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Contributions à AutoML: optimisation des hyper-paramètres et méta-apprentissage
Mots clés: AutoML, séléction des modèles, optimisation d’hyper-paramètre, meta-apprentissage

Résumé: Cette thèse présente trois principales
contributions afin d’améliorer l’état de l’art de
ces approches AutoML. Elles sont divisées en-
tre deux thèmes de recherche: l’optimisation et
meta-apprentissage. La première contribution con-
cerne un algorithme d’optimisation hybride, ap-
pelé Mosaic, qui exploite les méthodes MCTS et
optimisation bayésienne pour résoudre respective-
ment la sélection des algorithmes et la configu-
ration des hyperparamètres. L’évaluation, con-
duite à travers le benchmark OpenML 100, mon-
tre que la performance empirique de Mosaic sur-
passe ceux des systèmes d’AutoML de l’état de
l’art (Auto-Sklearn et TPOT). La deuxième con-
tribution introduit une architecture de réseau neu-
ronal, appelée Dida, qui permet d’apprendre des
descripteurs de données invariants à la permu-
tation de colonnes et d’exemples. Deux tâches
(classification des patchs et prédiction des per-

formances) sont considérées lors de l’évaluation
de la méthode. Les résultats de Dida sont en-
courageants comparés à ceux de ses concurrents
(Dataset2 vvec et DSS). Enfin, la troisième con-
tribution, intitulée Metabu, vise à surmonter les
limites de Dida à opérer sur de vrais jeux de don-
nées d’AutoML. La stratégie de Metabu comporte
deux étapes. Tout d’abord, une topologie idéale
de ces jeux de données, basée sur les meilleurs
hyperparamètres, est définie. Puis, une transfor-
mation linéaire d es descripteurs manuels est ap-
prise pour les aligner, selon un critère de transport
optimal, avec la représentation idéale. Les com-
paraisons empiriques montrent que les descripteurs
Metabu sont plus performants que les descripteurs
manuels sur trois problèmes différents (évaluation
du voisinage des jeux de données, recommanda-
tion d’hyperparamètres, et initialisation d’un algo-
rithme d’optimisation).

Title: Some contributions to AutoML: Hyper-parameter Optimization and Meta-learning
Keywords: AutoML, model selection, hyper-parameter tuning, meta-learning

Abstract: This thesis proposes three main con-
tributions to advance the state-of-the-art of Au-
toML approaches. They are divided into two
research directions: optimization (first contribu-
tion) and meta-learning (second and third con-
tributions). The first contribution is a hybrid
optimization algorithm, dubbed Mosaic, leverag-
ing Monte-Carlo Tree Search and Bayesian Op-
timization to address the selection of algorithms
and the tuning of hyper-parameters, respectively.
The empirical assessment of the proposed ap-
proach shows its merits compar ed to Auto-sklearn
and TPOT AutoML systems on OpenML 100.
The second contribution introduces a novel neu-
ral network architecture, termed Dida, to learn
a good representation of datasets (i.e., meta-
features) from scratch while enforcing invariances
w.r.t features and rows permutations. Two proof-
of-concept tasks (patch classification and perfor-

mance prediction tasks) are considered. The pro-
posed approach yields superior empirical perfor-
mance compared to Dataset2Vec and DSS on both
tasks. The third contribution addresses the limita-
tion of Dida on handling standard dataset bench-
marks. The proposed approach, called Metabu,
relies on hand-crafted meta-features. The nov-
elty of Metabu is two-fold: i) defining an "ora-
cle" topology of datasets based on top-performing
hyper-parameters; ii) leveraging Optimal Trans-
port approach to align a mapping of the hand-
crafted meta-features with the oracle topology.
The empirical results suggest that Metabu meta-
feature outperforms the baseline hand-cr afted
meta-features on three different tasks (assess-
ing meta-features based topology, recommend-
ing hyper-parameters w.r.t topology, and warm-
starting optimization algorithms).
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Synthèse

Malgré les succès des algorithmes d’apprentissage statistique à résoudre de nombreuses tâches com-
plexes, le choix et la configuration de ces modèles restent un problème difficile en pratique. Cette nécessité
de choix et configuration s’élargit à toutes les étapes du traitement allant du nettoyage des données à
l’entraînement de modèle. L’approche AutoML (Automated Machine Learning) [Hutter et al. 2019] a sus-
cité énormément d’intérêt dans la communauté de recherche durant les dernières décennies afin de surmonter
ce problème. Cette thèse présente trois principales contributions afin d’améliorer l’état de l’art de ces ap-
proches AutoML. Elles sont divisées entre deux thèmes de recherche: l’optimisation (première contribution)
et meta-apprentissage (deuxième et troisième contributions).

La première contribution concerne un algorithme d’optimisation hybride, appelé Mosaic, qui exploite
les méthodes MCTS et optimisation bayésienne pour résoudre respectivement la sélection des algorithmes
et la configuration des hyperparamètres. L’évaluation, conduite à travers le benchmark OpenML 100,
montre que la performance empirique de Mosaic surpasse ceux des systèmes d’AutoML de l’état de l’art
(Auto-Sklearn [Feurer et al. 2015a] et TPOT [Olson et al. 2016]).

La deuxième contribution introduit une architecture de réseau neuronal, appelée Dida, qui permet
d’apprendre des descripteurs de données invariants à la permutation de colonnes et d’exemples. Deux tâches
(classification des patchs et prédiction des performances) sont considérées lors de l’évaluation de la méthode.
Les résultats de Dida sont encourageants comparés à ceux de ses concurrents (Dataset2vvec [Jomaa et al.
2021] et DSS [Maron et al. 2020]).

Enfin, la troisième contribution, intitulée Metabu, vise à surmonter les limites de Dida à opérer sur
de vrais jeux de données d’AutoML. La stratégie de Metabu comporte deux étapes. Tout d’abord, une
topologie idéale, basée sur les meilleurs hyperparamètres, de ces jeux de données est définie. Puis, une
transformation linéaire des descripteurs manuels est apprise pour les aligner, selon un critère de transport
optimal, avec la représentation idéale. Les comparaisons empiriques montrent que les descripteurs Metabu
sont plus performants que les descripteurs manuels sur trois problèmes différents (évaluation du voisinage,
recommandation d’hyperparamètres, et initialisation d’un algorithme d’optimisation).

ii
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Artificial Intelligence (AI) is ever more present in numerous real-life contexts,
such as marketing [Brei 2020, Dzyabura and Yoganarasimhan 2018], health-

care [Bhardwaj et al. 2017, Wiens and Shenoy 2018], and transportation [Zantalis
et al. 2019, Tizghadam et al. 2019]. However, the pervasive deployment of AI re-
mains in its infancy. Numerous research papers from conferences such as NeurIPS,
ICML, AAAI, and ICLR continue to make discoveries in the field of AI. These dis-
coveries yield a broader understanding of the theoretical and empirical proprieties
of approaches toward AI while also reducing their computational complexities. Fur-
thermore, tech companies are recently devoting more resources to implementing
recent AI advancements to solve real-life problems.

The emergence of Machine Learning (ML) is among the main reasons for the
recent success of AI. ML covers any method that learns from data, experiences, or
interactions. It has gained significant interest in the research community for myriad
reasons. For example, the current technological infrastructure and existing social
network platforms ease the collection and storage of data at an exponential rate.
In this context, world-renowned magazines [Forbes 2018, Economist 2017] argue
that data is the new oil of the 21st century, and only companies that can efficiently
exploit information will remain competitive. Fortunately, ML proposes intelligent
strategies to mine the available data by identifying patterns to support domain-
level decisions or learning recurring tasks for further automation. Another reason
for increased interest in AI comes from advancements in computing power, which
allow the adoption of ML models. Modern-day computing units (e.g., CPUs and
GPUs) are improving rapidly and, therefore, becoming more efficient and accessible
for companies.

However, the unprecedented success of ML models comes at the cost of the
complexity of choosing a suitable model. In the last fifty years, researchers have
proposed a wide variety of ML models, each one having its strengths and limita-
tions. A key challenge for adopting ML involves correctly choosing the model that
best fits the problem at hand. A traditional ML experiment often extends to addi-
tional steps such as data preparation, cleaning, and setting hyper-parameters. The
overall processing steps are called pipelines throughout the rest of the document.

In practice, researchers and data scientists rely on their experiences over similar
problems to find the most promising pipeline. While it allowed tuning state-of-the-
art AI models [Krizhevsky et al. 2012, Silver et al. 2016, 2017, Senior et al. 2020],
this manual approach is a tedious and error-prone task due to the enormous possi-
bilities of experiment settings. AutoML (Automated Machine Learning) aims thus
at addressing this limitation by automating the search process. Within the AutoML
context, three strategies are proposed in this thesis to improve the efficiency of the
search over the existing approaches.
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Automated Machine Learning: AutoML

AutoML is a hot topic in AI, situated at the intersection of Machine Learning
and Optimization. It is a subfield of the long-dated research area of Algorithm
Selection (AS). AS was first tackled by Rice in 1976 in his seminal work The
Algorithm Selection Problem, paving the way for a large body of works (Chapter 1).

The AutoML research has received incredible interest from the AI community
over the last two decades. It is reflected by the successes of AutoML workshops
(from 2014 to 2021) and international AutoML challenges [Guyon et al. 2015,
Escalante et al. 2020]; all confirm the growing tendency of AutoML papers and
interests.

The early AutoML competitions focus on tabular datasets, leading to the de-
velopment of Auto-Sklearn [Feurer et al. 2015a]. After that, Liu et al. [2018b]
organized further challenging tasks to tackle various domains, including computer
vision [Liu et al. 2019] and speech processing [Wang et al. 2020]. Recently, Baz
et al. [2021] proposed a competition on Meta-Learning to learn through a sequence
of ML tasks. These competitions played a crucial role in developing robust prac-
tical and theoretical AutoML systems [Feurer et al. 2015a, 2018, Lim et al. 2019,
Baek et al. 2020].

If numerous AutoML systems are available in open-source [Feurer et al. 2015a,
Olson et al. 2016, Thornton et al. 2013, Mohr et al. 2018, Gijsbers and Vanschoren
2019], they are often targeted for research purposes, operating on standard dataset
benchmarks [Dua and Graff 2017, Vanschoren et al. 2014]. Several challenges
thus need to be addressed to fulfill the promise of AutoML to the best extent
possible [Blom et al. 2021].

Technical challenges of the AutoML problem

The critical components of AutoML are two-fold. On the one hand, AutoML
relies on an optimization algorithm to search for the optimal ML experiment setting.
On the other hand, it requires learning from previously seen tasks to speed up the
optimization.

The optimization part, the core of AutoML, is the Hyper-Parameter Opti-
mization (HPO) [Feurer and Hutter 2019]. The HPO problem involves a noisy,
expensive, and black-box optimization problem over a structured search space. An-
other critical challenge of HPO is to enforce the generalization to the hold-out test
instances of the dataset. Despite these difficulties, however, several Black-Box Op-
timization algorithms (e.g., Bayesian Optimization, Evolutionary Algorithms, and
Planning algorithms) remain appropriate for addressing the HPO problem.

AutoML can also leverage knowledge from previous similar tasks to speed up
the optimization (e.g., warm-starting HPO algorithms). This strategy is called
Meta-Learning, as it requires learning on a task level. In practice, Meta-Learning is
shown to drastically reduce the computational cost of HPO [Feurer et al. 2015b]. A
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AutoML
(Chapter 1)

Hyper-parameter Optimization
(Chapter 2)

Meta-Learning
(Chapter 3)

[C1] - Mosaic
(Chapter 4)

[C2] - Dida
(Chapter 5)

[C3] - Metabu
(Chapter 6)

Figure 1: Outline of the thesis. The contributions are depicted by
square.

primary challenge of Meta-learning is the lack of a clear definition of task similarity
to support the learning. Nevertheless, the literature provides various approaches to
estimate this similarity. A first line of research is to learn task similarity during the
HPO, solely relying on the evaluated pipelines [Fusi et al. 2018, Yang et al. 2019].
A second research direction is to map a task into a set of descriptors, termed meta-
features [Rivolli et al. 2022], which are further leveraged to assess the similarity
between tasks. However, if the latter approach showed promising results to describe
optimization problems [Xu et al. 2008, Kotthoff 2016], its efficiency for describing
machine learning tasks is limited [Misir and Sebag 2017]. One of the purposes of
this thesis is to address this limitation.

Outline of the Thesis

As illustrated in Figure 1, this thesis presents three contributions addressing
issues both in the Hyper-Parameter Optimization and Meta-Learning sides. It is
organized as follows.

Part I focuses on the formal background of the AutoML problem. Starting with
the motivation and context of the work, it then presents an overview of the Algo-
rithm Selection domain and, afterward, an introduction to AutoML (Chapter 1).
The state-of-the-art methods for HPO (Chapter 2) and Meta-Learning (Chapter 3)
are then described. Further, Parts II and III present the three contributions of the
thesis (details bellow). Lastly, this manuscript concludes with a summary of the
contributions and a discussion of the perspectives and future works direction.

The contributions are separated into two parts: one contribution for HPO
(Part II) and two contributions for Meta-learning (Part III). They are described as
follows.
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[C1] Monte Carlo Tree Search for Algorithm Configuration (Part II,
Chapter 4). This contribution, entitled Automated Machine Learning with
Monte-Carlo Tree Search [Rakotoarison et al. 2019], was published at the Twenty-
Eighth International Joint Conference on Artificial Intelligence. It addresses the
complexity of learning over structured search space induced by the sequence of
choice required to build an ML pipeline. Concretely, a pipeline describes the de-
pendencies of the processing steps, from data preparation to the training algorithm,
to yield an end-to-end ML experiment. The fundamental idea of this chapter is to
propose a hybrid algorithm: (a) a Monte-Carlo Tree Search (MCTS) strategy to
handle the algorithm selection part, (b) and a Bayesian Optimization (BO) algo-
rithm to deal with tunning the hyper-parameters. The proposed approach, dubbed
Mosaic, thus inherits the advantages of BO as being sample efficient and MCTS
suitable for the combinatorial nature of pipeline selection.

[C2] Distribution-Based Invariant Deep Networks for Learning
Meta-Features (Part III, Chapter 5). As mentioned earlier, Meta-Learning
uses task similarity to reduce the computational cost of an HPO running a new
task. For example, it can exploit knowledge from the most identical previously
seen task. The efficiency of the Meta-Learning, thus, critically depends on the
distance metric used to compare tasks. This chapter is concerned with defining
the task similarity with the help of meta-features. While current state-of-the-art
meta-features still rely on hand-made meta-features, this work considered a novel
perspective of learning them. Mainly, the contribution is a Neural Network ar-
chitecture, dumbed Dida, that handles tasks as input and outputs meta-features.
Since ML tasks have varying dimensions with invariance proprieties, the primary
difficulty is accommodating such constraints into a neural network. This work,
entitled Distribution-based invariant deep networks for learning meta-features, is
available as a preprint paper [De Bie et al. 2020].

[C3] Learning meta-features for AutoML (Part III, Chapter 6) This
contribution, called Learning meta-features for AutoML [Rakotoarison et al. 2021],
will appear at the Tenth International Conference on Learning Representations.
It is a follow-up on the previous contribution, mainly to mitigate Dida limita-
tions. Those limitations concern three barriers restraining the adoption of the
learned meta-features for AutoML. First, the most significant task benchmark avail-
able [Bischl et al. 2017] is insufficient to learn meta-features. Second, Dida does
not treat general tabular data because it does not handle data quality issues such
as categorical variables and missing values. The latter concerns depreciated its
relevance to the general AutoML tasks. Third, the target variable (meta-features
suitable for AutoML) is unavailable hence needs to be constructed in advance. The
proposed approach Metabu intends to pave the issues mentioned above to learn
task meta-features for AutoML.
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Background and
State-of-the-art
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1 - Formal Background

AutoML is attracting considerable interest in the research community to make
machine learning algorithms more robust and support the deployment of these
ML algorithms into real production scenarios. This work aims to advance current
AutoML approaches to achieve this objective.

This first chapter introduces the formal background of the AutoML domain
to allow the reader to situate the contributions presented in the upcoming chap-
ters. Firstly, Section 1.1 presents the context and motivation behind AutoML.
Then, Section 1.2 reviews the AutoML acknowledged mother-field, namely Algo-
rithm Selection. Finally, Section 1.3 formally introduces AutoML, focusing on the
optimization problem tackled throughout this manuscript.

1.1 . Context & Motivation

1.1.1 . Context
Automated Machine Learning (AutoML) builds upon the fields of Algorithm

Selection (AS) and Algorithm configuration (AC) techniques to respectively select
and tune machine learning pipelines for a given task. In this context, ML pipeline
refers to the sequence of all the processing steps, from data preparation to training
ML model, yielding an end-to-end training of an ML model. Therefore, it involves
parameters; for simplicity, all pipeline parameters are called hyper-parameters.

The considered ML tasks include supervised learning (classification, regression),
unsupervised learning (clustering), and reinforcement learning problems. This the-
sis focuses on supervised learning, specifically the single label (binary and multi-
class) classification problem.

On the one hand, the algorithm selection is the process of choosing one out of a
set of possibilities, such as selecting the optimal learning algorithm from a collection
of classifier models. The Algorithm Selection problem was first formalized in Rice
[1976]. It also pointed out various applications of AS, ranging from estimation to
artificial intelligence. Section 1.2 provides a detailed review of AS for completeness.

On the other hand, the algorithm configuration is the approach to set
hyper-parameter values, e.g., tuning the regularization parameter C of the SVM
model [Boser et al. 1992]. Note, however, that, since the performance of an algo-
rithm tightly depends on its hyper-parameters, it is not uncommon for researchers
to combine AS and AC within the same optimization process (more in Section 2.2).

1.1.2 . Motivation
One of the primary motivations of AutoML is to handle the overwhelming

task of choosing an ML algorithm and configuring its hyper-parameters. Indeed,
numerous recent studies suggest that machine learning algorithms dominate the
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broader field of AI, to name a few, ranging from computer vision [Krizhevsky
et al. 2012], driving cars [Bojarski et al. 2016], playing games [Silver et al. 2016,

2017] to learning protein structure [Senior et al. 2020]. However, these successes
and breakthroughs were only obtained by carefully choosing the learning model
and its hyper-parameter values. The purpose of AutoML thus is to delegate the
time-consuming and expertise-demanding procedures of algorithm selection and
configuration to the machine.

Another motivation of AutoML is to address, to some extent, the shortage
of experienced data scientists, opening the room for non-experts to build high-
performance machine learning models. For example, it allows researchers from
other domains (e.g., medicine and climate change) to benefit from ML at its best
in their respective research fields.

From a theoretical point of view, AS and AC have gained ever more atten-
tion since the publication of the No-free lunch theorem (NFL). In a nutshell, this
theorem states that all (optimization or ML) algorithms perform equally when
considering their performance expectation over a uniform distribution on the set of
possible problem instances.1 This NFL theorem, which was proved for black-box
optimization [Wolpert and Macready 1995] and later for supervised machine learn-
ing [Wolpert 1996], thus establishes that there is no point in finding a universal
algorithm in the above sense and paves the way toward developing portfolios of
algorithms and selecting the appropriate ones depending on the problem at hand.

1.2 . Overview on Algorithm Selection

Prior to its application in machine learning, AS was broadly applied in several
domains such as Travelling Salesman Problem (TSP) [Kotthoff et al. 2015], Satisfi-
ability Problem (SAT) [Xu et al. 2008], Mixed-Integer Programming (MIP) [Hutter
et al. 2010, Xu et al. 2011] to Constraint Programming [Loth et al. 2013]. We
refer the interested reader to the recent literature reviews of Kotthoff [2016] and
Kerschke et al. [2019], which describe the foundations and up-to-date results of
applying AS to optimization problems.

Rice [1976] formalizes the AS problem as a procedure to learn a mapping from
problem space I to the algorithm space A; i.e., associating a problem instance to
its optimal algorithm. Rice’s formalization, also known as Per-Instance Algorithm
Selection (PIAS), is defined in Definition 1 and illustrated in Figure 1.1.

Definition 1 (Optimal decision in PIAS). Let I and A respectively denote a
set of problem instances and a set of algorithms. Then, given p : I × A 7→ IR,
a loss function to be minimized, the optimal decision in PIAS is a pair of a

1Note that this does not preclude the existence of an optimal e.g. pipeline in the
context of a given task domain.
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Instance Space

Feature Space
Algorithm Space

Performance Space

apply algorithm
to task

Learn a mapping
from features to algorithm

Select to minimize

Feature extractor

Figure 1.1: The continuous edges represent the original formalization
of Algorithm Selection as in Rice [1976].

selector S and feature extractor f∗ that when combined minimizes the loss p
for all instances x ∈ I .
∀(x, a) ∈ I ×A, p(x, S(f∗(x))) ≤ p(x, a).

PIAS involves two sub-tasks. Firstly, each problem instance is associated with
a set of descriptors noted f∗(x), computed from a feature extractor function f∗.
Then, the selector S exploits the description f∗(x) to determine the best algorithm
S(f∗(x)), with optimal performance in the sense of the considered loss function.

Kotthoff [2016] discusses various building blocks involved in the AS problem,
chiefly: designing algorithm portfolios, learning a surrogate model of the perfor-
mance p(x, a), and constructing the feature extractor f∗. The following sub-
sections briefly discuss these three building blocks.

1.2.1 . Portfolio optimization
Researchers and practitioners are both convinced that an algorithm is unlikely

to perform best for all problem instances. As said, the idea of a universal algorithm
goes against the NFL theorem [Wolpert and Macready 1997, Wolpert 1996].2 The
mainstream approach to overturn the NFL is to design a portfolio of algorithms,
a finite set of algorithms. Ideally, algorithms in the portfolio are diverse enough
to cover the landscape of the problem space. Souravlias et al. [2021] presents a
recent survey of portfolio optimization and its related challenges.

AS suitably handles the selection of an algorithm in a portfolio, as the latter is a
finite set of algorithms. However, the AC problem instead considers a set of config-
urations, the size of which might be infinite (due to continuous hyper-parameters)
or at least exponentially increasing with the number of hyper-parameters. A crit-
ical issue with algorithm portfolios is that their performance depends strongly on
the considered problem instance; typically, the "best on average" algorithm on the
portfolio is not necessarily the best one on problem instance I.

2Although the NFL relies on the rather unrealistic assumption of a uniform distri-
bution on the set of all possible problem instances.
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Ideally, one requires a perfect joint representation of algorithms and problem
instances to:

(i) Cluster the instance space;

(ii) Select the optimal algorithm for each cluster to define a portfolio with good
coverage.

Some works [Yap et al. 2020, Smith-Miles and Lopes 2012] followed this line
of research in combinatorial optimization problems, although they did not apply
their results to Algorithm Selection for ML algorithms.

1.2.2 . A Machine Learning approach to surrogate model learning
As illustrated in Figure 1.1, algorithm selectors usually leverage feedback value

such as the observed performance, gathering more information about the current
task, which thereafter fed to the selector S to support AS. Most authors [Xu et al.
2008, Hoos et al. 2015] introduce a performance model estimating the performance
p(f∗(x), a), and delegate the learning of the performance model to mainstream
machine learning algorithms. Under the assumption of a good enough feature
extractor f∗, the performance model predicting p(f∗(x), a) exploits a (meta-)
dataset composed of pairs {(f∗(x), a)); p(f∗(x), a))} and proceeds exactly as in
supervised learning.

Along this line, ML-based selector approaches allow the offline exploitation of a
performance database (involving triplets: instance f∗(x); algorithm a; associated
performance p(f∗(x), a)). This approach can leverage earlier run experiments and
adapt the model in case of changes in the algorithms or in the problem instance
distribution.

In practice, the performance model and AS come in two modes. In the first
mode, the learned model is the selector itself: S : I 7→ A

In the second mode, one learns the performance model defined on pairs of
instance-algorithm:

p̂ : I × A 7→ IR

that is thereafter used to select the most promising algorithm: S(x) =

argmaxa p̂(x, a).
In the former case, S is a classifier, where each algorithm corresponds to a

class; this approach is arguably best suited to portfolios. In the latter case, the
performance model is more flexible as it can predict any continuous value criterion
such as runtime, loss, or performance.

An alternative solution to these learning approaches is to construct S as a set
of static hand-made rules without a learning component. The selection rule is
thus based solely on the instance features. A recent benchmarking paper [Meunier
et al. 2021, Liu et al. 2020a] based on this idea shows that the rule-based selected
algorithm outperforms the portfolio algorithms. The comparison was carried out
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from various optimization problems ranging from academic benchmarks to real-
world applications.

1.2.3 . Instance features
Instance features play a crucial role in AS. For example, a "perfect" represen-

tation of instances would support an optimal recommendation. Let the Euclidean
distance based on the features allows to identify the nearest instances to the cur-
rent instance problem. Assuming the neighborhoods based on this representation
were "perfect", one could pick the optimal algorithm for the current instance as
the best algorithm for its nearest neighbor. Overall, instance features define a
computable vector representation of every instance problem. The interested reader
is referred to [Kerschke et al. 2019] for a survey of the feature sets adopted for
various optimization problems.

1.3 . Automated Machine Learning (AutoML)

As said, AutoML involves an Algorithm Selection component aimed to select an
ML algorithm to handle the ML problem instance. When not specified, a problem
instance refers to a dataset in the remainder: a set of samples, each described with
features values and target label to be predicted.

AutoML also involves an Algorithm Configuration component, referred to as
Hyper-Parameter Optimization. The AC component aims to configure an end-to-
end and trainable machine learning experiment, or pipeline, defined as a sequence
of processing algorithms and their associated hyper-parameters.

The building blocks of AS introduced in Section 1.2 all apply to the AutoML
domain:

• Algorithm portfolio (Section 1.2.1) is leveraged by various works on ML
pipelines recommendation [Misir and Sebag 2017, Yang et al. 2019, Fusi
et al. 2018].

• Surrogate performance model (Section 1.2.2) is also standard in AutoML,
mainly to speed up hyper-parameter optimization algorithms [Bergstra et al.
2011, Swersky et al. 2014, Feurer et al. 2015a, Fusi et al. 2018].

• Instance features (Section 1.2.3), commonly termedmeta-features for clar-
ity (and make the distinction with dataset features), are of high inter-
est in AutoML especially to transfer knowledge across problem instances
(datasets).

The following sub-sections detail all the definitions, challenges, and pre-
requisites.
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1.3.1 . Problem Statement
As illustrated on Rice’s diagram (Figure 1.1), AutoML proceeds to find an

optimal pipeline in the sense of a predefined criterion, w.l.o.g. a loss function to be
minimized. This goal can be formalized as an optimization problem (Definition 2)
on the whole configuration space Θ, searching for the optimal pipeline θ∗z ∈ Θ for
dataset z.

Definition 2 (AutoML). Let z be a dataset (w..l.o.g. a binary or multiclass
classification problem) and ztrain and zvalid two disjoint subsets of z. LetΘ be
the space of machine learning pipelines. The following optimization problem
defines AutoML on a dataset z:

Find θ∗z ∈ arg min
θ∈Θ

L(θ, ztrain, zvalid), (1.1)

where L denotes a loss function to assess the ML pipeline θ (trained on ztrain)
on zvalid.

Regardless of the type of ML task examined (e.g., classification or regression)
and the pipeline space, AutoML involve two basic and essential components: an
optimization algorithm (Chapter 2) and a Meta-Learning method for learning across
tasks (Chapter 3). The two AutoML components mentioned above, like the above
formalization, are agnostic w.r.t. the type of ML task. Nevertheless, the rest of
the manuscript focuses on classification problems.

1.3.2 . Technical issues from the AutoML problem
The optimization problem defined in Equation 1.1 presents some challenges,

being noisy, structured, black-box, and expensive. They are discussed below.

Noisy optimization

The noise observed in the objective function L has many sources. A first source
might be the randomness of ML algorithms, e.g., the initialization in a neural
network. Such an issue is handled in practice by fixing the random seed.
A second source may come from the sampling of the training, validation, and test
sets from the whole dataset z (e.g., cross-validation split).
A third source is the noise of the optimization algorithm itself (e.g., see Shang
et al. [2019], especially when the noise is not gaussian).3

These noises can be straightforwardly handled, as done in various AutoML
systems [Feurer et al. 2021a, Thornton et al. 2013, Olson et al. 2016] and bench-
marking papers [Balaji and Allen 2018, Gijsbers et al. 2019], by averaging the
performance obtained over multiple independent runs (with varying dataset splits).
Nevertheless, in counterpart, this procedure linearly increases the cost of the Au-
toML process.

3Addressing this algorithmic noise is out of the scope of the presented work.
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Structured Optimization

An end-to-end AutoML system involves all components of a complete machine
learning experiment, ranging from data pre-processing through feature selection to
training and ensembling models.

The search space Θ represents the set of possible machine learning pipelines
encompassing the union of the space of feasible algorithms with the domain of their
hyper-parameters. It thus includes a mix of binary,4 categorical and continuous
variables. For example, Feurer et al. [2015a] considers 40 categorical and 66 real
continuous hyper-parameters for binary classification tasks.

Operating directly on Θ is hardly feasible. First, finding the algorithmic compo-
nents present in pipeline z∗, that is, optimizing the binary variables in Θ, defines a
hard combinatorial, NP-hard problem. Second, the exploration of Θ must account
for the dependencies among its variables, reflecting the structure of ML pipelines.
In other words, the value of some variables controls the relevance of some other
variables. For example, a polynomial SVM kernel comes with two specific hyper-
parameters; the fact that an algorithmic component is present implies that its
hyper-parameters are relevant.

In practice, Θ is defined from the set of algorithm candidates, each with the
domain space of their respective hyper-parameters, selected by the human ex-
pert. The pipeline structure is tackled by considering another formalization of the
search space (as Bayesian Optimization does not directly handle structured search
space). Alternatively, another solution is to leverage structure-aware optimization
algorithms (such as Evolution Strategies). We return to this issue in Chapter 2.

Black-Box Optimization (BBO)

BBO aims at optimizing a function f without exploiting (or having access to) its
analytical definition and computational implementation. BBO can only compute
the value f(x) for each input x. In particular, BBO does not use the derivatives of
f . The AutoML objective function L (Equation 1.1) defines such a BBO problem,
as the value of L for a given dataset and configuration can only be computationally
estimated.

Another interesting AutoML approach is to rely on bi-level optimization. It
proceeds with a proper formalization of the search space, enabling the use of
gradient-based optimization to AutoML [Liu et al. 2018a, Franceschi et al. 2018].
This idea will not be covered in this work, however.

4In pipeline θ ∈ Θ, the binary variable associated to each pipeline component
takes the value true iff this component is part of θ.
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Expensive Optimization

According to a recent survey presented by Blom et al. [2021], one of the main ob-
stacles to deploying AutoML approaches in real-life production is their prohibitive
computational cost. Indeed, given a Black-box function f , BBO proceeds by com-
puting f(x) for all candidates x, making the overall computationally demanding.
Various strategies were proposed to address this issue and further speed up the
search. In particular, multi-fidelity strategies [Swersky et al. 2014, Li et al. 2017,
Klein et al. 2017] were founded to be incredibly effective. They rely on an ap-
proximate but inexpensive estimation of the objective function, to accelerate the
optimization while controlling the model complexity or the size of datasets. The
approaches to reducing the training time are discussed further in Section 2.2.

Generalization Perspective

As formalized in the statistical learning theory [Vapnik 2000], the essential objective
for learning a model is to achieve good performances in expectation. The sought
solution thus is to learn a pipeline, based on its only performance on the training
and validation sets, that would perform well on a holdout test set (unseen during
the optimization), demonstrating that they do not overfit.

AutoML solutions are particularly prone to over-fitting as they require many
lookups to the validation score. This overfitting issue is acknowledged as a critical
issue; still, the AutoML literature does not agree on how to address this issue.
Benchmarking papers [Zöller and Huber 2021, Gijsbers et al. 2019] also raise this
issue as one of the causes of the decrease in performance on subset tasks when
optimizing for a long time budget. Researchers often rely on cross-validation [Allen
1974, Geisser 1975] scores to minimize the risk of over-fitting.

1.3.3 . Evaluating AutoML systems
The fair comparison of AutoML systems requires that all competitors operate

in the same search space Θ and are evaluated along with the same benchmarking
procedure.

The search space

As said, the choice of the search space Θ is usually left to the human expert (or
encapsulated in the considered algorithm portfolio) to make it a tractable bounded
search space. Nevertheless, this choice can eventually affect the difficulty of the
optimization.

At the time of writing, the choice of Θ depends on the application domain.
Currently, deep learning models are dominating the field of computer vision, NLP,
and speech recognition. For these application domains, a strong preference is given
to Neural Architecture Search (NAS) over standard machine learning models. As an
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example, in DARTS [Liu et al. 2018a], the AutoML problem is formalized as a two-
level optimization problem, where the first level aims to learn the interconnection
of a set of small networks and the second level aims to determine the respective
weight of each of these small networks.

The presented research aims to achieve AutoML for tabular data, which mo-
tivates our choice to consider mainstream machine learning and pre-processing
algorithms.

Benchmark datasets

Standard practice evaluating and comparing AutoML relies on open-source dataset
benchmarks such as UCI [Dua and Graff 2017] and OpenML [Vanschoren et al.
2014].

For the sake of a fair and tractable assessment, we only consider curated
and medium-size benchmarks: OpenML CC18 [Bischl et al. 2019] and OpenML
100 [Bischl et al. 2017].

While OpenML contains 3,448 datasets at the time of writing, many have
data quality issues, such as datasets with constant features. Some datasets are
too big or ill-conditioned, entailing a large SVM running time. Some datasets are
also deprecated versions of the others, which may create a risk of over-optimistic
evaluation. Because of these issues, Bischl et al. [2019] built OpenML CC-18, a
curated benchmarking suite for AutoML, succeeding OpenML 100 [Bischl et al.
2017]. As far as we know, OpenML CC-18 is the largest curated tabular dataset
benchmark available for AutoML.
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2 - Hyper-parameter Optimization

This chapter focuses on one of the two core tasks of AutoML, referred to
as Hyper-Parameter Optimization, that consists in setting the hyper-parameters
to optimize the performance (Equation 1.1). The other core task, namely
Meta-Learning, will be described in Chapter 3.

This chapter is structured as follows. After reviewing the approaches of the
HPO literature [Feurer and Hutter 2019] in Section 2.1, we situate HPO w.r.t the
general AutoML problem (Section 2.2) and give an overview of the major AutoML
systems (Section 2.3). The chapter finally presents the AutoML benchmarking
methodology (Section 2.4).

2.1 . State-of-the-art of Hyper-Parameter Optimization ap-
proaches

The early methodology used to set hyper-parameters relies on manually picking
hyper-parameter values along a trial and error procedure, and this methodology still
is commonly used. However, it faces severe limitations: in terms of domain knowl-
edge to judiciously sample good hyper-parameter values for the problem instance
at hand; and in terms of both human and computational time requirements. HPO
algorithms thus aim to address these limitations. Figure 2.1 highlights several HPO
approaches, which are discussed in the following sub-sections.

2.1.1 . Mainstream Approaches
The most straightforward HPO approaches are the grid search and random

search strategies.

Hyper-parameter Optimization

Bayesian Optimization

Random Search

Grid Search

Planning Algorithms

Evolutionary Algorithms

...

Thesis contribution
(Chapter 4)

Figure 2.1: Non-exhaustive list of state-of-the-art approaches for HPO.
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The grid search (GS) strategy considers a (manually defined) finite set of values
for each hyper-parameter. The set of candidate pipelines is defined by considering
all combinations of hyper-parameter values. All pipelines are then evaluated in a
sequential or parallel manner. Then, the final recommendation to the user is the
best configuration in the sense of the considered evaluation metric.

The efficiency of GS depends on the considered hyper-parameter grid values.
Recently, Ndiaye et al. [2019] proposed exploiting the objective function’s theoreti-
cal properties to define an optimal grid of hyper-parameters. Nevertheless, the cost
and the performance exponentially increase with the number of hyper-parameters.
Furthermore, a severe limitation of the GS approach is when only a few of the
hyper-parameters are critical [Bergstra et al. 2011, Hutter et al. 2019].

Compared to GS, Random Search (RS) only requires the hyper-parameter do-
main spaces to be defined. It proceeds by uniformly sampling candidate config-
urations from the specified hyper-parameter domains. Despite its simplicity, RS
performs well on expensive settings, e.g., Neural Networks [Bergstra et al. 2011].
Hence, RS is commonly used as a baseline on numerous HPO and AutoML pa-
pers [Hutter et al. 2011, Bergstra et al. 2011, Feurer et al. 2015a, Olson et al.
2016, Thornton et al. 2013]. Note that different versions of RS can be formulated
depending on the sampling strategy. For instance, instead of using uniform sam-
pling, researchers experimented with other space-filling sampling methods [Bous-
quet et al. 2017, Cauwet et al. 2020], enforcing the diversity of sampled pipelines.

A key strength of GS and RS approaches is the ease of parallelization, even more
so as the emergence of high computing infrastructures supports the deployment
and study of parallel methods in academia. For example, [Li et al. 2020, Cauwet
et al. 2020] show the merits of a massive random search approach compared to
Bayesian Optimization and Evolutionary Algorithms on various HPO tasks.

2.1.2 . Bayesian Optimization
The celebrated Bayesian Optimization (BO) approach [Mockus 1989, Brochu

et al. 2010, Frazier 2018] is an optimization algorithm tailored for black box and
expensive optimization problems under limited computational resources, thus well
suited to HPO. BO uses an auxiliary probabilistic model, also termed surrogate
model, to guide the search. The surrogate model is meant to model the optimiza-
tion objective and estimate the modeling uncertainties; both are leveraged during
the optimization.

A notable implementation is the Sequential Model Based-Optimisation
(SMBO), which is commonly used to achieve HPO (Alg. 1). It proceeds as
follows. Iteratively (for a total number T of iterations, governing the optimiza-
tion cost), the surrogate model M is learned from the observed performances (line
6), then used to choose a promising new hyper-parameter configuration (line 3),
that is evaluated afterward (line 4). The function A, termed Acquisition Function,
encapsulates the selection procedure of the next hyper-parameter to evaluate.

Bayesian Optimization commonly uses a Gaussian Process [Rasmussen and

18



Algorithm 1: Sequential Model-Based Optimization (SMBO)
input : initial surrogate modelM0, number of iterations T ,

dataset z, acquisition function A, loss function L,
hyper-parameter space Θ

output: Recommended solution θ∗
1 H ← ∅
2 for t← 1 to T do
3 θt ← argmaxθ∈ΘA(Mt−1, θ)
4 Evaluate L(θt, z)
5 H ← H∪ {(θt, L(θt, z))}
6 FitMt onH
7 end
8 (θ∗, l∗)← argmin(θ,l)∈H l

Williams 2005] as a surrogate model for its soundness and efficiency in terms of
both performance prediction and uncertainty estimation. GP, however, suffers from
two limitations. Firstly, it does not scale up w.r.t. the number of samples and the
dimension of the search space. Secondly, it is well defined on continuous domains
only.

The acquisition function that is commonly used is Expected Improvement
(EI) [Jones et al. 1998], defined as follows:

A(M, θ) = E[max(Lmin −M(θ), 0)] (2.1)

with Lmin be the best performance so far and M(θ) the estimated loss of hyper-
parameter θ according to the surrogate model M .

Wessing and Preuss [2017] states that the success of EI (to tackle expensive
optimization problems on a low computational budget) is related to its ability to
identify multiple local optima regions. This experimental finding might explain
the adoption of EI in the HPO context, as HPO usually admits a number of local
optima.

The SMBO approach comes in various modes in the state-of-the-art, which
differ in the definition of acquisition function A and the choice of surrogate model
M . A non-exhaustive list of open-sourced BO algorithms is presented below.

• SMAC [Hutter et al. 2011, Lindauer et al. 2022] uses Random For-
est [Breiman 2001] as a surrogate model with Expected Improvement as
an acquisition function. The Random Forest model addresses a core limi-
tation of GP in handling mixed type domain values (e.g., real, categorical,
or integer hyper-parameter). Moreover, it drastically reduces the computa-
tional complexity both for the training and the inference.
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• HyperOpt [Bergstra et al. 2011], instead of modeling directly the perfor-
manceM(θ), fits two density distributions for good P(θ = θ|L(θ) < τ) and
bad P(θ = θ|L(θ) > τ) hyper-parameters, with τ a user defined threshold.
These distributions are then constructed using a 1-dimensional Parzen Win-
dows density estimation algorithm. A tree structure is introduced to cope
with conditional hyper-parameters, hence the term Tree Parzen Estimator
(TPE) [Bergstra et al. 2011, 2013]. Note that this algorithm also handles
mixed-type variables while having low complexity of training and inference.

• [Snoek et al. 2012] modify the mainstream BO to be better suited to HPO.
Firstly, a new kernel function carefully crafted for HPO is proposed. Sec-
ondly, it considers the training cost when maximizing the acquisition func-
tion (EI per second). Since the internal surrogate model still is a Gaussian
Process, it inherits both the advantages and limitations of GPs.

Eggensperger et al. [2013] conducted an empirical benchmarking study on pop-
ular BO algorithms, including SMAC, TPE and [Snoek et al. 2012]. The lessons
learned from this study are that the GP-based BO [Snoek et al. 2012] tends to
outperform SMAC and TPE on low dimensional problems, while TPE yields bet-
ter performance on higher dimension search space, possibly including conditional
hyper-parameter.

2.1.3 . Evolutionary Algorithms
The active research area of Evolution Algorithms (EA), also referred to as

population-based algorithms, is concerned with Black-Box optimization problems.
Formally, EAs include algorithms based on the evolution of a population of solu-
tions. The evolution is achieved through operators (mutation, crossover, selection)
remotely inspired by the Darwinian "survival of the fittest" ideas.

The main two trends in EAs are Genetic Algorithms (GAs) [Mitchell 1996] and
Evolution Strategies (ES) [Beyer and Schwefel 2002].

EAs proceed iteratively: an initial population (i.e., a set of initial solutions) is
used to create a new generation of solutions by applying mutation and recombina-
tion rules over the initial population. Next, the selection rule is applied to construct
a new population, refining individuals upon the initial and generated populations.
These two steps are repeated until the optimal solution is reached or the training
budget is exhausted.

Both GAs and ES are widely applied to HPO. Genetic Algorithms are well
suited to the optimization of design structure. A notable application of GAs is
the automatic design of neural network architecture, also known as Neuroevolu-
tion [Stanley et al. 2019]. NEAT [Stanley and Miikkulainen 2002, Stanley et al.
2009, Risi and Stanley 2012, Miikkulainen et al. 2019] is an example of a prominent
Neuroevolution algorithm. A promising application of GAs Real et al. [2020] aims
to discover machine learning pipelines from scratch (see Section 2.3). Along the
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same line, a search for ML pipelines using context-free grammar is presented by
Marinescu et al. [2021].

While GAs mainly handle binary or discrete spaces, Evolution Strategies (ES) is
restricted to fixed-size real value space. A successful ES-based optimization algo-
rithm is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [Hansen
2005]. The authors of [Loshchilov and Hutter 2016] apply CMA-ES to tune hyper-
parameter of deep network models, improving state-of-the-art HPO algorithms
such as SMAC and TPE.

Like Random and Grid Search, EAs can be parallelized straightforwardly; their
efficiency in parallel mode is widely observed in the literature [Salimans et al. 2017,
Jaderberg et al. 2017, Conti et al. 2018, Gaier and Ha 2019]. Furthermore, EAs can
also exploit information gathered from previous evaluations (as in any sequential
HPO algorithms).

2.1.4 . Bandit & planning Algorithms
Multi-armed bandit

Multi-armed bandits (MABs) [Lattimore and Szepesvári 2020] pertain to the field of
Reinforcement Learning [Sutton and Barto 1998], aimed to learn policies yielding
an optimal action in each state. MABs consider the single-state RL problem,
facing a finite discrete action set, with stochastic bounded action values. MABs
were formalized as tackling a sequential decision problem under uncertainty since
the early 1930s [Thompson 1933, Robbins 1952, Bather and Chernoff 1967]. Its
main applications include A/B testing, resource allocation, and ads placement (not
exhaustive list).

Numerous algorithms were devised to address the MAB problem, e.g., for
continuous actions [Bubeck et al. 2011] or a large number of actions [Woodroofe
1979, Langford and Zhang 2008]. In the scope of the presented research, i.e., when
considering an algorithm selection problem, the MAB algorithm most commonly
used is UCB1 (Upper Confidence Bound) [Auer et al. 2002a]. Each algorithm
corresponds to an arm; the associated reward is its (noisy) performance.

In Gagliolo and Schmidhuber [2010], the authors propose GAMBLETA, a bandit
method to select an optimal algorithm from a portfolio of SAT solvers. The
specificity of this method is to leverage contextual information [Auer et al. 2002b]
for the bandit algorithm to transfer knowledge across a set of SAT problems.

In Fialho et al. [2008], the authors likewise propose a bandit-based rule selector
for an evolutionary algorithm where the novelty lies in the definition of the reward.

Another area of research aims to adapt bandit to algorithm configuration, i.e.,
HPO. Notably, Shang et al. [2019] proposes a setting to handle an infinite set
of hyper-parameters. The proposed method proceeds by maintaining a portfolio
of sampled hyper-parameters; at each iteration, the algorithm decides whether
to add a new hyper-parameter in the portfolio or consider a previously sampled
hyper-parameter, and this hyper-parameter is evaluated.
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Another powerful bandit method designed for HPO is the highly cited Hyper-
band algorithm proposed by Li et al. [2017, 2018]. Unlike previous approaches,
Hyperband leverages a bandit algorithm for allocating the overall resource budget
across a set of running evaluations; in practice, poorly performing hyper-parameters
are discarded early to save resources and attribute them to the best-performing
ones.

Planning Algorithms

Another strategy is to sequentially handle the choice of hyper-parameter values
(as opposed to the former setting, where the algorithm and the hyper-parameters
values are picked simultaneously, allowing to assess the pipeline performance in-
stantly). The issue of such sequential approaches is that the performance can
only be measured when all hyper-parameter values are determined: the feedback
is delayed. This setting falls into the category of planning problems, aiming to
optimize a path (here, the sequence of hyper-parameter values) to maximize the
final performance (here, that of the pipeline).

Casting the AutoML into a planning problem opens the room for many planning
algorithms to be applied to HPO. One of the solutions is to represent the search
space as a tree, with a path representing a pipeline. Any tree search algorithm
can thus be considered, such as depth-first search and best-first search [Wever
et al. 2018a,b, Mohr et al. 2018]. One of the main contributions of this thesis
is to adapt the Monte-Carlo Tree Search (MCTS) [Kocsis and Szepesvári 2006],
by combining the tree-structured extension of multi-armed bandit algorithms with
Bayesian Optimization, to AutoML (Chapter 4).

A critical limitation of tree-structured representations is that they only handle
hyper-parameters with discrete and small size domains. In particular, the domain
of continuous hyper-parameters must be discretized.

Along the same line, formalizing AutoML as a sequential decision problem
(selecting each hyper-parameter value) makes it a Reinforcement Learning (RL)
problem [Sutton and Barto 1998]. Formally, an incomplete pipeline is viewed as
a state, and only final states (complete and trainable pipelines) are associated
with the pipeline performance reward. RL aims to learn a policy, associating an
action to each state and thus navigating among states; an optimal policy is such
that the final reward is maximal. An RL approach is based on using Machine
Learning algorithms on sequential examples; for example, [Zoph and Le 2017] used
an LSTM [Hochreiter and Schmidhuber 1997] to build neural architectures.

2.2 . AutoML as a Hyper-Parameter Optimization problem

Hyper-Parameter Optimization is primarily defined as the only problem of tun-
ing hyper-parameters. AutoML instead considers selecting and tuning larger ma-
chine learning experiments, from the choice of data preparation to the learning
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algorithm, where each algorithm is associated with specific hyper-parameters. Tra-
ditional Hyper-Parameter Optimization algorithms thus require some adaptation to
handle the entire AutoML problem.

The idea is to consider a particular algorithm as a hyper-parameter. This
representation thus corresponds to a structured and conditional search space, where
the previous choices condition the possible options. However, considering this vast
and complex pipeline space entails a non-negligible increase in the computational
cost. For this reason, substantial research focused on reducing the training cost of
HPO to speed up AutoML.

Combining Algorithm Selection and Algorithm Configuration
(CASH) Note that the formal definition of AutoML (Equation 1.1), i.e., finding
the optimal configuration θ∗ ∈ Θ that minimizes the defined loss function, with
Θ be the space of observable configurations, already includes the HPO task as Θ

both covers the set of algorithms and the space of their hyper-parameters.
The so-called Combined Algorithm Selection and Algorithm Configuration

(CASH) approach is commonly used in practice [Thornton et al. 2013, Feurer
et al. 2021a].

Let an ML pipeline x involve a fixed ordered sequence of ` components such
as data pre-processing, feature selection, and learning algorithms. At the ith de-
cision step, some algorithm ai ∈ Ai is selected (with Ai the finite set of pos-
sible algorithms at ith step). Denoting Θ(ai) the (possibly varying dimension)
space of hyper-parameters associated with ai, the eventual pipeline is described
as x = (a1, θ1), . . . (a`, θ`), with θi ∈ Θ(ai). Given a `-size pipeline structure, we
denote the overall hyper-parameters of the search space as

Θ =
⋃

(a1,...a`)∈A1×...×A`

(a1,Θ(a1))× . . .× (a`,Θ(a`))

CASH is thus formally covered by the framework of Equation 1.1, where the
Θ space is defined as above, encompassing the whole pipeline space.

As said, the domain of a hyper-parameter can be real-valued (such as learning
rate), integer-valued (such as the number of layers), binary (for the example,
whether to use early stopping or not), or categorical (such as the selection of a
learning algorithm).

Reducing computational cost Arguably, the most popular strategy for re-
ducing the computational cost of HPO relies on multi-fidelity approaches, that is,
using cheap estimations of the final performance of hyper-parameters. The overall
computational budget governs the admissible model complexity through, e.g., lim-
iting the number of trees for Random Forest, the number of examples for SVM,
and the number of iterations to any iterative ML algorithm (e.g., neural network).
Such a multi-fidelity approach is Hyperband, already cited [Li et al. 2017]. First,
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it uniformly samples hyper-parameter domains; then evaluations are subject to
a limited resource budget, allowing to discard poor-performing hyper-parameters
earlier and thus allocate more resources to promising ones. Finally, the selection
process is repeated until one hyper-parameter is retained. This simple strategy
showed its merits in optimizing expensive ML models like Deep Neural Network
and SVM compared to standard BO algorithms such as TPE [Bergstra et al. 2011]
and SMAC [Hutter et al. 2011]. Further improvements proposed by Falkner et al.
[2018] and Awad et al. [2021] rely on using respectively Bayesian Optimization
and Differential Evolution (as opposed to uniform sampling) in the sampling step,
significantly speeding up the search.

Another strategy is to predict the eventual performance associated with a
configuration, based on learning curves modeling, and discard unpromising runs in
early steps. For instance, Swersky et al. [2014] uses the training history to decide
whether to pause the training of a configuration or resume a previously considered
training. Likewise, Domhan et al. [2015] model learning curves (using a list of
parametric functions), and use the beginning of the learning curve associated with
a configuration to estimate whether it is likely to outperform the best configuration
so far. Most interestingly, Klein et al. [2017] learns two surrogate models: one for
modeling hyper-parameters performance and one for modeling the training cost
(depending on the size of the considered training set). The strategy consists of
training the most promising configurations with larger training sets, based on a
trade-off between the expected gain of performance and the computational cost.

2.3 . State-of-the-art AutoML Systems

This section presents a non-exhaustive list of the prominent AutoML systems,
structured after their internal optimization algorithm.

In the realm of Bayesian Optimization-based AutoML there are Auto-
Sklearn [Feurer et al. 2015a, 2021a], Auto-Weka [Thornton et al. 2013], and Auto-
Progronis [Alaa and Schaar 2018]. Auto-Sklearn and Auto-Weka are based on
SMAC [Hutter et al. 2011], a Random Forest-based B0. Compared to Auto-Weka,
Auto-Sklearn involves extra components: a meta-learning strategy to initialize the
search and an ensembling strategy to provide a more robust prediction.

Auto-Progronis uses a GP-based surrogate model with a structured kernel to
account for the complex configuration search space. It involves the same extra
components as Auto-Sklearn; the ensembling strategy is achieved using Bayesian
model averaging, for the sake of explainability.

Another powerful AutoML system is sc Hyperopt-Sklearn [Komer et al. 2014],
which uses TPE as a surrogate model; it does not have meta-learning and ensem-
bling components.

Evolution-based AutoML is as commonly used as BO-based AutoML in the
literature. A primary advantage of evolutionary algorithms over BO approaches is
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on handling structured search spaces naturally without specific adjustments. For
instance, TPOT [Olson et al. 2016] and GAMMA [Gijsbers and Vanschoren 2019]
use Genetic Programming to evolve compound ML pipelines (preprocessing, feature
construction, and model building methods) while enjoying the parallelizable nature
of Genetic Programming. Along the same line, de Sá et al. [2017] uses a grammar
formalization of the ML search experiment space and designs a grammar-based
algorithm for the optimization. Chen et al. [2018] proposes another evolution-based
AutoML which instead of optimizing a single machine learning pipeline, focuses
its search on finding a combination of pipelines that provides optimal performance
overall. More recently, the AutoML-Zero [Real et al. 2020] intends to discover
ML pipelines from scratch (without a predefined template as in Auto-Sklearn or
Auto-Weka).

A divide-and-conquer strategy proposed by Liu et al. [2020b] consists of de-
composing the initial AutoML problem into several sub-problems to reduce the
number of variables and address the issue of mixed variable types.

Another category of AutoML systems leverages planning and reinforcement
learning methods. In this category, the most notable AutoML is ML-PLAN [Mohr
et al. 2018] that formalizes AutoML as a graph problem and leverages tree-search
algorithms (e.g., Hierarchical Task Network) with random roll-outs to find the
optimal path (i.e., optimal pipeline). Similar approaches were proposed [Kietz
et al. 2012, Nguyen et al. 2014] to handle AutoML in data mining tasks.

As said, a severe limitation of the tree-structured approach is that they hardly
deal with continuous domains and require the discretization of continuous hyper-
parameters. One of the main contributions presented in this manuscript addresses
this limitation by hybridizing MCTS and Bayesian optimization, to handle mixed-
type variable hyper-parameters.

2.4 . Benchmarking HPO and AutoML algorithms

As said (Section 1.3.3), the benchmarking of AutoML systems presents fairly
technical specifics. In particular, it must enforce the same experimental setting
for all candidates, considering the same search space and resources budget. The
difficulty here is that there is no general agreement in the research community
about the environment and search space that should be considered. Typically,
the abovementioned state-of-the-art AutoML systems (e.g., Auto-Sklearn, Auto-
Weka, Auto-Progronis, TPOT) do not describe their search space.

Nevertheless, some researchers [Balaji and Allen 2018, Gijsbers et al. 2019,
Zöller and Huber 2021] conducted benchmarking over the existing AutoML ap-
proaches and analyzed the results despite this difficulty. They define a unified
framework for AutoML systems and consider a curated subset of the problems in
the OpenML benchmark [Vanschoren et al. 2014].

The evidence from these empirical results suggests that there exists no AutoML
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system that consistently outperforms all others.1 These results were inspected to
determine whether the poor performance is due to over-fitting or difficulty of the
optimization. No general conclusion was drawn as the failures seem to be dataset-
specific.

This negative result establishes that a broader and more realistic dataset bench-
mark is needed to push the AutoML analysis further and understand the patterns
of difficulty. Note that finding such patterns is significantly related to extracting
relevant descriptive features of datasets, i.e., designing meta-features (Chapter 3).

The benchmarking of HPO systems is much more advanced than for AutoML,
with quite a few good platforms. For instance, Eggensperger et al. [2021] presents
a platform including an extensive set of HPO problems, together with several
existing HPO algorithms. The search space and resource budget are fixed for each
problem, enforcing a fair comparison between the candidates.

Note that another Black-box benchmarking platform, Nevergrad [Rapin and
Teytaud 2018], also considers HPO problems. However, unlike Eggensperger et al.
[2021], Nevergrad involves a broader set of optimization algorithms but fewer HPO
problems.

1Of course, this claim reminds the famed No Free Lunch theorem [Wolpert and
Macready 1995]. A key difference however is that the set of tasks considered here is
far from being uniform on the space of all tasks.
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3 - Meta-learning

In this manuscript, we adopt the tentative definition of meta-learning proposed
by Brazdil and Giraud-Carrier [2018] and Vanschoren [2019], that is, the science
of learning from previous experiences, which can be any information gathered from
the same task or another task. Meta-learning is a long open problem, gaining
increasing attention in AI in the last decade. This is because the ability to learn
from previous tasks is still lacking in mainstream AI approaches, while it is crucial
to achieving human-level intelligence.

This chapter provides an overview of meta-learning research and situates the
contributions of the thesis w.r.t. the existing research directions. The chapter is
structured as follows. First, Section 3.1 motivates the domain of meta-learning
and its motivations. Then, a brief survey of the state-of-the-art, describing the
meta-learning research spectrum, is introduced in Section 3.2. Finally, Section 3.3
focuses on our main topic of interest, namely the definition and usage of meta-
features.

3.1 . Context and Motivations

Meta-learning defines a learning to learn research perspective. It thus operates
on a higher level compared to mainstream machine learning [Liu 2021]. Formally,
while ML algorithms primarily handle a specific task (i.e., a dataset), meta-learning
is concerned with learning and transferring knowledge across tasks. Task and
dataset will be used interchangeably in this chapter. Meta-learning paves the way
toward continual, a.k.a. lifelong learning for AI agents. It is also very relevant to
AutoML systems as it typically yields a better initialization of the AutoML search,
and enforces the transfer of knowledge across different tasks.

The ultimate goal of meta-learning is to be capable of learning and adapting
itself to a sequence of tasks (possibly but not necessarily related), like a human
being.

Meta-learning clearly is among the most challenging tasks faced by Machine
Learning. In our opinion, a critical difficulty comes from the lack of formalization
and tools for representing ML tasks. While an ML task consists of a dataset
sampled from some distribution on a feature and label space, the design of a
rigorous representation and a reliable and tractable similarity function, enabling
tasks comparison, is still an open problem. Note that tasks usually involve different
input and output dimensions.1 Indeed, in order to share knowledge between two

1Even in the case of distributions defined on spaces of samedimensions, distances
among distributions such as the Kullback Leibler divergence or the optimal transport
raise issues related to the ill-definedness of KL divergence in the general case, or the
computational cost of optimal transport [Ganin et al. 2016].
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Meta-learning

Without meta-features With meta-features

Few Shot LearningDomain Adaptation ... Hand-crafted meta-features Learned meta-features

Thesis contributions
(Chapters 5 and 6)

Figure 3.1: Overview of meta-learning approaches, inspired from Van-
schoren [2019].

tasks, it is most desirable to assess their similarity. A key challenge of meta-
learning thus is to propose such a representation, a similarity or metric, to leverage
knowledge from previous tasks and allow for the lifelong learning of the agent.

Most generally, Meta-Learning is a crucial issue for the principled deployment of
AutoML systems. HPO is a black-box, expensive, and hard optimization problem,
as discussed and illustrated in the previous chapter. According to a few optimization
papers [Glorot and Bengio 2010, Kazimipour et al. 2013], the success of the search
and the ability to find reasonable solutions critically depend on the initialization of
the search. In practice, the initialization of the HPO search is often addressed along
with simple heuristics: selecting a set of generally promising configurations, based
on the AutoML archive, then running them on the current task to initialize the
performance model (more in Section 3.2.2). Despite its simplicity, this approach
can significantly boost the performance of Auto-Sklearn [Feurer et al. 2015a]
compared to a naive or random initialization.

The meta-learning application abovementioned relies on the transfer of knowl-
edge among tasks. For this reason, a fundamental issue for meta-learning and
efficient transfer is to build (formally define or learn) a similarity measure among
the said tasks. The simplest way to define such similarity is to embed the space
of instance tasks I (the set of datasets; see Figure 1.1) into a metric space.
Formally, a set of d descriptors named meta-features is defined as computable
functions from I onto IR. The embedding defined from I onto IRd thus is used,
setting the (dis)similarity of two tasks as the Euclidean distance of their images
in IRd. Two of the three contributions of this thesis are concerned with designing
new meta-features, supporting the meta-learning facets of AutoML.

3.2 . Literature Review
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A survey by Vanschoren [2019] structures the meta-learning domain in three
directions. The first research direction focuses on meta-learning based on lever-
aging hyper-parameter performances on a benchmark. The second research di-
rection concerns learning to adapt a model learned from an early task to a new
task. The last research direction aims to exploit dataset meta-features in order to
share knowledge across tasks, e.g., based on the similarity defined from the meta-
features. Indeed, these research directions are complementary, and some AutoML
systems might benefit from a combination of such approaches.

For the sake of consistency with the rest of the document, the state-of-the-art
presented below is structured into two categories: meta-learning without meta-
features and meta-learning with dataset meta-features. Figure 3.1 provides a high-
level overview of both research directions.

3.2.1 . Meta-learning without meta-features
Meta-learning without meta-features can proceed in various ways. Most ap-

proaches proceed by leveraging the performance of hyper-parameters to identify
similar tasks, based on the intuition that if hyper-parameters tend to behave simi-
larly on two tasks, then these tasks are similar. In other words, the hyper-parameter
performances are used in lieu of meta-features. This similarity is leveraged after
the task similarity (based on the hyper-parameter performance) is identified. The
HPO problem on the considered task can benefit from all information attached to
the neighbor tasks.

This strategy is followed in Collaborative Filtering based algorithm recommen-
dations, illustrated by Misir and Sebag [2017]. Formally, given an extensive archive
reporting the hyper-parameter performances on a dataset benchmark, matrix de-
composition is used to extract a latent representation of each dataset. This latent
representation is used to define a similarity, and ultimately the optimal hyper-
parameters for the similar tasks are recommended to the current task. Note that
it is an iterative process since the representation of the dataset changes as new
hyper-parameters are evaluated (and matrix decomposition is achieved anew). Fol-
lowing Misir and Sebag [2017], OBOE [Yang et al. 2019] incorporates additional
constraints on the optimization to encourage the recommendation of a cheap and
informative hyper-parameter at the beginning, yielding a better performance model
with reduced computational complexity. Along the same lines, Fusi et al. [2018]
use a probabilistic version of matrix factorization.

Other approaches are based on surrogate models, where each dataset is as-
sociated with a surrogate model predicting the configuration performance. Along
the same lines as above, two datasets are expected to be similar if and only if their
surrogate models are similar. Feurer et al. [2021b], Wistuba et al. [2018] proceed
as follows. Each known dataset is associated with a surrogate model expressed
as a Gaussian Process [Rasmussen and Williams 2005]. Then, another surrogate
model for the current (test) dataset is constructed and updated along with the
HPO iterations. Importantly, the final surrogate model of interest is the ensemble
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of all surrogate models (associated to known and current datasets), where each
model is weighted according to its similarity with the surrogate model of the test
task.

Yet another approach is based on multi-task learning. Swersky et al. [2013]
and Springenberg et al. [2016] simultaneously tackle multiple similar tasks and
share the related information. In practice, they consider surrogate models that
can handle multiple tasks, namely Swersky et al. [2013] use multi-task Gaussian
Processes, whereas Springenberg et al. [2016] use Bayesian Neural Networks. The
main requirement for this approach is that the considered tasks must be sufficiently
similar after the user’s expertise.

Another meta-learning approach relies on a global and static HPO strategy for
all tasks, determined by mining existing performance databases. In other words, one
aims to determine the configuration with the best performance expectation over
all tasks; the specifics of the current task are not considered. A simple strategy is
to rank all stored hyper-parameters according to some criterion, and recommend
the top-ranked hyper-parameters for any new dataset. The performance of this
strategy depends on the considered criterion. For instance, Abdulrahman et al.
[2018] introduce a criterion to account for accuracy and runtime, allowing an
important speed up. Instead of recommending the same set of hyper-parameters
for all tasks, van Rijn and Hutter [2018] leveraged 25.000 OpenML experiments
to identify important hyper-parameters and propose a prior distribution on each of
them. Similarly, [Pfisterer et al. 2021, Rijn et al. 2018] propose to learn default
values of the hyper-parameters by exploiting the OpenML database.

Last but not least, a hot Meta-learning trend is based on learning from prior
models. The goal of Transfer Learning is to adapt a model learned from a source
task into a model suited to a target task [Pan and Yang 2010]. This topic gains
some momentum, particularly in the field of deep neural networks, targeting the
adaptation to new (and rare) classes, referred to as Few Shot Learning [Finn et al.
2017, Snell et al. 2017, Doersch et al. 2020].

3.2.2 . Meta-learning with dataset meta-features
As already said, a meta-feature is a function or a computable procedure asso-

ciating a real value to a dataset. A set of d meta-features thus defines a vectorial
representation in IRd characterizing every dataset. A detailed discussion about the
main meta-features in the literature is presented in Section 3.3.1. A recent litera-
ture review of meta-features for machine learning is also presented in Rivolli et al.
[2022].

By embedding the set of datasets into the metric space IRd, meta-features
naturally induce a metric on the dataset space. Indeed, some abovementioned
approaches (Section 3.2.1) also aim to define a metric or dissimilarity on the dataset
space, using hyper-parameter performance as meta-features. The difference is
that meta-features are supposed to be inexpensive compared to hyper-parameter
performance. Some approaches combine both strategies [Fusi et al. 2018], using
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both meta-features and hyper-parameter performance to define a dissimilarity on
the dataset space.

Such a (dis)-similarity is used to support an HPO method, either during the
initialization phase or during the optimization search.

More precisely, the similarity is used during the initialization phase to warm-
start HPO algorithms. For instance, in AutoSkLearn [Feurer et al. 2015b], the
authors initialize a Bayesian Optimization process as follows:

• In the sense of the Euclidean distance defined from their meta-features, the
nearest neighbors of the current task are retrieved.

• For each nearest neighbor, its optimal hyper-parameter configuration θ is
launched on the current task, and the associated performance r(θ) is stored;

• The surrogate model associated with the current task is initialized from the
pairs (θ, r(θ)).

This surrogate model is used to warm-start AutoSkLearn in Feurer et al. [2015a],
and to achieve cold-start in the recommendation approach proposed by Fusi et al.
[2018] and Misir and Sebag [2017].

Meta-features can also be used to learn parameterized surrogate models. For
instance, Klein et al. [2017] learn surrogate models parameterized from the hyper-
parameter values and the dataset size, supporting a multi-fidelity approach (where
the estimated performance depends on both the configuration and the number of
samples in the dataset) and reducing the computational complexity. In Bardenet
et al. [2013], a single global surrogate model is learned and parameterized from both
hyper-parameter and meta-feature values, facilitating the sharing of information
across tasks.

3.3 . Dataset Meta-features for Meta-learning

This section focuses on the meta-features per se, either hand-crafted by experts
or learned from data. Two of our contributions lie in the field of meta-feature
learning.

3.3.1 . Hand-crafted meta-features
This section reviews the principal categories of hand-crafted meta-features

commonly used for AutoML. Unsurprisingly, a large amount of information can
be extracted from the dataset; depending on how they are computed, the meta-
features are divided into several categories, following Vanschoren [2019], Rivolli
et al. [2019], Alcobaca et al. [2020].

Statistical meta-features include all descriptive statistics of the dataset:
the number of examples/features/classes [Michie et al. 1994]; the ratio of
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target classes [Lorena et al. 2019]; the number of categorical and numeri-
cal features [Engels and Theusinger 1998]; sparsity [Salama et al. 2013], and
mean/variance/kurtosis coefficient of features [Ali and Smith-Miles 2006, Engels
and Theusinger 1998].

Information-theoricmeta-features include the relationship between the
target variable and feature variables of the dataset, such as the average mutual
information of each feature with the target variable [Kalousis and Hilario 2000,
Castiello et al. 2005], and target class entropy [Michie et al. 1994].

Geometric-based meta-features capture the geometry of points (where
a dataset is viewed as a set of points in Euclidean space), including the clustering
of points [Vilalta 1999], the distribution of classes [Ho and Basu 2002], and the
complexity of the classification [Peng et al. 2002, Lorena et al. 2019].

Landmark meta-features describe datasets by leveraging ML model per-
formances [Bensusan and Giraud-Carrier 2000, Pfahringer et al. 2000]. For the sake
of tractability, only inexpensive models are considered in general, including logis-
tic regression, latent Dirichlet allocation, decision trees, and one-nearest neighbor
algorithm.

Model-based meta-features cover all information that can be extracted
from a trained ML model. For instance, they can refer to the size of branches in a
decision tree algorithm, the importance of variables [Agresti 2002], or the impurity
of trees in Random Forest [Bensusan et al. 2000].

3.3.2 . Learning dataset meta-features
A last strategy consists in learning meta-features from a benchmark (set of

datasets with reported performances for quite a few hyper-parameter configurations
each). As said, the contributions presented in Chapters 5 and 6 fall in this category.

To our best knowledge, this strategy was less explored, mainly in the case of
tabular datasets, due to its complexity and the shortage of (meta)-data. On the one
hand, learning (meta)-features requires a sufficient number of (meta)-samples, here
datasets. However, the largest curated dataset benchmark OpenML CC-18 [Bischl
et al. 2017], yielding 72 binary and multi-class classification datasets, is insufficient
for a learning purpose. Indeed the complete OpenML benchmark includes a few
thousand datasets; unfortunately, many of those are deprecated versions of others,
and some are too limited (e.g., involving a single feature).

On the other hand, the learning setup relevant to learning meta-features is still
far from being clearly formalized. In vague terms, meta-features are good if and
only if they efficiently support an AutoML process.
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The state-of-the-art currently includes two approaches for learning meta-
features from a benchmark. In Sun and Pfahringer [2013], meta-features are
learned to estimate whether a given algorithm A outperforms an algorithm B,
for A and B ranging in a set of landmark models. The meta-feature associated
to each pair (A,B) is learned as a decision tree based on the hand-crafted meta-
features.

In Jomaa et al. [2021], Kim et al. [2018a], the sought meta-features are learned
by training neural networks. In [Kim et al. 2018b], a Siamese network is trained on
the top of the hand-crafted meta-features, where the loss is defined by requiring
that the learned meta-features of two datasets are similar if their top configurations
are similar. In Jomaa et al. [2021], neural networks taking sets of samples as input
are considered. Formally, the sought NN is trained to determine whether two
patches of data (each defined by a subset of features and samples) are extracted
from the same dataset; the meta-features are defined as the nodes in the last
NN layer. Note that the meta-features thus do not take into account the hyper-
parameter performances on each dataset.

The contribution presented in Chapter 5 takes inspiration from Jomaa et al.
[2021], with two main extensions. The first extension consists in setting the meta-
feature learning problem in the rigorously defined framework of distributional neural
networks [De Bie et al. 2019]. The second extension regards the goal (learning
loss) considered to learn the meta-features.

As will be discussed, the main limitation of this contribution regards the short-
age of benchmark data used to train the distributional NN. Hence, several (meta)-
data augmentation are considered; still, NN training requires a sufficient amount
of information that is hardly available in the context of AutoML.

The second contribution, presented in Chapter 6 addresses the above limitation
by restricting the search space for the learned meta-features, and only considering
linear combinations of the hand-crafted meta-features. As will be experimentally
shown, this restriction not only results in significant improvements but also sheds
some light on the relevance of hand-crafted meta-features in the context of a
particular learning algorithm.
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Part II

Hyper-Parameter Optimization
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4 - Automated Machine Learning with
Monte-Carlo Tree Search

This chapter describes the first contribution of this thesis. As said (Sec-
tion 1.3), AutoML tackles a black-box, structured and expensive optimization
problem (Equation 1.1). Our first contribution focuses on the Hyper-Parameter
Optimization problem involved in AutoML. The mixed (structured and parametric)
optimization is handled using a hybrid HPO approach, mixing Monte Carlo Tree
Search (MCTS), to handle the structured aspects, and Bayesian Optimization (to
be sample efficient). The resulting approach is dubbed Monte-Carlo Tree Search
for Algorithm Configuration (Mosaic).

The chapter is organized as follows. Section 4.1 first discusses the position of
the problem and advocates the use of a hybrid approach. Section 4.2 introduces
the formal background and presents MCTS, for the sake of self-containedness.
Section 4.3 gives a detailed overview of the proposed Mosaic approach. The
experimental setting and the goals of experiments are presented in Section 4.4.
Finally, Section 4.5 reports on the empirical validation of Mosaic on the OpenML
benchmark suite and the Scikit-learn portfolio.

4.1 . Position of the problem

A key difficulty of the AutoML optimization problem lies in the structure of
the search space: an ML pipeline is a series of selected modules or components
(algorithms), and a vector of hyper-parameters (possibly of varying dimension) is
attached to each component. The AutoML task thus combines a combinatorial
optimization problem (selecting the components of the pipeline structure) and a
parametric optimization problem (optimizing the hyper-parameters of each selected
component). The nature of the former optimization problem (finding pipeline
structure) is arguably very different from the latter one (tuning hyper-parameters).
This suggests that an algorithm best suited to structure optimization may be less
efficient to achieve hyper-parameter tuning, and vice-versa.

Note that most AutoML approaches tackle both problems using a single opti-
mization approach technique (CASH, Section 2.2). The originality of Mosaic is to
use specific optimization approaches, one for each problem, and to tightly couple
them (Section 4.3).

Formally, the combinatorial optimization of the pipeline structure is tackled as
a sequential decision process, and Monte-Carlo Tree Search (MCTS) [Kocsis and
Szepesvári 2006] is adapted to solve this sequential problem efficiently. On the
other hand, the celebrated Bayesian optimization (BO) approach [Mockus 1989]
efficiently handles expensive black box optimization problems, and it has been used
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in particular in the context of hyper-parameter tuning [Hutter et al. 2011, Bergstra
et al. 2011, Bardenet et al. 2013, Swersky et al. 2014].

Taking the best of both worlds, Mosaic combines MCTS and BO to tackle
the AutoML problem efficiently. The coupling of both approaches is enforced as
MCTS and BO share a single surrogate performance model, used to guide the BO
search for the hyper-parameter optimization and the MCTS search for the pipeline
structure.

4.2 . Formal background

After formalizing AutoML as a sequential optimization problem, this section
presents the Monte-Carlo Tree Algorithm [Kocsis and Szepesvári 2006] for the sake
of self-containedness. Its adaptation to the context of the per-instance AutoML
problem is last described.

4.2.1 . AutoML as a Sequential Decision Problem
Following the CASH formalization (Section 2.2), the search space for `-size ML

pipelines is noted X =
⋃

(a1,...a`)∈A1×...×A`
(a1,Θ(a1))× . . .× (a`,Θ(a`)), where:

Ai is the finite set of i-th pipeline components, and Θ(ai) is the hyper-parameters
space of component ai. Algorithm and component are used interchangeably in the
remainder of the chapter.

The straightforward formalization of AutoML as a sequential decision problem
consists of considering the sequence of decisions, selecting each pipeline component
and its hyper-parameters according to a fixed ordered sequence of ` decisions.
Examples of such decisions include the choice of the data pre-processing, feature
selection, and learning algorithms.

A k-pipeline structure (k-ps) is a k-tuple s = (a1, . . . ak) ∈ A1 × . . . × Ak,
with k ≤ `. Given a k-ps s, any x ∈ X with same first k decisions as s is said to
be compatible with x (noted s 4 x) and the subset of pipelines compatible with s

is noted X(s) = {x ∈ X; s 4 x}.
A default distribution D is defined on X, involving a uniform distribution on

all Ai and, conditionally to the selected ai, uniform distribution on the (bounded)
Θ(ai). The default distribution on X(s) is defined similarly.

4.2.2 . Monte-Carlo Tree Search
Monte-Carlo Tree Search (MCTS) is a tree-structured extension of the multi-

armed bandit (MAB) algorithm [Lattimore and Szepesvári 2020]. As said (Sec-
tion 2.1), a MAB is concerned with single state decision problems, aimed to select
the action among a finite set of action that gets the best reward in expectation. In
contrast, MCTS handles sequential decision problems, where a sequence of deci-
sions is needed to get a reward. In other words, MCTS is best suitable for planning
problems or games, as was amply demonstrated for the game of Go [Silver et al.
2016].

36



MCTS handles sequential decision making along a tree-structured approach,
where each decision at any step is managed by a MAB algorithm. The relations
among actions are expressed through the tree structure. Each (completed) tree
path corresponds to a solution, list of decisions and is associated with a reward (or
feedback score). The final outcome of MCTS is an optimal path of the tree space,
representing the optimal sequence of decisions.

In most cases (e.g. the game of Go) the tree-structured space X has a high
branching factor; thus, considering an exhaustive search strategy is intractable.
Therefore, instead of brute-forcing, MCTS iteratively explores the tree space while
gradually biasing the exploration toward the most promising regions of the search
space. Formally, MCTS iteratively proceeds as follows. Each iteration, correspond-
ing to a tree-walk (Figure 4.1), involves four phases [Gelly and Silver 2007]:

Down the MCTS tree: The first phase traverses the MCTS tree from the
root node. In each (non-leaf) node s of the tree, the next node s.a to visit is
selected among the child nodes of s classically using the multi-armed bandit Upper
Confidence Bound criterion [Kocsis and Szepesvári 2006]:

select arg max
a

{
µ̂s.a + Cucb

√
log n(s)

n(s.a)

}
(4.1)

with µ̂s.a the average reward gathered over all tree-walks with prefix s.a, n(s)

(resp. n(s.a)) the number of visits to node s (resp. node s.a), and Cucb a
problem-dependent constant that controls the exploitation vs exploration trade-
off;

Expansion: When arriving at a leaf node, a new child node is added. The
choice of the new node can be guided using, e.g., Rapid Action Value Esti-
mate [Gelly and Silver 2011]. Following the Progressive Widening strategy [Couë-
toux et al. 2011], the number of considered options is gradually extended with
the number of visits ni to the current node. Formally, when the integer value of
n(s, a)PW is incremented, a new value is considered, with PW the coefficient of
progressive widening (usually 1/2).

Playout: After the expansion phase, a playout strategy is used to complete the
tree-walk until reaching a terminal node and computing the associated reward. A
simple playout strategy is to choose the remaining nodes uniformly.

Back-propagation: The reward is back-propagated along the current path,
incrementing n(s) for all visited nodes and updating the value of each node s,
noted µ̂s, accordingly.
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Figure 4.1: Monte-Carlo Tree Search: each iteration includes four
phases, from [Chaslot et al. 2008]

4.2.3 . Per-instance AutoML
This section briefly situates the main AutoML components that will be handled

in the MCTS search.

Surrogate model-based optimization (SMBO). As said (Section 2.1),
most approaches rely on a surrogate model F̂ of the objective function F , it-
eratively exploiting F̂ to make a decision and updating F̂ on the basis of the
current reward. At step t, surrogate model F̂t : X 7→ IR is learned from the
set {(xu,F(xu)), u = 1 . . . t} gathering the previously selected pipelines and their
associated performances.

Surrogate models are often exploited along Bayesian optimization (BO)
[Mockus 1989]. Formally, if model F̂t yields an estimate of the performance for any
given x and the confidence of this estimate, the most promising x∗t+1 is determined
by maximizing the acquisition function, e.g., Expected Improvement (EI) [Jones
et al. 1998] compared to the current best value F(x∗t ).

The main difficulty lies in the structure of space X. In all generality, this
space includes categorical variables (e.g., the name of the pre-processing or ML
algorithms) and continuous or integer variables, the number and range of which
depend on the value of the categorical variables (e.g., the hyper-parameters of the
retained algorithms). Diverse surrogate model hypothesis spaces were considered
to cope with the structured of the search space: Sequential Model-based Algorithm
Configuration (SMAC) [Hutter et al. 2011] uses Random Forests [Breiman 2001];
[Bergstra et al. 2011] use a Tree-structure Parzen Estimator.

Another issue is the distribution used to sample the configuration space to
optimize the acquisition function. For instance, Auto-Sklearn, as it uses SMAC,
considers a small number of configurations close to the best-so-far pipelines, aug-
mented with a large number of uniformly sampled pipelines.
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Search initialization Several approaches are used to address the initializa-
tion of the search process, long known to be critical for ill-posed optimization
problems [Glorot and Bengio 2010, Kazimipour et al. 2013]. Such approaches
include Meta-learning strategies (Chapter 3), leveraging knowledge from similar
previous tasks and selecting the initial candidates xu’s as the best configurations
for these previous tasks.

Specifically regarding SMBO, what matters is the accuracy of the surrogate
model in the worth part of the search space; this accuracy is governed by the
selection of the xu’s. In Auto-Sklearn.MetaLearning for instance, the xu’s are
selected based on an archive {(zi,xi)} where the meta-feature vector zi describes
the i-th dataset and xi is the best-known pipeline for this dataset. Letting z denote
the meta-feature vector associated with the current dataset, its nearest neighbors
in the archive (in the sense of the Euclidean distance on the meta-feature vector
space) are computed, and the xis associated with these neighbors are used by
Auto-Sklearn as first configurations [Feurer et al. 2015a].

Model ensembling The merits of ensemble learning are long known in terms
of accuracy and robustness. Along this line, an ensemble of ML models is often
used in AutoML instead of a single model, taking advantage of the fact that the
sequence of solutions found by an AutoML process can be exploited in the spirit of
ensemble learning. [Caruana et al. 2004] propose a simple and efficient procedure
to compute an optimal ensemble from a set of models. This approach is adapted
to the AutoML context as follows.

Starting with an empty set S, iterate over the pipelines and add it into S if
only if the weighted sum of the pipelines improves the validation score. Then,
leveraging the same strategy, Auto-Sklearn.Ensemble iteratively recomputes the
optimal ensemble each time a new configuration is launched, yielding a new model.

4.3 . MCTS-aided Algorithm Configuration

This section details how Mosaic tackles the combinatorial and the parametric
optimization problems at the core of AutoML, respectively concerned with the
selection of the algorithms in the pipeline, a ∈ A, and the tuning of their hyper-
parameters, θ(ai) ∈ Θ(ai) for each algorithm ai in a.

4.3.1 . Two intertwined optimization problems
Along the mainstream CASH formalization (Section 2.2), the difficulty comes

from the fact that the abovementioned optimization problems do not have the
same nature and search spaces.1 However, handling them in a separate way raises

1Furthermore, the optimization of θ(ai) is of varying dimension, possibly depend-
ing on the value of some coordinates in θ(ai), e.g. the number of neural layers con-
trols the dimension of the neural layer size.
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a key issue: The optimization objective is non-separable. Formally, the marginal
performance of aj depends on all other ak, k 6= j and on θ(a). Likewise, the
marginal performance of θ(aj) depends on all ak and θ(ak) for k 6= j.

The naive approaches, e.g. optimizing θ(a) for every considered a, or es-
timating the performance of a from a few samples of θ(a), are intractable for
computational reasons.

Mosaic addresses this challenge along an original hybrid approach, tackling
both structural and parametric optimization problems using two coupled strategies.
MCTS is used to tackle the structural optimization of a and Bayesian optimization
is used to tackle the parametric optimization of θ(a). The coupling of MCTS
and BO is achieved as they both rely a single surrogate model F̂ on the overall
pipeline spaceX, learned and maintained using all computed performances F(xu =

(au, θ(au))), with F be the true performance function.
The difference between Mosaic and Auto-Sklearn (respectively most other

AutoML approaches) is that the combinatorial optimization part in Mosaic is
based on MCTS as opposed to BO (resp., their own optimization methods).

4.3.2 . Partial surrogate models
This subsection details the surrogate models involved in Mosaic.
Regarding the combinatorial optimization of the pipeline structure with MCTS,

the difficulty is to estimate the performance of an incomplete structural pipeline s,
where only part of the modules are selected. This partial approximate performance
is estimated through a surrogate performance model Q

F̂
, which is derived from

F̂ . The Q
F̂
performance is used during the expansion and play-out steps, allowing

the selection of promising pipelines to guide the completion of s. Finally, during
the back-propagation step, the true performance of the evaluated pipeline is used
to refine the value of the tree-walk s.

For k < `, let s be a k-ps, and let s.a denote the (k + 1)-ps built from s by
selecting a as (k + 1)-th decision. Then the surrogate Q

F̂
is defined as:

Q
F̂

(s, a) = IEx∼D[X(s.a)]

(
F̂(x)

)
≈ 1

ns

ns∑
j=1

F̂(xj) (4.2)

estimated from a number ns (ns = 100 in the experiments) of configurations
sampled in X(s.a).2

A probabilistic selection policy π can then be built from Q
F̂
, with:

π(a|s) =
exp

(
Q
F̂

(s, a)
)∑

b∈Ak
exp

(
Q
F̂

(s, b)
) (4.3)

Taking inspiration from Silver et al. [2016], this policy is used to enhance the
MCTS selection rule (below).

2Note that, since the purpose ofQF̂ (s, a) is to estimate the importance of an algo-
rithm a, other alternative approaches Hutter et al. [2014], van Rijn and Hutter [2018]
can be adopted to compute this estimate more efficiently.
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4.3.3 . The Mosaic algorithm
The Mosaic algorithm is described in Alg. 2, following the general MCTS

scheme (Section 4.2.2), where the main four phases are modified as follows.

Down the MCTS tree (selection) In a non-leaf node s of the MCTS tree,
with s a k-ps, the child node a is selected in Ak using the AlphaGo Zero criterion:

argmax
a

(
Q(s, a) + Cucb ∗ π(a|s) ∗

√
n(s)

1 + n(s.a)

)
(4.4)

where Q is the median3 of F(x) for all x in X(s.a), π(a|s) is defined by
Eq.(4.3), n(s) is the number of times s was visited, and Cucb is the usual constant
controlling the exploration vs exploitation trade-off (with default value .6).

Expansion In a leaf node s of the MCTS tree, with s a k-ps, the child node a
in Ak that maximizes the surrogate performance Q

F̂
(s, a) is added to the MCTS

tree.

Playout Letting s be the (possibly complete) k-ps, a full pipeline x with s 4
x is defined using a sampling playout strategy. Three sampling strategies are
considered:

A a configuration is sampled according to the default distribution D(X(s));

B a local search around the best recorded pipeline (a∗, θ∗) in X(s) is achieved
and the best configuration according to F̂ is retained;

C a number of configurations is sampled after D(X(s)) in X(s), together
with a few configurations sampled via a local search around (a∗, θ∗), and
the sample x that maximizes the Expected Improvement of F̂ is retained.
This strategy is similar as in SMAC [Hutter et al. 2011].

In all cases, the true performance F(x) of the retained configuration is computed.
Early experiments were conducted to assess these strategies, showing that:

strategy A is slow and prone to overfitting; strategy B causes a loss of diversity
of the considered pipelines, eventually resulting in a poor surrogate performance
model F̂ . Hence only the third strategy C is considered thereafter: the sampled
configurations include nr (nr = 1, 000 in the experiments) configurations sampled
from default distribution D(X(s)), augmented with pipelines nearest4 to (a∗, θ∗).

3The average was also considered, giving very similar results, except in rare cases
of heavily failed runs.

4Formally, one selects every (a′, θ′) such that either a′ = a∗ and θ′ differs from θ∗

by a single hyper-parameter value; or a′ differs from a∗ by a single decision and θ′ is
the default hyper-parameter vector θ(a′).
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Algorithm 2:Mosaic Vanilla
1 Procedure Selection(s)

input : Incomplete pipeline s.
33 let alast be the last algorithm in s
4 while alast is a non-leaf node of the MCTS tree do
66 a← Select child node of alast using Equation 4.4
88 return Selection(s.a)
9 end
1111 return s

1 Procedure Expansion(s)
input : Incomplete pipeline s.

2 return argmaxaQF̂ (s, a)

1 Procedure Playout(s)
input : Incomplete pipeline s.

33 let S be a set of complete pipelines drawed from D[X(s)]
/* Neighbors(x) outputs the neighbors of pipeline

x. */
55 N ← Neighbors(x∗s), with x∗s ∈ X(s) best pipeline seen so

far compatible with s
77 return argmaxx∈S∪N EI(x)

1 Procedure Mosaic(T, d)
input : Number of iterations T , dataset d.

2 for t in {1..T} do
44 s← Selection(Ø)
66 a← Expansion(s)
88 x← Playout(s.a)
1010 Train pipeline x on dataset d and observe performance r

1212 n(a)← 1;Q(s, a)← r
13 foreach a ∈ ancestors(s) do
1515 Update Q at node a with r
1717 n(a)← n(a) + 1

18 end
19 end
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Back-propagation Performance F(x) is back-propagated up the tree along
the current path, and the Q value attached to each node of the path is updated.
Example (x,F(x)) is added to the surrogate training set, and the surrogate per-
formance model F̂ is trained anew.

Stopping criterion The algorithm stops after the computational budget is
exhausted (one hour per dataset in the experiments).

4.3.4 . Initialization and Variants
The order of the decisions in the structural pipeline is key to the optimization:

while MCTS yields asymptotic optimality guarantees, the discovery of good deci-
sions can be very significantly delayed due to poorly informative or unlucky starts
[Coquelin and Munos 2007]. For this reason, the order of decisions in the structural
pipeline is fixed once for all, with the first decision made at the root node of the
tree being the choice of the learning algorithm (associated with a default complete
pipeline).

Mosaic.Vanilla The initialization proceeds as follows: For each learning algo-
rithm (s = (a) with a ∈ A1), its default complete pipeline is launched, together
with κ (= 3 in the experiments) other pipelines sampled from X(s), and their
associated performances are computed. The initial surrogate model F̂ is trained
from the set of all such (x,F(x)) and Q

F̂
(∅, a) is initialized for a in A1.

Mosaic.MetaLearning borrows Auto-Sklearn its better informed initializa-
tion, where the first 25 configurations are the best recorded ones for each of the
nearest neighbors of the current dataset, in the sense of the meta-feature distance.
The next configurations are selected as in Mosaic.Vanilla, and the actual search
starts thereafter.

Mosaic.Ensemble is similar to Mosaic.Vanilla, but returns the compound
model defined as a weighted sum of the models computed along the AutoML
search [Caruana et al. 2004], using an online ensemble building strategy as in Feurer
et al. [2015a].

4.4 . Experimental Setting

This section details and discusses the experiments conducted to validate Mo-
saic.

4.4.1 . Goals of experiment
The goal of experiments is two-fold: (i) to assess the efficiency of Mosaic

compared to baselines; (ii) to investigate the relative impacts of Mosaic variants,
and its sensitivity w.r.t. its own hyper-parameters.
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Comparison w.r.t to baselines. The empirical validation of Mosaic firstly
aims to assess its performance compared to Auto-Sklearn [Feurer et al. 2015a],
that consistently dominated other systems in the international AutoML challenges
[Guyon et al. 2015]. The other AutoML system used as baseline is the evolutionary
optimization-based5 TPOT (v0.9.5) [Olson et al. 2016].

Analysis ofMosaic hyper-parameters and variants. The second goal
of experiments is to better understand the specifics of the AutoML optimization
problem. A first issue regards the exploration vs exploitation trade-off on the struc-
tural vs parametric subspaces, and the respective merits of MCTS and Bayesian
optimization on the structured space.
A second issue regards the impact of the MetaLearning initialization. MCTS is no-
torious to achieve a consistent though moderate exploration, which as said might
slow down the search in case of unlucky early choices. A smart initialization pro-
cedure aims to mitigate such hazards.

4.4.2 . Experimental setting
Search space For the sake of a fair comparison, Auto-Sklearn andMosaic are
compared on the same AutoML search space, defined from the scikit-learn library
[Pedregosa et al. 2011]. Both Auto-Sklearn and Mosaic search spaces involve 16
ML algorithms, 13 pre-processing methods, 2 categorical encoding strategies, 4
missing values imputation strategies, 6 rescaling strategies and 2 balancing strate-
gies (Table A.1-A.4, Appendix A.1). The size of the structured search subspace
is 6,048 (due to dependencies). The overall parametric search space has dimen-
sionality 147 (93 categorical, 32 integer, and 47 continuous hyper-parameters), all
managed through the ConfigSpace library [Lindauer et al. 2019]. Each hyper-
parameter ranges in a bounded discrete or continuous domain. For each configu-
ration x = (a, θ(a)), θ(a) involves a dozen scalar hyper-parameter on average.

Mosaic hyper-parameters Mosaic shares the hyper-parameters of SMAC
(therefore Auto-Sklearn), and involves 3 additional hyper-parameters: the number
ns of samples to compute Q

F̂
(Equation 4.2, with default value ns = 100), the

Cucb weight controlling the exploration vs exploitation tradeoff (Equation 4.4),
with default value Cucb = 1.3, and the coefficient of progressive widening PW
controlling the branching factor of the MCTS tree, with default value PW = 0.6.
The SMAC hyper-parameters (shared with Mosaic) include: the number nr of
uniformly sampled configurations, and variance ε = .2 for the local search used to
tune the acquisition function of the BO.

5AlphaD3M [Drori et al. 2019] and AutoStacker [Chen et al. 2018] could not be
considered due to the lack of a public code.
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Computational resources Computational runtimes are all measured on an
AMD Athlon 64 X2, 5GB RAM.

Benchmark suite All considered AutoML systems are assessed on the
OpenML 100 repository [Bischl et al. 2017], including 100 binary and multi-class
classification problems (each with a training and a test sets). The overall compu-
tational budget is set to 1 hour for each dataset. For all systems, every considered
configuration x is launched to learn a model from 70% of the training set with a
cut-off time of 300 seconds, and performance F(x) is set to the model accuracy
on the other 30%. After 1 hour, for each system the best configuration x∗ is
launched to learn a model on the whole training set and its performance on the
(unseen) test set is reported. The system performance on this dataset consists of
the performance (averaged over 10 independent runs) and its standard deviation.

For each dataset, the performances achieved by all systems are ranked (the
lower the better). The main performance indicator associated to each system in
the following is its average rank over all datasets.

As the rank indicator might be blurred when many systems and their vari-
ants are considered together, duels between pairs of systems (Mosaic.X against
Auto-Sklearn.X, where X ranges in Vanilla, Meta-Learning, Ensemble, Meta-
Learning+Ensemble, Section 4.3.4), are considered. The actual performance (ac-
curacy) of the best confgurations will also be reported for a more in-depth discus-
sion.

4.5 . Empirical Validation

4.5.1 . Comparison with baselines
For the sake of a fair comparison, the assessment is carried out separately for

Mosaic vanilla and its variants.

Vanilla variants The comparative performances of Vanilla Auto-Sklearn,
TPOT and Mosaic vs computational time are displayed on Figure 4.2 (see also Fig-
ure 4.4-a), showing that the hybrid optimization used in Mosaic clearly improves
on the Bayesian optimisation-only used in Auto-Sklearn (and on the evolutionary
optimization-only used in TPOT), for whichever computational resources.

A complementary perspective on the respective performances of Mosaic and
Auto-Sklearn in terms of the predictive accuracy of the best configurations is
displayed on Figure 4.3. According to a Mann-Whitney-Wilcoxon test with 95%
confidence, and if considering the median performance, Mosaic significantly out-
performs Auto-Sklearn on 21 datasets out of 100; Auto-Sklearn outperforms
Mosaic on 6 datasets out of 100.

Mosaic improves on Auto-Sklearn on 35 other datasets (though not in a
statistically significant way), and the reverse is true on 18 datasets. Both are equal

45



Figure 4.2: Average performance ranks (lower is better) on OpenML-
100 vs CPU time of the Vanilla versions of Mosaic (bottom), Auto-
Sklearn (middle), and TPOT (top). Better seen in color.

Figure 4.3: Performance of Mosaic (y-axis) versus Auto-Sklearn (x-axis)
on OpenML-100. Datasets for which the difference is statistically signif-
icant (resp. insignificant) after Mann Whitney Wilcoxon test with confi-
dence 5% are represented with a × (resp •).
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Figure 4.4: Average performance rank (lower is better) on OpenML-
100 vs CPU time of the different variants of Mosaic (bottom curve on
all plots but the Metalearning) and Auto-Sklearn.

Stat. significant Insignificant
Mc > As Mc < As Mc = As Mc > As Mc < As Mc=As

Vanilla 21 6 10 35 18 8
Ensemble 11 12 6 38 16 15

MetaLearning 15 14 8 24 23 14
MetaL+Ens. 15 17 2 24 19 21

Table 4.1: Per dataset comparison statistics of the median per-
formance between Mosaic and Auto-Sklearn variants, with Mann-
Whitney-Wilcoxon test confidence level of 5% or not.

on 18 datasets and both systems crashed on 2 datasets.

MetaLearning and Ensemble variants The impacts of the MetaLearning
and Ensemble heuristics are displayed on Figure 4.4. The difference noted for
the Vanilla variants (with Mosaic mostly dominating Auto-Sklearn) is less visible
for the Ensemble variants. For the MetaLearning variants and MetaLearning +
Ensemble variants, the difference between Auto-Sklearn and Mosaic is no longer
statistically significant.

A closer inspection of the results reveals that the best Auto-Sklearn config-
uration is nearly always among the initial ones: Auto-Sklearn.MetaLearning thus
mostly explores the close neighborhood of the initially selected configurations. In
the meanwhile, Mosaic more thorough exploration strategy entails a bigger risk of
overfitting, discovering configurations with better performance on the validation
set, at the expense of the performance on the test set.

For each variant (Vanilla, Ensemble, MetaLearning, and MetaLearn-
ing+Ensemble), Table 4.1 reports the number of datasets for which Mosaic out-
performs Auto-Sklearn, and vice-versa, indicating whether the difference of per-
formance is statistically significant in the sense of a Mann-Whitney-Wilcoxon test
with confidence level 5% on the median performances.

4.5.2 . Assessment of Mosaic variants
Figure 4.5 displays the respective impacts of the Mosaic variants, showing

the ranks of the Vanilla, MetaLearning, Ensemble and MetaLearning+Ensemble
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Figure 4.5: Average performance rank (lower is better) of Mosaic vari-
ants on OpenML-100.

performances versus time. The main improvement is due to the MetaLearning
strategy, yielding a better initialization of the optimization process. Overall, the
best variant is the one combining MetaLearning and Ensembling, although the
Ensembling variant standalone yields a very moderate improvement on the Vanilla
variant.

4.5.3 . Sensitivity of Mosaic hyper-parameter
Complementary experiments are conducted to assess the sensitivity of Mo-

saic.Vanilla w.r.t. its own hyper-parameters. For computational reasons, only 30
datasets out of 100 are considered, and Mosaic.Vanilla is run 5 times with one
hour budget on each dataset.

Figure 5 displays the average rank of Mosaic.Vanilla at the end of the learning
curve compared to Auto-Sklearn.Vanilla, for Cucb ranging in {.1, .3, .6, 1, 1.3, 1.6}
and PW in {1, .8, .7, .6, .5}. Overall, Mosaic dominates Auto-Sklearn for 24 set-
tings out of 30 (with a rank less than 1.5).

Likewise, the sensitivity w.r.t. hyper-parameter ns is assessed for Cucb = 1.3

and PW = .6. Figure 6 displays the average rank vs time of Mosaic.Vanilla for ns
ranging in 50, 100, 500, 1000, showing the low sensitivity of the approach w.r.t.
ns for these (representative) values of Cucb and PW .

4.6 . Partial conclusion

The main contribution of this work is the new Mosaic scheme, tackling the
AutoML optimization problem through handling the structural and the parametric
optimization problems. The proposed approach is based on a novel coupling of
Bayesian Optimization and MCTS strategies, sharing the same surrogate model.
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Figure 4.6: Sensitivity study w.r.t. Cucb and coefficient of progressive
widening (during expansion phase): Average rank ofMosaic.Vanilla (for
nr = 100) w.r.t. Auto-Sklearn.Vanilla (the lower, the better). Better seen
in color (the darker the better).

Figure 4.7: Sensitivity study w.r.t. parameter ns: Average rank of Mo-
saic.Vanilla (for Cucb = 1.3 and PW = 0.6) w.r.t. Auto-Sklearn.Vanilla.
Better seen in color (Mosaic in blue and Auto-Sklearn in red).
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In MCTS the surrogate model is used: i) to estimate, in any node, the average
performance of all pipelines below this node, and thus to choose the next node; ii)
to choose the optimal hyper-parameters of the pipeline using Bayesian Optimization
during the roll-outs.

The empirical validation of the approach demonstrates the merits of Mosaic
compared to the challenge winner Auto-Sklearn on the OpenML benchmark suite,
at least as long as the Vanilla and Ensemble variants are considered. With the
MetaLearning variant however, the difference becomes insignificant as the bulk of
optimization is achieved during the initialization phase.

Two lines of research emerge as a perspective for further works.

Better initialization with better meta-features The performance of
the MetaLearning variant confirms the importance of the initialization strategy and
thus motivates an in-depth study over the meta-features. Concretely, the question
becomes that of learning better meta-features than the hand-crafted ones. As
discussed (Chapter 3), the learning of meta-features faces critical difficulties (the
shortage of dataset benchmarks, the unknown target metric); the next two chapters
are devoted to tackling these difficulties.

Variable-length ML pipeline Another interesting line of research is on
adapting Mosaic to account for variable-length pipelines [Wever et al. 2018b].
If the MCTS algorithm naturally copes with such a setting, a few limitations still
need to be addressed. A formal definition of the variable-length search space is
required to ensure that sampled pipelines are admissible (trainable). de Sá et al.
[2017], Estevez-Velarde et al. [2019], Marinescu et al. [2021] propose to formalize
the search space using grammars [Chomsky 1990]. In their work, Marinescu et al.
[2021] compare a greedy exploration of the constructed grammar, dubbed PIPER,
with Mosaic. Their results suggest that Mosaic consistently outperforms PIPER
during the first hour of training, but then PIPER starts to slightly improve over
Mosaic. Incorporating MCTS strategy to search over the pipeline grammar is thus
a promising future work.

Another challenge is to adapt the surrogate models in Mosaic to handle the
varying input dimension. A promising direction, taking inspiration of the Neural
Architecture Search [Zoph and Le 2017], is to learn the surrogate model using
recurrent NN, e.g. LSTM [Hochreiter and Schmidhuber 1997].
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Part III

Learning Dataset
Meta-Features
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5 - Distribution-Based Invariant Deep Net-
works for Learning Meta-Features

The Part III of this manuscript is devoted to meta-learning, complementary
to the optimization aspects of AutoML discussed in Part II. While a number of
approaches, detailed in Chapter 3, have been deployed to tackle meta-learning,
the presented research focuses on learning dataset meta-features. As a second
contribution of the thesis, this chapter introduces the Distribution-based Invariant
Deep Architecture framework (Dida), a neural architecture which operates at the
dataset level.

The motivations and preliminaries are discussed in Section 5.1 and 5.2. Sec-
tion 5.3 details the proposed Dida approach, followed by its theoretical analysis
in Section 5.4.1. Finally, the empirical validation of the approach is discussed in
Section 5.5.

5.1 . Motivation

At the core of this Part III, one aims to build representations of datasets through
learned meta-features. Meta-features, meant to represent a dataset as a vector of
characteristics, have been mentioned in the ML literature for over 40 years [Rivolli
et al. 2022]. A large number of meta-features have been manually designed along
the years (detailed in Section 3.3.1, Chapter 3).

However, there exists little evidence that these hand-crafted meta-features ac-
curately capture the underlying joint distribution between datasets and ML perfor-
mances. It is likely that the set of optimal meta-features depends on the AutoML
task and ML algorithm at hand. For example, statistics-based meta-features (e.g.
the information gain of a dataset feature), might be more relevant to learning De-
cision Trees than Support Vector Machines. For these reasons, previous works [Sun
and Pfahringer 2013, Jomaa et al. 2021] attempt to learn new sets of meta-features
either from scratch or on the top of the hand-crafted meta-features.

The second contribution of the manuscript, detailed in the present chapter,
aims to learning dataset meta-features from scratch, that is by processing datasets
as in Dataset2Vec [Jomaa et al. 2021]. The challenge is to devise an ML set-
ting accommodating datasets as input while enforcing the invariance proprieties of
meta-features w.r.t the features and rows permutations. The proposed Dida ar-
chitecture addresses the aforementioned challenge using distributional neural nets,
as will be detailed in Section 5.2.

5.2 . Preliminaries
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Notations J1; mK denotes the set of integers {1, . . .m}. Distributions, in-
cluding discrete distributions (datasets), are noted in bold font. Sets are noted in
capital letters. Vectors are noted in italic, with x[k] denoting the k-th coordinate
of vector x.

5.2.1 . Invariant Neural Network architectures
Deep networks architectures, initially devised for structured data such as images

and speech, are extended to enforce some invariance or equivariance properties
(defined below) [Shawe-Taylor 1993] for more complex data representations. The
merit of invariant or equivariant neural architectures is twofold. On the one hand,
they inherit the universal approximation properties of neural nets [Cybenko 1989,
Leshno et al. 1993]. On the other hand, the fact that these architectures comply
with the invariances attached to the considered data representation yields more
robust and more general models through constraining the neural weights and/or
reducing the number of weights, as examplified by convolutional networks. For
instance, when considering point clouds [Qi et al. 2017] or probability distributions
[De Bie et al. 2019], the network output is required to be invariant with respect to
permutations of the input points. Invariance and equivariance properties are both
defined in Definition 3 and 4.

Definition 3. (Invariance) Let f : X 7→ Y be a function with input (resp.
output) domainX (resp. Y ), and σ be an operator defined onX . The function
f is said to be invariant under operator σ iff f(σ(x)) = f(x) for all x inX .

Definition 4. (Equivariance) Let f : X 7→ X be a function on domain X ,
and σ be an operator defined on X . The function f is said to be equivariant
under operator σ iff f(σ(x)) = σ(f(x)) for all x inX .

Neural architectures enforcing invariance or equivariance properties were pio-
neered by [Qi et al. 2017, Zaheer et al. 2017] for learning from point clouds subject
to permutation invariance or equivariance. These are extended to permutation
equivariance across sets [Hartford et al. 2018]. Characterizations of invariance or
equivariance under group actions are proposed in the finite [Ravanbakhsh et al.
2017] or infinite case [Kondor and Trivedi 2018].

On the theoretical side, [Maron et al. 2019, Keriven and Peyré 2019] propose a
general characterization of linear layers enforcing invariance or equivariance proper-
ties with respect to the whole permutation group on the feature set. The universal
approximation properties of such architectures are established in the case of sets
[Zaheer et al. 2017], point clouds [Qi et al. 2017], discrete measures [De Bie et al.
2019], invariant [Maron et al. 2019] and equivariant [Keriven and Peyré 2019]
graph neural networks. [Maron et al. 2020] presents a neural architecture invariant
w.r.t. the ordering of points and their features, handling point clouds.
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The novelty of Dida is to handle continuous and discrete probability distribu-
tions, extending state-of-the-art approaches dealing with point clouds [Maron et al.
2020, Jomaa et al. 2021]. This extension yields more general approximation results
(Section 5.4) based on the weak convergence of distributions. Compared to the
set representation, considering datasets as distributions is best suited to capture
density related meta-features.

5.2.2 . Problem Definition
Let z= {(zi) ∈ IRd, i ∈ J1; nK} denote a dataset including n labelled samples,

where zi = (xi, yi) with xi ∈ IRdX an instance and yi ∈ IRdY the associated
multi-label. With dX and dY respectively the dimensions of the instance and label
spaces, let d def.

= dX + dY . By construction, z is invariant under permutation on
the sample ordering; it is viewed as an n-size discrete distribution 1

n

∑n
i=1 δzi in

IRd with δzi the Dirac function at zi.
In the following, Zn(IRd) denotes the space of such n-size point distributions,

and Z(IRd)
def.
= ∪nZn(IRd) denotes the space of distributions of arbitrary size.

Let G def.
= SdX×SdY denote the group of permutations independently operating

on the feature and label spaces. For σ = (σX , σY ) ∈ G, the image σ(z) of a
labelled sample is defined as (σX(x), σY (y)), with x = (x[k], k ∈ J1; dXK) and
σX(x)

def.
= (x[σX(k)], k ∈ J1; dXK). For simplicity and by abuse of notations, the

operator push forward mapping a distribution z = {zi, i ∈ J1; nK} to {σ(zi), i ∈
J1; nK} def.

= σ]z is still denoted σ.
Let Z(Ω) denote the space of distributions supported on some domain Ω ⊂ IRd,

with Ω invariant under permutations in G. The goal of this contribution is to define
and train deep architectures, implementing functions ϕ on Z(Ω) that are invariant
under G, i.e. such that ∀σ ∈ G,ϕ(σ]z) = ϕ(z).

By construction, a multi-labelled dataset is invariant under permutations of
the samples, of the features, and of the multi-labels, in the sense that the results
of any learning algorithm do not (should not) depend on the order of samples,
features and multi-labels. For the sake of efficiency (notably in terms of number of
neural weights), a neural architecture taking multi-labelled datasets should comply
with their invariances, i.e. satisfy the sample and feature permutation invariance
properties.

5.3 . Distribution-Based Invariant Networks for Meta-Feature
Learning

This section describes the core of the proposed Dida architecture, specifically
the mechanism of mapping a point distribution onto another one subject to sample
and feature permutation invariance, referred to as invariant layer. For the sake
of readability, the following presentation of the approach and its properties only
considers the discrete probability case; the continuous probability case and the
proofs in the discrete and continuous cases are presented in Appendix B.3 and B.2.
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5.3.1 . Distribution-Based Invariant Layers
The building block of the proposed architecture, the invariant layer meant to

satisfy the feature and label invariance requirements, is defined as follows, taking
inspiration from De Bie et al. [2019].

Definition 5. (Distribution-based invariant layers) Let an interaction func-
tional ϕ : IRd × IRd → IRr be G-invariant:

∀σ, z1, z2 ∈ G× IRd × IRd, ϕ(z1, z2) = ϕ(σ(z1), σ(z2)).

The distribution-based invariant layer fϕ is defined as fϕ : z = (zi)i∈J1;nK ∈
Z(IRd) 7→ fϕ(z) ∈ Z(IRr) with

fϕ(z)
def.
=

 1

n

n∑
j=1

ϕ(z1, zj), . . . ,
1

n

n∑
j=1

ϕ(zn, zj)

 (5.1)

By construction, fϕ is G-invariant if ϕ is G-invariant. The construction of fϕ
is extended to the general case of possibly continuous probability distributions by
replacing sums with integrals (Appendix B.1).

It is important that fϕ invariant layers (in particular the first layer of the neural
architecture) can handle datasets of arbitrary number of features dX and number
of multi-labels dY . An original approach is to define ϕ as follows. Let z = (x, y)

and z′ = (x′, y′) be two samples in IRdX × IRdY . Considering two functions (to be
learned) u : IR4 7→ IRt and v : IRt 7→ IRr, then ϕ is obtained by applying v on the
sum of u(x[k], x′[k], y[`], y′[`]) for k ranging in J1; dXK and ` in J1; dY K:

ϕ(z, z′) = v

(
dX∑
k=1

dY∑
`=1

u(x[k], x′[k], y[`], y′[`])

)
(5.2)

Discussion. By construction ϕ is invariant to both feature and label permu-
tations; this invariance property is instrumental to a good empirical performance
(Section 5.5).

Note that (after learning u and v) fϕ can map a n-size dataset z onto an
n-size fϕ(z) dataset for any arbitrary n.

As said, fϕ is based on interaction functionals ϕ(zi, zj). This original archi-
tecture is rooted in theoretical and algorithmic motivations. On the one hand,
interaction functionals are crucial components to reach universal approximation
results (see Appendix B.3, Theorem 2). On the other hand, the use of local
interactions allows to create more expressive architectures; the benefit of these
architectures is illustrated in the experiments (Section 5.5). Formally, the princi-
pled Dida framework relies on the weak convergence of probability distributions
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(the Wasserstein distance), which enables to compare distributions with varying
numbers of points or with continuous densities.

Two particular cases are when ϕ only depends on its first or second input:

• If ϕ(z, z′) = ψ(z′), then fϕ computes a global 2nd order “moment” descrip-
tor of the input, as fϕ(z) = 1

n

∑n
j=1 ψ(zj) ∈ IRr. The first order moment

is not accounted for as the dataset is normalized in a pre-processing step.

• If ϕ(z, z′) = ξ(z), then fϕ transports the input distribution via ξ, as fϕ(z) =

{ξ(zi), i ∈ J1; nK} ∈ Z(IRr).

Remark 1. (Localized computation) The quadratic complexity of fϕ w.r.t. the
number n of samples (Equation 5.1) can be reduced in practice by only computing
ϕ(zi, zj) for pairs zi, zj sufficiently close to each other. Layer fϕ thus extracts and
aggregates information related to the neighborhood of the samples.

Remark 2. (Link to kernels) The interaction functional ϕ can be thought of in
terms of a kernel, however with significant differences: i) in fϕ(zi), the detail of
the pairwise interactionsϕ(zi, zj) is lost through averaging; ii)ϕ takes into account
labels; iii) ϕ is learnt.

5.3.2 . Learning from distributions
Dida distributional neural architecture defined on point distributions, maps a

multi-labelled dataset z ∈ Z(IRd) onto a real-valued vector noted Fζ(z), with

Fζ(z)
def.
= fϕm ◦ . . . ◦ fϕo+1 ◦ fϕo ◦ . . . ◦ fϕ1(z) ∈ IRdm+1 (5.3)

where ζ are the trainable parameters of the architecture (below). For simplicity,
only the single label case (dY = 1) is considered in the following.

The first invariant layer is defined from ϕ1, mapping pairs of vectors in IRd

(d1 = d) onto IRd2 ; it is possibly followed by other invariant layers (the impact
of using 1 vs 2 invariant layers is experimentally studied in Section 5.5). The last
o-th invariant layer is followed by a first non-invariant one, defined from some ϕo+1

only depending on its second argument; it is possibly followed by other standard
layers. The functions defined from the neural nodes on the penultimate layer are
referred to as meta-features.

The G-invariance and dimension-agnosticity of the whole architecture only
depend on the first layer fϕ1 satisfying these properties, defined as follows.

ϕ1((x, y), (x′, y′)) = v(
∑
k

u(x[k], x′[k], y, y′)) (5.4)

with

u(x[k], x′[k], y, y′) = (ρ(Au · (x[k];x′[k]) + bu),1y 6=y′) (5.5)
v(•) = ρ(Av · •+ bv) (5.6)
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where ρ is a non-linear activation function, Au a (t, 2) matrix, (x[k];x′[k]) the
2-dimensional vector concatenating x[k] and x′[k], bu a t-dimensional vector, Av
a (t, r) matrix and bv a r-dimensional vector.

Every ϕk, k ≥ 2 is defined as ϕk = ρ(Ak ·+bk), with ρ an activation function,
Ak a (dk, dk+1) matrix and bk a dk+1-dimensional vector. The Dida neural net
thus is parameterized by ζ def.

= (Au, bu, Av, bv, {Ak, bk}k), that is classically learned
by stochastic gradient descent from the loss function defined after the considered
learning task (Section 5.5). The non-linear activation function ρ is set to RELU in
the experiments.

5.4 . Theoretical Analysis

This section investigates the properties of invariant-layer based neural archi-
tectures, and establishes their robustness w.r.t. bounded transformations of the
involved distributions, and their approximation abilities w.r.t. the convergence in
law. As already said, the discrete distribution case is considered for the sake of
readability; the case of continuous distributions is detailed in Appendix B.1.

5.4.1 . Topology on Datasets
Point clouds vs. distributions. The fact that datasets are preferably seen
as probability distributions (as opposed to point clouds) is motivated as including
many copies of a point in a dataset amounts to increasing its importance, which
usually makes a difference in standard machine learning settings. Accordingly the
topological framework used in the following is that of the convergence in law on
distributions, with the distance among two datasets measured using the Wasser-
stein distance. In contrast, the distance among point clouds commonly relies on
the Hausdorff distance among sets (see e.g., Qi et al. [2017]). This distance, that
is standard for 2D and 3D data involved in graphics and vision domains, however
faces some limitations in higher dimensional domains, e.g. due to max-pooling
being a non-continuous operator w.r.t. the convergence in law topology.

Wasserstein distance. The standard 1-Wasserstein distance between two
discrete probability distributions z, z′ ∈ Zn(IRd) × Zm(IRd) is defined after San-
tambrogio [2015], Peyré and Cuturi [2019]:

W1(z, z′)
def.
= max

f∈Lip1(IRd)

1

n

n∑
i=1

f(zi)−
1

m

m∑
j=1

f(z′j)

with Lip1(IRd) the space of scalar 1-Lipschitz functions on IRd. The G-invariant 1-
Wasserstein distance is defined to extend the above and account for the invariance
under operators in G:

W1(z, z′) = min
σ∈G

W1(σ]z, z
′)
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Accordingly, W1(z, z′) = 0 iff z and z′ are equal in the sense of probability distri-
butions up to sample and feature permutations (Appendix B.1).

Lipschitz property. Let z(k) be a sequence of distributions weakly converging
toward z (noted z(k) ⇀ z). By construction, z(k) ⇀ z iff W1(z(k), z) → 0. Map
f from Z(IRd) onto Z(IRr) is said to be continuous iff for any sequence z(k) ⇀ z,
then f(z(k)) ⇀ f(z). Map f is said to be C-Lipschitz for W1 iff

∀z, z′ ∈ Z(IRd), W1(f(z), f(z′)) ≤ CW1(z, z′). (5.7)

The C-Lipschitz property entails the continuity of f : if two input distributions are
close in the permutation invariant 1-Wasserstein sense, their images by f are close
too.

5.4.2 . Continuity Results
Let us assume the interaction functional ϕ to satisfy the Lipschitz property

w.r.t. their first and second arguments (∀z ∈ IRd, ϕ(z, ·) and ϕ(·, z) are Cϕ −
Lipschitz.). Then invariant layer fϕ also satisfy the Lipschitz property.

Proposition 1. Invariant layer fϕ of type (Equation 5.1) is (2rCϕ)-Lipschitz in the
sense of (Equation 5.7).

A second result regards the case where two datasets z and z′ are such that
z′ is the image of z through some diffeomorphism τ (z = (z1, . . . , zn) and z′ =

τ]z = (τ(z1), . . . , τ(zn)). If τ is close to identity, then fϕ(τ]z) and fϕ(z) are close
too. More generally, if continuous transformations τ and ξ respectively apply on
the input and output space of fϕ, and are close to identity, then ξ]fϕ(τ]z) and
fϕ(z) are also close.

Proposition 2. Let τ : IRd → IRd and ξ : IRr → IRr be two Lipschitz maps with
respectively Lipschitz constants Cτ and Cξ . Then, ∀z, z′ ∈ Z(Ω),

W1(ξ]fϕ(τ]z), fϕ(z))

≤ sup
x∈fϕ(τ(Ω))

||ξ(x)− x||2 + 2r Lip(ϕ) sup
x∈Ω
||τ(x)− x||2

In addition, if τ is equivariant,
W1(ξ]fϕ(τ]z), ξ]fϕ(τ]z

′)) ≤ 2r CϕCτ CξW1(z, z′)

Proofs: in Appendix B.2.

5.4.3 . Universal Approximation Results
Lastly, the universality of the proposed architecture is established, showing that

the composition of an invariant layer (Equation 5.1) and a fully-connected layer is
enough to yield the universal approximation property, over all functions defined on
Z(IRd) with dimension d less than some upper bound D.
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Theorem 1. Let F : Z(Ω) → IR be a G-invariant map on a compact Ω ⊂ IRd,
continuous for the convergence in law. Then ∀ε > 0, there exists two continuous
maps ψ,ϕ such that

∀z ∈ Z(Ω), |F(z)− ψ ◦ fϕ(z)| < ε

where ϕ is G-invariant and independent of F .

Proof: in Appendix B.3.
After Theorem 1, any invariant continuous function defined on distributions

with compact support can be approximated with arbitrary precision by an invariant
neural network. This result holds for distributions with compact support in IRd for
all d ≤ D, with D an upper bound on the dimension of the considered distribution
supports. The proof (Appendix B.3) involves mainly three steps: (i) an invariant
layer fϕ can be approximated by an invariant network; (ii) the universal approxima-
tion theorem [Cybenko 1989, Leshno et al. 1993]; (iii) uniform continuity is used to
obtain uniform bounds. This result generalizes the universality result established
for fixed numbers of dimensions and points [Maron et al. 2020] to the cases of
finite distributions of any size n, and continuous distributions.

5.5 . Experimental Validation

The experimental validation is conducted to assess: i) the performance of
Dida compared to the state of the art; ii) the merits of the original architecture of
invariant layers, based on an interaction functional ϕ (Equation 5.1).

5.5.1 . Experimental setting
Tasks. The validation is conducted on two tasks, derived from supervised
datasets as opposed to standard point cloud benchmarks.

• Task 1 is a patch identification problem inspired from [Jomaa et al. 2021]
aiming to identify if two dataset patches are extracted from a same dataset.

• Task 2 aims to rank hyper-parameter configurations for a fixed supervised
learning algorithm, according to their performance on the considered dataset.

Benchmarks. Three benchmarks are used (Table 5.1): TOY and UCI, taken
from [Jomaa et al. 2021], and OpenML CC-18 [Bischl et al. 2019], with data
preprocessing detailed in Appendix B.4.1.

Baselines. Three baselines are considered:

• DSS [Maron et al. 2020] is involved with three variants: i) linear invariant
layers; ii) non-linear invariant layers; iii) equivariant + invariant layers.
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Figure 5.1: Learning meta-features with Dida. (Up) The Dida archi-
tecture (FC for fully connected layer). (Bottom left) Task 1: Learn-
ing meta-features for patch identification using a Siamese architecture
(Section 5.5.2). (Bottom right) Task 2: learning meta-features for rank-
ing hyper-parameter configurations θ1 and θ2 (Section 5.5.3).

• Dataset2Vec [Jomaa et al. 2021].

• The last baseline is a function (trained to the task) of the hand-crafted
meta-features (HC) (detailed in Table B.2, Appendix B.4.2) [Muñoz et al.
2018].

We implemented the DSS baseline as the code was not available and we re-
implemented Dataset2Vec as described in [Jomaa et al. 2021]. DSS is augmented
with an aggregator summing over the features in order to accommodate datasets
with varying numbers of dimensions. All baseline codes are publicly available at
https://github.com/herilalaina/dida for the sake of reproducibility.

Training setups. The same Dida architectures are used for both tasks, in-
volving 1 or 2 invariant layers followed by 3 fully connected (FC) layers (Figure
5.1, left). All experiments run on 1 NVIDIA-Tesla-V100-SXM2 GPU with 32GB
memory, using Adam optimizer with base learning rate 10−3 and batch size 32.
For all considered architectures, meta-features Fζ(z) consist of the output of the
penultimate layer, with ζ denoting the trained parameters.

5.5.2 . Task 1: Patch Identification
In Task 1, patches are extracted from datasets and the task consists in predict-

ing whether two patches are extracted from the same dataset. Letting u denote a
dataset with n d-dimensional examples, patch z is constructed from u, by selecting
(uniformly with replacement) nz examples in u and considering their description
based on dz features selected uniformly with replacement among u features. Size
nz and number dz of features of the patch are uniformly selected (Table 5.1). In
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Datasets Patches
# datasets # samples # features # samples # features

Toy Dataset 10000 [2048, 8192] 2 200 2
UCI 121 [10, 130064] [3, 262] [200, 500] [2, 15]
OpenML CC-18 72 [500, 100000] [5, 3073] [700, 900] [3, 11]

Table 5.1: Benchmarks and patches characteristics.

Task 1, an example is made of a pair of patches (z, z′), together with its associated
label `(z, z′), set to 1 iff z and z’ are extracted from the same initial dataset u
and nz = nz′ .

For all considered architectures, the parameters are trained using a Siamese
architecture (Figure 5.1, bottom-left; Algorithm 3. The learned classifier ˆ̀

ζ(z, z
′)

is the softmax exp (−||Fζ(z)−Fζ(z′)||2), with Fζ(z) and Fζ(z′) the meta-features
computed for z and z′, where ζ is trained to minimize the cross-entropy loss:∑

z,z′
`(z, z′) log(ˆ̀

ζ(z, z
′)) + (1− `(z, z′)) log(1− ˆ̀

ζ(z, z
′)) (5.8)

Algorithm 3: Patch Identification
1 Procedure Task_1(Fζ , bench, N)

input : A meta-feature extractor Fζ in {Dida, Dataset2Vec,
Deep Sets, DSS, Hand-crafted}, a benchmark bench
in {Toy, UCI, OpenML}, and a number of iterations
N

2 for i = 1.. . . . do
44 z1, z2, y ← generate_patches(bench)
66 m1 ← Fζ(z1)
88 m2 ← Fζ(z2)
1010 Compute loss (Equation 5.8), and update ζ
11 end

Table 5.2 reports the empirical results on TOY and UCI datasets. On
TOY, Dida with 2 invariant layers, referred to as 2L-Dida behaves on par with
Dataset2Vec and DSS. On UCI, the task appears to be more difficult, which is
explained from the higher and more diverse number of features in the datasets.
The fact that 2L-Dida significantly outperforms all other approaches is explained
from the interaction functional structure (Eqs. 5.1, 5.2), expected to better grasp
contrasts among examples. Dida with 1 invariant layer (1L-Dida) is much be-
hind 2L-Dida; with a significantly lesser number of parameters than 2L-Dida, the
1L-Dida architecture might lack representational power.
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Method # params TOY UCI
Hand-crafted Meta-features 53312 77.05 %± 1.63 58.36 %± 2.64

No-FInv-DSS (no inv. in features) 1297692 90.49 %± 1.73 64.69 %± 4.89
Dataset2Vec (our implementation) 257088 97.90 %± 1.87 77.05 %± 3.49
DSS layers (Linear aggregation) 1338684 89.32 %± 1.85 76.23 %± 1.84

DSS layers (Non-linear aggregation) 1338684 96.24 %± 2.04 83.97 %± 2.89
DSS layers (Equivariant+invariant) 1338692 96.26 %± 1.40 82.94 %± 3.36

Dida (1 invariant layer) 323028 91.37 %± 1.39 81.03 %± 3.23
Dida (2 invariant layers) 1389089 97.20 % ± 0.10 89.70 % ± 1.89

Table 5.2: Comparative performances on patch identification of Dida,
No-FInv-DSS, Dataset2Vec, DSS and functions of hand-crafted meta-
features: average and std deviation of predictive accuracy over 10 runs.

Lesion study. A fourth baseline, No-FInv-DSS [Zaheer et al. 2017] only differs
from DSS as it is not feature permutation invariant; this additional baseline is used
to assess the impact of this invariance property. The fact that No-FInv-DSS lags
behind all DSS variants, all with similar number of parameters, confirms the im-
portance of this invariance property. Note also that No-FInv-DSS is outperformed
by 1L-Dida, while the latter involves significantly less parameters.

5.5.3 . Task 2: Ranking ML confiugrations
Task 2 aims to comparatively assess two vectors of hyper-parameters θ and θ′

of a fixed supervised learning algorithm Alg, referred to as configurations of Alg,
depending on their performance on a dataset patch z. For brevity and by abuse of
language, the performance of a configuration θ on z is meant for the accuracy of
the model learned from z using Alg with configuration θ, computed using a 3 fold
cross validation.

The considered ML algorithms are: Logistic regression (LR), SVM, k-Nearest
Neighbours (k-NN), linear classifier learned with stochastic gradient descent
(SGD). For each algorithm, a Task 2 problem is defined as follows (Algorithm 4).
An example is made of a triplet (z, θ, θ′), associated with a binary label `(z, θ, θ′),
set to 1 iff θ′ yields better performance than θ on z. Thus, the overall architecture
consists of:

• a meta-feature extractor Fζ(z);

• a 2-layer FC network (depending on the considered Alg as they have different
configuration spaces) with input vector [Fζ(z); θ; θ′]

The overall is trained to minimize a cross-entropy loss (Equation 5.8).
In each epoch, a batch made of triplets (z, θ, θ′) is built, with θ, θ′ uniformly

drawn in the algorithm configuration space (Table B.3) and z a patch of a dataset in
the OpenML CC-2018 [Bischl et al. 2019], of size n uniformly drawn in [700; 900]
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Algorithm 4: Hyper-parameter Ranking
1 Procedure Task_2(Fζ , Alg)

input : A meta-feature extractor Fζ in {Dida, Dataset2Vec,
Deep Sets, DSS, Hand-crafted}, an algorithm Alg in
{SGD, SVM, LR, k-NN}.

33 NN← 2-layer fully connected neural network
4 for i = 1, 2, ... do
66 z← generate_patch(OpenML)
88 Sample (θ, θ′), two configurations of Alg (Table B.3)
1010 Set binary target y as 1 if accuracy(z, θ) >

accuracy(z, θ′) else 0
1212 Compute loss (Equation 5.8) between y and

NN([Fζ(z); θ; θ′])
1414 Update ζ and NN
15 end

Method SGD SVM LR k-NN
Hand-crafted 71.18 %± 0.41 75.39 %± 0.29 86.41 %± 0.419 65.44 %± 0.73
Dataset2Vec 74.43 %± 0.90 81.75 %± 1.85 89.18 %± 0.45 72.90 %± 1.13

DSS (Linear aggregation) 73.46 %± 1.44 82.91 %± 0.22 87.93 %± 0.58 70.07 %± 2.82
DSS (Equivariant+Invariant) 73.54 %± 0.26 81.29 %± 1.65 87.65 %± 0.03 68.55 %± 2.84
DSS (Non-linear aggregation) 74.13 %± 1.01 83.38 %± 0.37 87.92 %± 0.27 73.07 %± 0.77

DIDA (1 invariant layer) 77.31 %± 0.16 84.05 %± 0.71 90.16 %± 0.17 74.41 %± 0.93
DIDA (2 invariant layers) 78.41 %± 0.41 84.14 %± 0.02 89.77 %± 0.50 78.91 %± 0.54

Table 5.3: Comparative performances on configuration ranking of
Dida, Dataset2Vec, DSS and functions of hand-crafted meta-features:
average and std deviation of pairwise ranking performance over 3 runs.

and number of features d in [3; 10]. Dida and all baselines are trained using
Algorithm 4. Their comparative performances are displayed in Table 5.3, reporting
their ranking accuracy. 2L-Dida (respectively 1L-Dida) significantly outperforms
all baseline approaches except in the Alg = LR case (resp., in the Alg = k-NN
case). A higher performance gap is observed for the k-NN case, which is explained
as this algorithm mostly exploits the local geometry of the examples.

5.6 . Partial Conclusion

The theoretical contribution presented in this chapter is the Dida architec-
ture, able to learn from discrete and continuous distributions on IRd, invariant
w.r.t. feature ordering, agnostic w.r.t. the size and dimension d of the considered
distribution sample (with d less than some upper bound D). This architecture en-
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joys universal approximation and robustness properties, generalizing former results
obtained for point clouds [Maron et al. 2020].

The merits of Dida are empirically and comparatively demonstrated on two
tasks defined at the dataset level. Task 2 in particular constitutes a first step toward
performance modelling [Rice 1976], as the learned (algorithm-dependent) meta-
features support an efficient ranking of the configurations for the current dataset.
These meta-features, while requiring circa 4 hours in the considered environment
to be learned, are efficiently computed on datasets. On the considered tasks, they
improve on the meta-features manually defined in the last 40 years [Muñoz et al.
2018, Rivolli et al. 2022].

Limitations. The proposed Dida approach, however, has two main limitations.
Firstly, meta-feature learning, as for any learning setup, relies on tasks with suffi-
ciently many examples to be available. Our early attempts failed due to current
(curated) ML benchmarks being not sufficiently representative. Secondly, it is
reasonable to think that learned meta-features are specific to the training task.
It implies that learning meta-features for AutoML would require the underlying
topology over the joint datasets and ML performances spaces, which is not known
in practice.

Perspectives. A direct perspective is to investigate the learned meta-features
for AutoML use cases. This line of research will be considered in the next chapter,
addressing the aforementioned limitations. Another long-term perspective is to in-
vestigate the relationships between two datasets, and estimate a priori the chances
of a successful domain adaptation [Ben-David et al. 2010, Alvarez-Melis and Fusi
2020]. Such a goal requires a large amount of labelled datasets, however, one can
explore self-supervised setting to overcome this issue. For instance, bootstrapping
output representation as in Grill et al. [2020] is a promising further work.
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6 - Meta-Learning for Tabular Data

This chapter presents the third contribution of this manuscript, also devoted to
learning meta-features suitable to AutoML problems, focusing on hyper-parameter
recommendation or Bayesian Optimization initialization. This approach, called
Metabu (Meta-learning for Tabular Data), aims to address the limitations of the
Dida approach presented in the previous chapter, relaxing the need for large and
representative benchmaks.

Specifically, Metabu leverages Optimal Transport to build a topology on the
dataset space, mimicking the topology on the datasets induced from their top
hyper-parameter configurations. This topology is used to optimize a linear mapping
on the hand-crafted meta-features [Rakotoarison et al. 2021].

The chapter is organized as follows. After presenting the motivations in Sec-
tion 6.1, the formal background is introduced in Section 6.2, presenting Optimal
Transport Cuturi [2013], Peyré and Cuturi [2019]. Section 6.3 gives a detailed
overview of Metabu. Section 6.4 reports on the empirical validation of Metabu,
and the chapter ends with a partial conclusion.

6.1 . Motivation

A primary motivation of Metabu is to address Dida limitations in order to
learn suitable meta-features for AutoML.

Dida limitations are two-faceted. On the one hand, it can hardly handle large
and dirty datasets. As a result, Dida empirical experiments only consider patches
(instead of datasets) with continuous features (using preprocessing if needed).
Such setting hardly handles standard dataset benchmarks such as OpenML [Van-
schoren et al. 2014] and UCI [Dua and Graff 2017].
On the other hand, Dida proceeds by training meta-features, which requires suffi-
ciently many datasets in the AutoML benchmark. Unfortunately, the current state-
of-the-art curated benchmark OpenML-CC18 has less than a hundred datasets
available, which is quite insufficient for training a deep network. This shortage
of datasets is all the more blocking as, to our best knowledge, generating diverse
datasets is a challenging and yet open problem.
Besides these challenges, Didameta-features, as well as hand-crafted meta-features
(except for the landmarking ones), mostly capture statistical features about the
datasets. Still, many studies [Feurer et al. 2015a, Misir and Sebag 2017, Fusi
et al. 2018] suggest that an efficient AutoML system can hardly rely only on such
meta-features. Typically, Auto-Sklearn [Feurer et al. 2015a] relies on Bayesian
optimization and iteratively learns and exploits one performance model specific to
each dataset; PMF [Fusi et al. 2018] uses a probabilistic collaborative filtering ap-
proach, where the cold-start problem is handled as in Auto-Sklearn; OBOE [Yang
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et al. 2019] likewise uses a collaborative filtering approach, combined with active
learning.
Based on these arguments, the proposed Metabu approach i) builds upon exist-
ing meta-features; ii) aims at meta-features defining a reliable topology on the
dataset space, such that two datasets are close iff the best hyper-parameter con-
figurations for these datasets are close. Capturing the target topology (available
for the datasets in the benchmarks only) can support an inexpensive and efficient
AutoML strategy: selecting the best hyper-parameter configurations of the nearest
neighbor(s) of the current dataset. Moreover, as will be shown in Section 6.4, such
meta-features allow one to better understand the dataset space w.r.t. a given ML
algorithm, to estimate its intrinsic dimension and appreciate the distribution of the
ML benchmark suites in the meta-feature space.

Formally, the Meta-learning for Tabular Data (Metabu) approach casts and
tackles the construction of good meta-features − relatively to an ML algorithm A
− as an Optimal Transport (OT) problem [Cuturi 2013, Peyré and Cuturi 2019].
More precisely, two representations of the datasets are considered: the basic one
consists of 135 manually designed meta-features; The target one, out-of-reach ex-
cept for the datasets in the benchmark suite, represents a dataset as the distribution
of the hyper-parameter configurations of A yielding the top performances for this
dataset. Optimal Transport is used to find a linear transformation of the basic
meta-features, such that the resulting Euclidean distance emulates the Wasser-
stein distance [Mémoli 2011] on the target representation. Overall, Metabu learns
once for all the meta-features aimed to capture the topology and neighborhoods
corresponding to the target representation. These meta-features can be computed
from scratch for each new dataset.

A main difference w.r.t. e.g. Yang et al. [2019] and Fusi et al. [2018] thus
is that no cold-start phase (adjusting the representation of the dataset at hand,
through launching new configurations) is needed.

6.2 . Formal Background

The limitations of manually designed meta-features [Caliński and Harabasz
1974, Vilalta 1999, Bensusan and Giraud-Carrier 2000, Pfahringer et al. 2000,
Peng et al. 2002, Muñoz et al. 2018, Song et al. 2012, Bardenet et al. 2013,
Feurer et al. 2015a,b, Pimentel and Carvalho 2019, Lorena et al. 2019, Rivolli et al.
2022] and those of learned meta-features [Jomaa et al. 2021, De Bie et al. 2020]
have been respectively detailed in Section 3 and Chapter 5. This section briefly
describes the optimal transport methodology used in this chapter to construct new
meta-features, and the related works.

Optimal Transport, first mentioned in Chapter 5, enables to compute the dis-
tance over datasets using Wasserstein distance. OTDD [Alvarez-Melis and Fusi
2020] uses OT to learn a mapping between datasets over the joint feature and
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label spaces.
Let (Ωx, dx) and (Ωy, dy) denote compact metric spaces, and x and y distri-

butions respectively defined on Ωx and Ωy. The search space Γ(x, y) is the space
of all distributions on Ωx × Ωy with marginals x and y. Let the transport cost
function c : Ωx × Ωy 7→ IR+ be a scalar function on Ωx × Ωy

1.
As said, the Wasserstein distance of x and y is defined as:

dqW (x, y) = min
γ∈Γ(x,y)

IE(x,y)∼γ [cq(x, y)]1/q

with q a positive real number, set to 1 in the following.

Another OT-based distance is the Gromov-Wasserstein distance (GW) [Mémoli
2011], measuring how well a distribution in Γ(x, y) preserves the distances on both
Ωx and Ωy, akin a rigid transport between both domains:

dqGW (x, y) = min
γ∈Γ(x,y)

IE(x,y)∼γ,(x′y′)∼γ [|dx(x, x′)− dy(y, y′)|q]1/q

.
The Fused Gromov-Wasserstein (FGW) distance [Vayer et al. 2019] combines

both the Wasserstein and the Gromov-Wasserstein distances.

Definition 6. The Fused q-Gromov-Wasserstein distance is defined on Ωx ×
Ωy as follows:

dqFGW ;α(x, y) = min
γ∈Γ(x,y)

(1− α)

 ∫
Ωx×Ωy

cq(x, y)dγ(x, y)


1
q

︸ ︷︷ ︸
Wasserstein Loss

+ α

 ∫
Ωx×Ωy

∫
Ωx×Ωy

|dx(x, x′)− dy(y, y′)|qdγ(x, y)dγ(x′, y′)


1
q

︸ ︷︷ ︸
Gromov-Wasserstein Loss

(6.1)
α ∈ [0, 1] is a trade-off parameter: For α = 0 (resp. α = 1), the fused q-
Gromov-Wasserstein distance is exactly the q-Wasserstein distance dqW (resp.
the q-Gromov-Wasserstein distance dqGW ).

According to [Xu et al. 2019b,a, 2020] the non-convex optimization in Equa-
tion 6.1 can be efficiently optimized along an iterative process using proximal gra-
dient method. Concretely, given a current estimate γ(j) at j-th iteration, define a

1When Ωx = Ωy = Ω, unless otherwise stated, the transport cost c(x, y) is the
Euclidean distance d(x, y).
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new objective function d1,j
FGW ;α similar to Equation 6.1 with a regularization term

KL(γ||γ(j)), where KL be the Kullback-Leibler divergence. The later sub-problem
is then solved using Sinkhorn Algorithm [Cuturi 2013] yielding the new transport
map γj+1. We refer the reader to Algorithm 2 of Xu et al. [2019b] for a more
complete description of the optimization method.

The Wasserstein distance and variants thereof were successfully used to eval-
uate the "alignment" among datasets, e.g. between the source and the target
datasets in the context of domain adaptation [Courty et al. 2017] or transfer
learning [Alvarez-Melis and Fusi 2020, 2021]. FGW distance was used to en-
force the consistency of the latent space when jointly training several Variational
Auto-Encoders [Xu et al. 2020, Nguyen et al. 2020]. Metabu will likewise take
inspiration from OT to create a bridge between two representations of the datasets:
the basic one, and the target one, critically using both GW and FGW distances.

6.3 . Overview of Metabu

We use the same notations as in the previous chapter: let δ be the Dirac
function; distributions are noted in bold font and vectors in italic.

Let A and ΘA respectively denote an ML pipeline and its hyper-parameter
configuration space; superscript A is omitted when clear from the context. Space
Θ is embedded into the a-dimensional real-valued space IRa, using a one-hot en-
coding of Boolean and categorical hyper-parameters. After describing the principle
of the approach, some key issues are detailed: the augmentation of the AutoML
benchmark to avoid overfitting, and the setting of the number d of the Metabu
meta-features, estimated from the intrinsic dimensionality of the AutoML bench-
mark suite.

6.3.1 . Principle
Intuitively, two representations can be associated with a dataset: The basic

representation x ∈ IRD of a dataset reports the values of the D manually designed
meta-features for this dataset. By construction, it can be cheaply computed for
any dataset.2 The target representation z of a dataset is the distribution on the
space Θ supported by the configurations yielding the best performances on this
dataset. This precious target representation is unreachable in practice, but can
be approached after the performances of the models learned with a number of
configurations (aka configuration performances) have been assessed. In practice,
the configuration performances are only available for a small number n of datasets.
The difference between the basic and the target topologies is depicted on Figure
6.1, in Θ space (projected on first two PCA eigenvectors). The later figure suggests
that the target representations, built upon the top configurations of datasets, are
better suited for AutoML problems.

2Only non-expensive landmark meta-features are considered in the following.
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Figure 6.1: Top configurations of datasets A, B, and C , where B, in
orange (resp. C , in green) is the nearest neighbor of A w.r.t. target
(resp. basic) representation.

In order to build a bridge between both representations, let us consider an
intermediate representation, termed projected target representation, derived from
the target representation ones by mapping each (zi)1≤i≤n on some ui ∈ IRd using
a distance-preserving projection, e.g. Multi-Dimensional Scaling (MDS) [Kruskal
1964].
Metabu tackles an Optimal Transport problem so as to learn a mapping ψ :

IRD 7→ IRd from the basic representation on the projected target representation
space such that the ψ(xi)1≤i≤n are aligned with the uis in the sense of the q-Fused
Gromov-Wasserstein distance (Section 6.2).

In brief, mapping ψ sends the basic meta-feature space on IRd, such that
the Euclidean metric on the ψ(xi) reflects the Euclidean metric on the uis, itself
reflecting the metric on the target zis.

The descriptive features of the ψ(xi), referred to as Metabu meta-features,
are meant to both be cheaply computable from the basic meta-features, and define
a Euclidean distance conducive to the AutoML task.

6.3.2 . Augmenting the AutoML benchmark.
The OpenML CC-18 [Bischl et al. 2019], to our knowledge the largest curated

tabular dataset benchmark (that will be used in the experiments), contains n = 72

classification datasets; the target representation is available for 64 of them. The
shortage of such datasets yields a risk of overfitting the learned meta-features.
This challenge is tackled by augmenting the OpenML CC-18 benchmark suite,
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Figure 6.2: 2-D Visualisation of the OpenML datasets in basic represen-
tation (legended with a ?’s) + their boostrapped augmentations.

using a bootstrap procedure [Efron 1979].3 The goal is to pave the meta-feature
space more densely and more accurately than through e.g., perturbing the basic
representation with Gaussian noise.

The visualisation of the augmented benchmark (Figure 6.2, projected using
tSNE [Maaten and Hinton 2008] on the basic representation), shows that the
datasets built by bootstrapping of some initial dataset E form a cluster close
to E (as could be expected as the manually designed meta-features are stable
under small stochastic variations), and separated from the clusters generated from
other datasets, suggesting that the initial benchmark suite only sparsely paves the
basic meta-feature space. Complementary experiments (omitted) with perplexity
ranging in [5, 10, 15, 25, 30, 40, 50] show that clusters generated by augmentation
of different OpenML datasets keep staying far apart from one another.

6.3.3 . The Metabu algorithm
The algorithm is provided the p = 1, 000×n training datasets of the benchmark

suite, augmented as described above. The Metabu meta-features are constructed
in a 3-step procedure, depicted on Figure 6.3 and illustrated in Algorithm 5:
Step 1: Target representation and Wasserstein distance. Considering the i-th train-
ing dataset, let Θi ⊂ Θ denote the set of hyper-parameter configurations with
performance in the top-L known configuration performances (L = 20 in the ex-
periments).4

3For each `-size dataset E in the benchmark suite, K = 1, 000 new datasets
F1, . . . FK are generated, where Fi includes ` examples selected in E uniformly with
replacement. The basic representation of Fi is computed, and its target representa-
tion is set to that of E.

4Early attempts to define Θi in a more sophisticated way, e.g. using t-test to dis-
tinguish the "good" configurations from the others, led to an uninformative target
representation. A tentative interpretation for this fact is that quite a few OpenML
datasets are very easy, leading to retain all configurations for these datasets and
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Metabu Representation

FGW loss (Eq. 2)

Basic RepresentationTarget Representation

E
m
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STEP 1

STEP 2

STEP 3

Figure 6.3: From basic to Metabu meta-features using Fused Gromov-
Wasserstein. Basic (respectively Metabu) representations are depicted
by circles (resp. squares). Target representations are depicted in the
rightmost subplot. Neighbor datasets in the target space have same
color in all subplots.

Algorithm 5: Learning Metabu meta-features
Data: Set of n training datasets, each represented with its

basic representation (meta-feature vector) xi and its
target representation (set of top 20 hyper-parameters)
zi for i = 1 . . . n.

Result: Embedding layer ψ∗

// Build projected target representation
1 Ci,j ← d1

W(zi, zj) for i = 1 . . . n, j = 1 . . . n; /* STEP 1 */
2 Estimate intrinsic dimension d from matrix C (Alg. 6);
3 u←MDS(C, d) ; /* STEP 2 */
// Learn ψ

4 ψ ← Linear(135, d) ; /* 135 basic meta-features. */
5 x← 1

p

∑n
i=1 δxi ;

6 L ← FGW as defined in Equation 6.1;
7 ψ∗ ← ADAM(L, ψ]x,u) ; /* STEP 3 */
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The target representation zi of the i-th dataset is the discrete distribution with
support Θi. The distance d1

W (zi, zj) is the 1-Wasserstein distance among distri-
butions (Section 6.2).
Step 2: Projecting the target representation on IRd. The second step consists in
projecting the zis on IRd, where d is identified using an intrinsic dimensionality
procedure (details below), using Multi-Dimensional Scaling [Kruskal 1964], such
that the distance d(ui, uj) approximates the 1-Wasserstein distance d1

W (zi, zj)

(Figure 6.3, leftmost and second subplots). Note that by construction, the uis are
defined up to an isometry on IRd.

Step 3: Learning the Metabu meta-features. Let x = 1
p

∑p
i=1 δxi denote the

uniform discrete distribution on IRD whose support is the set of p datasets using
their basic representations.
Let u = 1

n

∑n
i=1 δui denote the uniform discrete distribution on IRd whose support

is the set of uis defined above. The Metabu meta-feature space is built by finding
a mapping ψ from IRD on IRd that pushes the representation metric on IRd, that
is, such that the image of x via ψ is as close as possible to u, and reflects its
topology in the FGW sense (Figure 6.3, rightmost and third subplots).

Formally, let ψ]x
def.
= 1

p

∑p
i=1 δψ(xi) be the push-forward distribution of x on

IRd for a given ψ. The overall optimization problem is to find a mapping ψ∗ that
minimizes the FGW distance between the u distribution and the push distribution
ψ∗#x:

ψ∗ = argmin
ψ∈Ψ

dFGW ;α (ψ]x,u) + λ‖ψ‖ (6.2)

with λ the regularization weight and ‖ψ‖ the norm of the ψ function. Note that,
as u and ψ#x are distributions on the same space IRd, the transport cost c is the
Euclidean distance on IRd.

In the following, only linear mappings ψ are considered for the sake of avoiding
overfitting and facilitating the interpretation of the Metabu meta-features w.r.t.
the manually designed meta-features. The norm of ψ is set to the L1 norm of its
weight vector.

Optimization setting. The efficient optimization of Equation 6.2 is achieved
using a bilevel optimization formulation.

• For a given ψ, the inner optimization problem consists of minimizing
dFGW,α(ψ]x,u) (Equation 6.1). Metabu leverages the optimization ap-
proach proposed in Xu et al. [2019b,a, 2020], also described in Section 6.2,
to efficiently compute dFGW,α. In the experiments, the number of iterations
for refining γ is set to 10 and Sinkhorn iterations to 5.

blurring the target representation.
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• The outer optimization problem consists of optimizing ψ: The transport
matrix γ is treated as a constant, and the outer objective function (Equa-
tion 6.2) is solved with ADAM optimizer [Kingma and Ba 2015] with learning
rate 0.01, α = 0.5 and λ = 0.001.

6.3.4 . Intrinsic dimension of the space of datasets
The main hyper-parameter ofMetabu is the number d of meta-features needed

to approximate the target representation. Indeed, d depends on the considered
algorithm A: the more diverse the target representations associated with datasets,
the higher d needs to be. In the other extreme case (all datasets have similar target
representations), the AutoML problem becomes trivial. The relation between the
intrinsic dimensionality and the difficulty of the AutoML problem is complex, we
shall return to it in Section 6.4.4.

To our best knowledge, measuring the intrinsic dimension of the dataset space
w.r.t. a learning algorithm has not been tackled in the literature. The approach
proposed to do so builds on Levina and Bickel [2005] and [Facco et al. 2017],
exploiting the fact that the number of points in a hypersphere of radius r in
dimension d increases like rd. Then d provides a guaranteed approximation of the
intrinsic dimensionality of the manifold where the xis family lives [Facco et al.
2017]. A formal pseudo-code is provided in Algorithm 6.

It is commonplace to say that the good distance between any two items depends
on the considered task. The original approach used in Metabu in order to estimate
the intrinsic dimensionality of the dataset space, is to set the distance of two
datasets to the 1-Wasserstein distance among their target representations.

Algorithm 6: Compute intrinsic dimension as in [Facco et al.
2017]
1 Procedure Intrinsic_dim(X)

input : A set of points X = {x0, x1, . . . , xm}.
output: Intrinsic dimension d.

33 Let x(1) and x(2) be the first and second neighbors of x ∈ X.

55 Compute µi =
||xi−x

(2)
i ||2

||xi−x
(1)
i ||2

for all xi in X.

77 Sort µ values in ascending order through a permutation σ.
99 Compute F (µσ(i)) = i

m for i = 1 . . .m.
1111 d ← slope of the linear approximation on

{(log(µi),−log(1− F (µi)))|i = 1 . . .m}

6.4 . Experiments

All material (code, data, instructions) is made available as publicly at https:
//github.com/luxusg1/metabu. Runtimes are measured on an Intel(R) Xeon(R)
CPU E5-2660 v2 @ 2.20GHz.
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6.4.1 . Experimental Settings
Goals of experiment. The goal of experiments is three-fold. First, we
aim to assess the dataset neighborhoods induced by the Metabu meta-features
(constructed on the top of the manually designed 135 meta-features from the
literature) and the relevance of these dataset neighborhoods w.r.t. the AutoML
problem.
The second goal of experiments is to assess the sensitivity of Metabu w.r.t. its
own two hyper-parameters, the weight α used to balance the importance of the
Wasserstein and Gromov-Wasserstein distances in FGW (Equation 6.1), and the
regularization weight λ involved in the optimization of ψ (Equation 6.2). As said,
the dimension of meta-features d is automatically determined using Algorithm 6,
nevertheless, a complementary experiments investigating the sensitivity w.r.t d is
shown in Appendix C.5.

The third goal is to gain some understanding of the dataset landscape, and
see whether the Metabu meta-features give some hints into when a given ML
algorithm or pipeline does well (its niche).

Baselines. The performances are assessed against three baselines: Auto-
Sklearn meta-feature set [Feurer et al. 2015b], Landmark [Pfahringer et al. 2000]
and SCOT [Bardenet et al. 2013] meta-feature sets. All meta-feature sets are
detailed in Appendix C.3. An additional baseline is based on the uniform sampling
of the hyper-parameter configuration space, for sanity check.

Tasks. Three tasks are considered to investigate the relevance of the Metabu
meta-features. All reported performance values are measured using a Leave-One-
Out process over dataset (detailed in Appendix C.1).
⇒ Task 1: Capturing the target topology.
This task aims to highlight the merits of Metabu meta-features on ranking neigh-
bor datasets (w.r.t the target representation). For each test dataset, one considers
its nearest neighbors w.r.t. the target topology (the 1-Wasserstein metric on the
target representation), and its nearest neighbors w.r.t. the Euclidean distance on
the Metabu and meta-feature sets. The alignment between both ordered lists is
measured using the normalized discounted cumulative gain over the first k neigh-
bors (NDCG@k) [Burges et al. 2005], with 5 ≤ k ≤ 35. The performance indicator
is the NDCG@k5 averaged on test datasets.
⇒ Task 2: AutoML with no performance model (Initialization).
The purpose of Task 2 is to assess the topology constructed in Task 1 with a
simple AutoML strategy i.e recommending ML configurations of neighbor datasets.

5To recall, DCG@k =
∑k

i=1
2ri−1

log(i+1) , with ri ∈ {0, 1}, indicating if the i-th dataset
neighbor is relevant or not w.r.t the ranking of target topology. The NDCG score is
then obtained by normalizing with the ideal DCG.

74



Concretely, for each test dataset and each meta-feature set mf , let ẑmf be the
distribution on the considered hyper-parameter configuration space:

ẑmf =
1

Z

10∑
`=1

exp(−`) z`

where z` is the target representation of the `-th neighbor of the dataset w.r.t.
Euclidean distance on the mf space, and Z a normalization constant. This distri-
bution ẑmf is thereafter used to iteratively and independently sample the hyper-
parameter configurations, and the performances of the learned models are mea-
sured. Letting r(t,mf) denote the rank of the test performance6 associated with
meta-feature set mf after t iterations, the performance curves report r(t,mf)

for the Metabu and baseline meta-feature sets (plus a uniform hyper-parameter
configuration sampler for sanity check), averaged over the test datasets.
⇒ Task 3: AutoML with performance model (Optimization).
AutoML systems based on performance models, such as Auto-Sklearn and PMF,
cannot be directly compared with Metabu as they acquire additional information
along the AutoML search: they iteratively use a performance model to select
a hyper-parameter configuration, and update the performance model using the
performance of the selected configuration. In Task 3, the relevance of Metabu
meta-features is investigated in that they govern the initialization for Auto-Sklearn
and PMF performance models. Precisely, the original meta-feature sets used in
Auto-Sklearn and PMF are replaced withMetabu meta-features. Similarly to Task
2, the performance indicator is the rank of the performance obtained by Auto-
Sklearn (resp. PMF) using Metabu meta-features to initialize its performance
model, noted Metabu+Auto-Sklearn (resp. Metabu+PMF) compared to the
original Auto-Sklearn (resp. PMF) implementation and the uniform baselines.

Dataset benchmark. The considered AutoML benchmark is the OpenML
Curated Classification suite 2018 [Bischl et al. 2019], including 72 binary or multi-
class datasets out of which 64 have enough learning performance data to give a
good approximation of their target representation. The performance indicators are
measured using Leave-One-Out (details in Appendix C.1). The basic meta-features
are computed for each dataset using the open source library PyMFE [Alcobaca et al.
2020].

Hyper-parameter configuration spaces. Metabu is validated in the
context of three ML algorithms: Adaboost [Freund and Schapire 1997], Ran-
domForest [Breiman 2001] and SVM [Boser et al. 1992], using their Scikit-learn
implementation [Pedregosa et al. 2011]; and two AutoML pipelines, Auto-Sklearn

6Over the iteration, test performance is only observed when the validation perfor-
mance is improved.
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(a) Task 1: Capturing the target topology; the higher NDCG@k, the better.

(b) Task 2: Sampling the hyper-parameter configuration space; the lower the
rank, the better.

(c) Task 3: Initializing a performance model to sample the hyper-parameter
configuration space.

Figure 6.4: Empirical assessment of Metabu meta-features compara-
tively to the baselinesmeta-feature sets and uniform hyper-parameter
sampling (better seen in color).

[Feurer et al. 2015a] and PMF [Fusi et al. 2018]. The associated hyper-parameter
configuration spaces are detailed in Appendix C.2.

For Adaboost, RandomForest and SVM, the target representation of each train-
ing dataset is based on the top-20 configurations in OpenML (out of 37,289 for Ad-
aboost, 81,336 for RandomForest and 37,075 for SVM), initially generated by van
Rijn and Hutter [2018]. For Auto-Sklearn, the target representation is generated
from scratch, running 500 configurations per training dataset and retaining the
top-20. For PMF, the top-20 configurations are extracted from the collaborative
filtering matrix for each training dataset [Fusi et al. 2018].

6.4.2 . Comparative empirical validation of Metabu
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The performances ofMetabu and the baselines on the three tasks are displayed
on Figure 6.4. The overall CPU cost on Task 2 (resp. Task 3) is circa 1,900 (resp.
2,300) hours (full runtimes in Figure C.1). Appendix C.6 reports the detailed
results in Tables C.6, C.7 and C.8, indicating the confidence level of the results
after a Wilcoxon rank-sum test for performances and Mann Whitney Wilcoxon test
for ranks; both with p-value set to 0.05.
⇒ Task 1: Capturing the target topology.
Figure 6.4a. The results show that the metric based on the Metabu meta-features
better matches the target topology than the metric based on the baseline meta-
feature sets, all the more so as the number k of nearest neighbors increases. The
higher variance of NDCG@k for Metabu is explained as the metric depends on
the meta-feature training, while the metrics based on the baselines are determin-
istic. As could be expected, this variance decreases with k. Despite this variance,
Metabu significantly outperforms all baselines for all k and all hyper-parameter
configuration spaces.
⇒ Task 2: AutoML with no performance model (Initialization).
Figure 6.4b. All rank curves start at 3, as five hyper-parameter configuration
samplers are considered. For RandomForest, the sampler based on the SCOT
meta-feature set dominates in the first 5 iterations, and remains good at all time;
Metabu dominates after the beginning; all other approaches but the uniform sam-
pler yield similar performances. For Adaboost, the sampler based on the Auto-
Sklearn meta-feature set dominates in the first 3 iterations, and Metabu is statis-
tically significantly better than all other approaches thereafter. For SVM, Metabu
very significantly dominates all other approaches.
⇒ Task 3: AutoML with performance model (Optimization).
Figure 6.4c. In first time steps (left of the dashed bars), the performance mod-
els of Auto-Sklearn or PMF are initialized using the performances of the hyper-
parameter configurations sampled as in Task 2; in the following time steps, the
hyper-parameter configurations are sampled using the performance model. The
most striking result is that the Metabu+Auto-Sklearn rank improves on that of
Auto-Sklearn (Figure 6.4c, left) although they only differ in the initialization of the
performance model, and the Auto-Sklearn meta-feature set is optimized to Task 3.
Likewise, the rank of Metabu+PMF improves on that of PMF (Figure 6.4c, right).
The comparison also involves Random2× and Random4× uniform samplers, re-
spectively returning the best performance out of 2 or 4 uniformly sampled configu-
rations [Fusi et al. 2018]; Metabu+PMF significantly improves on Random4× after
the 10th iteration. This suggests that on the OpenML benchmark, the Metabu
meta-features efficiently enable both to passively sample the hyper-parameter con-
figuration space, and to retrieve the configurations best appropriate to update the
performance model and explore good regions of the space.

6.4.3 . Sensitivity analysis
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Figure 6.5: Metabu: Sensitivity of NDCG@10 w.r.t. α and λ, compara-
tively to Auto-Sklearn (darker is better).

The two hyper-parameters of Metabu are the α trade-off parameter between
Wasserstein and Gromov-Wasserstein distance (Equation 6.1) and the regulariza-
tion weight λ (Equation 6.2). The sensitivity of Metabu w.r.t. both parame-
ters is investigated on Task 1, by inspecting the difference NDCG@10(Metabu)
- NDCG@10(Auto-Sklearn) for α ranging in {0.1, 0.3, 0.5, 0.7, 0.99} and λ in
{10−1, . . . , 10−4}. The result, displayed in Figure 6.5, shows that the difference is
positive in the whole considered domain, with NDCG@10(Metabu) statistically sig-
nificantly better than NDCG@10(Auto-Sklearn) according to Student t-test with
p-value 0.05.

Interestingly, a low sensitivity of Metabu is observed w.r.t. the regularisation
weight λ, provided that it is small enough (λ ≤ 10−3). For such small λ values,
a low sensitivity is also observed w.r.t. α in a large range (.3 ≤ α ≤ .7). This
result confirms the importance of taking into account both the Wasserstein and
Gromov-Wasserstein distances on the target representation space: discarding the
former (α ≤ .1) or the latter (α ≥ .99) significantly degrades the performance,
and the performance is stable in the [.3, .7] region.

6.4.4 . Toward understanding the dataset landscape
Insight on intrinsic dimension A most interesting result, that is original
to our best knowledge, is to provide a principled estimate of the intrinsic dimension
of the dataset space w.r.t. the considered ML algorithms. As detailed in Appendix
C.5 with a stability analysis, the intrinsic dimension d of the OpenML benchmark is
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(a) RandomForest vs Adaboost

(b) RandomForest vs Auto-Sklearn

(c) RandomForest vs Support Vector Machines

Figure 6.6: Comparative importance of meta-features for RandomFor-
est Vs Adaboost (a), Auto-Sklearn (b) and Support Vector Machines (c).
The specific Auto-Sklearn meta-features are recognized as their name
begins with a capital letter.
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circa 6 for Auto-Sklearn, 8 for Adaboost, 9 for RandomForest and 14 for Support
Vector Machines. We are surprised indeed to see that the intrinsic dimension cor-
responding to Support Vector Machines is higher than for Auto-Sklearn, although
the Auto-Sklearn portfolio includes the Support Vector Machines algorithm. This
fact seems to suggest that the AutoML problem is harder for Auto-Sklearn than
for Support Vector Machines, which is inconsistent as the Auto-Sklearn portfolio
includes the Support Vector Machines algorithm.

A tentative explanation 7 goes as follows. We distinguish, as factors of the Au-
toML difficulty, the difficulty of hyper-parameter optimization, and the regularity
of the landscape, that is, the fact that configurations good for a dataset are also
generally good for a near dataset. The computation of intrinsic dimension only
depends on the regularity of the landscape (each dataset being represented with its
top hyper-parameters). In other words, the intrinsic dimension essentially reflects
the diversity of the set of top hyper-parameters across the benchmark (OpenML
CC-18 in our case). Overall, the low intrinsic dimension of Auto-Sklearn is inter-
preted as: many datasets have similar sets of top hyper-parameters; inversely, the
high intrinsic dimension of Support Vector Machines is interpreted as the top hyper-
parameters highly vary with the dataset. But this dimensionality does not measure
the difficulty of the optimization part (reaching these good configurations).

Importance of hand-craftedmeta-features Metabu also delivers some
insights into what matters in the dataset landscape, and why a given algorithm
should behave better than another on a particular dataset, as follows. Since
Metabu meta-features are built from the initial hand-crafted meta-features us-
ing the trained linear mapping ψ and depending on the current learning algorithm
A, therefore the importance of these initial meta-features can be recovered by
inspecting the newly learned Metabu meta-features.

Concretely, the importance of a meta-feature w.r.t. A is estimated as follows.
Let U = {ui,j} denote the matrix made of the Multi-Dimensional Scaling repre-
sentation of the secondary representation over all datasets. The matrix U are then
processed using PCA, and let j∗ be the index of the column contributing to the
first PCA axis. Finally, the importance of a hand-crafted meta-feature iA(mf) is
measured from the norm of its projection on j∗-th column i.e, iA(k) = |ψj∗,k|.

Two ML algorithms or pipelines A and B can thus be visually compared, by
plotting each meta-feature as a 2D point with coordinates (iA(mf), iB(mf)) as
shown on Figure 6.6. For instance, in Figure 6.6a, with respectively A set to
RandomForest and B to Adaboost, one sees that actually few features matter for
both RandomForest and Adaboost (the features nearest to the upper right corner),
mostly the Dunn index [Dunn 1973] and the features importance. Some findings
reassuringly confirm the practitioner’s expertise: the percentage of instances with

7We are grateful to the anonymous ICLR reviewer, who challenged us to explain
this surprising result.
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missing values matters much more for Adaboost than for RandomForest; the class
imbalance (ClassProbabilityMax and ClassProbabilityMin) matters for Adaboost.

According to Figure 6.6b, meta-features such as KurtosisMin, LogNumberOfIn-
stances, InverseDatasetRatio − all retained as Auto-Sklearn meta-features − are
critical for Auto-Sklearn whereas they have no impact for RandomForest. In-
versely, some features like "pb" (average Pearson correlation between class and
features) matter significantly more for RandomForest than for Auto-Sklearn.

Likewise, the meta-feature importance w.r.t. Support Vector Machines and
Random Forest is displayed in Figure 6.6c. The skewness (mean and std over
all attributes) matter significantly more for Support Vector Machines than for
RandomForest.

Overall, the impact of some meta-features for some learning algorithms is rather
intuitive, confirming the practitioner expertise.

6.5 . Partial Conclusion

Metabu provides a partial but promising answer to the AutoML problem. On
one hand, it yields new meta-features, preserving (in the sense of Fused Gromov-
Wasserstein distance) the topology of the best configurations associated to each
dataset. On the other hand, it also provides insights on the importance of hand-
crafted meta-features, as well as the intrinsic dimension of an AutoML benchmark.

Metabu successfully addresses Dida limitations (Chapter 5), chiefly, the abil-
ity to deal with ordinary datasets and to handle the poor representativity of the
AutoML benchmarks. These achievements are made possible as the learned meta-
features are but linear combinations of the manually designed meta-features of the
literature.

The efficiency of the approach is empirically demonstrated as the Metabu
meta-features contribute to outperform strong baselines meta-features, improving
state-of-the-art AutoML systems such as Auto-Sklearn [Feurer et al. 2015b] and
PMF [Fusi et al. 2018].

Limitations. Although Metabu yields strong empirical performances, results
from Task 3 show that the exploration of the configuration space (HPO algorithms)
still yields a better performance than the initial configurations provided by the
Metabu meta-features. This limitation is interpreted as the fact that the hand-
crafted meta-features are insufficiently diverse to represent the true regions of
interest with sufficiently fine granularity. Another interpretation is that the training
data (the top configurations of the benchmark datasets) is too noisy, e.g. due to
overfitting the CV score.

Another practical limitation of Metabu is that the learned meta-features are
specific to an ML algorithm, i.e. its configuration space. Naturally, one might think
of concatenating theMetabu meta-features related to the main algorithms, though
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a naive concatenation does not preserve the topology of any such configuration
space.

Perspectives. Along this line, a main perspective for further research is to
propose a truly unified meta-feature space, merging the meta-features built from
the various ML algorithms. A primary step is to investigate how the topology
of the datasets differs depending on the learning algorithm: showing that two
datasets are close neighbors in the landscape associated to an ML algorithm, and
quite far apart for another ML algorithm might give some (expert- or learning-
driven) insights into new meta-features. Comparing these landscapes is, to our
best knowledge, an under-explored research area.

Another perspective is to leverage the same Metabu approach, aimed to find
a representation aligned with a target topology, but to consider another represen-
tation and another target topology. A promising approach to improve the target
representation is to take into account the distribution of bad hyper-parameters, or
to consider surrogate performance model.
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Discussion and Conclusion

83



As AI and Machine Learning are acknowledged a key technology for the digital
age, the issue of delivering peak performances from the great many algorithms on
the shelf emerged as a main bottleneck, as early as the end 1980s. Part I has
proposed an overview of the research in this area, referred to as AutoML. It is
important to note that the development of this field mostly relies on experimental
studies: to our best knowledge, there does not exist such things as formal proofs
that a given algorithm, with a given configuration, be the best one (w.r.t. other
algorithms) on a given dataset.

In this context, the state of the art in AutoML pursues two main research
directions: optimization, that is, searching for the best algorithms and configura-
tions w.r.t. a dataset or a distribution of datasets (Part II); and meta-learning,
that is, searching for a good representation of datasets, conducive to find, e.g. a
good initialization for an optimization algorithm (Part III).

In this thesis, the two directions have been considered, yielding three contri-
butions, respectively described in Chapters 4-6.

In Chapter 4, the proposed Mosaic tackles the fact that the optimization
problem is defined on a mixed search space, involving binary and continuous
coordinates, where the binary (structure, also referred to as pipeline) part
commands the structure of the continuous (referred to as hyper-parameters)
part, and the optimization objective strongly depends on the interactions among
both parts. While most current state-of-the-art algorithms combine the pipeline
selection and hyper-parameter optimization within the same optimization problem
(referred to as CASH, Section 2.2), Mosaic tackles the structural and continuous
optimization problems by using dedicated approaches for each problem, and
enforcing their efficient combination. Specifically, Mosaic handles the structural
(pipeline) optimization part using a Monte-Carlo Tree Search algorithm, and
it handles the hyper-parameter (continuous) optimization part with Bayesian
Optimization. The tight coupling of both optimization modules is enforced
through a shared surrogate performance model, exploited and maintained by both
modules.
The experiments on OpenML benchmark, containing 100 classification tasks,
comparing Mosaic with Auto-Sklearn and TPOT AutoML systems, suggest that
the proposed method outperforms its competitors Rakotoarison et al. [2019]. The
detailed inspection of the results suggest that this better performance is due to
the efficient exploration/exploitation strategy, early discarding unpromising regions
and refining the search in the promising ones.
The main limitation of the approach, showed in the experiments, is that Mosaic
performances significantly depend on the initialization of the search. This finding
motivates the two further contributions, devoted to meta-learning. Only tabular
data (as opposed to e.g., images) have been considered in the presented work.
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In Chapter 5, our first meta-learning contribution called Dida is presented,
leveraging distributional neural networks in order to learn meta-features. This
research direction involves two steps: i) defining a meta-learning problem, on the
space of datasets (e.g., recognizing whether two datasets are extracted at least
partially from the same joint distribution); ii) solving this meta-learning problem
using distributional NNs. The sought meta-features then consist of the functions
defined as the nodes on the last layers of the distributional NN; they are computed
from the dataset itself, viewed as a discrete distribution.
This line of research required some advances, to account for the specific structure
of datasets (e.g., the distinction among features and labels; the invariance w.r.t.
the permutation of the examples, and the features). Some proofs of concept
have been obtained along this line De Bie et al. [2020], showing that on two
meta-learning problems (patch classification and performance prediction tasks),
Dida yields superior empirical performances compared to Dataset2Vec and DSS.
However, Dida faces a main difficulty, which is the shortage of dataset bench-
mark. Dida basically is a neural net, and thus requires a significant number of
examples (here, datasets) to be trained. Furthermore, it hardly takes into account
pathological datasets (e.g., with missing values), hindering its application in a
real-world AutoML setting.

In Chapter 6, a second contribution to meta-learning called Metabu is pre-
sented, aimed to address Dida limitations. Basically, Metabu relies on the great
many hand-crafted meta-features, and it learns combinations thereof accounting
for the "oracle" topology among datasets, relatively to a particular ML algorithm.
This oracle topology is defined by considering that two datasets are similar iff the
hyper-parameter configurations delivering peak performance for these datasets
are similar. More precisely, optimal transport (OT) is leveraged to define the new
meta-features enforcing the oracle topology, using a Fused Gromov Wasserstein
OT approach [Vayer et al. 2019]. As Metabu operates on the top of the existing
hand-crafted meta-features, it requires less datasets than Dida. Nevertheless, we
had to define a (meta) data augmentation strategy and consider the new datasets
defined by boostrap from the original OpenML datasets. Another important
aspect in Metabu is that it automatically defines the number of meta-features
to learn, by estimating the intrinsic dimension of the dataset space [Facco et al.
2017]. This estimation, the first of its kind to our best knowledge, is a first step
toward characterizing the AutoML landscape. Another facet of Metabu is that it
sheds some light onto what matters when comparing two ML algorithms, in terms
of the relative importance of the hand-crafted meta-features. Though the findings
only confirm at the moment the long known tricks of the trade (e.g. rather use
decision trees or random forests in case of a high fraction of missing values),
they might deliver more hints into the comparative strengths of the considered
algorithms.
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Quite a few perspectives for further research, focusing on the extensions of the
presented approaches have been described in the partial conclusion of Chapters
4-6. Stepping back and looking at the overall picture, it is suggested that the ul-
timate goal for AutoML is to be able to understand when and why to recommend
a given ML algorithm. At the moment, AutoML systems mostly proceed by con-
ducting an optimization process, where only the initialization step relies on learned
models. Still, a general trend in ML is toward learning explainable models, or at
least, explaining the model decisions. While AutoML seems still far from building
explainable models, it is suggested that learning explainable meta-features consti-
tutes one significant step toward this aim. Along this line, these meta-features
support a visualization of the benchmark datasets, that is amenable to assess the
coverage of a benchmark and/or the quality of the experimental validation for a
new algorithms.

Lastly, another perspective is to reconsider and extend the configuration space
itself. On one hand, Mosaic can be easily adapted to handle variable size
pipelines [Wever et al. 2018a], describing the search space in terms of a gram-
mar taking inspiration from [Marinescu et al. 2021].
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A - Supplementary Material - Mosaic

A.1 . Mosaic Search Space

Mosaic shares the same search space as Auto-Sklearn. Table A.1 resume
all components of one complete pipeline x. Table A.2 illustrates an overview of
hyper-parameter for each data preprocessing methode. Table A.3, A.4 presents an
exhaustive list of hyper-parameter of each learning algorithm considered inMosaic.
All names (of algorithms, their parameters, and possibly the names of the options)
are those used in Scikit-Learn library.

A.2 . Detailed results (Vanilla setting)

This section presents detailed results for the Vanilla variants of Mosaic and
Auto-Sklearn out of 10 independent runs (the results at the stopping time are
graphically presented in Figure 4 of the paper). A general remark is that Mo-
saic has a higher variance w.r.t. the median results, as summarized on Table 4.1,
Mosaic is significantly better on 21 datasets (using a MWW test at 95% confi-
dence), and non-significantly better on 35 datasets. It is significantly worse on
6 datasets and non-significantly worse on 18 datasets. Results on dataset with
ID in 3021, 3946, 3948, 3950, 34536, 34539 are not available because of technical
problems (memory and dataset quality issues).
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Pipeline Available choice
Balancing none, weighting

Categorical_encoding no_encoding, one_hot_encoding
Imputation mean, median, most_frequent

Rescaling minmax, none, normalize,
quantile_transformer, robust_scaler, standardize

Classifier

adaboost, bernoulli_nb, decision_tree, extra_trees,
gaussian_nb, gradient_boosting, k_nearest_neighbors,

lda, liblinear_svc, libsvm_svc, multinomial_nb,
passive_aggressive, qda, random_forest, sgd,

xgradient_boosting

Preprocessor

extra_trees_preproc_for_classification, fast_ica,
feature_agglomeration, kernel_pca, kitchen_sinks,
liblinear_svc_preprocessor, no_preprocessing,

nystroem_sampler, pca, polynomial,
random_trees_embedding, select_percentile_classification,

select_rates

Table A.1: Pipeline components for each complete configuration
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Algorithm Parameter Type Domain Default
extra_trees_preproc_for_classification bootstrap categorical True,False [False]
extra_trees_preproc_for_classification criterion categorical gini,entropy [gini]
extra_trees_preproc_for_classification max_depth categorical None [None]
extra_trees_preproc_for_classification max_features real [0.0,1.0] [0.5]
extra_trees_preproc_for_classification max_leaf_nodes categorical None [None]
extra_trees_preproc_for_classification min_impurity_decrease categorical 0.0 [0.0]
extra_trees_preproc_for_classification min_samples_leaf integer [1,20] [1]
extra_trees_preproc_for_classification min_samples_split integer [2,20] [2]
extra_trees_preproc_for_classification min_weight_fraction_leaf categorical 0.0 [0.0]
extra_trees_preproc_for_classification n_estimators categorical 100 [100]

fast_ica algorithm categorical parallel,deflation [parallel]
fast_ica fun categorical logcosh,exp,cube [logcosh]
fast_ica whiten categorical False,True [False]

feature_agglomeration affinity categorical euclidean,manhattan,cosine [euclidean]
feature_agglomeration linkage categorical ward,complete,average [ward]
feature_agglomeration n_clusters integer [2,400] [25]
feature_agglomeration pooling_func categorical mean,median,max [mean]

kernel_pca kernel categorical poly,rbf,sigmoid,cosine [rbf]
kernel_pca n_components integer [10,2000] [100]
kitchen_sinks gamma real (log) [3.0517578125e-05,8.0] [1.0]
kitchen_sinks n_components (log) integer [50,10000] [100]

liblinear_svc_preprocessor C real (log) [0.03125,32768.0] [1.0]
liblinear_svc_preprocessor dual categorical False [False]
liblinear_svc_preprocessor fit_intercept categorical True [True]
liblinear_svc_preprocessor intercept_scaling categorical 1 [1]
liblinear_svc_preprocessor loss categorical hinge,squared_hinge [squared_hinge]
liblinear_svc_preprocessor multi_class categorical ovr [ovr]
liblinear_svc_preprocessor penalty categorical l1 [l1]
liblinear_svc_preprocessor tol real (log) [1e-05,0.1] [0.0001]

nystroem_sampler kernel categorical poly,rbf,sigmoid,cosine [rbf]
nystroem_sampler n_components integer (log) [50,10000] [100]

pca keep_variance real [0.5,0.9999] [0.9999]
pca whiten categorical False,True [False]

polynomial degree integer [2,3] [2]
polynomial include_bias categorical True,False [True]
polynomial interaction_only categorical False,True [False]

random_trees_embedding bootstrap categorical True,False [True]
random_trees_embedding max_depth integer [2,10] [5]
random_trees_embedding max_leaf_nodes categorical None [None]
random_trees_embedding min_samples_leaf integer [1,20] [1]
random_trees_embedding min_samples_split integer [2,20] [2]
random_trees_embedding min_weight_fraction_leaf categorical 1.0 [1.0]
random_trees_embedding n_estimators integer [10,100] [10]

select_percentile_classification percentile real [1.0,99.0] [50.0]
select_percentile_classification score_func categorical chi2,f_classif,mutual_info [chi2]

select_rates alpha real [0.01,0.5] [0.1]
select_rates mode categorical fpr,fdr,fwe [fpr]
select_rates score_func categorical chi2,f_classif [chi2]
fast_ica n_components integer [10,2000] [100]

kernel_pca coef0 real [-1.0,1.0] [0.0]
kernel_pca degree integer [2,5] [3]
kernel_pca gamma real (log) [3.0517578125e-05, 8.0] [1.0]

nystroem_sampler coef0 real [-1.0,1.0] [0.0]
nystroem_sampler degree integer [2,5] [3]
nystroem_sampler gamma real (log) [3.0517578125e-05,8.0] [0.1]

Table A.2: Configuration space of data-preprocessing method
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Algorithm Parameter Type Domain Default
adaboost algorithm categorical SAMME.R,SAMME [SAMME.R]
adaboost learning_rate real (log) [0.01,2.0] [0.1]
adaboost max_depth integer [1,10] [1]
adaboost n_estimators integer [50,500] [50]

bernoulli_nb alpha real (log) [0.01,100.0] [1.0]
bernoulli_nb fit_prior categorical True,False [True]
decision_tree criterion categorical gini,entropy [gini]
decision_tree max_depth real [0.0,2.0] [0.5]
decision_tree max_features categorical 1.0 [1.0]
decision_tree max_leaf_nodes categorical None [None]
decision_tree min_impurity_decrease categorical 0.0 [0.0]
decision_tree min_samples_leaf integer [1,20] [1]
decision_tree min_samples_split integer [2,20] [2]
decision_tree min_weight_fraction_leaf categorical 0.0 [0.0]
extra_trees bootstrap categorical True,False [False]
extra_trees criterion categorical gini,entropy [gini]
extra_trees max_depth categorical None [None]
extra_trees max_features real [0.0,1.0] [0.5]
extra_trees max_leaf_nodes categorical None [None]
extra_trees min_impurity_decrease categorical 0.0 [0.0]
extra_trees min_samples_leaf integer [1,20] [1]
extra_trees min_samples_split integer [2,20] [2]
extra_trees min_weight_fraction_leaf categorical 0.0 [0.0]
extra_trees n_estimators categorical 100 [100]

gradient_boosting criterion categorical friedman_mse,mse,mae [mse]
gradient_boosting learning_rate real (log) [0.01,1.0] [0.1]
gradient_boosting loss categorical deviance [deviance]
gradient_boosting max_depth integer [1,10] [3]
gradient_boosting max_features real [0.1,1.0] [1.0]
gradient_boosting max_leaf_nodes categorical None [None]
gradient_boosting min_impurity_decrease categorical 0.0 [0.0]
gradient_boosting min_samples_leaf integer [1,20] [1]
gradient_boosting min_samples_split integer [2,20] [2]
gradient_boosting min_weight_fraction_leaf categorical 0.0 [0.0]
gradient_boosting n_estimators integer [50,500] [100]
gradient_boosting subsample real [0.01,1.0] [1.0]

k_nearest_neighbors n_neighbors integer (log) [1,100] [1]
k_nearest_neighbors p categorical 1,2 [2]
k_nearest_neighbors weights categorical uniform,distance [uniform]

lda n_components integer [1,250] [10]
lda shrinkage categorical None,auto,manual [None]
lda tol real (log) [1e-05,0.1] [0.0001]

liblinear_svc C real (log) [0.03125,32768.0] [1.0]
liblinear_svc dual categorical False [False]
liblinear_svc fit_intercept categorical True [True]
liblinear_svc intercept_scaling categorical 1 [1]
liblinear_svc loss categorical hinge,squared_hinge [squared_hinge]
liblinear_svc multi_class categorical ovr [ovr]
liblinear_svc penalty categorical l1,l2 [l2]
liblinear_svc tol real (log) [1e-05,0.1] [0.0001]
libsvm_svc C real [0.03125,32768.0] [1.0]log
libsvm_svc gamma real (log) [3.0517578125e-05,8.0] [0.1]
libsvm_svc kernel categorical rbf,poly,sigmoid [rbf]
libsvm_svc max_iter categorical -1 [-1]
libsvm_svc shrinking categorical True,False [True]
libsvm_svc tol real (log) [1e-05,0.1] [0.001]

multinomial_nb alpha real (log) [0.01,100.0] [1.0]
multinomial_nb fit_prior categorical True,False [True]

Table A.3: Configuration space of learning algorithm (1/2)
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Algorithm Parameter Type Domain Default
passive_aggressive C real (log) [1e-05,10.0] [1.0]
passive_aggressive average categorical False,True [False]
passive_aggressive fit_intercept categorical True [True]
passive_aggressive loss categorical hinge,squared_hinge [hinge]
passive_aggressive tol real (log) [1e-05,0.1] [0.0001]

qda reg_param real [0.0,1.0] [0.0]
random_forest bootstrap categorical True,False [True]
random_forest criterion categorical gini,entropy [gini]
random_forest max_depth categorical None [None]
random_forest max_features real [0.0,1.0] [0.5]
random_forest max_leaf_nodes categorical None [None]
random_forest min_impurity_decrease categorical 0.0 [0.0]
random_forest min_samples_leaf integer [1,20] [1]
random_forest min_samples_split integer [2,20] [2]
random_forest min_weight_fraction_leaf categorical 0.0 [0.0]
random_forest n_estimators categorical 100 [100]

sgd alpha real (log) [1e-07,0.1] [0.0001]
sgd average categorical False,True [False]
sgd fit_intercept categorical True [True]
sgd learning_rate categorical optimal,invscaling,constant [invscaling]

sgd loss categorical hinge, log ,modified_huber,
squared_hinge, perceptron [log]

sgd penalty categorical l1,l2,elasticnet [l2]
sgd tol real (log) [1e-05,0.1] [0.0001]
sgd epsilon real (log) [1e-05,0.1] [0.0001]
sgd eta0 real (log) [1e-07,0.1] [0.01]
sgd l1_ratio real (log) [1e-09,1.0] [0.15]
sgd power_t real [1e-05,1.0] [0.5]

xgradient_boosting base_score categorical 0.5 [0.5]
xgradient_boosting booster categorical gbtree,dart [gbtree]
xgradient_boosting colsample_bylevel real [0.1,1.0] [1.0]
xgradient_boosting colsample_bytree real [0.1,1.0] [1.0]
xgradient_boosting gamma categorical 0 [0]
xgradient_boosting learning_rate (log) real [0.001,1.0] [0.1]
xgradient_boosting max_delta_step categorical 0 [0]
xgradient_boosting max_depth integer [1,20] [3]
xgradient_boosting min_child_weight integer [0,20] [1]
xgradient_boosting n_estimators categorical 512 [512]
xgradient_boosting reg_alpha (log) real [1e-10,0.1] [1e-10]
xgradient_boosting reg_lambda (log) real [1e-10,0.1] [1e-10]
xgradient_boosting scale_pos_weight categorical 1 [1]
xgradient_boosting subsample real [0.01,1.0] [1.0]

lda shrinkage_factor real [0.0,1.0] [0.5]
libsvm_svc coef0 real [-1.0,1.0] [0.0]
libsvm_svc degree integer [2,5] [3]

xgradient_boosting normalize_type categorical tree,forest [tree]
xgradient_boosting rate_drop real [1e-10,0.9999999999] [0.5]
xgradient_boosting sample_type categorical uniform,weighted [uniform]

Table A.4: Configuration space of learning algorithm (2/2)

118



Auto-Sklearn Mosaic
Dataset id Min Max Median std Min Max Median std

3 0.984 0.997 0.99 0.004 0.987 0.997 0.993 0.004
6 0.964 0.964 0.964 0.0 0.967 0.973 0.971 0.002
11 1.0 1.0 1.0 0.0 0.933 1.0 1.0 0.021
12 0.97 0.985 0.975 0.006 0.965 0.985 0.978 0.006
14 0.775 0.86 0.805 0.032 0.81 0.88 0.825 0.022
15 0.967 0.989 0.978 0.01 0.947 0.989 0.973 0.012
16 0.955 0.98 0.968 0.008 0.96 0.98 0.97 0.007
18 0.685 0.76 0.73 0.023 0.685 0.76 0.698 0.027
20 0.97 0.985 0.972 0.006 0.965 0.985 0.98 0.008
21 0.962 0.998 0.992 0.01 0.945 1.0 1.0 0.017
22 0.81 0.865 0.825 0.017 0.78 0.83 0.812 0.014
23 0.552 0.615 0.601 0.022 0.538 0.598 0.571 0.019
24 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0
28 0.982 0.995 0.988 0.005 0.986 0.993 0.991 0.003
29 0.819 0.899 0.884 0.027 0.858 0.891 0.884 0.011
31 0.698 0.805 0.758 0.036 0.7 0.788 0.762 0.028
32 0.992 0.996 0.992 0.002 0.993 0.997 0.996 0.001
36 0.97 0.991 0.983 0.007 0.961 0.991 0.985 0.01
37 0.797 0.873 0.817 0.025 0.77 0.881 0.814 0.032
41 0.86 0.971 0.934 0.034 0.924 0.977 0.935 0.021
43 0.919 0.933 0.923 0.005 0.911 0.939 0.931 0.009
45 0.939 0.959 0.954 0.005 0.948 0.965 0.953 0.005
49 0.924 1.0 1.0 0.034 0.955 1.0 1.0 0.019
53 0.763 0.894 0.848 0.04 0.848 0.907 0.872 0.018
58 0.857 0.873 0.86 0.005 0.848 0.872 0.867 0.007
219 0.897 0.922 0.897 0.009 0.895 0.934 0.899 0.013
2074 0.872 0.899 0.882 0.009 0.891 0.91 0.897 0.006
2079 0.578 0.694 0.621 0.038 0.515 0.667 0.638 0.06
3022 0.909 1.0 0.96 0.04 0.939 1.0 0.975 0.023
3481 0.915 0.962 0.915 0.016 0.926 0.954 0.938 0.008
3485 0.924 0.977 0.977 0.017 0.977 0.988 0.977 0.004
3492 1.0 1.0 1.0 0.0 0.982 1.0 1.0 0.008
3493 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0
3494 0.964 0.964 0.964 0.0 0.964 0.964 0.964 0.0
3510 0.973 0.995 0.989 0.009 0.985 0.992 0.988 0.003
3512 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0
3543 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0
3549 0.96 0.992 0.984 0.009 0.975 0.992 0.983 0.006
3560 0.181 0.286 0.213 0.036 0.183 0.255 0.231 0.024
3561 0.614 0.67 0.658 0.019 0.605 0.747 0.682 0.048
3567 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0
3889 0.977 0.996 0.987 0.006 0.987 0.997 0.994 0.003
3891 0.951 0.971 0.955 0.008 0.957 0.974 0.963 0.006

Table A.5: Per dataset comparison statistics between MosaicV̇anilla
and Auto-SklearnV̇anilla (Part I)
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Auto-Sklearn Mosaic
Dataset id Min Max Median Std Min Max Median std

3896 0.769 0.8 0.786 0.008 0.778 0.803 0.791 0.008
3899 0.927 0.946 0.934 0.007 0.938 0.95 0.942 0.004
3902 0.807 0.906 0.867 0.03 0.843 0.898 0.862 0.015
3903 0.588 0.747 0.697 0.049 0.592 0.778 0.693 0.062
3904 0.637 0.665 0.655 0.009 0.639 0.681 0.661 0.014
3913 0.756 0.857 0.824 0.028 0.634 0.847 0.747 0.061
3917 0.702 0.789 0.72 0.024 0.686 0.772 0.726 0.026
3918 0.599 0.866 0.778 0.082 0.656 0.88 0.749 0.07
3954 0.852 0.867 0.852 0.006 0.851 0.87 0.862 0.005
7592 0.774 0.841 0.824 0.021 0.818 0.844 0.838 0.008
9914 0.906 0.984 0.952 0.025 0.902 0.967 0.951 0.021
9946 0.938 0.986 0.972 0.017 0.958 1.0 0.979 0.013
9950 0.857 0.967 0.924 0.036 0.925 0.958 0.942 0.017
9952 0.851 0.881 0.862 0.011 0.857 0.91 0.879 0.015
9954 0.825 0.835 0.825 0.003 0.77 0.84 0.812 0.021
9955 0.585 0.635 0.62 0.014 0.595 0.675 0.643 0.024
9956 0.785 0.855 0.835 0.018 0.805 0.9 0.85 0.028
9957 0.804 0.887 0.863 0.024 0.776 0.887 0.846 0.036
9960 0.983 1.0 0.991 0.006 0.987 0.998 0.994 0.004
9964 0.906 0.944 0.919 0.013 0.906 0.95 0.928 0.015
9967 0.996 0.996 0.996 0.0 0.993 1.0 1.0 0.004
9968 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0
9970 0.926 1.0 0.992 0.031 0.951 1.0 0.971 0.016
9971 0.627 0.739 0.703 0.04 0.539 0.715 0.656 0.05
9976 0.762 0.881 0.862 0.04 0.8 0.888 0.863 0.03
9977 0.96 0.97 0.96 0.003 0.96 0.97 0.964 0.003
9978 0.758 0.883 0.859 0.038 0.813 0.895 0.86 0.025
9979 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0
9980 0.655 0.745 0.705 0.027 0.515 0.715 0.668 0.056
9981 0.935 0.972 0.954 0.011 0.944 0.972 0.963 0.009
9983 0.916 0.965 0.944 0.015 0.941 0.972 0.964 0.009
9985 0.438 0.445 0.445 0.002 0.44 0.507 0.471 0.017
9986 0.993 0.993 0.993 0.0 0.993 0.996 0.996 0.001
10093 0.994 1.0 1.0 0.003 0.987 1.0 0.994 0.004
10101 0.617 0.706 0.673 0.034 0.598 0.766 0.683 0.055
14964 0.836 0.839 0.839 0.001 0.84 0.908 0.857 0.019
14965 0.807 0.853 0.836 0.016 0.799 0.862 0.828 0.019
14966 0.763 0.799 0.772 0.011 0.76 0.805 0.789 0.014
14967 0.989 1.0 1.0 0.004 0.995 1.0 0.999 0.002
14968 0.762 0.881 0.827 0.037 0.767 0.908 0.843 0.049
14969 0.571 0.635 0.579 0.02 0.573 0.622 0.606 0.015
14970 0.975 0.985 0.979 0.003 0.981 0.991 0.988 0.004
34537 0.961 0.961 0.961 0.0 0.951 0.965 0.961 0.004
34538 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0
125920 0.445 0.557 0.54 0.034 0.464 0.654 0.527 0.057
125921 0.715 0.805 0.763 0.027 0.69 0.808 0.755 0.032
125922 0.984 0.998 0.992 0.005 0.989 0.996 0.993 0.002
125923 0.837 0.886 0.871 0.016 0.846 0.912 0.881 0.019
146195 0.583 0.692 0.649 0.038 0.617 0.718 0.662 0.034
146606 0.717 0.717 0.717 0.0 0.718 0.729 0.722 0.003
146607 0.726 0.774 0.746 0.017 0.756 0.788 0.763 0.012

Table A.6: Per dataset comparison statistics between MosaicV̇anilla
and Auto-SklearnV̇anilla. Part(II)
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B - Supplementary Material - Dida

B.1 . Extension to arbitrary distributions

General notations. Let X ∈ R(IRd) denote a random vector on IRd with
αX ∈ P(IRd) its law (a positive Radon measure with unit mass). By definition,
its expectation denoted IE(X) reads IE(X) =

∫
IRd xdαX(x) ∈ IRd, and for any

continuous function f : IRd → IRr, IE(f(X)) =
∫

IRd f(x)dαX(x). In the following,
two random vectors X and X ′ with same law αX are considered indistinguishable,
noted X ′ ∼ X. Letting f : IRd 7→ IRr denote a function on IRd, the push-
forward operator by f , noted f] : P(IRd) 7→ P(IRr) is defined as follows, for any
g continuous function from IRd to IRr (g in C(IRd; IRr)):

∀g ∈ C(IRd; IRr)

∫
IRr
gd(f]α)

def.
=

∫
IRd
g(f(x))dα(x)

Letting {xi} be a set of points in IRd with wi ≥ 0 such that
∑

iwi = 1, the
discrete measure αX =

∑
iwiδxi is the sum of the Dirac measures δxi weighted

by wi.

Invariances. In this paper, we consider functions on probability measures
that are invariant with respect to permutations of coordinates. Therefore, de-
noting Sd the d-sized permutation group, we consider measures over a sym-
metrized compact Ω ⊂ IRd equipped with the following equivalence relation: for α,
β ∈ P(Ω), α ∼ β ⇐⇒ ∃σ ∈ Sd, β = σ]α, such that a measure and its permuted
counterpart are indistinguishable in the corresponding quotient space, denoted al-
ternatively P(Ω)/∼ or R(Ω)/∼. A function ϕ : Ωn → IR is said to be invariant (by
permutations of coordinates) iff ∀σ ∈ Sd, ϕ(x1, . . . , xn) = ϕ(σ(x1), . . . , σ(xn))

(Definition 5.1).

Tensorization. Letting X and Y respectively denote two random vectors on
R(IRd) and R(IRp), the tensor product vector X ⊗ Y is defined as: X ⊗ Y def.

=

(X
′
, Y
′
) ∈ R(IRd × IRp), where X

′
and Y

′
are independent and have the same

law as X and Y , i.e. d(αX⊗Y )(x, y) = dαX(x)dαY (y). In the finite case, for
αX = 1

n

∑
i δxi and αY = 1

m

∑
j δyj , then αX⊗Y = 1

nm

∑
i,j δxi,yj , weighted sum

of Dirac measures on all pairs (xi, yj). The k−fold tensorization of a random
vector X ∼ αX , with law α⊗kX , generalizes the above construction to the case of
k independent random variables with law αX . Tensorization will be used to define
the law of datasets, and design universal architectures (Appendix B.3).
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Invariant layers. In the general case, a G-invariant layer fϕ with invariant
map ϕ : IRd × IRd → IRr such that ϕ satisfies

∀(x1, x2) ∈ (IRd)2,∀σ ∈ G,ϕ(σ(x1), σ(x2)) = ϕ(x1, x2)

is defined as

fϕ : X ∈ R(IRd)/∼ 7→ IEX′∼X [ϕ(X,X ′)] ∈ R(IRr)/∼

where the expectation is taken over X ′ ∼ X. Note that considering the cou-
ple (X,X ′) of independent random vectors X ′ ∼ X amounts to consider the
tensorized law αX ⊗ αX .

Remark 3. Taking as input a discrete distribution αX =
∑n

i=1wiδxi , the in-
variant layer outputs another discrete distribution αY =

∑n
i=1wiδyi with yi =∑n

j=1wjϕ(xi, xj); each input point xi is mapped onto yi summarizing the pair-
wise interactions with xi after ϕ.

Remark 4. (Generalization to arbitrary invariance groups) The definition of in-
variant ϕ can be generalized to arbitrary invariance groups operating on IRd, in
particular sub-groups of the permutation group Sd. After Maron et al. [2020] (The-
orem 5), a simple and only way to design an invariant linear function is to consider
ϕ(z, z′) = ψ(z + z′) with ψ being G-invariant. How to design invariant functions
in the general non-linear case is left for further work.

Remark 5. Invariant layers can also be generalized to handle higher order in-
teractions functionals, namely fϕ(X)

def.
= IEX2,...,XN∼X [ϕ(X,X2, . . . , XN )], which

amounts to consider, in the discrete case, N -uple of inputs points (xj1 , . . . , xjN ).

B.2 . Proofs on Regularity

Wasserstein distance. The regularity of the involved functionals is measured
w.r.t. the 1-Wasserstein distance between two probability distributions (α, β) ∈
P(IRd)

W1(α, β)
def.
= min

π1=α,π2=β

∫
IRd×IRd

||x− y||dπ(x, y)

def.
= min

X∼α,Y∼β
IE(||X − Y ||)

where the minimum is taken over measures on IRd × IRd with marginals α, β ∈
P(IRd). W1 is known to be a norm Santambrogio [2015], that can be conveniently
computed using

W1(α, β) = W1(α− β) = max
Lip(g)≤1

∫
IRd
gd(α− β),
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where Lip(g) is the Lipschitz constant of g : IRd → IR with respect to the
Euclidean norm (unless otherwise stated). For simplicity and by abuse of notations,
W1(X,Y ) is used instead of W1(α, β) when X ∼ α and Y ∼ β. The convergence
in law denoted ⇀ is equivalent to the convergence in Wasserstein distance in the
sense that Xk ⇀ X is equivalent to W1(Xk, X)→ 0.

Permutation-invariant Wasserstein distance. The Wasserstein dis-
tance is quotiented according to the permutation invariance equivalence classes:
for α, β ∈ P(IRd)

W1(α, β)
def.
= min

σ∈Sd

W1(σ]α, β)

= min
σ∈Sd

max
Lip(g)≤1

∫
IRd
g ◦ σdα−

∫
IRd
gdβ

such that W1(α, β) = 0 ⇐⇒ α ∼ β. W1 defines a norm on P(IRd)/∼.

Lipschitz property. A map f : R(IRd) → R(IRr) is continuous for the
convergence in law (aka the weak∗ of measures) if for any sequence Xk ⇀ X,
then f(Xk) ⇀ f(X). Such a map is furthermore said to be C-Lipschitz for the
permutation invariant 1-Wasserstein distance if

∀(X,Y ) ∈ (R(IRd)/∼)2, W1(f(X), f(Y )) ≤ CW1(X,Y ). (B.1)

Lipschitz properties enable us to analyze robustness to input perturbations, since it
ensures that if the input distributions of random vectors are close in the permutation
invariant Wasserstein sense, the corresponding output laws are close, too.

Proofs of Section 5.4.2.

Proof. (Proposition 1). For α, β ∈ P(IRd), Proposition 1 from De Bie et al.
[2019] yields W1(fϕ(α), fϕ(β)) ≤ 2r Lip(ϕ) W1(α, β), hence, for σ ∈ G,

W1(σ]fϕ(α), fϕ(β)) ≤W1(σ]fϕ(α), fϕ(α))

+ W1(fϕ(α), fϕ(β))

≤W1(σ]fϕ(α), fϕ(α))

+ 2r Lip(ϕ) W1(α, β)

hence, taking the infimum over σ yields

W1(fϕ(α), fϕ(β)) ≤W1( fϕ(α), fϕ(α))

+ 2r Lip(ϕ) W1(α, β)

≤ 2r Lip(ϕ) W1(α, β)
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Since fϕ is invariant, for σ ∈ G, fϕ(z) = fϕ(σ]z),

W1(fϕ(α), fϕ(β)) ≤ 2r Lip(ϕ) W1(σ]α, β)

Taking the infimum over σ yields the result.

Proof. (Proposition 2). To upper bound W1(ξ]fϕ(τ]α), fϕ(α)) for α ∈ P(IRd),
we proceed as follows, using proposition 3 from De Bie et al. [2019] and
proposition 1:

W1(ξ]fϕ(τ]αϕ(α)), fϕ(α)) ≤W1(ξ]fϕ(τ]α), fϕ(τ]α))

+ W1(fϕ(τ]α), fϕ(α))

≤||ξ − id||L1(fϕ(τ]α))

+ Lip(fϕ) W1(τ]α, α)

≤ sup
y∈fϕ(τ(Ω))

||ξ(y)− y||2

+ 2r Lip(ϕ) sup
x∈Ω
||τ(x)− x||2

For σ ∈ G, we get

W1(σ]ξ]fϕ(τ]α), fϕ(α)) ≤W1(σ]ξ]fϕ(τ]α), ξ]fϕ(τ]α))

+ W1(ξ]fϕ(τ]α), fϕ(α))

Taking the infimum over σ yields

W1(ξ]fϕ(τ]α), fϕ(α)) ≤W1(ξ]fϕ(τ]α), fϕ(α))

≤ sup
y∈fϕ(τ(Ω))

||ξ(y)− y||2

+ 2rC(ϕ) sup
x∈Ω
||τ(x)− x||2

Similarly, for α, β ∈ (P(IRd))2,

W1(ξ]fϕ(τ]α),ξ]fϕ(τ]β)) ≤Lip(ξ) W1(fϕ(τ]α), fϕ(τ]β))

≤ Lip(ξ) Lip(fϕ) W1(τ]α, τ]β)

≤ 2r Lip(ϕ) Lip(ξ) Lip(τ) W1(α, β)

hence, for σ ∈ G,

W1(σ]ξ]fϕ(τ]α), ξ]fϕ(τ]β)) ≤W1(σ]ξ]fϕ(τ]α), ξ]fϕ(τ]α))

+ W1(ξ]fϕ(τ]α), ξ]fϕ(τ]β))

and taking the infimum over σ yields

W1(ξ]fϕ(τ]α),ξ]fϕ(τ]β)) ≤W1(ξ]fϕ(τ]α), ξ]fϕ(τ]β))

≤ 2r Lip(ϕ) Lip(ξ) Lip(τ) W1(α, β)
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Since τ is equivariant: namely, for α ∈ P(IRd), σ ∈ G, τ](σ]α) = σ](τ]α),

hence, since fϕ is invariant, fϕ(τ](σ]α)) = fϕ(σ](τ]α)) = fϕ(τ]α), hence for
σ ∈ G,

W1(ξ]fϕ(τ]α),ξ]fϕ(τ]β))

≤ 2r Lip(ϕ) Lip(ξ) Lip(τ) W1(σ]α, β)

Taking the infimum over σ yields the result.

B.3 . Proofs on Universality

Detailed proof of Theorem 1. This paragraph details the result in the case
of Sd−invariance, while the next one focuses on invariances w.r.t. products of
permutations. Before providing a proof of Theorem 1 we first state two useful
lemmas. Lemma 1 is mentioned for completeness, referring the reader to De Bie
et al. [2019], Lemma 1 for a proof.

Lemma 1. Let (Sj)
N
j=1 be a partition of a domain including Ω (Sj ⊂ IRd) and let

xj ∈ Sj . Let (ϕj)
N
j=1 a set of bounded functions ϕj : Ω → IR supported on Sj ,

such that
∑

j ϕj = 1 on Ω. For α ∈ P(Ω), we denote α̂N
def.
=
∑N

j=1 αjδxj with
αj

def.
=
∫
Sj
ϕjdα. One has, denoting ∆j

def.
= maxx∈Sj ||xj − x||,

W1(α̂N , α) ≤ max
1≤j≤N

∆j .

Lemma 2. Let f : Rd → Rq a 1/p-Hölder continuous function (p ≥ 1), then
there exists a constant C > 0 such that for all α, β ∈ P(IRd), W1(f]α, f]β) ≤
C W1(α, β)1/p.

Proof. For any transport map π with marginals α and β, 1/p-Hölderness of f
with constant C yields

∫
||f(x) − f(y)||2dπ(x, y) ≤ C

∫
||x − y||1/p2 dπ(x, y) ≤

C
(∫
||x− y||2dπ(x, y)

)1/p using Jensen’s inequality (p ≤ 1). Taking the infi-
mum over π yields W1(f]α, f]β) ≤ C W1(α, β)1/p.

Now we are ready to dive into the proof. Let α ∈ P(IRd). We consider:

• h : x = (x1, . . . , xd) ∈ Rd 7→
(∑

1≤j1<...<ji≤d xj1 · . . . · xji
)
i=1...d

∈ Rd

the collection of d elementary symmetric polynomials; h does not lead to a
loss in information, in the sense that it generates the ring of Sd-invariant
polynomials (see for instance Cox et al. [2018], chapter 7, theorem 3) while
preserving the classes (see the proof of Lemma 2, appendix D from Maron
et al. [2020]);

• h is obviously not injective, so we consider π : Rd → Rd/Sd the projection
onto Rd/Sd: h = h̃ ◦ π such that h̃ is bijective from π(Ω) to its image Ω

′
,

compact of Rd; h̃ and h̃−1 are continuous;
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• Let (ϕi)i=1...N the piecewise affine P1 finite element basis, which are hat
functions on a discretization (Si)i=1...N of Ω

′ ⊂ Rd, with centers of cells
(yi)i=1...N . We then define g : x ∈ Rd 7→ (ϕ1(x), . . . , ϕN (x)) ∈ RN ;

• f : (α1, . . . , αN ) ∈ RN 7→ F
(∑N

i=1 αiδh̃−1(yi)

)
∈ R.

We approximate F using the following steps:

• Lemma 1 (see Lemma 1 from De Bie et al. [2019]) yields that h]α and
ĥ]α =

∑N
i=1 αiδyi are close: W1(h]α, ĥ]α) ≤

√
d/N1/d;

• The map h̃−1 is regular enough (1/d-Hölder) such that according to Lemma
2, there exists a constant C > 0 such that

W1(h̃−1
] (h]α), h̃−1

] ĥ]α) ≤ C W1(h]α, ĥ]α)1/d

≤ Cd1/2d/N1/d2

Hence

W1(α, h̃−1
] ĥ]α)

def.
= inf

σ∈Sd

W1(σ]α, h̃
−1
] ĥ]α)

≤ Cd1/2d/N1/d2 .

Note that h maps the roots of polynomial
∏d
i=1(X−x(i)) to its coefficients

(up to signs). Theorem 1.3.1 from Rahman and Schmeisser [2002] yields
continuity and 1/d-Hölderness of the reverse map. Hence h̃−1 is 1/d-Hölder.

• Since Ω is compact, by Banach-Alaoglu theorem, we obtain that P(Ω)

is weakly-* compact, hence P(Ω)/∼ also is. Since F is continuous, it is
thus uniformly weak-* continuous: for any ε > 0, there exists δ > 0 such
that W1(α, h̃−1

] ĥ]α) ≤ δ implies |F(α) − F(h̃−1
] ĥ]α)| < ε. Choosing N

large enough such that Cd1/2d/N1/d2 ≤ δ therefore ensures that |F(α) −
F(h̃−1

] ĥ]α)| < ε.

Extension of Theorem 1 to products of permutation groups.

Corollary 1. Let F : P(Ω)/∼ → IR a continuous Sd1 × . . . × Sdn -invariant map
(
∑

i di = d), whereΩ is a symmetrized compact over IRd. Then ∀ε > 0, there exists
three continuous maps f, g, h such that

∀α ∈M1
+(Ω)/∼, |F(α)− f ◦ IE ◦ g(h]α)| < ε

where h is invariant; g, h are independent of F .
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Proof. We provide a proof in the case G = Sd × Sp, which naturally extends
to any product group G = Sd1 × . . . × Sdn . We trade h for the collection of
elementary symmetric polynomials in the first d variables; and in the last p
variables:

h : (x1, . . . , xd, y1, . . . , yp) ∈ IRd+p

7→ ([
∑

j1<...<ji

xj1 . . . xji ]
d
i=1; [

∑
j1<...<ji

yj1 . . . yji ]
p
i=1)

∈ IRd+p

up to normalizing constants (see Lemma 4). Step 1 (in Lemma 3) consists in
showing that h does not lead to a loss of information, in the sense that it gen-
erates the ring of Sd × Sp−invariant polynomials. In step 2 (in Lemma 4), we
show that h̃−1 is 1/max(d, p)−Hölder. Combined with the proof of Theorem
1, this amounts to showing that the concatenation of Hölder functions (up to
normalizing constants) is Hölder. With these ingredients, the sketch of the
previous proof yields the result.

Lemma 3. Let the collection of symmetric invariant polynomials
[Pi(X1, . . . , Xd)]

d
i=1

def.
= [

∑
j1<...<ji

Xj1 . . . Xji ]
d
i=1 and [Qi(Y1, . . . , Yp)]

p
i=1 =

[
∑

j1<...<ji
Yj1 . . . Yji ]

p
i=1. The d + p−sized family (P1, . . . , Pd, Q1, . . . , Qp)

generates the ring of Sd × Sp−invariant polynomials.

Proof. The result comes from the fact the fundamental theoremof symmetric
polynomials (see Cox et al. [2018] chapter 7, theorem 3) does not depend on
the base field. EverySd×Sp−invariant polynomialP (X1, . . . , Xd, Y1, . . . , Yp) is
alsoSd×Ip−invariant with coefficients in IR[Y1, . . . , Yp], hence it can bewritten
P = R(Y1, . . . , Yp)(P1, . . . , Pd). It is then also Sp−invariant with coefficients
in IR[P1, . . . , Pd], hence it can be written P = S(Q1, . . . , Qp)(P1, . . . , Pd) ∈
IR[P1, . . . , Pd, Q1, . . . , Qp].

Lemma 4. Let h : (x, y) ∈ Ω ⊂ IRd+p 7→ (f(x)/C1, g(y)/C2) ∈ IRd+p where Ω

is compact, f : IRd → IRd is 1/d−Hölder with constant C1 and g : IRp → IRp is
1/p−Hölder with constant C2. Then h is 1/max(d, p)−Hölder.

Proof. Without loss of generality, we consider d > p so that max(d, p) = d,
and f, g normalized (f.i. ∀x, x0 ∈ (IRd)2, ||f(x) − f(x0)||1 ≤ ||x − x0||1/d1 ). For
(x, y), (x0, y0) ∈ Ω2, ||h(x, y)−h(x0, y0)||1 ≤ ||f(x)−f(x0)||1 + ||g(y)−g(y0)||1 ≤
||x − x0||1/d1 + ||y − y0||1/p1 since both f, g are Hölder. We denote D the di-
ameter of Ω, such that both ||x − x0||1/D ≤ 1 and ||y − y0||1/D ≤ 1 hold.

Therefore ||h(x, y) − h(x0, y0)||1 ≤ D1/d
(
||x−x0||1

D

)1/d
+ D1/p

(
||y−y0||1

D

)1/p
≤

21−1/dD1/p−1/d||(x, y) − (x0, y0)||1/d1 using Jensen’s inequality, hence the re-
sult.
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In the next two paragraphs, we focus the case of Sd−invariant functions for
the sake of clarity, without loss of generality. Indeed, the same technique applies
to G−invariant functions as h in that case has the same structure: its first dX
components are SdX−invariant functions of the first dX variables and its last dY
components are SdY −invariant functions of the last variables.

Extension of Theorem 1 to distributions on spaces of varying di-
mension.

Corollary 2. Let I = [0; 1] and, for k ∈ [1; dm],Fk : P(Ik)→ IR continuous and
Sk−invariant. Suppose (Fk)k=1...dm−1 are restrictions of Fdm , namely, ∀αk ∈
P(Ik),Fk(αk) = Fdm(αk⊗δ⊗dm−k0 ). Then functions f and g from Theorem 1 are
uniform: there exists f, g continuous, h1, . . . , hdm continuous invariant such that

∀k = 1 . . . dm, ∀αk ∈ P(Ik), |Fk(αk)− f ◦ IE ◦ g(hk]αk)| < ε.

Proof. Theorem 1 yields continuous f, g and a continuous invariant hdm such
that ∀α ∈ P(Idm), |Fdm−f ◦ IE◦g(hdm ]α)| < ε. For k = 1 . . . dm−1, we denote
hk : (x1, . . . , xk) ∈ IRk 7→ ((

∑
1≤j1<...<ji≤k x

(j1)·. . .·x(ji))i=1...k, 0 . . . , 0) ∈ IRdm .
With the hypothesis, for k = 1 . . . dm − 1, αk ∈ P(Ik), the fact that hk](αk) =

hdm ](αk ⊗ δ
⊗dm−k
0 ) yields the result.

Approximation by invariant neural networks. Based on theorem 1,
F is uniformly close to f ◦ E ◦ g ◦ h:

• We approximate f by a neural network fθ : x ∈ RN 7→ C1λ(A1x+ b1) ∈ R,
where p1 is an integer, A1 ∈ Rp1×N , C1 ∈ R1×p1 are weights, b1 ∈ Rp1 is a
bias and λ is a non-linearity.

• Since each component ϕj of ϕ = g ◦ h is permutation-invariant, it has the

representation ϕj : x = (x1, . . . , xd) ∈ IRd 7→ ρj

(∑d
i=1 u(xi)

)
Zaheer

et al. [2017] (which is a special case of our layers with a base function only
depending on its first argument, see Section 5.3.1), ρj : Rd+1 → R, and
u : R→ Rd+1 independent of j (see Zaheer et al. [2017], theorem 7).

• We can approximate ρj and u by neural networks ρj,θ : x ∈ Rd+1 7→
C2,jλ(A2,jx+ b2,j) ∈ R and uθ : x ∈ Rd 7→ C3λ(A3x+ b3) ∈ Rd+1, where
p2,j , p3 are integers, A2,j ∈ Rp2,j×(d+1), C2,j ∈ R1×p2,j , A3 ∈ Rp3×1, C3 ∈
R(d+1)×p3 are weights and b2,j ∈ Rp2,j , b3 ∈ Rp3 are biases, and denote
ϕθ(x) = (ϕj,θ(x))j

def.
= (ρj,θ(

∑d
i=1 uθ(xi)))j .

Indeed, we upper-bound the difference of interest |F(α)− fθ (EX∼α (ϕθ(X)))| by
triangular inequality by the sum of three terms:

• |F(α)− f (EX∼α (ϕ(X)))|
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• |f (EX∼α (ϕ(X)))− fθ (EX∼α (ϕ(X)))|

• |fθ (EX∼α (ϕ(X)))− fθ (EX∼α (ϕθ(X)))|

and bound each term by ε
3 , which yields the result. The bound on the first

term directly comes from theorem 1 and yields a constant N which depends on
ε. The bound on the second term is a direct application of the universal ap-
proximation theorem (UAT) [Cybenko 1989, Leshno et al. 1993]. Indeed, since
α is a probability measure, input values of f lie in a compact subset of IRN :
||
∫

Ω g ◦ h(x)dα||∞ ≤ maxx∈Ω maxi |gi ◦ h(x)|, hence the theorem is applicable as
long as λ is a nonconstant, bounded and continuous activation function. Let us
focus on the third term. Uniform continuity of fθ yields the existence of δ > 0 s.t.
||u− v||1 < δ implies |fθ(u)− fθ(v)| < ε

3 . Let us apply the UAT: each component
ϕj of h can be approximated by a neural network ϕj,θ. Therefore:

||IEX∼α (ϕ(X)− ϕθ(X)) ||1 ≤ IEX∼α||ϕ(X)− ϕθ(X)||1

≤
N∑
j=1

∫
Ω
|ϕj(x)− ϕj,θ(x)|dα(x)

≤
N∑
j=1

∫
Ω
|ϕj(x)− ρj,θ(

d∑
i=1

u(xi))|dα(x)

+
N∑
j=1

∫
Ω
|ρj,θ(

d∑
i=1

u(xi))− ρj,θ(
d∑
i=1

uθ(xi))|dα(x)

≤ N δ

2N
+N

δ

2N
= δ

using the triangular inequality and the fact that α is a probability measure. The
first term is small by UAT on ρj while the second also is, by UAT on u and uniform
continuity of ρj,θ. Therefore, by uniform continuity of fθ, we can conclude.

Universality of tensorization. This complementary theorem provides in-
sight into the benefits of tensorization for approximating invariant regression func-
tionals, as long as the test function is invariant.

Theorem 2. The algebra

AΩ
def.
=

{
F : P(Ω)/∼ → IR,∃n ∈ NN, ∃ϕ : Ωn → IRinvariant,∀α,F(α) =

∫
Ωn

ϕdα⊗n
}

where ⊗n denotes the n-fold tensor product, is dense in C(M1
+(Ω)/∼).

Proof. This result follows from the Stone-Weierstrass theorem. Since Ω is
compact, by Banach-Alaoglu theorem, we obtain that P(Ω) is weakly-* com-
pact, hence P(Ω)/∼ also is. In order to apply Stone-Weierstrass, we show
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that AΩ contains a non-zero constant function and is an algebra that sepa-
rates points. A (non-zero, constant) 1-valued function is obtained with n = 1

and ϕ = 1. Stability by scalar is straightforward. For stability by sum: given
(F1,F2) ∈ A2

Ω (with associated functions (ϕ1, ϕ2) of tensorization degrees
(n2, n2)), we denote n def.

= max(n1, n2) and ϕ(x1, . . . , xn)
def.
= ϕ1(x1, . . . , xn1) +

ϕ2(x1, . . . , xn2) which is indeed invariant, hence F1 + F2 =
∫

Ωn ϕdα⊗n ∈ AΩ.
Similarly, for stability by product: denoting this time n = n1+n2, we introduce
the invariantϕ(x1, . . . , xn) = ϕ1(x1, . . . , xn1)×ϕ2(xn1+1, . . . , xn), which shows
that F = F1 × F2 ∈ AΩ using Fubini’s theorem. Finally, AΩ separates points:
if α 6= ν, then there exists a symmetrized domain S such that α(S) 6= ν(S):
indeed, if for all symmetrized domains S, α(S) = ν(S), then α(Ω) = ν(Ω)

which is absurd. Taking n = 1 and ϕ = 1S (invariant since S is symmetrized)
yields an F such that F(α) 6= F(ν).

B.4 . Experimental validation, supplementary material

Both Dida and baselines source code are provided in the last file of the sup-
plementary material.

B.4.1 . Benchmark Details
Three benchmarks are used (Table 5.1): TOY and UCI, taken from Jomaa

et al. [2021], and OpenML CC-18. TOY includes 10,000 datasets, where instances
are distributed along mixtures of Gaussian, intertwinning moons and rings in IR2,
with 2 to 7 classes. UCI includes 121 datasets from the UCI Irvine repository Dua
and Graff [2017]. Datasets UCI and OpenML are normalized as follows: categorical
features are one-hot encoded; numerical features are normalized; missing values
are imputed with the feature mean (continuous features) or median (for categorical
features). Patches are defined as follows. Given an initial dataset, a number dX
of features and a number n of examples are uniformly selected in the considered
ranges (depending on the benchmark) described in Table B.1. A patch is defined by
(i) retaining n examples uniformly selected with replacement in this initial dataset;
(ii) retaining dX features uniformly selected with replacement among the initial
features.

Patch Identification Ranking Hyper-parameter
Dataset TOY UCI OpenML
# Features 2 [2, 15] [3, 11]
# Examples 200 [200, 500] [700, 900]

Table B.1: Patch characteristics

B.4.2 . Baseline Details
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Dataset2Vec details. The publicly available implementation of
Dataset2Vec 1 is implemented in TensorFlow, which is incompatible with
our evaluation pipeline written in PyTorch. For this reason, we have included as
baselines: (i) the reported accuracy from Jomaa et al. [2021]; (ii) the computed
accuracy from our own implementation of Dataset2Vec, based on a uniform
sampling of the features. As said, this implementation only aims at solely making
up for the feature sampling procedure. The architecture is the same as reported
in Jomaa et al. [2021], Equation 4, namely

D : z ∈ Zn(IRd) 7→ h

(
1

dXdY

dX∑
m=1

dY∑
t=1

g

(
1

n

n∑
i=1

f(xi[m], yi[t])

)) (B.2)

where functions f, g, h characterizing the architecture are chosen as depicted in
the publicly available file config.py2. More precisely, f, g are FC(128)-ReLU-
ResFC(128, 128, 128)-FC(128) and h is FC(128)-ReLU-FC(128)-ReLU where
ResFC is a sequence of fully connected layer with skip connection. We provide
our implementation of Dataset2Vec in the supplementary material.

DSS layer details. We built our own implementation of invariant DSS layers,
as follows. Linear invariant DSS layers (see Maron et al. [2020], Theorem 5, 3.)
are of the form

Linv : X ∈ IRn×d 7→ LH(

n∑
j=1

xj) ∈ IRK (B.3)

where LH : IRd → IRK is a linear H-invariant function. Our applicative setting
requires that the implementation accommodates to varying input dimensions d as
well as permutation invariance, hence we consider the Deep Sets representation
(see Zaheer et al. [2017], Theorem 7)

LH : x = (x1, . . . , xd) ∈ IRd 7→ ρ

(
d∑
i=1

ϕ(xi)

)
∈ IRK (B.4)

where ϕ : IR → IRd+1 and ρ : IRd+1 → IRK are modelled as (i) purely linear
functions; (ii) FC networks, which extends the initial linear setting (B.3). In our
case, H = SdX × SdY , hence, two invariant layers of the form (B.3-B.4) are
combined to suit both feature- and label-invariance requirements. Both outputs
are concatenated and followed by an FC network to form the DSS meta-features.

1See https://github.com/hadijomaa/dataset2vec
2See https://github.com/hadijomaa/dataset2vec/blob/master/config.py
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The last experiments use DSS equivariant layers (see Maron et al. [2020], Theorem
1), which take the form

Leq : X ∈ IRn×d 7→

L1
eq(xi) + L2

eq(
∑
j 6=i

xj)


i∈[n]

∈ IRn×d (B.5)

where L1
eq and L2

eq are linear H-equivariant layers. Similarly, both feature- and
label-equivariance requirements are handled via the Deep Sets representation of
equivariant functions (see Zaheer et al. [2017], Lemma 3) and concatenated to be
followed by an invariant layer, forming the DSS meta-features. All methods are
allocated the same number of parameters to ensure fair comparison. We provide
our implementation of the DSS layers in the supplementary material.

No-FInv-DSS baseline (no invariance in feature permutation). This
baseline aims at showcasing the empirical relevance of the invariance requirement
in feature and label permutations, while retaining invariance in permutation with
respect to the datasets. To this end, aggregation with respect to the examples is
performed as exemplified in Zaheer et al. [2017], Theorem 2, namely

L : z = (z1, . . . , zn) ∈ Z(IRd) 7→ 1

n

n∑
i=1

g(zi) ∈ IRK (B.6)

where g : IRd → IRK is an MLP with FC(128)-ReLU-FC(64)-ReLU-FC(32)-ReLU
layers. To ensure label information is captured, the output is concatenated to the
mean of labels ȳ def.

= 1
n

∑n
i=1 yi and followed by and MLP with FC(1024)-ReLU-

FC(700)-ReLU-FC(512) layers. The so-called No-FInv-DSS baseline defined as
such, can be summed up as follows

z ∈ Z(IRd) 7→ MLP([L(z); ȳ]) (B.7)

Hand-crafted meta-features. For the sake of reproducibility, the list of
meta-features used in Section 5.5 is given in Table B.2. Note that meta-features
related to missing values and categorical features are omitted, as being irrelevant
for the considered benchmarks. Hand-crafted meta-features are extracted using
BYU metalearn library. In total, we extracted 43 meta-features.

B.4.3 . Hyper-parameter spaces.
In Task 2, the hyper-parameter configuration spaces of each algorithm are

summarized in Table B.3.
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Meta-features Mean Min Max
Quartile2ClassProbability 0.500 0.75 0.25
MinorityClassSize 487.423 426.000 500.000
Quartile3CardinalityOfNumericFeatures 224.354 0.000 976.000
RatioOfCategoricalFeatures 0.347 0.000 1.000
MeanCardinalityOfCategoricalFeatures 0.907 0.000 2.000
SkewCardinalityOfNumericFeatures 0.148 -2.475 3.684
RatioOfMissingValues 0.001 0.000 0.250
MaxCardinalityOfNumericFeatures 282.461 0.000 977.000
Quartile2CardinalityOfNumericFeatures 185.555 0.000 976.000
KurtosisClassProbability -2.025 -3.000 -2.000
NumberOfNumericFeatures 3.330 0.000 30.000
NumberOfInstancesWithMissingValues 2.800 0.000 1000.000
MaxCardinalityOfCategoricalFeatures 0.917 0.000 2.000
Quartile1CardinalityOfCategoricalFeatures 0.907 0.000 2.000
MajorityClassSize 512.577 500.000 574.000
MinCardinalityOfCategoricalFeatures 0.879 0.000 2.000
Quartile2CardinalityOfCategoricalFeatures 0.915 0.000 2.000
NumberOfCategoricalFeatures 1.854 0.000 27.000
NumberOfFeatures 5.184 4.000 30.000
Dimensionality 0.005 0.004 0.030
SkewCardinalityOfCategoricalFeatures -0.050 -4.800 0.707
KurtosisCardinalityOfCategoricalFeatures -1.244 -3.000 21.040
StdevCardinalityOfNumericFeatures 68.127 0.000 678.823
StdevClassProbability 0.018 0.000 0.105
KurtosisCardinalityOfNumericFeatures -1.060 -3.000 12.988
NumberOfInstances 1000.000 1000.000 1000.000
Quartile3CardinalityOfCategoricalFeatures 0.916 0.000 2.000
NumberOfMissingValues 2.800 0.000 1000.000
Quartile1ClassProbability 0.494 0.463 0.500
StdevCardinalityOfCategoricalFeatures 0.018 0.000 0.707
MeanClassProbability 0.500 0.500 0.500
NumberOfFeaturesWithMissingValues 0.003 0.000 1.000
MaxClassProbability 0.513 0.500 0.574
NumberOfClasses 2.000 2.000 2.000
MeanCardinalityOfNumericFeatures 197.845 0.000 976.000
SkewClassProbability 0.000 -0.000 0.000
Quartile3ClassProbability 0.506 0.500 0.537
MinCardinalityOfNumericFeatures 138.520 0.000 976.000
MinClassProbability 0.487 0.426 0.500
RatioOfInstancesWithMissingValues 0.003 0.000 1.000
Quartile1CardinalityOfNumericFeatures 160.748 0.000 976.000
RatioOfNumericFeatures 0.653 0.000 1.000
RatioOfFeaturesWithMissingValues 0.001 0.000 0.250

Table B.2: Hand-crafted meta-features
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Parameter Parameter values Scale

LR

warm start True, Fase
fit intercept True, Fase
tol [0.00001, 0.0001]
C [1e-4, 1e4] log
solver newton-cg, lbfgs, liblinear, sag, saga
max_iter [5, 1000]

SVM

kernel linear, rbf, poly, sigmoid
C [0.0001, 10000] log
shrinking True, False
degree [1, 5]
coef0 [0, 10]
gamma [0.0001, 8]
max_iter [5, 1000]

KNN
n_neighbors [1, 100] log
p [1, 2]
weights uniform, distance

SGD

alpha [0.1, 0.0001] log
average True, False
fit_intercept True, False
learning rate optimal, invscaling, constant
loss hinge, log, modified_huber, squared_hinge, perceptron
penalty l1, l2, elasticnet
tol [1e-05, 0.1] log
eta0 [1e-7, 0.1] log
power_t [1e-05, 0.1] log
epsilon [1e-05, 0.1] log
l1_ratio [1e-05, 0.1] log

Table B.3: Hyper-parameter configurations
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C - Supplementary Material - Metabu

C.1 . Measuring performance indicators

As said, the OpenML benchmark includes 72 datasets, with only 64 of them
having a target representation. The other 8 datasets are too heavy (e.g. ImageNet)
to launch the many runs required to estimate their target representation.

For Task 1, the performance indicator is measured along a Leave-One-Out
procedure, with 64 folds:
in each fold, all datasets but one are used to train the Metabu meta-features;
the NDCG@k is measured on the remaining dataset. Eventually, the NDCG@k are
averaged over all 64 folds.

For Tasks 2 and 3, the performance indicator is likewise measured using a
Leave-One-Out procedure with 64 folds. The difference is that besides the remain-
ing dataset, the 8 datasets with no target representation at all are also used as
test datasets.

In Tasks 2 and 3, the performance associated with a hyper-parameter config-
uration for a dataset is computed after training the model on 1 CPU with time
budget of 15 mn, with memory less than 8Gb, using the train/validation/test splits
given by OpenML; the validation score is estimated using a 5-CV strategy.

In Task 2, for each test dataset and meta-feature set mf :

• The distribution

ẑmf =
1

Z

10∑
`=1

exp(−`)z`

is defined, with z` the target representation of the `-th neighbor of the
considered dataset, among the training datasets, according to the Euclidean
distance based on the meta-features.

• For 1 ≤ t ≤ T , a hyper-parameter configuration is independently drawn
from ẑmf , and a model is learned using this configuration;

• The performance of this model is measured on a validation dataset;

• The model with best validation performance up to iteration t is retained for
each meta-feature set;

• The rank r(t,mf) is determined by comparing the performance on the test
set, of the models retained for each meta-feature set.

• The performance curve reports r(t,mf), averaged over test datasets.

In Task 3, the meta-features are used to initialize the performance model:
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Classifier HP Range

Adaboost

imputation mean, median, most frequent
n_estimator [50, 500]
algorithm SAMME, SAMME.R
max_depth [1, 10]

RF

imputation mean, median, most frequent
criterion gini, entropy

max_features ]0, 1]
min_samples_split [2, 20]
min_samples_leaf [1, 20]

bootstrap True, False

SVM

imputation mean, median, most frequent
C [0.03125, 32768]

kernal rbf, poly, sigmoid
degree [1, 5]
gamma [3.0517578125× 10−5, 8]
coef0 [−1, 1]

shrinking True, False
tol [10−5, 10−1]

Table C.1: Hyper-parameter ranges of Adaboost, Random Forest and
SVM

• In Auto-Sklearn, the performance model for Auto-Sklearn is initialized as
follows. The best configurations for the top-10 neighbors of the current
dataset are retained and run on the current dataset; their performance is
used to initialize the Bayesian Optimisation search using the SMAC BO im-
plementation [Hutter et al. 2011]. These top-10 neighbors are computed us-
ing the Euclidean distance on the meta-feature set. Note that Auto-Sklearn
meta-features were crafted to achieve automatic configuration selection in
the context of the Auto-Sklearn pipeline [Pedregosa et al. 2011], thus con-
stituting a most strong baseline on Task 3.

• For PMF, the best configurations for the top-5 neighbors of the current
dataset are likewise selected; their performance is computed to fill the row of
the collaborative matrix associated to the current dataset, and determine the
latent representation of the current dataset. The probabilistic model learned
from the matrix is used to select further hyper-parameter configurations;
their performances are computed and used to refine the latent representation
of the dataset.

C.2 . The hyper-parameter configuration spaces

The hyper-parameters used for Adaboost, Random Forest and SVM and their
range are detailed in Tables C.1 and C.2. For Auto-Sklearn, we only included
the list of considered hyper-parameters; their ranges are detailed in Auto-Sklearn
[Feurer et al. 2015a]. The hyper-parameter space used in PMF is the same as
in Auto-Sklearn. The Metabu implementation uses the ConfigSpace library [Lin-
dauer et al. 2019] to manage the hyper-parameters.

C.3 . List of meta-features
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Methods Parameters
balancing strategy
adaboost learning_rate, max_depth, n_estimators

bernoulli_nb fit_prior

decision_tree
max_depth_factor, max_features, max_leaf_nodes,
min_impurity_decrease, min_samples_leaf, min_samples_split,
min_weight_fraction_leaf

extra_trees
criterion, max_depth, max_features,
max_leaf_nodes, min_impurity_decrease, min_samples_leaf,
min_samples_split, min_weight_fraction_leaf

gradient_boosting

l2_regularization, learning_rate, loss,
max_bins, max_depth, max_leaf_nodes,
min_samples_leaf, scoring, tol,
n_iter_no_change, validation_fraction

k_nearest_neighbors p, weights
lda tol, shrinkage_factor

liblinear_svc
dual, fit_intercept, intercept_scaling,
loss, multi_class, penalty,
tol

libsvm_svc
gamma, kernel, max_iter,
shrinking, tol, coef0,
degree

mlp

alpha, batch_size, beta_1,
beta_2, early_stopping, epsilon,
hidden_layer_depth, learning_rate_init, n_iter_no_change,
num_nodes_per_layer, shuffle, solver,
tol, validation_fraction

multinomial_nb fit_prior
passive_aggressive average, fit_intercept, loss,

tol
qda reg_param

random_forest
criterion, max_depth, max_features,
max_leaf_nodes, min_impurity_decrease, min_samples_leaf,
min_samples_split, min_weight_fraction_leaf

sgd

average, fit_intercept, learning_rate,
loss, penalty, tol,
epsilon, eta0, l1_ratio,
power_t

extra_trees_preproc_for_classification
criterion, max_depth, max_features,
max_leaf_nodes, min_impurity_decrease, min_samples_leaf,
min_samples_split, min_weight_fraction_leaf, n_estimators

fast_ica fun, whiten, n_components
feature_agglomeration linkage, n_clusters, pooling_func

kernel_pca n_components, coef0, degree,
gamma

kitchen_sinks n_components

liblinear_svc_preprocessor
dual, fit_intercept, intercept_scaling,
loss, multi_class, penalty,
tol

nystroem_sampler n_components, coef0, degree,
gamma

pca whiten
polynomial include_bias, interaction_only

random_trees_embedding max_depth, max_leaf_nodes, min_samples_leaf,
min_samples_split, min_weight_fraction_leaf, n_estimators

select_percentile_classification score_func
select_rates_classification score_func, mode

Table C.2: List of hyper-parameters considered in Auto-Sklearn
pipeline.
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Figure C.1: Metabu computational effort: average runtime of themeta-
feature extraction (in blue) and Metabu training (in orange). The aver-
age training time of one hyper-parameter on Adaboost (green), Ran-
domForest (red) and SVM (purple) pipelines are added for comparison.

The list of meta-features used in the experiments is detailed in Tables C.3
and C.4. Meta-features are extracted with PyMFE [Alcobaca et al. 2020] except
for Auto-Sklearn, SCOT and Landmark meta-features which are computed from
the Auto-Sklearn library.

C.4 . Computational effort

Figure C.1 indicates the runtime1 for pre-processing (extracting the 135 meta-
features, top row), and for training Metabu (second row). The average training
time for learning one model is indicated for comparison (from row 3 to 5: Adaboost,
RandomForest and SVM).

C.5 . The stability of the intrinsic dimension

In Table C.5, we investigate how the intrinsic dimension varies when consid-
ering various numbers of datasets in OpenML. It is observed that the intrinsic
dimension tends to increase with the number of considered datasets, particularly
so for SVM. This suggests that the hyper-parameter configurations investigated in
the OpenML benchmark are not sufficiently representative of the (good regions of
the) configuration space.

C.6 . Detailed results

1On Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz.
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Meta-features Description Auto-Sklearn Landmark SCOT Metabu
best_node Performance of a the best single decision tree node. +
elite_nn Performance of Elite Nearest Neighbor. +

linear_discr Performance of the Linear Discriminant classifier. +
naive_bayes Performance of the Naive Bayes classifier. +
one_nn Performance of the 1-Nearest Neighbor classifier. +

random_node Performance of the single decision tree node model induced by a random attribute. +
worst_node Performance of the single decision tree node model induced by the worst informative attribute. +
one_itemset Compute the one itemset meta-feature. +
two_itemset Compute the two itemset meta-feature. +

c1 Compute the entropy of class proportions. +
c2 Compute the imbalance ratio. +

cls_coef Clustering coefficient. +
density Average density of the network. +

f1 Maximum Fisher’s discriminant ratio. +
f1v Directional-vector maximum Fisher’s discriminant ratio. +
f2 Volume of the overlapping region. +
f3 Compute feature maximum individual efficiency. +
f4 Compute the collective feature efficiency. +

hubs Hub score. +
l1 Sum of error distance by linear programming. +
l2 Compute the OVO subsets error rate of linear classifier. +
l3 Non-Linearity of a linear classifier. +
lsc Local set average cardinality. +
n1 Compute the fraction of borderline points. +
n2 Ratio of intra and extra class nearest neighbor distance. +
n3 Error rate of the nearest neighbor classifier. +
n4 Compute the non-linearity of the k-NN Classifier. +
t1 Fraction of hyperspheres covering data. +
t2 Compute the average number of features per dimension. +
t3 Compute the average number of PCA dimensions per points. +
t4 Compute the ratio of the PCA dimension to the original dimension. +
ch Compute the Calinski and Harabasz index. +
int Compute the INT index. +
nre Compute the normalized relative entropy. +
pb Compute the pearson correlation between class matching and instance distances. +
sc Compute the number of clusters with size smaller than a given size. +
sil Compute the mean silhouette value. +
vdb Compute the Davies and Bouldin Index. +
vdu Compute the Dunn Index. +
leaves Compute the number of leaf nodes in the DT model. +

leaves_branch Compute the size of branches in the DT model. +
leaves_corrob Compute the leaves corroboration of the DT model. +
leaves_homo Compute the DT model Homogeneity for every leaf node. +

leaves_per_class Compute the proportion of leaves per class in DT model. +
nodes Compute the number of non-leaf nodes in DT model. +

nodes_per_attr Compute the ratio of nodes per number of attributes in DT model. +
nodes_per_inst Compute the ratio of non-leaf nodes per number of instances in DT model. +
nodes_per_level Compute the ratio of number of nodes per tree level in DT model. +
nodes_repeated Compute the number of repeated nodes in DT model. +

tree_depth Compute the depth of every node in the DT model. +
tree_imbalance Compute the tree imbalance for each leaf node. +
tree_shape Compute the tree shape for every leaf node. +

var_importance Compute the features importance of the DT model for each attribute. +
can_cor Compute canonical correlations of data. +
cor Compute the absolute value of the correlation of distinct dataset column pairs. +
cov Compute the absolute value of the covariance of distinct dataset attribute pairs. +

eigenvalues Compute the eigenvalues of covariance matrix from dataset. +
g_mean Compute the geometric mean of each attribute. +
gravity Compute the distance between minority and majority classes center of mass. +
h_mean Compute the harmonic mean of each attribute. +
iq_range Compute the interquartile range (IQR) of each attribute. +
kurtosis Compute the kurtosis of each attribute. +
lh_trace Compute the Lawley-Hotelling trace. +
mad Compute the Median Absolute Deviation (MAD) adjusted by a factor. +
max Compute the maximum value from each attribute. +
mean Compute the mean value of each attribute. +
median Compute the median value from each attribute. +
min Compute the minimum value from each attribute. +

nr_cor_attr Compute the number of distinct highly correlated pair of attributes. +
nr_disc Compute the number of canonical correlation between each attribute and class. +
nr_norm Compute the number of attributes normally distributed based in a given method. +
nr_outliers Compute the number of attributes with at least one outlier value. +
p_trace Compute the Pillai’s trace. +
range Compute the range (max - min) of each attribute. +

Table C.3: List of meta-features, 1/2
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Meta-features Description Auto-Sklearn Landmark SCOT Metabu
roy_root Compute the Roy’s largest root. +

sd Compute the standard deviation of each attribute. +
sd_ratio Compute a statistical test for homogeneity of covariances. +
skewness Compute the skewness for each attribute. +
sparsity Compute (possibly normalized) sparsity metric for each attribute. +
t_mean Compute the trimmed mean of each attribute. +
var Compute the variance of each attribute. +

w_lambda Compute the Wilks’ Lambda value. +
attr_conc Compute concentration coef. of each pair of distinct attributes. +
attr_ent Compute Shannon’s entropy for each predictive attribute. +

class_conc Compute concentration coefficient between each attribute and class. +
class_ent Compute target attribute Shannon’s entropy. +

eq_num_attr Compute the number of attributes equivalent for a predictive task. +
joint_ent Compute the joint entropy between each attribute and class. +
mut_inf Compute the mutual information between each attribute and target. +
ns_ratio Compute the noisiness of attributes. +

cohesiveness Compute the improved version of the weighted distance,
that captures how dense or sparse is the example distribution. +

conceptvar Compute the concept variation that estimates
the variability of class labels among examples. +

impconceptvar Compute the improved concept variation that
estimates the variability of class labels among examples. +

wg_dist Compute the weighted distance, that captures
how dense or sparse is the example distribution. +

attr_to_inst Compute the ratio between the number of attributes. +
cat_to_num Compute the ratio between the number of categoric and numeric features. +
freq_class Compute the relative frequency of each distinct class. +
inst_to_attr Compute the ratio between the number of instances and attributes. +
nr_attr Compute the total number of attributes. +
nr_bin Compute the number of binary attributes. +
nr_cat Compute the number of categorical attributes. +
nr_class Compute the number of distinct classes. +
nr_inst Compute the number of instances (rows) in the dataset. +
nr_num Compute the number of numeric features. +

num_to_cat Compute the number of numerical and categorical features. +
PCASkewnessFirstPC Skewness of examples on the first principal component +
PCAKurtosisFirstPC Kurtosis of examples on the first principal component +

PCAFracOfCompFor95Per Fraction of component of an overall explained variance of 95% + +
Landmark1NN Performance one nearest neighbor classifier +

LandmarkRandomNodeLearner Performance of decision when considering only one feature +
LandmarkDecisionNodeLearner Performance of decision when considering all features +

LandmarkDecisionTree Performance of decision tree classifier + +
LandmarkNaiveBayes Performance of Naive Bayes classifier + +

LandmarkLDA Performance of LDA classifier + +
SkewnessSTD Standard deviation of feature skewness + +
SkewnessMean Mean of feature skewness + +
SkewnessMax Maximum of feature skewness + +
SkewnessMin Minimum of feature skewness + +
KurtosisSTD Standard deviation of feature kurtosis coefficiants + +
KurtosisMean Mean of feature kurtosis coefficiants + +
KurtosisMax Max of feature kurtosis coefficiants + +
KurtosisMin Mean of feature kurtosis coefficiants + +
SymbolsSum Sum of categorical feature symbols + +
SymbolsSTD Standard deviation of categorical feature symbols + +
SymbolsMean Mean of categorical feature symbols + +
SymbolsMax Max of categorical feature symbols + +
SymbolsMin Min of categorical feature symbols + +

ClassProbabilitySTD Standard deviation of class probabilities + +
ClassProbabilityMean Mean of class probabilities + +
ClassProbabilityMax Maximum of class probabilities + + +
ClassProbabilityMin Minimum of class probabilities + +
InverseDatasetRatio Inverse of dataset ratio + +

DatasetRatio Dataset ratio + +
RatioNominalToNumerical Ratio number of nominal to numerical features + +
RatioNumericalToNominal Ratio numerical to nominal + +

NumberOfCategoricalFeatures Number of categorical features + + +
NumberOfNumericFeatures Number of numeric features + + +
NumberOfMissingValues Number of missing values + +

NumberOfFeaturesWithMissingValues Number of features with missing values + +
NumberOfInstancesWithMissingValues Number of instances with missing values + +

NumberOfFeatures Number of features + + +
NumberOfClasses Number of classes + + + +
NumberOfInstances Number of instances + +

LogInverseDatasetRatio log of the inverse dataset ratio + + +
LogDatasetRatio Log of dataset ratio + +

PercentageOfMissingValues Percentage of missing values + +
PercentageOfFeaturesWithMissingValues Percentage of features with missing values + +
PercentageOfInstancesWithMissingValues Percentage of instances with missing values + +

LogNumberOfFeatures Log number of features + + +
LogNumberOfInstances Log number of instances + +

Table C.4: List of meta-features, 2/2

Dataset Ratio 0.1 0.25 0.5 0.75 1
Adaboost 5.65 (2.74) 6.81 (1.81) 7.14 (1.44) 6.59 (1.29) 6.98
Random Forest 5.33 (2.17) 7.14 (2.18) 7.44 (1.28) 8.48 (1.56) 8.49
SVM 8.56 (2.54) 11.54 (2.71) 12.83 (3.16) 13.99 (2.40) 14.41
AutoSkLearn 5.17 (2.08) 4.47 (1.26) 4.98 (0.95) 5.34 (1.06) 5.51

Table C.5: Intrinsic dimension of the dataset space w.r.t. ML algorithms
Adaboost, RandomForest, SVM and Auto-Sklearn, depending on the
fraction of datasets considered in OpenML
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Detailed results of Task 2 are presented in Table C.6 for Random Forest, Table
C.7 for Adaboost and Table C.8 for SVM. We consider the Mann Whitney Wilcoxon
test to assess the significance of the rankings.
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OpenML Task ID Metabu MF Auto-SklearnMF Landmark MF SCOT MF Random1x
Average Rank 2.50 2.97 2.70 2.64 4.17

3 0.993 ±0.000∗ 0.993 ± 0.001 0.993 ±0.000∗ 0.993 ± 0.000 0.993 ± 0.001
6 0.965 ±0.001∗ 0.964 ± 0.001 0.958 ± 0.007 0.964 ±0.002∗ 0.948 ± 0.007
11 0.655 ±0.002∗ 0.657 ± 0.002 0.658 ±0.001∗ 0.656 ± 0.001 0.657 ± 0.002
12 0.964 ±0.002∗ 0.961 ± 0.001 0.965 ±0.001∗ 0.963 ± 0.003 0.961 ± 0.004
14 0.820 ±0.005∗ 0.812 ± 0.004 0.813 ± 0.005 0.814 ±0.003∗ 0.808 ± 0.005
15 0.983 ±0.004∗ 0.982 ± 0.005 0.983 ±0.001∗ 0.981 ± 0.005 0.983 ± 0.004
16 0.955 ±0.007∗ 0.951 ± 0.010 0.958 ± 0.004 0.959 ±0.003∗ 0.950 ± 0.005
18 0.675 ±0.002∗ 0.673 ± 0.005 0.676 ± 0.002 0.678 ± 0.001 0.679 ±0.007∗

22 0.765 ±0.001∗ 0.761 ± 0.004 0.760 ± 0.005 0.769 ±0.003∗ 0.748 ± 0.014
23 0.535 ± 0.004 0.535 ± 0.004 0.541 ± 0.005 0.542 ± 0.008 0.552 ± 0.006
28 0.983 ±0.001∗ 0.982 ± 0.001 0.983 ± 0.000 0.983 ±0.001∗ 0.978 ± 0.001
29 0.884 ±0.006∗ 0.878 ± 0.004 0.882 ±0.007∗ 0.878 ± 0.005 0.882 ± 0.004
31 0.709 ±0.003∗ 0.725 ±0.013∗ 0.716 ± 0.003 0.707 ± 0.010 0.713 ± 0.007
32 0.993 ±0.001∗ 0.992 ± 0.001 0.992 ± 0.001 0.994 ±0.000∗ 0.989 ± 0.000
37 0.811 ±0.003∗ 0.810 ± 0.006 0.812 ±0.005∗ 0.810 ± 0.011 0.808 ± 0.007
43 0.913 ±0.002∗ 0.914 ± 0.002 0.915 ± 0.002 0.917 ±0.001∗ 0.908 ± 0.003
45 0.946 ± 0.001 0.946 ± 0.002 0.947 ± 0.002 0.953 ± 0.004 0.944 ± 0.003
49 0.962 ±0.002∗ 0.965 ±0.002∗ 0.964 ± 0.000 0.963 ± 0.002 0.957 ± 0.005
53 0.780 ±0.009∗ 0.777 ± 0.001 0.786 ±0.006∗ 0.767 ± 0.012 0.768 ± 0.006
219 0.923 ±0.002∗ 0.919 ± 0.009 0.918 ± 0.004 0.923 ±0.003∗ 0.913 ± 0.001
2074 0.891 ±0.001∗ 0.889 ± 0.003 0.889 ±0.002∗ 0.888 ± 0.003 0.880 ± 0.003
2079 0.638 ±0.007∗ 0.628 ± 0.010 0.647 ±0.005∗ 0.639 ± 0.007 0.621 ± 0.009
3021 0.949 ±0.003∗ 0.943 ± 0.004 0.949 ±0.003∗ 0.945 ± 0.005 0.933 ± 0.005
3022 0.962 ±0.003∗ 0.959 ±0.010∗ 0.945 ± 0.017 0.927 ± 0.014 0.906 ± 0.025
3549 0.951 ± 0.015 0.984 ± 0.002 0.967 ± 0.023 0.977 ± 0.007 0.957 ± 0.023
3560 0.253 ±0.006∗ 0.253 ±0.021∗ 0.248 ± 0.017 0.250 ± 0.023 0.241 ± 0.013
3902 0.756 ±0.002∗ 0.754 ±0.009∗ 0.734 ± 0.009 0.743 ± 0.020 0.753 ± 0.007
3903 0.551 ±0.013∗ 0.554 ± 0.003 0.555 ± 0.008 0.557 ±0.010∗ 0.549 ± 0.006
3904 0.602 ± 0.001 0.602 ± 0.003 0.600 ± 0.002 0.606 ± 0.001 0.594 ± 0.002
3913 0.619 ± 0.006 0.616 ± 0.016 0.634 ± 0.013 0.633 ± 0.001 0.609 ± 0.021
3917 0.667 ±0.015∗ 0.677 ±0.009∗ 0.669 ± 0.002 0.672 ± 0.005 0.659 ± 0.004
3918 0.655 ±0.003∗ 0.661 ±0.008∗ 0.651 ± 0.008 0.649 ± 0.006 0.652 ± 0.009
7592 0.778 ±0.002∗ 0.781 ±0.001∗ 0.777 ± 0.003 0.778 ± 0.002 0.777 ± 0.002
9910 0.807 ±0.002∗ 0.809 ±0.002∗ 0.807 ± 0.004 0.805 ± 0.002 0.797 ± 0.007
9946 0.953 ±0.006∗ 0.951 ± 0.007 0.957 ± 0.008 0.962 ±0.011∗ 0.941 ± 0.010
9952 0.890 ±0.001∗ 0.891 ±0.001∗ 0.882 ± 0.007 0.880 ± 0.006 0.878 ± 0.003
9957 0.866 ±0.007∗ 0.864 ± 0.008 0.858 ± 0.002 0.872 ±0.002∗ 0.868 ± 0.005
9960 0.994 ±0.000∗ 0.993 ± 0.000 0.994 ±0.000∗ 0.993 ± 0.000 0.993 ± 0.000
9964 0.927 ±0.007∗ 0.915 ±0.020∗ 0.912 ± 0.014 0.914 ± 0.005 0.891 ± 0.015
9971 0.563 ± 0.018 0.587 ± 0.005 0.584 ± 0.032 0.560 ± 0.020 0.566 ± 0.006
9976 0.845 ±0.007∗ 0.846 ±0.004∗ 0.841 ± 0.010 0.840 ± 0.005 0.842 ± 0.006
9977 0.961 ±0.000∗ 0.960 ± 0.000 0.961 ±0.000∗ 0.961 ± 0.001 0.960 ± 0.001
9978 0.672 ±0.007∗ 0.680 ±0.006∗ 0.671 ± 0.003 0.677 ± 0.009 0.670 ± 0.004
9981 0.926 ± 0.002 0.936 ± 0.011 0.947 ± 0.019 0.943 ± 0.030 0.927 ± 0.022
9985 0.475 ±0.007∗ 0.478 ± 0.004 0.475 ± 0.002 0.479 ±0.004∗ 0.467 ± 0.007
10093 0.983 ±0.001∗ 0.984 ± 0.001 0.988 ± 0.004 0.988 ±0.007∗ 0.987 ± 0.003
10101 0.621 ±0.004∗ 0.611 ± 0.005 0.621 ±0.005∗ 0.616 ± 0.005 0.614 ± 0.003
14952 0.965 ±0.000∗ 0.963 ± 0.002 0.965 ±0.001∗ 0.963 ± 0.001 0.956 ± 0.004
14954 0.844 ±0.022∗ 0.835 ± 0.023 0.853 ±0.009∗ 0.833 ± 0.004 0.799 ± 0.013
14965 0.711 ±0.001∗ 0.712 ±0.002∗ 0.710 ± 0.004 0.710 ± 0.003 0.709 ± 0.002
14969 0.597 ±0.005∗ 0.588 ± 0.007 0.591 ± 0.005 0.595 ±0.002∗ 0.575 ± 0.008
125920 0.598 ±0.010∗ 0.597 ± 0.009 0.600 ± 0.021 0.601 ±0.005∗ 0.589 ± 0.010
125922 0.976 ±0.002∗ 0.976 ± 0.002 0.976 ±0.001∗ 0.973 ± 0.005 0.968 ± 0.004
146195 0.642 ±0.002∗ 0.638 ± 0.004 0.644 ±0.002∗ 0.642 ± 0.002 0.622 ± 0.005
146800 0.971 ± 0.013 0.980 ± 0.009 0.974 ± 0.006 0.986 ± 0.002 0.962 ± 0.010
146817 0.825 ±0.004∗ 0.817 ± 0.009 0.826 ±0.007∗ 0.824 ± 0.012 0.812 ± 0.004
146819 0.861 ±0.014∗ 0.859 ± 0.010 0.861 ± 0.015 0.870 ±0.002∗ 0.869 ± 0.005
146820 0.863 ±0.004∗ 0.855 ± 0.014 0.851 ± 0.018 0.831 ± 0.005 0.855 ±0.010∗

146821 0.971 ±0.001∗ 0.972 ±0.001∗ 0.969 ± 0.002 0.970 ± 0.001 0.971 ± 0.004
146822 0.934 ±0.001∗ 0.932 ± 0.005 0.930 ± 0.006 0.934 ±0.001∗ 0.931 ± 0.004
146824 0.968 ±0.003∗ 0.969 ± 0.001 0.968 ± 0.003 0.969 ±0.002∗ 0.960 ± 0.007
146825 0.294 ±0.509∗ 0.582 ± 0.504 0.293 ± 0.507 0.872 ±0.006∗ 0.869 ± 0.003
167119 0.767 ±0.001∗ 0.764 ± 0.003 0.762 ± 0.003 0.765 ±0.002∗ 0.765 ± 0.000
167121 0.275 ±0.476∗ 0.000 ± 0.000 0.582 ±0.505∗ 0.000 ± 0.000 0.274 ± 0.475
167125 0.921 ±0.000∗ 0.922 ± 0.002 0.924 ±0.003∗ 0.920 ± 0.001 0.899 ± 0.007
167140 0.930 ± 0.004 0.935 ± 0.001 0.933 ± 0.002 0.938 ± 0.001 0.924 ± 0.003
167141 0.834 ±0.002∗ 0.829 ± 0.005 0.833 ± 0.002 0.837 ±0.003∗ 0.832 ± 0.001

Table C.6: Comparative learning performances on OpenML datasets
over sampling 30 configurations of the Random Forest pipeline. Per-
formances that are statistically significant compared to the secondbest
are in bold. Statistically comparable performances are indicated with
(∗). Pairwise comparison and p-value along the iterations are pre-
sented in Figure C.2.
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OpenML Task ID Metabu MF Auto-SklearnMF Landmark MF SCOT MF Random1x
Average Rank 2.48 2.96 2.89 2.85 3.80

3 0.995 ±0.001∗ 0.994 ± 0.000 0.996 ±0.001∗ 0.994 ± 0.002 0.996 ± 0.001
6 0.970 ± 0.001 0.969 ± 0.002 0.967 ± 0.002 0.972 ± 0.001 0.967 ± 0.005
11 0.928 ±0.083∗ 0.891 ± 0.071 0.914 ± 0.069 0.973 ±0.017∗ 0.920 ± 0.093
12 0.977 ±0.001∗ 0.977 ±0.001∗ 0.976 ± 0.002 0.977 ± 0.001 0.975 ± 0.002
14 0.827 ±0.007∗ 0.829 ± 0.004 0.824 ± 0.006 0.825 ± 0.002 0.829 ±0.004∗

15 0.964 ±0.004∗ 0.962 ± 0.006 0.969 ±0.004∗ 0.967 ± 0.005 0.967 ± 0.006
16 0.963 ±0.001∗ 0.966 ± 0.001 0.967 ±0.003∗ 0.964 ± 0.004 0.961 ± 0.001
18 0.691 ±0.015∗ 0.674 ± 0.003 0.695 ±0.014∗ 0.689 ± 0.012 0.680 ± 0.018
22 0.796 ±0.002∗ 0.800 ± 0.004 0.801 ±0.006∗ 0.794 ± 0.014 0.791 ± 0.005
23 0.572 ±0.009∗ 0.579 ± 0.011 0.582 ±0.015∗ 0.575 ± 0.004 0.581 ± 0.009
28 0.988 ±0.001∗ 0.988 ± 0.001 0.987 ± 0.001 0.989 ±0.001∗ 0.987 ± 0.001
29 0.865 ± 0.006 0.866 ± 0.008 0.875 ± 0.009 0.882 ± 0.006 0.845 ± 0.015
31 0.739 ±0.011∗ 0.726 ± 0.007 0.734 ± 0.011 0.739 ± 0.019 0.740 ±0.014∗

32 0.995 ±0.001∗ 0.997 ±0.000∗ 0.996 ± 0.000 0.996 ± 0.001 0.994 ± 0.001
37 0.790 ±0.005∗ 0.794 ±0.018∗ 0.771 ± 0.008 0.782 ± 0.010 0.784 ± 0.002
43 0.936 ±0.001∗ 0.933 ± 0.003 0.934 ±0.003∗ 0.932 ± 0.004 0.933 ± 0.002
45 0.961 ±0.003∗ 0.951 ± 0.005 0.957 ±0.005∗ 0.954 ± 0.004 0.951 ± 0.003
49 0.993 ± 0.002 0.995 ± 0.002 0.997 ± 0.003 0.987 ± 0.012 0.998 ± 0.002
53 0.808 ±0.005∗ 0.783 ± 0.027 0.804 ±0.003∗ 0.801 ± 0.007 0.801 ± 0.012
219 0.938 ± 0.001 0.937 ± 0.000 0.931 ± 0.006 0.933 ± 0.003 0.924 ± 0.001
2074 0.903 ±0.002∗ 0.902 ±0.001∗ 0.901 ± 0.001 0.901 ± 0.002 0.901 ± 0.001
2079 0.657 ±0.011∗ 0.649 ±0.006∗ 0.648 ± 0.010 0.641 ± 0.007 0.627 ± 0.002
3021 0.955 ±0.005∗ 0.956 ±0.004∗ 0.951 ± 0.003 0.955 ± 0.002 0.953 ± 0.002
3022 0.952 ± 0.020 0.969 ± 0.001 0.966 ± 0.005 0.972 ± 0.002 0.960 ± 0.008
3549 0.988 ±0.002∗ 0.988 ±0.002∗ 0.988 ± 0.001 0.986 ± 0.001 0.985 ± 0.003
3560 0.255 ±0.017∗ 0.241 ± 0.001 0.258 ± 0.020 0.262 ±0.012∗ 0.253 ± 0.002
3902 0.762 ±0.004∗ 0.769 ±0.015∗ 0.754 ± 0.024 0.755 ± 0.012 0.760 ± 0.014
3903 0.604 ±0.027∗ 0.581 ± 0.010 0.575 ± 0.016 0.574 ± 0.015 0.598 ±0.015∗

3904 0.615 ±0.001∗ 0.608 ± 0.006 0.612 ± 0.003 0.613 ±0.002∗ 0.613 ± 0.002
3913 0.665 ±0.037∗ 0.661 ±0.018∗ 0.656 ± 0.011 0.649 ± 0.006 0.659 ± 0.019
3917 0.681 ±0.007∗ 0.682 ± 0.003 0.682 ± 0.008 0.694 ±0.015∗ 0.681 ± 0.009
3918 0.683 ±0.019∗ 0.696 ±0.008∗ 0.688 ± 0.019 0.675 ± 0.018 0.685 ± 0.011
7592 0.798 ±0.005∗ 0.797 ± 0.000 0.796 ± 0.000 0.799 ±0.004∗ 0.798 ± 0.001
9910 0.798 ±0.001∗ 0.796 ± 0.002 0.797 ±0.004∗ 0.797 ± 0.003 0.793 ± 0.005
9946 0.977 ±0.010∗ 0.986 ± 0.003 0.993 ±0.007∗ 0.987 ± 0.011 0.990 ± 0.005
9952 0.899 ±0.004∗ 0.899 ± 0.002 0.900 ± 0.002 0.900 ±0.002∗ 0.896 ± 0.001
9957 0.871 ±0.005∗ 0.871 ± 0.010 0.867 ± 0.006 0.875 ±0.007∗ 0.868 ± 0.003
9960 0.997 ±0.001∗ 0.997 ± 0.001 0.997 ± 0.001 0.997 ±0.001∗ 0.996 ± 0.002
9964 0.932 ± 0.006 0.943 ± 0.003 0.940 ± 0.005 0.937 ± 0.008 0.928 ± 0.005
9971 0.563 ±0.033∗ 0.573 ± 0.042 0.576 ±0.010∗ 0.558 ± 0.007 0.565 ± 0.027
9976 0.846 ±0.003∗ 0.834 ± 0.004 0.844 ±0.008∗ 0.830 ± 0.012 0.833 ± 0.012
9977 0.964 ± 0.002 0.966 ± 0.002 0.964 ± 0.001 0.967 ± 0.001 0.967 ± 0.001
9978 0.699 ±0.026∗ 0.683 ± 0.008 0.696 ±0.021∗ 0.672 ± 0.016 0.692 ± 0.022
9981 0.885 ±0.011∗ 0.890 ± 0.004 0.888 ± 0.004 0.894 ±0.002∗ 0.881 ± 0.003
9985 0.475 ±0.005∗ 0.473 ± 0.005 0.475 ±0.001∗ 0.475 ± 0.002 0.473 ± 0.007
10093 0.997 ±0.003∗ 0.994 ±0.001∗ 0.991 ± 0.003 0.993 ± 0.004 0.994 ± 0.005
10101 0.619 ±0.011∗ 0.615 ± 0.000 0.621 ± 0.002 0.626 ±0.013∗ 0.619 ± 0.009
14952 0.964 ±0.002∗ 0.963 ± 0.001 0.963 ± 0.002 0.963 ± 0.002 0.964 ±0.001∗

14954 0.869 ±0.007∗ 0.881 ±0.018∗ 0.872 ± 0.003 0.868 ± 0.002 0.863 ± 0.010
14965 0.711 ± 0.004 0.715 ± 0.002 0.714 ± 0.003 0.716 ± 0.002 0.714 ± 0.001
14969 0.617 ±0.004∗ 0.606 ± 0.015 0.610 ± 0.000 0.610 ±0.004∗ 0.607 ± 0.012
125920 0.572 ±0.019∗ 0.569 ± 0.015 0.569 ±0.015∗ 0.565 ± 0.005 0.555 ± 0.013
125922 0.992 ±0.001∗ 0.992 ±0.000∗ 0.991 ± 0.000 0.992 ± 0.001 0.989 ± 0.000
146800 0.996 ±0.002∗ 0.996 ± 0.003 0.998 ±0.001∗ 0.997 ± 0.001 0.990 ± 0.004
146817 0.817 ±0.008∗ 0.812 ± 0.005 0.810 ± 0.014 0.821 ±0.007∗ 0.805 ± 0.008
146819 0.797 ±0.029∗ 0.766 ± 0.039 0.782 ± 0.024 0.817 ±0.025∗ 0.806 ± 0.020
146820 0.859 ±0.004∗ 0.859 ± 0.008 0.849 ± 0.006 0.855 ± 0.016 0.860 ±0.002∗

146821 0.980 ±0.015∗ 0.974 ± 0.003 0.979 ± 0.009 0.981 ±0.004∗ 0.970 ± 0.010
146822 0.943 ± 0.000 0.942 ± 0.003 0.945 ± 0.000 0.943 ± 0.004 0.941 ± 0.004
146824 0.977 ±0.001∗ 0.976 ±0.002∗ 0.976 ± 0.002 0.974 ± 0.001 0.972 ± 0.003
167119 0.818 ±0.002∗ 0.816 ± 0.003 0.817 ±0.001∗ 0.815 ± 0.003 0.815 ± 0.001
167125 0.914 ±0.002∗ 0.914 ±0.000∗ 0.910 ± 0.002 0.911 ± 0.002 0.912 ± 0.002
167140 0.954 ±0.005∗ 0.954 ±0.003∗ 0.953 ± 0.002 0.952 ± 0.003 0.948 ± 0.002
167141 0.824 ±0.004∗ 0.823 ± 0.002 0.825 ± 0.003 0.826 ±0.001∗ 0.822 ± 0.003

Table C.7: Comparative learning performances on OpenML datasets
over sampling 30 configurations of the Adaboost pipeline. Perfor-
mances that are statistically significant compared to the second best
are in bold. Statistically comparable performances are indicated with
(∗). Pairwise comparisons and the associated p-value along the itera-
tions are reported in Figure C.3.
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OpenML Task ID Metabu MF Auto-SklearnMF Landmark MF SCOT MF Random1x
Average Rank 2.34 2.91 2.97 3.27 3.48

3 0.995 ±0.001∗ 0.993 ± 0.004 0.994 ±0.003∗ 0.982 ± 0.015 0.988 ± 0.001
6 0.827 ±0.253∗ 0.969 ± 0.008 0.973 ±0.000∗ 0.967 ± 0.010 0.937 ± 0.000
11 0.967 ±0.045∗ 0.929 ± 0.060 0.897 ± 0.104 0.996 ±0.007∗ 0.958 ± 0.015
12 0.975 ±0.007∗ 0.980 ± 0.001 0.982 ± 0.002 0.984 ±0.007∗ 0.936 ± 0.018
14 0.857 ±0.029∗ 0.843 ±0.010∗ 0.830 ± 0.018 0.824 ± 0.031 0.839 ± 0.014
15 0.980 ±0.009∗ 0.983 ±0.005∗ 0.980 ± 0.004 0.982 ± 0.006 0.953 ± 0.002
16 0.981 ±0.004∗ 0.979 ± 0.002 0.981 ±0.005∗ 0.981 ± 0.003 0.976 ± 0.011
18 0.728 ±0.013∗ 0.721 ± 0.025 0.736 ±0.010∗ 0.731 ± 0.013 0.717 ± 0.014
22 0.836 ±0.016∗ 0.806 ± 0.001 0.818 ± 0.031 0.807 ± 0.009 0.820 ±0.027∗

23 0.561 ± 0.010 0.601 ± 0.001 0.583 ± 0.028 0.607 ± 0.010 0.585 ± 0.011
28 0.989 ±0.006∗ 0.991 ±0.000∗ 0.988 ± 0.002 0.990 ± 0.002 0.987 ± 0.003
29 0.895 ±0.008∗ 0.893 ± 0.012 0.895 ± 0.016 0.900 ±0.001∗ 0.878 ± 0.003
31 0.756 ±0.017∗ 0.767 ± 0.011 0.780 ±0.012∗ 0.732 ± 0.015 0.757 ± 0.004
32 0.994 ±0.001∗ 0.993 ± 0.005 0.993 ± 0.005 0.996 ±0.001∗ 0.985 ± 0.001
37 0.838 ±0.014∗ 0.841 ± 0.010 0.853 ± 0.008 0.859 ±0.018∗ 0.853 ± 0.015
43 0.932 ±0.004∗ 0.929 ±0.005∗ 0.922 ± 0.011 0.919 ± 0.013 0.917 ± 0.018
45 0.952 ±0.002∗ 0.935 ± 0.004 0.943 ± 0.021 0.945 ± 0.010 0.952 ±0.003∗

49 0.972 ±0.013∗ 0.978 ±0.018∗ 0.950 ± 0.034 0.960 ± 0.035 0.940 ± 0.027
53 0.798 ± 0.059 0.878 ± 0.004 0.869 ± 0.022 0.867 ± 0.016 0.846 ± 0.013
219 0.897 ± 0.035 0.843 ± 0.018 0.938 ± 0.007 0.856 ± 0.053 0.871 ± 0.049
2074 0.905 ±0.011∗ 0.888 ± 0.008 0.905 ±0.012∗ 0.899 ± 0.004 0.887 ± 0.017
2079 0.639 ±0.032∗ 0.578 ± 0.051 0.648 ±0.008∗ 0.631 ± 0.034 0.556 ± 0.023
3021 0.962 ±0.011∗ 0.939 ± 0.017 0.955 ± 0.008 0.889 ± 0.041 0.958 ±0.007∗

3022 0.968 ±0.023∗ 0.980 ± 0.005 0.982 ±0.005∗ 0.966 ± 0.018 0.878 ± 0.085
3549 0.985 ±0.004∗ 0.992 ± 0.000 0.987 ± 0.006 0.992 ±0.002∗ 0.986 ± 0.003
3560 0.235 ±0.002∗ 0.238 ± 0.012 0.213 ± 0.014 0.243 ±0.014∗ 0.191 ± 0.007
3902 0.876 ±0.013∗ 0.829 ± 0.028 0.858 ± 0.010 0.860 ±0.034∗ 0.851 ± 0.017
3903 0.754 ±0.033∗ 0.738 ±0.032∗ 0.676 ± 0.084 0.737 ± 0.026 0.691 ± 0.033
3904 0.642 ±0.016∗ 0.651 ± 0.017 0.655 ± 0.028 0.665 ±0.014∗ 0.664 ± 0.008
3913 0.815 ±0.009∗ 0.833 ±0.018∗ 0.812 ± 0.021 0.790 ± 0.041 0.804 ± 0.019
3917 0.739 ±0.013∗ 0.742 ± 0.020 0.739 ± 0.022 0.736 ± 0.028 0.754 ±0.011∗

3918 0.758 ±0.029∗ 0.736 ± 0.059 0.761 ±0.011∗ 0.732 ± 0.034 0.717 ± 0.033
7592 0.844 ±0.002∗ 0.831 ± 0.004 0.838 ±0.015∗ 0.819 ± 0.009 0.822 ± 0.010
9910 0.798 ±0.003∗ 0.761 ± 0.024 0.774 ± 0.044 0.783 ± 0.017 0.795 ±0.003∗

9946 0.982 ±0.012∗ 0.983 ± 0.005 0.982 ± 0.021 0.994 ±0.010∗ 0.993 ± 0.002
9952 0.894 ±0.006∗ 0.885 ±0.017∗ 0.858 ± 0.031 0.831 ± 0.094 0.877 ± 0.019
9957 0.865 ±0.021∗ 0.849 ± 0.003 0.850 ± 0.011 0.870 ±0.028∗ 0.859 ± 0.017
9960 0.995 ±0.001∗ 0.982 ± 0.017 0.942 ± 0.040 0.989 ± 0.007 0.996 ±0.001∗

9964 0.925 ±0.011∗ 0.939 ±0.020∗ 0.909 ± 0.043 0.924 ± 0.036 0.922 ± 0.010
9971 0.698 ±0.053∗ 0.697 ±0.036∗ 0.674 ± 0.005 0.668 ± 0.006 0.666 ± 0.034
9976 0.756 ±0.121∗ 0.746 ± 0.131 0.746 ±0.125∗ 0.739 ± 0.110 0.670 ± 0.054
9977 0.971 ±0.001∗ 0.948 ± 0.011 0.967 ±0.006∗ 0.936 ± 0.009 0.965 ± 0.002
9978 0.840 ±0.019∗ 0.865 ±0.028∗ 0.865 ± 0.005 0.820 ± 0.053 0.816 ± 0.015
9981 0.980 ±0.009∗ 0.964 ±0.014∗ 0.955 ± 0.017 0.953 ± 0.030 0.888 ± 0.003
9985 0.484 ±0.021∗ 0.475 ± 0.013 0.488 ±0.011∗ 0.461 ± 0.028 0.477 ± 0.018
10093 1.000 ±0.000∗ 0.996 ± 0.001 0.993 ± 0.005 0.994 ± 0.007 0.998 ±0.003∗

10101 0.675 ±0.003∗ 0.685 ±0.021∗ 0.665 ± 0.049 0.661 ± 0.019 0.675 ± 0.047
14952 0.959 ±0.009∗ 0.959 ± 0.003 0.956 ± 0.006 0.949 ± 0.022 0.963 ±0.002∗

14954 0.854 ±0.025∗ 0.844 ±0.027∗ 0.800 ± 0.040 0.814 ± 0.014 0.799 ± 0.027
14965 0.857 ±0.014∗ 0.777 ± 0.072 0.856 ±0.014∗ 0.838 ± 0.015 0.839 ± 0.006
14969 0.545 ± 0.028 0.641 ± 0.014 0.585 ± 0.084 0.546 ± 0.119 0.605 ± 0.004
125920 0.572 ±0.026∗ 0.577 ±0.033∗ 0.535 ± 0.024 0.549 ± 0.050 0.566 ± 0.032
125922 0.997 ±0.001∗ 0.993 ± 0.003 0.996 ±0.002∗ 0.993 ± 0.002 0.987 ± 0.017
146195 0.694 ±0.042∗ 0.616 ± 0.111 0.720 ±0.029∗ 0.551 ± 0.130 0.670 ± 0.048
146800 0.999 ±0.001∗ 0.999 ± 0.002 0.979 ± 0.015 0.999 ±0.001∗ 0.994 ± 0.008
146817 0.795 ± 0.021 0.807 ± 0.019 0.841 ± 0.020 0.808 ± 0.056 0.802 ± 0.036
146819 0.848 ±0.015∗ 0.812 ± 0.039 0.818 ± 0.022 0.824 ± 0.011 0.836 ±0.016∗

146820 0.924 ±0.030∗ 0.919 ± 0.045 0.963 ±0.005∗ 0.875 ± 0.107 0.955 ± 0.008
146821 0.963 ±0.040∗ 0.969 ± 0.021 0.942 ± 0.052 0.990 ±0.010∗ 0.983 ± 0.008
146822 0.927 ±0.012∗ 0.939 ±0.015∗ 0.935 ± 0.008 0.916 ± 0.024 0.926 ± 0.003
146824 0.982 ±0.002∗ 0.968 ± 0.012 0.954 ± 0.033 0.976 ±0.006∗ 0.974 ± 0.008
146825 0.857 ±0.014∗ 0.847 ±0.020∗ 0.828 ± 0.041 0.839 ± 0.022 0.810 ± 0.056
167119 0.890 ±0.006∗ 0.874 ± 0.036 0.882 ±0.026∗ 0.851 ± 0.013 0.872 ± 0.013
167121 0.912 ± 0.025 0.726 ± 0.158 0.619 ± 0.003 0.715 ± 0.180 0.731 ± 0.154
167125 0.897 ±0.005∗ 0.891 ± 0.002 0.889 ± 0.003 0.894 ±0.022∗ 0.884 ± 0.004
167140 0.944 ±0.005∗ 0.942 ± 0.006 0.946 ±0.004∗ 0.931 ± 0.000 0.886 ± 0.009
167141 0.801 ±0.092∗ 0.842 ± 0.031 0.838 ± 0.027 0.818 ± 0.027 0.846 ±0.027∗

Table C.8: Comparative learning performances on OpenML datasets
over sampling 30 configurations of the SVM pipeline. Performances
that are statistically significant compared to the second best are in
bold. Statistically comparable performances are indicated with (∗).
Pairwise comparisons and the associated p-value along the iterations
are presented in Figure C.4.
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Random Forest Adaboost SVM
d \ NDCG@k 10 15 20 25 10 15 20 25 10 15 20 25
2 0.57 0.65 0.71 0.76 0.6 0.67 0.73 0.78 0.55 0.62 0.68 0.73
5 0.58 0.65 0.71 0.75 0.6 0.67 0.73 0.78 0.58 0.65 0.7 0.74
10 0.57 0.65 0.71 0.76 0.63 0.7 0.75 0.8 0.58 0.65 0.71 0.75
15 0.58 0.66 0.72 0.76 0.62 0.7 0.75 0.79 0.57 0.65 0.71 0.76
20 0.58 0.67 0.73 0.77 0.62 0.69 0.74 0.79 0.58 0.65 0.71 0.76
25 0.57 0.65 0.71 0.76 0.62 0.69 0.75 0.79 0.58 0.65 0.71 0.76
intrinsic 0.59 0.67 0.73 0.78 0.62 0.69 0.75 0.8 0.59 0.67 0.73 0.78

Table C.9: Sensitivity of Metabu w.r.t the number d on Task 1. The per-
formance is the NDCG@k scoremeasuring the relevance of the ranking
induced by Metabu w.r.t. the target representation.

C.7 . Pairwise Comparisons

Figs. C.2-C.4 highlight a side-by-side comparison ofMetabu with each baseline
set of meta-features. These comparisons establish the relative improvement over
each baseline, that may be lost in the general comparison, Figure 6.4.

On Random Forest pipeline, Metabu performs on par with SCOT meta-
features. Whereas its improvement over Landmark MF is only significant between
the (approximately) 8th and 23rd iteration, Metabu consistently outperforms Ran-
dom and Auto-Sklearn meta-features along the iterations.

On Adaboost, Metabu performs similarly as Landmark meta-features. Inter-
estingly, Metabu always has a better average rank than the baselines except for
the first two iterations of the Auto-Sklearn baseline. It is seen that the p-value is
most generally below the threshold .05, establishing the statistical significance of
the rank performance.

Lastly, the gaps in performance for SVM are striking. Metabu consistently
outperforms all the baselines meta-features with high confidence.

C.8 . Sensitivity Analysis of d

Table C.9 reports the NDCG@k performance of Metabu on Task 1 for varying
values of d, showing that: i) the best results are obtained for the intrinsic dimension
in the vast majority of cases; ii) the sensitivity w.r.t. d is very moderate.

The intrinsic dimension d of the OpenML benchmark is circa 6 for Auto-
Sklearn, 8 for Adaboost, 9 for RandomForest and 14 for Support Vector Machines.

C.9 . Performance Curves
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Figure C.2: Pairwise comparison of Metabu with baseline meta-
features on Random Forest pipeline. Left: the average ranks. Right:
the p-value assessing the statistical significance of the ranks according
to the Mann-Whitney Wilcoxon test; the black horizontal line indicates
the significance threshold p-value=0.05.
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Figure C.3: Pairwise comparison of Metabu with baseline meta-
features on Adaboost pipeline. Left: the average ranks. Right: the
p-value assessing the statistical significance of the ranks according to
theMann-WhitneyWilcoxon test; the black horizontal line indicates the
significance threshold p-value=0.05.
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Figure C.4: Pairwise comparison of Metabu with baseline meta-
features on SVM pipeline. Left: the average ranks. Right: the p-
value assessing the statistical significance of the ranks according to the
Mann-WhitneyWilcoxon test; the black horizontal line indicates the sig-
nificance threshold p-value=0.05.
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These curves, in addition to the rank results displayed in Figure 6.4b, display
the performance values on 10 representative datasets from OpenML CC-18, in the
context of Task 2 for respectively Random Forest (Figure C.5), Adaboost (Figure
C.6), and SVM (Figure C.7). At each iteration, the curve reports the average
performance value with its the standard deviation (on 3 runs).

Figure C.5: Performance curves on Random Forest.

149



Figure C.6: Performance curves on Adaboost.

150



Figure C.7: Performance curves on SVM.
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