Nicolas Courty

Frank Hutter

Joaquin Vanschoren

Rémi Bardenet

Antoine Andry

Carola Baptiste

Gwendoline Jeremy Gabriel

Louisot Laurent

Olivier Pak

Contributions à AutoML: optimisation des hyper-paramètres et méta-apprentissage Mots clés: AutoML, séléction des modèles, optimisation d'hyper-paramètre, meta-apprentissage En guise de reconnaissance, je tiens à témoigner mes sincères remerciements à mes directeurs de thèse: Marc et Michèle, qui m'ont à la fois donné la liberté sur les différents thèmes à explorer, mais aussi ont été très disponibles pour les conseils. Ce fut un réel plaisir d'avoir effectué ma thèse sous votre encadrement.

Je remercie également

Résumé: Cette thèse présente trois principales contributions afin d'améliorer l'état de l'art de ces approches AutoML. Elles sont divisées entre deux thèmes de recherche: l'optimisation et meta-apprentissage. La première contribution concerne un algorithme d'optimisation hybride, appelé Mosaic, qui exploite les méthodes MCTS et optimisation bayésienne pour résoudre respectivement la sélection des algorithmes et la configuration des hyperparamètres. L'évaluation, conduite à travers le benchmark OpenML 100, montre que la performance empirique de Mosaic surpasse ceux des systèmes d'AutoML de l'état de l'art (Auto-Sklearn et TPOT). La deuxième contribution introduit une architecture de réseau neuronal, appelée Dida, qui permet d'apprendre des descripteurs de données invariants à la permutation de colonnes et d'exemples. Deux tâches (classification des patchs et prédiction des per-formances) sont considérées lors de l'évaluation de la méthode. Les résultats de Dida sont encourageants comparés à ceux de ses concurrents (Dataset2 vvec et DSS). Enfin, la troisième contribution, intitulée Metabu, vise à surmonter les limites de Dida à opérer sur de vrais jeux de données d'AutoML. La stratégie de Metabu comporte deux étapes. Tout d'abord, une topologie idéale de ces jeux de données, basée sur les meilleurs hyperparamètres, est définie. Puis, une transformation linéaire d es descripteurs manuels est apprise pour les aligner, selon un critère de transport optimal, avec la représentation idéale. Les comparaisons empiriques montrent que les descripteurs Metabu sont plus performants que les descripteurs manuels sur trois problèmes différents (évaluation du voisinage des jeux de données, recommandation d'hyperparamètres, et initialisation d'un algorithme d'optimisation).

Title: Some contributions to AutoML: Hyper-parameter Optimization and Meta-learning Keywords: AutoML, model selection, hyper-parameter tuning, meta-learning Abstract: This thesis proposes three main contributions to advance the state-of-the-art of Au-toML approaches. They are divided into two research directions: optimization (first contribution) and meta-learning (second and third contributions). The first contribution is a hybrid optimization algorithm, dubbed Mosaic, leveraging Monte-Carlo Tree Search and Bayesian Optimization to address the selection of algorithms and the tuning of hyper-parameters, respectively. The empirical assessment of the proposed approach shows its merits compar ed to Auto-sklearn and TPOT AutoML systems on OpenML 100. The second contribution introduces a novel neural network architecture, termed Dida, to learn a good representation of datasets (i.e., metafeatures) from scratch while enforcing invariances w.r.t features and rows permutations. Two proofof-concept tasks (patch classification and perfor-mance prediction tasks) are considered. The proposed approach yields superior empirical performance compared to Dataset2Vec and DSS on both tasks. The third contribution addresses the limitation of Dida on handling standard dataset benchmarks. The proposed approach, called Metabu, relies on hand-crafted meta-features. The novelty of Metabu is two-fold: i) defining an "oracle" topology of datasets based on top-performing hyper-parameters; ii) leveraging Optimal Transport approach to align a mapping of the handcrafted meta-features with the oracle topology. The empirical results suggest that Metabu metafeature outperforms the baseline hand-cr afted meta-features on three different tasks (assessing meta-features based topology, recommending hyper-parameters w.r.t topology, and warmstarting optimization algorithms).

Introduction

A rtificial Intelligence (AI) is ever more present in numerous real-life contexts, such as marketing [Brei 2020, Dzyabura and[START_REF] Dzyabura | Machine learning and marketing. Handbook of Marketing Analytics[END_REF], healthcare [Bhardwaj et al. 2017, Wiens and[START_REF] Wiens | Machine Learning for Healthcare: On the Verge of a Major Shift in Healthcare Epidemiology[END_REF], and transportation [START_REF] Zantalis | A Review of Machine Learning and IoT in Smart Transportation[END_REF][START_REF] Tizghadam | Machine Learning in Transportation[END_REF]]. However, the pervasive deployment of AI remains in its infancy. Numerous research papers from conferences such as NeurIPS, ICML, AAAI, and ICLR continue to make discoveries in the field of AI. These discoveries yield a broader understanding of the theoretical and empirical proprieties of approaches toward AI while also reducing their computational complexities. Furthermore, tech companies are recently devoting more resources to implementing recent AI advancements to solve real-life problems.

The emergence of Machine Learning (ML) is among the main reasons for the recent success of AI. ML covers any method that learns from data, experiences, or interactions. It has gained significant interest in the research community for myriad reasons. For example, the current technological infrastructure and existing social network platforms ease the collection and storage of data at an exponential rate. In this context, world-renowned magazines [Forbes 2018, Economist 2017] argue that data is the new oil of the 21st century, and only companies that can efficiently exploit information will remain competitive. Fortunately, ML proposes intelligent strategies to mine the available data by identifying patterns to support domainlevel decisions or learning recurring tasks for further automation. Another reason for increased interest in AI comes from advancements in computing power, which allow the adoption of ML models. Modern-day computing units (e.g., CPUs and GPUs) are improving rapidly and, therefore, becoming more efficient and accessible for companies.

However, the unprecedented success of ML models comes at the cost of the complexity of choosing a suitable model. In the last fifty years, researchers have proposed a wide variety of ML models, each one having its strengths and limitations. A key challenge for adopting ML involves correctly choosing the model that best fits the problem at hand. A traditional ML experiment often extends to additional steps such as data preparation, cleaning, and setting hyper-parameters. The overall processing steps are called pipelines throughout the rest of the document.

In practice, researchers and data scientists rely on their experiences over similar problems to find the most promising pipeline. While it allowed tuning state-of-theart AI models [Krizhevsky et al. 2012, Silver et al. 2016 , 2017, Senior et al. 2020], this manual approach is a tedious and error-prone task due to the enormous possibilities of experiment settings. AutoML (Automated Machine Learning) aims thus at addressing this limitation by automating the search process. Within the AutoML context, three strategies are proposed in this thesis to improve the efficiency of the search over the existing approaches.

Automated Machine Learning: AutoML

AutoML is a hot topic in AI, situated at the intersection of Machine Learning and Optimization. It is a subfield of the long-dated research area of Algorithm Selection (AS). AS was first tackled by [START_REF] Rice | The Algorithm Selection Problem[END_REF] in his seminal work The Algorithm Selection Problem, paving the way for a large body of works (Chapter 1).

The AutoML research has received incredible interest from the AI community over the last two decades. It is reflected by the successes of AutoML workshops (from 2014 to 2021) and international AutoML challenges [START_REF] Guyon | Design of the 2015 ChaLearn AutoML challenge[END_REF][START_REF] Escalante | AutoML @ NeurIPS 2018 challenge: Design and Results[END_REF]]; all confirm the growing tendency of AutoML papers and interests.

The early AutoML competitions focus on tabular datasets, leading to the development of Auto-Sklearn [Feurer et al. 2015a]. After that, [START_REF] Liu | AutoDL Challenge Design and Beta Tests-Towards automatic deep learning[END_REF] organized further challenging tasks to tackle various domains, including computer vision [START_REF] Liu | AutoCV Challenge Design and Baseline Results[END_REF]] and speech processing [START_REF] Wang | AutoSpeech 2020: The Second Automated Machine Learning Challenge for Speech Classification[END_REF]. Recently, [START_REF] Baz | MetaDL challenge design and baseline results[END_REF] proposed a competition on Meta-Learning to learn through a sequence of ML tasks. These competitions played a crucial role in developing robust practical and theoretical AutoML systems [Feurer et al. 2015a , 2018, Lim et al. 2019, Baek et al. 2020].

If numerous AutoML systems are available in open-source [Feurer et al. 2015a[START_REF] Olson | Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science[END_REF][START_REF] Thornton | Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms[END_REF], Mohr et al. 2018, Gijsbers and Vanschoren 2019], they are often targeted for research purposes, operating on standard dataset benchmarks [START_REF] Dua | {UCI} Machine Learning Repository[END_REF]Graff 2017, Vanschoren et al. 2014]. Several challenges thus need to be addressed to fulfill the promise of AutoML to the best extent possible [START_REF] Van Der Blom | AutoML Adoption in ML Software[END_REF].

Technical challenges of the AutoML problem

The critical components of AutoML are two-fold. On the one hand, AutoML relies on an optimization algorithm to search for the optimal ML experiment setting. On the other hand, it requires learning from previously seen tasks to speed up the optimization.

The optimization part, the core of AutoML, is the Hyper-Parameter Optimization (HPO) [START_REF] Feurer | Hyperparameter Optimization[END_REF]. The HPO problem involves a noisy, expensive, and black-box optimization problem over a structured search space. Another critical challenge of HPO is to enforce the generalization to the hold-out test instances of the dataset. Despite these difficulties, however, several Black-Box Optimization algorithms (e.g., Bayesian Optimization, Evolutionary Algorithms, and Planning algorithms) remain appropriate for addressing the HPO problem.

AutoML can also leverage knowledge from previous similar tasks to speed up the optimization (e.g., warm-starting HPO algorithms). This strategy is called Meta-Learning, as it requires learning on a task level. In practice, Meta-Learning is shown to drastically reduce the computational cost of HPO [START_REF] Feurer | Initializing bayesian hyperparameter optimization via meta-learning[END_REF]. A primary challenge of Meta-learning is the lack of a clear definition of task similarity to support the learning. Nevertheless, the literature provides various approaches to estimate this similarity. A first line of research is to learn task similarity during the HPO, solely relying on the evaluated pipelines [Fusi et al. 2018[START_REF] Yang | OBOE: Collaborative Filtering for AutoML Model Selection[END_REF].

A second research direction is to map a task into a set of descriptors, termed metafeatures [START_REF] Rivolli | Meta-features for meta-learning[END_REF], which are further leveraged to assess the similarity between tasks. However, if the latter approach showed promising results to describe optimization problems [START_REF] Xu | SATzilla: Portfolio-based Algorithm Selection for SAT[END_REF][START_REF] Kotthoff | Algorithm Selection for Combinatorial Search Problems: A Survey[END_REF], its efficiency for describing machine learning tasks is limited [START_REF] Misir | Alors: An algorithm recommender system[END_REF]. One of the purposes of this thesis is to address this limitation.

Outline of the Thesis

As illustrated in Figure 1, this thesis presents three contributions addressing issues both in the Hyper-Parameter Optimization and Meta-Learning sides. It is organized as follows.

Part I focuses on the formal background of the AutoML problem. Starting with the motivation and context of the work, it then presents an overview of the Algorithm Selection domain and, afterward, an introduction to AutoML (Chapter 1). The state-of-the-art methods for HPO (Chapter 2) and Meta-Learning (Chapter 3) are then described. Further, Parts II and III present the three contributions of the thesis (details bellow). Lastly, this manuscript concludes with a summary of the contributions and a discussion of the perspectives and future works direction.

The contributions are separated into two parts: one contribution for HPO (Part II) and two contributions for Meta-learning (Part III). They are described as follows.

[C1] Monte Carlo Tree Search for Algorithm Configuration (Part II, Chapter 4). This contribution, entitled Automated Machine Learning with Monte-Carlo Tree Search [Rakotoarison et al. 2019], was published at the Twenty-Eighth International Joint Conference on Artificial Intelligence. It addresses the complexity of learning over structured search space induced by the sequence of choice required to build an ML pipeline. Concretely, a pipeline describes the dependencies of the processing steps, from data preparation to the training algorithm, to yield an end-to-end ML experiment. The fundamental idea of this chapter is to propose a hybrid algorithm: (a) a Monte-Carlo Tree Search (MCTS) strategy to handle the algorithm selection part, (b) and a Bayesian Optimization (BO) algorithm to deal with tunning the hyper-parameters. The proposed approach, dubbed Mosaic, thus inherits the advantages of BO as being sample efficient and MCTS suitable for the combinatorial nature of pipeline selection.

[C2] Distribution-Based Invariant Deep Networks for Learning Meta-Features (Part III, Chapter 5). As mentioned earlier, Meta-Learning uses task similarity to reduce the computational cost of an HPO running a new task. For example, it can exploit knowledge from the most identical previously seen task. The efficiency of the Meta-Learning, thus, critically depends on the distance metric used to compare tasks. This chapter is concerned with defining the task similarity with the help of meta-features. While current state-of-the-art meta-features still rely on hand-made meta-features, this work considered a novel perspective of learning them. Mainly, the contribution is a Neural Network architecture, dumbed Dida, that handles tasks as input and outputs meta-features. Since ML tasks have varying dimensions with invariance proprieties, the primary difficulty is accommodating such constraints into a neural network. This work, entitled Distribution-based invariant deep networks for learning meta-features, is available as a preprint paper [START_REF] De Bie | Distribution-Based Invariant Deep Networks for Learning Meta-Features[END_REF]].

[C3] Learning meta-features for AutoML (Part III, Chapter 6) This contribution, called Learning meta-features for AutoML [Rakotoarison et al. 2021], will appear at the Tenth International Conference on Learning Representations. It is a follow-up on the previous contribution, mainly to mitigate Dida limitations. Those limitations concern three barriers restraining the adoption of the learned meta-features for AutoML. First, the most significant task benchmark available [START_REF] Bischl | OpenML Benchmarking Suites and the OpenML100[END_REF]] is insufficient to learn meta-features. Second, Dida does not treat general tabular data because it does not handle data quality issues such as categorical variables and missing values. The latter concerns depreciated its relevance to the general AutoML tasks. Third, the target variable (meta-features suitable for AutoML) is unavailable hence needs to be constructed in advance. The proposed approach Metabu intends to pave the issues mentioned above to learn task meta-features for AutoML.

Part I

Background and State-of-the-art 1 -Formal Background

AutoML is attracting considerable interest in the research community to make machine learning algorithms more robust and support the deployment of these ML algorithms into real production scenarios. This work aims to advance current AutoML approaches to achieve this objective.

This first chapter introduces the formal background of the AutoML domain to allow the reader to situate the contributions presented in the upcoming chapters. Firstly, Section 1.1 presents the context and motivation behind AutoML. Then, Section 1.2 reviews the AutoML acknowledged mother-field, namely Algorithm Selection. Finally, Section 1.3 formally introduces AutoML, focusing on the optimization problem tackled throughout this manuscript.

. Context & Motivation

1. 1.1 . Context Automated Machine Learning (AutoML) builds upon the fields of Algorithm Selection (AS) and Algorithm configuration (AC) techniques to respectively select and tune machine learning pipelines for a given task. In this context, ML pipeline refers to the sequence of all the processing steps, from data preparation to training ML model, yielding an end-to-end training of an ML model. Therefore, it involves parameters; for simplicity, all pipeline parameters are called hyper-parameters.

The considered ML tasks include supervised learning (classification, regression), unsupervised learning (clustering), and reinforcement learning problems. This thesis focuses on supervised learning, specifically the single label (binary and multiclass) classification problem.

On the one hand, the algorithm selection is the process of choosing one out of a set of possibilities, such as selecting the optimal learning algorithm from a collection of classifier models. The Algorithm Selection problem was first formalized in [START_REF] Rice | The Algorithm Selection Problem[END_REF]. It also pointed out various applications of AS, ranging from estimation to artificial intelligence. Section 1.2 provides a detailed review of AS for completeness.

On the other hand, the algorithm configuration is the approach to set hyper-parameter values, e.g., tuning the regularization parameter C of the SVM model [START_REF] Boser | A training algorithm for optimal margin classifiers[END_REF]]. Note, however, that, since the performance of an algorithm tightly depends on its hyper-parameters, it is not uncommon for researchers to combine AS and AC within the same optimization process (more in Section 2.2).

. Motivation

One of the primary motivations of AutoML is to handle the overwhelming task of choosing an ML algorithm and configuring its hyper-parameters. Indeed, numerous recent studies suggest that machine learning algorithms dominate the broader field of AI, to name a few, ranging from computer vision [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF], driving cars [START_REF] Bojarski | End to End Learning for Self-Driving Cars[END_REF], playing games [Silver et al. 2016 , 2017] to learning protein structure [START_REF] Senior | Improved protein structure prediction using potentials from deep learning[END_REF]]. However, these successes and breakthroughs were only obtained by carefully choosing the learning model and its hyper-parameter values. The purpose of AutoML thus is to delegate the time-consuming and expertise-demanding procedures of algorithm selection and configuration to the machine.

Another motivation of AutoML is to address, to some extent, the shortage of experienced data scientists, opening the room for non-experts to build highperformance machine learning models. For example, it allows researchers from other domains (e.g., medicine and climate change) to benefit from ML at its best in their respective research fields.

From a theoretical point of view, AS and AC have gained ever more attention since the publication of the No-free lunch theorem (NFL). In a nutshell, this theorem states that all (optimization or ML) algorithms perform equally when considering their performance expectation over a uniform distribution on the set of possible problem instances. 1 This NFL theorem, which was proved for black-box optimization [START_REF] Wolpert | No Free Lunch Theorems for Search[END_REF] and later for supervised machine learning [START_REF] David | The Lack of A Priori Distinctions Between Learning Algorithms[END_REF]], thus establishes that there is no point in finding a universal algorithm in the above sense and paves the way toward developing portfolios of algorithms and selecting the appropriate ones depending on the problem at hand.

. Overview on Algorithm Selection

Prior to its application in machine learning, AS was broadly applied in several domains such as Travelling Salesman Problem (TSP) [START_REF] Kotthoff | Improving the State of the Art in Inexact TSP Solving Using Per-Instance Algorithm Selection[END_REF]], Satisfiability Problem (SAT) [START_REF] Xu | SATzilla: Portfolio-based Algorithm Selection for SAT[END_REF], Mixed-Integer Programming (MIP) [START_REF] Hutter | Automated Configuration of Mixed Integer Programming Solvers[END_REF][START_REF] Xu | Hydra-MIP : Automated Algorithm Configuration and Selection for Mixed Integer Programming[END_REF] to Constraint Programming [START_REF] Loth | Bandit-Based Search for Constraint Programming[END_REF]. We refer the interested reader to the recent literature reviews of [START_REF] Kotthoff | Algorithm Selection for Combinatorial Search Problems: A Survey[END_REF] and [START_REF] Kerschke | Automated Algorithm Selection: Survey and Perspectives[END_REF], which describe the foundations and up-to-date results of applying AS to optimization problems. [START_REF] Rice | The Algorithm Selection Problem[END_REF] formalizes the AS problem as a procedure to learn a mapping from problem space I to the algorithm space A; i.e., associating a problem instance to its optimal algorithm. Rice's formalization, also known as Per-Instance Algorithm Selection (PIAS), is defined in Definition 1 and illustrated in Figure 1.1.

Definition 1 (Optimal decision in PIAS)

. Let I and A respectively denote a set of problem instances and a set of algorithms. Then, given p : I × A → IR, a loss function to be minimized, the optimal decision in PIAS is a pair of a [START_REF] Rice | The Algorithm Selection Problem[END_REF].

selector S and feature extractor f * that when combined minimizes the loss p for all instances x ∈ I. ∀(x, a) ∈ I × A, p(x, S(f * (x))) ≤ p(x, a).

PIAS involves two sub-tasks. Firstly, each problem instance is associated with a set of descriptors noted f * (x), computed from a feature extractor function f * . Then, the selector S exploits the description f * (x) to determine the best algorithm S(f * (x)), with optimal performance in the sense of the considered loss function. [START_REF] Kotthoff | Algorithm Selection for Combinatorial Search Problems: A Survey[END_REF] discusses various building blocks involved in the AS problem, chiefly: designing algorithm portfolios, learning a surrogate model of the performance p(x, a), and constructing the feature extractor f * . The following subsections briefly discuss these three building blocks.

. Portfolio optimization

Researchers and practitioners are both convinced that an algorithm is unlikely to perform best for all problem instances. As said, the idea of a universal algorithm goes against the NFL theorem [Wolpert andMacready 1997, Wolpert 1996]. 2 The mainstream approach to overturn the NFL is to design a portfolio of algorithms, a finite set of algorithms. Ideally, algorithms in the portfolio are diverse enough to cover the landscape of the problem space. [START_REF] Souravlias | Algorithm Portfolios: Advances, Applications, and Challenges[END_REF] presents a recent survey of portfolio optimization and its related challenges.

AS suitably handles the selection of an algorithm in a portfolio, as the latter is a finite set of algorithms. However, the AC problem instead considers a set of configurations, the size of which might be infinite (due to continuous hyper-parameters) or at least exponentially increasing with the number of hyper-parameters. A critical issue with algorithm portfolios is that their performance depends strongly on the considered problem instance; typically, the "best on average" algorithm on the portfolio is not necessarily the best one on problem instance I.

Ideally, one requires a perfect joint representation of algorithms and problem instances to:

(i) Cluster the instance space;

(ii) Select the optimal algorithm for each cluster to define a portfolio with good coverage.

Some works [START_REF] Yap | Instance space analysis of combinatorial multi-objective optimization problems[END_REF][START_REF] Smith | Measuring instance difficulty for combinatorial optimization problems[END_REF] followed this line of research in combinatorial optimization problems, although they did not apply their results to Algorithm Selection for ML algorithms.

. A Machine Learning approach to surrogate model learning

As illustrated in Figure 1.1, algorithm selectors usually leverage feedback value such as the observed performance, gathering more information about the current task, which thereafter fed to the selector S to support AS. Most authors [START_REF] Xu | SATzilla: Portfolio-based Algorithm Selection for SAT[END_REF], Hoos et al. 2015] introduce a performance model estimating the performance p(f * (x), a), and delegate the learning of the performance model to mainstream machine learning algorithms. Under the assumption of a good enough feature extractor f * , the performance model predicting p(f * (x), a) exploits a (meta-) dataset composed of pairs {(f * (x), a)); p(f * (x), a))} and proceeds exactly as in supervised learning.

Along this line, ML-based selector approaches allow the offline exploitation of a performance database (involving triplets: instance f * (x); algorithm a; associated performance p(f * (x), a)). This approach can leverage earlier run experiments and adapt the model in case of changes in the algorithms or in the problem instance distribution.

In practice, the performance model and AS come in two modes. In the first mode, the learned model is the selector itself: S : I → A

In the second mode, one learns the performance model defined on pairs of instance-algorithm:

p : I × A → IR
that is thereafter used to select the most promising algorithm: S(x) = argmax a p(x, a).

In the former case, S is a classifier, where each algorithm corresponds to a class; this approach is arguably best suited to portfolios. In the latter case, the performance model is more flexible as it can predict any continuous value criterion such as runtime, loss, or performance.

An alternative solution to these learning approaches is to construct S as a set of static hand-made rules without a learning component. The selection rule is thus based solely on the instance features. A recent benchmarking paper [START_REF] Meunier | Black-Box Optimization Revisited: Improving Algorithm Selection Wizards through Massive Benchmarking[END_REF], Liu et al. 2020a] based on this idea shows that the rule-based selected algorithm outperforms the portfolio algorithms. The comparison was carried out from various optimization problems ranging from academic benchmarks to realworld applications.

. Instance features

Instance features play a crucial role in AS. For example, a "perfect" representation of instances would support an optimal recommendation. Let the Euclidean distance based on the features allows to identify the nearest instances to the current instance problem. Assuming the neighborhoods based on this representation were "perfect", one could pick the optimal algorithm for the current instance as the best algorithm for its nearest neighbor. Overall, instance features define a computable vector representation of every instance problem. The interested reader is referred to [START_REF] Kerschke | Automated Algorithm Selection: Survey and Perspectives[END_REF] for a survey of the feature sets adopted for various optimization problems.

. Automated Machine Learning (AutoML)

As said, AutoML involves an Algorithm Selection component aimed to select an ML algorithm to handle the ML problem instance. When not specified, a problem instance refers to a dataset in the remainder: a set of samples, each described with features values and target label to be predicted.

AutoML also involves an Algorithm Configuration component, referred to as Hyper-Parameter Optimization. The AC component aims to configure an end-toend and trainable machine learning experiment, or pipeline, defined as a sequence of processing algorithms and their associated hyper-parameters.

The building blocks of AS introduced in Section 1.2 all apply to the AutoML domain:

• Algorithm portfolio (Section 1.2.1) is leveraged by various works on ML pipelines recommendation [START_REF] Misir | Alors: An algorithm recommender system[END_REF][START_REF] Yang | OBOE: Collaborative Filtering for AutoML Model Selection[END_REF], Fusi et al. 2018].

• Surrogate performance model (Section 1.2.2) is also standard in AutoML, mainly to speed up hyper-parameter optimization algorithms [Bergstra et al. 2011[START_REF] Swersky | Freeze-Thaw Bayesian Optimization[END_REF], Feurer et al. 2015a, Fusi et al. 2018].

• Instance features (Section 1.2.3), commonly termed meta-features for clarity (and make the distinction with dataset features), are of high interest in AutoML especially to transfer knowledge across problem instances (datasets).

The following sub-sections detail all the definitions, challenges, and prerequisites.

. Problem Statement

As illustrated on Rice's diagram (Figure 1.1), AutoML proceeds to find an optimal pipeline in the sense of a predefined criterion, w.l.o.g. a loss function to be minimized. This goal can be formalized as an optimization problem (Definition 2) on the whole configuration space Θ, searching for the optimal pipeline θ * z ∈ Θ for dataset z.

Definition 2 (AutoML). Let z be a dataset (w..l.o.g. a binary or multiclass classification problem) and z train and z valid two disjoint subsets of z. Let Θ be the space of machine learning pipelines. The following optimization problem defines AutoML on a dataset z:

Find θ * z ∈ arg min θ∈Θ L(θ, z train , z valid), (1.1)
where L denotes a loss function to assess the ML pipeline θ (trained on z train) on z valid .

Regardless of the type of ML task examined (e.g., classification or regression) and the pipeline space, AutoML involve two basic and essential components: an optimization algorithm (Chapter 2) and a Meta-Learning method for learning across tasks (Chapter 3). The two AutoML components mentioned above, like the above formalization, are agnostic w.r.t. the type of ML task. Nevertheless, the rest of the manuscript focuses on classification problems.

. Technical issues from the AutoML problem

The optimization problem defined in Equation 1.1 presents some challenges, being noisy, structured, black-box, and expensive. They are discussed below.

Noisy optimization

The noise observed in the objective function L has many sources. A first source might be the randomness of ML algorithms, e.g., the initialization in a neural network. Such an issue is handled in practice by fixing the random seed. A second source may come from the sampling of the training, validation, and test sets from the whole dataset z (e.g., cross-validation split). A third source is the noise of the optimization algorithm itself (e.g., see [START_REF] Shang | A simple dynamic bandit algorithm for hyper-parameter tuning[END_REF], especially when the noise is not gaussian). 3These noises can be straightforwardly handled, as done in various AutoML systems [Feurer et al. 2021a[START_REF] Thornton | Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms[END_REF][START_REF] Olson | Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science[END_REF]] and benchmarking papers [START_REF] Balaji | Benchmarking Automatic Machine Learning Frameworks[END_REF]Allen 2018, Gijsbers et al. 2019], by averaging the performance obtained over multiple independent runs (with varying dataset splits). Nevertheless, in counterpart, this procedure linearly increases the cost of the Au-toML process.

Structured Optimization

An end-to-end AutoML system involves all components of a complete machine learning experiment, ranging from data pre-processing through feature selection to training and ensembling models.

The search space Θ represents the set of possible machine learning pipelines encompassing the union of the space of feasible algorithms with the domain of their hyper-parameters. It thus includes a mix of binary,4 categorical and continuous variables. For example, Feurer et al. [2015a] considers 40 categorical and 66 real continuous hyper-parameters for binary classification tasks.

Operating directly on Θ is hardly feasible. First, finding the algorithmic components present in pipeline z * , that is, optimizing the binary variables in Θ, defines a hard combinatorial, NP-hard problem. Second, the exploration of Θ must account for the dependencies among its variables, reflecting the structure of ML pipelines. In other words, the value of some variables controls the relevance of some other variables. For example, a polynomial SVM kernel comes with two specific hyperparameters; the fact that an algorithmic component is present implies that its hyper-parameters are relevant.

In practice, Θ is defined from the set of algorithm candidates, each with the domain space of their respective hyper-parameters, selected by the human expert. The pipeline structure is tackled by considering another formalization of the search space (as Bayesian Optimization does not directly handle structured search space). Alternatively, another solution is to leverage structure-aware optimization algorithms (such as Evolution Strategies). We return to this issue in Chapter 2.

Black-Box Optimization (BBO)

BBO aims at optimizing a function f without exploiting (or having access to) its analytical definition and computational implementation. BBO can only compute the value f (x) for each input x. In particular, BBO does not use the derivatives of f . The AutoML objective function L (Equation 1.1) defines such a BBO problem, as the value of L for a given dataset and configuration can only be computationally estimated.

Another interesting AutoML approach is to rely on bi-level optimization. It proceeds with a proper formalization of the search space, enabling the use of gradient-based optimization to AutoML [Liu et al. 2018a[START_REF] Franceschi | Bilevel Programming for Hyperparameter Optimization and Meta-Learning[END_REF]]. This idea will not be covered in this work, however.

Expensive Optimization

According to a recent survey presented by [START_REF] Van Der Blom | AutoML Adoption in ML Software[END_REF], one of the main obstacles to deploying AutoML approaches in real-life production is their prohibitive computational cost. Indeed, given a Black-box function f , BBO proceeds by computing f (x) for all candidates x, making the overall computationally demanding. Various strategies were proposed to address this issue and further speed up the search. In particular, multi-fidelity strategies [START_REF] Swersky | Freeze-Thaw Bayesian Optimization[END_REF][START_REF] Li | Hyperband: a novel bandit-based approach to hyperparameter optimization[END_REF][START_REF] Klein | Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets[END_REF]] were founded to be incredibly effective. They rely on an approximate but inexpensive estimation of the objective function, to accelerate the optimization while controlling the model complexity or the size of datasets. The approaches to reducing the training time are discussed further in Section 2.2.

Generalization Perspective

As formalized in the statistical learning theory [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF]], the essential objective for learning a model is to achieve good performances in expectation. The sought solution thus is to learn a pipeline, based on its only performance on the training and validation sets, that would perform well on a holdout test set (unseen during the optimization), demonstrating that they do not overfit.

AutoML solutions are particularly prone to over-fitting as they require many lookups to the validation score. This overfitting issue is acknowledged as a critical issue; still, the AutoML literature does not agree on how to address this issue. Benchmarking papers [START_REF] Zöller | Benchmark and Survey of Automated Machine Learning Frameworks[END_REF]Huber 2021, Gijsbers et al. 2019] also raise this issue as one of the causes of the decrease in performance on subset tasks when optimizing for a long time budget. Researchers often rely on cross-validation [START_REF] Allen | The Relationship between Variable Selection and Data Agumentation and a Method for Prediction[END_REF][START_REF] Geisser | The Predictive Sample Reuse Method with Applications[END_REF] scores to minimize the risk of over-fitting.

. Evaluating AutoML systems

The fair comparison of AutoML systems requires that all competitors operate in the same search space Θ and are evaluated along with the same benchmarking procedure.

The search space

As said, the choice of the search space Θ is usually left to the human expert (or encapsulated in the considered algorithm portfolio) to make it a tractable bounded search space. Nevertheless, this choice can eventually affect the difficulty of the optimization.

At the time of writing, the choice of Θ depends on the application domain. Currently, deep learning models are dominating the field of computer vision, NLP, and speech recognition. For these application domains, a strong preference is given to Neural Architecture Search (NAS) over standard machine learning models. As an example, in DARTS [Liu et al. 2018a], the AutoML problem is formalized as a twolevel optimization problem, where the first level aims to learn the interconnection of a set of small networks and the second level aims to determine the respective weight of each of these small networks.

The presented research aims to achieve AutoML for tabular data, which motivates our choice to consider mainstream machine learning and pre-processing algorithms.

Benchmark datasets

Standard practice evaluating and comparing AutoML relies on open-source dataset benchmarks such as UCI [START_REF] Dua | {UCI} Machine Learning Repository[END_REF] and OpenML [START_REF] Vanschoren | OpenML: networked science in machine learning[END_REF].

For the sake of a fair and tractable assessment, we only consider curated and medium-size benchmarks: OpenML CC18 [START_REF] Bischl | OpenML Benchmarking Suites[END_REF]] and OpenML 100 [START_REF] Bischl | OpenML Benchmarking Suites and the OpenML100[END_REF].

While OpenML contains 3,448 datasets at the time of writing, many have data quality issues, such as datasets with constant features. Some datasets are too big or ill-conditioned, entailing a large SVM running time. Some datasets are also deprecated versions of the others, which may create a risk of over-optimistic evaluation. Because of these issues, [START_REF] Bischl | OpenML Benchmarking Suites[END_REF] built OpenML CC-18, a curated benchmarking suite for AutoML, succeeding OpenML 100 [START_REF] Bischl | OpenML Benchmarking Suites and the OpenML100[END_REF]. As far as we know, OpenML CC-18 is the largest curated tabular dataset benchmark available for AutoML.

-Hyper-parameter Optimization

This chapter focuses on one of the two core tasks of AutoML, referred to as Hyper-Parameter Optimization, that consists in setting the hyper-parameters to optimize the performance (Equation 1.1). The other core task, namely Meta-Learning, will be described in Chapter 3. This chapter is structured as follows. After reviewing the approaches of the HPO literature [START_REF] Feurer | Hyperparameter Optimization[END_REF] in Section 2.1, we situate HPO w.r.t the general AutoML problem (Section 2.2) and give an overview of the major AutoML systems (Section 2.3). The chapter finally presents the AutoML benchmarking methodology (Section 2.4).

. State-of-the-art of Hyper-Parameter Optimization approaches

The early methodology used to set hyper-parameters relies on manually picking hyper-parameter values along a trial and error procedure, and this methodology still is commonly used. However, it faces severe limitations: in terms of domain knowledge to judiciously sample good hyper-parameter values for the problem instance at hand; and in terms of both human and computational time requirements. HPO algorithms thus aim to address these limitations. Figure 2.1 highlights several HPO approaches, which are discussed in the following sub-sections.

. Mainstream Approaches

The most straightforward HPO approaches are the grid search and random search strategies. The grid search (GS) strategy considers a (manually defined) finite set of values for each hyper-parameter. The set of candidate pipelines is defined by considering all combinations of hyper-parameter values. All pipelines are then evaluated in a sequential or parallel manner. Then, the final recommendation to the user is the best configuration in the sense of the considered evaluation metric.

Hyper-parameter Optimization

The efficiency of GS depends on the considered hyper-parameter grid values. Recently, [START_REF] Ndiaye | Safe Grid Search with Optimal Complexity[END_REF] proposed exploiting the objective function's theoretical properties to define an optimal grid of hyper-parameters. Nevertheless, the cost and the performance exponentially increase with the number of hyper-parameters. Furthermore, a severe limitation of the GS approach is when only a few of the hyper-parameters are critical [Bergstra et al. 2011, Hutter et al. 2019].

Compared to GS, Random Search (RS) only requires the hyper-parameter domain spaces to be defined. It proceeds by uniformly sampling candidate configurations from the specified hyper-parameter domains. Despite its simplicity, RS performs well on expensive settings, e.g., Neural Networks [Bergstra et al. 2011]. Hence, RS is commonly used as a baseline on numerous HPO and AutoML papers [START_REF] Hutter | Sequential Model-Based Optimization for General Algorithm Configuration[END_REF], Bergstra et al. 2011, Feurer et al. 2015a[START_REF] Olson | Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science[END_REF][START_REF] Thornton | Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms[END_REF]. Note that different versions of RS can be formulated depending on the sampling strategy. For instance, instead of using uniform sampling, researchers experimented with other space-filling sampling methods [START_REF] Bousquet | Critical Hyper-Parameters: No Random, No Cry[END_REF][START_REF] Cauwet | Fully Parallel Hyperparameter Search: Reshaped Space-Filling[END_REF], enforcing the diversity of sampled pipelines.

A key strength of GS and RS approaches is the ease of parallelization, even more so as the emergence of high computing infrastructures supports the deployment and study of parallel methods in academia. For example, [START_REF] Li | A System for Massively Parallel Hyperparameter Tuning[END_REF][START_REF] Cauwet | Fully Parallel Hyperparameter Search: Reshaped Space-Filling[END_REF] show the merits of a massive random search approach compared to Bayesian Optimization and Evolutionary Algorithms on various HPO tasks.

. Bayesian Optimization

The celebrated Bayesian Optimization (BO) approach [START_REF] Mockus | Bayesian Approach to Global Optimization: Theory and Applications[END_REF][START_REF] Brochu | A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning[END_REF][START_REF] Peter | A Tutorial on Bayesian Optimization[END_REF]] is an optimization algorithm tailored for black box and expensive optimization problems under limited computational resources, thus well suited to HPO. BO uses an auxiliary probabilistic model, also termed surrogate model, to guide the search. The surrogate model is meant to model the optimization objective and estimate the modeling uncertainties; both are leveraged during the optimization.

A notable implementation is the Sequential Model Based-Optimisation (SMBO), which is commonly used to achieve HPO (Alg. 1). It proceeds as follows. Iteratively (for a total number T of iterations, governing the optimization cost), the surrogate model M is learned from the observed performances (line 6), then used to choose a promising new hyper-parameter configuration (line 3), that is evaluated afterward (line 4). The function A, termed Acquisition Function, encapsulates the selection procedure of the next hyper-parameter to evaluate.

Bayesian Optimization commonly uses a Gaussian Process [Rasmussen and

H ← ∅ 2 for t ← 1 to T do 3 θ t ← argmax θ∈Θ A(M t-1 , θ) 4 Evaluate L(θ t , z) 5 H ← H ∪ {(θ t , L(θ t , z))} 6 Fit M t on H 7 end 8 (θ * , l *) ← argmin (θ,l)∈H l
Williams 2005] as a surrogate model for its soundness and efficiency in terms of both performance prediction and uncertainty estimation. GP, however, suffers from two limitations. Firstly, it does not scale up w.r.t. the number of samples and the dimension of the search space. Secondly, it is well defined on continuous domains only.

The acquisition function that is commonly used is Expected Improvement (EI) [START_REF] Jones | Efficient Global Optimization of Expensive Black-Box Functions[END_REF]], defined as follows:

A(M, θ) = E[max(L min -M (θ), 0)] (2.1)
with L min be the best performance so far and M (θ) the estimated loss of hyperparameter θ according to the surrogate model M . [START_REF] Wessing | The true destination of EGO is multi-local optimization[END_REF] states that the success of EI (to tackle expensive optimization problems on a low computational budget) is related to its ability to identify multiple local optima regions. This experimental finding might explain the adoption of EI in the HPO context, as HPO usually admits a number of local optima.

The SMBO approach comes in various modes in the state-of-the-art, which differ in the definition of acquisition function A and the choice of surrogate model M . A non-exhaustive list of open-sourced BO algorithms is presented below.

• SMAC [START_REF] Hutter | Sequential Model-Based Optimization for General Algorithm Configuration[END_REF][START_REF] Lindauer | SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization[END_REF] uses Random Forest [START_REF] Breiman | Random Forests[END_REF]] as a surrogate model with Expected Improvement as an acquisition function. The Random Forest model addresses a core limitation of GP in handling mixed type domain values (e.g., real, categorical, or integer hyper-parameter). Moreover, it drastically reduces the computational complexity both for the training and the inference.

• HyperOpt [Bergstra et al. 2011], instead of modeling directly the performance M (θ), fits two density distributions for good P(θ = θ|L(θ) < τ) and bad P(θ = θ|L(θ) > τ) hyper-parameters, with τ a user defined threshold. These distributions are then constructed using a 1-dimensional Parzen Windows density estimation algorithm. A tree structure is introduced to cope with conditional hyper-parameters, hence the term Tree Parzen Estimator (TPE) [Bergstra et al. 2011 , 2013]. Note that this algorithm also handles mixed-type variables while having low complexity of training and inference.

• [START_REF] Snoek | Practical Bayesian optimization of machine learning algorithms[END_REF]] modify the mainstream BO to be better suited to HPO. Firstly, a new kernel function carefully crafted for HPO is proposed. Secondly, it considers the training cost when maximizing the acquisition function (EI per second). Since the internal surrogate model still is a Gaussian Process, it inherits both the advantages and limitations of GPs. [START_REF] Eggensperger | Towards an empirical foundation for assessing Bayesian optimization of hyperparameters[END_REF] conducted an empirical benchmarking study on popular BO algorithms, including SMAC, TPE and [START_REF] Snoek | Practical Bayesian optimization of machine learning algorithms[END_REF]]. The lessons learned from this study are that the GP-based BO [START_REF] Snoek | Practical Bayesian optimization of machine learning algorithms[END_REF]] tends to outperform SMAC and TPE on low dimensional problems, while TPE yields better performance on higher dimension search space, possibly including conditional hyper-parameter.

. Evolutionary Algorithms

The active research area of Evolution Algorithms (EA), also referred to as population-based algorithms, is concerned with Black-Box optimization problems. Formally, EAs include algorithms based on the evolution of a population of solutions. The evolution is achieved through operators (mutation, crossover, selection) remotely inspired by the Darwinian "survival of the fittest" ideas.

The main two trends in EAs are Genetic Algorithms (GAs) [START_REF] Mitchell | An introduction to genetic algorithms[END_REF]] and Evolution Strategies (ES) [START_REF] Beyer | Evolution strategies -A comprehensive introduction[END_REF].

EAs proceed iteratively: an initial population (i.e., a set of initial solutions) is used to create a new generation of solutions by applying mutation and recombination rules over the initial population. Next, the selection rule is applied to construct a new population, refining individuals upon the initial and generated populations. These two steps are repeated until the optimal solution is reached or the training budget is exhausted.

Both GAs and ES are widely applied to HPO. Genetic Algorithms are well suited to the optimization of design structure. A notable application of GAs is the automatic design of neural network architecture, also known as Neuroevolution [START_REF] Stanley | Designing neural networks through neuroevolution[END_REF]. NEAT [START_REF] Stanley | Evolving Neural Networks through Augmenting Topologies[END_REF][START_REF] Stanley | A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks[END_REF][START_REF] Risi | An enhanced hypercube-based encoding for evolving the placement, density, and connectivity of neurons[END_REF], Miikkulainen et al. 2019] is an example of a prominent Neuroevolution algorithm. A promising application of GAs [START_REF] Real | AutoML-Zero: Evolving Machine Learning Algorithms From Scratch[END_REF] aims to discover machine learning pipelines from scratch (see Section 2.3). Along the same line, a search for ML pipelines using context-free grammar is presented by [START_REF] Marinescu | Searching for Machine Learning Pipelines Using a Context-Free Grammar[END_REF].

While GAs mainly handle binary or discrete spaces, Evolution Strategies (ES) is restricted to fixed-size real value space. A successful ES-based optimization algorithm is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [START_REF] Hansen | The CMA Evolution Strategy: A Tutorial[END_REF]]. The authors of [START_REF] Loshchilov | CMA-ES for Hyperparameter Optimization of Deep Neural Networks[END_REF] apply CMA-ES to tune hyperparameter of deep network models, improving state-of-the-art HPO algorithms such as SMAC and TPE.

Like Random and Grid Search, EAs can be parallelized straightforwardly; their efficiency in parallel mode is widely observed in the literature [START_REF] Salimans | Evolution Strategies as a Scalable Alternative to Reinforcement Learning[END_REF][START_REF] Jaderberg | Population Based Training of Neural Networks[END_REF][START_REF] Conti | Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents[END_REF], Gaier and Ha 2019]. Furthermore, EAs can also exploit information gathered from previous evaluations (as in any sequential HPO algorithms).

. Bandit & planning Algorithms

Multi-armed bandit

Multi-armed bandits (MABs) [START_REF] Lattimore | Bandit Algorithms[END_REF] pertain to the field of Reinforcement Learning [START_REF] Sutton | Introduction to Reinforcement Learning[END_REF]], aimed to learn policies yielding an optimal action in each state. MABs consider the single-state RL problem, facing a finite discrete action set, with stochastic bounded action values. MABs were formalized as tackling a sequential decision problem under uncertainty since the early 1930s [START_REF] William | On the Likelihood that One Unknown Probability Exceeds Another in View of the Evidence of Two Samples[END_REF][START_REF] Robbins | Some aspects of the sequential design of experiments[END_REF][START_REF] Bather | Sequential decisions in the control of a spaceship[END_REF]. Its main applications include A/B testing, resource allocation, and ads placement (not exhaustive list).

Numerous algorithms were devised to address the MAB problem, e.g., for continuous actions [START_REF] Bubeck | X -Armed Bandits[END_REF] or a large number of actions [Woodroofe 1979, Langford andZhang 2008]. In the scope of the presented research, i.e., when considering an algorithm selection problem, the MAB algorithm most commonly used is UCB1 (Upper Confidence Bound) [Auer et al. 2002a]. Each algorithm corresponds to an arm; the associated reward is its (noisy) performance.

In [START_REF] Gagliolo | Algorithm Selection as a Bandit Problem with Unbounded Losses[END_REF], the authors propose GAMBLETA, a bandit method to select an optimal algorithm from a portfolio of SAT solvers. The specificity of this method is to leverage contextual information [START_REF] Auer | The Nonstochastic Multiarmed Bandit Problem[END_REF] for the bandit algorithm to transfer knowledge across a set of SAT problems.

In [START_REF] Fialho | Extreme Value Based Adaptive Operator Selection[END_REF], the authors likewise propose a bandit-based rule selector for an evolutionary algorithm where the novelty lies in the definition of the reward.

Another area of research aims to adapt bandit to algorithm configuration, i.e., HPO. Notably, [START_REF] Shang | A simple dynamic bandit algorithm for hyper-parameter tuning[END_REF] proposes a setting to handle an infinite set of hyper-parameters. The proposed method proceeds by maintaining a portfolio of sampled hyper-parameters; at each iteration, the algorithm decides whether to add a new hyper-parameter in the portfolio or consider a previously sampled hyper-parameter, and this hyper-parameter is evaluated.

Another powerful bandit method designed for HPO is the highly cited Hyperband algorithm proposed by Li et al. [2017 , 2018]. Unlike previous approaches, Hyperband leverages a bandit algorithm for allocating the overall resource budget across a set of running evaluations; in practice, poorly performing hyper-parameters are discarded early to save resources and attribute them to the best-performing ones.

Planning Algorithms

Another strategy is to sequentially handle the choice of hyper-parameter values (as opposed to the former setting, where the algorithm and the hyper-parameters values are picked simultaneously, allowing to assess the pipeline performance instantly). The issue of such sequential approaches is that the performance can only be measured when all hyper-parameter values are determined: the feedback is delayed. This setting falls into the category of planning problems, aiming to optimize a path (here, the sequence of hyper-parameter values) to maximize the final performance (here, that of the pipeline).

Casting the AutoML into a planning problem opens the room for many planning algorithms to be applied to HPO. One of the solutions is to represent the search space as a tree, with a path representing a pipeline. Any tree search algorithm can thus be considered, such as depth-first search and best-first search [Wever et al. 2018a , b, Mohr et al. 2018]. One of the main contributions of this thesis is to adapt the Monte-Carlo Tree Search (MCTS) [START_REF] Kocsis | Bandit Based Monte-Carlo Planning[END_REF], by combining the tree-structured extension of multi-armed bandit algorithms with Bayesian Optimization, to AutoML (Chapter 4).

A critical limitation of tree-structured representations is that they only handle hyper-parameters with discrete and small size domains. In particular, the domain of continuous hyper-parameters must be discretized.

Along the same line, formalizing AutoML as a sequential decision problem (selecting each hyper-parameter value) makes it a Reinforcement Learning (RL) problem [START_REF] Sutton | Introduction to Reinforcement Learning[END_REF]]. Formally, an incomplete pipeline is viewed as a state, and only final states (complete and trainable pipelines) are associated with the pipeline performance reward. RL aims to learn a policy, associating an action to each state and thus navigating among states; an optimal policy is such that the final reward is maximal. An RL approach is based on using Machine Learning algorithms on sequential examples; for example, [START_REF] Zoph | Neural Architecture Search with Reinforcement Learning[END_REF]] used an LSTM [START_REF] Hochreiter | Long Short-Term Memory[END_REF] to build neural architectures.

. AutoML as a Hyper-Parameter Optimization problem

Hyper-Parameter Optimization is primarily defined as the only problem of tuning hyper-parameters. AutoML instead considers selecting and tuning larger machine learning experiments, from the choice of data preparation to the learning algorithm, where each algorithm is associated with specific hyper-parameters. Traditional Hyper-Parameter Optimization algorithms thus require some adaptation to handle the entire AutoML problem.

The idea is to consider a particular algorithm as a hyper-parameter. This representation thus corresponds to a structured and conditional search space, where the previous choices condition the possible options. However, considering this vast and complex pipeline space entails a non-negligible increase in the computational cost. For this reason, substantial research focused on reducing the training cost of HPO to speed up AutoML.

Combining Algorithm Selection and Algorithm Configuration (CASH)

Note that the formal definition of AutoML (Equation 1.1), i.e., finding the optimal configuration θ * ∈ Θ that minimizes the defined loss function, with Θ be the space of observable configurations, already includes the HPO task as Θ both covers the set of algorithms and the space of their hyper-parameters.

The so-called Combined Algorithm Selection and Algorithm Configuration (CASH) approach is commonly used in practice [START_REF] Thornton | Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms[END_REF], Feurer et al. 2021a].

Let an ML pipeline x involve a fixed ordered sequence of components such as data pre-processing, feature selection, and learning algorithms. At the i th decision step, some algorithm a i ∈ A i is selected (with A i the finite set of possible algorithms at i th step). Denoting Θ(a i) the (possibly varying dimension) space of hyper-parameters associated with a i , the eventual pipeline is described as x = (a 1 , θ 1), . . . (a , θ), with θ i ∈ Θ(a i). Given a -size pipeline structure, we denote the overall hyper-parameters of the search space as

Θ = (a 1 ,...a)∈A 1 ×...×A (a 1 , Θ(a 1)) × . . . × (a , Θ(a))
CASH is thus formally covered by the framework of Equation 1.1, where the Θ space is defined as above, encompassing the whole pipeline space.

As said, the domain of a hyper-parameter can be real-valued (such as learning rate), integer-valued (such as the number of layers), binary (for the example, whether to use early stopping or not), or categorical (such as the selection of a learning algorithm).

Reducing computational cost

Arguably, the most popular strategy for reducing the computational cost of HPO relies on multi-fidelity approaches, that is, using cheap estimations of the final performance of hyper-parameters. The overall computational budget governs the admissible model complexity through, e.g., limiting the number of trees for Random Forest, the number of examples for SVM, and the number of iterations to any iterative ML algorithm (e.g., neural network). Such a multi-fidelity approach is Hyperband, already cited [START_REF] Li | Hyperband: a novel bandit-based approach to hyperparameter optimization[END_REF]]. First, it uniformly samples hyper-parameter domains; then evaluations are subject to a limited resource budget, allowing to discard poor-performing hyper-parameters earlier and thus allocate more resources to promising ones. Finally, the selection process is repeated until one hyper-parameter is retained. This simple strategy showed its merits in optimizing expensive ML models like Deep Neural Network and SVM compared to standard BO algorithms such as TPE [Bergstra et al. 2011] and SMAC [START_REF] Hutter | Sequential Model-Based Optimization for General Algorithm Configuration[END_REF]. Further improvements proposed by [START_REF] Falkner | BOHB: Robust and Efficient Hyperparameter Optimization at Scale[END_REF] and [START_REF] Awad | DEHB: Evolutionary Hyberband for Scalable, Robust and Efficient Hyperparameter Optimization[END_REF] rely on using respectively Bayesian Optimization and Differential Evolution (as opposed to uniform sampling) in the sampling step, significantly speeding up the search.

Another strategy is to predict the eventual performance associated with a configuration, based on learning curves modeling, and discard unpromising runs in early steps. For instance, [START_REF] Swersky | Freeze-Thaw Bayesian Optimization[END_REF] uses the training history to decide whether to pause the training of a configuration or resume a previously considered training. Likewise, [START_REF] Domhan | Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves[END_REF] model learning curves (using a list of parametric functions), and use the beginning of the learning curve associated with a configuration to estimate whether it is likely to outperform the best configuration so far. Most interestingly, [START_REF] Klein | Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets[END_REF] learns two surrogate models: one for modeling hyper-parameters performance and one for modeling the training cost (depending on the size of the considered training set). The strategy consists of training the most promising configurations with larger training sets, based on a trade-off between the expected gain of performance and the computational cost.

. State-of-the-art AutoML Systems

This section presents a non-exhaustive list of the prominent AutoML systems, structured after their internal optimization algorithm.

In the realm of Bayesian Optimization-based AutoML there are Auto-Sklearn [Feurer et al. 2015a , 2021a], Auto-Weka [START_REF] Thornton | Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms[END_REF], and Auto-Progronis [START_REF] Alaa | AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning[END_REF]. Auto-Sklearn and Auto-Weka are based on SMAC [START_REF] Hutter | Sequential Model-Based Optimization for General Algorithm Configuration[END_REF]], a Random Forest-based B0. Compared to Auto-Weka, Auto-Sklearn involves extra components: a meta-learning strategy to initialize the search and an ensembling strategy to provide a more robust prediction.

Auto-Progronis uses a GP-based surrogate model with a structured kernel to account for the complex configuration search space. It involves the same extra components as Auto-Sklearn; the ensembling strategy is achieved using Bayesian model averaging, for the sake of explainability.

Another powerful AutoML system is sc Hyperopt-Sklearn [START_REF] Komer | Hyperopt-Sklearn: Automatic Hyperparameter Configuration for Scikit-Learn[END_REF]], which uses TPE as a surrogate model; it does not have meta-learning and ensembling components.

Evolution-based AutoML is as commonly used as BO-based AutoML in the literature. A primary advantage of evolutionary algorithms over BO approaches is on handling structured search spaces naturally without specific adjustments. For instance, TPOT [START_REF] Olson | Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science[END_REF] and GAMMA [Gijsbers and Vanschoren 2019] use Genetic Programming to evolve compound ML pipelines (preprocessing, feature construction, and model building methods) while enjoying the parallelizable nature of Genetic Programming. Along the same line, de [START_REF] Alex | RECIPE: A Grammar-Based Framework for Automatically Evolving Classification Pipelines[END_REF] uses a grammar formalization of the ML search experiment space and designs a grammar-based algorithm for the optimization. [START_REF] Chen | Autostacker: a compositional evolutionary learning system[END_REF] proposes another evolution-based AutoML which instead of optimizing a single machine learning pipeline, focuses its search on finding a combination of pipelines that provides optimal performance overall. More recently, the AutoML-Zero [START_REF] Real | AutoML-Zero: Evolving Machine Learning Algorithms From Scratch[END_REF]] intends to discover ML pipelines from scratch (without a predefined template as in Auto-Sklearn or

Auto-Weka).

A divide-and-conquer strategy proposed by [START_REF] Liu | An ADMM Based Framework for AutoML Pipeline Configuration[END_REF] consists of decomposing the initial AutoML problem into several sub-problems to reduce the number of variables and address the issue of mixed variable types.

Another category of AutoML systems leverages planning and reinforcement learning methods. In this category, the most notable AutoML is ML-PLAN [START_REF] Mohr | ML-Plan: Automated machine learning via hierarchical planning[END_REF]] that formalizes AutoML as a graph problem and leverages tree-search algorithms (e.g., Hierarchical Task Network) with random roll-outs to find the optimal path (i.e., optimal pipeline). Similar approaches were proposed [START_REF] Kietz | Designing KDD-workflows via HTN-planning[END_REF][START_REF] Nguyen | Using Meta-mining to Support Data Mining Workflow Planning and Optimization[END_REF] to handle AutoML in data mining tasks.

As said, a severe limitation of the tree-structured approach is that they hardly deal with continuous domains and require the discretization of continuous hyperparameters. One of the main contributions presented in this manuscript addresses this limitation by hybridizing MCTS and Bayesian optimization, to handle mixedtype variable hyper-parameters.

. Benchmarking HPO and AutoML algorithms

As said (Section 1.3.3), the benchmarking of AutoML systems presents fairly technical specifics. In particular, it must enforce the same experimental setting for all candidates, considering the same search space and resources budget. The difficulty here is that there is no general agreement in the research community about the environment and search space that should be considered. Typically, the abovementioned state-of-the-art AutoML systems (e.g., Auto-Sklearn, Auto-Weka, Auto-Progronis, TPOT) do not describe their search space.

Nevertheless, some researchers [START_REF] Balaji | Benchmarking Automatic Machine Learning Frameworks[END_REF], Gijsbers et al. 2019[START_REF] Zöller | Benchmark and Survey of Automated Machine Learning Frameworks[END_REF] conducted benchmarking over the existing AutoML approaches and analyzed the results despite this difficulty. They define a unified framework for AutoML systems and consider a curated subset of the problems in the OpenML benchmark [START_REF] Vanschoren | OpenML: networked science in machine learning[END_REF].

The evidence from these empirical results suggests that there exists no AutoML system that consistently outperforms all others.1 These results were inspected to determine whether the poor performance is due to over-fitting or difficulty of the optimization. No general conclusion was drawn as the failures seem to be datasetspecific. This negative result establishes that a broader and more realistic dataset benchmark is needed to push the AutoML analysis further and understand the patterns of difficulty. Note that finding such patterns is significantly related to extracting relevant descriptive features of datasets, i.e., designing meta-features (Chapter 3).

The benchmarking of HPO systems is much more advanced than for AutoML, with quite a few good platforms. For instance, [START_REF] Eggensperger | HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO. August[END_REF] presents a platform including an extensive set of HPO problems, together with several existing HPO algorithms. The search space and resource budget are fixed for each problem, enforcing a fair comparison between the candidates.

Note that another Black-box benchmarking platform, Nevergrad [START_REF] Rapin | Nevergrad -A gradient-free optimization platform[END_REF], also considers HPO problems. However, unlike [START_REF] Eggensperger | HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO. August[END_REF], Nevergrad involves a broader set of optimization algorithms but fewer HPO problems.

-Meta-learning

In this manuscript, we adopt the tentative definition of meta-learning proposed by [START_REF] Brazdil | Metalearning and Algorithm Selection: progress, state of the art and introduction to the 2018 Special Issue[END_REF] and [START_REF] Vanschoren | Meta-Learning[END_REF], that is, the science of learning from previous experiences, which can be any information gathered from the same task or another task. Meta-learning is a long open problem, gaining increasing attention in AI in the last decade. This is because the ability to learn from previous tasks is still lacking in mainstream AI approaches, while it is crucial to achieving human-level intelligence.

This chapter provides an overview of meta-learning research and situates the contributions of the thesis w.r.t. the existing research directions. The chapter is structured as follows. First, Section 3.1 motivates the domain of meta-learning and its motivations. Then, a brief survey of the state-of-the-art, describing the meta-learning research spectrum, is introduced in Section 3.2. Finally, Section 3.3 focuses on our main topic of interest, namely the definition and usage of metafeatures.

. Context and Motivations

Meta-learning defines a learning to learn research perspective. It thus operates on a higher level compared to mainstream machine learning [START_REF] Liu | Automated Deep Learning : Principles and Practice[END_REF]]. Formally, while ML algorithms primarily handle a specific task (i.e., a dataset), meta-learning is concerned with learning and transferring knowledge across tasks. Task and dataset will be used interchangeably in this chapter. Meta-learning paves the way toward continual, a.k.a. lifelong learning for AI agents. It is also very relevant to AutoML systems as it typically yields a better initialization of the AutoML search, and enforces the transfer of knowledge across different tasks.

The ultimate goal of meta-learning is to be capable of learning and adapting itself to a sequence of tasks (possibly but not necessarily related), like a human being.

Meta-learning clearly is among the most challenging tasks faced by Machine Learning. In our opinion, a critical difficulty comes from the lack of formalization and tools for representing ML tasks. While an ML task consists of a dataset sampled from some distribution on a feature and label space, the design of a rigorous representation and a reliable and tractable similarity function, enabling tasks comparison, is still an open problem. Note that tasks usually involve different input and output dimensions. tasks, it is most desirable to assess their similarity. A key challenge of metalearning thus is to propose such a representation, a similarity or metric, to leverage knowledge from previous tasks and allow for the lifelong learning of the agent. Most generally, Meta-Learning is a crucial issue for the principled deployment of AutoML systems. HPO is a black-box, expensive, and hard optimization problem, as discussed and illustrated in the previous chapter. According to a few optimization papers [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF]Bengio 2010, Kazimipour et al. 2013], the success of the search and the ability to find reasonable solutions critically depend on the initialization of the search. In practice, the initialization of the HPO search is often addressed along with simple heuristics: selecting a set of generally promising configurations, based on the AutoML archive, then running them on the current task to initialize the performance model (more in Section 3.2.2). Despite its simplicity, this approach can significantly boost the performance of Auto-Sklearn [Feurer et al. 2015a] compared to a naive or random initialization.

The meta-learning application abovementioned relies on the transfer of knowledge among tasks. For this reason, a fundamental issue for meta-learning and efficient transfer is to build (formally define or learn) a similarity measure among the said tasks. The simplest way to define such similarity is to embed the space of instance tasks I (the set of datasets; see Figure 1.1) into a metric space. Formally, a set of d descriptors named meta-features is defined as computable functions from I onto IR. The embedding defined from I onto IR d thus is used, setting the (dis)similarity of two tasks as the Euclidean distance of their images in IR d . Two of the three contributions of this thesis are concerned with designing new meta-features, supporting the meta-learning facets of AutoML.

. Literature Review

A survey by [START_REF] Vanschoren | Meta-Learning[END_REF] structures the meta-learning domain in three directions. The first research direction focuses on meta-learning based on leveraging hyper-parameter performances on a benchmark. The second research direction concerns learning to adapt a model learned from an early task to a new task. The last research direction aims to exploit dataset meta-features in order to share knowledge across tasks, e.g., based on the similarity defined from the metafeatures. Indeed, these research directions are complementary, and some AutoML systems might benefit from a combination of such approaches.

For the sake of consistency with the rest of the document, the state-of-the-art presented below is structured into two categories: meta-learning without metafeatures and meta-learning with dataset meta-features. Figure 3.1 provides a highlevel overview of both research directions.

. Meta-learning without meta-features

Meta-learning without meta-features can proceed in various ways. Most approaches proceed by leveraging the performance of hyper-parameters to identify similar tasks, based on the intuition that if hyper-parameters tend to behave similarly on two tasks, then these tasks are similar. In other words, the hyper-parameter performances are used in lieu of meta-features. This similarity is leveraged after the task similarity (based on the hyper-parameter performance) is identified. The HPO problem on the considered task can benefit from all information attached to the neighbor tasks.

This strategy is followed in Collaborative Filtering based algorithm recommendations, illustrated by [START_REF] Misir | Alors: An algorithm recommender system[END_REF]. Formally, given an extensive archive reporting the hyper-parameter performances on a dataset benchmark, matrix decomposition is used to extract a latent representation of each dataset. This latent representation is used to define a similarity, and ultimately the optimal hyperparameters for the similar tasks are recommended to the current task. Note that it is an iterative process since the representation of the dataset changes as new hyper-parameters are evaluated (and matrix decomposition is achieved anew). Following [START_REF] Misir | Alors: An algorithm recommender system[END_REF], OBOE [START_REF] Yang | OBOE: Collaborative Filtering for AutoML Model Selection[END_REF] incorporates additional constraints on the optimization to encourage the recommendation of a cheap and informative hyper-parameter at the beginning, yielding a better performance model with reduced computational complexity. Along the same lines, Fusi et al. [2018] use a probabilistic version of matrix factorization.

Other approaches are based on surrogate models, where each dataset is associated with a surrogate model predicting the configuration performance. Along the same lines as above, two datasets are expected to be similar if and only if their surrogate models are similar. Feurer et al. [2021b], [START_REF] Wistuba | Scalable Gaussian process-based transfer surrogates for hyperparameter optimization[END_REF] proceed as follows. Each known dataset is associated with a surrogate model expressed as a Gaussian Process [START_REF] Edward Rasmussen | Gaussian Processes for Machine Learning[END_REF]. Then, another surrogate model for the current (test) dataset is constructed and updated along with the HPO iterations. Importantly, the final surrogate model of interest is the ensemble of all surrogate models (associated to known and current datasets), where each model is weighted according to its similarity with the surrogate model of the test task.

Yet another approach is based on multi-task learning. Swersky et al. [2013] andSpringenberg et al. [2016] simultaneously tackle multiple similar tasks and share the related information. In practice, they consider surrogate models that can handle multiple tasks, namely Swersky et al. [2013] use multi-task Gaussian Processes, whereas Springenberg et al. [2016] use Bayesian Neural Networks. The main requirement for this approach is that the considered tasks must be sufficiently similar after the user's expertise.

Another meta-learning approach relies on a global and static HPO strategy for all tasks, determined by mining existing performance databases. In other words, one aims to determine the configuration with the best performance expectation over all tasks; the specifics of the current task are not considered. A simple strategy is to rank all stored hyper-parameters according to some criterion, and recommend the top-ranked hyper-parameters for any new dataset. The performance of this strategy depends on the considered criterion. For instance, Abdulrahman et al.

[2018] introduce a criterion to account for accuracy and runtime, allowing an important speed up. Instead of recommending the same set of hyper-parameters for all tasks, van Rijn and Hutter [2018] leveraged 25.000 OpenML experiments to identify important hyper-parameters and propose a prior distribution on each of them. Similarly, [START_REF] Pfisterer | Learning Multiple Defaults for Machine Learning Algorithms[END_REF], Rijn et al. 2018] propose to learn default values of the hyper-parameters by exploiting the OpenML database.

Last but not least, a hot Meta-learning trend is based on learning from prior models. The goal of Transfer Learning is to adapt a model learned from a source task into a model suited to a target task [Pan and [START_REF] Sinno | A Survey on Transfer Learning[END_REF]. This topic gains some momentum, particularly in the field of deep neural networks, targeting the adaptation to new (and rare) classes, referred to as Few Shot Learning [START_REF] Finn | Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks[END_REF][START_REF] Snell | Prototypical Networks for Fewshot Learning[END_REF], Doersch et al. 2020].

. Meta-learning with dataset meta-features

As already said, a meta-feature is a function or a computable procedure associating a real value to a dataset. A set of d meta-features thus defines a vectorial representation in IR d characterizing every dataset. A detailed discussion about the main meta-features in the literature is presented in Section 3.3.1. A recent literature review of meta-features for machine learning is also presented in [START_REF] Rivolli | Meta-features for meta-learning[END_REF].

By embedding the set of datasets into the metric space IR d , meta-features naturally induce a metric on the dataset space. Indeed, some abovementioned approaches (Section 3.2.1) also aim to define a metric or dissimilarity on the dataset space, using hyper-parameter performance as meta-features. The difference is that meta-features are supposed to be inexpensive compared to hyper-parameter performance. Some approaches combine both strategies [Fusi et al. 2018], using both meta-features and hyper-parameter performance to define a dissimilarity on the dataset space.

Such a (dis)-similarity is used to support an HPO method, either during the initialization phase or during the optimization search.

More precisely, the similarity is used during the initialization phase to warmstart HPO algorithms. For instance, in AutoSkLearn [START_REF] Feurer | Initializing bayesian hyperparameter optimization via meta-learning[END_REF], the authors initialize a Bayesian Optimization process as follows:

• In the sense of the Euclidean distance defined from their meta-features, the nearest neighbors of the current task are retrieved.

• For each nearest neighbor, its optimal hyper-parameter configuration θ is launched on the current task, and the associated performance r(θ) is stored;

• The surrogate model associated with the current task is initialized from the pairs (θ, r(θ)).

This surrogate model is used to warm-start AutoSkLearn in Feurer et al. [2015a], and to achieve cold-start in the recommendation approach proposed by Fusi et al.

[2018] and [START_REF] Misir | Alors: An algorithm recommender system[END_REF].

Meta-features can also be used to learn parameterized surrogate models. For instance, [START_REF] Klein | Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets[END_REF] learn surrogate models parameterized from the hyperparameter values and the dataset size, supporting a multi-fidelity approach (where the estimated performance depends on both the configuration and the number of samples in the dataset) and reducing the computational complexity. In [START_REF] Bardenet | Collaborative hyperparameter tuning[END_REF], a single global surrogate model is learned and parameterized from both hyper-parameter and meta-feature values, facilitating the sharing of information across tasks.

. Dataset Meta-features for Meta-learning

This section focuses on the meta-features per se, either hand-crafted by experts or learned from data. Two of our contributions lie in the field of meta-feature learning.

. Hand-crafted meta-features

This section reviews the principal categories of hand-crafted meta-features commonly used for AutoML. Unsurprisingly, a large amount of information can be extracted from the dataset; depending on how they are computed, the metafeatures are divided into several categories, following [START_REF] Vanschoren | Meta-Learning[END_REF], [START_REF] Rivolli | Characterizing classification datasets: a study of metafeatures for meta-learning[END_REF], [START_REF] Alcobaca | MFE: Towards reproducible meta-feature extraction[END_REF].

Statistical meta-features include all descriptive statistics of the dataset: the number of examples/features/classes [START_REF] Donald Michie | Machine learning, neural and statistical classification[END_REF]; the ratio of target classes [START_REF] Lorena | How Complex Is Your Classification Problem? A Survey on Measuring Classification Complexity[END_REF]; the number of categorical and numerical features [Engels and Theusinger 1998]; sparsity [START_REF] Mostafa | Employment of neural network and rough set in meta-learning[END_REF], and mean/variance/kurtosis coefficient of features [Ali andSmith-Miles 2006, Engels andTheusinger 1998].

Information-theoric meta-features include the relationship between the target variable and feature variables of the dataset, such as the average mutual information of each feature with the target variable [Kalousis andHilario 2000, Castiello et al. 2005], and target class entropy [START_REF] Donald Michie | Machine learning, neural and statistical classification[END_REF].

Geometric-based meta-features capture the geometry of points (where a dataset is viewed as a set of points in Euclidean space), including the clustering of points [START_REF] Vilalta | Understanding Accuracy Performance Through Concept Characterization and Algorithm Analysis[END_REF]], the distribution of classes [START_REF] Kam Ho | Complexity measures of supervised classification problems[END_REF], and the complexity of the classification [START_REF] Peng | Improved Dataset Characterisation for Meta-learning[END_REF][START_REF] Lorena | How Complex Is Your Classification Problem? A Survey on Measuring Classification Complexity[END_REF].

Landmark meta-features describe datasets by leveraging ML model performances [Bensusan and[START_REF] Pfahringer | Meta-Learning by Landmarking Various Learning Algorithms[END_REF]]. For the sake of tractability, only inexpensive models are considered in general, including logistic regression, latent Dirichlet allocation, decision trees, and one-nearest neighbor algorithm.

Model-based meta-features cover all information that can be extracted from a trained ML model. For instance, they can refer to the size of branches in a decision tree algorithm, the importance of variables [START_REF] Agresti | Categorical data analysis[END_REF]], or the impurity of trees in Random Forest [Bensusan et al. 2000].

. Learning dataset meta-features

A last strategy consists in learning meta-features from a benchmark (set of datasets with reported performances for quite a few hyper-parameter configurations each). As said, the contributions presented in Chapters 5 and 6 fall in this category.

To our best knowledge, this strategy was less explored, mainly in the case of tabular datasets, due to its complexity and the shortage of (meta)-data. On the one hand, learning (meta)-features requires a sufficient number of (meta)-samples, here datasets. However, the largest curated dataset benchmark OpenML CC-18 [START_REF] Bischl | OpenML Benchmarking Suites and the OpenML100[END_REF], yielding 72 binary and multi-class classification datasets, is insufficient for a learning purpose. Indeed the complete OpenML benchmark includes a few thousand datasets; unfortunately, many of those are deprecated versions of others, and some are too limited (e.g., involving a single feature).

On the other hand, the learning setup relevant to learning meta-features is still far from being clearly formalized. In vague terms, meta-features are good if and only if they efficiently support an AutoML process.

The state-of-the-art currently includes two approaches for learning metafeatures from a benchmark. In [START_REF] Sun | Pairwise meta-rules for better meta-learningbased algorithm ranking[END_REF], meta-features are learned to estimate whether a given algorithm A outperforms an algorithm B, for A and B ranging in a set of landmark models. The meta-feature associated to each pair (A, B) is learned as a decision tree based on the hand-crafted metafeatures.

In [START_REF] Hadi | Dataset2Vec: learning dataset meta-features[END_REF], Kim et al. [2018a], the sought meta-features are learned by training neural networks. In [Kim et al. 2018b], a Siamese network is trained on the top of the hand-crafted meta-features, where the loss is defined by requiring that the learned meta-features of two datasets are similar if their top configurations are similar. In Jomaa et al. [2021], neural networks taking sets of samples as input are considered. Formally, the sought NN is trained to determine whether two patches of data (each defined by a subset of features and samples) are extracted from the same dataset; the meta-features are defined as the nodes in the last NN layer. Note that the meta-features thus do not take into account the hyperparameter performances on each dataset.

The contribution presented in Chapter 5 takes inspiration from Jomaa et al. [2021], with two main extensions. The first extension consists in setting the metafeature learning problem in the rigorously defined framework of distributional neural networks [START_REF] De Bie | Stochastic Deep Networks[END_REF]]. The second extension regards the goal (learning loss) considered to learn the meta-features.

As will be discussed, the main limitation of this contribution regards the shortage of benchmark data used to train the distributional NN. Hence, several (meta)data augmentation are considered; still, NN training requires a sufficient amount of information that is hardly available in the context of AutoML.

The second contribution, presented in Chapter 6 addresses the above limitation by restricting the search space for the learned meta-features, and only considering linear combinations of the hand-crafted meta-features. As will be experimentally shown, this restriction not only results in significant improvements but also sheds some light on the relevance of hand-crafted meta-features in the context of a particular learning algorithm.

Part II

Hyper-Parameter Optimization

-Automated Machine Learning with Monte-Carlo Tree Search

This chapter describes the first contribution of this thesis. As said (Section 1.3), AutoML tackles a black-box, structured and expensive optimization problem (Equation 1.1). Our first contribution focuses on the Hyper-Parameter Optimization problem involved in AutoML. The mixed (structured and parametric) optimization is handled using a hybrid HPO approach, mixing Monte Carlo Tree Search (MCTS), to handle the structured aspects, and Bayesian Optimization (to be sample efficient). The resulting approach is dubbed Monte-Carlo Tree Search for Algorithm Configuration (Mosaic).

The chapter is organized as follows. Section 4.1 first discusses the position of the problem and advocates the use of a hybrid approach. Section 4.2 introduces the formal background and presents MCTS, for the sake of self-containedness. Section 4.3 gives a detailed overview of the proposed Mosaic approach. The experimental setting and the goals of experiments are presented in Section 4.4. Finally, Section 4.5 reports on the empirical validation of Mosaic on the OpenML benchmark suite and the Scikit-learn portfolio.

. Position of the problem

A key difficulty of the AutoML optimization problem lies in the structure of the search space: an ML pipeline is a series of selected modules or components (algorithms), and a vector of hyper-parameters (possibly of varying dimension) is attached to each component. The AutoML task thus combines a combinatorial optimization problem (selecting the components of the pipeline structure) and a parametric optimization problem (optimizing the hyper-parameters of each selected component). The nature of the former optimization problem (finding pipeline structure) is arguably very different from the latter one (tuning hyper-parameters). This suggests that an algorithm best suited to structure optimization may be less efficient to achieve hyper-parameter tuning, and vice-versa.

Note that most AutoML approaches tackle both problems using a single optimization approach technique (CASH, Section 2.2). The originality of Mosaic is to use specific optimization approaches, one for each problem, and to tightly couple them (Section 4.3).

Formally, the combinatorial optimization of the pipeline structure is tackled as a sequential decision process, and Monte-Carlo Tree Search (MCTS) [START_REF] Kocsis | Bandit Based Monte-Carlo Planning[END_REF]] is adapted to solve this sequential problem efficiently. On the other hand, the celebrated Bayesian optimization (BO) approach [START_REF] Mockus | Bayesian Approach to Global Optimization: Theory and Applications[END_REF]] efficiently handles expensive black box optimization problems, and it has been used in particular in the context of hyper-parameter tuning [START_REF] Hutter | Sequential Model-Based Optimization for General Algorithm Configuration[END_REF], Bergstra et al. 2011[START_REF] Bardenet | Collaborative hyperparameter tuning[END_REF][START_REF] Swersky | Freeze-Thaw Bayesian Optimization[END_REF].

Taking the best of both worlds, Mosaic combines MCTS and BO to tackle the AutoML problem efficiently. The coupling of both approaches is enforced as MCTS and BO share a single surrogate performance model, used to guide the BO search for the hyper-parameter optimization and the MCTS search for the pipeline structure.

. Formal background

After formalizing AutoML as a sequential optimization problem, this section presents the Monte-Carlo Tree Algorithm [START_REF] Kocsis | Bandit Based Monte-Carlo Planning[END_REF] for the sake of self-containedness. Its adaptation to the context of the per-instance AutoML problem is last described.

. AutoML as a Sequential Decision Problem

Following the CASH formalization (Section 2.2), the search space for -size ML pipelines is noted X = (a 1 ,...a)∈A 1 ×...×A (a 1 , Θ(a 1)) × . . . × (a , Θ(a)), where: A i is the finite set of i-th pipeline components, and Θ(a i) is the hyper-parameters space of component a i . Algorithm and component are used interchangeably in the remainder of the chapter.

The straightforward formalization of AutoML as a sequential decision problem consists of considering the sequence of decisions, selecting each pipeline component and its hyper-parameters according to a fixed ordered sequence of decisions. Examples of such decisions include the choice of the data pre-processing, feature selection, and learning algorithms.

A k-pipeline structure (k-ps) is a k-tuple s = (a 1 , . . . a k) ∈ A 1 × . . . × A k , with k ≤ . Given a k-ps s, any x ∈ X with same first k decisions as s is said to be compatible with x (noted s x) and the subset of pipelines compatible with s is noted X(s) = {x ∈ X; s x}.

A default distribution D is defined on X, involving a uniform distribution on all A i and, conditionally to the selected a i , uniform distribution on the (bounded) Θ(a i). The default distribution on X(s) is defined similarly.

. Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a tree-structured extension of the multiarmed bandit (MAB) algorithm [START_REF] Lattimore | Bandit Algorithms[END_REF]. As said (Section 2.1), a MAB is concerned with single state decision problems, aimed to select the action among a finite set of action that gets the best reward in expectation. In contrast, MCTS handles sequential decision problems, where a sequence of decisions is needed to get a reward. In other words, MCTS is best suitable for planning problems or games, as was amply demonstrated for the game of Go [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF].

MCTS handles sequential decision making along a tree-structured approach, where each decision at any step is managed by a MAB algorithm. The relations among actions are expressed through the tree structure. Each (completed) tree path corresponds to a solution, list of decisions and is associated with a reward (or feedback score). The final outcome of MCTS is an optimal path of the tree space, representing the optimal sequence of decisions.

In most cases (e.g. the game of Go) the tree-structured space X has a high branching factor; thus, considering an exhaustive search strategy is intractable. Therefore, instead of brute-forcing, MCTS iteratively explores the tree space while gradually biasing the exploration toward the most promising regions of the search space. Formally, MCTS iteratively proceeds as follows. Each iteration, corresponding to a tree-walk (Figure 4.1), involves four phases [START_REF] Gelly | Combining online and offline knowledge in UCT[END_REF]]:

Down the MCTS tree:

The first phase traverses the MCTS tree from the root node. In each (non-leaf) node s of the tree, the next node s.a to visit is selected among the child nodes of s classically using the multi-armed bandit Upper Confidence Bound criterion [START_REF] Kocsis | Bandit Based Monte-Carlo Planning[END_REF] Expansion: When arriving at a leaf node, a new child node is added. The choice of the new node can be guided using, e.g., Rapid Action Value Estimate [START_REF] Gelly | Monte-Carlo tree search and rapid action value estimation in computer Go[END_REF]. Following the Progressive Widening strategy [START_REF] Couëtoux | Continuous Rapid Action Value Estimates[END_REF]], the number of considered options is gradually extended with the number of visits n i to the current node. Formally, when the integer value of n(s, a) P W is incremented, a new value is considered, with P W the coefficient of progressive widening (usually 1/2).

Playout: After the expansion phase, a playout strategy is used to complete the tree-walk until reaching a terminal node and computing the associated reward. A simple playout strategy is to choose the remaining nodes uniformly.

Back-propagation:

The reward is back-propagated along the current path, incrementing n(s) for all visited nodes and updating the value of each node s, noted μs , accordingly.

. Per-instance AutoML

This section briefly situates the main AutoML components that will be handled in the MCTS search.

Surrogate model-based optimization (SMBO).

As said (Section 2.1), most approaches rely on a surrogate model F of the objective function F, iteratively exploiting F to make a decision and updating F on the basis of the current reward. At step t, surrogate model F t : X → IR is learned from the set {(x u , F(x u)), u = 1 . . . t} gathering the previously selected pipelines and their associated performances.

Surrogate models are often exploited along Bayesian optimization (BO) [START_REF] Mockus | Bayesian Approach to Global Optimization: Theory and Applications[END_REF]]. Formally, if model F t yields an estimate of the performance for any given x and the confidence of this estimate, the most promising x * t+1 is determined by maximizing the acquisition function, e.g., Expected Improvement (EI) [START_REF] Jones | Efficient Global Optimization of Expensive Black-Box Functions[END_REF]] compared to the current best value F(x * t). The main difficulty lies in the structure of space X. In all generality, this space includes categorical variables (e.g., the name of the pre-processing or ML algorithms) and continuous or integer variables, the number and range of which depend on the value of the categorical variables (e.g., the hyper-parameters of the retained algorithms). Diverse surrogate model hypothesis spaces were considered to cope with the structured of the search space: Sequential Model-based Algorithm Configuration (SMAC) [START_REF] Hutter | Sequential Model-Based Optimization for General Algorithm Configuration[END_REF] uses Random Forests [START_REF] Breiman | Random Forests[END_REF]]; [Bergstra et al. 2011] use a Tree-structure Parzen Estimator.

Another issue is the distribution used to sample the configuration space to optimize the acquisition function. For instance, Auto-Sklearn, as it uses SMAC, considers a small number of configurations close to the best-so-far pipelines, augmented with a large number of uniformly sampled pipelines.

Search initialization

Several approaches are used to address the initialization of the search process, long known to be critical for ill-posed optimization problems [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF]Bengio 2010, Kazimipour et al. 2013]. Such approaches include Meta-learning strategies (Chapter 3), leveraging knowledge from similar previous tasks and selecting the initial candidates x u 's as the best configurations for these previous tasks.

Specifically regarding SMBO, what matters is the accuracy of the surrogate model in the worth part of the search space; this accuracy is governed by the selection of the x u 's. In Auto-Sklearn.MetaLearning for instance, the x u 's are selected based on an archive {(z i , x i)} where the meta-feature vector z i describes the i-th dataset and x i is the best-known pipeline for this dataset. Letting z denote the meta-feature vector associated with the current dataset, its nearest neighbors in the archive (in the sense of the Euclidean distance on the meta-feature vector space) are computed, and the x i s associated with these neighbors are used by Auto-Sklearn as first configurations [Feurer et al. 2015a].

Model ensembling

The merits of ensemble learning are long known in terms of accuracy and robustness. Along this line, an ensemble of ML models is often used in AutoML instead of a single model, taking advantage of the fact that the sequence of solutions found by an AutoML process can be exploited in the spirit of ensemble learning. [START_REF] Caruana | Ensemble selection from libraries of models[END_REF]] propose a simple and efficient procedure to compute an optimal ensemble from a set of models. This approach is adapted to the AutoML context as follows.

Starting with an empty set S, iterate over the pipelines and add it into S if only if the weighted sum of the pipelines improves the validation score. Then, leveraging the same strategy, Auto-Sklearn.Ensemble iteratively recomputes the optimal ensemble each time a new configuration is launched, yielding a new model.

. MCTS-aided Algorithm Configuration

This section details how Mosaic tackles the combinatorial and the parametric optimization problems at the core of AutoML, respectively concerned with the selection of the algorithms in the pipeline, a ∈ A, and the tuning of their hyperparameters, θ(a i) ∈ Θ(a i) for each algorithm a i in a.

. Two intertwined optimization problems

Along the mainstream CASH formalization (Section 2.2), the difficulty comes from the fact that the abovementioned optimization problems do not have the same nature and search spaces. 1 However, handling them in a separate way raises a key issue: The optimization objective is non-separable. Formally, the marginal performance of a j depends on all other a k , k = j and on θ(a). Likewise, the marginal performance of θ(a j) depends on all a k and θ(a k) for k = j.

The naive approaches, e.g. optimizing θ(a) for every considered a, or estimating the performance of a from a few samples of θ(a), are intractable for computational reasons.

Mosaic addresses this challenge along an original hybrid approach, tackling both structural and parametric optimization problems using two coupled strategies. MCTS is used to tackle the structural optimization of a and Bayesian optimization is used to tackle the parametric optimization of θ(a). The coupling of MCTS and BO is achieved as they both rely a single surrogate model F on the overall pipeline space X, learned and maintained using all computed performances F(x u = (a u , θ(a u))), with F be the true performance function.

The difference between Mosaic and Auto-Sklearn (respectively most other AutoML approaches) is that the combinatorial optimization part in Mosaic is based on MCTS as opposed to BO (resp., their own optimization methods).

. Partial surrogate models

This subsection details the surrogate models involved in Mosaic.

Regarding the combinatorial optimization of the pipeline structure with MCTS, the difficulty is to estimate the performance of an incomplete structural pipeline s, where only part of the modules are selected. This partial approximate performance is estimated through a surrogate performance model Q F , which is derived from F. The Q F performance is used during the expansion and play-out steps, allowing the selection of promising pipelines to guide the completion of s. Finally, during the back-propagation step, the true performance of the evaluated pipeline is used to refine the value of the tree-walk s.

For k < , let s be a k-ps, and let s.a denote the (k + 1)-ps built from s by selecting a as (k + 1)-th decision. Then the surrogate Q F is defined as:

Q F (s, a) = IE x∼D[X(s.a)] F(x) ≈ 1 n s ns j=1 F(x j) (4.2)
estimated from a number n s (n s = 100 in the experiments) of configurations sampled in X(s.a).2 A probabilistic selection policy π can then be built from Q F , with:

π(a|s) = exp Q F (s, a) b∈A k exp Q F (s, b) (4.3)
Taking inspiration from [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF], this policy is used to enhance the MCTS selection rule (below).

. The Mosaic algorithm

The Mosaic algorithm is described in Alg. 2, following the general MCTS scheme (Section 4.2.2), where the main four phases are modified as follows.

Down the MCTS tree (selection)

In a non-leaf node s of the MCTS tree, with s a k-ps, the child node a is selected in A k using the AlphaGo Zero criterion:

argmax a Q(s, a) + C ucb * π(a|s) * n(s) 1 + n(s.a) (4.4)
where Q is the median3 of F(x) for all x in X(s.a), π(a|s) is defined by Eq.(4.3), n(s) is the number of times s was visited, and C ucb is the usual constant controlling the exploration vs exploitation trade-off (with default value .6).

Expansion

In a leaf node s of the MCTS tree, with s a k-ps, the child node a in A k that maximizes the surrogate performance Q F (s, a) is added to the MCTS tree.

Playout Letting s be the (possibly complete) k-ps, a full pipeline x with s x is defined using a sampling playout strategy. Three sampling strategies are considered: A a configuration is sampled according to the default distribution D(X(s)); B a local search around the best recorded pipeline (a * , θ *) in X(s) is achieved and the best configuration according to F is retained;

C a number of configurations is sampled after D(X(s)) in X(s), together with a few configurations sampled via a local search around (a * , θ *), and the sample x that maximizes the Expected Improvement of F is retained. This strategy is similar as in SMAC [START_REF] Hutter | Sequential Model-Based Optimization for General Algorithm Configuration[END_REF]].

In all cases, the true performance F(x) of the retained configuration is computed.

Early experiments were conducted to assess these strategies, showing that: strategy A is slow and prone to overfitting; strategy B causes a loss of diversity of the considered pipelines, eventually resulting in a poor surrogate performance model F. Hence only the third strategy C is considered thereafter: the sampled configurations include n r (n r = 1, 000 in the experiments) configurations sampled from default distribution D(X(s)), augmented with pipelines nearest4 to (a * , θ *).

Stopping criterion

The algorithm stops after the computational budget is exhausted (one hour per dataset in the experiments).

. Initialization and Variants

The order of the decisions in the structural pipeline is key to the optimization: while MCTS yields asymptotic optimality guarantees, the discovery of good decisions can be very significantly delayed due to poorly informative or unlucky starts [START_REF] Coquelin | Bandit algorithms for tree search[END_REF]. For this reason, the order of decisions in the structural pipeline is fixed once for all, with the first decision made at the root node of the tree being the choice of the learning algorithm (associated with a default complete pipeline).

Mosaic.Vanilla

The initialization proceeds as follows: For each learning algorithm (s = (a) with a ∈ A 1), its default complete pipeline is launched, together with κ (= 3 in the experiments) other pipelines sampled from X(s), and their associated performances are computed. The initial surrogate model F is trained from the set of all such (x, F(x)) and Q F (∅, a) is initialized for a in A 1 .

Mosaic.MetaLearning borrows Auto-Sklearn its better informed initialization, where the first 25 configurations are the best recorded ones for each of the nearest neighbors of the current dataset, in the sense of the meta-feature distance. The next configurations are selected as in Mosaic.Vanilla, and the actual search starts thereafter.

Mosaic.Ensemble is similar to Mosaic.Vanilla, but returns the compound model defined as a weighted sum of the models computed along the AutoML search [START_REF] Caruana | Ensemble selection from libraries of models[END_REF], using an online ensemble building strategy as in Feurer et al. [2015a].

. Experimental Setting

This section details and discusses the experiments conducted to validate Mosaic.

. Goals of experiment

The goal of experiments is two-fold: (i) to assess the efficiency of Mosaic compared to baselines; (ii) to investigate the relative impacts of Mosaic variants, and its sensitivity w.r.t. its own hyper-parameters.

Comparison w.r.t to baselines. The empirical validation of Mosaic firstly aims to assess its performance compared to Auto-Sklearn [Feurer et al. 2015a], that consistently dominated other systems in the international AutoML challenges [START_REF] Guyon | Design of the 2015 ChaLearn AutoML challenge[END_REF]]. The other AutoML system used as baseline is the evolutionary optimization-based5 TPOT (v0.9.5) [START_REF] Olson | Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science[END_REF].

Analysis of Mosaic hyper-parameters and variants. The second goal of experiments is to better understand the specifics of the AutoML optimization problem. A first issue regards the exploration vs exploitation trade-off on the structural vs parametric subspaces, and the respective merits of MCTS and Bayesian optimization on the structured space. A second issue regards the impact of the MetaLearning initialization. MCTS is notorious to achieve a consistent though moderate exploration, which as said might slow down the search in case of unlucky early choices. A smart initialization procedure aims to mitigate such hazards.

. Experimental setting

Search space For the sake of a fair comparison, Auto-Sklearn and Mosaic are compared on the same AutoML search space, defined from the scikit-learn library [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF]]. Both Auto-Sklearn and Mosaic search spaces involve 16 ML algorithms, 13 pre-processing methods, 2 categorical encoding strategies, 4 missing values imputation strategies, 6 rescaling strategies and 2 balancing strategies Appendix A.1). The size of the structured search subspace is 6,048 (due to dependencies). The overall parametric search space has dimensionality 147 (93 categorical, 32 integer, and 47 continuous hyper-parameters), all managed through the ConfigSpace library [START_REF] Lindauer | BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters[END_REF]. Each hyperparameter ranges in a bounded discrete or continuous domain. For each configuration x = (a, θ(a)), θ(a) involves a dozen scalar hyper-parameter on average.

Mosaic hyper-parameters Mosaic shares the hyper-parameters of SMAC (therefore Auto-Sklearn), and involves 3 additional hyper-parameters: the number n s of samples to compute Q F (Equation 4.2, with default value n s = 100), the C ucb weight controlling the exploration vs exploitation tradeoff (Equation 4.4), with default value C ucb = 1.3, and the coefficient of progressive widening P W controlling the branching factor of the MCTS tree, with default value P W = 0.6. The SMAC hyper-parameters (shared with Mosaic) include: the number n r of uniformly sampled configurations, and variance = .2 for the local search used to tune the acquisition function of the BO.

Computational resources

Computational runtimes are all measured on an AMD Athlon 64 X2, 5GB RAM.

Benchmark suite All considered AutoML systems are assessed on the OpenML 100 repository [START_REF] Bischl | OpenML Benchmarking Suites and the OpenML100[END_REF], including 100 binary and multi-class classification problems (each with a training and a test sets). The overall computational budget is set to 1 hour for each dataset. For all systems, every considered configuration x is launched to learn a model from 70% of the training set with a cut-off time of 300 seconds, and performance F(x) is set to the model accuracy on the other 30%. After 1 hour, for each system the best configuration x * is launched to learn a model on the whole training set and its performance on the (unseen) test set is reported. The system performance on this dataset consists of the performance (averaged over 10 independent runs) and its standard deviation.

For each dataset, the performances achieved by all systems are ranked (the lower the better). The main performance indicator associated to each system in the following is its average rank over all datasets.

As the rank indicator might be blurred when many systems and their variants are considered together, duels between pairs of systems (Mosaic.X against Auto-Sklearn.X, where X ranges in Vanilla, Meta-Learning, Ensemble, Meta-Learning+Ensemble, Section 4.3.4), are considered. The actual performance (accuracy) of the best confgurations will also be reported for a more in-depth discussion.

. Empirical Validation

. Comparison with baselines

For the sake of a fair comparison, the assessment is carried out separately for Mosaic vanilla and its variants.

Vanilla variants

The comparative performances of Vanilla Auto-Sklearn, TPOT and Mosaic vs computational time are displayed on Figure 4.2 (see also , showing that the hybrid optimization used in Mosaic clearly improves on the Bayesian optimisation-only used in Auto-Sklearn (and on the evolutionary optimization-only used in TPOT), for whichever computational resources.

A complementary perspective on the respective performances of Mosaic and Auto-Sklearn in terms of the predictive accuracy of the best configurations is displayed on Figure 4.3. According to a Mann-Whitney-Wilcoxon test with 95% confidence, and if considering the median performance, Mosaic significantly outperforms Auto-Sklearn on 21 datasets out of 100; Auto-Sklearn outperforms Mosaic on 6 datasets out of 100.

Mosaic improves on Auto-Sklearn on 35 other datasets (though not in a statistically significant way), and the reverse is true on 18 datasets. Both are equal A closer inspection of the results reveals that the best Auto-Sklearn configuration is nearly always among the initial ones: Auto-Sklearn.MetaLearning thus mostly explores the close neighborhood of the initially selected configurations. In the meanwhile, Mosaic more thorough exploration strategy entails a bigger risk of overfitting, discovering configurations with better performance on the validation set, at the expense of the performance on the test set.

MetaLearning and Ensemble variants

For each variant (Vanilla, Ensemble, MetaLearning, and MetaLearn-ing+Ensemble), Table 4.1 reports the number of datasets for which Mosaic outperforms Auto-Sklearn, and vice-versa, indicating whether the difference of performance is statistically significant in the sense of a Mann-Whitney-Wilcoxon test with confidence level 5% on the median performances.

. Assessment of Mosaic variants

. Sensitivity of Mosaic hyper-parameter

Complementary experiments are conducted to assess the sensitivity of Mosaic.Vanilla w.r.t. its own hyper-parameters. For computational reasons, only 30 datasets out of 100 are considered, and Mosaic.Vanilla is run 5 times with one hour budget on each dataset.

Figure 5 displays the average rank of Mosaic.Vanilla at the end of the learning curve compared to Auto-Sklearn.Vanilla, for C ucb ranging in {. [START_REF] Bischl | OpenML Benchmarking Suites[END_REF].3,.6,[START_REF] Bischl | OpenML Benchmarking Suites[END_REF]1.3,1.6} and PW in {1,.8,.7,.6, .5}. Overall, Mosaic dominates Auto-Sklearn for 24 settings out of 30 (with a rank less than 1.5).

Likewise, the sensitivity w.r.t. hyper-parameter n s is assessed for C ucb = 1.3 and P W = .6. Figure 6 displays the average rank vs time of Mosaic.Vanilla for n s ranging in 50, 100, 500, 1000, showing the low sensitivity of the approach w.r.t. n s for these (representative) values of C ucb and P W .

. Partial conclusion

The main contribution of this work is the new Mosaic scheme, tackling the AutoML optimization problem through handling the structural and the parametric optimization problems. The proposed approach is based on a novel coupling of Bayesian Optimization and MCTS strategies, sharing the same surrogate model. In MCTS the surrogate model is used: i) to estimate, in any node, the average performance of all pipelines below this node, and thus to choose the next node; ii) to choose the optimal hyper-parameters of the pipeline using Bayesian Optimization during the roll-outs.

The empirical validation of the approach demonstrates the merits of Mosaic compared to the challenge winner Auto-Sklearn on the OpenML benchmark suite, at least as long as the Vanilla and Ensemble variants are considered. With the MetaLearning variant however, the difference becomes insignificant as the bulk of optimization is achieved during the initialization phase.

Two lines of research emerge as a perspective for further works.

Better initialization with better meta-features

The performance of the MetaLearning variant confirms the importance of the initialization strategy and thus motivates an in-depth study over the meta-features. Concretely, the question becomes that of learning better meta-features than the hand-crafted ones. As discussed (Chapter 3), the learning of meta-features faces critical difficulties (the shortage of dataset benchmarks, the unknown target metric); the next two chapters are devoted to tackling these difficulties.

Variable-length ML pipeline Another interesting line of research is on adapting Mosaic to account for variable-length pipelines [Wever et al. 2018b].

If the MCTS algorithm naturally copes with such a setting, a few limitations still need to be addressed. A formal definition of the variable-length search space is required to ensure that sampled pipelines are admissible (trainable). de Sá et al.

[2017], Estevez-Velarde et al.

[2019], [START_REF] Marinescu | Searching for Machine Learning Pipelines Using a Context-Free Grammar[END_REF] propose to formalize the search space using grammars [START_REF] Chomsky | On Formalization and Formal Linguistics[END_REF]]. In their work, Marinescu et al.

[2021] compare a greedy exploration of the constructed grammar, dubbed PIPER, with Mosaic. Their results suggest that Mosaic consistently outperforms PIPER during the first hour of training, but then PIPER starts to slightly improve over Mosaic. Incorporating MCTS strategy to search over the pipeline grammar is thus a promising future work.

Another challenge is to adapt the surrogate models in Mosaic to handle the varying input dimension. A promising direction, taking inspiration of the Neural Architecture Search [START_REF] Zoph | Neural Architecture Search with Reinforcement Learning[END_REF], is to learn the surrogate model using recurrent NN, e.g. LSTM [START_REF] Hochreiter | Long Short-Term Memory[END_REF].

Part III

Learning Dataset

Meta-Features

-Distribution-Based Invariant Deep Networks for Learning Meta-Features

The Part III of this manuscript is devoted to meta-learning, complementary to the optimization aspects of AutoML discussed in Part II. While a number of approaches, detailed in Chapter 3, have been deployed to tackle meta-learning, the presented research focuses on learning dataset meta-features. As a second contribution of the thesis, this chapter introduces the Distribution-based Invariant Deep Architecture framework (Dida), a neural architecture which operates at the dataset level.

The motivations and preliminaries are discussed in Section 5.1 and 5.2. Section 5.3 details the proposed Dida approach, followed by its theoretical analysis in Section 5.4.1. Finally, the empirical validation of the approach is discussed in Section 5.5.

. Motivation

At the core of this Part III, one aims to build representations of datasets through learned meta-features. Meta-features, meant to represent a dataset as a vector of characteristics, have been mentioned in the ML literature for over 40 years [START_REF] Rivolli | Meta-features for meta-learning[END_REF]. A large number of meta-features have been manually designed along the years (detailed in Section 3.3.1, Chapter 3).

However, there exists little evidence that these hand-crafted meta-features accurately capture the underlying joint distribution between datasets and ML performances. It is likely that the set of optimal meta-features depends on the AutoML task and ML algorithm at hand. For example, statistics-based meta-features (e.g. the information gain of a dataset feature), might be more relevant to learning Decision Trees than Support Vector Machines. For these reasons, previous works [Sun andPfahringer 2013, Jomaa et al. 2021] attempt to learn new sets of meta-features either from scratch or on the top of the hand-crafted meta-features.

The second contribution of the manuscript, detailed in the present chapter, aims to learning dataset meta-features from scratch, that is by processing datasets as in Dataset2Vec [Jomaa et al. 2021]. The challenge is to devise an ML setting accommodating datasets as input while enforcing the invariance proprieties of meta-features w.r.t the features and rows permutations. The proposed Dida architecture addresses the aforementioned challenge using distributional neural nets, as will be detailed in Section 5.2.

. Preliminaries

Notations 1; m denotes the set of integers {1, . . . m}. Distributions, including discrete distributions (datasets), are noted in bold font. Sets are noted in capital letters. Vectors are noted in italic, with x[k] denoting the k-th coordinate of vector x.

. Invariant Neural Network architectures

Deep networks architectures, initially devised for structured data such as images and speech, are extended to enforce some invariance or equivariance properties (defined below) [Shawe-Taylor 1993] for more complex data representations. The merit of invariant or equivariant neural architectures is twofold. On the one hand, they inherit the universal approximation properties of neural nets [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF]]. On the other hand, the fact that these architectures comply with the invariances attached to the considered data representation yields more robust and more general models through constraining the neural weights and/or reducing the number of weights, as examplified by convolutional networks. For instance, when considering point clouds [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF] or probability distributions [START_REF] De Bie | Stochastic Deep Networks[END_REF], the network output is required to be invariant with respect to permutations of the input points. Invariance and equivariance properties are both defined in Definition 3 and 4. Definition 3. (Invariance) Let f : X → Y be a function with input (resp. output) domain X (resp. Y), and σ be an operator defined on X. The function f is said to be invariant under operator σ iff f (σ(x)) = f (x) for all x in X. Definition 4. (Equivariance) Let f : X → X be a function on domain X, and σ be an operator defined on X. The function f is said to be equivariant under operator σ iff f (σ(x)) = σ(f (x)) for all x in X.

Neural architectures enforcing invariance or equivariance properties were pioneered by [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF], Zaheer et al. 2017] for learning from point clouds subject to permutation invariance or equivariance. These are extended to permutation equivariance across sets [START_REF] Hartford | Deep Models of Interactions Across Sets[END_REF]]. Characterizations of invariance or equivariance under group actions are proposed in the finite [START_REF] Ravanbakhsh | Equivariance Through Parameter-Sharing[END_REF] or infinite case [START_REF] Kondor | On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups[END_REF].

On the theoretical side, [Maron et al. 2019, Keriven andPeyré 2019] propose a general characterization of linear layers enforcing invariance or equivariance properties with respect to the whole permutation group on the feature set. The universal approximation properties of such architectures are established in the case of sets [Zaheer et al. 2017], point clouds [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF] The novelty of Dida is to handle continuous and discrete probability distributions, extending state-of-the-art approaches dealing with point clouds [START_REF] Haggai Maron | On Learning Sets of Symmetric Elements[END_REF][START_REF] Hadi | Dataset2Vec: learning dataset meta-features[END_REF]]. This extension yields more general approximation results (Section 5.4) based on the weak convergence of distributions. Compared to the set representation, considering datasets as distributions is best suited to capture density related meta-features.

. Problem Definition

Let z= {(z i) ∈ IR d , i ∈ 1; n } denote a dataset including n labelled samples, where z i = (x i , y i) with x i ∈ IR d X an
σ = (σ X , σ Y) ∈ G, the image σ(z) of a labelled sample is defined as (σ X (x), σ Y (y)), with x = (x[k], k ∈ 1; d X) and σ X (x) def. = (x[σ X (k)], k ∈ 1; d X).
For simplicity and by abuse of notations, the operator push forward mapping a distribution z

= {z i , i ∈ 1; n } to {σ(z i), i ∈ 1; n } def.
= σ z is still denoted σ. Let Z(Ω) denote the space of distributions supported on some domain Ω ⊂ IR d , with Ω invariant under permutations in G. The goal of this contribution is to define and train deep architectures, implementing functions ϕ on Z(Ω) that are invariant under G, i.e. such that ∀σ ∈ G, ϕ(σ z) = ϕ(z).

By construction, a multi-labelled dataset is invariant under permutations of the samples, of the features, and of the multi-labels, in the sense that the results of any learning algorithm do not (should not) depend on the order of samples, features and multi-labels. For the sake of efficiency (notably in terms of number of neural weights), a neural architecture taking multi-labelled datasets should comply with their invariances, i.e. satisfy the sample and feature permutation invariance properties.

. Distribution-Based Invariant Networks for Meta-Feature Learning

. Distribution-Based Invariant Layers

The building block of the proposed architecture, the invariant layer meant to satisfy the feature and label invariance requirements, is defined as follows, taking inspiration from De Bie et al. [2019].

Definition 5. (Distribution-based invariant layers) Let an interaction functional

ϕ : IR d × IR d → IR r be G-invariant: ∀σ, z 1 , z 2 ∈ G × IR d × IR d , ϕ(z 1 , z 2) = ϕ(σ(z 1), σ(z 2)).
The distribution-based invariant layer f ϕ is defined as

f ϕ : z = (z i) i∈ 1;n ∈ Z(IR d) → f ϕ (z) ∈ Z(IR r) with f ϕ (z) def. =   1 n n j=1 ϕ(z 1 , z j), . . . , 1 n n j=1 ϕ(z n , z j)   (5.1) By construction, f ϕ is G-invariant if ϕ is G-invariant.
The construction of f ϕ is extended to the general case of possibly continuous probability distributions by replacing sums with integrals (Appendix B.1).

It is important that f ϕ invariant layers (in particular the first layer of the neural architecture) can handle datasets of arbitrary number of features d X and number of multi-labels d Y . An original approach is to define ϕ as follows. Let z = (x, y) and z = (x , y) be two samples in IR d X × IR d Y . Considering two functions (to be learned) u : IR 4 → IR t and v : IR t → IR r , then ϕ is obtained by applying v on the sum of u

(x[k], x [k], y[], y []) for k ranging in 1; d X and in 1; d Y : ϕ(z, z) = v d X k=1 d Y =1 u(x[k], x [k], y[], y [])
(5.2) Discussion. By construction ϕ is invariant to both feature and label permutations; this invariance property is instrumental to a good empirical performance (Section 5.5).

Note that (after learning u and v) f ϕ can map a n-size dataset z onto an n-size f ϕ (z) dataset for any arbitrary n.

As said, f ϕ is based on interaction functionals ϕ(z i , z j). This original architecture is rooted in theoretical and algorithmic motivations. On the one hand, interaction functionals are crucial components to reach universal approximation results (see Appendix B.3, Theorem 2). On the other hand, the use of local interactions allows to create more expressive architectures; the benefit of these architectures is illustrated in the experiments (Section 5.5). Formally, the principled Dida framework relies on the weak convergence of probability distributions (the Wasserstein distance), which enables to compare distributions with varying numbers of points or with continuous densities.

Two particular cases are when ϕ only depends on its first or second input:

• If ϕ(z, z) = ψ(z), then f ϕ computes a global 2nd order "moment" descriptor of the input, as f ϕ (z) = 1 n n j=1 ψ(z j) ∈ IR r . The first order moment is not accounted for as the dataset is normalized in a pre-processing step.

• If ϕ(z, z) = ξ(z), then f ϕ transports the input distribution via ξ, as f ϕ (z) = {ξ(z i), i ∈ 1; n } ∈ Z(IR r).

Remark 1. (Localized computation)

The quadratic complexity of f ϕ w.r.t. the number n of samples (Equation 5.1) can be reduced in practice by only computing ϕ(z i , z j) for pairs z i , z j sufficiently close to each other. Layer f ϕ thus extracts and aggregates information related to the neighborhood of the samples.

Remark 2. (Link to kernels) The interaction functional ϕ can be thought of in terms of a kernel, however with significant differences: i) in f ϕ (z i), the detail of the pairwise interactions ϕ(z i , z j) is lost through averaging; ii) ϕ takes into account labels; iii) ϕ is learnt.

. Learning from distributions

Dida distributional neural architecture defined on point distributions, maps a multi-labelled dataset z ∈ Z(IR d) onto a real-valued vector noted F ζ (z), with

F ζ (z) def. = f ϕm • . . . • f ϕ o+1 • f ϕo • . . . • f ϕ 1 (z) ∈ IR d m+1 (5.3)
where ζ are the trainable parameters of the architecture (below). For simplicity, only the single label case (d Y = 1) is considered in the following.

The first invariant layer is defined from ϕ 1 , mapping pairs of vectors in IR d (d 1 = d) onto IR d 2 ; it is possibly followed by other invariant layers (the impact of using 1 vs 2 invariant layers is experimentally studied in Section 5.5). The last o-th invariant layer is followed by a first non-invariant one, defined from some ϕ o+1 only depending on its second argument; it is possibly followed by other standard layers. The functions defined from the neural nodes on the penultimate layer are referred to as meta-features.

The G-invariance and dimension-agnosticity of the whole architecture only depend on the first layer f ϕ 1 satisfying these properties, defined as follows.

ϕ 1 ((x, y), (x , y)) = v(k u(x[k], x [k], y, y)) (5.4) with u(x[k], x [k], y, y) = (ρ(A u • (x[k]; x [k]) + b u), 1 y =y) (5.5) v(•) = ρ(A v • • + b v) (5.6)
where ρ is a non-linear activation function, A u a (t, 2) matrix, (x[k]; x [k]) the 2-dimensional vector concatenating x[k] and x [k], b u a t-dimensional vector, A v a (t, r) matrix and b v a r-dimensional vector.

Every ϕ k , k ≥ 2 is defined as

ϕ k = ρ(A k • +b k),
= (A u , b u , A v , b v , {A k , b k } k)
, that is classically learned by stochastic gradient descent from the loss function defined after the considered learning task (Section 5.5). The non-linear activation function ρ is set to RELU in the experiments.

. Theoretical Analysis

This section investigates the properties of invariant-layer based neural architectures, and establishes their robustness w.r.t. bounded transformations of the involved distributions, and their approximation abilities w.r.t. the convergence in law. As already said, the discrete distribution case is considered for the sake of readability; the case of continuous distributions is detailed in Appendix B.1.

. Topology on Datasets

Point clouds vs. distributions. The fact that datasets are preferably seen as probability distributions (as opposed to point clouds) is motivated as including many copies of a point in a dataset amounts to increasing its importance, which usually makes a difference in standard machine learning settings. Accordingly the topological framework used in the following is that of the convergence in law on distributions, with the distance among two datasets measured using the Wasserstein distance. In contrast, the distance among point clouds commonly relies on the Hausdorff distance among sets (see e.g., [START_REF] Qi | PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation[END_REF]). This distance, that is standard for 2D and 3D data involved in graphics and vision domains, however faces some limitations in higher dimensional domains, e.g. due to max-pooling being a non-continuous operator w.r.t. the convergence in law topology. [START_REF] Peyré | Computational Optimal Transport: With Applications to Data Science[END_REF]:

Wasserstein distance. The standard 1-Wasserstein distance between two discrete probability distributions

z, z ∈ Z n (IR d) × Z m (IR d) is defined after San- tambrogio [2015],
W 1 (z, z) def. = max f ∈Lip 1 (I R d) 1 n n i=1 f (z i) - 1 m m j=1 f (z j)
with Lip 1 (IR d) the space of scalar 1-Lipschitz functions on IR d . The G-invariant 1-Wasserstein distance is defined to extend the above and account for the invariance under operators in G:

W 1 (z, z) = min σ∈G W 1 (σ z, z)
Accordingly, W 1 (z, z) = 0 iff z and z are equal in the sense of probability distributions up to sample and feature permutations (Appendix B.1).

Lipschitz property. Let z (k) be a sequence of distributions weakly converging toward z (noted

z (k) z). By construction, z (k) z iff W 1 (z (k) , z) → 0. Map f from Z(IR d) onto Z(IR r
) is said to be continuous iff for any sequence z (k) z,

then f (z (k)) f (z). Map f is said to be C-Lipschitz for W 1 iff ∀z, z ∈ Z(IR d), W 1 (f (z), f (z)) ≤ CW 1 (z, z).
(5.7)

The C-Lipschitz property entails the continuity of f : if two input distributions are close in the permutation invariant 1-Wasserstein sense, their images by f are close too.

. Continuity Results

Let us assume the interaction functional ϕ to satisfy the Lipschitz property w.r.t. their first and second arguments (∀z ∈ IR d , ϕ(z, •) and ϕ(•, z) are C ϕ -Lipschitz.). Then invariant layer f ϕ also satisfy the Lipschitz property. Proposition 1. Invariant layer f ϕ of type (Equation 5.1) is (2rC ϕ)-Lipschitz in the sense of (Equation 5

.7).

A second result regards the case where two datasets z and z are such that z is the image of z through some diffeomorphism τ (z = (z 1 , . . . , z n) and z = τ z = (τ (z 1), . . . , τ (z n)). If τ is close to identity, then f ϕ (τ z) and f ϕ (z) are close too. More generally, if continuous transformations τ and ξ respectively apply on the input and output space of f ϕ , and are close to identity, then ξ f ϕ (τ z) and f ϕ (z) are also close.

Proposition 2. Let τ : IR d → IR d and ξ : IR r → IR r be two Lipschitz maps with respectively Lipschitz constants C τ and C ξ . Then, ∀z, z ∈ Z(Ω),

W 1 (ξ f ϕ (τ z), f ϕ (z)) ≤ sup x∈fϕ(τ (Ω)) ||ξ(x) -x|| 2 + 2r Lip(ϕ) sup x∈Ω ||τ (x) -x|| 2 In addition, if τ is equivariant, W 1 (ξ f ϕ (τ z), ξ f ϕ (τ z)) ≤ 2r C ϕ C τ C ξ W 1 (z, z)
Proofs: in Appendix B.2.

. Universal Approximation Results

Lastly, the universality of the proposed architecture is established, showing that the composition of an invariant layer (Equation 5.1) and a fully-connected layer is enough to yield the universal approximation property, over all functions defined on Z(IR d) with dimension d less than some upper bound D. Theorem 1. Let F : Z(Ω) → IR be a G-invariant map on a compact Ω ⊂ IR d , continuous for the convergence in law. Then ∀ > 0, there exists two continuous maps ψ, ϕ such that

∀z ∈ Z(Ω), |F(z) -ψ • f ϕ (z)| <
where ϕ is G-invariant and independent of F.

Proof: in Appendix B.3. After Theorem 1, any invariant continuous function defined on distributions with compact support can be approximated with arbitrary precision by an invariant neural network. This result holds for distributions with compact support in IR d for all d ≤ D, with D an upper bound on the dimension of the considered distribution supports. The proof (Appendix B.3) involves mainly three steps: (i) an invariant layer f ϕ can be approximated by an invariant network; (ii) the universal approximation theorem [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF]]; (iii) uniform continuity is used to obtain uniform bounds. This result generalizes the universality result established for fixed numbers of dimensions and points [START_REF] Haggai Maron | On Learning Sets of Symmetric Elements[END_REF] to the cases of finite distributions of any size n, and continuous distributions.

. Experimental Validation

The experimental validation is conducted to assess: i) the performance of Dida compared to the state of the art; ii) the merits of the original architecture of invariant layers, based on an interaction functional ϕ (Equation 5.1).

. Experimental setting

Tasks. The validation is conducted on two tasks, derived from supervised datasets as opposed to standard point cloud benchmarks.

• Task 1 is a patch identification problem inspired from [START_REF] Hadi | Dataset2Vec: learning dataset meta-features[END_REF] aiming to identify if two dataset patches are extracted from a same dataset.

• Task 2 aims to rank hyper-parameter configurations for a fixed supervised learning algorithm, according to their performance on the considered dataset.

Benchmarks. Three benchmarks are used (Baselines. Three baselines are considered:

• DSS [Maron et al. 2020] is involved with three variants: i) linear invariant layers; ii) non-linear invariant layers; iii) equivariant + invariant layers. • The last baseline is a function (trained to the task) of the hand-crafted meta-features (HC) (detailed in Table B.2, Appendix B.4.2) [START_REF] Muñoz | Instance spaces for machine learning classification[END_REF].

We implemented the DSS baseline as the code was not available and we reimplemented Dataset2Vec as described in [START_REF] Hadi | Dataset2Vec: learning dataset meta-features[END_REF]. DSS is augmented with an aggregator summing over the features in order to accommodate datasets with varying numbers of dimensions. All baseline codes are publicly available at https://github.com/herilalaina/dida for the sake of reproducibility.

Training setups. The same Dida architectures are used for both tasks, involving 1 or 2 invariant layers followed by 3 fully connected (FC) layers (Figure 5.1,left). All experiments run on 1 NVIDIA-Tesla-V100-SXM2 GPU with 32GB memory, using Adam optimizer with base learning rate 10 -3 and batch size 32. For all considered architectures, meta-features F ζ (z) consist of the output of the penultimate layer, with ζ denoting the trained parameters.

. Task 1: Patch Identification

In Task 1, patches are extracted from datasets and the task consists in predicting whether two patches are extracted from the same dataset. Letting u denote a dataset with n d-dimensional examples, patch z is constructed from u, by selecting (uniformly with replacement) n z examples in u and considering their description based on d z features selected uniformly with replacement among u features. Size n z and number d z of features of the patch are uniformly selected (Table 5 5.2 reports the empirical results on TOY and UCI datasets. On TOY, Dida with 2 invariant layers, referred to as 2L-Dida behaves on par with Dataset2Vec and DSS. On UCI, the task appears to be more difficult, which is explained from the higher and more diverse number of features in the datasets. The fact that 2L-Dida significantly outperforms all other approaches is explained from the interaction functional structure (Eqs. 5.1, 5.2), expected to better grasp contrasts among examples. Dida with 1 invariant layer (1L-Dida) is much behind 2L-Dida; with a significantly lesser number of parameters than 2L-Dida, the 1L-Dida architecture might lack representational power. Lesion study. A fourth baseline, No-FInv-DSS [Zaheer et al. 2017] only differs from DSS as it is not feature permutation invariant; this additional baseline is used to assess the impact of this invariance property. The fact that No-FInv-DSS lags behind all DSS variants, all with similar number of parameters, confirms the importance of this invariance property. Note also that No-FInv-DSS is outperformed by 1L-Dida, while the latter involves significantly less parameters.

z,z (z, z) log(ˆ ζ (z, z)) + (1 -(z, z)) log(1 -ˆ ζ (z, z)) (5.

. Task 2: Ranking ML confiugrations

Task 2 aims to comparatively assess two vectors of hyper-parameters θ and θ of a fixed supervised learning algorithm Alg, referred to as configurations of Alg, depending on their performance on a dataset patch z. For brevity and by abuse of language, the performance of a configuration θ on z is meant for the accuracy of the model learned from z using Alg with configuration θ, computed using a 3 fold cross validation.

The considered ML algorithms are: Logistic regression (LR), SVM, k-Nearest Neighbours (k-NN), linear classifier learned with stochastic gradient descent (SGD). For each algorithm, a Task 2 problem is defined as follows (Algorithm 4). An example is made of a triplet (z, θ, θ), associated with a binary label (z, θ, θ), set to 1 iff θ yields better performance than θ on z. Thus, the overall architecture consists of:

• a meta-feature extractor F ζ (z);
• a 2-layer FC network (depending on the considered Alg as they have different configuration spaces) with input vector

[F ζ (z); θ; θ]
The overall is trained to minimize a cross-entropy loss (Equation 5.8).

In each epoch, a batch made of triplets (z, θ, θ) is built, with θ, θ uniformly drawn in the algorithm configuration space (Table B.3) and z a patch of a dataset in the OpenML CC-2018 [START_REF] Bischl | OpenML Benchmarking Suites[END_REF] [3; 10]. Dida and all baselines are trained using Algorithm 4. Their comparative performances are displayed in Table 5.3, reporting their ranking accuracy. 2L-Dida (respectively 1L-Dida) significantly outperforms all baseline approaches except in the Alg = LR case (resp., in the Alg = k-NN case). A higher performance gap is observed for the k-NN case, which is explained as this algorithm mostly exploits the local geometry of the examples.

. Partial Conclusion

The theoretical contribution presented in this chapter is the Dida architecture, able to learn from discrete and continuous distributions on IR d , invariant w.r.t. feature ordering, agnostic w.r.t. the size and dimension d of the considered distribution sample (with d less than some upper bound D). This architecture en-joys universal approximation and robustness properties, generalizing former results obtained for point clouds [START_REF] Haggai Maron | On Learning Sets of Symmetric Elements[END_REF].

The merits of Dida are empirically and comparatively demonstrated on two tasks defined at the dataset level. Task 2 in particular constitutes a first step toward performance modelling [START_REF] Rice | The Algorithm Selection Problem[END_REF]], as the learned (algorithm-dependent) metafeatures support an efficient ranking of the configurations for the current dataset. These meta-features, while requiring circa 4 hours in the considered environment to be learned, are efficiently computed on datasets. On the considered tasks, they improve on the meta-features manually defined in the last 40 years [START_REF] Muñoz | Instance spaces for machine learning classification[END_REF][START_REF] Rivolli | Meta-features for meta-learning[END_REF].

Limitations. The proposed Dida approach, however, has two main limitations. Firstly, meta-feature learning, as for any learning setup, relies on tasks with sufficiently many examples to be available. Our early attempts failed due to current (curated) ML benchmarks being not sufficiently representative. Secondly, it is reasonable to think that learned meta-features are specific to the training task. It implies that learning meta-features for AutoML would require the underlying topology over the joint datasets and ML performances spaces, which is not known in practice.

Perspectives.

A direct perspective is to investigate the learned meta-features for AutoML use cases. This line of research will be considered in the next chapter, addressing the aforementioned limitations. Another long-term perspective is to investigate the relationships between two datasets, and estimate a priori the chances of a successful domain adaptation [Ben-David et al. 2010, Alvarez-Melis and[START_REF] Alvarez | Geometric Dataset Distances via Optimal Transport[END_REF]. Such a goal requires a large amount of labelled datasets, however, one can explore self-supervised setting to overcome this issue. For instance, bootstrapping output representation as in [START_REF] Grill | Bootstrap Your Own Latent -A New Approach to Self-Supervised Learning[END_REF] is a promising further work.

-Meta-Learning for Tabular Data

This chapter presents the third contribution of this manuscript, also devoted to learning meta-features suitable to AutoML problems, focusing on hyper-parameter recommendation or Bayesian Optimization initialization. This approach, called Metabu (Meta-learning for Tabular Data), aims to address the limitations of the Dida approach presented in the previous chapter, relaxing the need for large and representative benchmaks.

Specifically, Metabu leverages Optimal Transport to build a topology on the dataset space, mimicking the topology on the datasets induced from their top hyper-parameter configurations. This topology is used to optimize a linear mapping on the hand-crafted meta-features [Rakotoarison et al. 2021].

The chapter is organized as follows. After presenting the motivations in Section 6.1, the formal background is introduced in Section 6.2, presenting Optimal Transport Cuturi [2013], [START_REF] Peyré | Computational Optimal Transport: With Applications to Data Science[END_REF]. Section 6.3 gives a detailed overview of Metabu. Section 6.4 reports on the empirical validation of Metabu, and the chapter ends with a partial conclusion.

. Motivation

A primary motivation of Metabu is to address Dida limitations in order to learn suitable meta-features for AutoML.

Dida limitations are two-faceted. On the one hand, it can hardly handle large and dirty datasets. As a result, Dida empirical experiments only consider patches (instead of datasets) with continuous features (using preprocessing if needed). Such setting hardly handles standard dataset benchmarks such as OpenML [[START_REF] Vanschoren | OpenML: networked science in machine learning[END_REF] and UCI [START_REF] Dua | {UCI} Machine Learning Repository[END_REF]. On the other hand, Dida proceeds by training meta-features, which requires sufficiently many datasets in the AutoML benchmark. Unfortunately, the current stateof-the-art curated benchmark OpenML-CC18 has less than a hundred datasets available, which is quite insufficient for training a deep network. This shortage of datasets is all the more blocking as, to our best knowledge, generating diverse datasets is a challenging and yet open problem. Besides these challenges, Dida meta-features, as well as hand-crafted meta-features (except for the landmarking ones), mostly capture statistical features about the datasets. Still, many studies [Feurer et al. 2015a[START_REF] Misir | Alors: An algorithm recommender system[END_REF], Fusi et al. 2018] suggest that an efficient AutoML system can hardly rely only on such meta-features. Typically, Auto-Sklearn [Feurer et al. 2015a] relies on Bayesian optimization and iteratively learns and exploits one performance model specific to each dataset; PMF [Fusi et al. 2018] uses a probabilistic collaborative filtering approach, where the cold-start problem is handled as in Auto-Sklearn; OBOE [START_REF] Yang | OBOE: Collaborative Filtering for AutoML Model Selection[END_REF]] likewise uses a collaborative filtering approach, combined with active learning. Based on these arguments, the proposed Metabu approach i) builds upon existing meta-features; ii) aims at meta-features defining a reliable topology on the dataset space, such that two datasets are close iff the best hyper-parameter configurations for these datasets are close. Capturing the target topology (available for the datasets in the benchmarks only) can support an inexpensive and efficient AutoML strategy: selecting the best hyper-parameter configurations of the nearest neighbor(s) of the current dataset. Moreover, as will be shown in Section 6.4, such meta-features allow one to better understand the dataset space w.r.t. a given ML algorithm, to estimate its intrinsic dimension and appreciate the distribution of the ML benchmark suites in the meta-feature space.

Formally, the Meta-learning for Tabular Data (Metabu) approach casts and tackles the construction of good meta-featuresrelatively to an ML algorithm A as an Optimal Transport (OT) problem [Cuturi 2013, Peyré andCuturi 2019]. More precisely, two representations of the datasets are considered: the basic one consists of 135 manually designed meta-features; The target one, out-of-reach except for the datasets in the benchmark suite, represents a dataset as the distribution of the hyper-parameter configurations of A yielding the top performances for this dataset. Optimal Transport is used to find a linear transformation of the basic meta-features, such that the resulting Euclidean distance emulates the Wasserstein distance [START_REF] Mémoli | Gromov-Wasserstein Distances and the Metric Approach to Object Matching[END_REF]] on the target representation. Overall, Metabu learns once for all the meta-features aimed to capture the topology and neighborhoods corresponding to the target representation. These meta-features can be computed from scratch for each new dataset.

A main difference w.r.t. e.g. [START_REF] Yang | OBOE: Collaborative Filtering for AutoML Model Selection[END_REF] and Fusi et al. [2018] thus is that no cold-start phase (adjusting the representation of the dataset at hand, through launching new configurations) is needed.

. Formal Background

The limitations of manually designed meta-features [Caliński and Harabasz 1974, Vilalta 1999, Bensusan and Giraud-Carrier 2000, Pfahringer et al. 2000, Peng et al. 2002, Muñoz et al. 2018, Song et al. 2012, Bardenet et al. 2013, Feurer et al. 2015a , b, Pimentel and Carvalho 2019, Lorena et al. 2019, Rivolli et al. 2022] and those of learned meta-features [START_REF] Hadi | Dataset2Vec: learning dataset meta-features[END_REF][START_REF] De Bie | Distribution-Based Invariant Deep Networks for Learning Meta-Features[END_REF] have been respectively detailed in Section 3 and Chapter 5. This section briefly describes the optimal transport methodology used in this chapter to construct new meta-features, and the related works.

Optimal Transport, first mentioned in Chapter 5, enables to compute the distance over datasets using Wasserstein distance. OTDD [START_REF] Alvarez | Geometric Dataset Distances via Optimal Transport[END_REF] uses OT to learn a mapping between datasets over the joint feature and label spaces.

Let (Ω x , d x) and (Ω y , d y) denote compact metric spaces, and x and y distributions respectively defined on Ω x and Ω y . The search space Γ(x, y) is the space of all distributions on Ω x × Ω y with marginals x and y. Let the transport cost function c : Ω x × Ω y → IR + be a scalar function on

Ω x × Ω y 1 .
As said, the Wasserstein distance of x and y is defined as:

d q W (x, y) = min γ∈Γ(x,y) IE (x,y)∼γ [c q (x, y)] 1/q
with q a positive real number, set to 1 in the following.

Another OT-based distance is the Gromov-Wasserstein distance (GW) [START_REF] Mémoli | Gromov-Wasserstein Distances and the Metric Approach to Object Matching[END_REF]], measuring how well a distribution in Γ(x, y) preserves the distances on both Ω x and Ω y , akin a rigid transport between both domains:

d q GW (x, y) = min γ∈Γ(x,y) IE (x,y)∼γ,(x y)∼γ [|d x (x, x) -d y (y, y)| q] 1/q .
The Fused Gromov-Wasserstein (FGW) distance [START_REF] Vayer | Optimal Transport for structured data with application on graphs[END_REF]] combines both the Wasserstein and the Gromov-Wasserstein distances. Definition 6. The Fused q-Gromov-Wasserstein distance is defined on Ω x × Ω y as follows:

d q F GW ;α (x, y) = min γ∈Γ(x,y) (1 -α)     Ω x ×Ω y c q (x, y)dγ(x, y)     1 q Wasserstein Loss + α     Ω x ×Ω y Ω x ×Ω y |d x (x, x) -d y (y, y)| q dγ(x, y)dγ(x , y)     1 q
Gromov-Wasserstein Loss (6.1)

α ∈ [0, 1] is a trade-off parameter: For α = 0 (resp. α = 1), the fused q-Gromov-Wasserstein distance is exactly the q-Wasserstein distance d q W (resp.

the q-Gromov-Wasserstein distance d q GW).

According to [Xu et al. 2019b , a , 2020] the non-convex optimization in Equation 6.1 can be efficiently optimized along an iterative process using proximal gradient method. Concretely, given a current estimate γ (j) at j-th iteration, define a new objective function d 1,j F GW ;α similar to Equation 6.1 with a regularization term KL(γ||γ (j)), where KL be the Kullback-Leibler divergence. The later sub-problem is then solved using Sinkhorn Algorithm [Cuturi 2013] yielding the new transport map γ j+1 . We refer the reader to Algorithm 2 of Xu et al. [2019b] for a more complete description of the optimization method.

The Wasserstein distance and variants thereof were successfully used to evaluate the "alignment" among datasets, e.g. between the source and the target datasets in the context of domain adaptation [START_REF] Courty | Optimal Transport for Domain Adaptation[END_REF] or transfer learning [Alvarez-Melis and Fusi 2020 , 2021]. FGW distance was used to enforce the consistency of the latent space when jointly training several Variational Auto-Encoders [START_REF] Xu | Learning Autoencoders with Relational Regularization[END_REF][START_REF] Nguyen | Improving Relational Regularized Autoencoders with Spherical Sliced Fused Gromov Wasserstein[END_REF]]. Metabu will likewise take inspiration from OT to create a bridge between two representations of the datasets: the basic one, and the target one, critically using both GW and FGW distances.

. Overview of Metabu

We use the same notations as in the previous chapter: let δ be the Dirac function; distributions are noted in bold font and vectors in italic.

Let A and Θ A respectively denote an ML pipeline and its hyper-parameter configuration space; superscript A is omitted when clear from the context. Space Θ is embedded into the a-dimensional real-valued space IR a , using a one-hot encoding of Boolean and categorical hyper-parameters. After describing the principle of the approach, some key issues are detailed: the augmentation of the AutoML benchmark to avoid overfitting, and the setting of the number d of the Metabu meta-features, estimated from the intrinsic dimensionality of the AutoML benchmark suite.

. Principle

Intuitively, two representations can be associated with a dataset: The basic representation x ∈ IR D of a dataset reports the values of the D manually designed meta-features for this dataset. By construction, it can be cheaply computed for any dataset. 2 The target representation z of a dataset is the distribution on the space Θ supported by the configurations yielding the best performances on this dataset. This precious target representation is unreachable in practice, but can be approached after the performances of the models learned with a number of configurations (aka configuration performances) have been assessed. In practice, the configuration performances are only available for a small number n of datasets. The difference between the basic and the target topologies is depicted on Figure 6.1, in Θ space (projected on first two PCA eigenvectors). The later figure suggests that the target representations, built upon the top configurations of datasets, are better suited for AutoML problems. In order to build a bridge between both representations, let us consider an intermediate representation, termed projected target representation, derived from the target representation ones by mapping each (z i) 1≤i≤n on some u i ∈ IR d using a distance-preserving projection, e.g. Multi-Dimensional Scaling (MDS) [START_REF]Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis[END_REF]]. Metabu tackles an Optimal Transport problem so as to learn a mapping ψ : IR D → IR d from the basic representation on the projected target representation space such that the ψ(x i) 1≤i≤n are aligned with the u i s in the sense of the q-Fused Gromov-Wasserstein distance (Section 6.2).

In brief, mapping ψ sends the basic meta-feature space on IR d , such that the Euclidean metric on the ψ(x i) reflects the Euclidean metric on the u i s, itself reflecting the metric on the target z i s.

The descriptive features of the ψ(x i), referred to as Metabu meta-features, are meant to both be cheaply computable from the basic meta-features, and define a Euclidean distance conducive to the AutoML task.

. Augmenting the AutoML benchmark.

The OpenML CC-18 [START_REF] Bischl | OpenML Benchmarking Suites[END_REF], to our knowledge the largest curated tabular dataset benchmark (that will be used in the experiments), contains n = 72 classification datasets; the target representation is available for 64 of them. The shortage of such datasets yields a risk of overfitting the learned meta-features. This challenge is tackled by augmenting the OpenML CC-18 benchmark suite, using a bootstrap procedure [START_REF] Efron | Bootstrap Methods: Another Look at the Jackknife[END_REF]]. 3 The goal is to pave the meta-feature space more densely and more accurately than through e.g., perturbing the basic representation with Gaussian noise.

The visualisation of the augmented benchmark (Figure 6.2, projected using tSNE [START_REF] Van Der Maaten | Visualizing Data using t-SNE[END_REF] on the basic representation), shows that the datasets built by bootstrapping of some initial dataset E form a cluster close to E (as could be expected as the manually designed meta-features are stable under small stochastic variations), and separated from the clusters generated from other datasets, suggesting that the initial benchmark suite only sparsely paves the basic meta-feature space. Complementary experiments (omitted) with perplexity ranging in [5,10,15,25,30,40,50] show that clusters generated by augmentation of different OpenML datasets keep staying far apart from one another.

. The Metabu algorithm

The algorithm is provided the p = 1, 000×n training datasets of the benchmark suite, augmented as described above. The Metabu meta-features are constructed in a 3-step procedure, depicted on Figure 6.3 and illustrated in Algorithm 5:

Step 1: Target representation and Wasserstein distance. Considering the i-th training dataset, let Θ i ⊂ Θ denote the set of hyper-parameter configurations with performance in the top-L known configuration performances (L = 20 in the experiments).4

z i for i = 1 . . . n. Result: Embedding layer ψ * // Build projected target representation 1 C i,j ← d 1 W (z i , z j) for i = 1 . . . n, j = 1 . . . n; /* STEP 1 */ 2 Estimate intrinsic dimension d from matrix C (Alg. 6); 3 u ← MDS(C, d) ; /* STEP 2 */ // Learn ψ 4 ψ ← Linear(135, d) ;
/* 135 basic meta-features. */ 5 x ← 1 p n i=1 δ x i ; 6 L ← FGW as defined in Equation 6.1; 7 ψ * ← ADAM(L, ψ x, u) ; /* STEP 3 */

The target representation z i of the i-th dataset is the discrete distribution with support Θ i . The distance d 1 W (z i , z j) is the 1-Wasserstein distance among distributions (Section 6.2).

Step 2: Projecting the target representation on IR d . The second step consists in projecting the z i s on IR d , where d is identified using an intrinsic dimensionality procedure (details below), using Multi-Dimensional Scaling [START_REF]Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis[END_REF]], such that the distance d(u i , u j) approximates the 1-Wasserstein distance d 1 W (z i , z j) (Figure 6.3, leftmost and second subplots). Note that by construction, the u i s are defined up to an isometry on IR d .

Step 3: Learning the Metabu meta-features. Let x = 1 p p i=1 δ x i denote the uniform discrete distribution on IR D whose support is the set of p datasets using their basic representations. Let u = 1 n n i=1 δ u i denote the uniform discrete distribution on IR d whose support is the set of u i s defined above. The Metabu meta-feature space is built by finding a mapping ψ from IR D on IR d that pushes the representation metric on IR d , that is, such that the image of x via ψ is as close as possible to u, and reflects its topology in the FGW sense (Figure 6.3, rightmost and third subplots).

Formally, let ψ x def.

= 1 p p i=1 δ ψ(x i) be the push-forward distribution of x on IR d for a given ψ. The overall optimization problem is to find a mapping ψ * that minimizes the FGW distance between the u distribution and the push distribution ψ * # x:

ψ * = argmin ψ∈Ψ d F GW ;α (ψ x, u) + λ ψ (6.2)
with λ the regularization weight and ψ the norm of the ψ function. Note that, as u and ψ # x are distributions on the same space IR d , the transport cost c is the Euclidean distance on IR d .

In the following, only linear mappings ψ are considered for the sake of avoiding overfitting and facilitating the interpretation of the Metabu meta-features w.r.t. the manually designed meta-features. The norm of ψ is set to the L 1 norm of its weight vector.

Optimization setting. The efficient optimization of Equation 6.2 is achieved using a bilevel optimization formulation.

• The outer optimization problem consists of optimizing ψ: The transport matrix γ is treated as a constant, and the outer objective function (Equation 6.2) is solved with ADAM optimizer [Kingma and Ba 2015] with learning rate 0.01, α = 0.5 and λ = 0.001.

. Intrinsic dimension of the space of datasets

The main hyper-parameter of Metabu is the number d of meta-features needed to approximate the target representation. Indeed, d depends on the considered algorithm A: the more diverse the target representations associated with datasets, the higher d needs to be. In the other extreme case (all datasets have similar target representations), the AutoML problem becomes trivial. The relation between the intrinsic dimensionality and the difficulty of the AutoML problem is complex, we shall return to it in Section 6.4.4.

To our best knowledge, measuring the intrinsic dimension of the dataset space w.r.t. a learning algorithm has not been tackled in the literature. The approach proposed to do so builds on [START_REF] Levina | Maximum Likelihood Estimation of Intrinsic Dimension[END_REF] and [START_REF] Facco | Estimating the intrinsic dimension of datasets by a minimal neighborhood information[END_REF], exploiting the fact that the number of points in a hypersphere of radius r in dimension d increases like r d . Then d provides a guaranteed approximation of the intrinsic dimensionality of the manifold where the x i s family lives [START_REF] Facco | Estimating the intrinsic dimension of datasets by a minimal neighborhood information[END_REF]. A formal pseudo-code is provided in Algorithm 6.

It is commonplace to say that the good distance between any two items depends on the considered task. The original approach used in Metabu in order to estimate the intrinsic dimensionality of the dataset space, is to set the distance of two datasets to the 1-Wasserstein distance among their target representations.

Algorithm 6: Compute intrinsic dimension as in [START_REF] Facco | Estimating the intrinsic dimension of datasets by a minimal neighborhood information[END_REF] 1 Procedure Intrinsic_dim(X) input : A set of points X = {x 0 , x 1 , . . . , x m }. output: Intrinsic dimension d.

3

Let x (1) and x (2) be the first and second neighbors of x ∈ X.

5

Compute

µ i = ||x i -x (2) i || 2 ||x i -x (1)
i || 2 for all x i in X.

7

Sort µ values in ascending order through a permutation σ.

9 9 Compute F (µ σ(i)) = i m for i = 1 . . . m. 11 11 d ← slope of the linear approximation on {(log(µ i), -log(1 -F (µ i)))|i = 1 . . . m}

. Experiments

All material (code, data, instructions) is made available as publicly at https: //github.com/luxusg1/metabu. Runtimes are measured on an Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz.

. Experimental Settings

Goals of experiment.

The goal of experiments is three-fold. First, we aim to assess the dataset neighborhoods induced by the Metabu meta-features (constructed on the top of the manually designed 135 meta-features from the literature) and the relevance of these dataset neighborhoods w.r.t. the AutoML problem. The second goal of experiments is to assess the sensitivity of Metabu w.r.t. its own two hyper-parameters, the weight α used to balance the importance of the Wasserstein and Gromov-Wasserstein distances in FGW (Equation 6.1), and the regularization weight λ involved in the optimization of ψ (Equation 6.2). As said, the dimension of meta-features d is automatically determined using Algorithm 6, nevertheless, a complementary experiments investigating the sensitivity w.r.t d is shown in Appendix C.5.

The third goal is to gain some understanding of the dataset landscape, and see whether the Metabu meta-features give some hints into when a given ML algorithm or pipeline does well (its niche).

Baselines. The performances are assessed against three baselines: Auto-Sklearn meta-feature set [START_REF] Feurer | Initializing bayesian hyperparameter optimization via meta-learning[END_REF], Landmark [START_REF] Pfahringer | Meta-Learning by Landmarking Various Learning Algorithms[END_REF] and SCOT [START_REF] Bardenet | Collaborative hyperparameter tuning[END_REF]] meta-feature sets. All meta-feature sets are detailed in Appendix C.3. An additional baseline is based on the uniform sampling of the hyper-parameter configuration space, for sanity check.

Tasks. Three tasks are considered to investigate the relevance of the Metabu meta-features. All reported performance values are measured using a Leave-One-Out process over dataset (detailed in Appendix C.1). ⇒ Task 1: Capturing the target topology. This task aims to highlight the merits of Metabu meta-features on ranking neighbor datasets (w.r.t the target representation). For each test dataset, one considers its nearest neighbors w.r.t. the target topology (the 1-Wasserstein metric on the target representation), and its nearest neighbors w.r.t. the Euclidean distance on the Metabu and meta-feature sets. The alignment between both ordered lists is measured using the normalized discounted cumulative gain over the first k neighbors (NDCG@k) [START_REF] Burges | Learning to rank using gradient descent[END_REF], with 5 ≤ k ≤ 35. The performance indicator is the NDCG@k 5 averaged on test datasets. ⇒ Task 2: AutoML with no performance model (Initialization). The purpose of Task 2 is to assess the topology constructed in Task 1 with a simple AutoML strategy i.e recommending ML configurations of neighbor datasets.

5 To recall, DCG@k = k i=1 2 r i -1 log(i+1) , with r i ∈ {0, 1}, indicating if the i-th dataset neighbor is relevant or not w.r.t the ranking of target topology. The NDCG score is then obtained by normalizing with the ideal DCG.

Concretely, for each test dataset and each meta-feature set mf , let ẑmf be the distribution on the considered hyper-parameter configuration space:

ẑmf = 1 Z 10 =1 exp(-) z
where z is the target representation of the -th neighbor of the dataset w.r.t. Euclidean distance on the mf space, and Z a normalization constant. This distribution ẑmf is thereafter used to iteratively and independently sample the hyperparameter configurations, and the performances of the learned models are measured. Letting r(t, mf) denote the rank of the test performance6 associated with meta-feature set mf after t iterations, the performance curves report r(t, mf) for the Metabu and baseline meta-feature sets (plus a uniform hyper-parameter configuration sampler for sanity check), averaged over the test datasets.

⇒ Task 3: AutoML with performance model (Optimization).

AutoML systems based on performance models, such as Auto-Sklearn and PMF, cannot be directly compared with Metabu as they acquire additional information along the AutoML search: they iteratively use a performance model to select a hyper-parameter configuration, and update the performance model using the performance of the selected configuration. In Task 3, the relevance of Metabu meta-features is investigated in that they govern the initialization for Auto-Sklearn and PMF performance models. Precisely, the original meta-feature sets used in Auto-Sklearn and PMF are replaced with Metabu meta-features. Similarly to Task 2, the performance indicator is the rank of the performance obtained by Auto-Sklearn (resp. PMF) using Metabu meta-features to initialize its performance model, noted Metabu+Auto-Sklearn (resp. Metabu+PMF) compared to the original Auto-Sklearn (resp. PMF) implementation and the uniform baselines.

Dataset benchmark.

The considered AutoML benchmark is the OpenML Curated Classification suite 2018 [START_REF] Bischl | OpenML Benchmarking Suites[END_REF], including 72 binary or multiclass datasets out of which 64 have enough learning performance data to give a good approximation of their target representation. The performance indicators are measured using Leave-One-Out (details in Appendix C.1). The basic meta-features are computed for each dataset using the open source library PyMFE [START_REF] Alcobaca | MFE: Towards reproducible meta-feature extraction[END_REF].

Hyper-parameter configuration spaces. Metabu is validated in the context of three ML algorithms: Adaboost [START_REF] Freund | A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting[END_REF], Ran-domForest [START_REF] Breiman | Random Forests[END_REF]] and SVM [START_REF] Boser | A training algorithm for optimal margin classifiers[END_REF]], using their Scikit-learn implementation [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF]; and two AutoML pipelines, Auto-Sklearn (a) Task 1: Capturing the target topology; the higher NDCG@k, the better.

(b) Task 2: Sampling the hyper-parameter configuration space; the lower the rank, the better.

(c) Task 3: Initializing a performance model to sample the hyper-parameter configuration space.

Figure 6.4: Empirical assessment of Metabu meta-features comparatively to the baselines meta-feature sets and uniform hyper-parameter sampling (better seen in color). [Feurer et al. 2015a] and PMF [Fusi et al. 2018]. The associated hyper-parameter configuration spaces are detailed in Appendix C.2. For Adaboost, RandomForest and SVM, the target representation of each training dataset is based on the top-20 configurations in OpenML (out of 37,289 for Adaboost, 81,336 for RandomForest and 37,075 for SVM), initially generated by van Rijn and Hutter [2018]. For Auto-Sklearn, the target representation is generated from scratch, running 500 configurations per training dataset and retaining the top-20. For PMF, the top-20 configurations are extracted from the collaborative filtering matrix for each training dataset [Fusi et al. 2018].

. Comparative empirical validation of Metabu

The performances of Metabu and the baselines on the three tasks are displayed on Figure 6.4. The overall CPU cost on Task 2 (resp. Task 3) is circa 1,900 (resp. 2,300) hours (full runtimes in Figure C.1). Appendix C.6 reports the detailed results in Tables C.6, C.7 and C.8, indicating the confidence level of the results after a Wilcoxon rank-sum test for performances and Mann Whitney Wilcoxon test for ranks; both with p-value set to 0.05. ⇒ Task 1: Capturing the target topology. Figure 6.4a. The results show that the metric based on the Metabu meta-features better matches the target topology than the metric based on the baseline metafeature sets, all the more so as the number k of nearest neighbors increases. The higher variance of NDCG@k for Metabu is explained as the metric depends on the meta-feature training, while the metrics based on the baselines are deterministic. As could be expected, this variance decreases with k. Despite this variance, Metabu significantly outperforms all baselines for all k and all hyper-parameter configuration spaces. ⇒ Task 2: AutoML with no performance model (Initialization). Figure 6.4b. All rank curves start at 3, as five hyper-parameter configuration samplers are considered. For RandomForest, the sampler based on the SCOT meta-feature set dominates in the first 5 iterations, and remains good at all time; Metabu dominates after the beginning; all other approaches but the uniform sampler yield similar performances. For Adaboost, the sampler based on the Auto-Sklearn meta-feature set dominates in the first 3 iterations, and Metabu is statistically significantly better than all other approaches thereafter. For SVM, Metabu very significantly dominates all other approaches. ⇒ Task 3: AutoML with performance model (Optimization). Figure 6.4c. In first time steps (left of the dashed bars), the performance models of Auto-Sklearn or PMF are initialized using the performances of the hyperparameter configurations sampled as in Task 2; in the following time steps, the hyper-parameter configurations are sampled using the performance model. The most striking result is that the Metabu+Auto-Sklearn rank improves on that of Auto-Sklearn (Figure 6.4c, left) although they only differ in the initialization of the performance model, and the Auto-Sklearn meta-feature set is optimized to Task 3. Likewise, the rank of Metabu+PMF improves on that of PMF (Figure 6.4c, right). The comparison also involves Random2× and Random4× uniform samplers, respectively returning the best performance out of 2 or 4 uniformly sampled configurations [Fusi et al. 2018]; Metabu+PMF significantly improves on Random4× after the 10th iteration. This suggests that on the OpenML benchmark, the Metabu meta-features efficiently enable both to passively sample the hyper-parameter configuration space, and to retrieve the configurations best appropriate to update the performance model and explore good regions of the space. The two hyper-parameters of Metabu are the α trade-off parameter between Wasserstein and Gromov-Wasserstein distance (Equation 6.1) and the regularization weight λ (Equation 6.2). The sensitivity of Metabu w.r.t. both parameters is investigated on Task 1, by inspecting the difference NDCG@10(Metabu) -NDCG@10(Auto-Sklearn) for α ranging in {0.1, 0.3, 0.5, 0.7, 0.99} and λ in {10 -1 , . . . , 10 -4 }. The result, displayed in Figure 6.5, shows that the difference is positive in the whole considered domain, with NDCG@10(Metabu) statistically significantly better than NDCG@10(Auto-Sklearn) according to Student t-test with p-value 0.05.

. Sensitivity analysis

Interestingly, a low sensitivity of Metabu is observed w.r.t. the regularisation weight λ, provided that it is small enough (λ ≤ 10 -3). For such small λ values, a low sensitivity is also observed w.r.t. α in a large range (.3 ≤ α ≤ .7). This result confirms the importance of taking into account both the Wasserstein and Gromov-Wasserstein distances on the target representation space: discarding the former (α ≤ .1) or the latter (α ≥ .99) significantly degrades the performance, and the performance is stable in the [.3, .7] region.

6.4.4 . Toward understanding the dataset landscape Insight on intrinsic dimension A most interesting result, that is original to our best knowledge, is to provide a principled estimate of the intrinsic dimension of the dataset space w.r.t. the considered ML algorithms. As detailed in Appendix C.5 with a stability analysis, the intrinsic dimension d of the OpenML benchmark is The specific Auto-Sklearn meta-features are recognized as their name begins with a capital letter. circa 6 for Auto-Sklearn, 8 for Adaboost, 9 for RandomForest and 14 for Support Vector Machines. We are surprised indeed to see that the intrinsic dimension corresponding to Support Vector Machines is higher than for Auto-Sklearn, although the Auto-Sklearn portfolio includes the Support Vector Machines algorithm. This fact seems to suggest that the AutoML problem is harder for Auto-Sklearn than for Support Vector Machines, which is inconsistent as the Auto-Sklearn portfolio includes the Support Vector Machines algorithm.

A tentative explanation7 goes as follows. We distinguish, as factors of the Au-toML difficulty, the difficulty of hyper-parameter optimization, and the regularity of the landscape, that is, the fact that configurations good for a dataset are also generally good for a near dataset. The computation of intrinsic dimension only depends on the regularity of the landscape (each dataset being represented with its top hyper-parameters). In other words, the intrinsic dimension essentially reflects the diversity of the set of top hyper-parameters across the benchmark (OpenML CC-18 in our case). Overall, the low intrinsic dimension of Auto-Sklearn is interpreted as: many datasets have similar sets of top hyper-parameters; inversely, the high intrinsic dimension of Support Vector Machines is interpreted as the top hyperparameters highly vary with the dataset. But this dimensionality does not measure the difficulty of the optimization part (reaching these good configurations).

Importance of hand-crafted meta-features

Metabu also delivers some insights into what matters in the dataset landscape, and why a given algorithm should behave better than another on a particular dataset, as follows. Since Metabu meta-features are built from the initial hand-crafted meta-features using the trained linear mapping ψ and depending on the current learning algorithm A, therefore the importance of these initial meta-features can be recovered by inspecting the newly learned Metabu meta-features.

Concretely, the importance of a meta-feature w.r.t. A is estimated as follows. Let U = {u i,j } denote the matrix made of the Multi-Dimensional Scaling representation of the secondary representation over all datasets. The matrix U are then processed using PCA, and let j * be the index of the column contributing to the first PCA axis. Finally, the importance of a hand-crafted meta-feature i A (mf) is measured from the norm of its projection on j * -th column i.e, i A (k) = |ψ j * ,k |.

Two ML algorithms or pipelines A and B can thus be visually compared, by plotting each meta-feature as a 2D point with coordinates (i A (mf), i B (mf)) as shown on Figure 6.6. For instance, in Figure 6.6a, with respectively A set to RandomForest and B to Adaboost, one sees that actually few features matter for both RandomForest and Adaboost (the features nearest to the upper right corner), mostly the Dunn index [START_REF] Dunn | A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters[END_REF]] and the features importance. Some findings reassuringly confirm the practitioner's expertise: the percentage of instances with missing values matters much more for Adaboost than for RandomForest; the class imbalance (ClassProbabilityMax and ClassProbabilityMin) matters for Adaboost.

According to Figure 6.6b, meta-features such as KurtosisMin, LogNumberOfInstances, InverseDatasetRatioall retained as Auto-Sklearn meta-featuresare critical for Auto-Sklearn whereas they have no impact for RandomForest. Inversely, some features like "pb" (average Pearson correlation between class and features) matter significantly more for RandomForest than for Auto-Sklearn.

Likewise, the meta-feature importance w.r.t. Support Vector Machines and Random Forest is displayed in Figure 6.6c. The skewness (mean and std over all attributes) matter significantly more for Support Vector Machines than for RandomForest.

Overall, the impact of some meta-features for some learning algorithms is rather intuitive, confirming the practitioner expertise.

. Partial Conclusion

Metabu provides a partial but promising answer to the AutoML problem. On one hand, it yields new meta-features, preserving (in the sense of Fused Gromov-Wasserstein distance) the topology of the best configurations associated to each dataset. On the other hand, it also provides insights on the importance of handcrafted meta-features, as well as the intrinsic dimension of an AutoML benchmark.

Metabu successfully addresses Dida limitations (Chapter 5), chiefly, the ability to deal with ordinary datasets and to handle the poor representativity of the AutoML benchmarks. These achievements are made possible as the learned metafeatures are but linear combinations of the manually designed meta-features of the literature.

The efficiency of the approach is empirically demonstrated as the Metabu meta-features contribute to outperform strong baselines meta-features, improving state-of-the-art AutoML systems such as Auto-Sklearn [START_REF] Feurer | Initializing bayesian hyperparameter optimization via meta-learning[END_REF] and PMF [Fusi et al. 2018].

Limitations.

Although Metabu yields strong empirical performances, results from Task 3 show that the exploration of the configuration space (HPO algorithms) still yields a better performance than the initial configurations provided by the Metabu meta-features. This limitation is interpreted as the fact that the handcrafted meta-features are insufficiently diverse to represent the true regions of interest with sufficiently fine granularity. Another interpretation is that the training data (the top configurations of the benchmark datasets) is too noisy, e.g. due to overfitting the CV score.

Another practical limitation of Metabu is that the learned meta-features are specific to an ML algorithm, i.e. its configuration space. Naturally, one might think of concatenating the Metabu meta-features related to the main algorithms, though a naive concatenation does not preserve the topology of any such configuration space.

Perspectives. Along this line, a main perspective for further research is to propose a truly unified meta-feature space, merging the meta-features built from the various ML algorithms. A primary step is to investigate how the topology of the datasets differs depending on the learning algorithm: showing that two datasets are close neighbors in the landscape associated to an ML algorithm, and quite far apart for another ML algorithm might give some (expert-or learningdriven) insights into new meta-features. Comparing these landscapes is, to our best knowledge, an under-explored research area.

Another perspective is to leverage the same Metabu approach, aimed to find a representation aligned with a target topology, but to consider another representation and another target topology. A promising approach to improve the target representation is to take into account the distribution of bad hyper-parameters, or to consider surrogate performance model.

As AI and Machine Learning are acknowledged a key technology for the digital age, the issue of delivering peak performances from the great many algorithms on the shelf emerged as a main bottleneck, as early as the end 1980s. Part I has proposed an overview of the research in this area, referred to as AutoML. It is important to note that the development of this field mostly relies on experimental studies: to our best knowledge, there does not exist such things as formal proofs that a given algorithm, with a given configuration, be the best one (w.r.t. other algorithms) on a given dataset.

In this context, the state of the art in AutoML pursues two main research directions: optimization, that is, searching for the best algorithms and configurations w.r.t. a dataset or a distribution of datasets (Part II); and meta-learning, that is, searching for a good representation of datasets, conducive to find, e.g. a good initialization for an optimization algorithm (Part III).

In this thesis, the two directions have been considered, yielding three contributions, respectively described in Chapters 4-6.

In Chapter 4, the proposed Mosaic tackles the fact that the optimization problem is defined on a mixed search space, involving binary and continuous coordinates, where the binary (structure, also referred to as pipeline) part commands the structure of the continuous (referred to as hyper-parameters) part, and the optimization objective strongly depends on the interactions among both parts. While most current state-of-the-art algorithms combine the pipeline selection and hyper-parameter optimization within the same optimization problem (referred to as CASH, Section 2.2), Mosaic tackles the structural and continuous optimization problems by using dedicated approaches for each problem, and enforcing their efficient combination. Specifically, Mosaic handles the structural (pipeline) optimization part using a Monte-Carlo Tree Search algorithm, and it handles the hyper-parameter (continuous) optimization part with Bayesian Optimization. The tight coupling of both optimization modules is enforced through a shared surrogate performance model, exploited and maintained by both modules. The experiments on OpenML benchmark, containing 100 classification tasks, comparing Mosaic with Auto-Sklearn and TPOT AutoML systems, suggest that the proposed method outperforms its competitors [START_REF] Herilalaina Rakotoarison | Automated Machine Learning with Monte-Carlo Tree Search[END_REF]. The detailed inspection of the results suggest that this better performance is due to the efficient exploration/exploitation strategy, early discarding unpromising regions and refining the search in the promising ones. The main limitation of the approach, showed in the experiments, is that Mosaic performances significantly depend on the initialization of the search. This finding motivates the two further contributions, devoted to meta-learning. Only tabular data (as opposed to e.g., images) have been considered in the presented work.

In Chapter 5, our first meta-learning contribution called Dida is presented, leveraging distributional neural networks in order to learn meta-features. This research direction involves two steps: i) defining a meta-learning problem, on the space of datasets (e.g., recognizing whether two datasets are extracted at least partially from the same joint distribution); ii) solving this meta-learning problem using distributional NNs. The sought meta-features then consist of the functions defined as the nodes on the last layers of the distributional NN; they are computed from the dataset itself, viewed as a discrete distribution. This line of research required some advances, to account for the specific structure of datasets (e.g., the distinction among features and labels; the invariance w.r.t. the permutation of the examples, and the features). Some proofs of concept have been obtained along this line De Bie et al. [2020], showing that on two meta-learning problems (patch classification and performance prediction tasks), Dida yields superior empirical performances compared to Dataset2Vec and DSS. However, Dida faces a main difficulty, which is the shortage of dataset benchmark. Dida basically is a neural net, and thus requires a significant number of examples (here, datasets) to be trained. Furthermore, it hardly takes into account pathological datasets (e.g., with missing values), hindering its application in a real-world AutoML setting.

In Chapter 6, a second contribution to meta-learning called Metabu is presented, aimed to address Dida limitations. Basically, Metabu relies on the great many hand-crafted meta-features, and it learns combinations thereof accounting for the "oracle" topology among datasets, relatively to a particular ML algorithm. This oracle topology is defined by considering that two datasets are similar iff the hyper-parameter configurations delivering peak performance for these datasets are similar. More precisely, optimal transport (OT) is leveraged to define the new meta-features enforcing the oracle topology, using a Fused Gromov Wasserstein OT approach [START_REF] Vayer | Optimal Transport for structured data with application on graphs[END_REF]]. As Metabu operates on the top of the existing hand-crafted meta-features, it requires less datasets than Dida. Nevertheless, we had to define a (meta) data augmentation strategy and consider the new datasets defined by boostrap from the original OpenML datasets. Another important aspect in Metabu is that it automatically defines the number of meta-features to learn, by estimating the intrinsic dimension of the dataset space [START_REF] Facco | Estimating the intrinsic dimension of datasets by a minimal neighborhood information[END_REF]. This estimation, the first of its kind to our best knowledge, is a first step toward characterizing the AutoML landscape. Another facet of Metabu is that it sheds some light onto what matters when comparing two ML algorithms, in terms of the relative importance of the hand-crafted meta-features. Though the findings only confirm at the moment the long known tricks of the trade (e.g. rather use decision trees or random forests in case of a high fraction of missing values), they might deliver more hints into the comparative strengths of the considered algorithms.

Quite a few perspectives for further research, focusing on the extensions of the presented approaches have been described in the partial conclusion of Chapters 4-6. Stepping back and looking at the overall picture, it is suggested that the ultimate goal for AutoML is to be able to understand when and why to recommend a given ML algorithm. At the moment, AutoML systems mostly proceed by conducting an optimization process, where only the initialization step relies on learned models. Still, a general trend in ML is toward learning explainable models, or at least, explaining the model decisions. While AutoML seems still far from building explainable models, it is suggested that learning explainable meta-features constitutes one significant step toward this aim. Along this line, these meta-features support a visualization of the benchmark datasets, that is amenable to assess the coverage of a benchmark and/or the quality of the experimental validation for a new algorithms.

Lastly, another perspective is to reconsider and extend the configuration space itself. On one hand, Mosaic can be easily adapted to handle variable size pipelines [Wever et al. 2018a], describing the search space in terms of a grammar taking inspiration from [START_REF] Marinescu | Searching for Machine Learning Pipelines Using a Context-Free Grammar[END_REF].

A -Supplementary Material -Mosaic

A.1 . Mosaic Search Space

Mosaic shares the same search space as Auto-Sklearn. Table A.1 resume all components of one complete pipeline x. Table A.2 illustrates an overview of hyper-parameter for each data preprocessing methode. Table A .3, A.4 presents an exhaustive list of hyper-parameter of each learning algorithm considered in Mosaic. All names (of algorithms, their parameters, and possibly the names of the options) are those used in Scikit-Learn library.

A.2 . Detailed results (Vanilla setting)

This section presents detailed results for the Vanilla variants of Mosaic and Auto-Sklearn out of 10 independent runs (the results at the stopping time are graphically presented in Figure 4 of the paper). A general remark is that Mosaic has a higher variance w.r.t. the median results, as summarized on Table 4.1, Mosaic is significantly better on 21 datasets (using a MWW test at 95% confidence), and non-significantly better on 35 datasets. It is significantly worse on 6 datasets and non-significantly worse on 18 datasets. Results on dataset with ID in 3021,3946,3948,3950,34536,34539 are not available because of technical problems (memory and dataset quality issues).

Pipeline

∀g ∈ C(IR d ; IR r) I R r gd(f α) def. = I R d g(f (x))dα(x)
Letting {x i } be a set of points in IR d with w i ≥ 0 such that i w i = 1, the discrete measure α X = i w i δ x i is the sum of the Dirac measures δ x i weighted by w i .

Invariances.

In this paper, we consider functions on probability measures that are invariant with respect to permutations of coordinates. Therefore, denoting S d the d-sized permutation group, we consider measures over a symmetrized compact Ω ⊂ IR d equipped with the following equivalence relation: for α, β ∈ P(Ω), α ∼ β ⇐⇒ ∃σ ∈ S d , β = σ α, such that a measure and its permuted counterpart are indistinguishable in the corresponding quotient space, denoted alternatively P(Ω) /∼ or R(Ω) /∼ . A function ϕ : Ω n → IR is said to be invariant (by permutations of coordinates) iff ∀σ ∈ S d , ϕ(x 1 , . . . , x n) = ϕ(σ(x 1), . . . , σ(x n)) (Definition 5.1).

Tensorization. Letting X and Y respectively denote two random vectors on R(IR d) and R(IR p), the tensor product vector X ⊗ Y is defined as:

X ⊗ Y def. = (X , Y) ∈ R(IR d × IR p)
, where X and Y are independent and have the same law as X and Y , i.e. d(α X⊗Y)(x, y) = dα X (x)dα Y (y). In the finite case, for α X = 1 n i δ x i and α Y = 1 m j δ y j , then α X⊗Y = 1 nm i,j δ x i ,y j , weighted sum of Dirac measures on all pairs (x i , y j). The k-fold tensorization of a random vector X ∼ α X , with law α ⊗k X , generalizes the above construction to the case of k independent random variables with law α X . Tensorization will be used to define the law of datasets, and design universal architectures (Appendix B.3).

Invariant layers.

In the general case, a G-invariant layer f ϕ with invariant map ϕ : IR

d × IR d → IR r such that ϕ satisfies ∀(x 1 , x 2) ∈ (IR d) 2 , ∀σ ∈ G, ϕ(σ(x 1), σ(x 2)) = ϕ(x 1 , x 2)
is defined as

f ϕ : X ∈ R(IR d) /∼ → IE X ∼X [ϕ(X, X)] ∈ R(IR r) /∼
where the expectation is taken over X ∼ X. Note that considering the couple (X, X) of independent random vectors X ∼ X amounts to consider the tensorized law α X ⊗ α X .

Remark 3. Taking as input a discrete distribution α X = n i=1 w i δ x i , the invariant layer outputs another discrete distribution α Y = n i=1 w i δ y i with y i = n j=1 w j ϕ(x i , x j); each input point x i is mapped onto y i summarizing the pairwise interactions with x i after ϕ. Remark 5. Invariant layers can also be generalized to handle higher order interactions functionals, namely f ϕ (X) def.

= IE X 2 ,...,X N ∼X [ϕ(X, X 2 , . . . , X N)], which amounts to consider, in the discrete case, N -uple of inputs points (x j 1 , . . . , x j N).

B.2 . Proofs on Regularity

Wasserstein distance. The regularity of the involved functionals is measured w.r.t. the 1-Wasserstein distance between two probability distributions (α, β) ∈

P(IR d) W 1 (α, β) def. = min π 1 =α,π 2 =β I R d ×I R d ||x -y||dπ(x, y) def. = min X∼α,Y ∼β IE(||X -Y ||)
where the minimum is taken over measures on IR d × IR d with marginals α, β ∈ P(IR d). W 1 is known to be a norm [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF], that can be conveniently computed using

W 1 (α, β) = W 1 (α -β) = max Lip(g)≤1 I R d gd(α -β),
where Lip(g) is the Lipschitz constant of g : IR d → IR with respect to the Euclidean norm (unless otherwise stated). For simplicity and by abuse of notations, W 1 (X, Y) is used instead of W 1 (α, β) when X ∼ α and Y ∼ β. The convergence in law denoted is equivalent to the convergence in Wasserstein distance in the sense that X k X is equivalent to W 1 (X k , X) → 0.

Permutation-invariant Wasserstein distance. = min

σ∈S d W 1 (σ α, β) = min σ∈S d max Lip(g)≤1 I R d g • σdα - I R d gdβ such that W 1 (α, β) = 0 ⇐⇒ α ∼ β. W 1 defines a norm on P(IR d) /∼ . Lipschitz property. A map f : R(IR d) → R(IR r) is continuous for the convergence in law (aka the weak * of measures) if for any sequence X k X, then f (X k) f (X). Such a map is furthermore said to be C-Lipschitz for the permutation invariant 1-Wasserstein distance if ∀(X, Y) ∈ (R(IR d) /∼) 2 , W 1 (f (X), f (Y)) ≤ CW 1 (X, Y). (B.1)
Lipschitz properties enable us to analyze robustness to input perturbations, since it ensures that if the input distributions of random vectors are close in the permutation invariant Wasserstein sense, the corresponding output laws are close, too.

Proofs of Section 5.4.2.

Proof. (Proposition 1). For α, β ∈ P(IR d), Proposition 1 from De Bie et al.

[2019] yields W 1 (f ϕ (α), f ϕ (β)) ≤ 2r Lip(ϕ) W 1 (α, β), hence, for σ ∈ G, W 1 (σ f ϕ (α), f ϕ (β)) ≤ W 1 (σ f ϕ (α), f ϕ (α)) + W 1 (f ϕ (α), f ϕ (β)) ≤ W 1 (σ f ϕ (α), f ϕ (α)) + 2r Lip(ϕ) W 1 (α, β)
hence, taking the infimum over σ yields

W 1 (f ϕ (α), f ϕ (β)) ≤ W 1 (f ϕ (α), f ϕ (α)) + 2r Lip(ϕ) W 1 (α, β) ≤ 2r Lip(ϕ) W 1 (α, β) 123 Since f ϕ is invariant, for σ ∈ G, f ϕ (z) = f ϕ (σ z), W 1 (f ϕ (α), f ϕ (β)) ≤ 2r Lip(ϕ) W 1 (σ α, β)
Taking the infimum over σ yields the result.

Proof. (Proposition 2). To upper bound W 1 (ξ f ϕ (τ α), f ϕ (α)) for α ∈ P(IR d), we proceed as follows, using proposition 3 from De Bie et al. [2019] and proposition 1:

W 1 (ξ f ϕ (τ α ϕ (α)), f ϕ (α)) ≤ W 1 (ξ f ϕ (τ α), f ϕ (τ α)) + W 1 (f ϕ (τ α), f ϕ (α)) ≤||ξ -id|| L 1 (fϕ(τ α)) + Lip(f ϕ) W 1 (τ α, α) ≤ sup y∈fϕ(τ (Ω)) ||ξ(y) -y|| 2 + 2r Lip(ϕ) sup x∈Ω ||τ (x) -x|| 2 For σ ∈ G, we get W 1 (σ ξ f ϕ (τ α), f ϕ (α)) ≤ W 1 (σ ξ f ϕ (τ α), ξ f ϕ (τ α)) + W 1 (ξ f ϕ (τ α), f ϕ (α))
Taking the infimum over σ yields

W 1 (ξ f ϕ (τ α), f ϕ (α)) ≤ W 1 (ξ f ϕ (τ α), f ϕ (α)) ≤ sup y∈fϕ(τ (Ω)) ||ξ(y) -y|| 2 + 2rC(ϕ) sup x∈Ω ||τ (x) -x|| 2 Similarly, for α, β ∈ (P(IR d)) 2 , W 1 (ξ f ϕ (τ α),ξ f ϕ (τ β)) ≤ Lip(ξ) W 1 (f ϕ (τ α), f ϕ (τ β)) ≤ Lip(ξ) Lip(f ϕ) W 1 (τ α, τ β) ≤ 2r Lip(ϕ) Lip(ξ) Lip(τ) W 1 (α, β) hence, for σ ∈ G, W 1 (σ ξ f ϕ (τ α), ξ f ϕ (τ β)) ≤ W 1 (σ ξ f ϕ (τ α), ξ f ϕ (τ α)) + W 1 (ξ f ϕ (τ α), ξ f ϕ (τ β))
and taking the infimum over σ yields

W 1 (ξ f ϕ (τ α),ξ f ϕ (τ β)) ≤ W 1 (ξ f ϕ (τ α), ξ f ϕ (τ β)) ≤ 2r Lip(ϕ) Lip(ξ) Lip(τ) W 1 (α, β) Since τ is equivariant: namely, for α ∈ P(IR d), σ ∈ G, τ (σ α) = σ (τ α), hence, since f ϕ is invariant, f ϕ (τ (σ α)) = f ϕ (σ (τ α)) = f ϕ (τ α), hence for σ ∈ G, W 1 (ξ f ϕ (τ α),ξ f ϕ (τ β)) ≤ 2r Lip(ϕ) Lip(ξ) Lip(τ) W 1 (σ α, β)
Taking the infimum over σ yields the result.

B.3 . Proofs on Universality

Detailed proof of Theorem 1. Lemma 1. Let (S j) N j=1 be a partition of a domain including Ω (S j ⊂ IR d) and let x j ∈ S j . Let (ϕ j) N j=1 a set of bounded functions ϕ j : Ω → IR supported on S j , such that j ϕ j = 1 on Ω. For α ∈ P(Ω), we denote αN • Let (ϕ i) i=1...N the piecewise affine P1 finite element basis, which are hat functions on a discretization (S i) i=1...N of Ω ⊂ R d , with centers of cells (y i) i=1...N . We then define g : x ∈ R d → (ϕ 1 (x), . . . , ϕ N (x)) ∈ R N ;

• f : (α 1 , . . . , α N) ∈ R N → F N i=1 α i δ h-1 (y i) ∈ R.

We approximate F using the following steps:

• Lemma 1 (see Lemma 1 from De Bie et al. [2019]) yields that h α and h α = N i=1 α i δ y i are close: W 1 (h α, h α) ≤ √ d/N 1/d ;

• The map h-1 is regular enough (1/d-Hölder) such that according to Lemma 2, there exists a constant C > 0 such that

W 1 (h-1 (h α), h-1 h α) ≤ C W 1 (h α, h α) 1/d ≤ Cd 1/2d /N 1/d 2 Hence W 1 (α, h-1 h α) def.
= inf

σ∈S d W 1 (σ α, h-1 h α) ≤ Cd 1/2d /N 1/d 2 .
Note that h maps the roots of polynomial d i=1 (X -x (i)) to its coefficients (up to signs). Theorem 1.3.1 from Rahman and Schmeisser [2002] yields continuity and 1/d-Hölderness of the reverse map. Hence h-1 is 1/d-Hölder.

• Since Ω is compact, by Banach-Alaoglu theorem, we obtain that P(Ω) is weakly-* compact, hence P(Ω) /∼ also is. Since F is continuous, it is thus uniformly weak-* continuous: for any > 0, there exists δ > 0 such that W 1 (α, h-1 h α) ≤ δ implies |F(α) -F(h-1 h α)| < . Choosing N large enough such that Cd 1/2d /N 1/d 2 ≤ δ therefore ensures that |F(α) -F(h-1 h α)| < .

Extension of Theorem 1 to products of permutation groups.

Corollary 1. Let F : P(Ω) /∼ → IR a continuous S d 1 × . . . × S dn -invariant map

(i d i = d),
where Ω is a symmetrized compact over IR d . Then ∀ > 0, there exists three continuous maps f, g, h such that

∀α ∈ M 1 + (Ω) /∼ , |F(α) -f • IE • g(h α)| <
where h is invariant; g, h are independent of F.

In the next two paragraphs, we focus the case of S d -invariant functions for the sake of clarity, without loss of generality. Indeed, the same technique applies to G-invariant functions as h in that case has the same structure: its first d X components are S d X -invariant functions of the first d X variables and its last d Y components are S d Y -invariant functions of the last variables. • We approximate f by a neural network f θ :

x ∈ R N → C 1 λ(A 1 x + b 1) ∈ R,
where p 1 is an integer, A 1 ∈ R p 1 ×N , C 1 ∈ R 1×p 1 are weights, b 1 ∈ R p 1 is a bias and λ is a non-linearity.

• Since each component ϕ j of ϕ = g • h is permutation-invariant, it has the representation ϕ j : x = (x 1 , . . . , x d) ∈ IR d → ρ j d i=1 u(x i) Zaheer et al. [2017] (which is a special case of our layers with a base function only depending on its first argument, see Section 5.3.1), ρ j : R d+1 → R, and u : R → R d+1 independent of j (see Zaheer et al. [2017], theorem 7).

• We can approximate ρ j and u by neural networks ρ j,θ : x ∈ R d+1 → C 2,j λ(A 2,j x + b 2,j) ∈ R and u θ :

x ∈ R d → C 3 λ(A 3 x + b 3) ∈ R d+1
, where p 2,j , p 3 are integers, A 2,j ∈ R p 2,j ×(d+1) , C 2,j ∈ R 1×p 2,j , A 3 ∈ R p 3 ×1 , C 3 ∈ R (d+1)×p 3 are weights and b 2,j ∈ R p 2,j , b 3 ∈ R p 3 are biases, and denote ϕ θ (x) = (ϕ j,θ (x)) j def.

= (ρ j,θ (d i=1 u θ (x i))) j .

Indeed, we upper-bound the difference of interest |F(α) -f θ (E X∼α (ϕ θ (X)))| by triangular inequality by the sum of three terms:

• |F(α) -f (E X∼α (ϕ(X)))|

• |f (E X∼α (ϕ(X))) -f θ (E X∼α (ϕ(X)))|

• |f θ (E X∼α (ϕ(X))) -f θ (E X∼α (ϕ θ (X)))| and bound each term by 3 , which yields the result. The bound on the first term directly comes from theorem 1 and yields a constant N which depends on . The bound on the second term is a direct application of the universal approximation theorem (UAT) [START_REF] Cybenko | Approximation by superpositions of a sigmoidal function[END_REF][START_REF] Leshno | Multilayer feedforward networks with a nonpolynomial activation function can approximate any function[END_REF]]. Indeed, since α is a probability measure, input values of f lie in a compact subset of IR N : using the triangular inequality and the fact that α is a probability measure. The first term is small by UAT on ρ j while the second also is, by UAT on u and uniform continuity of ρ j,θ . Therefore, by uniform continuity of f θ , we can conclude.

|| Ω g • h(x)dα|| ∞ ≤ max x∈Ω max i |g i • h(x)|,

Universality of tensorization.

This complementary theorem provides insight into the benefits of tensorization for approximating invariant regression functionals, as long as the test function is invariant.

Theorem 2. The algebra where ⊗n denotes the n-fold tensor product, is dense in C(M 1 + (Ω) /∼).

A Ω def.
Proof. This result follows from the Stone-Weierstrass theorem. Since Ω is compact, by Banach-Alaoglu theorem, we obtain that P(Ω) is weakly-* compact, hence P(Ω) /∼ also is. In order to apply Stone-Weierstrass, we show that A Ω contains a non-zero constant function and is an algebra that separates points. A (non-zero, constant) 1-valued function is obtained with n = 1 and ϕ = 1. Stability by scalar is straightforward. For stability by sum: given (F 1 , F 2) ∈ A 2 Ω (with associated functions (ϕ 1 , ϕ 2) of tensorization degrees (n 2 , n 2)), we denote n def.

= max(n 1 , n 2) and ϕ(x 1 , . . . , x n) def.

= ϕ 1 (x 1 , . . . , x n 1) + ϕ 2 (x 1 , . . . , x n 2) which is indeed invariant, hence F 1 + F 2 = Ω n ϕdα ⊗n ∈ A Ω . Similarly, for stability by product: denoting this time n = n 1 +n 2 , we introduce the invariant ϕ(x 1 , . . . , x n) = ϕ 1 (x 1 , . . . , x n 1)×ϕ 2 (x n 1 +1 , . . . , x n), which shows that F = F 1 × F 2 ∈ A Ω using Fubini's theorem. Finally, A Ω separates points: if α = ν, then there exists a symmetrized domain S such that α(S) = ν(S): indeed, if for all symmetrized domains S, α(S) = ν(S), then α(Ω) = ν(Ω) which is absurd. Taking n = 1 and ϕ = 1 S (invariant since S is symmetrized) yields an F such that F(α) = F(ν).

B.4 . Experimental validation, supplementary material

Both Dida and baselines source code are provided in the last file of the supplementary material.

B.4.1 . Benchmark Details

Three benchmarks are used (Table 5.1): TOY and UCI, taken from Jomaa et al. [2021], and OpenML CC-18. TOY includes 10,000 datasets, where instances are distributed along mixtures of Gaussian, intertwinning moons and rings in IR 2 , with 2 to 7 classes. UCI includes 121 datasets from the UCI Irvine repository [START_REF] Dua | {UCI} Machine Learning Repository[END_REF]. Datasets UCI and OpenML are normalized as follows: categorical features are one-hot encoded; numerical features are normalized; missing values are imputed with the feature mean (continuous features) or median (for categorical features). Patches are defined as follows. Given an initial dataset, a number d X of features and a number n of examples are uniformly selected in the considered ranges (depending on the benchmark) described in Table B where L 1 eq and L 2 eq are linear H-equivariant layers. Similarly, both feature-and label-equivariance requirements are handled via the Deep Sets representation of equivariant functions (see Zaheer et al. [2017], Lemma 3) and concatenated to be followed by an invariant layer, forming the DSS meta-features. All methods are allocated the same number of parameters to ensure fair comparison. We provide our implementation of the DSS layers in the supplementary material.

No-FInv-DSS baseline (no invariance in feature permutation). This baseline aims at showcasing the empirical relevance of the invariance requirement in feature and label permutations, while retaining invariance in permutation with respect to the datasets. To this end, aggregation with respect to the examples is performed as exemplified in Zaheer et al. [2017], Theorem 2, namely

L : z = (z 1 , . . . , z n) ∈ Z(IR d) → 1 n n i=1 g(z i) ∈ IR K (B.6)
where g : IR d → IR K is an MLP with FC(128)-ReLU-FC(64)-ReLU-FC(32)-ReLU layers. To ensure label information is captured, the output is concatenated to the mean of labels ȳ def. Hand-crafted meta-features. For the sake of reproducibility, the list of meta-features used in Section 5.5 is given in Table B.2. Note that meta-features related to missing values and categorical features are omitted, as being irrelevant for the considered benchmarks. Hand-crafted meta-features are extracted using BYU metalearn library. In total, we extracted 43 meta-features.

B.4.3 . Hyper-parameter spaces.

In Task 2, the hyper-parameter configuration spaces of each algorithm are summarized in Table B

C.4 . Computational effort

C.5 . The stability of the intrinsic dimension

In Table C.5, we investigate how the intrinsic dimension varies when considering various numbers of datasets in OpenML. It is observed that the intrinsic dimension tends to increase with the number of considered datasets, particularly so for SVM. This suggests that the hyper-parameter configurations investigated in the OpenML benchmark are not sufficiently representative of the (good regions of the) configuration space.

C.6 . Detailed results

Figure 1 :

 1 Figure 1: Outline of the thesis. The contributions are depicted by square.

Figure 2 . 1 :

 21 Figure 2.1: Non-exhaustive list of state-of-the-art approaches for HPO.

1 Figure 3 . 1 :

 131 Figure 3.1: Overview of meta-learning approaches, inspired from Vanschoren [2019].

]: select arg max a μs.a + C ucb log n(s) n(s.a) (4.1) with μs.a the average reward gathered over all tree-walks with prefix s.a, n(s) (resp. n(s.a)) the number of visits to node s (resp. node s.a), and C ucb a problem-dependent constant that controls the exploitation vs exploration tradeoff;

Figure 4 . 1 :

 41 Figure 4.1: Monte-Carlo Tree Search: each iteration includes four phases, from[START_REF] Chaslot | Monte-Carlo Tree Search: A New Framework for Game AI[END_REF]

 Incomplete pipeline s. let a last be the last algorithm in s while a last is a non-leaf node of the MCTS tree do a ← Select child node of a last using Equation 4Incomplete pipeline s. return argmax a Q F (s, a) Procedure Playout(s) input : Incomplete pipeline s. let S be a set of complete pipelines drawed from D[X(s)] /* Neighbors(x) outputs the neighbors of pipeline x. */ N ← Neighbors(x * s), with x * s ∈ X(s) best pipeline seen so far compatible with s return argmax x∈S∪N EI(x) Procedure Mosaic(T, d) input : Number of iterations T , dataset d. for t in {1..T } do s ← Selection(Ø) a ← Expansion(s) x← Playout(s.a) Train pipeline x on dataset d and observe performance r n(a) ← 1; Q(s, a) ← r foreach a ∈ ancestors(s) Performance F(x) is back-propagated up the tree along the current path, and the Q value attached to each node of the path is updated. Example (x, F(x)) is added to the surrogate training set, and the surrogate performance model F is trained anew.

Figure 4 . 2 :

 42 Figure 4.2: Average performance ranks (lower is better) on OpenML-100 vs CPU time of the Vanilla versions of Mosaic (bottom), Auto-Sklearn (middle), and TPOT (top). Better seen in color.

Figure 4 . 3 :

 43 Figure 4.3: Performance of Mosaic (y-axis) versus Auto-Sklearn (x-axis) on OpenML-100. Datasets for which the difference is statistically significant (resp. insignificant) after Mann Whitney Wilcoxon test with confidence 5% are represented with a × (resp •).

Figure 4 . 4 :

 44 Figure 4.4: Average performance rank (lower is better) on OpenML-100 vs CPU time of the different variants of Mosaic (bottom curve on all plots but the Metalearning) and Auto-Sklearn.

 The impacts of the MetaLearning and Ensemble heuristics are displayed on Figure4.4. The difference noted for the Vanilla variants (with Mosaic mostly dominating Auto-Sklearn) is less visible for the Ensemble variants. For the MetaLearning variants and MetaLearning + Ensemble variants, the difference between Auto-Sklearn and Mosaic is no longer statistically significant.

Figure 4 .

 4 Figure 4.5 displays the respective impacts of the Mosaic variants, showing the ranks of the Vanilla, MetaLearning, Ensemble and MetaLearning+Ensemble

Figure 4

 4 Figure 4.5: Average performance rank (lower is better) of Mosaic variants on OpenML-100.

 performances versus time. The main improvement is due to the MetaLearning strategy, yielding a better initialization of the optimization process. Overall, the best variant is the one combining MetaLearning and Ensembling, although the Ensembling variant standalone yields a very moderate improvement on the Vanilla variant.

Figure 4 . 6 :

 46 Figure 4.6: Sensitivity study w.r.t. C ucb and coefficient of progressive widening (during expansion phase): Average rank of Mosaic.Vanilla (for n r = 100) w.r.t. Auto-Sklearn.Vanilla (the lower, the better). Better seen in color (the darker the better).

Figure 4 . 7 :

 47 Figure 4.7: Sensitivity study w.r.t. parameter n s : Average rank of Mosaic.Vanilla (for C ucb = 1.3 and P W = 0.6) w.r.t. Auto-Sklearn.Vanilla. Better seen in color (Mosaic in blue and Auto-Sklearn in red).

], discrete measures[START_REF] De Bie | Stochastic Deep Networks[END_REF], invariant[START_REF] Haggai Maron | On the Universality of Invariant Networks[END_REF] and equivariant[Keriven and Peyré 2019] graph neural networks.[START_REF] Haggai Maron | On Learning Sets of Symmetric Elements[END_REF]] presents a neural architecture invariant w.r.t. the ordering of points and their features, handling point clouds.

 instance and y i ∈ IR d Y the associated multi-label. With d X and d Y respectively the dimensions of the instance and label spaces, let d def. = d X + d Y . By construction, z is invariant under permutation on the sample ordering; it is viewed as an n-size discrete distribution 1 n n i=1 δ z i in IR d with δ z i the Dirac function at z i . In the following, Z n (IR d) denotes the space of such n-size point distributions, and Z(IR d) def. = ∪ n Z n (IR d) denotes the space of distributions of arbitrary size. Let G def. = S d X ×S d Y denote the group of permutations independently operating on the feature and label spaces. For

 with ρ an activation function, A k a (d k , d k+1) matrix and b k a d k+1 -dimensional vector. The Dida neural net thus is parameterized by ζ def.

Figure 5 . 1 :

 51 Figure 5.1: Learning meta-features with Dida. (Up) The Dida architecture (FC for fully connected layer). (Bottom left) Task 1: Learning meta-features for patch identification using a Siamese architecture (Section 5.5.2). (Bottom right) Task 2: learning meta-features for ranking hyper-parameter configurations θ 1 and θ 2 (Section 5.5.3).

Task 1 ,

 1 an example is made of a pair of patches (z, z), together with its associated label (z, z), set to 1 iff z and z' are extracted from the same initial dataset u and n z = n z .For all considered architectures, the parameters are trained using a Siamese architecture (Figure5.1, bottom-left; Algorithm 3. The learned classifier ˆ ζ (z, z) is the softmax exp (-||F ζ (z) -F ζ (z)|| 2), with F ζ (z) and F ζ (z) the meta-features computed for z and z , where ζ is trained to minimize the cross-entropy loss:

z 1 ,

 1 (F ζ , bench, N) input : A meta-feature extractor F ζ in {Dida, Dataset2Vec, Deep Sets, DSS, Hand-crafted}, a benchmark bench in {Toy, UCI, OpenML}, and a number of iterations z 2 , y ← generate_patches(bench)

Figure 6 . 1 :

 61 Figure 6.1: Top configurations of datasets A, B, and C, where B, in orange (resp. C, in green) is the nearest neighbor of A w.r.t. target (resp. basic) representation.

Figure 6

 6 Figure 6.2: 2-D Visualisation of the OpenML datasets in basic representation (legended with a 's) + their boostrapped augmentations.

Figure 6

 6 Figure 6.3: From basic to Metabu meta-features using Fused Gromov-Wasserstein. Basic (respectively Metabu) representations are depicted by circles (resp. squares). Target representations are depicted in the rightmost subplot. Neighbor datasets in the target space have same color in all subplots.

Figure 6

 6 Figure 6.5: Metabu: Sensitivity of NDCG@10 w.r.t. α and λ, comparatively to Auto-Sklearn (darker is better).

 Figure 6.6: Comparative importance of meta-features for RandomForest Vs Adaboost (a), Auto-Sklearn (b) and Support Vector Machines (c). The specific Auto-Sklearn meta-features are recognized as their name begins with a capital letter.

Remark 4 .

 4 (Generalization to arbitrary invariance groups) The definition of invariant ϕ can be generalized to arbitrary invariance groups operating on IR d , in particular sub-groups of the permutation group S d . After Maron et al. [2020] (Theorem 5), a simple and only way to design an invariant linear function is to consider ϕ(z, z) = ψ(z + z) with ψ being G-invariant. How to design invariant functions in the general non-linear case is left for further work.

=

 S j ϕ j dα. One has, denoting ∆ j def.= max x∈Sj ||x j -x||, W 1 (α N , α) ≤ max 1≤j≤N ∆ j .Lemma 2. Let f : R d → R q a 1/p-Hölder continuous function (p ≥ 1), then there exists a constant C > 0 such that for all α, β ∈ P(IRd), W 1 (f α, f β) ≤ C W 1 (α, β) 1/p .Proof. For any transport map π with marginals α and β, 1/p-Hölderness of fwith constant C yields ||f (x) -f (y)|| 2 dπ(x, y) ≤ C ||x -y|| 1/p 2 dπ(x, y) ≤ C ||x -y|| 2 dπ(x, y)1/p using Jensen's inequality (p ≤ 1). Taking the infi-mum over π yields W 1 (f α, f β) ≤ C W 1 (α, β) 1/p .Now we are ready to dive into the proof. Let α ∈ P(IR d). We consider:• h : x = (x 1 , . . . , x d) ∈ R d → 1≤j 1 <...<j i ≤d x j 1 • . . . • x j i i=1...d ∈R d the collection of d elementary symmetric polynomials; h does not lead to a loss in information, in the sense that it generates the ring of S d -invariant polynomials (see for instance Cox et al. [2018], chapter 7, theorem 3) while preserving the classes (see the proof of Lemma 2, appendix D from Maron et al. [2020]); • h is obviously not injective, so we consider π : R d → R d /S d the projection onto R d /S d : h = h • π such that h is bijective from π(Ω) to its image Ω , compact of R d ; h and h-1 are continuous;

)

 Let I = [0; 1] and, for k ∈ [1; d m], F k : P(I k) → IR continuous and S k -invariant. Suppose (F k) k=1...dm-1 are restrictions of F dm , namely, ∀α k ∈ P(I k), F k (α k) = F dm (α k ⊗ δ ⊗dm-k 0). Then functions f and g from Theorem 1 are uniform: there exists f, g continuous, h 1 , . . . , h dm continuous invariant such that∀k = 1 . . . d m , ∀α k ∈ P(I k), |F k (α k) -f • IE • g(h k α k)| < .Proof. Theorem 1 yields continuous f, g and a continuous invariant h dm such that ∀α ∈ P(I dm),|F dm -f • IE • g(h dm α)| < . For k = 1 . . . d m -1, we denote h k : (x 1 , . . . , x k) ∈ IR k → ((1≤j 1 <...<j i ≤k x (j 1) •. . .•x (j i)) i=1...k , 0 . . . , 0) ∈ IR dm . With the hypothesis, for k = 1 . . . d m -1, α k ∈ P(I k), the fact that h k (α k) = h dm (α k ⊗ δ ⊗dm-k 0 yields the result.Approximation by invariant neural networks. Based on theorem 1, F is uniformly close to f • E • g • h:

 hence the theorem is applicable as long as λ is a nonconstant, bounded and continuous activation function. Let us focus on the third term. Uniform continuity of f θ yields the existence of δ > 0 s.t.||u -v|| 1 < δ implies |f θ (u) -f θ (v)| < 3 .Let us apply the UAT: each component ϕ j of h can be approximated by a neural network ϕ j,θ . Therefore:||IE X∼α (ϕ(X) -ϕ θ (X)) || 1 ≤ IE X∼α ||ϕ(X) -ϕ θ (X)|| 1 ≤ N j=1 Ω |ϕ j (x) -ϕ j,θ (x)|dα(x)

=

 F : P(Ω) /∼ → IR, ∃n ∈ NN, ∃ϕ : Ω n → IRinvariant, ∀α, F(α) = Ω n ϕdα ⊗n

DSS

 layer details. We built our own implementation of invariant DSS layers, as follows. Linear invariant DSS layers (see[START_REF] Haggai Maron | On Learning Sets of Symmetric Elements[END_REF], Theorem 5, 3.) are of the formL inv : X ∈ IR n×d → L H (n j=1 x j) ∈ IR K (B.3)where L H : IR d → IR K is a linear H-invariant function. Our applicative setting requires that the implementation accommodates to varying input dimensions d as well as permutation invariance, hence we consider the Deep Sets representation (seeZaheer et al. [2017], Theorem 7)L H : x = (x 1 , . . . , x d) ∈ IR d → ρ d i=1 ϕ(x i) ∈ IR K (B.4)where ϕ : IR → IR d+1 and ρ : IR d+1 → IR K are modelled as (i) purely linear functions; (ii) FC networks, which extends the initial linear setting (B.3). In our case, H = S d X × S d Y , hence, two invariant layers of the form (B.3-B.4) are combined to suit both feature-and label-invariance requirements. Both outputs are concatenated and followed by an FC network to form the DSS meta-features.The last experiments use DSS equivariant layers (see[START_REF] Haggai Maron | On Learning Sets of Symmetric Elements[END_REF], Theorem 1), which take the form L eq : X ∈ IR n×d →

 and followed by and MLP with FC(1024)-ReLU-FC(700)-ReLU-FC(512) layers. The so-called No-FInv-DSS baseline defined as such, can be summed up as follows z ∈ Z(IR d) → MLP([L(z); ȳ]) (B.7)

Figure C. 1 :

 1 Figure C.1: Metabu computational effort: average runtime of the metafeature extraction (in blue) and Metabu training (in orange). The average training time of one hyper-parameter on Adaboost (green), Random Forest (red) and SVM (purple) pipelines are added for comparison.

Figure C. 1

 1 Figure C.1 indicates the runtime 1 for pre-processing (extracting the 135 metafeatures, top row), and for training Metabu (second row). The average training time for learning one model is indicated for comparison (from row 3 to 5: Adaboost, RandomForest and SVM).

Figure C. 2 :

 2 Figure C.2: Pairwise comparison of Metabu with baseline metafeatures on Random Forest pipeline. Left: the average ranks. Right: the p-value assessing the statistical significance of the ranks according to the Mann-Whitney Wilcoxon test; the black horizontal line indicates the significance threshold p-value=0.05.

Figure C. 3 :

 3 Figure C.3: Pairwise comparison of Metabu with baseline metafeatures on Adaboost pipeline. Left: the average ranks. Right: the p-value assessing the statistical significance of the ranks according to the Mann-Whitney Wilcoxon test; the black horizontal line indicates the significance threshold p-value=0.05.

Figure C. 4 :

 4 Figure C.4: Pairwise comparison of Metabu with baseline metafeatures on SVM pipeline. Left: the average ranks. Right: the pvalue assessing the statistical significance of the ranks according to the Mann-Whitney Wilcoxon test; the black horizontal line indicates the significance threshold p-value=0.05.

Table 4 .

 4

	Vanilla	21	6	10	35	18	8
	Ensemble	11	12	6	38	16	15
	MetaLearning	15	14	8	24	23	14
	MetaL+Ens.	15	17	2	24	19	21

1: Per dataset comparison statistics of the median performance between Mosaic and Auto-Sklearn variants, with Mann-Whitney-Wilcoxon test confidence level of 5% or not.

on 18 datasets and both systems crashed on 2 datasets.

Table 5

 5

	.1): TOY and UCI, taken

 .1). In

			Datasets		Patches
		# datasets # samples	# features # samples # features
	Toy Dataset	10000	[2048, 8192]	2	200	2
	UCI	121	[10, 130064]	[3, 262]	[200, 500]	[2, 15]
	OpenML CC-18	72	[500, 100000] [5, 3073]	[700, 900]	[3, 11]

Table 5 .

 5 1: Benchmarks and patches characteristics.

Table 5 .

 5 2: Comparative performances on patch identification of Dida, No-FInv-DSS, Dataset2Vec, DSS and functions of hand-crafted metafeatures: average and std deviation of predictive accuracy over 10 runs.

78.41 %± 0.41 84.14 %± 0.02 89

], of size n uniformly drawn in [700; 900] Sample (θ, θ), two configurations of Alg (Table B.3) %± 0.41 75.39 %± 0.29 86.41 %± 0.419 65.44 %± 0.73 Dataset2Vec 74.43 %± 0.90 81.75 %± 1.85 89.18 %± 0.45 72.90 %± 1.13 DSS (Linear aggregation) 73.46 %± 1.44 82.91 %± 0.22 87.93 %± 0.58 70.07 %± 2.82 DSS (Equivariant+Invariant) 73.54 %± 0.26 81.29 %± 1.65 87.65 %± 0.03 68.55 %± 2.84 DSS (Non-linear aggregation) 74.13 %± 1.01 83.38 %± 0.37 87.92 %± 0.27 73.07 %± 0.77 .77 %± 0.50 78.

	Algorithm 4: Hyper-parameter Ranking	
	1 Procedure Task_2(F ζ , Alg)		
		input : A meta-feature extractor F ζ in {Dida, Dataset2Vec,
		Deep Sets, DSS, Hand-crafted}, an algorithm Alg in
		{SGD, SVM, LR, k-NN}.		
	3 3	NN ← 2-layer fully connected neural network
	4	for i = 1, 2, ... do			
	6 6	z ← generate_patch(OpenML)	
	8 8				
	10 10	Set binary target y as 1 if accuracy(z, θ) >
		accuracy(z, θ) else 0		
	12 12	Compute loss (Equation 5.8) between y and
		NN([F ζ (z); θ; θ])		
	14 14	Update ζ and NN		
	15	end			
		Method	SGD	SVM	LR	k-NN
		Hand-crafted 71.18 DIDA (1 invariant layer) 77.31 %± 0.16 84.05 %± 0.71 90.16 %± 0.17 74.41 %± 0.93
		DIDA (2 invariant layers)			

91 %± 0.54

	Table 5.3: Comparative performances on configuration ranking of
	Dida, Dataset2Vec, DSS and functions of hand-crafted meta-features:
	average and std deviation of pairwise ranking performance over 3 runs.

and number of features d in

Table A

 A

		Parameter	Type	Domain	Default
	passive_aggressive	C	real (log)	[1e-05,10.0]	[1.0]
	passive_aggressive	average	categorical	False,True	[False]
	passive_aggressive	fit_intercept	categorical	True	[True]
	passive_aggressive	loss	categorical	hinge,squared_hinge	[hinge]
	passive_aggressive	tol	real (log)	[1e-05,0.1]	[0.0001]
	qda	reg_param	real	[0.0,1.0]	[0.0]
	random_forest	bootstrap	categorical	True,False	[True]
	random_forest	criterion	categorical	gini,entropy	[gini]
	random_forest	max_depth	categorical	None	[None]
	random_forest	max_features	real	[0.0,1.0]	[0.5]
	random_forest	max_leaf_nodes	categorical	None	[None]
	random_forest	min_impurity_decrease categorical	0.0	[0.0]
	random_forest	min_samples_leaf	integer	[1,20]	[1]
	random_forest	min_samples_split	integer	[2,20]	[2]
	random_forest	min_weight_fraction_leaf categorical	0.0	[0.0]
	random_forest	n_estimators	categorical	100	[100]
	sgd	alpha	real (log)	[1e-07,0.1]	[0.0001]
	sgd	average	categorical	False,True	[False]
	sgd	fit_intercept	categorical	True	[True]
	sgd	learning_rate	categorical optimal,invscaling,constant [invscaling]
	sgd	loss	categorical	hinge, log ,modified_huber, squared_hinge, perceptron	[log]
	sgd	penalty	categorical	l1,l2,elasticnet	[l2]
	sgd	tol	real (log)	[1e-05,0.1]	[0.0001]
	sgd	epsilon	real (log)	[1e-05,0.1]	[0.0001]
	sgd	eta0	real (log)	[1e-07,0.1]	[0.01]
	sgd	l1_ratio	real (log)	[1e-09,1.0]	[0.15]
	sgd	power_t	real	[1e-05,1.0]	[0.5]
	xgradient_boosting	base_score	categorical	0.5	[0.5]
	xgradient_boosting	booster	categorical	gbtree,dart	[gbtree]
	xgradient_boosting	colsample_bylevel	real	[0.1,1.0]	[1.0]
	xgradient_boosting	colsample_bytree	real	[0.1,1.0]	[1.0]
	xgradient_boosting	gamma	categorical	0	[0]
	xgradient_boosting	learning_rate (log)	real	[0.001,1.0]	[0.1]
	xgradient_boosting	max_delta_step	categorical	0	[0]
	xgradient_boosting	max_depth	integer	[1,20]	[3]
	xgradient_boosting	min_child_weight	integer	[0,20]	[1]
	xgradient_boosting	n_estimators	categorical	512	[512]
	xgradient_boosting	reg_alpha (log)	real	[1e-10,0.1]	[1e-10]
	xgradient_boosting	reg_lambda (log)	real	[1e-10,0.1]	[1e-10]
	xgradient_boosting	scale_pos_weight	categorical	1	[1]
	xgradient_boosting	subsample	real	[0.01,1.0]	[1.0]
	lda	shrinkage_factor	real	[0.0,1.0]	[0.5]
	libsvm_svc	coef0	real	[-1.0,1.0]	[0.0]
	libsvm_svc	degree	integer	[2,5]	[3]
	xgradient_boosting	normalize_type	categorical	tree,forest	[tree]
	xgradient_boosting	rate_drop	real	[1e-10,0.9999999999]	[0.5]
	xgradient_boosting	sample_type	categorical	uniform,weighted	[uniform]
	.3: Configuration space of learning algorithm (1/2)

Table A

 A Let X ∈ R(IR d) denote a random vector on IR d with α X ∈ P(IR d) its law (a positive Radon measure with unit mass). By definition, its expectation denotedIE(X) reads IE(X) = I R d xdα X (x) ∈ IR d ,and for any continuous functionf : IR d → IR r , IE(f (X)) = I R d f (x)dα X (x).In the following, two random vectors X and X with same law α X are considered indistinguishable, noted X ∼ X. Letting f : IR d → IR r denote a function on IR d , the pushforward operator by f , noted f : P(IR d) → P(IR r) is defined as follows, for any g continuous function from IR d to IR r (g in C(IR d ; IR r)):

	B -Supplementary Material -Dida
	B.1 . Extension to arbitrary distributions
	General notations.
	.4: Configuration space of learning algorithm (2/2)

 This paragraph details the result in the case of S d -invariance, while the next one focuses on invariances w.r.t. products of permutations. Before providing a proof of Theorem 1 we first state two useful lemmas. Lemma 1 is mentioned for completeness, referring the reader to De Bie et al. [2019], Lemma 1 for a proof.

 .1. A patch is defined by (i) retaining n examples uniformly selected with replacement in this initial dataset; (ii) retaining d X features uniformly selected with replacement among the initial features.

		Patch Identification Ranking Hyper-parameter
	Dataset	TOY	UCI	OpenML
	# Features	2	[2, 15]	[3, 11]
	# Examples 200	[200, 500]	[700, 900]

Table B .

 B 1: Patch characteristics B.4.2 . Baseline DetailsDataset2Vec details. The publicly available implementation of Dataset2Vec 1 is implemented in TensorFlow, which is incompatible with our evaluation pipeline written in PyTorch. For this reason, we have included as baselines: (i) the reported accuracy from Jomaa et al.[2021]; (ii) the computed accuracy from our own implementation of Dataset2Vec, based on a uniform sampling of the features. As said, this implementation only aims at solely making up for the feature sampling procedure. The architecture is the same as reported in Jomaa et al.[2021], Equation4, namelyD : z ∈ Z n (IR d) → h 1 d X d Ywhere functions f, g, h characterizing the architecture are chosen as depicted in the publicly available file conf ig.py 2 . More precisely, f, g are FC(128)-ReLU-ResFC(128, 128, 128)-FC(128) and h is FC(128)-ReLU-FC(128)-ReLU where ResFC is a sequence of fully connected layer with skip connection. We provide our implementation of Dataset2Vec in the supplementary material.

				d X	d Y	
	g	n 1	i=1 n	m=1 f (x i [m], y i [t])	t=1	(B.2)

 .3.

	Methods		Parameters
	balancing		strategy
	adaboost	learning_rate, max_depth, n_estimators
	bernoulli_nb		fit_prior
		max_depth_factor, max_features, max_leaf_nodes,
	decision_tree	min_impurity_decrease, min_samples_leaf, min_samples_split,
		min_weight_fraction_leaf
		criterion, max_depth, max_features,
	extra_trees	max_leaf_nodes, min_impurity_decrease, min_samples_leaf,
		min_samples_split, min_weight_fraction_leaf
		l2_regularization, learning_rate, loss,
	gradient_boosting	max_bins, max_depth, max_leaf_nodes, min_samples_leaf, scoring, tol,
		n_iter_no_change, validation_fraction
	k_nearest_neighbors		p, weights
	lda		tol, shrinkage_factor
		dual, fit_intercept, intercept_scaling,
	liblinear_svc	loss, multi_class, penalty,
		tol	gamma, kernel, max_iter,
	libsvm_svc		shrinking, tol, coef0,
			degree
		alpha, batch_size, beta_1,
		beta_2, early_stopping, epsilon,
	mlp	hidden_layer_depth, learning_rate_init, n_iter_no_change,
		num_nodes_per_layer, shuffle, solver,
		tol, validation_fraction
	multinomial_nb		fit_prior
	passive_aggressive qda		average, fit_intercept, loss, tol reg_param
		criterion, max_depth, max_features,
	random_forest	max_leaf_nodes, min_impurity_decrease, min_samples_leaf,
		min_samples_split, min_weight_fraction_leaf
		average, fit_intercept, learning_rate,
	sgd	loss, penalty, tol, epsilon, eta0, l1_ratio,
		power_t
		criterion, max_depth, max_features,
	extra_trees_preproc_for_classification	max_leaf_nodes, min_impurity_decrease, min_samples_leaf,
		min_samples_split, min_weight_fraction_leaf, n_estimators
	fast_ica		fun, whiten, n_components
	feature_agglomeration	linkage, n_clusters, pooling_func
	kernel_pca		n_components, coef0, degree, gamma
	kitchen_sinks		n_components
		dual, fit_intercept, intercept_scaling,
	liblinear_svc_preprocessor	loss, multi_class, penalty,
	nystroem_sampler	tol	n_components, coef0, degree, gamma
	pca		whiten
	polynomial		include_bias, interaction_only
	random_trees_embedding	max_depth, max_leaf_nodes, min_samples_leaf, min_samples_split, min_weight_fraction_leaf, n_estimators
	select_percentile_classification		score_func
	select_rates_classification		score_func, mode
	Table C.2: List of hyper-parameters considered in Auto-Sklearn
	pipeline.		

Note that this does not preclude the existence of an optimal e.g. pipeline in the context of a given task domain.

Although the NFL relies on the rather unrealistic assumption of a uniform distribution on the set of all possible problem instances.

Addressing this algorithmic noise is out of the scope of the presented work.

In pipeline θ ∈ Θ, the binary variable associated to each pipeline component takes the value true iff this component is part of θ.

Of course, this claim reminds the famed No Free Lunch theorem[START_REF] Wolpert | No Free Lunch Theorems for Search[END_REF]. A key difference however is that the set of tasks considered here is far from being uniform on the space of all tasks.

Even in the case of distributions defined on spaces of same dimensions, distances among distributions such as the Kullback Leibler divergence or the optimal transport raise issues related to the ill-definedness of KL divergence in the general case, or the computational cost of optimal transport[Ganin et al.

2016].

Furthermore, the optimization of θ(a i) is of varying dimension, possibly depending on the value of some coordinates in θ(a i), e.g. the number of neural layers controls the dimension of the neural layer size.

Note that, since the purpose of Q F (s, a) is to estimate the importance of an algorithm a, other alternative approaches[START_REF] Hutter | An Efficient Approach for Assessing Hyperparameter Importance[END_REF],[START_REF] Van Rijn | Hyperparameter Importance Across Datasets[END_REF] can be adopted to compute this estimate more efficiently.

The average was also considered, giving very similar results, except in rare cases of heavily failed runs.

Formally, one selects every (a , θ) such that either a = a * and θ differs from θ * by a single hyper-parameter value; or a differs from a * by a single decision and θ is the default hyper-parameter vector θ(a).

AlphaD3M[START_REF] Drori | Automatic Machine Learning by Pipeline Synthesis using Model-Based Reinforcement Learning and a Grammar[END_REF] and AutoStacker[START_REF] Chen | Autostacker: a compositional evolutionary learning system[END_REF] could not be considered due to the lack of a public code.

This section describes the core of the proposed Dida architecture, specifically the mechanism of mapping a point distribution onto another one subject to sample and feature permutation invariance, referred to as invariant layer. For the sake of readability, the following presentation of the approach and its properties only considers the discrete probability case; the continuous probability case and the proofs in the discrete and continuous cases are presented inAppendix B.3 and B.2.

When Ω x = Ω y = Ω, unless otherwise stated, the transport cost c(x, y) is the Euclidean distance d(x, y).

Only non-expensive landmark meta-features are considered in the following.

For each -size dataset E in the benchmark suite, K = 1, 000 new datasets F 1 , . . . F K are generated, where F i includes examples selected in E uniformly with replacement. The basic representation of F i is computed, and its target representation is set to that of E.

4 Early attempts to define Θ i in a more sophisticated way, e.g. using t-test to distinguish the "good" configurations from the others, led to an uninformative target representation. A tentative interpretation for this fact is that quite a few OpenML datasets are very easy, leading to retain all configurations for these datasets and

• For a given ψ, the inner optimization problem consists of minimizing d F GW,α (ψ x, u) (Equation6.1). Metabu leverages the optimization approach proposed in Xu et al. [2019b , a , 2020], also described in Section 6.2, to efficiently compute d F GW,α . In the experiments, the number of iterations for refining γ is set to 10 and Sinkhorn iterations to 5.blurring the target representation.

Over the iteration, test performance is only observed when the validation performance is improved.

We are grateful to the anonymous ICLR reviewer, who challenged us to explain this surprising result.

See https://github.com/hadijomaa/dataset2vec

See https://github.com/hadijomaa/dataset2vec/blob/master/config.py

On Intel(R) Xeon(R) CPU E5-2660 v2 @

2.20GHz.

Remerciements

A Supplementary Material -Mosaic

A. Lemma 3. Let the collection of symmetric invariant polynomials

Proof. The result comes from the fact the fundamental theorem of symmetric polynomials (see [START_REF] David A Cox | Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra[END_REF]

Proof. Without loss of generality, we consider d > p so that max(d, p) = d, and f, g normalized (f.i. ∀x,

since both f, g are Hölder. We denote D the diameter of Ω, such that both ||x - As said, the OpenML benchmark includes 72 datasets, with only 64 of them having a target representation. The other 8 datasets are too heavy (e.g. ImageNet) to launch the many runs required to estimate their target representation.

For Task 1, the performance indicator is measured along a Leave-One-Out procedure, with 64 folds: in each fold, all datasets but one are used to train the Metabu meta-features; the NDCG@k is measured on the remaining dataset. Eventually, the NDCG@k are averaged over all 64 folds.

For Tasks 2 and 3, the performance indicator is likewise measured using a Leave-One-Out procedure with 64 folds. The difference is that besides the remaining dataset, the 8 datasets with no target representation at all are also used as test datasets.

In Tasks 2 and 3, the performance associated with a hyper-parameter configuration for a dataset is computed after training the model on 1 CPU with time budget of 15 mn, with memory less than 8Gb, using the train/validation/test splits given by OpenML; the validation score is estimated using a 5-CV strategy.

In Task 2, for each test dataset and meta-feature set mf :

is defined, with z the target representation of the -th neighbor of the considered dataset, among the training datasets, according to the Euclidean distance based on the meta-features.

• For 1 ≤ t ≤ T , a hyper-parameter configuration is independently drawn from ẑmf , and a model is learned using this configuration;

• The performance of this model is measured on a validation dataset;

• The model with best validation performance up to iteration t is retained for each meta-feature set;

• The rank r(t, mf) is determined by comparing the performance on the test set, of the models retained for each meta-feature set.

• The performance curve reports r(t, mf), averaged over test datasets.

In Task 3, the meta-features are used to initialize the performance model: Table C.1: Hyper-parameter ranges of Adaboost, Random Forest and SVM

• In Auto-Sklearn, the performance model for Auto-Sklearn is initialized as follows. The best configurations for the top-10 neighbors of the current dataset are retained and run on the current dataset; their performance is used to initialize the Bayesian Optimisation search using the SMAC BO implementation [START_REF] Hutter | Sequential Model-Based Optimization for General Algorithm Configuration[END_REF]]. These top-10 neighbors are computed using the Euclidean distance on the meta-feature set. Note that Auto-Sklearn meta-features were crafted to achieve automatic configuration selection in the context of the Auto-Sklearn pipeline [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF]], thus constituting a most strong baseline on Task 3.

• For PMF, the best configurations for the top-5 neighbors of the current dataset are likewise selected; their performance is computed to fill the row of the collaborative matrix associated to the current dataset, and determine the latent representation of the current dataset. The probabilistic model learned from the matrix is used to select further hyper-parameter configurations; their performances are computed and used to refine the latent representation of the dataset.

C.2 . The hyper-parameter configuration spaces

The hyper-parameters used for Adaboost, Random Forest and SVM and their range are detailed in Tables C.1 and C.2. For Auto-Sklearn, we only included the list of considered hyper-parameters; their ranges are detailed in Auto-Sklearn [Feurer et al. 2015a]. The hyper-parameter space used in PMF is the same as in Auto-Sklearn. The Metabu implementation uses the ConfigSpace library [START_REF] Lindauer | BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters[END_REF] to manage the hyper-parameters. On Random Forest pipeline, Metabu performs on par with SCOT metafeatures. Whereas its improvement over Landmark MF is only significant between the (approximately) 8th and 23rd iteration, Metabu consistently outperforms Random and Auto-Sklearn meta-features along the iterations.

C.3 . List of meta-features

On Adaboost, Metabu performs similarly as Landmark meta-features. Interestingly, Metabu always has a better average rank than the baselines except for the first two iterations of the Auto-Sklearn baseline. It is seen that the p-value is most generally below the threshold .05, establishing the statistical significance of the rank performance.

Lastly, the gaps in performance for SVM are striking. Metabu consistently outperforms all the baselines meta-features with high confidence.

C.8 . Sensitivity Analysis of d

Table C.9 reports the NDCG@k performance of Metabu on Task 1 for varying values of d, showing that: i) the best results are obtained for the intrinsic dimension in the vast majority of cases; ii) the sensitivity w.r.t. d is very moderate.

The intrinsic dimension d of the OpenML benchmark is circa 6 for Auto-Sklearn, 8 for Adaboost, 9 for RandomForest and 14 for Support Vector Machines.

C.9 . Performance Curves