Dm+ n2+1/D).

Il est important de noter que nous n’utilisons pas le partitionnement spatial, ce qui per-

met de traiter les systèmes d’ensembles abstraits et les systèmes d’ensembles géométriques

dans Rd (et pas seulement dans R2) sans complications supplémentaires. Une implémenta-

tion préliminaire de notre algorithme en C++ pour les systèmes d’ensembles géométriques

induits sur les points par les demi-espaces dans Rd est disponible sur GitHub. Il représente

environ 200 lignes de code sans aucune structure de données non triviale.

Figure 3.1 montre les couplages construits par notre algorithme sur différents types

d’entrées et d’ensembles. Pour référence, la dernière colonne contient des couplages con-

struits de manière aléatoire. Nous soulignons que chacune de ces figures contient exacte-

ment 2500 arêtes. Notre méthode, qui est basée uniquement sur l’échantillonnage, donne

un couplage qui s’adapte bien à chaque instance spécifique, en particulier, elle conduit à

des résultats différents pour les demi-espaces en tant qu’ensembles (colonne de gauche)

et les disques en tant qu’ensembles (colonne du milieu).

3.5 Epsilon-réseaux.

Étant donné un système d’ensembles (X,S) et un paramètre ε ∈ (0, 1), un ensemble N ⊆
X est un ε-réseau de (X,S) si tout ensemble S ∈ S de taille |S| > ε|X| contient au moins

un élément de N . Contrairement aux ε-approximations qui approximent uniformément la

proportion de points dans chaque ensemble, les ε-réseaux garantissent seulement 1 élément

représentatif dans chaque grand ensemble (peu importe s’il contient 2ε·|X| ou |X| points).

Pour de nombreuses applications, cette propriété plus modeste est suffisante: par exemple,

les ε-réseaux peuvent être utilisés pour dé-randomiser les solveurs de programmation

linéaire basés sur l’échantillonnage (Chan, 2018) ou pour créer des cuttings (Clarkson,

1987; Chazelle and Friedman, 1990)—dans ce dernier exemple, on utilise un ε-réseau du

système d’ensembles (H,∆(H)) étudié dans Section 3.2.1. Haussler and Welzl (1987) ont

montré que si (X,S) a une dimension VC d’au plus d, alors un échantillon aléatoire de

max

{
8d

ε
log

8d

ε
,
4

ε
log

2

δ

}

points de X forme un ε-réseau de (X,S) avec une probabilité d’au moins 1 − δ. Plus

tard, Komlós et al. (1992) ont supprimé la dépendance logarithmique sur d en prouvant

que pour tout 0 < ε < ε0, un échantillon uniforme de

d

ε
log

1

ε
+ o

(
d

ε
log

1

ε

)

.
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Figure 3.1: Couplages de 5000 points avec différents types d’entrée et d’ensemble. Colonne

de gauche: notre méthode avec des ensembles de demi-plans. Colonne du milieu:

notre méthode avec des ensembles de disques. Colonne de droite: échantillonnage

aléatoire.

éléments de X est un ε-réseau avec une grande probabilité. De plus, ils ont montré

que cette borne est asymptotiquement optimale : pour tout d ≥ 2, il existe un sys-

tème d’ensembles de dimension VC égale à d, dans lequel tout ε-réseau (ε < ε0) a

une taille d’au moins (1− 2/d)(d/ε) log(1/ε). Ainsi, contrairement aux ε-approximations,

l’échantillonnage uniforme produit des ε-réseaux optimaux. Dans Chapitre 6, nous prou-

vons la borne suivante.
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Contribution

Soit (X,S) un système d’ensembles avec une dimension VC d’au plus d, 0 < δ < 1,

et 0 < ε < ε0(d, δ). Alors un échantillon aléatoire uniforme N ⊆ X de taille

d

ε

(

log
1

ε
+

1

d
log

1

δ
+ 2 log

(

log
1

ε
+

1

d
log

1

δ

)

+ 5

)

est un ε-réseau de (X,S) avec une probabilité d’au moins 1− δ.

Notre dernière contribution est un lemme qui peut potentiellement aider à résoudre le

problème de la borne inférieure de la taille des ε-réseaux car il donne un nouvel outil pour

établir ces bornes. D’une certaine manière, il peut être considéré comme un complément

aux bornes supérieures ci-dessus : nous montrons que les bornes inférieures asymptotiques

de la dimension VC de (X,Sk∪) impliquent des bornes inférieures pour les tailles des ε-

réseaux dans un sous-système de (X,S).

Contribution

Soit (X,S) un système d’ensembles, ε ∈ (0, 1) un paramètre, et f : N → R une

fonction qui satisfait dVC

(
X,Sk∪) ≥ dVC(X,S) · k · f(k). Alors il existe un sous-

ensemble X ′ de X tel que n’importe quel ε-réseau de (X ′, S|X′) doit avoir une taille

d’au moins
dVC(X

′, S|X′)

4ε
· f
(

1

2ε

)

.

Par exemple, la combinaison du résultat ci-dessus avec la borne inférieure pour la di-

mension VC des k-unions de demi-espaces présentée dans Section 3.2.1, donne immé-

diatement une borne inférieure de Ω(d/ε log(1/ε)) sur les tailles des réseaux ε dans les

systèmes d’ensembles induits par les demi-espaces, récupérant le résultat de Pach and

Tardos (2013).



Chapter 4

Improved algorithm for low-discrepancy

colorings

Part of the results presented in this chapter were published in the conference paper

Escaping the Curse of Spatial Partitioning:

Matchings With Low Crossing Numbers and Their Applications

37th International Symposium on Computational Geometry (SoCG 2021).

It is a joint work with Nabil Mustafa.

In this chapter, we study the combinatorial discrepancy problem, which asks for a two-

coloring χ : X → {−1, 1}, that minimizes the discrepancy

discS (χ) = max
S∈S

∣
∣
∣
∣
∣

∑

x∈S
χ (x)

∣
∣
∣
∣
∣
.

Starting from 1980s, the study of low-discrepancy colorings have been an active area

of research which has found many applications in various branches of mathematics and

computer science. As it is often termed, the ‘discrepancy method’ can be used to tackle

problems arising in combinatorial optimisation, data approximation, computational ge-

ometry, or communicational complexity just to name a few. Low-discrepancy colorings

are also closely connected to the sample complexity of learning. For instance, in Bartlett

et al. (2002), discrepancy of a random balanced coloring is used to construct penalized

empirical risk minimization algorithms, leading to improved statistical guarantees. Fur-

thermore, the study of Rademacher complexity—one of the fundamental quantities in

learning literature—can be seen as a study of discrepancy of a random coloring. For fur-

ther details and other examples of applications, we refer the interested reader to dedicated

books Chazelle (2000); Chen et al. (2014); Matoušek (1999).
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4.1 Previous results

A first bound on the combinatorial discrepancy of (X,S) follows immediately from Cher-

noff’s bound, which implies that with probability at least 1
2
, a random two-coloring χ of X

satisfies discS (χ) = O
(√

n lnm
)
. Furthermore, if no additional properties are known for

S and m = Ω(n2), then this bound is essentially optimal. We immediately get a random-

ized algorithm to obtain such a coloring and it is possible to de-randomize the method

yielding a deterministic algorithm with running time O (nm) (see Chazelle (2000)).

Spencer (1985) showed that there exists a coloring of X with discrepancy of order

O
(√

n ln(m/n)
)

, which improves the general bound for m = O (n). His original proof

only demonstrated the existence of such a coloring and did not give a polynomial-time

algorithm for it. This remained a major open problem for 25 years, until a recent

breakthrough of Bansal (2010), who gave a randomized polynomial-time SDP round-

ing algorithm to compute a coloring with discrepancy O (
√
n ln(m/n)) coloring, which

matches the bound of Spencer when m = O(n). Later Lovett and Meka (2015) gave

a different combinatorial randomized algorithm for constructing colorings with discrep-

ancy O
(√

n ln(m/n)
)

and improved the expected running time to Õ (n3 +m3); see

also Rothvoss (2017) for a different proof. More recently, Levy et al. (2017) used the

multiplicative weights technique to give a deterministic O (n4m)-time algorithm to com-

pute a two-coloring with discrepancy O
(√

n ln(m/n)
)

for an arbitrary set system. See

also Bansal et al. (2018) for a random-walk algorithm for Banaszczyk’s discrepancy bound,

with running time O (n3.37... +m2.37...) (the exponent depends on the running time for ma-

trix multiplication).

These guarantees are computationally tight for general set systems where m = O(n),

in particular, it was shown by Charikar et al. (2011) that there exists a set system with

m = O(n) for which it is NP-hard to decide whether discrepancy zero or Ω(
√
n).

Set systems with dual shatter function of polynomial growth. A series of re-

search has demonstrated that if one assumes additional structure on S, then X admits

colorings of lower-order discrepancy. A common way to bound the complexity of (X,S)
is through the shatter function of its dual set system, shortly, the dual-shatter function

of (X,S).

Definition 9 (Dual-shatter function). For any R ⊆ S, we say that the elements x, y ∈ X

are equivalent with respect to R if x belongs to the same sets of R as y. The dual-

shatter function π∗
S of (X,S) is a function, whose value at any k ∈ [1,m] is defined as the

maximum number of equivalence classes on X defined by a k-element subfamily R ⊆ S.
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In this work, we focus on set systems whose dual-shatter function satisfies π∗
S(k) = O

(
kd
)

for some constant d. This class contains several well-studied examples, for instance:

• set system with dual VC-dimension d: this property implies π∗
S(k) ≤

(
ek
d

)d
by the

Sauer-Shelah lemma (Lemma 6);

• geometric set systems, where X is a set of n points and each range in S can be

obtained as an intersection of X with a semialgebraic set of bounded complexity.

This includes set systems induced by (unions or intersections of) half-spaces, balls,

etc. For details see Section 4.7;

• set systems such that any d range has intersection at most c for some constant c

(Matoušek, 1997).

The following theorem gives an upper-bound on the combinatorial discrepancy of set

systems with π∗
S(k) = O

(
kd
)
, complemented with a lower-bound from Alon et al. (1999).

Theorem 10 (Alon et al. (1999); Matoušek et al. (1991); Matoušek (1997)). Let (X,S)
be a finite set system, n = |X|, m = |S|, and let d be a constant such that π∗

S(k) = O
(
kd
)
.

Then there exists a polynomial-time algorithm to compute a two-coloring of X with dis-

crepancy O
(√

n1−1/d lnm
)

. Furthermore, for any d, there exists a set system with dual

shatter function π∗
S(k) = O

(
kd
)

such that any coloring has discrepancy Ω
(√

n1−1/d lnn
)

.

If d is considered as a constant, the upper and lower bounds of Theorem 10 match. This

follows from the observation that if the dual-shatter function of (X,S) is π∗
S(k) = O

(
kd
)
,

then dVC(X,S) ≤ 2d and thus by the Sauer-Shelah lemma (Lemma 6), m = |S| ≤
(
en
2d

)2d
;

see (Matoušek, 1999, Chapter 5) for further details.

Practical aspects

The classical proof of the upper-bound in Theorem 10 is in fact constructive. It uses the

multiplicative weights update (MWU) technique (see Arora et al. (2012)) as follows. The

algorithm maintains a weight function π on S, with initial weights set to 1. For any pair

{x, y} ∈ X, let ∆S(x, y) denote the set of those sets S ∈ S which satisfy |S ∩ {x, y}| = 1

and let

π̃(x, y) =
∑

S∈∆S(x,y)

π(S).

The algorithm colors two elements of X at a time (for simplicity, we assume that X is

even) as follows
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for i = 1, . . . , n/2

1. Find a pair {xi, yi} ∈ X that minimizes π̃(x, y).

2. Set χ(xi) =







1 with probability 1/2

−1 with probability 1/2
, and define χ (yi) = −χ (xi)

3. Remove xi, yi from X.

4. Update π by doubling the weight of each set in ∆S(xi, yi).

The reweighing scheme ensures the key property that for each S ∈ S,

|{i : S ∈ ∆S(xi, yi)}| = O
(
n1−1/d

)
. (4.1)

This implies, using Chernoff’s bound (Equation (2.2)) and the union bound (Equa-

tion (2.3)), that

discS (χ) = O

(√

n1−1/d ln |S|
)

with probability at least 1/2 (Matoušek et al., 1991). The algorithmic bottleneck is finding

the pair {xi, yi} that minimizes π̃. Using the incidence matrix for S, this can be done in

O (n2m) steps, and thus the algorithm has overall running time O (n3m).

Matchings with low crossing numbers. Given a set X, a matching M of X is a

set of ⌊n/2⌋ disjoint pairs (edges) from X. We say that a range S ∈ S crosses a pair

{x, y} ∈ M if and only if |S ∩ {x, y}| = 1 and define the crossing number of M with

respect to S as maximum the number of pairs of M crossed by a single range S ∈ S.

Finding matchings with optimal crossing number is NP-hard, even in the special case of

set systems induced by half-planes (Fekete et al., 2008).

Notice that the pairs {xi, yi} selected by the MWU algorithm form a matching of X.

Furthermore, the key property stated in Equation (4.1) means simply that the matching

M = {{xi, yi}}n/2i=1 has crossing number O
(
n1−1/d

)
with respect to S. The study of

matchings, along with spanning paths and spanning trees with low crossing number was

originally introduced for geometric range searching (Welzl, 1988; Chazelle and Welzl,

1989). Since then, matchings and spanning paths have found applications in various

fields including learning theory (Alon et al., 2016) and algorithmic graph theory (Ducoffe

et al., 2020).

Another way of creating matchings in abstract set systems can be deduced using Linear

Programming. The starting point is the observation that a spanning tree of crossing
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number O(n1−1/d) can be found by rounding the solution of an LP on
(
n
2

)
variables and

m+ n constraints (Har-Peled, 2009; Fekete et al., 2008; Giannopoulos et al., 2014). The

resulting spanning tree then can be used to construct a matching with crossing number

O(n1−1/d) in linear time. Combining this with an efficient approximate LP solver (e.g.,

Chekuri and Quanrud (2018)) leads to a randomized Õ(mn2) time algorithm. While

this method has an improved running time, it is rather involved and requires an explicit

representation of a matrix storing the crossings between all the
(
n
2

)
edges on X and the

ranges in S.

Geometric set systems. For set systems, where X is a set of n points in R
d and S

consists of subsets of X that are induced by certain geometric objects, improved bounds

are made possible using spatial partitioning. For instance, if S consists of subsets of X

that are induced by half-spaces, one can apply the algorithm of Chan (2012) to construct

a matching with crossing number O
(
n1−1/d

)
in time O(n lnn), which then implies the

same running-time for computing coloring with discrepancy O
(√

n1−1/d ln |S|
)

.

Remark. The method of Chan recursively constructs simplicial partitions, stored in a

hierarchical structure called the partition tree, which at its base level gives a matching

with low crossing number.

While the use of spatial partitioning gives o(mn3) running times, progress remains

blocked in several ways:

a) Simplicial partitions only exist in certain geometric settings. Indeed, as shown by

Alon et al. (1987), they do not always exist in settings satisfying the requirements

of Theorem 10 (e.g., the projective plane). Furthermore, spatial partitioning is not

possible when dealing with abstract set systems such as those arising in graph theory

or learning theory.

b) Optimal bounds for constructing simplicial partitions are only known for the case

of half-spaces; this is one of the main problems left open by Chan (2012). Despite

a series of research for semi-algebraic set systems (using linearization, cuttings, and

more recently, polynomial partitioning Agarwal et al. (2013)), the bounds are still

sub-optimal for polynomials of degree larger than 2, with exponential dependence

on the dimension.

c) There are large constants in the asymptotic notation depending on the dimension

d both in the running time as well as the crossing number bounds, due to the use
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of cuttings (see Ezra et al. (2020)). For instance, in Chan’s algorithm the constants

are quite large—Theorem 3.2 Chan (2012) requires δ ≤ 1
d2

, b = 22 (see Matheny

and Phillips (2018)), which then implies that it constructs a spanning tree with

a guaranteed crossing number no better than 12 · 22 · d4n1−1/d; this is at least

20000 · n1−1/d even for d = 3. Furthermore, the actual construction running time

is at least 264 · d2n log n, not counting the typically large constants in the several

complex data structures that the algorithm needs (simplex range searching in R
d

with dynamic insertion; see Matheny and Phillips (2018) for a discussion of its

practical aspects in R
2).

d) Practical implementation of spatial partitioning in R
d, d > 2, even cuttings for

hyperplanes, remains an open problem in geometric computing. Cuttings have been

implemented in the planar case by Har-Peled (2000), which have then been used

recently for computing ε-approximations w.r.t. half-spaces in R
2 by Matheny and

Phillips (2018). In particular, for d > 2, we know of no implementations for low-

crossing matchings; nor for constructing o
(

d
ε2

)
-sized ε-approximations even for half-

spaces in R
3.

4.2 Our results

The main result of this chapter is an improved construction of low-discrepancy colorings

of set systems with polynomially bounded dual-shatter function.

Theorem 11 (Main Theorem). Let (X,S) be a finite set system and c, d be constants

such that π∗
S(k) ≤ c · kd. Then there is a randomized algorithm that constructs a coloring

χ of X with expected discrepancy at most

3

√

9c1/d

2
· n1−1/d lnm+ 19 ln2 m lnn

with at most

min

{
34n2+1/d lnn

c1/d
+

25mn1/d ln(mn)

c1/d
·min {2d, log n} , n3

7
+

mn

2

}

calls in expectation to the membership Oracle of (X,S).

Remark. Note that our algorithm always terminates in O(n3 + mn) Oracle calls (the

second term in min above). However, thanks to the use of random sample within each

iteration, the expected running time is significantly better for large d (the first term in min

above).
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The above result implies improved constructions to many set systems, including geo-

metric ones, see Table 4.1.

Low-discrepancy colorings

Our method Previous-best

Set system Discrepancy time Discrepancy time

arbitrary

with π∗
S(k) ≤ ckd

(
7c1/2d + o(1)

)√
n1−1/d lnm

Õ
(
mn

1/d+n
2+1/d

)

(Main Theorem)
O
(√

n1−1/d lnm
) Õ(mn2)

Har-Peled; Chekuri and Quanrud

geometric

induced by Bd
(12d+ o(d))

√
n1−1/d lnm

Õ
(
dn

2+1/d
)

(Corollary 36)
O
(√

n1−1/d lnm
) O

(
n3+1/d

)

Har-Peled; Chekuri and Quanrud

geometric

induced by Γd,∆,s

(

24
√
∆s+ o(1)

)√
n1−1/d lnm

Õ
(
s∆d

(
mn

1/d+n
2+1/d

))

(Corollary 30)
O
(√

10ds∆n1−1/d lnm
) O

(

nO(d3)
)

Agarwal et al.

O
(√

∆sn1−1/d lnm
) Õ(s∆dmn2)

Har-Peled; Chekuri and Quanrud

geometric

induced by Hd

(8d+ o(d))
√
n1−1/d lnm

Õ
(
dn2+1/d

)

(Corollary 35)
≥ d2
√
n1−1/d lnm

Õ(d2n)

Chan

Table 4.1: Summary of our results for set systems (X,S) with n = |X|, m = |S|, n ≤ m,

and d ≥ 2. We use the notation π∗
S(·) for the dual shatter function of (X,S), Hd for

half-spaces in R
d, Bd for balls in R

d, and Γd,∆,s for semialgebraic ranges in R
d described

by at most s equations of degree at most ∆ (see Section 4.7).

Our method rests on the following three key ideas:

1. We replace the bottleneck algorithmic step of finding a light edge in the multiplica-

tive weights update technique by simply sampling an edge according to a carefully

maintained distribution. In particular, we maintain weights not only on the sets in

S, but also on
(
X
2

)
. At each iteration we sample an edge e and a set S according to

the current weights. Then we color the endpoints of e and update the weights by

doubling the weight of each set that crosses e and halving the weight of each edge

that is crossed by S. The idea of maintaining ‘primal-dual’ weights has been used

earlier to approximately solve matrix games (Grigoriadis and Khachiyan, 1995) and

in geometric optimization (Agarwal and Pan, 2014).

2. In our case, the process is more elaborate as we are constructing a coloring at the

same time as reweighing. Therefore, at the end of each iteration, as we color the

endpoints e, we are forced to set the weights of e and all edges adjacent to e to 0.

This breaks down the reweighing scheme, as the removal of the edges amplifies the

error introduced in later iterations and thus our maintained weights degrade over

time. However, we prove that restarting the algorithm by ‘resetting’ all the weights

a logarithmic number of times suffices to ensure the required low crossing numbers.
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3. This still does not get us to our goal as updating the weights of all edges and sets

crossing the randomly picked set and edge would be too expensive. Instead, we show

that updating the weights of a uniform sample of Õ
(
n1+1/d

)
edges and Õ(m/n1−1/d)

sets at each iteration is sufficient for our purposes. The key observation here is that

the standard multiplicative weights proof has an additive smaller-order term; we

take advantage of this gap to improve the running time at the cost of amplifying

this term, just enough so that it is still within a constant factor of the optimal

solution.

Importantly, our algorithm does not use spatial partitioning, which makes it possible

to handle abstract set-systems, and geometric set systems in R
d (not only in R

2) without

additional complications. The only black-box needed is the membership Oracle that

returns for a given x ∈ X and S ∈ S, if x ∈ S. The time complexity of this operation

depends on the precise way (X,S) is given; typically this is independent of |X| and |S|
(using indexing, hashing). A preliminary multi-threaded implementation of our algorithm

in C++ for set systems induced on points by half-spaces in R
d is available on GitHub. It

is approximately 200 lines of basic code without any non-trivial data-structures. Our

experimental setup and a preliminary empirical evaluation of our algorithm is presented

in Section 4.8.

4.3 General framework

We prove our results under a more general assumption, which uses matchings with low

crossing number.

Assumption (MainAssumption(a, b, γ)). (X,S) is a finite set system with m ≥ n,

m ≥ 34, and any Y ⊆ X has a matching with crossing number at most a|Y |γ + b with

respect to S.

This class indeed includes set systems with polynomially bounded dual-shatter function:

Lemma 12. If c, d are such that (X,S) has dual shatter function π∗
S(k) ≤ ckd for all k ∈

[1, n], then (X,S) satisfies MainAssumption(a, b, γ) with parameters a = (2c)1/d

2 ln 2(1−1/d)
,

b = lnm
ln 2

, and γ = 1− 1/d.

Proof. To see this, one can use the following classical theorem which states that set sys-

tems with polynomially bounded dual shatter function possess matchings with sublinear

crossing number (Matoušek, 1999, Chap. 5.4):
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Claim 1. Let (X,S) be a set system and c, d be constants such that π∗
S(k) ≤ ckd for all

k ∈ [1, n]. Then there is a matching of X such that any set S ∈ S crosses at most

(2c)1/d

2 ln 2(1− 1/d)
n1−1/d +

lnm

ln 2

edges of the matching.

Observe that by definition, for any Y ⊆ X, the dual shatter function of (Y,S|Y ) is

upper-bounded by the dual shatter function of (X,S). Thus Claim 1 implies that any

Y ⊆ X has a matching with crossing number at most (2c)1/d

2 ln 2(1−1/d)
|Y |1−1/d+ lnm

ln 2
with respect

to S.

We prove the following result on low-discrepancy colorings of set systems satisfying

MainAssumption(a, b, γ), which together with Lemma 12 immediately imply Main The-

orem.

Theorem 13. Let (X,S) be a set system, n = |X|, m = |S| with m ≥ max{n, 34}
that satisfies MainAssumption(a, b, γ). The algorithm LowDiscColor((X,S), a, b, γ)
constructs a coloring χ of X of with expected discrepancy at most

3

√

anγ lnm

γ
+

b lnm log n

2
+ 12 ln2 m log n,

with an expected number of Oracle calls at most

min

{
24n3−γ lnn

a
+

18mn1−γ lnmn

a
·min

{
2

1− γ
, log n

}

,
n3

7
+

mn

2

}

.

The algorithm LowDiscColor is presented in Algorithm 2. Our method can be used

directly to construct a matching with low crossing number, thus to avoid repetition,

we present the Algorithm 2 using a subroutine to build matchings. This subroutine is

presented in Algorithm 3.

The figures below show the average discrepancies of the coloring returned by LowDis-

cColor with respect to half-spaces in dimensions 2, 3, and 4. We performed of 10

repetitions of our method and random coloring. The shaded areas denote ±1 standard

deviation from the mean.
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Algorithm 2: LowDiscColor
(
(X,S), a, b, γ

)

n← |X|
(
e1, . . . , e⌈n/2⌉

)
← BuildMatching

(
(X,S), a, b, γ

)

for i = 1, . . . , ⌊n/2⌋ do
{xi, yi} ← endpoints (ei)

χ(xi) =







1 with probability 1/2

−1 with probability 1/2

χ(yi) = −χ(xi)

if n is odd then

χ
(
x⌈n/2⌉

)
= 1 // by construction, e⌈n/2⌉ is a loop-edge

return χ

4.3.1 Matchings with low crossing number

Now we present the subroutine BuildMatching and state the running time and crossing

number guarantees of its output.

Theorem 14. Let (X,S) be a set system, n = |X|, m = |S| with m ≥ n, which satisfies

MainAssumption(a, b, γ). Then BuildMatching ((X,S), a, b, γ) returns a matching

with expected crossing number at most

3a

γ
nγ +

3b log n

2
+ 18 ln (mn) log n

with an expected number of Oracle calls at most

min

{
24n3−γ lnn

a
+

18mn1−γ lnmn

a
·min

{
2

1− γ
, log n

}

,
n3

7
+

mn

2

}

.

Corollary 15. Let (X,S) be a set system and c, d be constants such that π∗
S(k) ≤ ckd for

all k ∈ [1, n]. Then BuildMatching
(
(X,S), (2c)1/d

2 ln 2(1−1/d)
, lnm

ln 2
, 1− 1

d

)
returns a matching

{
e1, . . . , en/2

}
with expected crossing number at most

13c1/d · n1−1/d + 30 lnm lnn+ 26 ln2 n

with an expected O
(
mn1/d lnm ·min{d, lnn}+ n2+1/d lnn

)
calls to the membership Oracle

of (X,S).

We note that the algorithm BuildMatching can easily be modified to construct a

spanning tree or a spanning path with the same guarantees up to a constant factor.
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Algorithm 3: BuildMatching
(
(X,S), a, b, γ

)

M ← ∅
while |X| ≥ 4 do

n← |X|, m← |S|
ω1(e)← 1, π1(S)← 1 ∀e ∈ E, S ∈ S // E denotes

(
X
2

)

p← min
{

48 ln(|E|·n/4)
anγ+b

, 1
}

q← min
{

72 ln(m·n/4)
anγ+b

, 1
}

for i = 1, . . . , n/4 do

ωi(E)←∑

e∈E ωi(e)

πi(S)←
∑

S∈S πi(S)

choose ei ∼ ωi // P[ei = e] = ωi(e)
ωi(E)

∀e ∈ E

set the weight in ωi of ei and of each edge adjacent to ei to zero

choose Si ∼ πi // P[Si = S] = πi(S)
πi(S) ∀S ∈ S

Ei ← sample from E with probability p // P[e ∈ Ei] = p ∀e ∈ E

Si ← sample from S with probability q // P[S ∈ Si] = q ∀S ∈ S
// I (e, S) = 1 if e crosses S, I (e, S) = 0 otherwise

for e ∈ Ei do

ωi+1(e)← ωi(e)
(
1− 1

2
I (e, Si)

)
// halve weight if Si crosses e

for S ∈ Si do

πi+1(S)← πi(S)
(
1 + I (ei, S)

)
// double weight if S crosses ei

M ←M ∪ {e1, . . . , en/4}
X ← X \ endpoints

(
e1, . . . , en/4

)
// remove elements covered by ei

return M
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4.3.2 Epsilon-approximations

Our main result on ε-approximations is the following.

Theorem 16. Let (X,S) be a set system that satisfies MainAssumption(a, b, γ) and

let ε ∈ (0, 1). Then Approximate
(
(X,S), a, b, γ, ε

)
returns a set A ⊂ X of size at most

2max







(

30

√

a lnm

γ
· 1
ε

) 2
2−γ

,
12
√
(
b
2
+ 12 lnm

)
lnm log n

ε






+ 1,

with expected approximation guarantee

E[ε(A,X,S)] ≤ ε,

and with an expected

min

{
8n3−γ lnn

a
+

18mn1−γ ln(mn)

a
min

{
4

(1− γ)2
, log2 n

}

,
n3

49
+

mn

2

}

calls to the membership Oracle of (X,S).

Algorithm 4: Approximate
(
(X,S), a, b, γ, ε

)

A0 ← X

j =

⌊

log |X|+min

{

2
2−γ

log
ε
√
γ

30
√

a ln(|S|)
, log ε

12
√

( b
2
+12 ln(|S|)) ln(|S|) log |X|

}⌋

for i = 1, . . . , j do

χ← LowDiscColor
(
(Ai−1,S|Ai−1

), a, b, γ
)

Ai ← χ−1(1)

return Aj

Corollary 17. Let (X,S) be a set system and c, d be constants such that π∗
S(k) ≤ ckd for

all k ∈ [1, n]. Then for any ε ∈ (0, 1), Approximate
(
(X,S), (2c)1/d

2 ln 2(1−1/d)
, lnm

ln 2
, 1− 1

d
, ε
)

returns a set A ⊂ X of size

O

(

max

{(
lnm

ε2

) d
d+1

,

√
lnn lnm

ε

})

with expected approximation guarantee satisfying E[ε(A,X,S)] ≤ ε, and with an expected

O
(
mn1/d ln(mn)min

{
d2, ln2 n

}
+ n2+1/d lnn

)

calls to the membership Oracle of (X,S).
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The figures below show how the algorithm Approximate creates iteratively a data

approximation with respect to disks (Top row) compared to random sampling (Bottom

row). The input consists of 10000 points, placed evenly on 10 concentric circles. We note

that, from visual perspective, the random sampling is spread less evenly on the concentric

circles. Meanwhile, our method preserves better (again visually) the structure of the

initial input with 10000 points.

Input: 10000 points Our method, n = 2500 Our method, n = 625 Our method, n = 156

Input: 10000 points Random, n = 2500 Random, n = 625 Random, n = 156

For set systems, where uniform sampling yields small-sized ε-approximations, the con-

struction time can be improved using the observation that ε/2-approximation of an ε/2-

approximation is and ε-approximation of the original system (see Property 1). To this

end, we use the following formulation of the uniform sampling guarantee of Li et al. (2001)

(Theorem 4 in Chapter 2):

Theorem 18 ((Vershynin, 2018, Theorem 8.3.23)). There is a universal constant Capx

such that if (X,S) is a set system with VC-dimension at most V and A is a uniform

random sample of X, then

E[ε(A,X,S)] ≤
√

CapxV

|A| .

Thus, we can pre-process our point-set using Theorem 18 and get the following.

Corollary 19. Let (X,S) be a set system that satisfies MainAssumption(a, b, γ), and

let V be such that dVC(X,S) ≤ V, and let ε ∈ (0, 1). Let A0 be a uniform random

sample of CapxV

(ε/2)2
elements from X. Then Approximate

(
(A0,S|A0), a, b, γ, ε/2

)
returns a
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set A ⊂ X of size at most

2max







(

30

√

a ln |S|A0 |
γ

· 2
ε

) 2
2−γ

,
24
√
(
b
2
+ 12 ln |S|A0 |

)
ln |S|A0 | log |A0|

ε






+ 1,

with expected approximation guarantee

E[ε(Aj, X,S)] ≤ ε,

and with an expected

min

{

8|A0|3−γ ln |A0|
a

+
18|S|A0 ||A0|1−γ ln (|S|A0 ||A0|)

a
min

{
4

(1− γ)2
, log2 |A0|

}

,

|A0|3
49

+
|S|A0 ||A0|

2

}

calls to the membership Oracle of (X,S).

Outline of the remaining part of this chapter

We present the proofs of the stated results in the following order. In Sections 4.4 and

4.5 we prove Theorem 13 and Theorem 16 respectively. Section 4.6 contains the main

technical part—the proof of Theorem 14. In Section 4.7, we state our guarantees for

geometric set systems, and finally, in Section 4.8 we present an experimental evaluation

of our method.

4.4 Proof of our main discrepancy result

In this section, we present the proof Theorem 13. One can observe that the algorithm

LowDiscColor can be written in a compact form, using BuildMatching as a sub-

routine, see Algorithm 2.

This presentation allows us to see that the algorithm LowDiscColor defines a

coloring of X using the matching returned by BuildMatching. In particular, for a

matching M , LowDiscColor constructs a random coloring χM such that for each edge

{x, y} ∈M ,

χM(x) =







−1 with probability 1/2,

1 with probability 1/2
,

and set χM(y) = −χM(x). The key lemma that connects the notions of low-discrepancy

colorings and low-crossing matchings is the following.
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Lemma 20. Let (X,S) be a set system, n = |X|, m = |S| ≥ 34, and let M be a matching

of X with crossing number κ with respect to S. Then the expected discrepancy of χM is

at most
√
3κ lnm.

A ‘high probability version’ of this statement is well-known (Matoušek et al., 1991,

Lemma 2.5) and implies the above bound via basic probabilistic calculations. For com-

pleteness, we present the proof of Lemma 20.

Proof of Lemma 20 Let S ∈ S be a fixed set. We express the sum χM(S) of colors

over elements of S as

χM(S)
def
=
∑

x∈S
χM(x) =

∑

{x,y}∈M ;x,y∈S
(χM(x) + χM(y)) +

∑

x∈cr(S,M)

χM(x),

where cr(S,M) = {x ∈ S : {x, y} ∈M, y /∈ S}. By the definition of χM , each term in the

first summation is zero, thus we obtain

χM(S) =
∑

x∈cr(S,M)

χM(x).

Since cr(S,M) ≤ κ for any S ∈ S, disc(S, χM) is a sum of at most κ independent random

variables. We use the following concentration bound from Alon and Spencer (2016)

Claim 2 (Theorem A.1.1 from Alon and Spencer (2016)). Let X1, . . . , Xk be independent

{−1, 1}-valued random variables with P[Xi = −1] = P[Xi = 1] = 1/2. Then for any

α ≥ 0

P

[ ∣
∣
∣
∣
∣

k∑

i=1

Xi

∣
∣
∣
∣
∣
> α

]

≤ 2e−α2/2k.

Applying Claim 2, we get that for any fixed S ∈ S and α > 0,

P [ |χM(S)| > α ] ≤ 2e−α2/2κ.

By the union bound, we get

P [ discS(χM) > α ]
def
= P

[

max
S∈S
|χM(S)| > α

]

≤ m · 2e−α2/2κ.

Finally, we bound the expected discrepancy by applying Fubini’s theorem

E [ discS(χM) ]
def
=

∞∫

0

P [ discS(χM) > α ] dα ≤
∞∫

0

min
{

2m · e−α2/2κ, 1
}

dα
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=

√
2κ ln(2m)
∫

0

1dα +

∞∫

√
2κ ln(2m)

2m · e−α2/2κdα

=
√

2κ ln(2m) + 2m
√
2κ

∞∫

√
ln(2m)

e−t2 dt

=
√

2κ ln(2m) + 2m
√
2κ

∞∫

√
ln(2m)

t

t
· e−t2 dt

≤
√

2κ ln(2m) + 2m

√

2κ

ln(2m)

∞∫

√
ln(2m)

te−t2 dt

=
√

2κ ln(2m) + 2m

√

2κ

ln(2m)

[

−e−t2

2

]∞

√
ln(2m)

=
√

2κ ln(2m) +

√
κ

2 ln(2m)
≤
√
3κ lnm,

if m ≥ 34. This concludes the proof of Lemma 20.

In our case, the matching returned by BuildMatching is also random. Using Lemma 20,

taking total expectation over the matchings returned by BuildMatching, and applying

Jensen’s inequality, we get

E [ discS (χM) ] ≤ E

[ √

3κ(M) lnm
]

≤
√

3E [ κ(M) ] lnm,

where κ(M) denotes the crossing number of M with respect to S. Now we are ready to

prove Theorem 13.

Proof of Theorem 13.

Let M be the matching returned by BuildMatching((X,S), a, b, γ). By Theorem 14,

E [ κ(M) ] ≤ 3a

γ
nγ +

3b log n

2
+ 18 ln (nm) log n.

Therefore, LowDiscColor((X,S), a, b, γ) returns a coloring with expected discrepancy

at most √

3

(
3a

γ
nγ +

3b log n

2
+ 18 ln (nm) log n

)

lnm.

Each call of the membership Oracle is performed during the call of BuildMatching,

thus the bound on the expected number of membership Oracle calls follows immediately

from Theorem 14.
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4.5 Proof of our main result on approximations

Now, we prove Theorem 16. The algorithm Approximate constructs a sequence of sets

A0, A1, A2, . . . , Aj ⊆ X iteratively. In particular, it sets A0 = X and for i = 1, . . . , j,

Ai ⊆ Ai−1 is defined as χ−1
i (1), where χi : Ai → {−1, 1} is the coloring provided by

LowDiscColor((Ai,S|Ai
), a, b, γ). Note that |Ai+1| = ⌈|Ai|/2⌉ = ⌈n/2i+1⌉. Recall the

following lemma from the introduction

Lemma 21. Let (X,S) be a set system with |X| = n, X ∈ S and let χ be a coloring with

discrepancy discS(χ) = δ and let A ⊂ X be a set of ⌈n/2⌉ elements from the larger color

class of χ. Then A is a (2δ/n)-approximation of (X,S).

By Theorem 13,

E

[

discS|Ai
(χi)

]

≤ 3

√

a

γ
|Ai|γ ln |S|Ai

|+
(
b

2
+ 12 ln |S|Ai

|
)

log |Ai| · ln |S|Ai
|.

Thus for i = 0, . . . , j − 1, by Lemma 21,

E [ ε(Ai+1, Ai,S|Ai
) ] ≤ 6

⌈n/2i⌉ ·
√

a

γ
· ⌈n/2i⌉γ lnm+

(
b

2
+ 12 lnm

)

log ⌈n/2i⌉ lnm.

(4.2)

Moreover, by Property 1 (on approximations of approximations),

ε(Aj, X,S) ≤ ε(Aj, Aj−1,S|Aj−1
)+ε(Aj−1, Aj−2,S|Aj−2

)+· · ·+ε(A2, A1,S|A1)+ε(A1, X,S),

which by linearity of expectation and Equation (4.2) yield

E [ ε(Aj, X,S) ] ≤
j−1
∑

i=0

6

⌈n/2i⌉ ·
√

a

γ
· ⌈n/2i⌉γ lnm+

(
b

2
+ 12 lnm

)

log ⌈n/2i⌉ lnm

≤ 6

n1−γ/2

√

a lnm

γ
·
j−1
∑

i=0

(
21−γ/2

)i
+

6

n

√

b log n lnm

2
+ 12 log n ln2 m ·

j−1
∑

i=0

2i

≤ 15

n1−γ/2

√

a lnm

γ
·
(
21−γ/2

)j
+

6 · (2j − 1)

n

√

b log n lnm

2
+ 12 log n ln2 m

≤ 15

√

a lnm

γ
·
(
2j

n

)1−γ/2

+
6 · 2j
n

√

b log n lnm

2
+ 12 log n ln2 m.

Substituting

j =




log n+min







2

2− γ
log

ε
√
γ

30
√
a lnm

, log
ε

12
√
(
b
2
+ 12 lnm

)
ln(m) log n










 ,
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we get that E [ ε(Aj, X,S) ] ≤ ε and

|Aj| =
n

2j
≤ 2max







(

30
√
a lnm

ε
√
γ

) 2
2−γ

,
12
√
(
b
2
+ 12 lnm

)
ln(m) log n

ε






.

By Theorem 13, constructing a the coloring χi requires at most

min

{

24|Ai|3−γ ln |Ai|
a

+
18m|Ai|1−γ ln (m|Ai|)

a
min

{
2

1− γ
, log |Ai|

}

,
1

7
|Ai|3 +

m|Ai|
2

}

calls to the membership Oracle, in expectation. Since |Ai| = ⌈n/2i⌉, the expected number

of membership Oracle calls that Approximate
(
(X,S), a, b, γ, j

)
performs is at most

j
∑

i=0

min

{

24
(
n
2i

)3−γ
ln n

2i

a
+

18m
(
n
2i

)1−γ
ln mn

2i

a
min

{
2

1− γ
, log

n

2i

}

,
1

7

( n

2i

)3

+
mn

2i+1

}

≤ min

{
j
∑

i=0

(

24
(
n
2i

)3−γ
ln n

2i

a
+

18m
(
n
2i

)1−γ
ln mn

2i

a
min

{
2

1− γ
, log

n

2i

})

,

j
∑

i=0

(
n3

7 · 23i +
mn

2i+1

)}

≤ min

{

32n3−γ lnn

a
+

18mn1−γ ln(mn)

a

(

min

{
2

1− γ
, log n

})2

,
8n3

49
+mn

}

.

This concludes the proof of Theorem 16

4.6 Proof of our main result on low-crossing matchings

In this section, we give a proof of Theorem 14. Later in the section, we will prove the

following statement for MatchHalf (see Algorithm 5), which captures one phase of

BuildMatching.

Theorem 22. Let (X,S) be a set system, n = |X|, m = |S| with m ≥ n, which satisfies

MainAssumption(a, b, γ) and let E denote the set of all pairs (edges) from X. Then

MatchHalf ((X,S), E, a, b, γ, n/4) returns a matching of size n/4 with expected crossing

number at most

a
(n

2

)γ

+ b+max

{

a
(
n
2

)γ
+ b

2
, 18 ln(mn/4)

}

,

with an expected number of Oracle calls at most

min

{
6

a

(

n3−γ ln
n3

4
+ 3mn1−γ ln

mn

4

)

,
n3 + 2mn

8

}

.
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Algorithm 5: MatchHalf
(
(X,S), E, a, b, γ, t

)

ω1(e)← 1, π1(S)← 1 ∀e ∈ E, S ∈ S

for i = 1, . . . , t do

ωi(E)←∑

e∈E ωi(e)

πi(S)←
∑

S∈S πi(S)

choose ei ∼ ωi // P[ei = e] = ωi(e)
ωi(E)

∀e ∈ E

choose Si ∼ πi // P[Si = S] = πi(S)
πi(S) ∀S ∈ S

p← min
{

48 ln(|E|·t)
a|X|γ+b

, 1
}

q← min
{

72 ln(|S|·t)
a|X|γ+b

, 1
}

Ei ← sample from E with probability p // P[e ∈ Ei] = p ∀e ∈ E

Si ← sample from S with probability q // P[S ∈ Si] = q ∀S ∈ S
// I (e, S) = 1 if e crosses S, I (e, S) = 0 otherwise

for e ∈ Ei do

ωi+1(e)← ωi(e)
(
1− 1

2
I (e, Si)

)
// halve weight if Si crosses e

for S ∈ Si do

πi+1(S)← πi(S)
(
1 + I (ei, S)

)
// double weight if S crosses ei

set the weight in ωi+1 of ei and of each edge adjacent to ei to zero
return {e1, . . . , et}

First we show how Theorem 22 implies Theorem 14.

The algorithm BuildMatching makes log n calls to MatchHalf with exponentially

decreasing input sizes. In particular, the overall expected number of membership Oracle

calls of BuildMatching can be bounded as
logn
∑

i=0

min

{

6

a

(( n

2i

)3−γ

ln
n3

23i+2
+ 3m

( n

2i

)1−γ

ln
mn

2i+2

)

,

(
n
2i

)3
+ mn

2i−1

8

}

≤ min

{
logn
∑

i=0

6

a

((
n3−γ

4i

)

ln
n3

23i+2
+ 3m

( n

2i

)1−γ

ln
mn

2i+2

)

,

logn
∑

i=0

n3

8i
+ 2mn

2i

8

}

≤ min

{
6

a

(
4

3
n3−γ lnn3 + 3m ·min

{
2n1−γ

1− γ
, n1−γ log n

}

lnmn

)

,
n3

7
+

mn

2

}

.

As for the crossing number, Theorem 22 implies that the algorithm BuildMatch-

ing
(
(X,S), a, b, γ

)
returns a matching with expected crossing number at most

logn
∑

i=1

[
3a

2

( n

2i

)γ

+
3b

2
+ 18 ln

mn

2i+1

]

<
3anγ

2

[ ∞∑

i=1

(
1

2γ

)i
]

+

(
3b

2
+ 18 ln (mn)

)

log n
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<
3a

γ
nγ +

(
3b

2
+ 18 ln (mn)

)

log n.

This concludes the proof of Theorem 14.

Proof of Theorem 22. The proof relies on the following technical lemma, whose

proof is presented later in this section. For an edge e and a set S, we define

I (e, S) =







1 if S crosses e

0 otherwise.

Lemma 23 (Main Lemma). Let t ∈ [1, |X|/4] be an integer and Ẽt ⊆ E denote the set of

edges that have non-zero weight when MatchHalf
(
(X,S), E, a, b, γ, t

)
terminates. Then

E

[

max
S∈S

t∑

i=1

I (ei, S)

]

≤ 1

2
E

[

min
e∈Ẽt

t∑

i=1

I (e, Si)

]

+

(
128
13

+ 8
ln 2

)
ln(|E|t)

3p
+

(
16 + 4

ln 2

)
ln(|S|t)

3q
.

(4.3)

The left-hand side of Equation (4.3) is precisely the expected crossing number of the

edges {e1, . . . , et} picked by MatchHalf. To bound the expectation in the right-hand

side of Equation (4.3), we use the following lemma.

Lemma 24. Let (Y,R) be a set system, w : R → R≥0, and κ be such that Y has a

matching with crossing number at most κ with respect to R. Then there is an edge xy

spanned by the points of Y such that

∑

R crosses {x,y}
w(R) ≤ 2w(R) · κ

|Y | .

Proof. Let M be a matching of Y such that any set of R crosses at most κ edges of M .

Then if we consider the weighted sum there are at most w(R) · κ crossings between the

edges of M and sets in R counted with weights. By the pigeonhole principle, there is an

edge in M that is crossed by sets of total weight at most

w(R) · κ
|M | =

w(R) · κ
|Y |/2 =

2w(R)κ
|Y |

sets of R.

Let X̃t ⊂ X denote the set of points that are not covered by the edges {e1, . . . , et}
picked by MatchHalf

(
(X,S), E, a, b, γ

)
. Note that Ẽ =

(
X̃
2

)
. Applying Lemma 24 to
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Y = X̃t and R = {S1, . . . , St} and weights w(Si) = 1, we get that there is an edge e ∈ Ẽt

that satisfies

t∑

i=1

I (e, Si) ≤
2 ·

t∑

i=1

(a|X̃|γ + b)

|X̃|
=

2a(|X| − 2t)γ + 2b

|X| − 2t
· t ≤

(
2a

(2t)1−γ
+

2b

2t

)

· t. (4.4)

Equations (4.3) and (4.4) imply

E

[

max
S∈S

t∑

i=1

I (ei, S)

]

≤
(

2a

(2t)1−γ
+

2b

2t

)

· t+
(
128
13

+ 8
ln 2

)
ln(|E|t)

3p
+

(
16 + 4

ln 2

)
ln(|S|t)

3q

≤ a(2t)γ + b+

(
128
13

+ 8
ln 2

)
ln(|E|t)

3min
{

48
a|X|γ+b

· ln(|E| · |X|/4), 1
} +

(
16 + 4

ln 2

)
ln(|S|t)

3min
{

72
a|X|γ+b

· ln(|S| · |X|/4), 1
}

≤ a

( |X|
2

)γ

+ b+
128 + 104

ln 2

39
max

{
a|X|γ + b

48
, ln(|E|t)

}

+

+
16 + 4

ln 2

3
max

{
a|X|γ + b

72
, ln(|S|t)

}

≤ a

( |X|
2

)γ

+ b+
128 + 104

ln 2

39
max

{
a|X|γ + b

48
,
3

2
ln(|S|t)

}

+

+
16 + 4

ln 2

3
max

{
a|X|γ + b

72
, ln(|S|t)

}

= a

( |X|
2

)γ

+ b+

(
128 + 104

ln 2

26
+

16 + 4
ln 2

3

)

max

{
a|X|γ + b

72
, ln(|S|t)

}

≤ a

( |X|
2

)γ

+ b+ 18 ·max

{
a|X|γ + b

72
, ln(|S|t)

}

= a

( |X|
2

)γ

+ b+max

{
a|X|γ + b

4
, 18 ln(|S|t)

}

.

Finally, we bound the number of membership Oracle calls. At each iteration i = 1, . . . , n/4,

we update the weights of at most n2

2
p +mq elements in expectation, each requiring one

call to the membership Oracle. Thus in expectation, the total number of membership

Oracle calls is at most

n

4

(

n2

2
min

{

48 ln n3

4

anγ + b
, 1

}

+mmin

{
72 ln mn

4

anγ + b
, 1

})

≤ min

{
6

a

(

n3−γ ln
n3

4
+ 3mn1−γ ln

mn

4

)

,
n3 + 2mn

8

}

.
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Proof of Main Lemma. The proof is subdivided into three lemmas. The first

lemma is proved by examining the total weight of the sets of S in πt+1.

Lemma 25.

E

[

max
S∈S

t∑

i=1

I (ei, S)

]

≤ 4

3 ln 2
·

t∑

i=1

E

[
∑

S∈S

πi(S)

πi(S)
I (ei, S)

]

+

(
16 + 4

ln 2

)
ln(|S|t)

3q

Proof. Let πt+1(S) denote the total weight of the sets of S in πt+1. We bound πt+1(S)
in two different ways. On the one hand, πt+1(S) is clearly lower-bounded by the weight

of the set of maximum weight in πt+1. Recall that the weight of a set S is doubled in

iteration i if and only if S ∈ Si and S crosses ei, therefore

πt+1(S) ≥ max
S∈S

πt+1(S) = 2
max
S∈S

t
∑

i=1
I (ei,S)·1{S∈Si} ,

where 1A denotes the indicator random variable of the event A. On the other hand, we

can express πt+1(S) using the update rule of the algorithm

πt+1(S) =
∑

S∈S
πt+1(S) =

∑

S∈S
πt(S)

(
1 + I (et, S) · 1{S∈St}

)

=
∑

S∈S
πt(S) +

∑

S∈S
πt(S)I (et, S) · 1{S∈St}

= πt(S) + πt(S)
∑

S∈S

πt(S)

πt(S)
I (et, S) · 1{S∈St}

= πt(S)
(

1 +
∑

S∈S

πt(S)

πt(S)
I (et, S) · 1{S∈St}

)

.

Unfolding this recursion and using the fact that 1 + a ≤ exp(a), we get

πt+1(S) = π1(S)
t∏

i=1

(

1 +
∑

S∈S

πi(S)

πi(S)
I (ei, S) · 1{S∈Si}

)

≤ |S| · exp
(

t∑

i=1

∑

S∈S

πi(S)

πi(S)
I (ei, S) · 1{S∈Si}

)

.

Putting together the obtained upper and lower bounds on πt+1(S), we get

2
max
S∈S

t
∑

i=1
I (ei,S)·1{S∈Si} ≤ |S| · exp

(
t∑

i=1

∑

S∈S

πi(S)

πi(S)
I (ei, S) · 1{S∈Si}

)

.

Taking the logarithm of each side yields

ln(2) ·max
S∈S

t∑

i=1

I (ei, S) · 1{S∈Si} ≤
t∑

i=1

∑

S∈S

πi(S)

πi(S)
I (ei, S) · 1{S∈Si} + ln |S| . (4.5)
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If q = 1, then 1{S∈Si} = 1 for all i and S ∈ S, thus taking total expectation we conclude

E

[

max
S∈S

t∑

i=1

I (ei, S)

]

≤ 1

ln 2

t∑

i=1

E

[
∑

S∈S

πi(S)

πi(S)
I (ei, S)

]

+
ln |S|
ln 2

.

Assume that q < 1. Since max f(x) − max g(x) ≤ max(f(x) − g(x)), Equation (4.5)

implies

ln(2) · 3
4
·max

S∈S

t∑

i=1

I (ei, S) · q ≤ ln(2) ·max
S∈S

t∑

i=1

I (ei, S) ·
(
3q

4
− 1{S∈Si}

)

+
t∑

i=1

∑

S∈S

πi(S)

πi(S)
I (ei, S) · 1{S∈Si} + ln |S| .

Taking total expectation of each side, we obtain

3

4
ln(2) · E

[

max
S∈S

t∑

i=1

I (ei, S) · q
]

≤ ln(2) · E
[

max
S∈S

t∑

i=1

I (ei, S) ·
(
3q

4
− 1{S∈Si}

) ]

+
t∑

i=1

∑

S∈S
E

[
πi(S)

πi(S)
I (ei, S) · 1{S∈Si}

]

+ ln |S| .

(4.6)

Observe that for each fixed i, the random variables {πi, ei} and Si are independent,

thus
t∑

i=1

∑

S∈S
E

[
πi(S)

πi(S)
I (ei, S) · 1{S∈Si}

]

= q ·
t∑

i=1

∑

S∈S
E

[
πi(S)

πi(S)
I (ei, S)

]

. (4.7)

To bound the expectation of max
S∈S

t∑

i=1

I (ei, S) ·
(
3q
4
− 1{S∈Si}

)
, we will need the following

Azuma-type inequality for martingales.

Lemma 26 ((Koufogiannakis and Young, 2014, Lemma 10)). Let X =
∑T

i=1 xi and

Y =
∑T

i=1 yi be sums of non-negative random variables, where T is a random stopping

time with finite expectation, and, for all i, |xi − yi| < 1 and

E

[

xi − yi

∣
∣
∣
∣

∑

s<i

xs,
∑

s<i

ys

]

≤ 0.

Let ε ∈ [0, 1] and A ∈ R, then

P [ (1− ε)X ≥ Y + A ] ≤ exp(−εA).

Claim 3.

P

[

max
S∈S

t∑

i=1

I (ei, S) ·
(
3q

4
− 1{S∈Si}

)

≥ 3 ln(|S|t)
]

≤ 1

t
.
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Proof. For each i ∈ [1, t] and S ∈ S, consider the random variables xi(S) = I (ei, S) · q
and yi(S) = I (ei, S) · 1{S∈Si}, which are measurable with respect to ei and Si. For any i

and S ∈ S, we have |xi(S) − yi(S)| ≤ 1. Since Si is independent of ei,
∑

k<i xk(S), and
∑

k<i yk(S), we have

E

[

xi(S)− yi(S)

∣
∣
∣
∣

∑

k<i

xk(S),
∑

k<i

yk(S)

]

= 0

as E
[
q− 1{S∈Si}

]
= 0 for all i ∈ [1, t] and S ∈ S.

Therefore, Lemma 26 with ε = 1/4, combined with the union bound implies for any

A ∈ R,

P

(

max
S∈S

t∑

i=1

I (ei, S) ·
(
3q

4
− 1{S∈Si}

)

≥ A

)

≤ |S| exp
(

−A

4

)

.

Setting A = 4 ln(|S|t), we conclude the proof of Claim 3.

Applying Claim 3 and using that
∑t

i=1 I (ei, S) ·
(
3q
4
− 1{S∈Si}

)
≤ t always holds, we

get

E

[

max
S∈S

t∑

i=1

I (ei, S) ·
(
3q

4
− 1{S∈Si}

) ]

≤ 4 ln(|S|t) + t · 1
t
≤ 4 ln(|S|t) + 1. (4.8)

Hence Equations (4.6), (4.7), and (4.8) imply

3 ln 2

4
· q · E

[

max
S∈S

t∑

i=1

I (ei, S)

]

≤
t∑

i=1

q · E
[
∑

S∈S

πi(S)

πi(S)
I (ei, S)

]

+ ln(2) · (4 ln(|S|t) + 1) + ln |S|.

Dividing both sides by q·3 ln 2
4

, we obtain

E

[

max
S∈S

t∑

i=1

I (ei, S)

]

≤ 4

3 ln 2
·

t∑

i=1

E

[
∑

S∈S

πi(S)

πi(S)
I (ei, S)

]

+
16 ln(|S|t) + 4 + 4 ln |S|

ln 2

3q

≤ 4

3 ln 2
·

t∑

i=1

E

[
∑

S∈S

πi(S)

πi(S)
I (ei, S)

]

+

(
16 + 4

ln 2

)
ln(|S|t)

3q
.

This concludes the proof of Lemma 25.

The next lemma is proven by applying analogous arguments for the total weight of

edges in ωt+1 with a small adjustment as in each iteration we set some edge weights to

zero. Recall that Ẽt denotes the set of edges that have non-zero weight in ωt+1.
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Lemma 27.

t∑

i=1

∑

e∈E
E

[
ωi(e)

ωi(E)
I (e, Si)

]

<
3 ln 2

8
· E
[

min
e∈Ẽt

t∑

i=1

I (e, Si)

]

+

(
32 ln 2
13

+ 2
)
ln(|E|t)

p
.

Proof. Let ωt+1(E) denote the total weight of edges in ωt+1. Again, we lower-bound

ωt+1(E) by the largest edge-weight in ωt+1, which is now attained at some edge of Ẽt:

ωt+1(E) ≥ max
e∈E

ωt+1(e) = max
e∈Ẽt

ωt+1(e) =

(
1

2

)min
e∈Ẽt

t
∑

i=1
I (e,Si)·1{e∈Ei}

.

The upper bound is obtained by using the algorithm’s weight update rule. Since et has

positive weight in ωt, but its weight in ωt+1 is set to 0, we have a strict inequality

ωt+1(E) =
∑

e∈E
ωt+1(e) <

∑

e∈E
ωt(e)

(

1− 1

2
I (e, St) · 1{e∈Et}

)

=
∑

e∈E
ωt(e)−

1

2

∑

e∈E
ωt(e)I (e, St) · 1{e∈Et}

= ωt(E)

(

1− 1

2

∑

e∈E

ωt(e)

ωt(E)
I (e, St) · 1{e∈Et}

)

.

Unfolding this recursion and using the fact that 1 + a ≤ exp(a), we get

ωt+1(E) < |E| · exp
(

−1

2

t∑

i=1

∑

e∈E

ωi(e)

ωi(E)
I (e, Si) · 1{e∈Ei}

)

.

Combining the obtained upper and the lower bounds on ωt+1(E) and taking the logarithm

of each side, we get

ln

(
1

2

)

·min
e∈Ẽt

t∑

i=1

I (e, Si) · 1{e∈Ei} < −
1

2

t∑

i=1

∑

e∈E

ωi(e)

ωi(E)
I (e, Si) · 1{e∈Ei} + ln |E|,

which is equivalent to

t∑

i=1

∑

e∈E

ωi(e)

ωi(E)
I (e, Si) · 1{e∈Ei} < 2 ln(2) ·min

e∈Ẽt

t∑

i=1

I (e, Si) · 1{e∈Ei} + 2 ln |E|. (4.9)

If p = 1, then 1{e∈Ei} = 1 for all i and e ∈ E, thus taking total expectation we conclude

t∑

i=1

E

[
∑

e∈E

ωi(e)

ωi(E)
I (e, Si)

]

< 2 ln(2) · E
[

min
e∈Ẽt

t∑

i=1

I (e, Si)

]

+ 2 ln |E|.



60 Chapter 4. Improved algorithm for low-discrepancy colorings

Assume that p < 1. Since min f(x)−min g(x) ≤ max(f(x)−g(x)), Equation (4.9) implies

t∑

i=1

∑

e∈E

ωi(e)

ωi(E)
I (e, Si) · 1{e∈Ei} < 2 ln(2) ·max

e∈Ẽt

t∑

i=1

I (e, Si) ·
(

1{e∈Ei} −
3p

16

)

+ 2 ln(2) ·min
e∈Ẽt

t∑

i=1

I (e, Si) ·
3p

16
+ 2 ln |E| .

Taking total expectation of each side, and using that for each fixed i, the random variables

{ωi, Si} and Ei are independent, we get

p ·
t∑

i=1

∑

e∈E
E

[
ωi(e)

ωi(E)
I (e, Si)

]

< 2 ln(2) · E
[

max
e∈Ẽt

t∑

i=1

I (e, Si) ·
(

1{e∈Ei} −
3p

16

) ]

+ 2 ln(2) · E
[

min
e∈Ẽt

t∑

i=1

I (e, Si) ·
3p

16

]

+ 2 ln |E| .

(4.10)

We need the following claim whose proof uses Lemma 26 and is similar to Claim 3.

Claim 4.

P

[

max
e∈Ẽt

t∑

i=1

I (e, Si) ·
(

1{e∈Ei} −
3p

16

)

≥ 16

13
ln(|E|t)

]

≤ 1

t
.

This, together with the fact that
t∑

i=1

I (e, Si) ·
(
1{e∈Ei} − 3p

16

)
≤ t always holds imply

E

[

max
e∈Ẽt

t∑

i=1

I (e, Si) ·
(
1{e∈Ei}

)
− 3p

16

]

≤ 16

13
ln(|E|t) + t · 1

t
≤ 16

13
ln(|E|t) + 1.

Hence Equation (4.10) yields

t∑

i=1

p ·
∑

e∈E
E

[
ωi(e)

ωi(E)
I (e, Si)

]

<
6 ln 2

16
· E
[

min
e∈Ẽt

t∑

i=1

I (e, Si) · p
]

+ 2 ln(2) ·
(
16

13
ln(|E|t) + 1

)

+ 2 ln |E|.

Dividing both sides by p, we get

t∑

i=1

∑

e∈E
E

[
ωi(e)

ωi(E)
I (e, Si)

]

<
3 ln 2

8
· E
[

min
e∈Ẽt

t∑

i=1

I (e, Si)

]

+

(
32 ln 2
13

+ 2
)
ln(|E|t)

p
.
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We need one more lemma to tie the previous two together.

Lemma 28. For any i ∈ [1, t], we have

E

[
∑

S∈S

πi(S)

πi(S)
I (ei, S)

]

= E

[
∑

e∈E

ωi(e)

ωi(E)
I (e, Si)

]

.

Proof. Let Fi = σ (e1, . . . , ei, S1, . . . , Si, E1, . . . , Ei,S1, . . .Si) . We have

E

[
∑

S∈S

πi(S)

πi(S)
I (ei, S)

]

= E

[

E

[
∑

S∈S

πi(S)

πi(S)
I (ei, S)

∣
∣
∣
∣
Fi−1

] ]

and

E

[
∑

e∈E

ωi(e)

ωi(E)
I (e, Si)

]

= E

[

E

[
∑

e∈E

ωi(e)

ωi(E)
I (e, Si)

∣
∣
∣
∣
Fi−1

] ]

.

Observe that ωi and πi are measurable with respect to Fi−1, thus

E

[
∑

S∈S

πi(S)

πi(S)
I (ei, S)

∣
∣
∣
∣
Fi−1

]

=
∑

e∈E

ωi(e)

ωi(E)
·
(
∑

S∈S

πi(S)

πi(S)
I (e, S)

)

=
∑

e∈E

∑

S∈S

ωi(e)

ωi(E)
· πi(S)

πi(S)
I (e, S)

=
∑

S∈S

πi(S)

πi(S)
·
(
∑

e∈E

ωi(e)

ωi(E)
I (e, S)

)

= E

[
∑

e∈E

ωi(e)

ωi(E)
I (e, Si)

∣
∣
∣
∣
Fi−1

]

.

Finally, we combine Lemmas 25, 27, and 28 in the following way

E

[

max
S∈S

t∑

i=1

I (ei, S)

]

≤ 4

3 ln 2
·

t∑

i=1

E

[
∑

S∈S

πi(S)

πi(S)
I (ei, S)

]

+

(
16 + 4

ln 2

)
ln(|S|t)

3q

=
4

3 ln 2
·

t∑

i=1

E

[
∑

e∈E

ωi(e)

ωi(E)
I (e, Si)

]

+

(
16 + 4

ln 2

)
ln(|S|t)

3q

<
1

2
· E
[

min
e∈Ẽ

t∑

i=1

I (e, Si)

]

+

(
128
13

+ 8
ln 2

)
ln(|E|t)

3p
+

(
16 + 4

ln 2

)
ln(|S|t)

3q

This completes the proof of the Main Lemma and thus of Theorem 22.

4.7 Our results for geometric set systems

In this section, we state the implications of our results in Section 4.2 for set systems

induced by geometric objects. As before, let (X,S) be a finite set system, n = |X| and
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m = |S| and assume that m ≥ n. For a dimension d ≥ 2, let X be a finite set of points

in R
d and let C be a collection of geometric objects in R

d. We say that a set Y ⊂ X is

induced by C if Y can be written as {x ∈ X : x ∈ C} for some C ∈ C. We say that a

set system (X,S) is induced by C if each range in S is induced by C.

4.7.1 Semialgebraic set systems

Let Γd,∆,s denote the collection of semialgebraic sets in R
d that can be defined as the

solution set of a Boolean combination of at most s polynomial inequalities of degree at

most ∆. First, we give a bound on its dual shatter function.

Lemma 29. Let X be a set of points in R
d and (X,S) be a set system induced by Γd,∆,s.

Then dVC(X,S) ≤ 2s log(es)
(
∆+d
d

)
and the dual shatter function of (X,S) can be upper-

bounded as π∗
S(k) ≤ (4e∆s)d · kd.

Proof. The bound on the VC-dimension can be deduced from Propositions 10.3.2 and

Proposition 10.3.3 in Matoušek (2002). Let R ⊆ Γd,∆,s be a set of k ranges, defined by

P = {pij : 1 ≤ i ≤ k, 1 ≤ j ≤ s}, where each element is a d-variate polynomial of

degree at most ∆. Observe that if sign [ p(x) ] = sign [ p(y) ] for all p ∈ P , then x, y are

equivalent with respect to R. Therefore, π∗
Γd,∆,s

(k) can be upper-bounded by the number

of different sign patterns in {−1, 1}ks induced by ks d-variate polynomials of degree at

most ∆. This quantity is bounded by (4e∆s)d · kd, see (Warren, 1968, Theorem 3).

Now we can apply Theorems 13, 14, and Theorem 16 and obtain the following.

Corollary 30. Let X be a set of points n in R
d and (X,S) be a set system with m ranges,

each induced by Γd,∆,s. Then

i) LowDiscColor
(
(X,S), 4e∆s

ln 2(1−1/d)
, lnm

ln 2
, 1− 1

d

)
constructs a coloring χ of X of with

expected discrepancy at most

3

√

4e∆s lnm

ln 2(1− 1/d)2
· n1−1/d + 19 ln2 m lnn

with expected running time O
(
s∆d

(
mn1/d ln(mn) ·min{d, lnn}+ n2+1/d lnn

))
.

ii) BuildMatching
(
(X,S), 4e∆s

ln 2(1−1/d)
, lnm

ln 2
, 1− 1

d

)
returns a matching

{
e1, . . . , en/2

}

with expected crossing number at most

12es∆

(1− 1/d)2 ln 2
· n1−1/d +O

(
lnm lnn

)

with expected running time O
(
s∆d

(
mn1/d ln(mn) ·min{d, lnn}+ n2+1/d lnn

))
.
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iii) if ε ∈ (0, 1), V := dVC(X,S), and A0 is a uniform random sample of X of size 4CapxV

ε2
,

then Approximate
(
(A0,S|A0),

4e∆s
ln 2(1−1/d)

,
ln |S|A0

|
ln 2

, 1 − 1
d
, ε
)

returns a set A ⊂ X

of size

O

(

max

{(

∆s · V
ε2

ln
1

ε

) d
d+1

,
V

ε
ln3/2

(
V

ε

)})

with expected approximation guarantee satisfying E[ε(A,X,S)] ≤ ε, and with an ex-

pected running time O
(

n+
(
V
ε2

)2+1/d
ln V

ε2
+
(
V
ε2

)V+1/d
ln
(
V
ε2

)V+1
min

{
d2, ln2 V

ε2

})

.

Remark. The previous best algorithm for constructing matchings with low crossing num-

bers with respect to Γd,∆,s relies on the polynomial partitioning technique (Agarwal et al.,

2013). It computes a matching of n points in general position with crossing number

O(10ds∆n1−1/d) with respect to any set in Γd,∆,s in time O(nO(d3)), notably the running

time is independent of m. Our algorithm provides improved running time bounds for

specific instances with m = no(d3).

4.7.2 Half-spaces and balls

LetHd and Bd denote the set of all half-spaces and balls in R
d respectively. Half-spaces and

balls are semialgebraic sets, in particular, Hd = Γd,1,1 and Bd ⊂ Γd,2,1. What distinguishes

their case from the general one is the existence of test-sets. Test-sets are small-sized

subfamilies (of half-spaces and balls) such that if a matching has low crossing number

with respect to this subfamily, then it is guaranteed to have low crossing number with

respect to any member of the family (of half-spaces and balls resp.). In particular, we can

use a result of Matoušek (1992) on test-sets for half-spaces.

Lemma 31 (Test set lemma). Let X be a set of n points in R
d and t be a parameter.

There exists a set T (t) of at most (d + 1)td hyperplanes such that if a matching of X

has crossing number κ with respect to T (t), then its crossing number with respect to any

half-space in R
d is at most (d+ 1)κ+ 6d2n

t
.

We will use Lemma 31 as black-box to obtain a test-set lemma for balls. It is well

known that there are mappings α : Rd → R
d+1 and β : Bd → Hd+1 such that for any

p ∈ R
d and B ∈ Bd, we have p ∈ B if and only if α(p) ∈ β(B), see e.g. (Matoušek, 2002,

Chap. 10). This mapping and Lemma 31 applied in R
d+1 with t = n1/d give the following

lemma.

Lemma 32. Let X be a set of n points in R
d. There exists a set Q of at most (d+2)n1+1/d

balls such that if a matching of X has crossing number κ with respect to Q, then its crossing

number with respect to Bd is at most (d+ 2)κ+ 6(d+ 1)2n1−1/d.
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These lemmas allow us to efficiently construct matchings with low crossing number

with respect to any half-space or ball in R
d. (This is in contrast to previous setups, where

we required to have a finite set of m ranges as an input.) Notice however that we cannot

use directly Lemmas 31 and 32 to obtain test-sets for ordered matchings.

Lemma 31 and Corollary 30 implies the following corollary unordered matchings.

Corollary 33. Let X be a set of n points in R
d and T = T (n1/d) be the set of half-

spaces provided by Lemma 31. Then BuildMatching
(
(X, T ), 4e

(1−1/d) ln 2
, ln((d+1)n)

ln 2
, 1− 1

d

)

returns a matching of X with expected crossing number at most
(

6d2 +
12e(d+ 1)

(1− 1/d)2 ln 2

)

n1−1/d +O
(
ln(dn) lnn

)

with respect to half-spaces in R
d. The expected running time is O

(
dn2+1/d lnn

)
.

Similarly, we can apply Corollary 30 to set systems induced by balls. Note that in

case of balls, the Oracle complexity can be improved to O(d) from the O(2d) bound used

in Corollary 30 for Γd,2,1.

Corollary 34. Let X be a set of n points in R
d and let Q be the set of balls provided

by Lemma 32. Then BuildMatching
(
(X,Q), 8e

(1−1/d) ln 2
,

ln((d+2)n1+1/d)
ln 2

, 1 − 1
d

)
returns

a matching
{
e1, . . . , en/2

}
with expected crossing number at most

(

6(d+ 1)2 +
24e(d+ 2)

(1− 1/d)2 ln 2

)

n1−1/d +O
(
ln(dn) lnn

)

with respect to balls in R
d. The expected running time is O

(
dn2+1/d lnn

)
.

Remark. An algorithm to construct spanning trees with crossing number O(n1−1/d) with

respect to Bd can be obtained by randomized LP rounding and has time complexity Õ(mn2)

(Har-Peled, 2009; Chekuri and Quanrud, 2018), which combined with Lemma 32 yields

an Õ
(
n3+1/d

)
time algorithm. Alternatively, one can obtain a matching with sub-optimal

crossing number O
(
n1−1/(d+1)

)
by lifting X into R

d+1, where the image of each range in

Bd can be represented by a range in Hd+1 and applying the algorithm of Chan (2012) with

time complexity Õ(n).

Test-sets can also be used within the algorithms LowDiscColor and Approxi-

mate: since a matching M returned by BuildMatching on a test-set has low crossing

number with respect to Hd, M can be used to construct a low-discrepancy coloring χ

with respect to Hd (recall Lemma 20). In turn, χ can be used to construct a small-sized

ε-approximation (recall Lemma 21). These observations lead to the last two corollaries of

this section.
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Corollary 35. Let X be a set of n points in R
d and T = T (n1/d) be the set of (d + 1)n

half-spaces provided by Lemma 31. Then

i) LowDiscColor
(
(X, T ), 4e

ln 2(1−1/d)
, ln((d+1)n)

ln 2
, 1 − 1

d

)
constructs a coloring χ of X

of with expected discrepancy at most

3

√
(

6d2 +
12e(d+ 1)

(1− 1/d)2 ln 2

)

n1−1/d lnm+O
(
ln(dn) lnn lnm

)

with respect to half-spaces in R
d. The expected running time is O

(
dn2+1/d lnn

)
.

ii) if ε ∈ (0, 1) and A0 is a uniform random sample of X of size 4Capx(d+1)

ε2
, then Ap-

proximate
(
(A0, T |A0),

4e
ln 2(1−1/d)

,
ln |T |A0

|
ln 2

, 1− 1
d
, ε
)

returns a set A ⊂ X of size

O

(

max

{(
d

ε2
ln

1

ε

) d
d+1

,
d

ε
ln3/2

(
d

ε

)})

with expected approximation guarantee satisfying E[ε(A,X,Hd)] ≤ ε, and with an

expected running time O
(

n+ d
(

d
ε2

)2+1/d
ln d

ε

)

.

Corollary 36. Let X be a set of n points in R
d and let Q be the set of balls provided by

Lemma 32. Then

i) LowDiscColor
(
(X,Q), 8e

ln 2(1−1/d)
,

ln((d+2)n1+1/d)
ln 2

, 1− 1
d

)
constructs a coloring χ of

X of with expected discrepancy at most

3

√
(

6(d+ 1)2 +
24e(d+ 2)

(1− 1/d)2 ln 2

)

n1−1/d lnm+O
(
ln(dn) lnn lnm

)

with respect to balls in R
d. The expected running time is O

(
dn2+1/d lnn

)
.

ii) if ε ∈ (0, 1), A0 is a uniform random sample of X of size 4Capx(d+2)

ε2
, then the algorithm

Approximate
(
(A0,Q|A0),

8e
ln 2(1−1/d)

,
ln |Q|A0

|
ln 2

, 1− 1
d
, ε
)

returns a set A ⊂ X of size

at most

O

(

max

{(
d

ε2
ln

1

ε

) d
d+1

,
d

ε
ln3/2

(
d

ε

)})

with expected approximation guarantee satisfying E[ε(A,X,Bd)] ≤ ε, and with an

expected running time O
(

n+ d
(

d
ε2

)2+1/d
ln d

ε

)

.
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4.8 Empirical aspects of the algorithm LowDiscColor

In this section, present an experimental validation of our algorithm for set systems induced

by half-spaces.

4.8.1 Experimental setup

We apply our algorithm for geometric set systems induced by half-spaces in dimensions

2, 4, 6, 8, and 10. We consider two types of inputs:

Grid: each point is picked randomly in a cell of the uniform grid;

Moment: each point is a slightly perturbed element of the moment curve;

These two examples capture two extreme cases: in the case of the Grid input, the optimal

discrepancy is Θ
(√

n1−1/d
)

(Alexander, 1990; Matoušek, 1995), while it is O
(√

d
)

in the

case of the Moment input. All the experiments are performed with dual Xeon E5-2643 v3

processors, each with 6 cores, 12 threads, at 3.4 GHz.

4.8.2 Pre-sampling

Half-spaces. Recall that our algorithm maintains weights on the set of all pairs (edges)

in X and on S, and construct a coloring iteratively, each time coloring a pair of X. In

general, half-spaces induce O
(
nd
)

ranges on n points. However, as we have shown in

Section 4.7, for our problem at hand it is sufficient to work with a set of O(dn) half-

spaces (see Lemma 31, Corollary 35). A test set that achieves the guarantee of Lemma 31

can be constructed via cuttings, which are impractical in higher dimensions. Alternatively,

it can be shown that a uniform sample of Θ(n logd n) half-spaces also have the test-set

properties stated in Lemma 31 with high probability. Since the study of test sets is not

the main focus of this work, our implementation builds the input ranges by Θ(n log n)

random d-tuples of the input points.

We also measure the quality of our method with respect to a random sample of

O(n log n) half-spaces, which sample is independent of our initial input range set. To

verify that our measurements are still reasonably reliable, we compare this method with

the theoretically grounded one: in Table 4.2 we present a comparison of the crossing

numbers of matchings created by BuildMatching with respect to O(n log n) random

half-spaces, and with respect to O(n logd n) random half-spaces.
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Grid

Input d = 2 d = 3 d = 4 d = 5 d = 6

size n log n n log2 n n log n n log3 n n log n n log4 n n log n n log5 n n log n n log6 n

100 21 20 30 31 29 36 35 39 30 37

250 35 38 55 62 65 73 71 78 66 82

500 51 58 92 100 110 119 118 134 131 149

1000 85 89 161 168 218 232 243 249 237 258

2500 141 144 285 296 411 425 491 509 543 575

5000 215 220 473 482 690 718 888 920 995 1044

10000 347 360 880 818 1241 1258 1595 1637 1962 1910

25000 701 702 1584 1602 2698 2734 3600 3683 4293 4390

50000 1191 1197 2808 2865 4765 4814 6685 6763 7946 8070

Table 4.2: Testing crossing number of matchings with n log n and n logd n random planes.

Edges. To further speed-up our algorithm, we implemented an accelerated version,

where instead of maintaining the weights on all the O(n2) edges, we work with an initial

uniform random sample of O (n1+α log n) edges, where 0 < α ≤ 1 is a parameter to be

set. The resulting algorithm LowDiscColorPresampled is presented in Algorithm 6.

The following theorem describes the trade-off between α and the expected discrepancy

guarantees.

Theorem 37. Let (X,S) be a set system, n = |X|, m = |S|, and let c, d be constants

such that π∗
S(k) ≤ c · kd. For any 0 < α ≤ 1, the algorithm LowDiscColorPresam-

pled((X,S), d, α) constructs a coloring χ of X with expected discrepancy

O

(√

n1−α/d lnm+ ln2 m log n

)

,

with an expected number of Oracle calls at most

O
(
min

{
n1+α+α/d ln2 n+mnα/d ln(mn) ·min {d, log n} , n3 +mn

})
.

The core of its proof is the following lemma on matchings in random edge-sets, which

might be of independent interest.

Lemma 38. Let (X,S) be a set system with dual shatter function π∗(k) = O(kd), 0 <

α ≤ 1, and δ ∈ (0, 1). Let E be a a uniform sample from
(
X
2

)
, where each edge is picked

i.i.d. with probability

p =
2 lnn

n1−α
+

4 ln(2/δ)

n2−α
.
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Algorithm 6: LowDiscColorPresampled
(
(X,S), d, α

)

while |X| ≥ 16 do
n← |X|
E ← sample of O(n1+α lnn) edges from

(
X
2

)

(
e1, . . . , e⌈n/16⌉

)
←MatchHalf

(
(X,S), E, (2c)1/d, lnm, 1− α/d, n/16

)

for i = 1, . . . , ⌈n/16⌉ do
{xi, yi} ← endpoints (ei)

χ(xi) =







1 with probability 1/2

−1 with probability 1/2

χ(yi) = −χ(xi)

X \ {xi, yi}
Color the remaining vertices randomly

return χ

Then with probability at least 1 − δ, E contains a matching of size1 n/4 with crossing

number

O
(
n1−α/d + ln |S|

)
.

Moreover, for any d ≥ 2, and n0 ∈ N there is a set system (X,S) with |X| = n ≥ n0

and dual shatter function π∗
S(k) = O(kd) such that for any 0 < α ≤ 1 and p(n) = o (nα−1)

if E is a random edge-set obtained by selecting each edge in
(
X
2

)
i.i.d. with probability

p(n), then with probability at least 1/2, every matching in E of size n/4 has crossing

number ω
(
n1−α/d

)
with respect to S.

The proofs of Theorem 37 and Lemma 38 are presented later, in Section 4.8.5.

4.8.3 Implementation details

Recall that our algorithm maintains weights on each pre-sampled edge, and these weights

can be halved at each iteration. Instead of storing these potentially exponentially small

weights explicitly, we simply keep track of how many times the weight of an edge has

been updated. In particular, we maintain a partition of the edges into groups such that

each group consists of elements that have been updated the same number of times, and

thus have the same weight. We store the (exponentially increasing) weights of the test

set half-spaces in the same way. To sample an edge or a half-space with respect to the

1The size of a matching is the number of its edges. A matching of size n/4 is a matching of n/2

elements of X.
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current weights, it suffices to sample from the heaviest Θ(log n) groups. The remaining

groups have o
(
1
n

)
-th fraction of the total weight, which can be shown to not effect the

analysis.

We perform an initial n
4

iterations to set more accurate edge weights and start con-

structing the final coloring only afterwards.
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Figure 4.1: Comparing the quality and time of our algorithm with different settings of α

on Grid input type.
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Theorem 37 states that the discrepancy of the coloring produced by our algorithm

depends on the pre-sampling parameter α ∈ [0, 1]. In Figure 4.1, we highlight the impact

of α on the discrepancy errors and running times using the Grid input. The discrepancy

errors are plotted on a linear scale and the running times are in seconds, plotted on a

log-scale. As derived in Theorem 37, from the perspective of the discrepancy error, the

α parameter becomes less significant with the growth of the dimension. At the same

time, α has a significant impact on the running time, even in large dimensions. For the

remaining of our experiments, we set α = 0.25, which gives a reasonable trade-off between

the running time an the improvement on the discrepancy error.

Figure 4.2 demonstrates how the choice of α impacts the underlying matchings of

LowDiscColorPresampled.
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Figure 4.2: Matchings created by our method on 5000 points (Grid input type) with

different pre-sampling parameters α.



72 Chapter 4. Improved algorithm for low-discrepancy colorings

4.8.4 Evaluation

Table 4.3 shows the observed discrepancies and running times on the two types of input:

Grid and Moment. For comparison, we added a column Rdisc (in grey), which shows the

discrepancy of a random coloring on the same input, with respect to the same quality

testing set.

Input d = 2 d = 4 d = 6 d = 8 d = 10

size disc time Rdisc disc time Rdisc disc time Rdisc disc time Rdisc disc time Rdisc

Grid

100 9 0.02 12 13 0.02 23 13 0.02 24 15 0.02 20 14 0.02 14

250 15 0.05 31 22 0.05 41 26 0.04 24 25 0.05 33 25 0.04 26

500 22 0.11 48 35 0.09 66 37 0.08 47 39 0.09 42 40 0.11 32

1000 22 0.27 31 40 0.18 73 45 0.17 54 57 0.16 48 66 0.17 49

2500 39 1.03 84 67 0.54 94 85 0.45 88 89 0.44 118 76 0.44 94

5000 49 3.12 109 95 1.32 129 97 1.02 143 145 0.94 153 123 0.98 211

10000 66 9.75 206 142 3.16 234 140 2.78 235 191 2.42 181 186 2.31 227

25000 95 48.48 144 222 11.58 294 283 9.66 343 290 8.14 323 313 7.18 422

50000 126 161.40 253 287 31.68 621 338 26.49 454 388 19.08 524 425 16.94 522

100000 184 554.27 407 436 75.98 769 536 54.17 723 630 56.01 694 562 47.79 694

Moment

100 11 0.02 10 14 0.02 19 13 0.02 31 15 0.02 16 17 0.01 16

250 17 0.06 19 15 0.05 33 25 0.05 26 27 0.04 46 29 0.04 29

500 17 0.12 37 32 0.09 46 31 0.09 69 31 0.09 42 35 0.10 48

1000 27 0.27 47 35 0.18 52 54 0.17 52 52 0.17 60 51 0.16 52

2500 32 1.02 52 54 0.55 91 72 0.46 154 81 0.45 84 86 0.44 83

5000 41 3.20 132 75 1.28 104 112 1.05 129 95 0.96 174 124 0.99 176

10000 54 10.17 170 105 3.14 274 122 2.66 251 161 2.46 218 182 2.34 220

25000 61 47.47 403 164 11.43 310 202 9.33 297 260 7.81 383 265 6.92 426

50000 81 164.04 266 180 30.12 552 382 25.13 649 323 19.02 522 560 16.57 580

100000 106 550.13 789 265 75.07 555 393 53.98 585 511 55.45 936 512 47.58 839

Table 4.3: Experimental results for set systems induced by half-spaces.

The results of Table 4.3 exhibit a consistent improvement of our method over the

random coloring, which becomes less pronounced with the growth of the dimension. Note

that this phenomenon agrees with our theoretical results and with the known lower bound

on the discrepancy. Furthermore, as our theory suggests, our algorithm becomes faster

as the dimension increases.

We illustrate these behaviors on Figure 4.3, where we plot the average outcome of

our method over 10 repetitions on the Grid input type. Interestingly, our experiments

suggest that the variance of the discrepancy error increase with the dimension, while the

variance of the runtime slightly decreases with dimension. At last, even though we ran



4.8. Empirical aspects of the algorithm LowDiscColor 73

2500 5000 7500 10000 12500 15000 17500 20000
Input size

50

100

150

200

250

300

Di
sc

re
pa

nc
y

Our method
d = 2
d = 4
d = 6
d = 8
d = 10

2500 5000 7500 10000 12500 15000 17500 20000
Input size

0

5

10

15

20

25

30

Ti
m

e 
(s

)

Our method
d = 2
d = 4
d = 6
d = 8
d = 10

Figure 4.3: Mean and variance of our discrepancy error and runtime on input type Grid.

The shaded area denote ±1 standard deviation.

the algorithm with the same parameter setting (we are not adapting to the input) for

both input types, the discrepancy errors are consistently smaller for Moment.

We also compared the mean and the variance of our discrepancy errors to those of

random sampling. Figure 4.4 presents this comparison over 10 repetitions on the Grid

input type. Again, the average performances of the two methods get closer with the

increase of dimension. However, remarkably, the variance of our method is much smaller

even on such small number of repetitions.
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Figure 4.4: Mean and variance of our method and random sampling on input type Grid.

The shaded areas denote ±1 standard deviation.



74 Chapter 4. Improved algorithm for low-discrepancy colorings

Overall, the empirical evidences presented in this section are coherent with the derived

theory and they highlight the often significant (depending on the dimension) improvement

over the basic random coloring. Previous experimental results on matchings with low

crossing number—the core structure of our algorithm—only presented results for inputs

of size at most 159 in R
2, see Giannopoulos et al. (2014)2.

4.8.5 Proof of pre-sampling guarantees

In this section we prove the discrepancy guarantee of LowDiscColorPresampled

stated in Theorem 37. First, we show how Lemma 38 implies Theorem 37, then we prove

Lemma 38.

Proof of Theorem 37

By Lemma 20, it is enough to show that the algorithm MatchingPresampled (Algo-

rithm 7) constructs a matching with expected crossing number O
(
n1−α/d + ln |S| log n

)
:

Algorithm 7: MatchingPresampled
(
(X,S), d, α

)

M ← ∅
while |X| ≥ 16 do

n← |X|
E ← sample of O(n1+α lnn) edges from

(
X
2

)

{
e1, . . . , e⌈n/16⌉

}
←MatchHalf

(
(X,S), E, (2c)1/d, lnm, 1− α/d, n/16

)

M ←M ∪
{
e1, . . . , e⌈n/16⌉

}

return M

Recall the following statement on MatchHalf.

Lemma 23 (Main Lemma). Let t ∈ [1, |X|/4] be an integer and Ẽt ⊆ E denote the set of

edges that have non-zero weight when MatchHalf
(
(X,S), E, a, b, γ, t

)
terminates. Then

E

[

max
S∈S

t∑

i=1

I (ei, S)

]

≤ 1

2
E

[

min
e∈Ẽt

t∑

i=1

I (e, Si)

]

+

(
128
13

+ 8
ln 2

)
ln(|E|t)

3p
+

(
16 + 4

ln 2

)
ln(|S|t)

3q
.

(4.3)

2The paper studies the related problem of finding spanning trees with low crossing number, which can

be used to construct matchings with low crossing number.
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Substituting p and q, we get the following bound on the expected crossing number of
{
e1, . . . , e⌈n/8⌉

}
:

E



 max
S∈S

⌈n/16⌉
∑

i=1

I (ei, S)



 ≤ 1

2
E



 min
e∈Ẽt

⌈n/16⌉
∑

i=1

I (e, Si)



+O
(
n1−α/d

)
. (4.11)

It remains to show that

E



 min
e∈Ẽt

⌈n/16⌉
∑

i=1

I (e, Si)



 = O
(
n1−α/d

)
.

By Lemma 38, with probability at least 1 − 1
n
, E contains a matching of size n/4 with

crossing number

O
(
n1−α/d + ln |S|

)
.

Assume that E contains a matching M0 of size n/4 with the above crossing num-

ber. Then M0 ∩ Ẽ⌈n/16⌉ has crossing number C0 ·
(
n1−α/d + ln |S|

)
with respect to S and

∣
∣
∣M0 ∩ Ẽ⌈n/16⌉

∣
∣
∣ ≥ n/16. By the pigeonhole principle, there is an edge in M0∩Ẽ⌈n/16⌉ which

is crossed by at most

C0 ·
(
n1−α/d + ln |S|

)
· ⌈n/16⌉

n/16
= O

(
n1−α/d + ln |S|

)

sets from S1, . . . , S⌈n/16⌉.

We conclude that with probability at least 1− 1
n
, the matching returned by Matching-

Presampled has crossing number O
(
n1−α/d + ln |S| log n

)
. Since the crossing number

of any matching is O(n), the expected crossing number of the matching returned by

MatchingPresampled is O
(
n1−α/d + ln |S| log n

)
.

This concludes the proof of Theorem 37.

Proof of Lemma 38

In the remaining of this section, we discuss the proof of Lemma 38. Our starting point

is the algorithm RelaxedMWU (Algorithm 8), which is a variant of the classical MWU

method.

Analysis of the RelaxedMWU algorithm. Assume that for any X and ω, we

can find an edge which is crossed by sets of total weight at most τ(|X|, ω(S)) Then at

each iteration, the total weight of set changes as

ωi+1(S) ≤ ωi(S) + τ(n− 2(i− 1), ωi(S))
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Algorithm 8: RelaxedMWU
(
(X,S), α, E

)

ω1(S)← 1 for all S ∈ S
for i = 1, . . . , n/2 do

Si ← the |X|2−α lightest edges in
(
X
2

)
w.r.t. ωi

if E ∩ Si = ∅ then
set T = i− 1 and return {e1, . . . , ei−1}

else
Pick an edge ei from E ∩ Si

Define ωi+1 from ωi by doubling the weights of each set crossing ei

X ← X \ vertices(ei)
return

{
e1, . . . , en/2

}

= ωi(S)
(

1 +
τ(|X| − 2(i− 1), ωi(S))

ωi(S)

)

≤ ω1(S)
i∏

j=1

(

1 +
τ(|X| − 2j + 2, ωj(S))

ωj(S)

)

= |S| ·
i∏

j=1

(

1 +
τ(|X| − 2j + 2, ωj(S))

ωj(S)

)

Let n = |X|, t ∈ [1, n/2] be a stopping time and let κt denote the maximum number of

edges in {e1, . . . , et} that are crossed by any set in S, then by the update rule,

ωt+1(S) ≥ max
S∈S

ωt+1(S) = 2κt .

We get that

2κt ≤ ωt+1(S) ≤ |S| ·
t∏

j=1

(

1 +
τ(n− 2j + 2, ωj(S))

ωj(S)

)

≤ |S| · exp
(

t∑

j=1

τ(n− 2j + 2, ωj(S))
ωj(S)

)

which implies

κt ≤
1

ln 2

(

ln |S|+
t∑

j=1

τ(n− 2j + 2, ωj(S))
ωj(S)

)

. (4.12)

We use the following lemma to bound τ(·, ·).

Lemma 39. Let (X,S) be a set system with dual shatter function π∗
S(k) ≤ c1 · kd. Then

for any Y ⊂ X, w : S → N, and parameter |Y | ≤ k ≤
(|Y |

2

)
there are at least k distinct
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edges in
(
Y
2

)
such that any of these edges are crossed by sets of total weight at most

τk(|Y |, w(S)) = (10c1)
1/d · w(S)·k1/d

|Y |2/d .

Proof. The proof uses the packing lemma of Haussler (1995).

Lemma 40 (Packing lemma). Let (X,S) be a set system with shatter function πS(k) ≤
c1 · kd and 1 < δ < |X| be a parameter. Furthermore, let P ⊂ S be a δ-separated set, that

is, |S1∆S2| ≥ δ for any S1, S2 ∈ P. Then

|P| ≤ 2c1

( |X|
δ

)d

.

Let (Sw,RY ) denote the set system where Sw contains w(S) copies of each S ∈ S,

RY = {Ry : y ∈ Y }, and Ry = {S ∈ Sw : y ∈ S}. Note that |Sw| = w(S) and the shatter

function of (Sw,RX) is the dual shatter function of (Y,S). Let

δk =

(

10c1 ·
w(S)dk
|Y |2

)1/d

By the Packing lemma, any δk-separated subset of ranges in RY has cardinality at most

Ck = 2c1

(
w(S)
δk

)d

=
|Y |2
5k

Observe that for any pair x, y ∈ Y , the set Rx∆Ry contains precisely the sets in

Sw that cross the edge xy. Therefore, the Packing Lemma implies that the graph on Y

spanned by the edges which are crossed by at least δk sets in Sw does not contain a clique

on Ck + 1 vertices.

Thus by the classical theorem of Turán (1941), the number of δk-short edges is at least

Ck

(⌊|Y |/Ck⌋
2

)

≥ Ck ·
(|Y |/Ck − 1) (|Y |/Ck − 2)

2
≥ |Y |

2

2Ck

− 3|Y |
2

=
5k

2
− 3|Y |

2
= k,

where we used that |Y | ≤ k.

Lemma 39 and Equation (4.12) imply that the matching {e1, . . . , et} returned by

RelaxedMWU has crossing number at most

ln |S|
ln 2

+
(10c1)

1/d

ln 2

t∑

j=1

1

(n− 2j + 2)α/d
≤ ln |S|

ln 2
+

(10c1)
1/d

ln 2
· t1−α/d

1− α/d
. (4.13)

By the above analysis, it is enough to show that if E ⊆
(
X
2

)
, where each edge is picked

i.i.d with probability

p =
2 lnn

n1−α
+

4 ln(2/δ)

n2−α
,
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then with probability at least 1− δ, the algorithm RelaxedMWU((X,S), α, E) returns

at least n/4 edges. Briefly, we need to show that

P [ T ≤ n/4 ] ≤ δ,

where T denotes the number of edges returned by RelaxedMWU on the set E. We can

express the above probability as

P[T ≤ n/4] =

n/4
∑

i=0

P[T = i] ,

therefore it is enough to bound the probabilities P[T = i] for each i = 1, . . . , n/4. Since

E is an i.i.d. uniform random sample of
(
X
2

)
,

P[T = 1] = P[E ∩ S1 = ∅] = (1− p)|S1|.

Observe that in iteration i ≥ 2 of the algorithm RelaxedMWU, the short-edge set Si

depends on the previously picked edges. To signify this, for any set of edges e1, . . . , ei−1, we

denote the set of (n− 2i)α shortest edges of X \ vertices (e1, . . . , ei−1) as Si(e1, . . . , ei−1).

We say that a vector or edges (e1, . . . , ei) is feasible if e1 ∈ S1, e
2 ∈ S2(e

1), . . . , ei ∈
Si(e

1, . . . , ei−1). Observe that

P[T = i+ 1] = P [ E ∩ S1 6= ∅, E ∩ S2 6= ∅, . . . , E ∩ Si+1 = ∅ ]
=

∑

(e1,...,ei) feasible

P
[
E ∩ Si+1 = ∅, E ∩ Sj 6= ∅ ∀j ∈ [1, i]

∣
∣ ej = ej, ∀j ∈ [1, i]

]

· P
[
ej = ej, ∀j ∈ [1, i]

]

=
∑

(e1,...,ei) feasible

P
[
E ∩ Si+1(e

1, . . . , ei) = ∅
∣
∣ ej = ej, ∀j ∈ [1, i]

]
P
[
ej = ej, ∀j ∈ [1, i]

]
.

(4.14)

Note that Si+1(e
1, . . . , ei) is a fixed, non-random set. We use Bayes’ theorem which states

that for events A,B

P [ A | B ] =
P [ B | A ] · P [ A ]

P [ B ]
.

Using this rule, we can express the conditional probabilities in the right hand side of

Equation (4.14) as

P
[
E ∩ Si+1(e

1, . . . , ei) = ∅
∣
∣ ej = ej, ∀j ∈ [1, i]

]
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=
P
[
ej = ej, ∀j ∈ [1, i]

∣
∣ E ∩ Si+1(e

1, . . . , ei) = ∅
]
· P [ E ∩ Si+1(e

1, . . . , ei) = ∅ ]
P [ ej = ej, ∀j ∈ [1, i] ]

.

Substituting this back to Equation (4.14), we get

P [ T = i+ 1 ]

=
∑

(e1,...,ei) feasible

P
[
ej = ej, ∀j ∈ [1, i] | E ∩ Si+1(e

1, . . . , ei) = ∅
]

· P
[
E ∩ Si+1(e

1, . . . , ei) = ∅
]

=
∑

(e1,...,ei) feasible

P
[
ej = ej, ∀j ∈ [1, i] | E ∩ Si+1(e

1, . . . , ei) = ∅
]
· (1− p)|Si+1(e

1,...,ei)|

(4.15)

Recall that |Si+1(e
1, . . . , ei)| = (n − 2i)α for any choice of e1, . . . , ei. Therefore, the only

(so far) unknown factor in the right hand side of Equation (4.15) is the probability

P
[
ej = ej, ∀j ∈ [1, i] | E ∩ Si+1(e

1, . . . , ei) = ∅
]
.

We continue by bounding this probability. For brevity, let e = (e1, . . . , ei) be a fixed

feasible vector of edges and Si+1(e) = Si+1(e
1, . . . , ei). Observe that

P
[
ej = ej, ∀j ∈ [1, i] | E ∩ Si+1(e) = ∅

]

= P
[
ei = ei | E ∩ Si+1(e) = ∅, ej = ej, ∀j ∈ [1, i− 1]

]

· P
[
ej = ej, ∀j ∈ [1, i− 1] | E ∩ Si+1(e) = ∅

]

=
i∏

j=2

P
[
ej = ej | E ∩ Si+1(e) = ∅, eℓ = eℓ, ∀ℓ ∈ [1, j − 1]

]

· P
[
e1 = e1 | E ∩ Si+1(e) = ∅

]

Recall that e1 was picked uniformly at random from S1∩E, where S1 is a fixed set such that

e1 ∈ S1, and E is random. This implies the following for P [ e1 = e1 | E ∩ Si+1(e) = ∅ ]

P
[
e1 = e1

∣
∣ E ∩ Si+1(e) = ∅

]

=
∑

S′⊂S1

P
[
e1 = e1

∣
∣ E ∩ Si+1(e) = ∅, E ∩ S1 = S ′ ] · P

[
E ∩ S1 = S ′ ∣∣ E ∩ Si+1(e) = ∅

]

=
∑

e1∈S′⊂S1\Si+1(e)

1

|S ′| · p
|S′| · (1− p)|S1\Si+1(e)|−|S′|

=

|S1\Si+1(e)|∑

ℓ=1

(|S1 \ Si+1(e)| − 1

ℓ− 1

)

· 1
ℓ
· pℓ · (1− p)|S1\Si+1(e)|−ℓ
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=

|S1\Si+1(e)|∑

ℓ=1

1

|S1 \ Si+1(e)|

(|S1 \ Si+1(e)|
ℓ

)

· pℓ · (1− p)|S1\Si+1(e)|−ℓ

=
1

|S1 \ Si+1(e)|
(p+ (1− p))|S1\Si+1(e)| − (1− p)|S1\Si+1(e)|

=
1

|S1 \ Si+1(e)|
(
1− (1− p)|S1\Si+1(e)|) .

The last piece is to bound the probabilities

P
[
ej = ej | E ∩ Si+1(e) = ∅, eℓ = eℓ, ∀ℓ ∈ [1, j − 1]

]

for j ≥ 2. Note that, given the choices of the edges eℓ = eℓ for ℓ = 1, . . . , j − 1, the set

Sj = Sj(e
1, . . . , ej−1)

is not random, and thus we have a similar relation as before

P
[
ej = ej | E ∩ Si+1(e) = ∅, eℓ = eℓ, ∀ℓ ∈ [1, j − 1]

]

= P
[
ej = ej | E ∩ Si+1(e) = ∅

]

=
∑

ej∈S′⊂Sj\Si+1(e)

1

|S ′| · p
|S′| · (1− p)|Sj\Si+1(e)|−|S′|

=

|Sj\Si+1(e)|∑

ℓ=1

(|Sj \ Si+1(e)| − 1

ℓ− 1

)

· 1
ℓ
· pℓ · (1− p)|Sj\Si+1(e)|−ℓ

=
1

|Sj \ Si+1(e)|
(
1− (1− p)|Sj\Si+1(e)|) .

Observe that for each 1 ≤ j ≤ i we have

(n− 2(j − 1))α − (n− 2i)α ≤ |Sj \ Si+1(e)| ≤ (n− 2(j − 1))α

and that the above probability is maximized if

|Sj \ Si+1(e)| = (n− 2(j − 1))α − (n− 2i)α.37

Putting all this together and using the notation ki = (n− 2(i− 1))α, we get

P [ T = i+ 1 ] = (1− p)ki+1 ·
∑

e feasible

i∏

j=1

1

|Sj \ Si+1(e)|
(
1− (1− p)|Sj\Si+1(e)|)

≤ (1− p)ki+1 ·
∑

e feasible

i∏

j=1

1

kj − ki+1

(
1− (1− p)kj−ki+1

)
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= (1− p)ki+1 · |S1| · |S2| · · · |Si| ·
i∏

j=1

1

kj − ki+1

(
1− (1− p)kj−ki+1

)

= (1− p)ki+1 ·
i∏

j=1

kj
kj − ki+1

(
1− (1− p)kj−ki+1

)

For any i ≥ 2, we get that the probability of T ≤ i+ 1 can be bounded as

P [ T ≤ i+ 1 ] =
i+1∑

j=1

P [ T = j ]

≤ (1− p)k1 +
i+1∑

ℓ=1

(1− p)kℓ+1 ·
ℓ∏

j=1

kj
kj − kℓ+1

(
1− (1− p)kj−kℓ+1

)

Using the bounds k1 ≥ k2 . . . kn/4−1 ≥ kn/4 and kj − ki+1 ≥ 1 for all 1 ≤ j ≤ i, we can

bound the probability of T ≤ n/4 as

P [ T ≤ n/4 ] ≤ (1− p)kn/4 + (1− p)kn/4

n/4
∑

ℓ=1

ℓ∏

j=1

kj · p ≤ (1− p)kn/4

n/4
∑

ℓ=0

(k1 · p)ℓ

= (1− p)kn/4
1− (pk1)

n/4+1

1− pk1
≤ 2(1− p)kn/4 · (pk1)n/4 ≤ 2 exp(−pkn/4) · kn/4

1

Substituting k1 = n2−α, kn/4 ≥ (n/2)2−α ≥ n2−α/4 and p = 2 lnn
n1−α + 4 ln(2/δ)

n2−α , we conclude

P [ T ≤ n/4 ] ≤ 2 exp (−(n/2) lnn− ln(2/δ)) ·
(
n2−α

)n/4
= 2 · n

n/2−αn/4

nn/2
· δ
2
≤ δ

Therefore, with probability at least 1−δ, RelaxedMWU returns a matching of size n/4.

This, together with Equation (4.13) implies the upper bound of Lemma 38.

Lower bound construction. We define X to be a subset of the integer grid, in

particular X = ×d
i=1

[

1,
⌈

n
1/d
0

⌉ ]

⊂ Z
d. Let S consist of all subsets of X induced by

half-spaces of the form
{

xi ≤ j + 1/2

∣
∣
∣
∣
i = 1, . . . , d, j = 1, . . .

⌊

n
1/d
0

⌋}

.

Observe that for any edge {x,y} ∈
(
X
2

)
, the number of sets in S that crosses {x,y} is

precisely the ℓ1-distance of x and y, which is defined as

ℓ1(x,y) =
d∑

i=1

|xi − yi| .
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Using this observation, it is easy to see that for any fixed k, the number of edges crossed

by at most k sets from S is at most nkd. We refer to these edges as k-good and denote

their set with Gk.

Now we set k =
(

1
16p(n)

)1/d

and examine the expected number of k-good edges in E.

E [ |E ∩Gk| ] ≤ nkd · p(n) = n

16

By Markov’s inequality,

P

[

|E ∩Gk| ≤
n

8

]

≥ 1

2
.

Thus, with probability at least 1/2, we have |E ∩Gk| ≤ n
8
. Assume that this event holds

and let M ⊂ E be any subset of size n/4. Then M contains at least n/8 edges which are

not k-good. Therefore, the number of crossings between the edges of M and the sets of

S is at least
n

8
·
(

1

16p(n)

)1/d

Recall that |S| = d · n1/d and so by the pigeonhole principle, we get that there is a set in

S that crosses at least

n
8
·
(

1
16p(n)

)1/d

dn1/d
=

n1−1/d

8d · (16)1/d ·
(

1

p(n)

)1/d

︸ ︷︷ ︸

ω(n(1−α)/d)

= ω
(
n1−α/d

)

edges of M .



Chapter 5

VC dimension of unions

The results presented in this chapter were published in the article

Tight Lower Bounds on the VC dimension of Geometric Set Systems

Journal of Machine Learning Research 20(81):1-8, 2019.

It is a joint work with Andrey Kupavskii and Nabil Mustafa.

In this chapter, we provide tight lower bounds for the VC dimension of two fundamen-

tal set systems: k-fold unions/intersections of half-spaces and the simplices set system.

Among other implications, our result settles an open question in machine learning that

was first studied in the foundational paper of Blumer et al. (1989) as well as by Eisenstat

and Angluin (2007) and Johnson (2008).

As before, let (X,S) denote a set system, where X is a set of elements and S is a set of

subsets of X. For any integer k ≥ 2, define the k-fold union of S as the set system induced

on X by the ranges Sk∪ = {S1 ∪ · · · ∪ Sk : S1, . . . , Sk ∈ S} . Similarly, one can define the

k-fold intersection of S, denoted by Sk∩, as the set system consisting of all subsets derived

from the common intersection of at most k sets of S. Note that as the ranges S1, . . . , Sk

need not necessarily be distinct, we have S ⊆ Sk∪ and S ⊆ Sk∩. Analogously, the k-

fold symmetric difference of S is defined as Sk⊕ = {S1 ⊕ · · · ⊕ Sk : S1, . . . , Sk ∈ S} , where

S1⊕· · ·⊕Sk is the set of those elements that are contained in an odd number of S1, . . . , Sk.

Theorem 41 (Blumer et al. 1989). Let (X,S) be a set system and k be any positive

integer. Then

dVC

(
Sk∪) = O

(

dVC (S) · k log k
)

,

dVC

(
Sk∩) = O

(

dVC (S) · k log k
)

.
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Moreover, there are set systems such that dVC

(
Sk∪) = Ω(dVC (S) · k) and

dVC

(
Sk∩) = Ω(dVC (S) · k).

Remark. The upper bound of Theorem 41 holds in a more general setting: for any

fixed set-theoretic expression F (S1, S2, . . . , Sk) (consisting of operations of set union, in-

tersection, and difference) and range set Sk∗ := {F (S1, . . . , Sk) : S1, . . . , Sk ∈ S}, we

have dVC(Sk∗) = O(dVC (S) · k log k) (see eg. Matoušek, 2002, chap. 10), in particular,

dVC

(
Sk⊕) = O (dVC (S) · k log k).

Half-spaces. Blumer et al. (1989) also considered the question of whether the upper

bounds of Theorem 41 are tight in the most basic geometric case when X ⊆ R
d is a set of

points and S is the projection of the family of all half-spaces of Rd onto X. They proved

that the VC dimension of the k-fold union of half-spaces in two dimensions is exactly

2k + 1. For general dimensions d ≥ 3, they upper-bound the VC dimension of the k-fold

union of half-spaces by O(d · k log k). This follows from Theorem 41 together with the

fact that the VC dimension of the set system induced by half-spaces in R
d is d+ 1. The

same upper bound holds for the VC dimension of the k-fold intersection of half-spaces

in R
d. Later Dobkin and Gunopulos (1995) showed that the VC dimension of the k-fold

union of half-spaces in R
3 is upper-bounded by 4k.

Eisenstat and Angluin (2007) proved, by giving a probabilistic construction of an

abstract set system, that the upper bound of Theorem 41 is asymptotically tight if

dVC (S) ≥ 5 and that for dVC (S) = 1, an upper bound of k holds which is tight. A

few years later, Eisenstat (2009) filled the gap by showing that there exists a set system

(X,S) of VC dimension 2 such that dVC

(
Sk∪) = Ω(dVC (S) · k log k).

For d ≥ 4, the current best upper-bound for the k-fold union and the k-fold intersec-

tion of half-spaces in R
d is still the one given by Theorem 41 almost 30 years ago, while the

lower-bound has remained Ω (dVC(S) · k). We refer the reader to the PhD thesis of John-

son (2008) for a summary of the bounds on VC dimensions of these basic combinatorial

and geometric set systems.

The resolution of the VC dimension of k-fold unions and intersections of half-spaces

is left as one of the main open problems in the thesis.

For some time now, it has generally been expected that

dVC

(
Sk∪) = dVC

(
Sk∩) = O (dk)

for the k-fold unions and intersections of half-spaces. This upper-bound indeed holds for

a related notion: the primal shattering dimension of the k-fold unions and intersections
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of half-spaces is O(dk). In fact, as it was pointed out by Bachem (2018), several papers in

learning theory assume the same for VC dimension. Likewise for computational geometry

literature: for example, the coreset size bounds in the constructions of Feldman and

Langberg (2011), Balcan et al. (2013), and Lucic et al. (2016) would require an additional

log k factor in the coreset size—if the upper-bound of Theorem 41 was tight for the k-fold

intersection of half-spaces.

The main result of this chapter is a lower-bound construction, which proves that the

O(d · k log k) upper bound of Theorem 41 is in fact tight.

Theorem 42. Let k be a given positive integer and d ≥ 4 be an integer. Then there exists

a set P of points in R
d such that the set system S induced on P by half-spaces satisfies

a) dVC

(
Sk∪) = Ω

(

dVC(S) · k log k
)

= Ω
(

d · k log k
)

,

b) dVC

(
Sk∩) = Ω

(

dVC(S) · k log k
)

= Ω
(

d · k log k
)

,

c) dVC

(
Sk⊕) = Ω

(

dVC(S) · k log k
)

= Ω
(

d · k log k
)

.

The proof of Theorem 42 is presented in Section 5.1. Our construction is deterministic,

therefore it also provides a non-probabilistic proof of the lower-bound of Eisenstat and

Angluin (2007). Note that a set of points is shattered by (the k-fold union of) closed

half-spaces if and only if it is shattered by (the k-fold union of) open half-spaces. Thus

Theorem 42 also holds for open half-spaces.

Simplices. The following set system is fundamental in computational geometry. Given

a set H of hyperplanes in R
d, define

∆(H) =
{

H′ ⊆ H : ∃ an open d-dimensional simplex S in R
d such that

H ∈ H′ if and only if H intersects S
}

.
(5.1)

Its importance derives from the fact that it is the set system underlying the construction

of cuttings via random sampling (see Chazelle and Friedman 1990 as well as the recent

survey of Mustafa and Varadarajan 2017). Cuttings are the key tool for fast point-location

algorithms and were studied in detail recently by Ezra et al. (2020). They provided the

best bounds so far for the VC dimension of ∆(H).

Lemma 43 (Ezra et al. 2020). For d ≥ 9, we have

d (d+ 1) ≤ dVC (∆ (H)) ≤ 5 · d2 log d.
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Using Theorem 42, we show an asymptotically optimal bound on the VC dimension

of ∆(H), improving the bound of Ezra et al. (2020) and resolving a question that was

studied in the computational geometry community starting in the 1980s. Our result holds

for a more general set system on hyperplanes induced by the ranges

∆k (H) =
{

H′ ⊆ H : ∃ an open k-dimensional simplex S in R
d such that

H ∈ H′ if and only if H intersects S
}

.

In Section 5.2, we prove the following lower bound on the VC dimension of (H,∆k(H)).

Theorem 44. For any integer d ≥ 4 and k ≤ d, there exists a set H of Ω (dk log k)

hyperplanes in R
d such that |∆k(H)| = 2|H|, that is, we have

dVC (∆k (H)) = Ω (d · k log k) .

5.1 Lower bound for unions of half-spaces

In this section, we present the proof of Theorem 42. Let Q a set of points in R
d and

R be a collection of sets in R
d and define R := {Rd \ R : R ∈ R}. Observe that

dVC(Q,R) = dVC(Q,R) and that

dVC

(
Q,Rk∩) = dVC

(

Q,Rk∩
)

= dVC

(

Rk∪)
.

holds by the De Morgan laws. Since for half-spaces R = R, part a) of Theorem 42 implies

part b).

We prove parts a) and c) for d even, starting from d = 4. The asymptotic lower-bound

for odd values of d follows from the one in R
d−1. The starting point of the proof is the

following lemma.

Lemma 45 (Kupavskii et al., 2016, Lemma 2). Let n, d′ ≥ 2 be integers. Then there

exists a set Bn,d′ of axis-parallel boxes in R
d′, with |Bn,d′ | = (d′−1) (n+ 1) 2n−2, such that

for any subset S ⊆ Bn,d′, there exists a set Q of points in R
d′ such that |Q| = 2n−1 and

(i) |Q ∩ B| = 1 for any B ∈ Bn,d′ \ S, and

(ii) Q ∩ B = ∅ for any B ∈ S.

Remark. In Kupavskii et al. (2016) this lemma is stated in a weaker form, however

the above stronger statement is implicit in their proof.
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Let d′ =
⌊
d
2

⌋
and apply Lemma 45 with n = ⌊log k⌋ + 1 in R

d′ to get a set B = Bn,d′ of

boxes in R
d′ . By translation, we can assume that all coordinates of points lying in each

box in B are positive. Now we will construct the following mappings:

set of boxes B in R
d/2

π
−−−−−→ points in R

d,

points in R
d/2

β
−−−−−→ boxes in R

d
γ

−−−−−→ half-spaces in R
d.

We will then prove the key property of these mappings, that for any q ∈ R
d/2 and B ∈ B

q ∈ B
(5.2)
⇐====⇒ π(B) ∈ β(q)

(5.3)
⇐====⇒ π(B) ∈ γ(β(q)).

We first define mappings π and β, with π : B → R
d and with β mapping points in R

d′ to

axis-parallel boxes in R
d, such that for any B ∈ B and q ∈ R

d′ , we have

q ∈ B ⇐⇒ π(B) ∈ β(q). (5.2)

• Let B ∈ B be defined as the product of d′ intervals:

B = [x1, x
′
1]× [x2, x

′
2]× · · · × [xd′ , x

′
d′ ], with xi, x

′
i > 0 for each i ∈ [d′].

Then π maps B in R
d′ to the following point in R

d (see Pach and Tardos, 2013)

π(B) =

(

x1,
1

x′
1

, x2,
1

x′
2

, . . . , xd′ ,
1

x′
d′

)

∈ R
d,

and we let π(B) := {π(B) : B ∈ B}.

• For any point q = (q1, q2, . . . , qd′) ∈ R
d′ , define β(q) to be the box

β(q) = [0, q1]×
[

0,
1

q1

]

× · · · × [0, qd′ ]×
[

0,
1

qd′

]

⊂ R
d.

Proposition 46. The mappings π and β satisfy (5.2).

Proof. Let q = (q1, q2, . . . , qd′) be a point in R
d′ and B = [x1, x

′
1]× [x2, x

′
2]× · · ·× [xd′ , x

′
d′ ]

be an axis-parallel box in R
d′ . Then q ∈ B if and only if xi ≤ qi ≤ x′

i for all i ∈ [d′].

On the other hand, π(B) lies in β(q) if and only if 0 ≤ xi ≤ qi and 0 ≤ 1/x′
i ≤ 1/qi

for each i ∈ [d′]—or equivalently, 0 ≤ xi ≤ qi and qi ≤ x′
i for each i ∈ [d′].

Note that these two conditions are exactly the same, implying (5.2).
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Recall that B = Bn,d′ is the set of boxes provided by Lemma 45 with parameters d′ =
⌊
d
2

⌋

and n = ⌊log k⌋+ 1. Thus we have

|B| =
(⌊

d

2

⌋

− 1

)

⌊log k⌋2⌊log k⌋−1.

Proposition 47 (‘Lifted dual version’ of Lemma 45). π(B) is a set of
(⌊

d

2

⌋

− 1

)

⌊log k⌋2⌊log k⌋−1

points in R
d such that for any subset T ⊆ π(B), there is a set Q∗ of at most k axis-parallel

boxes in R
d such that

(i) each point of T is contained in exactly one box in Q∗, and

(ii) no point of π(B) \ T is contained in any box of Q∗.

In particular, π(B) is shattered by the set system induced by the k-fold union of axis-

parallel boxes in R
d and also shattered by the set system induced by the k-fold symmetric

difference of axis-parallel boxes in R
d.

Proof. Let S = {π−1(p) : p ∈ π(B) \ T }. By Lemma 45, there is a set Q of at most k

points in R
d′ such that (i), (ii) of Lemma 45 hold for S and Q. Letting Q∗ = {β(q) : q ∈

Q}, the claim follows from (5.2).

Next we define the function γ(·) mapping boxes in R
d to half-spaces in R

d such that for

any point p ∈ π(B) and box B = β(q), we have

p ∈ B ⇐⇒ p ∈ γ(B). (5.3)

For every i ∈ [d], let 0 < αi,1 < αi,2 < . . . denote the sequence of distinct values of the

xi-coordinates of the elements of π(B). Every such sequence has length at most |π(B)|.
By re-scaling the coordinates, we can assume that

for each i ∈ [d] and j ≤ |π (B) |, αi,j+1

αi,j

> d. (5.4)

Denote the resulting point set by P . Note that scaling along each coordinate does not

change incidences with respect to axis-parallel boxes, thus Proposition 47 still holds if we

replace π(B) by P and that |P | = |π(B)| = |B|.
We claim that P is shattered by the set system induced by the k-fold union of half-

spaces in R
d and also shattered by the set system induced by the k-fold symmetric dif-

ference of half-spaces in R
d. To see that, let P ′ be any subset of P . Let Q∗ be the set of

axis-parallel boxes corresponding to P ′ provided by Proposition 47.
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For each box B ∈ Q∗, we can re-scale B if necessary, without changing its intersection

with P so that B is of the form

B = [0, b1]× [0, b2]× · · · × [0, bd],

where each bi is equal to αi,ji , for a suitable ji. Now for each box B ∈ Q∗, we define a

half-space γ(B) as the set of points (x1, . . . , xd) ∈ R
d satisfying

x1

b1
+

x2

b2
+ · · ·+ xd

bd
≤ d. (5.5)

Clearly for any point (x1, . . . , xd) contained in the box B, we have xi ∈ [0, bi] and

thus each term on the left-hand side of the Equation (5.5) is at most 1. This implies that

B ⊂ γ(B) and so any point in the box B lies in the half-space γ(B).

On the other hand, for any point (x1, . . . , xd) ∈ P \ B, there exists an index i ∈ [d]

such that xi > bi. By (5.4), we have that xi/bi > d, and thus (x1, . . . , xd) cannot lie in

the half-space γ(B).

Consider the set of at most k half-spaces defined as H = {γ(B) : B ∈ Q∗}. Now by

Proposition 47 and (5.3), we have

(i) each point of P ′ is contained in exactly one half-space in H, and

(ii) no point of P \ P ′ is contained in any half-space of H.

In other words, the union as well as the symmetric difference of the half-spaces in H
contains precisely the set P ′. As this is true for any P ′ ⊆ P , the k-fold union of half-spaces

in R
d shatters P and the same holds for the k-fold symmetric difference of half-spaces in

R
d. Finally, we have

|P | = |B| =
(⌊

d

2

⌋

− 1

)

⌊log k⌋2⌊log k⌋−1 = Ω(d · k log k) ,

as desired.

5.2 Lower bound for simplices

In this section, we prove Theorem 44. Let P be the set of Ω (dk log k) points in R
d

provided by Theorem 42. Using point-hyperplane duality (see eg. Matoušek, 2002), map

each point p ∈ P to a hyperplane α(p) by

p = (p1, . . . , pd) 7−→ α(p) :=
{
(x1, . . . , xd) : p1x1+p2x2+ · · ·+pd−1xd−1−xd = −pd

}
.
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Our desired set H of hyperplanes will simply be

H =
{
α(p) : p ∈ P

}
.

It is easy to check that the mapping α is injective and thus |H| = |P | = Ω(dk log k).

We claim that H is shattered by the set system induced by open k-dimensional simplices;

in other words, for any H′ ⊆ H, there exists a k-dimensional simplex S such that the

interior of S intersects each hyperplane of H′, and no hyperplane of H \H′.

Fix any H′ ⊆ H and let P ′ = α−1 (H′) be the corresponding points of P . Since P

is shattered by the k-fold union of open half-spaces there, exists a set H(P ′) of k open

half-spaces whose union contains all points in P ′ and no point in P \ P ′. From Equation

(5.5), it follows that each half-space in H(P ′) is of the form

x1

b1
+

x2

b2
+ · · ·+ xd

bd
< d,

where b1, . . . , bd are positive reals. Map each half-space H ∈ H(P ′) to the point δ(H),

given by

H =

{

(x1, . . . , xd) :
x1

b1
+

x2

b2
+ · · ·+ xd

bd
< d

}

7−→ δ(H) :=

(
bd
b1
, . . . ,

bd
bd−1

, d · bd
)

.

It is easy to verify that for a point p ∈ R
d and the half-space H, we have

p ∈ H ⇐⇒ p1
b1

+
p2
b2

+ · · ·+ pd
bd

< d

⇐⇒ p1 ·
bd
b1

+ p2 ·
bd
b2

+ · · ·+ pd−1 ·
bd
bd−1

+ pd < d · bd

⇐⇒ point

(
bd
b1
,
bd
b2
, . . . ,

bd
bd−1

, d · bd
)

lies strictly above the hyperplane

p1x1 + p2x2 + · · ·+ pd−1xd−1 − xd = −pd
⇐⇒ the point δ(H) lies strictly above the hyperplane α(p). (5.6)

Here we crucially needed the fact that all half-spaces in H(P ′) are downward facing, that

is, each half-space in H(P ′) contains the origin, which lies below (with respect to the

xd-coordinate) its bounding hyperplane.

Now consider the k open half-spaces in H(P ′) and let

∆′ = {δ(H) : H ∈ H(P ′)}

be k points in R
d. From the relation (5.6), it follows that
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• As each point p ∈ P ′ lies in some half-space H ∈ H(P ′), the point δ(H) lies strictly

above the hyperplane α(p) in H—or equivalently, the hyperplane α(p) has at least

one of the k points in the set ∆′ lying strictly above it.

• For each point p ∈ P \ P ′, all the k points in ∆′ lie on or below the hyperplane

α(p) ∈ H.

Then, by the above discussion, H ∈ H′ if and only if one of these is true:

1. H intersects the interior of conv(∆′) and so at least one vertex of ∆′ lies strictly

above H, or

2. H does not intersect conv(∆′), but then all vertices of ∆′ lie strictly above H.

Finally consider the k-dimensional simplex

S = conv
(

∆′
⋃

(0, . . . , 0,−∞)
)

.

Clearly, a hyperplane H ∈ H intersects the interior of S if and only if H ∈ H′. Note that

the point (0, . . . , 0,−∞) can be any point (0, . . . , 0, t) for a small-enough value of t ∈ R.

This concludes the proof.
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Chapter 6

Epsilon-nets

6.1 Previous results

Given set system (X,S) and a parameter 0 < ε < 1, a set N ⊆ X is an ε-net of (X,S) if

any range S ∈ S with size |S| > ε|X| contains at least one element of N . In other words,

an ε-net is a hitting set for the ε-heavy ranges of S.

The notion of ε-nets was introduced by Haussler and Welzl (1987), who observed that,

just like for ε-approximations, the key property of (X,S) which dictates the size of an

ε-net is the VC-dimension. In particular, they proved the following statement.

Theorem 48. Let (X,S) be a set system with VC-dimension at most d and 0 < ε, δ < 1

be two parameters. Then a uniform sample N of

max

{
8d

ε
ln

8d

ε
,
4

ε
ln

2

δ

}

points from X is an ε-net of (X,S) with probability at least 1− δ.

They also provided the following lower bound on the ε-net sizes in set systems with

bounded VC-dimension: for any d ≥ 1 and 0 < ε < 1, there is a set system with VC-

dimension at most d in which any ε-net has size at least
⌊
d

2

⌋
1

ε
− 1.

Let fd(ε) be the smallest integer such that every set system of VC-dimension d has an

ε-net of size at most fd(ε). Using this notation, we can summarize the results of Haussler

and Welzl (1987) as
⌊
d

2

⌋
1

ε
− 1 ≤ fd(ε) ≤

⌈
8d

ε
ln

8d

ε

⌉

.
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Later Komlós et al. (1992) showed that if d = 1, f1(ε) = max{2, ⌈1/ε⌉ − 1}. In case

of d ≥ 2, they proved almost matching upper and lower bounds for fd(ε). We summarize

their results in the next theorem.

Theorem 49.

Let (X,S) be a set system with VC-dimension d and 0 < ε < ε0, where ε0 < 1 is a

parameter sufficiently small in terms of d. Then a uniform sample N of

d

ε

[

ln

(
1

ε

)

+ 2 ln ln

(
1

ε

)

+ 3

]

points from X is an ε-net for (X,S) with large probability (roughly 1 − e−d). Moreover,

for any d ≥ 2 and any real γ < 2/(d+2) there exists ε0(d, γ) such that for all ε ≤ ε0(d, γ)

there is a set system (X,S) of VC-dimension at most d which does not have an ε-net

smaller than (d− 2 + γ)/ε ln(1/ε).

Summing up, they established the bounds

d− 2 +
2

d+ 2
≤ lim inf

ε→0

fd(ε)

1/ε ln(1/ε)
≤ d

for any d ≥ 2.

6.2 Our results

We provide an upper bound on fd(ε) of

d

ε
ln

1

ε
+ o

(
d

ε
ln

1

ε

)

while preserving the feature of arbitrarily large success probability.

Theorem 50. Let (X,S) be a set system of VC-dimension d, 0 < δ < 1, and 0 < ε < ε0

for some ε0 small enough in terms of d and δ. Let

m =
d

ε

(

ln
1

ε
+

1

d
ln

1

δ
+ 2 ln

(

ln
1

ε
+

1

d
ln

1

δ

)

+ 5

)

,

and let N be a uniform sample of m i.i.d. points from X. Then N is an ε-net for (X,S)
with probability at least 1− δ.

In addition, we provide a lemma that states a novel connection between the VC-

dimension of the k-fold union Sk∪ and lower bounds for the sizes of ε-nets for S.
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Lemma 51. Let 0 < ε < 1 be a parameter, (X,S) be a set system and f : N → R be a

function that satisfies

dVC

(
X,Sk∪) ≥ dVC(X,S) · k · f(k).

Then there is a subset X ′ of X so that any ε-net for (X ′, S|X′) must have size at least

dVC(X
′, S|X′)

4ε
· f
(

1

2ε

)

.

Proof of Theorem 50

Without loss of generality, we can assume that |S| > ε|X| holds for each range S ∈ S.

We shall approximate the probability of failure. By definition,

P[ N is not an ε-net ] = P[ ∃S ∈ S : S ∩N = ∅ ].

The following claim was proved in Komlós et al. (1992) for a different choice of m. Al-

though the proof for our choice of m is similar, we include it for the sake of completeness.

Claim 5. Let M > m, then

P[ ∃S ∈ S : S ∩N = ∅ ] ≤ 2 max
|Y |=M

|S|Y | ·
(

1− m

M

)(M−m)ε−1

. (6.1)

Proof. Let Y ′ be a sample of M −m points from X drawn uniformly and independently

from the first sample N and consider the (multi-)set Y = N ∪ Y ′ of M points. We will

bound the probabilities of the following two events:

E0 := ∃S ∈ S such that S ∩N = ∅ ;
Eµ := ∃S ∈ S such that S ∩N = ∅ and |S ∩ Y ′| > µ,

where µ is the median1 of the multi-set {|Y ′ ∩ S| : S ∈ S}. We show that for this

choice of µ, P [ E0 ] ≤ 2 ·P [ Eµ ] holds. To this end, consider the conditional probabilities

P [ E0 | N ] and P [ Eµ | N ] for given N and Y ′ random.

If N is an ε-net, then S ∩N 6= ∅ for all S ∈ S and thus

P [ E0 | N ] = P [ Eµ | N ] = 0.

1In case of even cardinality n, we take the (n/2)th smallest element.
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If N is not an ε-net, then there is a range S ∈ S for which S ∩ N = ∅, that is,

P [ E0 | N ] = 1. Fix one such range and denote it by SN . Clearly,

P [ Eµ | N ] ≥ P [ |SN ∩ Y ′| > µ ] .

Since µ is the median of the multi-set {|Y ′ ∩ S| : S ∈ S}, we have

min
S∈S

P[ |S ∩ Y ′| > µ ] ≥ 1/2.

Thus, we conclude that

P [ Eµ | N ] ≥ P [ |SN ∩ Y ′| > µ ] ≥ min
S∈S

P[ |S ∩ Y ′| > µ ] ≥ 1

2
=

1

2
· P [ E0 | N ] .

Hence for any choice of N ,

P [ Eµ | N ] ≥ 1

2
· P [ E0 | N ] .

Taking total expectations we obtain

P [ E0 ] ≤ 2 · P [ Eµ ] . (6.2)

Now we count P [ Eµ ] differently. Instead of sampling first the elements of N and

then (independently) the elements of Y ′, we first sample the multi-set Y of M elements

and then sample m elements from Y to form N and define Y ′ as Y \N .

First we bound the probability of the event {S ∩N = ∅ and |S ∩Y ′| > µ} for a fixed

set S ∈ S conditioned on the choice of Y :

P

[

S ∩N = ∅ and |S ∩ Y ′| > µ

∣
∣
∣
∣
Y

]

≤ 1{|S∩Y |>µ} ·
(
M−m
|S∩Y |

)

(
M

|S∩Y |
)

≤ 1{|S∩Y |>µ}

(

1− m

M

)|S∩Y |
≤
(

1− m

M

)µ

,

where 1A denotes the indicator random variable of the event A. Applying the union

bound over all different ranges in S|Y , we get

P

[

∃S ∈ S : S ∩N = ∅ and |S ∩ Y ′| > µ

∣
∣
∣
∣
Y

]

≤ max
|Y |=M

|S|Y | ·
(

1− m

M

)µ

(6.3)

Recall that we set µ to be the median of the multi-set {|Y ′∩S| : S ∈ S}. As the median

of a binomial distribution is within 1 of the mean, µ ≥ (M −m)ε − 1. We conclude the

proof by putting together the inequalities (6.2), (6.3) and the bound on µ.
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The right-hand side of (6.1) can be reformulated as

2 max
|Y |=M

|S|Y | ·
(

1− m

M

)(M−m)ε−1

= 2 max
|Y |=M

|S|Y | · exp
[

[(M −m)ε− 1] ln
(

1− m

M

)]

.

(6.4)

Since 0 < m/M < 1 and since ln(1− x) = −∑∞
k=1(x

k/k) for all positive x ∈ R, we have

ln(1−m/M) < −m/M and thus the exponent can be bounded as

[(M −m)ε− 1] ln
(

1− m

M

)

< [(M −m)ε− 1] ·
(

−m

M

)

=

(
m2

M
−m

)

ε+
m

M
(6.5)

By the Sauer-Shelah lemma (Lemma 6),

max
|Y |=M

|S|Y | ≤
(
eM

d

)d

. (6.6)

Now putting together (6.1), (6.4), (6.5), and (6.6) we have

P[ ∃S ∈ S : S ∩N = ∅ ] ≤ 2

(
eM

d

)d

· exp
[(

m2

M
−m

)

ε+
m

M

]

= 2 · exp
[

d+ d ln
M

d
+

εm2

M
− εm+

m

M

]

(6.7)

Let

M =
4d

ε

(

ln
1

ε
+

1

d
ln

1

δ

)2

=
4d

ε

(

ln
1

ε d
√
δ

)2

and recall that

m =
d

ε

(

ln
1

ε
+

1

d
ln

1

δ
+ 2 ln

(

ln
1

ε
+

1

d
ln

1

δ

)

+ 5

)

=
d

ε

(

ln
1

ε d
√
δ
+ 2 ln

(

ln
1

ε d
√
δ

)

+ 5

)

.

Clearly, M > m for small enough values of ε.

Now we would like to bound the exponent in (6.7). We start with bounding the sum

εm2/M +m/M .

If ln 1

ε
d√
δ
> 2 ln

(

ln 1

ε
d√
δ

)

+ 5, then

εm2

M
+

m

M
=

ε
[
d
ε

(

ln 1

ε
d√
δ
+ 2 ln

(

ln 1

ε
d√
δ

)

+ 5
)]2

4d
ε

(

ln 1

ε
d√
δ

)2 +

d
ε

(

ln 1

ε
d√
δ
+ 2 ln

(

ln 1

ε
d√
δ

)

+ 5
)

4d
ε

(

ln 1

ε
d√
δ

)2
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=
d
[

ln 1

ε
d√
δ
+ 2 ln

(

ln 1

ε
d√
δ

)

+ 5
]2

(

2 ln 1

ε
d√
δ

)2 +

[

ln 1

ε
d√
δ
+ 2 ln

(

ln 1

ε
d√
δ

)

+ 5
]

(

2 ln 1

ε
d√
δ

)2

≤
d
[

2 ln 1

ε
d√
δ

]2

(

2 ln 1

ε
d√
δ

)2 +

[

2 ln 1

ε
d√
δ

]

(

2 ln 1

ε
d√
δ

)2 = d+
1

2 ln 1

ε
d√
δ

≤ 3d

2
(6.8)

Now the whole exponent of (6.7) simplifies as

d ln
M

d
−mε+

εm2

M
+

m

M
+ d ≤

(6.8)

≤ d ln

(

4

ε

(

ln
1

ε d
√
δ

)2
)

− d

[

ln
1

ε d
√
δ
+ 2 ln

(

ln
1

ε d
√
δ

)

+ 5

]

+
5d

2
=

= d ln

(

4

ε

(

ln
1

ε d
√
δ

)2
)

− d

[

ln
1

ε d
√
δ
+ 2 ln

(

ln
1

ε d
√
δ

)

+
5

2

]

=

= d

[

ln
1

ε
+ ln 4 + 2 ln

(

ln
1

ε
+

1

d
ln

1

δ

)]

− d

[

ln
1

ε
+

1

d
ln

1

δ
+ 2 ln

(

ln
1

ε
+

1

d
ln

1

δ

)

+
5

2

]

=

= − ln
1

δ
+

(

ln 4− 5

2

)

d ≤ − ln
1

δ
− d

After simplifying the exponent, we get the bound for all d ≥ 1

P[ ∃S ∈ S : S ∩N = ∅ ] ≤ 2 · e− ln(1/δ)−d = 2 · δ · e−d < δ

This concludes the proof of Theorem 50.

Proof of Lemma 51

Denote dVC(X,S) by d and let

ℓ =
1

2ε
.

As dVC(Sℓ∪) ≥ d · ℓ · f(ℓ), there is a subset X ′ of X of size |X ′| = d · ℓ · f(ℓ) which is

shattered by Sℓ∪. We will show that if N is an ε-net for (X ′, S|X′), then

|N | ≥ |X
′|

2
=

d · ℓ · f(ℓ)
2

=
d

4ε
· f
(

1

2ε

)

.

Suppose that N < |X′|
2

. Since X ′ is shattered by Sℓ∪, there is a range in Sℓ∪ containing

precisely the elements in X ′ \N . In particular, we can find ℓ sets S1, . . . , Sℓ ∈ S such that

(
S1 ∪ · · · ∪ Sℓ

)
∩X ′ = X ′\N.
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Note that each set Si contains no point of N . On the other hand, by the pigeonhole

principle, one of the sets S1|X′ , . . . , Sℓ|X′ must have size at least

|X ′ \N |
ℓ

≥ |X
′|/2
ℓ

=
|X ′|/2

1
2ε

= ε|X ′|.

Therefore there is a range in S|X′ of size at least ε|X ′| that is not hit by N , a contradiction

to the fact that N was an ε-net for (X ′, S|X′). This concludes the proof of Lemma 51.
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Chapter 7

Simple proof of optimal approximations

The proof method presented in this chapter was published in the article

Optimal approximations made easy

Information Processing Letters.

It is a joint work with Nabil Mustafa.

In this chapter, we present a simple, self-contained proof of the influential result of Li

et al. (2001) for finite set systems. Their result was stated for (ε, δ)-samples: we say that

A is an (ε, δ)-sample for (X,S) if for any S ∈ S,

dε

( |S|
|X| ,

|S ∩ A|
|A|

)

< δ, where dε(a, b) =
|a− b|

a+ b+ ε
.

The notion of (ε, δ)-samples is asymptotically equivalent to the following more com-

binatorial measure. Given a set system (X,S) with n = |X| and parameters 0 < ε, δ < 1,

a set A of size t is a relative (ε, δ)-approximation for (X,S) if for all S ∈ S,
∣
∣
∣
∣

|S|
n
− |A ∩ S|

t

∣
∣
∣
∣
≤ δ ·max

{ |S|
n

, ε

}

.

The equivalence of relative approximations and samples was shown in Har-Peled

and Sharir (2011), in particular, they proved that an (ε, δ)-sample is a relative (ε, 4δ)-

approximation and a relative (ε, δ)-approximation is an (ε, δ)-sample for (X,S). Using

this notion of approximations, the main result of Li et al. (2001) can be formulated as

follows.

Theorem 52 (Li et al. (2001)). There exists an absolute constant c ≥ 1 such that the

following holds. Let (X,S) be a set system such that |S|Y | ≤ (e|Y |/d)d for all Y ⊆ X

with |Y | ≥ d, and let 0 < δ, ε, γ < 1 be given parameters. Then for any integer t at least

c ·
(

d

ε δ2
log

1

ε
+

1

εδ2
log

1

γ

)
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a uniform random sample A ⊆ X of size t is a relative (ε, δ)-approximation for (X,S)
with probability at least 1− γ.

Remarks.

1. Note that by the Sauer-Shelah lemma (Lemma 6), dVC (X,S) ≤ d implies that

|S|Y | ≤ (e|Y |/d)d for any Y ⊆ X (see e.g. Matoušek, 2002, Lemma 10.2.5). More-

over, as a relative (1/2, δ)-approximation is a δ-approximation, Theorem 52 implies

Theorem 4.

2. Li et al. (2001) showed that this bound is asymptotically tight.

The original proof of Theorem 52 uses two probabilistic techniques:

Symmetrization. To prove that a random sample A satisfies the required properties, one

takes another random sample G, sometimes called a ‘ghost sample’. Properties of A

are then proven by comparing it with G. Note that G is not used in the algorithm or

its construction—it is solely a method of analysis, a ‘thought experiment’ of sorts.

Chaining. The idea is to analyze the interaction of the sets in S with a random sample

by partitioning each S ∈ S into a logarithmic number of smaller sets, each belonging

to a distinct ‘level’. The number of sets increases with increasing level while the size

of each set decreases. The overall sum turns out to be a geometric series, which then

gives the optimal bounds (Kolmogorov and Tikhomirov, 1959; Talagrand, 2016).

What makes the proof of Theorem 52 in Li et al. (2001) difficult is that it combines

chaining and symmetrization intricately. All the tail bounds are stated in their ‘sym-

metrized’ forms and symmetrization is carried through the entire proof. It is not an easy

proof to explain to undergraduate or even graduate students in computer science, as it is

difficult to see what is really going on in terms of the significance and intuition of these

two ideas. In fact, even the proofs of simpler statements involving just symmetrization,

as given in textbooks1—e.g., see Kearns and Vazirani (1994); Devroye et al. (1996); Ma-

toušek (1999); Chazelle (2000); Matoušek (2002); Anthony and Bartlett (2009); Har-Peled

(2011); Alon and Spencer (2016)—often come with the caveat that the idea is ingenious

but difficult to understand intuitively (e.g., “one might be tempted to believe that it works

by some magic” (Matoušek, 2002, Section 10.2)).

1Also used in teaching; to pick two arbitrary examples, see here for an example from the perspective

of statistics/learning and here from the algorithmic side.
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In this chapter, we give a modular, self-contained, intuitive proof of Theorem 52 for

finite set systems. The only ingredient we assume is the standard Chernoff’s concentration

bound.

Just as we did in the Preliminaries (Chapter 2) for ε-approximations, we start the study

of relative approximations with a basic guarantee which follows from Chernoff’s bound.

Theorem 53. Let X be a set of n elements and A be a uniform random sample of X of

size t. Then for any S ⊆ X and η > 0,

P

[

|A ∩ S| /∈
( |S|t

n
− η,

|S|t
n

+ η

)]

≤ 2 exp

(

− η2n

2|S|t+ ηn

)

.

In particular, setting η = δtmax
{

|S|
n
, ε
}

, a uniform random sample A of size t fails to be

a relative (ε, δ)-approximation for a fixed S ∈ S with probability at most 2 exp
(

− εδ2 t
3

)

.

Theorem 53 in conjuction with the union bound gives the following upper-bound on

relative (ε, δ)-approximation sizes for any finite set system.

Theorem 54. Let (X,S) be a finite set system and 0 < ε, δ, γ < 1 be given parameters.

Then for any integer t ≥ 3
εδ2

ln 2|S|
γ

, a uniform random sample A ⊆ X of size t is a relative

(ε, δ)-approximation for S with probability at least 1− γ.

Proof. By Theorem 53, a uniform random sample A of size t fails to be a relative (ε, δ)-

approximation for a fixed S ∈ S with probability at most 2 exp
(

− εδ2 t
3

)

. By the union

bound,

P

[

∃S ∈ S s.t. |A ∩ S| /∈
( |S|t

n
− δtmax

{ |S|
n

, ε

}

,
|S|t
n

+ δtmax

{ |S|
n

, ε

})]

≤ |S| · 2 exp
(

−εδ2 t

3

)

≤ γ.

Therefore, with probability at least 1− γ, A is a relative (ε, δ)-approximation for any set

S ∈ S.

We show that in fact one can separate the roles of chaining and symmetrization, giving

two separate statements which together immediately imply Theorem 52.

The role of symmetrization is to get a bound on relative (ε, δ)-approximations that is

independent of |S|:
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Theorem 55. There exists an absolute constant c1 such that the following holds. Let

(X,S) be a set system such that |S|Y | ≤ (e|Y |/d)d for all Y ⊆ X, |Y | ≥ d, and let

0 < δ, ε, γ < 1/2 be given parameters. Then for any integer t at least

c1
εδ2
·
(

d ln
1

εδ
+ ln

1

γ

)

,

a uniform random sample A ⊆ X of size t is a relative (ε, δ)-approximation for (X,S)
with probability at least 1− γ.

Remark. The proof of Theorem 55 is standard using symmetrization. In Section 7.2, we

present a different proof, which in fact shows that symmetrization is not really necessary

for finite set systems2 and can be replaced by a more intuitive argument that makes it

obvious, pedagogically, why the bound is independent of |S|.

On the other hand, the role of chaining is to get rid of logarithmic factors that arise

when applying union bound, by more carefully analyzing the failure probability for a

collection of events. When separated from symmetrization, chaining provides an upper

bound which improves logarithmic factors but depends on |S|:

Theorem 56. There exists an absolute constant c2 such that the following holds. Let

(X,S) be a set system such that |S|Y | ≤ (e|Y |/d)d for all Y ⊆ X, |Y | ≥ d, and let

0 < δ, ε, γ < 1/2 be given parameters. Then for any integer t at least

c2 max

{
1

εδ
ln
|S|
γ
,

1

εδ2
ln

(
1

εdγ

)}

,

a uniform random sample A ⊆ X of size t is a relative (ε, δ)-approximation for (X,S)
with probability at least 1− γ.

Remark. The proof of Theorem 56 is given in Section 7.1.

The above two statements imply Theorem 52: given (X,S), Theorem 55 guarantees

that a uniform sample A1 ⊆ X of size

O

(
1

εδ2
ln

1

εdδdγ

)

2This is typically the case in its use in algorithms, computational geometry, combinatorics. The infinite

case can usually be reduced to the finite case by a sufficiently fine grid, see Matoušek et al. (1991).
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is a relative (ε, δ
3
)-approximation with probability at least 1−γ/2. Now apply Theorem 56

to the set system (A1,S|A1) to get A2 ⊆ A1 of size

O




max







1

εδ
ln

(
e

dεδ2
ln 1

εdδdγ

)d

γ
,

1

εδ2
ln

(
1

εdγ

)










 = O

(
1

εδ2
·
(

d ln
1

ε
+ ln

1

γ

))

.

which is a relative (ε, δ
3
)-approximation of S|A1 with probability at least 1 − γ/2. We

claim that A2 is a relative (ε, δ)-approximation of (X,S). Indeed, with probability at

least 1− γ,
∣
∣
∣
∣

|S|
n
− |A2 ∩ S|
|A2|

∣
∣
∣
∣
=

∣
∣
∣
∣

|S|
n
− |A1 ∩ S|
|A1|

+
|A1 ∩ S|
|A1|

− |A2 ∩ S|
|A2|

∣
∣
∣
∣

≤
∣
∣
∣
∣

|S|
n
− |A1 ∩ S|
|A1|

∣
∣
∣
∣
+

∣
∣
∣
∣

|A1 ∩ S|
|A1|

− |A2 ∩ S|
|A2|

∣
∣
∣
∣

≤ δ

3
·max

{ |S|
n

, ε

}

+
δ

3
·max

{ |A1 ∩ S|
|A1|

, ε

}

≤ δ

3
·max

{ |S|
n

, ε

}

+
δ

3
·max

{ |S|
n

+
δ

3
max

{ |S|
n

, ε

}

, ε

}

≤ δ

3
·max

{ |S|
n

, ε

}

+
δ

3
·max

{ |S|
n

, ε

}

+
δ2

9
·max

{ |S|
n

, ε

}

≤ δ ·max

{ |S|
n

, ε

}

Thus A2 is a relative (ε, δ)-approximation of (X,S) of the required size.

7.1 Chaining

In this section, we prove Theorem 56 using the probabilistic method of chaining. The key

observation is that Theorem 53 provides a bound on the probability of failure for a set

S ∈ S which decreases as the size of S decreases. We take advantage of this by partitioning

each S ∈ S into a logarithmic number of smaller sets, each belonging to a distinct level,

such that the levels strike a proper balance—the number of sets (arising from partitioning

every S ∈ S) increase each level, but their size across levels decreases geometrically.

This way one gets an improved bound by applying the union bound separately to sets

of different levels. To define suitable sets and levels, we use the following consequence of

Theorem 55.

Lemma 57. There is an absolute constant c3 such that the following holds. Let α ≥ 2

and let P ⊆ S be an α-packing of S; that is, for any S, S ′ ∈ P, the symmetric difference

of S and S ′, denoted by ∆(S, S ′), has size at least α. Then |P| ≤
(
c3n
α

)2d
.
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Remark. Better bounds exist (see e.g. Lemma 40 in Chapter 4), however the one stated

in Lemma 57 suffices for our needs while keeping our proof self-contained.

Proof of Lemma 57. Let G = {∆(S, S ′) : S, S ′ ∈ P}. By Theorem 55, there exists a

relative (α
n
, 1
2
)-approximation A′ for G of size

|A′| = c1
α
n
· 1
4

(

d ln
2n

α
+ ln

2n

α

)

≤ 8c1dn

α
· ln 2n

α
≤ 8c1dn

2

α2
,

where we set γ = α
2n

(note that we could set any positive value for γ as we only use the

existence of such approximations). Then for any S, S ′ ∈ P , we get

|∆(S, S ′) ∩ A′| ≥ |∆(S, S ′)| |A′|
n

− |A
′|
2
·max

{ |∆(S, S ′)|
n

,
α

n

}

=
1

2
· |∆(S, S ′)| |A′|

n
> 0.

This implies that A′ ∩ S 6= A′ ∩ S ′ for any S, S ′ ∈ P , and so we have that |P| = |P|A′ |.
Finally, we use that P ⊂ S and thus

|P| = |P|A′ | ≤ |S|A′ | ≤
(
8ec1n

2

α2

)d

≤
(√

8ec1n

α

)2d

.

Setting c3 =
√
8ec1 concludes the proof.

Levels and their approximations.

Set k =
⌈
log 1

δ

⌉
and for i ∈ [0, k], let Pi be a maximal εn

2i
-packing of S and set Pk+1 = S.

For any S ∈ Pi+1 \ Pi there exists a set FS ∈ Pi such that |∆(S, FS)| < εn
2i

. Define

Ai = {S \ FS : S ∈ Pi+1 \ Pi} and Bi = {FS \ S : S ∈ Pi+1 \ Pi} .

The members of Ai ∪ Bi are the sets of level i and the ranges in P0 are the ‘base level’

sets. Lemma 57 implies that

|Ai|, |Bi| ≤ |Pi+1| ≤
(
c3 · 2i
ε

)2d

.

The next step is to show that each level is well-approximated by A.

Claim 6. Let εi =
√

(i+ 1)/2i ε. With probability 1− γ, A is simultaneously

(i) a relative (ε, δ)-approximation for Ak ∪ Bk, and

(ii) a relative (εi, δ)-approximation for Ai ∪ Bi for all i ∈ [0, k − 1], and

(iii) a relative (ε, δ)-approximation for P0.
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Proof.

(i) Each set in Ak∪Bk has size less than εn
2k
≤ εnδ ≤ εn. Therefore, we apply Theorem 53

with η = δtε and take the union bound over |Ak ∪ Bk| ≤ 2|S| sets which gives that

for a large-enough value of c2, A fails to be an (ε, δ)-approximation for Ak∪Bk with

probability at most

2|S| · 2 exp
(

− δ2t2ε2 · n
2εnδ · t+ δtε · n

)

= 2|S| · 2 exp
(

−δεt

3

)

≤ γ

3
.

(ii) For a fixed S ∈ Ai ∪ Bi, we have |S| ≤ εn
2i
≤ εin. Thus, applying Theorem 53 with

η = δtεi implies that the probability of failure for a fixed set S ∈ Ai ∪Bi is at most

2 exp

(

− δ2t2ε2in

2|S|t+δεitn

)

≤ 2 exp

(

− δ2tε2(i+1)/2i

2ε/2i+δε
√

(i+1)/2i

)

≤ 2 exp

(

−εδ2t(i+1)

4

)

.

Hence, by the union bound, the overall probability of failure is at most

k−1∑

i=0

|Ai ∪ Bi| · 2 exp
(

−εδ2t(i+1)

4

)

≤
k−1∑

i=0

2

(
c3 · 2i
ε

)2d

2
(
εdγ
)c2(i+1)/4

≤ γ

k−1∑

i=0

4 (c3 · 2i−1)
2d

2(d+1)c2(i+1)/4
≤ γ

∞∑

i=1

1

5i
≤ γ

3

for c2 = 8 log2 c3 + 18 ≥ 8
(

log2 c3 +
log2(5)
2d+2

+ 1
)

.

(iii) Since |P0| ≤
(
c3
ε

)2d
, Theorem 54 implies that this failure probability is at most γ

3
if

t ≥ 3

εδ2
ln

2 (c3/ε)
2d

γ/3
.

Observe that for any set S ∈ S, there exists a set Sk ∈ Pk, with Ak = S \ Sk ∈ Ak

and Bk = Sk \ S ∈ Bk, such that S = (Sk \Bk) ∪ Ak. Similarly, one can express Sk in

terms of Sk−1 ∈ Pk−1, Ak−1 ∈ Ak−1, Bk−1 ∈ Bk−1 and so on until we reach S0 ∈ P0.

Thus Claim 6 implies that with probability at least 1− γ,
∣
∣
∣
∣

|S|
n
− |A ∩ S|

t

∣
∣
∣
∣
=

∣
∣
∣
∣

|Sk|
n
− |Bk|

n
+
|Ak|
n
−
( |A ∩ Sk|

t
− |A ∩ Bk|

t
+
|A ∩ Ak|

t

)∣
∣
∣
∣

(i)

≤
∣
∣
∣
∣

|Sk|
n
− |A ∩ Sk|

t

∣
∣
∣
∣
+ δmax

{

ε,
|Ak|
n

}

+ δmax

{

ε,
|Bk|
n

}
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=

∣
∣
∣
∣

|Sk|
n
− |A ∩ Sk|

t

∣
∣
∣
∣
+ 2δε ≤ · · ·

(ii)

≤
∣
∣
∣
∣

|S0|
n
− |A ∩ S0|

t

∣
∣
∣
∣
+ 2δ

k−1∑

j=0

εj + 2δε

(iii)

≤ δmax

{

ε,
|S0|
n

}

+ 14δε ≤ δ
|S|
n

+ 16δε ≤ 2δmax

{ |S|
n

, 16ε

}

,

where the second-last step uses the fact that |S0| ≤ |S|+
k∑

j=0

|Bi| ≤ |S|+
∞∑

j=0

εn
2j
≤ |S|+2εn.

Therefore, A is a relative (16ε, 2δ)-approximation of S with probability at least 1− γ.

Repeating the same arguments with δ′ = δ/2 and ε′ = ε/16, we get a relative (ε, δ)-

approximation of S, as required.

7.2 Iterative sampling

Now we prove Theorem 55. The proof uses an argument similar to the discrepancy-based

halving method for ε-approximations (see Section 2.2.1). However, it is somewhat simpler

as it does not need discrepancy, and it applies to the more general notion of a relative

(ε, δ)-approximation.

To see the intuition, observe that since |S| ≤ (e|X|/d)d, the bound of Theorem 54

depends only on |X|—in particular that a random sample A1 ⊆ X of size

O

(
1

εδ2
ln |X|d

)

= O

(
d

εδ2
ln |X|

)

is a relative (ε, δ)-approximation. The size of A1 is much smaller than that of X, therefore

applying Theorem 54 again to S|A1 gives a relative (ε, δ)-approximation A2 ⊆ A1 for S|A1 ,

with

|A2| = O

(
1

εδ2
ln |A1|d

)

= O

(
d

εδ2
ln

(
d

εδ2
ln |X|

))

= O

(
d

εδ2
ln

d

εδ
+

d

εδ2
ln ln |X|

)

.

The size of A2 is again much smaller than that of A1. Furthermore, it follows imme-

diately from the definition of relative (ε, δ)-approximations that A2 is a relative (ε, 3δ)-

approximation for S. With each successive application of Theorem 54, the size of the

set decreases rapidly, while the error of approximation increases only linearly, giving the

required bound that is independent of |S|.
Now we turn to the formal proof of Theorem 55. Let T (ε, δ, γ) be the smallest integer

such that a uniform random sample of size at least T (ε, δ, γ) from X is a relative (ε, δ)-

approximation for S with probability at least 1− γ. Note that T (ε, δ, γ) ≤ |X|. Further
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define δ0 = 0 and δi =
3i−1√
|X|

for i = 1, . . . ,
⌈
1
2
log3(

√

|X|)
⌉

+1. We prove that for all i, for

all ε, γ ∈ (0, 1/2) and for all δ ∈ (δi−1, δi], it holds that T (ε, δ, γ) ≤ c1
εδ2
·
(

d ln 1
εδ
+ ln 1

γ

)

,

which is equivalent to the desired statement. The proof is by induction on i.

Base case (i = 1): When δ ∈ (0, δ1], we have |X| ≤ 1
δ2

and thus T (ε, δ, γ) is upper-

bounded as required for any ε, γ ∈ (0, 1/2).

Inductive hypothesis (j ≤ i): Assume that the statement holds for all j ≤ i, that is,

for any δ ∈ (0, δi] and ε, γ ∈ (0, 1/2), we have T (ε, δ, γ) ≤ c1
εδ2
·
(

d ln 1
εδ
+ ln 1

γ

)

.

Inductive step (i→ i+1): Let δ ∈ (δi, δi+1]. Since δ
3
∈ (0, δi], the inductive hypothesis

gives that a random sample A′ ⊆ X of size T
(
ε, δ

3
, γ
2

)
≤ 9c1

εδ2
·
(

d ln 3
εδ
+ ln 2

γ

)

, is a relative
(
ε, δ

3

)
-approximation for S with probability at least 1 − γ

2
. By Theorem 54, a uniform

random sample A of A′ of size
3

ε(δ/3)2
ln

2 |S|A′ |
(γ/2)

is a relative
(
ε, δ

3

)
-approximation for S|A′ with probability 1 − γ

2
. Thus A is a uniform

random sample of X that is a relative (ε, δ)-approximation for S with probability at least

1− γ, implying the recurrence

T (ε, δ, γ) ≤ |A| = 3

ε(δ/3)2
ln

2 |F|A′ |
(γ/2)

≤ 27

εδ2
ln




4

γ

(

e T
(
ε, δ

3
, γ
2

)

d

)d


 .

The required bound on T (ε, δ, γ) now follows by the inductive hypothesis. As
(

1 +
1

d
ln

2

γ

)d

≤ 2

γ
,

we have

27

εδ2
ln






4

γ




e 9 c1

εδ2

(

d ln 3
εδ
+ ln 2

γ

)

d





d



 ≤ 27

εδ2
ln

(

4

γ

(
e 27 c1
ε2δ3

)d(

1 +
1

d
ln

2

γ

)d
)

≤ c1
εδ2

ln
1

(εδ)d γ
,

for any constant c1 ≥ 318, which concludes the proof of Theorem 55.

7.3 Sensitive approximations

We say that A is a sensitive ε-approximation of (X,S) if for all Y ∈ S,

∣
∣
∣
∣

|Y |
|X| −

|Y ∩ A|
|A|

∣
∣
∣
∣
≤ ε

2

(√

|Y |
|X| + ε

)

.
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In particular, a sensitive ε-approximation is simultaneously an ε2-net, an ε-approximation,

and a sensitive (δ
√
ε)-approximation is a relative (ε, δ)-approximation (Har-Peled, 2011).

The proof of Theorem 55 can be adapted to a stronger notion of approximations resulting

in the following theorem.

Theorem 58. There exists an absolute constant c4 such that the following holds. Given

a set system (X,S) such that |S|Y | ≤ (e|Y |/d)d for all Y ⊆ X, |Y | ≥ d, and parameters

0 ≤ ε, γ ≤ 1, a uniform random sample A ⊆ X of size

c4
ε2
·
(

d ln
1

ε
+ ln

1

γ

)

is a sensitive ε-approximation for S with probability at least 1− γ.

Proof. Again, we prove the statement by induction on ε and let T (ε, γ) be the small-

est integer such that a uniform random sample of size T (ε, γ) from X is a sensitive

ε-approximation for S. When ε ≤ 1/
√

|X|, we have T (ε, γ) ≤ 1
ε2
·
(

d ln 1
ε
+ ln 1

γ

)

. When

ε > 1/
√

|X|, let A′ ⊂ X be a random sample of size T
(
ε
4
, γ
2

)
. By induction, A′ is a

sensitive ε
4
-approximation of (X,S) with probability at least 1− γ

2
. One can verify using

Theorem 53 that a sample A of
8

(ε/4)2
ln

2|S|A′ |
γ/2

elements of A′ is a sensitive ε
4
-approximation of (A′,S|A′) with probability at least 1− γ

2
.

Since A is a sensitive ( ε
2
+ 2 · ε

4
)-approximation of (X,S) (Brönnimann et al., 1993)

with probability at least 1− γ, we get the following recursion on T (ε, γ)

T (ε, γ) ≤ |A| = 3

(ε/4)2
ln

2 |S|A′ |
(γ/2)

≤ 48

ε2
ln




4

γ

(

e T
(
ε
2
, γ
2

)

d

)d


 ≤ 1

ε2
ln

(
1

εdγ

)c4

,

for a large-enough c4.

Note that this bound is optimal for sensitive ε-approximations and it also implies an

optimal bound for ε-nets—therefore, the bound of Theorem 58 cannot be improved by

chaining! However, for ε-approximations and relative (ε, δ)-approximations, it provides

suboptimal bounds (by Theorem 52).



Chapter 8

Conclusion

In this thesis, we studied approximations of set systems, focusing on two main construction

methods:

1. uniform sampling and

2. non-uniform sampling along the edges of a low-crossing matching.

While the first one is simple and efficient, it does not lead to optimal-sized approximations.

On the other hand, the second method can be used to improve the uniform sampling

guarantee, but it is much more involved algorithmically. The crucial parameter appearing

in the approximation guarantees is the (dual) VC-dimension.

8.1 Non-uniform sampling

The main algorithmic contribution of the thesis is an improved algorithm for construct-

ing matchings with low crossing numbers, which is the bottleneck algorithmic step in

constructing ε-approximations of sub-quadratic size. The key property that implies the

correctness of the algorithm is a ‘hereditary type’ condition on the the existence of low

crossing matchings:

Assumption (MainAssumption(a, b, γ)). (X,S) is a finite set system with m ≥ n,

m ≥ 34, and any Y ⊆ X has a matching with crossing number at most a|Y |γ + b with

respect to S.

In particular, if (X,S) is a set system with dual VC-dimension d, our method con-

structs a matching of X with crossing number Õ(|X|1−1/d) in time O(|X|1/d|S|), improving

upon the previous-best construction of time Õ(|X|2|S|).
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I note that our method can easily be adapted1 to construct spanning trees, or more

specifically, spanning paths with the same asymptotic guarantees:

Theorem 59. Let (X,S) be a set system, n = |X|, m = |S| with m ≥ n, which satisfies

that any Y ⊆ X has a spanning tree (resp. spanning path) with crossing number at most

a|Y |γ + b with respect to S. Then there is a randomized algorithm that returns a spanning

tree (resp. spanning path) with expected crossing number

O

(
a

γ
nγ + b log n+ ln (mn) log n

)

with an expected number of Oracle calls

O

(

min

{
n3−γ lnn

a
+

mn1−γ lnmn

a
·min

{
1

1− γ
, log n

}

, n3 +mn

})

.

8.1.1 Applicability - hereditary condition for different graphs

It is intriguing that we do not have a good understanding on the monotonicity of crossing

numbers of optimal matchings. Even the simplest question appears to be open: if X has a

perfect matching with crossing number κ with respect to S, does any Y ⊆ X has a perfect

matching2 with crossing number at most κ with respect to S|Y ? The known monotonicity

properties of optimal crossing numbers of spanning trees, paths, and matchings and the

followings:

Spanning paths. If a point-set X has a spanning path of crossing number κ, then any

Y ⊂ X has a spanning path with crossing number at most κ—we can simply short-

cut the original path. Thus any set system satisfies the conditions of Theorem 59

with a = 1, b = κ, and γ = 0, and so our algorithm provides a spanning path with

crossing number O (κ log n).

Spanning trees. In this case, the problem is already less trivial. On one hand, it was

shown that the crossing number is not monotone (Mulzer and Obenaus, 2020). On

the other hand, the crossing number cannot increase too much: if X has a spanning

tree with crossing number κ, then any Y ⊂ X has a spanning tree (even a spanning

path) with crossing number at most 2κ (Har-Peled, 2009).

Matchings. I am unaware of any result on the monotonicity of the minimum crossing

number of matchings.

1We only need to change the way we remove vertices.
2We define the perfect matching of an odd set as a graph which is a matching plus one isolated vertex.
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To connect the above problems a bit better, it can instructive to state the relations of

the optimal crossing numbers of trees, paths, and matchings denoted as OPTtree(X,S),
OPTpath(X,S), and OPTmatching(X,S).

The optimums over trees and paths are asymptotically equivalent, in particular,

OPTtree(X,S) ≤ OPTpath(X,S) ≤ 2 ·OPTtree(X,S),

where the first inequality is trivial and the proof of the second inequality can be found in

Pach and Agarwal (2011).

As for matchings, we trivially have OPTmatching(X,S) ≤ OPTpath(X,S). It seems

likely that OPTmatching(X,S) cannot be much smaller than OPTpath(X,S), but I am

unaware of such bound. For instance, the monotonicity of matchings would imply that

and that OPTpath(X,S) ≤ log n ·OPTmatching(X,S).

8.1.2 Relation to Primal-Dual reweighing algorithms

Our algorithm fits in the line of several problems where ‘primal-dual reweighing’ could

replace ‘exponential reweighing along an extremum’. These examples appear in various

fields, such as matrix games (Grigoriadis and Khachiyan, 1995; Freund and Schapire,

1999), approximate LP solvers (Plotkin et al., 1995), or geometric algorithms (Agarwal

and Pan, 2014); for more examples see the survey of Arora et al. (2012).

I tried to apply some tools developed for primal-dual reweighing algorithms, e.g., non-

uniform increments, to speed up our algorithm, but they did not lead to an immediate

improvement.

On the other hand, one could try to apply ideas developed in our algorithm to other

problems. For instance, I find it plausible that the pre-processing steps of the geometric

hitting set algorithm of Agarwal and Pan (2014) could be replaced by random updates

during the re-weighting steps, hence simplifying the algorithm.

Another interesting direction is to study whether the primal-dual reweighing approach

can lead to improved algorithms for other geometric problems. For instance, one can

consider simplicial partitions (a central notion in computational geometry that generalizes

matchings with low crossing numbers) or polynomial partitions (another important tool,

whose construction is based on the ham-sandwich theorem in high-dimension).

Finally, our algorithm is randomized, so one can think about bounding its variance

(which is empirically low, see Figure 4.4) or de-randomizing—however this is only inter-

esting if one can get below the O(mn3) running time of the deterministic algorithm of

Chazelle and Welzl (1989).
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8.1.3 Matchings with low relative crossing number

Another interesting problem is the following:

Given a set system (X,S) with dual shatter function π∗(k) ≤ c · kd, is there a perfect

matching M of X such that any S ∈ S crosses O(|S|1−1/d) edges of M?

Initially, I came to this question while thinking whether a finer probabilistic analysis (in

particular, chaining) could remove the logarithmic term in our O
(√

n1−1/d lnm
)

bound

for low discrepancy colorings. Technically, it would require a bound on the failure prob-

ability which depends on the range size and, intuitively, such bound can arise from the

existence of matchings with low relative crossing number.

Bounded dual VC-dimension. In this general setup, our bound on discrepancy is tight

for set systems with bounded dual VC-dimension (Matoušek, 1995). This makes me

wonder: could the chaining argument and the discrepancy lower bound be used

together to show that it is not possible to have matchings with O
(
|S|1−1/d

)
relative

crossing number for arbitrary set systems with bounded dual VC-dimension?

Half-spaces. In this special case, the discrepancy bound can be improved to O
(√

n1−1/d
)

,

so the above general argument cannot be applied in this setting. There have also

been a dedicated studies of spanning trees with low relative crossing number with

respect to half-planes. The notion was introduced by Har-Peled and Sharir (2011),

who showed that any set P of n points in R
2 has a spanning tree such that any set

S induced by a half-plane crosses

O

(
√

|S| log
(

n

|S|

))

edges of the spanning tree. Later Obenaus (2019) showed an ω
(√

|S|
)

lower bound

for the same problem. I note that these results imply that there are perfect matching

with relative crossing number O
(√

|S| log
(

n
|S|

))

, but the lower bound does not

translate immediately to matchings.

8.1.4 Algorithmic complexity

It would also be interesting to study whether the problem can be solved with less than

mn1/d membership Oracle calls, or the hardness of the discrepancy problem for set systems

with polynomially bounded dual shatter function. It is known that for general set systems,

it is NP-hard to distinguish between discrepancy 0 and Ω(
√
n), and similarly, for set
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systems with primal shatter function π(k) = O(kd), it is NP-hard to decide whether the

discrepancy is 0 or Ω(
√
n1−1/d) (Charikar et al., 2011).

8.2 VC-dimension

In this thesis, I showed that the set system induced by k-fold union of half-spaces in R
d

have VC dimension Ω(dk log k) if d ≥ 4. This settles the open problem of Blumer et al.

(1989), studied by Eisenstat and Angluin (2007); Eisenstat (2009).

Furthermore, I show that asymptotic lower bounds on the VC dimension of k-fold

unions of set systems imply asymptotic lower bounds on ε-net sizes (Lemma 51). For

instance, the combination of the above two results immediately yields a lower bound of

Ω(d/ε log(1/ε)) on the ε-net sizes in set systems induced by half-spaces, recovering the

result of Pach and Tardos (2013).

A challenging open problem in this area is to provide asymptotically tight bounds on

the VC-dimension of k-fold unions of balls in R
3. In dimensions other than 3, the problem

is well understood: in R
2, the VC-dimension grows as Θ(k) and in dimensions at least

4, my work presented in Chapter 5 implies a growth of Θ(k log k). The importance of

this question lies in the fact that (via Lemma 51) an Ω(k log k) lower bound on the VC-

dimension of k-fold unions of balls would settle a long-standing open problem on whether

the ε-net bound of O(1/ε log 1/ε) is tight for balls in R
3.
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