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Abstract

Data-driven decision-making algorithms are increasingly applied in many domains
with high social impact, such as hiring, lending, or criminal justice. Recently, it was
shown that such algorithms could lead to discrimination against certain demographic
groups (e.g., they can discriminate by race, gender, or age). This led to a recent active
line of research—called algorithmic fairness—which studies how to develop efficient
algorithms with fairness guarantees. Most of the decision problems with high social
impact mentioned above are essentially selection problems. In selection problems, the
decision-maker must select a fixed fraction of the best candidates given their character-
istics. The notion of a selection budget contrasts selection problems with classification
problems typically studied in the algorithmic fairness literature.

In this thesis, we study the causes of discrimination in selection problems and
the impact of fairness mechanisms on the utility of selection. Our first contribution
considers a selectionproblemwith candidateswhosequality ismeasuredwith agroup-
dependent noise—a phenomenon called differential variance. We study the impact
of differential variance on group representations and how standard group fairness
mechanisms affect the selection utility in the presence of differential variance. Our
second contribution proposes a game-theoretic model of a selection problem with
differential variance. We assume strategic candidates who maximize the individual
utility bymaking a costly effort. The effort induces their quality, measured by a (group-
fair) decision-maker with group-dependent noise. We characterize the equilibrium of
such a game. In our third contribution, we consider a multistage selection problem.
We extend classical group fairness notions to a multistage setting and propose the
notions of local (per stage) and global (final stage) fairness. We then introduce and
study the price of local fairnesswhich is the ratio of utilities induced by the globally fair
algorithm to that of the locally fair algorithm.



Résumé

Les algorithmes de prise de décision basés sur des données sont de plus en plus appli-
qués dans de nombreux domaines à fort impact social, tels que l’embauche, le crédit
ou la justice pénale. Récemment, il a été démontré que ces algorithmes pouvaient
entraîner une discrimination à l’encontre de certains groupes démographiques (par
exemple, une discrimination fondée sur la race, le sexe ou l’âge). Cette constatation a
donné naissance à une ligne de recherche active récente, appelée équité algorithmique—
qui étudie comment développer des algorithmes efficaces avec des garanties d’équité.
La plupart des problèmes de décision à fort impact social mentionnés ci-dessus sont
essentiellement des problèmes de sélection. Dans les problèmes de sélection, le déci-
deur doit sélectionner une fraction fixe des meilleurs candidats compte tenu de leurs
caractéristiques. La notion de budget de sélection contraste les problèmes de sélection
avec les problèmes de classification typiquement étudiés dans la littérature sur l’équité
algorithmique.

Dans cette thèse, nous étudions les causes de la discrimination dans les problèmes
de sélection et l’impact des mécanismes d’équité sur l’utilité de la sélection. Notre
première contribution considère un problème de sélection avec des candidats dont
la qualité est mesurée avec un bruit dépendant du groupe—un phénomène appelé
variance différentielle. Nous étudions l’impact de la variance différentielle sur les re-
présentations du groupe et comment les mécanismes standards d’équité de groupe
affectent l’utilité de la sélection en présence de variance différentielle. Notre deuxième
contribution propose un modèle de théorie des jeux d’un problème de sélection avec
variance différentielle. Nous supposons des candidats stratégiques qui maximisent l’uti-
lité individuelle en faisant un effort coûteux. L’effort induit leur qualité, mesurée par
un décideur (juste de groupe) avec un bruit dépendant du groupe. Nous caractérisons
l’équilibre d’un tel jeu. Dans notre troisième contribution, nous considérons un pro-
blème de sélection en plusieurs étapes. Nous étendons les notions classiques d’équité
de groupe à un cadre à plusieurs étapes et proposons les notions d’équité locale (par
étape) et globale (étape finale). Nous introduisons et étudions ensuite le prix de l’équité
locale qui est le rapport des utilités induites par l’algorithme globalement équitable à
celui de l’algorithme localement équitable.
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Chapter 1

Introduction

1.1 Motivation and Context

The use ofmachine learning algorithms is increasingly omnipresent. These algorithms
find applications in recommendation systems, fraud detection, and language transla-
tion. Learning algorithms can outperform human experts at some tasks both in terms
of speed and accuracy, for example, in face and object recognition (Dooley et al., 2021;
Geirhos et al., 2018).

Machine learning algorithms are also used in decision-making problems with high
social impact, such as hiring, college admission, lending, or criminal justice (Finoc-
chiaro et al., 2021). Ethics is an essential component of such decisions as it directly
affects how societies work and develop. There is a lot of evidence that human decision-
makers, implicitly or explicitly, can make biased decisions based on salient demo-
graphic attributes of individuals such as gender (Ahmed et al., 2021; Human Rights
Watch, 2020), race (Bertrand and Mullainathan, 2004; Gersen, 2019; Larson et al., 2016;
Quillian et al., 2017) or age (Cohen, 2019). The rise of algorithmic decision-making
was believed to solve the problem of discrimination as machines are neutral—their
decisions cannot be governed by prejudices like for humans. However, we frequently
observe that the algorithms tend to have the same biases as the humans have (Lam-
brecht and Tucker, 2018; Larson et al., 2016). A recent line of research on the fairness
of algorithms—called algorithmic fairness—studies the solutions to the problem of dis-
crimination caused by automated decision-making systems (Barocas et al., 2019).

The algorithmic fairness literature proposes several fairness definitions and studies
how to design efficient algorithms that satisfy these fairness notions. In this literature,
fairness is typically considered as an additional constraint that introduces a tradeoff
between fairness metrics and prediction accuracy. Most works in algorithmic fairness
focus on classification problems: given the characteristics of individuals, the goal is to
train an algorithm (based on historical data) that can correctly assign a class label to each
individual. For example, in lending, a bank is interested in estimating the probability of
an individual’s default. Hence, given the characteristics of an individual (e.g., income,
marital status, etc.), an algorithm must assign a label (e.g., repay or default) with as
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(x1) (x1 , x2) yselect α1

stage 1
select α2 ≤ α1

stage 2

Figure 1.1 – Illustration of a two-stage selection process. At the first stage, an attribute
x1 of individuals is observed, and α1 proportion of them is selected. At the second
stage, an additional attribute x2 is observed, and the α2 of candidates is subselected.
The true quality y of an individual is observed only after the final stage decision. The
decision-maker aims to maximize the expected quality of selected candidates.

high accuracy as possible while providing some fairness guarantees.
Many decision-making problems with high social impact mentioned above are es-

sentially selection problems. For example, in college admissions, the number of admitted
candidates is limited by the capacity of a school. Similarly, in lending, the number of
loans shouldmeet the budget of a bank. In the general formulation of a selection prob-
lem, a decision-maker is given a number of candidates and their characteristics, and
theymust select a fixed fraction of the best of them. Selection is also often performed in
multiple stages: at each stage, the decision-maker learns more information about the
selected candidates, for example, by conducting consecutive interviews that evaluate
different candidates’ expertise. At the same time, the budget constraints, like time or
the number of interviewers, do not allow the decision-maker to select all candidates
at each stage. Hence, the selection procedures assume obtaining more and more in-
formation and selecting fewer candidates with each stage (see Fig. 1.1). Surprisingly,
the selection problem is rarely considered in the algorithmic fairness literature, which
raises the following questions:

What is the cause of discrimination in selection problems, and what is the
impact of fairness mechanisms on the utility of selection?

In this thesis, we focus on simple theoretical models that provide answers to the
above questions. We also illustrate our results by experimenting on real data. We
believe that the qualitative results given by our models can provide an aid to decision-
makers in designing ethical selection procedures.

1.2 Main Questions and Contributions

We elaborate on three different aspects of the selection problem in our contributions.
It is important to note that all three contributions study essentially the same selection
problem shown in Fig. 1.1 but from different perspectives.

1.2.1 What is the impact of noise on fairness in selection problems?

The standard explanation for discrimination in selectionproblems is implicit bias (Klein-
berg and Raghavan, 2018). The implicit bias model assumes that decision-makers have
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internal preferences for some demographic groups of individuals compared to others;
hence, they evaluate them as more qualified. In the economics literature, the authors
identify another type of discrimination called statistical discriminationwhere the lack of
information about individuals leads to discrimination (Arrow, 1973; Fang and Moro,
2011; Phelps, 1972). We argue that statistical discrimination is an equally (if not more)
frequent in data-driven solutions to selection problems since having the biases is inef-
ficient and can be fixed, while fixing the statistical discrimination is more difficult as it
requires collecting more data.

In Chapter 3, to capture the effects of statistical discrimination on selection, we
propose a model of selection problem where candidates’ quality estimation is affected
by a phenomenon called differential variance. In the model of differential variance, the
candidates’ quality is measured by an unbiased but noisy estimate which has differing
noise variances for different demographic groups. In this setting, the qualities of
individuals are fixedbut observable by adecision-maker through these noisy estimates.
We show that differential variance leads to the underrepresentation of the high-noise
groups for all small-enough selection sizes if the decision-maker is Bayesian (i.e., knows
the joint distribution of qualities and estimates). In contrast, we show that differential
variance leads to the underrepresentation of the low-noise groups for all small-enough
selection sizes if the decision-maker is group-oblivious (i.e., cannot use the group
information). After, we study how some classical group fairness mechanisms—the
demographic parity and the γ-rule1—affect the quality of selection. We show that
the Bayesian decision-maker is optimal, hence, no fairness mechanism can lead to an
increase in the selection quality; we also show a bound on the decrease of selection
quality. Interestingly, we identify model parameters in which the aforementioned
fairness mechanisms improve the selection quality if the decision-maker is group-
oblivious; hence, there is no quality-fairness tradeoff for this decision-maker. This
chapter is based on our publication (Emelianov et al., 2020) and its extended version
(Emelianov et al., 2022a).

1.2.2 What is the impact of strategic behavior on fairness in selection prob-
lems?

In most of the works studying fairness in selection problems, including our previous
contribution, it is assumed that individuals’ characteristics are fixed anddo not depend
on the selection procedure (Celis et al., 2020; Kleinberg andRaghavan, 2018). However,
there is a lot of evidence that individuals involved in selections can behave strategically
if the decision rule is common knowledge: the individuals aim at maximizing the
probability of a successful outcome by changing their attributes at some cost (Patro
et al., 2022). For instance, in hiring, people try to work on a better CV to increase
the chance of getting a good job; at the same time, they may not put more effort than
needed for getting this job.

1A fairness mechanism that imposes that the ratio of group selection rates cannot be smaller than a
predefined parameter γ ∈ [0, 1]. We discuss group fairness notions in greater detail in Chapter 2.
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In Chapter 4, we propose a model of a selection problem with strategic individuals
by extending the model of selection from Chapter 3. We assume that individuals
obtain qualities by making an effort that maximizes the individual payoff. The payoff
is equal to a fixed positive reward (e.g., a salary) if an individual is selected, minus
the quadratic effort-dependent cost. The decision-maker who performs the selection
is assumed Bayesian and chooses candidates based on their expected quality. This
defines a population game between candidates, and we prove that there is a unique
Nash equilibrium in this game. We study the two regimes of rewards for this game—
small and large—and we identify that one of the groups is always underrepresented
at equilibrium in both cases. For small rewards, we show that the high-noise group is
underrepresented for all small-enough selection sizes (as in the non-strategic setting
studied in Chapter 3). In contrast, as the reward goes to infinity, we show that the
low-noise group is underrepresented for all selection sizes. Finally, we study how
the demographic parity mechanism affects the selection quality. We show that it can
lead to an improvement of selection quality in the strategic setting even for a Bayesian
decision-makerwho is optimal in the non-strategic setting (seeChapter 3). This chapter
is based on our publication (Emelianov et al., 2022b).

1.2.3 What is the cost of per-stage fairness inmultistage selectionproblems?

As we mentioned before, selection procedures are often performed in multiple stages
where with each stage more information about the candidates is collected, but fewer
candidates are selected. In hiring, for instance, decision-makers study the applicant’s
CVs at the first stage and invite the most qualified for a second-stage interview. The
multistage nature of selection adds another dimension to the selection problem: First,
it is unclear how to extend existing fairness notions to the multistage setting. Second,
because some information becomes available only at later stages, there is a question
on how the time at which the sensitive group information is available affects the
utility/fairness of a selection.

In Chapter 5, we propose a model of multistage selection that captures the above
effects. We extend two classical notions of fairness—demographic parity and equal
opportunity—to a multistage setting. We call, thus, a locally fair an algorithm that
satisfies per-stage fairness, and a globally fair an algorithm that satisfies only final stage
fairness. We study, both theoretically and numerically, the ratio of the selection quality
by the locally fair to that of a globally fair algorithm which we call the price of local
fairness. First, we prove that the price of local fairness is bounded, i.e., per-stage
fairness cannot harm much the selection quality compared to the final stage fairness.
Second, we perform a series of experiments on synthetic and real data, in which we
show that the later the sensitive attribute is observed, the larger the price of local
fairness. In other words, decision-makers can impose local fairness if the sensitive
attribute is observed early. This chapter is based on our publication (Emelianov et al.,
2019).
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Organization of the Manuscript We discuss the theoretical and empirical back-
ground on fairness and review the related work in Chapter 2. Our contributions are
presented in Chapters 3, 4 and 5. We conclude with a discussion on implications and
perspectives of the thesis in Chapter 6.
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Chapter 2

Background and Related Work on Algorithmic
Fairness and Fairness in Economics

Our work lies at the intersection of algorithmic fairness and fairness in economics. On
the one hand, we study the problem of an optimal selection with fairness constraints.
On the other hand, we consider the impact of selection procedures on individuals,
especially on their representation in selection. Hence, we separate the related work into
two main parts. In the first part (Sections 2.1, 2.2 and 2.3), we present the current
progress of algorithmic fairness research. In the second part, we present the literature
on the economic theories of discrimination (Section 2.4) and fairness in computational
social choice (Section 2.5).

In this chapter, we review the related work in the space of fairness broadly to
position the overall contribution of our thesis. We defer a more in-depth description
of the most closely related work to each of the individual chapters dedicated to our
three contributions, where we will be able to provide a more precise comparison.

2.1 Fairness in Learning

It is worth mentioning that algorithmic fairness is a relatively new research area. The
first works studying fairness in learning problems are by Pedreshi et al. (2008) and
Dwork et al. (2012). Since then, there have been many works on defining fairness and
constructing algorithms that respect those definitions mainly for the case of supervised
learning (Chouldechova, 2017; Corbett-Davies et al., 2017; Hardt et al., 2016b; Kleinberg
et al., 2017; Lipton et al., 2018; Zafar et al., 2017b).

Supervised learning. In supervised learning problems (Hastie et al., 2001, p. 9), the
goal is to find an algorithm that can correctly assign labels ŷ to unseen data points
x, where such an algorithm is trained on the historical labeled data (xi , yi)li�1 drawn
independently from some fixed distribution. If labels are continuous (e.g., y ∈ R), then
the corresponding problem is called regression problem. If labels are categorical (e.g.,
y ∈ {0, 1, . . . ,m}), then the corresponding problem is called classification problem.
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Most of the works on fairness in supervised learning focus on studying binary
classification problems, where y ∈ {0, 1}. Here y � 1 typically represents that an
individual is good for the purpose of classification (repays the loan), and y � 0
represents that an individual is not good for the purpose of classification (defaults).
Similarly, the binary decision ŷ � 1 means a positive outcome for an individual (accept
the loan), whereas ŷ � 0 means a negative outcome for an individual (reject the loan).
Individuals are represented by multidimensional vectors x � (x1 , . . . , xd), where one
of the attributes of such a vector is called a sensitive attribute that we denote by g. The
sensitive attribute g represents the belonging of an individual to some demographic
group, e.g., to a particular race, gender, or age. For simplicity of exposition, we assume
only two demographic groups denoted by g ∈ {A, B}. Further, we will use capital
letters Ŷ, Y, X and G to denote random variables corresponding to ŷ, y, x and g.

The authors in algorithmic fairness literature propose various fairness definitions
that are typically based on equating some combinations of the classification outcome
for the demographic groups. For example, the classical demographic parity criterion
ensures that positive outcome must occur with equal probability for all demographic
groups:

P(Ŷ � 1|G � A) � P(Ŷ � 1|G � B).

Note that the demographic parity requires an exact equality of the acceptance prob-
abilities. In reality, it is sometimes hard to satisfy the exact equality, and a relaxed
version of the above definition is more desirable. For example, if we assume that the
acceptance rate ratio should not be inferior to some fixed positive parameter γ ∈ [0, 1],
this defines the γ-rule criterion:

P(Ŷ � 1|G � A)
P(Ŷ � 1|G � B)

≥ γ and
P(Ŷ � 1|G � B)
P(Ŷ � 1|G � A)

≥ γ.

For γ � 0.8, the above criterion corresponds to a classical four-fifths rule used for hir-
ing/college admission (it is part of the “Uniform Guidelines on Employee Selection
Procedures” (1978)). For γ � 1, the above notion coincides with the notion of demo-
graphic parity.

In the above definitions of demographic parity and γ-rule, the actual label y is not
taken into account. Hence, the above definitions require an (almost) equal probability
of acceptance independently on the “goodness” of an individual. More recent, the
condition called equal opportunity (Hardt et al., 2016b) ensures that the true positive
outcome must occur with equal probability for both groups, e.g., a hiring probability
of a good male engineer should be the same as for a good female engineer:

P(Ŷ � 1|Y � 1,G � A) � P(Ŷ � 1|Y � 1,G � B).

Note that the perfect classifier Ŷ � Y satisfies the notion of equal opportunity whereas
it might not satisfy the notions of demographic parity and γ-rule.

The above notions of fairness are called group fairness since they define fairness for a
group as a whole. Another approach to defining fairness in algorithmic fairness litera-
ture is to require a fair decision per each individual—a notion called individual fairness.
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It can be done by guaranteeing that similar individuals must have close probabilities
of a positive outcome (Dwork et al., 2012), or by not favoring less qualified individuals
over good qualified (Kearns et al., 2017, meritocratic fairness). Recently, a new direc-
tion of counterfactual fairness has been proposed, and it ensures that predictions for an
individual should not change in a world where an individual’s sensitive attribute (e.g.,
their race) is different while other attributes remain the same (Kilbertus et al., 2017;
Kusner et al., 2017).

There are multiple approaches to enforcing fairness. We can distinguish three
of them which are mainly pre-processing, in-processing and post-processing. In the
pre-processing approach, the goal is to transform the data so that using a classifier
on such data would guarantee some notions of fairness. For example, we could
learn a new representation of data that would guarantee statistical independence
with demographic groups (Gordaliza et al., 2019; Locatello et al., 2019; Zemel et al.,
2013). In in-processing, fairness is enforced during the training phase of a classifier.
This is usually implemented by solving a constrained optimization problem of loss
minimization with fairness constraints (Agarwal et al., 2018; Romano et al., 2020;
Zafar et al., 2017a; Zhang et al., 2018). Finally, post-processing techniques adapt
existing (possibly unfair) classifiers by transforming their predictions in such a way
that they satisfy some notions of fairness. For example, Hardt et al. (2016b) propose a
post-processing technique that guarantee group fairness notions; Petersen et al. (2021)
propose an algorithm for individual fairness.

Reinforcement learning and bandit problems. The simplest example of a reinforce-
ment learning problem is a stochastic multi-arm bandit problem (Slivkins, 2019): at every
moment t, the decision-maker is offered a finite set of arms (actions) to choose. A
chosen arm a gives some random reward ra which is a realization of a random variable
from somefixed but unknowndistributionDa associatedwith this arm a. The goal is to
obtain as large a cumulative reward as possible in a finite time. This type of sequential
decision-making has found many applications in, for example, online advertisement,
where at could represent an ad displayed to users at every moment t.

Patil et al. (2020) propose a solution to the fair stochastic bandit problem where
each arm should be pulled some required fraction of times that can be seen as a variant
of demographic parity. Joseph et al. (2016) and Gillen et al. (2018) study a problem
of fairness in contextual bandits (Slivkins, 2019, p. 93)—a modification of the stochastic
multi-arm bandit problem where at each time t, a context vector xt is observed prior
to choosing an arm at ∈ A. For example, the context xt can be seen as a compact
representation of an individual, and at as the ad displayed for such individual. The
authors call a policy fair if arms with higher long-term rewards are selected with a
higher probability than arms with lower long-term rewards which can be seen as a
variation of individual fairness. Zhang and Liu (2021) provide an extensive survey on
the current progress on fairness in sequential and reinforcement learning.
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Learning with strategic individuals. In the learning literature, particularly in the
classification literature, it is usually assumed that the feature distribution of individu-
als is fixed. Recently, it has been shown that individualsmay respond to a classification
rule by manipulating their features (at some cost) to get a better outcome if the classi-
fication rule becomes common knowledge. The classification problem with strategic
individuals was first studied by Hardt et al. (2016a). This work was followed by mul-
tiple works exploring different aspects of strategic classification problems (Braverman
and Garg, 2020; Dong et al., 2018; Kleinberg and Raghavan, 2019; Tsirtsis and Gomez
Rodriguez, 2020).

To our knowledge, the first model considering fairness in classification problems
with strategic individuals has been studied by Hu et al. (2019). In this work, it is
assumed that individuals are separated into two different groups—advantaged and
disadvantaged—and the cost of feature manipulation is group-dependent, making
it harder for disadvantaged candidates to change their features. The authors show
that, at equilibrium, the decision-maker mistakenly accepts some advantaged group
members while erroneously rejecting the disadvantaged group members. In addition,
the authors study the subsidizing mechanism that allows disadvantaged candidates
to manipulate the features at a lower cost; they show that this mechanism increases
the utility of the decision-maker, but it can decrease the utility for both groups of can-
didates. Estornell et al. (2021) study the effect of different group fairness mechanisms
in strategic classification such as equating positive rates, true positive rates, or false
positive rates.

Positioning of our work. In this thesis, we assume that the number of individuals is large,
and there is enough statistical information to perform the decision-making; hence, the learning
aspect of the selection problem is not considered. This thesis focuses on group notions of
fairness, particularly on the notions of demographic parity and equal opportunity. We want to
emphasize that in this thesis, we study the selection problem for which the size of the selection
budget governs the number of positive predictions. This budget constraint makes selection
problems different from classification problems typically studied in the algorithmic fairness
literature. For example, in (Emelianov et al., 2022b), we show that in selection problems with
strategic individuals, due to limited selection size, there is competition among individuals,
which is not the case for strategic classification problems.

2.2 Fairness in Selection Problems

In selection problems, the decision-maker is given some candidates, where each can-
didate is specified with an estimate of a quality it possesses. The decision-maker has
to select a subset of the best candidates given a fixed budget. This budget constraint
makes the selection problem different from the classification problem.

The classical explanation for discrimination in selection is implicit bias (Greenwald
and Krieger, 2006; Kleinberg and Raghavan, 2018). Implicit bias model assumes that
the decision-maker observes estimates Xi of quality Yi per each individual i, and
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these estimates are biased for disadvantaged individuals and unbiased for advantaged
individuals:

Xi �

{
Yi/β if individual i is disadvantaged,
Yi if individual i is advantaged,

where β > 1.

The problemof fairness in selection under the presence of implicit biaswas first studied
by Kleinberg and Raghavan (2018). In this work, the authors show that implicit bias
naturally leads to the underrepresentation of disadvantaged candidates. After, they
consider a fairness mechanism, called Rooney rule, which implies that at least one
candidate from the disadvantaged groupmust be selected (Collins, 2007). The authors
show that the Rooney rule can improve selection quality under certain conditions. An
extension of the Rooney rule is studied byCelis et al. (2020), where the authors consider
the ranking problem in the presence of implicit bias; the authors obtain similar results
that fairness mechanisms can improve the utility of a ranking. Long-term effects of
the Rooney rule in selection with implicit bias are studied by Celis et al. (2021). In
this model, the authors explore how the multiplicative implicit bias parameter evolves
with time as the decision-maker learns better about the candidates by comparing the
latent and the observed selection utilities.

The aforementioned papers (Celis et al., 2021, 2020; Kleinberg and Raghavan, 2018)
essentially analyze one-stage selection problems. In practice, many selection problems
are performed in two (or more) stages where the first-stage decision is refined in a
second stage with access to a more precise information. To our knowledge, the first
work studying fairness propagation in a two-stage setting is by Bower et al. (2017). The
authors show that an approximate notion of equal opportunity is multiplicative, i.e., if
the first stage selection satisfies (1+ ε)-equal opportunity and the second stage satisfies
(1+δ)-equal opportunity in isolation, then thewholepipeline satisfies (1+ε)(1+δ)-equal
opportunity. Kannan et al. (2019) consider a two-stage selection problem in application
to college admissionwhere group-dependent qualities of candidates are observedwith
group-independent noise. The authors study if certain notions of fairness, irrelevance
of group membership and equal opportunity, can be guaranteed simultaneously.

The selection problem is a particular case of aggregation of decisions: in multi-
stage selection problems, applicants rejected at earlier stages cannot be presented at
later stages. We can imagine several different compositions of dependent or indepen-
dent decisions. Dwork and Ilvento (2019) study how individually (un)fair decisions
compose if aggregated as OR/AND operations. Arunachaleswaran et al. (2021) pro-
pose a model of fairness propagation based on a directed acyclic graph, where each
starting node represents a certain group, transition from layer to layer depicts the tran-
sition between social steps. The authors study how to adjust transitions given a fixed
budget to maximize the social welfare and the welfare of the worst-off group.

Finally, one-stage selection problems can be seen as a special case of a ranking
problem. In ranking problems, the goal is to sort items (e.g., employees) to guarantee
the most relevant ranking for a user (e.g., an employer). Each ranked item gets some
exposure, and the higher the item in the list, the higher the exposure. Selection is
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thus a ranking where every individual at the top of the list gets the same exposure,
while individuals not on the top list get zero exposure. A recent survey on fairness in
ranking problems can be found in (Pitoura et al., 2021).

Positioning of our work. Our work complements those studies on fairness in selection
problems. In addition to implicit bias, we consider the effects of group-dependent noise on
selection in (Emelianov et al., 2022a, 2020, 2022b). In (Emelianov et al., 2022b), we propose
a model of selection with strategic candidates, which is, to our knowledge, is the first such a
model in the literature. Finally, in (Emelianov et al., 2019), we consider a multistage selection
problem, and study the price of fairness in this model.

2.3 Long-Term Effects of Fairness Mechanisms

In all the aforementioned literature, the impact of fairness mechanisms is studied only
in the short term. In reality, current decisions affect the future decisions that must not
be overlooked when designing decision-making policies.

There are severalworks studying the long-term impact of fairnessmechanisms. Liu
et al. (2020) study a dynamical model of classification where agents decide to obtain
a binary qualification in response to a known classification rule. The qualification
induces a feature distribution that the decision-maker observes, and the decision-
maker chooses the classification rule whichmaximizes his utility. The authors identify
the equilibria of this dynamical process; they also study how several interventions—
subsidizing the cost of efforts and decoupling the decisions for groups—affect the
qualification rates at equilibria. A similar model for demographic parity and equal
opportunity fairness criteria is proposed by Zhang et al. (2020).

Heidari and Kleinberg (2021) study the optimal algorithm that allocates opportuni-
ties in a society consisting of advantaged and disadvantaged groups. The individuals
of advantaged groups have higher chances of successfully fulfilling the opportunity
compared to disadvantaged candidates; fulfilling the opportunity gives a positive re-
ward to the decision-maker. At each period, a new generation of individuals appears,
where each new individual inherits the group of its parent with some probability.
The authors identify that the optimal policy—the one that maximizes the cumula-
tive discounted reward—naturally performs affirmative actions. Similarly, Hu and
Chen (2018) and Jehiel and Leduc (2021) study whether affirmative actions should be
imposed permanently or can be lifted.

Positioning of our work. While understanding the importance of studying the long-term
effects of fairness, we do not explicitly model this setting in this thesis. Nevertheless, our results
can be used to provide intuitions on the long-term impact of group fairness mechanisms. In
(Emelianov et al., 2022a, 2020), we identify cases when fairness mechanisms that guarantee
equal representation also lead to a higher short-term utility. Since equal representation helps
obtain better statistical information about individuals, it might also lead to removing statistical
discrimination in the future while not sacrificing the selection utility. In (Emelianov et al.,
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2022b), we show that fairness mechanisms incentivize the individuals from disadvantaged
groups to make a more significant effort. This affects intergenerational mobility since great
efforts at the current generation can potentially lower effort costs in the next generations.

2.4 Economic Models of Discrimination

In algorithmic fairness, the cause of discrimination is rarely modeled. The economic
literature proposes and studies several models of discrimination that we discuss in this
section.

Taste-based discrimination. The simplest and possibly the first model of discrimina-
tionwas proposed by Becker (1971). In this model, which is developed to explain wage
discrimination, the decision-maker assigns wages to individuals as if the difference in
wages for the majority (WA) and the minority (WB) groups must be not smaller than
a fixed positive value d, i.e., WA −WB ≥ d. In other words, the decision-maker acts
as minority workers should compensate for their employment (because of a distaste).
The model of implicit bias introduced by Kleinberg and Raghavan (2018), hence, can
be seen as a variant of this model, since the estimates of qualities X, given a fixed latent
quality Y, differ by amultiplicative parameter β for majority andminority individuals.

Statisticaldiscrimination. The theoryof statistical discrimination, initiatedbyPhelps
(1972) and Arrow (1973), argues that the lack of information about individuals is a
source of discrimination. Phelps (1972) proposes a model of discrimination where
each individual i possesses a latent quality Yi drawn from a fixed group-independent
distribution, assumed normal N(0, 1). A Bayesian decision-maker observes a noisy
estimate Xi of the candidate’s quality Yi , where the noise is symmetric and zero-mean
with a group-dependent variance σ2

Gi
:

Xi � Yi + εi · σGi , where εi ∼ N(0, 1). (2.1)

The decision-maker assigns a wage Wi equal to the expected posterior quality

Wi � E(Yi |Xi) � ρ2
Gi

Xi ,

where ρGi is a group-dependent correlation coefficient between Xi and Yi . This model
is assumed to explain the inequality of wages as an outcome of group-depended
variance of the noise. From the equation above, we observe that for a given estimate
X, the higher noise variance leads to a lower correlation coefficient value, hence, a
lower wage. In other words, two employers with equal estimates but different noise
variances will be assigned different wages.

Lundberg and Startz (1983) extend Phelps’ model to a strategic setting by assuming
two groups of workers G ∈ {A, B}, where each group of workers chooses the value
of effort mG according to a quadratic costs Cm2

G. The effort induces a quality YG
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that is assigned randomly according to a normal distributionN(mG , 1). The decision-
maker observes noisy estimate XG of a quality YG where the noise variance is group-
dependent (as in (2.1)); similarly, the decision-maker assigns the wage equal to the
expected quality of a candidate. The authors show that, at equilibrium, the high-noise
candidates make a lower effort and are paid less on average compared to the low-
noise candidates. However, if the decision-maker is restricted to not using the group
information for wage assignment, the effort is equal for both groups.

In many statistical discrimination models, the authors assume that individuals of
different groups have identical a priori characteristics, but the decision-maker uses their
group-based beliefs when facing imperfect information to assess the performance of
individuals of a particular group (Aigner and Cain, 1977; Arrow, 1973; Coate and
Loury, 1993; Fang and Moro, 2011). In some cases, these beliefs (stereotypes) lead to
equilibria in which these discriminating beliefs are fulfilled.

Positioning of ourwork. In our (Emelianov et al., 2022a), we domodel the effect of taste-based
discrimination on selection by introducing the group-dependent implicit bias. In addition to
implicit bias, we also consider the impact of statistical discrimination by introducing the group-
dependent noise as in (Phelps, 1972). Note that in (Emelianov et al., 2022a, 2020, 2022b), we
use a similar model to (Lundberg and Startz, 1983; Phelps, 1972) but in the context of selection
problems where a fraction of candidates receives a fixed reward rather than assigning wages to
individuals.

Discrimination andnorms. Discrimination can also occur due to self-selectionwhich
is usually governed by social norms. For example, women (men) tend to participate
in women- (men-) associated activities. Akerlof and Kranton (2000) were the first to
motivate and model this phenomenon where an identity of an individual governs his
decisions. There are multiple follow-up works, including, e.g., (Benabou and Tirole,
2011; Carvalho and Pradelski, 2019).

Positioning of our work. We note that in our game-theoretic model of selection in (Emelianov
et al., 2022a,b), we do not consider that individuals take into account their identity whenmaking
strategic decisions. The underrepresentation in our models is due to group-dependent cost-of-
effort and statistical discrimination.

2.5 Fairness in Computational Social Choice

Finally, in computational social choice literature, the authors study how to aggregate
individual preferences in order to maximize the social welfare and some notion of
fairness. In this section, we present some of the most classical problems in social
choice literature: fair division and voting problems. Recently computer scientists started
to look at data-driven problems from a social choice perspective and use the results
from this discipline. For example, Balcan et al. (2019) andHossain et al. (2020) propose
and study notions of fairness for classification problems based on the notion of envy-
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freeness developed in fair division literature. Chakraborty et al. (2019) propose a fair
voting mechanism applied for user-content recommendation systems.

Fair Division. In fair division literature (Suksompong, 2021), the agents must share
a good in a fair way. The fair division algorithms find their applications in many
situations, such as dividing lands or allocating computational resources to users (Suk-
sompong, 2021). A classical definition of fairness in division literature is envy-freeness.
If a good can be represented as a set A, then its division among n agents is a tuple
(A1 , . . . ,An), where Ai ⊆ A and Ai ∩ A j � ∅. Each agent i possesses a utility ui . The
allocation is called envy-free if for all agents i and j, we have that the agent i does not
envy a share of the agent j, i.e., ui(Ai) ≥ ui(A j).

The above formulation is the simplest one, and there are multiple variants of the
above problem. For example, the good can be divisible (e.g., being a segment [0, 1]),
or indivisible (e.g., being a finite set). In addition, we might want to impose additional
constraints on the allocation, e.g., a connectedness. We refer the reader to a recent
survey by Suksompong (2021) on different variations of the fair division problem.

Voting. In voting literature (Brandt et al., 2016), each agent (voter) is given a list of
alternatives (or candidates) to rank. Each agent i has its ordered list of preferences,
denoted as a binary relation <i . The aim of the decision-maker is to aggregate agents’
decisions to obtain a collective decision < that satisfies some efficiency and fairness
properties. There is a variety of fairness notions defined in the voting literature. For
example, an aggregation rule is calledweakly Paretian if a <i b for all agents implies that
a < b. An aggregation is independent of irrelevant alternatives if a relation of every two
alternatives a < b in the resulting aggregated profile will not change if adding a new
alternative c. As in the algorithmic fairness literature, there is no a unique notion of
fairness for voting, and it might be hard to satisfy some of them simultaneously. There
is, for example, a famous impossibility theorem by Arrow (Brandt et al., 2016, p. 6)
which states that when there are three or more alternatives, then every aggregation
rule that is weakly Paretian and independent of irrelevant alternatives must be a
dictatorship: the only possible aggregation rule is such that there is a dictating agent
d, for which if a <d b, then a < b.
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Chapter 3

Selection with Differential Variance

This chapter is based on our publication (Emelianov et al., 2020) and its ex-
tended version (Emelianov et al., 2022a). To have a consistent notation across all
chapters, we slightly modified the notations by changing W to Y, Ŵ to X, W̃ to
Ỹ, and x to r.

The code to generate all figures can be found at:
https://gitlab.inria.fr/vemelian/differential-variance-code

Abstract Discrimination in selection problems such as hiring or college admission
is often explained by implicit bias from the decision maker against disadvantaged
demographic groups. In this chapter, we consider a model where the decision maker
receives a noisy estimate of each candidate’s quality, whose variance depends on the
candidate’s group—we argue that such differential variance is a key feature of many
selection problems. We analyze two notable settings: in the first, the noise variances
are unknown to the decision maker who simply picks the candidates with the highest
estimated quality independently of their group; in the second, the variances are known
and the decisionmaker picks candidates having the highest expected quality given the
noisy estimate. We show that both baseline decision makers yield discrimination,
although in opposite directions: the first leads to underrepresentation of the low-
variance group while the second leads to underrepresentation of the high-variance
group. We study the effect on the selection utility of imposing a fairness mechanism
that we term the γ-rule (it is an extension of the classical four-fifths rule and it also
includes demographic parity). In the first setting (with unknown variances), we prove
that under mild conditions, imposing the γ-rule increases the selection utility—here
there is no trade-off between fairness and utility. In the second setting (with known
variances), imposing the γ-rule decreases the utility but we prove a bound on the
utility loss due to the fairness mechanism.

https://gitlab.inria.fr/vemelian/differential-variance-code
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3.1 Introduction

Discrimination in selection and the role of implicit bias Many selection problems
such as hiring or college admission are subject to discrimination (Bertrand and Mul-
lainathan, 2004), where the outcomes for certain individuals are negatively correlated
with their membership in salient demographic groups defined by attributes like gen-
der, race, ethnicity, sexual orientation or religion. Over the past two decades, implicit
bias—that is an unconscious negative perception of the members of certain demo-
graphic groups—has been put forward as a key factor in explaining this discrimination
(Greenwald and Krieger, 2006; Kleinberg et al., 2017). While human decision makers
are naturally susceptible to implicit bias when assessing candidates, algorithmic deci-
sion makers are also vulnerable to implicit biases when the data used to train them or
to make decisions was generated by humans.

To mitigate the effects of discrimination on candidates from underrepresented
groups, various fairness mechanisms1 are adopted in many domains, either by law or
through softer guidelines. For instance, the Rooney rule (Collins, 2007) requires that,
when hiring for a given position, at least one candidate from the underrepresented
group be interviewed. The Rooney rule was initially introduced for hiring American
football coaches, but it is increasingly being adopted by many other businesses in
particular for hiring top executives (Cavicchia, 2015; Passariello, 2016). Anotherwidely
used fairness mechanism is the so-called 4/5-rule (Holzer and Neumark, 2000), which
requires that the selection rate for the underrepresented group be at least 80% of that
for the overrepresented group (otherwise one says that there is adverse impact). This
rule is part of the “Uniform Guidelines on Employee Selection Procedures” (1978).2
A stricter version of the 4/5-rule is the so-called demographic parity constraint, which
requires the selection rates for all groups to be equal. An overview of these and other
fairness mechanisms can be found in (Holzer and Neumark, 2000).

Fairness mechanisms, however, have been the subject of frequent debates. On the
one hand, they are believed to promote the inclusion of deserving candidates from
underrepresented groups who would have otherwise been excluded in particular due
to implicit bias. On the other hand, they are viewed as requiring consideration of
candidates from underrepresented groups at the expense of candidates from overrep-
resented groups, which may potentially decrease the overall utility of the selection
process, i.e., the overall quality of selected candidates.

1These mechanisms are sometimes termed “positive discrimination” (e.g., in Germany, France, China,
or India) or “affirmative actions” (in the USA), often referring to their justification as corrective measures
against discrimination suffered in the past by disadvantaged groups. In our work, we analyze the effect of
these mechanisms in a particular setting of selection problems (with differential variance) independently
of their motivation, hence we use the more neutral term “fairness mechanisms.”

2A set of guidelines jointly adopted by the Equal Employment Opportunity Commission, the Civil Ser-
vice Commission, the Department of Labor, and the Department of Justice in 1978 (“Uniform Guidelines
on Employee Selection Procedures” 1978).
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Formal analysis of fairness mechanisms in the presence of implicit bias Perhaps
surprisingly, themathematical analysis of the effect of fairnessmechanisms onutility in
the context of selection problems was initiated only recently by Kleinberg and Ragha-
van (2018) (see also an extension to ranking problems by Celis et al. (2020)). Kleinberg
and Raghavan (2018) assume that each candidate i has a true latent quality Yi that
comes from a group-independent distribution. They model implicit bias by assuming
that the decision maker sees an estimate of the quality Xi � Yi for candidates from
the well-represented group and Xi � Yi/β for candidates from the underrepresented
group, where β > 1 measures the amount of implicit bias. The factor β is unknown (as
it is implicit bias) and the decisionmaker selects candidates by ranking them according
to Xi . Then Kleinberg and Raghavan (2018) show that, under a well-defined condition
(that roughly qualifies scenarios where the bias is large), the Rooney rule improves
in expectation the utility of the selection (measured as the sum of true qualities of
candidates selected for interview). This result contradicts conventional wisdom that
fairness considerations in a selection process are at odds with the utility of the selec-
tion process. Rather, it formalizes the intuition that, in the presence of strong implicit
bias (which makes it hard to compare candidates across groups), considering the best
candidates across a diverse set of groups not only improves fairness but it also has a
positive effect on utility.

The phenomenon of differential variance and its role in discrimination In this
chapter, we identify and analyze a fundamentally different source of discrimination
in selection problems than implicit bias. Even in the absence of implicit bias in a
decision maker’s estimate of candidates’ quality, the estimates may differ between the
different groups in their variance—that is, the decision maker’s ability to precisely
estimate a candidate’s quality may depend on the candidate’s group. There are at
least two main reasons for group-dependent variances in practice. The first arises
from candidates: different groups of candidates may exhibit different variability when
their quality is estimated through a given test. For instance, students of different
genders have been observed to show different variability on certain test scores (Baye
and Monseur, 2016; O’Dea et al., 2018).3 The second arises from the decision makers:
decisionmakers might have different levels of experience (or different amounts of data
in case of algorithmic decision making) judging candidates from different groups and
consequently, their ability to precisely assess the quality of candidates belonging to
different groups might be different. For instance, when hiring top executives, one may
have less experience in evaluating the performance of female candidates because there
have been fewer women in those positions in the past (in France for instance, there was
only one woman CEO amongst the top-40 companies in 2016-2020 (Isabelle Kocher, seule

3Note that, while this indicates that observed performance is more variable for one group than the
other, it is impossible to tell whether this comes from different underlying distributions or from different
measurement variances—or (more likely) fromboth. In fact, the general “variability hypothesis” is subject
to a number of controversies. Nevertheless, this indicates potential differences between groups in the
variance of the observed signals and our model can flexibly incorporate both different prior distributions
and different measurement noises.
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femme dirigeante du CAC 40 n.d.)). The quality estimate’s variance might also change
from one decision maker to another. For example, in college admissions, recruiters
might be able to judge candidates from schools in their own country more accurately
than those from international schools.

We refer to the above phenomenon as differential variance as the variance of the qual-
ity estimate is group-dependent. We posit that differential variance is an omnipresent
and fundamental feature affecting selection problems (including in algorithmic deci-
sion making). Indeed, having different variances for the different groups is mostly
inevitable and hardly fixable. In this chapter, we model the differential variance phe-
nomenon by assuming that the decision maker sees of an estimate of the quality of a
candidate Xi that is equal to the candidate’s true latent quality Yi (possibly with an
additional bias term) plus an additive noise4 whose variance depends on the group of
the candidate.

We distinguish between two notable settings. In the first setting, the noise variance
is assumed to be unknown to the decision maker—we then call it implicit variance.
In this case, a natural baseline decision maker is the group-oblivious algorithm5 that
simply selects the candidates with the highest estimated quality Xi , irrespective of
their group. The group-oblivious selection algorithm can represent not only a decision
maker unaware of the implicit variance in their estimates, but also a decision maker
determined to not use group information—as it may be the case for instance in college
admission based on standardized tests. In the second setting, the noise variance is
known to the decision maker. In this case, a natural baseline is the Bayesian-optimal
algorithm: this decisionmaker can use the group information aswell as the knowledge
of the distributions of latent quality and noise to select the candidates that maximize
the expected quality given the noisy estimate.

As a first cornerstone, our analysis shows that, in the presence of differential vari-
ance, both the group-oblivious and the Bayesian-optimal algorithms lead to discrim-
ination (although in opposite directions, see the overview of our results below). A
natural way to address this representation inequality is to adopt fairness mechanisms
proposed to address discrimination in selection such as the ones discussed above; but
this poses the same question that was investigated by Kleinberg and Raghavan (2018)
in the case of implicit bias: what is the effect of fairness mechanisms on the quality of a
selection in the presence of differential variance?

Ourmodel and overviewof our results To answer this question, wepropose a simple
modelwith two groups of candidates A and B: for each candidate i, the decisionmaker
receives a noisy (and possibly biased) quality estimate Xi � Yi − βGi + σGi εi , where
Gi is the group to which the candidate belongs and εi is a standard normal random
variable. The estimator has an additive bias βGi and a variance σ2

Gi
that depend on the

4This noise may be a property of the decision maker getting a noisy perception of the candidate’s
quality or a property of the candidate (i.e., the variability in the candidate’s performance).

5Throughout the chapter, we use the term ‘algorithm’ for the selection procedure, irrespective of
whether it is algorithmic decision making or not.
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candidate’s group. We assume that the true quality Yi comes from a distribution—
assumednormal in our analytical results—thatmay be group-dependent. The decision
maker then selects a fraction α (called selection budget) of the candidates.

The key feature of our model is the variance σ2
Gi

that depends on the candidate’s
group—to model differential variance. In its general version, we also allow a bias and
a latent quality distribution that depend on the candidate’s group. Using this general
model, we first show (Section 3.4.1) that both the group-oblivious and the Bayesian-
optimal selection algorithms systematically lead to underrepresentation—i.e., lower
selection rate—of one of the groups of candidates. Specifically, we identify a cutoff
budget such that the group-oblivious selection algorithm leads to underrepresentation
of the low-variance group for any budget α smaller than the cutoff (the most common
case) and underrepresentation of the high-variance group for any budget α larger
than the cutoff. Conversely (and for a different cutoff), the Bayesian-optimal algorithm
leads to underrepresentation of the high-variance group for low budgets and of the
low-variance group for high budgets. In fact, we show (Section 3.5.1) that this is true
even in the absence of bias and with group-independent latent quality distributions—
that is, if the noise variance is the only thing that depends on the candidate’s group.
In this particular case, the cutoff budget for both algorithms is α � 1/2.

Thenwe investigate how theutility of the group-oblivious and theBayesian-optimal
baselines are affected when imposing a fairness mechanism. Specifically, we study a
generalization of the 4/5-rule that we call γ-rule, which imposes that the selection
rate for a given group is at least γ times that of the other group for some parameter
γ ∈ [0, 1]. This includes both the 4/5-rule (γ � 0.8) and demographic parity (γ � 1)
as special cases. In the general model, we identify conditions under which the γ-rule
never decreases the utility of the group-oblivious algorithm (Section 3.4.2)—that is,
there is no trade-off between fairness and selection quality for this baseline. The utility
even strictly increases for γ close enough to one, including for demographic parity.
Interestingly, in the special case without bias andwith group-independent latent qual-
ity distributions—that is, with only implicit differential variance—, this result always
holds for any parameters (Section 3.5.1). Compared to the Bayesian-optimal baseline,
the γ-rule cannot increase the utility (since Bayesian-optimal is already optimal given
the available information). We prove, however, a bound on the ratio of the utility of
the Bayesian-optimal algorithmwith andwithout the γ-rule imposed, which limits the
decrease of utility due to imposing a fairness mechanism in this setting. Our bound
is valid in the general model (Section 3.4.3) but takes a particularly simple form in
the special case without bias and with group-independent latent quality distributions
(Section 3.5.1).

A typical case of differential variance is when the decision maker has more un-
certainty about one group, due to lack of statistical confidence (e.g., in hiring). In
such a case, the high-variance group naturally corresponds to the minority group.
The group-oblivious algorithm would then overrepresent the minority group (for
small selection budgets), and the fairness mechanism would lead to selecting fewer
of the minority group—which is counter-intuitive. We stress, however, that those are
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typically cases where the relevant baseline is the Bayesian-optimal algorithm, which
behaves very differently. Through the Bayesian posterior quality computation, this
baseline would disregard candidates for which the observed quality estimate is un-
informative, that is the high-variance group. As mentioned above, we indeed find
that the Bayesian-optimal algorithm underrepresents the high-variance group (i.e.,
the minority), and that the fairness mechanism increases the proportion of selected
high-variance candidates—which is coherent with intuition for that case. The group-
oblivious baseline is meaningful in other scenarios, typically when the decision maker
is not allowed to use the group information (e.g., in college admission based on stan-
dardized tests). In such cases, the high-variance group may not be a minority group
(and our model does not require that it is).

At a high-level, our results indicate that, with differential variance, the two decision
makers (group-oblivious and Bayesian-optimal) lead to nearly opposite outcomes in
terms of discrimination; and that the effect of imposing fairness mechanisms can be
very different for both. These results imply that a policy-maker considering fairness
mechanisms for a given problem should first evaluate to which decision maker the
selection rule corresponds, and then choose whether or not to recommend the γ-rule
based on it. Note that this should be fairly easy to distinguish between the two in
practice, since one conditions on group identity while the other does not.

Organization of the chapter The rest of the chapter is organized as follows. We
present the model in Section 3.3. We give all the results in the most general case in
Section 3.4. Due to their generality, those results are sometimes complex. In Sec-
tion 3.5, we analyze three notable cases for which the results are easier to interpret:
the case without bias and with group-independent latent quality distributions (Sec-
tion 3.5.1), the case with bias but with group-independent latent quality distributions
(Section 3.5.2), and the case without bias but with group-dependent latent quality
distributions (Section 3.5.3). Through numerical simulations in Section 3.6, we extend
our analytical results, in particular to cases where the latent quality distribution does
not follow a normal law. We conclude in Section 3.7. We provide all omitted proofs in
Section 3.8.

3.2 Related Work

The problem of selection under the presence of implicit bias (Greenwald and Krieger,
2006) is first considered by Kleinberg and Raghavan (2018). In their work, the authors
study the Rooney rule (Collins, 2007) as a fairness mechanism and show that under
certain conditions, it improves the quality of selection. An extension of the Rooney rule
is studied under a similar model by Celis et al. (2020), where the authors investigate
the ranking problem (of which the selection problem can be seen as a special case)
also in the presence of implicit bias and obtain similar results. In both papers, simple
mathematical results expressing conditions under which the Rooney rule improves
utility are obtained in the limit regime where the number of candidates is very large;
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we use the same limit regime in our work. In contrast to those papers that only
consider bias, we introduce in addition the notion of differential variance to capture
the difference in precision of the quality estimate for different groups. We also consider
an additive bias rather than a multiplicative one as it makes more sense for normally
distributed qualities. Although our model incorporates both an additive bias and
differential variance (in Section 3.4), we purposely restrict it in Section 3.5 to the
simplest possible form of differential variance so as to show its effect on the selection
problem independently of bias. In our work, we also consider the 4/5-rule (Holzer and
Neumark, 2000) (or rather an extension of it that we call the γ-rule and that includes
demographic parity) rather than the Rooney rule. Themain difference between the two
is that the 4/5-rule imposes a constraint on the fraction of selected candidates from the
underrepresented group whereas the Rooney rule or its extension in (Celis et al., 2020)
imposes a constraint on the number of selected candidates from the underrepresented
group.

Implicit bias, or simply bias (possibly from an algorithm trained on biased data) in
the evaluation of candidates quality is certainly a primary factor of discrimination; but
it is also one that may reasonably be fixable through the use of algorithms combined
with appropriate debiasing techniques and ground truth data (Raghavan et al., 2020)
(e.g., by learning fair representations of data (Locatello et al., 2019; Zemel et al., 2013)).
The effects of bias can be also fixed by introducing some fairness constraints on learned
predictionmodels. For example, in (Wick et al., 2019), the binary classification problem
in the presence of label bias is studied and it is shown that adding a demographic parity
constraint to an empirical risk minimization problem can lead to better generalization.
Similarly, Blum and Stangl (2019) study the effects of label bias on binary classification
and they show that equal opportunity fairness criterion (that ensures that true positives
are equal across the groups) can reduce the bias in prediction formost of the reasonable
cases, as well as improve the accuracy of classification. Dutta et al. (2020) quantify a
fairness-accuracy trade-off using an information theoretic approach and, in addition,
they show that for the majority of traditional fairness criteria (like equal opportunity
and demographic parity) there exists an ideal data distribution for which fairness and
Bayesian optimality are in accordance.

The notion of differential variance first appeared (with different terminology) in the
seminal work of Phelps (1972) to explain racial inequality in wages. There, a Bayesian
decision maker observes noisy signals of productivity of each worker. Productivities
are assumed to be drawn from a common distribution while precisions of estimation
differ across races. Phelps shows that a Bayesian decision maker that assigns wages
equal to the expected productivity of a worker leads to inequality of wages: in the
region of high values of signals the low-precision workers receives lower wages. Our
model is similar that of Phelps, with additional bias and possibly group-dependent
prior distributions. We also study cases where the variance is implicit—hence the deci-
sionmaker cannot use Bayes’ rule to estimate expected quality given noisy estimates—,
and focus on utility for our main results.

This chapter is an extended version of our paper “On Fair Selection in the Presence
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of Implicit Variance” (Emelianov et al., 2020). We extend it by considering the general
model with bias and group-dependent latent quality distributions, and by analyzing
in parallel the two baselines of the group-oblivious and Bayesian-optimal algorithms
(whereas in (Emelianov et al., 2020) we only look at the group-oblivious baseline, that
is at implicit variance). On the other hand, we do not include the results on two-
stage decisions makers for conciseness. Following (Emelianov et al., 2020), Garg et al.
(2021) studied a similar model (using the term differential variance that we also adopt
here). The authors propose a model of school admission with students of two groups:
advantaged and disadvantaged. Each student has an intrinsic quality which is not
observable to schools: only noisy signals of the quality are available. The advantaged
and disadvantaged students differ in the level of precision of their signals, and can also
differ in their ability to access the tests. The authors consider the case of a Bayesian
school of limited capacity. They study how different policies made by the school
(group-aware and group-unaware) affect the diversity level, individual fairness and
overall merit of admitted students. The authors also study how dropping test scores
and different abilities to access tests affects the above characteristics.

Recently, we have found a work by Temnyalov (2019) in which the author studies
a general selection problem with a finite number of candidates and multiple (ranked)
positions, each of a small capacity. Each candidate has an unobservable type, a noisy
signal of the type, and a social group (e.g., race or gender), where the type distribu-
tion is assumed group-independent. The author shows that the surplus maximizing
decision-maker will use differential treatment: in particular, when signals are unbi-
ased, the author shows that high-noise candidates will be preferred over low-noise
candidates if the surplus function has convex differences in types (in contrast, low-
noise candidates will be chosen over high-noise candidates if the surplus function
has concave differences in types). In addition, the author discusses an example of a
selection problemwith candidates of Gaussian types and noises, and shows that high-
noise candidates will be preferred over low-noise if the surplus function has convex
differences in types. The main similarity of our results with that of (Temnyalov, 2019)
is that the differential variance can lead to differential treatment (even in the absence
of implicit bias). The main difference of our work is that we consider the effects of
quota-based fairness mechanisms on the utility of selection in the presence of differen-
tial variance: we show that fairness mechanisms can increase the selection utility if the
baseline decision-maker is group-oblivious; we also show that fairness mechanisms
decrease the selection utility if the baseline decision-maker is Bayesian, but we derive
the bounds on the utility decrease. In our work, we also assume that the latent quality
distribution can be group-dependent.

3.3 Model and Selection Algorithms

3.3.1 The model of selection with differential variance

We consider the following scenario. A decision maker is given n candidates, out of
which a subset of size m � αn is selected, α ∈ (0, 1). We assume that the set of
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candidates can be partitioned in two groups: group A and group B. There are nA

candidates from group A and nB � n − nA candidates from group B. We refer to them
as A-candidates and B-candidates.

Each candidate i ∈ {1, . . . , n} is endowed with a true latent quality Yi . We assume
that the qualities Yi are drawn i.i.d. from an underlying probability distribution that
can be group-dependent.6 For our analytical results, we assume that this distribution
is a normal distribution of mean µGi and variance η2

Gi
, where Gi ∈ {A, B} is the group

of candidate i.
The goal of the decision maker is to maximize the expected quality of the selected

candidates: E [∑i∈selection Yi]. When making the selection decision, the decision maker
has access to a (possibly biased) noisy estimator of the true quality. We denote the
estimator of the quality of candidate i by Xi . We assume that the bias and the variance
of the estimator may depend on the group: for a candidate i that belongs to group
Gi ∈ {A, B}, its estimated quality is

Xi �

{
Yi − βA + σA · εi if i is an A-candidate,
Yi − βB + σB · εi if i is a B-candidate,

(3.1)

where εi is a centered randomvariable fromN(0, 1)—the standardnormaldistribution,
of mean 0 and variance 1. The variables εi are assumed independent and identically
distributed. Note that we model the bias as an additive parameter in contrast to the
multiplicative parameter in (Kleinberg and Raghavan, 2018). This is more suitable
for our model of qualities as normally distributed random variables, which can be
negative (a multiplicative bias on a negative quality would turn into a positive effect,
which is not meaningful).

We denote by σ̂2
Gi

� σ2
Gi

+ η2
Gi

the variance of the estimate Xi . Without loss of
generality, we assume that the estimates’ variance is larger for A-candidates than for
B-candidates, that is σ̂2

A > σ̂2
B. We note that none of our results require that A is also

the minority group, i.e., that nA < nB. It is possible to think of scenarios where the
minority group has lower variance in cases where the difference in variances arises
from the candidates. In the example of students’ tests scores (see Section 3.1), for
instance, one could potentially observe that males have greater variability in topics in
which they are inmajority. If the difference in variances arises from the decisionmaker
and has a statistical nature, the minority group (for past selections) will have higher
variance due to less data points to build the estimator.

Throughout the chapter, we refer to this difference in variance as differential variance
because we assume that the variance of the estimators differs across groups. Fig. 3.1
illustrates the resultingdistribution of quality estimates for groupsA andB for different
distributions of the true latent quality (by abuse of notation, we denote by XA a variable
that has the same distribution as Yi + σAεi and similarly for B).

6We present here the model in its most general form. Wewill analyze special cases, in particular when
the quality distribution is group-independent, in Section 3.5.
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Figure 3.1 –Probabilitydensity functionof the true latentqualityY and the estimated
quality X. To the purpose of illustration, the underlying distribution is assumed
group-independent and the estimation is unbiased.

3.3.2 Selection algorithms

Candidates are selected in a one-stage process: for each candidate i, the decisionmaker
observes the quality estimate Xi as well as its group Gi ∈ {A, B}. The decision maker
then selects m candidates out of those n. The goal of the decisionmaker is tomaximize
the expected quality of the selected m candidates. In this chapter, we distinguish
and study the following two baseline selection algorithms. Each baseline is a natural
selection algorithm in a situation when the decision maker knows the parameters of
the model (µGi , η2

Gi
, βGi and σ2

Gi
) or not.

Group-Oblivious Algorithm One of the most natural selection rules is to sort the
candidates according to Xi irrespective of their group and to keep the best m. We call
this the group-oblivious selection algorithm. Typical examples of the group-oblivious
algorithm could be admission processes in colleges where the selection is performed
with respect to standardized test results (nogroup information is taken into account), or
selection processes where the decision maker does not know the model’s parameters,
and in particular where it does not know the variance of the estimator (hence the
name implicit variance in that case). This selection algorithm might be also seen as a
fair treatment because the selection does not use the group label. Yet, because of the
differential variance or bias, this might lead to discrimination. We will discuss that in
Theorem 3.4.1.

Bayesian-Optimal Algorithm When the variance of the noise is known, an alterna-
tive selection algorithm is what we call the Bayesian-optimal algorithm. This algorithm
knows all the parameters of the problem (the quality distribution, the variances of
noise σ2

G, and the biases βG) and chooses the candidates with the largest expected
quality given the estimate Xi . Since (Yi ,Xi) is a bivariate normal random vector, then
using the property of conditional expectation for normal random vectors, the expected
quality of candidate given its quality estimate can be expressed as:

Ỹi � E(Yi |Xi) �
η2

Gi

σ2
Gi

+ η2
Gi

(Xi + βGi ) +
(
1 −

η2
Gi

σ2
Gi

+ η2
Gi

)
µGi . (3.2)
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Y (true quality)

X (estimate)

Ỹ (posterior)

quality

Figure 3.2 – Illustration of the baseline selection algorithms. Here, there are nblue � 8
blue and nred � 8 red candidates, and the decision maker wants to select m � 2
candidates. The quality is group-independent and there is no bias. The estimator
variance is three times higher for the blue candidates. Here, the group-oblivious
algorithm would select the 2 blue candidates. Yet, because blue candidates have
higher variance, the Bayesian-optimal algorithm would select 2 red.

Note that Ỹi converges toXi+βGi as σ2
Gi
tends to 0 (i.e., there is nonoise) and it converges

to µGi as σ2
Gi

tends to ∞. Intuitively, all candidates appear similar to the decision

maker as the precision of estimation degrades. We denote by σ̃2
Gi

� η4
Gi
/
(
η2

Gi
+ σ2

Gi

)
the variance of the expected quality Ỹi .

Perhaps more surprisingly, the Bayesian-optimal algorithm also leads to discrim-
ination (although in the opposite way as for the group-oblivious algorithm) as we
show in Theorem 3.4.2. We illustrate how the two decision making algorithms work
with an example depicted in Figure 3.2. In this example, the blue candidates have
higher variance σblue � 3σred . This implies that the posteriors Ỹi are more shrank
towards themean for blue candidates than for red candidates: as a result, the Bayesian-
optimal tends to select fewer blue candidates compared to red candidates. Note that
the Bayesian-optimal is only optimal in expectation given the information available; it
needs not be optimal for a given realization (on Figure 3.2 the optimal selection ex-post
would be one red and one blue).

3.3.3 The γ-rule fairness mechanism

For a given algorithm alg ∈ {obl, opt}, we denote by ralg
A (and ralg

B ) the proportion
of the A-candidates (and B-candidates) that are selected, where obl stands for group-
oblivious andopt for Bayesian-optimal. A selection algorithmmight favor one groupor
the other, that is ralg

A � ralg
B or ralg

B � ralg
A . Tomitigate the inequality, the decisionmaker

can introduce selection quotas. One example is the 4/5-rule (Holzer andNeumark, 2000)
that imposes that rA ≥ 4

5 rB and rB ≥ 4
5 rA.

In this chapter, we consider a generalization of the 4/5-rule that is parameterized by
γ ∈ [0, 1]. We say that a selection satisfies the γ-rule if

rA ≥ γrB and rB ≥ γrA . (3.3)
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A selection algorithm satisfies this constraint if and only if it picks at least mγnA/(nB +

γnA) A-candidates and at least mγnB/(nA + γnB) B-candidates. Indeed, the total
number of selected candidates is m � xAnA + xBnB which means that rB � (m −
rAnA)/nB. The constraint rA ≥ γrB is therefore true if rA ≥ γxB � γ(m − rAnA)/nB

which is true if and only if rA ≥ γm/(nB + γnA). Similarly, the constraint rB ≥ γrA is
true if and only if rB ≥ γ(m − rBnB)/nA.

This means that one can easily transform a baseline into a γ-fair algorithm by
first selecting at least mγnA/(nB + γnA) A-candidates and at least mγnB/(nA + γnB)
B-candidates and then filling the remaining positions according the best estimated
candidates (candidates with largest Xi if the baseline algorithm is group oblivious
and with largest Ỹi if the baseline algorithm is Bayesian-optimal), irrespective of their
group. This is what defines the γ-fair group-oblivious and γ-fair Bayesian-optimal algo-
rithms.

When γ � 0, the γ-fair version of a baseline algorithm reduces to the original
unconstrained algorithm (the algorithm that does not to take into account fairness).
When γ � 1, the γ-rule mechanism corresponds to the classical notion of demographic
parity (Zafar et al., 2017b) thatmandates that the selection rates be equal across different
groups. We highlight the demographic parity mechanism as a special and important
case of the γ-rule. Note that because nA, nB and m are integer variables, it might be
impossible to satisfy the constraints in (3.3) when γ is too close to 1. In such a case, we
say that an algorithm is γ-fair if the constraint (3.3) is satisfied up to one candidate.

3.3.4 Simplification of the selection problem for large n and m

In the remainder of the chapter, we study the selection problem when the number of
candidates is large. That is, we assume that there exist fixed fractions pA , α ∈ (0, 1)
such that

nA � bpAnc nB � d(1 − pA)ne m � bαnc ,

and let n grow. Our theoretical results are obtained in the limit where n goes to
infinity (similarly to (Celis et al., 2020; Kleinberg and Raghavan, 2018)). In Section 3.6.3
we show numerically that our results for n � ∞ continue to hold for finite selection
sizes. Note that pA represents the fraction of A-candidates in the population while α
represents the global selection ratio (or budget).

For a finite n, the selection algorithms presented in Sections 3.3.2-3.3.3 are hard
to analyze because the probability for a candidate to be selected depends on all other
candidates. As we prove below, characterizing the performance of a selection problem
is simpler when the number of candidates n is infinite because there is an equivalence
between the algorithms presented in the previous sections and threshold-based algo-
rithm. A threshold-based algorithm uses two thresholds θA and θB and selects all
Gi-candidates, such that Xi ≥ θGi .7 For given thresholds θA and θB, we denote the

7Note that the Bayesian-optimal algorithm can also be written that way, with appropriate thresholds,
because within a given group the expected qualities Ỹi are in the same order as the signals Xi .
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expected utility of the corresponding selection byV(θA , θB):

V(θA , θB) � E
[
Yi | Xi ≥ θGi

]
.

Hence, the selection of a candidate does not depend on the qualities of the other
individuals. Also, as we show in the next theorem, the fraction of A-candidates that
are selected becomes deterministic as n goes to infinity.

Lemma 3.3.1. For any of the selection algorithms presented in Sections 3.3.2-3.3.3,

1. there exists a deterministic fraction rA ∈ [0, 1] such that the fraction of A-candidates that
are selected by the algorithm converges (in probability) to rA as n grows;

2. there exist deterministic thresholds θA , θB such that the expected utility of this algorithm
converges toV(θA , θB).

Proof Sketch. The above result is essentially a direct consequence of the law of large
numbers. By theGlivenko-Cantelli theorem, the empirical distribution of the estimated
qualities of the G-candidates converges to the distribution of XG as n → ∞. This
shows that taking the best bnpArAc A-candidates or taking all A-candidates above the
rA-quantile of the distribution XA is asymptotically equivalent as n →∞.

For these given thresholds θA , θB, the fractions of selected candidates are P(Xi ≥
θGi ). Using the abovedefinition,wedenote byU(rA) the expectedutility of a threshold-
type selection algorithm that selects A-candidates with probability rA and that satisfies
the selection size constraints in expectation:

U(rA) �V(θA , θB), where θA , θB are such that
{

P(Xi ≥ θA | Gi � A) � rA ,

P(Xi ≥ θGi ) � α.
(3.4)

Note that combining the constraints in (3.4) immediately gives that such an algorithm
selects B-candidates with probability rB � (α − rApA)/(1 − pA). Hence, it is sufficient
to describe the algorithm with rA.

The above definition of expected quality is not directly applicable to the selection
algorithms presented in Section 3.3.2 because those algorithms are defined neither
in terms of fraction of selected candidates nor in terms of thresholds. In fact, for a
given selection algorithm, the fractions of selected A- and B-candidates depend on the
realizations of the random variables representing the quality (Yi) and the estimated
quality (Xi). As a result, these fractions (rA and rB) are random variables. For instance,
if because of randomness the A-candidates are evaluated much worse than the B-
candidates, then rA will be 0 for the group-oblivious algorithm. Lemma 3.3.1 shows
that when the population is large, these random fluctuations disappear. It shows that,
when n is large, the performance of the various algorithms are simply characterized
by rA.

For a finite n, characterizing precisely the utility of an algorithm like group-
oblivious is computationally difficult due to the correlations between the selection
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of the different agents. Lemma 3.3.1 allows us to greatly simplify the study of the per-
formance of the various algorithms because the functionU , defined in (3.4), depends
only on one parameter rA, and is simpler to characterize than the expectation over a
finite number of candidates n.

3.3.5 Summary of main notation

We denote respectively by robl
A , rγ-obl

A , ropt
A and rγ-opt

A the asymptotic fraction of A-
candidates that are selected for the group-oblivious, the γ-fair group-oblivious, the
Bayesian-optimal and the γ-fair Bayesian-optimal algorithms. We also identify an
important subcase of the γ-rule for γ � 1. In this case both the γ-fair group-oblivious
algorithmand the γ-fair Bayesian-optimal algorithm selectA-candidates at rate rA � α,
so there is nodifferencebetween them. Wename the corresponding selection algorithm
as demographic parity algorithm.

We denote the expected performance of the introduced algorithms by

Uobl
�U(robl

A ); U
γ-obl

�U(rγ-obl
A ); Uopt

�U(ropt
A ); U

γ-opt
�U(rγ-opt

A ); Udp
�U(rdp

A ).

We summarize the other notation in Table 3.1.

Table 3.1 – Summary of notation.

Yi latent quality of candidate i
Xi estimated quality of candidate i
Ỹi expected value of latent quality of candidate i given the estimate Xi

µG expected value of latent quality YG

η2
G variance of latent quality YG

σ2
G variance of additive noise
σ̂2

G variance of estimated quality XG. It equals σ2
G + η2

G.
σ̃2

G variance of expected quality ỸG. It equals η4
G/

(
η2

G + σ2
G

)
ralg

G fraction of G-candidates that are selected by a given algorithm “alg”
θ

alg
G threshold above which G-candidates are selected by the algorithm “alg”

φ, Φ, Φ−1 PDF, CDF and quantile of the standard normal distributionN(0, 1)

3.4 Analysis of the General Model

In this section, we present the main technical results in the most general model. The
results that we prove in this section are quite abstract; to make things more concrete
and provide more intuitive results, we will instantiate this general model in important
sub-cases in Section 3.5.

We start by showing why the two baseline algorithms lead to discrimination, in
Theorem 3.4.1 for the group-oblivious and in Theorem 3.4.2 for the Bayesian-optimal
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algorithm. Then, we specify in Theorem 3.4.3 conditions under which the γ-rule
fairness mechanism increases the utility of selection compared to the unconstrained
group-oblivious algorithm. Although it is clear that the γ-rule mechanism cannot
increase the utility of the Bayesian-optimal algorithm (since it is an expected utility and
the Bayesian-optimal algorithmmaximizes it by definition), we prove in Theorem 3.4.4
that the ratio of the utilities of the unconstrained Bayesian-optimal and the γ-fair
Bayesian-optimal algorithms is bounded.

3.4.1 Discrimination of baseline selection algorithms

Recall that we assume (without loss of generality) that group A is the high-variance
group, that is σ̂2

A > σ̂2
B. Then, the distribution of XA has longer tails compared

to the distribution of XB. Thus, if the selection size is small, A-candidates will be
selected by the group-oblivious algorithm at higher rate compared to B-candidates
because the probability to estimate an A-candidate as “outstanding” is higher than
for B-candidates. In contrast, if the selection size is large, the chance of estimating an
A-candidate as poor is larger than for B-candidates, in which case the group-oblivious
algorithm selects a lower fraction of A-candidates. This can be formally stated as
follows.

Theorem 3.4.1. Assume without loss of generality that σ̂2
A > σ̂2

B. When using the group-
oblivious selection algorithm, the selection rates for A- and B-candidates, robl

A and robl
B , satisfy:

robl
A > robl

B if and only if α < Φ
(
∆µ − ∆β
∆σ̂

)
,

where ∆µ � µA − µB, ∆β � βA − βB and ∆σ̂ � σ̂A − σ̂B.

Proof Sketch. The group-oblivious algorithm sorts candidates by their estimated qual-
ities Xi and takes the best αn by applying a group-independent threshold θ. The
expression for the selection rates robl

G � 1 − Φ
(
θ−µG+βG

σ̂G

)
and a simple rearrangement

allowsus tofind such sizes of budget α forwhich selection rates for both groups become
equal robl

A � robl
B . The result then follows from the corresponding properties of normal

CDF and our assumption that σ̂A > σ̂B. A detailed proof is given in Section 3.8.1.

The above result implies that, for a small selection budget, the group-oblivious
algorithm will select high-variance candidates at a higher rate. Note that this result
does not assume that this higher variance comes from the variance of the true quality
(η2

A and η2
B) or from the variance of the estimates (σ2

A and σ2
B). It is only assumed that

the variance of XA, equal to σ̂2
A � σ2

A + η2
A, is larger than the one of XB.

As we show below, nearly the opposite is true for the Bayesian-optimal algorithm:
for a small selection budget, in the case of group-independent variance of the latent
quality (η2

A � η2
B), a Bayesian-optimal algorithm will select fewer candidates from the

high-variance group. In the case where η2
A , η

2
B, though, which group is underrepre-

sented will be determined by the variances σ̃ and not σ̂, see our discussion below the
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theorem. Note also that the specific budget threshold at which the transition happens
is not the same as for the group-oblivious algorithm.

Theorem 3.4.2. Assume that σ̃2
A < σ̃

2
B. When using the Bayesian-optimal selection algorithm,

the selection rates for A- and B-candidates, ropt
A and ropt

B , satisfy:

ropt
A < ropt

B if and only if α < Φ
(
∆µ

∆σ̃

)
,

where ∆µ � µA − µB, ∆σ̃ � σ̃A − σ̃B.

Proof Sketch. In the Bayesian-optimal algorithm, the candidates are sorted by their
expected qualities Ỹ and a group-independent threshold is applied to select the best
αn candidates. The expression (3.2) for the expected quality ỸG allows us to compare
the selection rates ropt

A and ropt
B for different groups A or B and to find such value of

budget α for which ropt
A � ropt

B . Then using the fact that ỸG follows normal law and the
relation between σ̃A and σ̃B, we obtain our result. A complete proof can be found in
Section 3.8.2.

The result of Theorem 3.4.2 is consistent with the observation from (Phelps, 1972)
in a simpler setting (without bias and with group-independent distribution of the
latent quality Y): in the presence of differential variance, the candidates from the high-
variance group will appear more similar to each other to the decision maker, hence the
distribution of computed expected quality will have a longer tail for the low-variance
group. As a consequence, for small enough selection budgets, candidates from the
high-variance group will be selected at a lower rate.

Note that the result in Theorem 3.4.2 imposes a condition on the order between
σ̃2

A � η4
A/

(
η2

A + σ2
A

)
, the variance of ỸA, and σ̃2

B; but it is not conditional on the relation
between σ̂2

A and σ̂2
B, i.e., both σ̂

2
A > σ̂2

B and σ̂2
A ≤ σ̂

2
B are allowed. Hence the condition

σ̃2
A < σ̃2

B comes without loss of generality for this result. Note also that in the case
where the variances of the true quality are the same for both groups (ηA � ηB), the two
conditions from Theorems 3.4.1 and 3.4.2 are equivalent, that is σ̃A < σ̃B if and only if
σ̂A > σ̂B (since it holds if and only if σA > σB). The main special cases that we consider
in Section 3.5 (specifically those of Sections 3.5.1 and 3.5.2) are in this case (i.e., satisfy
ηA � ηB).

3.4.2 The γ-rule mechanism can increase the utility of the group-oblivious
algorithm

As we show in Theorem 3.4.1, the group-oblivious algorithm leads to overrepresenta-
tion of the high-variance group A, if the budget α is small. To mitigate this effect, the
decision maker can use the γ-rule fairness mechanism introduced in Section 3.3.3.

In the next theorem, we provide a condition on budgets α for which using the
γ-fair group-oblivious algorithm attains larger quality of selection compared to the
unconstrained group-oblivious algorithm. The main message of this theorem is that
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if A-candidates have larger variability of their estimate compared to B-candidates (i.e.,
σ̂2

A > σ̂2
B) and the variance of expected quality for A-candidates is smaller than for

B-candidates (i.e., σ̃2
A < σ̃

2
B), then the γ-fair group-oblivious algorithm leads to larger

quality of selection compared to the group-oblivious algorithm for both small and large
budgets α. As said earlier, when ηA � ηB, these conditions are always satisfied, up to
switching the groups A and B. At the same time, there may exist a region of budgets
α such that the γ-rule fairness mechanism harms the quality of selection compared to
the group-oblivious algorithm.

Theorem3.4.3. Without loss of generality, assume that the estimates of quality forA-candidates
has larger variance than forB-candidates σ̂2

A > σ̂
2
B. Assume also that the variance of the expected

quality is smaller for A-candidates than for B-candidates (σ̃2
A < σ̃

2
B), and let us define

αmin
� min

{
Φ

(
∆µ − ∆β
∆σ̂

)
,Φ

(
∆µ

∆σ̃

)}
, αmax

� max
{
Φ

(
∆µ − ∆β
∆σ̂

)
,Φ

(
∆µ

∆σ̃

)}
,

where ∆µ � µA − µB, ∆β � βA − βB, ∆σ̂ � σ̂A − σ̂B and ∆σ̃ � σ̃A − σ̃B. We have:

(i) For any α ∈ (0, αmin)∪(αmax , 1), the demographic parity algorithm strictly improves the
selection quality compare to the group-oblivious algorithm and the γ-fair group-oblivious
algorithm for γ < 1 weakly improves it:

Udp > Uγ-obl ≥ Uobl.

(ii) If αmin � αmax, then for α � αmin � αmax one hasUdp �Uγ-obl �Uobl.

(iii) Assume that αmin , αmax, then there exists [α̃min , α̃max], where α̃min > αmin and
α̃max < αmax, such that for any α ∈ [α̃min , α̃max], the demographic parity algorithm
strictly harms the selection quality compared to the group-oblivious algorithm and the
γ-fair group-oblivious algorithm for γ < 1 weakly harms it:

Udp < Uγ-obl ≤ Uobl.

Proof. We prove in Theorem 3.4.1 that if α < Φ
(
(∆µ − ∆β)/∆σ̂

)
, then the group-

oblivious algorithm leads to overrepresentation of the high-variance group A. At the
same time, the group-oblivious algorithm leads to underrepresentation of the group
A if α > Φ

(
(∆µ − ∆β)/∆σ̂

)
. Similarly, we prove in Theorem 3.4.2 that if σ̃A < σ̃B, then

for α < Φ
(
∆µ/∆σ̃

)
, the Bayesian-optimal algorithm underrepresents the group A and

for α > Φ
(
∆µ/∆σ̃

)
it overrepresents the group A.

Recall that for any value of α, the demographic parity algorithm requires that
candidates from both groups, A and B, must be selected at equal rates, i.e., rdp

A � rdp
B �

α. It means that if α ∈ (0, αmin) ∪ (αmax , 1), then the demographic parity algorithm
will perform a selection such that either robl

A < rdp
A < ropt

A or ropt
A < rdp

A < robl
A (also

robl
A ≤ rγ-obl

A < ropt
A or ropt

A < rγ-obl
A ≤ robl

A for γ < 1). In Section 3.8.3, we prove that the
selection quality U is a concave function of rA with a single maximum at rA � ropt

A .
Hence, from this property we conclude thatUdp > Uobl andUγ-obl ≥ Uobl for γ < 1.
Finally, (iii) is due to the fact that the utilityU is a continuous and smooth function of
rA as we prove in Section 3.8.3.
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While the statement of Theorem 3.4.3 is somewhat complex due to its generality,
in special cases (e.g., that of Section 3.5.1) we have αmin � αmax. This means that in
the special case of Section 3.5.1, we are always in case (i) of Theorem 3.4.3: the γ-fair
group-oblivious algorithm attains a larger utility than the corresponding baseline (or
at worst an equal utility).

Note that the statement of Theorem 3.4.3 is under the assumption that σ̂2
A > σ̂

2
B and

σ̃2
A < σ̃

2
B. As discussed earlier, this assumption may not be without loss of generality if

ηA , ηB. If it does not hold, then using the demographic parity algorithm could lead to
aworse utility than the group-oblivious algorithm. Even in this case, however, the ratio
Uobl/Udp remains bounded. Indeed, we can write Uobl/Udp ≤ Uopt/Udp and the
ratioUopt/Udp itself is upper-bounded aswe show in the next section (Theorem 3.4.4).

3.4.3 Bounds on the decrease of utility due to imposing γ-rule on the
Bayesian-optimal algorithm

By definition, the Bayesian-optimal algorithm maximizes the utility of the selec-
tion which means that imposing a γ-rule cannot increase the expected utility of the
selection—in most cases it decreases it. In this section, however, we obtain a bound on
the ratio of utilities for Bayesian-optimal and γ-fair Bayesian-optimal algorithms. This
is stated in the following theorem:

Theorem 3.4.4. Assume that σ̃2
A < σ̃2

B and that µA , µB ≥ 0, then for any budget α the ratio
Uopt/Uγ-opt satisfies the following bound:

1 ≤ U
opt

Uγ-opt ≤ 1 +


− α

pA+pB/γ · g(µG , σ̃G , pG , α), if α ≤ Φ
(
∆µ
∆σ̃

)(
1 − α

pA+pBγ

)
· g(µG , σ̃G , pG , α), if α > Φ

(
∆µ
∆σ̃

)
where ∆µ � µA − µB, ∆σ̃ � σ̃A − σ̃B and g(µG , σ̃G , pG , α) � pA

α
∆µ+Φ−1(1−α)∆σ̃∑

G pGµG+
φ(Φ−1(1−α))

α

∑
G pG σ̃G

.

Proof Sketch. The first inequality is due to the fact that the utility function U(rA) is
strictly concave and that it attains its maximum at rA � ropt

A as we show in Section 3.8.3.
To prove the second inequality, we need a few preparatory steps. First, using

the result of Theorem 3.4.2, we obtain that for the budgets α < Φ
(
∆µ/∆σ̃

)
, we have

ropt
A ≤ rγ-opt

A < rdp
A . Using the concavity of U and the mean value theorem from real

analysis, weobtain: U(r
opt
A )−U(r

dp
A )

ropt
A −rdp

A

≥ U′(rA � rdp
A ) �⇒ U(ropt

A )−U(r
dp
A ) ≤ −α·U′(r

dp
A ).

After, we divide both parts by U(rA � rdp
A ). The expressions for U′(rA � rdp

A ) and
U(rA � rdp

A ) can be written explicitly using the equation derived in Section 3.8.3. A
complete proof is given in Section 3.8.4.

The expression in Theorem 3.4.4 is general but complex due to the large number
of model parameters. It can be simplified as we tighten up some of the assumptions
(see Section 3.5). There are also interesting behaviors to observe for some values of
the parameters. First, if the size of group A becomes small (i.e., pA → 0), we observe
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that the function g converges to 0, hence the upper bound converges to 1. This is
expected, since the introduction of the γ-rule mechanism will affect the selection in a
tiny amount due to a small number of A-candidates. Second, as the selection budget
decreases (i.e., α→ 0), we can show using L’Hôpital’s rule that the upper bound in this
limit converges to 1 − pA∆σ̃∑

pG σ̃G
for γ � 1. In other words, the difference in the expected

values of qualities ∆µ does not play any role. This is also quite natural, since for tiny
selection budgets α, the competition is among the candidates with very large values
of quality which is due to the variance of the distribution of latent quality but not their
mean values.

3.5 Notable Special Cases of the General Model

The results in Section 3.4 might be difficult to interpret without considering some
specific cases. In this section,wedecompose the effects of different factors by tightening
up some of the assumptions of our model while keeping the others in place. We
consider the following important special cases: In Section 3.5.1 we assume that there
is no bias in the estimation of quality and that the quality distribution is group-
independent. This is the model studied in (Emelianov et al., 2020), where the only
quantity that depends on the candidate’s group is the noise variance (to isolate the
differential variance effect). In Section 3.5.2, we assume that the quality distribution is
group-independent but the estimates are biased. In Section 3.5.3 we assume unbiased
estimates but let the quality be group-dependent. All these subcases allowus to greatly
simplify the results of Theorem 3.4.3 and Theorem 3.4.4.

3.5.1 Group-independent latent quality and unbiased estimates

In this section,weassume that theunderlyingqualitydistribution is group-independent
(this is the classical assumption in the literature, see for instance (Celis et al., 2020; Klein-
berg and Raghavan, 2018)) and follows a normal law with mean µ and variance η2. To
isolate the effect of the variance, we also assume that quality estimates Xi are unbiased,
i.e., βGi � 0. The main result of this section is that imposing a fairness constraint in
this context cannot decrease the utility compared to using the unconstrained group-
oblivious baseline. We also simplify the bound of Theorem 3.4.4 on the decrease of the
utility of the Bayesian-optimal algorithm due to the γ-rule fairness mechanism.

First, the following corollary relates selection ratios for two baseline algorithms. It
can be obtained directly from Theorems 3.4.1 and 3.4.2. (Recall that in this special case
of group-independent quality distribution, we have σ2

A > σ2
B if and only if σ̂2

A > σ̂2
B,

which is also if and only if σ̃2
A < σ̃

2
B.)

Corollary 3.5.1 (Corollary of Theorems 3.4.1 and 3.4.2). Assume that the quality distri-
bution is group-independent Yi ∼ N(µ, η2) and that the quality estimates Xi are unbiased
βG � 0, ∀G ∈ {A, B}. Assume without loss of generality that σ̂2

A > σ̂2
B. When using the

group-oblivious selection algorithm and the Bayesian-optimal selection algorithm, the fractions
robl

G and ropt
G of selected candidates from each group satisfy:
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(i) robl
A > robl

B if and only if α < 1/2;

(ii) ropt
A < ropt

B if and only if α < 1/2.

Corollary 3.5.1 formalizes in simple terms, for the case of group-independent latent
quality distributions and unbiased estimators, the discrimination that results from the
two baseline algorithms. Notably, (i) states that for selection budgets below 1/2,
the group-oblivious algorithm overrepresents the high-variance group. If the high-
variance group is a minority, this is counter-intuitive. As noted in the introduction,
however, these typically correspond to cases where the Bayesian-optimal baseline
is more meaningful. Then, (ii) states that for small budgets, the Bayesian-optimal
algorithm indeed underrepresents the high-variance group.

In Section 3.4 we specify a condition under which the γ-rule fairness mechanism
is beneficial to the utility of the group-oblivious algorithm. In the special case of
group-independent prior and unbiased estimator, the thresholds αmin and αmax de-
fined in Theorem 3.4.3 coincide and are equal to 1/2. This implies the next theorem,
which shows that for this case, the γ-rule fairness mechanism cannot decrease the
average quality of a selection compared to the group-oblivious algorithm (without any
condition on α).

Corollary 3.5.2 (Corollary of Theorem 3.4.3). Assume that the quality distribution is
group-independent Yi ∼ N(µ, η2) and that the quality estimates Xi are unbiased βG � 0,
∀G ∈ {A, B}. Let, without loss generality, σ̂2

A > σ̂2
B, then for any budget α , 1/2, the

demographic parity selection algorithm provides a larger utility than the γ-fair group-oblivious
selection algorithm with γ < 1, which in turn provides a larger utility than the group-oblivious
selection algorithm:

Udp > Uγ-obl ≥ Uobl.

The above inequality is an equality when α � 1/2.

Proof. This result is a special case of Theorem 3.4.3. Since the distribution of quality is
group-independent and there is no implicit bias, then the condition in Theorem 3.4.3
holds, and αmin and αmax coincide and become equal to 1/2.

As for the general case, the γ-rule fairness mechanism cannot increase the selection
quality of the Bayesian-optimal baseline. In Theorem 3.4.4, we obtained a bound on
the decrease of utility. In the next result, we show how this result simplifies in the
modeling assumptions of the current subsection. We provide the bound for α ≤ 1/2
as it is the most interesting setting. The one for α > 1/2 can also be easily deduced.

Corollary 3.5.3 (Corollary of Theorem 3.4.4). Assume that quality distribution is group-
independent Yi ∼ N(µ, η2) and quality estimates Xi are unbiased βG � 0, ∀G ∈ {A, B}.
Let, without loss of generality, σ̂2

A > σ̂2
B and µ ≥ 0. Then for all α , 1/2, the demographic

parity selection algorithm provides a smaller utility than the γ-fair Bayesian-optimal selection
algorithm with γ < 1, which in turns provides a smaller utility than the Bayesian-optimal
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selection algorithm. The utility ratioUopt/Uγ-opt for any budget α ≤ 1/2 has the following
bound:

1 ≤ U
opt

Uγ-opt ≤ 1 + g(α) · 1
pA + (1 − pA)/γ

·
pA(ν − 1)

pA + (1 − pA)ν
,

where g(α) � αΦ−1(1−α)
φ(Φ−1(1−α)) and ν � σ̂A/σ̂B > 1.

Proof. Direct from Theorem 3.4.4 when we set µ � µA � µB and η2 � η2
A � η2

B.

For γ � 1, which is the case of demographic parity, we can further simplify the
expression in Corollary 3.5.3. By using the fact that g(α) is decreasing with α and that
limα→0 g(α) � 1, we can write

1 ≤ Uopt/Udp ≤ 1 +
pA(ν − 1)

pA + (1 − pA)ν
.

Note that as ν tends to 1, meaning that there is no difference in variances between A
and B group, the upper bound also tends to 1 and matches the lower bound. Most
interestingly, we observe that the larger the difference in variances ν, the larger the
upper bound. As ν tends to infinity, the upper bound tends to 1/(1 − pA). Hence, if,
for instance, the high-variance group is the minority (pA < 1/2), then the gap cannot
be larger than 2.

Numerical illustrations

In Fig. 3.3, we show the obtained utilities U , the selection fractions rA and the gap
values Udp/Uobl and Uopt/Udp for different budgets α from 0.01 to 0.99. Fig. 3.3a
illustrates the utilities corresponding to different selection algorithms. We observe
that the utilities of the Bayesian-optimal and demographic parity selections decrease
when α increases. This is expected because this graph represents the average quality
of a selected candidate: the average quality decreases when the number of selected
candidates increases. What is more surprising is that the behavior of the group-
oblivious selection algorithm is not monotonous: the expected utility U increases
when α goes from 0.1 to 0.3. In fact, when α < 0.1, very few B-candidates are selected
by the group-oblivious algorithm. When α ≈ 0.1–0.2, this algorithm selects a few good
B-candidates which leads to an increased average performance.

In Fig. 3.3c we show the performance gap between group-oblivious and demo-
graphic parity selection algorithms for different values of σA and fixed σB � 0.2, η � 1.
The values of σA are such that σA/σB � k, k � 2, 5, 10, 15. We see that the gap is in
general larger when the selection size α is small. This is due to the fact that as the
selection size increases, the selections by the group-oblivious and demographic parity
algorithms become close. The performance gap is zero when α � 0.5 because the
selections are exactly the same (due to the symmetry of the underlying quality distri-
bution), but it becomes positive again for larger values of α. In addition, the larger the
differential variance ratio σ2

A/σ
2
B, the larger the gain that demographic parity brings.
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Figure 3.3 – Utility U , selection rate rA and performance gaps for different budgets
α. The parameters are µ � 1, η � 1, σB � 0.2, and pA � 0.4; σA � 3 for panels (a,b).

Finally, in Fig. 3.3dwe illustrate the performance gap between the Bayesian-optimal
and the demographic parity selection algorithms for different values of σA and fixed
σB � 0.2, η � 1. As in Fig. 3.3c, the values of σA are such that σA/σB � k, k � 2, 5, 10, 15.
In addition, we also show the bound on the ratio Uopt/Udp for different values of α
and for fixed k � 15. We see that the upper bound developed in Theorem 3.4.4 is
relatively tight for small values of α, but is quite loose when α ≈ 0.5.

3.5.2 Group-independent latent quality distribution and biased estimates

In this section, we again assume that the underlying quality distribution is group-
independent but we now assume that the estimates are both biased and with dif-
ferential variance. Since the true quality distribution is group-independent, then
µ � µA � µB and η2 � η2

A � η2
B. Recall that in this case, the conditions in Theo-

rem 3.4.3 hold since under the assumption of σ̂2
A > σ̂

2
B which is w.l.o.g, the requirement

σ̃2
A < σ̃2

B is also satisfied. The expressions for the budgets αmin and αmax specified in
Theorem 3.4.3 can also be simplified:

αmin
� min

{
Φ

(−∆β
∆σ̂

)
,

1
2

}
, αmax

� max
{
Φ

(−∆β
∆σ̂

)
,

1
2

}
.

We can get several insights from this simplification. First, if both groups are
subject to the same amount of bias, βA � βB, then both αmin and αmax coincide,
αmin � αmax � 1/2. Hence, according to Theorem 3.4.3, the γ-rule fairness mechanism
in this case is beneficial to the utility of the group-oblivious algorithm for all budgets
α , 1/2. For α � 1/2, both the γ-fair group-oblivious algorithm and the group-
oblivious algorithm will perform the same Uγ-obl � Uobl for all γ > 0. Hence, if the
amount of bias is the same, the result is not different from the one when there is no
bias at all (see Section 3.5.1), which is natural and expected. We illustrate this result in
Fig. 3.4a which is the same as Fig. 3.3a.

Second, if the estimate for the high-variance group A has smaller bias than for the
low-variance group B, i.e., ∆β � βA − βB < 0, then the γ-fair mechanism will improve
the utility of the group-oblivious algorithm for all α < 1/2. It can be seen from the fact
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Figure 3.4 – The quality of selection in the presence of bias and differential variance
for different budgets α. We assume that the quality distribution is group-independent,
but A-candidates have larger variability of estimation compare to the B-candidates,
i.e. σ2

A > σ2
B. The quality distribution follows N(µ � 1, η2 � 1), the differential

variance parameters are equal to σA � 3 and σB � 0.2. The bias parameters are equal to
βA � 1, βB � 1 for 3.4a, βA � 0, βB � 1 for 3.4b and βA � 1, βB � 0 for 3.4c. The shaded
green region indicates the case α ∈ [αmin , αmax], i.e., when no increase of performance
is guaranteed by Theorem 3.4.3.

that in this case Φ
(
−∆β
∆σ̂

)
≥ 1/2 which means that αmin � 1/2. This case is illustrated in

Fig. 3.4b.
Perhaps counterintuitively, when implicit bias and implicit variance both affect

the estimation, for some values of α ∈ (αmin , αmax) specified in Theorem 3.4.3, the
γ-fair group-oblivious algorithm will always perform worse than the group-oblivious
algorithm. We observe the corresponding phenomenon on both Fig. 3.4b and Fig. 3.4c
around the values of budgets α � 0.6 and α � 0.4, respectively.

Finally, note that the Bayesian-optimal algorithm as well as the demographic parity
(implicitly) remove the biases, hence, the results and discussion from Corollary 3.5.3
can also be applied in this section.

3.5.3 Group-dependent latent quality distribution and unbiased estimates

We now assume that there is no bias but that the underlying quality distribution is
group-dependent. We can also distinguish different cases, when we isolate the effect of
group-dependency of the distribution of quality by removing the implicit bias from
our consideration. In this case, ∆β � 0 and the budgets specified in Theorem 3.4.3 can
be reformulated as follows:

αmin
� min

{
Φ

(
∆µ

∆σ̂

)
,Φ

(
∆µ

∆σ̃

)}
, αmax

� max
{
Φ

(
∆µ

∆σ̂

)
,Φ

(
∆µ

∆σ̃

)}
.

We can draw several conclusions from this simplification. First, if both groups have
equal means µA � µB and if σ̂A > σ̂B, σ̃A < σ̃B, then the condition in Theorem 3.4.3
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Figure 3.5 –The quality of selection in the presence of differential variance for differ-
ent budgets α. We assume that A-candidates have larger variability of their estimates
compare to B-candidates σ̂A > σ̂B as well as the relative amount of noise is larger
for A-candidates than for B-candidates σ̃A < σ̃B. The implicit variance parameters
are equal to σA � 3 and σB � 1. The distribution of quality is N(µA � 0, ηA � 1)
and N(µB � 0, ηB � 2) for 3.5a, N(µA � 0, ηA � 1) and N(µB � 0.5, ηB � 1) for 3.5b
and N(µA � 0.5, ηA � 1) and N(µA � 0, ηB � 1) for 3.5c. The shaded green region
indicates the case α ∈ [αmin , αmax], i.e., when no increase of performance is guaranteed
by Theorem 3.4.3.

simplifies to αmin � αmax � 1/2, which is equivalent to the result in Corollary 3.5.2.
Thus, in this case, the γ-rule mechanism improves the quality of group-oblivious
selection for all budgets α , 1/2. (If α � 1/2, then Uobl � Uγ-obl for all γ.) We
illustrate this case in Fig. 3.5a and it is the same result as in Section 3.5.1. Second, if
both groups have equal variances of quality η2

A � η2
B � η2, then the condition σ̃A < σ̃B

from Theorem 3.4.3 holds automatically. We illustrate different cases of relations
between µA and µB in Fig. 3.5b and Fig. 3.5c. Unfortunately, the bound onUopt/Uγ-opt

in Theorem 3.4.4 cannot be further simplified for the case of group-dependent quality
distribution.

3.6 Experiments

In this section,8 we challenge our theoretical results by using sets of data that do not
satisfy our assumptions. We show in Section 3.6.1 that the results are qualitatively
similar when the candidates’ true quality comes from a non-normal distribution. We
also observe a similar behavior when considering in Section 3.6.2 an artificial scenario
that we construct using a real dataset coming from the national Indian exam data. We
conclude in Section 3.6.3with experiments that show that a casewith n � 50 candidates
behaves similarly as with n � ∞.

8All codes are available at: https://gitlab.inria.fr/vemelian/differential-variance-code .

https://gitlab.inria.fr/vemelian/differential-variance-code
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3.6.1 Synthetic data with non-normal quality

Our assumption in the theoretical evaluation of Sections 3.4-3.5 was that qualities
Y follow a normal distribution. In some cases, however, the quality distribution is
quite different from normal and can be better modeled by a power law (Kleinberg
and Raghavan, 2018), this for example the case for wealth, income or number of
citations (Clauset et al., 2009), meaning that a minority possesses a large fraction of the
aggregate quality. In this experiment, we vary the quality distribution and consider
other distributions of quality Y: a Uniform distribution on [0, 1], a Beta distribution
with the shape parameter equal to 2 and the scale parameter equal to 5 or a Pareto
distribution with a scale 1 and shape 3 (whose PDF pY(y) � 3

y4 ). We generate a
single dataset of size n � 10, 000. For this dataset we perform a group-oblivious, a
demographic parity and aBayesian-optimal selections. In Fig. 3.6, we report the sample
utilities Un and sample selection rates rAn . Note that in this section we consider no
bias and group-independent quality distribution. Each line correspond to a different
prior quality.
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Figure 3.6 – Synthetic data for different prior distributions of quality Y: Uniform on
[0, 1], Beta(2,5), and Pareto(1,3): Effects of fairness on utility U and selection rate rA.
The parameters are pA � 0.4, σA � 3 and σB � 0.2. The number of candidates is fixed
to n � 10, 000.
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In Fig. 3.6b, we show the performance gap between the group-oblivious and the
demographic parity algorithms. We see that the demographic parity improves the
utility of the group-oblivious algorithm in most of the cases and that the largest
gap corresponds to the smallest budget α. Note that contrary to Corollary 3.5.2,
the demographic parity does not always improve the utility of the group-oblivious
algorithm. Yet, the loss due to the demographic parity is never larger than 0.1% while
the gain can be up to 60%.

In Fig. 3.6c, the performance ratio for the Bayesian-optimal algorithm and the
demographic parity algorithm is shown. As expected, the demographic parity harms
the utility of the Bayesian-optimal algorithm for both small and large values of budget
α. As the budget α increases, the performance gap decreases. To estimate the ratio
between the Bayesian-optimal algorithm and the demographic parity, we plot also the
value of upper bound from Theorem 3.5.3 that is calculated under an assumption that
the quality distribution is normal. We observe that the bound is not tight, however,
still dominates the values ofUopt/Udp for most values of budget α.

Finally, in Fig. 3.6d, we show how the selection fractions robl
A and ropt

A depend on
α. We see that for small budgets α, the group-oblivious algorithm tends to select
more from group A, while for large budgets, the situation is opposite. In contrast, the
Bayesian-optimal algorithm always selects A-candidates at lower rate if the selection
budget α is small.

3.6.2 IIT-JEE scores dataset

In this section, we aim to consider a scenario in which the underlying quality dis-
tributions are non-normal and non-symmetric, and are group-dependent. To easily
construct such a case, we create an artificial scenario by using a real dataset, the IIT-
JEE dataset (IIT-JEE dataset 2019), with joint entrance exam results in India in 2009.
These scores are used as an admission criterion to enter the high-rated universities.
The dataset consists of n � 384, 977 records. Every record has information about one
student: its name, gender, grade for Mathematics, Physics, Chemistry and total grade.
In the dataset, there are 98,028 women and 286,942 men. This dataset is the same as
the one considered by Celis et al. (2020).

In order to construct a model of differential variance, we consider an artificial
scenariowhere thefield “grade” is the true latent qualityY of the candidates. Themean
values and standard deviations of Y for the two groups are: µmen � 30.8, ηmen � 51.8,
µwomen � 21.2, ηwomen � 39.3. We then suppose that an unbiased estimator X of the
grade is observed. The standard deviation of estimation for male candidates is set to
σmen � 10. For the women group, which is the minority group, we consider different
cases: σwomen � k · σmen, for k � 1, 4, 7, 10. The distribution of grades Y and observed
values X for k � 4 are shown in Fig. 3.7a and 3.7b.

For the dataset we perform a group-oblivious (select best m), a demographic parity
selection (select best m, but maintain the demographic parity condition rA � rB up to
one candidate) and a Bayesian-optimal selection. The selection size varies from 2% to
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Figure 3.7 – Distribution of Y and X given gender, and selection ratios for IIT-JEE
dataset (IIT-JEE dataset 2019). Mean values and standards deviations of Y for two
groups are: µm � 30.8, ηm � 51.8, µw � 21.2, ηw � 39.3. Added noise has standard
deviation σm � 10 and σw � k · σm; k � 4 in plot (b).

100% of total number of candidates, i.e., out of 384,977 students the decision maker
selects 7,700 students or more. A selection rate of 2%was set by IIT in 2009 (Celis et al.,
2020).

The results for the ratio of Udp/Uobl are given in Fig. 3.7c. We observe that for
both small and large values of α, the demographic parity helps the utility of the group-
oblivious algorithm, if the noise values of women evaluation σwomen are large, which
agrees with the results from Theorem 3.4.3. We see that the gain can be up to around
20% if the selection size is small and up to 5% if the selection size is large. For the case
where σwomen and σmen are close, we observe no gain if the selection is large and we
observe a minor loss in utility (around 2%) if the selection is small. This is due to the
fact that in the dataset, there are more men with a high true latent quality Y, as seen in
Fig. 3.7a. We also plot the region (for k � 10) from Theorem 3.4.3 in which the utility of
the demographic parity algorithm should dominate the utility of the group-oblivious
algorithm if the distribution of quality is a group-dependent normal.

Finally, onFig. 3.7dwe show the ratioUopt/Udp fordifferent values of k � 1, 4, 7, 10.
In addition to these ratios, we also plot the bound from Theorem 3.4.4 for k � 10. We
see that the bound is quite close to the actual value ofUopt/Udp for small α.

3.6.3 Accuracy of the approximation for small n

As discussed in Section 3.3, we cannot solve the problem with finite selection sizes
exactly. Instead, we use an approximation that is exact as number of candidates n
tends to infinity (Theorem 3.3.1). In this section, we question the accuracy of this ap-
proximation when the number n of candidates is relatively small. For our experiment,
we generate datasets of different sizes n � 50, 100. For every size parameter n, we
generate 10, 000 different datasets. For a population size n, we denote by 〈Un〉 the
average quality of the selected candidates over our 10, 000 experiments. In each case,
the true latent qualities Y are generated from a normal distributionN(1, 1).

In Fig. 3.8a we plot the average utilities 〈Un〉 for a population of n � 100, where
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Figure 3.8 – Finite population size: quality of selection and expected gain of the
demographic parity over the group-oblivious algorithm. The quality distribution Y
is N(µ � 1, η2 � 1) and the noise parameters are σA � 3, σB � 0.2. The number of
experiments per set of parameters is K � 10, 000. The shaded areas are the confidence
intervals (corresponding to one standard deviation on the estimation of the empirical
mean).

we select m individuals and where we vary m from 10 to 100. The shaded region
corresponds to a confidence interval. We consider three selection algorithms (demo-
graphic parity, group-oblivious and Bayesian-optimal) and compare the performance
for n � 100 with the limiting quantities Udp, Uobl and Uopt. We observe that, even
for n � 100, the average values of utility are close to the approximation. In Fig. 3.8b
we compare the average ratio of performances 〈Udp

n /Uobl
n 〉 for different n. We observe

that the approximation for n � 50 is a good prediction of the average gain provided by
the use of demographic parity. Similarly, in Fig. 3.8c, we compare the average ratio of
performances 〈Uopt

n /U
dp
n 〉 for different n. Again, the curves for finite n are still quite

close to the case where n →∞.

3.7 Conclusion and Discussion

In this chapter, we study a simple model of the selection problem that captures the
phenomenon of differential variance, that is, the decision maker has estimates of the
candidates’ quality with different variances for different demographic groups. We
distinguish two notable cases. In the first case, the decision maker does not have
information about the estimate properties (variances and biases); as a result they
use a group-oblivious algorithm. In the second case, every information about the
distribution of quality is known, and the decision maker is Bayesian-optimal.

First, we show that both baseline algorithms (without any fairness constraint) lead
to discrimination. Thenwe identify conditions underwhich, in the first case, the γ-rule
fairness mechanism (a generalization of the 4/5 rule) leads to a higher selection utility
compared to using the group-oblivious baseline. In the second setting, the γ-rule
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mechanism is harmful to the utility of Bayesian-optimal baseline but we prove that
the utility decrease is bounded. Overall, our results contribute to a recent thread of
works identifying cases in which, contrary to conventional wisdom, imposing fairness
mechanisms does not come at the cost of utility (or even if it does, that the cost is
bounded). Beyond fitting a particular application in detail, our results are useful in
thinking about the impact of possible policies. For instance, they can help evaluate the
effect of imposing a given fairness mechanism, or deciding whether or not to allow
access to group information in a particular application.

Our theoretical results are obtained under the assumption that the true latent
quality Y follows a normal law (to allow for analytical derivations). This assumption
can be relaxed: we can plug into the model any distribution of latent quality (e.g.,
Pareto, uniform, etc.). We show numerically in Section 3.6 that it does not change the
flavor of themain results. Extending these results theoretically is, however, challenging
as in our proofs we operate with the expression for the conditional expectation of
true latent quality given the noisy estimate. In a non-normal case, this conditional
expectation cannot, in general, be expressed in closed form, which complicates the
analysis.

Ourmodeling assumptions imply that a candidate’s quality does not depend on the
selection strategy used. If attaining a certain level of quality comes at a cost, then the
interactionbetweendecisionmakers and candidatesmaybe seen as a game. Itwouldbe
interesting to see howdifferential variance affects the incentives of candidates and how
the γ-rule changes them in this game. We consider this game-theoretic formulation of
the selection problem in Chapter 4.

Throughout this chapter, we have studied the effect of imposing demographic
parity at the first stage on the final selection utility. However, a natural question to ask
is, for example, what is the effect of imposing fairness at the first stage on the fairness of
the second stage selection in case of a two-stage selection process? We leave a detailed
investigation of this aspect of selection problems to Chapter 5.

3.8 Omitted Proofs

In this section we provide detailed proofs of the statements given before. Namely,
these are proofs of Theorem 3.4.1, Theorem 3.4.2, Theorem 3.4.3 and Theorem 3.4.4.

3.8.1 Proof of Theorem 3.4.1

By our assumptions, the estimates of qualities for G-candidates follow a normal law
with the mean µG − βG and the variance σ̂2

G � η2
G + σ2

G. Recall that the selection
rate robl

G for the group-oblivious algorithm is a probability for the G-candidate to
have an estimated quality larger than a predefined group-independent threshold:
robl

G �P(X ≥ θobl |G). Taking all that into account, the selection rate for G-candidates
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can be expressed as:

robl
G � 1 −Φ

(
θobl − µG + βG

σ̂G

)
.

This shows that the condition robl
A > robl

B is equivalent to θobl−µA+βA
σ̂A

<
θobl−µB+βB

σ̂B
,

since Φ is an increasing function of its argument. Hence, by rearranging the terms
we conclude that θobl >

µA σ̂B−µB σ̂A
σ̂B−σ̂A

+
βB σ̂A−βA σ̂B
σ̂B−σ̂A

. By substituting the corresponding
threshold to the expression for the selection rate robl

G , we end up with the expression
for the values of budgets α for which robl

A > robl
B . The calculations show that for the

budgets α < 1 − Φ
(
(µA−µB)−(βA−βB)

σ̂B−σ̂A

)
� Φ

(
∆µ−∆β
∆σ̂

)
using the group-oblivious algorithm

leads to overrepresentation of a high-variance group A, where we use the notation
∆µ � µA − µB, ∆β � βA − βB and ∆σ̂ � σ̂A − σ̂B.

3.8.2 Proof of Theorem 3.4.2

The Bayesian-optimal algorithm selects candidates for which the expected quality Ỹ
is larger than some group-independent but budget-dependent threshold θ̃. Since
ỸG follows a normal law with the mean µG and the variance σ̃2

G, we can write that

ropt
G � 1−Φ

(
θ̃−µG
σ̃G

)
. In the rest of the proof, without loss of generality we assume that

σ̃2
A < σ̃

2
B, hence, we can calculate that

ropt
A < ropt

B ⇐⇒
θ̃ − µA

σ̃A
>
θ̃ − µB

σ̃B
⇐⇒ θ̃ >

µA σ̃B − µB σ̃A

σ̃B − σ̃A
.

By substituting the corresponding threshold to the expression for the selection rate
ropt

G , we end up with the expression for the values of budgets α for which ropt
A < ropt

B .

The calculations show that this is for all budgets α < Φ
(
∆µ
∆σ̃

)
, wherewe use the notation

∆µ � µA − µB and ∆σ̃ � σ̃A − σ̃B.

3.8.3 Properties of the utilityU (Proof of Theorem 3.4.3)

In this section, we study the properties of the utility function U(rA) independently
from the selection algorithm used. We give the expression for the derivative of U
as a function of rA. This expression allows us to prove that the utility function U
is strictly concave. This implies that as we have robl

A ≤ rγ-obl
A ≤ rγ-opt

A ≤ ropt
A or

robl
A ≤ rγ-obl

A ≤ rγ-opt
A ≤ ropt

A , one always hasU(robl
A ) ≤ U(r

γ-obl
A ) ≤ U(rγ-opt

A ) ≤ U(ropt
A ),

with strict inequalities whenever the above inequalities are strict.

Lemma 3.8.1. Assume that the budget α is fixed.

1. The first derivative of the utilityU(rA) can be expressed as follows:

U′(rA) �
pA

α

[
(θA + βA)η2

A + µAσ2
A

η2
A + σ2

A

−
(θB + βB)η2

B + µBσ2
B

η2
B + σ2

B

]
(3.5)
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where θA , θB are such thatP(X ≥ θA | G � A) � rA and
∑

G∈{A,B} P(X ≥ θG | G)·pG �

α.

2. The utilityU(rA) is strictly concave.

Proof. By definition ofU in (3.4), the utilityU equalsV(θA , θB)where θA , θB are the
unique thresholds such that P(X ≥ θA | G � A) � rA and

∑
G∈{A,B} P(X ≥ θG | G) · pG �

α. Using that ỸG and XG are normally distributed these quantities can be expressed
as:

V(θA , θB) �
1
α

∑
G

pG

∫ ∞

θG

dx
∫ ∞

−∞
dy

[
y · 1

ηG
φ

(
y − µG

ηG

)
· 1
σG
φ

(
x − y + βG

σG

)]
,

rG(θG) �
∫ ∞

θG

dx
∫ ∞

−∞
dy

[
1
ηG
φ

(
y − µG

ηG

)
· 1
σG
φ

(
x − y + βG

σG

)]
.

Using the chain rule, we can write the first derivative of selection utility:

dU
drA

�

∑
G

∂V
∂θG

dθG

drA
. (3.6)

From the budget constraint pArA +pBrB � α, by differentiating both parts by rA, we ob-
tain that pA

drA
drA

+ pB
∂rB
∂θB

dθB
drA

� 0 which implies that dθB
drA

� − pA
pB

∂θB
∂rB
. Then, by substituting

the obtained expression for dθB
drA

into (3.6), we obtain that dU
drA

� pA

(
∂V
∂θA

∂θA
∂rA
− ∂V
∂θB

∂θB
∂rB

)
.

From this, the expression (3.5) follows directly.
We observe that the first derivative is linear in the selection thresholds θA and θB.

Thus, as the selection rate rA increases, the derivativeU′rA
decreases which means that

the functionU(rA) is strictly concave.

3.8.4 Proof of Theorem 3.4.4

Assume that α < Φ
(
∆µ
∆σ̃

)
. By Theorem 3.4.2, we have ropt

A < rdp
A . As we prove in

Lemma 3.8.1, the utility function U is concave function of rA. Using the concavity

of U we have U(r
opt
A )−U(r

dp
A )

ropt
A −rdp

A

≥ U′(rA � rdp
A ) which implies that U(ropt

A ) − U(r
dp
A ) ≤

(0 − α) · U′(rdp
A ), where we use the fact that rdp

A − ropt
A ≤ α for all budgets α < Φ

(
∆µ
∆σ̃

)
.

Bydividing both sides byU(rdp
A ), from the above inequalityweobtain the following

upper bound:

U(ropt
A )

U(rdp
A )
≤ 1 − α ·

U′(rdp
A )

U(rdp
A )

,

The expression for U′(rdp
A ) can be written explicitly by using (3.5) and the fact that

group-dependent thresholds for the demographic parity algorithm can be calculated



Chapter 3. Selection with Differential Variance 49

as θdp
G � µG − βG + σ̂GΦ

−1(1 − α):

U′(rdp
A ) �

pA

α

©­­«µA − µB +Φ−1(1 − α)


η2
A√

σ2
A + η2

A

−
η2

B√
σ2

B + η2
B


ª®®¬ �

pA

α

(
∆µ +Φ−1(1 − α)∆σ̃

)
.

The utility by the demographic parity algorithm can be calculated using the law of
total expectation and the expected value of truncated normal distribution as follows:

U(rdp
A ) �

∑
G

pGµG +
φ

(
Φ−1 (1 − α)

)
α

∑
G

pG
η2

G√
σ2

G + η2
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∑
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pGµG +
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(
Φ−1 (1 − α)

)
α

∑
G

pG σ̃G .

Hence, from the above inequality and the expressions forU(rdp
A ) andU′(r

dp
A ), we

can obtain the following upper bound on the ratioUopt/Udp for α < Φ(∆µ/∆σ̃)9:

U(ropt
A )

U(rdp
A )
≤ 1 − α ·

pA

α

∆µ +Φ−1(1 − α)∆σ̃∑
G pGµG +

φ(Φ−1(1−α))
α

∑
G pG σ̃G

.

For the γ-fair Bayesian-optimal algorithm, the upper bound on Uopt/Udp can
be calculated in a similar manner. The values of the selection rate difference for
α < Φ(∆µ/∆σ̃) can be upper bounded as rγ-opt

A − ropt
A ≤ α

pA+pB/γ , since the selection by

the Bayesian-optimal algorithm lies either inside the γ-region rA ∈
[

α
pA+pB/γ ,

α
pA+γpB

]
or on its boundary. For α > Φ(∆µ/∆σ̃), the difference can be upper bounded as
ropt

A − rγ-opt
A ≤ 1 − α

pA+γpB
.

9Note that the case α > Φ(∆µ/∆σ̃) is proven similarly, except that we use ropt
A − rdp

A ≤ 1 − α.
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Chapter 4

Selection with Differential Variance in the
Strategic Setting

This chapter is based on our publication (Emelianov et al., 2022b). To have a
consistent notation across all chapters, we slightly modified the notations by
changing W to Y, Ŵ to X, W̃ to Ỹ, and x to r.

The code to generate all figures can be found at:
https://gitlab.inria.fr/vemelian/strategic-selection-code

Abstract To better understand discriminations and the effect of affirmative actions
in selection problems (e.g., college admission or hiring), in Chapter 3 we proposed
a model based on differential variance. This model assumes that the decision-maker
has a noisy estimate of each candidate’s quality and puts forward the difference in
the noise variances between different demographic groups as a key factor to explain
discrimination. The literature on differential variance, however, does not consider the
strategic behavior of candidates who can react to the selection procedure to improve
their outcome, which is well-known to happen in many domains.

In this chapter, we study how the strategic aspect affects fairness in selection prob-
lems. We propose to model selection problems with strategic candidates as a contest
game: A population of rational candidates compete by choosing an effort level to in-
crease their quality. They incur a cost-of-effort but get a (random) quality whose
expectation equals the chosen effort. A Bayesian decision-maker observes a noisy
estimate of the quality of each candidate (with differential variance) and selects the
fraction α of best candidates based on their posterior expected quality; each selected
candidate receives a reward S. We characterize the (unique) equilibrium of this game
in the different parameters’ regimes, both when the decision-maker is unconstrained
and when they are constrained to respect the fairness notion of demographic parity.
Our results reveal important impacts of the strategic behavior on the discrimination ob-
served at equilibrium and allow us to understand the effect of imposing demographic

https://gitlab.inria.fr/vemelian/strategic-selection-code
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parity in this context. In particular, we find that, in many cases, the results contrast
with the non-strategic setting. We also find that, when the cost-of-effort depends on
the demographic group (which is reasonable in many cases), then it entirely governs
the observed discrimination (i.e., the noise becomes a second-order effect that does not
have any impact on discrimination). Finally we find that imposing demographic parity
can sometimes increase the quality of the selection at equilibrium; which surprisingly
contrasts with the optimality of the Bayesian decision-maker in the non-strategic case.
Our results give a new perspective on fairness in selection problems, relevant in many
domains where strategic behavior is a reality.

4.1 Introduction

Recent literature on fairness in selection problems analyzed the problem using models
based on two key ingredients to explain discrimination. Kleinberg and Raghavan
(2018) model selection problems with implicit bias (see also (Celis et al., 2021, 2020;
Mehrotra et al., 2022)), that is, where the decision-maker implicitly under-evaluates the
quality of the candidates fromdisadvantageddemographic groups. On the other hand,
in Chapter 3, following ideas from the economics literature on statistical discrimination
(see Section 4.2), we assume that the decisionmaker’s estimate of the candidates quality
is unbiased but has a higher variance for some demographic groups (a phenomenon
terms implicit or differential variance). With both types of models, the authors study the
discrimination that comes out of baseline decision-makers, and the impact of imposing
fairness mechanisms such as the Rooney rule or the four-fifths rule.

In the above literature, the characteristics of the candidates used for selection (in
particular, their qualities) are assumed to be fixed and exogenous—i.e., they do not
depend on the selection procedure. In practice, however, candidates (i.e., individuals)
involved in selection problems can adapt to the selection procedure in order to increase
the chances of a positive outcome. Such a strategic behavior is observed in many do-
mains (Patro et al., 2022; Woolley, 2017). A recent thread of literature on strategic
classification is devoted to modeling and analyzing the impact of this strategic behavior
on classification problem (Braverman and Garg, 2020; Dong et al., 2018; Hardt et al.,
2016a; Kleinberg and Raghavan, 2019; Miller et al., 2020; Milli et al., 2019; Tsirtsis
and Gomez Rodriguez, 2020; Zhang et al., 2019). The selection problem, however, is
fundamentally different from a classification problem in that the number of positive
predictions is constrained—this will in particular lead to competition between individ-
uals, see below. Moreover, this thread of literature did not investigate discrimination
issues. This leaves open the key question, which is our focus in this chapter: How does
the strategic behavior of candidates affect discrimination and the impact of fairness mechanisms
in selection problems?

The selection problemwith strategic candidates modeled as a contest game In this
chapter, we propose to model the selection problem with strategic candidates as a
contest game (that is, roughly, as a game where candidates compete for a reward). We
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consider a population of candidates. Each candidate chooses an effort level m that
they exert to improve their quality, at a quadratic cost Cm2/2 (where C is a constant
coefficient). Each candidate has a latent quality Y drawn randomly whose expected
value is equal to their selected effort m. A Bayesian decision-maker observes a noisy
estimate X of the quality Y and selects a fraction α of the best candidates based on
the posterior expected quality Ỹ � E(Y |X). All selected candidates receive a reward
of size S, which is a quantitative measure of the benefit that the selection brings to a
candidate (e.g., a job position or an education).

In our model, we assume that the population of candidates is divided in two
groups: the high-noise (H) and the low-noise (L) group (which refers to the noise in the
estimate X of the candidates quality). This group-dependent noise represents a form
of information inequality common across different demographic groups: decision-
makers are less familiar with candidates from certain groups (the H-candidates), such
that they are less able to precisely estimate the qualities of these candidates. This
phenomenon is called differential variance (see Chapter 3). It is at the basis of the
economic theory of statistical discrimination and it was first described by (Phelps,
1972) to explain the racial inequality of wages. In addition to group-dependent noise,
we also consider a group-dependent cost coefficient (i.e., CH , CL). The group-
dependent cost coefficient models socioeconomic inequalities; e.g., for students from
low-income families it is typically harder to reach a desired level of quality due to
costly preparatory courses.

Overview of our results Our model of a selection problem with strategic candidates
defines a (population) game. We first show that this game has a unique Nash equi-
librium. Then we focus primarily on characterizing the equilibrium in the regime of
large rewards S, which corresponds roughly to high-stake selection problems. In this
regime, we show, at equilibrium, the following discrimination resulting from our
model:

(i) If the cost coefficient is group-independent (CH � CL), then the high-noise can-
didates make a greater effort in average than the low-noise candidates. The
latter are underrepresented1 in the selection, which is counterintuitive and is in
contrast with the results in the non-strategic setting studied in Chapter 3.

(ii) If the cost coefficient is group-dependent (CH , CL), then the noise level does not
affect the outcome of the game. The cost-advantaged candidates (those forwhom
the cost coefficient is smaller) make a greater average effort compared to the cost-
disadvantaged candidates, and the latter are underrepresented, irrespective of
the noise. The noise is a second order effect compared to the cost difference,
which totally dominates. This offers a potential explanation as to why low-noise

1“Underrepresented” in our paper means “having less representation in the selection than its share in
the candidates’ population”. This is a classical definition in the algorithmic fairness literature where the
notion of demographic parity would mean that the two groups are equally represented.



Chapter 4. Selection with Differential Variance in the Strategic Setting 53

candidates are often not underrepresented in practice: this is because the cost of
effort for the high-noise candidates is usually large.

In both cases stated above, one of the groups of candidates is always underrep-
resented. A potential remedy for this is the so-called demographic parity mechanism,
which imposes that the decision-maker selects candidates of all demographic groups
at equal rates. Next, we characterize the equilibrium when the Bayesian decision-
maker is constrained by the demographic parity mechanism (still in the regime of
large rewards S):

(i) We show that the demographic parity mechanism tends to equalize the average
effort of the two groups compared to the unconstrained decision-maker: in most
cases, the previously underrepresented groupmakes a greater average effort and
the previously overrepresented group makes a lower average effort.

(ii) We characterize the change in the selection quality (or utility from the decision-
maker perspective) from imposing demographic parity. Interestingly, we find
that in some cases, the selection quality can improve compared to the uncon-
strained selection. This is surprising since, in the non-strategic setting, the
unconstrained Bayesian decision-maker is optimal (see Chapter 3). Our result
shows that it is no longer true in the strategic setting as in certain cases imposing
a fairness mechanism can improve the selection quality, even against a Bayesian
baseline. In other cases, we bound the degradation of quality that can result
from imposing demographic parity.

For the case of small rewards S, we get further analytical results on the equilib-
rium characterization. We find that the results are different from that of the case of
large S, and are similar to the ones obtained in the non-strategic setting (see Chapter 3):
the high-noise candidates are always underrepresented if the selection size α is small
enough. This indicates that, if the reward is small, then the impact of the strategic as-
pect (on discrimination results) is not important. We perform numerical experiments
to illustrate the case of intermediate rewards S and how it matches the case of small
and large S in their respective regimes. Finally, we study the convergence of differ-
ent dynamics to the Nash equilibrium (namely the best response and fictitious play
dynamics). We observe that the trajectories of the best response dynamics converge
to limit cycles that have a higher average effort (for both groups) than at equilibrium,
whereas the fictitious play dynamics seems to converge to equilibrium in our empirical
results.

Implications of our results Our results show that it is crucial to take into account
the strategic nature of candidates involved in selection problem in order to understand
discrimination and to predict the effect of imposing a fairness mechanism. They
also show that discrimination in selection problems is a somewhat nuanced issue: it
depends not only on the strategic aspect of the candidates but also on the range of
assumed rewards and on the cost of effort of the different demographic groups. This
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means that a policy-maker, when consideringwhether to impose a fairnessmechanism
in a particular application, should evaluate the population of candidates (their costs
of effort, etc.). It is worth noting, also, that we presented our results for a Bayesian
decision-maker who computes a posterior estimate of the candidates quality (with
knowledge of the group-dependent distributions). Our results are technically easy to
extend to a group-oblivious decision-maker sorting the candidates by quality estimate
X irrespective of their group (another standard baseline); but in that case the high-
noise and low-noise groups are reversed (we discuss that in Section 4.7). Hence, a
policy-maker would also need to evaluate the baseline decision-maker they face.

Outline The rest of the chapter is organized as follows. In Section 4.2, we present
the related literature. In Section 4.3, we formulate the problem in a game-theoretic
framework. In Section 4.4, we show that, for the case of large rewards S, the selection
with strategic candidates leads to underrepresentation of one of the two groups of
candidates. In Section 4.5, we study how demographic parity affects the incentives
of candidates and the expected quality of the selection for large S. In Section 4.6, we
complement our theoretical results by studying the convergence to equilibria and the
case of small and intermediate rewards S. We concludewith a discussion in Section 4.7.
We provide all omitted proofs in Section 4.8.

4.2 Related Work

Statistical discrimination The theory of statistical discrimination, initiated by Phelps
(1972) and Arrow (1973), considers the uncertainty of information about individual
characteristics to explain racial/gender inequality in decision-making. Phelps (1972)
develops a model where each individual possesses a latent quality drawn from a
fixed group-independent distribution. A Bayesian decision-maker observes a noisy
estimate of individual’s quality, where the noise is symmetric and zero-mean but
has a group-dependent variance. The decision-maker assigns a wage equal to the
expected posterior quality. This model is used to explain racial inequalities in wages.
Lundberg and Startz (1983) extend Phelps’model to a strategic setting by assuming two
groups of workers that choose the values of effort according to a group-independent
quadratic costs. The effort induces a quality that is assigned randomly but equal to
the effort in expectation. The authors show that, in the equilibrium, the high-noise
candidates make lower effort and are payed less on average compared to the low-noise
candidates; but that if the decision-maker is restricted to not use the group information
for wage assignment, then the effort is equal for both groups. In our work, we use a
similar model but in the context of selection problems where a fraction of candidates
receives a (fixed) reward rather than assigning a variable wage to all candidates as in
(Lundberg and Startz, 1983; Phelps, 1972). We also extend the model of (Lundberg
and Startz, 1983) to have group-dependent cost-of-effort, which as we shall see has a
crucial effect on discrimination. Finally, we consider a different fairness mechanism,
namely demographic parity.



Chapter 4. Selection with Differential Variance in the Strategic Setting 55

Many statistical discrimination models (see e.g., (Aigner and Cain, 1977; Arrow,
1973; Coate and Loury, 1993) and a survey in (Fang and Moro, 2011)) assume that
individuals of different groups have identical a priori characteristics (e.g., cost-of-effort),
but that the decision-maker uses their group-dependent belief when there is imperfect
information to assess the performance of individuals in a group. In some cases,
the discriminating beliefs (stereotypes) of decision-makers lead to equilibria in which
these stereotypes are fulfilled. In contrast, we consider group-dependent cost-of-effort
and group-dependent noise variance. We prove that the game in our model attains
a unique equilibrium, and that discrimination occurs due to the group-dependent
characteristics—i.e., if they become group-independent in our model, discrimination
disappears.

Selection problems in the non-strategic settings Recent literature investigate statis-
tical discrimination in selection problems, under the name of differential variance. In
(Emelianov et al., 2022b), we show that differential variance, in the case of Bayesian
decision-maker, leads to the underrepresentation of the high-noise candidates (for se-
lection fractions below 0.5). We also study how quota-based fairness mechanisms (the
80%-rule and the demographic parity) affect the fairness-utility tradeoff. Garg et al.
(2021) study a similar setting but where the performance of candidates is measured
by multiple independent and unbiased estimates (from tests). The authors study how
affirmative actions and access to testing affect the disparity level and the quality of
the selected cohort. Some works also study the selection problem under implicit bias
rather than differential variance—i.e., the decision-maker has a non-noisy but biased
estimate of the candidates’ qualities. Kleinberg and Raghavan (2018) show that this
type of bias naturally leads to underrepresentation of the disadvantaged group, and
they study how a fairness mechanism called the Rooney rule affects the selection qual-
ity. This work is extended by Celis et al. (2021, 2020) and Mehrotra et al. (2022). Our
work complements those studies by assuming strategic candidates who can respond to
a policy chosen by a Bayesian decision-maker. Similarly to (Garg et al., 2021) and
(Emelianov et al., 2022b), we assume that the quality estimates are affected by differen-
tial variance, but we do not model bias (Kleinberg and Raghavan, 2018) as we assume
a Bayesian decision-maker who can correct for the bias. The main difference is that we
assume that the quality distribution is not fixed but chosen by candidates to maximize
their payoff which equals to the expected reward minus the cost-of-effort.

Fairness in contests A classical model of contest is given by Lazear and Rosen (1981):
individuals make a costly effort m that induces a noisy quality Y � f (m) + ε, where
f is an increasing function of the effort; the player having the largest quality wins
the prize S. Fairness in contest games was studied from different perspectives in
economics and computer science literature (Fu and Wu, 2019). Schotter and Weigelt
(1992) assume a two-player contest with a cost-advantaged and a cost-disadvantaged
player—each pays a quadratic cost-of-effort but with different coefficients. They show
that, at equilibrium, the cost-disadvantaged player makes a lower effort. Then they
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show that an affirmative action (adding a bonus to the score of the cost-disadvantaged
player) leads all players to make lower efforts but increases the winning probability of
the cost-disadvantaged player. Our model shares similarities with that of Schotter and
Weigelt (1992) (in particular group-dependent quadratic costs), but also has important
differences: we consider an infinite population of candidates and we include group-
dependent noise. Our results are also different as we analyze the dependence on S and
we study another fairness mechanism (demographic parity)—in particular we find
that it increases the effort of previously underrepresented group and sometimes even
of both groups.

Strategic ranking Following the strategic classification literature (see previous sec-
tion), Liu et al. (2021) study the strategic ranking problem. They assume that each
individual has a latent ranking and makes some costly effort to affect it. The effort
induces a score g(effort)· f (latent fixed rank), for some fixed strictly increasing func-
tions f and g, which in turn results in a post-effort ranking. Liu et al. (2021) study
how different ranking reward functions (with and without randomization) of a fixed
selection capacity c affect the characteristics of individuals and of the selection at equi-
librium (average welfare and scores). Finally, they consider a setting with two groups
of candidates that differ in a multiplicative parameter γ > 1 affecting the score and
study the welfare gap for groups as a function of c. In our model, we do not assume
any pre-effort ranking—the score of an individual is purely determined by the effort
and by a group-dependent noise. Our model is simpler compared to (Liu et al., 2021)
and is designed to capture the effects of the group-dependent cost-of-effort and noise
in selection problems. This allows us to state concrete results involving the parameters
of interest (the cost coefficient and noise variance). We also consider how a fairness
mechanism (demographic parity) affects the group representations and the quality of
selection at equilibrium.

4.3 The Model

4.3.1 Candidates and decision-maker

Candidates model We assume a non-atomic game with a unit mass of candidates
indexed by i ∈ [0, 1]. There are two groups of candidates: H and L. The letter
G ∈ {H, L}will denote any of these two groups, and the proportion of candidates from
group G is pG ∈ (0, 1). Each candidate i has a quality that depends on the effort mi that
this candidate makes. In college admission or in hiring, the effort mi of a candidate i
can be interpreted as candidate’s achievements. It might, for instance, represent the
number of courses followed by a student, the quality of number of degrees obtained,
etc. We assume that a candidate i that chooses to make an effort mi ≥ 0 has a quality
Yi that is normally distributed with mean mi and variance η2:

Yi ∼ N(mi , η
2).
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Making an effort m costs a candidate from group G a quadratic cost CGm2/2. The
population-dependent cost coefficient CG can model socioeconomic factors like the
income of the parents or the country of origin; these factors might make harder for
some candidates than others to make the same effort m.

Decision-maker A decision-maker wants to select the candidates having the largest
qualities. To do so, the decision-maker observes a noisy estimate Xi of the quality Yi

of each candidate i:

Xi � Yi + σGi · εi ,

where εi is a zero-mean centered random variable from the standard normal distribu-
tionN(0, 1); the noise variance σ2

Gi
is assumed group-dependent.2 The quality estimate

Xi is a noisy but unbiased measurement of the quality Yi of a candidate i, e.g., an in-
terview result. The group-dependent variance of noise σ2

G models the information
inequality: if interviewers are more familiar with candidates of some demographic
groups, they are more confident in their evaluation compared to that of candidates of
other groups. Without loss of generality, we assume that σ2

H > σ2
L. We, thus, refer

to H-candidates as high-noise candidates, and we refer to L-candidates as low-noise
candidates.

We assume that the decision-maker knows3 the effort m of all candidates, as well
as the variances η2 and σ2

G, and selects a proportion α ∈ (0, 1) of the candidates. The
decision-maker aims at maximizing the expected quality of selected candidates and,
therefore, selects the α proportion having the largest expected quality Ỹ. Using the
property of conditional expectation for bivariate normal random variables, we can
write the expectation of quality Yi given Xi as

Ỹi � E(Yi |Xi) � Xiρ
2
Gi

+ (1 − ρ2
Gi
)mi , (4.1)

where ρGi � η/
√
η2 + σ2

Gi
∈ [0, 1] is the correlation coefficient between the quality Yi

and its estimate Xi . Since Ỹi is a linear function of Xi , and Xi is distributed normally,
the expected quality Ỹi follows a normal distribution with mean mi and variance
σ̃2

Gi
� η4/

(
σ2

Gi
+ η2

)
. Note that the larger the value of noise σ2

Gi
, the more the values

of Ỹi are concentrated around its mean value mi (the smaller the variance σ̃2
Gi
). From

(4.1), we observe that the decision-maker puts a higher weight on the effort m for
the high-noise candidates compared to the low-noise candidates: for the same level
of effort, the high-noise candidates will be seen by the decision-maker as having less
variability of expected quality compared to that of the low-noise candidates.

2Note that, for simplicity, we assume that the variance of the quality η2 does not depend on the
candidate’s group; Our results can be extended to the case of group-dependent η2

G (see Section 4.7).
3Our results can be extended to the case where the effort m is not observable (see Section 4.7).
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4.3.2 The population game

As the decision-maker selects the candidates having the largest expected quality, it will
select all candidates whose expected quality Ỹ is larger than some selection threshold
θ. We denote by rG(m; θ) the probability for a candidate of group G to be selected
when their effort is m and the selection threshold is θ. It equals:4

rG (m; θ) � P
(
Ỹ ≥ θ

)
� Φ

(
m − θ
σ̃G

)
, (4.2)

where Φ is the cumulative distribution function of the standard normal distribution
N(0, 1).

We assume that each selected candidate receives a positive reward S, whereas the
candidates who are not selected get a reward of 0. Hence, the payoff uG of a candidate
from population G is

uG(m; θ) � S · rG(m; θ) − CG · m2/2. (4.3)

Given a selection threshold θ, each candidate strategically decides on the effort
m that maximizes their expected payoff uG(m; θ). Following the classical definition
(Sandholm, 2010), we call it a pure best response and we denote the set of all pure best
response strategies of a candidate as

bG(θ) � {m such that ∀m′ ≥ 0 : uG(m; θ) ≥ uG(m′; θ)} .

We say that the best response is unique if the set of best responses bG(θ) is reduced to
a singleton. In such a case, by abuse of notation, we denote by bG(θ) the unique best
response.

Similarly, by BG(θ) we denote the set of all mixed best responses of a candidate. It is
the set of all probability distributions over the set of pure best responses bG(θ).

Selection threshold For each population G ∈ {H, L}, we denote by µG the distribu-
tion of efforts used by this population G. It is a probability distribution5 on R+. We
denote by µ � (µH , µL) the effort distributions of the two populations. We denote
the cumulative distribution function of the expected quality Ỹ induced by µG by FµG ,
and the cumulative distribution function of expected quality of the total population
by Fµ � pH FµH + pLFµL . The decision-maker selects the α-best candidates. Hence, it
will select all candidate whose expected quality Ỹ is above the (1 − α)-quantile of the
distribution Fµ, that we denote by θ(µ) � F−1

µ (1 − α).

4In the rest of the paper, to simplify the notation, we will drop the index i.
5If all candidates of the population G make the same effort, we say that µG is a pure strategy. Otherwise,

µG is a mixed strategy. Formally, µG is a pure strategy if there exists m0, such that µG(m) � δ(m − m0)
where δ is the Dirac delta function.
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The game The above definitions describe a population game between the candidates.
We denote the game by Gun, where the superscript “un” emphasizes that the decision-
maker is unconstrained,6 i.e., it selects the best α candidates based on the expected
quality Ỹ. Note that the game Gun is parameterized by the reward size S, the variance
of quality η2, the noise variances σ2

G, the cost coefficients CG, and the selection size α.

4.3.3 Existence and uniqueness of the Nash equilibrium

Weuse the standard definition of Nash equilibrium for populations games (Sandholm,
2010):

Definition 4.3.1 (Nash equilibrium). A pair of effort distributions µ � (µH , µL) is called
an equilibrium of the game Gun if for all populations G ∈ {H, L}, the support of µG is included
in the set of best responses bG(θ(µ)), where θ(µ) � F−1

µ (1 − α).

ANash equilibrium is a situation where no candidate has an incentive to change its
decision: if the population plays µ, then the selection threshold will be θ(µ). Hence,
a candidate of a group G does not have an incentive to play a strategy that is not in
b(θ(µ)). As the support of µG is included in b(θ(µ)), this implies that all candidates
cannot obtain a higher payoff by unilaterally changing their decision.

In the rest of the chapter, we will study the property of the Nash equilibrium of the
game, which exists and is unique as guaranteed by the following theorem.

Theorem 4.3.2. The game Gun has a unique Nash equilibrium, that we denote by µun �

(µun
H , µun

L ).

We will also denote by θun � F−1
µun(1 − α) the selection threshold at equilibrium.

Note that the equilibrium and the selection threshold depend on the game parameters,
including the reward S. In the following, we will study the properties of the equilib-
rium as S grows. For simplicity of exposition, we omit the dependency on S and write
µun or θun instead of µun(S) or θun(S).

Weprovide adetailedproof of Theorem4.3.2 in Section 4.8.4whosemain ingredient
is to show that there is a one-to-one mapping between the equilibria of the game and
the fixed points of a multi-valued function T:

T(θ) � {F−1
µ (1 − α) : µG ∈ BG(θ)}. (4.4)

This simplifies the problem, as now we need to study the fixed points of a function of
a single variable. By studying the first derivative of T, we show that the function T has
a unique fixed point and, hence, the defined game has also a unique equilibrium.

4.3.4 Summary of main notation

We summarize the main notation in Table 4.1. Recall that, without loss of generality,
we assume that σ2

H > σ2
L (which also implies that σ̃2

H < σ̃2
L). We, thus, refer to H-

candidates as high-noise, andwe refer to L-candidates as low-noise. To refer to the group

6In Section 4.5, we study a decision-maker facedwith a fairness constraint (called demographic parity).
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with higher/lower cost-of-effort, we use the names cost-disadvantaged/cost-advantaged.
If, for example, CH > CL, then we say that H-candidates are cost-disadvantaged and that
L-candidates are cost-advantaged.

Table 4.1 – Summary of notation.

Yi ∼ N(mi , η2) quality of candidate i
Xi � Yi + εiσGi quality estimate of candidate i (εi ∼ N(0, 1))
Ỹi � E(Yi |Xi) expected quality of candidate i
µG distribution of effort for the population G
µ � (µH , µL) distribution of effort for the total population
FµG CDF of the expected quality Ỹ for the population G
Fµ � pH FµH + pLFµL CDF of the expected quality Ỹ for the total population
α ∈ (0, 1) selection size
θ(µ) � F−1

µ (1 − α) selection threshold
pG proportion of G-candidates in the total population
rG(m; θ) selection probability for a G-candidate with effort m given θ

4.4 Equilibrium Characterization and Resulting Discrimina-
tion

In this section, we characterize the equilibrium of the game for large7 rewards S. We
consider the case of large S as it models the competition in selection procedures with
high stakes, e.g., hiring CEOs or college admission to high-ranked schools.

4.4.1 Properties of the best response

We start with the characterization of the best response bG(θ) of a candidate. In
Lemma 4.4.1 (whose proof is deferred to Section 4.8.2), we show that, when S is
large, the best response bG(θ) is unique for all thresholds θ, except one, that we call a
dropout threshold θd

G. We show that the value of the best response bG(θ) increases with
the threshold θ until the latter reaches θd

G; it then drops down and decreases when
θ ≥ θd

G. Thismeans thatwhen the selection threshold θ is too high, the candidates lose
incentives to make any effort. To emphasize the dependency of the dropout threshold
on the reward S, we write θd

G(S).

Lemma 4.4.1 (Best reponse for large S). There exists S0 such that for all rewards S ≥ S0,
there exists a threshold θd

G(S), called the dropout threshold, such:

(i) When the selection threshold is θ � θd
G(S), there are two pure best response strategies:

7In Section 4.6.2, we show theoretical and numerical results for small and intermediate rewards S.
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bG(θd
G(S)) �

{
bmin

G

(
θd

G(S)
)
, bmax

G

(
θd

G(S)
)}
. They satisfy:

lim
S→∞

bmin
G

(
θd

G(S)
)
� 0, lim

S→∞

bmax
G

(
θd

G(S)
)

θd
G(S)

� 1.

(ii) For all θ , θd
G(S), the pure best response bG(θ) is unique. Moreover, for any γ ∈ (0, 1),

we have

lim
S→∞

bG

(
θd

G(S)/γ
)
� 0 and lim

S→∞

bG

(
γθd

G(S)
)

θd
G(S)

� γ.

Using the notation for asymptotic equivalence, we can write the statement of the
theorem in a simpler form. For example, from the second part of (ii), we can infer
that bG(γθd

G) ∼ γθ
d
G for any γ ∈ (0, 1). Therefore, the above lemma shows that for a

given candidate, the best response bG(θ) increases essentially linearly up to the dropout
threshold θd

G, and then drops to 0 when the selection threshold is too high, i.e., θ > θd
G.

We will illustrate this later in Fig. 4.1.
Note that the dropout threshold θd

G is group-dependent. As we will see later in
Section 4.4.3, the most represented group at equilibrium will be the one having the
largest dropout threshold. Hence, in Lemma 4.4.2, we show the asymptotic behavior
of the dropout threshold as a function of S. As we expect, the dropout threshold
increases with the reward S, and decreases with the cost coefficient CG. A less intuitive
property is its relation with the noise variance σ2

G: we show that the dropout threshold
increases as the noise variance σ2

G increases. The proof of Lemma 4.4.2 can be found
in Section 4.8.3.

Lemma 4.4.2 (Dropout threshold for large S). Let θd
G(S) be the dropout threshold.

(i) For any CG and G, the dropout threshold can be expressed as

θd
G(S) �

√
2S/CG (1 + o(1)) as S→∞.

(ii) If CH � CL and σ2
H > σ2

L, then there exists S0 such that for all S ≥ S0,

θd
H(S) > θ

d
L (S).

From (i), we conclude that the dependency of the dropout threshold θd on the cost
coefficients CG is of higher order than the dependency on the noise variance σ2

G. In
other words, when CH > CL, we have θd

H(S) < θd
L (S) for large enough S, regardless

of the noise variance σ2
G. When both groups have equal cost coefficients (CH � CL),

the noise variance matters, and θd
H(S) > θ

d
L (S) when σ2

H > σ2
L (or, equivalently, when

σ̃2
H < σ̃2

L).
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4.4.2 Equilibrium strategy

As we show in the previous section, the dropout threshold θd
G is an important char-

acteristics of candidates’ best response: for thresholds θ smaller than the dropout
threshold θd

G, the candidates make an effort proportional to the threshold whereas
for thresholds larger than the dropout, the candidates make nearly zero efforts. In
Theorem 4.4.3 given below, we prove that, for large rewards, the selection threshold
at equilibrium is equal to the dropout threshold of one of the two groups. Note that
this theorem is not stated in terms of the groups H and L but in terms of groups G1
and G2, where G1 is the group that has the largest dropout threshold, which holds
if C1 < C2 or (C1 � C2 and σ2

1 > σ2
2). Hence, the population G1 can correspond to

the population L if CH > CL (it corresponds, otherwise, to the population H as we
assumed that σ2

H > σ2
L).

Theorem 4.4.3 (Equilibrium strategies). Fix α ∈ (0, 1) and two populations of candidates,
G1 and G2, such that (C1 < C2) or (C1 � C2 and σ2

1 > σ2
2). Then, there exists a reward S0

such that for S ≥ S0:

(i) If α ≤ p1, then the equilibrium threshold θun(S) is θd
1 (S). In this case:

• The G1-candidates play a mixed strategy that consists in playing bmax
1 with proba-

bility τ1 and bmin
1 , with probability 1 − τ1, where limS→∞ τ1 � α/p1.

• The G2-candidates play the pure strategy b2(θd
1 (S)) that satisfies

lim
S→∞

b2(θd
1 (S)) � 0.

(ii) If α > p1, then the equilibrium threshold θun(S) is θd
2 (S). In this case:

• The G1-candidates play the pure strategy b1(θd
2 (S)) that satisfies

lim
S→∞

b1(θd
2 (S))/θ

d
2 (S) � 1.

• The G2-candidates play a mixed strategy that consists in playing bmax
2 with proba-

bility τ2 and bmin
2 with probability 1 − τ2, where limS→∞ τ2 � (α − p1)/p2.

Proof Sketch. To simplify notation, we omit the dependence on S for all variables.
Let us prove that the dropout threshold θd

1 is the fixed point of T for the case (i).
We specify the efforts made in response to θd

1 , and we show that they lead to the same
selection threshold θd

1 , i.e., θ
d
1 is the fixed point of T. The case (ii) can be proven

similarly; we provide the complete proof in Section 4.8.5.

We can show that, as S → ∞, we have rmax
G B rG(bmax

G (θd
G); θ

d
G)

S→∞−−−−→ 1 and

rmin
G B rG(bmin

G (θ
d
G); θ

d
G)

S→∞−−−−→ 0 for all G ∈ {G1 ,G2}.
If α ≤ p1, then, assume that G1-candidates randomize their strategy by playing

bmax
1 with the probability τ1 and bmin

1 with the probability 1 − τ1. The G2-candidates

play the deterministic strategy b2(θd
1 )

S→∞−−−−→ 0. The probability τ1 can be found from
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the budget constraint: α � p1(τ1rmax
1 + (1 − τ1)rmin

1 ) + p2r2(θd
1 , b2(θd

1 ))
S→∞−−−−→ p1τ1, so

τ1
S→∞−−−−→ α/p1.
The defined strategies satisfy the budget constraint, so θd

1 is the fixed point of T
and, hence, the defined distribution of effort is the equilibrium of the game Gun.

Fig. 4.1 illustrates the results of Theorem 4.4.3. In Fig. 4.1a, we show the case of
group-dependent noise but group-independent cost coefficient (CH � CL). In this
case, the H-candidates have a higher dropout threshold compared to the L-candidates,
hence, for θd

L < θ ≤ θd
H , the H-candidates make a non-zero effort while the L-

candidates make a nearly-zero effort. In our illustration, the selection size α � 0.1
is smaller than the proportion of H-candidates pH � 0.5. We can verify that for
θ � θd

H , if a proportion α/pH of H-candidates plays bmax
H , and the rest of H-candidates

plays bmin
H , then such a strategy satisfies the budget constraint. Hence, θd

H is the fixed
point of the function T, so θun � θd

H .
In Fig. 4.1b, we illustrate the case of group-dependent cost coefficient (CH > CL).

In this case, the L-candidates have a higher dropout threshold compared to the H-
candidates, hence, for θd

H < θ ≤ θd
L , the L-candidates make a non-zero effort while

H-candidates make a nearly-zero effort. For the purpose of illustration, we again
assume that the selection size α � 0.1 is smaller than the proportion of L-candidates
(pL � 0.5). Similarly to the previous case, we can verify that for θ � θd

L , if a proportion
α/pL of L-candidates plays bmax

L , and the rest of L-candidates plays bmin
L , then this

strategy satisfies the budget constraint, so θun � θd
L .

4 3 2 1 0 1 2 3 4 50
1
2
3
4
5

4 3 2 1 0 1 2 3 4 5
0
1
2
3
4 L

H

θ

b
T

bmax
L

bmin
L

bmax
H

bmin
H

θd
Hθd

L

θun

id(
θ)

(a) CH/CL � 1

1 0 1 2 3 4 50
1
2
3
4
5

1 0 1 2 3 4 5
0
1
2
3
4

L

H

θ

b
T

bmax
L

bmin
L

bmax
H

bmin
H

θd
H θd

L

θun

id(θ
)

(b) CH/CL � 5

Figure 4.1 – Best response functions and the Nash equilibrium for S � 10, CL � 1,
σ̃H � 0.1 and σ̃L � 1, pH � 0.5 and α � 0.1. Both figures illustrate the case (i)
of Theorem 4.4.3. The dotted line on the uppermost panels is the identity function
id(θ) � θ.
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4.4.3 Discrimination due to the group-dependent variance and cost

In Theorem 4.4.3, we show that the equilibrium distribution of effort µun depends
on the relation between the dropout threshold θd

G for different populations, H and
L. We now study how the noise variance σ2

G and the cost coefficient CG affect the
representation of groups in the selection at equilibrium. Overall, we show that the
group-dependent noise variance and the group-dependent cost coefficient can both
lead to underrepresentation of some group of candidates at equilibrium.

For a given population G, we denote by µ̄un
G the average effort that candidates from

group G exert at equilibrium, and we denote by r̄un
G the selection rate which is the

probability for a randomly chosen candidate from group G to be selected. Since
rG(m; θ) is the probability for a G-candidate to be selected when exerting an effort m
(see (4.2)), these quantities satisfy:

µ̄un
G �

∫
m≥0

m dµun
G (m); r̄un

G �

∫
m≥0

rG(m; θun) dµun
G (m).

We say that the group H (or L) is underrepresented if r̄H < r̄L (or r̄L < r̄H). Note
that when we say “underrepresented’, it means that a demographic group has less
representation in the selection than its share in the population of all candidates. This
definition is not conditioned on the assumption that the mean of the qualities Y is
the same for both groups, but this assumption does make the notion of demographic
parity more obviously appealing since there is no a priori distinction in the average
quality between the groups. Nevertheless, we do not claim that demographic parity
would be justified only under this assumption.

InTheorem4.4.4 below,we show that if the cost coefficientCG is group-independent
(CH � CL), then the high-noise H-candidates make a larger effort compared to that
of the low-noise L-candidates, and the latter are underrepresented. However, if the
cost coefficient is group-dependent (CH , CL), we show that the noise variance does
not play a role if the reward S is large enough: the cost-advantaged candidates make
larger effort compared to that of the cost-disadvantaged candidates, and as a result,
the latter are underrepresented. This theorem also shows that, as S goes to infinity, the
ratios of efforts and selection rates can grow unbounded. For example, in the case (i)
of Theorem 4.4.4, if there are enough H-candidates to fill the selection budget α, then
L-candidates will asymptotically not be selected when S goes to infinity. We will see
in Section 4.6.2, that for moderate values of reward S, the L-candidates still have some
representation in the selection, but that can be very small.

Theorem 4.4.4 (Discrimination for large rewards S). Let µun
H and µun

L , run
H and run

L be the
equilibrium effort distributions and selection rates of the game Gun.

(i) If CH < CL or if CH � CL and σ2
H > σ2

L, then there exists S0 such that for all S ≥ S0
the high-noise H-candidates make greater effort compared to the low-noise L-candidates,
and the latter are underrepresented:

lim
S→∞

µ̄un
L

µ̄un
H

� lim
S→∞

r̄un
L

r̄un
H

�

{
0 if pH ≥ α,
α−pH
1−pH

< 1 if pH < α.



Chapter 4. Selection with Differential Variance in the Strategic Setting 65

(ii) If CH > CL, then there exists S0 such that for all S ≥ S0 the cost-advantaged L-candidates
make a greater effort compared to the cost-disadvantaged H-candidates, and the latter are
underrepresented:

lim
S→∞

µ̄un
H

µ̄un
L

� lim
S→∞

r̄un
H

r̄un
L

�

{
0 if pL ≥ α,
α−pL
1−pL

< 1 if pL < α.

Proof. To prove (i), we compute the average effort and the selection rate given the
equilibriummixed strategies defined in Theorem 4.4.3. We consider the case of α ≤ pH

and the case of α > pH separately.
If α ≤ pH , then µ̄un

H � bmax
H τH + bmin

H (1 − τH) � α/pH ·
√

2S/CH(1 + o(1)), S → ∞
and µ̄un

L � bL(θd
H)

S→∞−−−−→ 0, so µ̄un
L /µ̄

un
H

S→∞−−−−→ 0. Similarly, the expected selection rates
for H- and L-candidates:

r̄un
H � rmax

H τH + rmin
H (1 − τH)

S→∞−−−−→ α/pH ,

r̄un
L � rL(θd

H , bL(θd
H))

S→∞−−−−→ 0,

which implies that r̄un
L /r̄

un
H

S→∞−−−−→ 0.
If α > pH , then we, again, consider the strategies in the equilibrium:

µ̄un
H � bH(θd

L ) �
√

2S/CL(1 + o(1)), S→∞,

µ̄un
L � bmax

L τL + bmin
L (1 − τL) � (α − pH)/pL ·

√
2S/CL(1 + o(1)), S→∞.

Similarly, for the selection rates, we have:

r̄un
H � rH(θd

L , bH(θd
L ))

S→∞−−−−→ 1,

r̄un
L � rmax

L τL + rmin
L (1 − τL)

S→∞−−−−→ (α − pH)/pL .

The proof of (ii) is identical to the proof of (i) so we omit it here.

4.5 Effects of the Demographic Parity Mechanism on the Se-
lection

In Theorem 4.4.4, we show that the equilibrium in the game Gun leads to underrepre-
sentation of one of the groups of candidates: for the group-independent cost coefficient
(CH � CL), the low-noise candidates are underrepresented; for the group-dependent
cost coefficient (CH , CL), the cost-disadvantaged candidates are underrepresented.

To reduce the inequality of representation, colleges (and employers) sometimes
perform affirmative actions. This can take the form of quotas for low-income orminority
groups or any forms of promotions. Among those affirmative actions are ones that
make sure that the selection rates for the groups are close,meaning that the proportions
of both groups in the selection should be close to proportions of the groups in the total
population. The strongest condition among those is the demographic parity (see (Barocas
et al., 2019)) which requires that selection rates for both populations must be equal:
r̄H � r̄L. This implies, given the budget constraint r̄H pH + r̄LpL � α, that r̄H � r̄L � α.
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4.5.1 The game with the demographic parity mechanism

The demographic parity mechanism removes the competition among the groups of
candidates, H and L, as from each group G a proportion α ∈ (0, 1) must be accepted.
Hence, the game with the demographic parity mechanism, that we denote by Gdp,
can be represented as two independent games, Gun

H and Gun
L , each defined for a single

group, H or L. Note that for this game, the selection thresholds will be different for
the two groups: for a group G, the decision-maker will select all candidates whose
expected quality is greater or equal than θ(µG) � F−1

µG
(1− α), which corresponds to the

α best fraction of this group—it is the quantile of the distribution of expected qualities
induced by µG and not the one induced by µ as in the unconstrained case.

The equilibrium of the game Gdp where the Bayesian decision-maker has a demo-
graphic parity constraint is defined as follows.

Definition 4.5.1 (Nash equilibrium of the game Gdp). A pair of effort distributions µ �

(µH , µL) is an equilibrium of the game with the demographic parity constraint Gdp if for both
groups G ∈ {H, L}:

µG ∈ BG(θ(µG)),

where θ(µG) � F−1
µG
(1 − α).

Mimicking the unconstrained case, we denote by µdp � (µdp
H , µ

dp
L ) the equilibrium

of this game, and by θdp
G � F−1

µ
dp
G

(1 − α) the group-dependent equilibrium selection

threshold. The superscript “dp” emphasizes that the decision-maker is demographic
parity-constrained.

Since the game Gdp can be represented as two separate games, Gun
H and Gun

L , that
has a unique Nash equilibrium according to Theorem 4.3.2, the game Gdp also has a
unique Nash equilibrium.

4.5.2 Efforts induced by the demographic parity mechanism

In the previous section, we showed that, for large rewards S, it is possible that only
one of the two groups makes a positive effort while the other group considers that the
game is not worth playing because of a too unfair competition. The situation is radi-
cally different with demographic parity mechanism as each candidate competes with
similar candidates. As we show below, the demographic parity mechanism pushes the
previously underrepresented group to make more effort than before. Moreover, it can
also push the overrepresented group to make more effort.

In the first theorem below, we characterize the equilibrium strategy of the game
with the demographic parity mechanism Gdp. This result is a direct corollary of
Theorem 4.4.3 as we consider two separated games with an unconstrained decision-
maker.

Theorem 4.5.2 (Equilibrium strategy with the demographic parity mechanism). There
exists S0 such that for all S ≥ S0, the equilibrium of the game with the demographic parity
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mechanism Gdp is a pair of distributions µdp � (µdp
H , µ

dp
L ) where for each group G ∈ {H, L},

µ
dp
G consists in playing bmax

G with probability τG and bmin
G with probability 1 − τG, where

limS→∞ τG � α.

Proof. According to the demographic parity mechanism, the selection rate per each
group G must be equal to r̄G � α. Hence, this theorem can be seen as a special case of
Theorem 4.4.3 but with a single group of mass 1 out of which we need to select the best
α ∈ (0, 1). By applying directly the result of Theorem 4.4.3, we show that the proposed
strategy is the equilibrium strategy.

In Corollary 4.5.3 given below, we compare the efforts made by two groups at
equilibrium. We show that, if the cost coefficient is group-independent, then the
demographic parity mechanism equalizes the effort as S grows (together with the
selection rates as r̄dp

H � r̄dp
L by definition). For group-dependent cost coefficient, the

cost-disadvantaged H-candidates make lower average effort compared to that of L-
candidates yet the average effort ratio is bounded by

√
CH/CL. This is in contrast to

Section 4.4.3 where we show that the average effort ratio can be unbounded in the case
of the unconstrained decision-maker.

Corollary 4.5.3 (Equilibrium effort ratio in Gdp). Let µdp
H and µdp

L be the equilibrium effort
distributions in the game with the demographic parity mechanism Gdp. The average efforts of
both populations G ∈ {H, L} satisfy:

lim
S→∞

µ̄
dp
H

µ̄
dp
L

�

√
CL

CH
.

In particular, if CH � CL, then the average efforts of both populations grow at equal rates. If
CH , CL, then the cost-disadvantaged candidates make a lower average effort compared to that
of the cost-advantage candidates.

Proof. Using the equilibrium strategies of the gamewith the demographic paritymech-
anism Gdp from Theorem 4.5.2, we show that:

lim
S→∞

µ̄
dp
H

µ̄
dp
L

� lim
S→∞

τH bmax
H + (1 − τH)bmin

H

τLbmax
L + (1 − τL)bmin

L

�

√
CL

CH
.

By reducing the competition between groups, affirmative action policies are of-
ten criticized because they might encourage individuals to make less effort, which
reduces the overall quality of the selected candidates. We show below that, in fact, the
demographic parity mechanism always encourages the previously underrepresented
group to make a larger effort than in the unconstrained case. For the previously over-
represented group, the situation varies: in many situations, the candidates from the
overrepresented group will make a lower effort than in the unconstrained case, but
when

√
CL/CH < α and α > pL, we show that they make a higher effort compared
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to that of the unconstrained case. Note that the last result may seem rather coun-
terintuitive as demographic parity reduces the competition between groups. Later,
in Section 4.5.3, we show the implications of this result on the average quality of the
selected candidates.

Corollary 4.5.4 (Equilibrium effort ratio in Gun vs. Gdp). Let µun
H and µun

L be the equi-
librium effort distributions in the unconstrained game Gun. Similarly, let µdp

H and µdp
L be the

equilibrium effort distributions in the game with the demographic parity constraint Gdp.

(i) If CH � CL and σ2
H > σ2

L, then

lim
S→∞

µ̄un
H

µ̄
dp
H

�

{
1/pH if α ≤ pH ,

1/α if α > pH ,
and lim

S→∞

µ̄un
L

µ̄
dp
L

�

{
0 if α ≤ pH ,
α−pH
α−αpH

if α > pH .

(ii) If CH > CL, then

lim
S→∞

µ̄un
H

µ̄
dp
H

�

{
0 if α ≤ pL ,
α−pL
α−αpL

if α > pL ,
and lim

S→∞

µ̄un
L

µ̄
dp
L

�


1/pL if α ≤ pL ,√

CL
CH

1
α if α > pL .

Proof Sketch. Similarly, as in the proof of Corollary 4.5.3, we calculate the limits by
using the equilibrium strategies found in Theorem 4.4.3 and in Theorem 4.5.2. The
complete proof is given in Section 4.8.6.

4.5.3 Selection quality with and without the demographic parity mecha-
nism

We now show the implication of the previous result on how the demographic parity
mechanism affects the selection quality. In a non-strategic setting (see e.g., (Emelianov
et al., 2022b)), the unconstrained decision maker is optimal in expectation. We show
here that this no longer holds in the strategic setting: there exist scenarios under which
the Bayesian decision-maker is not optimal in terms of the expected quality of selection. In
such settings, the demographic parity constraint leads to a more qualified cohort. This
counterintuitive phenomenon is due to the fact that demographic parity induces less
competition between groups but amore fair competitionwithin each group (compared
to the unconstrained case).

We denote byUun and byUdp the expected quality at equilibrium of the selected
candidates for the unconstrained and the demographic parity constrained games.
In the theorem below, we characterize the ratio of the equilibrium cohort qualities
by the unconstrained decision-maker from Section 4.4, and the demographic parity
constrained decision-maker that we study in this section. For group-independent cost
coefficient (CH � CL), we show that the quality ratioUun/Udp tends to 1 in the limit of
large S. For group-dependent cost coefficient (CH , CL), we show that the quality ratio
can be smaller than one—the Bayesian decision-maker is not optimal if the candidates
are strategic, and the demographic parity mechanism can lead to a better-qualified
cohort.
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Theorem 4.5.5 (Selection quality ratio forGun andGdp). LetUun andUdp be the expected
qualities of selection at equilibrium of the game Gun and of the game Gdp, respectively.

(i) If CH � CL, then the ratio of the expected quality given by the unconstrained and the
demographic parity constrained decision-makers tends to one with S:

lim
S→∞

Uun

Udp � 1.

(ii) If CH > CL, then the ratio of the expected quality given by the unconstrained and the
demographic parity constrained decision-makers can be smaller than one. Formally, for
c �

√
CL/CH :

lim
S→∞

Uun

Udp �

{
1

cpH+pL
> 1 if pL ≥ α,

c
cpH+pL

< 1 if pL < α.

Proof Sketch. First, we prove that as S→∞, the expected quality of the selected cohort
grows at equal rate with the expected effort: E(YG · [ỸG ≥ θ]) ∼ µ̄G. Hence, using
the equilibrium strategies from Theorem 4.4.3 and Theorem 4.5.2, we can estimate the
ratioUun/Udp in the limit of S→∞. The complete proof is given in Section 4.8.7.

We emphasize that the condition under which the demographic parity mechanism
improves the average selection equality is when the selection rate α is larger than the
size of the cost-advantaged group. The improvement of selection quality due to the
demographic paritymechanism is explained by the fact that, without the demographic
parity constraint, the advantaged minority has no incentives to make a large effort
because the competition includes a lot of cost-disadvantaged candidates. Once the
competition is among candidates of each separate populations, the cost-advantaged
candidates have to compete with other cost-advantaged candidates, so they have to
make a larger effort to be selected.

The demographic parity can decrease the average selection quality when α ≤ pL

and when both groups have different cost coefficients CG. In this case, if the low-noise
L-candidates are the majority, then the ratio of qualityUun/Udp cannot be larger than
2 as S goes to infinity, regardless of the cost coefficients.

4.6 Complementary Results

In the previous sections, we studied the properties of theNash equilibrium of the game
for large rewards S and showed that they can lead to discriminations. In this section,
we complement this theoretical analysis by studying two (essentially independent)
problems: First, does the population converge to the equilibrium? Second, what
happens when the reward S is not large?
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4.6.1 Convergence to the Nash equilibrium

To answer the first question, we perform a series of numerical experiments in which
the decisions are made repeatedly. At a given time t, the candidates consider past
data to make a strategic decision. This could represent, for instance, the case of college
admission where candidates consider the distribution of grades from previous years;
in this example, each decision epoch is a different year.

We study two population dynamics: best response and fictitious play.

• For the best response dynamics, at each of the discrete times t � 1, 2, . . . , T, the
candidates observe the strategy played at the previous time step µ(t−1) and play
a best response to it:

m(t)G ∈ bG(θ(µ(t−1))).

• For the fictitious play dynamics, at each of the discrete times t � 1, 2, . . . , T, the
candidates observe the whole history of plays and assume that the distribution
of efforts is the empirical distribution of effort from time 1 to T. Candidates then
play a best response to it:

m(t)G ∈ bG(θ(µ̂(t))),

where θ(µ̂(t)) � F−1
µ̂(t)
(1 − α) and µ̂(t) � ∑t−1

s�1
1

t−1µ
(s).

We numerically evaluate these two policies and report the results in Fig. 4.2. For
the best response dynamics, we observe that m(t) � (m(t)H ,m

(t)
L ) converges to a limit

cycle for any starting point. This is because when S is large,8 the best response map is
not continuous (recall Fig. 4.1). The period of the limit cycle increases with the reward
size S but the behavior is similar for all S: starting from (0, 0), the candidates from
both populations increase the effort as time increases. Then, the competition becomes
too high and one of the populations drops out, i.e., make almost zero effort. After,
the competition is only among the candidates of a single population until it becomes
too difficult and all candidates drop out and return to the initial state. The cycle ends
here, and the new cycle starts. In Fig. 4.2a and 4.2b, we also plot the average trajectory
m̄(t) � (m̄(t)H , m̄

(t)
L ), where m̄(t)G �

1
t−1

∑t−1
s�1 m(s)G . We observe that the average over the

trajectory seems to converge, yet the average effort over the trajectory is significantly
larger than that of the average equilibrium effort for both groups.

The case of fictitious play dynamics is different, and it is depicted in Fig. 4.2c
and 4.2d. In this case, the empirical distribution of efforts does converge to the Nash
equilibrium. This is illustrated on the figure by the fact that the empirical average of
effort converges to the average value of effort of the Nash equilibrium: m̄(t)G

t→∞−−−−→ µ̄un
G

for both groups G ∈ {H, L}. Note that this is not a pointwise convergence but rather
a convergence to a cycle: at equilibrium, the strategy played by the L-candidates
converges to a cycle on the values bmin

L and bmax
L .

8For S < 1
2 CG σ̃

2
G/φ(1) we can show that the function T is a contraction mapping, so any trajectory of

the best response dynamics converges to the Nash equilibrium.
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Figure 4.2 –Best response (BR) and fictitious play (FP) dynamics for different rewards
S. The parameters of simulations are T � 500, CH � 1.5, CL � 1, pH � pL � 0.5, α � 0.1,
σ̃H � 0.6 and σ̃L � 1.

4.6.2 Selection problems with small and intermediate rewards

We start with the case of small rewards S < CG σ̃2
G/φ(1) for which the results are quite

different from the ones obtained for large S in Section 4.4. We show that the cost ratio
CL/CH , as well as the expected quality variance ratio σ̃2

L/σ̃2
H , play significant roles in

the outcome of the game. If the cost for the H-candidates is too high compared to
that of the L-candidates, then the H-candidates make lower effort for all selection sizes
α. Otherwise, if the cost for H-candidates is comparable to that of L-candidates (e.g.,
CH � CL) or it is lower, then for both small and large selection sizes α, the high-noise
H-candidates make less effort compared to that of low-noise L-candidates. For both
cases, there exists a parameter dependent value of α0 such that for all values of α ≤ α0, the
high-noise H-candidates are underrepresented. Interestingly, in (ii) of Theorem 4.6.1, we
also observe that it is possible that H-candidatesmake a larger effort than L-candidates,
yet they are selected at a lower rate, r̄un

H < r̄un
L .

Overall, the high-level interpretation of the below result is that for small enough
rewards S and for small enough values of α, the high-noise H-candidates are always underrep-
resented. This result is in contrast with the results for large S studied in Section 4.4, and
it is similar to the result in the non-strategic setting studied in Emelianov et al., 2022b;
Garg et al., 2021.

Theorem 4.6.1 (Discrimination for small rewards S). Assume that S < CG σ̃2
G/φ(1) for

all G ∈ {H, L}. Let µun
H and µun

L , run
H and run

L be the equilibrium efforts and selection rates of

the game Gun. Denote Kµ B

√
−2 ln(CH σ̃H/(CL σ̃L))

1/σ̃2
H−1/σ̃2

L
and Kr B

√√
W

(
S2

(
1

CH σ̃H
− 1

CL σ̃L

)2

2π(σ̃L−σ̃H )2

)
, where

W is the Lambert function defined as the inverse to the function f (λ) � λeλ and Φc is the
complementary cumulative distribution function of the standard normal distributionN(0, 1).

(i) If CH σ̃H > CL σ̃L, then µ̄un
H < µ̄un

L for all α ∈ (0, 1), and r̄un
H < r̄un

L if and only if
α < Φc (−Kx).
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(ii) If CH σ̃H ≤ CL σ̃L, then

µ̄un
H < µ̄un

L ⇐⇒ α ∈ ©­«0,
∑

G∈{A,B}
pGΦ

c (
Kµ/σ̃G

)ª®¬ ∪ ©­«
∑

G∈{A,B}
pGΦ

c (
−Kµ/σ̃G

)
, 1ª®¬ ,

r̄un
H < r̄un

L ⇐⇒ α < Φc (Kx) .

Proof Sketch. We show that for S < CG σ̃2
G/φ(1) the best response in pure strategies

is unique, hence the equilbirium effort distribution is a singleton µun
G � δ(m − mun

G ).
Note that the first-order condition on a maximum of the payoff function uG is also a
sufficient condition; it can be written:

S
σ̃G
φ

(mun
G − θun

σ̃G

)
− CGmun

G � 0 ⇐⇒ mun
G �

S
CG σ̃G

φ

(mun
G − θun

σ̃G

)
.

Since we aim to find a value of α when mun
H � mun

L , we equate the right-hand sides of
the above equation for two groups, and, by solving this equation, we obtain the values
of θun − mun

G . By substituting this expression to the budget constraint, we derive the
value of α at which mun

H � mun
L :

α �

∑
G∈{H,L}

pGΦ
c
(
θun − mun

G

σ̃G

)
.

The proof for run
G is similar to that of mun

G . A complete proof is given in Section 4.8.8.

Intermediate rewards To conclude our analysis, we fill the gap between our theoret-
ical results for the cases of small and large rewards S using numerical simulations.9
We perform our numerical simulations for the values of reward S � 1, 10, 100, 1000.
The simulation result for S � 1 is studied theoretically in the first part of this section,
as S � 1 satisfies the condition S < CG σ̃2

G/φ(1). The result for S � ∞, studied in
Section 4.4 and Section 4.5, is represented in Fig. 4.3 using a black solid line.

We plot the ratio of r̄un
L /r̄

un
H for the case of group-independent cost coefficient in

Fig. 4.3a, the ratios of r̄un
H /r̄

un
L and Uun/Udp for the case of group-dependent cost

coefficient in Fig. 4.3b and Fig. 4.3c. Overall, we observe a relatively smooth transition
between the two regimes of S in all figures. In addition, the behavior for S � 100 and
for S � 1000 is quite close to the behavior for S � ∞.

4.7 Conclusion and Discussion

In this chapter, we propose a simple model of selection with strategic candidates who
are faced with group-dependent cost-of-effort and group-dependent noise variance.
We characterize the resulting discrimination at equilibrium as well as the impact of
removing it through the demographic parity mechanism that mandates equal repre-
sentation across groups. Note that, in the context of our strategic model, demographic

9The code can be found at https://gitlab.inria.fr/vemelian/strategic-selection-code

https://gitlab.inria.fr/vemelian/strategic-selection-code
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Figure 4.3 –Characterization of the equilibrium fordifferent rewards S. Theparameters
of simulations are CL � 1, pL � 0.5, σ̃H � 0.6 and σ̃L � 1.

parity is not the only fairness notion that might make sense and one could be tempted
to consider, for instance, a meritocratic notion of fairness (where the representation
would be commensurate with the effort). It remains important, however, to under-
stand the impact of imposing demographic parity as it is one of the most commonly
used fairness notions.

Throughout the chapter, we made several simplifying assumptions, often to make
the results easier to state and understand and to better isolate the effect of strategic
behavior. Our work can be extended, however, in multiple ways:

Group-dependent variance of quality We assumed that the variance of latent qual-
ities is group-independent, i.e., η2

H � η2
L � η2. This assumption can easily be removed,

as all the results can equivalently be stated for σ̃2
H and σ̃2

L even with group-dependent
variance. We make this assumption only for simplicity of exposition since it implies
that σ̃2

H < σ̃2
L if and only if σ2

H > σ2
L.

Unobservable effort In our model, we assume that the effort m is observable to the
decision-maker. If the effort m is not observable, we argue that the decision-maker
performs the selection based on the noisy estimate X rather than the posterior expecta-
tion Ỹ (which corresponds to the group-oblivious decision-maker in the terminology
of Chapter 3). All the results from this chapter still hold but we need to replace the
variance of the expected qualities σ̃2

G by the variance of the estimate η2 + σ2
G. Note that

most of the statements will be reversed as σ̃2
H < σ̃2

L if and only if σ2
H > σ2

L. In this case,
the high-noise group has a higher variance of estimate, and the low-noise group has
a lower variance of estimate. Hence, when the low-noise group is underrepresented
in our model, the low-noise group is overrepresented in the model with unobservable
effort.

More than two groups of candidates. In our model, we assume two groups of
candidates, yet the results can be extended to more than two groups (e.g., in the
proof of uniqueness of the equilibrium we do not rely on the fact that the number of
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populations is two). This additional dimension would simply add more interactions
between the groups and complicate the statement of the results. For instance, in the
case of multiple groups where two of them are subject to equal cost coefficients, we
expect that the sorting will be with respect to the noise for these two groups, and with
respect to the cost coefficients for the rest of the groups.

Monomial cost function and non-Gaussian noise. In our model, we assume a
quadratic cost and Gaussian noise. We believe that these results will not change
much if we assume other symmetric noise and monomial cost functions, i.e., CGmdG .
In this case, we expect that the best response could be characterized by a dropout
threshold, as in our model. In addition, the power dG of the monomial would be
another important feature of the model: if it is group-dependent, then we expect that
the dropout threshold will grow as (S/CG)1/dG and the candidates with higher dG will
drop out earlier, independently on the relations of CG and σ̃2

G.

Other models of candidate’s utility In our model, we assume rational risk-neutral
candidates faced with different costs of efforts, and we also assume a risk-neutral
Bayesian decision-maker. In non-strategic settings (see Chapter 3), such a decision-
maker is proven to be Bayesian-optimal, yet we prove that it is not optimal in the
strategic setting. In our model, we do not consider other barriers for candidates as, for
example, self-selection. To model self-selection, we can assume that there is a minimal
threshold θself

G that each candidate should pass. The outcome of the equilibrium
would then depend on the relation between θself

G and the dropout threshold θd
G. We

can also easily consider a risk-averse (or risk loving) decision maker: in the case of an
exponential utility function, this will lead to an additive bias βG proportional to the
variance σ̃2

G, i.e., Ỹi ∼ N(mGi + βGi , σ̃
2
Gi
).

4.8 Omitted Proofs

4.8.1 Properties of the best response

Recall that the payoff function of an individual with effort m and given the selection
threshold θ is

u(m; θ) � S · Φ
(

m − θ
σ̃

)
− 1

2
Cm2 ,

where Φ is the CDF of the standard normal distribution.
Denoting φ the PDF of the standard normal distribution, the first two derivatives

of u with respect to m are:

∂u
∂m
(m; θ) � S

σ̃
φ

(
θ − m
σ̃

)
− Cm ,

∂2u
(∂m)2 (m; θ) � S

σ̃
φ

(
θ − m
σ̃

)
θ − m
σ̃2 − C.
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The payoff function u is defined on [0,∞), and it is continuous and continuously
differentiable. Moreover, ∂u

∂m (m � 0) > 0 and u(m; θ) m→∞−−−−→ −∞. Hence, all local
maxima of u must satisfy the first-order condition (FOC) ∂u

∂m (m; θ) � 0 and the second-
order condition (SOC) ∂2u

∂m2 ≤ 0. The maximum of the payoff function is attained in one
of the local maxima.

We start by a first lemma.

Lemma 4.8.1 (Maxima of u). Fix S, C and σ̃.

(i) If S < Cσ̃2/φ(1), then there is a unique global maximum of u(m; θ) for all θ.

(ii) If S ≥ Cσ̃2/φ(1), then there exists a unique θd(S) such that for θ � θd(S) there are
two global maxima of u(m; θ), and for θ , θd, there is a unique global maximum of
u(m; θ).

Proof. Let us denote by z � (m − θ)/σ̃ and let v(z) � S
σ̃φ(z) − Cσ̃z and w(z) :�

− S
σ̃ zφ(z) − Cσ̃ � dv(z)/dz. The first and second derivatives of u can be expressed as a

function of v and w:

∂u
∂m
(m; θ) � v(z) − Cθ,

∂2u
(∂m)2 (m; θ) � 1

σ̃
w(z).

The function z · φ(z) has the global maximum at z � 1 which is equal to φ(1), and the
global minimum at z � −1 which is equal to −φ(1). Hence, two cases are possible:

(i) If φ(1) < Cσ̃2/S, then w(z) < 0 for all z , 1. Hence, v is a strictly decreasing
function (since w < 0 in this case), so the FOC gives a unique solution m which
is a global maximum of u.

(ii) If φ(1) ≥ Cσ̃2/S, then the equation w(z) � 0 has two real solutions, denoted by

z1 ≤ z2. They can be found explicitly, i.e., z1,2 � −
√
−W1,2

(
−2πC2 σ̃4

S2

)
whereW

is the Lambert function defined as the inverse to the function f (y) � ye y . Note

also that z1
S→∞−−−−→ −∞ and z2

S→∞−−−−→ 0.

We consider the latter case (ii) indetails. We
can verify, that the function v is a decreas-
ing function for z ∈ (−∞, z1) ∪ (z2 ,∞), and
it is an increasing function for z ∈ (z1 , z2).
This shows that the function v(z) has the
same shape as the curve on the right. As a
result, the FOC condition v(z)−Cθ � 0 can
have at most three solutions depending on
the value of θ.

z1 z2

C 1

C 2

v

Indeed, let θ1 � v(z1)/C and θ2 � v(z2)/C.
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• For all θ < (θ1 , θ2), the FOC gives a unique solution which is a global maximum
of u(m; θ).

• For all θ ∈ (θ1 , θ2), we have that v(z1) ≤ Cθ and v(z2) ≥ Cθ which guarantees
three solutions to FOC which we denote by m1 ≤ m2 ≤ m3.

• For θ � θ1 ,we have u(m1(θ); θ) � u(m2(θ); θ), and for θ � θ2 we have that
u(m2(θ); θ) � u(m3(θ); θ). For all θ ∈ (θ1 , θ2), the m2 is a local minimum, m1
and m3 are local maxima.

Consider the two continuous, differentiable and non-negative functions ∆12(θ) �
u(m1(θ); θ) − u(m2(θ); θ) and ∆32(θ) � u(m3(θ); θ) − u(m2(θ); θ). We can see that
∆12(θ1) � 0 and ∆32(θ2) � 0.

We can also verify that ∂u(m(θ),θ)
∂θ � Cm

(
∂m
∂θ − 1

)
− Cm ∂m

∂θ � −Cm(θ) < 0. There-

fore, the function ∆12 is increasing , since d∆12
dθ � C(m2(θ) − m1(θ)) > 0, whereas the

function ∆32 is decreasing since d∆32
dθ � C(m2(θ) −m3(θ)) < 0. Hence, there is a unique

θd ∈ (θ1 , θ2), such that ∆12(θd) � ∆23(θd) which is equivalent to u(m1(θd), θd) �
u(m3(θd), θd).

4.8.2 Proof of Lemma 4.4.1

We start with the proof of the case (i). According to Lemma 4.8.1, there are two pure
best response values, bmax and bmin, that correspond to the dropout threshold θd.
Following the definition of the expected payoff u(m; θ), we can show the following
upper bound on the values of pure best responses b(θd) ∈ {bmax(θd), bmin(θd)}:

0 < u(b(θd); θd) � S · r(b(θd); θd) − Cb2(θd)
2

≤ S − Cb2(θd)
2

.

This implies that b(θd) ≤
√

2S/C.
Second, we show that |θd − b(θd)| is not bounded as S → ∞. By assuming that

|θd − b(θd)| < ε for all S, we end up with the following contradictory inequality that
must hold for any value of S:

φ
( ε
σ̃

)
< φ

(
θd − b(θd)

σ̃

)
�

Cσ̃
S
· b(θd) ≤ σ̃

√
2C/S S→∞−−−−→ 0,

where φ is the PDF of the standard normal distributionN(0, 1).
Since the value of |θd − b(θd)| is not bounded, by studying the first and the second

derivatives of the payoff function (as in Lemma 4.8.1), we can show that (bmax(θd) −
θd) S→∞−−−−→ +∞ and (bmin(θd)−θd) S→∞−−−−→ −∞. Hence, the selection rates, corresponding
to the bmax and bmin converge to:

lim
S→∞

r(bmax(θd); θd) � lim
S→∞

Φ

(
bmax(θd) − θd

σ̃

)
� 1,
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lim
S→∞

r(bmin(θd); θd) � lim
S→∞

Φ

(
bmin(θd) − θd

σ̃

)
� 0,

where Φ is the CDF of the standard normal distributionN(0, 1).
Asymptotic behavior of bmin and bmax. Using the definition of the dropout thresh-

old θd and the definition for bmin, bmax, we can write:

0 < u(bmax(θd); θd) � u(bmin(θd); θd) ⇐⇒

0 < r(bmax(θd); θd) − C(bmax(θd))2
2S

� r(bmin(θd); θd) − C(bmin(θd))2
2S

< r(bmin(θd); θd).

As limS→∞ r(bmin(θd); θd) � 0 and limS→∞ r(bmax(θd); θd) � 1, it implies that

lim
S→∞

C(bmax(θd))2
2S

� 1 and lim
S→∞

C(bmin(θd))2
2S

� 0.

Hence, we show the asymptotic behavior of the pure strategy best response at θd for
S→∞:

bmax(θd(S)) �
√

2S/C(1 + o(1)) and bmin(θd(S)) � o(
√

2S/C).

Asymptotic behavior of θd. Finally, we consider the asymptotic behavior of the
dropout threshold θd. The dropout threshold θd(S) is unbounded: if we assume the
opposite, then bmax would be o(1), S→∞ since bmax must satisfy the FOC:

bmax(θd) � S
Cσ̃

φ

(
θd − bmax(θd)

σ̃

)
.

Hence, consider the following limit which we find using l’Hôpital rule and the prop-
erties of bmin and bmax proven above:

lim
S→∞

θd(S)√
2S/C

� lim
S→∞

bmax(θd(S))+bmin(θd(S))
2S

1
2 S−1/2

√
2/C

� lim
S→∞

bmax(θd(S)) + bmin(θd(S))√
2S/C

� 1.

Refined asymptotic behavior of bmin. Since bmin(θd(S)) � o(
√

2S/C) and θd(S) �√
2S/C(1 + o(1)) as S→∞, then, using the first-order condition, we show

bmin(θd(S)) � S
Cσ̃

φ

(
θd(S) − bmin(θd(S))

σ̃

)
�

S
Cσ̃

φ

(√
2S/C(1 + o(1))

σ̃

)
S→∞−−−−→ 0.

Now, we are ready to proof the case (ii). According to Lemma 4.8.1, the pure best
response is unique. Consider two cases:

• If θ(S) � γθd(S), then limS→∞
(
b(γθd

G(S)) − γθ
d
G(S)

)
� +∞. Consider the fol-

lowing limit that we calculate using l’Hôpital rule:

lim
S→∞

b(γθd(S))
γθd(S)

� lim
S→∞

db/dθ · dθ/dS
dθ/dS

� lim
S→∞

db
dθ

� lim
S→∞

b(b − θ)
b(b − θ) + σ̃2 � 1.



78 4.8. Omitted Proofs

• If θ(S) � θd(S)/γ, then limS→∞
(
b(θd(S)/γ) − θd(S)/γ

)
� −∞. Since the payoff

function u is non-negative, we have:

u ≥ 0 ⇐⇒ Cb(θd(S)/γ)2/(2S) ≤ Φ
(

b(θd(S)/γ) − θd(S)/γ
σ̃

)
S→∞−−−−→ 0.

Hence, b(θd(S)/γ) � o(
√

2S/C). Given that the best response must satisfy the
FOC:

b(θd(S)/γ) � S
Cσ̃

φ

(
θd(S)/γ − b(θd(S)/γ)

σ̃

)
�

S
Cσ̃

φ
©­«
√

2S/C 1
γ (1 + o(1))
σ̃

ª®¬ � o(1).

4.8.3 Proof of Lemma 4.4.2

Case (i). The asymptotic behavior of the dropout threshold is given in Section 4.8.2.
We recall the proof here. Consider the following limit which we find using l’Hôpital
rule and the properties of bmin and bmax proven in Lemma 4.4.1:

lim
S→∞

θd(S)√
2S/C

� lim
S→∞

bmax(θd(S))+bmin(θd(S))
2S

1
2 S−1/2

√
2/C

� lim
S→∞

bmax(θd(S)) + bmin(θd(S))√
2S/C

� 1.

Case (ii). To prove that the dropout threshold θd(S; σ̃) is decreasing with σ̃, we
differentiate with respect to σ̃ the condition on the equal payoffs for bmin and bmax

strategies, and we obtain:

∂θd

∂σ̃
� − bmax(θd(S)) + bmin(θd(S)) − θd(S)

σ̃
< 0 for large enough S.

4.8.4 Proof of Theorem 4.3.2

Let us denote by T the set-valued function

T(θ) � {F−1
µ (1 − α) : µG ∈ BG(θ)},

where µ � (µH , µL) and Fµ is the CDF of Ỹ induced by µ: Fµ � pH FµH + pLFµL .

Lemma 4.8.2. There is a one-to-one correspondence between the fixed points of T and the
equilibria µun of the game Gun.

Proof. If µun is an equilibrium of the game Gun, then there is a unique θun such that
F−1
µun(1 − α) � θun since Fµun(θ) is a monotone function. This θun is a fixed point of T

since µun
G ∈ BG(θun) by definition of µun.

On the other hand, if θun is a fixed point ofT, then there is a unique µun � (µun
H , µun

L )
such that µun

G ∈ BG(θun):

1. If θ , θd
G for all G ∈ {H, L}, then the pure best responses bH and bL are unique

(see Lemma 4.8.1 in Section 4.8.1), so µun is unique.



Chapter 4. Selection with Differential Variance in the Strategic Setting 79

2. If, without loss of generality, θ � θd
H , then there is a unique pure best response

bL, and two pure response values bmax
H , bmin

H (see Lemma 4.8.1 in Section 4.8.1).
The function F(τ) � Fµ(θ) is monotone in τ ∈ [0, 1] which is a probability for
µH � τδ(m − bmax

H ) + (1 − τ)δ(m − bmin
H ). It is also an equilibrium of Gun as

θ � F−1
µ (1 − α) by definition of θ. Hence, µun � (µH , µL) is an equilibrium of the

game Gun and it is unique.

By showing a one-to-one correspondence between equilibria of Gun and the fixed
points of T, it is left us to prove that the function T(θ) has a unique fixed point θun,
i.e., a solution to T(θun) � θun is unique. This will imply that the equilibrium of the
game Gun is unique. We use the following lemmas.

Lemma 4.8.3. Assume that m(θ) satisfies FOC and SOC defined in Section 4.8.1.

(i) If m > θ, then 0 < dm
dθ < 1.

(ii) If m ≤ θ, then dm
dθ ≤ 0.

Proof. First, we derive the expression for the first derivative. We differentiate the both
sides of FOC defined in Section 4.8.1:

dm
dθ

�
S

Cσ̃

(
m − θ
σ̃

)
φ

(
θ − m
σ̃

) (
1 − dm

dθ

σ̃

)
�

m − θ
σ̃2 m

(
1 − dm

dθ

)
�⇒ dm

dθ
�

m(m − θ)
m(m − θ) + σ̃2 .

Second, from the SOC defined in Section 4.8.1, we find that m (m − θ) + σ̃2 > 0.
Hence, the sign of the derivative dm/dθ is determined only be the sign of its numerator
m(m − θ). Note that the value of m is strictly positive as it satisfies the FOC, so
dm/dθ > 0 if and only if m > θ.

Lemma 4.8.4. For all S and θ , θd
G(S), the total derivative dT/dθ can be expressed as:

dT
dθ

�

∑
G pG

1
σ̃G
φ

(
T−bG
σ̃G

)
· bG(bG−θ)

bG(bG−θ)+σ̃2
G∑

G pG
1
σ̃G
φ

(
T−bG
σ̃G

) < 1.

Proof. Since T is an implicit function of θ, we use the chain rule to find the total
derivative:

dT
dθ

�

∑
G

∂T
∂bG

dbG

dθ
.

By differentiating both sides of the budget constraint, we can find the partial derivative
∂T/∂mG:

∂
∂bG

(∑
G

pGrG(bG; T)
)
� 0 ⇐⇒ ∂T

∂bG
�

pG
1
σ̃G
φ

(
T−bG
σ̃G

)
∑

G pG
1
σ̃G
φ

(
T−bG
σ̃G

) .
Finally, using the fact that ∂T/∂bG > 0, where

∑
G ∂T/∂bG � 1 and Lemma 4.8.3,

we show that dT/dθ < 1.
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Existence First, let us show that there is an interval [θ0 , θ1], such that for all θ ∈ R,
we have that θ0 ≤ T(θ) ≤ θ1:

• Since the best response bG(θ) ≥ 0 for all G ∈ {H, L}, then for any fixed α, let θ0

be the solution to the equation
∑

G pGΦ
c
(
θ0−0
σ̃G

)
� α. Hence, T(θ) ≥ θ0 for all

θ ∈ R.

• Since the best response bG(θ) ≤
√

2S/CG for all G ∈ {H, L}, then for any fixed

α, let θ1 be the solution to the equation
∑

G pGΦ
c
(
θ1−
√

2S/CG
σ̃G

)
� α. Hence,

T(θ) ≤ θ1 for all θ ∈ R.

Therefore, we can consider the function T on the interval [θ0 , θ1] which is compact
and convex. The graph of the function T is closed and for all θ ∈ [θ0 , θ1], we have
that T(θ) is convex (for θ , θd

G, the value of T(θ) is unique, and for θ � θd
G, the value

of T(θ) is an interval). Hence, using Kakutani fixed point theorem, we show that the
fixed point exists.

Uniqueness We show that there exists a fixed point of the function T. For all θ ,
θd

G, we have that dT/dθ < 1 (Lemma 4.8.4), and we have that limθ→θd
G+

T(θ) ≤
limθ→θd

G−
T(θ) for all G ∈ {H, L}. Hence, there is a unique solution to the fixed-

point problem T(θ) � θ, and, as a result, a unique equilibrium of the game Gun due to
Lemma 4.8.2.

4.8.5 Proof of Theorem 4.4.3

Case (i)

We prove that the dropout threshold θd
1 (S) is the fixed point of T, i.e., it corresponds to

the equilibrium of the game Gun. As we show in the proof of Lemma 4.4.1, as S→∞,

we have rmax
G :� r(bmax(θd

G); θ
d
G)

S→∞−−−−→ 1 and rmin
G :� r(bmin(θd

G); θ
d
G)

S→∞−−−−→ 0.
If α ≤ p1, and given that the selection rate for the G2-candidates at θd

1 tends
to zero with S, assume that G1-candidates randomize their strategy by playing bmax

1
with the probability τ1 and bmin

1 with the probability 1 − τ1. The G2-candidates

play b2(θd
1 )

S→∞−−−−→ 0. The probability τ1 can be found from the budget constraint:

α � p1(τ1rmax
1 + (1 − τ1)rmin

1 ) + p1r2(θd
1 , b2(θd

1 ))
S→∞−−−−→ p1τ1, so τ1

S→∞−−−−→ α/p1. This
strategy satisfies the budget constraint, so θd

1 is the fixed point of T.

Case (ii)

We now prove that the dropout threshold θd
2 is fixed point of T. If α > p1, then

selecting all candidates from G1 group would not be enough, and some G2-candidates
are needed to satisfy the selection rate α.
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Givenθd
2 , the fractionof selectedG1-candidateswouldbe equal to r1(θd

2 , b1(θd
2 ))

S→∞−−−−→
1. We claim the G2-candidates will play bmax

2 with probability τ2, and bmin
2 with prob-

ability 1 − τ2. The probability τ2 can be found from the budget constraint:

α � p1r1(θd
2 , b1(θd

2 )) + p2(rmax
2 τ2 + rmin

2 (1 − τ2))
S→∞−−−−→ p1 + p2τ2.

Hence, for τ2
S→∞−−−−→ α−p1

p2
, the dropout threshold, θd

2 is the fixed point of T.

4.8.6 Proof of Corollary 4.5.4

We use the expressions for equilibrium strategies from Theorem 4.4.3 and Theo-
rem 4.5.2.

(i) If CH � CL � C and σ2
H > σ2

L:

lim
S→∞

µ̄un
H

µ̄
dp
H

� lim
S→∞


α/pH
√

2S/C(1+o(1))
α
√

2S/C(1+o(1))
if α ≤ pH

√
2S/C(1+o(1))

α
√

2S/C(1+o(1))
if α > pH

�

{
1/pH if α ≤ pH ,

1/α if α > pH ,

lim
S→∞

µ̄un
L

µ̄
dp
L

� lim
S→∞


o(1)

α
√

2S/C(1+o(1))
if α ≤ pH

α−pH
pL

√
2S/C(1+o(1))

α
√

2S/C(1+o(1))
if α > pH

�

{
0 if α ≤ pH ,
α−pH
α−αpH

if α > pH .

(ii) If CH > CL:

lim
S→∞

µ̄un
H

µ̄
dp
H

� lim
S→∞


o(1)

α
√

2S/CH (1+o(1))
if α ≤ pL

(α−pL)/pH
√

2S/CH (1+o(1))
α
√

2S/CH (1+o(1))
if α > pL

�

{
0 if α ≤ pL ,
α−pL
α−αpL

if α > pL ,

lim
S→∞

µ̄un
L

µ̄
dp
L

� lim
S→∞


α/pL
√

2S/CL(1+o(1))
α
√

2S/CL(1+o(1))
if α ≤ pL

√
2S/CH (1+o(1))

α
√

2S/CL(1+o(1))
if α > pL

�


1/pL if α ≤ pL ,√

CL
CH

1
α if α > pL .

4.8.7 Proof of Theorem 4.5.5

First, using the formula for the expected value of the truncated normal distribution,
we find:

Uun(mG; θ) �
∑

G

pG E(YG · [ỸG > θG]) �
∑

G

pG E(YG |ỸG > θG)P(ỸG ≥ θG)

�

∑
G

pG

[
mGΦ

(
θG − mG

σ̃G

)
+ σ̃Gφ

(
θG − mG

σ̃G

)]
.
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Second, using Lemma 4.4.1, we can show that for all γ ∈ (0, 1) and θG � γ · θd
G, we

have:

bG(θG) · Φ
(
θG − bG(θG)

σ̃G

)
+ σ̃Gφ

(
θG − bG(θG)

σ̃G

)
� θG(1 + o(1))(1 + o(1)) + σ̃G · o(1) � θG(1 + o(1))

and, for θG � θd
G/γ, we have:

bG(θG) · Φ
(
θG − bG(θG)

σ̃G

)
+ σ̃Gφ

(
θG − bG(θG)

σ̃G

)
S→∞−−−−→ 0.

For θG � θd
G, we have:

bmax
G (θG) · Φ

(
θG − bmax

G (θG)
σ̃G

)
+ σ̃Gφ

(
θG − bmax

G (θG)
σ̃G

)
� θG(1 + o(1)),

bmin
G (θG) · Φ

(
θG − bmin

G (θG)
σ̃G

)
+ σ̃Gφ

(
θG − bmin

G (θG)
σ̃G

)
S→∞−−−−→ 0.

For the game Gdp, we use the equilibrium strategy from Theorem 4.5.2, and can
write that:

Udp
� pH(α + o(1)) · θd

H(S)(1 + o(1)) + pL · (α + o(1)) θd
L (S)(1 + o(1))

� αpH · θd
H(S)(1 + o(1)) + αpL · θd

L (S)(1 + o(1)), S→∞.

For the gameGun, weuse the equilibrium strategy fromTheorem4.4.3. We consider
separately the case of group-independent and the case of group-dependent costs.

Group-independent cost

If α ≤ pH , then

Uun
� pH(α/pH + o(1)) · θd

H(1 + o(1)) + pL · o(1) � α ·
√

2S/C(1 + o(1)), S→∞.

If α > pH , then

Uun
� pH(1 + o(1)) · θd

L (1 + o(1)) + pL ·
(
α − pH

pL
+ o(1)

)
θd

L (1 + o(1)) � α
√

2S/C(1 + o(1)), S→∞,

where we use the assumption on equal costs CH � CL and the result of Lemma 4.4.2 on
the asymptotic behavior of the dropout threshold. Hence, we can calculate the limit:

lim
S→∞
Udp/Uun

� 1.
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Group-dependent cost

If α ≤ pL, then

Uun
� pL(α/pL + o(1)) · θd

L · (1 + o(1)) + pH · o(1) � α ·
√

2S/CL · (1 + o(1)).

If α > pL, then

Uun
� pL(1 + o(1)) · θd

H · (1 + o(1)) + pH ·
(
α − pL

pH
+ o(1)

)
θd

H(1 + o(1))

� pL(1 + o(1))θd
H · (1 + o(1)) + (α − pL)θd

H(1 + o(1)).

Hence, for c :�
√

CL/CH , we can write that:

lim
S→∞
Uun/Udp

�


limS→∞

αθd
L (1+o(1))

αpHθd
H (1+o(1))+αpLθd

L (1+o(1)) �
1

cpH+pL
if α ≤ pL ,

limS→∞
pLθd

H (1+o(1))+(α−pL)θd
H (1+o(1))

αpHθd
H (1+o(1))+αpLθd

L (1+o(1)) �
c

cpH+pL
if α > pL ,

where c
cpH+pL

< c
cpH+cpL

� 1.

4.8.8 Proof of Theorem 4.6.1

Equilibrium efforts Let us first find for which α ∈ (0, 1)we have the equality of effort
at equilibrium, i.e., mun

H � mun
L . Since the equilibrium values are the best responses to

θun, and the pure best response is unique (see Lemma 4.8.1), we can write:

mun
H � mun

L ⇐⇒ S
CH σ̃H

φ

(
θun − mun

H

σ̃H

)
�

S
CL σ̃L

φ

(
θun − mun

L

σ̃L

)
⇐⇒ θun − mun

H � ±
√
−2

log(CH σ̃H) − log(CL σ̃L)
1/σ̃2

H − 1/σ̃2
L

.

For CH σ̃H > CL σ̃L, there exist no real solution to the above equation. In this case,
we can show that mun

H < mun
L for all α ∈ (0, 1). Assume the opposite, i.e., mun

H > mun
L

for all θ, then φ((θ − mun
H )/σ̃H) < φ((θ − mun

L )/σ̃L) and also CH σ̃H > CL σ̃L which
contradicts the initial assumption.

For CH σ̃H ≤ CL σ̃L, there are two values of αmun
H �mun

L
which correspond to equal

equilibrium efforts mun
H � mun

L :

α(1,2)mun
H �mun

L
�

∑
G

pGΦ
c

©­­­­«
±

√
−2 log(CH σ̃H )−log(CL σ̃L)

1/σ̃2
H−1/σ̃2

L

σ̃G

ª®®®®¬
.

We can verify that dbH/dα > dbL/dα for α(1)mun
H �mun

L
and dbH/dα < dbL/dα for α(2)mun

H �mun
L

which concludes the proof.
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Equilibrium selection rates Let us find such αrH�rL for which both groups are se-
lected at equal rates, i.e., run

H � run
L . This is equivalent to:

Φc
(
θun − mun

H

σ̃H

)
� Φc

(
θun − mun

L

σ̃L

)
� αrH�rL ⇐⇒ θun

� mun
G + σ̃GΦ

−1(1 − αrH�rL ), ∀G ∈ {H, L}.

By definition of the best response, we can also write that:

mun
G �

S
CG σ̃G

φ

(
θun − mun

G

σ̃G

)
�

S
CG σ̃G

φ
(
Φ−1(1 − αrH�rL )

)
,

θun
�

S
CG σ̃G

φ
(
Φ−1(1 − αrH�rL )

)
+ σ̃GΦ

−1(1 − αrH�rL ).

The equality for θun is possible only for such α, when

S
CH σ̃H

φ
(
Φ−1(1 − αrH�rL )

)
+ σ̃HΦ

−1(1 − αrH�rL ) �
S

CL σ̃L
φ

(
Φ−1(1 − αrH�rL )

)
+ σ̃LΦ

−1(1 − αrH�rL ),

which is if and only if

S
(

1
CH σ̃H

− 1
CL σ̃L

)
φ

(
Φ−1(1 − αrH�rL )

)
� Φ−1(1 − αrH�rL )(σ̃L − σ̃H).

We solve the corresponding equation by letting z B Φ−1(1 − αrH�rL ) and solving with
respect to z. After, αrH�rL � 1 −Φ(z).

Let ξ � S
(

1
CH σ̃H

− 1
CL σ̃L

)
/(σ̃L − σ̃H). Then by definition of φ:

ξ
1√
2π

e−
z2
2 � z ⇐⇒ z · e z2

2 � ξ
1√
2π
.

By squaring both sides of the above equation, we end up with the equation of type
y · e y � const which can be solved using the Lambert W function defined as the
inverse to f (y) � y · e y . As a result, by solving for z2 and taking the square root with
the sign equal to the sign of ξ, we show:

αrH�rL � 1 −Φ ©­«sgn(ξ)

√
W

(
ξ2

2π

)ª®¬ .
We can verify that the drH/dα > drL/dα at αrH�rL , so for all α < αrH�rL � 1 −

Φ

(
sgn(ξ)

√
W

(
ξ2

2π

))
, we have that run

H < run
L .
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Chapter 5

The Price of Local Fairness in Multistage
Selection

This chapter is based on our publication (Emelianov et al., 2019).

The code to generate all figures can be found at:
https://github.com/vitaly-emelianov/multistage_fairness/

Abstract In this chapter, we study fairness in k-stage selection problems where addi-
tional features are observed at every stage. We first introduce two fairness notions, local
(per stage) and global (final stage) fairness, that extend the classical fairness notions to
the k-stage setting. We propose a simple model based on a probabilistic formulation
and show that the locally and globally fair selections that maximize precision can be
computed via a linear program. We then define the price of local fairness to measure
the loss of precision induced by local constraints; and investigate theoretically and
empirically this quantity. In particular, our experiments show that the price of local
fairness is generally smaller when the sensitive attribute is observed at the first stage;
but globally fair selections aremore locally fair when the sensitive attribute is observed
at the second stage—hence in both cases it is often possible to have a selection that has
a small price of local fairness and is close to locally fair.

5.1 Introduction

The existing literature on fairness in selection problems typically considers one-shot
decision processes whereby, from a set of features observed about an individual—
one of them being a ‘sensitive feature’ based on which discrimination is defined—,
one needs to decide whether or not to “select” him/her (where select can mean hire,
grant a loan or parole, etc. depending on the context). The problem in this setting is
how to learn a decision rule from past data that respects certain fairness constraints.
In many applications, however, decisions are made in multiple stages. In hiring for

https://github.com/vitaly-emelianov/multistage_fairness/
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instance, a subset of candidates is first selected for interview based on resume (or high-
level candidate’s information) and a final selection is then made from the subset of
interviewed candidates. In police practices, there are oftenmultiple stages of decisions
with increasingly high levels of investigation of the individuals not released at the
previous stage; as for instance in the famous stop-question-and-frisk practice by the
New-York City Police Department.

A distinctive specificity of the multistage setting, besides the fact that decisions are
made in multiple stages, is that in many cases additional features get known at later
stages for the subset of individuals selected at earlier stages, but one needs to make the
early-stage selection without observing those features. This raises a number of new
questions that are fundamental to fair multistage selection. First, given that there are
multiple layers of decisions, how should fairness be defined? In particular, should it be
defined at each individual stage, on the final decision, or otherwise? Second, given
that one has to make decisions with only partial information at early stages, how to
make an optimal selection? Finally, given that the sensitive feature can be observed at
different stages, is it better to observe the sensitive feature at earlier or later stages (for both
fairness and utility)? This last question intuitively relates to recurrent public debates
such as “should gender identification be removed from CVs?”.

In this chapter, we study the k-stage selection problem, in which there is a fixed
limit (or budget) of candidates that can be selected at each stage (as is natural in the
applications discussed). To tackle the questions above, we propose a simple model
based on a probabilistic formulation in which we assume perfect knowledge of the
joint distribution of features at all stages and of the conditional probability of being a
desirable candidate conditioned on feature values. Based on this model, we are then
able to make the following contributions.

We introduce twomeaningful notions of fairness for the k-stage setting: local fairness
(the selection is fair at each stage) and global fairness (only the final selection needs to be
fair). These definitions extend classical group fairness notions for one-stage decision
making (such as demographic parity or equal opportunity) to the multistage setting
and they apply regardless of when the sensitive feature is observed (at first stage or
later). We show that local fairness implies global fairness and we propose a linear
formulation of the problem that allows us to compute the selection algorithm that
maximizes precision while satisfying (local or global) fairness and per-stage budget
constraints in expectation. As local fairness is amore restrictive condition, the precision
of the optimal globally fair algorithm is naturally higher than for the locally fair
algorithm. To capture this gap, we define the price of local fairness (PoLF) as the ratio of
the two and prove a simple upper bound—showing that imposing local fairness cannot
be arbitrarily bad. We also define the notion of violation of local fairness (VoLF) to
capture how far from locally fair the optimal globally fair algorithm is.

Finally, we conduct a numerical study in a two-stage setting using three classical
datasets. Our results show that the PoLF can be large (up to 1.6 in some cases). This
implies that in some cases, enforcing local fairness constraints can reduce the precision
by 60% compared to a globally fair algorithm. The VoLF is also sometimes large (up to
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0.6 in our experiments), which means that imposing only a global fairness constraint
can be highly unfair at intermediate stages. We finally compare what happens when
the sensitive feature is observed at the first stage or at the second stage. We find that
the PoLF is generally higher when the sensitive feature is observed at the second stage;
while conversely the VoLF is generally higher when the sensitive feature is observed
at the first stage. These results show that, in most cases, it is possible to get at least
approximate fairness at each stage and precision close to globally-fair optimal together;
either by imposing local fairness if the sensitive feature is observed at first stage (where
PoLF is small) or by hiding the sensitive feature at first stage and using a globally fair
algorithm (which is close to locally fair since VoLF is then small).

Overall, our results provide intuitive answers towards better understanding fair-
ness inmultistage selection. To that end, we intentionally used the simplest model that
captures themain features of amultistage selection problem and how an optimal selec-
tion algorithm is affected by the fairness notion considered and the time at which the
sensitive feature is observed—rather than using a more practical but complex model.
We believe that it is a good abstraction to start with, but we elaborate further on our
model’s limitations in Section 5.7.

5.2 Related Work

As mentioned earlier, there have been many recent works on defining fairness and
constructing algorithms that respect those definitions for the case of one-stage decision
making (Chouldechova, 2017; Corbett-Davies et al., 2017; Dwork et al., 2012; Hardt
et al., 2016b; Kilbertus et al., 2017; Kleinberg et al., 2017; Lipton et al., 2018; Pedreshi et
al., 2008; Zafar et al., 2017b). In this work, we focus on two classical notions of fairness
for the one-shot classification setting: demographic parity (or disparate impact) and
equal opportunity (or disparate mistreatment) (Hardt et al., 2016b; Zafar et al., 2017b).
There are also works on fairness in sequential learning (Heidari and Krause, 2018;
Jabbari et al., 2017; Joseph et al., 2016; Valera et al., 2018). The model in those papers
is to sequentially consider each individual and make decision for them, but there is no
notion of refining selection through multiple stages by getting additional features.

Closer to our work, a few papers investigate multistage classification/selection
without fairness considerations (Senator, 2005; Trapeznikov et al., 2012). Schumann
et al. (2019) model the interview decisions in hiring as a multi-armed bandit problem
and consider getting extra features at a cost for a subset of candidates, but they do
not have fairness constraints: they propose an algorithm for their bandit problem and
show that it leads to higher diversity than other algorithms.

To the best of our knowledge, our model is the first that proposes concrete fairness
notions for multistage selection and algorithms to maximize utility under fairness
constraints. The only other papers discussing fairness in the context of two-stage
or composed decision making are (Bower et al., 2017; Dwork and Ilvento, 2019), but
they do not model additional features becoming available at the second stage for the
subselected individuals, which is the key element of our analysis.
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5.3 Multistage Selection Framework

5.3.1 Basic Setting and Notation

Assume that there is a continuum of candidates1 of a unit mass each described by d
features, and consider the following k-stage selection process. At the first stage, we
observe some of the features x1 , . . . , xd1 of all candidates where d1 < d. We then select
α1 proportion of them that “pass" to the second stage. At the second stage, we observe
some extra features of these α1 candidates xd1+1 , . . . , xd2 (d1 < d2) that were not known
at the previous stage. Using the features of both stages, we do a selection, from the α1
that passed the first stage of α2 ≤ α1 candidates that pass to the next stage, and so on.
At the last stage k, we observe all dk � d features of the αk−1 candidates and select αk

among those who passed the stage k − 1.
We assume that each candidate is endowed with a label y ∈ {0, 1}, which encodes

whether the candidate is “good" or “bad” according to the purpose of the selection,
i.e., if y � 1 we would like to have this candidate in our final selection, if y � 0 we
would prefer not. The label y is not known until the end and is therefore not available
to make the selection.

We assume that the decision maker knows the joint distribution of features and the
conditional probability that expresses theprobability that the candidate is “good" given
all its features. We will denote by px1 ...xd � P(X1 � x1 , . . . ,Xd � xd) the probability to
observe a specific realization of features and by p y�1

x1 ...xd
� P(Y � 1|X1 � x1 , . . . ,Xd � xd)

the probability that a candidate is good (y � 1) given its features x1 , . . . , xd .

5.3.2 Probabilistic Selection and Budget Constraints

In the following, we will consider a class of selection algorithms that perform a proba-
bilistic selection of candidates. Such an algorithm takes as an input a list of probability
values p(i |i−1)

x1 ...xdi
for all stages i ∈ {1 . . . k} and all possible combination of features. Then,

for each candidate that passed stage i − 1 and has features (x1 . . . xdi ), the algorithm
selects this candidate for the next stage with probability p(i |i−1)

x1 ...xdi
, with the convention

that everyone passes stage 0.
For each stage i, we define a binary predictor Ŷi that is equal to 1 if the candidate

is selected at stage i (by convention, Ŷ0 � 1 for all candidates). We assume that, on
average, the proportion of candidates that can be selected by the algorithm at stage i
is at most αi and exactly αk for the last stage, with 1 ≥ α1 ≥ · · · ≥ αk . We denote by
α−k � (α1 , · · · , αk−1)T the selection sizes of the first k−1 stages.

5.3.3 Performance Metric

Wemeasure the performance of a given selection algorithm in terms of precision. The
precision is the fraction of the selected candidates that indeedwere “good" for selection:

1Weuse the term candidates in a generic sense to refer to elements of the initial set that can be selected.
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precision�
True Positive

True Positive+False Positive
�P(Y�1|Ŷk �1),

where the denominator is the number of selected candidates.
The choice ofprecisionmay seemarbitrarybut it is in fact a verynaturalmetricwhen

the size of the final selection is fixed as in our setting. Indeed, maximizing precision
is then equivalent to maximizing most other meaningful metrics as formalized in the
next theorem.

Theorem 5.3.1. Assume that the selection size P(Ŷk � 1) is fixed (to αk). Then maximization
of precision is equivalent to maximization of true positive rate, true negative rate, accuracy and
f1-score; and to minimization of false positive rate and false negative rate.

5.4 Fairness Notions in Multistage Setting

In this section, we propose newnotions of fairness for themultistage selection problem.
We assume that there exists, amongst all features that describe candidates, a sensitive
feature G ∈ {A, B} that indicates whether or not a candidate belongs to a sensitive
group that should not be discriminated against.

The literature has introduced multiple definitions of fairness for the single-stage
setting (and it is worth mentioning that in most of the cases those fairness criteria
cannot be satisfied simultaneously (Chouldechova, 2017)). The most relevant notions
in the context of selection problems are demographic parity (DP) and equal opportunity
(EO). We first recall the definition of these fairness criteria in the traditional setting of
single-stage selection. We then extend them to the multistage setting by showing that
there are essentially two relevant notions of fairness: local and global fairness.

5.4.1 Classical Fairness Notions in Single-Stage

Let Ŷ be a binary predictor that decides which candidates belong to the selection. The
first fairness definition, widely known as demographic parity, states that the predictor Ŷ
is fair if it is statistically independent from the sensitive attribute G ∈ {A, B}.

Definition 5.4.1 (Demographic Parity, DP). The binary predictor Ŷ satisfiesDPwith respect
to G if Ŷ and G are independent:

P(Ŷ � 1|G � A) � P(Ŷ � 1|G � B). (5.1)

DP does not take into account the actual label Y. Hardt et al. (2016b) and Zafar
et al. (2017b) argue that DP is not themost relevant notion of fairness in cases wherewe
have ground truth on the quality of the candidates (which is our case since we assume
statistical knowledge of the probabilities of labels). In such cases, one might want to
be fair among the candidates that are worth selecting, a metric called equal opportunity
(Hardt et al., 2016b) (an equivalent notion called disparate mistreatment is proposed
in (Zafar et al., 2017b)):
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(x1 . . . xd1) (x1 . . . xd2) observe y
select α1

stage 1
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GF, LF2
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Figure 5.1 – Illustration of the different fairness definitions for a two-stage selection.

Definition 5.4.2 (Equal Opportunity, EO (Hardt et al., 2016b)). The binary predictor Ŷ
satisfies EO with respect to G if Ŷ and G are independent given that Y � 1:

P(Ŷ � 1|Y � 1,G � A) � P(Ŷ � 1|Y � 1,G � B). (5.2)

In the remainder, we systematically consider DP and EO.

5.4.2 Local and Global Fairness in Multistage

Existing fairness notions apply to single-stage selection, where we have only one
binary predictor Ŷ. In the case of k-stage selection, we have k binary predictors
Ŷ � (Ŷ1 , . . . , Ŷk). In this section, we develop different notions of fairness that extend
existing notions to the k-stage selection setting.

Wepropose three definitions thatwebelieve correspond to three reasonable notions
of fairness. The high-level idea of each definition is depicted in Fig. 5.1. For the sake
of brevity of exposition, we present the formal definitions for the demographic parity
criterion, the translation to EO (or to any other fairness notion) being straightforward.

The first fairness notion, local fairness 1 (LF1), imposes that the selection be fair at
every stage with respect to the set of candidates that reached that stage. In other words
the selection of each stage i is fair with respect to the population that “passed" stage
i − 1.

Definition 5.4.3 (Local Fairness 1, LF1). A k-stage selection algorithm satisfies LF1 if (for
the case of DP), ∀i ∈ {1, · · · , k}:

P(Ŷi � 1|Ŷi−1 � 1,G � A) � P(Ŷi � 1|Ŷi−1 � 1,G � B).

The second fairness notion that we propose, local fairness 2 (LF2), prescribes that
the selection should be fair at each stage with respect to the initial set of candidates.

Definition 5.4.4 (Local Fairness 2, LF2). A k-stage selection algorithm satisfies LF2 if (for
the case of DP), ∀i ∈ {1, · · · , k}:

P(Ŷi � 1|G � A) � P(Ŷi � 1|G � B).

In the last definition, global fairness (GF), we allow the predictor Ŷi to be unfair at
each stage before the last, but we require the final decision Ŷk to be fair with respect to
the initial set of candidates.
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Definition 5.4.5 (Global Fairness, GF). A k-stage selection algorithm satisfies GF if (for the
case of DP):

P(Ŷk � 1|G � A) � P(Ŷk � 1|G � B).

Note that the above definitions can be adapted to EO by conditioning on Y � 1 in
all formulas.

5.4.3 Equivalence between LF1 and LF2

In the following theorem, we show that both notions of local fairness, LF1 and LF2
are equivalent. Therefore in the rest of the chapter, we will simply name a multistage
selection algorithm that satisfies LF1 (and thus LF2) as a being locally fair (LF). An
algorithm satisfying the global fairness definition will be called globally fair (GF).

Theorem 5.4.6 (Relations between fairness notions). For both DP and EO:

(i) A selection algorithm satisfies LF1 if and only if it satisfies LF2. We call such an algorithm
locally fair (LF).

(ii) A locally fair selection algorithm is globally fair (GF).

5.5 Utility Maximization as a Linear Program

Ourgoal is to find the binarypredictors (Ŷ1 , . . . , Ŷk) corresponding to stages from1 to k,
respectively, that maximize precisionwhile respecting budget and fairness constraints:

max
Ŷ1 ,...,Ŷk

P(Y � 1|Ŷk � 1)

P(Ŷi � 1) ≤ αi , i ≤ k − 1
P(Ŷk � 1) � αk

f j(Ŷ1 , . . . , Ŷk) � 0, j ≤ t

(5.3)

where functions f j(·) of the binary predictors correspond to the fairness constraints
we impose. For instance, for a globally fair algorithm (DP) we have only one fairness
constraint: f (Ŷ1 , . . . , Ŷk) � P(Ŷk � 1|G � A) − P(Ŷk � 1|G � B).

Using the assumption that the final stage size constraint is P(Ŷk � 1) � αk we can
write the precision as follows:

P(Y�1|Ŷk �1)� 1
αk

∑
x1 ...xd

p y�1
x1 ...xd

px1 ...xd

k∏
j�1

p( j | j−1)
x1 ...xdj

. (5.4)

Using the notation introduced in Section 5.3.2, the probability P( ŷi � 1) that candidate
passes stage i is

P(Ŷi � 1) �
∑

x1 ...xd

px1 ...xd

i∏
j�1

p( j | j−1)
x1 ...xdj

. (5.5)
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Hence, the constraints on the selection size P(Ŷi � 1) ≤ αi for i < k and P(Ŷk � 1) � αk

can be expressed using (5.5).
The fairness constraints can be developed in the same manner, e.g., for the globally

fair case (DP):

f (Ŷ1 , . . . , Ŷk) � P(Ŷk � 1|G � A) − P(Ŷk � 1|G � B),

where ∀g ∈ {A, B},

P(Ŷk �1|G� g)�

∑
xi

∏k
j�1 p( j | j−1)

x1 ...xdj
·px1 ...g...xd∑

xi

px1 ...g...xd

. (5.6)

From (5.4), we see that the objective is not linear in the variables p( j | j−1)
x1 ...xdj

due to the
product of probabilities. Similarly, we observe from (5.5) and (5.6) that the constraints
are also not linear in these variables. However, we can show that by using the change
of variables p̃(i |i−1)

x1 ...xdi
�

∏i
j�1 p( j | j−1)

x1 ...xdj
, it can be made linear. This shows that it is possible

to compute the variables p( j | j−1)
x1 ...xdj

that maximize precision (5.3) using a linear program
(LP) (see details in Section 5.8.1), which is key to applicability. It should be noted,
however, that the number of variables in (LP) grows exponentially with the number of
features.

Todistinguishbetween thedifferentnotionsof fairness,wewill denotebyULF(α−k , αk)
andUGF(α−k , αk) the value of the problem (LP)—i.e., the maximum utility—when the
fairness constraints correspond to local and global fairness, respectively. Similarly, we
will denote by Uun(α−k , αk) the optimal precision value when no fairness constraint
are imposed (we call it the unfair case).

5.5.1 Solution Properties wrt Budget Constraints

The selection sizes may be related to some budget or to some physical resources of
our problem and are crucial parameters. As we show in the next theorem, the optimal
utility values aremonotonic and concave as functions of budget sizes α1 , . . . , αk−1. This
property can be useful for budget optimization and is illustrated as well in Fig. 5.2.

Theorem 5.5.1 (Monotonicity and concavity). ForU ∈ {ULF ,UGF ,Uun} and any fair-
ness constraints that can be expressed as linear homogeneous equations2 (such as DP and EO),
we have thatU(α−k , αk) is

(i) non-decreasing and concave with respect to α−k ;

(ii) non-increasing with respect to αk .

Note that U can be concave or convex or none of the two with respect to αk ,
depending on the problem’s parameters.

2See details in Lemma 5.8.2 in Section 5.8.1.
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5.5.2 The Price of Local Fairness

Wearenowready todefineour central notion—the price of local fairness—that represents
the price to pay for being fair at intermediate stages compared to a globally fair solution.

Definition 5.5.2 (Price of Local Fairness, PoLF). Let

PoLF(α−k , αk) �
UGF(α−k , αk)
ULF(α−k , αk)

.

It should be clear that the locally fair algorithm is more constrained than the glob-
ally fair. Thus, we have:

ULF(α−k , αk) ≤ UGF(α−k , αk) ≤ Uun(α−k , αk).

This implies that the values of PoLF(α−k , αk) are always larger than or equal to 1.
Using only the final selection size αk , it is also possible to compute an upper bound as
follows.

Theorem 5.5.3 (PoLF bound). For all (α−k , αk), we have:

1 ≤ PoLF(α−k , αk) ≤ min
(

1
αk
,

1
P(Y � 1)

)
.

For instance, if the final stage selection size is αk � 0.3 (as in our numerical exam-
ples), the globally fair algorithm can outperform the locally fair one by a factor at most
3.33. While this bound is probably loose, we will see in our numerical example that
the PoLF can be as large as 1.6 on real data.

5.6 Empirical Analysis

In this section we implement3 the optimization algorithms in order to capture ten-
dencies on real datasets and to provide general insights. We consider the two-stage
selection process, since it is the most easily interpretable. Thus, α−k � α1 and αk � α2.
In our experiments we use three datasets: Adult (Dua andGraff, 2017), COMPAS (Larson
et al., 2016) and German Credit Data (Dua and Graff, 2017). We adapt these datasets
to our two stage fair selection problem by leaving 6 features, binarizing them (see de-
tails in Section 5.9) and artificially separating in two stages. We estimate the statistics
px1 ...xd and p y�1

x1 ...xd
from data. We then use a linear solver for the linear program (LP)

that gives us the optimal utilityU(α1 , α2) for the fair and unfair cases.

5.6.1 Analysis of the Price of Local Fairness

We consider three different scenarios: (i) the sensitive attribute G is observed at the first
stage; (ii) at the second stage; (iii) never used in the selection process. We distinguish

3All codes are available at https://github.com/vitaly-emelianov/multistage_fairness/

https://github.com/vitaly-emelianov/multistage_fairness/
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Figure 5.2 – UtilityU(α1 , α2 � 0.3) for Adult dataset (DP).

these three cases since it could happen that the use of the sensitive attribute G in
decisionmaking is forbidden at some stages or even at all (by lawor other conventions).
Our aim is to compare how the price of local fairness behaves in every case.

Let us start with a simple example. We leave 5 features from the Adult dataset: sex,
age, education, relationship and native country and consider the attribute sex as sensitive.
Fig. 5.2 then shows the values of U {un , GF, LF}(α1 , α2) as a function of α1 for fixed
α2 � 0.3 when using the features displayed on top of each subfigure at first stage and
the rest at second stage. We make two important observations from this figure. First,
the value of PoLF can be significant. From Fig. 5.2-(right), we see that for α1 ≈ 0.33, the
value of PoLF is about 1.3, meaning that the globally fair algorithm achieves 30% larger
value of precision than the locally fair. Second, the gap between LF and GF algorithms
is significantly larger when the sensitive attribute G is observed at the second stage.

To show that this behavior is significant we calculate the values of U(α1 , α2) for
every possible combination X � {X1 , . . . ,X5} of 5 features out of 6 as decision variables
(X1 ,X2 at first stage and X3 ,X4 at second stage), with one sensitive attribute G � X5
that can be observed at the first stage or at the second stage or not observed at all, and
for every possible (discretized) value of α1 ≥ α2. Due to space constraints we present
our results only for the DP definition of fairness; we emphasize that the observations
are robust among the three datasets and the two fairness notions (DP and EO) (see
Section 5.9 for additional results). Fig. 5.3 shows the empirical cumulative distribution
functions F̂PoLF(x) of the values of PoLF obtained. We observe that the price of local
fairness is significantly lower when the sensitive attribute G is revealed at the first stage
compared to the case where it is revealed later. This is consistent with the observation
made in Fig. 5.2. A possible interpretation is that the LF algorithm has to make a
conservative decision at the first stage and therefore cannot perform well compared to
the GF algorithm that is able to compensate (when the sensitive feature G is observed)
for the unfair decisions that have been made at the first stage. It is worth mentioning
that we have the same observation for a three-stage algorithm: the later we reveal the
sensitive attribute, the higher the values of PoLF we obtain (see Section 5.9).
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Figure 5.3 – Empirical CDFs of PoLF for all datasets (DP, α2 � 0.3).
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Figure 5.4 – Empirical CDFs of VoLF for all datasets (DP, α2 � 0.3).

5.6.2 Violation of Local Fairness

By definition, a globally fair algorithm can violate fairness constraints at intermediate
stages. For a given budget constraints α1 , α2, we define the violation of local fairness
(VoLF) as the absolute value of the fairness constraint violation at the first stage for
the optimal globally fair algorithm. For instance, for DP, this quantity equals:

VoLF(α1 , α2) �
��P(Ŷ1 � 1|G � A) − P(Ŷ1 � 1|G � B)

�� .
In Fig. 5.4, we show the empirical cumulative distribution function of violation of

fairness F̂VoLF(x) for every value of α1 ∈ [α2; 1] and for every feature combination. We
observe that the later the sensitive feature G is revealed (or even not revealed), the more fair
at intermediate stages the globally fair algorithm is. One possible explanation is that an
algorithm that cannot observe the sensitive feature G at the first stage has to be more
“cautious” at every stage to be able to satisfy global fairness since the exact value of
sensitive attribute G is not available. This observation is again robust among different
datasets and notions of fairness.

Finally, in Fig. 5.5 we represent the joint distribution of PoLF and VoLF. As
mentioned before, the globally fair algorithm is more unfair at the intermediate stages
when the sensitive feature G is observed from the beginning (left panel), however the
price of local fairness we pay in this case is the smallest one. When the sensitive feature
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Figure 5.5 – VoLF (y-axis) vs PoLF (x-axis) for Adult dataset (DP, α2 � 0.3).

G is observed at the second stage (middle panel) the globally fair algorithm is more
locally fair compared to the previous case, but the value of PoLF is way larger. Finally,
when G is never observed (right panel) the globally fair algorithm is the “most locally
fair” among all three settings. We finally observe that, while most points have either
PoLF small (i.e., using a LF algorithm does not lose much) or VoLF small (i.e., the GF
algorithm is almost locally fair), there exist some points—when the sensitive feature
is observed at the second stage—where both PoLF and VoLF are large; i.e., imposing
local fairness even approximately comes at a significant cost.

5.7 Conclusion and Discussion

In this work we tackle the problem of multistage selection and the fairness issues it
entails. We propose a stylized model based on a probabilistic formulation of the k-
stage selection problemwith constraints on the number of selected individuals at each
stage that should hold in expectation. We introduce two different notions of fairness
for the multistage setting: local (under two equivalent variants) and global fairness.
Thanks to this framework, we show that maximizing precision under budget and
fairness constraints can be done via linear programming, which enables for efficient
computation as well as theoretical investigation. In particular, we analyze theoreti-
cally and empirically how the utility of locally and globally fair algorithms vary with
selection budgets, and we find that globally fair algorithms can lead to non-negligible
performance increases compared to locally fair ones.

One of the main findings of our work is that the stage at which the sensitive
attribute is revealed greatly affects the difference between the performance of locally
and globally fair algorithms: hiding the sensitive feature at early stages tends to make
globally fair algorithm more fair at intermediate stages. While locally fair algorithms
may be desirable, our results show that local fairness does not come for free. They also
show that if a decision maker would like to encourage locally fair selection algorithms,
there are essentially two choices: either hide the sensitive feature at the first stage or
impose by rules the first stage to be fair.

Our model allows us to provide elegant insights into the fairness questions related
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to multistage selection, yet it does a number of simplifying assumptions that naturally
restrict its direct applicability. First, our model ignores the issue that the selection
probability at a stage depends on which candidates got selected at the previous stages;
i.e., it implicitly makes the approximation that at each stage the number of candidates
selected for each feature combination is equal to its expectation. In Section 5.8.2,
we show that this approximation becomes exact as n tends to infinity. Second, we
assume perfect statistical knowledge of the joint distribution of features and label
values, without bias. Third, we consider only discrete features and use a non-compact
representation of the selection probabilities—this allows us to solve the exact selection
problem by using an LP formulation. Relaxing these assumptions, in particular using
a more compact representation of the selection algorithm (at the cost of a loss of
precision) is an interesting direction of future work.

5.8 Omitted Proofs

In this section, we provide the proofs of all results stated in the chapter. We start by
introducing notation that will be used throughout the proofs.

Notation

To ease the exposition, we introduce the following matrix notation for the problem
(5.8).
• Selection probabilities p. We concatenate all the selection probabilities in a single

vector:
p � (p̃(i |i−1)

x1 ...xdi
)T ,

where p̃(i |i−1)
x1 ...xdi

is the vector of selection probabilities at stage i for all possible values of
x1 . . . xdi (whose size depends on i).
• Constraints set Cα−k ,αk . We have two types of constraints in problem (5.8).

1. The constraints that correspond to selection sizes αi , i � 1, . . . , k. We separate
them such that Ap ≤ α−k corresponds to selection at first k − 1 stages, so

α−k � (α1 , . . . , αk−1)T .

The constraint bTp � αk corresponds to selection at the last stage, where we
require a strict equality.

2. The constraints that do not depend on selection sizes are written in a form of
Dp ≤ δ for an appropriateD, where δ � (1, . . . , 1, 0, . . . , 0)T : 1’s in δ correspond
to constraints 0 ≤ p̃(1|0)x1 ...xd1

≤ 1 and 0’s correspond to constraints 0 ≤ p̃(i |i−1)
x1 ...xdi

≤
p̃(i−1|i−2)

x1 ...xdi−1
.

Thus, we write every constraint in matrix form and introduce the following com-
pactly formed constraint set:

Cα−k ,αk � {p ∈ [0, 1]d : Ap ≤ α−k , bTp � αk , Dp ≤ δ}.
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• Utility functionUα−k ,αk (p), can be written as

Uα−k ,αk (p) � 1
αk

cTp,

where c � (p y�1
x1 ...xd

· px1 ...xd )T .
Theorem 5.8.1 and Lemma 5.8.2 show that the problem ofmaximizing precision (or

equivalently, other metrics, see Theorem 5.3.1) can be solved through a linear program
when the selection sizes sizes (α−k , αk) are given constants. This shows that the utility
maximization problem in general form can be written as:

U(α−k , αk) � max
p∈Cα−k ,αk∩C f

1
αk

cTp, (5.7)

where

Cα−k ,αk � {p ∈ [0, 1]d : Ap ≤ α−k , bTp � αk , Dp ≤ δ},
C f � {p ∈ [0, 1]d : Fp � 0}.

5.8.1 Utility Maximization via Linear Programming

In this section, we formally justify that maximizing precision under budget constraints
and fairness constraints can be done via linear programming. The following theorem
shows how to do that with only budget constraints:

Theorem 5.8.1 (Utility maximization as a linear program). Let, for all i ∈ {1, · · · , k} and
all x1 . . . xdi ,

p(i |i−1)
x1 ...xdi

�

{
p̃(i |i−1)

x1 ...xdi
/p̃(i−1|i−2)

x1 ...xdi−1
, if p̃(i−1|i−2)

x1 ...xdi−1
, 0

0, otherwise,

where the variables p̃(i |i−1)
x1 ...xdi

are solutions of the linear program

max
p̃(i |i−1)

x1 ...xdi

1
αk

∑
x1 ...xd

p y�1
x1 ...xd

· px1 ...xd · p̃
(k |k−1)
x1 ...xdk

s.t.
∑

x1 ...xd

px1 ...xd · p̃
(i |i−1)
x1 ...xdi

≤ αi , i < k ,∑
x1 ...xd

px1 ...xd · p̃
(k |k−1)
x1 ...xdk

� αk ,

0 ≤ p̃(1|0)x1 ...xd1
≤ 1,

0 ≤ p̃(i |i−1)
x1 ...xdi

≤ p̃(i−1|i−2)
x1 ...xdi−1

, 1 < i ≤ k.

(5.8)

Then the p(i |i−1)
x1 ...xdi

are solutions of (5.3) without any fairness constraint.
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Proof. Using (5.4)–(5.5), we can rewrite problem (5.3) as

max
p(i |i−1)

x1 ...xdi

1
αk

∑
x1 ...xd

p y�1
x1 ...xd

· px1 ...xd ·
k∏

i�1
p(i |i−1)

x1 ...xdi

s.t.
∑

x1 ...xd

px1 ...xd ·
i∏

j�1
p( j | j−1)

x1 ...xdj
≤ αi , i < k ,

∑
x1 ...xd

px1 ...xd ·
k∏

j�1
p( j | j−1)

x1 ...xdj
� αk ,

0 ≤ p(i |i−1)
x1 ...xdi

≤ 1, 1 ≤ i ≤ k.

(5.9)

Let us define the new variables

p̃(i |i−1)
x1 ...xdi

�

i∏
j�1

p( j | j−1)
x1 ...xdj

. (5.10)

By substitution, we get the linear program (5.8). Hence, assuming that p̃(i |i−1)
x1 ...xdi

are

solutions of (5.8), any p(i |i−1)
x1 ...xdi

such that (5.10) is satisfied (as is the case for the p(i |i−1)
x1 ...xdi

defined in the theorem) is a solution of (5.3).

In the following lemma, we then show that fairness constraints can also be written
as linear homogeneous equations in terms of the transformed variables p � (p̃(i |i−1)

x1 ...xdi
)T .

Lemma 5.8.2 (Linearity of fairness constraints). For both local and global fairness, and for
both EO and DP, there exists a matrix F such that the fairness constraint can be expressed as

Fp � 0.

Proof. We present the proof for demographic parity, the idea is the same for equal
opportunity. Let us consider the fairness constraint corresponding to stage i, 1 ≤ i ≤ k:

P(Ŷi � 1|G � A) � P(Ŷi � 1|G � B).

By expanding the left side, we obtain:

P(Ŷi � 1|G � g) �

∑
xi

p̃(i |i−1)
x1 ...xdi

· px1 ...g...xd∑
xi

px1 ...g...xd

.

Recall that px1 ...g...xd is a fixed parameter and not a decision variable. Thus, for both
local and global fairness, the fairness constraint (equality of the probabilities for G � A
and G � B) can be represented in the form Fp � 0 for an appropriate F simply by
moving all terms on the left side of the equality.
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5.8.2 Utility Maximization in Limit of n →∞

In this section we provide an intuition on multistage selection process in limit of
infinitely large n. In short, the optimal candidate selection problemwith finite number
of candidates n appears to be a k-stage stochastic optimization problem which is
difficult to solve exactly. By letting the number of candidates n to be infinitely large
allows us to reformulate the problem in a much simpler manner such that we are able
to find an optimal selection probabilities easily.

To prove the statements in this section we will exploit the two following classical
results from the probability theory, see (Rohatgi and Saleh, 2015).

Lemma 5.8.3 (Chebyshev-Bienaymé inequality). Let X be a random variable, then

P (|X − E(X)| ≥ ε) ≤ Var(X)
ε2 .

Lemma 5.8.4 (Properties of convergence in probability ). Let Xn and Yn be sequences of
random variables.

1. If Xn
P−→ X and a is a constant, then aXn

P−→ aX.

2. If Xn
P−→ X and Yn

P−→ Y, then Xn + Yn
P−→ X + Y.

3. If Xn
P−→ X , then 1/Xn

P−→ 1/X.

4. If Xn
L−→ X and |Xn − Yn |

P−→ 0, then Yn
L−→ X.

The following lemma gives us the limit on the proportion of selected at stage i
candidates as n →∞.

Lemma 5.8.5. Let by n(i)x1 ...xdi
denote the number of candidates having features x1 . . . xdi that

are selected at the stage i, then for n →∞:

n(i)x1 ...xdi

n
L−→ px1 ...xdi

i∏
j�1

p( j | j−1)
x1 ...xdj

.

Before proving the above lemma let us define the budget Bn(i) at the stage i as
Bn(i) � 1

n
∑

x1 ...xdi
n(i)x1 ...xdi

. Then using property 2 from Lemma 5.8.4 and Lemma 5.8.5

we obtain that Bn(i)
L−→ ∑

x1 ...xdi
px1 ...xdi

∏i
j�1 p( j | j−1)

x1 ...xdj
.

The precision is the proportion of good candidates among selected then using
Lemma 5.8.4, the argument in Lemma 5.8.5 and fact the the final stage selection size
is fixed to αk , the precision converges in law to 1

αk

∑
x1 ...xd

px1 ...xd p y�1
x1 ...xd

∏k
j�1 p( j | j−1)

x1 ...xdj
as

n goes to infinity. Hence, the equations (5.4)–(5.5) hold as the number of candidates
n →∞. Let us prove Lemma 5.8.5 by induction on stage number i.
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Proof. Base of induction. Before we do any selection:

n(0)x1 ...xd1
∼ Bin

(
n , px1 ...xd1

)
,

then using Chebyshev–Bienaymé inequality:

P ©­«
������n
(0)
x1 ...xd1

n
−

n · px1 ...xd1

n

������ ≥ εª®¬ ≤
npx1 ...xd1

(1 − px1 ...xd1
)

ε2n2

≤ 1
ε2n

hence
n(0)x1 ...xd1

n
P−→ px1 ...xd1

, n →∞.
After, when we perform the selection at the first stage:

n(1)x1 ...xd1
|n(0)x1 ...xd1

∼ Bin
(
n(0)x1 ...xd1

, p(1|0)x1 ...xd1

)
.

P ©­«
������n
(1)
x1 ...xd1

n
−

n(0)x1 ...xd1

n
p(1|0)x1 ...xd1

������ ≥ εª®¬ ≤
≤

n(0)x1 ...xd1
p(1|0)x1 ...xd1

(1 − p(1|0)x1 ...xd1
)

ε2 · n2 ≤ 1
ε2n

,

so using properties 1 and 4 from Lemma 5.8.4, we obtain that
n(1)x1 ...xd1

n
L−→ px1 ...xd1

p(1|0)x1 ...xd1
.

Induction Step. Let us consider the stage i + 1. By the assumption of induction:

n(i)x1 ...xdi

n
L−→ px1 ...xdi

i∏
j�1

p( j | j−1)
x1 ...xdj

.

After making the selection at the stage i we observe the new features di + 1, . . . , di+1,
so

n(i)x1 ...xdi+1
|n(i)x1 ...xdi

∼ Bin
(
n(i)x1 ...xdi

, pxdi+1 ...xdi+1 |x1 ...xdi

)
,

where pXdi+1 ...xdi+1 |x1 ...xdi
:� P(xdi+1 . . . xdi+1 |x1 . . . xdi ). Then

P ©­«
������n
(i)
x1 ...xdi+1

n
−

n(i)x1 ...xdi

n
pxdi+1 ...xdi+1 |x1 ...xdi

������ ≥ εª®¬ ≤
≤

n(i)x1 ...xdi
pxdi+1 ...xdi+1 |x1 ...xdi

(1 − pxdi+1 ...xdi+1 |x1 ...xdi
)

ε2 · n2

≤ 1
ε2n

,

hence
n(i)x1 ...xdi+1

n
L−→ px1 ...xdi+1

∏i
j�1 p( j | j−1)

x1 ...xdj
.
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When we perform the selection at the stage i + 1:

n(i+1)
x1 ...xdi+1

|n(i)x1 ...xdi+1
∼ Bin

(
n(i)x1 ...xdi+1

, p(i+1|i)
x1 ...xdi+1

)
then again using Chebyshev-Bienaymé inequality for

n(i+1)
x1 ...xdi+1

n :

P ©­«
������n
(i+1)
x1 ...xdi+1

n
−

n(i)x1 ...xdi+1
· p(i+1|i)

x1 ...xdi+1

n

������ ≥ εª®¬ ≤
≤

n(i)x1 ...xdi+1
p(i+1|i)

x1 ...xdi+1
(1 − p(i+1|i)

x1 ...xdi+1
)

ε2 · n2 ≤ 1
ε2n

,

so

����� n(i+1)
x1 ...xdi+1

n −
n(i)x1 ...xdi+1

·p(i+1|i)
x1 ...xdi+1

n

����� P−→ 0, n →∞ and finally:

n(i+1)
x1 ...xdi+1

n
L−→ px1 ...xdi+1

i+1∏
j�1

p( j | j−1)
x1 ...xdj

.

5.8.3 Proof of Theorem 5.3.1

Weprove the equivalence only for accuracy (denoted ACC); the proof for other metrics
follows the same idea. By expanding ACC, we obtain:

ACC � P(Ŷk � y) � P(Ŷk � 1,Y � 1) + P(Ŷk � 0,Y � 0)
� P(Ŷk � 1,Y � 1) +

(
P(Y � 0) − P(Ŷk � 1,Y � 0)

)
� 2 · P(Ŷk � 1,Y � 1) + P(Y � 0) − P(Ŷk � 1)
� 2 · P(Ŷk � 1) · P(Y � 1|Ŷk � 1)
+ P(Y � 0) − P(Ŷk � 1).

Since the terms P(Ŷk � 1) and P(Y � 0) are constant, maximization of precision is
equivalent to maximization of ACC.

5.8.4 Proof of Theorem 5.4.6

(1) We present the proof only for demographic parity, the proof for equal opportunity
follows the same idea. We do the proof by induction. First consider a 2-stage selection
algorithm Ŷ � (Ŷ1 , Ŷ2). By considering the following quantity:

P(Ŷ2 � 1|Ŷ1 � 1,G � g) �
P(Ŷ2 � 1, Ŷ1 � 1,G � g)

P(Ŷ1 � 1,G � g)

�
P(Ŷ2 � 1, Ŷ1 � 1,G � g) +

�0︷                         ︸︸                         ︷
P(Ŷ2 � 1, Ŷ1 � 0,G � g)

P(Ŷ1 � 1,G � g)
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�
P(Ŷ2 � 1,G � g)

P(Ŷ1 � 1|G � g)P(G � g)
�

P(Ŷ2 � 1|G � g)
P(Ŷ1 � 1|G � g)

,

the fairness constraint for LF1 at the second stage is:

P(Ŷ2 � 1|G � A)
P(Ŷ1 � 1|G � B)

�
P(Ŷ2 � 1|G � B)
P(Ŷ1 � 1|G � B)

.

Since we impose fairness at the first stage, then P(Ŷ1 � 1|G � A) � P(Ŷ1 � 1|G � B),
so the condition above is equivalent to

P(Ŷ2 � 1|G � A) � P(Ŷ2 � 1|G � B),

that is exactly the second constraint for the LF2 notion. Thus, the statement is true for
a 2 stage selection algorithm.

Second, assuming that the statement is true for Ŷ � (Ŷ1 , . . . , Ŷi), i > 2, let us
consider the (i + 1)-stage selection algorithm. By analogy, considering the quantity

P(Ŷi+1 � 1|Ŷi � 1,G � g) �
P(Ŷi+1 � 1, Ŷi � 1,G � g)

P(Ŷi � 1,G � g)

�
P(Ŷi+1 � 1,G � g)

P(Ŷi � 1|G � g)P(G � g)
�

P(Ŷi+1 � 1|G � g)
P(Ŷi � 1|G � g)

we obtain that the fairness constraint for LF1 at the stage i + 1 is

P(Ŷi+1 � 1|G � A)
P(Ŷi � 1|G � A)

�
P(Ŷi+1 � 1|G � B)
P(Ŷi � 1|G � B)

.

As P(Ŷi � 1|G � A) � P(Ŷi � 1|G � B) by the assumption of induction, we have
P(Ŷi+1 � 1|G � A) � P(Ŷi+1 � 1|G � B).

The point (2) follows from the definitions of LF2 and GF, since the problem GF is
less constrained than LF2.

5.8.5 Proof of Theorem 5.5.1

(1) For a given α−k , assume that the program attains its maximumU(α−k , αk) at point
p and let α′−k ≥ α−k , where ≥ is meant component-wise.

By setting p′ � p, we obtain that p′ ∈ Cα′−k ,αk and thus:

U(α−k , αk) �Uα−k ,αk (p) �Uα′−k ,αk (p′) ≤ U(α′−k , αk).

Let us consider a problem, when α−k � α′−k , it attains its maximum U(α′−k , αk) at
the point p′. Analogously, let for the second problem α−k � α′′−k , and it attains its
maximumU(α′′−k , αk) at the pointp′′. Then for any λ ∈ [0, 1] the point λp′+(1−λ)p′′ ∈
Cλα′−k+(1−λ)α

′′

−k ,αk and:

λU(α′, αk) + (1 − λ)U(α′′−k , αk) � λ
1
αk

cTp′

+ (1 − λ) 1
αk

cTp′′
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�
1
αk

cT(λp′ + (1 − λ)p′′)

�Uλα′−k+(1−λ)α
′′

−k ,αk (λp′ + (1 − λ)p′′)
≤ U(λα′−k + (1 − λ)α

′′

−k , αk).

(2) For a given αk , assume that the program attains its maximumU(α−k , αk) at point
p. Let α′k � αk/γ, where γ ∈ [1,+∞). Then consider p′ � p/γ. We have p′ ∈ Cα−k ,α

′
k

and p′ ∈ C f and:

U(α−k , αk) �Uα−k ,αk (p) � 1
αk

cTp

�
1

αk/γ
cTp/γ �Uα−k ,α

′
k (p′) ≤ U(α−k , α

′
k).

5.8.6 Proof of Theorem 5.5.3

Let us consider the trivial locally fair algorithm. It selects candidates randomly with
probability α1 at the first stage and with probability αi/αi−1, ∀1 < i ≤ k. The utility
of such random algorithm is equal to U random(α−k , αk) � P(Y � 1). It is obvious by
definition that

U random(α−k , αk) ≤ ULF(α−k , αk) ≤ UGF(α−k , αk).

To obtain an upper bound of UGF(α−k , αk) we suppose that all features are available
for the selection, meaning that αi � 1, ∀i < k. Then UGF(α−k , αk) ≤ Uun(α1 �

1, . . . , αk−1 � 1, αk) ≤ min(P(Y � 1)/αk , 1). Thus,

PoLF(α−k , αk) ≤
min(P(Y � 1)/αk , 1)

P(Y � 1)

� min
(

1
P(Y � 1) ,

1
αk

)
.

5.9 Additional Experimental Results

In this section, we provide additional experimental results that support the claims
in the chapter—in particular by reproducing the curves in the chapter for different
datasets and different fairness metrics. Below, we describe the data preparation for
our experiments in more detail.

Adult dataset

In the Adult dataset from the UCI repository (Dua and Graff, 2017) there are 48842
candidates, each described by 14 features. The label income denotes if candidate gains
more than 50.000 dollars annually. For all our experiments we binarize and leave only
the 6 following features: sex (is male), age (is above 35), native-country (from the EU
or US), education (has Bachelor or Master degree), hours-per-week (works more than 35
hours per week) and relationship (is married).
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Figure 5.6 – The empirical CDF of PoLF for α2 � 0.3 .

COMPAS Dataset

The COMPAS dataset (Larson et al., 2016) is a dataset that is used to train the COMPAS
algorithm. It contains information about prisoners, such as their name, gender, age,
race, start of the sentence, end of the sentence, charge description etc. and a label
y=recidivism, that is Y � 1 if person is likely to reoffend and 0, otherwise.

We prepare original COMPAS dataset for our means by selecting statistics only for
Caucasian and African-American defendants, leaving only 6 features and binarizing
them. The features that we use are following: sex (is male), young (younger than 25),
old (older than 45), long sentence (sentence was longer than 30 days), drugs (the arrest
was due to selling or possessing drugs), race (is Caucasian).

German Dataset

The German Credit data from (Dua andGraff, 2017) contains information about appli-
cants for credit. As with other datasets, we binarize feature values. The label feature
y=returns shows if applicant payed for his loan, and we binarize and use 6 features: job
(is employed), housing (owns house), sex (is male) savings (greater than 500 DM), credit
history (all credits payed back duly), age (older than 50).

5.9.1 The Price of Local Fairness (PoLF)

Fig. 5.6 displays the CDF of PoLF as in Fig. 5.3 but including the results for EO as well.
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Figure 5.7 – The empirical CDF of VoLF for α2 � 0.3.
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Figure 5.8 – Joint distribution of VoLF and PoLF for COMPAS dataset and α2 � 0.3.

5.9.2 The Violation of Local Fairness (VoLF)

Fig. 5.7 displays the CDF of VoLF as in Figure 5.7 but including the results for EO as
well.

5.9.3 VoLF vs PoLF for Various Datasets

Fig. 5.8 and Fig. 5.9 display the joint distribution of VoLF (y-axis) and PoLF (x-axis)
as in Fig. 5.5 but for the other two datasets: COMPAS and German respectively.
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Figure 5.9 – Joint distribution of VoLF and PoLF for German dataset and α2 � 0.3.

5.9.4 PoLF of 3-stage algorithm

In this subsection we present the results for PoLF of 3-stage selection algorithm. The
procedure to calculate the PoLF values is similar to the one we used for two-stage
algorithm. We suppose that we observe only one feature at every stage, we suppose
that theoneof the rest features is a sensitiveG andconsider the caseswhen it is observed
at first, second or third stage of selection process. We calculate the value of PoLF for
every possible 4 feature combinations (three decision variables and one being sensitive)
out of 6 and for every discretized value of α1 and α2, such that α3 � 0.3 ≤ α2 ≤ α1.
Fig. 5.10 displays the empirical CDFs of PoLF for 3-stage algorithm. The observations
are the same as in two-stage case: later the sensitive attribute G is revealed, larger is
the price of imposing local constraints.

In Fig. 5.11 we show the joint distribution of PoLF when the G (shown on top of
each subfigure) is observed at the first stage (we call it PoLF1) and PoLF when the G
is observed at the second stage (PoLF2) for Adult dataset. We observe that the value
of PoLF1 is sufficiently smaller than the corresponding value of PoLF2.

In Fig. 5.12 we show the joint distribution of PoLF when the G is observed at the
second stage (we call it PoLF2) and PoLF when the G is observed at the third stage
(PoLF3) for Adult dataset. We again observe that the value of PoLF2 is smaller than
the corresponding value of PoLF3, since the most of the points lie above the diagonal
line which is marked as dashed red line.

In Fig. 5.13-5.16 we display the joint distributions in the samemanner as in Fig. 5.11
and Fig. 5.12 but for COMPAS and German Credit datasets.
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Figure 5.10 – The empirical CDF of PoLF of 3-stage algorithm for α3 � 0.3.
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Chapter 6

General Conclusion and Discussion

In this thesis, we studied the problem of fairness in selection procedures. We pro-
posed three models that capture different aspects of the selection problem. First, in
Chapter 3, we proposed a model of selection with differential variance. We showed
that the differential variance results in discrimination; hence, we studied how differ-
ent group fairness mechanisms affect the selection utility in this model. Second, in
Chapter 4, based on our model of selection with differential variance from Chapter 3,
we proposed a model of selection with strategic individuals that obtain qualities that
maximize the individual utility of taking part in selection procedures. This model
of selection results in a population game that attains a unique equilibrium which we
characterized. Finally, in Chapter 5, we proposed a model of multistage selection, and
introduced two fairness notions for multistage setting—local and global fairness. We
studied both theoretically and empirically the price of local fairnesswhich is the ratio of
selection utilities for the globally fair to that of the locally fair algorithms. We showed
bounds on the price of local fairness, and we identified how the access to sensitive
information (e.g., race or gender) affects it.

6.1 Implications of the Thesis

Our work can be used for designing and evaluating selection policies. The high-level
implications of our results are as follows:

(i) The effect of noise in estimating candidates’ quality on the resulting discrimination is
non-negligible and must be taken into account in addition to the implicit bias. In
Chapter 3 and Chapter 4, we show that even in the absence of implicit bias but in
the presence of differential variance, one of the groups of candidates (high-noise
or low-noise) is always underrepresented.

(ii) Policy-makers must evaluate what information is available to decision-makers. In our
model in Chapter 3 we show that the resulting discrimination is opposite for
the Bayesian decision-maker (i.e., for which the distribution of qualities is avail-
able) compared to that of the group-oblivious decision-maker (i.e., for which
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only the estimates of qualities are available). If the decision-maker is group-
oblivious, then the low-noise candidates will be underrepresented. In contrast,
if the decision-maker is Bayesian, the high-noise candidates will be underrepre-
sented. In Section 5, we also study how the access to sensitive attributes affects
the price of local fairness. We empirically show that in most cases the earlier
the sensitive attribute is observed in the selection pipeline, the lower the price of
local fairness.

(iii) It is important to consider the strategic nature of individuals. We show that, in the
non-strategic setting (Chapter 3), the high-noise candidates are always under-
represented if the decision-maker is Bayesian. This contrasts with the results in
the strategic setting (Chapter 4): we prove that if the reward for being selected
is large, then the low-noise candidates will be underrepresented by the Bayesian
decision-maker. In addition, we show that the Bayesian decision-maker is not op-
timal anymore in the selection with strategic individuals. Hence, policy-makers
must evaluate if individuals can behave strategically.

(iv) Discrimination is nuanced and depends on the interactions among different parameters
of the selection problem. For example, in Chapter 4, we show that when the cost-
of-effort coefficients are group-dependent, the effects of differential variance on
selection are negligible if the reward is large enough; this is not true for small
rewards. Our work, thus, can be used by policy-makers to estimate the effects of
different parameters on the selection outcome.

6.2 Perspectives of the Thesis

Our work can be extended in multiple ways. We provided each chapter of our con-
tributions with a corresponding discussion. This section presents some of the main
directions for future work.

Matching problems with noisy preferences The selection problem can be seen as
a special case of a so-called college admission problem (Gale and Shapley, 1962). The
college admission problem is a matching problem: there are multiple colleges (of a
limited capacity) and multiple applicants. Both colleges and applicants have listed
preferences. The aim of a college admission problem is to provide a stable matching
of students to colleges. A matching is called stable if there exists no unmatched pair of
student s and college c, where student s prefers college c and college c still has some
unfilled place, or college c admitted a student that it prefers less than student s.

Some authors argue that college preferences can be noisy as colleges have only a
little information about students (Chade et al., 2013). The noise can be of different
magnitude for different groups of students, since decision-makers might be less fa-
miliar with students from some demographic groups. Preferences can also be biased
since decision-makers might prefer some students to others due to stereotyping beliefs
or other factors. The general study of a college admission problems with noisy and
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biased preferences, hence, is an important direction for future work. Note that the
selection problem we studied in Chapter 3 can be seen as a matching problem with a
single college.

Long-term effects of affirmative actions In our work, we assume that the selection
decision is made only once, and we were interested in studying only the intermediate
effects of fairness mechanisms on the utility of the selection and/or group represen-
tation. In reality, decisions are usually made at multiple consecutive times and the
earlier decisions might affects the performance of future generations. For example,
due to different opportunities, candidates of a disadvantaged groups might have poor
performance, however, providing opportunities to current generations by performing
affirmative actions (even at the price of utility of selection), might lead to an increase
of the performance of previously disadvantaged groups at future generations. This is
due to the fact that opportunities can be inherited, e.g., children of educated parents
would have a lower cost of getting an education since their parent could teach them
or have enough income to provide preparatory courses. This brings the questions
on the long-term effects of affirmative actions, and whether they must be sustained
through generations or they can be lifted at some point in the future (Celis et al., 2021;
Coate and Loury, 1993; Heidari and Kleinberg, 2021; Jehiel and Leduc, 2021). In our
model, both in Chapter 3 and Chapter 4, we assume that decision-maker receives noisy
estimates of candidates’ qualities and the noise variance is constant. We can assume
a bit different setting compared to one studied above: a finite number of candidates
are available for selection at time t � 1, the decision-maker performs the selection
and updates the variance of noise for groups depending on the respective selection
size. This introduces a certain trade-off between exploitation (selecting candidates for
which the expected quality is high) and exploration (learning better the candidates of
previously high-noise group).

Fair online selection problem Most selection problems are performed in an online
manner: individuals arrive sequentially (or in batches), and the decision-maker should
momentarily decide to accept or reject an individual based on his attributes (which are
an estimate of her quality). For example, in lending, the decision-maker studies the
data of an applicant and decides whether they will repay their loans or will default.
In this case, the decision-maker receives feedback for its decisions only from one
side: whether the prediction is correct becomes known only for accepted applicants,
e.g., the information about whether an applicant repays or defaults is known only
for those who actually were accepted to get loans. Also, at the beginning of the
learning process, only a little or no information is available, which may naturally lead
to degradation of performance for minority groups due to less statistical data. The
decision-making algorithm should find a proper balance between exploitation and
exploration to guarantee a large cumulative reward; at the same time the algorithm
must guarantee a sublinear growth of fairness and budget violations over time.

The online classification problem with partial feedback appears in the literature
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under the name of an apple tasting problem (Helmbold et al., 2000). The standard
assumption is to convert this problem to a contextual bandit problem by providing a
rewardmatrix for each of the actions (classify as 1, or 0). In our approach, we could use
the same transformation and convert the problem to a contextual bandit problem. We
then could start with an assumption of infinite data where the reward maximization
problemwith fairness and budget constraints can be solved using linear programming
aswe show in Chapter 5. In order to apply linear programming to an online setting, we
could estimate the parameters of the linear program (distribution parameters) using
an upper confidence bound approach as in (Chen et al., 2018) or a Bayesian approach
similar to one in (Saxena et al., 2020).
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