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Résumé

La détection des modes B primordiaux de polarisation du fond diffus cosmologique est aujourd’hui
l’un des défis majeurs de la cosmologie observationnelle. Leur mesure permettrait de contraindre les
modèles d’inflation cosmique, cette phase d’expansion accélérée aux tout premiers instants de l’univers.
Le projet QUBIC a terminé la campagne de tests et de validation en France et l’instrument a été
envoyé en Argentine. L’observation du ciel débutera après une nouvelle courte campagne de tests en
laboratoire. Cet instrument s’appuie sur une technologie particulièrement innovante, l’interférométrie
bolométrique dont le principe optique sera décrit en détail. La mesure d’un signal aussi ténu que
celui des modes B exige un contrôle des effets systématiques irréprochable. C’est justement ce à quoi
QUBIC entend répondre grâce à la possibilité de self-calibration propre à l’interférométrie et à un design
optique assurant une cross-polarisation minimale. Un deuxième enjeu majeur pour cette mesure est
le traitement des avant-plans astrophysiques qui viennent contaminer le signal de l’univers primordial.
Pour cela, l’interférométrie bolométrique offre la possibilité de faire de l’imagerie spectrale, c’est-à-dire
de reconstruire, en post-processing, des cartes du ciel dans plusieurs sous-bandes de fréquence alors
même que l’intrument intègre le signal dans une large bande. Sachant que les avant-plans se distinguent
par leur spectre d’émission, l’imagerie spectrale est la clé pour s’affranchir de ces contaminations.

Cette thèse fait le pont entre l’instrument QUBIC et l’estimation des paramètres cosmologiques
à partir du signal mesuré. J’ai tout d’abord participé activement à l’assemblage de l’instrument et à
son étalonnage, notamment au travers de la vérification optique de l’alignement des miroirs. Aussi,
une partie importante de ma thèse a été dédiée à la prise et à l’analyse des données d’étalonnage,
notamment à la mesure des franges d’interférence et du lobe du télescope, toujours mises en regard
avec des simulations optiques. Ces mesures sont un premier pas vers la self-calibration complète de
l’instrument. Cependant, le coeur de ma thèse a été de démontrer la faisabilité de l’imagerie spectrale
au travers de simulations complètes de la chaine d’analyse, allant de la simulation d’une observation
du ciel, jusqu’à l’estimation des paramètres cosmologiques, en passant par la reconstruction des cartes
du ciel en sous-bandes de fréquence.

Mots clés : Cosmologie, Fond diffus cosmologique, Inflation, Interférométrie bolométrique, Im-
agerie spectrale, Analyse de données
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Abstract

The detection of primordial B-mode polarization in the cosmic microwave background is one of the
main targets for observational cosmology today. Their detection would constrain cosmic inflation
models, an accelerating expansion phase occurring at the very beginning of the universe. The QUBIC
project recently completed the calibration and the validation of the instrument and it has been sent to
Argentina. Observation of the sky will begin after another short calibration phase in the laboratory.
This instrument relies on an innovative technology, bolometric interferometry, which will be described
in detail. Measurement of the extremely weak B-mode signal requires exquisite control of systematic
effects. This is an important advantage of QUBIC thanks to self-calibration, a technique coming from
interferometry, and to a specific optical design ensuring minimal cross-polarization. A second challenge
for this measurement is the mitigation of astrophysical foregrounds which contaminate the signal of
the primordial universe. For this purpose, bolometric interferometry makes spectral imaging possible,
i.e. the reconstruction, in post-processing, of sky maps in several frequency sub-bands even though
the instrument integrates the signal in a wide band. Knowing that foregrounds have distinct emission
spectra, spectral imaging is the key to eliminate these contaminants.

This thesis describes a detailed analysis going from the QUBIC instrument through to the estima-
tion of cosmological parameters. I contributed to the assembling and calibration of the instrument,
especially in the optical verification of the mirror alignment. An important part of my thesis is dedi-
cated to calibration data taking and data analysis, especially the measurement of interference fringes
and the telescope beam, which are compared to optical simulations. Those measurements are a first
step for the full self-calibration of the instrument. However, the heart of my thesis is the demon-
stration that spectral imaging is feasible. This is done through end-to-end simulations covering the
simulation of a sky observation with QUBIC to the estimation of cosmological parameters, including
the reconstruction of frequency sub-band maps.

Keywords: Cosmology, Cosmic Microwave Background, Inflation, Bolometric interferometry,
Spectral imaging, Data analysis
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Introduction

The Q&U Bolometric Interferometer for Cosmology (QUBIC) was designed to measure the Cosmic
Microwave Background (CMB) polarization [1]. The quest for B-mode polarization of the CMB is
among the major challenges of observational cosmology. It would reveal primordial gravitational waves,
validating inflation theory, with consequences in particle physics. Characterization and calibration of
the QUBIC instrument started in 2018 at Astroparticle Physics & Cosmology (APC) laboratory. Now,
it has been sent to Salta, in Argentina, and re-assembled there. New calibration tests will be made
before installing it on the observation site near San Antonio de los Cobres.

The assembling of the instrument started right at the beginning of my PhD. I had the opportunity
to participate in the calibration of the instrument which was a crucial step for the project. Thus,
my work combined instrumentation, calibration, data analysis and simulations. The structure of
this manuscript is based on the idea of making the connection from the QUBIC instrument and the
cosmological parameters we want to constrain. Figure 1 illustrates the organization that I will detail
below.

Figure 1: Illustration of the manuscript organization.

The first chapter is dedicated to a presentation of the instrument, focusing on the optical design
which is completely unusual in the CMB field. Indeed, QUBIC has a horn array placed before the
optical combiner so that the image on the focal plane is an interference pattern. Here I chose to
describe QUBIC as a synthetic imager, i.e. an imager having a very peculiar point spread function,
and not as an interferometer which was the approach chosen when the design was made.

As a bolometric interferometer, QUBIC combines the advantages of interferometry in terms of
control of instrumental systematic effects with those of bolometric detectors in terms of wide-band,
background-limited sensitivity. The precise control of systematic effects was the main objective for
building such a new instrument. It has been shown that thanks to redundant baselines, a baseline
being a pair of horns, the instrument can be self-calibrated. The second chapter aim at showing the
advantage of QUBIC in terms of systematic effects. I first review the concept of self-calibration and
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I adapt the formalism developed for it, mainly during the PhD of Marie-Anne Bigot-Sazy (2013), to
the current instrument design. Then, I focus on optics calibration measurements and data analysis
which are an essential step for self-calibration, especially the measurement of interference fringes for
individual baselines. Measurements are always compared with optical simulations developed for that
purpose.

Now it is time to get closer with cosmology! What will QUBIC measure? In chapter 3, I first
review how our understanding of the universe evolved, roughly between 1920 and 1970 when the Hot
Big Bang model started to be considered as the dominant one in Cosmology. One of its major success
is the prediction of a relic thermal radiation around 3 K today, the CMB. It is a partially polarized
photon field released 380 000 years after the Big Bang when neutral hydrogen was formed. It was first
detected by Penzias and Wilson [107] in 1965 many years after its prediction [18].

Despite its apparent homogeneity, the CMB radiation has spatial temperature and polarization
anisotropies which will be discussed in chapter 4. They are the direct imprint of fluctuations occur-
ring in the primordial plasma. What is really remarkable is that the angular power spectrum of the
anisotropies was predicted much before the first detection [108]! The polarization field can be decom-
posed into scalar and tensor modes respectively called E and B-modes. Anisotropies are an incredible
source of information about the physics of the primordial universe. Indeed, density perturbations in
the primordial plasma create E-modes, which have already been detected. On the contrary, gravita-
tional waves propagating in the primordial plasma create E and B-modes, and the primordial B-mode
signature has not been detected yet.

At this stage, we have an instrument designed to measure the CMB. Chapter 5 presents the CMB
from the point of view of people who analyze the data. I review the usual data analysis techniques for
map-making and power spectrum estimation in the CMB field. It will be illustrated with the QUBIC
case, sometime pointing out specificities of this instrument. In addition, observers have to deal with
the contamination of the CMB signal by astrophysical foreground emissions and with atmosphere
opacity for ground-based instruments. In polarization, the two dominant astrophysical foregrounds
are the synchrotron radiation and the thermal dust emission from the Milky Way, both producing
non-primordial B-mode polarization.

CMB and foregrounds can be distinguished thanks to their distinct spectral behavior. This is
why the key of any foreground mitigation technique is to have measurements in multiple frequency
channels. Several years after the QUBIC instrument was designed, it was realized that bolometric
interferometry allows to do spectral imaging thanks to the frequency-dependent shape of the QUBIC
synthesized beam. This results in the ability to produce sky maps in multiple frequency sub-bands while
our detectors integrate the signal in a single wide frequency band, all being done in post-processing.
Chapter 6 is dedicated to the characterization of this technique using end-to-end simulations which is
the heart of my thesis. Spectral imaging was also successfully tested on calibration data for the first
time.

Finally, how can we better constrain our model of the universe using CMB observation? In chap-
ter 7, we will start by reviewing our current vision of the universe which has changed a lot since the
first observation of the CMB. A phase of cosmic inflation, has been added to the Hot Big Bang model.
We will describe the observational motivations for it and the experimental evidences. Inflation neces-
sarily creates primordial gravitational waves (in some cases with very low amplitude). This is why the
quest for a B-mode signature in the CMB is among the major challenges of observational cosmology.
The B-mode intensity is characterized by the tensor-to-scalar ratio r. I will end this manuscript with
forecasts on the ability that QUBIC has to constrain this parameter.

Back on the structure: As described above, this manuscript follows the path from an instrument
to the cosmological parameters we aim at constraining. This structure could give the impression that
a project goes step by step: making an instrument, observing, analyzing the data and finally see by
chance what cosmological parameter can be constrained. Of course, it is not the case as an instrument
is always designed for a specific purpose, aiming at measuring given quantities. For example, QUBIC
has been developed in order to measure the tiny B-mode signature which requires a very high control
of instrumental systematic effects. However, when I started my PhD, the design of the instrument was
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already finalized and this is certainly why this structure well reflects my path along these three years.
Moreover, this structure allows me to introduce the theoretical concepts, either related to the

cosmology or to the QUBIC instrument, when they are needed to contextualize my work. Indeed,
in order to be as pedagogical as I can, I feel more comfortable with this structure that distills the
theory along the manuscript than with the classical one which consists in a huge theoretical part at
the beginning followed by the personal contributions.

Reading guideline: As the plan is not standard, it may be difficult for the reader to understand
what my personal contributions are. This is why one can find a brief summary at the beginning of
each chapter saying explicitly, what my personal work is. In summary, chapters 2 and 6 contain the
majority of my work but additional contributions are presented in chapters 1, 5 and 7.
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Chapter 1

The Q&U Bolometric Interferometer for
Cosmology (QUBIC)

Contents
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1.1.2 A general description of the instrument . . . . . . . . . . . . . . . . . . . . . . 14

1.1.3 Brief description of each part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 A synthetic imager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Observing the sky through an instrument . . . . . . . . . . . . . . . . . . . . . 21

1.2.2 A more general definition for the PSF . . . . . . . . . . . . . . . . . . . . . . . 26

1.2.3 A bolometric interferometer seen as a synthetic imager . . . . . . . . . . . . . . 26

1.2.4 Expression of the QUBIC Point Spread Function . . . . . . . . . . . . . . . . . 28

1.2.5 QUBIC synthesized beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2.6 QUBIC as an interferometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3 A polarimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3.1 The Stokes parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3.2 Measuring a linear polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.4 Optical combiner alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.4.2 Comparison to a model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.4.3 Analysis by detecting the center of each spot . . . . . . . . . . . . . . . . . . . 38

1.4.4 Analysis by doing the product of images . . . . . . . . . . . . . . . . . . . . . . 39

1.4.5 Conclusion of the optical alignment . . . . . . . . . . . . . . . . . . . . . . . . 41

This chapter is dedicated to the description of the QUBIC instrument and to a presentation of
bolometric interferometry. In the first section, I briefly present the project and I give an overview
of the instrument which combines optical, cryogenic and electronic technologies. When QUBIC was
designed, the understanding of the instrument was based on the concepts developed for interferometry.
However, the possibility of seeing QUBIC as an imager more than an interferometer was already
considered in the last chapter of the thesis by Romain Charlassier in 2010 [2]. In section 2, I focus on
the optics and I made the choice to present QUBIC as a synthetic imager, i.e. a classic telescope having
a very particular point spread function. The crucial concept of synthesized beam is also introduced.
In section 3, I explain the way we measure the polarization with the rotating Half-Wave-Plate (HWP).
Finally, section 4 is dedicated to the verification of the mirror alignment using a laser which was done
at the beginning of the QUBIC assembling, in 2018.
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Personal contributions: I was responsible for the optical combiner alignment presented in sec-
tion 1.4, in collaboration with people in Roma. Simulations used in section 1.2 for pedagogical purpose,
especially Figures 1.15 and 1.19 are part of my work and I will detail it in chapter 2. I also realized
myself the illustrations shown in Figures 1.14, 1.16 and 1.21 using a green laser. Finally, the approach
I chose in section 1.2 to describe the optics of the instrument is quite different from what has been
done in the past.

1.1 A general description of QUBIC

1.1.1 The project

QUBIC is an international collaboration, involving several universities and laboratories in France,
Argentina, Italy, Ireland and the U.K. The instrument will be installed in Argentina, at Alto Chorillo,
near San Antonio de los Cobres. It is a telescope observing the sky in the millimeter wavelength
range, aiming at measuring the Cosmic Microwave Background (CMB) polarization, specifically the
signature of the cosmological inflation era with the elusive B-modes CMB polarization. The assembling
and calibration started at APC around April 2018.

Figure 1.1: The QUBIC collaboration.

1.1.2 A general description of the instrument

QUBIC is a telescope entirely enclosed in a cryostat with the particularity that it is neither a standard
imager nor a classical interferometer but a novel combination of both: a bolometric interferometer. A
picture and a sketch of the instrument design is shown in Figure 1.2. The signal from the sky directly
enters the cryostat through a 56 cm diameter window and a series of filters designed to cut high-
frequency radiation that would bring background power in the cryostat [3]. The signal polarization is
immediately modulated by a rotating Half-Wave-Plate (HWP) maintained at 4 K [4]. A polarizer is
placed right after so that a single, modulated, polarization is transmitted to the array of 400 back-
to-back horns [5] which directly illuminate an optical setup consisting of two mirrors cooled down to
1 K. This optical system [6] focuses the radiation from the horns onto two focal planes (one for each
frequency 150 and 220 GHz, split by a dichroic filter), assuring an observation at infinity. The signals
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1.1 A general description of QUBIC

from individual horns are superimposed on the focal plane in order to form an interference pattern1.
These images are sampled by an array of 1024 NbSi Transition-Edge-Sensors (TES) cooled down to
300 mK [7] in each focal plane.
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Figure 1.2: QUBIC instrument at APC during assembling and a sketch showing the design of the
instrument.

The QUBIC Technical Demonstrator (TD)

The QUBIC TD was built to test and validate the QUBIC design and all its sub-systems (optics,
cryogenics, detectors, read-out electronics, scan strategy and calibration). It differs from the Full
Instrument (FI) in that it has a reduced number of detector pixels (only one quarter of one focal
plane), a reduced number of feedhorns (the central 8 × 8 horns of the full array with 400 horns),
reduced primary and secondary mirror size (400 mm in diameter rather than 600 mm), reduced filter
sizes (up to 280 mm in diameter) and a neutral density filter, instead of a dichroic, to manage the
radiative loading inside a laboratory on the single focal plane. In all other respects the TD is the same
as the FI, especially cryogenics, the most technically challenging part.

1.1.3 Brief description of each part

Window and filters

The sky signal enters the cryostat through a 56 cm diameter window made from high-density polyethy-
lene, a material transparent at millimeter wavelengths. After the window there is a series of thermal
(infrared) and low-pass blocking filters. The goal is to select only the interesting frequency band in
order to avoid heating load in the cryostat. Picture of the window is shown in Figure 1.3 on the left.
With Manuel Gonzalez, we were responsible for the assembling of the 300 K filters right after the
window shown on the right picture. They are made with ten stacked insulating layers spaced with
washers [16].

Half-Wave-Plate (HWP) and polarizer

HWP design and performance are described in detail in [4]. The QUBIC HWP rotates step by step
and not continuously. It is operated at 4 K in order to reduce its thermal emission. To reduce the
thermal load at the cryogenic stage where the HWP stays, the motor is placed outside the cryostat, at
room temperature. Two magnetic joints are used to transfer the rotation from the motor to a fiberglass
tube and the HWP rotates thanks to a belt surrounding it and several pulleys. A model of the HWP
rotating system is shown in Figure 1.4 together with a picture of the device. A polarizer is placed right
after the HWP. This will be justified in detail in section 2.1.

1As we will see in section 1.2, this is actually similar to classical imager.
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Figure 1.3: Left: 56 cm diameter window made from high-density polyethylene. Right: Infrared filters
mounting on the instrument.

The choice of putting the HWP and the polarizer before the optics was made in order to reduce
the impact of cross-polarization. Indeed, once the polarizer has selected a polarization, any cross
polarization generated after (at the horns, mirrors, or other optical components) becomes irrelevant.
However, the price to pay is a complex cryogenic system as all optical components must be cooled
down in addition to the detectors.

Figure 1.4: Model of the HWP rotating system and a picture once installed in the cryostat. Taken
from [4].

Horns

The QUBIC input aperture consists of an array of 400 back-to-back conical corrugated horn pairs,
spaced by 14 mm, laid out square grid within a circular area as shown in Figure 1.5. The back-to-back
horn array has two objectives: the front (sky) horns define the field of view of the instrument, while
the back horns illuminate the optical combiner. The right panel of Figure 1.5 shows a single element of
the horn array. The sky-facing and detector-facing feedhorns are identical and were designed to have
a FWHM of 12.9◦ at 150 GHz.
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1.1 A general description of QUBIC

A shutter, or switch, is placed in the waveguide section joining each back-to-back horn pair so
signals can be switched on and off in the calibration procedure. In its rest position the switch is open.
To close it, there is a small coil and when it is biased, a small ferrite is attracted inside. The ferrite is
connected to a hook which pulls a steel blade across the waveguide.

Detail on this system and performance can be found in [5]. Figure 1.6 shows pictures of the TD
horn array and of the switches.

14 mm

Figure 1.5: Left: Horn array for the FI. The TD horn array is highlighted in green. Right: Sketch of
a single back-to-back horn (see papers [5], [6] for details).

Figure 1.6: Left: One side of the 8 × 8 TD horn array, a similar system is placed after the shutters.
Right: TD switches placed in the waveguide section joining each back-to-back horn pair. See [5] for
detail.

Mirrors

The combination of the light onto the focal plane is done by an off-axis Gregorian telescope: a primary
parabolic mirror and a secondary elliptic mirror. For the TD, the two mirrors have a diameter of
400 mm while for the FI, it will be extended to 600 mm. The focal length of the optical combiner is
30 cm, see [6] for detail. A picture of a TD mirror when it was mounted on its support is shown in
Figure 1.7.
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Figure 1.7: TD primary mirror being mounted on its adjustable support (hexapode).

Bolometers

A bolometer is a device for measuring the power of incident radiation via the heating of a material.
The temperature is known by measuring the electric resistance of the absober material which can be
a metal, a semiconductor or a superconductor. The bolometer is connected to a thermal reservoir, a
body of constant temperature, through a thermal link. Figure 1.8 shows the principle of operation.
The QUBIC detectors are Transition-Edge Sensors (TES) [7], chosen for their high sensitivity and

Figure 1.8: Operating principle of a bolometer.

their low noise. A quarter focal plane is a 256 pixel array, each pixel being a TES, see left panel in
Figure 1.9. The superconducting phase transition of four TES among the 256 is shown in the right
panel. The array currently used has a critical temperature of about 410 mK.

The TES is a feedback system in which the power from the absorption of a photon is removed by
negative electrothermal feedback, so that the temperature is kept constant. The TES is voltage-biased
by driving a current source Ibias through a load resistor Rsh (see left part of Figure 1.10). When a
photon is absorbed by the TES, its resistance increases causing a drop of the TES current. So the
Joule dissipation decreases, cooling back the temperature of the TES. Another effect of electrothermal
feedback is to reduce the response time of the TES by several orders of magnitude [17], reaching
∼ 20 ms in the case of QUBIC [7].

Detection chain architecture

The TES is operated in series with a coil, see Figure 1.10 (left), which is inductively coupled to a SQUID
(Superconducting QUantum Interference Device). A SQUID measures extremely small magnetic fields.
The drop of current is detected through a drop of magnetic flux to the SQUID which is converted into
an output voltage.
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Figure 1.9: Left: Picture of a quarter of the focal plane made with 256 TES. Right: Superconducting
transition phase of four Nb0.15Si0.85 TESs. Taken from [7].

As shown on Figure 1.10 (right), the 256-pixels array, corresponding to a quarter of a focal plane,
is divided in two parts, leading to two blocks of 128 SQUIDS each. The SQUIDS are maintained
at a temperature of 1 K. Each block is controlled and amplified by an ASIC (Application Specific
Integrated Circuit) cooled to 40 K. Finally, a warm FPGA (Field Programmable Gate Array) controls
the acquisition of the signal to a computer. This design allows time domain multiplexing with a factor
equal to 128.

Figure 1.10: Left: Layout of a TES coupled to a SQUID. Right: Architecture of the QUBIC detection
chain for one quarter of the focal plane. Taken from [7].

Output signal: The output signal consists of Time-Ordered Data (TOD) from each TES. The
number of points is determined by the sampling period during the acquisition. To get an image of the
sky, one needs to scan the observed region and then by a map-making process, we can solve a linear
system to build an image of the sky. This will be detailed in chapter 5.

Cryogenic system

Cryogenic design and performance are described in [3]. The cryogenic system cools the detector arrays
to 0.32 K, the beam combiner optics at 1 K, and the rotating HWP, the polarizing analyzer, the horn
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array, and the switches to 4 K. The outer vacuum shell of the cryostat allows operation under high-
vacuum conditions, it must withstand a pressure difference of ∼ 100 kPa. It has a diameter of 1.4 m
and a height of 1.55 m (see Figure 1.2).

The cool down to 4 K is ensured by two pulse-tube refrigerators working in parallel. A pulse-tube
refrigerator extracts heat using a compression cycle of helium gas. One potential drawback of the use
of pulse-tube refrigerators is the presence of vibrations, synchronous with the periodic (ν ∼ 1.7 Hz)
aperture of the rotary valve.

Then, the cool down to 1 K and 0.3 K requires two sorption coolers also called evaporation re-
frigerators. The operating principle is the following: the refrigerator is filled with helium under high
pressure. Below 4 K, the helium is liquid and falls by gravity to the bottom part called the evaporator.
An equilibrium between liquid and gas at the equilibrium vapor pressure is achieved. A cryopump,
made with activated charcoal, placed at the top of the refrigerator, absorbs the helium gas until all
the liquid has been converted to gas. Evaporation is an endothermic process so it cools down the part
of the instrument connected to the refrigerator. When all the liquid helium has been consumed, the
part to cool down is disconnected from the refrigerator (using a gas switch) and the refrigerator can
be cycled. For that purpose, it is warmed up using an electric resistance, so helium desorbs from the
activated charcoal and is re-condensed when reaching the part below 4 K. Once all liquid helium has
been recovered, the refrigerator is usable again.

In the case of QUBIC, a 4He sorption cooler (see Figure 1.11, left) cools down the entire optics box
(around 150 kg) from 4 K to 1 K. The cool down from 1 K to 0.3 K of the detector arrays is done by
a double stage 3He/4He sorption cooler (see Figure 1.11, right), with an operating principle similar to
the one described above.

Figure 1.11: Sketch of a sorption cooler with activated charcoal. Pictures of the QUBIC 1 K 4He
sorption cooler and of the 0.3 K 3He/4He evaporation refrigerator.

1.2 A synthetic imager

When presenting QUBIC, we usually focus on its specificity of doing interferometry. Of course this
is true but in this section, I would like to show that QUBIC can perfectly be described as a classical
imager having a particular aperture. For that purpose I will start by introducing some formalism,
starting from basic optical concepts. The beginning will certainly seem far from QUBIC but the
approach should be clear at the end of the section. As far as I know, it is the first time that the optical
working principle of QUBIC is derived from first principles.
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1.2.1 Observing the sky through an instrument

An important concept in optics is that the image formed by an optical system is the convolution of
the object by the Point Spread Function (PSF) of the system. The PSF is proportional to the Fourier
transform of the instrument pupil. A precise description of Fourier optics can be found, for example,
in Pellat-Finet [230] and this part is widely inspired by the lecture of Eric Aristidi which can be found
at http://sites.unice.fr/site/aristidi/.

Signal coming from the sky

The light coming from a direction k̂ on the sky and that enters into an optical system is assumed to
be a plane wave (true if the source is at infinity). The corresponding electric field at time t, in r can
be written as

E(r, t) = E0 ei(k·r−ωt) (1.1)

where ω is the pulsation, k = 2π
λ k̂ is the wave vector associated with wavelength λ and E0 is the

amplitude. The magnetic field B can be written in a similar way. E and B are orthogonal to each
other and both are orthogonal to the direction of propagation k̂.

If we are not interested in the polarization, a scalar field is sufficient to describe the plane wave:

U(r, t) = ψ0 ei(k·r−ωt) (1.2)

where ψ0 could be E0 or B0. The space part of U(r, t) is called the complex amplitude and is written
as

ψ(r) = ψ0 eik·r . (1.3)

The intensity is I = |ψ(r)|2.
We will note (α, β, γ) the components of the unit vector k̂, so α2 + β2 + γ2 = 1. The complex

amplitude of the plane wave becomes:

ψ(x, y, z) = ψ0 e
2iπ
λ

(αx+βy+γz) . (1.4)

α, β and γ can be written as a function of two angles (θx, θy) as shown in Figure 1.12 (left):





α = sin θx

β = cos θx sin θy

γ = cos θx cos θy =
√

1− α2 − β2

(1.5)

Figure 1.12: Left: Projection of the wave vector k using θx and θy angles. Right: Sketch of a classic
imager.
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Propagation through a telescope

The optical axis of the instrument is z and we want to understand how the light transforms when it
propagates through the instrument. We consider a very simple imager as shown in Figure 1.12 (right)
composed of an aperture that could have any shape and a lens. The detectors are placed in the focal
plane of the lens. The light goes through optical elements which are orthogonal to the optical axis.

We will note fz1(x, y) = ψ(x, y, z1) the amplitude in the plane with abscissa z = z1. The transfor-
mation that allows to compute the amplitude in a plane z = z2, knowing the amplitude in a previous
plane z = z1, is the Fresnel transform defined in the following.

Propagation of a plane wave

For a plane wave fz(x, y) = ψ0 e
2iπ
λ

(αx+βy+γz), it follows that:

fz2(x, y) = fz1(x, y) e
2iπ
λ
γ(z2−z1) (1.6)

So a plane wave propagating from a plane in z1 to a plane in z2 is simply phase shifted. For other
types of waves, we will see that the transformation is more complex.

Transmission factor of an optical element

The coefficient in transmission of an optical element (aperture, lens, filter...) is defined as:

t(x, y) =
ψ(x, y, 0+)

ψ(x, y, 0−)
(1.7)

where z = 0+ and z = 0− are the planes at the entrance and at the output of the element. We can
give two examples. In case of a rectangular aperture of width a and length b, we have:

t(x, y) = Π
(x
a

)
Π
(y
b

)
(1.8)

where Π is the rectangular function. In case of a circular aperture with diameter d, it will be:

t(x, y) = Π

[√
x2 + y2

d

]
. (1.9)

Angular spectrum

We note f0(x, y) the amplitude of a monochromatic wave in the plane z = 0. It can be any type of
wave, not especially a plane wave. f0(x, y) can be expanded in a Fourier series:

f0(x, y) =

∫ ∞

−∞

∫ ∞

−∞
f̂0(u, v) e2iπ(ux+vy) dudv (1.10)

f̂0(u, v) is the Fourier transform in space of f0(x, y). We make the substitution α = λu, β = λv where
λ is the wavelength so

f0(x, y) =

∫ ∞

−∞

∫ ∞

−∞

1

λ2
f̂0

(
α

λ
,
β

λ

)
e

2iπ
λ

(αx+βy) dαdβ (1.11)

f̂0

(
α
λ ,

β
λ

)
is called the angular spectrum of f0(x, y) associated with angular frequencies α

λ and β
λ .
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1.2 A synthetic imager

Huygens-Fresnel principle

It states that every point on a wave front is itself the source of spherical wavelets. The amplitude at a
point on a plane z is the sum of all the amplitudes of these spherical wavelets. We call it principle for
historical reason but it can be demonstrated using the Maxwell equations. A demonstration is done
in annex A.1 in the case of paraxial optics but it is generally valid for off-axis optics as well, and a
general demonstration can be done using the Green functions [231], [232].

A convolution is well adapted to describe an operation acting on every point of the wave front so
the Huygens-Fresnel principle can be written as:

fz(x, y) = f0(x, y)⊗ eikr

iλr
(1.12)

with r =
√
x2 + y2 + z2. In the paraxial approximation we have |x|, |y| � z so

r =
√
ρ2 + z2 ' z

(
1 +

ρ2

2z2

)
with ρ2 = x2 + y2. (1.13)

So expression 1.12 becomes:

fz(x, y) ' eikz f0(x, y)⊗ 1

iλz
e
iπ
λz

(x2+y2) . (1.14)

Let us write the principle in a different way using a Fourier transform. We start by making the
convolution product explicit:

fz(x, y) =
eikz

iλz

∫ ∫
f0(x′, y′) e

iπ
λz

((x−x′)2+(y−y′)2) dx′dy′ (1.15)

=
eikz

iλz
e
iπ
λz

(x2+y2)

∫ ∫
f0(x′, y′) e

iπ
λz

(x′2+y′2) e
2iπ
λz

(xx′+yy′) dx′dy′ (1.16)

So finally, this is a Fourier transform with spatial frequencies
(
x
λz ,

y
λz

)
:

fz(x, y) =
eikz

iλz
e
iπ
λz

(x2+y2)F x
λz
, y
λz

[
f0(x′, y′) e

iπ
λz

(x′2+y′2)
]

(1.17)

where we used the notation f̂(u, v) = Fu,v[f(x, y)] for the Fourier transform.

Diffraction at infinity

In the far field, when z →∞, at first order in (x2 + y2), we have

e
iπ
λz

(x2+y2) ' 1 +
iπ

λz
(x2 + y2). (1.18)

Considering an aperture of diameter d, we always have x2 + y2 ≤ d2. The Fraunhoffer limit consists
in neglecting the second term which is justified if

d2

λz
� 1 ⇒ z � d2

λ
. (1.19)

Thus, in the Fraunhoffer approximation, expression 1.17 reduces to:

f∞(x, y) =
eikz

iλz
f̂0

( x
λz
,
y

λz

)
. (1.20)

This is a major result, the diffracted amplitude of a wave at infinity in a point (x, y) is equal to the
Fourier transform of this wave taken in the plane z = 0.
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We can also write the diffracted amplitude in a direction of propagation (α, β) with α ' x
z , β '

y
z :

f∞(α, β) =
eikr

iλr
f̂0

(
α

λ
,
β

λ

)
(1.21)

Let us take the example of a plane wave f0(x, y) = ψ0 e
2iπ
λ

(α0x+β0y). The diffracted amplitude at
infinity is:

f∞(α, β) =
eikr

iλr
ψ0δ(α− α0, β − β0) (1.22)

where δ is the Dirac distribution. This means that the intensity will be zero except in the direction
(α0, β0).

Observation in the far field using a lens

A lens can be modeled by a transmission factor that modifies the phase of the incident wave. In the
case of a plane-convex lens, it will be

t(x, y) = exp
−iπ(x2 + y2)

λR
(n− 1) (1.23)

where n is the optical index of the glass and R is the radius of curvature for the convex side of the
lens.

We consider a plane wave at normal incidence on the lens with amplitude ψ0. The lens is at z = 0.
Using the Fresnel transform, we can compute the amplitude in a plane z > 0. The general expression
is complicated but in the plane z = R

n−1 it reduces to:

fz(x, y) = −iψ0λz eikz δ(x, y) (1.24)

This leads to a bright point on the optical axis at z = R
n−1 which defines the focal length of the lens.

So a lens converts a plane wave into a spherical wave centered on its focal plane as represented in
Figure 1.13. Each direction on the sky, associated with a wave vector k corresponds to a single point
x on the focal plane. This would be similar for any optical combiner, for instance using a primary and
a secondary mirror.

Figure 1.13: A lens converts a plane wave into a spherical wave whose center is in the focal plane of
the lens.

This expression is similar to equation 1.22, where we looked at the propagation of a plane wave at
infinity. That is why observing in the focal plane of a lens is equivalent to observing at infinity. It gives
the possibility to build a very compact optical system observing in the far field where the Fraunhofer
approximation is valid. It is also a good way to observe at infinity without loosing too much intensity
as the power decreases with the square of the distance. Note that if the focal plane is covered with
sensors, such as a CCD, the image is sampled by the sensors.
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1.2 A synthetic imager

Point Spread Function of a telescope

We go back to the example of a basic imager as described in Figure 1.12 with a pupil and an optical
combiner like lens or mirrors.

Figure 1.14: Left: Sketch to illustrate the concept of the PSF. We show PSF at different wavelengths
(blue, green and red) for different directions on the sky on a focal plane. Right: Airy disk obtained at
infinity by illuminating a circular aperture with a laser.

We refer to the focal plane pattern resulting from a far field point source in a direction k as the
Point Spread Function (PSF). This is illustrated in Figure 1.14 (left). A point source in the far field
leads to an incoming plane wave, f0−(x, y) = ψ0 eik(α0x+β0y) where z = 0− is the plane right before the
aperture. Right after the aperture, in the plane z = 0+, the amplitude becomes:

f0+(x, y) = f0−(x, y)t(x, y) (1.25)

where t(x, y) is the transmission of the aperture. To write the amplitude in the focal plane of the lens,
we propagate f0+(x, y) at infinity, using the Fraunhofer approximation:

fF (α, β) =
eikr

iλr
f̂0+

(
α

λ
,
β

λ

)
(1.26)

=
eikr

iλr
t̂

(
α

λ
,
β

λ

)
⊗ f̂0−

(
α

λ
,
β

λ

)
(1.27)

=
eikr

iλr
t̂

(
α

λ
,
β

λ

)
⊗ ψ0δ(α− α0, β − β0) (1.28)

=
eikr

iλr
t̂

(
α− α0

λ
,
β − β0

λ

)
ψ0 (1.29)

In terms of intensity, we have:

IF (α, β) =
1

λ2r2
|ψ0|2

∣∣∣∣t̂
(
α− α0

λ
,
β − β0

λ

)∣∣∣∣
2

(1.30)

This shows that the PSF is proportional to the Fourier transform of the pupil:

PSFk(α, β) ∝
∣∣∣∣t̂
(
α− α0

λ
,
β − β0

λ

)∣∣∣∣
2

. (1.31)

The signal on the focal plane is the convolution of the incoming signal with the PSF of the instrument.
The PSF can be as complicated as needed. It includes optical element transmissions, propagation
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inside the telescope, possible reflections and any other possible optical effect. The position of the
figure on the focal plane depends on the incident angle of the incoming light, an inclination angle leads
to a translation of the figure on the focal plane. The image is centered on the point conjugated to the
incident direction according to optical geometry.

We have seen that diffraction and propagation can be represented with a convolution. This shows
that they are linear filters in the spatial frequency domain. For instance, in case of a circular aperture,
the PSF is the well known Airy disk as shown in Figure 1.14 (right). The first extinction in the Airy
disk is for θ ' 1.22λd , with λ the wavelength and d the aperture diameter. That is why the resolution
is not infinite, it is of the order of magnitude of λd . To have access to a better resolution, so to higher
spatial frequencies, the diameter must be increased or the wavelength decreased (see Figure 1.14, left).

1.2.2 A more general definition for the PSF

A convolution in real space

A signal S is observed through a system that can be modeled by a mathematical operator A. The
observed signal is AS(~x). Assuming that A is Linear and Invariant by Translation (LIT), we will show
that this operation is equivalent to a convolution. By definition of the Dirac distribution, we have:

S(x) =

∫
S(y)δ(x− y)dy, (1.32)

and because A is linear, we can write:

AS(x) =

∫
S(y)Aδ(x− y)dy. (1.33)

We define h(x) = Aδ(x), so

AS(x) =

∫
S(y)h(x− y)dy ≡ (h⊗ S)(x) (1.34)

This shows that any LIT operator convolves the incoming signal by a function h(x). In optics, this
function is the Point Spread Function (PSF) of the instrument. It is the analogue in space to the
impulse response in time used for example in electronics.

A product in Fourier space

The Fourier transform offers a description in terms of frequencies and not in position x. It is well
adapted for a signal not localised in space such as a sine wave. Another advantage is that convolution
in real space becomes a simple product in Fourier space:

Fk[h⊗ S] = Fk[h]×Fk[S] (1.35)

The Fourier transform of the PSF is called the transfer function H(k) = Fk[h].

1.2.3 A bolometric interferometer seen as a synthetic imager

We now have all the concepts and the mathematical formalism needed to describe the QUBIC optics.
As briefly mentioned in section 1.1.3 the specificity of QUBIC is to have a horn array at the entrance
of the telescope.

The horn-array is responsible for the QUBIC PSF shown in Figure 1.15, for different horn array
configurations, considering a point source in the far field, emitting at 150 GHz, aligned with the optical
axis. In case of only one horn open, we are back to classical imager with a Gaussian PSF. When two
horns are open, the PSF is made with fringes whose orientation and spacing depend on the baseline
chosen as in the Young experiment. When the number of open horns increases, the PSF becomes more
complex. It is the result of constructive interferences between all re-emitted radiation from the open
horns. Finally, when all horns are open, the PSF has a central peak and four secondary peaks contained
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Figure 1.15: Pattern obtained on the focal plane (PSF) when opening 1, 2, 3, 4, 10 and 400 horns.
The horn array is shown on the left. These images are obtained considering an on-axis point source in
the far field, emitting at 150 GHz.

on the focal plane. This is valid for this configuration with a given wavelength and a given point source
direction. The horn-array is similar to a diffracting grid. Figure 1.16 is a picture of diffraction of a
laser by a child’s toy glasses made with a double axis diffracting grid (∼ 530 lines per millimeter). I
made this optical setup myself in order to better understand the QUBIC optics using an equivalence
in the visible domain. We will come back on this setup in chapter 6, section 6.1.1.

Figure 1.16: Diffraction of a laser by a double axis diffracting grid (∼ 530 lines per millimeter).
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Thus, QUBIC can be seen as an imager with a very peculiar PSF caused by the horn-array. If the
horns were infinitely small, the secondary peaks in the PSF would be sent to infinity outside the focal
plane and we would be back to a standard imager with a square aperture.

It is also possible to consider QUBIC as an interferometer, and actually, any imager is an interfer-
ometer in the sense that each point of its aperture can be seen as a source re-emitting the radiation,
equivalent to the horns. This is precisely the Huygens-Fresnel principle mentioned in section 1.2.1.
In this way, the formation of an image on the focal plane can be seen as the result of constructive
interference between all re-emitted radiation.

I think this summarizes the most important concept I wanted to present in this chapter.

1.2.4 Expression of the QUBIC Point Spread Function

We just saw how the QUBIC PSF looks like and now we will derive the mathematical expression of the
PSF for an instrument like QUBIC. We note xh(xh, yh, 0) the position vector of horn h. We consider
an incoming plane wave with a wave vector k = 2π

λ (α0, β0, γ0). We note r(x, y, z) a point on the focal
plane with corresponding angles α ' x

f , β '
y
f where f is the focal length. We will refer to Figure 1.17

for the notation.

Figure 1.17: Optical sketch for an instrument like QUBIC.

Ak(x, y) is the transmission of a single horn for an incident direction k. We make the hypothesis
that every horn has the same transmission. The transmission of the horn array in case of N horns can
be written as:

tk(x, y) =
N∑

h=1

Ak(x− xh, y − yh) (1.36)

To write the Fourier transform of the transmission expressed in
(
α−α0
λ , β−β0λ

)
we use the property of

translation for a Fourier transform. This gives:

t̂k

(
α− α0

λ
,
β − β0

λ

)
= Âk

(
α− α0

λ
,
β − β0

λ

) N∑

h=1

e−2iπ
α−α0
λ

xh e−2iπ
β−β0
λ

yh (1.37)

= Âk

(
α− α0

λ
,
β − β0

λ

) N∑

h=1

exp

{
−i
(
r

f
− k

)
· xh

}
. (1.38)

Finally, by taking the square modulus, we obtain the PSF:

PSFk(r, λ) = PSFhorn
k

N∑

h,h′=1

exp

{
−i
(
r

f
− k

)
· (xh − xh′)

}
(1.39)

where PSFhorn
k =

∣∣∣Âk
(
α−α0
λ , β−β0λ

)∣∣∣
2
is the PSF of a single horn. In case of a square array of horns

with P horns on each side, separated by ∆h, it is possible to compute an analytical expression of the
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PSF. Indeed, the transmission can be written:

tk(x, y) =
P∑

h=1

P∑

h′=1

Ak
[
x− (h− 1)∆h, y − (h′ − 1)∆h

]
(1.40)

and using the formula
∑N−1

n=0 x
n = 1−xN

1−x , we can simplify the terms in equation 1.37. If we note
Cα = π∆h

α−α0
λ , we have:

P∑

h=1

e−2iCα(h−1) =
1− e−2iCαP

1− e−2iCα
(1.41)

=
e−iCαP

(
eiCαP − e−iCαP

)

e−iCα (eiCα − e−iCα)
(1.42)

=
e−iCαP sin(CαP )

e−iCα sin(Cα)
. (1.43)

So the PSF of a square array of horns can be written:

PSFk(r, λ) = PSFhorn
k

sin2(CαP )

sin2(Cα)
× sin2(CβP )

sin2(Cβ)
(1.44)

= PSFhorn
k

sin2(P π
λ∆h(xf − α0))

sin2(πλ∆h(xf − α0))
×

sin2(P π
λ∆h( yf − β0))

sin2(πλ∆h( yf − β0))
(1.45)

where we replaced (α, β) by (xf ,
y
f ).

1.2.5 QUBIC synthesized beam

In this section, we introduce the notion of the instrument beam which is similar to the radiation pattern
of an antenna. Previously, we defined the PSF which, in summary, is the response of the instrument
on the detectors for one direction on the sky and one wavelength. On the contrary, the beam is the
response of one detector for all the directions on the sky at one wavelength. It basically gives the field
of view of the detector.

We consider a point source in the far field of the instrument. The image on the focal plane is the
PSF centered on the image given by optical geometry. Now, we consider a single detector on the focal
plane. This detector sees a sample of the PSF, depending where it is placed on the focal plane. If we
scan the field of view with the instrument, which is equivalent to move the point source, the PSF moves
on the focal plane. In this way, the detector will sample the PSF as long as the scan. So, knowing the
scanning strategy, the signal seen by the detector can be used to make an image of the full PSF with
high resolution (not limited by the pixel size on the focal plane). A sketch of this method for a scan
in azimuth and elevation is shown in Figure 1.18 (left).

So in this way, you measure the response of the detector for all directions on the sky and this
is precisely the definition of the detector beam. So it is very clear why the detector beam will have
the same expression as the PSF. This could also be justified by the principle of reversibility of light:
considering a source at the detector place, the beam would be the PSF projected on the sky.

Detector beam measurement

For this measurement, the QUBIC instrument scans in azimuth and elevation a calibration source
placed on the wall in the laboratory [8]. The source can be consider in the far field, we also use a
flat mirror to increase the path length. The signal emitted by the source is modulated by a sine wave
with frequency around 1 Hz in order to improve the accuracy of the measurement. Indeed, it is always
easier to detect a signal which varies in time at a known frequency than a constant signal. Because
of the modulation, we have to scan slowly and a complete scan (30× 30 degrees) takes approximately
24 hours. In this way, by ordering the TOD on an image, we get a map for each detector that shows
its beam. One example is shown in Figure 1.19. The calibration source is tunable in frequency, so we
have measured the beams at 130, 140, 150, 160 and 170 GHz.
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Figure 1.18: Left: Sketch of the beam measurement by scanning a point source. Right: Sketch of the
primary and secondary beams for a single horn.

Figure 1.19: Beam for one detector at 150 GHz. Comparison between measurement (left) and simula-
tion (right). Taken from [8].

Synthesized beam expression

QUBIC observes the sky through the horns. Before defining the beam for a detector on the focal plane,
we need to define the beam of a single back-to-back horn. The beam looking at the sky, Bprim(k, λ), is
called the primary beam and is a Gaussian with a Full Width at Half Maximum (FWHM) of 13◦ [6].
The beam looking toward the focal plane, Bsec(r, λ), is called the secondary beam and is identical to
the primary one. Figure 1.18 (right) is a sketch showing the two beams.

The beam of one detector q on the focal plane centered in rq is called synthesized beam Brq(k, λ).
As explained previously, it is identical to the PSF (considering a focal plane with infinity resolution
and no spatial limit):

Brq(k, λ) = PSFk(rq, λ). (1.46)

The detector sees the sky through the horns so the synthesized beam can be written as a function of

30



1.2 A synthetic imager

the primary and secondary beams:

Brq(k, λ) = Bprim(k, λ)Bsec(rq, λ)

N∑

h,h′=1

exp

{
−i(rq

f
− k) · (xh − xh′)

}
. (1.47)

The PSF of a single horn is identical to the product of the primary and secondary beams:

Bprim(k, λ)Bsec(rq, λ) = PSFhorn
k (rq, λ) (1.48)

Note that in this expression, f is the focal length of the optical combiner, not the frequency. A cut
of the synthesized beam, considering a square horn array is shown in Figure 1.20, for two detectors,
one placed at the center of the focal plane and another r = 12 mm apart. The beam is shifted by
r/f ' 2.3◦. This shift will be used in section 2.3.3 to measure the focal length from the synthesized
beam maps.
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Figure 1.20: Cut of the synthesized beam as a function of θ (off-axis angle of the source) for a square
array of 20×20 pupils separated by ∆h = 14 mm for a source emitting at 150 GHz (2 mm wavelength)
for a detector located at the center of the focal plane (r = 0) and 12 mm apart. Dashed lines represent
the primary beam of the pupils (Gaussian). Resolution and peak separation depend linearly on the
wavelength λ [9].

Synthesized beam in terms of amplitude

We defined the instrument beam in terms of intensity, i.e. the PSF was defined in equation 1.39 by
taking the square modulus of the transmission. We may need a definition of the instrument beam in
terms of amplitude of the electric field. From equation 1.47, we write

Arq(k, λ) = Aprim(k, λ)Asec(rq, λ)

N∑

h=1

exp

{
i(
rq
f
− k) · xh

}
(1.49)

where the instrument beams in terms of amplitude are defined such as |A|2 = B.
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Mean intensity received by a detector

We can compute the mean intensity received by a detector. Signals coming from two lines of sight k
and k′ are not coherent (sources are at infinity) so they will not interfere and we can sum the intensities
over all the directions. So far we have only considered monochromatic waves. Actually, the signal must
be integrated over the wavelength range defined by filters with band-pass F (λ). Signals at different
wavelengths do not interfere with each other so we can sum the intensities. Finally, for a detector
centered at rq, the signal must be integrated over its surface a and averaged over its integration time
τ . Therefore, the mean intensity received by a detector is:

I(rq) =

∫

k

∫

a

∫

λ

〈
|S(k, λ, t)|2

〉
τ
Bsynth(rq, λ) dkdaF (λ)dλ. (1.50)

where S(k, λ, t) is the amplitude of the incoming signal at time t.

Angular resolution

Similarly to the case of a simple aperture, the resolution, given by the FWHM of the peaks in the
synthesized beam is inversely proportional to the diameter D of the aperture, the largest baseline in
the case of QUBIC:

r =
λ

D
. (1.51)

So, for the FI, the largest baseline is made with 22 horns spaced with ∆h = 14 mm leading to a
resolution of 0.39◦ at 150 GHz while for the TD, with a 8× 8 horn array, it is 0.83◦.

The angular separation between peaks is λ
∆h

so it linearly depends on the wavelength λ. Chapter 6
is dedicated to spectral imaging, a technique entirely based on this wavelength dependence.

Making imagery with a single detector

The measurement of the synthesized beam is a good illustration of the possibility to get an image with
a single detector by scanning the field of view. An analogy would be to look at a painting on a wall
through a very small hole. By changing the sighting direction, you can reconstruct the entire painting.
This is similar to the principle of a camera obscura known since a very long time.

1.2.6 QUBIC as an interferometer

So far, we have shown that QUBIC can be treated as an imager with a very specific PSF. Is-it possible
to consider it as an interferometer and to apply the techniques developed in radio astronomy? In radio
astronomy, because wavelengths are large, the resolution of a classical (single dish) imager (∼ λ

D ) is
poor. However a much better resolution can be achieved with interferometry.

Interferometry means a recombination of light coming from the same direction on the sky but
which traveled on different paths. In radio astronomy, the electric field E(t) (amplitude and phase)
is registered with several antennas and the combination is done analogically or numerically, adding a
phase shift on signals. This is possible because the frequency is low. On the contrary, in the visible
domain, the signal is the average intensity 〈E(t)E∗(t)〉τ where τ is the integration time of the detector.

We will use the Young experiment to introduce the concept of visibility, which is the usual observable
in radio astronomy. The Young experiment, consists in observing a point source in the far field through
2 circular apertures T1 and T2 separated by a distance ||−−→T1T2|| = d. We define b =

−−−→
T1T2
λ the baseline

vector in wavelength unit, a baseline being composed by two apertures. The interference pattern
obtained is shown in Figure 1.21. This is again a very simple setup I made, using a laser illuminating
two holes perforated in an aluminum sheet. We recognize the Airy disk seen in Figure 1.14, for the
case of one aperture, but with fringes inside.

We consider an extended source in direction k at infinity, emitting at frequency ν. We note B(k)
the brightness distribution of the source observed with the instrument beam and Btot the total observed
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1.2 A synthetic imager

Figure 1.21: Interference pattern obtained with the Young experiment, two holes lighted by a laser
observed at infinity. The Airy disk contains vertical fringes.

brightness. The intensity in r on the focal plane, at time t is:

I(r, t) =

∫
B(k) [1 + cos(2πk · b− ϕr)] dk

= Btot +

∫
B(k) cos(2πk · b− ϕr)dk

with ϕr the phase shift occurring after the apertures, it is 0 in the center of the focal plane. We can
integrate over the source because it is spatially incoherent. From the previous expression, we can say
that observing the sky through two apertures is equivalent to have a spatial filter in front of the source
(at infinity) with a sinusoidal transfer function:

Fb(k, r) = cos(2πk · b− ϕr). (1.52)

Using trigonometry, intensity writes in a different form:

I(r) = Btot +

∫
B(k) [cos(2πk · b) cosϕr + sin(2πk · b) sinϕr] dk

= Btot + I1 cosϕr + I2 sinϕr

where we introduced the two observables I1 and I2. They contain all the spatial information that can
be obtained from the two apertures. The measurement of the intensity at different points with specific
phase shift as ϕr = 0 and ϕr = π/2 give access to I1 and I2.

By convention, the complex visibility V is:

V = I1 + iI2 = |V | eiφ = |V |(cosφ+ i sinφ)

where, by definition, cosφ = I1
|V | and sinφ = I2

|V | . The couple (|V |, φ) is equivalent to (I1, I2). We have

I(r) = Btot + |V | cosφ cosϕ+ |V | sinφ sinϕr (1.53)
= Btot + |V | cos(ϕr − φ). (1.54)

Thus, the meaning of (|V |, φ) is the following: |V | is the maximum intensity that the filter can transmit
and the intensity is maximum when ϕ = φ(2π). So φ is the phase shift of the filter which gives the
maximum intensity.
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Imagery from the visibility

The measurement of a single visibility from a given pair of apertures corresponds to an observation
through a given filter. As we selected a single spatial frequency we lost many information and it is not
sufficient to reconstruct an image. However, by measuring a set of visibilities, varying the orientation
and the space between the two apertures, we will see that the reconstruction of an image becomes
feasible. This is equivalent to varying the orientation and the spatial frequencies of the filter. From
the expressions of I1 and I2, we can write:

V (b) =

∫

k
B(k) e2iπk·b dk. (1.55)

We define (u, v) as the two components of the aperture vector b projected on the plane perpendicular
to the source direction: the uv-plane. By measuring the visibility for different baselines, we can sample
the visibility V (u, v) on the uv-plane:

V (u, v) =

∫

k
B(l,m) e2iπ(ul+vm) dldm = F [B(l,m)] (1.56)

where (l,m) = k. This is the Van-Cittert Zernicke theorem [233]: the complex visibility is the Fourier
transform of the observed field (beam multiplied by the intensity of the source). So an interferometer
measures the Fourier modes of the observed sky, the spatial frequency of the mode is given by the
length of the baseline.

We see that, if V is known for any (u, v) then the intensity of the source, knowing the beam of
the instrument, is known at any point on the sky (l,m). Actually, it is possible to show that a finite
number of samples would be sufficient for the reconstruction of the image of the source. The technique
that allows to make an image by sampling the complex visibility is called aperture synthesis and it is
a wide field in radio astronomy.

In radio astronomy, the synthesized beam called “dirty” beam can also be computed, it is the
Fourier transform of the set of visibilities.

Treating QUBIC as an interferometer

For QUBIC, the direct observable is the dirty image and it is possible to retrieve a set of complex
visibilities from it. This was developed during the thesis of Romain Charlassier [2], [10]. Then,
visibilities could be used to produce images as in radio astronomy. It is also convenient to get power
spectra. However, this possibility was not followed because of its heavy hardware complexity. Indeed,
it involves an individual phase shifter for each aperture and specific phase shifting schemes in order to
demultiplex each individual visibility from the global measurement.

1.3 A polarimeter

1.3.1 The Stokes parameters

The polarisation of an electromagnetic wave is described by the orientation of the electromagnetic field
E(r, t) orthogonal to the direction of propagation k. We can decompose E(r, t) on a basis (ex, ey)
orthogonal to k:

E(r, t) = E0 ei(kr−ωt) with E0 = Axex +Ay e−iϕ ey (1.57)

where ω is the angular frequency in radians per second, ϕ a phase and Ax, Ay the amplitudes. When
ϕ = 0, the wave is linearly polarized. When ϕ = π

2 and Ax = Ay, it is circularly polarized. The
electromagnetic radiation can be described by the four Stokes parameters [19]. The first one is the
intensity:

I = |Ex|2 + |Ey|2. (1.58)

It can be measured by a detector not sensitive to the polarization such as a bolometer. At high
frequencies, an instrument does not measure I(t) but 〈I(t)〉τ where the average is done over the
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1.3 A polarimeter

integration time τ of the detector, much longer than the electromagnetic oscillation period 2π
ω . The

second Stokes parameter is defined as the difference of intensities between two orthogonal axes:

Q = |Ex|2 − |Ey|2. (1.59)

We see that for a linear polarization oriented at 45◦ of x and y, Q is zero. So we need a second
parameter to fully describe the linear polarization. This is the parameter U which is the parameter Q′

measured in a frame (e′x, e
′
y) rotated of 45◦ from the frame (ex, ey). In this frame, the electric field

components are: Ex′ = (Ex + Ey)/
√

2 and Ey′ = (Ey − Ex)/
√

2. So,

U = Q′ = |Ex′ |2 − |Ey′ |2 = ExE
∗
y + E∗xEy = 2 Re(ExE

∗
y). (1.60)

Finally, we need a last parameter to describe the circular polarization, it is the Stokes parameter V .
To measure a circular polarization, we can use a quarter-wave plate which introduces a π/2 phase shift
on Ex: Ex′ = ei

π
2 Ex and Ey′ = Ey. The field Ex and Ey that were in phase quadrature become in

phase so the polarization is linear, at 45◦ of (e′x, e
′
y). Thus, Q′ is zero and it is U ′ that characterizes

the circular polarization:

V = U ′ = Ex′E
∗
y′ + E∗x′Ey′ = i

(
ExE

∗
y − E∗xEy

)
= −2 Im(ExE

∗
y). (1.61)

The I and V parameters do not depend on the reference frame contrary to Q and U . In a basis
(ex
′, ey ′) rotated from (ex, ey) by an angle α around ez, the electric field becomes:

(
E′x
E′y

)
= Jrot

(
Ex
Ey

)
with the rotation matrix Jrot =

(
cosα sinα
− sinα cosα

)
. (1.62)

It follows that

Q′ = Q cos (2α) + U sin (2α) (1.63)
U ′ = −Q sin (2α) + U cos (2α) (1.64)

which can be condensed in:
(Q′ ± iU ′) = e∓2iα(Q± iU). (1.65)

Note that this is the definition of a spin-2 quantity and we will come back on this point in section 4.2.5.
In the case of α = π

4 , we have Q′ = U . So, as said previously, we verify that U is equivalent to Q in a
referential frame rotated by 45◦.

1.3.2 Measuring a linear polarization

QUBIC bolometers are full power detectors, they are not polarization sensitive. The measurement
of the polarization is achieved by modulating the incoming radiation with a rotating HWP and a
polarizing grid as shown in Figure 1.22. The choice of this design will be discussed in section 2.1. As
we will see, this allows QUBIC to measure the Stokes parameters I, Q and U .

We use the formalism introduced by Jones in 1942 [234], [235]. This is a method to describe the
behavior of polarized light crossing optical elements. Each optical element is associated with a 2 × 2
matrix acting on the electric field. The matrix terms may be complex in order to include the phase
shifts. The electric field after the optical element Eout is

(
Eout
x

Eout
y

)
= J

(
Ein
x

Ein
y

)
(1.66)

where J is the Jones matrix and Ein the incident electric field.
We consider an on-axis point source in the far field. The incident electric field is E(r, t) = Exex+

Eyey. The instrument frame (ex, ey, ez) is defined such that ez is the optical axis of the instrument
(see Figure 1.22).
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Figure 1.22: Rotating half wave plate (HWP) and polarizing grid to modulate the polarization of the
radiation.

The Jones matrix associated with the HWP is:

Jhwp =

(
1 0
0 −1

)
(1.67)

so that the rotating HWP is

JTrotJhwpJrot =

(
cos(Ωt) − sin(Ωt)
sin(Ωt) cos(Ωt)

)(
1 0
0 −1

)(
cos(Ωt) sin(Ωt)
− sin(Ωt) cos(Ωt)

)
(1.68)

=

(
cos(2Ωt) sin(2Ωt)
sin(2Ωt) − cos(2Ωt)

)
, (1.69)

Ω being the HWP angular speed and t the time. The polarizing grid is placed such that its transmission
axis is aligned with ex so its Jones matrix is:

Jpol =

(
1 0
0 0

)
. (1.70)

Thus, the electric field coming out of the polarizing grid and entering the horn array is

Eh(r, t) = JpolJ
T
rotJhwpJrotE(r, t) =

[
Ex cos(2Ωt) + Ey sin(2Ωt)

]
ex (1.71)

where the h index stands for the horn array. The corresponding intensity is therefore

S(t) = [Ex cos(2Ωt) + Ey sin(2Ωt)]2. (1.72)

Using the definition of the Stokes parameters given in section 1.3.1, we can write S(t) as the following:

S(t) =
I +Q

2
cos2(2Ωt) +

I −Q
2

sin2(2Ωt) +
U

2
sin(4Ωt) (1.73)

=
1

2
[I +Q cos(4Ωt) + U sin(4Ωt)] (1.74)

where we see that the three Stokes parameters are modulated four times faster than the angular speed
of the HWP. For QUBIC, the HWP can move step by step on eight positions regularly spaced between
0 and π/2 2. The intensity corresponding to each position α = Ωt is a linear combination of I, Q and
U as shown in Table 1.1. Figure 1.23 shows the peak-to-peak amplitude of the detected calibration
source for different HWP positions as measured with a TES near the center of the focal plane. Thus,
by measuring S(t) at least three times with different HWP positions, we can measure the three Stokes
parameters in direction z on the sky. We simply have to solve a linear system. Some detail will be
given in section 5.2.6.

2The eight positions are well identified by an encoder but we can have access to all positions through counting the
number of motor steps.
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1.4 Optical combiner alignment

Position 0 1 2 3 4 5 6 7
α [rad] 0 π

16
π
8

3π
16

π
4

5π
16

3π
8

7π
16

2S I +Q I + Q+U√
2

I + U I − Q−U√
2

I −Q I − Q+U√
2

I − U I + Q−U√
2

Table 1.1: Intensity measured as function of I, Q, U for the eight HWP steps of QUBIC.
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Figure 1.23: Peak-to-peak amplitude of the detected calibration source for different HWP positions as
measured with a TES near the center of the focal plane. The 7 positions, each associated with a given
color, are spaced by 15◦ in order to span 90◦ between position 1 and position 7. Taken from [8].

1.4 Optical combiner alignment

The QUBIC mirrors are placed on hexapods in order to adjust their position. They were first aligned
using a mechanical FARO arm to measure the position of their surfaces in three dimensions. Then,
the measured positions were compared to a mechanical model and the hexapods were adjusted until
reaching the requirements.

An optical alignment using a laser was done as a check for the mechanical procedure. In this section,
we will summarize the optical alignment method described in paper [6]. This work was realized in May
2018, I was responsible for the data taking and data analysis in collaboration with people in Roma.
Here I show the analysis for data taken on May, 17 and 22.

1.4.1 Experimental setup

The optical alignment of the combiner was done with a He-Ne laser moved along (x, y) axis over the
64 positions of the 8× 8 feed-horn array, see Figures 1.24 and 1.25. The method relies on the fact that

Figure 1.24: Sketch of the experimental setup.
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while translating the laser along x and y axes, the spot on the focal plane should not change place. A
mechanical support allowed to tilt the laser from the nominal direction 0.0◦ along x and y directions.
For each horn position the illumination map on a fake focal plane has been acquired by a CCD camera.
We will look at six data sets, two for which the laser is at 0.0◦ and the four others for which it is tilted
at ±6.5◦ in the x and y directions.

(a) Laser on its support. (b) Spot on the focal plane.

Figure 1.25: Pictures taken during the optical alignment.

1.4.2 Comparison to a model

We generated optical models of the combiner at ambient temperature with Zemax software, using
the real measured surfaces of both TD mirrors. Measurements are compared to a model considering
nominal laser directions, referred as “Nominal Zemax model” and listed in Table 1.2. We also compared

Laser inclination along (x, y) [deg] Zemax centroid positions (X, Y) [mm]

(0, 0) (0.463, -0.647)

(0, +6.5) (0.167, -40.158)

(0, -6.5) (0.568, 30.226)

(+6.5, 0) (-34.862, -5.189)

(-6.5, 0) (35.426, -4.478)

Table 1.2: Nominal Zemax model centroid positions.

to a model with measured tilt angle of the laser, referred as “Zemax model” in the plots. We made the
hypothesis that the tilt of the laser support was constant during the six measurements, so we assumed
the same tilt for the on-axis positions and for the off-axis positions. However this assumption does
not seem to be correct because nominal inclinations are more consistent with data as shown in the
following plots.

1.4.3 Analysis by detecting the center of each spot

The center of each laser spot is detected as in the example shown in Figure 1.26, left. I did it for the
64 horn positions and for the five inclinations. The result is shown in Figure 1.26, right, where we
show the ellipses at 1, 2 and 3 sigma. The positions obtained with Zemax software are shown with
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1.4 Optical combiner alignment

errorbars assuming a ±0.5◦ laser direction error. The two on-axis measurements superimpose in the
middle of the plot. The dispersion is large, due to the difficulty of detecting the laser spot center. This
is because of a poor reflectivity of the mirrors in the visible range. Indeed in the microwave domain,
a rough surface is sufficient to reflect the light. A similar analysis was performed in Roma and the

40 20 0 20 40
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60
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0

20

40

Y 
[m

m
]

Centroids - ellipses at 1,2,3 sigmas

APC centroids
Nominal Zemax model
Zemax model

Figure 1.26: Analysis by detecting the centers of each spot. Left: Detection of the spot center on one
image. Right: Centers detected with the APC pipeline compared to Zemax models with nominal laser
inclinations (green) and with measured tilt angles.

comparison is shown in Figure 1.27.

1.4.4 Analysis by doing the product of images

I have performed a second type of analysis. An image can be seen as the probability distribution of
light in the focal plane. Doing the product gives the probability distribution of the mean. Then, it is
possible to draw contours at 1, 2 and 3 sigma on the product image. Figure 1.28, left, is an example
of the product image with the 3 contours. One advantage of this method is that we do not do any
assumption concerning the shape of the distribution which is clearly not a Gaussian. Figure 1.28, right,
shows the results obtained with this analysis for the five laser inclinations still compared with the two
Zemax models (nominal and measured laser tilts).
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Figure 1.27: Comparison between APC and Roma pipelines.
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Figure 1.28: Left: Product image for the data set of the 17/05/18 at 0.0◦ inclination. Contours at
1, 2 and 3 sigma are shown. Right: Contours for each data set compared to the Zemax models with
nominal laser inclinations (green) and with measured laser tilt (red).

40



1.4 Optical combiner alignment

1.4.5 Conclusion of the optical alignment

The results of the procedure showed that we were able to recover consistent centroid positions with
three different analysis and assuming nominal laser directions. However, we were not able to satisfy the
tightest constraints of the Zemax model, the current accuracy can not constrain the alignment within
the expected tolerances. For this reason we have to rely on the FARO arm 3D measurement. However,
since the FI mirrors will have a much better surface roughness, the optical alignment for the FI will
have a much better accuracy. It is expected to be more precise than with the mechanical process. So
this work is an important step for FI mirror alignment as we have developed all the hardware and data
analysis tools needed for it.

Conclusion

In this chapter we have presented the concept of bolometric interferometry, focusing on the optical
design. I made the choice to present QUBIC as a classical imager with a very peculiar PSF caused by
the horn array. The crucial concept of synthesized beam has been defined too. We have also seen how
QUBIC can measure the polarization, thanks to the rotating HWP and the polarizing grid. Finally, I
presented the optical alignment procedure and data analysis of the two mirrors.

In the next chapter we will focus on the instrument calibration and we will see how this particular
design is an advantage regarding the control of instrumental systematic effects.
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First steps towards self-calibration
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QUBIC was initially mainly designed for a precise control of systematic effects thanks to interfer-
ometry. The capability of self-calibration of the instrument has been studied in detail in the thesis
by Marie-Anne Bigot-Sazy [11]. This chapter gives an overview of the optical calibration of the in-
strument. In the first section, I present work, based on the formalism developed by Marie-Anne but
adapted to the current instrument configuration in order to justify the design of the QUBIC polarime-
ter. Then, in the second section, I describe the principle of self-calibration based on the comparison
between redundant baselines.
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The rest of the chapter presents two analysis I performed with calibration data in order to explore
the self-calibration ability. In section 2.3, I present an analysis of the detector synthesized beam maps
obtained by scanning a calibration source in the laboratory. The displacement of the multiple peak
beam on the sky from one detector to another is used to measure the focal length of the optical
combiner. Note that determining the focal length is not needed, it is more one exercise to explore
self-calibration. Sections 2.4 and 2.5 treat the interference fringes measured from individual baselines:
simulations, data taking and data analysis. This is a key step for self-calibration. Finally, section 2.6
describes a method to inter-calibrate bolometers by fitting the fringe images. Here again, the focal
length is measured from the data as an exercise to test self-calibration. Those analyses can be seen as
a first step toward a complete self-calibration procedure which is not yet developed.

Personal contributions: This chapter is mainly personal work, realized in collaboration with
many people, especially Jean-Christophe, Steve, Michel, Jean, James and Créidhe.

2.1 Optimization of the polarimeter design

The control of systematic effects is fundamental for experiments targeting the B-mode signal. As we
will see in this section, the design of the QUBIC polarimeter has been optimized to limit two major
systematic effects: cross-polarization and intensity to polarization leakage.

As we have seen in section 1.3.2, the modulation of the polarization is done with a rotating HWP
followed by a polarizing grid. They are placed at the entrance of the instrument, between the window
and the horn-array.

Historically, the design of QUBIC was different [12]. The HWP was placed between the horn-array
and the primary mirror and the polarizing grid was placed between the secondary mirror and the two
focal planes. In this way, both polarization directions could be observed at the same time, on two
focal planes, one in transmission and the other in reflection. In 2014, the BICEP experiment claimed
a primordial B-modes detection [152] but it was quickly shown through a joint analysis using the
Planck data that the observed B-modes were due to polarized emission from galactic dust [153]. It
was then realized by the CMB community how measurements in several frequency bands are crucial
to desentangle CMB with foregrounds (see section 5.4). This is why the QUBIC design was updated
in order to have two focal planes centered on 150 and 220 GHz instead of two focal planes with the
two polarization directions but both at 150 GHz.

In addition of adding a frequency band, this new design is also robust to cross-polarization. This
will be explained in the next section. Moreover, it was optimized to limit the leakage from intensity
to polarization. However, it has the inconvenient of loosing half of the photons but through a twice
wider bandwidth with respect to before.

2.1.1 Limiting the cross-polarization

QUBIC bolometers are full power detectors. As seen in section 1.3.2, the measurement of the polar-
ization is only done by modulating the signal amplitude with the rotating HWP and the polarizing
grid.

Every optical element has its own systematic effects which could induce cross-polarization. This
means that the two polarization directions (x, y) of the signal can be mixed when interacting with
the instrument. Knowing that QUBIC is a polarimeter aiming at measuring the tiny B-mode signal,
cross-polarization is a major issue. The x-axis is defined as the transmission axis of the polarizing grid.
As sketched in Figure 2.1, by putting the HWP and the polarizing grid right after the window, the
x polarization is selected as early as possible. In this way, any cross-polarization occurring after the
polarizing grid, for example generated by the horn-array, the mirrors or any reflection in the instrument,
has no impact. The modulation of the polarization was tested during the calibration phase and a very
low cross-polarization was indeed detected. Those measurements are presented in [8] and [4]. As shown
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2.1 Optimization of the polarimeter design

Figure 2.1: Comparison of the two designs in terms of cross-polarization. (x, y) represent the two
directions of polarization.

in Figure 2.2, the cross-polarization contamination at 150 GHz is compatible with zero to within 0.4%.
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Figure 2.2: Amplitude of the detected calibration source at 150 GHz as measured with a TES near
the center of the focal plane for the HWP in the different positions and fitted to a sine curve. Taken
from [8].
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Chapter 2. First steps towards self-calibration

2.1.2 Systematic effect modeling

In this section, we copy the formalism developed by Marie-Anne Bigot-Sazy in her thesis [11] and in
the corresponding paper [13]. However her work was based on the old design so I adapted it to the
current one.

In order to model systematic effects, we introduce gain and coupling terms in the Jones matrices
defined in section 1.3.2. A generic Jones matrix to model systematic effects is

J =


1− gx ex

ey 1− gy


 (2.1)

where gx, gy are the gain parameters and ex, ey the coupling parameters associated with the polarization
directions x and y. The terms may be complex if they introduce a phase shift. The HWP and the
polarizing grid are modeled by the following matrices

Jhwp =


1− hx ξx

ξy −1− hy


 and Jpol =


1− εx ρx

ρy εy


 . (2.2)

Still following [13], we write the propagation of electric field E through horn i up to bolometer q as


E

x
iq

Eyiq


 = αiqβi(k)


Ex
Ey


 =


α

x
iq 0

0 αyiq




β

x
i (k) 0

0 βyi (k)




Ex
Ey


 . (2.3)

The matrices αiq, βiq fully characterize the instrument. Their terms can be defined from equation 1.49.
βiq includes the primary beam in terms of amplitude Aprim, the incident direction k and the horn
position xi. We have

βxi (k) = Axprim,i(k, λ) exp

{
i2π

λ
xi · k

}
and βyi (k) = Ayprim,i(k, λ) exp

{
i2π

λ
xi · k

}
. (2.4)

αiq includes the secondary beam in terms of amplitude Asec and the phase induced by the optical
combiner:

αxiq = Axsec,i(rq, λ) exp

{
i2π

λ
xi ·

rq
f

}
and αyiq = Aysec,i(rq, λ) exp

{
i2π

λ
xi ·

rq
f

}
. (2.5)

where f is the focal length of the optical combiner and rq the position of the bolometer1.
The definition above assumes ideal horns. The propagation through a horn i, taking into account

systematic effects, is modeled by the matrix

Jhorn,i =


1− gx,i ex,i

ey,i 1− gy,i


 . (2.6)

Finally, the complex electric field E propagating through the HWP, the polarizing grid and the
horn i is

Ei = αiqβi(k)Jhorn,iJpolJ
T
rotJhwpJrotE (2.7)

where Jrot is the rotation matrix defined in section 1.3.2.

1To be complete, αiq should also include the gain of the bolometer, the integration over its surface and the integration
over the frequency bandwidth.
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2.1 Optimization of the polarimeter design

2.1.3 Limiting the leakage from intensity to polarization

In this section, we want to justify the choice of using a rotating HWP followed by a polarizing grid.
At the time of the current polarimeter design was made, three possibilities were considered:

1. the current one, a rotating HWP followed by a fixed polarizing grid so that the electric field
entering the horn array is

Eh = JpolJ
T
rotJhwpJrotE. (2.8)

As we have seen in section 1.3.2, this leads to a modulation of the intensity S(t) at four times
the HWP angular speed:

S(t) = |Eh|2 =
1

2
[I +Q cos(4Ωt) + U sin(4Ωt)] . (2.9)

2. The second configuration that was studied is to use a rotating polarizing grid and no HWP so
that the electric field entering the horn array is

Eh = JTrotJpolJrotE. (2.10)

This leads to a modulation with a frequency twice higher than the angular speed

S(t) =
1

2
[I +Q cos(2Ωt) + U sin(2Ωt)] . (2.11)

3. Finally, the third possibility is a fixed HWP followed by a rotating polarizing grid so that the
electric field entering the horn array is

Eh = JTrotJpolJrotJhwpE. (2.12)

This leads to

S(t) =
1

2
[I +Q cos(2Ωt)− U sin(2Ωt)] . (2.13)

The second possibility is the simplest one from the point of view of hardware. However, the first
one was selected in order to limit the impact of systematic effects. This study was first performed
around 2014 by Jean-Christophe Hamilton, using the Mathematica software for analytical calculation.
I decided to reproduce it in the context of a project for L3 students I was supervising: Mustapha Aknine
and Ludovic Goetz. We decided to use the SageMath free and open software which, as Mathematica,
is made for analytical calculations.

We still follow the formalism developed by Marie-Anne. She actually realized a very similar study
in order to decide between putting the HWP above or below the horn array (section 5.4.2 in her
thesis [11]).

Considering systematic effects, the signal S(t) can always be written as

S(t) = T0 + Tc4 cos(4Ωt) + Ts4 sin(4Ωt) + Tc2 cos(2Ωt) + Ts2 sin(2Ωt) (2.14)

where the terms Ti are linear combinations of the Stokes parameters I,Q, U . The aim is to measure
Q and U . In the first configuration, Q is associated with Tc4 and U to Ts4 while in the two other
cases, Q is associated with Tc2 and U to Ts2. The goal is to avoid leakage of intensity I in the terms
associated with polarization Q or U . Leakage between Q and U is less problematic because the two
polarization components are of the same order of magnitude while the intensity is much higher. This
will be justified in chapter 3. To give an example, in the case of the first configuration, we want to
avoid terms of the type Tc4 = Q + εI where ε is a small error term but because I � Q, the effect is
dramatic.
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Chapter 2. First steps towards self-calibration

The terms Ti can be isolated after having performed a demodulation of the signal. Thus, we obtain
a linear system which can be written in a matrix form




T0

Tc4

Ts4

Tc2

Ts2




=




� � �

× × ×
× × ×
◦ ◦ ◦
◦ ◦ ◦




·




I

Q

U


 (2.15)

where the [5× 3] matrix contains the coefficients of the linear I,Q, U combinations. In the following,
this matrix will be called M . The “�” correspond to the T0 term which gives the intensity, the “×”
are the terms which give Q and U in the case of the first configuration and the “◦” give Q and U for
the two other configurations. The problematic terms leading to leakage from I to Q or U are shown
in red. The leakage between Q and U is shown in green.

Signal entering the horn array

We start by looking at the signal entering the horn array: S(t) = |Eh|2. In the ideal case, without any
systematic error, the matrices of the three configurations are

M1 =




1
2 0 0

0 1
2 0

0 0 1
2

0 0 0

0 0 0




, M2 =




1
2 0 0

0 0 0

0 0 0

0 1
2 0

0 0 1
2




andM3 =




1
2 0 0

0 0 0

0 0 0

0 1
2 0

0 0 −1
2




. (2.16)

Now we add systematic effects by considering the HWP and polarizer Jones matrices defined in 2.2.
For each term of the matrix M we only keep the first order term by doing a Taylor expansion. The
matrices of each configuration become

M1 =




U 0 0

0 U −V
0 V U

W W X

X −X W




, M2 =




Y 0 0

0 0 0

0 0 0

0 Y Z

0 −Z Y




andM3 =




U −W −X
0 0 0

0 0 0

W U −V
−X −V −U




. (2.17)

with

U = −εx − 1
2hx + 1

2hy + 1
2 V = ρx − 1

2ξx − 1
2ξy

W = −1
2 hx − 1

2 hy X = 1
2 ξx − 1

2 ξy

Y = −εx + 1
2 Z = ρx.

(2.18)

We already see that the third configuration is not adapted because the M3 matrix presents leakage
from I in Q and U , shown in red. However, it is not possible to select between 1 and 2 on this criteria.
For that purpose, we need to push the calculation further, taking into account the propagation through
the horns.
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2.1 Optimization of the polarimeter design

Signal arriving on a bolometer for a given baseline

We express analytically the signal arriving on a bolometer coming from one baseline (horn i, horn j).
For that purpose, we compute

S(t) = |Ei +Ej |2 (2.19)

where Ei and Ej are the electric fields from horns i and j arriving on the bolometer.
For simplification, we assume that the beam is identical in the two directions x and y so that

αxiq = αyiq ≡ αiq and βxi (k) = βyi (k) ≡ βi(k). In order to simplify the expressions, we define three
coefficients called Ai, Aj and Aij such as

Ai =
1

2
|αiqβi(k)|2 (2.20)

Aj =
1

2
|αjqβj(k)|2 (2.21)

Aij =
1

2
|αiqβi(k) + αjqβj(k)|2 = Ai +Aj + Re

(
αiqβi(k)α∗jqβ

∗
j (k)

)
. (2.22)

Thus, in the ideal case, with no systematic errors, when the two horns are open, the three matrices are

M1 =




Aij 0 0

0 Aij 0

0 0 Aij

0 0 0

0 0 0




, M2 =




Aij 0 0

0 0 0

0 0 0

0 Aij 0

0 0 Aij




andM3 =




Aij 0 0

0 0 0

0 0 0

0 Aij 0

0 0 −Aij




. (2.23)

To include systematic errors, we decide not to make the difference between x and y components, i.e.
hx = hy = h, ξx = ξy = ξ,. . . so that the computing time is reasonable. Thus we obtain

M1 =




U 0 0

0 U −V
0 V U

−W −W 0

0 0 −W




, M2 =




U 0 X

0 0 −X
0 X 0

0 U Z

2X −Z U




andM3 =




U −W −X
0 0 X

0 X 0

−W U −V
2X −V −U




. (2.24)

with

U = −Aij (2 ε+ gi + gj − 1)−Ai(gi − gj) +Aj(gi − gj) (2.25)
V = 2Aij (ρ− ξ) (2.26)
W = 2Aijh (2.27)

X =
1

2
Aij (ei + ej) +

1

2
Ai(ei − ej)−

1

2
Aj(ei − ej) (2.28)

Z = 2Aijρ. (2.29)

This result justifies the choice of the first configuration which is the only one avoiding leakage from I to
Q,U at first order (red terms). The leakage between Q,U at first order is present in any configuration
(green terms).

Thus, we have seen how the QUBIC polarimeter has been optimized in order to limit systematic
effects. Actually, the entire concept of bolometric interferometry was motivated by the control of
systematics. Historically, the idea was to combine the sensibility of bolometers with the advantage of
interferometry for the calibration of systematics. This is what we will see in the following.
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Chapter 2. First steps towards self-calibration

2.2 Self-calibration principle

The control of systematic effects is a major issue for experiments targeting B-modes. The QUBIC
interferometer was designed precisely with this objective in mind [10]. Interferometry offers the possi-
bility to self-calibrate the instrument systematic effects. This technique has been used for a long time
in radio astronomy, see for example [188].

2.2.1 Redundant baseline comparison

Self-calibration relies on the concept of equivalent (or redundant) baselines. One baseline b is formed
with two horns: b = [i, j]. The number of baselines is Nb = Nh(Nh − 1)/2 where Nh is the number
of horns. We consider radiation coming from direction n and the horn positions are written di. The
phase difference between the electric fields emitted by horn i and horn j is such that

Ej(n) = Ei(n) exp (2iπub · n) where ub ≡ (dj − di)/λ. (2.30)

Two baselines b and b′ are redundant if ub = ub′ . An example is shown in Figure 2.3. The self-

Figure 2.3: Illustration showing two equivalent baselines on the left and two non equivalent on the
right for the TD 8× 8 horn-array. Taken from [2].

calibration technique relies on the fact that in case of an ideal instrument without any systematic effect,
equivalent baselines produce the same interference pattern on the focal plane, for an observation at
infinity, in the Fraunhofer regime. Thus, by measuring the differences, one can calibrate the systematics
of the instrument. The demonstration of this technique for QUBIC was the topic of the thesis by Marie-
Anne Bigot-Sazy [13].

2.2.2 Number of baselines

As shown in [2], the baselines can be grouped into equivalence classes called βi for which ∀b, b′ ∈
β,ub = ub′ ≡ uβ. Considering a square array of horns, the number of classes is given by

N6= = 2
√
Nh(

√
Nh − 1) (2.31)

and the number of baselines contained in a given class is

Neq(βi) =

(√
Nh −

∣∣∣∣
uβ · ex

∆h

∣∣∣∣
)
×
(√

Nh −
∣∣∣∣
uβ · ey

∆h

∣∣∣∣
)

(2.32)

where ∆h is the separation between horns. Those formula are illustrated in Figure 2.4 in the case of
Nh = 9.

The full data analysis framework for self-calibration is not yet developed. However, in the following
of this chapter I will present two analyses I performed using calibration data, one concerning the
detector synthesized beam and the other concerning the interference fringes observed on the focal
plane. Besides obtaining the detector inter-calibrations, we will see that we can also constrain the
focal length of the optical combiner. This is a pedagogical illustration to show how QUBIC can
observe itself thanks to interferometry. Thus, those two analyses can be seen as a first step toward a
complete self-calibration.
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2.3 Synthesized beam analysis

Figure 2.4: Illustration of the classes of equivalence in the case of Nh = 9.

2.3 Synthesized beam analysis

In section 1.2.5 we described the measurement of the full detector synthesized beams by scanning the
calibration point source in the lab. Here, I present an analysis using the detector synthesized maps.
This work is still in progress but I explain the method and I show the first results.

2.3.1 Synthesized beam maps

The QUBIC simulation software called qubicsoft2 can be used to simulate the synthesized beam maps
for each detector. Figure 2.5 shows the comparison between measurement and simulation for three
detectors at 150 GHz, using the data set from April 2019. The position of the peaks is fit on each
detector map assuming that they are positioned on a 3× 3 square centered on the most intense peak.
An example is shown in Figure 2.6. This model is far of being optimal especially because we do not
always expect to see nine peaks. Depending on the detector, we may only see six or even four peaks,
see for example TES 9 in Figure 2.6. This will certainly be improved in the next future.

2.3.2 Appropriate peak numbering

One difficulty is that the numbering shown in Figure 2.6 is not well defined. This is because the
beam shifts on the sky from one detector to another and at some point the “central peak”, number 4,
is not ever the same as in the previous detector maps. Figure 2.7 illustrates this phenomenon. We
consider two detectors, TES 87 and 96 from ASIC 1, shown by a red point on the focal plane. The
corresponding simulated synthesized beam is shown on the right. The 7 × 7 numbering grid moves
with the synthesized beam and we see that the visible peaks are different between the two TES. For
the first one, the central peak is number 24 while for the second one, it is 23. The colored zones on
the focal plane split the detectors according to their most visible central peak which can be either 23,
24, 16 or 30. Thus, we need to identify each peak on the measured maps by the correct index using
this 7× 7 grid numbering.

Figure 2.8, shows the superposition of the nine peak positions detected by the fit for the 137 best
synthesized beam maps. This data set comes from one of the first cool down and this is why many maps

2https://github.com/qubicsoft/qubic
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Figure 2.5: Comparison between measurement (left) and simulation (right) of the synthesized beam
maps for two detectors at 150 GHz, using the data set from April 2019.
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Figure 2.6: Fit of the synthesized beam peak positions for three detectors: TES 93 and 9 from ASIC
1 and TES 53 from ASIC 2 using the data set from April 2019 with the calibration source emitting at
150 GHz. Red points show the fit positions, numbered from 0 to 8.

are very noisy so I decided to remove them in the analysis because the fit is meaningless. The detector
sensitivity was improved for the next cool downs. The peak numbering follows the one previously
shown in Figure 2.6. As we can see, this numbering is not good.
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Figure 2.7: Absolute peak numbering. We consider two detectors, TES 87 and 96 from ASIC 1, shown
by a red point on the focal plane. The corresponding simulated synthesized beam is shown on the
right. The 7 × 7 numbering grid moves with the synthesized beam and we see that the visible peaks
are different between the two TES. For the first one, the “central peak” is number 24 while for the
second one, it is 23. The colored zones on the focal plane split the detectors according to their visible
central peak which can be 23, 24, 16 or 30.

However, by identifying each detector peak with the correct number from the 7× 7 grid, as shown
in Figure 2.7, we obtain something which makes much more sense. This is shown in Figure 2.9, where
the real data are compared with the simulation. Note that the points are at the same position as in
Figure 2.8, we only changed the colors associated with the peak index. In this way, as expected, we
clearly see the detector array shape projected on the sky for each peak of the synthesized beam.
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Figure 2.8: Superposition of the nine peak positions detected by the fit for the 137 best synthesized
beam maps. The peak numbers from 0 to 8 follow the one previously shown in Figure 2.6.
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Figure 2.9: Measurement (left) compared to simulation (right) of the peak positions using the 7 × 7
numbering. The simulation considers a point source emitting at 150 GHz. The focal length of the
optical combiner is equal to 30 cm.
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2.3 Synthesized beam analysis

2.3.3 Determination of the focal length of the optical combiner

First of all, determining the focal length of the optical combiner is not needed. It is more one exercise
to explore the capabilities of bolometric interferometry. We know it is 30 cm but this analysis is a
pretext to test how QUBIC can observe itself thanks to self-calibration.

We consider a given peak of the synthesized beam. This peak is shifted from one detector to another
by an angle α ∼ r/f where r is the distance between the two detectors and f is the focal length of
the combiner. This was shown in chapter 1, section 1.2.5. This formula is rigorous only if one of the
two detectors is placed at the center of the focal plane. If not, it is still possible to write an analytical
formula and this is presented in annex A.4.

The effect of changing the focal length must not be confounded with that of changing the emission
wavelength which modifies the space between the peaks of a given detector. Those two effects are
illustrated in Figure 2.10 where on the top left, we show a simulation for f = 40 cm, ν = 150 GHz
and on the top right f = 30 cm, ν = 135 GHz that must be compared to the bottom simulation for
f = 30 cm, ν = 150 GHz.
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Figure 2.10: On the bottom I reproduce the simulation shown in Figure 2.9 at 150 GHz with a focal
length equal to 30 cm. On the top left plot, I show the effect of changing the focal length, f = 40 cm
keeping the frequency fixed. On the top right plot, I show the effect of varying the frequency of the
calibration source, ν = 135 GHz, keeping the focal length fixed.

In this section, we use the QUBIC software model to fit the focal length which is expected to be
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f = 30 cm. For that purpose, each peak position (az, el) is translated in a unit vector u, both for the
theoretical and the experimental value. Then, the focal length is estimated by minimizing the χ2

χ2(f) =
∑

d,p

θ2
d,p

σ2
d,p

(2.33)

where θ is the angle between the theoretical and the experimental unit vector (cos θ = uth · uexp) and
σ is the error associated with the experimental value. The sum is done over detectors d and peaks p.
Note that the number of detectors which have a given peak vary. In this case, the number of degrees
of freedom is equal to 1230. In Figure 2.11, we show the χ2 as a function of the focal length between
20 and 47 cm. The minimum is obtained by interpolating the χ2 values and then minimizing the
interpolation function, using the scipy python library [212]. The errors on the fitted peak positions
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Figure 2.11: χ2 value as a function of the focal length. The red line is an interpolation with a minimum
shown by the green vertical line.

are actually unknown. This will be improved in the future. For now, we approximate the errors by
the peak FWHM which is equal to 0.83◦, which is probably over-estimated. Error on the focal length
is estimated by looking at the values of the focal length such that χ2(f) = χ2

min + 1 [48]. Finally, the
focal length, assuming this model, is found to be

f = 30.00+0.02
−0.01 cm. (2.34)

However, this result must be taken with caution, especially because of the bad estimation of the errors.
Moreover, this model with a single parameter is certainly too simple and this is why I decided to redo
the fit assuming a more complex model.

As we can see in Figure 2.9, the measured positions look shifted, especially in azimuth compared
to the simulation. This can be due to a shift of the calibration source with respect to the optical
axis of the instrument. This shift can easily be fitted together with the focal length. The χ2 is the
same as 2.33 except that it now depends on three parameters: the focal length f and the two shifts in
azimuth and elevation, δaz and δel. To minimize the χ2, I used the iminuit python package [213], [214]
which provides a powerful minimizer. I also compared with a minimization by a Monte-Carlo Markov
Chain (MCMC), see the end of this section for a brief explanation about MCMC working principle.
The iminuit minimization leads to

f = 32.7± 0.2 cm, δaz = −1.34◦ ± 0.04◦ and δel = −0.53◦ ± 0.04◦. (2.35)

The probability distributions obtained with the MCMC are presented in the corner plot, Figure 2.12.
The values obtained with the iminuit minimization are superimposed with gray dashed lines on the
plot. We see that the two methods, iminuit and the MCMC give compatible results. The reduced

56



2.3 Synthesized beam analysis

χ2 is 2.8 which is about two times smaller than in the case where only the focal length was fitted.
However, again because of the bad estimation of the errors, this value must be taken with caution.
The focal length is found to be around 32.7 cm which is much higher than the theoretical value of
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Figure 2.12: Probability distributions of the focal length f and the two shifts in azimuth and elevation,
δaz and δel, after running a MCMC. Results obtained with the iminuit minimization are shown with
gray dashed lines.

30 cm from the optical design. I find the difference too high compared to the mechanical precision.
This is why this result must be taken with caution and needs to be confirmed on others data sets. I
see two effects that may induce such a shift in the analysis. The first one is that the fit of the peak
positions was done on flat maps. It would be much better to use the spherical Healpix representation
to avoid any distortion due to a projection effect. The second one is that the qubicsoft model does
not take into account optical aberrations which may distort the peak positions. It would be better to
use the optical model developed in Maynooth that I will describe in section 2.4.3. This may explain
the difference between the measured and the expected value of the focal length.

Monte-Carlo Markov Chain working principle

A possibility to minimize the χ2 is to sample the distribution using a MCMC. This is also a good way
to get errors on the estimated parameters. This method was first presented in 1949 by Metropolis [215].
A Markov chain is a sequence of random variables {xt} for which the probability to obtain the state
xt only depends on the previous state xt−1. It is defined by the initial state and the transition kernel
which gives the rule to go from a step to the next one. Let us recall the Metropolis algorithm in one
dimension (1D parameter space). We first choose a probability distribution q(y|x), called candidate,
which must be symmetric (i.e. q(y|x) = q(x|y)) and easily computed, for example a Gaussian or
uniform distribution. Then, we do

1. Initialization: start from x0
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Chapter 2. First steps towards self-calibration

2. At iteration t, do:

• Propose the next point x̃ using the candidate law q(xt+1|xt).
• Compute the acceptance rate

α(x̃, xt) =
f(x̃)

f(xt)
. (2.36)

where f is a function proportional to the distribution we want to sample. Then there are
two possibilities:

– If α ≥ 1 then x̃ is accepted and xt+1 = x̃.
– However, if α < 1 there is still a chance to accept x̃: a number u is generated following

a uniform distribution between 0 and 1 and x̃ is accepted only if u ≤ α. If not, x̃ is
rejected and xt+1 = xt.

3. Go to step t+ 1

4. Stop after N iterations, once the chain has converged.

2.3.4 Prospective for this work

This analysis must be seen as a first step. Indeed, we only recently understood the peak numbering
issue. This first analysis looks very promising and will be pursued in different ways:

• The fit of the peak positions can be improved a lot: including directly the correct peak numbering
and performing the fit on spherical maps instead of flat projections. Moreover, realistic errors on
the fitted peak positions must be estimated.

• We will use the optical instrument model developed in Maynooth which provides much more
realistic simulations, especially to take into account optical aberrations.

• We will apply it to data sets acquired at various calibration source frequencies.

• We will study the distortions of the peak positions due to optical aberrations and see how they
evolve with the detector position on the focal plane.

• So far, I only worked with the positions of the synthesized beam peaks. However, the amplitudes
are an important source of information too. For example, they could be used to inter-calibrate
the gains of the bolometers. In the next section, I propose a way of doing that using interference
fringes but I finally wonder if the synthesized beam maps would not be better for that purpose...

In conclusion, this work is a major step for the calibration of the instrument. As we will see in
chapter 5, map-making requires to know the synthesized beam with accuracy so this work will be
crucial to build the sky maps from the timeline data.

In the following, I will focus on the measurement of the interference fringes on the focal plane,
i.e. the Point Spread Function of the telescope when only two horns are open. This measurement is
fundamental because self-calibration is based on the comparison of redundant baselines. I will start
by presenting optical simulations that I developed in order to compare with calibration data. Then I
will describe the data taking and data analysis procedure to get the fringes. Finally, I will present a
method to inter-calibrate the detectors by fitting the data with simulations.

2.4 Simulate interference fringes on the focal plane

I built a library, called selfcal_lib, which is part of the qubicsoft package in order to simulate the
intensity, and especially the interference fringes, on the focal plane. This library was developed with
the goal of making comparisons between simulations and real calibration data.
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2.4 Simulate interference fringes on the focal plane

2.4.1 QUBIC soft simulations

The first possibility for simulating fringes is to use the qubicsoft package which calculates the inter-
ference at infinity using geometric optics. This is computed as if the horn plane and the focal plane
were parallel which is not the case on the real instrument. The Global Reference Frame (GRF) and
ON-Axis Focal Plane (ONAFP) reference frames are defined on Figure 2.13 under the qubicsoft ap-
proximation that the two planes are parallel. Thus, in the qubicsoft a simple π/2 rotation is needed
to pass from the GRF to the ONAFP frame which is not the case on the real instrument. Originally,

Figure 2.13: GRF and ONAFP frames as defined in the qubicsoft package. Green numbers indicates
the TD horn array orientation. On the focal plane, the four colors corresponds to the four quadrants.

everything in qubicsoft was defined in the GRF frame. However, when comparing between simula-
tions and calibration data, we realized it was convenient to work in the ONAFP frame, which is the
intuitive frame for the detector plane. Indeed, on the real instrument, it does not make sense to work
with the GRF frame only.

Another tricky point to match simulations with calibration data is the horn and TES numbering.

Horn numbering: The qubicsoft package is usable for the TD and FI instruments. The TD horn
array, corresponding to the center of the FI horn array, only has 64 horns while the FI horn array has
400 horns. The qubicsoft horn calibration files are defined in the GRF frame. The calibration file
uses the instrument numbering, the one used for example to command the optical switches. Horns are
indexed from 1 to 64 for the TD and 1 to 400 for the FI. This is shown in Figure 2.14 (left). On the
contrary, the indices defined in the qubicsoft package consider that the FI horn array is placed on a
squared grid 22× 22, numbered from 0 to 483. This is shown in Figure 2.14 (right). In the following,
I will define TD baselines by the red indices and FI baselines by the blue indices.

Detector numbering: On the focal plane, detectors are grouped in four quadrants, and each quad-
rant contains two ASICs. This is shown in Figure 2.15. The TD only has quadrant 3 with ASIC 1 and
2. Each ASIC has 128 detectors, numbered by the TES index going from 1 to 128. However, among
the 128 detectors, they are four thermometers with indices 4, 36, 68 and 100 which are treated like
TES during data taking.

Regarding the qubicsoft detector numbering, the detector calibration file is defined in the ONAFP
frame. It uses a natural ordering, shown in Figure 2.16 (left) so that the first quadrant is placed on the
upper right quadrant and the position of the other arrays is obtained by rotating the first array by 90,
180 and 270 degrees. Moreover, a second indexing is used in qubicsoft: the focal plane is placed on a
square array with dimension 34× 34 and TES are numbered on a grid going from 0 to 1155 as shown
in Figure 2.16 (right). Tools have been developed to convert indices from one numbering to another,
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Figure 2.14: Left: Horns indices going from 1 to 400 for the FI and from 1 to 64 for the TD. Right: Horn
indices defined in the qubicsoft package considering that the FI horn array is placed on a squared
grid 22× 22, numbered from 0 to 483.
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Figure 2.15: Quadrants and ASIC numbering on the focal plane, defined in the ONAFP frame.

especially in the qubicpack package3 developed for data reading, visualization and analysis.
An example of a qubicsoft fringe simulation is shown in Figure 2.17, considering the TD [49-51]

baseline. The absolute power is arbitrary, it is fixed by the spectral radiance of the source. Only
relative differences are significant.

3https://github.com/satorchi/qubicpack
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Figure 2.16: Left: TES ordering defined in the qubicsoft calibration detector file. Right: qubicsoft
detector indexing.
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Figure 2.17: Fringes obtained on the focal plane with the qubicsoft model for TD [49-51] baseline,
considering an on-axis point source. The FI entire focal plane is shown although the TD only has one
quarter of the focal plane. The absolute power is arbitrary, only relative differences are significant.
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Chapter 2. First steps towards self-calibration

2.4.2 Analytical model

The second possibility to simulate fringes is an analytical model with a two dimension sine function.
We consider a point source in the far field with zenith angle θ and azimuth angle ϕ in the GRF frame.
The fringe signal F at position (x, y) on the focal plane is

F (x, y) = A cos

(
2π

if
(x cosα+ y sinα) + φ

)
×G (2.37)

where

• A is the amplitude.

• if is the inter-fringe distance: if = λf/L where λ is the light wavelength, f the focal length and
L the baseline length (distance between the two horns).

• α is the baseline orientation angle with respect to the x axis so that (x cosα + y sinα) defines
the baseline direction, perpendicular to the fringes.

• φ is a phase given by φ = 2π
λ r sin θ where r is the radial distance of the baseline center (middle

point between the two horns).

• Finally, G is a 2D Gaussian that models the primary beam. It is centered at the geometrical
image of the source (xc = f tan θ cosϕ, yc = f tan θ sinϕ). The code has an option to include or
not the Gaussian.

An example is shown in Figure 2.18 for baseline [49-51] with an on-axis point source (θ = ϕ = 0).
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Figure 2.18: Fringes obtained on the focal plane with the analytical model for TD [49-51] baseline,
considering an on-axis point source. The FI entire focal plane is shown but the TD instrument only has
the x and y negative quarter in the ONAFP frame. The negative signal is not relevant, only relative
difference are significant.

2.4.3 Maynooth simulations

Finally, a third type of optical simulations, far more realistic, is developed in Maynooth University.
Simulations are performed using GRASP (a commercial optical modeling software) and MODAL (Maynooth
University). Details of the QUBIC optics modeling are given in [6]. While both software packages model
systems using the technique of physical optics, there are differences in how systems are implemented
which make them complementary. MODAL can calculate the coupling of beams from free-space to
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2.4 Simulate interference fringes on the focal plane

feedhorns, while GRASP considers feedhorns to be point sources. However, GRASP can describe surfaces
using a grid of points which permits the modeling of real measured mirror surfaces, and then using the
physical theory of diffraction, GRASP can model mirror edge effects. The two packages can exchange
data through common file formats which permits the analysis of a complete optical system, using the
best package for each subsystem and then combining the results. They can also be used independently
and compared as a verification of modeling results. A model was created in GRASP to match the MODAL
model. This model provides the electric field (amplitude and phase) on the focal plane for each horn
separately.

In the qubicsoft package, I implemented a way to plot the intensity on the focal plane for any
configuration of the horn array using the output files from the MODAL simulations. The MODAL simu-
lations compute the electric field on a circular region slightly larger than the real FI focal plane and
with a much higher resolution (241 × 241 pixels) than the one provided by the bolometer array (992
detectors placed on a 34 × 34 square grid). The full resolution image can be set at the instrument
resolution by two methods: either by interpolating the image and then integrating in each detector
area or simply by averaging the pixels in each detector area. The first method is more rigorous but
takes much more computation time and because the MODAL resolution is very high, it makes very small
difference. An example is shown in Figure 2.19. Contrary to the analytical or the qubicsoft model,
the Maynooth simulations take into account optical aberrations mainly caused by the off-axis optical
combiner [6]. This is visible in Figure 2.19 where the fringes are curved. This breaks the symmetry
between opposite quadrants, for example upper-left and bottom-right.
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Figure 2.19: Fringes obtained on the focal plane with the output files from MODAL simulation model
plotting with the qubicsoft package. We show fringes for TD [49-51] baseline, considering an on-axis
point source. Left: A region slightly higher than the FI focal plane at high resolution is shown. Right:
The FI focal plane is shown even if the simulation considers the TD optics (8× 8 horn array, smaller
mirrors...). Remember that on the TD, we only have the third quadrant, placed at the bottom left.
The signal has been integrated in each detector.

The comparison of the output of the models for a given baseline is presented in [8]. This is one of
my contributions to this paper and it is a good verification to validate the different simulation methods.

We now have three independent models to simulate the fringes on the focal plane. In the next
section I will describe the procedure to measure the fringes in the laboratory.
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Chapter 2. First steps towards self-calibration

2.5 Measurement and data analysis to obtain fringe images

2.5.1 Combination of images

In order to measure interference fringes, the simplest way would be to close all the horns except one
baseline. The mechanical switches for the horns, shown in Figure 1.6 can be activated independently.
However, in case of the TD instrument, only two horns can be closed at the same time. It is because
a current is required to keep the shutter closed, and this generates heat so we can not activate more
than two at a time in order to keep the cryogenics stable. The system and performance are described
in [5]4.

In this section, we will see that it is nevertheless possible to measure fringes by doing a combination
of images acquired by closing two horns at maximum. This calculation was already presented in [13]
(Appendix A) but an error was noticed by Créidhe O’Sullivan after publication. Here I give the correct
version.

We note Ei the complex field coming from horn i at a particular bolometer and the associated
power Ci = |Ei|2. We want to measure the power when one baseline [horn i - horn j] is open:

Sij = Ci + Cj + 2 Re (EiE
∗
j ). (2.38)

This corresponds to a fringe pattern on the focal plane. However, as said before, this measurement is
not directly feasible as we can not open only one baseline.

We note Stot the power when all horns are open, C−i when all horns are open except i and S−ij
when all horns are open except i and j. Figure 2.20 shows the different configurations for the FI.

The total power for all horns open is

Stot =

∣∣∣∣∣

Nh∑

m=1

Em

∣∣∣∣∣

2

=

Nh∑

m=1

|Em|2 +
∑

m 6=l
2 Re (EmE

∗
l ), (2.39)

whereNh is the total number of horns (64 in the case of the TD). The second sum groups the interference
terms between each horn pair. The power for all horns open except horn i is

C−i =

∣∣∣∣∣∣

Nh−1∑

m6=i
Em

∣∣∣∣∣∣

2

= Stot − Ci −
∑

k 6=i
2 Re (EiE

∗
k), (2.40)

where the sum is the interference term between horn i and all the others. Finally, the power for all
horns open except horns i and j is

S−ij = Stot − Ci − Cj −
∑

k 6=i
2 Re (EiEk∗)−

∑

k 6=j
2 Re (EjEk∗) + 2 Re (EiEj∗). (2.41)

Note that the last term must be added not to remove twice the [i, j] baseline with the two sums. Using
equation 2.40, we obtain

S−ij = Stot + C−i − Stot + C−j − Stot + 2 Re (EiEj∗)
⇒ 2 Re (EiEj∗) = S−ij − C−i − C−j + Stot,

and by replacing in equation 2.38, we finally get

Sij = Ci + Cj + S−ij − C−i − C−j + Stot. (2.42)

This expression differs from the result presented in Appendix A of [13] where by combining equations
(A2) and (A8) one can find a similar expression but the term Stot is missing.

4The FI switch system is different and it will be possible to close simultaneously any number of switches. However,
closing all the horns except two changes significantly the thermal load arriving on the detectors. So even in the case of
the FI, it is not clear that we will use this new feature for calibration.

64



2.5 Measurement and data analysis to obtain fringe images

0.15 0.10 0.05 0.00 0.05 0.10 0.15
X_GRF [m]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Y_
GR

F 
[m

]

0.06 0.03 0.00 0.03 0.06
X_ONAFP [m]

0.06

0.03

0.00

0.03

0.06

Y_
ON

AF
P 

[m
]

10 1

100

101

102

103

[W / Hz]

S - All open

0.15 0.10 0.05 0.00 0.05 0.10 0.15
X_GRF [m]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Y_
GR

F 
[m

]

0.06 0.03 0.00 0.03 0.06
X_ONAFP [m]

0.06

0.03

0.00

0.03

0.06

Y_
ON

AF
P 

[m
]

10 1

100

101

102

103

[W / Hz]

C i - Horn 252 close

0.15 0.10 0.05 0.00 0.05 0.10 0.15
X_GRF [m]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Y_
GR

F 
[m

]

0.06 0.03 0.00 0.03 0.06
X_ONAFP [m]

0.06

0.03

0.00

0.03

0.06

Y_
ON

AF
P 

[m
]

10 1

100

101

102

103

[W / Hz]

C j - Horn 254 close

0.15 0.10 0.05 0.00 0.05 0.10 0.15
X_GRF [m]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Y_
GR

F 
[m

]

0.06 0.03 0.00 0.03 0.06
X_ONAFP [m]

0.06

0.03

0.00

0.03

0.06

Y_
ON

AF
P 

[m
]

10 1

100

101

102

103

[W / Hz]

S ij - Baseline [252-254] close

0.15 0.10 0.05 0.00 0.05 0.10 0.15
X_GRF [m]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Y_
GR

F 
[m

]

0.06 0.03 0.00 0.03 0.06
X_ONAFP [m]

0.06

0.03

0.00

0.03

0.06

Y_
ON

AF
P 

[m
]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

[W / Hz]

Ci - Horn 252 open

0.15 0.10 0.05 0.00 0.05 0.10 0.15
X_GRF [m]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Y_
GR

F 
[m

]

0.06 0.03 0.00 0.03 0.06
X_ONAFP [m]

0.06

0.03

0.00

0.03

0.06

Y_
ON

AF
P 

[m
]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

[W / Hz]

Cj - Horn 254 open

0.15 0.10 0.05 0.00 0.05 0.10 0.15
X_GRF [m]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Y_
GR

F 
[m

]

0.06 0.03 0.00 0.03 0.06
X_ONAFP [m]

0.06

0.03

0.00

0.03

0.06

Y_
ON

AF
P 

[m
]

0.5

1.0

1.5

2.0

2.5

3.0

3.5

[W / Hz]

Sij - Horn 254 open

Figure 2.20: Horn array and image on the focal plane for each configuration: Stot, C−i, C−j , Sij , Ci,
Cj and Sij for the FI baseline [252, 254].

Thus, by observing Ci, Cj , S−ij , C−i, C−j and Stot separately and by making the linear combination
given by 2.42, one can reconstruct Sij . The problem is that we can not observe Ci and Cj as we would
have to close all horns except one. However, Ci and Cj correspond to the secondary beam of one horn
so they will not change the interference image (see Figure 2.21). So finally, to get the fringe pattern,
one can make the “reduced” combination:

Sij ∼ S−ij − C−i − C−j + Stot. (2.43)

Note that the reduced measurable configuration has negative values contrary to the complete one.

2.5.2 Data taking process

We describe the measurement of fringes on the focal plane for a given baseline [i, j]. The calibration
source emits at 150 GHz with no modulation (Direct Current mode). The instrument is fixed with
respect to the calibration source (no scan). The two horns are closed one by one following the six steps:
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Figure 2.21: The complete combination S−ij − C−i − C−j + Stot + Ci + Cj compared to the reduced
measurable one: S−ij − C−i − C−j + Stot. The fringe pattern is the same in both cases. However the
measured combination has negative values, highlighted by the red and blue color map.

1. All open ⇒ Stot1

2. Close horn i ⇒ C−i

3. Close horn j (so i and j are closed) ⇒ S−ij

4. All open ⇒ Stot4

5. Close horn j ⇒ C−j

6. All open ⇒ Stot6

The index 1, 4 or 6 added to Stot corresponds to the step number. The duration of each step, called
waiting time, is a few seconds (1, 3 or 5 s depending on the data set), and the cycle is repeated many
times (from 10 to 1000 times). Figure 2.22 shows a simulation of the expected TOD for two detectors.
As we can see, the shape of the cycle is not intuitive and differs a lot from one TES to another. This
is due to changes in the interference pattern when closing one or two horns. The focal plane of the
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Figure 2.22: Simulation of the expected TOD signal for two arbitrary TES on one cycle. We subtract
Stot so that the all open configuration is centered on zero.

TD instrument has 248 bolometers. Thus, the data consist of 248 TOD signals. One of them is shown
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in Figure 2.23. This is a raw TES signal without applying any filtering. As we can see, the system
is rather stable, with no significant 1/f drift over 180 seconds. This method was developed in order
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Figure 2.23: TOD obtained with data set from 2020-10-27, with baseline [18-22] for TES 58, ASIC 1.
We show the six first cycles, delimited by red dashed lines.

to avoid long integration time during which the mean of the noise can drift to higher or lower value.
Indeed, as the fringes are obtained through the linear combination of images given by expression 2.43
variation of the background signal from one image to another is very problematic.

Data sets are listed in annex A.3 with the setting parameters. In this section, I will focus on
the 2020-10-27 data set for which I took the data and developed the analysis with the help of Jean-
Christophe and Michel.

2.5.3 Detecting “bad” detectors

I wrote a code to detect the “bad” detectors which have a non correct TOD signal. “Bad” does not
necessary mean that the detector is not working properly, it may be that for this particular horn
baseline, at 150 GHz, for this particular orientation with respect to the point source, the detector does
not see any power fluctuation along the cycle. An example of “bad” TOD is shown in Figure 2.24.
In order to detect the bad detectors, I first fold the signal by superimposing the cycles and I fit the
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Figure 2.24: Example of a bad TOD signal from 2020-10-27 data set, baseline [18-22].

folded signal of each TES by a step function smoothed by a Gaussian kernel in order to mimic the
response time of the detectors. Eight parameters are fit: the time constant of the detector, a global
time shift and the six step amplitudes. An example is shown in Figure 2.25. Then, detectors are
ordered from the best to the worst as a function of the fit residuals. The best detector becomes the
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Figure 2.25: Result of the fit for the same TES as in Figure 2.23 after folding.

reference for the analysis I will describe in section 2.5.4. I make a mask for the detector array where
the 25% worst detectors are set to a NAN value. This process is repeated for each image in the data
set and a detector is considered to be bad only if it is NAN in at least N images. In Figure 2.26, I
show the number of TES found to be bad as a function of N . By looking at the signal of the TES
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Figure 2.26: Number of detectors found to be bad as a function of the number N of images where the
TES was set to NAN.

found to be bad, I concluded that N ∼ 9 is a good threshold. For example, after this treatment on
data set from 2020-10-27, 24 detectors are found to be bad. This is also a good method to eliminate
the thermometers which are treated as detectors during data taking. They are four thermometers on
each ASIC with indices 4, 36, 68 and 100.

This work could be pursued in several ways:

• Compare this technique with others, for example using the detector Intensity-Voltage I(V ) curves.

• Develop a method to detect bad detectors during data taking.

• Another possibility would be to use Machine Learning classification on the TOD signals. A first
step could be to implement the DBSCAN clustering algorithm from the scikit-learn python
library [216].
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2.5 Measurement and data analysis to obtain fringe images

2.5.4 Data analysis process

The first image with visible fringes was obtained by Michel Piat with the 2019-06-07 data set and I
did the corresponding simulation. This is shown in Figure 2.27. This measurement was obtained with

Figure 2.27: First observation of the fringes. The measurement is shown on the left and the corre-
sponding simulation on the right. Each square is a single bolometer. Produced for [8].

a basic analysis. The TOD signal is folded in order to superimpose the cycles before doing the linear
combination using the six steps Si:

Sij ∼ S−ij − C−i − C−j +
1

3
(Stot1 + Stot4 + Stot6). (2.44)

Since the first measurement, the data analysis algorithm has been improved a lot, especially regarding
the estimation of the errors. I present here the main steps of the analysis. The cycle duration (or
period) and the start time t0 are adjusted on the reference TES which is the best detector found by
the method described in section 2.5.3. As shown in Figure 2.28, t0 is determined by computing the
derivative of the average cycle. The beginning of each step corresponds to high derivatives and t0 is
the median of the six beginning times modulo the waiting time. The code also includes an option to
fix the period and the start time at given values.
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Figure 2.28: Start time determination on the reference TES, for baseline [17-49], 2020-10-27 data set.

Then, for each detector signal we do:

1. Determine a skip_rise and skip_fall time to eliminate the data at the beginning and at the
end of each step when the signal is not stabilized, mainly due to time constants of the switches
(detectors are faster). This is visible in Figure 2.28, the steep transition from one step to another
needs some time to be stabilized.
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Figure 2.29: Illustration of data folding for the reference TES, baseline [17-49], 2020-10-27 data set.
Left: The color corresponds to the value of the signal on each cycle. We expect the color to be
uniformed on each step separated by black vertical lines. Right: Superimposition of all the cycles. The
skip times where signal rises and falls from one step to another are shown in red and blue.

2. Data filtering: a band-pass filter is applied to remove low frequency drift and high frequency
noise. Here the high frequency cut is anyway removed by re-sampling the data in the next step.
A notch filter can potentially be applied to remove particular frequency bands, especially the
pulse-tube vibration detected around 1.7 Hz.

3. Crop the data in order to have an integer number of periods.

4. Re-sample the signal to have identical number of samples in each cycle.

5. Fold the signal: separate the cycles and make a 2 dimension array with shape (Number of cycles
× Number of samples per cycle).

6. Roll the signal: shift the folded data in order to have t0 = 0.

7. Option: subtract the median when all horns are open so that the corresponding steps are centered
on zero.

The result of this process is shown in Figure 2.29. Once this is done, to obtain the fringes, we average
the samples on each step, and then we average over the cycles. We can choose between computing the
mean or the median. In both cases, we perform a clipped average for which values above 3 sigma are
removed. Errors are evaluated by taking the standard deviation. One example is shown in Figure 2.30.
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Figure 2.30: The average of the samples on each step is shown in blue. In red, we show the average of
the blue values over the cycles. Example for the reference TES, baseline [17-49], 2020-10-27 data set.
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The linear combination of the average/median values gives the fringe image together with the
corresponding errors. The result is shown in Figure 2.31, for three baselines with different orientations
and spacing from 2020-10-27 data set. I also show a simulation using the analytical model described
in section 2.4.2 for a focal length of 32.7 cm, as we found in section 2.3.3. The apparent shift between
the simulated fringes and the data may be due to a shift of the calibration source with respect to the
QUBIC optical axis. In section 2.6, we will try to fit the off-axis angle of the source. This averaging
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Figure 2.31: Result of the analysis, for three baselines with different orientations and spacing from
2020-10-27 data set. A simulation using the analytical model described in section 2.4.2 is shown on
the left. The measurement is shown on the middle with the corresponding errors on the right. The
color scale for the errors is fixed from 0 to 0.1. Black detectors are the ones found to be “bad”, they
are common to the three images. I also added a personalized mask to each image in order to mask
detectors which have a very high signal compared to the median (see section 2.6.3).

process is compared with a second one. Instead of averaging the cycles, which leads to six values, one
for each step, we compute the linear combination for each cycle so we get one fringe image for each
cycle. This is shown in Figure 2.32. The result fluctuates along the cycles. The histogram on the right
compares the two methods:

• First average the cycles and then make the combination to get one mean fringe value called F1

with error σ1.

• Make the fringe combination on each cycle and then average the result over the cycles to get a
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2.5 Measurement and data analysis to obtain fringe images

mean F2 with error σ2.

The histogram shows the distribution of (F2 − F1) /
√
σ2

1 + σ2
2 over detectors. As expected the differ-

ence is centered on zero which shows that the two methods give similar results. So both methods are
equivalent but with the second one we can look at the stability of the fringe image along the cycles.
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Figure 2.32: Left: Result of the fringe combination for each cycle (blue dots) on the reference TES,
baseline [17-49], 2020-10-27 data set. Error bars correspond to the standard deviation on each step.
In red I show F1, the measurement obtained with the first method. Errors σ1 are shown with red
dashed lines. In cyan, I plot F2, the mean of the blue dots, clipped at 3 sigma with its error σ2. Right:
Histogram showing the distribution of (F2 − F1) /

√
σ2

1 + σ2
2 over detectors.

Prospective for this work

This analysis will be applied on future data taking with many more baselines. For now, we actually
have only few images where the fringes are clearly visible by eyes after the treatment described above.
This is likely due to a saturation of the detectors because the calibration source was too high. This
is why we need more data but with lower signal-to-noise ratio by decreasing the source output power
or by using the HWP to attenuate the signal. Moreover, the data analysis process could probably be
improved and new data would be a good opportunity for that.
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2.5.5 Verification of the horn-array orientation with fringe measurements

This section is one of my contributions to Torchinsky et al. [8], section 6.2. This is again a small
step toward self-calibration. We describe the use of the fringe measurement at different baselines to
confirm the mechanical orientation of the horn cluster. These measurements also confirm the correct
functionality of the horn switch electronics. The detected fringe pattern corresponds to the expected
result for the measurement of a given horn-pair. That is, there is no confusion regarding the physical
location of the horn in the focal plane which is commanded by the electronics.

The fringe pattern was measured for the baseline formed by horns 25-57 (see Figure 2.27). The
position of the horn cluster at that time was verified using pictures taken when it was mounted (see
Figure 2.33). Figure 2.34 shows the reference frames used on the instrument. Colors in the horns

Figure 2.33: Pictures showing the horn cluster orientation. PT gives the location of the pulse-tubes.
Left: The On Axis Focal Plane (ONAFP) reference frame projected onto the face of the horn cluster.
Right: The Global Reference Frame (GRF) is co-planar to the face of the horn cluster.

correspond to the switch behavior tested at room temperature for which I participated. Switch shutters
were activated one by one several times. By putting a light on one side of the horn array, we could
check by eyes if the horn was correctly closed or not.

Finally, the optics simulations can be used to confirm the physical horn orientation in the opti-
cal path. The orientation between all the simulations and the measurement agree. A π/2 rotation
difference between measured results and simulations would be easily detected. However, it is not
straightforward to detect a π rotation because the differences would be very small (see Figure 2.35).
Such a rotation might be detectable by fitting the measurement with the simulations.
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2.5 Measurement and data analysis to obtain fringe images

Figure 2.34: QUBIC reference frames. Left: The face of the horn cluster is overlaid on the optics
schematic. Colors in the horns correspond to the switch behavior tested at room temperature for which
I participated. Right: The fringe measurement in the negative-x and negative-y quadrant (quadrant 3).

0.06 0.03 0.00 0.03 0.06
X_ONAFP [m]

0.06

0.03

0.00

0.03

0.06

Y_
ON

AF
P 

[m
]

Baseline [60, 64]

0.06 0.03 0.00 0.03 0.06
X_ONAFP [m]

0.06

0.03

0.00

0.03

0.06

Y_
ON

AF
P 

[m
]

Baseline [1, 5]

0.06 0.03 0.00 0.03 0.06
X_ONAFP [m]

0.06

0.03

0.00

0.03

0.06

Y_
ON

AF
P 

[m
]

Difference

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.015

0.010

0.005

0.000

0.005

0.010

0.015

Figure 2.35: Simulated fringes obtained on the focal plane for 2 baselines, symmetric under a π rota-
tion. The simulation was done using our in-house developed python-based software called qubicsoft
described in section 2.4.1, using MODAL optical modeling results.
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2.6 Bolometer inter-calibration using the fringes

I introduced numerical models that allow to simulate fringes on the focal plane and I presented the
procedure to acquire calibration data. Here I propose to combine both in order to inter-calibrate the
gains of the bolometers of the focal plane by fitting a series of fringe images. I will first present the
method theoretically. Then I will illustrate it on simulated data. Finally I will show a first trial on
real laboratory data.

2.6.1 Theoretical principle

We consider Nb fringe measurements for different baselines. The rough TOD have been analyzed
to obtain the fringe images, indexed by k. Thus, at this stage the data consist of vectors Dk with
dimension the number of detectors Nd. We build a model with parameters

p = {f, θ,A,P } (2.45)

where f is the focal length and θ the angle between the optical axis of the instrument and the calibration
source. A is a vector with dimension Nd containing the detector gains Ad. P is a vector with dimension
Nb containing the global powers Pk multiplying each image. The number of parameters is 2+Nd+Nb.
The fringe model for image k is

Mk(p) = PkΦk(f, θ) ·A (2.46)

where Φk(f, θ) is a diagonal matrix with dimension Nd ×Nd which gives the theoretical fringe image
for a given f and θ. Φk(f, θ) is determined by one of the simulations described in section 2.4.

To estimate the parameters, we minimize the χ2 given by

χ2 =

Nb∑

k=1

[Mk(p)−Dk]T C−1
k [Mk(p)−Dk] (2.47)

where Ck is the detector noise covariance matrix, with dimension Nd ×Nd, associated with image k.
Written in the form of equation 2.46, the model is linear in A. This is why A can be calculated

analytically by

∂χ2

∂A
= 0 ⇐⇒

∑

k

2PkΦ
T
k (f, θ)C−1

k (PkΦk(f, θ) ·A−Dk) = 0 (2.48)

⇐⇒ A = Cov(A) ·
[∑

k

PkΦ
T
k (f, θ)C−1

k Dk

]
(2.49)

where

Cov(A) =

[∑

k

PkΦ
T
k (f, θ)C−1

k PkΦk(f, θ)

]−1

(2.50)

is the covariance matrix of A. Finally, we impose

〈A〉 =
1

Nd

Nd∑

d=1

Ad = 1 (2.51)

so that A only contains relative fluctuations between detector gains. The mean amplitude is contained
in Pk. Indeed, we have

〈PkA〉 = Pk 〈A〉 = Pk. (2.52)

By doing that, the number of parameters becomes 2 + (Nd − 1) +Nb.
This is very powerful because A contains Nd gain parameters, typically 248 for the TD and 992 for

the FI so it would be tricky to estimate so many parameters by Monte-Carlo Markov Chain (MCMC)
or with any other minimizer.

Of course, the model is also linear with Pk so we could have done the same as we did for A.
However, it is less interesting as the number of images is much less than the number of detectors and
it is not possible to do it for Pk and A at the same time.
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2.6.2 Illustration on a simulation

I first illustrate the technique described above on simulated data.

Simulated input data

We consider three baselines [17-49], [49-51] and [58-62] shown in Figure 2.31. We make simulated data
following equation 2.46 and adding Gaussian noise with (µ = 0, σ = 0.08). For the pure fringe model
Φk(f, θ), we use the analytical model described in section 2.4.2. I chose this model among the three
presented in section 2.4 because it is the simplest one so it is good for starting. The input parameters
are:

• focal length: f = 29 cm,

• source angle: θ = 0.5◦,

• three Pk taken randomly between 0 and 1 (uniform distribution),

• detector gains Ad, between 0 and 2, (uniform distribution), with mean forced to be 1.

Minimizing the χ2

The covariance matrix Ck is diagonal with noise variance σ2 = 0.0064 on the diagonal. We start by
exploring the χ2, looping over f and θ and at each step, we minimize a temporary χ2 over the three
Pk parameters. This provides a χ2 map shown in Figure 2.36. We do this to have a first look at the χ2
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Figure 2.36: χ2 map obtained by looping over f and θ. The χ2 is minimized over the three global
powers Pk at each step.

evolution in the parameter space. The minimum of the map is taken as a guess for the minimization
done with the iminuit python package [213], [214]. For this particular example, the reduced χ2 is
1.04 and the result is shown in Table 2.1. The detector gains are then computed analytically using the
result of the minimization. The gains are shown in Figure 2.37 with respect to the input ones (left)
and I also show the histogram of the residuals defined as the difference between the output and the
input gains (right).
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Parameters Input Output Ratio

f [m] 0.29 0.2899 1.0019

θ [deg] 0.5 0.5021 0.9958

P1 0.1704 0.1747 0.9750

P2 0.8633 0.8714 0.9907

P3 0.2568 0.2598 0.9882

Table 2.1: Estimation of the five parameters using the iminuit minimizer.
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Figure 2.37: Estimation of the detector gains using iminuit. Left: Detector gains Ad obtained by
minimizing the χ2 with respect to the input ones. Error bars are given by the square root of the
covariance matrix diagonal defined in equation 2.50. Right: Histogram of the residuals: Aminuit
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2.6 Bolometer inter-calibration using the fringes

I implemented a MCMC in parallel with the iminuit minimization. I used the emcee python
package [217]. The iminuit result is taken as the initial point for the MCMC sampling. One difficulty
is to determine if the chain has converged or not. For that purpose, I use the Gelman Rubin convergence
test [218], [219], based on multiple chain sampling. We considered that the chain has converged if
R < 1.03 as shown in Figure 2.38. The acceptance rate along the iterations of the MCMC is also
shown in this plot.
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Figure 2.38: Top: Gelman Rubin convergence test for the five parameters (focal length f , source angle
θ and the three powers Pk). We consider that the chain has converged when R < 1.03, shown with the
black dashed line. Bottom: Acceptance rate along the iterations of the MCMC. Each color corresponds
to a chain.

At the end of the MCMC, the reduced χ2 is 1.06 and the probability distributions of the five
parameters are presented in the corner plot, Figure 2.39. Light gray dashed lines show the input
parameter values.

Detector gains are computed along the MCMC iterations and stored. The mean and the standard
deviation of the distribution of each gain along the MCMC is shown in Figure 2.40. As before for the
iminuit minimization, I plot the mean detector gains with respect to the input ones as well as an
histogram of the residuals.

79



Chapter 2. First steps towards self-calibration

0.289 0.290
f

0.24

0.25

0.26

0.27

0.28

P 3

0.86

0.87

0.88

0.89

P 2

0.16

0.17

0.18

0.19

P 1

0.49

0.50

0.51

f = 0.28944+0.00075
0.00073

0.49 0.50 0.51

= 0.5018+0.0088
0.0089

0.16 0.17 0.18 0.19
P1

P1 = 0.174+0.013
0.013

0.86 0.88
P2

P2 = 0.872+0.012
0.012

0.24 0.26 0.28
P3

P3 = 0.259+0.013
0.013

Figure 2.39: Corner plot showing the probability distribution of the five parameters f, θ, P1, P2 and P3

obtained with the MCMC. Light gray dashed lines show the input parameter values.
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2.6 Bolometer inter-calibration using the fringes

Correcting data by the detector gains

Once we have estimated the gains of each detector, we can correct the input fringe images by dividing
by the gains. In others words, we get an image with inter-calibrated pixels. This is shown in Figure 2.41
for the three baselines. We also show the residuals on the third row, defined as the difference between
the corrected image and the fit model:

Rk =
Dk

A
− PkΦk(f, θ). (2.53)
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Figure 2.41: The first row contains the three simulated input images. The middle row is the input
image divided by the detector gains and the third row shows the map of the residuals of the fit defined
by equation 2.53. The color scale amplitude is fixed from -0.6 to 0.6 for the data and the corrected
data and from -0.2 to 0.2 for the residuals.
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Finally, Figure 2.42 presents the pull distributions of the three baselines defined as

Pullk =
Rk

Ek/A
. (2.54)

where Ek is the error on the input image k. In case of a simulation, it is the standard deviation of the
noise: Ek = σ. If the errors σk are correctly estimated, we expect the pull distribution to be centered
on 0 with a standard deviation equal to 1.
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Figure 2.42: Pull distributions of the three baselines obtained after a MCMC on simulated data.

To conclude this part, the method works as expected with simulated data. Using linear algebra
to compute the detector gains analytically is a real advantage. The possibility of using either the
iminuit minimization or a MCMC is an advantage. The MCMC samples the distribution and can for
example reveal secondary minima in which iminuit could have fallen. Moreover, iminuit makes the
approximation that the probability distributions of the parameters are Gaussian which may be wrong
while the MCMC does not. So the estimation of the errors is more correct with a MCMC. The next
step is to apply this method on real data!

2.6.3 First trial on real data

I made a first trial on real data using the data set from 2020-10-27. This work is very preliminary, it
must not be taken as a serious measurement of the focal length and of the detector gains. However,
it shows that the method I put in place is promising for future data sets. I consider the same three
baselines [17-49], [49-51] and [58, 62].

In order to avoid bad detectors determined with the method described in section 2.5.3, we set
the corresponding terms on the diagonal of the covariance matrix Ck to a very high value. By doing
that, they have very low weight in the fit. Moreover, I chose to make a personalized mask for each
image in order to discard some “hot” detectors. Indeed, outlier detectors are quite problematic for the
minimization. I noted that by removing them, the minimum χ2 was decreasing a lot. To detect them,
I used the Median Absolute Deviation (MAD) which is a measure of dispersion similar to the standard
deviation but more robust to outliers. It is defined as

MAD = median(|Xi −median(X)|) (2.55)
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2.6 Bolometer inter-calibration using the fringes

for X a random variable. For each fringe image, detectors with signal higher than 4×MAD in absolute
value were masked.

The same procedure that I presented for simulated data was applied on real images: exploring the
χ2 grid, iminuit minimization and MCMC. I present here the result of the MCMC. In this example, I
considered the following prior: parameters were limited such as 0.25 < f < 0.35 m, −2◦ < θ < 2◦ and
10−5 < Pk < 10. Probability contours of the five parameters are shown in the corner plot, Figure 2.43.
The reduced χ2 is 17.5 at minimum, which is not very satisfying. But we must remember that the

0.271 0.272
f

0.014

0.015

0.016

0.017

P 3

0.0040

0.0044

0.0048

P 2

0.0006

0.0008

0.0010

P 1

0.220

0.225

0.230

0.235

f = 0.27113+0.00062
0.00064

0.22 0.23

= 0.2281+0.0064
0.0064

0.0006 0.0010
P1

P1 = 0.00078+0.00019
0.00018

0.0040 0.0045
P2

P2 = 0.00436+0.00034
0.00032

0.015 0.016 0.017
P3

P3 = 0.01546+0.00098
0.00093

Figure 2.43: Corner plot showing the probability distributions obtained on the five parameters with a
MCMC.

model is very simple and not realistic so we do not expect to match the data very well. As I said, this
is only a first trial and the model will be improved in the future. For example, it would certainly be
better to consider the Maynooth model than the analytical one which is much more realist.

The estimated detector gains with the associated errors are visible on Figure 2.44. As for simulated
data, the detector gains are computed analytically along the MCMC iteration and stored. The found
gains and the errors correspond to the mean and the standard deviation of the distribution associated
with each detector. Gain are mainly included between −40 and 40 with errors mainly around 0 and
15. Firstly, we can note that errors are large, especially on ASIC 1. This may explain the gains found
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to be negative which is clearly non physical, except if for some detectors, the sign of the signal is
reversed. We had some hints about that when looking at the raw TODs. So it may be the case for
a small number of detectors but for sure not in this proportion. This is part of the things that need
to be understood. Finally, the input data corrected by the detector gains are shown in Figure 2.45. I
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Figure 2.44: Map of the detector gains determined on real data by a MCMC with the corresponding
errors.

think baseline [49-51] and [58-62] are improved. However it is less clear on baseline [17-49]. But again,
this is a first test and it would be interesting to test this method on more images.
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Figure 2.45: The first row show the three input images and the second row contains the same images
divided by the detector gains.
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2.6.4 Prospective for this work

This work could be pursued in many different ways. I list here some ideas:

• Apply this analysis on new data sets. In the future, we expect to have data sets with a much
larger number of images which should help to constrain the parameters. We plan to estimate
the detector gains on different image sub-sets and to compare them. The gains should also be
compared from one data set to another in order to study the stability in time of the detector
behavior which is a major question.

• The model could be more realistic by using the Maynooth simulations instead of the analytical
model.

• We only fit one gain parameter for each detector. It would be interesting to add a saturation
parameter to each detector. However, those parameters could not be calculated analytically as
they will not be linear in the model. So this makes the fit much more complex as it implies
fitting a much larger number of parameters. We have reasons to believe this problem exists, but
it could also be avoided by having the source less powerful and by integrating the signal a longer
time.

• Finally, instead of working with the fringe images, we could directly fit the TOD cycles associated
with the image. Since the analysis of the TOD to build the fringe image is quite complex, it may
be more accurate.

In conclusion, the method based on linear algebra to derive analytically the detector gains is clearly
powerful and will certainly be used in the future. This work is a first step toward full self-calibration
of the instrument which has to be developed in the near future. This will have to include much more
parameters, for example the horn and detectors positions and possibly detector saturation.

Conclusion In this chapter I reported my work related to the calibration of the instrument. I started
by justifying the choice of the polarimeter design made to limit the cross-polarization and the leakage
from intensity to polarization. For that purpose, I updated the formalism, introduced by Marie-Anne
Bigot-Sazy to model the systematic effects of each optical element, to the current instrument design.
This led me to introduce the principle of self-calibration which is based on the horn baseline redundancy.

In a third part, I presented a recent analysis I developed to identify in an absolute way the multiple
peaks of the synthesized beam of each detector. For that purpose, I developed optical simulations for
comparison with real data. This allowed me to fit the focal length of the optical combiner using the
positions of the peaks. This work is very important for map-making with real data that requires an
accurate knowledge of the peak positions.

In the three last sections, I presented a complete procedure to measure and analyze interference
fringes on the focal plane, which is of course fundamental for self-calibration. This is challenging as
we can at maximum close two horns at the same time which means that we have to make a linear
combination of four images to get the fringes. By building an optical model of the fringe pattern, I
developed a fit which includes the detector gains. This has been successfully tested on simulation and
first apply on real data. The advantage is that the gains are computed analytically using linear algebra
during the χ2 minimization. This is a main step because the inter-calibration of the detectors is a
major issue for any data analysis.

In summary, all this work is closely related to self-calibration and it can be seen as a first step
toward the full procedure. This chapter terminates the presentation of the QUBIC instrument, its
working principle and parts of its calibration for which I worked on. In the next chapter, we will move
to Cosmology, focusing on the Cosmic Microwave Background physics and how it is part of the Hot
Big Bang model.
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The Cosmic Microwave Background
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This chapter is an introduction to the Hot Big Bang model and to one of its main consequence:
the Cosmic Microwave Background (CMB). The Hot Big Bang model was built in the 1920’ to answer
experimental observations and was a revolution of our vision of the Universe at that time. I start
by giving the historical context and the scientific motivation for this model before presenting it with
its major implications. The last section presents some important physical properties of the CMB
radiation. This chapter is mainly based on the books by Scott Dodelson [109] and James Rich [49]. I
also enjoyed the physical discussions presented in simple terms in the book by Steven Weinberg who
just passed [20].
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3.1 Our vision of the universe before 1920

3.1.1 Few words about general relativity

The theory of general relativity was invented by Einstein in the years 1910’ [21]. In general relativity,
gravity is no longer understood as a force but is replaced by the property of space-time to be curved
by the presence of mass.

We consider a particle in a gravitational field g. The gravitational force writes Fg = mGg where
mG is the gravitational mass of the particle and the Newton’s law of motion in a Galilean reference
frame writes

mI
d2x

dt2
= mGg (3.1)

where mI is the inertial mass and x the coordinates of the mass. Experimentally, mI and mG are
measured to be equal with a precision of 10−15 [50]. General relativity is based on the equality
mI = mG which is called the equivalence principle. It means that locally, the effect of a gravitational
force in a Galilean reference frame is identical to the effect of no gravitational force in an accelerated
reference frame. Indeed, in the reference frame (not Galilean) accelerated with the observer so that
x′ = x− 1

2gt
2 and t′ = t, we have:

m
d2x′

dt′2
= 0. (3.2)

The metric of the universe gµν defines the space time interval ds2:

ds2 = gµνdx
µdxν (3.3)

where the sum is done using the Einstein convention on the indices µ and ν that go from 0 to 3 for the
time and the three space coordinates. Einstein equation is a generalization of Poisson equation which
links the Newtonian gravitational potential φ(x) to the mass density ρm:

∆φ = 4πGρm (3.4)

where G is the Newtonian gravitational constant. Einstein equation links the content of the universe
with the curvature of the metric:

Gµν =
8πG
c4

Tµν . (3.5)

In this equation, Gµν is the Einstein tensor. It is defined as Gµν = Rµν − 1
2Rgµν with Rµν the Ricci

tensor and R = gµνRµν the Ricci scalar. R is the local curvature of space. All these quantities describe
the space-time geometry. The content of the universe is described by the stress-energy tensor Tµν . For
a fluid with pressure p and density ρ, in the proper reference frame of the fluid Tµν is diagonal and it
is equal to:

Tµν =




ρc2

p

p

p



. (3.6)

The factor 8πG
c4

in the Einstein equation is here to correspond to the Poisson equation in the Newtonian
limit.

3.1.2 A static and perpetual universe

In 1917, when Einstein finalizes the theory of general relativity, the universe is considered as static and
eternal. To satisfy this conception, Einstein proposes a generalization of its equation:

Gµν − Λgµν =
8πG
c4

Tµν (3.7)
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where Λ is the cosmological constant. A specific value of Λ = 4πGρ/c2 leads to a static but also
spherical universe (see section 3.2.3 for a justification).

If we put the term Λgµν in the right hand-side, we see that it can be interpreted as an effective
stress-energy tensor:

Gµν =
8πG
c4

Tµν + Λgµν =
8πG
c4

(Tµν + TΛ
µν) (3.8)

where TΛ
µν = c2

8πGΛgµν is a tensor of the form of equation 3.6 with ρΛ = Λc2/8πG = cst and pΛ = −ρΛ.
In this way, this constant can be interpreted as an exotic component with negative pressure and which
does not dilute when the volume increases as the density remains constant.

3.2 From a perpetual universe to an expanding universe

A nice overview of the birth of the Big Bang model is presented in the book by P. Luminet [22].

3.2.1 Questioning the vision of the universe

In 1917, our own galaxy is seen as the whole universe but in 1920, the limit of the universe and the
nature of the spiral nebulae start to be debated. Spectroscopic observations, carried by Vesto Slipher,
lead to the discovery of galaxy redshift [23].

The redshift z is defined as the relative difference between the observed and emitted wavelengths
of an object:

z =
λo − λe
λe

. (3.9)

This period, opposed astronomers like Heber D. Curtis who argued that nebulae were outside the
galaxy mainly against Harlow Shapley. A public debate was organized on 26 April 1920 between the
two astronomers but they could not conclude mainly because experimental evidence was missing. It is
known as The Great Debate [51].

In 1923, Edwin Hubble established the distance of Cepheids in the Andromeda galaxy [24]. Cepheids
are stars that pulse radially with a well defined period. There is a strong relation between the period
and the intrinsic luminosity of the star that was discovered by Henrietta Swan Leavitt in 1908 [25],
[26]. By comparing the absolute luminosity with the observed one, it is possible to get the distance.
Using 40 Cepheids, Hubble claimed: “we find the distance of M31 to be 275 000 parsecs”, much further
than the limit of the Milky Way.

Moreover, the idea of an expanding universe was introduced in the same period, first in 1922 by
the Russian mathematician and cosmologist Alexandre Friedmann [27]. The evolution of the universe
is governed by Einstein equations. Friedmann found a particular solution under the hypothesis of an
homogeneous and isotropic universe. Within this frame, the expansion of the universe naturally comes
out from equations. This completely changed the way of understanding the universe as it suggests a
history for the universe with a beginning. It is also the first time the Universe as a whole is put in
equations.

Independently, in 1927, Georges Lemaître, a Belgian catholic priest, mathematician and astronomer,
introduced the idea of an expanding universe in an article published in the Annales de la Société Sci-
entifique de Bruxelles: Un Univers homogène de masse constante et de rayon croissant rendant compte
de la vitesse radiale des nébuleuses extra-galactiques [28].

At that time, Einstein was in favor of a static Universe, he could not admit expansion. At the
Solvay congress, in 1927, A. Einstein completely disagreed with G. Lemaître concerning his physical
interpretation. He would have said: “from the point of view of Physics this seems to me abominable.”
However, he quickly changed his mind, abandoning the cosmological constant that he added previously
and making significant contributions to the development of the expanding model [29].

Cosmological principle: The homogeneity and isotropy hypotheses are a generalization of the
Copernican principle which states that humans on Earth are not privileged observers in the universe.
These two hypotheses form the frame of modern cosmology. Homogeneity means that the universe is
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equivalent at any place while isotropic implies equivalence of all directions. Of course we know that
on small scales, the universe is not homogeneous, there are very dense regions and empty places but
it is valid at cosmological scales. It is impressive to remark how a purely mathematical simplifying
assumption changed our vision of the Universe and became a rather well observationnally supported
argument. However, the validity of these hypothesis and the scale of transition to homogeneity are
still discussed [52], [53].

3.2.2 The Hubble-Lemaître law

Lemaître was interested in the applications in astronomy and he was able to explain the galaxy redshift
observed at that time [28]. He found what is called today the “Hubble-Lemaître law” saying that at
a given time t, the velocity v of the far galaxies (called at that time nebulae) is proportional to their
distance d:

v(t) = H(t)d(t) (3.10)

where the constant of proportionality H(t) is the expansion rate of the universe (with dimension
T−1) which may change during the history of the universe, so it is a function of the proper time t.
The value today, noted H0, is known as the “Hubble-Lemaître constant”. Using observations made
by Edwin Hubble and Gustaf Strömberg, he gave for the first time an estimation of the constant:
H0 = 625 km s−1 Mpc−1.

Hubble published his measurements, made at the Mount Wilson Observatory two years later [30]
with the famous plot shown in Figure 3.1.

Figure 3.1: Measurement of galaxy velocities as a function of their distance obtained by E. Hubble.
Taken from [30].

This discovery was exclusively attributed to Hubble during many time. It may be because of the
translation from French to English of the Lemaître paper in which the part referring to the H constant
was deleted for unclear reasons [31].

The scale factor: To parameterize the expansion of the universe, it is useful to define a time-
dependent function a(t), called the scale factor, that is proportional to the distances between galaxies.
Hubble law tells us that:

H(t) =
ȧ

a

where for simplicity, we note a = a(t) and ȧ is the time derivative of a. The scale factor a is unitless.
This is a convention, a is sometime defined with dimension of a length.
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3.2 From a perpetual universe to an expanding universe

3.2.3 The standard model of cosmology

The Einstein equation, under the hypothesis of a homogeneous and isotropic universe determines the
metric of the universe. In spherical coordinates, it is

ds2 = c2dt2 − a(t)2

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

)
(3.11)

known as the Friedmann-Lemaître-Robertson-Walker (FLRW) metric. The space coordinates (r, θ, φ)
are the comoving coordinates which are time independent, meaning that they are on a grid which
dilates with expansion. Note that following the convention where a is unitless, r has the dimension of
a length and k is a curvature, homogeneous to L−2. The value of k corresponds to positive, zero or
negative curvature of space:

k =





> 0→ close,
= 0→ flat,
< 0→ open.

(3.12)

Under the hypothesis of homogeneity and isotropy, the Einstein equation becomes the two Friedmann-
Lemaître equations:

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
(3.13)

ä

a
=
−4πG

3
(ρ+ 3p) +

Λ

3
(3.14)

where we took the convention c = 1. By combining these two equations, we can obtain the conservation
of energy in an expanding universe:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (3.15)

p and ρ are the sum of the pressures and densities of the different components in the universe. The
equation of state is p = ωρ where ω differs for each component. Let us take three simple examples:

• Universe dominated by radiation: Radiation and relativistic matter like neutrinos are char-
acterized by a pressure pr = ρr/3 (so ωr = 1/3). The equation 3.15 of energy conservation
gives ρr ∝ a−4 and the first Friedmann equation 3.13, if we neglect the curvature term and the
cosmological constant term, give an evolution of the scale factor as a(t) ∝ t1/2. So the expansion
is decelerating meaning that energy gravitates and opposes to expansion.

• Universe dominated by matter: Non relativistic matter has a zero pressure (ωm = 0). This
leads to ρm ∝ a−3 and a(t) ∝ t2/3. As expected, the expansion decelerates because gravity
opposes to it.

• Universe dominated by the cosmological constant: The equation of state for the cosmo-

logical constant is pΛ = −ρΛ (so ωΛ = −1). This leads to ρΛ = cst and a(t) = exp

(√
Λ
3 t

)
. In

this case, the expansion is exponentially accelerated.

This is summarized in Figure 3.2 which sketches the evolution of densities as a function of the scale
factor. The equality between matter and radiation corresponds to the recombination epoch. In any
scenario, the cosmological constant eventually dominates the Universe. As we did for Λ in equation 3.8,
we can define an effective density associated with the variable k:

ρk(t) = − 3k

8πGa(t)2
(3.16)

which is called the curvature energy density. We also define the critical density ρc as the particular
value of ρ for which the universe is flat (k = 0) assuming no cosmological constant (Λ = 0). According
to the Friedmann equation 3.13, we have:

ρc(t) =
3H(t)2

8πG (3.17)
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log(a(t))

lo
g
(ρ
(t
))

ρr ∝ a−4

ρm ∝ a−3

ρΛ = cste

Figure 3.2: Sketch of the evolution of the three densities (radiation, matter and cosmological constant)
as a function of the scale factor a(t) in logarithmic scale.

and its present value ρ0
c =

3H2
0

8πG . And finally, we introduce the dimensionless density parameters
Ωi(t) = ρi(t)

ρc(t)
where i stands for radiation, matter, cosmological constant or curvature. Using these

notations, the first Friedmann equation with ρ = ρm + ρr simply writes:

1 = Ωm(t) + Ωr(t) + Ωk(t) + ΩΛ(t). (3.18)

It is common to express this equation with the present values of the parameters. According to the
time evolution of each energy density, we have:

H2(t)

H2
0

= Ω0
m

(
a(t)

a0

)−3

+ Ω0
r

(
a(t)

a0

)−4

+ Ω0
k

(
a(t)

a0

)−2

+ Ω0
Λ. (3.19)

This model describes the expansion of the universe according to its content composed of matter,
radiation and the cosmological constant. It is called the Λ-Cold Dark Matter (ΛCDM) model and it
is the standard model for cosmology today. We will see in section 7.6.1 that this model is able to
constrain the observations accurately with only six parameters.

Can we have a static Universe with a cosmological constant? I mentioned in section 3.1.2
that a particular value of Λ leads to a static universe (ä = ȧ = 0). Indeed, if we consider a matter
dominated universe (p = 0), imposing ä = 0 in the second Friedmann-Lemaître equation 3.14 leads to
Λ = 4πGρ. Moreover, the condition ȧ = 0 in the first equation 3.13 gives k = 4πGρa2 = Λa2 > 0 which
corresponds to a spherical universe. Thus, the universe can be static even with a non-zero cosmological
constant equal to 4πGρ but it must also be spherical.

3.2.4 Proper and comoving distances

The definition of a distance in a curved and expanding universe is not trivial. We can refer to paper [54]
for details.

In the FLRWmetric (t, r, θ, ϕ), we consider a luminous object at comoving coordinates (te, re, θe, ϕe).
Those coordinates follow the expansion of the universe. The observer is located at (t0, 0, 0, 0). The
proper distance is the length that can be measured at a fixed time (for example today at t0) between
the observer and re. Due to the expansion, the proper distance changes over time. We have

dp(t0, re) =

∫ re

0

√
grrdr

′ =
∫ re

0

a0dr
′

√
1− kr′2

≡ a0χ(re). (3.20)
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where a0 = a(t0) and χ(re) is the comoving distance defined as:

χ(re) =

∫ re

0

dr′√
1− kr′2

=





arcsin(re) if k > 0,

re if k = 0,

arcsh(re) if k < 0.

(3.21)

The comoving distance is the proper distance where the expansion effect is removed. For a flat universe,
it is equal to the comoving coordinate re. Regarding the units, the proper distance is a physical
distance expressed in meters. So the comoving coordinate r and the comoving distance χ(r) have a
unit of m/a(t) (the scale factor is dimensionless).

In the same way, we can define a comoving time η such that:

dt = a(t)dη. (3.22)

3.2.5 Relation between the scale factor and the redshift

So far, we have expressed Friedmann-Lemaître equation 3.19 as a function of the scale factor but we
will see that a(t) can be related to the redshift z. We consider an electromagnetic wave emitted at
te + Te and received at t0 + T0 where Te and T0 are the wave period at emission and reception. The
comoving distance for the wave emitted at te + Te is:

χ(te + Te) =

∫ t0+T0

te+Te

cdt

a(t)
=

∫ t0

te

cdt

a(t)
+

∫ t0+T0

t0

cdt

a(t)
−
∫ te+Te

te

cdt

a(t)
(3.23)

By definition, the comoving distance is invariant with time so

χ(te + Te) = χ(te)⇒
∫ t0+T0

t0

cdt

a(t)
=

∫ te+Te

te

cdt

a(t)
. (3.24)

Under the hypothesis that a(t) does not vary during a period of the electromagnetic wave, we have

cT0

a0
=

cTe
a(te)

⇒ λ0

a0
=

λe
a(te)

. (3.25)

So finally, we can link the redshift and the scale factor as

1 + z =
λ0

λe
=

a0

a(te)
. (3.26)

This definition is very important, it links the theoretical scale factor a(t) which encodes the expansion
of the universe with an observable quantity, the redshift z. This allows to rewrite the first Friedmann
equation as a function of redshift:

H2(z)

H2
0

= Ω0
m(1 + z)3 + Ω0

r(1 + z)4 + Ω0
k(1 + z)2 + Ω0

Λ. (3.27)

In addition, it is possible to express the comoving distance as a function of redshift z. Light travels
in straight line following geodesics so dθ = dφ = 0 and we have

ds2 = 0 = c2dt2 − a2(t)

1− kr2
dr2. (3.28)

Thus, dr/
√

1− kr2 = −cdt/a(t). The minus sign means that light travels along the −r direction
(dr < 0). So the comoving distance becomes:

χ(re) =

∫ te

t0

−cdt
a(t)

=

∫ t0

te

cdt

a(t)
= χ(te). (3.29)
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By using

H =
1

a

da

dt
⇒ dt =

da

aH
(3.30)

and
a

a0
=

1

1 + z
⇒ da = −a0

dz

(1 + z)2
⇒ da

a
=
−dz

(1 + z)
, (3.31)

it becomes

χ(te) =

∫ a0

ae

cda

a2H(a)
=

∫ z=0

ze

−cdz
(1 + z)H(z)

(1 + z)

a0
=

∫ ze

0

cdz

a0H(z)
= χ(z). (3.32)

And the proper distance as a function of redshift is:

dp(z) = a0χ(z) =

∫ ze

0

cdz

H(z)
. (3.33)

3.2.6 Measurable distances in cosmology

Proper and comoving distances are not measurable, you can not fix the time and get it. In this section,
we will define two others distances which are experimentally measurable [49], [54].

Luminosity distance

We consider a source, for example a galaxy, at comoving coordinates (te, re, θe, ϕe) emitting N photons
at time te during a time interval dte of mean frequency νe. The luminosity of the galaxy at time te is:

L =
Nhνe
dte

(3.34)

where h is the Planck constant. The photons reaching an observer today at t0, r = 0 are located on a
sphere of surface 4πa2

0r
2
e (this expression is valid in a curved spacetime). We have the following relation

for redshift:
1 + z =

νe
ν0

=
a0

ae
(3.35)

So the energy of the photons today is hν0 = hνeae/a0. Photons emitted during dte reach the observer
during a longer time dt0 = dtea0/ae. The physical reason is that, because of expansion, each photon
must cross a larger distance than the previous one. Thus, the luminous flux today is:

Φ0 =
Nhν0

4πa2
0r

2
edt0

=
Nhνe

4πr2
ea

2
0dte(1 + z)2

=
L

4πa2
0r

2
e(1 + z)2

(3.36)

Two physical effects contributes to the redshift z dependence in Φ0. The first one is the expansion of
space between the source and the observer. The second is the shift in wavelength that decreases the
energy of the photons while they are traveling.

In a flat and static universe, the observed flux received from a source located at a distance DL is
L/4πD2

L. Thus, the luminosity distance DL(z) of the source is defined as:

Φ0 =
L

4πD2
L(z)

⇒ DL(z) = a0re(1 + z). (3.37)

Angular distance

We consider again a bright source at comoving coordinates (te, re, θe, ϕe). At the emission time te, the
source has a transverse size l. Its angular size on the sky at te considering a flat geometry is:

dθe =
l

a(te)re
(3.38)
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under the small angle approximation. Photons travel in straight line with (θ, φ = cst) so an observer
at r = 0 and t = t0, sees the source with the same angular size (dθ0 = dθe = dθ). The angular distance
is the physical distance at which the galaxy would be to be seen under the angle dθ in a flat and static
(Euclidian) geometry:

dθ =
l

DA(z)
. (3.39)

Thus, the angular distance can be linked to the luminosity distance by:

DA(z) = a(te)re =
DL(z)

(1 + z)2
. (3.40)

These two distances are expressed in meters.

3.2.7 The Hot Big Bang model

If the universe is expanding, it seems that by going back in time, density and temperature will increase
to infinity and this rises the question of a starting point. In 1931, G. Lemaître, in a short paper in
Nature proposed that all the matter in the Universe today came from a primeval atom. This was
the germ of the Big Bang theory developed in 20th century. Later, in 1946, he published a complete
description of his model: L’hypothèse de l’atome primitif : essai de cosmogonie which is a compilation
of articles and of conferences that he gave from 1929 to 1945, recently reedited [32].

The term Big Bang was introduced for the first time on 28 March 1949, at the BBC radio by Fred
Hoyle: “These theories were based on the hypothesis that all the matter in the universe was created in
one big bang at a particular time in the remote past.”. He was comparing to the Steady State theory
he was defending at that time. Contrary to what is commonly said, F. Hoyle did not introduce the
term in a pejorative way in a hotly debate with G. Gamow [33].

The measurement of the expansion rate of the universe is the first major argument in favor with
the Big Bang model but it is not the only one as we will see in the next section.

3.3 Thermal history of the Universe

3.3.1 Prediction and first observation of the CMB

In the late 1940s George Gamow, Ralph Alpher and Robert Herman transformed Lemaître’s hypothesis
into a sophisticated model of the early universe. They assumed the initial state to consist of a very
hot, compressed mixture of nucleons and photons. The theory of nucleosynthesis which describes the
formation of the first nuclei, was originally presented in a paper The Origin of Chemical Elements [34]
known as the αβγ paper for the three authors R. Alpher, H. Bethe, G. Gamow. At that time, A.
Alpher was the PhD student of G. Gamow and H. Bethe was added for humoristic reason (αβγ).
The theory was then elaborated in a series of papers in 1948 on the origin of elements [18], [35]–[37].
Figure 3.3 represents the formation of deuteron (association of one neutron and one proton) in the first
minutes of the Universe.

In the same papers, they also anticipated the emission of the Cosmic Microwave Background
(CMB). The creation of a photon gas was estimated at the time where the mass density of radiation
became comparable with the density of matter, called “the condensation time”. In paper [37], they
give an estimation for the temperature of the CMB today: “The temperature of the gas at the time
of condensation was 600 K., and the temperature in the universe at the present time is found to be
about 5 K.” A detailed review of what happened during the year 1948, where actually 11 articles were
published on the subject, can be found in [38].

However, those results were forgotten and the prediction of the CMB was redone in the early 1960s
independently by Yakov Zel’dovich, Robert Dicke and James Peebles.
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Figure 3.3: The formation of deuteron in the first minutes of the Universe. With X for the concentration
of neutrons (with X(0) = 1), and Y for the concentration of protons (with Y(0)=0). Taken from [18].

An impromptu observation

In 1964, Arno Penzias and Robert Woodrow Wilson at the Bell Telephone Laboratories in New Jersey
were working on a Dicke radiometer that they intended to use for radio astronomy and satellite com-
munication experiments (see Figure 3.4). They had measured a noise excess with unexplained origin
“about 3.5 K higher than expected. This excess temperature is, within the limits of our observations,
isotropic, unpolarized, and free from seasonal variations” [107]. The origin was unexplained until they
made the connection with the recent work by Peebles, Dicke, and others. Penzias and Wilson received
the 1978 Nobel Prize in Physics for the discovery of the CMB radiation.

Figure 3.4: Famous picture of Penzias and Wilson in front of their radio antenna.
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3.3.2 Big Bang nucleosynthesis

The synthesis of the light elements occurs at the epoch from approximately 10 s to 20 min in the history
of the Universe, and is called the Big Bang nucleosynthesis (BBN) [55]. In this phase, the majority
of deuterium and helium nuclei are produced and a small fraction of lithium, beryllium and boron
too. The remaining and heavier elements will be produced in stellar nucleosynthesis much later. In
primordial BBN, the only free parameter is the very small baryon-to-photon ratio ηB = nb

nγ
∼ 6×10−10.

Neutrons and protons can interconvert via weak interactions when the temperature is sufficiently low,
so that all the baryons are concentrated in nucleons rather than in free quarks, but high enough so
that there are only protons and neutrons rather than bound nuclei. Reactions are

n+ νe 
 p+ e−

n+ e+ 
 p+ νe

n
 p+ e− + νe.

There is a competition between the expansion rate of the Universe and the rate of the reactions. The
proton/neutron ratio follows the Maxwell-Boltzmann statistic:

n

p
= e−Q/(kT ) (3.41)

where k is the Boltzmann constant and Q = (mn −mp)c
2 ' 1.3 MeV is the Q-value of the reaction

which is the amount of energy absorbed or released during the nuclear reaction. Because of the
expansion, the temperature decreases and at some point, around ∼ 1010 K, when the reaction rate
becomes lower than the expansion rate, the reactions are frozen. At that time, the ratio p

n is about 6.
The only reactions that will continue are neutron β-decay so the ratio p

n increases slowly. Deuterium
nuclei, with a binding energy of 2.22 MeV, may form but they are not stable because of very energetic
photons1. When the temperature reaches ∼ 109 K (at p

n ∼ 7), the deuterium nuclei become stable and
the BBN can start with reactions of type:

p+ n→ D + γ

D + p→ 3He+ γ

D +D → 4He+ γ.

The BBN eventually stops when the temperature and density become too small for allowing fusion. At
this point, the universe is a plasma composed of photons, electrons, light nuclei and dark matter2 at
thermodynamic equilibrium. The neutrinos have decoupled much before (i.e. roughly 1 second after
the Big Bang, at T ∼ 1 MeV), and no longer play a role. Electrons and photons are highly coupled by
Compton scattering making the universe opaque to radiation because the mean free path for photons
is small. Any hydrogen produced is quickly ionized by energetic photons. The Universe is radiation
dominated.

Today, the observation of the abundance of chemical elements in the universe is another strong
evidence for the Big Bang model (see for example Table 2 in [56]).

3.3.3 Recombination

At a redshift of z ∼ 1100 (around 380 000 years after the Big Bang) and at a temperature of T ∼
3000 K, photons were cool enough to allow electrons to recombine with nuclei and form atoms. The
Universe becomes neutral. This epoch is known as recombination3. As soon as they decouple from
baryons, the photons propagate freely in the universe until now and they form the CMB radiation today.
The decoupling takes some time, the ionization rate of the universe corresponding to the fraction of
free electrons does not fall to zero instantaneously. Recombination extends over ∆z ∼ 90 [110]. This
is illustrated in Figure 3.5. To reach the Earth today, CMB photons have traveled since decoupling

1The mean energy of photons is not enough to dissociate deuterium nuclei but they are many more than protons and
neutrons so there is always a photon with enough energy to break new nuclei.

2See section 7.1.1 for an introduction of what dark matter is.
3The term recombination is not very well chosen as electrons and nuclei were never combined before.
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Figure 3.5: Sketch of the ionization rate of the universe during recombination. The recombination
phase is highlighted in orange, starting at 1 and ending at 2.

which corresponds to approximately 13.8 billion years (the age of the universe). The ones we observe
all come from a spherical shell centered on the Earth, with a radius such that they have traveled this
amount of time. This sphere is called the Last Scattering Surface (LSS) and each point in the Universe
has its own.

If the Universe was static, assuming no expansion, this sphere would be located at ∼ 13.8 billion
light years. However, because of the expansion of the universe, at the time of decoupling, the radius
(proper distance) of the sphere centered on the point where the Earth will form, was approximately
40 million light years. It means that because of expansion, photons have traveled ∼ 13.8 billion years
to reach a distance of only 40 million light years because the distance increases as they travel. From
the CMB emission, the radius of the sphere has expanded and today it is approximately 47 billion
light years. As decoupling is not instantaneous, the LSS is not infinitely thin but has a finite width
corresponding to the duration of recombination. All photons that we received today have crossed the
same sphere at the same time. However, some photons may have started to propagate freely before
others, during recombination phase. This is summarized in Figure 3.6 either on a sketch in space (left)
or on a space-time diagram (right).

In summary, measuring the CMB today gives us a picture of the universe at thermodynamic
equilibrium around 380 000 years after the Big Bang. Its observation is one of the best arguments in
favor of the Big Bang scenario.
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Figure 3.6: Sketch representing the last scattering surface with CMB photons propagating up to the
observer O (the Earth). Three types of photons arriving today but emitted at different times during
recombination are shown with different colors. Decoupling starts at 1 and ends at 2 similarly to
Figure 3.5. Left: the continuous black arrow gives the distance in a static universe while the dashed
black arrow gives the distance for an expanding universe at the recombination time and today. Right:
space-time diagram, three CMB are shown considering a flat and static universe so that photons follow
light cones with π/4 inclination. E is the position when the photon was emitted and E′ the same
position today. In dashed lines, we sketch an example of an expanding universe.
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3.4 The CMB black-body spectrum

3.4.1 A black-body at 2.7 K today

As the primordial plasma is at thermodynamic equilibrium, the spectrum of the radiation must follow
the black-body Planck law:

Bν(T ) =
2hν3

c2

1

e
hν
kT −1

(3.42)

where h is the Planck constant, k the Boltzmann constant, c the speed of light, T the black body
temperature and ν the frequency of the radiation. Bν(T ) (intensity or brightness) is the power
emitted by a black body at temperature T , per unit solid angle, per unit surface orthogonal to the
propagation and per unit frequency. Bν(T ) is expressed in [W m−2 Hz−1 sr−1] or in Jy sr−1 where
1 Jy = 10−26 W m−2 Hz−1. For low frequencies, hν � kT , the Planck law becomes:

Bν(T ) =
2kν2T

c2
, (3.43)

known as the Rayleigh-Jeans approximation. It means that in the low frequency regime, the spectral
radiance is proportional to the temperature. Equation 3.43 can be expressed in terms of wavelength
λ. We require that the integral of Bν(T ) over a frequency interval is equal to the integral of Bλ(T )
over the corresponding wavelength interval:

∫ ν2

ν1

Bν(T )dν =

∫ c/λ1

c/λ2

Bν(T )
cdλ

λ2
≡
∫ λ1

λ2

Bλ(T )dλ. (3.44)

This leads to
Bλ(T ) = Bν(T )

c

λ2
=

2ckT

λ4
. (3.45)

The CMB black body spectrum was very well measured by FIRAS [154]–[156], an instrument on the
COBE satellite, shown in Figure 3.7. Let us one more time emphasize that this observation is a strong

Figure 3.7: CMB black body spectrum measured by COBE. Taken from [111].

argument in favor of the Big Bang model as it is very hard to imagine local astrophysical processes
that would lead to such a black-body spectrum.

We have seen that for a relativistic radiation with energy density ρr, we have:

ρr(a)a4 = cst (3.46)
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and at thermodynamic equilibrium, the Stefan law gives ρr ∝ T 4. So the CMB black-body temperature
evolves as:

T (a)a = cste ⇒ T (z) = T0(1 + z) (3.47)

with T0 = 2.72548± 0.00057 K the temperature today [112] measured by FIRAS. This is sketched in
Figure 3.8 where we see CMB photons losing energy as they propagate to the observer located in O.

Figure 3.8: Sketch showing CMB photons losing energy so their wavelength increases as they propagate
in the universe.

3.4.2 Sunyaev Zel’dovich (SZ) effect

When the CMB photons cross galactic clusters, they can be scattered and converted to higher energies
by the electrons in the intergalactic medium through inverse Compton scattering. This process involves
the scattering of low energy photons to high energies by ultrarelativistic electrons so that the photons
gain energy while the electrons lose energy. It is called inverse because it is the opposite of the standard
Compton effect where very energetic photons scatters on electrons so the photons lose energy. Rashid
Sunyaev and Yakov Zel’dovich predicted this effect in 1969 [113], [114]. They have shown that it will
induce a distorsion of the CMB black-body spectrum, see in Figure 3.9. A complete review of this
effect can be found for example in [115].

Figure 3.9: Left: The monochromatic spectral line profile after one scattering by hot electrons. Right:
The spectrum of blackbody radiation (solid line) after multiple Compton scattering (broken line).
Taken from [114].

There are actually three different SZ effects:
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• Thermal: electrons have high energy due to their temperature (Te ∼ 107 − 108 K).

• Kinematic: electrons have high energy due to the bulk motion with respect to the CMB rest
frame.

• Non-thermal: many galaxy clusters contain a population of relativistic electrons which produce
a diffuse radio emission via synchrotron radiation in a magnetized medium [116].

SZ effect is seen in the direction of galaxy clusters so they are localized. This is why it can be used
to detect clusters. Using Planck data, a catalog with 439 clusters was established [117] and this is also
a powerful probe to constrain cosmological parameters as we will see in section 7.6.2.

3.4.3 The CMB dipole

The CMB is an isotropic radiation and “our” last scattering surface defines a rest frame. The Earth is
moving relatively to this frame. Due to the transverse relativistic Doppler effect, motion with velocity
β = v/c through an isotropic radiation field yields to an observation of a temperature T (θ) in the
observer’s frame [118], [157]:

T (θ)

T0
=

√
1− β2

1− β cos θ
' 1 + β cos θ +

1

2
β2 cos(2θ) +O(β3) (3.48)

where θ is the angle between β and the direction of observation as measured in the observer’s frame
and T0 the mean field temperature. The approximation at second order being valid for v � c. Thus,
to first order in β, the observer measures a black body radiation of temperature T0(1 + β cos θ) when
observing in the θ direction. The second term is a dipole leading to a higher observed temperature
and so a maximum intensity detection toward the direction of motion. The dipole amplitude is about
10−3 smaller than the mean temperature.

Figure 3.10: CMB dipole obtained by the COBE Differential Microwave Radiometers (DMR).

Using the Planck law, we can predict the spectrum of the CMB dipole:

Iν(θ) = Bν(T (θ)) = Bν(T0) + T0
∂Bν
∂T

∣∣∣∣
T0

β cos θ +O(β2) (3.49)

where the first term is the monopole and the second one is the dipole. We can calculate the first
derivative, that we note b′ν :

b′ν =
∂Bν(T )

∂T

∣∣∣∣
T0

=
2hν3

c2

ex

(ex−1)2

hν

kT 2

∣∣∣∣
T0

with x =
hν

kT
. (3.50)

Thus, the observation of the CMB dipole allows to measure our velocity with respect to the CMB
rest frame. This was recognized as soon as the CMB was discovered. The first claimed detection was
by Edward Conklin [119], using a ground-based differential radiometer working at 8 GHz, followed by
the first measurement of the dipole peak declination by Paul Henry [120]. It was later measured by
G. Smoot at 33 GHz using a twin-antenna Dicke radiometer [158]. In 1993, the COBE Differential
Microwave Radiometers (DMR) [121] measured a temperature of ∆T = 3.365 ± 0.027 mK toward
direction (l, b) = (264.4◦±0.3◦, 48.4◦±0.5◦) and a velocity of the local group of vLG = 627±22 km s−1

toward (l, b) = (276◦±3◦, 30◦±3◦). The CMB dipole map obtained by DMR is presented in Figure 3.10.
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3.4.4 CMB thermodynamic units

The Planck law associates a temperature to a known spectral radiance. This is why it is common in
CMB field or in radio astronomy to express the measurements in brightness temperature and not in
power.

In this section, we define the CMB and the Rayleigh-Jeans (RJ) brightness temperatures TCMB

and TRJ both commonly used in CMB field. The differentiation of equation 3.49, gives

dIν = b′νdTCMB (3.51)

and in the same way, with the RJ approximation 3.43, we have

dIν = b′RJdTRJ (3.52)

where we defined b′RJ = 2kν2/c2. From those expressions, the conversion from a map expressed in
[W m−2 Hz−1 sr−1] to a map in CMB-Kelvin or RJ-Kelvin could seem obvious. However, as explained
in [159], the conversion factor is a function of the frequency ν so it depends on the detector band-pass
and this makes the conversion not trivial.

A possibility is to calibrate the conversion factor using the CMB dipole. We consider a sky map
MCMB measured by a detector, expressed in CMB-Kelvin:

MCMB = G

∫
dντ(ν)AΩdIν (3.53)

with A the detector area, Ω the solid angle, τ(ν) the spectral band-pass and G a calibration factor.
We note KCMB = GAΩ with unit [KCMBW−1m2sr] and we will calibrate it on the CMB dipole for
which we have

MCMB = dTCMB = KCMB

∫
dντ(ν)dIν = KCMB

∫
dντ(ν)b′νdTCMB (3.54)

⇒ KCMB =

[∫
dντ(ν)b′ν

]−1

. (3.55)

In the same manner, the map in RJ-Kelvin will be

MRJ = dTRJ = KRJ

∫
dντ(ν)dIν with KRJ =

[∫
dντ(ν)

2kν2

c2

]−1

. (3.56)

Conclusion In this chapter, we have seen that the modern understanding of our universe takes its
origin around 1920. Basically, thinking about “physical cosmology” was impossible before General
Relativity, just because the whole Universe could not be considered as a physical object and be in
equations. So, as many people also say, Cosmology really started with General Relativity. This period
is also marked by the awareness that the Universe was much bigger than what we thought and had its
own dynamic. The discovery of the expansion of the universe quickly led to the Hot Big Bang model
for which the CMB is a direct consequence. It is remarkable that the evolution of the universe in a
global manner can be treated with simple physics based on equilibrium and reaction rates between
existing species. The CMB radiation is a fantastic source for studying the primordial universe.

In this chapter, we have presented the CMB black-body spectrum. In the next chapter, we will
see that the CMB temperature and polarization have tiny spatial fluctuations which are of a great
interest.
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Chapter 4

Spatial anisotropies in the CMB map
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Soon after the first observation of CMB, deviations from the blackbody shape and the isotropy
became the next targets for theorists and observers. This chapter is dedicated to the presentation
of spatial anisotropies in the CMB radiation, in temperature and polarization. Both originate from
processes happening in the primordial plasma but also along the path of the CMB photons. I describe
those processes in a not too formal manner, focusing on physical arguments more than on equations. As
it is convenient to look at the anisotropies in the Fourier domain, I introduce the angular power spec-
tra. Something remarkable is that temperature and polarization anisotropies and the power spectrum
shapes were predicted before the first observation [108].

This chapter is mainly inspired by the well known papers by W. Hu et al. [122]–[125], as well as
their tutorials1, a paper by N. Sugiyama [126] and the books by J. Rich [49] and S. Dodelson [109]. A
more analytical description can be found in the paper by W. Hu et al. [127].

4.1 Temperature anisotropies

Once the dipole is removed from the CMB map, very small spatial anisotropies remain, of the order
of 30 µK which is 105 smaller than the mean CMB temperature. Temperature anisotropies have been
observed on the full sky by the COBE, WMAP and Plank satellites, each time improving the angular
resolution, as shown in Figure 4.1. In this section, I will describe the physical origins of those tiny
fluctuations.

1http://background.uchicago.edu/index.html
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Chapter 4. Spatial anisotropies in the CMB map

(a) COBE, ∼ 7◦ (b) WMAP, ∼ 0.2◦ − 0.9◦ (c) Planck, ∼ 5′ − 30′

Figure 4.1: CMB temperature anisotropies measured by the COBE (launched in 1989), WMAP
(launched in 2001) and Planck (launched in 2009) satellites. The angular resolution (FWHM) is
written below each map.

4.1.1 Sound waves in the primordial plasma

Relativistic sound waves raced through the hot plasma that filled the universe throughout its first
380 000 years. That sound left an imprint that is still discernible in the CMB and also in the large-
scale distribution of galaxies. CMB anisotropies are essentially a frozen image seen from here and now
of the sound-wave pattern at decoupling. A pedagogical description can be found in [57].

Before recombination, the photons are tightly coupled to the electrons and protons. This can be
modeled as a single fluid named the baryon-photon fluid described by its pressure and energy density.

The primordial plasma contains perturbations of different natures (scalar, vectorial or tensorial).
As we will see in chapter 7, they are thought to be generated by the cosmic inflation phase. Gravity
attracts and compresses the fluid into the potential wells more rapidly than the expansion can carry
it away. So the contrast between overdense and underdense regions increases. But, compression in
the fluid is accompanied with an increase of the temperature leading to an increase of the radiation
pressure in the over-dense regions which resists to gravity. This generates an oscillating process which
produces sound waves that propagate in the fluid.

What is the sound speed cs in the plasma? We propose a short demonstration based on [49].
We consider a volume V of fluid made with photons and non-relativistic baryons with energy density
ρ = ργ + ρb and pressure p = pγ + pb. The sound speed is given by:

c2
s =

dp

dρ
(4.1)

As seen in section 3.2.3, photons are such that pγ = c2ργ/3 and pb = 0 for baryons. Thus,

c2
s =

c2

3
(

1 + dρb
dργ

) . (4.2)

The fluid is considered as perfect so compression is isentropic (dS = 0) so we have d(ρV ) = −pdV .
For the baryons and respectively for the photons, this translates into

dρb = −ρb
dV

V
and dργ = −4

3
ργ
dV

V
. (4.3)

Finally,

c2
s =

c2

3
(

1 + 3ρb
4ργ

) . (4.4)

The density ratio is given by
ρb
ργ

=
Ωb

Ωγ
=

Ω0
b

Ω0
γ

a

a0
=

Ω0
b

Ω0
γ

1

1 + z
(4.5)

with Ω0
bh

2 = 2.242× 10−2 and Ω0
γh

2 = 2.47× 10−5 [48]. Thus, up to z ∼ 1000, we have ρb
ργ
� 1, which

leads to a relativistic sound speed
cs ∼

c√
3
. (4.6)
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Acoustic scale

The sound speed defines the sound horizon s∗ = s(trec) =
∫ trec

0 csdt which is the maximum distance
sound wave can travel from the beginning of the universe to the time of recombination trec. We have
s∗ ' 150 Mpc in comoving coordinates. This proper distance can be converted in comoving angular
scale on the CMB anisotropy map:

θa =
s∗

DA(z∗)
(4.7)

where DA(z∗) is the angular distance at the decoupling transition. θa is called the acoustic scale.

What about neutrinos and dark matter?

For a pedagogical explanation, one can refer to [57]. We consider a density perturbation in the primor-
dial plasma which generates sound waves in the baryon-photon fluid. For neutrinos, decoupling with
baryons happened much before so they simply stream freely away with a relativistic speed.

Regarding dark matter, it is not coupled to photons so nothing opposes to collapse by gravity
(except the expansion) into the over-density. So dark matter reinforce compression without being
impacted by the photon pressure. After baryon-photon decoupling, photons propagate freely while
matter forms a shell surrounding the initial over density spot. Baryons and dark-matter mutually
attract so dark-matter tends to go out from the initial over-density while baryons are attracted back.
This phenomenon leads to a Baryon Acoustic Oscillation (BAO) peak in the 2-points correlation
function of galaxies that I will briefly describe in section 7.6.3.

4.1.2 Physical processes that create temperature anisotropies

Several processes can create or modify temperature anisotropies. Previously, we have presented the
SZ effect (section 3.4.2) which leads to a distortion of the black-body spectrum. On the contrary,
the physical processes presented here do not affect the black-body spectrum because they equivalently
impact all frequencies. Sometime a distinction is made between primary and secondary anisotropies.
The former refers to anisotropies created by processes occurring before recombination while the latter
are generated after recombination, due to processes occurring along the path of the CMB photons.

The Sachs–Wolfe effect

The first process that creates anisotropies is known as the Sachs–Wolfe effect as it was predicted first by
Rainer Kurt Sachs and Arthur Michael Wolfe in 1967 [128]. It includes intrinsic photon temperature
perturbation and gravitational redshift due to density fluctuations. Here I will give a pedagogical
demonstration based on [129] which is much more simple than the original proof made by Sachs and
Wolfe. We consider photons propagating in a metric perturbed by a gravitational potential Φ. The
frequency shift induced by gravitation corresponds to a temperature perturbation:

∆T

T

∣∣∣∣
f

=
∆T

T

∣∣∣∣
i

− Φ (4.8)

where i and f refer to initial and final states. This is simply the expression of energy conservation. The
first term on the right hand side is the intrinsic temperature perturbation (an over-density corresponds
to a hot spot). The second one is the energy lost when the photon climbs out of a potential well.
The gravitational potential affects the time that a stationary observer will measure. Clocks are slowed
down in a region of curved space. We have:

ds =
√

1− 2Φdt ' (1− Φ)dt (4.9)

where ds is the space-time interval and we set c = 1. Considering small perturbations ds = (1 + δt
t )dt,

we have
δt

t
= −Φ. (4.10)
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So the gravitational potential is essentially a perturbation to the time coordinate. The CMB temper-
ature is redshifted with T ∝ a−1 so:

aT = cst ⇒ adT + Tda = 0⇒ ∆T

T

∣∣∣∣
i

= −δa
a
. (4.11)

Considering a matter dominated universe so p = 0 and a = t2/3 we obtain:

∆T

T

∣∣∣∣
i

= −2

3

δt

t
=

2

3
Φ (4.12)

and finally,
∆T

T

∣∣∣∣
f

= −1

3
Φ. (4.13)

So this means that an over-density (corresponding to Φ > 0) is associated with a cold spot in the
temperature CMB map.

Doppler shift

The second process is due to the motion of the fluid along the line of sight which induces a Doppler
shift of the frequency associated with a temperature shift:

(
∆T

T

)

Doppler

= v · n (4.14)

which is the projection of the peculiar velocity of the fluid v on the direction of observation n.

Integrated Sachs-Wolfe (ISW) effect

As CMB photons left the LSS and travel up to an observer today, they must pass through clusters of
matter which have formed since. As we have seen with the SW effect, the presence of a potential well
in the path of a photon can induce a change in the temperature of the photon. We can write [130]:

∆T

T
(n) =

∆T

T
(n)

∣∣∣∣
rec

+

∫ η0

ηrec

2Φ̇dη (4.15)

where ηrec is the conformal time at recombination and η0 the conformal time today, as defined in
equation 3.22. ∆T

T (n)
∣∣
rec

includes the SW effect and the Doppler shift at recombination. In the
second term on the right hand side, the integral is taken along the line of sight. It is the Integrated
Sachs-Wolfe (ISW) contribution. It depends on the time derivative (with respect to the conformal
time η) of the gravitational potential Φ along the line of sight. The nonlinear part of the ISW effect,
is sometimes known as the Rees–Sciama effect [131]. To change the temperature of the photon, the
energy gained during the fall into the potential must not be balanced by the energy lost as the photon
climbs out the well. To have this condition, Φ̇ must not be zero and this is only possible in a universe
with accelerated expansion. Thus, the detection of this effect is an evidence for accelerated expansion.
It is measured by cross-correlating the CMB anisotropies with a tracer of the Large Scale Structure. It
was first reported by [132] and latter by many groups such as [117], providing evidence for accelerated
expansion independently from Type-Ia supernovae. Note that for the ISW effect, an over-density along
the line of sight, caused by a galaxy cluster for example, will increase the photon energy and thus the
apparent temperature in that direction.

4.1.3 Processes that attenuate the anisotropies

There are several processes that tend to attenuate the temperature anisotropies.
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Silk damping

The first one is known as Silk damping because it was first pointed out by Joseph Silk in 1968 [133]. It is
due to diffusion of the photons from hot regions to cold regions during recombination epoch. Photons
push electrons along by Compton diffusion and electrons pull protons by the Coulomb attraction
reducing anisotropies. Very small scale inhomogeneities (θa . 0.2◦) are smoothed out. In the limit of
an instantaneous recombination, the damping factor is:

F (k) = e
−
(
k
kD

)2

(4.16)

where k is the wave number of acoustic oscillations and kD = 2π
λD

the damping scale with λD the
diffusion length at recombination [134].

Averaged over the LSS width

The damping is also reinforced by the fact that the LSS has a width (∆z ∼ 90 [110]) so for each
line of sight, the temperature is averaged over the width. Figure 3.6 is a good illustration. Consider
three photons γ1, γ2 and γ3 coming from the same direction and arriving to the observer at the same
time. The three have been emitted at the decoupling temperature but at different times. For the
observer, the three photons have different temperatures and he will detect an average. The angular
scales impacted by the average are only the ones included in the LSS width. This corresponds to scales
below ∼ 0.1◦ or ` & 2000 where ` is the mutipole that we will define in the next section.

Reionization

The Lyman series corresponds to the series of energies required for the transition of the hydrogen atom
from the fundamental state to an higher energy state. The transition to the first excited state is called
Lyman-α and corresponds to the absorption of a photon with wavelength λ ' 121.5 nm (ultraviolet
range).

In cosmology, spectroscopic observations of very bright objects can tell us a lot about the presence
of structures with hydrogen atoms on the line of sight. Quasars are galaxies with an active nucleus,
their emission comes from a massive black hole accreting matter.

In 1965, Gunn and Peterson observed the spectra of high redshift quasars and galaxies [135]. As
expected, after recombination and until z ∼ 6, the universe is neutral and the Lyman-α ray is absorbed
by the intergalactic medium. However this absorption does not occur for light coming from quasars
closer to us. This is because around z ∼ 6 first stars form and start emitting high energetic photons
which re-ionize hydrogen atoms. This is called the reionization period.

A small part of the CMB photons scatters on free electrons released at reionization. The optical
depth τ is defined such that the number of CMB photons today N(t0) that have not been scattered
from ti is:

N(t0)

N(ti)
= e−τ . (4.17)

So the probability of a Thomson scattering in the time interval from ti to present time t0 is 1−e−τ [136].
The optical depth writes:

τ =

∫ t0

ti

σTne(t)dt (4.18)

where σT is the Thomson cross-section and ne(t) is the density of free electrons.
If the CMB radiation was isotropic, this scattering would not have any impact. However, because

CMB has spatial temperature anisotropies, we will show that small scales are damped. We consider a
single line of sight on which the temperature before reionization epoch is T0 +∆T . Today, the observed
temperature is the initial one minus the contribution of the photons diffused to others line of sight plus
the photons scattered in from other lines of sights:

T0 + ∆T → (T0 + ∆T )− (T0 + ∆T )(1− e−τ ) + 〈T0 + ∆Ti〉 (1− e−τ ) (4.19)
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where 〈〉 refers to an average over photons coming from directions i. At small angular scales, we can
make the approximation that the average is the mean temperature T0. This leads to:

T0 + ∆T → T0 + ∆T e−τ (4.20)

for small angular scales. So reionization, similarly to Silk damping, translates in an exponential
damping of small scales temperature anisotropies. As we will see in section 4.2.6, reionization has also
a strong impact on polarization anisotropies on large angular scales.

Gravitational lensing

Finally, as CMB photons propagate from the last scattering surface to the observation point they are
deflected by gravity when passing through inhomogeneous mass distributions. This is called gravita-
tional lensing. This results in distortions in the temperature anisotropy map. This was studied for
example in [137] and for a complete review of the weak gravitational lensing of the CMB, one can
refer to [138]. Mathematically, this can be described in the following way, the effective temperature
observed in direction n is actually deflected from direction n+ d(n) [189]:

Tlen(n) = Tunl(n+ d(n)) (4.21)

where Tlen and Tunl are the lensed and unlensed temperatures and d(n) is the deflection field. It is the
gradient of a scalar lensing potential φ(n):

d(n) = ∇φ(n), φ(n) = −2

∫ zrec

0

dz

H(z)
Ψ(z, χ(z)n)

(
1

χ(z)
− 1

χ(zrec)

)
(4.22)

where Ψ(z,x) is the Newtonian potential, χ(z) the comoving distance at redshift z and H(z) the
Hubble constant. The integral is done on the line of sight from today to recombination.

The structures in the universe are not strongly correlated at large scales so lensing has only an
effect at small angular scales. In the angular power spectrum (see section 4.1.5), the result is that
the acoustic peaks are smoothed at small angular scales. Note that H(z) and χ(z) depend upon
cosmological parameters (see section 3.2). As a result, lensing provides extra constraints on Cosmology.

4.1.4 Angular power spectrum

We note T0 the mean CMB temperature, and T (n) the temperature in direction n = (θ, φ) where
(θ, φ) are the usual spherical coordinates. The temperature anisotropies will be written:

T (n)− T0

T0
=

∆T

T0
(n). (4.23)

Decomposition on spherical harmonics basis

For quantitative analysis, it is useful to decompose the anisotropy patterns on spherical harmonics
which is similar to a 2D Fourier transform on a sphere. As any spherical scalar field, the temperature
fluctuations can be decomposed as:

∆T

T0
(n) =

∞∑

`=0

∑̀

m=−`
a`mY`m(n) (4.24)

where ` is the multipole, each ` is associated with an angular scale on the sphere (we have ` ∼ π
θ ). Y00

is a constant, corresponding to the mean CMB temperature so a00 = 0. The coefficient a10 gives the
temperature of the dipole (` = 1). It is not possible to separate the dipole due to the Earth motion
from the cosmological dipole induced by temperature fluctuations so this is why we will only consider
` ≥ 2 in the following. Thus, the a`m coefficients are another representation of the temperature field.
The spherical harmonics form an orthogonal basis,

∫

4π
Y`m(n)Y ∗`′m′(n)dΩ = δ``′δmm′ (4.25)
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where dΩ = sin θdθdφ is the elementary solid angle. Using this orthogonality relation, the a`m can
be calculated by multiplying equation 4.24 by Y ∗`′m′(n) on each side and integrating on the sphere. It
gives:

a`m =

∫

4π

∆T (n)

T0
Y ∗`m(n)dΩ. (4.26)

We will see in chapter 7 that temperature anisotropies ∆T
T0

approximately follow a normal distribution
with zero mean. So each a`m is also a random variable with normal distribution centered on zero
(〈a`m〉 = 0) as illustrated in Figure 4.2. According to the Isserlis’ theorem also called the Wick’s prob-
ability theorem, all the statistical information present in the a`m coefficients is contained in their co-
variance matrix. This is why we are interested in the variance of the coefficients Var(a`m) = 〈a`ma∗`′m′〉.

Figure 4.2: Gaussian distribution of the a`m coefficients with mean 0 and variance C`, see below for
the definition and the calculation of C`. Taken from [109].

Characterizing the variance

As the universe is isotropic, we expect that the variance does not depend on m. We define the
correlation function C(n1,n2) of temperature fluctuations taken in two directions n1 and n2.

C(n1,n2) =

〈
∆T

T0
(n1)

∆T

T0
(n2)

〉
. (4.27)

The correlation function is invariant under rotation. In other terms, what is important is not the exact
direction but the angle between n1 and n2 that we will note θ. So C(n1,n2) = C(cos θ) and we can
decompose it on the basis of the Legendre polynomials P` with coefficients (2`+ 1)C`/4π:

C(cos θ) =
∑

l

2`+ 1

4π
C`Pl(cos θ). (4.28)

Also, the Legendre polynomials of a scalar product of unit vectors (n1 · n2 = cos θ) can be expanded
with spherical harmonics such as

Pl(cos θ) =
4π

2`+ 1

∑̀

m=−`
Y`m(n1)Y ∗`m(n2). (4.29)

So finally, we have

C(n1,n2) =

∞∑

`=0

∑̀

m=−`
C`Y`m(n1)Y ∗`m(n2). (4.30)
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We go back to the calculation of the variance of the a`m:

〈a`ma∗`′m′〉 =

〈∫
dΩ1

∆T (n1)

T0
Y ∗`m(n1)

∫
dΩ2

∆T (n2)

T0
Y`m(n2)

〉
(4.31)

=

∫ ∫
dΩ1dΩ2Y

∗
`m(n1)Y`m(n2)C(n1,n2) (4.32)

=

∫ ∫
dΩ1dΩ2Y

∗
`m(n1)Y`m(n2)

∞∑

`′′=0

`′′∑

m=−`′′
C`′′Y`′′m′′(n1)Y ∗`′′m′′(n2) (4.33)

= C`δ``′δmm′ (4.34)

where we have used the orthogonality of spherical harmonics defined in equation 4.25.
Thus, the variance of the a`m does not depend on m and it is equal to the coefficients C` of

the decomposition on Legendre polynomials of the two-points correlation function of temperature
fluctuations. We define the angular power spectrum as,

C` = 〈a`ma∗`m〉 = 〈|a`m|2〉. (4.35)

Finally, this definition is a consequence of invariance under rotation of the correlation function defined
in equation 4.27.

How can we measure the angular power spectrum?

So far, averages were supposed to be done on many realizations of the universe which, of course, is
not experimentally feasible. This is why we need an estimator of the variance. The temperature field
on the sky is a real field so we have a`m = (−1)ma∗`−m and it means that for each `, there are 2` + 1
independent m. Thus, a simple way to get an estimator of the variance of the a`m is to replace the
average over universe realizations by an average over harmonic modes m at given `. We define the
observable power spectrum as:

Ĉ` =
〈
|a`m|2

〉
m

=
1

2`+ 1

∑̀

m=−`
|a`m|2. (4.36)

Link between the power spectrum and temperature anisotropies

The power spectrum is directly linked to the variance on the sky of the temperature anisotropies.
Indeed we have

〈(
∆T

T0

)2
〉

=
1

4π

∫ (
∆T

T0

)2

dΩ (4.37)

=
1

4π

∑

``′≥2

∑

mm′

a`ma
∗
`′m′

∫
Y`m(n)Y`′m′(n)dΩ (4.38)

=
1

4π

∞∑

`=2

∑̀

m=−`
|a`m|2 (4.39)

=
1

4π

∞∑

`=2

(2`+ 1)Ĉ`. (4.40)

For small angular scales, we can replace the sum by an integral [49]:
〈(

∆T

T0

)2
〉
' 1

4π

∫ ∞

2
`(2`+ 1)Ĉ`

d`

`
. (4.41)

Thus, the term `(2` + 1)Ĉ`/4π gives the contribution per interval of logarithmic multipole ln(`) to
the power of temperature fluctuations. Figure 4.3 is an illustration showing temperature maps corre-
sponding to single mode power spectra at ` = 3, 10 and 60.
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Figure 4.3: Temperature maps associated with single mode power spectrum C` (a Dirac at ` = 3, 10
and 60).

Cosmic variance

What accuracy can we reach on the power spectrum? For a given `, by measuring the (2` + 1) a`m
coefficients, we are sampling the distribution. Thus, there is a fundamental uncertainty on the estimate
of the variance C` and this uncertainty is most pronounced at low ` where the number of samples is
small. It is called the cosmic variance and it scales as the inverse of the square root of (2`+ 1):

(
∆C`
C`

)

cosmic

=

√
2

2`+ 1
. (4.42)

where ∆C` is the standard deviation of C`. A demonstration of this formula is done in annex A.2.

4.1.5 Observed power spectrum

Figure 4.4: CMB temperature (TT) angular power spectrum measured by the Planck mission. Taken
from [160] and adapted.

Actually, to represent the angular power spectrum, as will be justified below, it is convenient to
use

D` =
`(`+ 1)

2π
C`. (4.43)
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Chapter 4. Spatial anisotropies in the CMB map

Figure 4.4 shows the CMB temperature power spectrum DTT
` measured by the Planck mission. We

clearly see in this plot the effect of cosmic variance, leading to large error bars at large angular scales
(` . 10).

The shape of the angular power spectrum can be explained with the physical processes occurring
in the primordial plasma or along the travel of photons described in section 4.1.2. It can roughly be
divided in three main zones:

The Sachs-Wolfe plateau ` . 100: At large angular scales, when θ > θa, where θa is the acoustic
scale defined in section 4.1.1, non-homogeneities only evolve by gravitation. The pressure of the photon-
baryon plasma does not play any role, acoustic oscillations did not have time to propagate on those
scales. So the dominant phenomenon is the Sachs-Wolfe effect and large angular scales reflect the
initial spectrum of density perturbations that was laid down at early times. On the angular power
spectrum, we observe a plateau known as the Sachs-Wolfe plateau: `(`+ 1)C` ' cste. This is a strong
argument to say that gravitational primordial fluctuations are scale invariant. We will come back on
this point in chapter 7. This explains why we represent D` instead of C`.

We can also notice that for the largest angular scales (` . 10) the power spectrum rises and this is
due to the ISW effect [124]. However, it is hard to measure because of the cosmic variance.

The acoustic peaks 100 . ` . 1000: The more characteristic pattern of the spectrum is the series
of acoustic peaks. They correspond to the acoustic oscillations in the primordial plasma. Theses
fluctuations can be roughly written as standing waves confined by the sound horizon s∗:

∆T

T
∝ cos(kns∗) with kn =

nπ

s∗
(n = 1, 2, 3, ...). (4.44)

The first peak corresponds to the mode that is caught in its first compression (1/4 of the wavelength) by
recombination, the second peak to the mode that went through a full cycle of compression (1/2 of the
wavelength). . . This is illustrated in Figure 4.5. The acoustic scale defined previously in equation 4.7
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Figure 4.5: Acoustic oscillations in the primordial plasma, standing waves leading to the acoustic peaks
in the angular power spectrum. s is the sound horizon which evolves in time until s∗ at recombination.

can be converted in multipole:

`a '
π

θa
=
πDA(z∗)

s∗
. (4.45)

So the peaks are located at `n = n`a. The first peak is at `1 ' 200⇔ θ1 ' 0.9◦.

The damping tail ` & 1000: At small angular scales the exponential damping of the peaks, described
previously, is clearly visible.
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4.2 Polarization anisotropies

4.2 Polarization anisotropies

The CMB radiation is linearly polarized [139], [140]. In this section, we describe the physical processes
leading to a polarized radiation field and we introduce the mathematical tools commonly used in the
CMB field to describe polarization.

4.2.1 Thomson scattering

The polarization of the CMB radiation originates from Thomson scattering of photons onto electrons
in the primordial plasma.

In Compton scattering, the electric field of the incident electromagnetic wave, always orthogonal
to the incoming direction, induces an oscillation of the target electron orthogonal to the incoming
direction. The electron re-emits an electromagnetic wave polarized in the direction of its vibration.
The polarization of the outgoing electromagnetic wave is orthogonal to both the incoming and the
outgoing directions, and therefore to the scattering plane. Such a process in which the photon energy
remains unchanged is called Thomson scattering.

We consider an unpolarized incident radiation with direction of propagation k. This radiation
scatters on an electron with mass m and charge e and an observer looks at the diffusion of the radiation
in direction n. The angle between the incident and the scattered directions is θ. The differential cross
section dσ/dΩ is given by [232]:

dσ

dΩ
=

3σT
8π

1

2
(1 + cos2 θ) (4.46)

with dΩ the differential solid angle in the direction of the incoming radiation and σT = 8π
3

(
e2

mc2

)2
the

Thomson cross section. This means that an observer looking at the diffusion with a right angle from
the incident direction (θ = π

2 ) will get half of the intensity compared to a on-axis observer (θ = 0).
This is illustrated in Figure 4.6. We can also write

dσ

dΩ
=

3σT
8π
|ε · ε′|2 (4.47)

where ε, ε′ are the incident and scattered polarization directions.

Figure 4.6: Thomson scattering of an unpolarized electromagnetic field with incident direction k on
an electron. Three observers in directions nx, ny and nz are represented. Observers looking at π/2
from the incident direction receive a linear polarization.
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Chapter 4. Spatial anisotropies in the CMB map

4.2.2 Thomson scattering as a source of linear polarization in the CMB

For the CMB, the situation is different. We consider a single observer in direction z with incident
radiations from all directions on an electron. We work in the rest frame of the electron.

If the incoming radiation is unpolarized and isotropic (monopole) the scattered radiation will be
unpolarized too. However an anisotropic incoming radiation (in the rest frame of the electron), meaning
that there is hotter and colder radiation compared to the mean temperature coming from different
directions, can generate polarization. The incident radiation field should actually have a quadrupole
variation in temperature to produce outgoing linear polarization. This happens when the average
incoming radiation is hotter than the one coming from an orthogonal direction. An incoming dipole
radiation will not produce polarized light. Figure 4.7 illustrates the three cases (monopole, dipole and
quadrupole).

Figure 4.7: Thomson scattering of incoming unpolarized radiation in case of a monopole (isotropic
radiation), a dipole and a quadrupole temperature anisotropy in the rest frame of the electron. The
observer looks in the z direction. Black lines denote radiation with average intensity. Blue/red lines
show incoming radiation that is colder/hotter than the average. The only case that can produce a
linear outgoing polarization is the quadrupole.

Also, note that any polarization gets averaged out by successive rescatterings, therefore we only
observe polarization from the last one, at the end of recombination.

Let us mathematically demonstrate why quadrupole anisotropy is required. We will refer to Fig-
ure 4.8 for notations. The incident radiation is unpolarized so it is fully characterized by its intensity

Figure 4.8: Thomson scattering of an incoming unpolarized radiation on an electron.

I(θ, φ). The scattered radiation may be polarized so it is characterized by the four Stokes parame-
ters (I ′, Q′, U ′, V ′). We can equivalently use the two intensities along x and y: I ′x = (I ′ + Q′)/2 and
I ′y = (I ′ − Q′)/2. For the incident radiation, as it is unpolarized, we have Ix = Iy = I/2. Using
equation 4.47, we can compute the scattered intensities, for incident radiations in dΩ:
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4.2 Polarization anisotropies

I ′x =
3σT
8π

I|ε · ε′x|2 =
3σT
8π

[
Ix(εx · ε′x)2 + Iy(εy · ε′x)2

]
=

3σT
16π

I (4.48)

I ′y =
3σT
8π

I|ε · ε′y|2 =
3σT
8π

[
Ix(εx · ε′y)2 + Iy(εy · ε′y)2

]
=

3σT
16π

I cos2 θ (4.49)

where we used Iε = Ixεx + Iyεy. In terms of the Stokes parameters, it gives

I ′ =
3σT
16π

I(1 + cos2 θ) (4.50)

Q′ =
3σT
16π

I sin2 θ. (4.51)

By doing the computation in a frame rotated by 45◦ with respect to (x, y), we can show that U ′ = 0
(it is equal to Q′45◦ in the rotated frame).

To compute the signal received by an observer looking at a single line of sight, we need to integrate
over all incident directions. In order to have Q′, U ′ 6= 0 in the same frame, we make a rotation by an
angle φ such that Q′ cos(2φ)→ Q′ and −Q′ sin(2φ)→ U ′ (see equation 1.64):

I ′obs =
3σT
16π

∫
I(θ, φ)(1 + cos2 θ)dΩ, (4.52)

Q′obs =
3σT
16π

∫
I(θ, φ) sin2 θ cos(2φ)dΩ, (4.53)

U ′obs = −3σT
16π

∫
I(θ, φ) sin2 θ sin(2φ)dΩ. (4.54)

The signal I(θ, φ) can be decomposed on the spherical harmonics: I(θ, φ) =
∑

`,m Y`m(θ, φ). By using
the orthogonality relation of the harmonics given by equation 4.25 and with the expressions of Y00, Y02

and Y22, we obtain:

I ′obs =
3σT
16π

[
8

3

√
πa00 +

4

3

√
π

5
a20

]
, (4.55)

Q′obs =
3σT
4π

√
2π

15
Re(a22), (4.56)

U ′obs = −3σT
4π

√
2π

15
Im(a22). (4.57)

Thus, this demonstrates that only a quadrupole anisotropy (a22) can generate linear polarization by
Thomson scattering from unpolarized incident radiation.

What about circular polarization? To get circular polarization, a phase shift must be introduced
between the two directions of polarization and this is not possible by Thomson scattering. This
is why circular polarization in the CMB is negligible and the V Stokes parameter is usually not
considered [141].

4.2.3 E and B-mode introduction

As seen in section 1.3.1, the Stokes Q and U parameters are defined with respect to a fixed coordinate
system in the sky and we have seen how they transform under rotation. They are not scalar fields. In
1997, two decompositions of the CMB polarization field have been independently developed in order
to get rid of the frame dependence. The first one by M. Zaldarriaga and U. Seljak [142] based on a
decomposition on a sphere into spin ±2 spherical harmonics and a second one by M. Kamionkowski,
A. Kosowsky and A. Stebbins [143] using tensor spherical harmonics. In this section, we will introduce
the first one which is the one commonly used today in the CMB field.

The pattern of polarization on the sky can be characterized in terms of a scalar, E(θ, φ), and a
pseudo-scalar field, B(θ, φ) which are, by construction, non local quantities. Here, I give an intuitive
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Chapter 4. Spatial anisotropies in the CMB map

Figure 4.9: Definition of E and B-modes. In this figure, the four patterns correspond to the direction
of the electric field around a line of sight n̂ where E and B-modes are computed. Er and Eθ are the
electric field components in the radial reference frame (êr, êθ). E and B are weighted average of the
Qrad and Urad Stokes parameters along circles centered on n̂.

definition of E and B-modes based on [144]. A more canonical definition will be given in section 4.2.5.
Figure 4.9 illustrates how E and B are built fromQ and U Stokes parameters. n̂ is the line of sight which
gives the point on the sphere where E and B-modes are computed. In this figure, the four patterns
correspond to the direction of the electric field around n̂. Er and Eθ are the electric field components
in the radial reference frame (êr, êθ). E and B-modes are defined from the Stokes parameters, Qrad

and Urad, computed in the radial reference frame, on a circle centered on n̂. Locally, we can define E
and B-modes as:

E(n̂) =

∫
w(n̂ · n̂′)Qrad(n̂′)d2n̂′ (4.58)

B(n̂) =

∫
w(n̂ · n̂′)Urad(n̂′)d2n̂′. (4.59)

w(n̂ · n̂′) is a weighted function which only depends on the radius of the circles on which the integration
is made. It must be constant along a given circle. The canonical definition for E and B-modes from
spin-2 field analysis, that I will give in section 4.2.5, corresponds to the choice w(θ) = −1/θ2 with
θ = (n̂, n̂′). E and B-modes are the weighted averages of Qrad and Urad on circles centered on n̂ and
weighted by w(n̂ · n̂′).

Thus, thanks to the integration, and to the rotational invariance of the scalar product, E and
B-modes do not depend on the reference frame, contrary to Qrad and Urad. By construction, they are
non-local quantities, meaning that they can not be calculated from the measurement of Q and U at a
single point. In the Figure 4.9, the four patterns are the ones that lead to positive or negative pure
E-modes (with B = 0) and positive or negative pure B-modes (with E = 0).

Contrary to Q and U , E and B are invariant by rotation around the direction n̂. However, E and
B differ in their behavior under reflection (parity transformation), B changes sign while E does not.
E is a scalar while B is a pseudo-scalar. The name E and B were chosen by analogy with the electric
and magnetic fields which have similar behavior under symmetry as they are respectively vectorial and
pseudo-vectorial fields.
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4.2.4 Origin of quadrupole anisotropies

As seen before, quadrupole anisotropies are needed to get polarization with Thomson scattering but
how can they be produced in the primordial plasma? There are two mechanisms: density fluctuations
(scalar perturbations) and gravitational waves (tensor perturbations). We will see that the first can
only lead to E-modes while the second can produce E and B-modes. This is a major advantage of
this decomposition as in this way, B-modes become a direct observable of gravitational waves passing
through the primordial plasma. Today, these waves, if any, form a contribution to the stochastic
gravitational wave background [58].

Density fluctuations

Velocity gradient in the photon-baryon fluid around density fluctuations can produce quadrupole
anisotropies in the radiation. This is illustrated in Figure 4.10. We consider a primordial over-density,
which, as seen in section 4.1.2, is associated with a cold spot in the CMB map. Acoustic oscillations
propagate in the fluid. The photon-baryon fluid can either fall by gravity into the potential well with
acceleration or climb up the well with deceleration because of radiation pressure. Thus, the velocity
field of the fluid can either converge toward the cold spot or diverge from it.

Figure 4.10: Generation of E-modes from velocity gradients in the photon-baryon fluid around an over-
density (cold spot). The fluid can either fall into the potential well with acceleration or climb up the
well with deceleration (yellow arrow drawn in the observer frame). This creates quadrupole anisotropy
of the radiation in the rest frame of electrons. Small black arrow show the motion of the fluid in the rest
frame of the electron. Red lines show the electric field direction of the radiation scattered by Thomson
scattering on the electrons. This results in positive or negative E-mode polarization patterns.

We consider Thomson scattering on an electron in the fluid falling or climbing the well. In the first
case the electron, in its own rest frame, sees the fluid behind him and in front of him moving away.
However, the fluid on its side (on the same isocurve of the well) gets closer to him. By Doppler effect,
the electron sees the photon energy (so their frequency) going up or down, which shifts the black-body
spectrum temperature. This results in a temperature quadrupole anisotropy in the rest frame of the
electron. In the second case, it is the opposite, the electron sees the fluid behind him and in front
of him coming closer while the fluid on its side is moving away. This also results in a quadrupole
radiation, π/2 rotated compared to the first case.
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Chapter 4. Spatial anisotropies in the CMB map

As seen before, the outgoing polarization after Thomson scattering is orthogonal to the hot quadrupole
lobes (see Figure 4.7). We represent several electrons on the same potential isocurve and we look at
the well from above. The first case where electrons are falling down creates a radial polarization pat-
tern centered on the over-density while the second case where the electrons are climbing up creates a
tangential polarization pattern surrounding the over-density.

We clearly recognize the patterns associated with positive and negative E-modes. So in summary,
a cold spot can generate alternatively positive and negative E-modes at the frequency of the acoustic
oscillation. However it can not generate B-modes.

Gravitational waves

By distorting space when they propagate, gravitational waves generate E and B-modes. In Figure 4.11,
we consider a gravitational wave with a wave vector k propagating along the z direction. The metric
is modified in the transverse plane (êx, êy) with two polarization modes h+ and h×. The dashed lines
represent particles placed on a circle which is periodically deformed following the frequency of the
gravitational wave. By Doppler effect, similarly to density perturbations, this creates temperature
quadrupoles (` = 2,m = 2) around the electron, in its own rest frame.

Figure 4.11: Propagation of a gravitational wave with wave vector k along z direction. The dashed lines
represent particles placed on a circle periodically deformed according to the period T of the gravitational
wave. There are two polarization modes h+ and h×. This creates a temperature quadrupole (` = 2,m =
2) around the electron, in its own rest frame. The red line is the polarization direction of a photon
emitted by Thomson scattering along z, which is orthogonal to the hot lobes.
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We consider a small portion of the LSS that locally can be approximated by a plane. Observers on
Earth see photons emitted orthogonally from the LSS plane. Figure 4.12 illustrates how a gravitational

Figure 4.12: Left: Polarization generated by gravitational wave with direction k and polarization h+.
The gray rectangle is a part of the LSS locally approximated by a plane. On the right, it is a projection
on the LSS as seen by an observer on Earth while on the left it is a 3D representation. The gray degrade
represents the phase of the gravitational wave as seen by the observer. The polarization of the emitted
photon is always parallel or perpendicular to the projection of k. Right: Similar to the left panel but
for a gravitational wave with h× polarization. Here, the emitted photon polarization is oriented at
45◦ from the projection of k. Contrary to h+, when k is tangential to the LSS, the scattering photon
is unpolarized because the projection of the quadrupole on the LSS superimposes hot and cold lobes
(drawn in orange).

wave h+ or h×, depending on its direction of propagation k with respect to the LSS, produces polarized
light. We consider three cases (one on each row): k orthogonal to the LSS plane, k tangential to the
LSS plane and k with a random inclination. In the right column, we represent the projection on the
LSS which corresponds to what the observer sees. We can point out four facts:

• When k is orthogonal, the LSS plane is a wavefront of the gravitational wave so all the quadrupoles
surrounding electrons sitting on the LSS are oriented in the same direction. This means that all
photons, scattered through Thomson scattering share a common direction of polarization (red
bare). This results in zero E and B-modes because the integral of Qrad and Urad on a circle will
be zero for a constant polarization direction. This is true for h+ and h×.

• For h+, with k tangential or inclined but not orthogonal to the LSS, the resulting polarization
is always parallel or perpendicular to the projection k‖ of k on the LSS.

• For h×, when k is tangential, it does not create polarization light because on the projection, a
hot lobe superimposes with a cold one so the quadrupole disappears (sketched in orange).

• For h×, when k is out of the LSS plane but not orthogonal, it creates linear polarization at 45◦

to the projection k‖.

Now, the question is whether it produces E or B-mode polarization. On Figure 4.13, we consider a
single point on the LSS, sketched by a blue spot. Red bars represent the direction of polarization,
given by the electric field surrounding the point. Four cases are represented: positive and negative
E-modes, positive and negative B-modes. The projection on the LSS of the gravitational wave vector
k‖ pointing on the blue spot is shown with a black arrow. When the polarization direction is parallel
or perpendicular to k‖, it corresponds to E-mode patterns On the contrary, when the polarization is
oriented at 45◦ from k‖ it corresponds to B-mode patterns.

So, let us summarize. If k is orthogonal to the LSS, as we already say, neither h+ or h× can generate
E or B-modes. If k is tangential or inclined with respect to the LSS plane, h+ will generate E-modes
because k‖ is parrallel or perpendicular to the polarization direction. B-modes are only produced with
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Figure 4.13: we consider a single point on the LSS, blue spot. Red bars represent the direction of
polarization, given by the electric field surrounding the point. Four cases are represented with pure E
positive and negative, pure B positive and negative. The projection of the gravitational wave vector
k‖ pointing on the blue spot is shown. When the polarization direction is parallel or perpendicular to
k‖, it corresponds to E-mode patterns. On the contrary, when the polarization is oriented at 45◦ to
k‖, it corresponds to B-mode patterns.

h× when k is inclined with respect to the LSS plane because in this case, k‖ is at 45◦ with respect to
the polarization direction.

4.2.5 Polarization statistics

As we did for temperature in section 4.1.4, we can decompose E and B fields on the spherical harmonics
basis:

E(n) =
∑

lm

aE`m Y`m(n) and B(n) =
∑

lm

aB`m Y`m(n), (4.60)

and we can define the angular power spectra:

CEE` = 〈|aE`m|2〉 and CBB` = 〈|aB`m|2〉. (4.61)

As temperature anisotropies are related to polarization, it is interesting to look at the correlations. We
define the cross power spectra:

CTE` = 〈aT`maE∗`m〉, CTB` = 〈aT`maB∗`m〉 and CEB` = 〈aE`maB∗`m〉. (4.62)

However, because of the difference of behavior under reflection between T, E and B, the two last one
are zero. B has no correlations with T or E. Thus, only four angular power spectra are needed to
characterize the temperature and polarization of the CMB: TT , EE, BB and TE.

Canonical definition of E and B-modes

I give here the canonical definition for E and B-modes as originally presented in [142]. Indeed, from
equation 1.65, we see that the two quantities (Q± iU) have a ±2 spin. Thus, we can expand it on the
appropriated spin-weighted spherical harmonics basis:

(Q± iU)(n) =
∞∑

`=2

∑̀

m=−`
a±2,`m ±2Y`m(n). (4.63)
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By linear combination of the coefficients of this decomposition, we can form two scalar quantities,

aE`m =
−(a2,`m + a−2,`m)

2
and aB`m =

i(a2,`m − a−2,`m)

2
, (4.64)

which correspond to the coefficients of the spherical harmonics decomposition E and B fields defined
on the sphere. This definition and definition from section 4.2.3 give expressions for E and B that are
non local, invariant by translation and rotation of the coordinate system and with the correct parity
properties. The choice of the weight function w(θ) = −1/θ2 defined in section 4.2.3 ensures that the
two definitions have the same expressions in the Fourier domain [144], [145].

4.2.6 Perturbations on the way

Different mechanisms can modify the CMB polarization between recombination epoch and today.

Gravitational lensing

As we said in section 4.1.2, gravitational lensing has an effect on temperature anisotropies but it also
modifies the polarization [146], [147]. By deforming the polarization patterns on the sky, lensing mixes
E and B modes. As E mode signal is much more intense than B mode signal2, lensing B-modes
can dominate the primordial B-mode signal at small angular scales. Because gravitational lensing is
independent on the frequency ν, the two signals have the same electromagnetic spectrum so they are
not easily distinguishable. Moreover, lensing introduces correlations between T , E and B fields such
that EB and TB correlations can be non zero.

Similarly to temperature, we have

Qlen(n) = Qunl(n+ d(n)) and Ulen(n) = Uunl(n+ d(n)) (4.65)

and from equation 4.22, we can compute the power spectrum of the lensed B-modes [189]:

CBB`1,len =
1

2`1 + 1

∑

`2`

|fEB`1`2`|2CEE`2 Cφφ` . (4.66)

Cφφ` is the angular power spectrum of the lensing potential φ and fEB`1`2` is a coupling coefficient. To get
rid of the lensing B-modes, there are methods called delensing and it is a wide research field. Given
the above expression, it is clear that delensing requires two ingredients: the measurement of E-modes
and a measurement of the gravitational field φ.

Reionization bump

As seen in section 4.1.3, Thomson scattering between CMB photons and free electrons released at
reionization attenuates temperature anisotropies. However, it also creates additional polarization be-
cause electrons see quadrupoles anisotropies in the CMB radiation. This time, the quadrupole comes
from the CMB temperature itself, it is the same quadrupole we observe today. So it is different from
what happens at recombination. This induces a peak, called the reionization bump, in the polarization
EE and BB angular power spectra at:

`p ' 2(
√
zion + 1− 1) (4.67)

where zion ∼ 6 is the redshift at reionization [136]. The amplitude of the peak is proportional to the
optical depth τ [148]. Thus, measuring the position and the amplitude of the peak in the power spectra
gives information about reionization period. It was first presented by Zaldarriaga in [142].

2E-modes are produced by density fluctuations and gravitational waves while B-modes can only be produced by
gravitational waves.
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Conclusion In this chapter I have presented the temperature and polarization anisotropies in the
CMB, focusing on their physical origin in the primordial plasma.

To conclude this chapter, Figure 4.14 shows the recent measurements of the CMB temperature and
polarization power spectra (TT , EE, BB and TE). The BB signal detected today corresponds to
the lensing B-modes. The expected primordial BB signal is shown for r = 0.1. We will define this
parameter called the tensor-to-scalar ratio in chapter 7. To end this chapter, I wish to emphasize once
more something I find remarkable: spatial CMB anisotropies and the power spectrum shapes were
predicted before the first observation [108].

Figure 4.14: Recent measurements of the CMB temperature and polarization power spectra (TT , EE,
BB and TE). The expected primordial BB signal is shown for r = 0.1. Taken from [161].

In the next chapter I will present the main observational techniques for CMB experiments.

124



Chapter 5

Observing and measuring the CMB

Contents
5.1 Projects targeting B-modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1.1 Ground based telescopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.1.2 Balloons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1.3 LiteBIRD space mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.1.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2 Making sky maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2.1 Why scanning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2.2 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.3 Map-making solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.4 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2.5 QUBIC monochromatic map-making . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.6 HWP angle spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.2.7 Spatial correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3 Power spectrum estimation with real data . . . . . . . . . . . . . . . . . . . 139
5.3.1 Interest of doing cross spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3.2 Pixel and beam window correction . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.3.3 Partial coverage and pseudo spectra . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3.4 E and B leakage and pure decomposition . . . . . . . . . . . . . . . . . . . . . 141
5.3.5 Theoretical error bars on the reconstructed power spectrum . . . . . . . . . . . 142
5.3.6 Namaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.3.7 Maximum likelihood solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4 Foreground contamination of the CMB signal . . . . . . . . . . . . . . . . . 144
5.4.1 Astrophysical foregrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.4.2 Atmospheric opacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.5 QUBIC on a TOAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

This chapter treats the CMB from the point of view of observers. I first review the main current
projects targeting CMB polarization. Then I focus on data analysis methods: map-making and power
spectrum estimation. A pedagogical review can be found in [190]. Some concepts are illustrated using
the QUBIC data analysis and simulation pipeline and I also emphasize some specificities of bolometric
interferometry. People doing data analysis have to face a major issue: the CMB signal is contaminated
by foregrounds emissions, for example Galactic dust thermal emission or atmospheric opacity in the
case of ground experiments. Finally, I terminate with an idea that would allow to adapt typical CMB
data analysis software developed for classical imagers to the case of bolometric interferometers.
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Personal contributions: I did the implementation of the Namaster package in the QUBIC soft
pipeline in collaboration with Claudia Scóccola and Suzana Landau. I contributed in many aspects to
the QUBIC soft pipeline. With Martin Gamboa and James Murphy, we made tutorials so that it is
easier to learn how to use the software. Finally, the study concerning HWP angle spacing presented
in section 5.2.6, is my personal work.

5.1 Projects targeting B-modes

Since the first detection in 1964, the CMB has been widely observed1. Here we give a brief overview
of the current and planned experiments aiming at measuring B-mode polarization. The list does not
attempt to be exhaustive.

CMB experiments can be separated in three types: ground based telescopes, balloons and satellites,
each with their own advantages. Moreover, generally speaking, the Large Aperture Telescopes (LAT)
target small angular scales temperature and polarization power spectra, focusing on lensing B-modes.
On the contrary, the Small Aperture Telescopes (SAT), with lower resolution, aim at constraining the
tensor-to-scalar ratio accessible on large angular scales.

5.1.1 Ground based telescopes

BICEP2/Keck Array: operating since 2010 at the South Pole in Antarctica, observing at 95, 150
and 220 GHz [149], [162]. They reported a first detection of primordial B-modes in 2014 [152] but it
was quickly shown through a joint analysis using the Planck data that the observed B-modes were due
to polarized emission from galactic dust [153]. BICEP Array is the next stage instrument, replacing
the Keck Array, with additional receivers at 30 and 40 GHz [163].

POLARBEAR: installed in 2012 at the Atacama plateau in Chile, observing at 150 GHz [164]. A
continuous rotating half-wave plate was installed in 2014. They have access to angular scales between
50 ≤ ` ≤ 600. POLARBEAR-2 and Simons Array [165] are extensions of POLARBEAR, adding
receivers at 95 and 220 GHz and improving the sensitivity.

South Pole Telescope (S-PT): a 10 m diameter telescope (LAT) located at South pole. The
SPTpol polarization sensitive receiver was installed on the telescope in January 2012 [166]. It has
two arrays of polarization sensitive bolometers observing at 95 and 150 GHz. SPT-3G is the third
generation camera on the SPT, installed in 2017 [167] with ∼ 16 000 multichroic detectors observing
at 95, 150 and 220 GHz.

ACTpol: a large aperture telescope (6 m diameter receiver), located at the Atacama plateau in the
Cerro Toco site [161], [168]. First observations started in 2007 in two frequency bands at 97 and
148 GHz. A third band at 220 GHz was added later. Advanced ACTpol is an upgrade with new
frequency bands and better sensitivity through adding receivers [169], [170].

CLASS: a telescope array observing from the Atacama desert, at frequency bands around 40, 90, 150,
and 220 GHz [171]. CLASS measures the large angular scale (1◦ ≤ θ ≤ 90◦), targetting primordial B-
modes. The 40 GHz CLASS telescope has been observing since 2016 and other channels were deployed
later. The polarization-sensitive dichroic 150/220 GHz detector array was for instance delivered in
June 2019 [172].

1One may have a look to this NASA page with a very long list of past, current and planned CMB experiments
https://lambda.gsfc.nasa.gov/product/expt/.
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5.1 Projects targeting B-modes

Simons Observatory (SO): currently under construction at the Atacama plateau, in the Cerro
Toco site, it will share the site with ACTpol, POLARBEAR, CLASS and CMB-S4 [173]. It will consists
in 60 000 detectors distributed over one large aperture telescope (6 m diameter primary reflector),
observing in six frequency bands from 27 to 280 GHz, and three small aperture telescopes (50 cm
diameter) similar to BICEP3 receivers with continuous rotating HWP.

CMB-S4: a single experiment with 21 instruments mixing large (5 and 6 meter diameter) and small
apertures telescopes (∼ 50 cm diameter) [174], [175]. It will be deployed both at the South Pole and in
Chile at the Cerro Toco site. In total, more than 500 000 detectors distributed on the telescopes will
observe the sky. The telescope design is very similar to that of Simons Observatory. It will observe in
11 frequency bands distributed between 20 and 270 GHz.

LSPE-STRIP: a telescope based in Tenerife coupled with the LSPE-SWIPE balloon [176]. It is
among the few CMB experiments dedicated to the observation of the Northern Hemisphere. First
observations should start next year with two frequency channels at 43 and 95 GHz.

5.1.2 Balloons

SPIDER: a balloon experiment, launched in Antarctica in January 2015 for a duration of 16.5
days [177], [178]. It consists in six refracting telescopes (two-lens refractor) housed in a single cryostat.
It has two frequency channels at 95 and 150 GHz. The polarization of the signal is modulated with
step rotating half-wave plates mounted on each telescope. A second flight with upgrades is planned
for December 2021 [179].

LSPE-SWIPE: a balloon, associated with the LSPE-Strip ground telescope [176]. It will observe
at 145, 220 and 240 GHz in a stratospheric flight in Arctic, scheduled for winter 2021-2022.

PIPER: a balloon-borne instrument with twin cryogenic telescopes, observing in four bands from
200 to 600 GHz [180]. The polarization sensitivity is achieved with a variable-delay polarization
modulator. This allows Piper to instantaneously measure the full Stokes vector (I,Q, U, V ) for each
pointing. The first flight for astrophysical observations occurred in October 2019. Unfortunately,
failure of an observation hatch to open prevented observations [181].

5.1.3 LiteBIRD space mission

LiteBIRD [182], [183], the Lite (Light) satellite for the study of B-mode polarization and Inflation
from cosmic background Radiation Detection, is a space mission, led by JAXA with a strong European
support, designed to measure the CMB polarization with unprecedented precision. It will be launched
in the late 2020s and it will perform a complete survey of the sky during three years. LiteBIRD
can be considered as a fourth generation CMB space mission, successor of the Planck satellite. The
focal planes are made with more than 4600 bolometers (Transition-Edges Sensors) and the satellite
will observe from 34 to 448 GHz split in 15 sub-bands with three telescopes. The polarization of the
sky will be modulated using half-wave-plates located at the entrance of each telescope. The expected
sensitivity is 2.16 µK-arcmin with an angular resolution around 0.5 degree at 100 GHz.

5.1.4 Summary and discussion

The main characteristics of the experiments listed above are summarized in Table 5.1.
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Project Type Location Start ` range Frequency [GHz] σ(r)

BICEP2/Keck Ground Antarctica 2010 35− 300 30, 40, 95, 150, 220, 270 3× 10−3

POLARBEAR + SA Ground Chile 2012 50− 600 95, 150, 220 0.006

CLASS Ground Chile 2016 2− 200 40, 90, 150, 220 0.01

SPIDER Balloon Antarctica 2015 10− 300 90, 150, 280 0.01

SO Ground Chile Future 30− 8000 27, 39, 90, 150, 220, 270 0.003

QUBIC TD + FI Ground Argentina 2022 40− 400 150, 220 0.01

LSPE Ground + Balloon Canaries + Arctic Future 2− 100 43, 90, 95, 145, 245 0.01

PIPER Balloon Future 2− 300 200, 270, 350, 600 0.003

CMB-S4 Ground Chile + Antarctica Future 11 bands from 20 to 270 5× 10−4

LiteBIRD Satellite Future 2− 200 15 bands from 34 to 448 1× 10−3

SPT + SPT-3G Ground Antarctica 2012 50− 2300 95, 150, 220

ACTpol Ground Chile 2007 225− 8725 30, 40, 98, 150, 220

Table 5.1: Summary of the CMB experiments presented above. The cyan color indicates the project dedicated to small angular scales only. The last
column gives the expected uncertainty on the tensor-to-scalar ratio r, a parameter related to cosmic inflation that I will introduce in chapter 7.
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Ground based telescopes have the advantage to be easily upgraded compared to satellites but they
have to deal with atmosphere opacity as we will see in section 5.4.2. Balloons are a nice compromise
between space and ground based experiments but they are limited by the duration of flight. All those
projects are really complementary as they slightly differ regarding the frequency channels, the angular
resolution, the detectors. . .Moreover, redundancy between experiments, for example regarding the
same sky region is a good point if we want to compare the results. I think that a detection of a non
zero tensor-to-scalar ratio, a parameter related to cosmic inflation that I will introduce in chapter 7,
will have to be confirmed by several instruments.

To conclude this short overview, I think it is nevertheless important to note that all projects
are variations of the same design: classical imaging with TES arrays at focal plane. The control
of systematic effects relies on the scanning strategy coupled with a modulation of the signal by an
HWP. From this point of view, the QUBIC design is very original. An alternative design will have
different instrumental systematic effects and could provide a novel manner to approach the problem.
For instance, QUBIC provides higher spectral resolution thanks to the spectral imaging technique that
will be presented in chapter 6.

5.2 Making sky maps

5.2.1 Why scanning?

As briefly mentioned in section 1.1.3, CMB experiments acquire data by continuously scanning the
sky, producing Time-Ordered Data (TOD). TOD consist in a large array:

TOD = {di(t), RA(t), DEC(t),Housekeeping(t)} (5.1)

where di(t) is the signal received by bolometer i at time t and (RA,DEC) are the pointing coordinates.
Housekeeping data contain diverse information, for example the temperatures at different places in the
instrument or the bias voltage of the TES. CMB telescopes do not integrate during a long time period
in a fixed position with respect to the sky. This technique is not specific to CMB data and was also
called raster scan, see for example [191]. Historically, the small number of bolometers was certainly the
reason for that: if one wants to get an image of the sky with only one or a small number of detectors,
it is necessary to scan. However, scanning has another interesting feature regarding the noise and
especially the 1/f component which can originate from electronic, cryogenic fluctuations, atmospheric
variations. Indeed, it modulates the sky signal in a controlled manner.

As shown in Figure 5.1, contrary to white noise, 1/f noise includes low frequency drifts which
results in a non flat frequency power spectrum P (f), also called power spectral density, defined as

〈ñ(f)ñ(f ′)〉 = P (f)δ(f − f ′) (5.2)

where ñ(f) is the Fourier transform of the noise. The power spectrum can actually be split in two

Figure 5.1: Illustration of 1/f noise in green compared to white noise in red. A typical evolution as a
function of time is shown on the left with the corresponding frequency power spectrum on the right.

parts separated by the knee frequency fknee. The low frequency part has a dependence in 1/fα where
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α is the slope coefficient, while in the high frequency part white noise dominates. The power spectrum
can be written as [192], [193]

P (f) = Pwhite

(
1 +

(
fknee

f

)α)
. (5.3)

Here α is positive and close to one, which explains the name 1/f noise2. As an example, for the Planck
low frequency instrument, in the 44 GHz channel, we have fknee = 53.0 mHz and α = 0.88 [184]. From
Figure 5.1, it is clear that integrating the signal over a long period would significantly increase the
noise variance.

The idea of making differential measurements was first mentioned by Dicke in 1946 [39]. For
example, the COBE DMR instrument was based on a differential measurement between two antennas
implemented in the hardware [185]. Instead, the current CMB experiments modulate the signal, at a
frequency above fknee, thanks to a continuous scan. Knowing the scanning strategy, TOD can then be
rearranged in order to build a sky map. Differential measurement is done in post-processing, the idea
is to require that all measurements of a single point on the sky share the same sky temperature. This
was for example proposed in 1998 for temperature in the context of the Planck mission [193] and soon
extended to polarization [194]. The case of polarization is more complicated because the angle of the
polarimeter may be different from one scan to another.

5.2.2 Data model

As seen in section 1.2.5, a detector observes the sky temperature through an instrumental beam. It is
equivalent to say that the sky is convolved with the instrumental beam and that a detector measures
the temperature in a single direction, corresponding to a given sky pixel. The convolved pixellised
sky T is a Np dimension vector. The TOD of a given detector are written as a vector noted d which
contains the Nt time sample data. We can write [195]

d = A · T + n (5.4)

where A, called the pointing matrix, is a 2-dimensional matrix: number of time samples × number
of sky pixels. A is an operator that describes the convolution by the synthesized beam as well as the
pointing at the different directions of the sky according to the scanning strategy. For standard imagers,
A is such that each line (corresponding to sky pixels contributing to one time sample) only contains a
single 1 value [195].

n is the noise, it is a vector with dimension Nt. The noise has two contributions: photon noise and
detector noise. Photon noise is the Poisson fluctuations from the temperature of the CMB (TCMB '
2.7 K), the atmosphere, and the internal optical components. Detector noise is given by the Noise
Equivalent Power (NEP) measured in each detector. So far, in the QUBIC pipeline, the atmosphere
emissivity is assumed to be stable, we did not consider the effect of fluctuations in the atmospheric
load.

The noise is assumed to be Gaussian so that all the information is contained in its covariance
matrix

N = 〈n · nT 〉. (5.5)

The probability distribution of the noise is

P (n) =
1

|(2π)NtN |1/2 exp

[
−1

2
nT ·N−1 · n

]
. (5.6)

5.2.3 Map-making solution

Map-making consists in finding the best estimator T̂ for the sky temperature convolved at the beam
resolution, knowing d and A. The noise n is unknown but the covariance matrix N can for instance be
estimated by Monte-Carlo simulations. The general solution for map-making is given by maximizing

2Sometime the definition is chosen as the opposite, for example in [184], with a negative slope.
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the likelihood function assuming a given noise model [195], [196]. The likelihood function is the
probability of getting data d given a theoretical sky T ,

L ≡ P (d|T ). (5.7)

The Bayes theorem relates the likelihood to the posterior probability which is the probability of having
a sky T given the data, P (T |d).

P (d|T ) =
P (T |d)P (d)

P (T )
. (5.8)

P (T ) is the prior on the theoretical model, for example a constrain coming from a previous experiment.
Assuming a uniform prior, i.e. P (T ) = cst, we have

L ≡ P (d|T ) ∝ P (T |d). (5.9)

We expect that the data deviate from the sky by the Gaussian noise so the posterior probability is
proportional to the noise probability distribution. Thus,

L ∝ P (n) ∝ 1

|(2π)NtN |1/2 exp

[
−1

2
(d−AT )T ·N−1 · (d−AT )

]
(5.10)

where we have used equations 5.4 and 5.6. The most likely values of T are those which maximize the
likelihood function. This is equivalent to minimizing the χ2,

χ2 = −2 lnL = (d−AT )T ·N−1 · (d−AT ). (5.11)

This leads to solve the linear equation [14]

(ATN−1A)T = ATN−1d (5.12)

with solution
T̂ = (ATN−1A)−1ATN−1d. (5.13)

where T̂ is the sky convolved at the instrument resolution.

White noise: If the noise is white, N is diagonal so equation 5.13 reduces to

T̂ = (ATA)−1ATd. (5.14)

This is the simplest map-making, data are averaged in each sky pixel3. This is equivalent to have a
long integration time. As discussed in section 5.2.1, this is only optimal, in the sense that it maximizes
the likelihood, for pure white noise.

By adding N−1 in the map-making, we take into account the noise correlations. N−1 appears as
a high pass filter with frequency cut fknee. It removes the low frequency drifts in the noise through
optimal noise weighting [192].

5.2.4 Numerical implementation

We have written the general map-making solution for an arbitrary noise. However, the numerical
implementation is not trivial because timeline data are usually very large and large matrix system
inversion is required. Brute inversion, as proposed in 1999 with the MADCAP software [197], has
become very difficult as the number of samples increased. Iterative solution became the standard
technique. This was first proposed in 2000 by using a Jacobi iterator [198]. It was soon replaced by
conjugate gradient descent which accelerates the convergence, for example in the Mirage software [199]
or MADmap [200]. A review of map-making techniques can be found in [201] and a discussion about
iterative techniques in [202].

3(ATA) counts hits in pixels and ATd projects data in pixels. So this is an empirical average.
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As this is what we used in the QUBIC map-making software, let us summarize what a Conjugate
Gradient (CG) descent is. A pedagogical tutorial can be found in [220]. A CG is a method that solves
iteratively linear systems with the form

Ax = b (5.15)

where x is an unknown vector, b a known vector and A a known, square, symmetric and positive-
definite matrix. This is precisely equivalent to the map-making equation 5.12 where T is the unknown
vector, (ATN−1A) the matrix and (ATN−1)d the known vector. Solving Ax = b is equivalent to
minimize the quadratic form

f(x) =
1

2
xTAx− bTx+ c (5.16)

where c is a scalar constant. Indeed, the gradient of f is

f ′(x) =
1

2
ATx

1

2
Ax− b (5.17)

which reduces to Ax− b if A is symmetric. Different algorithms can find the minimum by converging
iteratively. Here I detail the Preconditioned Conjugate Gradient (PCG). A preconditioning can be
applied to accelerate the convergence. Instead of solving Ax = b, we solve M−1Ax = M−1b where M
is a symmetric, positive-definite matrix that approximates A. Intuitively, the preconditioning stretches
the quadratic form to make it more spherical. The steps of the algorithm are:

• Choose an initial point x0.

• Compute the residuals r0 = b−Ax0 which must be 0 at the minimum.

• The direction of the first descent is given by d0 = M−1r0.

• Then, for each i-th step,

1. Compute the step size αi =
rTi M

−1ri
dTi Adi

.

2. Go to the next position xi+1 = xi + αidi.

3. Compute the new residuals ri+1 = ri − αiAdi.
4. The next direction is chosen to be M−1-orthogonal to the previous one, i.e. they would

be orthogonal if the quadratic form was stretched to be a circle. To do that, we use the
conjugate Gram-Shmidt process [220]: di+1 = M−1ri+1 + βi+1 with βi+1 =

rTi+1M
−1ri+1

rTi M
−1ri

.

The difficulty of this method is to determine an efficient preconditioning.

5.2.5 QUBIC monochromatic map-making

As shown in chapter 1, the QUBIC instrument is essentially equivalent to a standard imager, scanning
the sky with the synthesized beam, producing TOD that can be projected onto sky maps. The map-
making will therefore be very similar to that of a standard imager. TOD can be written as equation 5.4.

For standard imagers, the A operator is such that each line (corresponding to sky pixels contributing
to one time sample) only contains a single non-zero value, meaning that T is actually the sky map
convolved at the instrument’s resolution and that the instrument samples the convolved sky with a
single peak [195], [197].

In the case of a bolometric interferometer, this assumption is not valid due to the multiple peaked
shape of the synthesized beam (see Figure 1.20) which makes it impossible to use the map-making
algorithms usually developed for direct imagers. We use instead an “inverse problem” approach based
on an algorithm that starts from an initial guess and then simulates iterative maps T i, where i is the
iterative index4. For each of these maps, we apply the bolometric interferometer acquisition model,
taking into account the scanning strategy of the sky, and we construct TOD di = AT i that are then

4The software uses the massively parallel libraries [221] developed by P. Chanial: pyoperators (https://pchanial.
github.io/pyoperators/) and pysimulators (https://pchanial.github.io/pysimulators/).
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Figure 5.2: Result of the map-making for IQU Stokes parameters for a bolometric interferometer
pointing in a 15 degree radius sky patch containing only CMB. The first column is the input sky
convolved at the resolution of the instrument using a Gaussian with a FWHM equal to 0.4 degrees.
The second column is the sky reconstructed by map-making. The last column is the difference between
both. The grid lines are equally spaced every 5◦. This simulation was obtained with the QUBIC full
pipeline in the 220 GHz band. The noise was scaled to 4 years of observations. This simulation required
127 iterations to converge. Produced for [9].

compared to the data TOD d using a merit function that accounts for the noise in the TOD domain.
In the case of stationary and Gaussian distributed noise, the maximum likelihood solution is reached
by minimizing the χ2

χ2(di) = (d− di)T ·N−1 · (d− di) . (5.18)

The QUBIC software uses a preconditioned conjugate gradient method. The map-making is jointly
done for all detectors and for the IQU Stokes parameters and results in unbiased estimates of the maps
as shown in Figure 5.2. The synthesized beam used for the instrument model during map-making is
actually just a set of Dirac functions with the relevant amplitude at the location of the peaks of the
synthesized beam (ideal, including optical aberrations or resulting from self-calibration). In such a way,
and similarly as with an imager, the map-making does not attempt to deconvolve from the resolution
of the peaks, but only from the multiple peaks.

Allocated memory

The multiple peak QUBIC map-making requires high memory resources. The dimension of the operator
which needs to be stored is Nptg ×Nd ×Np where Nptg is the number of pointings on the sky, Nd the
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number of detectors and Np the number of peaks considered for the synthesized beam. Note that it is
independent on the number of sky pixels given by Nside for Healpix maps. This is because we do not
store the entire A operator which is in the map space but only the synthesized beam peak locations
(sky pixel number) for each time sample and each detector. For example, with 1000 pointings, 992
detectors (FI), and 25 peaks (up to second diffraction order), the memory stored is

1000× 992× 25× 16 = 396800000 bits ' 378 Mib. (5.19)

As we will see in chapter 6 dedicated to spectral imagery, we actually decompose the signal in frequency
sub-bands so that the allocated memory is multiplied by the number of sub-bands.

In the QUBIC map-making software, the number of peaks is determined by two parameters:

• kmax which is the diffraction order taken into account for the synthetic beam. The number of
peaks is given by Np = (2× kmax + 1)2.

• The synthesized beam fraction SBfrac which is the fraction of the total integral of the synthesized
beam (over all the peaks). This fixes the number of peaks to keep. Let us consider an example:
for 9 peaks corresponding to kmax = 1, with the following partition: 50% of the power in the
central peak integral, 10% in the 4 peaks forming the nearest cross and 2.5% in each of the 4
furthest peaks. Then for SBfrac = 0.9, the 4 furthest peaks are eliminated.

Decreasing the number of peaks reduces the required memory but it also has an impact on map-making
performance. We performed simulations changing those parameters and we concluded that kmax = 8
with SBfrac = 0.99 which corresponds to keep 32 peaks is the minimum required not to lose accuracy.
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5.2.6 HWP angle spacing

As seen in section 1.3.2, by measuring the signal in direction z in at least three different HWP positions,
we are able to deduce the I,Q, U Stokes parameters in this direction. According to paper [203], in
order to minimize the error on the reconstruction of I,Q, U and to avoid any correlations, the HWP
rotating steps must be regularly spaced between 0 and π

2 such as:

αp = α1 + (p− 1)
π

2n
(5.20)

with p = 1, ..., n (n ≥ 3) and usually, we choose α1 = 0.
I have checked this result using the qubicsoft map-making pipeline, considering a noiseless sim-

ulation, and a TD instrument observing a 4◦ sky patch. The scan is performed with a not realistic
random strategy, the same scan (1000 pointings) is repeated p times with the HWP in a fix position
(see Figure 5.3). Residuals are defined as the difference between the input sky and the reconstructed
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Figure 5.3: HWP angles during the scan for p = 3. The same 1000 pointings are repeated 3 times with
a different HWP angle: 0◦, 30◦, 40◦ (blue) or 0◦, 30◦, 60◦ (red).

sky after the map-making process. As expected, the residuals are much higher when the HWP angles
are not regularly spaced. This is shown in Figure 5.4 in the case of p = 3 angles. The same effect is
observed for a higher number of angles. This “repeat” strategy was implemented, as an option, in the
qubicsoft package. The goal is to mimic a random scanning with a much higher number of pointings,
that would assure a sufficient coverage of each sky pixel with various HWP positions.

Figure 5.5 compares the two strategies. I consider 3000 pointings in a 4◦ sky patch. The HWPmoves
randomly on three equally spaced positions between 0 and π/2. The “repeat” strategy is compared to
the random one in the Q and U residual polarization maps. The standard deviation of the residual
maps differs approximately by a factor 20 between the two strategies. The residuals in intensity (not
shown) are comparable for both. This confirms that what imports is the coverage of each sky pixel by
the three HWP angles, which is forced to be optimal in case of the “repeat” strategy.
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Figure 5.4: Residual maps for the I,Q, U Stokes parameters in case of three HWP angles regularly
spaced at 0◦, 30◦, 60◦ (top) and not regularly spaced at 0◦, 30◦, 40◦ (bottom). The color scale is fixed
in order to better see the difference and the standard deviation (STD) is written on the top of each
map.
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Figure 5.5: Comparison between the “repeat” (first row) and the random strategy (second row) in the
residual polarization Q and U maps. The color scale is fixed differently for the two strategies in order
to better see the difference and the standard deviation (STD) is written on the top of each map.
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5.2.7 Spatial correlations

A specific feature of the QUBIC map-making is spatial correlations. This was already mentioned
in the thesis by Marie-Anne Bigot-Sazy defended in 2013 [11] (Figure 6.3.3). Map-making with a
multiple-peaked synthesized beam involves partial deconvolution because a given time sample in a
detector’s TOD receives power from distinct pixels in the sky with weights given by the shape of the
synthesized beam. As a result, we expect significant spatial noise correlations in our maps. This is
confirmed by end-to-end simulations as shown in the left panel of Figure 5.6. Anti-correlation peaks,
are expected, at an angle corresponding to the angular separation between the peaks in the synthesized
beam (θpeaks = 8.8◦ at 150 GHz and 6◦ at 220 GHz). A similar 2pt-correlation function is found at
220 GHz, but with even higher correlation amplitude because the secondary peaks are higher due to
the top-hat shape of the primary beam resulting from multimode optics at 220 GHz (see Figure 4
in [6]).

Figure 5.6: Left: QUBIC spatial noise 2pt-correlation function obtained from end-to-end simulations
normalized by the variance in the maps C(θ = 0). The solid lines show an adjustment by a sine-wave
modulated by an exponential with a Dirac function at θ = 0 (the noise variance in the maps). The
maximum anti-correlation is found as expected at the scale of the angular distance between two peaks
of the synthesized beam. The amplitude of the correlation is higher at 220 GHz than at 150 GHz
because of the top-hat shape of the primary beam at 220 GHz. Right: Spatial noise correlation
converted to multipole space. The straight-line at C` = 1 shows the expected shape for white noise.
The noise correlation results in a reduction of the noise for multipoles larger than ∼ 40−50, that is for
angular scales . θpeaks (angular separation between the synthesized beam peaks). At lower multipoles
(larger angular scales), we observe an increase of the noise. This is an advantage for measuring the
recombination peak around ` = 100 as discussed in section 7.7.2. Taken from [1].

In the right panel of Figure 5.6 we display the spherical harmonics transform of the 2pt-correlation
function:

C` = 2π

∫ 1

−1
C(x)P`(x)dx (5.21)

where x = cos θ and P` are the Legendre polynomials. This is our noise angular power spectrum which
corresponds to the equivalent for QUBIC of typical white noise for a classical imager. The shape of
this noise in Harmonic Space exhibits an excess with respect to white noise at very large scales (small
multipoles, below ` = 40 at 150 GHz and ` = 50 at 220 GHz) and a significant reduction at smaller
angular scales (larger multipoles). The scale of this transition is determined by the angular distance
between peaks in the synthesized beam5. Angular scales & θpeaks are not well constrained due to the
presence of the multiple peaks that are effectively deconvolved during the map-making. Conversely,
angular scales smaller than this angular separation see their noise significantly reduced thanks to the
positive correlation of the noise at these angles. Because these angular scales correspond to those of the

5It is however not strictly equal to π/θpeaks because of the shape of the 2pt-correlation function and the non-trivial
correspondence between angles and multipoles.
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recombination peak in the B-mode spectrum, this specific noise feature for Bolometric Interferometry
turns out to be a significant advantage for detecting primordial B-modes. This is discussed with more
details from Monte-Carlo simulations in section 7.7.2 and visible in Figure 7.10. Also, because our noise
is not white, the RMS in the maps does not have direct meaning. In our case, it is more meaningful
to measure the noise level in the angular power-spectrum as we will detail in section 7.7.2.

5.3 Power spectrum estimation with real data

Cosmological parameters are usually determined with the angular power spectrum computed from the
maps. We already defined the power spectrum in section 4.1.4. The problem becomes much more
complex when one wants to estimate it from real data.

5.3.1 Interest of doing cross spectra

In this section, I show the interest of making cross-correlations between two observations, for instance,
by splitting the data set in two parts. We recall that the empirical angular power spectrum is defined
as

C` = 〈a`ma∗`m〉m (5.22)

where the average is taken over the 2`+ 1 value of m (see section 4.1.4). The a`m coefficients contain
the CMB signal and the noise, a`m = aS`m + aN`m. For simplicity we write a ≡ a`m. One can do
the auto-spectrum of each observation. To study the statistics of this, I produce Nr realizations
with independent noise. The ensemble average over the Nr realizations is noted 〈·〉r. The averaged
auto-spectrum is given by

〈
Cauto
`

〉
r

=
〈
〈(aS + aN )(aS∗ + aN∗)〉m

〉
r

(5.23)

=
〈
〈aSaS∗〉m + 〈aNaN∗〉m + 〈aSaN∗〉m + 〈aNaS∗〉m

〉
r
. (5.24)

The signal is not correlated with the noise so the two last terms disappear when Nr tends to infinity
and we get 〈

Cauto
`

〉
r
'
〈
〈aSaS∗〉m + 〈aNaN∗〉m

〉
r
. (5.25)

The noise bias appears clearly in the term
〈
〈aNaN∗〉m

〉
r
, which has a non zero mean. We will see that it

can easily be removed by doing cross-spectra between two observations. The averaged cross-spectrum
over Nr noise realizations is

〈Ccross
` 〉r = 〈〈a1a

∗
2〉m〉r (5.26)

=
〈
〈(aS1 + aN1 )(aS∗2 + aN∗2 )〉m

〉
r

(5.27)

=
〈
〈aS1 aS∗2 〉m + 〈aN1 aN∗2 〉m + 〈aS1 aN∗2 〉m + 〈aN1 aS∗2 〉m

〉
r
. (5.28)

The noise bias vanishes because the two observations have independent noises so the mean is zero
for Nr → ∞:

〈
〈aN1 aN∗2 〉m

〉
r
→ 0. Assuming that the signal is the same in the two data sets, i.e.

aS1 = aS2 = aS , it remains
〈Ccross

` 〉r '
〈
〈aSaS∗〉m

〉
r
. (5.29)

So the noise bias is removed.
Figure 5.7 shows an example using the QUBIC software implementation of the Namaster python

package (see section 5.3.6 below). I consider 100 noise realizations of the same CMB sky. I compute
the auto-spectrum of each realization and I plot the average over the 100 realizations (red points). The
noise bias is, as expected, clearly visible on the auto-spectra. In addition, I compute 50 cross-spectra
with independent pairs of realizations and I plot the average (blue points). The averaged auto-spectrum
is biased compared to the input simulated D` spectrum while the averaged cross-spectrum in blue is
unbiased and superimposed with the input spectrum.
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Figure 5.7: Auto and cross BB angular power spectra averaged over 100 independent noise realizations.
The averaged auto-spectrum in red is biased compared to the input simulated D` spectrum (blue line)
while the averaged cross-spectrum in blue is unbiased. Error bars show the standard deviation over
realizations. Error bars of the cross-spectra are multiplied by

√
2 to assure the same time of observation

for auto and cross-spectra.

5.3.2 Pixel and beam window correction

The measured map contains noise and the map is limited by the instrument beam and the sky pixelli-
sation. The observed temperature in direction k is T (k) + n(k) where as before T (k) is the convolved
pixellised sky and n(k) is the noise. In the harmonic space, the temperature can be written as [199]

T (k) =

∞∑

`=0

∑̀

m=−`
a`mp`B`Y`m (5.30)

where p` and B` are the pixel and beam window functions. This approximation is only valid if the beam
is axisymmetric and the pixels smaller than the beam resolution. In the case of QUBIC, the multipeak
synthesized beam is not axisymmetric. However, the computation of the power spectrum occurs after
map-making which deconvolves from the effect of secondary peaks. Thus, after map-making, the beam
is well approximated by a Gaussian.

Similarly to equation 4.27, we define the correlation function in two directions k1 and k2. Under
the assumption that the temperature is not correlated with the noise, we have

〈(T (k1) + n(k1))(T (k2) + n(k2))T 〉 = 〈T (k1)T (k2)T 〉+ 〈n(k1)n(k2)T 〉 (5.31)

=
∑

`

2`+ 1

4π
C`(p`B`)

2P`(k1,k2) +N (5.32)

where N is the covariance matrix of the noise and P`(k1,k2) is the Legendre polynomials.
Thus the measured power spectrum is

Cmeas
` = (p`B`)

2C` +N` (5.33)

but the pixel and beam window functions are known so we can correct for them. For a Gaussian beam,
the beam function is well approximated by [204]

B` = exp

{
−1

2
`(`+ 1)σ2

}
(5.34)
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where sigma is the width of the beam. For the definition of the pixel window function, one can have
a look to https://healpix.jpl.nasa.gov/html/intronode14.htm. It is approximated as an average
over all pixels.

5.3.3 Partial coverage and pseudo spectra

Ground-based CMB experiments observe only a fraction of the sky and even for space experiments
the coverage of the sky is usually not uniform. We define the instrument window function [204] such
that the observed sky is T̃ (n) = W (n)T (n). The window function gives a weight to the sky pixels
according to the number of hits. The pseudo-aTT`m coefficients are defined as

ãTT`m =

∫
T̃ (n)Y`m(n)dn. (5.35)

In the following, we write a`m = aTT`m for simplicity.
The pseudo-spectrum can be defined as

C̃` =
1

2`+ 1

∑̀

m=−`
|ã`m|2. (5.36)

The pseudo-spectrum is clearly different from the full sky power spectrum but they can be related by
their ensemble averages

〈C̃`〉 =
∑

`′

M``′〈C`〉 (5.37)

where M``′ describes the coupling between modes resulting from the partial coverage. This mixing is
due to the fact that spherical harmonics are not orthogonal on a cut sky. For a complete derivation
of this expression, one can refer to appendix A in [199]. Note that, as expected, a simple product
becomes a convolution product in Fourier space.

Taking into account the noise, the pixel and beam functions defined in section 5.3.2, the pseudo-
spectrum is finally given by

〈C̃`〉 =
∑

`′

M``′(p`′B`′)
2〈C`′〉+ 〈Ñ`〉 (5.38)

where 〈Ñ`〉 is the averaged noise power spectrum.
Equation 5.38 can be written

〈C̃`〉 = K``′〈C`′〉+ 〈Ñ`〉. (5.39)

We can not compute the ensemble average. This is why we define unbiased estimators Ĉ` and N̂` such
that

C̃` = K``′Ĉ`′ + N̂`. (5.40)

5.3.4 E and B leakage and pure decomposition

In the case of polarization, it can be shown that the pseudo-spectra are given by [205]

〈C̃

EE
` 〉

〈C̃BB` 〉


 =

∑

`′


K

+
``′ K−``′

K−``′ K+
``′




Ĉ

EE
`′

ĈBB`′


+


N̂

EE
`

N̂BB
`


 (5.41)

where the mixture kernels K+,K− are related to the expansion of the cut-sky over the spin-2 spherical
harmonics. Thus the pseudo-spectra are a mixture of the true EE and BB power spectra. However if
the kernels K+,K− are known, this expression can be inverted to retrieve the real EE and BB power
spectra, avoiding any leakage between EE and BB. The real problem is the leakage of EE variance
into that of BB variance:

Var(ĈBB`′ ) = Var(C̃BB` ) + Var(ĈEE→BB`′ ) + Var(ÑBB
` ) (5.42)
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where Ĉ` is the estimator of C`. This is known as the leakage problem. Since the E signal is much
stronger than the B signal, the E to B leakage is a major issue while B to E is negligible. A formalism
has been developed in order to build new power spectrum estimator to avoid this leakage. They are
known as “pure” estimators [205], [206]. This means that the BB (EE) power spectrum estimator is
zero in any noiseless realization of the CMB which contains only E (B) modes. This formalism was
soon extended to cross power spectra [207].

5.3.5 Theoretical error bars on the reconstructed power spectrum

We already defined the cosmic variance in chapter 4, see equation 4.42. This theoretical estimation of
the errors can be extended to the realistic case, taking into account the pixel and beam window function,
the noise power spectrum and the partial sky observation. The error on the C` power spectrum is then
given by [195], [97]

∆C`
C`

=

√
2

(2`+ 1)fsky∆`
× 1

B2
`

× 1

W 2
`

×N` (5.43)

where fsky is the fraction of the sky used for analysis, ∆` is the width of the `-space binning. B` is
the beam transfer function and W` is the pixel window of the Healpix pixellisation. N` is the expected
shape for the noise power spectrum that can be either a constant in the case of white noise or a constant
multiplying the shape from Figure 5.6 (right) in the case of QUBIC.

5.3.6 Namaster

Namaster is a public software package to compute pseudo-spectra [208], [209]. It is not exclusive to
CMB, it can be used for any spin-0 or spin-2 field, as large scale structures for example. I implemented
Namaster in the QUBIC data analysis software.

The implementation of the beam and pixel window corrections have been tested. Figure 5.8 shows
the reconstructed TT power spectrum with and without the beam correction. Before computing the
spectrum, the map is previously smoothed with a Gaussian at the QUBIC beam resolution. This
simulation is noiseless. In order to test the pixel window correction, the map is previously pixellized
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Figure 5.8: TT power spectrum reconstructed with Namaster implemented in the QUBIC software
with and without the beam correction. The blue line shows the input spectrum.

using the pixel window function from Healpix. The TT power spectrum with or without the correction
is shown in Figure 5.9.
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Figure 5.9: TT power spectrum computed with and without the pixel window correction. The blue
line shows the input spectrum.

5.3.7 Maximum likelihood solution

Besides the pseudo-C` method, there is an optimal method for power spectrum estimation from a map,
based on a maximum likelihood estimate. This method avoids any leakage between E and B-modes but
requires a huge number of large matrix operations. Details can be found in [195], [210]. Here I present
the general concept for temperature only for the sake of simplicity. The extension to polarization is
straightforward but implies a number of complicated terms. The sky map of temperature fluctuations
is composed with signal and noise, T = s+ n. The covariance matrix of the map is

M = 〈T · T T 〉 = 〈s · sT 〉+ 〈n · nT 〉 = S +N. (5.44)

The signal part S = 〈s · sT 〉 is a matrix in which element Spp′ is the 2-point correlation function in
pixel space between two pixels p and p′. As seen in section 4.1.4, equation 4.28, it can be decomposed
on the Legendre polynomial basis

Spp′ =
∑

`

2`+ 1

4π
C`B`P`(cos θ) (5.45)

where θ is the angle subtended by the two pixels p and p′. So M is a function of C`.
The map T is a random realization of the power spectrum C`. Assuming Gaussian statistics and

〈T 〉 = 0, the probability density to get the map T , given its covariance matrix M , is

P (T |C`) = (2π)−Np/2 exp

{
−1

2

[
(T T ·M−1 · T ) + Tr(lnM)

]}
. (5.46)

The trace appears from the normalization of the Gaussian with the determinant of M :
1

|M | = exp [−Tr(lnM)] . (5.47)

The Bayes theorem gives P (C`|T ) ∝ P (T |C`) so one has to maximize equation 5.46 to get the most
probable C` function given the data map T . This can be done through a gradient descent on the
C` values (which are contained in M), usually using the Newton-Raphson iterative algorithm. This
method was implemented in the MADCAP software [197]. This leads to an optimal estimation of the
power spectrum but it requires huge computer resources. This is why this method is only applicable
on small data sets with a reduced number of pixels in the map.
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5.4 Foreground contamination of the CMB signal

5.4.1 Astrophysical foregrounds

The signal from the primordial universe is contaminated by astrophysical foregrounds. This is a
major issue for the measurement of the CMB signal, especially for polarization. Note that, they are
contaminants if one wants to measure the CMB but they are incredible sources of information for
studying the interstellar medium and the physics of the Milky Way.

Only two astrophysical foregrounds are significantly polarized:

Thermal dust: It dominates the CMB polarization at high frequencies, above approximately 100 GHz.
It is the thermal emission of galactic dust grains. Grains tend to perpendicularly align with the mag-
netic field lines and they emit (or absorb) photons most efficiently along the longest axis. This results
in a partially polarized radiation [40].

The emission spectrum is well described by a modified black body,

Iν ∝ νβBν(T ) (5.48)

where β is the dust spectral index, typically around 1.5 and Bν(T ) the Planck spectrum for a temper-
ature about 20 K [224]. This model is a raw approximation, first it can vary with the sky direction as
well as along a given line of sight because astrophysical conditions differ. A better approximation is to
vary β on the sky, see for example [224], were Planck has mapped the spectral index on the sky.

Synchrotron: At low frequency, the CMB polarization is dominated by the synchrotron emission
emitted by relativistic cosmic ray electrons which are accelerated by the galactic magnetic field. Pho-
tons are polarized perpendicularly to the magnetic field lines. The synchrotron emission is well ap-
proximated by a power law

T ∝ νβs (5.49)

where βs is the synchrotron spectral index, typically around βs ' −2.7 [225]. Similarly to galactic
dust, there is no reason to have an homogeneous emission on the sky.

Regarding the temperature, additional foregrounds which are not or very little (< 1%) polarized,
must be considered. Typically, we have

• free-free radiation, also called thermal bremsstrahlung, emitted by free electrons-ions scattering;

• spinning dust, electric dipole radiation coming from the smallest dust grains or molecules (∼
10−9 m) which can rotate at GHz frequencies;

• carbon monoxide (CO) emission lines due to rotational transitions of the molecule, localized in
frequency.

In temperature, foregrounds are more complex but they are often below the CMB signal. On the
contrary, for polarization they are only two foregrounds but they are well above the CMB signal. For
a short review of CMB foregrounds, one can refer for example to [226], [227].

Thus, foregrounds behave differently as a function of frequency and this is how we can disentangle
them from the CMB. In Figure 5.10, we show the typical spectra of unpolarized (left) and polarized
(right) foregrounds. Using component separation techniques, foregrounds can be isolated from the
CMB signal. It is a wide field in CMB data analysis. Future sensitive surveys require foreground
modeling with a much higher accuracy than what was done in the past. The key point for component
separation is to have measurements in several frequency bands and this is why today experiments
always have several frequency channels. For example, the LiteBIRD satellite will have 15 frequency
bands which have been optimized for the treatment of foregrounds [182]. This also motivates the next
chapter which is dedicated to spectral imaging with QUBIC.
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Figure 5.10: Major astrophysical foregrounds for CMB in temperature and polarization. Vertical gray
lines correspond to the Planck frequency channels. Taken from [160].

5.4.2 Atmospheric opacity

A disadvantage for ground experiments is the partial opacity of the atmosphere in the millimeter
wavelength. A modeling of atmospheric emission for CMB ground based experiments was proposed
in [228].

Water vapor is the primary cause of atmospheric opacity. The atmospheric transmission from
the Atacama plateau at the zenith for different amounts of precipitable water vapor (depth of water
in a column of the atmosphere) is shown in Figure 5.11. This explains why CMB experiments are

Figure 5.11: Atmospheric transmission from the Atacama plateau at the zenith for different amounts
of precipitable water vapor. Taken from [228].

always installed in very dry regions and at high altitude like the Atacama plateau or Antarctica. The
observation is only possible in the transmission bands below 50 GHz and around 95, 150 and 250 GHz.

Atmosphere shines brightly at millimeter wavelengths. So the first impact is to increase the back-
ground loading on the detectors. For example, the total background emission at 150 GHz is ∼ 20 K
on the ground while it is only ∼ 1 K in space. This is not only due to atmosphere but also because
the telescope temperature is much higher so its emissivity is higher and the ground itself radiates too.

Moreover, the atmosphere varies both in time and space. These fluctuations combined with the
scanning strategy induce correlated noise which contributes to the total 1/f noise.

Despite those facts, ground-based experiments have others advantages. First they are much easy
to deploy than a space mission and they can be fixed and upgraded. Moreover, they are not limited
in size and integration time so they can easily achieve a high angular resolution by deploying large

145



Chapter 5. Observing and measuring the CMB

reflectors.

QUBIC specificity

A specificity of the QUBIC map-making is that the presence of multiple peaks separated by 8.8 de-
grees on the sky at 150 GHz (6 degrees at 220 GHz) makes QUBIC insensitive to modes larger than
this separation [1]. This occurs because the deconvolution from the multiple peaks relies on the mea-
sured signal difference between observations from different directions where the peaks capture different
amounts of power. This naturally filters-out large-scale information, larger than the angular distance
between peaks in the synthesized beam, be it from the sky itself, or from atmospheric gradients.

To understand the impact of fluctuations on smaller scales we need to run simulations based on
dedicated atmosphere measurements taken on the observation site. This is work in progress. However,
in appendix A of paper [1], we briefly discuss this issue and show how we expect a significant impact
only from turbulence cells in a restricted range of scales. The study is based on meteorological data
taken at sites similar to that of QUBIC. In a study conducted in the framework of the POLARBEAR
experiment Errard et al. [228] studied the distribution of various atmosphere parameters at Atacama.
They showed that the coherence length L0 of atmospheric turbulence are distributed in the interval
L0 ∈ [200 m, 800 m] with a peak around 300 m. By comparing the synthesized beam cutoff scales with
the coherence length L0, we conclude that the effect from turbulent cells larger than 300 m will be
increasingly negligible. However we may expect some impact from cells in the range [200 m, 300 m].
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5.5 QUBIC on a TOAST

Despite the specificity of bolometric interferometry, could we use typical map-making software for
imagers? TOAST is a public software for simulating and processing timestream data collected by
telescopes6. It is developed under the objective of being adaptable for any CMB experiment. As it is
developed by a large community, it is more advanced than the QUBIC software, especially in terms of
the study of systematic effects and simulation of realistic atmospheres based on meteorological data.
However, this is only adapted to classical imagers and not for a bolometric interferometer such as
QUBIC.

Here I would like to present an idea I had during a Workshop on TOAST to tune this software for
QUBIC. However I did not have time to go deep in this study so I will just give the concept. I think
it would be great in the sense that QUBIC could benefit from the efforts of the TOAST community
to develop realistic simulations and powerful tools for data analysis.

In the case of QUBIC, because of the multi-peak synthesized beam, each bolometer observes the
sky in several directions at the same time. For simplicity, let us consider that the synthesized beam
only has 9 peaks. In order to mimic the QUBIC synthesized beam with TOAST we could build a fake
focal plane. One QUBIC bolometer will be replaced by several virtual detectors placed at the nine
positions corresponding to the synthesized beam peaks. Each TOAST detector would have a single
peak Gaussian beam. This is sketched in Figure 5.12. The TOD simulation could then be performed

Figure 5.12: Sketch explaining how to mimic the QUBIC synthesized beam with TOAST software.

with this very complex focal plane. To compare with the QUBIC TOD, we will have to sum the TOD
from the nine TOAST detectors with appropriated coefficients corresponding to the amplitudes of the
synthesized beam peaks.

6https://toast-cmb.readthedocs.io/en/docs/intro.html
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Chapter 5. Observing and measuring the CMB

Conclusion In this chapter I started by reviewing the current and planned experiments aiming at
measuring B-mode polarization in order to give the scientific context of the QUBIC project.

Then, I have presented the typical data analysis methods used in the CMB community. Observa-
tions rely on scanning strategies that imply map-making techniques from the TODs. I have presented
the principle of those methods, including illustrations with the QUBIC simulation pipeline. I have also
shown a specificity of bolometric interferometry caused by the multiple peak synthesized beam: spatial
noise correlations in the maps. I also presented how to estimate the power spectrum from real data.

Finally, we have seen that the CMB signal is contaminated by emissions from astrophysical fore-
grounds. The two main one in polarization are the thermal emission from the galactic dust and the
synchrotron emission. Moreover, for ground experiments, the atmosphere opacity is an important
issue.

I concluded this chapter by presenting a possible way to adapt the TOAST software to bolometric
interferometers.
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Bolometric interferometers have the ability to perform spectral imaging. QUBIC detectors are
mono-band, they integrate the signal over a wide frequency band. However it is possible to reconstruct
sky maps in several sub-bands within the physical band in post-processing of the data. This provides
a powerful spectral method to discriminate between the CMB and astrophysical foregrounds. In this
chapter, the methodology is illustrated with examples based on QUBIC. We consider the specific
cases of point source reconstruction and Galactic dust mapping and we characterize the point spread
function as a function of frequency. We study the noise properties of spectral imaging, especially the
correlations between sub-bands, using end-to-end simulations together with a fast noise simulator.

Personal contributions: This work is the heart of my thesis, it was done in collaboration with
Martín Gamboa and it led to paper [9]. The large majority of this chapter is taken from this article,
entirely reproduced in annex A.5. Additional details are given: a pedagogical introduction in the first
section with visible light, a discussion about frequency sub-band spacing in section 6.1.2, details on
the frequency point spread function in section 6.2.3 and a description of the fast noise simulator in
section 6.3.2.
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6.1 Spectral dependence

6.1.1 The polychromatic synthesized beam

By illuminating with white light a double axis diffracting grid (same child glasses as in Figure 1.16),
we immediately see the frequency dependence of the synthesized beam. Figure 6.1 shows the setup
that I made in order to mimic QUBIC in the visible domain. The first element is a white lamp with a
small aperture placed at the focal plane of a lens. This makes a point source at infinity. The double
diffracting axis grid mimics the horn array and a second lens combines the light similarly to the two
QUBIC mirrors. The white screen is placed at the focal plane of the lens, similarly to the QUBIC
detector focal plane. The polychromatic point spread function observed on the white screen is shown
on the right.

Figure 6.1: Left: Setup that I made in order to mimic QUBIC in the visible domain: white lamp
with a small aperture placed at the focal plane of a lens, double axis diffracting grid (child glasses), a
second lens and a white white screen in the focal plane of the lens. Right: Polychromatic point spread
function observed on the white screen.

The frequency dependence is visible in the expression of the Point Spread Function (equation 1.45)
reproduced here:

PSFk(r, λ) = PSFhorn
k

sin2(P π
λ∆h(xf − α0))

sin2(πλ∆h(xf − α0))
×

sin2(P π
λ∆h( yf − β0))

sin2(πλ∆h( yf − β0))
(6.1)

The off-axis angle (given by the primary beam of the pupils), the FWHM of the peaks (hence the
resolution of the maps), and the angle on the sky between two peaks all depend linearly on wavelength
λ. Figure 6.2 shows a multichroic representation of the synthesized beam maps measured in the lab.
Each frequency is assigned a color, 130 GHz (red), 150 GHz (green), and 170 GHz (blue). A cross cut
of the synthesized beams modeled according to equation 6.1 for 131 and 169 GHz is also shown on the
right.

This dependence on wavelength can be exploited to achieve spectral imaging capabilities. Within a
wide band, the synthesized beam will be the integral of the synthesized beam of all the monochromatic
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Figure 6.2: Left: Multichroic representation of the synthesized beam maps measured in the lab. Each
frequency is assigned a color, 130 GHz (red), 150 GHz (green), and 170 GHz (blue). The central lobes
of the three frequencies coincide while the secondary lobes are closer to center as frequency increases.
Produced for [8]. Right: Monochromatic synthesized beam at 131 and 169 GHz for a detector placed
at the center of the focal plane. Each synthesized beam is modeled according to equation 6.1 for a
square array of 20× 20 pupils separated 14 mm apart at 131 and 169 GHz. The primary beam at each
frequency is shown by a dashed line. Produced for [9].

contributions within the band resulting in a polychromatic synthesized beam. Figure 6.3 shows a
polychromatic synthesized beam using 9 monochromatic synthesized beams.
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Figure 6.3: Polychromatic beam (PolySB, black line) as result of the addition of 9 monochromatic
synthesized beams (MonoSB). Five of them are shown in colored lines) spanning our 150 GHz band
(131 to 169 GHz). We sample the continuous frequency band with discrete frequencies.

With a bolometric interferometer operating over a large bandwidth, for each pointing towards a
given direction in the sky, one gets contributions from all the multiple peaks in the synthesized beam
at all frequencies. As a result, we have both spatial and spectral information in the TOD. Precise
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knowledge of the synthesized beam along the frequency will then allow one to reconstruct the position
and amplitude of the sky in multiple frequency sub-bands. Note that spectral imaging is fully done in
post-processing of the data, bolometers are monoband detectors, they integrate the signal in a wide
frequency band between 130 and 170 GHz (190 and 250 GHz for the second focal plane).

6.1.2 Spectral imaging capabilities

We need to sample the continuous frequency band with a finite number of frequencies. The question is
how many sub-bands can we reconstruct inside the large band and how should we space them in order
to sample the beam uniformly. This was already studied in the thesis by M. Stolpovskiy [14] (section
5.0.1.1).

Frequency sub-band spacing

Ii was chosen to require that the distance between the peaks of two synthesized beams of two next to
next frequency sub-bands must be some fraction k of the sum of their widths.

As seen in chapter 1, section 1.2.5, the angular resolution is given by the FWHM of the peaks λ/D
where D is the aperture diameter. Considering a P × P square array of horns spaced by ∆h we have
D = P∆h. As shown in Figure 6.2, the distance between the central peak and the n-th order peak is
nλ/∆h.

Therefore, the requirement is

n(λ2 − λ1)

∆h
= k

(
λ1

P∆h
+

λ2

P∆h

)
⇒ λ2 = λ1

nP + k

nP − k . (6.2)

This means that we can recursively define λi+1 as λi multiplied by a constant factor q = (nP+k)/(nP−
k). Thus, the correct way for sampling the frequency band is the logarithmic scale

λi+1 = λi × q ⇒ log(λi+1)− log(λi) = log(q) = cst. (6.3)

How many sub-bands?

The synthesized beam at two different frequencies ν1 and ν2 will be distinguishable from one another as
long as their peaks are sufficiently separated. The angular separation between the two peaks ∆θ = c∆ν

ν2∆h

(where ∆ν = ν2 − ν1 and ν =
√
ν1ν2) must be large enough to unambiguously distinguish the two

peaks. In order to have an order of magnitude of the possible width for each sub-band we consider a
square array of pupils and we apply the Rayleigh criterion [236]:

c∆ν

ν2∆h
& c

ν(P − 1)∆h
⇔ ∆ν & ν

(P − 1)
(6.4)

where P is the number of pupils on a side of the square-packed pupil-array. A bolometric interferometer
therefore not only has a resolution on the sky FWHMθ ' c

ν(P−1)∆h
, but also in electromagnetic

frequency space ∆ν
ν ' 1

P−1 .
The map-making presented in section 5.2.5 can be extended in order to build, simultaneously with

the same TOD, maps at a number of different frequencies as long as they comply with the frequency
separation given above. The iterative TOD di can be written as:

di =

Nrec−1∑

j=0

AjT̂ij + n (6.5)

where Aj describes the acquisition (convolution+pointing) operator with the synthesized beam at
frequency νj , T̂ij is the sky signal estimator at iteration i for the frequency νj and Nrec is the number
of reconstructed sub-bands. Similarly, as in the map at a single frequency (Figure 5.2), one can recover
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6.2 Testing spectral imaging on simple cases

Parameter Details

Nin Number of input or true maps (in µK) used to simulate a broadband
observation (TOD). Each map represents a sky at a specific frequency
νj for the IQU Stokes parametersa b. Possible values: 15, 16, 18, 21 or
48.

Nrec Number of sub-bands reconstructed from a single broadband observation,
from 1 to 8. In all simulations Nrec is a divisor of Nin.

Nconv Number of convolved maps equal to Nrec. Each of these maps is ob-
tained convolving the Nin input maps at the QUBIC spatial resolution
corresponding to that input frequency and then averaging within the
reconstructed sub-band.

θ Radius of sky patch observed in simulations. Value: 15 degrees.

Pointings Number of times that the instrument observes in a given sky direction
aligned with the optical axis. Values > 104.

NEPdet Detector noise equivalent power (NEP) added as white noise. Value:
4.7× 10−17 W/

√
Hz.

NEPγ Photon NEP added as white noise in time-domain, calculated from the
atmospheric emissivity measured in our site, as well as emissivities from
all components in the optical chain. The atmospheric load is assumed
to be stable. The value is different for each detector because of their
different illumination by the secondary beam Bsec. The average value at
150 GHz is 4.55× 10−17 W/

√
Hz and 1.72× 10−16 W/

√
Hz at 220 GHz.

aSkies are generated using PySM: Python Sky Model [222].
bMaps are projected using HEALPix: Hierarchical Equal Area Isolatitude Pixellization of sphere [223].

Table 6.1: Typical parameters used in acquisition, instrument and map-making to do an end-to-end
simulation. A preconditionned conjugate gradient method is used for map-making.

the maps Tj by solving equation 6.5 using a preconditioned conjugate-gradient method (see section 6.2
for corresponding simulations). Thus, the instrument acquires data in a single wide frequency band
and spectral imaging technique applies during map-making, in the post-processing of the data.

The QUBIC FI has two wide-bands centered at 150 and 220 GHz with ∆ν/ν = 0.25 and a 400-
feedhorn array packed on a square grid within a circular area (see Figure 1.5). We approximate it with
a square grid 20 × 20 so 1

(P−1) ∼ 0.05. It is thus possible to reconstruct approximately 5 sub-bands
in each of the initial bands of QUBIC. Note that this number should just be taken as an order of
magnitude for the achievable number of sub-bands but we will see in Figure 6.7 that it is a good
approximation. In section 6.3 we will show that reconstructing up to 8 sub-bands is feasible but with
a significant degradation of the signal-to-noise ratio.

6.2 Testing spectral imaging on simple cases

We can use the QUBIC simulation pipeline to test the spectral imaging capabilities of bolometric
interferometry in a simple way. Some concepts and parameters used in simulations are defined in
Table 6.1.

6.2.1 Extended source reconstruction

This section is a result obtained by Martín Gamboa. The input map used for this example to simulate
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134.6 GHz 141.6 GHz 148.9 GHz 156.5 GHz 164.6 GHz

-1.00 1.00
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Figure 6.4: Map-making for a sky full of zeros with two extended, monochromatic regions centered at
141.6 (square) and 156.5 GHz (disk). Each column corresponds to one sub-band. The first row shows
the input sky maps spatially convolved at the QUBIC resolution. The reconstructed maps using the
QUBIC pipeline are shown in the second row. The units are arbitrary.

TOD is composed of zeros in each pixel of its 15 input frequencies, Nin, and for the three Stokes
components. Two monochromatic extended regions with a high signal-to-noise ratio are added: a
square centered at 141.6 GHz and a disk centered at 156.5 GHz. Map-making is done for 5 sub-bands
centered at 134.6, 141.6, 148.9, 156.5 and 164.6 GHz, with a bandwidth of 6.8, 7.1, 7.5, 7.9 and 8.3 GHz
respectively. The scan is performed with 8500 points randomly placed over a 150 square degrees sky
patch. Noise is included in the TOD.

The first row in Figure 6.4 shows the input sky maps spatially convolved at the QUBIC resolution.
The second row shows the reconstructed maps after map-making onto five sub-bands. The maps are
normalized by the maximum value in the convolved maps. In the first, third and fifth sub-bands,
where originally the signal is zero, structures corresponding to the signals of neighboring sub-bands
appear. The median of the signal on such sub-bands are 0.27, 0.19, 0.31 respectively. The medians are
calculated within a region defined by the shape of the signal in the adjacent sub-band, i.e. rectangle
(1st sub-band), rectangle + disk (3rd) and disk (5th). The leakage occurs during the map-making
process. It comes from neighboring sub-bands due to the Frequency Point Spread Function (FPSF)
that will be studied in section 6.2.3.

6.2.2 Angular resolution

This is also a result obtained by Martín Gamboa. As an example, we used the end-to-end pipeline to
simulate the reconstruction onto 4 sub-bands of a point source emitting with a flat spectrum in the
150 GHz wide band. Figure 6.5 shows the measured (red stars) and theoretical (blue dots) values of
the FWHM at the central frequency of each sub-band. Theoretical values are obtained from a quasi-
optical simulation [6] at 150 GHz and scaled proportionally to frequency. Measurements were made
on HEALPix maps and corrected by pixel size and resolution [15]. The difference between measured
and theoretical values are up to 0.5% which makes it acceptable. The real angular resolution will
be determined once QUBIC is installed on the site using far-field observations (astronomical objects
and/or calibration tower). This analysis was done for a flat spectrum over the wide frequency band but
this hypothesis is not required. In the code, it is only assumed to be flat in small frequency sub-bands
with bandwidths around 1/20 of the total bandwidth. The result would be similar in case of a non flat
spectrum.

154



6.2 Testing spectral imaging on simple cases

135 140 145 150 155 160 165
[GHz]

0.36
0.37
0.38
0.39
0.40
0.41
0.42
0.43
0.44

FW
H

M
[d

eg
]

FWHM measured
FWHM theoretical

Figure 6.5: Red stars represent the angular resolution measured for a single point source emitting in
the broad band after map-making onto 4 sub-bands. Blue dots are the theoretical values expected for
each central frequency of the sub-bands.

6.2.3 Frequency Point Spread Function (FPSF) characterization

The simulations presented in this section were realized by Martin Gamboa but we work together on the
interpretation of the results. In section 6.2.1 it was shown that the reconstructed map for a sub-band
has a fraction of signal coming from neighboring bands (see Figure 6.4). In order to study this effect,
we simulate monochromatic point source reconstruction to characterize the FPSF.

If we consider a monochromatic input signal with a spectral energy density Sin(ν) = I0δ(ν − νin)
[W/Hz], and considering ideal map-making, then the intensity of the output map Iout(ν) [W] will be
given by the convolution of the input signal with the FPSF [unitless]:

Iout(ν) = [Sin ⊗ FPSF] (ν) ≡
∫
Sin(ν ′)FPSF(ν − ν ′)dν ′ = I0FPSF(ν − νin). (6.6)

Thus, we can obtain the FPSF by measuring the intensity in the reconstructed sub-bands.
In order to investigate the FPSF of the instrument, we simulate a scan in frequency by moving

νin in a high-resolution frequency grid. We use a grid with Nin = 48 which gives us a resolution of
∼ 0.78 GHz for the 150 GHz wide band (it would be ∼ 1.15 GHz for the 220 GHz band). This grid
allows to improve the map within the spectral range and thus obtain more precise information on how
the signal is reconstructed at the center and edge of each sub-band. We performed 22 independent
simulations of monochromatic point sources with high signal-to-noise ratio. We kept the spatial location
of the point source unchanged and we varied its frequency νin, covering a spectral range from 133 to
162.25 GHz.

We present results for map-making onto 4 sub-bands with central frequencies at νc = 135.5, 144.3,
153.6, 163.6 GHz and bandwidths of ∆νc = 8.5, 9.1, 9.7, 10.3 GHz respectively. The FPSF depends on
the number of sub-bands so this result is specific to 4 sub-bands. For each simulation, we measure the
intensity, normalized to the input one, of the central pixel of the point source in each reconstructed
sub-band. Figure 6.6 shows the intensity measured in each sub-band considering four different point
source input frequencies νin among the 22 simulations. As expected, the reconstructed intensity is
maximal in the reconstructed sub-band that contains the input frequency. In the hypothesis that the
FPSF does not depend on the input frequency, we can superimpose all the results. This is done in
Figure 6.7 (blue dots) by subtracting νin in order to center all the measurements on 0. All the points
are well superimposed on a continuous line that we will call the synthetic FPSF of the instrument with
4 sub-bands. A spline fitting is shown in Figure 6.7 (red line) to get a model for the synthetic FPSF.
We also plot a Gaussian (blue line) with FWHM = ν0

P−1 , P = 20 and ν0 = 150 GHz, showing an order
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Figure 6.6: Reconstructed sub-bands are delimited with color bands. Black dots show the intensity
of the central pixel of the point source, normalized to the input one, measured in each reconstructed
sub-band. The point source input frequency is written on each plot and shown with the vertical dashed
line.
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Figure 6.7: Synthetic FPSF when reconstructing in 4 sub-bands. Blue dots are the intensity of the
central pixel of the point source in each sub-band and each simulation superimposed (see text for
detailed explanation). Red line is a spline fit. Blue line is a Gaussian with FWHM = ν0

P−1 , P = 20 and
ν0 = 150 GHz, showing an order of magnitude of the expected frequency resolution (see section 6.1.2).
Strong-gray band represent a typical width of a sub-band when reconstruction is performed for 4
sub-bands.

of magnitude of the expected frequency resolution as explained in section 6.1.2. As expected from
Figure 6.4, we observe that the FPSF extends beyond a single sub-frequency and should be accounted
for in the data analysis. This means that our reconstructed sub-bands are not independent from each
other and we should expect noise correlation between sub-bands. Because the FPSF is negative in the
nearest band we should expect the noise correlations to be negative between neighboring sub-bands.
This will be studied in section 6.3.1.

To terminate this section, I show an other way of plotting the same data. This is presented in
Figure 6.8. The four reconstructed sub-bands are again delimited with color bands. For each sub-
band, I plot the reconstructed intensity in the central point source pixel as a function of the input
point source frequency νin. It is similar to make a swipe in frequency and see the response of each
sub-band separately. This is different from the FPSF which is the response of the instrument to a
monochromatic pulse.
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Figure 6.8: The four reconstructed sub-bands are again delimited with color bands. For each sub-band,
the reconstructed intensity in the central point source pixel (colored dots) is shown as a function of
the input point source frequency νin. Point measurements are interpolated by a line just for improving
the visualization.
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6.2.4 Galactic dust

We demonstrate spectral imaging capabilities by trying to recover the frequency dependence of the
dust emission with simulated observations towards the Galactic center.

Map reconstruction

The sky maps contain IQU Stokes parameter components and the dust model is the one provided by
PySM3, named d1 [222]. We simulate an observation in a sky patch of 15 degree radius. This choice
was made in order to minimize the number of pointings required to get a sufficient coverage and so
to reduce computational resources needed for simulations. However, a bigger patch would give similar
results, even better as border effects would be reduced.

We have used a simplified sky coverage obtained using random pointings on the sky from one time
sample to another, reproducing the same sky fraction as the anticipated sky coverage. While this allows
obtaining a fast and efficient coverage of the QUBIC observed sky, it prevents one from simulating
actual 1/f noise from atmospheric or any time-domain instrumental fluctuations as successive time
samples do not correspond to nearby pointings as in a more realistic scanning strategy. Moreover, we
have used the “repeat” pointing strategy described in section 5.2.6 in order to cover all pixels with a
sufficient number of pointing with different HWP angles.

The parameters of the pipeline are set in such a way that the simulated instrument has a single
focal plane operating either at 150 GHz or at 220 GHz with a 25% bandwidth each. The wide
band TOD are formed through the sum of a number of monochromatic TOD throughout the wide
bandwidth as shown in equation 6.5. For this simulation we have used Nin (see Table 6.1) input maps
covering the ranges from 137 to 162 GHz and from 192 to 247 GHz. From these wide-band TOD,
we are able to reconstruct several numbers of sub-bands using spectral imaging. We have performed
simulations with Nrec = 1, 2, ..., 8 reconstructed sub-bands. NEP, including photon noise and detector
noise (see Table 6.1) are added as white noise for each TOD. In each case, we perform a Monte-Carlo
analysis to get several independent noise realizations and also a noiseless reconstruction that will be
the reference. Those end-to-end simulations require high memory usage and need to be parallelized
on several machines1. The result of this procedure at the map level for the I and Q components, for
a given realization, is shown in Figures 6.9 and 6.10. The two figures display a sky reconstructed in 5
sub-bands within the 220 GHz wide band. The residual map is the difference between a reconstruction
and the noiseless reference.

We can see that the Galactic dust is efficiently reconstructed in the 5 sub-bands as the residuals
are compatible with pure noise. Note that the noise is not white but has spatial correlations due to
the deconvolution with the multi-peak synthesized beam (see section 5.2.7). We also note that the
residuals are higher on the edges than in the center of the sky patch. This is due to the higher coverage
of the sky in the center due to the scanning strategy.

1For instance, with 10 000 pointings, 992 detectors (FI), considering the main 14 peaks in the synthesized beam, the
size of the pointing matrix for each input sub-band is: ∼ 10000× 992× 14× 16/10243 ∼ 2 GiB and typically, there are
Nin ∼ 20 sub-bands. Regarding the convergence of the map-making, the number of iterations needed will vary, especially
with the level of noise and with the number of sub-bands. For a typical end-to-end simulation with Nrec = 6, it is around
320 iterations.
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Figure 6.9: Map-making of the galaxy dust in Nrec = 5 frequency sub-bands from 192 to 247 GHz for I
component. The map unit is µK CMB. The first column is the input sky convolved to the resolution of
the instrument in that sub-band. The second column is the reconstructed map after the map-making
process. Residuals, defined by the difference between the simulation including noise and a noiseless
one, are shown in the last column. The noise is not white but has spatial correlations due to the
deconvolution with the multi-peak synthesized beam, it is clearly visible in the 241 GHz sub-band.
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Figure 6.10: Map-making of the galaxy dust in 5 frequency sub-bands from 192 to 247 GHz. Same as
Figure 6.9 but for Q component.
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6.2 Testing spectral imaging on simple cases

Pixel Spectral Energy Distribution (SED)

Instead of looking at the full map, one can look at the reconstructed intensity as a function of frequency
in a given sky pixel.
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Figure 6.11: Intensity as a function of the frequency for Nrec = 5 sub-bands in each wide band at
150 (red) and 220 (blue) GHz for a given pixel. The gray regions correspond to the unobserved
frequencies outside our physical bands. Two sky pixels are shown as red stars, one in a patch centered
at the Galactic center and one in the patch that QUBIC plans to observe centered in [0, -57 deg]. Red
and blue dots: Input sky convolved with the instrument beam. In both cases are shown in light color the
68% CL regions for a modified black-body spectrum reconstructed with a MCMC from our simulated
measurements and sub-band covariance matrices (see Figure 6.13 for the case of 3 sub-bands). Maps
are in µK CMB and Nside = 32.

Figure 6.11 shows the intensity of the input sky convolved with the instrument beam, and the
reconstructed intensity for a given pixel, considering 5 sub-bands in each wide band at 150 (red) and
220 (blue) GHz. Instead, we have performed a Monte-Carlo-Markov-Chain (MCMC) exploration of
the amplitude and spectral-index of a typical dust model (modified black-body, see [229]) accounting
for the sub-bands covariance matrix that will be presented in section 6.3.1. The fit is done separately
for our two physical bands at 150 and 220 GHz. The 68% confidence level (CL) is shown in light colors
in each case and represents the QUBIC measurements within this band using spectral imaging.

Simulation procedure: First we have calculated 100 realizations of the reconstructed maps of the
observed sky patch using the fast simulation pipeline described in section 6.3.2 with Nside = 256 and
degrading the pixel resolution to Nside = 64 for total intensity maps and Nside = 8 for polarization
maps. Then, for each pixel we have computed the average I(νj), with its 68% confidence interval for
each sub-band frequency νj . We do not display the measured points and error-bars which are not good
indicators of our uncertainties due to the highly anti-correlated nature of the covariance matrix (see
Figure 6.13 in the case of 3 sub-bands). Instead, we calculated the confidence interval by modelling
the SED as a modified black-body:

I(ν) = a×Bν(Tdust = 19.6 K)×
( ν

353 GHz

)β
, (6.7)

then we performed a Monte-Carlo-Markov-Chain exploration of the posterior likelihood of this model
given our full band-band covariance matrix (see Figure 6.13). This provides us with a chain of (a, β)
parameters that sample the likelihood. From these samples, we then calculate the 68% confidence
interval for the model at each frequency in the band, obtaining the light red areas represented in
Figure 6.11.

We verified that the shape of the confidence interval does not depend on the model we assumed for
the MCMC exploration. Indeed, we obtain almost identical regions with a second order polynomial
instead of the modified power law. It is worth noting that the angular resolution of our reconstructed
maps in each sub-band is not constant and improves with frequency (see section 6.2.2). As a result,
fitting a modified power law without accounting for this change of resolution does not lead to a β
parameter that can be compared with the usual β dust spectral index that needs to be corrected for
varying angular resolution [229]. This is not a problem here as this analysis is just intended to show
our ability to measure SED with spectral imaging.
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Chapter 6. Spectral imaging

For detail, one can refer to [1], where we presented the expected SED reconstruction both for the
FI and the TD in intensity and polarization. We have shown that with one year sky integration with
the QUBIC TD it is possible to reconstruct the SED of the dust emission on angular scales of the order
of ∼ 1◦ and frequency resolution of ∼ 4 GHz in total intensity. We can also detect the dust emission
SED in polarization on larger scales (∼ 7◦) close to the Galactic plane, where the signal intensity is
larger.

Dust angular power spectrum

The dust reconstruction is also studied in the angular power spectrum using the public code NaMas-
ter [209] which computes TT , EE, BB and TE spectra where T is the temperature and E, B are the
two polarization modes. Spectra are computed from a multipole moment ` = 40 to ` = 2 ×Nside − 1
with Nside = 256 the pixel resolution parameter for HEALPix maps. We compute inter-band cross
spectra (IBCS), meaning that from Nrec sub-band maps, one can compute Nrec(Nrec +1)/2 IBCS. Hav-
ing independent noise realizations allows us to make IBCS crossing two realizations, so we eliminate
the noise bias. BB IBCS for 3 sub-bands in each of the 150 and 220 GHz wide bands are shown in
Figure 6.12. We plot D` = `(`+1)

2π C`, C` being the B-mode angular power spectrum. In this Figure, the
input theoretical dust spectra coming from the PySM model d1 are superposed to the reconstructed
ones.
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Figure 6.12: BB IBCS at 150 GHz (left) and 220 GHz (right) computed from reconstructed maps in
3 sub-bands (137, 149 and 162 GHz and 201, 218 and 238 GHz respectively), obtained with end-to-end
simulations. For each IBCS, we cross-correlate 2 sub-bands with central frequencies in GHz shown in
the legend of each plot. Dashed lines are the IBCS of the input sky that contains only Galactic dust.
The dots with error bars show the mean and the standard deviation over 20 IBCS. Each IBCS is made
with 2 maps with independent noise realizations to eliminate the noise bias.
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6.3 Noise characterization

6.3 Noise characterization

For the map-making described in section 5.2.5, we added noise to the TOD which was composed of
the detector NEP (4.7× 10−17W/

√
Hz) and photon NEP (see Table 6.1). As before, the atmospheric

load is assumed to be stable. The goal here is to study how close to optimal (in the statistical sense)
is our spectral imaging map-making. We will study the noise behavior as a function of the number of
reconstructed sub-bands Nrec. This is done at two different levels: on the reconstructed maps and on
the power spectra computed from the maps.

6.3.1 Noise behavior in the sub-bands at map level

We performed simulations with 40 independent noise realizations and a noiseless simulation as a refer-
ence. After map-making, residual maps are computed by taking the difference between each simulation
and the noiseless reference. For each pixel, we compute the covariance matrix, over all the noise real-
izations, between the sub-bands and the Stokes parameters.
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Figure 6.13: Correlation matrices between frequency sub-bands ν0 = 137 GHz, ν1 = 149 GHz and
ν2 = 162 GHz and I, Q, U Stokes components obtained from 40 end-to-end simulations. Left: example
for a given pixel. Right: The average over pixels. Blue means anti-correlations while red is for positive
correlations.

The reason why we treat the pixels separately, not computing covariance over them, is that the
noise level varies with the position in the sky. This is due to the coverage of the sky by the instrument
beam which is not uniform. Note that the QUBIC coverage is not trivial because of the multiple
peaked synthesized beam.

A correlation matrix for a given pixel, considering 3 sub-bands, is shown in Figure 6.13 and we also
show the average over pixels. It can be seen that for each Stokes parameter, residual sub-bands next
to one another are anticorrelated and this is seen on every pixel. However, cross-correlations between
Stokes parameters are negligible. This is why we can consider the 3 correlation matrices CIp, CQp and
CUp separately.

6.3.2 Fast noise simulator

The peculiar noise structure of the QUBIC maps has been studied in detail using 40 end-to-end
simulations for each of the considered configurations. Simulations run on supercomputers as they
have large memory requirements2. We extract from these simulations the main features of the noise

2With a 156.25 Hz sampling rate, QUBIC produces 156.25× 3600× 24× 1024× 2× 8/1e9 ' 220 GB/day.
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Figure 6.14: Root Mean Square (RMS) of the noise in the sky pixels as a function of the inverse
sky coverage. In this case we considered 4 sub-bands and each plot corresponds to one of them.
Intensity I and polarization Q,U are treated separately because they behave differently in the end-to-
end simulations.

discussed above:

• noise scaling as a function of normalized coverage;

• anti-correlations in neighboring bands for each Stokes parameter (see section 6.3.1);

• spatial (pixel-pixel) structure of noise that was presented in section 5.2.7;

The two last properties are specific to polychromatic interferometers. We have built a “Fast Simulator”
that directly produces maps with theses features:

1. we start by creating (in harmonic space) noise maps with the observed spatial correlation (see
Figure 5.6),

2. we then make linear combinations of these noise maps in order to have I, Q and U maps for each
sub-band with the appropriate correlation matrix (see Figure 6.13),

3. finally, we scale the noise in the maps according to the scaling with respect to coverage.

The overall noise normalization is adjusted to match that of the end-to-end simulations with the same
integration time. We have checked in detail the accuracy of the Fast Simulator by performing the same
noise structure analysis on the output maps and verifying that they lead to the same noise modeling
as with the end-to-end simulations. In the next plots, we compare the Fast Simulator noise properties
with the end-to-end simulations. We have considered 4 reconstructed sub-bands in the wide band
centered on 220 GHz and 10000 pointings.

Figure 6.14 shows the Root Mean Square (RMS) of the noise in the sky pixels as a function of the
inverse sky coverage. Intensity I and polarization Q,U are treated separately because they behave
differently in the end-to-end simulations.

In Figure 6.15, we compare the covariance matrices between sub-bands computed from end-to-end
simulated maps and from maps produced by the Fast Simulator. We only consider correlations between
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Figure 6.15: Covariance matrices between sub-bands computed from end-to-end simulated maps (first
row) and from maps produced by the Fast Simulator (second row) for I,Q, U components.

sub-bands within the same Stokes parameter and not between two different Stokes parameters because,
as seen in section 6.3.1, they are negligible.

Finally, in Figure 6.16, we show the spatial noise 2pt-correlation function obtained from maps
produced with the Fast Simulator. Each color corresponds to a given sub-band. So far, we made the
approximation that the 2pt-correlation function does not depend on the number of reconstructed sub-
bands nor the Stokes component. Thus, all sub-band maps produced by the Fast Simulator have the
same spatial noise correlation: the one shown in Figure 5.6 from end-to-end simulations with only one
reconstructed sub-band. This will be refined in the future to make the Fast Simulator more realistic.
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Figure 6.16: Spatial noise 2pt-correlation function obtained from intensity maps produced with the
Fast Simulator. Each color corresponds to one sub-band.
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Chapter 6. Spectral imaging

Thus, the Fast Simulator allows for fast production of maps with large-number statistics (thousands
of realizations) and has been used extensively for forecasts presented in [1]. In the following, it is used
in parallel with end-to-end simulations.

6.3.3 Noise analysis using the power spectrum

In this section, we characterize the noise behavior of spectral imaging using the power spectrum. As
shown in the last part of section 6.2.4, from the maps we can compute power spectra using the public
code NaMaster. From Nrec bands, we compute the Inter-Band Cross-Spectra (IBCS) for each TT , EE,
BB and TE power spectra. As we are interested in the noise, we compute the power spectra of the
residual maps containing only noise. Figure 6.17 shows the IBCS computed for each noise realization
in the case of 3 sub-bands at 150 GHz. As we plot D` the noise bias goes as `(`+ 1). We find that the
IBCS within the same band (ν0ν0, ν1ν1 and ν2ν2) are positively correlated. However the IBCS crossing
2 different bands (ν0ν1, ν0ν2 and ν1ν2) are anti-correlated.
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Figure 6.17: BB Inter Band Cross Spectra on the residual maps containing only noise for 3 sub-bands
in the wide 150 GHz band, centered at 137, 149 and 162 GHz. Dots and error bars show average
and standard deviation over 1000 independent noise realization IBCS computed with the fast noise
simulator.

The correlations are observed in greater detail by computing the correlation matrices. In Fig-
ure 6.18, we show the correlation matrix between `-bins and IBCS for BB angular power spectrum
considering Nrec = 3 sub-bands in the 150 GHz wide band. In this matrix, we see that anti-correlations,
in blue in the matrix, only appear between the IBCS crossing 2 different bands (ν0ν1, ν0ν2 and ν1ν2 in
the case of 3 sub-bands) and that the correlations between bins are negligible. The same behavior is
observed for TT , EE and TE spectra.
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Figure 6.18: Correlation matrix between `-bins and IBCS for BB angular power spectrum considering
3 sub-bands at ν0 = 137, ν1 = 149 and ν2 = 162 GHz. For example, ν0ν1 is the IBCS between
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compute the IBCS as in Figure 6.17.
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Chapter 6. Spectral imaging

6.4 Spectral imaging on real data

Spectral imaging has been applied on real data for the first time during the calibration campaign at
the APC laboratory. The QUBIC instrument was placed on an alt-azimuth mount in order to scan
a calibration source tuned at 150 GHz (with 144 Hz bandwidth) and placed in the far field. The
corresponding analysis is presented in [8]. We then perform a scan in azimuth and elevation with the
instrument, obtaining a TOD for each bolometer. We then apply our spectral imaging map-making
algorithm with five sub-bands to a selection of 26 bolometers that do not exhibit saturation. The
synthesized beam for each bolometer is realistically modeled in our map-making through a series of
Gaussian whose amplitude, width and locations are fit from a measured map of the synthesized beam
for each bolometer (see Figure 20 from [8] for an example). The frequency evolution of this synthesized
beam only assumes linear scaling with wavelength. We were able to reconstruct a map of the point-
like artificial calibration source as well as its location in frequency space. In Figure 6.19, we show
the reconstruction onto 5 sub-bands. The expected point-source shape is clearly visible in the central
frequency sub-band containing the emission frequency of the source at 150 GHz.
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Figure 6.19: Calibration data with the source at 150 GHz projected on the sky using our map-making
software to deconvolve from the multiple peaked synthesized beam and split the physical band of the
instrument into 5 sub-bands.
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Figure 6.20: Measurement of the flux of the source in reconstructed sub-bands. The measurement
(simple aperture photometry) in red is compared to the expected value spectrum in blue. The expected
shape is a Gaussian centered on ν = 150 GHz and a FWHM equal to ν

(P−1) with P = 8 for the TD
instrument. A global offset and the amplitude of the Gaussian are adjusted to the data.

The calibration source is fainter in adjacent bands, and not visible in the furthest bands. In
Figure 6.20, we show the detected amplitude in the central pixel as a function of the frequency. The
measurement in red is compared to the expected value spectrum in blue. The expected shape is a
Gaussian centered on ν = 150 GHz and a FWHM equaled to ν

(P−1) as explained in section 6.1.2.
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6.4 Spectral imaging on real data

Those data were acquired with the TD instrument that has a square 8 × 8 feedhorn array so P = 8.
The global offset and the amplitude of the Gaussian are adjusted to the data. Error bars are computed
in a very conservative manner.

Conclusion In this chapter, we have shown how the new technique of bolometric interferometry offers
the possibility to also perform spectral imaging. This makes it possible to split, in post processing, the
wide-band observations into multiple sub-bands achieving spectral resolution. After having presented
the spectral imaging technique we have illustrated it on simple cases: monochromatic point sources,
spatially extended sources, and sky maps with frequency-dependent emission such as Galactic dust.
We have shown our ability to increase spectral resolution with respect to the physical bandwidth,
considering a full sky patch but also at the level of individual pixels. Finally, we studied the signal
and noise behavior using Monte-Carlo simulations for an instrument like QUBIC which shows spatial
and spectral correlations.

The precise measurement of foreground contaminants is essential for the detection of primordial B-
modes. Foregrounds have spectral properties distinct from the CMB which leads to the conclusion that
only a multichroic approach enables the measurement and subtraction of foreground contamination.
This is usually done in classical imagers through detectors operating at distinct frequencies, each of
them being wide-band in order to maximize signal-to-noise ratio. However, constraining foregrounds
with such data relies on extrapolation between distant frequency bands, which may miss non-trivial
variations of the spectral behavior of complex foregrounds such as multiple dust clouds in the line
of sight. In particular, scenarios where dust exhibits a certain level of decorrelation between widely
separated bands, or with non constant spectral indices would be impossible to be identified with a
usual wide-band analysis. Spectral imaging could put significant constraints on such scenarios. This
is being studied in detail by the QUBIC collaboration.

An order of magnitude for the number of sub-bands we expect to reconstruct was given at the
beginning of this chapter, in section 6.1.2. However, we will come back to that point in section 7.7.3
using end-to-end simulations for a more accurate estimation.
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Chapter 7

Constraining Cosmology from CMB
observation
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Chapter 7. Constraining Cosmology from CMB observation

Up to now in this manuscript, we only discussed observations that perfectly corroborate the Big
Bang model. The observation of the CMB may even be seen as the triumph of the Hot Big Bang
theory. However, different observations, especially in the second part of the 20 century, have raised
new doubts and questions. As we will see in this chapter, the Hot Big Band model was not abandoned
but it was needed to add new unknown ingredients, the “dark part” of the model, as well as a new
phase in the universe history called inflation.

In this chapter, the motivations for this inflation phase, a brief review of this theory and the
experimental evidences are presented. New parameters, derived from inflation theory, are needed in
order to fully describe the observations. This leads me to present the standard cosmological model
commonly used today as well as the current constrains on it. I also explain how CMB observations
have the ability to constrain it.

The tensor-to-scalar ratio r is a crucial parameter, derived from inflation theory, which charac-
terizes the ratio between E and B-mode amplitude. This is why it is so important for current CMB
experiments which aim at measuring it or, at least, putting an upper limit on its value.

Personal contributions: Section 7.7 is my personal work, realized in collaboration with Jean-
Christophe and Martín. It first contains the QUBIC forecasts on the measurement of the tensor-to-
scalar ratio. The achieved constraint on r is then studied as a function of the number of reconstructed
sub-bands, showing that spectral imaging performance are nearly optimal up to five sub-bands in the
case of QUBIC. Finally we show how spectral imaging gives the ability to detect the presence of dust
residuals. This is part of paper [1] that gives an overview of the QUBIC project, and paper [9] related
to spectral imaging for which I am the second and first author respectively.

7.1 First doubts and questions

7.1.1 Missing matter

In 1934, Hubble made the first measurement of the matter density of the universe by counting the
number of galaxies. He found ρm = (1.3− 1.6)× 10−30 g cm−3 [41].

The need of additional matter, for coherence with observations, was first mentioned in 1933 by
Zwicky [42]. He looked at the radial velocities of galaxies in the Coma cluster: “In order to obtain the
observed value of an average Doppler effect of 1000 km s−1 or more, the average density in the Coma
system would have to be at least 400 times larger than that derived on the grounds of observations
of luminous matter. If this would be confirmed we would get the surprising result that dark matter
is present in much greater amount than luminous matter.” Zwicky, was a very innovative physicist,
also known for the discovery of supernovae [43] and the prediction of strong gravitational lensing [44].
Similar observations were done in the 1930’ by Smith in the Virgo cluster [45] and by Babcock [46] in
the Andromeda galaxy.

However, those works were forgotten until 1970’ when Vera Rubin measured the rotation velocity
of stars in the Andromeda galaxy as a function of their distance to the center [59]. Contrary to what
was expected, the velocity stays constant when the distance increases. This can be explained by an
halo of invisible matter, called dark matter, surrounding the galaxy and that would constitute around
90% of the galaxy mass. The lack of matter to explain velocity measurements was latter observed in
many others galaxies.

Since that time, a huge number of tentatives to detect a candidate for dark matter particles over
a wide energy range, were carried out, so far with no success. Another possibility is that the theory
of gravitation is incomplete and need to be modified. This idea was first presented by Milgrom in
1983 [60], it is known as the Modified Newtonian Dynamics (MOND). However, an observation in the
Bullet cluster, which is the result of a collision of two galaxy clusters, showed that the apparent center
of mass is far displaced from the baryonic center of mass [61]. Since, this observation was repeated
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on a couple of other clusters in collision. This almost ruled out the modified gravity theories for dark
matter because it is independent on the nature of the gravitational force law.

7.1.2 Horizon problem

At the recombination era, the universe has lived ∼ 380 000 years. The finiteness of light speed induces
an horizon which is the maximum distance light can have traveled since the “birth of the universe”.
The horizon at decoupling corresponds to ∼ 1◦ on the celestial sphere today1. Thus, the CMB map is
composed of many causally disconnected regions. This is illustrated on Figure 7.1. Then, why is the

Figure 7.1: Illustration of the horizon problem. Left: The events that we currently observe in O are
on our light cone. p and q could not have been in causal contact between the Big Bang singularity and
the recombination (shown in gray). Right: p and q are opposite points on the LSS. Little circles show
the horizon of one point at recombination which corresponds to 1◦ on the sky. Taken from [62].

CMB temperature so homogeneous over the sphere, within 10−5? At the time where this question was
raised, the temperature anisotropies were not yet observed but the measurement of the temperature
angular power spectrum raises another point, even more intriguing: why are the CMB fluctuations
correlated at larger scales than the decoupling horizon as shown by the Sach-Wolfe plateau?

7.1.3 Flatness problem

After the discovery of the expansion of the universe, the cosmological constant Λ was removed from
the Friedmann equation2. We note ρ = ρm + ρr and Ω = Ωm + Ωr so from equation 3.18, without the
cosmological constant, we have Ωk = 1− Ω. The first Friedmann equation can be written as [63]:

(
1

Ω(t)
− 1

)
ρ(t)a2(t) = − 3k

8πG . (7.1)

The right term is constant over time and the universe today appears to be flat, we have k ' 0, Ω0
k ' 0

and so Ω0 ' 1, within 1%3. This implies that the left term must be zero today but also at any time.
When radiation dominates the universe, a characteristic time scale is the Planck time:

tp =

√
hG

2πc5
∼ 10−43s. (7.2)

1This angle can easily be derived from the BAO scale (see section 7.6.3) and the angular distance at recombination

θ ' 150 Mpc

DA(z = 1100)
' 150 Mpc

12800 Mpc
∼ 0.67◦.

2but reappeared later as we will see in section 7.5.
3In 1980, when this was discussed, the constraint was 0.01 < Ω0 < 10 [98]!
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When the universe was tp old, the term ρ(tp)a
2(tp) was 1060 times higher than today. This means that

Ω(tp) must have been equal to 1 within 10−60 (i.e. |1− Ω(tp)| less than 10−60). The condition Ω = 1
is unstable in the sense that a tiny deviation from 1 at any time would lead to a non zero curvature
today. The flatness problem states that such finely tuned initial conditions seem extremely unlikely.

7.1.4 Absence of magnetic monopoles

Grand Unified Theories (GUT), which unify electroweak and strong interactions, predict the existence
of topological defects produced by the symmetry breaking at the phase transition (Higgs mechanism),
such as magnetic monopoles. The fact that they have never been observed suggests that they are very
distant from each others compared to the Hubble radius [64].

7.2 Saving the Big Bang model with cosmic inflation

The horizon and flatness puzzles require very specific initial conditions in the universe. At this point,
either one can consider that those initial conditions are the requirements and do not need to be justified,
or one can try to find a mechanism to explain them. In 1981, Guth and others proposed to add a
phase of cosmic inflation in the early universe, typically around 10−34 s, above GUT scale, after the
Big Bang which precisely leads to the required initial conditions [98]. This model does not replace the
Hot Big Bang model, but rather completes it without disturbing any of its success.

This section is mainly inspired by [145], [62], [99], [100].

7.2.1 Hubble radius

Let us recall that the expansion rate of the universe is given by the Hubble-Lemaître parameterH = ȧ/a
with dimension T−1. Thus, we can define the Hubble time H−1 and the Hubble length cH−1. Note
that with the choice of unit c = 1, the two are equal. The Hubble time is the characteristic timescale
of evolution of the scale factor a. It is also a good estimate of the age of the universe:

Age =

∫ Now

Big Bang
dt =

∫ a=a0=1

a=0

da

aH(a)
∼ H−1

0 . (7.3)

The Hubble length, also called the Hubble radius, defines a sphere around us beyond which objects
recede faster than the speed of light [65]. We can define a comoving Hubble length XH :

H−1 = aXH ⇒ XH =
1

aH
(7.4)

where we set c = 1. This comoving Hubble radius is a very important scale, especially for inflation
considerations.

7.2.2 Definition of inflation

To solve the horizon and flatness problems, we need an inflation phase during which the Hubble rate
increases so the comoving Hubble radius decreases:

d

dt

(
1

aH

)
=

d

dt

(
1

ȧ

)
= − ä

ȧ2
< 0. (7.5)

This condition implies an accelerated expansion

ä > 0. (7.6)

This means that the observable universe becomes smaller during inflation. This condition can also be
written as:

d

dt

(
1

aH

)
= −1

a

(
1 +

Ḣ

H2

)
< 0 (7.7)
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and we usually define ε ≡ −Ḣ/H2 so the condition for a decreasing Hubble radius becomes ε < 1.
Another consequence is that the pressure must be negative. Indeed, if ä > 0, the second Friedmann
equation 3.14 with no cosmological constant implies that:

ρ+ 3p < 0. (7.8)

The energy density ρ is always positive so the pressure p must be negative and the equation of state
parameter w must be lower than −1/3.

How does inflation solve the horizon and flatness problems? The horizon problem is auto-
matically solved by saying that the Hubble radius at the beginning of inflation was bigger than the
Hubble radius today. Thus, the whole observable universe today has already been in causal contact
during inflation. At the end of inflation the Hubble radius was much smaller than today and it slowly
increased during the radiation and matter domination epochs. This is illustrated in a space-time
diagram in Figure 7.2.

Figure 7.2: Illustration of the horizon problem solved with inflation on a space-time diagram. The two
light cones in gray intersect at an earlier time during inflation so the two points p and q have been in
causal contact. Taken from [62].

Regarding the flatness problem, we can rewrite equation 7.1 dividing by the critical density ρc(t) =
3H2/8πG:

1− Ω(t) =
−k

a2(t)H2(t)
. (7.9)

During inflation, the comoving Hubble radius 1/aH decreases so the right term tends to zero and
hence Ω(t) tends to one. If inflation lasts long enough, the universe can be sufficiently flat at the end
of inflation in order to solve the flatness problem.

How big is inflation? The amount of inflation is characterized by the ratio of the scale factor at
the end of inflation to its value at some initial time ti. Because the increasing is huge, the exponential
is well appropriated. We define the number of e-folds N such that

a(tend) = eN(ti) a(ti) ⇔ N(ti) = ln

(
a(tend)

a(ti)

)
. (7.10)

To solve the horizon and flatness problems, the number of e-folds must be at least 60 [99]. An order
of magnitude for this limit can be derived easily. In order to solve the horizon problem, the increase
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of the Hubble radius during radiation phase needs to be approximately equal to its decrease during
inflation. During radiation era, we have

ρ ∝ a−4 and H2 ∝ ρ ⇒ XH =
1

aH
∝ a. (7.11)

On the contrary, during inflation phase we have

H = cst ⇒ XH ∝ a−1. (7.12)

Thus, the number of e-folds is typically

N(ti) = ln
a(tend)

a(ti)
' ln

a(ttoday)

a(tend)
= ln

T (tend)

T (ttoday)
' ln 1029 ' 66. (7.13)

7.2.3 A scalar field: the inflaton

The unusual property of negative pressure required for inflation can be satisfied by a scalar field
describing scalar particles with spin-0. The scalar field responsible for inflation is called the inflaton
φ. It is described by a Lagrangian with general form [237]:

L =
1

2
(∂µφ∂

µφ)− V (φ) (7.14)

which is the difference between a kinetic term and a potential. The potential usually contains a
mass term 1

2m
2φ2 and possibly others terms. It represents the self-interaction of the field. From the

Lagrangian we can compute the energy momentum tensor Tµν defined as

Tµν =
2√−g

δ(
√−gL)

δgµν
(7.15)

where gµν is the FLRW metric. Thus we derive the energy density and the pressure. For an homoge-
neous scalar field (which does not depend on the position x but can vary in time), we obtain [99]

ρφ =
1

2
φ̇+ V (φ) (7.16)

pφ =
1

2
φ̇− V (φ). (7.17)

The stress-energy tensor of the scalar field is diagonal, there is no term mixing ρφ and pφ, so the
scalar field can be seen as a perfect fluid (see equation 3.6).

We can write the equations of motion of the scalar field. The first Friedmann equation 3.13, without
the cosmological constant and for a zero curvature4, gives the evolution of the universe during inflation:

H2 =
8πG

3

(
1

2
φ̇2 + V (φ)

)
, (7.18)

and the equation of energy conservation 3.15 gives the evolution of the scalar field:

φ̈+ 3Hφ̇ = −dV
dφ

= −V ′(φ). (7.19)

We see that the expansion acts as a friction term proportional to the Hubble constant H.
Let us express ε as a function of φ. We can differentiate the Friedmann equation 7.18 with respect

to time obtaining

2HḢ =
8πG

3
φ̇
(
φ̈+ V ′(φ)

)
, (7.20)

and using the second equation of motion 7.19, we get 2Ḣ = −8πGφ̇2. This allows to write ε as:

ε ≡ − Ḣ

H2
=

3

2

φ̇2

φ̇2 + V (φ)
. (7.21)

4Inflation makes the universe flat. The curvature is assumed to be negligible from the start, if it is not, the beginning
of inflation will render it negligible [99].
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7.2.4 The slow-roll approximation

To get a negative pressure, it is clear from equation 7.17 that the potential energy must dominate the
kinetic energy, i.e. the scalar field must roll slowly. This is the first slow-roll condition:

φ̇2 � V. (7.22)

Inflation will end when this condition is violated. We must also require that inflation lasts long enough
to solve the horizon problem, so we require the acceleration of the field to be small. This is the second
slow-roll condition:

φ̈� 3Hφ̇. (7.23)

Under those two conditions, equations of motion 7.18 and 7.19 become:

H2 =
1

3M2
p

V and 3Hφ̇ = −V ′. (7.24)

where Mp = 1/
√

8πG is the reduced Planck mass. From equation 7.16 we see that the first condition
implies that ρ ' V and V must vary slowly. So, from the equation of motion 7.24 we see that H must
also vary slowly and we can assume it to be constant, at least over a Hubble time. This implies an
exponential expansion:

H ≡ ȧ

a
= cst ⇒ a ∝ eHt. (7.25)

Let us write the two conditions in a different form. We first define a second parameter

η ≡ − φ̈

Hφ̇
. (7.26)

Using the two equations of motion, conditions 7.22 and 7.23lead to

M2
p

3

(
V ′

V

)2

� 1 and M2
p

V ′′

V
� 1. (7.27)

We define the slow-roll parameters

εv ≡
M2
P

2

(
V ′

V

)2

and ηv ≡M2
p

V ′′

V
, (7.28)

which coincide with ε and η in the slow-roll approximation. Thus, the two conditions become:

ε ' εv � 1 and η ' ηv � 1. (7.29)

Thus, any scalar field which satisfies the slow-roll conditions will lead to a phase of inflation. An
example of a slow-roll potential is shown in Figure 7.3. Inflation occurs in the gray zones when the
scalar field φ falls slowly in the potential well. It ends when φ starts to fall too fast. It is clear that a
huge quantity of models is allowed, see for example the paper about inflation from the Particle Data
Group [48].

In the slow-roll regime, the number of e-folds can be written as a function of the potential V . We
have dN = −d ln a = −da/a = −H/dt = −Hdφ/φ̇. This leads to

N =

∫ φend

φstart

V

M2
pV
′dφ where we used

H

φ̇
=

V

M2
pV
′ . (7.30)

7.2.5 How inflation ends?

First of all, it is not the most well understood aspect of inflation. At the end of inflation the universe is
typically, in a very cold and non-thermal state. A period of reheating follows to catch up with the Hot
Big Bang model. During this period, the inflaton decays into the fermionic and bosonic particles that
we know today. Reheating starts with a phase where the scalar field oscillates around the minimum of
the potential. Oscillations can last a considerable time because the particle decay time can be much
larger than the Hubble time (the age of the universe). After the decay, there is a thermalization phase
during which the decay products interact and may decay again into new particles. One can refer to
the review [101] for details.
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Figure 7.3: Illustration of the inflaton φ rolling in a potential V (φ). Inflation occurs in the slow-roll
regime between the two green lines. Taken from [100].

7.3 Primordial perturbations from inflation

As we have seen in the previous section, adding a cosmic inflation phase at the beginning of the Big
Bang model solves the horizon and flatness problems in an elegant manner. Moreover, it was rapidly
realized that inflation also offers a mechanism to generate the fluctuations in the primordial plasma
required for the formation of large-scale structure.

7.3.1 From microscopic physics to macroscopic observables

Quantum fluctuations generate small spatial perturbations of the scalar field

φ(t,x) = φ(t) + δφ(t,x), (7.31)

that can also be described in Fourier space by

δφk =

∫
d3xδφ(t,x) eik·x . (7.32)

We can have scalar, vector or tensor perturbations depending on the behavior of δφk under a rotation
around a single Fourier wavevector k by an angle ψ:

δφk → eimψ δφk with m =





0 scalar
±1 vector
±2 tensor

(7.33)

We can treat the three types of perturbations separately because they independently evolve during
inflation. Actually, the vector perturbations decay with the expansion so we can neglect them and we
will only consider scalar and tensor perturbations.

The inflaton is connected with the metric by the Einstein equation. This is why the fluctuations
of the inflaton generate perturbations of the metric. Scalar and tensor perturbations respectively
correspond to density perturbations and gravitational waves. Both are identified by their comoving
wavenumber k arising from the Fourier decomposition.

Scalar perturbations

We note R the curvature perturbation generated by scalar fluctuations. A powerful tool to statistically
describe the primordial scalar fluctuations is the power spectrum of R,

〈RkRk′〉 = (2π)3δ(k − k′)PR(k). (7.34)
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In order to get read of the volume dependence of PR(k), we define the scalar power spectrum as

∆2
s ≡ ∆2

R =
k3

2π2
PR(k). (7.35)

The power spectrum is often approximated by a power law with amplitude As,

∆2
s(k) = As(k?)

(
k

k?

)ns(k?)−1

(7.36)

where k? is an arbitrary reference scale, called the pivot scale. Thus, the scale dependence of the power
spectrum is given by the scalar spectral index:

ns − 1 ≡ d ln ∆2
s

d ln k
. (7.37)

Tensor perturbations

Regarding gravitational waves, the power spectrum for the two polarization modes h ≡ h+, h× is

〈hkhk′〉 = (2π)3δ(k − k′)Ph(k) and ∆2
h =

k3

2π2
Ph(k). (7.38)

The power spectrum for tensor perturbations is the sum of the power spectra of the two polarization
modes:

∆2
t ≡ 2∆2

h (7.39)

and it is approximated by a power law

∆2
t (k) = At(k?)

(
k

k?

)nt(k?)

. (7.40)

This time, the scale dependence is given by the tensor spectral index

nt ≡
d ln ∆2

t

d ln k
. (7.41)

Basically, inflation relates microscopic physics and macroscopic observables. A microscopic pertur-
bation with a comoving wavenumber k, will reach cosmic scales during inflation. At the same time, the
Hubble radius decreases, so when k = aH, the perturbation exits the horizon. Later, in the radiation
or matter dominated epoch, the Hubble radius increases so the same perturbation can re-enter the
horizon. This is precisely the solution to the horizon problem.

After a mode exists the horizon, it is frozen so it can be described by the power spectrum evaluated
at horizon crossing. After a quantization of the perturbations, one can find

∆2
s(k) =

1

8π2

H2

M2
p

1

ε

∣∣∣∣
k=aH

and ∆2
t (k) =

2

π2

H2

M2
p

∣∣∣∣
k=aH

. (7.42)

The relative amplitude between the scalar and tensor perturbations is given by the tensor-to-scalar
ratio r

r ≡ ∆2
t

∆2
s

= 16ε? (7.43)

where ε? is evaluated at the time where the fluctuation exits the horizon.

Slow-roll regime

In the slow-roll regime, the power spectra defined in equation 7.42 become

∆2
s(k) ' 1

24π2

V

M4
p

1

εv

∣∣∣∣
k=aH

and ∆2
t (k) ' 2

3π2

V

M4
p

∣∣∣∣
k=aH

. (7.44)

From those expressions and using definitions 7.37, 7.41 and 7.43, the three observables can be expressed
as functions of the slow-roll parameters εv and ηv:

ns − 1 = 2ηv − 6εv, nt = −2εv, r = 16εv = −8nt. (7.45)
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7.3.2 Connection with CMB observations

Inflation offers a mechanism to produce density perturbations and gravitational waves in the primordial
plasma which are precisely the sources for temperature and polarization anisotropies in the CMB (see
chapter 4). But how can we relate the primordial power spectrum P (k) to the CMB anisotropies?

Let us first focus on the scalar perturbations. We want to connect the primordial scalar power
spectrum PR(k) to the observed temperature angular power spectrum CTT` . Of course, from inflation,
the primordial perturbations have evolved through different physical processes. This can be modeled by
a transfer function ∆r, which may be complicated, but which can be computed numerically assuming
a cosmological model, for example with CAMB. Let us write R′ = R∆r the perturbations at the time
where we measure the CMB.

Firstly, as we have seen, it is natural to decompose the temperature anisotropies on the spherical
harmonics to get the a`m (analogue to a 2D-Fourier transform on a sphere). Then, the angular power
spectrum is the variance of the a`m defined in equation 4.36.

Secondly, Rk is the Fourier transform of R in the Cartesian space (x, y, z) and the power spectrum
is the variance of Rk. Therefore, it seems to be possible to relate PR(k) with CTT` knowing the transfer
function and the geometry transform from `-space to k-space. Indeed it is possible to show that [109]:

a`m = 4π(−i)`
∫

d3k

(2π)3
∆T`(k)RkY`m(k̂) (7.46)

where ∆T`(k) is the transfer function which contains physical processes and geometric projection
factors. The geometric mapping between k-space and `-space is done with a combination of Bessel
functions. We can now substitute this expression in the angular power spectrum. Using the identity

∑̀

m=−`
Y`m(k̂)Y`m(k̂′) =

2`+ 1

4π
P`(k̂ · k̂′) (7.47)

where P` is a Legendre Polynomial and knowing that P`(1) = 1, we obtain

CTT` =
1

2`+ 1

∑̀

m=−`
〈a∗`ma`m〉 =

2

π

∫
k2dkPR(k)∆T`(k)∆T`(k). (7.48)

The conversion between P (k) and C` is summarized in Figure 7.4.

Figure 7.4: Summary of the conversion between the primordial power spectrum P (k) and the CMB
angular power spectrum C`.

More generally, we have

CXY` =
2

π

∫
k2dkP (k)∆X`(k)∆Y `(k) (7.49)

where X, Y refer to temperature T and E, B polarization modes. For TT,EE and TE power spectra,
we have P (k) = PR(k) while for BB, we have P (k) = Ph(k). Thus, the CMB angular power spectra
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provide a fascinating probe for the scalar and tensor primordial power spectra. To obtain it, one needs
to deconvolve the C` with the appropriate transfer function assuming a cosmological model5. Note
that, in a very similar manner, the primordial power spectrum can be measured from the distribution
of galaxies [66].

Instead of the power spectrum, we could have worked with the 2-point correlation function in
the real space ξ(r) = 〈δ(x)δ(x + r)〉 where δ is a perturbation of an arbitrary field. This would
be equivalent because the 2-point correlation function is the inverse Fourier transform of the power
spectrum. The Fourier transform δ(k) of the perturbation is defined as

δ(k) =

∫
δ(r) eik·r d3r and δ(r) =

1

(2π)3

∫
δ(k) e−ik·r d3k (7.50)

and the power spectrum as 〈δ∗(k)δ(k)〉 = (2π)3P (k)δ(k − k′). Therefore, for a real field, we obtain

ξ(r) = 〈δ∗(x)δ(x+ r)〉 =
1

(2π)3

∫
P (k) e−ik·r d3k. (7.51)

The primordial power spectrum inferred from various cosmological probes, CMB and Large Scale
Structure is shown in Figure 7.5.

Figure 7.5: Primordial power spectrum P (k) inferred from various cosmological probes, CMB and
Large Scale Structure. Taken from [160].

7.4 Experimental evidences for inflation

Inflation was designed to solve the horizon and flatness problems so it would be strange to consider
those facts as evidences for inflation. Primordial fluctuations, tensor and scalar can already be seen as
a consequence of inflation. However, inflation has others consequences which have been or which are
currently being experimentally investigated [97].

7.4.1 Scale invariance

In cosmology, the primordial power spectrum is considered scale-invariant if it is flat, i.e. when the
scalar index ns is one. The physics is generally not scale-invariant, see the discussion by Feynman
in [238] (Chapter 52 related to symmetries). However, scale invariance occurs in some cases, for example
in electromagnetism, Maxwell equations with no sources (no charge and no current) are invariant under
a space dilatation. Similarly, the field equation of general relativity, without cosmological constant, is

5Usually done all at once fitting transfer function and primordial cosmological parameters.
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scale invariant for empty space. Actually, since there is nothing to define a scale in an empty space,
this seems quite obvious [102]. Another scale invariant is a massless scalar field. Indeed, the mass term
in the Lagrangian breaks the invariance under a dilatation transformation [237].

Regarding inflation, in the slow-roll regime, we have seen in equation 7.45 that ns − 1 = 2ηv − 6εv
with εv, ηv � 1 so ns ' 1 which leads to a nearly scale-invariant power spectrum. From the definition
of the slow-roll parameters 7.28, we see that the slow-roll approximation restricts the form of the
potential. The first and second derivatives, V ′ and V ′′ must be small compared to the potential V
itself. However, in order inflation to end, we must require ns slightly different from 1.

How does scale invariance translate in the angular power spectrum? In the Sachs-Wolfe regime,
modes were still outside the horizon at recombination so they are not affected by the physical processes
occurring in the primordial plasma. Therefore, the transfer function is only the geometric projection
from k-space to `-space, i.e. a Bessel function. For a scale-invariant input spectrum (ns = 1), one can
show that the quantity

DTT
` =

`(`+ 1)

2π
CTT` (7.52)

is independent on ` [100]. Hence, the Sachs-Wolfe plateau at large scales reflects the prediction of a
scale invariant spectrum. This prediction is a major success for inflation.

Detecting deviations from scale invariance The variation of the spectral index with scale, also
called the running of the spectral index is defined as:

αs ≡
dns
d ln k

, ∆2
s(k) = As(k?)

(
k

k?

)ns(k?)−1+ 1
2
αs(k?) ln(k/k?)

. (7.53)

αs is expected to be small, so a detection of a large variation would imply to reconsider the simplest
models for inflation. The Planck 2020 limit is αs = 0.013± 0.012 [103].

Measuring the scale dependence of tensor fluctuations is quite optimistic from the observational
point of view, but from relations 7.45 we see that the slow-roll regime implies

r = −8nt. (7.54)

The verification of this relation would be a strong argument for slow-roll inflation models and basically
an amazing consistency test for inflation!

7.4.2 Tensor modes

The detection of B-modes and the measurement of the CBB` primordial angular power spectrum would
be a direct measurement of primordial gravitational waves which are hard to produce without a period
of inflation.

Moreover, the energy scale of inflation is directly linked to the tensor amplitude so that such a
measurement would constraint inflation models very strictly. It is possible to show that [100]

At =
2

π2

H2
?

M2
p

(7.55)

which shows that At is a direct measurement of the expansion rate during inflation. One can also
derive the following relation with the tensor-to-scalar ratio r

V 1/4 ∼
( r

0.01

)1/4
1016 GeV. (7.56)

Thus r is a direct measurement of the energy scale during inflation.
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7.4.3 Coherence

In section 4.1.5, we claimed that the acoustic peaks in the CMB angular power spectrum originate from
stationary waves in the primordial plasma, such as harmonics produced by a guitar string tied down
at its ends. However, there are no tied conditions in the primordial universe. So how are frequencies
selected? To get a series of peaks in the CMB power spectrum, all Fourier modes of a given wavelength
must have the same phase in order to interfere coherently. If not, the CMB power spectrum would
simply be white noise so it would be flat [100].

Inflation precisely proposes a mechanism to coordinate the phases of all Fourier modes. During
inflation, the perturbations oscillate quantum mechanically. When the wavelength of a mode becomes
greater than the Hubble radius, the mode leaves horizon and its amplitude is frozen. This happens
before inflation ends. The mode only re-enters horizon much later, typically 100 000 years after. After
re-entry, its amplitude starts to oscillate again, under the competing influences of pressure and gravity.
The crucial point is that all perturbations associated with this mode oscillate now in phase. If we
think of each Fourier mode as a linear combination of a sine and a cosine modes, inflation excites only
the cosine modes [104]. As an analogy, one can think of a collection of pendulums that oscillate with
random phases and amplitudes. Now, imagine that all pendulums are frozen at the same time and
that they are released at a posterior time without initial speed. In this case, they will all oscillate with
different amplitudes but in phase, driven by a cosine mode.

One could argue that it is possible to find a mechanism to coordinate the phases in the primordial
plasma but the TE angular power spectrum has a feature that almost kills this argument. It has a
negative peak around 100 < ` < 200 which implies a clear anti-correlated signal at scales that were
still outside the horizon at recombination. Therefore, any model that generates perturbations in the
primordial plasma inside the horizon can not explain the negative peak in the CTE` power spectrum
on those scales. On the contrary, inflation gives a natural explanation by synchronizing the phases, as
described just before [109].

7.4.4 Gaussian

Simple models of inflation predict that the scalar perturbations should be Gaussian to a very high
degree. In this case, the primordial power spectrum PR(k), or equivalently, as seen in section 7.3.2, the
2-point correlation function, contains all the statistical information. Non-Gaussianities are a measure
of interactions of the inflaton field. However, in the slow-roll regime, the potential is very flat so
inflaton has to be very weakly interacting. Therefore, a detection of a non Gaussian contribution
to the correlations of cosmological fluctuations would be very interesting. In this case, the 2-point
correlation function would not be sufficient to entirely describe the statistic of the perturbations. To
detect non-Gaussianities, one has to compute the bispectrum which is defined as the 3-point correlation
function in real space.

7.4.5 Adiabatic

Single field inflation models generate purely adiabatic primordial density perturbations described by a
single curvature perturbation R [67]. This means that all perturbations (baryon, dark matter, radia-
tion) originate from R and that the ratio between non-relativistic and relativistic species is constant6:
δ(nNR/nR) = 0. For example, an over-density in terms of photons by a factor two also corresponds to
an over density in terms of electrons in the same proportion.

Non adiababicity would generate isocurvature perturbations detectable in the shape of the angular
power spectrum and would be a clear signature for multifield models or for a cosmology without
inflation.

7.4.6 Discussion

In summary, inflation is a powerful model to solve the horizon and flatness problems and its predictions
are so far well verified. This may be why it is the favorite model in the cosmology community today.

6The definition of adiabaticity in cosmology is not the one commonly used in thermodynamics.
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Personally, I find the argument of phase coherence described in section 7.4.3 very convincing.
However, one could argue that inflation actually replaces some questions by others. Classical

problems raised by inflation are for example discussed in [105]. The authors present three main
problems for inflation:

• Fine-tuning problem: to get the observed amplitude of the primordial density fluctuations
(δρ/ρ ∼ 10−5), the inflation potential must be fine tuned by orders of magnitude.

• Initial condition problem: the probability to have a region with the right initial conditions to
have a number of inflation e-folds at least equal to 60 is exponentially small.

• Multiverse or measure problem: large quantum fluctuations of the inflaton field should prevent
inflation for end, yielding to eternal inflation.

Therefore I think it is important to keep in mind those questions in order not to “believe in inflation”
as the theory that solves all cosmological questions. Interesting alternatives have been studied, see for
example [106].

7.5 New surprise, the expansion is accelerating

As we already said, after the discovery of the expansion of the universe, the cosmological constant was
abandoned. The main goal was to measure the expansion rate, i.e. the Hubble constant H0. At the
end of the 1980’, physicists were quite confident on the fact that expansion should decelerate because
of gravitational attraction between galaxies. To quantify the deceleration rate, the measurement of
matter density was required. At the beginning of 1990’, different measurements lead to the conclusion
that Ω0

m ∼ 0.3 [68], [69]. This was not compatible with a flat universe without cosmological constant
in which, the matter density must be equal to the critical density so Ω0

m = 1. The reintroduction
of the cosmological constant starts to be considered. One can have a look to this amazing paper by
Efstathiou et al. [70].

In 1998, two different teams were aiming at measuring the decelerating parameter using type-Ia
supernova in order to characterize the expansion. The result was very surprising, the expansion is not
decelerating but is accelerating [71], [72]! In FLRW, this can only come from the cosmological constant
so Λ was definitely reintroduced (at least until today). As Λ can be associated with an energy density,
it is also called the dark energy component. By combining data from type-Ia supernova and from the
CMB, they obtained Ω0

Λ ' 0.7. Thus, in order to compensate the gravitational attraction, dark energy
must fill the universe at 70%! A pedagogical presentation of the cosmological constant measurement
with supernovae can be found in [73].

Since 1998, many others observations, CMB lensing, Integrated Sach Wolfe effect, Baryon Acoustic
Oscillations (BAO), conclude in an accelerated expansion, without relying on type-Ia supernova. More
details about the historical context and the observational evidence of the accelerated expansion can be
found in [74].

7.6 Constraints on the cosmological parameters

At this point, we have introduced all the cosmological parameters considered in the ΛCDM model. Let
us review them and discuss their measured values.

7.6.1 The success of the ΛCDM model

The ΛCDM model is able to predict a wide range of observations with only six independent parameters,
in this sens it is a very successful phenomenological model. Its weakness is however to rely on mysterious
ingredients: dark matter and dark energy which are so far unexplained by the standard model of particle
physics7. By convention, the Hubble constant today is written as H0 = 100h km s−1 Mpc−1 with h

7not quite true, for Dark Matter, the Suzy neutralino is perfect but does not seem to exist... [75]
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Parameter Planck alone Planck + BAO
Ωbh

2 . . . . . . . . . . . . 0.02237± 0.00015 0.02242± 0.00014
Ωch

2 . . . . . . . . . . . . 0.1200± 0.0012 0.11933± 0.00091
100θMC . . . . . . . . . 1.04092± 0.00031 1.04101± 0.00029
τ . . . . . . . . . . . . . . . 0.0544± 0.0073 0.0561± 0.0071
ln(1010As) . . . . . . 3.044± 0.014 3.047± 0.014
ns . . . . . . . . . . . . . . 0.9649± 0.0042 0.9665± 0.0038

Table 7.1: ΛCDM parameters that best fit to data from Planck (temperature and polarization), with
and without BAO data, taken from [160]. θMC is an approximation of θa used in the code CosmoMC
(see [76]).

the dimensionless Hubble constant. The six parameters are, for some of them, a combination with h.
They are:

• Ωbh
2 the density of baryons,

• Ωch
2 the density of Cold Dark Matter (CDM),

• θa(z∗) the angular acoustic scale at recombination defined in section 4.1.1,

• τ the optical depth to Thomson scattering from reionization defined in section 4.1.3,

• As the amplitude and

• ns the spectral index of the scalar primordial power-law spectrum introduced in section 7.3.1.

A major result of the Plank mission [76] is to have obtained sub-percent precision on the ΛCDM
parameters (except for the optical depth). This is shown in Table 7.1. In the fit, they assume that
the radiation is made of photons (a black-body with T = 2.7260 K [112]) and neutrinos. As explained
in [109], the energy density of neutrinos in the universe is given by

ρν = Neff
7

8

(
4

11

)4/3

ργ (7.57)

with the so-called effective number of neutrinos Neff = 3.046, as derived in [77]. They also assume
that neutrinos have very low mass, mν = 0.06 eV which corresponds to the minimum mass given by
experiments on neutrino oscillations [78], [79].

In order to describe the content of the universe, it is useful to consider additional parameters which
can be derived from the previous ones. Here are four examples:

The Hubble constant H0: The Hubble constant, is a key parameter for the standard model of
cosmology. The last result derived from Planck is found to be

H0 = 67.66± 0.42 km s−1 Mpc−1 (68%CL). (7.58)

Let us also give the recent SPT-3G result [186]: H0 = 68.8±1.5 km s−1 Mpc−1. The value of H0 is very
debated today because an other type of measurements, based on the evaluation on type-IA supernova
distances, finds a different result. The most recent result using cepheids in order to calibrate type-IA
supernova distances with GAIA and Hubble Space Telescope data isH0 = 73.2±1.3 km s−1 Mpc−1 [80].
This results in a tension of about 4σ with the Planck value. In case it is not due to systematic errors,
it could be a sign for a failure of the ΛCDM model. For a recent and complete review of the topic, one
can refer to [81].

Matter density Ωm: Using the Planck measurement, associated with BAO, the matter density
Ωm = Ωb + Ωc is found to be [160]:

Ωm = 0.3111± 0.0056 (68%CL). (7.59)
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Cosmological constant ΩΛ: The radiation density is given by the Stefan-Boltzmann law (ργ ∝ T 4).
Since, today, the black-body temperature of CMB photons is very low, the contribution of radiation
in the total density is negligible, we have Ωγ ' 5.38×10−5 (see the CMB chapter in [48]). In addition,
the curvature today is very small (Ωk � 1). Thus, the cosmological constant is given by ΩΛ = 1−Ωm.
The Planck measurement, associated with BAO [160] is

ΩΛ = 0.6889± 0.0056 (68%CL). (7.60)

Matter power spectrum amplitude: The amplitude of the primordial power spectrum is charac-
terized by As. However, for large scale structure studies, it is common to use σ8 which is the RMS
fluctuation in total matter mass density in 8h−1 Mpc spheres at z = 0. It is related to the matter
power spectrum Pm in linear theory by

σ2
R =

∫
dk

k
Pm(k)

(
3j1(kR)

kR

)2

, (7.61)

where R = 8h−1 Mpc and j1 is the spherical Bessel function of order 1 [76]. It is found to be

σ8 = 0.8102± 0.0060 (68%CL). (7.62)

7.6.2 From CMB observation to cosmological parameters

We will give some clues about how the CMB angular power spectrum evolves depending on the cos-
mological parameter values. Parameters are partially degenerated, meaning that the effect of varying
one can be reproduced by varying others in a specific way. Those degeneracies can be broken by using
large scale structure probes. The following description is mainly based on [109].

Shift of the peaks: Ωk and ΩΛ

Those two quantities are late time geometrical effects that change the way we see the acoustic scale
on the sky. As shown on Figure 7.6 (left), an object of a given size is not seen under the same angle
for a flat, closed or open universe. A fixed physical scale gets projected on smaller angle in case of a
negative curvature and larger for a positive curvature. Considering this effect for the acoustic peaks,
they will be shift to lower or higher multipoles `. This is illustrated on Figure 7.6 (right).

Figure 7.6: Left: Sketch showing the apparent angle subtending an object of a given transverse size
in a flat, closed and open universe (taken from [82]). Right: Effect on the temperature angular power
spectrum when varying the curvature (taken from [109]).

Similarly to Ωk, the cosmological constant changes the angular diameter distance to the last scat-
tering surface Da(z∗). Its effect on the power spectrum is to shift the peaks too. Varying ΩΛ, while
knowing Ωmh

2 via direct fit on the power spectrum (see Table 7.1), is equivalent to varying H0 (see
the first Friedmann equation 3.27).
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In the Planck analysis, the peak positions are used to determine the acoustic scale θa at recom-
bination, assuming a flat universe. It is the best constrained parameter because the positions of the
peaks are precisely known and the measurement obtained from temperature and polarization power
spectra separately are highly consistent [160].

Change in the peak amplitudes: As, ns and τ

From equations 7.36 and 7.49, the effect on the C` of changing the primordial power spectrum P (k)
is quite easy to see. If the amplitude As is multiplied by a factor, the C` are multiplied by the same
factor. Regarding the spectral index, if ns varies by a small amount (ns + α), the small-scales C`
change by a factor (`/`?)

α where `? is the multipole associated with the pivot scale [109].
Unfortunately, this effect is degenerated with that of optical depth due to reionization. As we

have seen in section 4.1.3, reionization leads to an attenuation of the small scale anisotropies, the ones
within the horizon at reionization (` & 100). This is why the effect of increasing τ can be equivalent
to a change of As and ns. This is shown in Figure 7.7 (left).

This degeneracy can be broken with polarization measurements because the optical depth can also
be constrained with the reionization bump at large scale in the polarization power spectrum, described
in section 4.2.6. This is shown in Figure 7.7 (right) for the EE spectrum. Note that detecting the

Figure 7.7: Left: Effect of the reionization optical depth on the temperature angular power spectrum,
degenerated with As as shown in red. Right: Effect on the EE polarization power spectrum, causing
a bump at low `. Taken from [148].

reionization bump requires full sky observation in order to have access to large angular scales (θ ∼ 7◦).

Richer variations: Ωbh
2 and Ωch

2

The variation of these two densities are considered keeping an Euclidean space by compensating the
change of the matter density through the cosmological constant. We first consider the variation of the
baryon density Ωbh

2, shown in Figure 7.8 (left). The most visible effect is the increase of the ratio
between odd and even peak heights when Ωbh

2 is large. A second effect is that when Ωbh
2 is large,

the diffusion length λD, defined in equation 4.16, decreases (or kD increases) and this moves damping
to smaller angular scales. Finally, changing the CDM density Ωch

2 has a similar effect as changing
the baryon density. It is shown in Figure 7.8 (right) where the Planck results with error bars (blue
points) are also added. The rich variation induced by Ωbh

2 and Ωch
2 allows to constraint these two

parameters with a high significance.

BB angular power spectrum

Following equations 7.43 and 7.49, we see that the primordial angular BB power spectrum is directly
proportional to the tensor-to-scalar ratio r (for As fixed). This is shown in Figure 7.9 where the total
BB spectrum (lensing and primordial) is represented for different values of r. The line for r = 0
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Figure 7.8: Left: Effect of varying the baryon density Ωb on the TT power spectrum. Right: Effect of
varying the CDM density Ωc. The Planck result is represented in blue for illustration purpose. Taken
from [109].

corresponds to the lensing signal only. It is clear that the primordial signal is accessible at large scales
(low `) and this is even more true when r decreases. Lensing B-modes have first been detected by
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Figure 7.9: Total BB power spectrum (primordial + lensing) for r between 0 and 0.1. The case where
r = 0 shows the lensing B-mode signal. The bump at low ` from reionization in clearly visible (plot
done with CAMB).

the South Pole Telescope [187] in 2013. Since then, many experiments have measured it, as shown
in Figure 4.14. However, primordial B-modes have not been detected yet. In 2018, BICEP2/Keck
experiment set an upper limit at r0.05 < 0.07 at 95% confidence, including the data up to 2015 [149]
where the index on r is the pivot scale k? = 0.05 Mpc−1 considered in the analysis. Very recently, they
published a new limit, including the 2018 observing season: r0.05 < 0.036 at 95% confidence. This is
the current best upper limit [162]. In addition, we can mention an analysis that obtained r0.05 < 0.044
at 95% confidence by combining Planck with BICEP2-Keck 2015 data [150]. The complete results of
Planck to constrain inflation parameters are presented in [103].

Cosmological constraints with the SZ effect

Let us finally mention that the detection of galaxy clusters thanks to the SZ effect allows to constrain
cosmological parameters such as Ωm, σ8, the equation of state of dark energy with w, the sum of the
neutrino masses and H0 [151].
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7.6.3 Others cosmological probes

CMB is a powerful probe for cosmology but it is far from being the only one! Here we give four
examples of observations which are currently used to test the ΛCDM model. The number of probes, so
far in agreement with the ΛCDM model, is actually impressive. So the list is of course not exhaustive.

Baryon Acoustic Oscillation (BAO)

The acoustic oscillations occurring in the primordial plasma are imprinted in the CMB but also in
the matter distribution. The acoustic scale at recombination, around 150 Mpc today, translates in a
preferred scale for distances between galaxies. This leads to the so-called BAO peak in the 2-point
correlation function which is the excess probability of finding one galaxy at a particular distance from
another. The physics of BAO is introduced in a very pedagogical manner in [57] and one can refer to
[83] for precision. The measurement of the BAO peak requires large galaxy surveys such as the Sloan
Digital Sky Surveys (SDSS) [84] or the Dark Energy Spectroscopic Instrument (DESI) [85].

BAO are a major probe for cosmology, especially to constrain the dark energy equation of state.
Indeed, the BAO acoustic peak defines a standard ruler and contrary to the CMB, galaxies can be
observed at different redshifts, so it allows to constrain the dark energy along the time. It is also
amazing to realize that we do find in the galaxy distribution (z ∼ 0.5) the very same acoustic peaks
we see in the CMB at z ' 1100!

Type-Ia supernovae

Distance measurement in cosmology is a tricky point. In section 3.2.1, we already mentioned Cepheid
stars which can be used to measure distances. They are standard candles in the sense that we know
their intrinsic luminosity so we can have their distances. A second type of objects that can be used as
standard candles is type-Ia supernovae. Cepheid stars are visible in our galaxy and nearby ones up to
few Mpc while type-Ia supernovae are visible up to z ∼ 1.

Type-Ia supernovae occur in binary systems where one of the stars is a white dwarf. The white
dwarf accretes mass from its companion until it reaches the critical Chandrasekhar mass [47] (about
1.44 solar masses) and explodes [86]. Thanks to this trigger mass, type-Ia supernovae are expected to
be very similar to each other. They have a characteristic light curve, i.e. evolution of the luminosity
as a function of time. This was first recognized by Phillips in 1993 [87]. The advantage compared to
cepheids is that they give access to higher redshifts thanks to their very bright luminosity. This is
essential for constraining matter density Ωm and the dark energy equation of state w [88]. Knowing that
type-Ia supernovae only occur about one per century per galaxy, large deep field surveys are needed.
For instance, the Vera Rubin Observatory plans to detect around ten thousand type-Ia supernovae
with well measured light curves [89]. As mentioned in section 7.6.1, nearby type-Ia supernovae can
also be used to constrain the Hubble constant [80].

Lyman-α forest

As we have seen in section 4.1.3, light emitted by quasars gives information about the ionization
rate of the intergalactic medium and about the reionization period. This is because photon absorption
requires neutral hydrogen. By observing the emission spectrum of quasars, we see numerous absorption
lines called the Lyman-α forest. This is due to the expansion of the universe: photons emitted with
wavelength λe get redshifted to λe(1 + z) and are absorbed when they reach 121.5 nm. It was first
detected in 1971 [90].

This measurement allows to constrain the matter distribution, especially the baryon density Ωb

and σ8. Note that the BAO peak is also detected in the spatial correlation of the Lyman-α spectra.
For detail, one can refer to the reviews [91], [92].

Gravitational waves

The first direct detection of gravitational waves in 2015 by the LIGO interferometer [93] opened
a new era: multimessenger astronomy and cosmology. Combining electromagnetic observations with
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gravitational waves is clearly a major step for the field. Adding one day the observation of the neutrino
counterpart would be great!

Regarding the ΛCDM model, gravitational waves can also constrain its parameters. In 2017, the
merge of a binary neutron stars was detected, and for the first time with its electromagnetic counterpart
too [94]. This measurement allowed to constrain the Hubble constant toH0 = 69+16

−8 km s−1 Mpc−1 [95].
Of course this is the very beginning and the accumulation of events in the next future will reduce error
bars.

Finally, as discussed earlier, inflation generates gravitational waves in the primordial plasma. This
waves are still present and contribute to the stochastic gravitational wave background that the LISA
space-based interferometer may detect in the future [96].

7.7 Constraining r with QUBIC

We have seen how the CMB can provide fundamental probes on the primordial universe and we have
introduced all the theoretical concepts which drive the QUBIC project. In this section, we will see
how QUBIC should help to constrain cosmic inflation models. Indeed, QUBIC was designed to put
constraints on the tensor-to-scalar ratio r, trying to detect the tiny B-mode polarization signal. This
section presents the forecasts of the experiment that were produced for paper [1] and [9]. This is my
personal work, realized in collaboration, mainly with Martín Gamboa and Jean-Christophe Hamilton.

7.7.1 Description of the simulations

We have performed simulations for a three-year observation of the sky using the QUBIC Full Instrument
(FI) with realistic instrumental noise [7], [8] and with atmospheric background noise, assumed to be
stable. We have used the “Fast Simulator” described in section 6.3.2 to produce thousands of realizations
of the noise in the maps incorporating the peculiar noise structure: spatial variations of the noise as a
function of coverage as well as spatial and sub-band correlations. The parameters of our simulations
are summarized in Table 7.2.

Parameter Value TD Value FI
Detector noise [W/

√
Hz] . . . . . . . . . . . 2.05×10−16 4.7×10−17

Atmosphere1 temperature [K]. . . . . . 270 270
Atmosphere emissivity1 at 150GHz 0.081 0.081

Photon noise [W/
√

Hz] . . . . . . . . . . . . 2.6×10−17 (150 GHz) 3.1×10−17 (150 GHz),
1.17×10−16(220 GHz)

Total noise [W/
√

Hz] . . . . . . . . . . . . . . 2.06×10−16(150 GHz) 5.7×10−17 (150 GHz),
1.26×10−16 (220 GHz)

Cumulated observation time [years] 1 3

r upper-limit (68% C.L., No FG) -
0.021 (150 GHz),
0.023 (220 GHz),
0.015 (Combined)

1The atmosphere is considered perfectly stable.

Table 7.2: Main instrumental and simulation parameters used in our computations. The noise value
for TD is measured from the TES calibration data [8] while that for the FI is the intrinsic TES noise
and assumes reduction of the noise aliasing in the readout chain found in the TD. We have used
average atmospheric parameters at 50 degrees elevation accounting for maximal seasonal and diurnal
variations. This corresponds to negligible change for the total noise for the TD, 5% and 20% for the
FI at 150 and 220 GHz respectively.

For each realization, we have used NaMaster8 [209] to compute pure TT , EE, TE and BB power
spectra on the residual maps (therefore noise-only maps) in order to compute the expected noise on

8https://github.com/LSSTDESC/NaMaster
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the power spectra. Exploring various values for the minimum multipole `min, the size of the multipole
bins ∆` and minimum value of the relative coverage (normalized to 1 at maximum) of the sky that
defines the region of the sky we keep for analysis, Covc, we have found the best configuration to be
`min = 40, ∆` = 30 and Covc = 0.1 (keeping all pixels with relative coverage above 0.1) at 150 GHz.
We have kept the same configuration for the 220 GHz for the sake of simplicity.

Comment about the atmospheric noise model

The atmospheric background noise has been obtained from measurements performed over 3 years at
the QUBIC site in Argentina from a tipper at 210 GHz used for the LLAMA radiotelescope9 to be
installed near QUBIC. Atmospheric background is averaged over the 9 best months of the year and
corresponds to an atmospheric temperature of 270 K and emissivities 0.081 and 0.138 at 150 and
220 GHz respectively for an average observation elevation of 50 degrees.

Changing the atmospheric parameters according to maximal diurnal and seasonal variations induces
15 and 25% change in the photon noise at 150 and 220 GHz respectively (with respect to the numbers
given in Table 7.2). This corresponds to a negligible change of sensitivity for the TD because our noise
is dominated by that of the detectors. For the FI, the change in the total noise is 5% at 150 GHz and
20% at 220 GHz.

7.7.2 QUBIC Full Instrument expected performance

We present the expected sensitivity on the “effective” tensor-to-scalar ratio r of the sky. Forecasts
are made by simulating a sky without any foregrounds. We call it “effective” in the sense that our
simulations are done without any component separation assumption, so, in the presence of foregrounds,
r would include the non primordial B-modes produced by astrophysical foregrounds.

As remarked in section 5.2.7, measuring the RMS of a map in the case of non-white noise is
meaningless, and the actual measurement of the effective depth of our maps is done in `-space. The
resulting uncertainties from the Monte-Carlo on the BB polarization power spectrum (∆D`) are shown
in the left panel of Figure 7.10.

We have also displayed theoretical B-mode power spectra D` (including lensing) for r = 0, 0.01,
and 0.044 (current best upper limit [150]). Besides the QUBIC Monte Carlo error bars, we also plot the
expected shape for white noise (dotted lines) and for the QUBIC noise (dashed lines) from Figure 5.6.
In both cases the theoretical error-bars are obtained through the formula 5.43. In this case, the fraction
of the sky used for analysis is fsky = 0.015, the width of the `-space binning is ∆` = 30. We performed
a fit of the above noise normalization for QUBIC to our Monte-Carlo error-bars leading to 2.7 and
3.7 µK.arcmin at 150 and 220 GHz respectively. This is shown as dashed lines in Figure 7.10. However
these numbers are hardly comparable with the case of a standard imager for which the noise is white:
for each frequency we overplot the expected shape for white noise with the same normalization. The
significant noise reduction with respect to the white noise case is particularly visible at the scales of
the recombination peak near ` = 100, giving QUBIC an enhanced sensitivity at those scales. At scales
larger than the separation between peaks in the synthesized beam however, the error-bars increase
sharply. The first bin at 220 GHz exhibits significantly larger error-bars for all spectra. This is not
surprising as we have kept the same `min = 40 for both channels. In reality, the multiple-peaked shape
of our synthesized beam is such that we have little sensitivity to multipoles corresponding to angular
scales larger than the distance between the peaks (8.8 and 6 degrees at 150 and 220 GHz respectively).
As a result, the optimal `min at 150 GHz is slightly too low for 220 GHz, resulting in larger error-bars
for the first bin. This will be optimized when analyzing real data.

The right panel of Figure 7.10 shows the posterior on the tensor-to-scalar ratio which, in the
absence of foregrounds, was the only free-parameter for this power-spectrum-based likelihood (simple
χ2 accounting for sample variance [211]) with all parameters except r fixed to their fiducial values10.
We calculate the likelihood at 150 and 220 GHz separately as well as jointly. These simulations show

9https://www.llamaobservatory.org/
10We have used a fiducial cosmology with parameters [h = 0.675, Ωbh

2 = 0.022, Ωch
2 = 0.122, Ωk = 0, τ = 0.06,

As = 2e− 9, ns = 0.965].
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Figure 7.10: Left: BB power spectrum error-bars ∆D` on D` = `(` + 1)C`/2π on residual maps
from the Fast-Simulator Monte-Carlo in the absence of foregrounds, atmospheric fluctuations and
instrument systematic effects for an integration time on the sky of three years from the site in San
Antonio de los Cobres, Argentina. As these are calculated on residual maps, they do not incorporate
sample variance and only refer to the instrumental noise. The reduction at low-` of our error-bars with
respect to theoretical white-noise (dotted lines) is clearly visible and in agreement with the expected
shape from the 2pt correlation function in Figure 5.6 (dashed lines). The difference in the first bin is
discussed in the text. Right: Posterior likelihood on the r (assuming no foregrounds) using QUBIC FI
(two bands) with three years integration on the sky (including both noise and sample variance). The
Planck+Bicep/Keck constraint from [150] is shown with the blue arrow.

that QUBIC has the statistical power (without foregrounds, atmospheric fluctuations and systematics)
to constrain the B-modes down to a tensor-to-scalar ratio r < 0.015 at 68% C.L. (r < 0.03 at 95%
C.L.) with three years integration on the sky from our site in Argentina.

In the presence of foregrounds, the numbers above are to be understood as our statistical sensitivity
to effective B-modes including the contribution from primordial tensors as well as dust polarization.
Component separation has not been included in the current forecasts and will be investigated in details
in the next future.

7.7.3 Spectral imaging and constraints on r

We now come back to the spectral imaging technique studied in chapter 6. The division of the wide
band into a number of sub-bands for spectral imaging could have a detrimental effect on the estimate
of the tensor-to-scalar ratio r and this is what we want to quantify in this section. On the one hand,
we would certainly like to make as many sub-bands as possible in order to constrain the foreground
spectra in a very precise manner. However, on the other hand, there is an upper-limit to the achievable
number of sub-bands, when the angular distance between peaks in the synthesized beams at different
frequencies becomes smaller than the peak width (angular resolution), as explained in section 6.1.2.
We therefore expect the performance of spectral imaging to degrade when projecting data onto too
many sub-bands. In fact, even for a small number of sub-bands, spectral imaging cannot be strictly
optimal because the synthesized beams at different sub-frequencies do not form an orthogonal basis.
We therefore expect a certain loss in signal-to-noise ratio when performing spectral imaging. The
higher the number of reconstructed sub-bands is, the more overlap there is between the synthesized
beams at each sub-frequency. This results in stronger degeneracy between sub-bands, hence a higher
noise in the reconstruction. This is the price to pay for improved spectral resolution. As a result,
one needs to find the best balance between performance and spectral resolution for a given scientific
objective.

Thus, we study how the tensor-to-scalar ratio r is constrained as a function of the number of
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Figure 7.11: Uncertainties (68% CL upper limits) on the tensor-to-scalar ratio r obtained by combining
an increasing number of sub-bands, normalized to that of one band, for a pure r = 0 CMB (with
lensing). The slow increase of the uncertainty on r with the number of sub-bands illustrates the
moderate sub-optimality of spectral imaging and shows that we can use up to 5 sub-bands with only
40% degradation at 150 GHz (and only 20% degradation at 220 GHz). It is possible to achieve 8
sub-bands but with more significant degradation.

sub-bands Nrec. The sky model is a pure CMB sky, including lensing but no Galactic foregrounds,
with r = 0. For that purpose, we project simulated data onto an increasing number of sub-bands
Nrec, calculate the corresponding IBCS and in each case we compute a likelihood to estimate the
tensor-to-scalar ratio r combining all sub-bands accounting for their cross-correlations. From this
method, we get the error on r at 68% confidence level for each number of sub-bands. This is presented
in figure 7.11. We normalize by the case of “spectral imaging” with just one band. Error bars are
obtained from Monte-Carlo simulations, varying the data in the likelihood according to their diagonal
uncertainties. As expected, we observe a moderate degradation due to spectral imaging in the sense
that the constraints on r become less stringent when the number of sub-bands is greater than one.
This degradation slowly evolves from 25% to 40% at 150 GHz and from 10% to 20% at 220 GHz when
the number of sub-bands evolves from 2 to 5. The better performance at 220 GHz is not a surprise
as our horns are slightly multimoded at 220 GHz (see [6] for details) resulting in a flatter primary
beam, which, in turn, favours spectral imaging because multiple peaks of the synthesized are higher
in amplitude. It is possible to project onto as many as 8 sub-bands with a corresponding performance
reduction due to the fact that synthesized beam peaks become too close with respect to their width,
as explained in section 6.1.2.

This study demonstrates that, although not strictly optimal from the noise point of view, spectral
imaging performance remains close to optimal for up to 5 bands providing extra spectral resolution.
This can be key for constraining foreground contamination with realistic models for which the spectrum
might not be a simple power law. The appropriate balance between spectral resolution and noise
performance can be adjusted for each specific analysis thanks to the fact that spectral imaging is done
entirely in post-processing.
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7.7.4 Ability to recognize the presence of dust residuals

In this section, we assume that the component separation has already been done and we show that
spectral imaging gives the ability to detect the presence of dust residuals at the tensor-to-scalar ratio
likelihood level. Here, we have considered the FI after 3 years of sky integration in the 220 GHz wide
band split into 2 sub-bands.

Using the library PySM3 [222], we simulate 2 sub-band maps containing dust residuals made with
a fraction fdust of a dust map (d1 PySM model) added to a pure CMB sky with r = 0. From those
2 maps, we compute the 3 BB Inter-Band Cross Spectra (IBCS) at effective frequencies νeff =

√
νiνj

where νi and νj are the central frequencies of the 2 sub-bands. Then, we perform a likelihood to
estimate the tensor-to-scalar ratio r assuming a pure CMB model (no component separation). The
error included in the likelihood estimation is the full multipole-space covariance matrix between the
3 BB IBCS and the bins in ` of the spectra obtained with Monte-Carlo simulations. As the sky also
contains dust residuals, the likelihood is biased leading to a detection of non-zero tensor-modes which
we called rdust. Figure 7.12 shows the detected rdust value as a function of the dust residual fraction.
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Figure 7.12: Detected rdust value as a function of the dust residual fraction fdust. Dots corresponds to
the positions of the maximum of each likelihood and error bars are the sigma at 68%CL.

Instead of having a global estimation of rdust over all IBCSs, we can compute a likelihood for each
IBCS separately. This gives an estimate of rdust for each effective frequency. As the dust emits like a
modified black body spectrum, increasing with frequency, the rdust estimate increases with frequency.
On the contrary, for pure primordial B-modes, the estimated tensor-to-scalar ratio does not depend on
frequency. Measuring the evolution of the estimated rdust as a function of frequency within the band
using spectro-imaging is therefore a powerful tool to estimate our dust contamination independently
of any dust modeling.

In Figure 7.13, we show an example where we are able to distinguish the case of pure primordial
tensor modes with r = 0.05 from a sky with no primordial tensor-modes (r = 0) but 0.7 % dust
residuals. Indeed, in the first case, the measurement of rdust is constant with the frequency while the
presence of dust leads to a slope that is detected at the 2.9σ level. We want to underline here that
the value 0.7 % does not have any particular meaning, it is simply the small fraction of dust residual
that leads to the detection of a spurious r of the order of 0.05. This test shows that QUBIC is able to
detect it in the data thanks to spectral imaging.
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Figure 7.13: Constraints on the tensor-to-scalar ratio r, from a Likelihood analysis, for a sky containing
CMB and dust residuals. We consider the 220 GHz wide band split into two sub-bands. This leads
to three Inter-Band Cross Spectra (IBCS) at effective frequencies νeff =

√
νiνj where νi and νj are the

central frequencies of the two sub-bands. We can distinguish between a pure CMB sky with r = 0.05
and a sky with CMB (r = 0) but having 0.7 % dust residuals. In the first case (red), the measurement
of rdust is constant with the frequency while the presence of dust leads to a slope (blue) which we detect
at the 2.9σ level. In that case, the likelihood estimation was performed on each IBCS separately using
the full multipole-space covariance matrix (in contrast with Figure 7.10 where we have only used the
diagonal in order to remain conservative).
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Conclusion In this chapter I first presented cosmic inflation: description, motivations for it and
experimental evidences. I also made the link between the CMB angular power spectrum that we
observe and the primordial power spectrum from inflation. This allowed me to introduced the tensor-
to-scalar ratio, directly connected to the energy scale of inflation, and which is the quantity that
QUBIC aims at constraining.

In the last section, I presented forecasts on r for the QUBIC instrument. We have shown that
QUBIC has the statistical power (without foregrounds, atmospheric fluctuations and systematic effects)
to constrain the B-modes down to a tensor-to-scalar ratio r < 0.015 at 68% C.L. (r < 0.03 at 95%
C.L.) with three years integration on the sky from our site in Argentina.

We have also quantified the loss of statistical performance for the measurement of the tensor-to-
scalar ratio when increasing the number of sub-bands and have shown it to be moderate up to 5 sub-
bands. In summary, spectral imaging improves spectral resolution within a wide physical band, while
nearly preserving the optimal performance of the analysis. It may therefore become a key technique
for detecting the elusive B-mode polarization of the CMB. In addition we have shown that spectral
imaging provides a way to detect the presence of dust residuals.
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General conclusion

QUBIC is part of the global effort made in the scientific community to detect the B-mode signature
from cosmic inflation imprinted in the CMB polarization. In order to target primordial B-modes,
QUBIC will focus on large angular scales from 0.5◦ to 8◦, roughly corresponding to multipoles from
` ' 40 to 400. The tensor-to-scalar ratio is a direct measurement of the energy scale during inflation.
Measuring it or at least decreasing the current upper limit r < 0.044 [150], would tightly constrain the
inflation models.

The QUBIC collaboration made the choice to build an instrument with a non standard design. The
concept of bolometric interferometry offers new capabilities that need to be explored and understood.
In this manuscript, I report the work I have carried out between September 2018 and August 2021.
Along those three years, we considerably improved our understanding of bolometric interferometry,
both thanks to the calibration measurements and to the development of the full simulation pipeline.
My contributions include calibration data taking and data analysis as well as pure simulations up to
the estimation of cosmological parameters.

Review of the main results

In chapter 1, I presented the working principle of the QUBIC instrument. I introduced the concept of
bolometric interferometry in a pedagogical way, focusing on the optical part. I chose to describe the
instrument as a classical imager having a very specific point spread function caused by the horn-array
placed at the entrance of the telescope. It is also possible to consider QUBIC as an interferometer, in
the same way that any imager is actually an interferometer because each point of the aperture can be
seen as a source re-emitting the radiation, equivalent to the horns. In this way, the formation of an
image on the focal plane can be seen as the result of constructive interference between all re-emitted
radiation.

I ended the first chapter with the optical verification of the mirror alignment for which I was
responsible. This technique developed on the TD instrument will be soon re-used for the upgrade.
The FI has much more reflective mirrors in the visible light domain than the TD which will make the
optical alignment more accurate.

An important part of my thesis is dedicated to calibration data taking and data analysis, and this is
presented in chapter 2. This must be seen as a first step toward a full self-calibration of the instrument.

I first updated the formalism developed by Marie-Anne Bigot-Sazy to the current instrument design.
This led me to justify the choice of the polarimeter design made to limit the cross-polarization and the
leakage from intensity to polarization.

Regarding the calibration in the laboratory, I worked on two main measurements: the synthesized
beams of each detector by scanning a calibration point source and the interference fringes on the focal
plane observed by closing at maximum two horns simultaneously. In both cases, I developed optical
simulations in order to compare with real data. Thanks to those simulations, I was able to identify
with an absolute numbering the peaks of the synthesized beam of each detector. This is a major step
for the map-making of real data which requires an accurate knowledge of the synthesized beam peak
positions. Regarding the fringes, I developed a complete procedure for data taking and data analysis.
The observation of interference fringes is crucial for self-calibration which relies on the comparison of
equivalent baselines. Thanks to an optical model, I was able to develop a fit of the fringe images that
computes analytically the inter-calibrations of the detector gains.
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General conclusion

The heart of my thesis work was to characterize the technique of spectral imaging offered by
bolometric interferometry. This work was realized in close collaboration with Martín Gamboa but I
led most of the developments. Spectral imaging makes possible to split, in post processing, the wide-
band observations into multiple sub-bands achieving spectral resolution. I have studied carefully the
characteristics of the noise, especially the spatial correlations in the maps and the correlation between
sub-bands. We have also introduced the concept of Frequency Point Spread Function (FPSF) in the
particular context of bolometric interferometry. I have quantified the loss of statistical performance for
the measurement of the tensor-to-scalar ratio when increasing the number of sub-bands and have shown
it to be moderate up to 5 sub-bands. It may therefore become a key technique to mitigate astrophysical
foreground contamination. Moreover, I have shown that spectral imaging offers the possibility to detect
the presence of dust residuals in the signal.

I have also worked on end-to-end simulations in order to assess the capability that QUBIC has for
constraining r. I have shown that QUBIC has the statistical power (without foregrounds, atmospheric
fluctuations and systematic effects) to constrain the B-modes down to a tensor-to-scalar ratio r < 0.015
at 68% C.L. with three years integration on the sky from our site in Argentina.

Data analysis perspectives

Regarding data analysis and simulations, several points on which I worked during my PhD need to be
pursued. I give some of them in the following.

In order to fully characterize the potential of spectral imaging, the first thing to do is to develop
component separation techniques. Those methods need to be specifically tuned for QUBIC which has
two wide frequency bands centered on 150 and 220 GHz, split in small sub-bands. The main difference
from others experiments, is that the noise is correlated between sub-bands as they are built in post
processing thanks to spectral imaging. The integration of component separation techniques in the
QUBIC pipeline will also help to refine forecasts on the measurement of r.

Still focusing on spectral imaging potential, I plan to run simulations considering a single focal
plane that would integrate the signal from 130 to 250 GHz. This fits in the perspective of upgrading
the instrument. Indeed, simulations suggest that it is possible to replace the two FI focal planes by
a single focal plane, eliminating the need for a dichroic and reducing the overall complexity of the
instrument.

Also, this thesis has highlighted concepts specific to bolometric interferometers that could be studied
in a more detailed way. I am thinking of the FPSF and to the spatial correlations of the noise due to
the multiple peak synthesized beam. In particular, it would be interesting to see how those properties
evolve with the number of reconstructed sub-bands.

Regarding my work on calibration data, we will soon need to apply map-making on real data. The
analysis I did with the synthesized beam maps must be pushed forward. Moreover, this could also
be used to inter-calibrate the detectors which is a major issue for data analysis. This will also be an
important step toward a full self-calibration procedure that needs to be designed. The analysis of the
interference fringes should also be pursued. In particular, it would be very helpful to apply it on a
more complete data set with a large number of baselines.

Finally, I think it would make a lot of sense to include the inter-calibration of the detectors directly
in the map-making algorithm. As they are obtained analytically using linear algebra, it should be
possible to fit everything at the same time.

Concerning data analysis, I would like to end on a general thought. Firstly seen as an interfer-
ometer, QUBIC is now treated like a standard imager. It is convenient to copy the concepts and
data analysis tools developed for imagers: map-making, power spectrum estimation, component sep-
aration. . . Adapting those tools to QUBIC is already a challenge but it is for sure much easier than
developing everything from scratch. However, designing specific tools for bolometric interferometry
will be more efficient. One idea that will be pursued in the collaboration is to develop a component
based map-making. Indeed, all the spectral information is present in the TOD, so we should be able
to use it during the map-making and produce one map for each sky component. At the end, this seems
much more straightforward than what we currently do: spectral map-making in frequency sub-bands
before applying imager component separation techniques, either on the frequency maps or on the power
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spectra. That would fully exploit the capabilities of bolometric interferometry.

Next steps for the QUBIC instrument

The instrument has been sent to Argentina and will be installed on the observation site after a short
calibration campaign in the laboratory which has already started. The first light from the sky is ex-
pected in 2022. We will continue to use the technical demonstrator as a proof of concept. In particular,
testing spectral imaging on bright galactic regions, will be very decisive regarding the potential of this
method. The full self-calibration will also be developed and tested on the TD instrument. The upgrade
to the FI should happen after one year of data taking with the TD. It will mainly consist in increasing
the mirror size, the horn-array size and to complete the focal plane. FI mirrors and horns are already
delivered and the detectors are currently being built.
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Annexes

A.1 Demonstration of the Huygens-Fresnel principle

We will demonstrate the Huygens-Fresnel principle in the case of paraxial optics. We start from
equation 1.11, reproduced below where f0(x, y) is the amplitude of a monochromatic wave in the plane
z = 0, expanded in a Fourier series (see section 1.2.1 for the notations). It can be any type of wave,
not especially a plane wave.

f0(x, y) =

∫ ∞

−∞

∫ ∞

−∞

1

λ2
f̂0

(
α

λ
,
β

λ

)
e

2iπ
λ

(αx+βy) dαdβ (63)

Equation 63 is a continue sum of plane waves. So when it propagates, we have to multiply each plane
wave by a phase shift exp

{
2iπ
λ γz

}
so the amplitude in the plane z is given by

fz(x, y) =

∫ ∞

−∞

∫ ∞

−∞

1

λ2
f̂0

(
α

λ
,
β

λ

)
e

2iπ
λ

(αx+βy+γz) dαdβ. (64)

We consider a small angle between the wave vector and the optical axis z (i.e. θx, θy � 1). Under this
hypothesis, we have α ' θx, β ' θy and γ = 1− α2+β2

2 . So we can write

fz(x, y) = e
2iπz
λ

∫ ∞

−∞

∫ ∞

−∞

1

λ2
f̂0(u, v) e−iπλz(u

2+v2) e2iπ(ux+vy) dαdβ (65)

with the substitution α = λu, β = λv. This is the expression of an inverse Fourier transform:

fz(x, y) = e
2iπz
λ F−1

[
f̂0(u, v)ĝ(u, v)

]
(66)

where we defined ĝ(u, v) = e−iπλz(u
2+v2). Finally, we see that this can be written using a convolution

product:
fz(x, y) = e

2iπz
λ f0(x, y)⊗ g(x, y) (67)

with g(x, y) = F−1[ĝ(u, v)]. This calculation can be done using the theorem of the residus and it gives

g(x, y) =
1

iλz
e
iπ
λz

(x2+y2) . (68)
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Annexes

A.2 Cosmic variance and some statistics for a normal distribution

We will start with some statistics results and then we will apply it to the case of the cosmic variance.
We consider a random variable x which follows a normal distribution with mean µ and standard
deviation σ. By definition, we have

〈x〉 = µ and Var(x) =
〈
[x− 〈x〉]2

〉
= 〈x2〉 − 〈x〉2 = σ2 (69)

where Var() stands for the variance.
The cosmic variance is the variance of the power spectrum C` which is itself the variance of the

a`m coefficients that follow a normal distribution. This is why we will give a non biased estimator of
the variance σ2 and we will compute its own variance. But first, let us start with an estimator of the
mean µ.

The sample mean m: Considering N samples xi, the sample mean m is defined as

m =
1

N

N∑

i=1

xi. (70)

It is straightforward to show that the mean of m is µ:

〈m〉 =

〈
1

N

∑

i

xi

〉
=

1

N

∑

i

〈xi〉 =
1

N

∑

i

µ = µ. (71)

So the sample mean m is a non biased estimator of µ.
What is the standard deviation of m? We first recall some properties. For two independent

random variables X and Y , we have Var(X + Y ) = Var(X) + Var(Y ) and for a linear combination,
Var(aX + b) = a2Var(X). So let us compute the variance of m:

Var(m) = Var

(∑

i

xi
N

)
=
∑

i

Var
(xi
N

)
=
∑

i

1

N2
Var(xi) =

∑

i

σ2

N2
=
σ2

N
. (72)

This is a classical result, the standard deviation of the mean of a normal distribution evolves with the
square root of the number of samples:

σ(m) =
√

Var(m) =
σ√
N
. (73)

The sample variance s2: By definition,

s2 = m(x2)−m(x)2 (74)

where m stands for the sample mean defined above. We make the change of variable Xi = xi − µ so
that the variance is unchanged but the mean m(X) is 0. So, the mean of s2 is:

〈s2〉 =
〈
m(X2)−m(X)2

〉
=

〈
1

N
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i

X2
i

〉
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∑

i

σ2 = σ2 (75)

So, the sample variance is a non biased estimator of the variance σ2 of a normal distribution. What is
the standard deviation of s2?

Var(s2) = Var
(
m(X2)−m(X)2

)
(76)

= Var
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=
1

N

[
〈X4〉 − 〈X2〉2

]
(79)
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A.3 Fringe data taking

We will use the Isserlis’s theorem,

〈abcd〉 = 〈ab〉〈cd〉+ 〈ac〉〈bd〉+ 〈ad〉〈bc〉 (80)

where a, b, c, d are Gaussian random variables. Thus,

Var(s2) =
1

N

[
3〈X2〉2 − 〈X2〉2

]
=

2

N
〈X2〉2 =

2

N
σ4 (81)

We can now apply it to the cosmic variance. We have C` = Var(a`m) where the a`m follow a normal
distribution centered on 0. For each `, there are N = 2`+ 1 samples. Thus, we find the formula of the
cosmic variance:

Var(C`) =
2

2`+ 1
C2
` . (82)

Figure 14 is a numerical illustration for µ = 10, σ = 2 and N = 100.

0 5 10 15 20

0

5 · 10−2

0.1

0.15

0.2

x

P
(x
)

N (µ, σ)
µ
µ± σ

9.6 9.8 10 10.2 10.4
0

2

4

6

m

P
(m

)

N
(
µ, σ√

N

)

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
0

0.5

1

1.5

2

s2

P
(s

2
)

N
(
σ2,
√

2
N σ

2
)

Figure 14: Numerical illustration for µ = 10, σ = 2 and N = 100. m and s2 are computed over 10 000
realizations.
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nnexes

Date ELOG Calibration source Cycles TES Baselines

Frequency [GHz] DC offset [V] Echosorb # of cycles Stable time [ms] Vbias [V] I (FLL)

2019-05 245 150 4 10, 20 1000, 3000 9 200 12-39, 13-40, 13-22, 13-34

2019-05-24 258 150 2.5 1000 9 200 13-40

2019-05-25 260 150 DC off 20, 1000 9 200 13-40

2019-06-04 277 150 5 20 5 300 14-40, 14-35

2019-06-14 281 150 2, 4 20, 100 4, 5 200, 300 14-35

2019-06-17 282 150 2, 3, 4, 5 20 5 200 14-35

2019-06-07 285 150 1.5, 4 20 2, 5 300 1-25, 1-17, 25-49, 25, 57

2019-06-12 288 150 2, 3, 4, 5, 6, 7 20 1000 5 300 See caption

2019-06-13 290 150 6 20, 200 1000 5 300 25-57

2019-12-19 350 150 2.5

2020-01-13 373 150 4 NO 100 3000 1.2 150 See caption

2020-06-24 451 150 5, 10 YES 20 1000, 3000 2, 3 49-25, 57-25

2020-06-25 454 150 10 YES 20 1000, 3000 2 49-25, 57-25

2020-07-27 505 150 4 YES 1000 2.5 150 9-49, 49-57

2020-07-28 509 150 3 1000 2.5 200 49-57, 49-53

2020-07-28 510 150 3 1000 2.5 200 49-57, 49-53

2020-10-27 558 150 4 YES 20 5000 5

2020-10-28 559 150 YES, NO 20, 50 5000 3.5, 4

Table 3: List of data taking for fringe measurements during the calibration phase at APC. ELOG is the numerical laboratory notebook entry. Baselines
for 2019-06-12: 25-57, 24-56, 24-40, 57-64, 49-52, 40-64, 20-25, 16-40. Baselines for 2020-01-13: 49-25, 57-25, 52-28, 60-28, 25-28, 25-29, 1-5, 1-4, 1-28,
1-37, 10-28, 10-37, 49-28, 49-21, 57-29, 57-43, 60-63, 60-64, 40-64, 40-63, 39-64, 39-63.
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A.4 Rigorous expression of the focal length

The idea is to determine the focal length of the optical combiner by the displacement of the synthesized
beam from one detector to another. We consider two TES placed in A and B on the focal plane. If
one of the two TES is placed at the center of the focal plane, we have

α ' tanα =
AB

f
(83)

where f is the focal length and α is the angle subtended by the two detectors defined in Figure 1.17. If
we consider a given peak in the synthesized beam, α is the angle between the peak of TES A and the
peak of TES B. Thus, α is easily measurable on the synthesized beam maps by looking at the peak
displacements. Then, from α one can determine the focal length f .

Figure 15: Sketch showing the notations used in the calculation. The optical center O is at the top of
the figure. Line (OF ) is the optical axis and the focal length is f = OF . The x and y axis are on the
focal plane. We consider 2 TES on the focal plane at A and B separated by a distance D. r is the
radial distance of the TES located in A.

However, for two TES arbitrary placed, expression 83 is only an approximation. In the following
we will show that it is still possible to find a rigorous expression of the focal length f as a function of
known quantities: α, the distance D = AB between the two TES, the radial distance r = FA of the
first TES and the angle ϕ which is the angle between

−−→
AB and the x axis. The notations are defined

in Figure 15. This calculation was done in collaboration with Jean Kaplan.
The TES coordinates (xA, yA) and (xB, yB) are assumed to be known. So we have r = FA =√
x2
A + y2

A and
−−→
AB · −→FA = Dr cosϕ = (xB − xA)xA + (yB − yA)yA. (84)

Expression of the α angle

First, we want to evaluate the angle α under which length D between the two TES is seen from the
optical center O. For that purpose, we evaluate

tan2 α =
1

cos2 α
− 1 =

OA2OB2

(
−→
OA · −−→OB)2

− 1. (85)
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We have

−→
OA =




f tanβ

0

−f


 and

−−→
AB =




D cosϕ

D sinϕ

0


 (86)

so we can compute

−→
OA · −−→OB = OA2 +

−→
OA · −−→AB =

f2

cos2 β
+ fD tanβ cosϕ (87)

=
f2

cos2 β

(
1 +

D

f
cosβ sinβ cosϕ

)
(88)

and

OB2 = OA2 +AC2 + 2
−→
OA · −−→AB (89)

=
f2

cos2 β
+D2 + 2fD tanβ cosϕ (90)

=
f2

cos2 β

(
1 +

D2

f2
cos2 β + 2

D

f
cosβ sinβ cosϕ

)
. (91)

After some simplifications, we obtain

tan2 α =
D2 cos2 β

(
1− sin2 β cos2 ϕ

)

f2
(

1 + D
f cosβ sinβ cosϕ

)2 . (92)

β can easily be replaced by r and f variables using

sin2 β =
r2

OA2
=

r2

r2 + f2
and cos2 β =

f2

r2 + f2
. (93)

Writing the problem as a polynomial equation

Let us introduce X = r2 + f2 and k = Dr cosϕ. After some simplifications, expression 92 becomes

tan2 α =
D2X − k2

X2 + k2 + 2kX
. (94)

This can be written as a second order polynomial equation in X:

P(X) = X2 tan2 α+X(2k tan2 α−D2) +
k2

cos2 α
= 0. (95)

P(X) has real roots if

∆ = D4 − 4 tan2 αk
(
k +D2

)
> 0 ⇐⇒ tan2 α <

D

4r cosϕ
(
1 + r

D cosϕ
) . (96)

Calling X+, X− the two roots, their product is

X+ ×X− =
(
1 + tan2 α

)
/ tan2 α (97)

so it is positive. This means that the two roots have the same sign. Their sum is

X+ +X− =
(
D2 − 2k tan2 α

)
/ tan2 α (98)

Thus, both roots are positive if:

X+, X− > 0 ⇐⇒ tan2 α < D/2r cosϕ. (99)

This condition is automatically satisfied when condition 96 is verified.
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Can we choose between the two roots?

A way to select between X+ and X− is to impose that the focal length must be positive, f2 = X−r2 >
0 ⇐⇒ r2 < X. This root selection only works if r2 lies between the roots, i.e. X− < r2 < X+. If this
is the case the polynomial P(X) should be negative when X = r2. Using equation 95, one can obtain

P(r2) < 0 ⇐⇒ tan2 α <
r2D2 − k2

(r2 + k)2 . (100)

The right term is the value of tan2 α when X = r2 given by relation 94. To verify whether condition
100 is satisfied, let us look at the variation of tan2 α with X. Using equation 94, we obtain

d

dX

(
tan2 α

)
=
−XD2 +D2k + 2k2

(X + k)3 . (101)

Therefore tan2 α decreases when X + k > 0 and

X > k + 2
k2

D2
⇐⇒ r2 + f2 > r cosϕ(D + 2r cosϕ). (102)

As f seems to be significantly larger than r and D, tan2 α decreases with X and, as X > r2, tan2 α
obeys condition 100. Thus the root selection by imposing that the focal length must be positive is
valid and X+ is the solution.

Final expression of the focal length

Once we have X+, we actually have the focal length:

f2 = X+ − r2 =
−2k tan2 α+D2 +

√
∆

2 tan2 α
− r2 with k = Dr cosϕ. (103)

As planned at the beginning, the expression we obtained depends on known quantities: α, D, r and ϕ.
Note that all of this requires to know the position of the focus point on the focal plane and the TES
coordinates from that point.

Verification of the expression we derived

The expression we obtained can be verified in simple cases:

• Case ϕ = π/2: k = 0, ∆ = D4 so

X+ = r2 + f2 =
D2

tan2 α
(104)

• Case ϕ = 0: k = Dr so

∆ = D4

(
1− 4 tan2 α(

r2

D2
+
D

r
)

)
(105)

and
X+ = r2 + f2 = −Dr +

1

2 tan2 α
(D2 +

√
∆) (106)

A.5 Spectral imaging paper

Paper concerning spectral imaging published in the context of this thesis is reproduced below.
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Abstract. Bolometric interferometry is a novel technique that has the ability to perform
spectral imaging. A bolometric interferometer observes the sky in a wide frequency band and
can reconstruct sky maps in several sub-bands within the physical band in post-processing of
the data. This provides a powerful spectral method to discriminate between the cosmic mi-
crowave background (CMB) and astrophysical foregrounds. In this paper, the methodology
is illustrated with examples based on the Q & U Bolometric Interferometer for Cosmology
(QUBIC) which is a ground-based instrument designed to measure the B-mode polarization of
the sky at millimeter wavelengths. We consider the specific cases of point source reconstruc-
tion and Galactic dust mapping and we characterize the point spread function as a function
of frequency. We study the noise properties of spectral imaging, especially the correlations
between sub-bands, using end-to-end simulations together with a fast noise simulator. We
conclude showing that spectral imaging performance are nearly optimal up to five sub-bands
in the case of QUBIC.

Keywords: CMBR experiments, CMBR theory, cosmological parameters from CMBR, grav-
itational waves and CMBR polarization
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1 Introduction

This article is the second in a series of eight on the Q & U Bolometric Interferometer for
Cosmology (QUBIC), and it introduces the spectroscopic imaging capability made possible
by bolometric interferometry. QUBIC will observe the sky at millimeter wavelengths, looking
at the cosmic microwave background (CMB).

The CMB, detected by Penzias and Wilson [1], has a thermal distribution with a tem-
perature of 2.7255 ± 0.0006 K [2]. It is a partially polarized photon field released 380,000
years after the Big Bang when neutral hydrogen was formed. The polarization can be fully
described by a scalar and a pseudo-scalar fields: E and B-modes respectively. B-mode polar-
ization anisotropies are generated by primordial gravitational waves occurring at the inflation
era. The indirect detection of these waves would represent a major step towards understand-
ing the inflationary epoch that is believed to have occurred in the early Universe. Tensor
modes in the metric perturbations are a specific prediction of inflation. The measurement
of the corresponding B-mode polarization anisotropies would reveal the inflationary energy
scale, which is directly related to the amplitude of this signal. This amplitude, relative to
the scalar mode, is parametrized by the so called tensor-to-scalar ratio r.

– 1 –
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Currently, there are several instruments aiming at measuring the primordial B modes.
These include SPTPol [3], SPT-3G [4], POLARBEAR [5], ACTpol [6, 7], CLASS [8], and
BICEP2/Keck Array [9]. Some of them are planned to be upgraded: CLASS [10], PO-
LARBEAR 2 + Simons Array [11], AdvACT [12], and BICEP3/BICEP array [13]. Planned
experiments include Simons Observatory [14], PIPER [15], LSPE [16], CMB-S4 [17] and
LiteBIRD [18].

The main foreground contaminant at high frequencies is the polarized thermal emission
from elongated dust grains in the Galaxy [19]. At lower frequencies, emission from syn-
chrotron [20] is expected to be significant, even in a so-called clean CMB field, if r is below
10−2. Current estimates depend strongly on the assumption that synchrotron is well de-
scribed by a simple power law with a steep spectral index (but spectral curvature might well
be there). While free-free is not expected to be a major contaminant due to its vanishingly
small degree of polarization [21], spinning dust, whose impact is addressed by Remazeilles et
al. [22], should not be neglected. Since 2014, large advances in understanding the galactic
foregrounds and developing mitigation techniques have been made but a lot of work remains
to be done in this field and it is a among the main challenges for CMB experiments today.

The control of contamination from foregrounds can only be achieved with a number of
frequencies around the maximum emission of the CMB relying on the fact that the spectral
distribution of the CMB polarization is significantly different from that of the foregrounds
so that low and high frequencies can be used as templates to remove the contamination in
the CMB frequencies.

A bolometric interferometer such as QUBIC acquires data in a focal plane containing
bolometers operating over a single wide frequency band. However, this type of instrument has
the ability to split, in post-processing of the data, the wide band into multiple frequency sub-
bands, achieving spectral resolution. In the following, this technique will be called spectral
imaging. This idea was already mentioned in earlier work by Malu et al. [23]. It is possible
thanks to the very particular instrument beam pattern, given by the geometric distribution
of an array of apertures operating as pupils of the interferometer. The synthesized beam
contains multiple peaks whose angular separation is linearly dependent on the wavelength.

This paper does not attempt to make realistic simulations and forecasts for the QUBIC
project, this is addressed in the companion paper Hamilton et al. [24]. The goal is to demon-
strate spectral imaging technique on simple cases, with very basic foreground models, not
accounting for any systematic effect. The expected spectral imaging performance for a real
instrument will be treated in detail in the near future.

This article is organized as follows. In section 2 we describe the working principle of a
bolometric interferometer taking the example and characteristics of QUBIC. In section 3 we
describe the spectral dependence of the synthesized beam and show under which conditions
the spectral information can be recovered at the map making level. In section 4 we test
spectral imaging on simple cases using the QUBIC data analysis and simulation pipeline.
Finally, in section 5 we present the performance of the spectral reconstruction. We compare
a simulated sky to the reconstructed one using the QUBIC data analysis pipeline. Tests with
a real point source were carried out in the lab and results are presented by Torchinsky et
al. [25].

Detailed information about QUBIC can be found in the companion papers: scientific
overview and expected performance of QUBIC [24], characterization of the technological
demonstrator (TD) [25], transition-edge sensors and readout characterization [26], cryogenic
system performance [27], half-wave plate (HWP) rotator design and performance [28], feed-
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Parameter Full instrument value
Frequency channels 150 GHz & 220 GHz
Frequency range 150 GHz [131–169] GHz
Frequency range 220 GHz [192.5–247.5] GHz
Window Aperture [m] 0.56
Focal plane temp. [mK] 300
Sky Coverage 1.5%
FWHM [degrees] 0.39 (150 GHz), 0.27 (220 GHz)

Table 1. QUBIC main parameters (from Hamilton et al. [24]).

horn-switches system of the TD [29], and optical design and performance [30].

2 Bolometric interferometry as synthesized imaging

A bolometric interferometer is an instrument observing in the millimeter and submillimeter
frequency range based on the Fizeau interferometer [31]. A set of pupils are used at the front
of the instrument to select baselines. The resulting interference pattern is then imaged on
a focal plane populated with an array of bolometers. With the addition of a polarizing grid
and a rotating HWP before the pupil array, the instrument becomes a polarimeter, such as
QUBIC. A schematic of the QUBIC instrument optical chain is shown in figure 1 (left) with
a sectional cut of the cryostat (right). The main parameters are summarized in table 1.

Each pair of pupils, called a baseline, contributes with an interference fringe in the
focal plane. The whole set of pupils produces a complex interference pattern that we call
the synthesized image (or dirty image) of the source. For a multiplying interferometer, the
observables are the visibilities associated with each baseline. In bolometric interferometry,
the observable is the synthesized image, which can be seen as the image of the inverse Fourier
transform of the visibilities.

The left panel of figure 2 shows the array of back-to-back feedhorns of the full instrument
(FI). The feedhorn array is made of 400 pupils arranged on a rectangular grid 22×22 within
a circle. More details on measurements and realistic simulations are presented in Cavaliere et
al. [29] and O’Sullivan et al. [30], especially about cross-polarization. However, in this paper,
we consider an ideal instrument. The beam looking at the sky is called the primary beam,
and secondary beam is the one looking toward the focal plane. In the right panel, we can see
the synthesized image obtained on the focal plane of the FI, composed by 992 bolometers,
when the instrument is looking at a point source located on the optical axis in the far field.

2.1 Synthesized imaging

A bolometer is a total power detector. The signal Sη(r, λ) on a point r = (x, y) of the
focal plane1 is the square modulus of the electric field Eη(t,n, λ) averaged over time t and
integrated over all sky directions n. The signal with polarization η from each direction is re-
emitted by each of the pupils resulting in a path difference in the optical combiner. The signal
on the focal plane depends on the location of each pupil hj , its primary beam Bprim(n, λ), the
focal length of the combiner f , the secondary beam of the pupil on the focal plane Bsec(r, λ),

1r = 0 at the optical center of the focal plane.
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Figure 1. Schematic of the QUBIC instrument and sectional cut of the cryostat showing the same
sub-systems in their real configuration.

and the wavelength λ:

Sη(r, λ) =
∫
Bprim(n, λ)Bsec(r, λ)

〈∣∣∣∣∣∣
∑

j

Eη(t,n, λ)

× exp
[
i2πhj

λ
·
(

r√
f2 + r2 − n

)]∣∣∣∣∣

2〉
dn, (2.1)
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Figure 2. Left: Feedhorn array of the FI made of 400 pupils arranged on a rectangular grid 22× 22
within a circle. The TD horn array is highlighted in green. Right: intensity pattern on the focal plane
of the FI composed by 992 bolometers for an on-axis point source in the far field emitting at 150 GHz
with all horns open. The color scale in intensity is arbitrary.

where r is the norm of r. We use the concept of the point spread function (PSF) of the
synthesized beam,

PSF (n, r, λ) = Bprim(n, λ)Bsec(r, λ)×
∣∣∣∣∣∣
∑

j

exp
[
i2πhj

λ
·
(

r√
f2 + r2 − n

)]∣∣∣∣∣∣

2

, (2.2)

to rewrite equation (2.1) as

Sη(r, λ) =
∫ 〈
|Eη(t,n, λ)|2

〉
× PSF (n, r, λ) dn. (2.3)

The rotating HWP modulates the polarized signal, with a varying angle φ, so we can
write equation (2.3) in terms of the synthesized images of the Stokes parameters:

S(r, λ) = SI(r, λ) + cos(4φ)SQ(r, λ) + sin(4φ)SU (r, λ) (2.4)

where the synthesized images are the convolution of the sky through the synthesized beam:

SX(r, λ) =
∫
X(n, λ)× PSF (n, r, λ) dn, (2.5)

X standing for the Stokes parameters I, Q or U. The signal received in the detectors with
a bolometric interferometer is therefore exactly similar to that of a standard imager: the
sky convolved with a beam. The only difference being that this beam is not that of the
primary aperture system (telescope in the case of an ordinary imager) but is given by the
geometry of the input pupil array and the beam of the pupils (see equation (2.2)). With
such an instrument, one can scan the sky in the usual manner with the synthesized beam,
gathering time-ordered-data (TOD) for each sky direction (and orientation of the instrument)
and reproject this data onto a map at the data analysis stage (see section 2.4).
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2.2 Realistic case
Note that in a real detector the signal is integrated over the wavelength range defined by
filters and also over the surface of the detectors [32]. If one assumes that the sky signal
does not vary within the wavelength range,2 the expression for the signal, equation (2.4), is
unchanged and one just needs to redefine the synthesized beam as

PSF (n, rd, λk) =
∫ ∫

PSF (n, r, λ)Jλk
(λ)Θ(r− rd) dλdr (2.6)

where Jλk
(λ) is the shape of the filter for the band centered in λk and Θ(r) represents the

top-hat function for integrating over the detector whose center is at rd.

2.3 The monochromatic synthesized beam
If the pupil array is a regular square grid of P pupils on a side spaced by a distance ∆h,
the sum in equation (2.2) can be analytically calculated (see O’Sullivan et al. [30] for more
detail) and the monochromatic point-like synthesized beam, assuming f is large enough to
use the small-angle approximation, becomes

PSF (n, r, λ) = Bprim(n, λ)Bsec(r, λ)×
sin2

[
Pπ∆h

λ

(
x
f − nx

)]

sin2
[
π∆h

λ

(
x
f − nx

)]
sin2

[
Pπ∆h

λ

(
y
f − ny

)]

sin2
[
π∆h

λ

(
y
f − ny

)] , (2.7)

where n = (nx, ny) is the off-axis angle of the source. In such a case, the synthesized beam of
the monochromatic point-like detectors has the shape of a series of large peaks with ripples in
between, modulated by the primary beam of the pupils. For illustrative purpose, a cut of the
synthesized beam is shown in figure 3 for such a square 20× 20 array of horns. The realistic
synthesized beam corresponding to our circular array (see figure 2) is shown by O’Sullivan et
al. [30] (figure 11) and shows minor differences. Figure 3 shows this approximate synthesized
beam for two different detectors emphasizing the fact that the location of the peaks moves
with the detector location in the focal plane. Moreover, the intensity received by the detector
changes inversely with r so the two Gaussian envelopes also differ. From the expression in
equation (2.7) it is straightforward to see that the full width at half maximum (FWHM) of
the large peaks is roughly given by FWHM = λ

(P−1)∆h while their separation is θ = λ
∆h as

illustrated in figure 3.
The real synthesized beam of the QUBIC TD has been measured in the lab using a

monochromatic calibration source and is presented by Torchinsky et al. [25]. For the TD,
the horn array is an 8 × 8 square array. The measured synthesized beam is in overall good
agreement with the approximate analytical expression in equation (2.7) and figure 3 although
excursions from this perfect case are expected due to optical defects and diffraction in the
optical chain. It was shown by Bigot-Sazy et al. [33] that the shape of the synthesized beam
for each detector can be precisely recovered through the “self-calibration” technique that is
heavily inspired from synthesis imaging techniques [34].

2.4 Monochromatic map-making
Before discussing spectral imaging, we first describe the map-making with a bolometric inter-
ferometer in the monochromatic case. As shown in section 2.1, the instrument is essentially

2This clarification is only made so that we can write the integral analytically. In the code, the integration
is done numerically over small sub-bands (around 16 sub-bands into the wide band.)
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Figure 3. Cut of the synthesized beam as a function of θ (angle between n and the optical axis) given
by equation (2.7) for a square array of 20×20 pupils separated by ∆h = 14 mm at 150 GHz frequency
(2 mm wavelength) for a detector located at the center of the optical axis in blue and 12 mm apart in
cyan. Dashed lines represent the primary beam of the pupils (here Gaussian). Resolution and peak
separation depend linearly on the wavelength λ.

equivalent to a standard imager, scanning the sky with the synthesized beam, producing
TOD that can be projected onto sky maps. The map-making will therefore be very similar
to that of a standard imager. In the monochromatic case, if the sky signal is ~s, the TOD ~y
can be written as:

~y = H · ~s+ ~n (2.8)
where ~n is the noise and H is an operator that describes the convolution by the synthesized
beam in equation (2.5) as well as the pointing at the different directions of the sky. H is
a 2-dimensional matrix: number of time samples (scaling with the number of detectors) ×
number of sky pixels. The noise has two contributions: photon noise and detector noise.
Photon noise is the Poisson fluctuations from the temperature of the CMB (TCMB ' 2.7 K),
the atmosphere, and the internal optical components. Detector noise is given by the noise
equivalent power (NEP) measured in each detector. The atmosphere emissivity is assumed to
be stable, we did not consider the effect of fluctuations in the atmospheric load, this requires
a significant step forward in our pipeline that we are currently carrying out. Equation (2.8)
will be generalized to the case of several frequency sub-bands in section 3.2.

For standard imagers, the H operator is such that each line (corresponding to sky
pixels contributing to one time sample) only contains a single non-zero value, meaning that
~s is actually the sky map convolved to the instrument’s resolution and that the instrument
samples the convolved sky with a single peak [35, 36].

In the case of a bolometric interferometer, this assumption is not valid due to the
multiple peaked shape of the synthesized beam (see figure 3) which makes it impossible
to use the map-making algorithms usually developed for direct imagers. We use instead an
algorithm that starts from an initial guess and then simulates iterative maps ~si, where i is the
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Figure 4. Result of the map-making for IQU Stokes parameters for a bolometric interferometer
pointing in a 15 degree radius sky patch containing only CMB. The first column is the input sky
convolved at the resolution of the instrument using a Gaussian with a FWHM equal to 0.4 degrees.
The second column is the sky reconstructed by map-making. The last column is the difference between
both. The grid lines are equally spaced every 5◦. This simulation was obtained with the QUBIC full
pipeline in the 220 GHz band. The noise was scaled to 4 years of observations. This simulation
required 127 iterations to converge.

iterative index.3 For each of these maps, we apply the bolometric interferometer acquisition
model, taking into account the scanning strategy of the sky, and we construct TOD ~yi that
are then compared to the data TOD ~y using a merit function that accounts for the noise in
the TOD domain. In the case of stationary and Gaussian distributed noise, the maximum

3The software uses the massively parallel libraries [37] developed by P. Chanial pyoperators
(https://pchanial.github.io/pyoperators/) and pysimulators (https://pchanial.github.io/pysimulators/).
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Figure 5. Left: monochromatic synthesized beam (MonoSB) for 131 and 169 GHz. Each synthesized
beam is modeled according to equation (2.7) for a square array of 20×20 pupils separated 14 mm apart
at 131 and 169 GHz. The primary beam at each frequency is shown by a dashed line. Right: poly-
chromatic beam (PolySB, black line) as result of the addition of 9 monochromatic synthesized beams
(5 of them are shown in colored lines) spanning our 150 GHz band (131 to 169 GHz). We sample the
continuous frequency band with discrete frequencies.

likelihood solution is reached by minimizing the χ2:

χ2(~si) = (~y − ~yi)T ·N−1 · (~y − ~yi) (2.9)

where N is the covariance matrix of the noise. We minimize equation (2.9) to find the best
simulated sky map, ~̂s, using a preconditioned conjugate gradient method [38, 39]. This is
jointly done for the IQU Stokes parameters and results in unbiased estimates of the maps as
shown in figure 4.

3 Spectral dependence

3.1 The polychromatic synthesized beam
As can be seen in equation (2.7), the synthesized beam is directly dependent on wavelength
and this is shown in figure 3.

The off-axis angle (given by the primary beam of the pupils), the FWHM of the peaks
(hence the resolution of the maps), and the angle on the sky between two peaks all depend
linearly on λ. This dependence on wavelength can be exploited to achieve spectral imaging
capabilities. Within a wide band, the synthesized beam will be the integral of the synthesized
beam of all the monochromatic contributions within the band resulting in a polychromatic
synthesized beam. Figure 5 shows the cross cut of the synthesized beams modeled according
to equation (2.7). The left panel shows the monochromatic synthesized beam for 131 and
169 GHz while the right panel shows a polychromatic synthesized beam using 9 monochro-
matic synthesized beams.

With a bolometric interferometer operating over a large bandwidth, for each pointing
towards a given direction in the sky, one gets contributions from all the multiple peaks in
the synthesized beam at all frequencies. As a result, we have both spatial and spectral
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information in the TOD. Precise knowledge of the synthesized beam along the frequency will
then allow one to reconstruct the position and amplitude of the sky in multiple frequency
sub-bands.

3.2 Spectral imaging capabilities

The synthesized beam at two different frequencies ν1 and ν2 will be distinguishable from one
another as long as their peaks are sufficiently separated. The angular separation between
the two peaks ∆θ = c∆ν

ν2∆h (where ∆ν = ν2 − ν1 and ν = √ν1ν2) must be large enough to
unambiguously distinguish the two peaks. In order to have an order of magnitude of the
possible width for each sub-band we consider a square array of pupils and we apply the
Rayleigh criterion [40]:

c∆ν
ν2∆h & c

ν(P − 1)∆h ⇔ Deltaν & ν

(P − 1) (3.1)

where P is the number of pupils on a side of the square-packed pupil-array. A bolometric
interferometer therefore not only has a resolution on the sky FWHMθ ' c

ν(P−1)∆h , but also
in electromagnetic frequency space ∆ν

ν ' 1
P−1 .

The map-making presented in section 2.4 can be extended in order to build, simultane-
ously, with the same TOD, maps at a number of different frequencies as long as they comply
with the frequency separation given above. The iterative TOD ~yi can be written as:

~yi =
Nrec−1∑

j=0
Hj~̂sij + ~n (3.2)

where Hj describes the acquisition (convolution+pointing) operator with the synthesized
beam at frequency νj , ~̂sij is the sky signal estimator at iteration i for the frequency νj and
Nrec is the number of reconstructed sub-bands. Similarly, as in the map at a single frequency
(figure 4), one can recover the maps ~sj by solving equation (3.2) using a preconditioned
conjugate-gradient method (see section 4 for corresponding simulations). Thus, the instru-
ment acquires data in a single wide frequency band and spectral imaging technique applies
during map-making, in the post-processing of the data.

The QUBIC FI has two wide-bands centered at 150 and 220 GHz with ∆ν/ν = 0.25
and a 400-feedhorn array packed on a square grid within a circular area (see figure 2). We
approximate it with a square grid 20× 20 so 1

(P−1) ∼ 0.05. It is thus possible to reconstruct
approximately 5 sub-bands in each of the initial bands of QUBIC. Note that this number
should just be taken as an order of magnitude for the achievable number of sub-bands but
we will see in figure 8 that it is a good approximation. In section 5 we will show that
reconstructing up to 8 sub-bands is feasible but with a significant degradation of the signal-
to-noise ratio.

4 Testing spectral imaging on simple cases

We can use the QUBIC simulation pipeline to test the spectral imaging capabilities of bolo-
metric interferometry in a simple way. Some concepts and parameters used in simulations
are defined in table 2.
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Parameter Details
Nin Number of input or true maps (in µK) used to simulate a broadband

observation (TOD). Each map represents a sky at a specific frequency νj
for the IQU Stokes parameters.a,b Possible values: 15, 16, 18, 21 or 48.

Nrec Number of sub-bands reconstructed from a single broadband observa-
tion, from 1 to 8. In all simulations Nrec is a divisor of Nin.

Nconv Number of convolved maps equal to Nrec. Each of these maps is ob-
tained convolving the Nin input maps at the QUBIC spatial resolution
corresponding to that input frequency and then averaging within the
reconstructed sub-band.

θ Radius of sky patch observed in simulations. Value: 15 degrees.
Pointings Number of times that the instrument observes in a given sky direction

aligned with the optical axis. Values > 104.
NEPdet Detector noise equivalent power (NEP) added as white noise. Value:

4.7× 10−17 W/
√

Hz.
NEPγ Photon NEP added as white noise in time-domain, calculated from the

atmospheric emissivity measured in our site, as well as emissivities from
all components in the optical chain. The atmospheric load is assumed
to be stable. The value is different for each detector because of their
different illumination by the secondary beam Bsec. The average value at
150 GHz is 4.55× 10−17 W/

√
Hz and 1.72× 10−16 W/

√
Hz at 220 GHz.

aSkies are generated using PySM: Python Sky Model [41].
bMaps are projected using HEALPix: Hierarchical Equal Area Isolatitude Pixellization of sphere [42].

Table 2. Typical parameters used in acquisition, instrument and map-making to do an end-to-end
simulation. A preconditionned conjugate gradient method is used for map-making.

4.1 Extended source reconstruction
The input map used for this example to simulate TOD is composed of zeros in each pixel
of its 15 input frequencies, Nin, and for the three Stokes components. Two monochromatic
extended regions with a high signal-to-noise ratio are added: a square centered at 141.6 GHz
and a disk centered at 156.5 GHz. Map-making is done for 5 sub-bands centered at 134.6,
141.6, 148.9, 156.5 and 164.6 GHz, with a bandwidth of 6.8, 7.1, 7.5, 7.9 and 8.3 GHz respec-
tively. The scan is performed with 8500 points randomly placed over a 150 square degrees
sky patch. Noise is included in the TOD.

The first row in figure 6 shows the input sky maps spatially convolved at the QUBIC
resolution. The second row shows the reconstructed maps after map-making onto five sub-
bands. The maps are normalized by the maximum value in the convolved maps. In the first,
third and fifth sub-bands, where originally the signal is zero, structures corresponding to
the signals of neighboring sub-bands appear. The median of the signal on such sub-bands
are 0.27, 0.19, 0.31 respectively. The medians are calculated within a region defined by
the shape of the signal in the adjacent sub-band, i.e. rectangle (1st sub-band), rectangle
+ disk (3rd) and disk (5th). The leakage is due to the fact that during the map-making
process, it occurs from the frequencies where the monochromatic signal was located towards
the neighboring sub-bands due to the frequency point spread function (FPSF) that will be
studied in section 4.3.
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Figure 6. Map-making for a sky full of zeros with two extended, monochromatic regions centered at
141.6 (square) and 156.5 GHz (disk). Each column corresponds to one sub-band. The first row shows
the input sky maps spatially convolved at the QUBIC resolution. The reconstructed maps using the
QUBIC pipeline are shown in the second row. The units are arbitrary.

4.2 Angular resolution
As an example, we used the end-to-end pipeline to simulate the reconstruction onto 4 sub-
bands of a point source emitting with a flat spectrum in the 150 GHz wide band. Figure 7
shows the measured (red stars) and theoretical (blue dots) values of the FWHM at the
central frequency of each sub-band. Theoretical values are obtained from a quasi-optical
simulation [30] at 150 GHz and scaled proportionally to frequency. Measurements were
made on HEALPix maps and corrected by pixel size and resolution [43]. The difference
between measured and theoretical values are up to 0.5% which makes it acceptable. The
real angular resolution will be determined once QUBIC is installed on the site using far-field
observations (astronomical objects and/or calibration tower). This analysis was done for a
flat spectrum over the wide frequency band but this hypothesis is not required. In the code,
it is only assumed to be flat in small frequency sub-bands with bandwidths around 1/20 of
the total bandwidth. The result would be similar in case of a non flat spectrum.

4.3 Frequency point spread function characterization
In section 4.1 it was shown that the reconstructed map for a sub-band has a fraction of signal
coming from neighboring bands (see figure 6). In order to study this effect, we simulate
monochromatic point source reconstruction to characterize the FPSF.

If we consider a monochromatic input signal with a spectral energy density Sin(ν)
[W/Hz], and considering ideal map-making, then the intensity of the output map Iout(ν)
[W] will be given by the convolution of the input signal with the FPSF [unitless]:

Iout(ν) = [Sin ⊗ FPSF] (ν). (4.1)

Thus, for a monochromatic source at νin with spectral energy density Sin(ν) = I0δ(ν − νin),
we can obtain the FPSF by measuring the intensity in the reconstructed sub-bands.
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Figure 8. Synthetic FPSF when reconstructing in 4 sub-bands. Blue dots are the intensity of
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ν0 = 150 GHz, showing an order of magnitude of the expected frequency resolution (see section 3.2).
Strong-grey band represent a typical width of a sub-band when reconstruction is performed for 4
sub-bands.
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In order to investigate the FPSF of the instrument, we simulate a scan in frequency by
moving νin in a high-resolution frequency grid. We use a grid with Nin = 48 which gives
us a resolution of ∼ 0.78 GHz for the 150 GHz wide band (it would be ∼ 1.15 GHz for the
220 GHz band). This grid allows to improve the map within the spectral range and thus
obtain more precise information on how the signal is reconstructed at the center and edge of
each sub-band. We performed 22 independent simulations of monochromatic point sources
with high signal-to-noise ratio. We kept the spatial location of the point source unchanged
and we varied its frequency νin, covering a spectral range from 133 to 162.25 GHz.

We present results for map-making onto 4 sub-bands with central frequencies at νc =
135.5, 144.3, 153.6, 163.6 GHz and bandwidths of ∆νc = 8.5, 9.1, 9.7, 10.3 GHz respectively.
The FPSF depends on the number of sub-bands so this result is specific to 4 sub-bands.
For each simulation, we measure the intensity, normalized to the input one, of the central
pixel of the point source in each reconstructed sub-band. In the hypothesis that the FPSF
does not depend on the input frequency, we can superimpose all the results. This is done
in figure 8 (blue dots) by subtracting νin to center all the measurements on 0. All the
points are well superimposed on a continuous line that we will call the synthetic FPSF of the
instrument with 4 sub-bands. A spline fitting is shown in figure 8 (red line) to get a model
for the synthetic FPSF. We also plot a Gaussian (blue line) with FWHM = ν0

P−1 , P = 20
and ν0 = 150 GHz, showing an order of magnitude of the expected frequency resolution
as explained in section 3.2. As expected from figure 6, we observe that the FPSF extends
beyond a single sub-frequency and should be accounted for in the data analysis. This means
that our reconstructed sub-bands are not independent from each other and we should expect
noise correlation between sub-bands. Because the FPSF is negative in the nearest band we
should expect the noise correlations to be negative between neighbouring sub-bands. This
will be studied in section 5.1.

4.4 Galactic dust

We demonstrate spectral imaging capabilities by trying to recover the frequency dependence
of the dust emission with simulated observations towards the Galactic center. The sky maps
contain IQU Stokes parameter components and the dust model is the one provided by PySM3,
named d1 [41]. We simulate an observation in a sky patch of 15 degree radius. This choice
was made in order to minimize the number of pointings required to get a sufficient coverage
and so to reduce computational resources needed for simulations. However, a bigger patch
would give similar results, even better as border effects would be reduced. The parameters
of the pipeline are set in such a way that the simulated instrument has a single focal plane
operating either at 150 GHz or at 220 GHz with a 25% bandwidth each. The wide band
TOD are formed through the sum of a number of monochromatic TOD throughout the wide
bandwidth as shown in equation (3.2). For this simulation we have used Nin (see table 2)
input maps covering the ranges from 137 to 162 GHz and from 192 to 247 GHz. From these
wide-band TOD, we are able to reconstruct several numbers of sub-bands using spectral
imaging. We have performed simulations with Nrec = 1, 2, . . . , 8 reconstructed sub-bands.
NEP, including photon noise and detector noise (see table 2) are added as white noise for
each TOD. In each case, we perform a Monte-Carlo analysis to get several independent noise
realizations and also a noiseless reconstruction that will be the reference. Those end-to-end
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simulations require high memory usage and need to be parallelized on several machines.4 The
result of this procedure at the map level for the I and Q components, for a given realization,
is shown in figures 9 and 10. The two figures display a sky reconstructed in 5 sub-bands
within the 220 GHz wide band. The residual map is the difference between a reconstruction
and the noiseless reference.

We can see that the Galactic dust is efficiently reconstructed in the 5 sub-bands as the
residuals are compatible with pure noise. Note that the noise is not white but has spatial
correlations due to the deconvolution with the multi-peak synthesized beam (see section 3.1.1
in Hamilton et al. [24]). We also note that the residuals are higher on the edges than in the
center of the sky patch. This is due to the higher coverage of the sky in the center due to
the scanning strategy.

Instead of looking at the full map, the reconstructed intensity as a function of frequency
can also be studied pixel by pixel. Figure 11 shows the intensity of the input sky convolved
with the instrument beam, and the reconstructed intensity for a given pixel, considering
5 sub-bands in each wide band at 150 (red) and 220 (blue) GHz. We do not display the
measured points and error-bars which are not good indicators of our uncertainties due to
the highly anti-correlated nature of the covariance matrix (see figure 13 in the case of 3 sub-
bands). Instead, we have performed a Monte-Carlo-Markov-Chain (MCMC) exploration of
the amplitude and spectral-index of a typical dust model (modified black-body, see Irfan
et al. [44]) accounting for the sub-bands covariance matrix. The fit is done separately for
our two physical bands at 150 and 220 GHz. The 68% confidence level (CL) is shown in
light colors in each case and represents the QUBIC measurements within this band using
spectral imaging. Note that the angular resolution of the maps improves with frequency (see
section 4.2) and is not accounted for. As a result this simple analysis cannot be interpreted
as a measurement of the dust spectral index which would require a more detailed analysis
including the beam profile to properly infer the dust property in each sky pixel (such as [44]).
This study is being carried out for a future article.

The dust reconstruction is also studied in the angular power spectrum using the public
code NaMaster [45] which computes TT, EE, BB and TE spectra where T is the temperature
and E, B are the two polarization modes. Spectra are computed from a multipole moment
l = 40 to l = 2×Nside−1 with Nside = 256 the pixel resolution parameter for HEALPix maps.
We compute inter-band cross spectra (IBCS), meaning that from Nrec sub-band maps, one
can compute Nrec(Nrec +1)/2 IBCS. Having independent noise realizations allows us to make
IBCS crossing two realizations, so we eliminate the noise bias. BB IBCS for 3 sub-bands in
each of the 150 and 220 GHz wide bands are shown in figure 12. We plot Dl = l(l+1)

2π Cl, Cl
being the B-mode angular power spectrum. In this figure, the input theoretical dust spectra
coming from the PySM model d1 are superposed to the reconstructed ones.

4For instance, with 10000 pointings, 992 detectors (FI), considering the main 14 peaks in the synthesized
beam, the size of the pointing matrix for each input sub-band is: ∼ 10000 × 992 × 14 × 16/10243 ∼ 2 GiB
and typically, there are Nin ∼ 20 sub-bands. Regarding the convergence of the map-making, the number of
iterations needed will vary, especially with the level of noise and with the number of sub-bands. For a typical
end-to-end simulation with Nrec = 6, it is around 320 iterations.
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Figure 9. Map-making of the galaxy dust in Nrec = 5 frequency sub-bands from 192 to 247 GHz
for I component. The map unit is µK CMB. The first column is the input sky convolved to the
resolution of the instrument in that sub-band. The second column is the reconstructed map after
the map-making process. Residuals, defined by the difference between the simulation including noise
and a noiseless one, are shown in the last column. The noise is not white but has spatial correlations
due to the deconvolution with the multi-peak synthesized beam, it is clearly visible in the 241 GHz
sub-band.
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Figure 10. Map-making of the galaxy dust in 5 frequency sub-bands from 192 to 247 GHz. Same as
figure 9 but for Q component.
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Figure 11. Intensity as a function of the frequency for Nrec = 5 sub-bands in each wide band at
150 (red) and 220 (blue) GHz for a given pixel. The grey regions correspond to the unobserved
frequencies outside our physical bands. Two sky pixels are shown as red stars, one in a patch centered
at the Galactic center and one in the patch that QUBIC plans to observe centered in [0, -57 deg].
Red and blue dots: input sky convolved with the instrument beam. In both cases are shown in light
color the 68% CL regions for a modified black-body spectrum reconstructed with a MCMC from our
simulated measurements and sub-band covariance matrices (see figure 13 for the case of 3 sub-bands).
Maps are in µK CMB and Nside = 32.
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Figure 12. BB IBCS at 150 GHz (left) and 220 GHz (right) computed from reconstructed maps in
3 sub-bands (137, 149 and 162 GHz and 201, 218 and 238 GHz respectively), obtained with end-to-end
simulations. For each IBCS, we cross-correlate 2 sub-bands with central frequencies in GHz shown
in the legend of each plot. Dashed lines are the IBCS of the input sky that contains only Galactic
dust. The dots with error bars show the mean and the standard deviation over 20 IBCS. Each IBCS
is made with 2 maps with independent noise realizations to eliminate the noise bias.
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Figure 13. Correlation matrices between frequency sub-bands ν0 = 137 GHz, ν1 = 149 GHz and
ν2 = 162 GHz and I, Q, U Stokes components obtained from 40 end-to-end simulations. Left: example
for a given pixel. Right: the average over pixels. Blue means anti-correlations while red is for
positive correlations.

5 Noise characterization

For the map-making described in section 2.4, we added noise to the TOD which was composed
of the detector NEP (4.7 × 10−17W/

√
Hz) and photon NEP (see table 2). As before, the

atmospheric load is assumed to be stable. The goal here is to study how close to optimal (in
the statistical sense) is our spectral imaging map-making. We will study the noise behaviour
as a function of the number of reconstructed sub-bands Nrec. This is done at three different
levels: on the reconstructed maps, on the power spectra computed from the maps, and on a
likelihood estimation for the tensor-to-scalar ratio r.

5.1 Noise behaviour in the sub-bands at map level
We performed simulations with 40 independent noise realizations and a noiseless simulation as
a reference. After map-making, residual maps are computed by taking the difference between
each simulation and the noiseless reference. For each pixel, we compute the covariance matrix,
over all the noise realizations, between the sub-bands and the Stokes parameters.

The reason why we treat the pixels separately, not computing covariance over them, is
that the noise level varies with the position in the sky. This is due to the coverage of the sky
by the instrument beam which is not uniform. Note that the QUBIC coverage is not trivial
because of the multi-peak synthesized beam.

A correlation matrix for a given pixel, considering 3 sub-bands, is shown in figure 13
and we also show the average over pixels. It can be seen that for each Stokes parameter,
residual sub-bands next to one another are anticorrelated and this is seen on every pixel.
However, cross-correlations between Stokes parameters are negligible. This is why we can
consider the 3 correlation matrices CIp, CQp and CUp separately.

5.2 Noise analysis using the power spectrum
In section 5.1 it was shown that a polychromatic interferometer has anti-correlations in
neighbouring bands for each Stokes parameter. Furthermore, the spatial structure of noise is
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Figure 14. BB Inter Band Cross Spectra on the residual maps containing only noise for 3 sub-
bands in the wide 150 GHz band, centered at 137, 149 and 162 GHz. Dots and error bars show
average and standard deviation over 1000 independent noise realisation IBCS computed with the fast
noise simulator.

studied in detail in Hamilton et al. [24] using end-to-end simulations. This allows us to build a
fast noise simulator that reproduces efficiently the noise behaviour in the reconstructed maps.
In the following, the fast noise simulator will be used in parallel with end-to-end simulations
as it allows us to improve the statistics while consuming much less computing time.

We characterize the noise behaviour of spectral imaging using the power spectrum. As
shown in section 4.4, from the maps we can compute power spectra using the public code
NaMaster. From Nrec bands, we compute the IBCS for each TT, EE, BB and TE power
spectra. As we are interested in the noise, we compute the power spectra of the residual
maps containing only noise. Figure 14 shows the IBCS computed for each noise realization
in the case of 3 sub-bands at 150 GHz. As we plot Dl the noise bias goes as l(l+ 1). We find
that the IBCS within the same band (ν0ν0, ν1ν1 and ν2ν2) are positively correlated. However
the IBCS crossing 2 different bands (ν0ν1, ν0ν2 and ν1ν2) are anti-correlated.

The correlations are observed in greater detail by computing the correlation matrices.
In figure 15, we show the correlation matrix between `-bins and IBCS for BB angular power
spectrum considering Nrec = 3 sub-bands in the 150 GHz wide band. In this matrix, we
see that anti-correlations, in blue in the matrix, only appear between the IBCS crossing 2
different bands (ν0ν1, ν0ν2 and ν1ν2 in the case of 3 sub-bands) and that the correlations
between bins are negligible. The same behaviour is observed for TT, EE and TE spectra.

5.3 Nearly optimal performance of spectral imaging

In order to assess, in a manner easy to interpret, how far from optimal is spectral imaging,
we study how the tensor-to-scalar ratio r is constrained as a function of the number of sub-
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Figure 15. Correlation matrix between `-bins and IBCS for BB angular power spectrum considering
3 sub-bands at ν0 = 137, ν1 = 149 and ν2 = 162 GHz. For example, ν0ν1 is the IBCS between
frequencies ν0 and ν1. In each black square we show the correlations between the 16 `-bins used to
compute the IBCS as in figure 14.

bands Nrec. The sky model is a pure CMB sky, including lensing but no Galactic foregrounds,
with r = 0. The aim of this section is not to make precise forecasts on the sensitivity on
r. This is addressed in the companion paper Hamilton et al. [24] and we expect to reach a
sensitivity to B-modes corresponding to a 68% CL upper-limit on the effective tensor-to-scalar
ratio (primordial tensors + galactic dust) σ(r) = 0.015 with three years of observations.

The division of the wide band into a number of sub-bands for spectral imaging could
have a detrimental effect on the estimate of the tensor-to-scalar ratio r and this is what we
want to quantify in this section. On the one hand, we would certainly like to make as many
sub-bands as possible in order to constrain the foreground spectra in a very precise manner.
However, on the other hand, there is an upper-limit to the achievable number of sub-bands,
when the angular distance between peaks in the synthesized beams at different frequencies
becomes smaller than the peak width (angular resolution), as explained in section 3.2. We
therefore expect the performance of spectral imaging to degrade when projecting data onto
too many sub-bands. In fact, even for a small number of sub-bands, spectral imaging cannot
be strictly optimal because the synthesized beams at different sub-frequencies do not form an
orthogonal basis. We therefore expect a certain loss in signal-to-noise ratio when performing
spectral imaging. The higher the number of reconstructed sub-bands, the more overlap there
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Figure 16. Uncertainties (68% CL upper limits) on the tensor-to-scalar ratio r obtained by combining
an increasing number of sub-bands, normalized to that of one band, for a pure r = 0 CMB (with
lensing). The slow increase of the uncertainty on r with the number of sub-bands illustrates the
moderate sub-optimality of spectral imaging and shows that we can use up to 5 sub-bands with only
40% degradation at 150 GHz (and only 20% degradation at 220 GHz). It is possible to achieve 8
sub-bands but with more significant degradation.

is between the synthesized beam at each sub-frequency. This results in stronger degeneracy
between sub-bands, hence a higher noise in the reconstruction. This is the price to pay
for improved spectral resolution. As a result, one needs to find the best balance between
performance and spectral resolution for a given scientific objective.

For that purpose, we project simulated data onto an increasing number of sub-bands
Nrec, calculate the corresponding IBCS and in each case we compute a likelihood to estimate
the tensor-to-scalar ratio r combining all sub-bands accounting for their cross-correlations.
From this method, we get the error on r at 68% confidence level for each number of sub-bands.
This is presented in figure 16. We normalize by the case of “spectral imaging” with just one
band. Error bars are obtained from a Monte-Carlo analysis, varying the data in the likelihood
according to their diagonal uncertainties. As expected, we observe a moderate degradation
due to spectral imaging in the sense that the constraints on r become less stringent when
the number of sub-bands is greater than one. This degradation slowly evolves from 25% to
40% at 150 GHz and from 10% to 20% at 220 GHz when the number of sub-bands evolves
from 2 to 5. The better performance at 220 GHz is not a surprise as our horns are slightly
multimoded at 220 GHz (see O’Sullivan et al. [30] for details) resulting in a flatter primary
beam, which, in turn, favours spectral imaging because multiple peaks of the synthesized
are higher in amplitude. It is possible to project onto as many as 8 sub-bands with a
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Figure 17. Calibration data with the source at 150 GHz projected on the sky using our map-making
software to deconvolve from the multiple peaked synthesized beam and split the physical band of the
instrument into 5 sub-bands.

corresponding performance reduction due to the fact that synthesized beam peaks become
too close with respect to their width, as explained in section 3.2.

This study demonstrates that, although not optimal from the noise point of view, spec-
tral imaging performance remains close to optimal for up to 5 bands, providing extra spectral
resolution that can be key for constraining foreground contamination with realistic models for
which the spectrum might not be a simple power law, work being in progress on this. The ap-
propriate balance between spectral resolution and noise performance can be adjusted for each
specific analysis thanks to the fact that spectral imaging is done entirely in post-processing.

This work is a first step to characterize the potential of spectral imaging. In order to
place the technique in context, we need to include spectral imaging into a proper component
separation step. This will be addressed in future work.

6 Spectral imaging on real data

Spectral imaging has been applied on real data for the first time during the calibration
campaign at the APC laboratory. The QUBIC instrument was placed on an alt-azimuth
mount in order to scan a calibration source tuned at 150 GHz (with 144 Hz bandwidth)
and placed in the far field. The corresponding analysis presented in the companion paper
Torchinsky et al. [25]. We then perform a scan in azimuth and elevation with the instrument,
obtaining a TOD for each bolometer. We then apply our spectral imaging map-making
algorithm with five sub-bands to a selection of 26 bolometers that do not exhibit saturation.
The synthesized beam for each bolometer is realistically modeled in our map-making through
a series of Gaussian whose amplitude, width and locations are fit from a measured map of
the synthesized beam for each bolometer (see figure 20 from Torchinsky et al. [25] for an
example). The frequency evolution of this synthesized beam only assumes linear scaling with
wavelength. We were able to reconstruct a map of the point-like artificial calibration source
as well as its location in frequency space. In figure 17, we show the reconstruction onto 5 sub-
bands. The expected point-source shape is clearly visible in the central frequency sub-band
containing the emission frequency of the source at 150 GHz.

The calibration source is fainter in adjacent bands, and not visible in the furthest bands.
In figure 18, we show the detected amplitude in the central pixel as a function of the frequency.
The measurement in red is compared to the expected value spectrum in blue. The expected
shape is a Gaussian centered on ν = 150 GHz and a FWHM equaled to ν

(P−1) as explained
in section 3.2. Those data were acquired with the TD instrument that has a square 8 × 8
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Figure 18. Measurement of the flux of the source in reconstructed sub-bands. The measurement
(simple aperture photometry) in red is compared to the expected value spectrum in blue. The expected
shape is a Gaussian centered on ν = 150 GHz and a FWHM equal to ν

(P−1) with P = 8 for the TD
instrument. A global offset and the amplitude of the Gaussian are adjusted to the data.

feedhorn array so P = 8. The global offset and the amplitude of the Gaussian are adjusted
to the data. Error bars are computed in a very conservative manner.

7 Conclusion

In this article, we have shown how the new technique of bolometric interferometry offers
the possibility to also perform spectral imaging. This makes it possible to split, in post
processing, the wide-band observations into multiple sub-bands achieving spectral resolution.
To illustrate this method, we apply it to the case of the QUBIC instrument soon to be installed
at its observation site in Argentina.

After having presented the design, concept, and mathematical aspects of the instrument
and the spectral imaging technique we have illustrated it on simple cases: monochromatic
point sources, spatially extended sources, and sky maps with frequency-dependent emission
such as Galactic dust. We have shown our ability to have increased spectral resolution
with respect to the physical bandwidth, considering a full sky patch but also at the level of
individual pixels. We studied the signal and noise behavior using Monte-Carlo simulations for
an instrument like QUBIC which shows spatial and spectral correlations. We have quantified
the loss of statistical performance for the measurement of the tensor-to-scalar ratio when
increasing the number of sub-bands and have shown it to be moderate up to 5 sub-bands.

The precise measurement of foreground contaminants is essential for the detection of pri-
mordial B-modes. Foregrounds have spectral properties distinct from the CMB which leads to
the conclusion that only a multichroic approach enables the measurement and subtraction of
foreground contamination. This is usually done in classical imagers through detectors operat-
ing at distinct frequencies, each of them being wide-band in order to maximize signal-to-noise
ratio. However, constraining foregrounds with such data relies on extrapolation between dis-
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tant frequency bands, which may miss non-trivial variations of the spectral behaviour of
complex foregrounds such as multiple dust clouds in the line of sight. In particular, scenarios
where dust exhibits a certain level of decorrelation between widely separated bands, or with
non constant spectral indices would be impossible to be identified with a usual wide-band
analysis. Spectral imaging could put significant constraints on such scenarios. This is being
studied in detail by the QUBIC collaboration and will be presented in the near future.

In summary, spectral imaging improves spectral resolution within a wide physical band,
while nearly preserving the optimal performance of the analysis. It may therefore become a
key technique for detecting the elusive B-mode polarization of the CMB.
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Résumé en français

B.1 Introduction

Ce résumé substanciel en français présente le contexte scientifique et reprend les principaux points de
mon travail de thèse.

L’interféromètre bolométrique QUBIC est un instrument dédié à la mesure de la polarisation du
fond diffus cosmologique (CMB pour Cosmic Microwave Background), et plus précisément à la détec-
tion des modes B primordiaux. L’assemblage et la caractérisation de l’instrument ont commencé à
l’APC en 2018 lorsque je débutais mon doctorat. Le télescope a maintenant rejoint l’Argentine pour
une dernière phase de calibration avant d’être installé sur son site d’observation. Pendant ma thèse, j’ai
travaillé sur divers aspects du projet, combinant instrumentation, analyse de données de calibration,
simulations et développement d’algorithmes de reconstruction des cartes du ciel.

B.2 Contexte scientifique

Le CMB, détecté pour la première fois par Penzias et Wilson [107], est un rayonnement de corps noir,
aujourd’hui à 2.7255 ± 0.0006 K [112]. Il a été émis 380 000 ans après le Big Bang au moment de la
formation des premiers atomes d’hydrogène. Ce rayonnement isotrope dans lequel baigne l’univers est
en fait une conséquence directe du modèle du Big Bang et c’est dans ce cadre qu’il a pu être prédit
dès 1948, bien avant la première observation [37].

Ce rayonnement est isotrope mais possède néanmoins de faibles anisotropies en température, envi-
ron 105 fois plus faibles que la température moyenne. Ces anisotropies sont l’empreinte de fluctuations
de densité au sein du plasma primordial. Le CMB peut être vu comme une image figée de la physique
se déroulant dans le plasma au moment de son émission. Il constitue donc une précieuse source
d’information sur l’enfance de l’univers.

Aussi, le CMB est linéairement polarisé et cela est dû à de la diffusion Thomson entre électrons et
photons du plasma primordial en présence d’anisotropies quadripolaires. Ces anisotropies quadripo-
laires ont pu être créées par des ondes gravitationnelles se propageant dans le plasma. La polarisation
du CMB se décompose généralement en deux champs appelés modes E et B, respectivement scalaires
et pseudo-scalaires. L’un des intérêts de cette décomposition est que ces modes sont directement asso-
ciables à des processus physiques prédits par l’inflation cosmique. L’inflation est une phase d’expansion
accélérée de l’univers qui aurait eu lieu juste après le Big Bang. Elle offre un moyen naturel d’expliquer
la génération des fluctuations de densité et prédit la propagation d’ondes gravitationnelles. La quête
des modes B de polarisation du CMB fait aujourd’hui partie des enjeux majeurs de la cosmologie
observationnelle. Leur détection permettrait de valider ou non, et surtout de contraindre, les théories
d’inflation, et aurait des conséquences importantes en physique des particules.

L’amplitude prédite du signal que l’on cherche à détecter est très faible et c’est pourquoi des
détecteurs extrêmement sensibles alliés à un contrôle rigoureux des effets systématiques sont nécessaires.
Hélas, les avant-plans astrophysiques, comme l’émission thermique des grains de poussière galactiques,
produisent également des modes B de polarisation venant s’additionner aux modes B primordiaux. Il
s’agit donc d’avoir un instrument capable de séparer finement cette émission du signal cosmologique,
avec des effets systématiques maîtrisés.
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B.3 L’interféromètre bolométrique QUBIC

QUBIC a précisément été conçu pour répondre à ces problématiques [1]. C’est un télescope entièrement
inclu dans un cryostat. L’originalité de cet instrument réside dans son design optique qui fait le choix de
l’interférométrie au lieu de l’imagerie classique. La Figure B.1 présente une photo ainsi qu’un schéma de
l’instrument. Le signal venu du ciel entre dans le cryostat par une fenêtre de 56 cm de diamètre suivie
d’une série de filtres permettant de supprimer le rayonnement de haute fréquence qui augmenterait la
puissance de fond dans le cryostat [3]. La polarization du signal est immédiatement modulée par une
lame demi-onde rotative maintenue à 4 K [4]. Un polariseur, placé juste après la lame transmet une
unique direction de polarisation vers la matrice de 400 cornets [5] qui illumine le combineur optique fait
de deux miroirs refroidis à 1 K. Ce système optique, à l’aide d’un filtre dichroïque, focalise la lumière
sur deux plans focaux, centrés respectivement autour de 150 et 220 GHz, assurant une observation
à l’infini. Les rayonnements provenant de chaque cornet se superposent sur les plans focaux pour
former des figures d’interférence. Ces images sont échantillonnées par une matrice de 1024 bolomètres
(Transition-Edge-Sensors) sur chaque plan focal [7].
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Figure B.1: Gauche : Photo de l’instrument QUBIC au laboratoire APC pendant son assemblage.
Droite : Schéma du design optique de l’instrument.

Souvent présenté sous l’angle de l’interférométrie, QUBIC peut aussi être vu comme un imageur
classique possédant une ouverture bien particulière. Ce qui le distingue des imageurs classiques est sa
fonction d’étalement du point (PSF pour Point Spread Function), c’est-à-dire la réponse de l’instrument
sur le plan focal pour une source lumineuse ponctuelle dans une direction donnée, émettant à une
fréquence donnée. En effet, la PSF de QUBIC présente un pic central, placé à l’image géométrique de
la source, entouré de pics secondaires. De façon équivalente, on pourrait parler du lobe de l’instrument,
qui est sa réponse en fonction de la direction sur le ciel, à une fréquence donnée. Le lobe est donc propre
à chaque bolomètre puisqu’il dépend de la position sur le plan focal. Le lobe mesuré en laboratoire et
la simulation correspondante sont présentés Figure B.2. En résumé sur le plan focal on observe une
image qui est le résultat d’interférences constructives entre les rayonnements émis par chaque cornet.
Ceci est finalement en tout point similaire à un imageur classique pour lequel chaque point fictif de
l’ouverture peut être vu comme une source secondaire à l’image des cornets de QUBIC. Sous cet angle,
n’importe quel imageur est un interféromètre.

B.4 Vérification de l’alignement des miroirs

Les miroirs sont placés sur des hexapodes permettant d’ajuster leur position. Ils ont d’abord été alignés
à l’aide d’un bras mécanique permettant de mesurer la position de leur surface en trois dimensions.
En comparant les positions mesurées à un modèle mécanique nous étions alors capables d’ajuster les
hexapodes pour corriger l’alignement.
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Figure B.2: Lobe de l’un des détecteurs à 150 GHz. Comparaison entre la mesure (gauche) et la
simulation (droite). Tirée de [8].

Cet alignement a également été contrôlé optiquement à l’aide d’un laser comme décrit dans [6].
Ce travail a été réalisé en mai 2018 et j’étais responsable de l’alignement optique en collaboration
avec des collègues de Rome. Le laser était positionné à l’emplacement futur de la matrice de cornets.
Comme le montre la Figure B.3 (gauche), il pouvait être translaté selon deux directions orthogonales
et également incliné d’un petit angle autour de ces deux directions. La méthode consistait à vérifier
qu’en translatant le laser selon les deux axes, la tâche sur le plan focal restait fixe. Une photo du
plan focal fictif est montrée Figure B.3 (droite). J’ai développé deux analyses indépendantes et une
troisième a été développée à Rome. Les trois analyses ont donné des résultats consistents. En revanche,
la réflectivité des miroirs du Technological Demonstrator dans le domaine visible s’est avéré insuffisante
pour satisfaire à la précision requise. L’alignement a donc finalement été fait à l’aide du bras mécanique.
En revanche, cette méthode sera réutilisée lors de l’alignement des miroirs de l’instrument complet qui
auront une surface bien plus réflective dans le domaine visible.

Figure B.3: Gauche : Schéma du dispositif expérimental. Droite : Photo du plan focal fictif utilisé
pour la mesure avec le tâche rouge du laser.

B.5 Premiers pas vers la self-calibration

Tout d’abord, le design du polarimètre de QUBIC a été choisi pour limiter au maximum les effets
systématiques. Premièrement, puisque les bolomètres détectent l’intensité du champ électromagnétique
et non sa polarisation, le fait de placer la lame demi-onde et le polariseur en entrée rend l’instrument
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insensible à toute cross-polarisation qui se produirait en aval, c’est-à-dire dans les cornets, sur les
miroirs ou suite à n’importe quelle réflection dans l’instrument. De plus, le choix de la lame demi-onde
et du polariseur pour moduler la polarisation n’est pas anodin, il permet de limiter la fuite d’intensité
vers la polarisation. En me basant sur le formalisme développé par Marie-Anne Bigot-Sazy, j’ai pu
montrer cela analytiquement en le comparant à deux designs alternatifs. Cette étude a été réalisée
dans le cadre d’un stage pour deux étudiants de Licence 3 que j’encadrais.

Si la collaboration QUBIC a opté pour un interféromètre bolométrique, c’est avant tout pour
contrôler avec une grande précision les effets systématiques de l’instrument. Ceci est possible grâce
à une technique bien connue en radioastronomie, appelée self-calibration. Quelques précisions sur les
cornets: chaque cornet peut être ouvert ou fermé au moyen d’un interrupteur placé dans son guide
d’onde. On appelle “ligne de base” une paire de cornets et deux lignes de base sont dites équivalentes
(ou redondantes) si elles ont même écartement et même direction. En ouvrant une unique ligne de base,
on observe sur le plan focal des franges d’interférence, comme dans l’expérience des trous d’Young.
La self-calibration repose sur la comparaison des franges obtenues sur le plan focal pour des ligne de
base équivalentes. En effet, puisque, dans le cas d’un instrument idéal, les franges sont strictement
identiques, les comparer permet de mesurer les systématiques de l’instrument. Cela a été étudié en
détail durant la thèse de Marie-Anne [11], [13].

Pour ma part, j’ai travaillé sur la mesure des franges d’interférence pendant la calibration de
l’instrument. Cette mesure m’a amenée à développer un code d’analyse permettant notamment d’inter-
calibrer les bolomètres entre eux. J’ai aussi développé le code qui permet de simuler l’instrument
complet et les figures d’interférences observées. L’intercalibration se fait au moyen d’un ajustement
des données par un modèle. L’avantage est que les gains des bolomètres sont des paramètres linéaires du
modèle ce qui permet de les obtenir analytiquement et non numériquement pendant la minimization du
χ2. Il va sans dire que l’observation des franges est cruciale pour la self-calibration et l’intercalibration
des bolomètres est requise pour toute analyse.

Enfin, j’ai travaillé sur la mesure et la caractérisation des lobes des détecteurs. J’ai notamment
développé une analyse permettant d’identifier sans ambiguité les pics multiples d’un détecteur à l’autre.
En déterminant la position des pics de chaque lobe, j’ai pu remonter à la distance focale du télescope en
ajustant un modèle optique aux données. Cette étude n’est qu’une étape préliminaire, la mesure de la
distance focale n’est pas une fin en soi mais plutôt un premier exercice pour vérifier que l’on comprend
bien les données. Toutefois, la reconstruction des cartes du ciel à partir des données temporelles
obtenues après un scan du ciel ne pourra se faire que si l’on connait précisément le lobe de chaque
détecteur, c’est-à-dire son champ de vue. C’est pourquoi, ce travail est extrêmement important et sera
poursuivi, la classification rigoureuse des pics ayant permis de débloquer une difficulté majeure.

B.6 Imagerie spectrale

Le lobe de l’instrument, déterminé par la géométrie de la matrice de cornets placée à l’entrée du
télescope, contient des pics secondaires dont la séparation est proportionnelle à la longueur d’onde.

L’équivalent de la matrice de cornets dans le domaine visible des longueurs d’onde serait un réseau
dispersif selon deux directions orthogonales (une grille). La Figure B.4 montre un dispositif sur banc
optique que j’ai construit pour illustrer le principe de fonctionnement de QUBIC dans le domaine
visible. Sur la photo de droite on voit la décomposition des couleurs sur les pics secondaires de la
PSF. Grâce à l’interférométrie, l’information spectrale est donc bien présente dans les données. C’est
pourquoi QUBIC a la capacité de faire de l’imagerie spectrale, c’est-à-dire de reconstruire des cartes du
ciel dans des sous-bandes de fréquence au sein de la bande large dans laquelle les bolomètres intègrent
le signal.

L’imagerie spectrale est réalisée lors de l’analyse des données, en post-processing. La démonstration
de cette technique et la caractérisation de ses performances est une partie importante de ma thèse et
cela m’a conduit à être première auteure de l’article de collaboration [9]. Au travers de simulations
end-to-end, nous avons montré qu’il est possible de reconstruire cinq sous-bandes au sein de chaque
large bande (130 à 170 GHz et 200 à 240 GHz environ) avec une dégradation modérée de la qualité
du signal vis à vis d’une situation “optimale”. Nous avons aussi montré qu’il est possible de mesurer la
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Figure B.4: Gauche: Dispositif optique qui serait l’analogue de QUBIC dans le domaine visible: lampe
blanche suivie d’un diaphragme placée au foyer objet d’une lentille pour avoir un point source à l’infini,
réseau dispersif selon deux directions orthogonales (lunettes), une seconde lentille et un écran placé
dans le plan focal image pour assurer une observation à l’infini. Droite: PSF polychromatique observée
sur l’écran.

distribution spectrale d’énergie localement sur le ciel, voir Figure B.5. Cela est très prometteur pour
l’étude des avant-plans astrophysiques comme la poussière galactique.
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Figure B.5: Intensité en fonction de la fréquence pour 5 sous-bandes reconstruites dans chaque large
bande autour de 150 (rouge) et 220 (bleu) GHz dans un pixel donné du ciel. Les régions grisées
correspondes aux fréquences en dehors des bandes observées par QUBIC. Le résultat est montré pour
deux pixels (étoile rouge), l’un dans un patch centré sur le centre galactique et l’autre dans le patch
que QUBIC observera centré en [0, -57 deg]. Points rouges et bleus: ciel d’entrée convolué par le lobe
de l’instrument. Les zones rouge et bleu clair représentent les régions à 68% C.L. pour un corps noir
modifié reconstruit à l’aide d’un Monte-Carlo par chaînes de Markov à partir des données simulées et
des matrices de covariance entre sous-bandes. Les cartes sont en µK CMB et Nside = 32.

Aussi, l’imagerie spectrale donne la capacité de détecter la présence résiduelle d’avant-plans dans
les données. En effet, au contraire du CMB, les avant-plans émettent différement en fonction de la
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fréquence11. Ainsi, la mesure du rapport tenseur-sur-scalaire va varier d’une sous-bande à l’autre dans
le cas où il reste du signal autre que celui du CMB.

Nous avons également étudié en détail la structure du bruit qui est tout à fait particulière à
l’interférométrie bolométrique. Nous avons notamment mis en lumière la corrélation spatiale du bruit
au niveau des cartes qui est dûe à la présence des pics secondaires dans le lobe. Nous avons aussi
montré que les sous-bandes accolées sont anti-corrélées entre elles.

Enfin, nous avons pour la première fois appliqué cette technique à des données de calibration en
parvenant à reconstruire l’image d’une source ponctuelle de calibration émettant à 150 GHz dans cinq
sous-bandes.

B.7 Conclusion

La détection des modes B primordiaux dans la polarisation du fond diffus cosmologique est un enjeu
majeur pour la cosmologie observationnelle, notamment parce que cela permettrait de contraindre les
modèles d’inflation cosmique. La collaboration QUBIC a fait le choix original de l’interférométrie
bolométrique et a développé ce concept tout à fait nouveau. Ce type d’instrument permet une mesure
précise des effets systématiques grâce à la self-calibration et offre aussi la possibilité de faire de l’imagerie
spectrale.

Pendant ma thèse j’ai travaillé sur ces deux aspects. Mon travail autour de la calibration de
l’instrument, en particulier la mesure des franges d’interférence, ouvre la voie au développement d’une
procédure complète de self-calibration. Aussi, la mesure du lobe du télescope est une étape cruciale pour
la fabrication des cartes du ciel et ce travail doit être poursuivi. La démonstration et la caractérisation
de l’imagerie spectrale est fondamentale et montre tout le potentiel de cet instrument. L’étape suivante
est d’inclure la séparation de composantes, c’est-à-dire la discrimination entre CMB et avant-plans
astrophysiques, dans notre pipeline d’analyse. Enfin, les premières observations du ciel vont notamment
permettre de tester l’imagerie spectrale sur des sources astrophysiques.

11à condition de travailler en Kelvin CMB.
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