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to handle continuous tile parameters and arbitrary slot graphs, and to suggest new tiles to add to the set. We blend shape programs into the visual feedback loop by delegating tile content evaluation to the real-time rendering pipeline or exploiting the program's semantics to drive an impostor-based level-of-details system.

Overall, our series of contributions aims at leveraging program-based representations of shapes to make the process of authoring 3D digital scenes more of an artistic act and less of a technical task.

Résumé

Malgré la constante amélioration de la technique et du matériel informatique, permettant de manipuler du contenu numérique de plus en plus volumineux, la création de scènes virtuelles 3D reste une tâche complexe ; du fait notamment de la charge cognitive qu'elle impose aux artistes. Afin de fluidifier la création, des représentations d'ordre supérieur des formes 3D ont vu le jour : une forme est encodée en tant qu'elle est un programme qui génère sa géométrie. Cela rend possible une meilleure organisation de la charge cognitive lors de la création, mais possède néanmoins ses propres sources de friction. Nous étudions au cours de cette thèse les défis et opportunités induits par la représentation par programme des formes 3D, dans le contexte de la création de contenu numérique.

Nous cherchons à ce que l'interaction avec les formes reste autant que possible dans l'espace 3D, au lieu d'être une manipulation de symboles abstraits dans un espace de programmation. Il est question d'une part d'assister la création des programmes décrivant les formes, de permettre à l'artiste d'opérer dans l'espace 3D tout en assurant une bonne généralisation de ses actions lorsque les variables libres du programme sont modifiées, et d'autre part d'aider au contrôle de ces variables en permettant la manipulation directe de la géométrie générée par le programme.

Nous explorons la diversité de possibilités de représentation des formes par un programme, en nous focalisant sur différents paradigmes de programmation visuelle, allant des graphes orientés acycliques (DAG), impératifs, aux tuiles de Wang, déclaratives, en passant par des approches plus hybrides. Dans tous les cas, nous étudions des programmes de forme capables d'être évalués en temps interactif, de sorte qu'ils aient leur place dans un processus de création ; aussi étendons-nous notre étude aux synergies que ces représentations par programme peuvent établir avec les systèmes de rendu en temps réel.

Nous rendons possible l'utilisation de méthodes de manipulation directe sur la géométrie générée par DAG grâce à un jeu de règles de réécriture automatique et un filtre non linéaire de donnée différentielle. Nous aidons la création de programmes de forme impératifs en transformant des sélections d'éléments géométriques en des requêtes sémantiques, et la création de programmes déclaratifs en proposant un mode d'édition du contenu géométrique de tuiles de Wang centré sur les sections aux interfaces entre tuiles. Nous étendons les moteurs de pavage par tuiles pour prendre en compte des paramètres continus et suggérer automatiquement de nouvelles tuiles à ajouter. Nous intégrons les programmes de forme à la boucle de retour visuel en délégant l'évaluation du contenu des tuiles au système de rendu en temps-réel, et exploitons la sémantique du programme pour dériver un système de niveau de détails par imposteurs visuels.

En résumé, notre série de contributions vise à tirer parti des représentations par programme des formes pour faire du processus de création de scènes numérique 3D une tâche plus artistique et moins technique qu'elle ne l'est.

V. 3.7 Empowering creative people with the ability to author 3D content is one of the core goals of the field of Computer Graphics. Although hardware and techniques have increasingly improved over the years at handling heavy content (high amounts of polygons, complex lighting, etc.), digital 3D creation remains fairly complex. This is because the bottlenecks of a creation process do not only lie in compute power or memory limitations, they also include the saturation of the cognitive load on the designer. Addressing technical limitations consists in finding new algorithms to better solve existing problems, but reducing the cognitive load consists in identifying new problems, to reorganize the creation pipeline.

Unlike an engineering process, a creation process is not exclusively specified by a list of expected features. The only way to fully judge a creation is to face the result -or at least a relevant proxy1 of it -and feel its impact. Hence, this inherently involves loops of trial and error: the designer tries a creation gesture, or a series of gestures -like brush strokes or mesh manipulation operations -then appreciates the result and often decides to backtrack and try something different. This dialog has a cost, especially when working as a team, where backtracking may require to ask multiple people to do retakes.

We intend to reduce the cost of this creative backtracking. Of course, this can partly be done by improving computing performance, because slow visual feedback or lagged interactions clearly increase the cost of the loops and interrupt the designer in their creative flow. But our key axis is different: we explore the possibility to postpone artistic decision taking at a later stage of the authoring plan, thus making interaction loops shorter. This is enabled by representations of shapes centered on a program, namely a recipe leading to a shape, rather than the baked result itself.

NB This culinary metaphor is widespread among 3D modeling tools. One says that a geometry is baked or cooked to mean that it is the result of an automated process, i.e., the output of a shape generating program. This term means that the geometry is stored only for caching purpose, it may be freed at any time as long as we still have the recipe. It is opposed to editable geometry, which does not have an underlying generative model.

Addressing sources of cognitive load

During the creation of 3D content, a designer's mind is busy anticipating the behavior of the tool and planning its modeling strategy, and is thus less dedicated to creative concerns (Figure I.1). This dialog between a digital tool and its user is studied by the field of Human-Computer Interaction [START_REF] Beaudouin-Lafon | Instrumental interaction: An interaction model for designing post-WIMP user interfaces[END_REF], which serves as context to motivate our research.

Anticipation is needed locally, to choose a given authoring action. For instance, a tool that runs technically very fast but has a very chaotic response -a response that is hard to predict -is not an efficient tool. As a consequence, digital tools often adopt metaphors that mimic the physical world, because these are easier to anticipate for a human -who obviously is experiencing the physical world on a daily basis. And this is why we are interested in providing direct manipulation of the geometry in Chapter III.

Anticipation is needed more widely when splitting a goal into sub-targets corresponding to simple actions. This kind of gesture planning is called workflow.

A good workflow avoids repetitive tasks, avoids stacking up too many nested sub-goals in the designer's memory, and allows for the serendipitous discovery of unplanned details without breaking the overall expected result. The creation tool is responsible for inducing a good workflow, hence multiple contributions of this thesis are presented as systems, rather than focusing solely on a particular algorithm. Nonetheless, workflow is also a matter of designer's craftsmanship, and actually the choice of the tool itself is part of the gesture planning.

Anticipation is needed even beyond the outcome of the designer's work, because 3D scenes are often produced in teams. For instance, when modeling a 3D mesh with the intent of animating it, the designer must keep in mind how their choice of polygon connectivity will affect deformation and light simulation applied later in the pipeline. In such a case, the designer is not producing a final creation but rather a proxy, so they must be able to evaluate whether it is good without being able to even try by themselves the later stages of the process. We focus on the use of parametric shapes as these proxies, so that they can be adapted later in the process rather than requiring one to fully anticipate downstream usage.

I.2 Representing shapes as programs

There are multiple ways of representing shapes, and in particular surfaces. Some are better suited for real-time rendering (triangle meshes), some are closer to raw acquisition devices (points clouds), some handle volumetric data (voxels), some ensure valid topology (implicit surfaces). In this thesis, we study higher-order representations, where the stored information is a logical program implementing a function F such that its output F () is one of the above-mentioned representations. By opposition, meshes, voxels, etc. are called first-order representations. For instance instead of storing a list of vertices and faces to describe a mesh, we store a program, which in turn generates a list of vertices and faces when executed. We call a program that outputs 3D geometry a shape program.

The first strength of this approach is to be able to turn internal constants of the program into free variables, provided as inputs to F . For instance, if the program generates a 3-storey building by first generating a floor and then duplicating it, we can expose the number of duplicates as an input 𝑛 and F then represents an 𝑛-storey building. We call these inputs hyper-parameters and note them 𝝅 = (𝜋 1 , . . . , 𝜋 𝐾 ).

The function F thus becomes a parametric shape rather than a single fixed shape.

An output 𝐺 = F (𝝅) is called an instance of the parametric shape.

Representing a shape as a program is also in general much more compact that a first-order model. In the worst case, the program is just an enumeration of geometric elements and is thus equivalent to a fixed shape. But, in general, shapes may feature a lot of symmetries that can get factorized into a compact program. A program is also often resolution independent: the program "intersecting a sphere of radius 1 with a box of size 0.5 × 0.5 × 2" remains a 12-word sentence, whether the representation of the sphere uses a high definition or not.

When the shape program is compact, and/or when it has been carefully authored by a designer, it contains information beyond its sole output: the program's structure tells a lot about the meaning of the shape and its parts. This semantic information is particularly required to ensure the consistency of the shape upon changes of the hyper-parameters, and reciprocally if a parametric shape behaves well, its program likely contains relevant semantic information. This observation is at the heart of our DAG amendment method presented in Section III.3.

I.2.1 Shape programs help the creation process I.2.1.1 Postponing artistic decision-taking

When a designer crafts a regular static asset, they first define their intent, and then implement it through a series of authoring gestures. As they see their creation unfolding, they take many additional decisions on the fly, and burn them into the scene. For instance, when drawing a house, they eventually choose whether the slope of the roof is rather steep or flat and then build further, adding for instance tiles on the roof. Once done, if they realize that the slope does not feel right, backtracking almost means starting over, because all the actions happening after this artistic decision depended on it.

On the contrary, if creating a parametric shape -represented as a programthe designer can leave all these decisions for a later stage by creating hyperparameters that can still be tuned afterwards. Since we store a program, i.e., a series of instructions, we are able to automatically replay downstream gestures whenever the hyper-parameter defining the roof's slope changes.

The designer thus focuses separately on first the technical implementation of the shape program and second the detailed artistic choices. This reduces the need for the designer to go back and forth between high level intent planning, and lower level authoring actions, which is cognitively intensive. However it makes the process of building the initial shape more complex because one must account for all the possible values of the hyper-parameters, so in Section III.2 we explore one possibility to ease this process.

I.2.1.2 Non-destructive modeling in practice

The split between these two tasks, as well as the use of program-based representations for shapes to handle it, naturally emerged from the practice of 3D modeling in industrial contexts. Operations called non-destructive are available in all major 3D modeling tools, often called modifiers or deformers. They are effects applied as post processes, between the geometry actually manipulated by the designer and the output or display of the shape. They may be chained, and even reference the output geometry of other objects, for instance if the non-destructive operation is a Boolean difference. When used intensively, the combination of these modifiers constitute a graph of operations, that is in essence no less than a program.

Some tools pushed the use of non-destructive modeling one step closer to the idea of representing shapes as programs by basing their user interface mainly on the manipulation of a directed acyclic graph (DAG) of geometry processing operations, an interaction commonly described as visual programming. Some examples of this approach are SideFX' Houdini, the model graphs of Adobe Substance 3D Designer or the Geometry Nodes in Blender, plebiscited after the success of a third party extension called Animation Nodes (Figure I.3). Houdini has even been awarded an Oscar by the Academy of Motion Picture Arts and Sciences in 2018 precisely for its choice of a DAG-centric workflow, proving once again the practical relevance of this approach. Such imperative DAGs are the focus of our Chapter III.

I.2.2 Related types of parametric assets

Shapes are not the only kind of digital content that has been turned into parametric assets. The manipulation of procedural graphs of image filters is quite popular, either for texture design with tools such as Adobe Substance Designer or for video compositing like in Foundry's Nuke, Natron or Autodesk Flame. Parametric textures are of great value to help designers quickly explore variations of a texture, which is not easy to do manually using an image editing program because a material is composed of multiple closely related maps (albedo, roughness, normal, etc.). For video compositing, the programmatic nature of the operations is important to ensure that effects are consistently applied to each frame of a video, something that would be very hard to achieve if the user would be manually drawing on each image individually. Actually even when the user interface of a compositing program is not explicitly showing a graph, e.g., in Adobe After Effects, the composition can still be thought as a program. Animation results from the progressive modification of the input hyper-parameters of the composition.

Sound processing is also a good client for parametric effects and program-based representations, especially in the context of live performances. From the very beginning of computer aided music, in the late 50s, with the MUSIC and Csound family of domain-specific languages, musical content was split into the description of parametric synthesizers on one hand and the specification of the temporal evolution of the so-defined parameters on another hand. These languages then inspired more visual approaches like Max/MSP and PureData (sometimes called patcher programming languages) which directly expose a visual DAG to the sound designer. Nonetheless text-based programming of music tracks is still in use, even for DJ-like live programming performances. This often relies on tools built around the SuperCollider programmable sound synthesizer (TidalCycles, SonicPi, etc.).

Patchers like PureData and vvvv were also extended to handle rhythm-based realtime graphic composition through visual programming, and a highly parametric interface is actually found in all VJing tools, e.g., Resolume or Smode, or even Notch for live 3D effects. Indeed, a live performance set is typically prepared by building a set of dedicated parametric effects in advance and then on stage everything is achieved through parameter-tuning. This thesis focuses on parametric 3D shapes used in the context of authoring objects or scenes for motion pictures and video games. This means we need shape programs to evaluate in interactive time, although true real-time is not as critical as in a live performance.

I.2.3 Other creation workflows

Parametric shapes are not the only way of mitigating the cost of creative loops. Tools as simple as layers, in 2D image manipulation applications like in Adobe Photoshop, are also meant for limiting destructive actions. Using different layers for sketching, coloring, lining, lighting, etc. also follows the principle of decoupling tasks.

Non-destructive workflows do not fit all situations. Virtual clay approaches (e.g., Z-Brush) are still relevant in some cases, for instance for concept arts at earliest stages of a production. This class of tools, including also virtual painting application, limits frictions in the creative process by pushing as far as possible the metaphor reproducing the feel of tangible tools like brushes and clay. Thus, the user can rely on their experience of the real world to anticipate the behavior of the tool. We use to some extent this metaphoric approach as a mean to make shape program manipulation more intuitive in Section III.4.

I.2.4 Challenges specific to program-based representations of shapes

Representing shapes as program has a lot of potential, but comes with a lot of challenges. Most of the difficulties are related to the fact that a program is meant to capture the semantic structure of a shape and that, with its hyper-parameter freed, a parametric shape is an object of very high dimension -too high to be visualized all at once. Ensuring generalization Authoring a parametric shape is programming, and programming is a notably hard task, even if it is visual programming. Building a shape program is trickier than designing a single fixed shape because in order to evolve in a relevant way when the hyper-parameters later vary, the program must have a good power of generalization. The designer must at any time reason about all the possible variations of the shape and not just its current state.

For instance, when placing a jar on top of a table, the designer should not move it by a fixed amount. They should rather specify in the program that the jar moves vertically by a value equal to the height of the table, so that whenever this height changes the jar remains on the table. The information actually stored in the model -the shape program -is then closer to the semantic assertion "being on top of the table" than it is a geometric piece of information. This is particularly visible in the case of declarative programming.

Assisted authoring of shape programs One of the challenges of shape programs is thus to assist the creation of the programs, make it feel as much as possible like crafting a single fixed shape, but without loosing the ability to generalize and produce relevant variations. This means being able to locally extract the semantic intent behind each edition of a shape, and providing atomic operations that operate at the scale of the whole program rather than on geometry.

However this assistance may introduce more constraint for the designer. Since finding the intent is an under-specified problem, we may need to integrate some domain-specific prior in the authoring tool. This raises the question of the artistic freedom of the designer: the modeled shape must be perceived as a creation of the artist, not a creation of the tool. A trade-off can consist in only suggesting several possible changes to the program, following different priors, and leaving the final word to the user. It is also important that the assistance does not completely prevent the user from manually editing the program. This two-way manipulation of a program and its output is sometimes referred to as bidirectional programming.

Shape manipulation Once written, the shape program still raises challenges. In the spirit of splitting the technical task of creating the program from the more art-oriented manipulation of the hyper-parameters, the latter should be as intuitive as possible for the user of the shape program -who is potentially not the same person as the program's designer. The main source of friction in this manipulation is that the degrees of freedom are hyper-parameters expressed in the space of the program, usually displayed as a list of sliders, but the intent of the user is better expressed in the 3D space, by directly manipulating the geometry output by the program. Interacting with raw hyper-parameters requires the user to anticipate the behavior of the parametric shape, which is one of the source of cognitive load that we intend to mitigate.

Integration with other programs A shape is processed by other tools than 3D modeling software; for instance it interacts with render engines or physic simulations. A straightforward way of ensuring the compatibility between shapes represented as programs and other tools is simply to evaluate the shape program and provide the resulting fixed geometry to, e.g., rendering algorithms. But the rendering pipeline could actually be adapted to benefit from the extra information embedded in the program. Real-time rendering in particular is important in authoring tools, since they must provide constant visual feedback to the designer.

I.3 A taxonomy of shape programming paradigms I.3.1 Terminology

We make no particular distinction throughout this thesis between a shape representing a single object, often made of a single connected component, and a whole 3D scene containing many different pieces. We however associate a different meaning to the terms shape and geometry: the former is the concept of the object, or scene, whereas the latter is a formal subset 𝐺 of R 3 , i.e., a set of 3D points. In particular, we can talk about a parametric shape as one entity, because however the hyper-parameters vary, we assume that the result still represents the same conceptual object. But we would not talk about a "parametric geometry" because for each value of the hyper-parameters, the output of the shape program is a different subset of R 3 , so a completely different geometry. Note that when dealing with a fixed shape, which has no possible variation, the notions of shape and geometry become equivalent. To summarize, usual first-order representations of shapes are meant to encode geometries, while higher-order representations (e.g., shape programs) encode a whole parametric shape.

NB The term parametric is also used in geometry to qualify splines encoded as a function 𝑢 ∈ (0, 1) ↦ → 𝑥 ∈ R 3 and surfaces encoded as (𝑢, 𝑣) ↦ → 𝑥 ∈ R 3 . To avoid confusions with the parameters 𝑢 and 𝑣, we stick to the term hyper-parameter to qualify the input 𝝅 of our parametric shapes.

A parametric shape F : 𝝅 ↦ → 𝐺 is a function. A shape program is a possible implementation of this function. In other terms, it is a symbolic representation of F . These symbols may take multiple forms and follow different paradigms: imperative, listing a sequence of operations to perform, or declarative, stating a set of constraints to fulfill; deterministic or stochastic; visual or text-based.

I.3.2 Imperative Directed Acyclic Graphs

An imperative program is a sequence of effective actions, given in the order in which they must be performed to compute the output of F given its input 𝝅. This is in a way the recipe of the shape. Imperative programming directly describes the control flow of the program and is thus close to the low level execution of the program -even though it also allows for higher-level abstractions. Although in other contexts a computer program is primarily seen as a text formatted with a specific syntax, in the case of shape programs we more naturally focus on Directed Acyclic Graphs (DAG). Manipulating a program as a DAG rather than as text may be called visual programming and is more common than text-based programming in the practice of shape programming. Such a DAG is defined as a tuple (𝑁 , 𝐶) composed of a set 𝑁 of nodes and a set 𝐶 of oriented connections. A node represents a processing operation, and a connection Figure I.4: Our representation of nodes (1a) differs visually from the strict definition of a DAG, but is equivalent when encoding each slot as a node in the strict way (1b). In some contexts, dependency connections internal to our nodes are specified (2a) making encoding it as a slightly different strict DAG (2b).

carries geometry from one operation to another. Each node has zero or more input slots, and one or more output slots, and a connection links one output slot to an input slot. An input slot may have at most one connection but an output slot can be connected to multiple inputs, because the geometry generated by an operation might be read by multiple other operations. Although the traditional mathematical definition of a DAG does not include this notion of slot, Figure I.4 shows that slots can be encoded in the pure definition, provided we can order the connections of internal nodes. In practical DAG editors, it is actually possible to nest a whole sub-graph inside a node, and to instantiate sub-graphs, providing an equivalent of function calls in a text-based program. Yet, this remains equivalent to a strict DAG when it comes to mathematical analysis.

Benefits of visual programming

The original motivation for developing visual languages is likely the accessibility. When writing code as text, a programmer has to keep in mind constraints at two different conceptual levels: the syntax level, and the semantic level. Visual programming ensures the syntactic soundness of a program by-construction, leaving the developer with only the semantic part to think about. Of course, this part itself ranges over multiple levels of abstraction, from simple atomic operations to design pattern and software architecture, but at least syntax is no longer an issue. Furthermore, representing a program as a DAG is slightly more expressive than as a text in a purely imperative language: as illustrated in Figure I.5 and highlighted by [START_REF] Johnston | Advances in dataflow programming languages[END_REF], the DAG naturally provides information about what can be parallelized.

Seasoned programmers who developed habits with text-based programs easily feel frustrated when trying visual programming. It is in the best case slower to manipulate visual nodes than characters, but this is mostly because visual programming does not benefit from a base of productivity tools as large as what as been developed in the context of IDEs2 for text manipulation.

I.3.3 Declarative programs

Explicit definition of the control flow of a program is not always the most convenient way to specify a program. Imperative programming requires to learn and explicitly implement a whole family of algorithms (although this effort can be shared through libraries of functions). But the designer of a shape often wants to express an intent that is not an algorithm but rather a set of constraints and requirements that the resulting shape must fulfill.

Declarative programming consists in declaring a series of facts and rules, and then letting a problem-agnostic engine solve the unknowns to provide a valid output. The engine can range from a solver of pure logic formulas to discrete or even continuous optimization. The former is the object of specific programming languages like Prolog or Datalog, while the later tends towards model fitting, where a template defined and constrained by the designer and/or by domain specific knowledge, and an optimizer finds the most relevant values for filling the template.

Since we are interested in visual programming, we focus on the framework of Wang tiles. A Wang tile is a square whose edges are marked with colors, and the only rule governing how tiles can be laid out is that only edges of matching colors are allowed to be in contact. Programming with Wang tiles consists in defining the set of slots that must be covered with tiles, as well as stating the edge colors for the set of tiles that can be used by the tiling engine. This constitutes a Turing-complete programming paradigm, so it is very expressive, while remaining fully visual. But this comes at the cost of being hard to solve in general.

I.3.4 Hybrid programming

In practice, the frontier between imperative and declarative paradigms is not as strict as presented above. For instance, [START_REF] Krs | PICO: Procedural Iterative Constrained Optimizer for Geometric Modeling[END_REF] proposes a powerful combination of imperative, declarative and example-based ways of modeling shapes. We illustrate the cohabitation of paradigms with a little case study of a video tutorial about shape programming where the author expresses their modeling strategy, which gives us insights about their reasoning. Figure I.6 shows steps extracted from this tutorial and we invite the reader to follow the video linked in its caption.

The first noticeable point is that, although they use a DAG-based imperative programming language, they actually recreate a shallow tile-based engine within this framework. The rules determining which tile belongs in a particular slot are very simple, purely contextual: they only consist in using the coordinates of the slot and the presence or absence of neighbors, and they don't involve advanced constraint solving. Yet this is one example among others showing that tile-based programming of shapes is an artist-approved creation tool.

The author mentions the term "semi-procedural modeling" to mean that the creation pipeline combines a shape program with static elements that have been manually authored, namely the tiles. This point is important to ensure that the artists can express themselves with enough freedom, that the result of the procedural modeling will wear their artistic signature. This ability to combine automated behaviors with hand-tailored elements is a strength of tile-based creation.

Furthermore, the artist deems some mensuration of the tile's content as "flexible". They do not really use it in practice because their framework does not make this easy enough, but they thus mean that the tile's content features hyper-parameters which may be tuned to create variations. Interestingly, this means that within the declarative framework of Wang tiles, the content of tiles can be parametric shapes e) are captured from the explanation of the procedural modeling strategy adopted by the designer to create the result shape. Although this is in practice implemented using an imperative DAG (Blender's Geometry Nodes), this approach is close to tile-based modeling, where step (a) describes a graph of slots where tiles of geometry are instanced following specific adjacency rules such as placing shops and doorways if there is no slot bellow. Courtesy of Chong 3D (https:// www.youtube.com/watch?v=-rexNuTap44).

described by an imperative program.

One challenge raised by this idea is that some neighboring constraints may entangle the hyper-parameter values of one tile with those of another tile. For instance here the "flexible" value is the height of the tiles used for the top-most row: although it may vary from one building to another, it must be the same for two neighbor tiles. We investigate this idea of making tiles themselves parametric shapes in Section IV.3.

Lastly, on a slightly different topic, this practical example of shape programming shows the importance of the semantic selection scheme that we will explore in Section III.2. A consequent part of the tutorial focuses on the problem of selecting the top-most row of tile slots. They first use a threshold on the vertical coordinate of the slot, but as they highlight, hardcoding the threshold fails at generalizing to a change in the number of floors. They then switch to a procedurally defined threshold that depends on the floor count, thus representing the selection as a program. This selection program behaves well in all cases, but the process for defining this selection query is far from being as simple as manually selecting the intended row. We intend in Section III.2 to simplify this process thanks to a query synthesis method able to generate a semantic selection given a manual selection. I.3.5 Limits of our scope I.3.5.1 About determinism Whether it is declarative or imperative, a shape program -like any other programmay be either deterministic or stochastic. A deterministic program always outputs the same geometry when it is given the same input, whereas a non-deterministic program features random behaviors. This non-determinism can come from the intentional use of a random generator in the program, or in the case of a declarative program it may be caused by the use of random algorithms in the core engine, when multiple solution can fulfill the constraints.

Although randomness can contribute a lot to the visual diversity of a programgenerated shape, it requires more anticipation effort from the user, or arouse frustration if they want to roll back to a previous result that pleased them better. It is hence common to turn non-deterministic programs into deterministic ones by exposing the random seed of an internal pseudo-random generator as an input hyper-parameter. This way, the user can change unrelated hyper-parameters without triggering the re-sampling of all (pseudo-)random values. Hence we focus on deterministic programs.

I.3.5.2 Real-time feedback

We focus on programs that evaluate at interactive rates, so that they fit in a fluent creation loop. As a consequence simulation and heavy procedural generation, although being programs which output geometry, are out of the scope of this thesis.

I.3.5.3 Non program-based higher-order representations

Representing a higher order shape F -which is a function -through its implementation as a program is the most natural option, and the one we focus on in this thesis, but it is not the only one.

Besides the symbolic approach, a function can be represented by its graph. In our case, the graph of

F : 𝝅 ↦ → 𝐺 is a subset of Π × R 3 .
A key difference though is that we very often need to query slices (at constant 𝝅), which is not something usual representation have been optimized for. There is thus no obvious representation for efficiently encoding the graph of a parametric shape F .

Another class of non-symbolic representations of parametric shapes is the case of learnt representations (a.k.a. data-based representations), and in particular neural networks.

I.4 Outline

The remainder of this thesis is organized as follows. Chapter II presents previous work related to representing shapes as programs. In particular, we see that although the wording may vary, many assets typically found in modeling work are in essence parametric shapes.

Chapter III explores possibilities to bring the interaction with DAG-based imperative parametric shapes back in their output 3D space, rather than in program space as it is usually the case. We address this issue both at design time, assisting the creation of such shape programs, and at manipulation time, by providing inverse control of the input hyper-parameters.

Since imperative DAGs, with explicit control flow, are not the only programming paradigm, we study in Chapter IV another class of shapes, based on constraint programming. We focus in particular on tile-based modeling, a versatile framework for discrete constraint programming of shapes, and hybrid it with the previous chapter by turning tiles into imperative shape programs themselves.

Since our motivation to study shape programs is their positive impact on the creative loop, we see in Chapter V how to integrate them more deeply in the pipeline for real-time visual feedback critical to the efficiency of an interactive tool. This coupling enables us to either defer the evaluation of some parts or the shape program or anticipate rendering within this program, and thus increase the performance of rendering.

Finally, Chapter VI concludes this thesis by opening to new prospects that seeing shapes as program may offer.

I.5 Contributions

Our main contributions are summarized in this section. A first part unifies the manipulation and automatic processing of imperative DAG-based shape programs:

• An automatic DAG amendment mechanism for defining shape differentiation with respect to the hyper-parameters even when the DAG outputs geometry of varying connectivity.

• A non-linear kernel for filtering jacobians when applying inverse kinematics on procedural geometry with high-frequency spatial variations, rather than on a coarse control structure.

• A program synthesis method for turning selections of geometric elements that were hand-picked on a particular instance into semantic selection queries generalizing consistently when the program is altered.

Some other contributions focus on declarative tile-based programming, illustrated on a design workflow for authoring mesostructure along surfaces:

• A bottom-up approach to the creation of the geometric content for Wang tile-based modeling, bringing the interfaces between tiles as the primary area of edition and ensuring continuity by construction.

• A tile suggestion mechanism to assist the creation of a set of Wang tiles, mitigating the difficulty of tiling being NP-hard.

• The hybridization of tile-based modeling and imperative procedural models thanks to a tiling engine solving for per-tile continuous hyper-parameters.

At last come contributions on the integration of shape programs whose output features a lot of self-similarity with real-time visual feedback:

• A compact tile-based mesostructure model where geometry evaluation and mapping are delegated to the GPU, enabling real-time user feedback and delivering hundreds of millions of polygons per-second on standard hardware.

• An efficient rendering pipeline for dense stackings of similar procedural objects, leveraging their quasi-spherical geometry to enable advanced culling at both object and fragment level.

I.6 Publications

I.6.1 Peer-reviewed papers

A large proportion of the contributions discussed in this thesis has been presented as standalone papers in international scientific journals, and thus validated by our peers:

• Élie Michel and Tamy Boubekeur. 2020. We also presented two posters:

• Élie Michel and Tamy Boubekeur. 2020. 

I.6.2 Released source code

Throughout the making of this thesis, multiple prototype have been released as open source programs. This section briefly points the reader to the chapters they relate to.

DagAmendment An add-on for Blender enabling the direct manipulation of parametric shapes built using non-destructive tools such as modifiers and constraints. It regroups the contributions of sections III.3 and III.4.

MesoGen Standing for Mesostructure Generator, it is a modeling tool for authoring complex mesostructure along the surface of quad meshes, following the tile-based approach of Section IV.2. Its real-time visual feedback is ensured by the method from Section V.2.

GrainViewer A standalone viewer focusing on dense stackings of pseudospherical items which demonstrates the multi-scale real-time rendering pipeline presented in Section V.3.

II

Related Work

Our choice of studying shapes that are represented as programs is grounded in the observation that, despite a variety of wording to designate them, such shapes are already present in diverse contexts. The notion of program is indeed wide enough to be the common denominator of many representations. It might sometimes even feel too generic to be informative, so in each chapter we will particularize our analysis, nevertheless we draw up in Section II.1 a landscape of program-based representations to stress out the potential of our overall approach.

Furthermore, we have identified that the strength of shape programs lies in the shape manipulation workflow they enable. Section II.2 introduces interactive mesh deformation methods and then focus on authoring tools that involve parametric shapes and their programmatic nature. Both geometry-level and program-level manipulation of shape can be combined together in bidirectional authoring systems.

Lastly, we review in Section II.3 techniques that pragmatically explore the hyperparameter space of a parametric shape, looking for a solution optimal with respect to some problem-specific criterion. This setting is typical from Computer-Aided Design, a field where shapes are often represented as programs and the correct variation is selected based on physical constraints rather than artistic choices. Although this might sound different from our area of study, Section III.4 treats user's input gestures, during shape manipulation, as a particular case of problemspecific criterion to automatically optimize for.

II.1 Shape programming in the wild

Many objects manipulated in a shape modeling pipeline can be thought as parametric shapes, and thus naturally represented as programs. Parametric shapes are indeed a natural way to represent 3D objects in a space of lower dimension and higher meaningfulness than giving direct access to e.g., raw vertex positions. Section II.1.1 highlights that rigging is the de facto tool used in practice to build a large part of parametric shapes.

More generally, programming is the most effective framework for representing complex and multifarious intents; Section II.1.2 presents shape programming idioms developed in the context of Procedural Modeling.

A program carries semantic information about the shape it generates. Inversely, semantic information can be used to build a program given its output. This extraction is the challenge addressed by Inverse Procedural Modeling techniques presented in Section II.1.3.

Lastly, we review in Section II.1.4 how the product of Machine Learning tools such as auto-encoders can be thought as parametric shapes. They are however parametric shapes whose representation is not a symbolic program but rather a numerical model.

II.1.1 Rigging

II.1.1.1 Definition

Rigging is the act of transforming a given static geometry into a parametric shape. This step comes after the static modeling and prior to the animation of a shape, and its main purpose is to restrain the possible deformations of the geometry, to ensure that whoever animates it may use only meaningful poses.

The most common use of rigged deformation is character animation. The rig ensure for instance that an elbow cannot be bent in the wrong direction, or that a foot cannot suddenly become twice as big as it usually is. The terminology used by the rigging literature is thus inspired by its application to characters, although the notion of rigging is actually more general. Any model meant to be articulated can be rigged, including for instance mechanical structures.

Rigging is a three-way process. At first one defines a coarse kinematic structure called skeleton or armature. It is a graph of joints -3D points with an orientation and a scale -connected to each other by bones. Joints are equipped with various constraints and expressions that reduce their degrees of freedom and expose them as higher-level semantic values to the animator. For instance, the direction of the eyes of a character is better exposed as a position to look at rather than an angle of rotation of the eyeballs. Secondly, one attaches the actual surface of the object to these bones, a process commonly refer to as the skinning. And finally, building a rig includes the creation of controllers. Controllers are visual handles whose position, orientation and scale drive the joints; they enable spatial interaction with the abstract degrees of freedom of the skeleton.

The result of rigging is a parametric shape. The semantic degrees of freedom of the skeleton are what we call hyper-parameters, and the deformed character or object is the output of this shape. The rig itself is in a way a program. It is at first glance a declarative program since building a skeleton consists in defining constraints. But the rig engine does not intend to solve these constraints using an advanced optimization scheme, because it is important that the program executes in real time for the animators to do their job. Instead, it treats the constraints as imperative operations and figures out in which order they must be executed.

The rig engine thus compiles a declarative program into an imperative one, which is by the way usually exposed to the designer as a DAG. Of course this has limitations, it fails as soon as there are dependency loops in the constraints, because topological sorting is then not possible. It covers nonetheless a wide range of common use cases, and more advanced scenarios can be addressed by manually interacting with the DAG.

II.1.1.2 Assisted rigging

Some of the difficulties of shape programming that we identified previously have been studied in the context of rigging. We focus here on assisting the rigging process, and shape manipulation will be discussed later on, in Section II.2.

We distinguish the kinematic parameters, which are the raw degrees of freedom of the joints of a coarse skeleton, or control cage, and the higher-level hyperparameters 𝝅 on which the animator has control. Wording varies among papers, for instance [START_REF] Capell | Physically based rigging for deformable characters[END_REF] calls them respectively pose parameters 𝛼 and abstract parameters 𝛽. Hyper-parameter space is also sometimes called embedding space, rig space [START_REF] Hahn | Rig-space physics[END_REF], design space [START_REF] Talton | Exploratory modeling with collaborative design spaces[END_REF] or animation space [START_REF] Merry | Animation space: A truly linear framework for character animation[END_REF].

Kinematic parameters can be estimated automatically using geometric analysis for skeleton extraction, especially in the case of organic objects. This can be based for instance on path finding in the medial surface of a voxelized object [START_REF] Tsao | Stochastic skeleton modeling of objects[END_REF][START_REF] Wade | Fast, fully-automated generation of control skeletons for use in animation[END_REF], or using the Reeb graph of the geodesic distance to a single user input point [START_REF] Lazarus | Level set diagrams of polyhedral objects[END_REF][START_REF] Hilaga | Topology matching for fully automatic similarity estimation of 3D shapes[END_REF][START_REF] Tierny | 3D mesh skeleton extraction using topological and geometrical analyses[END_REF][START_REF] Pascucci | Robust on-line computation of reeb graphs: Simplicity and speed[END_REF][START_REF] Aujay | Harmonic skeleton for realistic character animation[END_REF]. Some extraction methods may produce loops [START_REF] Au | Skeleton extraction by mesh contraction[END_REF], which is not ideal for rigging but still enables animation.

On the other hand, determining semantic hyper-parameters requires a domain specific prior. One possibility is to fit an existing hand-made rig space to a new input geometry [START_REF] Baran | Automatic rigging and animation of 3D characters[END_REF][START_REF] Li | Example-based facial rigging[END_REF][START_REF] Ali-Hamadi | Anatomy transfer[END_REF], typically for motion re-targeting [START_REF] Avril | Animation setup transfer for 3D characters[END_REF]. This works for shapes that are common to many different scenes, such as human bodies for instance, and enable the use of animation databases such as Adobe Mixamo. For less common shapes, e.g., imaginary creatures, [START_REF] Miller | Frankenrigs: Building character rigs from multiple sources[END_REF] developed Frankenrigs, which composes parts of different example rigs. For more examples [START_REF] Rumman | State of the art in skinning techniques for articulated deformable characters[END_REF] surveys auto-skinning methods and includes discussions about skeleton extraction.

The other way of injecting prior knowledge is through the use of Machine Learning. It has been applied to most common use cases of rigging like human bodies [START_REF] Anguelov | 142 SCAPE: Shape completion and animation of people[END_REF][START_REF] Loper | SMPL: A skinned multi-person linear model[END_REF][START_REF] Liu | NeuroSkinning: Automatic skin binding for production characters with deep graph networks[END_REF][START_REF] Osman | STAR: A spare trained articulated human body regressor[END_REF], human faces [START_REF] Blanz | A morphable model for the synthesis of 3D faces[END_REF][START_REF] Li | Learning a model of facial shape and expression from 4D scans[END_REF][START_REF] Vesdapunt | JNR: Joint-based neural rig representation for compact 3D face modeling[END_REF][START_REF] Song | Accurate face rig approximation with deep differential subspace reconstruction[END_REF] or even generic shapes (Z. [START_REF] Xu | Predicting animation skeletons for 3D articulated models via volumetric nets[END_REF]. For instance L. [START_REF] Liu | NeuroSkinning: Automatic skin binding for production characters with deep graph networks[END_REF] automatically skin characters using Graph Convolution Networks, even when the skeleton varies. [START_REF] Holden | Learning an inverse rig mapping for character animation[END_REF] learns how to place semantic manipulators to reach a given kinematic pose. Generally a subset of the hyper-parameters gives the morphological identity of the character and the remainder is related to posing and animation.

NB Softwares like lucky3d's AutoRigPro1 shows the large variety of tools that can be used to help the tedious process of rigging. In practice this kind of assisted tools seems to be preferred by artists over fully automated approaches.

II.1.1.3 Real-time evaluation

Animators work with time, they compose a temporal signal, and the human eye is very sensitive to tiny variations of delays and synchronization. The ability for a rig to evaluate in real-time is thus critical. However, a production-grade rig can easily be composed of several hundreds of operations, in order to account for numerous details and cases of non-linear deformation. [START_REF] Watt | LibEE: A multithreaded dependency graph for character animation[END_REF] reports how the animation studio Dreamworks schedules the evaluation of the nodes of a rig in order to exploit multi-threading. Similarly, Pixar developed a rig execution engine called Presto (ElKoura & [START_REF] Elkoura | Presto execution system: An asynchronous computation engine for animation[END_REF] and Disney Animation also addressed these challenges [START_REF] Lin | Achieving real-time playback with production rigs[END_REF]. A Siggraph 2014 course on multi-threading [START_REF] Watt | Multithreading for visual effects[END_REF] surveys these solutions centered on computer engineering. This can be combined with on-GPU rigging/skinning that is used in the context of video games [START_REF] Tarini | Lecture notes in game dev[END_REF], as well as memory management methods to reduce the I/O complexity [START_REF] Marchal | Memory and data aware scheduling (Habilitation à Diriger Des Recherches)[END_REF].

When optimizing the evaluation of the rig is not enough, for instance because there are multiple characters moving together, a solution is to replace the rig with a faster but equivalent model of deformation. For instance Bailey et al. train a deep learning model to mimic the behavior of complex rigs but at interactive rates [START_REF] Bailey | Fast and deep deformation approximations[END_REF][START_REF] Bailey | Fast and deep facial deformations[END_REF]. Their work intervenes between the creation of the rig and its use by the animator, similarly to our DAG amendment in Section III. Repeated patterns and systematic behavior in the designer's authoring gestures and observations are common during 3D modeling. The automation of these creation rules is called procedural modeling, and its outcome naturally takes the form of a shape program. It enables the production of heavy content that would take too much time to craft manually, like immense landscapes, cities, diverse crowds, complex trees, etc. As highlighted by R. [START_REF] Smelik | Integrating procedural generation and manual editing of virtual worlds[END_REF], procedural modeling papers study, for a particular application, the tension between artistic freedom i.e., the versatility of the procedure, and the degree of automation and speed of creation.

Our intent on the other hand is to abstract the process of developing procedural models. We need the shape to be represented as a program, but try to remain agnostic in the specific domain it was developed for. In the case of imperative procedural models, [START_REF] Schinko | Scripting Technology for Generative Modeling[END_REF] and before them Havemann's thesis (2005) stated a similar intent. In particular the Chapter 5 of the later, about Generative Modeling Language, describes a program-based representation of shapes.

The boundaries of procedural modeling are somewhat fuzzy. On one side, it fades into heavier simulation methods. Although technically a rigid body simulation is a procedure that automates creation (specifically the animation), it is not considered as a case of procedural modeling. A simulation algorithm reproduces a physical phenomenon, but does not embed any artistic bias. It may however be a part of a procedural modeling system. On its other side, we start calling parametric shape a procedural model when the program evaluates in interactive time. But when the procedure has a chaotic behavior i.e., when its output is hard to predict, subject to a lot of pseudo-randomness, the term procedural modeling remains preferred.

II.1.2.2 Use cases

Procedural generation is used to model virtually any kind of shape in practice, but its use cases that end up in the academic literature are centered around a few particularly challenging tasks. We introduce some of them here and for a more exhaustive overview we refer the reader to dedicated surveys like R. M. [START_REF] Smelik | A survey on procedural modelling for virtual worlds[END_REF] and [START_REF] Krispel | The rules behind -tutorial on generative modeling[END_REF], or the state-of-the-art section of previous thesis centered on procedural modeling [START_REF] Emilien | Interactive design of virtual worlds : Combining procedural modeling with intuitive user control[END_REF].

Terrain generation

The fractal beauty of natural landscapes has long been a source of both fascination and challenge for artists and researchers. Earliest work consisted in crafting fractal noise models generating mountain-looking elevation maps [START_REF] Prusinkiewicz | A Fractal Model of Mountains with Rivers[END_REF][START_REF] Ebert | Texturing and Modeling: A Procedural Approach[END_REF], whose hyper-parameters were amplitude, lacunarity, recursion depth.

These models were missing important visual features caused by weathering, so shallow simulation algorithms for thermal and hydraulic erosion were later introduced and refined [START_REF] Beneš | Visual simulation of hydraulic erosion[END_REF][START_REF] Mei | Fast Hydraulic Erosion Simulation and Visualization on GPU[END_REF][START_REF] Št'ava | Interactive terrain modeling using hydraulic erosion[END_REF]. They are usually constrained to layered heightmap representation of terrains (which is well described by [START_REF] Cordonnier | Layered Models for Large Scale Time-Evolving Landscapes[END_REF]), although some also use more general fluid simulation techniques, e.g., smoothed-particle hydrodynamics (SPH) [START_REF] Krištof | Hydraulic Erosion Using Smoothed Particle Hydrodynamics[END_REF].

As mentioned above, this kind of time-consuming simulation-based algorithm no longer fits our conceptual framework of parametric shapes, supposed to evaluate in interactive time. So other approaches were developed to give water streams a primary role in landscape shaping from the bottom up [START_REF] Kelley | Terrain simulation using a model of stream erosion[END_REF][START_REF] Belhadj | Modeling landscapes with ridges and rivers: Bottom up approach[END_REF], leading to large-scale consistent watersheds [START_REF] Génevaux | Terrain generation using procedural models based on hydrology[END_REF][START_REF] Génevaux | Terrain Modelling from Feature Primitives[END_REF][START_REF] Peytavie | Procedural Riverscapes[END_REF].

Tile-based methods, on which we focus in Chapter IV, have also been used for terrain generation, as well as other combinatorial approaches [START_REF] Maung | Applying formal picture languages to procedural content generation[END_REF]. It is particularly used in the context of video games [START_REF] Stalberg | Wave function collapse in bad north[END_REF], where tiling also provide gameplay-related features, e.g., path-finding [START_REF] Scurti | Generating Paths with WFC[END_REF][START_REF] Sandhu | Enhancing wave function collapse with design-level constraints[END_REF]. We use terrain generation as an example of application of our parametric tiling method in Section IV.3.

A more complete view of procedural modeling methods can be found in surveys from R. M. [START_REF] Smelik | A survey of procedural methods for terrain modelling[END_REF] and [START_REF] Galin | A Review of Digital Terrain Modeling[END_REF].

Data-based generation Another edge of procedural modeling is the use of existing data, either as a prior, a set of examples or a bank of samples to query from. For instance, H. [START_REF] Zhou | Terrain Synthesis from Digital Elevation Models[END_REF] introduced a powerful way to create elevation maps using existing samples that comply with a complex user input. The rise of machine learning techniques, which started around the same time, lead more people to look into this kind of data-based approach to terrain generation (É. [START_REF] Guérin | Interactive example-based terrain authoring with conditional generative adversarial networks[END_REF][START_REF] Guérin | Gradient Terrain Authoring[END_REF].

In a way, data-based procedures may feel like a degenerate cases of procedural generation, because they have to either embed their whole dataset or use a compact representation of its data that is hardly human-interpretable (e.g., neural networks), but when the latter rely on automatic differentiation tools, it can actually fit the approach we use in Section III.4. Search-based procedural generation is surveyed by [START_REF] Togelius | Search-based procedural content generation: A taxonomy and survey[END_REF].

Trees and plants Foliage is a particular feature of landscape that is a research field in itself. Here again, the challenge lies in the highly fractal nature of shapes, leading this time to the use of L-Systems [START_REF] Lindenmayer | Mathematical models for cellular interactions in development I. Filaments with one-sided inputs[END_REF]. Initially introduced in the field of botany and biology, this grammar-based method has quickly been reused for procedural plant generation in computer graphics [START_REF] Mech | Modeling and simulation of the interaction of plants with the environment using L-systems and their extensions[END_REF][START_REF] Prusinkiewicz | A look at the visual modeling of plants using L-systems[END_REF][START_REF] Prusinkiewicz | An L-System-Based Plant Modeling Language[END_REF]. Conceptual simple yet quite versatile, L-Systems enable the interactive manipulation of their input hyper-parameters (e.g., average branching angle), as opposed to methods leaning more towards simulation [START_REF] De Reffye | Plant models faithful to botanical structure and development[END_REF]. Interactive authoring eventually became the focus of tree modeling techniques, leading to production tools like the one of [START_REF] Lintermann | Interactive modeling of plants[END_REF] or the award-winning SpeedTree, which is centered on a declarative programming model. Historical plant generation methods are surveyed in [START_REF] Deussen | Digital Design of Nature: Computer Generated Plants and Organics[END_REF].

Buildings and cities Less natural than mountains and forests, cityscapes are nonetheless a source of fascination as well. The combination of seemingly systematic rules and huge amounts of varying content makes them a good fit for procedural generation, both at the scale of whole cities and individual buildings, and even for room layout. As for plants, grammar-based programming is often used to represent buildings, especially following Müller and Wonka's work [START_REF] Wonka | Instant architecture[END_REF][START_REF] Müller | Procedural modeling of buildings[END_REF]. Shape grammars are also used for facades, and it is noticeable that [START_REF] Haegler | Grammarbased encoding of facades[END_REF] integrate such a program-based representation in a real-time rendering pipeline, similarly to what we discuss in Chapter V.

At the scale of a building, procedural modeling is used by architects themselves, as largely reviewed by the Parametric Architecture publishing platform (Parametric Architecture, 2016) and supported by node-based modeling tools like Rhino's Grasshopper [START_REF] Rutten | Grasshopper[END_REF].

There is here again a wide variety of approaches to city generation. Some use tiling [START_REF] Gaisbauer | Procedural Generation of Video Game Cities for Specific Video Game Genres Using WaveFunctionCollapse (WFC)[END_REF][START_REF] Stålberg | Townscaper. Raw Fury[END_REF], some use data-based approaches [START_REF] Aliaga | Interactive examplebased urban layout synthesis[END_REF], some target villages, interacting with terrain and natural landmarks [START_REF] Emilien | Procedural generation of villages on arbitrary terrains[END_REF], maybe focusing only on roads [START_REF] Galin | Procedural Generation of Roads[END_REF] or bridges [START_REF] Patow | User-friendly graph editing for procedural modeling of buildings[END_REF]. For further details, city generation is surveyed by G. [START_REF] Kelly | A survey of procedural techniques for city generation[END_REF]. In our context, the boundaries of parametric shapes usually stop at the scale of buildings or bridges, but generating a whole city on the fly is possible as well [START_REF] Steinberger | Onthe-fly generation and rendering of infinite cities on the GPU[END_REF].

Going down to the level of interior layout, procedural models generally conform to a more declarative paradigm, like Le Roux et al. ( 2001) which clearly state their contribution as a layout solver. This solver might be data-based [START_REF] Merrell | Computer-generated residential building layouts[END_REF] and this apply to both room layout and furniture arrangement [START_REF] Germer | Procedural Arrangement of Furniture for Real-Time Walkthroughs[END_REF][START_REF] Merrell | Interactive furniture layout using interior design guidelines[END_REF].

Garment and fabric It is also a common target of procedural modeling, especially when modeling up to the scale of individual yarns [START_REF] Yuksel | Stitch meshes for modeling knitted clothing with yarn-level detail[END_REF]. It usually includes some sort of simulation (for relaxation), might feature tile-based elements [START_REF] Leaf | Interactive design of periodic yarn-level cloth patterns[END_REF], and is challenging to include in real-time viewport (K. [START_REF] Wu | Real-time fiber-level cloth rendering[END_REF]. We will present other types of intricate mesostructures in Section IV.2.

II.1.2.3 Constructive Solid Geometry

A Constructive Solid Geometry (CSG) tree [START_REF] Requicha | Constructive Solid Geometry[END_REF] is a representation of a shape where internal nodes represent boolean operations (union, difference, intersection) and leaf nodes are primitive shapes (spheres, cylinders, boxes, etc.). Primitives are generally parameterized with a few dimensions. It is a simple yet powerful program-based representation, which is at the heart of Computer Aided Design (CAD) modeling.

A CSG tree does not depend on an underlying first-order representation of the geometry. Although it can be converted into a mesh [START_REF] Laidlaw | Constructive solid geometry for polyhedral objects[END_REF], this is not needed for rendering. A CSG tree may be directly raytraced [START_REF] Roth | Ray casting for modeling solids[END_REF], evaluated as a signed distance field for sphere tracing [START_REF] Hart | Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces[END_REF], or drawn using screen-space CSG rendering [START_REF] Goldfeather | Fast constructivesolid geometry display in the pixel-powers graphics system[END_REF][START_REF] Kirsch | Rendering techniques for hardware-accelerated image-based CSG[END_REF][START_REF] Zanni | HCSG: Hashing for real-time CSG modeling[END_REF]. The latter are well suited for interactive visual feedback, and yet an example of synergy between a shape program and a real-time rendering pipeline (Chapter V).

Nevertheless, when extending CSG trees with other operations than booleans, which is a natural path towards more generic imperative DAG-based shapes, one needs efficient polygonal CSG like QuickCSG [START_REF] Douze | QuickCSG: Fast arbitrary boolean combinations of n solids[END_REF].

II.1.2.4 Grammars-based modeling

We mentioned above multiple cases of grammar-based programming of shapes. These approaches are inspired by the formal grammars, originally developed by [START_REF] Chomsky | Three models for the description of language[END_REF] in theoretical linguistics and largely used in the programming language literature. Such a program is expressed as a set of production rules operating on string of abstract symbols. For instance, a rule 𝑋 → 𝑎𝑋𝑏 states that any occurrence of the string 𝑋 will be replaced with the string 𝑎𝑋𝑏. Starting from an initial symbol, the recursive application of production rules creates a word. In an L-System [START_REF] Lindenmayer | Mathematical models for cellular interactions in development I. Filaments with one-sided inputs[END_REF], this word is interpreted as drawing instructions. In a shape grammar [START_REF] Stiny | Shape grammars and the generative specification of painting and sculpture[END_REF], each symbol has a spatial embedding (e.g ˙, a bounding box) and terminals (symbols that are allowed in the end word) correspond to a primitive shape.

A grammar-based program is imperative, but also often non-deterministic, because in general multiple rules may be applied at the same location in the word. As suggested in Section I.3.5.1, we can consider that using a pseudo-random generator with a fixed seed is enough to see it as a deterministic program. Nevertheless, recursive stochastic makes the behavior of ambiguous grammars very chaotic, so [START_REF] Talton | Metropolis procedural modeling[END_REF] proposes a Metropolis-Hasting [START_REF] Metropolis | Equation of State Calculations by Fast Computing Machines[END_REF][START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their applications[END_REF] algorithm to enable a more direct control of the output. This purely discrete inverse problem is at the opposite end of the range of direct manipulation methods; in Section III.3 we rather focus on continuous hyper-parameters.

Shape grammars can be encoded into imperative DAGs, as illustrated by [START_REF] Patow | User-friendly graph editing for procedural modeling of buildings[END_REF] and others [START_REF] Silva | Node-based shape grammar representation and editing[END_REF][START_REF] Silva | Procedural content graphs for urban modeling[END_REF]. Hence, we will not particularly focus on shape grammars in our formalism. For a deeper review of grammar-based procedural methods, the reader may refer to Lienhard's thesis (2017).

II.1.3 Inverse Procedural Modeling

Each specific domain of application requires its own procedural models, but developing such a model is a very technical and time consuming task. Inverse procedural modeling [START_REF] Aliaga | Inverse procedural modeling of 3D models for virtual worlds[END_REF] aims at automating, or at least assisting, this challenge. It transforms a static geometry, for instance a 3D scan, into a semantic program. Inverse and forward procedural modeling are very related because, as we stressed already, the edges of procedural modeling are blurry: a procedural system may integrate inverse tools to handle advanced user input such as sketches [START_REF] Nishida | Interactive sketching of urban procedural models[END_REF].

An inverse procedural modeling pipeline is a combination of geometrical analysis and program synthesis. The analysis part identifying symmetries that could be factorized, both locally and at the scale of larger structures, and program synthesis assembles this information into a program that can provide semantic control and produce variants of the original shape. Both steps might be helped with domain-specific priors.

II.1.3.1 Symmetry detection

The local geometrical analysis of a shape for inverse procedural modeling can be based on the detection of self-similarities or local symmetries, which are reviewed by [START_REF] Mitra | Symmetry in 3D geometry: Extraction and applications[END_REF]. It might also be based on primitive fitting [START_REF] Kaiser | A Survey of Simple Geometric Primitives Detection Methods for Captured 3D Data[END_REF][START_REF] Lê | CPFN: Cascaded Primitive Fitting Networks for High-Resolution Point Clouds[END_REF]. The latter uses a slight prior that fosters manufactured objects, whereas symmetry detection is purely intrinsic, thus well suited for organic shapes. However, the choice of which of these approaches to use also depends on the synthesis method one targets.

Detecting self-similarities can also come as a by-product of compression algorithms.

For instance, compressing voxel data leads to a DAG-based representation where similar parts are factorized at all scales [START_REF] Kämpe | High resolution sparse voxel DAGs[END_REF]. As a matter of fact, in information theory a lower bound of the size of a compressed signal is the Kolmogorov complexity, defined as the minimal size of a program that generates the signal.

Symmetries can be extracted at multiple levels and consolidated into higher-level blocks [START_REF] Kalojanov | Building Construction Sets by Tiling Grammar Simplification[END_REF]. This is in a way a first step towards the construction of a program.

II.1.3.2 Program synthesis

Figuring out the declarative rules, or imperative process, behind the structure identified by symmetry detection methods is a particular case of Program Synthesis [START_REF] Winston | Learning Structural Descriptions from Examples[END_REF][START_REF] Summers | A Methodology for LISP Program Construction from Examples[END_REF]. This branch of the programming language literature addresses the problem of automating the tedious task of programming itself. Naturally, this is an overly difficult problem in general, so it usually focus on particular cases. Here we review computer graphics research that lean towards program synthesis, although sometimes not presenting it as such. For a more general introduction to program synthesis, see [START_REF] Solar-Lezama | Introduction to Program Synthesis[END_REF].

A good example of program synthesis for inverse procedural modeling are CAD decompilation [START_REF] Nandi | Functional programming for compiling and decompiling computeraided design[END_REF] and InverseCSG [START_REF] Du | InverseCSG: Automatic conversion of 3D models to CSG trees[END_REF]. The latter first uses simple primitive extraction using a RANSAC-based method, before leveraging program sketching [START_REF] Solar-Lezama | Program Synthesis by Sketching[END_REF] to efficiently explore the space of CSG programs whose leaves are the fitted primitives. They thus decouple the combinatorial problem of primitive assembly from the continuous optimization of the dimensions of primitives.

Automatic construction of CSG trees has also been addressed using reinforcement learning [START_REF] Sharma | CSGNet: Neural shape parser for constructive solid geometry[END_REF][START_REF] Sharma | Neural Shape Parsers for Constructive Solid Geometry[END_REF]. Actually, reinforcement learning is more generally used to help program synthesis [START_REF] Johnson | Inferring and Executing Programs for Visual Reasoning[END_REF][START_REF] Bunel | Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis[END_REF], and sometimes it is even the other way around [START_REF] Yang | Program Synthesis Guided Reinforcement Learning for Partially Observed Environments[END_REF]. Reinforcement learning is used by [START_REF] Ganin | Synthesizing Programs for Images using Reinforced Adversarial Learning[END_REF] to auto-encode images in program-based representations, instead of the usual latent vector. It can also be used to learn shape grammars for instance [START_REF] Teboul | Shape grammar parsing via reinforcement learning[END_REF][START_REF] Martinovic | Bayesian grammar learning for inverse procedural modeling[END_REF].

Part-based modeling [START_REF] Ritchie | Example-based Authoring of Procedural Modeling Programs with Structural and Continuous Variability[END_REF] learns the rules for laying out existing building blocks. Sometimes the rule inference is only used as a sub step to directly re-synthesize content, without providing an explicit program-based representation (H. [START_REF] Liu | Replaceable Substructures for Efficient Part-Based Modeling[END_REF]. On the contrary, ShapeAssembly [START_REF] Jones | ShapeAssembly: Learning to generate programs for 3D shape structure synthesis[END_REF] learns to synthesize and interpolate shape programs from a larger database of examples. ShapeMOD [START_REF] Jones | Shape-MOD: Macro operation discovery for 3D shape programs[END_REF] refines this by improving the factorization, carrying self-similarity detection in the space of programs rather than geometry.

We come back on program synthesis in Section III.2, with the more specific intent of generating database queries -where the database is a mesh, in our case.

II.1.3.3 Domain-specific methods

Inverse procedural modeling techniques can hardly be fully agnostic in the content they handle, and some of them utilize strong priors: for trees [START_REF] Št'ava | Inverse Procedural Modeling by Automatic Generation of L-systems[END_REF][START_REF] Stava | Inverse Procedural Modelling of Trees[END_REF], for facades (F. Wu et al., 2014), for buildings [START_REF] Demir | Proceduralization for Editing 3D Architectural Models[END_REF], for cities [START_REF] Vanegas | Inverse design of urban procedural models[END_REF], etc. Model-fitting can be thought as an extreme case of domain-specific inverse procedural methods where existing procedural methods are adapted to the input geometry. [START_REF] Zhao | Fitting procedural yarn models for realistic cloth rendering[END_REF] follows this approach for yarn-level inverse modeling of clothes, and many automatic rigging methods like Frankenrigs [START_REF] Miller | Frankenrigs: Building character rigs from multiple sources[END_REF] are in essence model-fitting.

When the prior is strong enough, the input may differ from 3D geometry. For instance, [START_REF] Nishida | Procedural Modeling of a Building from a Single Image[END_REF] uses an image as input to extract procedural building models, following a long history of image based modeling [START_REF] Debevec | Modeling and rendering architecture from photographs: A hybrid geometry-and image-based approach[END_REF].

In a similar spirit, the same authors had proposed a powerful interactive workflow for authoring buildings from sketches [START_REF] Nishida | Interactive sketching of urban procedural models[END_REF]. It becomes difficult to consider this as inverse procedural modeling per se, but it sure follows the same intent of assisting the creation of advanced parametric models from simple data.

There has been recently a growing attention for the inverse procedural modeling of materials [START_REF] Hu | A novel framework for inverse procedural texture modeling[END_REF][START_REF] Shi | Match: Differentiable material graphs for procedural material capture[END_REF][START_REF] Hu | An Inverse Procedural Modeling Pipeline for SVBRDF Maps[END_REF]. As for InverseCSG, these methods generally disentangles the discrete exploration of possible program structures from the optimization of its continuous parameters. Possible structures are often sampled from a bank of predefined programs, making this a case of modelfitting. When targeting 3D rendering, materials and geometry are very related, so there is room for bringing these work to cooperate with inverse procedural geometry.

II.1.4 Latent Space

Our tour of fields whose output is shape program ends with the edge case of latent-space encoding. In the context of machine learning, it is common to learn a low dimensional abstract space, called latent space or embedding space, to represent a set of shapes. The decoder model, which generates a geometry given a particular point of this latent space, is an example of parametric shape: the latent vector is the set of hyper-parameters. A decoder may operate on any first-order representation: voxels [START_REF] Girdhar | Learning a Predictable and Generative Vector Representation for Objects[END_REF], surface patches [START_REF] Groueix | A Papier-Mâché Approach to Learning 3D Surface Generation[END_REF], signed distance field (Z. [START_REF] Chen | Learning Implicit Fields for Generative Shape Modeling[END_REF][START_REF] Eisenberger | NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go[END_REF], vector displacement [START_REF] Eisenberger | NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go[END_REF].

This approach is nevertheless particularly interesting in the case of complex but very common shapes, such as human bodies. SMPL [START_REF] Loper | SMPL: A skinned multi-person linear model[END_REF] and STAR [START_REF] Osman | STAR: A spare trained articulated human body regressor[END_REF] learn skinning weights and blend shapes from actual data, and produces a model that fits the usual rigging pipeline. [START_REF] Mahmood | AMASS: Archive of motion capture as surface shapes[END_REF] uses these model to unify human representations from multiple datasets. FLAME (T. [START_REF] Li | Learning a model of facial shape and expression from 4D scans[END_REF] follows a similar path to build a parametric human face.

Latent spaces often have more dimensions than a human designer can handle though (typically a few hundreds). Dimensions can be sorted by importance or reduced to a sub-manifold [START_REF] Chiu | Human-inthe-loop differential subspace search in high-dimensional latent space[END_REF][START_REF] Abdrashitov | Interactive Exploration and Refinement of Facial Expression using Manifold Learning[END_REF] to reduce the number of dimensions, bringing latent space even closer to our conception of hyper-parameter.

Similarly to our notion of hyper-parameter, it intends to model semantic axes of variation of the shape. Latent space is fully continuous, which provides shape interpolation, and decoders are automatically differentiable, which fits well into learning pipelines. However, the decoder provides no direct access to the logic linking these semantic dimensions to the end geometry. We thus have parametric shapes that are not represented as what we call a program.

As a consequence, learned embeddings shifted to the goal of shape decomposition into high level parts [START_REF] Paschalidou | Neural Parts: Learning Expressive 3D Shape Abstractions With Invertible Neural Networks[END_REF]. This can replace symmetry detection in inverse procedural modeling, extracting semantic building blocks with strong priors, like volumetric primitives [START_REF] Tulsiani | Learning Shape Abstractions by Assembling Volumetric Primitives[END_REF], superquadrics [START_REF] Paschalidou | Superquadrics Revisited: Learning 3D Shape Parsing Beyond Cuboids[END_REF], structured implicit functions [START_REF] Genova | Learning Shape Templates With Structured Implicit Functions[END_REF][START_REF] Genova | Local Deep Implicit Functions for 3D Shape[END_REF], convex shapes [START_REF] Deng | CvxNet: Learnable Convex Decomposition[END_REF] or even partly interpretable space partitioning trees (Z. [START_REF] Chen | BSP-Net: Generating Compact Meshes via Binary Space Partitioning[END_REF]. The self-similarity analysis is in a way shared across a whole dataset.

II.2 Interactive shape manipulation

We study program-based representations of shapes in the context of content authoring. We hence put our goal in perspective with other means of manipulating shapes on one hand, and program on another hand.

II.2.1 Geometry-level manipulation II.2.1.1 Direct mesh deformation

Deforming raw geometries that are not the output of an underlying parametric shape requires extra prior knowledge. Some methods try to maximize rigidity [START_REF] Igarashi | As-rigid-as-possible shape manipulation[END_REF][START_REF] Levi | Smooth rotation enhanced as-rigid-aspossible mesh animation[END_REF], sometimes based on examples [START_REF] Sumner | Mesh-based inverse kinematics[END_REF][START_REF] Wampler | Fast and reliable example-based mesh IK for stylized deformations[END_REF]. Linear variational methods [START_REF] Botsch | On Linear Variational Surface Deformation Methods[END_REF] deform the input by solving a linear system capturing the intrinsic properties of the mesh, enriched with direct control constraints coming in the form of vertex handles. Non-linear methods [START_REF] Botsch | PriMo: Coupled prisms for intuitive surface modeling[END_REF][START_REF] Sorkine | As-rigid-as-possible surface modeling[END_REF] further develop this concept, to better preserve volumes and cope with large handle motions. Alternatively, linear blend skinning [START_REF] Baran | Automatic rigging and animation of 3D characters[END_REF][START_REF] Jacobson | Bounded biharmonic weights for real-time deformation[END_REF] offers a scalable framework where no system is solved at run time, and the bulk of the shape analysis yielding the handles influence is located at the initial per-vertex weight computation.

When manipulating a parametric shape, we want to provide such direct control capabilities but our case differs significantly, as our a priori is the space of possible embeddings a shape can undergo through variations of its hyper-parameters. This is somehow an extreme case of structure-aware shape processing [START_REF] Mitra | Structure-aware shape processing[END_REF], although such method usually couples the user deformation (change of the hyper-parameters) with the extraction of symmetries (X. Wu et al., 2014;[START_REF] Kurz | Symmetry-Aware Template Deformation and Fitting[END_REF], of coarse control structures from the geometric analysis of one [START_REF] Gal | IWIRES: An analyzeand-edit approach to shape manipulation[END_REF][START_REF] Bokeloh | An algebraic model for parameterized shape editing[END_REF] or many similar shapes [START_REF] Gadelha | Learning Generative Models of Shape Handles[END_REF].

Improving interaction with parametric shapes has been explored by T. [START_REF] Kelly | Interactive Dimensioning of Parametric Models[END_REF] who automatically places the hyper-parameter controllers in the 3D view, but the controllers themselves must have been hand-designed first.

II.2.1.2 Inverse Control

Manipulating the output of a shape program can be seen as a case of Inverse Kinematics (IK). IK takes its source in robotics [START_REF] Saab | Dynamic Whole-Body Motion Generation Under Rigid Contacts and Other Unilateral Constraints[END_REF] and has been extensively studied for skeletal animation [START_REF] Aristidou | Inverse Kinematics Techniques in Computer Graphics: A Survey[END_REF]. Although their announced scope is often limited to trees of rigid transforms, the methods proposed in the IK literature may be applied to more complex mesh deformations like human face posing [START_REF] Lewis | Direct Manipulation Blendshapes[END_REF]. The main requirement is indeed only to access the jacobian matrix of the action of hyper-parameters onto a point of the mesh. With this jacobian at hand, methods have been developed to solve robustly the inverse problem [START_REF] Deo | Robot subtask performance with singularity robustness using optimal damped least-squares[END_REF] and account for boundaries of the hyper-parameters [START_REF] Baerlocher | Task-priority formulations for the kinematic control of highly redundant articulated structures[END_REF][START_REF] Raunhardt | Progressive Clamping[END_REF]. Inverse kinematics can be done online or off-line (especially for motion planning in robotics). Since we are designing an interactive tool, we are interested in online solutions.

A major issue, which we address in Section III.3, is the difficulty to define a reliable way to measure this jacobian matrix when the connectivity of the geometry changes and so vertex indices cannot be used to identify points. Some hyperparameters are not even continuous. In this case, IK can only apply on proxies, or even not apply at all and strategies like sampling-based exploratory modeling [START_REF] Talton | Exploratory modeling with collaborative design spaces[END_REF] can be adopted.

II.2.2 Program-level manipulation

In program-level manipulation, the designer edits the shape by altering its program rather than operating on baked first-order geometry. There exists multiple modalities of program-level manipulation, depending on the paradigm of shape programming, the domain of application and the type of user input.

We deal with the same kind of tension than for geometry-level manipulation: we want to apply more constraint during manipulation, to reduce the boilerplate, but without paying a price in generality and ambiguity.

II.2.2.1 Visual Programming

The most straightforward solution to program-level manipulation is raw edition of a text-based program. But more advanced tools tend to leverage visual programming in order to mitigate syntactic friction (a lot of valid texts are not valid programs) and high level of abstraction. The strengths and variety of visual programming are well introduced by [START_REF] Burnett | Visual Programming[END_REF], and the problem of the cognitive load of text-based interaction was largely studied in the Human Computer Interaction (HCI) literature when advocating for direct manipulation approaches [START_REF] Shneiderman | Direct manipulation: A step beyond programming languages[END_REF][START_REF] Hutchins | Direct Manipulation Interfaces[END_REF].

Visual programming can take any form, from early executable charts [START_REF] Ellis | The Grail Project: An Experiment in Man-Machine Communications[END_REF] to data-flow visual programming [START_REF] Hils | Visual languages and computing survey: Data flow visual programming languages[END_REF][START_REF] Johnston | Advances in dataflow programming languages[END_REF], through block-based programming, like Boxer (diSessa & Abelson, 1986), Scratch [START_REF] Resnick | Scratch: Programming for all[END_REF] or domain-specific languages derived from Blockly [START_REF] Marron | A decentralized approach for programming interactive applications with JavaScript and blockly[END_REF].

Visual programming has been applied early to computer graphics [START_REF] Haeberli | ConMan: A visual programming language for interactive graphics[END_REF] in order to reach more easily a creative audience. There used to be reviews of visual programming in general [START_REF] Myers | Taxonomies of visual programming and program visualization[END_REF] but the ubiquity of the concept led research to focus on more restricted scopes.

The HCI literature also coined the notion of End-User Programming (EUP) to mean that a large part of computer programming is performed by users who just need to express their intention but do not aim at becoming professional programmers ever [START_REF] Lieberman | End-User Development: An Emerging Paradigm[END_REF][START_REF] Myers | Invited research overview: End-user programming[END_REF]. Authoring shape programs clearly is a case of EUP since we expect the expertise of designers to be more about art than about computer science.

NB EUP is closely related to program synthesis, and in particular to Programming by Example [START_REF] Myers | Visual programming, programming by example, and program visualization: A taxonomy[END_REF] or by Demonstration [START_REF] Lieberman | Your Wish is My Command: Programming by Example[END_REF]. The latter is applied to shape programming by [START_REF] Girard | Chapter 7 -Bringing Programming by Demonstration to CAD Users[END_REF] to assist the creation of CAD models.

II.2.2.2 DAG Rewriting

It is sometimes not needed to start a shape program from scratch; one can rather start from an example -or a previous work -and incrementally edit it. This has been particularly studied for the edition of shape grammars [START_REF] Barroso | Visual copy & paste for procedurally modeled buildings by ruleset rewriting[END_REF], for instance to perform program-space shape interpolation [START_REF] Lienhard | Design Transformations for Rule-based Procedural Modeling[END_REF]. [START_REF] Lipp | Local Editing of Procedural Models[END_REF] transforms edits applied by the user on a particular instance of a procedural shape into edits of the original split grammar.

For more generic imperative shape programming languages, [START_REF] Jones | Shape-MOD: Macro operation discovery for 3D shape programs[END_REF] achieves automatic factorization of shape programs using machine learning, and [START_REF] Mathur | Interactive Programming for Parametric CAD[END_REF] assists the creation of generative programs by transforming hand selections into semantic queries. The latter highlights precisely what makes interactive editing of shape programs challenging: spatial interaction is more intuitive, but always ambiguous. This is the main motivation of our Chapter III, and in particular their program synthesis approach is closely related to Section III.2.

II.2.2.3 Bidirectional Editing

The relevance of bidirectional editing is well illustrated by [START_REF] Gruber | Interactive Sculpting of Digital Faces Using an Anatomical Modeling Paradigm[END_REF], which shows that in a character modeling workflow the artist may want to alternatively modify semantic hyper-parameters (the shape program's input) or edit spatial features (in the program's output).

The notion of bidirectional programming as theorized in the programming languages literature is largely reviewed in Foster's thesis [START_REF] Foster | Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem[END_REF][START_REF] Foster | Bidirectional programming languages[END_REF]. The term has been ported to shape programs by Chugh and Hempel when designing Sketch-n-Sketch [START_REF] Chugh | Prodirect manipulation: Bidirectional programming for the masses[END_REF] and its follow-ups [START_REF] Chugh | Programmatic and direct manipulation, together at last[END_REF]Hempel & Chugh, 2016;[START_REF] Mayer | Bidirectional evaluation with direct manipulation[END_REF][START_REF] Hempel | Sketch-n-Sketch: Output-Directed Programming for SVG[END_REF]. This tool enables the modification of procedural 2D vector graphics either by manipulating code or through direct spatial interaction with the output.

In its simplest form, bidirectional programming enables the modification of the scalar constants of the program, and it can already be challenging to apply to 3D shapes, as presented by our Section III.3 or by [START_REF] Cascaval | Differentiable 3D CAD programs for bidirectional editing[END_REF] and [START_REF] Gaillard | Automatic Differentiable Procedural Modeling[END_REF].

More advanced bidirectional programming intends to enable changes in the structure of the program. But as this is often way too ambiguous, an interesting trade-off is to help the designer locate "good edit locations" in the program and let the designer do the changes by themselves. This can be applied to web pages (X. [START_REF] Wang | Automating presentation changes in dynamic web applications via collaborative hybrid analysis[END_REF], shape grammars [START_REF] Lipp | Local Editing of Procedural Models[END_REF], or CAD programs [START_REF] Mathur | Interactive Programming for Parametric CAD[END_REF].

The translation of the concept of bidirectional programming to a declarative paradigms a bit unclear, but for instance smart snapping tools [START_REF] Schulz | Design and fabrication by example[END_REF][START_REF] Ciolfi Felice | Beyond Snapping: Persistent, Tweakable Alignment and Distribution with StickyLines[END_REF] are in a way an adaptation to constrained-based programming.

II.2.3 Authoring systems

The main goal [...] is to develop a system whose representation and processing facilities correspond to and assist the mental processes that occur during creative thought.

-David C. Smith, in PYGMALION (1975) Like Smith, in this thesis we consider the task of content authoring as a whole, from the expression of an intent and its interpretation by the tool to the visual feedback (Chapter V). Although their work is now dated, Smith presented a system that was already relying on visual programming (Iconic Programming) and program synthesis (a sort of Programming by Demonstration). Their implementation was limited to specific engineering applications, but their philosophical introductory discussion about the relationship between creation and computers resonates with artistic applications.

We consider program-based representations of shapes because they are a concept broad enough to cover many cases of authoring systems. Even the earliest interactive graphic creation systems like Sketchpad [START_REF] Sutherland | Sketchpad a Man-Machine Graphical Communication System[END_REF] included features akin to constrained shape programming and instancing.

Nevertheless, the means of human computer interaction can take so many forms [START_REF] Beaudouin-Lafon | Generative Theories of Interaction[END_REF] that some systems hardly fit in this framework. For instance, AttribIt [START_REF] Chaudhuri | Attribit: Content creation with semantic attributes[END_REF] proposes a verbal design workflow, where natural language is used to tune the semantic attributes of the edited object's parts.

Facade [START_REF] Debevec | Modeling and rendering architecture from photographs: A hybrid geometry-and image-based approach[END_REF] is a modeling tool which combines a coarse programbased representation of shapes as well as photograph, from which program's inputs and additional geometric details are extracted. Another example is the whole body of work that focuses on sketch-based modeling e.g., for landscapes [START_REF] Ponjou Tasse | First Person Sketch-based Terrain Editing[END_REF], plants [START_REF] Longay | TreeSketch: Interactive Procedural Modeling of Trees on a Tablet[END_REF], or for shape retrieval [START_REF] Shin | Magic canvas: Interactive design of a 3-D scene prototype from freehand sketches[END_REF][START_REF] Eitz | Sketchbased shape retrieval[END_REF][START_REF] Nishida | Interactive sketching of urban procedural models[END_REF].

II.3 Optimization in hyper-parameter space

We presented parametric shapes and their program-based representations as object manipulated by human designers. However they can be used in contexts where the space of input hyper-parameters is automatically explored by an optimizer. Typically, the user designs a parametric shape that represents a space of acceptable shapes, and a solver looks for the most suitable output according to some additional criterion.

The optimized criterion can be provided by a mechanical simulation, for instance to ensure equilibrium [START_REF] Whiting | Procedural modeling of structurally-sound masonry buildings[END_REF] or to express physical phenomena in the rig space, so that they cooperate with hand-tuned animation [START_REF] Hahn | Rig-space physics[END_REF].

The constraint can also consist in matching photographs, for human pose estimation [START_REF] Zhang | Inference Stage Optimization for Cross-scenario 3D Human Pose Estimation[END_REF], or to determine the hyper-parameters of a shape program [START_REF] Debevec | Modeling and rendering architecture from photographs: A hybrid geometry-and image-based approach[END_REF].

Lastly, one can combine user interaction and automated optimization to help the exploration of design space [START_REF] Shugrina | Fab forms: Customizable objects for fabrication with validity and geometry caching[END_REF][START_REF] Schulz | Interactive exploration of design trade-offs[END_REF], or to match a user gesture, as in any inverse kinematic scenario. For a goal similar to ours Section III.4. 3, Gaillard et al. (2022) automatically explores the hyper-parameter space to identify multiple directions matching a spatial user edit and cluster related solutions. For machine learned models, or more generally any differentiable model, optimization can be used to move in the input latent space by dragging output vertices [START_REF] Umetani | Exploring generative 3D shapes using autoencoder networks[END_REF].

III

Imperative programming of shapes

III.1 Introduction

This first core chapter focuses on imperative DAGs, which are the most common visual language used for shape programming. Designing and tuning a shape represented as a DAG is canonically done in program space, by manipulating symbolic nodes and abstract value sliders. We intend to bring some of the interaction back into the 3D space, which is more intuitive to interact with.

Although we tried to remain to some extent agnostic in the first-order representation of the geometry produced by the shape program, this chapter mainly treats the case of 3D meshes. Some experiments with signed distance fields are also presented to show the potential of generalization of our approach.

The first two sections present techniques based on DAG amendments. They are shallow DAG rewriting mechanisms applied on the fly to augment the output of the DAG with extra information. In a sense, a DAG amendment is a metamodifier, referring to Blender's meaning of "modifier", namely a procedural mesh post processing effect.

In Section III.2 we amend the DAG to record a trace in each element that we use to assist the creation of a DAG in the specific case of procedural selection of geometry. Section III.3 presents a DAG amendment that enables a differentiation of parametric shapes, telling how the input hyper-parameters affect each element of the geometry. Section III.4 uses this differential information to provide a mean to directly manipulate the output of a DAG, bridging the gap with usual Inverse Kinematics setups. A less research-oriented outcome of our work on DAG is presented in Appendix B, which addresses the more practical problem of formaliz-ing a common programming interface for DAG operators, in order to harmonize representations of DAGs across modeling toolkits and enable interoperability.

III.2 Automatic Synthesis of Semantic Selection Queries

There are two ways of editing a shape resulting from the evaluation of a DAG. One of them consists in applying an operation to the output geometry as if it was any static geometry: deforming an area, extruding a face, etc. This is equivalent to appending a new node at the very end of the initial generation DAG. The other possibility consists in altering more deeply the DAG, changing arbitrary internal nodes.

The first option can easily be automated: each time the user interacts in the 3D space with the shape, a new node is created. This is what a lot of tools actually do to keep track of the edition history. The operations do not need to be aware of the programmatic nature of the shape, all they process is the previous output, so any usual mesh processing technique can be applied.

However, such an history-based approach to DAG creation results in programs that are very unlikely to return a meaningful output when one alters past operations.

There are two main reasons that explain this lack of generalization: (i) this approach produces a degenerate graph, which misses factorization and, more importantly, (ii) the values of node parameters are too specific to the very instance of the parametric shape that was being visualized when appending the node. For instance if the designer translates some geometry by 5 units along the X axis, the value 5 is recorded as-is in the history-based DAG, rather than recording the process that led the designer to chose this value.

We have no direct access to this decision process, since it runs mainly in the designer's mind, but we can try to guess. For real or integer valued parameters, this problem relates to alignment detection methods, e.g., StickyLines (Ciolfi Felice et al., 2016).

But there is a specific type of node parameter that requires a different approach: selection parameters. Many operations take as input a selection parameter, that states which area of the geometry must be affected. It is a set of vertices, edges and/or faces, and the most straightforward way to represent it is as a list of indices.

For instance an extrusion operation is usually not meant to extrude all faces, so it takes a list of face indices as input. But if upstream operations are modified and produce a mesh with a different number of faces or a different connectivity, the index of the faces that the designer intends to extrude is very likely to change.

We propose to replace the index-based representation of selections with a programbased representation. We call this program a selection query, and we synthesize this query from an example of input mesh and output selection set.

Contributions

• A method that turns a hand-picked selection of geometric elements into a selection query i.e., a program that output a list of vertices, edges or faces. This program can be applied to other geometries resulting from the same or a similar upstream DAG of operations.

• A procedure that automatically augments the DAG to provide per-element history features to help the query synthesizer.

III.2.1 Problem setting

Let F : 𝝅 ↦ → 𝐺 be a parametric shape whose output 𝐺 = F (𝝅) = (𝑉 , 𝐸, 𝐹 ) is a 3D mesh containing vertices 𝑉 , edges 𝐸 and faces 𝐹 . We focus on vertices in this section, but the same applies to edges and faces. Let S be a selection of vertices, namely a subset of 𝑉 . Let us now consider another instance 𝐺 ′ = F (𝝅 ′ ), and its vertices 𝑉 ′ . Our problem is to build a selection S ′ ⊂ 𝑉 ′ that is semantically equivalent to S (Figure III.1).

To define the notion of semantic equivalence, we first define the program-based equivalence. For a program 𝑄 : 𝑣 ↦ → {true, false}, we deem S and S ′ as 𝑄-

equivalent if S = {𝑣 ∈ 𝑉 | 𝑄 (𝑣) = true} and S ′ = {𝑣 ∈ 𝑉 ′ | 𝑄 (𝑣) = true}.
This means that 𝑄 encodes the process that leads to selecting some vertices and not some others, and that this process is the same for S and S ′ .

We say that S and S ′ are semantically equivalent if there exist a well formed program 𝑄 such that S and S ′ are 𝑄-equivalent. A well formed program is a program that could have written by a human and fully represents their intent. Although this definition seems as ill-posed as just claiming that two point sets are semantically equivalent, it turns our specific case into the fundamental problem addressed by the Program Synthesis literature. This problem is well illustrated in our introductory example (Section I. 3.4,Figure I.6), when the designer spends a lot of time ensuring that they split correctly the top row from the other of slots: 𝐺 is a grid and S is its first row, and if 𝐺 ′ is a different grid, S ′ must still be the first row. The best representation of the selection is the sentence "the first row", rather than point indices. Although it is conceptually a very simple query, actually encoding it into the program-based representation critically affects the creation flow.

III.2.2 Related work

Creation workflows commonly rely on an alternation of selection and operation [START_REF] Nishida | Interactive sketching of urban procedural models[END_REF], so the importance of a good selection process not restricted to program-based representations [START_REF] Guy | SimSelect: Similarity-based selection for 3D surfaces[END_REF]. Nevertheless, the problem of generalization to unseen instances of a shape program brings in specific challenges. It is not sufficient to transfer the selection attribute across instances using shape correspondence [START_REF] Van Kaick | A Survey on Shape Correspondence[END_REF] because (i) it does not take into account the information embedded in the program and (ii) does not enable symbolic manipulation and audit of the selection rules.

The CAD literature identified the problem of automatically naming entities produced by a shape program (X. [START_REF] Chen | BSP-Net: Generating Compact Meshes via Binary Space Partitioning[END_REF][START_REF] Capoyleas | Generic naming in generative, constraint-based design[END_REF][START_REF] Kripac | A mechanism for persistently naming topological entities in history-based parametric solid models[END_REF][START_REF] Agbodan | Persistent Naming for Parametric Models[END_REF], which is the point addressed by our trace mechanism, but generally without proposing a creation workflow around. In the specific case of shape grammars, [START_REF] Lipp | Local Editing of Procedural Models[END_REF] transform spatial changes into program-space edits. [START_REF] Mathur | Interactive Programming for Parametric CAD[END_REF] concurrently made the same observation than ours, and developed a similar approach, leveraging program synthesis and the notion of bidirectional programming. They use a different query language, which is more focus on CAD applications and geometric patterns, and a different synthesis algorithm. A key difference is our use of a trace-based entity naming.

Our algorithm is inspired by bottom-up recursive program synthesis [START_REF] Albarghouthi | Recursive Program Synthesis[END_REF], and we maintain explicit copies of individual partial programs -as opposed to Version Spaces for instance [START_REF] Lau | Programming by Demonstration Using Version Space Algebra[END_REF]. Program synthesis easily focuses on database queries (C. [START_REF] Wang | Synthesizing highly expressive SQL queries from input-output examples[END_REF] as it usually implies an more constrained program-space to explore. Also, instead of using a pre-existing query language, we tune ours in order to ease the synthesis.

The idea of recording traces has already been used, for bidirectional programming of 2D vector graphics [START_REF] Chugh | Prodirect manipulation: Bidirectional programming for the masses[END_REF], or as a mean to augment the input of subsequent stages that rely on machine learning [START_REF] Yang | Learning from Shader Program Traces[END_REF], even post rendering (e.g., denoising). In our case, it is used to augment the input of a more symbolic learning process, namely program synthesis.

III.2.3 Overview

We intend to synthesize a program 𝑄 whose input is a vertex 𝑣 and which outputs a boolean 𝑏 ∈ {true, false}, given a set {(𝑣 𝑖 , 𝑏 𝑖 )} of examples. We first present in Section III.2.4 the input features that 𝑄 receives to describe 𝑣, which we call the trace of 𝑣. This is all 𝑄 may use to decide whether 𝑣 should be selected.

Secondly we define the Domain Specific Language (DSL) that 𝑄 is implemented with (Section III.2.5). Lastly, we detail the program synthesis algorithm that we use to explore the program space of this DSL and find the right 𝑄 (Section III.2.6). 

III.2.4 Per-element trace recording

When we say that the target program 𝑄 takes as input a vertex 𝑣, we must define more exactly which data it receives. Except for really simple cases, the index of 𝑣 is not enough, so we provide other input features to 𝑄. These features are (i) geometric information and (ii) historic information.

Geometric information consists in both spatial data, such as the position of a vertex or the normal of a face, as well as connectivity data e.g., a number of neighbors. In this report though, we focus mainly on historic information, leaving geometric properties to [START_REF] Mathur | Interactive Programming for Parametric CAD[END_REF] and future work.

III.2.4.1 Predicates

Historic information tells which modeling operations affected the elements of geometry, and what role the element was playing during the operation. Each element e.g., face 𝑓 of the geometry is thus labeled with a trace T 𝑓 , namely a list of predicates of the form Operator (Role). For instance, in an extrusion operation, the face that was extruded plays a different role than the new side faces created by the extrusion. This role is represented as a list of parameters.

Symbolic role Predicate parameters can be abstract symbols; for instance, in the previous example, extrusion faces are labeled with the predicates respectively Extrude (FRONT) and Extrude (SIDE).

Integer role Predicate parameters may also be integers; for instance to differentiate duplicates in a repetition operation or to loops in a loop cut operation. Integer parameters are also used for predicates representing primitive generators: a grid generator initializes the trace of each vertex (𝑖, 𝑗) with a predicate Grid (i, j).

In a selection query, integers can be either treated as if they were abstract symbols, or be involved in integer expressions, using modulo to carry on dashed selection such as "select one point every three points".

III.2.4.2 DAG Amendment

In order to compute the trace T of each geometric element, we must alter the nodes of the DAG, so that they append their associated predicate to the geometry they process. In practice we do not need to fully rewrite DAG nodes, but rather to wrap them into trace wrangling operations. This non invasive approach, which we call DAG amendment, enables ones to integrate easily into existing DAG-based frameworks, and we will use it again in Section III.3.

There are two points to consider to assign a trace T 𝑒 to an element 𝑒 generated by a node 𝑛, namely (i) the role that 𝑒 played in 𝑛, and (ii) the previous trace of 𝑒, to which the new predicate must be appended.

Role The first point must be treated for each node type individually (each possible operation), but is usually quite straightforward. For instance for the extrusion operation, when implementing our method in Houdini we use the groups that the extrusion node can create for the side and the front geometry, and in Blender we can rely on vertex indices to characterize the front geometry. We call 𝑃 𝑛 𝑒 the predicate produced by the node 𝑛 for its output element 𝑒.

Parent trace Difficulties arise when it comes to finding the history of 𝑒 prior to 𝑛. We need to related elements of the output mesh of a node to the elements of its input mesh (or meshes). Here we make the assumption that, either by wrapping the node or in its core behavior, we can find a weighted set {(𝑒 ′ 1 , 𝑤 1 ), . . . , (𝑒 ′ 𝑘 , 𝑤 𝐾 )} of elements 𝑒 ′ 𝑘 of the input meshes with weights 𝑤 𝑘 ∈ (0, 1) which sum to 1. When 𝐾 = 1, we define the trace T 𝑒 of 𝑒 as the input trace T 𝑒 ′ 1 appended with 𝑃 𝑛 𝑒 . When 𝐾 = 0, we are unable to relate the new element to any previous one, so we initialize T 𝑒 to [𝑃 𝑛 𝑒 ]. When 𝐾 > 1, we compute the longest common subsequence LCS of the T 𝑒 ′ 𝑖 .

T 𝑒 = LCS 𝑖<min(𝐾,4)

T 𝑒 ′ 𝑖 + [𝑃 𝑛 𝑒 ] (III.1)
Since the LCS problem is NP-hard for an arbitrary number of traces, we use at most 4 traces, discarding the ones with a lower weight 𝑤 𝑖 . We can thus use dynamic programming algorithm from [START_REF] Hirschberg | A linear space algorithm for computing maximal common subsequences[END_REF]. A short history of other approaches to the LCS problem can be found in [START_REF] Bergroth | A survey of longest common subsequence algorithms[END_REF].

Importantly, we compute the LCS on the sequence of predicate names, ignoring the role part. The roles in the output trace are set either to their original value if it was the same in all traces T 𝑒 ′ 𝑖 , or the special wildcard value '_' otherwise. For instance:

LCS ( [Circle (1), Extrude (FRONT), Extrude (_), LoopCut (1)] , [Circle (2), Extrude (FRONT), LoopCut (2)] ) = [Circle (_), Extrude (FRONT), LoopCut (_)]
NB The need need to relate the elements of the output mesh of a node to the elements of its input meshes is also a requirement of our DAG amendment of Section III.3.

III.2.5 Domain Specific Language for Selection Query

The language that we define for representing queries is composed of patterns, which select geometric elements based on their trace or spatial properties. Patterns are combined together using basic boolean operations, namely Union and Difference.

In case no pattern-based query can be found, indices can be used to define a selection, thus falling back to the naive solution. The syntax of our query language is summarized as follow: Predicate-based patterns Such a pattern matches an element if the element's trace contains a predicate of the same name, with matching roles. For instance, the query MatchPattern (Subdivide) means to select all elements that were involved in a subdivide operation. This is refined when the predicate is parameterized with a role. Pattern's role parameters can be symbols or integers, or the special wildcard symbol to match any role.

query := MatchIndex (int) | MatchPattern (
Geometric patterns A geometric pattern selects elements based on spatial properties (proximity to a certain location, maximum in a given direction, etc.) or connectivity (number of corners to a face, number of neighbors, etc.). The syntax of the expression provided to a Geometric pattern varies whether the query is meant to select points, edges or faces. Our experiments do not make use of geometric pattern, we leave it here for future developments.

III.2.6 Query Synthesis

Synthesizing a query 𝑄 consists in (i) exploring the space of all programs that can be formed using the above-defined language, (ii) keeping the ones that respect the positive examples 𝑃 and negative examples 𝑁 and (iii) returning the program that is the most likely to be written by a human. The main challenges are that the program space is so huge that its exhaustive exploration is not possible (Section III.2.6.2), and the question of what a human would have programmed is illdefined (Section III.2.6.1). We start with the later because knowing which programs are most relevant drives the way we optimize our program-space traversal. 

III.2.6.1 Best program selection

To distinguish which query the user intends to express among all queries that correctly match the input examples, we rely on a simple priors, known as Ockham's razor: the shorter the better. The shorter program that performs a task is the most likely to grasp the semantic intent that led to selecting elements. On the contrary, longer programs are in danger of over-fitting the examples, as illustrated in Figure III.2.

The size of a program is defined recursively as the number of nodes in its abstract syntax tree: a MatchPattern (...) has size 1, a Union (A, B) has size 1+size(𝐴)+size(𝐵), etc. We encode in this measure our intent to foster pattern-based selection over naive index-based selection by assigning a size of 3 to a MatchIndex (...) node.

III.2.6.2 Program space exploration

Given the grammar of our query language, we adopt bottom-up approach to generate queries. We first enumerate possible programs by starting from terminals nodes to build unions of patterns. Then we follow the spirit of synthesis through unification [START_REF] Alur | Synthesis Through Unification[END_REF] to extend to the Difference operation by recursively synthesizing a query correcting false positives.

The main outline of our method is summarized in Algorithm 1 and illustrated in Figure III.3. It takes as input a set of positive examples 𝑃 = S (traces that must be selected) and a set of negative examples 𝑁 (traces that must not be selected). Throughout the algorithm, we also encounter false positives of a query 𝑞, which are elements that are matched by 𝑞 but belong to 𝑁 , and inversely false negatives of 𝑞, which are not matched by 𝑞 but belong to 𝑃.

ALGORITHM 1: The outline of our recursive query synthesis algorithm. Calls (1) and ( 2) contain heuristics that reduce the program space exploration in order to speed up synthesis. Each union query returned by ( 2 (1) unions ← BuildPatternUnions() ;

(2) A pattern is called perfect if it has neither false positives nor false negatives. When one exists, it is an obvious solution to the program synthesis problem.

candidates ← {}; foreach (query, 𝑃 -) ∈ unions do if 𝑃 -≠ ∅ then exception ← Synthesize(𝑃 -,
Pattern filtering When there is no perfect pattern, there are still ones that are better than others. A pattern that does not match all points but has no false positive is a good candidate to be part of a union-based query. A pattern that matches all true positive points plus some false positives can be used in a difference-based query. More generally, we rank patterns based on the size of 𝑃 -and 𝑁 + :

𝑠𝑐𝑜𝑟𝑒 (𝑝𝑎𝑡𝑡𝑒𝑟𝑛) =            +∞ if 𝑃 -= ∅ +∞ if 𝑁 + = ∅ 1 |𝑃 -| + 𝛼 |𝑁 + | otherwise (III.2)
The constant 𝛼 represents the importance of false negatives relatively to false positive, we use 𝛼 = 2 in our experiments. The function FilterPatterns() eliminates all patterns whose score is bellow a threshold set to 𝛽 time the highest non-infinite score. The value of 𝛽 can be as low as 0 not to filter anything. This results in a broader exploration of the program space, which is slower but more likely to find the good query. A value higher than 1 means to only keep patterns that have either no false positives or no false negatives. In our experiments, we use 𝛽 = 1/3.

Unions We combine the remaining patterns into Union queries that have no false negatives. A naive baseline would be to generate all subsets of the filtered collection of patterns, and keep all subsets whose intersection of 𝑁 + is empty. However, there are too many such subsets in general, so here again we prioritize some combinations.

First, if it exists, a minimal union with no false positives can be built by greedily collecting the patterns that have the smallest 𝑁 + among the ones that have no 𝑃 -. Such a union is a valid query for our synthesis problem.

Then we consider subsets of patterns by increasing cardinal. Subsets of cardinal 1 are patterns that have no false negatives. Subsets of size 𝑘 + 1 are built from subsets of size 𝑘 by adding a pattern only if it strictly reduces the number of false negatives. When this number falls to 0, the union is deemed valid. We rank valid unions using the same score as for pattern filtering and use the same threshold to eliminate the poorest unions. In order to limit the exponential number of recursive calls, we stop after a minimal amount of 𝛾 = 8 valid unions have been synthesized.

Recursion The last step of our synthesis process consists in building recursively, for each union 𝑢, a query 𝑒 that matches all the false positives of 𝑢 and none of its true positives. If 𝑒 is found, Difference (𝑢, 𝑒) is a correct query for our initial problem. Elements not matched by 𝑢 do not matter and are thus removed in the nested call, making it slightly faster.

We limit to recursion depth to 𝛿 = 3; queries synthesized from a higher depth would in general feel convoluted to a human, stating selection rules based on exceptions of exception of exceptions etc.

III.2.7 Results

III.2.7.1 Experimentation

Setup We implemented our trace recording mechanism for vertices going through 6 types of DAG nodes:

• a grid generator, which marks the point at grid coordinate (𝑖, 𝑗) with the predicate PCreateGrid (𝑖, 𝑗);

• a circle generator, which orders points PCreateCircle (𝑖);

• an extrusion, which marks points with either PExtrude (FRONT) when they are new points, PExtrude (BACK) when they are points from which new points have been added, or nothing for other points;

• a loop cut, which cuts face loops one or more times and marks points from the 𝑖-th cut with PLoopCut (𝑖);

• a duplicate, which copies multiple times a part of the mesh and marks points from the 𝑖-th duplicate with Duplicate (𝑖);

• a transform node, which move points according to a rigid transform matrix. Since it does not affect the connectivity of the mesh, we do not add any predicate.

Our semantic selection process is considered as a DAG node as well: the extrusion, the loop cut and transform operations use a selection parameter to restrict their effect to one area of the mesh only, and this selection can be driven by a semantic selection node.

Workflow The designer first builds a DAG. On one output of this DAG, they manually select some geometry, then validate to trigger our query synthesis routine. In a second time, they change the hyper-parameters of the graph and see whether the selection adapts correctly to the new shape. If not, they can manually fix the selection and refine the query. In such a case, the synthesis algorithm receives positive and negative examples from both instances on which there has been a manual selection and thus tries to build a query that works in both cases. shows how this performance evolves when varying the parameters. Overall, the complexity is exponential in the recursive depth, but it is anyways unlikely that the query considered most appropriate by a human operator requires more than a few levels of recursion.

III.2.7.2 Discussion

Limitations Our method may fail in three different ways. The first one is illustrated in Figure III.7: the domain specific language we use to represent queries cannot express all the possible high level intents of the designer. This includes all selections based on geometrical features such as face orientation or proximity to a given location since we did not include the Geometric () predicate in our experiments.

Another case of failure is the one of queries that are too convoluted and thus optimized out by our pattern filtering method. A solution is to lower the 𝛼 and 𝛽 thresholds and increase the number 𝛿 of recursions, at the price of a longer synthesis (Figure III.6).

Lastly, our choice of returning the program of minimal size, among the ones that could be synthesized, may not match the intent of the designer. The possibility for the designer to correct the automatic selection on another example mitigates this issue though, and another solution could be to prompt them for the best human-readable query.

Analysis In a way, trace recording is a symbolic equivalent of automatic differentiation [START_REF] Baydin | Automatic Differentiation in Machine Learning: A Survey[END_REF], hinting about how to incrementally change the input to reach a given change in the output, so we believe that trace-based approaches and program synthesis are promising when applied to shape programs. Our query language model and synthesis strategy are fairly simple, but they already behaves in a much more meaningful way than the naive index based selection used in almost any tool. 

III.2.8 Future Work

A wide range of possible improvement can be built upon our query synthesis approach. Some consist broadening the query language in order to encode a wider diversity of intents, either by adding new constructs or introducing more powerful index expressions, others are related to improving the synthesis method. Both of these points would benefit for a closer comparison to the work of [START_REF] Mathur | Interactive Programming for Parametric CAD[END_REF].

III.2.8.1 Variants of the query language

Spatial queries As mentioned already, the Geometric pattern would be an important improvement of the query language, since it is common for the designer to rely on spatial properties of the mesh elements, e.g., when selecting only faces that point upward. However this inflates the program space with many equivalently relevant queries to disambiguate from, and even make it continuously infinite when using inequalities on real numbers.

Neighborhood queries Our model of selection query is mostly declarative, like a SELECT query in SQL for instance. But we could combine it with imperative operations, in particular morphological operations (dilatation, erosion) which propagate the selected state to the direct neighbors of a mesh element.

Intersection We currently have no intersection operation in the query language.

We could start by introducing first-level intersections only, to make synthesis easier. First-level intersections can only combine queries of the type MatchPattern or MatchIndex, but no Difference or Union.

A powerful construct to add is the ordered intersection. This is a first-level intersection which also checks that the patterns matched by its sub-queries appear in the very same order in the element's trace. This enables one to say "select points that were first part of a loop cut and then involved in an extrusion" and addresses the problem raised in Figure III.7.a and III.7.b.

III.2.8.2 Integer expressions

In the method we have described, integer roles are handled exactly as if they were abstract symbols. The numeric nature of these roles could be better used.

We could for instance allow queries to count downwards, thus querying for row width -𝑖 in a grid of width points wide. An easy integration of this feature is to extend the PCreatePlane (𝑖, 𝑗) to include width -𝑖 and height -𝑗 as extra roles.

The index may also be used to detect dashed selection. We can for instance use the following integer expression in patterns:

int := constant | Modulo (int, int)
The constant matches only one possible index, and Modulo (a, b) matches all indices 𝑖 such that (𝑖 -𝑏) ≡ 0 mod 𝑎.

These integer expressions could be used in predicate matching, but also in MatchIndex, or even in a new construct MatchIndexInSubquery (int, query) that would combine semantic querying with a more arbitrary index-based picking at the end.

III.2.8.3 Variants of the synthesis algorithm

Programming by Demonstration We followed in this section the program synthesis principle of Programming by Example, but we could go one step further and do Programming by Demonstration by recording the different selection steps that the user follows (item by item, or loop select, etc.) instead of only using the resulting list of indices as example of output for our synthesis. This would allow the synthesis to be more constrained, thus faster and more likely to fit the user intent.

Outlier detection Our synthesis method assumes that the user-provided example is free of any error. We could however look for queries that are not perfect but close enough to the user input and thus hint the user for potential mistakes in their hand-selection.

Program space exploration Other techniques can replace our exponential recursion scheme, Mont-Carlo based exploration or decision trees. Quickly estimating an upper bound of the minimal query size would enable the use of adaptive values for thresholds 𝛼 and 𝛽.

Evaluation Since our end result relies on the appreciation of the automatic selection by the user, we must conduct a user study to validate our approach and have an experimental evaluation of our performance. A key difficulty is to sample appropriately the space of shape programs that are actually used in practice.

III.3 Co-parameterization for the differentiation of parametric shape

III.3.1 Introduction

The philosophy of DAG amendment is to alter the node graph in order to augment the output geometry with extra information representative of the DAG execution. Two DAGs leading to the same geometry but using different processes may thus attach different extra information. Recording a full trace if a heavy process though, so we now explore a more lightweight DAG amendment, which only adds a pair of numbers to each face corner of the output mesh.
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Figure III.8: Our method infers without any manual setup how to update the hyperparameters of a parametric shape to comply with an intent expressed as a brush stroke on its visualization. This enables a more direct and intuitive interaction process than tuning individual sliders, at no extra cost for the shape's designer.

We still address what the CAD literature calls the naming problem, but this time at the scale of individual points of the surface of an instance. We assume a certain degree of regularity of the function F : 𝝅 ∈ Π ↦ → 𝐺 ⊂ R 3 , since it is intended for human interaction, so once we match points across multiple instances of a shape program we can thus measure finite differences.

Differentiation enables to locally inverse a function and has a wide range of application. In particular, in Section III.4 we use it to enable direct manipulation of a DAG's output geometry, back-propagating these changes to the input hyperparameters.

Contributions Our key contribution in this section is an amendment operator for the parametric shape graph yielding a co-parametrization which associates points across hyper-parametric variations and thus makes it possible to measure point-wise shape jacobians efficiently.

Our approach is (i) automated -no extra effort is required from the shape's designer; (ii) flexible -it is possible to locally override the automated process whenever it is needed, and falling back to other methods remains possible at any time; (iii) non-invasive -it can fit into existing parametric shape engines without requiring to rewrite the content of generation operations.

Hypotheses Although we tried to remain agnostic in the underlying DAG engine -in particular we do not require it to be automatically differentiable -we make the assumptions that the operations (a) process only mesh-based data (b) can transmit extra attributes of the kind of texture coordinate from their input to their output and (c) label the output geometry with a duplicate index (that we denote 𝑗) when they duplicate input geometry.

III.3.1.1 Problem Setting

Let 𝑃 be a point of an instance 𝐺 = F (𝝅) of the parametric shape F . We would like to measure the influence of the hyper-parameters 𝝅 on 𝑃, as this is in essence what differentiating means. Following the usual finite-difference based definition of the differential, we consider 𝐺 ′ = F (𝝅 ′ ), where 𝝅 ′ = 𝝅 + 𝑑𝝅 is infinitesimally close to the original hyper-parameter 𝝅. In other terms, this consists in evaluating the position of the point for two close enough values of an hyper-parameter and measuring their difference. If we note 𝑃 ′ the equivalent of 𝑃 in 𝐺 ′ , the definition of the derivative of F in a direction 𝑣 could be, assuming that 𝑑𝝅 ∝ 𝑣:

𝐷 𝑣 (F ) (𝝅) ≃ lim ∥𝑑𝝅 ∥→0 𝑃 ′ -𝑃 ∥𝑑𝝅 ∥ (III.3)
Even if F is regular enough for the limit to converge, there is a critical omission in this definition: how do we define 𝑃 ′ ? The equivalent of 𝑃 in 𝐺 ′ is an ill-defined notion.

As long as the point 𝑃 is only identified by its 3D location, the best we can do is to look at its relation to other points in the same shape. This is at the heart of the field of shape correspondence techniques. But this approach requires heavy geometry analysis processes which are incompatible with interactive applications, and misses the semantic information contained in the structure of the DAG.

Our approach consists in augmenting the output of F so that each point comes equipped with an identification information that can be used to quickly "recognize" 𝑃 in 𝐺 ′ . This information is called the co-parameter 𝑎 𝑃 of 𝑃 and 𝑃 ′ . As illustrated on a simplified example in Figure III.9, there are multiple ways to co-parameterize a parametric shape. In our work we leverage the information contained in the DAG to pick one that is relevant to the designer's use case.

Terminology Here are the key terms we use along this section.

A Parametric shape F is a function mapping input values 𝝅 called hyper-parameters to 3D surface meshes. An instance of the parametric shape is this 3D surface mesh for a fixed value of the hyper-parameters.

A Single-point parametric subshape takes as input the same hyper-parameters than the original parametric shape, but only outputs a single point from the corresponding instance. It may be undefined for some values of the hyper-parameters, otherwise returns point that has the same meaning.

The parameter of a 3D point of an instance designates a 2D coordinate that indexes this point and is often used for texture mapping.

The co-parameter 𝑎 of a single-point parametric subshape is a coordinate that indexes this subshapes among all the other ones. By extension, the co-parameter of a point of an instance is the co-parameter of the single-point parametric subshape that this point is an instance of.

III.3.1.2 Related Work

Shape correspondence We mentioned our need to identify points across multiple meshes of potentially varying connectivity; this is commonly referred to as shape correspondence or cross-parameterization [START_REF] Schreiner | Inter-surface mapping[END_REF][START_REF] Kraevoy | Cross-parameterization and compatible remeshing of 3D models[END_REF][START_REF] Kilian | Geometric modeling in shape space[END_REF]. It consists in mapping each point from a shape to points that have the same semantic but in other shapes.

van [START_REF] Van Kaick | A Survey on Shape Correspondence[END_REF] surveys a large variety of shape correspondence works, and more recent work even try to match dissimilar shapes [START_REF] Hecher | How Do Users Map Points Between Dissimilar Shapes[END_REF]. But this field focuses generally on offline registration of a small number of geometries, while we have to register a continuous infinity of meshes. Some works build correspondences for large amount of objects. [START_REF] Mahmood | AMASS: Archive of motion capture as surface shapes[END_REF] addresses the lack of consistent parameterization among datasets of human bodies, but is hand tuned for this very use case. [START_REF] Leimer | Relationbased parametrization and exploration of shape collections[END_REF] creates a parametric shape by registering together a whole collection of shapes. Unfortunately these methods are offline and resource intensive. Furthermore there are no geometric features guaranteed that we may rely on to in general. For all these reasons, we adopt a quite different approach. Establishing a shape correspondence is a semantic operation, so we leverage the implementation of the parametric shape -the DAG -because its structure carries semantic information beyond what the output geometry shows. We model this using three notions of parameterization. M 𝐺 : P 𝐺 → 𝐺 ⊂ R 3 is a parameterization as meant in parameterized surfaces. The parametric shape F : Π → {𝐺 } itself is a higher-order parameterization. Since M 𝐺 is not enough because in general it is different for each 𝝅, we introduce C : Π → (𝐴 → R 3 ) which outputs parameterizations consistent among all the geometries resulting from F .

III.3.2 Co-parameterization III.3.2.1 Co-parameter definition

As highlighted in Section III.3.1.1, the jacobian of a parametric shape F is illdefined, because the function F : 𝝅 ↦ → 𝐺 returns a set of many points -an infinity of points -with no way to recognize one among them. Any differentiation scheme, be it automatic, suffers from this definition issue. We thus introduce the notion of co-parameterization of F , a way to extract what we call single-point parametric subshapes of the form 𝝅 ↦ → 𝑥 ∈ R 3 . Contrary to F , these subshapes can be differentiated.

The usual way to identify a point on a geometry is to parameterize it. Importantly, this must not be confused with our hyper-parameterization (see Figure III.10). It consists in defining for a fixed geometry 𝐺 a bijection M 𝐺 : P 𝐺 → 𝐺 mapping to each point of 𝐺 a parameter from a set P 𝐺 . Such a parameter can typically be a unique texture coordinate or -in the case of meshes -a face index together with barycentric coordinates. There are in general many different ways of parameterizing a given geometry.

The problem in our case is that this mapping M 𝐺 may depend on 𝐺 = F (𝝅), and so on the hyper-parameter 𝝅. As a consequence, it is of no use to recognize a point after 𝝅 changed. Hence the need for a collection C of consistent parameterizations, each associated with a different 𝝅 but all sharing the same parameter set A:

C(𝝅) : A -→ F (𝝅) ⊂ R 3
The strength of this second order function C is that it may be uncurried because A does not depend in 𝝅, so

C : Π -→ (A -→ R 3 ) becomes C : Π × A -→ R 3
and may even be curried back with its arguments swapped:

C : A -→ (Π -→ R 3 )
We call C a co-parameterization of the parametric shape F and A its co-parameter set. It plays a role similar to the surface parameterization but in the space of parametric shapes. With these notations, for each 𝑎 ∈ A the function C(𝑎) is a differentiable object, for which using for instance finite differences makes sense. We call this a single-point parametric subshape of F (the output of step 1 in Figure III.21).

So, to determine the influence of the hyper-parameters on a point 𝑝 𝑖 sampled on the geometry 𝐺 = F (𝝅), we actually consider its co-parameter 𝑎 𝑖 = C(𝝅) -1 (𝑝 𝑖 ) and evaluate the jacobian 𝐽 𝑖 (𝝅) of C(𝑎 𝑖 ) at 𝝅. The co-parameter 𝑎 𝑖 of a point 𝑝 𝑖 is thus the way to "recognize" it after a change of the hyper-parameters. We discuss in the next section how to build this co-parameterization in practice.

III.3.2.2 Automatic DAG Amendment

We assume in this section that the geometry produced by the parametric shape F is a 3D surface mesh. We automatically modify F so that the geometries it produces have each of their face corners labeled with their co-parameter (Figure III.12). Thus, sampling a 3D point 𝑝 𝑖 onto the output mesh also provides its co-parameter 𝑎 𝑖 = C(𝝅) -1 (𝑝 𝑖 ) by interpolating the co-parameters of the corners of the face that 𝑝 𝑖 belongs to (Figure III.22.a).

Without loss of generality, we can model the implementation of F as a DAG whose nodes are mesh processing operations. Hyper-parameters affect the behavior of individual nodes, but the connectivity of this graph remains static. Our automatic modification of F consists in inserting new nodes into this graph. It is non-invasive in the sense that it does not require to bring any change to the internal logic of individual nodes. The co-parameter attribute 𝑎 that we intend to create at each face corner must be:

• unambiguous -There must not be two points sharing the same value of 𝑎. 𝑤 is a copy of the parameterization (UV) at the leaf the face corner comes from. 𝑙 is a unique index of the leaf-to-root path that generated the face. We first count the number of paths flowing through each input of each node (b). We then automatically insert nodes (c) to first initialize 𝑙 to 0 after each leaf and offset 𝑙 before any input by the number of paths flowing through previous inputs of the same node. As a result, each face corner of the output geometry is labeled with a unique path index. • interpolable within a face -In order to infer any point's co-parameter from the value at the corners of its face. We split 𝑎 into a real component 𝑤 and an integer component 𝑙. The real component is technically no different from a texture coordinate, which is also a real vector attached to face corners. The integer component must be constant across a given face in order to ensure interpolability, so it may in practice be attached to faces rather than corners.

The attribute 𝑙 of a face contains the index of the data flow path that generated it (Figure III.11.b). This information is consistent since the connectivity of the DAG never changes once the shape has been modeled. Disambiguating faces generated through the same path is ensured by the real component 𝑤 that is given by a standard parameterization of the leaf of this path.

Construction We first insert a node after each leaf of the DAG. This node initializes 𝑤 by copying the canonical texture coordinate output by the leaf. When the leaf node generates meshes of constant connectivity, any fixed automatic parameterization (auto UV unwrapping) can be used. When the node is a primitive shape (sphere, cylinder, box, etc.), its canonical parameterization works. Practical mesh-based parametric shape engines support forwarding face corner attributes through their internal nodes like any other texture coordinate, so 𝑤 is hence defined at the output of the DAG.

To produce the integer part, we first initialize it to 𝑙 = 0 after each leaf (in the same node that initializes 𝑤). of overlap is duplication nodes (mirror, copy and transform, scatter, etc.). To include this into our framework, we multiply the number 𝑛 of paths flowing into a duplication node by the maximum number 𝑚 of duplicates it may produce (Figure III.13). If the duplication index 𝑗 has a finite number of 𝑚 possible values (for a mirror, 𝑗 ∈ {0, 1}), we insert after the duplication a node that replaces 𝑙 with 𝑛 • 𝑗 + 𝑙.

If the duplication index 𝑗 may take an arbitrary large value, we add an extra dimension to the integer index 𝑙 to store it, promoting it to an integer vector. Since the real component 𝑤 is typically in [0, 1] 2 the first two dimensions of 𝑙 are emulated by offsetting 𝑤 in order to alleviate memory usage.

Thus, each face corner of the output of the DAG is uniquely and consistently identified by its path index 𝑙 and leaf parameter 𝑤. Our process is summarized by pseudo-code in Algorithms 2 and 3.

III.3.3 Results

III.3.3.1 Implementation

Our DAG automatic amendment (Section III.3.2.2) is exemplified in Figures III.14 Performances are reported together with the interactive results later on in Section III.4.3. The relevance of amendments and thus of the jacobians we compute is also evaluated in the interactive section by pooling users about their feeling when using the resulting tool. provided that production-ready parametric shape engines usually need this feature in order to conserve texture coordinates.

Some nodes though introduce overlaps in UVs even when there was none in their input (e.g ˙, some smoothing algorithms). Some other nodes are simply not able to assign face corner attributes to their output (e.g ˙, a convex hull node). Discrete hyper-parameters like the number of repetitions, in a duplication operation, are not handled by our approach as is because it makes the single-point subshapes non differentiable.

It is nonetheless always possible for the shape's designer to manually overcome these cases by adding extra nodes dedicated to fixing the 𝑤 attribute. Figure III.18 shows an example where a continuous box proxy is used to override the value of 𝑤 after a duplication.

Unintuitive jacobians When an hyper-parameter acts on the selection from a geometry that gets affected by an operation rather than the way the operation itself moves points, the jacobians of single-point subshapes may no longer match the intuition of the end-user (see Figure III.17).

III.3.3.3 Future Work

More semantic One of the strengths of our approach is to leverage the semantic information carried by the DAG. One could look for other ways of using it. For instance, the depths of the nodes using a particular hyper-parameter could be used to prioritize some of them during jacobian filtering (Section III.4).

Proxies In cases where limitations occur in the construction of the co-parameterization, hand-tuned workarounds based on geometry proxies are possible. We could explore ways to automate this. For instance, in DAG pruning The restriction C(𝑎) of the parametric shape F to the single point of co-parameter 𝑎 ∈ A may not be affected by all the nodes of the DAG.

The graph could hence be pruned while measuring finite differences in order to alleviate its evaluation cost.

Auto-differentiation Using automatic differentiation can make the nodes of the DAG output a jacobian as part of their computation process. This replaces the time consuming evaluation of finite differences and also enables to update the jacobian buffer at each frame during a stroke. [START_REF] Cascaval | Differentiable 3D CAD programs for bidirectional editing[END_REF] use this to better scale to shapes with tenths of hyper-parameters, but their framework is limited to constant connectivity, as advanced mesh processing nodes like boolean operations are non trivial to implement using an automatic differentiation framework. 

III.4 Jacobian Filtering: Applying Inverse Kinematics to Parametric Shapes

The core problem of parametric shape manipulation by the end user is that it does not occurs in the 3D space but rather in the hyper-parameter space Π, which is roughly a list of sliders in a user interface. Yet, the intent of the end-user is often more naturally expressed in the 3D space. This mismatch results in a trial and error loop that is dampening the creation process.

In some contexts like animation, this issue is such a deal-breaker than riggers are asked to equip shapes with manipulators, which are handles lying in the 3D space and whose transform drives some hyper-parameters. But creating these requires extra time and skills on top of the design of the parametric shape itself.

In the workflow we target (Figure III.20), a technical designer first builds an object using non-destructive modeling tools, and simply exposes some hyper-parameters without minding manipulators, thus defining F . Lastly, the end-user edits the hyper-parameters to customize the object. In between, our DAG amendment Each of these is differentiated to measure their jacobians, which are then provided to the solver. Confronting jacobians to the trajectory of the cursor, the solver determines the update to apply to the hyper-parameters.

automatically modifies F so that besides the hyper-parameters sliders the end user may directly manipulate the shape in the 3D view.

In this section, we introduce a method for interpreting user inputs expressed in the 3D viewport as changes in the hyper-parameter space without any extra controller setup. Our key contribution is a non-linear filtering mechanism acting on the the resulting jacobians to both regularize and sparsify the shape optimization, fostering hyper-parameters whose behavior comply with the scale of the user brush. For the solving part we can draw from the IK literature, however this literature takes for granted the access to the Jacobians, which is not obvious in our case.

III

In the previous section, we focused on how to theoretically define and practically measure the Jacobians telling the influence of the hyper-parameters over the part of the geometry where the stroke starts. Section III.4.2 shows how we use this differential information to compute Δ𝝅 and details the choices we have made compared to other such solving contexts. We then show results in Section III.4.3 and finally discuss the current limitations and many prospects of our method in Section III.4.4.

III.4.1.2 Sampling and differentiation

At this point we are able to define what the jacobian of a point 𝑝 𝑖 sampled on the geometry 𝐺 = F (𝝅) means. When a stroke starts, we sample 𝐾 such points by casting rays from the viewport and intersecting them with 𝐺. The hit information is used to not only find the 3D intersection point 𝑝 𝑖 but also its co-parameter 𝑎 𝑖 = (𝑤 𝑖 , 𝑙 𝑖 ).

The extent of the brush may cover areas at very different depths, but we assume that the user intent has a limited depth of field, affecting either the foreground or the background but not both at the same time. To match this, we select the closest sample to the center of the brush, and discard all the points that are too far from its unprojected world space location.

To measure the 𝑘-th column of the jacobians 𝐽 𝑖 , we evaluate the parametric shape with the 𝑘-th hyper-parameter slightly changed. The step of differentiation is set to 𝛿 𝑘 = 10 -5 • (𝛼 𝑘 -𝛽 𝑘 ), where [𝛼 𝑘 , 𝛽 𝑘 ] is the range of possible values of this hyper-parameter. Within the new geometry 𝐺 ′ that this produces, we look for points that have their co-parameter equal to 𝑎 𝑖 . For each possible value of 𝑙 𝑖 , we build a mesh where coordinates are the 𝑤 attribute of face corners from 𝐺 ′ . We then project 𝑤 𝑖 onto this mesh to find the face index and barycentric coordinates of the new position 𝑝 edge between the operands of a boolean operation. In such a case, we set the 𝑘-th column of 𝐽 𝑖 to zero to prevent changing this hyper-parameter, provided we do not know its influence.

III.4.2 Solving

The solver is provided with the jacobians 𝐽 𝑖 ∈ R 3×𝑛 measured at the 𝐾 points 𝑝 𝑖 sampled within the brush of radius 𝑟 when the stroke started as well as the trajectory (𝑡 0 , . . . , 𝑡 𝑇 ) of the stroke. The solution Δ𝝅 returned by the solver must ensure the following properties:

exactness The points originally lying inside the brush must still be inside the brush at the end of the stroke.

sparsity The hyper-parameter update must have an amplitude as low as possible; the user does not expect a single stroke to apply too significant changes.

continuity The hyper-parameter update must be continuous along the trajectory, i.e., adding a new way point 𝑡 𝑇 +1 close to 𝑡 𝑇 must not suddenly change Δ𝝅.

speed A result must be found at interactive frame rate. The user should not feel that hyper-parameters are changing while they are not moving the mouse.

III.4.2.1 Inversion

At the first order, we know that for each of the single-point parametric subshapes C(𝑎 𝑖 ) that we sample -denoted simply C𝑖 below -we can approximate the new location of the point using the jacobian 𝐽 𝑖 = 𝐽 C𝑖 (𝝅) computed at step 2 of Figure III.21:

C𝑖 (𝝅 + Δ𝝅) ≃ C𝑖 (𝝅) + 𝐽 𝑖 • Δ𝝅 (III.4)
The stroke trajectory is expressed in the viewport, so we compose equation III.4 with a function Proj : R 3 → R 2 mapping the world space to the screen space. Since C𝑖 (𝝅) = 𝑝 𝑖 is the point that was clicked on, it is mapped to 𝑡 0 -the beginning of the stroke. To fulfill the objective of exactness, we want the new position C𝑖 (𝝅 + Δ𝝅) of this point to match the new position 𝑡 𝑇 of the user's cursor:

𝑡 𝑇 = 𝑡 0 + 𝐽 ′ 𝑖 • Δ𝝅
where 𝐽 ′ 𝑖 = 𝐽 Proj • 𝐽 𝑖 is the jacobian of the composition with the projection. This is a typical problem of inverse kinematics which can be solved with a damped least square method [START_REF] Deo | Robot subtask performance with singularity robustness using optimal damped least-squares[END_REF][START_REF] Baerlocher | An inverse kinematics architecture enforcing an arbitrary number of strict priority levels[END_REF]. Such a method finds the solution Δ𝝅 that has a near minimal 𝐿 2 norm while avoiding discontinuities at singularities (where the rank of 𝐽 ′ 𝑖 changes):

Δ𝝅 = 𝐽 ′+ 𝑖 • Δ𝑡
where Δ𝑡 = 𝑡 𝑇 -𝑡 0 and 𝐽 ′+ 𝑖 is a singularity robust pseudo-inverse of 𝐽 ′ 𝑖 .

NB Jacobian 𝐽 Proj of the projector. Let Proj : R 3 → R 2 be the projection of the user's view. Usually, this projection is expressed in the form Proj (𝑋 ) =

𝑃 •𝑋

[𝑃 •𝑋 ] 𝑤 with 𝑃 an arbitrary projection matrix. In this case, we derive the following Jacobian:

𝐽 Proj (𝑋 ) = 1 [𝑃 • 𝑋 ] 𝑤 𝑃 -Proj (𝑋 ) • 𝑃 𝑤,•
where 𝑃 𝑤,• is the row of 𝑃 corresponding to the component 𝑤 and 𝑋 is a column vector.

Domain boundaries

In order to account for the boundaries of the domain Π of allowed hyper-parameters, we use the active-set method shown in Algorithm 4, inspired from the Prioritized Inverse Kinematics presented by [START_REF] Baerlocher | Task-priority formulations for the kinematic control of highly redundant articulated structures[END_REF]. We iterate resolution steps and projections onto the domain, and freeze hyper-parameters affected by the projection to their clamped values for the remaining steps. Freezing is done by setting the corresponding column of the jacobian to zero. To avoid breaking the continuity of the solution, we add to the IsOutOfBounds test of Algorithm 4 a maximum distance to the hyperparameter update that was returned at the previous execution of the function (i.e., for Δ𝑡 = 𝑡 𝑇 -1 -𝑡 0 ). We also initialize Δ𝝅 to the previously returned solution.

We are thus able to handle a point-wise constraint and fulfill the requirements listed above. We see in the next section how we combine multiple such constraints over the extent of the brush. 

III.4.2.2 Jacobian buffer filtering

The variations of a single point may not be representative of those of the patch of surface surrounding it, so we sample multiple points within the extent of the brush and average their jacobians. This is still fast because the bottleneck is the evaluation of the parametric shape which is common to all samples (see Section III.4.3.1).

The second motivation for filtering the jacobian buffer is that the 𝐿 2 norm, minimized above, is not the most appropriate way to model sparsity. Indeed, we rather need to limit the number of hyper-parameters that have a non-zero update i.e., the 𝐿 0 norm. For instance, when two hyper-parameters have a similar influence over the dragged points, we want to use only one of them rather than applying a small change to both.

Hence we refine the user intent with the following model: (i) All other things being equal, we want to foster hyper-parameters that show less variation within the extent of the brush. And (ii) we want to favor hyper-parameters whose influence over the dragged area would change notably if the brush radius would be increased. Intuitively, this corresponds to making the assumption that the user chooses the maximal brush radius fitting their intent, as illustrated in the drawer example in Figure III.23. We inject extra knowledge about the use case by setting some columns of 𝐽 𝑖 to zero, thus ignoring the influence of the hyper-parameter over the 𝑖-th point.

For objective (i), we compare the coefficients of variation 𝑣 𝑘 (standard deviation over mean) of the norms of the columns of the 𝐽 𝑖 within the brush. We discard hyper-parameters such that min 𝑣 𝑘 ′ 𝑣 𝑘 is lower than a threshold 𝜆 𝑣 ∈ [0, 1].

Among the remaining hyper-parameters, we address (ii) by measuring a contrast factor 𝑐 𝑘 which is the ratio of the average norm of the 𝑘-th column of 𝐽 𝑖 inside of the brush over the one outside of the brush. We foster hyper-parameters that have a high contrast factor, so if 𝑐 𝑘 max 𝑐 𝑘 ′ is lower than a threshold 𝜆 𝑐 ∈ [0, 1], the 𝑘-th hyper-parameter is discarded. Thus, a larger brush is more likely to affect hyper-parameters whose influence has lower frequencies and a pickier brush will affect hyper-parameters with faster variations in the Jacobian buffer. The thresholds translate a global trade-off between 𝐿 2 and 𝐿 0 sparsities, which would depend on the kind of object that is manipulated. Empirically, 𝐿 2 is more important for organic shapes while 𝐿 0 is more critical for mechanic ones. In practice, we use 𝜆 𝑣 = 0.2 and 𝜆 𝑐 = 0.75. A high value for 𝜆 𝑐 favors sparsity in the modified hyper-parameters, while a high value for 𝜆 𝑣 favors regularity in the hyper-parameter selection, i.e., ignoring noisy hyper-parameters.

Single Direction At an extreme edge of this trade-off, we add the possibility to keep only one hyper-parameter. We consider that the beginning of the stroke is more meaningful than the end, because the jacobian information that we have is only valid for small variations of 𝝅, so we pick the one hyper-parameter based on the direction at the beginning of the stroke only, Δ𝑡 = 𝑡 1 -𝑡 0 . For each column 𝑗 ′ 𝑘 , we look at the cosine similarity (𝑐 sim ) between 𝑗 ′ 𝑘 and Δ𝑡, as well as the norm ∥ 𝑗 ′ 𝑘 ∥ 2 . We favor columns with high norm in order to reduce the 𝐿 2 norm of the output Δ𝝅. On another hand, the higher the cosine similarity, the more exact the with 𝜆 = 1/2 in practice. The time needed to evaluate F does not depend on our method but on the parametric shape engine that we have built onto, and its standard deviation is due to caching mechanisms.

III.4.3 Results

We implemented our method as an add-on for the Blender open source program. Its direct manipulation capabilities are illustrated on a few examples in Figure III. [START_REF] Laidlaw | Constructive solid geometry for polyhedral objects[END_REF]. In particular, we can observe that examples (a) and (b) exhibit changes of connectivity while the last edit in example (b) shows that clicking in an area not affected by any hyper-parameter induces, as expected, a null update.

III.4.3.1 Performances

For all the examples illustrating this section, the execution time of the DAG amendment is negligible, boiling down to a few milliseconds each time the graph topology is updated. Hence, we focus here on the runtime performance of our system during interaction.

Figure III.25 gives execution time measurements on five scenes. The bulk of the computation is located at the beginning of the brush stroke since the finite differences require many evaluations of the input parametric shape F . The overhead introduced by the solver is negligible compared with the time required to evaluate F , which is needed anyway to display the current state of the parametric shape.

The overall Jacobian evaluation time is only indirectly related to the number of vertices in the geometry and rather depends on the complexity of the DAG and its nodes' logic. The time needed to retrieve the position of the points from their co-parameters depends on the number of vertices, but since they are grouped by path index 𝑙 the relation is not strictly proportional. For instance, the table in example (c) has twice as much vertices as the curtain in example (d), but this complexity is mostly concentrated in the legs. The average position evaluation time is 11.3ms, lower than for the curtains, but it has a much wider standard deviation. It peaks around 27ms when points are sampled on the legs but goes below 1ms when dragging elements of the plate.

Performances were measured with 64 sampled jacobians. This count linearly affects the initial sampling of co-parameters, the evaluation of positions from their co-parameters and the filtering of the jacobian buffer. Other elements are not modified. Empirically 64 is a high number of samples in the sense that the output Jacobian is already robust enough for an intuitive interaction at lower values. In practice we use 32 samples, which was way enough for all our examples.

III.4.3.2 Ablation study

To assess the symbiosis of the elements composing our approach, we study here the influence of three of them over the whole system: sample discarding, outbound sampling and path indexing.

Figure III.26 illustrates the importance of discarding sample points after unprojection. Even if they are close to the center of the brush in screen space, the drawers are not on the same plane than the likely area of focus of the user so they should not get affected by the stroke.

In the absence of samples outside of the brush (Section III.4.2.2), the only way to change the size of the handle in the drawer example of Figure III.23 would be to first change the drawer position all the way to its boundary then change the handle and finally move the drawer back to the desired location. Our method makes this same change possible in a single stroke.

Path indices generated by our DAG amendment ensure that there is not two points with the same co-parameter in the output geometry. Without so, if 𝑝 𝑖 and 𝑝 𝑗 share the same co-parameter, there is a risk that a row of the jacobian is set to 𝑝 ′ 𝑗 -𝑝 𝑖 instead of 𝑝 ′ 𝑖 -𝑝 𝑗 , where 𝑝 ′ is the new location of the point 𝑝 after a slight change of an hyper-parameter. This leads to jacobians totally unrepresentative of the influence of hyper-parameters. 

III.4.4 Discussion

III.4.4.1 Properties

As it stands, our method allows intuitive interaction with a parametric shape directly in the 3D view. In particular, a single mouse event can yield multiple hyperparameters to be updated concurrently. The same parametric shape may also be exposed with various alternative control spaces easily, by simply masking/exposing a subset of its hyper-parameters, making it easy to "publish" the shape for various application scenarios. Moreover, our DAG amendment is non intrusive since we only insert new nodes.

Our approach opens the possibility to apply the many works that have been carried out on IK to parametric shapes that are generated by complex graphs including operations that drastically affect a mesh connectivity (e.g., boolean operations). Not only do we give sense to the notion of Jacobian of a point of the surface but also we propose a filtering scheme to adapt their raw value to the needs of intuitive direct manipulation.

VR ready Our approach is agnostic of the dimension of the interaction space. We have focused mainly on screen based interaction, but any other input device such as VR handles could be used as well. In this case, the projection of manipulationspace sample points onto the geometry at Step 1 of the interaction loop becomes a nearest neighbor search rather than a ray casting.

Implementation Guidelines To integrate our method to an existing shape engine, the latter must expose a way to insert a non destructive operation on texture coordinates before/after existing operations. The implementation must list for each available operation the number of duplicates it may create and a mean to retrieve the duplicate index 𝑗. The interaction loop expects that the host software provides the user input, a way to query the geometry attributes at sample points on the screen and a way to evaluate the DAG programmatically.

User Feedback We presented the tool to 19 users whose proficiency with 3D software ranges from absolute beginner to professional, asked them to reach a target configuration of the parametric shape, then collected their feedback on scales from 1 to 5. Users were able to manipulate almost all the hyper-parameters they wanted (only 1/4 felt blocked and it was at most on a single hyper-parameter) and felt confortable with completing the task (63% found it rather easy). In the majority of cases (63%), they used our brush exclusively or felt back only a few times to the sliders (resp. 42% and 21%). Professional users, used to hand-crafted manipulators, were sometimes frustrated not to be able to target for certain a given hyper-parameter, but we recall that such manipulators require extra work when originally creating the parametric shape, which our method does not. On average, users were leaning towards our brush rather than the sliders and would be likely to use it in their usual 3D software. More extensive results are available in the supplementary material of É. [START_REF] Michel | DAG amendment for inverse control of parametric shapes[END_REF].

III.4.4.2 Limitations

Homogeneity Measuring the norm of an hyper-parameter update Δ𝝅 is illdefined because hyper-parameters are in general not homogeneous to each other, namely they are expressed in different units. This is why our Jacobian buffer filtering takes care of only comparing affine invariant properties (coefficient of variation, contrast factor), but it remains a problem to properly define the objective of sparsity of Δ𝝅 in the presence of diverse units.

First order

We currently only measure first order information about the parametric shape -the Jacobians -and do it only once, at the beginning of the stroke. For long strokes, hyper-parameters that have a non linear behavior are thus incorrectly interpreted. Furthermore, when the evaluation time of F increases, the delay needed to compute the jacobians starts to be noticeable, between the click and the first update of the hyper-parameters.

III.4.4.3 Future prospects

Global sampling We could try to precompute jacobians before the beginning of the stroke -while the user is changing the view point for instance -to avoid the slight lag when the interaction begins. This might require to use an acceleration structure to find the nearest neighbor of 𝑤 in the new geometries as there would be more sample points to consider, or would require to store the cooked geometries 𝐺 ′ , costing memory.

Other type of input constraints In our model, the user constraint takes the form of a brush stroke, but the Jacobian information we derive can be used with other types of input: layout-based constraint, image-based input (potentially coming from a differentiable renderer), global metrics (e.g., conserving volume) or visibility-based constraint (camera or illumination). This can potentially lead to interesting novel workflows.

Follow-ups After our original publication of this work (É. [START_REF] Michel | DAG amendment for inverse control of parametric shapes[END_REF], two papers explored the similar issue of directly manipulating shape programs. [START_REF] Gaillard | Automatic Differentiable Procedural Modeling[END_REF] uses box proxies to speed things up, in the case of part-based models, and developed an advanced solver with solution clustering. [START_REF] Cascaval | Differentiable 3D CAD programs for bidirectional editing[END_REF] built their own automatic differentiation system and reach a much more scalable result in terms of number of hyper-parameters. They also use global energies to disambiguate the user intent. Both of these work are restrained to constant connectivity though, and notice that a better integration with ours could be beneficial.

III.4.5 Conclusion

Our method leverages the information provided by the parametric shapes when seen as programs -described in general as graphs of operations -to make inverse control available to them in an intuitive brush-based interaction loop. Our approach may pave the way for more advanced uses of graph-based shape representations, exploring our local differentiation scheme with alternative optimization strategies.

IV

Tiles-based declarative programming of shapes

IV.1 Introduction

IV.1.1 Constrained layout

As we highlighted in Chapter I, imperative DAGs are not the only paradigm for shape programming. Shape programming is about identifying systematic behavior in the creation process and modeling this systematism. DAGs represent rules applying to the flow of geometry processing operations, but in this chapter we represent rules that apply to the end result, to the layout of pieces of geometry.

There are two main families of constrained layout: free-position layout, and tiled layout. The former is for instance about ensuring alignments, contacts, regular distribution, orientations, etc. The latter is quite different: positions and orientation of the slots where pieces of geometry must be instantiated are pre-determined, but the unknown is which piece -which tile -goes where.

In both cases, the power of using shape programming at the level of declarative layout constraint is that it naturally enables one to combine manually authored fixed content with shape programming. However, in the case of a tiled layout, a lot of constraints apply to the content of the tile itself. Indeed, the geometry of tile edges -interfaces -that are in contact in the final layout must match.

Although the problem of laying out tiles given their neighboring constraints has been studied a lot, authoring the geometric content of the tile remains quite cumbersome. A striking example of how this authoring can be time consuming is the tiles that Stålberg presents in their break down of Townscaper [START_REF] Stalberg | Wave function collapse in bad north[END_REF], where they modeled hundreds of tiles while ensuring these constraints manually This chapter focuses on easing the use of tiled layout by assisting the construction of rich tile sets and in particular of the 3D content of their tiles. We first present an approach based on growing geometry from 2D cross-sections drawn on the interfaces between tiles (Section IV.2). We show how this integrate into a system for quickly authoring auto-similar mesostructures. We then explore how to bring diversity in the content of tiles by replacing their static geometry with parametric shapes (Section IV.3). The tile space becomes continuous and we have to solve for both neighboring constraints and the hyper-parameters driving the content.

IV.1.2 Wang Tiles

IV.1.2.1 Definition

Prior to detailing our contributions, let us first define the framework of Wang tiles (H. [START_REF] Wang | Proving Theorems by Pattern Recognition -II[END_REF], which is at the heart of most tiled layout system. First, a problem of Wang tiling is in particular a tiling problem, meaning that we have a set of geometric tiles 𝑇 that must be laid out on a domain with no overlap and no spacing between tiles. This is what makes a tiled layout different from other kinds of object layout. Each tile from 𝑇 may be instantiated multiple times to solve this problem.

In general, tiling can lead to very complex setups, like for instance Penrose tiles [START_REF] Penrose | The role of aesthetics in pure and applied mathematical research[END_REF], and has fascinated mathematicians and physicists for a long time. This complexity is the reason why it was attractive to the graphics community, for content generation, but it makes it really hard to find a valid layout of tiles. Wang tiles get rid of one part of the difficulty of tiling by pre-defining tile locations. There remains the question of which tile to instantiate at each location, but this becomes a purely discrete problem.

Originally, locations are predefined by considering only square tiles, so that they are distributed on the vertices of a regular grid, which we call slots. We see in Section IV.2 that this can be more flexible when allowing tiles to be deformed to fit their slot. We use the term generalized Wang tiles in our formalism to stress out the fact that they are not especially squares.

Some tilling problems only rely on the shape of the tiles to state which tile fits next to which other one, a bit like a puzzle does. On the contrary, adjacency rules for Wang tiles are given by labeling the edges -a.k.a. interfaces -of each tile

(Figure IV.2).
To summarize more formally, a generalized Wang tile set is given by a tuple T = (𝑇 , 𝐼, 𝐷, 𝐿). 𝑇 and 𝐼 are a discrete set of abstract symbols representing respectively tiles and interface labels. 𝐷 is a set of directions, to designate tile edges. And 𝐿 : 𝑇 × 𝐷 → 𝐼 is the labeling function, telling the color 𝑖 ∈ 𝐼 of the edge in direction 𝑑 ∈ 𝐷 in the tile 𝑡 ∈ 𝑇 . In the case of square tiles, we use for instance 𝐷 = {N, S, E, W} for north, south, east and west. When used in computer graphics, tiles come with a visual content (image, mesh, etc.) that is instantiated at each slot where the tile is used.

IV.1.2.2 Related Work

Tile-based content generation In computer graphics, tiling algorithms were first applied to procedural texture generation. The aperiodic texture mapping of [START_REF] Stam | Aperiodic Texture Mapping[END_REF] shows how laying out multiple patches of texture can efficiently break the visual repetitivity that strikes the human eye when naively repeating the same image. Following Stam's, multiple other papers explored tile-based graphics generation. [START_REF] Neyret | Pattern-Based Texturing Revisited[END_REF] used tiles for on-surface synthesis rather than for paving a plane, thus performing seamless texturing. They took some liberties with the original Wang tile framework, first changing the tile shape to triangles, but more importantly introducing the need to orientate tile edge labels, which we also experienced in our method. An important requirement for applying tile-based generation is to define a tile set the generator will draw from. For texture generation, [START_REF] Cohen | Wang Tiles for image and texture generation[END_REF] extract this set by stitching patches of an input example. Compared to other texture synthesis techniques such as image quilting [START_REF] Efros | Image quilting for texture synthesis and transfer[END_REF], tile-based texture generation limits the computational workload involved in blending texture patches: once the graph cut sewing is prepared for each tile, the synthesis itself is very fast -it only consists in laying out tiles -and can be done on the fly during real time rendering. Similarly to image quilting, the mesh quilting method (K. [START_REF] Zhou | Mesh quilting for geometric texture synthesis[END_REF] does not benefit from such a computing factorization.

In their representation of forest scenes, [START_REF] Decaudin | Rendering Forest Scenes in Real-Time[END_REF] present tiling as a mean to compactly encode the geometry of all trees, since they precompute light transport only for a set of tiles before instantiating them on the fly at render time. We follow a similar spirit in our mesostructure representation, using tiles to share memory.

Tiling engines

The tiling engine is responsible for finding a valid layout of tiles, given a tile set and a domain of slots to cover. [START_REF] Stam | Aperiodic Texture Mapping[END_REF] uses a predefined tile set for which a constructive algorithm for aperiodic tiling is known to always work [START_REF] Grünbaum | Tilings and patterns[END_REF]. [START_REF] Neyret | Pattern-Based Texturing Revisited[END_REF] consider the exhaustive tile set where all combinations of Wang labels are available, thus tiling is always solvable. The approach of [START_REF] Cohen | Wang Tiles for image and texture generation[END_REF] is more flexible than Stam's, as the tile sets are generated depending on the number of Wang labels such that they can use a tiling algorithm that always succeeds.

In all of these approaches, the tile set itself is still an internal entity the user does not have direct control on. In the approach we present in Section IV.2, the tile set is exposed as the primary lever for design, so we had to turn to more generic tiling engines, based on possibility space collapsing [START_REF] Merrell | Example-based model synthesis[END_REF]Gumin, 2016) (Figure IV.3). Geometric surface enrichment is often achieved using displacement mapping, for which content can easily be authored using standard (2D) painting tools. However, the content injected onto the macrosurface has fixed disk topology and cannot represent complex structures, such as tunnels and handles. To overcome this issue, generalized displacement mapping and shell mapping are explicitly modeling the surrounding space of the macrosurface and use various mechanisms to instantiate complex shapes in it. Unfortunately, this comes at the cost of tedious authoring, as the mesostructure shall still behave like a mappable object, conforming to tilability constraints and deforming following the macrosurface curvature. As a consequence, only complex preprocessings (K. [START_REF] Zhou | Mesh quilting for geometric texture synthesis[END_REF] acting on preexisting geometry have been developed so far to transform a 3D surface into a proper mesostructure.

We propose a new approach to self-similar mesostructure design built upon Wang tiling and adopting an interface-centric workflow, where the user creates mesostructure atoms through the 2D cross-sections they form at tiles interfaces.

Our approach can be executed on any quad-based surface domain and runs in real time, allowing the user to quickly create complex mesostructures in a few brush strokes. Just like displacement maps, our resulting model can be reused across macrosurfaces -with minimal tile set adjustments -and as we will see in Section V.2 is architectured to be compact and GPU-friendly.

Contributions Our main contributions are: (i) a mesostructure design workflow centered on continuity by construction and built upon a tiling engine, (ii) a tiling engine, evolving state-of-the-art with user-prescribed constraints, and (iii) a mapping mechanism leveraging the procedural nature of our mesostructure model to populate the macrosurface shell space.

IV.2.1.2 Related Work

Enriching a coarse surface with sub-polygonal details has been a subject of interest quite since mesh-based representations are used. These details are typically mapped like textures; the first example is displacement mapping [START_REF] Cook | Shade trees[END_REF], which deforms polygons along their normal, and then came iterations like View-Dependent Displacement Mapping (L. [START_REF] Wang | View-dependent displacement mapping[END_REF] and Generalized Displacement Maps (X. [START_REF] Wang | Generalized Displacement Maps[END_REF]. But as more expressivity is provided to the map-based geometry, it becomes unclear which part of the geometry should be encoded in the original mesh and which part belongs to the displacement map, in order to keep good rendering performance. On another hand, displacement-based methods are still constrained to the topology of the original macrosurface, so shell maps [START_REF] Porumbescu | Shell maps[END_REF] were proposed, using surface meshes as 3D texture data of arbitrary topology along a macrosurface. This work led to a number followups, adapting it for real-time mapping [START_REF] Ritsche | Real-time shell space rendering of volumetric geometry[END_REF], mitigating deformation artefacts [START_REF] Jeschke | Interactive smooth and curved shell mapping[END_REF] or using it for geometry transfer [START_REF] Takayama | GeoBrush: Interactive Mesh Geometry Cloning[END_REF]. In between lies hybrid approaches like relief mapping of complex mesostructure topology [START_REF] Policarpo | Relief mapping of non-heightfield surface details[END_REF] (but limited to a few overhanging layers).

A more radically different approach to geometric texture mapping is to leverage an implicit representation of the macrosurface [START_REF] Brodersen | Geometric Texturing Using Level Sets[END_REF]. Our approach makes no exception to the overall surface amplification scheme: the meso-scale geometric content is defined in a few unit cubes -the tiles -and then mapped onto the target surface.

Empirically, a limiting factor when using tile-based modeling is the creation of tile content that remains seamless at any time. Many approaches are data-based, taking an example as input [START_REF] Bhat | Geometric texture synthesis by example[END_REF][START_REF] Lagae | Geometry synthesis by example[END_REF][START_REF] Zhou | Mesh quilting for geometric texture synthesis[END_REF][START_REF] Merrell | Example-based model synthesis[END_REF][START_REF] Gumin | Wave Function Collapse[END_REF]. Although this works well for 2D raster images, it is much harder to define in the case of 3D vector content laid out on irregular grids [START_REF] Merrell | Continuous model synthesis[END_REF], so in practice tile based 3D mesh generation uses manually crafted atoms. For 2D vector tiles, Brian et al (2018) propose an editor in which, while drawing on tiles, the user sees an onion skin of the continuation lines of neighboring tiles. Porting this approach to 3D content is not straightforward, and our work draws from this spirit of attributing a predominant role to interfaces during authoring. When not based on arbitrary examples, detail generation methods can also be domain-specific [START_REF] Landreneau | Scales and Scale-like Structures[END_REF]. [START_REF] De Toledo | Geometry Textures and Applications †[END_REF] provides a comparison of various mesostructure techniques and [START_REF] Koniaris | Survey of texture mapping techniques for representing and rendering volumetric mesostructure[END_REF] reviews more specifically volumetric texture mapping.

IV.2.2 Method

Our workflow is presented in Section IV.2. (Section IV.2.2.2) which feeds a tiling engine exposing a feedback loop to the user for efficient authoring (Section IV.2.2.3) and for which we propose dedicated mapping (Section IV.2.2.4). The interoperability of our approach with real-time rendering will be detailed later in Section V.2.

IV.2.2.1 Design workflow

Our method takes a mesh representing the macrosurface as input, along which the mesostructure is to be generated. Basically, the user designs the mesostructure by creating progressively a set of tiles, while a tiling engine cover the macrosurface by instanciating consistently and rendering a tile arrangement on-the-fly (Fig. IV.6).

In the tile set, a tile is defined by (i) a geometric content and (ii) adjacency rules, with the geometric content being instanced each time the tile is used by the tiling engine. Following Wang tiles, adjacency rules are specified by labeling the four sides of a tile. Similarly to [START_REF] Neyret | Pattern-Based Texturing Revisited[END_REF], we also add an orientation flag to these interface labels, and only interfaces that are a mirror of each other may be juxtaposed.

The main friction when defining the content of a tile is to ensure that it is consistent with the content of any other tile that the tiling engine could place next to it. This is why we take the problem the other way around: in our approach, users author geometric content by drawing 2D cross-sections on the tile's interfaces. As such, the tile's geometric content is entirely defined by (i) assigning interfaces to the four sides of the tile and (ii) selecting pairs of cross-sections to connect using a sweep surface. The continuity of the mesostructure across interfaces is thus ensured by construction.

Another source of friction in the creative process relates to tiling engine failures. Since we let the user design arbitrary tile sets, and since the tiling problem is NP-hard in general, this happens on a regular basis, even with the best in class tiling engine. Consequently, we designed our tiling engine to suggest the addition of a new tile to the user whenever it gets stuck, specifying which configuration of interfaces could have enabled it to pave the whole macrosurface in an interactive feedback loop. To the best of our knowledge, there is no prior example of such a joint design of a tile set.

IV.2.2.2 Procedural mesostructure model

Our mesostructure model compactly represents its surface elements in a factored way. Essentially, it takes the form of a tuple (𝑇 , 𝐼, 𝑀, 𝐴) composed of a tile set (𝑇 , 𝐼 ), a macrosurface 𝑀 and an assignment 𝐴 of tiles to the macrosurface, as summarized in Figure IV.5.

Tiles

The tile set is formed by (i) a set 𝐼 of interfaces containing 2D cross-sections, as well as (ii) a list 𝑇 of tiles. A tile contains for each of its four sides a reference to one of the interfaces, as well as a flipping flag: we note 𝑖 𝑘 ↔ the flipped version of an interface 𝑖 𝑘 . A tile also contains a geometric content, given as a list of 3D sweep surfaces, each referencing a pair of 2D cross-sections interpolated along a procedural 3D Bézier curve (Figure IV.7). Additional 3D content may be injected into the tile, provided it is entirely contained within the extent of the tile, i.e., it does not interact with the interfaces. Lastly, a tile contains a set of flags indicating whether the tiling engine is allowed to flip and rotate it.

Interfaces The 2D content of each interface -instantiated on each tile side that references this interface -is modelled as a binary space occupancy function over the unit square. During the design phase, connected components are dynamically detected and constitute the cross-sections that can be selected for generating sweep surfaces.

The macrosurface 𝑀 is the domain where tiles are instantiated, extending the usual case of grid generation. It takes the form of a quad surface mesh and defines the associated slot graph (𝑆, 𝐸), namely the undirected dual graph of the quad mesh connectivity where a vertex 𝑠 of the slot graph (a slot) corresponds to a face of the quad mesh. Each half-edge (𝑠, 𝑒) ∈ 𝑆 × 𝐸 of the slot graph is labelled with a direction 𝑑 ∈ 𝐷, with at most one use of a given direction per slot. This indicates how a tile should be instantiated on this slot. Vertex positions and normal vectors define the shell space [START_REF] Porumbescu | Shell maps[END_REF] in which the mesostructure lives.

The slot assignment 𝐴 : 𝑆 → 𝑇 × 𝑃 provides for each slot a transformed tile, namely a tile index and a tile transform indicating whether the tile should be rotated and/or flipped. This transform takes the form of a permutation 𝑝 ∈ 𝑃 of its four base corners. The tiling engine decides for each slot which transformed tile it assigns, ensuring that the interface assigned to an half-edge is always the flipped version of the interface of its opposite half-edge.

IV.2.2.3 Tiling

Constraint solving Given the tile set and the slot graph, the tiling engine assigns a tile and its transform (rotation/flip) to each slot, such that neighboring tiles always have matching interfaces.

Our tiling engine is largely based on the Wave Function Collapse (WFC) algorithm [START_REF] Gumin | Wave Function Collapse[END_REF], itself following mostly the engine proposed by [START_REF] Merrell | Example-based model synthesis[END_REF]. It proceeds by progressive reduction of the possibility space, alternating two steps. Initially, the set of all tiles is assigned to each of the slots, then it greedily propagates constraints through a depth-first traversal of the slot graph. Each time this recursive propagation (collapse) step reaches a fixed point, the possibility set of one of the slots is arbitrarily reduced to a single tile (observe step). In order to reduce the chance of leading to a dead-end -a case where the possibility set of a slot is empty -the observed slot is chosen so as to minimize the amount of informational entropy removed from the system. In the case of equiprobable tiles, this simply means we observe the slot with the smallest possibility set (that has more than 1 tile). When stuck, the algorithm restarts with a different random seed.

The tiling problem being NP-hard, this algorithm does not magically handles all cases, but benefits from some nice properties. First, it is easy to implement, and has proven to be useful in practice, especially for video games [START_REF] Stalberg | Wave function collapse in bad north[END_REF]. Secondly, it is not tied to the regular grid structure on which tiling algorithms are usually applied; we were able to adapt it to the arbitrary slot graph derived from our input macrosurface with minimal modification. Lastly, reasoning about possibility spaces is a flexible framework in which it is easy to encode extra constraints, like forcing some interfaces to occur only on the boundaries of the macrosurface. Other work even ensure path finding or other non-local constraints [START_REF] Sandhu | Enhancing wave function collapse with design-level constraints[END_REF], and these could be ported to our use case.

Non regular slot graph To adapt the tiling engine to an arbitrary slot graph, each half edge of this graph is labeled with a direction 𝑑 ∈ 𝐷. For each slot, we set at most one of the half edges per direction. A slot has never more than four half-edges since it is the dual of a quad mesh, and it can have less when the quad lies on the boundary of the macrosurface. When the slot graph is a regular grid, a half-edge labelled with a north direction will always face a half-edge labelled with a south direction, but for an arbitrary graph, it is not necessarily the case (which is why we reason based on half-edges).

The sole constraint ensured by the solver is thus the following: let 𝑠 1 and 𝑠 2 be two slots that are connected by an edge 𝑒 in the slot graph, and 𝑑 1 (resp. 𝑑 2 ) the direction labeling the half-edge (𝑠 1 , 𝑒) (resp. (𝑠 2 , 𝑒)). Two (transformed) tiles 𝑡 1 and 𝑡 2 can be assigned to 𝑠 1 and 𝑠 2 only if the interface attached to the tile 𝑡 1 in direction 𝑑 1 is the same as the one attached to the tile 𝑡 2 in direction 𝑑 2 but horizontally flipped.

Boundary constraints

The user may annotate tile interfaces with two flags: boundary exempt and boundary only. The first one specifies that the interface must never occur in a direction that is connected to no other slot. This is typically used for any non empty interface when the user does not want open ended sweeps.

The second flag tells that the interface must never be connected, it is allowed only on boundaries. This can be used to ensure that the generated shape is made of one single piece, without including empty interfaces. These flags do not really interfere with the solving algorithm, they can be fully applied as a preprocessing of the possibility space (Algorithm 6). For each slot that has no half-edge labelled Tile suggestion Our tile suggestion mechanism is executed during the feedback loop between the model and the user, in order to address the fact that tiling can be arbitrarily hard or even not possible for a given tile set on a given macrosurface. When stuck for too long, the tiling engine provides the user with a new tile, specifying the configuration of interfaces that would have helped it.

To do so, we introduce a greedy algorithm based on the following voting scheme (Algorithm 7). We consider the set 𝐿 of all tile side configurations that can be generated from the set of interfaces 𝐼 . Each time the possibility set of a slot becomes empty -forcing the tiling engine to backtrack -a vote is cast for all configurations of 𝐿 that are compatible with the possibility set of its neighbors. All possible transformations (rotation, flip) are applied to a configuration of 𝐿 when checking that it can fit. For instance, if a tile 𝑡 in the possibility set of the north neighbor shows the interface 𝑖 in the direction of the empty slot (south if we are on a regular grid), then all elements of 𝐿 labeled with 𝑖 ↔ in the north direction receive a vote. The algorithm then suggests the tile that received the highest number of votes.

IV.2.2.4 Shell Mapping

Once a transformed tile is assigned to a slot, the last stage of our framework aims at mapping it to the actual shell space of the macrosurface for rendering. We leverage the natural relationship between a single slot from our graph and ALGORITHM 7: Our tile suggestion algorithm is based on a voting system. In practice we also label votes with the transform 𝑝 and break ties in the argmax by maximizing the number of identity transforms.

Data: Dead end neighborhoods 𝑁 recorded during solving. A neighborhood 𝑛 ∈ 𝑁 gives for each direction 𝑑 ∈ 𝐷 a set of possible transformed interfaces 𝑛 𝑑 = {𝑖 1 , 𝑖 2 ↔ , . . . } (where 𝑖 2 ↔ means that interface 𝑖 2 is flipped). Result: An interface 𝑖 𝑑 for each direction 𝑑 ∈ 𝐷 of the new tile fn SuggestNewTile 𝑁 :

Initialize votes:

𝐼 4 → N to 0; foreach neighborhood 𝑛 ∈ 𝑁 do foreach 𝒊 ∈ 𝑛 N × 𝑛 S × 𝑛 E × 𝑛 W do foreach tile transform 𝑝 do 𝒊 ′ ← inverse(𝑝) • 𝒊;
votes(𝒊 ′ ) ← votes(𝒊 ′ ) + 1; end end end return argmax(votes); end the hexaedron extruded from its corresponding quad on the macrosurface. More precisely, we cast the mapping problem as a deformation one [START_REF] Porumbescu | Shell maps[END_REF], from the mesostructure normalized space to the shell one. We express the geometric content of a tile w.r.t. the 8 corners of its slot's bounding box and use these local coordinates to reexpress it w.r.t. the extruded quad, taking inspiration from cage-based deformation.

The Shell Mapping approach [START_REF] Porumbescu | Shell maps[END_REF] can be reformulated in our case by replacing the barycentric interpolation performed over a tetraedrization of a prism extruded from a triangle with a generalization of barycentric coordinates to non-simplex boundaries -such as Mean Value Coordinates [START_REF] Ju | Mean value coordinates for closed triangular meshes[END_REF] for instance -computed within the hexaedron extruded from a quad. However, although this yields smoother deformation than dicing the hexaedron in tetraedrons and applying Porumbescu et alṡcheme, significant distortion still subsists.

To contain it, we use the parametric nature of the tile's geometric content, i.e., sweep objects, and deform their trajectory curves first, before the sweeping step. Doing so, the 2D cross-sections preserve their expected shape, e.g., a circle will produce a perfect tube, not an ellipsis-based one. Note that this may be opted out if one aims at deforming cross-sections as well, but we found empirically that cross-section preservation is often the expected behavior.

As our trajectories are cubic Bézier curves, our mapping problem now boils down the positioning for each of them their four control points (𝑝 0 , ..., 𝑝 3 ) in shell space. To ensure tangential continuity of the trajectories across interfaces, 𝑝 0 (resp. 𝑝 3 ) is moved to its corresponding interface and expressed using bilinear interpolation over its 4 corners. Meanwhile, its tangent is set along the normal of the corresponding hexahedron face 𝑛 0 (resp. 𝑛 3 ), yielding the remaining control points 𝑝 1 = 𝑝 0 + 𝑚 0 𝑛 0 (resp. 𝑝 2 = 𝑝 3 + 𝑚 3 𝑛 3 ). The magnitude 𝑚 0 (resp. 𝑚 3 ) of these tangents is defined as follows:

𝑚 𝑖 = 𝑚 𝛼 𝑖 𝛼 𝑖 + 𝛼 3-𝑖 for 𝑖 ∈ {0, 3} with 𝑚 = 8𝑑 √ 2-1 3
and 𝛼 𝑖 = ∠ (𝑝 3-𝑖 -𝑝 𝑖 , 𝑛 𝑖 ). When both 𝑝 0 and 𝑝 3 are on the same interface, the diameter 𝑑 is set to ||𝑝 1 -𝑝 2 ||. When ends are on neighboring interfaces, this distance is multiplied by √ 2/2 so that the curves approaches a section of circle. When they are on opposite interfaces, we use the same value of 𝑑 but set the weights 𝛼 0 and 𝛼 3 to 1 since 𝛼 0 + 𝛼 3 is null. We adopted this heuristic for its visual consistency, and the value of 𝑚 0 and 𝑚 3 can be globally or locally scaled by the user to produce various looks.

IV.2.3 Results

IV.2.3.1 Experiment

The renderings from Figure IV.4 have been computed using a third party render engine. Our real-time visualization is detailed in Section V.2. Figure IV.10 shows that once a tile dictionary has been defined, it may easily be used across multiple macrosurfaces, applying a similar style to various shapes, while only requiring from the user that they create missing tiles corresponding to unseen topological configurations.

Figure IV.11 illustrates the interest of manipulating a procedural representation of tile content when it comes to mapping the content into a cell of the macrosurface's shell. Rather than blindly deforming the synthesized mesostructure, we deform the input of the procedural construction, namely the control points of the sweep's trajectories. This leads to a more natural deformation, that conserves the aspect ratio of user-drawn 2D cross-sections. 

IV.2.3.2 Discussion

We proposed a method for efficient authoring and representation of rich 3D mesostructures along the surface of a quad mesh. Our approach is purely userdriven, on the contrary to data-driven approaches such as Mesh Quilting (K. [START_REF] Zhou | Mesh quilting for geometric texture synthesis[END_REF] which are less interactive since all a user can do is provide a different input example. An interesting follow-up would be to study how to hybrid one method with the other.

We reduce the boilerplate involved in defining the 3D content of tiles by integrating the constraint of continuity at tile interfaces from the very beginning of the user interaction. And as a by-product, the parametric nature of the content interacts nicely with the mapping into the shell space, mitigating deformation.

IV.2.3.3 Future Work

Our constructive method could be extended to more general content, applied to a 3D slot graph, although this would imply multiple user interface challenges. Besides, it is quite straightforward to adapt to other polygons than quads, using one tile set per corner count.

To give more control to the user and we could provide the possibility to force a particular tile to be present at a given slot, or to force the regeneration of an area without changing the other slots for instance. These are mainly user interface changes, as they would simply correspond to altering the initial constraints. Also, smarter backtracking could speed up convergence by handling the cases of dead end a bit differently: rather than restarting from the initial configuration, i.e., cancelling all observations, one could cancel only the last 𝑛 ones, the challenge being to determine 𝑛. A value of 1 would mean to traverse the graph of solution depth-first and could take a significant time to jump away from a bad branch of search.

A deeper change to the tiling algorithm could be to solve for interfaces first, and then generating the list of tiles with all the configuration occurring in the result. With a procedure to limit the number of such configurations during solving, this corresponds to merging the tiling engine and our tile suggestion mechanism into a single algorithm, ensuring that there is always a solution but at the cost of less control given to the user over the tile set.

IV.3 Parametric tile content IV.3.1 Introduction

We saw that tiling systems are a powerful framework for content generation, thanks to their ability to produce large aperiodic extents from a small dictionary of elements. And their constraint-based nature makes them easily user-directable. However, tile-based content often suffers from visual redundancy and rigidity, even when applied on a non-regular grid. To address this, we augment the discrete tiles of the input dictionary with scalar parameters driving variations of their content, like for instance the height marked as variable in Figure I.6, making them parametric tiles.

The key challenge induced by this change is that tile assignments and hyperparameter values must be solved simultaneously. In some easy cases, the hyperparameter valuation is simply a post-process, but as illustrated in Figure IV.13.b there exists more intricate scenarios. Here the range of allowed value for ℎ, combined with the constraint that adjacent tile interfaces must have the same height, make the discrete tiling engine unable to distinguish between a valid solution and one that will lead to a dead-end when assigning values to ℎ. We thus designed a parameter-aware tiling algorithm, which handles tile neighboring constraints that are affecting the range of validity of scalar variations.

Contributions The main challenges we address are (IV.3.2.1) the expression of constraint propagation equations using continuous tile sets, in a way that can be implemented in practice, namely without infinite unions, then (IV.3.2.2) the definition of a compact representation of infinite tile superposition and (IV.3.2.3) a procedure to sample this representation, for the observe step of the WFC algorithm.

IV.3.2 Method

We adapt the tiling engine presented in Section IV.2.2.3, based on the algorithm of WFC [START_REF] Merrell | Example-based model synthesis[END_REF][START_REF] Gumin | Wave Function Collapse[END_REF]. We must however change the formulation of the tiling problem that was given in Section IV.1.2.1, because the set 𝑇 of tiles, which was only discrete, now contains both discrete and continuous variations of the tiles. And the set 𝐼 of interfaces also undergoes this shift. In general, if 𝑇 ⋄ is the discrete set of tile types and each type 𝑡 ∈ 𝑇 ⋄ is a parametric shape of hyper-space parameter Π 𝑡 , then the continuous tile set is:

𝑇 = 𝑡 ∈𝑇 ⋄ {𝑡 } × Π 𝑡 (IV.1)
We note 𝑡 (𝝅) an element (𝑡, 𝜋 1 , . . . , 𝜋 𝐾 ) of 𝑇 . In the example of Interface-based parameterization Similarly, and more importantly, the set of interfaces becomes 𝐼 = 𝑖 ∈𝐼 ⋄ {𝑖} × Π 𝑖 where 𝑖 ∈ 𝐼 ⋄ is a parametric interface type and Π 𝑖 is its hyper-space parameter. These interface hyper-parameters are what matters to the tiling engine. On the contrary, the tile hyper-parameters that do not affect any interface can be handled in a post-process, so we ignore them and, without loss of generality, we consider that

Π 𝑡 ⊂ Π 𝑖 N × Π 𝑖 S × . . .
where 𝑖 𝑑 = 𝐿 ⋄ (𝑡, 𝑑) is the interface type that labels tile type 𝑡 in direction 𝑑.

In the example of NB What we assume in the end is that the labeling function 𝐿 : 𝑇 × 𝐷 → 𝐼 is separable into its discrete part 𝐿 ⋄ : 𝑇 ⋄ × 𝐷 → 𝐼 ⋄ and its continuous part ((𝜋 N , 𝜋 S , . . . ), 𝑑) ↦ → 𝜋 𝑑 , such that 𝑖 (. . . ) = 𝐿(𝑡 (. . . ), 𝑑) only if 𝑖 = 𝐿 ⋄ (𝑡, 𝑑).

In other terms, the interface type 𝑖 of a tile type 𝑡 does not depend the on value of the hyper-parameters.

IV.3.2.1 Constraint propagation

The main step that gets affected by the continuity of the tile set is the constraint propagation, a.k.a. the collapse step in WFC's wording.

We have two types of constraints. First, discrete neighboring constraints -stating that interfaces types which are in contact must match -are the same as in the original discrete tiling problem. We write 𝑖 ≡ 𝑖 ′ to mean that interfaces 𝑖 and 𝑖 ′ are superposition superposition slot slot

Figure IV.14:

The slot 𝑠 2 is in direction 𝑑 1 with respect to the slot 𝑠 1 , and inversely the slot 𝑠 1 is in direction 𝑑 2 with respect to slot 𝑠 2 . We note 𝑑 1 ↔ 𝑑 2 the edge going from 𝑠 1 to 𝑠 2 .

allowed to be in contact, to cover both cases where we need 𝑖 = 𝑖 ′ and cases like in Section IV.2.2.3 where it is 𝑖 = 𝑖 ′ ↔ .

Secondly, there are hyper-parameter constraints. This is simply expressed as an equality between the hyper-parameters of 𝑖 and these of 𝑖 ′ , and thanks to our interface-based parameterization, it directly translates into constraints on the hyper-parameters of tiles.

In order to propagate both types of constraints, we need to adapt ResolveConflicts(𝑠 1 , 𝑑 1 , 𝑠 2 , 𝑑 2 ) in Algorithm 5. This call updates the superposed assignment T2 ⊂ 𝑇 of slot 𝑠 2 by keeping only the tiles that are allowed to be next to the tiles of T1 in the direction

𝑑 1 ↔ 𝑑 2 (Figure IV.14): T2 ← T2 ∩ Allowed( T1 , 𝑑 1 , 𝑑 2 )
In a discrete tiling problem, we usually pre-compute a table 𝑅 [𝑖, 𝑑] = {𝑡 | 𝐿(𝑡, 𝑑) ≡ 𝑖}, and then evaluate Allowed( T1 , 𝑑 1 , 𝑑 2 ) as:

Allowed( T1 , 𝑑 1 , 𝑑 2 ) = 𝑡 ∈ T1 𝑅 [𝐿(𝑡, 𝑑 1 ), 𝑑 2 ]
In the parametric tiling problem, it is no longer possible to store the table 𝑅, nor it is possible to iterate through T1 . Using 𝑖 𝑘 as a shorthand for 𝐿 ⋄ (𝑡 𝑘 , 𝑑 𝑘 ), we write:

Allowed( T1 , 𝑑 1 , 𝑑 2 ) = 𝑡 1 (𝝅 1 ) ∈ T1 𝑡 2 (𝝅 2 ) | 𝑖 2 ≡ 𝑖 1 and 𝝅 2𝑑 2 = 𝝅 1𝑑 1 (IV.2)
Any formulation of this set suffers from the presence of an infinity of tiles, but we express it in a way that better suits the representation of tile superposition T that we introduce in Section IV. Allowed(

T1 , 𝑑 1 , 𝑑 2 ) = 𝑡 2 ∈𝑇 ⋄ 𝐻 𝑡 2 ,𝑑 2 𝑡 1 ∈𝑇 ⋄ st. 𝑖 1 ≡𝑖 2 𝑉 𝑡 1 ,𝑑 1 ( T1 ) (IV.3)
We note 𝐻 𝑡,𝑑 (𝑋 ) = {𝑡 (𝝅) | 𝜋 𝑑 ∈ 𝑋 } the set of variations of a tile type 𝑡 whose interface in direction 𝑑 has its hyper-parameters in 𝑋 . And we note 𝑉 𝑡,𝑑 (𝑌 ) = {𝜋 𝑑 | 𝑡 (. . . , 𝜋 𝑑 , . . . ) ∈ 𝑌 } the set of interface hyper-parameters exposed in the direction 𝑑 by the tiles of type 𝑡 in the superposition 𝑌 ∈ 𝑇 . In other terms, 𝑉 is the projection of Π 𝑡 ∩ 𝑌1 onto Π 𝑖 , with 𝑖 = 𝐿 ⋄ (𝑡, 𝑑), and 𝐻 is its inverse: is that the unions can be implemented as finite loops. The next section shows how we encode the infinite sets returned by 𝐻 and 𝑉 .

𝑉 𝑡,𝑑 𝐻 𝑡,𝑑 ( 

IV.3.2.2 Representation of a tile superposition

We represent a superposition T of tiles as a series of axis aligned bounding boxes.

For each tile type 𝑡 ∈ 𝑇 ⋄ , we store a single bounding box

𝐵 𝑡 = [𝑎 1 , 𝑏 1 ] × [𝑎 2 , 𝑏 2 ] ×. . . : T = 𝑡 ∈𝑇 ⋄ {𝑡 } × 𝐵 𝑡
Our representation contains false positives, namely tiles that are not in the actual superposition but within the bounding box anyways, but it does not have any false negative. This means that the algorithm will not miss branches of solutions, but since we reduce the possibility space more slowly than with a perfect representation the algorithm may need more time to finish. 

𝐻 Stairs,S ( [𝑎, 𝑏]) = [𝑎 -8 ℎ step , 𝑏 + 8 ℎ step ] × [𝑎, 𝑏]
For simple constraint equations like in this case, 𝐻 can be derived using symbolic calculus: Listing IV.1: The python package sympy can be used to derive the expression 𝐻 from a simple inequality.

IV.3.2.3 Sampling tile superposition

During the observe step of the WFC algorithm, we need to sample a single tile 𝑡 (𝝅) from a superposition T , and this tile must not be a false positive. We do this by sampling hyper-parameters incrementally, refining the bounding box after each one to remove obvious false negatives. And for each hyper-parameter, we use either one end of the bounding box or the other, no in-between. If the density of false positives is low enough, another strategy is dart throwing, i.e., sampling repeatedly until the parameter 𝝅 is valid, but none of our examples use this sampling scheme.

IV.3.3 Results

Switching the representation of superposition in assignments 𝐴 of Algorithm 5 to the bounding boxes described in Section IV. 

IV.3.3.1 Watershed generation

In the example of Figures IV.16 and IV.17, we generate watershed using tiles parameterized by the altitude of their corners and the middle of the edges. Each tile is constrained such that the water flows in the expected direction, and the discrete interface matching ≡ ensures that water is flowing in the same way across boundaries. In this example, corner altitudes are defined in a post-process, but waterway altitudes are needed for the tiling. In order to generate an island, we constrain the altitude at boundaries to 0. Procedural fractal variations are finally added to bring more diversity. Compared to other landscape generation algorithms, this approach ensures the creation of meaningful watersheds and consistent large scale features like valleys.

Other approaches, such as the work of [START_REF] Génevaux | Terrain generation using procedural models based on hydrology[END_REF], use hydrology as a driver for terrain generation. We do not intend to compete with these but rather use their scenario for illustration of our more generic algorithm. Large scale features in terrain generation can also be generated from tectonic activity (E. [START_REF] Michel | Generation of Folded Terrains from Simple Vector Maps[END_REF][START_REF] Cordonnier | Sculpting Mountains: Interactive Terrain Modeling Based on Subsurface Geology[END_REF]. 

IV.3.3.2 Discussion

Our method shows that the core mechanism of the WFC algorithm generalizes to continuous tile sets, namely tile sets whose tiles are parametric shapes. This resonates with our chapter on imperative programming (Chapter III), since such tiles are typically described as DAGs.

In order to handle continuous tile sets, we needed a simplification hypothesis for representing superposition of tiles. Nevertheless, Section IV.3.2.1 makes no extra assumption, so the equations based on functions 𝐻 and 𝑉 come without loss of generality and might be reused together with a different representation of tile superposition.

The choice of a single bounding box, i.e., a single range per hyper-parameter, is a trade-off between expressivity and space requirement. Our continuous representation takes obviously more space than in discrete WFC, where it can be represented as a compact bitfield (using one bit per tile), but way less than a more accurate representation. This model becomes problematic when the parameter set of a tile is made of multiple connected components; we advise in such a case to consider each component as a different tile type (as long as there is a finite set of connected components).

V

Visual feedback of shape programs during authoring

V.1 Introduction V.1.1 A two-

way integration of rendering and generation

As introduced in the Chapter I, our interest for program-based representations of shapes is grounded in their ability to support the creation process. We focus on shape programs that evaluate in interactive time, but sometimes the technical limitation to interactivity comes from the real-time rendering of its output.

It does not take a long shape program to generate heavy content, so the limitations of real-time rendering are hit faster when designing shape through its programbased representation than when building it manually. Fortunately, we can use the program itself as a mean to detect and optimize geometrical redundancies in the shapes.

We presented in Chapter II multiple examples of procedural modeling systems that include considerations about rendering, for shape grammars representing building facades [START_REF] Haegler | Grammarbased encoding of facades[END_REF] or whole cities [START_REF] Steinberger | Onthe-fly generation and rendering of infinite cities on the GPU[END_REF], for fiber-level garment modeling (K. [START_REF] Wu | Real-time fiber-level cloth rendering[END_REF], or for CSG-based modeling [START_REF] Goldfeather | Fast constructivesolid geometry display in the pixel-powers graphics system[END_REF][START_REF] Kirsch | Rendering techniques for hardware-accelerated image-based CSG[END_REF][START_REF] Zanni | HCSG: Hashing for real-time CSG modeling[END_REF].

In this chapter, we study two ways to blend the shape program with its realtime rendering pipeline. In Section V.2, we delay the evaluation of some parts of the shape program, namely the tile instancing and deformation, to benefit from hardware acceleration and enable real-time visualization of the complex mesostructures generated in Section IV.2. In Section V.3, we have the shape program output multiple first-order representations, which we combine information about the viewpoint to provide real-time feedback at multiple level of details (LoD) for large self-repeating aggregates of quasi-spherical elements.

V.1.2 Related works and background

Level-of-Detail LoD methods intend to generate simplified versions of a complex object that are visually equivalent at a given distance while computationally lighter. Surfacic mesh simplification methods, either based on repeated contractions of edges guided by some cost function [START_REF] Hoppe | Mesh optimization[END_REF][START_REF] Hoppe | Progressive meshes[END_REF][START_REF] Garland | Surface simplification using quadric error metrics[END_REF] or by spatial clustering [START_REF] Rossignac | Multi-resolution 3D approximations for rendering complex scenes[END_REF], have become standard LoD methods and can even be applied to very large meshes [START_REF] Lindstrom | Out-of-core simplification of large polygonal models[END_REF]. However, as pointed out by [START_REF] Cook | Stochastic simplification of aggregate detail[END_REF], such methods fail when the geometry is an aggregation of already simple elements, which vanish if simplified further.

Volumetric models also have their LoD mechanisms. On voxel-based models, the SGGX distribution [START_REF] Heitz | The SGGX microflake distribution[END_REF] and follow ups [START_REF] Zhao | Downsampling scattering parameters for rendering anisotropic media[END_REF][START_REF] Loubet | A new microflake model with microscopic self-shadowing for accurate volume downsampling[END_REF] have enabled techniques for downsampling a volume without altering its visual appearance. Hierarchical structures can be used to organize data in a tree whose traversal is dynamically adapted to the view point, either with voxels [START_REF] Crassin | GigaVoxels: Ray-guided streaming for efficient and detailed voxel rendering[END_REF][START_REF] Kämpe | High resolution sparse voxel DAGs[END_REF] or with points [START_REF] Rusinkiewicz | QSplat: A multiresolution point rendering system for large meshes[END_REF][START_REF] Gobbetti | Far voxels: A multiresolution framework for interactive rendering of huge complex 3D models on commodity graphics platforms[END_REF]. Most of these techniques assume static geometry though, which is not compatible with the viewport of an authoring tool.

All these LoD methods are designed for a single class of model. Sequential point trees [START_REF] Dachsbacher | Sequential point trees[END_REF] are an interesting evolution of QSplat [START_REF] Rusinkiewicz | QSplat: A multiresolution point rendering system for large meshes[END_REF] using an hybrid model, but it makes the same assumption that the point cloud is static. The inter-model transition was recently successfully addressed in the surface-to-volumetric context by [START_REF] Loubet | Hybrid mesh-volume LoDs for all-scale pre-filtering of complex 3D assets[END_REF]. Their setting is more general than ours but designed for off-line rendering and not tacking advantage -because not assuming -of self-similarity.

In Section V.3, we focus on dynamic element positions, depending on input hyperparameters. This prevents us from using techniques that precompute clusters of geometry to merge, like Occluder Fusion [START_REF] Wonka | Visibility preprocessing with occluder fusion for urban walkthroughs[END_REF] or CellVIEW (Le [START_REF] Muzic | Using constraint propagation and domain reduction for the generation phase in declarative modeling[END_REF]. The latter is a case of molecular visualization, which generally involves LoD of dense aggregates of spheres that motivated dedicated research, as surveyed by [START_REF] Miao | Multiscale molecular visualization[END_REF]. Although such visualization techniques deal with static perfect spheres, usually uniformly colored, setting them aside from many issues we intend to tackle here, they need to handle very large amounts of atoms for which they develop inspiring advanced drawing strategies.

Impostors One of the most extreme simplification consists in using billboards. A billboard, or planar impostor, is made of one single plane, and its whole appearance is encapsulated in (the maps of) its material, with its perceived shape being expressed by its silhouette, reproduced using transparency. The extreme simplicity of a billboard's geometry allows to invest more resources in shading, with its associated material containing information about the normal field of the original geometry, and even the depth component leveraged by relief mapping techniques [START_REF] Policarpo | Real-time relief mapping on arbitrary polygonal surfaces[END_REF].

The limits of a single billboard are quickly reached, usually because of the limited range of directions for which it is valid, but they are at the root of many lightweight approximation models in computer graphics. Aggregated billboards are often called multi-view impostors since they address the view dependency of planar billboards. [START_REF] Maciel | Visual navigation of large environments using textured clusters[END_REF] build a LoD hierarchy in which billboards are precomputed for some key directions. Billboard clouds [START_REF] Décoret | Billboard clouds[END_REF] extract several billboards using a Hough transform to approximate a high definition mesh model. A typical use case of billboards, and hence multi-view impostors, is tree rendering, like [START_REF] Meyer | Multiscale shaders for the efficient realistic rendering of pine-trees[END_REF] and more recently [START_REF] Bruneton | Real-time realistic rendering and lighting of forests[END_REF] whose method is related to our Section V.3, though their model remains surfacic at all scales and they use impostor for the different goal of accounting for foliage's semi-transparency. [START_REF] Todt | Fast (spherical) light field rendering with per-pixel depth[END_REF] provide a good overview of the possible parametrizations of a spherical impostor, however they focus on a different use case where a single complex model is rendered, leading them to different design choices. In particular, their selection of precomputed directions, and advanced compression, projections and intersection refinement schemes, while saving memory, quickly becomes too prohibitive to apply for each grain in our scenario. Some of these limitations are addressed by Brucks [START_REF] Brucks | Octahedral impostors[END_REF] who, similarly to our approach, also make the impostors dynamically relightable by storing maps that represent the attribute field (like the G-Buffer) rather than a static grain light field. However, Brucks renders order of magnitude less impostors than in our use case, so they can still afford storing depth maps and computing relief mapping. Since they use it for trees, they also deal with significantly smaller inter-impostor occlusion.

Filtering Filtering attribute-encoding images, as mandatory with mipmapping, is not trivial for attribute with non-linear response, such as normal and roughness maps. This issue has been addressed by [START_REF] Tan | Filtering and rendering of resolution-dependent reflectance models[END_REF], LEAN mapping [START_REF] Olano | LEAN mapping[END_REF] and then LEADR mapping [START_REF] Dupuy | Linear efficient antialiased displacement and reflectance mapping[END_REF], which are compatible with our method. More recent works even try to adapt the concept of mip-maps to the BSDF itself rather than to its attribute maps (C. [START_REF] Xu | Real-time linear BRDF MIP-Mapping[END_REF].

V.2 Tile-based Mesostructure Rendering

Section IV.2 presented a tile-based method for authoring mesostructure geometry. Our approach enables designers to produce an heavy amount of geometrical content, easily reaching hundreds of millions of triangles when represented as a mesh. Since we intend to provide an interactive authoring system, we need a way to render this geometry in real time, similarly to what other surface amplification methods, like displacement mapping (Szirmay-Kalos & Umenhoffer, 2008) and subdivision surface [START_REF] Brainerd | Efficient GPU rendering of subdivision surfaces using adaptive quadtrees[END_REF], do.

When facing a similar situation in Section V.3, we will choose to make the shape program output a different representation of the geometry, namely impostors or point clouds, but the topological complexity of mesostructures makes the use of simplified meshes, impostors and other LoD techniques unfit for our current problem. Instead, we use a full geometry but complete its generation on-the-fly within the render pipeline.

V.2.1 Method

V.2.1.1 Render Pipeline

We start by sampling each 2D cross-section of each interface with a list of points using Clipper (2014). These cross-sections are stored as CSG trees modeling a 2D space occupancy function during editing so that we can change the discretization to a user defined resolution target dynamically. The resulting points sets are then stored in 1D texture maps using a repeat wrap mode.

Second, for each sweep surface in the tile set -not for each instance -we allocate a GPU vertex array object (VAO) modeling a regular grid mesh. The horizontal resolution of this grid is the maximum of the size of the start and end cross-section textures. The vertical resolution is a user defined parameter driving the smoothness of the sweep objects. We use a compute shader to assign 𝑥 and 𝑦 coordinates to each point by interpolating from the start to the end section, taking care of reversing the coordinate at which cross-section textures are sampled from 𝑢 to 1 -𝑢 when an interface is flagged as flipped. This creates base sweeps that will later be deformed per-instance to conform to their target trajectory.

Third, the shell space is represented in GPU memory as a buffer (SSBO) storing, for each macrosurface quad, the eight corners of its shell hexahedron.

Fourth, we allocate four SSBOs to hold the control points of the Bézier curves, containing one vector per instance of a sweep. A compute shader uses the shell space SSBO and the slot assignments to fill these control point buffers.

Finally, one draw call is issued for each type of sweep surface, and hardwareinstanced as many times as there are uses of its parent tile type in the slot assignment. We deform the VAOs at the vertex shader stage to follow the Bézier trajectory. Any shading method can be used on the rasterized fragments.

V.2.1.2 Caching

Our rendering pipeline caches the result of the previous frame as much as possible:

• A cross-section texture is modified only if the corresponding shape has been edited by the user.

• A sweep VAO is recomputed only if the sweep is new or if one of its crosssections has been modified.

• The shell space is uploaded only when a new macrosurface is used (or if it is deformed on CPU).

• The positions of the control points are recomputed only when the slot assignments change, or when the shell space evolves (the thickness and offset user parameters).

V.2.2 Results

V.2.2.1 Performance

The performance of our C++/OpenGL prototype are reported in Table V.1, measured with an Intel Core i5 CPU, with 16 GB of RAM and an NVidia GeForce Titan RTX. As an element of comparison to show the compactness of our representation, the example (1c) occupies 1.75 GB when exported as a binary PLY file. Additional figures are reported in Appendix D. The procedural nature of our core representation enables us to synthesize various representations of the surface of the end mesostructure. We have focused on traditional meshes (Figure V.1), but this choice creates self-intersection when multiple sweeps start from the same profile (Y joints). An alternative choice consists in creating implicit surfaces, which handle sweep volumes rather well [START_REF] Schmidt | Generalized sweep templates for implicit modeling[END_REF]. Early tests (Figure V.2) show that a promising approach consists in an hybrid representation where the macrosurface's shell is rasterized and then tile's content is drawn using sphere tracing. Although preventing self-intersections and producing nice blends, our tests show slower rendering time compared to the mesh representation. V.2.3 Discussion

V.2.3.1 Properties

Our entire mesostructure synthesis runs almost fully on the GPU, leaving the CPU largely available to the tiling engine and achieving hundreds of millions mesostructure polycount at real-time framerate. The parametric nature of our representation makes it possible to dynamically adapt the resolution of the mesh it produces, allowing manipulation on lower end devices, and opening a potential for LoD mechanisms.

V.2.3.2 Future work

Delaying the evaluation of some stages of the shape program is a very efficient approach to enable real-time feedback in multiple scenarios. It is however hard to automatically figure out which part of the geometry generation may be off-loaded to GPU compute shaders and how. The most efficient solution often remains to hand tune the integration of shape program and real-time rendering, like we are doing here. Another common scenario is the case of a DAG whose last operation is a subdivision surface: it is often evaluated in an hardware-accelerated tessellation stage. And when a DAG ends with an instancing, this is usually hardware accelerated, or tuned even further as we see in the next section.

We could go further by handling more common cases and matching patterns in the DAG to port them to render-time on-the-fly evaluation, or chose to implement mesh processing effects using dedicated languages able to abstract this such as Halide (Ragan- [START_REF] Ragan-Kelley | Decoupling algorithms from schedules for easy optimization of image processing pipelines[END_REF].

V. that ends with instancing (Figure V.4). They challenge LoD mechanisms to achieve both high speed rendering and detail preservation. At each extremity of the LoD chain, existing methods are well covered by the literature. Closer views are better handled using a mesh-based model that can be progressively simplified [START_REF] Hoppe | Progressive meshes[END_REF] while further views leverage point-based rendering [START_REF] Gross | Point-based graphics[END_REF]. But none of these models fits well the transition phase, when stacked elements -which we call grains in the reminder of this section -cover tens to hundreds of pixels. Under this regime, mesh-based simplification makes whole elements vanish when pushed too far, while point-based rendering lacks high frequency details that should still be clearly visible.

The self-similarity of the stacking naturally leads to per-grain impostors for this transition scale. When the number of visible grains is very large compared to the number of possible view angles, it becomes worth precomputing a few views and then, at runtime, picking for each grain the closest one. There are two ways to describe an impostor, either as a projection of the geometry of a grain or as a rich splat. The former relates to mesh-based models while the latter relates it to point-based graphics, which suggests this is a good candidate as a transition model.

Impostors come with their own limitations, e.g., memory consumption, hardware support or overdraw, that we propose to overcome making three assumptions that stem from the typical properties of stacked grains:

• quasi-spherical shape: The grain's surface is bounded between two cocentered spheres, namely an inner sphere of radius 𝑟 and an outer sphere of radius 𝑅; the closer these radii, the more efficient our approach.

• moderate shape diversity: All grains share the same (or only a few) silhouette, which prevents memory consumption and improves caching.

• density: occlusion culling becomes more impactful as density increases, even if approximate, as long as grains don't intersect each others.

Fortunately, the loss of generality induced by these hypotheses is in practice largely mitigated as noticed by [START_REF] Moon | Rendering discrete random media using precomputed scattering solutions[END_REF] and [START_REF] Meng | Multi-scale modeling and rendering of granular materials[END_REF]. The diversity of shape can be increased by arbitrary scale/rotation of each grain together with procedural variations of its material attribute maps. Our approach is oblivious to the grain material model: in practice, we exemplify our method on standard microfacet models rendered using deferred shading. Moreover, relaxing the quasispherical or density hypothesis only leads to progressively degraded performance, but not to any gap in visual appearance. Based on these assumptions, we make the following contributions:

• a real time splitting process of the input grain set into per-scale/drawing model buffers, leveraging an analysis of when to split (Section V.3.4.1) and how to do it (Section V.3.4.2),

• a sampling scheme for the impostors suited to our quasi-spherical proxy (Section V. 3.3.3) and improving their visual appearance w.r.t. ground truth,

• a novel occlusion culling mechanism tailored for dense stackings of quasispherical objects (Section V.3.5.1), that helps alleviating rendering prior to determining the exact grain shape,

• an efficient rendering pipeline for a cloud of many impostors based on early-Z rejection (Section V.3.5.2) -a hardware mechanism not natively suitable for impostors, whose actual shape remains unknown up to the sampling of their maps.

As a result, our approach is versatile enough to model various use cases and scales well up to extreme amounts of grains such as in sand rendering. 3.4.2), also applying culling to early discard hidden points (Section V.3.5.1). Impostors are drawn in two passes (Section V.3.5.2). Point-based drawing typically discard all points beyond a limit distance. Our contributions concern steps 1 ⃝ and 3 ⃝ .

V.3.2 Pipeline overview

Models for close 2 ⃝ , mid 3 ⃝ and far 4 ⃝ grains are then rendered individually using the element buffers resulting from the splitting. We recall that, as a general rule of thumb, modern hardware-accelerated rasterization pipelines require closer elements to be rendered first to limit unnecessary fragment processing. Steps 2 ⃝ and 4 ⃝ are the two models that we intend to bridge, respectively mesh-based and point-based, so we focus on the splitting process 1 ⃝ , which involves when (Section V.3.4.1) and how (Section V.3.4.2) to split the input point cloud, as well as on the impostor rendering 3 ⃝ .

V.3.3 Impostors for dense stackings

Our mid-scale representation of the stacking is a cloud of impostors. The concept of spherical impostor is not new per se, but it can come with many flavors so we discuss which one is the best suited for real-time rendering of dense aggregates.

V.3.3.1 General rendering pipeline

We base our work on a spherical impostor model made of co-centered planar impostors facing different directions. Prior to rendering, the impostors are precomputed and then at render time, the only planes to be sampled are those whose normal vector is close enough to the view direction (Figure V.6).

Precomputation The impostor depends on the set of 𝑁 view directions (𝜔 𝑖 ) 𝑖=1...𝑁 for which the grain's response is precomputed. For each view index 𝑖, a 𝑝 × 𝑝 sprite of the grain is rendered from a view point in direction 𝜔 𝑖 , storing for each pixel the material attributes (albedo, roughness, normal, etc.) in an atlas of maps (𝐼 𝑖 ) 𝑖=1...𝑁 where 𝐼 𝑖 is the response at different positions of the sphere in direction

𝜔 𝑖 .
Runtime In order to reduce as much as possible the geometric footprint of the impostors, we use simple sprites, e.g., OpenGL's GL_POINTS, as our drawing primitive. The sprite size is computed in the vertex shader to ensure that it covers the whole outer sphere of the grain. When drawing the impostor, we fetch the object's appearance attributes at a given point in a given direction. The main steps Figure V.6: A spherical impostor is a set of concentric planar impostors 𝐼 𝑖 precomputed for different directions 𝜔 𝑖 , as well as an inner radius 𝑟 and outer radius 𝑅. At render time, we use only the most relevant ones. They can be sampled as planes (bottom left) or as hemispheres (bottom right), or using our mixed sampling scheme (Section V. 3.3.3).

of impostor sampling are (i) to seek for the indices of the appropriate precomputed views (planar impostors) given the orientation and position of the grain in camera space, (ii) to sample the right texel from the impostor maps and (iii) to interpolate the responses of different planes. The interpolation weights ensure the visual continuity by progressively fading out the contribution of a plane when the view point changes. In the design of such a sampling, two choices can have a major impact: the parametrization, and the definition, i.e., the density of the sampling. The latter is discussed in Section V.3.4.1 when analyzing the bias introduced by the impostors.

V.3.3.2 Parametrization

In order to still benefit from hardware texture filtering (mipmaps), especially to reduce aliasing when grains become very small on screen, we use the parametrization that [START_REF] Todt | Fast (spherical) light field rendering with per-pixel depth[END_REF] calls Sphere-Plane. When sampling the atlas of precomputed views, the view index represents a direction and the texel coordinate a position offset, not the other way around. In practice, this means that precomputed views are rendered using orthographic cameras.

There remains to decide on the directions to precompute. The list (𝜔 𝑖 ) of such directions must verify several conditions:

• coverage: There must always be a billboard close enough to the viewing direction among the precomputed atlas. • compactness: Each precomputed view has a video memory footprint which must be small especially if there are many different types of grain.

• speed: To sample a given viewing direction, we need to efficiently determine the index of the closest view in (𝜔 𝑖 ).

Coverage and compactness suggest an as regular as possible sampling of the unit sphere such as the distribution of Fibonnacci points [START_REF] Keinert | Spherical fibonacci mapping[END_REF] or a statically optimized mesh [START_REF] Todt | Fast (spherical) light field rendering with per-pixel depth[END_REF]. But speed is crucial in our scenario so we opt for a distribution based on a subdivided octahedron (see Figure V.7) as in [START_REF] Brucks | Octahedral impostors[END_REF]. Not only finding the index 𝑖 of the closest view in this distribution is done in O (1) with a little constant, but moreover it is easy to get the four closest views with their coefficients, which is important for interpolation.

At runtime, we compute the sampled directions at the extent of a whole grain, and not once for each fragment, i.e., we assume that camera rays are almost parallel for each fragments covered by a grain. Though this is inexact in general, it does not introduce strong distortion for grains whose extent on screen is limited to 100 pixels -our use case -and provides a significant speed-up. 123 Listing V.1: Return in 𝑖 the indices of the four closest precomputed views to the sampling direction 𝑑, assuming that the number of precomputed views is 𝑁 = 2𝑛 2 , and in 𝛼 the coefficients for interpolating between respectively (𝑖 0 , 𝑖 2 ) ↔ (𝑖 1 , 𝑖 3 ) and (𝑖 0 , 𝑖 1 ) ↔ (𝑖 2 , 𝑖 3 ). Note that instead of using the total number of views 𝑁 , our procedure handles the number 𝑛 of subdivisions along the edge of the octahedron.

In practice, one can refer to the Listing V.1 for a GLSL implementation. The input direction 𝑑 is normalized using the 𝐿 NB In the atlas of a rich impostor, an index stores multiple maps, for the multiple attributes of the G-buffer. But they all conceptually share the same alpha transparency. Special care must be taken to account for alpha premultiplication when computing the mipmaps.

V.3.3.3 Sampling quasi-spherical impostors

Once a precomputed map 𝐼 𝑖 has been selected for sampling, different strategies may be adopted to decide which texel to read. We propose a sampling scheme that improves the visual appearance of under-defined impostors while remaining lightweight.

The most common choice is to assume that the the view direction is perfectly aligned with precomputed direction 𝜔 𝑖 and compute the offset using intersection of the camera ray with the precomputed view plane. We call this planar sampling (Figure V.6, bottom left) and note 𝑃 the texel it selects. In practice the camera and precomputed directions are not always well aligned, because we can store only a limited number of views. This results in ghosting artifacts, which particularly impact sharp visual features (Figure V.15) and stems from the distance between the plane and the actual geometry of the grain.

A second strategy consists in computing the intersection of the camera ray with an spherical proxy and then project this point along the precomputed view direction onto the precomputed plane (Figure V.6,bottom right). This spherical sampling gives another texel 𝑆. When using the average of 𝑟 and 𝑅 as radius of the sphere proxy, this greatly reduces ghosting, but cuts out parts of the object.

Therefore, we introduce a mixed sampling for quasi-spherical proxies. More precisely, we combine 𝑃 and 𝑆 depending on the relative distance 𝑑 of the grain center to the camera ray normalized by the sphere's radius: This is valid up to a limit value of 𝜃 (right).

𝑀 = 𝑑 𝑅 𝑃 + (1 - 𝑑 𝑅 )𝑆 A A B B A' B' Impostor C C' 1 2 A A'
This sampling succeeds at combining the benefits of both planar and spherical samplings, namely preserving silhouettes and sharp visual features. For a fixed memory budget and visual loss, this translates into more grains rendered as impostors and less as meshes, improving the overall performance.

V.3.4 Model discrimination V.3.4.1 Impostors' validity range

We are not simply looking for a model that works at a given mid-scale, we also need to be able to smoothly transition from one model to another. In order to identify view conditions under which both mesh-based and impostor-based rending match, enabling us to substitute them, we must be able to quantify the range of validity of the impostor. This range of validity depends on the 𝑝 × 𝑝 amounts of spatial samples per view and the number 𝑁 = 2𝑛 2 of views precomputed for a mapping based on an octahedron with 𝑛 subdivisions.

At the limit mesh-impostor distance 𝐿, the apparent grain diameter in pixels must match the size of the precomputed view, which gives us 𝑝 proportional to 𝑅/𝐿. The proportionality factor depends on the camera field of view and the screen resolution (see Appendix E for details). So from now on we assume that 𝑝 is known and seek for 𝑁 .

To do so, we need to know the maximum angle 𝜃 between a planar impostor's normal and the view direction for the impostor to return the right value. With the notations of Figure V.8, we look for the limit view angle beyond which A'C' exceeds the world space size 𝑡 = 𝑅/𝑝 of a texel, i.e., beyond which our model will sample the wrong texel. This constraint writes as follows:

𝐴 ′ 𝐶 ′ ≤ 𝑡 (V.1)
On another hand, the maximum distance between a point on the true surface of the grain and its projection onto the impostor is the outer radius 𝑅:

𝐶𝐶 ′ ≤ 𝑅 (V.2) Figure V
.9: Mean angle error for different trade-offs of the two parameters 𝑛 (subdivisions of the octahedron) and 𝑝 (pixels per side) of a spherical impostor. Grey lines are iso-weight, i.e., two dots on the same line correspond to impostors occupying the same amount of video memory.

This can be written using the angle 𝜃 between the impostor's normal and the view direction:

𝐴 ′ 𝐶 ′ ≤ 𝑅 √︂ 1 cos 2 𝜃 -1 (V.3)
To verify inequality (V.1), we can therefore look for:

𝑅 √︂ 1 cos 2 𝜃 -1 ≤ 𝑅/𝑝 =⇒ |𝜃 | ≤ arccos √︄ 1 1 + 1/𝑝 2 (V.4)
So each precomputed view is valid in a cone of angle 2 arccos √︃ 1 1+1/𝑝 2 . This value has to be compared with the maximum angle between two neighbor points of the octahedron. Figure V.9 shows the evolution of this angle depending on the angular definition 𝑛 and spatial definition 𝑝. More detailed tables can be found in Appendix E. In practice, we use less views than the theoretical threshold since our mixed sampling scheme (Section V.3.3.3) largely helps reducing artifacts for under-resolved impostors.

V.3.4.2 Dynamic grain splitting

Now that we know the range of validity of the impostor, we can dynamically discriminate the grain cloud into three subparts, namely the grains rendered using mesh instances, those rendered as impostors and the further ones rendered as points. We assume that all models are compatible with indexed rendering, which means that rather than when rendering 𝐾 points, an element buffer of 𝐾 indices can be provided to tell which grains to render. The splitting process consists in building those elements buffers from the array of all stacked elements. The number of elements being by hypothesis very large, it is not possible to pay for the round trip to the CPU, hence we perform this splitting entirely on the GPU, in compute shaders. It is also not even possible to sort the whole buffer by the distance of the grains to the view point.

Even if the splitting apparently distinguishes between only three models, it is more convenient to see it as operating on an arbitrary 𝑚 number of models because next sections will add an extra state for culled points (Section V.3.5.1) and then split the impostors into two arrays for more efficient rendering (Section V.3.5.2).

We assume that we have a function uint getRenderModel(uint element) that returns for an element index the index from 0 to 𝑚 -1 of the model that must be used to draw it. This basically fetches the position buffer to check the distance to the grain against the thresholds, and will later on include culling. The output element arrays are written next to each other in a buffer allocated with the same size as the input element array. Besides this output, the methods returns a list of 𝑚 offsets within the buffer to tell at which index each element array starts (Figure V.10).

Global atomic splitting

We adopt a simple and effective method made of two steps. First, we atomically count the number of elements per model, in order to determine the output offsets. In a second step, we insert element indices in the output using for each model a second counter besides the offset to keep track of where is the next available index. This counter is atomically incremented each time an element is written. This process requires calling getRenderModel twice for each grain. Although this function gets more complex when culling is added, caching its output between the first and the second steps saves only a few tenths of millisecond on a stacking of 1.6M elements which is not worth the overhead of allocating a cache buffer. Once the element buffers are ready, the offsets can be used to build a command buffer adapted to each model in a simple compute buffer.

Scalability At this point, we have a pipeline able to render stackings of which grains can smoothly turn from meshes to points. But, as we intend to draw a large number of grains, we need to improve the scalability of the pipeline. Indeed, the use of impostors make the fragment processing even heavier than it usually tends to be in modern engines, so in the next sections we make use of the relative density of the stacking to (i) reduce the number of points emitting fragments (Section V.3.5.1) and (ii) reduce the number of emitted fragments that reach the fragment shader (Section V.3.5.2).

V.3.5 Occlusion Culling

V.3.5.1 Grain-level culling

In a dense stacking, a large proportion of the elements is totally invisible. We propose in this section a novel occlusion culling that is conservative, i.e., it does not cull visible objects, and based on the quasi-spherical proxy assumption. The occluder map it computes is further reused to improve per-fragment occlusion culling (Section V.3.5.2). Occlusion culling operates before the actual shape of grains is known, but can use the quasi-spherical proxy to early detect occlusions. If the inner sphere of a grain totally hides the outer sphere of another one, then no matter their actual shapes the second one will never be visible and can hence be safely culled out. As illustrated in Figure V.11, the inner sphere of a grain close to the view point creates a cone of occluded positions (dashed lines). This cone is eroded with the outer sphere to give a set of grain centers that can be culled (occlusion cone). Yet, it is far too expensive to test every pair of grains for occlusion. And while in theory this could be executed using hardware occlusion queries [START_REF] Sekulic | Efficient occlusion culling[END_REF], with the inner sphere being the occluder and the outer sphere the proxy, it is not practical as it would require to render grains sequentially.

Occluder map Instead, we test each grain -the occludee -against exactly one other grain that we chose carefully -the occluder candidate. A grain can hide another one if it is at the same time closer to the view point, and projects around the same pixel on screen. So, prior to the occlusion test, we render the whole point cloud a first time. The z-test ensures that we keep the closest grain for each pixel i.e., the most likely to hide other grains. At this stage, no attribute fetching or computation is executed, instead the framebuffer is filled with the occluder candidate parameters -one occluder per pixel. These parameters are the position and radius of the occluder's inner sphere, fitting in a standard four-component color attachment.

To fill this occluder map, one must compute the point sizes: drawing points of exactly one pixel each would mean that the occluder candidate of a point is always the grain that projects on the same pixel but is closer to the camera. This has perfect chances of picking the right occluder candidate when it finds one, but will most of the time not find any other occluder candidate than the grain itself. On the other side, drawing the points using their inner radius is not the best choice either, because it will too often suggest an occluder candidate that is actually not occluding the point. Our trade-off is to render points large enough for all pixels to be covered by a few fragments while remaining as small as possible. In practice, for as dense as possible stackings viewed at distance for which impostors are used, we found experimentally that optimal values are located between 0.15 to 0.20 times the inner radius 𝑟 .

Splitting Once this occluder map has been generated, the discrimination function getRenderModel in the splitting shader computes the screen pixel onto which a grain's center gets projected, and samples the occluder map at this coordinate. This gives the parameters of an occluder to test the current point against using the procedure detailed in Listing V.2. If the point is inside the occlusion cone, the function returns an index corresponding to no model. Sampling an impostor's maps is a costly operation, both in terms of memory bandwidth and computing power. There are two ways to reject a fragment before it reaches the fragment shader. One rather drastic is to discard the whole point, this was the goal of Section V.3.5.1. But this is not enough. For many grains beyond the first layer, only a couple of fragments are visible out of the tens or hundreds that it may cover. We still end up with hundreds of millions of fragments to shade, so we leverage another mechanism: Early-Z Rejection.

Visibility These hundreds of millions of fragments outnumber by several orders of magnitude the pixel count of a typical HD render (2M pixels) or even a 4K render (8M pixels), so there is mechanically a large proportion of wasted fragments, i.e., fragments that reach the fragment shader but are ultimately not visible on screen. This phenomenon is commonly referred as overdraw.

Over-shading is not specific to impostors, it is actually the prior motivation of deferred shading. But the core difficulty that impostor rendering introduces is the impossibility to determine the visibility of a fragment before sampling the maps. This deferred shape evaluation prevents us from using strategies such as visibility buffering [START_REF] Burns | The visibility buffer: A cache-friendly approach to deferred shading[END_REF].

Early-Z Rejection The early-Z rejection is automatically performed by modern GPU's rendering pipelines [START_REF] Sekulic | Efficient occlusion culling[END_REF]. If a fragment lies behind the one already stored in the output buffer, then it can be rejected without being processed, provided that the shader does not override fragment's depth. Thus the benefits of early-Z rejection depend on the order in which points are rendered, and we have too many points to sort them front to back. Nevertheless, what early-Z rejection tells us is that the visibility does not need to be perfectly solved in order to gain in efficiency. We can split the grains into the likely visible ones and the likely hidden ones, and render the former first. This first draw call fills almost all pixels with their final value, so the second one sees most of its fragments early rejected. This is referred to below as the double draw scheme.

Implementation Fortunately, the question of determining likely visible grains has already been answered: those are the occluder candidates of the occlusion culling step. They represent a thin shell of closer grains for which most of the fragments are visible. In practice, we make the splitter distinguish separate elements buffers for occluder candidates and remaining points. When rendering impostor, the same draw call is repeated twice with these different element arrays. This simple change brings a significant speed-up to the overall impostor rendering.

V.3.6 Results

The performance of our C++/OpenGL implementation has been measured on an Nvidia GeFroce GTX 1070 graphics chip with 8GB of VRAM, on frames of 1920×1080 pixels. We focus the performance tests on the transition from impostors to meshes, where it is the most critical. We compare our impostor cloud at different angular resolutions to instances of the original grain mesh or a simplified mesh.

Breakdown The overall render time of a frame is subject to various factors. First, it varies significantly with the view point. In order to grasp the benefits of our method on real case scenarios, we evaluated performance during a backward dolly shot, from tight to large. Left-hand side of Figure V.12 shows first, middle and last frames of this test shot and breakdowns of these key frames. This qualitative evaluation already highlight a few points. First, although it is not negligible, the splitting process is not the bottleneck. Second, occluder map render time increases as point size grows on screen. Third, the Z-prepass does not have a significant impact as this draw call involves almost no fragment processing. Fourth, the core element splitting is rather constant, until most grains get frustum culled in closer views. Last, despite being unbalanced in number of points, the first and second draw calls of impostor rendering takes similar times. This is satisfactory as it suggests that we found a reasonable trade-off between rendering a few costly points first and then more points but which are less visible.

Performance This high variability of draw mixture within a single frame makes it hard to draw proper conclusions, so in Figure V.14 we compare scenarios without splitting, where only one of meshes or impostor models is used. The timings for impostor rendering do not depend on the original complexity of the grain, so we compare them to several meshes. A first thing to notice is that we indeed need a hybrid model since when the number of grains within the view frustum is low (close viewpoint) instanced meshes are more efficient than impostors while as it increases impostors eventually outperform instances.

The shape of instance and impostor curves are different because the former is more affected by the number of vertices to draw (vertex bounded) while the latter is related to the number of pixels (pixel bounded). In case of a perfectly pixel bounded rendering, our test shot should take a constant render time. The results of Figure V.14 show that it is not the case when naively drawing all the impostors at once (single draw). This is because of the large number of overdrawn fragments.

Our double draw scheme on the other hand succeeds at reducing overdraw, as shown by its more constant render time. It thus makes our mixed sampling competitive despite its overhead.

As discussed in Section V.3.4.1, visual accuracy sets a minimal distance at which transitioning from meshes to impostors. These results show that when the grains have shapes requiring a low amount of vertices, pushing this threshold distance further can increase performance. For more complex grains, the threshold is already beyond the cross point between green and red lines so there is no interest in increasing it. Even when combining our approach with usual mesh LoD, the vertex count does not reduce beyond a few tens, so an eventual switch to impostors is beneficial.

Visual loss Figures V.13 shows impostor clouds of twenty thousand points at different scales and in different scenarios, illustrating the variety of possible grain shapes. Figure V.3 is a more extreme example featuring two million grains.

To evaluate the visual loss of our model, we measured the structural similarity (SSIM) between animations rendered using different impostors on one hand and a reference render using meshes on another hand. Figure V.16 compares variations of the choice of sampling scheme at fixed memory use with variations of the number of stored precomputed views. The stacked grain used for this example is the coffee null inner radius 𝑟 . The effect of the culling varies with the frame. The green curve was measured with a narrower field of view. The camera rays are in that case more parallel, hence there is less occlusion detected with our method. The blue curve was measured on a more favorable scenario, where grains in the foreground hide significant parts of the whole set.

V.3.7 Discussion V.3.7.1 Properties

Our methods can render stackings of millions of dynamic objects in real time, leveraging the similarity of dense quasi-spherical grains using impostors to design a transition LoD which provides an efficient trade off -both in terms of accuracy and speed -when individual grains only cover a few pixels on the screen. This is tracktable thanks to our new sampling scheme that reduces memory usage for a given visual loss, together with a coupled per-grain/fragment occlusion mechanism. Contrary to instancing, the complexity of the impostors is independent on the original model. Thanks to our occluder map and splitting scheme, it is mostly dependent on the output resolution. Our method is compatible with arbitrary animation of the grain positions, which is important in an authoring pipeline, and scales to large stackings (Figure V.20).

Being designed to feed the G-pass of a deferred shading engine, dynamic procedural variations of the grain can be coupled with the precomputed data at render time (Figure V.19), reducing further potential repetition effects while expanding visual diversity. Our approach can easily be integrated to a modern render pipeline based on PBR materials and deferred shading, shadow mapping and more.

Graceful degradation Moreover, our method degrades gracefully regarding all of its hypotheses (quasi-spherical grains, density, moderate shape diversity), either in accuracy or in efficiency depending on the application context. We sacrifice accuracy during an interactive authoring session, but the look dev artists using the shape in their scene have the possibility to change the trade-off at any time.

V.3.7.2 Limitations Grain shape For non quasi-spherical enough grains, visual loss must be balanced with more precomputed views. At some point, the hypothesis of quasi-spherical shape made by our mixed sampling scheme becomes as invalid as using planar sampling. An extreme example that breaks our hypothesis is a tubular element, e.g., a threaded nut.

Self-intersection Also, grains must not intersect each other. We do not change the fragment depth when rendering them, so they are sorted by the depth of their center, provoking popping artifacts in case of intersection. Writing a precomputed depth in the Z-buffer when rendering the impostor is possible, but at the expense of important performance reduction because this would turn off early-Z rejection.

Another consequence of this per-grain depth is that the standard shadow maps cannot render grains' self-shadows.

Far grains The rendering model that we used to render far grains beyond the validity range of our impostor is subject to aliasing. To improve the transition from impostors to pure point based rendering, more advanced existing point-based models could be used. Note that we did not chose to switch to a surface-based representation, such as [START_REF] Bruneton | Real-time realistic rendering and lighting of forests[END_REF] do, because we did not want to give up on the ability to animate grains.

V.3.7.3 Future work

Our method can be further developed along several directions. First, we could also defer the sampling of attributes in a separate pass to save memory bandwidth.

Impostor rendering would query only the alpha channel, to build a visibility buffer [START_REF] Burns | The visibility buffer: A cache-friendly approach to deferred shading[END_REF]. We could accumulate fragments during the first of the two draw calls. This would enable cross grain alpha blending and hence reduce aliasing when grains come very close to being points. Accumulation disables the benefits of early-Z rejection but it is mostly the second pass that benefits from it.

Second, our memory usage can be further improved. We do not use any form of texture compression and use heavy 32-bit color attachments. Also, a grain being bounded by a sphere, the corners of precomputed views are always left unused. [START_REF] Todt | Fast (spherical) light field rendering with per-pixel depth[END_REF] use a distorted mapping to address this issue, but this prevents us from using standard mipmaps. Furthermore, the attribute field captured by our rich impostors have a lower dimensionality than the light field captured by radiance impostors. Hence, there is more redundancy in our representation, that could be compressed better, storing only the mapping from position on the bounding sphere and ray orientation to UV space, which yields interesting filtering issues to address. More generally, we would like to study the possibility for shape programs to automatically generate multiple LoD of their output. This goes together with closing the gap between pure geometry and appearance modeling. Both materials and shapes happen to be represented by programs, but the potential for transferring data from one to the other, similarly to what impostors do, remains under explored.

VI Conclusion

We opened this thesis by advocating the use and analysis of higher-order representations of shapes, in particular program-based representations. They enable a renewal of 3D digital creation workflows, where artistic decision taking can be postponed to mitigate the cost of creation loops. We have explored the diversity of such representations, from imperative DAGs to declarative tiling through hybrid paradigms like parametric tiles, addressing the overall question of how to alleviate the frictions of shape programming.

VI.1 Contributions

We showed that program-based representations of shapes embed meaningful information about the intent of their designer, and that we can practically leverage it to assist the creation process. For imperative programs, represented as DAGs, we capture this semantic information through the automatic on-the-fly injection of new nodes, what we call DAG amendment. These nodes aim at augmenting the output geometry with application-specific labels: a co-parameter when we need to recognize points upon change of hyper-parameters in order to compute differential information, or a trace of operations, when we want to characterize the role that geometry elements are playing in a DAG.

Both of these amendments have applications that address core challenges of program-based representations. Our co-parameterization enables the direct manipulation of a shape program's output in cases that are not handled by typical inverse kinematics techniques, in particular when the connectivity of the output mesh fluctuates. And we coupled our trace recording with program synthesis methods to assist the creation of parts of a shape program responsible for selecting geometry, namely selection queries. Thus, DAG amendments not only ease the tuning of a program's input hyper-parameters, but they also companion the upstream design of this program.

In the case of declarative programs, some of the designer's intent is made explicit by layout rules, e.g., the interface labeling, for Wang tiles. We used these rules to constrain the geometrical content of the tiles in our mesostructure generation system, adopting an interface-centric approach to ensure by construction the continuity of the program's output.

The composition of a declarative program is a dialog with a solving engine. We make this dialog more fluent by having the engine suggest new tiles to add, to help the designer pave a target domain. We make this dialog more versatile by extending the usual discrete Wang tiling problem to continuous sets of tiles and interfaces. We thus enable a new hybrid shape programming paradigm, that mixes both a tiling system and parametric shapes to define the content of so-called parametric tiles.

We integrated shape programs with real-time rendering pipelines. This synergy is at the same time needed and enabled by program-based representation. Needed, because a key application of shape programs is the conception of authoring workflows, and enabled, thanks the structural information that a shape program provides. For two examples of shape programs generating heavy geometrical content, we deferred the evaluation of some parts of the shape and off-loaded it on the GPU, and we altered the program to dynamically adapt to the view point and output different first-order representations of the same shape.

Through multiple fully functional authoring and rendering systems, we showed how representing and manipulating shapes as higher-order programs rather than first-order geometry enables new creation workflows, leading to digital assets as rich and versatile as parametric shapes.

VI.2 Future prospects

In a way, we have only scratched the surface of the challenges introduced in Section I.2.4. Each one of these key directions can be further explored in the continuity of our approaches.

Ensuring generalization Ensuring generalization means to transform instancespecific user gestures into programs that capture the intent behind these gestures. We addressed the case of selection gestures and replaced instance-specific lists of indices with symbolic queries which generalize much better. This use of program synthesis within the creation loop can be ported to other gestures, one being the computation of unexposed node parameters. For instance when the designer rotates a part of an object by 40°, was in order to point it to another one? Or to align it to its neighbors? This problem is less constrained than the selection, for which we could consider each element of geometry as a different example, so it requires either more prior knowledge, or more user input. Or a different type of user interaction, where the tool engages a proper dialog with the designer by asking for disambiguation.

Assisted authoring of shape programs The dialog-based approach was the spirit behind our tile suggestion mechanism. As we highlighted, it is particularly needed for declarative programming of shapes in general: the solving engine generally faces over or under-constrained problems about which it must be transparent enough if we want to integrate them into an interactive creation tool. We focused on tiled layout, but other layout engines, e.g., more focused on alignment, distribution and other 3D kitbashing operations, could also be used for shape programming. One may also develop new paradigms, like we have initiated with our parametric tile engine.

Program synthesis can be used together with shape analysis in order to develop workflows where program-based representations are used in cooperation with other sources of 3D data such as 3D scanning. For instance, InverseCSG (2018) bridges program synthesis with RANSAC-based shape analysis; similarly symmetry detection and other dictionary-based analysis [START_REF] Lescoat | A Survey on Data-driven Dictionary-based Methods for 3D Modeling[END_REF] can be a first step towards the automatic construction of shape programs.

Shape manipulation

Our general strategy for extracting information from the structure of a shape program is to amend it with automatic rewriting rules so that it output extra details. This approach can be explored beyond our two examples. In both cases we need DAG nodes to be able to relate their output to their input: in a way nodes are augmented with extra methods. How else could we augment them? Nodes could provide information about the visibility or bounding box of their content. This is related to abstract interpretation, another branch of the programming language literature that we can enroll for the study of shape programs, together with program synthesis.

Integration with other programs The visibility-related static analysis of shape programs that we just mentioned could be leveraged to push further what we have done on particular cases regarding the integration of shape programs and real-time rendering. We focused on the instantiation of similar atoms, for which our prior on the boundary spheres or the number of sweep components is uniform, but we could look for more general program-level culling, using the program to generate a simplified geometry. In the case of grain rendering, we accounted for the role of materials. Materials are sometimes themselves generated by image processing DAGs; could we have these DAG interact with each others? Using height maps, it is common that users of Adobe Substance Designer embed a lot of geometrical information in the procedural materials they build.

Although we were primarily interested in rendering in the context of authoring tools, similar approaches might be used to create optimized game-ready parametric assets, or to synthesize acceleration structures for offline rendering. Or even acceleration structures for other kinds of physic simulations. The additional information contained in the structure of a program can serve as a prior for some under-constrained algorithms.

Shape IDE Holding all these challenges together within a consistent toolkit for visual programming of shapes corresponds in the end to what generic (text-based) programming calls an Integrated Development Environment. What would such a shape IDE look like? Providing tools for prototyping, debugging, refactoring, optimizing shape programs makes as much sense as for regular programs. And the specific context of shape programming suggests novel tools, like bidirectional editing, which couple symbolic and spatial manipulations of shapes.

Symbolic AI Our last point is that studying shape programs fosters the development of symbolic artificial intelligence for computer graphics. We have witnessed in the recent years a growing use of AI techniques in computer graphics, but this use is so far mainly focused on continuous AI, namely machine learning, and in particular deep learning. There is nevertheless a lot of potential for symbolic AI like program synthesis, and its emergence necessarily goes through the use of symbolic, i.e., program-based, representations of shapes. Symbolic AI is particularly relevant in the context of collaboration between a machine and a human for the authoring of creative assets, because we need machine-generated models to be human-understandable and manipulable.

We hope that our work on program-based representations of 3D shapes will contribute to the development of collaborations between programming languages, artificial intelligence, human-computer interaction and computer graphics. were able to fully reuse its core, including the base plug-in mechanism and the API (Karabela, 2020) providing effects from the Visualization Toolkit [START_REF] Schroeder | The visualization toolkit[END_REF], and developing new plug-ins is made easy to thanks to an optional C++ helper library (the OpenMfx SDK). Similarly to OpenFX supporting hosts that are either layer-based or node-based, OpenMfx can fit into both stack-based (modifiers) and node-based non-destructive modeling tools.

B.2 Design Choices

The overall plug-in architecture, the notion of effect, of parameter, property etc. could be reused from OpenFX. In the end, most of the decisions we have made were related to the representation of meshes that transits through the API.

This representation aims at supporting a wide variety of mesh topology, including n-gons of arbitrary point count, unconnected points (for point clouds), loose edges (for wireframe meshes) and mixes of all of these. It aims at a minimal enough memory footprint, meaning that the representation should be non-redundant and also that it should be able to point to wherever the data already is in the host's memory rather than copying it, if possible. And it aims at a simple design, to avoid dealing with multiple particular cases.

It is not uncommon for modeling tools to expose two different APIs to handle 3D meshes. For instance 3ds Max has both Mesh and MNMesh, Blender has Mesh and BMesh. In both cases, the second one is more flexible and eases arbitrary traversal, but at the cost of some overhead. Our representation is closer to the first ones, the lower level ones. It is then up to the plugin to build a different representation, if needed only (MfxVTK does this for instance).

Attributes An OpenMfx mesh is then simply a list of attribute buffers. A given attribute is relative to either points, faces or face corners and contains between 1 and 4 values of a given type (short, int or float) for each point/face/corner. For instance the vertex positions are given by a 3-component float point attribute. The connectivity information makes no exception, it is given by attributes, namely an integer face attribute telling for each face its number of corners and an integer corner attribute telling for each corner the index of the point it refers to. These are equivalent to what USD's UsdGeomMesh class calls resp. faceVertexIndices and faceVertexCounts, and is also close to Blender's and Houdini's representations1 .

Note that we decided not provide edge attributes. Edges that belong to no face, called "lose edges" are listed as two-point faces, other edges are omitted because implicitly defined by faces. Since edges are shared across faces, the price in clarity to include edge attributes was too important compared to the fact that many existing API don't support them anyways. When really needed, they may be stored in corners, at the price of duplication, or by explicitly listing all edges as two-point faces.

Attribute buffers are of two kinds. Some own their data, which is freed when the mesh is released. Others are non-owner attributes, meaning that they point to an existing memory location, that is assumed to remain valid throughout the execution of the effect. The memory layout is described by a flexible buffer protocol, loosely inspired by Python's (Python, n.d.), such that the host can use non-owner attributes as much as possible to feed mesh attributes to the effect. Only attributes whose layout on host side cannot fit the buffer protocol need to be copied. Nonowner attributes can also be used in outputs, for instance to forward unchanged input attributes without copying them at all.

On-demand data To alleviate further the need for memory transfers, an effect must explicitly request the attributes it needs, when describing its inputs. A requested attribute can be deemed mandatory or not, and is also assigned a semantic flag hinting about the meaning of the attribute (color, normal, texture coordinate, weight) and that the host might use to suggest the user which host-side attribute to feed as the requested one. This also brings flexibility since the host then holds a mapping between the actual attribute data it stores for a mesh and what the effect requested.

Another information that is provided only on demand is the world to local transform matrix associated to the mesh. All coordinates are given in local space, and this matrix is not available unless requested, such that the host's dependency graph can more finely avoid useless executions or dependency loops.

SDK We were pursuing competing goals by designing a low overhead API but also at the same time looking for ease of use by developers. This is why on top of the low-level portable C API we provide an optional helper library, written in C++ to provide higher level abstraction. While the low-level API hides no implicit behavior, the C++ SDK.

Specific Scenarios While aiming at flexibility, it was also important to ensure that some more specific yet very common cases are efficiently handled. Often the number of points per face is fixed. It might be to 3 (triangle only meshes), 4 (quad only), but also 2 (wireframe only). In such a case, a flag is used to avoid allocating a face point count buffer that would be uniform.

Attribute forwarding is already a good way to avoid unneeded copies of memory, but for the host's internal it might be useful to know even before running the effect that it will not change the connectivity of the mesh (e.g. a displacement or smoothing effect). So called "deform only" effects can advertise this fact ahead of execution (at describe time) so that the host may handle them differently.

Since the way we handle loose edges was a less obvious decision that may not fit hosts' internal memory layout, and since it is common not to have lose edges in a mesh, we added a flag for the plugin to let the host know when an output mesh has no such edge.

Limitations Besides the aforementioned absence of explicit edge attributes, two features have been set aside compared to Maya's API. First OpenMfx does not allow faces with holes, i.e., faces that would be made of more than one loop of edges. Though technically nothing prevents one from having corners pointing to some reserved point index (for instance -1) meaning to start a new loop, we thought that supporting this would abusively complicate the task of plugin writers while use cases are very uncommon. Secondly, there is no indirection between face corners and texture coordinate, so no proper definition of "UV island".

Limitations that we are willing to address include the current impossibility for a host to allow in-place edition of non-owned attributes, and the lack of mechanism to pass-through arbitrary attributes that were not especially requested by the effect but that the host may want to compute for the output anyways (possibly because another effect requested it downstream).

B.3 Future prospects

OpenMfx is ready to be used and the API is getting stable but its ecosystem may still get improvements in order to ease its adoption. The current major limitation is lack of supporting hosts besides Blender and Unity, so we are working on a SDK similar to the one we have built to ease the creation of plug-ins but oriented towards the integration into new hosts. The Unity host is still limited at this stage as we have not defined a proper dependency graph yet.

In order to ensure harmonization among multiple implementations -which is sometimes a problem of OpenFX -we plan on providing an optional validation layer, reporting any inconsistencies in the use of the API. This will come with an overhead but would be used only at development time.

To meet our original goal of bringing the possibility to share scenes that have nondestructive effects and parametric shapes across software suites, we will integrate an USD schema [START_REF] Studios | Universal scene description[END_REF] telling which plug-in to instantiate where and with which parameters when exchanging a scene. Effect parameters would be driven by UsdAttribute and input mesh would be provided as UsdRelationship. The effect could request from their input the extra attributes provided through the UsdGeomPrimvarsAPI.

So far we have focused on time independent effects, but the original OpenFX API also supports time-dependent effects such as simulations, so by reusing their industry tested approach we could also support it for 3D meshes even though it may raise questions that are not our priority at the moment.

There is room in the design for augmenting the effects with new actions without breaking compatibility. A promising example would be to add the possibility to query the effect for differential information, e.g. to measure jacobian of the operation, to make it usable in contexts such as machine learning, differentiable rendering or inverse control (É. [START_REF] Michel | DAG amendment for inverse control of parametric shapes[END_REF].

Finally, in practice effects might use other types of representations. We already support polygon soups and point clouds, there is a question whether we should care about other representations such as voxels, heightmaps or implicit surfaces.

C Proof A

In Section IV.3.2.1, we define:

Allowed( T1 , 𝑑 1 , 𝑑 2 ) = 𝑡 1 (𝝅 1 ) ∈ T1
𝑡 2 (𝝅 2 ) | 𝑖 2 ≡ 𝑖 1 and 𝝅 2𝑑 2 = 𝝅 1𝑑 1 (VI.1)

and we need to show that:

Allowed( T1 , 𝑑 1 , 𝑑 2 ) = 𝑡 2 ∈𝑇 ⋄ 𝐻 𝑡 2 ,𝑑 2 𝑡 1 ∈𝑇 ⋄ st. 𝑖 1 ≡𝑖 2 𝑉 𝑡 1 ,𝑑 1 ( T1 )
We split the union in Equation VI.1 depending on the value of 𝑖 1 = 𝐿 ⋄ (𝑡 1 , 𝑑 1 ), namely the interface type of 𝑡 1 in direction 𝑑 1 : We now focus on the argument of 𝐻 , which we note ( * ):

Allowed( T1 ,
( * ) = 𝑡 1 (𝝅 1 ) ∈ T1 st. 𝑖 1 ≡𝑖 2 {𝝅 1𝑑 1 }
We split the union to iterate first on the tile type and then on the hyper-parameters:

( * ) = 𝑡 1 ∈𝑇 ⋄ st. 𝑖 1 ≡𝑖 2 𝝅 1 st. 𝑡 1 (𝝅 1 ) ∈ T1 {𝝅 1𝑑 1 }
We rephrase the inner union as a set definition: 
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Figure I. 1 :

 1 Figure I.1: The process of creating a 3D scene or object requires the designer's anticipation at multiple levels: (a) local anticipation of the effect of each authoring gesture, (b) anticipation of the most appropriate modeling strategy and (c) anticipation of downstream use of their work.

  Figure I.2: An example of a parametric shape and its program-based representation, displayed as an imperative DAG (a). We show two different instances of this shape, for different values of its hyper-parameters (b). Node inputs are typed: large discs are slot carrying geometric information, whereas small discs carry numbers. For the sake of legibility, the latter are generally omitted in our examples.

Figure I. 3 :

 3 Figure I.3: Examples of production-grade 3D modeling tools whose user interface is based on the manipulation of a DAG encoding a shape program: (a) Blender, (b) Houdini and (c) Substance 3D Designer.

Figure

  Figure I.5: The same shape program, represented either as a visual DAG (a) or as an imperative text-based program (b). The former contains the extra information that operations Duplicate and Transform for instance may be executed in any order, or even in parallel, while the text-based representation required an arbitrary choice.

  Figure I.6: Steps (a) to (e) are captured from the explanation of the procedural modeling strategy adopted by the designer to create the result shape. Although this is in practice implemented using an imperative DAG (Blender's Geometry Nodes), this approach is close to tile-based modeling, where step (a) describes a graph of slots where tiles of geometry are instanced following specific adjacency rules such as placing shops and doorways if there is no slot bellow. Courtesy of Chong 3D (https://

  Our problem thus becomes to synthesize a program 𝑄 that behaves well on the examples of 𝑉 . For each vertex 𝑣 ∈ 𝑉 we want 𝑄 (𝑣) = true if 𝑣 ∈ S and 𝑄 (𝑣) = false otherwise. This set of examples enables us to draw from techniques of Programming by Example.

  Figure III.1: Our query synthesis takes place in the following workflow: the designer defines S by hand selecting geometry in one instance of a DAG-generated shape (2.), then our methods infers a program 𝑄 which is equivalent to the selection (3.) such that when the DAG changes (4.) our program 𝑄 produces a semantically equivalent selection S ′ in the new geometry (5.).

Figure

  Figure III.2: The example selection S from (a) can be matched by multiple queries 𝑄 like the examples of (b). These query generalize in different ways when the shape's hyper-parameters change, as shown in (c). We use a weighted size to define which one is the best option.

Figure III. 3 :

 3 Figure III.3: Main steps of our query synthesis method, presented in Algorithm 1.

  𝑃); query ← Difference (query, exception); end candidates ← candidates + {query}; end return argmin 𝑐 ∈candidates size(𝑐); end Pattern construction In the function BuildPatterns(), we build all predicatebased patterns that match at least one of the positive points. For each selected element 𝑒 ∈ 𝑃, it iterates through all predicates 𝑝 ∈ T 𝑒 and consider all patterns that match 𝑝. Given a predicate Predicate (a, b, c), matching patterns are generated by replacing any subset of the role parameters by the wildcard symbol e.g., Predicate (_, b, c), Predicate (_, b, _), etc. It returns a list of patterns together with their false positives 𝑃 -and false negatives 𝑁 + .

"

  Figure III.4: Examples of result of our query synthesis method. Left to right: the original user selection S, the generated query 𝑄, an automatically derived humanreadable version of 𝑄, and the selection S ′ after changing some hyper-parameter. The DAG corresponding to each shape is shown in Figure III.5.

Figure III. 5 :

 5 Figure III.5: Generation DAGs used by the examples of Figure III.4. Selection inputs have been hidden to simplify display.

  Figure III.6: Synthesis time for the example of Figure III.4.f with varying recursion depths, with (𝛽 = 1/3) and without (𝛽 = 0) our pattern filtering method. The complexity remains exponential but becomes usable at interactive rates when filtering is enabled. Standard deviation is lower than the thickness of plot lines (on 10 samples).

"

  Figure III.7: Cases of failure of our method. In (a) our system does not synthesize the expected query, which is to select only the front of the last extrusion, so we give another training example (b). It is still not enough because our DSL cannot distinguish the second extrusion from the first one. In example (c) the hyper-parameter is the number of loop cuts. Our DSL is not able to encode the notion of "middle" loop cut.
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  Figure III.9: (a) A simple 2D parametric shape with a single hyper-parameter 𝜋 and (b) some of it's instances. A co-parameterization of F is a parameterization of its graph H in dimensions dim(Π) + dim(R 2 ), and as shown in (c) multiple coparameterization of a same shape are possible.
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  Figure III.10:We need to recognize a point after a change of the hyper-parameters 𝝅. We model this using three notions of parameterization. M 𝐺 : P 𝐺 → 𝐺 ⊂ R 3 is a parameterization as meant in parameterized surfaces. The parametric shape F : Π → {𝐺 } itself is a higher-order parameterization. Since M 𝐺 is not enough because in general it is different for each 𝝅, we introduce C : Π → (𝐴 → R 3 ) which outputs parameterizations consistent among all the geometries resulting from F .

  Figure III.11:We identify points across different outputs of a DAG (modeling the implementation of the parametric shape) using two attributes attached to face corners. 𝑤 is a copy of the parameterization (UV) at the leaf the face corner comes from. 𝑙 is a unique index of the leaf-to-root path that generated the face. We first count the number of paths flowing through each input of each node (b). We then automatically insert nodes (c) to first initialize 𝑙 to 0 after each leaf and offset 𝑙 before any input by the number of paths flowing through previous inputs of the same node. As a result, each face corner of the output geometry is labeled with a unique path index.

  Figure III.12: The output of the DAG is augmented with a co-parameter labeling each face corner.

  Figure III.13: A node that duplicates geometry up to 𝑚 times and has 𝑛 incoming paths is considered downstream as being traversed by 𝑛 • 𝑚 paths. Assuming there is a way to infer the index 𝑗 of the duplicate a face belongs to, the path index 𝑙 is replaced by 𝑛 • 𝑗 + 𝑙.

  and III.15, show the original DAG and its amendment for example shown later in Section III.4.3. Additional results are available in Appendix A.

ALGORITHM 3 :FigureFigure III. 15 :

 315 Figure III.14: Preview of the DAG amendment applied on the example of Figure III.8. Small pink nodes in (b) are the node we insert. A more detailed version of this figure can be found in the supplementary material.

  Figure III.18: When one of the hyper-parameter has a non continuous influence like the length here -acting on the number of repetitions -the designer may manually amend the DAG after our process to make the real component 𝑤 of the co-parameter continuous anyway, for instance by projecting it from a box proxy.
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  Figure III.19:A prototype of our method applied to a shape represented as a signed distance field.

FigureFigure

  Figure III.20: A common creation workflow separates (a) the designer of a parametric object from (c) its end user. The former handles technical issues for the latter to be fully dedicated to more artistic and intuition based matters (e.g ˙, animation, staging). Our method improves this end interaction without extra effort from the designer by (b) automatically inserting a few nodes to the parametric shape's graph representation (DAG) produced by the designer.

  painting metaphor, we model the user input as a series of brush strokes. Each of these strokes must be interpreted as a modification Δ𝝅 of the hyper-parameters. This grounds the interaction loop shown in Figure III.20.c and detailed in Figure III.21. Our loop follows the usual approach of inverse control problems, namely getting a differential information (Jacobian matrices {𝐽 𝑖 }) in order to locally inverse the function F (the solver).

  Figure III.22: To evaluate a column of the jacobian at a sample point 𝑝 𝑖 , (a) we use its co-parameter 𝑎 𝑖 interpolated from the face corners, then (b) vary the hyper-parameter by 𝛿 𝑘 and (c) look for the new point 𝑝 ′ 𝑖 whose co-parameter equals 𝑎 𝑖 . (d) The column of the jacobian w.r.t. this hyper-parameter is (𝑝 ′ 𝑖 -𝑝 𝑖 )/𝛿 𝑘 .
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  Figure III.23: Both hyper-parameters of this scene have the very same influence on the drawer's handle. Yet our jacobian buffer filtering enables to distinguish the intent behind the choice of a large (a) or small (b) brush (the dotted circle).

Figure III. 24 :

 24 Figure III.24:Examples of sequences of edits using our method on various scenes. Corresponding DAG amendments can be found in the supplementary material.

Figure

  Figure III.25: Detailed profiling breakdown on several example scenes with varying complexity of DAG and output geometry. All examples are given for 64 sample points.The time needed to evaluate F does not depend on our method but on the parametric shape engine that we have built onto, and its standard deviation is due to caching mechanisms.

  Figure III.26: Interaction is better localized when we discard samples far from the center of the brush once unprojected in world space (a) than when keeping all points (b). Middle column shows the consequences of a stroke. Right-hand column shows the same interaction under another viewpoint.

Figure IV. 1 :

 1 Figure IV.1: Some of the ca. 500 tiles needed by the Townscaper tile-based modeling game, manually modeled using Autodesk Maya. Courtesy of O. Stålberg (https:// www.youtube.com/watch?v=1hqt8JkYRdI).

  Figure IV.2: Wang tiles are tiles for which adjacency rules are given by labelling the edges of each tile. Two tiles can be neighbors only if the edges thus put in contact are labelled with the same color.

Figure IV. 3 :

 3 Figure IV.3:To solve a Wang tiling problem, the Wave Function Collapse algorithm maintains for each slot a superposition of all tiles that may be assigned and progressively reduces this set, starting with slots of lower entropy 𝐻 .

Figure IV. 4 :

 4 Figure IV.4: Mesostructures produced using our interactive design tool in a few minutes. Our method enables a quick design of very intricate topology, and as illustrated on the torus the same input macrosurface can lead to various styles depending on the tiles created through our proposed workflow.

  Figure IV.5: Overview. Draw & Select step is the step involving user interaction; it is detailed in Figure IV.6. Other steps are autonomous.

Figure IV. 6 :

 6 Figure IV.6: Tile set authoring interactions involves setting combinatorial information (tile interfaces) and geometric content (2D cross-sections and 3D sweep surfaces).

  Figure IV.7:The geometric content of tiles is defined by sweeping across 2D cross-sections drawn on interfaces. The same cross-section may be used by more than one sweep, and if they are not used by any, a cap surface is automatically added.

  Figure IV.9: Outline of the tiling solver described in Algorithm 5. The possibility space of each slot is initialized to the set of all tiles, then our border exempt/only interfaces imposes some initial constraint, and the remainder of the algorithm is an alternation of arbitrary local choices and depth-first constraint propagation.
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  Figure IV.10: Once designed, the same tile set can be applied to various macrosurfaces.

Figure IV. 11 :

 11 Figure IV.11: When mapping a tile's content into an hexahedron of the shell, deforming each point of the generated surface (left) leads to more distortion than applying the deformation to the underlying curves, prior to sweeping (right, ours).

Figure IV. 12 :

 12 Figure IV.12: When the macrosurface has open borders, one can force the tiling to place an empty interface at boundaries to prevent open geometry (middle and right). It is also possible to prevent this empty interface from occurring away from boundaries. (right).

Figure IV. 13 :

 13 Figure IV.13: Like any tiling problem, we start from a set of tiles and a graph of slots 1⃝ . In simple a scenario like (a), assigning a value to the hyper-parameter ℎ of parametric tiles can be thought as a post-process 3 ⃝ independent from the tiling itself 2 ⃝ . However, in presence of more advanced constraints on ℎ, like in (b), these must be taken into account during the tiling. Otherwise there is no way to detect in 2 ⃝ that the top assignment cannot lead to a valid solution whereas the bottom one can, as shown in 3 ⃝ .

  Figure IV.13.b, we have tile types 𝑇 ⋄ = {BeginWall, EndWall, Door, Stairs} and for instance Π Door = [ℎ door , +∞[.

  Figure IV.13.b, interfaces types are Wall, Ground and Road, with Π Wall = R + . The tile type Stairs is parameterized by (ℎ N , ℎ S ) ∈ Π Wall × Π Wall because both its north and south interfaces are Wall. More generally, we note tiles 𝑡 (𝜋 N , 𝜋 S , . . . ) = 𝑡 (𝝅).

Figure IV. 15 :

 15 Figure IV.15: (a) Hyper-parameter spaces for tiles of Figure IV.13.b expressed using the interface hyper-parameter ℎ. (b) Illustration of tile set projection 𝑉 and its pseudoinverse 𝐻 .

  𝑋 ) = 𝑋 These functions are illustrated in Figure IV.15 and the derivation from Equation IV.2 to IV.3 is detailed in Appendix C. The strength of the formulation of Equation IV.3

  𝑉 and 𝐻 are implemented for bounding boxes only. 𝑉 𝑡,𝑑 (𝐵 𝑡 ) is simply the restriction of 𝐵 𝑡 to the axes of direction 𝑑. Functions 𝐻 𝑡,𝑑 are what actually contains the rules relating the hyper-parameters of a tile, and are considered as user input. For instance, for tile Stairs in Figure IV.15:

  >> from sympy import * >> hs , hn , hstep = symbols ( 'h_S , h_N , h_step ' , positive = True ) >> constraint = Abs ( hs -hn ) < 8 * hstep >> solveset ( constraint , hn , domain = S . Reals ) Interval . open ( h_S -8* h_step , h_S + 8* h_step )

  Figure IV.16: Watershed network generated using our parametric tile engine. Our parametric tiling engine ensures that the water flows consistently and assigns altitudes at each interface.

Figure IV. 17 :

 17 Figure IV.17: Multiple runs of our watershed generation based on parametric tiles.

Figure V. 1 :

 1 Figure V.1: Captures from the real-time viewport of our mesostructure authoring tool.

  Figure V.2: Our mesostructure rendered as a signed distance field, using sphere tracing. Inset (a) and (b) show the visual artefacts that arise from this representation, (b) being voluntarily degraded for illustrative purpose.

Figure V. 3 :

 3 Figure V.3: Our level-of-detail method exploits quasi-spherical impostors to render, in real time, fully dynamic stackings made of millions of similar objects, with variable materials and orientations, while seamlessly integrating into deferred shading.

Figure

  Figure V.4: (a) When a shape programs ends with the dense instancing of some quasispherical objects, (b) we feed viewpoint information to the instancer and have the shape program compute a different representation of the instances, namely impostors. Like in Section V.2, the evaluation of per-instance variations (size, orientation, material) is delayed to the render program.

Figure V. 5

 5 Figure V.5 describes the sequence of draw events involved in rendering our aggregate of grains. The splitting step 1 ⃝ orchestrates rendering by routing each grain toward one model or another depending on its location. It discards some of them based on an occlusion map which is also further reused at step 3 ⃝ to speed up drawing. Additionally, it early rejects grains out of the view frustum.

Figure V. 5 :

 5 Figure V.5: Anatomy of a dense stacking rendering sequence. A first step splits the stacking into several element arrays used to feed subsequent draw calls (Section V.3.4.2), also applying culling to early discard hidden points (Section V.3.5.1). Impostors are drawn in two passes (Section V.3.5.2). Point-based drawing typically discard all points beyond a limit distance. Our contributions concern steps 1 ⃝ and 3 ⃝ .

Figure V. 7 :

 7 Figure V.7: We precompute view directions using vertices of a subdivided octahedron (the 𝐿 1 sphere) since mapping them to integer indices is computationally efficient; here with 𝑛 = 8 vertices by edge boils down to 𝑁 = 128 views.

  1 norm 𝐿 1 (𝑑) = |𝑑 𝑥 | + |𝑑 𝑦 | + |𝑑 𝑧 | and then converted to integer indices.

Figure V. 8 :

 8 Figure V.8: A simple planar impostor replaces original geometry (left) with a plane (middle). At baking time 1 ⃝ attributes are projected, then used at render time 2 ⃝ .

Figure V. 10 :

 10 Figure V.10: Grain splitting. Given the position of the grains, we first render a map of the most likely occluder grains and then distinguishes which model to use for each grain, building contiguous element buffers for each subsequent draw call. Impostor rendering requires two element buffers to render occluder candidates first (Section V.3.5.2).

  Figure V.11: Since a grain is bounded by two spheres of radius 𝑟 and 𝑅, when the center of a grain G 1 lies in the occlusion cone, it is fully occluded by G 0 . On the contrary, the grain G 2 might not be totally hidden and cannot culled out.

  Figure V.12: Breakdown of several frames' draw sequence during a reference shot from tight to large view over a stack of 1.6M coffee beans. On the left-hand side are (top-down): first frame, middle frame and last frame. These results focus on the transition from meshes to impostors.

Figure V. 13 :

 13 Figure V.13: Impostor clouds built from diverse grain models. Impostors use 128 precomputed views (𝑛 = 8) of 128×128 pixels each.

Figure V. 14 :

 14 Figure V.14: Render time on a scene made of 1.6M grains. Thumbnails of the test sequence can be found bellow the horizontal axis. Impostors use 128 views of 128 pixels. Both instances and impostors use our occlusion culling method.

Figure V. 15 :

 15 Figure V.15: Impostors rendered using mixed (M), spherical (S) or planar (P) samplings with various number of precomputed views, along with ground truth (GT).

Figure V. 16 :

 16 Figure V.16: SSIM measures using different sampling schemes on the coffee bean: planar, spherical and mixed (ours).

Figure V. 17 :

 17 Figure V.17: View frustum with (left) and without (right) our grain occlusion culling. Some of the remaining points may actually be hidden, but it is ensured that no visible point is removed.

Figure V. 19 :

 19 Figure V.19: Impostor cloud where precomputed attributes such as normal vectors are used along with dynamic procedural attributes such as albedo values, which is drawn from the color ramp underneath each image.

Figure V. 20 :

 20 Figure V.20: A large dynamic scene made of 20M sand grains and rendered with our method in 56ms on a GeForce 1070 GPU.

FigureFigure

  Figure VI.1: Original DAG (left) and our automatic DAG Amendment (right) for the example of Figure III.8. Colored lines show the hyper-parameters influencing an individual operation.

Figure VI. 3 :

 3 Figure VI.3: Original DAG (left) and our automatic DAG Amendment (right) for the example (b) of Figure III.24.

E. 1

 1 Impostor resolutionSection V.3.4.1 asserts that the proportionality factor between the pixel size 𝑝 of the atlas' maps and the ratio 𝑅/𝐿 of outer radius w.r.t. distance depends on the camera field of view (fov) and the screen resolution. Full formula is:
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  ) comes with its set of false positives 𝑃 -.

Data: Positive examples 𝑃 and negative examples 𝑁 Result: A query 𝑄 such that ∀𝑝 ∈ 𝑃, 𝑄 (𝑝) = true and ∀𝑛 ∈ 𝑁 , 𝑄 (𝑛) = false fn rec Synthesize 𝑃, 𝑁 : patterns ← BuildPatterns(𝑃, 𝑁 ); if FindPerfectPatterns(patterns) as 𝑝 then return MatchPattern (𝑝); end patterns ← FilterPatterns(patterns) ;

  Synthesis FigureIII.4 shows examples of results of our query synthesis method. The designer can audit the meaning of the selection query by looking at its human readable version (although this version of the query may be subject to ambiguities). The hyper-parameter that we vary is often the resolution of initial primitives since it is what most commonly break index-based selection.Performance With our choice for parameters 𝛼, 𝛽 and 𝛾, we are able to run our query synthesis in a few hundreds of milliseconds. This enables us to synthesize a new query each time the designer changes the example selection. FigureIII.6 

  Then, before the 𝑘-th input of an internal node, we add a node that increments 𝑙 by 𝑖<𝑘 𝑛 𝑖 where 𝑛 𝑖 is the number of paths going through input 𝑖 (see FigureIII.11).The goal of the index 𝑙 is to disambiguate cases where 𝑤 overlaps. Counting paths is a way to address cases caused by nodes that combine several input meshes, like a boolean operation (difference, fusion, intersection). The other major source

	ALGORITHM 2: Our DAG rewriting algorithm.
	CountPaths(dag.root);
	for 𝑛 ∈ dag.nodes do
	𝑐 ← GetMaxDuplicates(𝑛);
	if IsLeaf(𝑛) then
	InsertAfter(𝑛, MakeInitNode());
	else if 𝑐 > 1 then
	InsertAfter(𝑛, MakePostDuplicateNode(𝑐));
	sum ← 0;
	for input ∈ 𝑛.inputs do
	if input.index > 0 then
	InsertAfter(𝑛, MakeIncrementNode(sum));
	end
	sum ← sum + input.𝑝𝑎𝑡ℎ_𝑐𝑜𝑢𝑛𝑡;
	end
	end

  ′ 𝑖 of the 𝑖-th sample with respect to 𝐺 ′ . The 𝑘-th column of 𝐽 𝑖 is thus (𝑝 ′ 𝑖 -𝑝 𝑖 )/𝛿 𝑘 (see Figure III.22). If the nearest neighbor of 𝑤 𝑖 is too different, we assume that the point 𝑝 𝑖 has no equivalent in the new geometry 𝐺 ′ . This happens for instance for points at the

  ALGORITHM 4: Our solver uses an active-set method to account for hyperparameter boundaries. Diag(active_set) returns a diagonal matrix whose 𝑗-th coefficient is 1 iff 𝑗 ∈ active_set in order to freeze hyper-parameters that are no longer in the active set.

	Input: Jacobian matrix 𝐽 , target move Δ𝑡
	Output: An update Δ𝝅 of the hyper-parameters
	active_set ← {0, . . . , 𝑛 -1};
	Δ𝝅 ← (0, . . . , 0);
	repeat
	𝐽 + ← PseudoInverse(𝐽 • Diag(active_set));
	𝛿𝝅 ← 𝐽 + • (Δ𝑡 -𝐽 • Δ𝝅);
	Δ𝝅 ← Δ𝝅 + 𝛿𝝅;
	for 𝑗 ∈ active_set do
	if IsOutOfBounds(Δ𝝅 𝑗 ) then
	active_set ← active_set \ { 𝑗 };
	Δ𝝅 𝑗 ← Clamp(Δ𝝅 𝑗 );
	end
	end
	until 𝛿𝝅 is null;

  ALGORITHM 6: Initialization of the possibility space prior to running the tiling engine. The pink underlined section shows how border exempt/only interfaces can easily be integrated.Data: Slot graph 𝐺 = (𝑆, 𝐸) and tile set 𝑇 Result: Slot assignment 𝐴 : 𝑆 → P (𝑇 ) fn InitialConstraints 𝑇 : foreach slot 𝑠 ∈ 𝑆 do 𝐴[𝑠] ← 𝑇 ; foreach direction 𝑑 ∈ 𝐷 do if 𝑠 has no half-edge labelled 𝑑 then 𝐴[𝑠] ← 𝐴[𝑠] -{𝑡 ∈ 𝑇 | the interface of 𝑡 in direction 𝑑 is border exempt }; else 𝐴[𝑠] ← 𝐴[𝑠] -{𝑡 ∈ 𝑇 | the interface of 𝑡 in direction 𝑑 is

	border only };
	end
	end
	end
	foreach slot 𝑠 ∈ 𝑆 do
	Collapse(𝑠);
	end
	end

Table V . 1 :

 V1 For each example of Figure IV.10, the amount of GPU memory required to store our model, the number of drawn triangles, the corresponding render time and the time need by the tiling engine.

	Example Memory Triangles Render	Tiling
	(1a)	5.66 MB	57.9 M	6.2 ms 1132 ms
	(1b)	3.06 MB	44.7 M	6.0 ms 3212 ms
	(1c)	6.30 MB	70.0 M	7.9 ms 708 ms
	(2a)	2.96 MB	24.3 M	5.1 ms	87 ms
	(2b)	1.83 MB	18.8 M	5.1 ms 135 ms
	(2c)	4.18 MB	29.8 M	5.8 ms 279 ms
	(3a)	1.76 MB	6.42 M	3.6 ms 17.8 ms
	(3b)	1.33 MB	7.19 M	4.0 ms 43.3 ms
	(3c)	3.49 MB	6.18 M	3.1 ms 39.1 ms
	V.2.2.2 Surface representation			

  𝑑 1 , 𝑑 2 ) = 𝑖 ∈𝐼 ⋄ 𝑡 1 (𝝅 1 ) ∈ T1 st. 𝑖 1 =𝑖 𝑡 2 (𝝅 2 ) | 𝑖 2 ≡ 𝑖 and 𝝅 2𝑑 2 = 𝝅 1𝑑 1We then split the set {𝑡 2 (𝝅 2 )} depending on the type 𝑡 2 of the tile:Allowed( T1 , 𝑑 1 , 𝑑 2 ) = 𝑖 ∈𝐼 ⋄ 𝑡 1 (𝝅 1 ) ∈ T1 st. 𝑖 1 =𝑖 𝑡 2 ∈𝑇 ⋄ 𝑡 2 (𝝅 2 ) | 𝑖 2 ≡ 𝑖 and 𝝅 2𝑑 2 = 𝝅 1𝑑 1The condition that 𝑖 2 ≡ 𝑖 can be moved into the definition of the inner-most union because it does not depend on the hyper-parameters 𝝅 2 :Allowed( T1 , 𝑑 1 , 𝑑 2 ) = 𝑖 ∈𝐼 ⋄ 𝑡 1 (𝝅 1 ) ∈ T1 st. 𝑖 1 =𝑖 𝑡 2 ∈𝑇 ⋄ st. 𝑖 2 ≡𝑖 𝑡 2 (𝝅 2 ) | 𝝅 2𝑑 2 = 𝝅 1𝑑 1The two inner unions can be swapped:Allowed( T1 , 𝑑 1 , 𝑑 2 ) = 𝑖 ∈𝐼 ⋄ 𝑡 2 ∈𝑇 ⋄ st. 𝑖 2 ≡𝑖 𝑡 1 (𝝅 1 ) ∈ T1 st. 𝑖 1 =𝑖 𝑡 2 (𝝅 2 ) | 𝝅 2𝑑 2 = 𝝅 1𝑑 1Since ≡ is an equivalence relation (𝑖 ↦ → 𝑗 st. 𝑗 ≡ 𝑖 is a bijection), we can operate a change of variable from 𝑖 to 𝑗 in the outermost union:Allowed( T1 , 𝑑 1 , 𝑑 2 ) = 𝑗 ∈𝐼 ⋄ 𝑡 2 ∈𝑇 ⋄ st. 𝑖 2 =𝑗 𝑡 1 (𝝅 1 ) ∈ T1 st. 𝑖 1 ≡𝑗 𝑡 2 (𝝅 2 ) | 𝝅 2𝑑 2 = 𝝅 1𝑑 1And we now merge the first two unions:Allowed( T1 , 𝑑 1 , 𝑑 2 ) = 𝑡 2 ∈𝑇 ⋄ 𝑡 1 (𝝅 1 ) ∈ T1 st. 𝑖 1 ≡𝑖 2 𝑡 2 (𝝅 2 ) | 𝝅 2𝑑 2 = 𝝅 1𝑑 1We now express the inner set using 𝐻 𝑡 2 ,𝑑 2 :Allowed( T1 , 𝑑 1 , 𝑑 2 ) = 𝑡 2 ∈𝑇 ⋄ 𝑡 1 (𝝅 1 ) ∈ T1 st. 𝑖 1 ≡𝑖 2 𝐻 𝑡 2 ,𝑑 2 {𝝅 1𝑑 1 } Noting that 𝐻 𝑡,𝑑 (𝐴 ∪ 𝐵) = 𝐻 𝑡,𝑑(𝐴) ∪ 𝐻 𝑡,𝑑 (𝐵), we move the union inside of 𝐻 : Allowed( T1 , 𝑑 1 , 𝑑 2 ) = 𝑡 2 ∈𝑇 ⋄ 𝐻 𝑡 2 ,𝑑 2 𝑡 1 (𝝅 1 ) ∈ T1 st. 𝑖 1 ≡𝑖 2

	{𝝅 1𝑑 1 }

  Table VI.1: Various metrics for a series of test scenes, including the examples from FigureIV.10. The second to last row is the same setting as the previous one but using a finer resolution when synthesizing the output mesh. It is used to stress test the rendering pipeline.𝑡 1 ∈𝑇 ⋄ st. 𝑖 1 ≡𝑖 2 {𝝅 1𝑑 1 | 𝑡 1 (. . . , 𝝅 1𝑑 1 , . . . ) ∈ T1 }And we know recognize 𝑉 𝑡 1 ,𝑑 1 :𝑡 1 ∈𝑇 ⋄ st. 𝑖 1 ≡𝑖 2 𝑉 𝑡 1 ,𝑑 1 ( T1 )QEDD Tile Rendering StatisticsTable VI.1 presents additional statistics for the examples of Section V.2.

	( * ) =

( * ) =

Table VI . 3 :

 VI3 Angle of the cone of views under which a single precomputed view is valid, as a function of its pixel size 𝑝. The higher the resolution, the thiner the cone.TableVI.4: Uncompressde weight of an impostor, assuming a G-buffer fragment fits in 64 bit, for different spatial and angular resolutions.TableVI.5: Difference between the mean angle between two precomputed views and the angle of validity of a single direction for different combinations of the impostors' pixel size 𝑝 and the number of subdivisions of the octahedron 𝑛. A value of zero means that the impostor is perfectly valid.

					p		Cone angle (°)		
					1		120.00			
					2		73.74				
					4		39.50				
					8		20.13				
					16	10.11				
					32	5.06				
					64	2.53				
					128 1.27				
					256 0.63				
					512 0.32				
			𝑛\𝑝 1 2 4		8	16 32 64 128 256 512
			3	0 6 31 45 52 56 58 59	59	59
			4	0 0 15 29 36 39 41 42	42	43
			5	0 0 5		19 26 29 31 32	33	33
			6	0 0 0		13 20 23 25 26	26	27
			7	0 0 0		8	15 19 21 22	22	22
			8	0 0 0		5	12 16 18 19	19	19
			9	0 0 0		3	10 14 15 16	17	17
			10	0 0 0		1	8	12 13 14	15	15
	𝑛\𝑝 1	2 11	4 0 0 0	8	0	16 7	32 10 12 13 64	13	128 14	256	512
	3	144B 576B 2KB 12 0 0 0	9KB 0	36KB 5	9	144KB 576KB 2MB 11 12 12 12	9MB	36MB
	4	256B 1KB 13	4KB 0 0 0	16KB 0	64KB 4	8	256KB 1MB 10 11	11	4MB 11	16MB	64MB
	5	400B 1KB 14	6KB 0 0 0	25KB 0	100KB 400KB 1MB 3 7 9 10	10	6MB 10	25MB	100MB
	6	576B 2KB 15	9KB 0 0 0	36KB 0	144KB 576KB 2MB 3 6 8 9	9	9MB 10	36MB	144MB
	7	784B 3KB 16	12KB 49KB 0 0 0 0	196KB 784KB 3MB 2 6 7 8	9	12MB 49MB 9	196MB
	8	1KB	4KB	16KB 64KB	256KB 1MB	4MB		16MB 64MB	256MB
	9	1KB	5KB	20KB 81KB	324KB 1MB	5MB		20MB 81MB	324MB
	10	1KB	6KB	25KB 100KB 400KB 1MB	6MB		25MB 100MB 400MB
	11	1KB	7KB	30KB 121KB 484KB 1MB	7MB		30MB 121MB 484MB
	12	2KB	9KB	36KB 144KB 576KB 2MB	9MB		36MB 144MB 576MB
	13	2KB	10KB 42KB 169KB 676KB 2MB	10MB 42MB 169MB 676MB
	14	3KB	12KB 49KB 196KB 784KB 3MB	12MB 49MB 196MB 784MB
	15	3KB	14KB 56KB 225KB 900KB 3MB	14MB 56MB 225MB 900MB
	16	4KB	16KB 64KB 256KB 1MB		4MB	16MB 64MB 256MB 1024MB

We use the term proxy in the generic sens of an indirect substitute of a more accurate but less accessible goal, not specifically in the sens of a coarser geometry.

IDE: Integrated Development Environment

https://blendermarket.com/products/auto-rig-pro

This is a shorthand for ({𝑡 } × Π 𝑡 ) ∩ 𝑌 , if we refer to the definition of 𝑇 of Equation IV.1

bool IsOccluded ( vec3 g1 , mat4 proj , sampler2D occMap ) {

vec4 clip = proj * vec4 ( g1 , 1.0) ;

Houdini calls "vertex" what we call "corner", but "vertex" used by Blender to mean what we and Houdini call "point", we settled on the less ambiguous term "corner".

Remerciements

ALGORITHM 5: Outline of the tiling solver. Pink underlined items show our additions to the typical WFC algorithm [START_REF] Gumin | Wave Function Collapse[END_REF]: (1) RecordNeighbors saves the cause of the dead-end for the tile suggestion mechanism, and (2) we traverse an arbitrary slot graph rather than a regular grid.

Data 

Collapse(𝑠 2 ); end end end with a given direction 𝑑, we initially remove all tiles whose interface in direction 𝑑 is boundary exempt. And for each direction for which there exists a half-edge, we remove tiles whose corresponding interface is boundary only. Then we feed the tiling engine with this initial possibility space.

Appendices

A Extra DAG Amendments 

B OpenMfx: Standardization of shape operators

Non-destructive operations are widely used in mesh-based 3D modeling to add procedural effects on top a coarse geometry while allowing it to remain editable. Common such operations include surface subdivision, beveling, repetition, boolean operations. Combined together as a stack or even as a direct acyclic graph, they are a very powerful tool to build parametric assets. Although this mechanism is present in many different 3D modeling suites (Maya,Houdini,Blender,Cinema4D,3ds Max,etc.), it is not easy to share a parametric asset across them. Indeed, they do not all implement the exact same set of operations, and even when they do, there might be slight discrepancies in their behavior. We designed a plug-in API that enables one to have all supporting 3D modeling suites share the same implementation of a given non-destructive effect. It thus becomes possible to share scenes featuring non-destructive effect without having to destructively bake them.

B.1 Technical approach

We build on top of OpenFX [START_REF] Association | OpenFX[END_REF], an industry standard plug-in API that has been developed by Foundry while facing a very similar problem in the field of compositing, which is nothing else than non-destructive image editing. OpenFX has been designed from the ground up with modularity in mind so we By implementing it as an OpenMfx plug-in, it is available in all supporting host software and thus the asset is interexchangable in its non-destructive form.

for setting effects' parameters. Our mesh effect API is introduced as an extension next to its image effect API.

OpenMfx' mesh representation is based on a list of points, a list of n-gon faces and a list of face corners sorted by face and referencing point indices. At minimum, points have a position, faces have a vertex count and corners have a point index, but OpenMfx supports for any extra attributes attached to either one of these three entities. This is inspired by the flexibility that made the success of Houdini and its engine (SideFX, n.d.).

We introduced as little overhead as possible, and in particular limit the need for memory duplication. Data buffers for each point/corner/face attributes is given by a pointer, a type (short, int, float), a component count (for vectors) and a stride, which allows in most of the times to use the host's internal memory as is. The API also features mechanism to advertise some extra attributes as either required or useful but optional, so that only what is needed is provided to the OpenMfx effect.

Currently, the API has been developed and documented, one host is supported (a branch of Blender (É. where 𝑊 is the image's width in pixels and 𝛼 is a coefficient a little larger than 1 accounting for the fact that the projection of the bounding sphere of radius 𝑅 onto the screen is actually an ellipsis, larger than 𝑝. Alpha depends on the camera fov and limit distance 𝐿: for close grains at high fov, the effect is not negligible, but this is usually out of our scope because we don't use impostors for closer grains.

Long story short: we used 𝛼 = 1.1. Table VI.3 evaluates the theoretical formula of Section V.3.4.1 for different resolutions. This table is crossed with measures on octahedron (Table VI.2) to the data used for Figure V.9 of the paper. Title: Interactive Authoring of 3D Shapes Represented as Programs Keywords: computer graphics, parametric shapes, procedural modeling Abstract: Although hardware and techniques have become better and better over the years at handling heavy content, digital 3D creation remains fairly complex, partly because the bottleneck also lies in the cognitive load imposed over the designers. We propose a series of contributions aiming at leveraging programbased representations of shapes to make the process of authoring 3D digital scenes more of an artistic act and less of a technical task. We enable the use of direct manipulation methods on DAG output thanks to automated rewriting rules and a non-linear filtering of differential data. We help the creation of imperative shape programs by turning geometric selection into semantic queries and of declarative programs by proposing an interface-first editing scheme for authoring 3D content in Wang tiles. We extend tiling engines to handle continuous tile parameters and arbitrary slot graphs, and to suggest new tiles to add to the set. We blend shape programs into the visual feedback loop by delegating tile content evaluation to the realtime rendering pipeline or exploiting the program's semantics to drive an impostor-based level-of-details system.

E.2 Tables