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dans le domaine des Sciences de l’ingénieur

Florian Sven Schanzenbächer
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Directeur de thèse : Prof. Fabien Leurent, ingénieur général des Ponts, des Eaux et Forêts
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Abstract en français

Cette thèse propose des modèles mathématiques de trafic et des lois de contrôle pour
des lignes de métro à fourche. Les modèles sont basés sur ceux des lignes linéaires (sans
fourche) dans [12, 14]. La dynamique du trafic des trains est modélisée par un système
à événements discrets, avec deux contraintes. La première impose une borne inférieure
au temps de parcours et au temps de stationnement. La deuxième impose une borne
inférieure au temps de sécurité entre deux trains. Un modèle de la dynamique du trafic
sur la fourche est proposé, ainsi que des lois de contrôle pour les temps de parcours
et les temps de stationnement, en fonction de l’affluence voyageur. La plupart des
modèles sont écrits comme systèmes linéaires en algèbre max-plus (algèbre des polynômes
matricielles), ce qui permet la caractérisation du régime stationnaire et la dérivation
analytique des diagrammes de phase du trafic.

Dans tous les modèles de ce manuscrit, la ligne de métro est discrétisée (dans l’espace)
en segments (cantons). Dans le modèle du Chapitre 3, les temps de parcours, de sta-
tionnement et de sécurité respectent des bornes inférieures, imposées par segment. La
dynamique du trafic hors fourche est modélisée comme dans le cas des lignes linéaires
dans [12, 14]. Une contribution principale du Chapitre 3 est le modèle de la dynamique
à la fourche. Il est montré que le modèle de la dynamique du trafic de la ligne entière
(avec fourche) est linéaire en algèbre max-plus et que la dynamique atteint un régime
stationnaire. Le taux de croissance moyen asymptotique de la dynamique, interprété
ici comme intervalle de temps moyen asymptotique, est dérivé analytiquement. Il est
donné en fonction des temps de parcours, de stationnement et de sécurité, ainsi que
du nombre de trains et de la différence entre le nombre de trains sur les branches. Ce
résultat permet d’obtenir des diagrammes de phases de la dynamique du trafic, appelés
diagrammes fondamentaux, comme en trafic routier. Huit phases de trafic sont dérivées
analytiquement et interprétées en termes de trafic. Basé sur cette dérivation analytique,
des lois de contrôle macroscopiques sont proposés pour la régulation du trafic sur une
ligne à fourche.

Le Chapitre 4 propose une extension du modèle du Chapitre 3. Dans la première
section, les temps de parcours et de stationnement du modèle de la dynamique du trafic
sur une ligne linéaire [12, 14] sont modélisés en fonction de l’affluence voyageur. Il est
montré que la dynamique reste linéaire en algèbre max-plus. Le régime stationnaire
est caractérisé et le taux de croissance moyen asymptotique de la dynamique (intervalle
moyen asymptotique) est dérivé analytiquement en fonction des paramètres de la ligne
(bornes inférieures aux temps de parcours, de stationnement et de sécurité), ainsi que
du nombre de trains et de l’affluence voyageur. Des marges sur les temps de parcours
peuvent être utilisées pour réaliser des temps de stationnement en fonction de l’affluence
voyageur. Dans la deuxième section du Chapitre 4, cette extension est appliquée au
modèle pour une ligne à fourche, combinant ainsi les modèles des Chapitres 3 et 4
(première section). Les phases de trafic sont dérivées analytiquement, caractérisées par
l’intervalle moyen asymptotique en fonction des paramètres de la ligne ainsi que du
nombre de trains, de la différence entre le nombre de trains sur les deux branches, et de
l’affluence voyageur.
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Finalement, le Chapitre 5 propose trois cas de simulation sur la ligne 13 du métro
parisien (avec fourche). Le premier cas montre le contrôle macroscopique du nombre de
trains en fonction de l’affluence voyageur. Le deuxième cas montre le contrôle macro-
scopique du nombre de trains sur les branches face à une perturbation sur les temps de
parcours et/ou les temps de stationnement. Le troisième cas considère un état intitial
avec des intervalles perturbés et simule la dynamique avec des temps de stationnement et
de parcours contrôlés (régulés) en fonction de l’affluence voyageur. Le contrôle proposé
garantit une harmonisation des intervalles sur l’ensemble de la ligne.

Mots-clés: Théorie du trafic, systèmes à événements discrets, physique du trafic,
modélisation du trafic ferroviaire, contrôle du trafic.
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Abstract in English

This thesis proposes mathematical traffic models and control laws for metro lines with
one junction. The models are based on the ones developed for linear metro lines (without
junction) in [12, 14]. The train dynamics are described with a discrete event traffic model.
Two time constraints are considered. The first one imposes lower bounds on the train run
and dwell times. The second one fixes a lower bound on the safe separation time between
two trains. A model of the train dynamics on the junction is proposed, as well as control
laws for the train run and dwell times, as a function of the passenger travel demand.
Most of these models are written as linear systems in the max-plus algebra (polynomial
matrix algebra), which permits the characterization of the stationary regime, and the
derivation of traffic phase diagrams.

In all the models considered here, the metro line is discretized (in space) in a number
of segments (blocks). In the model of Chapter 3, the train run, dwell, and safe separation
times are lower-bounded on every segment. The train dynamics out of the junction are
modeled as in the case of linear metro lines [12, 14]. One of the main contributions
of Chapter 3 is the model of the train dynamics on the junction. The train dynamics
model for the entire line (with the junction) is shown to be linear in the max-plus
algebra and is shown to reach a stationary regime. The asymptotic average growth
rate of the train dynamics, interpreted as the asymptotic average train time-headway, is
derived analytically. It is given as a function of the train run, dwell, and safe separation
times, and of the total number of trains, as well as the difference between the number
of trains on the two branches. This derivation permits to obtain phase diagrams of
the train dynamics, called here fundamental diagrams, as in road traffic. Eight traffic
phases of the train dynamics are derived analytically and interpreted in terms of traffic.
Moreover, based on the closed-form solutions of the traffic phases, macroscopic control
laws are proposed for the traffic on a line with a junction.

Chapter 4 proposes an extension of the model of Chapter 3. In the first section, the
model of the train dynamics on a linear metro line [12, 14] is extended with the run
and dwell times as functions of the passenger travel demand. It is shown that the train
dynamics remain linear in the max-plus algebra. The stationary regime is characterized,
and the asymptotic average growth rate of the train dynamics (asymptotic average train
time-headway) is derived analytically, as a function of the parameters of the line (lower
bounds on the run, dwell, and safe separation times), and of the total number of trains,
as well as the passenger travel demand. It is suggested that margins on the train run
times can be used to extend train dwell times at platforms in case of train delays, which
improves the robustness of the train dynamics. In the second section of Chapter 4, this
extension is applied to a line with a junction, combining the models of Chapter 3 and
Chapter 4 (section 1). Similarly, the traffic phases of the train dynamics are derived
analytically, giving the asymptotic average train time-headway as a function of the
parameters of the line and of the total number of trains, the difference between the
number of trains on the two branches, as well as the passenger travel demand.

Finally, Chapter 5 proposes three simulation cases illustrated on metro line 13 of
Paris (with one junction). The first case illustrates the macroscopic control on the num-
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ber of trains depending on the passenger travel demand volume. The second case shows
the macroscopic control of the number of trains on the branches in case of a perturbation
on the train travel times. The third case gives a simulation of the demand-dependent
train dynamics with perturbed initial time-headways and shows how an additional dwell
time control harmonizes the train time-headways.

Keywords: Traffic flow theory, discrete event systems, physics of traffic, railway traffic
modeling, traffic control.
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Université Gustave Eiffel - GRETTIA
14-20 Boulevard Newton
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Chapter 1

Introduction

This chapter is an introduction to the thesis. It covers in a comprehensive
form, a situation of the thesis in its context, followed by a presentation of the
environment in which it has been realized. Furthermore, the scientific aims
and methodology of the thesis, as well as its main scientific and technological
contributions are explained, before detailing the outline of the manuscript.

Context

Role of the Metro in the Context of Cities

Worldwide, the number of people having been moving to cities exceeds the number
of those having been going to rural areas, the well known phenomena is referred to as
urbanization. This ongoing process leads, on the one hand, to a drain of the countryside.
On the other hand, cities keep on growing further and become dense agglomerations.
These urban zones generally have a compact city center. In the context of European
cities, this is the historical city center, in those of American cities, this is the Central
Business District. With the increasing population, large housing areas are built on the
outskirts of the city. The suburbs of American cities are characterized by widespread
single housing, whereas in European and Asian cities, very dense housing blocks with a
small apartment size dominate.

To keep the metropoles functioning and their people moving, efficient means of trans-
portation are important. Without these, the further growth of cities would reach a
natural upper limit at some point. This limit is reached when the time their inhabi-
tants spend daily in transportation exceeds a certain value. Transportation incorporates
here all different means, from walking, cycling, over individual mobility to public trans-
portation. In the context of a widely spread metropole, people require motorized means
of transportation to cover the long distances. The first way, individual mobility, has
recently received a lot of attention in sciences and the public opinion thanks to the tech-
nology of driverless and electric vehicles. However, not only from an environmental point
of view, this is only the second best solution. The innovations cited above do not change

1



2 CHAPTER 1. INTRODUCTION

the fact that the capacity of the car-road-system is significantly lower than the one of
the train-railway-system. The capacity, however, is crucial for metropoles where the
passenger travel demand is very high, especially in European and Asian cities where the
population is extremely dense. Today, congestion can be observed in many metropoles,
because the road network is no longer able to cope with the increasing number of cars.
Finally, particularly European cities, for example Paris, try nowadays to limit their sur-
face occupied by cars, by giving them back to pedestrians, bicycles or by converting
them to parks. To fight congestion, public transportation can play an important role in
the future.

The metropolitan (metro) is often underground and therefore independent of road
traffic conditions. Moreover, the signaling system allows the trains to run at high speed
independently of the driver’s visibility. Therefore metros offer short travel times to pas-
sengers, and have consequently known a great success in metropoles over all continents.
Metros are urban railway systems characterized by a dense network and a large number
of stations where two neighbored ones are often in walking distance. For example, the
Paris metro network counts 16 lines and with a total length of nearly 220 km. Taking
the example of Paris metro line 1, the average distance between two stations is of 688 m,
with 25 stations over a total line length of 16.6 km. The lines are operated at a very
high frequency, especially in peak hour. For example, on Paris metro network, the train
time-headway is as low as 90 sec on some lines during peak hour.

The easy access, the short waiting and the quick travel times have made in many
cities the metro to the inhabitants’ preferred transportation mode. First implemented
in London in 1863, similar systems have been opened all over the continent, for example
in Paris in 1900 and in Berlin in 1902. The construction of new metro systems went
on in the second half of the same century, for example in Beijing (1969), in Munich
(1971), in Vienna (1978) and still continues today. More recently, the metropolitan has
been implemented in many Asian metropoles, such as Hong Kong (1975) and Singapore
(1987). From there, it now arrives in Oceania: Auckland, the biggest city of New Zealand
plans to open its first metro line in 2024. Perfectly adapted to dense metropoles, the
metro has known a less important development in the often very dispersed American
cities and their suburbs.

A further development of the historic signaling system is the fully automated metro.
Since the beginning of the 21st century, many new metro lines are designed as driverless
systems. Since the metro networks in Asian cities are much more recent than those in
Europe, most of the automated lines can today be found there. Singapore, for example,
has automated all of its metro lines. Fully automated systems present several advantages
compared to systems with drivers.

Firstly, the travel time decreases, especially because trains follow the speed profile
between the stations more accurately. Secondly, dwell times are known to be shorter and
well respected on automated lines. Consequently, the regularity increases considerably,
making of the metropolitan a metronome of the city [16]. In regular time-intervals,
metros run on their line, taking passengers on board and pitching them into the pulsing
life of their metropoles. As an ultimate consequence, a higher average speed and an
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increased regularity maximize the throughput or train frequency of a line, which allows
increase the capacity offered to passengers. Obviously, this is a key issue in metropoles
with a very high passenger travel demand. The first fully automatic metro in the world
is based on the Véhicule Automatique Léger (automatic light vehicle) technique and was
opened in Lille, France, in 1983. Paris opened the first automated line, metro line 14,
in 1998. Since then, the Paris metro operator Régie Autonome des Transports Parisiens
(RATP) has also automated metro line 1 in 2012. The automation of metro line 4 is
under way.

Existing Traffic Simulation Tools at RATP

Development and operations of metros require stakeholders to a priori visualize and
evaluate possible modifications and extensions to the system. Public transportation
operators, infrastructure operators or private traffic engineering companies realize these
studies by means of simulation.

At RATP, simulations are done by the departments Etudes générales, Developpe-
ment, Territoires (EDT) and Mâıtrise d’Ouvrage des Projets (MOP). EDT conducts
simulations of the passenger travel demand. The MATYS entity of the Génie Ferrovi-
aire (GEF) of MOP is in charge of train and traffic simulations on metro and Réseau
Express Régional (RER) lines.

On the train simulation side, MATYS simulates train speed profiles, based on the
rolling stock and the infrastructure. Together with the dwell times, they are the basis
for timetable construction. Both dwell times and the timetable design is done by the
metro and RER operations departments, Métro, Transport et Services (MTS) and RER.

The RER is a suburban train network, connecting the outskirts of Paris to the city
center at a high frequency. For example, the RER line A runs from the west to the east
of the Paris region and has a length of 109 km, with 46 stations and an average distance
between two consecutive stops of 2.36 km. The time-headway during peak hour is of
140 seconds.

On the traffic simulation side, MATYS uses the railway simulator OpenTrack. Based
on a detailed infrastructure and vehicle characteristics model, a given timetable can be
simulated. Furthermore, MATYS uses an API version of OpenTrack which allows to
communicate with the simulator in real-time. Once a simulation has begun, the train
positions, among further parameters, can be accessed at any moment. Based on these
data, third party tools, which are external to the simulator, allow to modify dwell times
and speed profiles of specific trains.

This makes it possible to reproduce precise perturbation scenarios. The recalculated
dwell times and speed profiles are then sent back to OpenTrack. They are directly taken
into account in the current simulation. For example, the effect of passenger accumulation
on the platform due to a perturbation can be simulated. For trains running with a long
train time-headway, extended dwell times can be calculated. Moreover, different driver
characteristics can be reproduced.

On the one end, traffic simulation allows to visualize different scenarios with a high
level of detail. The thus obtained results, however, only hold for the simulated case.
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To obtain results on the global system behavior, many simulations have to be run, with
varying input parameters. In the context of traffic engineering, traffic simulators have
big success because of their flexibility with regard to possible applications.

On the other end, a system can be studied with a model which is simple enough
to be mathematically analyzed. However, the hypotheses taken to simplify the model,
cause that the latter no longer represents the real world system. Therefore, the choice
between simulation on the one side, and analytic modeling on the other side, has to be
made carefully, depending on the application.

Overview of the Thesis

Objective & Methodology

In railway operations, in case of a perturbation, the aim of the traffic controller is to
re-establish the predefined timetable by recovering delays. This strategy is convenient
for linear lines without junction, even though further control actions, such as canceling
a train service, or re-assigning drivers and crew can be beneficial and further enhance
the service offered to passengers.

For a line with a junction, traffic control in case of perturbations is a more complex
problem. The branches which converge at one point influence each other. In case of
saturation, the train passing order and the number of trains on each branch have to
be controlled. The problem becomes even more complex in case of a high passenger
affluence which may further disturb train dwell times.

The principal aim of this thesis is to bring about, in a first step, a general mathe-
matical model of the traffic dynamics of a metro line with a junction. General means
that the model can be applied to any line with a junction, satisfying some hypotheses.
The traffic dynamics are modeled as a discrete event system in such a way that they
linear in the max-plus algebra. The application of the theory of max-plus linear systems
allows to study the properties of the system in the stationary regime, interpreted in this
thesis as the physics of traffic of a metro line with a junction.

In a second step, the results of the stationary regime characteristics of the traffic on
a metro line with a junction, are used for the control of the system. The application of
the mathematical model is twofold, on the one side to strategic planing and scheduling
and on the other side to the dynamic control of the system.

To illustrate its possible applications, metro line 13 of Paris is modeled. The metro
line has one central part and two branches, connected with a junction. The branches have
different lengths. The southern terminus of the line, common to all trains, is Châtillon
– Montrouge. The first branch ends at Saint-Denis – Université, the second one at Les
Courtilles (Asnières – Gennevilliers). The total length is of 24.3 km with an average
distance between two stations of 776 m. In 2017, 131.4 million passengers used the line
which places it on 3th position of all the lines of the Paris metro network.

The final aim is to provide the operator RATP, on the basis of this thesis, three tools
for application. The first one allows to conduct a theoretic analysis of the capacity of a
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metro line with a junction. The second one allows to calculate an optimal train passing
order at the convergence, depending on the real-time traffic conditions. The third one
depicts the asymptotic average train frequency as a function of the parameters of the
line and of the passenger travel demand. This allows to optimize the train schedule
depending on the passenger travel demand.

Contributions

The thesis is situated between applied mathematics and engineering sciences, in par-
ticular modeling, simulation and optimization. It is a mathematical contribution to
transportation engineering. The modeling consists in describing the principal parame-
ters and variables of the dynamics of a metro line with a junction.

An one-over-two operation of the junction in the stationary regime is assumed. Tak-
ing the example of the convergence, one train entering the central part from branch 1
is then followed by one train from branch 2. This one-over-two rule also applies to the
divergence.

The line is discretized in segments or blocks, representing the signaling system. The
dependency of the parameters and variables is described by mathematical equations.
Even though the focus is on how train move on in time, the system is described as a
sequence of discrete events, where an event is a departure from a given segment. More
precisely, these are the counted train departure times from a given segment.

In a first version in Chapter 3, the trains are supposed to respect given lower bounds
on the train dwell times at the platforms, the run times on each segment, and the safe
separation times between the two consecutive trains. The train dynamics are written on
two constraints, one on the sum of run and travel time, and one on the safe separation
time.

The series of constraints is non-linear in standard algebra but can be represented in a
linear matrix form in max-plus algebra. The properties of max-plus linear systems in the
stationary regime are well known. A main reference is Baccelli et al. [1]. One of the first
applications of the theory of discrete event systems to scheduling in transportation is
from the Dutch Olsder [30]. The research on discrete event systems and the application
of the theory to transportation have contributed to the implementation of a synchronized
timetable on the Dutch railway network.

The max-plus linear model of the train dynamics and the application of the theory
from [1] allows to derive closed-form solutions for the asymptotic average growth rate
of the system in the stationary regime. It is interpreted as the asymptotic average
train time-headway on the branches and on the central part of the line. It depends
on different parameters. The graphical representation is the fundamental diagram of a
metro line. It is already well known in road traffic. It represents the dependency between
the macroscopic variables throughput, speed and traffic density.

For the case of a metro line with a junction, the fundamental diagram gives the rela-
tion between the macroscopic variables train number, the difference between the number
of trains on the branches, asymptotic average train time-headway and the parameters
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of the line (train run, dwell and safe separation times). It is new and has first been
presented by Schanzenbächer et al. [33, 39].

In a second version in Chapter 4, the dwell times are modeled as a function of the
passenger travel demand. This allows to take into account the effect of an accumulation
of passengers on the platform in case of a perturbation, within a margin on the train
run times. To guarantee the stability of the system, a control on the train run times is
introduced which cancels the effect of dynamic demand-dependent dwell times.

With the combination of demand-dependent dwell times and controlled run times,
the system can be written linearly in the max-plus algebra. From the application of
the theory of max-plus linear systems, closed-form solutions for the asymptotic aver-
age growth rate of the system are derived. It is interpreted as the asymptotic average
train time-headway and represented as the fundamental diagram, see Schanzenbächer et
al. [34, 35, 37, 38]. The fundamental diagram depicts the relation between the macro-
scopic variables asymptotic average train frequency, passenger travel demand, and run
time margin. The asymptotic average train frequency depends furthermore on the dif-
ference between the number of trains on the branches, as well as the line parameters.

Chapter 5 demonstrates the possible applications of the traffic model and the fun-
damental diagram, which are twofold. Firstly, the fundamental diagram can be used
for strategic planing and scheduling. For scheduling, the main control variable is the
number of trains and the difference between the number of trains on the branches. The
variable of the difference between the number of trains on the branches is new, it has
been derived from the model for lines with a junction. The fundamental diagrams also
serves for theoretic analysis of the capacity of a metro line.

With regard to dynamic traffic control, several control laws are derived from the
traffic model. First of all, following the optimal difference between the number of trains
on the branches in real-time can be realized by instantaneously changing the train passing
order at the convergence, depending on the online realized train dwell and run times.

Moreover, the demand-dependent train dwell and the controlled run times of the
model can be applied in real-time, which guarantees demand-dependent stable traffic
operations. This allows to extend dwell times in case of a long headway to take into
account the passenger accumulation. Combined with the run time control, an amplifi-
cation of an initial delay on a train is excluded and the traffic remains stable. Clearly,
dwell times which are optimized depending on the number of passengers willing to alight
and board while guaranteeing the stability of the traffic, represents an important ame-
lioration in service quality and reliability offered to travelers.

Finally, an enhanced dynamic control is presented for a linear line, see Schanzenbächer
et al. [36]. In case of a perturbation on the train time-headway, an temporary additional
control on the dwell times is applied which re-harmonizes the train headways on the line
while avoiding excessive train dwell times. This control is calculated depending on the
headway of each train and limits over-extension of dwell times due to high passenger
affluence. The strength of the control increases with the train time-headway. While
applied, train dwell times are no longer optimized only with regard to passenger accu-
mulation, but are a compromise between passenger comfort and train regularity. It is
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shown, that its application leads to a harmonization of the train headways on the line.
Once achieved, the additional control can be released and dwell times are again fully
passenger demand-dependent. This temporary additional control might refrain some
passengers from boarding, but harmonizestrain time-headways which is, on the longer
term, beneficial for passengers.

Line Diagnostic and Traffic Control Tools Developed

Three tools have been developed for RATP. The first one allows to analyze the capacity
of any metro line with a junction. Taking as input the timetable of the line, it is based on
the theoretic dwell times and run times. Furthermore, the signaling system is taken into
account by the safe separation times for each segment. With these parameters, the tool
visualizes the fundamental diagram of the line. The fundamental diagram depicts many
important informations for the operation of the line. First, the capacity of the line, and
second, the optimal number of trains on the central part and on the branches. Optimal
means that the frequency is maximized for a given total number of trains. Taking
furthermore into account a passenger demand profile, the required train frequency in
order to serve the passenger demand is calculated. The tool automatically checks if the
capacity of the line allows to realize this frequency. If this is the case, the fundamental
diagram allows to recalculate the corresponding optimal number of trains on the central
part and on the branches.

The second tool allows to control the train passing order at the convergence in real-
time. Its inputs are the same type of parameters as for the preceding tool. Precisely
these are the train dwell times, run times and safe separation times. In the contrary
to above, the parameters are on-line measured. For example, every time a train stops
at a station or passes by a segment, the corresponding dwell and run time is updated
which permits to depict the fundamental diagram in real-time. Depending on the on-line
dwell and run times and to realize a certain required frequency, the optimal number of
trains on the central part and the two branches is recalculated. If the optimal difference
between the number of trains on the branches diverts, the train passing order at junction
is temporarily modified until the new optimal difference has been retrieved. Modifying
the operation of the convergence means, instead of realizing an one-over-two operation
(one train from branch 1 followed by a train from branch 2 and so forth), a number of
consecutive trains from one branch are entering the central part following each other.

The third tool is for demand-dependent scheduling with demand-dependent dwell
times and controlled run times. It is based on up-to-date Origin-Destination matrices
which allow to calculate the passenger travel demand. Together with minimum dwell
and run times, safe separation times and the run time margin chosen by the operator,
the tool calculates demand-dependent dwell and run times and depicts the corresponding
asymptotic average train frequency on the line.
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Structure of the Manuscript

The outline of the manuscript is as follows. In Chapter 2, some Background on Railway
Traffic Control, Max-plus Algebra and Traffic Flow Theory is presented. The chapter
covers publications on railway traffic operations towards the derivation of fundamental
diagrams, real-time control of railway systems, including optimal control approaches
of the train dynamics on a metro line and operations research approaches for complex
rescheduling problems. Moreover, the bases of max-plus algebra are recalled and some
main applications to railway networks are presented. The chapter finishes with the most
recent works studying metro line dynamics.

In Chapter 3, The Fundamental Diagram of a Metro Line with a Junction is pre-
sented. This is the first version of the traffic model for a metro line with a junction
and the main results are closed-form solutions of the average train time-headway and
frequency depending on many parameters. The analytic solutions are displayed in their
graphical form, the fundamental diagrams. Eight traffic phases of the train dynamics can
be distinguished, two free flow phases, two congested branches phases, two congestion
phases, a capacity and a zero flow phase. Based on the theoretic results, macroscopic
control laws for the number of trains depending on the traffic state and the passenger
travel demand are derived.

Chapter 4, The Effect of the Passenger Travel Demand on the Traffic presents the
extended version of the traffic model, with demand-dependent dwell times and a run
time control which guarantees traffic stability. Once again, closed form solutions for the
average train headway and frequency, as well as their graphical form, the fundamental
diagrams, are presented. Here, they depend furthermore on the passenger demand and
a run time margin chosen by the operator which allows to command optimal dwell times
taking into account the passenger affluence. The fundamental diagrams allow an in-
depth study of how all these parameters influence the traffic on a metro line with a
junction.

Chapter 5, the Simulation of Feedback Traffic Control , is presented. The simulation
results show how the theoretic results from Chapter 3 and 4 can be used for traffic
control on the tactical (number of trains) and on the operational level (dwell and run
times).

The thesis finishes with a Conclusion in Chapter 6, providing a resume of the
manuscript, as well as a brief discussion of its limitations and an outlook with regard to
open future research.



Chapter 2

Background on Railway Traffic
Control, Max-plus Algebra and
Traffic Flow Theory

Based on a bibliographical analysis, this chapter presents an overview of rail-
way traffic control approaches, max-plus algebra and traffic flow theory for
railway systems. Special attention is given to recent publications contribut-
ing to the derivation of the fundamental diagram of railway traffic. The fun-
damental diagram, already widely studied for vehicular traffic, describes the
relation between the macroscopic variables traffic flow, density and speed. In
the last years, research has been done on extending this concept to railways.

2.1 Real-time Railway Traffic Control

Optimal Control of the Train Dynamics on a Metro Line

This thesis presents, for the first time, a traffic model and feedback control for metro
lines with a junction. In the first part, the train dynamics are supposed to respect given
lower bounds on train dwell, run and safe separation times. In the second part, train
dwell and run times are controlled depending on the passenger travel demand. Feedback
control for metro lines without junction, including demand-dependent control, has been
subject to previous research.

Van Breusegem et al. [3] have done pioneer work proposing a traffic regulation har-
monizing train time-headways. The authors have studied metro loop lines. These lines
are a closed system with a constant number of trains. Their model can also be applied
to linear metro lines, connecting two terminus stations. By modeling the turnaround
at the two terminus stations, the circuit is closed and the system can be seen as a loop
line. The authors of [3] have modeled dwell and travel times as a function of the pas-
senger travel demand. This means, one affects a longer dwell time to a delayed train, to
take into account the passenger accumulation on the platform. Consequently, on these

9
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lines, train delays are accumulated from circuit to circuit. The main contributions of the
work are, first, a discrete event traffic model in state space formulation which proves the
natural instability of such lines with demand-dependent dwell times and, second, state
feedback control laws in order to guarantee the stability of the system. The authors
of [3] have written the train dynamics on the departure times of a train from a given
station (discrete events). The departure times depend on the constant train run time
per inter-station and the demand-dependent dwell time per station. Supposing one train
per inter-station, the dynamics are linear. Based on the linear dynamics, a proposed
control minimizes a quadratic performance index leading to a linear quadratic prob-
lem. The performance index represents the operations objectives. It minimizes, first,
the deviation between the headways over the line and, second, the delay of each train.
Simulation results show the interest of the proposed control. It guarantees stability and
harmonizes the train positions over the line while keeping the traffic flowing. However,
possible applications are limited. The dynamics are only linear (a necessary condition
for the control) in the case where there is one train per inter-station at a time. This is
not a realistic condition, since on many metro lines, there can be more than one train
per inter-station at a time. Therefore, segments and the signaling system have to be
explicitly modeled.

On this basis, Fernandez et al. [15] have come up with a linear quadratic predictive
control for metro loop line traffic regulation. The control minimizes a cost function over
a time horizon. The function takes into account the deviation of each train from the
timetable and the headway deviations between two consecutive trains. Furthermore, a
main operation constraint is taken into account here. The control actions on the train
dwell time are limited. With a short computing time, the linear quadratic predictive
control is efficient for real-time application. The presented method allows to realizes both
timetable and headway train regulation. It is particularly interesting for the headway
regulation when aiming to guarantee a high commercial speed. As above, the train
dynamics are written on the departure of a train from a platform. Run times and dwell
times are controlled. The latter are passenger demand-dependent. The underlying dwell
time model has been published in Martinez et al. [28]. New, compared to the dynamics
from above [3], is that a minimum time-interval is respected between the arrival of a train
at a given platform and the departure of the preceding train from this same platform.
Most interesting is the predictive control which offers a lot more possibilities than the
simple dwell time control proposed by van Breusegem et al. Here, the control actions
can be holding a train at a platform or shortening its dwell time. Similarly, a train
can be accelerated or slowed down in the inter-station. The quadratic cost function
allows to weight the four types of control to give a preference to any one of the actions.
Furthermore, the timetable and the headway deviation are weighted such that a privilege
can be given to either timetable control, for example during off peak hour, or headway
control, during peak hour.

Schanzenbacher et al. [32] have applied this model predictive control approach to a
part of the RER line A in the greater Paris area. This is Europe’s commuter railway line
with the highest passenger affluence, 1.3 million travelers per workday. It is operated at
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a very high train frequency and dwell times are particularly demand-sensitive. In case
of a delay, they tend to increase significantly with the accumulation of passengers on the
platform. These characteristics make it interesting for the application of the predictive
control approach proposed by the authors from above. Here, the overall aim was to
ensure a freely flowing traffic by an optimization of train dwell times. The idea was to
ensure a green wave such that a train, once departed from a station, is not perturbed
until arriving at the following platform. Based on the green wave, a control action on
the dwell time is calculated. This control minimizes a quadratic cost function. The
cost function represents two traffic regulation objectives. First, the harmonization of
the intervals on the line, in order to avoid interaction between consecutive trains and
passenger accumulation on the platform. Second, the minimization of trains delays and
control actions. This allows to guarantee a certain throughput on the line and minimizes
the risk of very long dwell times.

A working group at the State Key Laboratory of Rail Traffic Control and Safety at
the Beijing Jiaotong University continues to develop extensions to the train dynamics
model of van Breusegem [3] cited above, and extends its applications. Recently, Li
et al. [26] have designed a robust model predictive controller for train traffic control on
metro loop lines. As in [3], the model can also be applied to a linear metro line where the
turnaround is modeled. The number of trains is considered to be constant. There can be
maximum one train per inter-station. Especially this constraint imposed by the model
limits its practical relevance. As a new element, the typically uncertain passenger arrival
flow at the platforms are taken into account. A state-feedback controller is presented
which optimizes some cost function subject to safety constraints. The paper investigates
the possible applications of a robust model predictive control and explores its limits. It
is shown, that in case of a large number of stations and trains, the computation time
becomes too long, so that a distributed robust model predictive control might perform
better.

Another extension by the same laboratory is presented by the authors of [25]. The
problem of minimizing train time-headway and timetable deviations with overloaded
passenger flow is studied. The authors consider a metro-type linear railway with an
ordered train set. The train dynamics are developed accordingly the discrete event
model in [3]. Consequently, there can be maximum one train per inter-station at a
time. New to the dynamics is their dependence on the number of boarding and alighting
passengers. Moreover, the train travel time takes into account a stochastic variable
modeling possible perturbations on the train dwell and run time. In order to stabilize
the traffic on the line, to minimize the variance on the headway and to increase the
commercial speed, a joint optimal dynamic train regulation and a passenger flow control
are developed. Therefore, a coupled state-space model for the train departure time and
the passenger load dynamics is presented. By applying model predictive control, the
optimal train and passenger flow control strategy minimizing headway and timetable
deviations while increasing the commercial speed, is found. It is shown that the solution
can be computed efficiently using a quadratic programming algorithm. The authors
show that the approach is interesting for delays up to a certain limit, whereas for large
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delays, creating a new timetable is more promising, leading to a rescheduling problem.
The latest work of the group is by Li et al. [27] and focuses once again on traffic

control for metro loop lines facing frequent minor disruptions. The number of trains is
considered to be constant and the trains run periodically on the line. Still based on [3],
the train dynamics are modeled considering the departure of a train from a given station.
As above, the number of trains must be smaller than the number of stations, there can
be maximum one train per inter-station. With a constant number of trains running in
a cycle, the number of stations in the model constantly increases. The authors aim to
guarantee traffic stability, recover delays and ensure headway regularity. The proposed
method is a train controller which dynamically adjusts train run and dwell times. It
does not necessitate explicit time margins. Therefore, the metro line can at any time
be operated under the optimal (minimum) number of trains which serves the passenger
travel demand. The main contribution is the efficient design of the controller. The
optimization problem is split into a set of quadratic programming problems. They can
be solved in short time which makes the algorithm interesting for real-time applications.

Recently, Moaveni et al. [29] have presented a discrete event nonlinear traffic model
for metro loop lines, based on deviations from the nominal departure times. New to
the models from above is that it models buffer times and knock-on delays between two
consecutive trains. They can often be observed in high frequency metro lines where
trains run close to each other. Consequently, already small perturbations effect several
trains and delays propagate through the line by a so called cascade effect. The model also
includes uncertainty with regard to the passenger demand evolution over the day. The
nonlinear model is approximated by a linear model which allows to design a robust model
predictive controller aiming to maximize passenger satisfaction by minimizing timetable
and headway deviations. The model has overcome the shortcoming of the above models,
modeling interaction between the trains and reproducing knock-on delays. However, it
keeps the deficit that signaling system and block system are not explicitly modeled. In
fact, the train dynamics are written on the train departures from the platforms, that
means the model can represent maximum one train at a time between two consecutive
stations. The authors present simulation results for a real metro line which suggests the
effectiveness of the controller as well as a graphical representation of the delay rate as a
function of the number of passenger on the platforms and the headway.

Operations Research for Rescheduling Problems

For traffic control on more complex railway layouts, such as open lines with several
junctions, stations and networks, another approach has been subject to research in the
last years. Based on Operations Research techniques, a lot of constraints, related to
infrastructure, timetable, rolling stock and the crew can be taken into account. The
utilization of solvers allows to find an optimal solution for the problem in generally
relatively short time. The solution here is optimal with regard to a criteria chosen which
can represent many objectives, for example maximizing the throughput, the number of
passengers, or minimizing their waiting time. Obviously, this is particularly interesting
for railway systems, which are rather timetable- than headway-operated. Cacchiani et
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al. give in their review [4] a good overview over the state of the art of algorithms for
real-time railway management and distinguish three sub-problems which are timetable,
rolling stock and crew rescheduling. Approaches exist for rescheduling one of these sub-
problems exist, as well as for integrated timetable, rolling stock and crew rescheduling.

First of all, for the Train Timetable Rescheduling (TRR) problem, the decision vari-
ables are mainly the routing of trains, the departure and arrival times of the trains at the
stations and the train order on the tracks. The problem is constraint by the track capac-
ity, where a safe separation time has to be respected between two consecutive trains. The
latter is usually modeled by the so called Blocking Time Stairway. The TRR is typically
close to the NP-complete combinatorial no-wait job shop scheduling problem. Many
approaches focus on deterministic online rescheduling, this means the new timetable is
calculated in one optimization, supposing availability of perfect deterministic informa-
tion. Corman et al. [8] present an overview over recent online rescheduling approaches
considering the stochastic nature and uncertainty of the problem. In this case, the
timetable is continuously optimized every time updated information is available.

Secondly, if severe delays or a disruption occurs on a railway line or a network
and the traffic has been rescheduled, the original rolling stock allocation might be no
longer feasible. In this case, the rolling stock has to be rescheduled, too. Aspects to be
considered are allocation of rolling stock to lines, providing sufficient capacity to serve
the passenger demand and end-of-day balances at stations. The problem can be solved
by combinatorial optimization techniques.

Finally, if the rolling stock has been rescheduled, the crew has to be reallocated, too.
It deals with assigning drivers and commercial crews to train services. The original crew
schedule is taken as an input to minimize the difference between the new and the original
schedule. Typical constraints to be taken into account concern work time restrictions,
the aim that the crew should finish their duty at their home depot and respect of break
times.

An integrated train and passenger disruption management for the case of urban
railways has been presented by Besinovic et al. [2]. In case of a major perturbation, trains
are automatically rescheduled and passenger flows controlled, which is important in case
of a very high passenger travel demand as it can be observed in many metropoles. The
objective of the model is to minimize passenger delays, the number of passengers denied
from boarding and to limit the number of rescheduling services and the recover time. The
decisions which can be taken include short-turning, canceling and rerouting trains as well
as controlling passenger flows including regulating station access. This paper presents
for the first time an integrated train and passenger rescheduling algorithm particularly
adapted to high passenger travel demand. The capacity of the platforms is explicitly
taken into account. The traffic management model for train rescheduling is essentially
based on works by Caimi et al. [5] who has introduced rescheduling based on extended
conflict graph models. Based on a model predictive control framework, a rescheduling
algorithm for large station areas is proposed. The model assigns deterministic blocking
stairways to trains under a number of constraints, including connections and platform
constraints.
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2.2 Introduction to Max-plus Algebra

Max-plus Linear Discrete Event Systems

This thesis presents a new application of max-plus algebra to railway traffic modeling
and control.

Max-plus algebra [1] is the algebraic structure (R ∪ {−∞},⊕,⊗) which denotes the
set R with the zero element {−∞} and the two basic operations ⊕ and ⊗. The operator
⊕ is defined as the maximization

a⊕ b = max(a, b) (2.1)

and the operator ⊗ is defined as the addition

a⊗ b = a+ b (2.2)

for a, b ∈ R ∪ {−∞}. The zero element with respect to the maximization ⊕ is

ε = −∞.

We have

a⊕ ε = a = ε⊕ a

and the absorbing property with regard to the product

a⊗ ε = ε = ε⊗ a.

The identity element with respect to the addition ⊗ is e. We have

a⊗ e = a = e⊗ a.

Note that the natural order on this structure may be defined using the ⊕ operation:
a ≤ b if a⊕ b = b.

Extending the basic operations to matrices, consider a set of square matrices where
A and B are two max-plus matrices of size n×n. Then, the addition ⊕ and the product
⊗ are defined by:

(A⊕B)ij := Aij ⊕Bij = max(aij , bij),

(AB)i,j = (A⊗B)ij :=

n⊕
k

[aik ⊗ bkj ] = max
k=1,...,n

(aik + bkj) ∀i, j.

The zero and the unity matrices are also denoted by ε and e respectively.

Consider the dynamics of a homogeneous p-order max-plus system with a family of
max-plus matrices Al

x(k) =

p⊕
l=0

Al ⊗ x(k − l). (2.3)
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Define γ as the backshift operator applied on the sequences on Z: γlx(k) = x(k− l), ∀l ∈
N. Then (2.3) can be written

x(k) =

p⊕
l=0

γlAlx(k) = A(γ)x(k), (2.4)

where A(γ) =
⊕p

l=0 γ
lAl is a polynomial matrix in the backshift operator γ; see [1, 19]

for more details.
µ ∈ Rmax \ {ε} is said to be a generalized eigenvalue [6] of A(γ), with associated

generalized eigenvector v ∈ Rnmax \ {ε}, if

A(µ−1)⊗ v = v, (2.5)

where A(µ−1) is the matrix obtained by evaluating the polynomial matrix A(γ) at µ−1.
A directed graph denoted G(A(γ)) can be associated to a dynamic system of type (2.4).

For every l, 0 ≤ l ≤ p, an arc (i, j, l) is associated to each non-null (6= ε) element (i, j)
of Max-plus matrix Al. A weight W (i, j, l) and a duration D(i, j, l) are associated to
each arc (i, j, l) in the graph, with W (i, j, l) = (Al)ij 6= ε and D(i, j, l) = l. Similarly, a
weight, respectively duration of a cycle (a directed cycle) in the graph is the standard
sum of the weights, resp. durations of all the arcs of the cycle. Finally, the cycle mean
of a cycle c with a weight W (c) and a duration D(c) is W (c)/D(c). A polynomial matrix
A(γ) is said to be irreducible, if G(A(γ)) is strongly connected.

The findings presented in this thesis are mainly based on the application of the
following result of the max-plus algebraic eigenvalue problem.

Theorem 1. [1, Theorem 3.28] [19, Theorem 1] Let A(γ) = ⊕pl=0Alγ
l be an irreducible

polynomial matrix with acyclic sub-graph G(A0). Then A(γ) has an unique generalized
eigenvalue µ > ε and finite eigenvectors v > ε such that A(µ−1) ⊗ v = v, and µ is
equal to the maximum cycle mean of G(A(γ)), given as follows: µ = maxc∈CW (c)/D(c),
where C is the set of all elementary cycles in G(A(γ)). Moreover, the dynamic system
x(k) = A(γ)x(k) admits an asymptotic average growth vector (also called cycle time
vector here) χ whose components are all equal to µ.

Note that a matrix is irreducible if its associated graph is strongly connected. Seeing
A as the adjacency matrix of a directed graph, A is strongly connected if and only if
every vertex can be reached from any other vertex. Accordingly to Schutter et al. [40],
the max-plus algebraic eigenvalue can be interpreted as follows. If µmax is the maximal
average weight over all elementary cycles of the strongly connected graph G(A(γ)), then
µmax is a max-plus algebraic eigenvalue of A. Moreover, its max-plus algebraic eigenvalue
is unique. An elementary cycle is a cycle in which no vertex appears more than once,
except for the initial vertex which appears exactly twice.

Railway Applications of Max-plus Algebra

The application of max-plus algebra to railway systems has been studied by a research
group at TU Delft. Recently (2016), Kersbergen et al. [22] have presented works on rail-
way traffic management using switching max-plus linear systems. The authors present
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a model for railway traffic and a model predictive controller for real-time traffic man-
agement on a network scale with a periodic train timetable. The main objective is
to maximize delay recovery by modifying train departure times, breaking connections,
splitting trains and redistributing trains in case of multiple tracks. The railway system
is represented by a switching max-plus linear model. Run and dwell times are updated
in real-time, the model is then used to determine the optimal control actions by solving
a Mixed Integer Linear Programming problem. The authors have applied the algorithm
to the Dutch railway network.

Before (2012), van den Boom et al. [42] have discussed the rescheduling of trains on
a network in case of perturbations using a max-plus linear system description. Based on
a study of the system matrices, control variables are designed such that they modify the
matrices in a convenient way. Constraints for scheduling trains on separate tracks for
slow and fast traffic, per direction, and for joining and splitting trains are considered.
The approach assumes a periodic timetable, this means after one cycle time, the trains
pass again at a given station. A station is a point where trains can possibly change
order, including junctions. The train dynamics are then written on departure times of
a train and within a given cycle of the timetable, from a station. These departure times
satisfy a number of constraints, including timetable with nominal run and dwell times,
as well as connections from other trains. Minimum headways between two consecutive
trains at the departure and arrival to a station are also taken into account. In case
of a single track railway, a waiting time with regard to trains running in the opposite
direction is applied. A train departures as soon as the maximum of the constraints is
satisfied. This system is transformed to max-plus algebra. It is shown that it becomes
linear which allows to analyze the system matrices. It is shown that all control actions,
including changing the train order, canceling connections, joining and splitting trains
can be described by the entries of a control vector to the system. The model can be
used to compute the optimal control with a model predictive control approach.

Earlier (2009), Goverde et al. [20] have used max-plus linear system theory to analyze
the stability of a railway timetable. In the contrary to the above used deterministic
theory, their work is based on stochastic max-plus linear systems. Therefore, the authors
generalize the spectral theory of deterministic max-plus linear systems to stochastic
ones. More precisely, the concept of stability of deterministic max-plus linear systems is
developed further towards stability analysis considering stochastic process times, which
allows to analyze timetable stability. Primary delays on the railway network are modeled
using general probability distributions. Delay propagation because of infrastructure and
timetable constraints are calculated from the stochastic recursive equations modeling
the train dynamics.

Already in 2004, Heidergott et al. [21] have shown that the asymptotic growth rate
of a max-plus system, well known for the deterministic case, exists under some weak
conditions for their stochastic max-plus linear systems.

Among the first applications of discrete event systems to railway transportation is
the one from Olsder [30] (1989). The theory developed in this work has played a role
with for the implementation of a synchronized timetable on the Dutch railway network.
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2.3 Traffic Flow Theory

Standard Algebra Modeling Approaches

Approaches exist which aim to understand the behavior of a traffic system in its steady
state. Extensive research on this field has been done for vehicular traffic in the past.

Well known for simple road links, fundamental diagrams depict the relation between
vehicle flow, density and speed. Typically, two traffic phases are distinguished. Firstly,
a free flow phase, where the vehicle flow or throughput, that is the number of vehicles
which pass by a certain point within a time interval, increases with the vehicle density.
The denser getting traffic reaches a critical value where the throughput is maximized.
From this point on, the vehicle flow decreases continuously with an increasing density
and congestion occurs. Moreover, the vehicle flow is speed-dependent. A high speed at
low densities increases the vehicle flow. In the contrary, approaching the critical density,
a reduced speed allows to increase the maximum vehicle throughput. The fundamental
diagrams for vehicular flows allow to obtain a good understanding of the physics of traffic
on road links. On this basis, traffic control laws for optimal speed or optimal density
with regard to the vehicular flow can be derived. These well-known relations have been
published in various forms, for example by Daganzo [9].

Research on traffic flow theory for urban networks has gathered interest recently. So
called aggregated fundamental diagrams (also macroscopic fundamental diagram, net-
work fundamental diagram) have been developed and allow, in the line with fundamental
diagrams for simple links, to have an idea of the physics of traffic of some urban road
networks. The relationship between vehicular traffic flow, density and speed on a net-
work scale has been subject to a number of publications. Daganzo [10] has presented
physical models for an aggregated description of traffic flow on urban networks. Based
on real traffic data from Yokohama (Japan), Geroliminis et al. [17] have shown that
for this case and the specific traffic data, an aggregated fundamental diagram exists.
More recent works by Geroliminis et al. [18] have observed scatter phenomena for the
flow-density relation for high densities. The authors of [18] name some properties an
urban network should satisfy so that aggregated fundamental diagrams with low scatter
exist. Most importantly, an aggregated fundamental diagram with lower scatter can
be expected for a homogeneous spatial distribution of the vehicle density. Most recent
applications of aggregated fundamental diagrams for traffic control are from Keyvan-
Ekbatani et al. [23, 24].

Studying the physics of railway traffic by means of fundamental diagrams has only
been subject to very recent research by Corman et al. [7], Saidi et al. [31] and Seo et
al. [41].

The first work is from Seo et al. [41] (2017) have proposed a simplified analytic traffic
model for urban rail transit lines taking into account the effect of the passenger travel
demand. The model proposes a dwell time depending linearly on the number of passen-
ger willing to board and assumes infinite capacity of the trains. The train dynamics are
modeled based on Newell’s car-following model, assuming trains to travel at maximum
speed while respecting a safe separation distance. Both train congestion and passenger
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Figure 2.1: Train flow, density and passen-
ger flow from a very simplified analytic traf-
fic model [41].

Figure 2.2: Analytic fundamental diagram
for a railway line, different safe separation
intervals and moving block [7].

boarding congestion have been modeled. The main result are fundamental diagrams
for the stationary regime of the traffic in an idealized environment. Main simplify-
ing assumptions are constant train cruising speeds, safe separation intervals, passenger
boarding flows, as well as an equal distance between two consecutive stations, trains
stopping at all stations, a constant headway between two trains following each other
and the same passenger arrival flow to all platforms. The fundamental diagram depicts
train flow over train density and passenger arrival flow, see Figure 2.1. The existence of
two traffic phases is shown: a free flow phase, where the flow increases with the density,
and a congestion phase. From the optimal density on, where capacity is reached, train
flow decreases with an increasing train density. The effect of the passenger demand is
double: first, for a fixed train density, an increasing passenger demand decreases the
train flow. Second, the optimal density is passenger demand dependent and decreases
with an increasing demand.

More recently, Corman et al. [7] (2019) have studied the idea of macroscopic descrip-
tions of railway operations. As for vehicular traffic, fundamental diagrams can help to
derive optimal control actions maximizing train speed and flow. Therefore, the authors
investigate the possibility to derive equations for macroscopic variables describing the
railway traffic, as speed, density and flow. In [7] this is done by closed-form solutions
whenever possible, or using a railway simulator for more complex cases. In railway,
many microscopic modeling approaches exist allowing to reproduce with an increasing
level of detail, the dynamics of one single train, that is acceleration, speed, breaking,
position etc. Macroscopic approaches exist, but mainly allow to represent the average
conditions of the system, interesting for example for long-term strategy planing pur-
poses. Wendler [43] has presented a popular approach using queuing theory. However,
they are not able to represent the large scope of traffic states (free flow, capacity, conges-
tion) characterized by some average condition parameter. Here, fundamental diagrams
for railways can close the gap.

The authors of [7] aim to understand physics of railway traffic on a line without
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junction, this means there is neither a merge, nor a divergence. The train dynamics
including dwell times are supposed to be independent of the passenger travel demand,
trains respect given travel times from the timetable. The authors assume a moving block
system, where trains follow each other in absolute braking distance such that trains can
always stop in distance between themselves and their predecessor. Moreover, a safe sep-
aration time is considered, modeling traffic conditions in case the traffic gets very dense.
Consequently, trains cannot exceed a maximum speed such that they can potentially
stop, respecting the safe separation distance, before running into the preceding train.
The breaking distance depends on the vehicle speed. Therefore, acceleration, decelera-
tion and maximum speed of the trains are given, firstly, by the vehicle characteristics,
and secondly, by the traffic conditions. The moving block system considered is one of
the most interesting innovations in railway, but has not been implemented on many lines
yet. In fact it is easier to model then a block system, since car-following models from
road traffic can potentially be applied.

In [7], for the case where all trains run with uniform speed, a diagram giving the
dependency of train flow and train density for different safety margins, is presented, see
Figure 2.2. The authors distinguish two traffic phases: a free flow phase and a congestion
phase. At their intersection, the train flow is maximized for the critical train density.
Precisely, in the free flow phase, the flow increases linearly with the train density. If
the traffic gets very dense, congestion occurs and the flow decreases. Whereas in the
first phase, flow depends linearly on the density, in the congestion phase the flow is a
quadratic function of the density since the braking distance depends quadratically on
the train speed. Finally, the maximum train flow depends on the safety distance. As it
can be seen in the figure, a shorter safe separation distance allows to increase the train
flow. Note that reducing the train speed allows to reduce the safe separation distance.
The authors suggest that the maximum train flow occurs under reduced speed. The
results have been verified by simulation. The simulation results do not show congestion
since the dispatching headway (corresponding to vehicle density), can, due to opera-
tional constraints, not decrease under a certain limit which would allow to enter in the
congestion phase. However, the results allow to identify a region where the train flow
increases up to its maximum, under a reduced train speed.

In a parallel work, Saidi et al. [31] (2019) have also recently begun to develop fun-
damental diagrams for urban railway lines, using a data approach. They have derived a
new mesoscopic train-following model from empirical track circuit data from a metro line
in Cambridge, Massachusetts. The authors have analyzed train delays between consecu-
tive trains around the bottleneck of the line. The resulting model, based on microscopic
analysis of the train operations, is used to predict the behavior of the system from any
initial state on. The authors claim their model to be more accurate than simplified
macroscopic analytical railway traffic models with closed-form solutions for macroscopic
traffic variables such as train speed, density and flow. Compared to microscopic train dy-
namics models which can be exploited by simulation, their results allow a more accurate
system behavior analysis and traffic state prediction.

Precisely, based on train operations data including train speed and dwell time vari-
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Figure 2.3: Train travel depending on the
position of the preceding train for block sys-
tem [31].

Figure 2.4: Train throughput, dispatch-
ing rate, speed and delay from traffic data
(metro Cambridge), block system [31].

ability, the authors of [31] derive a train following model for MBA Red Line, metro
Cambridge, with a fixed block signaling system. On this line with the block system, the
speed of a train depends on the location of the preceding train, see Figure 2.3. Note
that if block j + 1 is occupied, block j needs to be clear. Trains entering block j − 1
cannot enter with full speed but receive a reduced speed code. This alerts the driver and
makes sure that it can stop before block j. Still in Figure 2.3, the authors have studied
the relation and derived a model for the dependency between travel time on block j − 1
just before the bottleneck station, and the position of the lead and the following train.
Their train interaction is given by the overlap time and accounts for the effect of signals,
block boundaries, speed codes and train characteristics. As it is shown in the graph, as
soon as trains start to interact (positive overlap time), the travel time on block j − 1
depends linearly on the overlap.

The authors of [31] have applied this empirically derived model to all block sections
of the line to generated macroscopic variables curves, see Figure 2.4. The throughput (or
train flow) and the delay per train, depending on the dispatching rate (or initial head-
way), that is the number trains dispatched from the terminus station per time interval,
related to the train density. Furthermore, they have analyzed the throughput and have
shown that it first depends linearly on the dispatching rate. For high dispatching rates,
the maximum throughput is constrained by the bottleneck of the line. Further increasing
the initial dispatching rate does therefore not further increase the throughput, but train
delays due to congestion around the bottlenecks. For the relationship between train
throughput and dispatching rate (red curve in Figure 2.4), a free flow phase can be dis-
tinguished, where the flow depends linearly on the initial headway. From a certain point
on, the flow can still be increased, but typically by reducing train approaching speeds,
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which leads to an increasing train delay (blue curve in Figure 2.4). This is coherent with
the result presented by Corman et al. [7] presented above. However, in the contrary to
the analysis conducted by [7], the train flow reaches a horizontal plateau phase, where,
with an increasing dispatching rate, the train flow remains at its maximum level. This
result might be due to the fact that the authors here have modeled the specificity of a
railway block signaling system. This is particularly interesting with regard to the results
presented in this thesis, where a similar plateau phase can be found.

Max-plus Algebra Modeling Approaches

The latest works on metro traffic modeling and control are from Farhi et al. [14, 12, 13,
11]. The authors have proposed a new approach using max-plus algebra which allows
to derive the traffic phases of the train dynamics describing the physics of traffic of a
metro line in the stationary regime.

Farhi et al. [12] have proposed a novel model of the train traffic dynamics on a
linear metro line. The main idea is to model the dynamics as a discrete events system,
where an event is the departure of a train from a segment. Therefore, the metro line
is discretized in space into a number of segments. A segment is a part of the line in
which there can be at maximum one train at a time. This coincides with the blocks of a
standard railway signaling system. The discrete events are the counted train departures
in time from a given segment. The departures are counted separately on every segment.
The new approach presented by Farhi et al. relaxes the shortcoming common to some
approaches cited above based on van Breusegem et al. [3], who do not explicitly model
the block system. The model presented in [12] can represent as many trains per inter-
station as there are blocks. The authors apply the max-plus traffic modeling approach to
a linear metro line without junction. The train dynamics are written on two constraints.
One constraint is on the travel time (= sum of run + dwell time) of a train. Trains
are supposed respect given lower bounds on the train run and dwell times. Another
constraint is on the safe separation time which is enforced between two trains following
each other.

The traffic model is a max-plus linear analytical model which allows to derive closed-
form solutions for the asymptotic average growth rate of the system, interpreted as the
average train time-headway on the line, accordingly to Theorem 1. The main result,
illustrated in Figure 2.5 for the case of a linear metro line, consists in a fundamental
traffic diagram that links the average train frequency at any point on the line, to the
number of trains on the line. Three traffic phases of the train dynamics can be identified.
Firstly, a free flow traffic phase, where the observed train frequency increases linearly
with the number of trains. This traffic phase is bounded by a horizontal maximum
frequency phase, corresponding to the capacity of the line. In this phase, the average
frequency is independent of the number of trains on the line. Finally, for very dense
traffic, congestion occurs and the frequency decreases with an increasing number of
trains. The fundamental diagram can be used to identify the minimum number of trains
for which the average train frequency is maximized. It lies at the intersection between
the first and second traffic phase.
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Figure 2.5: Asymptotic average train fre-
quency on a linear metro line over number
of trains [14].

Figure 2.6: Dwell time w, dynamic interval
g, headway h on a linear metro line over
number of trains [14].

Figure 2.6 shows the variation of train dwell time (w), dynamic interval (g) and
headway (h, all in seconds), accordingly to the traffic phases of Figure 2.5. The dynamic
interval is by definition the time interval during which there is no train at a given
platform. Consequently, the headway is the sum of dynamic interval and dwell time.
It can be seen, that the dwell time is constant in the free flow phase, but increases
in the maximum frequency phase when the average frequency still remains constant.
This can be interpreted as a stop and go effect around the bottleneck of the line. Not
surprisingly, dwell times increase significantly in the congestion phase. Furthermore, the
dynamic interval decreases in the free flow phase with an increasing number of trains.
It is minimal at the end of the maximum frequency phase and in the congestion phase.
It can be seen that the headway is minimal and constant in the maximum frequency
phase. However, with an increasing number of trains, the dynamic interval between two
consecutive trains decreases at the cost of an increasing dwell time.

Farhi et al. [13] have also presented another model, where the train dwell times
are a function of the passenger travel demand. Precisely, the train dwell times take
into account the number of passenger on the platform, which depends on the average
passenger travel demand and on the dynamic interval of the train. Since the dynamic
interval is the time in which there is no train at the platform, passengers accumulate
over this interval. The authors have shown that the train traffic dynamics on a linear
line, with demand-dependent dwell times and without any further control of the train
dwell and/or run times, are naturally unstable. The instability of these systems has
already been pointed out in the initial works of metro traffic modeling and control by
van Breusegem et al. [3].



Chapter 3

The Fundamental Diagram of a
Metro Line with a Junction

This chapter presents a discrete event traffic model of the train traffic dynam-
ics on a metro line with a junction where trains respect given lower bounds
on train dwell, run and safe separation times. It is shown that the model can
be written linearly in the max-plus algebra of polynomial matrices. The sys-
tem reaches a stationary regime, with an unique asymptotic average growth
rate, which is derived and interpreted as the average train time-headway
on the line. From this result, eight traffic phases of the train dynamics are
distinguished for a line with a junction and interpreted in terms of traffic.
They are represented in a phase diagram, called the fundamental diagram
of a metro line with a junction. Finally, macroscopic feedback control laws
for the number of trains on each part of the line are derived from the funda-
mental diagram. They allow to control the number of trains with regard to
a change in the passenger travel demand volume or to respond to important
disturbances on the line, in case included time margins are insufficient to
recover perturbations.

3.1 A Model of the Train Traffic Dynamics on a Metro
Line with a Junction

3.1.1 Train Traffic Dynamics Modeling

This thesis presents a series of traffic models for linear metro lines or lines with one
junction. All models are mathematical representations of the train traffic dynamics on
the metro line. The dynamics considered here describe the movement of the trains which
are supposed to respect given lower bounds on train run, dwell and safe separation times.

The entire work is based on a modeling approach developed in [11, 12, 13, 14] for
metro train traffic dynamics on linear lines. A metro line is called linear if it is delim-
ited by exactly two terminus stations, which are connected by two paths, one in each

23
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direction. There can be a certain number of platforms on the line between the terminus
stations. Their number and localization can be different in the two directions.

A metro line is said to have one junction if there are three terminus stations and
the line includes a central part and two branches. The branches and the central part
are connected via a junction node which is composed of a divergence and convergence.
There are two paths between the junction node and the three terminus stations, one in
each direction, see Figure 3.1. At the divergence, trains go from the central part onto
the branches, while at the convergence trains pull into the central part, coming from the
branches. Trains running on the divergence and the convergence do not run on the same
track and do therefore not cross each other.

In the model for a line with a junction proposed here, the metro line is discretized in
space in a number of segments. A segment is a part of the line in which can be maximum
one train at a time. Two segments are delimited by a node. The number of segments
on the central part, written n0 is supposed to be even. This can be achieved by an
adequate discretization. There can, but does not necessarily have to be, a platform on a
node. Two consecutive platforms can be separated by several segments. Segments and
nodes are indexed as in Figure 3.1.

Finally, trains stop at all stations. The system is closed and is fully observable.

Notations

In order to model the metro train traffic dynamics on a line with one junction, consider
the following notations.

u ∈ U = {0, 1, 2} indexes the central part if u = 0, branch 1 if u = 1,
branch 2 if u = 2.

J(u) the set of indexes on part u of the line, J(u) = {1, 2, . . . , nu}.
(u, j) indexes a node and a segment, in which can be maximum one train at

a time. Segment (u, j) connects nodes (u, j − 1) and (u, j).
nu the number of segments on part u of the line.
mu the number of trains on the part u of the line.

b(u,j) ∈ {0, 1}. It is 0 (resp. 1) if there is no train (resp. one train) on
segment j of part u, in the intial state (= at time zero).

b̄(u,j) = 1− b(u,j).
dk(u,j) the kth departure time from node j, on part u of the line. Notice that

k does not index trains, but counts the number of train departures.
ak(u,j) the kth arrival time to node j, on part u of the line.

rk(u,j) the kth run time (of a train) on segment (u, j) (between nodes j − 1
and j of part u).

wk(u,j) = dk(u,j)− a
k
(u,j) the kth dwell time on node (u, j) (separating segments

(u, j) and (u, j+ 1)); wk(u,j) = 0 in case there is no platform, wk(u,j) > 0
in case there is a platform.
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Figure 3.1: Schema of the metro line with one junction and the corresponding notation.
The nodes and segments are indexed (u, j) where a segment with u = 0 is on the central
part, a segment with u = 1 is on branch 1, and a segment with u = 2 is on branch 2. For
u = 0, j ∈ {0, 1, . . . , n0}, for u = 1, j ∈ {0, 1, . . . , n1} and for u = 2, j ∈ {0, 1, . . . , n2}.
The nodes (1, n1) and (2, n2) are superposed with node (0, 0) as it is the case for the
nodes (1, 0) and (2, 0) with node (0, n0).
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tk(u,j) = rk(u,j) + wk(u,j) the kth travel time from node j − 1 to node j on part
u of the line.

gk(u,j) = ak(u,j)− d
k−1
(u,j) the kth dynamic interval, between the departure of the

preceeding train and the arrival of the following train at the same node
j on part u.

hk(u,j) = dk(u,j) − d
k−1
(u,j) = gk(u,j) + wk(u,j) the kth train departure time-headway

between the departure of the preceding train and the departure of the
following train at the same node j on part u (note that hk(u,j) = gk(u,j)
if wk(u,j) = 0).

sk(u,j) = g
k+b(u,j)
(u,j) − rk(u,j) the kth safe separation time between the departure

of the preceeding train at node j and the departure of the following
train at the preceding node j − 1.

The (asymptotic) averages on j for each part u and on k of the variables are indexed
u. Then ru, wu, tu, gu, su and hu denote the average run, dwell, travel, dynamic interval
and safe separation times and the asymptotic average train time-headway, respectively.

It is easy to check the following relationships:

gu = ru + su, (3.1)

tu = ru + wu, (3.2)

hu = gu + wu = ru + wu + su = tu + su. (3.3)

Underline notations are used to note minimum bounds of the corresponding variables.
Then r(u,j), w(u,j), t(u,j), g(u,j)

and s(u,j) denote respectively minimum run, dwell, travel,

dynamic interval and safe separation times.

One-over-two operational rule of the junction.
An one-over-two operational rule at the junction applies in the steady state.

• At the divergence, odd departures from the last node of the central part (0, n0) go
to branch 1, even ones go to branch 2.

• At the convergence, odd departures from the first node of the central part (0, 0)
come from branch 1, even ones come from branch 2.

Consequently, in two k steps of the dynamics, that is an odd and an even departure from
the junction, the difference between the number of trains on the branches is constant.

Here in Chapter 3, trains are supposed to respect minimum dwell, run and safe
separation times, which holds for example for automated metro lines. This already
allows some conclusions on the train traffic dynamics on a line with one junction, which
will be used for macroscopic traffic control. In Chapter 4, a margin on the run times is
introduced, which will allow microscopic traffic regulation.

In the following, based on these hypotheses and the notations, the train traffic dy-
namics on a metro line with one junction are modeled. Three train dynamics are distin-
guished: the ones out of the junction, the ones on the divergence and the ones on the
convergence.
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Train Traffic Dynamics Model

Train Traffic Dynamics out of the Junction

Below, the train traffic dynamics on a metro line with one junction are modeled. Two
main constraints are considered to describe the dynamics out of the junction.

1 - A constraint on the run and dwell times

• The kth train departure from node j (of any part of the line) depends on the kth

train departure from node j − 1 in case there was no train on segment j at time
zero; and it depends on the (k− 1)th train departure from node j− 1 in case there
was a train on segment j at time zero. Between two consecutive departures, a
minimum travel time of t(u,j) is respected.

dk(u,j) ≥ d
k−b(u,j)
(u,j−1) + t(u,j), ∀k ≥ 0, u ∈ U , j ∈ J(u) \ {0} and j 6= 1 for u = 1, 2.

(3.4)

2 - A constraint on the safe separation time

• The kth train departure from node j is constrained by the (k−1)th train departure
from node j + 1 plus a minimum safe separation time s(u,j+1) in case there was no

train on segment j+1 at time zero; and it is constrained by the kth train departure
from node j + 1 plus a minimum safe separation time s(u,j+1) in case there was a
train on segment j + 1 at time zero.

dk(u,j) ≥ d
k−b̄(u,j+1)

(u,j+1) + s(u,j+1), ∀k ≥ 0, u ∈ U , j ∈ J(u) \ {n0, n1 − 1, n2 − 1}. (3.5)

It is assumed that a train departs from node j out of the junction, as soon as the
two constraints (3.4) and (3.5) are satisfied.

dk(u,j) = max

{
d
k−b(u,j)
(u,j−1) + t(u,j), d

k−b̄(u,j+1)

(u,j+1) + s(u,j+1)

}
. (3.6)

This assumption holds furthermore for all couples of constraints on the divergence and
on the convergence which will be given below.

Train Traffic Dynamics on the Divergence

As explained at the beginning of this chapter, it is assumed that trains leaving the central
part of the line and pulling into the branches respect the following one-over-two rule.
Odd departures go to branch 1 while even departures go to branch 2. More precisely,
in equation (3.8) it is considered that departures from the last node of the central part
(0, n0) are constrained by the preceding departure pulling into the same branch (and
not by the departure of the train which has been just in front in the central part).
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With this assumption, the constraints on the divergence can be written as follows.
The kth departures from the central part:

dk(0,n0) ≥ d
k−b(0,n0)

(0,n0−1) + t(0,n0), ∀k ≥ 0, (3.7)

dk(0,n0) ≥


d

(k+1)/2−b̄(1,1)
(1,1) + s(1,1) if k is odd

d
k/2−b̄(2,1)
(2,1) + s(2,1) if k is even

(3.8)

The kth departures from the entry of branch 1:

dk(1,1) ≥ d
(2k−1)−2b(1,1)
(0,n0) + t(1,1), ∀k ≥ 0, (3.9)

dk(1,1) ≥ d
k−b̄(1,2)
(1,2) + s(1,2), ∀k ≥ 0. (3.10)

The kth departures from the entry of branch 2:

dk(2,1) ≥ d
2k−2b(2,1)
(0,n0) + t(2,1), ∀k ≥ 0, (3.11)

dk(2,1) ≥ d
k−b̄(2,2)
(2,2) + s(2,2), ∀k ≥ 0. (3.12)

Train Traffic Dynamics on the Convergence

Similarly to the train traffic dynamics on the divergence, it is assumed that trains en-
tering the central part from the two branches respect the following one-over-two rule.
Odd departures at node (0, 0) towards the central part correspond to trains coming from
branch 1 while even ones correspond to trains coming from branch 2. At the last nodes
on the branches (1, n1 − 1), (2, n2 − 1), there are two different possibilities to model the
dynamics, which are explained in the following.

Convergence model 1.
In this convergence model, it is considered that departures from the last nodes on the
branches (1, n1− 1), (2, n2− 1) are constrained by a departure from node (0, 0), realized
by a train from the same branch. For example, a departure from (2, n2−1) must respect a
departure at (0, 0) realized by a train from this branch 2 plus a minimum safe separation
time s(2,n2). Similarly, a departure from (1, n1 − 1) must respect a departure at (0, 0)
realized by a train from this branch 1 plus a minimum safe separation time s(1,n1).
Consequently, there are two positions to stock trains at node (0, 0), one for trains from
branch 1 and one for trains from branch 2. The one-over-two junction operations rule is
applied directly at node (0, 0). The model is then the following.

The kth departures from the central part:

dk(0,0) ≥


d

(k+1)/2−b(1,n1)

(1,n1−1) + t(1,n1) if k is odd

d
k/2−b(2,n2)

(2,n2−1) + t(2,n2) if k is even

(3.13)
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dk(0,0) ≥ d
k−b̄(0,1)
(0,1) + s(0,1), ∀k ≥ 0, (3.14)

The kth departures from the exit of branch 1:

dk(1,n1−1) ≥ d
k−b(1,n1−1)

(1,n1−2) + t(1,n1−1), ∀k ≥ 0, (3.15)

dk(1,n1−1) ≥ d
2k−1−2b̄(1,n1)

(0,0) + s(1,n1), ∀k ≥ 0. (3.16)

The kth departures from the exit of branch 2:

dk(2,n2−1) ≥ d
k−b(2,n2−1)

(2,n2−2) + t(2,n2−1), ∀k ≥ 0, (3.17)

dk(2,n2−1) ≥ d
2k−2b̄(2,n2)

(0,0) + s(2,n2), ∀k ≥ 0. (3.18)

This model is used throughout this thesis.

Convergence model 2.
Another possibility is to suppose that departures from the last nodes on the branches
(1, n1 − 1), (2, n2 − 1) are constrained by a departure from node (0, 0), realized by a
train from the other branch. For example, a departure from (2, n2 − 1) must respect a
departure at (0, 0) realized by a train from branch 1 plus a minimum safe separation
time s(2,n2). Similarly, a departure from (1, n1 − 1) must respect a departure at (0, 0)
realized by a train from branch 2 plus a minimum safe separation time s(1,n1). This
means, a train can only depart from the last node on the branches once both segments
(1, n1) and (2, n2) are free. Consequently, there can be maximum one train at a time on
the segments (1, n1), (2, n2).

The kth departures from the exit of branch 1, only for the safe separation constraint,
to compare to (3.16):

dk(1,n1−1) ≥ d
2k−2b̄(1,n1)

(0,0) + s(1,n1), ∀k ≥ 0. (3.19)

The kth departures from the exit of branch 2, only for the safe separation constraint,
to compare to (3.18):

dk(2,n2−1) ≥ d
2k+1−2b̄(2,n2)

(0,0) + s(2,n2), ∀k ≥ 0. (3.20)

Example.
Table 3.1.1 depicts the evolution of the train departure counter index k for both

convergence models. Model 1, that is equations (3.16), (3.18) are represented in the
last column. Model 2, that is equations (3.19), (3.20) are represented in the second last
column. It becomes clear that there is difference of one k-step between the two models
(see last two columns). In model 1, departures from the last nodes on the branches are
constraint by a train from the same branch. In model 2, departures from the last nodes
on the branches are constraint by a train from the other branch.
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k in d(1,n1−1) d(2,n2−1) d(0,0) (model 2) d(0,0) (model 1, used here)

1 - 2− 2b̄(1,n1) 1− 2b̄(1,n1)

- 1 3− 2b̄(2,n2) 2− 2b̄(2,n2)

2 - 4− 2b̄(1,n1) 3− 2b̄(1,n1)

- 2 5− 2b̄(2,n2) 4− 2b̄(2,n2)

Table 3.1: The train departure counter index of the safe separation constraint of the
convergence (before the changing of variables), for convergence model 1 and convergence
model 2.

If there is a train, at time 0, on segment (2, n2), this train has to wait for one train
from branch 1 realizing the first departure at node (0, 0). Therefore, the train which is
on (2, n2) in the initial state, realizes the second departure at node (0, 0). In both cases,
on the convergence (as on the divergence), odd departures always correspond to trains
from (to) branch 1 and even departures are trains from (to) branch 2, independently of
the initial state.

3.1.2 Changing of Variables and New Train Traffic Dynamics

In the preceding part, the train traffic dynamics on a metro line with one junction have
been modeled. The main variable is the kth departure time from a node (u, j). Most
importantly, the index k counts the number of train departures, but does not index a
specific train. Since the system considered here has an one-over-two operated junction
and two branches, the number of train departures indexed k on the central part, is in
average twice the one on the branches. To illustrate this, consider the dynamic given
by (3.9). The departure from the first node on branch 1 dk(1,1) is given as a function of

the departure from the last node from the central part d
2k−1−2b(1,1)
(0,n0) . The two sequences

do not have the same growth rate. Indeed, the growth rate of d(0,n0) is in average double
the one of d(1,1). This is a consequence of the one-over-two rule at the junction.

In order to have all the sequences of the train dynamics growing with the same speed,
the following change of variables is introduced:

δk(0,j) = dk(0,j), ∀k ≥ 0, ∀j (3.21)

δ2k
(1,j) = dk(1,j), ∀k ≥ 0, ∀j (3.22)

δ2k
(2,j) = dk(2,j), ∀k ≥ 0, ∀j. (3.23)

The train dynamics after changing of variables are rewritten as follows.

New Train Traffic Dynamics out of the Junction after Changing of Variables

The train traffic dynamics out of the junction (3.4) and (3.5) are rewritten as follows.
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On the central part, it is sufficient to replace d with δ:

δk(0,j) ≥ δ
k−b(0,j)
(0,j−1) + t(0,j), ∀k ≥ 0, j 6= 0, (3.24)

δk(0,j) ≥ δ
k−b̄(0,j+1)

(0,j+1) + s(0,j+1), ∀k ≥ 0, j 6= n0. (3.25)

The dynamics on the branches are rewritten as follows:

δ2k
(u,j) ≥ δ

2k−2b(u,j)
(u,j−1) + t(u,j), ∀k ≥ 0, u ∈ {1, 2}, j 6= 0, 1, (3.26)

δ2k
(u,j) ≥ δ

2k−2b̄(u,j+1)

(u,j+1) + s(u,j+1), ∀k ≥ 0, u ∈ {1, 2}, j 6= nu − 1, nu. (3.27)

New Train Traffic Dynamics on the Divergence after Changing of Variables

The dynamics on the divergence are rewritten as follows.
The kth departures from the central part as given by equations (3.7) and (3.8):

δk(0,n0) ≥ δ
k−b(0,n0)

(0,n0−1) + t(0,n0), ∀k ≥ 0, (3.28)

δk(0,n0) ≥


δ
k+1−2b̄(1,1)
(1,1) + s(1,1) ∀k = 2p− 1, with p ∈ N,

δ
k−2b̄(2,1)
(2,1) + s(2,1) ∀k = 2p, with p ∈ N.

(3.29)

The kth departures from the entry of branch 1 as given by equations (3.9) and (3.10):

δ2k
(1,1) ≥ δ

2k−1−2b(1,1)
(0,n0) + t(1,1), ∀k ≥ 0, (3.30)

δ2k
(1,1) ≥ δ

2k−2b̄(1,2)
(1,2) + s(1,2), ∀k ≥ 0. (3.31)

The kth departures from the entry of branch 2 as given by equations (3.11) and (3.12):

δ2k
(2,1) ≥ δ

2k−2b(2,1)
(0,n0) + t(2,1), ∀k ≥ 0, (3.32)

δ2k
(2,1) ≥ δ

2k−2b̄(2,2)
(2,2) + s(2,2), ∀k ≥ 0. (3.33)

New Train Traffic Dynamics on the Convergence after Changing of Variables

The dynamics on the convergence (convergence model 1) are rewritten as follows.
The kth departures from the central part as given by equations (3.13) and (3.14):

δk(0,0) ≥


δ

(k+1)−2b(1,n1)

(1,n1−1) + t(1,n1) ∀k = 2p− 1, with p ∈ N,

δ
k−2b(2,n2)

(2,n2−1) + t(2,n2) ∀k = 2p, with p ∈ N.

(3.34)
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δk(0,0) ≥ δ
k−b̄(0,1)
(0,1) + s(0,1), ∀k ≥ 0, (3.35)

The kth departures from the exit of branch 1 as given by equations (3.15) and (3.16):

δ2k
(1,n1−1) ≥ δ

2k−2b(1,n1−1)

(1,n1−2) + t(1,n1−1), ∀k ≥ 0, (3.36)

δ2k
(1,n1−1) ≥ δ

2k−1−2b̄(1,n1)

(0,0) + s(1,n1), ∀k ≥ 0. (3.37)

The kth departures from the exit of branch 2 as given by equations (3.17) and (3.18):

δ2k
(2,n2−1) ≥ δ

2k−2b(2,n2−1)

(2,n2−2) + t(2,n2−1), ∀k ≥ 0, (3.38)

δ2k
(2,n2−1) ≥ δ

2k−2b̄(2,n2)

(0,0) + s(2,n2), ∀k ≥ 0. (3.39)

Index Simplification and new Train Dynamics

Furthermore, the simplification below is applied:

δl(0,j) = δk(0,j),∀k ∈ N, ∀j, (3.40)

δl(1,j) = δ2k
(1,j),∀k ∈ N, ∀j, (3.41)

δl(2,j) = δ2k
(2,j),∀k ∈ N, ∀j. (3.42)

In the following, all the dynamics are rewritten with the index simplification.

New Train Traffic Dynamics out of the Junction after Index Simplification

The train traffic dynamics out of the junction are rewritten as follows.

On the central part, equations (3.24) and (3.25) are rewritten accordingly to (3.40):

δl(0,j) ≥ δ
l−b(0,j)
(0,j−1) + t(0,j), ∀l ≥ 0, j 6= 0, (3.43)

δl(0,j) ≥ δ
l−b̄(0,j+1)

(0,j+1) + s(0,j+1), ∀l ≥ 0, j 6= n0. (3.44)

The dynamics on the branches as given by equations (3.26) and (3.27) are rewritten
with the simplification (3.41), (3.42) as follows:

δl(u,j) ≥ δ
l−2b(u,j)
(u,j−1) + t(u,j), ∀l = 2p, with p ∈ N, u ∈ {1, 2}, j 6= 0, 1, (3.45)

δl(u,j) ≥ δ
l−2b̄(u,j+1)

(u,j+1) + s(u,j+1), ∀l = 2p, with p ∈ N, u ∈ {1, 2}, j 6= nu − 1, nu. (3.46)
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New Train Traffic Dynamics on the Divergence after Index Simplification

The dynamics on the divergence are rewritten as follows.
The lth departures from the central part as given by equations (3.28) and (3.29):

δl(0,n0) ≥ δ
l−b(0,n0)

(0,n0−1) + t(0,n0), ∀l ≥ 0, (3.47)

δl(0,n0) ≥


δ
l+1−2b̄(1,1)
(1,1) + s(1,1) ∀l = 2p− 1, with p ∈ N,

δ
l−2b̄(2,1)
(2,1) + s(2,1) ∀l ∈ 2p, with p ∈ N.

(3.48)

The lth departures from the entry of branch 1 as given by equations (3.30) and (3.31):

δl(1,1) ≥ δ
l−1−2b(1,1)
(0,n0) + t(1,1), ∀l = 2p, with p ∈ N, (3.49)

δl(1,1) ≥ δ
l−2b̄(1,2)
(1,2) + s(1,2), ∀l = 2p, with p ∈ N. (3.50)

The lth departures from the entry of branch 2 as given by equations (3.32) and (3.33):

δl(2,1) ≥ δ
l−2b(2,1)
(0,n0) + t(2,1), ∀l = 2p, with p ∈ N, (3.51)

δl(2,1) ≥ δ
l−2b̄(2,2)
(2,2) + s(2,2), ∀l = 2p, with p ∈ N. (3.52)

New Train Traffic Dynamics on the Convergence after Index Simplification

The dynamics on the convergence (convergence model 1) are rewritten as follows.
The lth departures from the central part as given by equations (3.34) and (3.35):

δl(0,0) ≥


δ

(l+1)−2b(1,n1)

(1,n1−1) + t(1,n1) ∀l = 2p− 1, with p ∈ N,

δ
l−2b(2,n2)

(2,n2−1) + t(2,n2) ∀l = 2p, with p ∈ N.

(3.53)

δl(0,0) ≥ δ
l−b̄(0,1)
(0,1) + s(0,1), ∀l ≥ 0, (3.54)

The lth departures from the exit of branch 1 as given by equations (3.36) and (3.37):

δl(1,n1−1) ≥ δ
l−2b(1,n1−1)

(1,n1−2) + t(1,n1−1), ∀l = 2p, with p ∈ N, (3.55)

δl(1,n1−1) ≥ δ
l−1−2b̄(1,n1)

(0,0) + s(1,n1), ∀l = 2p, with p ∈ N. (3.56)

The lth departures from the exit of branch 2 as given by equations (3.38) and (3.39):

δl(2,n2−1) ≥ δ
l−2b(2,n2−1)

(2,n2−2) + t(2,n2−1), ∀l = 2p, with p ∈ N, (3.57)

δl(2,n2−1) ≥ δ
l−2b̄(2,n2)

(0,0) + s(2,n2), ∀l = 2p, with p ∈ N. (3.58)
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l in d(1,n1−1) d(2,n2−1) δ(1,n1−1) δ(2,n2−1) δ(0,0) (model 1)

1 - 2 - 1− 2b̄(1,n1)

- 1 - 2 2− 2b̄(2,n2)

2 - 4 - 3− 2b̄(1,n1)

- 2 - 4 4− 2b̄(2,n2)

Table 3.2: The train departure counter index of the safe separation constraint of the
convergence, after the changing of variables, for convergence model 1.

Example.
Table 3.1.2 illustrates the safe separation constraint model 1 of the convergence

after the changing of variables. It depicts the departure counter index l of equations
(3.56), (3.58).

Trains depart as soon as the two constraints on the travel and on the safe separation
time, are satisfied. Then, all couples of constraints can be rewritten, see equation (3.6):

δl(u,j) = max

{
δ
l−b(u,j)
(u,j−1) + t(u,j), δ

l−b̄(u,j+1)

(u,j+1) + s(u,j+1)

}
. (3.59)

Finally, it can be seen that with the changing of variables, the number of train
departures on the branches has been doubled, whereas the one on the central part
remains unchanged. For example, note that the second departure from node (1, n1 − 1)
is in reality the first departure from this node.

3.2 Model in Max-plus Algebra

In this section, the train traffic dynamics on a line with a junction which have been
written above separately on the travel time and on the safe separation time for each
node (see equations (3.43)-(3.58)), and which, when combining travel time and safe
separation time constraint, are for all the nodes of the form of constraint (3.59), will
be written linearly in the max-plus algebra of polynomial matrices, summarizing the
dynamics on the entire line.

Furthermore, remember that the couples of constraints of the dynamics are written
on the counted lth departures from a given node (see equation (3.59)). Depending on
the initial condition (initial train departures), the lth departure from a node depends
either on the lth or on the (l − 1)th departure from, first, the node behind (travel time
constraint) and, second, the node in front (safe separation time constraint). Because
of the linearity of the dynamics in max-plus algebra and the dependency on the initial
condition, a convenient representation of the dynamics of the entire line is the max-plus
algebra of polynomial matrices with their backshift operator γ between the counted train
departures l on two neighbored nodes on the line.

In this section the train dynamics will be written in a max-plus polynomial matric
form. For that, a number of matrices will be considered below. Consider the following
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matrices:

A1(γ) =

A00(γ) A01(γ) ε
A10(γ) A11(γ) ε
ε ε A22(γ)

 , (3.60)

A2(γ) =

A00(γ) ε A02(γ)
ε A11(γ) ε

A20(γ) ε A22(γ)

 , (3.61)

A′(γ) =

A00(γ) A′01(γ) A′02(γ)
A′10(γ) A11(γ) ε
A′20(γ) ε A22(γ)

 , (3.62)

A′′(γ) =

A00(γ) A′′01(γ) A′′02(γ)
A′′10(γ) A11(γ) ε
A′′20(γ) ε A22(γ)

 . (3.63)

The diagonal blocks of the matrices represent the dynamics out of the junction. They
have the following form, here for n0 = 6:

A00(γ) =



ε γ b̄(0,1)s(0,1) ε ε ε ε ε

γb(0,1)t(0,1) ε γ b̄(0,2)s(0,2) ε ε ε ε

ε γb(0,2)t(0,2) ε γ b̄(0,3)s(0,3) ε ε ε

ε ε γb(0,3)t(0,3) ε γ b̄(0,4)s(0,4) ε ε

ε ε ε γb(0,4)t(0,4) ε γ b̄(0,5)s(0,5) ε

ε ε ε ε γb(0,5)t(0,5) ε γ b̄(0,6)s(0,6)

ε ε ε ε ε γb(0,6)t(0,6) ε


.

(3.64)

The other blocks represent the dynamics on the junction. The blocks above the
diagonal blocks represent the dynamics on the convergence with regard to t and on the
divergence with regard to s. They have the following form, here for n0 = n1 = 6:

A01(γ) =



ε ε ε ε ε ε γ2b(1,n1)
−1t(1,n1)

ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε

γ2b̄(1,1)−1s(1,1) ε ε ε ε ε ε


. (3.65)

The blocks below the diagonal blocks represent the dynamics on the divergence with
regard to t and on the convergence with regard to s. They have the following form, here
for n0 = n1 = 6:
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A10(γ) =



ε ε ε ε ε ε γ2b(1,1)+1t(1,1)

ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε

γ2b̄(1,n1)
+1s(1,n1) ε ε ε ε ε ε


. (3.66)

The matrices A1(γ), A2(γ) represent at the junction the dynamics in case where l is
odd, respectively even. The matrices A′(γ), A′′(γ) represent at the junction the dynamics
in the case where l is odd on the convergence node but even on the divergence node,
respectively where l is even on the convergence node but odd on the divergence node.

The blocks above the diagonal blocks have the following form, here for n0 = n1 = 6:

A′01(γ) =



ε ε ε ε ε ε γ2b(1,n1)
−1t(1,n1)

ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε


. (3.67)

A′02(γ) =



ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε
ε ε ε ε ε ε ε

γ2b̄(2,1)s(2,1) ε ε ε ε ε ε


. (3.68)

Consider n0 = n1 = n2 = 6. The associated graphs to the matrices A1(γ), A2(γ),
A′(γ) and A′′(γ) are depicted below.
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Figure 3.2: The associated graph G(A1(γ)) for n0 = n1 = n2 = 6.
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Figure 3.3: The associated graph G(A2(γ)) for n0 = n1 = n2 = 6.
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Figure 3.4: The associated graph G(A′(γ)) for n0 = n1 = n2 = 6.
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Figure 3.5: The associated graph G(A′′(γ)) for n0 = n1 = n2 = 6.
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Let the matrix B(γ) be defined as follows (n0, n1, n2 are assumed to be even1).

• If (n0 mod 4 = 0 and
∑

j b(0,j) is even) or (n0 mod 4 = 2 and
∑

j b(0,j) is odd),
then B(γ) = A1(γ)⊗A2(γ)⊗A2(γ)⊗A1(γ).

• If (n0 mod 4 = 0 and
∑

j b(0,j) is odd) or (n0 mod 4 = 2 and
∑

j b(0,j) is even),
then B(γ) = A′(γ)⊗A′′(γ)⊗A′′(γ)⊗A′(γ).

Proposition 1. The train dynamics (3.43)-(3.58) are equivalent to the following system
of max-plus polynomial matrices:

δ = B(γ)⊗ δ. (3.69)

Sketch of the proof. Proposition 1 states that the train dynamics, taken on four steps
(B(γ) is a product of four matrices, see above), are linear in the max-plus algebra of
polynomial matrices. The train dynamics cannot be linear in one step, because some
of the equations of the dynamics depend on whether l is odd or even. This is the case
for equations (3.48), (3.49), (3.51) at the divergence and (3.53), (3.56), (3.58) at the
convergence.

Moreover, the shifts in l in one step of the dynamics are not the same for all the
equations of the dynamics. They can be 0, 1 or 2 (depending on b(u,j), b̄(u,j) on the
central part, respectively 2b(u,j), 2b̄(u,j) on the branches). Otherwise the train dynamics
would be linear in two steps.

In the following, a sketch of the proof is given. Consider the train traffic dynamics of a
line with a junction, see equations (3.43)-(3.58). Of these, only the following constraints
distinguish l is odd from l is even (the constraints on the junction):

• The safe separation constraint of the last node of the central part (divergence),
equation (3.48), represented by two arcs: (1, 1)→ (0, n0) and (2, 1)→ (0, n0):

δl(0,n0) ≥


δ
l+1−2b̄(1,1)
(1,1) + s(1,1) ∀l = 2p− 1, with p ∈ N,

δ
l−2b̄(2,1)
(2,1) + s(2,1) ∀l ∈ 2p, with p ∈ N,

• The travel time constraint of the first node of the central part (convergence),
equation (3.53), represented by two arcs: (1, n1−1)→ (0, 0) and (2, n2−1)→ (0, 0):

δl(0,0) ≥


δ

(l+1)−2b(1,n1)

(1,n1−1) + t(1,n1) ∀l = 2p− 1, with p ∈ N,

δ
l−2b(2,n2)

(2,n2−1) + t(2,n2) ∀l = 2p, with p ∈ N,
1The assumption n0, n1, n2 is even is necessary for the proof of Proposition 1. It does not affect the

applicability of the model.
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• The pair of travel time constraints of the first nodes of the branches (divergence),
equations (3.49) and (3.51), represented by two arcs: (0, n0)→ (1, 1) and (0, n0)→
(2, 1):

δl(1,1) ≥ δ
l−1−2b(1,1)
(0,n0) + t(1,1), ∀l = 2p, with p ∈ N,

δl(2,1) ≥ δ
l−2b(2,1)
(0,n0) + t(2,1), ∀l = 2p, with p ∈ N,

• The pair of safe separation constraints of the last nodes of the branches (conver-
gence), equations (3.56) and (3.58), represented by two arcs: (0, 0) → (1, n1 − 1)
and (0, 0)→ (2, n2 − 1):

δl(1,n1−1) ≥ δ
l−1−2b̄(1,n1)

(0,0) + s(1,n1), ∀l = 2p, with p ∈ N,

δl(2,n2−1) ≥ δ
l−2b̄(2,n2)

(0,0) + s(2,n2), ∀l = 2p, with p ∈ N,

To correctly represent the dynamics on odd and even l, four matrices A1(γ), A2(γ),
A′(γ), A′′(γ) have been defined above. Notice that:

• The arc corresponding to the first line of equation (3.48) (l is odd) exists only
in matrix A1(γ) and A′(γ) and the arc corresponding to the second line of equa-
tion (3.48) (l is even) exists only in matrix A2(γ) and A′′(γ) .

• The arc corresponding to the first line of equation (3.53) (l is odd) exists only
in matrix A1(γ) and A′′(γ) and the arc corresponding to the second line of equa-
tion (3.53) (l is even) exists only in matrix A2(γ) and A′(γ).

• The arc corresponding to equation (3.49) (l is odd) exists only in matrix A1(γ)
and A′′(γ) and the arc corresponding to equation (3.51) (l is even) exists only in
matrix A2(γ) and A′(γ) .

• The arc corresponding to equation (3.56) (l is odd) exists only in matrix A1(γ)
and A′(γ) and the arc corresponding to equation (3.58) (l is even) exists only in
matrix A2(γ) and A′′(γ) .

The nodes for which the application of the correct matrix has to be verified, are
the nodes of the divergence and convergence. More precisely, in order that the train
dynamics of the entire line (with the junction) are equivalent to the matrix form of
Proposition 1, that is δ = B(γ) ⊗ δ, it has to be verified that by iterating the matrix
form the following rules are satisfied:

• every time A1(γ) is applied, l is odd on the convergence node (0, 0) and on the
divergence node (0, n0),

• every time A2(γ) is applied, l is even on the convergence node (0, 0) and on the
divergence node (0, n0),
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• every time A′(γ) is applied, l is odd on the convergence node (0, 0) but even on
the divergence node (0, n0), and

• every time A′′(γ) is applied, l is even on the convergence node (0, 0) but odd on
the divergence node (0, n0).

For that, starting from the node (0, 0) or from the node (0, n0), and iterating the
matrix B(γ) over a number of steps, it has to be checked that every time the nodes (0, 0)
or (0, n0) are reached, the parity of l (odd or even) matches with the application of the
correct matrix (A1(γ), A2(γ), A′(γ), A′′(γ)) as defined in the rules above.

Let us start from any node and iterate the dynamics up to another node by applying
the matrices step-by-step. A one step matrix multiplication (with A1(γ), A2(γ), A′(γ),
A′′(γ)) iterates the dynamics to the next node. Then the change in parity of l between
origin and destination nodes depends on the sum over the shifts in l along the path to
the destination node. All the paths between the nodes where the dynamics depend on
the parity of l have to be checked:

• all the paths linking the node (0, 0) with itself,

• all the paths linking the node (0, n0) with itself, and

• all the paths linking the nodes (0, 0) and (0, n0).

For theses paths, the shift in l (depending on b(u,j), b̄(u,j) on the central part, respectively
2b(u,j), 2b̄(u,j) on the branches) between origin and destination nodes has to guarantee
the application of the correct matrix at the destination node accordingly to the rules
defined above.

• First of all, let us start with the paths along the branches. There are two main
types of paths on the branches to distinguish:

1. The paths from (0, 0) → (0, 0) and from (0, n0) → (0, n0) by passing on
the branches: In this case, when iterating the matrix form (A1(γ)⊗A2(γ)⊗
A2(γ)⊗A1(γ)) or (A′(γ)⊗A′′(γ)⊗A′′(γ)⊗A′(γ)), the matrix applied at (0, 0)
or (0, n0) will be the same. Note that the shift in l is always even because of
the changing of variables (2b(u,j) + 2b̄(u,j) = 2), which is concordant with the
matrix form of the train traffic dynamics.

2. The paths from (0, 0)→ (0, n0) and from (0, n0)→ (0, 0) along the branches:
The shift in l between the two junction nodes, by passing on the branches, is
always a multiple of 2 because of the changing of the variables and the fact that
divergence and convergence are operated in the same way (odd departures
from/ to branch 1, even ones from/ to branch 2) 2. The condition n1, n2 is
even guarantees the application of the correct matrix at the convergence or
divergence node at the end of the path, accordingly to the rules above. For

2see equations (3.45), (3.46), (3.48), (3.49), (3.51), (3.53), (3.56), (3.58)
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example, consider Graph 3.2: the shift in l over the path against the travel
direction along branch 1 is: 2b̄(1,n1) − 1 + 2b̄(1,5) + 2b̄(1,4) + 2b̄(1,3) + 2b̄(1,2) +
2b̄(1,1) +1 = even 3. On the same graph, for l = 1, an iteration along branch 1
with n1 = 6 is completed by applying A1(γ)⊗A2(γ)⊗A2(γ)⊗A1(γ)⊗A1(γ)⊗
A2(γ)⊗A2(γ)⊗A1(γ) such that at the convergence/ divergence node at the
end of the path, with A1(γ), the correct matrix is applied, since l is again
odd because of the changing of variables. Other paths accordingly.

• For the paths passing by the central part of the line, there are 4 types of paths to
distinguish:

1. The path from (0, 0) → (0, 0) and from (0, n0) → (0, n0) with a number of
arcs n such that n mod 4 = 2: In this case, when iterating the matrix form
(A1(γ)⊗ A2(γ)⊗ A2(γ)⊗ A1(γ)) or (A′(γ)⊗ A′′(γ)⊗ A′′(γ)⊗ A′(γ)) of the
dynamics, the matrix applied at (0, 0) or (0, n0) will switch. Note that the
shift in l is odd since, b(u,j) + b̄(u,j) = 1, which is concordant with the matrix
form of the train traffic dynamics.

2. The path from (0, 0) → (0, 0) and from (0, n0) → (0, n0) with a number of
arcs n such that n mod 4 = 0: In this case, when iterating the matrix form
(A1(γ)⊗ A2(γ)⊗ A2(γ)⊗ A1(γ)) or (A′(γ)⊗ A′′(γ)⊗ A′′(γ)⊗ A′(γ)) of the
dynamics, the matrix applied at (0, 0) or (0, n0) will be same. The shift in l
is even since, 2b(u,j) + 2b̄(u,j) = 2, which is concordant with the train traffic
dynamics.

3. The path from (0, 0)→ (0, n0) going in the direction of the traffic (forward):

– If n0 mod 4 = 2 and if
∑

j b(0,j) is odd, iterating the matrix form
(A1(γ)⊗A2(γ)⊗A2(γ)⊗A1(γ)) of the dynamics imposes to switch the
matrix A1(γ) or A2(γ), which is concordant with the odd shift in l.

– If n0 mod 4 = 2 and if
∑

j b(0,j) is even, iterating the matrix form
(A′(γ) ⊗ A′′(γ) ⊗ A′′(γ) ⊗ A′(γ)) of the dynamics imposes to switch the
matrix, which is concordant with the even shift in l.

– If n0 mod 4 = 0 and if
∑

j b(0,j) is odd, iterating the matrix form (A′(γ)⊗
A′′(γ) ⊗ A′′(γ) ⊗ A′(γ)) of the dynamics imposes to stay on the same
matrix, which is concordant with the odd shift in l.

– If n0 mod 4 = 0 and if
∑

j b(0,j) is even, iterating the matrix form
(A1(γ) ⊗ A2(γ) ⊗ A2(γ) ⊗ A1(γ)) of the dynamics imposes to stay on
the same matrix, which is concordant with the even shift in l.

4. The path from (0, n0)→ (0, 0) going against the traffic direction (backward).

– If n0 mod 4 = 2 and if
∑

j b̄(0,j) is odd, iterating the matrix form
(A1(γ)⊗A2(γ)⊗A2(γ)⊗A1(γ)) of the dynamics imposes to switch the
matrix, which is concordant with the fact that the shift in l is odd.

3see equations (3.56), (3.49), (3.46)
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– If n0 mod 4 = 2 and if
∑

j b̄(0,j) is even, iterating the matrix form
(A′(γ) ⊗ A′′(γ) ⊗ A′′(γ) ⊗ A′(γ)) of the dynamics imposes to switch the
matrix, which is concordant with the fact that the shift in l is even.

– If n0 mod 4 = 0 and if
∑

j b̄(0,j) is odd, iterating the matrix form (A′(γ)⊗
A′′(γ) ⊗ A′′(γ) ⊗ A′(γ)) of the dynamics imposes to stay on the same
matrix, which is concordant with the fact that the shift in l is odd.

– If n0 mod 4 = 0 and if
∑

j b̄(0,j) is even, iterating the matrix form
(A1(γ) ⊗ A2(γ) ⊗ A2(γ) ⊗ A1(γ)) of the dynamics imposes to stay on
the same matrix, which is concordant with the fact that the shift in l is
even.

Consequently when iterating the train traffic dynamics by applying δ = B(γ) ⊗ δ
with B(γ) as defined above, the matrix form of the train dynamics is equivalent to the
train traffic dynamics model, see equations (3.43)-(3.58).

3.3 The Steady State Train Dynamics

3.3.1 The Asymptotic Average Train Time-headway

In this part, the properties of the stationary regime of the train dynamics in a metro
line with one junction will be studied. The main result presented below is based on [1]
and [14], where the following eigenvalue problem for matrices A(γ) with entries in the
max-plus algebra has been studied.

A(γ)⊗ υ = µ⊗ υ. (3.70)

Definition 1. µ ∈ Rmax\{ε} is said to be a generalized eigenvalue of A(γ), with asso-
ciated generalized eigenvector υ ∈ Rnmax\{ε}, if A(µ−1) ⊗ υ = υ, where A(µ−1) is the
matrix obtained by evaluating the polynomial matrix A(γ) at µ−1 [Theorem 2.3 in [14]].

Accordingly to [1] and [14]:

Theorem 2. Let B(γ) = ⊕pl=0Alγ
l be an irreducible poynomial matrix with acyclic

sub-graph G(B0). Then there exists one and only one generalized eigenvalue µ > ε and
finite eigenvectors υ > ε. This eigenvalue µ is equal to the maximum cycle mean of the
graph G(B):

µ = max
c∈C

=
W (c)

D(c)
,

where W is the weight, D is the duration and c ranges over the set of circuits C of G(B).
Moreover, the dynamic system δ = B(γ)⊗δ admits an asymptotic average growth vector
χ whose components are all equal to µ.
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Derivation of the Generalized Eigenvalue of B(γ) in Max-plus algebra

The generalized eigenvalue of B(γ) corresponds to the asymptotic average growth rate
of the polynomial matrix and is interpreted here as the asymptotic average train time-
headway. Note that if the asymptotic average growth rate h of system δ = B(γ)⊗δ exists,
it represents the asymptotic average time-headway on the central part, and since the
number of k steps on the branches has been doubled because of the changing of variables,
the asymptotic average train time-headway on the branches is 2h. The asymptotic
average growth rate is given by the unique generalized eigenvalue of the homogeneous
max-plus system, which can be calculated from its associated graph, see Theorem 3
below.

The asymptotic average train frequency of a metro line with a junction, depends on
the total number of trains and on the difference between the number of trains on the
branches. Both parameters are invariable in time (in two steps of the train dynamics),
since the one-over-two rule is applied on the divergence and on the convergence.

Consider the following notations.
mu the number of trains on part u of the line at time 0.
m = m0 +m1 +m2 the total number of trains on the line.

∆m = m2 −m1 the difference in the number of trains between branches 2
and 1.

nu the number of segments on part u of the line.

m̄u = nu−mu, ∀u ∈ {0, 1, 2} the number of free segments on part u of the
line.

m̄ = m̄0 + m̄1 + m̄2 the total number of free segments.

∆m̄ = m̄2 − m̄1 the difference in the number of free segments between
branches 2 and 1.

T u =
∑

j t(u,j),∀u ∈ {0, 1, 2} the sum over the travel times on each part
of the line.

Su =
∑

j s(u,j), ∀u ∈ {0, 1, 2} the sum over the s times on each part of the
line.

The two ceses of m = 0 and m = n := n0 + n1 + n2 are excluded here. In fact, for
these two cases, the train dynamics are fully implicit. However, it is known that for these
two cases, the train frequency is zero (no train in the case m = 0, and no movement in
the case m = n).

Theorem 3. The dynamic system δ = B(γ) ⊗ δ admits a stationary regime, with a
common average growth rate h0 for all the variables, which represents the average train
time-headway h0 on the central part and h1/2 = h2/2 on the branches. Moreover

h0 = h1/2 = h2/2 = max{hfw, hmin, hbw, hbr},

with4

hfw = max

{
T 0 + T 1

m−∆m
,
T 0 + T 2

m+ ∆m

}
,

4fw: forward, bw: backward, min: minimum, br: branches.
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hmin = max

{
maxu,j(t(u,j) + s(u,j)) ∀u ∈ {0},
maxu,j(t(u,j) + s(u,j))/2 ∀u ∈ {1, 2}, ∀j ∈ J(u)\{nu},

hbw = max

{
S0 + S1

m̄−∆m̄
,
S0 + S2

m̄+ ∆m̄

}
,

hbr = max

{
T 1 + S2

2(n2 −∆m)
,

S1 + T 2

2(n1 + ∆m)

}
.

Proof. In the following, Theorem 2 is applied to the dynamics δ = B(γ)⊗ δ.

• First, since the dynamics δ = B(γ) ⊗ δ are the application of the original train
dynamics in four steps, the graph G(B(γ)) associated to B(γ) may (theoretically)
have up to four strongly connected components (depending on the number of seg-
ments of the line). Theorem 2 is then applied to every sub-system associated to a
strongly connected component. The definition of B(γ) implies (shown below) that
all the strongly connected components have the same maximum cycle mean, which
then implies that the train dynamics have the same asymptotic average growth
rate (interpreted as the asymptotic average train time-headway h0 on the central
part of the metro line). For the case n0 = n1 = n2 = 6, there are two strongly
connected components of G(B(γ)). One strongly connected component is shown
in Figures 3.6 and 3.7. In order to have readable figures, some of the arcs of the
strongly connected component studied here (the other has the same maximum cy-
cle mean) are given in Figure 3.6, and some further arcs are given in Figure 3.7.
The isolated nodes in these two figures are those of the second strongly connected
component of the graph G(B(γ)). For example, in Figure 3.6, the arc (0, 0)→ (0, 4)
results from the sequence of arcs (0, 0) → (0, 1) → (0, 2) → (0, 3) → (0, 4) of the
original train dynamics. In Figure 3.7, the arc (0, 0) → (0, 2) results from the
sequence of arcs (0, 0) → (0, 1) → (0, 0) → (0, 1) → (0, 2) of the original train
dynamics, or from the sequence of arcs (0, 0)→ (0, 1)→ (0, 2)→ (0, 1)→ (0, 2) of
the original train dynamics.

• Second, since m 6= 0 and m 6= n, it can be checked that the train dynamics are
not fully implicit. They are triangular, that is, there exists an order of applying
the dynamics on every node, in such a way that the dynamics will be explicit.
By consequent, the graph G(B0) is acyclic. Therefore, the sub-graphs of G(B0)
associated to each strongly connected component of G(B(γ)) are also acyclic.

Consequently, Theorem 2 can be applied to the strongly connected components of
G(B(γ)). The cycles of the strongly connected components of Figure 3.6 and their
cycle means are given and calculated below.

• One cycle in the travel direction, passing by the central part and by branch 1 of
the line. This cycle is given in Figure 3.6: (0, 2) → (0, 6) → (1, 4) → (0, 2). The
cycle mean is given by∑

j t(0,j) +
∑

j t(1,j)∑
j b(0,j) +

∑
j 2b(1,j)

=
T 0 + T 1

m0 + 2m1
=

T 0 + T 1

m−∆m
.
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• Another cycle in the travel direction, passing by the central part and by branch 2
of the line. This cycle is given in Figure 3.6: (0, 0)→ (0, 4)→ (2, 2)→ (0, 0). The
cycle mean is given by∑

j t(0,j) +
∑

j t(2,j)∑
j b(0,j) +

∑
j 2b(2,j)

=
T 0 + T 2

m0 + 2m2
=

T 0 + T 2

m+ ∆m
.

⇒ hfw = maximum of the cycle means of these types of cycles.

• One cycle against the travel direction, passing by the central part and by branch 1
of the line. It is given in Figure 3.6: (0, 0) → (1, 2) → (0, 4) → (0, 0). The cycle
mean is given by∑

j s(0,j) +
∑

j s(1,j)∑
j b̄(0,j) +

∑
j 2b̄(1,j)

=
S0 + S1

n0 −m0 + 2n1 − 2m1
=

S0 + S1

m̄−∆m̄
.

• The cycle against the travel direction, passing by the central part and by branch 2
of the line. The cycle is given in Figure 3.6: (0, 2)→ (2, 4)→ (0, 6)→ (0, 2). The
cycle mean is given by∑

j s(0,j) +
∑

j s(2,j)∑
j b̄(0,j) +

∑
j 2b̄(2,j)

=
S0 + S2

n0 −m0 + 2n2 − 2m2
=

S0 + S2

m̄+ ∆m̄
.

⇒ hbw = maximum of the cycle means of these types of cycles.

• The loops over each node, whose realizations in four steps use one segment. For
example, the loop (0, 0)→ (0, 0) in Figure 3.6 is the realization of the cycle (0, 0)→
(0, 1) → (0, 0) → (0, 1) → (0, 0) in four steps. The cycle mean of such loops, in
case u = 0 (central part of the line), is given by

2t(u,j) + 2s(u,j)

2b(u,j) + 2b̄(u,j)
=

2t(u,j) + 2s(u,j)

2
= t(u,j) + s(u,j).

The cycle mean of such loops, in case u = 1 or 2 (branches 1 or 2), is given by

2t(u,j) + 2s(u,j)

4b(u,j) + 4b̄(u,j)
=
t(u,j) + s(u,j)

2
.

⇒ hmin = maximum of the cycle means of these types of cycles.

• The loops over each node, whose realizations in four steps use two segments. For
example, the loop (0, 0)→ (0, 0) in Figure 3.6 is the realization of the cycle (0, 0)→
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(0, 1) → (0, 2) → (0, 1) → (0, 0) in four steps. The cycle mean of such loops, in
case u = 0 (central part of the line), is given by

t(u,j)+t(u,j+1)+s(u,j)+s(u,j+1)

b(u,j)+b(u,j+1)+b̄(u,j)+b̄(u,j+1)

=
(t(u,j)+s(u,j))+(t(u,j+1)+s(u,j+1))

2

≤ maxu=0,j

(
t(u,j) + s(u,j)

)
≤ hmin.

The cycle mean of such loops, in case u = 1 or 2 (branches 1 or 2 of the line), is
given by

t(u,j)+t(u,j+1)+s(u,j)+s(u,j+1)

2b(u,j)+2b(u,j+1)+2b̄(u,j)+2b̄(u,j+1)

=
(t(u,j)+s(u,j))+(t(u,j+1)+s(u,j+1))

4

≤ maxu∈{1,2},j(t(u,j) + s(u,j))/2 ≤ hmin.

⇒ The cycle means of all such loops are upper bounded by hmin.

• All the cycles with two arcs, for example: (0, 0) → (0, 4) → (0, 0) in Figure 3.6.
The cycle mean of such cycles, in case u = 0 (central part of the line), is given by

∑4
j=1 t(u,j)+

∑4
j=1 s(u,j)∑4

j=1 b(u,j)+
∑4

j=1 b̄(u,j)

=
∑4

j=1 t(u,j)+
∑4

j=1 s(u,j)
4

≤ maxu=0,j

(
t(u,j) + s(u,j)

)
≤ hmin.

The cycle mean of such cycles, in case u = 1 or 2 (branches 1 or 2 of the line), is
given by ∑4

j=1 t(u,j)+
∑4

j=1 s(u,j)∑4
j=1 2b(u,j)+

∑4
j=1 2b̄(u,j)

=
∑4

j=1 t(u,j)+
∑4

j=1 s(u,j)
8

≤ maxu∈{1,2},j

(
t(u,j) + s(u,j)

)
/2 ≤ hmin.

⇒ The cycle means of these cycles are upper bounded by hmin.

• The cycle in form of a “8” passing by the two branches, without passing by the
central part. One cycle passes on branch 1 in the travel direction and on branch 2
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against the travel direction: (0, 6) → (1, 4) → (2, 4) → (0, 6). Its cycle mean is
given by ∑

j t(1,j) +
∑

j s(2,j)∑
j 2b(1,j) +

∑
j 2b̄(2,j)

=
T 1 + S2

2m1 + 2n2 − 2m2
=

T 1 + S2

2(n2 −∆m)
.

• The other cycle passes on branch 2 in the travel direction and on branch 1 against
the travel direction: (1, 2)→ (2, 2)→ (0, 0)→ (1, 2). Its cycle mean is given by

∑
j s(1,j) +

∑
j t(2,j)∑

j 2b̄(1,j) +
∑

j 2b(2,j)
=

S1 + T 2

2n1 + 2n2 − 2m2
=

S1 + T 2

2(n1 + ∆m)
.

⇒ hbr = maximum of the cycle means of these two cycles.

The remaining cycles of the strongly connected component studied here are given in
Figure 3.7, and their cycle means are calculated below. It is shown below that they are
all upper bounded by the cycle means of the same component depicted in Figure 3.6.
Indeed, they are averages of the cycle means of Figure 3.6.

• The cycles in the travel direction, passing by the central part and by branch 1 of
the line. For example, the cycle given in Figure 3.7: (0, 0) → (0, 2) → (0, 4) →
(0, 6)→ (1, 2)→ (1, 4)→ (0, 0). Its cycle mean is given by

∑
j t(0,j)+

∑
j t(1,j)+

∑
u,j(t(u,2j)+s(u,2j))∑

j b(0,j)+
∑

j 2b(1,j)+
∑

j b(0,2j)+
∑

j b̄(0,2j)+
∑

j 2b(1,2j)+
∑

j 2b̄(1,2j)

=
T 0+T 1+

∑
u,j(t(u,2j)+s(u,2j))

m0+2m1+n0/2+n1

=
T 0+T 1+

∑
u,j(t(u,2j)+s(u,2j))

m−∆m+n0/2+n1

≤ max
{
T 0+T 1
m−∆m ,

∑
u,j(t(u,2j)+s(u,2j))

n0/2+n1

}
≤ max

{
T 0+T 1
m−∆m ,maxj(t(0,2j) + s(0,2j)),

(t(1,2j)+s(1,2j))

2

}
.

≤ max {hfw, hmin} .

• The cycles in the travel direction, passing by the central part and by branch 2 of
the line. For example, the cycle given in Figure 3.7: (0, 0) → (0, 2) → (0, 4) →
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(0, 6)→ (2, 2)→ (2, 4)→ (0, 0). Its cycle mean is given by

∑
j t(0,j)+

∑
j t(2,j)+

∑
u,j(t(u,2j)+s(u,2j))∑

j b(0,j)+
∑

j 2b(2,j)+
∑

j b(0,2j)+
∑

j b̄(0,2j)+
∑

j 2b(2,2j)+
∑

j 2b̄(2,2j)

=
T 0+T 2+

∑
u,j(t(u,2j)+s(u,2j))

m0+2m2+n0/2+n2

=
T 0+T 2+

∑
u,j(t(u,2j)+s(u,2j))

m+∆m+n0/2+n2

≤ max
{
T 0+T 2
m+∆m ,

∑
u,j(t(u,2j)+s(u,2j))

n0/2+n2

}
≤ max

{
T 0+T 2
m+∆m ,maxj(t(0,2j) + s(0,2j)),

(t(2,2j)+s(2,2j))

2

}
.

≤ max {hfw, hmin} .

⇒ Note that the cycle means are upper bounded by the cycle means of the cycles in
the same direction passing by the same parts of the same component and those of
the loops over one node, depicted in Figure 3.6.

• The cycles against the travel direction, passing by the central part and by branch 1
of the line. For example, the cycle given in Figure 3.7: (0, 0) → (1, 4) → (1, 2) →
(0, 6)→ (0, 4)→ (0, 2)→ (0, 0). Its cycle mean is given by

∑
j s(0,j)+

∑
j s(1,j)+

∑
u,j(t(u,2j)+s(u,2j))∑

j b̄(0,j)+
∑

j 2b̄(1,j)+
∑

j b(0,2j)+
∑

j b̄(0,2j)+
∑

j 2b(1,2j)+
∑

j 2b̄(1,2j)

=
S0+S1+

∑
u,j(t(u,2j)+s(u,2j))

n0−m0+2(n1−m1)+n0/2+n1

=
S0+S1+

∑
u,j(t(u,2j)+s(u,2j))

m̄−∆m̄+n0/2+n1

≤ max
{
S0+S1
m̄−∆m̄ ,

∑
u,j(t(u,2j)+s(u,2j))

n0/2+n1

}
≤ max

{
S0+S1
m̄−∆m̄ ,maxj(t(0,2j) + s(0,2j)),

(t(1,2j)+s(1,2j))

2

}
.

≤ max {hbw, hmin} .

• The cycles against the travel direction, passing by the central part and by branch 2
of the line. For example, the cycle given in Figure 3.7: (0, 0) → (2, 4) → (2, 2) →
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(0, 6)→ (0, 4)→ (0, 2)→ (0, 0).

∑
j s(0,j)+

∑
j s(2,j)+

∑
u,j(t(u,2j)+s(u,2j))∑

j b̄(0,j)+
∑

j 2b̄(2,j)+
∑

j b(0,2j)+
∑

j b̄(0,2j)+
∑

j 2b(2,2j)+
∑

j 2b̄(2,2j)

=
S0+S2+

∑
u,j(t(u,2j)+s(u,2j))

n0−m0+2(n2−m2)+n0/2+n2

=
S0+S2+

∑
u,j(t(u,2j)+s(u,2j))

m̄+∆m̄+n0/2+n2

≤ max
{
S0+S2
m̄+∆m̄ ,

∑
u,j(t(u,2j)+s(u,2j))

n0/2+n2

}
≤ max

{
S0+S2
m̄+∆m̄ ,maxj(t(0,2j) + s(0,2j)),

(t(2,2j)+s(2,2j))

2

}
.

≤ max {hbw, hmin} .

⇒ Note that the cycle means are upper bounded by the cycle means of the cycles in
the same direction passing by the same parts of the same component and those of
the loops over one node, depicted in Figure 3.6.

• All the cycles using two segments, and all the cycles going from a node to another
node in the graph, and then changing the direction and going back to the origi-
nal node. Considering those on the central part, for example, the cycle given in
Figure 3.7: (0, 0)→ (0, 2)→ (0, 0). Their cycle mean is given by

∑3
j=1 t(u,j)+

∑3
j=1 s(u,j)∑3

j=1 b(u,j)+
∑3

j=1 b̄(u,j)

=
∑3

j=1 t(u,j)+
∑3

j=1 s(u,j)
3

≤ max
{
t(u,j) + s(u,j)

}
≤ hmin.

• All the cycles using two segments, and all the cycles going from a node to another
node in the graph, and then changing the direction and going back to the original
node. Considering those on the branches, for example, the cycle given in Figure 3.7:
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(2, 2)→ (2, 4)→ (2, 2). Their cycle mean is given by∑3
j=1 t(u,j)+

∑3
j=1 s(u,j)∑3

j=1 2b(u,j)+
∑3

j=1 2b̄(u,j)

=
∑3

j=1 t(u,j)+
∑3

j=1 s(u,j)
6

≤ max
{
t(u,j)+s(u,j)

2

}
≤ hmin.

⇒ The cycle means of these cycles are upper bounded by the cycle means of the loops,
see Figure 3.6.

• The cycle in form of a “8” passing by the two branches, without passing by the
central part. One cycle passes on branch 1 in the travel direction and on branch 2
against the travel direction: (0, 6) → (1, 2) → (1, 4) → (0, 0) → (2, 4) → (2, 2) →
(0, 6). Its cycle mean is given by∑

j t(1,j)+
∑

j s(2,j)+
∑

u,j(t(u,2j)+s(u,2j))∑
j 2b(1,j)+

∑
j 2b̄(2,j)+

∑
u,j 2b(u,2j)+

∑
u,j 2b̄(u,2j)

=
T 1+S2+

∑
u,j(t(u,2j)+s(u,2j))

2(m1+n2−m2+n1+n2)

=
T 1+S2+

∑
u,j(t(u,2j)+s(u,2j))

2(m1+m̄2+n1+n2)

≤ max
{

T 1+S2
2(m1−m̄2) ,

∑
u,j(t(u,2j)+s(u,2j))

2

}
≤ max {hbr, hmin} .

• The other cycle passes on branch 2 in the travel direction and on branch 1 against
the travel direction: (0, 6) → (2, 2) → (2, 4) → (0, 0) → (1, 4) → (1, 2) → (0, 6).
Its cycle mean is given by∑

j t(2,j)+
∑

j s(1,j)+
∑

u,j(t(u,2j)+s(u,2j))∑
j 2b(2,j)+

∑
j 2b̄(1,j)+

∑
u,j 2b(u,2j)+

∑
u,j 2b̄(u,2j)

=
T 2+S1+

∑
u,j(t(u,2j)+s(u,2j))

2(m2+n1−m1+n1+n2)

=
T 2+S1+

∑
u,j(t(u,2j)+s(u,2j))

2(m2+m̄1+n1+n2)

≤ max
{

T 2+S1
2(m2−m̄1) ,

∑
u,j(t(u,2j)+s(u,2j))

2

}
≤ max {hbr, hmin} .
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⇒ Note that the cycle means are upper bounded by the cycle means of the cycles in
the same direction passing by the same parts of the same component and those of
the loops over one node, depicted in Figure 3.6.

Consequently, the maximum cycle mean of the strongly connected component (Fig-
ures 3.6, 3.7) of the system δ = B(γ) ⊗ δ is given by the maximum cycle mean of four
types of cycles: hfw, hmin, hbw and hbr.
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Figure 3.6: G(B(γ)), with B(γ) = A2(γ)⊗A2(γ)⊗A1(γ)⊗A1(γ) for n0 = n1 = n2 = 6
(selected arcs are shown, part 1).
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Figure 3.7: G(B(γ)), with B(γ) = A2(γ)⊗A2(γ)⊗A1(γ)⊗A1(γ) for n0 = n1 = n2 = 6
(selected arcs are shown, part 2).
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3.3.2 The Asymptotic Average Train Frequency

Corollary 1. The asymptotic average train frequency on the central part f0 and on the
branches f1 = f2 are given as follows:

f0 = 2f1 = 2f2 = max

{
0,min

{
1

hfw
,

1

hmin
,

1

hbw
,

1

hbr

}}
.

Proof. Directly from Theorem 3, with 0 ≤ f = 1/h.

The asymptotic average train time-headway (respectively asymptotic average train
frequency) is given by Theorem 3 (respectively Corollary 1), as a function of two pa-
rameters: m (the total number of trains running on the line) and ∆m = m2 −m1 (the
difference on the number of trains on branches 2 and 1). Theorem 3 shows that in a
metro line with two branches and with an one-over-two operated junction, the branch
with the longest headway imposes its frequency to the other branch. Moreover, the
frequency on the central part is twice the one on the branches.
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Figure 3.8: RATP metro line 13, Paris.

3.4 The Traffic Phases

Application: RATP Metro Line 13, Paris

In order to illustrate the theoretic results from above, the model is applied to metro line
13, Paris. The layout of the line is shown in Fig. 3.8. The line consists of one central
part and two branches, connected with a junction. The passenger demand on the two
branches is balanced. Therefore, an one-over-two operation of the convergence and of
the divergence is optimal from a passengers’ point of view.

The operator RATP has provided the minimum (theoretic) run times r(u,j), dwell
times w(u,j) and safe separation times s(u,j) of line 13. Note that the dwell times are
calculated for each station depending on the passenger travel demand. Since the line is
equipped with a Grade of Automation 2 (GOA 2) system, where train starting, stopping
and door opening (but not door closing) are fully automated, minimum run times are
respected. It is furthermore supposed that train drivers respect minimum dwell times.
Margins can be included in the minimum travel times to recover small perturbations,
for example via a speed and a dwell time control. Table 3.3 depicts the parameters
for the first segments on the central part (from station La Fourche towards the ter-
minus Châtillon – Montrouge). Travel time t(u,j) is the sum of run and dwell times.
With the sum over travel times and safe separation times, on all segments of each part
(T 0,1,2, S0,1,2), all parameters are defined to depict the phase diagram of the train dy-
namics in metro line 13, see Fig. 3.9.
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Table 3.3: Extract of model parameters for central part of RATP metro line 13, Paris.
There can be several segments j per inter-station.

r(u=0,j) w(0,j) t(0,j) s(0,j)

j = 1 Fourche - Pl. d C. 51.5 s 0 s 51.5 s 14.9 s

j = 2 Place de Clichy 17.4 s 19 s 36.4 s 42.6 s

j = 3 Place d C. - Liège 53.6 s 0 s 53.6 s 9.3 s

j = 4 Place d C. - Liège 75.7 s 0 s 75.7 s 9.8 s
...

...
...

...
...

T 0 S0∑
54.0 min 26.0 min

The Phase Diagram of the Train Dynamics

The steady state dynamics in a metro line with a junction are given by Theorem 3 and
Corollary 1. The closed-form solutions prove the existence of four pairs of traffic phases,
I-a/I-b, II-a/II-b, III-a/III-b and IV-a/Iv-b, are shown in Fig. 3.9 and are explained in
the following. Every point on the phase diagram represents an average frequency f0 on
the central part of the line. It is a function of the number of trains m, and the difference
in the number of trains running on branch 2 and 1 ∆m = m2 − m1. In fact, since
dynamics depend furthermore on the temporal parameters, the travel time T (u=0,1,2)

and minimum safe separation time S(u=0,1,2), there is a family of phase diagrams of the
train dynamics in a metro line.

Note furthermore

T = (2T 0 + T 1 + T 2)/2,

S = (2S0 + S1 + S2)/2.

In the following, the traffic phases derived from Theorem 3 and Corollary 1 and
depicted in Fig. 3.9 are interpreted, based on the case of metro line 13 of Paris.

Eight Traffic Phases of the Train Dynamics

As it can be seen in Fig. 3.9, the asymptotic average frequency f0 is maximized at the
points of the hexagon surface (GHIJKL) (phase IV-a explained below). Among from
the points of this surface, the one requiring minimum number m of trains is the point
G whose coordinates (m∗,∆m∗, fmax) are given as follows.

• fmax = 1/hmin.

• m∗ := T fmax.

• ∆m∗ := ∆T fmax/2 = (T2 − T1)fmax/2.
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Figure 3.9: 2D representation of the asymptotic average train frequency f0 (color-scale)
on the central part of metro line 13, Paris. The layout of the line is given in Figure 3.8.
The asymptotic average frequency is a function of the number of trains m and of the
difference between the number of trains on the branches 2 and 1 ∆m = m2−m1. Model
parameters (minimum run, dwell and safe separation times) have been provided by the
operator RATP.

For every m, there exists a difference ∆m∗ between the number of trains on the two
branches that maximizes the asymptotic average train frequency.

Theorem 4.

∀m,∃∆m∗(m),∀∆m, f0(m,∆m∗(m)) ≥ f0(m,∆m).

Proof. It is easy to see from Theorem 3 and Corollary 1 that for every fixed m, the
one-variable function f0(m,∆m), function of ∆m, is concave.

Optimal ∆m∗(m) corresponding to every m whose existence is stated by Theorem 4
are not necessarily unique. They are derived analytically from Theorem 3 and Corollary 1
and are given below in the description of the traffic phases.

The traffic phases are explained on the formula giving the frequencies since it is
piece-wise linear. Eight traffic phases can be distinguished from Theorem 3, Corollary 1
and Fig. 3.9. They are described by groups.
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3.4.1 Two Free Flow Phases

The two phases are given on the 3D space (m,∆m, f0) by the two planes

f0 = (m−∆m) / (T 0 + T 1) (I-a)

f0 = (m+ ∆m) / (T 0 + T 2) . (I-b)

They are bordered by six straight lines, as it can be seen in Fig. 3.9. The equations of
the six lines are available in Appendix 3.4.4. In these two phases, trains move freely on
the line. For a given number m of trains on the line, the optimal difference ∆m∗(m)
realizing the maximum average train frequency in the steady state is such that the point
(m,∆m∗(m)) is on the straight line separating the two plan surfaces corresponding to
the two free flow phases (line (AG), Fig. 3.9):

∆m∗(m) = (∆T/(2T ))m. (3.71)

Proposition 2. ∀m such that 0 ≤ m ≤ m∗, ∆m∗(m) given in (3.71) (line (AG),
Fig. 3.9) is unique.

Proof. It is easy to check that the point (m∗,∆m∗(m∗), fmax) is the intersection point of
the three planes (I-a), (I-b) and the plane f0 = fmax. From Theorem 3 and Corollary 1,
it can be seen that for every fixed m, 0 ≤ m ≤ m∗, the one-variable function f0(∆m), is
strictly concave.

I - a - Free flow on central part and branch 1.

This case corresponds to points (m,∆m) located on the plane I-a of Fig. 3.9, whose
equation is (I-a), and delimited by four straight lines, whose equations in the plane
(m,∆m) are given in Appendix 3.4.4, see (AG), (LG), (FL) and (FA) respectively.
During this phase, the traffic only moves freely on branch 1 and on the central part.
Branch 2 is overloaded because the difference ∆m of the number of trains between
branches 2 and 1 exceeds the optimum ∆m∗ given by (3.71). Trains on branch 2 have
to wait before entering the central part in order to respect the one-by-one rule at the
junction.

I - b - Free flow on central part and branch 2.

This case corresponds to points (m,∆m) belonging to the plan I-b of Fig. 3.9, whose
equation is (I-b), and delimited by four straight lines, whose equations in the plane
(m,∆m) are given in Appendix 3.4.4, see (AG), (GH), (BH) and (AB) respectively.
During this phase, the traffic only moves freely on branch 2 and on the central part.
Here, branch 1 is overloaded because the difference ∆m of the number of trains between
branches 2 and 1 is under the optimum ∆m∗ given by (3.71). Trains on branch 1 have
to wait before being able to enter the central part in order to respect the one-by-one
rule at the junction.
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3.4.2 Two Unbalanced Branches Phases

The two phases are given by the two planes

f0 = 2 (n2 −∆m) / (T 1 + S2) (II-a)

f0 = 2 (n1 + ∆m) / (S1 + T 2) . (II-b)

The two phases are located opposite of each other, each one bordered by four straight
lines in the plane (m,∆m), see Fig. 3.9. These phases are characterized by a large
number of running trains and a non-optimal difference between the number of trains on
the two branches. A consequence of that is, that trains on one branch have to wait at the
convergence before entering the central part. The average train frequency corresponds
both to free flow of trains on the branch with a small number of trains, and to congested
flow on the branch with big number of trains, where the trains bother each other, as in
road traffic.

II - a - Free flow on branch 1, congestion on branch 2.

This case corresponds to points (m,∆m) located above the straight line (KL):

∆m ≥ n2 − fmax (T 1 + S2) /2. (3.72)

The traffic phase II-a is delimited by four straight lines, whose equations are given in
Appendix 3.4.4 by (EF), (FL), (KL) and (EK).

II - b - Free flow on branch 2, congestion on branch 1.

This case corresponds to points (m,∆m) below the straight line (HI):

∆m ≤ fmax (S1 + T 2) /2− n1. (3.73)

The traffic phase II-b is delimited by the four straight lines given in Appendix 3.4.4 by
equations (BC), (CI), (HI) and (BH).

3.4.3 Two Congested Traffic Phases

The two phases are given by the two planes with the following equations:

f0 = (m̄+ ∆m̄) / (S0 + S2) (III-a)

f0 = (m̄−∆m̄) / (S0 + S1) . (III-b)

They are bordered by six straight lines, as depicted in Fig. 3.9. The equations of the six
lines are given in Appendix 3.4.4. These phases are characterized by the fact that the
total number m of trains is big enough such that at least the central part and one of the
two branches are congested. The asymptotic average train frequency is then given by
this congestion. The congested traffic phases require a large number of trains and are
rather of theoretic interest.
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III - a - Congestion on branch 2 and the central part.
This case corresponds to

∆m̄ ≤ (∆S/(2S)) m̄. (3.74)

A set point on the III-a plane, signifies congestion on branch 2 and the central part. The
number of trains on these two parts of the line is such high with regard to the number
of segments, that trains cannot move freely.

III - b - Congestion on branch 1 and the central part.
This case corresponds to

∆m̄ ≥ (∆S/(2S)) m̄. (3.75)

In the contrary to above, if the set point is on the III-b plane, there is congestion on
branch 1 and the central part. Trains on these parts bother each other and have to wait
until their predecessor has cleared the downstream segment.

3.4.4 Maximum Frequency and Zero Flow Phase

The two phases are given by the two planes

f0 = fmax = 1/hmin, (IV-a)

f0,1,2 = 0. (IV-b)

Here, the train frequency is independent of the total number of trains m and of the
difference ∆m.

IV - a - Maximum frequency phase.
This phase corresponds to the surface delimited by the polygon (GHIJKL) in Fig. 3.9.

The total number m of trains is sufficiently high and well allocated between branches
and central part to realize the maximum train-frequency and is sufficiently low to avoid
congestion. The optimal set point (m∗,∆m∗) is located at point G in Fig. 3.9. An
important detail is that two border lines lying opposite of each other are not necessarily
parallel. Only the lines (HI) and (KL) which are border to phases II-a, II-b are parallel
to each other and to the m-axis.

IV - b - Zero flow phase.
This phase includes all the points outside of the polygon (ABCDEF) or on its border,

in Fig. 3.9. Only the points (m,∆m) at the border of the polygon are feasible, where
the train frequency is zero. The points outside of the polygon are non-realizable. The
border lines, starting from point A (m,∆m = 0), against the clock are: ∆m ≡ m (all
trains on branch 1), ∆m ≡ −n1 (branch 1 full, additional trains on the central part),
∆m ≡ m−n0−2n1 (branch 1 and central part full, additional trains on branch 2). Here,
point D (m,∆m = n,∆n) is reached, where there is a train on every segment. Now with
the clock, again starting from point A, to point D: ∆m ≡ −m (all trains on branch 2),
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∆m ≡ n2 (branch 2 full, additional trains on the central part), ∆m ≡ −m + n0 + 2n2

(branch 2 and central part full, additional trains on branch 1).

Lines’ Equations and Points’ Coordinates

Coordinates of the points A,B, . . . , L in the m/∆m plane.

A = (0, 0) B = (n1,−n1)
C = (n0 + n1,−n1) D = (n,∆n)
E = (n0 + n2, n2) F = (n2, n2)

G = (Tfmax,∆Tfmax/2)

H =
(

2T 0+T 2−S1
2hmin

+ n1,
S1+T 2
2hmin

− n1

)
I =

(
n0 + n1 +

T 2−2S0−S1
2hmin

,
S1+T 2
2hmin

− n1

)
J =

(
n− 2S0+S1+S2

2hmin
,∆n− ∆S

2hmin

)
K =

(
n0 + n2 +

T 1−2S0−S2
2hmin

, n2 − T 1+S2
2hmin

)
L =

(
2T 0+T 1−S2

2hmin
+ n2, n2 − T 1+S2

2hmin

)
Straight lines and semi-planes delimiting phase IV-b.

m ≡ −∆m, (AB)

∆m ≡ −n1, (BC)

m ≡ ∆m+ (n0 + 2n1), (CD)

m ≡ −∆m+ (n0 + 2n2), (DE)

∆m ≡ n2, (EF)

m ≡ ∆m. (FA)

Straight lines and semi-planes delimiting phase IV-a.

m ≡ T 0 + T 2

hmin
−∆m, (GH)

∆m ≡ S1 + T 2

2hmin
− n1, (HI)

m ≡ n0 + 2n1 −
S0 + S1

hmin
+ ∆m, (IJ)

m ≡ n0 + 2n2 −
S0 + S2

hmin
−∆m, (JK)

∆m ≡ n2 −
T 1 + S2

2hmin
, (KL)

m ≡ ∆m+
T 0 + T 1

hmin
. (LG)
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Straight lines and semi-planes delimiting phases I-a/I-b, I-b/II-b, II-
b/III-b, III-b/III-a, III-a/II-a, II-a/I-a:

∆m ≡ (∆T/T/2) m, (AG)

∆m ≡ −m(S1 + T 2) + 2n1(T 0 + T 2)

S1 − 2T 0 − T 2

, (BH)

∆m ≡ −2n1(S0 − T 2) + (S1 + T 2)(n0 −m)

2S0 + S1 − T 2

, (CI)

∆m ≡ ∆n+
∆S(m− n)

2S0 + S1 + S2

, (DJ)

∆m ≡ 2n2(S0 − T 1)− (S2 + T 1)(m− n0)

2S0 + S2 − T 1

, (EK)

∆m ≡ −2n2(T 0 + T 1) +m(S2 + T 1)

S2 − 2T 0 − T 1

. (FL)

3.5 Feedback Control Laws for the Number of Trains

Above, the traffic phases of the train dynamics on a metro line with a junction where
trains respect minimum travel times, have been derived. An ensemble of stable set
points in the stationary regime has been characterized where trains respect minimum
dwell and run times. These minimum values can include time margins to handle small
perturbations. In case these margins are insufficient to recover perturbations, a macro-
scopic control shifting the set point of the system can optimize metro operations. Some
macroscopic control laws for a feedback control of the number of trains to respond to a
change in passenger travel demand or a perturbation are presented below.

The derivation of the traffic phases of a metro line with a junction gives an ensemble
of optimal operating points for different train frequencies. More precisely, these optimal
operating points are all the ones of the straight line (AG) in Fig. 3.9 separating the
two surfaces I-a and I-b of the free flow phases (see equations (I-a) and (I-b)). This
section concerns the control of the number of running trains (m and ∆m), to track
the optimal operating point, changing with different parameters: run and dwell times
and the required train frequency (responding to the level of passenger demand). As
mentioned above, the macroscopic control we propose here is applied in the case where
travel time margins are insufficient to recover perturbations.

Consider the following notations.
T := (2T 0 + T 1 + T 2) /2.
∆T := T 2 − T 1.
S := (2S0 + S1 + S2) /2.
∆S := S2 − S1.

For the regulation, the following is considered.
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• Observed state variables: (T ,∆T ) or f0.

• Set point: f0.

• Control variables: m,∆m.

The procedure of traffic regulation is then the following. Assuming that the metro line is
operated at an optimal operating point on the straight line (AG) of Fig. 3.9, the run and
dwell times are on-line measured. Every time a train runs (stops) on a given segment,
the corresponding run (dwell) time and the total travel times (T ,∆T ) are updated. If
the coordinates of the set point in the plan of Fig. 3.9 change, the control retrieves the
new m and ∆m corresponding to the new coordinates of the set point. Acting on m
consists in inserting or removing a train. Acting on ∆m can be done by instantaneously
changing the train order at the junction. Indeed it is sufficient to once change the order
at the divergence or at the convergence, to realize a one step shift of ∆m. However,
it is preferable to act only on the train passing order at the convergence, because at
the divergence, changing the train destination means that passengers have to change
trains which leads to passenger congestion at the divergence and degrades the quality of
service. This control is macroscopic, since it regulates the number of trains on the three
parts of the line, the junction, and consequently the average headways on the line.

Below are derived the main equations needed for the feedback control, distinguished
in three cases. The system of equations of the straight line (AG) in the 3D space is given
directly by the two equations (I-a) and (I-b). Equivalently, as shown in the following, it
can be written as a combination of its 2D equation (see Appendix (AG) in the (m,∆m)
plane with equation (I-a) (or equivalently (I-b)).

2∆m/m = ∆T/T , (3.76)

f0 = (m−∆m)/(T 0 + T 1). (3.77)

Solving for ∆m in (3.76) and replacing it in (3.77) gives

f0 = m/T . (3.78)

Solving for m in (3.76) and replacing it in (3.77) gives

f0 = 2∆m/∆T . (3.79)

Formula (3.78) is the slope of the 3D straight line (AG) in the (m, f) plane. It
retrieves the one for a linear metro line without junction, derived in [14]. Indeed, (3.78)
can also be written f0 = ρv, where ρ := m/L is the average train density on the metro
line and v := L/T is the free flow (or maximum) train speed on the metro line.

Formula (3.79) is new. It gives the slope of the 3D straight line (AG) in the 2D
(∆m, f) plane. Formula (3.79) can not be written with train densities and speeds.
These equations serve for traffic control. From (3.78) and (3.79) the following feedback
laws are derived.

m = T f0. (3.80)

∆m = ∆T f0/2. (3.81)
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Feedback laws (3.80) and (3.81) allow to control the number of running trains. The
controls m and ∆m need to be rounded to integers before applying them. This does not
affect stability, since all the set points are stable.

In the following, three cases of changing traffic conditions are distinguished.

• Due to an enduring affluence of arrival passengers, there is the need to increase
the train frequency of the metro line in order to respond to the travel demand. As
a consequence, the set point f0 changes.

• Due to an incident, train travel times increase. Consequently, a changing in T
and/or in ∆T is observed. However, there is no possibility to insert or to cancel
trains in order to respond to the incident.

• As above, due to an incident on the metro line, train travel times increase. Con-
sequently, a changing in T and/or in ∆T is observed. This time, trains can be
inserted or canceled to respond to the incident.

Control Law for the Number of Trains in Feedback of the Passenger Travel
Demand

For a transition from one time period to another one with different travel demand levels
(for example when passing from off-peak to peak hour), where the difference between the
travel demands on the two branches does not change (and where no further disturbances
affect operations) the train frequency needs to be updated to respond to the new travel
demand. The controls m and ∆m are then calculated as functions of the new train
frequency f0 with the following feedback law.(

m
∆m

)
=

(
T

∆T/2

)
f0. (3.82)

In practice, the new train frequency f0 is evaluated with regard to the new travel
demand. Then the new controls m and ∆m are derived from the feedback law (3.82),
where T and ∆T are supposed to remain unchanged.

With regard to Fig. 3.9, for a new train frequency level f0, the feedback (3.82) will
move the optimal operating point on the 2D graphic of Fig. 3.9 by remaining on the
straight line (AG), to reach a new optimal operating point corresponding to the required
new train frequency set point f0.

Control Law for the Number of Trains in Case of a Perturbation on the
Branches

In the following, a time period with constant travel demand level and disturbances on T
and ∆T is considered. However, there is no possibility to act on the total number m of
trains, that means trains cannot be inserted or canceled. This is a common constraint
in transportation, for example due to the non-availability of additional trains and/or
drivers. A consequence of this assumption is that the train frequency will decrease due
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to the disturbances on T and ∆T . The optimal control ∆m that permits to remain on
the straight line (AG) of Fig. 3.9 is the following.

∆m = m∆T/(2T ). (3.83)

The new train frequency changes with respect to T , independent of ∆T , as follows.

f0 = m/T .

With respect to Fig. 3.9, a disturbance on ∆T and T modifies the phase diagram such
that the resulting ∆m re-places the frequency set point f0 back on the straight line
(AG), but on a degraded level, due to the prolongation of the travel time T .

Control Law for the Number of Trains on the Branches in Case of a Pertur-
bation on the Branches

During a time period where the travel demand level is constant, the train frequency
needed to absorb the travel demand does not change. Therefore, during the considered
time period, the set point f0 remains the same over all time steps. In this case, the
feedback law system is linear on T and ∆T , where the train frequency f0 is assumed to
be unchanged. Moreover, the two feedback laws are independent of each other since the
gain matrix is diagonal. (

m
∆m

)
=

(
f0 0
0 f0/2

) (
T

∆T

)
. (3.84)

In this case, the two feedback laws can be applied separately. That is to say that
feedback law (3.80) can be applied every time step a change in T is observed, and
feedback law (3.81) can applied every time step a change in ∆T is observed.

With respect to Fig. 3.9, a disturbance on T will modify the phase diagram such
that the resulting m from feedback law (3.80) combined with the unchanged ∆m will
guarantee the same train frequency f0. Similarly, a disturbance on ∆T will modify the
2D graphic of Fig. 3.9 such that the resulting ∆m from feedback law (3.81) combined
with the unchanged m will maintain the train frequency set point f0.

Table 3.4 summarizes for all types of perturbations studied above, how the phase
diagram and the optimal set point change, and how control variables have to be adjusted
to respond to the perturbations.
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Table 3.4: Summary over control actions as a function of: 1. Disturbances on observed
variables; 2. The set point.

Feedback Observation Phase Set Control

control diagram point variables
f0 m ∆m

Part 3.5 ↗ f0 same ↗ ↗ |∆m| ↗

Part 3.5 (T ↗,∆T l) new ↘ same follows

∆T

Part 3.5 (T ↗,∆T l) new same ↗ follows

∆T



Chapter 4

The Effect of the Passenger
Travel Demand on the Traffic

In Chapter 3, a discrete event traffic model of the train dynamics on a metro
line with a junction where trains respect given lower bounds on train dwell,
run and safe separation times has been presented. In this chapter, the model
is extended. The train dwell times are modeled as a function of the passenger
travel demand, such that they are extended for trains with a long time-
headway within a margin on the run times. The train run times are controlled
to cancel a possible extension of the train dwell times. Two applications are
presented in the following. A first one to a linear line and a second one
to a line with a junction. In both cases, it is shown that the dynamics of
the entire line, with the combination of demand-dependent dwell times and
controlled run times, are max-plus linear. The main result is the derivation
of the unique asymptotic average growth rate, interpreted as the asymptotic
average train time-headway. The traffic phases of the train dynamics are
derived. Their illustration is the fundamental diagram for a linear line and
for a line with a junction, relating the variables train frequency, number of
trains, passenger travel demand, as well as the run time margin.

4.1 A Model of the Demand-dependent Train Dynamics
on a Linear Line

4.1.1 Passenger Arrivals Modeling

In the preceding Chapter 3, a model of the train dynamics in a line with a junction has
been presented. It has been supposed that trains respect given minimum values on dwell
and run times. Indeed, these minimum values can include time margins to respond to
smaller perturbations. In this chapter, the model is extended taking into account the
effect of the passenger demand on the train dynamics. This modeling of the passenger
arrivals is first applied to the model of a linear line, presented by the authors of [12].

69
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In the second part of this chapter, the model of the train dynamics on a line with a
junction of Chapter 3 is extended, modeling the passenger arrivals to the platforms and
their effect on the train dynamics.

The passenger travel demand is modeled by taking into account average passenger
arrival and departure rates to, respectively from the platforms. These rates (or flows)
can be calculated from Origin-Destination matrices. Moreover, an average boarding,
respectively average alighting capacity is considered. These average flow-capacities de-
pend on the layout of the trains, especially the length and the number of doors, and
the number of passengers on the platform and in the train. To simplify the model, one
average boarding and one average alighting capacity is considered per platform. This
means that the passenger exchange process is supposed to be independent of the number
of passengers on the train and on the platform. Therefore, congestion phenomena cannot
be modeled here.

Finally, it is supposed that the train dwell time is calculated such that the passenger
alighting and boarding demand on a certain platform is completely satisfied. This means
that all the passengers who want to alight and all the ones who are on the platform
waiting to board a train, can do so. It is considered that the capacity of train platforms
and trains is sufficient to satisfy the demand and are therefore not explicitly modeled
here. Accordingly, consider the following notations.

λin
i =

∑
j λij the average passenger arrival rate on origin platform i to any

destination platform.
λout
j =

∑
i λij the average passenger departure rate from destination plat-

form j, from any origin platform.
αin
j average passenger boarding rate on platform j.

αout
j average passenger alighting rate on platform j.

Using the parameters defined above, the number of boarding passengers is modeled
by multiplying the average passenger arrival flow to a platform (number of passengers
per time interval) with the train time-headway. The train time-headway is the time
interval between two consecutive departures from a platform. Dividing the number of
boarding passengers by the boarding capacity gives the time for passenger boarding. The
number of alighting passengers, depends on the number of passengers having boarded a
train on the preceding stations. Here, it is directly modeled using the average passenger
departure rate from the alighting platform, the corresponding alighting capacity and the
time-headway of the train at the alighting platform, such that the time for passenger
alighting is extended for a train with a long time-headway. Then, consider the following
notations.
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λini
αin
i
hi time for passenger boarding at platform j.

λoutj

αout
j

hj ≈
∑

i λijhi/α
out
j time for passenger alighting at platform j. Note that

the number of alighting passengers at a platform j is estimated with
the headway hj of the train at the arrival platform j. This is an
approximation since the number of alighting passengers depends on
the number of passengers having boarded the train on the previous
platforms, which depend on hi.

Finally, xj is defined as the passenger demand parameter incorporating average pas-
senger arrival and departures rates per platform, and average passenger boarding and
alighting capacities per platform

xj =

(
λout
j

αout
j

+
λin
j

αin
j

)
, (4.1)

such that xjhj represents the time needed for passenger alighting and boarding at plat-
form j.

4.1.2 Demand-dependent Train Dynamics

Figure 4.1: A linear metro line representation.

The notation for the modeling of the train dynamics on a linear line, used throughout
this chapter, are similar to those in Chapter 3 above. Similarly to the model for a line
with a junction presented in Section 3.1 above, the line is discretized into n segments,
as shown in Fig. 4.1. Considering a linear metro line, it is sufficient to consider the
equations of the train dynamics out of the junction (3.43) and (3.44) and to set, for all
nodes and all segments, u = 0 in order to retrieve an adequate notation.

Equation (3.44) models the constraint on the safe separation time and is for a linear
line written

dkj ≥ d
k−b̄j+1

j+1 + sj+1, ∀k ≥ 0. (4.2)

Other than that, it remains unchanged.
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Equation 3.43 models the travel time constraint and is for a linear line written as
follows

dkj ≥ d
k−bj
j−1 + tj , ∀k ≥ 0. (4.3)

More precisely the minimum travel time tj is the sum of minimum run time rj and
minimum dwell time wj .

dkj ≥ d
k−bj
j−1 + rj + wj , ∀k ≥ 0. (4.4)

This constraint is rewritten in the following by replacing the minimum run and dwell
times by a run time function and a dwell time function.

• The dwell time function calculates the dwell time depending on the passenger
alighting and boarding times defined above.

• The run time function models a control that cancels a possible extension of the
dwell times in case of a high passenger affluence and long passenger exchange times.

Replace constraint (4.3) with the following.

dkj ≥ d
k−bj
j−1 + tkj (h

k
j , xj) = d

k−bj
j−1 + rkj (hkj , xj) + wkj (hkj , xj). (4.5)

In constraint (4.5), rkj , w
k
j and thus tkj are functions of the train time-headway hkj , and of

the passenger demand. The function tkj (h
k
j , xj) is the control law which makes the train

dynamics adaptive with respect to train delays and to passenger demand.
In this model, minimum travel times are replaced by a travel time which is a function

of the passenger demand, summarized in parameter xj . Moreover, the dwell time, the
first component of the travel time, is a linear function of the train time-headway and
takes into account the passenger demand. The run time, the second component of the
travel time, is as well a function of the train time-headway and allows to recover eventual
extensions of the train dwell time. The two functions rkj (hkj ) and wkj (hkj ) are detailed
below.

Dynamic Programming Traffic Model

Two models of the train dwell time accounting for the passenger travel demand have
been proposed by the authors of [13]. The first model is of the form

wkj =
λin
j

αj
hkj . (4.6)

It can be seen that the dwell time takes into account the needed boarding time without
taking into account the needed alighting time. This model permits to adjust the dwell
times on platforms in function of the arrival demand. However, it has been shown in [13]
that the train dynamics is not stable in this case. This means train delays are amplified
over time and propagate backwards through the metro line.
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To deal with the latter problem, the authors of [13] have proposed a second model
for the train dwell times at platforms. The model is of the form

wkj = max

{
wj , w̄j − θj

λin
j

αj
hkj

}
, (4.7)

with θj being a control parameter to be fixed. The authors have shown that the
model (4.7) guarantees the stability of the train dynamics, and that the dynamics admit
an asymptotic regime with an asymptotic average train time-headway. The latter is de-
rived by simulation in function of the number of trains and of the level of the passenger
demand. However, with the control law of model (4.7), a delayed train at platform j,
which induces an accumulation of passengers at platform j, will reduce the train dwell
time at that platform, what is absurd for passengers.

The authors of [13] have shown that with dwell time control (4.7), and under the
condition 0 ≤ θj ≤ 1,∀j, the train dynamics admits an asymptotic regime with a
unique average growth rate, which can be interpreted as the average train time-headway.
Therefore the train dynamics are stable. Moreover, they can be interpreted as the
dynamic programming system of a stochastic optimal control problem of a Markov chain.

Max-plus Linear Traffic Model

The model presented below resolves the problem that the dynamics on a linear line
with demand-dependent dwell times accordingly to (4.6) are unstable. Moreover, as it
has just been discussed, the dwell time control (4.7) guaranteeing stability is absurd
from a passengers point of view, since the dwell times of trains running with a long
time-headway are shortened.

Dwell time model
The following dwell time model (4.8) is similar to the model (4.6), but it also takes into
account the attraction term of the travel demand.

wkj (hkj , xj) = min(xjh
k
j , w̄j), (4.8)

where the kth dwell time on platform j, wkj is the minimum between the time needed

for passenger alighting and boarding xjh
k
j , and an upper bound on the train dwell time

w̄j .

Furthermore, the minimum and maximum dwell time are related to the train time-
headway hj and the dynamic interval gj as follows.

wj = xjhj , (4.9)

w̄j = xj h̄j , (4.10)

where hj and h̄j are derived from given g
j

and ḡj , from the formula h = g + w of (3.3),
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and from the dwell time law (4.8), as follows.

hj = g
j

+ wj = g
j

+ xjhj . (4.11)

h̄j = ḡj + w̄j = ḡj + xj h̄j . (4.12)

Then

hj = 1/(1− xj) gj , (4.13)

h̄j = 1/(1− xj) ḡj , (4.14)

and then

wj = Xjgj , (4.15)

w̄j = Xj ḡj , (4.16)

where Xj := xj/(1− xj).
Equation (4.15) gives the dwell time for passenger alighting and boarding at plat-

form j for a train which arrives at this platform with the minimum dynamic interval
g
j

= gkj = akj − d
k−1
j . This minimum dynamic interval is an infrastructure constraint,

imposed by the signaling system. The corresponding dwell time wkj is the minimum
dwell time.

Equation (4.16) defines the maximum dwell time such that the passenger alighting
and boarding demand at platform j is completely satisfied for a train which arrives
at this platform with the maximum dynamic interval ḡj = gkj = akj − d

k−1
j . In order

to guarantee the stability of the trains dynamics, a run time margin is defined below.
It will allow to extend dwell times to the maximum w̄j as defined by equation (4.16).
The stability conditions are then explained in Demand-dependent train dynamics, after
Theorem 5.

Run time model
In order to deal with the instability issue, the dwell time model is completed with a
run time model which cancels the term that causes instability in the dwell time model.
More precisely, for a train delay at a platform j, the dwell time model extends the dwell
time at that platform in order to satisfy the minimum alighting and boarding times
given by equation (4.15). The run time model will reduce the run time from platform
j to platform j + 1 in order to compensate in such a way that the whole travel time
(t = w + r) remains stable.

Consider the following run time law.

rkj (hkj , xj) = max
{
rj , rj + ∆rj − xj

(
hkj − hj

)}
, (4.17)

where the sum of minimum run time rj and run time margin ∆rj is the nominal run
time of trains on segment j, r̃j . The model (4.17) gives the run time as the maximum
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between a given minimum run time rj and a term that subtracts xj

(
hkj − hj

)
from the

nominal run time. The term xj

(
hkj − hj

)
expresses a deviation of the boarding and

alighting time, due to a deviation of the train time-headway. Notice here that the term
xjh

k
j , appearing in the dwell time law (4.8) with a sign “+”, appears in the run time

law (4.17) with a sign “−”.

Combining the dwell time law (4.8) with the run time law (4.17), gives the following
new travel time law.

tkj (xj) = rkj (hkj , xj) + wkj (hkj , xj). (4.18)

Demand-dependent train dynamics
Consider the following notations.

∆hj := h̄j − hj , ∆gj := ḡj − gj ,

∆wj := w̄j − wj , ∆rj := r̃j − rj .

It is then easy to check the following.

∆wj = xj∆hj = Xj∆gj , ∀j.

The following result shows that with the dwell time and run time models chosen
above, the train dynamics on a linear line with demand-dependent dwell times are stable
in the stationary regime.

Theorem 5. If h1
j ≤ h̄j = 1/(1 − xj) ḡj ,∀j and if ∆rj ≥ ∆wj = Xj∆gj ,∀j, then the

constraints (4.2)-(4.5) is a max-plus linear system, and is equivalent to

dkj ≥ d
k−bj
j−1 + r̃j +Xjgj . (4.19)

dkj ≥ d
k−b̄j+1

j+1 + sj+1. (4.20)

The dynamics is then written as follows.

dkj = max


d
k−bj
j−1 + r̃j +Xjgj ,

d
k−b̄j+1

j+1 + sj+1.

(4.21)

Proof. By induction, it can be shown that (4.2)-(4.5) is equivalent to (4.19)-(4.20) for
k = 1.

• On the one side, xjh
1
j ≤ xj h̄j = w̄j holds. Therefore, the first term realizes the

minimum in (4.8). That is, (4.8) is equivalent to

w1
j (h

1
j , xj) = xjh

1
j . (4.22)
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• On the other side,

r̃j − xj(h1
j − hj) ≥ r̃j − xj

(
h̄j − hj

)
= r̃j −∆wj ≥ r̃j −∆rj = rj

holds. Therefore, the second term realizes the maximum in (4.17). That is, (4.17)
is equivalent to

r1
j (h

1
j , xj) = r̃j − xj

(
h1
j − hj

)
. (4.23)

Consequently, (4.18) gives

t1j (xj) = r̃j + xjhj = r̃j +Xjgj . (4.24)

Then (4.5) can be written

d1
j ≥ d

1−bj
j−1 + r̃j +Xjgj .

In the following it is shown, that if (4.2)-(4.5) is equivalent to (4.19)-(4.20) for a given
k, then it holds also for k+1. Since it holds for k, then a Max-plus linear dynamics (4.19)-
(4.20) will be applied for k. Note by f the max-plus map of the max-plus dynamics.
Max-plus linear maps are 1-Lipschitz for the sup. norm. The assertion holds for k means
that hkj ≤ h̄j , ∀j. Then ||dk − dk−1||∞ ≤ h̄j . Hence

||dk+1 − dk||∞ = ||f(dk)− f(dk−1)||∞ ≤ ||dk − dk−1||∞ ≤ h̄j .

Therefore hk+1
j ≤ h̄j ,∀j. Then, it can easily be shown (as done for k = 1) that (4.2)-(4.5)

is equivalent to (4.19)-(4.20) for k + 1.

The two conditions of Theorem 5 can be interpreted as follows.

• Condition ∆rj ≥ ∆wj = Xj∆gj ,∀j limits the margin on the train dwell times to
the margin on the train run times. With this this condition, the upper bound on
the train dwell time in equation (4.8) can be fixed to:

w̄j = wj + ∆wj = Xjgj + ∆rj . (4.25)

Indeed, as explained above, the model consists in responding to disturbances and
train delays by first extending the train dwell times so that the passengers accu-
mulated in the train and on the platforms have time to alight (respectively board)
the train, and second, by recovering the dwell time extension by reducing the train
run times on the inter-stations ahead. The following condition ensures this recov-
ering to be possible while fully serving the passenger travel demand, and then the
dynamic system to be stable.

• Condition h1
j ≤ h̄j = 1/(1− xj) ḡj ,∀j, k limits the initial headway h1

j (that is the

initial condition) to its upper bound h̄j , which is given by the level of the passenger
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travel demand xj at platform j, the maximum dynamic interval ḡj and the run
time margin ∆rj as follows.

h̄j = 1/(1− xj)ḡj . (4.26)

By replacing ḡj = h̄j − w̄j :

h̄j = 1/(1− xj)(h̄j − w̄j) (4.27)

h̄j = (1/xj)w̄j . (4.28)

Then, replace w̄j = Xjgj + ∆rj accordingly to equation (4.25) of the condition

above:

h̄j = (1/xj)(Xjgj + ∆rj) (4.29)

h̄j = 1/(1− xj)gj + (1/xj)∆rj . (4.30)

The maximum headway difference ∆hj under which the passenger demand is fully
served and the train dynamics are stable are related to the run time margin as
follows. From equation (4.30), limiting the intial condition to the maximum head-
way:

∆hj = h̄j − hj = 1/(1− xj)gj + (1/xj)∆rj − wj − gj . (4.31)

∆hj = Xjgj − wj + (1/xj)∆rj . (4.32)

And with wj = Xjgj :

∆hj = Xjgj −Xjgj + (1/xj)∆rj (4.33)

∆hj = (1/xj)∆rj . (4.34)

Since a big value of hkj corresponds to a delay of the kth train passing by platform j,

this condition tells that if all the delays expressed by hkj ,∀j are limited to h̄j , ∀j, then the
dynamic system is max-plus linear, and is then stable, and admits a stationary regime.
In other words, the train dynamics is stable under small disturbances.

Note that the nominal run time on segment j is written r̃j . r̃j is given by stability
condition

∆rj ≥ ∆wj = xj∆hj , ∀j. (4.35)

and depends on ∆rj . Indeed ∆rj influences the robustness and the frequency of the
metro system, that means it can either be fixed equal to ∆wj to enhance the aver-
age frequency, or it can be chosen greater than ∆wj to reinforce robustness towards
perturbations.

The system can be optimized with regard to train frequency or stability. In the
following section, the traffic phases for a linear line with demand-dependent dwell times
and controlled run times are derived and the analytic formulas for the asymptotic average
train time-headway h and the asymptotic average frequency f are presented.
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4.2 The Steady State Train Dynamics

The authors of [12] have presented a max-plus linear traffic model for a linear line, where
trains respect lower bounds on dwell and run times. They have derived the traffic phases
of the train dynamics on a linear line, the main result is recalled below.

h(m) = max

{∑
j tj

m
,max

j
(tj + sj),

∑
j sj

n−m

}
, (4.36)

with
m the number of trains,
n the number of segments on the line.

The max-plus theorem derived in [12] gives the asymptotic average train time-
headway on a linear line as a function of the number of trains, the number of segments,
minimum dwell, run and safe separation times. Since the traffic model presented above
in Section 4.1 with demand-dependent dwell times and controlled run times is max-plus
linear, too, tj in (4.36) can directly be replaced by tj(xj).

h(m) = max

{∑
j tj(xj)

m
,max

j
(tj(xj) + sj),

∑
j sj

n−m

}
. (4.37)

By replacing tkj (xj) using (4.18), one finds:

Theorem 6. The asymptotic average train time-headway of the max-plus linear system
with dynamic demand-dependent dwell times and controlled run times is given by the
asymptotic average growth rate of the system. The average headway depends on the
number of trains m on the line and the passenger travel demand parameter for every
platform Xj.

h(m,X) = max



∑
j(g

j
Xj+r̃j)

m ,

maxj((gjXj + r̃j) + sj),

∑
j sj

n−m .

Proof. Under the conditions of Theorem 5, the system can be written in max-plus al-
gebra. It has been shown that in this case, the asymptotic average growth rate of the
system can be analytically derived and corresponds to the average train time-headway.
Replacing tj in equation (4.36) (the max-plus theorem of [12]) allows to obtain the
demand-dependent asymptotic average train time-headway on a linear line.

Notice that the asymptotic average train time-headway h in the free flow phase
depends not only on the number of trains m, but furthermore on a weighted mean of
the passenger travel demand and the nominal run times

∑
j(gjXj + r̃j). The maximum

frequency of the system is given by the maximum over passenger demand, nominal run
time and safe separation time, over all segments maxj((gjXj + r̃j) + sj).
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The following analytic formulas for the asymptotic average train frequency on a linear
line are directly obtained from Theorem 6.

Corollary 2. The asymptotic average frequency of the max-plus linear system with
demand-dependent dwell times and controlled run times is a function of the number
of trains and the passenger travel demand.

f(m,X) = min



m∑
j(g

j
Xj+r̃j) ,

1
maxj((g

j
Xj+r̃j)+sj) ,

n−m∑
j sj

.

Proof. Directly from Theorem 6 with f = 1/h.

Note that in Theorem 6 and Corollary 2, the asymptotic average train time-headway
h, respectively asymptotic average frequency f depend linearly on the passenger travel
demand parameter Xj = xj/(1− xj) with

xj =

(
λout
j

αout
j

+
λin
j

αin
j

)
.

Consequently, the dependency between average passenger arrival and departure rates to
and from the platforms, and the train dynamics is exponential, not linear. However,
since the average boarding and alighting capacities are typically a lot bigger than the
average passenger arrival and departure rates to and from the platforms, the following
holds:

λout
j , λin

j << αout
j , αin

j ,

and xj << 1 can be assumed. By consequent, for small values of xj , the train dynamics
can be said to depend approximately linearly on xj and on the passenger travel demand.

4.3 The Traffic Phases

The Figures 4.2, 4.3, 4.4, 4.5 and 4.6 below depict the asymptotic average train frequency
as given by Corollary 2. The parameters of Corollary 2 are estimated with the values
representing the central part of metro line 13 of Paris.

Precisely, the minimum dynamic intervals g
j

and the safe separation times sj repre-

sent constraints imposed by the block system and have been provided by the operator
RATP. The passenger travel demand is taken into account by the average passenger
arrival rates to and the passenger departure rates from the platforms. These flows are
estimated based on data from the operator on the number of boarding and alighting
passengers per time interval of 30 minutes for each platform. Passenger arrival rates to
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and departure rates from the platforms can be updated continuously. Together with the
boarding and alighting capacity, the passenger demand parameter

Xj = xj/(1− xj)

with

xj = λinj /α
in
j + λoutj /αoutj ,

which is non-zero for every platform, can be calculated. The train boarding and alighting
capacity has been estimated based on average values provided by the operator.

The run times include a margin here, that is

r̃j = rj + ∆rj .

The minimum run times rj are taken into account as calculated by the MATYS entity of
the operator RATP. They are based on train speed profiles, account for train characteris-
tics such as traction, braking curves and maximum speed. They depend furthermore on
infrastructure characteristics including curve radius and gradient. In addition, a margin
∆rj is applied on the minimum train run times. The margin is a parameter that can
be chosen freely. It allows to realize dynamic dwell times depending on the passenger
volume on the platform while guaranteeing the stability of the train dynamics within the
margin. More precisely, dwell times are extended up to a maximum value depending on
the run time margin, in case a perturbation causes a long headway on a train accordingly
to formula (4.8):

wkj (hkj , xj) = min(xjh
k
j , w̄j).

A possible extension of the dwell time is canceled by controlling the train run times by
accelerating the train in the inter-station within the run time margin, respecting the
minimum run time given by the maximum speed, see formula (4.17):

rkj (hkj , xj) = max{rj , r̃j − xj(hkj − hj)}.

Finally, as it has been derived by the authors of [12] for the traffic phases of the train
dynamics on a linear line with constant run and dwell times, the asymptotic average
train frequency (and train time-headway) depend on the number of trains. Note that n
is the number of segments on the line.

In Figures 4.2, 4.3, 4.4, 4.5 and 4.6 three traffic phases of the train dynamics can
be distinguished accordingly to Theorem 6 and Corollary 2. The asymptotic average
frequency depends on:

• the number of trains m,

• the passenger travel demand and

• the run time margin.
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Figure 4.2: Average frequency over total number of trains and passenger travel demand,
for a run time margin of 15%, on a linear line similar to the central part of Paris metro
line 13 (view 1).

4.3.1 The Effect of the Passenger Travel Demand

Free Flow Phase

In the beginning, from the first train running up to a certain limit, the system is in the
free flow phase. In this phase, trains run freely on the line, without bothering each other.
As it can be seen in Figure 4.2 for a fixed run time margin of 15%, the frequency increases
linearly with the number of trains, for a fixed passenger demand. For a fixed number
of trains, the average frequency decreases non-linearly with increasing passenger arrival
and departure flows (here represented in % of peak hour demand), as it can be seen in
Figure 4.4, that is with an increasing passenger travel demand parameter xj . As it has
been shown above, the asymptotic average frequency (and train time-headway) depend
linearly on Xj but non-linearly on xj since Xj = xj/(1− xj). However, for small values
of xj , the dependency on xj is approximately linear. Note in Figure 4.4 that contour
lines are non-parallel to the passenger demand axis. This is a direct consequence of the
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demand-dependent dwell times, which increase with the passenger affluence.

Figure 4.3: Average frequency over total number of trains and passenger travel demand,
for a run time margin of 15%, on a linear line similar to the central part of Paris metro
line 13 (view 2).

Maximum Frequency Phase

The second phase is the maximum capacity phase. Here, the minimum train time-
headway, respectively the maximum frequency is realized. The minimum train time-
headway is determined by the segment which realizes the maximum for the sum of
minimum run time, run time margin, demand-dependent dwell time and safe separation
time:

max
j

((g
j
Xj + r̃j) + sj).

As it can be seen in Figure 4.3, in this phase, the maximum frequency is reached and
is independent of the number of trains. The system is operated at capacity. As for the
standard model for linear lines with fixed run and dwell times, developed by the authors
of [12], the optimal number of trains is reached at the intersection of free flow phase
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and maximum frequency phase. This number maximizes the frequency for a minimal
number of trains. Therefore, there is no interest in running more trains than the one
represented by the straight line at the intersection of the two traffic phases. In the
contrary to the standard model in [12], the maximum train frequency depends on the
passenger travel demand. Figure 4.3 allows to analyze this dependency for the case of
the central part of Paris metro line 13. Note that with an increasing passenger demand,
the capacity decreases. This is a consequence of the demand-dependent dwell times. In
Figure 4.3, at around 80% of peak hour demand a discontinuity in the gradient with
respect to passenger travel demand parameter xj can be identified in the maximum
frequency phase. At this point, the bottleneck of the line switches from one segment to
another. For example, for the central part of Paris metro line 13, for a low demand level,
the bottleneck is the segment of platform Gâıté, northbound, because of its high run
and safe separation times. In the contrary, for a very high demand level, the dwell time
becomes important at the platform Montparnasse – Bienvenüe, northbound, which is an
important interchange station. Although the segment of that platform has optimized run
and safe separation times, the high dwell times make this segment the new bottleneck
of the line.

Finally, Figure 4.4 shows that the optimal number of trains depends on the passenger
travel demand. This is a direct consequence of the demand-dependent capacity of the
line. Note that the intersection line between the free flow phase and the maximum
frequency phase is not parallel to the passenger travel demand axis. For example, for
some run time margin, here 15 %, with an increasing passenger demand, the capacity of
the system decreases. Moreover, to reach the decreased capacity, the number of trains has
to be increased. In the contrary, the intersection between the maximum frequency phase
and the congestion phase does not depend on the passenger travel demand. Congestion
occurs from a certain number of trains on, independently of the passenger demand.

Congestion Phase

The third phase is the congestion phase. In this phase, the line is overloaded with
trains, so that they start to interact with each other. For example, trains will have to
wait frequently in inter-station until the preceding train has cleared the downstream
platform. Here, the average frequency decreases for an increasing number of trains.
Apart from the number of trains, it depends only on the total number of segments
and their safe separation time. Consequently, the contour lines of same frequency in
Figure 4.4 are parallel to the passenger travel demand axis. Note that the frequency
decreases linearly in m in this phase. Any operator will avoid that its system reaches
this phase.

4.3.2 The Effect of the Run Time Margin

Refer to Figures 4.5 and 4.6 to study the effect of the run time margin on the asymp-
totic average frequency. Again, a free flow phase, a maximum frequency phase and a
congestion phase can be distinguished. The two figures depict the asymptotic average
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Figure 4.4: Average frequency over total number of trains and passenger travel demand,
for a run time margin of 15%, on a linear line similar to the central part of Paris metro
line 13

.

frequency on the linear line over the number of trains and the run time margin, for peak
hour demand.

Free Flow Phase

In the free flow traffic phase, for a fixed number of trains, the frequency decreases linearly
with an increasing margin. For a fixed margin, the frequency increases linearly with the
number of trains. Moreover, the contour lines of Figure 4.6 are a good way to study the
cost of an increased time margin. If an operator wants to know how many additional
trains have to be inserted in order to guarantee the same frequency with increased run
time margins, it is sufficient to follow the corresponding contour line in Figure 4.6.
Taking the example of f = 30 and a margin of 5%, it can be seen that approximately 30
trains are necessary to operate the line at the desired frequency. If an operator chooses
to increase the robustness of its timetable by increasing the margin to 15%, around 3
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Figure 4.5: Average frequency over total number of trains and run time margin, for peak
hour demand, on a linear line similar to the central part of Paris metro line 13.

additional trains are required to ensure the same average frequency.

Maximum Frequency Phase

Refer to Figure 4.5 to study the effect of the run time margin on the maximum frequency
phase. With an increasing margin, the capacity of the system decreases. This means,
increasing the robustness of the timetable by increasing the run time margin affects
negatively the capacity of the system. This has to be considered, especially for mass
transit lines with a high passenger travel demand. Moreover, note in Figure 4.6 that the
optimal number of trains, represented by the intersection between the free flow phase and
the maximum capacity phase, increases linearly with an increasing margin at the cost
of a lower capacity. Consequently, for an increasing margin not only capacity decreases,
but, to reach capacity, the number of trains has to be increased.
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Figure 4.6: Average frequency over total number of trains and run time margin, for peak
hour demand, on a linear line similar to the central part of Paris metro line 13.

Congestion Phase

As it can be seen in Figure 4.6, this phase is independent of the run time margin and
all contour lines of one frequency are parallel to the margin-axis.

4.4 A Model of the Demand-dependent Train Dynamics
on a Line with a Junction

4.4.1 Passenger Arrivals Modeling

This section is based on the model of the train dynamics on a line with a junction,
developed in Chapter 3 which will be extended here with a passenger demand model,
accordingly to the one for a linear line in Section 4.1. In the model of Chapter 3, trains
are supposed to respect minimum run and dwell times. The train dynamics are modeled
as discrete events and the kth departure time from each node (u, j) is written under
two constraints, one on the train travel time (run + dwell time), and one on the safe
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separation time.

dk(u,j) ≥ d
k−b(u,j)
(u,j−1) + r(u,j) + w(u,j). (4.38)

dk(u,j) ≥ d
k−b̄(u,j+1)

(u,j+1) + s(u,j+1). (4.39)

Similar to the model for a linear line in Section 4.1, the minimum run times r(u,j)

as well as the minimum dwell times w(u,j) will be replaced by a demand-dependent
control while guaranteeing stability of the dynamics in the stationary regime.This section
follows the modeling approach of 4.1. Consider the following additional notations for
the passenger travel demand.

λ(u,i),(v,j) passenger travel demand from platform (u, i) on part u to plat-
form (v, j) on part v, when i and j denote platforms, and λ(u,i),(u,j) = 0
if i or j is not a platform node.

λin
(u,i) =

∑
(v,j) λ(u,i),(v,j) the average passenger arrival rate on origin platform

(u, i) to any destination platform.
λout

(v,j) =
∑

(u,i) λ(u,i),(v,j) the average passenger departure rate from destina-
tion platform (v, j) from any origin platform.

αin
(u,i) average passenger boarding capacity on platform (u, i).

αout
(v,j) average passenger alighting capacity on platform (v, j).

Accordingly to the model in Section 4.1, the time for passenger alighting and board-
ing can be estimated as follows. The number of passenger waiting on the platform to
board the next train can be calculated by multiplying the passenger arrival flows to the
platforms (passengers per time interval) with the train time-headway. Dividing this num-
ber by the boarding capacity gives the required passenger boarding time. The boarding
capacity can be approximated by an average value which depends on the layout of the
platforms, the trains and especially the door width. The time for passenger alighting
is approximated by multiplying the average passenger departure flows from a platform
with the train time-headway at the same platform, divided by the passenger alighting
capacity. Note, that the number of passengers willing to alight depends on the number
of passenger having boarded the train at the preceding platforms. However, the depen-
dency of the alighting time on the train time-headway will still extend the alighting time
in case of a long headway, which is a good approximation.

λin
(u,i)

αin
(u,i)

h(u,i) time for passenger boarding at platform (u, i).

λout
(v,j)

αout
(v,j)

h(v,j) ≈
∑

(u,i) λ(u,i)h(u,i)/α
out
(v,j) time for passenger alighting at platform

(v, j). Note that the number of alighting passengers at a platform
(v, j) is estimated with the headway h(v,j) of the train at the arrival
platform (v, j). This is an approximation since the number of alighting
passengers depends on the number of passengers having boarded the
train on the previous platforms, which depend on h(u,i).
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A passenger demand parameters x(u,j) is defined accordingly to the model for a linear
line in Section 4.1.

x(u,i) =

(
λout(u,i)

αout(u,i)

+
λin(u,i)

αin(u,i)

)
, (4.40)

such that x(u,i)h(u,i) gives the time needed for passenger alighting and boarding at plat-
form (u, i). Furthermore, define

X(u,i) =
x(u,i

1− x(u,i)
, (4.41)

such that, accordingly to the dwell time model in Section 4.1

x(u,i)h(u,i) = X(u,i)g(u,i), ∀h(u,i) ≤ h(u,i) ≤ h̄(u,i) and g
(u,i)
≤ g(u,i) ≤ ḡ(u,i), ∀u, i. (4.42)

Demand-dependent Dwell Times & Controlled Run Times

The minimum run times r(u,j) and minimum dwell times w(u,j) in (4.38) and in the
model of Chapter 3 are here functions of the passenger travel demand parameter x(u,j)

and of the train time-headway h(u,j) as in the model for a linear line, see Section 4.1.

wk(u,j) = min
{
x(u,j)h

k
(u,j), w̄(u,j)

}
, (4.43)

The first term in equation (4.43) corresponds to the minimum dwell time satisfying
the demand. The second term in equation (4.43) relates the upper bound on the dwell
time to the passenger travel demand and the maximum dynamic interval. The maxi-
mum dynamic interval, this means the time interval during which there is no train at a
platform, has to be fixed accordingly to the passenger travel demand.

In order to deal with the instability issue, the dwell time model is completed with a
run time model which cancels the term that causes instability in the dwell time model.
More precisely, for a train delay at a platform (u, j), the dwell time model extends the
dwell time at that platform in order to satisfy the minimum alighting and boarding times
given by equation (4.43). The run time model will reduce the run time from platform
(u, j) to platform (u, j + 1) in order to compensate in such a way that the whole travel
time (t = w + r) remains stable.

Consider the following run time law.

rk(u,j) = max
{
r̃(u,j) − x(u,j)∆h

k
(u,j), r(u,j)

}
. (4.44)

where r̃(u,j) denotes the nominal run times on segment j of part u including a possi-

ble run time margin, and ∆hk(u,j) := hk(u,j) − h(u,j). The model (4.44) gives the run
time as the maximum between a given minimum run time r(u,j) and a term that sub-

tracts x(u,j)

(
hk(u,j) − h(u,j)

)
from the nominal run time. The term x(u,j)

(
hk(u,j) − h(u,j)

)
expresses a deviation of the boarding and alighting time, due to a deviation of the
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train time-headway. Notice here that the term x(u,j)h
k
(u,j), appearing in the dwell time

law (4.43) with a sign “+”, appears in the run time law (4.44) with a sign “−”.
Combining the dwell time law (4.43) with the run time law (4.44), gives the following

new travel time law for lines with a junction.

tk(u,j)(xu,j)) = rk(u,j)(h
k
(u,j), x(u,j)) + wk(u,j)(h

k
(u,j), x(u,j)). (4.45)

4.4.2 Demand-dependent Train Dynamics

Dynamics out of the Junction

Consider the following notations.
∆r(u,j) := r̃(u,j) − r(u,j).

∆w(u,j) := w̄(u,j) − w(u,j).

∆g(u,j) := ḡ(u,j) − g(u,j)
.

∆h(u,j) := h̄(u,j) − h(u,j).
It is then easy to check the following.

∆w(u,j) = x(u,j)∆h(u,j) = X(u,j)∆g(u,j),∀u, j.

Notice here that ∆r(u,j) is a margin on the run time in order to be able to recover
disturbances. Minimum train run times r(u,j) are determined by taking into account
all the characteristics of the infrastructure, in particular, the maximum train speed on
every segment.

From Theorem 5 it can directly be derived that if

h1
(u,j) ≤ h̄(u,j) = 1/(1− x(u,j))ḡ(u,j), ∀u, j

and if
∆r(u,j) ≥ ∆w(u,j) = X(u,j)∆g(u,j),∀u, j,

then (4.43) and (4.44) sum to

tk(u,j) = rk(u,j) + wk(u,j) = r̃(u,j) +X(u,j)g(u,j)
. (4.46)

With travel time equation (4.46), the minimum run and dwell times in (4.38) can replaced
and the new constraint on the travel time is written

dk(u,j) ≥ d
k−b(u,j)
(u,j−1) + r̃(u,j) +X(u,j)g(u,j)

. (4.47)

Then assuming that the kth departure from segment (u, j) is realized as soon as the two
constraints (4.47) and (4.39) are satisfied, the train dynamics is written as follows.

dk(u,j) ≥ max

 d
k−b(u,j)
(u,j−1) + r̃(u,j) +X(u,j)g(u,j)

,

d
k−b̄(u,j+1)

(u,j+1) + s(u,j+1).
(4.48)

Therefore, the train dynamics (4.48) outside of the junction is max-plus linear, see [12,
35].
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Dynamics at the Divergence

In the following, the train dynamics at the divergence of the model for a line with a
junction of Chapter 3 is adapted to include the passenger demand. To do so, replace
t(u,j) on every segment (u, j) by tk(u,j) given in (4.46). Assuming that odd departures
from the central part go to branch 1, while even ones go to branch 2, the following
constraints for the train dynamics on the divergence apply.

The kth departures from the central part.

dk(0,n0) ≥ d
k−b(0,n0)

(0,n0−1) + r̃(0,n0) +X(0,n0)g(0,n0)
, ∀k ≥ 0, (4.49)

dk(0,n0) ≥


d

(k+1)/2−b̄(1,1)
(1,1) + s(1,1) for k is odd

d
k/2−b̄(2,1)
(2,1) + s(2,1) for k is even

(4.50)

The kth departures from the entry of branch 1.

dk(1,1) ≥ d
(2k−1)−2b(1,1)
(0,n0) + r̃(1,1) +X(1,1)g(1,1)

, ∀k ≥ 0, (4.51)

dk(1,1) ≥ d
k−b̄(1,2)
(1,2) + s(1,2), ∀k ≥ 0. (4.52)

The kth departures from the entry of branch 2.

dk(2,1) ≥ d
2k−2b(2,1)
(0,n0) + r̃(2,1) +X(2,1)g(2,1)

, ∀k ≥ 0, (4.53)

dk(2,1) ≥ d
k−b̄(2,2)
(2,2) + s(2,2), ∀k ≥ 0. (4.54)

Dynamics at the Convergence

For the train dynamics at the convergence, assuming that odd departures at node (0, 0)
to the central part correspond to trains coming from branch 1 while even ones correspond
to trains coming from branch 2, the dynamics are written as follows.

The kth departures from the central part.

dk(0,0) ≥


d

(k+1)/2−b(1,n1)

(1,n1−1) + r̃(1,n1) +X(1,n1)g(1,n1)
odd k

d
k/2−b(2,n2)

(2,n2−1) + r̃(2,n2) +X(2,n2)g(2,n2)
even k

(4.55)

dk(0,0) ≥ d
k−b̄(0,1)
(0,1) + s(0,1), ∀k ≥ 0, (4.56)

The kth departures from the entry of branch 1.

dk(1,n1−1) ≥ d
k−b(1,n1−1)

(1,n1−2) + r̃(1,n1−1) +X(1,n1−1)g(1,n1−1)
, (4.57)

dk(1,n1−1) ≥ d
2k−1−2b̄(1,n1)

(0,0) + s(1,n1). (4.58)
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The kth departures from the entry of branch 2.

dk(2,n2−1) ≥ d
k−b(2,n2−1)

(2,n2−2) + r̃(2,n2−1) +X(2,n2−1)g(2,n2−1)
, (4.59)

dk(2,n2−1) ≥ d
2k−2b̄(2,n2)

(0,0) + s(2,n2), ∀k ≥ 0. (4.60)

Notice here that a changing of variable is necessary to transform the train dynamics
at the junction to a max-plus linear dynamics. This can be done as in Chapter 3 without
any modification.

In the following, the closed-form solutions for the asymptotic average train time-
headway on the central part h0 and on the branches h1, h2, as well as for the asymptotic
average frequency on the central part f0 and on the branches f1, f2 are derived from
this traffic model. The traffic phases of the train dynamics depending on the number of
trains, the passenger travel demand and the run time margin are derived.

4.5 The Steady State Train Dynamics

The following result giving the asymptotic average train time-headway and the asymp-
totic average frequency on a line with a junction, with demand-dependent dwell times
and controlled run times, are based on the main result of Chapter 3, where the asymp-
totic average train time-headway (Theorem 3) and frequency (Corollary 1) on a line with
a junction where trains respect minimum dwell and run times, have been presented. The
effect of the passenger demand on the train travel time (dwell + run) is resumed in (4.46).
The following result is derived by replacing t(u,j) in Theorem 3 with tk(u,j) given by (4.46).

Theorem 7. The train dynamics admit an asymptotic regime with a unique asymptotic
average growth rate which represents here the asymptotic average train time-headway h0

on the central part of the metro line.

h0(m,∆m,X) = h1(m,∆m,X)/2 = h2(m,∆m,X)/2

= max {hfw, hmin, hbw, hbr} ,

with1

hfw = max


∑

0,1,j(g
u,j
X(u,j)+r̃(u,j))

m−∆m ,

∑
0,2,j(g

u,j
X(u,j)+r̃(u,j))

m+∆m ,

hmin = max


max0,j((g(0,j)

X(0,j) + r̃(0,j)) + s(0,j)),

maxu,j((g(u,j)
X(u,j) + r̃(u,j)) + s(u,j))/2, u ∈ {1, 2}, j 6= {nu},

1fw: forward, bw: backward, min: minimum, br: branches.
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hbw = max

{
S0 + S1

m̄−∆m̄
,
S0 + S2

m̄+ ∆m̄

}
,

hbr = max


∑

1,j(g
(1,j)

X(1,j)+r̃(1,j))+S2

2(n2−∆m) ,

S1+
∑

2,j(g
(2,j)

X(2,j)+r̃(2,j))

2(n1+∆m) .

Proof. Accordingly to proof of Theorem 3 in Chapter 3.

Corollary 3. The asymptotic average train frequency f0 at the central part and f1 and
f2 at the two branches of the metro line are given as follows.

f0(m,∆m,X) = 2f1(m,∆m,X) = 2f2(m,∆m,X)

= max{0,min {ffw, fmin, fbw, fbr}},

ffw = min


m−∆m∑

0,1,j(g
u,j
X(u,j)+r̃(u,j))

,

m+∆m∑
0,2,j(g

u,j
X(u,j)+r̃(u,j))

,

fmax = min


min0,j 1/(g

(0,j)
X(0,j) + r̃(0,j) + s(0,j)),

minu,j 1/(g
(u,j)

X(u,j) + r̃(u,j) + s(u,j))/2, ∀u ∈ {1, 2}, j 6= {nu},

fbw = min

{
m̄−∆m̄

S0 + S1

,
m̄+ ∆m̄

S0 + S2

}
,

fbr = min


2(n2−∆m)∑

1,j(g
(1,j)

X(1,j)+r̃(1,j))+S2
,

2(n1+∆m)
S1+

∑
2,j(g

(2,j)
X(2,j)+r̃(2,j))

.

Proof. Directly from Theorem 7, with f = 1/h.

Figure 4.7 is a schematic graph, depicting the average frequency on the central part,
over the total number of trains m and the difference between the number of trains on
the branches ∆m = m2 −m1, for three passenger travel demand levels, accordingly to
Corollary 3. It becomes clear, that for a given passenger travel demand, the resulting
form of the graph is the one having been derived from the model with fixed train run and
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dwell times, see Corollary 1 in Chapter 3 above. Precisely, the eight traffic phases of the
train dynamics can be identified. There are two free flow phases, two congested branches
phases, two congestion phases, one maximum frequency and one zero-flow phase. Three
levels of passenger travel demand are depicted.

• Firstly, demand level a1, which serves as reference.

• Secondly, demand level a2 which represents a symmetric increase of the passenger
arrival rates to and passenger departure rates from all platforms.

• And last, the demand level a3 where the passenger demand increases only on the
central part and on branch 2.

It can be seen that with regard to the reference scenario a1, if the demand level
increases similarly over all platforms (scenario a2), the capacity of the system (GLKJIH
plane in Figure 4.7) decreases. By consequent, the optimal number of trains decreases,
too. However, congestion only occurs from a higher number of trains on (point J), which
is a direct consequence of the reduced maximum frequency.

Furthermore, if considering a scenario where the passenger demand increases asym-
metrically only on the central part and on branch 2 (a3), resulting travel times on
branch 2 are longer than travel times on branch 1, which causes that the optimal dif-
ference between the number of trains on branch 2 and branch 1 m2 −m1 changes. By
consequent, the optimal operating point (point G) maximizing the average frequency for
a minimum number of trains, diverts towards larger values in m and a more important
difference between the number of trains on the branches m2 −m1.

To sum up, as for the traffic phases of the train dynamics on a metro line with a
junction and with constant run and dwell times presented in Corollary 1, the average
frequency depends on the number of trains m and on the difference between the number
of trains on branch 2 and branch 1, ∆m. Furthermore, there exists an optimal difference
∆m∗ for every m accordingly to Theorem 4. In the following, the traffic phases of
the train dynamics on a line with a junction with demand-dependent dwell times and
controlled run times will be described.

4.6 The Traffic Phases

The Figures 4.8, 4.9 4.10, 4.11, 4.12 and 4.13 in the following illustrate Theorem 7 and
Corolllary 3 from above. They depict the traffic phases of the train dynamics on a
metro line with a junction with demand-dependent control. The figures in the following
represent the traffic phases of metro line 13, Paris. This line is composed of a central
part and two branches, connected with a junction. Furthermore, the traffic phases of
metro line 13 are depicted with the asymptotic average train frequency on the central
part f0. Note that accordingly to Corollary 3, the frequencies on the branches can be
obtained with f1 = f2 = f0/2.

The infrastructure parameters g
(u,i)

and s(u,j) in Corollary 3 are per definition the

minimum dynamic interval, this is the minimal time during which there is no train on a
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Figure 4.7: Schematic illustration of Corollary 3. Average central part frequency over
number of trains m, the difference on the branches m2 −m1, for three demand levels:
reference scenario a1, a symmetric demand increase a2, an asymmetric demand increase
a3.

platform, and the safe separation time, the minimum time to be respected between the
moment a first train clears a segment and a second train enters the same segment. Both
are infrastructure constraints, the parameters have been provided by the operator RATP.
Moreover, the passenger travel demand is modeled by the passenger arrival flows to and
the passenger departure flows from the platforms λin(u,j), λ

out
(u,j). Average passenger flows

over time intervals of 30 min have been used here, accordingly to data provided by RATP.
The passenger flows can be updated at any time interval. Finally, an average value of
the boarding and alighting capacity αin(u,j), α

out
(u,j), that is the number of passengers who

can board, respectively alight from a train per time interval, has been provided by the
operator RATP. From these inputs, the passenger demand parameter is calculated

X(u,j) = x(u,j)/(1− x(u,j)),

with
x(u,j) = λin(u,j)/α

in
(u,j) + λout(u,j)/α

out
(u,j).

The nominal train run times are the sum of a minimum run time and a run time
margin which allows to realize the demand-dependent dwell times:

r̃(u,j) = r(u,j) + ∆r(u,j).

The minimum run times for metro line 13, Paris, have been simulated at the MATYS
entity of RATP. The simulation takes into account the rolling stock, for example traction,
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maximum speed and braking characteristics. Moreover, infrastructure constraints are
considered, such as the gradient and curve radius. In addition to this minimum run time,
a run time margin can be applied which increases the nominal run times and reduces
the nominal train speed. In case of a perturbation on the train time-headways, dwell
times can then be extended in the limit of the run time margin to take into account the
accumulation of passengers on the platform:

wk(u,j)(h
k
(u,j), x(u,j)) = min(x(u,j)h

k
(u,j), w̄(u,j)).

The train which has realized a longer dwell time, can then be accelerated within the
run time margin in the following inter-station, respecting the maximum speed, that is
the minimum run time:

rk(u,j)(h
k
(u,j), x(u,j)) = max{r(u,j), r̃(u,j) − x(u,j)(h

k
(u,j) − h(u,j))}.

This combined traffic control allows to realize demand-dependent dwell times while guar-
anteeing stability of the traffic within the run time margin. Note that nu is the number
of segments on each part of the line.

4.6.1 The Number of Trains on the Branches

In Figures 4.10, 4.11, 4.12 and 4.13 three traffic phases of the train dynamics can be
distinguished, for an optimal difference between the number of trains on the branches
∆m∗, shown in Figures 4.8 and 4.9. The optimal difference ∆m∗ can be derived ac-
cordingly to Chapter 3, Section 3.4 for the traffic phases on a line with a junction with
minimum run and dwell times. With regard to Figure 4.7 the optimal difference are all
the values for ∆m along a line AG and JD.

∆m∗(m) =


∆T
2T m if m ≤ Tfmax

∆n+ ∆S
2S (m−N) if m ≥ N − Sfmax,

(4.61)

where

T = (2T0 + T1 + T2)/2

and

S = (2S0 + S1 + S2)/2.

Note that for an optimal ∆m∗, the diagram depicting the traffic phases of a metro
line with a junction with demand-dependent dwell times and controlled run times, see
Figures 4.10, 4.11, 4.12 and 4.13, has the same shape as the one of the traffic phases
of a linear line with demand-dependent dwell times and controlled run times, derived
in Section 4.3. More precisely, the asymptotic average train frequency on a line with a
junction and demand-dependent dwell times and controlled run times depends on the
following variables:
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Figure 4.8: Optimal ∆m∗, over m and passenger demand, margin of 15%.

• the number of trains m,

• the passenger travel demand and

• the run time margin.

Figure 4.8 depicts the optimal difference between the number of trains on the branches
∆m∗ accordingly to formula (4.61) for metro line 13, Paris, for a fixed run time margin of
15% over the number of trains m and the passenger travel demand. With an increasing
number of trains the optimal difference between the number of trains on the branches
increases, too. Note that at the intersection between free flow phase and maximum
frequency phase at around m = 50 trains, the optimal difference is ∆m = 2. From
here to the intersection between maximum frequency phase and congestion phase at
around m = 110 trains, the optimal difference is ∆m = 10. The effect of the passenger
travel demand on the optimal difference is less important. With a symmetrically over
all platforms increasing passenger demand, the difference between the travel time on the
branches - and consequently the optimal difference - does not change considerably.

Figure 4.9 depicts the optimal difference accordingly to formula (4.61) for metro
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Figure 4.9: Optimal ∆m∗, over m and run time margin, peak hour demand.

line 13, Paris, over the number of trains and the run time for margin, for a peak hour
passenger demand. Again, it can be seen that with an increasing number of trains, ∆m∗

increases. As before, at the intersection between free flow phase and maximum frequency
phase at around m = 50 trains, ∆m∗ = 2, and at the intersection between maximum
frequency phase and congestion phase at around m = 110 trains, ∆m∗ = 10. The effect
of the run time margin is minor. Especially with regard to real metro operations and
the fact the optimal difference has to be rounded to integer values to be applied, it can
be concluded that a symmetric prolongation of travel times does not have an impact on
∆m∗. In the following the effect of the passenger demand and the run time margin on
the traffic phases for an optimal ∆m accordingly to equation (4.61), corresponding to
the line AGJD in Figure 4.7 is derived.

Note, that in the maximum frequency phase, the asymptotic average frequency de-
rived in Theorem 7 is constant and consequently independent of m,∆m within the
GLKJIH plane, see Figure 4.7.
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4.6.2 The Effect of the Passenger Travel Demand

Free Flow Phase

Figure 4.10: Average frequency for optimal ∆m∗, over m and demand, fixed margin
(view 1).

For an optimal ∆m∗, Figure 4.10 depicts the three traffic phases. First of all, there is
a free flow phase, where the asymptotic average frequency increases with the number of
trains for a fixed passenger demand level. Refer to Figure 4.11 to study the influence of
the passenger demand. For a fixed number of trains, the asymptotic average frequency
decreases with an increasing passenger travel demand. This is due to a prolongation
of train dwell and travel times. If one aims to realize a certain frequency level and
dwell times have to extended due to an increasing passenger demand, this might effect
the number of trains required. For example, in Figure 4.11, if the passenger demand is
at 40% of peak hour, approximately m = 40 trains are needed to realize a frequency
f0 = 30 trains per hour. If the demand increases to peak hour level, around m = 48
trains are necessary to ensure the same average frequency. Note that a change in the
total number of trains might also require a change in ∆m∗. In this example, if the
number of trains change to m = 40 + 8 = 48, the optimal difference could be changed
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Figure 4.11: Average frequency for optimal ∆m∗, over number of trains and passenger
demand, for a fixed run time margin (view 2).

by one to ∆m∗ = 1 + 1 = 2, see figure 4.8. Finally, the optimal number operating point,
where the frequency is maximized for a minimal number of trains can be found. For the
case of metro line 13, Figure 4.11 shows that the optimal number of trains is at around
m = 50 for minimum passenger demand and increases to around m = 55 for passenger
peak hour demand level.

Maximum Frequency Phase

In the maximum frequency phase, the capacity of the system is reached. The maximum
frequency is given by the segment on which the sum of dwell time, run time and safe
separation time realizes the maximum over the entire line. Note, that due to the one-
over-two operations rule at the junction, the corresponding sums on the branches have to
be divided by factor 2. Figure 4.10 shows that the maximum frequency depends on the
passenger travel demand (for a fixed run time margin). This is a direct consequence of the
demand-dependent dwell times, which increase with the passenger volume. Furthermore,
at around 80% of peak hour demand, a discontinuity in the gradient can be identified.
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Here, the bottleneck of the system switches from the segment of the station Gâıté,
direction northbound, to the segment of the station Montparnasse – Bienvenüe, direction
northbound. This can be interpreted as follows: for a low passenger demand, dwell times
are relatively short. Then, the most constraining segment of the line is one on which
the run time and the safe separation time are relatively long, this is the case for the
station Gâıté. However, with increasing passenger demand, dwell times get considerably
longer on platforms with a high passenger volume. This is the case for the interchange
station Montparnasse – Bienvenüe. Even though around this station block distances
are optimized such that run times and safe separation are minimal, this platform is the
bottleneck of the line due to important dwell times during peak hour.

From Figure 4.11 it can be seen that the capacity phase is bordered by some straight
lines at the intersection with the free flow phase and the congestion phase. The inter-
section with the free flow phase represents the optimal number of trains, since it is the
one maximizing the frequency at minimum cost. This number depends on the passenger
travel demand. For an increasing demand, the capacity decreases, whereas the travel
times on the line increase due to longer dwell times. As a consequent, not only capacity
does decrease, but a higher number of trains is necessary to attain the reduced capacity.
From the intersection between maximum frequency phase and congestion phase on, con-
gestion occurs. Congestion always occurs from the same number of trains on, dependent
on the infrastructure of the line, but independent of the passenger travel demand. Note,
that the intersection line is parallel to the demand-axis. For the case of metro line 13,
this is at around m = 110 trains.

Congestion Phase

Figure 4.11 shows that in the congestion phase, the average frequency decreases with
an increasing number of trains, but it is independent of the passenger travel. Note that
lines of same frequency are parallel to the demand-axis.

4.6.3 The Effect of the Run Time Margin

Free Flow Phase

Again for an optimal ∆m∗, Figure 4.12 depicts the three traffic phases for peak hour
demand level. This allows to study the influence of the run time margin on the traffic
phases. In the free flow phase, the asymptotic average frequency increases with the
number of trains. As it can be be seen in Figure 4.13, for a fixed number of trains, an
increasing run time margin has a negative impact on frequency. For example, to realize
an average frequency of f0 = 30 trains per hour with a margin of 5%, approximately
m = 42 trains are necessary. If it is chosen to increase the run time margin to 20% for a
better robustness of the timetable, around m = 42+5 = 47 trains are required to realize
the same average frequency. Increasing the number of trains might also lead to change
in the optimal difference ∆m∗.
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Figure 4.12: Traffic phases for optimal ∆m∗ over m and run time margin for peak hour
demand (view 1).

Maximum Frequency Phase

With regard to Figure 4.12, it can be seen that an increasing run time margin has a
restraining effect on the maximum frequency. This is due to the longer travel times
an all segments which will lead to longer minimum train time-headways on the line.
Most importantly, if one aims to include higher margins to increase the robustness of a
timetable, the limiting effect on the capacity has to be considered. This is relevant for
mass transit systems with a high passenger demand which are driven on the capacity
limit. Moreover, as it can be seen in Figure 4.13, the intersection line between the
free flow phase and maximum frequency phase it not parallel to the margin-axis. This
means, that the total number of trains required to reach the optimal operating point
which maximizes the frequency for a minimal number of trains, increases with the run
time margin.
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Figure 4.13: Traffic phases for optimal ∆m∗ over m and run time margin for peak hour
demand (view 2).

Congestion Phase

Figure 4.13 shows that from around m = 110 trains on, congestion occurs on metro
line 13. Here, trains start to interact with each other an the average frequency decreases
with the number of trains. As it is the case for the passenger travel demand, the average
frequency in the congestion phase is independent of the run time margin. Refer also
to Theorem 7, which shows that in this phase, the frequency depends only on the safe
separation times.

Throughout this thesis, discrete event traffic models for metro lines with a junction
have been been developed. In Chapter 3, the traffic phases of the train dynamics on a
line with a junction considering minimum train dwell and run times, have been derived.
It has been shown, that the asymptotic average train time-headway on the line depends
on train dwell, run and safe separation times and on the number of trains and on the
difference of the number of trains on the branches. In this model, the effect of the
passenger demand on the train dynamics is not modeled. The minimum dwell and
run times can be seen as the nominal timetable values and can include a margin to
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recover small perturbations. In Section 3.5, laws for macroscopic traffic control have
been presented. This macroscopic control is interesting for lines with a junction, where
it consists in controlling the number of trains and the difference between the number of
trains on the branches. For example, in case of a changing passenger travel demand or
a perturbation which exceeds the included margins, macroscopic control on the number
of trains on the central part and on the branches can be applied. In feedback of the
demand, respectively of the observed train travel times, the optimal set point of the
system can calculated.

In Chapter 4 the model is extended by a microscopic control of the train dwell and
run times. The minimum dwell times are replaced by a function of the average passenger
travel arrival rate to and departure rate from the platforms and the train time-headway,
bounded by a maximum train dwell time. To guarantee the stability of the dynamics,
minimum train run times are replaced by a function canceling an extension of the dwell
times in case of a long headway, bounded by a minimum run time. This model has first
been developed for linear metro lines, see Section 4.1, and then extended for lines with
a junction, see 4.4. The traffic phases of the train dynamics have been derived and the
effect of new parameters, the margin on the run time and the passenger travel demand
on the asymptotic average frequency, have been studied.





Chapter 5

Simulation of Feedback Traffic
Control

In this chapter, three simulation cases, applied to metro line 13, Paris, are
presented. They illustrate the traffic control proposed in the preceding chap-
ters. In the first section, the macroscopic control law presented in 3.5 for
the number of trains on a line with a junction in feedback of a changing pas-
senger travel demand is illustrated. In the second section, the macroscopic
control law presented in 3.5 for the number of trains on the branches in case
of a perturbation on the train dwell and/or run times on the branches is
illustrated. Therefore, the closed-loop train dynamics on a line with a junc-
tion are simulated for the case of a perturbation of the train travel times
on one of the branches. A scenario without control is compared to a sce-
nario with control. In the third section, the closed-loop train dynamics with
demand-dependent dwell times and controlled run times as presented in 4.1
are simulated. It is shown that an additional control on the train dwell times
leads to an harmonization of the train time-headways on the line.

5.1 Macroscopic Control of the Number of Trains in Feed-
back of the Passenger Travel Demand Volume

Consider Paris metro line 13 with a junction as presented in Figure 5.1. Figure 5.2
depicts the maximum passenger charge on the central part and on the branches, for
time intervals of 30 minutes during morning peak hour. Passenger demand data has
been provided by RATP. More precisely, the operator disposes of the average passenger
arrival rates to and the departure rates from the platforms per time interval of 30 min-
utes. By consequent, for this time interval, the passenger charge, that is the number of
passenger to be transported per inter-station, can be calculated. For the central part
and each branch, evolution of the number of passengers in the inter-station with the
most important passenger demand is depicted in Figure 5.2. It can be seen, that the
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Figure 5.1: Schema of metro line 13, Paris, illustrating the positions of the points
A,B,C,D,E,F and G of the y-axis of Figure 5.4 and Figure 5.5 on the metro line.

passenger charge on the branches is approximately half the one on the central part and
balanced over both branches. The demand peak is reached between 8h30 and 9h00 in
the morning. As the passenger travel demand level on the two branches is nearly the
same, see Figure 5.2, RATP has chosen an one-over-two operation of the junction.

The aim here is to control m,∆m in feedback of a new set point f0 due to a changing
passenger travel demand volume. Let c(u,j) be the passenger charge on board on a
segment (u, j). RATP calculates the train capacity with a passenger load factor of
4 passengers per m2. The capacity of one train of metro line 13 is thus κ = 584
passengers. The required maximum train time-headway hreq

0 (central part), with respect
to the passenger demand is calculated as follows.

hreq
0 = min

{
min
j

κ

c(0,j)
,min

j

κ

2c(1,j)
,min

j

κ

2c(2,j)

}
. (5.1)

The feasible maximum train time-headway hfea
0 (central part), with respect to the pas-

senger demand is calculated as follows.

hfea
0 = max(hreq

0 , hmin). (5.2)

The feasible headway hfea
0 on metro line 13 (central part) with respect to the passenger

demand, is depicted in Figure 5.3. Furthermore, Figure 5.3 shows the optimal m and
∆m calculated with (3.82), where f fea

0 = 1/hfea
0 , T = (2T 0 +T 1 +T 2)/2 = 84.2 min, and

∆T = 5.8 min.
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Figure 5.2: Maximum passenger charge c(u,j) during morning peak hour on metro line
13. Data from RATP.

Figure 5.3: Feasible maximum train time-headway hfea
0 calculated with (5.2) on RATP

metro line 13 Paris (green), total number m of trains (blue), and difference ∆m in the
number of trains on the two branches (red).
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As traffic remains in the free flow phases, the travel times are the sum of theoretic
minimum dwell and run times. A Grade of Automation 2 (GOA 2) system implemented
on metro line 13, ensures that trains respect the theoretic minimum run times. Moreover,
it is assumed that theoretic dwell times are respected. With the asymptotic average train
time-headway h0 chosen to the feasible time-headway hfea

0 , with respect to the passenger
demand, calculated accordingly to (5.2), and f fea

0 = 1/hfea
0 , control law (3.82) is applied.

The results are given in Table 5.1 below with the following control variables: 1) number
m of trains on the line (rounded to the nearest integer), and 2) optimal difference ∆m
between the number of trains on the two branches (rounded to the nearest integer).

Table 5.1: Control variables m,∆m for optimal set points. Metro line 13, Paris, morning
peak hour.

hreq
0 f req

0 hfea
0 f fea

0 m ∆m

6.00-6.30 632.5 5.7 632.5 5.7 8 0

6.30-7.00 315.8 11.4 315.8 11.4 16 1

7.00-7.30 151.5 23.8 151.5 23.8 34 1

7.30-8.00 135.4 26.6 135.4 26.6 38 1

8.00-8.30 99.5 36.2 99.5 36.2 51 2

8.30-9.00 84.4 42.4 92.6 38.9 55 2

9.00-9.30 120.1 30.0 120.1 30.0 43 1

9.30-10.00 151.5 23.8 151.5 23.8 34 1

The feasible train time-headway on the central part hfea
0 follows inversely the evo-

lution of the passenger travel demand, see (5.1), (5.2). Moreover, the total number
of trains m follows directly the evolution of the passenger travel demand, see (3.82).
Furthermore, it can be seen that the total number m of trains is highly sensitive to
a changing set point f0 (with a factor of T = 84.2 min, accordingly to feedback con-
trol law (3.82)), whereas ∆m is less sensitive to f0 (with a factor of ∆T = 5.8 min,
see feedback control law (3.82)). All the required train frequencies for corresponding
passenger demand levels are feasible, except for the one corresponding to the 8.30-9.00
time period. Indeed, Table 5.1 shows that for the 8.30-9.00 time period (the highest
level of passenger demand, see Figure 5.2 and Figure 5.3), the required train frequency
responding to the passenger demand level is f req

0 = 42.4 trains/hour, while the feasible
one is f fea

0 = 38.9 trains/hour.

5.2 Macroscopic Control of the Number of Trains on the
Branches in Case of a Perturbation on the Branches

Still consider Paris metro line 13 as shown in Figure 5.1. The aim here is to control the
train passing order at junction. This means a new order which is different to the one-over-
two rule is applied temporarily. This can be interesting in case of a perturbation to avoid
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long train dwell times at junction when forcing to respect the one-over-two rule. Based
on the observed train dwell and run times on the line, the train order at the convergence
can be optimized. It is shown in the following that firstly, the time to recover the
perturbation is reduced, and secondly, undesired dwell times at the convergence before
entering the central part are avoided.

This part focuses on the 7.00-7.30 time period during morning peak hour. The
traffic is in the stable steady state, as defined in the corresponding line of Table 5.1
above. Consider a minor incident on branch 1 which leads to an extension of train dwell
times, and consequently a prolongation of the travel times, on this branch by twice the
train time-headway on the central part: 2h0 = 303 sec. Figure 5.4 depicts the train
trajectories on the line for this case. Note that points A, B, C, D, E, F, G represent a
position on metro line 13 accordingly to Figure 5.1. Part A-B-C represents branch 1,
part C-D-E the central part and part E-F-G branch 2. Trains coming from and going to
branch 1 are represented in blue, whereas trains coming from and going to branch 2 have
red trajectories. Firstly, it can be seen the average frequency on the central part is twice
the one on the branches, this is due to the one-over-two rule. At around t = 10 minutes,
a perturbation occurs near B on branch 1. A number of trains following each other
realize significantly longer travel times, which can for example represent a passenger
incident. Without control and forcing the nominal one-over-two rule at the junction,
trains coming from branch 2 which have not been perturbed, have to wait near point G
before entering the central part. The perturbation from branch 1 fully propagates on
the central part.

Minor incident means here that the total travel time T over the line is assumed not
to be seriously affected (it remains unchanged). In this case, train regulation on the
affected branch and at the junction becomes necessary, in order to allow trains from the
unaffected branch to enter the central part without waiting for the delayed trains from
the affected branch. With ∆T being observed, a decrease of ∆T to ∆T − 2h0 is stated.
Accordingly to (3.83), the new ∆m′ is calculated as follows.

∆m′ = m(∆T − 2h0)/(2T ) = ∆m− 1. (5.3)

The new ∆m′ = ∆m−1 = 1−1 = 0, ∆m is sensitive even to minor perturbations on
the travel time on the branches. In fact, ∆m has decreased by one train. Therefore, the
new optimal set point is located one unit below the old one, with regard to the y-axis of
Figure 3.9. In this case, by letting pass two subsequent trains, instead of only one train,
from the unaffected branch entering the central part, the new optimal set point will be
reached, and the traffic will be well regulated at the convergence. Note that m does not
change here.

Once the incident has terminated, a diminution of the travel times on branch 1
by −2h0 is observed, corresponding to a change in ∆T of +2h0, with respect to the
perturbed situation. Therefore, a new ∆m′′ is calculated as follows.

∆m′′ = m(∆T )/(2T ) = ∆m′ + 1 = ∆m. (5.4)
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Here, the nominal value ∆m′′ = ∆m′+ 1 = 0 + 1 = 1 is re-obtained. By letting pass
two consecutive trains, instead of only one, from the previously affected branch, ∆m′

will be increased by one train, such that the initial optimal set point is retrieved.
Figure 5.5 shows the simulation results with traffic control at the convergence. Note

that the initial train positions are the same as in Figure 5.4 and at around t = 10 minutes,
a perturbation occurs near point B on branch 1. A number of consecutive trains realize
significantly longer travel times, this can be due to a passenger incident. In the contrary
to the simulation without control, the train passing order at convergence is modified.
Right after the perturbation has occurred, two consecutive trains from branch 2 enter
the central part at point G. Here, trains from branch 2 arriving at the convergence
(point G) can directly pass onto the central part, since traffic has been well regulated
at the convergence: At t = 15 min (respectively t = 35 min), the train order has been
changed following (5.3), (5.4). This allows, firstly, to reduce the time-headway on the
central part compared to the situation in Figure 5.4 and avoids long train dwell times
near point G, which means that travel times for passenger from branch 2 are close the
nominal value and are significantly shorter than in the situation without control. When
the perturbation on branch 1 disappears, when applying the macroscopic control, two
consecutive trains coming from branch 1 enter the central part (point G). This allows
to avoid congestion at the convergence as it can be observed in Figure 5.4. With the
macroscopic control, the traffic is re-stabilized after 35 minutes, compared to 40 minutes
in the case without control.

5.3 Real-time Control of Train Dynamics with Harmoniza-
tion of the Train Time-headways

5.3.1 Controlled Train Dynamics

In Chapter 4, Section 4.1 a traffic model for linear lines has been presented, where train
dwell times are a function of the average passenger arrival rates to and the average
passenger departures rates from the platforms and the train time-headway. To ensure
that the train dynamics remain stable in the stationary regime, a control is applied on
the run times which cancels an extension of the train dwell time in case of a long time-
headway. This model has been adopted to lines with a junction in Section 4.4. It has
been shown that the train dynamics remain stable under conditions. First the initial
train time-headways have to satisfy

h1
j ≤ h̄j = 1/(1− xj)ḡj , ∀j, (5.5)

which can be written

h1
j ≤ h̄j = 1/(1− xj)gj + (1/xj)∆rj , ∀j. (5.6)

Equation (5.6) limits the initial condition to an expression of the passenger travel demand
xj , the minimum dynamic interval which is an infrastructure constraint g

j
and the run
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time margin chosen ∆rj . Note that in case this condition is satisfied, the following con-
dition is automatically satisfied train dynamics on a linear line with demand-dependent
dwell times and controlled run times are stable.

∆wj ≤ ∆rj ,∀j, (5.7)

which is equivalent to
Xj∆gj ≤ rj , ∀j, (5.8)

which means that applying the dwell time equation (4.8), train dwell times ∆wj are at
maximum extended up to the margin on the train run times ∆rj :

wkj = min
{
xjh

k
j , w̄j

}
, ∀k, j. (5.9)

In case (5.6) is not satisfied, the application of (5.8) ensures that dwell times are not
extended over the run time margin and train dynamics remain stable. However, this
implies that train dwell times cannot be extended to fully serve the passenger travel
demand accordingly to dwell time equation (5.9). The corresponding train dynamics
have been proven to be stable, this means the asymptotic average train time-headway
in the stationary regime exists. Note the variance on the train time-headways

∆hj := h̄j − hj . (5.10)

Then, the max-plus linear traffic model of Section 4.1.2 guarantees stability of the
train dynamics and controls both dwell and run times to take into account the passenger
travel demand. The stability is guaranteed under a variance on the train time-headways
∆hj within the initial conditions (5.6), and (5.8) however, it does not harmonize the
train time-headways on the line.

In Section 4.1.2, the dynamic programming model from [14] has been presented
which guarantees stability but controls only the dwell times at platforms without con-
trolling the run times. This model is better in term of harmonization of train departure
time intervals, comparing to the max-plus one. The model in this section extends the
max-plus model 4.1.2 to a dynamic programming model, as the model of Section 4.1.2.
Consequently, the new model benefits from the advantages of both models.

• Accounting for the passenger travel demand with (partially) demand-dependent
dwell times and a run time control,

• Harmonization of the train time-headways via a dwell time control without de-
grading the asymptotic average frequency.

In the following, the unchanged train run time control law from (4.17) is considered,
while a new train dwell time control law is proposed, which modifies (5.9) as follows.

wkj = min
{

(1− γj)xjhkj , w̄j
}
, with 0 ≤ γj ≤ 1. (5.11)
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Notice that for γj = 0, equation (5.11) is equivalent to (5.9) and the train dynamics
are max-plus linear. By activating the control (1 ≥ (1− γj) > 0) in case of an extension
of the time-headway due to a train delay, excessively long dwell times are limited, which
would have been a direct consequence of a long headway, see equation (5.9).

Consider the following notations.

• ∆wj := w̄j − wj .

• ∆gj := ḡj − gj .

• ∆rj := r̃j − rj .

It is then easy to check that ∆wj = 1/(1− xj)∆gj .

Proposition 3. If for all j, h1
j ≤ h̄j = 1/(1− xj)g+ (1/xj)∆rj, then ∆rj ≥ ∆wj, and

then tkj = r̃j +Xjgj − γjXjg
k
j ,∀j.

Proof. The proof is by induction. It is similar to the one of Theorem 5 in Section 4.1.2.

The train dynamics is then written as follows.

dkj = max


(1− δj)d

k−bj
j−1 + δjd

k−1
j + (1− δj)(r̃ +Xjgj),

d
k−b̄j+1

j+1 + sj+1,

with δj := (γjxj)/(1 + γjxj).

(5.12)

The dynamics presented here (5.12) extends the one of Theorem 5, since in the case
where δj = 0 (γj = 0), (5.12) coincides with the one presented in Theorem 5. This is a
direct consequence of the fact that the train dwell time control law (5.11) extends (5.9).

If m = 0 (zero trains) or if m = n (the metro line is full of trains), then the dynamic
system (5.12) is fully implicit. Indeed, if m = 0, then bj = 0, ∀j, that is the first term
of the maximum operator in (5.12) is implicit for every j. Similarly, if m = n, then
b̄j = 0, ∀j, that is the second term of the maximum operator in (5.12) is implicit for
every j. In both cases, m = 0 and m = n, no train movement is possible. On the other
side it is not difficult to check that if 0 < m < n, then the dynamic system is implicit
but triangular, that means there exists an order on j of updating the variables dkj in
such a way that the system will be explicit. In fact, this order corresponds to the one
of the train movements on the metro line. In the following, only the case 0 < m < n
is considered. Therefore, the dynamic system (5.12) admits an equivalent triangular
system.

The train dynamics (5.12) can be written as follows.

dkj = max
u∈U

{(
Mudk−1

)
j

+
(
Nudk

)
j

+ cuj

}
, ∀j, k, (5.13)
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where Mu, u ∈ U and Nu, u ∈ U are two families of square matrices, and cu, u ∈ U is
a family of column vectors. Moreover, since 0 ≤ δj < 1,∀j by definition, then Mu

ij ≥
0, ∀u, i, j and Nu

ij ≥ 0, ∀u, i, j. Finally
∑

j

(
Mu
ij +Nu

ij

)
= 1,∀u, i holds.

The equivalent triangular system of system (5.12) can be written as follows.

dkj = max
u∈U

{(
M̃udk−1

)
j

+ c̃uj

}
,∀j, k, (5.14)

where M̃u, u ∈ U is a family of square matrices, and c̃u, u ∈ U is a family of column
vectors, which can be derived from Mu, Nu and cu, u ∈ U . Moreover, M̃u

ij ≥ 0,∀u, i, j
and

∑
j M̃

u
ij = 1,∀u, i is still guaranteed. By consequent, the system (5.14) can be seen

as a dynamic programming system of an optimal control problem of a Markov chain,
whose transition matrices are M̃u, u ∈ U associated to every control action u ∈ U , and
whose associated rewards are c̃u, u ∈ U .

Theorem 8. If 0 < m < n, then the dynamics (5.12) admits a stationary regime, with
a unique asymptotic average growth vector (independent of the initial state vector d0)
whose components are all equal to h, which is interpreted here as the asymptotic average
train time-headway.

Proof. It follows a sketch of the proof here. Since the dynamics (5.12) is interpreted as
the dynamic programming system of a stochastic optimal control problem of a Markov
chain, it is sufficient to prove that the Markov chain in question, which is acyclic since
0 < m < n, is irreducible for every control strategy. This is not obvious from the
dynamics (5.12). It has to be shown on the equivalent triangular system (5.14). An
alternative proof is the one of Theorem 5.1 in [14].

Theorem 8 does not give an analytic formula for the asymptotic average train time-
headway h. However, it guarantees its existence and its uniqueness. Therefore, h can
be approximated by numerical simulation based on the value iteration, as follows.

h ≈ dKj /K,∀j, for a large K. (5.15)

The objective of the model proposed here (5.12) which extends the max-plus linear
dynamics (4.21), is to harmonize the train time-headways on the line.

As mentioned above, if γj = 0, ∀j, the dynamics (5.12) are max-plus linear, and
are equivalent to (4.21). In this case, if the dynamics (5.12) or equivalently (4.21) are
written under the triangular form (5.14), then the associated matrices M̃u are boolean
circulant matrices. The latter may then have eigenvalue 1 with multiplicity bigger than 1.
Therefore, although the average growth rate of the dynamics is unique and independent
of the initial state d0, the asymptotic state dk (up to an additive constant) may depend
on the initial state d0.

However, in case of the dynamics (5.12) with 0 < γj ≤ 1 for some j, the application of
γj will force the dynamics to converge a stationary regime where the activated matrices
M̃u are the ones having eigenvalue 1 as a simple one, that is with multiplicity 1. In
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this case, dk will converge, up to an additive constant, independent of the initial state
d0. Moreover, the asymptotic state d will correspond to the case where the train time-
headway is the same at all the platforms.

With regard to dwell time equation (5.11), notice that a control 1 > (1− γj) > 0 is
applied temporarily in case a variance on the train time-headways is observed. During
the time interval when the control is applied, the train time-headways at the platforms
converge under the asymptotic average train time-headway. Indeed, with (5.11), dwell
times are slightly shortened to allow train time-headway harmonization. By consequent,
during the time period when the control is activated, the passenger travel demand cannot
be fully served, this means the train dwell times do not completely account to the
accumulation of passenger on the platform (and in the train). However, the asymptotic
average train time-headway is guaranteed, since dwell times are shortened. Note that
the control is deactivated as soon as the time-headways are harmonized and the dwell
times correspond again to the passenger travel demand.

On lines with a very high passenger travel demand, as on the RATP network in
Paris, the here proposed control can be more interesting compared to a classic holding
control. It allows a train time-headway harmonization under a required time-headway
at the cost of temporarily shortened dwell times, whereas the holding control is at the
cost of an increased asymptotic average train time-headway which might lead to serious
passenger accumulation on the platforms and overcrowded trains.

In the next section, by means of numerical simulation, it will be shown that in this
case, the train dynamics converge to a traffic state where the train time-headways are
harmonized. In other words, while the train time-headway converges to its asymptotic
value h, the variance of the train time-headways, that is its deviation with respect to its
asymptotic average value h, converges to zero.

5.3.2 Simulation Results

The following figures 5.6, 5.7, 5.8 present simulation results of the train trajectories
for the train dynamics of equation (5.12) for different values of parameter γj . First, the
max-plus linear dynamics are depicted, this means γj = 0. Second, the control is fixed to
γj = 0.2, which is close to the max-plus linear dynamics. Third, with γj = 0.5−(0.5/K)k,
the control degrades linearly from 0.5 to 0, over the simulation horizonK. The simulation
horizon K is fixed accordingly to the time span, after which the train positions should
be harmonized. It has been chosen to K = 15 departures here.

Figure 5.6 depicts the train trajectories on the central part of Paris metro line 13
over a time horizon of one hour. The trajectories are given by the max-plus linear train
dynamics with γj = 0. In the initial state (t = 0) the initial train time-headways are
perturbed. For example, at the station Châtillon – Montrouge, the first time-headways
which can be observed (starting with the blue trajectory) are h1 = 175 sec, h2 =
191 sec, h3 = 339 sec, h4 = 96 sec. In this case train dwell times are a function of
the passenger arrival rates to and the passenger departure rates from the platforms, and
the train time-headway such that they are extended for trains with a long headway.
In the example, this is the case for the second yellow train with an initial headway of
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h3 = 339 sec. Note that this train is also accelerated in the inter-station to cancel the
effect of the extended dwell time. Since the trajectories in the figures below show only
the train departures dkj from the platforms, this detail is not visible in the graph. The
corresponding train dynamics have been proven to be stable in Section 4.1.2 and to reach
a stationary regime with an asymptotic average train time-headway. Figure 5.6 strongly
suggests that this asymptotic average exists since train travel times and the number of
trains are constant. Finally it can be seen that without dwell time control, the variance
between the train time-headways does not disappear.

Figure 5.7 gives the train trajectories on the central part of line 13 for the dynamics
accordingly to (5.12) with γj = 0.2. The initial condition, that is the train positions and
the initial headways are the same as before. In this case, the control on the dwell times
is activated. Comparing the figure to the case of the max-plus linear dynamics, it can
be seen that the time-headways converge over the horizon. The long initial headways
disappear over time. At the example of the second yellow train with the initial headway
of h3 = 339 sec, the effect of the reduced dwell times can be studied. At the station La
Fourche, the headways of this train with respect to its predecessor and it successor are
nearly harmonized. Furthermore, it can be seen that the headway harmonization control
does not lead to a decreasing frequency. In the contrary, at the end of the horizon at
t = 60 min at first station, La Fourche, the number of departures realized within the time
horizon is increased by +1. In case of perturbation an accumulation of passengers on the
platforms can typically be observed. With the here presented control, the asymptotic
average frequency is increased while harmonizing the train time-headways.

Figure 5.8 depicts the train trajectories on the same line and still accordingly to (5.12)
for γj = 0.5−(0.5/K)k which means the control decreases linearly over the time horizon.
In the beginning, the control applied is stronger which allows to harmonize the train time-
headways more rapidly and therefore, to decrease the control linearly so that it reaches
γj = 0 at the end of the horizon. It can be seen that the time-headways are harmonized
faster. For example the first train (blue trajectory) at the station Châtillon – Montrouge
has, at the end of the line at La Fourche, nearly equalized time-headways with regard to
its predecessor and its successor. Comparing this to Figure 5.7 with a less strong control
γj = 0.2, it can be seen that the harmonization is much quicker. Once a perturbation on
the train time-headways is observed, it can be interesting to temporarily apply a strong
control so that the perturbation rapidly disappears.



118 CHAPTER 5. SIMULATION OF FEEDBACK TRAFFIC CONTROL

F
igu

re
5
.6

:
S

im
u

la
tio

n
o
f

tra
in

tra
jectories

w
ith

p
ertu

rb
ed

in
itial

train
tim

e-h
ead

w
ay

s,
cen

tral
p

art
of

P
aris

m
etro

lin
e

13.
M

a
x
-p

lu
s

lin
ea

r
train

d
y
n

a
m

ics
(γ
j

=
0
)

accord
in

gly
to

(5.12),
w

ith
d

em
an

d
-d

ep
en

d
en

t
d

w
ell

tim
es,

ru
n

tim
e

m
argin

15%
.



5.3. HARMONIZATION OF TRAIN TIME-HEADWAYS 119

F
ig

u
re

5
.7

:
S

im
u

la
ti

o
n

of
tr

a
in

tr
a

je
ct

o
ri

es
w

it
h

p
er

tu
rb

ed
in

it
ia

l
tr

ai
n

ti
m

e-
h

ea
d

w
ay

s,
ce

n
tr

al
p

ar
t

of
P

ar
is

m
et

ro
li

n
e

13
.

T
ra

in
d

y
n

a
m

ic
s

w
it

h
d

w
el

l
ti

m
e

co
n
tr

ol
(γ
j

=
0.

2)
ac

co
rd

in
gl

y
to

(5
.1

2)
,

ru
n

ti
m

e
m

ar
gi

n
15

%
.



120 CHAPTER 5. SIMULATION OF FEEDBACK TRAFFIC CONTROL

F
igu

re
5
.8

:
S

im
u

la
tio

n
o
f

tra
in

tra
jectories

w
ith

p
ertu

rb
ed

in
itial

train
tim

e-h
ead

w
ay

s,
cen

tral
p

art
of

P
aris

m
etro

lin
e

13.
T

ra
in

d
y
n

am
ics

w
ith

d
w

ell
tim

e
co

n
trol

(γ
j

=
0.5
−

(0.5/K
)k

)
accord

in
gly

to
(5.12),

ru
n

tim
e

m
argin

15%
.



Chapter 6

Conclusion

Summary

This thesis is on metro traffic modeling and control. The train dynamics of a metro
line with a junction are modeled with a discrete event traffic model. The discrete event
model is based on a modeling approach first developed by Farhi et al. [14] for a linear
line and it represents a novel model of railway traffic. The discrete events considered
here are the train departures from the nodes of the segments on the line, corresponding
to the signaling blocks. The train dynamics are stated by two constraints. The first one
is on train run and dwell times. The second one is on the safe separation time at each
segment.

Original with respect to existing research is, first of all, the modeling of the train
dynamics of a metro line with an one-over-two operated junction as a discrete event
system. In Chapter 3, a first model is proposed where lower bounds are considered
on the train run, dwell and safe separation times on the segments. The traffic model
for a line with a junction is written linearly in the max-plus algebra. By application
of the max-plus algebra theory, it is shown that the traffic on a line with a junction
reaches a stationary regime with an asymptotic average growth rate, interpreted as the
asymptotic average train time-headway. The main result is the closed-form solution of
the asymptotic average train time-headway as a function of the train run, dwell, and
safe separation times, of the number of trains and of the difference between the number
of trains on the branches. It is shown that in the free flow (and in the congestion)
phase, and for a fixed number of trains, there exists an optimal difference between the
number of trains on the branches, maximizing the asymptotic average frequency. From
this result, eight traffic phases of the train dynamics are derived analytically. These
are two phases for free flow, two phases representing congested branches, two phases
representing congestion on the central part of the line, a phase for the train line capacity
(maximum frequency), and a zero frequency phase. Based on the closed-form solutions
of the traffic phases, three macroscopic control laws are derived. They allow to control
the total number of trains as well as the difference between the number of trains on the
branches, in cases of: 1) a changing passenger travel demand volume, 2) a perturbation
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on the travel times for a fixed number of trains, and 3) a perturbation on the travel times
where trains can be inserted or canceled. This macroscopic control is interesting for lines
with a junction since it allows to control the train passing order at the convergence by
following the optimal difference between the number of trains on the branches and in the
case where time margins included for microscopic control are insufficient to re-stabilize
the traffic.

In Chapter 4, an extended model is proposed, where the lower bounds on the train
run and dwell times are replaced by functions of the passenger travel demand and the
train time-headway, allowing a microscopic control of the train dynamics. Train dwell
times are extended for trains with long time-headways in order to take into account
the accumulation of passengers on the platforms. On the other side, and for those
trains with long time-headways, the train run times are shortened by accelerating the
trains in the upcoming inter-stations, in order to compensate the extension of the train
dwell times. The model remains max-plus linear and the train dynamics reach a stable
stationary regime with an asymptotic average train time-headway. Closed-form solutions
of the asymptotic average train time-headway are derived depending, in addition to the
parameters of the first model, furthermore on the passenger travel demand and on the
run time margin. The traffic phases of the train dynamics are then derived and allow
the analysis of the effect of the passenger demand and of the train run time margins on
the asymptotic average train frequency. For the case of a linear line, three traffic phases
are distinguished: a free flow phase, a maximum frequency phase and train congestion
phase. For the case of a line with a junction, eight traffic phases are distinguished, as in
the standard model.

Finally, three simulation cases at the example of the metro line 13 of Paris (with one
junction) are presented in Chapter 5. The first case illustrates the macroscopic control
on the number of trains depending on the passenger travel demand volume. In this case,
the train dynamics do not change and therefore there is no need for simulation of the
train dynamics. The computed control actions can directly be applied, and the stability
of the system is proved. The second case shows the macroscopic control of the number
of trains on the branches in case of a perturbation of the train travel times. Since the
train dynamics are perturbed here, they are simulated, and the results with and without
control are compared. The third case gives a simulation of the demand-dependent train
dynamics with perturbed initial time-headways.

Outreach and Limitations

The thesis brings about several contributions to railway traffic modeling and control.
Their applications in planning and in operations, their limits and perspectives are dis-
cussed below.

First of all, thanks to the novel modeling approach, fundamental diagrams for metro
lines with a junction have been derived. They can serve for planing issues, for example
the timetable construction or the capacity analysis of existing or planed metro lines.
The diagrams which depict the relationships between the macroscopic variables: Total
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number of trains and the difference between the number of trains on the two branches,
and the asymptotic average train frequency, depending on the train run, dwell and
safe separation times, allow to derive an optimal train configuration with respect to a
requested train frequency.

Moreover, from the underlying max-plus linear traffic model, control laws have been
derived, which allow real-time macroscopic control of the number of trains and of the
difference between the number of trains on the branches, depending on the train run,
dwell and safe separation times. The macroscopic control of the difference between
the number of trains on the branches can be realized with a control of the train passing
order at the junction. The control is optimal with regard to the asymptotic average train
frequency in the stationary regime. More attention needs to be given to the control at
the junction in the transient traffic regime.

Moreover, in an extended version of the traffic model, a dynamic control of the train
dwell times, accounting for a possible passenger accumulation on the platform in case
of a long time-headway, and a dynamic control of the train run times guaranteeing the
system stability has been proposed. Both have direct applications in metro operations
within a margin on the train run times. The dynamic control guarantees system stability
combined with demand-dependent dwell times in case of a perturbation on the train time-
headways. However, it is limited by the margin on the train run times, such that in case
a perturbation exceeds the margin, the maximum dwell time is applied and optimality
with regard to the passenger travel demand is no longer guaranteed. The dynamic dwell
time does not take into account the train capacity. A model of the train capacity will
enhance the field of applications, for example in case of important perturbations.

A final possible application in metro operations is the dynamic dwell time control,
reducing the dwell time for trains with a long time-headway. It leads to the harmoniza-
tion of the train time-headways on the line, see Chapter 5. Based on the dynamic dwell
time model Chapter 4, this control guarantees the harmonization of the time-headways
within a limit on the longest time-headway, depending on the run time margin chosen.
Moreover, reducing train dwell times in case of a long time-headway is negative from a
passenger point of view and needs technical installations which guarantee its applicabil-
ity. A possible solution is an automatic closing of platform doors and trains doors. Its
combination with a holding control could ensure headway harmonization even in case of
important perturbations.

The railway system considered here is a metro line. This allows to simplify the
description of the system at some points, compared to a full railway, for example with
regard to a simplified block and signaling system. For example, constant train run times
do not represent acceleration and braking in case a train is affected by the signaling
system. To allow the application of the model to full railway systems, for example
RER lines (Paris), suburban lines or high speed lines, a more specific model of the train
dynamics is necessary.

The metro line modeled here has one junction. In the steady state, an one-over-two
operations rule is applied at the divergence and at the convergence. Many metro lines
with a junction are operated accordingly to the one-over-two rule because it theoretically
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ensures constant time-headways between trains on both branches. However, different
rules exist and can be modeled with the approach of this thesis.

With regard to full railway systems, more complex configurations with several branches
and junctions exit. These configurations can also be modeled using the here presented
approach. However, the representation of the traffic phases of the train dynamics is
difficult for more complex lines. The fundamental diagram of a line with a central part
and two branches derived here has three dimensions. Consequently, the fundamental
diagram of a line with more than two branches has more than three dimensions which
makes the graphical interpretation of the phase diagrams more complex.

Finally, trains are supposed to stop at all the platforms and the number of trains in
the system is supposed to be constant over a certain period in time. Using the same
modeling approach, an extension representing the operation of express trains which skip
stops is possible.

Perspectives

As highlighted above, this thesis has contributed to the theoretical understanding of the
physics of metro traffic on lines with a junction. The theory developed has furthermore
direct applications in traffic planing and real-time control. On the offline traffic planing
side, the fundamental diagrams of this thesis have demonstrated that two variables have
to be optimized to obtain a desired frequency with regard to the system parameters
run times, run time margin, passenger travel demand and safe separations times: The
number of trains and the difference between the number of trains on the branches. The
theory can be developed further by, first, considering systems with a junction which is
operated with a rule different from one-over-two. Second, modeling systems with more
than two branches, and third, modeling the effect of a skip-stop policy.

On the online real-time control side, the model proposes a dwell time accounting for
passenger accumulation on the platform and controlled run times to guarantee traffic
stability within a run time margin. It is necessary to further develop the control for the
transient regime. In case of a serious perturbation, an efficient control for the transient
regime is required in order to reach the stationary regime in a reasonable time.
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[35] F. Schanzenbächer, N. Farhi, F. Leurent, and G. Gabriel. A discrete event traffic
model explaining the traffic phases of the train dynamics on a linear metro line
with demand-dependent control. In Proceedings of the Annual American Control
Conference, pages 6335–6340, Milwaukee, USA, 2018.
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