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Abstract

The objective of this thesis is to develop density based-topology optimization methods
for several challenging dynamic structural problems. First, we propose a normalization
strategy for elastodynamics to obtain optimized material distributions of the structures that
reduces frequency response and improves the numerical stabilities of the bi-directional
evolutionary structural optimization (BESO). Then, to take into account uncertainties in
practical engineering problems, a hybrid interval uncertainty model is employed to efficiently
model uncertainties in dynamic structural optimization. A perturbation method is developed
to implement an uncertainty-insensitive robust dynamic topology optimization in a form
that greatly reduces the computational costs. In addition, we introduce a model of interval
field uncertainty into dynamic topology optimization. The approach is applied to single
material, composites and multi-scale structures topology optimization. Finally, we develop
a topology optimization for dynamic brittle fracture structural resistance, by combining
topology optimization with dynamic phase field fracture simulations. This framework is
extended to design impact-resistant structures. In contrast to stress-based approaches, the
whole crack propagation is taken into account into the optimization process.
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Résumé

L’objectif de cette thèse est de développer des méthodes d’optimisation topologiques basées
sur la densité pour plusieurs problèmes difficiles de structure en dynamique. Premièrement,
nous proposons une stratégie de normalisation en élasto-dynamique en vue d’obtenir une
distribution optimale de matériau dans la structure qui réduit la réponse aux excitations
dynamiques en fréquence et améliore la stabilité numérique dans la méthode BESO (bi-
directional evolutionary structural optimisation). Ensuite, pour décrire les incertitudes
de paramètres pouvant intervenir dans des problèmes réalistes en ingénierie, un modèle
d’incertitudes à intervalle hybride est développé pour prendre en compte les incertitudes
dans le problème d’optimisation en dynamique. Une méthode de perturbation est développée
pour une optimisation topologique robuste vis-à-vis des incertitudes et permettant des gains
de temps de calculs importants. De plus, nous introduisons un modèle d’incertitude de
champ d’intervalle dans ce cadre. L’approche est appliquée à l’optimisation topologique des
structures mono-matériaux, composites et multi-échelles. Enfin, nous développons un cadre
d’optimisation topologique pour la résistance des structures à la fissuration quasi-fragile dans
un cadre dynamique, par combinaison avec la méthode de champs de phase. Ce cadre est
étendu à la conception de structures résistantes à des impacts. Contrairement aux approches
basées sur les contraintes, la totalité de la propagation des fissures est prise en compte dans
le processus d’optimisation.
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Chapter 1

Introduction and literature review

1.1 Background and motivations

Finding the optimal material distribution for a given design domain to obtain better structural
performance is a fundamental and critical problem in engineering design. Traditionally, in
most cases, the arrangement of material or the positioning of structural elements of a design
is chosen intuitively or inspired by existing solutions [103]. However, there is a specific need
for improving the quality of the products and shortening the design process by finding the
optimum topology at an early stage of the design process [104].

In the past decades, topology optimization has been become one of the most important
numerical approaches to solve this problem. It provides a feasible way to generate the
optimal topological designs that minimize or maximize an objective function while satisfying
certain design constraints in a given design domain. Fig.1.1 illustrates the typical topology
optimization. Although the concept has been originated in mechanical design problems, it
has been later been extended to a wide range of other physical disciplines, including fluids,
acoustics, electromagnetism, optics, and their combinations [345]. One may find literature
surveys from [75, 134, 457, 223], in which the recent advances and applications of topology
optimization were summarized.

Although structures under real operating conditions are often subjected to dynamic
loading, topology optimization in a dynamic context is much less studied than in a static
context. It is clear that the dynamic topology optimization problems are more challenging
than the static ones, and one of the reasons is the multiple forms of dynamic loads themselves.
For example, for structures subjected to shock/impact loading, a time integration scheme
should be considered and the dynamic analysis will be implemented for each time step, which
is computationally costly for topology optimization and may be accompanied by strong
nonlinearities and a large number of design constraints. When the structure is subjected
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Fig. 1.1 Typical topology optimization [31]

to periodic loads or modal quantities are of interest (e.g., eigenfrequency optimization
problems), calculations can be performed by steady-state analysis (i.e., in the frequency
domain), which saves computational costs to a large extent, but also induces problems, such
as the difficulty to obtain a clear ’solid-void’ structural design [351] when the excitation
frequencies are above the first resonance of the initial design.

The dynamical context makes topology optimization more complex, yet uncertainties
prevalent in engineering, which could be triggered by manufacturing tolerances, loads,
material properties, component tolerances and geometry [111], may exacerbate this phe-
nomenon. On the one hand, the introduction of uncertainty implies a huge computational
cost, which already exists in dynamic problems, even for steady-state analysis. For exam-
ple, one might use the classical Monte Carlo Simulation (MCS) to evaluate the structural
performances with uncertainties [35, 297], but the hundreds of thousands of samples of the
MCS could adversely affect the speed of topology optimization iterations. On the other hand,
the probabilistic model is frequently employed to describe the uncertainties in engineering
(see, e.g. [298, 232]), but the probabilistic models require a large number of experimental
samples to establish accurate probability distributions of uncertain parameters. Due to the
difficulties and high costs of experiments, it is difficult to obtain the accurate probability
distribution of the uncertain parameter. Even though alternative non-probabilistic methods
exist (see e.g., the interval method [306, 266], fuzzy-set method [248] and convex method
[236]) and hybrid model based methods (see [174] for literature review) for modeling the
uncertainties whose complete stochastic profile cannot be confidently established, integrating
practical uncertainties into topology optimization remains a challenge, especially for dynamic
problems.
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Fig. 1.2 Comparison of in situ testing-microCT experiments and phase field simulations on
the cracking of a complex three-dimensional specimen made by heterogeneous quasi-brittle
materials [275]: (a) position of crack; (b) experimental result and (c) simulation result.

Another issue seems to have been overlooked by the topology optimization community,
namely the dynamic fracture phenomena. In contrast, crashworthiness (see [107] for a
review) seems to have received more attention. One of the possible reasons for this is
that traditional numerical methods for fracture propagation, such as the eXtended Finite
Element Method (XFEM) [21, 267], are inherently highly complex and cannot be easily
combined with topology optimization methods. In addition, the initiation and propagation
of the cracks under dynamic impacts is also a very challenging topics [113]. The complex
behaviors involved, such as initiation and branching, causes additional difficulties in the
optimization problems, related to the huge computational cost of topology optimization
superimposed with traditional numerical methods for dynamic fracture. More recently,
the variational approach to fracture [112, 256] (also known as fracture phase field method,
see [5] for a review) has shown to constitute a robust tool for complex fracture problems.
The appropriate regularization process of the phase field method offers unique advantages
to deal with initiation, propagation of multiple, complex, 3D cracks in possibly regular
meshes, and also makes it easier to combine with topology optimization. Fig. 1.2 shows the
direct comparison of the phase field simulation and in situ testing-microCT experiments on
a complex three-dimensional specimen made by heterogeneous quasi-brittle materials, in
which a fairly good agreement was observed in terms of both the length and direction of the
cracks.



4 Chapter Introduction and literature review

From the above perspectives, the motivations of this PhD thesis are listed as follows:

• Propose a normalization strategy for promoting the stability and convergence of the
bi-directional evolutionary structural optimization (BESO) method and apply it to
structural topology optimization for suppressing frequency response.

• Model the uncertainties by hybrid interval random method within robust topology
optimization of structures, multi-scale structures and laminate plates in elastodynamics
by efficient perturbation analysis.

• Introduce a non-probabilistic interval field to elastodynamics of structures subjected to
periodic loading and achieve robust topology optimization.

• Develop a topology optimization framework incorporating the dynamic phase field
method for designing structures with enhanced dynamic brittle fracture resistance.

• Extend the dynamic fracture involved topology optimization framework to design
structures for impact work maximization.

The presented works are implemented through the bi-directional evolutionary structural
optimization (BESO) method or solid isotropic material with penalization (SIMP) method,
both of which are gradient-based topology optimization methods in a broad sense [345].

1.2 Literature review

1.2.1 Topology optimization frameworks

Topology optimization is often referred to as layout optimization [293, 192, 28, 327]. As
early as the 19th century, Maxwell [251] performed a basic topological analysis for minimum
weight truss structure with stress constraint. In 1904, Michell [255] proposed the so-called
Michell’s theory for analytically describing the conditions to be satisfied for the optimal truss
of a loaded structure under stress constraints, which is widely regarded as a milestone in the
study of structural topology optimization theory. In later times, some important developments
in Michell’s theory were made and several simple and practical optimal topological designs
were worked out [145, 318, 326, 317, 36, 322, 319]. However, due to the difficulty of solving
Michell’s theory based problems, this approach has not been widely employed in practical
engineering.

The landmark work done by Bendsøe and Kikuchi [33] in 1988 is recognized as the
pioneer of the modern version of topology optimization research. In their work, within a
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fixed grid finite element representation, the structure is composed by small individual cells
and effective properties of the cells can be calculated by the homogenization method and
then being optimized. This method is known as the homogenization-based method. The
adoption of numerical solving procedures have allow topology optimization to solve practical
engineering design problems.

1.2.1.1 SIMP approach

Shortly after the introduction of the homogenization based method, Bendsøe [26] and
later others [451, 262] suggested the so-called SIMP approach to reduce the complexity of
homogenization approach and improve the convergence to ’0-1’ solution [345]. In their work,
the relation between design variables and material property is artificially interpolated by a
power-law, for example, according to:

E (ϑ) = ϑ
pE0, (1.1)

where ϑ denotes the design variable, E0 denotes the Young’s modulus of the material
composing the structure, E (ϑ) represents the design variable interpolated Young’s modulus
and p is the interpolation parameter. A too low or too high value of p can lead to larger
gray zones or too quick convergence to local minima. In most case, the so-called "magic
number" p = 3 is usually employed, for example, in [30], this value was confirmed to ensure
the physical connection of the elements of the intermediate density, as shown in Fig. 1.3. But
the value of p is non-unique and strongly depends on the physical considered problem, see
e.g. [340, 42, 200]. It should be noted that there exist a few variations (e.g. [341, 459]) to
the original SIMP interpolation scheme described in Eq. (1.1), and some alternative have
been proposed, like the Rational Approximation of Material Properties (RAMP) model [358]
and the SINH model [48].

To ensure well-posedness and mesh-independent solutions [346], as shown in Fig. 1.4,
additional numerical treatments are necessary. The sensitivity filter was proposed [338] to
modify element sensitivity values with the weighted averages of their neighbors within a
mesh-independent radius rmin. The filtered sensitivity value of an objective function g(ϑ)

with respect to the design variable can be calculated by

∂g(ϑ)

∂ϑe
=

∑i∈Ne ϖei
∂g(ϑ)

∂ϑi

∑i∈Ne ϖei
, (1.2)
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Fig. 1.3 A comparison of the SIMP model and the Hashin-Strikhman upper bound for an
isotropic material with Poisson ratio 1/3 mixed with void [30].

70 

is the penalization factor which ensures that  the continuous 
design variables are forced towards a black and white (0/1) 
solution. The influence of the penalty parameter can be ex- T - - [  
plained as follows. By specifying a value of p higher than lJ 
one, the local stiffness for p < 1 is lowered, thus making it 
"uneconomical" to have intermediate densities in the opti- 
mal design. The discretized SIMP optimization problem is 
written as 

min f ( p ) ,  
P 

N 
s.t. v =  _< V*, (3) 

i=1 
0 < P m i n < _ p _ <  1, 

where the design variables p are continuous variables and 
Pmin are lower bounds on densities, introduced to prevent 
singularity of the equilibrium problem. If the objective is 
compliance, then f (p )  = F T K - I ( p ) F  where F is the load 
vector, 

N 
P K  K ( O ) = ~ P i  z, (4) 

i=1 

and K i denote (global level) element stiffness matrices. 
When p = 1 the optimization problem corresponds to the 
variable thickness sheet problem. 

1.5 Numerical problems 

We have divided the common numerical problems appearing 
in topology optimization into three categories: 

�9 Checkerboards refer to the problem of formation of re- 
gions of alternating solid and void elements ordered in a 
checkerboard like fashion. 

�9 Mesh dependence refers to the problem of not obtaining 
qualitatively the same solution for different mesh-sizes or 
discretizations. 

�9 Local minima refers to the problem of obtaining different 
solutions to the same discretized problem when choosing 
different algorithmic parameters.* 

The definitions, appearances, mathematical  and physical ex- 
planations and techniques to prevent the three problems are 
shown schematically in Table 1 and graphically in Fig. 1 and 
are discussed in detail in the following sections. 

2 C h e c k e r b o a r d s  

The checkerboard problem is illustrated in Fig. lb  and con- 
sists of regions in the "optimal topology" consisting of Mter- 
nating solid and void elements. It was earlier believed that  
these regions represented some sort of optimal microstruc- 
ture, but papers by Dfaz and Sigmund (1995) and Jog and 
Haber (1996) have shown that  the checkerboard patterns are 

* E.g .  different s t a r t i n g  so lu t ions  

P 

2 a) 

b) 

c) 

d) 

e) 

Fig. 1. (a) Design problem, (b) example of checkerboards, (c) so- 
lution for 600 element discretization, (d) solution for 5400 element 
discretization and (e) nonuniqueness example 

due to bad numerical modelling of the stiffness of checker- 
boards. 

Assume that the problem (1) has been adjusted so that  
solutions exist. If (2) is a good approximation of (1), the 
solutions of (2) will approach those of (1) as N is increased. 
This - henceforth referred to as FE-convergence - usually 
requires a careful study. A typical example of nonconvergence 
is the formation of checkerboards, and a guarantee of not 
obtaining such anomalies is one of the important  byproducts 
of a FE-convergence proof. 

D/az and Sigmund (1995) compared the stiffness of 
checkerboard configurations in a discretized setting to the 
stiffness of uniformly distributed materials and concluded 
that  the checkerboard structure has artificially high stiffness. 
Jog and Haber (1996) presented a theoretical framework 
based on a linearized, incremental form of the problem and 
a patch test was proposed. They argued that  spurious thick- 
ness modes can be detected by investigating the nonunique- 
ness of solutions to the discretized incremental equation sys- 
tem. Both works provide useful guidelines regarding choice of 
stable elements and they show that  checkerboard patterns are 
prone to appear in both the homogenization and the SIMP 
approach. 

Theoretical studies of the appearance of checkerboards in 
three-dimensional problems have not yet been carried out. 
However numerical experience shows that  checkerboards also 
appear for this case (e.g. Beckers 1997b). 

Agreeing that  the checkerboard problem is explained by 

Fig. 1.4 Illustration of the mesh-dependency and checkerboard phenomenon [346]: (a) design
problem; (b) checkerboard phenomenon; (c) solution for 600 element discretization; (d)
solution for 5400 element discretization; (e) nonuniqueness example.
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where Ne denotes the set of elements whose center-to-center distance rei to the e-th element
is lower than the filter radius rmin. ϖei denotes the weighting factor, which, for example in a
linear form, can be defined by ϖei = max(0,rmin− rei).

Although the sensitivity filter technique seems to be heuristic, it was proved to be
interpreted as an optimization problem based on a non-local elasticity approach in [344].
There have been alternative techniques proposed such as explicit constraints and penalty
schemes in the form of gradient or perimeter constraints as well as regularized explicit
penalization, see e.g. [138, 303, 41]. However, the sensitivity filter technique has been
widely used in commercial and academic codes for a long time.

The density filter technique [49, 43] extends the idea of sensitivity filtering, with the
difference that a physical density of the element is introduced and defined as a weighted
average of the design variables in the neighborhood domain within radius rmin, namely

θe =
∑i∈Ne ϖeVeϑe

∑i∈Ne ϖeVe
, (1.3)

where θe denotes the physical density and Ve denotes the elemental volume. The other
symbols were defined in Eq. (1.2). The density θe was used here to replace the design
variable in Eq. (1.1), thus in subsequent sensitivity analysis, the chain rule should be
employed to build the relation between design variable and objective function.248 J. K. GUEST, J. H. PRÉVOST AND T. BELYTSCHKO

Figure 7. The regularized Heaviside step function for various magnitudes of �: (a) � = 0 (linear);
(b) � = 1; (c) � = 5; and (d) � = 25.

the weighted average of nodal volume fractions within �e
w as �e(�n). The weighted average

function is repeated here for convenience:

�e =
∑

j∈Se
�jw(xj − xe)∑

j∈Se
w(xj − xe)

(13)

where w(x) is the weighting function defined by (2).
The element volume fractions are now expressed as a Heaviside step function by

�e =
{

1 if �e(�n) > �min
n

�e
min if �e(�n) = �min

n

}
(14)

In other words, an element e is a void element if and only if all nodal volume fractions within
�e

w equal �min
n . On the other hand, a node with volume fraction greater than �min

n yields a
weighted average �e greater than �min

n for all elements whose centroid lies within a distance
rmin of that node. All of these elements are then solid elements, thereby satisfying the minimum
length scale criterion.

In order to use the optimization algorithm outlined in Section 4, the Heaviside function must
be regularized so that the gradient of �e with respect to �n is continuous. This can be achieved
by the exponential function:

�e = 1 − e−��e(�n) + �e(�n) (15)

where the parameter � dictates the curvature of the regularization and �e(�n) recovers the
bounds on the element volume fractions:

�e = �e(�n)e−� (16)

The projection function (15) is linear when � = 0, and approaches the Heaviside step function
as � approaches infinity. Figure 7 displays the regularization for a sample of � values.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:238–254

Fig. 1.5 The regularized Heaviside step function for regularization parameters: (a) η = 0
(linear); (b)η = 1; (c) η = 5; and (d) η = 25 [130].

Both sensitivity and density filters have the problem of generating grey transitions regions
between solid and voids. More recently, projection schemes [130, 341, 413] were proposed
for circumventing this problem. The original projection filter was proposed by Guest et al.
[130] for prescribing minimum and maximum length-scales, in which a regularized Heaviside
function was introduced as:

ϕe = 1− e−ηθe +θee−η , (1.4)
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where ϕe denotes the pseudo-density of element e. η is a regularization parameter, which
can be defined by 1 in the first iteration and doubled after specified time steps until it reaches
a maximum value. θe denotes the physical density subject to the density filter definition.
Fig. 1.5 depicts the regularized Heaviside step function for various regularization parameters.
Similar to the use of density filter, the chain rule is also necessary for sensitivity analysis.
For an objective function g(ϕ) explicitly associated to the pseudo-density ϕe, its derivation
to the design variable can be expressed by

∂g(ϕe)

∂ϑe
=

∂g
∂ϕe

∂ϕe

∂θe

∂θe

∂ϑe
, (1.5)

in which the derivations can be derived from the above equations.
Note that introducing power-law interpolation transforms the discretized topology opti-

mization formulation to a continuous design variable gradient-based optimization problem.
The SIMP approach can employ a very large number of optimization solvers. There are
many well-proven gradient-based optimization approaches, like the Optimality Criteria (OC)
methods [27, 339, 10] and the Method of Moving Asymptotes (MMA) [360].

To sum up, the SIMP approach is now mature after three decades of development, and
it is almost the most widely known topology optimization method and an iconic approach
[31]. In the field of mechanics, its effectiveness has been proved in many other aspects like
nonlinear structural optimization [51, 301, 120, 50, 177, 425, 187, 193, 201, 238], stress-
based optimization [98, 46, 200, 47, 148, 237, 377, 417] and dynamics-aimed optimization
[302, 176, 90, 424, 202, 292, 439], to name a few, in addition to classical linear elastic
compliance optimization problems. In multi-physics field problems, it also shows good
capacities for, e.g., thermoelastic structures [348, 158, 116, 362, 76], fluid and flow problems
[42, 122, 288, 1, 81, 83, 84], acoustic problems [139, 379, 95, 2, 203, 91] and optical
problems [40, 371, 9, 166, 99].

1.2.1.2 BESO approach

The BESO approach is an extension of evolutionary structural optimization (ESO) method
[409], which was firstly proposed by Xie and Steven [408] in the early 1990s. The main
characteristic of the ESO type topology optimization is to gradually change the structural
volume by removing the “low-efficiency” elements. In the original work [408], the von Mises
stress of elements was compared with a prescribed critical value to determine if the element
is low-efficient, and a rejection ratio was defined for determining the threshold for elemental
removal. Following this proposition, other constraints such as stiffness [64], buckling load
[246], frequency [407] and temperature [215] were achieved for topology optimization of
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structures. However, this approach tends to yield in premature or erroneous removal of
material from the structure, and leads to topologies that are not necessarily optimal, even if it
is able to produce solutions that are much better than the initial guessed design in most cases
[253, 213].

In [308], Querin et al. suggested an additive algorithm for ESO (AESO) and then [310]
combined it with the conventional ESO method formed the early version of BESO. In their
algorithm, a rejection ratio and an inclusion ratio were separately defined. Later in [309],
they verified the optimality of their BESO method. From another aspect, Yang et al. [419]
conducted a BESO topology optimization for stiffness optimization, in which the sensitivity
number of the void elements was estimated by a linear extrapolation of the displacement.
The addition and removal of elements were determined by the relative ranking of all element
sensitivity numbers.

The theoretical rigor of early ESO/BESO methods was questioned [452, 323] because
they were largely based on heuristic concepts. Rozvany and Querin [324, 325, 320, 321]
hence proposed a sequential element rejection and admission (SERA) method to replace the
void element with soft element in low Young’s modulus value. Zhu et al. [455] suggested to
replace the void element by an orthotropic cellular microstructure.

In [152, 155], Huang and Xie made three contributions to the modern version of the BESO
method: (1) incorporating an artificial material interpolation scheme with penalization similar
to SIMP approach; (2) adopting the filter scheme to make sure the existence of the solution,
meanwhile avoid the checkerboard pattern; (3) proposing a sensitivity history-averaging
scheme to stabilize the optimization procedure.

The penalized artificial material interpolation scheme of BESO can be expressed, for
example with respect to Young’s modulus, by:

E (ϑ) = ϑ
pE0, ϑ = ϑmin or 1, (1.6)

from which, one can find common points to Eq. (1.1). However the difference of BESO’s
scheme is to use a total "solid-void" discrete design variable. In the above equation, ϑmin is
artificially defined by a small value (e.g.,ϑmin = 10−3) to represent the void element.

Note that the checkerboard phenomenon and mesh-independency are also present in
the BESO approach [214]. The filter scheme in the original proposition [152] was used for
the evaluation of the nodal sensitivity numbers since the element sensitivity numbers were
treated to be distributed on nodes. In the most cases, the sensitivity filter technique (see Eq.
(1.2) is most frequently employed. In some recent literature [410, 114], it was reported that
the density filter can also be adopted for dealing with the problems of strong nonlinearity,
such as stress-based optimization.
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Fig. 7. Comparison of the evolutionary histories (a) without and (b) with the
stability procedure defined in Eq. (6).
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Fig. 9. Evolution histories of the compliance and the volume fraction when
BESO starts from the full design.

modulus E = 200 GPa and Poisson’s ratio �= 0.3. Initially, the
material is full of the design domain. The following BESO pa-
rameters are used: ER = 5%, ARmax = 5%, rmin = 6 mm and
� = 0.01%.
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Fig. 1.6 Comparison of evolutionary history: (a) without and (b) with history-averaging
scheme [152].

The sensitivity history-averaging scheme modifies the sensitivity of the current iteration
using the average sensitivity of the current iteration and the previous one, which can be
formulated by:

ξ
l ←

(
ξ

l +ξ
l−1
)
/2, when l ≥ 2, (1.7)

where ξ denotes the sensitivity number. The superscripts l and l− 1 indicate the current
and previous iterations, respectively. Fig. 1.6 compares the evolutionary history without
and with history-averaging scheme. The history-averaging scheme efficiently stabilizes
the design process and improves the convergence. It mitigates the chaotic behavior caused
by the presence and absence of the sensitivity for discrete solid and void elements during
the optimization procedure. In some recent studies [405, 106], this averaging scheme has
been extended to the last three steps, for overcoming strong nonlinearities that existed in
stress-based optimization problems.

Due to the penalized exponential interpolation of material properties by modern BESO,
the sensitivity of the objective function to the design variables can be easily obtained by
efficient derivation methods, e.g. the adjoint method [194, 61]. After ranking the relative
value of the sensitivity number of the elements, the evolution of the structure can be conducted
by the addition and removal of elements. The evolution of the volume can be expressed by:

V l = max
{

V ∗,V l−1 (1±ER)
}
, (1.8)

where ER denotes the EvolutionaryRatio responsible for controlling the percentage of struc-
tural volume, that increases or decreases the volume of current iteration. V ∗ is a predefined
allowable volume.
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The convergence criterion for the structural evolution is defined by:

δerr =

∣∣∣∑N
i=1 g(ϑ)l−i+1−∑

N
i=1 g(ϑ)l−N−i+1

∣∣∣
∑

N
i=1 g(ϑ)l−i+1 ≤ δ̄err, (1.9)

where δ̄err denotes the convergence threshold, N is a predefined integer, defined as 5 in
most cases, used to determine the number of steps that need to be satisfied to determine
convergence. The convergence usually occurs after the addition and removal of structural
elements has reached the predetermined volume V ∗.

The BESO approach is an important branch of topology optimization. We briefly reviewed
the development of BESO from the most primitive ESO to the current generally popular
version. One may refer to the monograph of BESO written by Huang and Xie [151] for
more details of this approach, and refer to a comprehensive review raised by Xia et al.
[404] for recent advances of the approach. We can list a series of literature in which the
BESO approach has always been redefined for solving various problems, such as stiffness
and natural frequency optimization [152, 156], periodic structure [153], multiple materials
[155, 143], multiple constraints [154], to name a few. However, we should note that for the
problems with severe variation on sensitivity numbers between the adjacent iterations, that is,
the objective function and sensitivity are highly sensitive to the value of design variables,
the current stabilizing scheme, such as the history averaging technique, might no longer
be effective. Through lots of practice, it has been found that in this type of problem, there
are often some iterative steps whose sensitivity value are much higher than other iterations.
This phenomenon is caused by the sudden changes of structural response during the iterative
progress. As shown in Fig. 1.7, the existence of such "dominating sensitivity" results into
unreasonable topological design and unstable iterations. To our knowledge, this drawback
explain why the BESO approach is still rarely applied to some particular problems with
strong nonlinearity. In Chapter 2, we will address this issue and will propose a normalization
scheme for overcoming such phenomenon, more specifically for the structural design of
frequency response problems.

1.2.1.3 Other approaches

In addition to the three approaches mentioned above, many other types of efficient topology
optimization approaches have emerged.

For example, the level-set method for topology optimization (LSM-TO) [295, 3, 389]
implicitly defines the interface between material phases to describe the boundary using a
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Fig. 1.7 Illustration of the "dominating sensitivity" phenomenon [449].

level-set function φ (x) as 
φ (x)> c,x ∈Ωs

φ (x) = c,x ∈ Γ

φ (x)< c,x ∈Ωv,

(1.10)

where Ω denotes the design domain, which is composed by solid Ωs and void Ωv phases, Γ

denotes the interface between the solid and void phases, c is a constant value and x denotes
the positions situated in the design domain. The variation of the level-set function φ (x)
determines different shape and topology of the structure. Due to its implicit boundary repre-
sentation, the LSM-TO provides a natural description of geometric features and topological
changes, and a series of methods have been developed, see e.g. [388, 4, 52, 393, 59, 392, 391].
However, the numerical implementation of LSM-TO is usually more complex than that of
density-based methods. A literature survey on LSM-TO can be found in [374, 240].

Besides, several other explicit geometry-based topology optimization methods have
been studied. In [454], a feature-driven topology optimization method with signed distance
function was developed, in which the topology variation is achieved through feature layout
and shape optimization and multiple engineering features of arbitrary shape are considered as
the basic design primitives. In [433], freeform curves with closed B-splines were introduced
as the basic design primitives to achieve topology optimization with a small number of design
variables. In [285], the topology optimization of planar structures was transformed into an
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optimization problem that distributes morphable bars with fixed width and semicircular ends.
Guo et al. [136, 135] proposed a moving morphable component (MMC) approach to find the
optimal structural topology by optimizing the shapes, lengths, thicknesses, orientations and
layout (connectivity) of a set of morphable components that are used as building blocks for
topology optimization. In these methods, the structural geometry is usually determined by
the intersection of some geometric components and optimized by updating the parameters
representing the layout and shape of these components.

Other heuristic topology optimization approaches have also been developed in the last
decades. This type of methods includes Genetic Algorithms [390, 18, 460, 450], Artificial
Immune Algorithms [233], Particle Swarms Algorithms [234], etc. Most of these methods
are based on global search techniques and therefore feature gradient-free or only gradient-like
information assisted. As a result, they are computationally expensive. Non-gradient topology
optimization methods that reduce computational cost were recently reported in [131, 132].
Note that the BESO approach has also been considered a heuristic method for a long time, but
its modern version is more accepted as a discrete density method due to the use of power-law
parametrization and filtering techniques [345]. A critical discussion about the applicability of
heuristic methodologies for topology optimization can be found in [343]. As it was pointed
out in [343], heuristic methods show advantages in dealing with non-smooth, non-connected
or multi-local-optima problems later, such as the design of phononic materials [87] and
elastic metamaterials [88].

More recently, artificial intelligence (AI) assisted topology optimization attracted much
attention [426, 287, 60, 133, 79]. In [355], a convolutional neural network (CNN) is employed
to accelerate the numerical process of topology optimization by which the mapping was
established from the intermediate results. Lei et al. [204] employed the supported vector
regression (SVR) and K-nearest-neighbors (KNN) machine learning models to map the
MMC-based topology optimization results for pursuing possible instantaneously designing.
Chandrasekhar and Suresh [56] proposed a topology optimization framework that directly
uses neural network (NN) activation functions and performs sensitivity analysis using a
built-in backpropagation method. In [437], Zhang et al. provided a library and state-of-
the-art review of the application of AI to topology optimization and conducted an in-depth
exploration of the method that directly executes topology optimization using the neural
network itself. It can be expected that the AI-assisted topology optimization approaches may
allow significant progresses in TO approaches.
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1.2.2 Topology optimization in dynamics

The operating environment of structures in engineering is often dynamic, such as wind-
blown buildings and bridges, vehicles, wave-subjected dams, and operating machines. in
engineering analysis or design, this dynamic behavior is usually artificially converted to
static, leading to wasteful and extremely conservative solutions. In fact, this conversion is
only valid if the load is slow enough to ignore inertial forces, while in other cases, direct
consideration of dynamic performance is mandatory.

To account for the effects of dynamics in the topology optimization, the problems have
been formulated either in the frequency domain or in the time domain.

1.2.2.1 In the frequency domain

The frequency domain based topology optimization methods has been applied to various
design problems, in which the design of structures subjected to periodic loads are considered.
The optimization problem is then defined as minimizing the global or local response of the
structure under periodic loading (mostly based on harmonic excitation assumption). All
other kinds of periodic excitation can be decomposed as a superposition of a set of harmonic
excitation.

subjected to a high excitation frequency as mentioned in the
last part of Section 4.1.1.

4 Development of generalized incremental frequency
method (GIF method)

Let us first present an outline of the background for the GIF
method with reference to Fig. 4 that depicts the dependence of

the dynamic compliance Cd= |P
TU| of a given design on the

loading frequency ω of an external time-harmonic mechanical
surface loading with the given vector P of amplitudes acting
on the surface, resulting in a vector U of amplitudes of the
displacement response.

In Fig. 4, Ωi , i=1, …, m-1, m, m+1, denote resonance
frequencies of the given design, andωp is a prescribed external
excitation frequency that is indicated to be ‘high’ in the figure.
Regarding the resonance frequencies, it is important to remind
that while a resonance frequency of a forced time-harmonic
vibration problem is at the same time an eigenfrequency of the
corresponding problem of free vibrations (and can be comput-
ed as such), an eigenfrequency may not necessarily be a res-
onance frequency. Thus, if the eigenvectorφi associated with
an eigenfrequency is orthogonal to the vector of load ampli-
tudes P of the forced vibration problem, i.e., if

PTφi ¼ 0 ð12Þ

then the eigenmode cannot be excited. In such cases, the
eigenfrequency will not constitute a resonance frequency of
the forced vibration problem, and it will not affect the behav-
iour of the dynamic compliance Cd , cf. Fig. 4.

As illustrated in Fig. 4, which is depicted for a given topo-
logical design, the dynamic compliance Cd= |P

TU| is a non-
negative function of the excitation frequency ω . Thus, Cd

vanishes at each of the anti-resonance points between the ad-
jacent resonance frequencies located at the left- and right-
hand sides of the anti-resonance point, and Cd increases uni-
formly towards infinity at the resonance frequencies as mate-
rial damping is not considered in this study. These character-
istics imply that a solution to the ‘conventional’ dynamic com-
pliance minimization problem (1a-e) subject to a fixed, pre-
scribed excitation frequency ωp will furnish a local optimized
solution where the given excitation frequency ωp always will
be located between two consecutive resonance frequencies
that have different values, but the same orders as those of
the initial design chosen for the computational procedure.

a

b

c

Fig. 3 (a), (b) Iteration histories for the first resonance frequency of the
plate, the excitation frequency, and the dynamic and static compliances.
(c) Optimized topology (50 % volume fraction) for ωp= 80

Fig. 4 Principle sketch of the dependence of the dynamic compliance
Cd = |P

TU| on the loading frequency ω for a given initial topological
design and a given vector P of amplitudes of the external forces. The
resonance frequencies Ω1 , Ωm-1 , Ωm and Ωm+1 of the design are
shown together with a prescribed, ‘high’ external excitation frequency ωp

Generalized incremental frequency method for topological design 1121

Fig. 1.8 Illustration of the disjointed design sub-spaces caused by complexity and non-
convexity in dynamic compliance topology optimization [292].

The mean dynamic compliance is the mostly considered objective function for minimizing
the structural global response, by which the structural dynamic stiffness is equivalent to be
maximized. The literature on this topic is vast, see e.g. [243, 176, 290, 291, 418, 435, 220],
presumably because of the similarity to the classical compliance optimization in static context.
We should note that due to the presence of resonance phenomena and the multi-frequency
problems in dynamic contexts, the dynamic compliance topology optimization is far more
complex than the classical static one. In [292], Olhoff and Du proposed an ‘incremental
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frequency technique’ to overcome the disjointed design sub-spaces, which is illustrated by
Fig. 1.8, present in dynamic compliance topological designs. As shown in Fig. 1.9, Silva
et al. [351] observed that when dynamic compliance is adopted as the objective function, it
is difficult to obtain a ’solid-void’ design for the cases excitation frequencies higher than the
first-order modal frequency of the optimized structure. In their subsequent work [352], they
suggested the use of input power as an alternative objective function. Note that under the non-
damping assumption, the input power is similar to dynamic compliance [176, 89, 453]. In
[247], the sum of modal-compliances was suggested for efficiently treating multi-frequency
topology optimization problems.O.M. Silva et al. / Journal of Sound and Vibration 444 (2019) 1–2010

Fig. 6. Final layouts for dynamic compliance minimization as in (23) with (a) 𝜔f = 180 Hz, (b) 𝜔f = 600 Hz and (c) 𝜔f = 750 Hz. Figures (d), (e) and (f) represent the

modulus of the real part of displacements for the respective layouts.

Fig. 7. Frequency plots of dynamic compliance for the layouts presented in Fig. 6.

to spectral ranges where ||CK
|| < ||CM

|| for the initial design. In this way, increasing the “vibrating mass” leads to a reduction of

the adjacent resonance frequency (on the “left side”) and to a consequent dynamic compliance’s reduction for the excitation

frequencies analyzed.

Already for 𝜔f = 600 Hz one can see in Fig. 6b the tendency for material deposition near the clamped edge, with better

material distribution over the domain, which promotes greater overall stiffness when compared with the two other results. In

Fig. 2b it can be observed that this frequency belongs to a spectral range where ||CK
|| > ||CM

|| for the initial design. The increasing

global stiffness leads to an increment in the adjacent resonance frequency (on the “right side”), which causes a reduction in the

dynamic compliance for 𝜔f = 600 Hz.

Each one of these minimization procedures results in structures with antiresonances of the dynamic compliance in the

excitation frequencies 𝜔f , as can be seen in Fig. 7. These are expected results, as discussed in Section 3.2 (and also observed by

Niu et al. [39]).

In addition to the material distribution plots, Fig. 6d–f shows an illustrative representation of the displacements fields for the

final layouts of Fig. 6a–c, respectively (modulus of the real part of the y-direction nodal displacements in respective 𝜔f , repre-

sented by a colormap). Given the antiresonances of the dynamic compliance in the excitation frequencies, it can be observed very

low displacements at the loaded nodes in Fig. 6d–f. For 𝜔f = 180 Hz and 𝜔f = 750 Hz (frequencies in which driving points

displacements and excitation forces are in opposition of phase) one can also verify the tendency of “softening” the elements in

the vicinity of these nodes, as a way to promote local relative displacements and to facilitate the occurrence of antiresonances.

Fig. 1.9 Topological designs for minimal dynamic compliance for the cases, whose excitation
frequencies are higher than the first-order modal frequency: (a) ω f =180 Hz, (b) ω f =600 Hz
and (c) ω f =750 Hz; (d), (e) and (f) represent the modulus of the real part of displacements
for the respective layouts [351]

A relatively small number of studies [163, 423, 336, 179, 441] have focused on the topol-
ogy optimization for location-specific responses reduction, in other words, local responses
reduction. Tcherniak [364] maximized the steady-state frequency response at the specific
point for a given excitation frequency. Liu et al. [222] made a comparative study on the
dynamic analysis methods and suggested a modal acceleration method for the local dynamic
responses reduction. We note that the BESO approach is rarely adopted for local frequency
response problems. In [316], Rong et al. used the conventional ESO method to minimize
the mass of structure with dynamic response constraints. In [378], a two-scale concurrent
topology optimization approach was proposed in the BESO framework for minimizing struc-
tural local dynamic response. However, the highly localized features of the local objective
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function bring difficulties for topology optimization, but is not limited to poor convergence
and disjointed design sub-spaces.

Noted that the above mentioned global and local approaches in this category are much
similar in solving structural dynamic response, in which there might be strong nonlinearity
when the loading frequency gets close to the structural eigenfrequency. To the best of our
knowledge, most studies have bypassed this problem: in their works, the excitation frequency
tends to be far away from the eigenfrequency, so the optimization process generally remains
linear and the topological designs stably optimized. It is foreseeable that when it comes
to situations whose target frequencies are very close to the structural eigenfrequency, the
existing methods may no longer be applicable [351].

For the second category, the maximization of fundamental eigenfrequency and higher
order frequency have been extensively studied in topology optimization. Such topological
designs are often used to improve the quality of free vibrating objects, such as increasing
the fundamental frequency of buildings or bridges to reduce the chance of resonance, or
changing the structure of automotive components, such as body-in-white, to improve the
vibration and noise performance of automobiles. The topology optimization community has
been working on this topic for three decades, see e.g. [82, 29, 196, 420, 302, 140, 244, 90,
157, 406, 305, 229, 359, 412, 216]. There are various optimization objectives in this topic,
for example: maximizing the specific eigenfrequency [82, 242]; maximizing the band gap
of adjacent eigenfrequencies [164]; obtaining eigenfrequencies close to desired frequencies
[241]; imposed resonant peaks constraints to the resonant structure [77]. In [302, 157],
alternative material interpolation schemes were studied for avoiding the artificial localized
modes in low-density regions. In [191, 198], modal tracking techniques were developed
for distinguishing the desired modes in varying topological structures correctly. In [11], a
surrogate model was built for promoting computational efficiency, and then been extended
to [108] with a strategy based on a multilevel discretization and iterative solvers. A recent
comparative study on the reduced-order methods of such dynamic problems in topology
optimization can be found in [212]. In [458], the forbidden frequency band was introduced
as a constraint for eigenfrequencies.

In general, the implementation of topology optimization in the frequency domain focuses
on the vibration and noise of the structure. Niu et al. [282] have made a comparative study on
the selection of different objective functions in the frequency domain to minimize the response
of vibrating structures. Besides, some studies have also focused on optimizing the damping
material distribution of the structure [185, 190, 361, 230, 414, 415, 456, 349, 328, 284, 219]
to achieve vibration reduction. The research on topology optimization in the frequency
domain is fairly well studied, and in-depth research is still ongoing, with some results
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extending to other areas, such as eigenvalue topology optimization, which formed one of the
foundations for designing phononic crystals [347, 165, 421] and metamaterials [283, 217]
by topology optimization.

1.2.2.2 In the time domain

The time domain method for dynamic topology optimization is formulated when the load is
not cyclic. Even though the time-based scheme is more intuitive, it has been less implemented
as compared to the frequency domain method. The reasons are related to computational
costs, associated with time-integration schemes.

Nevertheless, a number of topology optimization methods were developed by the time
domain method. Min et al. [261] minimized the time interval integrated structural dynamic
compliance in the linear elastic regime. Shobeiri [335] recently extend this idea to the
elastoplastic phase with material, geometric, and contact nonlinearities. Dahl et al. [71]
developed a topology optimization method with time domain formulation for designing
transient response of one-dimensional waveguides. Zhang and Kang [434] proposed a
topology optimization method for piezoelectric structures to actively reduce the structural
transient response. Nakshatrala and Tortorelli [272] developed a transient dynamic topology
optimization framework and applied it to the impact mitigation. Behrou and Guest [20]
presented a topology optimization framework subjected to dynamic loads, in which the total
strain energy and the maximum of strain energy are respectively minimized. Zhao and Wang
[439] developed an aggregation functional method for minimizing the maximal response of
the structure in the time domain. Hooijkamp and Keulen [149] studied the modal reduction
technique and adjoint sensitivity analysis for the topology optimization of linear transient
thermomechanical structures. Zhao et al. [440] studied a two-scale concurrent topology
optimization method for minimizing the dynamic response of the structure in time domain
dynamic loads. Kristiansen et al. [195] extended the topology optimization to the transient
impact problems with friction. In their work, the frictional impacts is taken into account to
the structural optimization process. Ogawa and Yamada [286] proposed a finite deformation
theory-based topology optimization method for reducing structural deformation, from which
the the large deformations of the structure under arbitrary dynamic loads are allowed. More
recently, a POLYTOP [363] based Matlab implementation of topology optimization subjected
to dynamic loads was introduced in the educational paper by Giraldo-Londoño and Paulino
[127].

An alternative scheme for solving topology optimization in the time domain is the
equivalent static load method (ESLM) [63, 62]. In this method, the equivalent static load
applied to the structure at each time step produces an effect equivalent to the displacement
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field produced in the dynamic analysis. The equivalent static loads are then adopted for the
optimization, while the rest of quantities were neglected for saving computational cost. The
ESLM was firstly employed for optimizing the mean dynamic compliance in the original
paper [62], and then in [161] extended to minimize the peak value in a time interval, and
later to nonlinear structures [202]. Some other ingredients were also considered in the ESLM
based topology optimization in time domain, such as the fatigue constrained problem [334],
two-scale structures [411], dynamic reliability design [209] and crash loaded structure [17].

Most of the above-mentioned literature focuses on the optimization of the structural tran-
sient response or the resistance to external work, and the development of related techniques.
Driven by the strong demand from the aircraft and vehicle industries, there is also a large part
of research focusing on the topological design of structural crashworthiness [107] under time
domain impact loading. The aim of this branch is to protect passengers withstanding crashes
by managing and absorbing the forces when structures are subjected to severe impacts. In
[252], crashworthiness was firstly introduced for topology optimization. Some methods,
such as the Ground Structure Approaches (GSAs) [299, 300], the Hybrid Cellular Automata
method (HCA) [270, 93, 430, 15] and the aforementioned ESLM [94, 73] were developed for
crashworthiness design. The non-gradient [356, 110], heuristic [294] and surrogate model
based [312] topology optimization methods were also proposed for this problem.

As a conclusion, topology optimization method in the time domain is still a challenging
topic. For this reason, the dynamic fracture topology optimization design of structures under
dynamic loading is still an open challenge. Even considering the stress optimization problem,
only one very recent work [126] was reported.

1.2.3 Topology optimization with uncertainties

Uncertainty is widespread in practical engineering [111]. It has significant effects on the
prediction of structural performance. For example, a slight disturbance of Poisson’s ratio of
incompressible rubber has a great influence on the band gap of ternary acoustic metamaterials
[205]. Today, it is widely acknowledged that optimization methods should take into account
the uncertainties of engineering systems [249].

1.2.3.1 Uncertainty modeling approaches

Uncertainties in engineering can be classified into two types according to their origins,
namely the aleatory and epistemic uncertainties [146, 72].

The former type of uncertainty, also named objective or stochastic uncertainty, describes
the intrinsic variability of a physical system or environment. Generally, we can use precise
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probability distribution functions to describe such uncertain random variables or fields
based on the probabilistic theory. Probabilistic methods were mostly adopted for addressing
randomness in practical engineering (see, e.g. [12, 125, 357] for the detailed introduction).
It uses probability distributions of uncertain parameters to enable the propagation analysis of
uncertainties and to obtain statistical properties of the quantities of interest. However, the
probabilistic methods requires a large number of measurements and high-quality experimental
samples, which are fairly expensive ways, or assumed probabilistic distribution (often
Gaussian), which puts demands on expert knowledge and hyperparameters estimation (such as
the correlation length). For example, in uncertainty propagation analysis, material properties
are often strongly assumed to be independent Gaussian distribution. These characteristics
make the probabilistic methods sometimes difficult to be employed. In [162, 354], the
principle of maximum entropy was employed for modeling the uncertainties. Some attempts
used imprecise probability distributions for describing the uncertainties [197, 92, 19].

For uncertainties of subjective natures, that is, the epistemic uncertainty mentioned above,
it is difficult to describe them in terms of probabilistic theory because of the extremely limited
information about the physical system or environment. For this reason, the non-probabilistic
methods were developed [265, 263], e.g. the interval model [306, 109, 167, 271], convex
model [25, 168], evidence theory [429, 78] or fuzzy-set theory [428, 269], to name a few.
These methods all ignore probabilistic information, and although they thus represent less
information than is objectively available, such lack of information seems to be a natural fit
for design problems, especially in the early stages. In [265], Moens and Vandepitte argued
that to some extent, non-probabilistic methods can be considered as useful alternatives to
existing probabilistic methods. In [23, 24], Ben-Haim and Elishakoff introduced a concept
of non-probabilistic reliability based on the convex model, which further illustrated the
importance of non-probabilistic modeling techniques.

However, we should note that the conventional non-probabilistic uncertainty models still
have some limitations, namely the expensive computational cost due to dimension explosion
and the difficulty in representing the spatial dependency and correlations. To this end, in [168],
Jiang et al. proposed a correlation analysis technique for the non-probabilistic convex model.
They later proposed a multidimensional parallelepiped model [173, 172, 279] to include
the independent and dependent uncertain variables in a unified framework. In [381], Wang
and Matthies extended this idea, by which the statistical characteristics of available samples
can be directly employed for evaluating the marginal intervals and correlation coefficients
of uncertain variables. Some other literature have focused on hybrid uncertainty models to
include the probabilistic and non-probabilistic models simultaneously. The hybrid uncertainty
models are twofold [174, 380]: a) parallel-type: for the multi-source uncertainty problems
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that contain both probabilistic and non-probabilistic information, hybrid uncertainty models
[235, 117, 386, 45, 395] were built to model uncertainty of different attributes separately;
b) embedded-type: for the problems with significant probabilistic features, but the precise
probability distribution is difficult to obtain, for example, the aforementioned imprecise
probability problem, the hybrid uncertainty models [100, 373, 307, 169, 402, 85, 218, 382]
were built to improve the ability of the probabilistic based model for coping with complex
uncertainties in an unified framework.

Besides, the non-probabilistic field models were recently developed for addressing the
limitations of conventional non-probabilistic models. In [264], the concept of interval field
was firstly introduced to define spatial dependency by multiplying a linear combination
of a series of independent interval factors with a set of deterministic basis functions. In
[105], Faes and Moens proposed a explicit interval field by combining an Inverse Distance
Weighting (IDW) interpolation method with a local weighting function. van Mierlo et al.
[375] then extended this idea with a scaled IDW interpolation method by including an
additional distance measure to emphasize the local effects. Callens et al. [53] used locally
supported quartic splines to the weight function to guarantee the local effects. In [353], Sofi
proposed a Karhunen-Loève (K-L) expansion based interval field model, which is analogy
to the random field model, however, with some modifications. In [239, 431], Luo et al.
proposed a non-probabilistic field model, in which the spatial correlation characteristic
was modeled by a set of multi-ellipsoid convex model bounded non-probabilistic series
expansion (NPSE) coefficients. Based on the convex model, Jiang et al. proposed interval
field [280, 281] and interval process [170, 171, 206] models, in which the correlation between
two spatial/temporal points were characterized by the relevant angle and ellipsoidal semi-axes
of a convex model. More recently, Hu et al. [150] proposed a B-spline basis functions based
interval field, by which the intuitive form of the interval properties, such as interval centre
and interval radius, can be trivially obtained.

As can be seen, research on uncertainty modeling is vast and very active topic. A variety
of uncertainty models are considered for topology optimization. For example, the random
variable [129, 231, 97, 96, 225], random field [58, 367, 199, 438, 315, 80, 181, 16], interval
model [396, 226, 448, 387], convex model [183, 184, 365], evidence theory [444, 387],
fuzzy-set [422] and the hybrid model [57, 447, 445, 254, 385].

In this thesis, one objective is to combine uncertainties with topology optimization in
frequency-domain dynamics applications. For the aleatory uncertainty, we will employ
a hybrid interval random model to describe the probabilistic parameters with imprecise
quantities, such as interval model based expectation and standard deviation. For the epistemic
uncertainty, we considered the recently emerged interval field model to define the non-
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probabilistic uncertainties without losing their spatial dependency. For the consideration of
computational costs, efficient algorithms were prioritized, even if there is a small loss of
precision.

1.2.3.2 Uncertainty, topology optimization and reliability

There are two widely accepted concepts for uncertainty related to reliability in engineering
design, either making the design more reliable or more robust. This corresponds to reliability-
based design optimization (RBDO) [102, 13] and robust design optimization (RDO) [370,
34, 86], respectively. The two concepts, which are also applicable to topology optimization,
namely reliability-based topology optimization (RBTO) and robust topology optimization
(RTO), have been extensively studied.

The RBTO was first introduced by Kharmanda and Olhoff [188], in which the failure
probability was included in the topology optimization by a reliability index constraint. By
adjusting the value of certain probability constraints, usually reliability index [102] or perfor-
mance function [372], different topological designs can be obtained for satisfying different
reliability requirements. Several methods [274, 159, 227, 38, 443, 296] were developed to
evaluate the reliability of the design, among which the first-order reliability method (FORM)
[250, 189, 178, 268, 350, 69, 181, 332, 254] was the most common and frequently adopted
method. Note that the probability constraints, such as the failure probability, are clearly a
probabilistic problem and intuitively a probabilistic modeling approach should be used to
describe uncertainties. However, recently, non-probabilistic approaches have also been intro-
duced to RBTO, named non-probabilistic reliability-based topology optimization (NRBTO)
[236, 183, 384, 422, 446, 221], by mathematically defining non-probabilistic reliability
index.

The RTO aims to reduce the variability of an associated output, which is often defined
as the objective function with respect to uncertain parameters. Most RTO algorithms are
mainly implemented in two ways, namely the worst-case approach, and the probabilistic
approach. The worst-case approach focuses on optimizing the performance for the worst-case
scenarios [74, 342, 8, 396, 224]. It is intuitive since the objective function can generally be
evaluated by the anti-optimization problem [101]. Therefore, in some studies, this approach
considered a min-max problem. While the probabilistic approach incorporated the statistical
moments, for example, the expectation and variance, into the objective function. Some
studies [129, 58, 97, 438] devote to optimize the expectation of the objective function (e.g.
the compliance) under uncertainty, which is however, suffered some criticism with selected
counter-examples [65]. An alternative is to take the variance into account as well, and thus
the objective function is replaced with a linear weighting of the expectation and variance
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[367, 199, 96, 57, 16]. Note that this treatment makes the problem becomes a multi-objective
optimization problem, thus in [368], the physical consistency of this approach was discussed.
Recently, RTO was introduced into the topology optimization of multi-scale structures
[137, 55, 383, 447, 445, 175].

In [70], da Silva et al. made a comparative study of the RBTO and RTO in reliability
uncertainties. It demonstrated that, when uncertainty is involved, both of RBTO and RTO
resulted in reliable and/or robust designs, while the deterministic approach resulted in
extremely unreliable solutions. Therefore, when implementing RBTO and RTO, more
attention should be paid to efficient modeling techniques and computational cost control,
which are the main challenges of topology optimization with uncertainty as mentioned by
Maute in [249].

1.2.4 Topology optimization for fracture resistance

Recently, an exciting new branch of topology optimization has emerged to enhance the
mechanical resistance to damage or cracks in structures and materials. The pioneering work
on this topic might be traced back to Challis et al. [54], in which a LSM-TO was proposed to
maximize the structural fracture resistance. In [182], Kang et al. used a J-integral approach
to predict crack opening at predefined locations. In [6, 7], non-local damage field was
considered for the first time in topology optimization to obtain the optimal mechanical
resistance design of concrete structures and their reinforcement. Similarly, Kato and Ramm
[186] investigated fiber-reinforced composites considering a damage model, in which the
layout of the multi-phase materials was optimized. James and Waisman [160] developed a
non-local damage topology optimization coupled algorithm for failure reduction, in which
the maximal damage was constrained, similarly to what is usually done in stress-constrained
problems. In [207, 208], Li et al. investigated topology optimization methods involving
stored energy while constraining the elastoplastic-damage. More recently, Russ and Waisman
[331] proposed a method for the structural resistance of both ductile failure and buckling in a
new aggregated optimization objective with local ductile failure constraints. Liu et al. [228]
investigated multi-material fracture resistance topology optimization including cohesive
models.

Note that the above mentioned studies do not include a complete damage or crack
evolution involving the whole loading history. In [436], Zhang et al. firstly included a full
crack propagation analysis within topology optimization for fracture resistance designs, using
the X-FEM [22, 267] method. However, the complexity of XFEM for dealing with initiation
and complex cracks configurations strongly restricts its use within topology optimization
analysis. In [403], Xia et al. combined for the first time topology optimization with fracture
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Fig. 3. A 2D plate with one pre-existing crack notch subject to incremental traction loads: (a) problem depiction, (b) initial guess design.

Fig. 4. History of the evolution of inclusion typologies and their final crack patterns.

a non-designable region to avoid nonphysical designs with the inclusion material added within the already existing
crack. The evolution of inclusion typologies together with their final crack patterns and the design objective history
are shown in Fig. 4. It can be observed from Fig. 4 that the fracture resistance of the composite structure gently
improves whilst the area fraction of the inclusion phase gradually decreases from initial 10% to 5%. It means that for
the same fracture resistance performance, the required usage of inclusion phase can be largely saved via an optimal
spatial distribution design.

Detailed propagation of the phase field crack of the optimally designed composite structure with one pre-existing
crack notch subject to incremental traction loads is given in Fig. 5. The crack propagates into the inner supporting
structure made of the inclusion phase during the initial incremental loads. Two other cracks initiate around the upper
and lower left corners of the inner supporting structure and continue to propagate horizontally until the structure is
fully broken.

The fracture resistance of the optimally designed composite structure is validated through a comparison study.
Starting from the same initial guess design (Fig. 3(b)), topology optimization using the same parameter setting has
been carried out considering only linear elastic behavior without accounting for crack propagation, i.e. linear design,
yielding two parallel bars along the vertical loading direction from the left design in Fig. 6. A complete fracturing
simulation is carried out then on the linearly designed composite structure accounting for crack propagation. From
both load–displacement curves and design objective values, the crack design is 15% more resistant to fracture than
the linear design.

Fig. 1.10 Iterations of topology optimization for maximizing fracture resistance with corre-
sponding final fracture pattern [403].

phase field analysis to maximize the resistance of composite structures, as shown in Fig.
1.10. The variational phase field approach to fracture [112, 44, 256, 259, 5, 277] has unique
advantages to deal with initiation, propagation of multiple, complex, 3D cracks in possibly
regular meshes due to an appropriate regularization process, and is highly compatible with
topology optimization analysis. Da et al. [68, 67, 66] extended this work to consider fracture
resistance enhancement in composite by considering both interfacial and bulk fracture. More
specifically, the approaches developed in these works considered a full fracture initiation
and propagation within the structure until failure and combined the phase field method
with BESO. Li et al. [210] extended Xia et al.’s work to the SIMP approach and provided
a comprehensive comparison of the BESO and SIMP methods for composite design to
brittle fracture resistance. Russ and Waisman [329, 330] proposed two different topology
optimization frameworks for the brittle fracture resistance involving one-phase structure
material, combining phase field and topology optimization. In their work, the optimization
problem was defined as minimizing the total volume or volume and fracture energy while
ensuring fracture energy or energy dissipation constraints. Wu et al. [394] developed a LSM-
TO based topology optimization for the brittle fracture resistance of two-phase composite
materials.

Taking into account dynamics in the fracture process is of extreme importance for
resistance of structures to impacts. When dynamics are involved, the cracks can interact
with wave propagation and the final crack patterns depend on the energy of the impactor. In
addition, dynamics can lead to more complex crack configurations such as crack branching or
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initiation of cracks within the solid. In [260], Miller et al. analyzed the relationship between
energy dissipation and crack paths instabilities in dynamic fracture of brittle materials.

The phase field method has been extended to dynamic problems in Borden et al. [39],
Hofacker and Miehe [147], and many extensions and applications have been proposed (see
e.g. [37, 278, 314, 121, 366, 311]).

In this thesis, topology optimization analysis for dynamic fracture resistance of structures
will be investigated. As compared to available existing works, the presented framework
involves the following new contributions: (a) dynamic phase field simulations to fracture
is combined with topology optimization for minimizing the fracture energy or maximizing
the external work of a structure; (b) semi-analytical sensitivities required in the topology
optimization analysis in a dynamic fracture analysis context are provided; (c) comparisons of
the obtained fracture resistance (reduction in the fracture energy or promotion in the external
work) as compared to a static topology optimization designs are discussed.

1.3 Outline of the thesis

The content of this thesis is organized as follow:
In Chapter 2, we propose a normalization strategy for the BESO approach to improve

numerical stability and convergence and apply it to the topology optimization of the structural
frequency response problem. In Chapter 3, we incorporate uncertainties into topology
optimization of structures, laminates and multi-scale structures by means of the probabilistic
RTO approach. In Chapter 4, we introduce an emerging non-probabilistic interval field
model for topology optimization, which is implemented using a worst-case RTO approach.
In Chapter 5, we formulate a novel dynamic fracture resistance framework by combining
the fracture phase-field method and topology optimization in the dynamic context, in which
the fracture energy is minimized. In Chapter 6, we extend the dynamic fracture resistance
framework to maximize the strength of a structure with respect to the external work. In
Chapter 7, final conclusions and perspectives are drawn.



Chapter 2

A normalization strategy for BESO
based structural optimization and its
application to frequency response
problem

The main content of this chapter has been adapted from our published paper [449].

2.1 Introduction

In this chapter, we propose a simple but efficient normalization strategy for the BESO based
topology optimization. By normalizing the sensitivity of different iterations to the same
order, the possible numerical instabilities caused by nonlinear iterations can be overcome.
Considering that only the relative ranking of the elemental sensitivity has influence on the
material adding/removal, such normalization strategy will not affect the updating of the
current iteration. By employing a normalization strategy, the topology optimization for
frequency response problem with respect to local frequency response is firstly implemented
in the BESO framework through the normalization based-BESO (NBESO) algorithm. As an
extension, the normalized weight sum (NWS) method is established for the multi-frequency
problem in NBESO, by which the multi-frequency problem can be solved without interference
from the frequency response amplitudes.



26 Chapter NBESO for frequency response problem

2.2 Topology optimization formulation

2.2.1 Equilibrium equation

The forced vibration equation without damping can be stated as

MMMÜUU t +KKKUUU t = FFF t , (2.1)

where MMM and KKK represent the global mass matrix and stiffness matrix, respectively; FFF t

denotes the loading vector of the external excitation related to time t. In a given excitation
angular frequency ωi, the loading vector can be expressed by

FFF t = FFFe jωit , (2.2)

where FFF denotes the vector of the amplitude of harmonic external excitation and j=
√
−1.

Thus, the vectors of structural displacement and acceleration responses can be expressed by

UUU t =UUUe jωit , (2.3)

ÜUU t =−ω
2
i UUUe jωit , (2.4)

where UUU denotes the vector of amplitude of displacement response.
Substituting Eqs. (2.2)-(2.4) to Eq. (2.1), yields(

KKK−ω
2
i MMM
)

UUU ≡ KKKdUUU = FFF , (2.5)

which provides the structural equilibrium equation in the steady-state at angular frequency ωi.
It is noted that when the excitation frequency is zero, Eq. (2.5) corresponds to the equilibrium
equation in static condition.

2.2.2 Material interpolation scheme

To avoid the artificial localized vibration modals in dynamic conditions, the material in-
terpolation scheme proposed by Huang et al. [156] is adopted, which can be expressed
by

ρ (xe) = xeρ
0, (2.6)

E (xe) =

[
xmin− xp

min
1− xp

min
(1− xp

e )+ xp
e

]
E0, (2.7)
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where ρ0 and E0 denote the density and Young’s modulus of the solid material, respectively;
p denotes the penalty factor; xmin is a small value (e.g. 10−3) of design variable to avoid
singularity. By adopting the interpolation scheme, the partial derivative of elemental mass
and stiffness matrices with respect to design variable can be directly obtained by

∂MMMe

∂xe
= MMM0

e , (2.8)

∂KKKe

∂xe
=

1− xmin

1− xp
min

pxp−1
e KKK0

e , (2.9)

where MMM0
e and KKK0

e are the solid mass and stiffness matrix, respectively.

2.2.3 Topology optimization for minimal local frequency response

2.2.3.1 Problem statement

The topology optimization formulation for minimal local frequency responses can be mathe-
matically formulated by

min
xe, e=1,...,NE

: γ =
m
∑

n=1
U2

n ,

s. t. : KKKdUUU = FFF ,
NE
∑

e=1
xeVe−χV0 ≤ 0,

where : xe = xmin or 1,

(2.10)

where xe denotes the e-th design variable; NE represents the number of the design variables;
xmin and 1 are the value of void and solid design variables, respectively; χ , V0 and Ve are the
target volume fraction, design domain volume and elemental volume (area for 2D case); γ

denotes objective function, which is the quadratic sum of structural displacement responses
Un at interested freedom-of-degrees (DOFs). The subscript n is the serial number of the
target DOF and m represents the amount of the target DOFs.

2.2.3.2 Sensitivity analysis

The derivation of the objective function with respect to the design variables can be expressed
by

∂γ

∂xe
=

m

∑
n=1

∂U2
n

∂xe
= 2

m

∑
n=1

Un
∂Un

∂xe
. (2.11)
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To obtain ∂Un
∂xe

, we introduce a load vector LLL to determine the response of interest. Without
loss of generality, LLLn is adopted to represent the load vector for n-th target DOF, which can
be expressed by

LLLn=

 ns︷ ︸︸ ︷
0,0, ...,0,1,0, ...,0︸ ︷︷ ︸

nd

, (2.12)

where nd denotes the number of DOFs, ns is the series number of the n-th target DOF. Thus,
∂Un
∂xe

can be presented by
∂Un

∂xe
= LLLT

n
∂UUU
∂xe

, (2.13)

where ∂UUU
∂xe

can be derived from Eq. (2.5) by the chain rule in assuming a design variable
independent external load FFF as

∂UUU
∂xe

=−KKKd
−1 ∂KKKd

∂xe
UUU . (2.14)

For the sake of simplicity, we introduce an adjoint vector ΛΛΛn that satisfies the following
equation

LLLT
n −ΛΛΛ

T
n KKKd = 0. (2.15)

Substituting Eqs. (2.13)-(2.15) into Eq. (2.11), yields

∂γ

∂xe
=−2

m

∑
n=1

UnΛΛΛ
T
n

(
∂KKK
∂xe
−ω

2
p

∂MMM
∂xe

)
UUU , (2.16)

where ∂KKK
∂xe

and ∂MMM
∂xe

can be assembled from Eqs. (2.8) and (2.9).
In the BESO framework, the derived sensitivity should be treated as follows

df
e =−

1
p

∂γ

∂xe
= 2

m

∑
n=1

UnΛΛΛ
T
n

(
1− xmin

1− xp
min

xp−1
e KKK0

e−
ω2

p

p
MMM0

e

)
UUUe, (2.17)

where df
e denotes the elemental sensitivity number with respect to the structural local dynamic

responses.

2.2.4 Topology optimization for minimal static compliance

2.2.4.1 Problem statement

In the topology optimization for frequency response problem, the structural static compliance
is usually adopted as a constraint [351, 220] or part of objective [351] to avoid the possible
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early convergence, which leads to failed designs in static case. In this paper, we employs the
structural static compliance as one of the multi-objective. The minimum compliance design
problem in the BESO framework can be formulated by

min
xe,e=1,...,NE

: C = FFFTUUU ,

s. t. : KKKUUU=FFF ,
NE
∑

e=1
xeVe−χV0 ≤ 0,

where : xe = xmin or 1,

(2.18)

where C denotes the static compliance of structure. The definition of the remaining symbols
in Eq. (2.18) are the same as Eq. (2.10).

2.2.4.2 Sensitivity analysis

The derivation of C in Eq. (2.18) with respect to the design variable xe can be obtained by
the adjoint method [369] as follows

∂C
∂xe

=−1
2

UUUT ∂KKK
∂xe

UUU . (2.19)

Thus, the sensitivity number dc
e of e-th element with respect to structural compliance can

be derived

dc
e =−

1
p

∂C
∂xe

=
1
2

UUUT
e

(
1− xmin

1− xp
min

xp−1
e KKK0

e

)
UUUe. (2.20)

2.3 The normalization strategy for BESO

2.3.1 Normalization strategy

Normalization is often adopted to process widely varying data aiming to improve the conver-
gence. Here we introduce the Min-Max scaling method to normalize the range of independent
variables as

N (XXX) =
XXX−Xmin

Xmax−Xmin
, (2.21)

where XXX denotes the vector of the initial values, and its maximum and minimum value can
be presented by Xmax and Xmin; N (XXX) denotes the normalized vector XXX , whose values
are distributed in a interval of [0, 1]. It is necessary to make a further discussion on
the normalization. On the one hand, it is well known that in the BESO framework, the
iteration is only related to the relative ranking of the sensitivities. Therefore, the use of
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normalization strategy at each step will not affect the updating of design variables in linear
situations. On the other hand, a history-averaging technique is usually adopted to deal with
inaccurate assessment of sensitivity numbers [152] for stable convergence in the current
BESO framework. However, when the problem is highly sensitive to the change of design
variables, the history-averaging technique would be inefficient because of the great differences
between the adjacent iterative steps. In this situation, doing normalization before using the
history-averaging technique can reduce the possible numerical difficulties brought by the
nonlinearity. It will be demonstrated to be very effective in this work for the problems whose
working frequency is very close to the structural eigenfrequency so that a small variation
of the topological design could cause an extreme change in the overall structural response,
which is a problem that the classical BESO method cannot deal with. By introducing the
normalization strategy to deal with sensitivity, this problem can be solved to a certain extent.

2.3.2 Normalized weight sum method

For the problems involving a series of similar sub-objectives, the weight sum method is the
most frequently employed approach. The typical weight sum method can be formulated as
follows

ψ =
k

∑
i=1

λi fi (xxx), (2.22)

where ψ denotes the weight summed objective function; fi (xxx) denotes the sub-objective with
respect to variable vector xxx; λi represents the corresponding weight coefficient, in which the
subscript i is the serial number of sub-object.

In the topology optimization for frequency response problem, it is often used to deal
with multi-frequency problems, refer to [351, 220, 144, 290, 442]. It should be noted that in
the multi-frequency problems, although the optimization target is selected to minimize the
quadratic sum of responses at all frequencies, the ideal optimization results usually make
the whole target frequency band far away from the structural eigenfrequency. This indicates
that the relative value of the sensitivity numbers of sub-object caused by changes in response
with respect to design variables is not so important, high local sensitivity numbers at some
frequencies should be suppressed for better overall performance. Thus the normalization
strategy can be adopted again by combining with the weight sum method for integrating
the multi-objectives, yielding the normalized weight sum method to estimate the sensitivity
numbers for multi-objectives as

ΨΨΨ =
k

∑
i=1

λiN (dddi) , (2.23)
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where ΨΨΨ denotes the sensitivity number column of the multi-objectives processed by the
normalized weight sum method; λi is the weight coefficient; N (dddi) denotes the normalized
sensitivity, which can be obtained by Eq. (2.21).

2.3.3 NBESO method for frequency response problem

2.3.3.1 Problem statement

Here we describe the NBESO method for the structural frequency response problem with
respect to single-frequency and multi-frequency problem, respectively. It should be noted
that, when the target frequency (or frequencies for multi-frequency problem) is higher than
the structural eigenfrequency, it is necessary to introduce a constraint or objective [351, 220]
to ensure the structural static performance, in other words, to avoid the appearance of
"disintegration" phenomenon [292]. In this work, we employed the structural compliance as
mentioned earlier with a accompanied weighting coefficient α to control the structural static
performance.

• Single-frequency

Based on the formulations shown in Eq. (2.10), this problem can be mathematically
expressed by

min
xe, e=1,...,NE

: η = αC+(1−α)
m
∑

n=1
(Un)

2 ,

s. t. :
(
KKK−ω2MMM

)
UUU = FFF ,

NE
∑

e=1
xeVe−χV0 ≤ 0,

where : xe = xmin or 1,
0≤ α < 1,

(2.24)

where η denotes the objective function, which is the linear combination of the structural static
and dynamic performance; α denotes the weighting coefficient for adjusting the weighting
of static performance. When the frequencies are lower than the structural eigenfrequency, α

is unnecessary and can be defined by 0. In other cases, a reasonable definition of α affect the
of the topological design of structure and guarantees its static performance. The larger value
of α means weighting on the structural static performance.

The sensitivity number of η can be composed by the normalized weight sum method as

ξξξ = αN (dddc)+(1−α)N
(

dddf
)
, (2.25)
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where N
(

dddf
)

and N (dddc) can be calculated by substituting Eqs. (2.17) and (2.20) into
(2.21), respectively.

• Multi-frequency

By using the proposed normalized weight sum method, this problem can be stated by

min
xe, e=1,...,NE

: η = αC+(1−α)
k
∑

i=1

m
∑

n=1
λi (Un)

2
i ,

s. t. :
(
KKK−ω2

i MMM
)

UUU i = FFF ,
NE
∑

e=1
xeVe−χV0 ≤ 0,

where : xe = xmin or 1,
k
∑

i=1
λi = 1,

0≤ α < 1,

(2.26)

where λi denotes the weighting coefficient of the i-th (i = 1,2, ...,k) discrete frequency ωi.
The superscript of Un and UUU denotes the local frequency responses and overall displacement
response under the i-th frequency, respectively.

The sensitivity number in this case can be expressed by

ξξξ = αN (dddc)+(1−α)N

(
k

∑
i=1

λiN
(

dddf
)

i

)
, (2.27)

where N
(

dddf
)

i
denotes the normalized sensitivity vector in the i-th frequency, which can be

derived from Eqs. (2.17) and (2.21).

2.3.3.2 Numerical implementation

The numerical implementation of the proposed NBESO method can be summarized as
follows:

Step 1: Define the FE mesh, design domain and boundary conditions.

Step 2: Initialize the NBESO parameters, including the static weighting factor α , initial
design variables xxxini, target volume fraction χ , evolutionary ratio ER, filter radius rmin,
penalty parameter p, convergence tolerance τ and so on.

Step 3: Input the target frequency (single-frequency) or frequency range (multi-frequency).
For the first case, the frequency can be directly input. As for the second case, the
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frequency range should be discrete by frequency points ωi and assigned corresponding
weighting factors λi.

Step 4: Conduct the finite element analysis for calculating the structural compliance C,
eigenfrequency ωref and dynamic displacement responses Ui in different frequencies
ωi.

Step 5: Calculate the sensitivity numbers of structural static compliance dddc and local fre-
quency response dddf (single-frequency) or

(
dddf
)

i
(multi-frequency) by Eqs. (2.17) and

(2.20), respectively.

Step 6: Employ the normalization strategy in different conditions:

• For single-frequency case, adopt Eq. (2.25).

• For multi-frequency case, adopt Eq. (2.27).

Step 7: Use the filter scheme and history-averaging [152] to avoid numerical instabilities.
The filter scheme can be expressed by

ξe =

K
∑

q=1
W
(
req
)

ξq

K
∑

q=1
W
(
req
) , (2.28)

where K denotes the total number of elements in sub-domain Ωe. It is generated by
drawing a circle of radius rmin from the center of element e; ξq denotes the sensitivity
number of element q, which is calculated by the previous step; W

(
req
)

is the linear
weight factor, which can be calculated by

W
(
req
)
=

{
rmin− req for req < rmin,

0 for req ≥ rmin,
(2.29)

where req represents the distance between the center element e and target element q.
Thus, the filtered sensitivity number ξe can be obtained.

The history-averaging of the sensitivity number is also adopted for numerical stability,
which can be expressed as below

ξe =
ξ l

e +ξ
l−1
e

2
, when l ≥ 2, (2.30)

where l denotes the serial number of current iteration.
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Fig. 2.1 Flowchart of the NBESO method for frequency response problem
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Step 8: Update the design variables. Firstly, update the target volume (3D case) or area (2D
case) fraction of current iteration step by

V l =V l−1 (1±ER) , (2.31)

where V l−1 can be calculated by V l−1 = ∑
NE
e=1 xeVe; V 0 denotes the initial total volume

or area. According to the relative ranking of the sensitivity numbers, the value of design
variables can be updated within the volume fraction limitation of current iteration.

Step 9: Repeat steps 4-8 until the target volume fraction is reached.

Step 10: Repeat steps 4-9 until the convergence criterion is satisfied. The convergence
criterion can be expressed by

δerr =

∣∣∣∣ N
∑

h=1
η l−h+1−

N
∑

h=1
η l−N−h+1

∣∣∣∣
N
∑

h=1
η l−h+1

≤ δ̄err, (2.32)

where the superscript of η denotes the serial number of iteration; N determines the
minimal iteration steps, which is usually set as 5; δ̄err represents the tolerance of
change.

The corresponding flowchart is depicted by Fig. 2.1 to further illustrate the numerical
implementation.

2.4 Numerical examples

In this section, four numerical examples are presented. The properties of the adopted material
are defined as follows: Young’s modulus E = 210GPa, Poisson’s ratio v = 0.3 and density
ρ = 7900kg/m3. For the NBESO parameters, the discrete design variable xe is either solid
or void, which is defined by xe = 1 or xmin, respectively. The penalty parameter p = 3 is
adopted. All the topology optimizations begin from the full design and gradually reduce by
the evolutionary ratio ER = 2% until the target volume fraction is reached. Theoretically, the
target DOFs can be every free DOFs that we are interested. In practical application, the target
DOFs are mainly determined by engineering requirements and can be selected by designers.
In this work, the discussion about the selection of the target DOFs is out of our mission. We
just simply define the target DOFs the same as the loaded DOFs, which are marked as P in
the figures of each numerical example.
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2.4.1 Comparison of NBESO and BESO on a long cantilever beam
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Fig. 2.2 A cantilever beam

In the first example, the NBESO method is compared to BESO method on a cantilever
beam considering both single frequencies and full frequency range below the eigenfrequency.
Since the target frequency range is lower than the structural eigenfrequency, the weight
coefficient α in this example is 0. The design domain and boundary conditions of the
cantilever beam are shown in Fig. 2.2. The design domain is discretized by 180×60
quadrilateral elements. The y-direction of position P shown in Fig. 2.2 denotes the loading
and target DOF, which is located on the midpoint of the right end of the structure. The
eigenfrequency of the original cantilever is 143Hz. The target volume fraction χ of this
example is 50% and the filter radius rmin is 0.03m.

• Single-frequency

Table 2.1 Comparison of the objective function values of the topological designs shown in
Fig. 2.3

Frequency(Hz) BESO NBESO Gain

0 0.6455 0.6459 -0.06%
20 0.6583 0.6585 -0.03%
40 0.6964 0.6987 -0.33%
60 0.7679 0.7591 1.14%
80 0.8549 0.8495 0.63%

100 1.0104 0.9777 3.24%
120 1.4911 1.1692 21.59%
140 1.7028 1.4547 14.57%

The topological design of NBESO and BESO are firstly compared in different single-
frequencies. Eq. (2.24) is adopted in this case. As shown in Fig. 2.3, The topological
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Fig. 2.3 Topological designs obtained by BESO and NBESO in different frequencies: (a)
0Hz; (b) 20Hz; (c) 40Hz; (d) 60 Hz; (e) 80Hz; (f) 100Hz; (g) 120Hz; (h) 140Hz.

designs obtained by both methods for 0Hz are almost the same, but for other frequencies
are quite different. The differences trend to more and more pronounced as the frequencies
get closer to the structural eigenfrequency. Table 2.1 exhibits the objective function values
of the topological designs shown in Fig. 2.3 with respect to different frequencies. For the
low-frequency (0−40Hz) designs, the differences are so small that it can be ignored. As the
frequency increases, the difference becomes larger and larger, and the results of the NBESO
design are significantly smaller than those of the BESO. This indicates that the proposed
normalization strategy has almost no effect on topology optimization in the static situation.
But for the cases whose working frequencies close to the structural eigenfrequency, the
NBESO approach generates more reasonable topological designs.

To further explain the reason for this difference, the evolution of topological design
and sensitivity number in the first five iterative steps of BESO and NBESO at 140Hz are
depicted in Figs. 2.4 and 2.5, respectively. From Fig. 2.4, the calculated sensitivity in the
first iteration is obviously a “dominating sensitivity” whose values are much higher than
other steps, which causes the numerical instability during the iteration. In the BESO method,
such nonlinearity is difficult to eliminate and will continually affect the sensitivity value in
subsequent iterative steps. In this iteration, the calculated sensitivity of subsequent iterative
steps is much lower than the "dominating sensitivity", thus the updating of the topological
designs is seriously affected, resulting unreasonable broken structures. By employing the
normalization strategy, as shown in Fig. 2.5, the calculated sensitivity numbers in different
iterative steps are scaled to the interval of [0, 1], by which the influence of the "dominating
sensitivity" can be eliminated. After filtering and averaging, the normalized sensitivities
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Fig. 2.4 The evolution of topological design and sensitivity number in the first five iterative
steps of BESO at 140Hz

smoothly generate topological designs. It is noted that the “dominating sensitivity” would be
rarely occurred at the frequencies that are insensitive to response, that is, frequencies that are
far from the eigenfrequency. This is why the advantage of the normalization strategy is not
obvious at low frequencies but obvious at high frequencies.

• Multi-frequency

Table 2.2 Comparison on the objective function, compliance values and the number of
iterative steps of the topological designs shown in Fig. 2.6(a)

Items BESO NBESO

Objective function 135.7424 134.3794
Compliance 831.7838 816.8096

Number of iteration steps 146 51

The multi-frequency case considers the full frequency range below the structural eigenfre-
quency and Eq. (2.26) is employed. The frequency range from 0-143Hz is discretized into
144 integer frequency points, each of which has the same weighting coefficient λi =

1
144 .

Fig. 2.6 depicts the topological designs obtained by BESO and NBESO and their frequency
response functions (FRFs). Table 2.2 lists the objective function values, compliance values
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Fig. 2.5 The evolution of topological design and sensitivity number in the first five iterative
steps of NBESO at 140Hz

and the number of iterative steps of the topological designs shown in Fig. 2.6(a). Obviously,
NBESO generates a better design, which has lower overall frequency response, with very
few iterative steps while maintaining better overall static performance (compliance). Fig.
2.7 shows the iteration process of the two methods in compliance value, volume fraction,
topological design (Fig. 2.7(a-b)) and objective function (Fig. 2.7(c)). It can be seen that
the NBESO method has a smoother convergence process and a faster convergence speed,
which means that it has better convergence. This indicates that the normalization strategy
adopted in NBESO method can deal with the problem of scattered sensitivity data. By linear
weighting the normalized sensitivity, the multi-frequency involved topology optimization
can be better realized.
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Target frequency range

BESO NBESO

(a)

(b)

Fig. 2.6 (a) Topological designs obtained by BESO and NBESO; (b) Corresponding frequency
response functions (FRFs).

2.4.2 NBESO for a clamped-clamped beam: on the frequencies above
the structural eigenfrequency

This example implements the proposed NBESO method to a clamped-clamped beam con-
sidering frequency ranges above the structural eigenfrequency. Fig. 2.8 shows the design
domain and boundary condition of the clamped-clamped beam. The length and width of
the design domain is 1.2m and 0.3m, respectively. It is discretized by 120×30 quadrilateral
elements. The top middle of the structure, which is marked as P, is loaded by an external
excitation with amplitude of 1000N. It is also the target frequency response point. The
structural frequency response problem is performed for four different frequency ranges above
the structural eigenfrequency, which are:

• Between the eigenfrequency (421Hz) and the first antiresonance frequency (965Hz):
400-500Hz and 500-600Hz.



2.4 Numerical examples 41

(b)(a)

(c)

Fig. 2.7 The iteration process of topological design, volume fraction and compliance in: (a)
BESO method; (b) NBESO method; (c) The iteration process of BESO and NBESO in the
value of objective function.

• Between the first antiresonance frequency (965Hz) and the second resonance frequency
(1707Hz): 1300-1400Hz and 1400-1500Hz.

These frequencies are discretized by integral frequencies in the topology optimization opti-
mization for the convenience of calculation. Eq. (2.26) is employed in this example. The
weighting factor α is defined by 0.5 in this example. The volume fraction χ and filter
radius rmin are 60% and 0.03m, respectively. Fig. 2.9 shows two different design firstly for
comparison, in which the ‘Static design’ and ‘Guess design’ represent the topological design
obtained by the static compliance minimized topology optimization method and guessing,
respectively.

Fig. 2.10 depicts the results for the first two frequency ranges, 400-500 Hz and 500-
600Hz. Fig. 2.10(a) shows the topological designs obtained by the NBESO method. The
topological designs are similar, because they are both at relative low frequencies and close
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Fig. 2.8 A clamped-clamped beam.
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Fig. 2.9 Two designs for comparison: (a) Static design; (b) Guess design.

to each other. From another aspect, both of topological designs are much different from
the "Static design" shown in Fig 2.9. Since both frequency ranges are higher than the
structural eigenfrequency, and the modal of the structure has changed, so the optimal design
for frequency response problem has also changed a lot. Fig. 2.10(b) shows the FRFs of
corresponding topological designs. For comparison, the FRFs of the original design, static
design and guess design are also plotted. With similar material distribution, the FRFs of
topological designs for two frequency ranges obtained by NBESO method are very similar,
and have obvious advantages compared with other designs. Fig. 2.10(c) presents the iterative
histories. It should be noted that there are some abrupt jumps in the optimization process ,
which is influenced by the strong nonlinearity of structural dynamic response when reducing
the volume of the structure. Due to the use of normalization strategy, the nonlinearity is
reduced to some extent. Eventually, as the iteration progresses, the topology of the structure
will eventually stabilize.

Fig. 2.11 depicts the results for the frequency ranges between the first antiresonance
frequency and the second resonance frequency. As shown in Fig. 2.11(a), the topological
design for these two frequency ranges are much different. Compared to the static design, both
designs have rich details, which can be used to resist the structural vibration at corresponding
frequency ranges. Since the static response is taken into account, the two designs are
somewhat similar in general to the "Static design". Fig. 2.11(b) shows their FRFs and
compared with what of other designs. The FRFs indicate that the topological designs
obtained by the NBESO method are much better than other designs, even better than the
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Fig. 2.10 (a) The topological designs for the first two frequency ranges; (b) Comparison on
the FRFs; (c) Iteration history.

original design that uses 1.67 times more solids. It is noted that the NBESO method based
designs didn’t achieve anti-resonance effect within the target frequency range as done by
Silva et al. [351]. It is because the static structural performance is considered to avoid
the topological design with low stiffness, which is also pointed out in [351]. From the
authors’ point of view, such vibration reduction designs might be more practical for real
engineering structures. Fig. 2.11(c) shows the iterative histories, which indicates that there is
no convergence problem in the optimization process.

2.4.3 On the influence of weighting factor α

In this example, the influence of the weighting factor α for static performance is discussed.
Fig. 2.12 depicts a half-MBB beam with a length of 0.6m and a width of 0.3m. The
design domain is discretized by 120× 60 quadrilateral elements. The point P shows the
location of the loading and target position, and it is loaded and tested in the y-direction. It
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Fig. 2.11 (a) The topological designs for the last two frequency ranges; (b) Comparison on
the FRFs; (c) Iteration history.

is loaded by a force with an amplitude of 1000N with various frequencies in y-direction.
The eigenfrequency of the half-MBB beam is 377Hz. Two different frequency ranges
[350-400Hz] and [700-750Hz] are taken into consideration to represent the frequency range
near and above the eigenfrequency, respectively. For the convenience of computation, the
frequency ranges are discretized by integral frequencies. The target volume fraction of this
example is 50%. The filter radius rmin is 0.015m. Five values were taken from 0 to 1 to show
the influence of different weighting factor α on topology optimization.

Fig. 2.13(a) depicts the topological designs for the first frequency range [350-400Hz]
with different weighting factor α . Although this frequency range is crossed by the structural
eigenfrequency, all the topological designs in this case are well generated without loss
of connectivity. The use of normalization strategy increases the robustness of topology
optimization in these cases. As the value of α increases, the center of gravity of topological
designs moves from left to right, because the value of α affects the orientation of topology
optimization. Fig. 2.13(b) shows the corresponding FRFs of the topological designs shown
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Fig. 2.13 (a) Topological designs for 350-400Hz with different weighting factors: (i) α=0.1;
(ii) α=0.3; (iii) α=0.5; (iv) α=0.7; (v)α=0.9; (b) Corresponding FRFs of the topological
designs.
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in Fig. 2.13(a).The FRFs indicate that smaller α makes better structural dynamic response in
the target frequency range. When the target frequency band is partly lower than the structural
eigenfrequency, one can even let α to be 0 to pursue better structural dynamic performance.
In such situation, the normalization strategy will be efficient, as demonstrated in the first
example.

ii iiii

iv v

(a)

(b)

Fig. 2.14 (a) Topological designs for 700-750Hz with different weighting factors: (i) α=0.1;
(ii) α=0.3; (iii) α=0.5; (iv) α=0.7; (v) α=0.9; (b) Corresponding FRFs of the topological
designs.

Fig. 2.14(a) depicts the topological designs for the second frequency range [700-750Hz]
with different α . It is noted that when α = 0.1, the topological design shows discontinuity,
which is the same as reported in [176, 351]. This indicates that the structural design with
very weak static performance can bring better dynamic performance in this frequency range.
However, in engineering structures, such design is often required to be avoided. One should
do is to increase the weighting of static performance in the objective function. It can



2.4 Numerical examples 47

be seen that as the value of α gradually increases, such discontinuity disappears in the
topological designs. When α=0.9, the topological design is similar to that in Fig. 2.13(a),
which indicates the static performance in this design might be over-weighted. Fig. 2.14(b)
depicts the corresponding FRFs of the topological designs shown in Fig. 2.14(a). It shows
that all the topological designs get a good dynamic frequency responses except ’design
v’, which puts too many weighting on static performance. The topological designs in this
frequency range demonstrate that the NBESO method can be used for topology optimization
of frequency ranges higher than the structural eigenfrequency while choosing a feasible
weighting parameter.

α

Fig. 2.15 Structural compliance of the topological designs shown in this example.

Fig. 2.15 shows the trend of the static performance (compliance) of different designs in
two different frequency ranges changing with α . In both frequency ranges, the compliance
of the structure decreases with the increase of α . To sum up, one can get ideal topological
designs by using the proposed NBESO method, and it is feasible by setting the weighting
factor to make a balance in structural static and dynamic performance.

2.4.4 Application to a 3D plate

In this example, we applied the NBESO method to reduce the frequency response of a CCCC
square plate. The design domain and work condition of the plate are shown in Fig. 2.16.
Based on the Mindlin-Reissner plate theory, the design domain is discretized into 80×80
quadrilateral elements on the x-y plane with one layer in the z-direction. A z-directional
excitation with an amplitude of 1000N is loaded on point P, which is also defined as the
response point in the same direction. The volume fraction χ is 60% and the filter radius rmin

is 0.02m. The frequency range from 100Hz to 300Hz is evenly divided into four adjacent
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Fig. 2.16 A CCCC square plate

frequency ranges, which are set as the target intervals for the frequency response problem.
Eq. (2.26) is employed in this example. For the convenience of calculation, the frequency
ranges are discretized by integer frequencies, which means every frequency range involves 51
integer frequency points. It is noted that these frequency ranges are higher than the structural
eigenfrequency, so the static compliance is also introduced to ensure the structural static
performance. The weighting factor α in this example is 0.3.

Fig. 2.17 depicts the topological designs in the x-y plane with respect to different
frequency ranges. The static design that aiming for optimal structural static performance
(compliance) is also plotted for comparison. The topological designs are well generated
without loss connectivity, which illustrate that the weighted sensitivity of static compliance
enhanced the structural static performance. Topological designs for different target frequency
ranges vary widely. It is affected by the weighted sensitivities on multi-frequency responses
in different frequency ranges. To further illustrate the influences of the topological variations
on the structural frequency response, Fig. 2.18 shows the FRFs of these topological designs.
The colored areas in Fig. 2.18 denote the four frequency ranges of interest. In each target
frequency range, the corresponding topological designs obviously have better frequency
responses. This example illustrates that the proposed method is also applicable to the 3D
plate structure.
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Fig. 2.17 Topological designs for different frequency ranges: (i) 0Hz (static); (ii) 100-150Hz;
(iii) 150-200Hz; (iv) 200-250Hz; (v) 250-300Hz.

 

 Fig. 2.18 The FRFs of the topological designs shown in Fig. 2.17.
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2.5 Conclusion

In this chapter, a normalization strategy was proposed for the BESO based structural topology
optimization. It is a simple but effective strategy to improve the stability and convergence of
the BESO method, by which the values of sensitivity at different scales can be adjusted to
a common order that overcomes the numerical difficulties in the material adding/removal
process of the discrete design variables. The basis of employing the normalization strategy in
BESO is that only the relative ranking of the sensitivities affects the evolution of the design
variable, so the amplification and reduction on the value of the sensitivities do not affect the
optimization process. Instead, when it comes to strong nonlinearity between two iterative
steps, the normalization strategy can improve the convergence of the solution. Moreover,
once the sensitivities are normalized to the same scale, the weight sum method, which is a
basic multi-objective approach, can be easily applied.

Four numerical examples are presented to demonstrate the effectiveness and adaptability
of the proposed NBESO method to the application on reducing structural frequency response.
The first example illustrated that the NBESO method is not only suitable for low-frequency
problem, but also efficient for the topological design near the structural eigenfrequency. The
second example applied the NBESO method for two different frequency ranges higher than
the structural eigenfrequency. It shows that the NBESO method generate topological designs
without loss of continuity when the target frequency are above the structural eigenfrequency,
which indicates its applicability in practical engineering. Example 3 discussed the influence
of the weighting parameter α . The last example applied the proposed NBESO method to
a 3D plate structure, in which the topological designs are also efficient. All the numerical
examples gave clear solid/void material distributions, which meets the demands of practical
engineering.

The main contribution of this chapter can be summarized as follows:

• A normalization strategy was proposed for BESO method to improve its convergence
and numerical stability.

• A series of frequency response topology optimizations was conducted with the normal-
ization strategy.

• The proposed NBESO method can be regarded as an extension of the current BESO
method.

• More extensive applications of NBESO are foreseeable. For example, in the latest
research, it has been applied to BESO-based topology optimization for stress problems
[119, 118] and fracture-resistant designs [211].



Chapter 3

Robust topology optimization for the
elastic dynamic structures with
imprecise probabilities

The main content of this chapter is adapted from our papers [144, 398, 399].

3.1 Introduction

In this Chapter, the probabilistic uncertainty with imprecise probability distribution is con-
sidered for robust topology optimization. We employ a hybrid interval random model to
describe the probabilistic parameters with imprecise quantities, such as interval model based
expectation and standard deviation. Then, an improved hybrid perturbation analysis (IHPA)
method is formulated to efficiently estimate the dynamic performances of the structures at
a very low computational cost. Robust topological designs for conventional one material
structures, multi-scale composite structures and laminated composite plates are implemented.
In this Chapter, the BESO method is employed.

3.2 Modeling of imprecise probability

3.2.1 Description of imprecise probability

For the probabilistic uncertainty, the probability distribution function (PDF) can be adopted
to describe the uncertain parameters. However, in practical engineering, precise PDF may
sometimes hardly be obtained due to a lack or poor quality of information [174]. We assume
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Fig. 3.1 The probability distribution functions of precise and imprecise probability with
normal distribution.

that the uncertain parameter XJ obeys a normal distribution but lacks information. As shown
in Fig. 3.1, the possible PDFs constitute a zone in cyan. For the sake of comparison, two of
the possible PDFs are presented by red dash line and the PDF based on the exact probability
density assumption is marked with a blue line. By comparison, it is clear that the precise
probability distribution function has limitations and does not reflect all cases when there is
insufficient information.

To further describe uncertainty with imprecise probability distribution, a p-box model
[432] is plotted by adopting the information in Fig. 3.1. The corresponding cumulative
distribution functions (CDF) are shown in Fig. 3.2 in green. It can be seen that the probability
of imprecise uncertainty is located within a ‘strip’, which can be represented by an interval.
By determining the upper and lower bound of the imprecise uncertainty, the probability range
of the parameters are clarified. For an arbitrary parameter XJ , its probability can be expressed
by
[
PXJ ,PXJ

]
. Fig. 3.2 indicates that the interval model has potential to be integrated into the

probabilistic-based model to describe imprecise probability.

3.2.2 Hybrid interval random model

Assume that all the uncertain parameters are independent, and X represents an uncertain
probabilistic parameter with imprecise probability. By adopting the interval model to describe
X , X (Y) is obtained. Without loss of generality, we define XJ (YJ) as the J-th hybrid interval
random variable of the hybrid interval random vector X(Y) that composed of all independent
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Fig. 3.2 P-box model for the description of uncertainty with imprecise probability.

hybrid interval random variables and X(Y) can be expressed by:

X(Y) =(X1 (Y1) ,X2 (Y2) , ......,XJ (YJ) , ......) , J = 1,2, ...,M,

YJ =
(
Y 1

J ,Y
2
J , ......,Y

K
J , ......

)
, K = 1,2,...,N,

(3.1)

where M and N represent the number of random and interval parameters, respectively; J and
K index their series number. For each interval vector, YJ can be expressed by:

YJ =Y m
J +YI

J,

Y m
J =

YJ +YJ

2
,

Y I
J =[−∆YJ, +∆YJ],

∆YJ =
YJ−YJ

2
,

(3.2)

where YJ and YJ denote the lower and upper bounds of interval vector YJ; Y m
J is the mean

value of YJ , which can be calculated by averaging the lower and upper bounds value as shown
in Eq. (3.2)2; YI

J denotes the variation interval of YJ , which depends on the difference of the
lower and upper bound values as shown in Eq. (3.2)3. The deviation ∆YJ of the symmetrical
interval can be acquired by averaging the upper and lower bounds of YJ as shown in Eq.
(3.2)4.
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In the combination form, the J-th hybrid interval random parameter XJ (YJ) can be
expressed by:

XJ (YJ) =XJ (Y m
J )+XJ

(
YI

J
)
,

XJ (Y m
J ) =

XJ
(
YJ
)
+XJ

(
YJ
)

2
,

XJ
(
YI

J
)
=[−∆XJ (YJ) ,+∆XJ (YJ)] ,

∆XJ (YJ) =
XJ
(
YJ
)
−XJ

(
YJ
)

2
.

(3.3)

The expectation and standard deviation of the J-th hybrid interval random parameter
XJ (YJ) can be expressed as µ (XJ (YJ)) and σ (XJ (YJ)), respectively. By adopting Eq. (3.3),
the interval expression of µ (XJ (YJ)) and σ (XJ (YJ)) can be represented.

3.3 An improved hybrid perturbation analysis (IHPA) method

We consider a steady-state equilibrium equation of the continuum in the frequency domain,
which has been described in Chapter 2. It can be expressed by the following formulation
with considering the imprecise probability, which is:

KKKd (X(Y))UUU (X(Y)) = FFF , (3.4)

where KKKd (X(Y)) denotes the dynamic stiffness matrix with uncertainty; FFF is the force vector
with deterministic assumption; UUU (X(Y)) denotes the uncertain displacement vector.

In the IHPA method, we first assume that the interval variables related to X(Y) are
deterministic. The first-order Taylor series expansion of UUU (X(Y)) at the expectation of the
interval random parameter vector X(Y) can be expressed by:

UUU (X(Y)) =UUU (µ (X(Y)))+
M

∑
J=1

∂UUU (X(Y))

∂XJ (YJ)

∣∣∣∣
XJ(YJ)=µ(XJ(YJ))

(XJ (YJ)−µ (XJ (YJ)))

+o(XJ (YJ)) ,
(3.5)

where o(XJ (YJ)) denotes the remainder of the first-order Taylor series expansion. When the
variation of the parameter is relatively small, this remainder can be ignored. According to
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the random moment method [117], the above equation can be expressed by two parts as:

E (UUU) =UUU (µ (X(Y))) ,

SD(UUU) =
M

∑
J=1

∂UUU (X(Y))

∂XJ (YJ)

∣∣∣∣
XJ(YJ)=µ(XJ(YJ))

σ (XJ (YJ)),
(3.6)

where E (UUU) and SD(UUU) denote the expectation and standard deviation, respectively; σ (XJ (YJ))

is equal to XJ (YJ)−µ (XJ (YJ)) in Eq. (3.5).
As the interval variables are considered, both of E (UUU) and SD(UUU) are the interval vectors.

Performing the first-order Taylor series expansion again, yields:

EI (UUU) =UUU (µ (X(Ym)))

±
M

∑
J=1

N

∑
K=1

∂UUU (µ (XJ (YJ)))

∂ µ
(
XJ
(
YI

J
)) ∣∣∣∣∣

µ(XJ(YI
J))=µ(XJ(Y m

J ))

(
µ
(
XJ
(
Y K

J
))
−µ (XJ (Y m

J ))
)

+o
(
µ
(
XJ
(
YI

J
)))

,

SDI (UUU) =
M

∑
J=1

{
∂UUU (XJ (YJ))

∂XJ (YJ)

∣∣∣∣
XJ(YJ)=µ(XJ(YJ))

σ (XJ (Y m
J ))

±
N

∑
K=1

 ∂ 2UUU (XJ (YJ))

∂XJ (YJ)∂XJ
(
YI

J
)∣∣∣∣∣XJ(YJ)=µ(XJ(YJ))

XJ(YI
J)=XJ(Y m

J )

(
µ (XJ (Y m

J ))−µ
(
XJ
(
Y K

J
)))

σ (XJ (Y m
J ))

+
∂UUU (XJ (YJ))

∂XJ (YJ)

∣∣∣∣
XJ(YJ)=µ(XJ(YJ))

∂σ (XJ (Y m
J ))

∂XJ
(
YI

J
) (

µ
(
XJ
(
Y K

J
))
−µ (XJ (Y m

J ))
)]

+ o
(
XJ
(
YI

J
))}

,
(3.7)

where EI and SDI indicate both of the upper and lower bounds of the expectation and standard
deviation. The quantities o

(
µ
(
XJ
(
YI

J
)))

and o
(
XJ
(
YI

J
))

can be ignored as the variation of
parameter is relatively small. For simplicity, the above equation can be rewritten as:

EI (UUU)≈UUU0±
M

∑
J=1

N

∑
K=1

UUU1,J∆µ
(
XJ
(
Y K

J
))
,

SDI (UUU)≈
M

∑
J=1

(
UUU2,Jσ (XJ (Y m

J ))±
N

∑
K=1

(
UUU3,JKσ (XJ (Y m

J ))∆µ
(
XJ
(
Y K

J
))

+UUU2,J∆σ
(
XJ
(
Y K

J
))))

,

(3.8)
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where
UUU0 =UUU (µ (X(Ym))) ,

UUU1,J =
∂UUU (µ (XJ (YJ)))

∂ µ
(
XJ
(
YI

J
)) ∣∣∣∣∣

µ(XJ(YI
J))=µ(XJ(Y m

J ))

,

UUU2,J =
∂UUU (XJ (YJ))

∂XJ (YJ)

∣∣∣∣
XJ(YJ)=µ(XJ(YJ))

,

UUU3,JK =
∂ 2UUU (XJ (YJ))

∂XJ (YJ)∂XJ
(
YI

J
)∣∣∣∣∣XJ(YJ)=µ(XJ(YJ))

XJ(YI
J)=XJ(Y m

J )

,

(3.9)

and

∆µ
(
XJ
(
Y K

J
))

=
∂XJ

(
YI

J
)

∂ µ
(
XJ
(
YI

J
)) (µ (XJ (Y m

J ))−µ
(
XJ
(
Y K

J
)))

,

∆σ
(
XJ
(
Y K

J
))

=
∂σ (XJ (Y m

J ))

∂XJ
(
Y K

J
) (

µ (XJ (Y m
J ))−µ

(
XJ
(
Y K

J
)))

,

(3.10)

where UUU0 and its derivations UUU1,J , UUU2,J and UUU3,JK can be calculated by substituting the mean
value of expectation of the imprecise probability µ (X(Ym)) into Eq. (3.4) as:

UUU0 =KKK−1
d (µ (X(Ym)))FFF ,

UUU1,J =−KKK−1
d (µ (X(Ym)))

∂KKKd (µ (XJ (YJ)))

∂ µ
(
XJ
(
YI

J
)) UUU0,

UUU2,J =−KKK−1
d (µ (X(Ym)))

∂KKKd (XJ (YJ))

∂XJ (YJ)
UUU0,

UUU3,JK =−KKK−1
d (µ (X(Ym)))

[
2

∂KKKd (µ (XJ (YJ)))

∂XJ (YJ)
UUU2,J +

∂ 2KKKd (µ (XJ (YJ)))

∂XJ (YJ)∂XJ
(
YI

J
)UUU0

]
.

(3.11)
By adopting the IHPA method, the variation of the displacement response can be quickly

estimated, and the structural performance can be evaluated. It is necessary to make a further
discussion on the IHPA method. On the one hand, due to the high efficiency of the first-
order Taylor series expansion, the number of finite element analysis (FEA) required for the
uncertain objective function calculated by IHPA is greatly reduced. For a problem with n
hybrid interval random variables, the total number of FEA calls is:

Ncalls = 1+3n, (3.12)

where Ncalls denotes the total number of FEA calls. The amount of FEA calls increases lin-
early with the increase of the variable. At the same amount of FEA calls, its accuracy is much
higher than that of the Monte Carlo simulation (MCS) based method. In view of the high
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computational cost of topology optimization, it is very suitable for the uncertainty involved
problems. On the other hand, the first-order Taylor series expansion based-perturbation
method has been approved to be accurate for linear uncertainty with small variation ranges
[401, 57]. Generally speaking, the IHPA method allows topology optimization to handle
imprecise probabilistic parameters, and at the same time, to ensure the accuracy for evaluating
uncertainties with small variation at low computational cost. The computational efficiency of
this method will be demonstrated in the numerical examples, in which IHPA is compared
with the MCS.

3.4 Robust structural topology optimization

In this section, we employ the IHPA to solve robust topology optimization problems for one-
material structures. Two typical dynamic performance indicators in the frequency domain of
the structure: dynamic compliance and eigenvalue are considered, respectively.

3.4.1 Robust dynamic-compliance topology optimization

3.4.1.1 Problem statement

In this section, we optimize the overall response level of the structure. Unlike the optimization
of the local steady-state response that we described earlier in Chapter 2, this method extends
the well-known compliance to the dynamic context, by which the overall vibration of the
structure can be reduced. Taking uncertainty into account, the structural dynamic compliance
can be expressed by:

Cd (X(Y)) = FFFTUUU (X(Y)) . (3.13)

The robust topology optimization for this problem can be expressed by:

min
xxx

: G = E (Cd)+κ ·SD(Cd) ,

s.t. :
NE

∑
e=1

xeVe−χV0 ≤ 0,
(3.14)

where G denotes the robust objective function, which is the linear weighted combination of
the maximal expectation and standard deviation of dynamic-compliance; κ is a predefined
robust parameter. The rest of symbols have been introduced in the previous chapter. Adopting
the IHPA method, according to Eqs. (3.13) and (3.8), the maximal value of expectation and
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standard deviation of the dynamic-compliance can be expressed by:

E (Cd) =FFFT

{
UUU0 +

M

∑
J=1

N

∑
K=1

UUU1,J∆µ
(
XJ
(
Y K

J
))

S1,JK

}
,

SD(Cd) =FFFT

{
M

∑
J=1

(UUU2,Jσ (XJ (Y m
J ))S2,J)+

N

∑
K=1

(
UUU3,JKσ (XJ (Y m

J ))∆µ
(
XJ
(
Y K

J
))

+UUU2,J∆σ
(
XJ
(
Y K

J
))

S3,JK
)}

,

(3.15)

where S1,JK , S2,J and S3,JK denote the sign of relative parts respectively, namely:

S1,JK =sign
(
UUU1,J∆µ

(
XJ
(
Y K

J
)))

,

S2,J =sign(UUU2,Jσ (XJ (Y m
J ))) ,

S3,JK =sign
(
UUU3,JKσ (XJ (Y m

J ))∆µ
(
XJ
(
Y K

J
))

+UUU2,J∆σ
(
XJ
(
Y K

J
)))

.

(3.16)

Above, we should note that S1,JK , S2,J and S3,JK are not continuous. Following [395], we
propose a continuous version of the sign function by employing a regularized Heaviside step
function as:

S ( f (xe)) = tanh(ζ · f (xe)) , (3.17)

where ζ is a regularization parameter. The derivation of S ( f (xe)) with respect to the design
variable can be expressed by:

∂S ( f (xe))

∂xe
=
(
1− tanh2 (ζ f (xe))

)(
ζ

∂ f (xe)

∂xe

)
. (3.18)

3.4.1.2 Sensitivity analysis

The sensitivity number de can be obtained by processing the derivation of robust objective
function with respect to the design variable xe, as:

de =−
1
p

∂G

∂xe
=−1

p

(
∂E (Cd)

∂xe
+κ

∂SD(Cd)

∂xe

)
. (3.19)
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Using the property that the load is independent to the design variable, ∂E(Cd)
∂xe

and ∂SD(Cd)
∂xe

shown in (3.19) can be derived from Eqs. (3.15), (3.11) and (3.13), as:

∂E (C)

∂xe
=FFFT

(
∂UUU0

∂xe
+

M

∑
J=1

N

∑
K=1

(
∂UUU1,J

∂xe
∆µ
(
XJ
(
Y K

J
))

S1
JK+UUU1,J∆µ

(
XJ
(
Y K

J
)) ∂S1,JK

∂xe

))
,

∂SD(C)

∂xe
=FFFT

{
M

∑
J=1

{(
∂UUU2,J

∂xe
σ (XJ (Y m

J ))S2,J+UUU2,Jσ (XJ (Y m
J ))

∂S2,J

∂xe

)
+

N

∑
K=1

[(
∂UUU3,JK

∂xe
σ (XJ (Y m

J ))∆µ
(
XJ
(
Y K

J
))

+
∂UUU2,J

∂xe
∆σ
(
XJ
(
Y K

J
)))

S3,JK

+
(
UUU3,JKσ (XJ (Y m

J ))∆µ
(
XJ
(
Y K

J
))

+UUU2,J∆σ
(
XJ
(
Y K

J
))) ∂S3,JK

∂xe

]}
,

(3.20)
with

∂UUU0

∂xe
=−

∂KKK−1
d (µ (X(Ym)))

∂xe
FFF ,

∂UUU1,J

∂xe
=−

∂KKK−1
d (µ (X(Ym)))

∂xe

∂KKKd (µ (XJ (YJ)))

∂ µ
(
XJ
(
YI

J
)) UUU0−KKK−1

d (µ (X(Ym)))(
∂ 2KKKd (µ (XJ (YJ)))

∂ µ
(
XJ
(
YI

J
))

∂xe
UUU0 +

∂KKKd (µ (XJ (YJ)))

∂ µ
(
XJ
(
YI

J
)) ∂KKK−1

d (µ (X(Ym)))

∂xe
FFF

)
,

∂UUU2,J

∂xe
=−

∂KKK−1
d (µ (X(Ym)))

∂xe

∂KKKd (XJ (YJ))

∂XJ (YJ)
UUU0−KKK−1

d (µ (X(Ym)))(
∂ 2KKKd (∂XJ (YJ))

∂XJ (YJ)∂xe
UUU0 +

∂KKKd (XJ (YJ))

∂XJ (YJ)

∂KKK−1
d (µ (X(Ym)))

∂xe
FFF

)
,

∂UUU3,JK

∂xe
=−

∂KKK−1
d (µ (X(Ym)))

∂xe

(
2

∂KKKd (µ (XJ (YJ)))

∂XJ (YJ)
UUU2,J +

∂ 2KKKd (µ (XJ (YJ)))

∂XJ (YJ)∂XJ
(
YI

J
)UUU0

)

−KKK−1
d (µ (X(Ym)))

{
2
[

∂ 2KKKd (µ (XJ (YJ)))

∂XJ (YJ)∂xe
UUU2,J −

∂KKKd (µ (XJ (YJ)))

∂XJ (YJ)(
∂KKK−1

d (µ (X(Ym)))

∂xe

∂KKKd (XJ (YJ))

∂XJ (YJ)
UUU0 +KKK−1

d (µ (X(Ym)))

(
∂ 2KKKd (µ (XJ (YJ)))

∂XJ (YJ)∂xe
UUU0

+
∂KKKd (µ (XJ (YJ)))

∂XJ (YJ)

∂KKK−1
d (µ (X(Ym)))

∂xe
FFF

))]
+

∂ 3KKKd (µ (XJ (YJ)))

∂XJ (YJ)∂XJ
(
YI

J
)

∂xe
UUU0

+
∂ 2KKKd (µ (XJ (YJ)))

∂XJ (YJ)∂XJ
(
YI

J
) ∂KKK−1

d (µ (X(Ym)))

∂xe
FFF

}
,

(3.21)
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where for a non-singular matrix KKK−1
d (µ (X(Ym))), we have:

KKKd (µ (X(Ym)))KKK−1
d (µ (X(Ym))) = I. (3.22)

Taking derivation of above equation, we have:

∂KKK−1
d (µ (X(Ym)))

∂xe
=−KKK−1

d (µ (X(Ym)))
∂KKKd (µ (X(Ym)))

∂xe
KKK−1

d (µ (X(Ym))) . (3.23)

3.4.2 Robust eigenvalue topology optimization

In this section, we consider an eigenvalue topology optimization. The problem can be
expressed by:

min
xxx

: G =−
(
E (λi)+κ ·SD(λi)

)
,

s.t. :
NE

∑
e=1

xeVe−χV0 ≤ 0,
(3.24)

where G denotes the robust objective function; λi denotes the eigenvalue of the structure,
in which the subscript i indexes its order. Here we minimize the opposite number of the
linear weighted combination of the maximal expectation and standard deviation of the i-th
eigenvalue. The eigenvalue without uncertainties in the free vibration problem can be solved
by:

(KKK−λiMMM)ϕi = 0, (3.25)

where ϕi represents the eigenvector corresponding to λi. Based on the Rayleigh quotient, the
i-th eigenvalue can be expressed by:

λi =
ϕT

i KKKϕi

ϕT
i MMMϕi

. (3.26)

By adopting the IHPA method again, the robust objective function and its sensitivity can
be similarly obtained, and is not repeated here.

3.4.3 Numerical examples

In this section, two numerical examples are presented. The first example considers the robust
compliance topology optimization, and the last example is for robust eigenvalue topology
optimization. The Young’s modulus, density and Poisson’s ratio of the material and the
thickness of the 2D structures are assumed uncertain and follow the normal distribution.
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Table 3.1 lists the hybrid interval random model based uncertain material properties with
imprecise probability.

Table 3.1 Uncertain material properties and thickness with imprecise probability.

Parameters Expectation Standard deviation

Young’s modulus, E (GPa) [189, 231] [18.9, 23.1]
Poisson’s ratio, ν [0.285, 0.315] [1.425, 1.575]×10−3

Density, ρ (g/mm3) [7505, 8205] [750, 820.5]
Thickness, t (mm) [0.95, 1.05] [0.0475, 0.0525]

Four-node quadrilateral finite element is adopted. The robust parameter κ = 1 is defined
for these examples. For the BESO parameters, the evolutionary ratio is set to 2%, and the
filter radius is 20mm. The penalty exponent p =3.0 is used. The design variable is discretely
defined as xe =1 and 0.01 to represent the solid and void elements, respectively. The volume
fraction constraint is χ = 0.5.

3.4.3.1 A cantilever beam for robust compliance topology optimization

 

Fig. 3.3 Illustration of the cantilever beam.

In this example, a cantilever beam is considered. Fig. 3.3 illustrates the design domain,
boundary conditions and external load of the cantilever beam. The length and width of this
cantilever beam are L = 900mm and D = 300mm, respectively. The left end of the cantilever
is fixed, and an external excitation with frequency is loaded on the middle of the right end
which is marked by P. The structure is discretized by a 90×30 finite element mesh.

We first consider three different loading frequencies, namely 0Hz, 50Hz and 100Hz. Fig.
3.4 depicts the results, in which Fig. 3.4(a) and (b) are the robust topological designs for
uncertain material properties and uncertain thickness, respectively, and Fig. 3.4(c) is the
topology optimization based on deterministic assumption. It can be seen that the topology
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(a)

0 Hz (Static case) 50 Hz 100 Hz

(b)

(c)

Fig. 3.4 Robust topological designs for different loading frequencies: (a) with uncertain
material properties; (b) with uncertain thickness; (c) with deterministic assumption.

optimization results considering uncertainty at different excitation frequencies are not the
same than those based on deterministic assumptions.

(a) (b) (c)

Fig. 3.5 Robust topological designs for frequency-band excitation: (a) with uncertain material
properties; (b) with uncertain thickness;

Next, we consider the robust topology optimization for frequency-band excitation. The
frequency-bands are discretized into integer frequencies for the sake of computational costs.
Fig. 3.5 depicts the topological designs, in which Fig. 3.5(a) is the robust design for uncertain
material properties and Fig. 3.5(b) shows the result for uncertain thickness. For the first case,
the frequency band 10Hz-350Hz is considered. As for the second case, a frequency band
10Hz-200Hz is considered. We can observe that these designs present different topological
layouts.

3.4.3.2 A Simply supported beam for robust eigenvalue topology optimization

Following [156], in this example, we consider a simply supported beam to maximize its
first-order bending eigenvalue. Fig. 3.6 shows the geometry and boundary condition of
the simply supported beam, in which the length and width are L = 1600mm and 200mm,
respectively. The structure is discretized by a 160×20 finite element mesh.
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Fig. 3.6 Illustration of the simply supported beam

(a)

(b)

(c)

(d)

Fig. 3.7 Topological designs for maximal first-order bending eigenvalue: (a) with both
uncertain material properties and uncertain thickness; (b) with uncertain material properties;
(c) with uncertain thickness; (d) with deterministic assumption.

Fig. 3.7 depicts the topological designs of the simply supported beam for the maximal
first-order bending eigenvalue, in which Fig. 3.7(a) simultaneously considers the uncertain
material properties and thickness; Fig. 3.7 (b) and (c) involve the individual uncertain
material properties and thickness, respectively; Fig. 3.7(d) is the result for deterministic
assumption. It is observed that the uncertainties of material properties and geometry play an
important role to the final layouts. The slight variance of material properties and geometry
may result in an obvious difference between the deterministic and robust designs. This
example illustrates how uncertainty affects the final design.
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3.5 Application to the laminated plates

In this section, we extend the robust topology optimization to the design of laminated plates.

3.5.1 FEM modeling of the laminated plate 
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… 

Fig. 3.8 Layered composite orthotropic plate: (a) Illustration of the layers in the thickness
direction; (b) Exploded view.

For a multi-layer laminated plate, the stiffness matrix can be derived by the first-order
shear deformation theory (FSDT) based on the linear elastic and orthotropic assumption
[313]. As shown in Fig. 3.8, the laminate consists of n plies with the individual thickness hk

and the layer orientations θk. The thickness of the laminate t is equal to the sum of hk. By
assuming a null transverse normal stress σz, the stress-strain relation in layer k with respect
to the local coordinate can be expressed by:

σσσ
k
1−2 =



σ k
1

σ k
2

τk
12

τk
13

τk
23


=


Qk

11 Qk
12

Qk
21 Qk

22

Qk
33

Qk
44

Qk
55





εk
1

εk
1

γk
12

γk
13

γk
23


= Qk

ε
k
1−2, (3.27)
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where Qk denotes the plane-stress reduced elastic constant matrices of the k-th layer; Qk
i j can

be substituted by the material parameters as:

Qk
11 = Ek

1/
(
1−νk

12νk
21
)
, Qk

12 = νk
12Ek

2/
(
1−νk

12νk
21
)
, Qk

22 = Ek
2/
(
1−νk

12νk
21
)
,

Qk
33 = Gk

12, Qk
44 = Gk

23, Qk
55 = Gk

13,
(3.28)

where the symbols E, ν and G denote the Young’s modules, Poisson’s ratio and shearing
modulus, respectively. The subscripts denote the directions, in which 1 denotes the principal
direction and 2 means the other direction.

 

Fig. 3.9 Illustration of the relationship between 1-2 coordinate and x-y coordinate.

Fig. 3.9 illustrates the relationship between the 1-2 coordinate and x-y coordinate, which
can be converted by:

Tk =


cos2θ k sin2

θ k 2sinθ k cosθ k

sin2
θ k cos2θ k −2sinθ k cosθ k

−sinθ k cosθ k sinθ k cosθ k cos2θ k− sin2
θ k

cosθ k sinθ k

sinθ k cosθ k

 , (3.29)

by which, the stress-strain relations of the k-layer in geometrical x-y coordinate can be
expressed by:

σ k
x−y =

(
Tk)−1

σ k
1−2

=
(
Tk)−1

Qk (Tkεk
x−y
)

= Dkεk
x−y,

(3.30)

where
εk

x−y =
{

εk
xy εk

yy γk
xy γk

xz γk
yz

}T
,

σ k
x−y =

{
σ k

xy σ k
yy τk

xy τk
xz τk

yz

}T
,

(3.31)

and Dk denote the elastic matrix of the k layer in x-y coordinate.



66 Chapter Robust topology optimization with probabilistic uncertainty

In the FEM framework, the elemental stiffness matrix of the composite plate can be
composed by two parts as:

KKK0
e = KKKb

e +KKKs
e, (3.32)

where KKKb
e and KKKs

e denote the bending and shear parts, respectively, which can be represented
by

KKKb
e =

n

∑
k=1

∫
A

1
3
(zk+1− zk)

3
(

Bb
e

)T
Dk

bBb
edA, (3.33)

and

KKKs
e =

n

∑
k=1

∫
A

(
zk+1− zk

)
(Bs

e)
TDk

sBs
edA, (3.34)

in which n denotes the number of layers across the thickness direction, zk is the underside
coordinate of layer k in thickness direction; A denotes the area of e-th element; Bb

e and Bs
e

represent the strain-displacement matrix of the bending and shear part, respectively.
The elemental mass matrix M0

e does not associate to the ply orientations, whose matrix
form can be directly assembled as

M0
e =

∫
A

ρeNTNdA. (3.35)

3.5.2 Numerical examples
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Fig. 3.10 Geometry and boundary conditions of the CCCC square plate.

In this section, we implement robust topology optimization for the laminated plates. Fig.
3.10 depicts the geometry and boundary conditions of the plate, in which the CCCC plate is
clamped around, and an excitation is loaded on the center of the sandwich square plate in
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z-direction. The thickness of the plate is t = 50mm.The design domain is discretized into
a 80× 80 mesh with quadratic elements in x-y plane. The BESO parameters are defined
as follows: the initial design variable xe is set to 1, and the void element xmin is defined as
0.001. The target volume fraction χ is 50%. The evolutionary ratio is set to 0.02, and the
filter radius is 20mm. The penalty parameter p is 3, and the robust parameter is κ = 1. It
is assumed that the plate is a multi-layered composite, in which each ply is composed with
the same orthotropic material but in different orientations. The material properties of the
orthotropic material with deterministic assumption are given in Table 3.2.

Table 3.2 The material properties of the orthotropic material with deterministic assumption.

Parameter Unit Value

E12 GPa 135
E21 GPa 13.5
G12 GPa 6
G13 GPa 6
G23 GPa 5
ν12 - 0.27
ρ g/cm3 1780

In the following, some of the properties are considered to be uncertain due to the realistic
situations. The uncertain parameters are assumed to be independent and follow normal
distribution but has imprecise probabilistic distribution. For each example, three different
loading frequencies are considered. The optimal topologies of several types of laminated
composite plates with different combinations of uncertainties are eventually obtained.

3.5.2.1 A symmetric 3-layer laminated composite plate with uncertain material prop-
erties

In this example, we consider an asymmetric 3-layer laminate with material uncertainty. As
shown in Fig. 3.11, the plate is composed by 3 layers with ply orientation −60◦/0◦/60◦.
Each layer has the same thickness h. The material has uncertain Young’s modulus, Poisson’s
ratio and density, whose imprecise expectation and standard deviation is given in Table
3.3. The other parameters of the material are the same as Table 3.2. The structural mean-
compliance in three different frequencies, 0Hz, 750Hz and 1500Hz, are optimized. The
eigenfrequency of the initial design is 1938Hz.

Fig. 3.12 depicts the topological designs obtained by RTO and deterministic topology
optimization (DTO) for different loading frequencies of the asymmetric 3-layer laminated
plate. It can be seen that the differences of topological designs obtained by the two methods
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Fig. 3.11 Symmetric 3-layer laminated composite plate

Table 3.3 Uncertain material properties.

Parameter Unit Expectation Standard deviation

E21 GPa [12.15, 14.85] [1.215, 1.485]
ν21 - [0.243, 0.297] [0.0243, 0.0297]
ρ g/cm3 [1701, 2079] [170.1,207.9]

 0Hz 750Hz 1500Hz 

RTO 

 
  

DTO 

 

 
 

 

Fig. 3.12 Topological designs obtained by RTO and DTO in different loading frequencies.
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becomes apparent as the excitation frequency gets closer to the eigenfrequency. This indicates
that under static load, the uncertainty of the bending stiffness of the structure does not have a
significant influence on the design. When it comes to dynamic situation, such uncertainty
can be amplified due to its influence on the structural eigenfrequency, which has a further
impact on the structure design. In addition, when the excitation frequency is close to the
structural eigenfrequency, the impact of uncertainty on the structure design appears to be
more obvious. Table 3.4 shows the values of robust objective function and its expectation
and standard deviation of the topological designs shown in Fig. 3.12 under uncertainties.
Besides, the structural eigenfrequencies in deterministic assumption are also presented. It is
clear that the RTO based designs have better performance than that of DTO when it comes to
uncertainties. In addition, the eigenfrequency of RTO based designs are always higher than
that of DTO to prevent the structural eigenfrequency from getting too close to the excitation
frequency in case of uncertainty.

Table 3.4 The objective function values of compliance and their expectation and standard
deviation under uncertain material properties and structural eigenfrequency of the topologies
shown in Fig. 3.12.

Loading frequency Method E (Cd) SD(Cd) G Eigenfrequency

0Hz
RTO 10.6867 0.2248 10.9115 1632
DTO 10.6886 0.2249 10.9134 1631

750Hz
RTO 11.7430 0.4559 12.1989 1645
DTO 11.8709 0.4595 12.3304 1637

1500Hz
RTO 31.6268 10.8266 42.4534 1838
DTO 56.0681 35.8288 91.8969 1708

Fig. 3.13 presents the iterative histories for each loading frequency. We note that there
might be abrupt jumps in the process, but the overall convergence is good.

3.5.2.2 An unequal thickness asymmetric 8-layer composite plate with simultaneous
uncertainty

In this example, we consider an unequal thickness asymmetric 8-layer composite plate
structure with both uncertainties of material and angle. The unequal thickness asymmetry
8-layer composite plate is shown in Fig. 3.14, which can be described as 0◦h/90◦2h/−
45◦h/45◦h/−45◦h/45◦h/90◦2h/0◦h. All the parameters are indicated in Table 3.5, and the
rest of the parameters are assumed to be deterministic as shown in Table 3.2 and Fig. 3.14.
The eigenfrequency of the initial design is 2042Hz.
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Fig. 3.13 Iteration histories of the RTO in different loading frequencies: (a) 0Hz; (b) 750Hz;
(c) 1500Hz.
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Fig. 3.14 Illustration of the unequal thickness asymmetry 8-layer composite plate

Table 3.5 Uncertain material properties.

Parameter Unit Expectation standard deviation

E21 GPa [12.15, 14.85] [1.215, 1.485]
ν21 - [0.243, 0.297] [0.0243, 0.0297]
ρ g/cm3 [1701, 2079] [170.1,207.9]
θ1

◦ [44,46] [0.9,1.1]
θ2

◦ [-44,-46] [0.9,1.1]
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 Fig. 3.15 Topological designs obtained by RTO and DTO in different loading frequencies.

Fig. 3.15 depicts the top view of the optimized unequal thickness asymmetry 8-layer
composite plate obtained by the RTO and DTO. For various loading frequencies, the topo-
logical designs of RTO are different from that of DTO. Table 3.6 shows the value of the
robust objective function and their expectation and standard deviation under uncertainties
and the eigenfrequency in deterministic assumption. By comparison, the RTO designs are
better than the DTO designs, especially for the case with high-frequency load. Fig. 3.16
presents the evolutionary histories of the RTO in each frequency, which shows that there is
no convergence difficulty in the optimization process.

Table 3.6 The objective function values of compliance and their expectation and standard
deviation under uncertain material properties and structural eigenfrequency of the topologies
shown in Fig. 3.15.

Loading frequency Method E (Cd) SD(Cd) G Eigenfrequency

0Hz
RTO 10.5007 0.4215 10.9222 1769
DTO 10.5211 0.4234 10.9445 1763

750Hz
RTO 11.4654 0.6508 12.1162 1780
DTO 11.4868 0.6578 12.1446 1774

1500Hz
RTO 21.4951 5.4772 26.9723 1965
DTO 25.5157 9.4077 34.9234 1845



72 Chapter Robust topology optimization with probabilistic uncertainty

 

  

 

 

(a) 

(c) 

Fig. 3.16 Iteration histories of the RTO in different loading frequencies: (a) 0Hz; (b) 750Hz;
(c) 1500Hz.

3.6 Robust concurrent topology optimization of structure
and its composite material

In this section, we extend the proposed method to the concurrent design of two-scale
composite structures.

3.6.1 Concurrent topology optimization

Consider a two-scale structure as shown in Fig. 3.17, it is assumed that the boundary
condition and external excitation of the macro-structure are already known. Fig. 3.17(b)
represents the micro-structure of composite material that constructs the macro-structure. The
micro-structure is composed of two basic materials: phase 1 in blue and phase 2 in pink.
Assume that the composite material is constituted by periodic unit cell (PUC), which can
be represented by Fig. 3.17(c). We use xa and xi to express the design variable at macro-
and micro-scales, respectively, and NE and Ne denote their amount. For the convenience of
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Fig. 3.17 Composite material composed two-scale structure: (a) macro-structure; (b) micro-
structure of composite material; (c) periodic unit cell (PUC).

distinction, we use subscripts 1 and 2 to index the density and elasticity modulus of phase 1
and phase 2, respectively.

The concurrent topology optimization (CTO) for minimal dynamic-compliance of the
two-scale structure can be expressed by:

min
xa,xi

: Cd,

s.t. : Cd = FFFTUUU ,

m(xa,xi)−χm0 ≤ 0,

(3.36)

where the objective function Cd is the structural compliance. At the micro-scale, xi = xmin

or 1 identifies the distribution of the two-phase composite, in which xi = 1 defines the i-th
element as phase 1, otherwise it is filled by phase 2. By adopting the solid isotropic material
with penalization (SIMP) scheme, the density and elasticity matrix of the i-th element can be
associated with design variable, namely:

ρi (xi) =xiρ1 +(1− xi)ρ2,

Ci (xi) =xp
i C1 +

(
1− xp

i
)

C2,
(3.37)

where p denotes the penalization index. For each PUC, their effective density and elasticity
matrix ρH (xi) and CH (xi) can be obtained from the numerical homogenization theory
[142, 427] when the base cell is very small compared to the size of the structure. The



74 Chapter Robust topology optimization with probabilistic uncertainty

effective properties of the PUC with material interpolation scheme is directly given by

ρ
H (xi) =

1
|Y |

Ne

∑
i=1

Vi [xiρ1 +(1− xi)ρ2],

CH (xi) =
1
|Y |

Ne

∑
i=1

∫
Y
(ε0− ε)T [xp

i C1 +
(
1− xp

i
)

C2
]
(ε0− ε)dY ,

(3.38)

where Vi is the volume of the i-th element on micro-scale; |Y | denotes the total volume
(area for 2D cases) of the PUC; ε0 is the unit test strains, e.g. [1,0,0]T , [0,1,0]T , [0,0,1]T ,
for 2D cases. The strain fields ε are induced by these test strains with the periodical
boundary conditions. We denote that the effective density and elasticity matrix depend on
the distribution of design variables on the micro-scale. For more details on this formulation,
one may refer to e.g. [337, 141].

At the macro-scale, xa = xmin or 1 determines whether the element is void or solid,
respectively, in which the solid elements are constructed by two-phase composite. Following
[156], an alternative interpolation scheme is adopted to avoid the so-called artificial modal
[302] phenomenon. This interpolation can be expressed by:

ρa (xa,xi) =xaρ
H (xi) ,

Ca (xa,xi) =

[
xmin− xp

min
1− xp

min
(1− xp

a)+ xp
a

]
CH (xi) .

(3.39)

In Eq. (3.36), χ denotes the target mass fraction and m0 = ∑
NE
a=1Vaρ1 is the mass of the

full filled design. The mass of the topological design m(xa,xi) can be expressed by:

m(xa,xi) =
NE

∑
a=1

xaVaρ
H (xi) . (3.40)

Here, we note that there are many kinds of multi-scale topology optimization methods
(see e.g. [115] for a review), in most of which the volume fractions on each scale were
arbitrarily appointed separately. This artificial volume distribution would limit the final
structural performance. In this work, we perform the topology optimization of macro- and
micro- structures under a uniform weight constraint [416]. To this end, the sensitivity on
both scales is treated as follows:

ξa =da

/
∂m
∂xa

,

ξi =di

/
∂m
∂xi

,

(3.41)
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where ξa and ξi denote the finalized sensitivity number on the macro-scale and micro-scale,
respectively; ∂m

∂xa
and ∂m

∂xi
are the variations of the total weight m to the design variables on

macro- and micro- scales. From Eqs. (3.37)-(3.39), we obtained:

∂m
∂xa

=Vaρ
H (xi) ,

∂m
∂xi

=
Vi

|Y |
(ρ1−ρ2)

NE

∑
a=1

xaVa.

(3.42)

3.6.2 Robust concurrent topology optimization

Based on the IHPA method, the robust concurrent topology optimization (RCTO) for the
dynamic-compliance minimizing can be mathematically stated by:

min
xa,xi

: G = E (Cd)+κSD(Cd) ,

s.t. : m(xa,xi)−χm0 ≤ 0.
(3.43)
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Fig. 3.18 Flow chart of the RCTO procedure.

Fig. 3.18 shows the flowchart of the RCTO procedure, and its detailed explanation is
outlined as follows:

Step 1: Initializing: Carry out the finite element mesh. Initialize the original design of the
macro-structure and the micro-structure by defining xa and xi.
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Step 2: BESO definition: Define the BESO parameters such as the target weight fraction χ ,
the evolutionary ratio ER and the filter radius for macro-scale rmac

min and micro-scale
rmic

min.

Step 3: Uncertainty modeling: Use the hybrid interval random model to describe the un-
certain parameters with imprecise probability. Input some important distribution
parameters, for instance, the expectation and standard deviation.

Step 4: Homogenization: Calculate the effective property of PUC. Meanwhile, derive the
partial derivatives of the effective elastic matrix and the effective density matrix with
respect to the related uncertain parameter.

Step 5: IHPA processing: Perform IHPA as shown in Section 3.3. Carry out the maximal
expectation E and standard deviation SD of the robust objective function.

Step 6: Sensitivity deriving, normalizing and filtering: Calculate the sensitivity of the
objective function to design variables at each scales; Process the sensitivity by Eq.
(3.41) to for the concurrent design; Perform sensitivity filtering as shown in Eq. (2.28).

Step 7: Optimization process stabilizing: For the l-th iteration (l > 1), average the sensitivity
with its history value as shown in Eq. (2.30).

Step 8: Multi-scale structure concurrently updating: Reconstruct the macro-structure and
composite material according to the ranking of the elemental sensitivity numbers at
both scales. With the limitation of weight fraction χ , the design variables of the
element of high sensitivity are assigned to 1, the others are assigned to 10−6. As a
result, the topologies of both scales are updated concurrently.

Step 9: Weight fraction checking: Repeat Steps 4-8 when the weight fraction of current
iteration does not meet the target weight fraction. And then determine the target weight
fraction of the two-scale system for the next iteration as follows

χ
l+1 = χ

l (1±ER) , (3.44)

in which, the weight fraction is reduced when the current weight fraction χ l is larger
than χ; otherwise the weight fraction is increased.

Step 10: Convergence checking: Repeat Step 4-9 until the objective function is convergent.
The convergence criterion has been presented in Eq. (2.32).

Step 11: End: Output the final robust design of structure and its composite material.
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3.6.3 Numerical examples

In this section, both of 2D and 3D numerical examples are presented. For the 2D cases, the
design domain is discretized by four nodes quadrilateral elements at both scales. The size of
PUCs is 1mm×1mm, which is divided into a 50×50 finite element mesh. For the 3D case,
the design domain is meshed by 1mm×1mm×1mm hexahedral elements, which is divided
into a 14×14×14 finite element mesh. Fig. 3.19 shows the initial design of PUC, where the
elements in blue denote phase 1 and the green ones represent phase 2. Based on the BESO
framework, the initial design of macro-structure is a full design with initial design variable
xa = 1 and xmin = 10−6 is adopted in this work. The penalty parameters p at both scales are
3 and the evolutionary ratio ER is 0.02. The filter radius is 3 times of the elemental side
length at each scale.

 
Phase 2 

Phase 1 

(a) (b) 

Fig. 3.19 Initial designs of PUC: (a) for 2D case; (b) for 3D case.

Table 3.7 Material properties adopted in this section.

Material Properties Expectation Standard deviation

Young’s modulus (GPa) [190, 210] [19, 21]
Phase 1 Poisson’s ratio [0.285, 0.315] [1.425, 1.575]×10−3

Density (g/mm3) [7900, 8100] [790, 810]

Young’s modulus (GPa) [140, 160] [14, 16]
Phase 2 Poisson’s ratio [0.285, 0.315] [1.425, 1.575]×10−3

Density (g/mm3) [790, 810] [79, 81]

Table 3.7 shows the uncertain material properties adopted in this section, in which the
parameters are assumed to follow normal distribution and the expectation and standard
deviation are interval value. We should note that the normal distribution is not bounded, by
which there might be some extreme conditions, where the Young’s modulus or density has
negative value. To solve such rare phenomena, one may refer to [397].
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3.6.3.1 Cantilever beam with different robust optimization parameter κ

 

Fig. 3.20 Illustration of the cantilever beam.

In this example, various robust optimization parameters κ are considered. The geometry
and boundary condition of the 2D cantilever beam are shown in Fig. 3.20. The length and
height of the design domain are 120mm and 40mm respectively. The force is assumed to be
periodic, with an amplitude of 1000N and a frequency of 500Hz. The total weight constraint
is 50%. Three different robust optimization parameters κ = 1, 3 and 5 are employed.

Fig. 3.21 shows the results of DCTO and RCTO. It is observed that there are differences in
both layouts of macro-structure and PUC. With different robust parameter κ , the topological
designs are also changed. These results show that RCTO can figure out topological designs
different from DCTO. Corresponding comparison on objective function value of the designs
shown in Fig. 3.21 are provided in Table 3.8, in which the values are predicted by the
proposed IHPA method. It can be seen that the compliance of the RCTO designs are lower
than the DCTO-based design, which means that the proposed RCTO performs better than
the DCTO when it comes uncertainty. The value of compliance decreases gradually with
increasing κ .

Table 3.8 Objective function values of results shown in Fig. 3.21 with uncertainties.

Method Value of objective function Difference

DCTO 842.3289 -
RCTO,κ = 1 830.5541 -11.7748
RCTO,κ = 3 824.9767 -17.3522
RCTO,κ = 5 824.5547 -17.7742

Table 3.9 compares the results simulated by IHPA and MCS to confirm the accuracy
of IHPA. In the implementation of the MCS, we adopt a sample size of 106, in which the
sample size of the random variable and interval values are both 103. The FEA calls for IHPA
and MCS are 16 and 106, respectively. Two conclusions can be drawn from the comparison:
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 Fig. 3.21 Topological designs of the macro-structure, PUC, 3x3 assembled PUC and the
effective elasticity matrix: (a) DCTO; (b) κ = 1; (c) κ = 3; (d) κ = 5.

On the one hand, there are some errors of the IHPA results compared to the MCS, which are
within acceptable limits. On the other hand, the IHPA calculates the worst-case objective
function with only 16 FEA calls, which is a great improvement over the MCS that requires
106 times of FEA calls.

3.6.3.2 Michell-type structure with different weight constraint

In this example, we consider a Michell-type structure. Fig. 3.22 depicts the Michell-type
structure, in which the length and height of the structure are 90mm and 40mm, respectively.
The force is is applied at the bottom center of the structure, with an amplitude of 1000N and
a frequency of 2000Hz. Three different weight constraints: 75%, 40% and 5% are employed.
The robust parameter is κ = 1. Fig. 3.23 depicts the topological designs of RCTO and DCTO
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Table 3.9 Accuracy confirmation of IHPA and by comparing with MCS on the objective
function value.

Topological design IHPA MCS Relative errors

DCTO 842.3289 855.6219 1.55%
RCTO,κ = 1 830.5541 844.7816 1.68%
RCTO,κ = 3 824.9767 838.1235 1.57%
RCTO,κ = 5 824.5547 836.6609 1.45%

 

Fig. 3.22 Geometry and boundary condition of the Michell-type structure

with different weight constraints. The optimal distributions of macro-structure and PUC
have different forms under different target weight fraction. By comparing the robust and
deterministic design under different volumes, the topological distributions of the two designs
are also significantly different. Table 3.10 compares the objective function value of these
designs and all the values are calculated by IHPA. The comparison shows that under the
same weight fraction, the result obtained by RCTO is smaller than that obtained by DCTO. It
illustrates that the proposed RCTO method performs better when it comes to uncertainties.

Table 3.10 Objective function values of the designs shown in Fig. 3.23.

Weight constraint RCTO DCTO

75% 73.0651 74.9310
40% 78.8372 79.6482
5% 277.1851 282.0695

Fig. 3.24 shows the iteration history of RCTO with different weight fraction constraints,
where Fig. 3.24(a), (b) and (c) represent the case of χ =75%, χ =40% and χ =5% re-
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spectively and some intermediate topology designs are also provided. It illustrates that the
proposed RCTO method has no convergence difficulties.

3.6.3.3 3D prismatic structure

Fig. 3.25 depicts a 3D prismatic structure with fixed left side. The length, width and height
of the structure are 24mm, 8mm and 8mm, respectively. The design domain is discretized
into 24× 8× 8 eight-node hexahedral elements. A periodic force F with a magnitude of
1000N is loaded on the right bottom of the structure. The weight constraint is defined as 70%
in this example. Two different excitation frequencies, 1000Hz and 2000Hz are considered.
The robust optimization weight parameter is set to κ = 1.

Fig. 3.26 shows the topological designs of the two-scale 3D prismatic structure, in which
the volume fraction of solid and phase 1 on the corresponding scale are all shown. The RCTO
and DCTO designs are compared directly. It can be observed that both approaches work
well. The corresponding topological layouts of the macro-structures and composite micro-
structures are figured out. The results that the final designs of the structure are different due to
the loading frequency, which indicates that it is necessary to optimize separately for different
frequencies. By comparing the optimization results under different excitation frequencies, it
can be found that the topology configurations obtained by RCTO and DCTO are also quite
different for the existence of uncertainty. Such differences in design will lead to performance
changes under uncertain conditions.

Table 3.11 Objective function values of the designs shown in Fig. 3.26

Frequency (Hz) RCTO DCTO

1000 59.6613 59.7918
2000 63.3583 64.1979

Table 3.11 shows the objective function value of different topological designs shown in
Fig. 3.26. All the results are calculated by the IHPA method. By comparison, it is found that
the results of RCTO are smaller than that of DCTO. That means that the proposed method
can better realize concurrent topology optimization under imprecise uncertainty. This proves
the robustness of the proposed RCTO method, which performs better than the traditional
DCTO method under the hybrid interval random modeled imprecise uncertainty, again.
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3.7 Conclusion

In this Chapter, we investigated the robust topology optimization method for the uncertainties
with imprecise quantities in frequency-domain dynamic structures. A hybrid interval random
model was employed to describe the probabilistic parameters. An improved hybrid pertur-
bation analysis method was developed for efficiently estimating the dynamic performances
of the structures at very low computational costs. We have applied this approach to several
structures, including conventional one material structures, laminated composite plates and
multi-scale composite structures. The numerical examples have illustrated the efficiency of
the proposed method.

In general, the proposed method has potential to deal with the uncertainties that may be
encountered in topology optimization for practical engineering. However, we should also
note that the this method might not be applicable if the problem is of high nonlinearity or the
uncertainty is of strong correlation and spatial dependency.
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Fig. 3.23 Topological designs of the 2D Michell-type structure acquired by RCTO (left)
and DCTO (right) with different weight fraction constraints: (a) χ =75%; (b) χ =40%;
(c)χ =5%.
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(c)

Fig. 3.24 Iteration history of the Michel-type structure with different weight fraction con-
straints: (a) χ =75%; (b) χ =40%; (c)χ =5%.
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Fig. 3.25 Illustration of the 3D prismatic structure.
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Fig. 3.26 Topological designs of the two-scale 3D prismatic structure under different loading
frequencies: (a) 1000Hz; (b) 2000Hz.



Chapter 4

Introducing interval-field uncertainties
in topology optimization

4.1 Introduction

In this Chapter, we propose to introduce non-probabilistic uncertainty with spatial dependence
into topology optimization. A recently emerged interval field model [280] is employed
for modeling the spatially varied non-probabilistic uncertainties. The uncertain material
properties and loading are considered. Based on the robust topology optimization framework,
we investigate an interval-field based perturbation analysis (IFPA) method to predict the
median and radius of structural compliance under uncertainties, and derive the corresponding
expressions of sensitivity analysis. We illustrate the accuracy and efficiency of the IFPA
in predicting the structural compliance by compared with the Monte-Carlo Simulations.
The numerical examples illustrate the potential of employing such spatially-varied interval
uncertainties in topology optimization.

4.2 Brief review of interval field model

In this section, we briefly review the interval field model and interval Karhunen-Loève (K-L)
expansion method proposed by Ni and Jiang [280].

4.2.1 Definition of interval field

A spatially varied uncertain-but-bounded quantity can be denoted by Z (x) ∈ Z I (x), in
which Z denotes the uncertain parameter. It is a scalar related to its spatial location x; Z I

represents the interval of this uncertainty. For a given spatial point xk, the interval of the
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Fig. 4.1 Correlation of two interval variables.

quantity can be represented by Z I (xk) =
[
Z (xk) ,Z (xk)

]
, in which Z (xk) and Z (xk)

are the lower and upper bound of the quantity at this location. The dimension of the interval
field is determined by the dimension of x. The midpoint Z m (x) and radius Z r (x) of the
interval field can be expressed by:

Z m (x) =
Z (x)+Z (x)

2
and Z r (x) =

Z (x)−Z (x)
2

. (4.1)

By employing the ellipsoid convex model [168, 173], the covariance function of the
uncertainty can be expressed by:

CZ I (x1,x2) =Cov
(
Z I (x1) ,Z

I (x2)
)
= sinθ cosθ

(
r2

1− r2
2
)
, (4.2)

where CZ I (x1,x2) denotes the covariance function of the uncertainty between different
locations; θ , r1 and r2 denotes the relevant angle, major length and minor length, respectively.
They are quantified through the ellipse enclosing all their bivariate samples. Fig. 4.1 depicts
the correlation of two interval variables, in which the symbols θ , r1 and r2 are expressed.

Accordingly, the correlation coefficient function can be presented by:

RZ (x1,x2) = R
(
Z I (x1) ,Z

I (x2)
)
=

CZ (x1,x2)

Z r (x1)Z r (x2)
. (4.3)



4.2 Brief review of interval field model 89

4.2.2 Truncated interval K-L expansion

An interval field in the K-L expansion form can be expressed by:

Z (x) = Z m (x)+
∞

∑
i=1

Z r (x)
√

λiφi (x)γi, γi ∈ [−1,1] , (4.4)

where Z m and Z r are the midpoint function and the radius function of the interval field,
respectively, as previously stated; λi and ϕi (x) denotes the eigenvalues and eigenfunctions
of the correlation coefficient function RZ (x1,x2), in which λi ∈ [0,∞); γi denote a series of

dimensionless uncorrelated interval variables that satisfy
∞

∑
i=1

γ2
i ≤ 1. From Mercer’s Theorem

[376], the eigenvalues and eigenfunctions satisfies the following spectral decomposition with
respect to the correlation coefficient function, which is:

RZ (x1,x2) =
∞

∑
i=1

λiφi (x1)φi (x2), (4.5)

in which the eigenvalues and eigenfunctions can be obtained by solving the following
homogeneous Fredholm integral equation of the second kind [14]:∫

D
RZ (x1,x2)φi (x1)dx1 = λiφi (x2) , (4.6)

where the orthogonal eigenfunctions are normalized. It is noted that the Fredholm integral
equation can be hardly analytically solved for many problems [125]. Following [280, 281],
we employ the Nyström method [14] in this work. The eigenvalue problem shown in Eq.
(4.6) can be approximated by:

N

∑
i=1

wiRZ (xi,x) φ̂ j (xi) = λ̂ jφ̂ j (x) , (4.7)

where λ̂ j and φ̂ j denote the approximated value of the true eigenvalues λ j and eigenfunctions
φ j; i denotes the integration points; w is the integration weight coefficient. For more details
of the Nyström method in this interval K-L expansion, one may refer to [280, 281]. Besides,
this problem can also be solved by the collocation method [123], the Galerkin method [124],
to name a few.
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For practical considerations, such interval K-L expansion with infinite terms can be
approximated by truncating with only finite principle terms. From Eq. (4.5), we have:

∞

∑
i=1

λi = |D | , (4.8)

where |D | denotes the area of the spatial domain D . Taking only the first M terms, we have
following approximation:

M

∑
i=1

λi ≤ |D | , (4.9)

in which M≪ ∞. The approximating index of such truncating to the original interval field
can be denoted by:

τ =
1
|D |

M

∑
i=1

λi, (4.10)

where if the value of M is sufficient, the precision of such approximating can be guaranteed.
The interval K-L expansion can be approximated by the truncated M terms, namely:

Z (x)≈Z m (x)+
M

∑
i=1

Z r (x)
√

λiφi (x)γi, γi ∈ [−1,1] . (4.11)

4.3 Estimation of structural compliance

4.3.1 Interval field-based perturbation analysis (IFPA)

We consider a non-damping steady-state system, whose equilibrium equation has been
described in Chapter 2. Combining the spatially varied uncertainties, the equation can be
expressed by:

KKKd (Z )uuuI = FFF (Z ) , (4.12)

where KKKd (Z ) contains the material and geometry uncertainties, and FFF (Z ) expresses the
loading uncertainty and uuuI represents the interval of uncertain displacement response caused
by the uncertainties.

Referring to the truncated interval K-L expansion shown in Eq. (4.11), we can use the
first-order Taylor series expansion at the midpoints and ignoring the higher-order items to
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approximate the uncertain dynamic stiffness matrix and force vector, given by:

KKKd (Z )≈ KKKd,0 +
M

∑
i=1

∂KKKd (Z )

∂γK
i

∣∣∣∣
γγγK=0

γ
K
i ,

FFF (Z )≈ FFF0 +
M

∑
i=1

∂FFF (Z )

∂γF
i

∣∣∣∣
γγγF=0

γ
F
i ,

(4.13)

where KKKd,0 and FFF0 are the deterministic term; M denotes the truncating number of the
interval K-L expansion as previously stated. The superscript of the standard uncorrelated
interval variable γi indicates its affiliation. The partial derivation of the mean stiffness matrix
and force vector with respect to γi can be obtained by using the chain rule as:

∂KKKd (Z )

∂γK
i

=
∂KKKd (Z )

∂Z

∂Z (x)
∂γK

i
,

∂FFF (Z )

∂γF
i

=
∂FFF (Z )

∂Z

∂Z (x)
∂γF

i
,

(4.14)

where ∂KKKd(Z )
∂Z and ∂FFF(Z )

∂Z denotes partial derivation of the dynamic stiffness matrix and
loading vector with respect to the uncertain parameter Z . For instance, Z can be Young’s
modules, Poisson’s ratio, density, thickness and loading amplitude. For example, in the FEM
framework, they can be uniformly written as:

∂KKKd (Z )

∂Z
=
∫

Ω

(
BBBT ∂DDD

∂Z
BBB+2BBBT DDD

∂BBB
∂Z

)
−ω

2
p

(
∂ρ

∂Z
NNNT NNN +2ρNNNT ∂NNN

∂Z

)
dΩ,

∂FFF (Z )

∂Z
=
∫

Γ

NNNT ∂ ttt
∂Z

dΓ.

(4.15)

Another partial derivation shown in Eq. (4.14), ∂Z (x)
∂γK

i
, can be directly derived from the

truncated interval K-L expansion, which is:

∂Z (x)
∂γi

= Z r (x)
√

λiϕi (x) . (4.16)

The uncertain displacement response uuuI can be denoted by the sum of deterministic value
uuu0 and perturbation value uuu′, namely:

uuuI = uuu0 +uuu′. (4.17)
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Substituting Eqs. (4.13) and (4.17) into Eq. (4.12), yields:(
KKKd,0 +

M

∑
i=1

∂KKKd (Z )

∂γK
i

∣∣∣∣
γγγK=0

γ
K
i

)(
uuu0 +uuu′

)
= FFF0 +

M

∑
i=1

∂FFF (Z )

∂γF
i

∣∣∣∣
γγγF=0

γ
F
i . (4.18)

Taking the property that KKKd,0 uuu0 = FFF0 and neglecting the second-order item, Eq. (4.18)
has the following approximating:(

M

∑
i=1

∂KKKd (Z )

∂γK
i

∣∣∣∣
γγγK=0

γ
K
i

)
uuu0 +KKK0uuu′′′ ≈

M

∑
i=1

∂FFF (Z )

∂γF
i

∣∣∣∣
γγγF=0

γ
F
i , (4.19)

namely,

uuu′′′ ≈ KKK−1
0

(
M

∑
i=1

∂FFF (Z )

∂γF
i

∣∣∣∣
γγγF=0

γ
F
i −

(
M

∑
i=1

∂KKKd (Z )

∂γK
i

∣∣∣∣
γγγK=0

γ
K
i

)
uuu0

)
, (4.20)

by which, the uncertainty of the displacement response can be efficiently approximated.

4.3.2 Structural compliance with uncertainty

In this section, we consider the structural compliance in dynamics. Note that other dynamic
performance indices can be defined in a similar way, such as eigenvalues. The structural
compliance with uncertainty can be stated by:

Cd (Z ) = FFFT (Z )uuuI, (4.21)

where the uncertain structural compliance Cd (Z ) expresses the product of uncertain loading
and displacement response. Substituting Eqs. (4.13), (4.17) and (4.20) into Eq. (4.21) and
neglecting the high-order terms, yields:

Cd (Z )≈ FFFT
0 uuu0 +Pi(Z )γF

i +Qi(Z )γK
i , (4.22)

in which, for convenience, we denote:

Pi(Z ) = 2uuuT
0

∂FFF (Z )

∂γF
i

∣∣∣∣
γγγF=0

,

Qi(Z ) =−uuuT
0

∂KKKd (Z )

∂γK
i

∣∣∣∣
γγγK=0

uuu0.

(4.23)
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Many approaches were developed to minimize the influence of uncertainty in topology
optimization. In this work, we employ the robust optimization approach to minimize the
worst case of the structural performance. Specifically, the upper bound of the compliance
should be determined, which can be obtained by solving the following set of a convex
optimization problem:Cd(Z ) = max

γγγF ,γγγK
: FFFT

0 uuu0 +
M

∑
i=1

Pi(Z )γF
i +

M

∑
i=1

Qi(Z )γ
K
i ,

s. t. γγγ
F ,γγγK ∈Ω

M,

(4.24)

where Cd(Z ) denotes the upper bound of the structural compliance with uncertainty Z . The
above convex optimization problem can be solved by adopting the Lagrange multiplier as

Cd(Z ) = FFFT
0 uuu0 +∥PPP(Z )∥2 +∥QQQ(Z )∥2 , (4.25)

where ∥�∥2 denotes the Euclidean norm operator; PPP(Z ) and QQQ(Z ) are the vectors that
contain Pi(Z ) and Qi(Z ), respectively. For clarity, we denote

Cm
d = FFFT

0 uuu0 and Cr
d (Z ) = ∥PPP(Z )∥2 +∥QQQ(Z )∥2 , (4.26)

in which Cm
d denotes the median of the structural compliance, and Cr

d (Z ) denotes the radius
from the maximum to the median of the structural compliance.

4.4 Topology optimization formulations

4.4.1 Material interpolation scheme

Considering the well-known Solid Isotropic Material with Penalization (SIMP) model [30],
the elemental pseudo-density can be associated to the material properties, which enables
the optimization algorithm making topological designs. The interpolation scheme can be
uniformly expressed by:

E (ϕ) = [β +(1−β )ϕ
p]E0,

ρ (ϕ) = [β +(1−β )ϕ
q]ρ0,

(4.27)

where E0 and ρ0 denotes the Young’s modulus and density of the material; ϕ denotes the
pseudo-density for the topology optimization problem, in which ϕ ∈ [0,1]; E (ϕ) and ρ (ϕ)

are the pseudo-density interpolated Young’s modulus and density; β is a small value to avoid
singularity when a zero pseudo-density is taken. In this work, we choose β = 10−6; p and q
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are the penalty factors for Young’s modulus and density, respectively. Typically, p = 3 for
the Young’s modulus and p = 1 for the density.

Following [291], we adopt an alternative interpolation scheme of the SIMP model to
avoid the artificial localized modes in the low density area [273] of the vibration problem, in
which the penalty factor of density are modified to:

q =

{
9, if ϕ ≤ ϕthreshold,

1, otherwise,
(4.28)

in which, ϕthreshold is a value to determine whether the element is of "low-density". In this
paper, ϕthreshold = 0.1. As reported by [351], the discontinuity of Eq. (4.28) doesn’t affect
the topology optimization procedure in this work.

4.4.2 Robust topology optimization

Based on the robust topology optimization framework, the topology optimization formulation
considering the spatially varied uncertainty Z with interval field model can be stated by:

min
ϕ∈[0,1]

: G =Cm
d +κ ·Cr

d (Z ) ,

s. t. : Cd (Z ) = FFFT (Z )uuuI,

V −χV0 ≤ 0,

(4.29)

where G denotes the objective function, which is the linear combination of the median and
radius of the structural compliance in the worst case; κ is a robust parameter that governs
the impact of the uncertainties on the objective function. A larger value of κ implies the
stronger need for the robustness; V denotes the structural volume (area in 2D), which can
be computed by V = ∑

Ne
e=1 ϕeVe, in which Ne is the number of the design variables and Ve is

the elemental volume; V0 = ∑
Ne
e=1Ve is the total volume of the design domain; χ denotes the

target volume fraction constraints.

4.4.3 Sensitivity analysis

In this section, the sensitivities of the two components of objective function are separately
derived. The adjoint method [194] is employed.

∂G

∂ϕe
=

∂Cm
d

∂ϕe
+κ ·

∂Cr
d (Z )

∂ϕe
. (4.30)
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By introducing a Lagrange multiplier vector ΦΦΦ , which has the same dimension to uuu0, the
first term of the objective function can be expanded to:

Ĉm
d = FFFT

0 uuu0 +ΦΦΦ
T (KKKd,0uuu0−FFF0

)
, (4.31)

in which KKK0uuu0−FFF0 = 0, thus for arbitrary value of ΦΦΦ we have Ĉm
d = Cm

d . Taking the
derivation of Eq. (4.31) with respect to the pseudo-density, yields:

∂Cm
d

∂ϕe
=

∂FFFT
0

∂ϕe
uuu0 +FFFT

0
∂uuu0

∂ϕe
+ΦΦΦ

T
(

∂KKKd,0

∂ϕe
uuu0 +KKKd,0

∂uuu0

∂ϕe
− ∂FFF0

∂ϕe

)
= ΦΦΦ

T ∂KKKd,0

∂ϕe
uuu0 +

(
FFFT

0 +ΦΦΦ
T KKKd,0

) ∂uuu0

∂ϕe
+

∂FFFT
0

∂ϕe

(
uuu0−ΦΦΦ

T) , (4.32)

where the load is assumed to be pseudo-density independent in this work, which means
∂FFFT

0
∂ϕe

= 0. To vanish the part with unknown derivation ∂uuu0
∂ϕe

, let ΦΦΦ
T take the following value:

ΦΦΦ
T =−KKK−1

d,0FFFT
0 =−uuu0

T , (4.33)

by which the sensitivity of Cm
d can be expressed by:

∂Cm
d

∂ϕe
=−uuu0

T ∂KKKd,0

∂ϕe
uuu0. (4.34)

Similarly, the radius shown in Eq. (4.26)2 can be expanded to:

Ĉr
d (Z ) =

√
M

∑
i=1

P2
i +µµµT

i
(
KKKd,0uuu0−FFF0

)
+

√
M

∑
i=1

Q2
i +θθθ

T
i
(
KKKd,0uuu0−FFF0

)
, (4.35)

where µµµ and θθθ are both a series of arbitrary vectors that have the same dimension to uuu0. The
subscript of µµµ and θθθ denote truncated interval K-L expansion terms they belong to. Taking
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the partial derivation of Eq. (4.35) with respect to ϕe, we have:

∂Cr
d (Z )

∂ϕe
=

M
∑

i=1

[
2Pi

(
2∂ 2FFFT (Z )

∂γF
i ∂ϕe

∣∣∣
γF=0

uuu0 + 2∂FFFT (Z )

∂γF
i

∣∣∣
γF=0

∂uuu0
∂ϕe

)
+µµµT

i

(
KKKd,0

∂uuu0
∂ϕe

+
∂KKKd,0
∂ϕe

uuu0− ∂FFF0
∂ϕe

)]
2

√
M
∑

i=1
P2

i +µµµT
i
(
KKKd,0uuu0−FFF0

)

+

M
∑

i=1

[
2Qi

(
uuuT

0
∂ 2KKK(Z )

∂γK
i ∂ϕe

∣∣∣
γK=0

uuu0 +2uuuT
0

∂KKK(Z )

∂γK
i

∣∣∣
γK=0

∂uuu0
∂ϕe

)
+θθθ

T
i

(
KKKd,0

∂uuu0
∂ϕe

+
∂KKKd,0
∂ϕe

uuu0− ∂FFF0
∂ϕe

)]
2

√
M
∑

i=1
Q2

i +θθθ
T
i
(
KKKd,0uuu0−FFF0

) ,

(4.36)
in which, as previously stated, we use the property that:

∂ 2FFFT (Z )

∂γF
i ∂ϕe

∣∣∣∣
γF=0

= 000 and
∂FFF0

∂ϕe
= 000, (4.37)

and Eq. (4.36) can be simplified to:

∂Cr
d (Z )

∂ϕe
=

1
2∥PPP(Z )∥2

M

∑
i=1

[
µµµ

T
i

∂KKKd,0

∂ϕe
uuu0 +

(
4Pi

∂FFFT (Z )

∂γF
i

∣∣∣∣
γF=0

+µµµ
T
i KKKd,0

)
∂uuu0

∂ϕe

]

+
1

2∥QQQ(Z )∥2

M

∑
i=1

[
2QiuuuT

0
∂ 2KKK (Z )

∂γK
i ∂ϕe

∣∣∣∣
γK=0

uuu0 +θθθ
T
i

∂KKKd,0

∂ϕe
uuu0

+

(
θθθ

T
i KKKd,0 +4QiuuuT

0
∂KKK (Z )

∂γK
i

∣∣∣∣
γK=0

)
∂uuu0

∂ϕe

]
.

(4.38)
To vanish the items with ∂uuu0

∂ϕe
, we take the following values for the Lagrange multipliers

µµµ and θθθ :

µµµ
T
i =−KKK−1

d,0

(
4Pi

∂FFFT (Z )

∂γF
i

∣∣∣∣
γF=0

)
and θθθ

T
i =−KKK−1

d,0

(
4QiuuuT

0
∂KKK (Z )

∂γK
i

∣∣∣∣
γK=0

)
,

(4.39)
by which the sensitivity of the radius can be finally expressed by:

∂Cr
d (Z )

∂ϕe
=

1
2∥PPP(Z )∥2

M

∑
i=1

µµµ
T
i

∂KKKd,0

∂ϕe
uuu0

+
1

2∥QQQ(Z )∥2

M

∑
i=1

(
2QiuuuT

0
∂ 2KKK (Z )

∂γK
i ∂ϕe

∣∣∣∣
γK=0

uuu0 +θθθ
T
i

∂KKKd,0

∂ϕe
uuu0

)
.

(4.40)
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Material interpolation
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Fig. 4.2 Topology optimization flow chart.

4.4.4 Optimization techniques

The density filter technique [49] is adopted for the numerical stability, by which the problems
like mesh dependence and checkerboard issue in topology optimization can be solved. The
filtered density regarded as the pseudo-density can be expressed by:

ϕe =
∑i∈Ne ϖeVeϑe

∑i∈Ne ϖeVe
, (4.41)

where ϑ denotes the design variable; Ne is the set of elements with rei ≤ rmin, in which rei

denotes the center-to-center distance between elements e and i. ϖei is the corresponding
weighting coefficient that is determined by ϖei = max(0,rmin− rei).

Using the chain rule, the sensitivities of objective functions and optimization constraints
with respect to the design variables can be derived by:

∂ f (ϕe)

∂ϑe
=

∂ f
∂ϕe

∂ϕe

∂ϑe
. (4.42)

The distribution of the design variables ϑ can then be optimized by the method of moving
asymptotes (MMA) proposed by Svanberg [360]. The topology optimization is terminated
when the maximal iteration Lmax is reached, or the convergence criterion is satisfied, which
is:

ch = max
j
| [ϑϑϑ n] j−

[
ϑϑϑ

n−1
]

j
| ≤ τ, (4.43)
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where ch denotes the absolute value of the maximal change of the design variables of the
adjacent iterations; τ is the threshold value, which is defined by τ = 10−2 in this paper. Fig.
4.2 summarizes the flow chart of the proposed method.

4.5 Numerical examples

In this section, two numerical examples are presented, in which the uncertainty of material
property and loading are respectively considered. Table 4.1 provides the adopted material
properties based on deterministic assumption.

Table 4.1 Material parameters.

Material properties Symbol Value Unit
Young’s modulus E0 2.1×105 MPa

Poisson’s ratio ν 0.3 -
Density ρ0 8×10−9 ton/mm3

Referring to [125], we take the following exponential kernel type correlation coefficient
function for two arbitrary positions with coordinates x1 (u1,v1) and x2 (u2,v2) in a 2D plane:

R (x1,x2) = exp
(
−|u1−u2|

lx
− |v1− v2|

ly

)
, (4.44)

in which lx and ly denote the correlation lengths at x and y directions, respectively. Note that
for 1D problem, only one direction need to be considered.

4.5.1 Cantilever beam with material uncertainty

L

H

F

Fig. 4.3 Geometry and boundary condition of the cantilever beam

In this example, we investigate a cantilever beam with spatially varied material uncertainty.
We consider four different robust parameters κ = 0, 1, 3 and 9, respectively, the effectiveness
of the proposed method for promoting the robustness of topology optimization is illustrated.
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It is noted that for κ = 0, the deterministic design is recovered. Fig. 4.3 depicts the cantilever
beam, in which the length and height are L = 90mm and H = 30mm, respectively. The left
end of the beam is clamped, and the lower right corner is loaded by a harmonic external
citation with an amplitude F = 1000N and loading frequency ωp = 3500Hz. The cantilever
beam is discretized by a 180×60 four-node quadrilateral finite element mesh. The target
volume fraction is χ = 0.5. The filter radius is chosen as rmin = 1.5mm. The maximal
iteration is limited to 1000 steps.

Fig. 4.4 The spatially varied Young’s modulus in this example: for 6 samples

Uncertain Young’s modulus is assumed with a constant midpoint function Em (x) =
2.1×105Mpa and radius function Er (x) = 0.2Em (x). The correlation lengths are defined
by lu = 120mm and lv = 360mm. Fig.4.4 depicts 6 different distribution samples of the
Young’s modulus that follow the above assumption. The truncating number of the interval K-L
expansion in this example is M = 24, by which the approximating index reaches τ = 98.54%.

120 360

(a) (b)

(c) (d)

Fig. 4.5 Topological designs with different robust parameters: (a) κ = 0 (deterministic
design); (b) κ = 1; (c) κ = 3; (d) κ = 9.
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Table 4.2 Comparison of the decomposed dynamic compliance.

Robust parameter Cm
d Cr

d (Z ) Cd(Z )
Cr

d(Z )
Cm

d

κ = 0 2308.79 834.05 3142.84 36.13%
κ = 1 2317.92 776.66 3094.58 33.51%
κ = 3 2370.06 749.07 3119.13 31.61%
κ = 9 2432.42 730.59 3163.01 30.04%

Fig. 4.5 depicts the topological designs obtained by employing different values of robust
parameter κ . Compared to the deterministic design (Fig. 4.5a), it can be seen that the
proposed method gives different topological designs with respect to the spatially varied
Young’s modulus. The influence of changing the robust parameter can be observed on the
topological designs. Table 4.2 shows the comparison of the decomposed performances on
the dynamic compliance of the designs shown in Fig. 4.5. The results are predicted by the
proposed IFPA. It is obvious that as the robust parameter increases, the radius of dynamic
compliance of the corresponding topology designs in dealing with uncertainty is reduced.
The ratios of the radius to the median are also decreased. This means that the robustness of
the structural design has been improved. It should be noted, however, that increasing the
robust parameter does not necessarily lead to an improvement in the overall performance of
the structure. For more discussion on this problem, one may refer to [368].

Fig. 4.6 depicts the iteration process of the corresponding topological designs shown in
Fig. 4.5, in which the iterative values of both the objective function and the ratio of radius
to median are plotted. Fig. 4.6 illustrates the good convergence of the proposed topology
optimization method.

Next, we perform the Monte-Carlo Simulation (MCS) on the final topological designs to
validate the prediction of the IFPA to the sampling results under the same uncertainty. The
population of the MCS is defined by 106, in which the Young’s modulus is distributed in the
prescribed interval and remains consistency with the spatial correlation coefficient function
defined by Eq. (4.44). Fig. 4.7 shows the results of IFPA and MCS, where (a-b) corresponds
to the topological designs of Fig. 4.5(a-d), respectively. The results of MCS sampling are
marked with blue crosses, from which we can see that the distribution of the topological
designs with larger robust parameter is more tight. The red line and black dash line are the
results of Cd(Z ) and Cm

d predicted by the IFPA. We can see that only a very small number of
samples are outside the predicted range of extreme values, which demonstrates the accuracy
of the IFPA in the topology optimization problem. In terms of computational cost, IFPA
requires only 25 FEA calls while MCS requires 106 FEAcalls. Such advantage makes IFPA
more suitable for topology optimization.
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120 360

(a) (b)

(c) (d)

Fig. 4.6 Iteration process of the objective function and ratio of radius to median for the
topological designs shown in 4.5: (a) κ = 0 (deterministic design); (b) κ = 1; (c) κ = 3; (d)
κ = 9.

4.5.2 Michell-type structure with loading uncertainty

In this example, a Michell-type structure with spatially varied loading uncertainty is consid-
ered. Fig. 4.8 shows the Michell-type structure. The length and width of the structure is
L = 90mm and H = 45mm, respectively. It is discretized by a 180×90 four-node quadri-
lateral finite element mesh. The left lower corner of the structure is fixed and the right
lower corner is supported. The middle third of the boundary below the structure is subjected
to spatially varying uncertain loads, which will be described in detail later. The topology
optimization parameters are defined as follows: the target volume fraction is χ = 0.3, the
radius of the density filter is rmin = 1mm, the number of iterations is limited to 1000. The
robust parameter is κ = 3 in this example.

The spatially varied loading uncertainty is expressed by the interval field model. We
assume that the direction of the force is constant and there is uncertainty only in the magnitude
of the force. The magnitude of these loading have a constant midpoint function Fm

y (x) =
−10N, in which the minus sign denotes the direction of the force. The radius function of this



102 Chapter Robust topology optimization with non-probabilistic uncertainty

(a) (b)

(c) (d)

Fig. 4.7 Comparison of the results obtained by IFPA and MCS: (a) κ = 0 (deterministic
design); (b) κ = 1; (c) κ = 3; (d) κ = 9.

uncertainty is Fr
y (x) = 0.2Fm

y (x). Since the load exists only at the boundary, we only need
to define the correlation length at the x-direction. In this example, we employed two different
correlation lengths lx = 30 and 120, with corresponding truncating numbers M = 8 and 6.
Fig. 4.9 (a-b) provide 100 samples of the spatially varied loading uncertainty corresponding
to the two different correlation lengths. The horizontal coordinates in the figure indicate
the coordinates corresponding to the loading force, and the vertical coordinates indicate the
absolute value of the loading force. The colored lines indicate different samples. We can see
that the larger value of correlation length makes a more flat distribution of uncertain values.
Fig. 4.9 (c) depicts another 100 samples for correlation length lx = 106, in which there is
almost no spatial variation in the amplitude of the force for each sample. In this way, the
interval field model can be regarded as a conventional interval model.

We should note that topology optimization is more sensitive to the loading directions
than to the magnitudes [97], which implies that only a small improvement of the objective
function values could be observed. In this work, our objective is to introduce the interval field
model into topology optimization and explore the influence of the spatial correlation on the
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L

H

L/3 L/3

Fig. 4.8 Geometry and boundary condition of the Michell-type structure

(c)

(b)(a)

Fig. 4.9 Samples of the spatially varied external force with different correlation lengths: (a)
lx = 30; (b) lx = 120; (c) lx = 105.

final topological designs, since only the uncertain amplitude of loading in the conventional
interval model based uncertainties has no effect on the final topology layout.

Fig. 4.10 depicts the topological designs. Fig. 4.10 (a) is the deterministic deign and
also the robust design for interval model based uncertainty. Fig. 4.10 (b-c) depict the robust
design respect to the interval field uncertainty, in which (b) and (c) correspond to lx = 30
and 120, respectively. We can see that the spatially varied loading uncertainty has obvious
influence on the topological design, which indicates the advantage of employing the interval

Table 4.3 Comparison of structural compliance predicted by IFPA: lx = 30.

Methods Cm
d Cr

d (Z ) Cd(Z )
DTO 34.06 11.69 45.75
RTO 33.72 11.57 45.29
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(a) (b) (c)

Fig. 4.10 Topological designs for uncertain loads with different spatial correlation lengths:
(a) Deterministic design (lx = ∞, for comparison); (b) Robust design (lx = 30); (c) Robust
design (lx = 120).

Table 4.4 Comparison of structural compliance predicted by IFPA: lx = 120.

Methods Cm
d Cr

d (Z ) Cd(Z )
DTO 34.06 13.08 47.14
RTO 33.67 12.93 46.60

field model as compared with the conventional interval model. Besides, although quite
similar, there remains small difference between the designs for different correlation lengths,
which illustrates the necessity of employing the interval field model in topology optimization.
Tables 4.3 and 4.4 show the comparison of structural compliance predicted by IFPA under
correlation lengths lx = 30 and 120, respectively. We can see slight improvements of the
RTO designs. Fig. 4.11 depicts the iteration process of the topological designs shown in Fig.
4.10. We can see that there is no convergent difficulty of these designs.

Fig. 4.12 depicts the MCS results for the topological designs obtained by the robust
topology optimization, of which the population of MCS is 105, marked by blue crosses. The
worst case structural compliance predicted by IFPA is plotted by the red line. We can see that
IFPA is able to predict the performance of the structure under the uncertain loading modeled
by interval field. Regarding to the computational costs, IFPA requires only 7 FEA calls,
which is far more efficient than MCS, especially for the topology optimization problem.

(c)(b)(a)

Fig. 4.11 Iteration process of the topological designs shown in Fig. 4.10: (a) Deterministic
design (lx = ∞, for comparison); (b) Robust design (lx = 30); (c) Robust design (lx = 120).
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(b)(a)

Fig. 4.12 Comparison of the results obtained by IFPA and MCS: (a) lx = 30; (b) lx = 120 .

4.6 Conclusions

In this Chapter, we have introduced spatially varied non-probabilistic uncertainty into topol-
ogy optimization. By employing an interval field model, the spatial dependence of the
non-probabilistic uncertainty was considered. Based on the robust topology optimization
framework, uncertainties are incorporated in topology optimization and the worst case of
the structural compliance under uncertainty was optimized. An efficient IFPA method was
proposed, and sensitivity analysis of the robustness objective function was derived accord-
ingly. We considered two sources of uncertainty in the numerical examples, namely material
uncertainty and load uncertainty, separately. The results showed the merits of incorporating
spatial dependent uncertainty into topology optimization. The efficiency and accuracy of the
proposed IFPA were also illustrated.





Chapter 5

Topology optimization for enhanced
dynamic fracture resistance of structures

The main content of this chapter is adapted from our paper [400].

5.1 Introduction

In this Chapter, a topology optimization framework for improving the dynamic fracture
resistance of structures is proposed. The phase field method for fracture is combined with
SIMP topology optimization. The topology optimization problem is defined as minimizing
the fracture energy during the whole dynamic loading process, from initiation of cracks to
full failure of the structure, under volume and compliance constraints. Semi analytical expres-
sions of sensitivities in a dynamic context are provided to solve the topology optimization
problem efficiently. Numerical examples involving structures subjected to impact loading
are investigated. It is shown that the present framework allows a significant reduction of the
fracture energy as compared to designs obtained by static optimization.

5.2 Dynamic phase field fracture model

In this section, the dynamic phase field method for crack propagation in quasi-brittle solids
is briefly reviewed. A structure defined in a domain Ω ⊂ RD is considered, with D the space
dimension, with external boundary ∂Ω ⊂ RD−1. In the context of the phase field method, as
shown in Fig. 5.1, the crack surfaces collectively denoted by Γ are described by a continuous
damage field d ∈ [0,1], which takes 0 value when the material is undamaged and 1 when the
material is cracked. The portions of ∂Ω, ∂Ωu and ∂Ωt denote the Dirichlet and Neumann
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(a) (b)

Fig. 5.1 Cracked solid: (a) representation of cracks by surfaces; (b) continuous approximation
of cracks by a damage field d(xxx).

boundaries, respectively (see Fig. 5.1). We define uuu, u̇uu = duuu
dt and üuu = d2uuu

dt2 as the displacement,
velocity and acceleration vectors, respectively.

In this context, the elastic strain energy Es is defined by

Es(uuu,d) =
∫

Ω

ψe (εεε (uuu),d) dΩ , (5.1)

where ψe is a strain density function, whose form will be specified later, and εεε = 1
2

(
∇uuu+∇T uuu

)
is the linearized second-order strain tensor, with ∇(·) the gradient operator. The kinetic
energy of the solid is defined by:

Ek (u̇uu) =
∫

Ω

1
2

ρ u̇uu · u̇uudΩ , (5.2)

where ρ is the material density. In the phase field method, a non-local fracture energy is
defined according to

E f (d) =
∫

Ω

c1Gc
(
ω(d)+ ℓ2

∇d ·∇d
)

dΩ , (5.3)

where c1 is a constant, Gc is the Griffith-type critical energy release rate, ω(d) is a local
damage density function, and ℓ is a length regularization parameter, which defines the width
of the regularized crack. Finally the work of external forces is defined by

W ext(uuu) =
∫

∂Ωt

ttt ·uuu dS+
∫

Ω

fff ·uuu dΩ , (5.4)

where ttt denotes prescribed traction over the portion of the boundary ∂Ωt (see Fig. 5.1), and
fff denotes body forces. The action-integral over the time interval [t1, t2] is defined by:

A =
∫ t2

t1

[
Es(uuu,d)+E f (d)−Ek(u̇uu)−W ext(uuu)

]
dt. (5.5)
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In the dynamic context, the variational principle of nonlocal damage at the core of
the phase field method implies minimization of the action-integral under the constraint of
irreversibility of the damage field, i.e.

ḋ ≥ 0, (5.6)

where ḋ = d(d)/dt denotes the rate of the damage field.
In the following, the different equations of the model in the case of an assumed isotropic

quasi-brittle solid are specified. We follow Miehe et al. [256] and express the strain density
function such that damage is induced by traction only as:

ψe =
(
(1−d)2 +b

)
ψ

+
e +ψ

−
e , (5.7)

where ψ+
e and ψ−e denote the positive and negative components of the strain density function,

respectively, which can be computed from the strain tensor as

ψ
±
e =

λ

2
⟨Tr [εεε]⟩2±+µ εεε

± : εεε
±, (5.8)

where λ and µ are the Lamé coefficients, which can be related to the Young’s modulus E
and Poisson’s ratio ν by

λ =
Eν

(1+ν)(1−2ν)
and µ =

E
2(1+ν)

. (5.9)

Note that other decompositions exist (see a comparison and discussion e.g. in [276]).
Above, ⟨·⟩± can be expressed by ⟨a⟩± = 1

2 (a±|a|) and Tr [·] denotes the trace operator. The
positive and negative parts εεε± can be expressed by:

εεε
± =

D

∑
p=1
⟨ε p⟩± Qp, Qp = vp⊗vp, (5.10)

where D denotes the space dimension and ε p and vp are the eigenvalues and eigenvectors
of εεε , respectively. The following definitions are used: ω(d) = d2 and c1 =

1
2ℓ [44]. Other

choices are possible, e.g. using ω(d) = d and c1 =
3
8ℓ [304]. The first choice induces damage

for any loading (even though very low at the beginning) while the second choice leads to a
linear elastic stage before damage. Due to its simplicity, the first choice is adopted here. A
more in-depth comparison of the different available models and applications in a dynamic
context can be found in [245].
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With these models at hand, stationary variation of (5.5) leads to the following Euler-
Lagrange equations: ∇ ·σσσ + fff = ρ üuu,

Gc

ℓ

(
d− ℓ2

∆d
)
= 2(1−d)ψ

+
e ,

(5.11)

where ∇ ·(·) and ∆(·) denote the divergence and Laplacian operators, respectively, and where
σσσ is the Cauchy stress tensor σσσ = ∂ψe

∂εεε
, which is expressed under the above assumptions by:

σσσ =
(
(1−d)2 +b

)
∂ψ+

e
∂εεε

+
∂ψ−e
∂εεε

=
(
(1−d)2 +b

)(
λ ⟨Tr [εεε]⟩+1+2µεεε

+
)
+
(
λ ⟨Tr [εεε]⟩−1+2µεεε

−) , (5.12)

where 1 is the second-order identity tensor and b << 1 a small numerical parameter used
to maintain stability in the case of fully broken elements. Above, εεε± and ⟨Tr(εεε)⟩± can be
related to εεε through the following operators:

εεε
± = P± : εεε, (5.13)

⟨Tr [εεε]⟩± = R± Tr [εεε] , (5.14)

in which the components of P± are given in closed form as [257]:

P±i jkl :=
∂εεε±

∂εεε
=

D

∑
p

H (±ε
p)(Qp)i j (Q

p)kl +
1
2

D

∑
p

D

∑
q̸=p

φpq

(
(Qp)ik (Q

q) jl +(Qp)il (Q
q) jk

)
,

(5.15)
with

φpq =


⟨ε p⟩±−⟨εq⟩±

ε p− εq , if ε
p ̸= ε

q

H (±ε
p) , if ε

p = ε
q

(5.16)

where H (·) denotes the Heaviside step function. The operator R± is expressed by

R± =
1
2
(sign(±Tr [εεε])+1) . (5.17)
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To achieve non-reversible evolution of cracks, a strain history functional introduced by
Miehe et al. [256, 147, 258] is adopted to replace ψ+

e in Eq. (5.11), as

H (xxx, t) = max
s∈(0,t]

{
ψ

+
e (xxx,s)

}
. (5.18)

Then, the equations (5.11) are substituted by∇ ·σσσ + fff = ρ üuu,
Gc

ℓ

(
d− ℓ2

∆d
)
= 2(1−d)H .

(5.19)

The above equations are completed with boundary conditions as
uuu = ūuu on∂Ωu,

σσσ · n̂ = t̄tt on∂Ωt ,

∇d · n̂ = 0 on∂Ω ,

(5.20)

where n̂ denotes the outward unitary normal vector to ∂Ω (see Fig. 5.1).
Multiplying Eqs. (5.19) by two different test functions, δuuu for the displacement problem

and δd for the phase field problem, respectively, integrating the resulting expression over the
domain Ω , and using the divergence theorem together with boundary conditions yields the
associated weak forms: find d ∈ H1(Ω) and find uuu ∈ D =

{
vvv|vvv = uuu on ∂Ωu,vvv ∈ H1(Ω)

}
such that: ∫

Ω

(
2H (uuu)+

Gc

ℓ

)
d δd +Gcℓ∇d ·∇d dΩ =

∫
Ω

2H (uuu)δd dΩ , (5.21)

∫
Ω

{ρ üuu ·δuuu+σσσ(uuu,d) : εεε (δuuu)}dΩ −
∫

∂Ωt

t̄tt ·δuuu dS−
∫

Ω

fff ·δuuu dΩ = 0, (5.22)

for all δd ∈ H1(Ω) and δuuu ∈ H1
0 (Ω) =

{
vvv|vvv = 0 on ∂Ωu,vvv ∈ H1(Ω)

}
, H1 is the usual

Sobolev space of square-integrable derivative functions.

5.3 Numerical solving procedure

Displacement field uuu, phase field d and their gradients εεε (uuu) and ∇d are approximated by
classical FEM interpolation in the elements of the FEM mesh according to:

uuu(xxx) = NNNu(xxx)uuue, εεε (xxx) = BBBu(xxx)uuue,

d(xxx) = NNNd(xxx)ddd
e, ∇d(xxx) = BBBd(xxx)ddd

e,
(5.23)
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where uuue and ddde denote the nodal displacement and phase field in an element e, NNN and BBB
denote the matrices of the shape functions and their derivatives, respectively. The indices (u
and d) of NNN and BBB refer to displacement and phase field variables, respectively.

A staggered scheme is adopted. At one time step tn , the phase field problem (5.21) is
solved, assuming the displacement field uuu given. Then, the mechanical problem (5.22) is
solved assuming the phase field d given. These problems are solved alternatively before
solving the problems at the next time step. Note that the mechanical problem (5.22) is
nonlinear due to the separated description of the strain field in (5.10). Here, we transform
this problem into a linear one by expressing the projectors P± with with respect to the
displacements know from the previous time step n−1, i.e. P±(εεεn)≃ P±(εεεn−1), R±(εεεn)≃
R±(εεεn−1).

At time tn, the strain history functional described in Eq. (5.18) can be calculated using

H n =

{(
ψ

+
e
)n if

(
ψ

+
e
)n−H n−1 > 0,

H n−1 otherwise,
(5.24)

Note that H n is discontinuous, which brings difficulties to the subsequent sensitivity
derivations presented in section 5.4. To alleviate this issue, we introduce a continuous version
of the history function as:

H̃ n ≃H n−1 +
[(

ψ
+
e
)n−H n−1]g

((
ψ

+
e
)n−H n−1) , (5.25)

where g is a regularized Heaviside function, defined by

g(x) =
1
2

(
1+

2
π

arctan
(

x
ζ

))
, (5.26)

and ζ is regularization parameter. When ζ decreases, the approximation is closer to a sharp
jump (see Fig. 5.2). In this paper, ζ = 10−6 is adopted.

More specifically, expressing the strain and stress tensors in vector forms in 2D , i.e.
[εεε] = [ε11,ε22,2ε12], [σσσ ] = [σ11,σ22,σ12], the constitutive law (5.12) can be expressed at
time tn as:

[σσσn] =
(
(1−dn)2 +b

){
λR+

n−1 ([εεε
n] · [111]) [111]+2µPPP+

n−1 [εεε
n]
}

+λR−n−1 ([εεε
n] · [111]) [111]+2µPPP−n−1 [εεε

n] , (5.27)

where R±n−1 = R±
(
εεεn−1) and PPP±n−1 = PPP±

(
εεεn−1), and PPP± are the matrix forms associated

with the fourth-order tensors P±.
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Fig. 5.2 Regularized Heaviside function.

Introducing (5.23) and (5.27) in (5.21)-(5.22) we obtain a linear system of equations in
the form

KKKn
ddddn = FFFn

d, (phase field problem), (5.28)

MMMüuun +KKKn
uuuun = FFFn

u, (displacement problem), (5.29)

with

MMM =
∫

Ω

ρNNNu
T NNNudΩ and FFFn

u =
∫

∂Ωt̄tt

NNNut̄ttn dS. (5.30)

KKKn
u =

∫
Ω

BBBT
u

{(
(1−dn)2 +b

)(
λR+

n−1 [111]
T [111]+2µPPP+

n−1

)}
BBBudΩ ,

+
∫

Ω

BBBT
u

{
λR−n [111]T [111]+2µPPP−n

}
BBBudΩ , (5.31)

KKKn
d =

∫
Ω

{(Gc

ℓ
+2H n)NNNT

d NNNd +GcℓBBBT
d BBBd}dΩ , (5.32)

and

FFFn
d =

∫
Ω

2NNNT
d H ndΩ . (5.33)
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Then, a time-stepping I = [t0, t1, t2, ..., tM] is introduced, where tn− tn−1 = ∆t is a time
step, assumed to be constant. An unconditionally stable implicit Newmark scheme is used to
solve (5.29) according to:

u̇uun = u̇uun−1 +
∆t
2
(
üuun−1 + üuun) , (5.34)

with

uuun = uuun−1 +∆tu̇uun−1 +

(
∆t2

4

)(
üuun−1 + üuun) , (5.35)

üuun =

(
4

∆t2

)
(uuun− ûuun) , (5.36)

ûuun = uuun−1 +∆tu̇uun−1 +

(
∆t2

4

)
üuun−1. (5.37)

Introducing (5.36) into (5.29), we finally obtain at one iteration k and at one time step tn

the linear problem to be solved:

K̃KKuuuun = F̃FFn
u, (5.38)

with

K̃KKu =

(
4

∆t2

)
MMM+KKKn

u, (5.39)

F̃FFn
u = FFFn

u +MMM
(

4
∆t2

)[
uuun−1 +∆tu̇uun−1 +

(
∆t
2

)2

üuun−1

]
. (5.40)

Note that in the present work iterations are used within the staggered scheme, i.e the
mechanical and phase field problems are solved alternatively during one time step tn until a
convergence criterion is reached. In this work, the convergence criterion is reached when
the maximum value of the nodal phase field variation between two iterations is lower than a
threshold. This algorithm allows larger time steps in the present implicit Newmark’s scheme.
In addition, such staggered scheme is a key ingredient to simplify the sensitivity analysis
developed in section 5.4.3.

The general algorithm is summarized in Algorithm 1, where quantities at one time step
tn and at one iteration k are denoted by (.)n

k .
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Algorithm 1: Staggered dynamic Phase Field algorithm solving procedure.

Initialize: uuu0, u̇uu0, üuu0, ddd0, H 0 = 000;
for n = 1 : M (Loop over all time steps) do

Input: uuun−1

Initialize uuun
0 = uuun−1

k = k+1
while Err > tol (Convergence loop) do

k = k+1;
Input: uuun

k−1
Solve KKKd(uuun

k−1)ddd
n
k = FFFd(uuun

k−1)
Output: dddn

k
Input: dddn

k ,uuu
n
k−1

Solve KKKu(uuun
k−1,ddd

n
k)uuu

n
k = FFFu(uuun

k−1)
Output: uuun

k
Compute Err = max

j
| [dddn

k ] j−
[
dddn

k−1
]

j |
uuun

k−1 = uuun
k

end
uuun = uuun

k
end

5.4 Topology optimization formulations

5.4.1 Material interpolation scheme

In the present paper, the SIMP topology optimization method (Solid Isotropic Material with
Penalization (SIMP) method [30, 26]) is adopted. This method belongs to the so-called
density-based topology optimization (TO) methods (see a review and classification of TO
in [345]). In this framework, the geometry of the structural domain is defined by a pseudo-
density parameter ϕ ∈ [0,1]. Then, a continuous description of the material properties is
defined according to:

E (ϕ) = [Emin +(1−Emin)ϕ
pE ]E0,

ρ (ϕ) = [ρmin +(1−ρmin)ϕ
pρ ]ρ0,

Gc (ϕ) =
[
Gc,min +

(
1−Gc,min

)
ϕ

pG
]
Gc,0,

(5.41)

where E0, ρ0 and Gc,0 denote the material properties of the solid for ϕ = 1, and Emin, ρmin

and Gc,min are artificial lower values to avoid numerical singularity in zero-pseudo density
zones. Above, pE , pρ and pG are penalty parameters. These parameters are chosen so
as to avoid intermediate values of ϕ . Here, we choose pE = 3, pρ = 1 and pG = 1. The
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values of Emin, ρmin and Gc,min are defined as Emin = 10−6, ρmin = 10−6 and Gc,min = 10−2,
respectively. Note that alternative approaches, e.g. the BESO method [152] could be used
(see [210] for a comparison between SIMP and BESO in the context of fracture resistance
maximization).

5.4.2 Optimization problem

In this section, we define the topology optimization problem related to minimizing the dy-
namic fracture of a structure. Following previous works on fracture resistance maximization
using topology optimization [403, 210], the phase field method described in section 5.3 is
used to describe the full fracture process of the structure, from initiation until full failure,
while here the dynamic effects are taken into account. The problem can be formulated as
follows:

min
ϕ∈[0,1]

: Gf (ϕ),

s. t. : KKKn
ddddn = FFFn

d, n = 1,2, ...,M

MMMüuun +KKKn
uuuun = FFFn

u, n = 1,2, ...,M

C−C0 ≤ 0,

V −χV0 ≤ 0,

(5.42)

where Gf (ϕ) denotes the fracture energy, and C = FFFs ·uuus denotes a structural static compli-
ance.

Here, the compliance constraint is only used to ensure connectivity of the material within
the structure. Without this constraint, unrealistic topologies with disconnected parts could be
obtained in this dynamic context, as cracks may occur in the middle of the structure. The
compliance C is evaluated by a separated static test with an external force Fs = -100 N. Note
that such compliance constraint has been used by several other authors in a dynamic topology
optimization context, even though in a linear vibration regime (see e.g. [351, 449]). Above,
uuus is the static displacement response of the undamaged structure under a test static external
load FFFs and C0 is the prescribed compliance upper bound; V is the target structural volume
(area in 2D), which can be computed as V = ∑

Ne
e=1Veϕe, and V0 = ∑

Ne
e=1Ve is the total volume

of the design domain, and χ denotes the target volume fraction constraint. We define the
fracture energy over the whole loading history as:

Gf =
∫ T

0

∫
Ω

(
1
ℓ

d · ḋ + ℓ∇d ·∇ḋ
)

Gc dΩ dt. (5.43)
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Using the trapezoidal rule, Gf can be numerically approximated as

Gf =
M

∑
n=1

1
2

[
(dddn)T KKKgḋdd

n
+
(

dddn−1
)T

KKKgḋdd
n−1
]

∆t, (5.44)

where KKKg is defined by

KKKg =
∫

Ω

Gc

(
1
ℓ
(NNNd)

T NNNd + ℓ(BBBd)
T BBBd

)
dΩ . (5.45)

Above, KKKg is a matrix which depends neither on damage nor on displacement fields.

5.4.3 Sensitivity of fracture energy

In this section, the sensitivity of fracture energy is derived in a dynamic context. The
derivations require the use of the adjoint method [194, 61, 51]. For the widely known
derivations related to the compliance and volume fraction, one may refer to [32, 10] for
details.

The sensitivity of Gf with respect to a change in the pseudo-density is given by

∂Gf

∂ϕe
=

M

∑
n=1

1
2

∂

∂ϕe

[
(dddn)T KKKgḋdd

n
+
(

dddn−1
)T

KKKgḋdd
n−1
]

∆t, (5.46)

and involves evaluating ∂dddn

∂ϕe and ∂ ḋdd
n

∂ϕe . Using the chain rule, we have

∂ ḋdd
n

∂ϕe =
∂ ḋdd

n

∂dddn
∂dddn

∂ϕe , (5.47)

where ∂ ḋdd
n

∂dddn can be obtained by the Newmark scheme (5.34)-(5.36)(5.37) as the simple expres-
sion:

∂ ḋdd
n

∂dddn =
2
∆t

. (5.48)

To express ∂dddn

∂ϕe
the adjoint method [51] is employed. Introducing two vectors of Lagrange

multipliers (adjoint vectors) λλλ
n and λλλ

n−1, and assuming that the problems

RRRn
d = KKKn

ddddn−FFFn
d = 000, (5.49)

RRRn−1
d = KKKn

ddddn−1−FFFn−1
d = 000, (5.50)
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have been solved, then the terms
(
λλλ

n)T RRRn
d and

(
λλλ

n−1
)T

RRRn−1
d can be added to the objective

function without change as:

Gf =
Ns

∑
n=1

{
1
2

[
(dddn)T KKKgḋdd

n
+
(

dddn−1
)T

KKKgḋdd
n−1
]

∆t +
(
λλλ

n)T RRRn
d +
(

λλλ
n−1
)T

RRRn−1
d

}
. (5.51)

In addition, using (5.8), (ψ+
e )

n can be expressed using the discrete (vector) forms of
strain tensor as:

(
ψ

+
e
)n

=
1
2

εεε
n
(

λR+
n−1 [111]

T [111]+2µPPP+
n−1

)
εεε

n. (5.52)

In (5.52), it is worth noting that ε obviously depends on ϕe. However, for the sake of
simplicity, we assume that the term involving ∂εεε

∂ϕe
has small influence as compared to the

other terms and neglect it. Then, the following approximation is made:

∂ (ψ+
e )

n

∂ϕe
≃ 1

2
εεε

n
(

∂λ

∂ϕe
R+

n−1 [111]
T [111]+2

∂ µ

∂ϕe
PPP+

n−1

)
εεε

n. (5.53)

Taking the derivation of Gf with respect to the pseudo-density, using (5.48) and combining
similar terms, the following expression is obtained, after some calculations:

∂ Ĝf

∂ϕe
=

Ns

∑
n=1

{
1
2

[
(dddn)T ∂KKKg

∂ϕe
ḋdd

n
+
(

dddn−1
)T ∂KKKg

∂ϕe
ḋdd

n−1
]

∆t

+
(
λλλ

n)T
(

∂KKKn
d

∂ϕe
dddn−

∂FFFn
d

∂ϕe

)
+
(

λλλ
n−1
)T
(

∂KKKn−1
d

∂ϕe
dddn−1−

∂FFFn−1
d

∂ϕe

)

+

[
1
2

((
ḋdd

n
)T

KKKg +(dddn)T KKKg
∂ ḋdd

n

∂dddn

)
∆t +

(
λλλ

n)T KKKn
d

]
∂dddn

∂ϕe

+

[
1
2

((
ḋdd

n−1
)T

KKKg +
(

dddn−1
)T

KKKg
∂ ḋdd

n−1

∂dddn−1

)
∆t +

(
λλλ

n−1
)T

KKKn−1
d

]
∂dddn−1

∂ϕe

}
.

(5.54)
The terms ∂dddn

∂ϕe
and ∂dddn−1

∂ϕe
are difficult to evaluate in practice. However, as RRRn

d = 000 and

RRRn−1
d = 000, the vectors λλλ

n and λλλ
n−1 can be chosen arbitrarily. They are then chosen to

eliminate the unknown terms ∂dddn

∂ϕe
and ∂dddn−1

∂ϕe
such that:[

1
2

((
ḋdd

n
)T

KKKg +(dddn)T KKKg
∂ ḋdd

n

∂dddn

)
∆t +

(
λλλ

n)T KKKn
d

]
∂dddn

∂ϕe
= 0, (5.55)
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and [
1
2

((
ḋdd

n−1
)T

KKKg +
(

dddn−1
)T

KKKg
∂ ḋdd

n−1

∂dddn−1

)
∆t +

(
λλλ

n−1
)T

KKKn−1
d

]
∂dddn−1

∂ϕe
= 0. (5.56)

Eqs. (5.55) and (5.56) are equal to zero if the expressions under brackets on the left-hand
are equal to zero, corresponding to the following systems of equations:

2KKKn
dλλλ

n =−

(
KKKgḋdd

n
+KKKg

∂ ḋdd
n

∂dddn dddn

)
∆t, (5.57)

and

2KKKn−1
d λλλ

n−1 =−

(
KKKgḋdd

n−1
+KKKg

∂ ḋdd
n−1

∂dddn−1 dddn−1

)
∆t. (5.58)

Solving Eqs. (5.57) and (5.58), the Lagrange multipliers λλλ
n and λλλ

n−1 are then available.
Above, the expressions of ḋdd

n
can be computed according to (5.34). The sensitivity of the

fracture energy is then finally obtained as:

∂Gf

∂ϕe
=

Ns

∑
n=1

{
1
2

[
(dddn)T ∂KKKg

∂ϕe
ḋdd

n
+
(

dddn−1
)T ∂KKKg

∂ϕe
ḋdd

n−1
]

∆t

+
(
λλλ

n)T
(

∂KKKn
d

∂ϕe
dddn−

∂FFFn
d

∂ϕe

)
+
(

λλλ
n−1
)T
(

∂KKKn−1
d

∂ϕe
dddn−1−

∂FFFn−1
d

∂ϕe

)}
,

(5.59)

in which ∂KKKg
∂ϕe

can be derived from Eq. (5.45), as:

∂KKKg

∂ϕe
=
∫

Ω

∂Gc

∂ϕe

(
1
ℓ
(NNNd)

T NNNd + ℓ(BBBd)
T BBBd

)
dΩ . (5.60)

The terms ∂KKKn
d

∂ϕe
and ∂FFFn

d
∂ϕe

are given by

∂KKKn
d

∂ϕe
=
∫

Ω

{(
2

∂Hn

∂ϕe
+

∂Gc

ℓ∂ϕe

)
(NNNd)

T NNNd +
∂Gc

∂ϕe
ℓ(BBBd)

T BBBd

}
dΩ ,

∂FFFn
d

∂ϕe
=
∫

Ω

2
∂Hn

∂ϕe
NNNddΩ ,

(5.61)
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where ∂Gc
∂ϕe

can be obtained from the material interpolation scheme (5.41), and ∂H n

∂ϕe
can be

derived from Eq. (5.25):

∂H n

∂ϕe
=

∂ψ+
e

∂ϕe
g
(
ψ

+
e −H n−1)+ [ψ+

e −H n−1] ∂g
(
ψ+

e −H n−1)
∂ϕe

, (5.62)

with

∂g
(
(ψ+

e )
n−H n−1)

∂ϕe
=

ζ
∂(ψ+

e )
n

∂ϕe

π

(
ζ 2 +

((
ψ

+
e
)n−H n−1

)2
) , (5.63)

and the term
∂(ψ+

e )
n

∂ϕe
have been approximated by Eq. (5.53). Note that above adjoint vectors

λλλ
n and λλλ

n−1 are here path-independent, in contrast to other formulations, see e.g. [329, 330].
This strong assumption has the advantage to gratefully simplify the formulation and the
implementation. The influence of such simplification on the accuracy of the sensitivities will
be tested in the numerical examples.

5.4.4 Optimization techniques

Initialize design 

variables and filter

Converged?

Begin

Compute objective function 

and constraints

End 

Solve dynamic fracture 

problem during a given 

time interval (Algorithm 1)

Update design 

variables via optimizer

Material interpolation

Sensitivity analysis 

Density filter

and projection

NoYes

Fig. 5.3 Optimization flow chart.

To improve stability, mesh independence and to eliminate so called checkerboard issues
[346], filtering techniques are often used in topology optimization. Following [333, 10], a
filtered density variable θe is introduced as

θe =
∑i∈Ne ϖeVeϑe

∑i∈Ne ϖeVe
, (5.64)
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Fig. 5.4 Geometry and boundary conditions of: (a) Half MBB-beam; (b) Cantilever beam.

where ϑ denotes the design variable and Ne denotes the set of elements whose center-to-
center distance rei to the e-th element is lower than the filter radius rmin. The corresponding
weighting factor ϖei is defined by ϖei = max(0,rmin− rei).

The projection technique proposed by Guest et al. [130] is then adopted to minimize
transition regions with pseudo-density values ϕ between zero and one, as

ϕe = 1− e−ηθe +θee−η , (5.65)

where ϕe is the elemental pseudo-density, and η is a parameter defined by 1 in the first
iteration and is doubled after every specified time steps until it reaches a chosen maximum
value, taken here as 128 by numerical tests.

Using this procedure, the sensitivities of the objective functions and optimization con-
straints with respect to the design variable can be further derived by means of the chain rule
as

∂ f (ϕe)

∂ϑe
=

∂ f
∂ϕe

∂ϕe

∂θe

∂θe

∂ϑe
. (5.66)

The method of moving asymptotes (MMA) proposed by Svanberg [360] is adopted for
seeking the optimal distribution of the design variables ϑ . Following [128], the η-based
modification on the asymptotes are adopted for removing spurious oscillations after doubling
the projection parameter η . The convergence criterion of the topology optimization is
determined by the maximal change on the design variable, which should be less than 10−3.
Fig. 5.3 summarizes the flow chart of the proposed topology optimization.

5.5 Numerical examples

In this section, two typical 2D structures are considered. These have been widely studied
in the topology optimization community. The first one is a 3-point bending beam, also
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Fig. 5.5 Prescribed velocity.

Table 5.1 Material parameters.

Material properties Symbol Value Unit

Young’s modulus E0 1.9×105 MPa
Poisson’s ratio ν 0.3 -
Density ρ0 8×10−9 ton/mm3

Critical energy release rate Gc,0 22.17 N/mm

called MBB-beam in the literature [289]. For the sake of computational costs, only the
right half of this axisymmetric beam is considered as shown in Fig. 5.4(a). The left end is
simply supported in the x-direction and the lower right-end corner is simply supported in
the y-direction. The second structure is a cantilever beam, which is shown in Fig. 5.4(b).
The length and width of these two structures are the same, L = 150 mm and H = 60 mm.
A velocity is prescribed on a surface of length L f = 4mm. Fig. 5.5 depicts the loading
velocity profile, which increases from 0 to v0 by a time t0, and then remains constant until
the maximum time tmax is reached. The material properties adopted here are taken from the
Kalthoff-Winkler experiment [180], and are summarized in Table 5.1. The same geometry,
loading curve and parameters will be kept in all following examples. In the example of section
5.5.1, the structure is discretized into a coarse 75×30 four-node quadrilateral elements mesh
for the sake of computational costs. In the examples of sections 5.5.2 and 5.5.3, a finer mesh
with 150×60 four-node quadrilateral finite elements is adopted.

To evaluate the added value of the present framework, two solutions are defined:

1. A so-called "S-design" solution. This solution is obtained by static topology opti-
mization with minimization of compliance under volume constraint with a static force
chosen as FFFs =−100N. Then, the design is remained unchanged during the dynamic
fracture simulation. The obtained design for the two problems studied in the next
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(a) (b)

Fig. 5.6 S-designs obtained for :(a) the half MBB-beam; (b) the cantilever beam.

Table 5.2 Numerical parameters for validation of sensitivity analysis.

ϕ ∆ϕe ℓ v0 ∆t t0 tmax tol

0.5 10−6 4 mm 40m/s 1 µs 2 µs 80 µs 10−5

examples, namely the half MBB-beam and the cantilever beam are depicted in Fig.
5.6.

2. A so-called "DF-design" solution. In that case, the problem 5.42 is solved to define
the topology: at each iteration of the algorithm, a static problem is firstly solved
to prescribe the compliance constraint, then a full dynamic fracture simulation is
performed to evaluate the fracture energy, and compute the sensitivities to update the
topology.

5.5.1 Validation of sensitivity analysis

First the sensitivity analysis developed in section 5.4.3 is validated. Both half MBB-beam
and cantilever beam are considered.

The central finite difference method is employed to provide a reference solution to be
compared with our semi-analytical sensitivities expressions, according to:

d f (ϕ)
dϕe

≈ f (ϕ1, ...,ϕe +∆ϕe, ...,ϕNe)− f (ϕ1, ...,ϕe−∆ϕe, ...,ϕNe)

2∆ϕe
, (5.67)

where ∆ϕe is a pseudo-density perturbation parameter. The value of the numerical parameters
are listed on Table 5.2.

Figs. 5.7(a) and (b) depict the fracture plot of the half MBB-beam and cantilever beam at
time tmax = 80 µs, in which only d > 0.6 is depicted for the sake of clarity. Figs. 5.7(c) and
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Fig. 5.7 Validation of fracture energy sensitivity analysis: fracture pattern at tmax = 80 µs in
(a) the half MBB-beam; (b) the cantilever beam; error of normalized sensitivity values (c)
the half MBB-beam; (d) the cantilever beam; sensitivity values in elements at tmax = 80 in
(e) the half MBB-beam and (f) the cantilever beam.
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Table 5.3 Comparison of fracture energy using DF-design for tmax = 40 µs and S-design at
final simulation time for different loading rates.

Loading rate (m/s) S-design DF-design Fracture energy reduction
20 258.23 91.51 64.5%
40 2213.33 347.92 84.3%
60 4133.94 627.92 84.8%

(d) show the normalized error map of the sensitivity values, which is defined by:

error =

∣∣∣ξξξ di f −ξξξ
ana
∣∣∣∣∣∣ξ ana

∣∣∣ , (5.68)

where ξξξ denotes the vector of element sensitivity values. The superscripts di f and ana
indicate the finite difference method and semi-analytical method, respectively, and ξ ana

denotes the maximum element sensitivity obtained by the semi-analytical method. Figs.
5.7(e) and (f) show a comparison between elemental sensitivities associated with the fracture
energy of these two structures. A good agreement between our analytical expressions of
sensitivities and the reference finite difference solution is noticed.

Fig. 5.8 depicts the sensitivity validation on a structure with random distribution of
densities ϕe ∈ [0,1] in the elements. After generating the densities using a uniform probability
of distributions, a filter is then applied. The other parameters are provided in Table 5.2.

We can note that even though the absolute values of sensistivities are good, the relative
errors might locally be high, even though localized, associated with the approximation made
in Eq. (5.53). However, these errors remain acceptable. In addition, it will be shown in
the next examples that the made approximation allows a large simplification of the whole
methodology, while keeping important dynamic fracture reduction results.

5.5.2 Half-MBB beam

In this example, the presented methodology is applied to the Half-MBB beam (see Fig.
5.4(a)) to minimize the fracture energy with respect to the topology of the structure. Three
different values of loading rates are investigated, v0 = 20 m/s, v0 = 40 m/s and v0 = 60 m/s,
respectively. Two maximal loading times, tmax = 40 µs and tmax = 100 µs, are separately
considered. The compliance constraints are defined by C0 = 200 N.mm and C0 = 300 N.mm
for both loading times. The volume fraction constraint is χ = 0.5. The filter radius is chosen
as rmin = 4.5 and ℓ= 2 mm, ∆t = 1 µs, t0 = 2 µs and tol = 10−5.
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Fig. 5.8 Validation of fracture energy sensitivity analysis on a design-variable-random-
distributed structure: fracture pattern at tmax = 80 µs in (a) the half MBB-beam; (b) the
cantilever beam; error of normalized sensitivity values (c) the half MBB-beam; (d) the
cantilever beam; sensitivity values in elements at tmax = 80 in (e) the half MBB-beam and (f)
the cantilever beam.
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Fig. 5.9 Obtained topological designs for tmax = 40µs and corresponding final fracture
patterns for different loading rates: (a) DF-design: final topology; (b) DF-design: final crack
pattern; (c) S-design: final crack patterns.
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(a) (b) (c)

(a) (b) (c)

Fig. 5.10 Comparison of time-energy curves for S-and DF-designs for tmax = 40 µs at
different loading rates: (a) v0 = 20 m/s; (b) v0 = 40 m/s; v0 = 60 m/s

Table 5.4 Comparison on the fracture energy for DF-designs for tmax = 100 µs and S-design
at the final time for different loading rates.

Loading rate (m/s) S-design DF-design Fracture energy reduction
20 2312.37 313.97 86.4%
40 5396.64 1007.77 81.2%
60 8127.18 2530.02 68.9%

Fig. 5.9(a) shows the topological designs for tmax = 40 µs for the different loading rates.
Material on the right side of the loading area is removed because it is the location of cracks
initiation under high-speed impact. Fig. 5.9(b) shows the crack patterns at tmax = 40 µs. For
comparison, the crack patterns of the reference S-design (static case) are shown accordingly
in Fig. 5.9(c) . Fig. 5.10 compares the fracture energy evolution in time for the present
Dynamic Fracture DF- and S- optimized designs, in a period of time [0-40µs]. An important
decrease of the fracture energy using the DF-design for all loading rates is appreciated, which
shows the importance of including the dynamics in the topology optimization analysis as
compared to the designs obtained by simple static analysis. Corresponding comparisons
and fracture energy reduction at t = 40 µs are presented in Table 5.3. When the loading
rate increases, and thus the related dynamic effects, the reduction of the fracture energy as
compared to the one obtained by static analysis is even larger.

Fig. 5.11 depicts the iterative process plots of the above topology optimizations. Regard-
less of the jumps caused by the variation of the projection parameter η , a good convergence
is appreciated. All the optimization constraints are verified, except the compliance constraint
for v0 = 60 m/s, which might be too strict to be reached in this case. The competition
between minimizing the fracture energy and satisfying the compliance constraint might be
one possible reason for the observed oscillations. For the case v0 = 20m/s, 647 iterations
were necessary, for a total of 8.7 h on a single processor for the whole optimization process.
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(a)

(b)

(c)

Fig. 5.11 Iterative topology optimization process for tmax = 40 µs under different lading
rates: (a) v0 = 20 m/s; (b) v0 = 40 m/s; (c) v0 = 60 m/s.
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Fig. 5.12 Topological designs for tmax = 100 µs and corresponding final fracture patterns for
different loading rates: (a) DF-design: final topology; (b) DF-design: final crack pattern; (c)
S-design: final crack patterns.

Next, a longer loading period is investigated, with tmax = 100 µs. Fig. 5.12 depicts the
topological designs and their final fracture patterns under different loading rates. Compared
to the designs for tmax = 40 µs shown in Fig. 5.9, the obtained designs show an obvious dif-
ference, and the final fracture patterns also change accordingly. Fig. 5.13 depicts the iterative
processes of these topological designs. In this case, although the objective function remains
oscillatory, these oscillations remain small and around a stable value. The computational
time for the case v0 = 20m/s is 23 h for 672 iterations. The computational times are here
proportional to the chosen loading period. Fig. 5.14 compares the fracture energy evolution
in a period of time [0-100 µs] obtained by the present DF-designs for tmax = 100 µs and the
S-designs. Once again, an important decrease of the fracture energy using the DF-design for
all loading rates is appreciated. Corresponding comparisons and fracture energy reductions
at t = 100 µs are indicated in Table 5.4.

5.5.3 Cantilever beam

In this section, the cantilever cantilever beam shown in Fig. 5.4(b) is investigated. Similarly,
three different values of loading rates, v0 = 20 m/s, v0 = 40 m/s and v0 = 60 m/s are studied.
The maximal loading time in this example is defined by tmax = 60 µs. The compliance
constraint is defined by C0 = 200 N ·mm. The volume fraction constraint is χ = 0.5. The
filter radius is chosen as rmin = 4.5 and ℓ= 2 mm, ∆t = 1 µs, t0 = 2 µs and tol = 10−5.

Fig. 5.15(a) shows the topological designs of the cantilever beam for different loading
rates. Here, the proposed method gives different topology designs for different loading rates.
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(a)

(b)

(c)

Fig. 5.13 Iteration process of the topology optimization for tmax = 100 µs for different lading
rates: (a) v0 = 20 m/s; (b) v0 = 40 m/s; (c) v0 = 60 m/s.
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(a) (b) (c)

(a) (b) (c)

Fig. 5.14 Comparison of time-energy curves for S- and DF-designs for tmax = 100µs at
different loading rates: (a) v0 = 20 m/s; (b) v0 = 40 m/s; v0 = 60 m/s.
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Fig. 5.15 Topological designs for the cantilever beam and corresponding final fracture patterns
for different loading rates: (a) DF-design: final topology; (b) DF-design: final crack pattern;
(c) S-design: final crack patterns.
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(a) (b) (c)

Fig. 5.16 Comparison of time-energy curves for S- and DF-designs at different loading rates:
(a) v0 = 20 m/s; (b) v0 = 40 m/s; v0 = 60 m/s.

Table 5.5 Comparison on the fracture energy of DF- and S-design for the cantilever beam at
the final time for different loading rates.

Loading rate (m/s) S-design DF-design Fracture energy reduction
20 638.56 227.20 64.4%
40 1289.30 546.75 57.6%
60 1788.05 578.54 67.6%

Fig. 5.15(b) shows the crack pattern at tmax = 60 µs. Fig. 5.15(c) depicts the final crack
pattern of the S- design for comparison. It is worth noting that there remain some gray
elements in the DF- designs. This issue is a classical one found by several other authors in
dynamic topology optimization. For example, it is discussed as a key issue in [351] and found
in other works such as in [424, 439]. As the main objective of this paper is to present the new
topology optimization algorithm with fracture minimization objective, fully addressing this
problem is reported to later studies. Fig. 5.16 depicts the fracture energy evolution of the DF-
and S- designs in a period of time [0-60 µs]. Table 5.5 provides the comparison of fracture
energy for different loading rates of the DF- and S- designs at the final time. Again, the
DF-designs show large reductions of the fracture energy. Further investigations, including
comparisons with stress-based linear topology optimization, could be conducted in future
studies.

Fig. 5.17 depicts the iterative processes of the topology optimizations for different loading
rates. A good convergence is obtained and all the constraints are reached. The computational
time for the case v0 = 20m/s is 12.7 h for 624 iterations.

As a final remark, we can note that in most studied examples, the cracks are rather diffuse
damage zones. In the present phase field framework, the cracks width depends on the mesh
density. To maintain reasonable computational costs, we used meshes which do not allow
very fine descriptions of cracks. However, it has been shown in many other studies (see e.g.
[147]) that the phase field method is fully convergent with respect to the mesh density, even
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(a)

(b)

(c)

Fig. 5.17 Iteration process of the topology optimization of cantilever beam for different
lading rates: (a) v0 = 20 m/s; (b) v0 = 40 m/s; (c) v0 = 60 m/s.
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in the dynamic case. Then, finer crack descriptions can be obtained if faster computational
ressources are available.

5.6 Conclusion

A SIMP topology optimization framework for maximizing the dynamic fracture resistance
has been proposed. Several contributions have been introduced. The dynamic phase field
method for fracture has been combined with SIMP topology optimization. Then, a topology
optimization minimizing the fracture energy as an objective function under constraints of
material volume and verification of local equilibrium equations has been originally proposed.
Semi-analytical expressions of sensitivities in this context have been derived, and their
accuracy using numerical finite difference approximations has been validated. The algorithm
involves solving at each iteration first a static problem to evaluate the compliance and
then a full dynamic fracture problem from initiation to crack propagation, during a given
period of time, then taking into account the whole loading history. A staggered scheme
with convergence iterations has been used to solve the dynamic phase field problem thus
authorizing larger time steps. Numerical examples on structural problems subjected to
impacts for different loading velocities have been investigated. The examples show that the
present dynamic analysis allows reducing the fracture energy as compared to the designs
obtained from static classical topology optimization analysis.



Chapter 6

Topology optimization for the impact
fracture resistance of quasi-brittle
structures

6.1 Introduction

In this Chapter, we investigate an approach that combines the phase field method and TO for
the impact fracture resistance of brittle structures. Unlike the previous chapter, the external
work with respect to the impact loads is defined as the objective function and maximized for
enhancing the structural impact fracture resistance. Using the advantages of the phase field
method, the dynamic fracture behavior is considered for the first time in the TO of structures
subjected to impact loads. We derive a semi-analytical sensitivity analysis formulation and
validate it by comparing with the numerical central difference method. We illustrate the
effectiveness and potential of the proposed approach through several numerical examples for
impact resistant designs.
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6.2 Topology optimization formulations

6.2.1 Material interpolation scheme

We use the SIMP model [30, 26] for TO in this chapter. By assuming a pseudo-density
ϕ ∈ [0,1], the material properties can be interpolated according to:

E (ϕ) = [Emin +(1−Emin)ϕ
pE ]E0,

ρ (ϕ) = [ρmin +(1−ρmin)ϕ
pρ ]ρ0,

Gc (ϕ) =
[
Gc,min +

(
1−Gc,min

)
ϕ

pG
]
Gc,0,

(6.1)

in which E0, ρ0 and Gc,0 denote three different material properties, the Young’s modulus,
density and critical energy release rate, respectively; Emin, ρmin and Gc,min are the artificial
lower limits to avoid numerical singularity in zero-pseudo density zone. Above, p denotes
the penalty factors, of which the subscript indicates the corresponding material properties.
The definition of the SIMP parameters are provided in Table 6.1. Note that the penalty factor
of critical energy release rate is gradually increased from 1 to 2 by introducing a threshold
ξ . When the iteration number n reaches the threshold value ξ , pG = 2 is employed. In this
paper, ξ = 50 is adopted.

Table 6.1 Material interpolation parameters.

Interpolated material properties Penalty factor Artificial lower limit

Young’s modulus, E 3 10−6

Density, ρ 1 10−6

Critical energy release rate, Gc 1+min
[
1, 1

ξ
(n−1)

]
10−2

6.2.2 Optimization problem

Maximize the structural impact resistance where the impact velocity is prescribed is equiva-
lent to maximize the external work required for a load in a limited time or until the failure.
The problem is similar to [403, 210] in a quasi-static context. However, here the kinetic en-
ergy is considered. By using the trapezoidal rule, we have following discrete approximating
of the external work:

J =
1
2

Ns

∑
n=1

(
FFFn

u +FFFn−1
u
)T

∆uuun, (6.2)
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where n indexes the loading step and Ns is the maximal loading step number; FFFn
u denotes

the equivalent external force, which satisfies Eq. (5.29) at each time step; ∆uuun = uuun−uuun−1

denotes the incremental displacement.
Using the advantages of the phase field method, the entire quasi-brittle fracture process

of the structure in dynamics can be described without re-meshing and the corresponding
internal energy with respect to the external work can be estimated. The TO problem for
maximizing the external work is formulated as:

max
ϕϕϕ∈[0,1]

: J (ϕϕϕ),

s. t. : C−C0 ≤ 0,

V −χV0 ≤ 0.

(6.3)

In Eq. (6.3), the external work is maximized under the constraints of structural static
compliance and total volume fraction. The static compliance can be evaluated by C =

FFFs · uuus, in which FFFs and uuus denote a testing static external force and the corresponding
displacement response, respectively, before the phase field simulation is performed; C0

denotes the optimization constraint on the static compliance. The compliance constraint is
adopted for avoiding a weak design [351, 449]. V = ∑

Ne
e=1Veϕe denotes the structural volume

(area in 2D), V0 = ∑
Ne
e=1Ve represents the total volume of the design domain and χ denotes

the target volume constraint fraction.

6.2.3 Sensitivity analysis

In this section, the sensitivity of external work is derived by means of the adjoint method
[194, 61]. By introducing two Lagrange multipliers, αααn and βββ

n, the external work shown in
Eq. (6.2) can be rewritten as the following form without modifying the original value as:

J =
1
2

Ns

∑
n=1

{(
FFFn

u +FFFn−1
u
)T

∆uuun +(αααn)T RRRn
u +
(
βββ

n)T RRRn−1
u

}
. (6.4)

Following [403, 210], all degrees of freedom (DOF) are segmented into essential (index
E: associated with Dirichlet boundary conditions) and free (index F: remaining DOF) entries.
For a vector V and a matrix M, we have:

V∼

[
VE

VF

]
and M∼

[
MEE MEF

MFE MFF

]
, (6.5)
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Then, the residual of the displacement problem at n-th loading step can be expressed by

RRRn
u =

[
MMMEE MMMEF

MMMFE MMMFF

][
üuun

E

üuun
F

]
+

[
KKKn

u,EE KKKn
u,EF

KKKn
u,FE KKKn

u,FF

][
uuun

E

uuun
F

]
−

[
FFFn

u,E

000

]
. (6.6)

Using the property that the Lagrange multipliers are independent to the design variables,
we obtain the expanded form of the partial derivative of J with respect to ϕe, according to:

∂J
∂ϕe

=
1
2

Ns

∑
n=1

{
(∆uuun)T

(
∂FFFn

u
∂ϕe

+
∂FFFn−1

u
∂ϕe

)
+
(
FFFn

u +FFFn−1
u
)T ∂∆uuun

∂ϕe

+(αααn)T
(

∂KKKn
u

∂ϕe
uuun +KKKn

u
∂uuun

∂ϕe
+

∂MMM
∂ϕe

üuun +MMM
∂ üuun

∂ϕe
− ∂FFFn

u
∂ϕe

)
+
(
βββ

n)T
(

∂KKKn−1
u

∂ϕe
uuun−1 +KKKn−1

u
∂uuun−1

∂ϕe
+

∂MMM
∂ϕe

üuun−1 +MMM
∂ üuun−1

∂ϕe
− ∂FFFn−1

u
∂ϕe

)}
,

(6.7)
in which both ∂uuu

∂ϕe
and ∂ üuu

∂ϕe
are involved. By using the chain rule, these two unknown

derivations can be unified, as:
∂ üuun

∂ϕe
=

∂ üuun

∂uuun
∂uuun

∂ϕe
, (6.8)

where ∂ üuun

∂uuun can be obtained from the Newmark’s scheme as:

∂ üuun

∂uuun =
4

∆t2 . (6.9)

Substituting Eqs. (6.8) and (6.9) into Eq. (6.7) and combining the similar terms, we have:

∂J
∂ϕe

=
1
2

Ns

∑
n=1

{
(αααn)T

(
∂KKKn

u
∂ϕe

uuun +
∂MMM
∂ϕe

üuun
)
+
(
βββ

n)T
(

∂KKKn−1
u

∂ϕe
uuun−1 +

∂MMM
∂ϕe

üuun−1
)

+
(
FFFn

u +FFFn−1
u
)T ∂∆uuun

∂ϕe
+(∆uuun−ααα

n)T ∂FFFn
u

∂ϕe
+(αααn)T

(
KKKn

u +
4

∆t2 MMM
)

∂uuun

∂ϕe

+
(
∆uuun−βββ

n)T ∂FFFn−1
u

∂ϕe
+
(
βββ

n)T
(

KKKn−1
u +

4
∆t2 MMM

)
∂uuun−1

∂ϕe

}
.

(6.10)
It is noted that we use the Dirichlet boundary condition, which results in:

∂∆uuun

∂ϕe
=

[
0

∂∆uuun
F

∂ϕe

]
,

∂uuun

∂ϕe
=

[
0

∂uuun
F

∂ϕe
,

]
, (6.11)
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and

FFFn
u =

[
FFFn

u,E

0

]
,

∂FFFn
u

∂ϕe
=

[
∂FFFn

u,E
∂ϕe

0,

]
, (6.12)

resulting into:

(
FFFn

u +FFFn−1
u
)T ∂∆uuun

∂ϕe
=

[
FFFn

u,E +FFFn−1
u,E

000

]T [
0

∂∆uuun
F

∂ϕe

]
= 0. (6.13)

The parts with unknown derivatives ∂FFFn
u

∂ϕe
and ∂FFFn−1

u
∂ϕe

in Eq. (6.10) can be vanished by
defining:

ααα
n
E = ∆uuun

E and βββ
n
E = ∆uuun

E. (6.14)

Substituting Eqs. (6.11)-(6.14) into Eq. (6.10), after some calculations, we obtain:

∂J
∂ϕe

=
1
2

Ns

∑
n=1

{
(αααn)T

(
∂KKKn

u
∂ϕe

uuun +
∂MMM
∂ϕe

üuun
)
+
(
βββ

n)T
(

∂KKKn−1
u

∂ϕe
uuun−1 +

∂MMM
∂ϕe

üuun−1
)

+

[
(αααn

E)
T
(

KKKn
u,EF +

4
∆ t2 MMMEF

)
+(αααn

F)
T
(

KKKn
u,FF +

4
∆ t2 MMMFF

)]
∂uuun

F
∂ϕe

+

[(
βββ

n
E
)T
(

KKKn−1
u,EF +

4
∆ t2 MMMEF

)
+
(
βββ

n
F
)T
(

KKKn−1
u,FF +

4
∆ t2 MMMFF

)]
∂uuun−1

F
∂ϕe

}
.

(6.15)
To vanish the items with ∂uuun

F
∂ϕe

and ∂uuun−1
F

∂ϕe
, the following problems must be solved:(

KKKn
u,EF +

4
∆ t2 MMMEF

)
(αααn

E)+

(
KKKn

u,FF +
4

∆ t2 MMMFF

)
(αααn

F) = 0, (6.16)

and (
KKKn−1

u,EF +
4

∆ t2 MMMEF

)(
βββ

n
E
)
+

(
KKKn−1

u,FF +
4

∆ t2 MMMFF

)(
βββ

n
F
)
= 0, (6.17)

from which, the remaining part of Lagrange multipliers can be solved in associated with Eq.
(6.14).

The sensitivity of the external work can be finally expressed by:

∂J
∂ϕe

=
1
2

Ns

∑
n=1

{
(αααn)T

(
∂KKKn

u
∂ϕe

uuun +
∂MMM
∂ϕe

üuun
)
+
(
βββ

n)T
(

∂KKKn−1
u

∂ϕe
uuun−1 +

∂MMM
∂ϕe

üuun−1
)}

,

(6.18)
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in which the Lagrange multipliers are already known and only the derivations of stiffness
and mass matrices with respect to ϕe remains to be determined, as:

∂KKKn
u

∂ϕe
=
∫

Ω

(BBBu)T ∂Cn

∂ϕe
BBBu dΩ and

∂MMM
∂ϕe

=
∫

Ω

∂ρ

∂ϕe
(NNNu)T NNNudΩ, (6.19)

where ∂ρ

∂ϕe
is time-independent, and can be directly computed from the material interpolation

scheme for density; ∂Cn
∂ϕe

can be derived from Chapter 5 in a matrix form as:

∂Cn

∂ϕe
=
(
(1−dn)2 + k

)(
∂λ

∂ϕe
R+

n [1] [1]+2
∂ µ

∂ϕe
PPP+

n

)
+

(
∂λ

∂ϕe
R−n [1] [1]+2

∂ µ

∂ϕe
PPP−n

)
,

(6.20)
in which PPP±n are the matrix form of the fourth-order tensor P±n ; ∂λ

∂ϕe
and ∂ µ

∂ϕe
can be de-

rived from the definition of Lamé coefficients shown in Chapter 5 by using the material
interpolation scheme for the Young’s modulus.

The optimization techniques described in Chapter 5 are employed. We should note that
the maximal value of η is defined as 32 in this Chapter.

6.3 Numerical examples

In this section, the topology of three typical types of structures are designed for enhancing
impact resistance. The structural response subjected to impact loading is solved by using the
dynamic phase field method, implying that the dynamic fracture process of the structures is
taken into account. Fig. 6.1 depicts the imposed velocity on the structures, from which the
loading velocity increases sharply from 0 to v0 in a short time t0 and then remains constant
until the time reaches the maximal value tmax. The brittle material property is assumed and
taken from the Kalthoff-Winkler experiment [180] as summarized in Table 6.2.

Table 6.2 Material parameters.

Material properties Symbol Value Unit

Young’s modulus E0 1.9×105 MPa
Poisson’s ratio ν 0.3 -
Density ρ0 8×10−9 ton/mm3

Critical energy release rate Gc,0 22.17 N/mm

Before implementing TO, we first validate the accuracy of the derived sensitivity analysis
on a simple cantilever beam structure. Fig. 6.2 depicts a short cantilever beam, which is a
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Fig. 6.1 Illustration of the imposed velocity.

v

L

Lf

Fig. 6.2 The geometry and boundary condition of the short cantilever for sensitivity validation.

Table 6.3 Numerical parameters for validation of sensitivity analysis.

ϕ ∆ϕe ℓ v0 τn t0 tmax tol

0.5 10−6 1 mm 40m/s 1 µs 2 µs 80 µs 10−5
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Fig. 6.3 Validation of sensitivity analysis: (a) fracture pattern at tmax = 80 µs; (b) magnitude
of the displacement at tmax = 80 µs; (c) comparison of the sensitivity results.

square structure with a side length of L = 40mm. The left end of the structure is clamped.
The upper right of the structure is imposed by the prescribed velocity and the length of the
loading surface is L f = 4mm. The central difference method is employed for providing a
reference solution to our results. The central difference method can be concluded by:

∂ f (ϕϕϕ)
∂ϕe

≈ f (ϕ1, ...,ϕe +∆ϕe, ...,ϕNe)− f (ϕ1, ...,ϕe−∆ϕe, ...,ϕNe)

2∆ϕe
, (6.21)

where ∆ϕe is a pseudo-density perturbation parameter. For the sake of computational cost,
the structure is discretized by a 40×40 four-node quadrilateral finite element mesh. The
numerical parameters for the sensitivity validation are summarized in Table 6.3.

Fig. 6.3a depicts the fracture pattern of the structure at time tmax = 80 µs. For the
sake of clarity, only the phase field values with d > 0.6 are shown. Fig. 6.3b depicts the
magnitude of the corresponding displacement response at the final time. It can be seen that
the displacement response is severely affected by the occurrence of brittle dynamic fracture.
Under the impact, the deformation and fracture of the structure occur at the same time, so
there is almost no displacement response in the area separated by the crack. Fig. 6.3c shows a
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comparison of the elemental sensitivities obtained by our semi-analytical sensitivity analysis
and the difference method. We can see that both reference and proposed semi-analytical
expression agree well.

6.3.1 Carrier plate

L

v

Fig. 6.4 The geometry and boundary condition of the carrier plate

In this example, we optimize a square carrier plate for maximal impact resistance. Fig. 6.4
depicts the geometry and boundary condition of the carrier plate. The square plate has a side
length of L = 100mm, which is discretized with a 100×100 four-node quadrilateral finite
element mesh. The bottom of the structure is fixed and the top of the structure is imposed by
a impact load. The impact velocity in this example is v = 20m/s, and three different maximal
loading time, tmax = 20µs, 40µs and 60µs, are investigated. The compliance constraint
for this example is defined by C0 = 40N·mm with respect to a testing static external force
Fs =−10N. The volume fraction constraint is χ = 0.3. The filter radius is rmin = 3mm. For
the dynamic phase field simulation, we define ℓ= 2mm, ∆t = 1µs, t0 = 2µs and tol = 10−5.

Fig. 6.5(a) depicts the topological designs with respect to different loading time. Depend-
ing on the loading time, we get different designs, from which we can see that most of the
materials tend to be distributed near loading area for sustaining more external works. Their
static load carrying capacity are ensured by bar connections between the loaded and fixed
areas. Fig. 6.5(b) shows the final crack patterns of these designs. It is observed that the areas
where the designs fractured are also different. Fig. 6.6 shows the corresponding iterative
process of the topological designs. It shows good convergence for both objective function
and constraints.
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V=20m/s

Example 1: A carrier plate

tmax=20μs tmax=40μs tmax=60μs
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Fig. 6.5 (a) Topological designs with respect to different loading time; (b) Final crack patterns
corresponding to the designs.

6.3.2 Half MBB-beam

In this example, we investigate a half-MBB beam for maximal impact resistance via topology
optimization. Fig. 6.7 depicts the geometry and boundary condition of the half-MBB beam.
The structure is of a length L = 150mm and height H = 60mm, and it is discretized by a
150 four-node quadrilateral finite element mesh. The left side of the structure is constrained
in the x-direction and the right bottom corner is supported in the y-direction. An impact
load is applied to the upper left corner of the structure with a width of l f = 4mm. Two
different impact velocities, v0 = 20m/s and v0 = 60m/s, are respectively considered. The
maximal loading time is tmax = 50µs. The compliance constraint for this structure is defined
by C0 = 250N·mm with respect to a test force Fs = 100N. The volume fraction constraint of
this example is χ = 0.5. The filter radius is rmin = 3mm. The maximal iteration of the TO is
limited to 60 steps. For the dynamic phase field simulation, we define ℓ= 2mm, ∆t = 1µs,
t0 = 2µs and tol = 10−5.

Fig. 6.8(a) depicts the topological designs with respect different loading rate. It can be
observed that the proposed TO method gives different topological designs corresponding to
different loading rates, respectively. For better impact resistance, the materials of both designs
tends to be distributed near the loading area. Fig 6.8(b) shows the final crack pattern of the
corresponding designs, which exhibits a diversity of the dynamic fracture under different
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(a) tmax = 20µs

(b) tmax = 40µs

(c) tmax = 60µs

Fig. 6.6 Iterative process of the topology optimizations.
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Fig. 6.7 The geometry and boundary condition of the half-MBB beam

v0=20m/s

(a)

(b) 1
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d

1

0

v0=60m/s

Fig. 6.8 (a) Topological designs with respect to different loading rate; (b) Final crack patterns
corresponding to the designs.
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(a) v0 = 20m/s

(b) v0 = 60m/s

Fig. 6.9 Iterative process of the topology optimizations
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loading rates. Fig. 6.9 shows the iterative process of the topological designs, from which
good convergences are observed.

(a) (b) (c)

Fig. 6.10 Reference designs of the half-MBB beam: (a) S-design; (b) D-design for v0 = 20m/s;
(b) D-design for v0 = 60m/s.

(a) (b)

Fig. 6.11 Comparison of the external work.

To further illustrate the advantage the DF-design, three different reference designs of
the half-MBB beam, as shown in Fig. 6.10, are compared with our designs. Fig. 6.10(a)
shows the S-design for minimal structural compliance, while Fig. 6.10(b) and (c) are the
D-designs for maximal external work without dynamic fracture consideration with respect to
v0 = 20m/s and v0 = 60m/s, respectively. Fig. 6.11 shows the time-energy curves of these
reference design and our DF-designs within prescribed loading time, all results taking into
account dynamic fracture effects. From Fig. 6.11(a), in which the loading rate is v0 = 20m/s,
the DF-design exhibits a much larger external work required to reach the prescribed boundary
displacements than the D- and S- designs. It indicates that DF-design has a better impact
resistance. When it comes to a much higher loading rate v0 = 60m/s, as which is shown in
Fig. 6.11(b), the DF-design remains a considerable advantage over the S-design, but only
a slight advantage over the D-design. We suppose that this is due to dynamic effects at
such high loading rates. Tables 6.4 and 6.5 provide the comparison of the external work
values at t = 50µs corresponding to the curves shown in Fig. 6.11(a) and (b), from which
the advantage of the DF-design is clearly illustrated.
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Table 6.4 Comparison on the required external work for DF-, D- and S- designs at t = 50µs
under the loading rate v0 = 20 m/s

Design method External work (mJ) Difference (compared to DF-design)
DF-design 1.42×104 -
D-design 1.03×104 -27.5%
S-design 0.62×104 -56.3%

Table 6.5 Comparison on the required external work for DF-, D- and S- designs at t = 50µs
under the loading rate v0 = 60 m/s

Design method External work (mJ) Difference (compared to DF-design)
DF-design 10.61×104 -
D-design 10.29×104 -3.0%
S-design 4.65×104 -56.2%

6.3.3 Cantilever beam

L

v

Lf

H

Fig. 6.12 The geometry and boundary condition of the long cantilever beam

In this example, we investigate a cantilever beam for the impact resistance topology
optimization. Fig. 6.12 depicts the geometry and boundary condition of the long cantilever
beam, of which the length and height are L = 150mm and H = 60mm, respectively. The
left side of the structure is fixed and the right top surface with length L f = 4mm is loaded
by a prescribed loading rate. Two different loading rates are respectively considered, which
are v0 = 40m/s and v0 = 60m/s. The maximal loading time of this example is tmax = 40µs.
The structure is discretized by a 150×60 four-node quadrilateral finite element mesh. The
compliance constraint for this example is C0 = 180N·mm with respect to a test force vector
FFFs = −100N. The volume fraction constraint is χ = 0.5. The filter radius is rmin = 3mm.
The parameters of the dynamic phase field method are ℓ = 2mm, ∆t = 1µs, t0 = 2µs and
tol = 10−5.

Fig. 6.13(a) depicts the topological designs corresponding to v0 = 40m/s and v0 = 60m/s
respectively. We can see that although the designs are somewhat different, the materials
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Fig. 6.13 (a) Topological designs with respect to different loading rate; (b) Final crack
patterns corresponding to the designs.

are arranged close to the loading area. Fig. 6.13(b) depicts their final crack patterns, from
which we can observe the difference and the structure subject to higher loading rate exhibits
apparent dynamic cracking behavior. Fig. 6.14 shows the iterative process of these two
topological designs, which illustrate the good convergence of the TOs.

Fig. 6.15 gives three reference designs of the long cantilever beam. They are one static
compliance minimization design (S-design) and two dynamic external work maximization
designs for different loading rates with out fracture consideration (D-design). Similarly, these
designs are compared to the DF-designs within the dynamic phase field. Fig. 6.16(a) and (b)
show the time-energy curves of these designs corresponding to the two prescribed loading
rates v0 = 40m/s and v0 = 60m/s, respectively. We can observe that the DF-designs remain
big advantage to the S-designs and have slight superiority to the D-designs. For comparison
purpose, Tables 6.6 and 6.7 provide the cumulative required external work at the final time,
from which the external work are compared in terms of values. Once again, the DF-designs
lead to better impact resistance.

Table 6.6 Comparison on the required external work for DF-, D- and S- designs at t = 40µs
under the loading rate v0 = 40 m/s

Design method External work (mJ) Difference (compared to DF-design)
DF-design 1.90×104 -
D-design 1.83×104 -3.7%
S-design 0.82×104 -56.8%
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(a) v0 = 20m/s

(b) v0 = 60m/s

Fig. 6.14 Iterative process of the topology optimizations

(a) (b) (c)

Fig. 6.15 Reference designs of the long cantilever beam: (a) S-design; (b) D-design for
v0 = 40m/s; (b) D-design for v0 = 60m/s.
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(a) (b)

Fig. 6.16 Comparison of the external work.

Table 6.7 Comparison on the required external work for DF-, D- and S- designs at t = 40µs
under the loading rate v0 = 60 m/s

Design method External work (mJ) Difference (compared to DF-design)
DF-design 4.21×104 -
D-design 3.83×104 -9.0%
S-design 1.60×104 -62.0%

6.4 Conclusions

In this chapter, we extended the proposed topology optimization framework with considering
dynamic fracture to maximize the external work of impact loads. From another perspective,
the fracture-resistant structures were designed by topology optimization. Again, semi-
analytical sensitivity analysis expressions were formulated for external work in the dynamic
context. Then, several numerical examples were presented to illustrate the potential of this
method.

The main contributions of this chapter can be summarized as follows:

• Fracture-resistant structures were designed by topology optimization for maximizing
the external work of impact loads.

• Efficient semi-analytical sensitivity analysis expressions were provided and validated.

• Structural topological design for impact loading bearing capacity, while considering
the fracture of the structure, was studied for the first time.

• It is an extension of our previous work [403, 210], where the quasi-static problem is
extended to the dynamic.



Chapter 7

Conclusions and perspectives

7.1 General conclusions

In this thesis, we investigated topology optimization methods in the dynamic contexts with
emphasis on: (a) developing a BESO-based topology optimization method for the frequency
response problem; (b) developing robust topology optimization methods in the frequency-
domain dynamics for both probabilistic and non-probabilistic uncertainties; (c) developing a
dynamic fracture involved topology optimization framework for the design of impact loaded
structures. The detailed contributions of this thesis are summarized as follows.

In Chapter 2, we proposed a normalization strategy for the BESO-based topology opti-
mization method to improve its stability and convergence. We then firstly applied it to the
frequency response problem, which was difficult to the conventional BESO method. We
have discussed the reasons why conventional BESO has difficulties to achieve frequency
response optimization, and how the proposed normalization strategy-based BESO (NBESO)
method can circumvent this problem. More importantly, the NBESO method can be regarded
as an extension of the conventional BESO method with better stability and convergence, and
can handle problems that are difficult for the conventional BESO method, such as the stress
problems [119, 118] and fracture-resistant designs [211].

In Chapter 3, we investigated the robust topology optimization for probabilistic uncer-
tainty. Although there has been a lot of research on this topic in the topology optimization
community, especially in the last decade, our contributions to this topic are clear: (a) we were
nearly the first to study topology optimization with uncertainty in a dynamic context; (b)
we employed a hybrid interval random model to describe the probabilistic uncertainty with
imprecise quantities, such as interval model based expectation and standard deviation; (c) an
improved hybrid perturbation (IHPA) method was developed for predicting the performance
of structures under uncertainty at very low computational costs; (d) we extended the proposed
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robust topology optimization method to dynamics for design of various types of structures,
including the design of isotropic structures, laminated composite plates and multi-scale
composite structures.

In Chapter 4, we introduced a recently emerged interval field model for non-probabilistic
uncertainty with spatial dependence into topology optimization in dynamics. We proposed an
interval-field based perturbation analysis (IFPA) method for evaluating the worst case of the
single material structures under uncertainty associated with material properties and loading,
and its efficiency and accuracy were validated. Based on the robust topology optimization
framework, the sensitivity analysis was derived. Considering that epistemic uncertainty with
spatial dependence had been studied recently, this part of the work was one of the first to
contribute to topology optimization.

In Chapter 5, we developed a framework to encompass dynamic fractures in topology
optimization. We combined the fracture phase field method with topology optimization. A
path-independent method was presented, by which the computational costs and complexity
of the problem were greatly reduced. We derived a semi-analytical expression of sensitivities
in this context, whose accuracy was also validated. We suggested a fracture energy as the
objective function for optimization and performed topology optimizations in this framework.
We have demonstrated with a few numerical examples that the proposed method allows for
reduction of fracture energy.

In Chapter 6, we extended the context of the previous chapter by applying it to the design
of structures resistant to impact fracture. We optimized the structure for maximal external
work with respect to the impact loads. Similarly, a semi-analytical expression of sensitivity
was derived for the external work. The potential of this method was finally illustrated by
several numerical examples.

In general, this thesis contributed to topology optimization in structural dynamics, in-
vestigated the problems in both frequency-domain and time-domain, and covered vibration
and impacting problems. The work was carried out based on both BESO method and SIMP
method, and we focused on the improvement of BESO method. Uncertainties in both proba-
bilistic and non-probabilistic forms were considered in this context. Finally, we considered
the dynamic fracture problem in topology optimization, which constitutes a breakthrough in
this area.

7.2 Perspectives

We believe that this thesis work opens several perspectives, detailed as follows:
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From Chapter 2, the proposed NBESO method was implemented for the frequency
response problem that is characterized by a strong localization. Further research could be
conducted for other typical problems characterized by this feature, for instance, topology
optimization for stress-constrained problem in dynamics, which to the best of our knowledge
has been rarely studied.

From Chapter 3, we developed an IHPA method, by which the structural performances
can be quickly evaluated. However, we should also note that in the IHPA method, the
first-order Taylor expansion was twice performed with neglecting the higher-order terms.
Such processing is not problematic for dealing with the problems we presented. However,
for some problems with large-scale uncertainties, this loss of precision may cause inaccurate
predictions. Therefore, in follow-up works, we would suggest developing alternative solutions
to refine this method and make it more applicable while balancing accuracy and efficiency.

From Chapter 4, a recently emerged interval field model was introduced for topology
optimization. Since the research on interval fields is still in the early stage, the model used
has the problem of overfitting. We have found through practice that when the value of the
truncation number is too large, the value that should be obtained may not be achieved through
the interval field model. To this end, we have developed a novel B-spline based interval field
decomposition method in [150] to explicitly construct the interval field, in which the problem
of overfitting can be avoided. We should note that the proposed IFPA method is still valid for
that case.

From Chapters 5 and 6, we have conducted the proposed method for the topology
optimization of classical and challenging complex single material structures. In the later
studies, it would be interesting to apply this approach to the design of various types of
structures, like the two-phase composite structures, periodic lattice structures and biological
shell-infill structures. Besides, we could constrain the maximal value of the phase field,
as in the case of the stress-constrained topology optimization problem, and then make a
comparative study on these two methods in enhancing the structural strength. As a final
remark, we could extend phase field method to dynamics in a context of various behaviors
(e.g. quasi-brittle, elastoplastic) and include them in our topology optimization research.
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