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Chapter 1. Senescence as a stress response, a cell fate, 

and a cell identity. 

Cellular senescence, or thereafter simply senescence, is a process that calls forth the notions of cellular 

stress response, cell fate and cell identity. In response to a variety of stresses including DNA damage, 

oncogene expression, loss of proteostasis, or redox imbalance, the cell is faced with the decision to 

undertake a path towards a given cell fate. Depending on the magnitude of the stress, homeostasis, and 

the cellular context, the cell may resolve the stress and resume proliferation, commit to apoptosis, or 

enter senescence. Senescence involves a highly stable, quasi-irreversible proliferative arrest, 

accompanied by important changes in transcriptional programs and cellular physiology, resulting in 

altered cell identity.  

Importantly, most senescent cells secrete a complex collection of pro- and anti-inflammatory factors, 

matrix metalloproteases, and modulators of tumorigenesis, termed the senescence-associated secretory 

phenotype (SASP). Senescence is an essential tumor-suppressing mechanism because it prevents the 

proliferation of stressed cells potentially bearing pre-malignant potential. However, the abnormal 

accumulation of senescent cells is detrimental as the SASP causes chronic inflammation and tissue 

deterioration, and can promote adjacent tumor growth. Senescent cell accumulation is a driver of the 

aging process as well as multiple pathologies. There is therefore a strong clinical interest in unraveling 

the pathways that lead to the establishment of senescent phenotypes, and how these phenotypes differ 

from that of non-senescent cells in terms of metabolism, homeostasis, and regulation of cell survival, so 

as to selectively target senescent cells in the context of their accumulation with so-called senolytic drugs.  

I start by introducing senescence as a stress response, a cell fate, and a change of cell identity (Figure 

1.1). I notably focus on BRAF-V600E oncogene-induced senescence (OIS), as this was the main model 

used throughout the thesis for the identification of senolytic compounds and the characterization of their 

mechanisms of action. 
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1.1. Senescence as a stress response. 

Replicative senescence, which is the result of telomere shortening, was the first reported and is the most 

commonly known type of cellular senescence. It was observed 60 years ago that primary human 

fibroblasts in culture (including the strain that would become the widely used WI-38 cell line) eventually 

stopped proliferating after a certain number of population doublings, now known as the Hayflick limit. 

This seminal discovery challenged the long-lasting assumption that cultured cells were immortal and 

could be propagated ceaselessly, and Hayflick foresaw that this finite replication potential was the 

manifestation of aging at the cellular level (Hayflick, 1965; Hayflick & Moorhead, 1961). Since then 

and for decades, cellular senescence had been controversial with regards to its in vivo relevance. Some 

argued that it was an in vitro artifact resulting from imperfect culture conditions (S. He & Sharpless, 

2017; Sherr & DePinho, 2000), until cells recapitulating hallmarks of senescence were finally detected 

in human skin samples and showed to accumulate with aging (Dimri et al., 1995; Jeyapalan et al., 2007). 

There is now a large body of evidence in favor of the in vivo occurrence of senescence, and a consensus 

that it plays major roles in aging and numerous pathologies (Gorgoulis et al., 2019; S. He & Sharpless, 

2017). 

Replicative senescence is an important barrier to cellular transformation, which is more likely to occur 

as the cell accumulates mutations through successive generations. As a matter of fact, reactivation of 

enzyme telomerase, which maintains telomere length and thus counteracts replicative senescence, is one 

of the most prominent genetic alterations in cancer (Akincilar et al., 2016). Independently of telomere 

attrition, other stimuli can trigger stress-induced premature senescence, such as oncogene activation or 

loss of tumor suppressor genes, DNA damage induced by ionizing radiation or genotoxic agents, and 

oxidative stress, among others (Hernandez-Segura et al., 2018). In all these contexts, the triggering of 

premature senescence plays a protective role by limiting the proliferation of potentially damaged or pre-

neoplastic cells. This was notably evidenced by the increased susceptibility to tumorigenesis of a 

senescence-deficient mouse lacking p16, an important effector of the senescence-associated 

proliferative arrest (Sharpless et al., 2001). 
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Beyond the tumor suppressive role of senescence triggering in itself, the physiological function of some 

senescent cell types was later established. p21-dependent programmed senescence was shown to be 

Figure 1.1. Mechanisms of OIS induction and maintenance. Hyperactivated RAS and RAF can trigger a 
senescence-associated proliferative arrest through various routes. More stress pathways are implicated in RAS than 
in RAF senescence. Inactivation of tumor suppressors, or additional oncogenic events, may promote transformation 
over senescence in response to RAS or RAF. Besides CDKIs, the established senescent state is stabilized by 
chromatin reorganization. Senescent cells undergo profound transcriptional reprogramming, and actively suppress 
cell death through diverse strategies. 
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implicated in tissue remodeling during mammalian embryonic development (Muñoz-Espín et al., 2013; 

Storer et al., 2013). Cells recapitulating senescence features were detected at various locations in the 

developing embryo and mediated their own removal through the recruitment of macrophages, probably 

via the SASP (Muñoz-Espín et al., 2013). Some of these developmentally programmed senescent cells 

were also ultimately eliminated through apoptosis (Storer et al., 2013). Senescence impairment was 

partially compensated by apoptosis and thus resulted in only mild developmental defects (Muñoz-Espín 

et al., 2013). It thus appears that senescence and apoptosis cooperate closely during development and 

are mutually compensatory. They also appear to be complementary responses to cellular damage and 

stress with their own perks and disadvantages with regards to tissue and organismal homeostasis (Childs 

et al., 2014; Kowald et al., 2020). Senescence is also required for optimal wound healing. PDGF-AA 

was secreted in the SASP of senescent cells located at cutaneous injury sites and induced myofibroblast 

differentiation. Accordingly, the clearance of p16-expressing cells in p16::3MR transgenic mice resulted 

in impaired wound healing (Demaria et al., 2014). Finally, whole-body systematic clearance of p16-

expressing cells in the p16-Cre mouse allowed to identify an essential subpopulation of senescent cells. 

Liver sinusoidal endothelial cells (LSECs), which clear macromolecular waste from blood, became 

senescent with age and were not cleared by the immune system. Importantly, senescence induction 

increased their detoxifying capacity through the upregulation of endocytic receptors. They were not 

replaced following their genetic removal, which led to liver fibrosis and reduction of healthspan (Grosse 

et al., 2020). 

Paradoxically, senescence and thus proliferative arrest can be induced by oncogene expression or loss 

of tumor suppressors depending on the cellular context, in what is an evident barrier to malignant 

transformation. Consequent literature focuses on the mechanisms of RAS-induced senescence. RAS is 

a family of proto-oncogenes encoding small membrane-bound GTPases regulating multiple signaling 

pathways notably involved in cell proliferation, such as the MAPK/ERK axis. Conditional transgenic 

expression of mutant HRAS-V12 in mice led to the formation of both pre-malignant and malignant 

tumors, with pre-malignant tumors only staining strongly for multiple senescence markers, showcasing 

the in vivo role of OIS to limit malignant progression (Collado et al., 2005). Overexpression of HRAS-
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V12 in the mammary gland also triggered OIS (Sarkisian et al., 2007). Downstream of RAS within the 

MAPK/ERK pathway, constitutively active RAF kinases also trigger senescence. V600E is a frequent 

phosphomimetic mutation in BRAF’s activation loop that renders the kinase constitutively active. 

BRAF-V600E is found in 80% of melanoma and 40% of thyroid cancers (Frasca et al., 2008; Pollock 

et al., 2003). BRAF-V600E is also expressed in 80% of nevi (commonly known as moles), which are 

benign, growth-arrested senescent neoplasms (Pollock et al., 2003). The current model for nevogenesis 

involves the clonal expansion of pre-neoplastic melanocytes acquiring the initial BRAF-V600E driver 

mutation, before OIS is triggered (Shain et al., 2015; Stark et al., 2018). Nevi may then evolve into 

malignant melanoma through a succession of additional mutational events. Ectopic expression of 

BRAF-V600E in primary human melanocytes induced an initial hyperproliferation phase of a few days 

to a week, followed by a robust senescence-associated proliferative arrest (Michaloglou et al., 2005). 

BRAF-V600E knock-in expression in melanocytes of mice led to senescent nevi formation, and later to 

melanoma (Dhomen et al., 2009). About a third of melanoma arise from a pre-existing nevus (Lin et al., 

2015; Pampena et al., 2017). Sequencing of human primary melanoma and adjacent precursor lesions 

representing different stages of melanomagenesis showed that the vast majority of benign nevi were 

only positive for BRAF-V600E, whereas supplementary alterations such as hTERT promoter activation 

and NRAS mutations were found later in stages of intermediate neoplasia. TP53 and PTEN mutations, 

as well as homozygous deletion of p16, were found only in invasive melanoma (Shain et al., 2015). 

Ultraviolet radiation mutational signatures were evident in both benign nevi and malignant melanoma 

(Shain et al., 2015; Stark et al., 2018). Human melanocytic nevi stained strongly for senescence markers 

p16 and senescence-associated b-galactosidase activity (SA-bGal), and were not proliferative as shown 

by the absence of Ki-67 expression (Michaloglou et al., 2005). However, melanoma can arise de novo 

or from a nevus, showcasing instances of senescence bypass or escape. 

Although it was established that aberrant oncogenic signaling induces senescence, the exact nature of 

the stress at the origin of the proliferative arrest was argued about. Hence, whether OIS was a direct 

response to oncogenic signaling itself that evolved as a tumor suppressor program (Storer et al., 2013), 

or in some contexts was rather analogous to replicative senescence as a consequence of oncogene-driven 
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hyperproliferation, had been debated (Bastian, 2003; Braig et al., 2005; Chandeck & Mooi, 2010; Jones 

et al., 2000). Human thyroid epithelial cells ectopically expressing HRAS-V12 completed 20 population 

doublings before eventually entering senescence, which could suggest a role for telomere attrition in the 

proliferative arrest, but importantly this RAS-induced delayed growth arrest was unaffected by the 

expression of hTERT, which encodes the catalytic subunit of telomerase (Jones et al., 2000). The fact 

that hTERT promoter activation, which serves in bypassing replicative senescence, was selected early 

as a secondary event in melanomagenesis, strongly suggested that senescent melanocytes within pre-

malignant nevi had undergone replicative exhaustion (Shain et al., 2015). This was however in apparent 

incompatibility with previous data showing that senescent melanocytes within human nevi retained 

telomeres, supporting a bona fide OIS response to BRAF-V600E expression independent of replicative 

senescence (Michaloglou et al., 2005). It was later demonstrated that hTERT does promote OIS escape 

by resolving chronic telomeric DNA damage contributing to proliferative arrest maintenance, thus 

providing a rationale for the early selection of hTERT in melanomagenesis in accordance with a 

telomere attrition-independent OIS response (Patel et al., 2016). 

RAS induces multiple cellular stresses that are known to trigger senescence on their own. The DNA 

damage response (DDR) was essential in the establishment of RAS senescence, and its inhibition 

bypassed OIS (Di Micco et al., 2006). HRAS-V12 hyperproliferative signaling led to replicative stress 

and DNA damage, which was responsible for the initial growth arrest in early S phase, previously 

identified as a G1 arrest (Serrano et al., 1997). DNA damage was partly due to depletion of dNTP pools 

in RAS-senescent human fibroblasts (Mannava et al., 2013). DNA repair was inhibited by the 

dissociation of the BRCA1 complex from the chromatin of cells undergoing RAS senescence (Tu et al., 

2011). RAS also induced the formation of mitochondrial reactive oxygen species (ROS) resulting in 

oxidative stress, which was required for the upregulation of p21 and the senescence arrest, and 

contributed to mitochondrial dysfunction (Lee et al., 1999; Moiseeva et al., 2009). In contrast, the DDR 

as well as oxidative stress were dispensable for RAF senescence establishment, and 50% of the cells 

were arrested without going through the S phase in response to CRAF activation (Jeanblanc et al., 2012). 

However, the cells that traversed the S phase following CRAF activation did exhibit markers of DNA 
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damage, evident of replicative stress. Up to 25% of CRAF-arrested cells were in G2/M (J. Zhu et al., 

1998). In BRAF-V600E-induced senescent fibroblasts, we showed that hyperactivation itself of the 

MAPK pathway was sensed by transcription factor EGR1, which controlled the kinetics of the 

proliferative arrest by directly binding and activating the promoters of CDKN1A (encoding p21) and 

CDKN2B (encoding p15) (Carvalho et al., 2019). Nonetheless, MAPK/ERK signaling is essential for 

both RAS and RAF senescence induction, as genetic or pharmacological ablation of the pathway 

resulted in senescence bypass and transformation (Deschênes-Simard et al., 2013; J. Zhu et al., 1998). 

1.2. Senescence as a cell fate. 

The decision to proliferate, engage apoptosis, or enter senescence in response to oncogene expression 

depends on the magnitude and duration of mitogenic signals, as well as on the presence of additional 

mutations that may bypass the senescence program. Controlled HRAS-V12 expression in the mammary 

gland of transgenic mice promoted proliferation and hyperplasia at low physiological levels, but induced 

OIS at higher levels (Sarkisian et al., 2007). Conversely, physiological expression levels of BRAF-

V600E were sufficient to induce OIS in primary human fibroblasts, even in the absence of p16 

(Michaloglou et al., 2005).  

The initial proliferative arrest in response to stress, as well as the maintained restriction of cell cycle 

progression in senescent cells, are mediated by the expression of various cyclin-dependent kinase 

inhibitors (CDKIs). CDKIs may maintain the senescence arrest even upon withdrawal of oncogene 

signaling (Jeanblanc et al., 2012; Sarkisian et al., 2007; J. Zhu et al., 1998). The identity of CDKIs 

implicated as well as the mechanisms activating their expression vary depending on both the senescence-

inducing stressor and the cell type. In many senescence settings, the p53/p21 pathway is responsible for 

the initial cell cycle exit in response to stress, and p16/Rb signaling later takes over the maintenance of 

the proliferative arrest through the repression of E2F-regulated genes implicated in cell cycle 

progression. Both the p53/p21 and the p16/Rb axes were required for induction of RAS senescence in 

mouse embryonic fibroblasts (MEFs), as RAS induced transformation of p53 or p16 deficient MEFs 

(Serrano et al., 1997). Moreover, lack of TP53 bypassed NRAS-G12V OIS in transgenic mice’s 
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lymphocytes which resulted in invasive T cell lymphoma (Braig et al., 2005). In contrast, inhibition of 

either p53 or p16 alone did not suffice to bypass RAS-induced senescence in human fibroblasts, which 

thus appear more sensitive to RAS senescence (Serrano et al., 1997).  

CRAF-induced senescence of human fibroblasts was maintained by both p21 and p16 (Jeanblanc et al., 

2012), while the increase of p21 in replicative-senescent human fibroblasts was only transient and served 

only in the initial proliferative arrest (Alcorta et al., 1996). Senescence induced in human fibroblasts by 

ectopic expression of BRAF-V600E did not depend solely on p16, as although its expression was 

induced by BRAF-V600E, prior shRNA-mediated knockdown of p16 did not bypass OIS (Michaloglou 

et al., 2005). The ablation of p53 and p21 was also insufficient to bypass CRAF senescence in human 

fibroblasts (J. Zhu et al., 1998). However, TP53 knockdown bypassed BRAF-V600E senescence of 

primary human fibroblasts and melanocytes (Wajapeyee et al., 2008). p15 appears especially important 

in the induction and the maintenance of BRAF-V600E senescence (Carvalho et al., 2019; McNeal et al., 

2015). BRAF-V600E induced senescence of human fibroblasts through a cooperation between p15 and 

p21, independently of p16 (Carvalho et al., 2019). Single ablation of p15 but not p16 bypassed BRAF-

V600E senescence of human melanocytes, showing that p15 was necessary and sufficient for the 

proliferative arrest, although p16 participated as its depletion potentialized that of p15 (McNeal et al., 

2015). Moreover, p16 inactivation was associated with melanomagenesis (Kamb et al., 1994), so 

although its absence is not sufficient for BRAF-V600E senescence bypass or escape, it participates in 

the robustness and stability of the proliferative arrest. Interestingly, p15 induction in melanocytes was 

triggered by a cell non-autonomous effect, through the secretion of TGFb in response to BRAF-V600E 

expression. In fibroblasts, p15 induction was cell-autonomous and depended on EGR1 binding the 

CDKN1B promoter (Carvalho et al., 2019). Both the TGFb and the EGR1 pathways may participate in 

p15 induction in either cell system. Other essential cell non-autonomous mechanisms were shown to be 

required for BRAF-V600E senescence in both fibroblasts and melanocytes, such as the secretion of 

IGFBP7, which functioned in autocrine and paracrine manner by eliciting a negative feedback loop 

downregulating BRAF/MEK/ERK signaling which participated in the proliferative arrest (Wajapeyee 

et al., 2008). 
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Senescence can be bypassed if RAS is activated in a context of other oncogenic events, leading to 

transformation. PI3K/AKT signaling has been shown to mediate OIS bypass, and is one of the effector 

pathways of RAS in addition to the MAPK/ERK axis (Sarkisian et al., 2007). Activation of PI3K/AKT 

concomitant with RAS or RAF activation bypassed senescence and led to proliferation and 

transformation (A. L. Kennedy et al., 2011; Vredeveld et al., 2012). Preliminary expression of the E1A 

oncogene bypassed senescence upon HRAS-V12 expression and induced transformation in human and 

mouse fibroblasts, even if HRAS-V12 was expressed at high levels (Serrano et al., 1997). Hyperactive 

CRAF triggered senescence notably through multiple negative feedback loops that resulted in the 

silencing of RAS signaling, and consequently of PI3K/AKT signaling too, thus participating in 

senescence onset (Courtois-Cox et al., 2006). Tumor suppressors appear to be essential for the induction 

and maintenance of OIS. Inactivation of tumor suppressors via co-expression of the SV40 large tumor 

antigen bypassed senescence. Consequently, human fibroblasts deficient for p53 and p16, and 

expressing the SV40 large tumor antigen and hTERT together with BRAF-V600E or HRAS-V12 

exogenously introduced into mice led to tumor formation (Michaloglou et al., 2005). In benign nevi, 

copy number loss of tumor suppressors and oncogenes even out as they are mostly the result of loss of 

heterozygosity events encompassing large chromosomal regions, which has been proposed to prevent 

malignant transformation (Stark et al., 2018).  

Cell fate decisions in the face of oncogenic stress are influenced even more broadly by the cellular 

context. The establishment of the DDR was essential for the triggering of senescence rather than 

transformation in response to RAS (Di Micco et al., 2006). In turn, the formation of senescence-

associated heterochromatin foci (SAHFs) downregulated the DDR, which promoted apoptosis 

avoidance in RAS-senescent cells (Di Micco et al., 2011). Autophagy was shown to promote OIS over 

proliferation by facilitating the synthesis of SASP factors that participate in the spread of paracrine 

senescence (Young et al., 2009). Autophagy upregulation in OIS was congruent with the downregulation 

of the PI3K/AKT axis (Courtois-Cox et al., 2006). 

The fact that senescence and apoptosis share common inducers and conceivably serve similar tumor-

suppressing purposes, but that the SASP mediates deleterious effects damaging the surrounding tissue 
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as well as promoting tumorigenesis in some contexts, raised the question of why apoptosis had not been 

selected over senescence during evolution, as a seemingly more favorable cell fate (Childs et al., 2014). 

Moreover, and unlike apoptosis, as senescence escape mechanisms exist, OIS does not fully protect 

from the threat of cellular transformation imposed by the oncogene (Chandeck & Mooi, 2010). 

However, besides the aforementioned physiological roles of senescence in embryonic development, 

wound healing, and liver function, senescence holds other advantages over apoptosis in tumor 

suppression. The SASP, although it may lead to tissue deterioration if senescent cells accumulate, allows 

the recruitment of the immune system and thus promotes immune surveillance of tumors and pre-

malignant lesions (Kang et al., 2011). It also mediates paracrine induction of senescence in neighboring 

cells, thus extending protection from malignant transformation beyond the cell that is faced with the 

neoplastic threat (Rattanavirotkul et al., 2021; Wajapeyee et al., 2008). It was also proposed that OIS 

provides a fitter option than apoptosis for tissue homeostasis if triggered in cell types that are typically 

persistent and not replaced with high turnover (Chandeck & Mooi, 2010). Interestingly, significant 

overlap between features of developmental senescence and OIS were reported (Storer et al., 2013), and 

it was thus proposed that OIS evolved and adapted from programmed developmental senescence.  

1.3. Senescence as a cell identity. 

Although senescent cells are permanently withdrawn from the cell cycle, they remain viable and undergo 

profound transcriptional and metabolic changes. The hallmarks of cellular senescence have been 

reviewed and most notably include the proliferative arrest-associated expression of CDKIs, SA-bGal 

activity resulting from increased lysosomal content, resistance to apoptosis through reorganization of 

survival networks, and the SASP (Hernandez-Segura et al., 2018). None of the hallmarks of senescence 

is both universal and specific. The only universal feature shared by all senescent cells is permanent 

proliferative arrest, but other more or less stable forms of proliferative arrest exist, such as quiescence, 

terminal differentiation, and replicative exhaustion (S. He & Sharpless, 2017). Despite its acknowledged 

specificity, p16 expression is not exclusively restricted to senescent cells and is constitutively found in 

replicatively exhausted lymphocytes, and cancer cells with inactivated Rb (Sharpless & Sherr, 2015). 

The lack of a universal and specific marker for the unequivocal characterization of senescence is a 
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serious caveat to the in vivo identification of senescent cells and the characterization of so called 

senescent-like states; non-proliferative cells with classical features of senescence such as SA-bGal and 

SASP expression have been described that resume proliferation upon stress withdrawal, calling into 

question the relevance of our current definition of senescence. Despite checking multiple hallmarks of 

senescence, should these cells be denied the status of senescent because of the instability of their 

proliferative arrest, even though they may be selectively cleared by senolytics (Fleury et al., 2019; 

Malaquin et al., 2020)? Thus, it appears that senescence is a spectrum rather than one well-defined 

phenotype with immovable features. 

OIS is arguably the type of senescence for which irreversibility of the proliferative arrest is the most 

controversial (Chandeck & Mooi, 2010). However, OIS is certainly the senescence setting for which 

prospective escapes would be the most deleterious, and have thus been extensively studied. OIS is still 

exceptionally stable in many contexts. The vast majority of nevi never transform into malignant 

melanoma (Tsao et al., 2003). Moreover, in most OIS settings, maintenance of oncogene expression 

after the proliferative arrest is not even required for senescence (McNeal et al., 2015; Sarkisian et al., 

2007; J. Zhu et al., 1998). p15 seems especially important for the maintenance of the established OIS 

arrest. HRAS-V12-induced senescent pre-malignant lung adenomas in mice stained for both p16 and 

p15 (Collado et al., 2005). Senescent melanocytes from human nevi expressed considerable levels of 

p15, and its knockdown mediated OIS escape (McNeal et al., 2015). Rendering CDK4 resistant to its 

inhibitors p16 and p15, or knocking down p15 expression, mediated senescence escape. Meanwhile, p16 

knockdown resulted in only modest senescence escape. Recently, the stability of the BRAF-V600E 

growth arrest in melanocytes proved to depend upon their differentiation state and the presence of TPA, 

an additive to ex vivo melanocyte culture media (McNeal et al., 2021). It was suggested that melanocytes 

within a nevus were subject to phenotypic plasticity as they oscillate between arrested and proliferating 

states that depended on external factors.  

We saw earlier that PI3K/AKT activity may bypass OIS, but it can also mediate escape from it. In 

melanoma, BRAF-V600E inhibited AKT through mTORC2, but AKT signaling was restored by the 

loss of tumor suppressor PTEN even in the presence of BRAF-V600E (Chen et al., 2012). Consequently, 



18 
 

PTEN depletion mediated OIS escape of established BRAF-V600E-induced senescent human 

fibroblasts and melanocytes through reactivation of PI3K and AKT (Vredeveld et al., 2012). PTEN 

depletion also promoted melanoma formation in a knock-in mouse model of melanocyte-restricted 

BRAF-V600E expression (Vredeveld et al., 2012). Moreover, BRAF-V600E and PI3K can also 

cooperate independently of AKT in melanoma to regulate protein synthesis and stimulate proliferation 

(Silva et al., 2014).  

A functional chronic DDR was shown to be implicated in the maintenance of RAS senescence in human 

fibroblasts, as its abrogation mediated partial OIS escape, an effect that was further potentialized by p16 

knockdown (Di Micco et al., 2006). However, because RAS-senescent cells are deficient in DNA repair 

due to BRCA1 inhibition, they are predisposed to additional mutations potentially promoting senescence 

escape and transformation (Tu et al., 2011). 

The senescent cell identity is enforced by epigenetic changes. OIS is systematically characterized by 

SAHFs (Di Micco et al., 2011; Kosar et al., 2011). Exogenous expression of BRAF-V600E in human 

fibroblasts induced massive SAHFs staining for K9 trimethylation of histone 3 (H3K9me3), a 

transcriptional silencing epigenetic marker (Michaloglou et al., 2005). Interestingly, it was demonstrated 

that the spreading of repressive histone marks such as H3K9me3, and chromatin compaction into 

SAHFs, were discrete sequential events in senescence onset, independent from each other (Chandra et 

al., 2012). SAHFs are important for the stability of the senescence-associated proliferative arrest, by 

locking in the inactivation of E2F genes involved in cell cycle progression, and their formation is 

p16/Rb-dependent (Narita et al., 2003; L. Zhao et al., 2015). However, the double knockdown of p16 

and p21 together with the inactivation of CRAF was sufficient to mediate senescence escape of CRAF-

induced senescent fibroblasts in spite of the presence of SAHFs (Jeanblanc et al., 2012). SAHFs also 

form in some cancer cell types in response to genotoxic agents, and this is also dependent on Rb (Y. 

Zhang et al., 2013). SAHFs were not detected in vivo in RAS-induced senescent cells of the mouse 

mammary gland but chromatin underwent important condensation (Sarkisian et al., 2007). H3K9me3 

was essential in inducing RAS OIS early in lymphoma development, as lymphocytes lacking 

methyltransferase Suv39h1 gave rise to invasive lymphoma (Braig et al., 2005).  
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It is now evident that cellular senescence is not a fixed phenotype but rather a dynamic process, with 

states of ‘light’ and ‘deep’ senescence that are more less irreversible. Differences in transcriptome 

trajectories during induction of senescence and quiescence were compelling, and illustrated the fact that 

senescence was a temporally dynamic state with an evolving transcriptional program, whereas 

quiescence resembled a fixed, dormant state (Martínez-Zamudio et al., 2020). Moreover, the important 

heterogeneity between different phenotypes of senescence, depending on the cell type and the 

senescence-inducing stressor, was evident at the transcriptome level (Hernandez-Segura et al., 2017).  

Thus, senescence implies a clear change in cell identity, that renders senescent cells different enough 

from proliferative or quiescent cells to allow for their selective targeting by pharmacological means with 

senolytics. Phenotypical differences between senescent and non-senescent cells, in terms of apoptosis 

resistance, regulation of survival, and cellular homeostasis, and how to exploit them for senolysis, are 

later addressed in detail in Manuscript 1. 
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Chapter 2. Senescent cell accumulation and 

senotherapeutics. 

2.1. Persistence and accumulation of senescent cells. 

One evident function of the SASP’s inflammatory factors is to recruit the immune system to mediate 

the clearance of newly-senescent cells. The routes by which senescent cells are removed by the immune 

system are many and have been extensively reviewed by Prata and colleagues (Prata et al., 2018). The 

complex composition of the SASP allows senescent cells to coordinate the immune response leading to 

their removal, from the recruitment and activation of immune cells to the remodeling of the extracellular 

matrix to facilitate immune infiltration. Pre-malignant, oncogene-induced senescent hepatocytes 

ectopically expressing HRAS-V12 were eliminated in vivo by cooperating CD4+ T cells and 

macrophages, and failure to carry out their immune clearance resulted in the development of 

hepatocellular carcinoma (Kang et al., 2011). Macrophages removed senescent cells in other instances 

(Egashira et al., 2017) and appear essential in senescent cell clearance, but the precise underlying 

mechanisms and whether phagocytosis or the secretion of cytotoxic factors are implicated, remain 

unclear and require further investigation (Prata et al., 2018). NK cells removed senescent hepatic stellate 

cells during liver fibrosis, through granule exocytosis. The Fas and TRAIL apoptotic pathway were 

inhibited by surface expression of Dcr2 by senescent cells (Sagiv et al., 2013). Adoptive NK cell 

infusion, i.e. transfusion of exogenous NK cells, was shown to clear senescent cells, and dopamine 

further enhanced the process by activating the D1-like receptors (Bai et al., 2022). In the long term, 

persisting senescent cells may limit immune invasion and thus their removal, because of tissue 

degradation mediated by the SASP. Moreover, senescent fibroblasts and other cell types suppressed 

their immune clearance by expressing the atypical MHC molecule HLA-E, which binds the NKG2A 

inhibitory receptor of NK and CD8+ T cells (Pereira et al., 2019). Interestingly, HLA-E expression was 

higher in skin from aged donors, and systematically enriched in melanocytic nevi. This may partly 

explain the decades-long persistence of nevi (Green & Swerdlow, 1989). 
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Whereas the triggering of senescence is essential in suppressing tumorigenesis and should not be 

impeded, the abnormal accumulation of persisting senescent cells is detrimental (Figure 2.1). As a result 

of more cells becoming senescent and a decline in their immune clearance, senescent cells accumulate 

in tissues during aging (Dimri et al., 1995; Jeyapalan et al., 2007; Ovadya et al., 2018). Besides being a 

consequence of aging, this accumulation is also a driver of the process, and underlies various age-

associated disorders and pathologies such as sarcopenia, atherosclerosis, and loss of adipose tissue 

(Childs et al., 2017). The causative implication of persisting senescent cells in the aging process was 

demonstrated in the INK-ATTAC transgenic mouse model, in which p16-expressing cells (thus 

probably most senescent cells) can be selectively removed. The lifelong, intermittent clearance of 

senescent cells in INK-ATTAC BubR1H/H progeroid mice delayed the onset of premature aging 

phenotypes, including decline in muscle function, cataracts, and loss of adipose tissue. Late-life 

clearance of senescent cells also rescued decline in muscle function and loss of adipose tissue (Baker et 

al., 2011). These findings were later strengthened with the elimination of senescent cells in naturally 

aging WT mice. The lifelong clearance of senescent cells extended both healthspan and median lifespan 

of INK-ATTAC WT mice, and delayed tumorigenesis, providing the demonstration for a causative role 

of cellular senescence in natural aging as well as a tumor-promoting role of established senescent cells 

secreting a SASP (Baker et al., 2016). Cellular senescence is thus a textbook case of antagonistic 

pleiotropy: it serves an essential role early in life by limiting transformation but later drives the 

organism’s functional decline and aging through chronic inflammation and tissue degeneration. 

Until recently, while it was known that the apparent number of senescent cells increased with age, the 

dynamics of this increase (a passive accumulation of senescent cells or an altered turnover) were not. 

Karin and colleagues demonstrated that the dynamics of senescent cell accumulation with age could be 

accurately described by a quantitative model in which the production of new senescent cells increased 

linearly with time, with senescent cells inhibiting their own removal (Karin et al., 2019). By comparing 

this model to longitudinal in vivo data of senescent cell abundance, they showed that the turnover of 

senescent cells greatly decreased with age, thus increasing senescent cell half-life and leading to an 

exponential increase in senescent cell abundance.  
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Persisting senescent cells are thought to accelerate aging primarily via secretion of the SASP. Chronic 

sterile inflammation, or inflammaging, is recognized as one of the pillars of aging that affect age-related 

diseases (Franceschi et al., 2018; B. K. Kennedy et al., 2014). The SASP may participate in 

inflammaging through its pro-inflammatory components. Matrix metalloproteases may degrade tissue 

architecture over time. Senomorphics are compounds that attenuate SASP expression, and could thus 

counteract the deleterious effects of accumulating senescent cells (Kim & Kim, 2019; L. Zhang et al., 

2022). JAK inhibitors inhibited SASP expression of senescent preadipocytes, and importantly reduced 

systemic inflammation in aged mice, which improved their physical condition (M. Xu et al., 2015). 

mTOR is a master regulator of the SASP, and rapamycin was shown to function as a senomorphic and 

to inhibit SASP expression (Herranz et al., 2015; Laberge et al., 2015; R. Wang et al., 2017). Pro-

longevity effects of rapamycin have been long known, and could be mediated partly by SASP inhibition, 

although it was shown to extend healthspan independently of inflammation modulation in NF-KB-

enhanced mice (Correia-Melo et al., 2019). Likewise, comparing the effect of rapamycin on the lifespan 

of INK-ATTAC mice with and without senescent cell clearance may help retrieving the relative 

implications of SASP inhibition and modulation of aging-associated pathways in the mediation of its 

pro-longevity activity. 

Figure 2.1. Mechanisms of senescent cell persistence and accumulation. Newly-senescent cells normally 
promote their own removal by recruiting the immune system via the SASP. However, senescent cell production 
increases with time and senescent cells eventually inhibit their own removal. Moreover, various endogenous and 
exogenous stresses may lead to an acute accumulation of senescent cells. This leads to deterioration of the tissue 
architecture, and senescent cells may promote malignant transformation via pro-tumorigenic components of the 
SASP. Senolytic compounds can be used to counteract senescent cell accumulation. 
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Beyond their lifelong exponential accumulation in tissues during aging, senescent cells may abnormally 

accumulate in other contexts, that fall into three main categories: in premalignant lesions as the result 

of OIS, at sites of chemotherapy or radiotherapy, and in pathologies involving senescence as a driver. 

The persistence of OIS cells within pre-malignant lesions, such as nevi or adenomas, was mentioned 

above (Collado et al., 2005; Michaloglou et al., 2005). In these contexts, eliminating senescent cells may 

or may not prevent malignant transformation depending on the pro- or anti-tumorigenic effects of the 

SASP, and the stage of neoplasia. There is however compelling evidence in favor of the one-two punch 

approach combining a senescence-inducing chemotherapeutic or radiotherapy with a senolytic drug, on 

the limitation of tumor recurrence (Fletcher-Sananikone et al., 2021; Guerrero et al., 2019; Triana-

Martínez et al., 2019; C. Wang et al., 2019). Finally, persisting senescent cells were found to be 

implicated in numerous pathologies such as diabetes (Palmer et al., 2019; Sierra-Ramirez et al., 2020; 

Thompson et al., 2019), atherosclerosis (Childs et al., 2016, 2022; Roos et al., 2016), neurodegenerative 

disease (Bussian et al., 2018; Musi et al., 2018; Ogrodnik et al., 2021; P. Zhang et al., 2019), and fibrosis 

(Pan et al., 2017; Schafer et al., 2017; Wiley et al., 2019), and clearing senescent cells in these contexts 

was beneficial. There is therefore an immense interest to develop senolytic drugs that efficiently and 

selectively clear senescent cells in defined pathological contexts, with limited side effects. To this end, 

understanding how survival is differentially regulated in senescent and non-senescent cells, but also in 

different types of senescence, is key. These problematics are addressed below in Manuscript 1. 
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Abstract 

Senescence is a cellular stress response that involves prolonged cell survival, a quasi-irreversible 

proliferative arrest and the expression of inflammatory factors. Senescent cells are resistant to apoptosis 

and if not eliminated by the immune system, can accumulate and lead to chronic inflammation and tissue 

dysfunction. Senolytics are recent drugs that selectively induce cell death in senescent cells but not in 

proliferative or quiescent cells, and they have proved a viable therapeutic approach in multiple 

preclinical models of pathologies in which senescence is implicated. As the catalog of senolytic 

compounds is expanding, novel survival strategies of senescent cells are uncovered, and variations in 

sensitivity to senolysis between different types of senescent cells emerge. We propose herein a 

mechanistic classification of senolytic drugs, based on the level at which they target senescent cells: 

directly disrupting BH3 protein networks, that are reorganized upon senescence induction; 

downregulating survival-associated pathways essential to senescent cells; or modulating homeostatic 

processes whose regulation is challenged in senescence. With this approach, we highlight the important 

diversity of senescent cells in terms of physiology and pathways of apoptosis suppression, and we 

describe possible avenues for the development of more selective senolytics. 
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Bullet points 

Facts 

• Senescent cells establish highly diverse strategies to suppress apoptosis, depending on the cell 

type and the senescence-inducing stressor 

• Senolytic compounds target senescent cells at one of three levels: directly targeting apoptosis 

gatekeepers, modulating upstream survival pathways, or further dysregulating cellular 

homeostatic processes 

• Indiscriminate clearance of senescent cells is undesirable, and calls for the development of 

senolytic drugs selective for specific types of senescent cells 

Open questions 

• Can the combinatorial targeting of various senescence-associated anti-apoptotic pathways yield 

senolytic treatments with improved selectivity and efficacy? 

• Can BH3 profiling accelerate the identification of context-specific BH3 mimetic senolytics? 

• Can the regulation of selective autophagy networks be exploited for the development of novel 

precision senolytics? 

• What are common regulators of multiple homeostatic processes in senescence, like MondoA? 
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Accumulating senescent cells are being found to drive a large number of pathologies. In the recent years, 

the therapeutic potential of senescent cell elimination has been demonstrated in pre-clinical models of 

diseases and disorders as diverse as pulmonary fibrosis (Pan et al., 2017; Schafer et al., 2017; Wiley et 

al., 2019), type 1 and 2 diabetes (Palmer et al., 2019; Sierra-Ramirez et al., 2020; Thompson et al., 

2019), neurodegeneration (Bussian et al., 2018; Musi et al., 2018; Ogrodnik et al., 2021; P. Zhang et al., 

2019), and atherosclerosis (Childs et al., 2016, 2022; Roos et al., 2016), among others. Pharmacological 

clearance of senescent cells is achieved by the means of drugs called senolytics, which exhibit a 

significant toxicity differential towards senescent cells, with no or limited effect on their proliferative 

or quiescent counterparts. Senolytics have been the object of intense research effort in the last five to 

ten years – the first demonstration of selective pharmacological elimination of senescent cells dating 

back to 2013 (Dörr et al., 2013), with the term senolytic being coined a few years later (Kirkland & 

Tchkonia, 2015; Zhu et al., 2015). The fast-moving senolytic research landscape considerably evolved 

in the last five years: many clinical trials are now under conduction, innovative pharmacological 

strategies are being explored, and the number of referenced senolytic drugs make up a dense catalog 

(Table 1); it is now time to take a step back and comprehensibly review and conceptualize senolysis. 

Cellular senescence is largely regarded as a cell fate in response to stress, characterized primarily by a 

highly stable proliferative arrest, and often accompanied by a complex secretome termed the senescence-

associated secretory phenotype (SASP). Other non-obligatory though often encountered senescence 

hallmarks include senescence-associated b-galactosidase activity (SA-bGal) resulting from increased 

lysosomal content (Kurz et al., 2000), resistance to apoptosis, senescence-associated heterochromatin 

foci (SAHFs), and the expression of cyclin-dependent kinase inhibitors e.g. p16, p15, and p21) 

(Hernandez-Segura et al., 2018). The only universal feature shared by all types of senescent cells is 

permanent withdrawal from the cell cycle, though this is not exclusive to senescence as other stable 

forms of proliferative arrest exist such as terminal differentiation and replicative exhaustion. In this 

review, we propose a comprehensive conceptualization of senolysis in three possible routes, through the 

lens of inter-senescent cell type selectivity of senolytic drugs, emphasizing the plurality of senescence.  
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Table 1. Notable senolytics: mechanisms and preclinical models.  

Senolytic 
compounds 

Notable members Class Mechanism Notable preclinical 
pathological 

models 

References 

BH3 mimetics 
 

Navitoclax, ABT-
737, venetoclax, 

A1331852, 
A1155463 

1 BH1-4 anti-apoptotic 
factors inhibition 

Diabetes, lung 
fibrosis, 

neurodegeneration, 
atherosclerosis, 

Covid-19, 
chemotherapy 

(Aguayo-Mazzucato et al., 2019; 
Bussian et al., 2018; Childs et al., 
2016, 2022; Fletcher-Sananikone 
et al., 2021; S. Lee et al., 2021; 

Pan et al., 2017; Shahbandi et al., 
2020; Sierra-Ramirez et al., 

2020; Thompson et al., 2019; 
Wiley et al., 2019) 

MDM2 and 
USP7 inhibitors 

P5091, UBX0101, 
nutlin-3a 

2 p53 levels upregulation Chemotherapy, 
osteoarthritis, 

macular 
degeneration 

(Chae et al., 2021; Faust et al., 
2020; He, Li, et al., 2020; Jeon et 

al., 2017) 

Dasatinib + 
quercetin 

- 2 Ephrin, AKT, PAI-2 
inhibition 

Lung fibrosis, 
neurodegeneration, 

diabetes, aging, 
Covid-19 

(Camell et al., 2021; S. Lee et al., 
2021; Musi et al., 2018; 

Ogrodnik et al., 2021; Palmer et 
al., 2019; Schafer et al., 2017; 
Sierra-Ramirez et al., 2020; M. 
Xu et al., 2018; P. Zhang et al., 

2019) 
FOXO4/p53 
disrupters 

FOXO4-DRI, ES2 2 p53 activity restoration Chemotherapy, 
aging, lung fibrosis 

(Baar et al., 2017; Le et al., 
2021; Meng et al., 2021) 

HSP90 
inhibitors 

Alvespimycin, 
ganetespib 

2 AKT downregulation Aging (Fuhrmann-Stroissnigg et al., 
2017) 

BET degraders 
and inhibitors 

ARV-825, JQ1 3 Autophagy 
(ferroptophagy) 

activation,ferroptosis, 
NHEJ inhibition 

Obesity, 
chemotherapy 

(Go et al., 2021; Wakita et al., 
2020) 

Cardioglycosides Ouabain, digoxin, 
strophanthidin, 

bufalin 

3 Autophagy inhibition, 
modulation of 

transmembrane potential 
and intracellular pH 

Chemotherapy, lung 
fibrosis, pre-

neoplastic lesions, 
aging 

(Guerrero et al., 2019; L’Hôte et 
al., 2021; Triana-Martínez et al., 

2019) 

Fibrates Fenofibrate 3 Autophagy activation - (Nogueira-Recalde et al., 2019) 
Autophagy 

blockers 
Chloroquine, 

bafilomycine A1 
3 Autophagy inhibition Chemotherapy (Dörr et al., 2013; L’Hôte et al., 

2021) 
Glutaminolysis 

inhibitors 
BPTES 3 Gutaminolysis inhibition, 

acidosis 
Aging (Johmura et al., 2021) 

Piperlongumine - 3 OXR1 inhibition, ROS 
production 

- (Y. Wang et al., 2016; X. Zhang 
et al., 2018) 

 

Senolytics can be classified in three categories, as they target senescent cells at one of three levels. Class 

I senolytics target directly BCL-2 family proteins, which in senescence are rearranged in a network 

distinct from that of non-senescent cells, resulting in dependency on anti-apoptotic BCL-2 family 

members for survival; class II senolytics target upstream pathways that provide senescent cells with 

resistance to cell death, such as the USP7/MDM2/p53 axis, or AKT pro-survival signaling; and class III 

senolytics further disturb homeostatic processes that are already dysregulated in senescent cells, such as 

proteostasis maintenance or redox homeostasis. 
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Class I senolytics: directly targeting apoptosis gatekeepers 

Commitment to apoptosis is directly controlled by the stoichiometry of BCL-2 family proteins, or BH3 

proteins, that differentially interact with each other owing to their BCL-2 homology domains BH1 to 4 

(Glab et al., 2017; Kale et al., 2018). Three distinct factions of BCL-2 family proteins can be 

distinguished, classified according to the BH domains they contain. Pro-apoptotic BH1-3 effectors BAX 

and BAK oligomerize to drive mitochondrial outer membrane permeabilization (MOMP), which is the 

irreversible tipping point leading to cell death orchestration. In unstressed conditions, MOMP is 

prevented by the sequestration of BH1-3 factors by anti-apoptotic BH1-4 guardians such as BCL-2, 

BCL-xL, or MCL-1. Finally, upstream pro-death or pro-survival signals translate into the modulation of 

the activity of BH3-only apoptotic inducers, such as NOXA, PUMA, or BIM. BH3-only proteins can 

either act as sensitizers that sequester pro-survival BH1-4 factors, or as activators by directly interacting 

with BAX/BAK and catalytically favoring their oligomerization (Delbridge et al., 2016; Lomonosova 

& Chinnadurai, 2009). Due to genetic variability in their BH3 sequences, individual members of each 

faction have their own profile of interactions with other BCL-2 family proteins in terms of affinity and 

selectivity, forming a complex but organized and finely tuned BH3 network (Timucin et al., 2019). 

BCL-2 family proteins and notably BH1-4 anti-apoptotic guardians are essential in orienting cell fate 

towards senescence by suppressing apoptosis in response to stress. Commitment of triple-negative breast 

cancer cells to senescence rather than apoptosis in response to treatment with BET inhibitors was found 

to be largely determined by the upregulation of BCL-xL (Gayle et al., 2019). In different contexts of 

p53 activation, BCL-2 and MCL-1 were found to promote growth arrest over cell death (Kracikova et 

al., 2013; Rincheval et al., 2002). MCL-1 upregulation also promoted survival and senescence in IMR90 

fibroblasts following aberrant mitosis caused by RASval12 expression (Dikovskaya et al., 2015). 

However, cell death avoidance in favor of senescence comes at the cost of the apoptotic priming of 

senescent cells, through the formation of stable complexes between BH1-4 proteins and pro-apoptotic 

BH3-only factors. The so-called one-two punch approach consists in suppressing tumors by first 

inducing senescence in cancer cells by the means of radiotherapy or chemotherapy, and then eliminating 

now-senescent cancer cells with senolytic compounds. The reorganization of the BH3 network inherited 
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from cell death avoidance singularly later provides senescent cells with sensitivity to so-called BH3 

mimetics (Chong et al., 2020; Yosef et al., 2016; Zhu et al., 2016) (Figure 1). BH3 mimetics are small 

synthetic compounds that mimic the BH3 domain of pro-apoptotic BH3-only inducers. They bind to and 

inhibit anti-apoptotic BH1-4 guardians and prevent them from interacting with other BCL-2 family 

proteins, thus increasing the apparent stoichiometry of BH3-only proteins and shifting the equilibrium 

towards BAX/BAK oligomerization and apoptosis. The senolytic potential of BH3 mimetics was 

predicted from transcriptomic analyses revealing an increased expression of BH1-4 anti-apoptotic 

factors in senescence 

(Yosef et al., 2016; 

Zhu et al., 2016). 

Navitoclax is by far 

the most studied BH3 

mimetic senolytic. It 

inhibits BCL-2, BCL-

xL, and BCL-w. It is 

considered a broad-

spectrum senolytic, as 

it is efficient against a 

large panel of 

senescent cells (Chang et al., 2016). In several models of DNA damage-induced senescent cancer cells 

selectively killed by navitoclax, the sole inhibition of BCL-xL was sufficient to induce senolysis. Hence, 

inhibition of BCL-xL but not BCL-2 was required for navitoclax-mediated senolysis of breast and lung 

cancer cells induced in senescence by genotoxic agents etoposide and doxorubicin (Saleh et al., 2020), 

and irradiation-induced senescent meningioma cells (Yamamoto & Kitanaka, 2021). Interestingly, 

prostate cancer cells were killed by navitoclax or BCL-xL specific inhibitors if induced in senescence 

by irradiation or genotoxic agents, but not if the proliferative arrest was triggered by antiandrogen 

enzalutamide, which does not damage DNA (Malaquin et al., 2020); the proliferative arrest induced by 

enzalutamide was however reversible upon withdrawal of the drug, calling into question the senescent 

Figure 1. Class I senolytics target apoptosis-primed BH3 networks of senescent cells. In 
response to stress, the cell fate decision to overgo senescence rather than apoptosis is 
accompanied by the reorganization of BH3 networks and the apoptotic priming of senescent 
cells. BH3 profiles evolve dynamically during senescence onset, and are dictated by the 
nature of the senescence-inducing stressor and its magnitude, expression levels and 
mutational status of TP53, as well as the establishment or lack thereof of a DNA damage 
response. The reorganization of BH3 networks in senescent cells renders them sensitive to 
the action of BH3 mimetics, that bind anti-apoptotic BH1-4 proteins to increase the apparent 
stoichiometry of pro-apoptotic BH3-only proteins and promote BAX/BAK oligomerization 
and mitochondrial outer membrane permeabilization. 
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state of these cells. Other reports of navitoclax-resistant cancer cells induced in senescence by non-

genotoxic chemotherapeutic agents such as alisertib or palbociclib (Guerrero et al., 2019) suggest that 

the DNA damage response may be important in reorganizing BCL-2 family factors into a navitoclax-

sensitive BH3 network in senescent cancer cells. It is known that the DNA damage response 

differentially regulates the expression of BCL-2 family members (Zhan et al., 1997). TP53 mutational 

status may also affect the sensitivity of DNA damage-induced senescent cancer cells to BH3 mimetics, 

as the regulation of the expression of some BCL-2 family genes was found to be p53-dependent in 

response to genotoxicity (Miyashita et al., 1994; Widden & Placzek, 2021). Navitoclax resistance in 

wild-type TP53 therapy-induced senescent breast cancer cells expressing low levels of NOXA was 

overcome by dual treatment with a specific MCL-1 inhibitor (Shahbandi et al., 2020). Interestingly in 

this study, sensitivity to BCL-xL or BCL-xL/MCL-1 inhibition depended primarily on the cell line and 

was largely conserved for various senescence-inducing insults. This is consistent with recent work 

demonstrating that in senescent cancer cells, gene expression dynamics, SASP composition and 

sensitivity to BH3 mimetics correlated more with the cell type than with the nature of the senescence-

inducing stressor (Jochems et al., 2021). 

There are conflicting results on the ability of navitoclax to target etoposide-induced senescent primary 

lung fibroblasts. IMR90 cells exposed for 48 h to 20 µM etoposide to induce senescence, were killed by 

2.5 µM navitoclax when added for 48 h after a 2-day etoposide withdrawal (Nogueira-Recalde et al., 

2019), whereas 10 µM navitoclax did not affect cell viability if added for 48 h after a longer 6-day 

etoposide withdrawal (Schafer et al., 2017). This may be underlain by a dynamic evolution of BCL-2 

protein levels during senescence onset, from a navitoclax-sensitive to insensitive BH3 network. 

Furthermore, if IMR90 cells were induced in senescence with a higher concentration of 50 µM etoposide 

for 48 h followed by a 5-day withdrawal, a 72-h exposure to as little as 1 µM navitoclax was senolytic 

(Guerrero et al., 2019). This in turn suggests that beyond the cell type and the nature of the senescence-

inducing insult, the magnitude of the stress may also influence the resulting evolution of BH3 profiles 

that underlies sensitivity to BH3 mimetics, possibly through the DNA damage response activation level. 

Similarly, while early senescent glioblastoma cells were killed by selective BCL-2 inhibition – although 
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no proliferating control cells were included in the assay (Schwarzenbach et al., 2021), late senescent 

glioblastoma cells were insensitive to BCL-2 inhibition and depended solely on BCL-xL for their 

survival (Rahman et al., 2022). In IMR90 cells, when compared to levels in proliferation, BCL-2, BCL-

xL and BCL-w proteins all displayed a marked increase in etoposide and replicative senescence, whereas 

this increase was more important for BCL-2 than for BCL-xL and BCL-w in RASval12 senescence 

(Yosef et al., 2016). This may explain the efficiency of the specific BCL-2 inhibitor venetoclax in 

RASval12-induced senescent IMR90 only, while it appeared necessary to inhibit all BCL-2, BCL-xL 

and BCL-w with navitoclax or the related compound ABT-737 to kill etoposide- and replicative-

senescent IMR90. 

Neither navitoclax nor BCL-xL-specific inhibitors A1331852 and A1155463 are senolytic towards 

irradiation-senescent preadipocytes (Zhu et al., 2016, 2017). Upon senescence induction, whereas 

navitoclax- and A1331852/A1155463-sensitive human umbilical vein endothelial cells (HUVECs) and 

IMR90 fibroblasts showed a marked increase in BCL-xL and BCL-2 protein levels, preadipocytes 

exhibited steadier BCL-xL and even decreased BCL-2 protein levels, in contrast to significantly 

increased BCL-w protein levels (Zhu et al., 2016). Senescent preadipocytes may then rely preferentially 

on BCL-w for their survival. Although none is available at the moment (Hartman & Czyz, 2020), if 

selective BCL-w inhibitors were developed in the future, their senolytic potential in preadipocytes 

should be assessed. Preadipocytes may be among the most abundant senescent cell types in old age and 

mediate age-related metabolic disorders, making them targets of interest (Tchkonia et al., 2010).  

In several studies, the sensitivity of senescent cells to different BH3 mimetics correlated well with the 

expression or protein levels of the various anti-apoptotic BCL-2 family factors; however, the levels of 

pro-apoptotic effectors and initiators were rarely assessed. This is unfortunate, because the potency of a 

given BH3 mimetic as a senolytic does not depend solely on the protein levels of its BH1-4 targets, but 

rather on the balance between these and their pro-apoptotic partners (Edlich, 2018). In a panel of soft-

tissue sarcoma cell lines induced to senesce by irradiation, BCL-2 or BCL-xL were differentially 

induced depending on the cell line, but the cells were all comparably sensitive to senolysis by venetoclax 

or navitoclax, irrespectively of BCL-2 and BCL-xL expression levels (Lafontaine et al., 2021). 
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Similarly, while irradiation-induced senescent WI-38 fibroblasts upregulated BCL-xL and BAK but not 

BCL-2, they were only sensitive to dual BCL-xL/BCL-2 inhibition but not to that of either factor alone 

(Chang et al., 2016). Therefore, a more exhaustive characterization of BH3 networks in senescence 

models could guide the choice for better class I senolytics, for example through the BH3 profiling 

method (Del Gaizo Moore & Letai, 2013; Montero et al., 2015; Montero & Letai, 2018; Potter et al., 

2021), which could significantly improve selectivity prediction of BH3 mimetics as senolytics.  

Both navitoclax and ABT-737 proved efficient senolytics in multiple preclinical models. Nevertheless, 

their translation into clinic as senolytics is impaired by their reported toxicity towards platelets and 

neutrophils due to the targeting of BCL-xL and BCL-2, respectively, leading to thrombocytopenia and 

neutropenia (Oltersdorf et al., 2005; Wilson et al., 2010). Given the high potential of BH3 mimetics as 

senolytics, various strategies are being designed to overcome this issue and improve their in vivo 

tolerability and therapeutic window, including conjugation of navitoclax to galactose for its specific 

release in senescent cells due to senescence-associated b-galactosidase activity (González-Gualda et al., 

2020), synthesis of BCL-xL proteolysis-targeting chimera (PROTACs) taking advantage of low E3 

ligase expression in platelets (He, Zhang, et al., 2020), and galactose-functionalized nanoparticle 

encapsulation (Galiana et al., 2020). In the future, IAP-based PROTACs could also hold promise as 

senolytics (Negi & Voisin-Chiret, 2022), especially in the light of recent work reporting on the 

overexpression of some IAP members in senescence (Schwarzenbach et al., 2021). 

Class II senolytics: modulating upstream pro-survival pathways 

The SASP secreted by senescent cells comprises apoptosis-promoting factors as well as pro-

inflammatory factors and proteases, together resulting in a harsh microenvironment (Coppé et al., 2010; 

Wajapeyee et al., 2008; Zhu et al., 2015). Independently of the reorganized BH3 networks, senescent 

cells also resist cell death through the upregulation of upstream pro-survival signaling pathways that can 

be targeted for senolysis (Figure 2).  

Classically, p53 is transiently upregulated in response to stress to trigger senescence-associated cell 

cycle exit through the transcription of p21, and then returns to lower cellular levels to participate in the 
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regulation of other aspects of senescence such as SASP expression (Herranz et al., 2018; Johmura et al., 

2016; Sheekey & Narita, 2021). When expressed at high levels, p53 can promote apoptosis by both 

upregulating the transcription of BH3-only genes and interacting with BCL-2 family proteins in the 

cytosol and at the mitochondrial outer membrane (Lomonosova & Chinnadurai, 2009). In cells with 

established senescence, p53 levels are maintained low through ubiquitination and its pro-apoptotic 

activity is repressed through nuclear segregation. Thus, restoration of p53 activity by either nuclear 

exclusion or 

suppression of its 

ubiquitination can 

lead senescent 

cells to apoptosis. 

Transcription 

factor FOXO4 is 

upregulated in 

senescence to 

participate in 

proliferative arrest 

maintenance, and 

it physically 

interacts with 

p53 in the 

nucleus 

(Bourgeois & Madl, 2018; Dankort et al., 2009; De Keizer et al., 2010). This interaction both prevents 

p53 from inducing the transcription of pro-apoptotic target genes, and restricts p53 localization to the 

nucleus so that it cannot interact with BCL-2 family proteins in the cytosol and at the mitochondrial 

outer membrane (Baar et al., 2017; Le et al., 2021). The senolytic peptide FOXO4-DRI, by binding p53 

and relieving the p53-FOXO4 interaction, abrogated the nuclear sequestration of p53, that consequently 

Figure 2. Class II senolytics inhibit survival pathways elicited by senescent cells. Senescent 
cells promote survival through the downregulation of p53 activity via its nuclear segregation by 
FOXO4. Senolytic peptides FOXO4-DRI and ES2 suppress the FOXO4-p53 interaction, promote 
p53 nuclear exclusion and the subsequent triggering of apoptosis. Besides, p53 levels are actively 
kept low in senescent cells through MDM2 and USP7, the inhibition of which also results in 
apoptosis. The dasatinib and quercetin senolytic cocktail targets multiple survival-associated 
pathways including ephrins, PAI-2, SRC, and AKT signaling. In senescent cells, AKT signaling is 
sustained through the stabilization of phosphorylated AKT by HSP90 chaperones. HSP90 
inhibitors downregulate AKT and induce senolysis. 
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migrated towards the cytosol and the mitochondria, where it triggered apoptosis (Baar et al., 2017). A 

computationally designed peptide, ES2, binds FOXO4 rather than p53, and like FOXO4-DRI, induced 

the nuclear exclusion of p53 and selectively elicited the death of senescent cells in vitro and in vivo (Le 

et al., 2021). Remarkably, the occurrence of the p53-FOXO4 nuclear interaction and the senolytic 

potential of its disruption was recapitulated in many different senescent models (Baar et al., 2017; Huang 

et al., 2021; Le et al., 2021; C. Zhang et al., 2020). The development of small synthetic compounds 

disrupting the p53-FOXO4 interaction is thus of interest to exploit this senolysis mechanism in a 

therapeutic context, as small molecule compounds bear more favorable pharmacokinetics properties 

than peptides (Lau & Dunn, 2018). 

p53 protein levels are largely controlled and kept low by proteasomal degradation due to ubiquitination 

by the MDM2 E3 ligase. The stability of MDM2 is itself enhanced through its deubiquitination by USP7. 

Therefore, both USP7 and MDM2 negatively regulate the stability of p53 (S. K. Kwon et al., 2017). As 

predicted, USP7 inhibitors restored p53 activity in senescent cells, and selectively triggered senescent 

cell death (He, Li, et al., 2020). Surprisingly, USP7 inhibitors increased p53 levels in senescent cells 

only but not in proliferative cells, which suggests a higher dependency of senescent cells on the 

USP7/MDM2 axis for the regulation of p53 activity compared to their proliferative counterparts. 

Downstream of USP7, directly inhibiting MDM2 was also senolytic, but USP7 inhibitors reportedly 

exhibit fewer side effects than MDM2 inhibitors in mice (He, Li, et al., 2020; Jeon et al., 2017). 

Proprietary MDM2 inhibitor UBX0101 failed phase II clinical trial as a senolytic in patients with 

osteoarthritis (Dolgin, 2020). Interestingly, perturbation of the BH3 network and restoration of p53 

activity appear to synergize to trigger senolysis, as a combination of navitoclax with USP7 or MDM2 

inhibitors was more potent than either treatment alone (Faust et al., 2020; He, Li, et al., 2020). Recent 

work in cancer cells showed that apoptotic priming of BH3 networks favored cell death in response to 

p53 activity restoration (Sánchez-Rivera et al., 2021). 

Moving away from p53, AKT signaling is essential to the survival of many senescent cells. AKT is a 

pleiotropic serine/threonine protein kinase that reportedly regulates over 100 downstream substrates, 

playing a central role in a complex network of signaling pathways comprising multiple positive and 
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negative feedback loops. AKT promotes survival notably through the inhibition of BH3-only protein 

BAD, the downregulation of p53 via MDM2, and the upregulation of anti-apoptotic BH1-4 protein 

MCL-1 (Manning & Toker, 2017; Osaki et al., 2004). Transcriptome analysis of irradiation-induced 

senescent preadipocytes highlighted the upregulation of various survival-associated pathways including 

ephrin-B-dependent suppression of apoptosis and the PI3K/AKT pathway, that can be targeted by 

dasatinib and quercetin, respectively (Zhu et al., 2015). Dasatinib is a broad-spectrum tyrosine kinase 

inhibitor that notably targets, besides SRC, various ephrin receptors that promote survival via 

stimulation of AKT signaling (Karaman et al., 2008; J. Li et al., 2010). Dasatinib as a senolytic is widely 

used in combination with quercetin, which targets notably PI3K and PAI-2. PI3K is directly activated 

by ephrin receptors, so quercetin can further participate in the dasatinib-induced downregulation of AKT 

signaling. On the other hand, pro-survival effects of PAI-2 are known but poorly understood. PAI-2 

inhibition can result in the destabilization of p21, leading to apoptosis (Hsieh et al., 2017). Besides, due 

to Rb destabilization, PAI-2 inhibition results in the transcriptional activation of E2F-regulated pro-

apoptotic genes (Tonnetti et al., 2008). While the senolytic activity of dasatinib was assigned to ephrin 

receptor inhibition, recent work demonstrated that SRC was an essential factor favoring survival and 

senescence over apoptosis in response to genotoxicity, through the downregulation of p53 (Anerillas et 

al., 2022). It is therefore plausible that dasatinib triggers senolysis in part through inhibition of survival-

associated SRC signaling. 

Senolysis by HSP90 inhibitors is thought to be mediated in part by the downregulation of AKT 

signaling. HSP90 chaperone proteins increased the stability of active, phosphorylated AKT, reinforcing 

pro-survival signaling in senescent cells. Inhibiting HSP90 chaperones led to the destabilization and 

degradation of active AKT and other client proteins. In oxidative stress-induced senescent MEFs, 

HSP90 inhibitors were senolytic, whereas specific AKT inhibitors were not. However, quercetin which 

targets other pathways in addition to PI3K/AKT, was senolytic in this model (Fuhrmann-Stroissnigg et 

al., 2017), suggesting that the essentiality of HSP90 proteins in senescence is imputable to the 

stabilization of not only AKT but other pro-survival factors.  
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Overall, many types of senescent cells rely on upregulated AKT signaling for apoptosis suppression, 

and upstream targeting of this pathway at the levels of ephrin receptors, PI3K, or HSP90 chaperones, 

proved efficient approaches for the selective clearance of senescent cells. Nevertheless, downregulating 

AKT is not always sufficient to induce senolysis. Dasatinib was senolytic in preadipocytes but not in 

HUVECs, which was consistent with the fact that the former but not the latter was sensitive to siRNA-

mediated knockdown of ephrin genes. Conversely, quercetin which targets PI3K and PAI-2 was 

senolytic in HUVECs but not in preadipocytes (Zhu et al., 2015). The related flavonoid fisetin exhibited 

the same senolytic selectivity (Zhu et al., 2017). This suggests that while senescent preadipocytes rely 

primarily on ephrin signaling for survival, the inhibition of PAI-2 anti-apoptotic mechanisms is required 

to induce apoptosis of senescent HUVECs, in which targeting the PI3K/AKT axis is not sufficient to 

trigger senolysis. HSP90 inhibitors that downregulate AKT were not senolytic either in irradiation-

induced senescent preadipocytes (Fuhrmann-Stroissnigg et al., 2017). This could indicate that the 

senolytic effect of dasatinib in these cells was mediated by SRC inhibition rather than the suppression 

of PI3K/AKT signaling, on which senescent preadipocytes do not seem to rely for survival. Whereas 

AKT activity is upregulated in many senescence models, it was shown to be reduced to levels even 

below those of proliferative cells in some forms of oncogene-induced senescence (OIS) (S. Courtois-

Cox et al., 2008). Accordingly, HSP90 inhibitors and dasatinib were not senolytic in BRAF-V600E-

induced senescent fibroblasts (L’Hôte et al., 2021). Downstream of AKT, inhibiting mTOR was 

senolytic in liver cancer cells induced in senescence by CDC7 inhibition, but not in OIS (C. Wang et 

al., 2019). Although lack of PI3K/AKT hyperactivity could explain the resistance of certain senescent 

cells to senolytics directly or indirectly targeting this pathway, more complex regulation and crosstalk 

are certainly at play. 
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Class III senolytics: further disturbing cellular homeostatic processes  

The last level on which senescent cells can be targeted for elimination, is through further disturbance of 

cellular homeostatic processes that are already dysregulated in senescence, often in a systemic manner, 

such as proteostasis, or mitochondrial and redox homeostasis (Figure 3). 

Proteostasis results 

from a tightly 

regulated balance 

between protein 

synthesis, folding, 

and degradation, that 

are coordinated to 

ensure a functional 

proteome and 

proper cell 

function. 

Mitochondrial 

homeostasis, redox 

homeostasis and 

global proteostasis all influence each other. Proteostasis decline and mitochondrial dysfunction are 

hallmarks of aging and cellular senescence. Failure to restore proteostasis in the face of proteotoxic 

insults triggers senescence, as shown in keratinocytes in response to advanced glycation end products 

formation (Halkoum et al., 2022), or in post-mitotic neurons facing increasing proteotoxicity during 

long-term culture (Ishikawa & Ishikawa, 2020). Replicative-senescent fibroblasts experience a global 

decline in proteostasis, with dysregulated alternative splicing, and altered responses to proteotoxic stress 

including disruptions in the heat shock response and the unfolded protein response (UPR) (Sabath et al., 

2020). Aged mice exhibit mild chronic endoplasmic reticulum (ER) stress and UPR activation, and 

trigger an exaggerated sustained response lacking fine tuning when subjected to further ER stress (Ward 

Figure 3. Class III senolytics disrupt homeostatic processes already challenged in senescent 
cells. Multiple facets of homeostasis are interconnected in senescence and regulated differently 
than in proliferative cells. Autophagy is essential for proteostasis maintenance as well as 
mitochondrial homeostasis through mitophagy, which is inhibited by GL-V9. Mitochondrial 
dysfunction in senescent cells leads to the formation of ROS. Redox stress responses may be 
orchestrated by OXR1, which is inhibited by piperlongumine. The inhibition of ferritinophagy 
by BET inhibitors leads to ferroptosis and ROS formation. Intracellular pH of senescent cells is 
reportedly acidified by lysosome leakage, which is compensated for by ammonia production 
through glutaminolysis. Inhibitors of glutaminase 1 induce acidosis and are thus senolytic. 
Cardioglycosides, by binding to the Na,K-ATPase, both alter membrane potential and 
intracellular pH regulation of senescent cells, as well as inhibit autophagy through signal 
transduction. 



40 
 

et al., 2022). Senescent cells with ample SASP synthesis may mitigate proteotoxicity and the burden on 

their secretion systems by chronically upregulating the ubiquitin/proteasomal axis and the 

autophagy/lysosomal axis, and differentially activating UPR branches (Abbadie & Pluquet, 2020; Dörr 

et al., 2013). Meanwhile, improved protein translation fidelity results in extended lifespan in several 

model organisms (Martinez-Miguel et al., 2021). Different facets of cellular homeostasis share common 

regulators in aging. Transcription factor MondoA was found to delay replicative and DNA damage-

induced senescence through the downregulation of autophagy suppressor Rubicon as well as 

maintenance of mitochondrial redox homeostasis through Prdx3 expression (Yamamoto-Imoto et al., 

2022). 

The facet of proteostasis that is the most targeted so far by known senolytics is autophagy. Autophagy 

is an adaptive cellular process in response to stress or energy deprivation, through which organelles and 

proteins are degraded (specifically as in selective autophagy, or non-specifically as in bulk autophagy) 

and broken down to small metabolic substrates that are recycled to maintain essential biosynthesis 

activities. Autophagy is first and foremost a survival process, but unimpeded autophagy can lead to 

apoptosis, necrosis, or even autophagic cell death in which the cell overwhelmed by the presence of 

autolysosomes is ‘eating itself to death’ (Bialik et al., 2018). Relationships between autophagy and 

senescence are seemingly paradoxical and yet to be fully understood. Basal autophagy in proliferative 

cells is considered anti-senescence because it decreases the cellular burden of potential senescence-

inducing stressors, therefore acting as a preferred primary stress response; in this regard, inhibiting 

autophagy induces senescence in glioblastoma and bronchial epithelial cells (Fujii et al., 2012; Gammoh 

et al., 2016). Downregulating autophagy master regulator ULK1 induces senescence in a wide range of 

cancer cells and sensitizes them to navitoclax-induced apoptosis (Schepers et al., 2021). However, in 

some contexts of high-intensity cellular stress, autophagy rather suppresses apoptosis and promotes 

senescence induction (Gewirtz, 2013). Autophagy is especially important during OIS onset: inhibiting 

autophagy delays entry into senescence, and even allows the full bypass of BRAF senescence in 

melanocytes (Liu et al., 2013). Autophagy is often upregulated in senescent cells and is suspected to 

provide, through the recycling of cellular constituents, the small metabolites required for the massive 
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synthesis of SASP components, as well as to clear macromolecules damaged from increased metabolic 

fluxes and ROS production (Y. Kwon et al., 2017). Therefore, in low to mild stress conditions, 

autophagy suppresses senescence by mediating the return to homeostasis and proliferation, whereas in 

the face of higher intensity stress, autophagy favors senescence by suppressing apoptosis. Beyond bulk 

autophagy, the selective degradation of specific factors through selective autophagy via various ATG8 

family receptors was shown essential in homeostasis maintenance of both replicative and DNA damage-

induced senescence (Y. Lee et al., 2021). Selective autophagy of KEAP1, TNIP1, and NDP52, regulated 

redox homeostasis, SASP expression, and proteostasis, respectively, in senescent cells. Further 

exploration of selective autophagy networks in various types of senescent cells may foster the 

development of new-generation precision senolytics targeting autophagy, with improved proliferative 

versus senescent and inter-senescent selectivity. 

Most senolytics that affect autophagy are inducers of the process. HSP90 inhibitors were identified in 

the rational screening of a small chemical library of compounds targeting autophagy, of which all 

senolytic hits were autophagy inducers (Fuhrmann-Stroissnigg et al., 2017). BET inhibitors are another 

group of senolytic drugs that exert their action through the upregulation of autophagy, together with the 

attenuation of non-homologous end-joining repair. They proved efficient in vivo in mice models of 

obesity and chemotherapy-induced senescence (Wakita et al., 2020). Their senolytic action was later 

assigned to the selective autophagy of ferritin (ferritinophagy) and the subsequent triggering of non-

apoptotic, iron-dependent cell death ferroptosis, at least in therapy-induced senescent fibroblasts (Go et 

al., 2021). Indeed, replicative and irradiation-induced senescent fibroblasts and epithelial cells 

accumulate important amounts of intracellular iron, through the combined upregulation of iron-storage 

protein ferritin expression and inhibition of ferritinophagy (Masaldan et al., 2018). PPARa agonist 

fenofibrate was senolytic through autophagy upregulation in IL-6-induced senescent chondrocytes 

(Nogueira-Recalde et al., 2019), but in TNFa-induced senescent synovial fibrolasts, it attenuated the 

senescent phenotype and inhibited SASP expression without exhibiting a differential toxicity towards 

senescent cells, a behavior corresponding to so-called senomorphic compounds (Del Rey et al., 2019). 
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Another senolytic strategy consists in depriving senescent cells from cytoprotective autophagy. In the 

first demonstration of selective elimination of senescent cells through pharmacological means, therapy-

induced senescent lymphoma cells were shown to upregulate autophagy to cope with ER stress resulting 

from SASP production. The blockade of autophagy flux with bafilomycin A1 led to senolysis (Dörr et 

al., 2013). Autophagy flux also increased in BRAF-V600E oncogene-induced senescent fibroblasts, and 

inhibiting autophagy with chloroquine, bafilomycin A1 or low concentrations of cardioglycosides 

inducing Na,K-ATPase signal transduction and notably AKT, resulted in the specific senolysis of 

BRAF-senescent cells (L’Hôte et al., 2021). The essentiality of autophagy in some OIS models may 

correlate with the downregulation of basal AKT signaling in these cells. Whereas many senescent cells 

have upregulated AKT signaling and are sensitive to autophagy-inducing senolytics, in some instances 

OIS cells rather downregulate AKT signaling and increase basal autophagy, as concomitant oncogene 

and AKT activation favors senescence bypass and transformation (S. Courtois-Cox et al., 2008; 

Stéphanie Courtois-Cox et al., 2006; Kennedy et al., 2011). 

Besides proteostasis and autophagy, other cellular homeostatic processes differentially regulated in 

senescence can be targeted for senolysis. Aforementioned cardioglycosides are broad-spectrum 

senolytics that target a myriad of senescent cell types. They proved efficient in vivo in models of 

oncogene-induced senescence, chemotherapy-induced senescence, natural aging, and irradiated mice 

(Guerrero et al., 2019). They bind the transmembrane Na,K-ATPase pump, which is involved in both 

membrane potential maintenance and signal transduction. While low doses of cardioglycosides induced 

the selective senolysis of BRAF-V600E-induced senescent fibroblasts through signal transduction and 

autophagy inhibition (L’Hôte 2021), their action in other senescence models was rather attributed to 

disturbance of membrane potential and the modification of intracellular pH (Guerrero et al., 2019; 

Triana-Martínez et al., 2019). Glutaminolysis inhibition was another senolytic strategy relying on 

differences in intracellular pH regulation between senescent and normal cells. Senescent cells were 

found to undergo intracellular acidosis because of lysosomal leakage and to rely on increased 

glutaminolysis-produced ammonia to neutralize their intracellular pH. Inhibiting glutaminase 1 

consequently led to the selective clearance of senescent cells (Johmura et al., 2021).  
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Redox and mitochondrial homeostasis are intimately linked in senescence. Mitochondrial mass 

increases in senescence, but this is accompanied by mitochondrial dysfunction and the production of 

ROS, generating chronic oxidative stress (Moiseeva et al., 2009; Wu et al., 2017). ER-mitochondria 

contact sites appear critical in senescence regulation (Ziegler et al., 2021), and mitochondrial 

dysfunction and ROS production were shown to be mediated in many senescence models by increased 

IP3R-mediated mitochondrial calcium uptake from the ER following ITPR downregulation (Farfariello 

et al., 2022). Oxidative stress induces senescence in many settings (Ngoi et al., 2021; Zhong et al., 2019), 

but the upregulation of ROS detoxifying systems is also critical for the decision to undergo senescence 

over apoptosis (Wu et al., 2017). Consequently, targeting these detoxifying systems in established 

senescent cells can yield senolysis. The alkalization of lysosomes by GL-V9 was shown to impair 

mitophagy and further increase dysfunctional mitochondrial mass in senescent cells, leading to ROS 

overproduction and apoptosis (Yang et al., 2021). Piperlongumine is another senolytic causing redox 

imbalance in senescent cells through the targeting of oxidative stress sensor OXR1 (Y. Wang et al., 

2016; X. Zhang et al., 2018). Procyanidin C1 was senomorphic at lower concentrations and senolytic at 

higher concentrations, and acted by further promoting ROS formation in senescent cells, leading to 

mitochondrial dysfunction (Q. Xu et al., 2021).  

Still, how these various homeostatic processes are affected depending on senescent cell type largely 

remains to be explored. Mapping their interconnections, for example through the identification of 

common regulators like MondoA affecting both autophagy/proteostasis and mitochondrial 

function/redox homeostasis (Yamamoto-Imoto et al., 2022), shall yield novel avenues for selective 

senolysis. 

Conclusions and perspectives 

Throughout this review, we proposed a conceptualization of senolysis based on mechanisms of action. 

This approach highlights the compelling diversity of senescent phenotypes in terms of apoptotic 

priming, cell death-suppressing strategies, and homeostatic regulation. The grouping of these seemingly 

heterogeneous cellular phenotypes under the one label of senescence calls into the question the relevance 
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of regarding all stress-induced quasi-irreversible proliferative arrests as senescence. The only universal, 

though not exclusive, feature of senescent cells is an irreversible or highly stable proliferative arrest; but 

even this is being challenged, as various stressors can induce so-called senescent-like states of reversible 

proliferative arrest that exhibit classical senescence hallmarks such as senescence-associated b-

galactosidase activity, SASP expression and even sensitivity to senolytics (Fleury et al., 2019; Malaquin 

et al., 2020). We argue that challenging the paradigm conceptualizing senescence as one – 

heterogeneous – biological process would be beneficial as it would stimulate context-based senolytic 

drug development, yielding highly potent candidates more selective towards a subset of senescent cells. 

This is especially relevant considering the increasing awareness of the fact that indiscriminate, systemic 

removal of senescent cells may be harmful, as some senescent cell subpopulations appear to be 

beneficial (Grosse et al., 2020; Lujambio, 2016; Martin et al., 2021). Inter-senescent cell selectivity of 

senolytic compounds, rather than being a limitation of senolytic therapy, thus actually constitutes an 

opportunity for precision clearance of specific subsets of senescent cells in defined pathological 

contexts.  

Innovative strategies like galacto-conjugation (Cai et al., 2020), or encapsulation in galactose-

functionalized silica beads (Muñoz‐Espín et al., 2018) can be used to bypass limitations caused by 

adverse side-effects of some drugs, such as BH3 mimetics. These strategies can also turn toxic 

compounds that do not discriminate between senescent and non-senescent cells into bona fide senolytics, 

through their release in senescent cells only. Nevertheless, bystanding non-senescent cells expressing 

high levels of b-galactosidase would also in principle be sensitive to their effects. 

Mechanistic insights are lacking for some promising senolytic candidates that could lead to the 

identification of senolytic targets and the development of even more potent compounds. Curcumin 

analog EF24 is a senolytic in several models and induces the proteasomal degradation of BH1-4 anti-

apoptotic factors via an unknown route (W. Li et al., 2019). It is however unclear whether curcumin, 

which itself is a controverted lead (Heger, 2017; Nelson et al., 2017), and the related compound o-

vanillin, are bona fide senolytics or rather function as senomorphics (Cherif et al., 2019, 2020). Similar 

uncertainties exist about fisetin (Yousefzadeh et al., 2018; Zhu et al., 2017). This highlights the need, 
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especially in vivo, for unequivocally characterizing senolysis over senomorphism, which can be 

undesirable if it allows the reentrance of pre-neoplastic cells into the cell cycle. In vivo characterization 

of senolysis is now facilitated by the detection of a senescence-specific oxylipin released upon lysis of 

senescent cells (Wiley et al., 2021). It also remains a prime consideration to investigate and understand 

in details the molecular mechanisms underlying senolysis by novel compounds, notably by identifying 

with certainty the cellular target through which the compound exerts its activity and the signaling 

pathways leading to cell death, which has sometimes been neglected. Systematically characterizing the 

mechanisms of action of senolytics would yield opportunities to either develop optimized compounds 

for the identified target, or to discover even more interesting targets for senolysis within the same 

pathway. 
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2.3. Current caveats and challenges in senolysis assessment, and distinction from senomorphism. 

Senolytics and senomorphics are grouped under the more general term of senotherapeutics. There is 

some confusion in the literature where senomorphic drugs or other compounds that for example delay 

senescence onset, such as rapamycin and glucocorticoids, are cited as senolytics (Cherif et al., 2019; 

Grezella et al., 2018). Senotherapeutic may be used as a blanket term for compounds that modulate 

senescence but for which exclusive senolytic or senomorphic activity is not evident (Nogueira-Recalde 

et al., 2019; Q. Xu et al., 2021; Yousefzadeh et al., 2018). Some newly described senotherapeutics such 

as olive polyphenols are labeled as senolytic in titles of papers, but are actually senomorphic with 

regards to the data presented (Varela-Eirín et al., 2020). 

Properly assessing senolysis is challenging both in cell models and in vivo, and the need for careful 

experimental design and data interpretation has been stressed by others (Niedernhofer & Robbins, 2018). 

Studies aiming at demonstrating the senolytic activity of candidate drugs in senescent cell models 

sometimes lacked non-senescent control cells which are required for proving that senescent cell 

elimination is selective, a sine qua non for labeling a drug senolytic. This was the case for panobinostat 

(Samaraweera et al., 2017). A decrease in senescence markers such as p16 or SASP mRNAs in a mixed 

population of senescent and non-senescent cells following drug treatment (Varela-Eirín et al., 2020; 

Yousefzadeh et al., 2018) does not suffice to demonstrate senolysis, as such a reduction in senescence 

markers may indifferently result from senolysis or senomorphism. Further complications arise from the 

fact that some compounds appear to have both senomorphic and senolytic activities, such as curcumin 

and o-vanillin (Cherif et al., 2019, 2020) and gingerone A (Moaddel et al., 2022), sometimes in a 

concentration-dependent fashion like for procyanidin C1 (Q. Xu et al., 2021), whereas some 

senotherapeutics like pipelongumine appear to be senolytic in some senescent models and senomorphic 

in others (Malaquin et al., 2020; Y. Wang et al., 2016; X. Zhang et al., 2018). To unequivocally 

characterize senolysis in cell models, it is therefore required to demonstrate the selective induction of 

cell death in senescent cells. Some experimental designs for senolysis assessment consist in treating the 

cells with the senescence-inducing compound and the senolytic candidate at the same time, or adding 

the senolytic candidate in the first hours following exposure to the senescence-inducing stressor, which 
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does not yield information on the senolytic potential of the compound. Senolytic means that the 

compound selectively elicits the death of established senescent cells. Rather, studies with concomitant 

or closely spaced in time senescence induction and candidate drug treatment actually address the 

identification of pathways modulating the cell fate decision to undergo senescence or apoptosis in 

response to stress. This was the case for quercetin-functionalized nanoparticles MNPQ (Lewinska et al., 

2020). These results do not preclude that MNPQ may be selectively toxic to established senescent cells, 

but as such, only demonstrate that MNPQ promote cell death over senescence in response to stress. This 

distinction is relevant since senescence is a highly dynamic state (Hernandez-Segura et al., 2017; 

Martínez-Zamudio et al., 2020), and that early and late senescent cells may be differently sensitive to 

senolysis (Nogueira-Recalde et al., 2019; Schafer et al., 2017). Drugs that synergize with senescence-

inducing chemotherapeutic compounds to induce apoptosis when used conjointly are however still of 

great interest, and like bona fide senolytics may be employed in one-two punch approaches as they 

would eliminate cancer cells and prevent newly senescent cancer cells from persisting.  

Senolytics have sparked tremendous research interest, with the number of new PubMed senolytic 

references nearly doubling each year since 2016. The apparent nearly invariable beneficial outcome of 

senolytic treatment in highly diverse pathological contexts, certainly contributes to the excitement but 

results in a fast-paced accumulation of data warranting caution. Pre-clinical studies reporting absence 

of improvements following senolytic treatment provide precious insight into the pathophysiological 

diversity of cell senescence (Kovacovicova et al., 2018), but are at present too few. The extent of actual 

reported outcomes of senolytic treatments in pre-clinical studies should be carefully assessed by the 

reader before citing these works as supporting an effect of senolytics on disease progression or 

prevention. For instance, an article titled ‘Dasatinib plus quercetin prevents uterine age-related 

dysfunction and fibrosis in mice’ (Cavalcante et al., 2020) actually reports an absence of anti-fibrotic 

effect of the senolytic cocktail. There was no difference in collagen deposition and uterine fibrosis 

between the control and the treated group. This is clearly stated in the text, and the authors even propose 

that ‘the specific D+Q protocol used may explain the absence of a uterine anti- fibrotic effect due to the 

short duration of the intervention’. They however report a downregulation of miR34a expression which 
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they hypothesize ‘could indicate a possible antifibrotic effect’, but is clearly insufficient grounds for the 

overextrapolation in the title. This study has been cited by others (including (Kulkarni et al., 2022; 

Partridge et al., 2020; Santin et al., 2020)) thus wrongfully supporting the claim that dasatinib and 

quercetin prevent uterine fibrosis in mice. 

Parenthetically, there is surprisingly some confusion in the literature with claims that BH3 mimetic 

navitoclax/ABT-263 and MDM2 inhibitor UBX0101 are the same compound (Malaise et al., 2017; 

Tachikart et al., 2018; von Kobbe, 2019). The misunderstanding might come from the fact that in the 

first article describing UBX0101 as a senolytic in mice (Jeon et al., 2017), the authors referred to their 

previous studies of navitoclax to address the identification of UBX0101 as a senolytic (J. Chang et al., 

2016; Y. Zhu et al., 2016), whereas there was no mention of UBX0101 in these papers. It should however 

be stressed that navitoclax and UBX0101 are two different compounds.  

Given the diversity of senescence-associated pro-survival pathways, and the heterogeneity of senescent 

phenotypes, probably no universal senolytic will be discovered. This however may not be a problem, as 

selective senolytics are more desirable in order to limit side effects, spare essential senescent cell niches, 

and attain high drug potency. Importantly, some persisting senescent cell populations such as vascular 

endothelial cells were found not to be replaced following elimination in aged mice, which was 

compensated by fibrosis thus worsening the condition (Grosse et al., 2020). In these specific cases, 

senolytic clearance is not desirable and senomorphic treatment might be more appropriate. Classically 

senolytics are characterized by comparing their toxicity in senescent cells and in their proliferative or 

quiescent counterparts, and I stressed above the importance of that comparison to label a drug 

‘senolytic’. For example, senolytics might possibly help preventing melanoma formation by eliminating 

BRAF-V600E-induced senescent melanocytes in nevi within patients at risk (L’Hôte et al., 2021). With 

the current paradigm of senolytic drug discovery, senolytics targeting senescent melanocytes would be 

sought so as not to target proliferative melanocytes. However, clearing all senescent melanocytes within 

a nevus while sparing potential BRAF-V600E-expressing non-senescent melanocytes would not be 

desirable as it may increase the risk of neoplastic transformation of these cells. In this context, a better 

drug candidate would clear all BRAF-V600E-expressing melanocytes, senescent or not, while sparing 
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other epidermal cell types in the vicinity of the nevus, namely, keratinocytes and dendritic Langerhans 

cells (Pils et al., 2021). Hence, a better approach to maximize chances of clinical translation might be 

context-driven senolytic drug discovery. Starting from a well-defined pathological condition in which 

accumulation of senescent cells is implicated, the toxicity of candidate drugs may be tested in culture in 

the relevant senescent cell type as well as in models of cell populations (possibly but not mandatorily 

including the proliferative counterparts of the targeted senescent cells) that may be exposed to the drug 

but should not be affected by it. Senolysis may then be validated ex vivo and in vivo with the detection 

of released oxylipin (Wiley et al., 2021). 
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Chapter 3. Mechanisms of senolysis by 

cardioglycosides. 

We previously characterized a human fibroblast model of BRAF-V600E senescence (Carvalho et al., 

2019) Selective senolytics in BRAF-V600E senescence, which could hold clinical interest in the context 

of melanoma prevention, had not been described before. In a screen of the Prestwick repositioning 

library, we identified cardioglycosides as novel senolytics in a model of CRAF-senescent WI-38 

fibroblasts. Cardioglycosides would later be described as broad-spectrum senolytics during our 

investigation (Guerrero et al., 2019; Triana-Martínez et al., 2019). Nevertheless, we found that 

cardioglycosides were remarkably potent senolytics in BRAF-V600E-senescent BJ fibroblasts. We thus 

sought to investigate their mechanisms of action in this senescence model, while characterizing new 

regulatory processes of BRAF-V600E-senescent cell survival. This study was published in 2021 as the 

following Article 2: Ouabain and chloroquine trigger senolysis of BRAF-V600E-induced senescent cells 

by targeting autophagy. 

3.1. Article 2: Ouabain and chloroquine trigger senolysis of BRAF-V600E-induced senescent cells 

by targeting autophagy. 
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3.2. Extended discussion on Article 2. 

In Article 2, as previously in (Carvalho et al., 2019), we demonstrated the validity of the approach 

consisting in screening for bioactive compounds modulating a phenotype of interest, and then 

deciphering their mechanisms of action in order to uncover regulatory processes. Hence, in (Carvalho 

et al., 2019), we first found that glucocorticoids delayed or bypassed the entry into BRAF-V600E 

senescence, and investigating this effect allowed us to identify EGR1 as a sensor of MAPK activity 

implicated in the kinetics of the senescence-associated proliferative arrest. In Article 2 (L’Hôte et al., 

2021), by asking what underlay the remarkable sensitivity of BRafSen cells to senolysis by 

cardioglycosides, we uncovered an essential role for increased autophagy flux in the survival of these 

cells. 

Our data strongly suggested that although cardioglycosides acted by binding their canonical target NKA, 

signal transduction rather than ion transport inhibition was responsible for senolysis. We showed that 

ouabain-induced activation of Src, p38, Akt, and Erk were implicated in senolysis. We demonstrated 

that p38 activation depended on Src, but the remaining interactions between these pathways and how 

they inhibit autophagy is yet to be determined. Cardioglycosides activate Src, which physically interacts 

with NKA (Cui & Xie, 2017). Following release from NKA, Src mediates the activation of the MAPK 

pathway, including Erk, which can transactivate the PI3K/Akt/mTOR axis (Dai et al., 2013). However, 

ouabain can also activate PI3K in a Src-independent manner (Jian Wu et al., 2013). There are reports of 

NKA-mediated p38 activation, but this has been less studied than the Src/MAPK and PI3K/Akt axes 

(Akimova et al., 2009; Garcia et al., 2015). Src, Akt, p38, and Erk, have all been implicated in context-

dependent regulation of autophagy. The thoroughly described Akt-mediated suppression of autophagy, 

notably via mTOR, can be triggered by Src (Pal et al., 2014; van Grol et al., 2010; G. S. Zhao et al., 

2018). Conversely, the activation of p38 can lead to autophagy inhibition through various mTOR-

independent mechanisms (Y. He et al., 2018; Henson et al., 2014; Jiang et al., 2014). Interestingly, 

sustained p38 signaling was also shown to promote autophagy and favor therapy-induced senescence 

over apoptosis in cancer cells (Slobodnyuk et al., 2019). Finally, how the MAPK pathway modulates 
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autophagy has been less investigated, but Erk typically mediates autophagy suppression (Bryant et al., 

2019; Corcelle et al., 2006). 

Although signaling inhibitors 1) restored autophagy flux and 2) prevented senolysis, we did not 

demonstrate per se a causal implication of autophagy inhibition in senolysis by ouabain independently 

of NKA signaling, although the aforementioned results together with the phenocopy of ouabain 

senolysis by chloroquine and bafilomycin A1 strongly suggest that ouabain ultimately exerts its 

senolytic effect via autophagy inhibition. To definitely demonstrate this point, we could increase 

autophagy flux in ouabain-treated BRafSen cells through genetic approaches, and show that this 

prevents senolysis. 

In the context of pre-malignant nevi, the relevance of autophagy in cell survival, as well as the senolytic 

potential of cardioglycosides and autophagy inhibitors, should be assessed in BRafSen melanocytes, as 

well as in ex-vivo nevi. 
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Chapter 4. Exploring the role of Ire1 in senescent cell 

survival. 

In Article 2 (L’Hôte et al., 2021), we showed that BRAF-V600E-induced senescent (BRafSen) cells had 

an increased autophagy flux compared to their proliferative counterparts, and that downregulating 

autophagy with cardioglycosides or blocking autophagosome degradation with chloroquine or 

bafilomycin A1 led to selective senolysis. We then sought to unravel what physiologically underlay 

BRafSen cells’ dependency to autophagy, and what were the consequences of autophagy blockade or 

downregulation that led to cell death. In BRAF-V600E-expressing melanoma, chronic endoplasmic 

reticulum (ER) stress due to increased secretory demands resulted in an increased autophagy flux on 

which the cells depended for their survival (Corazzari et al., 2015). We thus decided to characterize ER 

stress and the unfolded protein response (UPR) in various senescence settings.  

An important increase in secretory load can overwhelm the folding capacities of the ER, resulting in an 

accumulation of misfolded proteins in the ER lumen, known as ER stress (Almanza et al., 2019). Other 

insults to ER homeostasis, such as a depletion in ER calcium stores, may also cause ER stress (Mekahli 

et al., 2011). In order to return to homeostasis, a signaling response known as the UPR is elicited from 

the ER, that modulates the expression of genes associated with proteostasis, and can trigger apoptosis if 

it fails to resolve ER stress. In mammalian cells, the UPR consists of three parallel branches that mediate 

distinct signaling outcomes, issuing from sensors Ire1a (thereafter Ire1), Perk, and ATF6. Ire1 mainly 

promotes adaptation to ER stress, by upregulating genes involved in protein folding and secretion, and 

decreasing the ER load by upregulating autophagy and degrading ER-targeted transcripts. Perk rather 

promotes apoptosis, and may be activated after Ire1-mediated adaptation to stress has failed (T. K. 

Chang et al., 2018; Verfaillie et al., 2012), although it also serves an adaptive role by decreasing the 

rates of global translation through eIF2a activation. Finally, ATF6 is thought to coordinate the adaptive 

and cytotoxic facets of the UPR (Walter et al., 2018; Jun Wu et al., 2007; Yang et al., 2020). 
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In (L’Hôte et al., 2021), BRAF-V600E expression in BJ fibroblasts was induced with a high dose of 1 

µg/mL doxycycline which results in high protein levels of BRaf-V600E (Carvalho et al., 2019). Since 

protein overexpression may cause ER stress by itself, in all subsequent studies we switched to a lower 

dose of 100 ng/mL doxycycline that resulted in BRaf-V600E levels closer to those of endogenous wild-

type BRaf (Figure 4.1A). Importantly, we verified that senescent BJ cells induced with either 1 µg/mL 

or 100 ng/mL doxycycline had similar sensitivities to senolysis by ouabain or chloroquine (Figure 4.1B). 

To better mimic the transient exposure to chemotherapeutics in the clinic, we also adapted our protocol 

for inducing senescence with etoposide. Instead of treating the cells with 20 µM etoposide continuously 

for 1 week before withdrawing the drug, we treated the cells for 48 h with 50 µM etoposide followed 

by a 5-days withdrawal period before proceeding with experiments. 

4.1. Chemical library screening identifies Ire1 

pathway inhibitors and compounds affecting 

proteostasis maintenance as senolytic hits in 

BRafSen cells. 

In parallel to our investigation of ouabain as a 

senolytic, we decided to search for novel 

senolytics in BRafSen cells by screening two 

small molecules libraries: the Prestwick 

repositioning library (1,520 compounds) to which 

we added seven inhibitors involved in ER stress 

transactions, as well as the TargetMol ER stress 

compound library (155 compounds). Proliferative 

and BRafSen cells were exposed for 3 days to 20 

µM of compounds from both libraries and various 

concentrations of the additional inhibitors (see materials and methods), before fixing the plate and 

assessing survival as described previously (L’Hôte et al., 2021). Of the seven inhibitors added to the 

Prestwick library, KIRA8 and thapsigargin were identified as hits (Figure 4.2A). KIRA8 is an inhibitor 

Figure 4.1. Senescent cells induced with 100 ng/mL 
doxycycline are still sensitive to senolysis by ouabain 
and chloroquine. A. Expression of wild-type BRaf and 
BRaf-V600E after 48 h with doxycycline, as assessed by 
Western blotting. At 100 nM, the ratio of V600E to WT 
was 2.3. B. Toxicity assay of 400 nM ouabain and 50 µM 
chloroquine for 24 h in BRafSen cells induced with 
different doxycycline concentrations. 
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of UPR sensor Ire1, and thapsigargin is an inducer of ER stress through inhibition of the 

sarco/endoplasmic reticulum Ca2+ ATPase. Remarkably, KIRA8 killed 100% of BRafSen cells in 72 

h, and its SSMD was even lower than that of ouabain (see Materials and Methods) (Figure 4.2B). 

Interestingly, we identified multiple inhibitors of Jnk as senolytics from the ER stress library, as well as 

an inhibitor of Ask1. The Traf2/Ask1/Jnk axis is one of the pathways elicited by Ire1 (Zeng et al., 2015). 

We also identified compounds targeting different facets of proteostasis, such as an inhibitor of HSP90 

(other HSP90 inhibitors were previously identified as senolytics in (Fuhrmann-Stroissnigg et al., 2017)) 

and an inhibitor of the ubiquitin-proteasome system. From the Prestwick library, multiple 

cardioglycosides as well as two Ca2+ channel blockers were identified as senolytics. These newly 

identified candidate senolytics formed a coherent group of drugs targeting proteostasis and/or the 

endoplasmic reticulum at various levels. 
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4.2. Ire1 protein levels systematically increase in oncogene-induced senescence 

We then profiled ER stress and the UPR at various time points during senescence induction in BJ 

fibroblasts induced by BRAF-V600E or etoposide (EtoSen) (Figure 4.3), in IMR90 fibroblasts induced 

by HRAS-V12 (RasVSen) or etoposide (Figure 4.4), and in Hermes melanocytes induced by BRAF-

V600E (Figure 4.5). Tunicamycin was used as a positive control to induce ER stress and the UPR via 

inhibition of N-glycosylation. We characterized the UPR at the protein level (Figure 4.3A, Figure 4.4A, 

Figure 4.5A), and we measured the levels of various transcripts associated with ER stress or with the 

UPR (Figure 4.3B, Figure 4.4B, Figure 4.5B). Whereas we managed to explore the Ire1 and Perk 

branches of the UPR at the protein level, we were not able to detect ATF6 by Western blotting. 

Strikingly, Ire1a (encoded by ERN1) was systematically upregulated at both protein and mRNA levels 

in all instances of oncogene-induced senescence (OIS). Activated Ire1 catalyzes the splicing of XBP1u 

(unspliced) mRNA owing to its RNase activity, uncovering an alternative reading frame and yielding a 

novel XBP1s (spliced) mRNA which will be translated to a transcription factor that promotes adaptation 

and survival through the upregulation of autophagy and secretory capacities. Unhindered Ire1 RNase 

also mediates a process known as regulated Ire1-dependent decay of mRNA (RIDD), in which it 

degrades ER-targeted mRNAs. Ire1 upregulation was accompanied by an increased basal splicing of 

XBP1 mRNA in melanocytes but not in fibroblasts. In contrast, RIDD seemed activated in OIS 

fibroblasts as indicated by decreased BLOS1 mRNA levels, but not in melanocytes. BiP (encoded by 

GRP78) is an important ER-resident chaperone that plays a role in UPR triggering by binding and 

keeping UPR sensors inactive in the absence of ER stress, and binding misfolded proteins when they 

accumulate, thus detaching from UPR sensors allowing them to activate. Variations in the levels of BiP 

ß Figure 4.2. Senolytic screening of the Prestwick library, an ER stress library, and additional compounds. A. 
Prolif vs BRafSen surviving cell count for each compound. Cell counts were normalized to vehicle (DMSO, green dotted 
line). The red dotted line represents the initial number of Prolif cells (treated with etoposide, no proliferation). Senolytic 
hits are in yellow. Compounds in grey were either not toxic enough in BRafSen cells (SSMD>-1.608), or decreased Prolif 
cell number below etoposide. B. SSMD of all senolytic hits. A compound that was not toxic on Prolif cells was considered 
a senolytic hit if its associated SSMD for BRafSen cells was <-1.608. Lower SSMDs correspond to increased potency 
and/or statistical significiance. 
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(encoded by GRP78) and its partners ERdj4 (encoded by DNAJB9) and ERdj5 (encoded by DNAJC10) 

(Pobre et al., 2019) appeared both cell line- and senescence-inducing stress-dependent. The pro-

apoptotic DDIT3 (encoding CHOP)/CHAC1 axis was strongly upregulated in BRafSen Hermes cells. 

Therefore, multiple components of ER stress and the UPR during senescence induction were 

differentially modulated depending on the cell line and the senescence-inducing stressor. Nevertheless, 

upregulation of Ire1 on the other hand was a constant in OIS, even though downstream pathways, namely 

XBP1 splicing and RIDD, were differentially affected between cell lines. 

 

Figure 4.3. ER stress and UPR profiling during senescence of BJ fibroblasts. A. Protein levels of UPR 
components as assessed by Western blotting (left). Representative blots or three or four independent biological 
replicates. Revert: total proteins. Ire1 levels were normalized to total proteins and then to t0 for densitometric 
quantification (right). B. mRNA levels of ER stress and UPR factors as assessed by RT-qPCR. Three independent 
biological replicates per condition are shown. 
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4.3. Modulating Ire1 activity is a novel senolytic strategy.  

Ire1 activity is finely tuned by elements of both cis- and trans-regulation (Figure 4.6). Accumulation of 

misfolded proteins in the ER is sensed by Ire1’s luminal domain, whereas Ire1’s cytoplasmic domain is 

responsible for triggering downstream responses. Ire1’s cytoplasmic domain has both RNase and kinase 

activity (Figure 4.6A). Ire1 kinase catalyzes its trans-autophosphorylation, which promotes Ire1 

oligomerization and RNase activation (Figure 4.6B). Ire1 phosphorylation may also regulate the 

termination of its RNase activity (Rubio 2011). Besides its canonical RNase activity, Ire1 acts as a 

scaffold protein for the triggering of the Traf2/Ask1/Jnk axis (Nishitoh et al., 2002; Zeng et al., 2015). 

Figure 4.4. ER stress and UPR profiling during senescence of IMR90 fibroblasts. A. Protein levels of UPR 
components as assessed by Western blotting (left). Representative blots or three independent biological replicates. 
Revert: total proteins. Ire1 levels were normalized to total proteins and then to t0 for densitometric quantification 
(right). B. mRNA levels of ER stress and UPR factors as assessed by RT-qPCR. Three independent biological 
replicates per condition are shown. 
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Ire1 is also essential in the assembling of mitochondria-endoplasmic reticulum contact sites (MERCS) 

where it regulates calcium homeostasis (Carreras-Sureda et al., 2019). Interestingly, MERCS are 

essential in autophagosome biogenesis (Hamasaki et al., 2013). In the last ten years, many Ire1 small 

compound modulators were developed, that differentially affect Ire1 kinase and RNase. 3-ethoxy-5,6-

dibromosalicylaldehyde (thereafter salicylaldehyde) and MKC8866 are both hydroxy-aryl-aldehyde 

(HAA) derivatives that non-competitively inhibit the RNase. MKC derivatives were shown to covalently 

bind the RNase active site (Sanches et al., 2014), whereas the precise binding site of salicylaldehyde 

could not be determined (Langlais et al., 2021; Volkmann et al., 2011). KIRA8 is a type II ATP-

Figure 4.5. ER stress and UPR profiling during senescence of Hermes melanocytes. A. 
Protein levels of UPR components as assessed by Western blotting (left). Representative 
blots or three independent biological replicates. Revert: total proteins. Ire1 levels were 
normalized to total proteins and then to t0 for densitometric quantification (right). B. mRNA 
levels of ER stress and UPR factors as assessed by RT-qPCR. Three independent biological 
replicates per condition are shown are shown. 



108 
 

competitive kinase inhibitor that allosterically inhibits RNase activity by stabilizing an inactive 

conformation of the kinase pocket (Feldman et al., 2016; Morita et al., 2017). Finally, APY29 is a type 

I ATP-competitive kinase inhibitor which conversely to KIRA8 stabilizes the kinase pocket in an active 

conformation, thus allosterically activating the RNase despite preventing phosphorylation (Korennykh 

et al., 2009; L. Wang et al., 2012). Given the systematic upregulation of Ire1 across different OIS models 

(Figure 4.3, Figure 4.4, Figure 4.5) and the identification of KIRA8 as a senolytic hit in our screen 

(Figure 4.2), we decided to profile the toxicity of APY29, KIRA8, MKC8866, and salicylaldehyde in 

proliferative and senescent BJ cells (Figure 4.7). KIRA8 and salicylaldehyde were both senolytics in the 

short term (24 and 48 h). After 120 h of incubation, 10 µM KIRA8 eventually indiscriminately killed 

all cells, while 5 µM did not affect any population. In the screen in which KIRA8 was identified as a 

hit, the cells were exposed to the drugs for 72 h only, which is therefore not incompatible with an absence 

of selectivity at 120 h. Whereas 100 µM salicylaldehyde was selectively toxic towards BRafSen cells at 

24 and 48 h, it was toxic for all populations at 120 h, but a lower dose of 25 µM was still senolytic for 

BRafSen cells at 120 h. APY29 was selectively toxic in BRafSen cells too, but the effect only manifested 

in the long-term after 120 h. Interestingly, MKC8866 was not toxic for either senescent cell population, 

and only slowed the proliferation of non-senescent cells. Thus, some but not all Ire1 modulators are 

senolytic in BRafSen cells. 

 

Figure 4.6. Regulation of Ire1 activity. A. Ire1 cytoplasmic domain (PDB: 4z7g). The kinase is in blue with the 
kinase pocket in pink. The RNase is in green. B. Mechanisms of Ire1 activation. Phosphorylations are in red. Trans-
autophosphorylation promotes dimerization and oligomerization, which activates the RNase. Activated Ire1 also 
serves as a scaffold protein for the activation of the TRAF2/ASK1/JNK axis. Phosphorylation may also be required 
for the termination of Ire1 activity. Ire1 phosphorylation and oligomerization may regulate its subcellular 
localization, such as at MERCS. 
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Figure 4.7. Dose-response toxicity assay of Ire1 modulators in BJ cells. Survival of Prolif (pink), BRafSen 
(blue), and EtoSen (green) BJ cells in the presence of APY29 (A), KIRA8 (B), MKC8866 (C), and salicylaldehyde 
(D), for 24, 48, or 120 h. Surviving cell number at the end-point was normalized to the initial cell number at the 
time of drug addition. n=3 independent biological replicates. 
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4.4. The siRNA-mediated knockdown of Ire1 is not senolytic 

and does not affect senolysis by Ire1 modulators. 

Since the inhibition of Ire1 RNase with KIRA8 or salicylaldehyde 

was senolytic, we asked whether decreasing expression levels of 

Ire1 would be toxic to BRafSen cells or potentiate the effect of 

inhibitors. We transfected proliferative and BRafSen BJ cells with 

an siRNA targeting ERN1 (siERN1) or a no-target control siRNA. 

48 h later, the knockdown was evident both at the protein (Figure 

4.8A) and the mRNA levels (Figure 4.8B). BRafSen cells were then 

treated with Ire1 modulators for 96 h (Figure 4.8C). The knockdown 

of Ire1 in itself was not toxic to BRafSen cells. Surprisingly, the 

knockdown had no measurable effect on the senolysis by inhibitors. 

This could be indicative of off-target effects, but the fact that 

multiple Ire1 modulators are senolytic in BRafSen cells, and that 

we identified the Ask1/Jnk pathway downstream of Ire1 as a strong 

candidate target for senolysis in our screen, made it unlikely that all 

senolytic Ire1 modulators acted through off-target effects. One 

plausible alternative target of modulators was paralog Ire1b 

(encoded by ERN2), but its expression is restricted to the 

gastrointestinal tract and the bronchial epithelium (Bertolotti et al., 

2001; Martino et al., 2013), and accordingly we were not able to 

detect ERN2 expression by RT-qPCR or Ire1b by Western blotting in our cells. Although we cannot, at 

this point, exclude that the aforementioned results are independent of Ire1, our working hypothesis is 

that a small subset of Ire1a that is not depleted by the siRNA is relevant for senolysis. It may correspond 

to the band seen in BRafSen + siERN1 extracts (Figure 4.8A). Ire1 molecules from this subset may have 

a higher half-life, for example due to their integration in protein complexes such as Traf2/Ask1 platforms 

or MERCS. 

Figure 4.8. Effect of ERN1 siRNA 
on senolysis by Ire1 modulators. 
Proliferative and BRafSen BJ cells 
were transfected with the siERN1, 
and depletion at the protein (A) and 
RNA (B) levels were checked 48 h 
later. C. Toxicity assay of 1 µM 

APY29, 10 µM KIRA8, 25 µM 

MKC8866, and 100 µM 
salicylaldehyde, for 96 h, 48 h after 
siRNA transfection. 
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4.5. Senolysis by Ire1 modulation does not 

depend on the RNase. 

Since the mode of action of Ire1 inhibitors 

varies, we verified the effects of each 

compound on XBP1 splicing and RIDD in 

BRafSen cells. We pre-treated the cells for 2 

h with Ire1 modulators at senolytic 

concentrations (25 µM for MKC8866 which 

was not senolytic for any dose explored) 

before adding 10 µg/mL tunicamycin for 5 h 

to induce ER stress and the UPR, still in the 

presence of compounds. As expected, 

tunicamycin treatment resulted in important 

XBP1 splicing (Figure 4.9A). Surprisingly, 

RNase activator APY29 did not induce 

XBP1 splicing, and even attenuated the effect of tunicamycin on Ire1 activation. This may be explained 

by the fact that while it allosterically activates the RNase, APY29 inhibits Ire1 phosphorylation, which 

is required for full activation of the protein. All other compounds completely prevented the effect of 

tunicamycin on XBP1 splicing, showing that they all effectively inhibit the RNase. Using recently 

designed primers (Yoon et al., 2019), we performed a finer analysis of XBP1 splicing by qPCR as well 

as an assessment of RIDD by measuring BLOS1 mRNA levels (Figure 4.9B). This analysis allowed us 

to quantify the fold change in the levels of total XPB1 (XBP1t), XBP1u, and XBP1s. Tunicamycin 

greatly increased XBP1s levels, completely depleted XBP1u levels, while not affecting global XBP1t 

levels. It mildly activated RIDD. To our surprise, APY29 completely abolished the levels of all XBP1 

species while not affecting RIDD, which to our knowledge has not been described before. Once again, 

KIRA8, MKC8866, and salicylaldehyde, all suppressed XBP1 splicing in the absence or presence of 

Figure 4.9. Characterization of the effects of Ire1 modulators 
on the RNase in BRafSen cells. The cells were treated with 500 
nM APY29, 10 µM KIRA8, 25 µM MKC8866 or 100 µM 

salicylaldehyde. Tunicamycin was used at 10 µg/mL. A. XBP1 
splicing as assessed by RT-PCR. XBP1u: unspliced; XBP1s: 
spliced. Representative gel of three independent biological 
replicates. B. Relative mRNA levels of XBP1u, XBP1s, XBP1t 
(XBP1u+s), and BLOS1 by RT-qPCR. n=2 independent 
biological replicates. 
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tunicamycin. Salicylaldehyde induced a modest activation of RIDD. Taken together with our senolytic 
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tunicamycin. Salicylaldehyde induced a modest activation of RIDD. Taken together with our senolytic 

profiling, these results show that senolysis by Ire1 modulators is not mediated by the XBP1 pathway or 

RIDD. This is consistent with a previously hypothesized non-canonical role of Ire1 targeted for 

senolysis. 

4.6. Exploratory investigation of the role of autophagy in senolysis by Ire1 modulation. 

The difference in senolytic potential between Ire1 modulators could be explained by differential effects 

on Ire1 phosphorylation, oligomerization dynamics, and subcellular localization, thus modulating 

processes such as autophagy. Given the long incubation time required for senolysis by APY29, and its 

strikingly different effects on XBP1 compared to other Ire1 modulators, we supposed that it mediated 

senolysis through a different mechanism than others, and decided to focus on KIRA8, MKC8866, and 

salicylaldehyde to understand the mechanisms of short-term senolysis by Ire1 modulation. Among Ire1 

modulators, only KIRA8 led to the formation of LC3 foci in BRafSen cells, indicating an accumulation 

of autophagosomes, that could be due either to increased autophagy flux or blockade of autophagosome 

degradation (Figure 4.10A). Accordingly, LC3-II levels greatly increased in KIRA8-treated cells as 

assessed by Western blotting (Figure 4.10B, lower left green barplot). Because of significant cell death 

as soon as 5 h post-treatment, less proteins were collected from salicylaldehyde-treated cells. We also 

blocked autophagosome degradation with chloroquine during the last 2 h of each treatment to assess the 

relative rate of autophagosome formation (Figure 4.10B, lower right orange barplot). Autophagosome 

formation was not increased with KIRA8. Additive toxic effects of chloroquine and salicylaldehyde on 

BRafSen cells unfortunately increased variability. We decided to explore more in details the dynamics 

of autophagy modulation by KIRA8 and salicylaldehyde in the first hours of treatment (Figure 4.10C). 

KIRA8 never increased autophagosome biogenesis, but quickly induced an accumulation of 

ß Figure 4.10. Exploratory assessment of the effect of Ire1 modulators on autophagy: KIRA8 and salicylaldehyde 
affect autophagy flux. A. LC3 immunofluorescence in BRafSen treated with Ire1 modulators. Positive controls: 
chloroquine (CQ) 50 µM, MG132 10 µM. Quantification: LC3 foci count per cell (n>1,500 cells per condition). B. 
Autophagy flux of BRafSen cells treated with KIRA8, salicylaldehyde or MKC8866, assessed by LC3 Western blotting in 
the presence or absence of CQ 50 µM in the last 2 h of incubation. Representative blot of two independent biological 
replicates. LC3-II densitometric quantification: intensity was normalized to total proteins then to t0 (with or without 
chloroquine). C. Autophagy flux of BRafSen cells treated with KIRA8 or salicylaldehyde assessed by Western blotting in 
the presence or absence of CQ 50 µM in the last 1 h of incubation. LC3-II densitometric quantification: intensity was 
normalized to total proteins then to t0 (with or without chloroquine). 
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autophagosomes in the cell, showing that it blocked autophagosome degradation. Salicylaldehyde also 

blocked autophagosome formation early on, but later decreased autophagosome biogenesis, resulting in 

steady-state levels of autophagosomes returning near normal, however with a diminished autophagy 
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flux. Therefore, both KIRA8 and salicylaldehyde, which are senolytic, decreased or blocked autophagy 

flux, whereas MKC8866, which is not senolytic, did not. 

4.7. Exploratory investigation of the role of proteostasis in senolysis by Ire1 modulation. 

Finally, we assessed the consequences of treatment with Ire1 modulators on proteostasis by visualizing 

protein aggregates with fluorescent indicator Proteostat. BRafSen BJ cells seemed to have higher basal 

levels of protein aggregates than Prolif and EtoSen cells, and both BRafSen and EtoSen cells more 

readily accumulated aggregates upon proteasome blockade, which might reflect higher protein synthesis 

rates or challenged proteostasis in senescent cells (Figure 4.11A). KIRA8 treatment resulted in a massive 

accumulation of protein aggregates in BRafSen cells, while salicylaldehyde did not result in protein 

aggregates formation (Figure 4.11B). Complete blockade of autophagy flux in KIRA8-treated cells 

might result in the accumulation of aggregates in autophagosomes. Salicylaldehyde-treated cells 

eventually resolved autophagosome degradation, potentially explaining the absence of protein 

aggregates at 5 h. We reasoned that decreasing expression of the senescence-associated secretory 

phenotype (SASP), which may impose a burden on the ER folding capacities and the secretory pathway, 

might prevent senolysis by KIRA8 or salicylaldehyde. We depleted the expression of RELA and 

CEBPB, which are master regulators of SASP, using siRNAs, before treating the cells with Ire1 

modulators (Figure 4.11C). The double knockdown of RELA and CEBPB improved survival of 

BRafSen cells upon both KIRA8 and salicylaldehyde treatment. This suggests that SASP synthesis 

might underlie the sensitivity to senolysis by Ire1 modulation. 

4.8. Discussion. 

In Article 2 (L’Hôte et al., 2021), we uncovered an essential role for autophagy in the survival of 

BRafSen cells. A low-grade basal XBP1 splicing in BRafSen cells suggested a role for chronic ER stress 

in the requirement for a higher autophagy flux. Simultaneously, we identified KIRA8, an inhibitor of 

ß Figure 4.11. Exploratory assessment of the effect of Ire1 modulators on proteostasis. A. Visualization of protein 
aggregates in Prolif, BRafSen, and EtoSen BJ cells using the Proteostat fluorescent probe. Positive control: MG132 10 
µM. B. Visualization of protein aggregates in BRafSen cells treated with Ire1 modulators. C. BRafSen cell survival after 

24 h treatment with 500 nM APY29, 10 µM KIRA8, or 100 µM salicylaldehyde, 48 h post-transfection with 5 nM siRNA 
targeting RELA or CEBPB. 
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Ire1, and thapsigargin, an inducer of ER stress, as senolytic hits from the screen of a small collection of 

compounds affecting ER stress responses. Together, these preliminary results prompted us to investigate 

the status of ER stress and the UPR in BRAF-V600E senescence.  

First, we profiled the UPR at various time points during senescence induction in various models. The 

most striking result was the upregulation of Ire1 in BRAF-V600E senescence in BJ fibroblasts and in 

HRAS-V12 senescence in IMR90 fibroblasts. Ire1 seemed to be upregulated too in BRAF-V600E 

senescence in Hermes melanocytes, but this was not statistically significant. Ire1 levels also increased 

modestly in late etoposide-induced senescence in BJ fibroblasts. Although Ire1 protein levels remained 

high in OIS during the time span investigated, the dynamics of this upregulation differed between 

senescence models at both the RNA and the protein levels. BRafSen BJ cells strongly upregulated Ire1 

until 7 days post-oncogene activation, and protein levels decreased at 14 days, although they were still 

significantly higher than in proliferation. Changes in mRNA levels seemed to precede changes in protein 

levels. Meanwhile, Ire1 increased continuously during HRAS-V12 induction in IMR90 cells, but the 

magnitude of the fold change was never as high as in BRafSen BJ cells. This suggests that Ire1 might 

play distinct roles in the onset of senescence, and in the physiology of established senescent cells. These 

roles may be uncoupled for investigation by modulating Ire1 activity before inducing senescence, and 

once senescence is established. The balance between XBP1 splicing and RIDD was previously shown 

to dictate the entry into RAS senescence in keratinocytes (Blazanin et al., 2017). Moreover, Ire1 was 

reported to cooperate with ATF6 to shape several facets of the replicative senescent phenotype including 

the SASP, via upregulation of the COX2/PGE2/EP3 intracrine pathway (Cormenier et al., 2018). 

In both BRafSen BJ and RasVSen IMR90, the increase in Ire1 was surprisingly accompanied by a 

decrease in XBP1 splicing and a mild activation of RIDD. This is in contradiction with our previously 

reported basal splicing of XBP1 in BRafSen cells versus proliferating cells. This discrepancy could be 

due to differences in experimental conditions: for the UPR profiling experiment, the cells were seeded 

and remained plated until proteins and RNA were extracted at a given time point. However, for the 

assessment of XBP1 splicing in Article 2, proliferative and established BRafSen cells were trypsinized 

and seeded at similar densities, and proteins and RNA were collected the day after, possibly generating 
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stress associated with trypsinization and re-plating. A similar experimental design was used for 

evaluating the effects of Ire1 inhibitors on XBP1 splicing, where established BRafSen BJ cells were 

trypsinized and seeded at a given density, and were treated the following day with inhibitors. In Figure 

4.9A, a modest basal XBP1 splicing that was suppressed by inhibitors was seen in vehicle-treated cells 

in the absence of tunicamycin, similar to what was observed in Article 2. Thus, it appears from Figure 

4.9 that BRafSen cells may not exhibit a basal XBP1 splicing, but that they more readily trigger an UPR 

in response to stress such as trypsinization and re-plating, probably because of the upregulation of Ire1, 

explaining the small amounts of XBP1s detected in Article 2 and in Figure 4.9A.  

Overall, the one unequivocal common trend from this series of experiments was an important 

upregulation of Ire1 in OIS. We thus decided to assess the senolytic potential of various Ire1 modulators 

that differentially affect the RNase and/or kinase activity in BJ cells (Figure 4.6A and Figure 4.7). We 

confirmed the senolytic activity of KIRA8 that killed most BRafSen cells and about half of EtoSen cells 

in 48 h. A longer treatment of 120 h however resulted in the indiscriminate death of senescent and 

proliferating cells. 3-ethoxy-5,6-dibromosalicylaldehyde (salicylaldehyde) exhibited a similar profile, 

although at the concentration of 25 µM, it was selectively senolytic for BRafSen cells in the long term 

without being toxic to proliferative cells. However, MKC8866 was not senolytic for any condition 

tested. Finally, APY29 was selectively senolytic in BRaf senescence at 120 h. These results were 

puzzling, notably because salicylaldehyde and MKC8866 both inhibit the RNase without affecting the 

kinase, but only salicylaldehyde was senolytic. However, although they are derived from the same 

scaffold, it is not certain that they bind to the same site (Langlais et al., 2021), and may therefore hold 

different effects with regards to Ire1 oligomerization dynamics.  

Another surprising result was the absence of senolytic effect or potentiation of Ire1 modulators by the 

siRNA-mediated depletion of the protein. As detailed above, it seems unlikely that senolysis by the 

different Ire1 modulators would be imputed only to off-target effects. We hypothesize that a small subset 

of Ire1 molecules persist following siRNA transfection, and that only this subset is relevant for senolysis. 

The persistence of this essential Ire1 subset could be due to increased protein half-life, for example due 

to incorporation in protein complexes. An essential step to test this hypothesis will be to generate an 
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ERN1 knock-out (KO) cell line. The induction of BRAF-V600E in the ERN1-KO cell line will allow to 

study the implication of Ire1 in senescence establishment, as well as to test its essentiality. An alternative 

possibility would be to knock-down ERN1 with siRNAs before and during senescence induction, aiming 

at blocking the emergence of the long half-life Ire1 fraction. It would also be helpful to visualize Ire1’s 

subcellular localization in fluorescence microscopy. Unfortunately, we have not been able to do so as 

our anti-Ire1 antibody was non-specific in immunofluorescence, so we might have to circumvent this 

issue by generating a tagged-Ire1 cell line or alternatively assess Ire1, in MERCS for instance, by 

subcellular fractionation and Western blotting (Mori et al., 2013). 

We still decided to verify the effect of inhibitors on Ire1 RNase activity in BRafSen cells. As expected, 

KIRA8, MKC8866, and salicylaldehyde, potently inhibited XBP1 splicing. Salicylaldehyde modestly 

activated RIDD. Therefore, these results demonstrated that inhibition of the RNase did not underlie 

senolysis by Ire1 modulation. We reported an unexpected striking effect of APY29, which dramatically 

degraded all XBP1 RNA species. To our knowledge, this has not been described before, but XBP1 levels 

may not have been relatively quantified by RT-qPCR in previous studies following APY29 treatment, 

like we did here. Since APY29 stabilizes the kinase in its active conformation, it allosterically activates 

the RNase, which in BRafSen cells may then promote XBP1 degradation in a RIDD fashion instead of 

mediating the specific splicing of XBP1u to XBP1s. Of note, APY29 did not induce the degradation of 

RIDD target BLOS1, and its effect thus seems specific of XBP1. APY29 however prevents 

phosphorylation, which precludes full activation of Ire1 and may alter its oligomerization. We should 

assess the effect of APY29 in proliferating and EtoSen cells, to determine whether this XBP1-degrading 

effect is dependent on a specific regulation of Ire1 in BRaf senescence. It is possible that APY29 induces 

the senolysis of BRafSen cells because of the long-term suppression of XBP1 signaling, although we 

need to assess the levels of XBP1 species at later time points. Beyond senolysis, the strong effect of 

APY29 on XBP1 degradation in BRafSen cells provides an original starting point to better characterize 

the intracellular regulation of Ire1 activity. 

Of note, from this point onwards the rest of the study was exploratory. I chose to include these data in 

the thesis because they provide stimulating grounds for discussion and draw promising perspectives, but 
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please note that some of these experiments were performed only once and should therefore be repeated 

before reaching firm conclusions. Ire1 may regulate autophagy through various routes. RIDD-mediated 

degradation of BLOS1 mRNA promotes the microautophagy of protein aggregates (Bae et al., 2019). 

However, we showed that neither XBP1 nor RIDD was relevant for senolysis. Our main hypothesis was 

that Ire1 modulators triggered senolysis depending on their effect on Ire1 oligomerization and 

subcellular localization, and that therefore only a small subset of Ire1, for example at the MERCS 

(Carreras-Sureda et al., 2019), would be relevant for senolysis. MERCS are important structures for 

autophagosome formation (Hamasaki et al., 2013). Ire1 architectural roles also extend to its integration 

in signaling platforms for the activation of Traf2/Ask1/Jnk (Nishitoh et al., 2002; Zeng et al., 2015), and 

we identified several inhibitors targeting Ask1 and Jnk in our screen. Ire1 was recently shown to increase 

autophagy through the Traf2/Ask1/Jnk pathway (Liu et al., 2020). We thus decided to explore the effects 

of Ire1 modulators on autophagy. Both short-term senolytics KIRA8 and salicylaldehyde decreased or 

blocked autophagy, and MKC8866 which is not senolytic did not. The blockade of autophagy by KIRA8 

was accompanied by a strong accumulation of intracellular protein aggregates. Still, the effect of Ire1 

modulators on autophagy might be correlated to senolysis but not causative, and Ca2+ transfer at 

MERCS (Carreras-Sureda et al., 2019; Wiel et al., 2014; Ziegler et al., 2021) or inhibition of Jnk pro-

survival signaling (Q. Wu et al., 2019) might be relevant for senolysis, especially given that KIRA8 and 

salicylaldehyde seem to affect autophagy in different ways. Therefore, the main hypotheses that we will 

explore, are that senolysis by Ire1 modulation is mediated by: 

Ø The perturbation of Ire1 integration in signaling platforms for the activation of the 

Traf2/Ask1/Jnk pathway. We will investigate this by modulating Ask1 and Jnk, and assessing 

the interactions of Ire1 with Traf2/Ask1 by co-immunoprecipitation and proximity ligation 

assay. 

Ø The perturbation of Ire1 integration in MERCS. This would result in alteration of autophagy 

and/or calcium homeostasis. We identified several calcium channel blockers as senolytic hits in 

our screen. 
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Furthermore, we should assess the senolytic potential of Ire1 modulators in senescent models of IMR90 

fibroblasts and Hermes melanocytes. The Jnk pathway should be explored, especially because NF-kB 

and CEBPB were showed to be modulated by Ire1 too. Of note, ERdj4, whose expression was modulated 

during senescence induction (Figure 4.2, Figure 4.3, Figure 4.4) negatively regulates Ire1 activation by 

favoring its monomerization (Amin-Wetzel et al., 2017), and could therefore be implicated in the 

sensitivity of senescent cells to senolysis by Ire1 modulation. 

4.9. Materials and methods. 

Materials and reagents 

We used the following drugs: KIRA8 (HY-114368, MCE), MKC8866 (S8875, Selleckchem), APY29 

(SML2381, Sigma-Aldrich), 3-ethoxy-5,6-dibromosalicylaldehyde (SML0149, Sigma-Aldrich), 

chloroquine diphosphate (C6628, Sigma-Aldrich), ouabain (O3125, Sigma-Aldrich), etoposide (E1383, 

Sigma-Aldrich), doxycycline (D3447, Sigma-Aldrich), 4-hydroxytamoxifen (H6278, Sigma-Aldrich), 

tunicamycin (T7765, Sigma-Aldrich). 

Cell culture and senescence induction 

BJ1-hTERT fibroblasts were purchased from Clontech, and the BJ1-hTERT/pTRIPz-3HA-

BRAFV600E (BJ) was generated as described previously (Carvalho et al., 2019). BJ cells were cultured 

in MEM (Gibco 51200, Thermo Fisher Scientific) with 9% FBS (Eurobio), 2 mM Glutamax (A12860, 

Gibco), 1X MEM non-essential amino acids (M7145, Sigma-Aldrich), 1mM sodium pyruvate (S8636), 

at 37°C and 5% CO2 in ambient oxygen. IMR90/ER-HRASV12 fibroblasts were a kind gift from 

Masashi Narita (Cambridge Research Institute, CRUK, Cambridge, UK), and the immortalized IMR90-

hTERT/ER-HRASV12 (IMR90) cell line was generated as described in (Jeanblanc et al., 2012). IMR90 

cells were cultured in high glucose DMEM (Gibco D6429, Thermo Fisher Scientific) with FBS 9%, at 

37°C, 5% CO2, and 5% O2. Hermes1-hTERT melanocytes were a kind gift from Dot Bennett (St 

George’s University of London, London, UK). Hermes1-hTERT cells were transduced with pTRIPz-

3HA-BRAFV600E. However, since Hermes1 had been immortalized with a pBabe-puro-hTERT vector, 

we could not further select for puromycin resistance. Clones were thus picked by seeding the cells 
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previously transfected with pTRIPz-3HA-BRAFV600E at low density and locally trypsinizing colonies. 

Hermes were cultured in RPMI (Gibco 61870036, Thermo Fisher Scientific) supplemented with 9% 

FBS, 1X penicillin-streptomycin (P0781, Sigma-Aldrich), 200 pM cholera toxin (C8052, Sigma-

Aldrich), 200 nM TPA (P1585, Sigma-Aldrich), 176 pM b-FGF (SRP3043, Sigma-Aldrich), and 

penicillin-streptomycin 1X (P0781, Sigma-Aldrich), at 37°C and 5% CO2 in ambient oxygen. All cells 

were regularly passaged before reaching confluence and checked for mycoplasma contamination. 

BRAF-V600E senescence was induced in BJ fibroblasts and Hermes melanocytes with 100 ng/mL 

doxycycline renewed every 2 to 3 days for 1 week before proceeding with subsequent experiments. 

Doxycycline was kept in the media for the whole duration of experiments. HRAS-V12 senescence was 

induced in IMR90 fibroblasts with 100 µM 4-hydroxytamoxifen renewed every 2 to 3 days for 1 week 

before proceeding with subsequent experiments. 4-hydroxytamoxifen was kept in the media for the 

whole duration of experiments. DNA damage-induced senescence was triggered in BJ and IMR90 

fibroblasts with 50 µM etoposide for 48 h. The drug was removed and the cells were allowed to recover 

for 5 more days before proceeding with subsequent experiments. Thus, etoposide was not kept in the 

media during experiments with established senescent cells. 

Screening of small compound libraries 

We induced BRAF-V600E expression for 1 week in BJ cells prior to screening. For the Prestwick 

repositioning library screening, we had induced senescence 1 µg/mL doxycycline. For the TargetMol 

ER stress compound library (L9700) screening, we induced senescence with 100 ng/mL doxycycline. 

We renewed doxycycline every 2 to 3 days. We trypsinized proliferative and senescent BJ cells and 

seeded them in multi-well plates. Doxycycline was kept in the media of senescent cells during the screen. 

The day after seeding, we treated the cells with compounds from the library in triplicate wells. The final 

concentration of compounds from both libraries was 20 µM. We added the following compounds to the 

Prestwick library at the indicated final concentrations: 10 µM KIRA8, 10 µM MKC8866, 20 µM STF-

083010, 1 µM thapsigargin, 8 µM HA15, 10 µM PDD005, 10 µM roscovitine. We also treated the cells 

with 200 nM ouabain (positive senolytic control) and 20 µM etoposide (negative proliferation control). 
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For both screens, the final concentration of DMSO in all wells was 0.2%. The cells were incubated with 

the compounds for 3 days, then we fixed surviving cells and stained their nuclei in 1% formaldehyde, 

0.1% Triton X-100, 10 µg/mL Hoechst-33342 for 30 min at room temperature. We then replaced the 

fixation solution with PBS, and the number of surviving cells per well was automatically counted with 

a CellInsight CX-5 high-content microscope.  

The number of cells in each well was expressed as a percentage of the mean number of cells treated with 

DMSO (vehicle). For each compound, including controls, in each cell population, we calculated the 

mean and the standard deviation (SD) of surviving cell counts. We first eliminated all compounds from 

hit selection that resulted in a final count of proliferative cells below their initial number (etoposide 

control) minus 1 SD and below the final number of proliferative cells treated with ouabain minus 1 SD 

(ouabain is cytostatic and may result in a slightly quicker proliferative arrest than etoposide). Hit 

selection was then performed in senescent cells from the remaining compounds. Selection was based on 

the strictly standardized mean difference (SSMD) assuming unequal variances, comparing the effect of 

compounds from the library to the DMSO negative control. The base rate of false negatives was set to 

2.5%, corresponding to a SSMD threshold of -1.608, a standard for screening of chemical or siRNA 

libraries (X. D. Zhang, 2007, 2008; X. D. Zhang et al., 2010). Thus, a compound was considered a hit 

if its SSMD was < -1.608. The SSMD for a given compound was calculated as the difference between 

the mean cell count for the compound and the mean cell count for DMSO, divided by the square root of 

the sum of the squares of cell count SDs of the compound and the DMSO control: 

!!"# =	 &'()!"#$"%&' −	&'()()*+
+!#!"#$"%&', +	!#!"#$"%&',

 

Dose-response toxicity assays 

We performed dose-response toxicity assays in proliferative and senescent cells as described previously 

(L’Hôte et al., 2021). We seeded the cells were in 96-well plates the day before treatment. Proliferative 

cells were seeded at a density 4,000 cells/well, and senescent cells were seeded at a density of 10,000 

cells. The day after, we treated the cells with inhibitors, vehicle (often DMSO) and 20 µM etoposide in 
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triplicate wells. Etoposide induced an instant proliferative arrest of non-senescent cells but no apoptosis, 

and had no effect on senescent cells. Thus, counting cells treated with etoposide at the end of the 

experiment allowed us to retrieve the initial number of cells at the time of drug addition. At the end of 

the incubation, we fixed the cells and stained their nuclei in 1% formaldehyde, 0.1% Triton X-100, 10 

µg/mL Hoechst-33342 for 30 min at room temperature. We then replaced the fixation solution with 

PBS, and the number of surviving cells per well was automatically counted with a CellInsight CX-5 

high-content microscope. Final cell numbers were expressed as a percentage of the initial cell number. 

Protein extraction and Western blotting 

To analyze UPR proteins as well as BRaf expression, we trypsinized the cells and washed them in PBS, 

before extracting proteins in RIPA buffer containing protease and phosphatase inhibitors (B14001 and 

B15001A/B, Bimake) for 30 min on ice. We cleared protein lysates by centrifugation at 17,000 g for 15 

min at 4°C, and we added Sample Buffer. Final 1X Sample Buffer composition was: 250 mM Tris 

(T1503, Merck), 70 mM sodium dodecylsulfate (SDS) (1066934, Gibco), 0.4 mM 

ethylenediaminetetraacetic acid (EDTA) (8418, Merck), 1 M glycerol (24388.320, VWR Chemicals), 

0.015% Serva Electrophoresis Serva Blue G (3505002, Thermo Fisher Scientific), 2.5% 2-

mercaptoethanol (805740, Merck). We heated the samples at 37°C for 5 min, aliquoted them and stored 

them at -80°C until loading onto Bis-Tris (B7535, Sigma) acrylamide (A7802, Sigma) gels for 

electrophoresis.  

For autophagy studies, we flash-froze the cells in an ethanol-dry ice bath and put the plates at -80°C at 

least overnight. Then, we extracted proteins by directly scraping cells on ice in Sample Buffer 1X. We 

heated the samples at 70°C for 5 min, aliquoted them and stored them at -80°C until loading onto Bis-

Tris acrylamide gels for electrophoresis.  

We then transferred proteins onto nitrocellulose membranes (10600001, GE Healthcare Life Sciences). 

We blocked membranes in Intercept TBS Blocking Buffer (Li-Cor) diluted 1:1 in TBS for 1 h at room 

temperature and incubated membranes overnight with the following primary antibodies diluted in 

blocking buffer at the indicated concentrations: mouse anti-Ire1a (SCBT sc-390960, 1/500), rabbit anti-
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Perk (CST 3192S, 1/500), rabbit anti-BiP (CST 3177S, 1/1,000), rabbit anti-ATF4 (CST 11815S, 

1/500), rabbit anti-XBP1S (CST 12782S, 1/500), rabbit anti-LC3B (CST 2775S, 1/500), mouse anti-

BRaf (SCBT sc-5284, 1/1,000). The day after, we washed the membranes in TBS containing 0.1% 

Tween-20, and we performed NIR-secondary antibody (IRDye goat anti-mouse / anti-rabbit IgG (H+L) 

680RD / 800CW, Thermo Fisher Scientific) incubation in TBS containing 0.1% Tween-20, for 1 h at 

room temperature. We washed the membranes again and imaged them with an Li-Cor Odyssey CLx 

scanner. We then stained total proteins with Revert Staining (Li-Cor) according to the manufacturer’s 

instructions. For protein quantification by densitometry, the band intensity (after local background 

substraction) within a lane was normalized to total proteins (Revert), and then normalized to control or 

t0. 

siRNA transfection 

We performed reverse transfection, ie, the cells were seeded and transfected with the siRNA at the same 

time. We incubated the siRNAs (Ambion Life Technologies) with Lipofectamine RNAiMAX Reagent 

(Invitrogen, Thermo Fisher Scientific) in Opti-MEM (31985070, Gibco) for 25 min at room temperature 

before adding the transfection mix to cell suspensions. The final concentrations of reagents with cells 

were: 5 nM siRNA (for multiple depletions, 5 nM of each siRNA), 0.1% RNAimax, and 25% OptiMEM. 

siRNAs were used against: ERN1 (s200430), RELA (s11914), CEBPB (s2891). The cells were 

incubated with siRNAs for 48 h before assessing knockdown by Western blotting or RT-qPCR, or 

performing further treatments. 

RNA extraction, reverse transcription, qPCR, and XBP1 PCR 

We trypsinized the cells and washed them in PBS, before extracting RNA with the NucleoSpin RNA 

Plus kit (Macherey-Nagel) according to the manufacturer’s protocol. We eluted RNA in ddH2O and 

quantified RNA with a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific). We performed 

reverse transcription (RT) on 500 ng RNA per sample with 10.2 ng/µL random hexamer primers 

(Invitrogen, Thermo Fisher Scientific), 250 µM dNTP, and 4 U/µL Maxima Reverse Transcriptase 
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(Thermo Fisher Scientific) in M-MLV Reverse Transcriptase buffer (Thermo Fisher Scientific) for 10 

min at 25°C, 30 min at 50°C, 5 min at 85°C.  

For qPCR, cDNA were diluted 1/5 in ddH2O and then 8/25 in qPCR reaction mix. qPCR performed 

with a Luminaris Color HiGreen qPCR Master Mix (Thermo Fisher Scientific) with 300 nM primers, 

monitored on an IQ5 apparatus (Bio-Rad). Thermal cycling was: 2 min at 50°C, 10 min at 95°C; 45 

cycles of 15 s at 95°C and 1 min at 60°C. GAPDH was used for normalization. We calculated fold 

change relative to control with the ddCt method. All conditions were run in technical triplicates, and we 

checked that the Ct dispersion within a triplicate was not >0.5. qPCR primers were synthesized by 

Sigma-Aldrich. qPCR primer sequences were: GRP78 forward: 5’-CACAGTGGTGCCTACCAAGA-

3’; GRP78 reverse: 5’-TGTCTTTTGTCAGGGGTCTTT-3’; GAPDH forward: 5’-

ATGGGGAAGGTGAAGGTCG-3’; GAPDH reverse: 5’-GGGGTCATTGATGGCAACAATA-3’; 

DNAJB9 forward: 5’-AAGGCCTTTCACAAGTTGGC-3’; DNAJB9 reverse: 5’-

ACGCTTCTTGGATCCAGTGTT-3’; ERN1 forward: 5’-GCATAGTCAAAGTAGGTGGCA-3’; 

ERN1 reverse: 5’-GATAGTCTCTGCCCATCAACC-3’; EDEM1 forward: 5’-

TTCCCTCCTGGTGGAATTTG-3’; EDEM1 reverse: 5’-AGGCCACTCTGCTTTCCAAC-3’; 

CHAC1 forward: 5’-GAACCCTGGTTACCTGGGC-3’; CHAC1 reverse: 5’-

CGCAGCAAGTATTCAAGGTTGT-3’; BLOS1 forward: 5’-CCCAATTTGCCAAGCAGACA-3’; 

BLOS1 reverse: 5’-CATCCCCAATTTCCTTGAGTGC-3’; DDIT3 forward: 5’-

AGAACCAGGAAACGGAAACAGA-3’; DDIT3 reverse: 5’-TCTCCTTCATGCGCTGCTTT-3’; 

DNAJC10 forward: 5’-TCATGTTACCACGCTTGGACC-3’; DNAJC10 reverse: 5’-

GTAAAGCTCGACATGGTGGACAC-3’; XBP1s forward (Figures 4.3/4/5): 5’-

TGCTGAGTCCGCAGCAGGTG-3’; XBP1s reverse (Figures 4.3/4/5): 5’-

GCTGGCAGGCTCTGGGGAAG-3’; XBP1t forward: 5’-TGAAAAACAGAGTAGCAGCTCAGA-

3’; XBP1t reverse: 5’-CCCAAGCGCTGTCTTAACTC-3’; XBP1u forward: 5’-

CAGACTACGTGCACCTCTGC-3’; XBP1u&s reverse (Figure 4.9): 5’-

CTGGGTCCAAGTTGTCCAGAAT-3’; XBP1s forward (Figure 4.9): 5’-

GCTGAGTCCGCAGCAGGT-3’. 
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For XBP1 PCR, we diluted cDNA directly from the RT 1/5 in PCR reaction buffer. We performed PCR 

with 300 nM of each XBP1 primer, 125 µM dNTP (Thermo Fisher Scientific), 1.2 mM MgCl2 (Thermo 

Fisher Scientific), and 50 mU/µL Taq polymerase (Thermo Fisher Scientific) in MgCl2 Buffer (Thermo 

Fisher Scientific). Thermal cycling was: 4 min at 94°C; 35 cycles of 30 s at 94°C, 30 s at 60°C, and 50 

s at 72°C; then 7 min at 72°C. PCR primers were synthesized by Sigma-Aldrich. PCR primer sequences 

were: XBP1 forward: 5’-GGAACAGCAAGTGGTAGA-3’; XBP1 reverse: 5’- 

CTGGAGGGGTGACAAC-3’. We loaded PCR products on a 3.5% agarose gel with 0.00005% 

ethidium bromide (Gen-Apex) for electrophoresis. We imaged the gel with a Fusion Solo S apparatus 

(Vilber). 

Fluorescence microscopy and immunofluorescence 

For fluorescence microscopy, we seeded the cells in 96-well plates and performed various treatments. 

We fixed the cells in 1% formaldehyde (F1635, Sigma-Aldrich) for 15 min at room temperature. We 

washed the cells twice with PBS, and performed permeabilization in 0.2% Triton-X100 for 10 min at 

room temperature. If looking at protein aggregates, we added 3 mM EDTA in the permeabilization 

solution to limit non-specific staining of lipids by the Proteostat. We washed the cells three times with 

PBS. 

For LC3 immunofluorescence, we incubated the primary antibody, rabbit anti-LC3B (CST 3868S, 

1/1,000), diluted in 5% BSA (A7906, Sigma-Aldrich) 0.1% Tween-20 (P1379, Sigma-Aldrich) PBS, 

overnight at 4°C. We washed the cells three times in 0.1% Tween-20 PBS, and incubated the secondary 

antibody goat anti-rabbit Alexa 488 (A48282, Invitrogen) diluted 1/500 in 5% BSA 0.1% Tween-20 

PBS for 1 h at room temperature. We washed the cells three times with 0.1% Tween-20 PBS, and stained 

nuclei with 500 ng/mL DAPI (D9542, Sigma-Aldrich) for 10 min at room temperature. Images were 

acquired on the CellInsight CX5 microscope, and the number of LC3 spots per cell were automatically 

counted. At least 1,500 cells per condition were considered for analysis. 
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For staining of protein aggregates, we used the Proteostat Aggresome detection kit (51035, Enzo), 

following the manufacturer’s intructions. We stained the nuclei with DAPI as described above. Images 

were acquired on the CellInsight CX5 microscope. 

Statistical analyses 

All error bars in the figures represent the standard deviation. 

In Figures 4.3/4/5A, to assess the statistical significance of Ire1a protein level variations, we performed 

a bilateral unpaired Student’s t-test assuming equal variances. Each condition was tested against t0. A 

difference was considered significant if the p-value was <0.05. * p<0.05; ** p<0.01; *** p<0.001. 
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Chapter 5. Contributions and perspectives 

To conclude this dissertation, I outline here the main contributions of my thesis work in context. 

Ø In Manuscript 1, I proposed a novel mechanism-based conceptualization of senolysis, arguing 

that senolytics can target senescent cells at three distinct levels: directly disrupting BH3 

networks, modulating upstream pro-survival pathways, or further dysregulating homeostatic 

processes. By reviewing the senolytic literature from this angle, I highlighted important 

differences in pro-survival strategies of senescent cells, and I argued that inter-senescent cell 

selectivity would be a desirable feature of senolytic candidates in development, as well as an 

incentive to design highly efficient precision senolytic drugs. 

Ø In Article 2, I investigated a striking instance of such inter-senescent cell selectivity of senolytic 

drugs. I showed that BRAF-V600E-senescent cells were exceptionally sensitive to senolysis by 

cardioglycosides, and that this was due to an inhibition of autophagy flux by these compounds. 

At the time of publication, mechanism-focused senolysis articles were few. Importantly, this 

approach allowed me to uncover autophagy upregulation as a survival mechanism of BRAF-

V600E-senescent cells, which guided subsequent investigations. 

Ø In Chapter 4, I interrogated the status of ER stress and the UPR in various senescence models. 

My results showed a marked upregulation of Ire1 in OIS. Modulating Ire1 activity seems a 

promising novel senolytic strategy, although we need to deepen our understanding of 

mechanisms at play. The potential role of Ire1 in senescent cell survival is exciting, because it 

is a highly druggable target that is already being exploited in the development of novel cancer 

therapies. 

From my results, autophagy and the UPR appeared of interest in senolysis. In our screen in Chapter 4, 

we also identified proteasome and HSP90 inhibitors as potential senolytics. It thus seems that the multi-

level targeting of proteostasis may provide many new avenues for senolysis that have been under-

explored so far. We briefly discuss this perspective in the following and final Article 3 (L’Hôte et al., 

2022). 
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5.1. Article 3: Targeting proteostasis maintenance and autophagy in senescence. 
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Résumé substantiel en français 

La sénescence cellulaire, ou simplement la sénescence, est un processus faisant appel aux notions de 

réponse au stress cellulaire, de destin cellulaire et d'identité cellulaire. En réponse à une variété de stress, 

dont les dommages à l'ADN, l'expression d'oncogènes, la perte de la protéostasie ou le déséquilibre 

redox, la cellule est confrontée à la décision d'entreprendre un chemin vers un destin cellulaire donné. 

Selon l'ampleur du stress, l'homéostasie et le contexte cellulaire, la cellule peut résoudre le stress et 

reprendre la prolifération, engager l'apoptose ou entrer en sénescence. La sénescence implique un arrêt 

de la prolifération très stable et quasi-irréversible, accompagné de changements importants dans les 

programmes de transcription et la physiologie cellulaire, entraînant une altération de l'identité cellulaire.  

La plupart des cellules sénescentes sécrètent un ensemble complexe de facteurs pro- et anti-

inflammatoires, de métalloprotéases matricielles et de modulateurs de la tumorigenèse, appelé 

phénotype sécrétoire associé à la sénescence (SASP). La sénescence est un mécanisme essentiel de 

suppression des tumeurs car elle empêche la prolifération de cellules stressées potentiellement porteuses 

d'un potentiel pré-malin. Cependant, l'accumulation anormale de cellules sénescentes est préjudiciable 

car le SASP provoque une inflammation chronique et une détérioration des tissus, et peut favoriser la 

croissance des tumeurs adjacentes. L'accumulation de cellules sénescentes est un moteur du processus 

de vieillissement ainsi que de multiples pathologies. Il y a donc un fort intérêt clinique à déterminer les 

voies qui conduisent à l'établissement des phénotypes sénescents, et comment ces phénotypes diffèrent 

de ceux des cellules non sénescentes en termes de métabolisme, d'homéostasie et de régulation de la 

survie cellulaire, afin de cibler sélectivement les cellules sénescentes dans le contexte de leur 

accumulation, avec des composés dits sénolytiques.  

Je commence dans l’introduction bibliographique par présenter la sénescence comme une réponse au 

stress, un destin cellulaire et un changement d'identité cellulaire. Je me concentre notamment sur la 

sénescence induite par l'oncogène BRAF-V600E, le principal modèle utilisé tout au long de la thèse 

pour l'identification de composés sénolytiques et la caractérisation de leurs mécanismes d'action. 
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Alors que le catalogue des composés sénolytiques s'élargit, de nouvelles stratégies de survie des cellules 

sénescentes sont découvertes, et des variations de sensibilité à la sénolyse entre différents types de 

cellules sénescentes apparaissent. Je propose dans un manuscrit de revue de la littérature une 

classification mécanistique des composés sénolytiques, basée sur le niveau auquel ils ciblent les cellules 

sénescentes : la perturbation directe des réseaux de protéines BH3, qui sont réorganisés lors de 

l'induction de la sénescence ; la régulation négative des voies associées à la survie, essentielles aux 

cellules sénescentes ; ou la modulation des processus homéostatiques dont la régulation est remise en 

cause lors de la sénescence. Grâce à cette approche, je souligne l'importante diversité des cellules 

sénescentes en termes de physiologie et de voies de suppression de l'apoptose, et je décris des pistes 

possibles pour le développement de sénolytiques plus sélectifs. 

Nous avons précédemment caractérisé un modèle de fibroblastes humains en sénescence BRAF-V600E. 

Des sénolytiques sélectifs en sénescence BRAF-V600E, qui pourraient présenter un intérêt clinique dans 

le cadre de la prévention du mélanome, n’ont pas été décrits auparavant. Mon projet de thèse visait à 

identifier de nouvelles voies de régulation de la survie des cellules sénescentes induites par BRAF-

V600E (BRafSen), et par le même temps à identifier de nouveaux composés sénolytiques efficaces et 

sélectifs. Lors d'un crible de la chimiothèque de repositionnement de Prestwick, nous avons identifié les 

cardioglycosides comme de nouveaux sénolytiques dans un modèle de fibroblastes WI-38 en sénescence 

induite par CRAF. Les cardioglycosides seraient plus tard décrits comme des sénolytiques à large 

spectre au cours de notre investigation. Néanmoins, nous avons constaté que les cardioglycosides étaient 

des sénolytiques remarquablement puissants dans les fibroblastes BJ sénescents BRAF-V600E. Nous 

avons donc cherché à étudier leurs mécanismes d'action dans ce modèle de sénescence, tout en 

caractérisant de nouveaux processus de régulation de la survie cellulaire en sénescence BRAF-V600E. 

Cette étude a été publiée sous forme d’une publication scientifique en 2021. Dans cet article, nos 

données suggèrent le modèle suivant pour la sénolyse des cellules BRafSen par la ouabaïne, un 

cardioglycoside : l'expression de BRAF-V600E induit un stress du réticulum endoplasmique (ER) dans 

les cellules BRafSen, en réponse auquel le flux autophagique est augmenté et nécessaire à la survie ; la 

ouabaïne se lie à la pompe Na,K-ATPase, inhibant à la fois le transport ionique et déclenchant la 
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transduction du signal, cette dernière étant principalement pertinente pour la sénolyse ; l'activation de 

Src et Akt médiée par la NKA conduit à une diminution du flux autophagique. En raison du stress ER 

induit par BRAF-V600E, un flux autophagique plus important est nécessaire pour la survie des cellules 

BRafSen. Par conséquent, la ouabaïne induit préférentiellement l'apoptose dans les cellules sénescentes 

qui expriment BRAF-V600E, potentiellement par l'intermédiaire de p38. Le blocage du flux 

autophagique à une étape différente, comme la fusion autophagosome-lysosome à l'aide de la 

chloroquine, entraîne également la sénolyse. 

Nous avons ensuite cherché à comprendre ce qui sous-tend physiologiquement la dépendance des 

cellules BRafSen à l'autophagie, et quelles sont les conséquences du blocage ou de la régulation négative 

de l'autophagie qui conduisent à la mort cellulaire. Dans les mélanomes exprimant BRAF-V600E, le 

stress chronique du réticulum endoplasmique dû à une demande accrue de sécrétion entraîne une 

augmentation du flux autophagique dont les cellules dépendaient pour leur survie. Nous avons donc 

décidé de caractériser le stress ER et la réponse aux protéines mal repliées (UPR) dans différents 

contextes de sénescence. Tout d'abord, nous avons établi le profil UPR à différents moments de 

l'induction de la sénescence dans divers modèles. Le résultat le plus frappant fut la régulation à la hausse 

d'Ire1 en sénescence induite par les oncogènes. Bien que les niveaux protéiques d’Ire1 soient restés 

élevés pendant la période étudiée, la dynamique de cette régulation ascendante différait selon les 

modèles de sénescence, tant au niveau de l'ARN que des protéines. Nous avons ensuite décidé d'évaluer 

le potentiel sénolytique de divers modulateurs d'Ire1 qui affectent de manière différentielle l'activité 

RNase et/ou kinase dans les cellules BJ. Les principales hypothèses que nous devrons explorer dans le 

futur, sont que la sénolyse par la modulation d’Ire1 est médiée par : 

Ø La perturbation de l'intégration d'Ire1 dans les plateformes de signalisation pour l'activation de 

la voie Traf2/Ask1/Jnk. 

Ø La perturbation de l'intégration d'Ire1 dans MERCS. Résultant en une altération de l'autophagie 

et/ou de l'homéostasie calcique.  

Pour conclure, suivent les principales contributions de mon travail de thèse. 
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J'ai proposé une nouvelle conceptualisation mécanistique de la sénolyse, en argumentant que les 

sénolytiques peuvent cibler les cellules sénescentes à trois niveaux distincts : en perturbant directement 

les réseaux de BH3, en modulant les voies pro-survie en amont, ou en perturbant davantage les processus 

homéostatiques. En examinant la littérature des sénolytiques sous cet angle, j'ai mis en évidence des 

différences importantes dans les stratégies pro-survivantes des cellules sénescentes, et j'ai fait valoir que 

la sélectivité inter-sénescence serait une caractéristique souhaitable des candidats sénolytiques en 

développement, ainsi qu'une incitation à concevoir des médicaments sénolytiques de précision très 

efficaces. 

J’ai étudié un exemple frappant de cette sélectivité inter-sénescence des composés sénolytiques. J'ai 

montré que les cellules BRafSen étaient exceptionnellement sensibles à la sénolyse par les 

cardioglycosides, et que cela était dû à une inhibition du flux autophagique par ces composés. Au 

moment de la publication, les articles sur la sénolyse axés sur les mécanismes d’action étaient peu 

nombreux. Il est important de noter que cette approche m'a permis de découvrir la régulation positive 

de l'autophagie comme mécanisme de survie des cellules sénescentes BRAF-V600E, ce qui a orienté les 

recherches ultérieures. 

J'ai ensuite étudié le statut du stress ER et de l'UPR dans différents modèles de sénescence. Mes résultats 

ont montré une forte régulation à la hausse d’Ire1 dans les OIS. La modulation de l'activité d'Ire1 semble 

être une nouvelle stratégie sénolytique prometteuse, même si nous devons approfondir notre 

compréhension des mécanismes en jeu. Le rôle potentiel d'Ire1 dans la survie des cellules sénescentes 

est excitant, car il s'agit d'une cible hautement médicamenteuse qui est déjà exploitée dans le 

développement de nouvelles thérapies contre le cancer. 

D'après mes résultats, l'autophagie et l'UPR apparaissent d’intérêt dans la sénolyse. Dans notre crible, 

nous avons également identifié des inhibiteurs du protéasome et des HSP90 comme des sénolytiques 

potentiels. Il semble donc que le ciblage multi-niveaux de la protéostase puisse fournir de nombreuses 

nouvelles voies pour la sénolyse qui ont été sous-explorées jusqu'à présent. 
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Titre : Découverte de composes sénolytiques et caractérisation de leurs mécanismes d'action en sénescence induite 
par l'oncogène BRAF-V600E 

Mots clés : Sénescence cellulaire, Criblage de chimiothèques, Mécanismes d’action, Sénolytiques, Cardioglycosides, 
Ire1 

Résumé : En réponse à l'expression d'oncogène (tel que 
BRAF-V600E), à des traitements génotoxiques ou à 
d'autres stress, les cellules eucaryotes peuvent éviter 
l'apoptose et déclencher la sénescence. La sénescence 
est un destin cellulaire caractérisé par un arrêt prolifératif 
quasi-irréversible et une reprogrammation 
transcriptionnelle profonde, conduisant notamment à 
une sécrétion importante de facteurs inflammatoires 
collectivement appelés phénotype sécrétoire associé à la 
sénescence (SASP). En raison de l'augmentation de la 
demande sécrétoire et de stress chroniques, la 
protéostase peut être perturbée en sénescence. Comme 
elle limite la prolifération de cellules susceptibles de 
présenter un potentiel pré-néoplastique, la sénescence 
est un processus essentiel de suppression tumorale ; 
cependant, l'accumulation de cellules sénescentes au 
cours du vieillissement, dans des contextes 
pathologiques, ou après chimiothérapie ou 
radiothérapie, est préjudiciable et entraîne un 
dysfonctionnement tissulaire. Les sénolytiques sont des 
composés qui induisent sélectivement l'apoptose dans 
les cellules sénescentes tout en épargnant les cellules 
normales, et leur application thérapeutique s'est avérée 
une stratégie pharmacologique efficace dans différents 
contextes pathologiques où la sénescence joue un rôle 
moteur. Le but de ce projet était d'identifier de nouveaux 
composés sénolytiques, notamment dans la sénescence 
induite par BRAF-V600E, et de caractériser leurs 
mécanismes d'action, ajoutant ainsi à la compréhension 
de la régulation des voies de survie cellulaire en 
sénescence. Les cardioglycosides constituent une classe 
de composés qui ont été identifiés comme de puissants 
sénolytiques dans le criblage d'une chimiothèque de 
repositionnement. Nous avons montré que les cellules 

sénescentes BRAF-V600E étaient remarquablement 
sensibles à la sénolyse induite par les cardioglycosides. 
Nous avons démontré que les cellules sénescentes 
BRAF-V600E ont un flux autophagique accru, essentiel 
à leur survie, et que les cardioglycosides agissent 
comme sénolytiques en inhibant l'autophagie via la 
transduction du signal par la Na,K-ATPase. En 
conséquence, le blocage de l'autophagie par d'autres 
voies, comme avec la chloroquine, était également 
sénolytique. Pour mieux comprendre la régulation de 
l'autophagie et de la protéostase en sénescence et 
identifier de nouvelles cibles sénolytiques, nous avons 
ensuite évalué le stress du réticulum endoplasmique et 
la réponse aux protéines mal repliées (UPR) dans 
différents modèles de sénescence. En parallèle, nous 
avons criblé diverses chimiothèques, dans lesquelles 
nous avons identifié des sénolytiques potentiels ciblant 
différentes facettes de la protéostase. Notamment, 
nous avons découvert que le senseur de l’UPR Ire1 était 
régulé à la hausse en sénescence induite par 
l’expression d’oncogènes. Ire1 régule le destin 
cellulaire par plusieurs voies, et de nombreux 
composés qui modulent de manière différentielle son 
activité sont disponibles. Nous avons donc utilisé un 
panel de modulateurs d'Ire1 pour commencer à 
caractériser son rôle en sénescence, et établir de 
nouvelles stratégies sénolytiques. En résumé, nos 
résultats soulignent le potentiel sénolytique du ciblage 
de l'autophagie et de la protéostase dans la sénescence 
induite par l’expression d’oncogènes, et l'importance 
de caractériser en détails les mécanismes d'action des 
sénolytiques pour identifier de nouvelles cibles et voies 
de régulation. 
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Title : Senolytic drug discovery and mechanisms of action in BRAF-V600E oncogene-induced senescence 

Keywords : Cell senescence, Chemical library screening, Mechanisms of action, Senolytics, Cardioglycosides, Ire1 

Abstract: In response to oncogene expression (such as 
BRAF-V600E), genotoxic insults, or other stresses, 
eukaryotic cells can suppress apoptosis and enter 
senescence. Senescence is a cell fate characterized by a 
quasi-irreversible proliferative arrest and deep 
transcriptional reprogramming, notably leading to an 
important secretion of inflammatory factors collectively 
termed the senescence-associated secretory phenotype 
(SASP). Due to increased secretory demands and chronic 
stress, proteostasis may be challenged in senescence. As 
it limits the proliferation of cells possibly bearing pre-
neoplastic potential, senescence is an essential tumor 
suppressing process; however, the accumulation of 
senescent cells during aging, in pathological contexts, or 
following chemotherapy or radiotherapy, is detrimental 
and leads to tissue dysfunction. Senolytics are drugs that 
selectively induce apoptosis in senescent cells while 
sparing normal cells, and their therapeutical application 
has proved a valuable pharmacological strategy in 
pathological contexts in which senescence plays a driving 
role. The aim of this project was to identify novel 
senolytic compounds, notably in BRAF-V600E-induced 
senescence, and to characterize their mechanisms of 
action, thereby adding to the understanding of cell 
survival pathways regulation in senescence. 
Cardioglycosides constitute a class of drugs that were 
identified as potent senolytics in the screen of a 
repurposing library. We showed that BRAF-V600E  

senescent cells were remarkably sensitive to senolysis 
induced by cardioglycosides. We demonstrated that 
BRAF-V600E senescent cells have a heightened 
autophagy flux that is essential to their survival, and 
that cardioglycosides acted as senolytics by inhibiting 
autophagy through Na,K-ATPase signal transduction. 
Accordingly, blocking autophagy through other routes 
such as with chloroquine was also senolytic. To gain 
insight into the regulation of autophagy and 
proteostasis in senescence and identify new senolytic 
targets, we then assessed endoplasmic reticulum stress 
and the unfolded protein response (UPR) in different 
senescence models. In parallel, we screened various 
chemical libraries, in which we identified potential 
senolytics targeting different facets of proteostasis. 
Interestingly, we found that UPR sensor Ire1 was 
upregulated in oncogene-induced senescence. Ire1 
regulates cell fate through several pathways, and many 
small compounds that differentially modulate its 
activity are available. We thus employed a panel of Ire1 
modulators to begin characterizing its role in 
senescence, and establish novel senolytic strategies. 
Collectively, our results highlight the senolytic potential 
of targeting autophagy and proteostasis in oncogene-
induced senescence, and the importance of 
deciphering the mechanisms of action of senolytics to 
identify new targets and regulatory pathways. 

 

 


