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RESUMO

INFLUENCIA DO BURACO DE OZO[\IIO ANTARTICO E DINAMICA ATMOSFERICA
SOBRE O OZONIO NO SUL DO BRASIL

AUTORA: Gabriela Dornelles Bittencourt
ORIENTADORA: Damaris Kirsch Pinheiro
CO-ORIENTADOR: Hassan Bencherif

A primavera austral no Hemisfério Sul apresenta reducfes temporarias do conteddo de ozénio princi-
palmente na regido Antértica conhecida como Buraco de Ozonio Antartico (BOA). Porém, estudos
mostram uma influéncia sob regides de médias latitudes, como o Sul do Brasil, onde sdo identificados
dias com diminuic¢Ges temporarias da coluna total de ozénio (CTO). Com isso, 0 objetivo principal
dessa tese é investigar essa influéncia do BOA sobre a regido sul do Brasil, utilizando dados da coluna
total de ozonio e de perfis verticais que vao ajudar a identificar a altura preferencial em que essas
diminuicdes ocorrem no sul do Brasil, alem de analisar o comportamento dinamico atmosférico durante
esses eventos no periodo 42 anos de dados (1979 a 2020). A metodologia utilizada compreende a
analise de dados médios diarios da coluna total de oz6nio através de instrumentos de superficie
(Espectrofotbmetro Brewer), dados de satélites (TOMS e OMI), e para comparacao dados de reandlise
do ECMWEF-ERAJB, para a identificacdo de eventos de influéncia do BOA sobre a regido Sul do Brasil.
A andlise do conteldo vertical de O3 dados do satélite TIMED/SABER disponibiliza dados diarios de
15 a 110 km de altura e possuem 17 anos de perfis de O3 disponiveis no periodo de 2002 a 2018. A
validacdo desses dados se fez necessaria, e para isso foi utilizada a rede SHADOZ de medidas de
ozonesondes para realizar essa validacao atraves da estacdo tropical em Natal/RN como referéncia.
Essa validacdo apresentou uma boa concordancia entre os dois instrumentos, viabilizando o uso do
SABER para as analises dos eventos de influéncia do BOA. A partir disso, foram identificados 102
eventos que influenciaram Santa Maria/RS com diminui¢do temporaria no conteido de O3 durante o
periodo, e com queda média entre 24 e 28,1 km de altitude. Nas analises dindmicas 0s campos estra-
tosféricos mostraram o aumento da vorticidade potencial na média dos eventos, principalmente nos
meses de setembro e outubro. Os modelos conceituais no corte horizontal e vertical da atmosfera ex-
plicam a atuacdo do jato estratosférico e troposférico durante a ocorréncia de eventos de diminuigéo
do contetido de O3 em Santa Maria/RS. Foi possivel identificar a forte influéncia no desenvolvimento
desses eventos através da conexdo do jato estratosférico (vortice polar) com os jatos troposféricos (jato

polar e subtropical) em niveis médios e altos da atmosfera.

Palavras-chave: Ozo6nio. Buraco de Ozonio Antartico. Perfil Vertical. Dinamica Atmosférica.



ABSTRACT

INFLUENCE OF THE ANTARCTIC OZONE HOLE AND ATMOSPHERIC DYNAMICS
ON OZONE IN SOUTHERN BRAZIL

AUTHOR: Gabriela Dornelles Bittencourt
ADVISOR: Damaris Kirsch Pinheiro
CO-ADVISOR: Hassan Bencherif

The austral spring in the Southern Hemisphere presents temporary reductions in ozone content mainly
in the Antarctic region known as the Antarctic Ozone Hole (AOH). However, studies show an influence
in mid-latitude regions, such as southern Brazil, where days with temporary decreases in the total ozone
column (TCO) are identified. The main objective of this thesis is to investigate this influence of AOH
on the southern region of Brazil, using data from the total ozone column and vertical profiles that will
help to identify the preferential height at which these decreases occur in southern Brazil, in addition to
analyzing the atmospheric dynamic behavior during these events in the period 42 years of data (1979
to 2020). The methodology used comprises the analysis of average daily data of the total column of
ozone through surface instruments (Brewer Spectrophotometer), satellite data (TOMS and OMI), and
to compare reanalysis data from the ECMWF-ERAS, for the identification of events of influence of the
AOH on the southern region of Brazil. The analysis of the vertical content of O3 data from the
TIMED/SABER satellite provides daily data from 15 to 105 km in height and has 17 years of O3
profiles available in the period from 2002 to 2018. The validation of these data was necessary, and for
that the SHADOZ network of ozonesondes measurements was used to carry out this validation through
the tropical season in Natal/RN as a reference. This validation showed a good agreement between the
two instruments, enabling the use of SABER for the analysis of AOH influence events. From this, 102
events were identified that influenced Santa Maria/RS with a temporary decrease in O3 content during
the period, and with an average drop between 24 - 28.1 km in altitude. In the dynamic analysis, the
stratospheric fields showed an increase in the potential vorticity in the average of the events, mainly in
the months of September and October. The conceptual models in the horizontal and vertical section of
the atmosphere explain the action of the stratospheric and tropospheric jet during the occurrence of
events of decrease in the O3 content in Santa Maria/RS. It was possible to identify the strong influence
on the development of these events through the connection of the stratospheric jet (polar vortex) with
the tropospheric jets (polar and subtropical jet) at medium and high levels of the atmosphere.

Keywords: Ozone. Antarctic Ozone Hole. Vertical Profile. Atmospheric Dynamics.
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INFLUENCE DU TROU D'OZONE ANTARCTIQUE ET DE LA DYNAMIQUE
ATMOSPHERIQUE SUR L'OZONE DANS LE SUD DU BRESIL

AUTEUR: Gabriela Dornelles Bittencourt
CONSEILLER: Damaris Kirsch Pinheiro
CO-CONSEIL: Hassan Bencherif

Le printemps austral dans I'némisphére sud présente des réductions temporaires de la teneur en ozone
principalement dans la région antarctique connue sous le nom de trou d'ozone antarctique (AOH).
Cependant, des études montrent une influence dans les régions de latitude moyenne, comme le sud du
Brésil, ou des jours avec des diminutions temporaires de la colonne d'ozone totale (COT) sont
identifiés. L'objectif principal de cette thése est d'étudier cette influence de I'AOH sur la région sud du
Brésil, en utilisant les données de la colonne d'ozone totale et des profils verticaux qui aideront a
identifier la hauteur préférentielle a laquelle ces diminutions se produisent dans le sud du Brésil, en
plus a analyser le comportement dynamique de I'atmosphere lors de ces événements dans la période de
42 ans de données (1979-2020). La méthodologie utilisée comprend I'analyse des données quotidiennes
moyennes de la colonne totale d'ozone a travers des instruments de surface (spectrophotomeétre
Brewer), des données satellitaires (TOMS et OMI), et de comparer les données de réanalyse de
I'ECMWEF-ERAS5, pour l'identification des événements d'influence de I'AOH sur la région sud du
Brésil. L'analyse du contenu vertical des données O3 du satellite TIMED/SABRE fournit des données
quotidiennes de 15 a 105 km d'altitude et dispose de 17 années de profils O3 disponibles sur la période
de 2002 a 2018. La validation de ces données était nécessaire, et pour cela le réseau SHADOZ de
mesures de sondes d'ozone a été utilisé pour effectuer cette validation a travers la saison tropicale au
Natal/RN comme reférence. Cette validation a montré un bon accord entre les deux instruments,
permettant l'utilisation de SABER pour I'analyse des événements d'influence AOH. A partir de 13, 102
événements ont été identifiés qui ont influencé Santa Maria/RS avec une diminution temporaire de la
tem eur en O3 au cours de la période, et avec une chute moyenne entre 24 et 28,1 km d'altitude. Dans
I'analyse dynamique, les champs stratosphériques ont montré une augmentation du tourbillon potentiel
dans la moyenne des événements, principalement dans les mois de septembre et octobre. Les modeles
conceptuels dans la coupe horizontale et verticale de l'atmosphére expliquent I'action du jet
stratosphérique et troposphérique lors de la survenue d'événements de diminution de la teneur en O3 a
Santa Maria/RS. Il a été possible d'identifier la forte influence sur le développement de ces événements
a travers la connexion du jet stratosphérique (vortex polaire) avec les jets troposphériques (jet polaire

et subtropical) aux niveaux moyens et éleves de I'atmosphere.

Mots-clés: Ozone. Trou d'ozone antarctique. Profil vertical. Dynamique Atmosphérique.
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1 INTRODUCTION

The maintenance of life on Earth, maintaining the energy balance of the planet,
of all living beings, whether humans, animals, or plants, is due to the existence of
ozone gas (SEINFELD; PANDIS, 2016). In 1840, when scientists discovered the
existence of ozone gas (03), studies show that it is the most important trace gas
supporting life on Earth, due to its ability to absorb ultraviolet (UV) radiation incident
in the atmosphere. Water vapor (H20), along with carbon dioxide (CO2) and O3,
become essential for the planet's energy balance (DOBSON et al., 1968; SALBY et
al., 1996). Ozone (03) is formed by photochemical processes, discovered by Chapman
in 1930. Its highest concentration (about 90%) is found in the stratosphere, around 15
to 35 km altitude in a region known as the “Ozone Layer” (LONDON et al., 1985).

The large-scale stratospheric circulation known as the “Brewer Dobson
Circulation” (BREWER, 1949; BUCHART et al., 2014; DOBSON, 1930) explains
why large amounts of O3 are found in the polar regions, and not in the region where
O3 naturally forms. This large-scale meridional circulation transports ozone formed
in the tropical region towards the poles and then to the troposphere in regions of mid
and high latitudes (BUCHART et al., 2014). Farman et al., (1985) detected a massive
reduction in ozone content over the Antarctic region during the austral spring. This
significant decrease, indicated as the region with values of the total column of O3
(TCO) lower than 220 Dobson units (DU), was named as the “Antarctic Ozone Hole”.

The polar vortex acts as a barrier to the exit of stratospheric air masses from
the polar holes during the winter months and vice versa. With the arrival of spring, the
polar vortex becomes unstable due to the return of solar radiation and warming due to
increased planetary wave activity. The instability of this vortex allows ozone-deficient
air masses to be ejected from the polar regions as filaments, reaching mid-latitudes
(MANNEY etal., 1994; STHOL et al., 2003; MARCHAND et al., 2005) and affecting
southern South America (FARMAN et al., 1985).

The temporary destruction of O3 directly influences the behavior of this gas in

and around the polar region, due to the passage of its edge over these areas, resulting
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in increased levels of ultraviolet radiation reaching the surface (CASICCIA et al.,
2008; MARCHAND et al., 2005). Kirchhoff et al., 1996 presented the first results that
identified an “Antarctic Ozone Hole Secondary Effect” event over the mid-latitude
region through O3 sounding data, satellites and surface data that documented this O3
decrease. These temporary reductions in O3 content continue to be studied.
BITTENCOURT et al., (2018) analyzed an extreme ozone depletion event under mid-
latitude regions. On the other hand, there is an increase in solar ultraviolet (UV)
radiation that reaches the earth's surface (GUARNIERI et al., 2004; LAAT et al.,
2010).

The need to understand the dynamics behind these AOH secondary influence
events over mid-latitudes regions is still a point of analysis. The dynamics of the
stratospheric vortex together with the jet streams can help in the exchange of air mass
between the layers, in the known stratosphere-troposphere exchange (STE) (STHOL,
2003; OHRING, 2010). The behavior of O3 can be influenced by variabilities such as
the Quasi-Biennial Oscillation (QBO), modulates the winds in the middle stratosphere
and is the main variability that influences O3 in tropical latitudes (PLUMB, 1997;
BALDWIN, 2001). This influence in the tropics can interfere with the distribution of
O3 to other latitudes, such as mid-latitudes accelerating/decelerating large-scale
movement through the Brewer-Dobson Circulation (BDC).

Several instruments have been used over the years to improve the analysis and
understanding of this atmospheric gas. Historically, satellite data as well as surface
instruments present a large period of data where important discoveries of O3 content
have been found. Vertical ozone profile data, through ozonesondes (REMSBERG et
al., 2003, THOMPSON et al., 2017), are an important tool in the study of atmospheric
variables, such as O3. They provide the main atmospheric variables, helping to
understand the behavior of O3 at different atmospheric levels, from the troposphere to
the stratosphere.

Recent studies have shown that the greatest decreases in O3 content in southern
Brazil occur with the action of jet streams that can help in these transport of air masses
between stratosphere-troposphere (BITTENCOURT et al, 2019). Knowing the

13
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importance of monitoring atmospheric O3, this work aims to investigate these
temporary decreases in southern Brazil, especially during the period when the
Antarctic Ozone Hole is operating during the austral spring. During the 42 years
(1979-2020) of data analyzed in the study region, with the use of satellite and ground
instruments, it was possible to identify the climatological behavior of the total column
of ozone (TCO) in this period, helping to identify 102 events of influence of AOH on
mid-latitude regions in Santa Maria/RS, the focus region of this work. These
temporary decreases in O3 content, during the austral spring, were analyzed with
vertical profiles, where at first data from the TIMED/SABER satellite were used,
which provides 17 years of vertical profiles (2002-2018). This study made it possible
to identify with greater precision the time at which these O3 decreases predominate
during the occurrence of events over the southern region of Brazil.

The performance of atmospheric dynamics during the events identified over Santa
Maria/RS requires a more detailed understanding to explain how this transport of air
masses between the stratosphere and the troposphere occurs. Data with the new
generation of ECMWF ERADS reanalysis were used in this work, helping to show the
stratospheric dynamic behavior using potential vorticity data, in addition to showing the
dynamic behavior of the jets (stratospheric and tropospheric) during the occurrence of

AOH influence events.

1.1 OBJECTIVES
1.1.1 General objectives
Investigate the influence of the Antarctic Ozone Hole and the action of atmospheric

dynamics on the total ozone column and its vertical profile in southern Brazil during the
period from 1979 to 2020.
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1.1.2 Specific objectives

> Identify the secondary effect events of the Antarctic Ozone Hole that occurred
in southern Brazil through the analysis of ozone total column data on surface
(Brewer Spectrophotometer), satellite (TOMS, OMI) instruments and from
reanalysis data from ECMWF-ERADS for the period of 42 years of available
between 1979 to 2020.
> Analyze data from vertical profiles to verify the behavior of Oz using the
TIMED/SABER satellite from 2002 to 2018.
e Validate SABER satellite data using in situ Oz measurements
(ozonesondes launch by balloons) from the SHADOZ network
available for the tropical region of Brazil in Natal/RN.
e Analyze the vertical profiles of AOH influence events
identified within the SABER data period.
» To characterize the climatological behavior of the TCO and of the vertical
profiles during the events of influence of the AOH.
> ldentify the main climatic variabilities that modulate the behavior of Ozone.
> Analyze the dynamic stratospheric behavior of secondary effect events
through potential vorticity fields.
» Analyze the behavior of tropospheric and stratospheric jets up to 5 hPa during
secondary effect events using reanalysis data from ERAS, with the aim of

devising a conceptual model of this mechanism.

This Doctoral thesis is divided into three main parts. Chapter 2 presents a theoretical
review of the main points relevant to the analysis of this study. Chapter 3 describes the
study region, the data that were used and the methodologies used in this study. Chapter 4
presents the results and relevant discussions about them. In Chapter 5, the conclusions of
the study and some recommendations for future work are presented. The Appendix
section presents all the events of influence of the AOH on the southern region of Brazil

that were identified during the 42 years.
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2 THEORETICAL REVIEW

2.1 ATMOSPHERIC OZONE

Ozone is a gas that is naturally present throughout the atmosphere where its
distribution is in your atmosphere and as specific characteristics it agrees with. The first
contact with ozone gas was in 1840 by Christian Frederich Schonbein who discovered
ozone while carrying out experiments due to a particular odor that the oxygen molecule
released. At the beginning of the 20th century, the French Charles Fabryand and Henri
Buisson estimated the first measurements of ozone based on the absorption of
ultraviolet (UV) radiation, which if brought to the Earth's surface at normal temperature
and pressure (CNTP), the total column ozone would have layers about 3 mm thick
(FABRY; BUISSON, 1913). Later, studies showed that ozone is a molecule composed
of three oxygen atoms with the ability to absorb ultraviolet radiation, releasing energy in
the form of heat. Thus, in the stratosphere, the temperature begins to increase with altitude
and its concentration is higher. (SLUSSER, 1999; LIOU, 2002).

In 1930, Sydney Chapman proposed that the continuous production of ozone in
the atmosphere was a cycle triggered by the photolysis of O2 in the upper stratosphere.
This photochemical mechanism to produce ozone in the stratosphere is called the
Chapman Mechanism. Basically, Chapman's mechanism proposes four main reactions
for the formation and destruction of ozone. Ozone formation occurs in the stratosphere
at an altitude of about 30 km, where solar ultraviolet radiation with wavelengths less

than 242 nanometers slowly breaks down oxygen molecules (O2):

O2+hv—>0+0 (2.1)

In the presence of the third body M (N2 or O2), oxygen atoms (O) react rapidly with

02 to form an ozone molecule:

0+02+M— O3+ M (2.2)
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The formed ozone molecules strongly absorb UV radiation in the wavelength range
from 240 to 320 nm, decomposing into O2 and O, or the ozone can react with the oxygen

atom, generating two O2 molecules:

O3+hv—>02+0 (2.3)

O3+0— 02+ 02 (2.4)

However, studies showed that Chapman's theory overestimated the ozone profile
that was observed in the stratosphere, inspiring several studies that led to the addition
of new chemical reactions to eliminate ozone losses, the so-called "catalytic cycle"
(WARNECK, 1988).

X+03 - XO0+0 (2.5)
XO0+0 — X+0, (2.6)
0+ 03— 20 (2.7)

These new cycles elucidate the roles of hydrogen, nitrogen oxides, chlorine and
fluorine, bromine in the effect of stratospheric ozone chemistry, replacing the X in
equations 2.5 and 2.6 (BATES; NICOLET, 1950; CRUTZEN, 1970; STOLARSKI;
CICERONE etal., 1974; WOFSY; MCELROY; YUNG etal., 1975). Mario Molina and
F. Sherwood Roland were awarded the 1974 Nobel Prize in Chemistry for their
discovery that the release of man-made chlorofluorocarbons (CFCs) would be the main
source of ozone-depleting chlorine in the stratosphere (MOLINA; ROWLAND et al.,
1974).

These reactions occur continuously if solar ultraviolet radiation is present in the
stratosphere, with the tropical stratosphere being the region where the greatest
production of ozone occurs. In the stratosphere, the production of ozone is balanced by

its destruction in chemical reactions, thus ozone constantly reacts with sunlight and
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various natural and artificial (anthropogenic) chemicals in the stratosphere. In each
reaction, a molecule of ozone is lost, and other compounds are produced. The reactive
gases that deplete the ozone content are the oxides of hydrogen and nitrogen and those
containing chlorine and bromine.

The vertical distribution of O3 content varies according to latitude and season,
and the availability of sunlight becomes an important factor in O3 formation. Due to
this, the greatest production of O3 occurs in the tropical stratosphere, because in this
region the sunlight falls with more intensity, but the largest amounts of O3 occur in
medium and high latitudes. This is explained by winds that circulate in the stratosphere,
bringing tropical air rich in O3 to the poles in autumn and winter (Brewer-Dobson
circulation).

In the tropics, seasonal variations can be ignored as solar radiation is constant
throughout the year (WARKAMATZU et al., 1989). O3 production is higher near the
equator and increases with increasing altitude, this characterizes a condition for O3
formation to occur:

+ latitudinal variation, dependence on the zenith solar angle and intensity
of solar radiation (SEINFELD and PANDIS, 1998).

With increasing latitude (Fig. 2.1), the seasonal variation of stratospheric ozone is
greater, with a greater concentration during spring. Meanwhile regions near the poles are
characterized by strong downdrafts transporting the ozone produced by the layers above
at 20 km altitude towards the poles in the upper stratosphere and towards the equator in
the lower stratosphere. During autumn, minimum values of O3 are observed, according
to figure 2.1, which shows the behavior of TCO as a function of latitude and season
(SEINFELD e PANDIS, 2016).
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Figure 2.1: Average zonal density of the total ozone column (in Dobson units) as a function of latitude and
time of year.
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Source: Adapted by Seinfeld and Pandis (2016).

Ozone is found primarily in two important regions of the atmosphere. The two
main layers where O3 content is identified are the troposphere and stratosphere. In the
troposphere, a layer that goes from the surface to about 10-15 km in altitude depending
on the region observed, to the region of the tropopause, O3 is formed by a different set of
chemical reactions involving naturally occurring gases, as well as from sources of air
pollution. As a result, about 10% of the atmospheric O3 content is found (FISHMAN et

al., 1990). In this layer, O3 has negative impacts in several aspects, functioning as a toxic
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gas for human health, in addition to causing damage to agriculture and various
ecosystems, in addition to being an important greenhouse gas on the planet.

Most of the ozone content is found in the stratospheric layer which is defined
between 15 and 50 km altitude. The temperature increases as the latitude increases, this
is explained by the absorption of ultraviolet radiation by the O3 molecules available in
that region. These molecules release energy in the form of heat, this causes the reduction
of at least 1% of the stratospheric ozone content to increase the amount of UVB incidence
by up to 2%, further increasing the risks to living beings, including diseases such as cancer
of the skin. skin due to overexposure to the sun (SEINFELD; PANDIS, 2016). In Brazil,
a 1% reduction in stratospheric O3 content corresponds to an average increase of 1.2% in
type B UV radiation. (GUARNIERI et al., 2004). Between 15 and 35 km of altitude, 90%
of the total O3 content is identified (LONDON, 1985; WMO, 1996) in the well-known
“Ozone Layer”. In this layer, O3 works as an absorber of UV radiation, where together
with water vapor (H20) and carbon dioxide (CO2) they become essential for life and the
energy balance of the planet, working as a support for the life on the earth's surface due
to its ability to absorb ultraviolet (UV) type C (UVC) radiation and part of UVB, the most
harmful to living beings. Figure 2.2 shows the vertical behavior of O3 in the atmosphere,
where the region of the O3 layer between 15-35 km is clearly observed.

Recent studies have shown that there is an increase in tropospheric O3
concentration. LIU et al. (2022) used numerical models to simulate changes in ozone
levels in the upper and lower atmosphere between the years 1955 and 2000, isolating
them from other influences and increasing the current understanding of their impact on
the heat absorption of the Southern Ocean. The simulations showed that a decrease in
ozone in the upper atmosphere and an increase in the lower atmosphere contributed to a
warming observed in the upper 2 km of ocean waters at high latitudes by the general

increase in greenhouse gases.
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Figure 2.2: Vertical profile of O3 in the atmosphere.
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03 molecules found in the lower stratosphere have a long lifetime and are used
as tracers in studies regarding air mass transport, stratosphere-troposphere exchange.
(STE). As is known, the O3 content in the upper troposphere and lower stratosphere
strongly depends on dynamic factors such as seasonal variation in the atmospheric
circulation regime, which is associated with the position, intensity, and interactions of the
subtropical and polar jet due to the latitudinal thermal gradient. (BUKIN et al., 2011).

2.2 BREWER DOBSON STRATHOPHERIC CIRCULATION

The Brewer-Dobson circulation (BDC) is a meridional circulation driven primarily
by the deposition of planet-scale fluctuating quantities. Changes in BDC lead to changes
in ozone through transport and chemical reactions. Brewer (1949) and Dobson (1968)

showed that the highest concentration of ozone is found in regions with high latitudes at
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the poles, although the highest production of Os is in the equatorial region at
approximately 40 km of altitude.

This characteristic of O3 presenting higher concentrations in areas distant from its
formation made the scientific community suggest that the lifetime of O3 in the
stratosphere is longer than the time required for this transport to occur. According to these
statements, both the O3 content and its formation rate depend on the latitudinal and
altitude variation, the O3 residence time will also vary in the stratosphere. For example,
transport from the tropics to the poles takes about 3 to 4 months, at altitudes below 20 km
in low latitudes, in the tropics, and above 40 km in high latitudes. Meanwhile, in tropical
latitudes where the greatest O3 formation occurs, the residence time is approximately 3
years at altitudes around 15 km and about 1 day at altitudes above 40 km. These new
observations cast doubt on the Chapman Mechanism in the O3 destruction process, from
which new processes were added to characterize the O3 destruction correctly, according
to the equations shown above for the catalytic cycles.

The Brewer-Dobson circulation (BDC) is then a large-scale circulation that is driven
by the tropospheric circulation in the tropics up into the stratosphere and then moves
towards the poles as it descends. This pattern of atmospheric circulation explains why air
in the tropics has less Oz content than air at the poles, even though the tropical stratosphere
is the region where this content is produced (BUTCHART, 2014).

The existence of two distinct branches of the Brewer-Dobson stratospheric
circulation characterizes the large-scale distribution of movement with the shallow and
deep branches (BIRNER and BONISCH, 2011). The shallow branch is found in the lower
stratosphere, where there is ancestry in the tropics and subsidence in the subtropics and
mid-latitudes. The deep branch of the BDC reaches the upper stratosphere, extending to
mid and high latitudes (WMO, 2010). Studies show that climate model simulations
predict an acceleration of the Brewer-Dobson circulation in response to increasing
concentrations of greenhouse gases with an average increase of about 2%/decade in the
21st century (WMO, 2014).



23

Figure 2.3: Schematic illustration of the shallow and deep branches of the Brewer-Dobson circulation in
the stratosphere at the solstice.
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NEU et al. (2014) showed that changes in tropical upwelling have a significant effect
on the distribution of stratospheric ozone in mid and low latitudes. In addition to this
increase in the concentration of greenhouse gases directly influencing the BDC
acceleration, this acceleration can also be estimated through chemical components, for
example, ozone and water vapor. FLURY et al. (2013) analyzed the velocities of the deep
and shallow branches of the BDC, in both hemispheres, and identified a variability
compatible with signals from the Quasi-Biennial Oscillation (QBO). Regarding the
average speed of the branches, the NH showed a speed 2 times higher when compared to
the SH, this is because the planetary waves there in the NH are more unstable and break
more easily than in the SH, where it is more stable mainly during the winter season.

2.3 ANTARCTIC OZONE HOLE

Ozone-depleting substances are found throughout the stratospheric layer because
they are transported over long distances by large-scale motion in the atmosphere. The
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large depletion of Antarctica's ozone layer, known as the "Antarctic Ozone Hole", is due
to the climate and chemical reactions taking place there, which are not identified
anywhere else on Earth. In the early 1980s, the first drop in the total ozone column in
Antarctica was observed at research stations located on the Antarctic continent, where
measurements were made using a surface instrument, the Dobson Spectrophotometer.

Observations indicated that total ozone is exceptionally low during the late
winter/early spring months of September, October, and November. The first published
reports were from the Japan Meteorological Agency and the British Antarctic Survey. In
1985, three scientists from the British Antarctic Survey published their observations in
the prestigious scientific journal Nature that the depletion of stratospheric ozone over
Antarctica during the polar spring is known as the "Antarctic Ozone Hole", a result that
was widely known worldwide. (FARMAN et al., 1985). Observations showed that the
average monthly value of the total column of surface ozone at a British station in
Antarctica has been decreasing since 1977, where values above 350 DU (Dobson units)
have been observed until then for values close to or below 100 DU. Many theories try to
explain the existence of this hole in the ozone layer, but the one that was most accepted
by the scientific community is the heterogeneous chemistry of halogens (chlorine and
bromine) in a catalytic cycle of Oz destruction.

Solomon (1999) and Dessler (2000) showed that human activities, in the emission
of chemical compounds, chlorofluorocarbons, CFCs, play an important role in this drastic
drop in ozone content during the southern spring. The Ozone Hole area is defined where
there is a region with values lower than 220 DU (figure 2.4), a value lower than two thirds
of the historical level (HOFMANN et al., 1997). Antarctica has the highest concentration
of ozone on Earth practically throughout the year. With the deficiency of atomic oxygen
in the stratosphere of Antarctica and due to the absence of intense ultraviolet radiation,
the photolysis of O2 does not occur, thus causing a low local production of ozone.
However, this O3 that accumulates in polar regions such as Antarctica, and the Arctic in
NH, is produced in the tropics and transported by the large-scale movements of air in the
stratosphere through the BDC.
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Figure 2.4: Antarctic Ozone Hone area in 2017. White circle is with values less 220 DU.
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The first step in the formation of the AOH is the formation of the polar vortex
(SCHOEBERL; HARTMAN et al., 1991). With the arrival of the polar night in winter,
due to the absence of terrestrial radiation during this period, a cooling occurs in the lower
stratosphere of Antarctica. Added to this, the relatively warm temperatures in the mid-
latitudes result in a strong north-south pressure gradient between these regions, creating
a strong zonal wind called the "polar night jet" due to the Coriolis force.

During the polar winter, the formation of a “Polar Vortex™ occurs, which has a
very cold and extremely stable core of air, mainly in the SH, keeping the cold air inside
it throughout the winter. This vortex conserves the ozone that was transported at high
levels from the tropics, causing Antarctica to have a higher concentration. With the end
of the polar winter and the return of the sun, the vortex tends to weaken, and the amount

of ozone begins to decrease during the spring. The destruction of polar ozone depends on
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the temperature in the stratospheric, as it is the temperature that “controls” the formation
of polar stratospheric clouds (PSC) and therefore the rate of heterogeneous reactions.

The minimum values that are found in the AOH, on average, between late
September and mid-October are around 120 DU, equivalent to practically two thirds
below the values observed in the early 1970s, according to the figure 2.5 which presents
the monthly average for October since the discovery of total O3 destruction in Antarctica.
The low O3 content inside the AOH during its active period shows a contrast with the
distribution of higher values outside the ozone hole. This feature can be seen in Figure
2.2, where a region with values around 400 DU can be observed that surrounds the AOH
area, revealing the edge of the polar vortex that acts as a barrier in the transport of ozone-
rich mid-latitudes air to the polar region, due to stratospheric winds at the edge of the
vortex.

Figure 2.5: October monthly average of Antarctica total ozone showing the long-term changes in ozone
content in Antarctica.
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2.3.1 Polar Vortex

Polar vortices are large continuous cyclones located in the upper layers of the
atmosphere (stratosphere) at the north and south poles. During the austral winter, the
arrival of the polar night stops the heating of the region through the non-incidence of
solar radiation in the high polar latitudes (DESSLER, 2000). With this, a strong pressure
gradient is observed where the warmer temperatures of the mid-latitudes in contrast
with the colder temperatures of the poles creates an intense vortex known as the “Polar
Night Jet”. This polar vortex forms an air core with very low temperatures and remains
stable throughout the winter by trapping all the cold air inside and separating it from
the outside air. With the return of solar radiation and the end of the polar night, the
temperature starts to increase, and the vortex loses intensity, becoming unstable
(MARCHAND et al., 2005).

The polar atmosphere during the austral winter tends to cool intensely, favoring a
subsidence movement, which consequently increases the pressure gradient between
medium and high latitudes, at the poles, thus forming the Antarctic Polar Vortex (APV)
(SOLOMON et al., 1999). This vortex has an intense westward circulation, strengthening
then during the coldest period increasing the latitudinal variation of the O3 content in this
region, a dynamic barrier is created around 60° S, where the low temperatures and the O3
content that was transported from the tropics (by the Brewer Dobson circulation) are
trapped, until this vortex breaks.

Thus, the polar vortex is the first step towards the formation of the Antarctic
ozone hole in the southern spring and has two important characteristics that directly
affect its formation. The first is due to the low temperature that is trapped inside the
vortex, because during the polar night in winter, the absorption of solar radiation ceases,
causing the lower part of the Antarctic stratosphere to cool during this period. The low
temperature inside the vortex supports the formation of stratospheric polar clouds,
which play an important role in the chemical process of the ozone hole. These clouds
have a temperature of about 183 K or -90°C in a vortex with a height of about 15 to 20

km. Polar stratospheric clouds are formed in the presence of a small amount of water
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vapor and nitric acid condensation, and only appear in polar winters.

The circulation of the polar vortex in the Southern Hemisphere is stronger than
the vortex that forms in the Northern Hemisphere, this can be explained by the fact that
northern polar latitudes have more topographical surfaces and mountainous regions than
southern polar latitudes. As a result, the occurrence of meteorological disturbances in the
Northern Hemisphere is greater, increasing the mixing of air from lower latitudes,
warming the Arctic stratosphere.

23.1.1 Polar Stratospheric Clouds

The mechanisms of O3 destruction in the Antarctic region during the austral
spring, despite being identified and analyzed by the data available at the time, could not
explain how this massive destruction occurred (MOLINA, 1987). It was then that
SOLOMON et al., (1986) suggested that chlorine could be activated on the surface of
Polar Stratospheric Clouds (PSC), and thus serve as a basis for accelerating the temporary
destruction of O3 in the Antarctic region.

PSCs form during the austral winter due to the low temperatures in this period.
During the polar night, without the incidence of solar radiation, and because the vortex in
Antarctica is more stable compared to the vortex in NH, the temperature inside the PV
can reach 183 K, or -93°C, with that the formation of stratospheric clouds occur. Polar
stratospheric clouds (PSCs) form between 15 and 22 km high, where the minimum
temperatures for their formation must be at least -78°C. In the Arctic, these low
temperatures occur on average for 1 to 2 months, whereas in Antarctica this phenomenon
occurs throughout the winter period, for at least 5 months. These meteorological
differences between the two poles are due to variations in the distributions of land, ocean,
and mountains at mid and high latitudes in both hemispheres. The presence of these
clouds in the stratosphere supports chemical reactions and, consequently, the destruction
of O3 in the Antarctic region.

On the surface of the PSC, the release of reactive chlorine from the reservoir

species CIONO2 and N205 occurs, which react with the clouds in which the HCI was
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absorbed, producing the gases ClI2, HOCI e CI2NOz. The return of sunlight in the austral
spring is then necessary as its photolysis Cl2, HOCI and CI2NO2 releasing reactive
chlorine that generates a new mechanism of destruction of the ozone content in the polar

regions.

Figure 2.6: Minimum air temperatures in the polar stratosphere showing the PSC formation in SH and NH.
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In the last two years, the dynamics of O3 destruction in the Antarctic region
ensured the occurrence of an AOH different from what normally occurs. This is because
the temperature in the polar stratosphere region was much lower than in previous years.
This negative temperature ensured the destruction of O3 in the stratospheric region in
Antarctica until at least early November, when the temperature in the stratosphere began
to increase dissolving the polar stratospheric clouds. This fact made the AOH last for a
longer period than usually occurs and it closed only at the end of December 2020/2021.
In addition to a longer duration of AOH in 2020/2021, AOH reached a large area in both
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seasons recording approximately 25 million km?, unlike what was observed in 2019,
where a sudden stratospheric warming in the stratospheric polar region of Antarctica
rapidly dissolved the polar stratospheric clouds, recording an area of 16 million km2,
closing in October.

Figure 2.7: a) Relative frequency of appearance of NEPs in SAMII satellite observations, as a function of

height and month, over Arctic and Antarctica, and b) photograph of an Arctic polar stratospheric cloud
(PSC) was taken in Kiruna, Sweden (67°N) on January 27, 2000.
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SALBY et al., (1996) showed that these clouds occur much more frequently
in the Antarctic region than in the Arctic region. Thus, for the formation of the AOH, two
important points must be analyzed:

1. Low temperatures in the polar region;
As seen, low temperatures are essential for the formation of polar stratospheric clouds
during the austral winter in the Antarctic region, with the help of the polar vortex these
negative temperatures are isolated creating a barrier that makes it impossible for this cold
air to leave the vortex to other regions.

2. Solar radiation;
The end of the polar night, a period in which there is no incidence of solar radiation during
the austral winter, causes the vortex to lose its stability and break, in addition, the
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stratosphere warms up again, dissolving the stratospheric clouds and ceasing the

destruction of O3 in Antarctica.

2.3.2 Secondary Effect of The Antarctic Ozone Hole

As a primary effect, of the Antarctic Ozone Hole, during the austral spring, it directly
influences the ozone content of the polar region, where there are drops greater than 25%
in relation to the climatological average of the region, which means, values less than 220
DU (HOFMANN et al., 1997). Due to its extreme importance, this phenomenon has been
studied and monitored since the 1980s (KIRCHHOFF et al., 1996; SALBY et al., 2012;
SOLOMON et al., 1999; PERES et al., 2017; 2019; BITTENCOURT et al., 2019).

The regions of medium and low latitudes can be directly or indirectly influenced by
the Ozone Hole. Direct influence occurs when the edge of the polar vortex, together with
the Ozone Hole itself, passes directly over mid-latitude regions, such as over southern
Chile and Argentina, which are populated regions, causing drastic reductions in the ozone
content and respective increase in ultraviolet radiation reaching the surface (LARRY et
al., 1995). The indirect influence, on the other hand, occurs when the polar vortex
destabilizes, with the arrival of spring, due to increased temperatures and increased
planetary wave activity (SEMANE et al., 2006). The satellite image in Figure 2.8
represents this poor O3 air mass filament acting indirectly over mid-latitudes regions in
southern Brazil, during the active period of the AOH.

The passage of air masses originating from the Antarctic Ozone Hole over
southern Brazil was first observed by Kirchhoff et al., (1996), based on data from two
Brewer spectrophotometers installed in Santa Maria and from ozonesondes in October
1993, it was observed that a local reduction of ozone was associated with the entry of a
polar air mass. This type of phenomenon was called the “Antarctic Ozone Hole Secondary

Effect” event (Figure 2.9).
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Figure 2.8: Influence of the Antarctic Ozone Hole on mid-Ilatitudes regions. Blue and purple colors have
the lowest O3 values in DU.
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Peres et al., (2019) used 35 years of data to analyze the behavior of Os in the
central region of RS, identifying 62 events through mean fields and potential vorticity
anomalies of the events. Bittencourt et al., (2019) presented a 12-year analysis of data
from the study region, where 37 secondary effect events that hit, the region were
identified, including the event of October 20, 2016, which was the second most intense
event ever recorded on the central region of Rio Grande do Sul, where the synoptic
condition in the region showed that the event occurred after the passage of a frontal
system (BITTENCOURT et al., 2018).

Bresciani et al., (2018) presented the 2016 event through a multi-instrumental
study with data from ozonesondes, satellite data, surface instruments that identified at
~24 km of altitude the most significant drop of the event. Steffenel et al., (2021) used
“deep learning” to predict changes in ozone content during secondary effect events in

southern Brazil. Schuch et al., (2015) showed that amphibian species were in decline
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during the months of influence of AOH (August to November) in relation to the increased
incidence of UV radiation over the region.

The arrival of austral spring, with the return of sunlight over the Antarctic region
and consequently increasing temperatures in the stratosphere, weakens the stability of the
Antarctic polar vortex. In this way, poor O3 air masses detach from the AOH area
reaching mid-latitudes and causing a temporary decrease in the total ozone column in the

region.

Figure 2.9: Vertical ozone profile for October 26 and 28 (a) and total ozone column by Brewer
spectrophotometer between September and October 1993 (b) for Santa Maria/RS (c) Backward trajectory
of air masses at 25 km height and METEOR 3 TOMS satellite image to October 28, 1993.
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Source: Adapted by Kirchhoff et al., 1996.

24 POTENTIAL VORTICITY IN THE DYNAMICS OF STRATHOPHERIC
OZONE

The potential vorticity term (PV) works as a dynamic tracer for large-scale air
masses, where the potential temperature is conserved and can be used as a horizontal
coordinate (HOSKINS et al., 1985). Potential temperature is defined as the temperature

that the parcel of air would have if it were expanded or compressed adiabatically from its
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pressure and temperature to a standard pressure. It can also be defined as a mark on the
vertical position of the air parcel, slowly increasing in tropospheric layers and rapidly
increasing in stratospheric levels.

Holton (1995) showed that troposphere-stratosphere exchanges with chemical
constituents such as Oz can be identified through PV on isentropic surfaces relating to
events where there is a break in the tropopause and consequent intrusion of air from the
stratosphere to the troposphere. On isentropic surfaces, PV can be used as a vertical
coordinate for studies with tracer gases such as Os. Equation 1 shows the PV in the form

of Ertel's potential vorticity in isentropic coordinates:
_ 26
PV = ((otf) - (g 3 - Cte (8)

Where 0 is the potential temperature, p is the pressure, g gravity, (0 = (% —g—;)
6

designates the vertical component of the relative vorticity evaluated on an isentropic

surface and ({o+f) is the absolutes vorticity in the isentropic surfaces, Z—i is the atmospheric

stability (HOLTON, 2004). For PV the unit used is 10°%m?s'Kkg™? called potential
vorticity unit (PVU), thus 1 PVU = 10%m?sKkg? (HOLTON, 2004). According to
equation 8, the potential vorticity is conserved following the motion in an adiabatic and
frictionless flow, so it can be said that the PV is a measure of the absolute vorticity ratio
in relation to the effective thickness of the vortex.

The PV presents positive values in the HN and negative in the HS, so in the
isentropic analyzes we use the absolute potential vorticity (APV), where APV = |PV]|.
Therefore, when an increase in APV is observed, it is understood that the air mass has a
polar origin, whereas when a decrease in the absolute value of PV is observed, it is
concluded that the origin of the mass is equatorial (BENCHERIF et al., 2011; PINHEIRO,
2011; SEMANE et al., 2006).

The conservation of potential vorticity in the atmosphere induces changes through
the effects of stretching and/or vertical flattening of the air mass between two isentropic

surfaces. Potential Vorticity can also be used to identify the dynamic tropopause, on a
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surface in the Northern Hemisphere (Sourthern Hemisphere) of 1.5 PVU or 2 PVU (-1.5
PVU or -2 PVU), representing a transition between low values of VP in the troposphere
and high values in the stratosphere (HOLTON, 2004).

Danielsen et al., (1985) positively correlated potential vorticity (PV) with the
mixing ratio of O3 below its maximum concentration in the stratosphere. The correlations
showed that on a global scale, it was possible to differentiate the effects of O3 transport
from the effects that are produced by photochemical processes. The region that limits
stratospheric air from tropospheric air coincides with the jet axis in the upper troposphere,
between 10 and 15 km (HOLTON, 1995).

Many studies have used potential vorticity as a tool to identify and analyze the
dynamic evolution of COLs (Cut Off Lows) and Tropopause Folding. Low pressure shear
systems (COLSs) are defined as low pressure systems with a cold core located in the middle
and upper troposphere and that form after their separation from the western mid-latitude
winds. COLs develop from pre-existing cold lows in the upper airstream that have moved
toward the equatorial side of the jet stream, leaving an isolated cold cyclone vortex.
(PALMEN, NEWTON et al., 1969). Price and Vaughan (1993) studied COLs and
identified that they play an important role in stratosphere-troposphere exchanges,
resulting in significant changes in O3 concentration at high latitude locations
(RONDANELLLI et al., 2002).

The region between the upper troposphere and lower stratosphere (UTLS) is a
coupling layer in the atmosphere. This area was defined as the region £ 5 km around the
tropopause, the region that forms the boundary between the troposphere and the
stratosphere. Important dynamic processes occur in this region of the UTLS, because of
the transition between the troposphere and the stratosphere altering both the troposphere
and the stratosphere. The stratosphere-troposphere exchange (STE) through the
tropopause is one of the important processes that influence the chemistry of the upper
troposphere and lower stratosphere (HOLTON, 1995; GETTELMAN et al., 2011), figure
2.9, adapted from Gettelman et al., (2011) schematically shows how UTLS behaves.

When a drop (increase) of the dynamic tropopause is observed, there is an intrusion

(injection) of stratospheric (tropospheric) air, facilitating the transport of the STE. This
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phenomenon became known as tropopause warping where anomalies of this tropopause
interact directly with the jet stream, unleashing in the fold (DANIELSEN et al., 1968).
STOHL et al., (2003) identified that folds in the tropopause when close to the jet streams,
subtropical and polar, are important for the transport of air masses between the
stratosphere and troposphere (STE), due to the displacement of the tropopause on
isentropic surfaces. This tropopause fold presents high values of the ozone mixing ratio,
which consequently increase the temperature of the layer, driven by the downward
movement that transports ozone from the middle stratosphere to the UTLS or even lower

levels of the troposphere.

2.5 CLIMATE VARIABILITY AND OZONE

Climatic variability can determine the behavior of several meteorological
parameters, in addition to dictating how the functioning of the systems should proceed,
in relation to small and large-scale events. The variability of stratospheric ozone can be
analyzed on daily, seasonal, annual scales and over long periods of time. Some of these
variabilities provide important information to explain the behavior of O3 content in
certain regions, and the most important ones that will be analyzed in this study are:
Almost Biennial Oscillation, ENSO — Southern Oscillation, and the 11-year Solar Cycle.

Domeisen and Butler (2020) identified that climate variability modes, such as El
Nifio Southern Oscillation (ENSO), Quasi-Biennial Oscillation (OQB) and the Antarctic
Oscillation or Southern Annular Mode are important teleconnections in the processes that

involve coupling between the stratosphere and troposphere.

2.5.1 Quasi-Biennial Oscillation

The Quasi-Biennial Oscillation is an oscillation that predominates variability in
the equatorial stratospheric layer (REED et al., 1961; 1964). This oscillation is
characterized by a downward wind shift, in the lower stratosphere, from east to west in
an approximate period of 22 to 34 months with an average time of 28 months of duration
(LINDZEN; HOLTON, 1968). The QBO is generated by the interaction between the
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zonal mean flux and equatorial planetary waves (PLUMB et al., 1997), in addition it is
an important interannual variability in the dynamic behavior and in the stratospheric
composition both in the tropics and in the polar regions due to changes in the circulation
of winds. That end up directly affecting the behavior of different important chemical
constituents in the stratosphere, such as O3, H20 and CH4 (BALDWIN, 2001).

Figure 2.10: Monthly zonal mean wind U (m s™!) between 70 and 10 hPa for 1981 to July 2016. Easterly
winds are shown in cyan/blue, while westerly winds are shown in green/brown.
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Through modulation and propagation of winds, changes in temperature and
meridional circulation, QBO directly affects the distribution and transport of trace
chemical constituents and can be related to the decrease in stratospheric O3 content. The
zonal mean circulation in the extratropical stratospheric layer, compared to the
troposphere, presents a much more intense seasonal cycle with the inversion of the winds
in the change of seasons. The movement of planetary waves, during the eastern phase of
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the QBO, goes towards the winter hemisphere, intensifying the polar vortex and inducing
it to strong oscillations. In the western phase of the QBO, a more isolated and
radioactively balanced polar vortex is observed (SALBY, 1996).

Fadnavis et al.,, (2007) analyzed that the equatorial QBO is seasonally
asynchronous and presents a slow downward propagation, in addition the results showed
that there is a maximum positive equatorial seasonal variation close to 10 hPa during
winter in the Northern Hemisphere and autumn in the Southern Hemisphere. Equatorial
negative maximum near 22 hPa occurs during January-June in both hemispheres. Peres
(2017) identified that QBO is the main mode of interannual variability in the southern
region of Brazil through TCO anomalies during 23 years of analysis.

The 2015-2016 NH winter was marked by a strong QBO outage (NEWMAN et
al., 2016; DUNKERTON et al., 2016). The alternating regime of zonal winds from west
to east propagate downwards over an approximate period of 28 months, but in 2016 an
anomalous upward shift in the west phase from ~30 hPa to 15 hPa was recorded, and
winds in the east phase were recorded at 40 hPa. This anomalous pattern generated a
decrease (increase) in upwelling from 50 to 30 hPa (>50 hPa) which was associated with
a positive (negative) O3 anomaly. (WMO, 2018).

Therefore, QBO is defined as the main mode of TCO variability in the equatorial
region. The phases of this oscillation (westerly/easterly) in regions with the active winter
hemisphere, present equatorial ozone anomalies anti-correlated with the anomalies in the
mid/high latitudes (BOWMAN et al., 1989).

2.5.2 EI Nifio — Sourthern Oscilation (ENSO)

El Nifio—Southern Oscillation (ENSO) is an atmospheric-oceanic phenomenon
that occurs in the Equatorial Pacific Ocean (and the adjacent atmosphere), called El Nifio
Southern Oscillation (ENSQO). Changes in the temperature of the Equatorial Pacific Ocean
are directly reflected in direct effects of temperature and precipitation. It is closely related
to the Southern Oscillation (OS), which involves changes in the trade winds and

associated tropical circulation. Thus, EI Nifio is the warm phase of ENSO, and La Nifia
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(LN) is the cold phase. Historically, EN events have occurred every 3-7 years, alternating
with opposite phases of below-average temperatures in the tropical Pacific (LN). ENSO
has a global reach, showing greater intensity during winter in both hemispheres. Sea level
pressure anomalies (PNM) are much greater in temperate regions, while precipitation
variability is greater in tropical regions (BJERKNES, 1969; AMBRIZZI et al., 2006).

Figure 2.11: Coupled ocean-atmosphere system during La Nifia and EI Nifio phenomena.

Source: Adapted from Australian Bureau of Meteorology.

ENSO affects tropical upwelling, which in turn leads to fluctuations in
temperature and ozone in the tropical lower stratosphere (RANDEL et al., 2009). In the
tropical upper troposphere and lower stratosphere (UTLS), the ENSO coefficient is
negative, with low ozone during El Nifio years and high ozone during La Nifia years, the
opposite sign is seen at mid-latitudes (OMAN et al., 2013; NEU et al., 2014).
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Kawatani et al., (2019) identified that tropical upwelling associated with the BDC
is reinforced during active El Nifio, consistent with changes in wave propagation due to
westerly wind anomalies at mid-latitudes. However, the expected effects of enhanced
BDC during El Nifio in delaying the progression of the descending QBO phase are
outweighed by the improved wave conduction, resulting in a shorter QBO period in El

Nifio than in La Nifa.

Figure 2.12: Schematic illustration of the Walker circulation (thick vector), gravity waves (black vector),
QBO zonal wind (blue and pink), and equatorial residual vertical velocity (dashed vector) for (left) EI Nifio

and (right) La Nifia.
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ENSO's effects on tropical convection characterize a good example of the
teleconnections that can be represented by ENSO's influence on other modes of
variability. It can be said then that ENSO modulates QBO in the tropical region (figure
2.11 by KAWATANI et al., 2019). With an increase in large-scale upwelling in the

equatorial stratosphere, the propagation of the QBO phase can be reduced, prolonging its

phase.
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2.5.3 Solar Cycle — 11 Years

The solar cycle influences ozone through photochemical and dynamic processes
in the stratospheric layer. The solar cycle shows the sun's activities at 11-year intervals,
and each cycle is determined by the dark spots that appear on the solar surface. During
this cycle, the star goes through a period of maximum and minimum of its activity, being
able to wreak havoc depending on its location. Ozone concentrations and temperature
control in the stratospheric layer are largely due to the variability of solar flux in the

ultraviolet spectrum that are associated with the 11-year solar cycle.

Figure 2.13: Progression of the Solar Cycle from 1979 with the prediction of the number of sunspots
expected for the solar maximum until 2025.
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As ozone is produced at wavelengths smaller than 242 nm and mainly destroyed
at longer wavelengths through photochemical processes, understanding how these
changes in UV irradiance is of paramount importance for the balance of ozone and
atmospheric radiation (GRAY, 2010). Due to its radiative properties, the change in ozone
content alters the temperature in the stratospheric layer, which in turn alters the upward
propagation in the tropics and the consequent breaking of planetary waves that drive
large-scale motions such as the Brewer-Dobson circulation.

The variability of ozone content also depends on dynamic forcing and chemical

evolution of ozone-depleting substances (ODSs). The global concentration of O3 has
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been decreasing since 1980, where anthropogenic emissions of ODS reaching the
stratosphere fell after the Montreal Protocol (SINNHUBER et al., 2009). Many studies
show that the behavior of the solar cycle does not directly affect the O3 content, but the
variations and changes in the solar cycle, with maximums and minimums, end up
interfering in the modulation of QBO, which is an important variability in relation to the
behavior of stratospheric O3 (WMO, 2006). The dynamics of the Brewer-Dobson
circulation can also be modified by solar cycle modulations, for example Kodera and
Kuroda (2002) found changes in large-scale circulation through minimum/maximum
solar cycle variations resulted in a decrease in O3 content. in the tropical lower
stratosphere.

LEE and SMITH (2003) used a two-dimensional chemical-dynamic-radiative
model with QBO data to identify the influences that may occur and lead to small or even
negative differences in the lower and middle stratosphere equator relating O3 to the solar
cycle. The results showed that when one wants to analyze the solar cycle forcing in the
O3 data, the models cannot represent this analysis well, and this can be explained, in
addition to the influence of the QBO by the large volcanic eruptions that occurred in El
Chichon in 1982 and Mount Pinatubo in 1991. Bencherif et al., (2020) investigated the
main variability and trends of tropospheric and stratospheric O3 over the station in Irene,
South Africa. The results showed that the site located in the subtropical region of the
African continent has four dominant modes of variability, where the solar cycle had a

great influence on the stratospheric O3 column (SCO).



43

3 METHODOLOGY

3.1 REGION OF STUDY AND INSTRUMENTS USED TO OBTAIN THE TOTAL
OZONE COLUMN

The study area of this work comprises the central region of the state of Rio Grande
do Sul in the city of Santa Maria (29.4°S and 53.7°W), and the tropical region of Brazil
in Natal in Rio Grande do Norte () used in the validation of the vertical profile data. The
monitoring of the total column of Ozone has more than 40 years of data available in Santa
Maria/RS, which will be used surface instruments (Brewer Spectrophotometer) and
satellite data (TOMS, OMI) to analyze the total column of O3, in the identification of
AOH side effect events in the region.

Figure 3.1: Study regions used in this work. Santa Maria located in subtropical latitudes and Natal/RN
located in tropical latitudes of Brazil.
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The database has made measurements available since 1979 with satellites and
from 1992 onwards surface measurements began to be carried out in the region. The
region will be used as a reference for the analysis and understanding of the AOH
influenced events that affect the region during the AOH performance in Antarctica in the

southern spring.

3.1.1 Brewer Spectrophotometer

The Brewer spectrophotometer is one of the most important surface instruments
that perform daily measurements of ultraviolet radiation, in addition to measurements of
the total column of ozone (O3) and sulfur oxide (SO.). The beginning of measurements
in the central region began with the Brewer Spectrophotometer model MKI1V #081 during
the period 1992 to 1999, while the model MKI1 #056 operated from 2000 to 2002 and the
model MKIII #167 from 2002 to 2017, initially installed in the Southern Space
Observatory — OES/CRS/INPE — MCTI (29.4°S; 53.8°W; 488.7m), in Sdo Martinho da
Serra.

The Brewer MKIIlI #167 Spectrophotometer, Figure 3.1, is a modern and
automated surface instrument that measures global solar radiation in the ultraviolet type
B (UVB) band of five wavelengths 306.3; 310.1; 313.5; 316.8; 320.1 nm, where each 0.5
nm determines the spectral distribution of incident radiation intensity. The total column
allows the deduction of some important atmospheric gases, such as: sulfur dioxide (SO2),
nitrogen dioxide (NO2) and ozone (O3). Furthermore, it is possible to obtain the vertical
profile of O3, the total column of sulfur dioxide (SO2) and nitrogen dioxide (NO2) in
addition to the optical thickness in wavelengths in the UV channel.

Brewer Spectrophotometers are composed of monochromators and detectors to
observe and measure the spectrum of solar radiation. The monochromator essentially
consists of a dispersion element and devices for controlling the width of the desired
wavelength range. The energy source (the Sun) to be analyzed must present a continuous
spectrum and is formed by a spectrophotometer and a tracking system of the Sun that are

coupled to a microcomputer. From there, the system performs the acquisition and storage
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of data and controls the instruments through its own software. The user himself develops

a measurement scheme so that the device works individually.

Figure 3.2: Brewer Spectrophotometer #167 installed of the Southern Space Observatory - OES/CRS/INPE
- MCTI in Sdo Martinho da Serra (29.42°S, 53.87°W), Rio Grande do Sul, Brazil.
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Brewer spectrophotometers have a complete set of programs that control various
points in data collection and some analysis. It is programmed to automatically adjust to
the settings of the measurement site and will follow a user-defined observation schedule.
The individual observations of O3 obtained by the Brewer Spectrophotometer use a
method called: Direct to the Sun (DS) measurement. On days without significant
cloudiness, the instrument measures individually for half an hour 5 times for 3 minutes,
using five wavelengths (306.3; 310.1; 313.5; 316.8; 320.1 nm) to infer the TCO with a
resolution of 0.5 nm.

According to this information, to determine the total ozone column, the most
appropriate method is by measuring direct solar radiation in the UV range (305 and 340
nm), using the Lambert-Beer law method, which defines the direct spectral irradiance that
reaches the Earth's surface and that is attenuated by the amount of certain atmospheric
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components. It is necessary to measure the irradiations in more than one wavelength and
to determine the total ozone by techniques of differential optical absorption spectroscopy,
because the dispersion of particles through aerosols and thin clouds can significantly
affect the amount of transmitted irradiance. At the end of each day, daily averages of O3
are calculated at the location where TCO monitoring is performed, and these same

averages generated by surface data by Brewer are compared with satellite measurements.

3.1.2 Total Column Ozone Satellites

The Total Ozone Mapping Spectrometer (TOMS) and the Ozone Monitoring
Instrument (OMI) are the instruments on board satellites that complement the database
for the analysis of the total column of ozone in the study region of this work during the
period from 1979 to 2020. The TOMS satellite was one of the first satellite instruments
with continuous observations that were available for studies related to monitoring O3
content with global and regional trends. The TOMS (Total Ozone Mapping Spectrometer)
satellite was developed by the National Aeronautics and Space Agency (NASA) and
began its activities in 1978, with the launch of the Nimbus-7 instrument. Between 1991
and 1994 the satellite was on board the Meteor-3 instrument until 1996, when it was
replaced by the Earth Probe, and at the end of 2005 the TOMS satellite ended its activities
of measuring the total column of O3.

TOMS provides measurements of tropospheric aerosol content, ultraviolet
irradiance, erythematic UV exposure, and effective reflectivity from the Earth's surface
and from clouds. In addition to ozone, it also measures sulfur dioxide released in volcanic
eruptions. The TOMS instrument is an ozone probe that performs total ozone
measurements using incoming solar energy and backscattered ultraviolet (UV) radiation
at six wavelengths between 310 and 380 nm (312.5; 317.5; 331.3; 339.8; 360.0 and 380.0
nm). This set of discrete wavelengths 1 nm apart is measured at 35 scanning positions at
3¢ intervals to cover all regions of the orbital paths that provide spatial coverage at all
latitudes from a polar orbit synchronous with the Sun. The spatial resolution will depend
on the satellite's orbital altitude, where, for example, the nadir is about 50X50 km and at

the extreme points of the satellite scan the resolution is 75x200 km. The TOMS satellite
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also has a dataset with individual measurements almost coincident with specific
geographic locations, called overpass. This dataset includes measurements of TCO (in
DU) at 333 sites during its period of operation.

The OMI derives from NASA's Total Ozone Mapping Spectrometer (TOMS)
instrument and the European Space Agency's (ESA) Global Ozone Monitering
Experiment (GOME) (aboard the ERS-2 satellite). This new generation of satellite can
measure more atmospheric constituents than TOMS and offers much better ground
resolution than GOME (13 km x 25 km for OMI vs. 40 km x 320 km for GOME). The
OMI instrument was launched in July 2004 aboard the ERS-2 satellite and continued the
records of the TOMS satellite, which ended its activities in 2005. The OMI measurements
continue to be recorded until today, where measurements of the total column of ozone, as
well as some atmospheric data that relate to O3 chemistry such as NO2, SO2, some types
of aerosols and cloud cover. Earth is observed in 740 bands along the satellite's path, large
enough to provide global coverage in 14 orbits (1 day). It uses Backscatter Ultraviolet
(BUV) technology, with two images fed into a spectrometer grid and a spatial resolution
of 13 x 25 km, in the two UV bands: UV-1 (270 to 314 nm) and UV-2 (306 to 380 nm)
nm) with spectral resolutions of 0.45 and 1 nm, respectively.

The OMI instrument employs hyperspectral imaging in scan mode to observe
solar radiation backscattered in the visible and ultraviolet regions of the electromagnetic
spectrum. The hyperspectral capability improves the accuracy of the TCO data and allows

for accurate long-term self-calibration for wavelengths.

3.2 CRITERIOUS FOR DEFINITION OF INFLUENCED EVENTS OF THE
ANTARCTIC OZONE HOLE

The daily average data obtained by satellite and ground instruments provided the
analysis of 42 years of TCO data on Santa Maria/RS. This analysis approach has been
used to identify days with reduced O3 content over subtropical latitudes
(BITTENCOURT et al., 2019). To quantify the temporary reductions in O3 content over

the region, tests have shown that the use of -1.5¢ is sufficient to quantify these temporary
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reductions (WILKS, 2006; PERES, 2016).

The first step is a climatological analysis of the TCO data on MS, during the 42 years
of O3 monitoring. Monthly averages during this period were also calculated and with this,
during the period in which the AOH is active, it was possible to quantify the possible

reductions in O3 content, from August to September. Days in which the TCO, presented

values lower than the monthly mean (T'CO,,,) minus 1.5¢ the standard deviation of the

month are selected for stratospheric analysis.

TCO, < TCO,, — 1.50,, (3.1)

The second step after identifying these events is the analysis of potential vorticity
fields. Reductions are presented in percent (%) and in absolute values (DU).

3.3 ECMWF REANALYSIS DATA

In the analysis of the TCO database, the days of possible influence events of the
Antarctic Ozone Hole in the region of Santa Maria/RS were identified and chosen.
With the identification of events, the reanalysis data helped to better understand the
behavior of the atmosphere during the occurrence of these events through potential
vorticity fields and vertical sections of the atmosphere. The dynamic analysis of the
events includes the use of the new generation of meteorological data from the
reanalysis of the ECMWEF (European Center for Medium-Term Weather Forecasts)
with the new ERA-5. The ECMWF ERA-5 reanalysis has a horizontal resolution of
0.25° x 0.25° latitude-longitude and a temporal resolution of 1 hour. Hoffmann et al.
(2019) showed significant improvements in potential temperature conservation,
especially at stratospheric levels, when comparing data from the new reanalysis
database, ERA5, with the ERA-Interim reanalysis.

The data used in this study were:

e total O3 column (tco3), for comparisons with TCO surface data over

the reference region.



e potential vorticity and O3 mixing ratio, for the analysis the
stratospheric dynamics of AOH influence events.
e temperature and u, v, and w components of the wind, for the vertical

cuts in the identification of the jets (stratospheric and tropospheric).

The data used in this work are diaries where only the time of 18 UTC was selected,
for the 37 isobaric levels (1000 to 1 hPa) during the period 1979 - 2020. The domain
region was comprised between 10 °N to -90 °S and -100 °W - 20 °E. This region covers
well the south-central region of South America and part of the South Pole, presenting
in detail the behavior of the poor O3 air mass advancing, after the definition of the
event.

The potential vorticity fields help to monitor the dynamic behavior of the
stratosphere, in addition, it makes it possible to identify the origin of the O3 poor air
mass, where the increase in absolute potential vorticity is analyzed, characterizing a
polar origin of this air mass, that is, air mass coming directly from the Antarctic region
where AOH is active, when there is a decrease in APV) the origin is characterized as
equatorial (SEMANE et al., 2006; PERES, 2016; BITTENCOURT et al., 2019). After
identifying the events (through TCO data) and determining the height (SABER data)
at which temporary decreases in O3 content occurred, PV analysis were performed at
pressure levels and at three preferred heights: 30 hPa, 20 hPa and 10 hPa.

To identify the behavior of the jet streams during the active period of the AOH,
fields with the vertical cut of the atmosphere help in this matter. In this way, the
vertical section of the atmosphere between 1000 and 5 hPa of potential temperature
(in Kelvin) and wind (in m/s) for the longitude of 54° west, presents the behavior of
the stratospheric jet (polar vortex) and the tropospheric jets (subtropical and polar).
Furthermore, one can infer where there was a break in the tropopause and the intrusion

of stratospheric air into the troposphere.
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3.4 HYSPLIT MODEL AND OZONE SATELLITES

To assist in the identification of AOH influence events on the study region, the
HYSPLIT/NOAA model was used. The HYSPLIT model calculates simple trajectories
of air parcels, in addition to complex transport, chemical transformation and deposition
simulations (ROLPH et al., 2017). HYSPLIT is used in various simulations to describe
atmospheric air transport, diffusion and deposition of pollutants and particulate matter.
The model calculation method is a mixture of the Lagrangian method (using a reference
moving through convection and diffusion calculations) and the Eulerian method (using a
fixed 3D grid as a reference to calculate the concentration of pollutants in the air). In this
study, the backward trajectory was used, which aims to show the behavior of the air mass
for days before, and an isentropic vertical velocity model. With this tool it is possible to
confirm the events by making retroactive trajectories showing the path of air masses from
the Antarctic region to the region of interest, available at (HYSPLIT, 2017). Satellite
images helped to characterize the region of influence of the Ozone Hole in the Antarctic
region and possible indirect influences with the regions of medium latitudes. Ozone
Watch and TEMIS satellite were used in this work.

3.5 VERTICAL ANALYSIS OF OZONE CONTENT

The analysis of the vertical profile of O3 is extremely important for this work,
mainly because it allows investigating the behavior of O3 at different height levels, and
at which heights the decrease in O3 content over the study region was greater. The
analyzes performed here were carried out through measurements of the SABER
instrument (Atmosphere Survey using Broadband Emission Radiometry) on board the
TIMED (Thermosphere-lonosphere-Mesosphere Energetics and Dynamics) satellite,
which provides data from 2002 to 2018.

TIMED was a mission developed by NASA that conducted an intensive
investigation of the mesospheric region and of the lower thermosphere, which comprises

a poorly studied region between 60 and 180 km in altitude. SABER are measured through
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soundings of the atmosphere using radiometry with broadband emission. It observes the
Earth in narrow spectral ranges, with high accuracy of carbon dioxide (15), ozone (9.6)
and nitric oxide (5.3) emissions (MLYNCZAK et al., 1997). The main objective of the
SABER experiment is to understand the thermosphere and achieve a major improvement
in the understanding of fundamental atmospheric processes (RUSSELL et al., 1999).
SABER is one of four experiments on NASA's TIMED mission that was scheduled to be
launched in May 2000 by a Delta Il rocket into a circular orbit of 74.1° + 0.1° inclined,
625 + 25 km.

Many studies present analyzes of the SABER data to identify the main variability
through the vertical behavior of temperature and O3 content. For example, REMSBERG
(2003) presented the behavior of the temperature profiles for February 2002 between 52
°S to 83 °N, the results showed that the dataset is useful for analyzes that relate the
dynamics and transport of tracer chemical constituents in the middle atmosphere. Nath et
al., (2014) identified the main variability and trends in O3 content and temperature
behavior using SABER data between 20 - 100 km altitudes in the 10 - 15 °N region
between 2002 - 2012. The results showed an intense semi-annual oscillation during the
months of March-May and August-September (between 25 - 30 km of altitude).

Joshi et al. (2020) analyzed the seasonal and interannual variability of atmospheric
O3 from 14 years of SABER data (2002-2015) in mid-latitude regions of both
hemispheres. The observed data showed an accumulation of O3 starting in late winter and
peaking in early spring in both hemispheres, characterizing the dynamics of the polar
vortex, pre-formation of AOH. In addition, the annual oscillation stood out in both
hemispheres in the middle atmosphere (between stratosphere and lower mesosphere), the
semi-annual oscillation showed peaks between 40-60 km and between 80-100 km of
altitude.

For this work, the study region was selected through a box of +2° of latitude and
longitude of the reference point in Santa Maria/RS (29.4°S and 53.7°W). During the 17
years of data (2002-2018), approximately 5,982 vertical profiles were identified where
the satellite mapped the selected region. The profiles were interpolated with a vertical

resolution of 0.1 km providing 954 altitude levels in the range of 15 to 105 km in height.


https://www.sciencedirect.com/science/article/abs/pii/S0273117797007692#!
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The SABER satellite provides data on altitude (in km), latitude and longitude,
temperature (in Kelvin) and mixture ratio O3 - OMR - (£03).

3.5.1 TIMED/SABER satellite data validation

As one of the objectives of this work is to analyze the vertical behavior of O3
content during the AOH influence events over southern Brazil, it was necessary to
validate these SABER data to obtain adequate and more accurate results. For this
validation, the SHADOZ network (Southern Hemisphere ADditional OZonesondes) was
used, which are data from ozonesondes launched by balloons to monitor the vertical
behavior of ozone between the surface and the stratosphere. Thus, data from a reference
station of the SHADOZ network, the Natal station in Rio Grande do Norte (5.42°S and
35.40°W) were used.

The SHADOZ station in Natal/RN has been in operation since 1998, when a
campaign was started by NASA providing nine stations, and which today already operates
with 14 measurement stations providing data continuously (THOMPSON et al., 2017).
The SHADOZ data consists of the new version (V06) available at, and offers some
variables such as ozone, temperature, pressure, relative humidity, wind direction and
speed. Based on this information, at the station in Natal/RN, about 530 profiles were
identified for the period of analysis (2002 - 2018) with 604 vertical levels. Validation was
based on SHADOZ data and SABER satellite data for the Natal/RN station. From the
SABER data, 3,304 daily profiles were identified for the same period (2002-2018), with
954 vertical levels. The vertical resolution is 0.1 km interpolated also in a * 2° lat/lon box
in the Natal/RN region.

Some studies have already shown the behavior of O3 using SHADOZ and SABER
data for different regions of the world. Over the southern region of Brazil, Santa
Maria/RS, Bresciani et al., (2018) performed a multi-instrumental analysis to study an
intense side effect event that influenced the region in 2016. The study showed
comparisons between satellite data, surface instrument, Brewer, and an ozonsondes was

launched to monitor the event. Toihir et al., (2018) identified the long-term variability of
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O3 at eight points between the tropics and subtropics, from January 1998 to December
2012, using TCO data with surface instruments, satellites, and vertical profiles, by ozone
soundings. The results showed that the main variability that dominates the behavior of
O3 in the regions of the study is the annual oscillation, with a greater influence in the
subtropics than in the tropics. Unlike the QBO which is in phase in tropical regions
showing a strong link with the large-scale circulation through the BDC. The solar cycle
is in phase with total O3.

3.5.2 Vertical profile analysis of TIMED/SABER Os satellite

After identifying the events on 42 years of data, the SABER satellite analysis is used
to characterize the vertical behavior of the atmosphere during the events of influence of
the AOH on the region. The analyzes were generated from 17 years of data available on
the platform, where the daily behavior of the data was observed through vertical profiles,
identifying the height where the greatest drops in ozone content happen during the
occurrence of an event.

The climatology and monthly averages were generated, so it was possible to make
comparisons of the events with the monthly climatology. To quantify the decrease that
occurs during the event, the calculation of the relative differences (in percentage) helps
to show this temporary decrease in numbers. The calculation of the difference is based on
the difference between the profile of the day of the event and the climatology profile for

the reference month (August to November - spring months), following equation (3.2):

EventDay—Climatologicalmonth
RD (%) = 100 * ¢ zy—Climatolog ) (3.2)
(Climatologicalmonth)

3.6 STATISTICS, COMPARISONS AND VARIABILITIES

The monitoring of ozone content over the Santa Maria/RS region during these 42
years of data, composed of instruments on board satellites (TOMS, OMI, SABER) and

surface instruments (Brewer Spectrophotometer, ozonesonde) presents particularities and
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importance of the ozone content in southern Brazil.

Statistical analyzes were performed with available TCO data to understand O3
behavior. Comparisons were made between the different types of instruments
(TOMS/OMI x BREWER x ERADB). In addition to the daily analysis, the climatology and

monthly averages were obtained for the 42 years, with the following calculations:

v' Pearson's correlation coefficient (R);

Ym S n(SATELITE— SATELITE)(BREWER— BREWER)

R= (3.3)

J (Zm Y n(SATELITE— SATELITE)? (Y Yn(BREWER— BREWERZ))

The R? that is shown in the results is the value of the squared correlation
coefficient. The mean square error (RMSE), often used to estimate the difference between
the values predicted by a model (or satellite) and the observed values (Brewer
Spectrophotometer), also called residuals, aggregates the predictive strength of the
variable in a simple measure:

v" Mean square error (RMSE);

(SATELITEi—BREWERi)Z
n

RMSEz\/zg;1 (3.4)
The mean bias error (MBE) represents a systematic error where positive values of
MBE represent an overestimation of the data, and negative values an underestimation of

the data observed by the model:

v" Mean bias error (MBE)

_ 100

n  (SATELITEi—BREWERI)
MBE — D=1

BREWERI

(3.5)

To quantify and visualize the behavior of O3 in the events of influence of the
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AOH, in addition to the monthly and climatological averages (T CO,,), the anomalies in

relation to the events (Events,,) identified were calculated:

Anomaly = Events,, - TCO,, (3.6)
3.6.1 Variabilities the Ozone

The identification of the predominant variability of O3 content for the 42 years of
available data was studied in this work mainly for the region that is the focus of this study.
The wavelet transforms allow identifying the periodicities that stand out the most in time
series analyzed along with their evolution (TORRENCE & COMPO, 1998). Monthly
TCO anomaly data were used in the wavelet transform method to reveal the main modes
of ozone variability (HADJINICOLAQU et al, 2005). In this work, the Morlet
transformed wavelet consists of a plane wave modulated by a Gaussian function,

represented by:

2

1 s
Yo(n) = nze“"one 2 (3.7)
where 0 is the non-dimensional frequency; 1 is the non-dimensional time parameter.
W, (s) = I X W * (3.8)
Considering the discrete time series (X»), with a fixed time spacing (At) and = 0,..., N-1,
the continuous wavelet transform is in Equation (7) where (*) is the complex conjugate
es is the period (wavelet scale). The global wavelet spectrum Equation (8) allows to

calculate the unbiased estimate of the real power spectrum of the time series, by

calculating the average wavelet spectrum over a period.

W2(s) =~ ZNZ3IW, () (39)



56

The wavelet is composed of the power spectrum, where the edges are closed by a
'U' curve called the influence cone, where there is a 95% confidence level. The global
wavelet spectrum contains the most significant values and on the right side of the dotted
line indicates a confidence level of 95%, the curve that passes through this line being

statistically significant.
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4. RESULTS AND DISCUSSION

4.1 TCO VARIABILITY ANALYSIS FOR SANTA MARIA/RS

Daily data of the total column of ozone for the SM region through satellite
instruments (TOMS and OMI), the Brewer spectrophotometer, and the reanalysis data
from the ECMWF ERAD5, from 1979 to 2020. Figure 4.1 presents the TCO time series for
each of the instruments used in this work, they are: ground based (a), satellite and
reanalysis (b) used in monitoring the TCO over the Santa Maria/RS station between 1979
and 2020. The periods of absence of data in the Brewer Spectrophotometer records
between 1999-2000, 2009-2011 and 2017 — current, are due to instrument replacement
and/or some technical problem. In the TOMS satellite records, there is a lack of data
between 1994 and 1996, which can be explained by the replacement of satellite
instruments from Meteor-3 to Earth Probe.

In figures 4.1a) and 4.1b) it is possible to observe the daily series of TCO in Santa
Maria/RS, through the different surface, satellite and reanalysis instruments used in the
analysis of the behavior of TCO in the subtropical region of Brazil. There is a well-
defined annual cycle in all data sets presented, in addition to the comparison between the
instruments showing good agreement. Toihir et al., (2018) analyzed satellite data and
ground instrument trends and changes in O3 at tropical and subtropical latitudes in the
southern hemisphere. One of their results showed good correlation between the
instruments and showed that they were used correctly, mainly satellite data for O3 content
analysis. Peres (2017), showed a good correlation in the TCO data for a shorter period of
data, indicating a good agreement between satellite and surface data in the southern region
of Brazil. Figure 4.1c presents the daily series for the region of Santa Maria/RS of the 42
years of data analyzed in this work, from TCO using reanalysis of the ECMWF ERA5.
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Figure 4.1: Time series of daily average TCO for each instrument (Brewer, satellite, and reanalysis) in
Santa Maria/RS between 1979 and 2020. (a) Brewer spectrophotometer (#081 in red triangle, #056 in gray
circle and #167 in black cross), (b) Toms satellite instruments (Nimbus 7 in cyan circle, Meteor-3 in green
triangle and Earth Prob in blue circle), OMI satellite in red, ¢) and ERAS reanalysis data in gray cross.
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Thinking about quantifying the differences between the instruments, a linear
regression analysis of the TCO data for Santa Maria, in the study period of this work
(1979 - 2020). Figure 4.2 presents a schematic diagram among the available instruments,
they are:

o Dataset #1 = BREWER x TOMS.

o Dataset #2 = BREWER x OMI.

o Dataset #3 = BREWER x ERAS.

The comparison was performed through the difference between the surface and
satellite instruments, in addition to the comparison between surface and reanalysis data.
Thus, Dataset #1 presents (Brewer vs. TOMS) for the period from June 1992 to December
2005, containing 2164 pairs of data (Fig. 4.2a), Dataset #2 presents (Brewer vs. OMI)
between the period from October 2004 to December 2017, with 4621 pairs of data (Fig.
4.2b), and to finish Dataset #3 presents (Brewer vs. ERA5) for the period from January
1979 to December 2020, with about 5065 data pairs. Each dataset represents the monthly
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series of each instrument, it is observed that the correlation coefficient (R?) with respect
to the instruments presented considerably good values, where the values of the correlation
coefficient were: 0.88 (BREWERXTOMS) and 0.94 (BREWERXOMI). Improvements in
satellite equipment over the years and developers may explain this improvement between
TOMS and OMI. The exception was the set between BREWER and ERA5 where R?
presented a value around 0.83. Despite not being such a low value, the use of TCO
reanalysis data cannot represent the behavior of O3 with a good quality. Regarding data
from TOMS and OMI satellites, previous studies have shown similar results in relation
to comparisons between these TCO measurement instruments over different regions.
Anton et al., (2009) compared data from the OMI satellite with different surface
instruments in the Iberian Peninsula and identified a good correlation between the
instruments in the behavior of the TCO.

Toihir (2015) analyzed the average monthly behavior of TCO at 13 locations in
tropical and subtropical latitudes comparing satellite data from the EUMETSAT program,
OMI, and surface data SAOZ and DOBSON available at these stations, the results found
were good correlations between these instruments with values around 0.87. Peres (2017),
showed a good correlation in the TCO data for a shorter period of data, indicating a good
agreement between satellite and surface data in the southern region of Brazil.

The root means square error (RMSE) showed differences of less than 3% in almost
all data sets, which explains the high correlation values between the instruments,
presented above by R?, except for Dataset#2, which presented an RMSE in around 2.94,
corroborating a low R?. The mean bias error (MBE) in the analysis of daily TCO data
showed:

v’ overestimation between the following data sets: BREWERXTOMS,
BREWERXOMI;
v underestimation was identified in the dataset between the BREWER

instrument with the ERAS reanalysis.

These results confirm the effectiveness of the TCO measurements on the Santa
Maria station, during the 42 years of data analyzed in this work and agree with works

already presented that carry out these similar analyses.
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Figure 4.2: Scatter diagram of the total column of ozone in SM obtained using the Brewer
spectrophotometer and satellites (a) Brewer and TOMS, (b) Brewer and OMI, and (c) Brewer and ERA.
The dashed line (blue) represents the slope for which the data would be in complete compliance, and the
solid line (red) is the linear regression line.
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4.2 OZONE VERTICAL PROFILE DATA VALIDATION

Vertical analysis makes it possible to identify the behavior of the O3 content at
different altitudes. Validation of SABER data was performed to understand the behavior
of O3 in Natal/RN (5.40°S, 35.40°W), using data from balloon soundings through the
tropical station SHADOZ, during the 17 years of available data. Figure 4.3 a) shows the
seasonal variability in relation to the tropical season in Natal/RN, showing the monthly
average of the vertical profiles with SHADOZ data, and 4.3 b) shows the monthly average
analyzes for Natal/RN with SABER data during the 17 years of data, also in O3 mixing
ratio units (ppmv). The blanks show a failure of drilling measurements in this period,
mainly between 2011 and early 2014 due to a malfunction of the instruments
(THOMPSON, 2017).

The vertical profiles of 03 SHADOZ presented here are in units of O3 Mixing Ratio
(OMR), where it is observed, in Figure 4.3a, a higher content of O3, mainly between 23

and 30 km of height with values that vary from 6 to 10 ppmv, showing a well-established
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seasonal behavior during the study period in the tropical stratospheric region. Thompson
(2017) presented a study comparing the data available from the SHADOZ station at
different latitudes in relation to satellite and surface data at these stations. In Natal, a good
correlation was observed between satellite data and surface data with ozonesondes,
despite the data gaps presented during the analysis period. In Figure 4.3 b) the highest O3
content is observed in the stratospheric region, between 25-40 km of height with values
between 6-10 ppmv, being more intense in early spring, late August to late summer, mid-
March to April. Nath et al., 2014 showed that there is a strong biennial trend in relation
to SABER analysis between 10 — 15 °N, mainly in the stratosphere, in addition to the
direct relationship of the quasi-biennial oscillation (QBO) with the O3 variability at these
latitudes.

Figure 4.3: Monthly average (a) SHADOZ network, between 0 to 30 km in height, and b) SABER satellite,
between 15-50 km height of the entire data period (2002 - 2018) in Natal/RN.
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4.2.1 SABER x SHADOZ comparisons

In the validation of data from the SABER satellite, the relative differences were
calculated, allowing to analyze how the two databases (satellite and soundings) behave in
the tropical region of Brazil. Thus, the analysis of concomitant profiles was performed,
that is, profiles identified for the same days of analysis through the climatology performed
for each database. The first difference found is in the heights, while SABER provides data
between 15 and 110 km high, the SHADOZ network data provides measurements ranging
from the surface to 26-30 km high where the balloon bursts, so comparisons will be made
only between heights starting at ~18 km high and going up to 30 km. Figure 4.4 shows
this comparison in OMR units (ppmv) of the O3 vertical profile from 2002 to 2018 using
the monthly average. It is observed that the two instruments present similar behavior in
almost the entire layer and in the entire period. Some points stand out, the first is in
relation to the comparisons in the initial heights of the analysis, around 15-20 km of
height. There is a more accentuated instability, which can be explained by the divergences
and errors, mainly in the SABER satellite measurements.

Estimating these long-term ozone changes below 20 km from satellite data is still
a challenge (WMO 2006). There is no significant relative difference above that, proving
that the stratosphere can be used through these instruments. In practically every period of
analysis, it is observed that the layer does not present significant differences, which could

invalidate the use of satellite data in the analysis of the vertical behavior of O3.
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Figure 4.4: Vertical profile comparison between SABER and SHADOZ, in O3 mixing ratio (ppmv), of the
monthly average of 2002 — 2018 in Natal/RN, in relation to height.
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The most significant differences occur between 15 and 20 km in height, in the
summer months (December, January and February), March and April also show the
greatest differences. In the middle stratosphere, between 20 — 26 km, the two
corresponding profiles of each instrument show similar behavior and begin to diverge in
the uppermost layer of the stratosphere. Regarding the analysis of the SABER satellite, it
was decided to start the comparisons at 18 km height, and not at 15 km as the satellite
provides, because below that, only instabilities are observed in the satellite measurements,
according to figure 4.4, that directly interfere in the comparison between the SHADOZ
and SABER instruments. These results show that it is reliable to use vertical profile data
provided by the TIMED/SABER satellite to analyze the vertical atmospheric behavior of
AOH influence events over the southern region of Brazil. Over 17 years of data, it will
be possible to visualize the average heights at which the greatest temporary decreases in

O3 content over Santa Maria/RS occur.
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4.3 CLIMATOLOGY SEASONAL AND VARIABILITIES

4.3.1 TCO Climatology in Santa Maria/RS

The monthly climatology and standard deviation presented in Figure 4.5 for the
four main instruments for measuring TCO in the subtropical season in Santa Maria during
the period 1979 to 2020, where we have Brewer (black), TOMS (blue), OMI (red) and
reanalysis of the new version of ECMWF ERAS (green). As already seen in previous
works, the annual variability stands out in the TCO data in Santa Maria, highlighting
minimum values in autumn (April and May) between ~255 and 260 DU, and maximum
values during the austral spring (September and October) with values between ~295 and
300 DU. This variability with lows in autumn and highs during spring is mainly explained
by the large-scale movement known as Brewer-Dobson circulation (BDC). This transport
is the dominant process that determines through its meridional movement that the O3
produced in low latitudes is transported to medium and high latitudes, causing this
maximum to occur during late winter/early spring (LONDON et al., 1985).

Sivakumar et al., (2007) carried out a study on the climatology and stratospheric
ozone variability over the lle de La Réunion, France, for 15 years of data available in
satellite instruments (HALOE, SAGE-1I, TOMS), ozonesondes, where they were also
identified maximum O3 values in spring and minimum values in autumn. Peres (2017)
identified a similar behavior in the analysis of O3 content on the Southern Space
Observatory. The maximums and minimums showing minimums in the austral winter and
maximum in the austral spring. Oliveira, 2016 showed the stratosphere-troposphere
exchanges (STE) where a greater number of exchanges was identified during the winter
and spring months, with a lower frequency during the summer, also explained by the

large-scale circulation (BDC).
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Figure 4.5: Monthly climatology for SM of TCO in DU between the period 1979 to 2020, TOMS (blue)
and OMI (red) satellites, Brewer spectrophotometer (black), and reanalysis ERA5 (green).
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4.3.2 Climatology Os vertical profile

Figure 4.6 shows the distribution of O3 over the period of the data analyzed by
the SABER satellite for the subtropical station of Santa Maria/RS. In the monthly average
(4.8a) and the climatology (4.8b) for the 17 years of data, it is possible to identify the
variability of the ozone content in this period, between 20 to 50 km in height, with values
due to the Oz mixing ratio (ppmv). A high concentration of ozone is observed in the
stratospheric layer (~25 - 40 km high) with values between 8 and 12 ppmv, being more
intense in early spring, late August to late summer, mid-March to April, corresponding to
values already found for mid-latitude regions such as southern Brazil (PERES, 2019;
TOIHIR, 2018).
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Figure 4.6: Monthly average (a) and climatology (b) for the entire period (2002 - 2018), SABER satellite
in Santa Maria/RS, between 18 to 50 km high.
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The monthly climatology for the vertical profile data (SABER) presented in figure
4.7 shows the behavior of O3 at different altitudes, presenting the particularities that this
component plays at each specific altitude. The heights chosen for this analysis were: 20
km (blue), 24 km (red), 28 km (green), and 30 km (black). The heights between 20 and
24 km comprise the lower and middle stratosphere, at these altitudes the O3 layer is
already established. Ozone at these altitudes undergoes dynamic changes that occur
between high troposphere/low stratosphere. It is observed that in 20 km the annual
variation is well represented, being like the TCO climatology, with minimums in autumn
and maximums in spring, shown in figure 4.9. At 24 km, a behavior without major
variations stands out. The O3 variation is between £20 phPa in relation to the average,
showing a small similarity with the altitude of 20 km. At altitudes of 28 and 30 km, the
behavior of O3 is influenced by photochemistry, with higher values during the hottest

seasons (spring and summer), and minimum values in the cold season (winter).
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Figure 4.7: Monthly climatology for SM using SABER data between the period 2002 to 2018. Differences
altitudes, in blue (20 km), red (24 km), green (28 km) and black (30 km), in ozone partial pressure (uhPa).
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4.3.3 Variabilities in subtropical latitudes (Santa Maria/RS)

The study of wavelet transforms in a database allows identifying the behavior of
the main periodicities that occur in each region. In Santa Maria/RS, this analysis was
performed by applying monthly series of TCO anomalies in wavelets for a period of 42
years of data (1979-2020) combining satellite and terrestrial instruments. Figure 4.8
presents this analysis where annual periodicities were removed so as not to mask other
important variability in the region. The left axis is the Fourier period (in month), the
wavelet power scale on the right axis and the time (years) on the lower axis. The white
outline includes regions with a confidence level greater than 95% and the U-shaped curve
indicates the cone of influence. However, in the period from 8 to 16 months, a strong
influence of annual variability is observed in subtropical latitudes, such as southern
Brazil, with a well-marked seasonal cycle at this latitude.

From the power spectrum, the 11-year solar cycle, in the range of 132 months,
stands out as an important variability in subtropical latitudes in relation to the O3 content.

Bencherif (2020) analyzed the variability and trend of O3 over 20 years of data, in Irene,
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South Africa. The variability during this study period showed a strong influence of the
annual cycle in the database, being the dominant mode of the TCO over the season.

Other periodicities such as the Quasi-Biennial Oscillation (QBO) between 16 - 32
months also stand out, despite having a low frequency, this signal was observed in other
studies in subtropical latitudes (RIGOZO, 2011; TOIHIR, 2018; BENCHERIF, 2020).
Peres (2017) presented the TCO monitoring using surface and satellite instruments for
Santa Maria/RS from 1992 to 2014, where the main periodicities related to this station
were identified.

The solar cycle proved to be an important periodicity, even being outside the cone
of influence, the QBO showed an important variability over the region in antiphase with
the TCO over the SM region. With a frequency below the 95% reliability axis, signs of
ENSO variability between 64 - 128 months showed two prominent periods, one between
1980 to 1990 and another period between 2009 to 2019. Studies show that ENSO
variability is the dominant mode in the troposphere, where its impact directly affects
tropospheric circulation, in tropical upwelling, causing significant changes in the
distribution of O3 content (OMAN et al., 2013).

The variabilities in the O3 content will depend mainly on the time of year and the
latitude in which they will be analyzed. The influence of QBO on the behavior of
stratospheric ozone is explained by its impact on the chemical and dynamic processes of
the gas. The variation of the QBO signal mainly in the tropics, where O3 is formed,
consists of maximum primary peaks between 7 -10 hPa in the upper stratosphere and
secondary peaks between 20-30 hPa, in addition other periodicities can influence the
behavior of ozone, even that in antiphase, such as ENSO and aerosols, in the release of
SO2 into the stratosphere through volcanic activities, among other variability (WMO,
2018; NEDOLUHA et al., 2015a).
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Figure 4.8: a) Anomaly monthly series of TCO satellite used for wavelet analysis over the Santa Maria/RS
between 1979 and 2020. (b) Morlet wavelet power spectrum, normalized by 1/ 2. (c) The global wavelet
spectrum of (a) where the dashed line is the 95% confidence.
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Changes in the Brewer-Dobson circulation (BDC) also modulate the behavior of
ozone in the stratosphere, both by its transport, which is influenced by the strongest and/or
weakest impulse in the tropics, and by the chemistry in the formation of O3 in tropical

latitudes.

4.3.4 Variabilities in tropical latitudes (Natal/RN)

The Natal/RN tropical station, from TCO satellite data available for latitude,
TOMS and OMI, plus ozonesondes data, by the SHADOZ platform, during the study
period of this work (1979 to 2020), it was possible to identify the variabilities that
dominate this region by the wavelet method. Semi-annual and annual variability were
removed from the analysis so that others would not be masked. With the TCO dataset,
figure 4.9 presents the average monthly anomaly for these data, in the period 1979-2020,
and these results showed a variability between 16 and 32 months predominant in the TCO
over Natal/RN, with the QBO being the main one. variability that stands out in this region.
Studies show that QBO is the variability that dominates the behavior of O3 in tropical

latitudes. In addition to starting its formation in the equatorial stratospheric region, this
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oscillation dissipates to other latitudes, alternating the wind direction from east to west,
thus influencing the behavior of O3 at these latitudes (BALDWIN, 2001).

The monthly mean anomaly in relation to the stratospheric O3 column showed
that the QBO is the predominant variability in the tropical season of Natal/RN. QBO
directly affects chemical and dynamic processes in stratospheric ozone and can alter the
dynamics of large-scale circulation (BDC). The solar cycle was also influential in the
stratospheric layer in the tropical season, mainly from 1993 to mid-2005 with 95% of this
variability within the cone of influence.

Naoe et al., (2017) analyzed the future of OBO in ozone in the tropical
stratospheric region, where through simulations, related to the increase of study effect
gases and the decrease of O3-depleting substances, identified a maximum in the
amplitude of OBO between 5-10 hPa suggesting that at that time the photochemistry of
the region will depend on temperature to modulate ozone in the tropical stratosphere.
Newman (2016) showed an anomalous phase shift of the QBO in the last 60 years of
years. The anomaly showed a rapid upward shift from the westerly phase of equatorial
winds to an easterly phase between 2015-2016. This sudden QBO phase shift resulted in
the shortest eastern phase ever seen in the 1953-2016 records.

As previously described, the 11-year solar cycle also stands out in the periodicities
related to TCO in the tropical region, where at least one complete cycle is observed within
the cone of influence (between 1993 and 2005). The tropical region presents important
characteristics in relation to this periodicity and together with the QBO below 30 hPa they
modulate the wind direction (SALBY AND CALLAGHAN, 2000). The variability of O3
in relation to ENSO has little influence on the data analyzed in this work, in relation to
subtropical and tropical latitudes. Toihir et al., (2018) analyzed the variability using ozone
probe data and identified that the influence of ENSO on the behavior of stratospheric O3
is less than 1%, being more representative in the modulation of tropospheric O3
(RANDEL, THOMPSON, 2011).
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Figure 4.9: a) Anomaly monthly series of TCO satellite used for wavelet analysis over the Natal/RN
between 1979 and 2020. (b) Morlet wavelet power spectrum, normalized by 1/ 2. (c) The global wavelet
spectrum of (a) where the dashed line is the 95% confidence.
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Ozone's response to changes in solar irradiance also plays a potentially important
role in climate change, regulating temperatures and stratospheric winds. These changes
in the stratosphere can affect tropospheric climate through direct radiative effects and
dynamic coupling, which in turn affects patterns of extratropical variability
(WMO,2018).

4.4 INFLUENCE EVENTS OF THE ANTARCTIC OZONE HOLE

The identification of the events of influence of the Antarctic Ozone Hole in the
SM region follows the methodology described in item 3.4, where the average daily data
for the 42 years available are analyzed. With the climatology established, the first analysis
is made for the months of occurrence of the events during the southern spring (August to
November), when the AOH is active. Table 4.1 presents the monthly climatology for the
daily analyzes of the decrease in O3 content during the occurrence of AOH, in addition
to its respective standard deviation and the values of the limits of -1.5 of the standard
deviation (4-1.56). The possible events are selected based on the analysis of the average
daily value of O3, which must be less than the threshold for the month of the event. Using
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this methodology, approximately 102 events were identified that influenced the study
region with temporary drops in O3 content during the 42 years of data analyzed to date.
At the end of this work, each of these events of decrease in O3 content in the appendix
area will be presented, presenting the stratospheric fields of potential vorticity, analysis
of the vertical profile (when it exists), and vertical section of the atmosphere showing the

dynamic behavior of the atmosphere.

Table 4.1: Monthly climatological values, their standard deviations and -1.5c limit for
August, September, October, and November for the Santa Maria station.

Limit -1.5¢ in DU

Month O; Climatology in DU () Standard Deviation in
(u-1.50)
DU (o)
August 290.4 12,1 272.2
September 296.8 9.4 282.7
October 289 11.8 271.3
November 285 8,9 271,6

Source: The author.

45 CASE STUDY
4.5.1 Event 20 October 2016

The AOH side effect event that occurred on October 20, 2020, in Southern Brazil
was one of the most intense ever recorded in the last 25 years (BITTENCOURT, 2018).
Kirchoff and collaborators (1996) identified one of the first extreme events of secondary
effect of AOH on the southern region of Brazil that occurred on October 28, 1993. The
study analyzed vertical profile data, through the launch of ozonesondes that identified this
decrease in TCO in the region, in addition to surface instrument measurements
(BREWER) and TOMS satellite data. BRESCIANI (2018) and collaborators performed
a multi-instrumental analysis of this event. Vertical profile data with satellite instruments
(AURA and SABER), ozonesondes showed how much this event impacted the region
with an extreme temporary decrease in O3 content.

In this work, a complete analysis of this extreme event of 2016 will be shown. The

first part is the analysis of the TCO data made available by the surface and satellite
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instruments. For this event, TCO recorded a minimum amount on October 20th. Brewer
Spectrophotometer recorded in the TCO of the day a value of 225.5 DU, representing a
reduction of around 23% in the ozone content in relation to the climatological average of
October which was 291.4 + 8.2 DU. On October 21, the secondary event continued to
influence the region, where 233 DU was recorded, resulting in a reduction of around 20%
in relation to October's climatology.

Figure 4.10 shows the average daily TCO values for October 2020, with the values
from the OMI (red) and Brewer (blue) satellites. The black line represents the limit — 1.5¢
of the standard deviation for the month, which according to table 4.1 was 271.3 DU. The
yellow circle is the day of the event on which the BREWER recorded the lowest O3
content value. Blank spaces represent lack of data from both study instruments.

Figure 4.10: TCO values in October 2016 with satellite (red) and Brewer (blue) data and the -1.5¢ limit

(black line).
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The beginning of October, according to figure 4.12, presents TCO values ranging
from 300 to 320 DU in the first 10 days of the month. Between the 14th and 15th, it is
possible to identify that the TCO begins to show a drop in relation to the limit of the
climatological average, which despite showing flaws in the data, identifies a recurring
decrease in O3, where on October 20 it presents its greatest decrease. of the month of
October. Temporary decreases in O3 content were recurrent, and according to the data



74

they influenced the region until at least 10/23/2016 (BITTENCOURT et al., 2019).

The October 2016 event was also identified with data from the O3 vertical profile
by SABER. Figure 4.11 shows the vertical O3 profile of October 20, 2016 (red) compared
to the climatology of the event month (black). This climatology was performed for the 17
years of data from the SABER satellite (figure 4.5), allowing a more in-depth analysis of
the event in relation to the vertical behavior of the O3 content. Figure 4.11a shows the
vertical profile in O3 partial pressure (uhPa) data for the day of the event, October 20,
2016, and the climatology for the SABER data analysis period. The region marked in the
figure in yellow, between ~22 to 29 km in height, highlights the significant reduction that
occurred during the event in relation to climatology, ranging from 100 to 60 (phPa) with
a peak at ~24 km. Bresciani et al., (2018) presented a multi-instrumental analysis of the
event identified in October 2016. The results showed the decrease in O3 content
according to data from different vertical profile instruments, during the occurrence of this
extreme event.

Figure 4.11: Vertical profile of Oz by the SABER satellite for the October 20, 2016 (in red) and climatology
for the month of October (in black).
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This reduction is observed when calculating the percentage differences for the day
of the event, as shown in Figure 4.11b. Highlighted in yellow, the stratospheric region
between 22 - 29 km of altitude, presents high values of reduction of the O3 content in the
region during the event which was around -43% in relation to the October climatology by
the SABER satellite.

4.5.2 Dynamic Event Analysis

The second part of the confirmation of the secondary effect event is the dynamic
analysis of this event, through stratospheric dynamics using potential vorticity on
isentropic surfaces. Figure 4.12 shows the daily monitoring of PV at height of 20 hPa,
around 25-30 km height, at pressure levels, through ECMWF ERA 5 reanalysis data for
two previous days (18 and 19 October 2016), on the day when the lowest O3 content was
observed (10/20/2016), and one day after the event (10/21/2016). The increase in vorticity
over the region is evident in the sequence of days, where the arrival of a poor O3 air mass
from the polar regions to the mid-latitudes regions is observed, identified by the increase
in APV. The stratospheric potential vorticity fields mapped the behavior of O3 during the
days of the event.

On 10/18/2016 (Fig. 4.12a) high APV values were observed advancing towards
southern Brazil, with values ranging from 60 to 140 between the extreme south of
Argentina and Uruguay. On October 19, 2016 (Fig. 4.12b) the southern region of Brazil
was already showing signs of influence of the poor O3 air mass, with an increase in APV,
ranging from 80 to 120 potential vorticity units (PVU). On day 20 (Fig. 4.12c), the poor
O3 air mass advanced under the region, with an intensification of UPV values, ranging
from 160 to 200 UPV over SM. Also noteworthy is a waveform advancing over the region
as the O3-poor air mass moved over Brazil. Bittencourt et al., (2018) showed that the
simulations of the MIMOSA model identified the direct influence of the ozone hole in
southern Brazil at 550 K potential temperature at 22 km height. On the following day,
10/21/2016 (Fig. 4.12d) there is a stabilization of this mass, but with a decrease in UPV

values compared to previous days, around 160 to 180 UPV in the region, in addition to
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Bittencourt et al., (2019) presented an analysis of 11 years of TCO data, where AOH
influence events on the SM region were investigated using ECMWF ERA-INTERIM data
in the dynamic study of events, showing the secondary effect events tend to act in the

region up to at least 3 days after the event itself is registered.

Figure 4.12: Potential vorticity fields at 20 hPa of potential temperature for October 18-21, 2016.
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Peres et al., (2014) presented results that show the identification of events in the
region for the year 2012, using surface and satellite data, and reanalysis data from
NCEP/NCAR to monitor the dynamics of the stratosphere. Two events were identified
influencing the region (PERES et al, 2014a; 2014b).
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The decrease in O3 content during the event identified in October 2016 was
detailed by Bittencourt et al. (2018) where through the MIMOSA model (Modélisation
Isentrope du transport Mésoéchelle de 1'Ozone Stratosphérique par Advection) it was
possible to identify the advance of a poor O3 polar air mass over mid-latitudes regions.
MIMOSA is a high-resolution model developed by the Service d'Aéronomie within the
framework of the European METRO project (MERidional TRansport of Ozone in the
lower stratosphere) (Hauchecorne et al. 2001).

Figure 4.13: MIMOSA model during the ozone hole influence event under the study region, in October
2016.

Source: Bittencourt et al., 2018.

The results found by Bittencourt et al. 2018 with the MIMOSA model (Figure

4.13) showed the direct impact of the ozone hole in southern Brazil at a potential
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temperature of 550 Kelvin and an altitude of approximately 22 km. The MIMOSA model
presents the isentropic level at 550K in the figure for October 2016 (19, 20 and 21), and
it is possible to identify the advance of an O3-poor air mass represented by figure 4.13,
over regions of medium latitudes, as is the case of the study region of this work in Santa
Maria/RS.

The retroactive trajectory of the HYSPLIT/NOAA model presents the trajectory
of this poor O3 air parcel. In figure 4.13a, the advance of the parcel from October 16,
2016, can be identified, passing through the Antarctic region where the AOH is acting
and taking this air mass to regions of medium latitudes at three different heights, 26 km
(red), 24 km (blue) and 22 km altitude (green), at 18 UTC. To complement the
confirmation of the secondary effect event over the southern region of Brazil, the TEMIS
satellite images (PS and global view, figure 4.14b).
Figure 4.14: a) Retroactive trajectory by the HYSPLIT/NOAA model arriving over the study region,
trajectory at 22 km, 24 km, and 26 km of altitude; b) DU satellite image with O3 content by the OMI

satellite for the day of the event, showing the AOH influence over southern South America, South Pole,
and global view.
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The colors in shades of blue and purple show the lowest TCO values over
Antarctica, ranging from 275 to 150 DU in the interior of the continent. For the October
2016 event, a strong influence is observed with low TCO values for the day, where the
AOH influence connects directly to the middle latitude’s regions. The figure with global
vision is more noticeable this influence.

The vertical section of the atmosphere was analyzed after the identification and
confirmation of the extreme event of influence of the AOH in the south of Brazil. This
field shows the behavior of jet streams with a vertical cut of the atmosphere between 1000
and 10 hPa at pressure levels of potential temperature and wind. The presence of
stratospheric (polar vortex) and tropospheric (subtropical and polar) jets can be inferred
in figure 4.15 between October 18 - 21, 2016.

The presence of the stratospheric jet, or polar vortex, is identified on 10/18/2016
(Figure 4.15a) between 70 and 80 °S with a moderate intensity (~50 m/s) above 50 hPa.
Below 200 hPa the weak polar jet is observed acting in the more polar regions, while the
subtropical jet stands out between latitudes of 30 - 40 °S coupled with the polar vortex
(above 100 hPa). On the 19th of October (figure 4.15b) this stratospheric jet moved
eastward, still coupled with the polar jet, but now between 55 - 70 °S. At high levels of
the atmosphere (between 200 hPa) the coupling between the jets is visible, and its
influence reaches the mid-latitudes regions analyzed in this work (~30°S). With a
moderate intensity, the polar and subtropical jets extend to the middle troposphere around
500 hPa reaching up to 600 hPa.

On the day of the event, 10/20/2016, (figure 4.15¢) and one day after the event
(figure 4.14d) the influence of the polar vortex reaches high levels of the atmosphere
beyond the coupling between the stratospheric jet and the polar jet that intensifies,
between 50 - 60 °S. On October 21st, the coupling between them reaches 700 hPa, and
the subtropical jet also shows an intensification on these two days.

The funneling of the isentropic observed in these days of decreasing O3 content,
through the analysis of vertical sections of the atmosphere, helps to explain the
stratosphere-troposphere exchanges. These large-scale systems help to understand that

they have a direct influence on this movement of air masses between atmospheric layers.
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Previous studies show that this exchange between stratosphere and troposphere during

the occurrence of AOH influences events on the region of study, it usually occurs after

the passage of frontal systems so that the presence of jets helps this exchange of air masses
between the layers. (SANTOS, 2016; BITTENCOURT et al., 2019).

Figure 4.15: Vertical section of the atmosphere between 1000 and 5 hPa for the days of

the event in October 2016.
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4.6 EVENTS STATISTICS

In this section, results obtained in relation to the main statistical analysis of the
behavior of O3 will be presented, through the potential vorticity fields, analysis of the
vertical profiles identified during the events (by the SABER satellite) and the dynamics
of the jets.

4.6.1 TCO statistics events

During the 42 years, the identification of AOH side effect events in the SM region
occurred through the analysis of average daily data available with different O3
measurement instruments already described here. Table 4.2 presents a summary of all
events that were identified in the region through the methodology described above, where
the day of the event and the reduction of O3 in percentage (%). During the austral spring
(August to November) more than 5124 days were analyzed during the study period (1979-
2020). Among this total number of days available in the 4 months, about 735 days were
selected because they had a daily TCO value below the limit of -1.5c. Of this total, 102
AOH influence events were identified influencing the study region, Santa Maria/RS, in
the period from 1979 to 2020. Peres et al., (2019) presented the climatological analysis
for 35 years of data, 1979 to 2013, on the central region of RS where they identified about
62 events that affected the region. Bittencourt et al., (2019) showed, in 11 years of data,
37 events of influence of AOH over the southern region of Brazil from 2006 to 2017, in
addition to presenting the dynamic stratospheric and tropospheric behavior during the
occurrence of these events over the region.

Table 4.2 also presents the phase the QBO was in during the event. According to
the analysis of the variability of O3 content, it was highlighted that the influence of QBO
is more significant in tropical regions, while in regions of subtropical latitudes this
variability does not stand out, as is the case of SM. PERES et al., (2017) showed that
there is an antiphase between average monthly TCO anomaly data over the SM region

compared to QBO modulation. Toihir et al., (2018) also identified that the most important
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variabilities in O3 content are, in addition to annual oscillations, the zonal wind
modulation at 30 hPa with the QBO. It was possible to observe that this predominant
variability is modulated in a cycle of approximately 2 years linked to the QBO, where
tropical latitudes are in phase with the QBO, while regions in subtropical latitudes have
an anti-phase.

The importance of studying the behavior of the QBO under subtropical and
tropical latitudes is due to its influence on the modulation of temperature in the
stratosphere, affecting the photochemical dynamics in the lower stratosphere, and
consequently influencing the behavior of large-scale circulation (BDC) throughout the
atmosphere, which distributes the O3 content from the formation regions (in the tropics)
to regions of mid and high latitudes (CORDERO et al., 2012).

The mean reduction, in mean percentage, of TCO in the 102 AOH influence
events identified in the study region during the 42 years of analysis was 8.3 + 3.5%. These
events showed that September and October, months in which AOH is at its maximum
activity peak, were the months in which the greatest number of temporary decreases in
O3 occurred due to these secondary influences. In the period 1979-2020, during the
austral spring, about 32.3% and 37.2% of the events identified were in September (33
events) and October (38 events). Meanwhile, in August, when the polar vortex begins to
lose its intensity due to the end of winter and the return of radiation, 22 (21.5%) events
influenced the study region, while in November only 9 (8.8%) events were registered.

According to table 4.2 of the 102 events of influence of AOH identified over the
region of Santa Maria/RS, about 63 events (61.8%) occurred during the QBO in its
positive phase, while 39 (38.2%) remainder occurred during the negative phase of the
QBO. More studies should be carried out to explain why most events occur during the

positive phase of QBO over our study region.
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Table 4.2 — AOH influence events from 1979 to 2018, for SM. The table presents the day of the event in
MMDDYYYY format, and ozone content reductions relative to climatology in %, and QBO phase.

Event day Os QBO Event day O3 QBO Event day O3 QBO

reduction | phase reduction | phase reduction | phase
(%) (%) (%)
09/27/1979 4,2 Negative | 09/17/1994 6,1 Negative | 10/12/2008 8,3 Positive
08/05/1982 11,4 Positive | 10/01/1995 7,7 Positive | 10/26/2008 7,8 Positive
09/09/1982 13,2 Positive | 09/20/1996 17,4 Negative | 11/01/2008 10,5 Positive
09/23/1982 6,2 Positive | 08/18/1997 16,5 Positive | 09/02/2009 16,1 Negative
10/08/1982 5 Positive | 09/14/1997 14 Positive | 09/29/2009 8,9 Negative
10/08/1982 4,7 Positive | 10/16/1997 8,3 Positive | 08/08/2010 7,2 Positive
10/15/1982 7,3 Positive | 11/02/1997 6 Positive | 09/08/2010 5,4 Positive
10/21/1982 94 Positive | 11/19/1997 6,5 Positive | 10/13/2010 52 Positive
09/30/1983 7,8 Negative | 10/24/1998 10 Negative | 10/22/2010 10,1 Positive
10/14/1983 4 Negative | 08/21/1999 8,1 Positive | 09/05/2011 4,4 Negative
10/16/1984 9,2 Negative | 10/07/1999 4,7 Positive | 09/14/2012 9,7 Negative
11/05/1984 7,5 Negative | 09/23/2000 8,9 Negative | 09/22/2012 6,5 Negative
08/09/1985 7,3 Positive | 10/12/2000 7,2 Negative | 10/14/2012 12,5 Negative
08/23/1985 11 Positive | 10/26/2000 6,7 Negative | 10/23/2013 13,6 Positive
09/03/1985 16 Positive | 08/15/2001 58 Negative | 08/10/2014 75 Negative
10/15/1985 10,6 Positive | 09/23/2001 7,7 Negative | 08/22/2014 12 Negative
11/07/1985 7,6 Positive | 08/18/2002 12,5 Positive | 10/13/2014 4,7 Negative
08/09/1987 5 Positive | 10/15/2003 10,6 Negative | 11/03/2014 5,3 Negative
07/07/1987 7,6 Positive | 08/22/2004 9,3 Positive | 09/22/2015 7,7 Positive
10/16/1987 6,1 Positive | 09/12/2004 6,8 Positive | 11/03/2015 8,3 Positive
09/02/1988 57 Negative | 10/03/2004 4,6 Positive | 08/25/2016 12,9 Positive
08/24/1990 8,9 Positive | 10/16/2004 12,3 Positive | 09//05/2016 10,5 Positive
09/06/1990 16,8 Positive | 09/29/2005 55 Negative | 09/12/2016 9,4 Positive
09/16/1990 9,1 Positive | 10/11/2005 5,2 Negative | 10/20/2016 22 Positive
10/01/1990 4,2 Positive | 11/16/2005 4,6 Negative | 08/26/2017 12,6 Negative
10/09/1990 9,7 Positive | 08/07/2006 10,9 Positive | 09/18/2017 8 Negative
09/03/1992 8,5 Positive | 08/23/2006 11,4 Positive | 11/11/2018 13,8 Negative
10/10/1992 75 Positive | 09/19/2006 6,6 Positive | 09/16/2019 14,8 Positive
08/15/1993 9 Negative | 10/07/2006 9,7 Positive | 08/28/2020 15.4 Positive
08/25/1993 8,5 Negative | 10/15/2006 9,1 Positive | 09/03/2020 17.7 Positive
10/19/1993 13,2 Negative | 08/16/2007 6,1 Positive | 10/21/2020 11 Positive
10/31/1993 16,8 Negative | 09/13/2007 74 Negative | 11/22/2020 10,7 Positive
08/16/1994 4,2 Negative | 10/07/2007 10 Negative

Source: The author.
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4.6.2 Vertical Profile Statistics

In this section, the results related to the vertical profile analysis using data from
the SABER satellite will be presented. After identifying the events of influence of the
AOH in the period 1979 - 2020 with surface and satellite instruments (table 4.2), it was
possible to study the vertical profiles of the SABER satellite for the period of 17 years in
which the satellite maintained its activities. During this period (2002-2018) 38 vertical
profiles of AOH influence events over the study region were found, according to satellite
availability.

Figure 4.16 presents a histogram with the frequency of occurrence of events
according to times defined for this analysis. Starting the verification at 20 km altitude, the

following altitude groups were separated:

20 — 24 km Blue
24.1-28km | Red
28.1-32km
32.1-36 km | Purple
36.1—40km

According to the histogram, the predominance of events is in the months of
September (31.6%) and in October (37%), August and November continue to be the
months with the lowest occurrence of event identification, 18.4% and 13.2%,
corroborating the analyzes made with TCO data. The heights that predominate the
temporary decreases in O3 content during the AOH influence events are the height
between 24.1 - 28 km, followed by the lowest layer of the stratosphere between 20 - 24
km of altitude, in the months of greater occurrence of the events.

This most intermediate layer of the stratosphere comprises the O3 layer region,
thus with active AOH, and influencing the mid-latitudes regions with the advance of poor
O3 air masses explains these greater decreases in O3 content at these heights. Dynamic
influences that alter the behavior of O3 in the lower stratosphere explain these decreases
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at these altitudes. In addition, O3 at altitudes between 32 to 40 km has photochemical

changes, according to the climatological analyzes presented in section 4.3.

Figure 4.16: Histogram with the frequency of occurrence of events for each altitude group, using SABER
satellite data from 2002-2018.

54 HISTOGRAM PROFILES SABER
T T T T

I 20-24km

[ 24,1-28km
[[128,1-32km
12 [ 32, 1-36km [
[ 36,1-40km

FREQUENCY (days)

August September October November
MONTH

Source: The author.

From these results, it was established to analyze the events at altitudes of 24.1 -
28 km, due to the predominance of these altitudes in the identification of O3 decreases
over the region. Figure 4.17 presents vertical profiles relative to the average of events in
each month with their respective monthly climatology, in units of partial pressure of O3
at the altitude of 24.1 to 28 km. Regarding climatology, the months of September and
October also stand out here, presenting reductions with values significantly lower than
their climatology, around ~15-25 phPa of reduction. The month of November presents a
series of factors that must be considered: the AOH begins to close in that month, due to
the weakening of the polar vortex and rising temperatures. Thus, as a way of recovering
the average profile in relation to the climatology of the period, this average behavior of

the profile is observed.
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Figure 4.17: Monthly vertical profile in the layer 24.1-28 km altitude, with the average of events per month
() August, b) September, c) October, d) November) in red and the monthly climatology in black, in partial
pressure unit of O3 (uhPa).
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Figure 4.18 shows the percentage differences for the 38 vertical profiles of events
identified in the SABER analysis period (2002 to 2018). The differences are presented
for heights between 24.1 and 28 km in height, and there are differences around 20% for
the months of August, September and October, the month of November presents, on
average, differences around 15%. In agreement with previous studies, these results show
that most events occurred in the peak months of AOH (September -12 events and October
- 14 events) and a smaller number of events at the beginning (August - 7 events) and at
the end (November - 5 events) from AOH (BITTENCOURT et al., 2019).

The 38 events found by the vertical profiles between the period 2002 - 2018 are

in the analysis of AOH side effect events in the appendix section.

120
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Figure 4.18: Monthly percentage difference in the 24.1 — 28 km high layer, in relation to the mean of events
influence of the AOH on the region in the period 2002 to 2018 of SABER.
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4.6.3 Dynamic Statistics Events

The climatological analysis, monthly average of events and monthly anomaly of
the stratospheric dynamics, during the period of occurrence of the secondary effects of
the AOH on the average latitudes, in relation to the climatology of the month are
presented in this section. Figure 4.19 shows the monthly climatology of the potential
vorticity field at 20 hPa for the entire study period (1979-2020). A gradual increase in
APV is observed from August onwards (~55 °S), the study region presents values around
60 - 80 PVU, and in September these values remain stable between 25 - 40 °S. This
gradual increase in the first months when AOH is active can be explained by the dynamics
of the Antarctic polar vortex, which is at its maximum intensity between late winter and
early spring, when sunlight returns and destabilizes this vortex.

The return of sunlight, and the consequent destabilization of the polar vortex with
increasing temperature, causes the poor O3 air that is trapped within this vortex to move
to other regions. The month of October (figure 4.19c) already presents a considerable

increase in latitudes below 50 °S, with values ranging from 80 - 140 PVU. In November,
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when the vortex is already weak and starting to break down, there is a greater increase in
APV over mid-latitudes (25 - 35 °S), as is the case with SM, which shows a variation of
60 - 120 PVU.

Figure 4.19: Climatology monthly (a,b,c,d) of potential vorticity at 20 hPa of potential vorticity in the
months of occurrence of the AOH influence events on SM from 1979 to 2020.
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The monthly average in relation to the number of events in each month is in
accordance with the results presented in Table 4.2. The highest number of events between
September and October are shown in figure 4.20b and figure 4.20c where an increase in
PVU from 60 to 140 APV is observed. These analyses agree with the results obtained in
this work, showing the highest occurrence of events in the months of September and
October. In addition, the results agree with the work of Bittencourt et al., (2019) where

20w

20w
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they identified that the events of influence of the AOH occurred more frequently in the
months of September and October. The study also identified that, on average, an event

can continue to influence the region with O3-poor air for at least 3 days.

Figure 4.20: Events mean fields (a, b, c, d) of potential vorticity at 20 hPa of potential vorticity in the
months of occurrence of the AOH influence events on SM from 1979 to 2020.
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The stratospheric field anomaly is shown in figure 4.21, where they follow the
same configuration as in the figures above, at 20 hPa in the mid-stratosphere region. The
calculation considers the monthly events identified in this work (Table 4.2), thus positive
PV anomalies act over the entire mid-Ilatitude region in southern Brazil, including SM/RS.
As seen above, the months of September and October stand out with the highest number
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of AOH influence events, so in Figure 4.21b and 4.21c the values range from -5 to -20
mKs2hPa?, reaching -40 mKs2hPa in October.

From this analysis, the influence of secondary effect events on mid-latitudes

regions during the active period of the AOH in the austral spring is highlighted. The

increase and predominance of negative anomalies under the southern region of Brazil

stands out from August onwards, with a maximum peak in October and decreasing

intensity in November, when the AOH begins to close in Antarctica.

Figure 4.21: Monthly anomaly (a,b,c,d) of potential vorticity at 20 hPa of potential vorticity in the months
of occurrence of the AOH influence events on SM from 1979 to 2020.
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Regarding the 102 events identified between 1979-2020 and the climatology for

the period, it is highlighted in figure 4.22 where a waveform with a predominance of
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negative anomalies over the region of study of this work is observed, where negative
anomaly values range from -15 to -25 PVU. This analysis agrees with the results
presented by Peres et al., (2019) who analyzed the TCO for 35 years using data from the
reanalysis I NCEP/DOE in the potential vorticity analyses.

Figure 4.22: Anomaly of the 102 events found. Potential vorticity field at 20 hPa between 1979 to 2020.
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The dynamic behavior of the atmosphere during the events of AOH influence over
the mid-latitudes regions is of paramount importance to understand how these events
manage to advance modifying the O3 content. Vertical analysis of the atmosphere shows
us how jet streams, important large-scale systems, help transport air masses between the
two atmospheric layers (stratosphere-troposphere). According to the events identified in
the 42 years of study, figure 4.23 (a, b, c, d) presents the climatological average for each
month of active AOH, and the average of events per month (fig. 4.24 a, b, c, d) in the
vertical section of the atmosphere between 1000 and 5 hPa.

The influence of the stratospheric jet, or polar vortex, stands out at higher levels
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of the atmosphere (100 — 5 hPa) and at high latitudes (45°S — 70°S). As previously
described, August and September present an extremely strong and very active vortex,
which is explained by the low temperatures that are stored inside the vortex during the

polar night, making it a stable vortex during this period.

Figure 4.23: Monthly climatology of the vertical section of the atmosphere during the months of
identification of the AOH influence events, from 1979 to 2020, between 1000 and 5 hPa showing the
presence of the jet (shaded).
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During the months of October and mainly in November, the climatology shows
that the vortex tends to de-intensify, this is because the return of sunlight in the austral

spring raises the temperature causing the vortex to destabilize. During the entire period,
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the subtropical tropospheric jet remains coupled with the polar vortex (between August-
September) and coupled with the polar jet (between 100 - 250 hPa and 50 - 70°S) in

November.

Figure 4.24: Monthly average of the events of AOH influence events of the vertical section of the
atmosphere from 1979 to 2020, between 1000 and 5 hPa showing the presence of the jet (shaded).
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The coupling between the jets together with the funneling of the isentropic ones
physically explains how the stratosphere-troposphere exchanges occur. SANTOS (2016)
presents important results regarding air exchange between the stratosphere and
troposphere, noting the importance of the jet stream helping this exchange mechanism,
being more intense in the winter and spring months. GUZMAN (2021) identified that the
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position and intensity of the subtropical jet directly affects the position of the dynamic
tropopause, which ends up influencing the mechanism of air mass exchanges by
increasing/decreasing the amount of O3 at stratospheric levels.

The monthly mean of the events showed a similar pattern to the climatology for
each month. The coupling between the stratospheric and tropospheric jets is visible,
highlighting a greater intensity of these jets compared to their climatology. This pattern
is confirmed in the average of all events identified in this work (102) in figure 4.25. The
coupling between the jets is shown to be an important dynamic pattern during the

occurrence of O3 content decrease events over the southern region of Brazil.

Figure 4.25: Monthly average of all 102 AOH events identified during the period 1979 - 2020 of the vertical
section of the atmosphere between 1000 and 5 hPa.
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4.6.4 Conceptual model analysis

The elaboration of the conceptual models allowed a better visualization of how
the atmospheric dynamics behaves during the occurrence of events of influence of the
Antarctic Ozone Hole on regions of medium latitudes, as the city of Santa Maria/RS focus
of this study. Figure 4.26 shows the meridional/horizontal behavior of the stratospheric
and tropospheric jets during the analysis period of this study, which is 42 years during the
AOH active period.

At 20 hPa is where the stratospheric jet, or polar night jet, is found, intensely
present during the winter/early spring period. During winter, the stratospheric polar
region has very negative temperatures inside the vortex, mainly due to the absence of
solar radiation, making the polar stratospheric clouds that form in this period serve as a
basis for the destruction of O3 during this period. As presented in the climatology during
the events of decrease in the O3 content, the polar jet is persistent and intense until the
beginning of October, being able to influence up to 50 °S of latitude at high levels.

At the average levels of the atmosphere, around 200 hPa, the position of the
tropospheric jets follows the climatological pattern. The subtropical jet influencing
mainly mid-latitudes, as is the case of Santa Maria/RS, and the polar jet being more
important at high latitudes helping to transport air masses. The isentropic coupling is
noticeable in the analyses, dynamically explaining the movement of air masses from the
stratosphere to the troposphere. The results also showed that the stratospheric and
tropospheric jets couple during the occurrence of the events, showing that these transfers
of air masses between the layers occur with the help of these large-scale systems, such as
the jets.

According to figure 4.29 the air parcels with a low concentration of O3 are
"closed" inside the polar vortex. Despite being stable, the Antarctic Ozone Hole is very
dynamic and therefore, air masses can "release” from this vortex reaching regions of
medium latitudes. This release occurs, as shown by previous works (Bittencourt et al.
2019) after the passage of frontal systems and according to the analysis presented here,

the coupling between the layers occurs through the connection between the subtropical
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and polar jets with the stratospheric jet. This coupling between the jets reveals that during
events of decrease in O3 content over the Santa Maria/RS region, they occur in practically
90% of all events identified in this study. The connection between the jets dynamically
explains how parcels of air with less O3 that are found in the upper levels of the
atmosphere, in the region of the stratosphere, and in high latitudes, reach regions of
medium latitudes.

Figure 4.26: Conceptual model showing the position of the stratospheric and tropospheric jets at 20 and
200 hPa with the meridional section of the field.
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Source: The author.

Conceptually, figure 4.27 symbolizes the dynamic behavior of the atmosphere
during the 42 years of data analyzed over Santa Maria/RS in relation to the identification
of events of decrease in O3 content, in the active period of the Antarctic Ozone Hole,

which occurs from August to November. Shades in purple show the intensity of the jet
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both the stratospheric and the two tropospheric jets (left polar between 70°S - 50°S, and
the subtropical between 40°S to 20°S).

The blue line represents the movement of the air mass poor in O3, from the region
of the poles where the AOH is active to regions of medium latitudes, such as the city of
Santa Maria/RS. The connection of the jets helps in this transport, causing a funneling of
the isentropic, also affecting the height of the tropopause, causing this air content with
little O3 to reach these regions.

Figure 4.27: Conceptual model showing the dynamic behavior in the vertical section of the atmosphere,
during the events of influence of the AOH on regions of medium latitudes in the 42 years of analysis.
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5 SUMMARY

Dans la présente thése de doctorat, les données moyennes quotidiennes de la colonne
totale d'ozone sur la ville de Santa Maria/RS région des latitudes moyennes ont été
analysées. Le comportement de I'O3 sur ces régions reposait sur lI'analyse d'instruments
de surface, le spectrophotométre Brewer, des instruments satellites (TOMS et OMI)
fournissant des mesures de TCO pour les 42 années de données analysées entre 1979 et
2020.

L'objectif principal de ce travail est d'étudier I'influence du trou d'ozone antarctique
ainsi que l'analyse de la dynamique atmosphérique sur la colonne d'ozone totale et son
profil vertical dans le sud du Brésil. Les comparaisons des données TCO journalieres
moyennes ont montré une sous-estimation de la réanalyse ERAS par rapport aux données
BREWER, ce qui explique le R2 de 0,83 constaté. Par conséquent, ERA5 n'est pas une
bonne base de données pour représenter ce type de variable. D'autre part, le satellite OMI
comparé 8 BREWER a montré un R2 de 0,94 et des valeurs MBE faibles indiquant une
légere surestimation du satellite. Ces résultats concordent avec d'autres études qui
présentent une analyse similaire (ANTON et al., 2009; PERES et al., 2017).

Les profils verticaux utilisés avec les données TIMED/SABER ont d'abord été validés
pour une utilisation plus fiable dans I'analyse des événements. Ainsi, la comparaison entre
les données satellitaires (SABRE) et les sondes d'ozone de la station SHADOZ/NASA a
été utilisée. A titre de comparaison, la saison tropicale du Natal/RN, qui compte plus de
20 ans de mesures de profils verticaux, a été choisie pour cette validation. Les résultats
ont montré que les plus grandes différences relatives entre les satellites et les sondes
d'ozone se situent en dessous de 20 km d'altitude. Ces grandes différences, entre 15 et 20
km, peuvent s'expliquer par des incohérences satellitaires, ne représentant pas trés bien
les mesures initiales. Ainsi, la couche stratosphérigque au-dessus de 20 km, dans I'analyse
des profils verticaux lors de la survenue d'événements de diminution temporaire de la
teneur en O3, est bien représentée par le satellite SABER.

La climatologie TCO montre une variation saisonniére bien définie au cours des

42 années d'analyse sur la région sud du Brésil, avec des valeurs maximales au printemps
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et des valeurs minimales en hiver. Cette variation s'explique principalement par la
circulation a grande échelle (BDC) qui transporte I'air riche en O3 de sa région de
formation dans la stratosphere tropicale vers les régions des moyennes et hautes latitudes,
aux poles. Ce transport dure des mois, provoquant des valeurs élevées au printemps dans
la région de Santa Maria/RS. Les profils verticaux présentaient une climatologie
différente selon les altitudes choisies. La hauteur de 20 km présentait une climatologie
comme l'analyse climatologique du TCO. Influencée par des processus dynamiques, la
variation saisonniére se distingue également a cette altitude. Aux altitudes comprises
entre 28 et 30 km, région stratosphérique moyenne, le facteur photochimique est ce qui
contréle la teneur en O3. Maximums pendant les saisons chaudes et valeurs minimales en
hiver en raison de la faible incidence du rayonnement.

La variabilité climatique montre une forte influence du cycle solaire, suivi du
QBO du TCO sur la région subtropicale analysée dans cette étude. Le cycle annuel est
également la variabilité dominante du TCO de Santa Maria/RS, méme s'il n'est pas retiré
des analyses en ondelettes, la climatologie montre ce schéma bien défini
(BITTENCOURT, 2019). Aux latitudes tropicales, I'influence qui ressort dans I'analyse
du TCO est le QBO, qui module le comportement de I'O3 dans la région tropicale ou se
produisent les processus photochimiques pour la formation du gaz. Des changements dans
I'oscillation quasi-biennale peuvent interférer avec le mouvement a grande échelle de la
circulation de Brewer-Dobson, modulant la distribution d'O3 vers les autres régions, ou
dans la phase occidentale il y a une accumulation d'O3 dans les tropiques en raison d'une
décélération du BDC, c'est le contraire qui se produit. dans la phase orientale (phase
positive) lorsqu'il y a une accélération du BDC (CORDERO, 2012). Pour les travaux
futurs, une analyse plus précise concernant la phase QBO lors des événements de
diminution de la teneur en O3 sur le sud du Brésil devrait étre analysée plus attentivement.

L'identification des événements d'influence AOH sur la région d'étude, grace a la
méthodologie utilisée dans ce travail entre 1979 et 2020, a permis de trouver 102
événements qui ont diminué la teneur en O3 sur la région. L'étude de cas présentée dans
les résultats est un événement extréme de diminution de la teneur en O3 sur le sud du
Brésil, qui s'est produit en octobre 2016 (BITTENCOURT, 2018). Selon les données



100

TCO, la valeur le jour de I'événement était de 225 DU, puisque la région AOH présente
des valeurs inférieures a8 220 DU (HOFFMAN, 1997), I'événement a réduit d'environ 23%
la teneur en O3. Le jour de I'événement, le profil vertical a identifié des réductions
d'environ -40% entre 23 et 26 km d'altitude, par rapport a la climatologie pour la période
de données. Les réductions observées dans le profil vertical le jour de I'événement ont
montré que toute la couche stratosphérique, jusqu'au moins a la stratosphere moyenne,
présentait des réductions significatives de la teneur en O3 au-dessus de Santa Maria/RS.
Les champs de tourbillon potentiel stratosphérique ont identifié a 20 hPa I'augmentation
du tourbillon potentiel absolu sur la région entre le 19 octobre et au moins le 21 octobre.

L'analyse statistique a montré qu'en ce qui concerne le TCO, les réductions
moyennes des événements d'influence AOH sont d'environ 8,3 + 3,5 %. La plupart des
événements identifiés sont survenus en septembre avec 33 événements (32,3%) et en
octobre avec 38 événements identifiés (37,2%). Ce résultat concorde avec I'analyse des
profils verticaux utilisés par le satellite SABRE entre 2002 et 2018, ou 38 profils des
événements sélectionnés ont été analysés et décrits dans ce travail. Les profils identifiés
ont montré la plupart des diminutions de la teneur totale en O3 en septembre et octobre.
De plus, la hauteur préférée a laquelle ces diminutions ont été trouvées se situait dans une
couche comprise entre 24 et 28,1 km dans la plupart des événements. Certaines épreuves
montrent des diminutions dans d'autres attitudes, comme au 20 km et au 30 km. Ces
baisses sont constantes et avec une réduction de 20% durant les mois de septembre et
octobre, par rapport aux 38 profils verticaux d'événements. Pour les travaux futurs, des
périodes d'étude plus longues seront analysées pour caractériser et identifier un plus grand
nombre d'événements d'effets secondaires AOH sur les régions de latitude moyenne.

La dynamique des champs stratosphériques a travers le tourbillon potentiel a
réussi a montrer certains points plus clairement. En utilisant les données de la nouvelle
génération de réanalyse ECMWF avec ERAD5, les champs de vorticité potentielle ont été
analysés pour caractériser la trajectoire de la masse dair pauvre en O3 pendant
I'événement, ou l'augmentation de la vorticité potentielle absolue (APV) entraine I'origine
polaire de I'événement masse d'air. A 20 hPa, ou les champs ont été analysés, le

comportement dynamique de I'atmosphére moyenne, vers 23 a 26 km d'altitude, a montré
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les plus fortes réductions de teneur en O3 lors des évenements d'influence AOH identifiés
sous les régions de latitude moyenne. La climatologie des champs stratosphériques a
montré une augmentation du tourbillon potentiel & partir du mois d'ao(t et s'intensifiant
vers la fin de la période active AOH. Cette dynamique explique une relation directe avec
le comportement du vortex polaire pendant cette période la plus active du vortex pendant
I'niver polaire, et avec le retour du rayonnement au printemps austral une diminution de
ses activites.

Les moyennes mensuelles liées aux événements de diminution de I'AOH ont
montré une augmentation progressive de I'APV d'ao(t a novembre au cours des 42 années.
L'anomalie mensuelle de ces événements a identifié cette progression progressive avec
une augmentation du tourbillon potentiel, selon la survenance des événements, en
septembre et octobre. L'anomalie incluant les 102 événements de diminution de I'AOH
sur Santa Maria/RS a montré une influence considérable sur la région, avec des valeurs
de PV élevées pendant la période d'ao(t a novembre.

Le couplage des jets stratosphériques et troposphériques a montré une forte
influence au cours de la période des données analysées. La section verticale de
I'atmosphére de 1000 a 5 hPa présente dans la climatologie un schéma cohérent avec le
comportement du vortex polaire, comme il a été dit précédemment, il est plus intense et
stable jusqu'a la fin de la nuit polaire. Pendant toute la période, le jet troposphérique
subtropical reste connecté au vortex polaire, expliquant ce mécanisme d'échanges de
masse d'air entre stratosphere-troposphére pendant la période d'étude. La moyenne lors
des événements d'influence AOH sur la région sud du Brésil caractérise cette forte
connexion entre les jets stratosphériques et troposphériques au cours de la période
analysee.

Les résultats de cette thése mettent en évidence l'occurrence des évenements
d'influence de I'AOH sur la région de Santa Maria/RS avec des diminutions
prédominantes entre 24 - 28,1 km daltitude selon les profils verticaux, et une
prédominance des événements dans les mois de septembre et octobre. Un autre point a
souligner est I'importance du comportement synoptique des jets stratosphériques et

troposphériques lors des événements de diminution d'O3 sur les régions des latitudes
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moyennes. Le couplage entre elles, tel que le montre le modele conceptuel présenté, met
en évidence et explique le comportement des échanges entre les couches atmosphériques
(stratosphere et troposphére). lls présentent un effet d'entonnoir isentropique bien
caractérise sur la région de I'entrée équatoriale du jet subtropical, mettant en évidence
cette influence entre les jets lors de I'apparition d'événements de diminution de la teneur

en O3 aux latitudes moyennes.

5.1 FUTURE WORKS

Outre la publication de deux articles en lien avec le sujet de ce travail : Evénement
majeur d'influence du trou d'ozone antarctique dans le sud du Brésil en octobre 2016 :
une analyse de la dynamique troposphérique et stratosphérique (2018) et Enquéte sur le
comportement de la dynamique atmosphérique au cours occurrences de I'effet secondaire
du trou dans la couche d'ozone dans le sud du Brésil (2019), trois autres articles devraient
étre développés a partir des résultats présentés dans cette these de doctorat.

I.  Analysis of vertical ozone profiles in South America: comparison of the last
17 years between subtropical and tropical latitudes
Il.  Climatologie de la colonne totale d'ozone et profil vertical pour 42 ans de
données en Amérique du Sud: analyse de I'influence des événements du trou
d'ozone antarctique
1. La dynamique stratosphérique et troposphérique des événements d'influence

AOH aux latitudes moyennes.

Certains points méritent d'étre analysés dans ces articles, comme ['utilisation du
satellite AURA/MLS pour la comparaison avec les données du satellite TIMED/SABRE,
en relation avec l'analyse du contenu vertical d'O3 sur Santa Maria/RS. L'analyse des
tendances des données TCO dans la région d'étude pour la période de données devrait
également étre unpoint d'étude important, en particulier pour surveiller le comportement
du TCO et quelle devrait étre sa tendance dans les régions des latitudes moyennes

d'’Amérique du Sud.
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SECONDARY EFFECT EVENTS OF THE ANTARCTIC OZONE HOLE
IDENTIFIED OVER THE SOUTHERN REGION OF BRAZIL BETWEEN 1979
TO 2020

09/29/1979

Figure Al: PVA fields for the 20 hPa in pressure levels, days 09/27/1979 to 09/30/1979.
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Figure A2: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content OMI satellite for South Pole view.
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Figure A3: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

September 1979.
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08/05/1982

Figure A4: PVA fields for the 20 hPa in pressure levels, days 08/03/1982 to 08/06/1982.
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Figure A5: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content OMI satellite for South

Pole view.
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Figure A6: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August

1982.
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09/09/1982

Figure A7: PVA fields for the 20 hPa in pressure levels, days 09/07/1982 to 09/10/1982.
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Figure A8: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content OMI satellite for South
Pole view.
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Figure A9: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 1982.
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09/24/1982

Figure A10: PVA fields for the 20 hPa in pressure levels, days 09/22/1982 to 09/24/1982.
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Figure A11: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content OMI satellite for South
Pole view.
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Figure A12: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 1982.

09/22/1982 Section lon=—54

09/23/1982 Section lon=—54
ial Temperature (K) and Wind (m/s;

100

200

300

400
500

fifea

60S  50S  40S  30S
09/25/1982 Section lon=—54
Potential Temperature (K)_and Wind (m/s
=T = —

=
70 60S 505 40S  30S
09/24/1982 Section lon: 4

D t and

90S 80S 708 6057 '505 7 40S 308 1OS> EQ
Source: The author.




117

10/08/1982

Figure A13: PVA fields for the 20 hPa in pressure levels, days 10/07/1982 to 10/09/1982.
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Figure A14: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content OMI satellite for South

Pole view.
NOAA HYSPLIT MODEL
Backward trajectories ending at 1800 UTC 09 Oct 82
CDC1 Meteorological Data

o

e

(5]

wn

(]

o

<

(=23

&

w©

*

[}

e

3

[=3

%]

—

[0]

<

(4

4

2

[}

=

120600 1812060018 120600 18 120600 18 1206 00 18120600 18
10/09 10/08 10/07 10/06 10/05 10/04

Job ID: 173800 Job Start: Sat Jul 2 19:23:26 UTC 2022
Source 11at.: -29.400000 lon.: -53.400000 hgis: 28000, 26000, 24000 m AMSL
Trajectory Direction: Backward  Duration: 144 hrs.
Vertical Motion Calculation Method: _Isentropic
Meteorology: 0000Z 1 Oct 2082 - reanalysis

Source: HYSPLIT/NOAA, NASA/OZONE WATCH.



118

Figure A15: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in October
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10/15/1982

Figure A16: PVA fields for the 20 hPa in pressure levels, days 10/13/1982 to 10/15/1982.
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Figure A17: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content OMI satellite for South
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Figure A18: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in October
1982.
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09/30/1983

Figure A19: PVA fields for the 20 hPa in pressure levels, days 09/28/1983 to 10/01/1983.
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Figure A20: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content OMI satellite for South

Pole view.
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Figure A21: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 1983.
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10/14/1983

Figure A22: PVA fields for the 20 hPa in pressure levels, days 10/12/1983 to 10/15/1983.
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Figure A23: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content OMI satellite for South

Pole view.
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Figure A24: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in October
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10/16/1984

Figure A25: PVA fields for the 20 hPa in pressure levels, days 10/14/1984 to 10/17/1984.
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Figure A26: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content OMI satellite for South

Pole view.
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Figure A27: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in October
1984,
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11/05/1984

Figure A28: PVA fields for the 20 hPa in pressure levels, days 11/03/1984 to 11/06/1984.

108 Potential Vorticity 20 hPa 11/04/1984

158

20S -20
2558 :

30s

355 -120
408
458
508 -200
558

605
foow 90w 8OW  7OW  60W  50W  40W  30W  20W S0W  8OW 70w BOW  SOW  40W  30W

Potential Yorticity 20 hPa 11,/05/1984 Potential Vorticity 20 hPa 11/06/1984
57 ok

120 ~ o

10S
158
20S . -20
258

308

358 -120
40s

458

0w 80w 70W 60W 50w 40W 20W
Source: The author.

Figure A29: O3 content NASA satellite for South Pole view in 11/05/1984.

Source: NASA/OZONE WATCH.
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Figure A30: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in October
2016
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08/09/1985

Figure A31: PVA fields for the 20 hPa in pressure levels, days 08/07/1985 to 08/10/1985.
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Figure A32: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content OMI satellite for South Pole, and

global view.
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Figure A33: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August

1985.
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Figure A34: PVA fields for the 20 hPa in pressure levels, days 08/21/1985 to 08/24/1985.
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Figure A35: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content OMI satellite for South Pole view.
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Figure A35: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August

1985.
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09/03/1985

Figure A36: PVA fields for the 20 hPa in pressure levels, days 09/01/1985 to 09/04/1985
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Figure A37: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content OMI satellite for South

Pole view.
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Figure A38: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 1985.
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10/15/1985

Figure A39: PVA fields for the 20 hPa in pressure levels, days 10/13/1985 to 10/16/1985.
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Figure A40: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content OMI satellite for South

Pole view.
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Source: HYSPLIT/NOAA, NASA/OZONE WATCH.
Figure A41: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
October 1985.
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11/07/1985

Figure A42: PVA fields for the 20 hPa in pressure levels, days 11/05/1985 to 11/08/1985.
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Figure A43: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content OMI satellite for South

Pole view.
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Figure A44: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

November 1985.
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08/09/1987

Figure A45: PVA fields for the 20 hPa in pressure levels, days 09/27/1979 to 09/30/1979.
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Figure A46: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content satellite for South Pole
view.
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Figure A47: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August
1987.
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10/07/1987

Figure A48: PVA fields for the 20 hPa in pressure levels, days 10/05/1987 to 10/08/1987.
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Figure A49: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South Pole

View.
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Figure A50: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in October
1987.
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10/16/1987
Figure A51: PVA fields for the 20 hPa in pressure levels, days 10/14/1987 to 10/17/1987.
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Figure A52: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South Pole
view.

Source: NASA/OZONE WATCH.
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Figure 53: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in October
1987.
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09/02/1988

Figure A54: PVA fields for the 20 hPa in pressure levels, days 08/31/1988 to 09/03/1988.
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Figure A55: Retroactive trzgecto by the HYSPLIT/NOAA model, and O3 content satellite for South Pole view.
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Figure A56: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 1988
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08/24/1990

Figure A57: PVA fields for the 20 hPa in pressure levels, days 08/22/1990 to 08/25/1990.
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Figure A58: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South Pole

VIEW.
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Figure 59: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August
1990.
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09/06/1990

Figure 60: PVA fields for the 20 hPa in pressure levels, days 09/04/1990 to 09/07/1990.
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Figure A61: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South Pole view.

NOAA HYSPLIT MODEL
Backward trajectories ending at 1800 UTC 06 Sep 90
CDC1 Meteorological Data

Source » at 29.40S 5340 W

—
[}
< = 27500
2 26000
% 24500
b= 23000

120600181206001812060018120600181206001812060018
09/06 09/05 09/04 09/03 09/02 09/01

Job ID: 181882 Job Start: Sat Jul 2 22:37:21 UTC 2022
Source 1 lat.: -29.400000 lon.: -53.400000 hgts: 28000, 26000, 24000 m AMSL

Trajectory Direction: Backward ~ Duration: 144 hrs
Vertical Motion Calculation Msmod Isentropic
y: 0000Z 1 Sep 209 i

Source: HYSPLIT/NOAA, NASA/OZONE WATCH.

Figure A62: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

September 1990.
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09/16/1990

Figure A63: PVA fields for the 20 hPa in pressure levels, days 09/14/1990 to 09/17/1990.
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Figure A64: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South Pole

view
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Figure 65: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in September
1990.
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10/01/1990

Figure A66: PVVA fields for the 20 hPa in pressure levels, days 09/29/1990 to 10/02/1990.
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Figure A67: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South Pole view.
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Figure A68: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in October

1990.
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10/16/1990

Figure Al: PVA fields for the 20 hPa in pressure levels, days 10/14/1990 to 10/17/1990.
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Figure A70: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South Pole view.
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Figure A71: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in October
2016
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09/03/1992

Figure A72: PVA fields for the 20 hPa in pressure levels, days 09/01/1992 to 09/04/1992.
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Figure A73: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South Pole

view.
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Figure A74: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

September 1992,
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10/10/1992

Figure A75: PVA fields for the 20 hPa in pressure levels, days 10/08/1992 to 10/11/1992.
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Figure A76: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South Pole

view.
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Figure A77: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in October
1992.
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08/15/1993

Figure A78: PVA fields for the 20 hPa in pressure levels, days 08/13/1993 to 08/16/1993.

Potential Vorticity 20 hPa 08/13/1993 Potential Vorticity 20 hPa 08/14/1993

20 20
o o
_20 -20
-40 -40
—s0 -850
—-80 -80
-120 -120
-140 -140
-160 -160
-180 - 180
-200 -200
-220 -220
-240 =240
90w 80w  7OW  8OW  50W  40W  30W 20w 100W 90w  BOW  70W  60W  50W  40W  30W 20w
Potential Vorticity 20 hPa 08/15/1993 108 Potential Vorticity 20 hPa 08/16/1993
20 20
158 o
-20 208 20
™ 2ss -
-60 -60
80 305 80
-120 358 - 120
140 405 140
_160 -160
0 455 5o
-200 ~200
—220 -220
—240 -240
100w sow  8Ow 70w  BOW  S0W  40W  30W 20w 90W  BOW  70W  BO0W  S50W  40W  30W  20W

Source: The author.

Figure A79: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South Pole
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Figure 80: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August
1993.
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08/25/1993

Figure 81: PVA fields for the 20 hPa in pressure levels, days 08/23//1993 to 08/26/1993.
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Figure A82: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South Pole

view.
NOAA HYSPLIT MODEL
Backward trajectories ending at 1800 UTC 26 Aug 93

CDC1 Meteorological Data

=

21

~

[s2}

wn

m B

<

&

w

*

3

5

o |

(2]

—

g 25660 X7 et et 25000
23660 K==\ T ea 23500

o

% 21660 =W /Tt T e s s s 5y S!"«" 22000

A e - — - 20500

120600 18120600 181206 00 181206 00 18120600 18120600 18
08/26  OBi25 O824 0823 0822 08/21

Job ID: 183262 Job Start: Sun Jul_3 00:01:26 UTG 2

Trajectory Direction: Backward ~ Duration: 144 hrs
Vertical Motion Calculation Method: Isentropic
Meteorology: 0000Z 1 Aug 2093 - i

022
Source 1 lat.: -29.400000 lon.: -53.400000 hgts: 26000, 24000, 22000 m AMSL

Source: HYSPLIT/NOAA, NASA/OZONE WATCH.




164

Figure A83: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August
1993.
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10/19/1993

Figure A84: PVA fields for the 20 hPa in pressure levels, days 09/27/1979 to 09/30/1979.
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Figure A85: Retroactive trajectory by the HYSPLIT/NOAA model.

Source: HYSPLIT/NOAA.
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Figure A86: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in October
1993.
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10/31/1993

Figure A87: PVA fields for the 20 hPa in pressure levels, days 10/28/1993 to 10/31/1993.
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Figure A88: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South Pole

view.
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Figure A89: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in October

1993.
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08/16/1994

Figure A90: PVA fields for the 20 hPa in pressure levels, days 08/14/1994 to 08/17/1994.
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Figure A91: Retroactive trajectory by the HYSPLIT/NOAA model.

Source: HYSPLIT/NOAA.
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Figure A92: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August

1994.
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09/17/1994

Figure A93: PVA fields for the 20 hPa in pressure levels, days 09/14/1994 to 09/18/1994.
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Figure A94: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South Pole
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Figure A95: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

September 1994,
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10/01/1995

Figure A96: PVA fields for the 20 hPa in pressure levels, days 09/29/1995 10/02/1995.
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09/20/1996

Figure A98: PVA fields for the 20 hPa in pressure levels, days 09/18/1996 to 09/21/1996.
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Figure A99: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South Pole

view.
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Figure A100: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
October 1996.
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08/18/1997

Figure A101: PVA fields for the 20 hPa in pressure levels, days 08/18/1997 to 08/21/1997.
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Figure A102: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South
Pole view.
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Figure A103: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
October 2016
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09/14/1997

Figure A104: PVA fields for the 20 hPa in pressure levels, days 09/12/1997 to 09/15/1997.
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Figure A105: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South

Pole view.

Source: HYSPLIT/NOAA, NASA/OZONE WATCH.
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Figure A106: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 1997.
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10/16/1997

Figure A107: PVA fields for the 20 hPa in pressure levels, days 10/14/1997 to 10/17/1997.
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Figure A108: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South

Pole view.
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Figure A109: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

October 1997.
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11/02/1997

Figure A110: PVA fields for the 20 hPa in pressure levels, days 10/31/1997 to 11/03/1997.
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Figure Al111: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South
Pole view.
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Figure A107: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
November 1997.
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11/19/1997

Figure A108: PVA fields for the 20 hPa in pressure levels, days 11/17/1997 to 11/20/1997.

2554
30S4
355
405
455
5054

5554

605 -
100W

Potential Vorticity 20 hPa 11/17/1997

oW

80W  70W  BOW  50W  40W  30W
Potential Vorticity 20 hPa 11/19/1997

=180
=200
-220

-240

90W  8OW  70W  60W  50W  40W

30w

20W

Potential Vorticity 20 hPa 11/18/1997

90W  80W  70W  6OW  50W  40W  30W

Potential Vorticity 20 hPa 11/19/1997

90w 8OW  70W  60W  50W  40W  30W

20W

184

=120
=140
-160
-180
-200
-220

-240

Figure A109: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South
Pole view.
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Figure 110: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in October

2016.
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10/24/1998

Figure A111: PVA fields for the 20 hPa in pressure levels, days 10/22/1998 to 10/25/1998.
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Figure A112: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South
Pole view.
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Figure A113: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
October 21998.
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08/21/1999

Figure A114: PVA fields for the 20 hPa in pressure levels, days 08/19/1999 to 08/22/1999.
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Figure A115: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South
Pole view.
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Figure A116: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August

1999.
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10/07/1999

Figure A117: PVA fields for the 20 hPa in pressure levels, days 10/05/1999 to 10/08/1999.

20
o
-20
-40
-60
-80
=120
=140
-160
-180
=200
-220
—240

GOW  50W  40W  30W 208 90W  BOW  7OW  60W  50W  40W  30W  20W

Vorticity 20 hPa 10/07/1999 108 Potential Vorticity 20 hPa 10/08/1999

20 20
R 155 )
-2 205 20
=40 -
2551 ©
—60 g0
a0 3051 o
-120 355 | -120
=140 -
4051 o
-160 =160
455 10 4551 o
505 — ~200 g5pg 200
- —22¢ -
558 o 555 S ; 220
! -240

603 - : , , i ; ‘

T00W 90W BOW  70W  BOW  50W  40W  30W  20W 603

100w 90w 80w 7ow 60W Sow 40W 30w 20w

Figure A118: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South
Pole view.
NOAA HYSPLIT MODEL
Backward trajectories ending at 1800 UTC 07 Oct 99
CDC1 Meteorological Data

e /
o 3 -
< .
[52]
w
[%2]
(=]
<
[<2]
N
= 0
*
jod
e
S 30.
o
w
-150--%
60
»
-
O}
<
w
b4
jo3
2
jod
=
120600 181206 00 18 1206 00 18 12.06 00 18 1206 00 18 1206.00 18
10/07 10/06 10/05 10/04 10/03 10/02

Job ID: 192238 Job Start: SunJul_3 03:20:09 UTC 2022

Source 1 lat.: -29.400000 lon.: -53.400000 hgts: 28000, 26000, 24000 m AMSL

Trajectory Direction: Backward ~ Duration: 144 hrs

Vertical Motion Galculation Method: Isentropic

Meteorology: 0000Z 1 Oct 2099 - reanalysis

Source: HYSPLIT/NOAA, NASA/OZONE WATCH.



191

Figure A119: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

October 1999.
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09/23/2000

Figure A120: PVA fields for the 20 hPa in pressure levels, days 09/23/2000 to 09/24/2000.
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Figure A121: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South
Pole view.
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Figure A122: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
October 2000.
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10/12/2000
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Figure A123: PVA fields for the 20 hPa in pressure levels, days 10/08/2000 to 10/12/2000, and HYSPLIT

model.
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Figure A124: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
October 2000.
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10/26/2000

Figure A125: PVA fields for the 20 hPa in pressure levels, days 10/24/2000 to 10/27/2000.
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Figure A126: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South
Pole view.
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Figure A127: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

October 2000.
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08/15/2001

Figure Al: PVA fields for the 20 hPa in pressure levels, days 08/13/2001 to 08/16/2001.
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Figure A129: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South
Pole view.
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Job ID: 156098 Job Start: Tue Jun 28 00:56:32 UTC 2022
Source 1lat.: -29.400000 lon.: -53.400000 hgts: 28000, 26000, 24000 m AMSL

Trajectory Direction: Backward ~ Duration: 144 hrs

Vertical Motion Calculation Method: Isentropic
Meteorology: 0000Z 1 Aug 2001 - I

Source: HYSPLIT/NOAA, NASA/OZONE WATCH.
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Figure A130: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August

2001.
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09/23/2001

Figure A131: PVA fields for the 20 hPa in pressure levels, days 09/21/2001 to 09/24/2001.
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Figure A132: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South
Pole view.

Meters AGL

Source: HYSPLIT/NOAA, NASA/OZONE WATCH.
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Job ID: 145863 Job Start: Mon Jun 27 19:32:27 UTC 2022
Source 1 lat.: -29.400000 lon.: -53.400000 hgts: 28000, 26000, 24000 m AMSL

Trajectory Direction: Backward ~ Duration: 144 hrs
Vertical Motion Calculation Method: Isentropic
Meteorology: 0000Z 1 Sep 2001 - reanalysis
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Figure A133: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 2001
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08/18/2002

Figure A134: PVA fields for the 20 hPa in pressure levels, days 08/16/2002 to 08/19/2002.
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Figure A135: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South

Pole view.
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Job ID: 145505 Job Start: Mon Jun 27 19:28:14 UTC 2022
Source 1 lat.: -29.400000 lon.: -53.400000 hgts: 28000, 26000, 24000 m AMSL

Trajectory Direction: Backward  Duration: 144 hrs

Vertical Motion Calculation Method: _ Isentropic
Meteorology: 0000Z 1 Aug 2002 - reanalysis

Source: HYSPLIT/NOAA, NASA/OZONE WATCH.
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Figure A136: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
October 2016.
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10/15/2003

Figure A137: PVA fields for the 20 hPa in pressure levels, days 10/13/2003 to 10/16/2003.

Potential Vorticity 20 hPa 10/13/2003

90w
Potential Vorticity 20 hPa 10/15/2003

80w 70w BOW 50w  40W 30w 20W

60S

100W

Potential Vorticity 20 hPa 10/14/2003

605
100w

90W 80w  7O0W  60W  S50W  40W  30W  20W

108 Potential Vorticity 20 hPa 10/16/2003

158
208
258
308
358
408
458

204

Figure A138: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South
Pole view.

Meters AGL

Source: HYSPLIT/NOAA, NASA/OZONE WATCH.
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Job ID: 140466 Job Start: Mon Jun 27 18:14:37 UTG 2022
Source 1 lat.: -29.400000 lon.: -53.400000 hgts: 28000, 26000, 24000 m AMSL

Trajectory Direction: Backward ~ Duration: 144 hrs
Vertical Motion Calculation Method: Isentropic
Meteorology: 0000Z 1 Oct 2003 - reanalysis
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Figure A139: Vertical profile of O3 by the SABER satellite for the October 15, 2003 (in red) and
climatology for the month of October (in black).
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Figure A140: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

October 2003.
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08/22/2004

Figure A141: PVA fields for the 20 hPa in pressure levels, days 08/19/2004 to 08/22/2004.

108
158 I
208
258
308
358
408
458
508
558

60S
100w

10S
158
208
255
308
358
408
455
508
558
60S

100w

Potential Vorticity 20 hPa 08/13/2004

90w 80w 70W 60W 50w 40W 30w 20w
Potential Vorticity 20 hPa 08/21/2004

90W  BOW  7OW  BOW  50W  40W 30w 20w

Source: The author.

Potential Vorticity 20 hPa 08/20/2004

108
155
205
255
305
355
405
455
505
555

605
100w gOw  BOW  70W  BOW 50w  40W  30W

108 Potential Vorticity 20 hPa 08/22/2004

158
208
255
308
358
408
455

T00W  90W  BOW  70W  BOW  S50W  40W  30W

206

Figure A142: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South
Pole view.
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Job ID: 139763 Job Start: Mon Jun 27 18:02:43 UTC 2022
Source 1 lat.: -29.400000 lon.: -63.400000 hgts: 28000, 26000, 24000 m AMSL

Trajectory Direction: Backward ~ Duration: 144 hrs
Isentropic

Vertical Motion Calculation Method:
Meteorology: 00002 1 Aug 2004 - reanalysis

Source: HYSPLIT/NOAA, NASA/OZONE WATCH.
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Figure A143: Vertical profile of O3 by the SABER satellite for the August 23, 2004 (in red) and climatology
for the month of October (in black).
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Figure A144: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August

2004.
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09/12/2004

Figure A145: PVA fields for the 20 hPa in pressure levels, days 09/10/2004 to 09/13/2004.
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Figure Al146: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content satellite for South
Pole view.
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Figure A147: Vertical profile of Oz by the SABER satellite for the September 13, 2004 (in red) and
climatology for the month of October (in black).
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Figure A148: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 2004.
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10/03/2004

Figure A149: PVA fields for the 20 hPa in pressure levels, days 10/01/2004 to 10/04/2004.
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Figure A150: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for

South Pole, and global view.
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Figure A151: Vertical profile of Oz by the SABER satellite for the October 03, 2004 (in red) and
climatology for the month of October (in black).
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Figure A152: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
October 2004.
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10/16/2004

Figure A153: PVA fields for the 20 hPa in pressure levels, days 10/14/2004 to 10/17/2004.
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Figure A154: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for

South Pole, and global view.
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Figure A155: Vertical profile of Oz by the SABER satellite for the October 17, 2004 (in red) and
climatology for the month of October (in black).
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Figure A156: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
October 2004.
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09/29/2005

Figure A157: PVA fields for the 20 hPa in pressure levels, days 09/27/2005 to 09/30/2005.
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Figure A158: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for

South Pole, and global view
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Figure A159: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 2005.
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10/11/2005

Figure A160: PVA fields for the 20 hPa in pressure levels, days 10/09/2005 to 10/12/2005.
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Figure A161: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for
South Pole, and global view.
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Figure A162: Vertical profile of Oz by the SABER satellite for the October 11, 2005 (in red) and
climatology for the month of October (in black).
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Figure A163: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

October 2016
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11/16/2005

Figure A164: PVA fields for the 20 hPa in pressure levels, days 11/14/2005 to 11/17/2005.
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. Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for
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Figure A166: Vertical profile of Oz by the SABER satellite for the November 17, 2005 (in red) and
climatology for the month of October (in black).
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Figure A167: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
November 2005.
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Figure A169: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for

South Pole, and global view.
NOAA HYSPLIT MODEL OMI Total Gzono for Aug 7.2006
Backward trajectories ending at 1800 UTC 07 Aug 06 9 n
GDAS Meteorological Data

08/07/2006

Figure A168: PVA fields for the 20 hPa in pressure levels, days 08/05/2006 to 08/08/2006.
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Figure A170: Vertical profile of O3 by the SABER satellite for the August 06, 2006 (in red) and climatology

for the month of October (in black).
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Figure A170: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August

2006.
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08/23/2006

Figure A171: PVA fields for the 20 hPa in pressure levels, days 08/21/2006 to 08/24/2006.
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Figure A172: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for

South Pole, and global view.
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Figure A173: Vertical profile of Oz by the SABER satellite for the August 22, 2006 (in red) and climatology



223

for the month of October (in black).
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Figure A174: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August
2006.
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09/19/2006

Figure A175: PVA fields for the 20 hPa in pressure levels, days 09/18/2006 to 09/21/2006.
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Figure A176: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for

South Pole, a

nd global view.
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Figure A177: Vertical profile of Oz by the SABER satellite for the September 21, 2006 (in red) and

climatology for the month of October (in black).
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Figure A178: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 2006.
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10/07/2006

Figure A179: PVA fields for the 20 hPa in pressure levels, days 10/05/2006 to 10/08/2006.
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Figure A180: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for

South Pole, and global view.
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Figure A181: Vertical profile of O3 by the SABER satellite for the October 06, 2006 (in red) and
climatology for the month of October (in black).
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Source: The author.

Figure A182: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
October 2016.
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10/12/2006

Figure A183: PVA fields for the 20 hPa in pressure levels, days 10/10/2006 to 10/13/2006.
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Figure A184: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for
South Pole, and global view.
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Figure A185: Vertical profile of Oz by the SABER satellite for the October 20, 2016 (in red) and
climatology for the month of October (in black).
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Figure A186: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the

October 2006.
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08/16/2007

Figure A187: PVA fields for the 20 hPa in pressure levels, days 08/14/2007 to 08/17/2007.

Potential Vorticity 20 hPa 08/14/2007

Potential Vorticity 20 hPa 08/15/2007

90w sow 70w 60W 50w 40W 30w 20W
Potential Vorticity 20 hPa 08/16/2007

0w BOW 70W 60w 50W 40W 30W 20W
Potential Vorticity 20 hPa 08/17/2007

80w 70w BOW 50w 40W 20w
Source: The author.

Figure A188: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for

South Pole, and global view.
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Figure A189: Vertical profile of Oz by the SABER satellite for the August 15, 2007 (in red) and climatology



for the month

of October (in black).
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Figure A190: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

October 2016.
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09/13/2007

Figure A191: PVA fields for the 20 hPa in pressure levels, days 09/11/2007 to 09/14/2007.
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Figure A192: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for
South Pole, and global view.
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Figure A193: Vertical profile of Oz by the SABER satellite for the September 13, 2007 (in red) and

climatology for the month of October (in black).
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Figure A194: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

September 2007.
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10/07/2007

Figure A195: PVA fields for the 20 hPa in pressure levels, days 10/06/2007 to 10/09/1997.
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Figure A196: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for
South Pole, and global view.
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Figure A197: Vertical profile of Oz by the SABER satellite for the October 08, 2007 (in red) and
climatology for the month of October (in black).
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Figure A198: Vertical section of the atmosphere

October 2007.
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Figure A199: PVA fields for the 20 hPa in pressure levels, days 10/10/2008 to 10/13/2008.
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Figure A200: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for
South Pole, and global view.
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A201: Vertical profile of Oz by the SABER satellite for the October 12, 2008 (in red) and

GSFC



climatology for the month of October (in black).
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Figure A202: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

October 2008.
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10/26/2008

Figure A203: PVA fields for the 20 hPa in pressure levels, days 10/24/2008 to 10/27/2008.
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Figure A204: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for
South Pole, and global view.
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Figure A205: Vertical profile of O3 by the SABER satellite for the October 26, 2008 (in red) and
climatology for the month of October (in black).
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Figure A206: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
October 2008.
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11/01/2008

Figure A207: PVA fields for the 20 hPa in pressure levels, days 10/30/2008 to 11/02/2008.
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Figure A208: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for

South Pole, and global view.
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Figure A209: Vertical profile of O3 by the SABER satellite for the November 02, 2008 (in red) and

climatology for the month of October (in black).
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Figure A210: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

October 2016.
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09/04/2009

Figure A211: PVA fields for the 20 hPa in pressure levels, days 09/02/2009 to 09/05/2009.
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Figure A212: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for
South Pole, and global view.
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Figure A213: Vertical profile of O3 by the SABER satellite for the September 02, 2009 (in red) and



climatology for the month of October (in black).
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Figure A214: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 2009.
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09/29/2009

Figure A215: PVA fields for the 20 hPa in pressure levels, days 09/27/2009 to 09/30/2009.
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Figure A216: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for

South Pole, and global view.
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Figure A217: Vertical profile of Oz by the SABER satellite for the September 29, 2009 (in red) and
climatology for the month of October (in black).
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Figure A218: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 2009.
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09/09/2010

Figure A219: PVA fields for the 20 hPa in pressure levels, days 09/07/2010 to 09/10/2010.
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Figure A220: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for
South Pole, and global view.
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Figure A221: Vertical profile of Oz by the SABER satellite
climatology for the month of October (in black).
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for the September 08, 2010 (in red) and
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Figure A222: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

September 2010.

09/07/2010 Section lon=—-54
Potential Temperature (K) and Wind (m/s’
Ll
2 50 {795

60S 50S 40S 30S 208
09/09/2010 Section lon=-54

Source: The author.

09/08/2010 Section lon=—54

70S  60S 505 405  30S
09/10/2010 Section lon=—54




10/13/2010

Figure A224: PVA fields for the 20 hPa in pressure levels, days 10/11/2010 to 10/14/2010.
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Figure A225: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for
South Pole, and global view.
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Figure A226: Vertical profile of Oz by the SABER satellite for the October 13, 2010 (in red) and
climatology for the month of October (in black).
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Figure A227: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
October 2010.
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Figure A228: PVA fields for the 20 hPa in pressure levels, days 10/20/2010 to 10/23/2010.
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Figure A229: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for

South Pole, and global view.
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Figure A230: Vertical profile of Oz by the SABER satellite for the October 22, 2010 (in red) and
climatology for the month of October (in black).
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Figure A231: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
October 2010.
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09/05/2011

Figure A232: PVA fields for the 20 hPa in pressure levels, days 09/03/2011 to 09/06/2011.
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Figure A233: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for
South Pole, and global view.
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Figure A234: Vertical profile of Oz by the SABER satellite for the September 05, 2011 (in red) and
climatology for the month of October (in black).
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Figure A235: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

September 2011.
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09/14/2012

Figure A236: PVA fields for the 20 hPa in pressure levels, days 09/12/2012 to 09/15/2012.

Potential Vorticity 20 hPa 09/12/2012

Potential Vorticity 20 hPa 09/13/2012

20

A o
-20 -20
-40 —40
~60 —60
e
-120 =120
—140 —140
-160 —-160
-180 180
300 ~200
-220 220
=240 =240

SOW  70W  BOW  SON  4OW  30W  20W 90W  8OW 70W BOW  50W  40W  3OW 20
Potential Vorticity 20 hPa 09/14/2012 Potentiol Vorticity 20 hPe 09/15/2012

20 20
0 0
=20 -20
—40 -40
-0 ~80
-80 80
-120 -120
—140 140
-160 -180
-180 -180
=200 -200
-220 ~220
—240 -240

Figure A237: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for

South Pole, and global view.
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Figure A238: Vertical profile of Oz by the SABER satellite for the September 14, 2012 (in red) and
climatology for the month of October (in black).
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Source: The author.

Figure A239: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 2012.
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10/14/2012

Figure A240: PVA fields for the 20 hPa in pressure levels, days 10/12/2012 to 10/15/2012.
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Figure A241: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for

South Pole, and global view.
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Figure A242: Vertical profile of Oz by the SABER satellite for the October 15, 2012 (in red) and
climatology for the month of October (in black).
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Figure A243: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

October 2012
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10/23/2013

Figure A244: PVA fields for the 20 hPa in pressure levels, days 10/21/2013 to 10/24/2013.
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Figure A245: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for

South Pole, and global view.
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Figure A246: Vertical profile of O; by the SABER satellite for the October 23, 2013 (in red) and
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climatology for the month of October (in black).
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Figure A247: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

October 2013.
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08/10/2014

Figure A248: PVA fields for the 20 hPa in pressure levels, days 08/08/2014 to 08/11/2014.
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Figure A249: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for
South Pole, and global view.
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Figure A250: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August
2014.
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10/16/2014

Figure A251: PVA fields for the 20 hPa in pressure levels, days 10/14/2014 to 10/17/2014.
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Figure A252: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for

South Pole, and global view.
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Figure A253: Vertical profile of Oz by the SABER satellite for the October 16, 2014 (in red) and

climatol
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Figure A254: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

October

2014
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Figure A255: PVA fields for the 20 hPa in pressure levels, days 11/01/2014 to 11/04/2014.
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Figure A256: Retroactive trajectory by the HYSPLIT/NOAA model, O3 content OMI satellite for South
Pole, and global view.
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Figure A257: Vertical profile of Oz by the SABER satellite for the November 05, 2014 (in red) and
climatology for the month of October (in black).
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Figure A258: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

October 2016
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09/22/2015

Figure A259: PVA fields for the 20 hPa in pressure levels, days 09/20/2015 to 09/23/2015.
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Figure A260: Retroactive trajectory by the HYSPLIT/NOAA model, and O3 content OMI satellite for
South Pole, and global view.
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Figure A261: Vertical profile of Oz by the SABER satellite for the September 22, 2015 (in red) and
climatology for the month of October (in black).
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Figure A262: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 2015.
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11/03/2015

Figure A263: PVA fields for the 20 hPa in pressure levels, days 11/02/2015 to 11/04/2015.
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Figure A264: O3 content OMI satellite for South Pole, and global view.
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Figure A265: Vertical profile of Oz by the SABER satellite for the November 04, 2015 (in red) and

climatology for the month of October (in black).
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Figure A266: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

November 2015.
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Figure A267: PVA fields for the 20 hPa in pressure levels, days 09/02/2016 to 09/05/2016.

sow
P

60S -
100w oW
Source: The

09/05/2016

Potential Vorticity 20 hPa 09/02/2016

80W 70w  60W 50w 40w  30W

otential Vorticity 20 hPa 09/04 /2016

8ow oW
author.

Potential Vorticity 20 hPa 09/03/2016

L

BOW  70W  6OW 50w 40w

Potential Vorticity 20 hPa 09/05/2016

BOW  70W  BOW  50W  40W

3ow

30w

20w

270

Figure A268: Retroactive trajectory by the HYSPLIT/NOAA model, O3 content OMI satellite for South
Pole, and global view.
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Figure A269: Vertical profile of O3 by the SABER satellite for the September 04, 2016 (in red) and
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climatology for the month of October (in black).
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Figure A270: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
October 2016
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08/26/2017

Figure A271: PVA fields for the 20 hPa in pressure levels, days 08/24/2017 to 08/27/2017.
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Figure A272: Retroactive trajectory by the HYSPLIT/NOAA model, O3 content OMI satellite for South

Pole,

and global view.
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Figure A273: Vertical profile of O3 by the SABER satellite for the August 25, 2017 (in red) and climatology

for the month of October (in black).
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Figure A274: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August

2017.
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09/18/2017

Figure A275: PVA fields for the 20 hPa in pressure levels, days 09/16/2017 to 09/19/2017.
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Figure A276: Retroactive trajectory by the HYSPLIT/NOAA model, O3 content OMI satellite for South
Pole, and global view.
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Figure A277: Vertical profile of Oz by the SABER satellite for the September 18, 2017 (in red) and
climatology for the month of October (in black).
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Figure A278: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

September 2017.
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11/11/2018

Figure A279: PVA fields for the 20 hPa in pressure levels, days 11/09/2018 to 11/12/2018.
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Figure A280: Retroactive trajectory by the HYSPLIT/NOAA model, O3 content OMI satellite for South
Pole, and global view.
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Figure A281: Vertical profile of Oz by the SABER satellite for the November 11, 2019 (in red) and
climatology for the month of October (in black).
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Figure A282: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

November 2018.
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09/16/2019

Figure A283: PVA fields for the 20 hPa in pressure levels, days 09/16/2019 to 09/19/2019.
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Figure A284: a) Retroactive trajectory by the HYSPLIT/NOAA model, b) O3 content OMI satellite for
South Pole, and global view.
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Figure A285: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 2019.
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08/28/2020

Figure A286: PVA fields for the 20 hPa in pressure levels, days 08/26/2020 to 08/29/2020.
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Figure A287: Retroactive trajectory by the HYSPLIT/NOAA model, O3 content OMI satellite for South
Pole, and global view.
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Figure A288: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in August
2020.
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09/03/2020

Figure A289: PVA fields for the 20 hPa in pressure levels, days 09/01/2020 to 09/04/2020.
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Figure A290: Retroactive trajectory by the HYSPLIT/NOAA model, O3 content OMI satellite for South
Pole, and global view.
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Figure A291: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
September 2020.
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10/21/2020

Figure A292: PVA fields for the 20 hPa in pressure levels, days 10/19/2020 to 10/22/2020.
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Figure A293: Retroactive trajectory by the HYSPLIT/NOAA model, O3 content OMI satellite for South
Pole, and global view.
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Figure A294: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in

October 2020.
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11/22/2020

Figure A295: PVA fields for the 20 hPa in pressure levels, days 11/20/2020 to 11/23/2020.
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Figure A296: O3 content OMI satellite for South Pole, and global view.
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Figure A297: Vertical section of the atmosphere between 1000 and 5 hPa for the days of the event in
November 2020.
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