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Résumé: Cette thése présente trois principales
contributions afin d'améliorer I'état de l'art de
ces approches AutoML. Elles sont divisées en-
tre deux thémes de recherche: ['optimisation et
meta-apprentissage. La premiére contribution con-
cerne un algorithme d'optimisation hybride, ap-
pelé Mosaic, qui exploite les méthodes MCTS et
optimisation bayésienne pour résoudre respective-
ment la sélection des algorithmes et la configu-
ration des hyperparamétres. L'évaluation, con-
duite a travers le benchmark OpenML 100, mon-
tre que la performance empirique de Mosaic sur-
passe ceux des systémes d'AutoML de I'état de
I'art (Auto-Sklearn et TPOT). La deuxiéme con-
tribution introduit une architecture de réseau neu-
ronal, appelée Dida, qui permet d'apprendre des
descripteurs de données invariants a la permu-
tation de colonnes et d'exemples. Deux tiches
(classification des patchs et prédiction des per-

formances) sont considérées lors de I'évaluation
de la méthode. Les résultats de Dida sont en-
courageants comparés a ceux de ses concurrents
(Dataset2 vvec et DSS). Enfin, la troisiéme con-
tribution, intitulée Metabu, vise a surmonter les
limites de Dida a opérer sur de vrais jeux de don-
nées d'AutoML. La stratégie de Metabu comporte
deux étapes. Tout d'abord, une topologie idéale
de ces jeux de données, basée sur les meilleurs
hyperparamétres, est définie. Puis, une transfor-
mation linéaire d es descripteurs manuels est ap-
prise pour les aligner, selon un critére de transport
optimal, avec la représentation idéale. Les com-
paraisons empiriques montrent que les descripteurs
Metabu sont plus performants que les descripteurs
manuels sur trois problémes différents (évaluation
du voisinage des jeux de données, recommanda-
tion d'hyperparamétres, et initialisation d'un algo-
rithme d'optimisation).

Title: Some contributions to AutoML: Hyper-parameter Optimization and Meta-learning
Keywords: AutoML, model selection, hyper-parameter tuning, meta-learning

Abstract: This thesis proposes three main con-
tributions to advance the state-of-the-art of Au-
toML approaches. They are divided into two
research directions: optimization (first contribu-
tion) and meta-learning (second and third con-
tributions).  The first contribution is a hybrid
optimization algorithm, dubbed Mosaic, leverag-
ing Monte-Carlo Tree Search and Bayesian Op-
timization to address the selection of algorithms
and the tuning of hyper-parameters, respectively.
The empirical assessment of the proposed ap-
proach shows its merits compar ed to Auto-sklearn
and TPOT AutoML systems on OpenML 100.
The second contribution introduces a novel neu-
ral network architecture, termed Dida, to learn
a good representation of datasets (i.e., meta-
features) from scratch while enforcing invariances
w.r.t features and rows permutations. Two proof-
of-concept tasks (patch classification and perfor-

mance prediction tasks) are considered. The pro-
posed approach yields superior empirical perfor-
mance compared to Dataset2Vec and DSS on both
tasks. The third contribution addresses the limita-
tion of Dida on handling standard dataset bench-
marks. The proposed approach, called Metabu,
relies on hand-crafted meta-features. The nov-
elty of Metabu is two-fold: i) defining an "ora-
cle" topology of datasets based on top-performing
hyper-parameters; ii) leveraging Optimal Trans-
port approach to align a mapping of the hand-
crafted meta-features with the oracle topology.
The empirical results suggest that Metabu meta-
feature outperforms the baseline hand-cr afted
meta-features on three different tasks (assess-
ing meta-features based topology, recommend-
ing hyper-parameters w.r.t topology, and warm-
starting optimization algorithms).
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Syntheése

Malgré les succés des algorithmes d'apprentissage statistique a résoudre de nombreuses taches com-
plexes, le choix et la configuration de ces modéles restent un probléme difficile en pratique. Cette nécessité
de choix et configuration s'élargit & toutes les étapes du traitement allant du nettoyage des données a
I'entrainement de modéle. L'approche AutoML (Automated Machine Learning) | | a sus-
cité énormément d'intérét dans la communauté de recherche durant les derniéres décennies afin de surmonter
ce probléme. Cette thése présente trois principales contributions afin d’améliorer I'état de I'art de ces ap-
proches AutoML. Elles sont divisées entre deux thémes de recherche: I'optimisation (premiére contribution)
et meta-apprentissage (deuxiéme et troisieme contributions).

La premiére contribution concerne un algorithme d'optimisation hybride, appelé Mosaic, qui exploite
les méthodes MCTS et optimisation bayésienne pour résoudre respectivement la sélection des algorithmes
et la configuration des hyperparamétres. L'évaluation, conduite & travers le benchmark OpenML 100,
montre que la performance empirique de Mosaic surpasse ceux des systémes d'AutoML de I'état de I'art
(Auto-Sklearn [ | et TPOT | D).

La deuxiéme contribution introduit une architecture de réseau neuronal, appelée Dida, qui permet
d'apprendre des descripteurs de données invariants a la permutation de colonnes et d'exemples. Deux taches
(classification des patchs et prédiction des performances) sont considérées lors de |'évaluation de la méthode.
Les résultats de Dida sont encourageants comparés a ceux de ses concurrents (Dataset2vvec |

] et DSS | -

Enfin, la troisiéme contribution, intitulée Metabu, vise & surmonter les limites de Dida a opérer sur
de vrais jeux de données d'AutoML. La stratégie de Metabu comporte deux étapes. Tout d'abord, une
topologie idéale, basée sur les meilleurs hyperparamétres, de ces jeux de données est définie. Puis, une
transformation linéaire des descripteurs manuels est apprise pour les aligner, selon un critére de transport
optimal, avec la représentation idéale. Les comparaisons empiriques montrent que les descripteurs Metabu
sont plus performants que les descripteurs manuels sur trois problémes différents (évaluation du voisinage,
recommandation d'hyperparamétres, et initialisation d'un algorithme d’optimisation).
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Introduction



RTIFICIAL Intelligence (Al) is ever more present in numerous real-life contexts,
A such as marketing | , ], health-
care [ : ], and transportation |

: |. However, the pervasive deployment of Al re-
mains in its infancy. Numerous research papers from conferences such as NeurlPS,
ICML, AAAI, and ICLR continue to make discoveries in the field of Al. These dis-
coveries yield a broader understanding of the theoretical and empirical proprieties
of approaches toward Al while also reducing their computational complexities. Fur-
thermore, tech companies are recently devoting more resources to implementing
recent Al advancements to solve real-life problems.

The emergence of Machine Learning (ML) is among the main reasons for the
recent success of Al. ML covers any method that learns from data, experiences, or
interactions. It has gained significant interest in the research community for myriad
reasons. For example, the current technological infrastructure and existing social
network platforms ease the collection and storage of data at an exponential rate.
In this context, world-renowned magazines [ , | argue
that data is the new oil of the 21st century, and only companies that can efficiently
exploit information will remain competitive. Fortunately, ML proposes intelligent
strategies to mine the available data by identifying patterns to support domain-
level decisions or learning recurring tasks for further automation. Another reason
for increased interest in Al comes from advancements in computing power, which
allow the adoption of ML models. Modern-day computing units (e.g., CPUs and
GPUs) are improving rapidly and, therefore, becoming more efficient and accessible
for companies.

However, the unprecedented success of ML models comes at the cost of the
complexity of choosing a suitable model. In the last fifty years, researchers have
proposed a wide variety of ML models, each one having its strengths and limita-
tions. A key challenge for adopting ML involves correctly choosing the model that
best fits the problem at hand. A traditional ML experiment often extends to addi-
tional steps such as data preparation, cleaning, and setting hyper-parameters. The
overall processing steps are called pipelines throughout the rest of the document.

In practice, researchers and data scientists rely on their experiences over similar
problems to find the most promising pipeline. While it allowed tuning state-of-the-
art Al models [ , ' , 1,
this manual approach is a tedious and error-prone task due to the enormous possi-
bilities of experiment settings. AutoML (Automated Machine Learning) aims thus
at addressing this limitation by automating the search process. Within the AutoML
context, three strategies are proposed in this thesis to improve the efficiency of the
search over the existing approaches.



Automated Machine Learning: AutoML

AutoML is a hot topic in Al, situated at the intersection of Machine Learning
and Optimization. It is a subfield of the long-dated research area of Algorithm
Selection (AS). AS was first tackled by Rice in 1976 in his seminal work The
Algorithm Selection Problem, paving the way for a large body of works (Chapter 1).

The AutoML research has received incredible interest from the Al community
over the last two decades. It is reflected by the successes of AutoML workshops
(from 2014 to 2021) and international AutoML challenges [ :

|; all confirm the growing tendency of AutoML papers and
interests.

The early AutoML competitions focus on tabular datasets, leading to the de-
velopment of Auto-Sklearn | |. After that, [ ]
organized further challenging tasks to tackle various domains, including computer
vision [ | and speech processing [ ]. Recently,

[ | proposed a competition on Meta-Learning to learn through a sequence
of ML tasks. These competitions played a crucial role in developing robust prac-
tical and theoretical AutoML systems [ ' : :

]
If numerous AutoML systems are available in open-source [ ,
|, they are often targeted for research purposes, operating on standard dataset
benchmarks | , ]. Several challenges
thus need to be addressed to fulfill the promise of AutoML to the best extent
possible [ ].

Technical challenges of the AutoML problem

The critical components of AutoML are two-fold. On the one hand, AutoML
relies on an optimization algorithm to search for the optimal ML experiment setting.
On the other hand, it requires learning from previously seen tasks to speed up the

optimization.
The optimization part, the core of AutoML, is the Hyper-Parameter Opti-
mization (HPO) | ]. The HPO problem involves a noisy,

expensive, and black-box optimization problem over a structured search space. An-
other critical challenge of HPO is to enforce the generalization to the hold-out test
instances of the dataset. Despite these difficulties, however, several Black-Box Op-
timization algorithms (e.g., Bayesian Optimization, Evolutionary Algorithms, and
Planning algorithms) remain appropriate for addressing the HPO problem.
AutoML can also leverage knowledge from previous similar tasks to speed up
the optimization (e.g., warm-starting HPO algorithms). This strategy is called
Meta-Learning, as it requires learning on a task level. In practice, Meta-Learning is
shown to drastically reduce the computational cost of HPO [ l. A

4



AutoML
(Chapter 1)

Hyper-parameter Optimization
(Chapter 2)

Meta-Learning
(Chapter 3)

[C1] - Mosaic [C2] - Dida [C3] - Metabu
(Chapter 4) (Chapter 5) (Chapter 6)

Figure 1. Outline of the thesis. The contributions are depicted by
square.

primary challenge of Meta-learning is the lack of a clear definition of task similarity
to support the learning. Nevertheless, the literature provides various approaches to
estimate this similarity. A first line of research is to learn task similarity during the
HPO, solely relying on the evaluated pipelines [ , ]
A second research direction is to map a task into a set of descriptors, termed meta-
features [ |, which are further leveraged to assess the similarity
between tasks. However, if the latter approach showed promising results to describe
optimization problems | , ], its efficiency for describing
machine learning tasks is limited [ ]. One of the purposes of
this thesis is to address this limitation.

QOutline of the Thesis

As illustrated in Figure 1, this thesis presents three contributions addressing
issues both in the Hyper-Parameter Optimization and Meta-Learning sides. It is
organized as follows.

Part | focuses on the formal background of the AutoML problem. Starting with
the motivation and context of the work, it then presents an overview of the Algo-
rithm Selection domain and, afterward, an introduction to AutoML (Chapter 1).
The state-of-the-art methods for HPO (Chapter 2) and Meta-Learning (Chapter 3)
are then described. Further, Parts Il and Il present the three contributions of the
thesis (details bellow). Lastly, this manuscript concludes with a summary of the
contributions and a discussion of the perspectives and future works direction.

The contributions are separated into two parts: one contribution for HPO
(Part I1) and two contributions for Meta-learning (Part Ill). They are described as
follows.



[C1] Monte Carlo Tree Search for Algorithm Configuration (Part II,
Chapter 4). This contribution, entitled Automated Machine Learning with
Monte-Carlo Tree Search | ], was published at the Twenty-
Eighth International Joint Conference on Artificial Intelligence. It addresses the
complexity of learning over structured search space induced by the sequence of
choice required to build an ML pipeline. Concretely, a pipeline describes the de-
pendencies of the processing steps, from data preparation to the training algorithm,
to yield an end-to-end ML experiment. The fundamental idea of this chapter is to
propose a hybrid algorithm: (a) a Monte-Carlo Tree Search (MCTS) strategy to
handle the algorithm selection part, (b) and a Bayesian Optimization (BO) algo-
rithm to deal with tunning the hyper-parameters. The proposed approach, dubbed
Mosaic, thus inherits the advantages of BO as being sample efficient and MCTS
suitable for the combinatorial nature of pipeline selection.

[C2] Distribution-Based Invariant Deep Networks for Learning
Meta-Features (Part Ill, Chapter 5). As mentioned earlier, Meta-Learning
uses task similarity to reduce the computational cost of an HPO running a new
task. For example, it can exploit knowledge from the most identical previously
seen task. The efficiency of the Meta-Learning, thus, critically depends on the
distance metric used to compare tasks. This chapter is concerned with defining
the task similarity with the help of meta-features. While current state-of-the-art
meta-features still rely on hand-made meta-features, this work considered a novel
perspective of learning them. Mainly, the contribution is a Neural Network ar-
chitecture, dumbed Dida, that handles tasks as input and outputs meta-features.
Since ML tasks have varying dimensions with invariance proprieties, the primary
difficulty is accommodating such constraints into a neural network. This work,
entitled Distribution-based invariant deep networks for learning meta-features, is
available as a preprint paper | |

[C3] Learning meta-features for AutoML (Part Ill, Chapter 6) This
contribution, called Learning meta-features for AutoML | ],
will appear at the Tenth International Conference on Learning Representations.
It is a follow-up on the previous contribution, mainly to mitigate Dida limita-
tions. Those limitations concern three barriers restraining the adoption of the
learned meta-features for AutoML. First, the most significant task benchmark avail-
able | | is insufficient to learn meta-features. Second, Dida does
not treat general tabular data because it does not handle data quality issues such
as categorical variables and missing values. The latter concerns depreciated its
relevance to the general AutoML tasks. Third, the target variable (meta-features
suitable for AutoML) is unavailable hence needs to be constructed in advance. The
proposed approach Metabu intends to pave the issues mentioned above to learn
task meta-features for AutoML.
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1 - Formal Background

AutoML is attracting considerable interest in the research community to make
machine learning algorithms more robust and support the deployment of these
ML algorithms into real production scenarios. This work aims to advance current
AutoML approaches to achieve this objective.

This first chapter introduces the formal background of the AutoML domain
to allow the reader to situate the contributions presented in the upcoming chap-
ters. Firstly, Section 1.1 presents the context and motivation behind AutoML.
Then, Section 1.2 reviews the AutoML acknowledged mother-field, namely Algo-
rithm Selection. Finally, Section 1.3 formally introduces AutoML, focusing on the
optimization problem tackled throughout this manuscript.

1.1 . Context & Motivation

1.1.1 . Context

Automated Machine Learning (AutoML) builds upon the fields of Algorithm
Selection (AS) and Algorithm configuration (AC) techniques to respectively select
and tune machine learning pipelines for a given task. In this context, ML pipeline
refers to the sequence of all the processing steps, from data preparation to training
ML model, yielding an end-to-end training of an ML model. Therefore, it involves
parameters; for simplicity, all pipeline parameters are called hyper-parameters.

The considered ML tasks include supervised learning (classification, regression),
unsupervised learning (clustering), and reinforcement learning problems. This the-
sis focuses on supervised learning, specifically the single label (binary and multi-
class) classification problem.

On the one hand, the algorithm selection is the process of choosing one out of a
set of possibilities, such as selecting the optimal learning algorithm from a collection
of classifier models. The Algorithm Selection problem was first formalized in
[ ]. It also pointed out various applications of AS, ranging from estimation to
artificial intelligence. Section 1.2 provides a detailed review of AS for completeness.

On the other hand, the algorithm configuration is the approach to set
hyper-parameter values, e.g., tuning the regularization parameter C' of the SVM
model | ]. Note, however, that, since the performance of an algo-
rithm tightly depends on its hyper-parameters, it is not uncommon for researchers
to combine AS and AC within the same optimization process (more in Section 2.2).

1.1.2 . Motivation
One of the primary motivations of AutoML is to handle the overwhelming
task of choosing an ML algorithm and configuring its hyper-parameters. Indeed,
numerous recent studies suggest that machine learning algorithms dominate the



broader field of Al, to name a few, ranging from computer vision [
], driving cars | ], playing games |

] to learning protein structure | ]. However, these successes
and breakthroughs were only obtained by carefully choosing the learning model
and its hyper-parameter values. The purpose of AutoML thus is to delegate the
time-consuming and expertise-demanding procedures of algorithm selection and
configuration to the machine.

Another motivation of AutoML is to address, to some extent, the shortage
of experienced data scientists, opening the room for non-experts to build high-
performance machine learning models. For example, it allows researchers from
other domains (e.g., medicine and climate change) to benefit from ML at its best
in their respective research fields.

From a theoretical point of view, AS and AC have gained ever more atten-
tion since the publication of the No-free lunch theorem (NFL). In a nutshell, this
theorem states that all (optimization or ML) algorithms perform equally when
considering their performance expectation over a uniform distribution on the set of
possible problem instances.! This NFL theorem, which was proved for black-box
optimization | | and later for supervised machine learn-
ing [ ], thus establishes that there is no point in finding a universal
algorithm in the above sense and paves the way toward developing portfolios of
algorithms and selecting the appropriate ones depending on the problem at hand.

1.2 . Overview on Algorithm Selection

Prior to its application in machine learning, AS was broadly applied in several
domains such as Travelling Salesman Problem (TSP) [ |, Satisfi-
ability Problem (SAT) | |, Mixed-Integer Programming (MIP) [

: ] to Constraint Programming | ]. We
refer the interested reader to the recent literature reviews of [2016] and
[ ], which describe the foundations and up-to-date results of

applying AS to optimization problems.

[ | formalizes the AS problem as a procedure to learn a mapping from
problem space Z to the algorithm space A; i.e., associating a problem instance to
its optimal algorithm. Rice's formalization, also known as Per-Instance Algorithm
Selection (PIAS), is defined in Definition 1 and illustrated in Figure 1.1.

Definition 1 (Optimal decision in PIAS). Let Z and A respectively denote a
set of problem instances and a set of algorithms. Then, givenp : Z x A — R,
a loss function to be minimized, the optimal decision in PIAS is a pair of a

"Note that this does not preclude the existence of an optimal e.g. pipeline in the
context of a given task domain.
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Figure 1.1: The continuous edges represent the original formalization
of Algorithm Selection as in [ 1.

selector S and feature extractor f* that when combined minimizes the loss p
for all instances = € .
V(z,a) € I x A p(x, S(f*(z))) < p(z,a).

PIAS involves two sub-tasks. Firstly, each problem instance is associated with

a set of descriptors noted f*(x), computed from a feature extractor function f*.

Then, the selector S exploits the description f*(x) to determine the best algorithm

S(f*(x)), with optimal performance in the sense of the considered loss function.

[ | discusses various building blocks involved in the AS problem,

chiefly: designing algorithm portfolios, learning a surrogate model of the perfor-

mance p(x,a), and constructing the feature extractor f*. The following sub-
sections briefly discuss these three building blocks.

1.2.1 . Portfolio optimization

Researchers and practitioners are both convinced that an algorithm is unlikely
to perform best for all problem instances. As said, the idea of a universal algorithm
goes against the NFL theorem | , ].2 The
mainstream approach to overturn the NFL is to design a portfolio of algorithms,
a finite set of algorithms. ldeally, algorithms in the portfolio are diverse enough
to cover the landscape of the problem space. [ | presents a
recent survey of portfolio optimization and its related challenges.

AS suitably handles the selection of an algorithm in a portfolio, as the latter is a
finite set of algorithms. However, the AC problem instead considers a set of config-
urations, the size of which might be infinite (due to continuous hyper-parameters)
or at least exponentially increasing with the number of hyper-parameters. A crit-
ical issue with algorithm portfolios is that their performance depends strongly on
the considered problem instance; typically, the "best on average" algorithm on the
portfolio is not necessarily the best one on problem instance 7.

2Although the NFL relies on the rather unrealistic assumption of a uniform distri-
bution on the set of all possible problem instances.
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Ideally, one requires a perfect joint representation of algorithms and problem
instances to:

(i) Cluster the instance space;

(ii) Select the optimal algorithm for each cluster to define a portfolio with good
coverage.

Some works | : | followed this line
of research in combinatorial optimization problems, although they did not apply
their results to Algorithm Selection for ML algorithms.

1.2.2 . A Machine Learning approach to surrogate model learning

As illustrated in Figure 1.1, algorithm selectors usually leverage feedback value
such as the observed performance, gathering more information about the current
task, which thereafter fed to the selector S to support AS. Most authors |

, | introduce a performance model estimating the performance
p(f*(z),a), and delegate the learning of the performance model to mainstream
machine learning algorithms. Under the assumption of a good enough feature
extractor f*, the performance model predicting p(f*(x),a) exploits a (meta-)
dataset composed of pairs {(f*(x),a));p(f*(x),a))} and proceeds exactly as in
supervised learning.

Along this line, ML-based selector approaches allow the offline exploitation of a
performance database (involving triplets: instance f*(x); algorithm a; associated
performance p(f*(z),a)). This approach can leverage earlier run experiments and
adapt the model in case of changes in the algorithms or in the problem instance
distribution.

In practice, the performance model and AS come in two modes. In the first
mode, the learned model is the selector itself: S :7Z — A

In the second mode, one learns the performance model defined on pairs of
instance-algorithm:

p:IxA—TR

that is thereafter used to select the most promising algorithm: S(z) =
argmax, p(x, a).

In the former case, S is a classifier, where each algorithm corresponds to a
class; this approach is arguably best suited to portfolios. In the latter case, the
performance model is more flexible as it can predict any continuous value criterion
such as runtime, loss, or performance.

An alternative solution to these learning approaches is to construct S as a set
of static hand-made rules without a learning component. The selection rule is
thus based solely on the instance features. A recent benchmarking paper |

: | based on this idea shows that the rule-based selected
algorithm outperforms the portfolio algorithms. The comparison was carried out

1M1



from various optimization problems ranging from academic benchmarks to real-
world applications.

1.2.3 . Instance features

Instance features play a crucial role in AS. For example, a "perfect" represen-
tation of instances would support an optimal recommendation. Let the Euclidean
distance based on the features allows to identify the nearest instances to the cur-
rent instance problem. Assuming the neighborhoods based on this representation
were "perfect", one could pick the optimal algorithm for the current instance as
the best algorithm for its nearest neighbor. Overall, instance features define a
computable vector representation of every instance problem. The interested reader
is referred to | | for a survey of the feature sets adopted for
various optimization problems.

1.3 . Automated Machine Learning (AutoML)

As said, AutoML involves an Algorithm Selection component aimed to select an
ML algorithm to handle the ML problem instance. When not specified, a problem
instance refers to a dataset in the remainder: a set of samples, each described with
features values and target label to be predicted.

AutoML also involves an Algorithm Configuration component, referred to as
Hyper-Parameter Optimization. The AC component aims to configure an end-to-
end and trainable machine learning experiment, or pipeline, defined as a sequence
of processing algorithms and their associated hyper-parameters.

The building blocks of AS introduced in Section 1.2 all apply to the AutoML
domain:

e Algorithm portfolio (Section 1.2.1) is leveraged by various works on ML
pipelines recommendation | , ,

]

e Surrogate performance model (Section 1.2.2) is also standard in AutoML,
mainly to speed up hyper-parameter optimization algorithms |

: : : I

e Instance features (Section 1.2.3), commonly termed meta-features for clar-
ity (and make the distinction with dataset features), are of high inter-
est in AutoML especially to transfer knowledge across problem instances
(datasets).

The following sub-sections detail all the definitions, challenges, and pre-
requisites.
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1.3.1 . Problem Statement

As illustrated on Rice's diagram (Figure 1.1), AutoML proceeds to find an
optimal pipeline in the sense of a predefined criterion, w.l.o.g. a loss function to be
minimized. This goal can be formalized as an optimization problem (Definition 2)
on the whole configuration space ©, searching for the optimal pipeline 6% € © for
dataset z.

Definition 2 (AutoML). Let z be a dataset (w..l.o.g. a binary or multiclass
classification problem) and ziyqin, aNd zyq154 two disjoint subsets of z. Let © be
the space of machine learning pipelines. The following optimization problem
defines AutoML on a dataset z:

Find 0 € arg Ioniél L(9, ztrain, Zvalid), (1.1)
E

where L denotes a loss function to assess the ML pipeline 0 (trained on zy,qin)
on zZyalid-

Regardless of the type of ML task examined (e.g., classification or regression)
and the pipeline space, AutoML involve two basic and essential components: an
optimization algorithm (Chapter 2) and a Meta-Learning method for learning across
tasks (Chapter 3). The two AutoML components mentioned above, like the above
formalization, are agnostic w.r.t. the type of ML task. Nevertheless, the rest of
the manuscript focuses on classification problems.

1.3.2 . Technical issues from the AutoML problem

The optimization problem defined in Equation 1.1 presents some challenges,
being noisy, structured, black-box, and expensive. They are discussed below.

Noisy optimization

The noise observed in the objective function L has many sources. A first source
might be the randomness of ML algorithms, e.g., the initialization in a neural
network. Such an issue is handled in practice by fixing the random seed.

A second source may come from the sampling of the training, validation, and test
sets from the whole dataset z (e.g., cross-validation split).

A third source is the noise of the optimization algorithm itself (e.g., see

[2019], especially when the noise is not gaussian).3
These noises can be straightforwardly handled, as done in various AutoML
systems [ : : | and bench-
marking papers | , |, by averaging the

performance obtained over multiple independent runs (with varying dataset splits).
Nevertheless, in counterpart, this procedure linearly increases the cost of the Au-
toML process.

3Addressing this algorithmic noise is out of the scope of the presented work.

13



Structured Optimization

An end-to-end AutoML system involves all components of a complete machine
learning experiment, ranging from data pre-processing through feature selection to
training and ensembling models.

The search space © represents the set of possible machine learning pipelines
encompassing the union of the space of feasible algorithms with the domain of their
hyper-parameters. It thus includes a mix of binary, categorical and continuous
variables. For example, [ | considers 40 categorical and 66 real
continuous hyper-parameters for binary classification tasks.

Operating directly on © is hardly feasible. First, finding the algorithmic compo-
nents present in pipeline z*, that is, optimizing the binary variables in ©, defines a
hard combinatorial, NP-hard problem. Second, the exploration of © must account
for the dependencies among its variables, reflecting the structure of ML pipelines.
In other words, the value of some variables controls the relevance of some other
variables. For example, a polynomial SVM kernel comes with two specific hyper-
parameters; the fact that an algorithmic component is present implies that its
hyper-parameters are relevant.

In practice, © is defined from the set of algorithm candidates, each with the
domain space of their respective hyper-parameters, selected by the human ex-
pert. The pipeline structure is tackled by considering another formalization of the
search space (as Bayesian Optimization does not directly handle structured search
space). Alternatively, another solution is to leverage structure-aware optimization
algorithms (such as Evolution Strategies). We return to this issue in Chapter 2.

Black-Box Optimization (BBO)

BBO aims at optimizing a function f without exploiting (or having access to) its
analytical definition and computational implementation. BBO can only compute
the value f(z) for each input x. In particular, BBO does not use the derivatives of
f. The AutoML objective function L (Equation 1.1) defines such a BBO problem,
as the value of L for a given dataset and configuration can only be computationally
estimated.

Another interesting AutoML approach is to rely on bi-level optimization. It
proceeds with a proper formalization of the search space, enabling the use of
gradient-based optimization to AutoML [ , |
This idea will not be covered in this work, however.

4In pipeline § € ©, the binary variable associated to each pipeline component
takes the value true iff this component is part of 6.
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Expensive Optimization

According to a recent survey presented by [ ], one of the main ob-
stacles to deploying AutoML approaches in real-life production is their prohibitive
computational cost. Indeed, given a Black-box function f, BBO proceeds by com-
puting f(z) for all candidates x, making the overall computationally demanding.
Various strategies were proposed to address this issue and further speed up the
search. In particular, multi-fidelity strategies [ , ,

| were founded to be incredibly effective. They rely on an ap-
proximate but inexpensive estimation of the objective function, to accelerate the
optimization while controlling the model complexity or the size of datasets. The

approaches to reducing the training time are discussed further in Section 2.2.

Generalization Perspective

As formalized in the statistical learning theory [ |, the essential objective
for learning a model is to achieve good performances in expectation. The sought
solution thus is to learn a pipeline, based on its only performance on the training
and validation sets, that would perform well on a holdout test set (unseen during
the optimization), demonstrating that they do not overfit.

AutoML solutions are particularly prone to over-fitting as they require many
lookups to the validation score. This overfitting issue is acknowledged as a critical
issue; still, the AutoML literature does not agree on how to address this issue.
Benchmarking papers [ , | also raise this
issue as one of the causes of the decrease in performance on subset tasks when
optimizing for a long time budget. Researchers often rely on cross-validation [

, ] scores to minimize the risk of over-fitting.

1.3.3 . Evaluating AutoML systems

The fair comparison of AutoML systems requires that all competitors operate
in the same search space © and are evaluated along with the same benchmarking
procedure.

The search space

As said, the choice of the search space © is usually left to the human expert (or
encapsulated in the considered algorithm portfolio) to make it a tractable bounded
search space. Nevertheless, this choice can eventually affect the difficulty of the
optimization.

At the time of writing, the choice of © depends on the application domain.
Currently, deep learning models are dominating the field of computer vision, NLP,
and speech recognition. For these application domains, a strong preference is given
to Neural Architecture Search (NAS) over standard machine learning models. As an
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example, in DARTS [ ], the AutoML problem is formalized as a two-
level optimization problem, where the first level aims to learn the interconnection
of a set of small networks and the second level aims to determine the respective
weight of each of these small networks.

The presented research aims to achieve AutoML for tabular data, which mo-
tivates our choice to consider mainstream machine learning and pre-processing
algorithms.

Benchmark datasets

Standard practice evaluating and comparing AutoML relies on open-source dataset
benchmarks such as UCI | ] and OpenML [

]

For the sake of a fair and tractable assessment, we only consider curated
and medium-size benchmarks: OpenML CC18 | | and OpenML
100 | ]

While OpenML contains 3,448 datasets at the time of writing, many have
data quality issues, such as datasets with constant features. Some datasets are
too big or ill-conditioned, entailing a large SVM running time. Some datasets are
also deprecated versions of the others, which may create a risk of over-optimistic
evaluation. Because of these issues, [ | built OpenML CC-18, a
curated benchmarking suite for AutoML, succeeding OpenML 100 |

|. As far as we know, OpenML CC-18 is the largest curated tabular dataset
benchmark available for AutoML.
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2 - Hyper-parameter Optimization

This chapter focuses on one of the two core tasks of AutoML, referred to
as Hyper-Parameter Optimization, that consists in setting the hyper-parameters
to optimize the performance (Equation 1.1). The other core task, namely
Meta-Learning, will be described in Chapter 3.

This chapter is structured as follows. After reviewing the approaches of the
HPO literature [ | in Section 2.1, we situate HPO w.r.t the
general AutoML problem (Section 2.2) and give an overview of the major AutoML
systems (Section 2.3). The chapter finally presents the AutoML benchmarking
methodology (Section 2.4).

2.1 . State-of-the-art of Hyper-Parameter Optimization ap-
proaches

The early methodology used to set hyper-parameters relies on manually picking
hyper-parameter values along a trial and error procedure, and this methodology still
is commonly used. However, it faces severe limitations: in terms of domain knowl-
edge to judiciously sample good hyper-parameter values for the problem instance
at hand; and in terms of both human and computational time requirements. HPO
algorithms thus aim to address these limitations. Figure 2.1 highlights several HPO
approaches, which are discussed in the following sub-sections.

2.1.1 . Mainstream Approaches

The most straightforward HPO approaches are the grid search and random
search strategies.

Hyper-parameter Optimization

Random Search

Evolutionary Algorithms
Grid Search yAg

Bayesian Optimization Planning Algorithms
Thesis contribution
(Chapter 4)

Figure 2.1: Non-exhaustive list of state-of-the-art approaches for HPO.
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The grid search (GS) strategy considers a (manually defined) finite set of values
for each hyper-parameter. The set of candidate pipelines is defined by considering
all combinations of hyper-parameter values. All pipelines are then evaluated in a
sequential or parallel manner. Then, the final recommendation to the user is the
best configuration in the sense of the considered evaluation metric.

The efficiency of GS depends on the considered hyper-parameter grid values.
Recently, [ | proposed exploiting the objective function's theoreti-
cal properties to define an optimal grid of hyper-parameters. Nevertheless, the cost
and the performance exponentially increase with the number of hyper-parameters.
Furthermore, a severe limitation of the GS approach is when only a few of the
hyper-parameters are critical | , |

Compared to GS, Random Search (RS) only requires the hyper-parameter do-
main spaces to be defined. It proceeds by wuniformly sampling candidate config-
urations from the specified hyper-parameter domains. Despite its simplicity, RS
performs well on expensive settings, e.g., Neural Networks [ ]
Hence, RS is commonly used as a baseline on numerous HPO and AutoML pa-
pers [ , , :

, ]. Note that different versions of RS can be formulated
depending on the sampling strategy. For instance, instead of using uniform sam-
pling, researchers experimented with other space-filling sampling methods [

: ], enforcing the diversity of sampled pipelines.

A key strength of GS and RS approaches is the ease of parallelization, even more
so as the emergence of high computing infrastructures supports the deployment
and study of parallel methods in academia. For example, [ ,

| show the merits of a massive random search approach compared to
Bayesian Optimization and Evolutionary Algorithms on various HPO tasks.

2.1.2 . Bayesian Optimization

The celebrated Bayesian Optimization (BO) approach [ ,

, | is an optimization algorithm tailored for black box and
expensive optimization problems under limited computational resources, thus well
suited to HPO. BO uses an auxiliary probabilistic model, also termed surrogate
model, to guide the search. The surrogate model is meant to model the optimiza-
tion objective and estimate the modeling uncertainties; both are leveraged during
the optimization.

A notable implementation is the Sequential Model Based-Optimisation
(SMBO), which is commonly used to achieve HPO (Alg. 1). It proceeds as
follows. Iteratively (for a total number T of iterations, governing the optimiza-
tion cost), the surrogate model M is learned from the observed performances (line
6), then used to choose a promising new hyper-parameter configuration (line 3),
that is evaluated afterward (line 4). The function A, termed Acquisition Function,
encapsulates the selection procedure of the next hyper-parameter to evaluate.

Bayesian Optimization commonly uses a Gaussian Process [
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Algorithm 1: Sequential Model-Based Optimization (SMBO)
input :initial surrogate model M,, number of iterations T,
dataset z, acquisition function A, loss function L,
hyper-parameter space ©
output: Recommended solution 6*
1 H+—0
2 fort < 1to7 do
3 | 0+ argmaxy.g A(M;_1,0)
4 Evaluate L(0;, z)
5 | H+—HU{(O,L(0,2))}
6 Fit M; on H
7
8

end
(0%,1%) < argmin g ey, !

| as a surrogate model for its soundness and efficiency in terms of
both performance prediction and uncertainty estimation. GP, however, suffers from
two limitations. Firstly, it does not scale up w.r.t. the number of samples and the
dimension of the search space. Secondly, it is well defined on continuous domains
only.
The acquisition function that is commonly used is Expected Improvement
(ED [ |, defined as follows:

A(M,0) = Elmaz(Lyn — M(6),0)] (2.1)

with L, be the best performance so far and M () the estimated loss of hyper-
parameter 6 according to the surrogate model M.

[2017] states that the success of El (to tackle expensive
optimization problems on a low computational budget) is related to its ability to
identify multiple local optima regions. This experimental finding might explain
the adoption of El in the HPO context, as HPO usually admits a number of local
optima.

The SMBO approach comes in various modes in the state-of-the-art, which
differ in the definition of acquisition function A and the choice of surrogate model
M. A non-exhaustive list of open-sourced BO algorithms is presented below.

e SMAC | : | uses Random For-
est | ] as a surrogate model with Expected Improvement as
an acquisition function. The Random Forest model addresses a core limi-
tation of GP in handling mixed type domain values (e.g., real, categorical,
or integer hyper-parameter). Moreover, it drastically reduces the computa-

tional complexity both for the training and the inference.
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e HyperOpt | |, instead of modeling directly the perfor-
mance M (0), fits two density distributions for good P(6 = 0|L(0) < 7) and
bad P(0 = |L(0) > 7) hyper-parameters, with 7 a user defined threshold.
These distributions are then constructed using a 1-dimensional Parzen Win-
dows density estimation algorithm. A tree structure is introduced to cope
with conditional hyper-parameters, hence the term Tree Parzen Estimator
(TPE) | ' ]. Note that this algorithm also handles
mixed-type variables while having low complexity of training and inference.

o | ] modify the mainstream BO to be better suited to HPO.
Firstly, a new kernel function carefully crafted for HPO is proposed. Sec-
ondly, it considers the training cost when maximizing the acquisition func-
tion (El per second). Since the internal surrogate model still is a Gaussian
Process, it inherits both the advantages and limitations of GPs.

[ ] conducted an empirical benchmarking study on pop-
ular BO algorithms, including SMAC, TPE and | ]. The lessons
learned from this study are that the GP-based BO | ] tends to
outperform SMAC and TPE on low dimensional problems, while TPE yields bet-
ter performance on higher dimension search space, possibly including conditional
hyper-parameter.

2.1.3 . Evolutionary Algorithms

The active research area of Evolution Algorithms (EA), also referred to as
population-based algorithms, is concerned with Black-Box optimization problems.
Formally, EAs include algorithms based on the evolution of a population of solu-
tions. The evolution is achieved through operators (mutation, crossover, selection)
remotely inspired by the Darwinian "survival of the fittest" ideas.

The main two trends in EAs are Genetic Algorithms (GAs) [ ] and
Evolution Strategies (ES) [ ]

EAs proceed iteratively: an initial population (i.e., a set of initial solutions) is
used to create a new generation of solutions by applying mutation and recombina-
tion rules over the initial population. Next, the selection rule is applied to construct
a new population, refining individuals upon the initial and generated populations.
These two steps are repeated until the optimal solution is reached or the training
budget is exhausted.

Both GAs and ES are widely applied to HPO. Genetic Algorithms are well
suited to the optimization of design structure. A notable application of GAs is
the automatic design of neural network architecture, also known as Neuroevolu-
tion [ ]. NEAT | ,

, , | is an example of a prominent
Neuroevolution algorithm. A promising application of GAs [ ] aims
to discover machine learning pipelines from scratch (see Section 2.3). Along the
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same line, a search for ML pipelines using context-free grammar is presented by
[2021],

While GAs mainly handle binary or discrete spaces, Evolution Strategies (ES) is
restricted to fixed-size real value space. A successful ES-based optimization algo-
rithm is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [

]. The authors of | ] apply CMA-ES to tune hyper-
parameter of deep network models, improving state-of-the-art HPO algorithms
such as SMAC and TPE.

Like Random and Grid Search, EAs can be parallelized straightforwardly; their
efficiency in parallel mode is widely observed in the literature [ :

: : |. Furthermore, EAs can
also exploit information gathered from previous evaluations (as in any sequential
HPO algorithms).

2.1.4 . Bandit & planning Algorithms
Multi-armed bandit

Multi-armed bandits (MABs) | ] pertain to the field of
Reinforcement Learning | |, aimed to learn policies yielding
an optimal action in each state. MABs consider the single-state RL problem,
facing a finite discrete action set, with stochastic bounded action values. MABs
were formalized as tackling a sequential decision problem under uncertainty since
the early 1930s | : , |. Its
main applications include A/B testing, resource allocation, and ads placement (not
exhaustive list).

Numerous algorithms were devised to address the MAB problem, e.g., for
continuous actions [ | or a large number of actions [

, ]. In the scope of the presented research, i.e., when
considering an algorithm selection problem, the MAB algorithm most commonly
used is UCB1 (Upper Confidence Bound) | ]. Each algorithm
corresponds to an arm; the associated reward is its (noisy) performance.

In [ |, the authors propose GAMBLETA, a bandit
method to select an optimal algorithm from a portfolio of SAT solvers. The
specificity of this method is to leverage contextual information [ ]
for the bandit algorithm to transfer knowledge across a set of SAT problems.

In [ ], the authors likewise propose a bandit-based rule selector
for an evolutionary algorithm where the novelty lies in the definition of the reward.

Another area of research aims to adapt bandit to algorithm configuration, i.e.,
HPO. Notably, [ | proposes a setting to handle an infinite set
of hyper-parameters. The proposed method proceeds by maintaining a portfolio
of sampled hyper-parameters; at each iteration, the algorithm decides whether
to add a new hyper-parameter in the portfolio or consider a previously sampled
hyper-parameter, and this hyper-parameter is evaluated.
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Another powerful bandit method designed for HPO is the highly cited Hyper-
band algorithm proposed by [ ' ]. Unlike previous approaches,
Hyperband leverages a bandit algorithm for allocating the overall resource budget
across a set of running evaluations; in practice, poorly performing hyper-parameters
are discarded early to save resources and attribute them to the best-performing
ones.

Planning Algorithms

Another strategy is to sequentially handle the choice of hyper-parameter values
(as opposed to the former setting, where the algorithm and the hyper-parameters
values are picked simultaneously, allowing to assess the pipeline performance in-
stantly). The issue of such sequential approaches is that the performance can
only be measured when all hyper-parameter values are determined: the feedback
is delayed. This setting falls into the category of planning problems, aiming to
optimize a path (here, the sequence of hyper-parameter values) to maximize the
final performance (here, that of the pipeline).

Casting the AutoML into a planning problem opens the room for many planning
algorithms to be applied to HPO. One of the solutions is to represent the search
space as a tree, with a path representing a pipeline. Any tree search algorithm
can thus be considered, such as depth-first search and best-first search |

'b, ]. One of the main contributions of this thesis
is to adapt the Monte-Carlo Tree Search (MCTS) | 1,
by combining the tree-structured extension of multi-armed bandit algorithms with
Bayesian Optimization, to AutoML (Chapter 4).

A critical limitation of tree-structured representations is that they only handle
hyper-parameters with discrete and small size domains. In particular, the domain
of continuous hyper-parameters must be discretized.

Along the same line, formalizing AutoML as a sequential decision problem
(selecting each hyper-parameter value) makes it a Reinforcement Learning (RL)
problem | |. Formally, an incomplete pipeline is viewed as
a state, and only final states (complete and trainable pipelines) are associated
with the pipeline performance reward. RL aims to learn a policy, associating an
action to each state and thus navigating among states; an optimal policy is such
that the final reward is maximal. An RL approach is based on using Machine
Learning algorithms on sequential examples; for example, | | used
an LSTM | | to build neural architectures.

2.2 . AutoML as a Hyper-Parameter Optimization problem

Hyper-Parameter Optimization is primarily defined as the only problem of tun-
ing hyper-parameters. AutoML instead considers selecting and tuning larger ma-
chine learning experiments, from the choice of data preparation to the learning
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algorithm, where each algorithm is associated with specific hyper-parameters. Tra-
ditional Hyper-Parameter Optimization algorithms thus require some adaptation to
handle the entire AutoML problem.

The idea is to consider a particular algorithm as a hyper-parameter. This
representation thus corresponds to a structured and conditional search space, where
the previous choices condition the possible options. However, considering this vast
and complex pipeline space entails a non-negligible increase in the computational
cost. For this reason, substantial research focused on reducing the training cost of
HPO to speed up AutoML.

Combining Algorithm Selection and Algorithm Configuration
(CASH) Note that the formal definition of AutoML (Equation 1.1), i.e., finding
the optimal configuration 6* € © that minimizes the defined loss function, with
O be the space of observable configurations, already includes the HPO task as ©
both covers the set of algorithms and the space of their hyper-parameters.

The so-called Combined Algorithm Selection and Algorithm Configuration
(CASH) approach is commonly used in practice [ :

]

Let an ML pipeline z involve a fixed ordered sequence of £ components such
as data pre-processing, feature selection, and learning algorithms. At the ! de-
cision step, some algorithm a; € A; is selected (with A; the finite set of pos-
sible algorithms at i*" step). Denoting ©(a;) the (possibly varying dimension)
space of hyper-parameters associated with a;, the eventual pipeline is described
as x = (aq,61),...(ag 0;), with 6; € ©(a;). Given a (-size pipeline structure, we
denote the overall hyper-parameters of the search space as

0 = U (a1,0(a1)) x ... x (ar, O(ar))

(al,...ag)G.Al X...xAp

CASH is thus formally covered by the framework of Equation 1.1, where the
O space is defined as above, encompassing the whole pipeline space.

As said, the domain of a hyper-parameter can be real-valued (such as learning
rate), integer-valued (such as the number of layers), binary (for the example,
whether to use early stopping or not), or categorical (such as the selection of a
learning algorithm).

Reducing computational cost Arguably, the most popular strategy for re-
ducing the computational cost of HPO relies on multi-fidelity approaches, that is,
using cheap estimations of the final performance of hyper-parameters. The overall
computational budget governs the admissible model complexity through, e.g., lim-
iting the number of trees for Random Forest, the number of examples for SVM,
and the number of iterations to any iterative ML algorithm (e.g., neural network).
Such a multi-fidelity approach is Hyperband, already cited [ |. First,
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it uniformly samples hyper-parameter domains; then evaluations are subject to
a limited resource budget, allowing to discard poor-performing hyper-parameters
earlier and thus allocate more resources to promising ones. Finally, the selection
process is repeated until one hyper-parameter is retained. This simple strategy
showed its merits in optimizing expensive ML models like Deep Neural Network

and SVM compared to standard BO algorithms such as TPE | ]
and SMAC | ]. Further improvements proposed by
[2018] and [2021] rely on using respectively Bayesian Optimization

and Differential Evolution (as opposed to uniform sampling) in the sampling step,
significantly speeding up the search.

Another strategy is to predict the eventual performance associated with a
configuration, based on learning curves modeling, and discard unpromising runs in
early steps. For instance, [ | uses the training history to decide
whether to pause the training of a configuration or resume a previously considered
training. Likewise, [ | model learning curves (using a list of
parametric functions), and use the beginning of the learning curve associated with
a configuration to estimate whether it is likely to outperform the best configuration
so far. Most interestingly, [ ] learns two surrogate models: one for
modeling hyper-parameters performance and one for modeling the training cost
(depending on the size of the considered training set). The strategy consists of
training the most promising configurations with larger training sets, based on a
trade-off between the expected gain of performance and the computational cost.

2.3 . State-of-the-art AutoML Systems

This section presents a non-exhaustive list of the prominent AutoML systems,
structured after their internal optimization algorithm.
In the realm of Bayesian Optimization-based AutoML there are Auto-

Sklearn | ' ], Auto-Weka | |, and Auto-
Progronis | ]. Auto-Sklearn and Auto-Weka are based on
SMAC | ], a Random Forest-based BO. Compared to Auto-Weka,

Auto-Sklearn involves extra components: a meta-learning strategy to initialize the
search and an ensembling strategy to provide a more robust prediction.

Auto-Progronis uses a GP-based surrogate model with a structured kernel to
account for the complex configuration search space. It involves the same extra
components as Auto-Sklearn; the ensembling strategy is achieved using Bayesian
model averaging, for the sake of explainability.

Another powerful AutoML system is sc Hyperopt-Sklearn [ 1,
which uses TPE as a surrogate model; it does not have meta-learning and ensem-
bling components.

Evolution-based AutoML is as commonly used as BO-based AutoML in the
literature. A primary advantage of evolutionary algorithms over BO approaches is
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on handling structured search spaces naturally without specific adjustments. For
instance, TPOT | ] and GAMMA | ]
use Genetic Programming to evolve compound ML pipelines (preprocessing, feature
construction, and model building methods) while enjoying the parallelizable nature
of Genetic Programming. Along the same line, [ | uses a grammar
formalization of the ML search experiment space and designs a grammar-based
algorithm for the optimization. [2018] proposes another evolution-based
AutoML which instead of optimizing a single machine learning pipeline, focuses
its search on finding a combination of pipelines that provides optimal performance

overall. More recently, the AutoML-Zero | | intends to discover
ML pipelines from scratch (without a predefined template as in Auto-Sklearn or
Auto-Weka).

A divide-and-conquer strategy proposed by [ | consists of de-

composing the initial AutoML problem into several sub-problems to reduce the
number of variables and address the issue of mixed variable types.

Another category of AutoML systems leverages planning and reinforcement
learning methods. In this category, the most notable AutoML is ML-PLAN |

| that formalizes AutoML as a graph problem and leverages tree-search
algorithms (e.g., Hierarchical Task Network) with random roll-outs to find the
optimal path (i.e., optimal pipeline). Similar approaches were proposed |

, ] to handle AutoML in data mining tasks.

As said, a severe limitation of the tree-structured approach is that they hardly
deal with continuous domains and require the discretization of continuous hyper-
parameters. One of the main contributions presented in this manuscript addresses
this limitation by hybridizing MCTS and Bayesian optimization, to handle mixed-
type variable hyper-parameters.

2.4 . Benchmarking HPO and AutoML algorithms

As said (Section 1.3.3), the benchmarking of AutoML systems presents fairly
technical specifics. In particular, it must enforce the same experimental setting
for all candidates, considering the same search space and resources budget. The
difficulty here is that there is no general agreement in the research community
about the environment and search space that should be considered. Typically,
the abovementioned state-of-the-art AutoML systems (e.g., Auto-Sklearn, Auto-
Weka, Auto-Progronis, TPOT) do not describe their search space.

Nevertheless, some researchers | , ,

] conducted benchmarking over the existing AutoML ap-
proaches and analyzed the results despite this difficulty. They define a unified
framework for AutoML systems and consider a curated subset of the problems in
the OpenML benchmark | ]

The evidence from these empirical results suggests that there exists no AutoML
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system that consistently outperforms all others.! These results were inspected to
determine whether the poor performance is due to over-fitting or difficulty of the
optimization. No general conclusion was drawn as the failures seem to be dataset-
specific.

This negative result establishes that a broader and more realistic dataset bench-
mark is needed to push the AutoML analysis further and understand the patterns
of difficulty. Note that finding such patterns is significantly related to extracting
relevant descriptive features of datasets, i.e., designing meta-features (Chapter 3).

The benchmarking of HPO systems is much more advanced than for AutoML,
with quite a few good platforms. For instance, [ | presents
a platform including an extensive set of HPO problems, together with several
existing HPO algorithms. The search space and resource budget are fixed for each
problem, enforcing a fair comparison between the candidates.

Note that another Black-box benchmarking platform, Nevergrad |

], also considers HPO problems. However, unlike
[2021], Nevergrad involves a broader set of optimization algorithms but fewer HPO
problems.

1Of course, this claim reminds the famed No Free Lunch theorem [
1. A key difference however is that the set of tasks considered here is
far from being uniform on the space of all tasks.
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3 - Meta-learning

In this manuscript, we adopt the tentative definition of meta-learning proposed
by [ ] and [ |, that is, the science
of learning from previous experiences, which can be any information gathered from
the same task or another task. Meta-learning is a long open problem, gaining
increasing attention in Al in the last decade. This is because the ability to learn
from previous tasks is still lacking in mainstream Al approaches, while it is crucial
to achieving human-level intelligence.

This chapter provides an overview of meta-learning research and situates the
contributions of the thesis w.r.t. the existing research directions. The chapter is
structured as follows. First, Section 3.1 motivates the domain of meta-learning
and its motivations. Then, a brief survey of the state-of-the-art, describing the
meta-learning research spectrum, is introduced in Section 3.2. Finally, Section 3.3
focuses on our main topic of interest, namely the definition and usage of meta-
features.

3.1 . Context and Motivations

Meta-learning defines a learning to learn research perspective. It thus operates
on a higher level compared to mainstream machine learning | ]. Formally,
while ML algorithms primarily handle a specific task (i.e., a dataset), meta-learning
is concerned with learning and transferring knowledge across tasks. Task and
dataset will be used interchangeably in this chapter. Meta-learning paves the way
toward continual, a.k.a. lifelong learning for Al agents. It is also very relevant to
AutoML systems as it typically yields a better initialization of the AutoML search,
and enforces the transfer of knowledge across different tasks.

The ultimate goal of meta-learning is to be capable of learning and adapting
itself to a sequence of tasks (possibly but not necessarily related), like a human
being.

Meta-learning clearly is among the most challenging tasks faced by Machine
Learning. In our opinion, a critical difficulty comes from the lack of formalization
and tools for representing ML tasks. While an ML task consists of a dataset
sampled from some distribution on a feature and label space, the design of a
rigorous representation and a reliable and tractable similarity function, enabling
tasks comparison, is still an open problem. Note that tasks usually involve different
input and output dimensions.! Indeed, in order to share knowledge between two

TEven in the case of distributions defined on spaces of same dimensions, distances
among distributions such as the Kullback Leibler divergence or the optimal transport
raise issues related to the ill-definedness of KL divergence in the general case, or the
computational cost of optimal transport [ 1.
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Meta-learning

Without meta-features With meta-features

Domain Adaptation Few Shot Learning Hand-crafted meta-features Learned meta-features

Thesis contributions
(Chapters 5 and 6)

Figure 3.1: Overview of meta-learning approaches, inspired from

[2079].

tasks, it is most desirable to assess their similarity. A key challenge of meta-
learning thus is to propose such a representation, a similarity or metric, to leverage
knowledge from previous tasks and allow for the lifelong learning of the agent.

Most generally, Meta-Learning is a crucial issue for the principled deployment of
AutoML systems. HPO is a black-box, expensive, and hard optimization problem,
as discussed and illustrated in the previous chapter. According to a few optimization
papers [ , |, the success of the search
and the ability to find reasonable solutions critically depend on the initialization of
the search. In practice, the initialization of the HPO search is often addressed along
with simple heuristics: selecting a set of generally promising configurations, based
on the AutoML archive, then running them on the current task to initialize the
performance model (more in Section 3.2.2). Despite its simplicity, this approach
can significantly boost the performance of Auto-Sklearn [ ]
compared to a naive or random initialization.

The meta-learning application abovementioned relies on the transfer of knowl-
edge among tasks. For this reason, a fundamental issue for meta-learning and
efficient transfer is to build (formally define or learn) a similarity measure among
the said tasks. The simplest way to define such similarity is to embed the space
of instance tasks Z (the set of datasets; see Figure 1.1) into a metric space.
Formally, a set of d descriptors named meta-features is defined as computable
functions from Z onto IR. The embedding defined from Z onto R? thus is used,
setting the (dis)similarity of two tasks as the Euclidean distance of their images
in R%. Two of the three contributions of this thesis are concerned with designing
new meta-features, supporting the meta-learning facets of AutoML.

3.2 . Literature Review
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A survey by [ | structures the meta-learning domain in three
directions. The first research direction focuses on meta-learning based on lever-
aging hyper-parameter performances on a benchmark. The second research di-
rection concerns learning to adapt a model learned from an early task to a new
task. The last research direction aims to exploit dataset meta-features in order to
share knowledge across tasks, e.g., based on the similarity defined from the meta-
features. Indeed, these research directions are complementary, and some AutoML
systems might benefit from a combination of such approaches.

For the sake of consistency with the rest of the document, the state-of-the-art
presented below is structured into two categories: meta-learning without meta-
features and meta-learning with dataset meta-features. Figure 3.1 provides a high-
level overview of both research directions.

3.2.1 . Meta-learning without meta-features

Meta-learning without meta-features can proceed in various ways. Most ap-
proaches proceed by leveraging the performance of hyper-parameters to identify
similar tasks, based on the intuition that if hyper-parameters tend to behave simi-
larly on two tasks, then these tasks are similar. In other words, the hyper-parameter
performances are used in lieu of meta-features. This similarity is leveraged after
the task similarity (based on the hyper-parameter performance) is identified. The
HPO problem on the considered task can benefit from all information attached to
the neighbor tasks.

This strategy is followed in Collaborative Filtering based algorithm recommen-
dations, illustrated by [ |. Formally, given an extensive archive
reporting the hyper-parameter performances on a dataset benchmark, matrix de-
composition is used to extract a latent representation of each dataset. This latent
representation is used to define a similarity, and ultimately the optimal hyper-
parameters for the similar tasks are recommended to the current task. Note that
it is an iterative process since the representation of the dataset changes as new
hyper-parameters are evaluated (and matrix decomposition is achieved anew). Fol-
lowing [2017], OBOE [ | incorporates additional
constraints on the optimization to encourage the recommendation of a cheap and
informative hyper-parameter at the beginning, yielding a better performance model
with reduced computational complexity. Along the same lines, [ ]
use a probabilistic version of matrix factorization.

Other approaches are based on surrogate models, where each dataset is as-
sociated with a surrogate model predicting the configuration performance. Along
the same lines as above, two datasets are expected to be similar if and only if their
surrogate models are similar. [ ], [ ] proceed
as follows. Each known dataset is associated with a surrogate model expressed
as a Gaussian Process | ]. Then, another surrogate
model for the current (test) dataset is constructed and updated along with the
HPO iterations. Importantly, the final surrogate model of interest is the ensemble
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of all surrogate models (associated to known and current datasets), where each
model is weighted according to its similarity with the surrogate model of the test
task.

Yet another approach is based on multi-task learning. [ ]
and [ | simultaneously tackle multiple similar tasks and
share the related information. In practice, they consider surrogate models that
can handle multiple tasks, namely [ ] use multi-task Gaussian
Processes, whereas [ ] use Bayesian Neural Networks. The
main requirement for this approach is that the considered tasks must be sufficiently
similar after the user's expertise.

Another meta-learning approach relies on a global and static HPO strategy for

all tasks, determined by mining existing performance databases. In other words, one
aims to determine the configuration with the best performance expectation over
all tasks; the specifics of the current task are not considered. A simple strategy is
to rank all stored hyper-parameters according to some criterion, and recommend
the top-ranked hyper-parameters for any new dataset. The performance of this
strategy depends on the considered criterion. For instance,
[2018] introduce a criterion to account for accuracy and runtime, allowing an
important speed up. Instead of recommending the same set of hyper-parameters
for all tasks, [ | leveraged 25.000 OpenML experiments
to identify important hyper-parameters and propose a prior distribution on each of
them. Similarly, [ : | propose to learn default
values of the hyper-parameters by exploiting the OpenML database.

Last but not least, a hot Meta-learning trend is based on learning from prior
models. The goal of Transfer Learning is to adapt a model learned from a source
task into a model suited to a target task [ |. This topic gains
some momentum, particularly in the field of deep neural networks, targeting the
adaptation to new (and rare) classes, referred to as Few Shot Learning |

, , .

3.2.2 . Meta-learning with dataset meta-features

As already said, a meta-feature is a function or a computable procedure asso-
ciating a real value to a dataset. A set of d meta-features thus defines a vectorial
representation in R? characterizing every dataset. A detailed discussion about the
main meta-features in the literature is presented in Section 3.3.1. A recent litera-
ture review of meta-features for machine learning is also presented in
[2022].

By embedding the set of datasets into the metric space R, meta-features
naturally induce a metric on the dataset space. Indeed, some abovementioned
approaches (Section 3.2.1) also aim to define a metric or dissimilarity on the dataset
space, using hyper-parameter performance as meta-features. The difference is
that meta-features are supposed to be inexpensive compared to hyper-parameter
performance. Some approaches combine both strategies | ], using
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both meta-features and hyper-parameter performance to define a dissimilarity on
the dataset space.

Such a (dis)-similarity is used to support an HPO method, either during the
initialization phase or during the optimization search.

More precisely, the similarity is used during the initialization phase to warm-
start HPO algorithms. For instance, in AutoSkLearn | ], the
authors initialize a Bayesian Optimization process as follows:

e In the sense of the Euclidean distance defined from their meta-features, the
nearest neighbors of the current task are retrieved.

e For each nearest neighbor, its optimal hyper-parameter configuration 6 is
launched on the current task, and the associated performance 7 () is stored;

e The surrogate model associated with the current task is initialized from the
pairs (6,7(0)).

This surrogate model is used to warm-start AutoSkLearn in [ I,
and to achieve cold-start in the recommendation approach proposed by
[2018] and [2017].

Meta-features can also be used to learn parameterized surrogate models. For
instance, [ | learn surrogate models parameterized from the hyper-
parameter values and the dataset size, supporting a multi-fidelity approach (where
the estimated performance depends on both the configuration and the number of
samples in the dataset) and reducing the computational complexity. In

[ ], a single global surrogate model is learned and parameterized from both
hyper-parameter and meta-feature values, facilitating the sharing of information
across tasks.

3.3 . Dataset Meta-features for Meta-learning

This section focuses on the meta-features per se, either hand-crafted by experts
or learned from data. Two of our contributions lie in the field of meta-feature
learning.

3.3.1 . Hand-crafted meta-features

This section reviews the principal categories of hand-crafted meta-features
commonly used for AutoML. Unsurprisingly, a large amount of information can
be extracted from the dataset; depending on how they are computed, the meta-
features are divided into several categories, following [ I,

[2019], [2020].

Statistical meta-features include all descriptive statistics of the dataset:
the number of examples/features/classes | ]; the ratio of
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target classes | |; the number of categorical and numeri-
cal features | |; sparsity [ ], and
mean /variance/kurtosis coefficient of features | :

]

Information-theoric meta-features include the relationship between the

target variable and feature variables of the dataset, such as the average mutual

information of each feature with the target variable [ :
], and target class entropy [ ]

Geometric-based meta-features capture the geometry of points (where
a dataset is viewed as a set of points in Euclidean space), including the clustering
of points | ], the distribution of classes | ], and the
complexity of the classification [ : |

Landmark meta-features describe datasets by leveraging ML model per-
formances [ : |. For the sake
of tractability, only inexpensive models are considered in general, including logis-
tic regression, latent Dirichlet allocation, decision trees, and one-nearest neighbor
algorithm.

Model-based meta-features cover all information that can be extracted
from a trained ML model. For instance, they can refer to the size of branches in a
decision tree algorithm, the importance of variables | ], or the impurity
of trees in Random Forest | ]

3.3.2 . Learning dataset meta-features

A last strategy consists in learning meta-features from a benchmark (set of
datasets with reported performances for quite a few hyper-parameter configurations
each). As said, the contributions presented in Chapters 5 and 6 fall in this category.

To our best knowledge, this strategy was less explored, mainly in the case of
tabular datasets, due to its complexity and the shortage of (meta)-data. On the one
hand, learning (meta)-features requires a sufficient number of (meta)-samples, here
datasets. However, the largest curated dataset benchmark OpenML CC-18 |

|, yielding 72 binary and multi-class classification datasets, is insufficient
for a learning purpose. Indeed the complete OpenML benchmark includes a few
thousand datasets; unfortunately, many of those are deprecated versions of others,
and some are too limited (e.g., involving a single feature).

On the other hand, the learning setup relevant to learning meta-features is still
far from being clearly formalized. In vague terms, meta-features are good if and
only if they efficiently support an AutoML process.
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The state-of-the-art currently includes two approaches for learning meta-
features from a benchmark. In [2013], meta-features are
learned to estimate whether a given algorithm A outperforms an algorithm B,
for A and B ranging in a set of landmark models. The meta-feature associated
to each pair (A, B) is learned as a decision tree based on the hand-crafted meta-
features.

In [2021], [ |, the sought meta-features are learned
by training neural networks. In [ ], a Siamese network is trained on
the top of the hand-crafted meta-features, where the loss is defined by requiring
that the learned meta-features of two datasets are similar if their top configurations
are similar. In [2021], neural networks taking sets of samples as input
are considered. Formally, the sought NN is trained to determine whether two
patches of data (each defined by a subset of features and samples) are extracted
from the same dataset; the meta-features are defined as the nodes in the last
NN layer. Note that the meta-features thus do not take into account the hyper-
parameter performances on each dataset.

The contribution presented in Chapter 5 takes inspiration from
[2021], with two main extensions. The first extension consists in setting the meta-
feature learning problem in the rigorously defined framework of distributional neural
networks | ]. The second extension regards the goal (learning
loss) considered to learn the meta-features.

As will be discussed, the main limitation of this contribution regards the short-
age of benchmark data used to train the distributional NN. Hence, several (meta)-
data augmentation are considered; still, NN training requires a sufficient amount
of information that is hardly available in the context of AutoML.

The second contribution, presented in Chapter 6 addresses the above limitation
by restricting the search space for the learned meta-features, and only considering
linear combinations of the hand-crafted meta-features. As will be experimentally
shown, this restriction not only results in significant improvements but also sheds
some light on the relevance of hand-crafted meta-features in the context of a
particular learning algorithm.
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4 - Automated Machine Learning with
Monte-Carlo Tree Search

This chapter describes the first contribution of this thesis. As said (Sec-
tion 1.3), AutoML tackles a black-box, structured and expensive optimization
problem (Equation 1.1). Our first contribution focuses on the Hyper-Parameter
Optimization problem involved in AutoML. The mixed (structured and parametric)
optimization is handled using a hybrid HPO approach, mixing Monte Carlo Tree
Search (MCTS), to handle the structured aspects, and Bayesian Optimization (to
be sample efficient). The resulting approach is dubbed Monte-Carlo Tree Search
for Algorithm Configuration (Mosaic).

The chapter is organized as follows. Section 4.1 first discusses the position of
the problem and advocates the use of a hybrid approach. Section 4.2 introduces
the formal background and presents MCTS, for the sake of self-containedness.
Section 4.3 gives a detailed overview of the proposed Mosaic approach. The
experimental setting and the goals of experiments are presented in Section 4.4.
Finally, Section 4.5 reports on the empirical validation of Mosaic on the OpenML
benchmark suite and the Scikit-learn portfolio.

4.1 . Position of the problem

A key difficulty of the AutoML optimization problem lies in the structure of
the search space: an ML pipeline is a series of selected modules or components
(algorithms), and a vector of hyper-parameters (possibly of varying dimension) is
attached to each component. The AutoML task thus combines a combinatorial
optimization problem (selecting the components of the pipeline structure) and a
parametric optimization problem (optimizing the hyper-parameters of each selected
component). The nature of the former optimization problem (finding pipeline
structure) is arguably very different from the latter one (tuning hyper-parameters).
This suggests that an algorithm best suited to structure optimization may be less
efficient to achieve hyper-parameter tuning, and vice-versa.

Note that most AutoML approaches tackle both problems using a single opti-
mization approach technique (CASH, Section 2.2). The originality of Mosaic is to
use specific optimization approaches, one for each problem, and to tightly couple
them (Section 4.3).

Formally, the combinatorial optimization of the pipeline structure is tackled as
a sequential decision process, and Monte-Carlo Tree Search (MCTS) [

| is adapted to solve this sequential problem efficiently. On the
other hand, the celebrated Bayesian optimization (BO) approach [ |
efficiently handles expensive black box optimization problems, and it has been used
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in particular in the context of hyper-parameter tuning [ ,
. . ]

Taking the best of both worlds, Mosaic combines MCTS and BO to tackle
the AutoML problem efficiently. The coupling of both approaches is enforced as
MCTS and BO share a single surrogate performance model, used to guide the BO
search for the hyper-parameter optimization and the MCTS search for the pipeline
structure.

4.2 . Formal background

After formalizing AutoML as a sequential optimization problem, this section
presents the Monte-Carlo Tree Algorithm | | for the sake
of self-containedness. Its adaptation to the context of the per-instance AutoML
problem is last described.

4.2.1 . AutoML as a Sequential Decision Problem

Following the CASH formalization (Section 2.2), the search space for ¢-size ML
pipelines is noted X' = (4, _a,)e, x...x4,(a1,0(a1)) X ... x (ag, ©(ar)), where:
A; is the finite set of i-th pipeline components, and ©(a;) is the hyper-parameters
space of component a;. Algorithm and component are used interchangeably in the
remainder of the chapter.

The straightforward formalization of AutoML as a sequential decision problem
consists of considering the sequence of decisions, selecting each pipeline component
and its hyper-parameters according to a fixed ordered sequence of ¢ decisions.
Examples of such decisions include the choice of the data pre-processing, feature
selection, and learning algorithms.

A k-pipeline structure (k-ps) is a k-tuple s = (a1,...ax) € A; x ... x Ag,
with k& < /. Given a k-ps s, any x € X with same first k decisions as s is said to
be compatible with x (noted s < x) and the subset of pipelines compatible with s
is noted X (s) = {x € X;s < x}.

A default distribution D is defined on X, involving a uniform distribution on
all A; and, conditionally to the selected a;, uniform distribution on the (bounded)
©(a;). The default distribution on X (s) is defined similarly.

4.2.2 . Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a tree-structured extension of the multi-
armed bandit (MAB) algorithm | ]. As said (Sec-
tion 2.1), a MAB is concerned with single state decision problems, aimed to select
the action among a finite set of action that gets the best reward in expectation. In
contrast, MCTS handles sequential decision problems, where a sequence of deci-
sions is needed to get a reward. In other words, MCTS is best suitable for planning
problems or games, as was amply demonstrated for the game of Go |

].
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MCTS handles sequential decision making along a tree-structured approach,
where each decision at any step is managed by a MAB algorithm. The relations
among actions are expressed through the tree structure. Each (completed) tree
path corresponds to a solution, list of decisions and is associated with a reward (or
feedback score). The final outcome of MCTS is an optimal path of the tree space,
representing the optimal sequence of decisions.

In most cases (e.g. the game of Go) the tree-structured space X has a high
branching factor; thus, considering an exhaustive search strategy is intractable.
Therefore, instead of brute-forcing, MCTS iteratively explores the tree space while
gradually biasing the exploration toward the most promising regions of the search
space. Formally, MCTS iteratively proceeds as follows. Each iteration, correspond-
ing to a tree-walk (Figure 4.1), involves four phases | |:

Down the MCTS tree: The first phase traverses the MCTS tree from the
root node. In each (non-leaf) node s of the tree, the next node s.a to visit is
selected among the child nodes of s classically using the multi-armed bandit Upper
Confidence Bound criterion [ |:

n(s.a)

with fig, the average reward gathered over all tree-walks with prefix s.a, n(s)
(resp. n(s.a)) the number of visits to node s (resp. node s.a), and Cye a
problem-dependent constant that controls the exploitation vs exploration trade-
off;

1
select arg max {ﬂs.a + Cuet ogn(s)} 4.1)
a

Expansion: When arriving at a leaf node, a new child node is added. The
choice of the new node can be guided using, e.g., Rapid Action Value Esti-
mate [ ]. Following the Progressive Widening strategy |

], the number of considered options is gradually extended with
the number of visits n; to the current node. Formally, when the integer value of
n(s,a)™™ is incremented, a new value is considered, with PW the coefficient of
progressive widening (usually 1/2).

Playout: After the expansion phase, a playout strategy is used to complete the
tree-walk until reaching a terminal node and computing the associated reward. A
simple playout strategy is to choose the remaining nodes uniformly.

Back-propagation: The reward is back-propagated along the current path,
incrementing n(s) for all visited nodes and updating the value of each node s,
noted [is, accordingly.
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Figure 4.1: Monte-Carlo Tree Search: each iteration includes four
phases, from [ ]

4.2.3 . Per-instance AutoML

This section briefly situates the main AutoML components that will be handled
in the MCTS search.

Surrogate model-based optimization (SMBO). As said (Section 2.1),
most approaches rely on a surrogate model F of the objective function F, it-
eratively exploiting F to make a decision and updating F on the basis of the
current reward. At step ¢, surrogate model Fi: : X — R is learned from the
set {(xy, F(xy)),u = 1...t} gathering the previously selected pipelines and their
associated performances.

Surrogate models are often exploited along Bayesian optimization (BO)
[ |. Formally, if model F yields an estimate of the performance for any
given x and the confidence of this estimate, the most promising x}, | is determined
by maximizing the acquisition function, e.g., Expected Improvement (EI) |

| compared to the current best value F(x;).

The main difficulty lies in the structure of space X. In all generality, this
space includes categorical variables (e.g., the name of the pre-processing or ML
algorithms) and continuous or integer variables, the number and range of which
depend on the value of the categorical variables (e.g., the hyper-parameters of the
retained algorithms). Diverse surrogate model hypothesis spaces were considered
to cope with the structured of the search space: Sequential Model-based Algorithm
Configuration (SMAC) | | uses Random Forests [ |;
[ | use a Tree-structure Parzen Estimator.

Another issue is the distribution used to sample the configuration space to
optimize the acquisition function. For instance, Auto-Sklearn, as it uses SMAC,
considers a small number of configurations close to the best-so-far pipelines, aug-
mented with a large number of uniformly sampled pipelines.
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Search initialization Several approaches are used to address the initializa-
tion of the search process, long known to be critical for ill-posed optimization
problems | , ]. Such approaches
include Meta-learning strategies (Chapter 3), leveraging knowledge from similar
previous tasks and selecting the initial candidates x,,'s as the best configurations
for these previous tasks.

Specifically regarding SMBO, what matters is the accuracy of the surrogate
model in the worth part of the search space; this accuracy is governed by the
selection of the x,'s. In Auto-Sklearn.Metalearning for instance, the x,'s are
selected based on an archive {(z;,x;)} where the meta-feature vector z; describes
the i-th dataset and x; is the best-known pipeline for this dataset. Letting z denote
the meta-feature vector associated with the current dataset, its nearest neighbors
in the archive (in the sense of the Euclidean distance on the meta-feature vector
space) are computed, and the x;s associated with these neighbors are used by
Auto-Sklearn as first configurations | ]

Model ensembling The merits of ensemble learning are long known in terms
of accuracy and robustness. Along this line, an ensemble of ML models is often
used in AutoML instead of a single model, taking advantage of the fact that the
sequence of solutions found by an AutoML process can be exploited in the spirit of
ensemble learning. [ ] propose a simple and efficient procedure
to compute an optimal ensemble from a set of models. This approach is adapted
to the AutoML context as follows.

Starting with an empty set S, iterate over the pipelines and add it into S if
only if the weighted sum of the pipelines improves the validation score. Then,
leveraging the same strategy, Auto-Sklearn.Ensemble iteratively recomputes the
optimal ensemble each time a new configuration is launched, yielding a new model.

4.3 . MCTS-aided Algorithm Configuration

This section details how Mosaic tackles the combinatorial and the parametric
optimization problems at the core of AutoML, respectively concerned with the
selection of the algorithms in the pipeline, a € A, and the tuning of their hyper-
parameters, 0(a;) € O(a;) for each algorithm a; in a.

4.3.1 . Two intertwined optimization problems

Along the mainstream CASH formalization (Section 2.2), the difficulty comes
from the fact that the abovementioned optimization problems do not have the
same nature and search spaces.! However, handling them in a separate way raises

TFurthermore, the optimization of 6(a;) is of varying dimension, possibly depend-
ing on the value of some coordinates in 6(a;), e.g. the number of neural layers con-
trols the dimension of the neural layer size.
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a key issue: The optimization objective is non-separable. Formally, the marginal
performance of a; depends on all other a;, k # j and on 6(a). Likewise, the
marginal performance of §(a;) depends on all aj and 6(ay) for k # j.

The naive approaches, e.g. optimizing 6(a) for every considered a, or es-
timating the performance of a from a few samples of f(a), are intractable for
computational reasons.

Mosaic addresses this challenge along an original hybrid approach, tackling
both structural and parametric optimization problems using two coupled strategies.
MCTS is used to tackle the structural optimization of a and Bayesian optimization
is used to tackle the parametric optimization of #(a). The coupling of MCTS
and BO is achieved as they both rely a single surrogate model F on the overall
pipeline space X, learned and maintained using all computed performances F(x, =
(ay,f0(ay))), with F be the true performance function.

The difference between Mosaic and Auto-Sklearn (respectively most other
AutoML approaches) is that the combinatorial optimization part in Mosaic is
based on MCTS as opposed to BO (resp., their own optimization methods).

4.3.2 . Partial surrogate models

This subsection details the surrogate models involved in Mosaic.

Regarding the combinatorial optimization of the pipeline structure with MCTS,
the difficulty is to estimate the performance of an incomplete structural pipeline s,
where only part of the modules are selected. This partial approximate performance
is estimated through a surrogate performance model @, which is derived from
F. The Q7 performance is used during the expansion and play-out steps, allowing
the selection of promising pipelines to guide the completion of s. Finally, during
the back-propagation step, the true performance of the evaluated pipeline is used
to refine the value of the tree-walk s.

For k < ¢, let s be a k-ps, and let s.a denote the (k + 1)-ps built from s by
selecting a as (k + 1)-th decision. Then the surrogate Q5 is defined as:

~ 1 &5~
(s,a) = E ~ Y Flx 4.2
QF(S,&) X~D[X (s.a)] (f(X)) N - 'F(X]) (4.2)
estimated from a number ng (ns = 100 in the experiments) of configurations

sampled in X(s.a).?

A probabilistic selection policy 7 can then be built from Q 5, with:
r(als) = — P (Qp(s,a))
Yhea, exp (Qp(s, b))

Taking inspiration from [ ], this policy is used to enhance the
MCTS selection rule (below).

(4.3)

2Note that, since the purpose of Q5 (s, a) is to estimate the importance of an algo-
rithm a, other alternative approaches [ 1 [ ]
can be adopted to compute this estimate more efficiently.
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4.3.3 . The Mosaic algorithm

The Mosaic algorithm is described in Alg. 2, following the general MCTS
scheme (Section 4.2.2), where the main four phases are modified as follows.

Down the MCTS tree (selection) In a non-leaf node s of the MCTS tree,
with s a k-ps, the child node a is selected in Ay using the AlphaGo Zero criterion:

argmax (Q(S, a) + Cyep * m(als) * 1+Zé:>a)> (4.4)

where @ is the median® of F(x) for all x in X(s.a), w(als) is defined by
Eq.(4.3), n(s) is the number of times s was visited, and C,, is the usual constant
controlling the exploration vs exploitation trade-off (with default value .6).

Expansion In a leaf node s of the MCTS tree, with s a k-ps, the child node a
in Ay that maximizes the surrogate performance (s, a) is added to the MCTS
tree.

Playout Letting s be the (possibly complete) k-ps, a full pipeline x with s <
x is defined using a sampling playout strategy. Three sampling strategies are
considered:

A a configuration is sampled according to the default distribution D(X (s));

B a local search around the best recorded pipeline (a*, 6*) in X (s) is achieved
and the best configuration according to F is retained;

C a number of configurations is sampled after D(X(s)) in X(s), together
with a few configurations sampled via a local search around (a*,6*), and
the sample x that maximizes the Expected Improvement of F is retained.
This strategy is similar as in SMAC | ]

In all cases, the true performance F(x) of the retained configuration is computed.

Early experiments were conducted to assess these strategies, showing that:
strategy A is slow and prone to overfitting; strategy B causes a loss of diversity
of the considered pipelines, eventually resulting in a poor surrogate performance
model F. Hence only the third strategy C is considered thereafter: the sampled
configurations include n, (n, = 1,000 in the experiments) configurations sampled
from default distribution D(X (s)), augmented with pipelines nearest* to (a*, 6*).

3The average was also considered, giving very similar results, except in rare cases
of heavily failed runs.

“Formally, one selects every (a’, ') such that either a’ = a* and ¢’ differs from 6*
by a single hyper-parameter value; or a’ differs from a* by a single decision and ¢’ is
the default hyper-parameter vector 6(a’).

41



Algorithm 2: Mosaic Vanilla

1 Procedure Selection(s)

W 00 o0 & W

1

-

0 o &~ N

10

12
13
15
17
18
19

input :Incomplete pipeline s.

let a;,5; be the last algorithm in s

while a,, is a non-leaf node of the MCTS tree do
a < Select child node of a;,5; using Equation 4.4
return Selection(s.q)

end

returns

Procedure Expansion(s)

input :Incomplete pipeline s.
return argmax, Q (s, a)

Procedure Playout (s)

input :Incomplete pipeline s.
let S be a set of complete pipelines drawed from D[X (s)]
/* Neighbors(x) outputs the neighbors of pipeline
X. x/
N <+ Neighbors(x§), with x5 € X (s) best pipeline seen so
far compatible with s
return argmax, g,y EI(2)

Procedure Mosaic (T, d)

input : Number of iterations T, dataset d.

fortin {1.. 7} do

s < Selection(@)

a < Expansion(s)

x4 Playout (s.a)

Train pipeline x on dataset d and observe performance r

n(a) + 1;Q(s,a) < r

foreach a € ancestors(s) do
Update Q at node a with
n(a) < n(a) +1

end

end
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Back-propagation Performance F(x) is back-propagated up the tree along
the current path, and the @ value attached to each node of the path is updated.
Example (x, F(x)) is added to the surrogate training set, and the surrogate per-
formance model F is trained anew.

Stopping criterion The algorithm stops after the computational budget is
exhausted (one hour per dataset in the experiments).

4.3.4 . Initialization and Variants

The order of the decisions in the structural pipeline is key to the optimization:
while MCTS yields asymptotic optimality guarantees, the discovery of good deci-
sions can be very significantly delayed due to poorly informative or unlucky starts
[ |. For this reason, the order of decisions in the structural
pipeline is fixed once for all, with the first decision made at the root node of the
tree being the choice of the learning algorithm (associated with a default complete

pipeline).

Mosaic.Vanilla The initialization proceeds as follows: For each learning algo-
rithm (s = (a) with a € A;), its default complete pipeline is launched, together
with x (= 3 in the experiments) other pipelines sampled from X(s), and their
associated performances are computed. The initial surrogate model F is trained
from the set of all such (x, F(x)) and Q (0, a) is initialized for a in A;.

Mosaic.MetaLearning borrows Auto-Sklearn its better informed initializa-
tion, where the first 25 configurations are the best recorded ones for each of the
nearest neighbors of the current dataset, in the sense of the meta-feature distance.
The next configurations are selected as in Mosaic.Vanilla, and the actual search
starts thereafter.

Mosaic.Ensemble is similar to Mosaic.Vanilla, but returns the compound
model defined as a weighted sum of the models computed along the AutoML
search [ ], using an online ensemble building strategy as in

[2015a].

4.4 . Experimental Setting

This section details and discusses the experiments conducted to validate Mo-
saic.

4.4.1 . Goals of experiment

The goal of experiments is two-fold: (i) to assess the efficiency of Mosaic
compared to baselines; (ii) to investigate the relative impacts of Mosaic variants,
and its sensitivity w.r.t. its own hyper-parameters.
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Comparison w.r.t to baselines. The empirical validation of Mosaic firstly
aims to assess its performance compared to Auto-Sklearn [ ],
that consistently dominated other systems in the international AutoML challenges
[ ]. The other AutoML system used as baseline is the evolutionary
optimization-based® TPOT (v0.9.5) [ |

Analysis of Mosaic hyper-parameters and variants. The second goal
of experiments is to better understand the specifics of the AutoML optimization
problem. A first issue regards the exploration vs exploitation trade-off on the struc-
tural vs parametric subspaces, and the respective merits of MCTS and Bayesian
optimization on the structured space.

A second issue regards the impact of the Metalearning initialization. MCTS is no-
torious to achieve a consistent though moderate exploration, which as said might
slow down the search in case of unlucky early choices. A smart initialization pro-
cedure aims to mitigate such hazards.

4.4.2 . Experimental setting

Search space For the sake of a fair comparison, Auto-Sklearn and Mosaic are
compared on the same AutoML search space, defined from the scikit-learn library
[ ]. Both Auto-Sklearn and Mosaic search spaces involve 16
ML algorithms, 13 pre-processing methods, 2 categorical encoding strategies, 4
missing values imputation strategies, 6 rescaling strategies and 2 balancing strate-
gies (Table A.1-A.4, Appendix A.1). The size of the structured search subspace
is 6,048 (due to dependencies). The overall parametric search space has dimen-
sionality 147 (93 categorical, 32 integer, and 47 continuous hyper-parameters), all
managed through the CONFIGSPACE library [ ]. Each hyper-
parameter ranges in a bounded discrete or continuous domain. For each configu-
ration x = (a,f(a)), #(a) involves a dozen scalar hyper-parameter on average.

Mosaic hyper-parameters Mosaic shares the hyper-parameters of SMAC
(therefore Auto-Sklearn), and involves 3 additional hyper-parameters: the number
ns of samples to compute Q5 (Equation 4.2, with default value ns = 100), the
Cuch weight controlling the exploration vs exploitation tradeoff (Equation 4.4),
with default value C,4 = 1.3, and the coefficient of progressive widening PTW
controlling the branching factor of the MCTS tree, with default value PW = 0.6.
The SMAC hyper-parameters (shared with Mosaic) include: the number n, of
uniformly sampled configurations, and variance € = .2 for the local search used to
tune the acquisition function of the BO.

>AlphaD3M [ ] and AutoStacker [ ] could not be
considered due to the lack of a public code.
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Computational resources Computational runtimes are all measured on an
AMD Athlon 64 X2, 5GB RAM.

Benchmark suite All considered AutoML systems are assessed on the
OpenML 100 repository | ], including 100 binary and multi-class
classification problems (each with a training and a test sets). The overall compu-
tational budget is set to 1 hour for each dataset. For all systems, every considered
configuration x is launched to learn a model from 70% of the training set with a
cut-off time of 300 seconds, and performance F(x) is set to the model accuracy
on the other 30%. After 1 hour, for each system the best configuration x* is
launched to learn a model on the whole training set and its performance on the
(unseen) test set is reported. The system performance on this dataset consists of
the performance (averaged over 10 independent runs) and its standard deviation.

For each dataset, the performances achieved by all systems are ranked (the
lower the better). The main performance indicator associated to each system in
the following is its average rank over all datasets.

As the rank indicator might be blurred when many systems and their vari-
ants are considered together, duels between pairs of systems (Mosaic.X against
Auto-Sklearn.X, where X ranges in Vanilla, Meta-Learning, Ensemble, Meta-
Learning+Ensemble, Section 4.3.4), are considered. The actual performance (ac-
curacy) of the best confgurations will also be reported for a more in-depth discus-
sion.

4.5 . Empirical Validation

4.5.1 . Comparison with baselines

For the sake of a fair comparison, the assessment is carried out separately for
Mosaic vanilla and its variants.

Vanilla variants The comparative performances of Vanilla Auto-Sklearn,
TPOT and Mosaic vs computational time are displayed on Figure 4.2 (see also Fig-
ure 4.4-a), showing that the hybrid optimization used in Mosaic clearly improves
on the Bayesian optimisation-only used in Auto-Sklearn (and on the evolutionary
optimization-only used in TPOT), for whichever computational resources.

A complementary perspective on the respective performances of Mosaic and
Auto-Sklearn in terms of the predictive accuracy of the best configurations is
displayed on Figure 4.3. According to a Mann-Whitney-Wilcoxon test with 95%
confidence, and if considering the median performance, Mosaic significantly out-
performs Auto-Sklearn on 21 datasets out of 100; Auto-Sklearn outperforms
Mosaic on 6 datasets out of 100.

Mosaic improves on Auto-Sklearn on 35 other datasets (though not in a
statistically significant way), and the reverse is true on 18 datasets. Both are equal

45



2.8 1
— Aute-Sklearn Vanilla  —— Mosaic Vanilla TPOT
26
2.4
22 A

2.0

Average Rank

184
16 A

T T T T T T T
o 500 1000 1500 2000 2500 3000 3500
Time

Figure 4.2: Average performance ranks (lower is better) on OpenML-
100 vs CPU time of the Vanilla versions of Mosaic (bottom), Auto-
Sklearn (middle), and TPOT (top). Better seen in color.
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Figure 4.3: Performance of Mosaic (y-axis) versus Auto-Sklearn (x-axis)
on OpenML-100. Datasets for which the difference is statistically signif-
icant (resp. insignificant) after Mann Whitney Wilcoxon test with confi-
dence 5% are represented with a x (resp e).
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Figure 4.4: Average performance rank (lower is better) on OpenML-
100 vs CPU time of the different variants of Mosaic (bottom curve on
all plots but the Metalearning) and Auto-Sklearn.

Stat. significant Insignificant
Mc > As | Mc <As | Mc=As || Mc > As | Mc < As | Mc=As
Vanilla 21 6 10 35 18 8
Ensemble 11 12 6 38 16 15
MetalLearning 15 14 8 24 23 14
MetalL+Ens. 15 17 2 24 19 21

Table 4.1: Per dataset comparison statistics of the median per-
formance between Mosaic and Auto-Sklearn variants, with Mann-
Whitney-Wilcoxon test confidence level of 5% or not.

on 18 datasets and both systems crashed on 2 datasets.

MetaLearning and Ensemble variants The impacts of the Metalearning
and Ensemble heuristics are displayed on Figure 4.4. The difference noted for
the Vanilla variants (with Mosaic mostly dominating Auto-Sklearn) is less visible
for the Ensemble variants. For the Metalearning variants and Metalearning +
Ensemble variants, the difference between Auto-Sklearn and Mosaic is no longer
statistically significant.

A closer inspection of the results reveals that the best Auto-Sklearn config-
uration is nearly always among the initial ones: Auto-Sklearn.Metalearning thus
mostly explores the close neighborhood of the initially selected configurations. In
the meanwhile, Mosaic more thorough exploration strategy entails a bigger risk of
overfitting, discovering configurations with better performance on the validation
set, at the expense of the performance on the test set.

For each variant (Vanilla, Ensemble, Metalearning, and Metalearn-
ing+Ensemble), Table 4.1 reports the number of datasets for which Mosaic out-
performs Auto-Sklearn, and vice-versa, indicating whether the difference of per-
formance is statistically significant in the sense of a Mann-Whitney-Wilcoxon test
with confidence level 5% on the median performances.

4.5.2 . Assessment of Mosaic variants

Figure 4.5 displays the respective impacts of the Mosaic variants, showing
the ranks of the Vanilla, Metalearning, Ensemble and Metalearning+Ensemble
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Figure 4.5: Average performance rank (lower is better) of Mosaic vari-
ants on OpenML-100.

performances versus time. The main improvement is due to the Metalearning
strategy, yielding a better initialization of the optimization process. Overall, the
best variant is the one combining Metalearning and Ensembling, although the
Ensembling variant standalone yields a very moderate improvement on the Vanilla
variant.

4.5.3 . Sensitivity of Mosaic hyper-parameter

Complementary experiments are conducted to assess the sensitivity of Mo-
saic.Vanilla w.r.t. its own hyper-parameters. For computational reasons, only 30
datasets out of 100 are considered, and Mosaic.Vanilla is run 5 times with one
hour budget on each dataset.

Figure 5 displays the average rank of Mosaic.Vanilla at the end of the learning
curve compared to Auto-Sklearn.Vanilla, for Cy ranging in {.1,.3,.6,1,1.3,1.6}
and PW in {1,.8,.7,.6,.5}. Overall, Mosaic dominates Auto-Sklearn for 24 set-
tings out of 30 (with a rank less than 1.5).

Likewise, the sensitivity w.r.t. hyper-parameter n; is assessed for Cyp = 1.3
and PW = .6. Figure 6 displays the average rank vs time of Mosaic.Vanilla for n4
ranging in 50, 100, 500, 1000, showing the low sensitivity of the approach w.r.t.
ns for these (representative) values of Cy, and PW.

4.6 . Partial conclusion

The main contribution of this work is the new Mosaic scheme, tackling the
AutoML optimization problem through handling the structural and the parametric
optimization problems. The proposed approach is based on a novel coupling of
Bayesian Optimization and MCTS strategies, sharing the same surrogate model.
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In MCTS the surrogate model is used: i) to estimate, in any node, the average
performance of all pipelines below this node, and thus to choose the next node; ii)
to choose the optimal hyper-parameters of the pipeline using Bayesian Optimization
during the roll-outs.

The empirical validation of the approach demonstrates the merits of Mosaic
compared to the challenge winner Auto-Sklearn on the OpenML benchmark suite,
at least as long as the Vanilla and Ensemble variants are considered. With the
Metalearning variant however, the difference becomes insignificant as the bulk of
optimization is achieved during the initialization phase.

Two lines of research emerge as a perspective for further works.

Better initialization with better meta-features The performance of
the Metal earning variant confirms the importance of the initialization strategy and
thus motivates an in-depth study over the meta-features. Concretely, the question
becomes that of learning better meta-features than the hand-crafted ones. As
discussed (Chapter 3), the learning of meta-features faces critical difficulties (the
shortage of dataset benchmarks, the unknown target metric); the next two chapters
are devoted to tackling these difficulties.

Variable-length ML pipeline Another interesting line of research is on
adapting Mosaic to account for variable-length pipelines [ ]
If the MCTS algorithm naturally copes with such a setting, a few limitations still
need to be addressed. A formal definition of the variable-length search space is
required to ensure that sampled pipelines are admissible (trainable).

[ ], [ ], [ | propose to formalize
the search space using grammars [ |. In their work,

[ ] compare a greedy exploration of the constructed grammar, dubbed PIPER,
with Mosaic. Their results suggest that Mosaic consistently outperforms PIPER
during the first hour of training, but then PIPER starts to slightly improve over
Mosaic. Incorporating MCTS strategy to search over the pipeline grammar is thus
a promising future work.

Another challenge is to adapt the surrogate models in Mosaic to handle the
varying input dimension. A promising direction, taking inspiration of the Neural
Architecture Search | ], is to learn the surrogate model using
recurrent NN, e.g. LSTM | |
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5 - Distribution-Based Invariant Deep Net-
works for Learning Meta-Features

The Part 1l of this manuscript is devoted to meta-learning, complementary
to the optimization aspects of AutoML discussed in Part Il. While a number of
approaches, detailed in Chapter 3, have been deployed to tackle meta-learning,
the presented research focuses on learning dataset meta-features. As a second
contribution of the thesis, this chapter introduces the Distribution-based Invariant
Deep Architecture framework (Dida), a neural architecture which operates at the
dataset level.

The motivations and preliminaries are discussed in Section 5.1 and 5.2. Sec-
tion 5.3 details the proposed Dida approach, followed by its theoretical analysis
in Section 5.4.1. Finally, the empirical validation of the approach is discussed in
Section 5.5.

5.1 . Motivation

At the core of this Part |1, one aims to build representations of datasets through
learned meta-features. Meta-features, meant to represent a dataset as a vector of
characteristics, have been mentioned in the ML literature for over 40 years |

]. A large number of meta-features have been manually designed along
the years (detailed in Section 3.3.1, Chapter 3).

However, there exists little evidence that these hand-crafted meta-features ac-
curately capture the underlying joint distribution between datasets and ML perfor-
mances. It is likely that the set of optimal meta-features depends on the AutoML
task and ML algorithm at hand. For example, statistics-based meta-features (e.g.
the information gain of a dataset feature), might be more relevant to learning De-
cision Trees than Support Vector Machines. For these reasons, previous works |

, | attempt to learn new sets of meta-features
either from scratch or on the top of the hand-crafted meta-features.

The second contribution of the manuscript, detailed in the present chapter,
aims to learning dataset meta-features from scratch, that is by processing datasets
as in Dataset2Vec | |. The challenge is to devise an ML set-
ting accommodating datasets as input while enforcing the invariance proprieties of
meta-features w.r.t the features and rows permutations. The proposed Dida ar-
chitecture addresses the aforementioned challenge using distributional neural nets,
as will be detailed in Section 5.2.

5.2 . Preliminaries
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Notations [1;m] denotes the set of integers {1,...m}. Distributions, in-
cluding discrete distributions (datasets), are noted in bold font. Sets are noted in
capital letters. Vectors are noted in italic, with x[k] denoting the k-th coordinate
of vector x.

5.2.1 . Invariant Neural Network architectures

Deep networks architectures, initially devised for structured data such as images
and speech, are extended to enforce some invariance or equivariance properties
(defined below) [ | for more complex data representations. The
merit of invariant or equivariant neural architectures is twofold. On the one hand,
they inherit the universal approximation properties of neural nets | :

]. On the other hand, the fact that these architectures comply
with the invariances attached to the considered data representation yields more
robust and more general models through constraining the neural weights and/or
reducing the number of weights, as examplified by convolutional networks. For
instance, when considering point clouds | | or probability distributions
[ |, the network output is required to be invariant with respect to
permutations of the input points. Invariance and equivariance properties are both
defined in Definition 3 and 4.

Definition 3. (Invariance) Let f : X — Y be a function with input (resp.
output) domain X (resp. Y), and o be an operator defined on X. The function
f is said to be invariant under operator o iff f(o(z)) = f(z) for all z in X.

Definition 4. (Equivariance) Let f : X — X be a function on domain X,
and o be an operator defined on X. The function f is said to be equivariant
under operator o iff f(o(z)) = o(f(x)) for all z in X.

Neural architectures enforcing invariance or equivariance properties were pio-

neered by | , | for learning from point clouds subject
to permutation invariance or equivariance. These are extended to permutation
equivariance across sets [ ]. Characterizations of invariance or
equivariance under group actions are proposed in the finite [

| or infinite case [ ]

On the theoretical side, [ ) | propose a

general characterization of linear layers enforcing invariance or equivariance proper-
ties with respect to the whole permutation group on the feature set. The universal
approximation properties of such architectures are established in the case of sets

[ ], point clouds [ |, discrete measures |
|, invariant | | and equivariant [ ]
graph neural networks. [ | presents a neural architecture invariant

w.r.t. the ordering of points and their features, handling point clouds.
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The novelty of Dida is to handle continuous and discrete probability distribu-
tions, extending state-of-the-art approaches dealing with point clouds [

: ]. This extension yields more general approximation results
(Section 5.4) based on the weak convergence of distributions. Compared to the
set representation, considering datasets as distributions is best suited to capture
density related meta-features.

5.2.2 . Problem Definition

Let z= {(2;) € R%,i € [1;n]} denote a dataset including n labelled samples,
where z; = (z;,y;) with z; € R an instance and y; € R% the associated
multi-label. With dx and dy respectively the dimensions of the instance and label
spaces, let d def dx + dy. By construction, z is invariant under permutation on
the sample ordering; it is viewed as an n-size discrete distribution L "% | 4, in
R? with d,, the Dirac function at z;.

In the following, Z,,(RY) denotes the space of such n-size point distributions,

and Z(R?) € U,,Z,(R?) denotes the space of distributions of arbitrary size.

Let G &F Sdy XS4, denote the group of permutations independently operating
on the feature and label spaces. For 0 = (0x,0y) € G, the image o(z) of a
labelled sample is defined as (ox(x),0y(y)), with = (z[k],k € [1;dx]) and
ox(z) < (zlox(k)],k € [1; dx]). For simplicity and by abuse of notations, the
operator push forward mapping a distribution z = {z;,i € [1;n]} to {o(z),i €
[1; n]} = o4z is still denoted o.

Let Z(€2) denote the space of distributions supported on some domain © ¢ R,
with €2 invariant under permutations in G. The goal of this contribution is to define
and train deep architectures, implementing functions ¢ on Z(2) that are invariant
under G, i.e. such that Vo € G, p(03z) = ¢(z).

By construction, a multi-labelled dataset is invariant under permutations of
the samples, of the features, and of the multi-labels, in the sense that the results
of any learning algorithm do not (should not) depend on the order of samples,
features and multi-labels. For the sake of efficiency (notably in terms of number of
neural weights), a neural architecture taking multi-labelled datasets should comply
with their invariances, i.e. satisfy the sample and feature permutation invariance
properties.

5.3 . Distribution-Based Invariant Networks for Meta-Feature
Learning

This section describes the core of the proposed Dida architecture, specifically
the mechanism of mapping a point distribution onto another one subject to sample
and feature permutation invariance, referred to as invariant layer. For the sake
of readability, the following presentation of the approach and its properties only
considers the discrete probability case; the continuous probability case and the
proofs in the discrete and continuous cases are presented in Appendix B.3 and B.2.
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5.3.1 . Distribution-Based Invariant Layers
The building block of the proposed architecture, the invariant layer meant to
satisfy the feature and label invariance requirements, is defined as follows, taking
inspiration from [ |

Definition 5. (Distribution-based invariant layers) Let an interaction func-
tional ¢ : R? x R? — R” be G-invariant:

V0-7 Z1,%22 € G x Rd X RdJ QO(Zla Z?) = 90(0-(2:1)7 U(ZQ))'

The distribution-based invariant layer f, is defined as f, : z = (2;)ic1;n] €
Z(RY) — f,(z) € Z(R") with

n
Zgo zl,z] %Z zn,z] (5.1)

By construction, f, is G-invariant if ¢ is G-invariant. The construction of f,
is extended to the general case of possibly continuous probability distributions by
replacing sums with integrals (Appendix B.1).

It is important that f, invariant layers (in particular the first layer of the neural
architecture) can handle datasets of arbitrary number of features dx and number
of multi-labels dy. An original approach is to define ¢ as follows. Let z = (z,y)
and 2/ = (2/,4/') be two samples in R%X x R . Considering two functions (to be
learned) u : R* — R’ and v : R! +— R", then ¢ is obtained by applying v on the
sum of u(z[k], z'[k], y[€],y'[¢]) for k ranging in [1; dx] and £ in [1; dy]:

dx dy
= (Z > ulx y[ﬁ],y’wD) (5.2)

k=1 ¢=1

Discussion. By construction ¢ is invariant to both feature and label permu-
tations; this invariance property is instrumental to a good empirical performance
(Section 5.5).

Note that (after learning v and v) f, can map a n-size dataset z onto an
n-size f,(z) dataset for any arbitrary n.

As said, f,, is based on interaction functionals ¢(z;, ;). This original archi-
tecture is rooted in theoretical and algorithmic motivations. On the one hand,
interaction functionals are crucial components to reach universal approximation
results (see Appendix B.3, Theorem 2). On the other hand, the use of local
interactions allows to create more expressive architectures; the benefit of these
architectures is illustrated in the experiments (Section 5.5). Formally, the princi-
pled Dida framework relies on the weak convergence of probability distributions
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(the Wasserstein distance), which enables to compare distributions with varying
numbers of points or with continuous densities.
Two particular cases are when ¢ only depends on its first or second input:

o If p(z,2") =1(2'), then f, computes a global 2nd order “moment” descrip-
tor of the input, as f,(z) = %Z?:l ¥ (z;) € R". The first order moment
is not accounted for as the dataset is normalized in a pre-processing step.

o If p(z,2') = &(2), then f, transports the input distribution via ¢, as f,(z) =
{&(z0),i € [L;n]} € Z(R").

Remark 1. (Localized computation) The quadratic complexity of f, w.r.t. the
number n of samples (Equation 5.1) can be reduced in practice by only computing
©(zi, z;) for pairs z;, z; sufficiently close to each other. Layer f, thus extracts and
aggregates information related to the neighborhood of the samples.

Remark 2. (Link to kernels) The interaction functional ¢ can be thought of in
terms of a kernel, however with significant differences: i) in f,(z;), the detail of
the pairwise interactions (z;, z;) is lost through averaging; ii) ¢ takes into account
labels, iii) v is learnt.

5.3.2 . Learning from distributions

Dida distributional neural architecture defined on point distributions, maps a
multi-labelled dataset z € Z(IR?) onto a real-valued vector noted F(z), with

Fe(2) & i 0.0 0 i 0 fon 0.0 fr(z) € RImHL (5.3)
where ( are the trainable parameters of the architecture (below). For simplicity,
only the single label case (dy = 1) is considered in the following.

The first invariant layer is defined from ¢, mapping pairs of vectors in R?
(dy = d) onto R%; it is possibly followed by other invariant layers (the impact
of using 1 vs 2 invariant layers is experimentally studied in Section 5.5). The last
o-th invariant layer is followed by a first non-invariant one, defined from some ¢,1
only depending on its second argument; it is possibly followed by other standard
layers. The functions defined from the neural nodes on the penultimate layer are
referred to as meta-features.

The G-invariance and dimension-agnosticity of the whole architecture only
depend on the first layer f,, satisfying these properties, defined as follows.

e1((z,y), (@ y) = oY w(alk), 2'[k], y,9") (5.4)
k
with
u(z[k], 2'[k], y,y") = (p(Au - (x[K]; 2" [K]) + bu), Lyzy) (5.5)
v(e) = p(Ay - o+ by) (5.6)
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where p is a non-linear activation function, A, a (t,2) matrix, (z[k];2z'[k]) the
2-dimensional vector concatenating z[k] and 2'[k], b, a t-dimensional vector, A,
a (t,r) matrix and b, a r-dimensional vector.

Every o, k > 2 is defined as ¢, = p(Ayg - +bx), with p an activation function,
Ap a (dg,dps1) matrix and by a djiy1-dimensional vector. The Dida neural net
thus is parameterized by ¢ wf (A, by, Ay, by, { Ak, bi }i), that is classically learned
by stochastic gradient descent from the loss function defined after the considered
learning task (Section 5.5). The non-linear activation function p is set to RELU in

the experiments.

5.4 . Theoretical Analysis

This section investigates the properties of invariant-layer based neural archi-
tectures, and establishes their robustness w.r.t. bounded transformations of the
involved distributions, and their approximation abilities w.r.t. the convergence in
law. As already said, the discrete distribution case is considered for the sake of
readability; the case of continuous distributions is detailed in Appendix B.1.

5.4.1 . Topology on Datasets

Point clouds vs. distributions. The fact that datasets are preferably seen
as probability distributions (as opposed to point clouds) is motivated as including
many copies of a point in a dataset amounts to increasing its importance, which
usually makes a difference in standard machine learning settings. Accordingly the
topological framework used in the following is that of the convergence in law on
distributions, with the distance among two datasets measured using the Wasser-
stein distance. In contrast, the distance among point clouds commonly relies on
the Hausdorff distance among sets (see e.g., [2017]). This distance, that
is standard for 2D and 3D data involved in graphics and vision domains, however
faces some limitations in higher dimensional domains, e.g. due to max-pooling
being a non-continuous operator w.r.t. the convergence in law topology.

Wasserstein distance. The standard 1-Wasserstein distance between two
discrete probability distributions z,z’ € Z,,(R?) x Z,,(R?) is defined after

[2015], [2019]:

n

Wi(z,2) & max lZﬂzi)*%ZﬂZé)

fGLipl(Rd) n i=1 j=1

with Lip; (R9) the space of scalar 1-Lipschitz functions on R?. The G-invariant 1-
Wasserstein distance is defined to extend the above and account for the invariance
under operators in G:

Wi(z,z') = min Wy (0yz,2)

oc
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Accordingly, W1 (z,z’) = 0 iff z and z’ are equal in the sense of probability distri-
butions up to sample and feature permutations (Appendix B.1).

Lipschitz property. Let z(*) be a sequence of distributions weakly converging
toward z (noted z(¥) — z). By construction, z*) — z iff W(z*),z) — 0. Map
f from Z(R?%) onto Z(IR") is said to be continuous iff for any sequence z(*) — z,
then f(z*)) — f(z). Map f is said to be C-Lipschitz for W iff

Vz,z € Z(RY), Wi(f(z), f(z)) < CWi(z,2). (5.7)

The C-Lipschitz property entails the continuity of f: if two input distributions are
close in the permutation invariant 1-Wasserstein sense, their images by f are close
too.

5.4.2 . Continuity Results
Let us assume the interaction functional ¢ to satisfy the Lipschitz property
w.r.t. their first and second arguments (Vz € R% ¢(z,-) and (-, 2) are C, —
Lipschitz.). Then invariant layer f,, also satisfy the Lipschitz property.

Proposition 1. /nvariant layer f, of type (Equation 5.1) is (2rC,,)-Lipschitz in the
sense of (Equation 5.7).

A second result regards the case where two datasets z and z’ are such that
z' is the image of z through some diffeomorphism 7 (z = (z1,...,2,) and 2’ =
7432 = (7(21),...,7(2n)). If 7 is close to identity, then f,(7:z) and f,(z) are close
too. More generally, if continuous transformations 7 and & respectively apply on
the input and output space of f,, and are close to identity, then & f,(74z) and
fo(z) are also close.

Proposition 2. Let 7 : RY — R%and ¢ : R” — R” be two Lipschitz maps with
respectively Lipschitz constants C and C¢. Then, Vz,z' € Z(Q2),

Wi(&fo(y2), fo(2))

< sup |¢(z) — zf2 + 2rLip(¢) sup |7(z) — 22
x€ fo (T(2)) e

In addition, if T is equivariant,
Wi (& fp(myz), & fo(Ti2)) < 2r Cp Cr CcW(2,2])

Proofs: in Appendix B.2.

5.4.3 . Universal Approximation Results
Lastly, the universality of the proposed architecture is established, showing that
the composition of an invariant layer (Equation 5.1) and a fully-connected layer is
enough to yield the universal approximation property, over all functions defined on
Z(R%) with dimension d less than some upper bound D.
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Theorem 1. Let F : Z(Q) — R be a G-invariant map on a compact Q C R,
continuous for the convergence in law. Then Ye > 0, there exists two continuous
maps 1,  such that

V2 €Z(Q), |F(z) - o fu(z)] <e
where ¢ is G-invariant and independent of F.

Proof: in Appendix B.3.

After Theorem 1, any invariant continuous function defined on distributions
with compact support can be approximated with arbitrary precision by an invariant
neural network. This result holds for distributions with compact support in R¢ for
all d < D, with D an upper bound on the dimension of the considered distribution
supports. The proof (Appendix B.3) involves mainly three steps: (i) an invariant
layer f,, can be approximated by an invariant network; (ii) the universal approxima-
tion theorem | , |; (iii) uniform continuity is used to
obtain uniform bounds. This result generalizes the universality result established
for fixed numbers of dimensions and points [ | to the cases of
finite distributions of any size n, and continuous distributions.

5.5 . Experimental Validation

The experimental validation is conducted to assess: i) the performance of
Dida compared to the state of the art; ii) the merits of the original architecture of
invariant layers, based on an interaction functional ¢ (Equation 5.1).

5.5.1 . Experimental setting

Tasks. The validation is conducted on two tasks, derived from supervised
datasets as opposed to standard point cloud benchmarks.

e Task 1 is a patch identification problem inspired from [ ]
aiming to identify if two dataset patches are extracted from a same dataset.

e Task 2 aims to rank hyper-parameter configurations for a fixed supervised
learning algorithm, according to their performance on the considered dataset.

Benchmarks. Three benchmarks are used (Table 5.1): TOY and UCI, taken
from [ ], and OpenML CC-18 | ], with data
preprocessing detailed in Appendix B.4.1.

Baselines. Three baselines are considered:

e DSS | | is involved with three variants: i) linear invariant
layers; ii) non-linear invariant layers; iii) equivariant + invariant layers.
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FC (256)
FC (128)
FC (64)

Figure 5.1: Learning meta-features with Dida. (Up) The Dida archi-
tecture (FC for fully connected layer). (Bottom left) Task 1: Learn-
ing meta-features for patch identification using a Siamese architecture
(Section 5.5.2). (Bottom right) Task 2: learning meta-features for rank-
ing hyper-parameter configurations ¢, and 6, (Section 5.5.3).

e Dataset2Vec | |

e The last baseline is a function (trained to the task) of the hand-crafted
meta-features (HC) (detailed in Table B.2, Appendix B.4.2) |

]

We implemented the DSS baseline as the code was not available and we re-
implemented Dataset2Vec as described in | |. DSS is augmented
with an aggregator summing over the features in order to accommodate datasets
with varying numbers of dimensions. All baseline codes are publicly available at
https://github.com/herilalaina/dida for the sake of reproducibility.

Training setups. The same Dida architectures are used for both tasks, in-
volving 1 or 2 invariant layers followed by 3 fully connected (FC) layers (Figure
5.1, left). All experiments run on 1 NVIDIA-Tesla-V100-SXM2 GPU with 32GB
memory, using Adam optimizer with base learning rate 10™3 and batch size 32.
For all considered architectures, meta-features F¢(z) consist of the output of the
penultimate layer, with ¢ denoting the trained parameters.

5.5.2 . Task 1: Patch ldentification

In Task 1, patches are extracted from datasets and the task consists in predict-
ing whether two patches are extracted from the same dataset. Letting u denote a
dataset with n d-dimensional examples, patch z is constructed from u, by selecting
(uniformly with replacement) n, examples in u and considering their description
based on d. features selected uniformly with replacement among u features. Size
n, and number d, of features of the patch are uniformly selected (Table 5.1). In
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Datasets Patches
# datasets # samples # features | # samples # features
Toy Dataset 10000 [2048, 8192] 2 200 2
ucl 121 [10, 130064] [3,262] | [200, 500] [2, 15]
OpenML CC-18 72 [500, 100000] [5,3073] | [700, 9001] [3,11]

Table 5.1: Benchmarks and patches characteristics.

Task 1, an example is made of a pair of patches (z, z’), together with its associated
label ¢(z,Z'), set to 1 iff z and z’ are extracted from the same initial dataset u
and n, = n,.

For all considered architectures, the parameters are trained using a Siamese
architecture (Figure 5.1, bottom-left; Algorithm 3. The learned classifier Zc(z,z’)
is the softmax exp (—|F¢(z) — F¢(2')]2), with F¢(z) and F¢(2") the meta-features
computed for z and z’, where ( is trained to minimize the cross-entropy loss:

> Uz, 2)log(le(z,2)) + (1 — £(z,2'))log(1 — I(z,2')) (5.8)

Z.7'

Algorithm 3: Patch Identification

1 Procedure Task_1(F, bench, N)

input : A meta-feature extractor 7, in {Dida, Dataset2Vec,
Deep Sets, DSS, Hand-crafted}, a benchmark bench
in {Toy, UCI, OpenML}, and a number of iterations
N

2 fori=1.....do

4 Z1,Z,Y < generate_patches (bench)

6 my < FC(ZI)

8 mo < fc(Zg)

10 Compute loss (Equation 5.8), and update ¢
1 end

Table 5.2 reports the empirical results on TOY and UCI datasets. On
TOY, Dida with 2 invariant layers, referred to as 2L-Dida behaves on par with
Dataset2Vec and DSS. On UCI, the task appears to be more difficult, which is
explained from the higher and more diverse number of features in the datasets.
The fact that 2L-Dida significantly outperforms all other approaches is explained
from the interaction functional structure (Egs. 5.1, 5.2), expected to better grasp
contrasts among examples. Dida with 1 invariant layer (1L-Dida) is much be-
hind 2L-Dida; with a significantly lesser number of parameters than 2L-Dida, the
1L-Dida architecture might lack representational power.
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\ Method | # params | TOY \ ucl \
Hand-crafted Meta-features 53312 | 77.05 %+ 1.63 | 58.36 %+ 2.64
No-FInv-DSS (no inv. in features) 1297692 | 90.49 %+ 1.73 | 64.69 %+ 4.89

| Dataset2Vec (our implementation) | 257088 | 97.90 %<+ 1.87 | 77.05 %=+ 3.49 |
DSS layers (Linear aggregation) 1338684 | 89.32 %+ 1.85 | 76.23 %+ 1.84
DSS layers (Non-linear aggregation) | 1338684 | 96.24 %+ 2.04 | 83.97 %+ 2.89
DSS layers (Equivariant+invariant) 1338692 | 96.26 %+ 1.40 | 82.94 %+ 3.36
Dida (1 invariant layer) 323028 | 91.37 %+ 1.39 | 81.03 %+ 3.23
Dida (2 invariant layers) 1389089 | 97.20% + 0.10 | 89.70 % + 1.89

Table 5.2: Comparative performances on patch identification of Dida,
No-FInv-DSS, Dataset2Vec, DSS and functions of hand-crafted meta-
features: average and std deviation of predictive accuracy over 10 runs.

Lesion study. A fourth baseline, No-FInv-DSS | ] only differs
from DSS as it is not feature permutation invariant; this additional baseline is used
to assess the impact of this invariance property. The fact that No-FInv-DSS lags
behind all DSS variants, all with similar number of parameters, confirms the im-
portance of this invariance property. Note also that No-FInv-DSS is outperformed
by 1L-Dida, while the latter involves significantly less parameters.

5.5.3 . Task 2: Ranking ML confiugrations

Task 2 aims to comparatively assess two vectors of hyper-parameters 6 and ¢’
of a fixed supervised learning algorithm Alg, referred to as configurations of Alg,
depending on their performance on a dataset patch z. For brevity and by abuse of
language, the performance of a configuration 6 on z is meant for the accuracy of
the model learned from z using Alg with configuration 6, computed using a 3 fold
cross validation.

The considered ML algorithms are: Logistic regression (LR), SVM, k-Nearest
Neighbours (k-NN), linear classifier learned with stochastic gradient descent
(SGD). For each algorithm, a Task 2 problem is defined as follows (Algorithm 4).
An example is made of a triplet (z, 0, ¢’), associated with a binary label ¢(z, 6, 6"),
set to 1 iff #’ yields better performance than 6 on z. Thus, the overall architecture
consists of:

e a meta-feature extractor F¢(z);

e a 2-layer FC network (depending on the considered Alg as they have different
configuration spaces) with input vector [F¢(z); 6; ¢']

The overall is trained to minimize a cross-entropy loss (Equation 5.8).

In each epoch, a batch made of triplets (z, 6,6") is built, with 8,6" uniformly
drawn in the algorithm configuration space (Table B.3) and z a patch of a dataset in
the OpenML CC-2018 | ], of size n uniformly drawn in [700; 900]
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Algorithm 4: Hyper-parameter Ranking

1 Procedure Task_2(F, Alg)

input : A meta-feature extractor F in {Dida, Dataset2Vec,
Deep Sets, DSS, Hand-crafted}, an algorithm Alg in
{SGD, SVM, LR, k-NN}.

NN < 2-layer fully connected neural network

fori=1,2,...do

z < generate_patch(OpenML)

Sample (0, ¢), two configurations of Alg (Table B.3)

10 Set binary target y as 1 if accuracy(z, 6) >

accuracy(z,0') else O

12 Compute loss (Equation 5.8) between y and

NN ([Fe(2z);6;0')

14 Update ¢ and NN

15 end

0o o &~ W

| Method | SGD SVM LR k-NN \
\ Hand-crafted | 71.18 %+ 0.41 7539 %+ 0.29 86.41 %+ 0.419 65.44 %+ 0.73 |
\ Dataset2Vec | 74.43 %+0.90 81.75 %+ 1.85 89.18 %=+ 0.45 72.90 %=+ 1.13 |

73.46 %+ 1.44 8291 %+0.22 87.93%+0.58 70.07 %+ 2.82
73.54 %+ 0.26  81.29 %+ 1.65 87.65 %+ 0.03 68.55 %+ 2.84
7413 %+ 1.01 83.38 %+0.37 87.92%+0.27 73.07 %+ 0.77

DIDA (1 invariant layer) 77.31 %+ 0.16 84.05 %+ 0.71 90.16 %+ 0.17 74.41 %=+ 0.93
DIDA (2 invariant layers) 78.41 %+ 0.41 84.14 %+ 0.02 89.77 %+ 0.50 78.91 %=+ 0.54

DSS (Linear aggregation)
DSS (Equivariant+Invariant)
DSS (Non-linear aggregation)

Table 5.3: Comparative performances on configuration ranking of
Dida, Dataset2Vec, DSS and functions of hand-crafted meta-features:
average and std deviation of pairwise ranking performance over 3 runs.

and number of features d in [3;10]. Dida and all baselines are trained using
Algorithm 4. Their comparative performances are displayed in Table 5.3, reporting
their ranking accuracy. 2L-Dida (respectively 1L-Dida) significantly outperforms
all baseline approaches except in the Alg = LR case (resp., in the Alg = k-NN
case). A higher performance gap is observed for the k-NN case, which is explained
as this algorithm mostly exploits the local geometry of the examples.

5.6 . Partial Conclusion

The theoretical contribution presented in this chapter is the Dida architec-
ture, able to learn from discrete and continuous distributions on IR?, invariant
w.r.t. feature ordering, agnostic w.r.t. the size and dimension d of the considered
distribution sample (with d less than some upper bound D). This architecture en-
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joys universal approximation and robustness properties, generalizing former results
obtained for point clouds [ ]

The merits of Dida are empirically and comparatively demonstrated on two
tasks defined at the dataset level. Task 2 in particular constitutes a first step toward
performance modelling | |, as the learned (algorithm-dependent) meta-
features support an efficient ranking of the configurations for the current dataset.
These meta-features, while requiring circa 4 hours in the considered environment
to be learned, are efficiently computed on datasets. On the considered tasks, they
improve on the meta-features manually defined in the last 40 years |

: .

Limitations. The proposed Dida approach, however, has two main limitations.
Firstly, meta-feature learning, as for any learning setup, relies on tasks with suffi-
ciently many examples to be available. Our early attempts failed due to current
(curated) ML benchmarks being not sufficiently representative. Secondly, it is
reasonable to think that learned meta-features are specific to the training task.
It implies that learning meta-features for AutoML would require the underlying
topology over the joint datasets and ML performances spaces, which is not known
in practice.

Perspectives. A direct perspective is to investigate the learned meta-features
for AutoML use cases. This line of research will be considered in the next chapter,
addressing the aforementioned limitations. Another long-term perspective is to in-
vestigate the relationships between two datasets, and estimate a priori the chances
of a successful domain adaptation | :

]. Such a goal requires a large amount of labelled datasets, however, one can
explore self-supervised setting to overcome this issue. For instance, bootstrapping
output representation as in [ | is a promising further work.
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6 - Meta-Learning for Tabular Data

This chapter presents the third contribution of this manuscript, also devoted to
learning meta-features suitable to AutoML problems, focusing on hyper-parameter
recommendation or Bayesian Optimization initialization. This approach, called
Metabu (Meta-learning for Tabular Data), aims to address the limitations of the
Dida approach presented in the previous chapter, relaxing the need for large and
representative benchmaks.

Specifically, Metabu leverages Optimal Transport to build a topology on the
dataset space, mimicking the topology on the datasets induced from their top
hyper-parameter configurations. This topology is used to optimize a linear mapping
on the hand-crafted meta-features | ]

The chapter is organized as follows. After presenting the motivations in Sec-
tion 6.1, the formal background is introduced in Section 6.2, presenting Optimal
Transport [ 1, [ ]. Section 6.3 gives a detailed
overview of Metabu. Section 6.4 reports on the empirical validation of Metabu,
and the chapter ends with a partial conclusion.

6.1 . Motivation

A primary motivation of Metabu is to address Dida limitations in order to
learn suitable meta-features for AutoML.

Dida limitations are two-faceted. On the one hand, it can hardly handle large
and dirty datasets. As a result, Dida empirical experiments only consider patches
(instead of datasets) with continuous features (using preprocessing if needed).
Such setting hardly handles standard dataset benchmarks such as OpenML |

] and UCI | ].

On the other hand, Dida proceeds by training meta-features, which requires suffi-
ciently many datasets in the AutoML benchmark. Unfortunately, the current state-
of-the-art curated benchmark OpenML-CC18 has less than a hundred datasets
available, which is quite insufficient for training a deep network. This shortage
of datasets is all the more blocking as, to our best knowledge, generating diverse
datasets is a challenging and yet open problem.
Besides these challenges, Dida meta-features, as well as hand-crafted meta-features
(except for the landmarking ones), mostly capture statistical features about the
datasets. Still, many studies [ , ,

| suggest that an efficient AutoML system can hardly rely only on such

meta-features. Typically, Auto-Sklearn [ | relies on Bayesian
optimization and iteratively learns and exploits one performance model specific to
each dataset; PMF | | uses a probabilistic collaborative filtering ap-

proach, where the cold-start problem is handled as in Auto-Sklearn; OBOE |
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| likewise uses a collaborative filtering approach, combined with active
learning.
Based on these arguments, the proposed Metabu approach i) builds upon exist-
ing meta-features; ii) aims at meta-features defining a reliable topology on the
dataset space, such that two datasets are close iff the best hyper-parameter con-
figurations for these datasets are close. Capturing the target topology (available
for the datasets in the benchmarks only) can support an inexpensive and efficient
AutoML strategy: selecting the best hyper-parameter configurations of the nearest
neighbor(s) of the current dataset. Moreover, as will be shown in Section 6.4, such
meta-features allow one to better understand the dataset space w.r.t. a given ML
algorithm, to estimate its intrinsic dimension and appreciate the distribution of the
ML benchmark suites in the meta-feature space.

Formally, the Meta-learning for Tabular Data (Metabu) approach casts and
tackles the construction of good meta-features — relatively to an ML algorithm A
— as an Optimal Transport (OT) problem [ , |
More precisely, two representations of the datasets are considered: the basic one
consists of 135 manually designed meta-features; The target one, out-of-reach ex-
cept for the datasets in the benchmark suite, represents a dataset as the distribution
of the hyper-parameter configurations of A yielding the top performances for this
dataset. Optimal Transport is used to find a linear transformation of the basic
meta-features, such that the resulting Euclidean distance emulates the Wasser-
stein distance [ ] on the target representation. Overall, Metabu learns
once for all the meta-features aimed to capture the topology and neighborhoods
corresponding to the target representation. These meta-features can be computed
from scratch for each new dataset.

A main difference w.r.t. e.g. [ | and [ | thus
is that no cold-start phase (adjusting the representation of the dataset at hand,
through launching new configurations) is needed.

6.2 . Formal Background

The limitations of manually designed meta-features |

| and those of learned meta-features | : ]
have been respectively detailed in Section 3 and Chapter 5. This section briefly
describes the optimal transport methodology used in this chapter to construct new
meta-features, and the related works.
Optimal Transport, first mentioned in Chapter 5, enables to compute the dis-
tance over datasets using Wasserstein distance. OTDD |
| uses OT to learn a mapping between datasets over the joint feature and
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label spaces.

Let (€2, d;) and (§2y,d,) denote compact metric spaces, and x and y distri-
butions respectively defined on €2, and 2,,. The search space I'(x, y) is the space
of all distributions on €2, x €, with marginals x and y. Let the transport cost
function ¢ : Q, x Q, — R be a scalar function on €, x le.

As said, the Wasserstein distance of x and y is defined as:

d? — in B[z, 1/q
W(X7Y) 'yErIp(ID?,Y) (z,y) 'y[c (x y)]

with ¢ a positive real number, set to 1 in the following.
Another OT-based distance is the Gromov-Wasserstein distance (GW) |

], measuring how well a distribution in I'(x, y) preserves the distances on both
), and €, akin a rigid transport between both domains:

. 1
Ay (%) = Velg%g{y)E(z,y)w,(xfyf)w[Idx(iv, ') — dy(y,y')|1H

The Fused Gromov-Wasserstein (FGW) distance | ] combines
both the Wasserstein and the Gromov-Wasserstein distances.

Definition 6. The Fused g-Gromov-Wasserstein distance is defined on 2, x
Q, as follows:

dé o (%, = min (1-« / cA(z,y)dvy(x,
Faw:a(X%Y) VEF(X,Y)( ) (z,y)dy(z,y)
QxQ,

Wasserstein Loss

+a / / o (2, 2') — dy(y, o) %y (z, y)dy (e, of
Qo QxQ,

Q[

~—
Gromov-Wasserstein Loss

(6.1)
a € [0,1] is a trade-off parameter: For o = 0 (resp. a = 1), the fused g-
Gromov-Wasserstein distance is exactly the q-Wasserstein distance dy,, (resp.
the g-Gromov-Wasserstein distance dg.,).

According to [ ‘ar ] the non-convex optimization in Equa-
tion 6.1 can be efficiently optimized along an iterative process using proximal gra-
dient method. Concretely, given a current estimate 4() at j-th iteration, define a

'"When Q, = Q, = Q, unless otherwise stated, the transport cost ¢(z,y) is the
Euclidean distance d(z, y).
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new objective function d}?’jéw;a similar to Equation 6.1 with a regularization term
KL(v||y")), where KL be the Kullback-Leibler divergence. The later sub-problem
is then solved using Sinkhorn Algorithm [ | yielding the new transport
map 7’1, We refer the reader to Algorithm 2 of [ ] for a more
complete description of the optimization method.

The Wasserstein distance and variants thereof were successfully used to eval-
uate the "alignment" among datasets, e.g. between the source and the target
datasets in the context of domain adaptation [ | or transfer
learning [ ' ]. FGW distance was used to en-
force the consistency of the latent space when jointly training several Variational
Auto-Encoders | : . Metabu will likewise take
inspiration from OT to create a bridge between two representations of the datasets:
the basic one, and the target one, critically using both GW and FGW distances.

6.3 . Overview of Metabu

We use the same notations as in the previous chapter: let 6 be the Dirac
function; distributions are noted in bold font and vectors in italic.

Let A and © respectively denote an ML pipeline and its hyper-parameter
configuration space; superscript A is omitted when clear from the context. Space
O is embedded into the a-dimensional real-valued space R?, using a one-hot en-
coding of Boolean and categorical hyper-parameters. After describing the principle
of the approach, some key issues are detailed: the augmentation of the AutoML
benchmark to avoid overfitting, and the setting of the number d of the Metabu
meta-features, estimated from the intrinsic dimensionality of the AutoML bench-
mark suite.

6.3.1 . Principle

Intuitively, two representations can be associated with a dataset: The basic
representation = € RP of a dataset reports the values of the D manually designed
meta-features for this dataset. By construction, it can be cheaply computed for
any dataset.> The target representation z of a dataset is the distribution on the
space O supported by the configurations yielding the best performances on this
dataset. This precious target representation is unreachable in practice, but can
be approached after the performances of the models learned with a number of
configurations (aka configuration performances) have been assessed. In practice,
the configuration performances are only available for a small number n of datasets.
The difference between the basic and the target topologies is depicted on Figure
6.1, in © space (projected on first two PCA eigenvectors). The later figure suggests
that the target representations, built upon the top configurations of datasets, are
better suited for AutoML problems.

20nly non-expensive landmark meta-features are considered in the following.
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Figure 6.1: Top configurations of datasets A, B, and C, where
(resp. ) is the nearest neighbor of A w.r.t.
(resp. ) representation.

In order to build a bridge between both representations, let us consider an
intermediate representation, termed projected target representation, derived from
the target representation ones by mapping each (z;)1<i<, on some u; € R? using
a distance-preserving projection, e.g. Multi-Dimensional Scaling (MDS) [

]

Metabu tackles an Optimal Transport problem so as to learn a mapping ¥ :
R” — RR? from the basic representation on the projected target representation
space such that the ¢)(x;)1<i<n, are aligned with the u;s in the sense of the q-Fused
Gromov-Wasserstein distance (Section 6.2).

In brief, mapping ¢ sends the basic meta-feature space on IR?, such that
the Euclidean metric on the ¢ (xz;) reflects the Euclidean metric on the u;s, itself
reflecting the metric on the target z;s.

The descriptive features of the 1 (x;), referred to as Metabu meta-features,
are meant to both be cheaply computable from the basic meta-features, and define
a Euclidean distance conducive to the AutoML task.

6.3.2 . Augmenting the AutoML benchmark.

The OpenML CC-18 | ], to our knowledge the largest curated
tabular dataset benchmark (that will be used in the experiments), contains n = 72
classification datasets; the target representation is available for 64 of them. The
shortage of such datasets yields a risk of overfitting the learned meta-features.
This challenge is tackled by augmenting the OpenML CC-18 benchmark suite,
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Figure 6.2: 2-D Visualisation of the OpenML datasets in basic represen-
tation (legended with a x's) + their boostrapped augmentations.

using a bootstrap procedure [ ].3 The goal is to pave the meta-feature
space more densely and more accurately than through e.g., perturbing the basic
representation with Gaussian noise.

The visualisation of the augmented benchmark (Figure 6.2, projected using
tSNE | ] on the basic representation), shows that the
datasets built by bootstrapping of some initial dataset E form a cluster close
to E (as could be expected as the manually designed meta-features are stable
under small stochastic variations), and separated from the clusters generated from
other datasets, suggesting that the initial benchmark suite only sparsely paves the
basic meta-feature space. Complementary experiments (omitted) with perplexity
ranging in [5, 10, 15, 25, 30, 40, 50] show that clusters generated by augmentation
of different OpenML datasets keep staying far apart from one another.

6.3.3 . The Metabu algorithm

The algorithm is provided the p = 1,000 xn training datasets of the benchmark
suite, augmented as described above. The Metabu meta-features are constructed
in a 3-step procedure, depicted on Figure 6.3 and illustrated in Algorithm 5:
Step 1: Target representation and Wasserstein distance. Considering the i-th train-
ing dataset, let ©; C © denote the set of hyper-parameter configurations with
performance in the top-L known configuration performances (L = 20 in the ex-
periments).*

3For each /¢-size dataset E in the benchmark suite, K = 1,000 new datasets
Fy, ... Fg are generated, where F; includes ¢ examples selected in E uniformly with
replacement. The basic representation of F; is computed, and its target representa-
tion is set to that of E.

“Early attempts to define ©; in a more sophisticated way, e.g. using t-test to dis-
tinguish the "good" configurations from the others, led to an uninformative target
representation. A tentative interpretation for this fact is that quite a few OpenML
datasets are very easy, leading to retain all configurations for these datasets and
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Metabu Representation Basic Representation

FGW loss (Eq. 2) @

Figure 6.3: From basic to Metabu meta-features using Fused Gromov-
Wasserstein. Basic (respectively Metabu) representations are depicted
by circles (resp. squares). Target representations are depicted in the
rightmost subplot. Neighbor datasets in the target space have same
color in all subplots.

Algorithm 5: Learning Metabu meta-features

Data: Set of n training datasets, each represented with its
basic representation (meta-feature vector) z; and its
target representation (set of top 20 hyper-parameters)
z;fori=1...n.

Result: Embedding layer ¢*

// Build projected target representation

1 Cij« dy(z,z;)fori=1...n,j=1...n /* STEP 1 */

2 Estimate intrinsic dimension d from matrix C' (Alg. 6);

3 U<« MDS(C,d); /* STEP 2 x/
// Learn 1)

4 1 < Linear(135,d); /* 135 basic meta-features. */

s X 1Y 5,

6 L < FGW as defined in Equation 6.1;

7 ¢Y* <~ ADAM(L, ¥yx, u) ; /* STEP 3 x/
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The target representation z; of the i-th dataset is the discrete distribution with
support ©;. The distance d%,v(zi,zj) is the 1-Wasserstein distance among distri-
butions (Section 6.2).

Step 2: Projecting the target representation on R?. The second step consists in
projecting the z;s on IR?, where d is identified using an intrinsic dimensionality
procedure (details below), using Multi-Dimensional Scaling [ ], such
that the distance d(u;,u;) approximates the 1-Wasserstein distance d%v(zi,zj)
(Figure 6.3, leftmost and second subplots). Note that by construction, the u;s are
defined up to an isometry on RY.

1

Step 3: Learning the Metabu meta-features. Let X = 5 P, 0z, denote the

uniform discrete distribution on R? whose support is the set of p datasets using
their basic representations.

Letu= 13" 4, denote the uniform discrete distribution on IR whose support
is the set of u;s defined above. The Metabu meta-feature space is built by finding
a mapping ¢ from R” on R¢ that pushes the representation metric on R?, that
is, such that the image of X via ¢ is as close as possible to u, and reflects its
topology in the FGW sense (Figure 6.3, rightmost and third subplots).

Formally, let vyx et %Zle Oy (z;) be the push-forward distribution of x on
R for a given 1. The overall optimization problem is to find a mapping * that
minimizes the FGW distance between the u distribution and the push distribution
@Z);éx:

P* = al“fen\flljin dFGW;a (wﬁx, U) + )\Hﬂ)H (6.2)

with A the regularization weight and ||1/|| the norm of the v function. Note that,
as U and vux are distributions on the same space R?, the transport cost ¢ is the
Euclidean distance on R,

In the following, only linear mappings v are considered for the sake of avoiding
overfitting and facilitating the interpretation of the Metabu meta-features w.r.t.
the manually designed meta-features. The norm of ¢ is set to the L1 norm of its
weight vector.

Optimization setting. The efficient optimization of Equation 6.2 is achieved
using a bilevel optimization formulation.

e For a given 1, the inner optimization problem consists of minimizing
draw,o(¥yx,u) (Equation 6.1). Metabu leverages the optimization ap-
proach proposed in [ ar ], also described in Section 6.2,
to efficiently compute drpgw,o. In the experiments, the number of iterations
for refining v is set to 10 and Sinkhorn iterations to 5.

blurring the target representation.
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e The outer optimization problem consists of optimizing : The transport
matrix 7 is treated as a constant, and the outer objective function (Equa-
tion 6.2) is solved with ADAM optimizer [ | with learning
rate 0.01, o = 0.5 and A = 0.001.

6.3.4 . Intrinsic dimension of the space of datasets

The main hyper-parameter of Metabu is the number d of meta-features needed
to approximate the target representation. Indeed, d depends on the considered
algorithm A: the more diverse the target representations associated with datasets,
the higher d needs to be. In the other extreme case (all datasets have similar target
representations), the AutoML problem becomes trivial. The relation between the
intrinsic dimensionality and the difficulty of the AutoML problem is complex, we
shall return to it in Section 6.4.4.

To our best knowledge, measuring the intrinsic dimension of the dataset space
w.r.t. a learning algorithm has not been tackled in the literature. The approach
proposed to do so builds on [2005] and | 1,
exploiting the fact that the number of points in a hypersphere of radius r in
dimension d increases like 7®. Then d provides a guaranteed approximation of the
intrinsic dimensionality of the manifold where the z;s family lives [

]. A formal pseudo-code is provided in Algorithm 6.

It is commonplace to say that the good distance between any two items depends
on the considered task. The original approach used in Metabu in order to estimate
the intrinsic dimensionality of the dataset space, is to set the distance of two
datasets to the 1-Wasserstein distance among their target representations.

Algorithm 6: Compute intrinsic dimension as in [

]

1 Procedure Intrinsic_dim(X)
input : A set of points X = {xg,x1,...,Zm}-
output: Intrinsic dimension d.

3 Let (1) and 2(2) be the first and second neighbors of z € X.

i =1 -
5 Compute p; = ty= for all z; in X
|lzi—a; |2

Sort 1 values in ascending order through a permutation o.

Compute F(, ;) = & fori=1...m.
1 d < slope of the linear approximation on
{(log(pi), —log(1 — F(pi)))|t =1...m}

6.4 . Experiments

All material (code, data, instructions) is made available as publicly at https:
//github.com/luxusgl/metabu. Runtimes are measured on an Intel(R) Xeon(R)
CPU E5-2660 v2 @ 2.20GHz.
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6.4.1 . Experimental Settings

Goals of experiment. The goal of experiments is three-fold. First, we
aim to assess the dataset neighborhoods induced by the Metabu meta-features
(constructed on the top of the manually designed 135 meta-features from the
literature) and the relevance of these dataset neighborhoods w.r.t. the AutoML
problem.

The second goal of experiments is to assess the sensitivity of Metabu w.r.t. its
own two hyper-parameters, the weight o used to balance the importance of the
Wasserstein and Gromov-Wasserstein distances in FGW (Equation 6.1), and the
regularization weight \ involved in the optimization of 1) (Equation 6.2). As said,
the dimension of meta-features d is automatically determined using Algorithm 6,
nevertheless, a complementary experiments investigating the sensitivity w.r.t d is
shown in Appendix C.5.

The third goal is to gain some understanding of the dataset landscape, and
see whether the Metabu meta-features give some hints into when a given ML
algorithm or pipeline does well (its niche).

Baselines. The performances are assessed against three baselines: Auto-
Sklearn meta-feature set | |, Landmark [ ]
and SCOT | | meta-feature sets. All meta-feature sets are
detailed in Appendix C.3. An additional baseline is based on the uniform sampling
of the hyper-parameter configuration space, for sanity check.

Tasks. Three tasks are considered to investigate the relevance of the Metabu
meta-features. All reported performance values are measured using a Leave-One-
Out process over dataset (detailed in Appendix C.1).

= Task 1: Capturing the target topology.

This task aims to highlight the merits of Metabu meta-features on ranking neigh-
bor datasets (w.r.t the target representation). For each test dataset, one considers
its nearest neighbors w.r.t. the target topology (the 1-Wasserstein metric on the
target representation), and its nearest neighbors w.r.t. the Euclidean distance on
the Metabu and meta-feature sets. The alignment between both ordered lists is
measured using the normalized discounted cumulative gain over the first k neigh-
bors (NDCGQk) | ], with 5 < k < 35. The performance indicator
is the NDCG@k® averaged on test datasets.

= Task 2: AutoML with no performance model (Initialization).

The purpose of Task 2 is to assess the topology constructed in Task 1 with a
simple AutoML strategy i.e recommending ML configurations of neighbor datasets.

5To recall, DCG@Kk = Y°F_, Tegtiry With i € {0,1}, indicating if the i-th dataset
neighbor is relevant or not w.r.t the ranking of target topology. The NDCG score is

then obtained by normalizing with the ideal DCG.
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Concretely, for each test dataset and each meta-feature set mf, let z,,¢ be the
distribution on the considered hyper-parameter configuration space:

10

1
Zng = ; exp(—{) z¢

where z; is the target representation of the /-th neighbor of the dataset w.r.t.
Euclidean distance on the m f space, and Z a normalization constant. This distri-
bution z,, is thereafter used to iteratively and independently sample the hyper-
parameter configurations, and the performances of the learned models are mea-
sured. Letting 7(t,mf) denote the rank of the test performance®
meta-feature set mf after ¢ iterations, the performance curves report r(t,mf)
for the Metabu and baseline meta-feature sets (plus a uniform hyper-parameter
configuration sampler for sanity check), averaged over the test datasets.

= Task 3: AutoML with performance model (Optimization).

AutoML systems based on performance models, such as Auto-Sklearn and PMF,
cannot be directly compared with Metabu as they acquire additional information
along the AutoML search: they iteratively use a performance model to select

associated with

a hyper-parameter configuration, and update the performance model using the
performance of the selected configuration. In Task 3, the relevance of Metabu
meta-features is investigated in that they govern the initialization for Auto-Sklearn
and PMF performance models. Precisely, the original meta-feature sets used in
Auto-Sklearn and PMF are replaced with Metabu meta-features. Similarly to Task
2, the performance indicator is the rank of the performance obtained by Auto-
Sklearn (resp. PMF) using Metabu meta-features to initialize its performance
model, noted Metabu+Auto-Sklearn (resp. Metabu+PMF) compared to the
original Auto-Sklearn (resp. PMF) implementation and the uniform baselines.

Dataset benchmark. The considered AutoML benchmark is the OpenML
Curated Classification suite 2018 [ |, including 72 binary or multi-
class datasets out of which 64 have enough learning performance data to give a
good approximation of their target representation. The performance indicators are
measured using Leave-One-Out (details in Appendix C.1). The basic meta-features
are computed for each dataset using the open source library PyMFE |

]

Hyper-parameter configuration spaces. Metabu is validated in the

context of three ML algorithms: Adaboost | ], Ran-
domForest | | and SVM | |, using their Scikit-learn
implementation | ]; and two AutoML pipelines, Auto-Sklearn

6Qver the iteration, test performance is only observed when the validation perfor-
mance is improved.

75



E Metabu MF N A rn B B |andmark MF B SCOT MF |

Random Forest Adaboost SVM
2 0.8 H = g T*H 2 0.8 ﬁ“’
$ ﬂ-n- 507 v by B P s
8 0.6+ g 0.6 g 0.6+
= = =
0.4+ 0.4 0.4+
T T
35 5 15 25 35 5 15 25 3%
k k k
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(c) Task 3: Initializing a performance model to sample the hyper-parameter
configuration space.

Figure 6.4: Empirical assessment of Metabu meta-features compara-
tively to the baselines meta-feature sets and uniform hyper-parameter
sampling (better seen in color).

[Feurer et al. 2015a] and PMF [Fusi et al. 2018]. The associated hyper-parameter
configuration spaces are detailed in Appendix C.2.

For Adaboost, RandomForest and SVM, the target representation of each train-
ing dataset is based on the top-20 configurations in OpenML (out of 37,289 for Ad-
aboost, 81,336 for RandomForest and 37,075 for SVM), initially generated by van
Rijn and Hutter [2018]. For Auto-Sklearn, the target representation is generated
from scratch, running 500 configurations per training dataset and retaining the
top-20. For PMF, the top-20 configurations are extracted from the collaborative
filtering matrix for each training dataset [Fusi et al. 2018].

6.4.2 . Comparative empirical validation of Metabu
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The performances of Metabu and the baselines on the three tasks are displayed
on Figure 6.4. The overall CPU cost on Task 2 (resp. Task 3) is circa 1,900 (resp.
2,300) hours (full runtimes in Figure C.1). Appendix C.6 reports the detailed
results in Tables C.6, C.7 and C.8, indicating the confidence level of the results
after a Wilcoxon rank-sum test for performances and Mann Whitney Wilcoxon test
for ranks; both with p-value set to 0.05.
= Task 1: Capturing the target topology.

Figure 6.4a. The results show that the metric based on the Metabu meta-features
better matches the target topology than the metric based on the baseline meta-
feature sets, all the more so as the number k of nearest neighbors increases. The
higher variance of NDCG@k for Metabu is explained as the metric depends on
the meta-feature training, while the metrics based on the baselines are determin-
istic. As could be expected, this variance decreases with k. Despite this variance,
Metabu significantly outperforms all baselines for all k£ and all hyper-parameter
configuration spaces.

= Task 2: AutoML with no performance model (Initialization).

Figure 6.4b. All rank curves start at 3, as five hyper-parameter configuration
samplers are considered. For RandomForest, the sampler based on the SCOT
meta-feature set dominates in the first 5 iterations, and remains good at all time;
Metabu dominates after the beginning; all other approaches but the uniform sam-
pler yield similar performances. For Adaboost, the sampler based on the Auto-
Sklearn meta-feature set dominates in the first 3 iterations, and Metabu is statis-
tically significantly better than all other approaches thereafter. For SVM, Metabu
very significantly dominates all other approaches.

= Task 3: AutoML with performance model (Optimization).

Figure 6.4c. In first time steps (left of the dashed bars), the performance mod-
els of Auto-Sklearn or PMF are initialized using the performances of the hyper-
parameter configurations sampled as in Task 2; in the following time steps, the
hyper-parameter configurations are sampled using the performance model. The
most striking result is that the Metabu+Auto-Sklearn rank improves on that of
Auto-Sklearn (Figure 6.4c, left) although they only differ in the initialization of the
performance model, and the Auto-Sklearn meta-feature set is optimized to Task 3.
Likewise, the rank of Metabu+PMF improves on that of PMF (Figure 6.4c, right).
The comparison also involves Random2x and Random4x uniform samplers, re-
spectively returning the best performance out of 2 or 4 uniformly sampled configu-
rations [ |; Metabu+PMF significantly improves on Random4 x after
the 10th iteration. This suggests that on the OpenML benchmark, the Metabu
meta-features efficiently enable both to passively sample the hyper-parameter con-
figuration space, and to retrieve the configurations best appropriate to update the
performance model and explore good regions of the space.

6.4.3 . Sensitivity analysis
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Figure 6.5: Metabu: Sensitivity of NDCG@10 w.r.t. « and )\, compara-
tively to Auto-Sklearn (darker is better).

The two hyper-parameters of Metabu are the « trade-off parameter between
Wasserstein and Gromov-Wasserstein distance (Equation 6.1) and the regulariza-
tion weight A\ (Equation 6.2). The sensitivity of Metabu w.r.t. both parame-
ters is investigated on Task 1, by inspecting the difference NDCG@10(Metabu)
- NDCG@10(Auto-Sklearn) for « ranging in {0.1,0.3,0.5,0.7,0.99} and X in
{1071,...,107*}. The result, displayed in Figure 6.5, shows that the difference is
positive in the whole considered domain, with NDCG@10(Metabu) statistically sig-
nificantly better than NDCG@10(Auto-Sklearn) according to Student t-test with
p-value 0.05.

Interestingly, a low sensitivity of Metabu is observed w.r.t. the regularisation
weight A, provided that it is small enough (A < 1073). For such small A values,
a low sensitivity is also observed w.r.t. « in a large range (.3 < a < .7). This
result confirms the importance of taking into account both the Wasserstein and
Gromov-Wasserstein distances on the target representation space: discarding the
former (o < .1) or the latter (o« > .99) significantly degrades the performance,
and the performance is stable in the [.3,.7] region.

6.4.4 . Toward understanding the dataset landscape
Insight on intrinsic dimension A most interesting result, that is original
to our best knowledge, is to provide a principled estimate of the intrinsic dimension
of the dataset space w.r.t. the considered ML algorithms. As detailed in Appendix
C.5 with a stability analysis, the intrinsic dimension d of the OpenML benchmark is
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(c) RandomForest vs Support Vector Machines

Figure 6.6: Comparative importance of meta-features for RandomFor-
est Vs Adaboost (a), Auto-Sklearn (b) and Support Vector Machines (c).
The specific Auto-Sklearn meta-features are recognized as their name
begins with a capital letter.
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circa 6 for Auto-Sklearn, 8 for Adaboost, 9 for RandomForest and 14 for Support
Vector Machines. We are surprised indeed to see that the intrinsic dimension cor-
responding to Support Vector Machines is higher than for Auto-Sklearn, although
the Auto-Sklearn portfolio includes the Support Vector Machines algorithm. This
fact seems to suggest that the AutoML problem is harder for Auto-Sklearn than
for Support Vector Machines, which is inconsistent as the Auto-Sklearn portfolio
includes the Support Vector Machines algorithm.

A tentative explanation 7 goes as follows. We distinguish, as factors of the Au-
toML difficulty, the difficulty of hyper-parameter optimization, and the regularity
of the landscape, that is, the fact that configurations good for a dataset are also
generally good for a near dataset. The computation of intrinsic dimension only
depends on the regularity of the landscape (each dataset being represented with its
top hyper-parameters). In other words, the intrinsic dimension essentially reflects
the diversity of the set of top hyper-parameters across the benchmark (OpenML
CC-18 in our case). Overall, the low intrinsic dimension of Auto-Sklearn is inter-
preted as: many datasets have similar sets of top hyper-parameters; inversely, the
high intrinsic dimension of Support Vector Machines is interpreted as the top hyper-
parameters highly vary with the dataset. But this dimensionality does not measure
the difficulty of the optimization part (reaching these good configurations).

Importance of hand-crafted meta-features Metabu also delivers some
insights into what matters in the dataset landscape, and why a given algorithm
should behave better than another on a particular dataset, as follows. Since
Metabu meta-features are built from the initial hand-crafted meta-features us-
ing the trained linear mapping 1 and depending on the current learning algorithm
A, therefore the importance of these initial meta-features can be recovered by
inspecting the newly learned Metabu meta-features.

Concretely, the importance of a meta-feature w.r.t. A is estimated as follows.
Let U = {u;;} denote the matrix made of the Multi-Dimensional Scaling repre-
sentation of the secondary representation over all datasets. The matrix U are then
processed using PCA, and let j* be the index of the column contributing to the
first PCA axis. Finally, the importance of a hand-crafted meta-feature i 4(mf) is
measured from the norm of its projection on j*-th column i.e, i4(k) = |1+ k|-

Two ML algorithms or pipelines A and B can thus be visually compared, by
plotting each meta-feature as a 2D point with coordinates (i4(mf),ig(mf)) as
shown on Figure 6.6. For instance, in Figure 6.6a, with respectively A set to
RandomForest and B to Adaboost, one sees that actually few features matter for
both RandomForest and Adaboost (the features nearest to the upper right corner),
mostly the Dunn index [ | and the features importance. Some findings
reassuringly confirm the practitioner’s expertise: the percentage of instances with

’We are grateful to the anonymous ICLR reviewer, who challenged us to explain
this surprising result.
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missing values matters much more for Adaboost than for RandomForest; the class
imbalance (ClassProbabilityMax and ClassProbabilityMin) matters for Adaboost.

According to Figure 6.6b, meta-features such as KurtosisMin, LogNumberOfin-
stances, InverseDatasetRatio — all retained as Auto-Sklearn meta-features — are
critical for Auto-Sklearn whereas they have no impact for RandomForest. In-
versely, some features like "pb" (average Pearson correlation between class and
features) matter significantly more for RandomForest than for Auto-Sklearn.

Likewise, the meta-feature importance w.r.t. Support Vector Machines and
Random Forest is displayed in Figure 6.6c. The skewness (mean and std over
all attributes) matter significantly more for Support Vector Machines than for
RandomForest.

Overall, the impact of some meta-features for some learning algorithms is rather
intuitive, confirming the practitioner expertise.

6.5 . Partial Conclusion

Metabu provides a partial but promising answer to the AutoML problem. On
one hand, it yields new meta-features, preserving (in the sense of Fused Gromov-
Wiasserstein distance) the topology of the best configurations associated to each
dataset. On the other hand, it also provides insights on the importance of hand-
crafted meta-features, as well as the intrinsic dimension of an AutoML benchmark.

Metabu successfully addresses Dida limitations (Chapter 5), chiefly, the abil-
ity to deal with ordinary datasets and to handle the poor representativity of the
AutoML benchmarks. These achievements are made possible as the learned meta-
features are but linear combinations of the manually designed meta-features of the
literature.

The efficiency of the approach is empirically demonstrated as the Metabu
meta-features contribute to outperform strong baselines meta-features, improving
state-of-the-art AutoML systems such as Auto-Sklearn | ] and
PMF [ ).

Limitations. Although Metabu yields strong empirical performances, results
from Task 3 show that the exploration of the configuration space (HPO algorithms)
still yields a better performance than the initial configurations provided by the
Metabu meta-features. This limitation is interpreted as the fact that the hand-
crafted meta-features are insufficiently diverse to represent the true regions of
interest with sufficiently fine granularity. Another interpretation is that the training
data (the top configurations of the benchmark datasets) is too noisy, e.g. due to
overfitting the CV score.

Another practical limitation of Metabu is that the learned meta-features are
specific to an ML algorithm, i.e. its configuration space. Naturally, one might think
of concatenating the Metabu meta-features related to the main algorithms, though
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a naive concatenation does not preserve the topology of any such configuration
space.

Perspectives. Along this line, a main perspective for further research is to
propose a truly unified meta-feature space, merging the meta-features built from
the various ML algorithms. A primary step is to investigate how the topology
of the datasets differs depending on the learning algorithm: showing that two
datasets are close neighbors in the landscape associated to an ML algorithm, and
quite far apart for another ML algorithm might give some (expert- or learning-
driven) insights into new meta-features. Comparing these landscapes is, to our
best knowledge, an under-explored research area.

Another perspective is to leverage the same Metabu approach, aimed to find
a representation aligned with a target topology, but to consider another represen-
tation and another target topology. A promising approach to improve the target
representation is to take into account the distribution of bad hyper-parameters, or
to consider surrogate performance model.
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Discussion and Conclusion
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As Al and Machine Learning are acknowledged a key technology for the digital
age, the issue of delivering peak performances from the great many algorithms on
the shelf emerged as a main bottleneck, as early as the end 1980s. Part | has
proposed an overview of the research in this area, referred to as AutoML. It is
important to note that the development of this field mostly relies on experimental
studies: to our best knowledge, there does not exist such things as formal proofs
that a given algorithm, with a given configuration, be the best one (w.r.t. other
algorithms) on a given dataset.

In this context, the state of the art in AutoML pursues two main research
directions: optimization, that is, searching for the best algorithms and configura-
tions w.r.t. a dataset or a distribution of datasets (Part Il); and meta-learning,
that is, searching for a good representation of datasets, conducive to find, e.g. a
good initialization for an optimization algorithm (Part IlI).

In this thesis, the two directions have been considered, yielding three contri-
butions, respectively described in Chapters 4-6.

In Chapter 4, the proposed Mosaic tackles the fact that the optimization
problem is defined on a mixed search space, involving binary and continuous
coordinates, where the binary (structure, also referred to as pipeline) part
commands the structure of the continuous (referred to as hyper-parameters)
part, and the optimization objective strongly depends on the interactions among
both parts. While most current state-of-the-art algorithms combine the pipeline
selection and hyper-parameter optimization within the same optimization problem
(referred to as CASH, Section 2.2), Mosaic tackles the structural and continuous
optimization problems by using dedicated approaches for each problem, and
enforcing their efficient combination. Specifically, Mosaic handles the structural
(pipeline) optimization part using a Monte-Carlo Tree Search algorithm, and
it handles the hyper-parameter (continuous) optimization part with Bayesian
Optimization. The tight coupling of both optimization modules is enforced
through a shared surrogate performance model, exploited and maintained by both
modules.

The experiments on OpenML benchmark, containing 100 classification tasks,
comparing Mosaic with Auto-Sklearn and TPOT AutoML systems, suggest that
the proposed method outperforms its competitors [ ]. The
detailed inspection of the results suggest that this better performance is due to
the efficient exploration/exploitation strategy, early discarding unpromising regions
and refining the search in the promising ones.

The main limitation of the approach, showed in the experiments, is that Mosaic
performances significantly depend on the initialization of the search. This finding
motivates the two further contributions, devoted to meta-learning. Only tabular
data (as opposed to e.g., images) have been considered in the presented work.
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In Chapter 5, our first meta-learning contribution called Dida is presented,

leveraging distributional neural networks in order to learn meta-features. This
research direction involves two steps: i) defining a meta-learning problem, on the
space of datasets (e.g., recognizing whether two datasets are extracted at least
partially from the same joint distribution); ii) solving this meta-learning problem
using distributional NNs. The sought meta-features then consist of the functions
defined as the nodes on the last layers of the distributional NN; they are computed
from the dataset itself, viewed as a discrete distribution.
This line of research required some advances, to account for the specific structure
of datasets (e.g., the distinction among features and labels; the invariance w.r.t.
the permutation of the examples, and the features). Some proofs of concept
have been obtained along this line [2020], showing that on two
meta-learning problems (patch classification and performance prediction tasks),
Dida yields superior empirical performances compared to Dataset2Vec and DSS.
However, Dida faces a main difficulty, which is the shortage of dataset bench-
mark. Dida basically is a neural net, and thus requires a significant number of
examples (here, datasets) to be trained. Furthermore, it hardly takes into account
pathological datasets (e.g., with missing values), hindering its application in a
real-world AutoML setting.

In Chapter 6, a second contribution to meta-learning called Metabu is pre-
sented, aimed to address Dida limitations. Basically, Metabu relies on the great
many hand-crafted meta-features, and it learns combinations thereof accounting
for the "oracle" topology among datasets, relatively to a particular ML algorithm.
This oracle topology is defined by considering that two datasets are similar iff the
hyper-parameter configurations delivering peak performance for these datasets
are similar. More precisely, optimal transport (OT) is leveraged to define the new
meta-features enforcing the oracle topology, using a Fused Gromov Wasserstein
OT approach | ]. As Metabu operates on the top of the existing
hand-crafted meta-features, it requires less datasets than Dida. Nevertheless, we
had to define a (meta) data augmentation strategy and consider the new datasets
defined by boostrap from the original OpenML datasets. Another important
aspect in Metabu is that it automatically defines the number of meta-features
to learn, by estimating the intrinsic dimension of the dataset space |

]. This estimation, the first of its kind to our best knowledge, is a first step
toward characterizing the AutoML landscape. Another facet of Metabu is that it
sheds some light onto what matters when comparing two ML algorithms, in terms
of the relative importance of the hand-crafted meta-features. Though the findings
only confirm at the moment the long known tricks of the trade (e.g. rather use
decision trees or random forests in case of a high fraction of missing values),
they might deliver more hints into the comparative strengths of the considered
algorithms.
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Quite a few perspectives for further research, focusing on the extensions of the
presented approaches have been described in the partial conclusion of Chapters
4-6. Stepping back and looking at the overall picture, it is suggested that the ul-
timate goal for AutoML is to be able to understand when and why to recommend
a given ML algorithm. At the moment, AutoML systems mostly proceed by con-
ducting an optimization process, where only the initialization step relies on learned
models. Still, a general trend in ML is toward learning explainable models, or at
least, explaining the model decisions. While AutoML seems still far from building
explainable models, it is suggested that learning explainable meta-features consti-
tutes one significant step toward this aim. Along this line, these meta-features
support a visualization of the benchmark datasets, that is amenable to assess the
coverage of a benchmark and/or the quality of the experimental validation for a
new algorithms.

Lastly, another perspective is to reconsider and extend the configuration space
itself.  On one hand, Mosaic can be easily adapted to handle variable size
pipelines | |, describing the search space in terms of a gram-
mar taking inspiration from | ]
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