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Abstract

The goal of my PhD is to study the optimization and the distribution of queries,
especially recursive queries, handling large amounts of data. I start by reviewing
different query languages as well as formal approaches to intermediate representa-
tions of these languages. Languages and formal approaches are reviewed in the
light of a number of aspects such as expressivity, distribution, automatic opti-
mizations, manipulating complex data, graph querying, and impedance mismatch,
with a special focus on the ability to express recursion.

I then propose extensions to formal approaches along two main lines of work:
(1) algebras based on the relational model, for which I propose Dist-µ-RA, and
(2) algebras based on generic collections of arbitrary types, for which I propose
µ-monoids.

Dist-µ-RA is a system that extends the µ-RA algebra to the distributed
setting. Regarding the algebraic aspect, it integrates well with the relational
algebra and inherits its advantages including the fact that queries are optimized
regardless of their initial shape and translation into the algebra. With respect
to distribution, different strategies for evaluating recursive algebraic terms in a
distributed setting have been studied. These strategies are implemented as plans
with automated techniques for distributing data in order to reduce communi-
cation costs. Experimental results on both real and synthetic graphs show the
effectiveness of the proposed approach compared to existing systems.

µ-monoids is an extension of the monoid algera with a fixpoint operator
that models recursion. The extended µ-monoids algebra is suitable for modeling
recursive computations with distributed data collections such as the ones found
in Big Data frameworks. The major interest of the “µ” fixpoint operator is that,
under prerequisites that are often met in practice, it can be considered as a
monoid homomorphism and thus can be evaluated by parallel loops with one
final merge rather than by a global loop requiring network overhead after each
iteration. Rewriting rules for optimizing fixpoint terms, such as pushing filters,
are proposed. In particular, I propose a sufficient condition on the repeatedly
evaluated term (ϕ) regardless of its shape, as well as a method using polymorphic
types and a type system such as Scala’s to check whether this condition holds.
I also propose a rule to prefilter a fixpoint before a join. The third rule allows
for pushing aggregation functions inside a fixpoint. Experiments with the Spark
platform illustrate performance gains brought by these systematic optimizations.
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Résumé

Le but de ma thèse est d’étudier l’optimisation et la distribution de requêtes,
principalement de requêtes récursives, qui manipulent de larges volumes de
données. Premièrement, je passe en revue différents langages de requêtes ainsi
que différentes approches formelles liées aux représentations intermédiaires de
ces langages. Les langages et les approches formelles sont examinés à la lumière
d’un nombre d’aspects tels que l’expressivité, la distribution, les optimisations
automatiques, la manipulation des données complexes, le requêtage de graphes,
l’incompatibilité d’impédance, avec une attention particulière portée à la capacité
à exprimer des requêtes récursives.

Dans un second temps, je propose des extensions d’approches formelles suivant
deux axes de travaux de recherche: (1) les algèbres basées sur le modèle de
données relationnel et pour lesquelles je propose Dist-µ-RA, ainsi que (2) les
algèbres basées sur les collections de types arbitraires, et pour lesquelles je propose
µ-monoids.

Dist-µ-RA est un système qui étend l’algèbre µ-RA au contexte distribué.
Concernant l’aspect algébrique, il s’intègre bien avec l’algèbre relationnelle et
hérite de ses avantages tels que sa capacité à optimiser les requêtes quelles que
soient leur forme initiale et leur traduction vers l’algèbre. Concernant l’aspect
de distribution, différentes stratégies d’évaluation de termes algébriques récursifs
dans un contexte distribué ont été étudiées. Ces stratégies sont implémentées sous
forme de plans physiques avec des techniques qui automatisent la distribution des
données afin de réduire les coûts de communication. Les résultats expérimentaux
sur des graphes réels et synthétiques montrent l’efficacité de l’approche proposée
par rapport aux systèmes existants.

µ-monoids est une extension de l’algèbre de monoïdes avec un opérateur de
point fixe qui modélise la récursion. L’algèbre µ-monoids est capable de modéliser
des calculs récursifs sur des collections distribuées similaires à ceux effectués sur
les plateformes Big Data. L’intérêt principal de l’opérateur de point fixe “µ” est
que, sous réserve de conditions souvent remplies en pratique, il peut-être considéré
comme un homomorphisme de monoïdes et peut donc être évalué avec des boucles
parallèles avec une fusion finale plutôt qu’avec une boucle globale nécessitant des
transferts réseau supplémentaires à chaque itération. Des règles de réécriture pour
optimiser les termes récursifs, telles que le poussage de filtres, ont été proposées.
Je propose en particulier une condition suffisante sur le terme évalué en boucle (ϕ)
quelle que soit sa forme, ainsi qu’une méthode qui utilise les types polymorphes
et un système de types comme celui de Scala pour vérifier si cette condition est
remplie. Je propose également une règle qui préfiltre les points fixes avant les
jointures. La troisième règle permet de pousser des fonctions d’agrégation dans
les points fixes. Les expériences menées sur la plateforme Spark montrent les
gains en performances apportés par ces optimisations systématiques.
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Introduction

With the proliferation of large scale datasets of various data structures (such
as graphs, collections, documents, trees, etc.) and in various domains (such as
knowledge representation, social networks, transportation, biology, etc.), the need
for efficiently extracting information from these datasets becomes increasingly
important. This requires the development of methods for effectively distributing
both data and computations so as to enable scalability and improve perfomance.
Efforts to address these challenges over the past few years have led to various sys-
tems such as MapReduce [Dean and Ghemawat, 2004], Dryad [Isard et al., 2007],
Spark [Zaharia et al., 2016], Flink [Carbone et al., 2015] and more specialized
graph systems like Google Pregel [Malewicz et al., 2010], Giraph [gir, 2019] and
Spark Graphx [Gonzalez et al., 2014]. While these systems can handle large
amounts of data and allow users to write a broad range of applications, they still
require significant programmer expertise. The system programming paradigms
and its underlying configuration tuning must be highly mastered. This includes for
example figuring out how to (re)partition data on the cluster, when to broadcast
data, in which order to apply operations in order to reduce data transfers between
nodes of the cluster, etc. So, building data extensive applications remains a very
timeconsuming and expensive task.

One approach to this problem is to offer the user a Domain Specific Language
(DSL) to query the data. A DSL is a high level language that is specialized in
a particular application domain, and that can be called from within a general
purpose language. Queries in this DSL would be translated to an intermediate
representation (e.g. an algebra) so that they can be optimized automatically. The
idea is to relieve users from having to worry about optimization in the distributed
setting, so that they can focus only on formulating domain-specific queries in
a declarative manner. A notoriously successful example of this approach is the
SQL language and its associated Relational Algebra. This success is due to the
level of abstraction provided by the declarative syntax of SQL as well as the
extensively studied optimizations provided by Relational Algebra. In RA, data is
modelled as relations made of rows and columns. This means that more complex
user defined data (data defined by the user in the general purpose programming
language) has to be flattened to match the tabular data model of the DSL. This
illustrates what is known as the impedance mismatch problem. In addition, custom
transformations on data can either be done with extensions like PL/SQL or in
the programming language which exacerbates the impedance mismatch problem
and prevents holistic program optimization.
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It is then important to investigate intermediate representations for expressing
and optimizing queries that manipulate data in their native format. As argued
by Meijer in [Meijer and Bierman, 2011], establishing and standardizing a formal
background for the noSQL market, which now contains multiple separate systems
and solutions, is necessary for its economic growth as it was the case for the SQL
market thanks to the introduction of RA. The author considers that an algebra
based on monads is a suitable formalism for this purpose. Studying intermediate
representations that allow for expressing operations on data in their native format
would also pave the way for optimizing subsets of general purpose languages and
embedded DSLs that do not suffer from impedance mismatch problems.

Motivated by the abundance of interconnected data (Web data, RDF
graphs, networks of various kinds, ...) and the recent hype around
knowledge graphs [Arenas et al., 2021], recursion is an active research
topic [Reutter et al., 2017, Libkin and Vrgoč, 2012, Jachiet et al., 2020]. A sig-
nificant class of big data programs are iterative or recursive in nature (PageRank,
k-means, shortest-path, reachability, etc.). Recursion is also a very important
feature for graph querying as it enables to navigate through the graph and express
traversal queries such as paths of arbitrary length. More generally, it enables to
model cyclical relations between entities, recursively derive new knowledge from
a given initial knowledge, and extract useful information based on connectivity
from the graph. Recursive queries on large-scale graphs can be very costly or even
infeasible. This is due to a large combinatorial of basic computations induced
by both the query and the graph topology. Recursive queries can generate inter-
mediate results that are orders of magnitude larger than the size of the initial
graph. For example, a query on a graph of millions of nodes can generate billions
of intermediate results. Therefore, being able to optimize queries and reduce the
size of intermediate results as much as possible becomes crucial.

Contributions In this manuscript, we investigate the problem of querying large
datasets, especially graphs, with a focus on recursion by studying two algebras:
(1) µ-RA which is an extension of RA with a fixpoint operator. It offers a good
balance between expressivity and possible optimizations of recursion, in addition
to the optimizations available in RA. (2) monoid algebra in which data is modelled
as distributed homogeneous collections of arbitrary types. It defines operations
on these collections that are monoid homomorphisms, which means that they can
be broken down to the application of an associative operator. This associativity
implies that parts of the computation can actually be performed in parallel and
combined to get the final result.

µ-RA is limited to the centralized setting, so we propose Dist-µ-RA which
builds on µ-RA and extends it with optimized evaluation plans suited for the
distributed setting. Experimental results on both real and synthetic graphs show
the effectiveness of the proposed approach compared to existing systems. As
for monoid algebra, no optimization for recursive computations is available. We
propose µ-monoids, which extends monoid algebra with a fixpoint operator for
representing recursion as a first class citizen and show how it enables new opti-
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mizations. Experiments illustrate performance gains brought by these systematic
optimizations.

Outline This dissertation is structured into two parts: State of the art (Part
I) and Contribution (Part II). We start by reviewing DSLs that are used to
query data in chapter 1. In chapter 2, we investigate different algebras and
the optimizations they provide. We then present Dist-µ-RA in chapter 3 and
µ-monoids in chapter 4. We end with a conclusion and perspectives for future
works.
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Chapter 1

Domain specific languages for
querying graphs and distributed
data

A Domain Specific Language (DSL) is a programming language that is designed
to target a specific application domain. A DSL can be distinguished from a
General Purpose Language (GPL) in that it offers a specialized (hence usually
limited) and preferably a convenient syntax for representing and reasoning about
its domain. The goal is to allow for expressing domain problems in a simple and
concise manner while abstracting away frow how the solution is computed or
implemented.

DSLs can be divided into two categories: External (or standalone) and internal
(or embedded) DSLs. An external DSL defines its own syntax and semantics and
hence it is independent from any programming language it might be called from.
SQL is an example of an external DSL. An internal DSL on the other hand relies
on a general purpose language (called the host language) in which it is embedded.
It can reuse the host language syntax and infrastructure (such as the compiler and
type checker) to be built. In general, the syntax of internal DSLs is a subset of its
host language syntax. However, there are languages which define their syntax as
a mixture of host language expressions and new constructs that are not valid in
the host language. They use metaprogramming techniques (like quotations and
reflection) to allow the definition of the new syntax in the host language and to
manipulate host language terms. Such languages can still be considered internal
since they require to be embedded in a host language and use its infrastructure
to define their language.

While external DSLs present the advantage of being independant from the
language used for development, they are harder to build than internal DSLs since
they require the implementation of an entire language from scratch starting from
the parser down to the execution of terms. This independence also often means
that the data model used in the host language is different from the one used in
the DSL. This implies that data defined by the user in the programming language
needs to be transformed to fit in the data model of the DSL. This is known as
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the impedance mismatch problem. A deeper integration with the host language is
possible for internal DSLs because of the possiblity they have to reuse the host
language data types as well as its syntax for processing data.

There is an abundance of DSLs in the literature. Moreover, it is becoming
common for software developers to build their own DSLs as part of good pro-
gramming practice. In the next section we will only be focusing on DSLs that
are close from our domain of interest, that is big data querying. For this, we
review languages that are used for querying relational databases, graphs, and
large distributed data. The term query language is usually used to refer to such
languages.

1.1 Relational database querying

SQL is the most prominent language for database querying. It is an external
DSL that uses the standard SELECT FROM WHERE syntax for querying data. The
example of Fig. 1.1 is an SQL query that extracts the names, ages, and city of
people that are friends and that live in the same city.

SELECT p1.name, p1.age, p2.name, p2.age, a1.city
FROM person AS p1 JOIN address AS a1 JOIN friends JOIN person AS p2 JOIN

address AS a2
WHERE p1.id == friend.id1 AND p2.id == friend.id2 AND p1.address_id ==

a1.id AND p2.address_id == a2.id AND a1.city == a2.city

Figure 1.1: SQL query example.

The success of SQL is due to the level of abstraction provided by its declarative
syntax as well as the optimizations provided by Relational Algebra on which it
is based. However, it suffers from the impedance mismatch problem mentioned
earlier since user defined data have to be flattened to match the tabular data model
of SQL. In the example above, the information about people and their friendship
relationships is flattened to three tables: person, friends and address. In addition,
it provides limited support for complex data processing (data transformation,
iteration, aggregation, etc.). In order to perform custom transformations on data
for instance, one could use language extensions like PL/SQL which, in addition
to exacerbating the impedance mismatch problem, requires user expertise and
provides only limited optimizations. Alternatively, the user could perform data
transformations on the query results in the programming language, which increases
roundtrips between the program and the database and does not allow for holistic
program optimization.

LINQ [Meijer et al., 2006] is a widely known internal DSL for querying data.
The LINQ query of Fig. 1.2, as the SQL example above, extracts information
about friends living in the same city. LINQ provides common querying operations
like filtering, ordering, joining, as well as data transformation. However it does
not support iteration. Data that can be queried include SQL databases (LINQ to
SQL), XML documents or in-memory collections. Queries can be performed on
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any host language collection as long as it implements the IEnumerable interface.
This adresses the impedance mismatch issue posed by SQL. However, when
mapped to SQL, LINQ restricts the set of host language expressions that can be
used for transforming data.

friends
.Where(f => f.p1.address.city == f.p2.address.city)
.Select(f=> new {f.p1.name, f.p1.age, f.p2.name, f.p2.age, f.p1.city})

Figure 1.2: LINQ query example.

DSH [Giorgidze et al., 2011] is an internal DSL embedded in Haskell for
querying RDBMSs. Queries are expressed as Haskell list comprehensions. A
DSH query get translated into SQL queries that get executed on the RDBMS. It
implements the avalanche safety property for SQL generation which guarantees
that the number of generated SQL queries does not depend on size of queried
data but only on the query. This was later introduced in LINQ.

1.2 Graph querying

Graphs have become one of the most prominent ways of representing data. They
are used in various domains such as social networks, planning, transportation,
knowledge representation, biology, machine learning, etc. [Bonifati et al., 2018,
Sakr et al., 2021]. These graphs can be split to different categories depending on
their data model. Each data model comes with a set of languages used to query
the graphs. We first discuss the graph data models, then we present the query
languages.

1.2.1 Graph data models

A graph data model is a data model where the objects of a domain are represented
by nodes and relationships between them are represented by edges. A graph
data model can further be specialized into different data models depending
the data structures used to define nodes and edges. Labelled graphs are the
most basic graph model where nodes and edges are simply assigned a label.
More complex graph models are: property graphs where nodes and edges can
additionally be assigned attributes, hypergraphs where edges can relate any
number of nodes and the hyperedge model where nodes can themselves be
graphs [Angles and Gutierrez, 2018]. We will next be focusing on the edge-labelled
graphs and property graphs data models as they are the most commonly found in
the literature [Angles et al., 2017].

Edge-labelled graph An edge-labelled graph is formalized as a pair (V,E)
where V is a finite set of vertices and E ⊆ V × Lab× V a finite set of labelled
edges with labels belonging to a finite set Lab.

Fig. 1.3 shows an example of an edge-labelled graph.
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Figure 1.3: Edge-labelled graph example.

RDF graphs are a special case of such graphs. RDF is a standard for repre-
senting information in the Web [Graham Klyne, 2014].

Property graphs In property graphs, it is possible to assign attributes (prop-
erty value pairs) as well as a label to both nodes and edges. Formally, it is defined
as a tuple (V,E, ρ, λ, σ) where :

• V a finite set of vertices and E a finite set of edges such that V ∩ E = ∅

• ρ : E → (V × V ) a function that assigns to each edge its source and target
nodes.

• λ : V ∪ E → Lab a function that assigns to each vertex and edge a label in
Lab, where Lab is a finite set of labels.

• σ : (V ∪E)× Prop→ V al is a partial function that assigns a value in V al
to an entity (node or edge) for a property in Prop, where Prop is a finite
set of properties and V a finite set of values.

Fig. 1.4 shows an example of a property graph.

1.2.2 Graph query languages

Various languages are proposed to query graphs of different data models. For
querying edge-labelled graphs, there is the standard query language SPARQL
for RDF graphs, as well as other languages such as GraphLog and Gram. For
querying property graphs, there are Cypher and Gremlin which are among the
most popular languages, G-CORE and PGQL. We present below some of these
languages.

SPARQL [Harris and Seaborne, 2013] is one of the earliest languages for
querying RDF graphs. The query example of Fig. 1.5 asks for the ancestors of
Elisabeth II and the countries they reigned over. SPARQL has a declarative
syntax similar to SQL. The SELECT clause specifies the variables to be retrieved
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Figure 1.4: Property graph example.

SELECT ?x, ?y
WHERE {

?x parent+ Elisabeth II . ?x reigns ?y
}

Figure 1.5: SPARQL example.

for the query results. Variables are prefixed with ? (in the example we want to
retrieve the values of the variables ?x and ?y). The WHERE clause is used to specify
the graph pattern to be extracted from the queried graph. A graph pattern is a
combination of basic graph patterns (BGP). A basic graph pattern is a set of triple
patterns. In the example, ?x reigns ?y is a triple pattern where ?x is the subject,
reigns is the predicate, and ?y is the object. Subjects, objects, and predicates
can be constants or variables. A BGP can be seen as a graph where nodes and
edges can be variables or constants. The solutions of a BGP are obtained by
matching the queried graph against this BGP (by finding the appropriate variable
substitutions for which the BGP is a subset of the queried graph). This process
is called graph pattern matching. BGPs can be combined with operations like
UNION, FILTER, and OPTIONAL. In SPARQL 1.1, the querying capabilities
of the language are enhanced by allowing property paths to be used along with
triple patterns. the triple ?x parent+ Elisabeth II is a property path. The
predicate of a property path is a regular expressions on graph edges, which allows
for specifying graph traversal constraints between nodes where paths can be of
arbitrary length.

GraphLog [Consens and Mendelzon, 1990] is a graphical query language
based on graph pattern matching. It extends the G [Cruz et al., 1987]
language which first introduced the notion of a graphical query as
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graphs [Angles and Gutierrez, 2018]. Fig 1.6 shows a query in Graphlog. The
query is a graph (or a set of graphs to express union). The thick edge is called the

Figure 1.6: GrahLog example.

distinguished edge. It specifies the edges that are answers of the query. The query
represents a graph pattern similar to that of SPARQL. Nodes can be constants or
variables, and edges are regular expressions containting variables and constants.

Cypher [Francis et al., 2018] is a declarative language for property graphs.
Fig 1.7 shows a query in Cypher.

MATCH (x:Person) -[:parent*]-> (z:Person {name:"Elisabeth II"})
MATCH (x) -[:reigns]-> (y:Country)
RETURN x.name, y.name

Figure 1.7: Cypher example.

The RETURN clause specifies the variable to be returned by the query. The
’.’ operator is used to access attributes of complex graph nodes and edges as in
x.name. The MATCH clause specifies a basic graph pattern to be matched against.
In a BGP, nodes can be filtered by label and by specifying values for some of
their attributes. For instance, z:Person {name:"Elisabeth II"} refers to any
node of label Person and having an attribute name with the value Elisabeth II.
Like SPARQL, basic graph patterns can be unioned (UNION keyword), filtered
(WHERE keyword), joined (successive MATCH clauses), and set to optional
(OPTIONAL keyword). Unlike SPARQL, predicates in a MATCH clause cannot
be any regular expression of edges. Arbitrary length paths are only allowed on
a single edge such as parent* [Angles et al., 2017]. Fixed length paths over an
edge are also possible, for example ?x -[:parent*2-4]-> ?y specifies paths of
length between 2 and 4 from ?x to ?y.

Gremlin [gre, 2022] Gremlin, unlike the other languages, has a functional
style syntax. It is an embedded DSL available in languages like Java, Scala,
and Python. It offers primitives that allow for traversing the graph and filtering
intermediate nodes along the way. For instance, the query

G.V().hasLabel(’Person’).has(’name’,’Alice’).out(’friend’).in(’parent’)
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gets the parents of the friends of Alice. It starts from G.V(), the nodes of a graph
G. The first two calls on G.V() retrieve the people who are named Alice, the
out primitive retrieves their friends (destinations of edges labelled friend) then
the in primitive retrieves the parents of these friends (sources of edges labelled
parent). Gremlin has a match primitive to support graph patterns that are not
expressible in the above graph traversal fashion. Fig. 1.8 shows our running
example query in Gremlin. It has to use the match primitive because the query

G.V().match(
__.hasLabel(’Person’).has(’name’,’Elisabeth II’)

.repeat(in(’parent’).hasLabel(’Person’)).emit().as(’x’)},
__.as(’x’).out(’reigns’).hasLabel(’Country’)}.as(’y’)

)

Figure 1.8: Gremlin example.

needs to return the values of two variables. match joins the graph traversals in
its arguments and returns the values for the variables declared with as. repeat
allows repetition of graph traversals an unbounded number of times. For a fixed
number of iterations, the times primitive is used following the repeat call.

1.2.3 Well studied query language fragments

Graph query languages, while having different syntax and functional-
ities, share some common features consisting of some form of graph
pattern matching and graph traversal. Language fragments introduced
in [Consens and Mendelzon, 1990, Cruz et al., 1987] and well studied in
the literature [Reutter et al., 2017, Barceló et al., 2012, Barceló et al., 2012,
Libkin et al., 2016, Bienvenu et al., 2014] capture these features with varying
degrees of expressivity.

The most basic language fragment is conjunctive queries CQ. A CQ has the
following syntax:

cq ::= (?x1, ?x2, ...)← n1 e1 n
′
1, n2 e2 n

′
2, ... CQ query

n ::= ?x | c node variable or constant

Variables are denoted by prefixing them with ’?’. The right side of a
CQ query (after the arrow) represents a conjunction of triples similar to
a BGP in SPARQL with the difference that predicates are only constant
edge labels ei. The left side of the query specifies the variables to be re-
turned by the query (they must all appear in the right side). For example,
(x,y) ← ?x parent Elisabeth II, ?x reigns ?y retrieves the parents of
Elisabeth II and the countries they reign over. CQ lacks the ability to express
paths with an unbounded number of steps which is necessary to express a query
that retrieves all the ancestors of Elisabeth II for instance.

RPQ is a language fragment that allows for expressing the relationship
between two nodes in the form of a regular expression over the graph edges. It
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has the following syntax:

rpq ::= n p n’ RPQ
p ::= regular path

e edge label
| p− reverse path
| p/p path concatenation
| p|p path union
| p+ transitive closure

For example, ?x a/b+ ?y describes the paths from ?x to ?y that start
with an edge a followed by one or more successive b edges. Combining CQ and
RPQ lead to CRPQ:

crpq ::= (?x1, ..., ?xn)← n1 p1 n
′
1, ..., pm CRPQ

The CRPQ ?x, ?y ← ?x parent+ Elisabeth II, ?x reigns ?y expresses the
query of the running example.

UCRPQ is CRPQ extended with the union operator. A query in UCRPQ
extracts the nodes in a graph that that verify at least one of several conjunctions
of path predicates:

ucrpq ::= (?x1, ..., ?xn)← cp1 | ... | cpm UCRPQ
where cpi denotes a conjunction of path predicates.

The recursion feature provided by UCRPQ is limited to transitive closure.
Therefore, it cannot express other types of recursion like non-regular paths (eg.
anbn) or recursions that only compute the shortest paths.

1.3 Querying large distributed data

To handle large datasets, a number of frameworks that distribute data and
computations have been created. We start by reviewing these frameworks in
Sec. 1.3.1 before presenting high level query languages that target them in
Sec. 1.3.2.

1.3.1 Distributed frameworks

Distributed computation frameworks became prevalent solutions for the develop-
ment of large-scale data intensive applications. Over the past few years, they have
been replacing relational databases for the development of applications handling
large amounts of data and for which performance and scalability are critical.
Examples of such systems are Hadoop MapReduce, Dryad, Spark and Flink.
There are also other distributed frameworks that are designed for large-scale
graph processing.

Hadoop MapReduce Hadoop MapReduce is one of earliest and widely
adopted big data frameworks. In the MapReduce model, the user provides
both a map function that produces key-value pairs and a reduce function that
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aggregates values associated to the same key. Given these two functions, the
framework handles the computation in the following way: first, input data is
partitioned among a number of workers (mappers) that execute the map function
on their own partition in parallel, obtained results are then stored to disk and
shuffled across a number of workers (reducers) in such a way that values with
the same key are on the same worker which then applies the reduce function
and stores the output on HDFS. While this model is simple and fault tolerant,
repetitive disk storage makes it inefficient for iterative applications.

Systems like Twister [Ekanayake et al., 2010] and Haloop [Bu et al., 2010]
were later proposed to address the shortcomings of MapReduce for iterative
computations by reducing the access to disk and reusing in-memory data across
iterations. Later, Spark [Zaharia et al., 2016] and Flink [Carbone et al., 2015]
were introduced to improve upon these systems and became prevalent for large
scale and data-parallel computations.

Spark The Spark system was proposed to efficiently support data intensive
applications including iterative applications while achieving scalability and fault
tolerance. To give a synthesized overview of the Spark framework, let us consider
the Spark program of figure 1.9 and the illustration of figure 1.10. The driver

1 X.map({case (a,b) => (a+b,a*b)}).reduceByKey(_+_).count()

Figure 1.9: Spark Program

is the process that runs this program. It creates tasks from calls to the Spark
API (like map and reduceByKey) and sends them to be executed in parallel by
worker nodes in the cluster. X is an RDD (Resilient Distributed Dataset). RDD
is the main abstraction provided by Spark for distributed collections. An RDD is
split to partitions across the workers. A partition is the basic unit of parallelism.
Parallel tasks are run by each worker on the partition located on this worker.
To be more precise, a worker can have more than one partition and a task is a
unit of computation executed on the worker on a single partition. For simplicity,
we consider one partition per worker in our example. The map operation in the
example is executed in parallel as a task on each worker, which gives X1 (Fig. 1.10).
In order to execute the reduceByKey operation, shuffling (redistribution of data
in Spark) is performed so that data with the same key is on the same partition.
X2 represents the result of the shuffle and X3 is the result of reduceByKey. The
map and reduceByKey operations are called transformations, which are operations
that take an RDD as input and return an RDD as output. map is a narrow
transformation because it does not need data from other partitions to get executed
(it does not require shuffling), while reduceByKey is a wide transformation. The
count operation is called an action because it returns a result (3 in the example)
to the driver program. Transformations in Spark are lazy, which means that they
do not trigger an execution. An execution is only triggered when an action is
encountered. Spark builds a DAG (a graph where nodes represent RDDs and
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Figure 1.10: Program execution in Spark.

edges represent operations on these RDDs) from all the transformations that
occur before an action and schedules it for execution as a job.

Distributed frameworks for graph processing Systems specif-
ically designed for large-scale graph processing include Google’s
Pregel [Malewicz et al., 2010] and Giraph [gir, 2019] an open-source system based
on the Pregel model. GraphX [Gonzalez et al., 2014] is a Spark library for graph
processing that offers a Pregel API to perform recursive computations. A more
complete survey on these frameworks is found in [Angles and Gutierrez, 2018].

Pregel is based on the vertex-centric model ("Think like a vertex"). A Pregel
program is composed of supersteps. At each superstep, a vertex receives messages
sent by other vertices at the previous iteration and processes them to update
its state and send new messages. Computation stops when no new message is
sent. Figure 1.11 shows an example of a Graphx program that computes SSSP:
the shortest paths from a source node to every node in the graph. Distance
information traverses the graph from node to node, each of which stores it locally
and updates it according to the information it receives: At the start, the source
node is assigned a distance 0 and the rest of nodes are assigned infinity. At each
step, a node sends a distance information to its neighbor (the sum of its distance
and the weight of the edge separating it to its neighbor) if this distance is smaller
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Figure 1.11: SSSP algorithm in Graphx [?].

than the one the neighbor already has. Nodes then keep the smallest distance
they have received so far. Computation stops when no message is sent.

Is is not straightforward to evaluate UCRPQs in Pregel. An automaton-like
algorithm needs to be written to know which stage of the regular query each
processed path has reached. The idea is to traverse the paths in the graph (by
sending messages from vertices to their neighbors) while traversing the regular
query.

1.3.2 Query languages

Distributed frameworks provide an API for users to write applications that target
their framework. Such APIs can be considered as internal DSLs. The Spark API
for instance is available in Scala, Python, and Java and provides operations to
manipulate datasets such as join, groupby, and union as well as second order
operations like map and reduce to transform datasets with user defined functions
written in the host language. Fig. 1.12 shows a program that multiplies two
matrices X and Y using the Spark API. This approach allows for expressing more

1 X.map({case (x,i,k) => (k,(x,i))})
2 .join(Y.map({case (y,l,j) => (l,(y,j))}))
3 .map({case (k,((x,i),(y,j))) => ((i,j),x*y)}).reduceByKey(_+_)
4 .map({case ((i,j),z)} => (z,i,j))

Figure 1.12: Spark program example.
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complex general purpose computations on complex data and reduces impedance
mismatch as user defined types and functions written in the host language can be
used directly in the DSL. However, as argued in [Alexandrov et al., 2019], it is
hard to optimize automatically because of the limited program context available
in the intermediate representation of the DSL. For instance, arguments to second
order operations are treated as black box functions which means that they cannot
be analyzed and transformed to make automatic optimizations.

Other internal DSLs targeting distributed computation frameworks rely on
quotations to embed their syntax into the host language: DSL terms are delimited
by quotes. Examples of such DSLs are DIQL [Fegaras and Noor, 2018] and
Emma [Alexandrov et al., 2019]. These languages use Scala macros as quotes.
Fig. 1.14 and Fig. 1.13 show the matrice multiplication program written in each
of DIQL and Emma. The macros that delimit the queries are shown in green
in the figures. The advantage of this approach is the ability to use reflection

1 q("""
2 SELECT (+/z, i, j)
3 FROM (x, i, k) <- X, (y,l,j) <- Y, z = x*y
4 WHERE k==l
5 GROUP BY (i,j)
6 """)

Figure 1.13: DIQL example.

1 onSpark{
2 val pdts = for {(x,i,k) <- X; (y,l,j) <- Y; if(k == l); z = x*y)} yield

((i,j),z)
3 for {Group((i,j),zs) <- pdts.groupby(_._1)} yield (zs.fold(Sum),i,j)
4 }

Figure 1.14: Emma example.

features of the host language in order to analyse host language terms in the DSL,
perform typechecking, access the compiler’s symbol table, etc. This facilitates
automatic optimizations of the DSL.

External DSLs for distributed frameworks include Spark SQL which enable
the user to write SQL queries and represent relational data using the Spark
Dataset and DataFrame. The Pig [Olston et al., 2008] query language targets
Hadoop MapReduce. Hive [Thusoo et al., 2009] exposes HiveQL, an SQL-like
query language that can run on top of Hadoop or Spark. While they allow for more
automatic optimizations they bring back the problem of impedance mismatch
and a limited expressivity regarding types and UDFs that can be used in the
language as well as other features like recursion and query nesting.
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1.4 Conclusion

In this section, we have seen that numerous solutions are available for relational
data querying, graph querying, and distributed evaluation. Each present a number
of advantages and drawbacks regarding a number of aspects. In order for a program
written in a given DSL to get executed, it first gets translated by the compiler to
an intermediate representation (IR), then transformed to executable code. At the
IR stage, it can undergo a process of analysis and optimization to obtain a code
that achieves better performances. A suitable IR for a DSL is one that is capable
of representing its programs and enables their optimization. The goal of this
work is to discuss and explore formal approaches to intermediate representations
that tackle the following issues: expressing recursion, automatic optimization,
large-scale data processing and distribution, graph processing, reducing impedance
mismatch and querying complex data. We will tackle literature on this topic in
the next chapter.
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Chapter 2

Formal foundations

2.1 Introduction

In order to optimize a DSL, the DSL compiler translates it to an intermediate
representation (or algebra) that gets optimized by means of automatic trans-
formations. These transformations are done through rewrite rules that take a
query representation (algebraic expression) and produce an equivalent, yet more
efficient, one.

Relational Algebra (RA) for instance is an intermediate representation that
allows for representing relational data (composed of rows that are each composed
of columns) and operations on them such as joins and filters. It is an algebra that
has benefited from decades of research, in particular on algebraic rewrite rules for
query optimization. Pushing down filters (which reduce the size of their input)
as close as possible to the queried datasets is an example of such a rewrite rule.
Datalog and its magic sets technique is also another prevalent approach to query
optimization. In Datalog, a program is composed of rules that are expressed on
predicates, and each predicate depends on a set of variables (which is another
representation of relational data).

However, for more complex computations on more complex data like nested
collections, using RA as a formalism for the DSL requires flattening the data
and using ad-hoc solutions for supporting UDFs. This means that: (1) at the
language level, we could have a query language expressed on a flat data model
which causes impedance mismatch issues. Alternatively, we could have a query
language like LINQ (LINQ to SQL more specifically) where care has to be taken
for generating from an embedded query expressed on complex objects a number of
SQL queries expressed on data in their flattened form, as well as to generate a flat
version of the original query result type. Techniques like O/R (object relational)
mappers which necessitate annotations from the user and the implementation of
complex techniques like loop lifting and avalanche safety [Giorgidze et al., 2011]
are required to guide this process. Additionally, restrictions are made on host
language expressions that are allowed in user defined functions due to the fact
that it is hard to transform them to relational variants. (2) at the algebraic level,
a number of additional joins are introduced to go from hierarchical to flat types
and vice versa which has an impact on performance. Additionally, arguments

29



30 CHAPTER 2. FORMAL FOUNDATIONS

to second order operations are treated as black box functions which means that
they cannot be analyzed and transformed to make automatic optimizations. It
is then important to investigate intermediate representations for expressing and
optimizing queries in their native format.

As argued by Meijer in [Meijer and Bierman, 2011], establishing and standard-
izing a formal background for the noSQL market, which now contains multiple
separate systems and solutions, is necessary for its economic growth as it was
the case for the SQL market thanks to the introduction of RA. The author con-
siders that an algebra based on monads is a suitable formalism for this purpose.
Emma and DIQL presented in section 1.3.2 are embedded DSLs that can express
programs on complex data with minimized impedance mismatch with the host
language they are embedded in. Emma is based on Algebraic Data Types extended
to monads, and DIQL is based on the monoid algebra as a formal background.
Both these formalisms allow for representing collections of any host language type
and defining operations on them such as group by and join, as well as second
order operations that take a UDF as an argument.

In the next sections, we will discuss each of these formalisms in more detail.

2.2 Relational algebra

The relational model is based on n-ary relations to represent entities and relation-
ships between them. It was introduced by Codd [Codd, 1970] who proposed the
idea of a separation between the internal representation (physical storage) from
the logical representation of data. The idea is to offer a level of abstraction to
represent data and operate upon it via a universal language which is independent
from implementation details and possible changes to how data is physically stored
and retrieved. This insight led to the relational model and the associated rela-
tional algebra being widely adopted by database systems and extensively studied
in database research. It also led to the standard SQL language.

2.2.1 Relations

Intuitively, an n-ary relation can be seen as a table of n columns with a header
and a body. The header consists of a set of n attributes and the body consists of
a set of rows. For a given row r, the value ri at the position i corresponds to the
value of the attribute ai (at the position i in the header) for that row. There exist
slightly different formal definitions of a relation in the literature. In particular,
we find two definitions with different emphasis on the importance of attribute
names [Abiteboul et al., 1995]. The first approach defines a relation as a set of
n-tuples (tuples of n elements). Here, the order of the elements in a tuple and
the arity of the relation are important but not the column names. The second
approach defines a relation as a set of mappings (functions). A mapping takes an
attribute name and returns a value (see definition 2).

Relational algebra defines a set of operations that manipulate relations and
derive other relations. These operations constitute a declarative language in
which a query (algebraic term) is specified by composing database relations and
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operations. From this query specification, the system finds a good strategy to
evaluate it. For this, relational algebra uses rewrite rules to transform a term into
an equivalent one that is more efficient. In section 2.2.2, we give a description of
the RA operations and in section 2.2.3, we give examples of these rules.

2.2.2 Operations

Projection πA A is a comma separated list of attributes. The relation πA (ϕ)
has A as attributes and corresponds to the relation ϕ from which all attributes
have been removed except those in A. The set of attributes in A must be a subset
of ϕ attributes.

Filter σf f is a boolean expression that compares attributes to values. For
instance, the filter expression att = 5 states that the attribute att must be equal
to 5. σf (ϕ) corresponds to the relation ϕ that is filtered by keeping only the rows
that satisfy f. The attributes that appear in f must all be attributes of ϕ.

Renaming ρba a and b are attributes. ρba (ϕ) corresponds to the relation ϕ for
which the attribute a has been renamed to b. The attributes of ϕ must contain a
but not b.

Union ∪ ϕ1 ∪ ϕ2 corresponds to the relation having as rows the union of the
rows of ϕ1 and those of ϕ2. ϕ1 and ϕ2 must have the same attributes.

Join on The relation ϕ1 on ϕ2 has as attributes the union of ϕ1 and ϕ2 attributes.
It corresponds to the relation that, when projected to the attributes of ϕ1, gives
ϕ1 and when projected on the attributes of ϕ2, gives ϕ2.

Antijoin . The relation ϕ1 . ϕ2 is a subset of ϕ1. It is obtained by removing
from ϕ1 all the rows that can be joined with ϕ2. In other words, these rows are
such that, when projected on the set of attributes C that are common between
ϕ1 and ϕ2, they are found in πC (ϕ2) the projection of ϕ2 on C.

2.2.3 Rewrite rules

Commuting filters
σf1 (σf2 (ϕ)) = σf1 (σf2 (ϕ))

Commuting joins
ϕ1 on ϕ2 = ϕ2 on ϕ1

Commuting unions
ϕ1 ∪ ϕ2 = ϕ2 ∪ ϕ1
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Changing the order of join applications

ϕ1 on (ϕ2 on ϕ3) = (ϕ1 on ϕ2) on ϕ3

Changing the order of union applications

ϕ1 ∪ (ϕ2 ∪ ϕ3) = (ϕ1 ∪ ϕ2) ∪ ϕ3

Changing the order of antijoin applications

ϕ1 . (ϕ2 . ϕ3) = (ϕ1 . ϕ2) . ϕ3

Pushing filter into join

σf (ϕ1 on ϕ2) = σf (ϕ1) on ϕ2

if all the attributes that appear in f are attributes of ϕ1.

Pushing projection into join

πA (ϕ1 on ϕ2) = πA∩att(ϕ1) (ϕ1) on πA∩att(ϕ2) (ϕ2)

if att(ϕ1) ∩ att(ϕ2) ⊂ A, where att(ϕ) denotes the set of attributes of ϕ

Pushing projection into union

πA (ϕ1 ∪ ϕ2) = πA (ϕ1) ∪ πA (ϕ2)

Pushing filter into antijoin

σf (ϕ1 . ϕ2) = σf (ϕ1) . ϕ2

and
σf (ϕ1 . ϕ2) = σf (ϕ1) . σf (ϕ2)

if all the attributes that appear in f appear in ϕ2.
For some of these rules, like pushing filters and projections, it is clear that

their application improves performance. The reason is that a filter or a projection
operation has a linear complexity, so it is not as costly as other operations such
as join and the size of its output is generally smaller than the size of its input.
However, this is unclear regarding the application of other rules such as changing
the order of join applications. To make decisions, optimizers use heuristics that
are computed statically or dynamically.

2.3 Relational Algebra with recursion

2.3.1 µ-RA algebra

The µ-RA algebra [Jachiet et al., 2020] is an extension of the Codd’s relational
algebra with a recursive operator whose aim is to support recursive terms and
enable their transformation to efficient variants. We first present the µ-RA data
model, then we give an overview on its syntax, semantics, and the rewrite rules it
introduces.
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µ-RA data model

Like in the relational model, data in µ-RA consists of relations. A Relation is
formally defined as a set of mappings. Let V, C, R be infinite sets which represent
values, column names and relation names respectively.

Definition 1. A mapping is a function m : C→ V having a finite domain denoted
dom(m).

For a mapping m with dom(m) = {c1, ..., cn}, c1, ..., cn are called columns
or attributes. They are the values for which m is defined. The set notation
{c1 → m(c1), ..., cn → m(cn)} is sometimes used to denote the mapping m.

Definition 2. A relation is a finite set of mappings having the same domain
(called the type of the relation).

Example 1. Let us consider a directed and rooted graph G as represented in
Fig. 2.1. E is a relation that represents the edges in G, and S is a relation that
represents starting edges (a subset of edges in E that start from the graph root
nodes). The relation S has two columns and contains 4 mappings, one of which
is the mapping { src→ 1, dst→ 2 }.
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Figure 2.1: Graph example.

µ-RA syntax

The syntax of µ-RA is shown in Fig. 2.2. It is composed of database relation
variables and operations (like join and filter) that are applied on relations and
yield other relations. These operations correspond to the RA operations described
in Sec. 2.2.2 with the additional fixpoint operator µ. In µ(X = Ψ), X is called
the recursive variable of the fixpoint term.

Let us consider the graph and relations of Fig. 2.1. The following examples
illustrate how µ-RA algebraic terms can be used to model graph operations, such
as navigating through a sequence of edges in a graph:



34 CHAPTER 2. FORMAL FOUNDATIONS

ϕ ::= term
X relation variable

| |c→ v| constant
| ϕ1 ∪ ϕ2 union
| ϕ1 ./ ϕ2 natural join
| ϕ1 . ϕ2 antijoin
| σf (ϕ) filtering
| ρba (ϕ) renaming
| π̃a(ϕ) anti-projection (column dropping)
| µ(X = Ψ) fixpoint term

Figure 2.2: Grammar of µ-RA [Jachiet et al., 2020].

Example 2. The term π̃c(ρ
c
dst (S) ./ ρcsrc (E)) returns pairs of nodes that are

connected by a path of length 2 where the first element of the pair is a graph root
node. For that purpose, the relation S is joined (./) with the relation E on the
common column c, after proper renaming (ρ) to ensure that c represents both
the target node of S and the source node of E. After the join, the column c is
discarded by the anti-projection (π̃c) so as to keep only the two columns src, dst
in the result relation.

Example 3. Now, the recursive term µ(X = S ∪ π̃c(ρcdst (X) ./ ρcsrc (E))) com-
putes the pairs of nodes that are connected by a path in G starting from edges in
S.

The subterm ϕ = π̃c(ρ
c
dst (X) ./ ρcsrc (E)) computes new paths by joining X

(the previous paths) and E such that the destinations of X are equal to the sources
of E.

The fixpoint is computed in 4 steps where Xi denotes the value of the recursive
variable at step i:

X0=∅

X1=
{
{src→ 1, dst→ 2}, {src→ 1, dst→ 4},

{src→ 10, dst→ 11}, {src→ 10, dst→ 13}
}

X2=X1 ∪
{
{src→ 1, dst→ 3}, {src→ 1, dst→ 5},

{src→ 10, dst→ 5}, {src→ 10, dst→ 12}
}

X3=X2 ∪
{
{src→ 1, dst→ 6}, {src→ 10, dst→ 6}

}
X4=X3 (fixpoint reached)

At step 1 it is empty, at step 2 it is a relation of two columns src and dst that
contains four rows, and the iteration continues until the fixpoint is reached.

Semantics and properties of the fixpoint

The semantics of a µ-RA term is defined by the relation obtained after substituting
the free variables in the term (like E and S in example 3) by their corresponding
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database relations. The notions of free and bound variables and substitution are
formally defined in [Jachiet et al., 2020].

As a slight abuse of notation, we sometimes use a recursive term Ψ (i.e. a
term that contains a recursive variable X) as a function R→ Ψ(R) that takes a
relation R and returns the relation obtained by replacing X in the term Ψ by the
relation R. In the above example

ϕ(S) = π̃c(ρ
c
dst (S) ./ ρcsrc (E)) =

{
{src→ 1, dst→ 3}, {src→ 1, dst→ 5},

{src→ 10, dst→ 5}, {src→ 10, dst→ 12}
}

Under this notation, µ(X = Ψ) is defined as the fixpoint F of the function Ψ, so
Ψ(F ) = F .

Let us consider the following conditions (denoted Fcond) for a fixpoint term
µ(X = Ψ).

• positive: for all subterms ϕ1 . ϕ2 of Ψ, ϕ2 is constant in X (i.e. X does not
appear in ϕ2);

• linear : for all subterms of Ψ of the form ϕ1 ./ ϕ2 or ϕ1 . ϕ2, either ϕ1 or
ϕ2 is constant in X;

• non mutually recursive: when there exists a subterm µ(Y = ψ) in Ψ, then
any occurence of X in this subterm should be inside a term of the form
µ(X = γ).

These conditions guarantee the following properties:

Proposition 1. If µ(X = Ψ) satisfies Fcond then

Ψ(S) = Ψ(∅) ∪
⋃
x∈S

Ψ({x})

and thus Ψ has a fixpoint with µ(X = Ψ) = Ψ∞(∅).

For instance, µ(X = R .X) is not positive, µ(X = X on X) is not linear, and
µ(X = µ(Y = ϕ(X))) is mutually recursive. Whereas µ(X = R ∪X on µ(Y =
ϕ(Y ))) satisfies Fcond.

Proposition 2. Every fixpoint term µ(X = Ψ) that satisfies Fcond can be written
like the following: µ(X = R ∪ ϕ) where R is constant in X and ϕ(∅) = ∅. R is
called the constant part of the fixpoint and ϕ the variable part.

In Example 3, S is the constant part and π̃c(ρ
c
dst (X) ./ ρcsrc (E)) is the

variable part.

Rewrite rules

We first present some useful definitions before presenting the rewrite rules.

Definition 3. The set of derivations of a term ϕ, denoted d(ϕ,X), is a set
of functions that map column names in ϕ to other column names. It is defined by
the following rules:
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d(ϕ1 ∪ ϕ2, X) = d(ϕ1, X) ∪ d(ϕ2, X)
d(ϕ1 . ϕ2, X) = d(ϕ1, X)
d(ϕ1 ./ ϕ2, X) = d(ϕ1, X) ∪ d(ϕ2, X)
d(ρba (ϕ) , X) = {p ◦ (b→ a, a→ ⊥)| p ∈ d(ϕ,X)}
d(π̃a(ϕ), X) = {p ◦ (a→ ⊥) | p ∈ d(ϕ,X)}
d(σf (ϕ), X) = d(ϕ,X)
d(µ(Y = ϕ), X) = ∅
d(X,X) = {()} (a singleton identity)
d(X,R) = ∅
d(|c→ v|, X) = ∅

where (a1 → b1, . . . , an → bn) represents the function that maps each ai to bi
and every other column name to itself.

Intuitively, this notion describes the dependence relationships between columns
in the term ϕ and the columns of X. For instance, d(ρab (X) ∪ ρac (X) , X) =
{{a→ b}, {a→ c}} which means that the column a depends on the columns b
and c of X.

Definition 4. Given a term ϕ linear and positive in a variable X, we define the
stabilizer of X in ϕ as the following set of column names:

stab(ϕ,X) = {c ∈ C | ∀p ∈ d(ϕ,X) p(c) = c}

Intuitively, stab(ϕ,X) is the set of columns that are untouched by the compu-
tation of ϕ.

Definition 5. We say that a column c can be added to or removed from a term
ψ recursive in X when add(ψ,X, c) = > holds, with add defined as:

add(ϕ1 ∪ ϕ2, X, c) = add(ϕ1, X, c) ∧ add(ϕ2, X, c)
add(ϕ1 ./ ϕ2, X, c) = add(ϕ1, X, c) ∧ add(ϕ2, X, c)
add(ϕ1 . ϕ2, X, c) = add(ϕ1, X, c) ∧ add(ϕ2, X, c)
add(ρba (ϕ) , X, c) = add(ϕ,X, c) ∧ c 6∈ {a, b}
add(π̃a(ϕ), X, c) = add(ϕ,X, c) when c 6= a
add(π̃c(ϕ), X, c) = X 6∈ free(ϕ)
add(σf (ϕ), X, c) = add(ϕ,X, c) ∧ f does not depend on c
add(µ(Y = ϕ), X, c) = add(ϕ,X, c)
add(R,X, c) = c 6∈ type(R) when X 6= R
add(X,X, c) = >
add(|c′ → v|, X, c) = c 6= c′

Pushing a filter into a fixpoint

σf (µ(X = R ∪ ϕ)) µ(X = σf (R) ∪ ϕ)

This transformation is applicable when the set of columns on which the filter f
depends is included in stab(ϕ,X).

Pushing a join into a fixpoint

ϕ ./ µ(X = R ∪ ψ) µ(X = ϕ ./ R ∪ ψ)

This rule is applicable when:
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• tϕ ⊂ stab(ψ,X)

• ∀c ∈ tϕ \ t add(ψ,X, c)

where tϕ is the type of ϕ and t the type of µ(X = R ∪ ψ).

Merging fixpoints

µ(X = R1 ∪ ϕ1) ./ µ(X = R2 ∪ ϕ2) µ(X = R1 ./ R2 ∪ ϕ1 ∪ ϕ2)

This rule is applicable when:

• t1 ∩ t2 ⊆ stab(ϕ2, X) ∩ stab(ϕ1, X)

• ∀c ∈ t1 \ t2 add(ϕ2, X, c)

• ∀c ∈ t2 \ t1 add(ϕ1, X, c)

where t1 and t2 are the types of the fixpoint terms.

Evaluation of the fixpoint

A fixpoint term can be evaluated with the algorithm:

Algorithm 1

1 X = R
2 new = R
3 while new 6= ∅:
4 new = ϕ(new)\ X
5 X = X ∪ new
6 return X

The fixpoint is obtained by evaluating ϕ repeatedly starting from X = R until
the fixpoint is reached. In this algorithm, we apply ϕ on the new results only
(obtained by making a set difference between the current result and the previous
one) instead of the entire result set. This is possible thanks to the property of ϕ
stated in proposition 1, which implies that ϕ(Xi)∪ϕ(Xi+1) = ϕ(Xi)∪ϕ(Xi+1\Xi).

Evaluating recursive computations on the new iteration results is well known
in the context of Datalog [Abiteboul et al., 1995] and transitive closure evaluation
[Ioannidis, 1986] with the semi-naive (or differential) approach.

2.3.2 Other extensions of RA with recursion

Earlier works that extend RA with recursion are either less expressive than
µ-RA or are more expressive but support less optimizations than µ-RA. α-
extended RA [Agrawal, 1988] introduces an operation α that expresses transitive
closure, which means it has the same expressivity as UCRPQs (Sec. 1.2.3). LFP-
RA [Aho and Ullman, 1979] introduces a least fixpoint operation and has the same
expressivity as Datalog with stratified negation. Various fragments of LFP-RA
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have also been studied, notably the fragment that is restricted to linear recursion
and is as expressive as linear Datalog. Finally, the WHILE [Abiteboul et al., 1995]
language is at least as expressive as LFP-RA. It is shown in [Jachiet et al., 2020]
that µ-RA with the restrictions Fcond (Sec. 2.3.1) is as expressive as linear
Datalog. So µ-RA is more expressive than α-extended RA, as expressive as the
linear version of LFP-RA, and less expressive than the other formalisms. Several
other works introducing recursion in RA can be found in the literature. We present
here the closest to µ-RA. Complete surveys are found in [Abiteboul et al., 1995]
and [Bancilhon and Ramakrishnan, 1986].

Regarding optimizations, [Aho and Ullman, 1979] proposes a fragment of
LFP-RA where some optimisations for recursion like pushing filters inside the
fixpoint can be applied, but the formalism is more restricted than µ-RA and
cannot express a merged fixpoints term for instance. In its unrestricted form,
LFP-RA can be optimized as proposed in [Kifer and Lozinskii, 1990] but µ-RA
provides more optimizations that would be incorrect for terms without the Fcond
restrictions presented earlier.

2.4 Datalog

Datalog is a declarative programming language. A program in Datalog is a
collection of rules as shown in the example below:

1 ancestor(A,C) :- ancestor(B,C), parent(A,B)
2 ancestor(A,B) :- parent(A,B)
3 query(A) :- ancestor(A, "Elisabeth II")

This program is composed of three rules. ancestor(A,C) in the first rule is
called the head of the rule. ancestor(B,C), parent(A,B) is called the body of
the rule. It is composed of a conjunction of two predicates: ancestor(B,C)
and parent(A,B). The predicate parent(A,B) depends on two variables: A
and B, while the predicate ancestor(A, "Elisabeth II") depends on a con-
stant "Elisabeth II" and a variable A. The first rule can be intuitively in-
terepreted as: if A is a parent of B and B is an ancestor of C, then A is an
ancestor of C. This rule is recursive because it defines the predicate ancestor
in terms of itself. Non recursive Datalog has the same expressivity as re-
lational algebra [Abiteboul et al., 1995]. Datalog has also a relational data
model as predicates can be seen as relations. A database instance I is com-
posed of facts (predicates with constant arguments) such as parent("Georges
VI","Elisabeth II"). One way to evaluate a Datalog program P is to
start from the facts in I and infer new facts from the rules of P . For in-
stance, if parent("Georges VI","Elisabeth II") ∈ I, then we can infer that
ancestor("Georges VI","Elisabeth II). This fact is called an immediate con-
sequence of P and I. We can then update our database instance by adding
this fact and infer new facts that are immediate consequences of P and the
updated I until no new fact is inferred. More formally, the semantics of a Data-
log program can be defined as the least fixpoint of the immediate consequence
operator [Abiteboul et al., 1995].
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The existence of this fixpoint is guaranteed in Linear Datalog and stratified
datalog with negation, which are two important fragments among the various frag-
ments of Datalog that have been studied in the literature [Abiteboul et al., 1995].

2.4.1 Datalog optimizations

Datalog can be seen as a formalism to reason about program optimization. Magic
Sets [Bancilhon et al., 1986, Saccà and Zaniolo, 1986], recently improved upon
by Demand Transformation [Tekle and Liu, 2011], is a major line of work on
Datalog optimization. These techniques analyze the rules in a datalog program
and transform them to produce an optimized equivalent datalog program. The
core idea of the optimization is to produce only the facts that are relevant to a
query. Often, a query restricts the value of a predicate argument to a constant.
The query of the program above for instance asks for the ancestors of "Elisabeth
II". If we follow the execution described earlier, from a fact parent("Georges
V", "Georges VI") in I, the execution will generate ancestor("Georges V",
"Georges VI") that is going to be eliminated by the query rule. Magic Sets
uses adornment which is a technique that consists in adding, in the program,
information about which predicate variables are restricted (bound variables) and
which are not (free variables). For instance, an adornment of the program above
leads to the following program (ancestorfb(A,C) means that A is free and C is
bound):

1 ancestorfb(A,C) :- ancestorfb(B,C), parent(A,B)
2 ancestorfb(A,B) :- parent(A,B)
3 query(A) :- ancestor(A, "Elisabeth II")

Adornments can intuitively be seen as variables transmitting their values from
the query to the predicates that need to be computed. Transmission is done from
the query rule to the heads other rules, from the head of a rule to its body, and
from left to right in the body of a rule. In the first rule of the above example, C is
bound in the head of the rule because it is set to a constant in the query, and it is
bound in ancestorfb(B,C) because it is bound in the head of the rule. Note that
adornment is omitted on the parent predicate because it is an EDB predicate
(a source predicate in the database, not derived by the program). Otherwise,
it would have the adornment parentfb(A,B) because B is also an argument of
ancestor to its left, so its value is transmitted from ancestor to parent. From
the adorned program, new predicates (called magic predicates) that represent
constraints on the bound variables are defined and inserted as additional conjuncts
in rule bodies, thus restraining the facts generated by these rules. In our example,
this leads to the following equivalent program:

1 ancestorfb(A,C) :- magic_ancestorf(C), ancestorfb(B,C), parent(A,B)
2 ancestorfb(A,B) :- magic_ancestorf(C), parent(A,B)
3 magic_ancestorf("Elisabeth II") :-
4 query(A) :- ancestor(A, "Elisabeth II")
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Instead of computing the entire ancestor predicate, this program only com-
putes the ancestors of "Elisabeth II".

This optimization technique however depends on how the original program is
written. If, for instance, the first rule of the program was written in the following
way

ancestor(A,C) :- ancestor(A,B), parent(B,C)

this would lead to the following adorned rule

ancestorfb(A,C) :- ancestorff(A,B), parent(B,C)

where both arguments of ancestor are free. This means that the entire ancestor
is going to be computed. The rule of the original program recursively defines
ancestor as being the parent of an ancestor, while this rule defines it as being the
ancestor of a parent. A datalog program with the first form of recursion is called a
right-linear program, while a program with the second form of recursion is called
a left-linear program. [Naughton et al., 1989] proposes a reversal technique that
enables transforming one of these types of program into the other. Magic Sets is
also sensitive to the order of predicates in the rule bodies. If we simply swap the
predicates in the body of the first rule of the example, a less efficient program
(that performs more operations) will be produced even though only the ancestors
of "Elisabeth II" get computed. Another performance consideration is the cost
of computing magic predicates with respect to the selectivity they provide. A bad
strategy can even degrade the performance of the original program as observed
in [Green et al., 2013]. Works in [Sereni et al., 2008] and [Seshadri et al., 1996]
investigate these issues using runtime and static approaches.

2.4.2 Comparison between µ-RA and Magic sets for optimizing
recursion

The optimizations provided by Magic Sets are equivalent to pushing selections
and projections in µ-RA. However, there is no equivalent to merging fixpoints.
As mentioned earlier, depending on the way the Datalog program is written,
some optimizations may or may not be applied. For instance a left-linear DL
program (e.g. P (x, y)← P (x, z), R(z, y)) cannot push filters that are applied on
the right side (on y in the example). In order to account for all possible filters
that can be pushed into recursion, Magic Sets has to be coupled with a technique
for reversing DL programs. Since Datalog engines use heuristics to combine
optimization techniques, optimizations are not always performed as observed
in [Jachiet et al., 2020].

2.4.3 Distributed systems based on Datalog

Recent works that studied the distribution of Datalog programs are So-
ciaLite [Seo et al., 2013], which is an extension of Datalog for social network
analysis with graphs. They implement a distributed system that runs queries on
a cluster of multi-core machines in which workers communicate using message
passing. Myria [Wang et al., 2015] is a distributed system that supports a subset
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of Datalog extended with aggregation. Queries are translated into query plans
that are executed on a parallel relational engine. Myria supports incremental
evaluation of recursion and provides both a synchronous and an asynchronous
mode for evaluating recursive queries. BigDatalog [Shkapsky et al., 2016] is a
recursive Datalog engine that runs on Spark. Datalog programs are translated
into Spark physical plans. They propose optimizations that aim at reducing Spark
shuffle operators from the physical plans, hence reducing communications among
the workers. They also propose SetRDD, which is an optimized specialization of
the Spark RDD (Sec. 1.3.1) for sets.

2.5 Collection algebra

In the relational model, data consists of relations that are sets of tuples of atomic
values. A more generic data model are collections of arbitrary homogeneous types.
There are 3 well-known types of collections: lists, bags, and sets. They are, along
with other types of collections, part of what is called the Boom hierarchy of
types [Bunkenburg, 1993]. The author of this paper presents collections (or data
structures as he calls them) as free algebras. A collection value can either be
empty [ ], a singleton [a], or a concatenation of two values c1 ++ c2. ++ can obey
to a combination of the following algebraic laws:

(1) unit: a++ [ ] = a = [ ] ++ a

(2) associativity: a++ (b++ c) = (a++ b) ++ c

(3) commutativity: a++ b = b++ a

(4) idempotence: a++ a = a

Different combinations of laws lead to different types of collections.
[Bunkenburg, 1993] defines 16 types of collections for all possible combinations
of these laws. For instance, tree is a collection type where only the first law is
satisfied. If we consider A = {1, 2, 3}, elements of tree[A] are all the possible nodes
that can be constructed in a binary tree having [1],[2], and [3] as leaves. Fig. 2.3
shows a part of this tree. Note that (([1] ++ [2]) ++ [3]) and (([1] ++ ([2] ++ [3])
are different elements of tree[A], which is not the case for list[A] because the
concatenation operator of list satisfies associativity (in addition to unit). If we
add commutativity we obtain bags, and if we add idempotence we obtain sets.
Collections with a concatenation operator satisfying (1) and (2) (which is the
case for lists, bags, and sets) are monoids. Fegaras [Fegaras, 2017] calls them
collection monoids. It is on this basic notion that he builds the monoid algebra.
Collections can also be seen as a particular case of Algebraic Data Types which
constitutes the basic notion of the Emma language (Sec. 1.3.2) approach. Both
of these approaches propose an algebra for distributed collections. We will next
see each of them in more detail.
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[1] [2] [3]

[1]⧺[1] [1]⧺[2] [1]⧺[3] [2]⧺[1] [2]⧺[2] [2]⧺[3] [3]⧺[1] [3]⧺[2] [3]⧺[3]

([1]⧺[2])⧺[3] [1]⧺([2]⧺[3])… … …

Figure 2.3: Tree example.

2.5.1 Algebraic Data Types (Emma approach)

The Emma language [Alexandrov et al., 2019] presented in Sec.1.3.2 is based on
the following algebraic approach:

• distributed collections are defined as Algebraic Data Types.

• operations on collections are defined as fold operations.

• collections are extended to a monad with zero which can be queried using
for comprehensions.

Definition of collections

An Algebraic Data Type (ADT) is a composite type that is built by combin-
ing other types through union (sum types) or product (tuples) or other type
constructors.

Lists are defined as a parametric type List[A] that corresponds to the following
ADT:

List[A] = emp | sng A | uni List[A] List[A]

where emp is the empty list constructor, sng is a constructor that takes an element
in A and builds the singleton containing this element, and uni is a constructor
that takes two lists of A elements and builds their union. Constructors can be
associated with axioms that they must satisfy. For instance the uni constructor
of lists satisfies the following axioms:

uni l emp = uni emp l = l

uni (uni l1 l2) l3 = uni l1 (uni l2 l3)

These two laws correspond to the unit and associativity laws presented earlier. So,
other types of collections can be defined the same way as lists, but with different
set of axioms associated to their uni constructor. The uni constructor of bags
for instance satifies the following axiom in additition to the two axioms above:
uni l1 l2 = uni l2 l1.
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The author notes that this union representation (using uni) of collections
is suitable for representing distributed collections that are partitioned among
different nodes.

Operations on collections

Every ADT can be transformed with a fold operation. This operation is
parametrized by functions that are associated to the constructors of the ADT and
that describe the computation to perform for each component of the ADT. For
example, the fold operation of lists is the recursive function defined as follows:

fold(zero, init, plus) = f : List[A]→ B

f(l) =


zero if l = emp

init(x) if l = sng(x)

plus(f(l1), f(l2)) if l = uni(l1, l2)

where zero : B, init : List[A]→ B, and plus : B ×B → B.
The fold operation in this work represents the basic primitive of distributed

collection processing. Computing fold on a list that is split to different partitions
can be obtained by applying the fold operation on each partition in parallel, then
by aggregating the obtained results using plus. In addition, it is a second order
operation with polymorphic types, which allows it to accept generic user defined
functions, and can be used to define more specific operations like groupby.

A collection ADT can be extended to a monad with zero. It is an algebraic
structure consisting of a tuple (emp, sng,map, flatten), where emp and sng are
the collection constuctors, and map and flatten are functions that can be defined
using fold in the following way:

map(f : A→ B) : Coll[A]→ Coll[B] = fold(emp, sng ◦ f, uni)
flatten : Coll[Coll[A]]→ Coll[B] = fold(emp, id, uni)

where Coll is used to denote one of Bag, List, or Set.
We can perform monad comprehensions on monads. Monad comprehensions

offer a declarative syntax to query collections. For example

for {p← Person; a← Address; if p.address_id = a.id } yield (p.name, a.city)

is a comprehension that computes the names of people and the city they live
in. The expression (p.name, a.city) is the head of the comprehension and the
expression between brakets is the qualifier sequence of the comprehension. A
qualifier can either be (1) a generator like p← Person which binds each element
of Person to the variable p or (2) a guard like p.address_id = a.id which is a
boolean expression.
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Rewrite rules

[Alexandrov et al., 2019] applies a number of rewrite rules to compile for com-
prehensions into the monad with zero interface (map, withFilter, flatMap). We
present two important comprenhension compilation rules then we present other
rewrite rules involving fold operations.

Pushing filters in comprehensions

for {qs1; x← xs; qs2; if p; qs3} yield let

 for {qs1; x← xs.withFilter(x⇒ p); qs2; qs3} yield let

This rule is applicable when the guard p references the variable x and does not
reference any bound variable (that appears in the left side of a generator) in qs1
and qs2.

Extracting joins from comprehensions

for {qs1; x← xs; qs2; y ← ys; qs3; if kx = ky; qs4} yield let

 for {qs1; (x, y)← equiJoin(x⇒ kx, y ⇒ ky)(xs, ys); qs2; qs3; qs4} yield let

This transformation is applicable when:

• kx references x and does not reference y and the variables that are bound
in qs1, qs2, and qs3

• ky references y and does not reference x and the variables that are bound
in qs1, qs2, and qs3

• y does not depend on x, meaning that x does not appear in ys, nor in
any generator that binds variables in ys, nor in the generators that bind
variables in them, and so on.

Equijoin is defined as a function and has different implementations for the different
platforms on which the query can be executed. The Spark implementation for
instance calls the Spark join operator.

Cata-fusion This rule fuses a fold operation and a map operation into one fold
operation:

fold(zero1, init1, plus1)(map(f)(X)) fold(zero2, init2, plus2)(X)

where
zero2 = zero1

init2 = init1 ◦ f
plus2 = plus1
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Banana fusion This rewrite rule consists in fusing multiple folds on the same
dataset into a single fold:

(fold(zero1, init1, plus1)(X), fold(zero2, init2, plus2)(X)) fold(zero3, init3, plus3)(X)

where
zero3 = (zero1, zero2)

init3 = x→ (init1(x), init2(x))

plus3 = ((x1, x2), (y1, y2))→ (plus1(x1, y1), plus2(x2, y2))

So in the Emma language, an expression of the form

1 a = X.fold(alg1)
2 b = X.fold(alg2)

would be rewritten to

1 f = X.fold(Alg(alg1,alg2)))
2 a = f._1
3 b = f._2

Fold-group fusion In Emma, groupby is a method of the collection ADT that
is defined as a special fold. It takes a Coll[A] and a key function kf : A→ K and
returns a Coll[Group(K,A)] such that elements in the input collection having
the same key are grouped in the output. The fold fusion rule allows to fuse this
groupby operation with a generic fold operation performed on the groups returned
by groupby:

1 val gb = X.groupby(kf)
2 val res = for (Group(k,group) <- gb) yield {
3 ... // alg definition instructions
4 val f = group.fold(alg)
5 ...
6 }

would be rewritten to

1 ... // alg definition instructions
2 val fg = X.foldGroup(kf,alg)
3 val res = for (Group(k,f) <- fg) yield {
4 ...
5 }

where foldGroup is a special fold operation that, given a key function kf and a
fold operation alg, groups its input by key and folds each group using alg.

2.5.2 Monoid algebra approach

Definition of collections

The algebra proposed by Fegaras [Fegaras, 2017, Fegaras and Noor, 2018] is based
on the notion of monoids. A monoid (S,⊕, e) is an algebraic structure where S
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is a set (called the carrier set of the monoid), ⊕ an associative binary operator
between elements of S, and e is an identity element for ⊕. ⊕ can satisfy additional
laws like commutativity and idempotence. The author notes that collections such
as lists, bags, and sets have the structure of a monoid whose binary operator
is the associative concatenation operator. He terms them collection monoids.
Given an arbitrary type α, a collection monoid is a monoid equipped with a unit
injection function U⊗ : α→ T (α) that maps an element of type α to a singleton
(a collection of type T (α) containing this element only). The main collection
monoids are presented in the table below:

⊗ T (α) e U⊗(x) properties
list ++ List[α] [ ] [x]
bag ] Bag[α] {{ }} {{x}} commutative
bag ∪ Set[α] { } {x} commutative amd idempotent

Table 2.1: Collection monoids [Fegaras and Noor, 2018]

Collection monoids are suitable for representing distributed collections. As-
sociativity means that the whole collection can be seen as the union of the
subcollections stored on the different machines without specifying an order in
which to apply the union operator.

Operations on collections

A monoid homomorphism h from (S,⊕, e) to (S′,⊗, e′) is a function h : S → S′

such that h(x⊕ y) = h(x)⊗ h(y) and h(e) = e.
Collection monoids, as they are free monoids, satisty the following universal

property:

Proposition 3. let (T (α),⊕, e⊕) be a collection monoid and (β,⊗, e⊗) a monoid,
where α and β are arbitrary types. Suppose ⊗ obeys all the algebraic laws of ⊕, then
for any function f : α→ β, there exists a unique homomorphism H⊗f : T (α)→ β

such that H⊗f ◦ U⊗ = f .

In the case of bags for instance, this property means for that the bag homo-
morphism H⊗f satisfies the following:

H⊗f ({{x}}) = f(x)

H⊗f ({{}}) = e⊗

H⊗f (X ] Y ) = H⊗f (X)⊗H⊗f (Y )

For example, given the monoid (Int,+, 0) and the function one : x → 1,
we have that H+

one is the monoid homomorphism which counts the elements of
its input bag. Here we can see that the associativity property of ] and ⊗ is
interesting in the context of distributed programming because it is possible to
compute H⊗f (X) by dividing X into multiple parts, applying the computation on
each part independently, then gathering the results using the ⊗ operator without
leading to erroneous results.
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As mentioned earlier, in order for the universal property to be satisfied, ⊗ must
satisfy all the laws of ⊕. In our example above, H+

one cannot be defined for sets
because + is not idempotent. We have H+

one({1, 2, 3}) = 6 and H+
one({1, 2, 1, 3}) =

7, while the sets {1, 2, 3} and {1, 2, 1, 3} are equal, which is contradictory.
A homomorphism H⊗f having a collection monoid as a source monoid is

referred to as a collection homomorphism. It is the basic notion that captures
operations on collections in the monoid algebra. Examples of such operations
are second order operators which are parametrized by an arbitrary function f
that manipulates collection elements or an arbitrary binary operator ⊗ that
combines them. Homomorphisms are equivalent to the fold operator of the ADT
approach presented earlier. An ADT defining a collection forms a monoid over
its polymorphic type because its constructor satisfies the associativity and the
unit axiom, and we have fold(zero, init, plus) = Hplus

init . We present below the
collection homomorphisms that are defined in the monoid algebra proposed by
Fegaras [Fegaras and Noor, 2018].

flatmap operator We consider a function f : α→ Bag[β]. flmap(f , X) applies
f on each element in the bag X and returns a dataset that is the union of all
results. This operation is a monoid homorphism H]f from (Bag[α],], {{}}) to
(Bag[β],], {{}}).

reduce operator reduce(⊕, e⊕, X) reduces the elements of the input dataset
by combining them with the ⊕ operator, which must be associative and commu-
tative. This operation is a monoid homomorphism H⊕id from (Bag[α],], {{}}) to
(Bag[β],⊕, e⊕).

groupby operator groupby takes a bag of elements in the form (k, v), where
k is considered the key and v the value, and returns a bag of elements in the
form (k, V ) where V is the bag of all elements having the same key in the
input dataset. Thus, each key appears exactly once in the result. For example,
groupby({(1, 2), (1, 4), (2, 2), (2, 1), (1, 3)}) = {(1, {2, 4, 3}), (2, {2, 1})}.

groupby is a monoid homorphism H↑f from (Bag[α× β],∪, {{}}) to
(Bag[α× Bag[β]], ↑, {{}}), where:

f : α× β → Bag[α× Bag[β]]

(k, v) 7→ {{(k, {{v}})}}

and the operator ↑ is defined such that

{{(k, b1)}} ↑ {{(k′, b2)}} =

{
{{(k, b1 ] b2)}} if k = k′

{{(k, b1), (k′, b2)}} otherwise

cogroup operator cogroup takes two collections of elements of the form (k, v)
and (k,w) and returns a collection of elements of the form (k, (V,W )) where V
and W are the sets of v values and w values having the same key k.



48 CHAPTER 2. FORMAL FOUNDATIONS

cogroup is a binary homomorphism H
l
f1,f2

defined in the following way:

cogroup(X1 ] Y1, X2 ] Y2) = cogroup(X1, Y1) l cogroup(X2, Y2)

cogroup({{x}}, {{y}}) = f1(x) l f2(y)

where:

f1 : α× β → Bag[α× (Bag[β])× Bag[γ])]

(k, v) 7→ {{(k, ({{v}}, {{}}))}}
f2 : α× γ → Bag[α× (Bag[β]× Bag[γ])]

(k, v) 7→ {{(k, ({{}}, {{v}}))}}

and: {{(k, (b1, c1))}} l {{(k′, (b2, c2))}} =

{
{{(k, (b1 ] b2, c1 ] c2))}} if k = k′

{{(k, (b1, c1)), (k′, (b2, c2))}} otherwise

Rewrite rules

In this section, we present important rewrite rules that have been proposed for
the monoid algebra.

Note: In the monoid algebra, we use the lambda expression notation λ 〈x→ e〉
to denote a function that takes an argument x and returns e. The argument
of a lambda expression can also be a pattern. For instance, λ 〈(x, y)→ x〉 is a
function that takes a tuple and returns its first element. For a formal definition
of lambda expressions, patterns and pattern matching please refer to Sec. 4.2.

Pushing filter into groupby

flmap(λ 〈(k, xs)→ g(flmap(λ 〈x→ if c then e else {{}}〉, xs))〉,
groupby(X))

 flmap(λ 〈(k, xs)→ g(flmap(λ 〈x→ if c2 then e else {{}}〉, xs))〉,
groupby(flmap(λ 〈x→ if c1 then x else {{}}〉, X)))

where c is a boolean term and g is a term function (a term in which the argument
appears as a subterm) such that g({{}}) = {{}}. In the first expression, the groups
returned by groupby(X) are traversed and their elements are filtered using the
predicate c. This transformation consists in prefiltering X before applying groupby
on it. It is applicable when the predicate c can be split to two predicates c1 and
c2 such that c = c1 ∧ c2 and c1 may contain the k and x variables while c2 must
not.

Converting nested flatmaps to joins Let us consider the following term

F (X,Y ) = flmap(λ 〈x→ g(flmap(λ 〈y → if p(x, y) then e else {{}}〉, Y ))〉, X)

where g and p are term functions. This term consists of nested flatmaps that
traverse the datasets X and Y, and for each pair x and y of their elements return
a result if the predicate p(x, y) is true and nothing otherwise. In order to evaluate
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this term on Spark, it is necessary to broadcast the Y dataset on the workers.
This can be avoided if we apply the following transformation rule:

F (X,Y ) flmap(λ 〈(k, (xs, ys))→ F (xs, ys)〉,
cogroup(flmap(λ 〈x→ {{(k1(x), x)}}〉, X),

flmap(λ 〈y → {{(k2(y), y)}}〉, Y )))

where k1 and k2 are key functions. This transformation is applicable when we can
derive k1 and k2 from the predicate p(x, y) such that k1(x) 6= k2(y) ⇒ ¬p(x, y).
This condition means that if the pairs x and y for which k1(x) 6= k2(y) are not
joined in the cogroup operation, no result will be lost. A straightforward example
of such predicate is k1(x) = k2(y).

Elimination of groupby inside cogroup When a cogroup is applied on a
groupby and its join key is the same as the groupby key, then the groupby can be
eliminated like the following:

cogroup(flmap(λ 〈(k, s)→ {{(k, f(s))}}〉, groupby(X)), Y )

 flmap(λ 〈(k, (xs, ys))→ {{(k, ({{f(xs)}}, ys))}}〉, cogroup(X,Y, ))

Converting cogroup into groupby

cogroup(flmap(f,X), flmap(g,X))

 flmap(λ 〈(k, s)→ (k, (retainLeft(s), retainRight(s)))〉,
groupby(flmap(λ 〈x→ flmap(λ 〈(k, a)→ (k, left(a))〉, f(x))

] flmap(λ 〈(k, b)→ (k, right(b))〉, g(x))〉,
X)))

where left and right are functions that are used to distinguish the left argument
from the right argument of the cogroup operator. retainLeft and retainRight
are functions that filter their input to keep only the elements that are marked as
left and right respectively. They can be defined by the following:

left(a) = (a, 1)

right(a) = (a, 2)

retainLeft(s) = flmap(λ 〈(x, t)→ if t == 1 then x else {{}}〉, s)
retainRight(s) = flmap(λ 〈(x, t)→ if t == 2 then x else {{}}〉, s)

This transformation is useful for the distributed evaluation on Spark because
the groupby operation requires less synchronization overhead than the cogroup
operation.

2.5.3 Nested RA

Previous works have studied the extension of the RA model to support complex
values. In these models, a relation is allowed to contain values that can also be
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relations. A complex value relation [Abiteboul and Beeri, 1995] is defined as a
set of complex values, where a complex value can be a set of complex values
({v1, ..., vn}), a named tuple of complex values (〈A1 : v1, ..., An : vn〉), or an
atomic value. Types of collections other than sets can also be defined. The nested
relation model is a more restricted version of the complex value model: A nested
relation is a set of tuples of values that can either be atomic or nested relations.
The complex value algebra [Abiteboul and Beeri, 1995] defines the following core
operations on complex value relations:

• ∪, ∩, \ binary set operators

• select〈p〉(R) filters R with p, an arbitrary boolean-valued function

• replace〈f〉(R) returns the relation obtained after applying an arbitrary
function f on each element of R

• powerset(R) returns the powerset of its input relation (which is a set)

• crossA1,...,An(R1, ..., Rn) builds a relation that has A1, ..., An as columns.
The values of each column Ai range over the elements of Ri.

• set-collapse(R) takes a set of sets and flattens it into one set.

In summary, the complex value data model defines complex values using the
set constructor and the named tuple constructor as well as atomic type values.
The algebra offers a second order replace operator that accepts an arbitrary (well-
typed) function and that is used to transform relation elements, but no reduce or
fold operator is proposed. In comparison, the approaches presented earlier define
the data model as collections of elements that can be defined using arbitrary type
constructors. Algebraic operators like map and reduce are formalized using generic
concepts such as the monoid homomorphism or fold concepts. The two approches
are then very similar, but the second is more appropriate as a destination of
internal DSLs.

2.6 Conclusion

In this chapter, we have seen formalisms based on the relational model like RA
and Datalog as well as extensions of RA to support recursion. These approaches
are fairly similar but present some variations in terms of expressivity and proposed
optimizations. Next, we have seen approaches that are based on a more generic
data model: collections of arbitrary homogenous types. In this model, data can
be nested and various types of collections such as sets, lists, and bags can be
used. Operations on collections are defined using generic concepts like monads
and monoid homomorphisms. Second order operators can accept arbitrary user
defined functions and thus offer a more flexible way of manipulating complex
data. Some automatic rewrite rules are also proposed.

In the next chapters, we explore extensions of the formal approaches along
these two lines of work. In chapter 3, we present Dist-µ-RA, an extension of µ-RA
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to the distributed setting. In chapter 4, we present µ-monoids, an extension of
the monoid algebra with a fixpoint operator.
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Introduction

In the first part of this manuscript we have explored differents facets of the
following question: how to query and manipulate data efficiently?

In chapter 1, we have seen a variety of languages and tools to query data
of various forms: graphs, relational data, and large distributed data. Some of
them, like SQL, are easy to use but suffer from the impedance mismatch problem.
Others, like the Spark API, are well integrated with their host language but
require manual tuning and expertise to achieve good performances. Languages
like Emma or DIQL aim to provide automatic optimizations while reducing
impedance mismatch.

In order to provide automatic optimizations and generate a concrete execution
plan, these languages are translated to intermediate representions. We have seen
in chapter 2 formalisms based on the relational model like relational algebra and
Datalog. When it comes to querying relational data, we can say that RA (and
Datalog, possibly to a lesser extent) is the formalism of choice because of the
large body of research it has benefited from over the years. We will see that for
querying edge-labelled graphs (which can be represented as a relation having src,
label, target as columns) a formalism based on RA performs better/has access
to more optimizations than current tools specifically made for querying graphs.
While pure RA lacks recursion, Datalog can naturally express recursion by having
the same predicate in the head and body of one of its rules. µ-RA is a formalism
that extends RA with recursion capabilities. Compared to recursive Datalog and
other formalisms that extend RA with recursion, µ-RA presents advantages in
terms expressivity and optimizations. However, it is limited to the centralized
setting. We study in chapter 3 the distribution of µ-RA terms.

For expressing distributed programs that handle complex data, we have
seen formalisms that allow for modelling distributed collections and expressing
operations on them. The Emma approach uses Algebraic Data Types (ADT)
to represent collections of any host language type. These ADTs are extended
to a monad that is equipped with structural recursion (fold operation) which
allows for representing operations on collections. The DIQL approach is based
on the monoid algebra as a formal background. Collection monoids are used
to represent collections of any host language type and monoid homomorphisms
are used to define operations, such as group by and join, on these collections.
Both fold operations and monoid homomorphisms allow for defining second order
operations that take a UDF as an argument. However, regarding the ability to
express recursion, the Emma formalism lacks a recursion operator and uses host
language loops (not captured by its algebra) to express iterative computations.
While the DIQL formalism has a repeat operator which is not homomorphic and
is not subject to algebraic optimizations. We study in chapter 4 the addition of a
fixpoint operator in the monoid algebra.
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Chapter 3

Distributed evaluation of
recursive relational queries:
Dist-µ-RA

3.1 Introduction

Several works have addressed the problem of query optimization in the presence
of recursion, in particular with extensions of Relational Algebra [Agrawal, 1988,
Aho and Ullman, 1979, Jachiet et al., 2020]; and with Datalog-based approaches
[Abiteboul et al., 1995] such as BigDatalog [Shkapsky et al., 2016]. Recently, µ-
RA [Jachiet et al., 2020] proposed logical optimization rules for recursion not
supported by earlier approaches. In particular, these rules include the merging
and reversal of recursions that cannot be done neither with Magic sets nor with
Demand Transformations that constitute the core of optimizations in Datalog-
based systems [Jachiet et al., 2020]. However, µ-RA is limited to the centralized
setting.

In this chapter, we present Dist-µ-RA a new method and its implementation
for the optimized distributed evaluation of recursive relational algebra terms.
Specifically, the novelty is twofold:

1. a new method for the optimization of distributed evaluation of queries
written in recursive relational algebra. Since it uses a general recursive
relational algebra, it can be of interest for a large number of mainstream
RDBMS implementations; and it can also provide the support for dis-
tributed evaluation of recursive graph query languages. For example Dist-
µ-RA provides a frontend where the programmer can formulate queries
known as UCRPQs [Consens and Mendelzon, 1990, Barcelo et al., 2012,
Barceló et al., 2012, Libkin et al., 2016]1).
This method provides a systematic parallelisation technique by means of
physical plan generation and selection. These plans automatically repar-

1UCRPQs, discussed in more details in Sec. 3.2, constitute an important fragment of expressive
graph query languages: they correspond to unions of conjunctions of regular path queries. A
translation of UCRPQs into the recursive relational algebra is given in [Jachiet et al., 2020].
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tition data in order to reduce data transfer between cluster nodes and
communication costs during recursive computations.

2. a prototype implementation [dis, 2022] of the system on top of Apache Spark.
Specifically, Dist-µ-RA can use plain Apache Spark or Apache Spark with
PostgreSQL as a DBMS backend. To evaluate Dist-µ-RA experimentally,
a classification of graph queries by the means of seven query classes has
been defined. Each class characterizes queries with a particular feature: for
example a recursion with a filter, or concatenated recursions. Dist-µ-RA is
evaluated using queries that cover the different classes, and using datasets
(both real and synthetic) of various sizes. Experimental results show that
Dist-µ-RA is more efficient than state-of-the-art systems such as BigDatalog
[Shkapsky et al., 2016] in most query classes.

The outline of the chapter is as follows: we first describe the architecture of
Dist-µ-RA in 3.2. In Section 3.3, we show how µ-RA terms are distributed and
how physical plans are generated. Finally, we report on experimental evaluation
in Section 4.4 and related works in Section 3.5 before concluding.

3.2 Dist-µ-RA architecture

The Dist-µ-RA system takes a query as input parameter, translates it into µ-RA,
optimizes it, and then performs the evaluation in a distributed fashion on top of
Spark. Specifically, the Dist-µ-RA system is composed of several components, as
illustrated in Fig. 3.1.

Query2Mu MuRewriter CostEstimator

PhysicalPlanGenerator

PgSQLExecutor SparkExecutor

SparkPgSQL

µ-RA term Logical plans

PgSQL physical plan Spark physical plan

SQL query Spark operations

Selected logical plan

UCRPQ µ-RA term

Figure 3.1: Architecture of the Dist-µ-RA system.

The Query2Mu component translates recursive graph queries written in Union
of Conjunctive Regular Path Queries (UCRPQ) into µ-RA terms. The UCRPQ
syntax is given in Sec. 1.2.3 and we give an example below. Dist-µ-RA supports
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more general µ-RA terms that are not expressible as UCRPQs2, as long as they
satisfy the triple condition Fcond mentioned in Section 2.3.1.

From a given input µ-RA term, the MuRewriter explores the space of semanti-
cally equivalent logical plans by applying a number of rewrite rules. In addition to
the rewrite rules already known in classical relational algebra, MuRewriter applies
a set of rules specific to the fixpoint operator. These rules and the conditions
under which they are applicable are formally defined in [Jachiet et al., 2020].

The evaluation costs of these terms are estimated by the CostEstimator
component, based on cardinality estimations proposed in [Lawal et al., 2020].
Based on these estimations, a best logical recursive plan is selected.

From a given recursive logical plan, the PhysicalPlanGenerator generates
a physical plan for distributed execution (see Section 3.3). Two distributed
execution setups are used. In the first setup (using PgSQLExecutor), each Spark
worker runs a PostgreSQL instance to perform a part of the evaluation locally.
The second setup (using SparkExecutor) relies only on Spark. In all cases, the
query evaluation is performed on top of Spark.

Example We first describe the transformations that a query (UCRPQ or µ-RA
term) undergoes before being considered for distributed evaluation when given as
input parameter to the PhysicalPlanGenerator (described in Section 3.3).

Consider for instance the following UCRPQ composed of a conjunction of two
Regular Path Queries (RPQs):

?a,?b,?c←?a wasBornIn/IsLocatedIn+ Japan,

?b isConnectedTo+ ?c

The first RPQ computes the people ?a that are born in a place that is located
directly or indirectly in Japan. The query is first translated into µ-RA by Query2Mu
so that MuRewriter can generate semantically equivalent plans. We describe below
the rewrite rules specific to fixpoint terms leveraged from [Jachiet et al., 2020] and
presented in Sec. 2.3.1 that can apply in MuRewriter, and we give the intuition
of their effect on performance:

• Pushing filters into fixpoints: with this rule, the query
?x isLocatedIn+ Japan is evaluated as a fixpoint starting from ?x
such as ?x isLocatedIn Japan, which avoids the computation of the
whole isLocatedIn+ relation followed by the filter Japan.

• Pushing joins into fixpoints: let us consider the query ?x
isMarriedTo/knows+ ?y. Instead of computing the relation knows+
and joining it with isMarriedTo, this rule rewrites the fixpoint such that
it starts from ?x and ?y that verify ?x isMarriedTo/knows ?y. The
application of this rule is beneficial in this case because the size of the
isMarriedTo/knows relation is usually smaller than the size of the knows
relation.

2See the practical experiments section for some examples such as the “same generation”
query.
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• Merging fixpoints: when evaluating ?x isLocatedIn+/dealsWith+ ?y, in-
stead of computing both fixpoints separately then joining them, this rule
generates a single fixpoint that starts with isLocated/dealsWith then
recursively appends either isLocatedIn to the left or dealsWith to the
right.

• Pushing antiprojections into fixpoints: this rule gets rid of unused columns
during the fixpoint computations. For instance, the query ?y � ?x
isLocatedIn+ ?y (this query asks for ?y only) is evaluated by starting
only from the destinations ?y of the isLocatedIn relation and by recur-
sively getting the new destinations, thus avoiding to keep the pairs of nodes
?x and ?y then discarding ?x at the end.

• Reversing a fixpoint : the fixpoint corresponding to the relation a+ can
either be computed from left to right by starting from a and by recursively
appending a to the right of the previously found results, or from right to
left by starting from a and appending a to the left. Reversing a fixpoint
consists in rewriting from the first form to the other or vice versa. This rule
is necessary to account for all possible filters and joins that can be pushed
in a fixpoint. For instance, a filter that is located at the left side of a+ can
only be pushed if the fixpoint is evaluated from left to right.

After these transformations, the best (estimated) recursive logical plan selected
by CostEstimator is given as input parameter to PhysicalPlanGenerator that
is in charge of generating the best physical plan for distributed execution.

3.3 Distributed evaluation

We now describe how fixpoint terms are evaluated in a distributed manner, first
by explaining the principles and then how physical plans are generated.

3.3.1 Fixpoint distributed evaluation principles

The first principle uses a global loop on the Spark driver3. The second principle
uses parallel local loops on the Spark workers, and corresponds to our contribution.

Global Loop on the Driver (Pgld)

Pgld corresponds to the natural way a Spark programmer would implement the
fixpoint operation: it distributes the computations performed at each iteration
of Algorithm 1 (Sec. 2.3.1). This execution is illustrated in Fig. 3.2 (left side).
Colored arrows show data transfers that occur at each iteration of the fixpoint.
The driver performs the loop and, at each iteration, instructions at lines 4 and 5
are executed as Dataset 4 operations that are distributed among the workers. We

3The driver is the process that creates tasks and send them to be executed in parallel by
worker nodes. See Sec. ??

4Distributed collection data structure used to store relational data in
Spark [Armbrust et al., 2015a]
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Figure 3.2: Execution on the cluster of Pgld (left) and Pplw (right).

call this execution plan Pgld. On Spark, ∪ is executed as Dataset union followed
by a distinct() operation. This means that in Pgld, at least one data transfer
(shuffle) per iteration is made to perform the union.

Parallel Local loops on the Workers (Pplw)

This evaluation principle uses the following observation to distribute the fixpoint:

Proposition 4. Under the conditions Fcond, we have:

µ(X = R1 ∪R2 ∪ ϕ) = µ(X = R1 ∪ ϕ) ∪ µ(X = R2 ∪ ϕ)

which is a consequence of proposition 1 (Sec. 2.3.1). This proposition means
that a fixpoint whose constant part is a union of two datasets can be obtained by
making the union of two fixpoints, each with one of these datasets as a constant
part. Thanks to this proposition 4, the fixpoint can be executed by distributing
the constant part R among the workers, then each worker i executes a smaller
fixpoint µ(X = Ri ∪ ϕ) locally starting from its own constant part Ri. We call
this execution plan Pplw. Execution is illustrated in the right side of Fig. 3.2.
As opposed to Pgld, Pplw performs only one data shuffle at the end to make the
union (∪) between the local fixpoints.

In Example 3, if we split the start edges S among two workers by giving the
first (1, 2) and (10, 11) and the second (1, 4) and (10, 13), after executing Pplw,
the first worker will find the paths (1, 3), (10, 5), (10, 6) and (10, 12) and the
second will find (1, 5), (1, 6), and (10, 12).

Data distribution for Pplw There are cases where the final data shuffle induced
by Pplw can also be avoided by appropriately repartitioning input data among
workers. We first give the intuition behind this idea, followed by the proof.

We look for a column col (or a set of columns) in X left unchanged by ϕ. In
other words, a tuple in R having a value v at column col will only generate tuples
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having the same value at this column throughout the iterations of the fixpoint.
So if we put all tuples in R having v at column col in one worker, no other worker
will generate a tuple with this value at that column.

For this, we use the stabilizer technique defined in Definition 4 (Sec. 2.3.1)
and used to push filters in fixpoint expressions. It consists of computing the set
of columns which are not altered during the fixpoint iteration. For instance, ’src’
is a stable column in the fixpoint expression of example 3 meaning that tuples in
the fixpoint having ’src’ = 1 can only be produced from tuples in S having ’src’ =
1, which implies that filtering tuples having ’src’ = 1 before or after the fixpoint
computation lead to the same results. However, this is not true for the column
’dst’ which is not stable.

To summarize, when the constant part of the fixpoint is repartitioned by
the stable column (or columns) prior to the fixpoint execution, we know for
certain that there will be no duplicate across the workers (so we can avoid calling
distinct() at the end of the computation).

For instance, repartitioning the constant part S in example 3 by src will
result in the paths (1, 3), (1, 5), and (1, 6) being found in one worker and the
paths (10, 5), (10, 6) and (10, 12) in the second, thus avoiding a duplicate (10, 12)
between the two workers.

Proof 1. Let c be a stable column of µ(X = R ∪ ϕ), which means that ∀e ∈
µ(X = R ∪ ϕ) ∃r ∈ R e(c) = r(c) [Jachiet et al., 2020]. In µ-RA, an element r
in R is a mapping (tuple), which means that it is a function that takes a column
name and returns the value that r has at that column.

Let us consider a partitioning R1, ..., Rn of R by the column c which verifies
the following

∀i 6= j ∈ {1..n} ∀a ∈ Ri ∀b ∈ Rj a(c) 6= b(c)

This statement means that there are no two elements of R at different partitions
that share the same value at column c. We next show that this statement is also
true for the fixpoint term.

Let i 6= j ∈ {1..n} and let x ∈ µ(X = Ri∪ϕ) and y ∈ µ(X = Rj ∪ϕ). Since c
is stable, we have ∃a ∈ Ri x(c) = a(c) and ∃b ∈ Rj y(c) = b(c). So x(c) 6= y(c).

In conclusion, the sets µ(X = Ri ∪ ϕ) where i ∈ {1..n} are disjoint.

3.3.2 Physical plan generation and selection

We present the different physical plans automatically generated by the Dist-
µ-RA system for µ-RA terms, and explain how they are selected. Dist-µ-RA
generates a physical plan for Pgld, which is used only as a baseline in performance
comparisons.

We propose two alternative physical plans which are variants of Pplw:

• Ppg
plw: The local fixpoints are executed on PostgreSQL. The fixpoint opera-

tor is performed as a Spark mapPartition() operation where each worker
performs a portion of the fixpoint computation on PostgreSQL. A Post-
greSQL instance runs on each worker. The part of data assigned to each
worker is represented as a view in the PostgreSQL instance running on this
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worker. The µ-RA expression (that computes the fixpoint) is translated to
a PostgreSQL query that is executed using this view as the constant part
of the fixpoint. The local PostgreSQL plans are selected for the operators
in the fixpoint expression. Each PostgreSQL executor returns its results as
an iterator which is then processed by Spark.

• Ps
plw: The fixpoint computation is implemented using a loop in the driver

that uses Spark operations to compute the recursive part of the fixpoint.
These Spark operations are written in such a way that each worker performs
its own fixpoint independently (i.e. without data exchanged between work-
ers). Joins are executed as broadcast joins: all relations in the variable part
of the fixpoint (apart from the recursive relation) are broadcasted. Antipro-
jections are executed without the need of applying the distinct() operation.
To perform the union (or set-difference), a special union (set-difference)
operation is used that computes the union (set-difference) partition-wise.
These special union and set-difference operations are implemented as part
of the SetRDD API. SetRDD [Shkapsky et al., 2016] is a special RDD5 where
each partition is a set. This SetRDD is used to store the value of the recursive
variable X at each iteration. This means that each partition of X holds the
intermediate results of the local fixpoint performed by the worker to which
this partition has been assigned.

As a consequence, for each of the non-recursive µ-RA operators, there are
two kinds of physical plans: local plans implemented using PostgreSQL and
distributed plans implemented using the Spark Dataset API. Datasets are used
to represent relational data in Spark. The optimization of these expressions is
then delegated to Spark’s Catalyst internal optimizer [Armbrust et al., 2015b]
before execution. Some operators have more than one distributed execution plan.
For instance, for the join operator, we choose which argument (if any) to broadcast
in order to guide Spark on whether to use broadcast join or another type of join.

To select between the two alternatives Ps
plw and Ppg

plw, we rely on a simple
selection mechanism based on an empirical observation. We have observed that
the size of the datasets in the variable part of the fixpoints is the key element that
affects the relative performance of the plans. When this size is large, Ppg

plw is more
effective than Ps

plw. We use the cost estimator presented in Sec. 3.2 to determine
this size. In practice, when the estimated size exceeds a certain threshold (set to
20M records), we select Ppg

plw and Ps
plw otherwise.

3.4 Experiments

We evaluate the performance of a prototype implementation of the Dist-µ-RA
system on top of the Spark platform [Zaharia et al., 2016]. We extensively com-
pared its performance against other state-of-the-art systems on various datasets
and queries. We report below on these experiments.

5RDD is an abstraction that Spark provides to represent a distributed collection of data. An
RDD is split among partitions which are assigned to workers. See Sec. 1.3.1.
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3.4.1 Experimental setup

Experiments have been conducted on a Spark cluster composed of 4 machines
(hence using 4 workers, one on each machine, and the driver on one of them).
Each machine has 40 GB of RAM, 2 Intel Xeon E5-2630 v4 CPUs (2.20 GHz, 20
cores each) and 66 TB of 7200 RPM hard disk drives, running Spark 2.4.5 and
Hadoop 2.8.4 inside Debian-based Docker containers.

3.4.2 Datasets

Real Dataset Description Edges Nodes
Yago [for Informatics and University, 2019] YAGO semantic knowledge base 62,643,951 42,832,856
Epinions [ico, 2022] Epinions product ratings (2005) 13,668,320 996,744
Wikitree [Fire and Elovici, 2015] Online genealogy dataset 9,192,212 1,382,751
Coauth-MAG [ico, 2022] MAG Geology coauthor simplices 5,120,762 1,256,385
Gottron [Kunegis, 2013] Wikipedia words 2,941,903 273,961
AcTree [Liénard et al., 2018] Academic Family Tree Data Export 1,561,494 777,220
Wikitree_0 [Fire and Elovici, 2015] Wikitree filtered on the relation ID 0 1,556,453 1,019,438
Reddit [Leskovec, 2019] Hyperlinks between subreddits 858,490 55,863
TW-Cannes [ico, 2022] Cannes 2013 Multiplex social network 991,855 438,539
Higgs-RW [ico, 2022] Twitter, Higgs boson (2012) 733,647 425,008
Wikidata_c [wik, 2022] Wikidata child relation 280,405 333,572
Wikidata_p [wik, 2022] Wikidata father and mother relations 280,740 334,430
Facebook [Leskovec, 2019] Social circles from Facebook 88,234 4,039
Ragusan [ico, 2022] Ragusan nobility genealogy 51,938 13,690
Isle-of-Man [ico, 2022] Isle of Man genealogy (1600-2011) 36,666 10,474
Fr-Royalty [Halliwell et al., 2021] French royalty genealogy tree 12,358 2,127

Synthetic Dataset Edges Nodes

uniprot_10M 10,001,920 10,000,000
uniprot_5M 5,001,427 5,000,000
uniprot_1M 1,000,443 1,000,000
uniprot_100k 66,181 100,000
rnd_100k_0.001 5,003,893 100,000
rnd_10k_0.001 249,791 10,000
rnd_7k_0.001 24,630 7,000
rnd_5k_0.001 12,660 5,000
tree_10k 9,999 10,000
tree_7k 6,999 7,000
tree_5k 4,999 5,000

Table 3.1: Real and synthetic graphs.

We use real and synthetic datasets of different sizes and topological properties,
as summarized in Table 4.1. We consider the following real graphs:
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• Yago6: A knowledge graph extracted mainly from Wikipidia
[for Informatics and University, 2019].

• datasets from the Colorado index of complex networks [ico, 2022] and from
the Snap network dataset collection [Leskovec, 2019].

In addition, we consider the following synthetic graphs:

• uniprot_n: a benchmark graph of n nodes generated using the gMark
benchmark tool [Bagan et al., 2017]. It models the Uniprot database of
proteins [Gane et al., 2014].

• rnd_n_p: random graphs generated with the Erdos Renyi algorithm, where
n is the number of nodes in the graph and p the probability that two nodes
are connected.

• tree_n: a random tree of n nodes generated recursively as follows: tree_1
is a tree of 1 node, and then tree_i+ 1 is a tree of i+ 1 nodes where the
ith + 1 node is connected as a child of a randomly selected node in tree_i.

3.4.3 Systems

We compare Dist-µ-RA with the following systems:

• BigDatalog [Shkapsky et al., 2016] available at [bdl, 2022]: a large-scale
distributed Datalog engine built on top of Spark.

• GraphX [Gonzalez et al., 2014]: a Spark library for graph computations. It
exposes the Pregel API for recursive computations. In order to compare our
system with GraphX we need to convert UCRPQs to GraphX programs7.
Specifically, we compute a regular graph query by making each node send a
message to its neighbors in such a way that the query pattern is traversed
recursively from left to right. This means that for a query that starts by
selection (?x ← A pattern ?x), only the node A sends a message at the
start of the computation.

• Myria [Wang et al., 2015]: a distributed big data management system that
supports Datalog and exposes MyriaL, a query language similar to Datalog.
We were not able to run this system in a distributed setting because the
software stack has evolved and Myria is not maintained anymore. However,
we were able to test it on a single machine hosting four workers. In addition,
Myria works only with smaller datasets (i.e. the small synthetic graphs
presented in Table 4.1) and on a subset of test queries.

6We use a cleaned version of the real world dataset Yago 2s, that we have preprocessed
in order to remove duplicate RDF [Cyganiak et al., 2014] triples (of the form <source, label,
target>) and keep only triples with existing and valid identifiers. After preprocessing, we obtain
a table of Yago facts with 83 predicates and 62,643,951 rows (graph edges).

7In the GraphX framework, a recursive computation is composed of “supersteps” where, in
each superstep, graph nodes send messages to their neighbor nodes, then a merge function
aggregates messages per recipient and each recipient receives its aggregated messages in order
to process them. A computation is stopped when no new message is sent.
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3.4.4 Queries

Queries may contain various forms of recursion. To ensure that tested queries
cover different forms of recursion, we rely on a classification of queries in seven
classes. Each class regroups queries with a particular recursive feature: C1 − C6
describe UCRPQ queries on knowledge graphs (like Uniprot and Yago). We
also provide additional experiments using more general queries not expressible as
UCRPQs in the class C7. The classification is the following:

• C1 corresponds to queries containing a single transitive closure (TC), e.g.
?x, ?y← ?x a+ ?y

• C2: queries with a filter to the right of a TC, e.g. ?x← ?x a+ C

• C3: queries with a filter to the left a TC, e.g. ?x← C a+ ?x

• C4: queries which contain a concatenation of a non recursive term to the
right of a TC, e.g. ?x, ?y← ?x a+/b ?y

• C5: queries which contain a concatenation of a non recursive term to the
left of a TC, e.g. ?x, ?y← ?x b/a+ ?y

• C6: queries which contain a concatenation of TCs, e.g.
?x, ?y ← ?x a+/b+ ?y

• C7: queries with non regular recursion, e.g. anbn.

Each class requires specific optimizations. For instance, the optimization of
queries of classes C2 and C3 requires pushing filters in fixpoint terms (in two
different directions). Queries of classes C4 and C5 require an optimization that
pushes joins in fixpoint terms. C2 and C4 require reversing fixpoint terms before
applying other optimizations (rewritings). Queries of C6 can be optimized by
merging fixpoints or by pushing joins in fixpoint terms.

A query may belong to one or more classes. Whenever a query belongs to
several classes this means that it requires the optimization techniques of all the
corresponding classes, together with a technique capable of combining them.
Therefore, the more classes a query belongs to, the harder is its optimization.
For example, the query ?x← C a/b+ ?x belongs to C3 because there is a filter
to the left of the transitive closure b+ and also belongs to C5 because there is a
concatenation to the left of b+.

To cover a variety of queries in the experiments (see Figures 3.3 and 3.4),
there is, for each class Ci, at least one query that belongs to Ci alone. In addition,
we also consider queries that belong to Ci and to a combination of other classes.
This allows to test how the different combinations of optimizations are supported
by the tested systems.

Yago queries Fig. 3.3 lists the UCRPQs evaluated on the Yago dataset along
with their classes. Queries Q3 and Q4 are taken from [Abul-Basher et al., 2017],
Q5 from [Yakovets et al., 2015], and Q6,Q7 from [Gubichev et al., 2013]. We
have added queries Q8 −Q25 that include larger transitive closures.
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Qid Query C1 C2 C3 C4 C5 C6
Q1 ?x,?y ←?x,?y <- ?x hasChild+ ?y ×
Q2 ?x,?y ←?x,?y <- ?x isConnectedTo+ ?y ×
Q3 ?x ←?x isMarriedTo/livesIn/IsL+/dw+ Argentina × × ×
Q4 ?x ←?x livesIn/IsL+/dw+ United_States × × ×
Q5 ?x ←?x (actedIn/-actedIn)+ Kevin_Bacon ×
Q6 ?area ←wce -type/(IsL+/dw|dw) ?area × × ×
Q7 ?person←?person isMarriedTo+/owns/IsL+|owns/IsL+ USA × × ×
Q8 ?x,?y ←?x IsL+/dw+ ?y ×
Q9 ?x,?y ←?x (IsL|dw|rdfs:subClassOf|isConnectedTo)+ ?y ×
Q10 ?x ←?x (isConnectedTo/-isConnectedTo)+ Shannon_Airport ×
Q11 ?person←?person (wasBornIn/IsL/-wasBornIn)+ JLT ×
Q12 ?x ←Jay_Kappraff (livesIn/IsL/-livesIn)+ ?x ×
Q13 ?x,?y ←?x (actedIn/-actedIn)+/hasChild+ ?y ×
Q14 ?x,?y ←?x (wasBornIn/IsL/-wasBornIn)+/isMarriedTo ?y ×
Q15 ?x,?y ←?x (actedIn/-actedIn)+/influences ?y ×
Q16 ?x ←Marie_Curie (hWP/-hWP)+ ?x ×
Q17 ?x ←London -wasBornIn/(playsFor/-playsFor)+ ?x × ×
Q18 ?x ←London (-wasBornIn/hWP/-hWP/wasBornIn)+ ?x ×
Q19 ?x,?y ←?x -actedIn/(-created/influences/created)+ ?y ×
Q20 ?x,?y ←?x -isLeaderOf/(livesIn/-livesIn)+ ?y ×
Q21 ?x,?y ←?x (-created/created)+/directed ?y ×
Q22 ?x ←Lionel_Messi (playsFor/-playsFor)+/isAffiliatedTo ?y × ×
Q23 ?x ←SH (haa|influences)+/(isMarriedTo|hasChild)+ ?x × ×
Q24 ?x,?y ←?x isConnectedTo+/IsL+/dw+/owns+ ?y ×
Q25 ?x,?y ←?x haa/hasChild/(hWP/-hWP)+ ?y ×

Figure 3.3: Queries for the yago dataset8.

Concatenated closures We consider queries of the form a1+/a2+/.../an+
where 2 ≤ n ≤ 10. These queries all belong to class C6.

Non regular queries We also consider queries that contain non-regular forms
of recursion. These queries are exclusively expressible as µ-RA terms, not as
UCRPQs. All of these queries belong to C7:

• anbn queries: they return the pairs of nodes connected by a path composed
of a number of edges labeled a followed by the same number of edges labeled
b. They are expressed with the following µ-RA term:

µ(X = π̃m(ρmtrg (σpred=a (R)) ./ ρmsrc (σpred=b (R)))

∪ π̃m(π̃n(ρmtrg (σpred=a (R)) ./ ρntrg (ρmsrc (X))

./ ρnsrc (σpred=b (R)))))

• Same Generation (SG) queries: they return the pairs of nodes that are
of the same generation in a graph. We use the following term to express

8“isL” stands for “IsLocatedIn”, “dw” for “dealsWith”, “haa” for “hasAcademicAdvisor”,
“JLT” for “John_Lawrence_Toole”, “hWP” for “hasWonPrize”, “SH” for “Stephen_Hawking”, and
“wce” for “wikicat_Capitals_in_Europe”.
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them:

TSG =µ(X = π̃m(ρmsrc (R) ./ ρmsrc (R))

∪ π̃m(π̃n(ρmsrc (R) ./ ρntrg (ρmsrc (X)) ./ ρnsrc (R))))

• Filtered SG queries: they compute the pairs of nodes that are of the same
generation for a particular predicate p in a graph.

σpred=p (TSG)

• Joined SG: they return the pairs of nodes that are of the same generation
for a particular set of predicates P in a graph. P is a one column (pred)
relation that gets joined with the TSG term on the column pred:

P on TSG

Uniprot queries For the synthetic Uniprot datasets, we use the UCRPQ
queries shown in Fig. 3.4.

Qid Query C1 C2 C3 C4 C5 C6
Q26 ?x,?y ←?x -hKw/(ref/-ref)+ ?y ×
Q27 ?x,?y ←?x -hKw/(enc/-enc)+ ?y ×
Q28 ?x ←C (occ/-occ)+ ?x ×
Q29 ?x,?y ←?x int+/(occ/-occ)+/(hKw/-hKw)+ ?y ×
Q30 ?x ←?x (enc/-enc | occ/-occ)+ C ×
Q31 ?x,?y ←?x int+/(occ/-occ)+ ?y ×
Q32 ?x,?y ←?x int+/(enc/-enc)+ ?y ×
Q33 ?x,?y ←?x int/(enc/-enc)+ ?y ×
Q34 ?x,?y ←?x -hKw/int/ref/(auth/-auth)+ ?y ×
Q35 ?x,?y ←?x (enc/-enc)+/hKw ?y ×
Q36 ?x ←?x (enc/-enc)+ C ×
Q37 ?x,?y,?z,?t←?x (enc/-enc)+ ?y, ?x int+ ?z, ?x ref ?t × ×
Q38 ?x,?y ←?x (int|(enc/-enc))+ ?y, C (occ/-occ)+ ?y × ×
Q39 ?x ←?x int+/ref ?y, C (auth/-auth)+ ?y × ×
Q40 ?x ←?x int+/ref ?y, C -pub/(auth/-auth)+ ?y × × ×
Q41 ?x ← C -pub/(auth/-auth)+ ?x × ×
Q42 ?x,?y ←?x -occ/int+/occ ?y × ×
Q43 ?x,?y ←?x (-ref/ref)+ ?y ×
Q44 ?x,?y ←?x int/ref/(-ref/ref)+ ?y ×
Q45 ?x ←C (ref/-ref)+ ?x ×
Q46 ?x,?y ←?x (-ref/ref)+/(auth|pub) ?y ×
Q47 ?x,?y ←?x int/(occ/-occ)+ ?y ×
Q48 ?x ←C int/(enc/-enc|occ/-occ)+ ?x × ×
Q49 ?x ←C (enc/-enc)+ ?x ×
Q50 ?x,?y ←?x -hKw/(occ/-occ)+ ?y ×

Figure 3.4: Uniprot queries9.

9“int” stands for “interacts”, “enc” for “encodes”, “occ” for “occurs”, “hKw” for
“hasKeyword”, “ref” for “reference”, “auth” for “authoredBy”, and “pub” for “publishes”.
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3.4.5 Results

We report on experimental results and analyse them. We measure the time
spent in evaluating queries by the different systems, in seconds. For each set of
experiments, we define a timeout value. Whenever the time spent in evaluating a
query reaches this timeout value, we consider that the query evaluation did not
terminate within reasonable time. On charts, the timeout value corresponds to the
maximum value on the y-axis. Some systems crashed in some query evaluations.
In charts, this is denoted by the presence of a red cross on a time bar. The other
cases correspond to query evaluations where the system answered correctly.

Dist-µ-RA recursive plans evaluation
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Figure 3.5: Running times of Pplw and Pgld plans on Yago.

Fig. 3.5 presents the time spent in evaluating each of the Dist-µ-RA plans
(Sec. 3.3) for UCRPQs on the Yago dataset. We observe that the Pplw plans are
faster than Pgld. This illustrates the interest of the communication cost reduction
performed by Pplw. As explained in Sec. 3.3, Pgld requires communications
between the workers at each step of the recursion while Pplw does not. Furthermore,
we observe that Ps

plw performs better on most cases when compared to Ppg
plw. This

is due to the cost of data marshalling and exchange between PostgreSQL and
Spark. However, when the size of the datasets in the variable part of the fixpoints
is large, Ppg

plw becomes faster (e.g. queries Q22 and Q25). In that case, the
performance gains are due to local optimizations of this variable part performed
by PostgreSQL.

UCRPQs on Yago: comparison with other systems

In Fig. 3.6 we present the performance results of Dist-µ-RA, BigDatalog and
GraphX on the queries Q1 −Q25 on the Yago dataset.
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Figure 3.6: Running times on Yago. A timeout is set at 1,000 s.

First, these results show that Dist-µ-RA is much faster than GraphX overall.
We believe that this lack of performance is due to the fact that, in the GraphX
Pregel model, each node has to keep track of its ancestors that satisfy a given
regular path query (or a part of it) and transmit this information to their
successors in order to get the pairs of nodes satisfying the whole query. So
while GraphX has been proven to be efficient for a number of graph algorithms
[Gonzalez et al., 2014], it can be less suitable for this kind of queries. The only
case where GraphX matches the performance of Dist-µ-RA is for Q17 where
filtering is performed at the beginning of the query (as mentioned in Sec. 3.4.3).

Second, these results show that Dist-µ-RA provides much faster performance
than Bigdatalog for all the classes C2-C6, and comparable performance for class
C1.

One explanation for the difference in performance of Q5 of class C2 is that it
requires reversing a fixpoint term first before pushing the filter “Kevin Bacon”.
This fixpoint reversal is not supported by Datalog’s Magic Sets optimization
technique (see Sec. 3.5 for more details). Another example is Q24 of class C6
where Dist-µ-RA merges fixpoint terms (which BigDatalog is unable to do).
Overall, the optimizations in Dist-µ-RA are more effective. We noticed that this
is particularly the case when the size of intermediate results is large (Q5 and
Q10 −Q25) .

Concatenated closures

We now evaluate concatenated closure queries (which belong to C6) on the graph
obtained from rnd_100k_0.001. The graph edges are randomly labeled from a
set of 10 different labels. Results are shown in Fig. 3.7. Dist-µ-RA is faster on all
queries. The time difference between Dist-µ-RA and BigDatalog for a query with
n concatenations (a1+/.../an+) becomes larger when n increases. BigDatalog
fails for queries where n ≥ 5 and GraphX crashes on all queries. The plans that
are selected in Dist-µ-RA for the execution of these queries apply a mixture of
the rewritings that “push joins” and “merge fixpoints” (see Sec. 3.2). These results
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also indicate that optimizations introduced by these rewritings provide significant
performance gains for class C6.

X X X X X X

0

500

1000

1500

2000

2500

3000

3500

4000

2 3 4 5 6 7 8 9 10

Ti
m

e 
(s

)

Dist-µ-RA BigDatalog

Figure 3.7: Evaluation times for concatenated closure queries.

Non regular queries

The execution times for these queries of class C7 are given in Fig. 3.8. On the
basic SG and anbn queries, Dist-µ-RA and BigDatalog have comparable execution
times. Dist-µ-RA is faster on Filtered SG and Joined SG queries.
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Figure 3.8: µ-RA queries running times. A timeout is set to 2000s.

The comparison between Myria and Dist-µ-RA is limited to the SG query for
the reasons explained in Section 3.4.3. Dist-µ-RA is much faster than Myria for
all the cases that Myria can handle. Furthermore, it can be observed in Fig. 3.9
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that the difference in performance between the two systems increases with the
dataset size.
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Figure 3.9: Comparison with Myria on SG.

UCRPQs on Uniprot
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Figure 3.10: Running times on uniprot_1M. A timeout is set to 2,000 s.

The results reported in Fig 3.10 show that Dist-µ-RA is the only system
that answers all of the queries. Furthermore, Dist-µ-RA is faster on all queries
belonging to C2−6 (except Q42 where the size of the transitive closure is small).

The comparison with Myria is shown in Fig 3.11. Dist-µ-RA provides com-
parable or better performance for all queries except Q42. The latter case is due
to the time spent in initializing the Spark context (around 10s), a cost always
included in the measured Dist-µ-RA execution times. Myria crashes for several
cases.

Further scalability tests on Uniprot We report on further scalability tests
where Dist-µ-RA and BigDatalog execution times are compared for each Uniprot
query on generated uniprot_n graphs with varying sizes of 1M, 5M and 10M
edges. Results are shown in Fig. 3.12. Results indicate that BigDatalog fails in
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Figure 3.11: Myria and Dist-µ-RA times on uniprot_100k.
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Figure 3.12: Dist-µ-RA and BigDatalog running times on Uniprot graphs of
different sizes

44 cases out of 75 query evaluations. Dist-µ-RA answers all of them and scales
better.

Notice that, for comprehensive testing, queries and graph sizes have been
selected so as to cover a wide range of result sizes. Q40 is one of the queries with
the smallest result size (14K records for uniprot_10M) and Q46 is one with the
largest (around 1.5B records for uniprot_10M, which is 150 times the size of the
graph).

3.4.6 Summary

Overall, for all query classes, Dist-µ-RA is significantly more efficient compared
to GraphX and Myria. For query classes C2−6 and some queries in C7, Dist-µ-RA
is more efficient than BigDatalog, especially for large intermediate query result
sizes. For query class C1 and some queries in C7, Dist-µ-RA and BigDatalog have
a comparable performance. Our empirical findings tend to indicate that for these
cases the various optimizations techniques of Dist-µ-RA and Bigdatalog have
limited impact.
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3.5 Specific comparison with other distributed sys-
tems

In graph distributed systems based on Pregel (Sec.1.3.1) like Graphx, selections
can be pushed in one direction only. For instance, if the program traverses the
regular query from left to right, the execution of the program naturally computes
the filters and edge selections occuring before a recursion first, thereby pushing
these operations in the recursion. Selections which occur after the recursion cannot
be pushed. In µ-RA, plans that push selections at either sides of a recursion
are considered, and a cost model is used to pick the best plan. Additionally,
communications between workers of the cluster happen in every superstep of the
recursion, which is avoided by the Pplw plan in Dist-µ-RA.

Distributed systems based on Datalog (Sec. 2.4.3) suffer from the Datalog
limitations for optimizing recursion presented in Sec. 2.4.2. In addition, So-
ciaLite and Myria do not provide an optimization that avoids communication
between workers at every step of a recursion. BigDatalog uses the Datalog GPS
technique [Seib and Lausen, 1991] that analyses Datalog rules to identify decom-
posable Datalog programs and determine how to distribute data and computations.
These ideas are tied to Datalog and are not applicable to the relational algebra.
The present work proposes a new method specifically designed for recursive rela-
tional algebraic terms. It uses the µ-RA filter pushing technique to automatically
repartition data.

3.6 Conclusion

We propose a new approach for the evaluation of recursive algebraic terms in a
distributed manner. It relies on a technique capable of generating independent
parallel loops on the worker nodes in a cluster of machines instead of executing
a global loop on the driver node. The advantage of the parallel local loops is a
minimization of the amount of data shuffled between worker nodes. This reduces
communication costs and significantly improves overall query evaluation time. We
applied this approach to recursive graph queries on real and synthetic datasets.
Experimental results show that the proposed approach is more efficient than the
state-of-the-art.



Chapter 4

Recursive monoid algebra:
µ-monoids

4.1 Introduction

Ideas from functional programming play a major role in the construction of
big data analytics applications. For instance they directly inspired Google’s
Map/Reduce [Dean and Ghemawat, 2004]. Big data frameworks (such as Spark
[Zaharia et al., 2016] and Flink [Carbone et al., 2015]) further built on these ideas
and became prevalent platforms for the development of large-scale data intensive
applications. The core idea of these frameworks is to provide intuitive functional
programming primitives for processing immutable distributed collections of data.

Writing efficient applications with these frameworks is nevertheless not trivial.
Let us consider for instance the problem of finding the shortest paths in a large
scale graph. We could write the Spark/Scala program in Fig 4.1 to solve it. The
shortestPaths() function takes as input a graph R of weighted edges (src, dst,
weight) and returns the shortest paths between each pair of nodes in the graph.
The loop (in lines 6 to 14 of Fig 4.1) computes all the paths in the graph and their
lengths; to get new paths, edges from the graph get appended to the paths found
in the previous iteration using the join operation. Then reduceByKey operation is
used to keep the shortest paths. Spark performs the join and distinct operations
by transferring the datasets (arguments of the operations) across the workers
so as to ensure that records having the same key are in the same partition for
join, and that no record is repeated across the cluster for distinct. Hence, for
optimizing such programs, the programmer needs to take this data exchange into
account as well as other factors like the amount of data processed by each worker
and its memory capacity, the network overhead incurred by shuffles, etc. One
optimization that can be done to reduce data exchange in this program is to assign
each worker a part of the graph and make it compute the paths in the graph
that start from its own part. This optimization leads to the following program
(Fig 4.2.) which is not straightforward to write, less readable, and requires the
programmer to give his own local version of dataset operators (such as join) that
are going to be used to perform the local computations on each worker.

75



76 CHAPTER 4. RECURSIVE MONOID ALGEBRA: µ-MONOIDS

1 def shortestPaths(R:RDD[(Int,Int,Int)]) = {
2 var ret = R
3 var X: RDD[(Int, Int, Int)] = R
4 var new_cnt = ret.count()
5 var cnt = new_cnt
6 do {
7 cnt = new_cnt
8 X = X.map({case (x,y,l1) => (y,(x,l1)) })
9 .join(R.map({ case (z,t,l2) => (z,(t,l2)) }))

10 .map({case (_,((x,l1),(t,l2))) => (x,t,l1+l2) })
11 .subtract(ret)
12 ret = ret.union(X).distinct()
13 new_cnt = ret.count()
14 } while (new_cnt > cnt)
15 ret.map({case (x,y,l) => ((x,y),l)}).reduceByKey(min)
16 }

Figure 4.1: Shortest paths program.

1 def shortestPaths(R:RDD[(Int,Int,Int)]) = {
2 val dictR = LocalOps.to_dict(((x:(Int,Int,Int)) => x._1),
3 (x:(Int,Int,Int)) => x, sc.broadcast(R.collect()).value)
4 var r = R.mapPartitions(part => {
5 var ret = part.toList
6 var X = ret
7 var cnt = ret.size
8 var new_cnt = cnt
9 do {

10 count = new_count
11 X = LocalOps.join(LocalOps.to_dict(((x:(Int,Int,Int)) => x._2),
12 (x:(Int,Int,Int)) => x, X), dictR)
13 .map({case (k, ((x,y,l), (a,b,m))) => (x,b,l+m)}) diff ret
14 ret = (ret ++ X).distinct
15 new_count = ret.size
16 } while (new_cnt > cnt)
17 ret.toIterator
18 })
19 r.distinct().map({case (x,y,l) => ((x,y),l)}).reduceByKey(min)
20 }

Figure 4.2: Shortest paths program with less data exchange.
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Another possible optimization is to put the reduceByKey operation inside
the loop to keep only the shortest paths at each iteration because each subpath
of a shortest path is necessarily a shortest path. More generally, finding such
program rewritings can be hard. First, it requires guessing which program parts
affect performance the most and could potentially be rewritten more efficiently.
Second, assessing that the rewriting performs better can hardly be determined
without experiments. During such experiments, the programmer might rewrite the
program possibly several times, because he has limited clues of which combination
of rewritings actually improves performance.

In this chapter, we explore the foundations for the automatic transformation
and optimization of Spark programs. Algebraic foundations in particular are an
active research topic [Alexandrov et al., 2019, Fegaras, 2017]. The purpose of the
algebraic formalism is to represent a program in terms of algebraic operators that
can be analysed and transformed so as to produce a program that executes faster.
Transformation-based optimizations are done through rewrite rules that transform
an algebraic expression to an equivalent, yet more efficient, one. In the context of
big data applications, considered algebras must be able to capture distributed
programs on big data platforms and provide the appropriate primitives to allow
for their optimization. One example of optimizations is to push computations as
close as possible to where data reside.

When programming with big data frameworks, data is usually split into
partitions and both data partitions and computations are distributed to several
machines. These partitions are processed in parallel and intermediate results
coming from different machines are combined, so that a unique final result is
obtained, regardless of how data was split initially. This imposes a few constraints
on computations that combine intermediate results. Typically, functions used as
aggregators must be associative. For this reason, we consider that the monoid
algebra is a suitable algebraic foundation for taking this constraint into account
at its core. It provides operations that are monoid homomorphisms, which means
that they can be broken down to the application of an associative operator. This
associativity implies that parts of the computation can actually be performed in
parallel and combined to get the final result.

A significant class of big data programs are iterative or recursive in nature
(PageRank, k-means, shortest-path, reachability, etc.). Iterations and recursions
can be implemented with loops. Depending on the nature of the computations
performed inside a loop, the loop might be evaluated in a distributed manner
or not. Furthermore, certain loops that can be distributed might be evaluated
in several ways (global loop on the driver1, parallel loops on the workers, or a
nested combination of the latter). The way loops are evaluated in a distributed
setting often has a great impact on the overall program execution cost. Obviously,
the task of identifying which loops of an entire program can be reorganized into
more efficient distributed variants is challenging. This often constitutes a major
obstacle for automatic program optimization. In the algebraic formalism, having
a recursion operator makes it possible to express recursion while abstracting away

1In Big Data frameworks such as Spark, the driver is the process that creates tasks and
sends them to be executed in parallel by worker nodes. See Sec. 1.3.1.
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from how it is executed. The execution plan is then decided after analysing the
program.

The goal of this work is to introduce a gain in automation of distributed
program transformation towards more efficient variants. We focus especially on
recursive programs (that compute a fixpoint). For this purpose, we propose an
algebra capable of capturing the basic operations of distributed computations that
occur in big data frameworks, and that makes it possible to express rewriting rules
that rearrange the basic operations so as to optimize the program. We build on
the monoid algebra introduced in [Fegaras and Noor, 2018, Fegaras, 2017] that
we extend with an operator for expressing recursion. This monoid algebra is
able to model a subset of a programming language L (for instance Scala), that
expresses computations on distributed platforms (for instance Spark).

The novelty is twofold:

1. An extension of the monoid algebra with a fixpoint operator. This enables
the expression of iteration in a more functional way than an imperative
loop and makes it possible to define new rewriting rules;

2. New optimization rules for terms using this fixpoint operator:

• We show that under reasonable conditions, this fixpoint can be con-
sidered as a monoid homomorphism, and can thus be evaluated by
parallel loops with one final merge rather than by a global loop requir-
ing network overhead after each iteration;
• We also present new rewriting rules with criteria to push filters through
a recursive term, for filtering inside a fixpoint before a join, and for
pushing aggregations into recursive terms;
• Finally, we present experimental evidence that these new rules generate

significantly more efficient programs.

4.2 The µ-monoids Algebra

In this section, we describe a core calculus, which we call µ-monoids, intended
to model a subset of a programming language L (e.g. Scala2) that is used
for computations on a big data framework (through an API provided by the
framework). µ-monoids aims at being as general as possible, while focusing on
formalizing computations subject to optimization. Dataset manipulations are
captured as algebraic operations, and specific operations on elements of those
datasets are captured as functional expressions that are passed as arguments
to some of the algebraic operations. In µ-monoids, we formalize some of those
functional constructs, specifically the ones that we need to analyse in the algebraic
expressions. For example, some optimization rules need to analyse the pattern
and body of flatmap expressions in order to check whether the optimization can
take place.

2Major Bigdata frameworks like Spark and Flink provide a Scala API and are implemented
in Scala which makes Scala a suitable language for our work. Scala also provides reflection
which allows generic Scala constructs to be part of the algebra as we will explain later.
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Making explicit only the shapes that are interesting for the analysis enables to
abstract from the specific programming language L that we optimize. This way,
constructs of L other than those which we model explicitly are represented as
constants c, as they are going to be left to L’s compiler to typecheck and evaluate.
We only assume that every constant c has a type type(c) which is either a basic
type or a function type, and that, when its type is t1 → t2, it can be applied to
any argument of type t1 to yield results of type t2.

We first describe the data model we consider, then in Sec. 4.2.2 we introduce
the syntax of our core calculus. We then proceed to give a denotational semantics
for our specific constructs in Sec. 4.2.4 and discuss evaluation of expressions in
Sec. 4.2.6.

4.2.1 Data model: distributed collections of data

Collection monoids

We are interested in programs which work on distributed datasets of an homoge-
nous type. Such a dataset consists in a number of records, which are all values
of the same type, and we assume a cluster of networked machines where each
machine stores some of the records.

Different abstraction levels are possible for such a distributed dataset. At
the programming level, we usually want to abstract away from the partitioning,
i. e. we consider two states of the storage as representing the same data if they
contain the same records, regardless of the number of machines and of which
machine holds which records. That way, the program is reasonably independent
from the structure of the cluster it will be run on. We may or may not want to
abstract away from the order in which the records are stored, and we may or may
not want to abstract away from the number of times the same record appears.
Depending of the abstraction level, we thus can see the dataset as a list, a bag,
or a set of records. We regroup finite lists, finite bags and finite sets under the
generic term of collections.

Notation. Given a data type t, and for Coll a sort of collection, i. e. one of
List,Bag or FSet, we write Coll[t] for the set of collections of the sort Coll
containing values of type t.

As noticed by Fegaras [Fegaras, 2017], these sorts of collections are particularly
useful for representing distributed data because they each have the algebraic
structure of a monoid, where the neutral element is the empty collection and the
associative operator is respectively list union (i. e. concatenation) ++, bag union ]
and set union ∪. Associativity means that the whole collection can be seen as the
union of the subcollections stored on the different machines without specifying an
order in which to apply the union operator.

The three sorts of collection monoids, as Fegaras terms them, can be related
with equivalence relations, reflecting the fact that they represent different ab-
straction levels for the same data: let ∼comm be the congruence on (List[t],++, [ ])
generated by commutativity, i. e. the smallest equivalence relation on List[t] such
that:
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• ∀a, b a++ b ∼comm b++ a (commutativity)

• ∀a, b, a′, b′ a ∼comm a′∧b ∼comm b′ ⇒ a++b ∼comm a′++b′ (compatibility
with ++)

This relation relates all lists containing exactly the same elements, with the
same multiplicity, in any order. So a bag can be seen as an equivalence class
of lists for ∼comm, meaning that (Bag[t],], {{}}) is actually the quotient monoid
(List[t],++, [ ])/ ∼comm. Similarly, let ∼idem be the congruence on bags generated
by idempotence (a ] a ∼idem a): it relates all bags containing the same elements,
regardless of their multiplicity, and we have that (FSet[t],∪, ∅) is the quotient
monoid (Bag[t],], {{}})/ ∼idem.

In this work, we choose bags as the default base abstraction level, since there
is no canonical ordering of the machines in the cluster; but this can be adapted to
work with lists. So from now on, we consider that a dataset is a distributed bag.
We now define the formal syntax of our data model before developing further
how we can sometimes work up to equivalence relations if, e. g., we are in fact
interested in sets and not bags.

Values and types of µ-monoids

In order to enable algebraic datatypes, we assume an infinite set of constructors
C which can be applied to any number of values. We assume this set contains the
special constructors True, False and Tuple for which we will define some syntactic
sugar.

The syntax of considered data values is defined as follows:

v ::= c constant
| C(v1, v2, ..., vn) n-ary constructor
| {{v1, ..., vn}} bag

As mentioned previously (Sec. 4.2), a constant c can be any value from the
language L (in particular any function) that is not explicitly defined in our
syntax.

We define the following syntax for types:

tl ::= local type t ::= type
B basic type | tl

| C1[tl, ..., tl] || ··· || Cn[tl, ..., tl] sum type | Bagd[tl] distributed bag type
| Bagl[tl] local bag type | t→ t function type

where B represents any arbitrary basic type (i.e., considered as a constant
atomic type in our formalism).

In sum types, all constructors have to be different and their order is ir-
relevant. They represent values which can belong to any of the case types
C1[tl, ..., tl]...Cn[tl, ..., tl] and can be deconstructed by pattern-matching.

We also define product types t1×···× tn as syntactic sugar for Tuple[t1, ..., tn],
i. e. a particular case of constructor type.

For a given type t, we denote by Bagl[t] the type of a local bag and by
Bagd[t] the type of a distributed bag of values of type t. Notice that we can
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have distributed bags of any data type t including local bags, which allows us to
have nested collections. We allow data distribution only at the top level though
(distributed bags cannot be nested).

An important feature of Fegaras’ monoid algebra, and of µ-monoids, is that
all algebraic operations are defined in a way which is agnostic to distribution.
So, although we introduce the distinction between Bagl[t] and Bagd[t] in order to
prevent nesting distributed bags, we will use the notation Bag[t] to represent a
bag which may or may not be distributed when both are possible and it does not
affect the semantics.

Equivalence relations and aggregation functions

It is quite common in practice that a programmer is only interested in the set of
values of a dataset, not in potential duplicates the bag representing the storage
may contain. So this programmer will work with bags up to ∼idem (see Sec. 4.2.1).
We can notice that each equivalence class of bags has a canonical representant:
the bag where each element appears only once. Let distinct : Bag[t] → Bag[t]
be the function which removes duplicates, returning this canonical representant.
This function is useful, but costly to compute in a distributed context, since
duplicates can occur across different machines and eliminating them thus involves
a lot of communication over the network. Therefore, it should not be used all the
time but only when necessary: bags with duplicates can be used in intermediary
computation steps, where we tolerate redundant information temporarily.

Sometimes, the programmer is not even interested in the whole set of values,
but only in more synthetic information about the dataset. For example, in the
shortest path problem: if we have a dataset containing paths together with their
length and this dataset contains two paths from a to b with different lengths,
then the longer path is irrelevant and can be considered redundant even though it
is not the same value as the other one. It is useful to also think of this situation
in terms of an equivalence relation: two bags are equivalent for this purpose iff
they contain exactly the same shortest paths. Then the canonical representant
of an equivalence class is the bag with no duplicates which does not contain any
non-shortest path. We can also see that the function δ which removes non-shortest
paths (and duplicates) from a dataset has features analogous to distinct, as we will
detail below. We regroup such functions under the term aggregation functions.

Definition 6 (aggregation function). We call aggregation function any function
δ : Bag[t]→ Bag[t] with the following properties:

• δ({{}}) = {{}}

• ∀a, b δ(a ] b) = δ(δ(a) ] δ(b))

Note that these two properties also imply that δ is idempotent.

Remark that our definition excludes some functions which could be considered
aggregators in a more general sense, e. g. functions computing an average.
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Definition 7. The equivalence relation associated with an aggregation function,
∼δ, is defined by:

a ∼δ b
def⇔ δ(a) = δ(b)

Lemma 1. Let δ be an aggregation function, then ∼δ is compatible with the
monoid operation ], i. e. we have:

∀a, b, a′, b′ a ∼δ a′ ∧ b ∼δ b′ ⇒ a ] b ∼δ a′ ] b′

Proof. We have δ(a ] b) = δ(δ(a) ] δ(b)) = δ(δ(a′) ] δ(b′)) = δ(a′ ] b′).

Definition 8. Let δ be an aggregation function, we define the binary operation
⊗δ on bags as follows:

a⊗δ b
def
= δ(a ] b)

Lemma 2. Let δ(Bag[t]) be the image of δ. Then (δ(Bag[t]),⊗δ, {{}}) is a monoid,
noted Mδ, isomorphic to the quotient monoid Bag[t]/ ∼δ, and δ is a monoid
homomorphism: Bag[t]→Mδ.

Proof. Since δ is idempotent, we can consider δ(a) the canonical representant of
the equivalence class of a; then we have an isomorphism between the equivalence
classes (the monoid Bag[t]/ ∼δ) and their canonical representants (the monoid
Mδ).

Example 4. The function distinct : Bag[t] → Bag[t] which removes duplicates
from a bag is an aggregation function; ∼distinct is the relation ∼idem; ⊗distinct is
distinct union of bags ∪; and Mdistinct is the monoid of bags with no duplicates,
isomorphic to FSet[t].

Finally, in order to work up to equivalence relations, we need the notion of
compatibility between an homomorphism ϕ from bags to bags and an aggregation
function δ:

Lemma 3. Let ϕ : Bag[t]→ Bag[t] be a monoid homomorphism and δ : Bag[t]→
Bag[t] an aggregation function. The three following properties are equivalent:

1. ∀a, b a ∼δ b⇒ ϕ(a) ∼δ ϕ(b)

2. ∀a, b ϕ(a⊗δ b) ∼δ ϕ(a)⊗δ ϕ(b)

3. δ ◦ ϕ ◦ δ = δ ◦ ϕ

Proof. Assume (1) is true. Let a and b be any bags. We have ϕ(a) ⊗δ ϕ(b) =
δ(ϕ(a) ] ϕ(b)) = δ(ϕ(a ] b)) (because ϕ is a homomorphism). We also have
a ] b ∼δ δ(a ] b), by definition of ∼δ since δ is idempotent. Therefore, using (1),
ϕ(a ] b) ∼δ ϕ(δ(a ] b)), and this last term is ϕ(a⊗δ b); hence (2).

Assume (2) is true. Let a be any bag, by taking for b the empty bag and
using the definitions, (2) yields δ(ϕ(δ(a] {{}}))) = δ(ϕ(a)]ϕ({{}})). Since ϕ is an
homomorphism we have ϕ({{}}) = {{}}, thus δ(ϕ(δ(a))) = δ(ϕ(a)); hence (3).

Assume (3) is true. Let a and b such that a ∼δ b. Using (3) and the definition
of ∼δ, we have δ(ϕ(a)) = δ(ϕ(δ(a))) = δ(ϕ(δ(b))) = δ(ϕ(b)); hence (1).
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Definition 9. We say that ϕ is compatible with δ if any of these properties is
true. Note that (2) can also be formulated as: δ ◦ ϕ is a monoid homomorphism
from Mδ to Mδ.

This definition is strongly related to the premappability condition in Datalog
[Zaniolo et al., 2017], as made more apparent by property (3).

Property 1. distinct is compatible with all homomorphisms ϕ : Bag[t]→ Bag[t].

Proof. In the following, we write m ·X, where X is a bag, to denote X combined
m times with itself using ].

Let A be a finite bag of values of type t. Let a1, ..., an be the distinct values
it contains and m1, ...,mn the number of times each one appears in the bag.
Since ϕ is an homomorphism, we have ϕ(A) =

⊎
1≤i≤nmi · ϕ({{ai}}). Then,

distinct(ϕ(A)) =
⋃

1≤i≤n distinct(ϕ({{ai}})): this is independent from the mi (since
∪ is idempotent). Thus, distinct(ϕ(A)) = distinct(ϕ(distinct(A))).

4.2.2 The µ-monoids syntax

Monoid homomorphisms and µ operation

Our syntax is built on the monoid algebra proposed by Fegaras [Fegaras, 2017].
In addition to the general-purpose constructs provided by the language L, it
contains the following primitives to work on bags (distributed or not):

• flmap(f,X), with f : t1 → Bagl[t2] and X : Bag[t1] is the flatmap operation:
it applies f to each element of X and merges all the results into a single bag
using bag union ]. This operation is a monoid homomorphism from Bag[t1]
to Bag[t2], so that if X is distributed it can be run separately on each local
subcollection without any data exchange. Note the restriction that f is
not allowed to return distributed bags. It makes the flatmap operator less
general than the mathematical function it represents but reflects what we
have in distributed data frameworks.

• reduce(⊕, e⊕, X), with X : Bag[t] and (t,⊕, e⊕) a commutative monoid,
reduces the input dataset by combining all its elements with ⊕. For example:
reduce(+, 0, {{1, 4, 6}}) = 11. This operation is a monoid homomorphism
from Bag[t] to (t,⊕, e⊕), so that if X is distributed it can be run separately
on each local subcollection before combining all the local results once.

• reduceByKey(⊕, X), with X : Bag[t1 × t2] and ⊕ an associative and com-
mutative binary operation on t2, takes as argument a bag of elements
in the form (k, v) (key-value pair) and combines all values v having
the same key k into a single one using the ⊕ operator. For example:
reduceByKey(+, {{(1, 2), (1, 4), (2, 2), (2, 1), (1, 3)}}) = {{(1, 9), (2, 3)}}}. This
operation is an aggregation function (see Def. 6), and therefore also a monoid
homomorphism (Lemma 2) which can again be run separately on each local
subcollection before combining the results.
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• join(X,Y ), with X : Bag[t1 × t2] and Y : Bag[t1 × t3], is the join-by-key
operation: it takes two collections of elements of the form (k, v) and (k,w),
and returns a collection of elements of the form (k, (v, w)), one for each pair
(v, w) of values having the same key k. If a key appears n times in one input
dataset and m times in the other, it appears nm times in the result. It is a
monoid homomorphism from each of its arguments to Bag[t1 × (t2 × t3)],
so that if any of the input bags is distributed it can be run separately on
each local subcollection for that one.

Note that, algebraically, the join operation can be written with flatmaps
(this is a feature of all homomorphisms from bags to bags); however, if
both inputs are distributed then this is not possible in µ-monoids without
violating the restriction on the functional argument of flatmap, which
justifies including join as a primitive.

• cogroup(X,Y ), with X : Bag[t1 × t2] and Y : Bag[t1 × t3], takes two collec-
tions of elements of the form (k, v) and (k,w) and returns a collection of
elements of the form (k, (V,W )) where V and W are the sets of v values
and w values having the same key k.

Our purpose is to extend this algebra with an operator for expressing iteration
which allows effective optimisations when working with a distributed dataset
(note that this does not preclude more general loops outside our algebra).

As a first idea, consider the following type of iteration. Let ϕ : Bag[t]→ Bag[t]
be a monoid homomorphism. We start with a bag R, then:

1. at each iteration, ϕ is executed on the result of the previous iteration;

2. the results of all iterations are accumulated into a single bag;

3. it ends when ϕ adds nothing to the results; then the bag of all results is
returned.

Algebraically, this amounts to computing
⊎
n∈N ϕ

n(R). The fact that ϕ is a
monoid homomorphism implies that, if R is distributed, such a loop can be
executed separately on each sub-bag, with no communication necessary, which is
very good for efficiency. However, if in fact we are not interested in bags with
duplicates but only in sets, i. e. if we work up to ∼idem, it has the serious drawback
that it only stops when ϕ returns the empty bag: this can prevent termination in
cases where ϕ generates nothing really new but adds indefinitely more duplicates.
A typical example is if we want to compute the transitive closure of a relation
with cycles.

Therefore, it makes sense to periodically remove duplicates. However, it may
not be necessary to remove them globally (which is costly as it involves network
communication), as we will detail in Section 4.3.4. More generally, we can add to
the loop, as a parameter, an aggregation function δ to be run at each iteration
step. Our general iteration operator µ is thus:

Definition 10 (µ operator). Let ϕ : Bag[t]→ Bag[t] be a monoid homomorphism,
δ : Bag[t]→ Bag[t] an aggregation function, and R : Bag[t] a dataset. Assume ϕ
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and δ are compatible (Def. 9). The operation µδ (R,ϕ) computes the following
sequences:

• R0 = δ(R)

• S0 = R0

• Rn+1 = δ(ϕ(Rn))

• Sn+1 = Sn ⊗δ Rn+1

until it reaches an N such that SN+1 = SN ; then it returns SN .

Note that the first idea discussed before is the particular case where δ is the
identity function. Also note that the requirement that δ and ϕ are compatible is
automatically true when δ is either the identity function or distinct.

In the following, we consider distinct the default aggregation function and
write µ (R,ϕ) as a shortcut for µdistinct (R,ϕ). Our idea is that programmers
would usually not write µ terms with a different δ themselves, but they can be
obtained through rewriting and used for optimization (Sec. 4.3.3).

Syntax

The syntax of expressions is formally defined as follows:

π ::= a | C(π1, π2, ..., πn) pattern: variable, constructor pattern
e ::= c | a | {{e}} expression: constant, variable, singleton
| λ 〈π1 → e1 | ··· | πn → en〉 function with pattern matching
| e e | C(e1, e2, ..., en) application, constructor expression
| flmap(e, e) | reduce(e, ee, e)e flatmap, reduce
| reduceByKey(e, e) | cogroup(e, e) | join(e, e) reduce by key, cogroup, join by key
| µe (e, e) fixpoint

To this, we add the following as syntactic sugar:

• (e1, ..., en) with no constructor is an abbreviation for: Tuple(e1, ..., en)

• if e then e1 else e2 is an abbreviation for: λ 〈True→ e1 | False→ e2〉 e, i. e.
a particular case of pattern-matching against the two constant constructors
True and False representing Boolean values.

• groupby(e) is an abbreviation for: reduceByKey(], flmap(λ 〈(k, v) →
(k, {{v}})〉, e))

• Constants c can also represent functions (defined in the language L). We
consider operators such as the bag union operator ] as constant functions
of two arguments and use the infix notation as syntactic sugar.

• To make examples more readable, we use the let name = e1 in e2 syntax
with the usual meaning.
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Example:

let appendToWords = λ 〈X →
flmap(λ 〈x→ flmap(λ 〈c→ if containsx c then {{}} else {{x+ c}}〉, C)〉, X)〉

in µ(C, appendToWords)

This expression computes the set of all possible words with no repeated letters
that can be formed from a set of characters C. We assume that + and contains
are defined in L: + appends its second argument to the first and contains checks
whether the first argument is contained in the second argument. appendToWords
thus returns a new set of words from a given set of words X by appending to
each of the words in X each letter in C whenever it was not already present.

The iteration operator computes the following, where we consider C = {{a, b, c}}
— the fixpoint is reached in 3 steps:

R0 = C S0 = C

R1 = distinct(ϕ(C)) = {{ab, ac, ba, bc, ca, cb}} S1 = C ∪R1 = {{ab, ac, ba, bc, ca, cb, a, b, c}}
R2 = {{abc, acb, bac, bca, cab, cba}} S2 = {{abc, acb, bac, bca, cab, cba, ab, ac, ba, bc, ca, a, b, c}}
R3 = distinct(ϕ(R2)) = {{}} S3 = S2 ∪R3 = S2

4.2.3 Well-typed terms

We define typing rules for algebraic terms, in order to exclude meaningless terms.
In these rules, we use type environments Γ which bind variables to types. An
environment contains at most one binding for a given variable. We combine them
in two different ways:

• Γ ∪ Γ′ is only defined if Γ and Γ′ have no variable in common, and is the
union of all bindings in Γ and Γ′;

• Γ + Γ′ is defined by taking all bindings in Γ′ plus all bindings in Γ for
variables not appearing in Γ′. In other words, if a variable appears in both,
the binding in Γ′ overrides the one in Γ.

Definition 11 (matching). We first define the environment obtained by matching
a data type to a pattern by the following:

match(a, t)→ a : t

∀i match(πi, ti)→ Γi

match(C(π1, ..., πn), C[t1, ..., tn])→ Γ1 ∪ ··· ∪ Γn

If, according to these rules, there is no Γ such that match(π, t) → Γ holds, we
say that pattern π is incompatible with type t. Note that, with our conditions, a
pattern containing several occurrences of the same variable is not compatible with
any type and hence cannot appear in a well-typed term, as the typing rules will
show.

In order to type functions with pattern-matching, we define the following
operation for combining sum types:
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Definition 12. The operation + on sum types is defined recursively as follows.
Let t be a sum type and C a constructor not appearing in t, then:

t+ (t′1 || ··· || t′m) = (t+ t′1) + (t′2 || ··· || t′m)

t+ C[t1, ..., tn] = t || C[t1, ..., tn]

(t || C[t1, ..., tn]) + C[t′1, ..., t
′
n] = t || C[t1 + t′1, ..., tn + t′n]

If t is not a sum type, we define t + t = t. The type t + t′ is not defined if
t 6= t′ and t or t′ is not a sum type, or if they have constructors in common with
incompatible type parameters, i. e. type parameters which cannot themselves be
combined with +.

Definition 13 (Subtyping). We define subtyping as follows (it is nontrivial only
for sum types):

t <: t′
def⇔ t+ t′ = t′

Definition 14 (Well-typed terms). A term e is well-typed in a given environment
Γ iff Γ ` e : t for some type t, as judged by the relation defined in Figure 4.3. In
these rules, T represents one of Bagl or Bagd.

Note that these rules do not give a way to infer the parameter type of a λ
expression in general; we assume some mechanism for that in the language L.

Additional restrictions

In addition to the constraints imposed by our type system, some operations
require their operands to fulfill certain criteria in order to be well-defined:

• reduce(f, z, A) and reduceByKey(f,A): f is associative and commutative,
and z is a neutral element for f .

• µδ (R,ϕ): ϕ is a monoid homomorphism, δ is an aggregation function, and
they are compatible.

The user needs to provide terms that satisfy these criteria since they cannot be
verified statically in general. However, regarding the homomorphism criterion
for ϕ, even though we cannot check statically whether an arbitrary function
is a monoid homomorphism, we can identify a subset of functions that can be
statically checked. It is the set of terms ϕ of the form λ 〈X → h(X)〉 where h(X)
is defined as follows:

h(X) ::=
X

| flmap(f,h(X)) X does not appear in f
| join(h(X), A) X does not appear in A
| join(A,h(X)) X does not appear in A

This set of terms is in fact quite general: indeed, we know from algebra that
homomorphisms from Bag[t] to Bag[t] are in one-to-one correspondance with
functions from t to Bag[t], via the general flatmap operation3. In our case,

3This is due to the universal property of Bag[t], which is the free commutative monoid on t.
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Γ ` e1 : t→ Bagl[t
′] Γ ` e2 : T [t]

Γ ` flmap(e1, e2) : T [t′]

Γ ` e1 : t→ t→ t Γ ` e2 : t Γ ` e3 : T [t]

Γ ` reduce(e1, e2, e3) : t

Γ ` e1 : t′ → t′ → t′ Γ ` e2 : T [t× t′]
Γ ` reduceByKey(e1, e2) : T [t× t′]

Γ ` e1 : T1[t× t1] Γ ` e2 : T2[t× t2] T3 = (if T1 = T2 then T1 else Bagd)
Γ ` cogroup(e1, e2) : T3[t× (Bagl[t1]× Bagl[t2])]

Γ ` e1 : T1[t× t1] Γ ` e2 : T2[t× t2] T3 = (if T1 = T2 then T1 else Bagd)
Γ ` join(e1, e2) : T3[t× (t1 × t2)]

Γ ` e1 : T [t] Γ ` e2 : T [t]→ T [t] Γ ` e : T [t]→ T [t]

Γ ` µe (e1, e2) : T [t]

∀i Γ ` ei : ti

Γ ` C(e1, e2, ..., en) : C[t1, t2, ..., tn]

Γ ` e : t

Γ ` {{e}} : Bagl[t]

t′1 + ···+ t′n = t′ match(πi, t
′
i)→ Γ′i Γ + Γ′i ` ei : ti t1 + ···+ tn = t

Γ ` λ 〈π1 → e1 | ··· | πn → en〉 : t′ → t

Γ ` e1 : t1 → t′ Γ ` e2 : t2 t2 <: t1

Γ ` e1 e2 : t′
Γ(a) = t

Γ ` a : t

type(c) = t

Γ ` c : t

Figure 4.3: Typing judgements.
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flmap(f,A) =
⊎
a∈A

f(a) reduce(⊗, e⊗, A) =
⊗
a∈A

f(a)

reduceByKey(⊗, A) = {{(k,
⊗

(k,v)∈A

v) | k ∈ keys(A)}}

join(A,B) = {{(k, (v, w)) | (k, v) ∈ A ∧ (k,w) ∈ B}}

cogroup(A,B) = {{(k, ({{v | (k, v) ∈ A}}, {{w | (k,w) ∈ B}})) | k ∈ keys(A) ∪ keys(B)}}

where keys(A) = distinct({k | (k, a) ∈ A}); and ∪ is distinct union of bags.

µδ (R,ϕ) =

{
SN if there exists N such that SN+1 = SN

ω otherwise

where Sn =
⊗
δ

k≤n
(δ ◦ ϕ)k(δ(R))

Figure 4.4: Denotational semantics

flatmap has a restriction relative to distributed bags, which is why we also have
join; so the only monoid homomorphisms which cannot be written in the form
λ 〈X → h(X)〉 are functions which manipulate distributed bags in a way which
cannot be expressed as a join. Thus, it makes sense to check statically whether
the term provided by the programmer is of that form and issue a warning if it is
not.

4.2.4 µ-monoids denotational semantics

Figure 4.4 gives the denotational semantics of the main algebraic operations. It
assumes all terms are well-typed and satisfy the additional restrictions mentioned
in Sec. 4.2.3. Each closed term has a denotation in the domain corresponding
to its type, with the additional possible denotation ω which belongs to all types
and represents a computation which does not terminate. Any of those operations
returns ω when applied to ω.

These operations, except µ, are monoid homomorphisms [Fegaras, 2017], as
discussed in 4.2.2. We can check that they are still monoid homomorphisms if we
add ω to all the monoids as an absorbing element.

Properties of µ Recall that δ and ϕ being compatible means that δ ◦ ϕ is a
monoid homomorphism: Mδ →Mδ. Thus we have:

(δ ◦ ϕ)(
⊗
δ

k≤n
(δ ◦ ϕ)k(δ(R))) =

⊗
δ

k≤n
(δ ◦ ϕ)k+1(δ(R)).

The only term missing to obtain Sn+1 on the right is (δ ◦ ϕ)0(δ(R)), i. e. δ(R).
So we have, for any n: Sn+1 = δ(R)⊗δ (δ ◦ ϕ(Sn)). In other words, if we use the
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definitions to ‘clean up’ superfluous δs: Sn+1 = Ψ(Sn) with Ψ = X 7→ δ(R]ϕ(X)).
So Sn+1 depends only on Sn, making the definition in Fig. 4.4 consistent (if an
N is reached such that SN+1 = SN then the sequence becomes stationary) and
meaning that µδ (R,ϕ) is a fixpoint4 of Ψ.

We now prove the following theorem, which is crucial for optimizing distributed
fixpoint computations:

Theorem 1. µδ (·, ϕ) is a monoid homomorphism from Bag[t]∪{ω} to Mδ ∪{ω}.

Proof. µδ ({{}}, ϕ) = {{}} is immediate.
Let R0 = R1]R2. For all n and for i in 0, 1, 2, we write Sin =

⊗
δ

k≤n
(δ◦ϕ)k(δ(Ri)).

Since δ is a homomorphism from bags to Mδ and δ ◦ ϕ is a homomorphism from
Mδ to Mδ, we have S0

n = S1
n ⊗δ S2

n for all n. Thus, if (S1
n) and (S2

n) both
become stationary at some point, say N1 and N2, then (S0

n) becomes stationary
at max(N1, N2) and we do have µδ (R0, ϕ) = µδ (R1, ϕ)⊗δ µδ (R2, ϕ).

4.2.5 Examples

We present in this section examples of recursive programs expressed in µ-monoids.

Transitive closure (TC)

µ(R, λ 〈X → flmap(λ 〈(b, (a, c))→ {{(a, c)}}〉, join(flmap(λ 〈(a, b)→ {{(b, a)}}〉, X), R))〉)

where R is a dataset of tuples (source, destination) representing the edges of a
graph.

This expressions computes the entire transitive closure of the input graph R.
The sub-expression join(flmap(λ 〈(a, b)→ {{(b, a)}}〉, X), R) joins a path from

X with a path from R when the target node of the first path corresponds to the
start node of the second path. So, at each iteration, the paths in X obtained
in the last iteration get appended with edges from R whenever possible. The
computation ends when no new paths are found.

Shortest path (SP)

reduceByKey(min,

µ(R, λ 〈X → flmap(λ 〈(b, ((a, l1), (c, l2)))→ {{((a, c), l1 + l2))}}〉,
join(flmap(λ 〈((a, b), l1)→ {{(b, (a, l1))}}〉, X), flmap(λ 〈(b, c, l2)→ {{(b, (c, l2))}}〉, R))))〉))

where R is a dataset of tuples (source, destination, weight) representing the
weighted edges of a graph.

The expression computes the shortest path between each pair of nodes in the
input graph R. New paths are computed by performing a transitive closure while
summing the lengths of the joined paths. Finally, the reduceByKey operation
keeps the shortest paths between each pair of nodes.

4The least fixpoint, if we define an appropriate ordering relation on Mδ, e. g. set inclusion in
the standard case where δ = distinct.



4.2. THE µ-MONOIDS ALGEBRA 91

Flights

µ(R, λ 〈X →
flmap(λ 〈(corr, (Flight(dtime1, atime1, dep1, dest1, dur1),Flight(dtime2, atime2, dep2, dest2, dur2)))→

if atime1 < dtime2 then {{Flight(dtime1, atime2, dep1, dest2, dur1 + dur2)}} else {{}}〉,
join(flmap(λ 〈Flight(dtime, atime, dep, corr, dur)→ (dest,Flight(dtime, atime, dep, corr, dur))〉, X)),

flmap(λ 〈Flight(dtime, atime, corr, dest, dur)→ (dep,Flight(dtime, atime, corr, dest, dur))〉, R))))〉)

where R is a dataset of direct flights. Flight(dtime, atime, dep, dest, dur) is a flight
object with a departure time dtime, arrival time atime, departure location dep,
destination dest and duration dur. At each iteration, the fixpoint expression
computes new flights by joining the flights obtained at the previous iteration
with the flights dataset, in such a way that two flights produce a new flight if the
first flight arrives before the second flight departs, and the first flight destination
airport is the second’s flight departure airport. The computation stops when no
more new non-direct flights can be deduced.

Path planning

flmap(λ 〈((s, d), l)→ if s = "Paris" and d = "Geneva" then {{Path(s, d, l)}} else {{}}〉,
reduceByKey(bestRated, flmap(λ 〈(s, d, l)→ ((s, d), l))〉, F )))

F = µ(R, λ 〈X → flmap(λ 〈(k, ((s, l1), (d, l2)))→ {{(s, d, l1 ++ l2)}}〉, join(

flmap(λ 〈(s, k, l)→ {{(k, (s, l))}}〉, X),

flmap(λ 〈(City(k, l1),City(d, l2))→ (k, (d, l2))〉, R)))〉)

where R is a set of routes between two cities. Each city City(n, l) has a name
n and a set of landmarks l and each landmark Landmark(n, r) has a rating r.
bestRated(l1, l2) is a function that returns the best set of landmarks based on its
ratings.

The fixpoint F computes the set of landmarks that can be visited for each
possible path between each two cities. The final term then computes the best
path between Paris and Geneva.

Movie Recommendations

µ(S, λ 〈X → flmap(λ 〈x→ flmap(λ 〈User(u, bm)→ if x ∈ bm then bm else {{}}〉, U)〉, X)〉)

where U is a set of users, each user User(u, bm) has a set of best movies bm.
The query computes a set of recommended movies by starting from a set of

movies S and by adding the best movies of a user if one of his best movies is in
the set of recommended movies until no new movie is added.

4.2.6 Evaluation of expressions

Local execution

Pattern matching and function application The result of matching a value
against a pattern is either a set of pattern variable assignments or ⊥. It is defined
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as follows:

m(v, a) = {a 7→ v}
m(C(v1, ..., vn), C(π1, ..., πn)) = m(v1, π1) ∪ ··· ∪m(vn, πn)

m(C(···), C ′(···)) = ⊥ if C 6= C ′

where we extend ∪ so that ⊥ ∪ S = ⊥.
A lambda expression f = λ 〈π1 → e1 | ··· | πn → en〉 contains a number

of patterns together with return expressions. When this lambda expression is
applied on an argument v (f v), the argument is matched against the patterns in
order, until the result of the match is not ⊥. Let i be the smallest index such
that m(v, πi) = S 6= ⊥, the result of the application is obtained by substituting
the free pattern variables in ei according to the assignments in S.

Monoid homomorphisms The definition of algebraic operations as monoid
homomorphism suggests that they can be evaluated in the following way: if ϕ is
a homomorphism from Bag[t] to (t′, e,⊗), ϕ({{v1...vn}}) ϕ({{v1}})⊗ ϕ({{v2}})⊗
...⊗ ϕ({{vn}}). As monoid operators are associative, parts of an expression in the
form e1 ⊗ e2 ⊗ ...⊗ en can be evaluated in any order and in parallel.

Fixpoint operator The fixpoint operator can be evaluated as a loop, as de-
scribed in Def. 10. We can summarise it with the following reduction rules, where
Rµ represents a running µ computation and has the bag which accumulates the
results as an additional parameter:

Rinit µδ (R,ϕ) Rµδ (δ(R), ϕ; δ(R)) Rstop
S ⊗δ ϕ(R) = S

Rµδ (R,ϕ;S) S

Rloop
S ⊗δ ϕ(R) 6= S

Rµδ (R,ϕ;S) Rµδ (δ(ϕ(R)), ϕ;S ⊗δ ϕ(R))

Distributed execution

We consider in a distributed setting that distributed bags are partitioned. Dis-
tributed data is noted in the following way: R = R1|R2|...|Rp, meaning that R is
split into p partitions stored on p machines. We can write a new slightly different
version of the rule described above for evaluating partitioned data:

• ϕ(R1|R2|...|Rp)  ϕ(R1)|ϕ(R2)|...|ϕ(Rp) if ϕ is an homomorphism from
bags to bags (partitioning does not have to change)

• ϕ(R1|R2|...|Rp) ϕ(R1)⊗nlϕ(R2)⊗nl...⊗nlϕ(Rp) if ϕ is an homomorphism
from bags to (M, e,⊗), where ⊗nl is the non-local version of ⊗. Applying
this non-local operation means that data transfers are required.
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This means that in our algebra, all operators apart from flatmap, or join when
one of the parameters is a local bag, need to send data across the network (for
executing the non-local version of their monoid operator). The execution of these
non-local operators depends on the distributed platform. Spark for example
performs shuffling to redistribute the data across partitions for the computation
of certain of its operations like cogroup and groupByKey.

4.3 Optimizations

In this section, we propose new optimization rules for terms with fixpoints, and
describe when and how they apply. The purposes of the rules are (i) to identify
which basic operations within an algebraic term can be rearranged and under
which conditions, and (ii) to describe how new terms are produced or evaluated
after transformation.

We first give the intuition behind each optimization rule before zooming on
each of them to formally describe when they apply. The four new optimization
rules are:

• PF is a rewrite rule of the form:

F (µ(R,ϕ)) −→ µ(F (R), ϕ)

it aims at pushing a filter F inside a fixpoint, whenever this is possible. A
filter is a function which keeps only some elements of a dataset based on
their values; we define it formally in Sec. 4.3.1.

• PJ is a rewrite rule of the form:

join(A,µ(R,ϕ)) −→ join(A,µ(FA(R), ϕ))

it aims at inserting a filter FA inside a fixpoint before a join is performed.
It is inspired by the semi-join found in relational databases, and tailored
for µ-monoids.

• PA is a rewrite rule of the form:

δ(µ(R,ϕ)) −→ µδ (R,ϕ)

It aims at pushing an aggregation function δ inside a fixpoint, transforming
a simple fixpoint into a fixpoint with aggregation. This rule requires δ to
be compatible with ϕ; it is inspired from the premappability condition in
Datalog [Zaniolo et al., 2017].

• an optimization rule Pdist that determines how a fixpoint term is evaluated
in a distributed manner by choosing among two possible execution plans.
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4.3.1 Pushing filter inside a fixpoint (PF)

Filter depending on a single pattern variable

Definition 15 (filter). We call filter a function of the form:

λ 〈D → flmap(λ 〈π → if c(a) then {{π}} else {{}}〉, D)〉

where π is a pattern containing the variable a and c(a) is a Boolean condition
depending on the value of a.

Such a function returns the dataset D filtered by retaining only the elements
whose value for a (as determined by pattern-matching that element with π) satisfies
c(a). The elements are unmodified, so the result is a subcollection of D.

In the following, we consider a filter F with π and a defined as above, and
we denote by πa the function that matches an element against π and returns the
value of a (πa = λ 〈π → a〉). For instance, πa((1, (5, 6))) = 5 for π = (x, (a, y)).

Let us consider a dataset D. In terms of denotational semantics, with the
notations above, we have F (D) = {d ∈ D | c(πa(d))}.

The PF rule This rule consists in transforming an expression of the form
F (µ(R,ϕ)) to an expression of the form µ(F (R), ϕ), where F is a filter.

In the second form, the filter is pushed before the fixpoint operation. In other
words, the constant part R is filtered first before applying the fixpoint on it. We
now present sufficient conditions for the two terms to be equivalent.

PF condition Let (C) be the following condition:

∀r ∈ R ∀s ∈ ϕ({{r}}) πa(r) = πa(s)

Intuitively, this condition means that the operation ϕ does not change the part
of its input data that corresponds to a in the pattern π, which is the part used
in the filter; so for each record in the fixpoint that does not pass the filter, the
record in R that has originated it does not pass the filter and the other way round.
That is why we can just filter R in the first place.

Let A = flmap(λ 〈π → if c(a) then {{π}} else {{}}〉, µ(R,ϕ)). We prove that if
(C) is satisfied, then A = µ(F (R), ϕ). To prove this, we use the following property
of fixpoints where δ = distinct:

Lemma 4. ∀a ∈ µ(R,ϕ) a ∈ ϕ(n)({{r}}) for some r ∈ R and n ∈ N

Proof. We have:

µ(R,ϕ) =
⋃
n∈N

ϕ(n)(R) =
⋃
n∈N

ϕ(
⊎
r∈R
{{r}}) =

⋃
n∈N

(
⊎
r∈R

ϕ({{r}})) =
⋃
n∈N

(
⋃
r∈R

ϕ({{r}}))

Using the above lemma and condition (C), we have:

(∗) ∀s ∈ µ(R,ϕ) ∃r ∈ R πa(r) = πa(s)

We now prove A = µ(F (R), ϕ) by proving the two inclusions:
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1. µ(F (R), ϕ) ⊂ A:

F (R) ⊂ R ⇒ µ(F (R), ϕ) ⊂ µ(R,ϕ) (because µ(R,ϕ) = µ(F (R) ]
R′, ϕ) = µ(F (R), ϕ) ∪ µ(R′, ϕ) and µ(R,ϕ) does not contain duplicates)

Let s ∈ µ(F (R), ϕ)

∃r ∈ F (R) πa(s) = πa(r) (∗)

So c(πa(s)) = c(πa(r)) = true (because r ∈ F (R))

So s ∈ µ(R,ϕ) and c(πa(s)) is true, then s ∈ A

2. A ⊂ µ(F (R), ϕ):

Let s ∈ A. We have: s ∈ µ(R,ϕ) and c(πa(s)) = true

So ∃r ∈ R ∃n ∈ N πa(s) = πa(r) (because (∗) and s ∈ ϕ(n)({{r}}))

So c(πa(r)) = c(πa(s)) = true

So r ∈ F (R), which means distinct(ϕ(n)({{r}})) ⊂ µ(F (R), ϕ), so s ∈
µ(F (R), ϕ).

Verifying the condition (C) using type inference We will start by explain-
ing the intuition behind this before going into the details.

For the condition (C) to hold, we need to make sure that the part of the data
extracted by πa is not modified by ϕ. For this, our solution is inspired by the idea
that the type of a parametric polymorphic function tells us information about
its behaviour [Wadler, 1989]: for example, if f is a polymorphic function whose
argument contains exactly one value of the undetermined type α and whose result
must also contain a value of type α, then the α value in the result is necessarily
the one in the argument (f : α→ α⇒ ∀x f(x) = x).

This reasoning can also be used for a more complex input type C(α) that
contains a polymorphic type α. For instance: C(α) = A(B(α), D) is such a
type given that A,B and D are type constuctors. So our goal is, given that ϕ
takes as input a bag of elements of type C, to find an appropriate polymorphic
type C(α) that will be used for type checking ϕ. In practice, we translate the ϕ
operation to a Scala function that takes a polymorphic input type and use the
Scala type inference system [Odersky et al., 2004] to get the output type5. C(α)
should be built in such a way that the position of α in C(α) is the same as the
position of a in π. Such a type is possible to build because the type C matches
the pattern π, otherwise the filtered term would not be type correct. Finally, if
the output type also contains the type α and has the same position as a in π then
we can show that the condition (C) holds. Note that we do not need a full-fledged
parametricity theorem for this: we only use the fact that the Scala type system
has singleton types for all values.

5We consider it a more practical solution than implementing our own type inference system
supporting polymorphism.
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Building C(α) Types are made from type constructors and basic types, and
patterns are made from type constructors and pattern variables. So we can
represent their structures using trees. In the following we sometimes refer to types
by the trees representing them.

Definition 16 (path). We define the path to the node labelled n in the tree T
denoted path(n, T ) by the ordered sequence Seq(ai) where ai is the next child arity
of the ith visited node to reach n from the root of the tree. A node in a tree can
be identified by its path.

Let us consider the function replaceα(p, T ) that, given a path p and a
type T returns a polymorphic type T (α) that is obtained by replacing in T
the node at path p and its children by a node labelled α. Let us now consider
C(α) = replaceα(path(a, π), C), where Bag[C] is the input type of ϕ. Note that
this path makes sense in C because C matches π (see Appendix 4.2.3).

With C(α) built this way, we have the following:

e : C and πa(e) : α⇒ e : C(α) (4.1)
e : C(α)⇒ πa(e) : α (4.2)

For example:

Tuple

a b c

Tuple

Tuple

Int Int

String Int

Tuple

α String Int

π C C(α)

We show that if ϕ : Bag[C(α)]→ Bag[C(α)] then the condition (C) is verified:
Let r ∈ R and let us take α = {{πa(r)}} which is the singleton type containing

the value πa(r). Since πa(r) : α and r : C, we have r : C(α) according to (1).
We also have ϕ({{r}}) : Bag[C(α)] because {{r}} : Bag[C(α)] and ϕ :

Bag[C(α)]→ Bag[C(α)] which means that ∀s ∈ ϕ({{r}}) s : C(α). So πa(s) : α
(according to (2)) so πa(s) = πa(r) hence (C).

Filters depending on multiple variables

We showed that (C): ∀r ∈ R ∀s ∈ ϕ({{r}}) πa(r) = πa(s) is sufficient for
pushing the filter in a fixpoint when the filter condition depends on a. We can
easily show that when the filter depends on a set of pattern variables V , the
sufficient condition becomes: ∀r ∈ R ∀s ∈ ϕ({{r}}) ∀v ∈ V πv(r) = πv(s).
So, if one of the variables in V does not satisfy the condition the filter would
not be pushed. However, we can do better by trying to split the condition c
to two conditions c1 and c2, such that c = c1 ∧ c2 and c1 depends only on the
subset of variables that satisfies the condition (this splitting technique is used in
[Fegaras and Noor, 2018] to push filters in a cogroup or a groupby). If such a split
is found, the filter flmap(λ 〈π → if c then {{π}} else {{}}〉, R) can be rewritten as
flmap(λ 〈π → if c2 then {{π}} else {{}}〉, flmap(λ 〈π → if c1 then {{π}} else {{}}〉, R)).
The inner filter can then be pushed.
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4.3.2 Filtering inside a fixpoint before a join (PJ)

Let us consider the expression: join(A, B), where A is a constant and B = µ(R,ϕ).
After the execution of the fixpoint, the result is going to be joined with A, so only
elements of this result sharing the same keys with A are going to be kept. So in
order to optimize this term, we want to push a filter that keeps only the elements
having a key in A. This way, elements not sharing keys with A are going to be
removed before applying the fixpoint operation on them.

1. we show that join(A,B) = join(A,FA(B)), where FA(B) = {(k, v) |
(k, v) ∈ B, ∃w (k,w) ∈ A}:
We have join(A,B) = {(k, (x, y)) | (k, x) ∈ A, (k, y) ∈ B}.
So (k, (x, y)) ∈ join(A,B)⇔ (k, x) ∈ A∧(k, y) ∈ B ⇔ (k, x) ∈ A∧((k, y) ∈
B ∧ ∃w (k,w) ∈ A) ⇔ (k, x) ∈ A ∧ (k, y) ∈ FA(B) ⇔ (k, (x, y)) ∈
join(A,FA(B))).

2. we show that FA(B) is a filter on B. This filter can be pushed when the
criteria on pushing filters is fulfilled:

We can show that FA(B) = flmap(λ 〈(k, v) →
if c(k) then {{(k, v)}} else {{}}〉, B) where c(k) is the boolean expres-
sion that corresponds to the predicate ∃w(k,w) ∈ A. This expression
can be: c(k) = reduce(∨, e∨, flmap(λ 〈(k′, a) → k == k′〉, A)). Which
means that in case ϕ fulfills the criteria for pushing filters we will have
FA(B) = FA(µ(R,ϕ)) = µ(FA(R), ϕ).

3. we show as well that FA(B) = C where:

C = flmap(λ 〈(k, (sx, sy))→ if sy 6= {{}} then flmap(λ 〈x→ {{(k, x)}}〉, sx) else {{}}〉,
cogroup(B,A))

We have: C =
⊎

(k,(sx,sy))∈cogroup(B,A)
⊎
x∈sx(if sy 6= {{}} then {{(k, (x, y))}} else {{}})

(1) Let e ∈ C. So ∃(k, (sx, sy))) ∈ cogroup(B,A) such that ∃x ∈ sx e =
(k, x) and sy 6= {{}}.
We have (k, (sx, sy)) ∈ cogroup(B,A), so sx = {v | (k, v) ∈ B}, which means
that (k, x) ∈ B because x ∈ sx. And sy 6= {{}} means that ∃w (k,w) ∈ A,
so e = (k, x) ∈ FA(B).

(2) Let (k, x) ∈ FA(B). We have (k, x) ∈ B and ∃w (k,w) ∈ A. So
k ∈ keys(A) ∪ keys(B).

Let sx = {v | (k, v) ∈ B} and sy = {v | (k, y) ∈ A}, so (k, (sx, sy)) ∈
cogroup(B,A).

Since x ∈ sx and sy 6= {{}} (because ∃w (k,w) ∈ A), then (k, x) ∈ C.

4.3.3 Pushing aggregation into a fixpoint (PA)

The PA rule consists in rewriting a term of the form δ(µ(R,ϕ)) to a term of
the form µδ (R,ϕ). It requires that δ is an aggregation function and compatible
with ϕ.
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It is correct thanks to the following lemma:

Lemma 5. Let ϕ be a monoid homomorphism: Bag[t]→ Bag[t], δ an aggregation
function: Bag[t] → Bag[t] compatible with ϕ, and R : Bag[t] a dataset. Assume
µ (R,ϕ) 6= ω (i. e. the computation terminates). Then δ(µ(R,ϕ)) = µδ (R,ϕ).

Proof. Let (Sn) and (S′n) be the S sequences corresponding respectively to the two
fixpoints; thus we have Sn+1 = R]ϕ(Sn) and S′n+1 = R⊗δϕ(S′n) = δ(R]ϕ(S′n)).
We prove by induction on n that δ(Sn) = S′n for any n: for n = 0 we have
δ(S0) = δ(R) = S′0. Assume S′n = δ(Sn), we have:

δ(Sn+1) = δ(R ] ϕ(Sn)) = δ(δ(R) ] δ(ϕ(Sn))) (δ is an aggregation function)

= δ(δ(R) ] δ(ϕ(δ(Sn))) (δ ◦ ϕ = δ ◦ ϕ ◦ δ)
= δ(δ(R) ] δ(ϕ(S′n))) (induction hypothesis)
= δ(R ] ϕ(S′n)) = S′n+1 (δ is an aggregation function)

Then the result propagates to the fixpoint since we assumed that µ (R,ϕ) 6= ω.

Applying this optimization on the expression of the SP example (Sec.4.2.5)
means that only the shortest paths are kept at each iteration of the fixpoint so
we avoid computing all possible paths before keeping only the shortest ones at
the end.

4.3.4 Distribution of the fixpoint operations (Pdist)

As explained in 4.2.6, the fixpoint operation is computed locally using a loop
(defined by Rinit,Rloop and Rstop). To evaluate the fixpoint in a distributed
setting, we could simply write a loop that distributes the computation of the
operation that is performed at each iteration (S ⊗δ ϕ(R)) among the workers.
We call this execution plan Pgld. Pgld performs δ at each iteration on the whole
intermediary distributed bag S to compute S ⊗δ ϕ(R), which in most cases (i.
e. unless δ is the identity function) requires synchronisation and data transfer
between workers at each iteration. In the TC example (Sec. 4.2.5), this plan
amounts to appending, at each iteration, all currently found paths from all
partitions with the graph edges R.

Alternatively, if we use the fact that µδ (R,ϕ) is a monoid homomorphism, then
we can replace Rinit with the following distributed version (recall that R1|R2|...
denotes a distributed bag split across different partitions Ri. ⊗nlδ denotes the
non-local version of ⊗δ):

µδ (R1|R2|..., ϕ) Rµδ (δ(R1), ϕ; δ(R1))⊗nlδ Rµδ (δ(R2), ϕ; δ(R2))⊗nlδ ...

Then each Rµδ (δ(Ri), ϕ; δ(Ri)) is going to be evaluated by Rloop and Rstop
as they are fixpoints on local bags. This execution plan, that we name Pplw, will
avoid doing non-local set unions or aggregations between all partitions at each
iteration of the fixpoint. Instead, the fixpoint is executed locally on each partition
on a part of the input, after which the aggregate ⊗nlδ is computed once to gather
results. In our example, this amounts to computing, on each partition i, all paths
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in the graph starting from nodes in Ri; the result is then the union of all obtained
paths.

This reduction in data transfers can lead to a significant improvement of
performance, since the size of data transfers over the network is a determining
factor of the performance of distributed applications.

The optimization rule Pdist uses the plan Pplw instead of Pgld for evaluating
fixpoints.

Avoiding ∪nl in Pplw In the common case where δ is distinct, Pplw can be
optimized further by repartitioning the data in the cluster in such a way that
every result of the fixpoint appears in one partition only. When that is the
case, it is sufficient to perform a bag union rather than a set union that removes
duplicates from across the cluster. If we know that there is a part in the input
that does not get modified by ϕ, we can repartition the data on this part of the
input (no two different partitions have the same value for this part), so the result
of the fixpoint is also going to be repartitioned in the same way. We formalize
this optimization in the following way:

Let π a pattern that matches the input of ϕ and a a pattern variable in π.
We consider the following propositions:

(Ca) : ∀r ∈ R ∀s ∈ ϕ({{r}}) πa(r) = πa(s)

(Pa) : ∀i 6= j ∀x ∈ Ri ∀y ∈ Rj πa(x) 6= πa(y)

Lemma 6. If there exists a pattern variable a that verifies (Ca), then:

Pa ⇒ ∀i 6= j µ(Ri, ϕ) ∩ µ(Rj , ϕ) = ∅

Proof. Let us suppose there exist a pattern variable a for which (Ca) is verified,
and let us suppose (Pa). Let Ri and Rj partitions of R such that i 6= j. (Ca)
implies ∀s ∈ µ(R,ϕ) ∃r ∈ R πa(r) = πa(s) because of Lemma 4. Which
means that for any x ∈ µ(Ri, ϕ) and y ∈ µ(Rj , ϕ), ∃ri ∈ Ri ∃rj ∈ Rj πa(ri) =
πa(x) and πa(rj) = πa(y). We have πa(ri) 6= πa(rj) because (Pa), so x 6= y.
Hence ∀i 6= j µ(Ri, ϕ) ∩ µ(Rj , ϕ) = ∅.

This means that:

µ(R1∪ϕ(R1), ϕ) ∪nl µ(R2∪ϕ(R2), ϕ) ∪nl... = µ(R1∪ϕ(R1), ϕ) | µ(R2∪ϕ(R2), ϕ) |...

The pattern variable a that verifies (Ca) can be found by using the technique
explained in Section 4.3.1. We explore every node n in C (Bag[C] is the input type
of ϕ) starting from the root of C and we build C(α) = replaceα(path(n,C), C)
until we find a node that verifies ϕ : C(α)→ C(α).

If such a is found, we repartition the data according to (Pa) by using the API
provided by the big data platform on which the code is executed, given that a
can be extracted from the input data using pattern matching.
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4.3.5 Rule application criteria

Rule PF is a logical optimization rule in the sense that the term it produces is
always more efficient than the initial term. Indeed, a filter reduces the size of
intermediate data. The application of PF thus reduces data transfers. Operators
are also executed faster on smaller data. The application of PF can thus only
improve performance.

The rest of the rules however require specific criteria to ensure that their
application actually enhances performance.

Criteria for PJ

The rule PJ introduces an additional cogroup to compute the filter being pushed
in the fixpoint (as detailed in Sec. 4.3.2). To estimate the cost of evaluating a
term, two important aspects are considered: the size of non-local data transfers it
generates, and the local complexity of the term (i.e. the time needed for executing
its local operations). PJ can improve local complexity. The reason is that the
additional cogroup is evaluated only once, whereas the pushed filter makes R
(the first argument of the fixpoint µ (R,ϕ)) smaller. Therefore, in general, each
iteration of the fixpoint is executed faster as it deals with increasingly less data
(each value removed from the initial bag would have generated more additional
values with each iteration). The final join with the result of the fixpoint also
executes faster because its size is reduced prior to the join. We can then consider
that, in general, the additional cogroup cost is compensated by the speedup of
each iteration in the fixpoint as well as the final join. To analyse the impact of
the rule on non-local data transfers, we estimate and compare the size of transfers
incurred by the terms: join(A,µ(R,ϕ)) and join(A,µ(FA(R), ϕ)) (obtained after
applying the rule). As mentioned in Section 4.2.6, all our algebraic operators
apart from flatmap trigger non-local transfers. We then consider the following,
where sizet(e) is the size of transfers incurred by the term e:

• We assume that groupby(A) incurs a transfer size that is linear to the
size of A (all A needs to be sent to be seen by other partitions). So,
sizet(groupby(A)) ≈ o(size(A))

• Similarly, cogroup(A, B) and join(A, B) transfer A and B (the cogroup and
join operators are made between all elements of A and B):
sizet(cogroup(A,B)) ≈ o(size(A) + size(B))
sizet(join(A,B)) ≈ o(size(A) + size(B))

• µ(R,ϕ) would have to send all its result in order to compute the set union
operation. So we just refer to size(µ(R,ϕ)) to indicate the size of the fixpoint
result.

Let S1 = sizet(join(A,µ(R,ϕ)))
and S2 = sizet(join(A,µ(FA(R), ϕ)))

S1 ≈ o(size(A) + 2× size(µ(R,ϕ))), here the result of the fixpoint is sent twice:
the first time to compute the fixpoint and the second time to compute the join
between A and the fixpoint result.
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S2 ≈ o(2 × size(A) + 2 × size(µ(FA(R), ϕ)) + size(R)), here FA(R) requires
making a cogroup between A and R which incurs an additional transfer of their
sizes. On the other hand, only a filtered fixpoint result is sent.

In order to determine if PJ improves data transfers we compare S1 and S2,
which amounts to comparing the following quantities: 2 × size(µ(R,ϕ)) and
2× size(µ(FA(R), ϕ)) + size(A) + size(R). In other words, this estimates whether
the data removed from the fixpoint result (by pushing the filter into it) makes up
for the sizes of A and R that are transferred to compute the additional cogroup.

Criteria for PA

The PA rule applies the aggregation function δ on the fixpoint’s intermediate
results instead of once at the end. Usually, δ reduces the size of these results. This
means that the fixpoint operation deals with less data at each iteration (which
also generally reduces the number of iterations). For example, if we are computing
the shortest paths, applying the rule would mean that we are only going to deal
with the shortest paths at each step instead of the entirety of possible paths.
This can also lead to the termination of the program in case the graph has cycles
(note that the programs are semanticaly equivalent but the evaluation of the first
does not terminate). Additionally, when Pdist is applied, PA can only reduce the
size of the data transferred across the network because δ is executed locally and
reduces the sizes of the local fixpoints.

To be applicable, this optimization requires that δ is an aggregation function
and is compatible with ϕ. The latter constraint means that the application of δ
first before the ϕ operation does not impact the result compared to when it is
applied once at the end. For instance, if we are computing the shortest paths
between a and b, we look for all paths between a and c, append them to paths
from c to b, then keep the shortest ones. Alternatively, we could start by keeping
only the shortest paths between a and c then append them to paths between c
and b without altering results.

At present, we do not have a method for statically checking this constraint.
However, we can list common known aggregation functions: reduceByKey(f, ·),
filters (see Def. 15), mainly. We can also envision for future work to define
sufficient conditions for a ϕ to be compatible with specific known aggregation
functions such as e. g. reduceByKey(min, ·), so that the optimization can take
place automatically in common use cases.

Criteria for Pdist in the Spark setting

The application of the rule Pdist can exploit platform-specific criteria. For in-
stance, for Spark [Zaharia et al., 2016], the choice between plans Pgld and Pplw is
parameterized based on two key aspects. First, for a term µ(R,ϕ), the collections
referenced in ϕ have to be available locally in each worker so that it can compute
the fixpoint locally. For instance, if ϕ = join(X,S) then S and X (at each
iteration) are both referenced by ϕ. This is a limitation of plan Pplw: when
those datasets become too large to be handled by one worker, Pgld is favored.
Second, in Spark, a factor that determines the efficiency of Pplw is the number of
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partitions used by the program. Increasing the number of partitions increases the
parallelization and reduces the load on each worker because the local fixpoints
start from smaller constant parts. For a term µ(R,ϕ), it is thus possible to regu-
late the load on the workers by splitting R into smaller Ri, resulting in smaller
tasks on more partitions. The ideal number of partitions is the smallest one that
makes all workers busy for the same time period, and for which the size of the
task remains suitable for the capacity of each worker. Increasing the number of
partitions further would only increase the overhead of scheduling. Thus, before
choosing plan Pplw, the rule Pdist estimates an appropriate number of partitions,
based on an estimated size of the constant part, the size of intermediate data
produced by the fixpoint and the workers memory capacity.

4.4 Experimental results

Methodology. We experiment the µ-monoids approach in the context of the
Spark platform [Zaharia et al., 2016].

We evaluate Spark programs generated from optimized µ-monoids expres-
sions, and compare their performance with the state-of-the-art implementations
Emma[Alexandrov et al., 2016] and DIQL [Fegaras and Noor, 2018], which are
Domain Specific Languages (more detail about them in Section 3.5). The
authors of Emma showed that their approach outperforms earlier works in
[Alexandrov et al., 2016]. DIQL is a DSL built on monoid algebra (of which
the µ-monoids algebra is an extension). Comparing against DIQL shows the
interest of having a first-class fixpoint operator in the monoid algebra.

The expressions considered in these experiments are the ones presented in
the examples (Section 4.2.5). The programs generated by µ-monoids from these
expressions were obtained by systematically applying the rules PF,PJ,PA,Pdist
(of Section 4.3). We evaluate these programs by comparing their execution times
against the following programs:

• DIQL: The examples have been expressed using DIQL
[Fegaras and Noor, 2018] queries. In particular, the fixpoint opera-
tion is expressed in terms of the more generic repeat operator of the DIQL
language. We have written the queries in such a way that they compute
the fixpoint more efficiently using the algorithm mentioned in 4.2.6.

• Emma: We used the example provided by Emma authors [Markl, 2019] to
compute the TC queries, and we wrote modified versions to compute the
SP and the path planning examples.

• mu-monoid-no-PA µ-monoids without the application of PA to assess
the impact of the PA rule on the SP and the path planning examples.

• manual-spark: Hand written Spark program. It uses a loop in the driver to
compute the fixpoint. So it is equivalent to the µ-monoids program without
the Pdist optimization. We use it to assess the impact of this optimization.
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Dataset Edges Nodes TC size

rnd_10k_0.001 50,119 10,000 5,718,306
rnd_20k_0.001 199,871 20,000 81,732,096
rnd_30k_0.001 450,904 30,000 255,097,974
rnd_10k_0.005 249,791 10,000 39,113,982
rnd_40k_0.001 799,961 40,000 531,677,274
rnd_50k_0.001 1,250,922 50,000 906,630,823

Dataset Edges Nodes

Yago 62,643,951 42,832,856
Facebook 88,234 4,039

DBLP 1,049,866 317,080

Table 4.1: Synthetic and real graphs used in experiments.

In addition to the examples of section 4.2.5, we evaluate two variants of TC
and SP: TC filter and SP filter, where we compute the paths starting from a
subset of 2000 nodes randomly chosen in the graph.

Datasets. We use two kinds of datasets:

• Real world graphs of different sizes, presented in Table 4.1, including a
knowledge graph (the Yago [for Informatics and University, 2019] dataset6),
a social network graph (Facebook), and a scientific collaborations network
(DBLP) taken from [Leskovec, 2019].

• Synthetic graphs shown in Table 4.1, generated using the Erdos Renyi
algorithm that, given an integer n and a probability p, generates a graph of
n vertices in which two vertices are connected by an edge with a probability
p. rnd_n_p denotes such a synthetic graph, whereas rnd_n_p_W denotes
a rnd_n_p graph with edges weighted randomly (between 0 and 5).

Other synthetic graphs are:

– flight_n_p: where edges are taken from rnd_n_p with random depart
and arrival times and duration assigned to them.

– c_n_p: serialized object RDD files representing paths between cities.
It is also generated from rnd_n_p, each city has been assigned up to
10 random landmarks.

– u_n: serialized object RDD files of n users, each assigned up to 15
random movies.

Experimental setup. Experiments have been conducted on a Spark cluster
composed of 5 machines (hence using 5 workers, one on each machine, and the
driver on one of them)7.

6We use a cleaned version of the real world dataset Yago 2s
[for Informatics and University, 2019], that we have preprocessed in order to remove du-
plicate RDF [Cyganiak et al., 2014] triples (of the form <source, label, target>) and keep only
triples with existing and valid identifiers. After preprocessing, we obtain a table of Yago facts
with 83 predicates and 62,643,951 rows (graph edges).

7Each machine has 40 GB of RAM, 2 Intel Xeon E5-2630 v4 CPUs (2.20 GHz, 20 cores
each) and 66 TB of 7200 RPM hard disk drives, running Spark 2.2.3 and Hadoop 2.8.4 inside
Debian-based Docker containers.
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For the Yago dataset, transitive closures are computed for the isLocatedIn
edge label. The hand written spark program (manual-spark) has the optimizations
PF and PA whenever possible, Pdist is the only rule it does not have. We have
also written the DIQL queries in such a way they apply PF. Such a pre-filtering
was not possible for Emma because the programs perform a non linear fixpoint.
Trying to write a linear version leads to an exception in the execution. We were
not able to write an Emma program that computes movie recommendations.
Iterating over a users own movies leads to an exception.
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Figure 4.5: TC running times.

0

2000

4000

6000

8000

10000

12000

14000

facebook rnd_10k_0.001 rnd_10k_0.005 rnd_10k_0.01 rnd_20k_0.001 rnd_30k_0.001

mu-monoid manual-spark DIQL Emma mu-monoid-no-RW3

Figure 4.6: SP running times.

Results summary. Figure 4.10 presents the obtained results. We observe
that the programs generated by µ-monoids systematically outperform the other
program versions. The speedup is even more important for programs where PA is
applied (SP, SP filter and path planning), especially when combined with Pdist.

This experimental comparison shows the benefit of the plan that distributes
the fixpoint. It also highlights the benefits of the approach that synthesises code:
generating programs that are not natural for a programmer to write, like the
distributed loop to compute the fixpoint.
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Figure 4.8: SP filter running times.

4.5 Conclusion

We propose to extend the monoid algebra with a fixpoint operator that models
recursion. The extended µ-monoids algebra is suitable for modeling recursive
computations with distributed data collections such as the ones found in big
data frameworks. The major interest of the “µ” fixpoint operator is that, under
prerequisites that are often met in practice, it can be considered as a monoid
homomorphism and thus can be evaluated by parallel loops with one final merge
rather than by a global loop requiring network overhead after each iteration.

We also propose rewriting rules for optimizing fixpoint terms: we show when
and how filters can be pushed into fixpoints. In particular, we find a sufficient
condition on the repeatedly evaluated term (ϕ) regardless of its shape, and we
present a method using polymorphic types and a type system such as Scala’s to
check whether this condition holds. We also propose a rule to prefilter a fixpoint
before a join. The third rule allows for pushing aggregation functions inside a
fixpoint.
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Experiments suggest that: (i) Spark programs generated by the systematic
application of these optimizations can be radically different from – and less intuitive
– than the input ones written by the programmer; (ii) generated programs can be
significantly more efficient. This illustrates the interest of developing optimizing
compilers for programming with big data frameworks.
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5.1 Conclusion

In this manuscript, we have studied the problem of evaluating queries on large
datasets. We have considered the following aspects of this problem: performance
and automatic optimization, large-scale data processing and distribution, expres-
sivity, graph processing, reducing impedance mismatch, querying complex data,
with a particular focus on the ability to express recursion. For this purpose,
we have studied distributed evaluation of recursive queries using two formal
approaches: RA and monoid algebra, which both can be used to express computa-
tions on distributed datasets. The first is a well studied and established framework
for querying data, multiple works have tackled the question of optimizing relational
queries, and the recent work on µ-RA studied the addition and optimization of
recursion in RA but is limited to the centralized setting. We proposed Dist-µ-RA,
a system that combines various techniques for the optimization and distribution
of recursive relational queries. Regarding the algebraic aspect, it integrates well
with the relational algebra and inherits its advantages including the fact that
queries are optimized regardless of their initial shape and translation into the
algebra. With respect to distribution, different strategies for evaluating recursive
algebraic terms in a distributed setting have been studied. These strategies are
implemented as plans with automated techniques for distributing data in order
to reduce communication costs. Experimental results on both real and synthetic
graphs show the effectiveness of the proposed approach compared to existing
systems.

Despite all its advantages, the relational model is less flexible and leads to
impedance mismatch problems as developped in Sections 1.1 and 2.1. Monoid al-
gebra, the second formal approach we investigate, offers a framework for reasoning
about distributed programs: monoids and monoid homomorphisms are well suited
to model distributed computations. The evaluation of a monoid homomorphism
can be broken down to the application of an associative operator. This associa-
tivity implies that parts of the computation can actually be performed in parallel
and combined to get the final result. Since the data model consists of generic
collections and the operations can be second order operations with arbitrary
UDF, the formalism addresses the issues of relational algebra but is not as well
established as relational algebra. We have proposed to extend monoid algebra
with a fixpoint operator that models recursion. The extended µ-monoids algebra
is suitable for modelling recursive computations with distributed data collections
such as the ones found in Big Data frameworks. The major interest of the “µ”
fixpoint operator is that, under prerequisites that are often met in practice, it can
be considered as a monoid homomorphism and thus can be evaluated by parallel
loops with one final merge rather than by a global loop requiring network overhead
after each iteration. We also show how this algebra enables new optimizations
through rewrite rules that push filters in fixpoints, prefilter fixpoints before joins,
and push aggregations inside fixpoints. Experiments with the Spark platform
illustrate performance gains brought by these systematic optimizations.
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5.2 Perspectives

In order to provide users with effective tools to query large amounts of data, it is
worthwhile to investigate ways to improve every level of the compilation process:
from the DSL down to the generation of the physical plans that distribute the
computations.

Regarding DSLs, one perspective is to investigate high-level languages that
compile into the studied algebras, especially internal DSLs that allow for expressing
recursion. Another perspective is to investigate the translation of Spark programs
(or subsets of such programs) into µ-monoids so as to allow for their automatic
optimization.

A DSL relies on a logical data model (the logical structure of the data, such
as graphs, that the user queries using the DSL). A perspective would be to
investigate how to translate this logical data model into appropriate relations
(in the RA formalism) or collections (in the monoid formalism) depending on
the query and the framework on top of which the physical plan of the query is
executed. For instance, given a query, is it better to translate the queried graph
into a collection of nodes and their neighbors or a collection of edges?

At the algebraic level, a future work would be to define normalization rules
for µ-monoids expressions with the fixpoint operator in order to transform them
to a form that is recognized by optimization rules. Another idea for future work
is to investigate using the µ-monoids filter pushing technique to push filters into
µ-monoids expressions other than the fixpoint.

One perspective to improve the execution of a recursive query is to perform
dynamic changes to its generated physical plan in order to adapt to the load
of data during fixpoint computations. For instance, changing the number of
partitions or changing the type of a join from a broadcast join to a regular join
depending on the size of the recursive variable at a given iteration.

So far, we have studied the execution of the physical plans of the queries on
distributed frameworks like Spark. These frameworks are designed and optimized
for distributed applications where data does not fit into the memory of a single
machine and where scalability can be achived by adding more commodity hardware.
A perspective would be to investigate the ability of the studied algebras to express
and optimize applications that rather target highly parallel computing frameworks
like MPI as well as to investigate their execution on these frameworks.
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