
HAL Id: tel-03783730
https://theses.hal.science/tel-03783730

Submitted on 22 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling a micro-mirror array and contribution to the
development of a simulator of micro-system arrays

Duy Duc Nguyen

To cite this version:
Duy Duc Nguyen. Modeling a micro-mirror array and contribution to the development of a simulator
of micro-system arrays. Mechanical engineering [physics.class-ph]. Université Bourgogne Franche-
Comté, 2017. English. �NNT : 2017UBFCD087�. �tel-03783730�

https://theses.hal.science/tel-03783730
https://hal.archives-ouvertes.fr

Thèse de Doctorat

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E F R A N C H E - C O M T É

n

Modélisation d’une matrice de micro-miroirs et
contribution au développement d’un simulateur de
matrices de micro-systèmes

DUY DUC NGUYEN

Thèse de Doctorat

é c o l e d o c t o r a l e s c i e n c e s p o u r l ’ i n g é n i e u r e t m i c r o t e c h n i q u e s

U N I V E R S I T É D E F R A N C H E - C O M T É

TH ̀ESE présentée par

DUY DUC NGUYEN
pour obtenir le

Grade de Docteur de l’Université de Franche-Comté

Spécialité : Mécanique

Modélisation d’une matrice de micro-miroirs et contribution au
développement d’un simulateur de matrices de micro-systèmes

Unité de Recherche :
Institute FEMTO-ST, Besançon, France

Soutenue publiquement le 10 Mars 2017 devant le Jury composé de :

PIERRE-ETIENNE MOREAU Examinateur Professeur à l’Université de Lorraine

SKANDAR BASROUR Examinateur Professeur à l’Université de Grenoble Alpes

ANTONIO GAUDIELLO Rapporteur Maı̂tre de Conférences à l’Université de Cassino et Lazio du

sud (UPHE), Italie

TEMUR KUTSIA Rapporteur Maı̂tre de Conférences à l’Université de Linz, Autriche

MICHEL LENCZNER Directeur de thèse Professeur à l’Université de Technologie Belfort-Montbéliard

(UTBM)

FRÉDÉRIC ZAMKOTSIAN Co-Directeur Chargé de Recherche CNRS au Laboratoire d’Astrophysique

de Marseille (LAM)

NICOLAS RATIER Co-Directeur Maı̂tre de Conférences à l’Ecole Nationale Supérieure de

Mécanique et de Microtechniques (ENSMM)

HORATIU CIRSTEA Co-Directeur Professeur à l’Université de Lorraine

N◦

Département Temps-Fréquence
UFR-ST Sciences et Techniques

École doctorale SPIM Besançon

Modeling a micro-mirror array and contribution
to the development of a simulator of

micro-system arrays

Dissertation

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Ph.D. in Mecanics

10 March 2017

Doctoral School of University of Franche-Comté

By

Duy Duc NGUYEN

Doctoral Committee:

President : Professor Pierre-Etienne MOREAU
Reviewers : Associate Professor Antonio GAUDIELLO

Associate Professor Temur KUTSIA
Examiners : Professor Michel LENCZNER

CNRS Research Scientist Frédéric ZAMKOTSIAN
Associate Professor Nicolas RATIER
Professor Horatiu CIRSTEA
Professor Skandar BASROUR

ACKNOWLEDGEMENTS

First of all, I would like to deeply thank Prof. Michel LENCZNER for his support, guidance,
and supervision. His knowledge, dedication, enthusiasm, patience, encouragement,
and personality have made my graduate experience at University of Franche-Comté
rewarding and indeed unforgettable. I would like to sincerely thank my co-advisors, Prof.
Frédéric ZAMKOTSIAN, Prof. Nicolas RATIER and Prof. Horatiu CIRSTEA for their
invaluable comments, suggestions of my work. And I would like to extend my special
thanks to Dr. Walid BELKHIR for his great supports.

I would like to send my appreciation to all the members of Jury, Prof. Antonio
GAUDIELLO, Prof. Temur KUTSIA for reviewing my thesis.

I would like to thank my colleagues: Dr. Thi Trang NGUYEN, Dr. Do Huu QUAN, Dr. Bin
YANG, Dr. Mohamed ABAIDI and doctoral student Nguyen Nhat Binh TRINH for their
helpful discussions with mathematical problems, symbolic computation and simulation
issues that I encountered during my work.

I hereby thank all staff members of the Institute FEMTO-ST and of the University of
Franche-Comté for providing me a lot of helps. In particular, I would like to sincerely
thank the Director of the PhD graduate school of Engineering science and Microsystems:
Dr. Philippe Lutz; the secretaries from Time and Frequency Department: Mrs. Fabienne
CORNU and Mrs. Sarah DJAOUTI; the secretaries of the team COSYMA: Ms. Isabelle
GABET and Ms. Sandrine FRANCHI for helping me in work contract issues. I am also
thankful for the secretaries of doctoral school of University of Franche-Comté for helping
me with registration and preparation of my defense.

I also express my gratitude to Prof. Minh Duc DUONG and Prof. Denis GREBENKOV for
teaching me, developing my background in mathematics and research experiences for
the past several years.

Last but not least, I want to give my deepest grateful to my parents, my younger brother,
my younger sister and my grand mother, who always encourage me to get through all
these years and for their endless love. And a special thank to my wife Thi Thanh Ha PHAN
who has always been by my side since I was a student in the University of Sciences, in
HCM city, Vietnam.

i

To my parents
my younger brother

my younger sister
my grand mother

and my wife

CONTENTS

1 Introduction to micromirror and models 7

1.1 Introduction . 7

1.2 Physical phenomena occurring in a micromirror cell 8

1.3 Governing equations . 11

1.4 Variational formulations . 14

2 Micromirror design simulation result 17

2.1 Introduction . 17

2.2 Parameters . 18

2.3 Stationary Simulation . 21

2.3.1 Model Definition . 21

2.3.2 Results . 22

2.4 Pull-in analysis . 23

2.4.1 Model Definition . 23

2.4.2 Result . 23

2.4.3 Design variables, objectives, constraints and trade-off of optimiza-
tion problems . 24

2.4.4 Bumping effect . 26

3 Model derivation 31

3.1 Introduction . 31

3.2 One and Two-dimensional arrays . 32

3.2.1 The governing equations . 32

3.2.2 Global Scaling . 33

3.2.3 Two-Scale Transform for a Thin Region 34

3.2.4 Statement of the Two-Scale Model 40

3.2.5 Properties of the Two-Scale Transform 41

3.2.6 Properties used in model deriavations 45

3.2.7 Model Derivations . 47

3.3 Multi-scale Model Implementation . 55

v

vi CONTENTS

4 Extension and combination in MEMSALab 59

4.1 Introduction . 59

4.2 Preliminaries . 60

4.3 Position-based HCE-strategies and their combination 63

4.4 The class of context-embedding strategies (HCE-strategies) 67

4.4.1 Syntax and semantics of HCE-strategies 67

4.4.2 From HCE-strategies to position-based HCE-strategies 72

4.5 Unification and combination of HCE-strategies 73

4.5.1 The correction and completeness of the unification and combination
of HCE-strategies . 77

4.6 Remarks . 78

5 Implementation in MEMSALab 79

5.1 Introduction . 79

5.2 Generalities . 80

5.2.1 The four kinds of files . 80

5.2.2 Inclusion of files . 80

5.2.3 List of Unicode characters . 80

5.3 PDE-files . 81

5.3.1 Structure of a PDE file . 81

5.3.2 Shortcuts and their fields . 81

5.3.3 Predefined Operators . 84

5.3.4 Expressions . 84

5.3.5 PDE . 84

5.3.6 Examples . 84

5.4 Proof files . 85

5.4.1 Rewriting Variables, Patterns and Pattern Matching 85

5.4.2 Rules . 86

5.4.2.1 Grammar of rule’s conditions 87

5.4.2.2 The VarOf--function . 88

5.4.3 Strategies . 88

5.4.4 Steps, Lemma, Models . 90

5.4.5 Example of a proof file . 91

5.5 Extension files . 91

5.5.1 Second Order Pattern Matching, Contexts and Second Order Rules 91

CONTENTS vii

5.5.2 Second Order Strategies . 92

5.5.3 Correspondence between SO-strategies and HCE-strategies 95

5.5.4 Unification of terms containing locations 95

5.6 Formulas of Unification of Second Order Strategies 97

5.7 A High Level User Language . 100

5.7.1 compile . 100

5.7.2 inspect . 100

5.7.3 HtmlView . 102

5.7.4 Application of a Proof or an Extension 102

5.7.5 combine . 103

5.8 Message of the Debugger . 104

5.9 Illustration of a Sequence of Operations . 104

6 Conclusions and perspective 109

I Appendix 123

A Simulation Demonstrations 125

A.1 Stationary Simulation . 125

A.1.1 Model Instruction . 125

A.2 Pull-In Analysis . 126

A.2.1 Model 1 . 126

A.2.1.1 Model Definition . 126

A.2.1.2 Modeling Instructions . 127

A.2.2 COMSOL Livelink with Matlab . 129

A.3 Model 2 . 130

A.3.1 Model instructions . 131

A.4 Contact Problem in Vacuum . 132

A.4.1 Model definition . 132

A.4.2 Model Instruction . 133

A.5 Contact Problem in Air . 135

A.5.1 Model Definition . 135

A.5.2 Model Instruction . 135

A.6 Asymptotic Model Implementation . 136

A.6.1 Model Definition . 136

viii CONTENTS

A.6.2 Model Instruction . 138

INTRODUCTION

INTRODUCTION

To understand the formation of galaxies and to study the expansion of the Universe, as-
tronomers observe faint galaxies. In order to study and collect their spectra, the telescope
has to be equipped with a spectrograph having Multi-Object Spectroscopy (MOS) capa-
bilities. MOS is an astronomical technique that allows the simultaneous collection of the
visible and infrared (IR) spectra of faint galaxies and stars, thereby providing information
on the origin of the Universe and the formation of galaxies. Moreover, to remove spoiling
sources such as bright stars and the stellar background and to avoid the overlapping of
spectra between the measured objects, the modern MOS has a field selector placed at
the focal plane of the telescope which allows the individual selection of the objects. Mo-
tivated by potential improvement of microtechnology, micro-electro-mechanical systems
(MEMS)-based field selectors are developed which can achieve higher performances,
higher number of targets, faster reprogrammable time and cryogenic operation compati-
bility. However, the performance of these spectrometers was mainly limited by their min-
imum operating temperature −40◦C. Indeed, for IR observations when the instrument is
not at cryogenic temperature, the measurements are spoiled by the thermal emission of
the instrument itself. Therefore, to cope with these limitations, a group led by the Lab-
oratoire d’Astrophysique de Marseille (LAM), has worked for many years to develop a
european micro-mirror array (MMA) with electrostatically actuated tilting mono-crystalline
silicon micro-mirrors Figure 1. It is designed as a field selector for MOS [Waldis, 2010],
[Canonica, 2012], with stringent requirements summarized in Table 1.

Features Constraints
Mirror size 200 × 100µm
Tilt angle ≥ 20◦

Variation of tilt angle across the array ≤ 0.6◦

Filling factor ≥ 80%
Contrast ratio ≥ 1000
Wavelength band from visible to IR (λ = 1µm)
Mirror Peak-to-Valley (PTV) deformation ≤ λ/20
Electrostatic actuation voltage < 100V
Operating temperature from RT to cryogenic temperature (< 100K)

Table 1: requirements on a cell of the array from [Canonica, 2012].

Moreover, the size of the array must cover the field of view of a telescope.

A design fulfilling these conditions was built and then used for fabrication. A Finite Ele-
ment Method model was made in the software package Coventor 2010. Various configu-
rations of the micro-mirror arrays were simulated.

1

2 CONTENTS

Figure 1: Real Micro-Mirror Array

The purpose of the FEM simulations was to determine the static electromechanical be-
havior of the micro-mirror, the maximum Von Mises stress in its suspending beams, the
resonance modes of the micro-mirror and the contact locations between parts. Since
geometry uncertainties due to the fabrication process are unavoidable, several models
were created with different sets of parameters to analyze their effect on some aspect of
the electromechanical behavior as for instance the tilt angle and voltage hysteresis.

A first requirement of my thesis was to simulate and optimize the same cell using Com-
sol Multi-physics, another popular FEM software package. It allows for modeling vari-
ous physical and engineering applications and especially coupled phenomena thanks to
specialized toolboxes. Another manner to use Comsol is by setting a system of partial
differential equations (PDEs). This allows to investigate taylor-made models not available
in the specialized toolboxes. Programing Comsol is made through Matlab scripts thanks
to a link between the two packages. This provides to Comsol the full power of Matlab with
its toolboxes for preprocessing, model manipulation, and postprocessing. This is thanks
to this connection that SIMBAD, an in-house optimization software package based on
Matlab functions, operates on Comsol models.

The mathematical description of the equations involved and the design of the micro-
mirrors is recalled in Chapter 1. The mechanical deformations, the electrical field, the
thermal effects are taken into account. The equations are written under their strong and
weak forms. The geometry, the choice of materials and their coefficients are detailed.

The simulation and optimization results are reported in Chapter 2. The implemented
model takes into account the quasi-static nonlinear elasticity coupled with the electro-
static field, but not the contact condition. This coupling is implemented in the complete
geometry of a cell. The parameters used in simulation are precisely reported. In terms
of analysis and optimization, the focus is made on the pull-in voltage, that is the determi-
nation of the limit of the actuation voltage before instability. I have shown that the pull-in
voltage strongly depends on two main parameters: the length and thickness of the sus-
pending beam. Unfortunately, the ratio ”beam length/beam thickness” is extremely large
and is very critical in the simulation. Actually, it is a source of strong instability problems
in the nonlinear solver. Other specific difficulties were met, in particular the strong non-
linearity of the problem requires very small computation steps and the relatively complex
geometry, including small gaps, requires a very large mesh. In total, and after a number

CONTENTS 3

of improvements, the simulation of the pulling voltage is successful for all the required
sizes of the suspending beams, but still with long simulation time i.e. up to a dozen of
hours. Finally, the optimization of the pull-in voltage in a cell has been achieved based on
a polynomial metamodel built from some twenty pull-in voltage computations.

The second question addressed during my thesis is the modeling, and if possible the
simulation, of an array of micro-mirrors. Evidently, direct simulations of the thousands
of coupled micro-mirrors is outside of our scope. Indeed we expect to build models that
can run in a reasonable time on a personal computer. The goal of this work was to adapt
to this problem a periodic homogenization method based on an asymptotic approach.
This choice was made to contribute to MEMSALab, a software package dedicated to
asymptotic methods, which is at the very heart of Chapter 4.

Periodic homogenization has been developed for a long time and several methods
have been emerging over the years. In this thesis, we focus on the two-scale con-
vergence. In 1989, Nguetseng have introduced the notion of two-scale convergence
in [Nguetseng, 1989] and this idea was further developed in [Allaire, 1992]. Indepen-
dently, in 1990, Arbogast et al. [Arbogast et al., 1990] introduced a dilation opera-
tion to study homogenization for a periodic medium with double porosity. This tech-
nique was used again in Bourgeat [Bourgeat et al., 1996], Allaire [Allaire et al., 1998] and
Lukkassen [Lukkassen et al., 2002]. M. Lenczner with his co-workers in [Lenczner, 1997],
[Lenczner, 2007], [Lenczner et al., 2007], [Lenczner, 2006], [Lenczner et al., 1999], used
the same idea to develop a complete framework yielding similar results as for peri-
odic homogenization as the two-scale convergence method. They first introduced this
new technique to address homogenization of spatially periodic analog electronic cir-
cuits in view of their application in arrays of MEMS. The advantage of this technique
compared to the previous ones is more modularity, simpler calculations, less techni-
cality in the proofs, and a wider range of applications e.g. it is easily applicable to
manifolds as electrical networks. Then, J. Casado Diaz et al. [Casado-Diaz, 2000],
[Casado-Diaz et al., 2004], [Casado-Dı́az et al., 2001] combined it with the two-scale
convergence to study perforated domains and thin structures. Then, the same con-
cept was renamed the ”periodic unfolding method” and popularized by D. Cioranescu,
A. Damlamian and G. Griso who have developed a number of their properties, including
error estimates, in [Casado-Dı́az et al., 2001], [Cioranescu et al., 2008], [Griso, 2002],
[Griso, 2004] and [Griso, 2006]. This technique has been extensively developed by
many other authors in a variety of applications. In particular, it has been applied to
find models of complex structures combining other asymptotic features, as thin struc-
ture or strong heterogeneity of coefficients, with the periodic homogenization, see
among others [Blanchard et al., 2007], [Blanchard et al., 2007], [Blanchard et al., 2008],
[Lenczner et al., 2007], or [Lenczner, 2007]. We notice that in [Lenczner et al., 2007], an
attention has been paid to formulate the proofs of model derivation as a sequence of cal-
culation without relying on any abstract arguments. The model derivation adopted in this
thesis relates to the techniques developed in [Lenczner et al., 2007].

Ultimately, an homogenized model of the micro-mirror array should take into account the
electro-thermo-mechanical coupling. It is worth recalling that the two-scale transformation
consists in transforming a physical domain occupied by a periodic structure into a pair of a
macroscopic domain that ignore the details in the cells and a microscopic domain which
is a scaling of one of the cells. Mathematically, the periodic homogenization method
consists in considering that the size of the array is fixed and that the number of cells is
very large. The asymptotic model is found by passing to the limit when the number of cells

4 CONTENTS

goes to infinity. To do this without loosing the details of the cells, the asymptotic analysis
is carried out after application of the two-scale transformation.

To start the modeling it has been decided to address first the electrical problem. Since in
each cell an electrical field is created in the vertical direction by imposing a difference of
potential between the electrodes, it results that the leading part of the electrical potential
of the asymptotic model is an electric potential having variations in both the macroscopic
and the microscopic domains. However, in the expected applications of the micro-mirror
array, the set of cells is split into two connected subsets, the sets of those switched ”on”
and the set of those switched ”off”. It results that only two values of the imposed volt-
age have to be distinguished in the array. Since the imposed voltage is constant over all
cells of a connected part of the array, the leading electrical potential varies only about
the coordinates of the microscopic domain. It is a solution of the electrostatic equation
over a single cell with periodic boundary conditions. Therefore, it suffers from a mismatch
between both sides of the interface of the two connected parts of the array. To correct
this defect, a boundary layer is introduced. Moreover, the periodic boundary conditions
satisfied by the leading electrical potential are also incompatible with the boundary con-
dition at the outer boundary of the array, as for instance a zero normal flux condition.
Then, the model takes also into account a boundary layer effect on the external boundary
of the array. As usual, a boundary layer is a part of solution that decreases very fast.
Due to a lack of time, the boundary layer analysis and, for the sake of consistency, the
complete models are presented for a one-dimensional array only. It can be extended to
two-dimensional array to the price of an extra-work for the boundary layer on the interface
between the two connected areas. It is also worthwhile to mention that the mathematical
techniques for boundary layer derivation are taken from [Nguyen, 2014].

The third point where a contribution of my thesis was expected is related to the software
package MEMSALab (for MEMS Array Lab). The concept underlying MEMSALab origi-
nates in the observation that although asymptotic analysis is a well established and good
way to simplify models, it requires case-by-case derivation. That is the full process of
model derivation is redone from the scratch whenever a new problem is met, eventhough
it may share many features with an already solved problem. Consequently, given the vari-
ety of possible physics and geometrical configurations it appears insurmountable to adopt
asymptotic modeling in general simulation software. However, they are implemented in
laboratory software or in specialized software tools such as Helius, MAC/GMC, CZone,
DIGIMAT. Evidently, the number of models that these software packages can cover is lim-
ited. The MEMSALab project aims to going beyond the principle of case-by-case model
production and implementation.

Its leading principle is inspired by the human behaviour for the resolution of a new prob-
lem. More specifically, it copies the behaviour of a mathematician, since the approach is
developed for the derivation of models which basically are mathematical proofs. An usual
method for building a new mathematical model starts from a known theory that works
in simpler cases, and by identifyng the new features to be taken into account. Then, an
efficient principle is to find the way to transform a known proof into other ones, each tak-
ing into account a new features. This is the step of extension. Then the combination of
these transformations yields the proof for the full problem. This approach is called the
by-extension-combination method [Belkhir et al., 2015] that we sketch more precisely in
the context of asymptotic model derivation.

CONTENTS 5

An asymptotic model derivation starts with an input PDE coming from any scientific field to
which a derivation, also said proof, is applied ending to the expected model. This scheme
is build for a reference case, which is the simplest that we can consider, so we call it
the reference scheme. Then, it is complexified, we say extended, in several manners to
take into account new features yielding new schemes. The input PDEs still arise from an
application area but with additional features. Accordingly, the reference proof is extended
in different ways to cover the new features. Applying the extended proofs to the enriched
PDEs yields new asymptotic models. Finally, a new scheme for an input PDE covering
a group of new features is built by combination. Precisely, its input PDE is still issued
from a practical problem. Its proof is obtained by applying a combination of two or more
extensions, built in the previous step, to the reference proof. Finally, applying the resulting
proof to the input PDE yields an asymptotic model enjoying the groups of features. In
summary, combining extensions related to new elementary features allows for building
new proofs and therefore new asymptotic models in an incremental manner.

Figure 2: MEMSALab-Simplified-Flow

From a very global viewpoint, MEMSALab is designed to be in a chain of operations as
represented on Figure 2: the designer states the nominal model (geometry and equa-
tions) in FEM software, the model is sent along with non-technical descriptions for the
choice of asymptotic methods in MEMSALab which transforms it into a multi-scale model,
the latter is appropriately implemented in the FEM, then the designer takes the reins and
can apply its favorite operations for simulation and result visualization.

Figure 3: MEMSALab-Simplified-Flow

Figure 3 shows more details of the flow of operation of MEMSALab. The main compo-
nents are the Library of (elementary) Extensions and Combinations (E-C Library) and
the software Core consisting of SymbTrans, an engine of rewriting strategies, and Sym-
bComb, an engine of extensions and combinations. The Core operates on expressions
written in the Processing Language (PL). The users specify their problems using the User
Language (UL), a language close to the usual mathematical language, and there exist
translators from the PL to the UL and vice-versa. All operations are coordinated by the
Control Manager written in MATLAB while the Core and the Translators are implemented
in OCaml. The

The operations starts from an Input Model specified either in a specification file written
in UL or using a FEM software. In the second case, the specification is extracted and

6 CONTENTS

translated into UL through a FEM to UL translator.

The specification of the asymptotic reduction is specified using the Extension Selector
part of the UL. The necessary elementary Extensions being assumed to be pre-defined
in the EC-Library, they are combined thanks to SymbComb, the engine of combinations.
The result of this combination is a complex Extension which is applied to the Reference
Proof through SymbTrans, so that to generate the Extended Proof. The latter is applied to
the Input Model, through SymbTrans also, yielding the final Asymptotic Model which can
be output in UL format and subsequently sent to FEM thanks to the UL to FEM Language
translator.

Before the start of my thesis, several concepts and their implementation were al-
ready presented in the PhD thesis of Bin Yang [Yang et al., 2014, Yang, 2014]. Symb-
Trans was implemented as a Maple package and the reference proof in the style of
[Lenczner et al., 2007] was implemented together with three extensions. The mathemati-
cal properties, lemmas and theorems were represented as rewriting rules, and the proofs
as rewriting strategies. The extension mechanisms for the multi-scale model derivations
was well established. Theoretical work for extension and combination were approached
by both positional computation and strategies [Belkhir et al., 2015]. More precisely, an
extension is an application of a transformation to the reference proof while a combination
is a combining of the already implemented extensions. Through combinations, a com-
plex models will be generated in the benefit of reusing the proofs and tools built for the
generation of simpler models. Let us consider a reference proof, for example, having an
extension E1 (viewed as a transformation) to some general setting (e.g. multi-dimensional
setting) and another extension E2 to another general setting (e.g. thinness setting). The
two extensions combined yields a new extension E’ that covers both settings when apply-
ing to the reference proof.

Although a small class of usual rewriting strategies as OuterMost and BottomUp were
considered for combinations, the question whether this class, or possibly a wider class,
is closed under combination was left open, as well as the question of the correctness
and soundness of the combination formula. Addressing these properties are one of the
main contribution of this thesis to the kernel of MEMSALab, Chapter 4. Precisely, the
idea of combination is kept the same but the tools and the techniques are different. We
identify an operation of combination over a class of extensions named HCE-strategies,
expressed as rewriting strategies that navigate along trees and insert contexts. We prove
that this class is closed by combination after establishing an explicit formula of combina-
tions. We shown that usual traversal strategies as TopDown or BottomUp belong to the
class of HCE-strategies. Several nice algebraic properties of the HCE-strategies are also
proved. Besides, in this thesis, we present the design and implementation of a user lan-
guage for the specification of rewriting strategies based proofs and extensions. The user
can use it to express PDEs, proof and extensions manually. A manager program built with
Matlab for compilation, application, combination is also introduced. The reference proof
mentioned above is completely implemented using the User Language.

1
INTRODUCTION TO MICROMIRROR AND

MODELS

1.1/ INTRODUCTION

The LAM’s micro-mirror array consists in several thousand micro-mirrors cells arranged in
a rectangular shape. From a general point of view, the micromirror cell has two parts that
are assembled, Figure 1.1, [Canonica, 2012]. The mirror part is composed of a mirror,
a system of beams and a frame. The mirror is attached to the frame by the suspended
beams. Two landing beams are placed on the tips of the suspended beams to prevent the
mirror from a short-circuit generation in contact with the electrode during actuation. And,
the stopper beam placed under the frame provides a precise tilt angle after actuation.
The electrode part is composed of an electrode, two landing pads and two pillars. The
electrode allows to apply an electrostatic force attracting the micromirror. The two landing
pads define the landing regions of the landing beams and the pillars determine a precise
electrostatic gap and a stiff link between the mirror and the electrode.

The concept of actuation of the micromirror cell is based on the double plate electrostatic
actuator. At rest, when no voltage is applied, the micromirror is held in a flat position
by the suspended beams. When a voltage difference is applied between the micromirror
and the electrode, an electrostatic force is generated, resulting in the attraction of the
micromirror toward the electrode. Before the pull-in voltage, the micromirror moves a little
allowing the angle to be set to a few degrees. At the pull-in voltage, the force increases
and the micromirror snaps toward the electrode. During this motion, it touches its landing
pads first and touches its stopper beam latter, Figure 1.2(a), or it touches its stopper
beam and lands on its landing pads, Figure 1.2(b). After pull-in, the micromirror is fixed at
a precise tilt angle. When the voltage is reduced, the micromirror angle remains constant
until the mirror detaches from its stopper beam and increased its tilt angle. Finally, when
the spring force of the suspended beams overcome the electrostatic force, the landing
beams detach from the landing pads and the mirror returns to its rest position.

The concepts for addressing individual micromirror cells are based on a line-column al-
gorithm using the property of the tilt angle/voltage hysteresis. The electrode under the
micromirrors is placed in a direction perpendicular to the frame, Figure 1.3. Each line of
micromirrors and each electrode is connected to an individual voltage sources. To ac-
tuate individually one micromirror of the array, two different voltages are set on its line
and column, while to address individually several micromirrors, the property of the tilt
angle/voltage hysteresis is used, Figure 1.4. Since the electrostatic force is inversely

7

8 CHAPTER 1. INTRODUCTION TO MICROMIRROR AND MODELS

Figure 1.1: The geometry of a micromirror cell [Canonica, 2012]. For clarity, the micromir-
ror is drawn as transparent.

proportional to the distance between the two conductors, for any voltage lower than the
pull-in voltage, the micromirror has two different tilt angles; one occurs before and another
one occurs after the collapse angle. And accordingly, it only require a lower voltage than
the pull-in voltage to keep titling angle constant.

With this property, it allows to avoid the full actuation of neighboring micromirrors when
one micromirrors is being addressed and also to actuate the neighboring elements with-
out modifying the tilt angle of the full tilted mirror.

The aim of this chapter is the statement of the mathematical models describing the physi-
cal phenomena occurring during the actuation of the micro-mirror. Due to the large defor-
mation of the suspending beams, the structural deformations are governed by the system
of nonlinear elasticity. The electric effect are governed by the electrostatic equation that
is the cause of the electrostatic force operating on all mechanical parts. Finally, the heat
transfer are modeled by the heat equation which is coupled to the system of elasticity.
The strong forms of these equations are recalled as well as their weak forms.

1.2/ PHYSICAL PHENOMENA OCCURRING IN A MICROMIRROR

CELL

The deformations of the beams and the mirror are because of electrostatic forces caused
by different applied potentials. A Computational analysis of this phenomenon requires
the coupling of an electrostatic analysis and a mechanical analysis.

Electrostatics problem: To start electrostatics analysis, consider a micromirror cell as
shown in Figure 1.5, ΩVac denotes the domain occupied by vacuum between the mirror

1.2. PHYSICAL PHENOMENA OCCURRING IN A MICROMIRROR CELL 9

(a) First sequence: at pull-in voltage the micromirror is snapped towards its electrode.
During this motion, the micromirror first touches its landing pads (2) and then its stopper
beam(3).

(b) Second sequence: at pull-in voltage the micromirror is snapped towards its electrode.
During this motion, the micromirror first touches its stopper beam(2) and then its landing
pads (3).

Figure 1.2: Two actuation sequences are observed depending on the dimensions of the
beams. After pull-in, the micromirror has a precise tilt angle due to its contact with its
stopper beam and landing pads [Canonica, 2012].

Figure 1.3: Individually addressing using line-column method. Each line of micromirrors
and each electrode is controlled by an individual voltage source. For example, the mirror
(m,n) is addressed by the voltage of its line (violet part) and the voltage of its electrode
(red part). Some micromirrors are removed for better clarity.

and the electrode, φ denotes the electric potential, V1 and V2 denote two different poten-
tials imposed on the electrode part and the mirror part, i.e. V1 is applied to the surface of
the electrode while V2 is applied to the surfaces of the frame, of the two pillars and of the
mirror through the beams, of the landing beams and of the golden parts. The notations
Γe

0,1, Γe
0,2 denote the boundaries of conductors where φ = V1 and φ = V2 and Γe

1 denotes

10 CHAPTER 1. INTRODUCTION TO MICROMIRROR AND MODELS

Figure 1.4: Tilt angle/voltage hysteresis of the micromirror. For some voltage V s the
micromirror can be in either position 1 or 3. Vp−in is the pull-in voltage; at this voltage
the mirror snaps toward the electrode. Vp−out is the pull-out voltage at this voltage the
mirror returns to its rest position. The voltage VT is defined by VS − δ < VT < VS . For
individual addressing using a line-column algorithm, the tilt angles in positions 2 and 3
have to be the same, and the range of voltage that constitutes position 3 has to be as
large as possible, to compensate for fabrication variations [Canonica, 2012]

the lateral boundaries of ΩVac, it can have Neumann condition for simplification or periodic
condition in voltage for the case of simulating a cell of a two dimension array.

Figure 1.5: The function φ has the space between the mirror and the electrode ΩVac as
domain. The Dirichlet boundary conditions are defined such as φ = V1 on Γe

0,1 which is
the surface of the electrode and φ = V2 on Γe

0,2 which is a combination of the surfaces
of micromirror, of the pillars, of the beams, of the frame and of the golden parts. The
lateral boundaries Γe

1 can have the Neumann condition for individual simulation or periodic
conditions for simulation of an array.

Mechanical problem: Since different voltages are applied, there is an electrostatic force,
denoted by felec, prescribed on the surfaces of all components of the mirror part and the
electrode as shown in Figure 1.6 and 1.7. Let Ωm denote the domains of all components

1.3. GOVERNING EQUATIONS 11

which accompany the mechanical action, i.e.

Ωm = ΩFrame ∪ΩBeams ∪ΩMirror,

Γm
0 denote the boundary where clamping conditions are applied, and Γm

1 denote the
boundary where the electric forces are applied.

Figure 1.6: Electrostatic force felec applied on the mirror part such as on the surfaces of
the frame, of the beams and of the mirror.

Time dependent thermoelastic problems: In addition, we consider linear time depen-
dent thermoelastic problems as shown in Figure 1.8. Let Ωther be the domain which con-
tains all the components of the micromirror except ΩVac, r (t, x) be total external volume
heat source given by

r (t, x) = rradiation (1.1)

where rradiation is the external source. The notation θ denotes the unknown temperature
while θ0 denotes the constant reference temperature, θ̂ denotes the difference of the tem-
perature given by θ̂ = θ − θ0. The notation Γther

0 denote the boundary where the reference
temperature θ0 is imposed and Γther

1 denote the boundary where the outer heat source is
applied. The micromirror is kept in vacuum condition, so that there is no heat exchange
between the body and the outside environment.

1.3/ GOVERNING EQUATIONS

We provide the models corresponding to the stated problems in the previous section.

Electrostatic problem: The governing equation for electrostatic analysis is given by

12 CHAPTER 1. INTRODUCTION TO MICROMIRROR AND MODELS

Figure 1.7: Electrostatic force felec applied on the surface of the electrode and the pillar.

Figure 1.8: Ωther and its thermal boundaries condition.

[Griffiths et al., 1999] (page 69)
divx (∇xφ) = 0 in ΩVac

φ = V1 on Γe
0,1

φ = V2 on Γe
0,2

∇xφ · n = 0 on Γe
1

, (1.2)

where n is the unit outward normal vector on the surface of conductors. In addi-
tion, electrostatic force felec per unit area applied on surface of conductors is given by

1.3. GOVERNING EQUATIONS 13

[Kovetz, 2000] (page 225),

felec = −

(
1
2

Eelec · D
)

n +
(
n · Eelec

)
DT , (1.3)

where the electrical field Eelec is given by

Eelec = −∇xφ, (1.4)

and D is the charge potential given by

D = ε0Eelec, (1.5)

with ε0 the permittivity in vacuum.

Mechanical problem: We first introduce the linearized static homogeneous isotropic
elasticity problem coupled with the electrostatic problem. The governing equation using
the Euler description of the mechanical analysis is given as [Mase et al., 1970]

−∇x · Σ = 0 in Ωm

u = 0 on Γm
0

Σn = felec on Γm
1

, (1.6)

where the body force per unit volume in the equilibrium equation is assumed to be neg-
ligible, felec is given by (1.3), u = (ui) is the mechanical displacement vector, Σ = (σi j) is
the Cauchy stress tensor given by the Hooke’s law

Σ = λIε + 2µE, (1.7)

where λ and µ are Lamé constants of a homogeneous isotropic elastic material, E = (εi j)
is the infinitesimal strain tensor given by the linearized strain-displacement relation

E =
1
2

(
∇xu + ∇xuT

)
, (1.8)

where Iε = tr(E)I = εkkI and ∇xu is Jacobian matrix of u.

Secondly, we introduce the static nonlinear-elasticity system coupled with electrostatics.
We observe that the software suite COMSOL and general commercial FEM packages us-
ing the Finite Element Method (FEM) or Boundary Element Method (BEM) based meth-
ods for the analysis of MEMS, such as MEMCAD and FASTCAP, perform a mechanical
analysis on the undeformed geometry of the device using a Lagrangian approach and
the electrostatic analysis is performed on the deformed geometry. This semi-Lagrangian
scheme is normally preferred to the full-Eulerian schemes in nonlinear analysis, since
it allows to avoid the need to update the geometry of the conductors, therefore avoids
to remesh the surfaces and recompute interpolation functions whenever the geometry
changes. The governing equations for nonlinear mechanical and electrostatic analy-
sis using semi-Lagrangian description for a micromirror cell is given by [Ciarlet, 1993],
[Fu et al., 2001] and [Li et al., 2003]

−div (FS) = 0 in Ωm

u = 0 on Γm
0

P · N = felec on Γm
1

(1.9)

14 CHAPTER 1. INTRODUCTION TO MICROMIRROR AND MODELS

where N is the unit outward normal vector in the initial configuration, F is the deformation
gradient given by

F = I + ∇u, (1.10)

in which I is identity tensor, S is the second Piola-Kirchhoff stress given by

S = CE, (1.11)

where C is the material tensor and E is the Green-Lagrangian strain tensor given by

E =
1
2

(
FT F − I

)
, (1.12)

and P is the fist Piola-Kirchhoff stress tensor given by

P = FS. (1.13)

Finally, the dynamic model of the coupled electrical-mechanical nature of micromirror cell
can be established according to [De et al., 2004].

Time dependent thermoelastic problem: The governing equation for coupled thermal-
elastic problem is given by

CE∂tθ̂ − θ0M : ∂tE + ∇x · q = r in Ωther

q · n=gs on ∂Ωther\Γther
1

θ̂ = 0 on Γther
0

(1.14)

where M is the stress-temperature tensor, CE is the specific heat at zero, q is the heat
flux given by the Fourier’s law

q = −K∇xθ̂, (1.15)

and K is the thermal conductivity.

1.4/ VARIATIONAL FORMULATIONS

Electrostatic problem: We define a function φ ∈ H1(ΩVac) that gets the values of φ on
boundaries Γe

0,1,Γ
e
0,2, i.e.

φ =

{
V1 on Γe

0,1
V2 on Γe

0,2
.

Assume that φ = φ̃ + φ, the equation (1.2) can be rewritten in indicial form
−∂xi(∂xi φ̃ + ∂xiφ) = 0 in ΩVac

φ̃ = 0 on Γe
0,1 ∪ Γe

0,2
∂xi φ̃ni = −∂xiφni on Γe

1

. (1.16)

We present an appropriate space for the function φ̃, i.e.

φ̃ ∈ H1
Γe

0,1∪Γe
0,2

(ΩVac) = {v ∈ H1(ΩVac) | v = 0 on Γe
0,1 ∪ Γe

0,2}.

Multiplying a test function v ∈ H1
Γe

0,1∪Γe
0,2

(ΩVac) to (1.16), and integrating it over the domain
ΩAir, we obtain

−

∫
ΩVac

∂2φ̃

∂x2
i

+
∂2φ

∂x2
i

 v dx = 0.

1.4. VARIATIONAL FORMULATIONS 15

Applying the Green’s first identity with ∂ΩVac = Γe
0,1 ∪ Γe

0,2 ∪ Γe
1, we get∫

ΩVac

∂φ̃

∂xi

∂v
∂xi

+
∂φ

∂xi

∂v
∂xi

dx =

∫
Γe

0,1∪Γe
0,2∪Γe

1

(
tr

(
∂φ̃

∂xi

)
+ tr

(
∂φ

∂xi

))
tr (v) ni ds (x) ,

and from v = 0 on Γe
0,1 ∪ Γe

0,2 and
(
∂xi φ̃ + ∂xiφ

)
ni = 0 on Γe

1, the weak form of the problem is
stated as finding φ̃ ∈ H1

Γe
0,1∪Γe

0,2
(ΩVac) such that

∫
ΩAir

∂φ̃

∂xi

∂v
∂xi

+
∂φ

∂xi

∂v
∂xi

dx = 0 for all v ∈ H1
Γe

0,1∪Γe
0,2

(ΩVac). (1.17)

Mechanical problem: The indicial form of the governing equation of the linear static
elasticity problem (1.6) is given by

−∂x jσi j = 0 in Ωm

ui = 0 on Γm
0

σi jn j = f elec
i on Γm

1

, (1.18)

while the indicial form of Hooke’s law (1.7) and strain-displacement relation (1.8) are given
as

σi j = λδi jεkk (u) + 2µεi j (u) , (1.19)

εi j (u) =
1
2

(
∂x jui + ∂xiu j

)
. (1.20)

The appropriate space for the function ui is

ui ∈ H1
Γm

0

(
Ωm)

= {w ∈ H1(Ωm) : w = 0 on Γm
0 }. (1.21)

Multiplying to the equilibrium equation (1.18) by a test function wi ∈ H1
Γm

0
(Ωm) and integrat-

ing it over the domain Ωm, we get

−

∫
Ωm

∂σi j

∂x j
wi dx = 0.

Applying the chain rule, i.e. ∂x j

(
σi jwi

)
= wi∂x jσi j + σi j∂x jwi, we obtain

−

∫
Ωm

∂
(
σi jwi

)
∂x j

− σi j
∂wi

∂x j
dx = 0,

or by changing the side, it reads

∫
Ωm
σi j

∂wi

∂x j
dx =

∫
Ωm

∂
(
σi jwi

)
∂x j

dx.

Applying divergence theorem to the right hand side with ∂Ωm = Γm
0 ∪ Γm

1 and w = 0 on Γm
0 ,

σi jn j = f elec
i , we get∫

Ωm
σi j

∂wi

∂x j
dx =

∫
Γm

1

σi jwin j ds (x) =

∫
Γm

1

f elec
i wi ds (x) .

16 CHAPTER 1. INTRODUCTION TO MICROMIRROR AND MODELS

Applying the Hooke’s law (1.19), the weak formulation states as,∫
Ωm

(
λδi jεkk (u) + 2µεi j (u)

) ∂wi

∂x j
dx =

∫
Γm

1

f elec
i wi ds (x) ,

in which, from definition of εi j (w), one can prove that εi j (w) = ε ji (w) , ∂x jwi + ∂xiw j =

2εi j (w) = εi j (w) + ε ji (w) , which lead to

εi j (u)
∂wi

∂x j
= εi j (u) εi j (w) and δi jεkk (u)

∂wi

∂x j
= εkk (u) εqq (w) .

Applying these properties, the weak form of the problem, ([Ciarlet, 1997]), is stated as
finding ui ∈ H1

Γm
0
(ΩMir) such that

∫
Ωm

[
λεkk(u)εqq(w) + 2µεi j(u)εi j(w)

]
dx =

∫
Γm

1

f elecwi ds (x) for all wi ∈ H1
Γm

0
(ΩMir). (1.22)

Time dependent thermoelastic problem: The indicial form of the governing equation
(1.14) is given by

CE∂t̂θ −
∑

i, j θ0Mi j∂tεi j + ∂xiqi = r in Ωther

qini = gs
i on ∂Ωther except Γther

1
θ̂ = 0 on Γther

0

, (1.23)

while the indicial form of Fourier’s law (1.15) is given by

qi = −ki j
∂̂θ

∂xi
. (1.24)

We present an appropriate space for the function θ̂, i.e

θ̂ ∈ H1
Γther

0
(Ωther) =

{
θ̃ ∈ H1(Ωther) | θ̃ = 0 on Γther

0

}
. (1.25)

Multiplying a test function θ̃ ∈ H1
∂Ωther (Ωther) to (1.14), integrating it over the domain Ωther

and using Fourier’s law, it becomes∫
Ωther

CE
∂̂θ

∂t
θ̃ −

(
θ0Mi j

∂εi j (u)
∂t

)
θ̃

 dx −
∫

Ωther

∂

∂xi

ki j
∂̂θ

∂xi

 θ̃ dx =

∫
Ωther

rθ̃ dx.

Applying the Green formula with ∂Ωther = ∂Ωther\Γther
0 ∪ Γther

0 , qini = 0 on ∂Ωther\Γther
0 and

θ̃ = 0 on Γther
0 . The weak form of the problem stated as finding θ̂ ∈ H1

Γther
0

(Ωther) such that

∫
Ωther

CE
∂̂θ

∂t
θ̂θ̃ −

(
θ0Mi j

∂εi j (u)
∂t

)
θ̃

 dx +

∫
Ωther

ki j
∂̂θ

∂xi

∂θ̃

∂xi
dx =

∫
Ωther

rθ̃ dx, (1.26)

for all θ̃ ∈ H1
Γther

0
(Ωther).

2
MICROMIRROR DESIGN SIMULATION

RESULT

2.1/ INTRODUCTION

In this chapter, we present simulation results of a line-column-addressed-with-two-
landing-beams (LC2) micro-mirror cell carried out with COMSOL Multiphysics. The con-
figuration and the parameters of the cell are taken in [Canonica, 2012]. Thanks to the
electromechanics interface, the simulation can take into account the non-linear defor-
mations of the structure and the electrostatic forces generated by the voltage difference
between the mirror and the base. Then, it is used to perform the pull-in analysis, that
is to predict the point at which the biased system becomes unstable. Due to the highly
nonlinear nature of this inverse problem, it must be done with very much care. In par-
ticular choosing carefully the initial conditions of the nonlinear solver is mandatory to
avoid divergence. The load ramping technique, that is the choice of a sequence of initial
displacements with small increments, guaranties the convergence of the pull-in voltage
analysis. The displacement at the pulling voltage in about a third of the gap between the
two conductors. Besides, all variables in the model are scaled which is mandatory for
a better convergence. The swept meshing technique has been used to reduce the size
of the mesh in the very thin parts as the suspending beams. It corresponds to create
cylindrical elements with triangular bases that are further divided so that all their faces
are triangle. However, the total number of mesh elements is still large, up to 30,000 el-
ements. This is due to the presence of several small regions requiring fine meshes: the
gaps between the electrodes, the suspending beams, and the silicon dioxyde layer. As a
result, a complete pull-in analysis from an hour to a dozen of hours.

Once simulation is available, many optimization can be envisioned, and we propose a list
of some of them that have an interest from the designer point of view as: to minimize
the restoring force of the beams, to minimize the pull-in voltage, to reach the correct
tilt angle of the mirror or to minimize the speed of the mirror leaving the landing pad
during the pull-out process. Here, we report results on the minimization of the pull-in
voltage depending on the two most influencial parameters, namely the suspending beam
thickness and length. Due to the model simulation time, the optimization is conducted on
a metamodel based on a sample of 25 simulations.

Organization of the Chapter: The Chapter is structured as follows. In Section 2.2, we
introduce the geometrical parameters of all the cell parts and the material coefficients. In
Section 2.3, we present results of the simulation including the mechanical deformation of

17

18 CHAPTER 2. MICROMIRROR DESIGN SIMULATION RESULT

the beams and the mirror as well as the electric field. In Section 2.4, the principle of the
pull-in analysis is detailed. Finally, in Section 2.4.3, the optimization objectives are listed
together with the corresponding design variables, constraints and trade-offs. The chapter
ends with the optimization result for the pull-in voltage.

2.2/ PARAMETERS

The mirror, the frame, the stopper beam and the electrode are made from single crystal
isotropic silicon (Si). The suspended beam, the anchor of the stopper beam, the anchor
of the suspended beams and the landing beam are made from polycrystalline silicon.
And the assembly is made from gold. They are described in Figures 2.1, 2.2, 2.3, 2.4,
2.5, 2.6 and in table 2.1.

In the table, the parameter mpover is used to oversize the photolithography mask of the
polysilicon layer to compensate the over-etching occuring during the patterning of the
beams; if the beam is composed by n sub-beams, the width of the beam is calculated by

mbeamy = n × msuy + (n − 1) × (0.5 × msuy + 2 × mpover) .

The width of the stopper beam, msty, is given as msty = mbeamy (4) + msuy = 5 × msuy +

3 × (0.5 × msuy + 2 × mpover) the length of the stopper beam is given as mstx = 25µm.
The gap between the sub-beams is set to gap = 0.5 × msuy + 2 × mpover. The width
of the anchor, x1, the length of the anchor x2 and the parameter x4 are given as x1 =

m f − 2 × (g1 + g3) , x2 = msty − 2 ∗ g3 and x4 = msux − g3. The parameters x5 is given as

x5 = msuy + mstsy + mstsy + 4 × msuy + mpover

= 5 × msuy + 2 × mstsy + mpover.

The parameter matby is given as matby = (mlay − msuy) /2. The parameter mlay and the
distance between the electrode and the tilted edge of the micromirror after actuation are
given as

mlay = mbeamy (3) = 3 × msuy + 2 × (0.5 × msuy + 2 × mpover) ,

dmee = d1 + d2 =
ox + poly

cos (α)
+ (mlax − metax) (sin (α)) .

The length and the width of the gold pad are given as max = x3 − g1 and may = epix −
g1. The parameter x3 and epiz of the pillars are given as

x3 = my/2 − metay − msbay − g2 − g2 − msty/2 and epiz = 35µm.

The parameters XPitch = mx + mg + m f + egav and x6 = XPitch − 4 × egav − ex.

2.2. PARAMETERS 19

Figure 2.1: Description of the parameters used to model the mirror of the micro-mirror
cell.

Figure 2.2: Description of the parameters used to model the frame of the micro-mirror
cell.

20 CHAPTER 2. MICROMIRROR DESIGN SIMULATION RESULT

Figure 2.3: Description of the parameters used to model the stopper beam of the micro-
mirror cell.

Figure 2.4: Description of the parameters used to model the beam of the micro-mirror
cell.

2.3. STATIONARY SIMULATION 21

Figure 2.5: Description of the parameters used to model the golden pad and the pillar of
the micro-mirror cell.

Figure 2.6: Description of the parameters used to model the electrode of the micro-mirror
cell.

2.3/ STATIONARY SIMULATION

2.3.1/ MODEL DEFINITION

Because the geometry is symmetric only half of the micro-mirror cell needs to modeled.
The micro-mirror is surrounded by a vacuum domain that is an electrical insulator. The
cell is fixed at its bottom surface to the substrate. The voltages of the upper and lower
electrodes are imposed at V M and VE respectively. As a result, an electrostatic force is
generated which bends the mirror toward the electrode. As the beams bends, the geome-
try of the air gap changes continuously, resulting in a change in the electric field between
the electrodes, and therefore, strengthening the electrostatic force. This coupled physics
is handled thanks to an interface called Electromechanics in COMSOL. The geometry
and physics settings are in Figure 2.7 and a simulation result for V M = 60 V, VE = −30

22 CHAPTER 2. MICROMIRROR DESIGN SIMULATION RESULT

V is shown in Figure 2.8. The instructions for generating this simulation are in Appendix
A.1.

(a) The potential V M is applied
on the boundaries of the mirror,
the frame, the golden pad and
the pillar.

(b) The potential V M is applied
on the boundaries of the beam
and the stopper beam.

(c) The potential VE is applied
on the boundaries of the elec-
trode.

Figure 2.7: Model geometry of half micro-mirror cell. The model uses symmetry on the
zx-plane. The first and the second figures depict the applied potential V M on the upper
part while the third figure shows the applied potential V M on the lower part.

2.3.2/ RESULTS

(a) The surface displacement field, Z compo-
nent, caused by V M = 60 V and VE = −30
V.

(b) The electric potential (color) and the elec-
tric field (arrows) at various cross sections
through the cell.

Figure 2.8: The displacement field and electric field caused by the voltages V M = 60 V
and VE = −30 V.

2.4. PULL-IN ANALYSIS 23

2.4/ PULL-IN ANALYSIS

2.4.1/ MODEL DEFINITION

Computing the pull-in voltage is done by solving an inverse problem. The pull-in voltage
is found by imposing the mirror end at successive predefined positions starting from the
rest position and ending to a displacement equal to the third of the gap. For each position,
the voltage is adjusted to cancel the force exerted by imposing the displacement. The
choice of an initial displacement close to zero and of a sufficiently small displacement
step are to guaranty correct convergence of the nonlinear solver, provided that each new
computation starts with an initial condition built from the previous result.

The higher position requires the largest voltage, but in turn, the lower position increases
the electrostatic force and thereby requires a lower voltage. As a result, the plot of the
voltages versus the positions is a parabola in which the maximum corresponds to the
pull-in voltage.

Let call set point the point at the end of the landing beam represented in Figure 2.7 (b).
The hight of the set-point is calculated by taking the integral of z at itself which is given
by integration operator (intop1 (z)) in COMSOL. The potential V M is set to 1 instead of 0
to avoid an overflow problem. In the following, the potential VE is denoted VES P. The
nominal gap between the conductors being g0 = 33 µm, the list of positions is set to zset =

[51.5 : −1 : 33] [µm]. The problem is stated as finding VES P such that intop1 (z) − zset = 0.
Then, the pull-in voltage is Vp = max(|VES P−V M|). The large difference in scale between
zset and VES P means that care must be taken with the dependent variable scaling in
the solver settings. In this model, the geometry and the displacement are scaled by 10−5

while the potential and VES P are scaled by 100.

As an example, Figure 2.9 shows the voltage-displacement curves for the micro-mirror at
equilibrium and Table 2.2 summarizes the pull-in voltages as a function of the suspending
beam length and thickness. The model instruction is in Appendix A.3.

2.4.2/ RESULT

(a) Plot of VES P versus zset in
the case of poly = 600 nm,
msux = 40 µm and Vp = 156 V.

(b) Plot of VES P versus zset in
the case of poly = 500 nm,
msux = 40 µm and Vp = 120 V.

(c) Plot of VES P versus zset in
the case of poly = 400 nm,
msux = 40 µm and Vp = 87 V.

Figure 2.9: Voltage required to achieve a set of displacements versus the target displace-
ment in the case of poly = 400, 500, 600 nm, msux = 40 µm.

24 CHAPTER 2. MICROMIRROR DESIGN SIMULATION RESULT

2.4.3/ DESIGN VARIABLES, OBJECTIVES, CONSTRAINTS AND TRADE-OFF OF
OPTIMIZATION PROBLEMS

Design variables and objectives: The restoring force of the beam FRes and the pull-in
voltage VPI depend both on the thickness poly and the length msux of the beam. If the
beam is too thin or the length of the suspended beam is too long, the restoring force is
weak and may not be able to pull the mirror back to its original position. The pull-in voltage
is sensitive to the same variables. If the beam is too thick or the length of the suspended
beam is too small, it requires a larger voltage to actuate the mirror. The maximum tilt
angle of the mirror is sensitive to the height epiz of the pillar. However, the thickness and
the length mstx of the stopper beam also determine if the mirror can reach its maximum
movement or not. The speed of the mirror during the pull-in and pull-out process Oos
relies mainly on the weight of the mirror which depends on its thickness mz.

Constraints: To minimize the cost of actuation, the pull-in voltage of each cell should
not be over 140 V. For observing faint objects, the micro-mirror array has to achieve
the highest contrast, therefore, each cell should have a tilt angle close to 20◦. To avoid
breaking the system the on-off speed of each cell has to be lower than 2 KHz.

Parameters: For infrared application, the micromirror array is tested in a cryogenic cham-
ber at a temperature of 162.15 K and in vacuum environment. This environmental tem-
perature T influences not only on mechanical body through thermal expansion but also
on the electrical resistance of the beam also depending on its doping level. Although the
voltage cross-talk between neighbooring cells is not strong enough to fully actuate a mir-
ror, however it has a non-negligible effect on the pull-in voltage. The design variables are
summarized in Table 2.3, the list of parameters are given in Table 2.4 and the objectives
are given in Table 2.5.

Trade-off: Firstly, there is a trade-off between FRes and VPI. The beam should be thick
enough to be able to pull up the mirror. However, the increase of poly leads to the increase
of the required voltage and therefore leads to the increase of pull-in voltage. Secondly,
there is a trade-off between Ang and VPI. The stopper beam should be thick enough to
prevent the variation of the tilt angle. However, the beam has the same thickness as the
stopper beam. Like the first trade-off, the increasement of poly will lead to the increase of
the pull-in voltage.

Technical points: The on-off speed is the necessary voltage square step duration that
makes possible the tilt. This should be computed with structural dynamics. The control
of MMA is through sequential line/column addressing: the time needed for establishing
a full pattern in the array is the number of cells times the “On-Off speed”. The damping
effect is due to air and therefore is not present in vacuum. In air it will increase the
“On-Off speed”. The “bumping effect” is the fact that the end of beam has a bounce
when it touches the bottom. In air, the damping is limiting this effect to one (or maximum
two) bounce(s). In vacuum, it takes time to stabilize the mirror. This effect increases
significantly the overall “On-Off speed”. The doping level in the polysilicon beam is
not well controlled. The thin layer is deposited by LPCVD (low pressure chemical vapor
deposition). We would have expected a perfect conductor (1018 doping level) but due to
limitation in the fabrication techniques, it may have a doping level of 1016 only resulting in
a resistance and therefore a variation of the voltage along the beam, reducing the voltage
in the mirror. Then the resistance depends on temperature. Regarding the resistance
law, we use bulk values from literature, since we consider that 400 nm is already thick

2.4. PULL-IN ANALYSIS 25

enough to consider that the boundary effects are not dominating.

Robustness: The optimized objectives must be analyzed versus the uncertainties
present in the variables

Optimization of Vpi: the optimization of Vpi consists of a single objective, the two vari-
ables poly and msux and one constraint. Despite its apparent simplicity, its direct de-
termination is impractical because of the difficulties discussed in Chapters 1 and 2. An
approximated model is built, usually referenced to meta-model, by sampling the two vari-
ables poly and msux. The meta-model is built with 25 samples corresponding to 5 values
of poly = {400, 450, 500, 550, 600} nm and 5 values of msux = {40, 50, 60, 70, 80} µm. It is a
fourth order polynomial interpolation. The means square error is 1.8%, Figure 2.10. The
graph of the meta-model is shown in Figure 2.11.

Figure 2.10: Mean squared error of the Meta-model.

Figure 2.11: The graph of the Meta-model for the feature Vpi and its sampling points are
shown by black dots.

26 CHAPTER 2. MICROMIRROR DESIGN SIMULATION RESULT

Result: The minimization of the pull-in voltage Vpi is performed using the meta-model.
The minimum is reach is for poly = 400 nm and msux = 70.16 µm, see Table 2.6.

2.4.4/ BUMPING EFFECT

The simulations of the mirror bounces are done using the electromechanical interface of
COMSOL in the dynamic regime for a two-dimensional geometry. The contact between
the landing beams and the landing pads together with the contact between the mirror and
the stopper beam are handled by an approximate penalty or barrier method, as described
in [El-Zafrany, 1997]. Precisely, nonlinear spring forces Fc are used for modeling the
elastic contact between the landing pads and a part of the mirror surface and the stopper
beam, see Figure 2.12. When these surfaces are moved away from each other, the
springs have a low stiffness and consequently a negligible influence on the deformation
of the beam and the mirror. As the gap is reduced the springs become stiffer and resist
to the gap closure, see Figure 2.13.

The results of Figure 2.14 show that there is almost no bounce when the beam thickness
is lower than 1µm, while the results of Figure 2.15 show a few bounces when the beam
thickness is greater than 1µm. This difference of behavior is due to a weaker spring force,
indeed the restoring force of a thin (0.7µm) beam is weak, leading to a fast tilt actuation
and fast stabilization. In the opposite, when the beam thickness is larger (1µm), the time
scale of the restoring force is longer, and the tilting time is also longer with many bounces
before stabilization.

Figure 2.12: A two-dimensional model of Micro-Mirror. A point b1 is placed at the head of
landing beam and a point m1 is placed on the lower surface of the mirror.

2.4. PULL-IN ANALYSIS 27

Figure 2.13: Position of the mirror in its maximal displacement for a voltage exceeding
the pull-in voltage.

Figure 2.14: Bounces of the mirror materialized by the trajectory of b1 in the case of a
0.7µm-thick suspended beam.

Figure 2.15: Bounces of the mirror materialized by the trajectory of b1 in the case of a
1µm-thick suspended beam.

28 CHAPTER 2. MICROMIRROR DESIGN SIMULATION RESULT

Parameters Value Description
1 mx 100 [µm] Width of the micromirror
2 my 200 [µm] Length of the micromirror
3 mz 10 [µm] Thickness of the micromirror
4 m f 20 [µm] Width of the frame
5 mg 5 [µm] Width of the gap around the micromirror
6 msty Width of the stopper beam
7 mstx 25µm Length of the stopper beam
8 mlax 12µm Length of the landing beam
9 msuy [3 : 1 : 5] µm Width of the Suspended beams
10 mpover
11 poly [600, 700] nm, Thickness of the beam
12 x1 Width of the anchor of the suspended beam
13 x2 Length of the anchor
14 ox [1, 2] µm Thickness of the sacrificial layer under the SB
15 g1 2µm
16 x4 devide sub-anchors by x4
17 msux 40µm Length of the Suspended beams
18 msuy [3, 1, 5] µm Width of the Suspended beams
19 metay Distance from the edge of the frame to the anchor of the SB
20 matby Distance from the anchor to the edge of the SB
21 mlay mbeamy (3) landing beams
22 gold 600nm Thickness of the gold layer
23 epix 9µm Width of the pillars (base on m f)
24 may The length of the gold pad
25 max The width of the gold pad
26 x3 Length of the pillars
27 epiz 35µm Height of the pillar
28 ex 80µm Length of the Electrode
29 ez 15µm Thickness of the Electrode
30 egav 5µm Width of the gap between two parts at different voltage
31 elax 15µm Width of the landing pads
32 elay 36µm Length of the landing pads
33 ebox 2µm Thickness of the BOX of the electrode wafer
34 x6 Width of the step sustaining the pillars
35 x7 20µm Width of the connection between two electrodes
36 XPitch Width of the micromirror cell
37 YPitch my Length of the micromirror cell
38 box 2µm
39 ey YPitch − egav

Table 2.1: parameters for the mirror, the frame, the golden pad, the beams, the pillar and
the electrode.

2.4. PULL-IN ANALYSIS 29

Poly/msux 40 µm 60 µm 80 µm
400 nm 87 V 81 V 82 V
500 nm 120 V 115 V 115 V
600 nm 157 V 150 V 154 V

Table 2.2: the pull-in voltage as a function of the length and width of the suspended
beams

Name Description Range Uncertainty
poly Thickness of the beam and the stopper beam [400, 500, 600] nm + − 100nm
msux Length of the suspended beam [40, 60, 80] µm + − 1µm
mstx Length of the stopper beam [15, 25, 35] µm + − 1µm
epiz Height of the pillar [33, 35, 37] µm + − 0.5µm
mz The thickness of the frame and the mirror 10 µm (fixed) 0 µm (fixed)

Table 2.3: Table of optimization variables.

Name Description Range
T Temperature [30, 77, 150, 300] K
Vnei Voltage form neighboor cells [0, 150] V
Dl Doping level

Table 2.4: Table of optimization parameters.

Name Description Objective Constraint Sensitive
variable

FRes Restoring force of
the beam

FRes should be large
enough to be able to re-
cover the origin position of
the mirror.

poly,msux

VPI Pull-in voltage Minimize VPI VPI ≤ 140V poly,msux
Ang Tilt angle of the

mirror
Ang should be close to 200. Ang ≥ 180 poly,mstx, epiz

Oos On-Off speed Minimize Oos Oos ≤ 2KHz mz

Table 2.5: Table of objectives.

Design Variable Initial Value Optimal value
poly 500 nm 400 nm

msux 60 µm 70.16 µm
Feature

VPI 115.2 V 74.4 V

Table 2.6: The initial values of poly, msux given to optimization procedure and the corre-
sponding VPI compared to their optimal results.

3
MODEL DERIVATION

3.1/ INTRODUCTION

This chapter is devoted to modeling of a micro-mirror array. A full model should include
the same physical phenomena as those taken into account in the previous chapters.
However, the reported work covers only a part of them. For a first approach, modeling
the electrostatic field presents more interest than modeling the elastic deformations. Ac-
tually, cross-talk between cells is significantly more present through the electrical field
than through the elastical deformations. Given the thiness of the supporting beam and
the stiffness of the pillars, the mechanical influence on the neighbouring cells of a mirror
tilt is significantly less than the electrical influence.

Thus, in this chapter, we introduce a two-scale models for the electrical field occurring in
one- and two-dimensional arrays with a method of proof that follows as much as possible
the reference proof implemented in MEMSALab so that it can be expressed as extensions
and their combination.

Here, the special feature of the model to be taken into account as an extension is that the
electrical potential φ is imposed at several (two in this case) positions in each cell. The dif-
ference of the imposed electrical potentials is assumed in the range of 1 compared to the
ratio ε of the cell length and the array length. Therefore, an a priori estimate shows that
φ and the scaled electrical field εE = −ε∇φ are uniformly bounded in ε. Similar estimates
were encountered in the homogenization of the high frequency part of a spectral problem
and of the wave equation analyzed by Nguyen Thi Trang in her thesis [Nguyen, 2014].
The analysis were carried out using a very weak formulation instead of a weak formula-
tion. The requirement of this approach is only the weak convergence of φ when ε goes
to zero. It turns out that the two-scale limit φ0 of φ is depending on both the macroscopic
and the microscopic variables and satisfies periodic boundary conditions.

In the operational regime, the actuation voltage source is piecewise constant. Precisely,
the illuminated parts are actuated with a constant voltage when the others are not. There-
fore, only two cell configurations are useful and then only two cell solutions, each de-
pending only on the microscopic variable. Due to the periodicity conditions, the electrical
potential is continuous at the interface between cells having the same mirror actuation.
However, it is discontinuous at the interface between regions with different actuation.
This model weakness is fixed by introducing boundary layer terms. The same solution is
brought to insure that the nominal boundary condition are satisfied at the external lateral
boundary of the array. Despite the shortage of time, the boundary layer models are not

31

32 CHAPTER 3. MODEL DERIVATION

given in the two-dimensional array case.

As already said, the proof is carried out with the same tools of two-scale convergence
as the reference proof in MEMSALab. However, since the convergence of the gradient
is not necessary when using the very weak formulation, the proof length is significantly
reduced. Precisely, the first part of our proof, before introduction of the boundary layer, is
similar to the lemmas that built the two-scale weak formulation and its interpretation. An
effort has been made to derive the boundary layer problem in a similar way.

We expect that this approach based on the very weak formulation and boundary layers
can be extended to take into account the elasticity and thermal fields. Indeed, for these
two problems the fields have imposed values in each cell: the structure is clamped to
the base and the base is a thermal sink. It is also worthwhile to mention that the non
linearities due to the suspending beams and the electrostatic forces are local to the cell
and we do not expect that they have a significant influence on the model structure.

3.2/ ONE AND TWO-DIMENSIONAL ARRAYS

3.2.1/ THE GOVERNING EQUATIONS

This subsection is dedicated to the derivation of a two-scale model of the electrostatic
field in the two-dimensional Micro Mirror Array (MMA). The description of the physical
phenomena was done in Section 1.2. Our framework uses the same approach as in
[Yang, 2014] and [Lenczner, 2007], in order to facilitate its implementation as an extension
of proof used in MEMSALab.

Let Ω = Ωmec ∪Ωvac be the domain occupied by the mechanical body and the surrounding
vacuum. It is divided into n1×n2 cells, where n1, n2 ∈ N∗. Each cell is denoted by Ωc where
c = (c1, c2) is a multi-indices with c1 ∈ {1, ..., n1} and c2 ∈ {1, ..., n2}. In a cell Ωc, we denote
the upper conductor, the lower conductor and the vacuum domain with the notations Ωcond

1,c ,
Ωcond

2,c and Ωvac
c respectively. Their unions over all cells are denoted by Ωcond

1 := ∪cΩ
cond
1,c ,

Ωcond
2 = ∪cΩ

cond
2,c and Ωvac = ∪cΩ

vac
c . The internal boundary of Ωvac is defined as the union

of all the boundaries of the conductors Γvac
int = ∂Ωvac

int = ∂Ωcond
1 ∪ ∂Ωcond

2 , while the external
boundary is the union of the lateral boundaries, the upper surfaces and the lower surfaces
Γvac

ext = Γvac
lat ∪ Γvac

+∪−. The array is shown in Figure 3.1. The domain Ωvac is also divided into
two parts Ωvac,1 and Ωvac,2 that refer to two different imposed voltages V1 and V2. Each
voltage field Vα, α ∈ {1, 2}, takes constant values Vα

1 and Vα
2 on ∂Ωcond

1 and ∂Ωcond
2 . The

interface between these two parts is denoted by Γvac
inter f . The governing equations of the

electric potential φ in the vacuum domain Ωvac is given as
−∂xi

(
ε∂xiφ

)
= 0 in Ωvac

φ = V on Γvac
int

∂xiφni = 0 on Γvac
ext

. (3.1)

Moreover, on the interface

φ|Ωvac,1 = φ|Ωvac,2 and ∂xiφ|Ωvac,1n1
i = −∂xiφ|Ωvac,2n2

i on Γvac
inter f

where ε is the electrical permittivity in vacuum, V is a single notation to represents the
two fields Vα and nαi are unit outward normal vectors of Ωvac,α. The weak formulation is

3.2. ONE AND TWO-DIMENSIONAL ARRAYS 33

written with the functional spaces,

H1
Γvac

int ,V
(
Ωvac) =

{
v ∈ H1 (

Ωvac) | v = V on Γvac
int

}
, and (3.2)

H2
Γvac

int ,Γ
vac
ext

(
Ωvac) =

{
v ∈ H1 (

Ωvac) | v = 0 on Γvac
int , ∇v · n = 0 on Γvac

ext

}
. (3.3)

Multiplying the internal equation of (3.1) by the test function v ∈ H1
Γvac

int ,0
(Ωvac), integrating

over the domain Ωvac and applying the Green formula, we get the weak formulation∫
Ωvac

∂φ

∂xi

∂v
∂xi

dx = 0 (3.4)

which has a unique solution φ ∈ H1
Γvac

int ,V
(Ωvac). The very weak formulation is derived by

choosing v ∈ H2
Γvac

int ,Γ
vac
ext

(Ωvac). Applying the Green formula,∫
Ωvac

φ
∂

∂xi

∂v
∂xi

dx =

∫
Γvac

int

V
∂v
∂xi

ni ds (x) . (3.5)

We do not further discuss the existence and uniqueness of its solution φ in L2(Ωvac), since
to we consider the weak solution is sufficient for our purpose.

3.2.2/ GLOBAL SCALING

We denote by L1, L2 and L3 the width, the length and the thickness of Ω while `1, `2 and
`3 represent the corresponding sizes of Ωc. The small parameter ε is the inverse of the
largest number of cells in the two directions x1 and x2. In other words, it is the smallest
ratio minα∈{1,2} `α/Lα. The asymptotic model is obtained by passing to the limit when ε→ 0.

We use the usual big O notation, f (ε) = O (g (ε)) for ε ∈ S iff there exists a constant c > 0
such that | f (ε) | ≤ c|g (ε) | for all ε ∈ S . Writing f (ε) = O (g (ε)) when ε → ε0 is meaning
that there exists a constant δ > 0 such that f (ε) = O (g (ε)) for all ε such that |ε − ε0| ≤ δ.

For instance,
`i

Lα
∼ ε ∀i ∈ {1, 2, 3} and α ∈ {1, 2} . (3.6)

Since the lengths Lα are very small, and generally even smaller than ε, it is convenient
to scale the domains Ω and Ωc by their order of magnitude L (here L = 10−5) yielding the
scaled domains Ω̂ε and Ω̂ε

c. We introduce ε in the notation of the scaled geometries to
make explicit their dependency on the order of magnitude, for instance, the thickness of
the array are in the range of ε. The scaled sizes and variables is denoted

L̂i =
Li

L
, ̂̀i =

`i

L
and x̂εi =

1
L

xi ∈ Ω̂ε ∀i ∈ {1, 2, 3} (3.7)

where x ∈ Ω. Evidently, the ratio ε is conserved through this transformation, namely
ε = minα∈{1,2} ̂̀α/L̂α. For the sake of simplicity of the presentation, we assume1 that ̂̀i = ε,
∀i. Then, the size of the scaled array and cell are

|Ω̂ε| =
∏

i
L̂i = ε and |Ω̂ε

c | =
∏

i
̂̀i = ε3. (3.8)

1 The derivation in the general case follows the same principle.

34 CHAPTER 3. MODEL DERIVATION

The vacuum permittivity (ε0 = 0.885× 10−11 Fm−1) is introduced as a scaling of the permit-
tivity and of the potentials φ and V,

ε̂ =
ε

ε0
, φ̂ε =

√
ε0

L
φ and V̂ε =

√
ε0

L
V (3.9)

leading to the scaled electric field (1.4), Êelec,ε =
√
ε0Eelec. The electrostatic force (1.3),

f̂elec,ε = f̂elec is left unchanged. Therefore, the weak formulation of the elasticity system is
also left unaffected∫

Ω̂ε,m

[
λεkk

(̂
uε

)
εqq

(
ŵε) + 2µεi j

(̂
uε

)
εi j

(
ŵε)] dx̂ε =

∫
Γ̂
ε,m
1

f̂ elec,ε
i ŵε

i ds
(
x̂ε

)
,∀ŵε

i ∈ H1
Γ̂
ε,m
0

(
Ω̂ε

Mir

)
,

(3.10)
where ûεi = ui/L and ŵε

i = wi/L. The scaled system (3.1) is thus
−∂x̂εi

(̂
ε∂x̂εi

φ̂ε
)

= 0 in Ω̂ε,vac

φ̂ε = V̂ε on Γ̂
ε,vac
int

∂x̂εi
φ̂εnεi = 0 on Γ̂

ε,vac
ext

, (3.11)

when the scaled weak form (3.4) and the very weak form (3.5) are∫
Ω̂ε,vac

∂φ̂ε

∂x̂εi

∂̂vε

∂x̂εi
dx̂ε = 0, (3.12)

where v̂ε ∈ H1
Γ̂
ε,vac
int ,0

(
Ω̂ε,vac

)
, and

∫
Ω̂ε,vac

φ̂ε
∂

∂x̂εi

∂̂vε

∂x̂εi
dx̂ε =

∫
Γ̂
ε,vac
int

V̂ε ∂̂vε

∂x̂εi
nεi ds

(
x̂ε

)
(3.13)

where v̂ε ∈ H2
Γ̂
ε,vac
int ,̂Γε,vac

ext

(
Ω̂ε,vac

)
.

3.2.3/ TWO-SCALE TRANSFORM FOR A THIN REGION

In this section, we recall the two-scale transform operators or unfolding operators for
internal and boundary layer approximations. The definitions are taken and adapted from
[Lenczner et al., 2007], [Yang, 2014] and [Nguyen, 2014]. It is illustrated in Figure 3.2.
The two-scale model of the micro-mirror array will be derived from the scaled system
presented in Section 3.2.2. Besides, for simplification purpose, the hat on each scaled
notation will be removed, for examples, Ω̂ε will be replaced by Ωε, x̂ε by xε, etc. For
the asymptotic model derivation, we assume (without proof) the uniform estimate on the
solution

1
|Ωε,vac|

||φε||L2(Ωε,vac) ≤ C (3.14)

where C is a constant independent of ε. Hereafter, we distinguish between the cases of
a two-dimensional array and a one-dimensional array.

Two-dimensional array : Considering an arbitrary cell Ωε
c of the two-dimensional array

with c = (c1, c2), any xε ∈ Ωε
c satisfies xεα ∈ ((cα − 1) ε, cαε) for α ∈ {1, 2} and xε3 ∈ (0, ε).

Let xε,c be the center of Ωε
c, i.e. xε,cα = (cα − 1) ε + ε/2 and xε,c3 = ε/2. We introduce the

expanded and shifted cell Ω1 defined by x1 := ε−1 (xε − xε,c) ∈ Ω1 for xε ∈ Ωε
c. The domain

3.2. ONE AND TWO-DIMENSIONAL ARRAYS 35

Figure 3.1: A two-dimensional and a one-dimensional micro-mirror arrays with their sur-
rounding vacuum domain, Ω̂ε = Ω̂ε,vac ∪ Ω̂m,ε. The domain Ω̂ε is divided into two parts
Ω̂ε,vac,1 and Ω̂ε,vac,2 corresponding to the two different voltages. They are separated by the
interface Γ̂

ε,vac
inter f . The scaling assumptions on the size of each cell and of the array are

also represented.

Ω1 is called the microscopic domain and is free from ε : Ω1 =] − 1/2, 1/2[3. Its boundary
is split into the external boundary and the internal boundary, i.e. ∂Ω1 = Γ1

ext ∪ Γ1
int. The

external boundary includes the lateral boundary and the upper and the lower boundaries,
i.e. Γ1

ext = Γ1
per ∪ Γ1

+∪−. The internal boundary includes the boundaries of the two scaled
conductors, i.e. Γ1

int = ∂Ω
1,cond
1 ∪ ∂Ω

1,cond
2 . Then, we introduce the macroscopic domain

Ω] = (0, L1) × (0, L2) that can be divided into n1 × n2 cells as Ωε, Ω# = ∪cΩ
#
c . The set

of variable indices in Ωε and Ω] are denoted I = {1, 2, 3} and I] = {1, 2}. The physical
domain, the macroscopic domain and the microscopic domain are represented in Figure
3.2 and their sizes are computed as

|Ω#| = 1, |Ω#
c | = ε2 and |Ω1| = 1. (3.15)

One-dimensional array : The domain Ωε is divided into n ∈ N∗ cells Ωε
c for c ∈ {1, ..., n}.

The coordinates xε in a cell Ωε
c satisfy xε1 ∈ ((c − 1) ε, cε) while xε2 and xε3 ∈ (0, ε). Therefore,

the coordinates of the center xε,c of a cell are xε,c1 = (c − 1) ε + ε/2 and xε2 = xε3 = ε/2. The
microscopic domain Ω1 is defined by x1 := ε−1 (xε − xε,c) ∈ Ω1,∀xε ∈ Ωε

c. Consequently,
−1/2 < x1

i < 1/2,∀i ∈ {1, 2, 3}. The domain Ω1 has its boundary ∂Ω1,vac split into Γ1
int ∪

Γ
1,vac
+∪− ∪ Γ

1,vac
per ∪ Γ

1,vac
lat where Γ1

int = Γ
1,cond
1∪2 and Γ

1,vac
lat is the remaining part. The macroscopic

domain is Ω] = (0, L1), the projection of Ωε on the line generated by the first unit vector
e1 of the frame. Then, the indices of the coordinates in Ωε and Ω] vary in I] = {1} and
I = {1, 2, 3}. Figure 3.3 summarizes these domains which order of magnitude in powers
of ε are

|Ωε| = ε2, |Ωε
c | = ε3, |Ω]| = 1, |Ω]

c| = ε and |Ω1| = 1. (3.16)

Boundary Layers: The boundary layer models, which are derived for the one-
dimensional array only, require further notations. The two ends of Ωε are denoted Γεend,0
and Γεend,L1

. The boundary layer cell is introduced as Ω1,+∞ which is defined by shifting and
reproducing Ω1 in the direction of positive x1

1 by a vector (p + 1/2, 1/2, 1/2)T for p = 1, ...,∞.
Precisely, Ω1,+∞ = ∪+∞

p=0Ω
1,+∞
p where Ω

1,+∞
p = Ω1 + (p + 1/2, 1/2, 1/2)T . The domain Ω1,+∞

36 CHAPTER 3. MODEL DERIVATION

with detailed notations regarding its boundary can be found in Figure 3.4. This boundary
layer cell is later used in Definition 2 to define both T 0

b and T L1
b because of the symmetry

in the desgin of each cell.

One-dimensional array with interface : We recall that the domain Ωε is divided into
two parts Ωε,1 and Ωε,2 distinguished by their imposed voltages Vα and that their interface
is Γ

ε,vac
inter f at Lm

1 . The domain and its related notations are shown in Figure 3.3. In order
determine the contribution of the boundary layer at the interface, another boundary layer
cell Ω1,∞ is defined as the repetition of Ω1 which is moved by (1/2, 1/2, 1/2) in the two
directions of negative and positive x1

1. Precisely, Ω1,∞ = ∪+∞
q=−∞Ω

1,∞
q where Ω

1,∞
q = Ω1 +

(q + 1/2, 1/2, 1/2). The domain is represented in Figure 3.5.

The two-scale transform : The two-scale transform operator T or unfolding operator is
defined as in Definition 1 and shown in Figures 3.2, and 3.3.

Definition 1: Definition of T

The two-scale operator T : L2 (Ωε) → L2
(
Ω] ×Ω1

)
is defined for any u ∈ L2 (Ωε)

by

Tu(x], x1) =
∑

c

χΩε
c (x])u(xε,c + εx1) for all x] ∈ Ω] and x1 ∈ Ω1, (3.17)

where χ is the characteristic function.

The two-scale transform operator Tϑ
b for boundary layers at the two ends and T inter f

b for
the interface of the one-dimensional array having two parts of different applied voltages
are defined in Definition 2 and shown in Figures 3.4 and 3.5.

Definition 2: Definition of Tϑ
b and T inter f

b

Let ϑ ∈ {0, L1} , the boundary layer two-scale transform operators Tϑ
b : L2 (Ωε) →

L2
(
Ω1,+∞

)
are defined ∀u ∈ L2 (Ωε) ,∀x1 ∈ Ω1,+∞ by

T 0
b u

(
x1

)
= u

(
εx1

)
χ(0,Lm

1 /ε)
(
x1

1

)
and T L1

b u
(
x1

)
= u

(
L1 − εx1

1, εx1
2, εx1

3

)
χ(0,(L1−Lm

1)/ε)
(
x1

1

)
.

(3.18)
The interface two scale transform operator T inter f

b : L2 (Ωε)→ L2
(
Ω1,∞

)
is defined

∀u ∈ L2 (Ωε,vac) ,∀x1 ∈ Ω1,∞ by

T inter f
b u

(
x1

)
= u

(
Lm

1 + εx1
1, εx1

2, εx1
3

)
χ(−Lm

1 /ε,(L1−Lm
1)/ε)

(
x1

1

)
. (3.19)

3.2. ONE AND TWO-DIMENSIONAL ARRAYS 37

Figure 3.2: The mechanical body of a two-dimensional array and its surrounding vac-
uum Ωε, the macroscopic domain Ω] = (0, L1) × (0, L2) and the microscopic domain
Ω1 = ε−1 (

Ωε
c − xεc

)
. The boundary Γvac

+∪− are the upper and lower surface of Ωε,vac. The
boundary Γvac

lat is the union of all lateral boundaries of Ωε,vac. The boundary Γ
1,vac
per on which

the periodic boundary condition will be imposed is shown in blue. In this case, it is all
lateral boundaries of Ω1. The boundary Γ

1,vac
+∪− is the union of the upper and lower surfaces

of Ω1,vac. The operator T transforms a function defined in Ωε into a function defined in the
two-scale domain Ω] ×Ω1.

Figure 3.3: The physical domain Ωε is divided into Ωε,1 and Ωε,2 by the interface Γ
ε,vac
inter f at

Lm
1 , the macroscopic domain Ω] = (0, L1) and the microscopic domain Ω1 = ε−1 (

Ωε
c − xεc

)
.

The operator T transfers a function defined in Ωε into a function defined in the two scale
domain Ω] ×Ω1.

38 CHAPTER 3. MODEL DERIVATION

Figure 3.4: The physical domain Ωε and the boundary layer cell Ω1,+∞ = ∪+∞
p=0Ω

1,+∞
p . The

notation Γ
ε,vac
end,0∪L1

represent the boundaries at the two ends of Ωε,vac. The boundary of
the domain Ω1,vac,+∞ is defined similarly as this of Ωε,vac. The internal boundaries where
Dirichlet conditions are imposed are denoted by Γ

1,vac,+∞
int . It is the union of all internal

boundaries of each cell Γ
1,vac,+∞
int,p . The external boundary Γ

1,vac,+∞
ext is the union of the upper

and lower surfaces Γ
1,vac,+∞
−∪+ , of the boundary at the ends Γ

1,vac,+∞
end,0 and Γ

1,vac,+∞
end,L1

and of the
lateral boundaries Γ

1,vac,+∞
lat . The operator Tϑ

b transforms a function defined in Ωε into a
function defined in Ω1,+∞.

3.2. ONE AND TWO-DIMENSIONAL ARRAYS 39

Figure 3.5: The physical domain Ωε has two different parts Ωε,1 and Ωε,2 and the boundary
layer cells Ω1,∞ = ∪+∞

q=−∞Ω
1,∞
q . The notation Γ

ε,vac
inter f represents the interface at Lm

1 , and it

becomes Γ
1,vac,∞
inter f after scaling. The internal boundary Γ

1,vac,∞
int is the union of all internal

boundaries of all cells Γ
1,vac,∞
int,q . The external boundary is the combination of the upper and

lower surface Γ
1,vac,∞
+∪− and the lateral boundary Γ

1,vac,∞
lat . The operator T inter f

b transforms a
function defined in Ωε into a function defined in Ω1,∞.

The functions φε and Vε satisfy the following assumptions.

Assumption 1: Two-scale weak convergence of φε

We assume that ∃φ0 ∈ L2
(
Ω] ×Ω1

)
such as

Tφε ⇀ φ0 in L2
(
Ω] ×Ω1

)
. (3.20)

Assumption 2: Two-scale weak convergence of Vε

We assume that ∃V0 ∈ L2
(
Ω] × Γ1

int

)
piecewise constant such as

TVε ⇀ V0 in L2
(
Ω] × Γ1

int

)
. (3.21)

Definition 3: Boundary layer terms

Let φεb and Vε
b ∈ L2 (Ωε) be the boundary layer terms of φε and of Vε such as

φεb
(
xε

)
= φε

(
xε

)
− Bφ0 (

xε
)

and Vε
b
(
xε

)
= Vε (xε) − BV0 (

xε
)

(3.22)

where φ0 and V0 are weak limits of Tφε and TVε in L2
(
Ω] ×Ω1

)
presented in

Assumptions 1, 2 and B is defined in Definition 5.

40 CHAPTER 3. MODEL DERIVATION

Assumption 3: Boundary layer two-scale convergence assumption on φεb

We assume that ∀ϑ ∈ {0, L1} , ∃φ
ϑ
b ∈ L2

(
Ω1,+∞

)
and ∃φinter f

b ∈ L2
(
Ω1,∞

)
such that

Tϑ
b φ

ε
b ⇀ φϑb in L2

(
Ω1,+∞

)
and (3.23)

T inter f
b φεb ⇀ φ

inter f
b in L2

(
Ω1,∞

)
. (3.24)

Assumption 4: Boundary layer two-scale convergence assumption on Vε
b

We assume that ∀ϑ ∈ {0, L1} , ∃Vϑ
b ∈ L2

(
Γ

1,+∞
int

)
and ∃V inter f

b ∈ L2
(
Γ

1,∞
int

)
such that

Tϑ
b Vε

b ⇀ Vϑ
b in L2

(
Γ

1,+∞
int

)
and (3.25)

T inter f
b Vε

b ⇀ V inter f
b in L2

(
Γ

1,∞
int

)
. (3.26)

3.2.4/ STATEMENT OF THE TWO-SCALE MODEL

Let φε be the solution of the very weak formulation (3.5) satisfying the uniform bound
(3.14) and Assumption 1, Vε satisfying Assumption 2, φϑb , Vε

b (xε) the boundary layer terms
defined in Definition 3 satisfying Assumptions 3, 4, and φinter f

b introduced as in Assumption
3 which corrects the interface of the array. The asymptotic models are stated as follows.
For one and two-dimensional arrays, the models are ∀x] ∈ Ω],



−divx1

(
∇x1φ0

)
= 0 in Ω1,vac

φ0 = V0 on Γ
1,vac
int

∇x1φ0 · n1 = 0 on Γ
1,vac
+∪− ∪ Γ

1,vac
lat

∇x1φ0 · n1 is Γ
1,vac
per -anti-periodic

φ0 is Γ
1,vac
per -periodic

, (3.27)

where Γ
1,vac
lat = ∅ in the case of two-dimensional array. For boundary layers at the two ends

of the one-dimensional array, the models are ∀ϑ ∈ {0, L1}
−divx1

(
∇x1φϑb

)
= 0 in Ω1,vac,+∞

φϑb = Vϑ
b on Γ

1,vac,+∞
int

∇x1φϑb · n
+∞ = 0 on Γ

1,vac,+∞
lat ∪ Γ

1,vac,+∞
+∪−

∇x1φϑb · n
+∞ = −∇x1φ0

(
ϑ, x1

)
· n+∞ on Γ

1,vac,+∞
end,ϑ

. (3.28)

Finally, for the boundary layer at the interface of the one-dimensional array, the model is



−divx1

(
∇x1φ

inter f
b

)
= 0 in Ω1,vac,∞

φ
inter f
b = V inter f

b on Γ
1,vac,∞
int

∇x1φ
inter f
b · n∞ = 0 on Γ

1,vac,∞
lat ∪ Γ

1,vac,∞
+∪−

[[∂x1
1

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

)
]] = 0 on Γ

1,vac,∞
inter f

[[φ0
(
Lm

1 , x
1
)

+ φ
inter f
b]] = 0 on Γ

1,vac,∞
inter f

, (3.29)

where [[f (x)]] is the ”jump” of f (x) at the interface. The proofs are presented latter in this
section after all properties regarding to the two-scale transform method have been stated.

3.2. ONE AND TWO-DIMENSIONAL ARRAYS 41

3.2.5/ PROPERTIES OF THE TWO-SCALE TRANSFORM

We introduce the average over a domain A, which means |A| by
∮

A f (x) dx = |A|−1
∫

A f (x) dx
as well as the related L2 norm ||| f |||2

L2(A) =
∮

A | f (x) |2 dx. The index set I] used in the
following work can be {1, 2} or {1} and depends on either the two-dimensional array or
one-dimensional array is being considered. We recall some well known properties of T
∀u, v ∈ L2 (Ωε)

∀i ∈ I : T
(
∂xεi u

)
= ε−1

(
∂x1

i
Tu

)
, |||Tu|||2L2(Ω]×Ω1) = |||u|||2L2(Ωε),

∮
Ω]×Ω1

Tu
(
x], x1

)
dx]dx1 =

∮
Ωε

u
(
xε

)
dxε, (3.30)

TuTv = T (uv) and T (u + v) = Tu + Tv. (3.31)

As T is a bounded linear operator from L2 (Ω) to L2
(
Ω] ×Ω1

)
, its adjoint is a bounded

linear operator defined in the following Definition.

Definition 4: Adjoint of T

The adjoint T ∗ : L2
(
Ω] ×Ω1

)
→ L2 (Ωε) is defined ∀u ∈ L2 (Ωε) ,∀v ∈ L2

(
Ω# ×Ω1

)
and ∀w ∈ L2

(
Ω# × Γ1

int

)
by∮

Ωε

T ∗ (v)
(
xε

)
u
(
xε

)
dxε =

∮
Ω]×Ω1

v
(
x], x1

)
Tu

(
x], x1

)
dx]dx1 and (3.32)

∮
Γεint

T ∗wi
(
xε

)
u
(
xε

)
nεi ds

(
xε

)
=

∮
Ω]×Γεint

wi
(
x], x1

)
Tu

(
x], x1

)
n1

i dx]ds
(
xε

)
.

The notation T ∗ is used when the adjoint operators are operating on v and w which are
defined on different domains because they have the same properties in the two cases. For
the sake of simplicity, the same thing will be applied to the operators B, Bϑb , Bin f a

b , Tϑ
b and

T in f a
b which are defined latter. The operator T ∗ satisfies ∀u ∈ L (Ωε) ,∀v ∈ L2

(
Ω] ×Ω1

)
:

T ∗(Tu)(xε) = u(xε) and

T ∗v
(
xε

)
=

1

|Ω
]
c|

∫
Ω
]
c

v
(
x],

xε − xε,c

ε

)
dx]. (3.33)

The image T ∗v is not a regular functions. The operator B defined here after yields regular
functions Bv.

Definition 5: Operator B

The operator B : L2
(
Ω] ×Ω1

)
→ L2 (Ωε) , is defined by ∀v ∈ L2

(
Ω] ×Ω1

)
Bv(xε) = v

(
P]

(
xε

)
,

xε − xε,c

ε

)
, (3.34)

where P](xε) is the projection of Ωε onto Ω].

42 CHAPTER 3. MODEL DERIVATION

If v is Ω1-periodic in the x1-direction which means v
(
x], x1

1 + z, x1
2, x

1
3

)
= v

(
x], x1

)
∀z ∈ Z, we

have ε−1xε,c = ε−1 ((c − 1) ε + ε/2, ε/2, ε/2) = (c − 1/2, 1/2, 1/2) and

Bv
(
xε

)
= v

(
P]

(
xε

)
,

xε1
ε
− (c − 1) −

1
2
,

xε2
ε
−

1
2
,

xε3
ε
−

1
2

)
= v

(
P]

(
xε

)
,

xε1
ε
−

1
2
,

xε2
ε
−

1
2
,

xε3
ε
−

1
2

)
= v

(
P]

(
xε

)
,

xε

ε
−

(
1
2
,

1
2
,

1
2

))
.

For simplicity, we denote P] (xε) = x] in the following work.

Proposition 1: Properties of B

The operator B satisfies

(i) ∀v ∈ L2
(
Ω] ×Ω1

)
, ∀i ∈ I = {1, 2, 3}

∂Bv
∂xεi

= χI] (i) B

 ∂v

∂x]i

 +
1
ε

B
 ∂v
∂x1

i

 . (3.35)

(ii) ∀u ∈ L2
(
Ω] ×Ω1

)
: T (Bu)

(
x], x1

)
= u

(
x], x1

)
.

Proof. We only prove the case of two-dimensional arrays. The proof of one dimensional
case is similar. The first point is proven by applying the chain rule to (3.34). The second
point is proven by applying the Definitions 1, 5, we obtain

T (Bv) =
∑

c

χΩε
c (x])Bv(xε,c + εx1) =

∑
c

χΩε
c (x])v

(
xε,c + εx1,

xε,c + εx1 − xε,c

ε

)
=

∑
c

χΩε
c (x])v

(
xε, x1

)
= v

(
xε, x1

)
.

�

Proposition 2: Approximation between T ∗ and B

If the function v
(
x], x1

)
is continuous, continuously differentiable in x] and Ω1-

periodic in x1 then the first order approximation of B and T ∗ is given as

T ∗ (v) = B

v − ε∑
i∈I]

x1
i
∂v

∂x]i

 + εO (ε) or B (v) = T ∗
v + ε

∑
i∈I]

x1
i
∂v

∂x]i

 + εO (ε) , (3.36)

where O(ε) tends to 0 in the strong sense.

Proof. We recall the property of T ∗

T ∗v
(
xε

)
=

1
ε2

∫
Ω
]
c

v
(
z],

xε − xε,c

ε

)
dz].

3.2. ONE AND TWO-DIMENSIONAL ARRAYS 43

Applying Taylor expansion for the first variable of v, the above equation becomes

=
1
ε2

∫
Ω
]
c

v (
x],

xε − xε,c

ε

)
+

∑
α

(
z]α − x]α

) ∂v

∂x]α

(
x],

xε − xε,c

ε

)
+ εO (ε)

 dz]

=
1
ε2

∫
Ω
]
c

v
(
x],

xε − xε,c

ε

)
dz] +

1
ε2

∑
α

∂v

∂x]α

(
x],

xε − xε,c

ε

) ∫
Ω
]
c

(
z]α − x]α

)
dz] +

1
ε2

∫
Ω
]
c

εO (ε) dz].

Since ∫
Ω
]
c

z]α − x],cα dz] =

∫
Ω
]
(1,1)

z]α − x],cα dz] = 0, and x]α − x],cα = ε
x]α − x],cα

ε
= εx1

α,

and the second integral is calculated as∫
Ω
]
c

(
z]α − x]α

)
dz] =

∫
Ω
]
c

(
z]α − x],cα + x],cα − x]α

)
dz] =

∫
Ω
]
c

z]α − x],cα dz] −
∫

Ω
]
c

x]α − x],cα dz]

= −ε2
(
x]α − x],cα

)
= −ε3x1

α,

Then

T ∗v
(
xε

)
= v

(
x],

xε − xε,c

ε

)
− ε

∑
α

x1
α

∂v

∂x]α

(
x],

xε − xε,c

ε

)
+ εO (ε) , or

T ∗v
(
xε

)
= Bv − ε

∑
α

x1
αB

∂v

∂x]α
+ εO (ε) = B

v − ε∑
α

x1
α

∂v

∂x]α

 + εO (ε) .

Conversely, we have

Bv = T ∗v + ε
∑
α

x1
αB

∂v

∂x]α
+ εO (ε) = T ∗v + ε

∑
α

x1
αT ∗

 ∂v

∂x]α

 + εO (ε)

= T ∗
v + ε

∑
α

x1
α

∂v

∂x]α

 + εO (ε) .

�

Now, let us recall elementary properties of boundary layer two-scale transform at the ends
Tϑ

b : ∀u, v ∈ L2 (Ωε) ,

Tϑ
b (uv) = Tϑ

b (u) Tϑ
b (v) and

ε2

|Ωε|

∫
Ω1,+∞

Tϑ
b u

(
x1

)
dx1 =

1
ε

∮
Ωε

u
(
xε

)
dxε.

The boundary layer two-scale transform operator at the interface T inter f
b satisfies: ∀u ∈

L2 (Ωε) ,
ε2

|Ωε|

∫
Ω1,∞

T inter f
b u

(
x1

)
dx1 =

1
ε

∮
Ωε

u
(
xε

)
dxε. (3.37)

Their adjoint operators are defined in the following Definition.

44 CHAPTER 3. MODEL DERIVATION

Definition 6: Adjoint operators of Tϑ
b and T inter f

b

The adjoint operator Tϑ∗
b : ∀ϑ ∈ {0, L1} , the adjoint operators Tϑ∗

b : L2
(
Ω1,+∞

)
→

L2 (Ωε) are defined ∀u ∈ L2 (Ωε) , ∀v ∈ L2
(
Ω1,+∞

)
and w ∈ L2

(
Γ

1,+∞
int

)
by

1
ε

∮
Ωε

u
(
xε

)
Tϑ∗

b v
(
xε

)
dxε =

ε2

|Ωε|

∫
Ω1,+∞

Tϑ
b u

(
x1

)
v
(
x1

)
dx1 and (3.38)

1
ε

∮
Γεint

u
(
xε

)
Tϑ∗

b wi
(
xε

)
nεi ds

(
xε

)
=

ε

|Γεint|

∫
Γ

1,+∞
int

Tϑ
b u

(
x1

)
wi

(
x1

)
n+∞

i ds
(
x1

)
, (3.39)

The adjoint operator T inter f ∗
b : L2

(
Ω1,∞

)
→ L2 (Ωε) is defined such as ∀u ∈

L2 (Ωε) , ∀v ∈ L2
(
Ω1,∞

)
and w ∈ L2

(
Γ

1,∞
int

)
by

1
ε

∮
Ωε

u
(
xε

)
T inter f ∗

b v
(
xε

)
dxε =

ε2

|Ωε|

∫
Ω1,∞

T inter f
b u

(
x1

)
v
(
x1

)
dx1 and (3.40)

1
ε

∮
Γεint

u
(
xε

)
T inter f ∗

b wi
(
xε

)
nεi ds

(
xε

)
=

ε

|Γεint|

∫
Γ

1,∞
int

T inter f
b u

(
x1

)
wi

(
x1

)
n∞i ds

(
x1

)
.

(3.41)

Definition 7: Operators Bϑb and Binter f
b

Let ϑ ∈ {0, L1} , the linear operator Bϑb : L2
(
Ω1,+∞

)
→ L2 (Ωε) are defined ∀v ∈

L2
(
Ω1,+∞

)
such as

B0
b (v)

(
xε

)
= v

(
xε

ε

)
and BL1

b (v)
(
xε

)
= v

(
L1 − xε1
ε

,
xε2
ε
,

xε3
ε

)
. (3.42)

The linear operator Binter f
b : L2

(
Ω1,∞

)
→ L2 (Ωε) is defined ∀v ∈ L2

(
Ω1,∞

)
such as

Binter f
b v

(
xε

)
= v

(
xε1 − Lm

1

ε
,

xε2
ε
,

xε3
ε

)
. (3.43)

These operators have the same properties as the operators T,T ∗ and B presented above.
However, to avoid confusions caused by new notations, we precise some important prop-
erties of Bϑb such as for all v ∈ L2

(
Ω1,+∞

)
and all i ∈ {1, 2, 3} we have

Tϑ∗
b v

(
xε

)
= Bϑb v

(
xε

)
χΩε,s(ϑ)

(
xε1

)
, where s (0) = 1 and s (L1) = 2 and (3.44)

Tϑ∗
b vi

(
xε

)
= (−1)χ{L1}(ϑ) Bϑb vi

(
xε

)
χΩε,s(ϑ)

(
xε1

)
. (3.45)

∂B0
bv

∂xεi

(
xε

)
=

1
ε

B0
b

 ∂v
∂x1

i

 (xε) and
∂BL1

b v

∂xεi

(
xε

)
= (−1)χ{1}(i)

1
ε

BL1
b

 ∂v
∂x1

i

 (xε) or in a compact form

∂Bϑb v

∂xεi
= C (ϑ, i)

1
ε

Bϑb

 ∂v
∂x1

i

 (xε) with C (ϑ, i) = (−1)χ{L1}
(ϑ)χ{1}(i) . (3.46)

The operator Binter f
b satisfies ∀v ∈ L2

(
Ω1,∞

)
,

T inter f ∗
b v

(
xε

)
= Binter f

b v
(
xε

)
and

3.2. ONE AND TWO-DIMENSIONAL ARRAYS 45

∂Binter f
b v

∂xεi

(
xε

)
=

1
ε

Binter f
b

 ∂v
∂x1

i

 (xε) . (3.47)

3.2.6/ PROPERTIES USED IN MODEL DERIAVATIONS

Proposition 3:

Assume that φ0 and V0 introduced in Assumptions 1, 2 are continuous in Ω̄1 =

Ω1 ∪ ∂Ω1 and x1
1−periodic, ∀ϑ ∈ {0, L1} we have

Tϑ
b Bφ0

(
x1

)
= φ0

(
ϑ, x1

)
+ O (ε) , (3.48)

T inter f
b Bφ0

(
x1

)
= φ0

(
Lm

1 , x
1
)

+ O (ε) , (3.49)

Tϑ
b BV0

(
x1

)
= V0

(
ϑ, x1

)
+ O (ε) , (3.50)

T inter f
b BV0

(
x1

)
= V0

(
Lm

1 , x
1
)

+ O (ε) , (3.51)

where B is the operator defined in Definition 5, Tϑ
b are defined in Definition 2 and

O (ε) strongly converges to 0 when ε goes to 0.

Proof. Consider the one-dimensional array, we know that each cell is denoted by
the index c ∈ {1, ..., n} , the center xε,c of each cell is related to the center x1,c =

(1/2 + c − 1, 1/2, 1/2) of Ω
1,+∞
c through the relation xε,c = εx1,c. In the case ϑ = 0, from

the definition of T 0
b and B, we get

T 0
b Bφ0

(
x1

)
= Bφ0

(
εx1

)
χ(0,L1/ε)

(
x1

1

)
= φ0

(
εx1

1,
εx1 − εx1,c

ε

)
χ(0,L1/ε)

(
x1

1

)
= φ0

(
εx1

1, x
1 − x1,c

)
χ(0,L1/ε)

(
x1

1

)
=

n−1∑
k=0

φ0
(
εx1

1, x
1 − x1,c

)
χ(k−1/2,k+1/2)

(
x1

1 − x1,c
1

)
.

For each x1
1 ∈ (0, L1/ε) , there exists k such that x1

1−x1,c
1 ∈ (k − 1/2, k + 1/2) , i.e. x1

1−x1,c
1 −k ∈

(−1/2, 1/2) . Thus,

T 0
b Bφ0

(
x1

)
= φ0

(
εx1

1, x
1 − x1,c

)
= φ0

(
εx1

1, x
1
1 − x1,c

1 − k + k, x1
2 − x1,c

2 , x1
3 − x1,c

3

)
.

Applying the assumptions of φ0, it becomes

T 0
b Bφ0

(
x1

)
= φ0

(
εx1

1, x
1
)

= φ0
(
0, x1

)
+ O (ε) .

Applying the same approach for the case ϑ = L1, we get

T L1
b Bφ0

(
x1

)
= Bφ0

(
L1 − εx1

1, εx1
2, εx1

3

)
χ(0,L1/ε)

(
x1

1

)
= φ0

L1 − εx1
1,

L1 − εx1
1 − εx1,c

1

ε
,
εx1

2 − εx1,c
2

ε
,
εx1

3 − εx1,c
3

ε

 χ(0,L1/ε)
(
x1

1

)
= φ0

(
L1 − εx1

1, n − x1
1 − x1,c

1 , x1
2 − x1,c

2 , x1
3 − x1,c

3

)
χ(0,n)

(
x1

1

)
.

46 CHAPTER 3. MODEL DERIVATION

Because of n − x1
1 − x1,c

1 ∈ (−1/2, n + 1/2) = ∪k=0,...,n−1(k − 1/2, k + 1/2] ∪ [n − 1, 1/2), there
exists k such that n− x1

1− x1,c
1 ∈ (k−1/2, k + 1/2) which leads to n− x1

1− x1,c
1 − k ∈ (−1/2, 1/2).

Thus

T L1
b Bφ0

(
x1

)
= φ0

(
L1 − εx1

1, n − x1
1 − x1,c

1 − k + k, x1
2 − x1,c

2 , x1
3 − x1,c

3

)
= φ0

(
L1 − εx1

1, n − x1
1 − x1,c

1 − k, x1
2 − x1,c

2 , x1
3 − x1,c

3

)
= φ0

(
L1 − εx1

1, x
1
)

= φ0
(
L1, x1

)
+ O (ε) .

From the Defintion 2 and Definition 5 , we get

T inter f
b Bφ0

(
x1

)
= Bφ0

(
Lm

1 + εx1
1, εx1

2, εx1
3

)
χ(−Lm

1 /ε,(L1−Lm
1)/ε)

(
x1

1

)
= φ0

Lm
1 + εx1

1,
Lm

1 + εx1
1 − εx1,c

1

ε
,
εx1

2 − εx1,c
2

ε
,
εx1

3 − εx1,c
3

ε

 χ(−Lm
1 /ε,(L1−Lm

1)/ε)
(
x1

1

)
= φ0

(
Lm

1 + εx1
1, n

m + x1
1 − x1,c

1 , x1
2 − x1,c

2 , x1
3 − x1,c

3

)
χ(−Lm

1 /ε,(L1−Lm
1)/ε)

(
x1

1

)
where Lm

1 /ε = nm is the number of cells of the left part of the array. Considering x1
1 ∈(

−Lm
1 /ε,

(
L1 − Lm

1

)
/ε

)
= (−nm, n − nm) , so that nm + x1

1 − x1,c
1 ∈ (−1/2, n − 1/2) = ∪k=0,...,n−2(k −

1/2, k+1/2]∪(n − 1 − 1/2, n − 1 + 1/2) . Therefore, ∃k0 ∈ {0, ..., n − 2} such that nm +x1
1−x1,c

1 ∈

(k0 − 1/2, k0 + 1/2) which leads to nm + x1
1 − x1,c

1 − k0 ∈ (−1/2, 1/2) and

T inter f
b Bφ0

(
x1

)
= φ0

(
Lm

1 + εx1
1, n

m + x1
1 − x1,c

1 − k0 + k0, x1
2 − x1,c

2 , x1
3 − x1,c

3

)
.

Applying the assumptions of φ0, we have

T inter f
b Bφ0

(
x1

)
= φ0

(
Lm

1 + εx1
1, n

m + x1
1 − x1,c

1 − k0, x1
2 − x1,c

2 , x1
3 − x1,c

3

)
= φ0

(
Lm

1 + εx1
1, x

1
)

= φ0
(
Lm

1 , x
1
)

+ O (ε) .

The remain points can be proved by following the same approach. �

Applying the operators Tϑ
b and T inter f

b to boundary layer terms Definition 3, we get

Tϑ
b φ

ε
(
x1

)
= Tϑ

b Bφ0
(
x1

)
+ Tϑ

b φ
ε
b

(
x1

)
, (3.52)

T inter f
b φε

(
x1

)
= T inter f

b Bφ0
(
x1

)
+ T inter f

b φεb

(
x1

)
, (3.53)

Tϑ
b Vε

(
x1

)
= Tϑ

b BV0
(
x1

)
+ Tϑ

b Vε
b

(
x1

)
, (3.54)

T inter f
b Vε

(
x1

)
= T inter f

b BV0
(
x1

)
+ T inter f

b Vε
b

(
x1

)
. (3.55)

Applying Proposition 3, the above equations become

Tϑ
b φ

ε
(
x1

)
= φ0

(
ϑ, x1

)
+ φϑb

(
x1

)
+ O (ε) , (3.56)

T inter f
b φε

(
x1

)
= φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

(
x1

)
+ O (ε) , (3.57)

Tϑ
b Vε

(
x1

)
= V0

(
ϑ, x1

)
+ Vϑ

b

(
x1

)
+ O (ε) , (3.58)

T inter f
b Vε

(
x1

)
= V0

(
Lm

1 , x
1
)

+ V inter f
b

(
x1

)
+ O (ε) . (3.59)

3.2. ONE AND TWO-DIMENSIONAL ARRAYS 47

3.2.7/ MODEL DERIVATIONS

Recall the scaled very weak formulation (3.13) with the simplified notations∮
Ωε,vac

φε
∂

∂xεi

∂vε

∂xεi
dxε =

1
|Ωε,vac|

∫
Γ
ε,vac
int

Vε ∂vε

∂xεi
nεi ds

(
xε

)
, (3.60)

where vε ∈ H1
Γ
ε,vac
int ,0

(Ωε,vac) ∩ H2
Γ
ε,vac
int ,Γε,vac

ext
(Ωε,vac).

Two-scale model derivation for a two-dimensional array : Replacing the test function
vε in (3.60) by Bw in which w = w0

(
x]

)
w1

(
x1

)
, w0 = ∂x]i

w0 = 0 on ∂Ω],vac and w1 is Ω1-
periodic, we get ∮

Ωε,vac
φε

∂

∂xεi

∂Bw
∂xεi

dxε =
1

|Ωε,vac|

∫
Γ
ε,vac
int

Vε ∂Bw
∂xεi

nεi ds
(
xε

)
. (3.61)

The first order and the second order partial derivative of Bw is obtained by applying Propo-
sition 1

∂

∂xεi

∂Bw
∂xεi

= B

χI] (i)
∂

∂x]i

∂w

∂x]i
+ χI] (i)

2
ε

∂

∂x]i

∂w
∂x1

i

+
1
ε2

∂

∂x1
i

∂w
∂x1

i

 ,
∂Bw
∂xεi

= B

χI] (i)
∂w

∂x]i
+

1
ε

∂w
∂x1

i

 .
Substituting these results in (3.61), we obtain∮

Ωε,vac
φεB

χI] (i)
∂

∂x]i

∂w

∂x]i
+ χI] (i)

2
ε

∂

∂x]i

∂w
∂x1

i

+
1
ε2

∂

∂x1
i

∂w
∂x1

i

 dxε (3.62)

=
1

|Ωε,vac|

∫
Γ
ε,vac
int

VεB

χI] (i)
∂w

∂x]i
+

1
ε

∂w
∂x1

i

 nεi ds
(
xε

)
.

Multiplying ε2 both sides, it becomes∮
Ωε,vac

φεB
 ∂

∂x1
i

∂w
∂x1

i

 dxε =
ε|Γε,vac|

|Ωε,vac|

∮
Γ
ε,vac
int

VεB
 ∂w
∂x1

i

 nεi ds
(
xε

)
+ O (ε)

= C
∮

Γ
ε,vac
int

VεB
 ∂w
∂x1

i

 nεi ds
(
xε

)
+ O (ε) ,

where C = ε|Γε,vac|/|Ωε,vac|. Approximating B by T ∗ with Proposition 2, and applying the
definition of T ∗, Definition 4, the left hand side becomes∮

Ωε,vac
φεB

 ∂

∂x1
i

∂w
∂x1

i

 dxε =

∮
Ωε,vac

φεT ∗
 ∂

∂x1
i

∂w
∂x1

i

 dxε + O (ε)

=

∮
Ω],vac×Ω1,vac

Tφε
∂

∂x1
i

∂w
∂x1

i

dx]dx1 + O (ε) ,

while the right hand side becomes

C
∮

Γ
ε,vac
int

VεB
 ∂w
∂x1

i

 nεi ds
(
xε

)
+ O (ε) = C

∮
Γ
ε,vac
int

VεT ∗
 ∂w
∂x1

i

 nεi ds
(
xε

)
+ O (ε)

= C
∮

Ω],vac×Γ
1,vac
int

TVε ∂w
∂x1

i

n1
i ds

(
x1

)
dx] + O (ε) ,

48 CHAPTER 3. MODEL DERIVATION

where n1 is unit outward normal vector in Ω1. The equation reads∮
Ω],vac×Ω1,vac

Tφε
∂

∂x1
i

∂w
∂x1

i

dx]dx1 = C
∮

Ω],vac×Γ
1,vac
int

TVε ∂w
∂x1

i

n1
i ds

(
x1

)
dx] + O (ε) .

Passing ε to 0, Assumptions 1 and 2 imply∮
Ω],vac×Ω1,vac

φ0 ∂

∂x1
i

∂w
∂x1

i

dx]dx1 = C
∮

Ω],vac×Γ
1,vac
int

V0 ∂w
∂x1

i

n1
i ds

(
x1

)
dx].

Applying Green formula twice, we get∮
Ω],vac×Ω1,vac

∂

∂x1
i

∂φ0

∂x1
i

w dx]dx1 −
1

|Ω],vac ×Ω1,vac|

∫
Ω]×∂Ω1,vac

∂φ0

∂x1
i

wn1
i ds

(
x1

)
dx] (3.63)

+
1

|Ω],vac ×Ω1,vac|

∫
Ω]×∂Ω1,vac

φ0 ∂w
∂x1

i

n1
i ds

(
x1

)
−C

∮
Ω],vac×Γ

1,vac
int

V0 ∂w
∂x1

i

n1
i ds

(
xε

)
dx] = 0.

Remind that w
(
x], x1

)
= w0

(
x]

)
w1

(
x1

)
, and if w1 = ∂x1w1n1

i = 0 on ∂Ω1,vac, the equation (
3.63) becomes ∮

Ω],vac

∮
Ω1,vac

w0
∫

Ω1,vac

 ∂

∂x1
i

∂φ0

∂x1
i

w1
 dx1

 dx] = 0,

and thus ∀x] ∈ Ω],
∂

∂x1
i

∂φ0

∂x1
i

= 0 in Ω1,vac. (3.64)

Decomposing (3.63) with ∂Ω1,vac = Γ
1,vac
int ∪ Γ

1,vac
+∪− ∪ Γ

1,vac
per and substituting (3.64) we get

−
1

|Ω],vac ×Ω1,vac|

∫
Ω]

∫
Γ

1,vac
int

∂φ0

∂x1
i

wn1
i ds

(
x1

)
+

∫
Γ

1,vac
+∪−

∂φ0

∂x1
i

wn1
i ds

(
x1

)
+

∫
Γ

1,vac
per

∂φ0

∂x1
i

wn1
i ds

(
x1

) dx]

+
1

|Ω],vac ×Ω1,vac|

∫
Ω]

∫
Γ

1,vac
int

φ0 ∂w
∂x1

i

n1
i ds

(
x1

)
+

∫
Γ

1,vac
+∪−

φ0 ∂w
∂x1

i

n1
i ds

(
x1

)
+

∫
Γ

1,vac
per

φ0 ∂w
∂x1

i

n1
i ds

(
x1

) dx]

−C
∮

Ω],vac×Γ
1,vac
int

V0 ∂w
∂x1

i

n1
i ds

(
xε

)
dx] = 0.

If w = 0 on Γ
1,vac
int ∪ Γ

1,vac
+∪− and ∂w/∂x1

i n1
i = 0 on Γ

1,vac
int ∪ Γ

1,vac
+∪− , it becomes

−

∫
Ω]×Γ

1,vac
per

∂φ0

∂x1
i

wn1
i ds

(
x1

)
dx] = 0,

applying the periodicity on Γ
1,vac
per of w1, we get ∀x] ∈ Ω],

∂φ0

∂x1
i

n1
i is Γ1,vac

per anti-periodic. (3.65)

Equation (3.63) with (3.64), (3.65) and if w ∈ C∞
(
Ω],vac,C∞

∂Ω1,vac

(
Ω1,vac

))
satisfying ∂x1

i
wn1

i =

0 on Γ
1,vac
ext , it becomes

|Γ
ε,vac
int |

∮
Ω]×Γ

1,vac
int

(
φ0 − V0

) ∂w
∂x1

i

n1
i ds

(
x1

)
= 0,

3.2. ONE AND TWO-DIMENSIONAL ARRAYS 49

which leads to ∀x] ∈ Ω],

φ0 = V0 on Γ
1,vac
int . (3.66)

Equation (3.63) with (3.64), (3.65), (3.66) with if w satisfies ∂x1
i
wni = 0 on ∂Ω1,vac, w = 0 on

Γ
1,vac
per ∪ Γ

1,vac
int becomes ∫

Ω]×Γ
1,vac
+∪−

w
∂φ0

∂x1
i

n1
i ds

(
x1

)
dx] = 0,

which leads to ∀x] ∈ Ω],
∂φ0

∂x1
i

n1
i = 0 on Γ

1,vac
+∪− . (3.67)

Equation (3.63) with (3.64), (3.65), (3.66) and if w = 0 on Γ
1,vac
int , ∂w/∂x1

i ni = 0 on Γ
1,vac
int ∪

Γ
1,vac
+∪− , we get

∫
Ω]×Γ

1,vac
per

φ0 ∂w
∂x1

i

n1
i ds

(
x1

)
dx] = 0,

applying the periodicity of w1, we get ∀x] ∈ Ω],

φ0 is Γ1,vac
per -periodic. (3.68)

Finally, from (3.64), (3.65), (3.66), (3.67), (3.68), the governing equation φ0 in Ω1,vac is
given by ∀x] ∈ Ω], 

−div
(
∇x1φ0

)
= 0 in Ω1,vac

φ0 = V0 on Γ
1,vac
int

∇x1φ0 · n1 = 0 on Γ
1,vac
+∪−

∇x1φ0 · n1 is Γ
1,vac
per -anti-periodic

φ0 is Γ
1,vac
per − periodic

. (3.69)

Model derivation of boundary layers for the two ends and the interface : Replac-
ing the test function in the very weak formulation (3.60) by

(
Bϑb vϑb + Binter f

b vinter f
b

)
(xε) , ϑ ∈

{0, L1}, vϑb ∈ H1
Γ

1,vac,+∞
int ,0

(Ω1,vac,+∞) ∩ H2
Γ

1,vac,+∞
int ,Γ1,vac,+∞

ext
(Ω1,vac,+∞) and vinter f

b ∈ H1
Γ

1,vac,∞
int ,0

(Ω1,vac,∞) ∩

H2
Γ

1,vac,∞
int ,Γ1,vac,∞

ext
(Ω1,vac,∞) we get

∮
Ωε,vac

φε
∂

∂xεi

∂

∂xεi

(
Bϑb vϑb + Binter f

b vinter f
b

)
dxε =

|Γ
ε,vac
int |

|Ωε,vac|

∮
Γ
ε,vac
int

Vε ∂

∂xεi

(
Bϑb vϑb + Binter f

b vinter f
b

)
nεi ds

(
xε

)
.

Applying equations (3.46) and (3.47), the second order partial derivatives ∂xεi ∂xεi Bϑb vϑb and
∂xεi ∂xεi Binter f

b vinter f
b can be computed as

∂

∂xεi

∂Bϑb vϑb
∂xεi

=
1
ε2 Bϑb

 ∂

∂x1
i

∂vϑb
∂x1

i

 and

∂

∂xεi

∂Binter f
b vinter f

b

∂xεi
=

1
ε2 Binter f

b

 ∂

∂x1
i

∂vinter f
b

∂x1
i

 .

50 CHAPTER 3. MODEL DERIVATION

The above equation becomes

∮
Ωε,vac

φε

 1
ε2 Bϑb

 ∂

∂x1
i

∂vϑb
∂x1

i

 +
1
ε2 Binter f

b

 ∂

∂x1
i

∂vinter f
b

∂x1
i


 dxε

=
|Γ
ε,vac
int |

|Ωε,vac|

∮
Γ
ε,vac
int

Vε

C (ϑ, i)
1
ε

Bϑb

∂vϑb
∂x1

i

 +
1
ε

Binter f
b

∂vinter f
b

∂x1
i


 nεi ds

(
xε

)
or

1
ε

∮
Ωε,vac

φεBϑb

 ∂

∂x1
i

∂vϑb
∂x1

i

 dxε +
1
ε

∮
Ωε,vac

φεBinter f
b

 ∂

∂x1
i

∂vinter f
b

∂x1
i

 dxε

=
|Γ
ε,vac
int |

|Ωε,vac|

∮
Γ
ε,vac
int

C (ϑ, i) VεBϑb

∂vϑb
∂x1

i

 nεi ds
(
xε

)
+
|Γ
ε,vac
int |

|Ωε,vac|

∮
Γ
ε,vac
int

VεBinter f
b

∂vinter f
b

∂x1
i

 nεi ds
(
xε

)
.

Applying the properties Bϑb v = Tϑ∗
b vχΩε,s(ϑ)

(
xε1

)
, ∀v ∈ L2

(
Ω1,+∞

)
and Bϑb vi =

(−1)χ{L1}
(ϑ) Tϑ∗

b viχΩε,s(ϑ)

(
xε1

)
, ∀vi ∈ C∞

(
Γεint

)
and Binter f

b v = T inter f ∗
b v,∀v ∈ L2

(
Ω1,∞

)
, it be-

comes

1
ε2

∮
Ωε,vac

φεTϑ∗
b

 ∂

∂x1
i

∂vϑb
∂x1

i

 dxε +
1
ε2

∮
Ωε,vac

φεT inter f ∗
b

 ∂

∂x1
i

∂vinter f
b

∂x1
i

 dxε

=
|Γ
ε,vac
int |

|Ωε,vac|

1
ε

∮
Γ
ε,vac
int

C′ (ϑ, i) Vε (−1)χ{L1}
(ϑ) Tϑ∗

b

∂vϑb
∂x1

i

 nεi ds
(
xε

)
+
|Γ
ε,vac
int |

|Ωε,vac|

1
ε

∮
Γ
ε,vac
int

VεT inter f ∗
b

∂vinter f
b

∂x1
i

 nεi ds
(
xε

)
,

where C′ (ϑ, i) = C (ϑ, i) (−1)χ{L1}
(ϑ) . Applying the Definition 6 of Tϑ∗

b and T inter f ∗
b , it becomes

1
ε

ε2

|Ωε,vac|

∫
Ω1,vac,+∞

Tϑ
b φ

ε ∂

∂x1
i

∂vϑb
∂x1

i

dx1 +
1
ε

ε2

|Ωε,vac|

∫
Ω1,vac,∞

T inter f
b φε

∂

∂x1
i

∂vinter f
b

∂x1
i

dx1

=
|Γ
ε,vac
int |

|Ωε,vac|
C′ (ϑ, i)

ε

|Γ
ε,vac
int |

∫
Γ

1,vac,+∞
int

Tϑ
b Vε

∂vϑb
∂x1

i

n+∞
i ds

(
x1

)
+
|Γ
ε,vac
int |

|Ωε,vac|

ε

|Γ
ε,vac
int |

∫
Γ

1,vac,∞
int

T inter f
b Vε

∂vinter f
b

∂x1
i

n∞i ds
(
x1

)
, or

∫
Ω1,vac,+∞

Tϑ
b φ

ε ∂

∂x1
i

∂vϑb
∂x1

i

dx1 +

∫
Ω1,vac,∞

T inter f
b φε

∂

∂x1
i

∂vinter f
b

∂x1
i

dx1

= C′ (ϑ, i)
∫

Γ
1,vac,+∞
int

Tϑ
b Vε

∂vϑb
∂x1

i

n+∞
i ds

(
x1

)
+

∫
Γ

1,vac,∞
int

T inter f
b Vε

∂vinter f
b

∂x1
i

n∞i ds
(
x1

)
,

where n+∞ and n∞ are unit outward normal vectors in Ω1,+∞ and Ω1,∞. Plugging the
equations (3.56), (3.57), (3.58) and (3.59) into the above equation and passing ε to 0, we
get

∫
Ω1,vac,+∞

(
φ0

(
ϑ, x1

)
+ φϑb

) ∂

∂x1
i

∂vϑb
∂x1

i

dx1 +

∫
Ω1,vac,∞

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

) ∂

∂x1
i

∂vinter f
b

∂x1
i

dx1

= C′ (ϑ, i)
∫

Γ
1,vac,+∞
int

(
V0

(
ϑ, x1

)
+ Vϑ

b

) ∂vϑb
∂x1

i

n+∞
i ds

(
x1

)
+

∫
Γ

1,vac,∞
int

(
V0

(
Lm

1 , x
1
)

+ V inter f
b

) ∂vinter f
b

∂x1
i

n∞i ds
(
x1

)
.

3.2. ONE AND TWO-DIMENSIONAL ARRAYS 51

Applying the Green formula twice with ∂Ω1,vac,+∞ = Γ
1,vac,+∞
int ∪Γ

1,vac,+∞
end,ϑ ∪Γ

1,vac,+∞
lat ∪Γ

1,vac,+∞
+∪− ,

∂Ω1,vac,∞,η = Γ
1,vac,∞,η
int ∪ Γ

1,vac,∞,η
inter f ∪ Γ

1,vac,∞,η
lat ∪ Γ

1,vac,∞,η
+∪− , η ∈ {1, 2} and writing them as

∂Ω1,vac,+∞ = Γ
1,vac,+∞
int∪end,ϑ∪lat∪+∪−

and Γ
1,vac,∞,η
int∪inter f∪lat∪+∪−

for simplicity, we get

∫
Ω1,vac,+∞

∂

∂x1
i

∂

∂x1
i

(
φ0

(
ϑ, x1

)
+ φϑb

)
vϑb dx1 −

∫
Γ

1,vac,+∞
int∪end,ϑ∪lat∪+∪−

∂

∂x1
i

(
φ0

(
ϑ, x1

)
+ φϑb

)
vϑb n+∞

i ds
(
x1

)
+

∫
Γ

1,vac,+∞
int∪end,ϑ∪lat∪+∪−

(
φ0

(
ϑ, x1

)
+ φϑb

) ∂vϑb
∂x1

i

n+∞
i ds

(
x1

)
+

∑
η

∫
Ω1,vac,∞,η

∂

∂x1
i

∂

∂x1
i

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

)
vinter f ,η

b dx1

−
∑
η

∫
Γ

1,vac,∞,η
int∪inter f∪lat∪+∪−

∂

∂x1
i

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

)
vinter f ,η

b n∞,ηi ds
(
x1

)
+

∑
η

∫
Γ

1,vac,∞,η
int∪inter f∪lat∪+∪−

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

) ∂vinter f ,η
b

∂x1
i

n∞,ηi ds
(
x1

)
= C′ (ϑ, i)

∫
Γ

1,vac,+∞
int

(
V0

(
ϑ, x1

)
+ Vϑ

b

) ∂vϑb
∂x1

i

n+∞
i ds

(
x1

)
+

∑
η

∫
Γ

1,vac,∞,η
int

(
V0

(
Lm

1 , x
1
)

+ V inter f
b

) ∂vinter f ,η
b

∂x1
i

n∞,ηi ds
(
x1

)
.

From assumption of vϑb such as vϑb = 0 on Γ
1,vac,+∞
int and ∂x1

i
vϑb n+∞

i = 0 on Γ
1,vac,+∞
end,ϑ∪lat∪+∪−

, and

of vinter f ,η
b such as vinter f ,η

b = 0 on Γ
1,vac,∞,η
int and ∂x1

i
vinter f ,η

b n∞,ηi = 0 on Γ
1,vac,∞,η
lat∪+∪−

, it becomes

∫
Ω1,vac,+∞

∂

∂x1
i

∂

∂x1
i

(
φ0

(
ϑ, x1

)
+ φϑb

)
vϑb dx1 −

∫
Γ

1,vac,+∞
end,ϑ∪lat∪+∪−

∂

∂x1
i

(
φ0

(
ϑ, x1

)
+ φϑb

)
vϑb n+∞

i ds
(
x1

)
+

∫
Γ

1,vac,+∞
int

(
φ0

(
ϑ, x1

)
+ φϑb

) ∂vϑb
∂x1

i

n+∞
i ds

(
x1

)
+

∑
η

∫
Ω1,vac,∞,η

∂

∂x1
i

∂

∂x1
i

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

)
vinter f ,η

b dx1

−
∑
η

∫
Γ

1,vac,∞,η
inter f∪lat∪+∪−

∂

∂x1
i

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

)
vinter f ,η

b n∞,ηi ds
(
x1

)
+

∑
η

∫
Γ

1,vac,∞,η
inter f∪int

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

) ∂vinter f ,η
b

∂x1
i

n∞,ηi ds
(
x1

)
= C′ (ϑ, i)

∫
Γ

1,vac,+∞
int

(
V0

(
ϑ, x1

)
+ Vϑ

b

) ∂vϑb
∂x1

i

n+∞,ϑ
i ds

(
x1

)
+

∑
η

∫
Γ

1,vac,∞,η
int

(
V0

(
Lm

1 , x
1
)

+ V inter f
b

) ∂vinter f ,η
b

∂x1
i

n∞,ηi ds
(
x1

)
.

The equation (3.69) implies ∂x1
i
∂x1

i
φ0

(
ϑ, x1

)
= ∂x1

i
∂x1

i
φ0

(
Lm

1 , x
1
)

= 0, and φ0
(
ϑ, x1

)
=

52 CHAPTER 3. MODEL DERIVATION

V0
(
ϑ, x1

)
on Γ

1,vac,+∞
int , φ0

(
Lm

1 , x
1
)

= V0
(
Lm

1 , x
1
)

on Γ
1,vac,∞,η
int , the above equation becomes

∫
Ω1,vac,+∞

∂

∂x1
i

∂φϑb

∂x1
i

vϑb dx1 −

∫
Γ

1,vac,+∞
end,ϑ∪lat∪+∪−

∂

∂x1
i

(
φ0

(
ϑ, x1

)
+ φϑb

)
vϑb n+∞

i ds
(
x1

)
(3.70)

+

∫
Γ

1,vac,+∞
int

φϑb
∂vϑb
∂x1

i

n+∞
i ds

(
x1

)
+

∑
η

∫
Ω1,vac,∞,η

∂

∂x1
i

∂φ
inter f
b

∂x1
i

vinter f ,η
b dx1

−
∑
η

∫
Γ

1,vac,∞,η
inter f∪lat∪+∪−

∂

∂x1
i

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

)
vinter f ,η

b n∞,ηi ds
(
x1

)
(3.71)

+
∑
η

∫
Γ

1,vac,∞,η
inter f

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

) ∂vinter f ,η
b

∂x1
i

n∞,ηi ds
(
x1

)
+

∑
η

∫
Γ

1,vac,∞,η
int

φ
inter f
b

∂vinter f ,η
b

∂x1
i

n∞,ηi ds
(
x1

)
(3.72)

= C (ϑ, i)
∫

Γ
1,vac,+∞
int

Vϑ
b

∂vϑb
∂x1

i

n+∞,ϑ
i ds

(
x1

)
+

∑
η

∫
Γ

1,vac,∞,η
int

V inter f
b

∂vinter f ,η
b

∂x1
i

n∞,ηi ds
(
x1

)
.

If vϑb = 0 on Γ
1,vac,+∞
end,ϑ∪lat∪+∪−

, ∂x1
i
vϑb n+∞

i = 0 on Γ
1,vac,+∞
int , and vinter f ,η

b = 0 on Γ
1,vac,∞,η
inter f∪lat∪+∪−

,

∂x1
i
vinter f ,η

b n∞,ηi = 0 on Γ
1,vac,∞,η
inter f∪int , the above equation becomes

∫
Ω1,vac,+∞

∂

∂x1
i

∂φϑb

∂x1
i

vϑb dx1 +
∑
η

∫
Ω1,vac,∞,η

∂

∂x1
i

∂φ
inter f
b

∂x1
i

vinter f ,η
b dx1 = 0.

Applying the interpretation of the weak equality, we get

∂

∂x1
i

∂φϑb

∂x1
i

= 0 in Ω1,vac,+∞ and
∂

∂x1
i

∂φ
inter f ,η
b

∂x1
i

= 0 in Ω1,vac,∞,η. (3.73)

Applying (3.73) to (3.70), we get

−

∫
Γ

1,vac,+∞
end,ϑ∪lat∪+∪−

∂

∂x1
i

(
φ0

(
ϑ, x1

)
+ φϑb

)
vϑb n+∞

i ds
(
x1

)
+

∫
Γ

1,vac,+∞
int

φϑb
∂vϑb
∂x1

i

n+∞
i ds

(
x1

)
−

∑
η

∫
Γ

1,vac,∞,η
inter f∪lat∪+∪−

∂

∂x1
i

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

)
vinter f ,η

b n∞,ηi ds
(
x1

)
+

∑
η

∫
Γ

1,vac,∞,η
inter f

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

) ∂vinter f ,η
b

∂x1
i

n∞,ηi ds
(
x1

)
(3.74)

+
∑
η

∫
Γ

1,vac,∞,η
int

φ
inter f
b

∂vinter f ,η
b

∂x1
i

n∞,ηi ds
(
x1

)
(3.75)

= C′ (ϑ, i)
∫

Γ
1,vac,+∞
int

Vϑ
b

∂vϑb
∂x1

i

n+∞
i ds

(
x1

)
+

∑
η

∫
Γ

1,vac,∞,η
int

V inter f
b

∂vinter f ,η
b

∂x1
i

n∞,ηi ds
(
x1

)
.

3.2. ONE AND TWO-DIMENSIONAL ARRAYS 53

If vϑb = 0 on Γ
1,vac,+∞
lat∪end,ϑ∪+∪−

, vinter f ,η
b = 0 on Γ

1,vac,∞,η
inter f∪lat∪+∪−

and ∂x1
i
vinter f ,η

b n∞,ηi = 0 on Γ
1,vac,∞,η
inter f , it

becomes∫
Γ

1,vac,+∞
int

φϑb
∂vϑb
∂x1

i

n+∞
i ds

(
x1

)
+

∑
η

∫
Γ

1,vac,∞,η
int

φ
inter f
b

∂vinter f ,η
b

∂x1
i

n∞,ηi ds
(
x1

)
=

∑
ϑ,i

C′ (ϑ, i)
∫

Γ
1,vac,+∞
int

Vϑ
b

∂vϑb
∂x1

i

n+∞,ϑ
i ds

(
x1

)
+

∑
η

∫
Γ

1,vac,∞,η
int

V inter f
b

∂vinter f ,η
b

∂x1
i

n∞,ηi ds
(
x1

)
.(3.76)

In the case ϑ = 0, the constant C′ (0, i) = (−1)χ{L1}
(0)χ{1}(i) (−1)χ{L1}

(0)
= 1,∀i ∈ {1, 2, 3} and the

equation above becomes∫
Γ

1,vac,+∞
int

(
φ0

b − V0
b

) ∂v0
b

∂x1
i

n+∞
i ds

(
x1

)
+

∑
η

∫
Γ

1,vac,∞,η
int

(
φ

inter f
b − V inter f

b

) ∂vinter f ,η
b

∂x1
i

n∞,ηi ds
(
x1

)
= 0.

Applying the interpretation of the weak equality, we have

φ0
b = V0

b on Γ
1,vac,+∞
int and φinter f

b = V inter f
b on Γ

1,vac,∞,η
int . (3.77)

Applying (3.77) to the above equation and in the case ϑ = L1, the constant C′ (L1, i) =

(−1)χ{L1}
(L1)χ{1}(i) (−1)χ{L1}

(L1)
= − (−1)χ{1}(i) takes the value 1 if i = 1 and −1 otherwise. We get∫

Γ
1,vac,+∞
int

φL1
b

∂vL1
b

∂x1
i

n+∞
i ds

(
x1

)
−

∑
i

C′ (L1, i)
∫

Γ
1,vac,+∞
int

VL1
b

∂vL1
b

∂x1
i

n+∞,L1
i ds

(
x1

)
= 0 or

∫
Γ

1,vac,+∞
int

(
φL1

b − VL1
b

) ∂vL1
b

∂x1
1

n+∞
1 ds

(
x1

)
+

∫
Γ

1,vac,+∞
int

(
φL1

b + VL1
b

) ∂vL1
b

∂x1
2

n+∞
2 ds

(
x1

)
+

∫
Γ

1,vac,+∞
int

(
φL1

b + VL1
b

) ∂vL1
b

∂x1
3

n+∞
3 ds

(
x1

)
= 0.

Since n+∞ = (−1, 0, 0) , it becomes∫
Γ

1,vac,+∞
int

(
φL1

b − VL1
b

) ∂vL1
b

∂x1
1

n+∞
1 ds

(
x1

)
= 0.

Applying the interpretation of the weak equality, we have

φL1
b = VL1

b on Γ
1,vac,+∞
int . (3.78)

The equations (3.77) and (3.78) give us

φϑb = Vϑ
b on Γ

1,vac,+∞
int . (3.79)

Applying (3.73), (3.77) and (3.78) to (3.70), we get∫
Γ

1,vac,+∞
end,ϑ∪lat∪+∪−

∂

∂x1
i

(
φ0

(
ϑ, x1

)
+ φϑb

)
vϑb n+∞

i ds
(
x1

)
−

∑
η

∫
Γ

1,vac,∞,η
inter f∪lat∪+∪−

∂

∂x1
i

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

)
vinter f ,η

b n∞,ηi ds
(
x1

)
+

∑
η

∫
Γ

1,vac,∞,η
inter f

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

) ∂vinter f ,η
b

∂x1
i

n∞,ηi ds
(
x1

)
= 0.

54 CHAPTER 3. MODEL DERIVATION

If vϑb = 0 on Γ
1,vac,+∞
end,ϑ and vinter f ,η

b = 0 on Γ
1,vac,∞,η
inter f and ∂x1

i
vinter f ,η

b n∞,ηi = 0 on Γ
1,vac,∞,η
inter f , it

becomes

−

∫
Γ

1,vac,+∞
lat∪+∪−

∂

∂x1
i

(
φ0

(
ϑ, x1

)
+ φϑb

)
vϑb n+∞

i ds
(
x1

)
−

∑
η

∫
Γ

1,vac,∞,η
lat∪+∪−

∂

∂x1
i

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

)
vinter f

b n∞i ds
(
x1

)
= 0.

Applying the interpretation of weak equality, we get

∂φϑb

∂x1
i

n+∞
i = −

∂φ0
(
ϑ, x1

)
∂x1

i

n+∞
i = 0 on Γ

1,vac,+∞
lat∪+∪−

and
∂φ

inter f
b

∂x1
i

n∞,ηi = −
∂φ0

(
Lm

1 , x
1
)

∂x1
i

n∞,ηi = 0 on Γ
1,vac,∞,η
lat∪+∪−

.

(3.80)
Applying (3.80) to above equation, we get

−

∫
Γ

1,vac,+∞
end,ϑ

∂

∂x1
i

(
φ0

(
ϑ, x1

)
+ φϑb

)
vϑb n+∞

i ds
(
x1

)
−

∑
η

∫
Γ

1,vac,∞,η
inter f

∂

∂x1
i

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

)
vinter f ,η

b n∞,ηi ds
(
x1

)
+

∑
η

∫
Γ

1,vac,∞,η
inter f

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

) ∂vinter f ,η
b

∂x1
i

n∞,ηi ds
(
x1

)
= 0.

If vinter f
b and ∂x1

i
vinter f

b is continuous on Ω1,vac,∞, we get

−

∫
Γ

1,vac,+∞
end,ϑ

∂

∂x1
i

(
φ0

(
ϑ, x1

)
+ φϑb

)
vϑb n+∞

i ds
(
x1

)
−

∫
Γ

1,vac,∞
inter f

∑
η

∂

∂x1
i

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

)
|Ω1,vac,∞,η n∞,ηi

 vinter f
b ds

(
x1

)
+

∫
Γ

1,vac,∞
inter f

∑
η

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

)
|Ω1,vac,∞,η n∞,ηi

 ∂vinter f
b

∂x1
i

ds
(
x1

)
= 0.

Applying the interpretation of weak equality with n∞,1 = (−1, 0, 0) and n∞,2 = (1, 0, 0), we
get

∂φϑb

∂x1
i

n+∞
i = −

∂φ0
(
ϑ, x1

)
∂x1

i

n+∞
i on Γ

1,vac,+∞
end,ϑ , (3.81)

[[
∂

∂x1
i

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

)
]] = 0 on Γ

1,vac,∞
inter f and

[[φ0
(
Lm

1 , x
1
)

+ φ
inter f
b]] = 0 on Γ

1,vac,∞
inter f ,

where [[f (x)]] is the ”jump” of f (x) at the interface. Finally, from (3.73), (3.77), (3.79),
(3.80) and (3.81), the governing system for boundary layers at the two ends and at the
interface are given as

−divx1

(
∇x1φϑb

)
= 0 in Ω1,vac,+∞

φϑb = Vϑ
b on Γ

1,vac,+∞
int

∇x1φϑb · n
+∞ = 0 on Γ

1,vac,+∞
lat∪+∪−

∇x1φϑb · n
+∞ = −∇x1φ0

(
ϑ, x1

)
· n+∞ on Γ

1,vac,+∞
end,ϑ

and (3.82)

3.3. MULTI-SCALE MODEL IMPLEMENTATION 55



−divx1

(
∇x1φ

inter f
b

)
= 0 in Ω1,vac,∞

φ
inter f
b = V inter f

b on Γ
1,vac,∞
int

∇x1φ
inter f
b · n∞ = 0 on Γ

1,vac,∞
lat∪+∪−

[[∂x1
1

(
φ0

(
Lm

1 , x
1
)

+ φ
inter f
b

)
]] = 0 on Γ

1,vac,∞
inter f

[[φ0
(
Lm

1 , x
1
)

+ φ
inter f
b]] = 0 on Γ

1,vac,∞
inter f

. (3.83)

3.3/ MULTI-SCALE MODEL IMPLEMENTATION

In this section, the main solution φ0 is calculated on the microscopic domain Ω1 for the two
voltages V0 = 20V and 30V, see Figure 3.6 for a solution with V0 = 20V. The computation
of the boundary layer corrector φϑb is performed on domains starting from x1

1 = 0 and being
two cell long only instead of infinite domains. It is possible to restrict simulation to one
or two cells because the boundary layer correctors are exponentially vanishing and their
value in the second cell is already negligible, see Figure 3.7. The same principle holds for
the computation of the boundary layer corrector φinter f

b at the interface which is computed
on four cells, see Figure 3.8. The full solution is built by superimposing the periodic
solution φ0 and the three boundary layer correctors, see Figure 3.9. The simulation time
for a large array is related to the number of different voltages that are applied but not to
its number of cells.

Figure 3.6: Front view of a plot of φ0 in the microscopic domain. The mirror and the
pillars are in red while the bottom electrode is in blue. The imposed voltages are 20V and
−20V. The vector of electric field is materialized by red arrows. The electric field lines are
vertical almost everywhere, with few tilted arrows visible on the edges; this means that
the electric field is mainly localized in each cell, reducing to a very low value the crosstalk
with neighboring cells.

56 CHAPTER 3. MODEL DERIVATION

Figure 3.7: One of the two boundary layer corrections φ0
b simulated in two cells at one

end of the array.

Figure 3.8: Boundary layer correction φinter f at the interface. It is computed in four cells
centered to the interface.

3.3. MULTI-SCALE MODEL IMPLEMENTATION 57

Figure 3.9: Simulation result for a twelve-cell array. The imposed voltages are ±20V in the
left part and ±30V in the right part. The figure shows the zones of superimposition of the
solutions φ0, φϑb and φinter f

b .

4
EXTENSION AND COMBINATION IN

MEMSALAB

4.1/ INTRODUCTION

We continue on the research path initiated in [Yang et al., 2014] where the concepts of
extension and their combination were introduced for the first time. In this seminal work
proofs were formalized as rewriting strategies and extensions were formalized as second-
order rewriting strategies. However the combination of extensions was done via com-
position, not allowing for conflicts between extensions. The complete principle of the
extension-combination method was introduced in [Belkhir et al., 2015]. In this work, we
have presented the design and implementation of a user language for the specification of
rewriting strategies based proofs and extensions. We also stated computation rules for
combinations of extensions. Although we considered combinations for a small class of
usual rewriting strategies as OuterMost and InnerMost, the question whether this class,
or possibly a wider class, is closed under combination was left open, as well as the ques-
tion of the correctness and soundness of the combination formulae.

This question was addressed in [Belkhir et al., 2016] where the authors introduced a
larger the class of context embedding strategies, or CES-strategies for short. This frame-
work involves more elementary operations but generating a wider class of rewriting strate-
gies. Although the idea of combination is kept the same, the tools and the techniques are
different. The elementary extension operation on a term is still an enrichment by context
insertion. However, the traversal strategies in a CE-strategy are built with a jump oper-
ator and an iterator/fixed-point operator instead of OuterMost a more complex strategy.
This class is indeed closed under combination and the correctness of the combination
operation was proved.

Although the class of CE-strategies enjoys nice algebraic properties, it has a major prac-
tical drawback: it is built up with low level strategy constructors making it hard to use
in practice. In particular, the definition of the traversal navigation strategies such as
OuterMost yields a CE-strategy whose size depends on the signature. Even worse,
the size of the resulting combined CE-strategy can be exponential with respect to the
size of the two input CE-strategies. In this chapter we overcome these difficulties by
finding another class of strategies, called high level context embedding strategies, or
HCE-strategies for short, which is a strict subclass of the class of CE-strategies. It enjoys
similar algebraic properties and seems reasonably easy to use in practice. In particular,
the class of HCE-strategies is closed by combination, and the size of the resulting com-

59

60 CHAPTER 4. EXTENSION AND COMBINATION IN MEMSALAB

bined HCE-strategy is polynomial with respect of the size of the two input HCE-strategies.

The strategy language underlying both the CE-strategies and the HCE-strategies is in-
spired by the modal µ-calculus [Arnold et al., 2001]. Instead of formulating the strategy
language as in [Cirstea et al., 2003], the µ-calculus-like approach makes the strategy con-
structors more rudimentary and therefore tractable the question of language closure for
combinations. Moreover, the formulae of combination of HCE-strategies together with
their verification is also much simplified.

Organization of the Chapter: The Chapter is structured as follows. In Section 4.3 we
introduce the class of elementary HCE-strategies, which is a subclass of HCE-strategies.
It provides an illustration of the concept of unification and combination in simple cases
and serves as a set of basic building blocks for the class of HCE-strategies. The syntax
and the semantics of the latter as well as their unification and combination are introduced
in Section 4.4. In Section 4.5 we argue that the unification and combination of HCE-
strategies is sound and complete, and state its main algebraic properties. The proofs of
the claims are similar to the ones for the class of CE-strategies [Belkhir et al., 2016].

4.2/ PRELIMINARIES

We introduce preliminary definitions and notations.

Terms, contexts. Let F = ∪n≥0Fn be a set of symbols called function symbols. The arity
of a symbol f in Fn is n and is denoted ar(f). Elements of arity zero are called constants
and often denoted by the letters a, b, c, etc. The set F0 of constants is always assumed to
be not empty. Given a denumerable set X of variable symbols, the set of terms T (F ,X),
is the smallest set containing X and such that f (t1, . . . , tn) is in T (F ,X) whenever ar(f) = n
and ti ∈ T (F ,X) for i ∈ [1..n]. Let the constant � < F , the set T�(F ,X) of ”contexts”,
denoted simply by T�, is made with terms with symbols in F ∪ X ∪ {�} which includes
exactly one occurence of �. Evidently, T�(F ,X) and T (F ,X) are two disjoint sets. For a
term t and a context τ, we shall write τ[t] for the term that results from the replacement of
� by t in τ. We shall write simply T (resp. T�) instead of T (F ,X) (resp. T�(F ,X)). We
denote by Var (t) the set of variables occurring in t.

4.2. PRELIMINARIES 61

Example 1:

Out of the definition of term and context, we introduce a term t and two contexts
τ1, τ2 as an example. Consider x as a variable which is defined on a domain Ω

in R. A term t corresponding to x having the grammar is given by [Yang, 2014]

t = Var (x, Reg (Ω, 1)) ,

where Var and Reg are functions symbols belonging to F2, and x, Ω,1 are con-
stants belonging to F0. The constant 1 represents the dimension of the space.
Besides, a context τ1 providing an ability to extend a term into a vector of three
elements and a context τ2 having an ability to extend a term into a vector of any
size are given by the following equations

τ1 = List (�, Index (i, [1, 2, 3])) , τ2 = List (�, Index (j, X)) ,

where List and Index are functions symbols belonging to F2, and i, j, 1, 2, 3 are
constants and X is variable symbol belong to X. The tree structure of t, τ1 and τ2
are shown in Figure 4.1.

Positions, prefix-order, combination of contexts. Let t be a term in T (F ,X). A posi-
tion in a tree is a sequence of integers of Nω

ε = {ε}∪N∪ (N×N)∪· · · . In particular we shall
write Nε for {ε} ∪N. Given two positions p = p1 p2 . . . pn and q = q1q2 . . . qm, the concatena-
tion of p and q, denoted by p · q or simply pq, is the position p1 p2 . . . pnq1q2 . . . qm. The set
of positions of the term t, denoted by Pos (t), is a set of positions of positive integers such
that, if t ∈ X is a variable or t ∈ F0 is a constant, then Pos (t) = {ε}. If t = f (t1, ..., tn) then
Pos (t) = {ε} ∪

⋃
i=1,n {ip | p ∈ Pos (ti)}. The position ε is called the root position of term t,

and the function or variable symbol at this position is called root symbol of t.

The prefix order defined as p ≤ q iff there exists p′ such that pp′ = q, is a partial order on
positions. If p′ , ε then we obtain the strict order p < q. We write (p ‖ q) iff p and q are
incomparable with respect to ≤. The binary relations < and v defined by p < q iff

(
p <

q or p ‖ q
)

and p v q iff
(
p ≤ q or p ‖ q

)
, are total relations on positions.

For any p ∈ Pos(t) we denote by t|p the subterm of t at position p, that is, t|ε = t, and
f (t1, ..., tn)|iq = (ti)|q. For a term t, we shall denote by δ(t) the depth of t, defined by δ(t0) = 0,
if t0 ∈ X∪F 0 is a variable or a constant, and δ(f (t1, . . . , tn)) = 1 + max(δ(ti)), for i = 1, . . . , n.
For any position p ∈ Pos (t) we denote by t [s]p the term obtained by replacing the subterm
of t at position p by s: t[s]ε = s and f (t1, ..., tn)[s]iq = f (t1, ..., ti[s]q, ..., tn).

62 CHAPTER 4. EXTENSION AND COMBINATION IN MEMSALAB

εVar

x
1

Reg

Ω

21

1
22

2

εList

�

1

Index

i
21

[1, 2, 3]
22

2

εList

�

1

Index

j
21

X
22

2

Figure 4.1: Complete tree structure of a variable x ∈ Ω ⊂ R, of context τ1 and of context
τ2, given in Example 1, in MEMSALab.

Example 2:

To clarify how the depth of a tree structure is defined, we consider the case of
the term t presented in Example 1. Its depth is inductively computed as

δ (t1) = 0, δ (t21) = δ (t22) = 0,

δ (t2) = 1 + max {δ (t21) , δ (t22)} = 1, so that δ (t) = 1 + max {δ (t1) , δ (t2)} = 2.

Besides, the concept of replacement of a sub-term of a term or of a context can
be recognized obviously, for instance, the new term obtained by replacing the
name x by y is given as

t[y]1 = Var(y, Reg(Ω, 1)),

the tree structure of t[y]1 can be found in Figure 4.2.

A substitution is a mapping σ : X → T (F ,X) such that σ(x) , x for only finitely many
xs. The finite set of variables that σ does not map to themselves is called the domain
of σ: Dom(σ)

de f
= {x ∈ X | σ(x) , x}. If Dom(σ) = {x1, ..., xn} then we write σ as: σ =

{x1 7→ σ (x1) , ..., xn 7→ σ (xn)}.

A substitution σ : X → T (F ,X) uniquely extends to an endomorphism σ̂ : T (F ,X) →
T (F ,X) defined by: σ̂(x) = σ(x) for all x ∈ Dom(σ), and σ̂(x) = x for all x < Dom(σ),
and σ̂(f (t1, . . . , tn)) = f (σ̂(t1), . . . , σ̂(tn)) for f ∈ F . In what follows we do not distinguish
between a substitution and its extension.

Example 3:

Consider a substitution σ of τ2 presented in Example 1, the domain of σ is given
as Dom(σ) = {X}. We want to substitute the variable X in τ2 by a list of constants,
for instance, [1, 2]. Since Dom(σ) is finite, σ can be rewritten as σ = {X → [1, 2]}.
The result of the application of σ to τ2 is given as

σ(τ2) = (X → [1, 2])(τ2) = τ2[[1, 2]]22.

The complete tree structure of σ(τ2) can be found in Figure 4.2.

For two terms t, t′ ∈ T , we say that t matches t′, written t � t′, iff there exists a substitution
σ, such that σ(t) = t′. It turns out that if such a substitution exists, then it is unique. A term
t′ is subsumed by a term t iff there exists a substitution σ such that σ(t) = t′. A substitution
σ′ is subsumed by a substitution σ iff σ′(t) is subsumed by σ(t) for each term t. The most
general unifier of the two terms u and u′ is a substitution γ such that γ(u) = γ(u′) and,
for any other substitution γ′ satisfying γ′(u) = γ′(u′), we have that γ′ is subsumed by γ.
Besides, we shall write u ∧ u′ to denote the term γ(u). The composition of functions will

4.3. POSITION-BASED HCE-STRATEGIES AND THEIR COMBINATION 63

εVar

y
1

Reg

Ω

21

1
22

2

εList

List

�

11

Index

j
121

X
122

12

1

Index

i
21

[1, 2, 3]
22

2

εList

�

1

Index

j
21

[1, 2]
22

2

Figure 4.2: Complete tree structure of the term t[y]1 presented in Example 2, of the
combination of τ1 and τ2 and of σ(τ2) discussed in Example 3.

be denoted by “◦”. If l1 and l2 are lists, then we denote by l1 t l2 their concatenation
Sometimes we shall write ti=1,nei to denote the list [e1, . . . , en]. For any n ∈ N we simply
denote by [n] the interval [1, . . . , n].

Example 4:

Consider two terms t1 and t2 representing two mathematical variables given as
the following equations

t1 = Var(X, Reg(Ω, 1)), t2 = Var(y, Reg(Y, 1)),

where X and Y are variables, t1 matches t2 under a unique substitution γ = {X →
y,Y → Ω}.

4.3/ POSITION-BASED HCE-STRATEGIES AND THEIR COMBINA-
TION

We need to consider the combination of contexts when they are inserted at the same
position.

Definition 8: Combination of contexts

For any τ, τ′ ∈ T�, the combination of two contexts, denoted by ”·”, is defined by

τ · τ′ = τ[τ′]Pos(τ,�),

where Pos (t,�) is the position of � in t.

Example 5:

The combination of the two contexts τ1 and τ2 given in Example 1 is given as

τ1 · τ2 = τ1[τ2]1 = List(List(�, j), i)

where i and j are shortcut terms which represent Index(i, [1, 2, 3]) and
Index(j, X) respectively. This concept has already been presented in
[Yang, 2014]. The complete tree structure of this term is shown in Figure 4.2.

To define the position-based HCE-strategies, we introduce two position-based strategies.

64 CHAPTER 4. EXTENSION AND COMBINATION IN MEMSALAB

For a position p and a context τ, the jump strategy @p.τ applied to a term t inserts τ at
the position p of the input term t. The failing strategy ∅ fails when applied to any term.
Their precise semantics are given in Definition 9 below for Semantics of position-based
HCE-strategies.

Definition 9: Position-based HCE-strategies

A position-based HCE-strategy is either the failing strategy ∅ or the list
[@p1.τ1, . . . ,@pn.τn], where n ≥ 1, each pi is a positions and each τi is a context
in T� .

We impose that the position-based HCE-strategies respect some constraints on positions
of insertions to avoid conflicts: the order of context insertions goes up from the leaves to
the root.

Definition 10: Well-founded position-based HCE-strategy

A position-based HCE-strategy E = [@p1.τ1, ...,@pn.τn] is well-founded iff
i.) a position occurs at most once in E, i.e. pi , p j for all i , j, and

ii.) insertions at lower positions occur earlier in E, i.e. i < j if pi < p j, for all
i, j ∈ [n].

In particular, the empty position-based HCE-strategy ∅ is well-founded.

In all what follows we work only with the set of well-founded position-based HCE-
strategies, denoted by E. For two position-based HCE-strategies E and E′, we shall
abuse of notation and write E = E′ to mean that they are equal up to a permutation of
their parallel positions. We shall simply write @p.τ instead of [@p.τ]. For a position p,
we let p.[@p1.τ1, . . . ,@pn.τn] = [@pp1.τ1, . . . ,@ppn.τn]. We next define the semantics of
a position-based HCE-strategy as a function in T ∪ {F} → T ∪ {F}, with the idea that if the
application of a position-based HCE-strategy to a term fails, the result is F. Besides, we
adopt a stronger version of failure, that is, [@p1.τ1, . . . ,@pn.τn] fails when each of @pi.τi

fails. To formalize this notion of failure we need to introduce an intermediary function
η : (T ∪{F} → T ∪{F})→ T ∪{F} → T ∪{F}, that stands for the fail as identity. It is defined
for any function f in T ∪ {F} → T ∪ {F} and any term t ∈ T ∪ {F} by

(η(f))(t) =

 f (t) if f (t) , F,
t otherwise.

The semantics of position-based HCE-strategies follows.

4.3. POSITION-BASED HCE-STRATEGIES AND THEIR COMBINATION 65

List

x i

List

List

x j

i

∂

u
p

x
q

∂

List

u i

p

List

x j

q

Figure 4.3: The tree structure of the terms @ε.τ1(t), @ε.τ(t), t′ and [[@p.τ1,@q.τ2]](t′)
discussed in Example 6.

Definition 11: Semantics of position-based HCE-strategies

The semantics of a position-based HCE-strategy E is a function [[E]] in T ∪{F} →
T ∪ {F} inductively defined by:

[[∅]](t)
de f
= F,

[[E]](F)
de f
= F,

[[@p.τ]](t)
de f
=

t[τ[t|p]]p if p ∈ Pos(t)

F otherwise,

[[[@p1.τ1, . . . ,@pn.τn]]](t)
de f
=


((
η([[@pn.τn]])

)
◦ · · · ◦

(
η([[@p1.τ1]])

))
(t) if ∃pi ∈ {p1, . . . , pn}

s.t. pi ∈ Pos(t)
F otherwise.

Example 6:

We illustrate the idea and the interest of position-based HCE-strategies through
the term t and the two contexts τ1 = List

(
�, i

)
and τ2 = List

(
�, j

)
defined

in Example 1 but with the short-cut notation used in Example 5. Applying the
strategy of @ε.τ1 to the term t = Var (x, Reg (Ω, 1)) gives the transformation of
one-dimensional space coordinate variable x to indexed multi-dimensional space
coordinate variable xi. The procedure is given as the following equation

[[@ε.τ1]](t) = t[τ1[t|ε]]ε = t[τ1[t]]ε = τ1[t] = τ1[t]Pos(τ1,�)

= List
(
Var (x, Reg (Ω, 1)) , i

)
Let τ = τ1 · τ2. The application of @p.τ to the term t is given as

[[@ε.τ]](t) = τ[t]Pos(τ1[τ2],�)

= List
(
List

(
Var (x, Reg (Ω, 1)) , j

)
, i
)

Consider a term t′ = ∂xu having shortcut terms ∂ and u. Let p and q belong to
Pos(t′) be positions of u and x in t′, the application of [[@p.τ1 ◦@q.τ2]](t′) yields
the term ∂x j

ui. Since the p ‖ q, the list of HCE-strategies is well-founded, the
semantic of the application is given as

[[[@p.τ1,@q.τ2]]](t′) = ([[@p.τ1]] ◦ [[@q.τ2]])(t′) = [[@p.τ1]]([[@q.τ2]](t′)).

The complete tree structures of xi, xi j, t′ and ∂x j
ui are depicted in Figure 4.3.

66 CHAPTER 4. EXTENSION AND COMBINATION IN MEMSALAB

The unification of two position-based HCE-strategies amounts to sort and merge their
positions, and to combine their contexts if they are inserted at the same position.

Definition 12: Unification of two position-based HCE-strategies

The unification of two position-based HCE-strategies is the binary operation f :
E × E −→ E defined as

E f E′ =

E′′ if E , ∅ and E′ , ∅
∅ if E = ∅ or E′ = ∅

where the first case E = [@p1.τ1, . . . ,@pn.τn], E′ = [@p′1.τ
′
1, . . . ,@p′m.τ

′
m] and

E′′ = [@p′′1 .τ
′′
1 , . . . ,@p′′r .τ

′′
r] with sets of positions P, P′ and P′′ = P ∪ P′ and the

contexts τ′′k defined as follows. For a position p′′k ∈ P′′ \ P ∩ P′,

τ′′k = τi if p′′k = pi ∈ P and τ′′k = τ′j if p′′k = p′j ∈ P′.

Otherwise, p′′k = pi = p′j ∈ P ∩ P′ for some i, j and τ′′k = τi · τ
′
j. Besides, the order

of the positions in P′′ is chosen so that E′′ is well-founded.

Example 7:

Let the list of HCE-strategies E = [@p1.τ1,@p2.τ2,@p3.τ3] and E′ =

[@p1.τ
′
1,@q1.τ

′
2,@q2.τ

′
3], the set of positions of E and E′ be P = {p1, p2, p3} and

P′ = {p1, q1, q2}, P ∪ P′ = {p1, p2, p3, q1, q2}, P ∩ P′ = {p1}. The unification of E and
E′ is given as the following equation

E′′ = [@p1.τ
′
1.τ1,@p2.τ2,@p3.τ3,@q1.τ

′
2,@q2.τ

′
3].

The combination of two position-based HCE-strategies is the same as their unification
apart that it is defined on non-failing position-based HCE-strategies.

Definition 13: Combination of two position-based HCE-strategies

The combination of two position-based HCE-strategies is a binary operation g :
E × E −→ E defined for any E and E′ in E by

E g E′ =


E f E′ if E , ∅ and E′ , ∅
E if E , ∅ and E′ = ∅
E′ if E = ∅ and E′ , ∅
∅ if E = ∅ and E′ = ∅

4.4. THE CLASS OF CONTEXT-EMBEDDING STRATEGIES (HCE-STRATEGIES) 67

Proposition 4:

The following hold.

1. The set E of position-based HCE-strategies together with the unification
and combination operations enjoy the following properties.

1. The neutral element of the unification is @ε.�, and the absorbing el-
ement is ∅.

2. The neutral element of the combination is ∅.

3. The unification and combination are associative, i.e. (E f E′) f E′′ =

E f (E′ f E′′) and (E g E′)g E′′ = E g (E′ g E′′).

2. The unification and combination of position-based HCE-strategies is non
commutative, i.e E f E′ , E′ f E and E g E′ , E′ g E.

The associativity follows from the equality (τ1 · τ2) · τ3 = τ1 · (τ2 · τ3), and the non-
commutativity is a consequence of the fact that τ1 · τ2 , τ2 · τ1 in general, for any contexts
τ, τ1, τ2 and τ3.

4.4/ THE CLASS OF CONTEXT-EMBEDDING STRATEGIES (HCE-
STRATEGIES)

We introduced the position-based HCE-strategies to clarify the ideas behind contexts,
their insertion as well as their combination. However, position-based HCE-strategies are
not satisfactory for practical applications, since the positions are generally not accessible
and cannot be used on a regular basis in applications. So, we enrich this framework by
introducing navigation strategies to form a class of HCE-strategies that is closed under
combination.

4.4.1/ SYNTAX AND SEMANTICS OF HCE-STRATEGIES

A HCE-strategy is composed of two parts: a navigation of the input term without chang-
ing it, and an insertion of contexts at certain positions. We shall introduce the left-choice
strategy constructor (⊕), a conditional constructor “if-then”, a restricted form of the com-
position, and the fixed-point constructor (“µ”) allowing the recursion in the definition of
strategies. The resulting class is called the class of HCE-strategies. In what follows we
assume that there is a denumerable set of fixed-point variables denoted byZ. Fixed-point
variables in Z will be denoted by X,Y,Z, . . .

68 CHAPTER 4. EXTENSION AND COMBINATION IN MEMSALAB

Definition 14: HCE-strategies

The class of HCE-strategies is defined by the following grammar:
S ::= ∅ | X | τ | (u,S) | S ⊕ S | µX.S | [@i1.S, . . . ,@in.S] | Most(S) |

If C then S

C ::= S | S and S

where X is a fixed-point variable in Z, and τ is a context in T�, and u is a term in
T , and i is a position in Nε , and n ≥ 1. The set of HCE-strategies will be denoted
by C.

We shall simply write @i.S instead of [@i.S] We notice that extending the class of HCE-
strategies by allowing the position i of the jump operator @i.S to range over Nω

ε instead of
Nε does not increase the expressiveness of the strategy language.

The design of the class of HCE-strategies is inspired by the µ-calculus formalism
[Arnold et al., 2001] since we need very rudimentary strategy constructors. In particu-
lar the jumping into the immediate positions of the term tree is morally similar to the
diamond and box modalities (〈·〉 and [·]) of the propositionsal modal µ-calculus. And the
fixed-point constructor is much finer than the iterate operator of e.g. [Cirstea et al., 2003].
Besides, we incorporate the left-choice strategy constructor and a restricted form of the
composition.

We shall sometimes write µX.S(X) instead of µX.S to emphasize that the fixed-point vari-
able X is free in S.

⊕

,

u τ

@1

X

µX

⊕

,

u τ

@1

X

Figure 4.4: The tree-like structure of the HCE-strategy S(X) = (u, τ) ⊕ (@1.X) (left) and
µX.S(X) (right) discussed in Example 8.

4.4. THE CLASS OF CONTEXT-EMBEDDING STRATEGIES (HCE-STRATEGIES) 69

Example 8:

Consider the two HCE-strategies defined by S(X) = (u, τ) ⊕ (@1.X) and µX.S(X),
where u is a term and τ is a context. When applied to a term t, the HCE-strategy
µX.S(X) checks first whether u matches with t. If it is the case, then the context
τ is inserted at the root of t, yielding the term τ[t]. Otherwise, the HCE-strategy
jumps to the position 1 of t and restarts again. If it reaches the left-most leaf
of t and u does not match with this leaf, then the HCE-strategy µX.S(X) fails.
Roughly speaking, the HCE-strategy µX.S(X) is equivalent to its unfolding:

µX.S(X) = (u, τ) ⊕ (@1.((u, τ) ⊕ (@1.(u, τ) ⊕ (@1...)))

= (u, τ) ⊕@1.(u, τ) ⊕@11.(u, τ) ⊕@111.(u, τ) ⊕ . . .

It is helpful to view HCE-strategies as trees with back-edges. A tree with back-edges is
an oriented tree with possible edges going from a node to at most one of its ancestors in
the tree. For instance, S(X) = (u, τ)⊕ (@1.X) is depicted on the left of Figure 4.4, while the
tree with back-edges related to µX.S(X) is depicted on the right.

For any HCE-strategies S(X) and S′ in C, and i ≥ 1, we define S1(S′)
de f
= S(S′), which

stands for the syntactic replacement of X by S′ in S, and Si+1(S′)
de f
= Si(S(S′)). A HCE-

strategy strategy is closed if all its fixed-point variables are bound.

70 CHAPTER 4. EXTENSION AND COMBINATION IN MEMSALAB

Definition 15: Semantics of HCE-strategies

The semantics of a closed HCE-strategy S is a function [[S]] : T ∪ F → T ∪ F,
which is defined inductively as follows.

[[∅]](t)
de f
= F.

[[S]](F)
de f
= F.

[[(u,S′)]](t)
de f
=

[[S′]](t) if u � t,
F otherwise.

[[τ]](t)
de f
= τ(t),

[[S1 ⊕ S2]](t)
de f
=

[[S1]](t) if [[S1]](t) , F,
[[S2]](t) otherwise.

[[µX.S(X)]](t)
de f
= [[Sδ(t)(∅)]](t).

[[If (S1 and . . . and Sn) thenS]](t)
de f
=

[[S]](t) if ∀i ∈ [n], [[Si]](t) , F,
F otherwise.

[[@p.S]](t)
de f
=

t[[[S]](t|p)]p if [[S]](t|p) , F and p ∈ Pos(t),
F otherwise.

[[[@p1.S1, · · · ,@pn.Sn]]](t)
de f
=

(
η([[@pn.Sn]]) ◦ · · · ◦ η([[@p1.S1]])

)
(t) if ∃i ∈ [n] s.t. [[@pi.Si]](t) , F,

F otherwise.

[[Most(S)]](t)
de f
=


f
(
η([[S]])(t1), · · · , η([[S]])(tn)

)
if t = f (t1, . . . , tn) and
∃i ∈ [n] s.t. [[S]](ti) , F,

F otherwise.

The general definition of the fixed-point constructor requires a heavy machinery involv-
ing Knaster-Tarski fixed-point theorem [Tarski, 1955]. However, due to the particular na-
ture of HCE-strategies, we gave an adhoc definition of the fixed-point HCE-strategy by

[[µX.S(X)]](t)
de f
= [[Sδ(t)(∅)]](t). The justification of the iteration of S(∅) at most δ(t) times,

the depth of t, is that the navigation part of a HCE-strategy does not change the input
term t. Therefore, either the HCE-strategy S progresses on the term t and will reach the
leaves of t after δ(t) iterations, or S does not progress and in this case it fails after any it-
eration. Examples of HCE-strategies that do not progress are S = µX.X and S = µX.(u, X)
for a term u. In technical terms, one can show that Sδ(t)(∅) is a fixed-point of S(X) in the
sense that, for every term t, we have [[S

(
Sδ(t)(∅)

)
]](t) = [[Sδ(t)(∅)]](t).

For any HCE-strategies S,S′ in C, we shall write S ≡ S′ iff [[S]] = [[S′]].

4.4. THE CLASS OF CONTEXT-EMBEDDING STRATEGIES (HCE-STRATEGIES) 71

Example 9:

We show how to encode some standard traversal strategies in our formal-
ism using the fixed-point constructor. In what follows we assume that S is
a HCE-strategy. We recall that, when applied to a term t, the HCE-strategy
OuterMost(S) tries to apply S to the maximum of the sub-terms of t starting from
the root of t, it stops when it is successfully applied. Hence,

OuterMost(S) := µX.
(
S ⊕ Most(S)

)
Example 10:

We illustrate the semantics of the fixed-point constructor. Consider the HCE-
strategy

S(X) = (a, τ) ⊕@1.X,

where a is a constant and τ = List(�, j). Let t = (a + b ∗ c)2 be a term where
b and c are constants. If the expression (a + b ∗ c)2 is encoded by the term
Power(a + b ∗ c, 2), then we have that the depth of t is δ(t) = 3. Hence, the
semantics of µX.S(X) when applied to t is

[[µX.S(X)]](t) = S3(∅)(t),

where [[S3(∅)]] is defined by means of [[S2(∅)]] and [[S1(∅)]] as follows:

[[S1(∅)]] = [[S(∅)]] = (a, τ) ⊕@1.∅ = (a, τ).

[[S2(∅)]] = [[S(S(∅))]] = [[S((a, τ))]] = (a, τ) ⊕@1.(a, τ).

[[S3(∅)]] = [[S(S2(∅))]] = [[S
(
(a, τ) ⊕@1.(a, τ)

)
]] = (a, τ) ⊕@1.

(
(a, τ) ⊕@1.(a, τ)

)
= (a, τ) ⊕@1.(a, τ) ⊕@11.(a, τ).

Thus we get,

[[S3(∅)]](t) =
(
@1.(a, τ) ⊕@11.(a, τ)

)
(t) (since a does not match with “Power”)

= t[((a, τ) ⊕@1.(a, τ))(t|1)]1

= t[(@1.(a, τ))(t|1)]1 (since a does not match with “+”)
= t[t1[(a, τ)(t|11)]1]1

= t[t1[(a→ u; τ[u])(t|11)]1]1

= t[t1[t|11[τ[u]]ε]1]1 (since a matches with a)
= t[τ[a]]11

= Power(List(a, j) + b ∗ c, 2).

We generalize next the condition of well-foundedness from position-based HCE-
strategies to HCE-strategies.

Definition 16: Well-founded HCE-strategies.

A HCE-strategy S is well-founded iff every position-based HCE-strategy that is a
sub-strategy of S is well-founded in the sense of Definition 10.

72 CHAPTER 4. EXTENSION AND COMBINATION IN MEMSALAB

4.4.2/ FROM HCE-STRATEGIES TO POSITION-BASED HCE-STRATEGIES

Out of a HCE-strategy and a term it is possible to construct a position-based HCE-
strategy. The main purpose of this mapping is to formulate a correctness-completeness
criterion for the unification and combination of HCE-strategies in terms of position-based
HCE-strategies. Roughly speaking, this criterion imposes that the mapping of the com-
bination of two HCE-strategies is equivalent to the combination of their respective map-
pings. The definition of this mapping follows.

Definition 17:

Define the function Ψ : C×T −→ E, that associates to each closed HCE-strategy
S in C and a term t in T a position-based HCE-strategy Ψ(S, t) in E by

Ψ(∅, t) = ∅. Ψ(τ, t) = @ε.τ.

Ψ((u, τ), t) =

(ε, τ) if u � t,
∅ otherwise.

Ψ((u,S), t) =

Ψ(S, t) if u � t,
∅ otherwise.

Ψ(@p.S, t) = @p · Ψ(S, t|p).

Ψ(S ⊕ S′, t) =

Ψ(S, t) if Ψ(S, t) , ∅,
Ψ(S′, t) otherwise.

Ψ(µX.S(X), t) = Ψ
(
Sδ(t)(∅), t

)
.

Ψ
(
If (S1 and . . . and Sn) thenS, t

) de f
=

Ψ(S, t) if ∀i ∈ [n], Ψ(Si, t) , ∅,
∅ otherwise.

Ψ
(
[@p1.S1, · · · ,@pn.Sn], t

) de f
=

[
Ψ(@p1.S1, t), · · · ,Ψ(@pn.Sn, t)

]
.

Ψ(Most(S), t) =


⊔

i=1,n @i.(Ψ(S, ti)) if t = f (t1, . . . , tn) and ∃i ∈ [n] s.t. Ψ(S, ti) , ∅,
∅ otherwise.

The application of the position-based HCE-strategy Ψ(S, t) to the term t will be
simply written as Ψ(S, t)(t) instead of [[Ψ(S, t)]](t).

It turns out that the function Ψ (Definition 17) preserves the semantics of HCE-strategies
in the following sense.

Lemma 1:

For any HCE-strategy S in C and any term t in T , we have [[S]](t) = Ψ(S, t)(t).

The proof of this Lemma does not provide any difficulties since the definition of Ψ is close
to the definition of the semantics of HCE-strategies.

4.5. UNIFICATION AND COMBINATION OF HCE-STRATEGIES 73

Lemma 2:

The function Ψ enjoys the following properties.

i.) For any position-based HCE-strategies E, E′ in E, we have that E = E′ iff
Ψ(E, t) = Ψ(E′, t) for any term t.

ii.) For any HCE-strategies S,S′ in C, we have that S ≡ S′ iff Ψ(S, t) = Ψ(S′, t)
for any term t.

ˆ

+

a
11

∗

b
121

c
122

12

1

2
2

ˆ

+

List

a j

11

∗

b
121

c
122

12

1

2
2

Figure 4.5: The complete tree structure of the term t and µX.S(X)(t) discussed in Example
10.

4.5/ UNIFICATION AND COMBINATION OF HCE-STRATEGIES

We define the combination of HCE-strategies (Definition 19) by means of their unification
(Definition 18) together with an example. The first main result of this section is Theorem 1
that guarantees the correctness of the combination of HCE-strategies. The correctness is
given in terms of the position-based HCE-strategies, it imposes that the mapping (via the
homomorphism Ψ of Definition 17) of the combination of two HCE-strategies is equivalent
to the combination of their respective mapping. Besides, Theorem 2 is a consequence
of Theorem 1 which is more difficult and proves the same result but for the unification of
HCE-strategies instead of the combination. The second main result is the nice algebraic
properties of the unification and combination of HCE-strategies stated in Proposition 5. In
particular, the combination and unification are associative, which is an important property
in the applications, and are a congruence.

We omit the symmetric cases in the following definition which is given by an induction on
the HCE-strategies by exhibiting all the possible cases. Besides, to reduce the number of
formulas in Definition 18, the elementary HCE-strategy τ is simply written @ε.τ, where τ

is a context.

74 CHAPTER 4. EXTENSION AND COMBINATION IN MEMSALAB

Definition 18: Unification of HCE-strategies

The unification of HCE-strategies is a binary operation f : C×C −→ C inductively
defined as follows.

∅f S = ∅. S f∅ = ∅.
@i.τf@i.τ′ = @i.(τ · τ′). @i.τf@ j.τ′ = [@i.τ,@ j.τ′], if j < i.

@i.τf@i.S = @i.(@ε.τf S). @i.τf@ j.S = If @ j.S then [@i.τ,@ j.S], if j < i.

(u, τ)f@i.τ′ = (u,@ε.τf@i.τ′), (u, τ)f@i.τ′ = ∅,
if i ∈ [ar(u)] ∪ {ε}. if i < [ar(u)] ∪ {ε}.

@i.τf (u, S) = (u, (@i.τ)f S), @i.τf (u, S) = ∅,
if i ∈ [ar(u)] ∪ {ε}. if i < [ar(u)] ∪ {ε}.

(u, τ)f (u′, S ′) = (u ∧ u′, (@ε.τf S ′)). (u, S)f (u′, S ′) = (u ∧ u′, S f S ′).

For the rest, assume L =
⊔
i∈I

@i.S i and L′ =
⊔
j∈J

@ j.S ′j.

Let L1 =
⊔

i∈I∩J
@i.(S i f S ′i) and L2 =

⊔
i∈I\J

@i.S i and L3 =
⊔

i∈J\I
@i.S ′i . Define

LfL′ = L1 t L2 t L3.

(u, S)fL = (u, S)fL.

(S 1 ⊕ S 2)f S = (S 1 f S) ⊕ (S 2 f S).

(If C1 thenS1)f (If C2 thenS2) = If (C1 and C2) then (S1 f S2)

(If C1 thenS1)f S2 = If C1 then (S 1 f S2)

For the fixed-point HCE-strategies,

µX.S(X)f µX′.S′(X′) = µZ.S′′
(
µX.S(X), µX′.S′(X′),Z

)
,

where S′′(X, X′,Z) = [S(X)f S′(X′)]|XfX′:=Z , and Z is fresh.

(µX.S(X))f S′ = S′′(µX.S(X)), where S′′(X) = S(X)f S′.

X f S′ = ∅.

Finally,

Most(S1)︸ ︷︷ ︸
R1

f Most(S2)︸ ︷︷ ︸
R2

= If (R1 and R2) then Most
(
(S1 f S2) ⊕ S1 ⊕ S2

)
Most(S)f

(
u;

⊔
i∈I⊂N

@i.S i
)

= u;
(⊔

i∈[1,arity(u)]

@i.S f
⊔

i∈I⊂N
@i.S i

)
Most(S)f (u; S ′) = u; (Most(S)f S ′)

Most(S)f@ε.τ = [Most(S),@ε.τ]

4.5. UNIFICATION AND COMBINATION OF HCE-STRATEGIES 75

Definition 19: Combination of HCE-strategies

The combination of HCE-strategies is a binary operation

g : C × C −→ C, defined for any S and S′ in C by Sg S′
de f
= (Sf S′) ⊕ S ⊕ S′.

76 CHAPTER 4. EXTENSION AND COMBINATION IN MEMSALAB

Example 11:

Let S(X) = (u, τ)⊕@1.X and S′(X′) = (u′, τ′)⊕@1.X′, be two HCE-strategies. We
compute the µX.S(X)fµX′.S′(X′) by applying the formulas given in Definition 18.
Firstly, the unification (∗) of S(X) and S′(X′) is:

(∗) = S(X)f S′(X′)

= ((u, τ) ⊕@1.X)f ((u′, τ′) ⊕@1.X′)

=
(
(u, τ)f ((u′, τ′) ⊕@1.X′)

)
⊕ (@1.X f ((u′, τ′) ⊕@1.X′))

= ((u, τ)f (u′, τ′)) ⊕ (@1.X f (u′, τ′)) ⊕ ((u, τ)f@1.X′) ⊕ (@1.X f@1.X′)

= (u ∧ u′, τ′ ·τ) ⊕ (u,@ε.τf@1.X′) ⊕ (u′,@1.X f@ε.τ′) ⊕ (@1.(X f X′))

= (u ∧ u′, τ′ ·τ) ⊕
(
u, If (@1.X′) then [@1.X′,@ε.τ]

)
⊕ (u′, If (@1.X) then [@1.X,@ε.τ′])

⊕ (@1.(X f X′)).

Secondly, the replacement of XfX′ in (∗) by a fresh fixed-point variable Z yields:

S′′(X, X′,Z) = [S(X)f S′(X′)]|XfX′:=Z

=
[
(u ∧ u′, τ′ ·τ) ⊕

(
u, If (@1.X′) then [@1.X′,@ε.τ]

)
⊕ (u′, If (@1.X) then [@1.X,@ε.τ′])

⊕ (@1.(X f X′))
]∣∣∣XfX′:=Z

= (u ∧ u′, τ′ ·τ) ⊕
(
u, If (@1.X′) then [@1.X′,@ε.τ]

)
⊕ (u′, If (@1.X) then [@1.X,@ε.τ′])

⊕ (@1.Z).

Finally, the unification (∗∗) of µX.S(X) and µX′.S′(X′) is:

(∗∗) = µX.S(X) f µX′.S′(X′)

= µZ.S′′(µX.S(X), µX′.S′(X′),Z)

= (u ∧ u′, τ′ ·τ) ⊕
(
u, If (@1.X′) then [@1.X′,@ε.τ]

)
⊕ (u′, If (@1.X) then [@1.X,@ε.τ′])

⊕ (@1.Z).

The application of (∗∗) to a term t features four cases.

i.) Either t matches with both u and u′, and in this case the context τ′ · τ is
inserted at the root of t.

ii.) Or only u matches with t, and in this case τ is inserted at the position 1 of t
provided the HCE-strategy µX′.S′(X′) is applied successfully at the position
1 of t.

iii.) Or only u′ matches with t, and in this case τ′ is inserted at the position 1 of
t provided the HCE-strategy µX.S(X) is applied successfully at the position
1 of t.

iv.) Or both µX.S(X) and µX′.S′(X′) are applied at the position 1 of t.

4.5. UNIFICATION AND COMBINATION OF HCE-STRATEGIES 77

4.5.1/ THE CORRECTION AND COMPLETENESS OF THE UNIFICATION AND COM-
BINATION OF HCE-STRATEGIES

Now we are ready to state the main results of this Chapter. Namely, the unification and
combination of HCE-strategies is sound and complete.

Theorem 1:

For every term t ∈ T and for every HCE-strategies S and S′ in C, we have that
Ψ(Sf S′, t) = Ψ(S, t)f Ψ(S′, t).

Theorem 2:

For every term t ∈ T and for every HCE-strategies S and S′ in C, we have that
Ψ(Sg S′, t) = Ψ(S, t)g Ψ(S′, t).

Thanks to the fact that the function Ψ is an homomorphism (in the first argument), one
can transfer all the properties of the combination and unification of position-based HCE-
strategies (stated in Proposition 4) to HCE-strategies.

Proposition 5:

The following hold.

1. The set C of HCE-strategies together with the unification and combination
operations enjoy the following properties.

1. The neutral element of the unification is @ε.�, and the absorbing el-
ement is ∅.

2. The neutral element of the combination is ∅.

3. The unification and combination of HCE-strategies are associative.

2. The unification and combination of HCE-strategies is non commutative.

3. For any HCE-strategies S and S′ in C, and for any term t in T , we have
that

Ψ(Sf S′, t) = ∅ iff Ψ(S, t) = ∅ or Ψ(S′, t) = ∅.
Ψ(Sg S′, t) = ∅ iff Ψ(S, t) = ∅ and Ψ(S′, t) = ∅.

4. For any HCE-strategies S and S′ in C, we have that

Sf S′ ≡ ∅ iff S ≡ ∅ or S′ ≡ ∅.
Sg S′ ≡ ∅ iff S ≡ ∅ and S′ ≡ ∅.

5. The unification and combination of HCE-strategies is a congruence, that
is, for any HCE-strategies S1,S2,S in C, we have that:

If S1 ≡ S2 then S1 f S ≡ S2 f S and Sf S1 ≡ Sf S2.

If S1 ≡ S2 then S1 g S ≡ S2 g S and Sg S1 ≡ Sg S2.

We notice that the neutral and absorbing element, and the associativity property of

78 CHAPTER 4. EXTENSION AND COMBINATION IN MEMSALAB

the unification and combination must be understood at the semantic level and not at
the syntactic level since there are HCE-strategies which are syntactically different but
semantically equivalent. For instance, the HCE-strategies @ε.� and (x,@ε.�) and
(x,@ε.�) ⊕ (y,@ε.�), where x, y are variables, are all equivalent. Therefore, saying
that @ε.� is the neutral element for the unification of HCE-strategies must be under-
stood as follows. For any HCE-strategies e,S ∈ C such that e ≡ @ε.�, we have that
eg S ≡ Sg e ≡ S. And the associativity of the unification must be understood as follows.
For any HCE-strategies S1,S2,S3 ∈ C, we have that (S1 g S2)g S3 ≡ S1 g (S2 g S3).

4.6/ REMARKS

The class of HCES-strategies introduced in this Chapter is indeed a strict subclass
of the class of context embedding strategy, CES-strategies for short, introduced in
[Belkhir et al., 2016]. The strategy constructors of the class of CES-strategies feature
the insertion of contexts, the jump operator ”@”, the left-choice ”⊕”, the fixed-point op-
erator ”µ” and a mechanism to specify and handle the failure. While the constructors of
the class of HCES-strategies feature the insertion of contexts, the jump operator ”@”, the
left-choice ”⊕”, the fixed-point operator ”µ” and the Insidestrategy. This makes the class
of HCES-strategies less expressive than the class of CES-strategies but, on the other
hand, the encoding of the (HCES-strategy) Inside in the class of CES-strategies yields a
strategy whose size depends on the signature. This makes the class of HCES-strategies
more practical although its constructors are less rudimentary than the constructors of the
class of CES-strategies.

5
IMPLEMENTATION IN MEMSALAB

5.1/ INTRODUCTION

We implemented the HCE-strategy language as a part of a user-friendly language which
is integrated in MEMSALab. It makes the implementation of derivation of asymptotic models
easier by considering the whole process as a sequence of mathematical properties which
transforms an input reference PDE into an asymptotic model.

For sake of organization, there are three kinds of user files distinguished by their exten-
sion ".pde", ".proof" and ".ext". The ".pde" file is used for the specification of PDEs.
It is composed of many sections such as Constant, Index, Region, Variable, Function,
Operator, Expression and PDE. These sections define respectively constants, indices,
domains, mathematical variables, functions, operators operating on functions, mathe-
matical expressions and the PDE. It is possible to introduce and use ”shortcut” names.
Beside, commonly used operations and operators, such as ∂ and

∫
, are predefined, the

user does not need to define them. Both Unicode and LATEX symbols can be used.

The ".proof" file is a collection of mathematical properties written rewriting strategies.
A strategy is applied to the PDE defined in the PDE file and transforms it to another
asymptotic model. The ".proof" file has the same structure as the PDE file, except it
does not contain the PDE section but new sections such as Rule and Step. The Rule
section allows one to define rewriting rules. The Step section contains a list of strategies.

The ".ext" file allows one to define HCE-strategies with the possibility to introduce and
use shortcut names.

The ".pde", ".proof" and ".ext" files are parsed and an OCaml code is generated.
However, the user can manage and visualize PDEs, proofs, extensions, the application of
a proof to a PDE, the application of an extension to a proof or a PDE, and the combination
of two extensions via Matlab. The visualization is possible in many formats: LATEX PDF,
html or Unicode text. Finally, to illustrate how to use the User Language for writing PDEs,
proofs and extensions. Figures are reproduced in the last section to illustrate the display
tools, the application of a proof to a PDE, the application of extensions to a PDE and the
combination of two extensions and its result when applying to the PDE.

Organization of the Chapter: The User Language is introduced in Section 5.2. The
structure of PDE, Proof and Extension files as well as the definitions of first and rewriting
variables, patterns, rules, strategies are detailed in Sections 5.3, 5.4 and 5.5. In Section
5.7 we introduce Matlab functions to manage PDE, Proof and Extension files. The outputs
are illustrated by figures in Section 5.9.

79

80 CHAPTER 5. IMPLEMENTATION IN MEMSALAB

5.2/ GENERALITIES

This section describes the User Language that allows for the implementation of deriva-
tion of asymptotic models for partial differential equations (PDE) based on the Extension-
Combination method, a method grounded on a concept of reusability. Roughly speak-
ing, its principle consists in starting from a reference PDE and in its transformation into
an asymptotic model through the application of a sequence of mathematical properties
forming a proof. For instance, the reference PDE in (5.1) is the one-dimensional second
order differential equation

−
d
dx

(aε(x)
du
dx

) = f in]a, b[(5.1)

with a periodic coefficient aε(x) = a(x/ε) and the homogeneous Dirichlet boundary condi-
tions

u(a) = u(b) = 0. (5.2)

The reference proof transforms the reference boundary value problem (5.1, 5.2) into its
homogenization by passing to the limit ε→ 0.

Then, the method consists in transforming the reference proof into another proof that ap-
plies to a more complex input PDE. The latter should come from a script or a software
package e.g. FreeFEM++ or COMSOL. Such a transformation is refered to as an Ex-
tension. In principle an extension is designed to be applied to the reference proof, but
it should also be applicable to the reference PDE to generate a more complex PDE. By
construction, an extension might be much smaller than the proof that it generates, and is
minimal in the sense that it includes only what is specific to the features involved in the
new PDE.

After building several extensions, it is possible to combine them by a Combination to build
a new extension that is inheriting all the features of the extensions.

5.2.1/ THE FOUR KINDS OF FILES

Four kinds of user files are distinguished with their extensions. A ”.pde” file is building an
equation taken as an input of a model derivation. The latter is described in a ”.proof” file.
The equations and the proof are extended with ”.ext” files.

5.2.2/ INCLUSION OF FILES

Included files can be at any position of a file with the command #Include "file" where
file is a filename of the same kind as the main file with.

5.2.3/ LIST OF UNICODE CHARACTERS

The four kinds of files can make use of unicode characters that are gathered in Table
5.2.3.

In Windows, the edition is done with Notepad++. A special choice of font must be done
for correct edition of unicode characters. The illustrations presented in the following are
done with the font Arial Unicode MS.

5.3. PDE-FILES 81

Figure 5.1: List of Unicode Characters

5.3/ PDE-FILES

5.3.1/ STRUCTURE OF A PDE FILE

A pde-file begins with the name of the file stated as

PDE "file name"

and ends with the Partial Differential Equation declared with the keyword PDE that must
appear exactly one time in a pde-file. Comments begin with the character % and apply
until the end of the line. They can be put anywhere. The file is organized in Sections,
each refering to a type of data. Each section begins with a keyword and includes a list
of shortcut statements, see Section 5.3.2. Any of these statements comprises a shortcut
name and a set of fields defined in Table 1. The shortcuts and their fields can be used
in subsequent instructions. All kinds of sections are optional, they can be introduced in
any order and can be repeated. The last line of the file is the declaration of the PDE that
begins with the keyword PDE.

5.3.2/ SHORTCUTS AND THEIR FIELDS

Excepted PDE and Expression defined in Section 5.3.4, the six other kinds of sections
defined in Pde-files are Constant, Index, Region, Variable, Function and Operator.
They define constants, indices, domains where partial differential equations are posed,
mathematical variables (to distinguish with rewriting variables used in rules for proofs)
each being defined in a domain, functions depending on possibly several variables, and
operators operating on functions. The fields of each of these kind of shortcuts are sum-
marized in the following table.

Keywords Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
Constant "Value" – – – – –
Index "Name" [Range] "Quantifier" – – –
Region "Name" [Index] [Axes] [Subregion] Boundary Normal

Variable "Name" [Index] [Region] – – –
Function "Name" [Index] [Variable] [BC] "Type" –
Operator "Name" [Index] [Expr] [Inputvar] [Outputvar] [Parameter]

Table 1: the keywords of the sections and the description of their fields

Below is the definition of two shortcuts of contants that can be a number or a string.

82 CHAPTER 5. IMPLEMENTATION IN MEMSALAB

Constant

pi : 3

e : "e"

or equivalently

Constant pi : "3" e : "e"

Let us explain the meaning of each field, the type of the shortcuts being detailed in Table
3 below. All kind of shortcuts, excepted Constant and Index can be indexed thanks to
their field Index.

In the type Index, the field Quantifier describe in which sense the index is used, see
Table 3.

In the type Region, the field [Axes] is the list of directions in which a region is defined.
It determines the dimension of the region. For example, for a three-dimensional region it
can be [1,2,3] and for a two-dimensional region it can be [1,3]. If subregions are used,
they can be declared in the list [Subregion]. The boundary of a region may be described
in Boundary and its outward unit normal direction is a function in Normal.

In the type Variable, the field Region refers to the domain where it is defined. If the vari-
able is a vector, each of its components is defined in a region specified by a component
of the vector of regions.

In the type Function, the field Variable refers to the variable on which the function
operates. The possible boundary conditions that it satisfies are in BC. Each BC is a rewrit-
ing rule defined in Section 5.4.2. The ”Type” of a function must be given. It is a ”Given”
function, or a ”Test” function or an ”Unknown” function (solution to an equation) or a O(ε)-
function that is expected to be replaced by zero when ε vanishes.

For the type Operator, the field Expr is the expression to which the operator is applied,
meaning that the same shortcut cannot be used for different applications of the same
operator. For instance ∆u and ∆v requires to define

Function u : "u" [] [] [] "Unknown"

v : "v" [] [] [] "Test"

Operator opDelta to u : "Delta" [] [u] [] [] []

opDelta to v : "Delta" [] [v] [] [] []

The fields Inputvar and Outputvar refer to the variables of the input and output functions
on which the operator actually operates. For instance, for the partial derivative about a
variable x of a function f(x,y) of two variables, Inputvar and Outputvar can be taken
as [x] only. But for a partial integration about x, Inputvar can be taken as [x] but
the Outputvar is the empty list []. Finally, Parameter allows to take into account any
parameter.

The name of a shortcut is also called an identifier and is a sequence of characters that
may be a letter, a digit, the underscore character ” ”, or the single quote ”’”. It starts with
a lowercase letter or an underscore. For instance n and a i are admissible identifiers
but A is not. The set of letters includes the 52 lowercase and uppercase letters from the
ASCII set. The current implementation accepts identifiers up to 16.000.000 characters
in length. Table 2 summarizes the specifications of the identifiers together with the other

5.3. PDE-FILES 83

primary objects used in a Pde-file

Objects Specification
Integer [0-9]+

Float [0-9]+.[0-9]*([eE][-+]?[0-9]+)?

Identifier [a .. z] [A .. Z a .. z 0 .. 9 ’]*

Table 2: specification of the integers, float and identifiers used in a Pde-file

In Table 1, we distinguish between three kinds of fields: lists of shortcuts denoted with
brackets, strings denoted with double quotes or simple shortcuts. A shortcut appearing
in a field must have already been defined. The sets of definitions of all shortcut fields
appearing in Table 1 are detailed in Table 3.

Field names Sets of Definition Field Names Sets of Definition
Name Id. Expr Id. of a sc ”Expression”
Range Integer | Id. of a sc ”Constant” BC Id of Rules
Quantifier {Given, For all, There -

exists}
Type {Given, Unknown, Test,

Bigo}
Index Integer | Id. of a sc ”Index” BCRegion Id. of a sc ”Region”
Axes Integer | Id. of a sc ”Constant” BCLhsExpr Id. of a sc ”Expression”
Subregion Id. of a sc ”Region” BCRhsExpr Id. of a sc ”Expression”
Boundary Id. of a sc ”Region” Inputvar Id. of a sc ”Variable”
Normal Id. of a sc ”Function” Outputvar Id. of a sc ”Variable”
Region Id. of a sc ”Region” Parameter Integer | Id. of a sc of any type
Variable Id. of a sc ”Variable”

Table 3: the sets of definition of the shortcut fields of Table 1. Here Id. stands for
Identifier and sc for shortcut

Moreover, in a shortcut a null list is represented by [] and a null simple shortcut by an
underscore, but a field in quotes cannot be with an empty component. The access to a
shortcut field is done according to the rail diagram:

Figure 5.2: Rail diagram for the access to fields of a shortcut

where IDENT is the name of the shortcut, FIELD is the name of the field and INTEGER
is the rank of the field in the list if neccessary. For instance, for the shortcuts

Index i : "i" [1,2] "Given"

Index j : "j" [1,2] "For all"

Region omega : "omega" [i,j] [] []

the code omega.Index(2).Quantifier is equal to the string "For all".

84 CHAPTER 5. IMPLEMENTATION IN MEMSALAB

5.3.3/ PREDEFINED OPERATORS

A number of operations and operators are predefined. They are listed in the table below.

Operations and operators
expr + expr

expr - expr∑
ident expr or \sum ident expr∏
ident expr or \prod ident expr∫
expr d ident or \int expr \dj ident

∂ expr / ∂ ident or \partial expr / \partial ident

expr * expr

expr · expr or expr \cdot expr
expr / expr

+ expr

- expr

exprˆexpr or expr ** expr
(expr)

Table 4: all predefined operations and operators with their associativity property

5.3.4/ EXPRESSIONS

The shortcuts of the kind Expression define mathematical expressions. Their grammar
in Unicode characters or Latex commands is defined in Table 4. Their precedence rules
and their associativity rules follow the usual mathematical rules.

5.3.5/ PDE

The declaration of the model is done under the section PDE and has the form

PDE

pde 1D : lefthandside = righthandside

where lefthandside and righthandside are two expressions.

5.3.6/ EXAMPLES

The weak formulation of the model problem posed in a domain ω,

−
d2u
dx2 + u = f in ω

with Neumann boundary conditions is written as: u ∈ H1(ω)∫
ω

du
dx

dv
dx

dx =

∫
ω

f v dx for all v ∈ H1(ω).

A coding with a minimum specification is as follows.

5.4. PROOF FILES 85

PDE "pde_1D" Region

% Name Index Axes Subregion Boundary Normal

omega : "omega" [] [] [] _ _

Variable

% Name Index Region

x : "x" [] omega

Function

% Name Index Variable [BCRegion,BCLhsExpr,BCRhsExpr] Type

u : "u" [] [x] [] "Unknown"

v : "v" [] [x] [] "Test"

f : "f" [] [x] [] "Given"

PDE

pde 1D :
∫
∂u/∂x*∂v/∂x+u*v dx =

∫
f*v dx

The PDE can also be defined from a predefined expression,

Expression exp :
∫
∂u/∂x*∂v/∂x+u*v dx =

∫
f*v dx

PDE

pde 1D : exp

5.4/ PROOF FILES

A proof file implements a proof that applies to a PDE. It includes patterns that have the
same form as the shortcuts in a Pde-file excepted that they include rewriting variables.
They are defined in Section 5.4.1. Additionally, there are other kinds of shortcuts, namely
Rule defined in Section 5.4.2, Strategy in Section 5.4.3, and Step and Lemma in Section
5.4.4. It ends with the definition of the model that starts with the keyword Model. Figure
?? represents a global view of the tree structure of a proof after all shortcuts have been
assembled to form a single expression.

Figure 5.3: Global tree representation of a proof

5.4.1/ REWRITING VARIABLES, PATTERNS AND PATTERN MATCHING

A pattern has the same structure as the shortcuts in PDEs excepted that it can also in-
clude rewriting variables. A rewriting variable can represent any expression. It is denoted
by a trailing underscore, e.g. x where x is any identifier. A pattern is made with any
shortcut definition or any expression that may occur in a Pde file but with some parts
replaced by rewriting variables. For instance,

86 CHAPTER 5. IMPLEMENTATION IN MEMSALAB

Function u : "u" [] [x] [] "Unknown"

is a pattern representing a shortcut of the function u that is an unknown in the problem
and which variable can be any variable. We notice that the fields Type and Quantifier
cannot be replaced by a rewriting variable. For instance, the declaration

Function u : "u" [] [x] [] y

is wrong.

The pattern

Expression exp1 : z +t

represents any sum as for instance ”1+2”.

A pattern ` is used to be compared with a term t through an operation called pattern
matching. It consists in testing if ` and t are equal modulo replacement of the variables in
` by some subexpressions of t. When the equality holds, the pattern ` is said to match with
the term t or vice versa. Addition and multiplication being commutative and associative,
the implementation of the pattern matching procedure can operate up to these properties.
The list of commutative and associative symbols is defined in Section 5.3.3.

The internal representation of a list in a shortcut field e.g. [1,2,3] is made with nested
two element lists whose left element is an expression and right element a list e.g.
[1,[2,3]]. The following examples illustrate how a rewriting variable matches in a list.

• x can match any list

A variable in a list matches with a list only if it is in last position. Otherwise it matches only
with an expression.

• [1,x] matches [1,2,3] and x matches [2,3].

• [x ,2,3] matches [1,2,3] and x matches 1.

• [1,x ,3] matches [1,2,3] and x matches 2.

• [x ,y] matches [1,2,3], x matches 1 and y matches [2,3].

The field of a rewriting variable can be used in the same way as for any shortcut. If
omega is a rewriting variable that is used to match with a Region, the code omega -
.Index(2).Quantifier is equal to the Quantifier of the Index of the Region matched
with omega .

5.4.2/ RULES

A rule transforms a pattern ` into another one r under a condition c. A condition follows
the grammar detailed in Section 5.4.2.1. It can call the Var-function defined in Section
5.4.2.2 that returns the set of mathematical variables involved in an expression. It can
also include rewriting variables.

A rule is declared under the section name Rule and is expressed by an arrow “→”: ` → r
if c. The rewriting variables included in r must be parts of `. The rule is designed

5.4. PROOF FILES 87

to be applied to an expression t that matches with `. Applying a rule to an expression
t generates an expression r where the rewriting variables have been replaced by the
subexpressions determined in the comparison between ` and t. The terms `, r and c can
include shortcuts previously defined. For instance the rule

Rule anyrule : x → x

transforms any expression into the same expression. The rule

Rule plusone : x → x +1 if x >0

adds 1 to an expression provided that it is positive. So it transforms a+b into a+b+1 if one
knows that a+b>0.

The next example is a proof file named ”simple proof.proof” that applies only the rule
”plusone”,

Model simple proof : plusone

The three fields of a rule are Left, Right and Condition. For instance plusone.Right is
x +1.

5.4.2.1/ GRAMMAR OF RULE’S CONDITIONS

Table 5 below summarizes the usual mathematical operations on sets.

∅ or \varnothing
{ }

{ident,...,ident}

VarOf expr

set ∪ set or expr \cup expr
set \ set

set ∩ set or expr \cap expr

Table 5: notations used in the rule conditions for usual operations on sets

Table 6 summarizes the usual logical operators. The function VarOf is defined in Section
5.4.2.2.

Operators Operators
true expr = expr

false expr , expr or expr \neq expr
cond or cond ident ∈ set or ident \in set
cond and cond ident < set or expr \not\in expr
not cond set ⊂ set or expr \subset expr
(cond) set 1 set or expr \not\subset expr
expr < expr set ⊆ set or expr \subseteq expr
expr ≤ expr or expr \leq expr set * set or expr \nsubseteq expr
expr > expr set = set

expr ≥ expr or expr \geq expr

Table 6: notations used in the rule conditions for usual logic operations

88 CHAPTER 5. IMPLEMENTATION IN MEMSALAB

In some cases, the corresponding Latex commands are also recalled since they are
planed to be implemented in the language.

5.4.2.2/ THE VarOf--FUNCTION

The VarOf--function determines the sets of mathematical variables of an expression.
It is used in the condition part of rewriting rules. It is recursively defined according to
the table below, where expr is an expression, d an integer, f a float, s a string, x a
mathematical variable and A an operator. A field e.g. f.Variable is considered as an
evaluable expression and must be evaluated, i.e. replaced by its value, before computing
the VarOf--function on it. An expression VarOf(.) is also an evaluable expression.

Expression Set of mathematical variables
VarOf(exp1+exp2), VarOf(exp1-exp2) VarOf(exp1) ∪ VarOf(exp2)

VarOf(
∑

iexp), VarOf(
∏

iexp) VarOf(exp) \ VarOf(i)

VarOf(
∫
exp dx) VarOf(exp) \ VarOf(x)

VarOf(∂exp/∂x) VarOf(exp) if VarOf(x)⊆ VarOf(exp), and
∅ otherwise

VarOf(exp1*exp2), VarOf(exp1·exp2) VarOf(exp1) ∪ VarOf(exp2)

VarOf(exp1/exp2) VarOf(exp1) ∪ VarOf(exp2)

VarOf(+exp), VarOf(-exp) VarOf(exp)

VarOf(exp1ˆexp2), VarOf(exp1**exp2) VarOf(exp1) ∪ VarOf(exp2)

VarOf("("exp")") VarOf(exp)

VarOf(d), VarOf(f), VarOf(s) ∅
VarOf(x) {x}

VarOf(A) VarOf(A.Expr) ∪ VarOf(A.Outputvar) \

VarOf(A.Inputvar)

VarOf(evaluable expression) VarOf(evaluation of the expression)

Table 7: Definition of the VarOf-function that returns the set of variables included in an
expression

5.4.3/ STRATEGIES

A strategy is a transformation applied to an input expression. It specifies how the rewriting
rules are applied. It often consists in a navigation in the input expression followed by an
application of rewriting rules. The application of a strategy to an input expression either
succeeds and in this case it yields another expression, or it fails and the input expression
is returned as the output expression.

• Composition: The strategy “;” stands for the composition of two strategies. That
is, the strategy s1;s1 consists of the application of s1 followed by the application of
s2.

• Or: The strategy “|” or lor stands for left-choice. The strategy s1|s2 applies s1. If
this application fails then s2 is applied. Hence, s1|s2 fails when applied to a given
term t iff both s1 and s2 fail when applied to t. In other words, this strategy applies

5.4. PROOF FILES 89

at maximum one of the two strategies s1 or s2 with a priority given to s1. This is
why it is called lor for ”or with the left-priority”.

• OuterMost: The outermost strategy s⇓ applies the strategy s once to all the sub-
terms of t for s that are the closest ones to the root of t, i.e. to the largest subterms
of t on which s succeeds. In other words the strategy outermost traverses the ex-
pression t down from its root and tries to apply s to each traversed subexpressions.
If the strategy s succeeds on some subexpression t’ of t, then it is not applied to
the proper subexpressions of t’ neither to the result of the application. In particular,
s⇓ fails if and only if s fails on all the subexpressions of t.

• InnerMost: The innermost strategy s⇑ works similarly, but in the opposite direc-
tion, i.e. it traverses a term t up from its smallest subexpressions and tries to apply
the strategy s once to the smallest redexes of t for s.

• TopDown: The topdown strategy s ↓ tries to apply the strategy s to all the subex-
pressions of any expression t, at any depth, by starting with the root of t. It fails
when there is a subexpression of t where s fails.

• BottomUp: The bottomup strategy s ↑ behaves similarly, but works in the opposite
direction, i.e. it starts from the leaves (the smallest subexpressions) and goes up.

• Iteration: The iterate strategy s 	 iterates the application of the strategy s until
the latter fails, in this case the full strategy 	 fails, or a fixed point is reached. It fails
if and only if the strategy s fails during these iterated applications.

• Co-strategy: The co-strategy -s permutes the left and right sides of all rules in s.
This yields a correct strategy only if the set of variables of the left and right sides
are the same. This constraint is not verified.

The next program applies the rule plusone everywhere starting from the root,

Strategy strat plusone : plusone↓

or

Strategy strat plusone : plusone \td

and

Model simple proof : strat plusone

or simply, in a single line

Model simple proof : plusone↓

The next table summarizes the strategies.

90 CHAPTER 5. IMPLEMENTATION IN MEMSALAB

Strategies Notation Meaning Associativity
Compose s1; s2 or s1 and s2 apply s1 and then s2 left
LeftChoice s1 | s2 or s1 lor s2 apply s1 and if does not work apply

s2

left

TopDown s ↓ or s \td apply s1 everywhere starting from the
root

OuterMost s ⇓ or s \om same as TopDown but stops at the
first success

BottomUp s ↑ or s \bu apply s1 everywhere starting from the
leaves

InnerMost s ⇑ or s \im same as BottomUp but stops at the
first success

Iterate s 	 or s \it apply s1 as long as it is possible non associative
Co-strategy -s permute left and right rule parts in all

rules of s

Table 8: the strategies, their notation and their possible associativity property

5.4.4/ STEPS, LEMMA, MODELS

In a Proof-file, the final instruction is in the section Model and is made with strategies.
Lemma are made with strategies used to build intermediary results. An additionnal strat-
egy is available to transform the result of a lemma into a new rule so to be used by subse-
quent lemmas. The Lemma can refer to steps that are themselves made with strategies.
The use of steps is for adding more structure to the proof of a Lemma.

An example of a section Step that includes a single step which applies a single strategy
is

Step step1 : strat plusone

Then, a possible section Lemma with a single step is

Lemma lemma1 : step1

Avoiding the use of the sections Strategy and/or Step, a strategy can be

Lemma lemma1 : plusone↓

The strategy generateRule is used to transform the result of the application of a lemma
to a special term that yields an equality l=r if c to the rule l → r if c. If the name of
the lemma is lemma id, the generated rule is name lemma id Rule. For instance, applying
lemma1 to the term

t:= x+1=y+2

Applying the lemma

Lemma lemma1 : step1; generateRule "nameOfGeneratedRule"

creates the new rule

Rule lemma1 Rule : x+2 → y+3

that can be used in another lemma

5.5. EXTENSION FILES 91

Lemma lemma2 : lemma1 Rule

and a proof can be made with the successive call of the two lemmas

Model proof1 : lemma1; lemma2

5.4.5/ EXAMPLE OF A PROOF FILE

Model "refproof"

% Index, Region, Constant, Variable, Function, Operator, Expression

% ...

Rule

rule01 :
∫
u_v_ dx_ = 0 → u_ = 0 if v_.Type = "Test"

rule02 :
∫
u_v_ dx_ = 0 → v_ = 0 if u_.Type = "Test"

Strategy

newRule : rule01 | rule02

Step

step11 : rule01 ; newRule ; rule02

step12 : rule01

Lemma

lemma01 : step11 ; step12 ; ... ; step19

lemma02 : step21 ; step22 ; ... ; step29

Model

refproof : lemma01 ; lemma02 ; ... ; lemma07

5.5/ EXTENSION FILES

An extension file implements an extension that operates on a PDE or a Proof to transform
it into another PDE or another Proof. The elementary operations in these transforma-
tions are the second order rules that use second order patterns matching and consists in
adding subterms named contexts at some positions, as explained in Section 5.5.1. To do
so, an extension file may include the same sections as the kind of file to which it applies.
It also include two sections SORule and SOStrategy for second order rules and strategies.
The second order rules are explained in Section 5.5.2. The file ends with the description
of the extension begining with the keyword Extension.

5.5.1/ SECOND ORDER PATTERN MATCHING, CONTEXTS AND SECOND ORDER
RULES

The patterns used for pattern matching in Extensions have the same structure as the
patterns used in pattern matching in proofs however they can also include shortcuts met

92 CHAPTER 5. IMPLEMENTATION IN MEMSALAB

in proofs as shotcuts of rules or strategies. In the pattern matching of extensions, a
rewriting variables matches any rewriting variable as well as any term. For instance, in an
extension the rewriting rule

Rule plusone : y → y +1

matches the first order rule Rule plusone : x → x +1 since the first order variable x -
matches y . It also matches Rule plusone : x → x+1.

A second order rewriting rule is on the form α ⇒ β where α and β are any patterns of
extensions, and β is equal to α excepted embedded additional terms called contexts. A
context can be any expression where exactely one subterm is missing which is material-
ized by the symbol � or \ square. For example

2 * �

� + b

Function u : "u " [] [�] [] y

Step step1: �

are four contexts. Since the order of common parts of α and β is maintained, the added
terms are automatically identified by the compiler. However, the unique determination of
added terms requires additional rules. In case of more than one occurence of a same
associative operation, the priority is given to the most right operations. For instance
a + c + b is transformed into a + (c + b), and in

Rule so rule : a+b ⇒ a+c+b

c +� is identified as a context of b. In the example

Rule so rule : a+b ⇒ a*c+b

due to the priority rule of the multiplication over the addition, a ∗ c + b is understood as
(a ∗ c) + b, so � + c is a context of a. An arbitrary number of contexts can be taken into
consideration. A case with two contexts is

Rule so rule : a+b ⇒ 2+a*c+b

where 2 + � and � ∗ c are contexts for the term a + b and a respectively. Finally, the
grammar of contexts is summarized as

τ::= � | f(α,...,α)

where α stands for any extension pattern and f for any function.

5.5.2/ SECOND ORDER STRATEGIES

The second order strategies or SO-strategy or extensions constitute a very special class
of strategies. This class includes the second order rules and is built to be stable under
combination as defined in Section 5.6. An extension behaves like a rewriting strategy
when applied to an input expression: either it succeeds and in this case it returns a new
expression, or it fails.

The class SO-strategies is semantically equivalent to the class of HCE-strategies intro-
duced in Section 4.4. The only difference is that the grammar of SO-strategies is user-

5.5. EXTENSION FILES 93

oriented making this class more like a programming language.

A labeled SO-pattern U is an ordinary SO-pattern in which some term-labels are intro-
duced e.g. f(Loc1 Of x ,Loc2 Of y ,z) is the SO-pattern f(x ,y ,z) where the vari-
ables x and y are labeled with the label names Loc1 and Loc2 while the variable z is
not labeled. We mention that the matching of a labeled pattern with an input expression is
made by ignoring the labels. For instance, f(Loc1 Of x ,Loc2 Of y ,z) matches with
f(a ,b ,c).

All elementary expressions are listed hereafter where α and β stand for any labeled sec-
ond order patterns or their shortcuts, σ for any labeled second order patterns that include
strategies or its shortcut, γ for any labeled second order patterns that does not include
any strategy or its shortcut, S, S1 and S2 for any second order strategies, Loc, Loc1, Loc2
for any labels at positions, Label Name for any label on strategies, and τ for contexts.

• SO-rule: The SO-rule α ⇒ β is defined in Section 5.5.1. This extension fails if
and only if α does not match with the input expression or if β can not be obtained
from α by adding contexts, for instance f(a) ⇒ g(b) always fails.

• Id(γ): Id(γ);S specifies that the labeled SO-pattern γ is matched with the input
expression. That is, Id(γ) is basically the identity rewriting rule γ → γ. If the
matching is successful then S is applied to the input expression. This extension fails
if and only if γ does not match with the input expression or S fails when applied to
the input expression.

• Id(σ): The extension Id(σ);;S behaves exactly like Id(γ);S but for σ that includes
strategies.

• Inside(.): The extension Inside(S) applies S to all the fields of the input expres-
sion. For instance the fields of f(a,b,g(c)), where a,b,c are constants, are a,b
and g(c). One has to be careful since the fields of some expressions e.g.

∫
f(x)dx

where x is a mathematical variable, are defined implicitly. This extension fails when
applied to an input expression t if and only if it fails on all the fields of t. Besides,
if S fails on some fields and succeeds on others, then it behaves like the identity on
the failed fields by letting them unchanged.

• Or: The extension S1 Or S2 stands for the left-choice : S1 is applied to the input
expression t, if it does not succeed S2 is applied to t. This extension fails if and
only if both S1 and S2 fail when applied to t. The constructor Or is associative.

• If · then ·: The extension If (S1 and . . . and Sn) then S, when applied to an input ex-
pression t, tests if each application of Si to t succeeds, if it is the case, then it
applies S to t. Otherwise (i.e. one of the applications of Si to t fails), then this
extension fails.

• Insert: The extension Insert τ, when applied to an input expression t, replaces
t by τ and inserts t in the empty position of τ. When the extension Insert τ At

Loc1 is applied to t, it applies Insert τ at the position Loc1.

• At Loc: The extension S At Loc Name must be preceded by Id(γ); or Id(σ);;
and the label declaration “Loc Name Of” must appear exactly once1 in γ and σ.

1We can relax this constraint by allowing the label declaration to refers to many non-nested subterms of γ
and σ but this makes the unification formulas of extensions more complicated. So we keep this assumption
to simplify the exposition.

94 CHAPTER 5. IMPLEMENTATION IN MEMSALAB

Besides, we do not allow a location name to be defined in more than one SO-
pattern in a given SO-strategy. The strategy S is applied to the subterm of the input
term t that matches with the subterm labeled by Loc Name in γ or σ.

• Goto Label: The extension Label Name Of S introduces the label Label to which
the extension S might refer via the command Goto. This extension fails if and only
if S fails. The extension Goto Label Name stands for going back where the label
Label Name was introduced. The purpose of the labels on SO-strategies together
with the Goto instruction is to define recursive extensions. It is like the ”goto “ in-
struction in some languages. It is also similar to the “while” loop in the programming
languages with the difference that there is no explicit halting condition. It halts when
it fails or when there is a branch in a left-biased-choice in which there is no Goto.

• . At Loc And . At Loc: The extension S1 At Loc1 And S2 At Loc2 must be
preceded by Id(γ); or Id(σ);; and it stands for the application of S1 At Loc 1
followed by the application of S2 At Loc 2. We impose that the labels Loc 1 and
Loc 2 refer to parallel sub-SO-patterns of the same SO-pattern excepted when S2
is the Insert strategy. In such a case Loc 2 can refer to a position that is higher
than Loc 1 or in a parallel branch. For more than two And this condition must be
satisfied for any adjacent pair of And. Thus, this constructor is associative.

• . And Insert: The extension S And Insert(τ) when S does not insert a context to
the root. This extension applies S and inserts τ.

The priority rules are as usual. The restricted form of compositions ”;” and ”;;” have a
higher priority than the left-biased-choice “Or”.

The grammar of the extensions is defined in (5.3),

S::=Fail | α ⇒ α | Id(α);S | Id(α);;S | Inside(S) | S Or S | | If C then S

Id(α);Insert(τ) | Id(α);;insert(τ) | S And Insert(τ)

Label Name Of S | Goto Label Name | Id(α);R | Id(α);;R |

Id(α);(R And Insert(τ)) | Id(α);;(R And Insert(τ)) |

Id(α);(R Or R) | Id(α);;(R Or R)

R::= R And R | S At Loc Name

C::= S | S and S (5.3)

where α is a SO-pattern of expressions defined by the grammar (5.4),

α::= x | f(α ,...,α) | Loc Name Of α (5.4)

Here, x stands for any SO-variable and f for any function.

For instance the next SO-rule and SO-strategy

SORule plusone1 exp ⇒ exp + 1

SOStrategy plusone2 Id(Loc Of exp); Insert � + 1 At Loc

are equivalent. Here exp is a SO-pattern of the kind Expression assumed to be previously
defined. The difference between these two implementations is that plusone1 is implicit
that is it uses an algorithm to find the contexts and their position while plusone2 is
explicit since the positions and the contexts are made explicit by the programmer.

5.5. EXTENSION FILES 95

The SO-strategy

SOStrategy applyS Id(Loc Of exp+1); S At Loc

matches the input term with exp+1 and if it is successful, it applies S to exp.

The SO-strategy

SOStrategy outermost Label Of (S Or Inside(Goto Label))

implements the strategy OuterMost(S).

The SO-strategy

SOStrategy sOrAndIter Label1 Of (S1;Goto Label1 Or Label2 Of S2; Goto

Label2)

either S1 is applied successfully and in this case the strategy is re-applied, or S1 fails, and
in this case S2 is applied repeatidely until it fails.

5.5.3/ CORRESPONDENCE BETWEEN SO-STRATEGIES AND HCE-STRATEGIES

The correspondence between the constructors of the grammar of the HCE-strategies
(defined in Section 4.4, Definition 14) and those of the user-friendly SO-strategies is
illustrated in the following table. Besides the fact that the constructors of SO-strategies
are user-friendly, the positions of the patterns in SO-strategies are made explicit and
need to be defined by means of the pattern labels (Locs). For instance, the SO-strategy
Id(f(LocOf x,x));S corresponds to the HCE-strategy f(x,x);@1.S.

HCE-strategies SO-strategies
µX.S Label Name Of S

X Goto Label Name

@i. S At Loc Name

@i.τ Insert(τ) At Loc Name

Explicit positions Implicit location names:
Loc Name Ofα

α;S Id(α);S
[S,S′] S And S′

Most(S) Inside(S)

If (S1 and . . . and Sn) then S If (S1 and . . . and Sn) then S

Table 9: Correspondence between the HCE-strategies and the User Language
strategies

5.5.4/ UNIFICATION OF TERMS CONTAINING LOCATIONS

It remains to make explicit the unification algorithm of terms that contain location decla-
rations since we want that the resulting term contains location declarations as well. We
recall that in Section 4.2, we defined the unification of terms (that do not contain location
declarations), we apart it next to the terms with location. When unifying two terms α1, α2
that contain locations, we firstly need to compute the concrete positions in α1 and α2 as-
sociated to the location names. Then we remove the location names from α1 and α2 and

96 CHAPTER 5. IMPLEMENTATION IN MEMSALAB

unify the resulting terms. Then we restore the location names by paying an attention to
the possible pair of locations that points towards the same position of the unified term. In
such pair exists, we create a new location name that points to this position, and ommit
the location name coming from α1 and the one from α2.

We denote by Loc Set(α) the set of location names defined in the term α. We write
Loc Set(α1) · Loc Set(α2) for the location names obtained by contacetanation of each
location name in Loc Set(α1) with each location name in Loc Set(α2).

We define the function that remove locations from terms by

Remove Loc(t) =


t if t is a constant or a variable,
Remove Loc(t′) if t = Loc Name Of t′,
f (t′1, . . . , t

′
n) if t = f (t1, . . . , tn), where t′i = Remove Loc(ti).

(5.5)

If the location name Loc Name is in Loc Set(α), then we write
Position Of Loc(α, Loc Name) for the position in α pointed by Loc Name. For in-
stance, if α = f (g(a, Loc Name Of b)), then Position Of Loc(α, Loc Name) = 1 · 2.
Notice that since we don’t allow two label names pointing to the same posi-
tion, the function Position Of Loc(α, ·) is injective. Given two terms α1, α2, with
Loc Set(α1) ∩ Loc Set(α2) = ∅, we extend the function Position Of Loc(α, ·) to operate
on two input terms:

Position Of Loc(α1, α2, ·) : Loc Set(α1) ∪ Loc Set(α2) ∪
(
Loc Set(α1) · Loc Set(α2)

)
−→ Nω

ε

as follows

Position Of Loc(α1, α2, Loc Name) =

if Loc Name ∈ Loc Set(α1) · Loc Set(α2) and

Loc Name = Loc Name1 · Loc Name2 and

Position Of Loc(α1, Loc Name1) = Position Of Loc(α2, Loc Name2) then
Position Of Loc(α1, Loc Name1)

elseif Loc Name ∈ Loc Set(α1) then Position Of Loc(α1, Loc Name)

elseif Loc Name ∈ Loc Set(α2) then Position Of Loc(α2, Loc Name)

Notice that Position Of Loc(α1, α2, ·) is injective.

For a term β, we shall write Restore Loc(α1, α2, β) for the function that introduces
in β every location name Loc Name ∈ Dom(Position Of Loc(α1, α2, ·)) at the position
Position Of Loc(α1, α2, Loc Name).

We are ready to define the unification algorithm of terms containing locations.

5.6. FORMULAS OF UNIFICATION OF SECOND ORDER STRATEGIES 97

Algorithm 1 Unification of terms containing locations
Input: Two terms α1, α2 with locations with Loc Set(α1) ∩ Loc Set(α2) = ∅

Output: A term β with locations such thatRemove Loc(β) = Remove Loc(α1) ∧ Remove Loc(α2), and
Loc Set(β) = Dom

(
Position Of Loc(α1, α2, ·)

)
1: function UNIFIY(α1, α2)
2: α′1 ← Remove Loc(α1)
3: α′2 ← Remove Loc(α2)
4: β′ ← α′1 ∧ α

′
2

5: β← Restore Loc(α1, α2, β′)
6: return β

7: end function

5.6/ FORMULAS OF UNIFICATION OF SECOND ORDER STRATE-
GIES

It is recalled that in the theoretical framework of Extension-Combination, the combina-
tion of two extensions involves their unification. The unification of the theoretical has its
counterpart when combining extensions expressed in the User Language. Table below
provides the unification formulas that has been established and implemented. However,
we deliberately omit the symmetric cases. For instance the symmetric case of Case 8 in
the table would be the unification of S with S ′ Or S ′′ which is omitted.

Besides, in the unification table 10 we assume that, for each extension of the form
Id(α); S At Loc Name, the label Loc Name points towards an immediate subterm (i.e. child)
of the term α. This is not really a restriction on the extensions that we unify since one can
turn any extension into an equivalent one that fulfills this assumption. Finally we mention
that the formulas are arranged by highest priority order from the top of the table to the
bottom. As a consequence, Formula 11 has to be applied before Formula 12. That is, we
apply Formula 12 only if S2 is not of the form Id(u); S′′. Finally we mention that we omitted
the case when the first extension is of the form α; ; S′ since it is similar to Case 7.

Before the definition of the unification of extensions, we introduce some notations. If
S , S ′, S ′′ are extensions, then we write S [S ′ := S ′′] for the extension that results from S
by replacing each occurence S ′ in S by S ′′. Besides, if Loc Name1, Loc Name2 are location
names, we shall write S [Loc Name1 := Loc Name2] for the replacement of Loc Name1 by
Loc Name1 in S . We shall overload notations and write Loc Set(S) for the set of location
names defined in all terms in the extension S . It follows from the constraints imposed on
the locations, that for each location name Loc Name in an extension S there corresponds a
unique term in which it is defined. This term will be denoted by Term Of Loc(Loc Name, S).

Given two terms α1, α2 with locations that can be unified, we define the renaming function
Rename Loc(α1, α2, ·) that renames the location names in Loc Set(α1) and Loc Set(α2) that
point towards the same position:

Rename Loc(α1, α2, ·) : Loc Set(α1) ∪ Loc Set(α2) −→ Dom
(
Position Of Loc(α1, α2, ·)

)
by Rename Loc(α1, α2, Loc Name) = Loc NameX, where Loc NameX ∈

98 CHAPTER 5. IMPLEMENTATION IN MEMSALAB

Loc Set(Unifiy(α1, α2)) and either

1. Loc Name ∈ Loc Set(α1) and Position of Loc(α1, Loc Name) =

Position of Loc(Unify(α1, α2), Loc NameX), or

2. Loc Name ∈ Loc Set(α2) and Position of Loc(α2, Loc Name) =

Position of Loc(Unify(α1, α2), Loc NameX).

Given an extension S we shall write Rename Loc(α1, α2, ·)(S) for the extension that results
from the replacing in S of each location name Loc Name ∈ Dom

(
Rename Loc(α1, α2, ·)

)
by

Rename Loc(α1, α2, Loc Name).

5.6. FORMULAS OF UNIFICATION OF SECOND ORDER STRATEGIES 99

Extension 1 Extension 2 Unification: Extension 1 ∩ Extension 2
1 Insert τ Insert τ′ Insert τ · τ′

2 Insert τ S2 At Loc Name If(S2 At Loc Name) Then
(S2 At Loc Name) And Insert τ

3 S1 At Loc Name Insert τ If(S1 At Loc Name) Then
(S1 At Loc Name) And Insert τ

4 Insert τ S2 And Insert(τ′) S2 And (Insert τ ∩ Insert τ′)
5 Insert τ S2 And S

′
2 S2 And S

′
2 And Insert τ

6 S1 And Insert(τ) Insert τ′ S1 And (Insert τ ∩ Insert τ′)
7 S1 And S

′
1 Insert τ′ S1 And S

′
1 And Insert τ

′

8 S1 At Loc Name1︸ ︷︷ ︸
R1

S2 At Loc Name2︸ ︷︷ ︸
R2

(
R1 ∩ R2

)
And R′1 if Loc Name1 ≡ Loc Name2

And R1 And
(
R′1 ∩ R2

)
if Loc Name1′ ≡ Loc Name2

S′1 At Loc Name1
′︸ ︷︷ ︸

R′1

R1 And R
′
1 And R2 otherwise

9 S1 S2 And S
′
2 (S1 ∩ S2) ∩ S′2

10 S1 At Loc Name1︸ ︷︷ ︸
S′1

S2 At Loc Name2︸ ︷︷ ︸
S′2

R At Loc Name1Name2 if Loc Name1 ≡ Loc Name2

S′1 And S
′
2 otherwise

where R = (S1 ∩ S2)[Loc Name1 := Loc Name1Name2,
Loc Name2 := Loc Name1Name2]

11 Id(α1); S1 Id(α2); S2 Id(Unify(α1, α2)); (S′1 ∩ S
′
2) if ∃ mgu(α1, α2)

Fail otherwise
where S′

i
= Rename Loc(α1, α2, ·)(Si), i = 1, 2

12 Id(α); S1 S2 Id(α); (S1 ∩ S2)
13 S1 Or S

′
1 S2 (S1 ∩ S2) Or (S′1 ∩ S2)

14 Goto Label Name1 Goto Label Name2 Goto Label Name1 Name2

15 Label 1 Of S1︸ ︷︷ ︸
S

Label 2 Of S2︸ ︷︷ ︸
S′

Label 1 2 Of (S1 ∩ S2)[Goto(Label 1) := S,
Goto(Label 2) := S′]

16 Label 1 Of S1︸ ︷︷ ︸
S

S2 S1[Goto(Label 1) := S] ∩ S2

17 Inside(S1) Inside(S2) Inside((S1 ∩ S2) Or S1 Or S2)
18 Id(α); S1 Inside(S2) Id(α); (S1 ∩ S2)
19 Insert(τ) Inside(S2) Inside(S2) And Insert(τ)
20 S At Loc Name Inside(S2) (S At Loc Name) ∩

(
Id(α′);(

(S2 At Loc Name 1) And . . . And (S2 At Loc Name n)
))

where α = Term Of Loc(Loc Name) and
α = f (t1, . . . , tn),
and α′ = f (Loc Name 1 Of t1, . . . , Loc Name n Of tn)

21 S Inside(S2) S ∩
(
Id(α′);(

(S2 At Loc Name 1) And . . . And (S2 At Loc Name n)
))

where
S = S1 At Loc N1

where α = Term Of Loc(Loc N1)

And and α = f (t1, . . . , tn),
S2 At Loc N2 and α′ = f (Loc Name 1 Of t1, . . . , Loc Name n Of tn)

Table 10: Formulas of unification of SO-strategies. The formulas are arranged by highest priority
order from the top of the table to the bottom. We assume that the location names defined in a
term α point toward an immediate subterm (child) of α. For two input extentions S 1 and S 2 we
assmue also that the sets Set Of Loc(S 1) and Set Of Loc(S 2) are disjoint. We have written
Term Of Loc(Loc Name) instead of Term Of Loc(Loc Name, S) to mean the pattern in the input

100 CHAPTER 5. IMPLEMENTATION IN MEMSALAB

extension S in which Loc Name is defined. Besides, we write Loc Name1 ≡ Loc Name2 to mean that
Loc Name1 and Loc Name2 point towards the same position.

It is worth to explain Formula 11 on the unification of Id(α1); S1 and Id(α2); S2. When we
unify the terms α1 and α2 that may contain location definitions by the algorithm given in
Section 5.5.4, it is possible that a location name Loc Name1 of α1 and a location name
Loc Name2 of α2 point towards the same position. In this case we replace both Loc Name1
and Loc Name2 by a new location name, say Loc Name1Name2, in the resulting unified term.
As a consequence, the location name Loc Name1 (resp. Loc Name2) has to be replaced by
Loc Name1Name2 in the extension S1 (resp. S2).

5.7/ A HIGH LEVEL USER LANGUAGE

Once the files of PDEs, proofs and extensions have been written, their use is managed
at a programming level in MATLAB. Functions available for

• compiling that is to transform a PDE, a proof or an extension file written in the User
Language into a file in the Processing Language,

• printing a PDE, a proof or an extension expressed in the processing language in
three formats: Latex, PDF, html, and Unicode text,

• applying a proof to a PDE to form a new PDE and applying an extension to a PDE
or a proof yielding a new PDE or a new proof,

• and combining two extensions generating a new extension.

5.7.1/ COMPILE

output filename = compile("filename.xxx")

transforms any file filename.pde or filename.proof or filename.ext in the User Lan-
guage into a file named filename.ml written in the Processing Language ready to be
used by the other commands as inspect or HtmlView or Applyxxx .

5.7.2/ INSPECT

inspect("filename.ml", hidden fields, "filename.txt")

from the file "filename.ml" in the processing language display the corresponding ex-
pression into the matlab command window, into the text file "filename.txt", into the La-
tex file "filename.tex". The Latex file is compiled to build the pdf file "filename.pdf".
The fields listed in the list hidden fields are hidden. The list of hidden fields has the
form ["field 1";...;"field n"] and the fields are taken in the list of all possible fields,
for instance for a pde file:

Reg for regions,

5.7. A HIGH LEVEL USER LANGUAGE 101

MathVar for mathematical variables,

OperExpr for mathematical expressions,

Fun for mathematical functions,

Oper for operators.

For instance, the pde file

PDE "pde"

Region

omega: "omega" [] [1] []

Variable

x: "x" [] omega

Function

f: "f" [] [x] [] "Given"

PDE

pde: f = x

is compiled with the command

pde = compile(’pde.pde’);

and the four display commands

inspect(pde,’["Fun","MathVar"]’,’pde.txt’);

inspect(pde,’["Fun"]’,’pde.txt’);

inspect(pde,’["MathVar"]’,’pde.txt’);

inspect(pde,’["Reg"]’,’pde.txt’);

produce

>> Source term : Pde pde: f=x

>> Source term : Pde pde: f=MathVar(x,∅,Reg(omega,∅,1,∅,⊥ ,⊥))

>> Source term : Pde pde: Fun(f,∅,x,∅,Given)=x

>> Source term : Pde pde: Fun(f,∅,MathVar(x,∅,omega),∅,Given)=MathVar(x,∅,omega)

in the matlab window.

The proof file

Model "proof"

Constant

psi: "psi"

Rule

simplify: a - a → 0

create source term: a = b → psi = a - a

102 CHAPTER 5. IMPLEMENTATION IN MEMSALAB

Step

step1: create source term ↑

step2: simplify ↑

Model

proof: step1; step2

is compiled with the command

proof = compile(’proof.proof’);

and it is displayed with

inspect(proof,’["Reg";"MathVar";"OperExpr";"Fun"]’);

yielding

>> Printed proof : Model(

(

Step(step1,(create source term: (a =b → psi=(a +-(a))))↑) ;

Step(step2,(simplify: ((a +-(a)) → 0))↑)))

in the matlab window

5.7.3/ HTMLVIEW

HtmlView("filename.ml")

translates the content of the file "filename.ml" into a friendly writing ni a html window
managed through matlab. One can hide or show any highlighted subterm by a click or
operate a global hide or show of any given field; see Figure ??. The hide/show operations
on a single identifier are when all selected fields are ”blank” while the global ones are
when selecting a field and clicking anywhere in the html window.

5.7.4/ APPLICATION OF A PROOF OR AN EXTENSION

Applying a proof to a PDE is done by

output pde = apply proof to pde("proof.ml","pde.ml","filename out")

where output pde = "filename out.ml".

Applying an extension to a PDE or a proof is done by two different functions

output pde = apply ext to pde("extension.ml","pde.ml","filename out")

where output pde="filename out.ml" and

output proof = apply ext to proof("extension.ml","proof.ml","filename out")

where output proof = "filename out.ml".

5.7. A HIGH LEVEL USER LANGUAGE 103

5.7.5/ COMBINE

The combination of two extensions is built with the command

output ext = combine ext("extension1.ml","extension2.ml","extension from -

1 and 2.ml");

where output ext = "extension from 1 and 2.ml".

It yields an extension that can therefore used to be applied to a PDE or a proof, as well to
be combined with another extension.

For instance, given two extensions

Extension "extofproof 1"

Rule

rule : a + b → a + b

sorule : a ⇒ a + 1

Extension

extofproof 1 : sorule

and

Extension "extofproof 2"

Rule

rule : a + b → a + b

sorule1 : b ⇒ b + 2

Extension

extofproof 2 : sorule1

after compilation

output ext 1 = compile("extofproof 1.ext");

output ext 2 = compile("extofproof 2.ext");

they are combined

output ext 1 2 = combine ext(output ext 1,output ext 2,"output ext 1 2.ml");

and the three extensions are displayed in the matlab command window with the com-
mands

inspect(output ext 1,’["Reg";"MathVar";"OperExpr";"Fun"]’);

inspect(output ext 2,’["Reg";"MathVar";"OperExpr";"Fun"]’);

inspect(output ext 1 2,’["Reg";"MathVar";"OperExpr";"Fun"]’);

yielding

>> Extension : a ⇒ (a + 1)

>> Extension : b ⇒ (b + 2)

104 CHAPTER 5. IMPLEMENTATION IN MEMSALAB

5.8/ MESSAGE OF THE DEBUGGER

Error: This expression has type strategy but an expression was expected of type
tree : the type strategy is for Rule and Strategy and tree for the other keywords
Constants, Variable etc.

5.9/ ILLUSTRATION OF A SEQUENCE OF OPERATIONS

The next figures illustrate the use of the language for writing PDEs, proofs and extensions.
They also illustrate the display tools, the application of a proof to a PDE, the application
of extensions to a PDE and the combination of two extensions. Finally, the extensions
resulting from the combination is applied to the PDE.

Figure 5.4: Description of a simple PDE in Memsalab.

5.9. ILLUSTRATION OF A SEQUENCE OF OPERATIONS 105

Figure 5.5: Three manners to display a PDE, a proof or an extension: in a matlab window,
in a Html window or in a Latex file.

Figure 5.6: Hiding and showing selected fields in a Html window. Here the ”Functions”
are expanded.

106 CHAPTER 5. IMPLEMENTATION IN MEMSALAB

Figure 5.7: A proof in memsalab for deriving the strong formulation associated to a weak
formulation.

Figure 5.8: The strong form of the pde resulting from the application of the above proof
to the above weak formulation.

Figure 5.9: An extension that takes into account a non-homogeneous Neumann condition
in the weak formulation.

5.9. ILLUSTRATION OF A SEQUENCE OF OPERATIONS 107

Figure 5.10: An extension that takes into account a reaction term in the weak formulation.

Figure 5.11: Result of the combination of the two extensions to take into account the Neu-
mann boundary conditions and the reaction term in the weak formulation. The expression
has been manually reformated so that to be easily readable.

Figure 5.12: Result of the application of the combination of the two extensions that take
into account the Neumann boundary conditions and the reaction term in the weak for-
mulation. The expression has been manually reformated from the display in the matlab
window.

6
CONCLUSIONS AND PERSPECTIVE

The leading physical phenomena governing the behavior of the micro-mirror cell have
been simulated. Precisely, the simulations cover the following effects: electromechanics,
pull-in, heat transfer and contact mechanics.

Then, the actuation voltage has been reduced by solving a minimization problem with
respect to the thickness and the length of the suspended beams.

In another part, a two-scale model that includes boundary layer effects has been derived
for the electrical field. Its derivation is carried out in the same framework as the refer-
ence proof of MEMSALab. This model has been implemented in COMSOL for numerical
simulation. Apart of the thesis, its derivation has been expressed as a combination of
extensions and implemented in MEMSALab which constitutes a first full-size application.

In my thesis, the strategy based combinations and extensions have been proven to be
correct comparing to the position based combinations and extensions. The combination
of strategy based extensions is shown to be closed under a given class of strategies.

In addition, the User Language have been introduced and developed in a manner that
significantly simplifies program writing.

Finally, we suggest possible future works:

1. Perform numerical simulations of the contact problems occurring when the mirror
touches the stopper beam and when the landing beams touch the landing pads.

2. Optimize the tilt angle of the mirror, the major parameters being the length and the
thickness of the stopper beam and the height of the pillars.

3. Analyze the trade-off between the objectives of keeping a 20◦ tilted angle and of mini-
mizing the pull-in voltage while the beam thickness is the common variable.

4. Derive a two-scale model of the mechanical behavior of the micro-mirror array in non-
linear elasticity that could be coupled with our two-scale electric model.

5. Implement the new two-scale models in MEMSALab as a combination of extensions of
the Reference Proof.

6. Build a new evaluation tool to evaluate the extended Proof.

7. Build a link between MEMSALab and COMSOL.

109

BIBLIOGRAPHY

[Allaire, 1992] Allaire, G. (1992). Homogenization and two-scale convergence. SIAM
Journal on Mathematical Analysis, 23(6):1482–1518.

[Allaire et al., 1998] Allaire, G., et Conca, C. (1998). Bloch wave homogenization
and spectral asymptotic analysis. Journal de mathématiques pures et appliquées,
77(2):153–208.

[Arbogast et al., 1990] Arbogast, T., Douglas, Jr, J., et Hornung, U. (1990). Derivation of
the double porosity model of single phase flow via homogenization theory. SIAM
Journal on Mathematical Analysis, 21(4):823–836.

[Arnold et al., 2001] Arnold, A., et Niwinski, D. (2001). Rudiments of µ-calculus. Else-
vier.

[Belkhir et al., 2016] Belkhir, W., Ratier, N., Nguyen, D. D., et Lenczner, M. (2016).
Closed combination of context-embedding iterative strategies. Technical report,
LORIA - Université de Lorraine ; FEMTO-ST.

[Belkhir et al., 2015] Belkhir, W., Ratier, N., Nguyen, D. D., Yang, B., Lenczner, M.,
Zamkotsian, F., et Cirstea, H. (2015). Towards an automatic tool for multi-scale
model derivation illustrated with a micro-mirror array. In SYNASC 2015, pages
47–54. IEEE Computer Society.

[Blanchard et al., 2007] Blanchard, D., Gaudiello, A., et Griso, G. (2007). Junction of a
periodic family of elastic rods with a 3d plate. part i. Journal de mathématiques
pures et appliquées, 88(1):1–33.

[Blanchard et al., 2008] Blanchard, D., Gaudiello, A., et Mel’nyk, T. A. (2008). Bound-
ary homogenization and reduction of dimension in a kirchhoff-love plate. SIAM
Journal on Mathematical Analysis, 39(6):1764–1787.

[Bourgeat et al., 1996] Bourgeat, A., Luckhaus, S., et Mikelic, A. (1996). Convergence
of the homogenization process for a double-porosity model of immiscible two-
phase flow. SIAM Journal on Mathematical Analysis, 27(6):1520–1543.

[Canonica, 2012] Canonica, M. D. (2012). Large Micromirror Array Based on a Scal-
able Technology for Astronomical Instrumentation. PhD thesis, ÉCOLE POLY-
TECHNIQUE FÉDÉRALE DE LAUSANNE.

[Casado-Diaz, 2000] Casado-Diaz, J. (2000). Two-scale convergence for nonlinear
dirichlet problems in perforated domains. Proceedings of the Royal Society of Ed-
inburgh: Section A Mathematics, 130(02):249–276.

[Casado-Diaz et al., 2004] Casado-Diaz, J., et Luna-Laynez, M. (2004). Homogenization
of the anisotropic heterogeneous linearized elasticity system in thin reticulated

111

112 BIBLIOGRAPHY

structures. Proceedings of the Royal Society of Edinburgh: Section A Mathematics,
134(06):1041–1083.

[Casado-Dı́az et al., 2001] Casado-Dı́az, J., Luna-Laynez, M., et Martı́n, J. D. (2001). An
adaptation of the multi-scale methods for the analysis of very thin reticulated
structures. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics,
332(3):223–228.

[Ciarlet, 1993] Ciarlet, P. G. (1993). Mathematical elasticity: Three-dimensional elas-
ticity, volume 1. Elsevier.

[Ciarlet, 1997] Ciarlet, P. G. (1997). Theory of plates, volume 2. Elsevier.

[Cioranescu et al., 2008] Cioranescu, D., Damlamian, A., et Griso, G. (2008). The peri-
odic unfolding method in homogenization. SIAM Journal on Mathematical Analysis,
40(4):1585–1620.

[Cirstea et al., 2003] Cirstea, H., Kirchner, C., Liquori, L., et Wack, B. (2003). Rewrite
strategies in the rewriting calculus. In Gramlich, B., et Lucas, S., editors, 3rd In-
ternational Workshop on Reduction Strategies in Rewriting and Programming , volume
86(4) of ENTCS, pages 18–34, Valencia, Spain. Elsevier.

[De et al., 2004] De, S. K., et Aluru, N. (2004). Full-lagrangian schemes for dy-
namic analysis of electrostatic mems. Microelectromechanical Systems, Journal
of, 13(5):737–758.

[El-Zafrany, 1997] El-Zafrany, A. (1997). Non-linear finite element analysis of solids
and structures: Volume 2: Advanced topics. Proceedings of the Institution of Me-
chanical Engineers, 211(6):489.

[Fu et al., 2001] Fu, Y. B., et Ogden, R. W. (2001). Nonlinear elasticity: theory and
applications, volume 281. Cambridge University Press.

[Griffiths et al., 1999] Griffiths, D. J., et College, R. (1999). Introduction to electrody-
namics, volume 3. prentice Hall Upper Saddle River, NJ.

[Griso, 2002] Griso, G. (2002). Estimation d’erreur et éclatement en ho-
mogénéisation périodique. Comptes Rendus Mathematique, 335(4):333–336.

[Griso, 2004] Griso, G. (2004). Error estimate and unfolding for periodic homoge-
nization. Asymptotic Analysis, 40(3, 4):269–286.

[Griso, 2006] Griso, G. (2006). Interior error estimate for periodic homogenization.
Analysis and Applications, 4(01):61–79.

[Kovetz, 2000] Kovetz, A. (2000). Electromagnetic theory. Oxford University Press Ox-
ford.

[Lenczner, 1997] Lenczner, M. (1997). Homogénéisation d’un circuit électrique.
Comptes Rendus de l’Académie des Sciences-Series IIB-Mechanics-Physics-
Chemistry-Astronomy, 324(9):537–542.

[Lenczner, 2006] Lenczner, M. (2006). Homogenization of linear spatially periodic
electronic circuits. NHM, 1(3):467–494.

BIBLIOGRAPHY 113

[Lenczner, 2007] Lenczner, M. (2007). Multiscale model for atomic force microscope
array mechanical behavior. Applied Physics Letters, 90(9):091908.

[Lenczner et al., 1999] Lenczner, M., et Senouci-Bereksi, G. (1999). Homogenization of
electrical networks including voltage-to-voltage amplifiers. Mathematical Models
and Methods in Applied Sciences, 9(06):899–932.

[Lenczner et al., 2007] Lenczner, M., et Smith, R. C. (2007). A two-scale model for an
array of AFM’s cantilever in the static case. Mathematical and Computer Modelling,
46(5-6):776–805.

[Li et al., 2003] Li, G., et Aluru, N. R. (2003). Efficient mixed-domain analysis of elec-
trostatic mems. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, 22(9):1228–1242.

[Lukkassen et al., 2002] Lukkassen, D., Nguetseng, G., et Wall, P. (2002). Two-scale
convergence. Int. J. Pure Appl. Math, 2(1):35–86.

[Mase et al., 1970] Mase, G. E., et Mase, G. (1970). Continuum mechanics, volume
970. McGraw-Hill New York.

[Nguetseng, 1989] Nguetseng, G. (1989). A general convergence result for a func-
tional related to the theory of homogenization. SIAM Journal on Mathematical
Analysis, 20(3):608–623.

[Nguyen, 2014] Nguyen, T. t. (2014). Contribution to peroidic homogenization of a
spectral problem and of the wave equation. Theses, Université de Franche-Comté.

[Tarski, 1955] Tarski, A. (1955). A lattice-theoretical fixpoint theorem and its applica-
tions. The Journal of Symbolic Logic, 5(4):370.

[Waldis, 2010] Waldis, S. (2010). MEMS-based mirror array for astronomical instru-
mentation. PhD thesis, Université de Neuchâtel.

[Yang, 2014] Yang, B. (2014). Contribution to a kemel of symbolic asymptotic mod-
eling software. PhD thesis, Université de Franche-Comté.

[Yang et al., 2014] Yang, B., Belkhir, W., et Lenczner, M. (2014). Computer-aided deriva-
tion of multi-scale models: A rewriting framework. International Journal for Multi-
scale Computational Engineering., 12(2):91–114.

LIST OF FIGURES

1 Real Micro-Mirror Array . 2

2 MEMSALab-Simplified-Flow . 5

3 MEMSALab-Simplified-Flow . 5

1.1 The geometry of a micromirror cell [Canonica, 2012]. For clarity, the mi-
cromirror is drawn as transparent. 8

1.2 Two actuation sequences are observed depending on the dimensions of
the beams. After pull-in, the micromirror has a precise tilt angle due to its
contact with its stopper beam and landing pads [Canonica, 2012]. 9

1.3 Individually addressing using line-column method. Each line of micromir-
rors and each electrode is controlled by an individual voltage source. For
example, the mirror (m,n) is addressed by the voltage of its line (violet part)
and the voltage of its electrode (red part). Some micromirrors are removed
for better clarity. 9

1.4 Tilt angle/voltage hysteresis of the micromirror. For some voltage V s the
micromirror can be in either position 1 or 3. Vp−in is the pull-in voltage; at
this voltage the mirror snaps toward the electrode. Vp−out is the pull-out
voltage at this voltage the mirror returns to its rest position. The voltage
VT is defined by VS − δ < VT < VS . For individual addressing using a line-
column algorithm, the tilt angles in positions 2 and 3 have to be the same,
and the range of voltage that constitutes position 3 has to be as large as
possible, to compensate for fabrication variations [Canonica, 2012] 10

1.5 The function φ has the space between the mirror and the electrode ΩVac

as domain. The Dirichlet boundary conditions are defined such as φ = V1
on Γe

0,1 which is the surface of the electrode and φ = V2 on Γe
0,2 which is

a combination of the surfaces of micromirror, of the pillars, of the beams,
of the frame and of the golden parts. The lateral boundaries Γe

1 can have
the Neumann condition for individual simulation or periodic conditions for
simulation of an array. 10

1.6 Electrostatic force felec applied on the mirror part such as on the surfaces
of the frame, of the beams and of the mirror. 11

1.7 Electrostatic force felec applied on the surface of the electrode and the pillar. 12

1.8 Ωther and its thermal boundaries condition. 12

2.1 Description of the parameters used to model the mirror of the micro-mirror
cell. 19

115

116 LIST OF FIGURES

2.2 Description of the parameters used to model the frame of the micro-mirror
cell. 19

2.3 Description of the parameters used to model the stopper beam of the
micro-mirror cell. 20

2.4 Description of the parameters used to model the beam of the micro-mirror
cell. 20

2.5 Description of the parameters used to model the golden pad and the pillar
of the micro-mirror cell. 21

2.6 Description of the parameters used to model the electrode of the micro-
mirror cell. 21

2.7 Model geometry of half micro-mirror cell. The model uses symmetry on the
zx-plane. The first and the second figures depict the applied potential V M
on the upper part while the third figure shows the applied potential V M on
the lower part. 22

2.8 The displacement field and electric field caused by the voltages V M = 60
V and VE = −30 V. 22

2.9 Voltage required to achieve a set of displacements versus the target dis-
placement in the case of poly = 400, 500, 600 nm, msux = 40 µm. 23

2.10 Mean squared error of the Meta-model. 25

2.11 The graph of the Meta-model for the feature Vpi and its sampling points are
shown by black dots. 25

2.12 A two-dimensional model of Micro-Mirror. A point b1 is placed at the head
of landing beam and a point m1 is placed on the lower surface of the mirror. 26

2.13 Position of the mirror in its maximal displacement for a voltage exceeding
the pull-in voltage. 27

2.14 Bounces of the mirror materialized by the trajectory of b1 in the case of a
0.7µm-thick suspended beam. 27

2.15 Bounces of the mirror materialized by the trajectory of b1 in the case of a
1µm-thick suspended beam. 27

3.1 A two-dimensional and a one-dimensional micro-mirror arrays with their
surrounding vacuum domain, Ω̂ε = Ω̂ε,vac ∪ Ω̂m,ε. The domain Ω̂ε is divided
into two parts Ω̂ε,vac,1 and Ω̂ε,vac,2 corresponding to the two different volt-
ages. They are separated by the interface Γ̂

ε,vac
inter f . The scaling assumptions

on the size of each cell and of the array are also represented. 35

LIST OF FIGURES 117

3.2 The mechanical body of a two-dimensional array and its surrounding vac-
uum Ωε, the macroscopic domain Ω] = (0, L1) × (0, L2) and the microscopic
domain Ω1 = ε−1 (

Ωε
c − xεc

)
. The boundary Γvac

+∪− are the upper and lower
surface of Ωε,vac. The boundary Γvac

lat is the union of all lateral boundaries
of Ωε,vac. The boundary Γ

1,vac
per on which the periodic boundary condition will

be imposed is shown in blue. In this case, it is all lateral boundaries of Ω1.
The boundary Γ

1,vac
+∪− is the union of the upper and lower surfaces of Ω1,vac.

The operator T transforms a function defined in Ωε into a function defined
in the two-scale domain Ω] ×Ω1. 37

3.3 The physical domain Ωε is divided into Ωε,1 and Ωε,2 by the interface Γ
ε,vac
inter f

at Lm
1 , the macroscopic domain Ω] = (0, L1) and the microscopic domain

Ω1 = ε−1 (
Ωε

c − xεc
)
. The operator T transfers a function defined in Ωε into a

function defined in the two scale domain Ω] ×Ω1. 37

3.4 The physical domain Ωε and the boundary layer cell Ω1,+∞ = ∪+∞
p=0Ω

1,+∞
p .

The notation Γ
ε,vac
end,0∪L1

represent the boundaries at the two ends of Ωε,vac.
The boundary of the domain Ω1,vac,+∞ is defined similarly as this of Ωε,vac.
The internal boundaries where Dirichlet conditions are imposed are de-
noted by Γ

1,vac,+∞
int . It is the union of all internal boundaries of each cell

Γ
1,vac,+∞
int,p . The external boundary Γ

1,vac,+∞
ext is the union of the upper and

lower surfaces Γ
1,vac,+∞
−∪+ , of the boundary at the ends Γ

1,vac,+∞
end,0 and Γ

1,vac,+∞
end,L1

and of the lateral boundaries Γ
1,vac,+∞
lat . The operator Tϑ

b transforms a func-
tion defined in Ωε into a function defined in Ω1,+∞. 38

3.5 The physical domain Ωε has two different parts Ωε,1 and Ωε,2 and the
boundary layer cells Ω1,∞ = ∪+∞

q=−∞Ω
1,∞
q . The notation Γ

ε,vac
inter f represents the

interface at Lm
1 , and it becomes Γ

1,vac,∞
inter f after scaling. The internal boundary

Γ
1,vac,∞
int is the union of all internal boundaries of all cells Γ

1,vac,∞
int,q . The ex-

ternal boundary is the combination of the upper and lower surface Γ
1,vac,∞
+∪−

and the lateral boundary Γ
1,vac,∞
lat . The operator T inter f

b transforms a function
defined in Ωε into a function defined in Ω1,∞. 39

3.6 Front view of a plot of φ0 in the microscopic domain. The mirror and the pil-
lars are in red while the bottom electrode is in blue. The imposed voltages
are 20V and −20V. The vector of electric field is materialized by red arrows.
The electric field lines are vertical almost everywhere, with few tilted arrows
visible on the edges; this means that the electric field is mainly localized in
each cell, reducing to a very low value the crosstalk with neighboring cells. 55

3.7 One of the two boundary layer corrections φ0
b simulated in two cells at one

end of the array. 56

3.8 Boundary layer correction φinter f at the interface. It is computed in four cells
centered to the interface. 56

3.9 Simulation result for a twelve-cell array. The imposed voltages are ±20V
in the left part and ±30V in the right part. The figure shows the zones of
superimposition of the solutions φ0, φϑb and φinter f

b 57

118 LIST OF FIGURES

4.1 Complete tree structure of a variable x ∈ Ω ⊂ R, of context τ1 and of context
τ2, given in Example 1, in MEMSALab. 62

4.2 Complete tree structure of the term t[y]1 presented in Example 2, of the
combination of τ1 and τ2 and of σ(τ2) discussed in Example 3. 63

4.3 The tree structure of the terms @ε.τ1(t), @ε.τ(t), t′ and [[@p.τ1,@q.τ2]](t′)
discussed in Example 6. 65

4.4 The tree-like structure of the HCE-strategy S(X) = (u, τ) ⊕ (@1.X) (left) and
µX.S(X) (right) discussed in Example 8. 68

4.5 The complete tree structure of the term t and µX.S(X)(t) discussed in Ex-
ample 10. 73

5.1 List of Unicode Characters . 81

5.2 Rail diagram for the access to fields of a shortcut 83

5.3 Global tree representation of a proof . 85

5.4 Description of a simple PDE in Memsalab. 104

5.5 Three manners to display a PDE, a proof or an extension: in a matlab
window, in a Html window or in a Latex file. 105

5.6 Hiding and showing selected fields in a Html window. Here the ”Functions”
are expanded. 105

5.7 A proof in memsalab for deriving the strong formulation associated to a
weak formulation. 106

5.8 The strong form of the pde resulting from the application of the above proof
to the above weak formulation. 106

5.9 An extension that takes into account a non-homogeneous Neumann con-
dition in the weak formulation. 106

5.10 An extension that takes into account a reaction term in the weak formulation.107

5.11 Result of the combination of the two extensions to take into account the
Neumann boundary conditions and the reaction term in the weak formu-
lation. The expression has been manually reformated so that to be easily
readable. 107

5.12 Result of the application of the combination of the two extensions that take
into account the Neumann boundary conditions and the reaction term in
the weak formulation. The expression has been manually reformated from
the display in the matlab window. 107

A.1 Model geometry of half micro-mirror cell with symmetry on the zx−plane
and COMSOL Study Setting. 127

A.2 Numerrical results. 127

A.3 Model geometries used for implementation. 136

A.4 Five solutions according to five components. 137

A.5 Plot total array by using 3D Plot Group. 137

LIST OF TABLES

2.1 parameters for the mirror, the frame, the golden pad, the beams, the pillar
and the electrode. 28

2.2 the pull-in voltage as a function of the length and width of the suspended
beams . 29

2.3 Table of optimization variables. 29

2.4 Table of optimization parameters. 29

2.5 Table of objectives. 29

2.6 The initial values of poly, msux given to optimization procedure and the
corresponding VPI compared to their optimal results. 29

119

LIST OF DEFINITIONS

1 Definition: Definition of T . 36

2 Definition: Definition of Tϑ
b and T inter f

b . 36

3 Definition: Boundary layer terms . 39

4 Definition: Adjoint of T . 41

5 Definition: Operator B . 41

6 Definition: Adjoint operators of Tϑ
b and T inter f

b 44

7 Definition: Operators Bϑb and Binter f
b . 44

8 Definition: Combination of contexts . 63

9 Definition: Position-based HCE-strategies 64

10 Definition: Well-founded position-based HCE-strategy 64

11 Definition: Semantics of position-based HCE-strategies 65

12 Definition: Unification of two position-based HCE-strategies 66

13 Definition: Combination of two position-based HCE-strategies 66

14 Definition: HCE-strategies . 68

15 Definition: Semantics of HCE-strategies . 70

16 Definition: Well-founded HCE-strategies. 71

17 Definition: . 72

18 Definition: Unification of HCE-strategies . 74

19 Definition: Combination of HCE-strategies 75

121

I
APPENDIX

123

A
SIMULATION DEMONSTRATIONS

A.1/ STATIONARY SIMULATION

The Model Definition and Result are already discussed in Section 2.3.

A.1.1/ MODEL INSTRUCTION

We assume that the geometry, the material and the boundary conditions are already built.

PARAMETER

1 In the Model Builder window, expand the Global > Definitions node, then click Param-
eters. In the Settings window forParameters, locate the Parameters section. In the table,
input the following parameter:

Name Expression Value Description
VE −30[V] 30 Imposed potential on electrode
V M 60[V] 60 Imposed potential on mirror

ELECTROMECHANICS

1 In the Physics toolbar, click Domains and choose Linear Elastic Material. In the Set-
tings window for Linear Elastic Material, locate the Domain Selection section. From the
Selection list, choose Domain then enter 1-3, 5-17.

2 In the Physics toolbar, click Boundaries and choose Fixed Constraint. From the Selec-
tion list, choose Boundary then enter 3.

3 In the Physics toolbar, click Boundaries and choose Symmetry. From the Selection list,
choose Manual then enter 2, 5, 8, 21, 73.

4 In the Physics toolbar, click Boundaries and choose Prescribed Mesh Displacement.
From the Selection list, choose Manual then enter 10-11, 19, 115. Un-check Prescribed
z Displacement to allow the mesh to move vertically.

5 In the Physics toolbar, click Boundaries and choose Electric Potential. From the Selec-
tion list, choose Manual then enter 12, 16, 82, 84, 96-97, 108. Locate Electric Potential
section, in the V0 text field, type VE. Rename it as VE.

6 Add another Electric Potential node for VM with imposed boundaries 20, 22-23, 27-28,
30, 32, 42-45, 47-49, 52-54, 57-59, 63-72, 74-76, 78, 85-90, 93, 109, 113-114.

125

126 APPENDIX A. SIMULATION DEMONSTRATIONS

STUDY

1 To add a new study, on the Model toolbar, click Add Study to open the Add Study
window. Then go to the Add Study window, find the Studies subsection. In the Select
study tree, select Preset Studies > Stationary. Then, click Add Study in the window
toolbar.

2 Rename it to Stationary then click Compute.

A.2/ PULL-IN ANALYSIS

These following models perform pull-in analysis of a micro-mirror cell, to predict the point
at which the biased system becomes unstable. They are different and the second one is
more efficient than the first one. The geometry and operation of the device are already
discussed in previous chapters.

A.2.1/ MODEL 1

A.2.1.1/ MODEL DEFINITION

Consider an edge and a point as shown in Figure A.1(a). The Chosen Egde will be
imposed by a given displacement, z0, while the Chosen Point will be used to measure
the generated stress. Because of the deformation, there is a restoring force pushing
the beam back to the original position. As a consequence, a positive stress in the z−
direction is created at the Chosen Point. Then, a negative potential VE is set on the
surface of the electrode and a positive voltage V M is set on the surfaces of the mirror
and the beams. Because of opposite potentials, there is a force of attraction between
the mirror, the beams and the electrode. This force will eliminate the restoring force and
also the z−stress when V M is increased, as shown in Figure A.2(b). The value of V M
vanishing the z−stress at the Chosen Point is the requirement of equilibrium.

To find V M, an Matlab algorithm using loops for and while is employed. A simple solution
is increasing V M by a certain value and then measuring the z-stress at the Chosen Point
in each loop until the stress changes sign from positive to negative. Then, the loop is
stopped and V M is returned. Another solution is adding a big amount of potential such
as 10 V to V M if it makes positive z−stress at the Chosen Point; and in contrast, the
added potential will be a half of the previous V M and the current V M if it makes negative
z−stress. This process is continued until the difference between the two V M that make
positive and negative z−stress is less than 1 V. For instance, Figure A.2(b) shows the
convergence of V M regarding to z0 = 8µm.

The displacement is given as a range from a position which is close to the original position
of the mirror and to over one third of the gap between the two conductors. Solving these
problems will return a set of V M in which the Pull-In voltage is the maximum. For example,
Figure A.2(c) shows the Pull-In voltage of poly = 500 nm and msux = 40 µm.

A.2. PULL-IN ANALYSIS 127

(a) The Chosen Point and the Chosen Edge.

(b) Setting for Study 1: Displacement Sweep. (c) Setting for Study 2: Imposed Voltage.

Figure A.1: Model geometry of half micro-mirror cell with symmetry on the zx−plane and
COMSOL Study Setting.

(a) Plot of V M versus z−stress
at the Chosen Point at displace-
ment -8 µm.

(b) The convergence of V M at
z0 = 8 µm in the fist simulation
with the beam thickness is 500
nm.

(c) Plot of V M versus z0 in the
case of poly = 500 nm and
msux = 40 µm.

Figure A.2: Numerrical results.

A.2.1.2/ MODELING INSTRUCTIONS

We assume that the geometry, the material and the boundary conditions are already built.
In this model, we first define a study, Study 1: Displacement Sweep, which simulate me-
chanical behavior only, i.e. we do not set any potential on the mirror or on the electrode.
Then, we define another study, Study 2: Imposed Voltage, which uses Study 1 as initial
values.

PARAMETER

128 APPENDIX A. SIMULATION DEMONSTRATIONS

1 In the Model Builder window, expand the Global > Definitions node, then click Param-
eters. In the Settings window forParameters, locate the Parameters section. In the table,
input the following parameter:

Name Expression Value Description
z0 2[um] 2.0000E − 6m Imposed displacement on Chosen Edge

DEFINITIONS

1 On the Definitions toolbar, click Explicit. In the Setting window for Explicit, from the
Geometric entity level, chose Point. and enter. Select Point 141 only. Rename it Chosen
Point

2 Add another Explicit for Edge. Select Edge 231 only and rename it Chosen Edge.

ELECTROMECHANICS

1 Add boundaries like what have done in Section A.1.

2 In the Physics toolbar, click Egdes and choose Prescribed Displacement. From the
Selection list, choose Chosen Edge. Locate Prescribed Displacement section, in the
Prescribed in z Direction text field, type z0.

STUDY 1

1 To add a new study, on the Model toolbar, click Add Study to open the Add Study
window. Then go to the Add Study window, find the Studies subsection. In the Select
study tree, select Preset Studies > Stationary. Then, click Add Study in the window
toolbar.

2 In the Model Builder window, under Study 1 click Step 1: Stationary. Then, in the
Settings window for Stationary, click to expand the Study extensions section. Locate the
Study Extensions section. Select the Auxiliary sweep check box and click Add. Select z0
and define it as a range from 1 µm to 24 µm by a small step of 1 µm by clicking Range, in
the Range dialog box, type 1 in the Start text field, in the Step text field, type 1 and in the
Stop text field, type 24, in the Unit text field type um, then click Replace.

3 Selecting the option Yes from the Reuse solution for previous step list to always use the
converged solution from the previous step. This option improves the convergence of the
problem. Because the convergence of non-linear problem is dependent upon the starting
point, the starting point should be close to the solution otherwise the solver may go to the
wrong direction which is far from the real solution and thus lose the convergence.

4 In the Model Builder window, right-click Study 1 and choose Rename. In the Rename
Study dialog box, type Displacement Sweep in the New label text field. Then, click OK.

5 On the Study toolbar, click Compute.

STUDY 2

1 Repeat the same process as before to add a new stationary study.

2 Locate the Settings window for Stationary, click to expand the Values of Dependent
Variables section and select the Initial values of variables solved for check box. We are
now able to specify the initial values of the dependent variables that we want to solve for.
For example, if we want to solve a problem which has displacement set at 10 µm, we can
chose the solution of 9 µm from the drop list Parameter value of the Study 1 as an initial

A.2. PULL-IN ANALYSIS 129

value.

3 Provide the potentials on the mirror part and on the electrode part.

4 Rename the study to Imposed Voltage.

5 Click Compute.

The setting of Study 1 and Study 2 should look like Figures A.1(b) and A.1(c).

A.2.2/ COMSOL LIVELINK WITH MATLAB

In this subsection, we introduce a Matlab code that controls COMSOL and create loops
to find appropriate V M.

1 Create a Matlab variable, called model, which links Matlab and COMSOL:

model = ModelUtil.model ('Model2');

2 Create a Matlab array, named z0, which is the imposed displacements on the Chose
Edge, a Matlab array, named Invalue, which is a set of selection of initial values, a Matlab
variable, named VE, which is the negative potential setting on the upper surface of the
Electrode, a Matlab empty array, called FullResult, to store the all the results:

z0 = [8e-6:1e-6:24e-6]; InValue = [7:1:23]; VE = 30;

FullResult = [];

3 Update the parameter VE in COMSOL by the Matlab variable VE:

model.param.set('VE',VE);

4 Create the first for-loop to set the COMSOL parameter z0 by Matlab array z0(i)

for i=1:size(z0,2)

model.param.set('z0',z0(i));

5 Update the initial values during the loop:

model.study('std2').feature('stat').set('solnum',

num2str(InValue(i)));

where std2 is COMSOL tag name for the Study 2: Imposed Voltage.

6 Create a Matlab variable, named VM, which is the positive voltage imposed on the
surface of the mirror and the beam, a Matlab variable, named VPlus, which will store
the value of VM if it causes positive z-stress on the Chosen Point. In contrast, create
a Matlab variable, named VMinus, which will store the value of VM if it causes negative
z-stress on the Chosen Point. All of them may be replaced after each loop.

VM = 1; VPlus = VM; VMinus = 0;

7 Create the second loop, update VM and execute the second study:

while(abs(VPlus-VMinus) >= 1)

model.param.set('VM',VM);

model.study('std2').run;

130 APPENDIX A. SIMULATION DEMONSTRATIONS

8 Create a Matlab structure, named P0, which stores the evaluation of the Chosen Point
such as z-stress, position, unit, etc:

P0 = mpheval(model,{'emi.sz'},'dataset','

dset2','edim',0,'Selection','sel1');

where emi.sz, dataset, dset2, edim and sel1 are COMSOL tag names representing the
z-stress, the data set of a solution, data set of the Study 2, dimension and its given value,
(in this case, it is point) and the tag name of the Chosen Point.

9 Add results to FullResult

FullResult = [FullResult;z0(i),VE,VM,P0.

d1,P0.p(1),P0.p(2),P0.p(3)];

where P0.d1 is data of emi.sz and P0.p(1), P0.p(2), P0.p(3) are x,y,z-coordinates.

10 The increasing step of VM is depend on which sign of z-stress it makes at the Chosen
Point. If it is negative, the step will be one half of the difference between the current VM
and the previous VM. On the other hand, if the stress is positive and if we have the value
that make negative stress as the Chosen Point (VMinus , 0), the step will be one half
of the difference between them, otherwise the step is set by 10. The breaking condition
of the while loop is abs(VPlus-VMinus)≤1 which means both types of VM should not be
different than 1 V.

11 If the while loop finishes, the appropriate VM for balancing the system as the displace-
ment z0(i) is successfully returned. The loop for will continue the process with z0(i+1)
until it reach the end of the z0 array.

if (P0.d1 < 0)

VMinus = VM; VM = VPlus + abs(

VPlus-VMinus)/2;

else

VPlus = VM;

if (VMinus != 0)

VM = VPlus + abs(VPlus-

VMinus)/2;

else

VM = VM + 10;

end

end

end

end

A.3/ MODEL 2

The Model Definition and Result are already discussed in Section 2.4.

A.3. MODEL 2 131

A.3.1/ MODEL INSTRUCTIONS

We use the same instruction as COMSOL’s example model, Pull-In Voltage for a Biased
Resonator-3D, which can be found its library.

PARAMETER

1 In the Model Builder window, expand the Global > Definitions node, then click Parame-
ters. In the Settings window forParameters, locate the Parameters section. In the table,
input the following parameter:

Name Expression Value Description
zset 51.5[um] 5.15E − 5m Set point’s z-coordinates

DEFINITION

1 On the Definitions toolbar, click Component Couplings and choose Integration. In the
Settings window for Integration, locate the Source Selection section. From the Geometric
entity level list, choose Point. Select Point 141 only.

ELECTROMECHANICS

1 Set boundaries like what have been done in Section A.1.

2 In the boundary node VE, locate Electric Potential section, in the V0 text field, type
VESP.

3 In the boundary node VM, locate Electric Potential section, in the V0 text field, type 1.

4 In the Model Builder window, expand the Component 1 (comp1), right-click Electrome-
chanics (emi) node

5 In the Global, choose Global Equations 1. In the Settings window for Global Equations,
locate the Global Equations section. In the table, enter the following equation:

Name f(u,ut,utt, t)(1) Initialvalue(u 0)(1) Initialvalue(u t0)(1/s) Description
VES P intop1(z) − zset 0 0

Locate the Units section, in the Dependent variable quantily list, choose Electric Poaten-
tial (V).

MESH

The mesh is built manually. After meshing each part, right click Mesh and choose Statis-
tics. In the Setting window for Mesh, locate Geometric entity level, in the selection list,
choose Domain. Adding meshed domain and make sure that Minimum element quality is
higher than 0.1.

STUDY

1 Add a Stationary study.

2 Click to expand Study 1 > Step 1: Stationary, in the Settings window for Stationary,
expand the Mesh Selection section, make sure that the correct mesh is selected.

3 Expand the Study extensions section, select the Auxiliary sweep check box. Click Add,
select zset from selection list of parameters. Click Range. In the Range dialog box, type
51.5 in the Start text field. In the Step text field, type -1. In the Stop text field, type 33.
Click Replace.

132 APPENDIX A. SIMULATION DEMONSTRATIONS

4 On the Study toolbar, click Show Default Solver. In the Model Builder window, expand
the Solution node, then click Dependent Variables 1. In the Settings window for Depen-
dent Variables, locate the General section. In the Defined by study step list, choose User
defined. In the Model Builder window, expand the Study 1 > Solver Configurations > Solu-
tion > Dependent Variables 1 node, then click Spatial coordinates (Material) (comp1.xyz).
In the Settings window for Field, locate the Scaling section. From the Method list, choose
Manual. In the Scale text field, type 1e-5. Continue to add 1e-5 as a scale factor for
Displacement field (Material) (compl.u), 100 for Electric potential (comp1.V) and 100 for
State variable VESP (compl.ODE1).

5 Right-click Model Builder window, expand the Study 1 > Solver Configurations > Solu-
tion 1 > Stationary Solver 1 node and choose Fully Coupled.In the Settings window for
Fully Coupled, locate the General section. From the Linear solver list, choose Direct.
Click to expand the Method and termination section. Locate the Method and Termination
section. From the Nonlinear method list, choose Automatic highly nonlinear (Newton).
Locate Maximum number of interations section, replace 25 by 10000.

6 Click Stationary Solver 1, in the Setting window for Stationary Solver 1, locate Linearity
section, from selection list, choose Nonlinear.

7 Rename the study to Pull In then click Compute.

RESULTS

1 On the Model toolbar, click Add Plot Group and choose 1D Plot Group. In the Settings
window for 1D Plot Group, locate the Data section. From the Data set list, choose Pull
In/Solution 1. On the 1D plot group toolbar, click Global. In the Settings window for Global,
click Replace Expression in the upper-right corner of the y-axis data section. From the
selection list, choose Model > Component 1 > Electromechanics > VESP - State variable
VESP. In the table, enter the following expression:

Expression Unit Description
VES P − V M V State variable VESP

2 Locate the x-Axis Data section. From the Parameter list, choose Expression, in the
Expression text field, type zset.

3 Rename it to Pull-In Plot and click Plot.

A.4/ CONTACT PROBLEM IN VACUUM

A.4.1/ MODEL DEFINITION

When the applied voltage is greater than the pull-in voltage the mirror pulls down onto
the base. The landing beams are going to contact with the landing pads and the mirror
is going to contact with the stopper beam. The contact phenomena are handled by an
approximate penalty or barrier method, nonlinear springs are used to represent the sur-
faces of the landing pads and the stopper beam. When the mirror is away from these
surfaces these springs have low stiffness and consequently have a negligible influence
on the deformation of the mirror. As the gaps are reduced and approaches a predefined
distance the springs become much stiffer and resists further closure. The contact forces

A.4. CONTACT PROBLEM IN VACUUM 133

Fc are given by:

Fc =


tn − eng if g < 0

tn + exp
(
−

en

tn
g
)

if g ≥ 0

where tn is the input estimate of the contact force, en is the penalty stiffness, g is the gap.

Figure 2.12 shows the two-dimensional geometry of the upper part of a Micro-Mirror.

A.4.2/ MODEL INSTRUCTION

We follow the instruction written in Pull-in of an RF MEMS Switch (Application ID: 16379)
which can be found in COMSOL’s library or on its website www.comsol.fr/model.

PARAMETER

1 In the Model Builder window, expand the Global > Definition node, then click Parame-
ters. In the Settings window for Parameters, locate the Parameters Section. In the table,
add the following table:

Name Expression Description
g 38[um] Gap between Landing Beam and Landing

Pad + Insulator height
insheight 5[um] Insulator height
airheight g-insheight Gap between Landing Beam and Landing

Pad
sb height poly+ox Gap between Mirror and Stopper Beam

DEFINITIONS

1 On the Home toolbar, click Variable and choose Local Variables. In the Settings window
for Variables, locate the Variables section. In the table, enter the following settings:

Name Expression Description
V s 1260 Stop Voltage
V m 1e7*(t/1[s]) Magnitude of Voltage
Va ((V m<=V s)*V m+(V m>V -

s)*V s)[V]
Increasing Voltage

gap airheight+v Gap between Landing Beam
and Landing Pad

gap sb sb height+v Gap between Mirror and Stop-
per Beam

contactpressure sb (gap sb<=0)*(tn-en*gap -
sb)+(gap sb>0)*tn*exp(-gap -
sb*en/tn)

Fc on Mirror

contactpressure (gap<=0)*(tn-
en*gap)+(gap>0)*tn*exp(-
gap*en/tn)

Fc on Landing Beam

In this table, t is time, V m is defined by removing the unit of t and scaling it by 1e7, Va is
increased with time when it is lower than V s until it reaches V s and keeps this value.

134 APPENDIX A. SIMULATION DEMONSTRATIONS

2 On the Home toolbar, click Functions and choose Local > Step. In the Settings window
for Step, locate the Parameters section. In the location text field, type 1.05 ∗ insheight.
Click to expand the Smoothing section. In the Size of transition zone text field, type
0.05 ∗ insheight.

3 On the Definitions toolbar, click Explicit. In the Model Builder window, right-click Explicit
1 and choose Rename. In the Rename Explicit dialog box, type Head Point b1 in the New
Label text field. Click Ok. In the Settings Window for Explicit, locate Geometric entity level
options and choose Point. Click Paste Selection and type 20.

4 Add another Point Explicit Selection, type 12 and rename Head Point m1.

MATERIAL

1 Add correct material for the Mirror and the Beam.

2 In the Model Builder window, under Component 1 (comp1) > Materials right click Mate-
rials and choose Blank Material. In the Settings window for Material, locate the Geometric
Entity Selection section, click Paste Selections and type 1. Click to expand the Material
properties section. Locate the Material Properties section. From the Material type list,
choose Nonsolid. The Relative Permittivity of the landing pad is 11.7 since it is Silicon
while in vacuum it is 1 by definition. Locate the Material Contents section. In the table,
enter the following setting:

Property Name Value
Relative permittivity epsilonr 11.7-step1(y)*10.7

The expression takes 1 when the landing beam is far away from the base and takes 11.7
when the landing beam comes close to the insulator. In the Setting window for Material,
locate Geometric Entity Selection choose Domain, click Paste Selection and type 1. Right
click Blank Material, choose Rename and type Vacuum and Insulator.

ELECTROMECHANICS (EMI)

1 On the Physics toolbar, click Domains and choose Linear Elastic Material. In the Set-
tings window for Linear Elastic Material, locate the Domain Selection section, click Paste
Selection and type 2 − 8.

2 On the Physics toolbar, click Boundaries and choose Fixed Constraint. Select Boundary
8.

3 On the Physics toolbar, click Boundaries and choose Boundary Load. Select boundary
27. This boundary is surface of the landing beam. In the Settings window for Boundary
Load, locate the Force section. Specify the FA vector as

0 x
contactpressure y

4 Add another Boundary Load for the stopper beam. Select boundary 15 and enter the
FA vector as

0 x
contactpressure sb y

5 On the Physics toolbar, click Boundaries and choose Prescribed Mesh Displacement.
Select boundaries 1 and 31. In the Settings window for Prescribed Mesh Displacement,

A.5. CONTACT PROBLEM IN AIR 135

locate the Boundary Selection section. Locate the Prescribed Mesh Displacement sec-
tion. Clear the Prescribed y displacement check box.

6 On the Physics toolbar, click Boundaries and choose Terminal. In the Settings win-
dow for Teminal, locate the Boundary Selection section. Select boundary 5. Locate the
Terminal section. From the Terminal type list, choose voltage. In the V0 text field, type Va.

7 Add another Terminal, select boundary 2, select Voltage and type 0.

STUDY

1 On the Study toolbar, click Add Study choose Time Dependent. In the Settings win-
dow for Time Dependent, locate the Study Settings section. In the Time text field, type
range(range(0,1e-7,80e-5)). Locate Time unit, choose s.

2 On the Study toolbar, click Show Default Solver. In the Model Builder window, expand
the Solution 1 (sol1) node, then click Time-Dependent Solver 1. In the Settings window
for Time-Dependent Solver, click to expand the Time stepping section. Locate the Time
Stepping section. From the Method list, choose BDF.

3 Right-click Study 1>Solver Configuration>Solution 1 (sol1)>Time-Dependent Solver 1
and choose Fully Coupled. In the Settings window for Fully Coupled, click to expand the
Method and termination section. Locate the Method and Termination section. From the
Nonlinear method list, choose Automatic highly nonlinear (Newton).

4 Compute.

RESULTS

1 On the Home toolbar, click Add Plot Group and choose 1D Plot Group. Right-click
1D Plot Group and choose Point Graph, in the Settings window of Point Graph, locate
Selection drop-down list and choose Head point b1. Locate Expression, type v. In the
Model Builder window, right-click 1D Plot Group 1 and choose Rename. In the Rename
1D Plot Group dialog box, type Displacement at b1 in the New label text field. click Plot.

2 Add another 1D Plot Group for m1.

A.5/ CONTACT PROBLEM IN AIR

A.5.1/ MODEL DEFINITION

We use both Fluid-Structure Interaction (fsi) interface and Electrostatics (es) interface.
The first one is a multiphysics interface combines fluid flow with solid mechanics to cap-
ture the interaction between the fluid and the solid structure. The second one creates the
electric force to pull down the mirror.

A.5.2/ MODEL INSTRUCTION

We follow the instruction written in Fluid-Structure Interaction Application (Application ID:
361) which can be found in COMSOL’s library or on its website www.comsol.fr/model.

The PARAMETER, GEOMETRY, MATERIAL are defined like before.

136 APPENDIX A. SIMULATION DEMONSTRATIONS

1 On the Physic toolbar, click Add Physics. In the Add Physics window, navigate into
AC/DC node and click Electrostatic (es).

2 In the Settings window of Electrostatics, locate Domain Selection, click Paste Selection
and type 1 − 8.

3 On Physics toolbar, expand the Boundaries drop list, and select Terminal. In the Setting
window of Terminal, add boundary 5 and in the Voltage field, type Va.

4 Add another Terminal for boundary 2 with value 0.

5 On the Physics toolbar, click Add Physics. In the Add Physics widow, expand the Fluid
Flow node and select Fluid-Structure Interaction (fsi).

6 In the Settings window of Fluid-Structure Interaction (fsi), locate Domain Selection, click
Paste Selection and type 1 − 8.

7 Add a Fixed Constraint boundary, enter boundaries 6, 9.

8 Add a Prescribed Mesh Displacement boundary, enter boundaries 1, 31.

9 Add a Boundary Load boundary, enter boundary 5. In the Settings window for Boundary
Load, locate Fore section, in Load Type drop list, select Load defined as force per unit
area. In the Fa text field type the following table:

es.unTex x
es.unTey y

10 Add a Boundary Load for boundary 27 with value is force per unit area contactpressure.

11 Add a Boundary Load for boundary 15 with value is force per unit area
contactpressure sb.

12 Click Compute.

A.6/ ASYMPTOTIC MODEL IMPLEMENTATION

A.6.1/ MODEL DEFINITION

(a) Geometry used to implement
φ0.

(b) Geometry used to implement
φϑb .

(c) Geometry used to implement
φ

inter f
b .

Figure A.3: Model geometries used for implementation.

A.6. ASYMPTOTIC MODEL IMPLEMENTATION 137

To implement the asymptotic model φ0, φϑb and φ
inter f
b we use five components having ge-

ometries varied from one cell up to four cells, Figure A.3. It only needs one cell to simulate
the periodic approximation and it only needs two to four cells to simulate the boundary
layers and the interface because the contributions are vanished very soon. The imple-
mentation process is done by employing the Laplace Equation interface of COMSOL.
The plotting process is done by adding φ0 with φϑb at the ends, adding φ0 with φinter f

b at the
interface and repeat φ0 for the internal cells.

Figure A.4: Five solutions according to five components.

Figure A.5: Plot total array by using 3D Plot Group.

138 APPENDIX A. SIMULATION DEMONSTRATIONS

A.6.2/ MODEL INSTRUCTION

PARAMTERS

1 In the Model Builder window, expand the Global > Definitions node, then click Parame-
ters. In the Settings window for Parameters, locate the Parameters section. In the table,
enter the following settings:

Name Expression Description
VM1 20[V] Potential on the Mirrors of the left part
VE1 20[V] Potential on the Electrodes of the left part
VM2 30[V] Potential on the Mirrors of the right part
VE2 30[V] Potential on the Electrodes of the right part

COMPONENT 1: Phi0 1

On the Home toolbar, click Add Component. In the Model Builder window, right-click
Component 1 select Rename, in the Rename dialog, write Phi0 1. This cell is used for
simulating φ0 of the left part of the array.

Geometry

1 In the Model Builder window, right-click Phi0 1 > Geometry and select Import. In the
Settings window for Import, click Browse and navigate to Cell Geo.mphbin.

2 Click Phi0 1 > Geometry, in the Settings window for Geometry, locate Length unit list,
and choose µm.

Material

1 On the Materials toolbar, click Add Material. In Add Material window, expand MEMS
model, navigate to Semiconductors and select Si - Silicon (single-crystal, isotropic). On
the Model Builder toolbar, navigate to Materials > Si - Silicon (single-crystal, isotropic),
in the Settings window, click Paste Selection and enter the following domains 2, 4, 6 −
7, 9, 11, 13, 18 − 19, 22, 26, 28.

2 Add Si - Polycrystalline Silicon to domains 14 − 17, 23 − 24.

3 Add SiO2 - Silicon oxide to domains 3, 5, 8, 10, 12, 25, 27.

4 Add Au - Gold to domains 20 − 21.

5 On Materials toolbar, click Blank Material. Select domain 1. Expand Material Properties,
locate Material Type and choose Nonsolid. Expand Material Contents, locate Relative
permittivity field and type 1. Rename this material by Vacuum.

Laplace Equation

1 On the Physics toolbar, click Add Physics. In the Add Physics window, expand Math-
ematics models, and expand Classical PDEs, select Laplace Equation. Rename it by
phi0. On the Settings window for Laplace Equation, locate the Units section, in the De-
pendent variable quantity list, select Electric potential. In the Unit field, type V. Expand
the Dependent Variables section, in the field Dependent variable, type phi01.

2 On the Physics toolbar, locate Boundary section, expand Boundaries and select Dirich-
let Boundary Condition. Rename this node by VM. In the Settings window of Dirichlet
Boundary Condition, locate the Boundary Selection and add 27 − 30, 36 − 37, 39, 41, 45 −

A.6. ASYMPTOTIC MODEL IMPLEMENTATION 139

46, 48, 50, 60−72, 75−77, 80−82, 84−87, 89−92, 95−97, 100−104, 106−122, 126, 128, 139−
148, 151− 153, 156, 183, 186, 192− 194. Locate Dirichlet Boundary Condition section, in the
field r, type VM1.

3 Add another Dirichlet Boundary Condition for boundaries 13 − 14, 16, 18, 133 −
134, 136, 138, 158, 160, 163 − 164, 185. In the value field, type -VE1. And rename it by
VE.

4 Add Periodic Condition and add boundaries 2, 5.

5 Add Flux/Source and add boundaries 1, 3 − 4, 195.

COMPONENT 2: PhiBL0

Add another component and rename it by PhiBL0. This component is used to simulate
φ0

b.

Geometry

1 Import the geometry of one cell.

2 Right-click the Geometry node, navigate to Transforms and select Array. In the Settings
window for Array, locate the Size section and in the field Size type 2. In the Displacement
field, locate y field and type my + mg. Click Build All Objects.

Materials

Add the materials like what are described in COMPONENT 1.

Laplace Equations

1 Add two Laplace Equation for φ0 in two cells. Name them phi01 and phi02. In the
Settings window, locate Domain Selection section and input 1 and 2 respectively. Both of
them have VM1 on the mirrors and -VE1 on the electrodes.

2 Add another Laplace Equation. Rename it by phibl0. In the Settings window for Laplace
Equation, locate Domain Selection section and input domains 1, 2.

3 Add two Dirichlet Boundary Condition for the mirrors and electrodes which take value
0.

4 Add the Zero Flux boundary condition for boundaries 1, 3 − 5, 7 − 9, 388 − 389.

5 Add Flux/Source boundary condition for boundary 2. Expand the Boundary Flux/Source
section, in the g field, type −(nx ∗ phi01x + ny ∗ phi01y + nz ∗ phi01z).

COMPONENT 3: PhiBL1

Add another component and rename it by PhiBL1. This component is built to simulate φL
b .

It follows the same approach as COMPONENT 2 except all Dirichlet Boundary Conditions
are imposed with V M2 and −VE2 and the boundary Flux/Source of φL

b is typed with −(nx∗
phi02x + ny ∗ phi02y + nz ∗ phi02z).

COMPONENT 4: PhiInFa

Add another component and rename it by PhiInFa. This component is built to simulate
φ

inter f
b . It needs four cells to simulate the contributions of each parts of the array. Each

part will occupy two cells.

Geometry

Import the geometry of one single cell and multiply it by 4, using Array node.

140 APPENDIX A. SIMULATION DEMONSTRATIONS

Materials

Add correct material like what are done in COMPONENT 1.

Laplace Equations

1 Add four Laplace Equations for φ0 with related domain is the elementary cell. Note that
the Dirichlet boundary condition should be imposed correctly according to which side the
cell is belong to.

2 Add another Laplace Equation and rename it by PhiInFa1. Input domain 1, 2.

3 Add two Dirichlet Boundary Conditions on the mirrors and electrodes with zero value.

4 Add Zero Flux boundary condition to boundaries 1 − 5, 7 − 8, 774 − 775.

5 On Physics toolbar, locate Boundary section, expand Boundaries and select Constraint.
In the Settings window for Constraint, add boundary 10. Locate the Constraint section in
the R field, type phi02y + phiInFa1y − phi03y − phiInFa2y.

6 Add another Laplace Equation and rename it by PhiInFa2. Input domain 3, 4.

7 Add boundary conditions like PhiInFa1 except the the Constraint boundary condition is
impose with phi02 + phiInFa1 − phi03 − phiInFa2.

COMPONENT 5: Phi0 2

This component is built exactly like COMPONENT 1 but its Dirichlet Boundary Conditions
are imposed with V M2 and −VE2.

RESULT

1 In the Model Builder window, locate the sub-node Results > Data Sets, click Study
1/Solution 1. In the Setting window for Solution, expand the Component drop list and
select Phi0 1 (comp1). Rename this solution by Study 1/Solution 1: Phi0 1.

2 Right-click the solution Study 1/Solution 1: Phi0 1 and choose Duplicate. In the Settings
window of this solution, expand the Component drop list and select PhiBL0 (comp2). Re-
name this solution by Study 1/Solution 1: PhiBL0. Continue duplicate until five solutions
are set according to five components, Figure A.4.

3 On the Results toolbar, locate Plot Group section, click 3D Plot Group. In the Settings
window for 3D Plot Group, locate Data section and expand Data Set list, choose None.
Rename it by Total Plot, Figure A.5.

4 Plot the boundary layer at 0: Right-click the Total Plot and choose Surface. In the
Settings window for Surface, locate Data section, expand Data set drop list and select
Study 1/Solution 1: PhiBL0 (sol1). In the Expression field, type phibl0 + phi01, in the
Unit file, type V. Rename this plot by Cell 1: PhiBL0+Phi01. Duplicate this Surface and
change the Expression field by phibl0 + phi02. Rename this plot by Cell 2: PhiBL0+Phi02.

5 Plot the periodic solution φ0: Add another Surface plot, in the Data set list, choose Study
1/Solution 1: Phi 1 (sol1). In the Expression field, type phi0, and in the Unit field, type V.
Rename this plot by Cell 3: Phi0 1. Right-click this plot and select Deformation, in the y
component field, type 2 ∗ (mg + my). Enable Scale factor field and enter 1.

6 Add another Surface plot for φ0 and rename it by Cell 4: Phi0 1.

7 Continue to plot the interface with Data set list is Study 1/Solution 1: PhiInFa (sol1), the
Expression are phiInFa1 + phi01, phiInFa1 + phi02, phiInFa2 + phi03 and phiInFa2 + phi04.

A.6. ASYMPTOTIC MODEL IMPLEMENTATION 141

The y component field is 4 ∗ (mg + my).

8 Plot other two cells for φ0 with Data set is Study 1/Solution 1: Phi0 2 (sol1).

9 Plot the remain boundary layer solution with Data set is Study 1/ Solution 1: PhiBL1
(sol1). The y component is 10 ∗ (200 + 5)[um].

10 Click Plot.

Document generated with LATEX and:
the LATEX style for PhD Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle

the tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

n École doctorale SPIM 1 rue Claude Goudimel F - 25030 Besançon cedex

n tél. +33 (0)3 81 66 66 02 n ed-spim@univ-fcomte.fr n www.ed-spim.univ-fcomte.fr

Abstract:

In this thesis, we contribute to the modeling, simulation and optimization of a new generation of
micro mirror arrays designed by the Astrophysics Laboratory of Marseille (LAM). A contribution is
also made to the development of MEMSALab a symbolic computation software package designed
to assist multiscale model derivation for microsystem arrays. The coupling between the quasi-static
nonlinear behavior of a cell of the micro-mirror array and the electrostatic field used for its actuation
is simulated. This simulation is then used to study the phenomenon of pull-in and its optimization.
Then, a homogenized model for the electrostatic field in the vacuum space surrounding the micro-
mirror array has been built using an asymptotic method. The contributions to the development of
MEMSALab consist in the introduction of an extension and combination theory that will be used to
construct multiscale models based on various asymptotic approaches by a process of successive
complexifications. Finally, a complete specification language for using MEMSALab is presented
and illustrated by significant examples. In particular, it was used to encode the derivation of a
homogenized model that serves as an initial state to the extension-combination method.

Keywords: MEMS Arrays, Micro-Mirrors, Asymptotic Modelling, Simulation, Two-Scale Convergence,
Boundary Layers, Term Rewriting, Symbolic Computation, Extension-Combination.

Résumé :

Dans cette thèse, nous contribuons à la modélisation, la simulation et l’optimisation d’une
nouvelle génération de matrices de micro-miroirs conçue par le Laboratoire d’Astrophysique de
Marseille (LAM). Une contribution est également apportée au développement du logiciel de calcul
symbolique MEMSALab qui assistera la construction de modèles multi-échelles pour des matrices
de microsystèmes. Le couplage entre le comportement élastique quasi-statique non linéaire d’une
cellule de la matrice de micro-miroirs et le champ électrostatique utilisé pour son actionnement a
été simulé. Une fois validée, cette simulation a été utilisée pour étudier le phénomène de pull-in
ainsi que son optimisation. Ensuite, un modèle homogénéisé du champ électrostatique dans le
vide entourant la matrice de micro-miroirs est construit à l’aide d’une méthode asymptotique. Les
contributions au développement de MEMSALab consistent en l’introduction d’une théorie d’extension
et de combinaison de preuves qui sera utilisée pour construire des modèles asymptotiques par un
procédé de complexifications successives. Enfin, un langage spécifique complet pour d’utilisation de
MEMSALab est présenté et est illustré par des exemples significatifs. En particulier, il a été utilisé
pour coder la construction d’un modèle homogénéisé qui sert d’état initial à la méthode d’extension-
combinaison.
Mots-clés : Matrices de MEMS, Micro-Miroirs, Modélisation Asymptotique, Simulation, Convergence à Deux

Echelles, Couches Limites, Réécriture, Calcul Symbolique, Méthode d’Extension-Combinaison.

	1 Introduction to micromirror and models
	1.1 Introduction
	1.2 Physical phenomena occurring in a micromirror cell
	1.3 Governing equations
	1.4 Variational formulations

	2 Micromirror design simulation result
	2.1 Introduction
	2.2 Parameters
	2.3 Stationary Simulation
	2.3.1 Model Definition
	2.3.2 Results

	2.4 Pull-in analysis
	2.4.1 Model Definition
	2.4.2 Result
	2.4.3 Design variables, objectives, constraints and trade-off of optimization problems
	2.4.4 Bumping effect

	3 Model derivation
	3.1 Introduction
	3.2 One and Two-dimensional arrays
	3.2.1 The governing equations
	3.2.2 Global Scaling
	3.2.3 Two-Scale Transform for a Thin Region
	3.2.4 Statement of the Two-Scale Model
	3.2.5 Properties of the Two-Scale Transform
	3.2.6 Properties used in model deriavations
	3.2.7 Model Derivations

	3.3 Multi-scale Model Implementation

	4 Extension and combination in MEMSALab
	4.1 Introduction
	4.2 Preliminaries
	4.3 Position-based HCE-strategies and their combination
	4.4 The class of context-embedding strategies (HCE-strategies)
	4.4.1 Syntax and semantics of HCE-strategies
	4.4.2 From HCE-strategies to position-based HCE-strategies

	4.5 Unification and combination of HCE-strategies
	4.5.1 The correction and completeness of the unification and combination of HCE-strategies

	4.6 Remarks

	5 Implementation in MEMSALab
	5.1 Introduction
	5.2 Generalities
	5.2.1 The four kinds of files
	5.2.2 Inclusion of files
	5.2.3 List of Unicode characters

	5.3 PDE-files
	5.3.1 Structure of a PDE file
	5.3.2 Shortcuts and their fields
	5.3.3 Predefined Operators
	5.3.4 Expressions
	5.3.5 PDE
	5.3.6 Examples

	5.4 Proof files
	5.4.1 Rewriting Variables, Patterns and Pattern Matching
	5.4.2 Rules
	5.4.2.1 Grammar of rule's conditions
	5.4.2.2 The VarOf–function

	5.4.3 Strategies
	5.4.4 Steps, Lemma, Models
	5.4.5 Example of a proof file

	5.5 Extension files
	5.5.1 Second Order Pattern Matching, Contexts and Second Order Rules
	5.5.2 Second Order Strategies
	5.5.3 Correspondence between SO-strategies and HCE-strategies
	5.5.4 Unification of terms containing locations

	5.6 Formulas of Unification of Second Order Strategies
	5.7 A High Level User Language
	5.7.1 compile
	5.7.2 inspect
	5.7.3 HtmlView
	5.7.4 Application of a Proof or an Extension
	5.7.5 combine

	5.8 Message of the Debugger
	5.9 Illustration of a Sequence of Operations

	6 Conclusions and perspective
	I Appendix
	A Simulation Demonstrations
	A.1 Stationary Simulation
	A.1.1 Model Instruction

	A.2 Pull-In Analysis
	A.2.1 Model 1
	A.2.1.1 Model Definition
	A.2.1.2 Modeling Instructions

	A.2.2 COMSOL Livelink with Matlab

	A.3 Model 2
	A.3.1 Model instructions

	A.4 Contact Problem in Vacuum
	A.4.1 Model definition
	A.4.2 Model Instruction

	A.5 Contact Problem in Air
	A.5.1 Model Definition
	A.5.2 Model Instruction

	A.6 Asymptotic Model Implementation
	A.6.1 Model Definition
	A.6.2 Model Instruction

