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Compression for Deep Learning

Abstract

Autonomous cars represent complex applications that need powerful hardware machines to be
able to function properly. Tasks such as lane-keeping, reading and understanding traffic signs or
avoiding obstacles are solved by employing convolutional neural networks (CNNs) for object
detection and classification. It is highly important that all the networks work in parallel in order
to transmit all the necessary information and take a common decision. Nowadays, as the net-
works improve, they also have become bigger and more computational expensive. Deploying
even one network becomes challenging. Compressing the networks can solve or at least allevi-
ate this issue. Therefore, the first objective of this thesis is to find deep compression methods
in order to cope with the memory and computational power limitations present on embedded
systems. The compression methods need to be adapted to a specific processor, Kalray’s MPPA,
for short term implementations. Our contributions of this thesis mainly focus on compressing
the network post-training for storage purposes, which means compressing the parameters of
the network without retraining or changing the original architecture and the type of the compu-
tations. In the context of our work, we decided to focus on quantization. Our first contribution
consists in comparing the performances of uniform quantization and non-uniform quantization,
in order to identify which of the two has a better rate-distortion trade-off and could be quickly
supported in the company. The company’s interest is also directed towards finding new inno-
vative methods for future MPPA generations. Therefore, our second contribution focuses on
comparing standard floating-point representations (FP32, FP16) to non-standard arithmetical
representations such as BFloat16, MSFP8, Posit8. The results of this analysis are in favor for
Posit8. This motivated the company Kalray to conceive a decompressor from FP16 to Posit8.
Since many compression methods already exist, we decided to move to an adjacent topic which
aims to quantify the effects of quantization error on the network’s accuracy. This is the second
objective of the thesis. Finally, we focus on defining a new distortion measure adapted to our
requirements, which represents a mainly theoretical contribution. Under reasonable assump-
tions, such as Normal input distribution, the distortion measure takes into account only the
last layer of the network, the Softmax layer, and is adapted to a binary classification model. A
set of experiments were done, using simulated data and small networks, which showcase the
potential of the method.

Keywords: Data Compression, Deep Compression, Deep Learning, Deep Neural Networks,
Floating-point, Quantization, Statistical Analysis, Error Approximation.
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Compression pour l’apprentissage en profondeur

Résumé

Les voitures autonomes sont des applications complexes qui nécessitent des machines puis-
santes pour pouvoir fonctionner correctement. Des tâches telles que rester entre les lignes
blanches, lire les panneaux ou éviter les obstacles sont résolues en utilisant plusieurs réseaux
neuronaux convolutifs (CNN) pour classer ou détecter les objets. Il est très important que tous
les réseaux fonctionnent en parallèle afin de transmettre toutes les informations nécessaires
et de prendre une décision commune. Aujourd’hui, à force de s’améliorer, les réseaux sont
devenus plus gros et plus coûteux en termes de calcul. Le déploiement d’un seul réseau de-
vient un défi. La compression des réseaux peut résoudre ce problème. Par conséquent, le pre-
mier objectif de cette thèse est de trouver des méthodes de compression profonde afin de faire
face aux limitations de mémoire et de puissance de calcul présentes sur les systèmes embar-
qués. Les méthodes de compression doivent être adaptées à un processeur spécifique, le MPPA
de Kalray, pour des implémentations à court terme. Nos contributions se concentrent princi-
palement sur la compression du réseau après l’entraînement pour le stockage, ce qui signifie
compresser des paramètres du réseau sans réentraîner ou changer l’architecture originale et le
type de calculs. Dans le contexte de notre travail, nous avons décidé de nous concentrer sur la
quantification. Notre première contribution consiste à comparer les performances de la quan-
tification uniforme et de la quantification non-uniforme, afin d’identifier laquelle des deux
présente un meilleur compromis taux-distorsion et pourrait être rapidement prise en charge
par l’entreprise. L’intérêt de l’entreprise est également orienté vers la recherche de nouvelles
méthodes innovantes pour les futures générations de MPPA. Par conséquent, notre deuxième
contribution se concentre sur la comparaison des représentations en virgule flottante (FP32,
FP16) aux représentations arithmétiques alternatives telles que BFloat16, MSFP8, Posit8. Les
résultats de cette analyse sont en faveur de Posit8. Ceci a motivé la société Kalray à concevoir
un décompresseur de FP16 vers Posit8. Puisque de nombreuses méthodes de compression ex-
istent déjà, nous avons décidé de passer à un sujet adjacent qui vise à quantifier théoriquement
les effets de l’erreur de quantification sur la précision du réseau. Il s’agit du deuxième objectif
de la thèse. Nous remarquons que les mesures de distorsion bien connues ne sont pas adap-
tées pour prédire la dégradation de la précision dans le cas de l’inférence pour les réseaux de
neurones compressés. Nous nous concentrons sur la définition d’une nouvelle mesure de dis-
torsion avec une expression analytique qui a une forme de rapport signal/bruit. Un ensemble
d’expériences a été réalisé en utilisant des données simulées et de petits réseaux, qui montrent
le potentiel de la mesure.

Mots-clés : Compression, réseaux de neurones profond, quantification, virgule flottante, analyse
statistique, approximation des erreurs.
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CHAPTER 1
Introduction

1.1 About Deep Learning compression

Nowadays, numerous applications such as visual recognition, natural language understanding and
robotics are of great interest. Deep learning techniques have become more and more successful
due to their effectiveness in targeting these kinds of applications. The main task of Deep Learning
is one-image inference for image classification, object detection or semantic segmentation.

Convolutional Neural Networks (CNNs) are extremely effective in image classification. They al-
low fast and precise image recognition. Essentially, the architectures rely on stacked convolutional
and fully connected layers, which account for most of the resources involved when inferencing
with the model. Nowadays, CNNs are highly requested in the embedded system domain for many
real time applications such as object detection for autonomous cars and video surveillance.

Figure 1.1: Processor History [Kalray, 2021]. Intelligent processors are the next technology wave.

Processors (see Figure 1.1) specially designed for deep neural networks are a must. Portability
and real-time inference are critical in the case of many applications. When using these real time
applications, we want the neural networks to process the inputs and give the correct result with
stringent latency constraints. As the networks improved, the architectures became more complex

1



2 CHAPITRE 1 — Introduction

and the models now require significantly increased computing and memory resources.

1.2 Scientific and industrial objectives

1.2.1 Challenges for real time applications

Inference algorithms designed for CNNs can easily overwhelm the resources of embedded sys-
tems. When running a complex network, the platform must overcome several challenges, includ-
ing limited memory, limited computational power and long inference time. These challenges are
detailed below.

Low Latency

Neural networks are mainly used for applications that require real-time complex decisions. During
the inference phase, CNNs process 2D images or frames from videos in order to extract features
and classify the surrounding environment. Thus, it is essential for latency to remain low in order
for the application to function properly.

Each frame needs to be processed in a very short time, which is called timeframe. Unforeseen
buffering time may delay critical tasks, leading to serious consequences. The only way to ensure
low latency is to process input data directly on the embedded platform, without sending it to the
cloud.

Processing capabilities

As previously said, the most compute-intensive operations in CNNs are convolutions. For ex-
ample, processing a 224x224 pixel RGB image requires billions of FLOPs (FLoating-point
OPerations) operations, which usually represent about 60% of the overall computational load.
Thus, to run at 60 images-per-second — a satisfactory frame rate for a reactive system — the
model would require a good amount of GFLOPs, as one multiply-add operation corresponds to
2 FLOPs. Even for high-end embedded CPUs or GPUs, the required amount of computation is
difficult to sustain.

One way to ease the CPU load of CNN inference is the exploitation of Single Instruction Mul-
tiple Data (SIMD) instructions. Another is the transition from 32-bit to 16-bit floating-point data
representations, as the effects on inference accuracy are generally non-significant. Further compu-
tational savings can be achieved by moving to 8-bit or 16-bit fixed-point or fractional arithmetic.
However, this may have a significant impact on accuracy and require the network to be retrained.
For this thesis, we assume the CNNs have been trained using floating-point arithmetic and will not
be retrained, so inference uses floating-point arithmetic.

High memory bandwidth

In CNNs, the number of parameters required to perform convolutions rises with each successive
layer (as each layer is processed with different parameters weights). This means that by the
last CNN layer, the total amount of data related to parameters may be higher than the amount



1.2 – Scientific and industrial objectives 3

of neurons and, thus, the underlying computing unit is overloaded by a huge quantity of data.
For instance, in the case of GoogLeNet [Szegedy et al., 2015] where there are about 7 million
weight parameters, if input from camera sensors at 60 frames per second is being processed in an
autonomous vehicle, the CNN’s weight parameter processing will result in 1.6 GB per second of
sustained bandwidth.

Memory bandwidth becomes an issue with the parallel execution over numerous cores. For in-
stance, if the application is spread in parallel over 16 cores, the need for DDR bandwidth rises
to over 25.6 GB/s. In general, to avoid limitations associated with DDR bandwidth, processors
leverage their memory hierarchy, which is composed of caches and prefetch engines. However, in
the case of CNN processing, this type of memory hierarchy is not effective. Thus, changing the
way parameters are stored is the key for handling the Deep Learning memory challenges.

Low Power Consumption

Though many applications use CNNs, its use is most pervasive in embedded technology: post-
processing in cameras, automatic detection in drones, live detections and decisions in autonomous
vehicles, etc. This means that the processor or hardware solution must be in line with the needs of
embedded solutions: low power consumption with a Small Form Factor (SFF). SFF is a term used
to describe a device smaller than standard devices.

As powerful these large models are, they also consume a significant amount of energy. Because of
their memory requirements, they have to be stored in the off-chip memory (DRAM) and parts of
the models are retrieved each time they are used. The energy cost is dominated mainly by memory
accesses. Table 1.1 shows the energy costs of arithmetic and memory operations in a 45nm CMOS
processor [Han et al., 2016a].

If the memory size is reduced, then more parts of the model can be stored in on-chip memory
(SRAM), in order to avoid too expensive memory accesses.

Operation
int float int float 32KB

DRAM
ADD ADD MULT MULT SRAM

Energy [pJ] 0,1 0,9 3,1 3,7 5 640

Table 1.1: Energy consumption for 32 bits operations [Han et al., 2016a].

1.2.2 The company

Kalray is a semiconductor company specialized in Massively Parallel Processors Array (MPPA)
for intelligent systems. Manycore technology offers a great approach to support efficient AI com-
puting. Kalray focuses on high-performance applications such as data centers and autonomous
vehicles. Figure 1.2 shows a schema of Kalray’s 3rd generation processor, aka Coolidge, which
is formed of five independent computing clusters connected to each other which have an exter-
nal memory DDR. Each cluster has 16 high performance processing cores which share 4MB of
Shared Memory (SMEM). The power of Kalray’s processor comes from its partitioning. Compu-
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tations can be done independently and in parallel by distributing them across the clusters, while
the presence of multiple cores makes the processing faster.

Figure 1.2: Top level diagram of Kalray’s cluster partition [Kalray, 2021]. The cluster (on the left)
and processor (on the right). A list of the main features is given for each one of the units.

In order to avoid deep neural network developers to focus on speeding up the networks using
optimizations during the training and inference phases, acceleration frameworks for inference
execution have been used to maximize throughput, minimizing latency, optimizing memory usage
and reducing energy requirements. Kalray also provides a solution called Kalray Neural Net-
work (KaNN), a tool that acts as a code generator and execution engine on the MPPA processor.
KaNN (see Figure 1.3) allows running trained neural networks in different frameworks such as
TensorFlow [TensorFlow, 2021], Caffe [Jia et al., 2014], ONNX [ONNX, 2019] and it guarantees
an optimal execution of the networks.
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Figure 1.3: Diagram of KaNN [Kalray, 2021]. A trained neural network is first given to the KaNN’s
front-end. In order to generate an optimized computation graph, further steps are performed such
as optimization, memory allocation and scheduling. These steps are followed by code generation
and deployment. During the deployment step, the generated code is sent to the MPPA Platform.
Execution is done by giving an input to the generated KaNN model which will return either the
class in the case of a classification network, or display the segmentation or detected objects.

As autonomous cars are critical low latency applications, it is highly necessary to reduce the
complexity of the models, the amount of communication and the occupied memory to save on
power consumption and reduce network connectivity. To leverage the capabilities of the processor,
the model and the weights of the networks are stored in the DDR, the network is split into layers
and the weights are transferred layer by layer into the clusters where the processing cores share
the same memory.

1.2.3 Objectives and limitations

The main goal of our work is to help KaNN speed up the calculations during the inference phase
and to reduce the memory used by the networks. It is necessary to reproduce the same results as the
supported frameworks and to use methods adapted to the characteristics of the MPPA processor
that will give better performance. To tackle this subject, we studied and compared compression
and acceleration methods that have been proposed by academic researchers and R&D companies.

Our second objective is more theoretical and is focused on understanding how the network
decisions are impacted by the compression error.

Since this thesis is done in collaboration with a company, we need to take into account several
technical limitations. Given that the company’s processors are used only for inference, in our
work, we mostly focused on compression methods for storage purposes, which does not involve
training. We assume the CNNs have been already trained and will not be retrained. The training
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phase is assumed to be done using floating-point arithmetic, and the inference also uses floating-
point arithmetic.

1.3 Outline and contributions

In this thesis, we present a study of weight compression methods which can be applied without
changing the architecture of the networks, or retraining the model. We explore several methods
applied on several CNN architectures. Finally, we propose a new distortion measure using the
Bayes risk which gives us more insights on how the networks are impacted by quantization. We
applied the distortion on the last layer of binary classification models.

The thesis is organized as follows:

Chapter 2 presents the background on Deep Learning. We mostly focus on image classification,
but a short description for object detection is also provided. The state of the art of compression
for Deep Learning is given in Chapter 3.

Chapter 4 presents a preliminary study on methods for compressing Deep Learning. We compare
several methods of compression with and without training, such as pruning, quantization and
binarization.

Chapter 5 focuses on storage purposes and provides a comparison between two quantization
methods (uniform and non-uniform). In this chapter, we also introduce data compression and
rate-distortion theory. The work presented here has also been published in [Resmerita et al.,
2019a, Resmerita et al., 2019b].

In Chapter 6, we focus on benchmarking some innovative alternatives for storage purposes. New
alternatives to the standard floating-point have been designed which require less precision. We
are interested in investigating how these alternatives perform as storage formats for deep neural
networks. The work done in this chapter was also published in [Resmerita et al., 2020, Resmerita
et al., 2021c].

Chapter 7 is our main theoretic contribution. We introduce a new distortion measure which com-
putes the gap between the original and the compressed model classification risks when applying
a given quantization algorithm. Our theoretical analysis is done only on the last layer of a neural
network, which represents the classification phase. This work has been published in [Resmerita
et al., 2021b, Resmerita et al., 2021a].

Finally, a general conclusion and perspectives are given in Chapter 8.

The list of accepted articles is given below.

- Compression des réseaux de neurones profonds à base de quantification uniforme et non-
uniforme, Diana Resmerita and Rodrigo Cabral Farias and Benoît Dupont de Dinechin and
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Lionel Fillatre. At GRETSI 2019, XXVIIème Colloque francophone de traitement du signal
et des images.

- Compression des réseaux de neurones profonds à base de quantification uniforme et non-
uniforme, Diana Resmerita and Rodrigo Cabral Farias and Benoît Dupont de Dinechin and
Lionel Fillatre. At ORASIS 2019.

- Benchmarking Alternative Floating-Point Formats for Deep Learning Inference, Diana
Resmerita and Rodrigo Cabral Farias and Benoît Dupont de Dinechin and Lionel Fillatre.
At COMPAS 2020.

- Représentations arithmétiques flottantes de taille réduite pour le Deep Learning, Diana
Resmerita and Rodrigo Cabral Farias and Benoît Dupont de Dinechin and Lionel Fillatre.
At CORESA 2021.

- Classification error approximation of a compressed linear softmax layer, Diana Resmerita
and Rodrigo Cabral Farias and Benoît Dupont de Dinechin and Lionel Fillatre. At EUSIPCO
2021, European Signal Processing Conference.

- Distortion approximation of a compressed softmax layer, Diana Resmerita and Rodrigo
Cabral Farias and Benoît Dupont de Dinechin and Lionel Fillatre. At SSP 2021, IEEE Sta-
tistical Signal Processing Workshop.

- A Posit8 Decompression Operator for Neural Networks Inference, Orégane Desrentes, Di-
ana Resmerita and Benoît Dupont de Dinechin. At CONGA 2022.





CHAPTER 2
Deep Learning

background
In this chapter, we present the deep learning background. We start by presenting the basic
knowledge on deep learning: neurons, feedforward networks, the training and inference
stages. We then present image classification architectures which are the main focus of
our work. Finally, we introduce object detection networks which represent the real-time
target applications.
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Artificial Intelligence (AI) has become an essential part of the technology industry. AI is often
used to refer to Machine Learning (ML) or Deep Learning (DL). As shown in Figure 2.1, Machine
Learning is a subset of AI, and Deep Learning is a specific kind of ML. Machine Learning is
essentially associated with prediction and classification algorithms.

Figure 2.1: Artificial Intelligence, Machine Learning and Deep Learning [Intel, 2021].

Deep Learning uses multi-layer models comprising a very large number of parameters. These
models are mainly based on neural networks. By adding more layers, the deep neural networks
can represent functions of higher complexity. Most tasks of DL consist in mapping an input
vector/matrix to an output vector. Given a sufficiently large training dataset of labeled examples,
deep neural networks can accomplish classification, localization and recognition tasks.

This chapter first presents the basic notions of Deep Learning, followed by the description of well-
known models and datasets used in two tasks: image classification and object detection. Image
classification is a fundamental task that attempts to comprehend an entire image as a whole. The
goal is to classify the image by assigning it to a specific label. Typically, image classification
refers to images in which only one object appears and is analyzed. In contrast, object detection
involves both classification and localization tasks, and is used to analyze more realistic cases in
which multiple objects may exist in an image.

2.1 Basic knowledge on Deep Neural Networks

2.1.1 Formalization of a neuron

Neural networks are inspired from how the human brain works (see Figure 2.2). An artificial
neuron, also called a perceptron, is an multivariate function characterized by a linear combination
of the inputs x1, . . . , xn, weighted by a vector of parameters (w1, . . . , wn) and a bias b. This value
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is then passed to a non-linear function, known as an activation function, to become the neuron’s
output.

Figure 2.2: Formalization of a neuron. Side-by-side illustrations of biological and artificial neu-
rons [Fei-Fei et al., 2021]. Each neuron receives dendrites or inputs. The cell body of the neuron
corresponds to the weighted sum with an added bias. The result of this operation is given to the
activation function and represents the impulses carried out from the cell body.

Activation function. The activation function σ represents the threshold of stimulation of the
neuron. This non-linear function is applied to the affine transformation. A list of commonly used
activation functions is given in Table 2.1. The simplest activation function is the linear function
(2.1). It is also called the identity function. A popular activation function is the sigmoid (2.2). The
sigmoid’s value is between 0 and 1 and its curve looks like an S-shape. The most used activation
function is the Rectified linear unit (ReLU) (2.3). This function allows faster and more effective
training. The Leaky ReLU (2.4) is another activation function which is used in more recent net-
works.

Activation Function σ(x) Range Graph

Linear σ(x) = x (2.1) (−∞,+∞)

Sigmoid σ(x) = 1
1 + e−x

(2.2) (0, 1)

ReLU σ(x) = max(x, 0) (2.3) (0,+∞)

Leaky ReLU σ(x;α) =

αx , x < 0

x , x > 0
(2.4) (−∞,+∞)

Table 2.1: Commonly used activation functions.
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The output yi of the i-th neuron of a network of inputs x1, ..., xn weighted bywi,1, ..., wi,n is given
in (2.5), where we associate the i-th neuron with an activation function σi:

yi = σi

 n∑
j=1

xjwi,j + b

 . (2.5)

2.1.2 Formal architecture of a feedforward network

Consider a classification problem of C classes. The goal of a feedforward network is to assign a
class to a given input. To do this, the neural network maps an input x to an output y = fθ(x),
where θ is a vector of estimated parameters. These networks are typically composed of artificial
neurons, organized in layers [Goodfellow et al., 2016].

Given a vector x0 = (x1, ..., xn0) of dimension n0, a feedforward neural network generates an
output ŷ(x) = (ŷ1(x), . . . , ŷC(x)) which falls into the C-simplex given by:

SC =
{

ŷ ∈ RC
∣∣∣∣∣ ŷi ≥ 0,

C∑
i=1

ŷi = 1
}
. (2.6)

To simplify the notation, we use ŷi = ŷi(x). The value ŷi works like the probability that the
network decides that x belongs to the class i ∈ {1, . . . , C}.

Multilayer Perceptron. A multilayer perceptron (MLP) is a type of neural network composed
of multiple layers of perceptrons in a directed acyclic graph. The structure of a network (see Figure
2.3) is generally divided into 3 parts: input layer, hidden layers and output layer. For example, the
function fθ(x) can be written as the following composition:

fθ(x) = fK+1(fK(. . . f1(f0(x))). (2.7)

The functions fk for 0 ≤ k ≤ K + 1 are called layers. A layer is a set of neurons that have
no connection between them. The number of layers in this composition gives the depth of the
network. The vector of parameters θ consists of weights and biases:

θ = (θ1, . . . ,θK+1), where θk = (Wk,bk). (2.8)

For a network with K hidden layers, f0 is the input layer f0(x) = x ∈ Rn0 , fK+1 is the output
layer and the hidden layers are from f1 to fK . The inputs of each layer (except for the input layer)
are weighted by a weight matrix Wk and added to a bias vector bk. A layer where all the input
elements are used in the weighted sum is also called a Fully Connected layer (FC).

As mentioned above, in each layer an activation function σk is applied to the weighted combina-
tion. The different layers are formalized as follows:

z0 = f0(x) = x, (2.9)

zk = fk(x) = σk(Wkfk−1(x) + bk), (2.10)

zK+1 = fK+1(x) = σK+1(WK+1fK(x) + bK+1), (2.11)

Wk ∈ Rnk×nk−1 , bk ∈ Rnk ,

WK+1 ∈ RC×nK , bK+1 ∈ RC . (2.12)
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Figure 2.3: Architecture of a feedforward network with K hidden FC layers.

Usually the output layer uses a different activation function than the hidden layers. In the case of
a classification with C classes, the activation function used is softmax [Bishop, 2006].

Softmax. Softmax is an output activation function used to normalize each component of the
input vector to a value between 0 and 1. The result is interpreted as a probability that indicates
the confidence that an entry belongs to a certain class. The function applied to the entire vector is
written as

σsoftmax(x) = 1∑C
i=1 e

xi
(ex1 , . . . , exC ) , ∀x ∈ RC . (2.13)

The output vector ŷ is of size C and it is called a soft one-hot encoding vector. In the case of
a two-class model, it is equivalent to a sigmoid function (2.2). To decode the output vector, the
decision rule is given in (2.14) and it chooses the class with the highest probability given in ŷ.

δ(ŷ) = arg max
i∈{1,...,C}

ŷi. (2.14)

Note that if there are 2 or more classes with the highest probability, arg max will return the index
corresponding to the first occurrence.

2.1.3 Training vs. inference

Before being deployed in "real world" applications, Deep Learning networks need to be trained.
The training phase is used to adjust the parameters of the created network, while the inference
phase is used to classify data. The two phases are related (see Figure 2.4). Both phases use the
same forward propagation step. However, the training phase is formed of the forward propagation
step and adds another step, called backward propagation.
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Suppose a training dataset of m samples S = {(x(i),y(i))|1 ≤ i ≤ m}, where x(i) is the input
and y(i) is the ground truth, also called label. Training a network means estimating and improving
the parameters Wk and bk of each layer to maximize the accuracy on the training data given in
(2.15):

ACC(fθ,S)= 1
m

m∑
i=1

1
{
δ
(
fθ(x(i))

)
= δ

(
y(i)

)}
. (2.15)

Figure 2.4: Training vs. inference [Intel, 2021].

The goal of training is to maximize the accuracy function, but this is not an easy task. In practice,
we cannot do this and we minimize a loss function by using the gradient descent method. In
classification, the loss function generally used is the cross-entropy function H :

L(fθ,S) =
m∑
i=1

H
(
y(i), fθ(x(i))

)
=−

m∑
i=1

C∑
j=1

y
(i)
j log2 fθ(x(i)) (2.16)

The gradient descent is an optimization algorithm that iteratively finds the minimum of a func-
tion. Figure 2.5 illustrates how the algorithm works. Starting from a random point, the algorithm
reduces the value of the function by moving the point using small steps in the opposite sign of the
gradient of the loss, denoted with OθL. To minimize L(θ) for a multi-dimensional input θ, the
gradient descent proposes a new point:

θ′ = θ − γ OθL. (2.17)

The notion of partial derivative is used. The partial derivative δ
δθi
L(θ) measures how the function

changes if only the element θi changes. A learning rate γ ∈ R+ determines the step size. The
learning rate should be adapted to the size of the model.

Next, we present back-propagation. The back-propagation algorithm [Rumelhart et al., 1986]
is a learning procedure which allows the information from the loss function to be transmitted
backward through the network in order to adjust the weights. More precisely, back-propagation
is a method for computing the gradients. It is often mistaken for stochastic gradient descent
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[Bottou, 1998] which is actually a training algorithm which uses the gradient to efficiently update
parameters and minimize the error.

When training a network, the back-propagation computes the gradients of the loss function with
respect to the parameters. To adjust the parameters from Wk and bk to W′

k and b′k, the partial
derivatives of the loss function with respect to each parameter need to be computed. These partial
derivatives are used in the following formulas:

W′
k = Wk − γ OWk

L , (2.18)

b′k = bk − γ Obk
L , (2.19)

where OWk
L and Obk

L denote the vector of partial derivatives.

Figure 2.5: Gradient descent algorithm [Loy, 2018].

The inference process uses the trained network to make predictions, usually, on unseen data. The
testing dataset is formed of unseen data. Deploying a trained network for inference can be trivial.
However, for reasons explained in the next section, a trained model is often modified and simplified
before being deployed for inference.

2.2 Image Classification architectures

Convolutional Neural Networks (CNNs) are considered the reference in image classification.
Convolutional networks are neural networks that use Convolution layers additionally to Fully
Connected layers. A typical convolution network (see Figure 2.6) uses multiple types of layers.
Convolution layers are always followed by an activation operation, and then, by a pooling layer.
These layers are used to construct a feature map that is used for classification. For implementation
reasons, the convolution and the activation layers are fused into a single layer.
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Figure 2.6: An example of a typical CNN. Convolutions are applied to images, and the output of
each convolved image is used as the input to the next layer. Pooling layers are used to subsample
the images. After obtaining the feature map, all the features are linked using an FC layer and
softmax is applied to get the final results [Mathworks, 2021].

Convolutional layers. Convolutions detect features such as edges, texture and patterns. In Deep
Learning, the principle of convolution is to slide a mask over an image. In convolutional network
terminology, the image is the input of a layer Zk and the mask is referred to as kernel and consists
of estimated weights Wk.

Convolutions are usually applied to more than one dimension. For example, the result of convolv-
ing a two-dimensional image Zk of size h×w with a two-dimensional kernel Wk of size h′ ×w′
is given by

S(i, j) = (Zk ∗Wk)(i, j)=
h′∑
m=1

w′∑
n=1

Zk(m,n)Wk(i−m, j − n). (2.20)

The indexes i, j, m, n in the convolution are supposed to verify the boundary conditions. An
example of a two-dimensional convolution is given in Figure 2.7.

It is well known that discrete convolutions can be performed as matrix multiplication S. This is
done by transforming one of the inputs into a Toeplitz matrix [Gray, 1972] at the cost of intro-
ducing redundant data. A common used approach in neural networks is doing an image-to-column
transformation im2col [Chetlur et al., 2014, Li et al., 2019] which transforms the local regions
of the input image into columns and the weights of the CONV layer into rows. The results are
equivalent to performing a large matrix multiplication which needs to be reshaped to the proper
output dimension.

Three-dimensional convolutions are more often used. The third dimension represents the number
of filters or channels used for an image. A filter has multiple channels. A channel can correspond
to a color channel (an image has three channels: red, green, blue) or to the output of a previous
filter.

Pooling layers. When using convolutions, small changes to the input can easily impact the fea-
ture map. A common approach to solve this problem is to reduce the size of the feature map and
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Figure 2.7: A two-dimensional convolution [Goodfellow et al., 2016].

keep the most important elements. A method for down-sampling is to use a pooling layer. The
most common pooling operation is Max Pooling. It calculates the maximum value within a region
of pixels from the feature map, which corresponds to the more important features. For a two-
dimensional image Zk of size h× w, the output dimension is given by p the pooling window size
and s the stride. For the (i, j) pixel in the output image, Max Pooling is applied as follows:

POOLMAX(Zk)(i, j) = max
m∈[0,p;s],n∈[0,p;s]

Zk(i+m, j + n), (2.21)

where m ∈ [0, p; s] means that the index m goes from 0 to p with a step s. A visual representation
is also given in Figure 2.8.

Figure 2.8: An example of Max Pooling with a 2×2 filter and a stride of size 2 [Rana, 2020].
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The two types of layers mentioned above are generally used to construct the feature map, as
shown in Figure 2.6. However, another type of layer called Batch Normalization [Ioffe and
Szegedy, 2015] has been used in more recent network architectures [He et al., 2016]. The Batch
Normalization layer (BN) is used to standardize the inputs of the layers. It takes a batch of inputs
and normalizes them by centering and reducing the scale. This makes the training faster and the
networks more stable. An example of network is given in Figure 2.9.

In the training stage, the BN layer depends on mini-batches to learn the statistical description of the
inputs (mean and variance). Optionally, it applies a scale γ and an offset β. In the inference phase,
BN is applied as a single linear transformation. For a given input x, BN is written as follows:

BNinference
γ,β (x) = γ√

Var[x] + ε
x +

(
β − γE[x]√

Var[x] + ε

)
, (2.22)

where ε is an arbitrary small constant added for numerical stability. Note that E[x] and Var[x]
depend on the distribution of the random variable x.

Figure 2.9: An example of network which uses the BN layer. Usually, BN is inserted after CONV
layers and before the activation function.

After constructing the feature map, fully connected layers are used to connect the features all
together and to perform the classification task as shown in Figure 2.6.

2.2.1 Datasets

In order to train and test the models, a dataset is required. This dataset is usually split into three
sets: training, validation and testing. The validation set is used in the training stage to check how
the training goes. Sometimes, the validation set is not provided. In this case, data scientists split
the training set. In the case of image classification, the images need to be labelled into at least 2
categories, or classes.

The most popular datasets used for classification are presented below.
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Figure 2.10: Samples of the MNIST Dataset.

MNIST [LeCun et al., 1998]. The MNIST dataset (see Figure 2.10) contains images of hand-
written digits (0 through 9). MNIST is a starting point dataset in model training which consists
of 10 classes. It is used in image classification to train classifiers, simply to test new architectures
and to ensure they work. MNIST is divided into two sets: the training set has 60K examples and
the test set has 10K. All of its images are in black and white and of the same size (28× 28 pixels).

CIFAR-10/100 [Krizhevsky et al., 2009]. The CIFAR-10 dataset (see Figure 2.11) is also a
well-known image classification benchmark dataset. The dataset has 60K color images with 10
different classes comprising 6K images per class. The images are colored RGB and of size 32 ×
32 pixels each. There are 50K training images and 10K test images. CIFAR-100 is just like the
CIFAR-10, except it has 100 classes. There are 500 training images and 100 testing images per
class.
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Figure 2.11: Samples of the CIFAR Dataset.

ImageNet [Deng et al., 2009]. ImageNet (see Figure 2.12) is a dataset of over 15 million labeled
high-resolution images belonging to roughly 22K categories. The images were collected from the
web and labeled by human labelers. This dataset is well-known since 2010, because it is used in a
competition called the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC). ILSVRC
uses a subset of ImageNet with roughly 1000 images in each of 1000 categories. In all, there are
roughly 1.2 million training images, 50K validation images, and 150K testing images. The dataset
provided in ILSVRC are generally used to show the performances of models at a bigger scale.

Figure 2.12: Samples of the ImageNet Dataset.
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2.2.2 Well-known Networks

Many CNN architectures have shown great results. The first known CNN architecture was done
in the 90s and is called LeNet-5 [LeCun et al., 1998] network. This basic architecture consists of
two blocks of a convolutional and an average pooling layer, followed by a flattening convolutional
layer, then two fully-connected layers and finally a softmax classifier. This architecture was used
on the MNIST dataset.

In 2012, with the appearance of AlexNet [Krizhevsky et al., 2012], neural networks have become
more precise for image classification and more popular in real applications. AlexNet consists of
5 convolutional layers and 3 fully connected layers and uses ReLU activation function, multiple
GPUs and overlapping Max Pooling. After AlexNet, the trend was to improve the network’s
accuracy by adding more convolutional layers. As a result, the VGG network was introduced, the
most used version being VGG16 [Simonyan and Zisserman, 2015] which has 13 convolutional
and 3 fully connected layers. This network has 138M parameters and takes up about 500MB of
storage space.

Other architectures have been introduced in order to reduce the number of parameters and to
achieve lower error rates. Among the first network to use Batch Normalization layers and residual
connections were Residual networks. The most popular used architecture is ResNet50 [He et al.,
2016]. Inception-v1 [Szegedy et al., 2015] is the first architecture using blocks/modules instead
of stacking convolutions. This architecture offers a radical reduction in the number of parameters.
Xception [Chollet, 2017] is an adaptation from Inception, where the Inception modules have been
replaced with depthwise separable convolutions. SqueezeNet [Iandola et al., 2016] is an updated
and improved version of AlexNet with 50x fewer parameters than the prior model. Mobilenets are
a class of efficient models that are conceived for mobiles and embedded systems. These networks
are based on a streamlined architecture and use depth-wise separable convolutions. MobileNet
[Howard et al., 2017] has 4.25M parameters and it requires 16MB memory size.

To improve accuracy and processing time, some architectures are scaled up when more resources
are available. This is the case of VGG that scale up from 11 to 19 layers and ResNet from 18
to 200 layers, but other networks use larger input image resolutions or increase depth and width.
EfficientNet [Tan and Le, 2019] has been the most recent state-of-the-art network family for high
quality and quick image classification. EfficientNet uses a compound coefficient to uniformly scale
all dimensions of depth/width/resolution. The baseline architecture is called EfficientNet-B0, and
it is based on a technique used in MobileNetV2 [Howard et al., 2018]. Baseline model achieves
1% more accuracy than ResNet50, while having 5× fewer parameters and 11× fewer operations.
Models from B1 through B7 are scaled up from baseline B0. EfficientNet-B7 achieves state-of-
the-art 84.4% on ImageNet while being 8.4× smaller and 6.1× faster than Gpipe [Huang et al.,
2019]. In 2021, EfficientNetV2 [Tan and Le, 2021], an improved version of EfficientNet has been
released.

Computational Workload. The computational workload of a CNN inference is the result of
an intensive use of Multiply Accumulate (MAC) operation. Floating point operations (FLOPs)
are often used to describe how many operations are required to run a single instance of a given
model. Most of these operations occur in the convolutional and fully connected layers. Convolu-
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Model Year Acc (Top 1) Memory size Parameters FLOPs
LeNet-5 1998 99.1% 3.5 MB 866K 28M
AlexNet 2012 57.3% 217 MB 62.3M 724M
VGG16 2014 71.3% 528 MB 138M 15.5G
VGG19 2014 72.7% 548 MB 144M 19.6G

GoogleNet 2015 68.7% 40 MB 7M 1.58G
InceptionV3 2015 78.8% 92 MB 23M 6G

ResNet50 2015 75.3% 98MB 25.6M 3.86G
ResNet101 2015 76.4% 171 MB 44.4M 7.57G
ResNet152 2015 77.0% 232 MB 60M 11.3G

SqueezeNet 2016 57.6% 4.7 MB 1.25M 861.34M
Xception 2016 79.0% 88 MB 22.9M 11G

MobileNetV1 2017 70.4% 16 MB 4.25M 569M
MobileNetV2 2018 71.3% 14 MB 3.5M 480M

Gpipe (Amoeba-Net) 2018 84.4% 2.1GB 557M 225.7G
EfficientNet-B0 2019 76.3% 46 MB 5.3M 4.07G
EfficientNet-B7 2019 84.4% 256 MB 66M 37G

EfficientNetV2-S 2021 78.7% 101 MB 21.1M 8.42G

Table 2.2: Overview of well-known CNNs. Accuracy evaluated on ImageNet test set (except for
LeNet-5 which is evaluated on MNIST).

tional layers are generally responsible for more than 90% of execution time during the inference
[Abdelouahab et al., 2018]. On the other hand, most of the parameters are coming from the fully
connected layers. Due to this unbalanced computation to memory ratio, CNNs accelerators follow
different strategies when implementing the convolutional and fully connected parts of inference.

An overview of the presented architectures is given in Table 2.2. We display the year when the
network appeared, its performance (accuracy), its size (memory size and number of parameters)
and computational workload (FLOPs). Also, more details can be found in [Khan et al., 2020].

2.3 Object Detection architectures

Object detection is another computer vision task that involves identifying, classifying, but also
giving the location of one or more objects in a given image. After image recognition and clas-
sification, this task became the focal point for research and industry since it is closer to real life
applications such as autonomous cars and surveillance systems. The difference between classifi-
cation and object detection is shown in Figure 2.13. It is a challenging problem that uses a method
of object recognition and classification (i.e. CNNs) and adds an object localization task that gives
the position and the size of the object.
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Figure 2.13: Difference between classification, object detection [Cogneethi, 2021].

Generally, there are three steps in an object detection model: region of interest selection, feature
extraction and classification.

Region of interest selection. This step is used to locate objects in an image and indicate their
location with a bounding box/region. The model first proposes a set of regions by using selective
search [Uijlings et al., 2013] or using a regional proposal network [Ren et al., 2015]. A second
approach used for region selection is by sliding a window on the image.

Feature extraction and classification. The two other steps are done on each region candidate
by using a CNN architecture such as VGG16, ResNet, MobileNet. These steps are straightforward,
but it can be quite slow. Some detection models are described as having 2,000 regions per image
at test time [Girshick et al., 2014]. A different family of networks skips the region selection stage
and runs the detection directly over the dense sampling of possible locations. These models are
faster and simpler, but are potentially less precise. These detectors are preferred for real time
applications, therefore, research has focused mostly on improving these type of networks.

Mean average precision (mAP). The evaluation metric used for object detectors is called the
mean average precision [Everingham et al., 2010]. It is different from the accuracy used in clas-
sification as it has to take into consideration the intersection of the bounding boxes. For each
bounding box, an overlap between the predicted bounding box and the ground truth bounding box
is measured. This is given by the intersection over union (IoU):

IoU = area of intersection
area of union

. (2.23)

The IoU is used to find the Precision and Recall. Precision measures how accurate the prediction
is:

Precision = TP
TP + FP

, (2.24)

where TP stands for true positive and FP for false positive. While Recall measures how well the
predictions were made:

Recall = TP
TP + TN

, (2.25)
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where TN stands for true negative. Then, the Average Precision (AP) represents the area under the
precision-recall curve (PR curve). It is given by averaging the precision over a set of evenly spaced
recall levels. Finally, mAP is the average of AP over all classes C:

mAP = 1
C

C∑
i=1

APi. (2.26)

2.3.1 Datasets

Pascal VOC [Everingham et al., 2010]. The PASCAL Visual Object Classes Challenge (Pascal
VOC) dataset contains 20 object categories. Each image in this dataset has pixel-level segmenta-
tion annotations, bounding box annotations, and object class annotations. This dataset has been
widely used as a benchmark for object detection, semantic segmentation, and classification tasks.
The most used VOC datasets are the ones from 2007 and the one from 2012. The VOC07 dataset
has a total of 9963 images, making a total of 24640 objects. The images are divided into a training
(2.5K), validation (2.5K) and test (5K). The VOC12 dataset has a total of 11540 images and 27450
objects that are divided in a training set (5.7K), a validation set (6K) and a test set (11K). In order
to have more samples for training, some works train networks on the union of the two datasets.

MS COCO [Lin et al., 2014]. The Microsoft Common Objects in Context (MS COCO) dataset
is a large-scale object detection, segmentation and captioning dataset (see Figure 2.14). The dataset
consists of 328K images. For object detection, the dataset has bounding boxes and per-instance
segmentation masks with 80 object categories. The first version of MS COCO dataset was released
in 2014. It contains 164K images split into training (83K), validation (41K) and test (41K) sets.
In 2015, an additional test set of 81K images was released, which included all the previous test
images and 40K new images. Based on community feedback, in 2017 the training/validation split
was changed from 83K/41K to 118K/5K. The new split uses the same images and annotations.
The 2017 test set is a subset of 41K images of the 2015 test set.

Figure 2.14: Samples from MS COCO dataset.
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KITTI [Geiger et al., 2013]. Karlsruhe Institute of Technology and Toyota Technological In-
stitute (KITTI) is one of the most popular datasets for autonomous driving (see Figure 2.15). It
consists of hours of traffic scenarios recorded with a variety of sensor modalities, including high-
resolution RGB, grayscale stereo cameras, and a 3D laser scanner. The dataset contains 7481
training images and 7518 test images, making it a total of 80256 labeled objects.

Figure 2.15: Samples from KITTI dataset.

2.3.2 Well-known Networks

Numerous networks for object detection have appeared in the past decade. Table 2.3 gives an
overview over the most popular networks. Object detection models are generally based on CNN
architectures and easily configurable (input size and number of regions). In contrast to classifica-
tion networks, the level of complexity may also vary for the same architecture because of the input
size, the numbers of selected regions or some parameters that can be configurable. Therefore, we
do not add the memory size or number of parameters. We provide the frame per second (FPS)
which is critical because these type of models target real-time applications.

Model Year Dataset mAP FPS Input resolution
R-CNN 2014 VOC07 66 0.28 227 x 227

Faster R-CNN (VGG16) 2015 VOC07 73.2 7 1000 x 600
YOLO (VGG16) 2016 VOC07 66.4 21 448 x 448

SSD512 2016 VOC07 76.8 19 512 x 512
Retina-Net-101 2017 COCO 53.1 11 500 x 500

YOLOv2 2017 COCO 48.1 40 608 x 608
YOLOv3 2019 COCO 57.9 20 608 x 608
YOLOv4 2020 VOC07+12 82.39 44 512 x 512

Table 2.3: Table of well-known object detection networks. The FPS was obtained on different
GPUs. It serves as an indicator of the evolution made in object detection.

Object detection networks can be divided in two staged Detectors and one stage Detectors.

Two staged Detectors. R-CNN [Girshick et al., 2014] uses an algorithm called Selective Search
which selects around 2000 candidate boxes and feeds them to a CNN followed by a Support Vector
Machine (SVM) to classify. Selective search uses local cues like texture, intensity, color to gener-
ate all the possible locations of the object. The detector has a second output for the bounding boxes
which uses regression. Improvements have been brought to this model, and it was transformed in
Faster R-CNN [Ren et al., 2015]. This algorithm uses a network called Region Proposal Network
(RPN) that outputs proposed regions in a more efficient manner.



2.4 – Conclusion 27

One stage Detectors. You Only Look Once (YOLO) [Redmon et al., 2016] is one of the popular
algorithms in object detection used by researchers and developers all over the world. The reason
why YOLO is so popular is that compared to the other networks it processes images in real time
still achieving a good mAP. The original version divides each image into a grid of s × s and
each grid predicts n bounding boxes and a confidence score which indicates whether the box
contains an object or not. A lot of versions and improvements have been made for YOLO, making
it the reference algorithm used in object detection. However, some other models have appeared,
for example the Single Shot Detector (SSD) [Liu et al., 2016] approach discretizes the output
space of bounding boxes into a set of default boxes over different aspect ratios. The Single Shot
Detector network combines predictions from multiple feature maps with different resolutions to
naturally handle objects of various sizes. Retina-Net [Ross and Dollár, 2017] is another network
that introduces new techniques to extract features.

2.4 Conclusion

The role of this chapter was to present Deep Learning notions, in order to give the reader a better
understanding of the general scientific context of this work. We presented the most commonly used
layers in classification networks and we gave an overview of state-of-the-art CNNs. A brief presen-
tation of object detection and an overview of state-of-the-art networks was also given. Throughout
this thesis, we focus mostly on feedforward and CNN type architectures. Several networks which
are presented in this chapter will be used in evaluations. Most importantly, we formally defined
neurons, layers and the architecture of a feedforward network. These key elements will be used in
the following chapters. The next chapter focuses on state-of-the-art compression strategies used
on CNNs.
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Many real-time applications such as autonomous cars, smart cameras and smartphones use Deep
Learning models that are based on CNNs. However, CNNs have a massive number of parameters
and operations and these real-time applications usually use limited hardware and require low
latency. Thus, deploying CNNs can be challenging.

A solution for this issue is compressing the parameters of the networks which helps us meet
the memory and inference time requirements. Many compression techniques are used to develop
efficient networks. Several surveys can be found on the subject [Sze et al., 2017, Cheng et al.,
2018, Ge, 2018, Neill, 2020, Mishra et al., 2020, Berthelier et al., 2021, Gholami et al., 2021]. A
presentation of these techniques are given in the following sections.

3.1 General presentation of techniques

During this thesis, a study has been done over a great number of works and techniques. We split
these techniques into multiple categories: quantization, pruning, computational acceleration, low
rank factorization and knowledge distillation (see Figure 3.1).

Figure 3.1: The main categories of network compression approaches (inspired from [Ge, 2018]).

To give a complete panorama of the compression methods, we will start by giving a short overview
for each technique. We further present the two most important and popular methods in Deep Learn-
ing compression: pruning and quantization. These two methods work well together. This is shown
in [Han et al., 2016b] where a three-step pipeline is used to compress a network (see Figure 3.2).
Two of the steps are pruning and quantization, and the third one is Huffman encoding [Huffman,
1952]. This method compresses an AlexNet [Krizhevsky et al., 2012] network up to 35x with-
out sacrificing performance. Another combination between pruning technique and a quantization
scheme is proposed in [Hacene et al., 2020] which effectively reduces the complexity of convolu-
tions.
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Figure 3.2: Deep Compression three-step pipeline [Han et al., 2016b].

In the end, we will focus only on quantization. The reasons for choosing quantization to the detri-
ment of pruning are mentioned in the following sections. An experimental study of the two tech-
niques is given in the next chapter.

Knowledge distillation. Knowledge distillation (KD) effectively learns a small student model
from a large teacher model. It has received rapid, increasing attention from the community [Bu-
cilua et al., 2006, Ba and Caruana, 2014, Urban et al., 2016, Hinton et al., 2015]. The main idea
is that the student model mimics the teacher model in order to obtain a competitive or even a
superior performance. Basically, a KD system is composed of three key components: knowledge,
distillation algorithm, and teacher-student architecture. The knowledge is what we extract from
the teacher model. The key problem is how to transfer the knowledge from a large teacher model
to a small student model. A comprehensive survey on all the elements and the challenges on this
subject is given in [Gou et al., 2021]. Although KD shows great success, it is out of the scope of
this thesis due to the need to train new networks.

Low rank factorization. Networks are usually over-parameterized [Denil et al., 2013]. Low
rank factorization methods identify redundant parameters by using matrix and tensor decompo-
sition. Nyström method [Kumar et al., 2012, Giffon et al., 2019] is used to efficiently generate
low-rank approximations. The popular low-rank approximation approach based on singular value
decomposition (SVD) [Eckart and Young, 1936, Klema and Laub, 1980] is generally applied to
the weights of fully connected layers where compact storage is achieved by keeping only the most
prominent components of the decomposed matrices. Matrix and tensor decomposition methods
such as Tucker [Tucker, 1966], Canonical Polyadic (CP) [Harshman et al., 1970] or product of
sparse matrices [Giffon et al., 2021] are also handy tools for speeding up inference with networks
with many parameters. The decomposed layers are represented by layers with reduced parameter
dimensions. While these approaches reduce storage size and time complexity, they also introduce
a high amount of error. Moreover, some works [Yu et al., 2017b, Phan et al., 2020] show that low
rank factorization works hand in hand with other sparsity strategies such as pruning.

Computational acceleration. In order to speed up the execution of CNNs, efficient matrix mul-
tiplication algorithms have been proposed. A common method for dealing with layers’ complexity
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is to use GEMM [Cong and Xiao, 2014], a matrix multiplication procedure that is part of the
BLAS library [Lawson et al., 1979]. Some works [Sze et al., 2017] show that GEMM is efficient
for FC layers, while on CONV layers it can lead to redundant data in the input. Fast Fourier
Transform (FFT) [Mathieu et al., 2014, Vasilache et al., 2015] is a well known algorithm for
convolutions. Most convolutions are computed using FFT. Another computational transformation
is Winograd’s algorithm [Winograd, 1980]. In [Lavin and Gray, 2016], it is shown that Winograd
obtains x7.28 speed up compared to GEMM and that FFT work well for convolutions with large
filters (size larger than 5) and Winograd for small filters (size smaller than 3).

In this thesis, we mainly focus on the memory size issue and, differently from the previously pre-
sented approaches, we rely on a compression-based approach. Compression-based methods aim to
reduce DNN complexity either by pruning [Mao et al., 2017, Anwar et al., 2017] its weights, or by
quantizing them [Gong et al., 2014, Gysel, 2016, Hubara et al., 2016, Rastegari et al., 2016, Krish-
namoorthi, 2018, Jacob et al., 2018]. In some of these works, the compression step is considered
during training [Rastegari et al., 2016, Campbell and Broderick, 2018], while in others [Han et al.,
2016b, Krishnamoorthi, 2018] compression is carried out in a post-training step. In both cases, the
objective is to choose compressed DNN weights such that the incurred loss of inference perfor-
mance with respect to the uncompressed performance is as small as possible.

3.2 Network Pruning

Pruning is a popular technique used to remove unimportant parameters. This technique increases
significantly the sparsity of the parameters, and, if applied correctly, may reduce the memory
footprint and computational costs of neural networks. If the hardware is adapted, multiplications
can also be omitted, which provides an even more efficient inference. Pruning was introduced in
early development of neural networks [Reed, 1993].

Recently, many approaches have been proposed. They are mainly divided in two categories: struc-
tured pruning approaches and unstructured pruning approaches. As presented in [Cheng et al.,
2018], unstructured pruning refers to fine-grained pruning and the structured pruning approaches
are vector-level, kernel-level, group-level and filter-level pruning. Figure 3.3 shows the different
types of pruning.
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Figure 3.3: Pruning methods applied to a 4-dimensional weight tensor of a convolution layer
[Cheng et al., 2018]. This example contains three 3-D filters of three kernels each. A filter is a cube
and a kernel is a slice in the cube. The elements in yellow are pruned weights. The fine-grained ap-
proach removes the parameters in an unstructured way. The vector-level approach prunes a vector
from a kernel, while the kernel-level method prunes a kernel from the filter. Group-level meth-
ods use a sparse pattern to prune the parameters on the filters. Finally, filter-level pruning remove
filters.

Structured pruning. Structured pruning [Anwar et al., 2017, Guo et al., 2016, Mao et al.,
2017, Molchanov et al., 2017, Frankle and Carbin, 2018, Dai et al., 2019, Tessier et al., 2020]
removes channels or filters. When applying structured pruning, neurons are also removed. In prac-
tice, this method is easier to implement, as it translates to simply reducing the dimensions of the
matrices without making important changes to the architectures. However, structured pruning suf-
fers from considerable accuracy loss and limits the sparsity rate. Anwar et al. [Anwar et al., 2017]
applies a structured pruning on three levels (filter, kernel and intra-kernel) and greatly reduces the
complexity of convolution calculations. Mao et al. [Mao et al., 2017] finds that vector pruning has
better performance because it takes up less space than fine-grained pruning.

Unstructured pruning. Unstructured pruning [Han et al., 2016b, Wen et al., 2016, He et al.,
2017, He et al., 2019, Tessier et al., 2020] focuses on removing unnecessary individual weights,
which ensures a higher flexibility and usually achieves high compression rate with minor accuracy
loss. However, this approach is known to be hard to accelerate. It gives an irregular sparsity and
requires additional information to locate the non-zero weights during inference. This approach
needs to be used on flexible hardware with more cache, such as CPUs. Unstructured pruning is
not recommended for GPUs because with this method, GPUs are underutilized and can decrease
inference speed [Wen et al., 2016].
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Figure 3.4: Pruning scheduling types.

Another important part of pruning is how and when we apply the method. Figure 3.4 shows the
different scheduling methods used. This highly impacts the performance of the network. In one-
shot pruning, we only remove the weights of a trained network and uses a fine-tuning (retraining)
step to adapt the remaining parameters to the removal. Iterative pruning [Han et al., 2016b] applies
pruning followed by fine-tuning several times and leads to better results. The last method, called
Automated gradual pruning [Zhu and Gupta, 2018], includes pruning in the training step.

Keeping state-of-the-art performance while imposing high levels of sparsity during training and
inference is still an open problem. However, we recall that the company’s processor is used only
for the inference phase. Since pruning usually requires the models to be retrained afterwards as
shown in Figure 3.4 and our processor does not have this capability, we consider pruning out of
the scope o f this thesis, but the results and advances on the subject are still of interest for future
generations of the processor.

3.3 Network Quantization

Quantization is an approach that has shown great success for both inference and training. Quanti-
zation exploits the sparsity of DNNs to reduce both storage and processing requirements. Several
approaches have been published on the quantization of CNNs networks, which deal with the
problem of memory and of speed of calculations.

Quantization refers to the process of approximating continuous amplitude data with a finite,
preferably small, set of amplitude values. The input to a quantizer corresponds to the original
data, and the output always corresponds to one value among a finite number of levels. An in-detail
description of quantization for data compression will be given in Chapter 5. Here, we present the
works that have been done in network quantization.

Generally, neural networks use 32-bit floating-point (FP32) precision for both training and infer-
ence which leads to large computational and storage costs. To save memory, the proposed ap-
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proaches for quantizaton focus on reducing the precision used to represent the parameters. We di-
vide quantization techniques into two categories. The first category groups methods that are used
to quantize the parameters for storage purposes. This category we call scalar or vector quanti-
zation. The second category is called low precision quantization and it refers to reducing the
precision requirements of the weights and activation using low precision formats which not only
reduces the size of the parameters but also changes the precision of the operations.

3.3.1 Scalar and vector quantization

Scalar and vector quantization approaches originate from data compression. The main idea is
to create a codebook which contains a set of values that are used to represent the original data.
Then the values of the original data are mapped to the ones in the codebook. The codebooks are
dictionaries or look-up tables (LUTs). The size of the codebook is much smaller than the original
data, these methods obtain a significant compression ratio without sacrificing the accuracy. Several
methods use this type of approach to represent the parameters or weights of the networks.

Figure 3.5: Scalar quantization vs 2D Vector quantization.

In scalar quantization (SQ) [Jacob et al., 2018, Han et al., 2016b], each input value is processed
separately and outputs a single value. In vector quantization (VQ) [Gong et al., 2014, Le Tan
et al., 2018] the input data is a vector and is processed and mapped to a vector output. VQ can be
seen as a generalization of SQ to the space RN . Figure 3.5 shows a visual representation of the
two quantization methods and how the space is partitioned.

In information theory [Cover and Thomas, 2006, Gersho and Gray, 1991], vector coding is con-
sidered to always obtain a better performance than scalars, even if the samples are independent
random variables. However, in practice, SQ seems to give satisfactory results and few VQ algo-
rithms have been used for network compression.

The classical methods can achieve a very large compression ratio without loss in accuracy.
Gong et al. [Gong et al., 2014] applies VQ on FC layers in networks for image classification
and object detection and obtains a compression ratio of 16-24 with only 1% loss in accuracy for
classification on ImageNet.
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Han et al. [Han et al., 2016b] quantizes the weights by using a non-uniform quantization algo-
rithm called k-means [Steinhaus, 1957, MacQueen, 1967] and applying it on each weight of the
network. Then, a LUT is used to share the values from the codebook. The whole compression
process used by Han et al. is shown in Figure 3.2. Quantization has shown a reduction of 27x-31x
while maintaining the same accuracy.

Product quantization (PQ) [Gong et al., 2014, Jégou et al., 2011] is a form of vector quantization,
but it is applied on blocks (subvectors). This method splits each column vector into blocks and
learns the same codebook for all the subvectors. Each quantized vector is obtained by assigning
its subvectors to the nearest codeword in the codebook. PQ generalizes both scalar and vector
quantization.

In Deep Learning, low precision quantization is a form of scalar quantization. Due to the popularity
of this subject, details on low precision methods are given in the following Section.

3.3.2 Low precision quantization

3.3.2.1 Reduced precision

Another way to quantize models is by reducing the precision requirements of the weights and
activations of the model. While Deep Learning computations normally rely on standard binary
32 IEEE 754 floating-point (FP32) arithmetic, it has been observed that significant savings in
memory footprint and increases in performance/efficiency can be achieved by using 16-bit rep-
resentations for training [Micikevicius et al., 2018] and 8-bit representations for inference with
acceptable precision loss [Jacob et al., 2018].

Low precision quantization is the most studied approach. In many cases, neural networks are very
tolerant to low numerical accuracies. A floating-point model can be quantized to a fixed point
model with almost no loss of precision. Gupta et al. [Gupta et al., 2015] uses a 16-bit fixed-point
representation with stochastic rounding to train a CNN. Courbariaux et al. [Courbariaux et al.,
2015a] has good results after training with 10-bit for activations and 12-bit for parameters. Such
an approach brings several advantages: the memory footprint is smaller (we reduce the data size),
the transfer is faster, and we need less RAM and cache for activations. Consequently, the energy
consumption is reduced. On the other hand, after each calculation step, the new data must also be
compressed to a low precision format. This step adds to the computational complexity.

Currently, the mainstream approach for Deep Learning inference with alternate arithmetic relies
on integer quantization of FP32 using 8-bit formats. Using, for example, 8 bits precision numbers
reduces the model size by a factor of 4. It also reduces the working and cache memory for acti-
vations, which makes the computations much faster and consumes less power, since moving 8-bit
data is 4 times more efficient than moving 32 floating-point data [Krishnamoorthi, 2018].

Recently, new data formats have been introduced due to their hardware efficiency. The format
Bfloat16 (BF16) [Dean et al., 2012] is a 32-bit floating-point representation, truncated into 16 bits.
It retains the characteristics of a float32, but only supports a 7-bit mantissa. BF16 is faster than
float16 and its precision seems to be sufficient for CNNs. MSFP8 [Chung et al., 2018] is similar
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to BF16. It uses a float16 truncated into 8 bits. Another data type called Posit [Gustafson and
Yonemoto, 2017] is designed to replace floats. Posits offer higher precision while being simpler
in hardware, thus more economical in energy consumption. A thorough presentation on these
alternative data formats is given in Chapter 6.

Next, we present different industrial solutions used for faster inference by having efficient kernel
computations in reduced precision.

R&D Solutions for Industries. The need for compression in Deep Learning is becoming
increasingly important. Companies are contributing significantly to advances in the field. Quanti-
zation schemes used by industrial solutions allow neural network inference to be carried out using
integer-only arithmetic, a more efficient method than using only floating-points for inference.
Faster inference through efficient computation is achieved when using Gemmlowp, a small self-
contained low-precision GEMM library [GemmlowP, 2019], Nvidia TensorRT [Nvidia, 2017] and
Rosetta [Borisyuk et al., 2018].

Gemmlowp is a low precision matrix multiplication library that is used by Tensorflow [Tensor-
Flow, 2021] and Tensorflow Lite [TensorFlow Lite, 2021]. The compression of the weights and
inputs is done in unsigned 8-bit fixed point (uint8). The method used is uniform quantization,
ensuring that the zero value is quantized without error. Krishnamoorthi [Krishnamoorthi, 2018]
shows that, for an 8-bit quantized array, the storage size is reduced by a factor of 4, inference is
2-3x faster on CPUs and 10x faster on processors with fixed-point SIMD capabilities.

Rosetta takes inspiration from Jacob et al. [Jacob et al., 2018] and it quantizes the weights and
activations from float32 to uint8. The approach is identical to that of Gemmlowp. However, the
quantization does not apply to all layers in order to improve the accuracy of the prediction. A
calibration dataset is used to define an input saturation threshold by minimizing the L2 norm
of the prediction error, unlike TensorRT which minimizes the relative entropy. TensorRT also
uses 8-bit inference performed using uniform quantization to move from a 32-bit floating-point
representation (FP32) to a signed 8-bit fixed point representation (INT8). The bias is ignored and
the activations are saturated at a threshold defined by a calibration data set. A detailed study on
TensorRT is also given in the Appendix A.

Caffe [Jia et al., 2014], another well-known framework, implements an automatic approximation
tool, Ristretto [Gysel, 2016], to compress float32 data to any data format. Ristretto uses 3 quan-
tization strategies: dynamic fixed point [Courbariaux et al., 2015a], minifloat and power of two
[Tang and Kwan, 1993]. Gysel [Gysel, 2016] shows that the dynamic fixed point is most suitable.
This approximation gives the best result for low precision, but it requires more chip area than the
classical fixed point.

MicroAI [Novac et al., 2021] is a framework specially designed for end-to-end deep neural net-
works training, quantization and deployment for microcontrollers. Execution is done either in
FP32 or fixed-point using 16 bits or 8 bits. The quantization scheme can be easily adjusted for
different use cases. The quantization method used, first, computes the number of bits required to
represent the unsigned integer, then, it uses this information to determine the scaling factor needed
to truncate the real value.
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3.3.2.2 Binary and ternary networks

Binarization is another form of quantization. Binarization reduces the data representation to 1
bit, which means two values (i.e. {−1,+1}). The advantages of binarization are computation re-
duction because the networks are quantized in a simple way, memory saving (32x) and significant
acceleration (58x speedup [Rastegari et al., 2016]) because binarization replaces the multiplication
operation with operations that are more hardware friendly.

Another upside of binarization is that binary neural networks (BNNs) are more robust than full
precision networks because of the small magnitudes and also help understand the behavior and
structure of the model and the importance of the layers.

A type of BNNs is called the Naive Binary Neural Networks that directly quantize the weights
and activations to 1-bit. In 2015, [Courbariaux et al., 2015b] proposes BinaryConnect, a method
that quantizes FP32 weights in +1 and −1 using stochastic binarization. This network achieved
state-of-the-art results, but only on small datasets. Following the paradigm of BinaryConnect,
Courbariaux proposed another method called Binarized Neural Network [Hubara et al., 2016]
which binarizes weights and activations during training and replaces traditional convolutional
operations with XNOR and popcount operations to have a full binary network.

However, direct binarization leads to large quantization errors. Other solutions have been brought
to minimize this error. Some methods keep some layers in full precision. One of the pioneer
methods in binarization is presented in [Rastegari et al., 2016]. It has two versions, one called
Binary Weight Networks in which weights are binarized and the second one, XNORNET, where
both weights and activations are binarized. This method uses Binarized Neural Network with
scaling factors, except for the first and last layer which remain in FP32. Rastegari et al. also
changes the order of the layers in the CNN as shown in Figure 3.6.

Figure 3.6: A CNN block (left) vs a XNORNET block (right) [Rastegari et al., 2016]. In a typical
CNN block, the order of operations is the following: CONV, Batch Norm, activation function. In
a XNORNET block, the input is first normalized and, then, we apply a binary activation and a
binary CONV. The Pooling operation is in the last position in both cases.

Ternary networks use 2-bit data. The second bit is needed to represent the 0 value. The QNN
network is also proposed by Hubara et al. [Hubara et al., 2017], it uses the same architecture as
Binarized Neural Network, but with 2-bit activations. Zhu et al. [Zhu et al., 2017] proposes a
ternary model that adapts the scaling factors for each layer. Despite their high compression ratio
and reduced computational complexity, there is a significant drop in accuracy. Therefore, the use
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of such a model does not seem reliable enough for industrial applications.

More details on how binary networks work, the techniques that are used and what is their perfor-
mance can be found in [Qin et al., 2020].

3.4 Conclusion

In this chapter, we presented several strategies used to compress deep learning networks. We
displayed structured and unstructured pruning techniques. Pruning usually needs to alter the
architecture of the network or retrain the weights, which is not possible in the company’s context.
We end the chapter with an overview of the state-of-the-art in quantization which will be our main
focus throughout this thesis. Scalar quantization seems to be one of the most popular methods
with a significant number of developed algorithms. We identified several interesting candidates,
including uniform and non-uniform quantization. Various possible ways to reduce the precision
of the traditionally used FP32 by using INT8, alternative floating-point formats, or even 1 bit
representation.

In the next chapter, a practical study is presented. State-of-the-art methods such as pruning, scalar
quantization and binarization are put to test on classification networks LeNet-5 and ResNet50.



CHAPTER 4
Preliminary study on
compression methods

This chapter presents a preliminary study which focuses on testing several compres-
sion methods such as pruning, quantization, binarization. We compare these methods
to each other and to Deep Compression [Han et al., 2016b], a state-of-the-art method
which jointly uses pruning, quantization and Huffman encoding. The experiments were
performed using Lenet5 and Resnet50 on small datasets such as MNIST, CIFAR-10.
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4.1 Methods

We take a look at well-known compression methods such as pruning, quantization and binariza-
tion. We performed experiments in order to compare different compression techniques which can
be used for storage purposes. For each of these methods, we compute the compression rate τ
which is a measurement of the bit-rate reduction in size of data representation after applying the
compression algorithm. A description of the three methods is given below.

4.1.1 Pruning

One way of applying pruning is to force to 0 the value of the weights which have weak connections
[Han et al., 2015]. We focus on iterative pruning, which means that we prune weights, and then
retrain the pruned network.

Pruning is applied to each layer of the network. We first define the desired compression rate, which
indicates the number of weights we set to 0 in all the layers. Given p the total number of pruned
weights and n the total number of weights, the compression rate is defined as follows:

τp = 100
(

1− p

n

)
. (4.1)

4.1.2 Quantization

We use a scalar quantization scheme, and we apply it post-training, only to the weights of the
layers. No compression is applied to the inputs of the layers. This compression method aims
to store the weights as an R-bit integer in order to save memory space. We do not apply the
quantization to the biases.

For anR-bit quantization, the number of quantization levels is given byN = 2R−1. The clamping
range is defined between a and b, a being the smallest value and b the largest. For a given weight
matrix W, generally, the range is set between min(W) and max(W). We set a and b so that we
can exactly represent the value 0 as an integer. The quantization algorithm [Krishnamoorthi, 2018]
is defined as follows:

δ = δ(a, b,N) = b− a
N

(4.2)

wq = q(w, a, b,N) =
⌊
w − a
δ

⌉
δ + a (4.3)

ŵ = wq|[a,b]= min(max(wq, a), b), (4.4)

where b·e represents the rounding operation and w|[a,b] the clamping of w between a and b.

We use the following compression rate of the quantized model:

τq = 100
(

1− R

32

)
. (4.5)
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4.1.3 Binarization

For binarization, we use Binary Weight Networks [Rastegari et al., 2016] which use FP32 activa-
tions and binary weights. In order to binarize a tensor of weights, we estimate the original FP32
weights W using a binary filter WB and a scaling factor δ such as

W ≈ δWB. (4.6)

The optimal binary tensor WB is given by the sign of the weights and the scaling factor δ is given
by

δ∗ = ||W||1
n

, (4.7)

where n is the number of elements in W and ||W||1 is the 1-norm.
The compression rate we use for binarization is the same one as for quantization when R = 1:

τb = 100
(

1− 1
32

)
. (4.8)

4.1.4 Deep Compression

For the last compression method considered, we combined pruning, quantization and added a cod-
ing algorithm called Huffman coding [Huffman, 1952]. This method is called Deep Compression
[Han et al., 2016b], and it is presented as a way to reduce almost 98% of the size of the network
with almost no loss of accuracy.

Pruning is used to remove useless connections. Quantization creates clusters with the remaining
non-zero weights. Each cluster is represented by a value, and all the weights from the same cluster
will be replaced by the representative value given to the cluster. Finally, Huffman Coding is a
lossless variable-rate source coding method, used in order to compress further by reducing the
number of bits needed to encode the results of quantization.

4.2 Experiments

4.2.1 Experimental settings

We first perform experiments using a simple model, LeNet5 [LeCun et al., 1998], on two datasets
(MNIST, CIFAR-10). The datasets are presented in Section 2.2.1.

Figure 4.1: Architecture of LeNet5 [LeCun et al., 1998].
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As shown in Figure 4.1, the model is composed of three convolutional layers and two fully con-
nected layers. Down-sampling using Max Pooling is applied after the two first convolutions. The
network returns a vector of size C, which corresponds to the number of classes of the dataset.

A similar experiment is performed using ResNet50 [He et al., 2016], a larger scale network with a
different architecture. This model is composed of a total of 50 convolutional and fully connected
layers grouped into blocks as shown in Figure 4.2. The network also uses layers of Max Pooling
and Batch Normalization.

Figure 4.2: Illustration of ResNet50’s architecture from [Karim, 2019]. Symbol B stands for Batch-
norm layer, R stands for ReLU activation function and S represents Softmax.

We evaluate the accuracy of the network without compression. We obtain an accuracy of 99.1%
for LeNet5 on MNIST, 64.5% for LeNet5 on CIFAR-10 and 82.27% for ResNet50 on CIFAR-
10. Then, we compress the network using each one of the presented methods, and we compare the
results. We are aware that the accuracy of ResNet50 could be improved by using training strategies,
however this is not our goal. We recall, our goal is not to test training strategies and obtain the best
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accuracy of a network, but to study the accuracy drop with respect to the compression method
used and the percentage of compression rate.

4.2.2 Compression performance comparison

Pruning. We first present the benchmark of pruning with and without retraining. We applied
pruning on LeNet5 at different compression rates, and we compared the accuracy on MNIST and
CIFAR-10 datasets (see Figures 4.3 and 4.4).

Figure 4.3: Accuracy comparison in the case of pruning with and without retraining using Lenet5
on MNIST.

Figure 4.4: Accuracy comparison in the case of pruning with and without retraining using Lenet5
on CIFAR-10.
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In red, we represent the accuracy of the original LeNet5 network. The blue curve shows the ac-
curacy we obtain when pruning without retraining, and in green we have the accuracy of pruning
with retraining. We can see that applying pruning with retraining generally provides much better
accuracy than pruning alone. An interesting observation is that for a small compression rate (up to
40% on CIFAR-10), pruning without retraining performs better than with retraining. However, if
we want to achieve higher compression rate, retraining the models improves connections. Iterative
pruning is known to perform a 90% compression rate without loss of accuracy on simple datasets
such as MNIST, but some accuracy drop is noticed in the case of larger datasets (i.e. CIFAR-10).
In our experiments, we notice 5-7% accuracy drop for a compression rate around 90%.

Quantization. For convolutional layers, we notice that the range of the weights is not the same
for each channel tensor. We applied R-bit quantization on the whole weight tensor, then on each
output channel tensor. We refer to the first method as Layer Quantization and the second one as
Channel Quantization.

When testing quantization with different bits applied to LeNet5 on the MNIST dataset, it results
that Layer and Channel Quantization have the same accuracy for quantization from 30 to 6 bits.
When we use less than 6 bits (from 5 to 2), Channel Quantization performs on the average a gain
of 1% accuracy in comparison to Layer Quantization. For future benchmark comparison, we will
use Channel Quantization.

When testing CIFAR-10 and MNIST datasets (see Figures 4.8 and 4.7), Channel Quantization
performs the same accuracy as the uncompressed LeNet5 for bits in range of 30 to 3 bits. When
using 2-bit or 1-bit quantization, accuracy drops and for 1-bit quantization the model cannot clas-
sify correctly images (accuracy near 10%). To conclude, Channel Quantization is the best method
to compress the weights of a neural network, without loss of accuracy, when the compression rate
does not exceed 93%.

Binarization. By applying the binarization rules seen in the previous section, we can easily
compute BWN. Since we no longer use 32 bits weight values, the compression rate is about 96%
(4.8). This has an impact on the accuracy of the original neural network, but it depends on the
model used and the tested dataset.

When testing LeNet5 on MNIST (see Figure 4.7), the binarized LeNet5 with the BWN algorithm
performs 88.1% accuracy compared to 99.1% accuracy for the original model. A large perfor-
mance drop can be noticed in the case of image classification using a bigger and more complex
dataset. In the case of CIFAR-10 dataset (see Figure 4.8), binarized LeNet5 accuracy drops to
17.6% for a 64.5% accuracy of the original LeNet5. To solve this issue, other binarization schemes
are proposed. A solution would be to retrain the binarized neural network and binarize it again af-
ter each epoch, but the gradient also needs to be binarized and projected, which is out of scope of
our work.

Deep Compression. We will present the accuracy of Deep Compression by studying bench-
marks of Pruning alone, Pruning and Quantization, and finally Deep Compression (Pruning +
Quantization + Huffman Coding). We applied compression on LeNet5 network with these meth-
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ods, and we tested their accuracy on CIFAR-10 dataset. You can find the benchmark in Figures
4.5 and 4.6.

Figure 4.5: Accuracy comparison between the steps used in Deep Compression: pruning with
retraining, pruning with quantization and, finally, Deep Compression (with Huffman Coding).
The model used is Lenet5 on MNIST.

Figure 4.6: Accuracy comparison between the steps used in Deep Compression: pruning with
retraining, pruning with quantization and, finally, Deep Compression (with Huffman Coding).
The model used is Lenet5 on CIFAR-10.

In this benchmark, we notice a minor loss of accuracy when Deep Compression is applied in the
case of LeNet5 on MNIST. When using CIFAR-10, the loss in accuracy is greater, but the model
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still performs well given the compression rate achieved. When applying pruning and quantization
together, the accuracy is better than when retrained pruning alone, we compress further without
loss of accuracy. We can explain it by the fact that when we prune too many weights (compression
rate over 90%), accuracy will drop fast because too many weights are forced to zero. While when
we apply quantization, we further compress the network without forcing more weights to zero, but
assigning them to a close representable value. When running Huffman Coding, accuracy remains
the same as before, but we gain on the average 5% compression than the quantization compression
rate.

Deep Compression is said to compress up to 98% without loss of accuracy. When we implemented
this method, we could not get a lossless model when tested on CIFAR-10, this dataset being far
more difficult to classify than MNIST. The paper we read showed lossless compression on MNIST,
we could compress LeNet5 at the same compression rate tested on MNIST with a low loss of
accuracy (between 1% and 3%, with an 99% original accuracy). In the case of CIFAR-10, for a
compression rate of 97%, a 7% accuracy drop is noticed.

LeNet5 on MNIST. Figure 4.7 displays the results for each method using LeNet5 on MNIST. As
explained before, in red we represent the accuracy of the original LeNet5 (uncompressed model),
the red dot is the accuracy of binarization, the green curve is the accuracy of Channel Quantization,
the blue curve is the accuracy of Pruning with retraining, and the orange curve is the accuracy
of the Deep Compression method (Pruning + Quantization + Huffman Coding). X-coordinate is
the compression rate of LeNet5, and the Y-coordinate is the accuracy of the compressed model.
To better show the results of compression, we "zoom" on the picture: X-coordinate is between 80
and 100, Y-coordinate is between 85 and 100. We can see that Channel Quantization, Pruning and
Deep Compression performs very well until a compression rate of 94% (an average loss of less
than 1% compared to uncompressed LeNet5).

Figure 4.7: Accuracy comparison between pruning, quantization, deep compression and binariza-
tion using Lenet5 on MNIST.
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For a compression rate greater than 94%, the accuracy of Channel Quantization drops signifi-
cantly and Pruning accuracy begins to drop. Pruning still performs a very good accuracy, but then
fails to maintain a good accuracy when reaching a 97% compression rate. Binarization achieves
a better accuracy than the others model do, except for Deep Compression, when reaching this
extreme compression rate (88% accuracy for 97% compression rate). But as previously explained
binarization works well in the case of small networks and simple datasets like MNIST. On the
other hand, Deep Compression performs well achieving a compression rate of 98% with a loss in
accuracy of 1%, which confirms that this method is the best one.

LeNet5 on CIFAR-10. Figure 4.8 shows the benchmark results using Lenet5 on CIFAR-10.
There is an obvious loss of accuracy on CIFAR-10 greater than with MNIST. This is certainly
due to the complexity of the dataset. Until a compression rate of 90%, all the methods maintain
a good accuracy (accuracy drop under 5%). Afterwards, the accuracy of pruning and quantization
gradually drops. Pruning obtains around 40% accuracy, while Channel Quantization achieves only
12% accuracy for 97% compression rate, similar to the benchmark done on MNIST. Binarization
performs similar to Channel Quantization because without retraining, the weights are not properly
adapted to larger datasets. Finally, we can see that, as for MNIST, the Deep Compression methods
still perform well at the very high compression rate of 97%, even with an accuracy drop of 11%
compared to LeNet5 (53.5% accuracy Deep Compressed model, 64.5% LeNet5).

Figure 4.8: Accuracy comparison between pruning, quantization, deep compression and binariza-
tion using Lenet5 on CIFAR-10.

Resnet50 on CIFAR-10. Results on a large scale network like Resnet50 on CIFAR-10 are shown
in Figure 4.9. They are similar to the results previously presented. The drop in accuracy is less
significant for Pruning and Deep Compression. Pruning obtains 75% accuracy while achieving
96% compression rate. The best results are again obtained using Deep Compression with 99%
compression rate and only 5% drop in accuracy. Channel Quantization gives good results up to
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88% of compression rate and past this point, the accuracy drops fast. Binarization gives 10%
accuracy, the same result as Channel Quantization.

Figure 4.9: Accuracy comparison between pruning, quantization, deep compression and binariza-
tion using ResNet50 on CIFAR-10.

4.3 Conclusion and Perspectives

Binarization is limited in its performance due to the absence of retraining, which is out of the
scope of this thesis. Channel Quantization, Pruning and Deep Compression methods perform
well and reduce accuracy loss even when we compress the model at a higher rate. Regarding the
benchmarks presented, the Deep Compression method is the one to favor, but both pruning and
Deep Compression require retraining the models. Without retraining, the performance of these
methods would not be acceptable. We recall that we are looking for methods which can be used
on the MPPA. The MPPA is a proceesor which can be used for deep learning inference tasks.
Training is not supported.

Given the context of our work, for the rest of the thesis, we will focus on quantization. Given
that layer quantization is only 1% less performant than channel quantization, we will focus on the
former method.





CHAPTER 5
Uniform vs non-uniform
quantization for storage

purposes
This chapter proposes a numerical study on uniform and non-uniform quantization ap-
plied to deep neural networks. We are looking to study the rate-distortion trade-off
achieved when quantizing the weights of the networks in order to reduce the memory
storage used for the parameters. The second goal of this chapter is to see how the lay-
ers react to compression (i.e. which layers we should compress more and which should
not). In this chapter, we also introduce data compression and rate-distortion theory.
To evaluate the quantization methods, we use the accuracy and two distortion measures:
Kullback-Leibler divergence and the Mean Squared Error. This helps us to identify which
one of the quantization methods performs better, but also to verify if these measures are
useful in deep network compression.
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This thesis focuses on quantization because it allows us to reduce the size of previously trained
networks without relying on special libraries. We identify two trends in quantization: low preci-
sion quantization, often used in the industrial initiative, and classical quantization. This chapter
focuses on the second approach, while the next chapter will focus on a form of low precision
quantization.

Here, we evaluate inference performance under two types of scalar quantization uniform and non-
uniform. Non-uniform quantization is more efficient, but it requires managing a look-up table. On
the other hand, uniform quantization is easier to use, but it is expected to be less efficient. This
is why we compare the two quantization methods, and we apply them to the parameters of each
layer of pre-trained neural networks.

The performance of the quantizers is evaluated by looking at the accuracy of the classification
and two other types of distortions. The first distortion concerns the weights of the network, while
the second concerns the statistical distribution at the output of the CNN. We wish to highlight the
behavior of the two and which of the two is linked to the accuracy. Last but not least, we study the
impact of the error for each layer of the network. The objective of this work is to answer several
questions. How can we choose the best method to apply to reduce the complexity of a neural
network without losing performance? How can we know if a network has been well compressed?
In particular, what are the appropriate evaluation criteria?

This chapter is organized as follows. Section 5.1 introduces data compression and the scalar quan-
tization methods used to compress neural networks. Section 5.2 introduces rate distortion theory.
Section 5.3 describes the numerical experiments performed. Finally, Section 5.4 concludes the
chapter.

5.1 Data Compression

5.1.1 General compression workflow

Compression is an application of information theory that originated with Shannon [Shannon,
1948]. The goal of data compression is to represent information in a more compact form. Com-
pressed data uses a reduced number of bits, so it occupies less space than the original data.

Generally, compression workflow (see Figure 5.1) is formed by 3 main stages: transformation,
quantization and coding. There can also be a stage of pre-processing to make the compression
more effective.
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Figure 5.1: Compression workflow.

The interest of applying a compression algorithm to a neural network is to be able to reproduce
its classification qualities as well as possible with a network that is less expensive in terms of
time, memory space and energy consumption. More precisely, it is a question of representing the
function fθ by a function fθ̂ where θ̂ = Q(θ) is a compressed form of θ. We recall the vector of
parameters θ:

θ = (θ1, . . . ,θK+1), where θk = (Wk,bk). (5.1)

The compression function Q : R|θ| → A, where A is a finite discrete set, reduces the representa-
tion size of the vector θ.

5.1.2 Scalar quantization

Let w be a component of θ a parameter of a trained neural network. We define QtR a scalar
quantizer of size L = 2R where R is the number of quantization bits and t ∈ {U,NU} in-
dicates the type of quantization (U for Uniform and NU for Non-Uniform). The quantizer QtR
transforms a continuous value of the interval D = [θmin,θmax] ⊂ R into a discrete value
A = {a1, a2, ..., aR} ⊂ R. The quantizer partitions the interval D into several subintervals
Di = [di, di+1[, for 1 ≤ i ≤ L, such that

ŵ = QtR(w) = ai if w ∈ [di, di+1[, (5.2)

where di, for 1 ≤ i ≤ L+ 1, are the quantization thresholds.

The quantization step qi = di+1−di corresponds to the width of the interval Di. The quantization
introduces an error, called distortion, defined by : ∆ = Qtb(w)− w.

5.1.3 Uniform quantization

The uniform quantizer is defined by a constant step q = q1 = . . . = qL and quantization levels ai,
which represent the center points of the quantized intervals. To quantize the parameters θk of the
kth layer with R bits, we compute the quantization step q as follows:

q = max(θk)−min(θk)
2R . (5.3)

Then, for each value w ∈ θk, we compute the index iw:
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iw =
⌊
w −min(θk)

q

⌋
, (5.4)

where b·c denotes the floor function.
If we know iw, we can easily deduce the quantized value ŵ:

ŵ = QUR(w) = qi iw + q

2 + min(θk), ∀w ∈ θk. (5.5)

A visual representation of how uniform quantization works is given in 5.2.

Figure 5.2: Representation of uniform quantization.

The advantage of this method is that it requires only one multiplication, therefore, it is more
suitable for computer hardware that cannot access parallel mapping tables. Uniform quantization
is optimal when R is large and if variable-rate encoding is used.

5.1.4 Non-uniform Quantization

Even though, uniform quantization is simpler, it can be non-optimal. A non-uniform quantization
algorithm can be tailored to the specific distribution of the input data.

The non-uniform algorithm is an iterative algorithm that aims at building a quantization dictionary,
or codebook, in order to minimize the mean squared error between the original and compressed
data. Non-uniform quantization, denoted with QNUR , is defined by intervals Di of varying size and
the centroids of these intervals which are the quantization levels ai.

It is used on a training set E = {w1, . . . , wM} composed of M values to quantize, where M is
a rather large integer. The computation is performed in an iterative way, verifying successively
two optimality conditions. If we know the quantization levels ai, we apply the nearest neighbor
condition to compute the best intervals Di for the training set, as shown in (5.6). After choosing
the intervals, we can compute the best quantization level ai by computing the centroid of Di (5.7).
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Let us denote (m) and (m+ 1) the iterations m and m+ 1, and |D(m+1)
i | the cardinal of D(m+1)

i

at iteration m+ 1. The number of partitions L is fixed. The algorithm is given by

d
(m+1)
i =

a
(m)
i+1 + a

(m)
i

2 , ∀1 ≤ i ≤ L, (5.6)

a
(m+1)
i = 1∣∣∣D(m+1)

i

∣∣∣
∑

wi∈D
(m+1)
i

wi, ∀1 ≤ i ≤ L. (5.7)

The standard algorithm used for non-uniform quantization was first described by Lloyd, and it is
called the Lloyd algorithm [Lloyd, 1982]. Figure 5.3 schematizes the way the algorithm works.

Figure 5.3: Lloyd’s algorithm (left) and Iteration (right) [Gersho and Gray, 1991].

As mentioned before, the interest of such a quantization is that it adapts to the distribution of the
data. However, the algorithm spends a lot of time calculating the distances between the centroids
and the other points.

A visual representation of non-uniform quantization side by side to uniform quantization is given
in Figure 5.4. The two methods are applied to the weights of an FC layer. We display the his-
togram of the weights which has a Gaussian shape, how the weights are partitioned and where the
quantization levels are placed. Non-uniform quantization outputs quantization levels closer to the
peak of the Gaussian curve because the density of weights is higher in that region.
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Figure 5.4: Uniform quantization vs non-uniform quantization applied to the weights of an FC
layer.

5.2 Rate distortion theory

5.2.1 Background on rate-distortion theory

Considering the weights as the source of the compression algorithm. Let W1,W2, . . . ,Wn i.i.d.
∼ p(w), w ∈ W . We recall the compressed value of w is represented by ŵ ∈ Ŵ .

Definition 5.2.1. A distortion measure is a mapping

d :W × Ŵ → R+ (5.8)

that measures the non-negative "cost" d(w, ŵ) of representing the weight w by ŵ.

The most popular distortion measure on a symbol-to-symbol basis is the squared error distortion:

d(w, ŵ) = (w − ŵ)2. (5.9)

The extension to sequences is called the Mean Squared Error (MSE). Given the weights for the
k-th layer of a network denoted with Wk and their compressed version Ŵk, the MSE is defined
as:

dMSE(Wk,Ŵk) = 1
|Wk|

∑
w∈Wk

(w − ŵ)2, (5.10)

where |Wk| is the total number of weights.

In data compression, we generally speak of encoding and decoding functions, but this is not the
case for DNN compression. In Deep Learning compression, we are not interested in decoding, or
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optimally reconstructing the weights’ values. The goal is to use the compressed weights without
changing the accuracy of the model. In this case, the distortion measure is defined on the output
of the network. The distance between the output of the initial network y and the output of the
compressed network ŷ can be measured by using Kullback-Leibler divergence (KL) [Kullback
and Leibler, 1951]:

dKL(y, ŷ) =
C∑
c=1

yc log
(
yc
ŷc

)
. (5.11)

The rate-distortion function describes the minimum transmission bit-rateR for a given distortion
D and a source W. We recall the theorem given by [Cover and Thomas, 2006, p. 301]:

Theorem 5.2.1. The rate distortion function for an i.i.d random variable W with distortion mea-
sure d(w, ŵ) is defined as

R(D) = R(I)(D) = min
p(ŵ|w):E[d(W,Ŵ )]≤D

I(W, Ŵ ), (5.12)

where p(ŵ|w) is the conditional distribution for which the joint distribution p(w, ŵ) =
p(w)p(ŵ|w) satisfies the expected distortion constraint and I(W, Ŵ ) is the mutual informa-
tion between the original source and the compressed one.

Calculating this optimum bit-rate is not relevant for us because we are not currently interested in
an optimal quantizer that might be too complex to implement with a neural network. In [Nokleby
et al., 2016], the rate-distortion theory is used to analyze the approximation of the posterior func-
tion involved in the Bayes classifier, not the accuracy loss. This theory is also used in [Gao et al.,
2019] to analyze the Kullback-Leibler (KL) divergence between the classifier outputs before and
after the compression.

5.2.2 Rate distortion trade-off

In this chapter, we propose a simple compression strategy for the entire neural network. More
precisely, we aim at approximating the function fθ by a function fθ̂, where θ̂ = QtR(θ) is a
compressed form of θ. We propose to use a different quantizer per layer. We denote QtRk

the
quantizer applied to the parameters of the fk layer where 1 ≤ k ≤ K + 1. The quantized layer f̂k
is written as:

f̂k(x) = σk(QtRk
(Wk)fk−1(x) +QtRk

(bk)). (5.13)

We are searching for a sequence (QtR1
, ..., QtRL+1

) to quantize the entire network, in order to
find a trade-off between the memory size occupied by the network weights and the quality of
the classification. The accuracy of the network (2.15) should not change (less than 1% loss). We
are interested in two complementary distortion measures: the Mean Squared Error (5.10) and the
Kullback-Leibler divergence (KL) (5.11).
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Figure 5.5: Architecture of the CNN.

5.3 Experiments

5.3.1 CNN on MNIST

For our first experiments, we first use a CNN network trained on the dataset MNIST. A description
of the MNIST dataset is given in the subsection 2.2.1. Figure 5.5 shows the network’s architecture
and Table 5.1 summarizes the information about the layers. This network has a similar architecture
to LeNet-5 [LeCun et al., 1998], but with fewer layers, only two convolutional layers and one
pooling layer. The size of the inputs and outputs, the number of parameters of each layer and the
memory size used are displayed. The pooling layer does not appear in the table because it cannot
be quantized. The variables θ1, θ2, θ3, θ4 represent the parameters and group the weights Wk

and the biases bk of each layer as defined in (5.1). In practice, the values of θ are represented in
FP32 format.

Layers Input Output Parameters Size
CONV 1 28x28x1 26x26x32 320 1.28 KB
CONV 2 26x26x32 24x24x64 18,496 73.9 KB
FC 1 9,216 128 1,179,776 4.71 MB
FC 2 128 10 1,290 5.16 KB
Total - - 1,199,882 4.79 MB

Table 5.1: Parameters of the CNN trained on MNIST.

For each experiment, the compression ratio τ is calculated

τ = Original size
Size after compression

. (5.14)

The accuracy (2.15) is computed on the test dataset, the MSE (5.10) is computed on the parameters
and the KL divergence (5.11) is computed on the output of the network. The accuracy of the non-
compressed model for the test dataset is 99.16%.

Layer by layer quantization. Quantization is applied to a single isolated layer, and the other
layers remain configured with the initial uncompressed parameters. We are interested in the re-
sults obtained for quantization with 1 to 6 bits, because from 7 to 32 bits the loss of accuracy is
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negligible. Figure 5.6 shows the obtained accuracy, Figure 5.7 the MSE and Figure 5.8 the KL
divergence.

Figure 5.6: Accuracy: CONV 1 (top left), CONV 2 (top right), FC 1 (bottom left), FC 2 (bottom
right).

At the top left of each figure, the quantization results for CONV 1 are displayed. For quantization
between 4 and 6 bits, the loss in performance is very small. Starting from 3 bits, the accuracy
of the network decreases slightly by 0.18% for QU . With 2 bits, the accuracy drops for both
methods by about 0.70%. For a 1 bit quantization, the network loses 5% of accuracy. The KL
divergence shows a small loss of information for 2 to 6 bits. With 1 bit, the information loss ofQU

is significant compared to QNU , but it does not impact the accuracy.
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Figure 5.7: MSE: CONV 1 (top left), CONV 2 (top right), FC 1 (bottom left), FC 2 (bottom right).

The second convolution layer is shown at the top right of each figure. We notice that it is less
sensitive to quantization than the first layer. The drop in accuracy is insignificant. We lose less
than 1% in both cases of compression. The divergence shows a greater loss of information for
QNU , while the distortion indicates a greater error for QU .



64 CHAPITRE 5 — Uniform vs non-uniform quantization for storage purposes

Figure 5.8: Divergence KL: CONV 1 (top left), CONV 2 (top right), FC 1 (bottom left), FC 2
(bottom right).

In the case of FC layers, the loss is even smaller. FC 1, the largest layer in the network with
1 × 106 parameters, is shown at the bottom left in the figures. With 1 bit, the accuracy drops
only by 0.10%-0.11%. The divergence is up to 40x smaller and the distortion reduced by 4x. The
last layer, FC 2, placed at the bottom right, has fewer parameters. Again, we see that the loss is
negligible. In the case of QNU , we lose 0.02% accuracy and in the case of QU we get almost the
same accuracy as for FC 1. The distortion and divergence also indicate a very small error and
information loss.

There are cases where quantization improves network accuracy. This may indicate a lack of
training. During training, when we minimize the loss function, we may fall into a local minimum.
It is assumed that quantization plays a role here and that by adding errors, one effectively arrives
at a smaller value of the cost function.

We find that non-uniform quantization performs better because it fits the data distribution better
overall. However, there are some cases where uniform quantization performs better. Overall, the
KL divergence and MSE are greater for the first layer than for the others. The role of the first
layer is to build a good base of descriptors for the whole network. It is therefore more sensitive to
quantization.

Table 5.2 contains compression statistics for each layer: the method used, the accuracy after com-
pression, the number of quantization bits, the size of the layer after compression, the compression
ratio τi of the layer and the compression ratio τ of the whole network. For each layer and for each
compression method, we indicate only one result, the one that seems to have the best compression
ratio for an almost unchanged level of accuracy.
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Layer Method ACC Size τi τ

CONV 1
QU3 98.89 % 132B 9.69 1.0001
QNU3 99.11 % 150B 8.53 1.0001

CONV 2
QU3 99.00 % 6.94KB 10.64 1.014
QNU2 99.16 % 4.64KB 15.92 1.014

FC 1
QU1 99.05 % 147.48KB 31.93 21.025
QNU1 99.06 % 147.47KB 31.93 21.026

FC 2
QU1 98.99 % 173B 29.82 1.001
QNU1 99.14 % 169B 30.53 1.001

Table 5.2: Statistics of compression for each layer.

Figure 5.9: Accuracy, Div. KL and MSE for one quantizer for the entire network.

Quantizing the whole network. The second evaluation was done using the same quantizer QtR
for the whole network. In Figure 5.9, we see that the network reacts differently for the two quanti-
zation methods. Interestingly, in the case of QNU , the accuracy of the network goes down to 17%,
whileQU loses at most 13% of accuracy. Even if the MSE distortion is obviously much greater for
QU , the loss of information is significant for QNU at the output of the network. KL Divergence
has a similar shape to the accuracy. However, we notice a significant increase in the KL value for
QNU3 which is not equivalent to the real decrease in accuracy noticed in the accuracy plot.

Adaptive quantization of the entire network. The last evaluation is done on the whole network
by applying a different quantizer (same type but different number of bits) for each layer. In the
previous experiments, we observed that for 5 or 6 bits, the error is negligible. For this evaluation
summarized in Table 3, we have therefore applied a quantization between 1 and 4 bits for each
layer. We tested all possible combinations and extracted 2 cases for each method: the first case
gives the best accuracy and the second case presents a good trade-off between accuracy and com-
pression rate. The results obtained are displayed in Table 5.3. Uniform quantization is still quite
efficient compared to non-uniform quantization.
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Method
R1 R2 R3 R4 ACC τ

CONV 1 CONV 2 FC 1 FC 2

QURk

4 3 3 4 99.18% 10.66
3 2 2 2 98.80% 16

QNURk

4 4 4 3 99.16% 8
4 2 2 2 98.33% 15.98

Table 5.3: Compression statistics for the network, with quantizers adapted to each layer.

5.3.2 VGG on CIFAR-100

We validate our results on a larger scale network, VGG15 on CIFAR-100 [Krizhevsky et al., 2009].
The architecture of VGG is similar to the architecture previously presented, but with 13 CONV
layers and 2 FC layers. The CONV layers are grouped into blocks of 2 or 3 layers followed by a
Max Pooling layer. The schema is given in Figure 5.10.

Figure 5.10: Architecture of VGG.

We compressed each of the layers of the network using a quantizer QtR, with R between 1 and
8. Figures 5.11 and 5.12 show the results obtained for the first and last layer. We put side by side
the accuracy, the KL divergence and the MSE. For the first layer, we notice that the quantization
methods have different behaviors. While both quantization methods at 1 or 2 bits give the same
poor accuracy, the uniform quantization is more stable than the non-uniform quantization for the
other rates. When looking at the divergence or the MSE, the unstable phenomenon cannot be seen.
Going on to the last layer, the accuracy drop is bigger for the non-uniform quantization at almost
every bit rate. Again, this behavior cannot be noticed when looking at the divergence or the MSE.
In the case of uniform quantization, the KL divergence has a steep growth from 4 bits to 1.

Compressing the first layer has a big impact on the way the network predicts, moving through the
network, we observe the impact is reduced, which makes us believe that the feature representation
given by the first layers are more important, and as the networks get deeper, they become more
robust.
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Figure 5.11: Accuracy, Div. KL and MSE for the first layer of VGG15

Figure 5.12: Accuracy, Div. KL and MSE for the last layer of VGG15

Given that for a small network, compressing with the same quantizer cannot give good results, we
move on to an adaptive approach. We decided not to do all the combinations of quantizers since
this would be too time-consuming. We chose a rate R between 1 and 8 and defined two strategies.
First, we took the Best Acc/layer which means that we chose the smallest bit rate that gives us
the best accuracy. The second strategy we call Rate-Acc trade-off and, in this case, we chose the
smallest bit rate which allows an accuracy drop of less than 1% per layer which leads to 4-5% drop
in accuracy. The results are shown in Table 5.4. Overall, non-uniform quantization gives a better
compression rate in both strategies. However, in the case of the first strategy, uniform quantization
has the smallest accuracy drop (less than 1%).

Method Strategy Acc Div. KL MSE τ

Original - 70.40% - - -

QURk

Best Acc/layer 69.88% 2.86 0.005 5.54
Rate-Acc trade-off 66.43% 6.59 0.007 7.83

QNURk

Best Acc/layer 67.18% 0.53 0.001 7
Rate-Acc trade-off 65.18% 0.82 0.002 13.45

Table 5.4: Compression statistics for VGG15.
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5.4 Conclusions and Perspectives

The role of this chapter is fundamental for both theoretical research and development aspects.
We have compared two scalar quantization methods, uniform and non-uniform, with a purpose
to reduce memory storage of parameters. This comparison provides us with some interesting
general observations. First, networks are robust to quantization even for really low bit rates. Our
experiments show that quantization works better if it is layer adapted. Uniform quantization is as
efficient as non-uniform quantization and easy to implement. The first layers are very sensitive to
quantization error, while the last layers of the network result in insignificant losses.

An important observation would be that the KL divergence and MSE are not good enough distor-
tion measures to predict performance degradation in the case of inference with compressed neural
networks. A different distortion measure should then be used, which focuses explicitly only on
the decision made by the network. We will exploit this idea in Chapter 7 where we introduce a
new distortion measure based on the Bayes risk and will also focus on the theoretical analysis of
the observed phenomena.

From an industrial perspective, we can conclude that uniform quantization is a good fit for deep
neural networks. For future developments, we plan on implementing uniform quantization tech-
niques on parameters in order to map FP32 numbers to INT8. Moreover, Kalray’s industrial initia-
tive focuses on finding innovative techniques which can leverage the capabilities of the manycore
processor for Deep Learning applications. To respond to the industrial stakes, alternative tech-
niques of low precision quantization exist and will be studied in the next chapter.
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In this chapter, we experiment with reduced floating-point representations by considering
alternatives to the standard IEEE binary32 floating-point format: Bfloat16, Posit8 and
MSFP8. Our experiments show that the Bfloat16 format gives better accuracy than the
classic FP16, and that two Posit8 formats can be used without significantly modifying
the accuracy of conventional convolutional neural networks. Finally, our results indicate
that MSFP8 is not a suitable format for the neural network types we have considered.
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Deep learning networks normally rely on standard binary32 IEEE 754 floating-point (FP32) arith-
metic for both training and inference. Reducing the footprint of neural networks by using low pre-
cision quantization on parameters has been highly studied and deployed [Berthelier et al., 2021].
We recall from Chapter 3 that many well-known frameworks [Krishnamoorthi, 2018, Borisyuk
et al., 2018, Nvidia, 2018] support the rounding of FP32 parameters to lower precision formats,
such as half precision standard binary16 IEEE 754 floating-point (FP16) [Micikevicius et al.,
2018]. Some works even indicate that FP16 as a replacement for FP32 is not a good fit for
Deep Learning applications [Ho and Wong, 2017]. Further precision reduction is supported, by
using uniform quantization to map the FP32 numbers to integers on 8 bits (INT8) [Jacob et al.,
2018, Nvidia, 2017].

6.1 Industrial stakes

We recall from the introduction that Kalray provides a tool called KaNN which is used to execute
neural networks on Kalray’s processor. Figure 6.1 showcases the processing steps of KaNN. Com-
pression is applied to the pre-trained weights in the pre-processing step. During the runtime, the
compressed weights are transferred to the MPPA and on to the clusters. Finally, the weights would
be decompressed just before computations. The motivation for this work comes from the need to
find new and innovative ways to compress the pre-trained weights in the pre-processing step and
reduce the number of bits. By reducing the number of bits, not only the storage requirements will
be reduced, but also the transfer time will be lowered.

Figure 6.1: KaNN processing steps. A trained neural network and the input source are being pre-
processed. The pre-processing steps include compressing the pre-trained weights and resizing the
inputs. During KaNN’s runtime, the weights are transferred to the clusters on the MPPA and then
they are decompressed just before the computation step. When the runtime is finalized, the output
goes to the post-processing step, where it is resized if needed.

In this chapter, we follow alternative approaches to FP32 parameter compression by rounding
them to other formats. From Chapter 5, it is clear that in Deep Learning networks, each layer has
its own precision and dynamic range requirements. Therefore, we are wondering if there are other
formats which can fit all the layers’ needs. Custom formats from mainstream AI practitioners,
such as Brain Floating Point Format [Dean et al., 2012] and Microsoft Floating Point [Chung
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et al., 2018] and others [Köster et al., 2017, Paresh Kharya, 2020] aim to replace FP32 for both
training and inference.

Another alternative floating-point format is called Posit [Gustafson and Yonemoto, 2017] which
belongs to the family of Universal numbers (Unum) [Tichy, 2016]. Posits are considered a
hardware-friendly version of Unum. We have identified Posits as a good candidate for Deep Learn-
ing applications because of their flexibility in choosing the dynamic range and precision of the
numbers. Despite using a reduced number of bits, Posits are configurable and can fit different pre-
cision or dynamic range requirements. Posit arithmetic is already used for inference in [Murillo
et al., 2020b, Lu et al., 2020]. However, as previously mentioned, we are not interested in comput-
ing directly using the Posit format. Furthermore, some Posit operators have already been proposed
in [Jaiswal and So, 2019, Xiao et al., 2020, Murillo et al., 2020a]. These operators include a de-
compressing component which transforms a number from a Posit format into a representation
similar to a floating-point number of non-standard size. We take inspiration from these works.

Figure 6.2: Runtime steps. The weights are compressed during pre-processing. At runtime, the
compressed weights are transferred from the external memory of the platform to internal mem-
ory of each cluster. After the transfer, they are decompressed and the computation is performed.
Finally, the output given by the computation is transferred to the next cluster

We intend to implement a decompressor from Posit using 8 bits (Posit8) to FP16 in order to
leverage the capabilities of existing operators on the manycore processor that efficiently performs
FP16 matrix multiply-accumulate operations for Deep Learning inference. As shown in Figure
6.2, this decompression step would be added during KaNN’s runtime. Extending the Kalray
MPPA processing element with instructions that decompress Posit8 numbers to FP16 numbers
enables to reduce further the footprint of the neural network parameters with an acceptable loss of
accuracy or precision.

The lack of results on the performance of each format motivates us to investigate some of these
alternative floating-point formats for storing the network parameters, while still doing the opera-
tions using FP32 arithmetic. We put to the test three alternative formats: BF16, MSFP8 and Posit8
representations, comparing their performances to FP32 and FP16 on classification and detection
neural networks. The goals are to highlight which arithmetic representations are the most suited
to these types of networks, and to find if one can reasonably store neural network weights in only
8 bits without retraining the network.

The chapter is organized as follows. In Section 6.2, we present all the data formats including
the standard floating-point. For each format we give the state-of-the-art and a formal definition.
Section 6.3 gives details on the method of compression. We benchmark the correctness of results
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for different types of deep neural networks in which such formats are used. Section 6.4 describes
the experiments and the results, while conclusions are presented in Section 6.5.

6.2 Floating-point formats in Deep Learning

6.2.1 IEEE 754 floating-point formats

For a long time, Deep Learning networks computations have used the standard FP32 arithmetic.
Both weights and activations are represented in FP32 by default. A recent trend is to use the
binary16 floating-point standard format (FP16) instead of FP32, since FP16 can be used for faster
inference and training [TensorFlow Lite, 2021], leading to significant savings in memory footprint
and to an increase in performance/efficiency even during training [Micikevicius et al., 2018].

A floating-point number can be expressed by using a triplet (s,m, e) so that:

x = (−1)s · βe−bias ·m, (6.1)

where β is the radix of the floating-point system, s ∈ {0, 1} is the sign used to differentiate
negative from positive numbers, m = m0m1...mp−1 is the mantissa with a leading hidden bit set
to 1, p is the precision and e ∈ [emin, emax] is the exponent. The use of a bias allows to obtain a
negative exponent in order to represent bigger and smaller numbers.

The IEEE 754 standard describes binary formats (β = 2) and decimal formats (β = 10). Binary
formats such as FP32 and FP16 are often used in neural networks. Let us denote the representation
of x in a format F with xF , so we can write xFP32 and xFP16 as follows:

xFP32 = (−1)s · 2e−127 ·m, with p = 23, (6.2)

xFP16 = (−1)s · 2e−15 ·m, with p = 10. (6.3)

A complete formal definition of standard floating-point is given in [Muller et al., 2018].

6.2.2 Brain floating-point format

An alternative 16-bit format to the standard FP32 and FP16 was developed by Google and is called
Brain floating-point, or Bfloat16 (BF16). It was first introduced in 2012 as part of a distributed
training framework DistBelief [Dean et al., 2012] as a low-precision storage format used to reduce
communication costs between nodes.

BF16 is similar to the standard IEEE 754. The BF16 format is a 16-bit truncated version of FP32
with the mantissa reduced to 7 bits [Intel, 2018]. A number represented with this data type can be
written as:

xBF16 = (−1)s · 2e−127 ·m, with p = 7. (6.4)

This format is very attractive for Deep Learning training because it provides the same dynamic
range as FP32 for half the bit-width, while the conversion from/to FP32 is straightforward. Main-
stream processors now compute using this format [Lutz, 2019, Abadi et al., 2016] and a number of
works related to it have been recently published [Kalamkar et al., 2019, Burgess et al., 2019]. One
should note that the BF16 format is actually only used for multiplication operands, whose results
are still accumulated in FP32.
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6.2.3 Microsoft floating-point 8

Microsoft introduced a data format called MSFP8 [Chung et al., 2018]. This alternative format, is
also similar to the floating-point system. It is equivalent to FP16 truncated to 8 bits.
This data type has 1 bit sign, a 5-bit exponent and a 2-bit mantissa. It is represented as:

xMSFP8 = (−1)s · 2e−15 ·m, with p = 2. (6.5)

MSFP8 is the equivalent of BF16 for FP16 and has the same advantages as BF16 but with a
smaller size and more limited precision.

Microsoft also proposes some variations of this format. In [Chung et al., 2018], a variation of this
format, MSFP9, with 3 bits of mantissa has also been presented. Recurrent neural networks are
specially targeted by these formats. Later on, they have made the format even more configurable,
using up to 11 bits. Even though these highly configurable formats are said to achieve state-of-the-
art performance, they are developed for FPGAs. In our case, configurable formats are not easy to
develop and use on our processors. Therefore, we will only look at MSFP8.

6.2.4 Posit

Another family of reduced bit-width floating-point formats is obtained by choosing suitable pa-
rameters of the Posit representation introduced in [Gustafson and Yonemoto, 2017].

A Posit<n,es> representation is parametrized by n, the total number of bits, and es, the number
of exponent bits. The main difference with an IEEE 754 binary floating-point representation is
the regime field, which has a dynamic width and encodes a power of 22es

in unary numeral. De
Dinechin et al. [de Dinechin et al., 2019] discuss the advantages and disadvantages of Posit repre-
sentations. They advise using Posit as a storage-only format in order to benefit from the compact
encoding, while still relying on standard IEEE binary floating-point arithmetic for numerical
stability guarantees.

Recent works have used Posit representations to efficiently implement neural network inference
in hardware [Cococcioni et al., 2020a]. Deep Positron [Carmichael et al., 2019] is a DNN archi-
tecture adapted for FPGA which uses an exact-multiply-and-accumulate (EMAC) algorithm for
acceleration of ultra low-precision arithmetic (≤ 8 bits). Their results show that Posit<8,1> out-
performs classic fixed-point and floating-point formats. However, only results for small datasets
have been presented. Another approach is to use Posit<8,1> on a log domain for the multiplicands,
while converting to a linear domain for the accumulations [Johnson, 2018]. Again, the large dy-
namic range that motivates using the Posit representations in machine learning inference requires
high-precision or exact accumulations.

Unlike IEEE numbers and the previous alternative formats, Posits have 4 elements: sign, regime,
exponent and mantissa. A Posit<n, es> is defined only by n, the total number of bits and es, the
maximum number of bits dedicated to the exponent. The components of a Posit have dynamic
lengths and are determined according to their priorities. Firstly, bits are assigned to the sign and
the regime. If some bits remain, they are assigned to the exponent and, lastly, to the mantissa. The
regime is a run-length encode signed value and can be seen as a different type of exponent. Table
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6.1 has been extracted from [Carmichael et al., 2019] and shows how the regime is interpreted.

Binary 0001 001 01 10 110 1110
Regime value -3 -2 -1 0 1 2

Table 6.1: Regime interpretation.

The numerical value of a Posit number is given by (6.6) where k is the regime value, e is the
exponent and m is the mantissa:

xPosit<n,es> = (−1)s · (22es)k · 2e ·m. (6.6)

The Posit standard defines 4 formats: Posit<8,0>, Posit<16,1>, Posit<32,2> and Posit<64,4>. In
our work, we are only interested in the 8-bit Posit. Since Posit is highly configurable and new,
we would like to test different exponent sizes. In addition to es = 0, exponent sizes (es) of 1, 2,
3 are reported useful to compress image classification and object detection network parameters
[Carmichael et al., 2019, Cococcioni et al., 2020b].

6.2.5 Comparison between data formats

Figure 6.3 gives a visual representation of the formats previously presented.
In order to choose the best arithmetic representation for a number x, one needs to consider two
aspects: dynamic range and precision. The dynamic range is the range of numbers that can be
represented by a particular data type. As written in (6.7), it is given by the decimal logarithm of
the ratio between the largest representable number to the smallest one:

DR = log10

(
22es−1

22−2es−1−p

)
, (6.7)

where p is the size of the mantissa.

Knowing the total size and exponent size means that we can determine the dynamic range of a
given format. Table 6.2 summarizes the components of the formats while also presenting their
dynamic range.

Format FP32 FP16 BF16 MSFP8 Posit<8,0> Posit<8,1> Posit<8,2> Posit<8,3>
Exponent 8 5 8 5 0 1 2 3
Mantissa 23 10 7 2 5 4 3 2
Regime - - - - 2-7 2-7 2-7 2-7
Dynamic
range

83.38 12.04 78.57 9.63 3.61 7.22 14.45 28.89

Table 6.2: Comparison of components and dynamic ranges for data formats. Note that the com-
ponents of Posits have dynamic length. The indicated values of exponent and mantissa for Posit
represent the maximum number of bits the components can have. The regime has priority over the
bits.
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Figure 6.3: Visual comparison of formats. Standard formats FP32 and FP16 are shown on top.
BF16 has the same size as FP16, but the same exponent size as FP32. MSFP8 has a 5-bit exponent
size, the same as FP16, but only a 2-bit mantissa. Posits have variable sized fields. In this figure,
we illustrate the composition of the Posit and the priority of each component: regime, exponent
and the fraction (or mantissa).

The 32bit IEEE 754 standard representation has a very wide dynamic range, much larger than
needed for DNNs. The alternative BF16 preserves almost the same dynamic range as FP32, while
FP16 has a much smaller one. We note that the latter still has a dynamic range which generally is
enough for most DNNs. Even if MSFP8 has almost the same dynamic range as FP16, it comes with
a very small precision. Concerning the Posit, one of its advantages is the possibility of choosing
es to adjust the trade-off between the dynamic range and precision as to best meet the needs of
any given application. This stems from the fact that an increase of the es also implies, among
others, a decrease in the number of bits available for the fractional part, which in turn decreases
the precision. A visual representation of Posit<8,es>, with es from 0 to 3 is provided in Figure 6.4.
The range gets bigger as es increases. It is noticeable that the format is highly dense around 0.
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Figure 6.4: Histogram of Posit<8,es> values. Parameter es is between 0 and 3. The red pikes
indicate the true representative values. The blue curve displays the density.

6.3 Parameter Compression

From the work presented in Chapter 3, we already know that deep neural networks have high
storage requirements and these come primarily from convolutional and fully connected layers (i.e.
VGG16 with 138M parameters which requires 552MB to store them in FP32).

However, for more recent networks, a small percentage of the parameters come from Batch Nor-
malization (BN) layers. An example of network with BN layers is ResNet50 [He et al., 2016]. It
has about 25M parameters from which only 106K come from BN layers. Yet, these weights can
have a high impact on a model’s performance because of their role in adjusting and scaling inputs.
In Appendix B.1, we provide a table containing the number of weights, biases and the ranges of
parameters for 7 well-known networks.

All the following experiments were carried out on 13 classification networks and 1 object detec-
tion network. Different evaluation criteria were studied: Accuracy Top 1 (ACC-1), Accuracy Top
5 (ACC-5) for classification and Mean Average Precision (mAP) for detection. Note that Acc-1
is the conventional accuracy, where the class with the highest probability is the model’s answer
and has to match the correct class. ACC-5 means that any the correct answer must be in the top
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5 highest probability classes in order to be considered correct. We use pre-trained state-of-the-art
neural networks. We compress their parameters in order to reduce the storage size of the networks.
As mentioned in the previous section, alternative data types such as BF16, MSFP8 and Posit can
have properties better suited for the storage of DNNs. We convert parameters from FP32 format
to FP16 and to each of the alternative types, after which we analyze the impact on the results of
different classification and detection networks.

We decide to perform 4 test cases on the validation dataset of ImageNet, to see if the type of
compressed parameters have a big impact on the performance. In the first one, we compress all
the parameters without taking into consideration their type. For our second experiment, we do
not compress the parameters that come from the BN layers. In our third experiment, we do not
compress the biases and for the last experiment, we exclude both the biases and the BN parameters.

In all our experiments, operations are done in FP32. We simulate low precision storage by re-
placing the parameters with the values given by the alternative formats. Conversion from FP32 to
BF16 is done by using a FP32 with the last 16 bits frozen at 0. Similarly, for the MSFP8 we use
a FP16 where the last 8 bits are fixed at 0. Regarding Posit, we notice that small length Posits can
represent numbers with high precision and a wide dynamic range. Thus, in our comparisons, we
chose to evaluate 8-bit Posits with an exponent es which varies between 0 and 3. Note that values
in Posit <8,0> and Posit <8,1> can be represented exactly in FP16. A Posit <8,2> has 8 values of
greater magnitude which are not representable in FP16, but can be represented well by a BF16.
For Posit <8,3>, 46 values are not representable in FP16 and 12 values are not representable in
BF16. A dictionary containing the 255 values given by each Posit type is obtained by relying on
different implementations [Gustafson and Yonemoto, 2017] [Posithub Survey, 2019]. In this case,
the conversion is done by replacing the parameters with the closest values from the dictionary.

The next section presents our results and observations. The benchmark tables are added in the
Appendix B. To simplify the presentation, we include smaller tables, containing only 5 classifica-
tion models: VGG16 [Simonyan and Zisserman, 2015], ResNet50 [He et al., 2016], InceptionV3
[Szegedy et al., 2016], Xception [Chollet, 2017], MobileNetV2 [Howard et al., 2018].

6.4 Experimental Results

6.4.1 Experiment 1

Table 6.3 contains the results obtained for 5 classification networks which have different archi-
tectures. We also display the results obtained with FP32 and FP16 to be able to compare with
the standard floating-point representations. The mAP results for the object detection network
(YOLOV3 [Redmon and Farhadi, 2018]) are shown in Table 6.4.
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DNN Criterion FP32 FP16 BF16 MSFP8 Posit
<8,0> <8,1> <8,2> <8,3>

VGG16
ACC-1 70.6 70.6 70.8 69.7 10.2 70.8 70.5 70
ACC-5 91.3 91.3 91.2 90.3 25.2 91.0 91.0 90

ResNet50
ACC-1 75.7 71.3 75.5 62.8 0.0 27.7 73.2 66
ACC-5 93.3 90.2 93.5 83.8 0.0 91.4 91.4 88.7

InceptionV3
ACC-1 71.1 71.1 71.3 44.8 65.1 69.4 69.7 63.1
ACC-5 89.9 89.9 90.0 67.9 86.1 91.0 89.5 85.3

Xception
ACC-1 73.5 73.4 73.6 37.5 70.6 72.4 72.1 63.8
ACC-5 92.1 92.2 91.7 60.6 90.9 91.4 90.9 86.0

MobileNetV2
ACC-1 71.2 71.2 71 0.2 12.7 12.3 11.0 3.2
ACC-5 90.0 90.0 89.6 0.6 24.7 25.7 24.4 9.9

Table 6.3: Results for classification networks. Conversion is applied to all parameters.

After this first experiment, we can conclude that the network’s accuracy with BF16 compression
always remains close to the accuracy of the original network. Furthermore, compression with BF16
is overall better than compression with FP16. On the other hand, MSFP8 is not suitable for the
types of networks studied. Two bits of precision are evidently not enough. Regarding Posits, results
are promising, but can still be improved. We also need to identify which is the best configuration
for the Posit format. The next experiments will focus only on Posits. The complete Table can be
found in Appendix B.2.

DNN Criterion FP32 FP16 BF16 MSFP8 Posit
<8,0> <8,1> <8,2> <8,3>

YOLO mAP 0.41595 0.41595 0.41585 0.3022 0.4025 0.4155 0.411 0.394

Table 6.4: Results for detection network. Conversion is applied to all parameters.

6.4.2 Experiment 2

The second experiment is carried out for the networks that have batch normalization layers. Here,
we do not compress the parameters of batch normalization layers. The corresponding results are
presented in Table 6.5 and the full table is given in the Appendix B.3. Compression without the
BN parameters considerably reduces the loss in accuracy compared to full parameter compression.
We observe that, to improve the performance of some networks, it is better to avoid compressing
all the parameters that come from BatchNorm (cf ResNet, Inception, Xception).

6.4.3 Experiments 3 and 4

Many techniques [Szymon Migacz, 2017] avoid changing the bias when compressing. We wanted
to see if this also had an impact on the performance of the networks. Our results show that the
biases do not have a big impact on the classification of the tested networks, so not compressing
the biases can improve the accuracy compared to the first and second experiments, but the loss is
still too big (> 1%). The tables are added in Appendix B.4 and B.5.
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DNN Criterion FP32 Posit
<8,0> <8,1> <8,2> <8,3>

ResNet50
ACC-1 75.7 71.3 75.0 75 73.6
ACC-5 93.3 9.8 92.7 92.8 92.6

InceptionV3
ACC-1 71.1 66.0 70.9 70.1 69.9
ACC-5 89.9 86.8 90.7 89.1 88.5

Xception
ACC-1 73.5 72.1 72.6 72.8 68.8
ACC-5 92.1 91.3 91.7 91.3 89.4

MobileNetV2
ACC-1 70.8 25.3 53.5 52.7 39.4
ACC-5 89.8 47.0 76.9 77.3 63.1

Table 6.5: Results for classification networks. Conversion is applied to parameters from convolu-
tions and fully connected layers. Parameters from BN layers are kept in FP32.

We distinguish several representative architectures for classification networks. Traditional classifi-
cation networks such as VGG have biases and do not contain a BatchNorm layer. The compression
of this type of network is lossless (or with negligible loss) for Accuracy Top 1. ResNet50 has
biases and BatchNorm layers. Following the tables added in the appendices, we can see that
compression without bias does not reduce the accuracy loss. On the other hand, the compression
without BatchNorm parameters has a loss of only 0.7% on the accuracy top 1. InceptionV3 and
Xception contain very few biases (1000 in total). Therefore, the biases have little impact on
the classification result. Compression without BatchNorm has reduced loss to 0.2% and 0.9%
which is a big improvement. MobileNet networks also have few biases, as for InceptionV3 and
Xception. The use of Posit8 is not suitable for MobileNet type networks. Without compressing
the BatchNorm layer parameters, accuracy is improved, but the loss remains too high for real
applications.

Observe that for networks containing normalization layers (ResNet50, InceptionV3, Xception
and MobileNetV2), the loss of performance seems more pronounced when using 8-bit formats.
Our experiments show that not compressing the parameters of the Batch Normalization layers
improves the performance of all the networks. However, despite the improvement, MobileNetV2
remains with a significant accuracy loss.

Overall, compression with BF16 gives better results than with FP16. Despite its lower precision,
BF16 seems to be sufficient for neural networks. On the other hand, the reduced precision of
MSFP8 leads to a significant loss of performance for all tested networks. Posit <8,0> and Posit
<8,3> formats do not give good results. For these formats, a non-negligible loss of performance is
observed in both conventional classification (VGG16) and detection networks.

6.5 Conclusion and Perspectives

This chapter experiments with three floating-point representations of parameters for Deep Learn-
ing inference in classification and detection networks. These alternatives to the classic IEEE 754
binary floating-point standard save memory capacity and bandwidth as they fit into 16 bits and 8
bits. However, computations are still carried using standard FP32 arithmetic. BF16 generally has
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a reduced impact on performance, if any, regardless of the considered network. MSFP8 lacks in
precision and does not give acceptable results for the networks we have considered. The Posit8
representation with 1 or 2 exponent bits also tends to perform well with most neural networks,
with slight exceptions. To obtain a satisfying compression of the parameters without accuracy
loss, a good trade-off between the dynamic range and the precision is needed.

For future work, we are interested in simulating an end-to-end low-precision model and compare
our results with state-of-the-art implementations for 8-bit quantization with fixed-point. Further-
more, it would be interesting to perform an adaptive method using Posit8 which enables the
possibility of choosing the format with the right precision and dynamic range for a specific layer.

As mentioned in the beginning of the chapter, the results we have obtained using Posits also
motivate considering the inclusion of a Posit8 to FP16 hardware decompressor in future Kalray
MPPA processor, as the tensor coprocessors of the MPPA processor already include exact FP16 to
FP32 dot product operators.

Figure 6.5: Runtime steps. The weights are compressed during pre-processing. At runtime, the
compressed weights are transferred from the external memory of the platform to internal memory
of each cluster. After the transfer, they are decompressed and the computation is performed. The
output of the computation is compressed and ready to be transferred to the next cluster.

Secondly, we also consider implementing a FP16 to Posit8 compressor that would allow us to do
benchmarks by compressing also the activations between the layers of the networks (see Figure
6.5). This would be useful to reduce the transfer costs and speed up the inference task.





CHAPTER 7
Effect of quantization

error on Softmax Layer
This chapter is the main contribution of this thesis. It proposes a theoretical analysis of
the quantization method applied post-training on the parameters of the softmax layer
of a neural network. We start by presenting the simplified problem statement. We re-
call some preliminaries on neural networks, introduce the Bayes risk and our working
assumptions. Next, we define a new distortion measure that yields insight into the con-
nection between the accuracy loss (distortion) and the number of bits (rate) assuming
uniform quantization. The outline of this chapter is the following. Section 7.1 introduces
the state-of-the-art for sensitivity analysis. Section 7.2 presents some preliminaries on
neural networks, the Bayes risk and our working assumptions. In Section 7.3, we in-
troduce the distortion measure. We analyze and we propose some theoretical tractable
approximations of this distortion in Section 7.4. Furthermore, in Section 7.5 we discuss
the quality of our approximations with numerical simulations and test our distortion on
several neural networks and datasets. Finally, Section 7.6 concludes the chapter.
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Due to significant increase in deep neural networks complexity, numerous approaches with little
to no loss in accuracy have been proposed. Many compression methods have shown promising
results, but how can we choose the best method to reduce the complexity of a neural network
without loss in performance? How do we know if a network has been compressed well? Classical
distortion measures such as MSE and KL Divergence fail to measure the gap between the original
accuracy and the accuracy of the compressed model. Sensitivity analysis can be the answer to
these questions.

7.1 Sensitivity analysis in neural networks

Sensitivity analysis in neural networks refers to understanding how error can affect the network’s
decisions. This error comes from input or weight perturbations which can be caused by noisy
inputs, hardware problems or compression. Sensitivity analysis can be used for different purposes:
optimization, robustness, generalization, decision boundary visualization or compression. As seen
above, with compression techniques, these errors can cause a drop in accuracy. By analyzing
the error propagation, we will better understand how the errors impact the network. The general
structure used in sensitivity analysis is given in Figure 7.1.

Figure 7.1: General structure of sensitivity analysis methods [Yeung et al., 2010].

In the 1990s, a number of studies emerged on sensitivity and perturbation analysis. The approaches
presented in these studies can be classified according to the techniques used. There are papers that
have chosen to start from a geometric technique to study the sensitivity. Other papers have used
statistical methods, and another category identified is that of papers that use analytical approaches.

Piché [Piché, 1995] studies the effects of the error of the weights in an ensemble of Madaline
networks. His method helps to identify important trends caused by weight perturbations rather
than trends associated with a specific network. In his approach, Piché uses a statistical method
to analyze the errors. He assumed that the inputs and weights are independent and centered and
the errors are small. Piché defined the expression for sensitivity as the ratio of the variance of the
output error to the variance of the output.
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Xie et al. [Xie and Jabri, 1992] propose a statistical model to analyze the effects of weight quanti-
zation on MLP networks. The approach presented in this paper assumes that the inputs and weights
have been quantized by N bits and follow a uniform distribution on [−∆2N−1,∆2N−1], where
∆ is the quantization step. The output y is uniformly distributed over [−max(|y|),max(|y|)] and
the nonlinear activation is approximated by a linear function. The assumptions are not realistic,
since the distribution of the data changes depending on the application used. Moreover, neural
networks are known for their non-linearity. Even if the assumptions are not realistic, they help
simplify the formulas for the analysis of the quantization effect.

Choi and Choi [Choi and Choi, 1992] introduce a statistical method for measuring the sensitivity
of MLPs with differentiable nonlinear functions. The sensitivity here is defined as a ratio of the
standard deviation of the output errors and the standard deviation of the errors of the weights or
inputs provided that the error tends to zero.

Dundar et al. [Dundar and Rose, 1995] extend the approach of [Xie and Jabri, 1992] but use the
sigmoid function and not an approximation of the nonlinear function. The assumptions are the
following: the inputs are continuous and uniform between 0 and 1; the weights are uniformly
distributed in the interval [−∆2N−1,∆2N−1], N being the number of bits used for quantization
and ∆ the quantization level; the quantization is done with a sufficiently large number of bits
(N ≥ 8) and the error is uniform and centered in the range [−∆/2,∆/2].

Zeng et al. [Zeng and Yeung, 2001] uses a hypercube technique for the computation of the sensi-
tivity. The inputs and weights are between 0 and 1. They are uniform and independent.

We take inspiration from sensitivity analysis and the rate distortion theory presented in Chap-
ter 5 to propose a new distortion function which measures the gap between the Bayes risk of a
classifier before and after the compression. Since this distortion is not tractable, we derive a the-
oretical closed-form approximation when the last fully connected layer of a deep neural network
is compressed with a uniform quantizer. This approximation provides insight into the relation-
ship between the accuracy loss and some key characteristics of the neural network. Numerical
simulations show that the approximation is reasonably accurate.

7.2 Problem statement

7.2.1 Deep neural networks

We consider a classification problem with two classes C = 2. Let f(x0) be a deep neural network
of K + 1 layers with x0 ∈ Rn0 being the input. The hidden layers are from x1 ∈ Rn1 to xK−1 ∈
RnK−1 and the output layer is denoted with xK ∈ RnK . We recall the definition of a DNN given
in (2.10):

xk = σ(Wkxk−1 + bk), ∀ 1 ≤ k ≤ K − 1, (7.1)

ŷ = f(x0) = xK = σsoftmax(WKxK−1+bK), (7.2)

The last layer, called the softmax layer [Goodfellow et al., 2016], depends on WK ∈ R2×nK−1

and bK ∈ R2.
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The output of the neural network ŷ = ŷ(x0) = (ŷ1(x0), ŷ2(x0)) is interpreted as a soft one-hot
encoding vector. To decode ŷ, we use the decision rule, denoted δf (x0), given by:

δf (x0) = arg max
i∈{0,1}

ŷi(x0). (7.3)

It chooses the class with the highest probability given in ŷ. To simplify the notations, the vector
xK−1 will be denoted x in the rest of the chapter and nK−1 will be denoted n.
Let us note that δf can be rewritten as a linear classifier without the operators argmax and softmax.
The decision rule (7.3) is equivalent to the linear decision rule δfw :

δfw(x) =
{

0 if wTx > λ,
1 otherwise,

(7.4)

where w = w0 − w1, λ = b1 − b0 and wT denotes the transpose of w. Note that w0 and w1
represent the first and the second row of WK and b0, b1 are the two components of the bias vector
bK . The same transformation can also be applied to the compressed version. Since x follows a
Gaussian distribution, wTx also follows a Gaussian distribution:

wTx ∼ N (wTµj ,wTΣjw). (7.5)

We want to compare this classifier with the compressed version δfŵ(x) defined as δfw(x) in (7.4)
with w replaced by ŵ, a compressed version of w. We do not quantize λ ∈ R but the extension is
trivial.

7.2.2 Minimum Bayes risk

The classification performance of a neural network (before or after a compression) is measured by
the accuracy of the softmax layer, i.e., the accuracy acc(δfw) = 1− r(δfw) of the linear classifier
fw where r(δfw) is the Bayes risk [Poor, 1994]:

r(δfw) = π0P0(δfw(x) 6= 0) + π1P1(δfw(x) 6= 1), (7.6)

where Pj(·) stands for the conditional probability distribution of x given the class Cj and πj is
the prior probability of Cj .

In a layer of a ReLU neural network, a significant part of the neurons is generally quiet, i.e.,
their values are zero or very close to zero. Hence, for the classification task, only a part of the
coefficients in x, the non-zero coefficients, contribute to the decision. To simplify the notation,
we will consider, without any loss of generality, that all the neurons of the last layer are non-zero.
Furthermore, we assume that the input vector x of the last layer (i.e., the non-zero coefficients)
follows a multivariate normal distribution:

x ∼ N (µj , In) under Cj , (7.7)

where µj ∈ Rn is a known mean vector and In ∈ Rn×n is the identity covariance matrix of size n.

We have experimented and analyzed various architectures, including Fully Connected and Con-
volutional Neural Networks [Simonyan and Zisserman, 2015, He et al., 2016], that support this
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assumption (after the normalization of the coefficients to get the identity covariance matrix). Other
related works [Piché, 1995, Gao et al., 2019] also assume that the inputs and weights follow a
Gaussian distribution.

Let Φ(·) be the cumulative distribution function of the standard normal distribution. The risks
Pj(δfw(x) 6= j) in (7.6) are then

Pj(δfw(x) 6= j) = Φ
(
(−1)kaj(w)

)
, (7.8)

where

aj(w) = λ−wTµk
‖w‖2

, j = 0, 1. (7.9)

The calculation of (7.8) comes from the error analysis of a linear classifier as detailed in [Poor,
1994]. Similar results are obtained for the compressed classifier, denoted δfŵ , with the compressed
weights ŵ, where the aj(w)’s are replaced with the aj(ŵ)’s.

Let us assume that the training of the neural network leads to an almost optimal linear classifier
in the last layer. It means that δfw(x) is the optimal Bayes classifier that minimizes the Bayes risk
(7.6). It follows from [Poor, 1994] that the optimal parameters are given by:

w = µ1 − µ0, λ = ln π0
π1

+ 1
2(‖µ1‖2 − ‖µ0‖2) (7.10)

aj(w) =
ln π0

π1

‖µ1 − µ0‖2
+ (−1)k ‖µ1 − µ0‖2

2 , j = 0, 1. (7.11)

7.3 Distortion measure for classifiers

Commonly used distortion measures do not always reflect the accuracy loss when compressing the
network. We define a particular distortion measure based on the classification risk. To distinguish
the network before and after the compression, we use the notation fw and, respectively fŵ, for
the uncompressed, resp. compressed, neural network. Hence, we consider the distortion function
to be the absolute difference between the risks of the two classifiers:

d(w, ŵ) = |r(δfw)− r(δfŵ)|. (7.12)

We want to understand the evolution of d as a function of the number of bits.
Hence, this chapter focuses on the study of the distortion measure (7.12). This will bring us closer
to understanding the impact of compression methods on the last layer of a neural network and
determine the minimal number of bits needed to ensure a given quality of the classification.
Using the risk from (7.6), we can rewrite (7.12) as follows

d(w, ŵ)=
∣∣∣∣∣

1∑
i=0
πi[Pi(fw(x)>λ)−Pi(fŵ(x)>λ)]

∣∣∣∣∣ . (7.13)

The distortion d(w, ŵ) can be easily computed by using (7.8). However, a numerical computation
does not offer any information on the joint role of w and ŵ. Without any additional assumptions
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on the error, we cannot gain insight into the quality of the compression process applied to w.
In the case we are not interested in how ŵ was produced from w, yet we want to measure the
gap between the risks r(δfw) and r(δfŵ), the approach would be to propose a bound which joins
together w and ŵ. This approach has been studied and published in [Resmerita et al., 2021a]. The
computational details and some experiments can be found in the Appendix C.1.

This next section proposes a theoretical closed-form approximation when the last fully connected
layer of a deep neural network is compressed with a uniform quantizer. This is a more direct
approach that does not use bounds.

7.4 Distortion measure applied to uniform quantization

In this section, we want to predict the distortion induced by uniform quantization knowing prop-
erties of the dataset (the means of the classes), the architecture of the model (number of neurons
of a layer) and also the rate of the quantization.

Uniform quantization. We recall that to quantize the weights w with R bits, we use a uniform
quantizer as described in [Gersho and Gray, 1991] with a constant quantization step q that depends
on the range of the vector w = (w1, . . . , wn):

q = max1≤i≤nwi −min1≤i≤nwi
2R . (7.14)

In the rest of the chapter, we will assume that the quantization noise of a uniform quantizer Q(·)
is uniform, i.e.,

ŵi = Q(wi) = wi + ∆i, ∀1 ≤ i ≤ n, (7.15)

where ŵi is the compressed version of wi, ∆i follows a uniform distribution U([−q/2, q/2]) with
mean E[∆i] = 0 and variance var[∆i] = q2

12 . This assumption is common with a uniform quantizer
[Widrow and Kollár, 2008] when q is not large.

We obtain ŵ = w + ∆ where ∆ = (∆1, . . . ,∆n) and the ∆i’s are independent.
Since ŵ is random, we study the expectation of the distortion, as a function of w, with respect to
the quantization noise, i.e.,

d(w) = E∆[d(w, ŵ)] = E∆[d(w,w + ∆)], (7.16)

where E∆[·] denotes the expectation with respect to ∆.

7.4.1 Approximation of the distortion function

The approximation of the distortion function (7.12) is done in two steps: i) we approximate the
coefficients aj(ŵ) of the compressed classifier as a function of the uncompressed aj(w) and then
ii) we approximate the distortion itself. Our first result is summarized in the following theorem.
The proof for the theorem are detailed in the Appendix D.1.
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Theorem 7.4.1. Assume that ŵ = w + ∆ as in (7.15). Then,

aj(ŵ) = aj(w)√
1 + γ

+ op(γ/n), (7.17)

where γ is defined by

γ = n q2

12‖w‖22
. (7.18)

The term op(γ/n) denotes a random variable with mean and variance that are no larger than γ/n.

Theorem 7.4.1 introduced the very important quantity γ that explains the impact of the quan-
tization on aj(ŵ) with respect to aj(w). The quantity 1/γ can be interpreted as a signal-to-
quantization-noise ratio where the signal is w and the quantization noise is ∆. Indeed, the nu-
merator ‖w‖22/n in 1/γ can be interpreted as the average power of a coefficient wi in w whereas
the denominator q2/12 is the variance of the corresponding noise ∆i as defined in (7.15). Further-
more, since γ > 0, (7.17) shows that the coefficient aj(ŵ) shrinks toward zero. Hence, depending
on the sign of aj(w), the conditional risks can increase or decrease. The next theorem is the main
result of this chapter. It gives an approximation of the expectation of the distortion (7.16).

Theorem 7.4.2. Assume that ŵ = w + ∆ as in (7.15). Then,

d(w) =
∣∣∣η(γ)

(
π0a0ϕ(a0)− π1a1ϕ(a1)

)
+ ε(γ/n)

∣∣∣, (7.19)

where aj = aj(w), η(γ) is defined by

η(γ) = 1− 1√
1 + γ

, (7.20)

ϕ(·) is the probability density function of the standard normal distribution and ε(γ/n) is non-
random error term that is of the same order as γ/n.

Theorem 7.4.2 shows that d(w) is controlled by γ through the coefficient η(γ). The distortion is
also controlled by the value of the Bayes risk before compression. As shown in (7.8), the value of
the Bayes risk depends on a0(w) and a1(w) that are involved in (7.19). If γ is not close enough to
zero, the approximation (7.19) may not be accurate enough. Corollary 7.4.3 gives a more complex
but more accurate approximation.

Corollary 7.4.3. Assume that ŵ = w + ∆ as in (7.15). Then,

d(w) =
∣∣∣η(γ)

6
(
π0a0%(a0)− π1a1%(a1)

)
+ ε(γ/n)

∣∣∣, (7.21)

where t 7→ %(t) is given by

%(t) = ϕ(t) + 4ϕ
(
ζ(γ)

2 t

)
+ ϕ

(
t√

1 + γ

)
, (7.22)

η(γ) is defined in (7.20), ζ(γ) is

ζ(γ) = 1
2

(
1 + 1√

1 + γ

)
= 1− η(γ)

2 , (7.23)

and ε(γ/n) is an error term that is of the same order as γ/n.

The definition of %(t) looks like Simpson’s rule [Gautschi, 2011] because our approximation is
based on a numerical integration. For this reason, the error term ε(γ/n) that depends on the aj(w)’s
is smaller than ε(γ/n).
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7.5 Experiments

7.5.1 Numerical simulations

In order to analyze the accuracy of the two proposed approximations of the distortion, several
experiments have been conducted. The presented comparison scenarios were performed in a the-
oretical context using the optimal parameters and bias under the Gaussian assumption. We chose
the means µ0 and µ1 of the classes by using a fixed radius α and an angle θ that varied between 0
and 180 degrees to simulate different difficulty levels of the classification problem. The means are
generated in the plane given by two arbitrary chosen orthonormal vectors (b0, b1) as follows:

µ0 = α b0 and (7.24)

µ1 = α (b0 cos θ + b1 sin θ). (7.25)

The weights w and bias λ were computed using (7.10) with equiprobable classes π0 = π1 = 1/2.
To simulate the quantization error ∆, given a number of bits R, we generated a uniform error
between [−q/2, q/2] and added it to the weights. The average of the risk (7.6) and the expected
distortion (7.16) were computed using 1000 Monte Carlo samples of ∆.

Figure 7.2: Comparison of classification risks for two scenarios.

We first focus on the quality of our approximations. To better illustrate the impact of γ on the ap-
proximations, we present two scenarios. Figure 7.2 shows the risk r before and after quantization
and the risk computed with the approximation of aj(ŵ) given in Theorem 7.4.1. We generated
the angle θ between the class means from 1 to 180 degrees. On the left side, we set the number of
neurons n = 20 and the rate R = 2. In this case, we have γ small, close to 0. On the right side,
we show the results when R = 1 bit and n = 1000 neurons: γ is not close to 0. In both cases,
the approximation overlaps with the theoretical risk of the compressed model. Our evaluations
validate the correctness of the approximation. It is worth mentioning that

√
1 + γ controls well

the risk of the compressed model as established in Theorem 7.4.1. We also notice that γ, and
therefore the distortion, strongly depends on the number of neurons n.

Figure 7.3 presents the distortions for the same scenarios. For the same given number of neurons
and rate, we computed the true distortion (7.12) and also the two approximations (7.19) and (7.21).
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On the left side, we observe that both approximations overlap with the theoretical distortion that
we get with Monte Carlo. On the right side, we show the results when γ is not close to 0. In
this scenario, we used R = 1 bit and n = 1000 neurons. We notice that the first approximation
performs well until θ = 50. After this point, we notice a small loss in precision. It is visible that
the second approximation performs better in both cases. This result shows also that the number of
neurons has an impact on the accuracy of our approximation. The error term ε(γ/n) in Corollary
7.4.3 is smaller when n is large.

Figure 7.3: Comparison of the distortion approximations for two scenarios.

Figure 7.4 shows the rate distortion trade-off which is our main interest point. We present two
scenarios with different numbers of neurons n and angles α. We quantized the weights at a rate R
varying between 1 and 6 and we evaluated the true distortion measure and the two approximations.
It is worth noting that as the rate increases, the distortion decreases. We find the behavior of the
distortion consistent with the impact quantization has over data. On the left, both approximations
perform well and overlap with the true distortion value. On the right, we observe that the approxi-
mation given in (7.19) follows closely the true distortion value, while the approximation given in
(7.21) still performs better.

Figure 7.4: Rate distortion trade-off for two scenarios.
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7.5.2 One-hidden-layer neural network on Sonar

We performed experiments using a one-hidden-layer network. Given that our distortion mea-
sure is adapted to two class models, we could not use multi-class datasets such as MNIST,
CIFAR or ImageNet. Therefore, we trained the network on the Sonar dataset [Gorman and Se-
jnowski, 1988]. The dataset is composed ofN = 208 instances, n = 60 attributes and two classes.

The network we trained had one FC layer with 60 neurons and a final softmax layer. We extracted
the output of the hidden layer, which is the input of the softmax layer. For a fixed number of bits,
we generated a uniform error ∆, which we add to the weights of the softmax layer.

Two experiments were carried out. In each of these experiments, we used a different activation
function: a linear activation function, and, then, ReLU. We are aware that the distribution of
weights and inputs depend on many factors: the architecture of the network, initialization, train-
ing. The change in the activation function also impacts the distribution of the input. For each
experiment, a visualization of both x and w is done in order to showcase the differences.

7.5.2.1 Linear hidden layer

The first experiment is done using a linear activation function at the end of the hidden layer.
Keeping the layer linear ensures the assumption of normality of x.

Input and weight visualization. Figure 7.5 displays the distribution of x for both classes and
the weights w of the network. A normal test has been performed which showed that the inputs
follow a normal distribution.

Figure 7.5: On the left, the distribution of the input for each class in the case of one hidden linear
layer. On the right, the distribution of the trained weights.

In Figure 7.6, we showcase the distribution of wTx which also follows a normal distribution. In
this practical case, our assumptions are valid.
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Figure 7.6: The distribution of wTx for each class for a network with a hidden linear layer. Note
that the class 0 values have a higher p-value than class 1.

Results. After training the network, we obtained an empirical risk r̂(δfw) = 0.0837. In Figure
7.7, we observe our approximations have a similar behavior to the empirical distortion value d̂.
However, the approximation using Simpson is not performing better than the one given in Theorem
7.4.2.

Figure 7.7: On the left, the rate distortion trade-off for one hidden linear layer. On the right, the
accuracy for the original and compressed model.

7.5.2.2 ReLU hidden layer

The second experiment is done using the ReLU activation function. ReLU is a nonlinear function.
By adding it to the hidden layer, there is a high chance of invalidating the assumption of normality
made on the input.

Input and weight visualization. In Figure 7.8, we show the distribution of x and w in the case
of ReLU. As predicted, the input fails the normality test, while the weights fail to reject the null
hypothesis. It is true that in our case, only the input is considered a random variable, yet having
the weights follow a normal distribution ensures that the linear combination between the input and
the weights has a normal distribution. The shape of wTx is shown in Figure 7.9.
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Figure 7.8: On the left, the distribution of the input for each class in the case of one hidden ReLU
layer. On the right, the distribution of the trained weights.

Figure 7.9: The distribution of wTx for each class in the case of a hidden ReLU layer.

Results. Training the network leads to an empirical risk r̂(δfw) = 0.095. In the case of the
ReLU, we observe a higher difference between the empirical distortion d̂ and the approximations,
which is noticeable especially for 1 bit compression. We notice a slight improvement when using
the Simpson approximation. Even though, the behavior of our approximations is less similar to the
empirical distortion than in the previous case, they still perform reasonably well.
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Figure 7.10: On the left, the rate distortion trade-off for one hidden ReLU layer. On the right, the
accuracy for the original and compressed model.

7.6 Conclusion and Perspectives

In this chapter, we propose a new distortion measure in order to obtain a rate distortion curve.
We have proposed two approximations for the average absolute perturbation on the accuracy of
a classification neural network when its last layer is uniformly quantized. The approximations
are accurate, whatever the number of bits is. They are easy to evaluate since they are given in
closed-form.

Not only the approximations are accurate, but they also provide us with interesting insight on the
impact quantization error has on the network. We show that γ is a key element in this distortion.
As the number of bits increases, γ decreases. Finally, we have shown that the distortion explicitly
depends on a signal-to-quantization-noise ratio we have introduced in this chapter.

As for future work, a direction would be to analyze if the initial Gaussian assumption on the
inputs of the last layer can be dropped. We intuitively believe that simply using the central limit
theorem can be enough to support the assumption. From our experiment using ReLU, we noticed
that the approximations perform reasonably well even though the input does not follow a normal
distribution. An extension of the analysis to a multiclass model and to the quantization of the other
layers is necessary.



CHAPTER 8
Conclusions and Future

works
8.1 Conclusion

Neural networks are used in critical real-time applications. The networks can easily overwhelm
the resources of embedded systems. As stated in the introduction, this thesis is done in collab-
oration with Kalray a company which produces microprocessors. We have taken into account
the requirements and limitations presented by the company. We mostly focused on compression
methods for storage purposes, which does not involve training.

Overall, the objectives of the thesis were: (1) explore and identify deep compression methods for
storage purposes which can be supported by Kalray’s processors and (2) quantify the impact of
quantization error on the networks’ accuracy.

Regarding the first objective, we performed a study of weight compression methods. Several
algorithms such as pruning, quantization and binarization were explored and we identified quan-
tization as our main focus. Quantization can be applied without changing the architecture of the
networks, or retraining the model. Algorithms such as uniform, non-uniform and low precision
quantization were applied on several CNN architectures. Our work motivated the integration of
quantization algorithms and incorporating look-up tables in future Kalray MPPA processors. For
low precision quantization, we performed experiments using three floating-point representations
of parameters for deep learning inference in classification and detection networks. We found that
the Posit8 representation with 1 bit or 2 exponent bits also tends to perform well with most neural
networks, with slight exceptions. Our results also motivated considering the inclusion of a Posit8
to FP16 hardware decompressor in future Kalray MPPA processor, as the tensor coprocessors of
the MPPA3 processor already include exact FP16 to FP32 dot product operators.

Regarding the second objective, which is of theoretical nature. It aims to provide more insight
on how neural networks are impacted by quantization. We focused on the statistical analysis of
the impact of quantization error on the accuracy of classification models. In order to quantify
the impact, we introduced a new distortion measure that calculates the difference between the
Bayes risk of the model before and after compression with a given quantization algorithm. Our
theoretical analysis is performed only on the last layer of a neural network in the case of a binary
classification. We applied the approximations on real data using a one hidden layer neural network.
We noticed the distortion measure has a signal-to-noise ratio form. Moreover, we observed that
the quality of the approximation could therefore essentially depend on the dimension of the hidden
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layer for a given number of bits. It seems that, for any number of bits, the approximation can be
very efficient if the number of neurons is large enough. A more accurate approximation, but more
complex, is given in as corollary. They are easy to evaluate since they are given in closed-form.
Although the method is still in its early stages, our results look promising.

8.2 Perspectives

Finally, we discuss the general perspectives of the work presented in this thesis. Several directions
can be taken.

8.2.1 Rate distortion measure

Regarding the distortion measure presented in Chapter 7, extending the analysis to deeper archi-
tectures and multiclass models would be one of the most straightforward focuses. Focusing on
these two aspects will get us closer to having a distortion measure which can be used on complex
networks used in real-time applications. In order to take into account quantization from previous
layers such as convolutions, the idea would be to start by injecting error into the input. First, a
detailed analysis should be performed on the effect of the ReLU function on the inputs with and
without error. Assuming the inputs follow a Gaussian distribution, we can consider that the input
after ReLU follows a rectified Gaussian distribution. The propagated error which is added to the
input can be assumed to follow a Normal distribution.

In order to improve the presented method, one lead would be to study the possibility of removing
the Gaussian assumptions on the inputs of the last layer. We can still assume that the output of
the layer before the activation function follows a Gaussian distribution. This assumption is rea-
sonable, since a non-zero input of the last layer is a sum of a significant number of values coming
from the previous layer. Hence, we can invoke the central limit theorem to support this assumption.

As for quantization algorithm, in this work, we focused on uniform quantization error due to ease
of interpretation. For future work, another interesting direction would be to focus on other types of
compression algorithms and quantization errors. Taking as example Posits, which were presented
in Chapter 6, we would need to estimate the distributions of each Posit<8,es> and of the new
injected error. The new error depends on both the number of bits fixed at 8 and the es parameter
which changes the dynamic range (variance) of the format.

8.2.2 End-to-end deep learning compression tool

One idea would be to study other compression methods complementary to quantization in order
to create an end-to-end tool adapted for future generations of the processor. Some interesting
strategies would be pruning, or low rank approximation.

As presented in Chapter 3, pruning is one of the targeted methods. In Chapter 4, we show that
pruning is a powerful method which is able to obtain a compression rate of 90% without loss.
For now, this method has not been supported due to hardware limitations. To take advantage of
this method, the processors need to adapt to sparsity. Hardware friendly and efficient pruning
techniques have been proposed [Yu et al., 2017a, Li et al., 2020, Hubara et al., 2021]. Another
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limitation is the need to retrain the network. The MPPA is a proceesor which can be used only for
deep learning inference tasks. Training is not supported. If needed, training should be done on a
different platform (CPU/GPU).

Another method would be low rank approximation which was also presented in Chapter 3. It
is used to decompose a matrix in multiple sparse matrices. This technique may reduce both the
storage requirements and the computational complexity of the networks. However, since it is a
lossy compression method, it might accumulate errors. Some works [Yu et al., 2017b, Swami-
nathan et al., 2020, Phan et al., 2020] mention that low rank approximation and pruning work well
together.

These methods remain open topics which deserve an in-depth evaluation.

8.2.3 Quantization and matrix acceleration

We recall this thesis focuses only on compression methods for storage purposes. Even though ac-
celeration computations have not been tackled throughout this manuscript, it has been discussed.
We are interested in algorithms that can speed up the execution of a Deep Learning network and
we need to determine which of these techniques are the most promising with respect to the ar-
chitecture. In order to speed up the execution of CNNs, efficient matrix multiplication algorithms
have been proposed.

A common method for dealing with layers is to use GEMM [Cong and Xiao, 2014], a matrix
multiplication procedure that is part of the BLAS library [Lawson et al., 1979]. Convolutions are
computed with the FFT algorithm [Mathieu et al., 2014, Vasilache et al., 2015]. However, the
Winograd algorithm [Winograd, 1980, Lavin and Gray, 2016] is efficient for small convolutions,
which are the most usual. This algorithm can reduce the number of multiplications by a factor of
2.25x. The use of the Winograd algorithm with low precision quantization is of great interest to
Kalray. A state-of-the-art analysis has been done on scientific papers and industrial solutions, but
not many works tackle this subject. [Gong et al., 2018] discussed Winograd convolution and 8 bits
low precision inference. They explore the INT8 Winograd convolution. They apply the Winograd
transformation F(2,3) on quantized values and then they use a scaling factor after transformation.
Different scaling factors for weights and activations. They have tested their algorithm on VGG16
and the accuracy loss Top-1 and Top-5 is within 0.25% and 0.30%. Intel MKL-DNN [Intel, 2019]
has supported int8 Winograd in convolution. For them, Winograd and quantization work indepen-
dently. Recently, more scientific works have emerged on the subject [Yao et al., 2020, Li et al.,
2021] which show high potential speeding up deep neural networks. An interesting next step would
be to implement a proof of concept to evaluate Winograd using INT8 fixed point quantization.
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A Chapter 3: Nvidia TensorRT study

A.1 Introduction

Compressing neural networks is a highly discussed topic. Kalray also needs to understand how
its competitors compress and accelerate the networks for the inference task. In order to improve
KaNN, Kalray’s framework solution for accelerating networks, several questions need to be an-
swered. What are the techniques that they support? How do they choose the proper algorithm for
accelerating a particular network? How are the performance results computed? The answers to
these questions can bring us closer to understanding what methods perform better in practice and
are worth the time to implement in the close future.

One of the well-known R&D solutions for industries is TensorRT (TRT). TRT is a library de-
veloped by Nvidia for faster inference on Nvidia’s GPUs. TensorRT is built on CUDA. It can
give around 4-5x faster inference on real-time services and embedded applications and 40x faster
inference compared to CPU only performance.

The main motivation for looking into TensorRT is because of their impressive performance pub-
lished in the benchmarking tool, called MLPerf. This state-of-the-art study was done by using
reverse engineering, since not all necessary information were provided by Nvidia. The study re-
quires some knowledge on well-known networks and Deep Learning frameworks. We start by
presenting MLPerf and the rules imposed, then the results and finally, we dive into the different
optimization methods.

A.2 MLPerf

MLPerf [Nvidia, 2021] is a benchmarking tool built for measuring training and inference per-
formance of ML hardware, software, and services. It is a widely accepted benchmark by the en-
tire community, including researchers, developers, hardware manufacturers, builders of machine
learning frameworks, cloud service providers, application providers, and end users. MLPerf v0.7
inference results were released in October 2020. Each MLPerf Inference benchmark is defined by
a model, a dataset, a quality target, and a latency constraint.

A.2.1 Divisions

MLPerf Inference has two divisions for submitting results: closed and open. Participants can send
results to either or both, but they must use the same data set. The closed division enables com-
parison of different systems. Submitters employ the same models, data sets, and quality targets to
ensure comparability across wildly different architectures. This division requires preprocessing,
postprocessing, and a model that is equivalent to the reference implementation. It also permits
calibration for quantization and prohibits retraining.

123
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MLPerf provides trained weights and biases in FP32 format for both the reference and alternative
implementations. MLPerf also allows and enables quantization to many numerical formats to
ensure architecture neutrality. The approved list includes INT4, INT8, INT16, UINT8, UINT16,
FP11 (1-bit sign, 5-bit mantissa, and 5-bit exponent), FP16, BF16 [Google, 2021], and FP32.
Quantization to lower-precision formats typically requires calibration to ensure sufficient infer-
ence quality. Therefore, to ensure sufficient inference quality, MLPerf also provides a small fixed
calibration dataset for all models.

Additionally, for image classification using MobileNets-v1 224 and object detection using SSD-
MobileNets-v1, MLPerf will provide a retrained INT8 (asymmetric for TFLite and symmetric
for PyTorch/ONNX) model. All implementations are allowed as long as the latency and accu-
racy bounds are met. Weights can be modified according to the quantization rules. It is allowed
to use variations of matrix-multiplication or convolution algorithms, mathematically equivalent
transformations, fusing or unfusing operations, replacing dense operations with mathematically
equivalent sparse operations. Some techniques that are not allowed: complete weight replacement,
discarding non-zero weight elements (including pruning), weight quantization algorithms that are
similar in size to the non-zero weights they produce, hard coding the total number of queries,
online learning or related techniques.

The open division fosters innovation in ML systems, algorithms, optimization, and hardware/-
software co-design. Participants must still perform the same ML task, but they may change the
model architecture and the quality targets. This division allows arbitrary pre- and post-processing
and arbitrary models, including techniques such as retraining. Some restricted retraining rules are
given, but they are not mandatory. In general, submissions are directly comparable neither with
each other nor with closed submissions. Each open submission must include documentation about
how it deviates from the closed division.

A.2.2 Nvidia’s results

Table 1 shows the results that Nvidia published on the performances of three of their well-known
GPUs. For the image classification task, the only tested model in v0.7 is ResNet50 v1.5 which has
25.6M parameters and 8.2GOPS/input and achieves 76.456% TOP-1 accuracy in FP32. For object
detection, two models are of interest. On the heavier side, SSD-ResNet34 which has 36.3M param-
eters and 433GOPS/input and achieves 0.20mAP, and on the lighter side SSD-MobileNetV1 with
6.91M parameters and 2.47GOPS/input and with 0.22 mAP performance. Nvidia with TensorRT
has shown remarkable performance both in the datacenters (server, offline) and edge systems (sin-
gle stream, multi-stream and offline). The results are shown in the table below for all the MLPerf
tasks, including image classification and object detection.

A.3 TensorRT optimizations

Given the impressive results TensorRT has shown in MLPerf, we are interested in understanding
how TensorRT optimizes the networks to increase performance and reduce memory requirements.
TensorRT performs 5 types of optimization: layer fusion, precision calibration for INT8 quanti-
zation, kernel auto-tuning, dynamic tensor memory and multiple stream execution. The optimiza-
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Nvidia T4
(inferences/second)

Nvidia A100
(inferences/second)

Nvidia Jetson Xavier
(inferences/second)

ResNet v1.5
(Image Classification)

6,112 37,331 2,075

MobileNet-v1
(Small Single Shot Detector)

995 6,401 2,533

ResNet-34
(Large Single Shot Detector)

139 974 51

3D U-Net
(Medical Imaging)

7 42 2.3

Table 1: Performances of three well-known Nvidia GPUs [Nvidia, 2018]. The table shows only the
classification and object detection networks. The metric used is the number of inferences/second,
or frames/second (fps) for a 1-batch inference. The results were published by Nvidia.

tions are shown in Figure A.1. We detail the first two types as they are the most interesting in the
context of this work.

Figure A.1: Optimizations applied in TensorRT.

A.3.1 Horizontal and Vertical fusion of layers and tensors

To optimize the GPU memory and bandwidth, TensorRT fuses nodes into a single kernel, which
reduces the cost of reading, writing and transferring the data for each layer. The supported types
of fusions can be divided in the following categories:

1. Fusion of elementwise operations (i.e. Scale + Activation)

2. Convolution fusions (i.e. Conv + elementwise operation): convolutions followed by a simple
sum, max, min or other elementwise

3. Shuffle fusion (i.e. Shuffle + Shuffle, Shuffle + Reduce)
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4. Reduction operator fusions (sum of squares, L1Norm, L2Norm): these operators are mostly
used during the training task

Another category would be QDQ Fusion. QDQ nodes help convert from FP32 to INT8 and vice
versa. A quantized INT8 graph consists of quantization and dequantization operators with scales
and zero points. More information on INT8 quantization is provided in the next item.

A.3.2 INT8 Quantization and precision calibration

Using lower precision reduces memory usage, allowing the deployment of larger networks. Data
transfers take less time. Computational performance increases especially on GPUs with Tensor
Core support for that precision. By default, TensorRT uses FP32 inference, but it also supports
FP16 and INT8. While running FP16 inference, it automatically converts FP32 weights to FP16
weights.

TensorRT is quantizing both weights and activations in INT8 precision. The quantization is
performed per layer. If the precision is not specified, then TensorRT will choose INT8 implemen-
tation only if it results in a higher performance network. If the implementation is faster in a higher
precision, TensorRT will use it.

The paradigm used for quantization is for the most part the one used by Tensorflow [Krishnamoor-
thi, 2018] which we presented in Chapters 4 and 7. It is simply represented by a linear quantization.
To quantize an input x, the following expression is used:

y =
⌊
x

s
+ z

⌉
, where y ∈ [−128, 127], (A.1)

where s denote the scaling factor for the output y and b·e the rounding operation.The quantization
paradigm requires defining a zero-point constant z which represents the quantized value of the
real value 0. Note that TensorRT only supports INT8 activations [-128, 127] and INT8 weights
[-127, 127]. This means the value range is symmetric, therefore, the zero-point is equal to 0. To
enable INT8 inference, one needs to provide TensorRT a dynamic range for each tensor including
weights, input, and output tensors. One way to choose the dynamic range is by using the INT8
calibrator tool. In the case of quantization aware training (or if the calibration has not generated
a satisfactory dynamic range for certain tensors), one can also skip this step and set custom
per tensor dynamic ranges. However, the range needs to be symmetric. If this condition is not
respected, then TensorRT chooses the larger absolute value of the provided bounds.

INT8 Calibration provides a way to generate the dynamic range per tensor. The calibrators com-
pute the scaling factor for each tensor. This tool is useful as a post-training technique to generate
the appropriate quantization scale. This process requires the network to pass a dataset of around
500 representative samples to estimate the scaling factors. TRT provides two main calibrators
Entropy (recommended for CNN, required by DLA), MinMax (preferred for NLP tasks and rec-
ommended for BERT like networks). By default, calibration happens before layer fusion. During
calibration, the builder runs a FP32 engine on the calibration dataset, records histograms of the
distribution of each tensor, then builds a table from the histograms and, finally, builds the INT8
engine using the calibration table and the network definition. Quantized ONNX models can be



ANNEXE 127

created using Quantization Aware Training (QAT) where FakeQuantization nodes are inserted to
capture dynamic range (TensorFlow) or scale/zero-point (PyTorch).

A.3.3 Other optimization strategies

Kernel auto-tuning. While optimizing models, there is some kernel specific optimization which
can be performed during the process. This selects the best layers, algorithms, and optimal batch
size based on the target GPU platform. For example, there are multiple ways of performing con-
volution operation. TensorRT chooses the most optimal way on the selected platform. From our
understanding, this is done simply by testing all the possible algorithms such as Winograd [Lavin
and Gray, 2016], GEMM [Cong and Xiao, 2014], FFT [Mathieu et al., 2014] and combinations.

Dynamic tensor memory. TensorRT improves the memory reuse by allocating memory to ten-
sor only for the duration of its usage. It helps in reducing the memory footprints and avoiding
allocation overhead for fast and efficient execution.

Multiple stream execution. TensorRT is designed to process multiple input streams in parallel.
This is basically Nvidia’s CUDA stream.

A.4 TensorRT and Tensorflow

Tensorflow and TensorRT have worked closely together to speed up Deep Learning inference using
GPUs. Three operations are performed in the optimization phase of the process:

Phase 1: Graph partition. TensorRT scans the Tensorflow graph backwards in order to find
sub-graphs that it can optimize based on supported operations. It adds one node at a time to the
subgraph, then wraps each TRT-compatible subgraph in a single node (TRTEngineOp) and uses
the new node to replace the subgraph.

An example of graph partition is given in Figure A.2.
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Figure A.2: Example of graph partition [Tensorflow, 2019]. TensorRT supported nodes in green.
Starting from the bottom, one node is added at a time (see orange box). The only constraint is that
the subgraph should be a direct cyclic graph and have no loops. If a loop is formed (as shown in
the 4th image), then it goes back, the subgraph is complete, and a new subgraph is created for the
last node.

Phase 2: Layer conversion The layer conversion is the second step of the optimization process.
It is done when calling the convert method on the builder. The graph is processed in topological
order and each Tensorflow operation in the subgraph is replaced by one or more TensorRT layer

Phase 3: Engine optimization The last step is applying TensorRT optimizations such as layer
or tensor fusion, calibration for low precision) and kernel auto-tuning. These optimizations are
transparent to the user and are applied to the current GPU. Calling the build method will apply this
phase and will transform a subgraph TRTEngineOp into a TRT engine. The execution of phase 2
and 3 is illustrated in Figure A.3.
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Figure A.3: Layer conversion and Engine built in TensorRT. The figure on the top left shows
TensorFlows subgraph before conversion to TensorRT layers. Phase 2 is done first. Second graph
on the top right, TensorFlow operations are converted to TensorRT layer (indicated in green).
The third graph (bottom left) shows the result after the conversion phase, where all TensorFlow
operations are converted to TensorRT layers. Phase 3 creates a TensorRT engine from the graphs.

Operation patterns such as Conv > Bias > ReLU or Conv > Bias > Batchnorm > ReLU are usually
fused together. Therefore, quantization nodes should not be inserted between these layers.

A.5 Conclusion

In this section, we presented a preliminary study of TensorRT. We analyzed the main optimiza-
tion strategies. We focused on understanding layer fusion and INT8 quantization. Both methods
provide a great reduction of inference time. Layer fusion reduces the reading, writing and transfer
time, while INT8 quantization reduces memory footprint.However, we are missing information on
the algorithms used for matrix computation acceleration. Finding conclusive information in state-
of-the-art works is challenging. In order to contribute directly to KALRAY’s efforts to improve
its own acceleration framework, it is essential to become more familiar with other existing accel-
eration solution and to use approaches such as benchmarking or profiling tools to understand the
performance obtained. A practical study is required and it will be done in the future.
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B Chapter 6: Alternative floating point formats

This section presents the complete results of our experiments using alternative floating point
formats to compress the parameters. This work was discussed in Chapter 6. This section provides
more information on the type and number of parameters of each tested network.

We recall that, in Chapter 5, we discussed that the MSE and the KL Divergence are not reliable
distortion measures. This section contributes with extra information on the topic.

B.1 Additional data on network parameters

Table 2 contains a thorough description of the parameters of several networks. We give the total
number of parameters, the number of biases, trainable weights that come from CONV and FC
layers and lastly, non-trainable weights that come from BN layers. Table 3 displays the range of
the parameters of the entire network and compares it to the one of the biases and the non-trainable
parameters.

Network #Bias #Trainable #Non-trainable Non-trainable (%) Total
ResNet50 27560 25 583 592 53 120 0.21 25 636 712
InceptionV3 1000 23 817 352 34 432 0.14 23 851 784
Xception 1000 22 855 952 54 528 0.24 22 910 480
MobileNet 1000 4 231 976 21 888 0.51 4 253 864
MobileNetV2 1000 3 504 872 34 112 0.96 3 538 984
VGG16 13416 138 357 544 0 0.00 138 357 544
VGG19 14696 143 667 240 0 0.00 143 667 240

Table 2: Number of parameters for each network grouped in sev-
eral categories: bias, trainable weights, non-trainable weights and
the total.

Network (MIN, MAX) Bias Non-trainable
ResNet50 (-6.6483035; 83614.734) (-0.024051076; 0.029003482) (-6.6483035, 83614.734)
InceptionV3 (-11.790578; 17.908556) (-1.0875583; 1.230254) (1.8646851e-14, 12.138739)
Xception (-25.056831; 2704.8052) (-0.93594396; 0.95873684) (-25.056831, 2704.8052)
MobileNet (-48.049644; 418.2356) (-2.3272734; 2.242322) (-48.049644, 418.2356)
MobileNetV2 (-28.696346; 415.6262) (-0.86876506; 1.2093042) (-28.696346, 415.6262)
VGG16 (-1.0271513; 9.431553) (-1.0271513; 9.431553) -
VGG19 (-1.4180313; 9.611258) (-1.4180313; 9.611258) -

Table 3: Intervals (min, max) for the entire network and for the
special parameters: bias and non-trainable weights.

The following tables show the complete benchmark result presented in Chapter 6. In addition to
the accuracy Top 1 (ACC-1) and Top 5 (ACC-5), we also display the MSE between the weights in
FP32 and the compressed weights and the KL divergence. In addition to these measures, we also
display what we call the true distortion measure d which is the difference between the original
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Acc-1 and the Acc-1 after compression. For each network, we highlight the rows that indicate the
formats which work the best. We use green, yellow or red to indicate if the compression performs
well (d < 1), average (1 ≤ d < 5) or bad (d > 5), respectively.

B.2 Compression on all parameters

First, Table 4 showcases the results for BF16 and MSFP8. The results are compared to the FP32
and FP16. For the majority of the networks, the original accuracy is improved when using BF16.
Although MSFP8 uses fewer bits and performs acceptably in the case of VGG16, we highlight
BF16 as the clear winner between the two formats.

Network TYPE ACC-1 ACC-5 MSE DIV KL True distortion d
FP32 70.6 91.3 - - 0.000
FP16 70.6 91.3 1.33E-12 0 0.000
BF16 70.8 91.2 3.57904E-10 0 -0.2

VGG16

MSFP8 69.7 90.3 3.08E-07 0.657328 0.9
FP32 70.1 90.4 - - 0.000
FP16 70.1 90.4 1.30E-12 0 0.000
BF16 70.3 90.5 3.47205E-10 0 -0.2

VGG19

MSFP8 67.9 89.4 3.06E-07 0.788984 2.2
FP32 75.7 93.3 - - 0.000
FP16 71.3 90.2 1.29E-10 0 4.400
BF16 75.5 93.5 3.46208E-09 0 0.2

ResNet50

MSFP8 62.8 83.8 3.04E-06 0.734521 12.9
FP32 71.1 89.9 - - 0.000
FP16 71.1 89.9 6.71E-11 0 0.000
BF16 71.3 90.0 6.39523E-09 0 -0.2

InceptionV3

MSFP8 44.8 67.9 5.64E-06 2.416483 26.3
FP32 73.5 92.1 - - 0.000
FP16 73.4 92.2 7.02E-08 0 0.100
BF16 73.6 91.7 2.83023E-08 0 -0.1

Xception

MSFP8 37.5 60.6 2.49E-05 2.621412 36
FP32 70.8 89.8 - - 0.000
FP16 71.1 89.8 2.15E-08 0 -0.300
BF16 70.9 89.5 1.63E-07 0.009764 -0.100

MobileNet

MSFP8 0.1 0.5 0.000144644 7.469399 70.700
FP32 71.2 90.0 - - 0.000
FP16 71.2 90.0 1.78E-08 0 0.000
BF16 71.0 89.6 1.19E-07 0.003675 0.200

MobileNetV2

MSFP8 0.2 0.6 0.000114913 5.367676 71.000
Table 4: Comparisons between FP32, FP16, BF16 and MSFP8.
For each network, we highlight the rows that indicate the formats
which work the best.

Table 5 displays our results on 11 image classification networks using the Posit format. We com-
pare again our results to the FP32 and FP16. It is interesting to see that overall Posits show good
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results (d < 1) only using 8 bits. Furthermore, this benchmarks also validates the conclusion from
Chapter 5 concerning MSE and KL divergence which are not good distortion measures in our
context. If we look at VGG19 and compare the results for Posit<8,1> and Posit<8,2>, we see that
the MSE and KL div are smaller in the case of Posit<8,2> even though the true distortion is higher
dPosit<8,1> < dPosit<8,2>. Other similar examples can be observed in all the tables presented in
this section.

Network TYPE ACC-1 ACC-5 MSE DIV KL True distortion d
FP32 56.9 80.8 - - 0.000
FP16 56.9 80.8 1.47E-10 0 0.000
Posit<8,0> 55.5 79.8 2.01E-05 0.071458 1.400
Posit<8,1> 56.3 80.8 3.65E-06 0.01815 0.600
Posit<8,2> 56.1 80.2 3.79E-06 0.018668 0.800

SqueezeNet v1.0

Posit<8,3> 55.8 79.2 9.38E-06 0.080963 1.100
FP32 59 - - 0.000
FP16 59 81 1.27E-10 0 0.000
Posit<8,0> 56.6 79.8 2.03521E-05 0.122127 2.400
Posit<8,1> 58.4 80.7 3.40925E-06 0.034299 0.600
Posit<8,2> 56.8 80.2 3.48166E-06 0.044015 2.200

SqueezeNet v1.1

Posit<8,3> 54.4 78.1 8.31E-06 0.219605 4.600
FP32 55.6 78.9 - - 0.000
FP16 55.6 78.9 2.47E-12 0 0.000
Posit<8,0> 50.6 75 1.75E-05 0.38653 5.000
Posit<8,1> 54.7 79 4.28E-07 0.009454 0.900
Posit<8,2> 55 78.5 1.50E-07 0.006283 0.600

AlexNet

Posit<8,3> 55.2 78.2 1.77E-07 0.012769 0.400
FP32 70.600 91.300 - - 0.000
FP16 70.600 91.300 1.33E-12 0 0.000
Posit<8,0> 10.200 25.200 8.51E-06 4.293608 60.400
Posit<8,1> 70.800 91.000 2.38E-07 0.009494 -0.200
Posit<8,2> 70.500 91.000 8.02E-08 0.004375 0.100

VGG16

Posit<8,3> 70.000 90.700 1.09E-07 0.015521 0.600
FP32 70.1 90.4 - - 0.000
FP16 70.1 90.4 1.30E-12 0 0.000
Posit<8,0> 4.8 16.3 8.79E-06 4.87205 65.300
Posit<8,1> 70.1 90 2.41E-07 0.008593 0.000
Posit<8,2> 69.9 90 7.96E-08 0.00518 0.200

VGG19

Posit<8,3> 70.6 90.4 1.06E-07 0.013078 -0.500
FP32 75.7 93.3 - - 0.000
FP16 71.3 90.2 1.29E-10 0 4.400
Posit<8,0> 0 0 644.0061646 10.78829 75.700
Posit<8,1> 27.7 46.9 502.5577087 4.274016 48
Posit<8,2> 73.2 91.4 29.99231911 0.159246 2.5

ResNet50

Posit<8,3> 66 88.7 17.84280396 0.356127 9.700
FP32 68 88.6 - - 0.000
FP16 68 88.6 0 0.000
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Posit<8,0> 66.9 87.7 2.08E-05 0.048339 1.100
Posit<8,1> 68.1 88.5 2.33E-06 0.006361 -0.100
Posit<8,2> 67.8 88.4 2.51E-06 0.00962 0.200

GoogleNet

Posit<8,3> 68 88.2 5.92E-06 0.029825 0.000
FP32 71.1 89.9 - - 0.000
FP16 71.1 89.9 6.71E-11 0 0.000
Posit<8,0> 65.1 86.1 2.07E-05 0.802937 6
Posit<8,1> 69.4 91 1.87E-06 0.176595 1.700
Posit<8,2> 69.7 89.5 2.01E-06 0.259748 1.400

InceptionV3

Posit<8,3> 63.1 85.3 4.49E-06 0.85415 8.000
FP32 73.5 92.1 - - 0.000
FP16 73.4 92.2 7.02E-08 0 0.100
Posit<8,0> 70.6 90.9 0.793459237 0.209779 2.9
Posit<8,1> 72.4 91.4 0.161132693 0.067384 1.100
Posit<8,2> 72.1 90.9 0.011052876 0.128806 1.400

Xception

Posit<8,3> 63.8 86 0.011075924 0.772246 9.700
FP32 70.8 89.8 - - 0.000
FP16 71.1 89.8 2.15E-08 0 -0.300
Posit<8,0> 25.3 47 2.67E-05 3.330651 45.500
Posit<8,1> 53.5 76.9 8.76702E-06 1.149143 17.3
Posit<8,2> 52.7 77.3 1.31647E-05 1.124676 18.1

MobileNet

Posit<8,3> 39.4 63.1 4.19E-05 2.114368 31.400
FP32 71.2 90 - - 0.000
FP16 71.2 90 1.78E-08 0 0.000
Posit<8,0> 12.7 24.7 3.03E-05 3.958292 58.500
Posit<8,1> 12.3 25.7 7.84E-06 1.149143 58.900
Posit<8,2> 11 24.4 1.17E-05 1.17E-05 60.200

MobileNetV2

Posit<8,3> 3.2 9.9 3.31E-05 5.286118 68.000
Table 5: Results for Posits. For each network, we highlight the
rows that indicate the formats which work the best. We use green,
yellow or red to indicate if the compression performs well (d < 1),
average (1 ≤ d < 5) or bad (d > 5).

B.3 Compression of trainable parameters (without BN parameters)

Table 6 shows the results when compression is applied to parameters from CONV and FC layers.
Parameters from BN layers are kept in their original form. As shown in Tables 2, they do not
represent a high percentage of the number of parameters, but adding compression error to these
parameters can change the whole performance of the networks.
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Network TYPE ACC-1 ACC-5 MSE DIV KL True distortion d
FP32 75.7 93.3 - - 0.000
FP16 75.7 93.3 1.36E-11 0 0.000
Posit<8,0> 71.3 9.8 2.02E-05 0.209466 4.400
Posit<8,1> 75 92.7 1.05E-06 0.018011 0.700
Posit<8,2> 75 92.8 6.99E-07 0.025143 0.700

ResNet50

Posit<8,3> 73.6 92.6 8.87E-07 0.07765 2.100
FP32 71.1 89.9 - - 0.000
FP16 71.1 89.9 6.71E-11 0 0.000
Posit<8,0> 66 86.8 2.03E-05 0.698037 5.100
Posit<8,1> 70.9 90.7 1.47E-06 0.123788 0.200
Posit<8,2> 70.1 89.1 1.17E-06 0.218421 1.000

InceptionV3

Posit<8,3> 69.9 88.5 1.63E-06 0.366651 1.200
FP32 73.5 92.1 - - 0.000
FP16 73.4 92.2 7.02E-08 0 0.100
Posit<8,0> 72.1 91.3 2.02E-05 0.06861 1.400
Posit<8,1> 72.6 91.7 3.21E-06 0.022671 0.900
Posit<8,2> 72.8 91.3 3.20E-06 0.050335 0.700

Xception

Posit<8,3> 68.8 89.4 7.21E-06 0.380569 4.700
FP32 70.8 89.8 - - 0.000
FP16 71.1 89.8 6.40E-10 0 -0.300
Posit<8,0> 25.3 47 2.67E-05 3.330651 45.500
Posit<8,1> 53.5 76.9 8.76702E-06 1.149143 17.300
Posit<8,2> 52.7 77.3 1.31647E-05 1.124676 18.100

MobileNet

Posit<8,3> 39.4 63.1 4.19106E-05 2.114368 31.400
FP32 71.2 90 - - 0.000
FP16 71.2 90 4.74E-10 0 0.000
Posit<8,0> 12.7 24.7 3.03E-05 3.958292 58.500
Posit<8,1> 12.3 25.7 7.84E-06 4.033997 58.900
Posit<8,2> 11 24.4 1.17E-05 4.246772 60.200

MobileNetV2

Posit<8,3> 3.2 9.9 3.31E-05 5.286118 68.000
Table 6: Results for Posits when we exclude the BN parameters
from the conversion. For each network, we highlight the rows that
indicate the formats which work the best. We use green, yellow or
red to indicate if the compression performs well (d < 1), average
(1 ≤ d < 5) or bad (d > 5).

B.4 Compression without biases

Table 7 displays the results in the case where we do not compress the biases. These results show
that even though a bias value may be critical for successful classification because it allows you
to shift the activation function to the left or right, compressing them or not does not have much
impact on the accuracy of the networks.
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Network TYPE ACC-1 ACC-5 MSE Div KL True distortion d
FP32 70.600 91.300 - - 0.000
FP16 70.600 91.300 1.33E-12 0 0.000
Posit<8,0> 10.3 25.3 8.51E-06 4.293608406 60.300
Posit<8,1> 70.8 91 2.34E-07 0.009494399 -0.200
Posit<8,2> 70.5 91 7.07E-08 0.004375368 0.100

VGG16

Posit<8,3> 70 90.6 7.47E-08 0.015520616 0.600
FP32 70.1 90.4 - - 0.000
FP16 70.1 90.4 1.30E-12 0 0.000
Posit<8,0> 5 16.5 8.79E-06 4.87205 65.100
Posit<8,1> 69.9 90.1 2.38E-07 0.008593 0.200
Posit<8,2> 69.9 90 7.10E-08 0.00518 0.200

VGG19

Posit<8,3> 70.6 90.5 7.42E-08 0.013078 -0.500
FP32 75.7 93.3 - - 0.000
FP16 71.3 90.2 1.29E-10 0 4.400
Posit<8,0> 0 0.5 644.0061646 10.788291 75.700
Posit<8,1> 27.7 46.8 502.5577087 4.274016 48
Posit<8,2> 73.2 91.4 29.99231911 0.159246 2.5

ResNet50

Posit<8,3> 66 88.7 17.84280396 0.3561275 9.700
FP32 71.1 89.9 - - 0.000
FP16 71.1 89.9 6.71E-11 0.000931 0.000
Posit<8,0> 65.1 86.1 2.07E-05 0.802937 6
Posit<8,1> 69.5 90.9 1.87E-06 0.176594 1.600
Posit<8,2> 69.7 89.5 2.00E-06 0.259747 1.400

InceptionV3

Posit<8,3> 63.1 85.3 4.48E-06 0.854149 8.000
FP32 73.5 92.1 - - 0.000
FP16 73.4 92.2 7.02E-08 0 0.100
Posit<8,0> 70.9 90.4 0.793459237 0.209778 2.6
Posit<8,1> 72.4 91.4 0.161132693 0.067383 1.100
Posit<8,2> 72.1 90.8 0.011052873 0.128806 1.400

Xception

Posit<8,3> 63.8 86 0.011075915 0.772246 9.700
FP32 70.8 89.8 - - 0.000
FP16 71.1 89.8 2.15E-08 0 -0.300
Posit<8,0> 14.5 29.9 0.16864796 3.330651 56.3
Posit<8,1> 48 72.9 0.0097967 1.149143 22.8
Posit<8,2> 39.5 63.2 0.001612978 1.124676 31.3

MobileNet

Posit<8,3> 3.5 10.5 0.001786359 2.114367 67.3
FP32 71.2 90 - - 0.000
FP16 71.2 90 1.78E-08 0 0.000
Posit<8,0> 4 10.4 0.075218514 3.958291 67.2
Posit<8,1> 16.3 31.6 0.004354046 1.149143 54.900
Posit<8,2> 11.1 25.5 0.001311715 4.000217 60.1

MobileNetV2

Posit<8,3> 1.1 3.9 0.001561229 5.286117 70.1
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Table 7: Results for Posits when we exclude the biases from the
conversion. For each network, we highlight the rows that indicate
the formats which work the best. We use green, yellow or red to
indicate if the compression performs well (d < 1), average (1 ≤
d < 5) or bad (d > 5).

B.5 Compression without biases and BN parameters

Finally, Table 8 presents the results when we compress the parameters without compressing the
BN parameters and the biases. The results show that this doesn’t improve the accuracy.

Network TYPE ACC-1 ACC-5 MSE DIV KL True distortion d
FP32 70.600 91.300 - - 0.000
FP16 70.600 91.300 1.33E-12 0 0.000
Posit<8,0> 10.3 25.3 8.51E-06 4.289988 60.300
Posit<8,1> 70.8 91 2.34E-07 0.009038 -0.200
Posit<8,2> 70.5 91 7.07E-08 0.004146 0.100

VGG16

Posit<8,3> 70 90.6 7.47E-08 0.015904 0.600
FP32 70.1 90.4 - - 0.000
FP16 70.1 90.4 1.30E-12 0 0.000
Posit<8,0> 5 16.5 8.79E-06 4.860992 65.100
Posit<8,1> 69.9 90.1 2.38E-07 0.009127 0.200
Posit<8,2> 69.9 90 7.10E-08 0.005488 0.200

VGG19

Posit<8,3> 70.6 90.5 7.42E-08 0.013541 -0.500
FP32 75.7 93.3 - - 0.000
FP16 71.3 90.2 1.29E-10 0 4.400
Posit<8,0> 71.5 90.8 2.05E-05 0.218295 4.200
Posit<8,1> 74.8 93.3 1.53E-06 0.026634 0.9
Posit<8,2> 75 92.5 2.58E-06 0.053205 0.7

ResNet50

Posit<8,3> 70.8 90.3 8.24E-06 0.220395 4.900
FP32 71.1 89.9 - - 0.000
FP16 71.1 89.9 6.71E-11 0 0.000
Posit<8,0> 65.8 86.7 2.06E-05 0.704354 5.3
Posit<8,1> 69.5 90.7 1.79E-06 0.174118 1.600
Posit<8,2> 68.7 89.6 1.85E-06 0.241575 2.400

InceptionV3

Posit<8,3> 64.6 85.8 3.77E-06 0.711136 6.500
FP32 73.5 92.1 - - 0.000
FP16 73.4 92.2 7.02E-08 0 0.100
Posit<8,0> 72.2 91.2 2.03E-05 2.03E-05 1.3
Posit<8,1> 72.9 91.2 3.31E-06 3.31E-06 0.600
Posit<8,2> 72.5 91.2 3.60E-06 3.60E-06 1.000

Xception

Posit<8,3> 69.5 89.2 8.77E-06 0.354522 4.000
FP32 70.8 89.8 - - 0.000
FP16 71.1 89.8 2.15E-08 0 -0.300
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Posit<8,0> 23.8 44.2 3.79E-05 3.567855 47.000
Posit<8,1> 52.6 77.2 2.04E-05 1.183558 18.2
Posit<8,2> 47.9 71.6 2.85E-05 1.596312 22.9

MobileNet

Posit<8,3> 10.5 24.2 9.89E-05 5.332177 60.300
FP32 71.2 90 - - 0.000
FP16 71.2 90 1.78E-08 0 0.000
Posit<8,0> 9.6 20.7 5.14E-05 4.394608 61.600
Posit<8,1> 15.3 32.4 2.96E-05 3.607061 55.900
Posit<8,2> 11.6 26.1 3.93E-05 4.000217 59.600

MobileNetV2

Posit<8,3> 1.4 4.3 0.000136137 5.687109 69.800
Table 8: Results for Posits when we exclude the BN parameters
and the biases from the conversion. For each network, we highlight
the rows that indicate the formats which work the best. We use
green, yellow or red to indicate if the compression performs well
(d < 1), average (1 ≤ d < 5) or bad (d > 5).

This section provides additional information on the tested networks and the full benchmark re-
sults. For each network, we clearly highlight which small floating-point format performs better.
Furthermore, we add two other metrics (MSE and KL Divergence) to point out that they do not
work properly as distortion measures.

C Chapter 7: Upper bound approach

Numerous methods to quantize the weights with a single bit or more have been proposed. How-
ever, the loss of accuracy involved in the compression is scarcely studied from a theoretical point
of view. In this section, we propose a new distortion measure which assesses the gap between
the Bayes risk of a classifier before and after the compression. Since this distortion is not easily
tractable, we derive a theoretical approximation when the last fully connected layer of a deep neu-
ral network is compressed under the assumption that the layer inputs follow a multivariate normal
distribution. Numerical results show that the approximation performs well on both synthetic and
real data. We also show that heuristic quantizers proposed in the literature may not be optimal.

The method presented in this section is different from the one presented in Chapter 7. Here, we
do not make assumptions on the way the weights were compressed which leads to using an upper
bound to derive the approximation.

C.1 Upper bound for distortion measure

We briefly recall useful definitions and notations.

Let us consider a deep neural network f(x) composed of K + 1 layers with f0 being the input
layer f0(x) = x ∈ Rn0 where n0 = n. The hidden layers are from f1 to fK−1 and the output layer
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is denoted with fK . We define the model as follows

fk(x) = σ(Wkfk−1(x) + bk), 1 ≤ k < K, (C.2)

ŷ = f(x) = fK(x) = softmax(WfK−1(x)+b), (C.3)

where Wk ∈ Rnk×nk−1 , bk ∈ Rnk and σ(·) is a nonlinear activation function (typically, the ReLU
function). The last layer, called the linear softmax layer, depends on W ∈ R2×nK−1 and b ∈ R2.
The output of the neural network ŷ = (ŷ0, ŷ1) is interpreted as a soft one-hot encoding vector. The
decision rule, denoted δf (x), is

δf (x) = δ(f(x)) = δ(ŷ), (C.4)

and chooses the most probable component of ŷ. We can rewrite δfW as a linear classifier without
the operators argmax and softmax. The decision rule C.4 is equivalent to the linear decision rule:

δfW(fK−1) =
{

0 if w̃T fK−1 > λ,
1 otherwise,

(C.5)

where w̃ = w0 − w1, λ = b1 − b0 and w̃T denotes the transpose of w̃. Note that w0 and w1
represent the first and the second row of W and b0, b1 are the two components of the bias vector b.
To simplify the notations, the vector fK−1 will be denoted f in the rest of the section. We consider
that the vector f follows a multivariate normal distribution. In the case of two classes, we assume
that

f ∼ N (µi,Σi) under Ci, (C.6)

where µj is a known mean vector and Σj is a known strictly positive definitive covariance matrix.
Let us define the conditional gap

di(w, ŵ) =| Pi(fw(x)>λ)−Pi(fŵ(x)>λ) | (C.7)

as the gap between the probability errors conditioned by the class Ci. It follows that

di(w, ŵ) ≤ π0d0(w, ŵ) + π1d1(w, ŵ). (C.8)

Using [Lin and Bai, 2011, Chap. 1, inequality 1.3.c], we get that

di(w, ŵ) ≤ Pi(fw(x)>λ, fŵ(x)≤λ) + Pi(fw(x)≤λ, fŵ(x)>λ). (C.9)

The conditional gap is bounded by the sum of the probabilities when the classifiers disagree. It is
equivalent to

di(w, ŵ) ≤ Pi(wT f>λ,ŵT f≤λ) + Pi(wT f≤λ,ŵT f>λ). (C.10)

This form is simpler because it involves the couple of variables (wT f , ŵT f) that follows a bivariate
normal distribution with a non-zero correlation coefficient. The distribution of this random couple
is studied in the following lemma.
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Lemme C.1. Let i ∈ {0, 1}. Then, we have the equalities

Pi(wT f > λ, ŵT f ≤ λ) = Pi(X > ai(w), Y ≤ ai(ŵ)), (C.11)

Pi(wT f ≤ λ, ŵT f > λ) = Pi(X ≤ ai(w), Y > ai(ŵ)), (C.12)

where X and Y denote two standard normal variables with correlation coefficient %i such as

ai(w) = λ−wTµi√
wTΣiw

, ai(ŵ) = λ− ŵTµi√
ŵTΣiŵ

, (C.13)

%i = %(i,w, ŵ) = wTΣiŵ√
wTΣiw

√
ŵTΣiŵ

. (C.14)

Proof.

We normalize the component wT f by removing its mean and dividing it by its standard deviation
given in (7.5). We do the same for the component ŵT f . A short calculation yields the correlation
coefficient.

�

It is well known that the bivariate normal distribution is not easy to compute except for some very
specific cases. Fortunately, some accurate approximations exist. In this chapter, we use the simple
approximation given in [Cox and Wermuth, 1991] which is easy to interpret. By applying this
approximation to (C.11), we get

Pi(X > ai(w), Y ≤ ai(ŵ)) ≈ Φ(−ai(w))Φ
(
−ξi,w,ŵ

)
, (C.15)

ξi,w,ŵ=%i µ(ai(w))−ai(ŵ)√
1− %2

i

, µ(ai(w))= φ(ai(w))
Φ(−ai(w)) . (C.16)

This approximation expresses the probability as a product of two simple terms. The first term
depends only on w and is thus independent from the compression. The second term quantifies the
dependency between w and its compressed form ŵ through ξi,w,ŵ. We can do the same for the
second inequality (C.12) in Lemma C.1. Finally, we get an approximation Di(w, ŵ) of the upper
bound di(w, ŵ) in (C.10):

di(w, ŵ) ≤ Pi(wT f>λ,ŵT f≤λ)+Pi(wT f≤λ,ŵT f>λ)
≈ Φ(−ai(w))Φ

(
−ξi,w,ŵ

)
+Φ(−ai(ŵ))Φ

(
−ξi,ŵ,w

)
= Di(w, ŵ), (C.17)

where ξi,ŵ,w is similar to ξi,w,ŵ provided that we swap the role of w and ŵ. Therefore, we get the
following approximation D(w, ŵ) of d(w, ŵ):

d(w, ŵ)≈π0D0(w, ŵ)+π1D1(w, ŵ)=D(w, ŵ). (C.18)

This approximation is a closed form expression. Even if we cannot ensure that D(w, ŵ) is truly
an upper bound, the advantage of using the approximation D(w, ŵ) over the true value d(w, ŵ)
is to ease the interpretation of the effects of compression over the accuracy.
By analyzing the expression of the approximation, one can note that its value mainly relies on
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three quantities: ai(w) in (C.13), ai(ŵ) in (C.13) and the correlation %i between the compressed
and uncompressed weights in (C.14). The constant ai(w) depends on properties of the dataset (the
means of the classes) and not on the compressed network architecture. The value ai(ŵ) depends
on the compressed network. Under some appropriate assumptions on the number of neurons and
the compression bit-rate, ai(ŵ) can be approximated by ai(w) weighted by a corrective term
depending on %i. Under the same assumptions, the correlation %i can be approximated analytically
as a function of the number of neurons of a layer and the compression bit-rate. Further details and
a more in-depth analysis of these approximations in the case of uniform quantization are presented
in Chapter 7.

C.2 Experiments for the upper bound

Several experiments were carried out in order to analyze the proposed approximation D(w, ŵ)
in (C.18). The first experiment was done using a softmax classifier on synthetic data, while the
second one was performed on a one-hidden-layer network trained on the Sonar dataset.

We used the standard binary and uniform quantization to compress the weights w into ŵs where
ŵs underlines that the compressed weights ŵ depend on a scaling factor s > 0 to tune the quan-
tizer. The binarization process produces

ŵs = s · sign(w), (C.19)

where sign(w) means that the element-wise sign function is applied to each element of w. The
uniform quantization produces

ŵs =
⌊w
s

⌉
, (C.20)

where the element-wise b·e operation approximates its input with the closest integer.

We are looking for the best scaling factor s that minimizes d(w, ŵs). For both experimental
settings, we iterated over s from 0 to 2 by a step of 10−3. At each iteration, we compressed the
weights with the methods mentioned above. When we use the synthetic data, we computed the
theoretical distortion d(w, ŵs) and its approximation D(w, ŵs). For the real dataset, we cannot
compute the theoretical distortion because we do not know the exact parameters of the assumed
normal distribution. We estimated the values of µ0, µ1, Σ0 and Σ1 in (C.6) from the samples.
Then, we computed d̃(w, ŵs) and D̃(w, ŵs) by replacing the true values µ0, µ1, Σ0 and Σ1 by
their estimates in the definition of d(w, ŵs) and D(w, ŵs). In both datasets, we evaluated the
empirical distortion d̂(w, ŵs) by computing the empirical Bayes risks. The minimum of d(w, ŵs)
with respect to s is denoted min(d). We use the same notation min(·) for the other distortions.
We also take a look at the true Bayes risk r(δfŵs

) for the synthetic data and at the empirical risk
r̂(δfŵs

) for the real data.

Additionally, we compared our results to two state-of-the-art methods that have shown promising
results, namely XNOR-NET [Rastegari et al., 2016] for binary quantization and Tensorflow Lite
[Jacob et al., 2018, Krishnamoorthi, 2018] for uniform quantization:
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(a) Binary quantization. (b) Uniform quantization (3 bits).

Figure C.4: Distortions d̂(w, ŵs), d(w, ŵs) and D(w, ŵs) for synthetic data experiment with
XNOR-NET (left) and TFLite (right) as a function of the scaling factor. The orange circle and the
green square represent respectively the minimum of d(w, ŵs) andD(w, ŵs) and, in red, we show
the scaling factors of XNOR-NET and TFLite.

XNOR-NET. XNOR-NET quantizes w by solving the optimization problem min ||w− swb||22
where wb is a binary matrix and s > 0. The optimal solution ŵsXNOR−NET is the product of the
optimal binary matrix w∗b = sign(w) with the optimal scaling factor, sXNOR−NET = ||w||1/n
where ||w||p is the p-norm.

TFLite. The TFLite approach is based on the standard uniform scalar quantizer. The quanti-
zation of an entry w of w into a quantized value w of ŵsTFLITE proceeds as follows: w =⌊

w
sTFLITE

⌉
+z, where the scaling factor is defined as sTFLITE = (wmax−wmin)/N withN = 2R−1

and the parameter z represents the quantized value of the real value 0. This method does not in-
volve any optimization.

C.3 Softmax classifier on synthetic data

The experiments in this subsection were performed on synthetic data by employing a binary
softmax classifier without any hidden layers. In order to train our model, we generated a two-class
dataset with N = 2× 103 samples, 103 samples per class. Each sample of the generated data has
n = 10 features and was drawn from a multivariate normal distribution with a given mean and
covariance for each class. Following [Muller, 1959], means were drawn from a 10 dimensional
sphere with radius of 1 for C0 and 5 for C1. The variance is considered spherical with the intensity
4 for C0 and 2.25 for C1.

The training leads to a Bayes risk r(δfw) = 0.1152. We quantized the weights of the trained
model using XNOR-NET (binary weights) and TFLite with only 3 bits due to the small number
of weights the model contains (20 values).
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Fig. C.4, on the left, shows the results with the binarization (XNOR-NET) and, on the right, the re-
sults for the uniform quantization (TFLite). It must be noted that d(w, ŵs) overlaps with d̂(w, ŵs).
We observe that D(w, ŵs) follows the same shape as the actual error. Our approximation is able
to outperform XNOR-NET in terms of the obtained optimal scaling factor: sD = 0.267 is rea-
sonably close to the theoretical minimum sd = 0.285 and better than sXNOR−NET = 0.139. The
Bayes risks for each scaling factor are the following: r(δfŵsd

) = 0.1751, r(δfŵsD
) = 0.1752 and

r(δfŵsXNOR−NET
) = 0.2255. On the other hand, TFLite proposes a scaling factor that is close to

the optimal one, but our approximation is closer: sTFLITE = 0.0976, sD = 0.106 and sd = 0.105.
By looking at the risk, we see that our approximation is extremely close to the theoretical minimum
giving a risk of 0.1153 and better than TFLite r(δfŵsTFLITE

) = 0.1175.

C.4 One-hidden-layer ReLU neural network on Sonar

We also performed experiments on a one-hidden-layer neural network trained on the Sonar dataset
[Gorman and Sejnowski, 1988]. It is composed of N = 208 instances, n = 60 attributes and two
classes. The network we trained had one fully connected ReLU layer with 60 neurons and a final
softmax layer. After training, we obtained an empirical risk r̂(δfw) = 0.0727. We quantized the
weights of the last layer using the same methods as in the previous subsection, except, for the
uniform quantization where we used 8 bits.

In Fig. C.5, on the left, we present the results obtained using binarization and, on the right, the re-
sults with uniform quantization. Although the 1-bit quantization performs slightly worse than the
8-bit quantization, both quantizations perform well. We observe that the XNOR-NET scaling fac-
tor sXNOR−NET = 0.4432 is far from the estimated theoretical minimum sd̃ = 0.3062, while our
approximation is closer sD̃ = 0.2522. XNOR-NET has a higher Bayes risk r̂(δfŵsXNOR−NET

) =
0.0913. Our approximation gives the same empirical risk as the one obtained with the estimated
theoretical r̂(δfŵs

D̃

) = r̂(δfŵs
d̃

) = 0.0865, which are closer to the original risk. Using the uni-
form quantization, we observe that our approximation with sD̃ = 0.0105 is almost the same as
TFLite sTFLITE = 0.0107, both close to sd̂ = 0.0111. The empirical risk values are all three at
0.0721. Although the normal assumption is not perfectly satisfied in the last layer (because of the
ReLU), it is worth noting that our approximation still performs well.

D Chapter 7: Proofs of theorems

D.1 Proof theorem 7.4.1: approximation of aj(ŵ)

The coefficient aj(ŵ) is

aj(ŵ) = λ− (w + ∆)Tµj√
(w + ∆)T (w + ∆)

, (D.21)

where λ is a constant and µj is the mean of the class j.
We recall that to quantize the weights, we use uniforme quantization with a quantization step
computed as follows:

q = max1≤i≤nwi −min1≤i≤nwi
2R . (D.22)
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(a) Binary quantization. (b) Uniform quantization (8 bits).

Figure C.5: Distortions d̂(w, ŵs), d̃(w, ŵs) and D̃(w, ŵs) for Sonar dataset with XNOR-NET
(left) and TFLite (right) as a function of the scaling factor. The orange circle and the green square
represent the minimum of d̃(w, ŵs) and D̃(w, ŵs) and the red triangles show the scaling factors
of XNOR-NET and TFLite.

Approximation of the denominator

Let us denote the denominator with

A = (w + ∆)T (w + ∆) = wTw + 2wT∆ + ∆T∆. (D.23)

Using the uniform distribution to model the components of ∆, we find

E[A] = ‖w‖22 + nq2

12 , (D.24)

and

var[A] = var[2wT∆ + ∆T∆] = E[(2wT∆ + ∆T∆)2]− E[2wT∆ + ∆T∆]2 (D.25)

= 4E[(wT∆)2] + 4E[(wT∆)(∆T∆)] + E[(∆T∆)2]− E[∆T∆]2 (D.26)

= 4‖w‖22
q2

12 + 4
5
q4

144n+ q4

144n
2 − q4

144n
2 (D.27)

= 4‖w‖22
q2

12 + q4

144

(4
5n+ n2

)
− q4

144n
2 (D.28)

= 4‖w‖22
q2

12 + 4
5
q4

144n. (D.29)
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Finally, we have

Y = 1/

√√√√(‖w‖22 + nq2

12

)(
1 +

2wT∆ + ∆T∆− nq2

12

‖w‖22 + nq2

12

)
(D.30)

= 1/

√√√√(‖w‖22 + nq2

12

)(
1 + 2wT∆
‖w‖22 + nq2

12
+

∆T∆− nq2

12

‖w‖22 + nq2

12

)
(D.31)

= 1/

√√√√‖w‖22
(

1 + nq2

12‖w‖22

)
(1 + Y1 + Y2). (D.32)

It is clear that the expectations of Y1 and Y2 are

E[Y1] = E[Y2] = 0, (D.33)

and the variances are:

var[Y1] =
4‖w‖22

q2

12(
‖w‖22 + nq2

12

)2 (D.34)

=
4‖w‖22

q2

12

‖w‖42 + 2‖w‖22
nq2

12 +
(
nq2

12

)2 (D.35)

=
4 q2

3‖w‖2
2

1 + 2nq2

12‖w‖2
2

+
(

nq2

12‖w‖2
2

)2 (D.36)

= 4γ
n (1 + 2γ + γ2) = 4

n
γ + op (γ) , (D.37)

where

γ = nq2

12‖w‖22
, (D.38)

and

var[Y2] =
4nq4

720(
‖w‖22 + nq2

12

)2 (D.39)

= 4
5

γ2

n (1 + 2γ + γ2) = 4
5nγ

2 + op(γ2). (D.40)

The terms op(γ) and op(γ2) denote a random variable with mean and variance that are no larger
than γ and γ2, respectively. Therefore, we can write an approximation to order 0,

Y = 1√
‖w‖22 (1 + γ)

(
1 + op

(
γβ
))
, (D.41)

with 0 < β < 1/2.
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The step q depends on the distribution of wi. We can use the approximation given in [Orabona and
Pal, 2015]:

E[max
i
wi −min

i
wi] ≈ 2σ

√
2 ln d. (D.42)

This approximation is interesting because it depends on two quantities directly related to the layer
of neurons: the number of neurons d and the standard deviation σ of the weights.
It is clear that

E[‖w‖22] = dσ2. (D.43)

Finally, by using this approximation in (D.38), we can approximate the value of γ. It is interesting
to note that a very rough calculation shows that

γ ≈ n8σ2 lnn
12nσ222R+2 = lnn

12
1

22R−1 . (D.44)

The quality of the approximation could thus essentially depend on the dimension n of the hidden
layer for a given number R of bits. It seems that, whatever the number of bits, the approximation
can be very efficient if the number n of neurons is sufficiently large.

Using the previous approximation of the denominator (D.41), we expand and replace the denomi-
nator as follows:

aj(ŵ) = λ−wTµj −∆Tµj√
wTw

√
1 + γ

(1 + op(γ/n)), (D.45)

where op(γ/n)) denotes a random variable with mean and variance not larger than γ/n.
We rewrite the coefficient aj(ŵ) using aj(w)

aj(ŵ) = 1√
1 + γ

(
aj(w)− ∆Tµj

‖w‖2

)
(1 + op(γ/n)). (D.46)

Since E
[

∆Tµj

‖w‖2

]
= 0 and var

[
∆Tµj

‖w‖2

]
= γ‖µj‖2

2
n , (D.46) can be rewritten as follows:

aj(ŵ) = aj(w)√
1 + γ

+ op (γ/n) . (D.47)

D.2 Proof theorem 7.4.2: approximation of the distortion d(w)

The distortion measure d(w, ŵ) is the absolute value of difference between the original risk and
the risk with quantization. The conditional distortion can be written as follows:

dj = |Rj(ŵ)−Rj(w)|. (D.48)

Consider the original risk

Rj(w) = Φ
(
(−1)jaj(w)

)
, for j ∈ {0, 1}, (D.49)

and the risk with quantization

Rj(ŵ) = Φ
(
(−1)jaj(ŵ)

)
, for j ∈ {0, 1}. (D.50)
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The problem can be reduced to a simple measuring of the area between aj(w) and aj(ŵ). This can
be done by using an approximation for definite integrals. The rectangle method [Oberbroeckling,
2021] is the simplest method used to compute an approximation of a definite integral. We apply
this method to the distortion conditioned by the class 1:

d1(w) =
∣∣∣Φ (−a1(ŵ))− Φ (−a1(w))

∣∣∣ (D.51)

=
∣∣∣Φ (a1(w))− Φ (a1(ŵ))

∣∣∣ (D.52)

≈
∣∣∣ (a1(w)− a1(ŵ))ϕ (a1(w))

∣∣∣. (D.53)

We replace a1(ŵ) with the approximation given in (D.47) which leaves us with

d1(w) =
∣∣∣ (a1(w)− a1(w)√

1 + γ
+ op(γ/n)

)
ϕ (a1(w))

∣∣∣ (D.54)

=
∣∣∣ (1− 1√

1 + γ

)
a1(w)ϕ (a1(w)) + ε(γ/n)

∣∣∣. (D.55)

ε(γ/n) is a non-random error term is of the same order as γ/n. We apply the same method for the
class 0 and the average distortion measure is given by

d(w) =
∣∣∣η(γ)

(
π0a0ϕ(a0)− π1a1ϕ(a1)

)
+ ε(γ/n)

∣∣∣, (D.56)

where aj = aj(w), η(γ) is defined by

η(γ) = 1− 1√
1 + γ

. (D.57)

D.3 Proof corollary 7.4.3: approximation of the distortion d(w)

A more accurate approximation than theorem 7.4.2 can be acquired by using Simpson’s rule
[Gautschi, 2011]. Simpson’s 1/3 rule is defined as follows:∫ b

a
f(x)dx ≈ b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
, (D.58)

where a and b are the end points.

We consider the definite integral which can be written from the conditional risks before and after
compression. The integral for class 1 is written as follows:

R1(ŵ)−R1(w) = Φ (a1(ŵ))− Φ (a1(w)) (D.59)

=
∫ a1(ŵ)

a1(w)
ϕ(x)dx, for j ∈ {0, 1}. (D.60)

By applying (D.58) to (D.60) we obtain:

d1(w) =
∫ a1(ŵ)

a1(w)
ϕ(x)dx ≈ |a1(ŵ)− a1(w)|

6

[
f(a) + 4f

(
a1(w) + a1(ŵ)

2

)
+ f(a1(ŵ))

]
.

(D.61)
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Then, we replace a1(ŵ) with the approximation given in (D.47), which leads us to:

d1(w) =
∣∣∣η(γ)

6
(
a1(w)%(a1(w))

)
+ ε(γ/n)

∣∣∣, (D.62)

where t 7→ %(t) is given by

%(t) = ϕ(t) + 4ϕ
(
ζ(γ)

2 t

)
+ ϕ

(
t√

1 + γ

)
, (D.63)

η(γ) is defined in (D.57), ζ(γ) is

ζ(γ) = 1
2

(
1 + 1√

1 + γ

)
= 1− η(γ)

2 , (D.64)

and ε(γ/n) is an error term that is of the same order as γ/n.
Computing d0(w) is similar and the average distortion measure is written as follows:

d(w) =
∣∣∣η(γ)

6
(
π0a0%(a0)− π1a1%(a1)

)
+ ε(γ/n)

∣∣∣. (D.65)







Compression pour l’apprentissage en profondeur
Diana RESMERITA

Résumé

Les voitures autonomes sont des applications complexes qui nécessitent des machines puissantes pour pouvoir fonctionner
correctement. Des tâches telles que rester entre les lignes blanches, lire les panneaux ou éviter les obstacles sont résolues
en utilisant plusieurs réseaux neuronaux convolutifs (CNN) pour classer ou détecter les objets. Il est très important que
tous les réseaux fonctionnent en parallèle afin de transmettre toutes les informations nécessaires et de prendre une décision
commune. Aujourd’hui, à force de s’améliorer, les réseaux sont devenus plus gros et plus coûteux en termes de calcul.
Le déploiement d’un seul réseau devient un défi. La compression des réseaux peut résoudre ce problème. Par conséquent,
le premier objectif de cette thèse est de trouver des méthodes de compression profonde afin de faire face aux limitations
de mémoire et de puissance de calcul présentes sur les systèmes embarqués. Les méthodes de compression doivent être
adaptées à un processeur spécifique, le MPPA de Kalray, pour des implémentations à court terme. Nos contributions se
concentrent principalement sur la compression du réseau après l’entraînement pour le stockage, ce qui signifie compresser
des paramètres du réseau sans réentraîner ou changer l’architecture originale et le type de calculs. Dans le contexte de notre
travail, nous avons décidé de nous concentrer sur la quantification. Notre première contribution consiste à comparer les
performances de la quantification uniforme et de la quantification non-uniforme, afin d’identifier laquelle des deux présente
un meilleur compromis taux-distorsion et pourrait être rapidement prise en charge par l’entreprise. L’intérêt de l’entreprise est
également orienté vers la recherche de nouvelles méthodes innovantes pour les futures générations de MPPA. Par conséquent,
notre deuxième contribution se concentre sur la comparaison des représentations en virgule flottante (FP32, FP16) aux
représentations arithmétiques alternatives telles que BFloat16, MSFP8, Posit8. Les résultats de cette analyse sont en faveur
de Posit8. Ceci a motivé la société Kalray à concevoir un décompresseur de FP16 vers Posit8. Puisque de nombreuses
méthodes de compression existent déjà, nous avons décidé de passer à un sujet adjacent qui vise à quantifier théoriquement
les effets de l’erreur de quantification sur la précision du réseau. Il s’agit du deuxième objectif de la thèse. Nous remarquons
que les mesures de distorsion bien connues ne sont pas adaptées pour prédire la dégradation de la précision dans le cas de
l’inférence pour les réseaux de neurones compressés. Nous nous concentrons sur la définition d’une nouvelle mesure de
distorsion avec une expression analytique qui a une forme de rapport signal/bruit. Un ensemble d’expériences a été réalisé
en utilisant des données simulées et de petits réseaux, qui montrent le potentiel de la mesure.

Mots-clés : Compression, réseaux de neurones profond, quantification, virgule flottante, analyse statistique, approximation des
erreurs.

Abstract

Autonomous cars represent complex applications that need powerful hardware machines to be able to function properly.
Tasks such as lane-keeping, reading and understanding traffic signs or avoiding obstacles are solved by employing convo-
lutional neural networks (CNNs) for object detection and classification. It is highly important that all the networks work
in parallel in order to transmit all the necessary information and take a common decision. Nowadays, as the networks
improve, they also have become bigger and more computational expensive. Deploying even one network becomes chal-
lenging. Compressing the networks can solve or at least alleviate this issue. Therefore, the first objective of this thesis
is to find deep compression methods in order to cope with the memory and computational power limitations present on
embedded systems. The compression methods need to be adapted to a specific processor, Kalray’s MPPA, for short term
implementations. Our contributions of this thesis mainly focus on compressing the network post-training for storage pur-
poses, which means compressing the parameters of the network without retraining or changing the original architecture
and the type of the computations. In the context of our work, we decided to focus on quantization. Our first contribution
consists in comparing the performances of uniform quantization and non-uniform quantization, in order to identify which
of the two has a better rate-distortion trade-off and could be quickly supported in the company. The company’s interest
is also directed towards finding new innovative methods for future MPPA generations. Therefore, our second contribution
focuses on comparing standard floating-point representations (FP32, FP16) to non-standard arithmetical representations
such as BFloat16, MSFP8, Posit8. The results of this analysis are in favor for Posit8. This motivated the company Kalray
to conceive a decompressor from FP16 to Posit8. Since many compression methods already exist, we decided to move to
an adjacent topic which aims to quantify the effects of quantization error on the network’s accuracy. This is the second ob-
jective of the thesis. Finally, we focus on defining a new distortion measure adapted to our requirements, which represents
a mainly theoretical contribution. Under reasonable assumptions, such as Normal input distribution, the distortion measure
takes into account only the last layer of the network, the Softmax layer, and is adapted to a binary classification model. A
set of experiments were done, using simulated data and small networks, which showcase the potential of the method.

Keywords: Data Compression, Deep Compression, Deep Learning, Deep Neural Networks, Floating-point, Quantization,
Statistical Analysis, Error Approximation.
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