INTRODUCTION INTRODUCTION

To understand the formation of galaxies and to study the expansion of the Universe, astronomers observe faint galaxies. In order to study and collect their spectra, the telescope has to be equipped with a spectrograph having Multi-Object Spectroscopy (MOS) capabilities. MOS is an astronomical technique that allows the simultaneous collection of the visible and infrared (IR) spectra of faint galaxies and stars, thereby providing information on the origin of the Universe and the formation of galaxies. Moreover, to remove spoiling sources such as bright stars and the stellar background and to avoid the overlapping of spectra between the measured objects, the modern MOS has a field selector placed at the focal plane of the telescope which allows the individual selection of the objects. Motivated by potential improvement of microtechnology, micro-electro-mechanical systems (MEMS)-based field selectors are developed which can achieve higher performances, higher number of targets, faster reprogrammable time and cryogenic operation compatibility. However, the performance of these spectrometers was mainly limited by their minimum operating temperature -40 • C. Indeed, for IR observations when the instrument is not at cryogenic temperature, the measurements are spoiled by the thermal emission of the instrument itself. Therefore, to cope with these limitations, a group led by the Laboratoire d'Astrophysique de Marseille (LAM), has worked for many years to develop a european micro-mirror array (MMA) with electrostatically actuated tilting mono-crystalline silicon micro-mirrors Figure 1. It is designed as a field selector for MOS [Waldis, 2010], [Canonica, 2012], with stringent requirements summarized in Table 1. Table 1: requirements on a cell of the array from [Canonica, 2012].

Features Constraints

Moreover, the size of the array must cover the field of view of a telescope.

A design fulfilling these conditions was built and then used for fabrication. A Finite Element Method model was made in the software package Coventor 2010. Various configurations of the micro-mirror arrays were simulated. The purpose of the FEM simulations was to determine the static electromechanical behavior of the micro-mirror, the maximum Von Mises stress in its suspending beams, the resonance modes of the micro-mirror and the contact locations between parts. Since geometry uncertainties due to the fabrication process are unavoidable, several models were created with different sets of parameters to analyze their effect on some aspect of the electromechanical behavior as for instance the tilt angle and voltage hysteresis.

A first requirement of my thesis was to simulate and optimize the same cell using Comsol Multi-physics, another popular FEM software package. It allows for modeling various physical and engineering applications and especially coupled phenomena thanks to specialized toolboxes. Another manner to use Comsol is by setting a system of partial differential equations (PDEs). This allows to investigate taylor-made models not available in the specialized toolboxes. Programing Comsol is made through Matlab scripts thanks to a link between the two packages. This provides to Comsol the full power of Matlab with its toolboxes for preprocessing, model manipulation, and postprocessing. This is thanks to this connection that SIMBAD, an in-house optimization software package based on Matlab functions, operates on Comsol models.

The mathematical description of the equations involved and the design of the micromirrors is recalled in Chapter 1. The mechanical deformations, the electrical field, the thermal effects are taken into account. The equations are written under their strong and weak forms. The geometry, the choice of materials and their coefficients are detailed.

The simulation and optimization results are reported in Chapter 2. The implemented model takes into account the quasi-static nonlinear elasticity coupled with the electrostatic field, but not the contact condition. This coupling is implemented in the complete geometry of a cell. The parameters used in simulation are precisely reported. In terms of analysis and optimization, the focus is made on the pull-in voltage, that is the determination of the limit of the actuation voltage before instability. I have shown that the pull-in voltage strongly depends on two main parameters: the length and thickness of the suspending beam. Unfortunately, the ratio "beam length/beam thickness" is extremely large and is very critical in the simulation. Actually, it is a source of strong instability problems in the nonlinear solver. Other specific difficulties were met, in particular the strong nonlinearity of the problem requires very small computation steps and the relatively complex geometry, including small gaps, requires a very large mesh. In total, and after a number of improvements, the simulation of the pulling voltage is successful for all the required sizes of the suspending beams, but still with long simulation time i.e. up to a dozen of hours. Finally, the optimization of the pull-in voltage in a cell has been achieved based on a polynomial metamodel built from some twenty pull-in voltage computations.

The second question addressed during my thesis is the modeling, and if possible the simulation, of an array of micro-mirrors. Evidently, direct simulations of the thousands of coupled micro-mirrors is outside of our scope. Indeed we expect to build models that can run in a reasonable time on a personal computer. The goal of this work was to adapt to this problem a periodic homogenization method based on an asymptotic approach. This choice was made to contribute to MEMSALab, a software package dedicated to asymptotic methods, which is at the very heart of Chapter 4.

Periodic homogenization has been developed for a long time and several methods have been emerging over the years. In this thesis, we focus on the two-scale convergence. In 1989, Nguetseng have introduced the notion of two-scale convergence in [Nguetseng, 1989] and this idea was further developed in [Allaire, 1992]. Independently, in 1990, Arbogast et al. [Arbogast et al., 1990] introduced a dilation operation to study homogenization for a periodic medium with double porosity. This technique was used again in Bourgeat [START_REF] Bourgeat | Convergence of the homogenization process for a double-porosity model of immiscible twophase flow[END_REF], Allaire [START_REF] Allaire | Bloch wave homogenization and spectral asymptotic analysis[END_REF]] and Lukkassen [START_REF] Lukkassen | Two-scale convergence[END_REF]. M. Lenczner with his co-workers in [Lenczner, 1997], [Lenczner, 2007], [START_REF] Lenczner | A two-scale model for an array of AFM's cantilever in the static case[END_REF], [Lenczner, 2006], [START_REF] Lenczner | Homogenization of electrical networks including voltage-to-voltage amplifiers[END_REF], used the same idea to develop a complete framework yielding similar results as for periodic homogenization as the two-scale convergence method. They first introduced this new technique to address homogenization of spatially periodic analog electronic circuits in view of their application in arrays of MEMS. The advantage of this technique compared to the previous ones is more modularity, simpler calculations, less technicality in the proofs, and a wider range of applications e.g. it is easily applicable to manifolds as electrical networks. Then, J. Casado Diaz et al. [Casado-Diaz, 2000], [START_REF] Casado-Diaz | Homogenization of the anisotropic heterogeneous linearized elasticity system in thin reticulated structures[END_REF], [START_REF] Casado-Díaz | An adaptation of the multi-scale methods for the analysis of very thin reticulated structures[END_REF] combined it with the two-scale convergence to study perforated domains and thin structures. Then, the same concept was renamed the "periodic unfolding method" and popularized by D. Cioranescu, A. Damlamian and G. Griso who have developed a number of their properties, including error estimates, in [START_REF] Casado-Díaz | An adaptation of the multi-scale methods for the analysis of very thin reticulated structures[END_REF], [START_REF] Cioranescu | The periodic unfolding method in homogenization[END_REF], [Griso, 2002], [Griso, 2004] and [Griso, 2006]. This technique has been extensively developed by many other authors in a variety of applications. In particular, it has been applied to find models of complex structures combining other asymptotic features, as thin structure or strong heterogeneity of coefficients, with the periodic homogenization, see among others [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate. part i[END_REF], [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate. part i[END_REF], [START_REF] Blanchard | Boundary homogenization and reduction of dimension in a kirchhoff-love plate[END_REF], [START_REF] Lenczner | A two-scale model for an array of AFM's cantilever in the static case[END_REF], or [Lenczner, 2007]. We notice that in [START_REF] Lenczner | A two-scale model for an array of AFM's cantilever in the static case[END_REF], an attention has been paid to formulate the proofs of model derivation as a sequence of calculation without relying on any abstract arguments. The model derivation adopted in this thesis relates to the techniques developed in [START_REF] Lenczner | A two-scale model for an array of AFM's cantilever in the static case[END_REF].

Ultimately, an homogenized model of the micro-mirror array should take into account the electro-thermo-mechanical coupling. It is worth recalling that the two-scale transformation consists in transforming a physical domain occupied by a periodic structure into a pair of a macroscopic domain that ignore the details in the cells and a microscopic domain which is a scaling of one of the cells. Mathematically, the periodic homogenization method consists in considering that the size of the array is fixed and that the number of cells is very large. The asymptotic model is found by passing to the limit when the number of cells CONTENTS goes to infinity. To do this without loosing the details of the cells, the asymptotic analysis is carried out after application of the two-scale transformation.

To start the modeling it has been decided to address first the electrical problem. Since in each cell an electrical field is created in the vertical direction by imposing a difference of potential between the electrodes, it results that the leading part of the electrical potential of the asymptotic model is an electric potential having variations in both the macroscopic and the microscopic domains. However, in the expected applications of the micro-mirror array, the set of cells is split into two connected subsets, the sets of those switched "on" and the set of those switched "off". It results that only two values of the imposed voltage have to be distinguished in the array. Since the imposed voltage is constant over all cells of a connected part of the array, the leading electrical potential varies only about the coordinates of the microscopic domain. It is a solution of the electrostatic equation over a single cell with periodic boundary conditions. Therefore, it suffers from a mismatch between both sides of the interface of the two connected parts of the array. To correct this defect, a boundary layer is introduced. Moreover, the periodic boundary conditions satisfied by the leading electrical potential are also incompatible with the boundary condition at the outer boundary of the array, as for instance a zero normal flux condition.

Then, the model takes also into account a boundary layer effect on the external boundary of the array. As usual, a boundary layer is a part of solution that decreases very fast. Due to a lack of time, the boundary layer analysis and, for the sake of consistency, the complete models are presented for a one-dimensional array only. It can be extended to two-dimensional array to the price of an extra-work for the boundary layer on the interface between the two connected areas. It is also worthwhile to mention that the mathematical techniques for boundary layer derivation are taken from [Nguyen, 2014].

The third point where a contribution of my thesis was expected is related to the software package MEMSALab (for MEMS Array Lab). The concept underlying MEMSALab originates in the observation that although asymptotic analysis is a well established and good way to simplify models, it requires case-by-case derivation. That is the full process of model derivation is redone from the scratch whenever a new problem is met, eventhough it may share many features with an already solved problem. Consequently, given the variety of possible physics and geometrical configurations it appears insurmountable to adopt asymptotic modeling in general simulation software. However, they are implemented in laboratory software or in specialized software tools such as Helius, MAC/GMC, CZone, DIGIMAT. Evidently, the number of models that these software packages can cover is limited. The MEMSALab project aims to going beyond the principle of case-by-case model production and implementation.

Its leading principle is inspired by the human behaviour for the resolution of a new problem. More specifically, it copies the behaviour of a mathematician, since the approach is developed for the derivation of models which basically are mathematical proofs. An usual method for building a new mathematical model starts from a known theory that works in simpler cases, and by identifyng the new features to be taken into account. Then, an efficient principle is to find the way to transform a known proof into other ones, each taking into account a new features. This is the step of extension. Then the combination of these transformations yields the proof for the full problem. This approach is called the by-extension-combination method [START_REF] Belkhir | Towards an automatic tool for multi-scale model derivation illustrated with a micro-mirror array[END_REF] that we sketch more precisely in the context of asymptotic model derivation.

An asymptotic model derivation starts with an input PDE coming from any scientific field to which a derivation, also said proof, is applied ending to the expected model. This scheme is build for a reference case, which is the simplest that we can consider, so we call it the reference scheme. Then, it is complexified, we say extended, in several manners to take into account new features yielding new schemes. The input PDEs still arise from an application area but with additional features. Accordingly, the reference proof is extended in different ways to cover the new features. Applying the extended proofs to the enriched PDEs yields new asymptotic models. Finally, a new scheme for an input PDE covering a group of new features is built by combination. Precisely, its input PDE is still issued from a practical problem. Its proof is obtained by applying a combination of two or more extensions, built in the previous step, to the reference proof. Finally, applying the resulting proof to the input PDE yields an asymptotic model enjoying the groups of features. In summary, combining extensions related to new elementary features allows for building new proofs and therefore new asymptotic models in an incremental manner. From a very global viewpoint, MEMSALab is designed to be in a chain of operations as represented on Figure 2: the designer states the nominal model (geometry and equations) in FEM software, the model is sent along with non-technical descriptions for the choice of asymptotic methods in MEMSALab which transforms it into a multi-scale model, the latter is appropriately implemented in the FEM, then the designer takes the reins and can apply its favorite operations for simulation and result visualization. Figure 3 shows more details of the flow of operation of MEMSALab. The main components are the Library of (elementary) Extensions and Combinations (E-C Library) and the software Core consisting of SymbTrans, an engine of rewriting strategies, and Sym-bComb, an engine of extensions and combinations. The Core operates on expressions written in the Processing Language (PL). The users specify their problems using the User Language (UL), a language close to the usual mathematical language, and there exist translators from the PL to the UL and vice-versa. All operations are coordinated by the Control Manager written in MATLAB while the Core and the Translators are implemented in OCaml. The

The operations starts from an Input Model specified either in a specification file written in UL or using a FEM software. In the second case, the specification is extracted and CONTENTS translated into UL through a FEM to UL translator.

The specification of the asymptotic reduction is specified using the Extension Selector part of the UL. The necessary elementary Extensions being assumed to be pre-defined in the EC-Library, they are combined thanks to SymbComb, the engine of combinations. The result of this combination is a complex Extension which is applied to the Reference Proof through SymbTrans, so that to generate the Extended Proof. The latter is applied to the Input Model, through SymbTrans also, yielding the final Asymptotic Model which can be output in UL format and subsequently sent to FEM thanks to the UL to FEM Language translator.

Before the start of my thesis, several concepts and their implementation were already presented in the PhD thesis of Bin Yang [START_REF] Yang | Computer-aided derivation of multi-scale models: A rewriting framework[END_REF], Yang, 2014]. Symb-Trans was implemented as a Maple package and the reference proof in the style of [START_REF] Lenczner | A two-scale model for an array of AFM's cantilever in the static case[END_REF] was implemented together with three extensions. The mathematical properties, lemmas and theorems were represented as rewriting rules, and the proofs as rewriting strategies. The extension mechanisms for the multi-scale model derivations was well established. Theoretical work for extension and combination were approached by both positional computation and strategies [START_REF] Belkhir | Towards an automatic tool for multi-scale model derivation illustrated with a micro-mirror array[END_REF]. More precisely, an extension is an application of a transformation to the reference proof while a combination is a combining of the already implemented extensions. Through combinations, a complex models will be generated in the benefit of reusing the proofs and tools built for the generation of simpler models. Let us consider a reference proof, for example, having an extension E1 (viewed as a transformation) to some general setting (e.g. multi-dimensional setting) and another extension E2 to another general setting (e.g. thinness setting). The two extensions combined yields a new extension E' that covers both settings when applying to the reference proof.

Although a small class of usual rewriting strategies as OuterMost and BottomUp were considered for combinations, the question whether this class, or possibly a wider class, is closed under combination was left open, as well as the question of the correctness and soundness of the combination formula. Addressing these properties are one of the main contribution of this thesis to the kernel of MEMSALab, Chapter 4. Precisely, the idea of combination is kept the same but the tools and the techniques are different. We identify an operation of combination over a class of extensions named HCE-strategies, expressed as rewriting strategies that navigate along trees and insert contexts. We prove that this class is closed by combination after establishing an explicit formula of combinations. We shown that usual traversal strategies as TopDown or BottomUp belong to the class of HCE-strategies. Several nice algebraic properties of the HCE-strategies are also proved. Besides, in this thesis, we present the design and implementation of a user language for the specification of rewriting strategies based proofs and extensions. The user can use it to express PDEs, proof and extensions manually. A manager program built with Matlab for compilation, application, combination is also introduced. The reference proof mentioned above is completely implemented using the User Language.

INTRODUCTION TO MICROMIRROR AND MODELS 1.1/ INTRODUCTION

The LAM's micro-mirror array consists in several thousand micro-mirrors cells arranged in a rectangular shape. From a general point of view, the micromirror cell has two parts that are assembled, Figure 1.1, [Canonica, 2012]. The mirror part is composed of a mirror, a system of beams and a frame. The mirror is attached to the frame by the suspended beams. Two landing beams are placed on the tips of the suspended beams to prevent the mirror from a short-circuit generation in contact with the electrode during actuation. And, the stopper beam placed under the frame provides a precise tilt angle after actuation. The electrode part is composed of an electrode, two landing pads and two pillars. The electrode allows to apply an electrostatic force attracting the micromirror. The two landing pads define the landing regions of the landing beams and the pillars determine a precise electrostatic gap and a stiff link between the mirror and the electrode.

The concept of actuation of the micromirror cell is based on the double plate electrostatic actuator. At rest, when no voltage is applied, the micromirror is held in a flat position by the suspended beams. When a voltage difference is applied between the micromirror and the electrode, an electrostatic force is generated, resulting in the attraction of the micromirror toward the electrode. Before the pull-in voltage, the micromirror moves a little allowing the angle to be set to a few degrees. At the pull-in voltage, the force increases and the micromirror snaps toward the electrode. During this motion, it touches its landing pads first and touches its stopper beam latter, Figure 1.2(a), or it touches its stopper beam and lands on its landing pads, Figure 1.2(b). After pull-in, the micromirror is fixed at a precise tilt angle. When the voltage is reduced, the micromirror angle remains constant until the mirror detaches from its stopper beam and increased its tilt angle. Finally, when the spring force of the suspended beams overcome the electrostatic force, the landing beams detach from the landing pads and the mirror returns to its rest position.

The concepts for addressing individual micromirror cells are based on a line-column algorithm using the property of the tilt angle/voltage hysteresis. The electrode under the micromirrors is placed in a direction perpendicular to the frame, Figure 1 The geometry of a micromirror cell [Canonica, 2012]. For clarity, the micromirror is drawn as transparent.

proportional to the distance between the two conductors, for any voltage lower than the pull-in voltage, the micromirror has two different tilt angles; one occurs before and another one occurs after the collapse angle. And accordingly, it only require a lower voltage than the pull-in voltage to keep titling angle constant.

With this property, it allows to avoid the full actuation of neighboring micromirrors when one micromirrors is being addressed and also to actuate the neighboring elements without modifying the tilt angle of the full tilted mirror.

The aim of this chapter is the statement of the mathematical models describing the physical phenomena occurring during the actuation of the micro-mirror. Due to the large deformation of the suspending beams, the structural deformations are governed by the system of nonlinear elasticity. The electric effect are governed by the electrostatic equation that is the cause of the electrostatic force operating on all mechanical parts. Finally, the heat transfer are modeled by the heat equation which is coupled to the system of elasticity.

The strong forms of these equations are recalled as well as their weak forms.

1.2/ PHYSICAL PHENOMENA OCCURRING IN A MICROMIRROR

CELL

The deformations of the beams and the mirror are because of electrostatic forces caused by different applied potentials. A Computational analysis of this phenomenon requires the coupling of an electrostatic analysis and a mechanical analysis.

Electrostatics problem:

To start electrostatics analysis, consider a micromirror cell as shown in Figure 1.5, Ω Vac denotes the domain occupied by vacuum between the mirror (a) First sequence: at pull-in voltage the micromirror is snapped towards its electrode.

During this motion, the micromirror first touches its landing pads ( 2) and then its stopper beam [START_REF]A two-dimensional and a one-dimensional micro-mirror arrays with their surrounding vacuum domain, Ω ε = Ω ε,vac ∪ Ω m,ε . The domain Ω ε is divided into two parts Ω ε,vac,1 and Ω ε,vac,2 corresponding to the two different voltages. They are separated by the interface Γ ε,vac inter f . The scaling assumptions on the size of each cell and of the array are also represented[END_REF].

(b) Second sequence: at pull-in voltage the micromirror is snapped towards its electrode.

During this motion, the micromirror first touches its stopper beam( 2) and then its landing pads (3).

Figure 1.2: Two actuation sequences are observed depending on the dimensions of the beams. After pull-in, the micromirror has a precise tilt angle due to its contact with its stopper beam and landing pads [Canonica, 2012]. and the electrode, φ denotes the electric potential, V 1 and V 2 denote two different potentials imposed on the electrode part and the mirror part, i.e. V 1 is applied to the surface of the electrode while V 2 is applied to the surfaces of the frame, of the two pillars and of the mirror through the beams, of the landing beams and of the golden parts. The notations Γ e 0,1 , Γ e 0,2 denote the boundaries of conductors where φ = V 1 and φ = V 2 and Γ e 1 denotes Figure 1.4: Tilt angle/voltage hysteresis of the micromirror. For some voltage V s the micromirror can be in either position 1 or 3. V p-in is the pull-in voltage; at this voltage the mirror snaps toward the electrode. V p-out is the pull-out voltage at this voltage the mirror returns to its rest position. The voltage VT is defined by VS -δ < VT < VS . For individual addressing using a line-column algorithm, the tilt angles in positions 2 and 3 have to be the same, and the range of voltage that constitutes position 3 has to be as large as possible, to compensate for fabrication variations [Canonica, 2012] the lateral boundaries of Ω Vac , it can have Neumann condition for simplification or periodic condition in voltage for the case of simulating a cell of a two dimension array. 

Time dependent thermoelastic problems:

In addition, we consider linear time dependent thermoelastic problems as shown in Figure 1.8. Let Ω ther be the domain which contains all the components of the micromirror except Ω Vac , r (t, x) be total external volume heat source given by

r (t, x) = r radiation (1.1)
where r radiation is the external source. The notation θ denotes the unknown temperature while θ 0 denotes the constant reference temperature, θ denotes the difference of the temperature given by θ = θθ 0 . The notation Γ ther 0 denote the boundary where the reference temperature θ 0 is imposed and Γ ther 1 denote the boundary where the outer heat source is applied. The micromirror is kept in vacuum condition, so that there is no heat exchange between the body and the outside environment.

1.3/ GOVERNING EQUATIONS

We provide the models corresponding to the stated problems in the previous section.

Electrostatic problem:

The governing equation for electrostatic analysis is given by [ [START_REF] Griffiths | Introduction to electrodynamics[END_REF] (page 69)

               div x (∇ x φ) = 0 in Ω Vac φ = V 1 on Γ e 0,1 φ = V 2 on Γ e 0,2 ∇ x φ • n = 0 on Γ e 1 , (1.2)
where n is the unit outward normal vector on the surface of conductors. In addition, electrostatic force f elec per unit area applied on surface of conductors is given by [Kovetz, 2000] (page 225),

f elec = - 1 2 E elec • D n + n • E elec D T , (1.3)
where the electrical field E elec is given by

E elec = -∇ x φ, (1.4)
and D is the charge potential given by

D = 0 E elec , (1.5)
with 0 the permittivity in vacuum.

Mechanical problem:

We first introduce the linearized static homogeneous isotropic elasticity problem coupled with the electrostatic problem. The governing equation using the Euler description of the mechanical analysis is given as [START_REF] Mase | Continuum mechanics[END_REF]]

         -∇ x • Σ = 0 in Ω m u = 0 on Γ m 0 Σn = f elec on Γ m 1 , (1.6) 
where the body force per unit volume in the equilibrium equation is assumed to be negligible, f elec is given by (1.3), u = (u i ) is the mechanical displacement vector, Σ = (σ i j ) is the Cauchy stress tensor given by the Hooke's law

Σ = λI + 2µE, (1.7)
where λ and µ are Lam é constants of a homogeneous isotropic elastic material, E = ( i j ) is the infinitesimal strain tensor given by the linearized strain-displacement relation

E = 1 2 ∇ x u + ∇ x u T , (1.8) 
where I = tr(E)I = kk I and ∇ x u is Jacobian matrix of u.

Secondly, we introduce the static nonlinear-elasticity system coupled with electrostatics. We observe that the software suite COMSOL and general commercial FEM packages using the Finite Element Method (FEM) or Boundary Element Method (BEM) based methods for the analysis of MEMS, such as MEMCAD and FASTCAP, perform a mechanical analysis on the undeformed geometry of the device using a Lagrangian approach and the electrostatic analysis is performed on the deformed geometry. This semi-Lagrangian scheme is normally preferred to the full-Eulerian schemes in nonlinear analysis, since it allows to avoid the need to update the geometry of the conductors, therefore avoids to remesh the surfaces and recompute interpolation functions whenever the geometry changes. The governing equations for nonlinear mechanical and electrostatic analysis using semi-Lagrangian description for a micromirror cell is given by [Ciarlet, 1993], [START_REF] Fu | Nonlinear elasticity: theory and applications[END_REF] and [START_REF] Li | Efficient mixed-domain analysis of electrostatic mems[END_REF]]

         -div (FS) = 0 in Ω m u = 0 on Γ m 0 P • N = f elec on Γ m 1 (1.9)
where N is the unit outward normal vector in the initial configuration, F is the deformation gradient given by F = I + ∇u, (1.10) in which I is identity tensor, S is the second Piola-Kirchhoff stress given by

S = CE, (1.11)
where C is the material tensor and E is the Green-Lagrangian strain tensor given by

E = 1 2 F T F -I , (1.12)
and P is the fist Piola-Kirchhoff stress tensor given by

P = FS. (1.13)
Finally, the dynamic model of the coupled electrical-mechanical nature of micromirror cell can be established according to [START_REF] De | Full-lagrangian schemes for dynamic analysis of electrostatic mems[END_REF].

Time dependent thermoelastic problem:

The governing equation for coupled thermalelastic problem is given by

         C E ∂ t θ -θ 0 M : ∂ t E + ∇ x • q = r in Ω ther q • n=g s on ∂Ω ther \Γ ther 1 θ = 0 on Γ ther 0 (1.14)
where M is the stress-temperature tensor, C E is the specific heat at zero, q is the heat flux given by the Fourier's law q = -K∇ x θ, (1.15)

and K is the thermal conductivity.

1.4/ VARIATIONAL FORMULATIONS

Electrostatic problem: We define a function φ ∈ H 1 (Ω Vac ) that gets the values of φ on boundaries Γ e 0,1 , Γ e 0,2 , i.e.

φ = V 1 on Γ e 0,1 V 2 on Γ e 0,2
.

Assume that φ = φ + φ, the equation (1.2) can be rewritten in indicial form

           -∂ x i (∂ x i φ + ∂ x i φ) = 0 in Ω Vac φ = 0 on Γ e 0,1 ∪ Γ e 0,2 ∂ x i φn i = -∂ x i φn i on Γ e 1 .
(1.16)

We present an appropriate space for the function φ, i.e.

φ ∈ H 1 Γ e 0,1 ∪Γ e 0,2 (Ω Vac ) = {v ∈ H 1 (Ω Vac ) | v = 0 on Γ e 0,1 ∪ Γ e 0,2 }. Multiplying a test function v ∈ H 1 Γ e 0,1 ∪Γ e 0,2
(Ω Vac ) to (1.16), and integrating it over the domain Ω Air , we obtain

- Ω Vac       ∂ 2 φ ∂x 2 i + ∂ 2 φ ∂x 2 i       v dx = 0.

VARIATIONAL FORMULATIONS

Applying the Green's first identity with ∂Ω Vac = Γ e 0,1 ∪ Γ e 0,2 ∪ Γ e 1 , we get

Ω Vac ∂ φ ∂x i ∂v ∂x i + ∂φ ∂x i ∂v ∂x i dx = Γ e 0,1 ∪Γ e 0,2 ∪Γ e 1 tr ∂ φ ∂x i + tr ∂φ ∂x i tr (v) n i ds (x) ,
and from v = 0 on Γ e 0,1 ∪ Γ e 0,2 and ∂ x i φ + ∂ x i φ n i = 0 on Γ e 1 , the weak form of the problem is stated as finding φ ∈ H 1

Γ e 0,1 ∪Γ e 0,2
(Ω Vac ) such that

Ω Air ∂ φ ∂x i ∂v ∂x i + ∂φ ∂x i ∂v ∂x i dx = 0 for all v ∈ H 1 Γ e 0,1 ∪Γ e 0,2
(Ω Vac ).

(1.17)

Mechanical problem:

The indicial form of the governing equation of the linear static elasticity problem (1.6) is given by

         -∂ x j σ i j = 0 in Ω m u i = 0 on Γ m 0 σ i j n j = f elec i on Γ m 1 , (1.18)
while the indicial form of Hooke's law (1.7) and strain-displacement relation (1.8) are given as

σ i j = λδ i j kk (u) + 2µ i j (u) , (1.19) i j (u) = 1 2 ∂ x j u i + ∂ x i u j .
(1.20)

The appropriate space for the function u i is

u i ∈ H 1 Γ m 0 Ω m = {w ∈ H 1 (Ω m ) : w = 0 on Γ m 0 }. (1.21)
Multiplying to the equilibrium equation (1.18) by a test function

w i ∈ H 1 Γ m 0 (Ω m
) and integrating it over the domain Ω m , we get

- Ω m ∂σ i j ∂x j w i dx = 0.
Applying the chain rule, i.e. ∂ x j σ i j w i = w i ∂ x j σ i j + σ i j ∂ x j w i , we obtain

- Ω m ∂ σ i j w i ∂x j -σ i j ∂w i ∂x j dx = 0,
or by changing the side, it reads

Ω m σ i j ∂w i ∂x j dx = Ω m ∂ σ i j w i ∂x j dx.
Applying divergence theorem to the right hand side with ∂Ω m = Γ m 0 ∪ Γ m 1 and w = 0 on Γ m 0 , σ i j n j = f elec i , we get

Ω m σ i j ∂w i ∂x j dx = Γ m 1 σ i j w i n j ds (x) = Γ m 1 f elec i w i ds (x) .
Applying the Hooke's law (1.19), the weak formulation states as,

Ω m λδ i j kk (u) + 2µ i j (u) ∂w i ∂x j dx = Γ m 1 f elec i w i ds (x) ,
in which, from definition of i j (w), one can prove that i j (w) = ji (w) , ∂ x j w i + ∂ x i w j = 2 i j (w) = i j (w) + ji (w) , which lead to i j (u)

∂w i ∂x j = i j (u) i j (w) and δ i j kk (u) ∂w i ∂x j = kk (u) qq (w) .
Applying these properties, the weak form of the problem, ( [Ciarlet, 1997]), is stated as

finding u i ∈ H 1 Γ m 0 (Ω Mir ) such that Ω m λ kk (u) qq (w) + 2µ i j (u) i j (w) dx = Γ m 1 f elec w i ds (x) for all w i ∈ H 1 Γ m 0 (Ω Mir ). (1.22)
Time dependent thermoelastic problem: The indicial form of the governing equation (1.14) is given by

           C E ∂ t θ -i, j θ 0 M i j ∂ t i j + ∂ x i q i = r in Ω ther q i n i = g s i on ∂Ω ther except Γ ther 1 θ = 0 on Γ ther 0 , (1.23) 
while the indicial form of Fourier's law (1.15) is given by

q i = -k i j ∂ θ ∂x i . (1.24)
We present an appropriate space for the function θ, i.e

θ ∈ H 1 Γ ther 0 (Ω ther ) = θ ∈ H 1 (Ω ther ) | θ = 0 on Γ ther 0 . (1.25)
Multiplying a test function θ ∈ H 1 ∂Ω ther (Ω ther ) to (1.14), integrating it over the domain Ω ther and using Fourier's law, it becomes

Ω ther       C E ∂ θ ∂t θ -θ 0 M i j ∂ i j (u) ∂t θ      dx - Ω ther ∂ ∂x i       k i j ∂ θ ∂x i       θ dx = Ω ther r θ dx.
Applying the Green formula with ∂Ω ther = ∂Ω ther \Γ ther 0 ∪ Γ ther 0 , q i n i = 0 on ∂Ω ther \Γ ther 0 and θ = 0 on Γ ther 0 . The weak form of the problem stated as finding θ ∈ H 1

Γ ther 0 (Ω ther ) such that Ω ther       C E ∂ θ ∂t θ θ -θ 0 M i j ∂ i j (u) ∂t θ      dx + Ω ther k i j ∂ θ ∂x i ∂ θ ∂x i dx = Ω ther r θ dx, (1.26) for all θ ∈ H 1 Γ ther 0 (Ω ther ). 2 MICROMIRROR DESIGN SIMULATION RESULT 2.1/ INTRODUCTION
In this chapter, we present simulation results of a line-column-addressed-with-twolanding-beams (LC2) micro-mirror cell carried out with COMSOL Multiphysics. The configuration and the parameters of the cell are taken in [Canonica, 2012]. Thanks to the electromechanics interface, the simulation can take into account the non-linear deformations of the structure and the electrostatic forces generated by the voltage difference between the mirror and the base. Then, it is used to perform the pull-in analysis, that is to predict the point at which the biased system becomes unstable. Due to the highly nonlinear nature of this inverse problem, it must be done with very much care. In particular choosing carefully the initial conditions of the nonlinear solver is mandatory to avoid divergence. The load ramping technique, that is the choice of a sequence of initial displacements with small increments, guaranties the convergence of the pull-in voltage analysis. The displacement at the pulling voltage in about a third of the gap between the two conductors. Besides, all variables in the model are scaled which is mandatory for a better convergence. The swept meshing technique has been used to reduce the size of the mesh in the very thin parts as the suspending beams. It corresponds to create cylindrical elements with triangular bases that are further divided so that all their faces are triangle. However, the total number of mesh elements is still large, up to 30,000 elements. This is due to the presence of several small regions requiring fine meshes: the gaps between the electrodes, the suspending beams, and the silicon dioxyde layer. As a result, a complete pull-in analysis from an hour to a dozen of hours.

Once simulation is available, many optimization can be envisioned, and we propose a list of some of them that have an interest from the designer point of view as: to minimize the restoring force of the beams, to minimize the pull-in voltage, to reach the correct tilt angle of the mirror or to minimize the speed of the mirror leaving the landing pad during the pull-out process. Here, we report results on the minimization of the pull-in voltage depending on the two most influencial parameters, namely the suspending beam thickness and length. Due to the model simulation time, the optimization is conducted on a metamodel based on a sample of 25 simulations.

Organization of the Chapter:

The Chapter is structured as follows. In Section 2.2, we introduce the geometrical parameters of all the cell parts and the material coefficients. In Section 2.3, we present results of the simulation including the mechanical deformation of CHAPTER 2. MICROMIRROR DESIGN SIMULATION RESULT the beams and the mirror as well as the electric field. In Section 2.4, the principle of the pull-in analysis is detailed. Finally, in Section 2.4.3, the optimization objectives are listed together with the corresponding design variables, constraints and trade-offs. The chapter ends with the optimization result for the pull-in voltage.

2.2/ PARAMETERS

The mirror, the frame, the stopper beam and the electrode are made from single crystal isotropic silicon (Si). The suspended beam, the anchor of the stopper beam, the anchor of the suspended beams and the landing beam are made from polycrystalline silicon. And the assembly is made from gold. They are described in Figures 2.1,2.2,2.3,2.4,2.5,2.6 and in table 2.1.

In the table, the parameter mpover is used to oversize the photolithography mask of the polysilicon layer to compensate the over-etching occuring during the patterning of the beams; if the beam is composed by n sub-beams, the width of the beam is calculated by

mbeamy = n × msuy + (n -1) × (0.5 × msuy + 2 × mpover) .
The width of the stopper beam, msty, is given as msty = mbeamy (4) + msuy = 5 × msuy + 3 × (0.5 × msuy + 2 × mpover) the length of the stopper beam is given as mstx = 25µm.

The gap between the sub-beams is set to gap = 0. The parameter matby is given as matby = (mlaymsuy) /2. The parameter mlay and the distance between the electrode and the tilted edge of the micromirror after actuation are given as The micro-mirror is surrounded by a vacuum domain that is an electrical insulator. The cell is fixed at its bottom surface to the substrate. The voltages of the upper and lower electrodes are imposed at V M and V E respectively. As a result, an electrostatic force is generated which bends the mirror toward the electrode. As the beams bends, the geometry of the air gap changes continuously, resulting in a change in the electric field between the electrodes, and therefore, strengthening the electrostatic force. This coupled physics is handled thanks to an interface called Electromechanics in COMSOL. The geometry and physics settings are in Figure 2.7 and a simulation result for V M = 60 V, V E = -30

mlay = mbeamy (3) = 3 × msuy + 2 × (0.5 × msuy + 2 × mpover) , d mee = d 1 + d 2 = ox + poly cos (α) + (mlax -metax) (sin (α)) .
V is shown in Figure 2.8. The instructions for generating this simulation are in Appendix A.1.

(a) The potential V M is applied on the boundaries of the mirror, the frame, the golden pad and the pillar.

(b) The potential V M is applied on the boundaries of the beam and the stopper beam.

(c) The potential V E is applied on the boundaries of the electrode. Computing the pull-in voltage is done by solving an inverse problem. The pull-in voltage is found by imposing the mirror end at successive predefined positions starting from the rest position and ending to a displacement equal to the third of the gap. For each position, the voltage is adjusted to cancel the force exerted by imposing the displacement. The choice of an initial displacement close to zero and of a sufficiently small displacement step are to guaranty correct convergence of the nonlinear solver, provided that each new computation starts with an initial condition built from the previous result.

The higher position requires the largest voltage, but in turn, the lower position increases the electrostatic force and thereby requires a lower voltage. As a result, the plot of the voltages versus the positions is a parabola in which the maximum corresponds to the pull-in voltage.

Let call set point the point at the end of the landing beam represented in Figure 2.7 (b). The hight of the set-point is calculated by taking the integral of z at itself which is given by integration operator (intop1 (z)) in COMSOL. The potential V M is set to 1 instead of 0 to avoid an overflow problem. In the following, the potential V E is denoted V ES P. The nominal gap between the conductors being g 0 = 33 µm, the list of positions is set to zset = [51.5 :

-1 : 33] [µm].
The problem is stated as finding V ES P such that intop1 (z)zset = 0.

Then, the pull-in voltage is V p = max(|V ES P -V M|). The large difference in scale between zset and V ES P means that care must be taken with the dependent variable scaling in the solver settings. In this model, the geometry and the displacement are scaled by 10 -5 while the potential and V ES P are scaled by 100.

As an example, Figure 2.9 shows the voltage-displacement curves for the micro-mirror at equilibrium and Table 2. Design variables and objectives: The restoring force of the beam FRes and the pull-in voltage V PI depend both on the thickness poly and the length msux of the beam. If the beam is too thin or the length of the suspended beam is too long, the restoring force is weak and may not be able to pull the mirror back to its original position. The pull-in voltage is sensitive to the same variables. If the beam is too thick or the length of the suspended beam is too small, it requires a larger voltage to actuate the mirror. The maximum tilt angle of the mirror is sensitive to the height epiz of the pillar. However, the thickness and the length mstx of the stopper beam also determine if the mirror can reach its maximum movement or not. The speed of the mirror during the pull-in and pull-out process Oos relies mainly on the weight of the mirror which depends on its thickness mz.

Constraints: To minimize the cost of actuation, the pull-in voltage of each cell should not be over 140 V. For observing faint objects, the micro-mirror array has to achieve the highest contrast, therefore, each cell should have a tilt angle close to 20 • . To avoid breaking the system the on-off speed of each cell has to be lower than 2 KHz.

Parameters: For infrared application, the micromirror array is tested in a cryogenic chamber at a temperature of 162.15 K and in vacuum environment. This environmental temperature T influences not only on mechanical body through thermal expansion but also on the electrical resistance of the beam also depending on its doping level. Although the voltage cross-talk between neighbooring cells is not strong enough to fully actuate a mirror, however it has a non-negligible effect on the pull-in voltage. The design variables are summarized in Table 2.3, the list of parameters are given in Table 2.4 and the objectives are given in Table 2.5.

Trade-off: Firstly, there is a trade-off between FRes and V PI . The beam should be thick enough to be able to pull up the mirror. However, the increase of poly leads to the increase of the required voltage and therefore leads to the increase of pull-in voltage. Secondly, there is a trade-off between Ang and V PI . The stopper beam should be thick enough to prevent the variation of the tilt angle. However, the beam has the same thickness as the stopper beam. Like the first trade-off, the increasement of poly will lead to the increase of the pull-in voltage.

Technical points:

The on-off speed is the necessary voltage square step duration that makes possible the tilt. This should be computed with structural dynamics. The control of MMA is through sequential line/column addressing: the time needed for establishing a full pattern in the array is the number of cells times the "On-Off speed". The damping effect is due to air and therefore is not present in vacuum. In air it will increase the "On-Off speed". The "bumping effect" is the fact that the end of beam has a bounce when it touches the bottom. In air, the damping is limiting this effect to one (or maximum two) bounce(s). In vacuum, it takes time to stabilize the mirror. This effect increases significantly the overall "On-Off speed". The doping level in the polysilicon beam is not well controlled. The thin layer is deposited by LPCVD (low pressure chemical vapor deposition). We would have expected a perfect conductor (10 18 doping level) but due to limitation in the fabrication techniques, it may have a doping level of 10 16 only resulting in a resistance and therefore a variation of the voltage along the beam, reducing the voltage in the mirror. Then the resistance depends on temperature. Regarding the resistance law, we use bulk values from literature, since we consider that 400 nm is already thick enough to consider that the boundary effects are not dominating.

Robustness:

The optimized objectives must be analyzed versus the uncertainties present in the variables Optimization of Vpi: the optimization of Vpi consists of a single objective, the two variables poly and msux and one constraint. Despite its apparent simplicity, its direct determination is impractical because of the difficulties discussed in Chapters 1 and 2. An 

Result:

The minimization of the pull-in voltage V pi is performed using the meta-model. The minimum is reach is for poly = 400 nm and msux = 70.16 µm, see Table 2.6.

2.4.4/ BUMPING EFFECT

The simulations of the mirror bounces are done using the electromechanical interface of COMSOL in the dynamic regime for a two-dimensional geometry. The contact between the landing beams and the landing pads together with the contact between the mirror and the stopper beam are handled by an approximate penalty or barrier method, as described in [El-Zafrany, 1997]. Precisely, nonlinear spring forces F c are used for modeling the elastic contact between the landing pads and a part of the mirror surface and the stopper beam, see Figure 2.12. When these surfaces are moved away from each other, the springs have a low stiffness and consequently a negligible influence on the deformation of the beam and the mirror. As the gap is reduced the springs become stiffer and resist to the gap closure, see Figure 2.13.

The results of Figure 2.14 show that there is almost no bounce when the beam thickness is lower than 1µm, while the results of Figure 2.15 show a few bounces when the beam thickness is greater than 1µm. This difference of behavior is due to a weaker spring force, indeed the restoring force of a thin (0.7µm) beam is weak, leading to a fast tilt actuation and fast stabilization. In the opposite, when the beam thickness is larger (1µm), the time scale of the restoring force is longer, and the tilting time is also longer with many bounces before stabilization. 

MODEL DERIVATION

3.1/ INTRODUCTION

This chapter is devoted to modeling of a micro-mirror array. A full model should include the same physical phenomena as those taken into account in the previous chapters. However, the reported work covers only a part of them. For a first approach, modeling the electrostatic field presents more interest than modeling the elastic deformations. Actually, cross-talk between cells is significantly more present through the electrical field than through the elastical deformations. Given the thiness of the supporting beam and the stiffness of the pillars, the mechanical influence on the neighbouring cells of a mirror tilt is significantly less than the electrical influence.

Thus, in this chapter, we introduce a two-scale models for the electrical field occurring in one-and two-dimensional arrays with a method of proof that follows as much as possible the reference proof implemented in MEMSALab so that it can be expressed as extensions and their combination.

Here, the special feature of the model to be taken into account as an extension is that the electrical potential φ is imposed at several (two in this case) positions in each cell. The difference of the imposed electrical potentials is assumed in the range of 1 compared to the ratio ε of the cell length and the array length. Therefore, an a priori estimate shows that φ and the scaled electrical field εE = -ε∇φ are uniformly bounded in ε. Similar estimates were encountered in the homogenization of the high frequency part of a spectral problem and of the wave equation analyzed by Nguyen Thi Trang in her thesis [Nguyen, 2014]. The analysis were carried out using a very weak formulation instead of a weak formulation. The requirement of this approach is only the weak convergence of φ when ε goes to zero. It turns out that the two-scale limit φ 0 of φ is depending on both the macroscopic and the microscopic variables and satisfies periodic boundary conditions.

In the operational regime, the actuation voltage source is piecewise constant. Precisely, the illuminated parts are actuated with a constant voltage when the others are not. Therefore, only two cell configurations are useful and then only two cell solutions, each depending only on the microscopic variable. Due to the periodicity conditions, the electrical potential is continuous at the interface between cells having the same mirror actuation. However, it is discontinuous at the interface between regions with different actuation. This model weakness is fixed by introducing boundary layer terms. The same solution is brought to insure that the nominal boundary condition are satisfied at the external lateral boundary of the array. Despite the shortage of time, the boundary layer models are not
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given in the two-dimensional array case.

As already said, the proof is carried out with the same tools of two-scale convergence as the reference proof in MEMSALab. However, since the convergence of the gradient is not necessary when using the very weak formulation, the proof length is significantly reduced. Precisely, the first part of our proof, before introduction of the boundary layer, is similar to the lemmas that built the two-scale weak formulation and its interpretation. An effort has been made to derive the boundary layer problem in a similar way.

We expect that this approach based on the very weak formulation and boundary layers can be extended to take into account the elasticity and thermal fields. Indeed, for these two problems the fields have imposed values in each cell: the structure is clamped to the base and the base is a thermal sink. It is also worthwhile to mention that the non linearities due to the suspending beams and the electrostatic forces are local to the cell and we do not expect that they have a significant influence on the model structure.

3.2/ ONE AND TWO-DIMENSIONAL ARRAYS

3.2.1/ THE GOVERNING EQUATIONS

This subsection is dedicated to the derivation of a two-scale model of the electrostatic field in the two-dimensional Micro Mirror Array (MMA). The description of the physical phenomena was done in Section 1.2. Our framework uses the same approach as in [Yang, 2014] and [Lenczner, 2007], in order to facilitate its implementation as an extension of proof used in MEMSALab.

Let Ω = Ω mec ∪ Ω vac be the domain occupied by the mechanical body and the surrounding vacuum. It is divided into n 1 × n 2 cells, where n 1 , n 2 ∈ N * . Each cell is denoted by Ω c where c = (c 1 , c 2 ) is a multi-indices with c 1 ∈ {1, ..., n 1 } and c 2 ∈ {1, ..., n 2 }. In a cell Ω c , we denote the upper conductor, the lower conductor and the vacuum domain with the notations Ω cond 1,c , Ω cond 2,c and Ω vac c respectively. Their unions over all cells are denoted by Ω cond

1 := ∪ c Ω cond 1,c , Ω cond 2 = ∪ c Ω cond 2,c and Ω vac = ∪ c Ω vac c .
The internal boundary of Ω vac is defined as the union of all the boundaries of the conductors

Γ vac int = ∂Ω vac int = ∂Ω cond 1 ∪ ∂Ω cond 2
, while the external boundary is the union of the lateral boundaries, the upper surfaces and the lower surfaces

Γ vac ext = Γ vac lat ∪ Γ vac +∪-. The array is shown in Figure 3.1. The domain Ω vac is also divided into two parts Ω vac,1 and Ω vac,2 that refer to two different imposed voltages V 1 and V 2 . Each voltage field V α , α ∈ {1, 2}, takes constant values V α 1 and V α 2 on ∂Ω cond 1 and ∂Ω cond 2
. The interface between these two parts is denoted by Γ vac inter f . The governing equations of the electric potential φ in the vacuum domain Ω vac is given as

         -∂ x i ∂ x i φ = 0 in Ω vac φ = V on Γ vac int ∂ x i φn i = 0 on Γ vac ext . (3.1)
Moreover, on the interface

φ| Ω vac,1 = φ| Ω vac,2 and ∂ x i φ| Ω vac,1 n 1 i = -∂ x i φ| Ω vac,2 n 2 i on Γ vac inter f
where is the electrical permittivity in vacuum, V is a single notation to represents the two fields V α and n α i are unit outward normal vectors of Ω vac,α . The weak formulation is written with the functional spaces,

H 1 Γ vac int ,V Ω vac = v ∈ H 1 Ω vac | v = V on Γ vac int , and (3.2) 
H 2 Γ vac int ,Γ vac ext Ω vac = v ∈ H 1 Ω vac | v = 0 on Γ vac int , ∇v • n = 0 on Γ vac ext . (3.3)
Multiplying the internal equation of (3.1) by the test function v ∈ H1 Γ vac int ,0 (Ω vac ), integrating over the domain Ω vac and applying the Green formula, we get the weak formulation

Ω vac ∂φ ∂x i ∂v ∂x i dx = 0 (3.4) which has a unique solution φ ∈ H 1 Γ vac int ,V (Ω vac ). The very weak formulation is derived by choosing v ∈ H 2 Γ vac int ,Γ vac ext (Ω vac ).
Applying the Green formula,

Ω vac φ ∂ ∂x i ∂v ∂x i dx = Γ vac int V ∂v ∂x i n i ds (x) . (3.5)
We do not further discuss the existence and uniqueness of its solution φ in L 2 (Ω vac ), since to we consider the weak solution is sufficient for our purpose.

3.2.2/ GLOBAL SCALING

We denote by L 1 , L 2 and L 3 the width, the length and the thickness of Ω while 1 , 2 and

We use the usual big O notation,

f (ε) = O (g (ε)) for ε ∈ S iff there exists a constant c > 0 such that | f (ε) | ≤ c|g (ε) | for all ε ∈ S . Writing f (ε) = O (g (ε)) when ε → ε 0 is meaning that there exists a constant δ > 0 such that f (ε) = O (g (ε)) for all ε such that |ε -ε 0 | ≤ δ. For instance, i L α ∼ ε ∀i ∈ {1, 2, 3} and α ∈ {1, 2} . (3.6)
Since the lengths L α are very small, and generally even smaller than ε, it is convenient to scale the domains Ω and Ω c by their order of magnitude L (here L = 10 -5 ) yielding the scaled domains Ω ε and Ω ε c . We introduce ε in the notation of the scaled geometries to make explicit their dependency on the order of magnitude, for instance, the thickness of the array are in the range of ε. The scaled sizes and variables is denoted

L i = L i L , i = i L and x ε i = 1 L x i ∈ Ω ε ∀i ∈ {1, 2, 3} (3.7) 
where x ∈ Ω. Evidently, the ratio ε is conserved through this transformation, namely ε = min α∈{1,2} α / L α . For the sake of simplicity of the presentation, we assume 1 that i = ε, ∀i. Then, the size of the scaled array and cell are

| Ω ε | = i L i = ε and | Ω ε c | = i i = ε 3 . (3.8)
The vacuum permittivity ( 0 = 0.885 × 10 -11 Fm -1 ) is introduced as a scaling of the permittivity and of the potentials φ and V,

= 0 , φ ε = √ 0 L φ and V ε = √ 0 L V (3.9)
leading to the scaled electric field (1.4), E elec,ε = √ 0 E elec . The electrostatic force (1.3), f elec,ε = f elec is left unchanged. Therefore, the weak formulation of the elasticity system is also left unaffected .11) when the scaled weak form (3.4) and the very weak form (3.5) are

Ω ε,m λ kk u ε qq w ε + 2µ i j u ε i j w ε d x ε = Γ ε,m 1 f elec,ε i w ε i ds x ε , ∀ w ε i ∈ H 1 Γ ε,m 0 Ω ε Mir , (3.10) where u ε i = u i /L and w ε i = w i /L. The scaled system (3.1) is thus            -∂ x ε i ∂ x ε i φ ε = 0 in Ω ε,vac φ ε = V ε on Γ ε,vac int ∂ x ε i φ ε n ε i = 0 on Γ ε,vac ext , ( 3 
Ω ε,vac ∂ φ ε ∂ x ε i ∂ v ε ∂ x ε i d x ε = 0, (3.12) 
where

v ε ∈ H 1 Γ ε,vac int ,0
Ω ε,vac , and

Ω ε,vac φ ε ∂ ∂ x ε i ∂ v ε ∂ x ε i d x ε = Γ ε,vac int V ε ∂ v ε ∂ x ε i n ε i ds x ε (3.13) where v ε ∈ H 2 Γ ε,vac int , Γ ε,vac ext Ω ε,vac .

3.2.3/ TWO-SCALE TRANSFORM FOR A THIN REGION

In this section, we recall the two-scale transform operators or unfolding operators for internal and boundary layer approximations. The definitions are taken and adapted from [START_REF] Lenczner | A two-scale model for an array of AFM's cantilever in the static case[END_REF], [Yang, 2014] and [Nguyen, 2014]. It is illustrated in Figure 3.2.

The two-scale model of the micro-mirror array will be derived from the scaled system presented in Section 3.2.2. Besides, for simplification purpose, the hat on each scaled notation will be removed, for examples, Ω ε will be replaced by Ω ε , x ε by x ε , etc. For the asymptotic model derivation, we assume (without proof) the uniform estimate on the solution

1 |Ω ε,vac | ||φ ε || L 2 (Ω ε,vac ) ≤ C (3.14)
where C is a constant independent of ε. Hereafter, we distinguish between the cases of a two-dimensional array and a one-dimensional array.

Two-dimensional array : Considering an arbitrary cell

Ω ε c of the two-dimensional array with c = (c 1 , c 2 ), any x ε ∈ Ω ε c satisfies x ε α ∈ ((c α -1) ε, c α ε) for α ∈ {1, 2} and x ε 3 ∈ (0, ε). Let x ε,c be the center of Ω ε c , i.e. x ε,c α = (c α -1) ε + ε/2 and x ε,c 3 = ε/2.
We introduce the expanded and shifted cell Ω 1 defined by vac,1 and Ω ε,vac,2 corresponding to the two different voltages. They are separated by the interface Γ ε,vac inter f . The scaling assumptions on the size of each cell and of the array are also represented.

x 1 := ε -1 (x ε -x ε,c ) ∈ Ω 1 for x ε ∈ Ω ε c . The domain
Ω ε = Ω ε,vac ∪ Ω m,ε . The domain Ω ε is divided into two parts Ω ε,
Ω1 is called the microscopic domain and is free from ε : . Then, we introduce the macroscopic domain

Ω 1 =] -1/2, 1/2[ 3 .
Ω = (0, L 1 ) × (0, L 2 ) that can be divided into n 1 × n 2 cells as Ω ε , Ω # = ∪ c Ω # c .
The set of variable indices in Ω ε and Ω are denoted I = {1, 2, 3} and I = {1, 2}. The physical domain, the macroscopic domain and the microscopic domain are represented in Figure 3.2 and their sizes are computed as

|Ω # | = 1, |Ω # c | = ε 2 and |Ω 1 | = 1. (3.15)
One-dimensional array : The domain

Ω ε is divided into n ∈ N * cells Ω ε c for c ∈ {1, ..., n}. The coordinates x ε in a cell Ω ε c satisfy x ε 1 ∈ ((c -1) ε, cε) while x ε 2 and x ε 3 ∈ (0, ε). Therefore, the coordinates of the center x ε,c of a cell are x ε,c
where

Γ 1 int = Γ 1,cond 1∪2
and Γ 1,vac lat is the remaining part. The macroscopic domain is Ω = (0, L 1 ), the projection of Ω ε on the line generated by the first unit vector e 1 of the frame. Then, the indices of the coordinates in Ω ε and Ω vary in I = {1} and I = {1, 2, 3}. Figure 3.3 summarizes these domains which order of magnitude in powers of ε are

|Ω ε | = ε 2 , |Ω ε c | = ε 3 , |Ω | = 1, |Ω c | = ε and |Ω 1 | = 1. (3.16)
Boundary Layers: The boundary layer models, which are derived for the onedimensional array only, require further notations. The two ends of Ω ε are denoted Γ ε end,0 and Γ ε end,L 1 . The boundary layer cell is introduced as Ω 1,+∞ which is defined by shifting and reproducing Ω 1 in the direction of positive x 1 1 by a vector (p

+ 1/2, 1/2, 1/2) T for p = 1, ..., ∞. Precisely, Ω 1,+∞ = ∪ +∞ p=0 Ω 1,+∞ p where Ω 1,+∞ p = Ω 1 + (p + 1/2, 1/2, 1/2) T . The domain Ω 1,+∞
with detailed notations regarding its boundary can be found in Figure 3.4. This boundary layer cell is later used in Definition 2 to define both T 0 b and T L 1 b because of the symmetry in the desgin of each cell.

One-dimensional array with interface :

We recall that the domain Ω ε is divided into two parts Ω ε,1 and Ω ε,2 distinguished by their imposed voltages V α and that their interface is Γ ε,vac inter f at L m 1 . The domain and its related notations are shown in Figure 3.3. In order determine the contribution of the boundary layer at the interface, another boundary layer cell Ω 1,∞ is defined as the repetition of Ω 1 which is moved by (1/2, 1/2, 1/2) in the two directions of negative and positive

x 1 1 . Precisely, Ω 1,∞ = ∪ +∞ q=-∞ Ω 1,∞ q where Ω 1,∞ q = Ω 1 + (q + 1/2, 1/2, 1/2). The domain is represented in Figure 3.5.
The two-scale transform : The two-scale transform operator T or unfolding operator is defined as in Definition 1 and shown in Figures 3.2,and 3.3.

Definition 1: Definition of T The two-scale operator T : L 2 (Ω ε ) → L 2 Ω × Ω 1 is defined for any u ∈ L 2 (Ω ε ) by T u(x , x 1 ) = c χ Ω ε c (x )u(x ε,c + εx 1 ) for all x ∈ Ω and x 1 ∈ Ω 1 , (3.17) 
where χ is the characteristic function. 

: L 2 (Ω ε ) → L 2 Ω 1,+∞ are defined ∀u ∈ L 2 (Ω ε ) , ∀x 1 ∈ Ω 1,+∞ by T 0 b u x 1 = u εx 1 χ (0,L m 1 /ε) x 1 1 and T L 1 b u x 1 = u L 1 -εx 1 1 , εx 1 2 , εx 1 3 χ (0,(L1-L m 1 )/ε) x 1 1 . (3.18) The interface two scale transform operator T inter f b : L 2 (Ω ε ) → L 2 Ω 1,∞ is defined ∀u ∈ L 2 (Ω ε,vac ) , ∀x 1 ∈ Ω 1,∞ by T inter f b u x 1 = u L m 1 + εx 1 1 , εx 1 2 , εx 1 3 χ (-L m 1 /ε,(L 1 -L m 1 )/ε) x 1 1 . (3.19) Figure 3.2:
The mechanical body of a two-dimensional array and its surrounding vacuum Ω ε , the macroscopic domain Ω = (0, L 1 ) × (0, L 2 ) and the microscopic domain

Ω 1 = ε -1 Ω ε c -x ε c .
The boundary Γ vac +∪-are the upper and lower surface of Ω ε,vac . The boundary Γ vac lat is the union of all lateral boundaries of Ω ε,vac . The boundary Γ 1,vac per on which the periodic boundary condition will be imposed is shown in blue. In this case, it is all lateral boundaries of Ω 1 . The boundary Γ 1,vac +∪-is the union of the upper and lower surfaces of Ω 1,vac . The operator T transforms a function defined in Ω ε into a function defined in the two-scale domain Ω × Ω 1 . The functions φ ε and V ε satisfy the following assumptions.

Assumption 1: Two-scale weak convergence of φ ε

We assume that ∃φ 0 ∈ L 2 Ω × Ω 1 such as

T φ ε φ 0 in L 2 Ω × Ω 1 . (3.20) Assumption 2: Two-scale weak convergence of V ε We assume that ∃V 0 ∈ L 2 Ω × Γ 1 int piecewise constant such as T V ε V 0 in L 2 Ω × Γ 1 int . (3.21)

Definition 3: Boundary layer terms

Let φ ε b and V ε b ∈ L 2 (Ω ε ) be the boundary layer terms of φ ε and of V ε such as

φ ε b x ε = φ ε x ε -Bφ 0 x ε and V ε b x ε = V ε x ε -BV 0 x ε (3.22)
where φ 0 and V 0 are weak limits of T φ ε and T V ε in L 2 Ω × Ω 1 presented in Assumptions 1, 2 and B is defined in Definition 5.

Assumption 3: Boundary layer two-scale convergence assumption on φ ε b

We assume that ∀ϑ ∈ {0, We assume that ∀ϑ ∈ {0, For one and two-dimensional arrays, the models are ∀x ∈ Ω ,

L 1 } , ∃φ ϑ b ∈ L 2 Ω 1,+∞ and ∃φ inter f b ∈ L 2 Ω 1,∞ such that T ϑ b φ ε b φ ϑ b in L 2 Ω 1,+∞ and (3.23) T inter f b φ ε b φ inter f b in L 2 Ω 1,∞ . ( 3 
L 1 } , ∃V ϑ b ∈ L 2 Γ 1,+∞ int and ∃V inter f b ∈ L 2 Γ 1,∞ int such that T ϑ b V ε b V ϑ b in L 2 Γ 1,+∞ int and (3.25) T inter f b V ε b V inter f b in L 2 Γ 1,∞ int . ( 3 
                       -div x 1 ∇ x 1 φ 0 = 0 in Ω 1,vac φ 0 = V 0 on Γ 1,vac int ∇ x 1 φ 0 • n 1 = 0 on Γ 1,vac +∪-∪ Γ 1,vac lat ∇ x 1 φ 0 • n 1 is Γ 1,vac per -anti-periodic φ 0 is Γ 1,vac per -periodic , (3.27)
where Γ 1,vac lat = ∅ in the case of two-dimensional array. For boundary layers at the two ends of the one-dimensional array, the models are ∀ϑ ∈ {0,

L 1 }                  -div x 1 ∇ x 1 φ ϑ b = 0 in Ω 1,vac,+∞ φ ϑ b = V ϑ b on Γ 1,vac,+∞ int ∇ x 1 φ ϑ b • n +∞ = 0 on Γ 1,vac,+∞ lat ∪ Γ 1,vac,+∞ +∪- ∇ x 1 φ ϑ b • n +∞ = -∇ x 1 φ 0 ϑ, x 1 • n +∞ on Γ 1,vac,+∞ end,ϑ . (3.28)
Finally, for the boundary layer at the interface of the one-dimensional array, the model is

                         -div x 1 ∇ x 1 φ inter f b = 0 in Ω 1,vac,∞ φ inter f b = V inter f b on Γ 1,vac,∞ int ∇ x 1 φ inter f b • n ∞ = 0 on Γ 1,vac,∞ lat ∪ Γ 1,vac,∞ +∪- [[∂ x 1 1 φ 0 L m 1 , x 1 + φ inter f b ]] = 0 on Γ 1,vac,∞ inter f [[φ 0 L m 1 , x 1 + φ inter f b ]] = 0 on Γ 1,vac,∞ inter f , (3.29)
where [[ f (x)]] is the "jump" of f (x) at the interface. The proofs are presented latter in this section after all properties regarding to the two-scale transform method have been stated.

3.2.5/ PROPERTIES OF THE TWO-SCALE TRANSFORM

We introduce the average over a domain A, which means

|A| by A f (x) dx = |A| -1 A f (x) dx as well as the related L 2 norm ||| f ||| 2 L 2 (A) = A | f (x) | 2 dx.
The index set I used in the following work can be {1, 2} or {1} and depends on either the two-dimensional array or one-dimensional array is being considered. We recall some well known properties of T

∀u, v ∈ L 2 (Ω ε ) ∀i ∈ I : T ∂ x ε i u = ε -1 ∂ x 1 i T u , |||T u||| 2 L 2 (Ω ×Ω 1 ) = |||u||| 2 L 2 (Ω ε ) , Ω ×Ω 1 T u x , x 1 dx dx 1 = Ω ε u x ε dx ε , (3.30) T uT v = T (uv) and T (u + v) = T u + T v. (3.31)
As T is a bounded linear operator from L 2 (Ω) to L 2 Ω × Ω 1 , its adjoint is a bounded linear operator defined in the following Definition.

Definition 4: Adjoint of T

The adjoint

T * : L 2 Ω × Ω 1 → L 2 (Ω ε ) is defined ∀u ∈ L 2 (Ω ε ) , ∀v ∈ L 2 Ω # × Ω 1 and ∀w ∈ L 2 Ω # × Γ 1 int by Ω ε T * (v) x ε u x ε dx ε = Ω ×Ω 1 v x , x 1 T u x , x 1 dx dx 1 and (3.32) Γ ε int T * w i x ε u x ε n ε i ds x ε = Ω ×Γ ε int w i x , x 1 T u x , x 1 n 1 i dx ds x ε .
The notation T * is used when the adjoint operators are operating on v and w which are defined on different domains because they have the same properties in the two cases. For the sake of simplicity, the same thing will be applied to the operators B, B ϑ b , B in f a b , T ϑ b and T in f a b which are defined latter. The operator

T * satisfies ∀u ∈ L (Ω ε ) , ∀v ∈ L 2 Ω × Ω 1 : T * (T u)(x ε ) = u(x ε ) and T * v x ε = 1 |Ω c | Ω c v x , x ε -x ε,c ε dx . (3.33)
The image T * v is not a regular functions. The operator B defined here after yields regular functions Bv.

Definition 5: Operator B

The operator B :

L 2 Ω × Ω 1 → L 2 (Ω ε ) , is defined by ∀v ∈ L 2 Ω × Ω 1 Bv(x ε ) = v P x ε , x ε -x ε,c ε , (3.34) 
where

P (x ε ) is the projection of Ω ε onto Ω . If v is Ω 1 -periodic in the x 1 -direction which means v x , x 1 1 + z, x 1 2 , x 1 3 = v x , x 1 ∀z ∈ Z, we have ε -1 x ε,c = ε -1 ((c -1) ε + ε/2, ε/2, ε/2) = (c -1/2, 1/2, 1/2) and Bv x ε = v P x ε , x ε 1 ε -(c -1) - 1 2 , x ε 2 ε - 1 2 , x ε 3 ε - 1 2 = v P x ε , x ε 1 ε - 1 2 , x ε 2 ε - 1 2 , x ε 3 ε - 1 2 = v P x ε , x ε ε - 1 2 , 1 2 , 1 2 .
For simplicity, we denote P (x ε ) = x in the following work.

Proposition 1: Properties of B

The operator B satisfies

(i) ∀v ∈ L 2 Ω × Ω 1 , ∀i ∈ I = {1, 2, 3} ∂Bv ∂x ε i = χ I (i) B         ∂v ∂x i         + 1 ε B       ∂v ∂x 1 i       . (3.35) (ii) ∀u ∈ L 2 Ω × Ω 1 : T (Bu) x , x 1 = u x , x 1 .
Proof. We only prove the case of two-dimensional arrays. The proof of one dimensional case is similar. The first point is proven by applying the chain rule to (3.34). The second point is proven by applying the Definitions 1, 5, we obtain

T (Bv) = c χ Ω ε c (x )Bv(x ε,c + εx 1 ) = c χ Ω ε c (x )v x ε,c + εx 1 , x ε,c + εx 1 -x ε,c ε = c χ Ω ε c (x )v x ε , x 1 = v x ε , x 1 .
Proposition 2: Approximation between T * and B

If the function v x , x 1 is continuous, continuously differentiable in x and Ω 1periodic in x 1 then the first order approximation of B and T * is given as

T * (v) = B          v -ε i∈I x 1 i ∂v ∂x i          + εO (ε) or B (v) = T *          v + ε i∈I x 1 i ∂v ∂x i          + εO (ε) , (3.36)
where O(ε) tends to 0 in the strong sense.

Proof. We recall the property of T *

T * v x ε = 1 ε 2 Ω c v z , x ε -x ε,c ε dz .
Applying Taylor expansion for the first variable of v, the above equation becomes

= 1 ε 2 Ω c        v x , x ε -x ε,c ε + α z α -x α ∂v ∂x α x , x ε -x ε,c ε + εO (ε)        dz = 1 ε 2 Ω c v x , x ε -x ε,c ε dz + 1 ε 2 α ∂v ∂x α x , x ε -x ε,c ε Ω c z α -x α dz + 1 ε 2 Ω c εO (ε) dz .
Since

Ω c z α -x ,c α dz = Ω (1,1) z α -x ,c α dz = 0, and x α -x ,c α = ε x α -x ,c α ε = εx 1 α ,
and the second integral is calculated as

Ω c z α -x α dz = Ω c z α -x ,c α + x ,c α -x α dz = Ω c z α -x ,c α dz - Ω c x α -x ,c α dz = -ε 2 x α -x ,c α = -ε 3 x 1 α , Then T * v x ε = v x , x ε -x ε,c ε -ε α x 1 α ∂v ∂x α x , x ε -x ε,c ε + εO (ε) , or T * v x ε = Bv -ε α x 1 α B ∂v ∂x α + εO (ε) = B        v -ε α x 1 α ∂v ∂x α        + εO (ε) .
Conversely, we have

Bv = T * v + ε α x 1 α B ∂v ∂x α + εO (ε) = T * v + ε α x 1 α T *        ∂v ∂x α        + εO (ε) = T *        v + ε α x 1 α ∂v ∂x α        + εO (ε) .
Now, let us recall elementary properties of boundary layer two-scale transform at the ends

T ϑ b : ∀u, v ∈ L 2 (Ω ε ) , T ϑ b (uv) = T ϑ b (u) T ϑ b (v) and ε 2 |Ω ε | Ω 1,+∞ T ϑ b u x 1 dx 1 = 1 ε Ω ε u x ε dx ε .
The boundary layer two-scale transform operator at the interface

T inter f b satisfies: ∀u ∈ L 2 (Ω ε ) , ε 2 |Ω ε | Ω 1,∞ T inter f b u x 1 dx 1 = 1 ε Ω ε u x ε dx ε . (3.37)
Their adjoint operators are defined in the following Definition. The adjoint operator

T ϑ * b : ∀ϑ ∈ {0, L 1 } , the adjoint operators T ϑ * b : L 2 Ω 1,+∞ → L 2 (Ω ε ) are defined ∀u ∈ L 2 (Ω ε ) , ∀v ∈ L 2 Ω 1,+∞ and w ∈ L 2 Γ 1,+∞ int by 1 ε Ω ε u x ε T ϑ * b v x ε dx ε = ε 2 |Ω ε | Ω 1,+∞ T ϑ b u x 1 v x 1 dx 1 and (3.38) 1 ε Γ ε int u x ε T ϑ * b w i x ε n ε i ds x ε = ε |Γ ε int | Γ 1,+∞ int T ϑ b u x 1 w i x 1 n +∞ i ds x 1 , (3.39)
The adjoint operator

T inter f * b : L 2 Ω 1,∞ → L 2 (Ω ε ) is defined such as ∀u ∈ L 2 (Ω ε ) , ∀v ∈ L 2 Ω 1,∞ and w ∈ L 2 Γ 1,∞ int by 1 ε Ω ε u x ε T inter f * b v x ε dx ε = ε 2 |Ω ε | Ω 1,∞ T inter f b u x 1 v x 1 dx 1 and (3.40) 1 ε Γ ε int u x ε T inter f * b w i x ε n ε i ds x ε = ε |Γ ε int | Γ 1,∞ int T inter f b u x 1 w i x 1 n ∞ i ds x 1 . (3.41) Definition 7: Operators B ϑ b and B inter f b Let ϑ ∈ {0, L 1 } , the linear operator B ϑ b : L 2 Ω 1,+∞ → L 2 (Ω ε ) are defined ∀v ∈ L 2 Ω 1,+∞ such as B 0 b (v) x ε = v x ε ε and B L 1 b (v) x ε = v L 1 -x ε 1 ε , x ε 2 ε , x ε 3 ε . (3.42)
The linear operator B inter f b

: L 2 Ω 1,∞ → L 2 (Ω ε ) is defined ∀v ∈ L 2 Ω 1,∞ such as B inter f b v x ε = v x ε 1 -L m 1 ε , x ε 2 ε , x ε 3 ε . (3.43)
These operators have the same properties as the operators T, T * and B presented above. However, to avoid confusions caused by new notations, we precise some important properties of B ϑ b such as for all v ∈ L 2 Ω 1,+∞ and all i ∈ {1, 2, 3} we have

T ϑ * b v x ε = B ϑ b v x ε χ Ω ε,s(ϑ) x ε 1 , where s (0) = 1 and s (L 1 ) = 2 and (3.44) T ϑ * b v i x ε = (-1) χ {L 1 } (ϑ) B ϑ b v i x ε χ Ω ε,s(ϑ) x ε 1 . (3.45) ∂B 0 b v ∂x ε i x ε = 1 ε B 0 b       ∂v ∂x 1 i       x ε and ∂B L 1 b v ∂x ε i x ε = (-1) χ {1} (i) 1 ε B L 1 b       ∂v ∂x 1 i       x ε or in a compact form ∂B ϑ b v ∂x ε i = C (ϑ, i) 1 ε B ϑ b       ∂v ∂x 1 i       x ε with C (ϑ, i) = (-1) χ {L 1 } (ϑ)χ {1} (i) . (3.46)
The operator Assume that φ 0 and V 0 introduced in Assumptions 1, 2 are continuous in Ω1 = Ω 1 ∪ ∂Ω 1 and x 1 1 -periodic, ∀ϑ ∈ {0, L 1 } we have

B inter f b satisfies ∀v ∈ L 2 Ω 1,∞ , T inter f * b v x ε = B inter f b v x ε and ∂B inter f b v ∂x ε i x ε = 1 ε B inter f b       ∂v ∂x 1 i       x ε . ( 3 
T ϑ b Bφ 0 x 1 = φ 0 ϑ, x 1 + O (ε) , (3.48) T inter f b Bφ 0 x 1 = φ 0 L m 1 , x 1 + O (ε) , (3.49) T ϑ b BV 0 x 1 = V 0 ϑ, x 1 + O (ε) , (3.50) T inter f b BV 0 x 1 = V 0 L m 1 , x 1 + O (ε) , (3.51)
where B is the operator defined in Definition 5, T ϑ b are defined in Definition 2 and O (ε) strongly converges to 0 when ε goes to 0.

Proof. Consider the one-dimensional array, we know that each cell is denoted by the index c ∈ {1, ..., n} , the center x ε,c of each cell is related to the center x 1,c = (1/2 + c -1, 1/2, 1/2) of Ω 1,+∞ c through the relation x ε,c = εx 1,c . In the case ϑ = 0, from the definition of T 0 b and B, we get

T 0 b Bφ 0 x 1 = Bφ 0 εx 1 χ (0,L 1 /ε) x 1 1 = φ 0 εx 1 1 , εx 1 -εx 1,c ε χ (0,L 1 /ε) x 1 1 = φ 0 εx 1 1 , x 1 -x 1,c χ (0,L 1 /ε) x 1 1 = n-1 k=0 φ 0 εx 1 1 , x 1 -x 1,c χ (k-1/2,k+1/2) x 1 1 -x 1,c 1 . For each x 1 1 ∈ (0, L 1 /ε) , there exists k such that x 1 1 -x 1,c 1 ∈ (k -1/2, k + 1/2) , i.e. x 1 1 -x 1,c 1 -k ∈ (-1/2, 1/2) . Thus, T 0 b Bφ 0 x 1 = φ 0 εx 1 1 , x 1 -x 1,c = φ 0 εx 1 1 , x 1 1 -x 1,c 1 -k + k, x 1 2 -x 1,c 2 , x 1 3 -x 1,c 3 .
Applying the assumptions of φ 0 , it becomes

T 0 b Bφ 0 x 1 = φ 0 εx 1 1 , x 1 = φ 0 0, x 1 + O (ε) .
Applying the same approach for the case ϑ = L 1 , we get

T L 1 b Bφ 0 x 1 = Bφ 0 L 1 -εx 1 1 , εx 1 2 , εx 1 3 χ (0,L 1 /ε) x 1 1 = φ 0        L 1 -εx 1 1 , L 1 -εx 1 1 -εx 1,c 1 ε , εx 1 2 -εx 1,c 2 ε , εx 1 3 -εx 1,c 3 ε        χ (0,L 1 /ε) x 1 1 = φ 0 L 1 -εx 1 1 , n -x 1 1 -x 1,c 1 , x 1 2 -x 1,c 2 , x 1 3 -x 1,c 3 χ (0,n) x 1 1 . Because of n -x 1 1 -x 1,c 1 ∈ (-1/2, n + 1/2) = ∪ k=0,...,n-1 (k -1/2, k + 1/2] ∪ [n -1, 1/2), there exists k such that n -x 1 1 -x 1,c 1 ∈ (k -1/2, k + 1/2) which leads to n -x 1 1 -x 1,c 1 -k ∈ (-1/2, 1/2). Thus T L 1 b Bφ 0 x 1 = φ 0 L 1 -εx 1 1 , n -x 1 1 -x 1,c 1 -k + k, x 1 2 -x 1,c 2 , x 1 3 -x 1,c 3 = φ 0 L 1 -εx 1 1 , n -x 1 1 -x 1,c 1 -k, x 1 2 -x 1,c 2 , x 1 3 -x 1,c 3 = φ 0 L 1 -εx 1 1 , x 1 = φ 0 L 1 , x 1 + O (ε) .
From the Defintion 2 and Definition 5 , we get

T inter f b Bφ 0 x 1 = Bφ 0 L m 1 + εx 1 1 , εx 1 2 , εx 1 3 χ (-L m 1 /ε,(L 1 -L m 1 )/ε) x 1 1 = φ 0        L m 1 + εx 1 1 , L m 1 + εx 1 1 -εx 1,c 1 ε , εx 1 2 -εx 1,c 2 ε , εx 1 3 -εx 1,c 3 ε        χ (-L m 1 /ε,(L 1 -L m 1 )/ε) x 1 1 = φ 0 L m 1 + εx 1 1 , n m + x 1 1 -x 1,c 1 , x 1 2 -x 1,c 2 , x 1 3 -x 1,c 3 χ (-L m 1 /ε,(L 1 -L m 1 )/ε) x 1 1
where L m 1 /ε = n m is the number of cells of the left part of the array. Considering

x 1 1 ∈ -L m 1 /ε, L 1 -L m 1 /ε = (-n m , n -n m ) , so that n m + x 1 1 -x 1,c 1 ∈ (-1/2, n -1/2) = ∪ k=0,...,n-2 (k - 1/2, k+1/2]∪(n -1 -1/2, n -1 + 1/2) . Therefore, ∃k 0 ∈ {0, ..., n -2} such that n m + x 1 1 -x 1,c 1 ∈ (k 0 -1/2, k 0 + 1/2) which leads to n m + x 1 1 -x 1,c 1 -k 0 ∈ (-1/2, 1/2) and T inter f b Bφ 0 x 1 = φ 0 L m 1 + εx 1 1 , n m + x 1 1 -x 1,c 1 -k 0 + k 0 , x 1 2 -x 1,c 2 , x 1 3 -x 1,c 3 .
Applying the assumptions of φ 0 , we have

T inter f b Bφ 0 x 1 = φ 0 L m 1 + εx 1 1 , n m + x 1 1 -x 1,c 1 -k 0 , x 1 2 -x 1,c 2 , x 1 3 -x 1,c 3 = φ 0 L m 1 + εx 1 1 , x 1 = φ 0 L m 1 , x 1 + O (ε) .
The remain points can be proved by following the same approach.

Applying the operators T ϑ b and T inter f b

to boundary layer terms Definition 3, we get

T ϑ b φ ε x 1 = T ϑ b Bφ 0 x 1 + T ϑ b φ ε b x 1 , (3.52) T inter f b φ ε x 1 = T inter f b Bφ 0 x 1 + T inter f b φ ε b x 1 , (3.53) T ϑ b V ε x 1 = T ϑ b BV 0 x 1 + T ϑ b V ε b x 1 , (3.54) T inter f b V ε x 1 = T inter f b BV 0 x 1 + T inter f b V ε b x 1 . (3.55)
Applying Proposition 3, the above equations become

T ϑ b φ ε x 1 = φ 0 ϑ, x 1 + φ ϑ b x 1 + O (ε) , (3.56) T inter f b φ ε x 1 = φ 0 L m 1 , x 1 + φ inter f b x 1 + O (ε) , (3.57) T ϑ b V ε x 1 = V 0 ϑ, x 1 + V ϑ b x 1 + O (ε) , (3.58) T inter f b V ε x 1 = V 0 L m 1 , x 1 + V inter f b x 1 + O (ε) . (3.59)

3.2.7/ MODEL DERIVATIONS

Recall the scaled very weak formulation (3.13) with the simplified notations

Ω ε,vac φ ε ∂ ∂x ε i ∂v ε ∂x ε i dx ε = 1 |Ω ε,vac | Γ ε,vac int V ε ∂v ε ∂x ε i n ε i ds x ε , (3.60) 
where

v ε ∈ H 1 Γ ε,vac int ,0 (Ω ε,vac ) ∩ H 2 Γ ε,vac int ,Γ ε,vac ext (Ω ε,vac ).
Two-scale model derivation for a two-dimensional array : Replacing the test function v ε in (3.60) by Bw in which w = w 0 x w 1 x 1 , w 0 = ∂ x i w 0 = 0 on ∂Ω ,vac and w 1 is Ω 1periodic, we get

Ω ε,vac φ ε ∂ ∂x ε i ∂Bw ∂x ε i dx ε = 1 |Ω ε,vac | Γ ε,vac int V ε ∂Bw ∂x ε i n ε i ds x ε . (3.61)
The first order and the second order partial derivative of Bw is obtained by applying Proposition 1

∂ ∂x ε i ∂Bw ∂x ε i = B         χ I (i) ∂ ∂x i ∂w ∂x i + χ I (i) 2 ε ∂ ∂x i ∂w ∂x 1 i + 1 ε 2 ∂ ∂x 1 i ∂w ∂x 1 i         , ∂Bw ∂x ε i = B         χ I (i) ∂w ∂x i + 1 ε ∂w ∂x 1 i         .
Substituting these results in (3.61), we obtain

Ω ε,vac φ ε B         χ I (i) ∂ ∂x i ∂w ∂x i + χ I (i) 2 ε ∂ ∂x i ∂w ∂x 1 i + 1 ε 2 ∂ ∂x 1 i ∂w ∂x 1 i         dx ε (3.62) = 1 |Ω ε,vac | Γ ε,vac int V ε B         χ I (i) ∂w ∂x i + 1 ε ∂w ∂x 1 i         n ε i ds x ε .
Multiplying ε 2 both sides, it becomes

Ω ε,vac φ ε B       ∂ ∂x 1 i ∂w ∂x 1 i       dx ε = ε|Γ ε,vac | |Ω ε,vac | Γ ε,vac int V ε B       ∂w ∂x 1 i       n ε i ds x ε + O (ε) = C Γ ε,vac int V ε B       ∂w ∂x 1 i       n ε i ds x ε + O (ε) , where C = ε|Γ ε,vac |/|Ω ε,vac |.
Approximating B by T * with Proposition 2, and applying the definition of T * , Definition 4, the left hand side becomes

Ω ε,vac φ ε B       ∂ ∂x 1 i ∂w ∂x 1 i       dx ε = Ω ε,vac φ ε T *       ∂ ∂x 1 i ∂w ∂x 1 i       dx ε + O (ε) = Ω ,vac ×Ω 1,vac T φ ε ∂ ∂x 1 i ∂w ∂x 1 i dx dx 1 + O (ε) ,
while the right hand side becomes

C Γ ε,vac int V ε B       ∂w ∂x 1 i       n ε i ds x ε + O (ε) = C Γ ε,vac int V ε T *       ∂w ∂x 1 i       n ε i ds x ε + O (ε) = C Ω ,vac ×Γ 1,vac int T V ε ∂w ∂x 1 i n 1 i ds x 1 dx + O (ε) ,
where n 1 is unit outward normal vector in Ω 1 . The equation reads

Ω ,vac ×Ω 1,vac T φ ε ∂ ∂x 1 i ∂w ∂x 1 i dx dx 1 = C Ω ,vac ×Γ 1,vac int T V ε ∂w ∂x 1 i n 1 i ds x 1 dx + O (ε) .
Passing ε to 0, Assumptions 1 and 2 imply

Ω ,vac ×Ω 1,vac φ 0 ∂ ∂x 1 i ∂w ∂x 1 i dx dx 1 = C Ω ,vac ×Γ 1,vac int V 0 ∂w ∂x 1 i n 1 i ds x 1 dx .
Applying Green formula twice, we get

Ω ,vac ×Ω 1,vac ∂ ∂x 1 i ∂φ 0 ∂x 1 i w dx dx 1 - 1 |Ω ,vac × Ω 1,vac | Ω ×∂Ω 1,vac ∂φ 0 ∂x 1 i wn 1 i ds x 1 dx (3.63) + 1 |Ω ,vac × Ω 1,vac | Ω ×∂Ω 1,vac φ 0 ∂w ∂x 1 i n 1 i ds x 1 -C Ω ,vac ×Γ 1,vac int V 0 ∂w ∂x 1 i n 1 i ds x ε dx = 0.
Remind that w x , x 1 = w 0 x w 1 x 1 , and if

w 1 = ∂ x 1 w 1 n 1 i = 0 on ∂Ω 1,vac , the equation ( 3.63) becomes Ω ,vac Ω 1,vac w 0       Ω 1,vac       ∂ ∂x 1 i ∂φ 0 ∂x 1 i w 1       dx 1       dx = 0, and thus ∀x ∈ Ω , ∂ ∂x 1 i ∂φ 0 ∂x 1 i = 0 in Ω 1,vac . (3.64) 
Decomposing (3.63) with ∂Ω 1,vac = Γ 1,vac int ∪ Γ 1,vac +∪-∪ Γ 1,vac per and substituting (3.64) we get

- 1 |Ω ,vac × Ω 1,vac | Ω        Γ 1,vac int ∂φ 0 ∂x 1 i wn 1 i ds x 1 + Γ 1,vac +∪- ∂φ 0 ∂x 1 i wn 1 i ds x 1 + Γ 1,vac per ∂φ 0 ∂x 1 i wn 1 i ds x 1        dx + 1 |Ω ,vac × Ω 1,vac | Ω        Γ 1,vac int φ 0 ∂w ∂x 1 i n 1 i ds x 1 + Γ 1,vac +∪- φ 0 ∂w ∂x 1 i n 1 i ds x 1 + Γ 1,vac per φ 0 ∂w ∂x 1 i n 1 i ds x 1        dx -C Ω ,vac ×Γ 1,vac int V 0 ∂w ∂x 1 i n 1 i ds x ε dx = 0. If w = 0 on Γ 1,vac int ∪ Γ 1,vac +∪-and ∂w/∂x 1 i n 1 i = 0 on Γ 1,vac int ∪ Γ 1,vac +∪-, it becomes - Ω ×Γ 1,vac per ∂φ 0 ∂x 1 i wn 1 i ds x 1 dx = 0,
applying the periodicity on Γ 1,vac per of w 1 , we get ∀x ∈ Ω , 

∂φ 0 ∂x 1 i n 1 i is Γ 1,vac per anti-periodic. ( 3 
∈ C ∞ Ω ,vac , C ∞ ∂Ω 1,vac Ω 1,vac satisfying ∂ x 1 i wn 1 i = 0 on Γ 1,vac ext , it becomes |Γ ε,vac int | Ω ×Γ 1,vac int φ 0 -V 0 ∂w ∂x 1 i n 1 i ds x 1 = 0, which leads to ∀x ∈ Ω , φ 0 = V 0 on Γ 1,vac int . ( 3 
wn i = 0 on ∂Ω 1,vac , w = 0 on Γ 1,vac per ∪ Γ 1,vac int becomes Ω ×Γ 1,vac +∪- w ∂φ 0 ∂x 1 i n 1 i ds x 1 dx = 0, which leads to ∀x ∈ Ω , ∂φ 0 ∂x 1 i n 1 i = 0 on Γ 1,vac +∪-. ( 3 
= 0 on Γ 1,vac int , ∂w/∂x 1 i n i = 0 on Γ 1,vac int ∪ Γ 1,vac
+∪-, we get

Ω ×Γ 1,vac per φ 0 ∂w ∂x 1 i n 1 i ds x 1 dx = 0,
applying the periodicity of w 1 , we get ∀x ∈ Ω ,

φ 0 is Γ 1,vac per -periodic. (3.68)
Finally, from (3.64), (3.65), (3.66), (3.67 ), (3.68), the governing equation φ 0 in Ω 1,vac is given by ∀x ∈ Ω , 

                       -div ∇ x 1 φ 0 = 0 in Ω 1,vac φ 0 = V 0 on Γ 1,vac int ∇ x 1 φ 0 • n 1 = 0 on Γ 1,vac +∪- ∇ x 1 φ 0 • n 1 is Γ 1,vac per -anti-periodic φ 0 is Γ 1,vac per -periodic . ( 3 
(x ε ) , ϑ ∈ {0, L 1 }, v ϑ b ∈ H 1 Γ 1,vac,+∞ int ,0 (Ω 1,vac,+∞ ) ∩ H 2 Γ 1,vac,+∞ int ,Γ 1,vac,+∞ ext (Ω 1,vac,+∞ ) and v inter f b ∈ H 1 Γ 1,vac,∞ int ,0 (Ω 1,vac,∞ ) ∩ H 2 Γ 1,vac,∞ int ,Γ 1,vac,∞ ext (Ω 1,vac,∞ ) we get Ω ε,vac φ ε ∂ ∂x ε i ∂ ∂x ε i B ϑ b v ϑ b + B inter f b v inter f b dx ε = |Γ ε,vac int | |Ω ε,vac | Γ ε,vac int V ε ∂ ∂x ε i B ϑ b v ϑ b + B inter f b v inter f b n ε i ds x ε .
Applying equations (3.46) and (3.47), the second order partial derivatives

∂ x ε i ∂ x ε i B ϑ b v ϑ b and ∂ x ε i ∂ x ε i B inter f b v inter f b can be computed as ∂ ∂x ε i ∂B ϑ b v ϑ b ∂x ε i = 1 ε 2 B ϑ b        ∂ ∂x 1 i ∂v ϑ b ∂x 1 i        and ∂ ∂x ε i ∂B inter f b v inter f b ∂x ε i = 1 ε 2 B inter f b         ∂ ∂x 1 i ∂v inter f b ∂x 1 i         .
The above equation becomes

Ω ε,vac φ ε         1 ε 2 B ϑ b        ∂ ∂x 1 i ∂v ϑ b ∂x 1 i        + 1 ε 2 B inter f b         ∂ ∂x 1 i ∂v inter f b ∂x 1 i                 dx ε = |Γ ε,vac int | |Ω ε,vac | Γ ε,vac int V ε         C (ϑ, i) 1 ε B ϑ b        ∂v ϑ b ∂x 1 i        + 1 ε B inter f b         ∂v inter f b ∂x 1 i                 n ε i ds x ε or 1 ε Ω ε,vac φ ε B ϑ b        ∂ ∂x 1 i ∂v ϑ b ∂x 1 i        dx ε + 1 ε Ω ε,vac φ ε B inter f b         ∂ ∂x 1 i ∂v inter f b ∂x 1 i         dx ε = |Γ ε,vac int | |Ω ε,vac | Γ ε,vac int C (ϑ, i) V ε B ϑ b        ∂v ϑ b ∂x 1 i        n ε i ds x ε + |Γ ε,vac int | |Ω ε,vac | Γ ε,vac int V ε B inter f b         ∂v inter f b ∂x 1 i         n ε i ds x ε .
Applying the properties (ϑ) . Applying the Definition 6 of T ϑ * b and T inter f * b

B ϑ b v = T ϑ * b vχ Ω ε,s(ϑ) x ε 1 , ∀v ∈ L 2 Ω 1,+∞ and B ϑ b v i = (-1) χ {L 1 } (ϑ) T ϑ * b v i χ Ω ε,s(ϑ) x ε 1 , ∀v i ∈ C ∞ Γ ε int and B inter f b v = T inter f * b v, ∀v ∈ L 2 Ω 1,∞ , it be- comes 1 ε 2 Ω ε,vac φ ε T ϑ * b        ∂ ∂x 1 i ∂v ϑ b ∂x 1 i        dx ε + 1 ε 2 Ω ε,vac φ ε T inter f * b         ∂ ∂x 1 i ∂v inter f b ∂x 1 i         dx ε = |Γ ε,vac int | |Ω ε,vac | 1 ε Γ ε,vac int C (ϑ, i) V ε (-1) χ {L 1 } (ϑ) T ϑ * b        ∂v ϑ b ∂x 1 i        n ε i ds x ε + |Γ ε,vac int | |Ω ε,vac | 1 ε Γ ε,vac int V ε T inter f * b         ∂v inter f b ∂x 1 i         n ε i ds x ε , where C (ϑ, i) = C (ϑ, i) (-1) χ {L 1 }
, it becomes

1 ε ε 2 |Ω ε,vac | Ω 1,vac,+∞ T ϑ b φ ε ∂ ∂x 1 i ∂v ϑ b ∂x 1 i dx 1 + 1 ε ε 2 |Ω ε,vac | Ω 1,vac,∞ T inter f b φ ε ∂ ∂x 1 i ∂v inter f b ∂x 1 i dx 1 = |Γ ε,vac int | |Ω ε,vac | C (ϑ, i) ε |Γ ε,vac int | Γ 1,vac,+∞ int T ϑ b V ε ∂v ϑ b ∂x 1 i n +∞ i ds x 1 + |Γ ε,vac int | |Ω ε,vac | ε |Γ ε,vac int | Γ 1,vac,∞ int T inter f b V ε ∂v inter f b ∂x 1 i n ∞ i ds x 1 , or Ω 1,vac,+∞ T ϑ b φ ε ∂ ∂x 1 i ∂v ϑ b ∂x 1 i dx 1 + Ω 1,vac,∞ T inter f b φ ε ∂ ∂x 1 i ∂v inter f b ∂x 1 i dx 1 = C (ϑ, i) Γ 1,vac,+∞ int T ϑ b V ε ∂v ϑ b ∂x 1 i n +∞ i ds x 1 + Γ 1,vac,∞ int T inter f b V ε ∂v inter f b ∂x 1 i n ∞ i ds x 1 ,
where n +∞ and n ∞ are unit outward normal vectors in Ω 1,+∞ and Ω 1,∞ . Plugging the equations (3.56), (3.57 ), (3.58) and (3.59) into the above equation and passing ε to 0, we get

Ω 1,vac,+∞ φ 0 ϑ, x 1 + φ ϑ b ∂ ∂x 1 i ∂v ϑ b ∂x 1 i dx 1 + Ω 1,vac,∞ φ 0 L m 1 , x 1 + φ inter f b ∂ ∂x 1 i ∂v inter f b ∂x 1 i dx 1 = C (ϑ, i) Γ 1,vac,+∞ int V 0 ϑ, x 1 + V ϑ b ∂v ϑ b ∂x 1 i n +∞ i ds x 1 + Γ 1,vac,∞ int V 0 L m 1 , x 1 + V inter f b ∂v inter f b ∂x 1 i n ∞ i ds x 1 .
Applying the Green formula twice with ∂Ω 1,vac,+∞ = Γ 1,vac,+∞

int ∪ Γ 1,vac,+∞ end,ϑ ∪ Γ 1,vac,+∞ lat ∪ Γ 1,vac,+∞ +∪- , ∂Ω 1,vac,∞,η = Γ 1,vac,∞,η int ∪ Γ 1,vac,∞,η inter f ∪ Γ 1,vac,∞,η lat ∪ Γ 1,vac,∞,η +∪-
, η ∈ {1, 2} and writing them as ∂Ω 1,vac,+∞ = Γ 1,vac,+∞ int∪end,ϑ∪lat∪+∪-and Γ 1,vac,∞,η int∪inter f ∪lat∪+∪-for simplicity, we get

Ω 1,vac,+∞ ∂ ∂x 1 i ∂ ∂x 1 i φ 0 ϑ, x 1 + φ ϑ b v ϑ b dx 1 - Γ 1,vac,+∞ int∪end,ϑ∪lat∪+∪- ∂ ∂x 1 i φ 0 ϑ, x 1 + φ ϑ b v ϑ b n +∞ i ds x 1 + Γ 1,vac,+∞ int∪end,ϑ∪lat∪+∪- φ 0 ϑ, x 1 + φ ϑ b ∂v ϑ b ∂x 1 i n +∞ i ds x 1 + η Ω 1,vac,∞,η ∂ ∂x 1 i ∂ ∂x 1 i φ 0 L m 1 , x 1 + φ inter f b v inter f,η b dx 1 - η Γ 1,vac,∞,η int∪inter f ∪lat∪+∪- ∂ ∂x 1 i φ 0 L m 1 , x 1 + φ inter f b v inter f,η b n ∞,η i ds x 1 + η Γ 1,vac,∞,η int∪inter f ∪lat∪+∪- φ 0 L m 1 , x 1 + φ inter f b ∂v inter f,η b ∂x 1 i n ∞,η i ds x 1 = C (ϑ, i) Γ 1,vac,+∞ int V 0 ϑ, x 1 + V ϑ b ∂v ϑ b ∂x 1 i n +∞ i ds x 1 + η Γ 1,vac,∞,η int V 0 L m 1 , x 1 + V inter f b ∂v inter f,η b ∂x 1 i n ∞,η i ds x 1 .
From assumption of v ϑ b such as v ϑ b = 0 on Γ 1,vac,+∞ 

= 0 on Γ 1,vac,∞,η int and ∂ x 1 i v inter f,η b n ∞,η i = 0 on Γ 1,vac,∞,η lat∪+∪-, it becomes Ω 1,vac,+∞ ∂ ∂x 1 i ∂ ∂x 1 i φ 0 ϑ, x 1 + φ ϑ b v ϑ b dx 1 - Γ 1,vac,+∞ end,ϑ∪lat∪+∪- ∂ ∂x 1 i φ 0 ϑ, x 1 + φ ϑ b v ϑ b n +∞ i ds x 1 + Γ 1,vac,+∞ int φ 0 ϑ, x 1 + φ ϑ b ∂v ϑ b ∂x 1 i n +∞ i ds x 1 + η Ω 1,vac,∞,η ∂ ∂x 1 i ∂ ∂x 1 i φ 0 L m 1 , x 1 + φ inter f b v inter f,η b dx 1 - η Γ 1,vac,∞,η inter f ∪lat∪+∪- ∂ ∂x 1 i φ 0 L m 1 , x 1 + φ inter f b v inter f,η b n ∞,η i ds x 1 + η Γ 1,vac,∞,η inter f ∪int φ 0 L m 1 , x 1 + φ inter f b ∂v inter f,η b ∂x 1 i n ∞,η i ds x 1 = C (ϑ, i) Γ 1,vac,+∞ int V 0 ϑ, x 1 + V ϑ b ∂v ϑ b ∂x 1 i n +∞,ϑ i ds x 1 + η Γ 1,vac,∞,η int V 0 L m 1 , x 1 + V inter f b ∂v inter f,η b ∂x 1 i n ∞,η i ds x 1 . The equation (3.69) implies ∂ x 1 i ∂ x 1 i φ 0 ϑ, x 1 = ∂ x 1 i ∂ x 1 i φ 0 L m 1 , x 1 = 0, and φ 0 ϑ, x 1 = V 0 ϑ, x 1 on Γ 1,vac,+∞ int , φ 0 L m 1 , x 1 = V 0 L m 1 , x 1 on Γ 1,vac,∞,η int
, the above equation becomes

Ω 1,vac,+∞ ∂ ∂x 1 i ∂φ ϑ b ∂x 1 i v ϑ b dx 1 - Γ 1,vac,+∞ end,ϑ∪lat∪+∪- ∂ ∂x 1 i φ 0 ϑ, x 1 + φ ϑ b v ϑ b n +∞ i ds x 1 (3.70) + Γ 1,vac,+∞ int φ ϑ b ∂v ϑ b ∂x 1 i n +∞ i ds x 1 + η Ω 1,vac,∞,η ∂ ∂x 1 i ∂φ inter f b ∂x 1 i v inter f,η b dx 1 - η Γ 1,vac,∞,η inter f ∪lat∪+∪- ∂ ∂x 1 i φ 0 L m 1 , x 1 + φ inter f b v inter f,η b n ∞,η i ds x 1 (3.71) + η Γ 1,vac,∞,η inter f φ 0 L m 1 , x 1 + φ inter f b ∂v inter f,η b ∂x 1 i n ∞,η i ds x 1 + η Γ 1,vac,∞,η int φ inter f b ∂v inter f,η b ∂x 1 i n ∞,η i ds x 1 (3.72) = C (ϑ, i) Γ 1,vac,+∞ int V ϑ b ∂v ϑ b ∂x 1 i n +∞,ϑ i ds x 1 + η Γ 1,vac,∞,η int V inter f b ∂v inter f,η b ∂x 1 i n ∞,η i ds x 1 . If v ϑ b = 0 on Γ 1,vac,+∞ end,ϑ∪lat∪+∪-, ∂ x 1 i v ϑ b n +∞ i = 0 on Γ 1,vac,+∞ int , and v inter f,η b = 0 on Γ 1,vac,∞,η inter f ∪lat∪+∪-, ∂ x 1 i v inter f,η b n ∞,η i = 0 on Γ 1,vac,∞,η
inter f ∪int , the above equation becomes

Ω 1,vac,+∞ ∂ ∂x 1 i ∂φ ϑ b ∂x 1 i v ϑ b dx 1 + η Ω 1,vac,∞,η ∂ ∂x 1 i ∂φ inter f b ∂x 1 i v inter f,η b dx 1 = 0.
Applying the interpretation of the weak equality, we get 

∂ ∂x 1 i ∂φ ϑ b ∂x 1 i = 0 in Ω 1,vac,+∞ and ∂ ∂x 1 i ∂φ inter f,η b ∂x 1 i = 0 in Ω 1,vac,∞,η . ( 3 
- Γ 1,vac,+∞ end,ϑ∪lat∪+∪- ∂ ∂x 1 i φ 0 ϑ, x 1 + φ ϑ b v ϑ b n +∞ i ds x 1 + Γ 1,vac,+∞ int φ ϑ b ∂v ϑ b ∂x 1 i n +∞ i ds x 1 - η Γ 1,vac,∞,η inter f ∪lat∪+∪- ∂ ∂x 1 i φ 0 L m 1 , x 1 + φ inter f b v inter f,η b n ∞,η i ds x 1 + η Γ 1,vac,∞,η inter f φ 0 L m 1 , x 1 + φ inter f b ∂v inter f,η b ∂x 1 i n ∞,η i ds x 1 (3.74) + η Γ 1,vac,∞,η int φ inter f b ∂v inter f,η b ∂x 1 i n ∞,η i ds x 1 (3.75) = C (ϑ, i) Γ 1,vac,+∞ int V ϑ b ∂v ϑ b ∂x 1 i n +∞ i ds x 1 + η Γ 1,vac,∞,η int V inter f b ∂v inter f,η b ∂x 1 i n ∞,η i ds x 1 . If v ϑ b = 0 on Γ 1,vac,+∞ lat∪end,ϑ∪+∪-, v inter f,η b = 0 on Γ 1,vac,∞,η inter f ∪lat∪+∪-and ∂ x 1 i v inter f,η b n ∞,η i = 0 on Γ 1,vac,∞,η inter f , it becomes Γ 1,vac,+∞ int φ ϑ b ∂v ϑ b ∂x 1 i n +∞ i ds x 1 + η Γ 1,vac,∞,η int φ inter f b ∂v inter f,η b ∂x 1 i n ∞,η i ds x 1 = ϑ,i C (ϑ, i) Γ 1,vac,+∞ int V ϑ b ∂v ϑ b ∂x 1 i n +∞,ϑ i ds x 1 + η Γ 1,vac,∞,η int V inter f b ∂v inter f,η b ∂x 1 i n ∞,η i ds x 1 . (3.76)
In the case ϑ = 0, the constant C (0, i) = (-1) χ {L 1 } (0)χ {1} (i) (-1) χ {L 1 } (0) = 1, ∀i ∈ {1, 2, 3} and the equation above becomes

Γ 1,vac,+∞ int φ 0 b -V 0 b ∂v 0 b ∂x 1 i n +∞ i ds x 1 + η Γ 1,vac,∞,η int φ inter f b -V inter f b ∂v inter f,η b ∂x 1 i n ∞,η i ds x 1 = 0.
Applying the interpretation of the weak equality, we have 

φ 0 b = V 0 b on Γ 1,vac,+∞ int and φ inter f b = V inter f b on Γ 1,vac,∞,η int . ( 3 
= L 1 , the constant C (L 1 , i) = (-1) χ {L 1 } (L 1 )χ {1} (i) (-1) χ {L 1 } (L 1 ) = -(-1) χ {1} (i) takes the value 1 if i = 1 and -1 otherwise. We get Γ 1,vac,+∞ int φ L 1 b ∂v L 1 b ∂x 1 i n +∞ i ds x 1 - i C (L 1 , i) Γ 1,vac,+∞ int V L 1 b ∂v L 1 b ∂x 1 i n +∞,L 1 i ds x 1 = 0 or Γ 1,vac,+∞ int φ L 1 b -V L 1 b ∂v L 1 b ∂x 1 1 n +∞ 1 ds x 1 + Γ 1,vac,+∞ int φ L 1 b + V L 1 b ∂v L 1 b ∂x 1 2 n +∞ 2 ds x 1 + Γ 1,vac,+∞ int φ L 1 b + V L 1 b ∂v L 1 b ∂x 1 3 n +∞ 3 ds x 1 = 0.
Since n +∞ = (-1, 0, 0) , it becomes

Γ 1,vac,+∞ int φ L 1 b -V L 1 b ∂v L 1 b ∂x 1 1 n +∞ 1 ds x 1 = 0.
Applying the interpretation of the weak equality, we have 

φ L 1 b = V L 1 b on Γ 1,vac,+∞ int . ( 3 
Γ 1,vac,+∞ end,ϑ∪lat∪+∪- ∂ ∂x 1 i φ 0 ϑ, x 1 + φ ϑ b v ϑ b n +∞ i ds x 1 - η Γ 1,vac,∞,η inter f ∪lat∪+∪- ∂ ∂x 1 i φ 0 L m 1 , x 1 + φ inter f b v inter f,η b n ∞,η i ds x 1 + η Γ 1,vac,∞,η inter f φ 0 L m 1 , x 1 + φ inter f b ∂v inter f,η b ∂x 1 i n ∞,η i ds x 1 = 0. If v ϑ b = 0 on Γ 1,vac,+∞ end,ϑ and v inter f,η b = 0 on Γ 1,vac,∞,η inter f and ∂ x 1 i v inter f,η b n ∞,η i = 0 on Γ 1,vac,∞,η inter f , it becomes - Γ 1,vac,+∞ lat∪+∪- ∂ ∂x 1 i φ 0 ϑ, x 1 + φ ϑ b v ϑ b n +∞ i ds x 1 - η Γ 1,vac,∞,η lat∪+∪- ∂ ∂x 1 i φ 0 L m 1 , x 1 + φ inter f b v inter f b n ∞ i ds x 1 = 0.
Applying the interpretation of weak equality, we get

∂φ ϑ b ∂x 1 i n +∞ i = - ∂φ 0 ϑ, x 1 ∂x 1 i n +∞ i = 0 on Γ 1,vac,+∞ lat∪+∪-and ∂φ inter f b ∂x 1 i n ∞,η i = - ∂φ 0 L m 1 , x 1 ∂x 1 i n ∞,η i = 0 on Γ 1,vac,∞,η lat∪+∪-.
(3.80) Applying (3.80) to above equation, we get

- Γ 1,vac,+∞ end,ϑ ∂ ∂x 1 i φ 0 ϑ, x 1 + φ ϑ b v ϑ b n +∞ i ds x 1 - η Γ 1,vac,∞,η inter f ∂ ∂x 1 i φ 0 L m 1 , x 1 + φ inter f b v inter f,η b n ∞,η i ds x 1 + η Γ 1,vac,∞,η inter f φ 0 L m 1 , x 1 + φ inter f b ∂v inter f,η b ∂x 1 i n ∞,η i ds x 1 = 0. If v inter f b and ∂ x 1 i v inter f b is continuous on Ω 1,vac,∞ , we get - Γ 1,vac,+∞ end,ϑ ∂ ∂x 1 i φ 0 ϑ, x 1 + φ ϑ b v ϑ b n +∞ i ds x 1 - Γ 1,vac,∞ inter f         η ∂ ∂x 1 i φ 0 L m 1 , x 1 + φ inter f b |Ω 1,vac,∞,η n ∞,η i         v inter f b ds x 1 + Γ 1,vac,∞ inter f         η φ 0 L m 1 , x 1 + φ inter f b |Ω 1,vac,∞,η n ∞,η i         ∂v inter f b ∂x 1 i ds x 1 = 0.
Applying the interpretation of weak equality with n ∞,1 = (-1, 0, 0) and n ∞,2 = (1, 0, 0), we get

∂φ ϑ b ∂x 1 i n +∞ i = - ∂φ 0 ϑ, x 1 ∂x 1 i n +∞ i on Γ 1,vac,+∞ end,ϑ , (3.81 
)

[[ ∂ ∂x 1 i φ 0 L m 1 , x 1 + φ inter f b ]] = 0 on Γ 1,vac,∞ inter f and [[φ 0 L m 1 , x 1 + φ inter f b ]] = 0 on Γ 1,vac,∞ inter f , where [[ f (x)]]
is the "jump" of f (x) at the interface. Finally, from (3.73), (3.77), ( 3.79), (3.80) and ( 3.81 ), the governing system for boundary layers at the two ends and at the interface are given as

                 -div x 1 ∇ x 1 φ ϑ b = 0 in Ω 1,vac,+∞ φ ϑ b = V ϑ b on Γ 1,vac,+∞ int ∇ x 1 φ ϑ b • n +∞ = 0 on Γ 1,vac,+∞ lat∪+∪- ∇ x 1 φ ϑ b • n +∞ = -∇ x 1 φ 0 ϑ, x 1 • n +∞ on Γ 1,vac,+∞ end,ϑ and (3.82)                          -div x 1 ∇ x 1 φ inter f b = 0 in Ω 1,vac,∞ φ inter f b = V inter f b on Γ 1,vac,∞ int ∇ x 1 φ inter f b • n ∞ = 0 on Γ 1,vac,∞ lat∪+∪- [[∂ x 1 1 φ 0 L m 1 , x 1 + φ inter f b ]] = 0 on Γ 1,vac,∞ inter f [[φ 0 L m 1 , x 1 + φ inter f b ]] = 0 on Γ 1,vac,∞ inter f . (3.83)

3.3/ MULTI-SCALE MODEL IMPLEMENTATION

In this section, the main solution φ 0 is calculated on the microscopic domain Ω 1 for the two voltages V 0 = 20V and 30V, see at the interface which is computed on four cells, see Figure 3.8. The full solution is built by superimposing the periodic solution φ 0 and the three boundary layer correctors, see Figure 3.9. The simulation time for a large array is related to the number of different voltages that are applied but not to its number of cells. We continue on the research path initiated in [START_REF] Yang | Computer-aided derivation of multi-scale models: A rewriting framework[END_REF] where the concepts of extension and their combination were introduced for the first time. In this seminal work proofs were formalized as rewriting strategies and extensions were formalized as secondorder rewriting strategies. However the combination of extensions was done via composition, not allowing for conflicts between extensions. The complete principle of the extension-combination method was introduced in [START_REF] Belkhir | Towards an automatic tool for multi-scale model derivation illustrated with a micro-mirror array[END_REF]. In this work, we have presented the design and implementation of a user language for the specification of rewriting strategies based proofs and extensions. We also stated computation rules for combinations of extensions. Although we considered combinations for a small class of usual rewriting strategies as OuterMost and InnerMost, the question whether this class, or possibly a wider class, is closed under combination was left open, as well as the question of the correctness and soundness of the combination formulae.

This question was addressed in [START_REF] Belkhir | Closed combination of context-embedding iterative strategies[END_REF] where the authors introduced a larger the class of context embedding strategies, or CES-strategies for short. This framework involves more elementary operations but generating a wider class of rewriting strategies. Although the idea of combination is kept the same, the tools and the techniques are different. The elementary extension operation on a term is still an enrichment by context insertion. However, the traversal strategies in a CE-strategy are built with a jump operator and an iterator/fixed-point operator instead of OuterMost a more complex strategy. This class is indeed closed under combination and the correctness of the combination operation was proved.

Although the class of CE-strategies enjoys nice algebraic properties, it has a major practical drawback: it is built up with low level strategy constructors making it hard to use in practice. In particular, the definition of the traversal navigation strategies such as OuterMost yields a CE-strategy whose size depends on the signature. Even worse, the size of the resulting combined CE-strategy can be exponential with respect to the size of the two input CE-strategies. In this chapter we overcome these difficulties by finding another class of strategies, called high level context embedding strategies, or HCE-strategies for short, which is a strict subclass of the class of CE-strategies. It enjoys similar algebraic properties and seems reasonably easy to use in practice. In particular, the class of HCE-strategies is closed by combination, and the size of the resulting com-bined HCE-strategy is polynomial with respect of the size of the two input HCE-strategies.

The strategy language underlying both the CE-strategies and the HCE-strategies is inspired by the modal µ-calculus [START_REF] Arnold | Rudiments of µ-calculus[END_REF]. Instead of formulating the strategy language as in [START_REF] Cirstea | Rewrite strategies in the rewriting calculus[END_REF], the µ-calculus-like approach makes the strategy constructors more rudimentary and therefore tractable the question of language closure for combinations. Moreover, the formulae of combination of HCE-strategies together with their verification is also much simplified.

Organization of the Chapter:

The Chapter is structured as follows. In Section 4.3 we introduce the class of elementary HCE-strategies, which is a subclass of HCE-strategies.

It provides an illustration of the concept of unification and combination in simple cases and serves as a set of basic building blocks for the class of HCE-strategies. The syntax and the semantics of the latter as well as their unification and combination are introduced in Section 4.4. In Section 4.5 we argue that the unification and combination of HCEstrategies is sound and complete, and state its main algebraic properties. The proofs of the claims are similar to the ones for the class of CE-strategies [START_REF] Belkhir | Closed combination of context-embedding iterative strategies[END_REF].

4.2/ PRELIMINARIES

We introduce preliminary definitions and notations.

Terms, contexts. Let F = ∪ n≥0 F n be a set of symbols called function symbols. The arity of a symbol f in F n is n and is denoted ar( f ). Elements of arity zero are called constants and often denoted by the letters a, b, c, etc. The set F 0 of constants is always assumed to be not empty. Given a denumerable set X of variable symbols, the set of terms T (F , X), is the smallest set containing X and such that f (t 1 , . . . , t n ) is in T (F , X) whenever ar( f ) = n and t i ∈ T (F , X) for i ∈ [1.

.n]. Let the constant F , the set T (F , X) of "contexts", denoted simply by T , is made with terms with symbols in F ∪ X ∪ { } which includes exactly one occurence of . Evidently, T (F , X) and T (F , X) are two disjoint sets. For a term t and a context τ, we shall write τ[t] for the term that results from the replacement of by t in τ. We shall write simply T (resp. T ) instead of T (F , X) (resp. T (F , X)). We denote by Var (t) the set of variables occurring in t.

Example 1:

Out of the definition of term and context, we introduce a term t and two contexts τ 1 , τ 2 as an example. Consider x as a variable which is defined on a domain Ω in R. A term t corresponding to x having the grammar is given by [Yang, 2014] t = Var (x, Reg (Ω, 1)) ,

where Var and Reg are functions symbols belonging to F 2 , and x, Ω,1 are constants belonging to F 0 . The constant 1 represents the dimension of the space. Besides, a context τ 1 providing an ability to extend a term into a vector of three elements and a context τ 2 having an ability to extend a term into a vector of any size are given by the following equations

τ 1 = List ( , Index (i, [1, 2, 3])) , τ 2 = List ( , Index ( j, X)) ,
where List and Index are functions symbols belonging to F 2 , and i, j, 1, 2, 3 are constants and X is variable symbol belong to X. The tree structure of t, τ 1 and τ 2 are shown in Figure 4.1.

Positions, prefix-order, combination of contexts. Let t be a term in T (F , X). A position in a tree is a sequence of integers of N ω = { } ∪ N ∪ (N × N) ∪ • • • . In particular we shall write N for { } ∪ N. Given two positions p = p 1 p 2 . . . p n and q = q 1 q 2 . . . q m , the concatenation of p and q, denoted by p • q or simply pq, is the position p 1 p 2 . . . p n q 1 q 2 . . . q m . The set of positions of the term t, denoted by Pos (t), is a set of positions of positive integers such that, if t ∈ X is a variable or t ∈ F 0 is a constant, then

Pos (t) = { }. If t = f (t 1 , ..., t n ) then Pos (t) = { } ∪ i=1,n {ip | p ∈ Pos (t i )}.
The position is called the root position of term t, and the function or variable symbol at this position is called root symbol of t.

The prefix order defined as p ≤ q iff there exists p such that pp = q, is a partial order on positions. If p then we obtain the strict order p < q. We write (p q) iff p and q are incomparable with respect to ≤. The binary relations < and defined by p < q iff p < q or p q and p q iff p ≤ q or p q , are total relations on positions.

For 

Example 2:

To clarify how the depth of a tree structure is defined, we consider the case of the term t presented in Example 1. Its depth is inductively computed as

δ (t 1 ) = 0, δ (t 21 ) = δ (t 22 ) = 0, δ (t 2 ) = 1 + max {δ (t 21 ) , δ (t 22 )} = 1, so that δ (t) = 1 + max {δ (t 1 ) , δ (t 2 )} = 2.
Besides, the concept of replacement of a sub-term of a term or of a context can be recognized obviously, for instance, the new term obtained by replacing the name x by y is given as

t[y] 1 = Var(y, Reg(Ω, 1)),
the tree structure of t[y] 1 can be found in Figure 4.2.

A substitution is a mapping σ : X → T (F , X) such that σ(x)

x for only finitely many xs. The finite set of variables that σ does not map to themselves is called the domain of σ: Dom(σ)

de f = {x ∈ X | σ(x) x}. If Dom(σ) = {x 1 , ...,
x n } then we write σ as: σ = {x 1 → σ (x 1 ) , ..., x n → σ (x n )}.

A substitution σ : X → T (F , X) uniquely extends to an endomorphism σ : T (F , X) → T (F , X) defined by: σ(x) = σ(x) for all x ∈ Dom(σ), and σ(x) = x for all x Dom(σ), and σ( f (t 1 , . . . , t n )) = f ( σ(t 1 ), . . . , σ(t n )) for f ∈ F . In what follows we do not distinguish between a substitution and its extension.

Example 3:

Consider a substitution σ of τ 2 presented in Example 1, the domain of σ is given as Dom(σ) = {X}. We want to substitute the variable X in τ 2 by a list of constants, for instance, [1,2]. Since Dom(σ) is finite, σ can be rewritten as σ = {X → [1, 2]}. The result of the application of σ to τ 2 is given as

σ(τ 2 ) = (X → [1, 2])(τ 2 ) = τ 2 [[1, 2]] 22 .
The complete tree structure of σ(τ 2 ) can be found in Figure 4.2.

For two terms t, t ∈ T , we say that t matches t , written t t , iff there exists a substitution σ, such that σ(t) = t . It turns out that if such a substitution exists, then it is unique. A term t is subsumed by a term t iff there exists a substitution σ such that σ(t) = t . A substitution σ is subsumed by a substitution σ iff σ (t) is subsumed by σ(t) for each term t. The most general unifier of the two terms u and u is a substitution γ such that γ(u) = γ(u ) and, for any other substitution γ satisfying γ (u) = γ (u ), we have that γ is subsumed by γ. Besides, we shall write u ∧ u to denote the term γ(u). The composition of functions will 

Example 4:

Consider two terms t 1 and t 2 representing two mathematical variables given as the following equations

t 1 = Var(X, Reg(Ω, 1)), t 2 = Var(y, Reg(Y, 1)),
where X and Y are variables, t 1 matches t 2 under a unique substitution γ = {X → y, Y → Ω}.

4.3/ POSITION-BASED HCE-STRATEGIES AND THEIR COMBINA-TION

We need to consider the combination of contexts when they are inserted at the same position.

Definition 8: Combination of contexts

For any τ, τ ∈ T , the combination of two contexts, denoted by "•", is defined by

τ • τ = τ[τ ] Pos(τ, ) ,
where Pos (t, ) is the position of in t.

Example 5:

The combination of the two contexts τ 1 and τ 2 given in Example 1 is given as

τ 1 • τ 2 = τ 1 [τ 2 ] 1 = List(List( , j), i)
where i and j are shortcut terms which represent Index (i, [1, 2, 3]) and Index( j, X) respectively. This concept has already been presented in [Yang, 2014]. The complete tree structure of this term is shown in Figure 4.2.

To define the position-based HCE-strategies, we introduce two position-based strategies.

For a position p and a context τ, the jump strategy @p.τ applied to a term t inserts τ at the position p of the input term t. The failing strategy ∅ fails when applied to any term. Their precise semantics are given in Definition 9 below for Semantics of position-based HCE-strategies.

Definition 9: Position-based HCE-strategies

A position-based HCE-strategy is either the failing strategy ∅ or the list [@p 1 .τ 1 , . . . , @p n .τ n ], where n ≥ 1, each p i is a positions and each τ i is a context in T .

We impose that the position-based HCE-strategies respect some constraints on positions of insertions to avoid conflicts: the order of context insertions goes up from the leaves to the root.

Definition 10: Well-founded position-based HCE-strategy

A position-based HCE-strategy E = [@p 1 .τ 1 , ..., @p n .τ n ] is well-founded iff i.) a position occurs at most once in E, i.e. p i p j for all i j, and

ii.) insertions at lower positions occur earlier in E, i.e. i < j if p i < p j , for all i, j ∈ [n]. In particular, the empty position-based HCE-strategy ∅ is well-founded.

In all what follows we work only with the set of well-founded position-based HCEstrategies, denoted by E. For two position-based HCE-strategies E and E , we shall abuse of notation and write E = E to mean that they are equal up to a permutation of their parallel positions. We shall simply write @p.τ instead of [@p.τ]. For a position p, we let p.[@p 1 .τ 1 , . . . , @p n .τ n ] = [@pp 1 .τ 1 , . . . , @pp n .τ n ]. We next define the semantics of a position-based HCE-strategy as a function in T ∪ {F} → T ∪ {F}, with the idea that if the application of a position-based HCE-strategy to a term fails, the result is F. Besides, we adopt a stronger version of failure, that is, [@p 1 .τ 1 , . . . , @p n .τ n ] fails when each of @p i .τ i fails. To formalize this notion of failure we need to introduce an intermediary function η : (T ∪ {F} → T ∪ {F}) → T ∪ {F} → T ∪ {F}, that stands for the fail as identity. It is defined for any function f in T ∪ {F} → T ∪ {F} and any term t ∈ T ∪ {F} by

(η( f ))(t) =        f (t) if f (t) F, t otherwise.
The semantics of position-based HCE-strategies follows.

List x i

List List

x j i ∂ u p x q ∂ List u i p List x j q Figure 4.3:
The tree structure of the terms @ .τ 1 (t), @ .τ(t), t and [[@p.τ 1 , @q.τ 2 ]](t ) discussed in Example 6.

Definition 11: Semantics of position-based HCE-strategies

The semantics of a position-based HCE-strategy E is a function

[[E]] in T ∪ {F} →
T ∪ {F} inductively defined by:

[[∅]](t) de f = F, [[E]](F) de f = F, [[@p.τ]](t) de f =        t[τ[t |p ]] p if p ∈ Pos(t) F otherwise, [[[@p 1 .τ 1 , . . . , @p n .τ n ]]](t) de f =              η([[@p n .τ n ]]) • • • • • η([[@p 1 .τ 1 ]]) (t) if ∃p i ∈ {p 1 , . . . , p n } s.t. p i ∈ Pos(t) F otherwise.

Example 6:

We illustrate the idea and the interest of position-based HCE-strategies through the term t and the two contexts τ 1 = List , i and τ 2 = List , j defined in Example 1 but with the short-cut notation used in Example 5. Applying the strategy of @ .τ 1 to the term t = Var (x, Reg (Ω, 1)) gives the transformation of one-dimensional space coordinate variable x to indexed multi-dimensional space coordinate variable x i . The procedure is given as the following equation

[[@ .τ 1 ]](t) = t[τ 1 [t | ]] = t[τ 1 [t]] = τ 1 [t] = τ 1 [t] Pos(τ 1 , ) = List Var (x, Reg (Ω, 1)) , i Let τ = τ 1 • τ 2 .
The application of @p.τ to the term t is given as

[[@ .τ]](t) = τ[t] Pos(τ 1 [τ 2 ], ) = List List Var (x, Reg (Ω, 1)) , j , i
Consider a term t = ∂ x u having shortcut terms ∂ and u. Let p and q belong to Pos(t ) be positions of u and x in t , the application of [[@p.τ 1 • @q.τ 2 ]](t ) yields the term ∂ x j u i . Since the p q, the list of HCE-strategies is well-founded, the semantic of the application is given as

[[[@p.τ 1 , @q.τ 2 ]]](t ) = ([[@p.τ 1 ]] • [[@q.τ 2 ]])(t ) = [[@p.τ 1 ]]([[@q.τ 2 ]](t )).
The complete tree structures of x i , x i j , t and ∂ x j u i are depicted in Figure 4.3.

The unification of two position-based HCE-strategies amounts to sort and merge their positions, and to combine their contexts if they are inserted at the same position.

Definition 12: Unification of two position-based HCE-strategies

The unification of two position-based HCE-strategies is the binary operation :

E × E -→ E defined as

E E =        E if E ∅ and E ∅ ∅ if E = ∅ or E = ∅
where the first case E = [@p 1 .τ 1 , . . . , @p n .τ n ], E = [@p 1 .τ 1 , . . . , @p m .τ m ] and E = [@p 1 .τ 1 , . . . , @p r .τ r ] with sets of positions P, P and P = P ∪ P and the contexts τ k defined as follows. For a position p k ∈ P \ P ∩ P ,

τ k = τ i if p k = p i ∈ P and τ k = τ j if p k = p j ∈ P .
Otherwise, p k = p i = p j ∈ P ∩ P for some i, j and τ k = τ i • τ j . Besides, the order of the positions in P is chosen so that E is well-founded.

Example 7:

Let the list of HCE-strategies E = [@p 1 .τ 1 , @p 2 .τ 2 , @p 3 .τ 3 ] and E = [@p 1 .τ 1 , @q 1 .τ 2 , @q 2 .τ 3 ], the set of positions of E and E be P = {p 1 , p 2 , p 3 } and P = {p 1 , q 1 , q 2 }, P ∪ P = {p 1 , p 2 , p 3 , q 1 , q 2 }, P ∩ P = {p 1 }. The unification of E and E is given as the following equation E = [@p 1 .τ 1 .τ 1 , @p 2 .τ 2 , @p 3 .τ 3 , @q 1 .τ 2 , @q 2 .τ 3 ].

The combination of two position-based HCE-strategies is the same as their unification apart that it is defined on non-failing position-based HCE-strategies.

Definition 13: Combination of two position-based HCE-strategies

The combination of two position-based HCE-strategies is a binary operation : E × E -→ E defined for any E and E in E by

E E =                    E E if E ∅ and E ∅ E if E ∅ and E = ∅ E if E = ∅ and E ∅ ∅ if E = ∅ and E = ∅ Proposition 4:
The following hold.

1.

The set E of position-based HCE-strategies together with the unification and combination operations enjoy the following properties.

1. The neutral element of the unification is @ . , and the absorbing element is ∅.

2.

The neutral element of the combination is ∅.

3.

The unification and combination are associative, i.e.

(E E ) E = E (E E ) and (E E ) E = E (E E ).

The unification and combination of position-based HCE

-strategies is non commutative, i.e E E E E and E E E E.
The associativity follows from the equality

(τ 1 • τ 2 ) • τ 3 = τ 1 • (τ 2 • τ 3 )
, and the noncommutativity is a consequence of the fact that τ 1 • τ 2 τ 2 • τ 1 in general, for any contexts τ, τ 1 , τ 2 and τ 3 .

4.4/ THE CLASS OF CONTEXT-EMBEDDING STRATEGIES (HCE-STRATEGIES)

We introduced the position-based HCE-strategies to clarify the ideas behind contexts, their insertion as well as their combination. However, position-based HCE-strategies are not satisfactory for practical applications, since the positions are generally not accessible and cannot be used on a regular basis in applications. So, we enrich this framework by introducing navigation strategies to form a class of HCE-strategies that is closed under combination.

4.4.1/ SYNTAX AND SEMANTICS OF HCE-STRATEGIES

A HCE-strategy is composed of two parts: a navigation of the input term without changing it, and an insertion of contexts at certain positions. We shall introduce the left-choice strategy constructor (⊕), a conditional constructor "if-then", a restricted form of the composition, and the fixed-point constructor ("µ") allowing the recursion in the definition of strategies. The resulting class is called the class of HCE-strategies. In what follows we assume that there is a denumerable set of fixed-point variables denoted by Z. Fixed-point variables in Z will be denoted by X, Y, Z, . . .

Definition 14: HCE-strategies

The class of HCE-strategies is defined by the following grammar:

S ::= ∅ | X | τ | (u, S) | S ⊕ S | µX.S | [@i 1 .S, . . . , @i n .S] | Most(S) | If C then S C ::= S | S and S
where X is a fixed-point variable in Z, and τ is a context in T , and u is a term in T , and i is a position in N , and n ≥ 1. The set of HCE-strategies will be denoted by C.

We shall simply write @i.S instead of [@i.S] We notice that extending the class of HCEstrategies by allowing the position i of the jump operator @i.S to range over N ω instead of N does not increase the expressiveness of the strategy language.

The design of the class of HCE-strategies is inspired by the µ-calculus formalism [START_REF] Arnold | Rudiments of µ-calculus[END_REF] since we need very rudimentary strategy constructors. In particular the jumping into the immediate positions of the term tree is morally similar to the diamond and box modalities ( • and [•]) of the propositionsal modal µ-calculus. And the fixed-point constructor is much finer than the iterate operator of e.g. [START_REF] Cirstea | Rewrite strategies in the rewriting calculus[END_REF].

Besides, we incorporate the left-choice strategy constructor and a restricted form of the composition.

We shall sometimes write µX.S(X) instead of µX.S to emphasize that the fixed-point variable X is free in S.

⊕ , u τ @1 X µX ⊕ , u τ @1 X Figure 4.4:
The tree-like structure of the HCE-strategy S(X) = (u, τ) ⊕ (@1.X) (left) and µX.S(X) (right) discussed in Example 8.

Example 8:

Consider the two HCE-strategies defined by S(X) = (u, τ) ⊕ (@1.X) and µX.S(X), where u is a term and τ is a context. When applied to a term t, the HCE-strategy µX.S(X) checks first whether u matches with t. If it is the case, then the context τ is inserted at the root of t, yielding the term τ[t]. Otherwise, the HCE-strategy jumps to the position 1 of t and restarts again. If it reaches the left-most leaf of t and u does not match with this leaf, then the HCE-strategy µX.S(X) fails.

Roughly speaking, the HCE-strategy µX.S(X) is equivalent to its unfolding:

µX.S(X) = (u, τ) ⊕ (@1.((u, τ) ⊕ (@1.(u, τ) ⊕ (@1...))) = (u, τ) ⊕ @1.(u, τ) ⊕ @11.(u, τ) ⊕ @111.(u, τ) ⊕ . . .
It is helpful to view HCE-strategies as trees with back-edges. A tree with back-edges is an oriented tree with possible edges going from a node to at most one of its ancestors in the tree. For instance, S(X) = (u, τ) ⊕ (@1.X) is depicted on the left of Figure 4.4, while the tree with back-edges related to µX.S(X) is depicted on the right.

For any HCE-strategies S(X) and S in C, and i ≥ 1, we define S 1 (S )

de f
= S(S ), which stands for the syntactic replacement of X by S in S, and S i+1 (S )

de f
= S i (S(S )). A HCEstrategy strategy is closed if all its fixed-point variables are bound.

Definition 15: Semantics of HCE-strategies

The semantics of a closed HCE-strategy S is a function [[S]] : T ∪ F → T ∪ F, which is defined inductively as follows.

[[∅]](t) de f = F. [[S]](F) de f = F. [[(u, S )]](t) de f =        [[S ]](t) if u t,

F

otherwise.

[[τ]](t) de f = τ(t), [[S 1 ⊕ S 2 ]](t) de f =        [[S 1 ]](t) if [[S 1 ]](t) F, [[S 2 ]](t) otherwise.
[[µX.S(X)]](t)

de f = [[S δ(t) (∅)]](t).
[[If (S 1 and . . . and S n ) then S]](t)

de f =        [[S]](t) if ∀i ∈ [n], [[S i ]](t) F, F otherwise.
[[@p.S]](t)

de f =        t[[[S]](t |p )] p if [[S]](t |p ) F and p ∈ Pos(t), F otherwise. [[[@p 1 .S 1 , • • • , @p n .S n ]]](t) de f =        η([[@p n .S n ]]) • • • • • η([[@p 1 .S 1 ]]) (t) if ∃i ∈ [n] s.t. [[@p i .S i ]](t) F, F otherwise.
[[Most(S)]](t)

de f =              f η([[S]])(t 1 ), • • • , η([[S]])(t n ) if t = f (t 1 , . . . , t n ) and ∃i ∈ [n] s.t. [[S]](t i ) F, F otherwise.
The general definition of the fixed-point constructor requires a heavy machinery involving Knaster-Tarski fixed-point theorem [Tarski, 1955]. However, due to the particular nature of HCE-strategies, we gave an adhoc definition of the fixed-point HCE-strategy by

[[µX.S(X)]](t) de f = [[S δ(t) (∅)]](t).
The justification of the iteration of S(∅) at most δ(t) times, the depth of t, is that the navigation part of a HCE-strategy does not change the input term t. Therefore, either the HCE-strategy S progresses on the term t and will reach the leaves of t after δ(t) iterations, or S does not progress and in this case it fails after any iteration. Examples of HCE-strategies that do not progress are S = µX.X and S = µX.(u, X) for a term u. In technical terms, one can show that S δ(t) (∅) is a fixed-point of S(X) in the sense that, for every term t, we have 

[[S S δ(t) (∅) ]](t) = [[S δ(t) (∅)]](t).

4.4.2/ FROM HCE-STRATEGIES TO POSITION-BASED HCE-STRATEGIES

Out of a HCE-strategy and a term it is possible to construct a position-based HCEstrategy. The main purpose of this mapping is to formulate a correctness-completeness criterion for the unification and combination of HCE-strategies in terms of position-based HCE-strategies. Roughly speaking, this criterion imposes that the mapping of the combination of two HCE-strategies is equivalent to the combination of their respective mappings. The definition of this mapping follows.

Definition 17:

Define the function Ψ : C × T -→ E, that associates to each closed HCE-strategy S in C and a term t in T a position-based HCE-strategy Ψ(S, t) in E by

Ψ(∅, t) = ∅. Ψ(τ, t) = @ .τ. Ψ((u, τ), t) =        ( , τ) if u t, ∅ otherwise. Ψ((u, S), t) =        Ψ(S, t) if u t, ∅ otherwise. Ψ(@p.S, t) = @p • Ψ(S, t |p ). Ψ(S ⊕ S , t) =        Ψ(S, t) if Ψ(S, t) ∅, Ψ(S , t) otherwise. Ψ(µX.S(X), t) = Ψ S δ(t) (∅), t .
Ψ If (S 1 and . . . and S n ) then S,

t de f =        Ψ(S, t) if ∀i ∈ [n], Ψ(S i , t) ∅, ∅ otherwise. Ψ [@p 1 .S 1 , • • • , @p n .S n ], t de f = Ψ(@p 1 .S 1 , t), • • • , Ψ(@p n .S n , t) . Ψ(Most(S), t) =        i=1,n @i.(Ψ(S, t i )) if t = f (t 1 , . . . , t n ) and ∃i ∈ [n] s.t. Ψ(S, t i ) ∅, ∅ otherwise.
The application of the position-based HCE-strategy Ψ(S, t) to the term t will be simply written as

Ψ(S, t)(t) instead of [[Ψ(S, t)]](t).
It turns out that the function Ψ (Definition 17) preserves the semantics of HCE-strategies in the following sense.

Lemma 1:

For any HCE-strategy S in C and any term t in T , we have

[[S]](t) = Ψ(S, t)(t).
The proof of this Lemma does not provide any difficulties since the definition of Ψ is close to the definition of the semantics of HCE-strategies.

Lemma 2:

The function Ψ enjoys the following properties.

i.) For any position-based HCE-strategies E, E in E, we have that E = E iff Ψ(E, t) = Ψ(E , t) for any term t.

ii.) For any HCE-strategies S, S in C, we have that S ≡ S iff Ψ(S, t) = Ψ(S , t) for any term t. 

4.5/ UNIFICATION AND COMBINATION OF HCE-STRATEGIES

We define the combination of HCE-strategies (Definition 19) by means of their unification (Definition 18) together with an example. The first main result of this section is Theorem 1 that guarantees the correctness of the combination of HCE-strategies. The correctness is given in terms of the position-based HCE-strategies, it imposes that the mapping (via the homomorphism Ψ of Definition 17) of the combination of two HCE-strategies is equivalent to the combination of their respective mapping. Besides, Theorem 2 is a consequence of Theorem 1 which is more difficult and proves the same result but for the unification of HCE-strategies instead of the combination. The second main result is the nice algebraic properties of the unification and combination of HCE-strategies stated in Proposition 5. In particular, the combination and unification are associative, which is an important property in the applications, and are a congruence.

We omit the symmetric cases in the following definition which is given by an induction on the HCE-strategies by exhibiting all the possible cases. Besides, to reduce the number of formulas in Definition 18, the elementary HCE-strategy τ is simply written @ .τ, where τ is a context.

Definition 18: Unification of HCE-strategies

The unification of HCE-strategies is a binary operation : C×C -→ C inductively defined as follows.

∅ S = ∅. S ∅ = ∅. @i.τ @i.τ = @i.(τ • τ ). @i.τ @ j.τ = [@i.τ, @ j.τ ], if j < i. @i.τ @i.S = @i.(@ .τ S ). @i.τ @ j.S = If @ j.S then [@i.τ, @ j.S ], if j < i.

(u, τ) @i.τ = (u, @ .τ @i.τ ), (u, τ) @i.τ = ∅, if i ∈ [ar(u)] ∪ { }. if i [ar(u)] ∪ { }. @i.τ (u, S ) = (u, (@i.τ) S ), @i.τ (u, S ) = ∅, if i ∈ [ar(u)] ∪ { }. if i [ar(u)] ∪ { }. (u, τ) (u , S ) = (u ∧ u , (@ .τ S )). (u, S ) (u , S ) = (u ∧ u , S S ).
For the rest, assume L = i∈I @i.S i and L = j∈J @ j.S j .

Let

L 1 = i∈I∩J @i.(S i S i ) and L 2 = i∈I\J @i.S i and L 3 = i∈J\I @i.S i . Define L L = L 1 L 2 L 3 . (u, S ) L = (u, S ) L. (S 1 ⊕ S 2 ) S = (S 1 S ) ⊕ (S 2 S ). (If C 1 then S 1 ) (If C 2 then S 2 ) = If (C 1 and C 2 ) then (S 1 S 2 ) (If C 1 then S 1 ) S 2 = If C 1 then (S 1 S 2 )
For the fixed-point HCE-strategies, µX.S(X) µX .S (X ) = µZ.S µX.S(X), µX .S (X ), Z , where S (X, X , Z) = [S(X) S (X )] |X X :=Z , and Z is fresh.

(µX.S(X)) S = S (µX.S(X)), where S (X) = S(X) S .

X S = ∅.

Finally,

Most(S 1 ) R 1 Most(S 2 ) R 2 = If (R 1 and R 2 ) then Most (S 1 S 2 ) ⊕ S 1 ⊕ S 2 Most(S ) u; i∈I⊂N @i.S i = u; i∈[1,arity(u)] @i.S i∈I⊂N @i.S i Most(S ) (u; S ) = u; (Most(S ) S ) Most(S ) @ .τ = [Most(S ), @ .τ]
Example 11:

Let S(X) = (u, τ) ⊕ @1.X and S (X ) = (u , τ ) ⊕ @1.X , be two HCE-strategies. We compute the µX.S(X) µX .S (X ) by applying the formulas given in Definition 18. Firstly, the unification ( * ) of S(X) and S (X ) is:

( * ) = S(X) S (X ) = ((u, τ) ⊕ @1.X) ((u , τ ) ⊕ @1.X ) = (u, τ) ((u , τ ) ⊕ @1.X ) ⊕ (@1.X ((u , τ ) ⊕ @1.X )) = ((u, τ) (u , τ )) ⊕ (@1.X (u , τ )) ⊕ ((u, τ) @1.X ) ⊕ (@1.X @1.X ) = (u ∧ u , τ •τ) ⊕ (u, @ .τ @1.X ) ⊕ (u , @1.X @ .τ ) ⊕ (@1.(X X )) = (u ∧ u , τ •τ) ⊕ u, If (@1.X ) then [@1.X , @ .τ] ⊕ (u , If (@1.X) then [@1.X, @ .τ ]) ⊕ (@1.(X X )).
Secondly, the replacement of X X in ( * ) by a fresh fixed-point variable Z yields:

S (X, X , Z) = [S(X) S (X )] |X X :=Z = (u ∧ u , τ •τ) ⊕ u, If (@1.X ) then [@1.X , @ .τ] ⊕ (u , If (@1.X) then [@1.X, @ .τ ]) ⊕ (@1.(X X )) X X :=Z = (u ∧ u , τ •τ) ⊕ u, If (@1.X ) then [@1.X , @ .τ] ⊕ (u , If (@1.X) then [@1.X, @ .τ ]) ⊕ (@1.Z).
Finally, the unification ( * * ) of µX.S(X) and µX .S (X ) is:

( * * ) = µX.S(X) µX .S (X ) = µZ.S (µX.S(X), µX .S (X ), Z) = (u ∧ u , τ •τ) ⊕ u, If (@1.X ) then [@1.X , @ .τ] ⊕ (u , If (@1.X) then [@1.X, @ .τ ]) ⊕ (@1.Z).
The application of ( * * ) to a term t features four cases.

i.) Either t matches with both u and u , and in this case the context τ • τ is inserted at the root of t.

ii.) Or only u matches with t, and in this case τ is inserted at the position 1 of t provided the HCE-strategy µX .S (X ) is applied successfully at the position 1 of t.

iii.) Or only u matches with t, and in this case τ is inserted at the position 1 of t provided the HCE-strategy µX.S(X) is applied successfully at the position 1 of t.

iv.) Or both µX.S(X) and µX .S (X ) are applied at the position 1 of t.

4.5.1/ THE CORRECTION AND COMPLETENESS OF THE UNIFICATION AND COM-BINATION OF HCE-STRATEGIES

Now we are ready to state the main results of this Chapter. Namely, the unification and combination of HCE-strategies is sound and complete.

Theorem 1:

For every term t ∈ T and for every HCE-strategies S and S in C, we have that Ψ(S S , t) = Ψ(S, t) Ψ(S , t).

Theorem 2:

For every term t ∈ T and for every HCE-strategies S and S in C, we have that Ψ(S S , t) = Ψ(S, t) Ψ(S , t).

Thanks to the fact that the function Ψ is an homomorphism (in the first argument), one can transfer all the properties of the combination and unification of position-based HCEstrategies (stated in Proposition 4) to HCE-strategies.

Proposition 5:

The following hold.

1. The set C of HCE-strategies together with the unification and combination operations enjoy the following properties.

1. The neutral element of the unification is @ . , and the absorbing element is ∅.

2.

The neutral element of the combination is ∅.

3.

The unification and combination of HCE-strategies are associative.

2.

The unification and combination of HCE-strategies is non commutative.

3.

For any HCE-strategies S and S in C, and for any term t in T , we have that

Ψ(S S , t) = ∅ iff Ψ(S, t) = ∅ or Ψ(S , t) = ∅. Ψ(S S , t) = ∅ iff Ψ(S, t) = ∅ and Ψ(S , t) = ∅.

4.

For any HCE-strategies S and S in C, we have that

S S ≡ ∅ iff S ≡ ∅ or S ≡ ∅.
S S ≡ ∅ iff S ≡ ∅ and S ≡ ∅.

5.

The unification and combination of HCE-strategies is a congruence, that is, for any HCE-strategies S 1 , S 2 , S in C, we have that:

If S 1 ≡ S 2 then S 1 S ≡ S 2 S and S S 1 ≡ S S 2 .
If S 1 ≡ S 2 then S 1 S ≡ S 2 S and S S 1 ≡ S S 2 .

We notice that the neutral and absorbing element, and the associativity property of the unification and combination must be understood at the semantic level and not at the syntactic level since there are HCE-strategies which are syntactically different but semantically equivalent. For instance, the HCE-strategies @ . and (x, @ . ) and (x, @ . ) ⊕ (y, @ . ), where x, y are variables, are all equivalent. Therefore, saying that @ . is the neutral element for the unification of HCE-strategies must be understood as follows. For any HCE-strategies e, S ∈ C such that e ≡ @ . , we have that e S ≡ S e ≡ S. And the associativity of the unification must be understood as follows.

For any HCE-strategies S 1 , S 2 , S 3 ∈ C, we have that (S 1 S 2 ) S 3 ≡ S 1 (S 2 S 3 ).

4.6/ REMARKS

The class of HCES-strategies introduced in this Chapter is indeed a strict subclass of the class of context embedding strategy, CES-strategies for short, introduced in [START_REF] Belkhir | Closed combination of context-embedding iterative strategies[END_REF]. The strategy constructors of the class of CES-strategies feature the insertion of contexts, the jump operator "@", the left-choice "⊕", the fixed-point operator "µ" and a mechanism to specify and handle the failure. While the constructors of the class of HCES-strategies feature the insertion of contexts, the jump operator "@", the left-choice "⊕", the fixed-point operator "µ" and the Insidestrategy. This makes the class of HCES-strategies less expressive than the class of CES-strategies but, on the other hand, the encoding of the (HCES-strategy) Inside in the class of CES-strategies yields a strategy whose size depends on the signature. This makes the class of HCES-strategies more practical although its constructors are less rudimentary than the constructors of the class of CES-strategies.

IMPLEMENTATION IN MEMSALAB

5.1/ INTRODUCTION

We implemented the HCE-strategy language as a part of a user-friendly language which is integrated in MEMSALab. It makes the implementation of derivation of asymptotic models easier by considering the whole process as a sequence of mathematical properties which transforms an input reference PDE into an asymptotic model.

For sake of organization, there are three kinds of user files distinguished by their extension ".pde", ".proof" and ".ext". The ".pde" file is used for the specification of PDEs.

It is composed of many sections such as Constant, Index, Region, Variable, Function, Operator, Expression and PDE. These sections define respectively constants, indices, domains, mathematical variables, functions, operators operating on functions, mathematical expressions and the PDE. It is possible to introduce and use "shortcut" names. Beside, commonly used operations and operators, such as ∂ and , are predefined, the user does not need to define them. Both Unicode and L A T E X symbols can be used.

The ".proof" file is a collection of mathematical properties written rewriting strategies.

A strategy is applied to the PDE defined in the PDE file and transforms it to another asymptotic model. The ".proof" file has the same structure as the PDE file, except it does not contain the PDE section but new sections such as Rule and Step. The Rule section allows one to define rewriting rules. The Step section contains a list of strategies.

The ".ext" file allows one to define HCE-strategies with the possibility to introduce and use shortcut names.

The ".pde", ".proof" and ".ext" files are parsed and an OCaml code is generated. However, the user can manage and visualize PDEs, proofs, extensions, the application of a proof to a PDE, the application of an extension to a proof or a PDE, and the combination of two extensions via Matlab. The visualization is possible in many formats: L A T E X PDF, html or Unicode text. Finally, to illustrate how to use the User Language for writing PDEs, proofs and extensions. Figures are reproduced in the last section to illustrate the display tools, the application of a proof to a PDE, the application of extensions to a PDE and the combination of two extensions and its result when applying to the PDE.

Organization of the Chapter:

The User Language is introduced in Section 5.2. The structure of PDE, Proof and Extension files as well as the definitions of first and rewriting variables, patterns, rules, strategies are detailed in Sections 5.3,5.4 and 5.5. In Section 5.7 we introduce Matlab functions to manage PDE, Proof and Extension files. The outputs are illustrated by figures in Section 5.9.

5.2/ GENERALITIES

This section describes the User Language that allows for the implementation of derivation of asymptotic models for partial differential equations (PDE) based on the Extension-Combination method, a method grounded on a concept of reusability. Roughly speaking, its principle consists in starting from a reference PDE and in its transformation into an asymptotic model through the application of a sequence of mathematical properties forming a proof. For instance, the reference PDE in (5.1) is the one-dimensional second order differential equation

- d dx (a ε (x) du dx ) = f in ]a, b[ (5.1) 
with a periodic coefficient a ε (x) = a(x/ε) and the homogeneous Dirichlet boundary conditions

u(a) = u(b) = 0. (5.2) 
The reference proof transforms the reference boundary value problem (5.1, 5.2) into its homogenization by passing to the limit ε → 0.

Then, the method consists in transforming the reference proof into another proof that applies to a more complex input PDE. The latter should come from a script or a software package e.g. FreeFEM++ or COMSOL. Such a transformation is refered to as an Extension. In principle an extension is designed to be applied to the reference proof, but it should also be applicable to the reference PDE to generate a more complex PDE. By construction, an extension might be much smaller than the proof that it generates, and is minimal in the sense that it includes only what is specific to the features involved in the new PDE.

After building several extensions, it is possible to combine them by a Combination to build a new extension that is inheriting all the features of the extensions.

5.2.1/ THE FOUR KINDS OF FILES

Four kinds of user files are distinguished with their extensions. A ".pde" file is building an equation taken as an input of a model derivation. The latter is described in a ".proof" file. The equations and the proof are extended with ".ext" files.

5.2.2/ INCLUSION OF FILES

Included files can be at any position of a file with the command #Include "file" where file is a filename of the same kind as the main file with.

5.2.3/ LIST OF UNICODE CHARACTERS

The four kinds of files can make use of unicode characters that are gathered in Table 5.2.3.

In Windows, the edition is done with Notepad++. A special choice of font must be done for correct edition of unicode characters. The illustrations presented in the following are done with the font Arial Unicode MS. and ends with the Partial Differential Equation declared with the keyword PDE that must appear exactly one time in a pde-file. Comments begin with the character % and apply until the end of the line. They can be put anywhere. The file is organized in Sections, each refering to a type of data. Each section begins with a keyword and includes a list of shortcut statements, see Section 5.3.2. Any of these statements comprises a shortcut name and a set of fields defined in Table 1. The shortcuts and their fields can be used in subsequent instructions. All kinds of sections are optional, they can be introduced in any order and can be repeated. The last line of the file is the declaration of the PDE that begins with the keyword PDE.

5.3.2/ SHORTCUTS AND THEIR FIELDS

Excepted PDE and Expression defined in Section 5.3.4, the six other kinds of sections defined in Pde-files are Constant, Index, Region, Variable, Function and Operator. They define constants, indices, domains where partial differential equations are posed, mathematical variables (to distinguish with rewriting variables used in rules for proofs) each being defined in a domain, functions depending on possibly several variables, and operators operating on functions. The fields of each of these kind of shortcuts are summarized in the following table.

Keywords Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Constant "Value" - - - - - Index "Name" [Range] "Quantifier" - - - Region "Name" [Index] [Axes] [Subregion] Boundary Normal Variable "Name" [Index] [Region] - - - Function "Name" [Index] [Variable] [BC] "Type" - Operator "Name" [Index] [Expr] [Inputvar] [Outputvar] [Parameter]
Table 1: the keywords of the sections and the description of their fields Below is the definition of two shortcuts of contants that can be a number or a string. Let us explain the meaning of each field, the type of the shortcuts being detailed in Table 3 below. All kind of shortcuts, excepted Constant and Index can be indexed thanks to their field Index.

In the type Index, the field Quantifier describe in which sense the index is used, see Table 3.

In the type Region, the field [Axes] is the list of directions in which a region is defined.

It determines the dimension of the region. For example, for a three-dimensional region it can be [1, 2,[START_REF]A two-dimensional and a one-dimensional micro-mirror arrays with their surrounding vacuum domain, Ω ε = Ω ε,vac ∪ Ω m,ε . The domain Ω ε is divided into two parts Ω ε,vac,1 and Ω ε,vac,2 corresponding to the two different voltages. They are separated by the interface Γ ε,vac inter f . The scaling assumptions on the size of each cell and of the array are also represented[END_REF] and for a two-dimensional region it can be [1,[START_REF]A two-dimensional and a one-dimensional micro-mirror arrays with their surrounding vacuum domain, Ω ε = Ω ε,vac ∪ Ω m,ε . The domain Ω ε is divided into two parts Ω ε,vac,1 and Ω ε,vac,2 corresponding to the two different voltages. They are separated by the interface Γ ε,vac inter f . The scaling assumptions on the size of each cell and of the array are also represented[END_REF]. If subregions are used, they can be declared in the list [Subregion]. The boundary of a region may be described in Boundary and its outward unit normal direction is a function in Normal.

In the type Variable, the field Region refers to the domain where it is defined. If the variable is a vector, each of its components is defined in a region specified by a component of the vector of regions.

In the type Function, the field Variable refers to the variable on which the function operates. The possible boundary conditions that it satisfies are in BC. Each BC is a rewriting rule defined in Section 5.4.2. The "Type" of a function must be given. It is a "Given" function, or a "Test" function or an "Unknown" function (solution to an equation) or a O(ε)function that is expected to be replaced by zero when ε vanishes.

For the type Operator, the field Expr is the expression to which the operator is applied, meaning that the same shortcut cannot be used for different applications of the same operator. For instance ∆u and ∆v requires to define

Function u : "u" [] [] [] "Unknown" v : "v" [] [] [] "Test" Operator opDelta to u : "Delta" [] [u] [] [] [] opDelta to v : "Delta" [] [v] [] [] []
The fields Inputvar and Outputvar refer to the variables of the input and output functions on which the operator actually operates. For instance, for the partial derivative about a variable x of a function f(x,y) of two variables, Inputvar and Outputvar can be taken as [x] only. But for a partial integration about x, Inputvar can be taken as [x] but the Outputvar is the empty list []. Finally, Parameter allows to take into account any parameter.

The name of a shortcut is also called an identifier and is a sequence of characters that may be a letter, a digit, the underscore character " ", or the single quote "'". It starts with a lowercase letter or an underscore. For instance n and a i are admissible identifiers but A is not. The set of letters includes the 52 lowercase and uppercase letters from the ASCII set. The current implementation accepts identifiers up to 16.000.000 characters in length. 

5.3.4/ EXPRESSIONS

The shortcuts of the kind Expression define mathematical expressions. Their grammar in Unicode characters or Latex commands is defined in Table 4. Their precedence rules and their associativity rules follow the usual mathematical rules.

5.3.5/ PDE

The declaration of the model is done under the section PDE and has the form PDE pde 1D : lefthandside = righthandside where lefthandside and righthandside are two expressions.

5.3.6/ EXAMPLES

The weak formulation of the model problem posed in a domain ω,

- d 2 u dx 2 + u = f in ω
with Neumann boundary conditions is written as: u ∈ H 1 (ω)

ω du dx dv dx dx = ω f v dx for all v ∈ H 1 (ω).
A coding with a minimum specification is as follows. 

: "u" [] [x] [] "Unknown" v : "v" [] [x] [] "Test" f : "f" [] [x] [] "Given" PDE pde 1D : ∂u/∂x*∂v/∂x+u*v dx = f*v dx
The PDE can also be defined from a predefined expression, is a pattern representing a shortcut of the function u that is an unknown in the problem and which variable can be any variable. We notice that the fields Type and Quantifier cannot be replaced by a rewriting variable. For instance, the declaration A pattern is used to be compared with a term t through an operation called pattern matching. It consists in testing if and t are equal modulo replacement of the variables in by some subexpressions of t. When the equality holds, the pattern is said to match with the term t or vice versa. Addition and multiplication being commutative and associative, the implementation of the pattern matching procedure can operate up to these properties. The list of commutative and associative symbols is defined in Section 5.3.3.

The internal representation of a list in a shortcut field e.g. [1,2,[START_REF]A two-dimensional and a one-dimensional micro-mirror arrays with their surrounding vacuum domain, Ω ε = Ω ε,vac ∪ Ω m,ε . The domain Ω ε is divided into two parts Ω ε,vac,1 and Ω ε,vac,2 corresponding to the two different voltages. They are separated by the interface Γ ε,vac inter f . The scaling assumptions on the size of each cell and of the array are also represented[END_REF] is made with nested two element lists whose left element is an expression and right element a list e.g.

[1, [2,[START_REF]A two-dimensional and a one-dimensional micro-mirror arrays with their surrounding vacuum domain, Ω ε = Ω ε,vac ∪ Ω m,ε . The domain Ω ε is divided into two parts Ω ε,vac,1 and Ω ε,vac,2 corresponding to the two different voltages. They are separated by the interface Γ ε,vac inter f . The scaling assumptions on the size of each cell and of the array are also represented[END_REF]]. The following examples illustrate how a rewriting variable matches in a list.

• x can match any list A variable in a list matches with a list only if it is in last position. Otherwise it matches only with an expression.

• [1,x ] matches [1,2,3] and x matches [2,[START_REF]A two-dimensional and a one-dimensional micro-mirror arrays with their surrounding vacuum domain, Ω ε = Ω ε,vac ∪ Ω m,ε . The domain Ω ε is divided into two parts Ω ε,vac,1 and Ω ε,vac,2 corresponding to the two different voltages. They are separated by the interface Γ ε,vac inter f . The scaling assumptions on the size of each cell and of the array are also represented[END_REF].

• [x ,2,3] matches [1,2,3] and x matches 1.

• [1,x ,3] matches [1,2,3] and x matches 2.

• [x ,y ] matches [1,2,3], x matches 1 and y matches [2,[START_REF]A two-dimensional and a one-dimensional micro-mirror arrays with their surrounding vacuum domain, Ω ε = Ω ε,vac ∪ Ω m,ε . The domain Ω ε is divided into two parts Ω ε,vac,1 and Ω ε,vac,2 corresponding to the two different voltages. They are separated by the interface Γ ε,vac inter f . The scaling assumptions on the size of each cell and of the array are also represented[END_REF].

The field of a rewriting variable can be used in the same way as for any shortcut. If omega is a rewriting variable that is used to match with a Region, the code omega -.Index (2).Quantifier is equal to the Quantifier of the Index of the Region matched with omega .

5.4.2/ RULES

A rule transforms a pattern into another one r under a condition c. A condition follows the grammar detailed in Section 5.4.2.1. It can call the Var-function defined in Section 5.4.2.2 that returns the set of mathematical variables involved in an expression. It can also include rewriting variables.

A rule is declared under the section name Rule and is expressed by an arrow "→": → r if c. The rewriting variables included in r must be parts of . The rule is designed to be applied to an expression t that matches with . Applying a rule to an expression t generates an expression r where the rewriting variables have been replaced by the subexpressions determined in the comparison between and t. The terms , r and c can include shortcuts previously defined. For instance the rule Rule anyrule : x → x transforms any expression into the same expression. The rule Rule plusone : x → x +1 if x >0 adds 1 to an expression provided that it is positive. So it transforms a+b into a+b+1 if one knows that a+b>0.

The next example is a proof file named "simple proof.proof" that applies only the rule "plusone",

Model simple proof : plusone

The three fields of a rule are Left, Right and Condition. For instance plusone.Right is x +1. 6: notations used in the rule conditions for usual logic operations at maximum one of the two strategies s1 or s2 with a priority given to s1. This is why it is called lor for "or with the left-priority".

5.4.2.1/ GRAMMAR OF RULE'S CONDITIONS

• OuterMost: The outermost strategy s⇓ applies the strategy s once to all the subterms of t for s that are the closest ones to the root of t, i.e. to the largest subterms of t on which s succeeds. In other words the strategy outermost traverses the expression t down from its root and tries to apply s to each traversed subexpressions. If the strategy s succeeds on some subexpression t' of t, then it is not applied to the proper subexpressions of t' neither to the result of the application. In particular, s⇓ fails if and only if s fails on all the subexpressions of t.

• InnerMost: The innermost strategy s⇑ works similarly, but in the opposite direction, i.e. it traverses a term t up from its smallest subexpressions and tries to apply the strategy s once to the smallest redexes of t for s.

• TopDown: The topdown strategy s ↓ tries to apply the strategy s to all the subexpressions of any expression t, at any depth, by starting with the root of t. It fails when there is a subexpression of t where s fails.

• BottomUp: The bottomup strategy s ↑ behaves similarly, but works in the opposite direction, i.e. it starts from the leaves (the smallest subexpressions) and goes up.

• Iteration: The iterate strategy s iterates the application of the strategy s until the latter fails, in this case the full strategy fails, or a fixed point is reached. It fails if and only if the strategy s fails during these iterated applications.

• Co-strategy: The co-strategy -s permutes the left and right sides of all rules in s.

This yields a correct strategy only if the set of variables of the left and right sides are the same. This constraint is not verified. In a Proof-file, the final instruction is in the section Model and is made with strategies. Lemma are made with strategies used to build intermediary results. An additionnal strategy is available to transform the result of a lemma into a new rule so to be used by subsequent lemmas. The Lemma can refer to steps that are themselves made with strategies. The use of steps is for adding more structure to the proof of a Lemma.

An example of a section

Step that includes a single step which applies a single strategy is

Step step1 : strat plusone Then, a possible section Lemma with a single step is

Lemma lemma1 : step1

Avoiding the use of the sections Strategy and/or Step, a strategy can be

Lemma lemma1 : plusone↓

The strategy generateRule is used to transform the result of the application of a lemma to a special term that yields an equality l=r if c to the rule l → r if c. If the name of the lemma is lemma id, the generated rule is name lemma id Rule. that can be used in another lemma in proofs as shotcuts of rules or strategies. In the pattern matching of extensions, a rewriting variables matches any rewriting variable as well as any term. For instance, in an extension the rewriting rule Rule plusone : y → y +1 matches the first order rule Rule plusone : x → x +1 since the first order variable xmatches y . It also matches Rule plusone : x → x+1.

A second order rewriting rule is on the form α ⇒ β where α and β are any patterns of extensions, and β is equal to α excepted embedded additional terms called contexts. A context can be any expression where exactely one subterm is missing which is materialized by the symbol or \ square. For example

2 * + b Function u : "u " [] [ ] [] y
Step step1:

are four contexts. Since the order of common parts of α and β is maintained, the added terms are automatically identified by the compiler. However, the unique determination of added terms requires additional rules. In case of more than one occurence of a same associative operation, the priority is given to the most right operations. where α stands for any extension pattern and f for any function.

5.5.2/ SECOND ORDER STRATEGIES

The second order strategies or SO-strategy or extensions constitute a very special class of strategies. This class includes the second order rules and is built to be stable under combination as defined in Section 5.6. An extension behaves like a rewriting strategy when applied to an input expression: either it succeeds and in this case it returns a new expression, or it fails.

The class SO-strategies is semantically equivalent to the class of HCE-strategies introduced in Section 4.4. The only difference is that the grammar of SO-strategies is user-oriented making this class more like a programming language.

A labeled SO-pattern U is an ordinary SO-pattern in which some term-labels are introduced e.g. f(Loc1 Of x ,Loc2 Of y ,z ) is the SO-pattern f(x ,y ,z ) where the variables x and y are labeled with the label names Loc1 and Loc2 while the variable z is not labeled. We mention that the matching of a labeled pattern with an input expression is made by ignoring the labels. For instance, f(Loc1 Of x ,Loc2 Of y ,z ) matches with f(a ,b ,c ).

All elementary expressions are listed hereafter where α and β stand for any labeled second order patterns or their shortcuts, σ for any labeled second order patterns that include strategies or its shortcut, γ for any labeled second order patterns that does not include any strategy or its shortcut, S, S1 and S2 for any second order strategies, Loc, Loc1, Loc2 for any labels at positions, Label Name for any label on strategies, and τ for contexts.

• SO-rule: The SO-rule α ⇒ β is defined in Section 5.5.1. This extension fails if and only if α does not match with the input expression or if β can not be obtained from α by adding contexts, for instance f(a) ⇒ g(b) always fails.

• Id(γ): Id(γ);S specifies that the labeled SO-pattern γ is matched with the input expression. That is, Id(γ) is basically the identity rewriting rule γ → γ. If the matching is successful then S is applied to the input expression. This extension fails if and only if γ does not match with the input expression or S fails when applied to the input expression.

• Id(σ): The extension Id(σ);;S behaves exactly like Id(γ);S but for σ that includes strategies.

• Inside(.): The extension Inside(S) applies S to all the fields of the input expression. For instance the fields of f(a,b,g(c)), where a,b,c are constants, are a,b and g(c). One has to be careful since the fields of some expressions e.g. f(x)dx where x is a mathematical variable, are defined implicitly. This extension fails when applied to an input expression t if and only if it fails on all the fields of t. Besides, if S fails on some fields and succeeds on others, then it behaves like the identity on the failed fields by letting them unchanged.

• Or: The extension S1 Or S2 stands for the left-choice : S1 is applied to the input expression t, if it does not succeed S2 is applied to t. This extension fails if and only if both S1 and S2 fail when applied to t. The constructor Or is associative.

• If • then •: The extension If (S1 and . . . and Sn) then S, when applied to an input expression t, tests if each application of Si to t succeeds, if it is the case, then it applies S to t. Otherwise (i.e. one of the applications of Si to t fails), then this extension fails.

• Insert: The extension Insert τ, when applied to an input expression t, replaces t by τ and inserts t in the empty position of τ. When the extension Insert τ At Loc1 is applied to t, it applies Insert τ at the position Loc1.

• At Loc: The extension S At Loc Name must be preceded by Id(γ); or Id(σ);; and the label declaration "Loc Name Of" must appear exactly once1 in γ and σ.

Besides, we do not allow a location name to be defined in more than one SOpattern in a given SO-strategy. The strategy S is applied to the subterm of the input term t that matches with the subterm labeled by Loc Name in γ or σ.

• Goto Label: The extension Label Name Of S introduces the label Label to which the extension S might refer via the command Goto. This extension fails if and only if S fails. The extension Goto Label Name stands for going back where the label Label Name was introduced. The purpose of the labels on SO-strategies together with the Goto instruction is to define recursive extensions. It is like the "goto " instruction in some languages. It is also similar to the "while" loop in the programming languages with the difference that there is no explicit halting condition. It halts when it fails or when there is a branch in a left-biased-choice in which there is no Goto.

• . At Loc And . At Loc: The extension S1 At Loc1 And S2 At Loc2 must be preceded by Id(γ); or Id(σ);; and it stands for the application of S1 At Loc 1 followed by the application of S2 At Loc 2. We impose that the labels Loc 1 and Loc 2 refer to parallel sub-SO-patterns of the same SO-pattern excepted when S2 is the Insert strategy. In such a case Loc 2 can refer to a position that is higher than Loc 1 or in a parallel branch. For more than two And this condition must be satisfied for any adjacent pair of And. Thus, this constructor is associative.

• . And Insert: The extension S And Insert(τ) when S does not insert a context to the root. This extension applies S and inserts τ.

The priority rules are as usual. The restricted form of compositions ";" and ";;" have a higher priority than the left-biased-choice "Or".

The grammar of the extensions is defined in (5. Here exp is a SO-pattern of the kind Expression assumed to be previously defined. The difference between these two implementations is that plusone1 is implicit that is it uses an algorithm to find the contexts and their position while plusone2 is explicit since the positions and the contexts are made explicit by the programmer.

The SO-strategy SOStrategy applyS Id(Loc Of exp+1); S At Loc matches the input term with exp+1 and if it is successful, it applies S to exp.

The SO-strategy SOStrategy outermost Label Of (S Or Inside(Goto Label))

implements the strategy OuterMost(S).

The SO-strategy

SOStrategy sOrAndIter Label1 Of (S1;Goto Label1 Or Label2 Of S2; Goto Label2)

either S1 is applied successfully and in this case the strategy is re-applied, or S1 fails, and in this case S2 is applied repeatidely until it fails.

5.5.3/ CORRESPONDENCE BETWEEN SO-STRATEGIES AND HCE-STRATEGIES

The correspondence between the constructors of the grammar of the HCE-strategies (defined in Section 4.4, Definition 14) and those of the user-friendly SO-strategies is illustrated in the following table. Besides the fact that the constructors of SO-strategies are user-friendly, the positions of the patterns in SO-strategies are made explicit and need to be defined by means of the pattern labels (Locs). For instance, the SO-strategy Id(f(LocOf x,x));S corresponds to the HCE-strategy f(x,x);@1.S. It remains to make explicit the unification algorithm of terms that contain location declarations since we want that the resulting term contains location declarations as well. We recall that in Section 4.2, we defined the unification of terms (that do not contain location declarations), we apart it next to the terms with location. When unifying two terms α 1 , α 2 that contain locations, we firstly need to compute the concrete positions in α 1 and α 2 associated to the location names. Then we remove the location names from α 1 and α α 1 ← Remove Loc(α 1 )

HCE

3:

α 2 ← Remove Loc(α 2 ) 4: β ← α 1 ∧ α 2 5: β ← Restore Loc(α 1 , α 2 , β ) 6:
return β 7: end function

5.6/ FORMULAS OF UNIFICATION OF SECOND ORDER STRATE-GIES

It is recalled that in the theoretical framework of Extension-Combination, the combination of two extensions involves their unification. The unification of the theoretical has its counterpart when combining extensions expressed in the User Language. Table below provides the unification formulas that has been established and implemented. However, we deliberately omit the symmetric cases. For instance the symmetric case of Case 8 in the table would be the unification of S with S Or S which is omitted.

Besides, in the unification table 10 we assume that, for each extension of the form Id(α); S At Loc Name, the label Loc Name points towards an immediate subterm (i.e. child) of the term α. This is not really a restriction on the extensions that we unify since one can turn any extension into an equivalent one that fulfills this assumption. Finally we mention that the formulas are arranged by highest priority order from the top of the table to the bottom. As a consequence, Formula 11 has to be applied before Formula 12. That is, we apply Formula 12 only if S 2 is not of the form Id(u); S . Finally we mention that we omitted the case when the first extension is of the form α; ; S since it is similar to Case 7.

Before the definition of the unification of extensions, we introduce some notations. If S , S , S are extensions, then we write S [S := S ] for the extension that results from S by replacing each occurence S in S by S . Besides, if Loc Name1, Loc Name2 are location names, we shall write S [Loc Name1 := Loc Name2] for the replacement of Loc Name1 by Loc Name1 in S . We shall overload notations and write Loc Set(S ) for the set of location names defined in all terms in the extension S . It follows from the constraints imposed on the locations, that for each location name Loc Name in an extension S there corresponds a unique term in which it is defined. This term will be denoted by Term Of Loc(Loc Name, S ).

Given two terms α 1 , α 2 with locations that can be unified, we define the renaming function Rename Loc(α 1 , α 2 , •) that renames the location names in Loc Set(α 1 ) and Loc Set(α 2 ) that point towards the same position: It is worth to explain Formula 11 on the unification of Id(α 1 ); S 1 and Id(α 2 ); S 2 . When we unify the terms α 1 and α 2 that may contain location definitions by the algorithm given in Section 5.5.4, it is possible that a location name Loc Name1 of α 1 and a location name Loc Name2 of α 2 point towards the same position. In this case we replace both Loc Name1 and Loc Name2 by a new location name, say Loc Name1Name2, in the resulting unified term. As a consequence, the location name Loc Name1 (resp. Loc Name2) has to be replaced by Loc Name1Name2 in the extension S 1 (resp. S 2 ).

Rename Loc(α 1 , α 2 , •) : Loc Set(α 1 ) ∪ Loc Set(α 2 ) -→ Dom Position Of Loc(α 1 , α 2 , •) by Rename Loc(α 1 , α
S 1 At Loc Name1 R 1 S 2 At Loc Name2 R 2 R 1 ∩ R 2 And R 1 if Loc Name1 ≡ Loc Name2 And R 1 And R 1 ∩ R 2 if Loc Name1 ≡ Loc Name2 S 1 At Loc Name1 R 1 R 1 And R 1 And R 2 otherwise S 1 S 2 And S 2 (S 1 ∩ S 2 ) ∩ S 2 S 1 At Loc Name1 S 1 S 2 At Loc Name2 S 2 R At Loc Name1Name2 if Loc Name1 ≡ Loc Name2 S 1 And S 2 otherwise where R = (S 1 ∩ S 2 )[Loc Name1 := Loc Name1Name2, Loc Name2 := Loc Name1Name2] Id(α 1 ); S 1 Id(α 2 ); S 2 Id(Unify(α 1 , α 2 )); (S 1 ∩ S 2 ) if ∃ mgu(α 1 , α 2 ) Fail otherwise where S i = Rename Loc(α 1 , α 2 , •)(S i ), i = 1,

5.7/ A HIGH LEVEL USER LANGUAGE

Once the files of PDEs, proofs and extensions have been written, their use is managed at a programming level in MATLAB. Functions available for

• compiling that is to transform a PDE, a proof or an extension file written in the User Language into a file in the Processing Language,

• printing a PDE, a proof or an extension expressed in the processing language in three formats: Latex, PDF, html, and Unicode text,

• applying a proof to a PDE to form a new PDE and applying an extension to a PDE or a proof yielding a new PDE or a new proof,

• and combining two extensions generating a new extension.

5.7.1/ COMPILE

output filename = compile("filename.xxx") transforms any file filename.pde or filename.proof or filename.ext in the User Language into a file named filename.ml written in the Processing Language ready to be used by the other commands as inspect or HtmlView or Applyxxx .

5.7.2/ INSPECT

inspect("filename.ml", hidden fields, "filename.txt" ) from the file "filename.ml" in the processing language display the corresponding expression into the matlab command window, into the text file "filename.txt", into the Latex file "filename.tex". The Latex file is compiled to build the pdf file "filename.pdf". The fields listed in the list hidden fields are hidden. The list of hidden fields has the form ["field 1";...;"field n"] and the fields are taken in the list of all possible fields, for instance for a pde file:

Reg for regions, The combination of two extensions is built with the command output ext = combine ext("extension1.ml","extension2.ml","extension from -1 and 2.ml");

where output ext = "extension from 1 and 2.ml".

It yields an extension that can therefore used to be applied to a PDE or a proof, as well to be combined with another extension.

For instance, given two extensions and the three extensions are displayed in the matlab command window with the commands inspect(output ext 1,'["Reg";"MathVar";"OperExpr";"Fun"]'); inspect(output ext 2,'["Reg";"MathVar";"OperExpr";"Fun"]'); inspect(output ext 1 2,'["Reg";"MathVar";"OperExpr";"Fun"]'); 

CONCLUSIONS AND PERSPECTIVE

The leading physical phenomena governing the behavior of the micro-mirror cell have been simulated. Precisely, the simulations cover the following effects: electromechanics, pull-in, heat transfer and contact mechanics.

Then, the actuation voltage has been reduced by solving a minimization problem with respect to the thickness and the length of the suspended beams.

In another part, a two-scale model that includes boundary layer effects has been derived for the electrical field. Its derivation is carried out in the same framework as the reference proof of MEMSALab. This model has been implemented in COMSOL for numerical simulation. Apart of the thesis, its derivation has been expressed as a combination of extensions and implemented in MEMSALab which constitutes a first full-size application.

In my thesis, the strategy based combinations and extensions have been proven to be correct comparing to the position based combinations and extensions. The combination of strategy based extensions is shown to be closed under a given class of strategies.

In addition, the User Language have been introduced and developed in a manner that significantly simplifies program writing.

Finally, we suggest possible future works:

1. Perform numerical simulations of the contact problems occurring when the mirror touches the stopper beam and when the landing beams touch the landing pads.

2. Optimize the tilt angle of the mirror, the major parameters being the length and the thickness of the stopper beam and the height of the pillars.

3. Analyze the trade-off between the objectives of keeping a 20 • tilted angle and of minimizing the pull-in voltage while the beam thickness is the common variable.

4. Derive a two-scale model of the mechanical behavior of the micro-mirror array in nonlinear elasticity that could be coupled with our two-scale electric model. For some voltage V s the micromirror can be in either position 1 or 3. V p-in is the pull-in voltage; at this voltage the mirror snaps toward the electrode. V p-out is the pull-out voltage at this voltage the mirror returns to its rest position. The voltage VT is defined by VS -δ < VT < VS . For individual addressing using a linecolumn algorithm, the tilt angles in positions 2 and 3 have to be the same, and the range of voltage that constitutes position 3 has to be as large as possible, to compensate for fabrication variations [Canonica, 2012] 

3.2

The mechanical body of a two-dimensional array and its surrounding vacuum Ω ε , the macroscopic domain Ω = (0, L 1 ) × (0, L 2 ) and the microscopic domain Ω 1 = ε -1 Ω ε cx ε c . The boundary Γ vac +∪-are the upper and lower surface of Ω ε,vac . The boundary Γ vac lat is the union of all lateral boundaries of Ω ε,vac . The boundary Γ 1,vac per on which the periodic boundary condition will be imposed is shown in blue. In this case, it is all lateral boundaries of Ω 1 . The boundary Γ 1,vac +∪-is the union of the upper and lower surfaces of Ω 1,vac . The operator T transforms a function defined in Ω ε into a function defined in the two-scale domain Ω × Ω 1 . . . . . . . . . . . . . . . . . . . . . . . . .

3.3

The physical domain Ω ε is divided into Ω ε,1 and Ω ε,2 by the interface Γ ε,vac inter f at L m 1 , the macroscopic domain Ω = (0, L 1 ) and the microscopic domain 

Ω 1 = ε -1 Ω ε c -x ε c .

3.5

The physical domain Ω ε has two different parts Ω ε,1 and Ω ε,2 and the boundary layer cells Ω 1,∞ = ∪ +∞ q=-∞ Ω 1,∞ q . The notation Γ ε,vac inter f represents the interface at L m 1 , and it becomes Γ 1,vac,∞ inter f after scaling. The internal boundary Γ 1,vac,∞ int is the union of all internal boundaries of all cells Γ 1,vac,∞ int,q . The external boundary is the combination of the upper and lower surface Γ 1,vac,∞ 46, 48, 50, 60 -72, 75 -77, 80 -82, 84 -87, 89 -92, 95 -97, 100 -104, 106 -122, 126, 128, 139 -148, 151 -153, 156, 183, 186, 192 -194. Locate Dirichlet Boundary Condition section, in the field r, type VM1.

3 Add another Dirichlet Boundary Condition for boundaries 13 -14, 16, 18, 133 -134, 136, 138, 158, 160, 163 -164, 185. In the value field, type -VE1. And rename it by VE.

4 Add Periodic Condition and add boundaries 2, 5.

5 Add Flux/Source and add boundaries 1, 3 -4, 195.

COMPONENT 2: PhiBL0

Add another component and rename it by PhiBL0. This component is used to simulate φ 0 b . Geometry 1 Import the geometry of one cell.

2 Right-click the Geometry node, navigate to Transforms and select Array. In the Settings window for Array, locate the Size section and in the field Size type 2. In the Displacement field, locate y field and type my + mg. Click Build All Objects.

Materials

Add the materials like what are described in COMPONENT 1.

Laplace Equations

1 Add two Laplace Equation for φ 0 in two cells. Name them phi01 and phi02. In the Settings window, locate Domain Selection section and input 1 and 2 respectively. Both of them have VM1 on the mirrors and -VE1 on the electrodes.

2 Add another Laplace Equation. Rename it by phibl0. In the Settings window for Laplace Equation, locate Domain Selection section and input domains 1, 2.

3 Add two Dirichlet Boundary Condition for the mirrors and electrodes which take value 0.

4 Add the Zero Flux boundary condition for boundaries 1, 3 -5, 7 -9, 388 -389. . It needs four cells to simulate the contributions of each parts of the array. Each part will occupy two cells.

Geometry

Import the geometry of one single cell and multiply it by 4, using Array node.
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Abstract:

In this thesis, we contribute to the modeling, simulation and optimization of a new generation of micro mirror arrays designed by the Astrophysics Laboratory of Marseille (LAM). A contribution is also made to the development of MEMSALab a symbolic computation software package designed to assist multiscale model derivation for microsystem arrays. The coupling between the quasi-static nonlinear behavior of a cell of the micro-mirror array and the electrostatic field used for its actuation is simulated. This simulation is then used to study the phenomenon of pull-in and its optimization. Then, a homogenized model for the electrostatic field in the vacuum space surrounding the micromirror array has been built using an asymptotic method. The contributions to the development of MEMSALab consist in the introduction of an extension and combination theory that will be used to construct multiscale models based on various asymptotic approaches by a process of successive complexifications. Finally, a complete specification language for using MEMSALab is presented and illustrated by significant examples. In particular, it was used to encode the derivation of a homogenized model that serves as an initial state to the extension-combination method. 

  IR (λ = 1µm) Mirror Peak-to-Valley (PTV) deformation ≤ λ/20 Electrostatic actuation voltage < 100V Operating temperature from RT to cryogenic temperature (< 100K)
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 1 Figure 1: Real Micro-Mirror Array
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 2 Figure 2: MEMSALab-Simplified-Flow
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 3 Figure 3: MEMSALab-Simplified-Flow
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 3 Figure1.1: The geometry of a micromirror cell[Canonica, 2012]. For clarity, the micromirror is drawn as transparent.

Figure 1 . 3 :

 13 Figure 1.3: Individually addressing using line-column method. Each line of micromirrors and each electrode is controlled by an individual voltage source. For example, the mirror (m,n) is addressed by the voltage of its line (violet part) and the voltage of its electrode (red part). Some micromirrors are removed for better clarity.
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 15 Figure 1.5: The function φ has the space between the mirror and the electrode Ω Vac as domain. The Dirichlet boundary conditions are defined such as φ = V 1 on Γ e 0,1 which is the surface of the electrode and φ = V 2 on Γ e 0,2 which is a combination of the surfaces of micromirror, of the pillars, of the beams, of the frame and of the golden parts. The lateral boundaries Γ e 1 can have the Neumann condition for individual simulation or periodic conditions for simulation of an array.
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 16 Figure 1.6: Electrostatic force f elec applied on the mirror part such as on the surfaces of the frame, of the beams and of the mirror.
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 1 Figure 1.7: Electrostatic force f elec applied on the surface of the electrode and the pillar.
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 1 Figure 1.8: Ω ther and its thermal boundaries condition.

5 ×

 5 msuy + 2 × mpover. The width of the anchor, x1, the length of the anchor x2 and the parameter x4 are given as x1 = m f -2 × (g1 + g3) , x2 = msty -2 * g3 and x4 = msux -g3. The parameters x5 is given as x5 = msuy + mstsy + mstsy + 4 × msuy + mpover = 5 × msuy + 2 × mstsy + mpover.

  The length and the width of the gold pad are given as max = x3 -g1 and may = epix -g1. The parameter x3 and epiz of the pillars are given as x3 = my/2metaymsbay -g2 -g2msty/2 and epiz = 35µm.The parameters XPitch = mx + mg + m f + egav and x6 = XPitch -4 × egavex.
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 21 Figure 2.1: Description of the parameters used to model the mirror of the micro-mirror cell.
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 22 Figure 2.2: Description of the parameters used to model the frame of the micro-mirror cell.
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 23 Figure 2.3: Description of the parameters used to model the stopper beam of the micromirror cell.

Figure 2 . 4 :

 24 Figure 2.4: Description of the parameters used to model the beam of the micro-mirror cell.

Figure 2 . 5 :

 25 Figure 2.5: Description of the parameters used to model the golden pad and the pillar of the micro-mirror cell.

Figure 2 . 6 :

 26 Figure 2.6: Description of the parameters used to model the electrode of the micro-mirror cell.

Figure 2 .

 2 Figure 2.7: Model geometry of half micro-mirror cell. The model uses symmetry on the zx-plane. The first and the second figures depict the applied potential V M on the upper part while the third figure shows the applied potential V M on the lower part.

  surface displacement field, Z component, caused by V M = 60 V and V E = -30 V.(b) The electric potential (color) and the electric field (arrows) at various cross sections through the cell.

Figure 2 .

 2 Figure 2.8: The displacement field and electric field caused by the voltages V M = 60 V and V E = -30 V.

  2 summarizes the pull-in voltages as a function of the suspending beam length and thickness. The model instruction is in Appendix A.3. 2.4.2/ RESULT (a) Plot of V ES P versus zset in the case of poly = 600 nm, msux = 40 µm and V p = 156 V. (b) Plot of V ES P versus zset in the case of poly = 500 nm, msux = 40 µm and V p = 120 V.

  (c) Plot of V ES P versus zset in the case of poly = 400 nm, msux = 40 µm and V p = 87 V.

Figure 2 .

 2 Figure 2.9: Voltage required to achieve a set of displacements versus the target displacement in the case of poly = 400, 500, 600 nm, msux = 40 µm.

2. 4 . 3 /

 43 DESIGN VARIABLES, OBJECTIVES, CONSTRAINTS AND TRADE-OFF OF OPTIMIZATION PROBLEMS

  approximated model is built, usually referenced to meta-model, by sampling the two variables poly and msux. The meta-model is built with 25 samples corresponding to 5 values of poly = {400, 450, 500, 550, 600} nm and 5 values of msux = {40, 50, 60, 70, 80} µm. It is a fourth order polynomial interpolation. The means square error is 1.8%, Figure 2.10. The graph of the meta-model is shown in Figure 2.11.

Figure 2 .

 2 Figure 2.10: Mean squared error of the Meta-model.

Figure 2 .

 2 Figure 2.11: The graph of the Meta-model for the feature V pi and its sampling points are shown by black dots.

Figure 2 .

 2 Figure 2.12: A two-dimensional model of Micro-Mirror. A point b 1 is placed at the head of landing beam and a point m 1 is placed on the lower surface of the mirror.

Figure 2 .

 2 Figure 2.13: Position of the mirror in its maximal displacement for a voltage exceeding the pull-in voltage.

Figure 2 .

 2 Figure 2.14: Bounces of the mirror materialized by the trajectory of b 1 in the case of a 0.7µm-thick suspended beam.

Figure 2 .

 2 Figure 2.15: Bounces of the mirror materialized by the trajectory of b 1 in the case of a 1µm-thick suspended beam.

Figure 3 .

 3 Figure 3.1: A two-dimensional and a one-dimensional micro-mirror arrays with their surrounding vacuum domain,Ω ε = Ω ε,vac ∪ Ω m,ε . The domain Ω ε is divided into two parts Ω ε,vac,1 and Ω ε,vac,2 corresponding to the two different voltages. They are separated by the interface Γ ε,vac inter f . The scaling assumptions on the size of each cell and of the array are also represented.

∪

  Its boundary is split into the external boundary and the internal boundary, i.e. ∂Ω 1 = Γ 1 ext ∪ Γ 1 int . The external boundary includes the lateral boundary and the upper and the lower boundaries, i.e. Γ 1 ext = Γ 1 per ∪ Γ 1 +∪-. The internal boundary includes the boundaries of the two scaled conductors, i.e. Γ 1 int = ∂Ω 1,cond 1 ∂Ω 1,cond 2

  The two-scale transform operator T ϑ b for boundary layers at the two ends and T inter f b for the interface of the one-dimensional array having two parts of different applied voltages are defined in Definition 2 and shown inFigures 3.4 and 3.5. Definition 2: Definition of T ϑ b and T inter f b Let ϑ ∈ {0, L 1 } , the boundary layer two-scale transform operators T ϑ b

Figure 3 . 3 :

 33 Figure 3.3: The physical domain Ω ε is divided into Ω ε,1 and Ω ε,2 by the interface Γ ε,vac inter f at L m 1 , the macroscopic domain Ω = (0, L 1 ) and the microscopic domain Ω 1 = ε -1 Ω ε cx ε c . The operator T transfers a function defined in Ω ε into a function defined in the two scale domain Ω × Ω 1 .

Figure 3 . 4 :

 34 Figure 3.4: The physical domain Ω ε and the boundary layer cell Ω 1,+∞ = ∪ +∞ p=0 Ω 1,+∞ p . The notation Γ ε,vac end,0∪L 1 represent the boundaries at the two ends of Ω ε,vac . The boundary of the domain Ω 1,vac,+∞ is defined similarly as this of Ω ε,vac . The internal boundaries where Dirichlet conditions are imposed are denoted by Γ 1,vac,+∞ int . It is the union of all internal boundaries of each cell Γ 1,vac,+∞ int,p

Figure 3 . 5 :

 35 Figure 3.5: The physical domain Ω ε has two different parts Ω ε,1 and Ω ε,2 and the boundary layercells Ω 1,∞ = ∪ +∞ q=-∞ Ω 1,∞ q .The notation Γ ε,vac inter f represents the interface at L m 1 , and it becomes Γ 1,vac,∞ inter f after scaling. The internal boundary Γ 1,vac,∞ int

Assumption 4 :

 4 .24) Boundary layer two-scale convergence assumption on V ε b

  .26) 3.2.4/ STATEMENT OF THE TWO-SCALE MODEL Let φ ε be the solution of the very weak formulation (3.5) satisfying the uniform bound (3.14) and Assumption 1, V ε satisfying Assumption 2, φ ϑ b , V ε b (x ε ) the boundary layer terms defined in Definition 3 satisfying Assumptions 3, 4, and φ inter f b introduced as in Assumption 3 which corrects the interface of the array. The asymptotic models are stated as follows.

Definition 6 :

 6 Adjoint operators of T ϑ b and T inter f b

  .65) Equation (3.63) with (3.64), (3.65) and if w

  .67) Equation (3.63) with (3.64), (3.65), (3.66) and if w

. 69 )

 69 Model derivation of boundary layers for the two ends and the interface : Replacing the test function in the very weak formulation (3.60) by B ϑ b

  .77) Applying(3.77) to the above equation and in the case ϑ

  Figure 3.6 for a solution with V 0 = 20V. The computation of the boundary layer corrector φ ϑ b is performed on domains starting from x 1 1 = 0 and being two cell long only instead of infinite domains. It is possible to restrict simulation to one or two cells because the boundary layer correctors are exponentially vanishing and their value in the second cell is already negligible, see Figure 3.7. The same principle holds for the computation of the boundary layer corrector φ inter f b

Figure 3 . 6 :

 36 Figure 3.6: Front view of a plot of φ 0 in the microscopic domain. The mirror and the pillars are in red while the bottom electrode is in blue. The imposed voltages are 20V and -20V. The vector of electric field is materialized by red arrows. The electric field lines are vertical almost everywhere, with few tilted arrows visible on the edges; this means that the electric field is mainly localized in each cell, reducing to a very low value the crosstalk with neighboring cells.

Figure 3 .

 3 Figure 3.7: One of the two boundary layer corrections φ 0 b simulated in two cells at one end of the array.

Figure 3 .

 3 Figure 3.8: Boundary layer correction φ inter f at the interface. It is computed in four cells centered to the interface.

Figure 3 .

 3 Figure 3.9: Simulation result for a twelve-cell array. The imposed voltages are ±20V in the left part and ±30V in the right part. The figure shows the zones of superimposition of the solutions φ 0 , φ ϑ b and φ inter f b.

Figure 4 . 1 :

 41 Figure 4.1: Complete tree structure of a variable x ∈ Ω ⊂ R, of context τ 1 and of context τ 2 , given in Example 1, in MEMSALab.

Figure 4 . 2 :

 42 Figure 4.2: Complete tree structure of the term t[y] 1 presented in Example 2, of the combination of τ 1 and τ 2 and of σ(τ 2 ) discussed in Example 3.

  For any HCE-strategies S, S in C, we shall write S ≡ S iff [[S]] = [[S ]].

Figure 4 . 5 :

 45 Figure 4.5: The complete tree structure of the term t and µX.S(X)(t) discussed in Example 10.

Figure 5

 5 Figure 5.1: List of Unicode Characters

  Expression exp : ∂u/∂x*∂v/∂x+u*v dx = f*v dx PDE pde 1D : exp 5.4/ PROOF FILES A proof file implements a proof that applies to a PDE. It includes patterns that have the same form as the shortcuts in a Pde-file excepted that they include rewriting variables. They are defined in Section 5.4.1. Additionally, there are other kinds of shortcuts, namely Rule defined in Section 5.4.2, Strategy in Section 5.4.3, and Step and Lemma in Section 5.4.4. It ends with the definition of the model that starts with the keyword Model.

  Figure ?? represents a global view of the tree structure of a proof after all shortcuts have been assembled to form a single expression.

Figure 5 . 3 :

 53 Figure 5.3: Global tree representation of a proof

Function

  represents any sum as for instance "1+2".

  Lemma lemma1 : step1; generateRule "nameOfGeneratedRule" creates the new rule Rule lemma1 Rule : x+2 → y+3

  For instance a + c + b is transformed into a + (c + b), and in Rule so rule : a+b ⇒ a+c+b c + is identified as a context of b. In the example Rule so rule : a+b ⇒ a*c+b due to the priority rule of the multiplication over the addition, a * c + b is understood as (a * c) + b, so + c is a context of a. An arbitrary number of contexts can be taken into consideration. A case with two contexts is Rule so rule : a+b ⇒ 2+a*c+b where 2 + and * c are contexts for the term a + b and a respectively. Finally, the grammar of contexts is summarized as τ::= | f(α,...,α)

  3), S::=Fail | α ⇒ α | Id(α);S | Id(α);;S | Inside(S) | S Or S | | If C then S Id(α);Insert(τ) | Id(α);;insert(τ) | S And Insert(τ) Label Name Of S | Goto Label Name | Id(α);R | Id(α);;R | Id(α);(R And Insert(τ)) | Id(α);;(R And Insert(τ)) | Id(α);(R Or R) | Id(α);;(R Or R) R::= R And R | S At Loc Name C::= S | S and S (5.3)where α is a SO-pattern of expressions defined by the grammar(5.4),α::= x | f(α ,...,α) | Loc Name Of α (5.4)Here, x stands for any SO-variable and f for any function. For instance the next SO-rule and SO-strategy SORule plusone1 exp ⇒ exp + 1 SOStrategy plusone2 Id(Loc Of exp); Insert + 1 At Loc are equivalent.

  the command pde = compile('pde.pde'); and the four display commands inspect(pde,'["Fun","MathVar"]','pde.txt'); inspect(pde,'["Fun"]','pde.txt'); inspect(pde,'["MathVar"]','pde.txt'); inspect(pde,'["Reg"]','pde.txt'); produce >> Source term : Pde pde: f=x >> Source term : Pde pde: f=MathVar(x,∅,Reg(omega,∅,1,∅,⊥ ,⊥ )) >> Source term : Pde pde: Fun(f,∅,x,∅,Given)=x >> Source term : Pde pde: Fun(f,∅,MathVar(x,∅,omega),∅,Given)=MathVar(x,∅,omega) -a → 0 create source term: a = b → psi = a -a 5.7.5/ COMBINE

  ext(output ext 1,output ext 2,"output ext 1 2.ml");

  yielding >> Extension : a ⇒ (a + 1) >> Extension : b ⇒ (b + 2)

Figure 5 . 5 :

 55 Figure 5.5: Three manners to display a PDE, a proof or an extension: in a matlab window, in a Html window or in a Latex file.

Figure 5 . 6 :

 56 Figure 5.6: Hiding and showing selected fields in a Html window. Here the "Functions" are expanded.

Figure 5 .

 5 Figure 5.7: A proof in memsalab for deriving the strong formulation associated to a weak formulation.

Figure 5 . 8 :

 58 Figure 5.8: The strong form of the pde resulting from the application of the above proof to the above weak formulation.

Figure 5 .

 5 Figure 5.9: An extension that takes into account a non-homogeneous Neumann condition in the weak formulation.

Figure 5 .

 5 Figure 5.10: An extension that takes into account a reaction term in the weak formulation.

Figure 5 .

 5 Figure 5.11: Result of the combination of the two extensions to take into account the Neumann boundary conditions and the reaction term in the weak formulation. The expression has been manually reformated so that to be easily readable.

Figure 5 .

 5 Figure 5.12: Result of the application of the combination of the two extensions that take into account the Neumann boundary conditions and the reaction term in the weak formulation. The expression has been manually reformated from the display in the matlab window.

5 .

 5 Implement the new two-scale models in MEMSALab as a combination of extensions of the Reference Proof. 6. Build a new evaluation tool to evaluate the extended Proof. 7. Build a link between MEMSALab and COMSOL. 1 Real Micro-Mirror Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 MEMSALab-Simplified-Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 MEMSALab-Simplified-Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 The geometry of a micromirror cell [Canonica, 2012]. For clarity, the micromirror is drawn as transparent. . . . . . . . . . . . . . . . . . . . . . . . 1.2 Two actuation sequences are observed depending on the dimensions of the beams. After pull-in, the micromirror has a precise tilt angle due to its contact with its stopper beam and landing pads [Canonica, 2012]. . . . . . 1.3 Individually addressing using line-column method. Each line of micromirrors and each electrode is controlled by an individual voltage source. For example, the mirror (m,n) is addressed by the voltage of its line (violet part) and the voltage of its electrode (red part). Some micromirrors are removed for better clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 Tilt angle/voltage hysteresis of the micromirror.

  . . . . 1.5 The function φ has the space between the mirror and the electrode Ω Vac as domain. The Dirichlet boundary conditions are defined such as φ = V 1 on Γ e 0,1 which is the surface of the electrode and φ = V 2 on Γ e 0,2 which is a combination of the surfaces of micromirror, of the pillars, of the beams, of the frame and of the golden parts. The lateral boundaries Γ e 1 can have the Neumann condition for individual simulation or periodic conditions for simulation of an array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Electrostatic force f elec applied on the mirror part such as on the surfaces of the frame, of the beams and of the mirror. . . . . . . . . . . . . . . . . . . 1.7 Electrostatic force f elec applied on the surface of the electrode and the pillar. 1.8 Ω ther and its thermal boundaries condition. . . . . . . . . . . . . . . . . . . . 2.1 Description of the parameters used to model the mirror of the micro-mirror cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  The operator T transfers a function defined in Ω ε into a function defined in the two scale domain Ω × Ω 1 . . . . . . . . . . . . . . . .3.4The physical domain Ω ε and the boundary layer cellΩ 1,+∞ = ∪ +∞ p=0 Ω 1,+∞ p . The notation Γ ε,vacend,0∪L 1 represent the boundaries at the two ends of Ω ε,vac . The boundary of the domain Ω 1,vac,+∞ is defined similarly as this of Ω ε,vac . The internal boundaries where Dirichlet conditions are imposed are denoted by Γ 1,vac,+∞ int . It is the union of all internal boundaries of each cell Γ 1,vac,+∞ int,p . The external boundary Γ 1,vac,+∞ ext is the union of the upper and lower surfaces Γ 1,vac,+∞ -∪+ , of the boundary at the ends Γ 1,vac,+∞ end,0 and Γ 1,vac,+∞ end,L 1 and of the lateral boundaries Γ 1,vac,+∞ lat . The operator T ϑ b transforms a function defined in Ω ε into a function defined in Ω 1,+∞ . . . . . . . . . . . . . . . .

  defined in Ω ε into a function defined in Ω 1,∞ . . . . . . . . . . . . . . . . . . .3.6 Front view of a plot of φ 0 in the microscopic domain. The mirror and the pillars are in red while the bottom electrode is in blue. The imposed voltages are 20V and -20V. The vector of electric field is materialized by red arrows.The electric field lines are vertical almost everywhere, with few tilted arrows visible on the edges; this means that the electric field is mainly localized in each cell, reducing to a very low value the crosstalk with neighboring cells. 3.7 One of the two boundary layer corrections φ 0 b simulated in two cells at one end of the array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8 Boundary layer correction φ inter f at the interface. It is computed in four cells centered to the interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9 Simulation result for a twelve-cell array. The imposed voltages are ±20V in the left part and ±30V in the right part. The figure shows the zones of superimposition of the solutions φ 0 , φ ϑ b and φ inter f b . . . . . . . . . . . . . . . .

  (a) The Chosen Point and the Chosen Edge. (b) Setting for Study 1: Displacement Sweep. (c) Setting for Study 2: Imposed Voltage.

Figure A. 1 :

 1 Figure A.1: Model geometry of half micro-mirror cell with symmetry on the zx-plane and COMSOL Study Setting.

  (a) Plot of V M versus z-stress at the Chosen Point at displacement -8 µm. (b) The convergence of V M at z0 = 8 µm in the fist simulation with the beam thickness is 500 nm. (c) Plot of V M versus z0 in the case of poly = 500 nm and msux = 40 µm.

Figure A. 2 :

 2 Figure A.2: Numerrical results.

Figure A. 4 :

 4 Figure A.4: Five solutions according to five components.

Figure A. 5 :

 5 Figure A.5: Plot total array by using 3D Plot Group.

COMPONENT 3 :

 3 PhiBL1Add another component and rename it by PhiBL1. This component is built to simulate φ L b . It follows the same approach as COMPONENT 2 except all Dirichlet Boundary Conditions are imposed with V M2 and -V E2 and the boundary Flux/Source of φ L b is typed with -(nx * phi02x + ny * phi02y + nz * phi02z).

COMPONENT 4 :

 4 PhiInFaAdd another component and rename it by PhiInFa. This component is built to simulate φ inter f b

  Keywords: MEMS Arrays, Micro-Mirrors, Asymptotic Modelling, Simulation, Two-Scale Convergence, Boundary Layers, Term Rewriting, Symbolic Computation, Extension-Combination.R ésum é :Dans cette th èse, nous contribuons à la mod élisation, la simulation et l'optimisation d'une nouvelle g én ération de matrices de micro-miroirs conc ¸ue par le Laboratoire d'Astrophysique de Marseille (LAM). Une contribution est également apport ée au d éveloppement du logiciel de calcul symbolique MEMSALab qui assistera la construction de mod èles multi-échelles pour des matrices de microsyst èmes. Le couplage entre le comportement élastique quasi-statique non lin éaire d'une cellule de la matrice de micro-miroirs et le champ électrostatique utilis é pour son actionnement a ét é simul é. Une fois valid ée, cette simulation a ét é utilis ée pour étudier le ph énom ène de pull-in ainsi que son optimisation. Ensuite, un mod èle homog én éis é du champ électrostatique dans le vide entourant la matrice de micro-miroirs est construit à l'aide d'une m éthode asymptotique. Les contributions au d éveloppement de MEMSALab consistent en l'introduction d'une th éorie d'extension et de combinaison de preuves qui sera utilis ée pour construire des mod èles asymptotiques par un proc éd é de complexifications successives. Enfin, un langage sp écifique complet pour d'utilisation de MEMSALab est pr ésent é et est illustr é par des exemples significatifs. En particulier, il a ét é utilis é pour coder la construction d'un mod èle homog én éis é qui sert d' état initial à la m éthode d'extensioncombinaison. Mots-cl és : Matrices de MEMS, Micro-Miroirs, Mod élisation Asymptotique, Simulation, Convergence à Deux Echelles, Couches Limites, R é écriture, Calcul Symbolique, M éthode d'Extension-Combinaison.

  

  

Table 2

 2 

	Parameters Value	Description
	mx	100 [µm]	Width of the micromirror
	my	200 [µm]	Length of the micromirror
	mz	10 [µm]	Thickness of the micromirror
	m f	20 [µm]	Width of the frame
	mg	5 [µm]	Width of the gap around the micromirror
	msty		Width of the stopper beam
	mstx	25µm	Length of the stopper beam
	mlax	12µm	Length of the landing beam
	msuy	[3 : 1 : 5] µm	Width of the Suspended beams
	mpover		
	poly	[600, 700] nm, Thickness of the beam
	x1		Width of the anchor of the suspended beam
	x2		Length of the anchor
	ox	[1, 2] µm	Thickness of the sacrificial layer under the SB
	g1	2µm	
	x4		devide sub-anchors by x4
	msux	40µm	Length of the Suspended beams
	mlay	mbeamy (3)	landing beams
	gold	600nm	Thickness of the gold layer
	epix	9µm	Width of the pillars (base on m f )
	may		The length of the gold pad
	max		The width of the gold pad
	x3		Length of the pillars
	epiz	35µm	Height of the pillar
	ex	80µm	Length of the Electrode
	ez	15µm	Thickness of the Electrode
	egav	5µm	Width of the gap between two parts at different voltage
	elax	15µm	Width of the landing pads
	elay	36µm	Length of the landing pads
	ebox	2µm	Thickness of the BOX of the electrode wafer
	x6		Width of the step sustaining the pillars
	x7	20µm	Width of the connection between two electrodes
	XPitch		Width of the micromirror cell
	Y Pitch	my	Length of the micromirror cell
	box	2µm	
	ey	Y Pitch -egav	

msuy

[START_REF]A two-dimensional and a one-dimensional micro-mirror arrays with their surrounding vacuum domain, Ω ε = Ω ε,vac ∪ Ω m,ε . The domain Ω ε is divided into two parts Ω ε,vac,1 and Ω ε,vac,2 corresponding to the two different voltages. They are separated by the interface Γ ε,vac inter f . The scaling assumptions on the size of each cell and of the array are also represented[END_REF] 1, 5] 

µm Width of the Suspended beams metay Distance from the edge of the frame to the anchor of the SB matby Distance from the anchor to the edge of the SB .1: parameters for the mirror, the frame, the golden pad, the beams, the pillar and the electrode.

Table 2 .

 2 2: the pull-in voltage as a function of the length and width of the suspended beams

	Name Description	Range	Uncertainty
	poly	Thickness of the beam and the stopper beam [400, 500, 600] nm + -100nm
	msux	Length of the suspended beam	[40, 60, 80] µm	+ -1µm
	mstx	Length of the stopper beam	[15, 25, 35] µm	+ -1µm
	epiz	Height of the pillar	[33, 35, 37] µm	+ -0.5µm
	mz	The thickness of the frame and the mirror	10 µm (fixed)	0 µm (fixed)

Table 2 .

 2 3: Table of optimization variables.

	Name Description	Range
	T	Temperature	[30, 77, 150, 300] K
	V nei	Voltage form neighboor cells [0, 150] V
	Dl	Doping level	

Table 2 .

 2 4: Table of optimization parameters.

	Name	Description	Objective	Constraint	Sensitive
					variable
	FRes	Restoring force of	FRes should be large		poly, msux
		the beam	enough to be able to re-		
			cover the origin position of		
			the mirror.		
	V PI	Pull-in voltage	Minimize V PI	V PI ≤ 140V	poly, msux
	Ang	Tilt angle of the	Ang should be close to 20 0 . Ang ≥ 18 0	poly, mstx, epiz
		mirror			
	Oos	On-Off speed	Minimize Oos	Oos ≤ 2KHz	mz

Table 2 .

 2 5: Table of objectives.

	Design Variable Initial Value Optimal value
	poly	500 nm	400 nm
	msux	60 µm	70.16 µm
	Feature		
	V PI	115.2 V	74.4 V

Table 2

 2 

.6: The initial values of poly, msux given to optimization procedure and the corresponding V PI compared to their optimal results.

  .66) Equation (3.63) with (3.64), (3.65), (3.66) with if w satisfies ∂ x 1

	i

Table 4 :

 4 Table 2 summarizes the specifications of the identifiers together with the other5.3.3/ PREDEFINED OPERATORSA number of operations and operators are predefined. They are listed in the table below. all predefined operations and operators with their associativity property

	Operations and operators
	expr + expr
	expr -expr
	ident expr or \sum ident expr
	ident expr or \prod ident expr
	expr d ident or \int expr \dj ident
	∂ expr / ∂ ident or \partial expr / \partial ident
	expr * expr
	expr • expr or expr \cdot expr
	expr / expr
	+ expr
	-expr
	exprˆexpr or expr ** expr
	( expr )

Table 5

 5 below summarizes the usual mathematical operations on sets.

	∅ or \varnothing
	{ }
	{ident,...,ident}
	VarOf expr
	set ∪ set or expr \cup expr
	set \ set
	set ∩ set or expr \cap expr

Table 5 :

 5 notations used in the rule conditions for usual operations on sets Table 6 summarizes the usual logical operators. The function VarOf is defined in Section 5.4.2.2.

	Operators	Operators
	true	expr = expr
	false	expr	expr or expr \neq expr
	cond or cond	ident ∈ set or ident \in set
	cond and cond	ident	set or expr \not\in expr
	not cond	set ⊂ set or expr \subset expr
	( cond )	set	set or expr \not\subset expr
	expr < expr	set ⊆ set or expr \subseteq expr
	expr ≤ expr or expr \leq expr set	set or expr \nsubseteq expr
	expr > expr	set = set
	expr ≥ expr or expr \geq expr		
	Table		

  The next program applies the rule plusone everywhere starting from the root,

	Strategies Notation	Meaning	Associativity
	Compose	s1; s2 or s1 and s2 apply s1 and then s2	left
	LeftChoice	s1 | s2 or s1 lor s2 apply s1 and if does not work apply	left
				s2	
	TopDown	s ↓ or s \td	apply s1 everywhere starting from the	
				root	
	OuterMost	s ⇓ or s \om	same as TopDown but stops at the	
				first success	
	BottomUp	s ↑ or s \bu	apply s1 everywhere starting from the	
				leaves	
	InnerMost	s ⇑ or s \im	same as BottomUp but stops at the	
				first success	
	Iterate	s	or s \it	apply s1 as long as it is possible	non associative
	Co-strategy -s		permute left and right rule parts in all	
				rules of s	
	Table 8: the strategies, their notation and their possible associativity property
	5.4.4/ STEPS, LEMMA, MODELS		
	Strategy strat plusone : plusone↓	
	or				
	Strategy strat plusone : plusone \td	
	and				
	Model simple proof : strat plusone	
	or simply, in a single line		
	Model simple proof : plusone↓	
	The next table summarizes the strategies.	

Table 9 :

 9 If (S1 and . . . and Sn) then S If (S1 and . . . and Sn) then S Correspondence between the HCE-strategies and the User Language strategies 5.5.4/ UNIFICATION OF TERMS CONTAINING LOCATIONS

	-strategies	SO-strategies
	µX.S	Label Name Of S
	X	Goto Label Name
	@i.	S At Loc Name
	@i.τ	Insert(τ) At Loc Name
	Explicit positions	Implicit location names:
		Loc Name Of α
	α;S	Id(α);S
	[S,S ]	S And S
	Most(S)	Inside(S)

  Unification of terms containing locationsInput: Two terms α 1 , α 2 with locations with Loc Set(α 1 ) ∩ Loc Set(α 2 ) = ∅ Output: A term β with locations such that

	   	Remove Loc(β) = Remove Loc(α 1 ) ∧ Remove Loc(α 2 ), and
	  	Loc Set(β)	= Dom Position Of Loc(α 1 , α 2 , •)
	1: function UNIFIY(α 1 , α 2 )	

2 and Algorithm 1 2:

  Given an extension S we shall write Rename Loc(α 1 , α 2 , •)(S ) for the extension that results from the replacing in S of each location name Loc Name ∈ Dom Rename Loc(α 1 , α 2 , •) by Rename Loc(α 1 , α 2 , Loc Name).

	Loc Set(Unifiy(α 1 , α 2 )) and either Extension 1 Extension 2	Unification: Extension 1 ∩ Extension 2
	1. Loc Name Insert τ Insert τ Position of Loc(Unify(α 1 , α 2 ), Loc NameX), or ∈ Loc Set(α 1 ) and Position of Loc(α 1 , Loc Name) Insert τ Insert τ • τ S 2 At Loc Name If(S 2 At Loc Name) Then (S 2 At Loc Name) And Insert τ	=
	2. Loc Name S 1 At Loc Name ∈ Position of Loc(Unify(α 1 , α 2 ), Loc NameX). Loc Set(α 2 ) and Insert τ Insert τ S 2 And Insert(τ )	Position of Loc(α 2 , Loc Name) If(S 1 At Loc Name) Then (S 1 At Loc Name) And Insert τ S 2 And (Insert τ ∩ Insert τ )	=
	Insert τ	S 2 And S 2	S 2 And S 2 And Insert τ	
	S 1 And Insert(τ)	Insert τ	S 1 And (Insert τ ∩ Insert τ )
	S 1 And S 1	Insert τ	S 1 And S 1 And Insert τ	
		=	Loc NameX,	where	Loc NameX	∈

2 , Loc Name)

  At Loc Name 1) And . . . And (S 2 At Loc Name n) where α = Term Of Loc(Loc Name) and α = f (t 1 , . . . , t n ), and α = f (Loc Name 1 Of t 1 , . . . , Loc Name n Of t n ) (Loc Name 1 Of t 1 , . . . , Loc Name n Of t n )

			2
	Id(α); S 1	S 2	Id(α); (S 1 ∩ S 2 )
	S 1 Or S 1	S 2	(S 1 ∩ S 2 ) Or (S 1 ∩ S 2 )
	Goto Label Name1	Goto Label Name2	Goto Label Name1 Name2
	Label 1 Of S 1	Label 2 Of S 2	Label 1 2 Of (S 1 ∩ S 2 )[Goto(Label 1) := S,
	S	S	Goto(Label 2) := S ]
	Label 1 Of S 1	S 2	S 1 [Goto(Label 1) := S] ∩ S 2
	S		
	Inside(S 1 )	Inside(S 2 )	Inside((S 1 ∩ S 2 ) Or S 1 Or S 2 )
	Id(α); S 1	Inside(S 2 )	Id(α); (S 1 ∩ S 2 )
	Insert(τ)	Inside(S 2 )	Inside(S 2 ) And Insert(τ)
	S At Loc Name	Inside(S 2 )	(S At Loc Name) ∩ Id(α );
	(S 2 S Inside(S 2 ) S ∩ Id(α );
			(S 2 At Loc Name 1) And . . . And (S 2 At Loc Name n)
	where		where α = Term Of Loc(Loc N1)
	S = S 1 At Loc N1		
	And		and α = f (t 1 , . . . , t n ),
	S 2 At Loc N2		and α = f

Table 10 :

 10 Formulas of unification of SO-strategies. The formulas are arranged by highest priority order from the top of the table to the bottom. We assume that the location names defined in a term α point toward an immediate subterm (child) of α. For two input extentions S 1 and S 2 we assmue also that the sets Set Of Loc(S 1 ) and Set Of Loc(S 2 ) are disjoint. We have written Term Of Loc(Loc Name) instead of Term Of Loc(Loc Name, S) to mean the pattern in the input extension S in which Loc Name is defined. Besides, we write Loc Name1 ≡ Loc Name2 to mean that Loc Name1 and Loc Name2 point towards the same position.

5

  Add Flux/Source boundary condition for boundary 2. Expand the Boundary Flux/Source section, in the g field, type -(nx * phi01x + ny * phi01y + nz * phi01z).

represent the corresponding sizes of Ω c . The small parameter ε is the inverse of the largest number of cells in the two directions x 1 and x 2 . In other words, it is the smallest ratio min α∈{1,2} α /L α . The asymptotic model is obtained by passing to the limit when ε → 0.

The derivation in the general case follows the same principle.

= (c -1) ε + ε/2 and x ε

= x ε

= ε/2. The microscopic domain Ω 1 is defined by x 1 := ε -1 (x εx ε,c ) ∈ Ω 1 , ∀x ε ∈ Ω ε c . Consequently, -1/2 < x 1 i < 1/2, ∀i ∈ {1, 2, 3}. The domain Ω 1 has its boundary ∂Ω 1,vac split into Γ 1 int ∪ Γ 1,vac +∪-∪ Γ 1,vac per ∪ Γ 1,vac lat

We can relax this constraint by allowing the label declaration to refers to many non-nested subterms of γ and σ but this makes the unification formulas of extensions more complicated. So we keep this assumption to simplify the exposition.

In the Physics toolbar, click Boundaries and choose Fixed Constraint. From the Selection list, choose Boundary then

enter 3. 3 In the Physics toolbar, click Boundaries and choose Symmetry. From the Selection list, choose Manual then enter 2, 5, 8, 21, 73. 4 In the Physics toolbar, click Boundaries and choose Prescribed Mesh Displacement. From the Selection list, choose Manual then enter 10-11, 19, 115. Un-check Prescribed z Displacement to allow the mesh to move vertically. 5 In the Physics toolbar, click Boundaries and choose Electric Potential. From the Selection list, choose Manual then enter 12, 16, 82, 84, 96-97, 108. Locate Electric Potential section, in the V0 text field, type VE. Rename it as VE.6 Add another Electric Potential node for VM with imposed boundaries20, 22-23, 27-28, 30, 32, 42-45, 47-49, 52-54, 57-59, 63-72, 74-76, 78, 85-90, 93, 109, 113-114. 
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Example 9:

We show how to encode some standard traversal strategies in our formalism using the fixed-point constructor. In what follows we assume that S is a HCE-strategy. We recall that, when applied to a term t, the HCE-strategy OuterMost(S) tries to apply S to the maximum of the sub-terms of t starting from the root of t, it stops when it is successfully applied. Hence, OuterMost(S) := µX. S ⊕ Most(S)

Example 10:

We illustrate the semantics of the fixed-point constructor. Consider the HCEstrategy S(X) = (a, τ) ⊕ @1.X, where a is a constant and τ = List( , j). Let t = (a + b * c) 2 be a term where b and c are constants. If the expression (a + b * c) 2 is encoded by the term Power(a + b * c, 2), then we have that the depth of t is δ(t) = 3. Hence, the semantics of µX.S(X) when applied to t is

where [[S 3 (∅)]] is defined by means of [[S 2 (∅)]] and [[S 1 (∅)]] as follows:

= (a, τ) ⊕ @1.∅ = (a, τ).

[[S 2 (∅)]] = [[S(S(∅))]]

= [[S((a, τ))]] = (a, τ) ⊕ @1.(a, τ).

[[S 3 (∅)]] = [[S(S 2 (∅))]] = [[S (a, τ) ⊕ @1.(a, τ) ]] = (a, τ) ⊕ @1. (a, τ) ⊕ @1.(a, τ) = (a, τ) ⊕ @1.(a, τ) ⊕ @11.(a, τ).

Thus we get,

[[S 3 (∅)]](t) = @1.(a, τ) ⊕ @11.(a, τ) (t) (since a does not match with "Power") = t[((a, τ) ⊕ @1.(a, τ))(t |1 )] 1 = t[(@1.(a, τ))(t |1 )] 1 (since a does not match with "+") = t[t 1 [(a, τ)

(since a matches with a) = t[τ [a]] 11 = Power(List(a, j) + b * c, 2).

We generalize next the condition of well-foundedness from position-based HCEstrategies to HCE-strategies.

Definition 16: Well-founded HCE-strategies.

A HCE-strategy S is well-founded iff every position-based HCE-strategy that is a sub-strategy of S is well-founded in the sense of Definition 10.

Definition 19: Combination of HCE-strategies

The combination of HCE-strategies is a binary operation : C × C -→ C, defined for any S and S in C by S S 2: specification of the integers, float and identifiers used in a Pde-file

In Table 1, we distinguish between three kinds of fields: lists of shortcuts denoted with brackets, strings denoted with double quotes or simple shortcuts. A shortcut appearing in a field must have already been defined. The sets of definitions of all shortcut fields appearing in Table 1 are detailed in Table 3.

Field names Sets of Definition

Field Id. of a sc "Variable" Table 3: the sets of definition of the shortcut fields of Table 1. Here Id. stands for Identifier and sc for shortcut Moreover, in a shortcut a null list is represented by [] and a null simple shortcut by an underscore, but a field in quotes cannot be with an empty component. The access to a shortcut field is done according to the rail diagram: where IDENT is the name of the shortcut, FIELD is the name of the field and INTEGER is the rank of the field in the list if neccessary. For instance, for the shortcuts Index i : "i" [1,2] "Given" Index j : "j" [1,2] "For all" Region omega : "omega" [i,j] [] [] the code omega.Index (2).Quantifier is equal to the string "For all".

CHAPTER 5. IMPLEMENTATION IN MEMSALAB

In some cases, the corresponding Latex commands are also recalled since they are planed to be implemented in the language.

5.4.2.2/ THE VarOf--FUNCTION

The VarOf--function determines the sets of mathematical variables of an expression. It is used in the condition part of rewriting rules. It is recursively defined according to the table below, where expr is an expression, d an integer, f a float, s a string, x a mathematical variable and A an operator. A field e.g. f.Variable is considered as an evaluable expression and must be evaluated, i.e. replaced by its value, before computing the VarOf--function on it. An expression VarOf(.) is also an evaluable expression.

Expression

Set of mathematical variables

VarOf(evaluation of the expression)

Table 7: Definition of the VarOf-function that returns the set of variables included in an expression

5.4.3/ STRATEGIES

A strategy is a transformation applied to an input expression. It specifies how the rewriting rules are applied. It often consists in a navigation in the input expression followed by an application of rewriting rules. The application of a strategy to an input expression either succeeds and in this case it yields another expression, or it fails and the input expression is returned as the output expression.

• Composition: The strategy ";" stands for the composition of two strategies. That is, the strategy s1;s1 consists of the application of s1 followed by the application of s2.

• Or: The strategy "|" or lor stands for left-choice. The strategy s1|s2 applies s1. If this application fails then s2 is applied. Hence, s1|s2 fails when applied to a given term t iff both s1 and s2 fail when applied to t. In other words, this strategy applies 

5.5/ EXTENSION FILES

An extension file implements an extension that operates on a PDE or a Proof to transform it into another PDE or another Proof. The elementary operations in these transformations are the second order rules that use second order patterns matching and consists in adding subterms named contexts at some positions, as explained in Section 5.5.1. To do so, an extension file may include the same sections as the kind of file to which it applies. It also include two sections SORule and SOStrategy for second order rules and strategies.

The second order rules are explained in Section 5.5.2. The file ends with the description of the extension begining with the keyword Extension.

5.5.1/ SECOND ORDER PATTERN MATCHING, CONTEXTS AND SECOND ORDER RULES

The patterns used for pattern matching in Extensions have the same structure as the patterns used in pattern matching in proofs however they can also include shortcuts met unify the resulting terms. Then we restore the location names by paying an attention to the possible pair of locations that points towards the same position of the unified term. In such pair exists, we create a new location name that points to this position, and ommit the location name coming from α 1 and the one from α 2 .

We denote by Loc Set(α) the set of location names defined in the term α. We write Loc Set(α 1 ) • Loc Set(α 2 ) for the location names obtained by contacetanation of each location name in Loc Set(α 1 ) with each location name in Loc Set(α 2 ).

We define the function that remove locations from terms by

, where t i = Remove Loc(t i ).

(5.5)

If the location name Loc Name is in Loc Set(α), then we write Position Of Loc(α, Loc Name) for the position in α pointed by Loc Name.

Notice that since we don't allow two label names pointing to the same position, the function Position Of Loc(α, •) is injective. Given two terms α 1 , α 2 , with Loc Set(α 1 ) ∩ Loc Set(α 2 ) = ∅, we extend the function Position Of Loc(α, •) to operate on two input terms:

and

For a term β, we shall write Restore Loc(α 1 , α 2 , β) for the function that introduces in β every location name Loc Name ∈ Dom(Position Of Loc(α 1 , α 2 , •)) at the position Position Of Loc(α 1 , α 2 , Loc Name).

We are ready to define the unification algorithm of terms containing locations. Step(step2,(simplify:

in the matlab window 5.7.3/ HTMLVIEW HtmlView("filename.ml") translates the content of the file "filename.ml" into a friendly writing ni a html window managed through matlab. One can hide or show any highlighted subterm by a click or operate a global hide or show of any given field; see Figure ??. The hide/show operations on a single identifier are when all selected fields are "blank" while the global ones are when selecting a field and clicking anywhere in the html window.

5.7.4/ APPLICATION OF A PROOF OR AN EXTENSION

Applying a proof to a PDE is done by output pde = apply proof to pde("proof.ml","pde.ml","filename out")

where output pde = "filename out.ml".

Applying an extension to a PDE or a proof is done by two different functions output pde = apply ext to pde("extension.ml","pde.ml","filename out") where output pde="filename out.ml" and output proof = apply ext to proof("extension.ml","proof.ml","filename out")

where output proof = "filename out.ml".

5.8/ MESSAGE OF THE DEBUGGER

Error: This expression has type strategy but an expression was expected of type tree : the type strategy is for Rule and Strategy and tree for the other keywords Constants, Variable etc.

5.9/ ILLUSTRATION OF A SEQUENCE OF OPERATIONS

The next figures illustrate the use of the language for writing PDEs, proofs and extensions. They also illustrate the display tools, the application of a proof to a PDE, the application of extensions to a PDE and the combination of two extensions. Finally, the extensions resulting from the combination is applied to the PDE. LIST OF TABLES 2.1 parameters for the mirror, the frame, the golden pad, the beams, the pillar and the electrode. 

A.2/ PULL-IN ANALYSIS

These following models perform pull-in analysis of a micro-mirror cell, to predict the point at which the biased system becomes unstable. They are different and the second one is more efficient than the first one. The geometry and operation of the device are already discussed in previous chapters.

A. The Chosen Egde will be imposed by a given displacement, z0, while the Chosen Point will be used to measure the generated stress. Because of the deformation, there is a restoring force pushing the beam back to the original position. As a consequence, a positive stress in the zdirection is created at the Chosen Point. Then, a negative potential V E is set on the surface of the electrode and a positive voltage V M is set on the surfaces of the mirror and the beams. Because of opposite potentials, there is a force of attraction between the mirror, the beams and the electrode. This force will eliminate the restoring force and also the z-stress when V M is increased, as shown in Figure A.2(b). The value of V M vanishing the z-stress at the Chosen Point is the requirement of equilibrium.

To find V M, an Matlab algorithm using loops for and while is employed. A simple solution is increasing V M by a certain value and then measuring the z-stress at the Chosen Point in each loop until the stress changes sign from positive to negative. Then, the loop is stopped and V M is returned. Another solution is adding a big amount of potential such as 10 V to V M if it makes positive z-stress at the Chosen Point; and in contrast, the added potential will be a half of the previous V M and the current V M if it makes negative z-stress. This process is continued until the difference between the two V M that make positive and negative z-stress is less than 1 V. For instance, Figure A.2(b) shows the convergence of V M regarding to z0 = 8µm.

The displacement is given as a range from a position which is close to the original position of the mirror and to over one third of the gap between the two conductors. Solving these problems will return a set of V M in which the Pull-In voltage is the maximum. For example, 3 Provide the potentials on the mirror part and on the electrode part.

4 Rename the study to Imposed Voltage. where P0.d1 is data of emi.sz and P0.p(1), P0.p(2), P0.p(3) are x,y,z-coordinates.

10 The increasing step of VM is depend on which sign of z-stress it makes at the Chosen Point. If it is negative, the step will be one half of the difference between the current VM and the previous VM. On the other hand, if the stress is positive and if we have the value that make negative stress as the Chosen Point (VMinus 0), the step will be one half of the difference between them, otherwise the step is set by 10. The breaking condition of the while loop is abs(VPlus-VMinus)≤1 which means both types of VM should not be different than 1 V.

11 If the while loop finishes, the appropriate VM for balancing the system as the displacement z0(i) is successfully returned. The loop for will continue the process with z0(i+1) until it reach the end of the z0 array. Name f(u, ut, utt, t)(1) Initialvalue(u 0)(1) Initialvalue(u t0)(1/s) Description V ES P intop1(z)zset 0 0

Locate the Units section, in the Dependent variable quantily list, choose Electric Poatential (V).

MESH

The mesh is built manually. When the applied voltage is greater than the pull-in voltage the mirror pulls down onto the base. The landing beams are going to contact with the landing pads and the mirror is going to contact with the stopper beam. The contact phenomena are handled by an approximate penalty or barrier method, nonlinear springs are used to represent the surfaces of the landing pads and the stopper beam. When the mirror is away from these surfaces these springs have low stiffness and consequently have a negligible influence on the deformation of the mirror. As the gaps are reduced and approaches a predefined distance the springs become much stiffer and resists further closure. The contact forces Fc are given by:

where t n is the input estimate of the contact force, e n is the penalty stiffness, g is the gap.

Figure 2.12 shows the two-dimensional geometry of the upper part of a Micro-Mirror.

A.4.2/ MODEL INSTRUCTION

We follow the instruction written in Pull-in of an RF MEMS Switch (Application ID: 16379) which can be found in COMSOL's library or on its website www.comsol.fr/model. The expression takes 1 when the landing beam is far away from the base and takes 11. 7, 9, 11, 13, 18 -19, 22, 26, 28.

PARAMETER

2 Add Si -Polycrystalline Silicon to domains 14 -17, 23 -24.

3 Add SiO2 -Silicon oxide to domains [START_REF]A two-dimensional and a one-dimensional micro-mirror arrays with their surrounding vacuum domain, Ω ε = Ω ε,vac ∪ Ω m,ε . The domain Ω ε is divided into two parts Ω ε,vac,1 and Ω ε,vac,2 corresponding to the two different voltages. They are separated by the interface Γ ε,vac inter f . The scaling assumptions on the size of each cell and of the array are also represented[END_REF]5,8,10,12,25,27.

4 Add Au -Gold to domains 20 -21.