In system and software security, one of the rst criteria before applying an analysis methodology is to distinguish according to the availability or not of the source code. When the software we want to investigate is present in binary form, the only possibility that we have is to extract some information from it by observing its machine code, performing what is commonly referred to as Binary Analysis (BA). The artisans in this sector are in charge of mixing their personal experience with an arsenal of tools and methodologies to comprehend some intrinsic and hidden aspects of the target binary, for instance, to discover new vulnerabilities or to detect malicious behaviors.

.

analysis model, demanding at the same time for high accuracy of the analysis as well as proper scalability over the binaries to counteract the adversarial actors. Therefore, despite the many advances in the BA eld over the past years, we are still obliged to seek novel solutions.

In this thesis, we take a step more on this problem, and we try to show what current paradigms lack to increase the automation level. To accomplish this, we isolated three classical binary analysis use cases, and we demonstrated how the pipeline analysis benets from the human intervention. In other words, we considered three human-in-the-loop systems, and we described the human role inside the pipeline with a focus on the types of feedback that the analyst exchanges with her toolchain. These three examples provided a full view of the gap between current binary analysis solutions and ideally more automated ones, suggesting that the main feature at the base of the human feedback corresponds to the human ability at comprehending portions of binary code. This attempt to systematize the human role in modern binary analysis approaches tries to raise the bar towards more automated systems by leveraging the human component that, so far, is still unavoidable in the majority i ii of the scenarios. Although our analysis shows that machines cannot replace humans at the current stage, we cannot exclude that future approaches will be able to ll this gap as well as evolve tools and methodologies to the next level. Therefore, we hope with this work to inspire future research in the eld to reach always more sophisticated and automated binary analysis techniques.

Résumé

En matière de sécurité des systèmes et des logiciels, l'un des premiers critères avant d'appliquer une méthodologie d'analyse est de distinguer selon la disponibilité ou non du code source. Lorsque le logiciel que nous voulons investiguer est présent sous forme binaire, la seule possibilité que nous avons est d'en extraire des informations en observant son code machine, en eectuant ce qui est communément appelé Binary Analysis (BA). Les acteurs de ce secteur sont chargés de mêler leur expérience personnelle à un arsenal d'outils et de méthodologies pour comprendre certains aspects intrinsèques et cachés du binaire cible, par exemple pour découvrir de nouvelles vulnérabilités ou détecter des comportements malveillants.

Bien que cette conguration humaine dans la boucle se soit bien consolidée au l des ans, l'explosion actuelle des menaces et des vecteurs d'attaque tels que les logiciels malveillants, les exploits armés, etc. met implicitement à l'épreuve ce modèle de BA, exigeant en même temps une grande précision de l'analyse ainsi qu'une évolutivité appropriée des binaires pour contrer les acteurs adverses. C'est pourquoi, malgré les nombreux progrès réalisés dans le domaine de la BA au cours des dernières années, nous sommes toujours obligés de chercher de nouvelles solutions.

Dans cette thèse, nous faisons un pas de plus sur ce problème et nous essayons de montrer ce qui manque aux paradigmes actuels pour augmenter le niveau d'automatisation. Pour ce faire, nous avons isolé trois cas d'utilisation classiques de l'analyse binaire et nous avons démontré comment l'analyse en pipeline bénécie de l'intervention humaine. En d'autres termes, nous avons considéré trois systèmes "human-in-the-loop" et nous avons décrit le rôle de l'homme dans le pipeline en nous concentrant sur les types de feedback que l'analyste "échange" avec sa chaîne d'outils. Ces trois exemples nous ont fourni une vue complète de l'écart entre les solutions actuelles d'analyse binaire et les solutions idéalement plus automatisées, suggérant que la principale caractéristique à la base du retour d'information humain correspond à la compétence humaine à comprendre des portions de code iii iv binaire.

Cette tentative de systématisation du rôle de l'homme dans les approches modernes de l'analyse binaire tente d'élever la barre vers des systèmes plus automatisés en tirant parti de la composante humaine qui, jusqu'à présent, est toujours inévitable dans la majorité des scénarios d'analyse binaire. Bien que notre analyse montre que les machines ne peuvent pas remplacer les humains au stade actuel, nous ne pouvons pas exclure que les approches futures seront en mesure de combler cette lacune et de

Introduction

In software security, we refer to Binary Analysis as the activity that enables the extraction of some information from the code of a binary executable.

Executable programs are described by le formats (e.g., PE, ELF, and Mach-O) that organize the data of the program in dierent segments and sections, some of which are dedicated to encapsulate the binary executable code itself (i.e., the machine code). Machine code is more dicult to analyze (both for humans and machines alike) than its original source-level counterpart, and this poses several challenges to any software analysis solution that needs to operate on binary programs.

Several research elds indeed need to carry out binary analysis as their inherent goal is to analyse dierent types of executables. For example, malware analysts use it to identify the malicious behaviors that a sample can perform. In the area of vulnerability discovery, researchers implement instead binary analysis approaches to identify interesting code locations that can lead to dangerous vulnerabilities. Moreover, binary analysis is a frequent practice also in the context of rmware analysis, where researchers try to comprehend the security properties of a binary blob by looking at its internals. Since it represents a crossroad that dierent lines of research encounter for the development of novel analysis approaches, an extensive amount of research has been performed over the years on binary analysis solutions.

A common way to categorize these techniques is to split them into static and dynamic analyses. The former aims to extract information by looking at the code without executing it, while the latter collects the needed information by observing its behavior at run-time. Dierent techniques and tools fall into one of these two major families. For instance, dynamic code instrumentation (e.g., Frida [fri, DGHH

+ 15]) approaches inject additional 1 code into an application to monitor and trace it once it is executed. Thus, this methodology belongs to the dynamic category, as it requires the code to run. Similarly, debuggers such as GDB [gdb] are common dynamic tools that are routinely used to perform a step-by-step execution of the target program to inspect its internal state in some points of interest (such as the invocation of a certain API or the registers' value inside a basic block). On the other hand, decompilation is a good example of static technique, as it lifts the assembly code to a higher level of abstraction, normally known as pseudocode. Other forms of static analysis try to recover meaningful representations of the binary by working with disassembled code. In this last case, a very common example is the control ow graph recovery, which reconstructs how the dierent basic blocks are connected to each other inside the binary and displays this information either in a graphical form or in a more compact representation suitable for further processing.

Despite the fact that binary analysis is frequently used in many disciplines and that a large variety of approaches exist, complex activities often require the support of human experts. In fact, while some cases exist where fully automated solutions have completely replaced humans in binary analysis tasks, most analysis pipelines make use of automated components to simplify the job of the analyst, who is still responsible for at least a part of the careful and tedious manual investigation. More specically, we can think of many binary analysis pipelines as human-in-the-loop approaches,

where the analyst can interact with the analysis pipeline in various ways.

However, the fact that human analysts might be involved in a task does not imply that they always play the same role in all systems.

In our research, we identied dierent ways in which human experts and automated techniques contribute to the solution of security-related problems. According to the human role and position with respect to the automated components, we can encounter three distinct congurations.

In the rst scenario, the help of an analyst is needed at the beginning of the pipeline, for instance, to direct an automated component towards the interesting portion of the binary code or to manually identify and model new cases, whose information is then used as part of autonomous expert systems. In the second scenario, the analyst contribution is in the middle of the analysis pipeline. In this case, human experts are typically needed to manipulate, enrich, or lter the output of some tools before it is fed to other components. Finally, in the third category, human experts are employed at the last step of the pipeline, where they are often called to interpret the `meaning' of the results of the autonomous system. For instance, while a machine can ag a new suspicious behavior in an unknown application, humans are still needed to decide whether such behavior is malicious in nature or is instead acceptable for the target program.

By looking at dierent examples of these three aforementioned cases, we selected three existing research elds that often require human intervention at dierent parts of their pipelines: malware analysis, vulnerability discovery, and reverse engineering. In the rst case, we looked at the problem of identifying new types of packers, where human knowledge is needed to design custom rules to detect in-memory transformation patterns. As an example of human-in-the-middle conguration, we explored the domain of vulnerability discovery and we proposed a novel approach to identify potential memory corruption bugs in binary executables. Finally, we focused on the problem of binary reverse engineering, showing how reversers can `understand' the behavior of a previously unknown binary.

These three contributions advance the state of the art in binary analysis and highlight that even state-of-the-art approaches are far from completely replacing human analysts in their job. On the one hand, this can lead to new tools and techniques that are able to mimic the human behavior for a specic task. For instance, in our work, we noticed that humans are primarily responsible for the comprehension of the code, whereas machines are still unable to accomplish this type of task. On the other hand, this thesis suggests that future research should make an eort to simplify the daily life of binary analysts in terms of design, usability and interaction.

Contributions

This thesis makes three separate contributions to the binary analysis eld.

We choose to investigate these three aspects, as they emphasize the dierent roles of human experts in binary analysis tasks.

Human as the entry point of the pipeline

A common binary analysis application in the context of malware analysis is malware packing. In this context, an open research problem on malware analysis is how to statically distinguish between packed and non-packed executables. This has an impact on antivirus (AV) software and malware analysis systems, which may need to apply dierent heuristics or resort to more costly code emulation solutions to deal with the presence of potential packing routines. It can also aect the results of many research studies in which the authors adopt algorithms that are specically designed for packed or non-packed binaries. Therefore, a wrong answer to the question is this 4 executable packed? can make the dierence between malware evasion and detection.

It has long been known that packing and entropy are strongly correlated, often leading to the wrong assumption that a low entropy score implies that an executable is NOT packed. Exceptions to this rule exist, but they have always been considered as one-o cases, with a negligible impact on any large-scale experiment.

In our rst contribution, we measure the prevalence of malicious samples that try to evade the static AV checks by hiding their malicious code with a layer of low-entropy packing. The challenge here is that to defeat this layer and correctly classify each malicious le, we need to analyse each sample (or at least the part of the code that handles the unpacking routine) present in our dataset. More specically, our binary analysis task consists of two major steps i) understand if a sample is packed and in this case ii) determine the adopted packing scheme. Automating this procedure is fundamental, as we need to scale our analysis over a large number of malware samples. Indeed, for our experiments, we constructed a dataset of 50K Windows malware, way beyond what human analysts can process, independently on their expertise level. However, the automated component alone cannot really understand what the interesting part of the code that we want to track is. Hence, the human role in this task is to manually sample and analyze representative cases present in the dataset in an iterative process, each time translating the detected schemes into rules that help the automated part to identify other samples that adopt the same technique. This process needs to be repeated until the vast majority of packed samples can be categorized.

To accomplish this binary analysis task, we developed a dynamic analysis pipeline that is based on a set of heuristics to determine the packing scheme used by a certain malicious le. This requires an initial phase where a human analyst studies a portion of the samples to understand their internal functioning. After that, she can develop some rules to point the dynamic analysis to the specic code locations that show that particular packing scheme. After the analysis pipeline is set up, we organize our experiments in two distinct processes. First, we uncover those samples that show unpacking behaviors by dynamically instrumenting the memory accesses, and then, for those samples that are identied as packed, we implement a classication algorithm that relies on the execution of some specic assembly instruction typically adopted for some cryptographic operations as well as the observation of some values contained in the related memory areas before and after the operations.

Interestingly, after applying our automated binary analysis solution to the experiment dataset, we uncovered that low-entropy packing schemes are widespread in the wild, accounting for a total of 31.5% of packed samples.

Moreover, low-entropy packing is based on a set of dierent cryptographic operations such as XOR encryption, transposition, and encoding for which we propose a corresponding taxonomy and classication. This work was published in a research paper entitled Prevalence and Impact of Low-Entropy Packing Schemes in the Malware Ecosystem.

Human as the middle point of the pipeline

In our second contribution, we look at the possible use of decompilers in the context of vulnerability discovery.

Decompilers are tools designed to recover a high-level language representation (typically expressed in C code) from binaries. Over the past ve years, decompilers have improved enormously in terms of both the readability of the produced pseudocode and the similarity of the recovered representation to the original source code. Albeit decompilers are routinely used by reverse engineers in dierent disciplines (e.g., to support vulnerability discovery or malware analysis), they are not yet adopted to produce input for source-code static analysis tools. In particular, source code and binary vulnerability discovery remain today two very dierent areas of research, despite the fact that decompilers could potentially bridge this gap and enable source-code analysis on binary les.

In this part of the thesis, we conducted a number of experiments on real-world vulnerabilities to evaluate how the dierences between original and pseudocode impact the accuracy of static analysis tools after running these on both the source and the decompiled code. One of the main limitations that currently hinder the feasibility of this approach is that the output of modern decompilers cannot be directly re-compiled by using traditional compilers (such as Clang and GCC). Therefore, many static analysis frameworks that rely on compiler passes to perform their vulnerability analysis cannot function in an automated fashion on the raw pseudocode. In addition to this, even for tools that implement a fuzzy parsing logic to read the code, and that therefore would be suitable to analyse the decompiled code, some complicated syntactical expressions contained in the pseudocode result in a dicult evaluation, often leading to some analysis errors.

Thus, to address these two problems, we introduce a semi-automated binary analysis approach, where the code lifting part is performed by three state-of-the-art decompilers (IDA, Ghidra, and RetDec). After that, humans are requested to manually x the pseudocode to make it digestible for the static software testing tools. In our study, this manual procedure is used 6 both to make the decompiled code re-compilable as well as to simplify the problematic patterns present in the lifted code. While the rst part is needed for the static analysers to work properly, the second phase can tell us which code excerpts are potentially problematic during the code analysis and can therefore be the focus of future work in decompilation.

Interestingly, for this binary analysis task, human feedback is needed to aid the analysers to properly analyse the decompiled code. Inherently this aects the automation of the solution, as part of the task must be accomplished by hands. However, this approach comes with the advantage of statically nding vulnerabilities when source code is not available, which is quite typical in some scenarios (such as rmware images).

Remarkably, our results show that in 71% of the cases, the same vulnerabilities can be detected by running the static analyzers on the decompiled code, even though for several cases, we observe a steep increment in the number of false positives. To understand the reasons behind these dierences, we manually investigated all cases, and we identied a number of root causes that aected the ability of static tools to `understand' the generated code.

This work was published in a paper entitled The Convergence of Source Code and Binary Vulnerability Discovery A Case Study.

Human as the end point of the pipeline

For the third and last contribution of this thesis we turn our focus to reverse engineering. In this case, while automated tools can be used to lift binary code to a higher-level representation that is easier to read and understand, humans still play a crucial role to understand this output. For instance, a system can reconstruct the control-ow graph of a binary, or a decompiler can be used to automatically rebuild the approximate source syntax of an assembly routine. However, the decompiler itself cannot describe the semantics of the code and its role in the overall program. Even though state-of-the-art work in reverse engineering has shown incredible advances in recent years, this task remains to date primarily a human activity.

Therefore, we believe that studying how humans approach this type of task can be of great interest for researchers who want to improve automated algorithms or for training binary analysis experts. However, while experts in many areas (ranging from chess players to computer programmers) have been studied by scientists to understand their mental models and capture what is special about their behavior, the art of understanding binary code and solving reverse engineering puzzles remains to date a black box.

For this last application, we present a measurement of the dierent strategies adopted by expert and beginner reverse engineers while approach-ing the analysis of x86 (dis)assembly code, a typical static reverse engineering task. We do that by performing an exploratory analysis of data collected over 16,325 minutes of reverse engineering activity of two unknown binaries from 72 participants with dierent experience levels: 39 novices and 33 experts.

For this set of experiments, we designed the two binaries to capture the code comprehension of the participants. Although they did not contain a high number of basic blocks, the binaries include many typical assembly constructs that reverse engineers normally meet when approaching a static reverse engineering task. For example, one of the two binaries implements a simple server, whereas the second challenge consists of a list management application. The participants can reason on the binaries by using a tool (accessible as a web application) that performs some basic binary analysis (e.g., disassembly, control ow graph, and call graph recovery) and displays the results in a human-friendly fashion that mimics the interface of popular commercial tools. These problems require a manual approach, as the proper solution requires to fully understand the correct functionalities of the binary that lead to the target program point.

Our eort to reverse engineer the behaviors of a reverse engineer helped us to conrm some previously-proposed reverse engineering behaviors and disprove others. We also isolated several interesting features that we hope will be further analyzed by future research in this fascinating area. We explore this subject in the research paper RE-Mind: a First Look Inside the Mind of a Reverse Engineer.

Thesis Outline

The thesis is organized according to the following layout. Chapter 2 illustrates the background and concepts needed to understand the contributions of the thesis. Chapter 2

Background

In this Chapter, we introduce the background concepts that are needed to fully understand the technical contributions provided in the follow up of the thesis. Since the topics span very dierent elds, ranging from malware analysis to vulnerability discovery, in each case we focus the discussion mainly on the notions that are related to the area of binary analysis and leave a more detailed cover of the related work to the individual chapters.

Malware Analysis

Malware analysis is the discipline that studies how to analyze malicious les to determine their nature and behavior. Thus, malware analysts need to develop a detailed understanding of the internals of the target operating system and architecture. For the experiments reported in this thesis, we focused on Windows malware analysis targeting the x86 architecture, and here we will provide a quick overview of the related basic concepts.

First of all, malware, as other forms of generic software, is structured according to a specic binary le format that depends on the host operating system. In our case, the reference le format is the Portable Executable (PE)

format. The PE format organizes the information needed for the Windows OS to spawn the corresponding process and execute the wrapped code. It is made of dierent headers and sections whose main goal is to instruct the loader and the dynamic linker on how to map the le into memory.

For instance, PE executables typically contain a code section (often named

.text) that is mapped in memory with execute/read privileges, as well as a section for global variables (often named .data) mapped as read/write. Among the other sections, a special role is played by the IAT (Import Address Table), which contains the list of functions that are imported from external 9 10 libraries, along with their addresses.

A second aspect that plays an important role in our work is the fact that malware often employs a variety of techniques to hinder the analysis and to hide the actual malicious payload. For instance, packing allows the malware author to decrypt some memory areas dynamically, generate valid code, and redirect the execution to these unpacked locations. Other techniques, such as obfuscation and anti-disassembly, do not hide the code but try instead to make it more dicult to understand (e.g., by attening the control ow graph) or more dicult to analyze (e.g., by detecting the presence of analysis tools). On their side, malware analysts can also employ a wide range of techniques to analyze the target application and overcome evasive tricks.

These techniques can be broadly divided into two categories, those based on static analysis and those on dynamic analysis. We will now provide more details about static/dynamic analysis approaches as well as an overview of packing, which plays a central role in understanding one of the contributions of the thesis.

Dynamic techniques

Dynamic analysis techniques for malware analysis are based on the idea of instrumenting the code to implement a certain monitoring logic. In this section, we introduce some basic concepts, especially w.r.t. the technologies that are commonly used in this discipline. For a complete view about state-of-the-art approaches, we point the reader to two more comprehensive surveys that illustrate the details that surround this important topic [START_REF] Manuel Egele | A survey on automated dynamic malwareanalysis techniques and tools[END_REF][START_REF] Or-Meir | Dynamic malware analysis in the modern eraa state of the art survey[END_REF].

First of all, dynamic analysis techniques require running an executable inside a dedicated environment. Thus, the rst design choice to implement this family of methodologies consists of selecting a run-time environment that can be an emulator, a virtual machine, or even a bare-metal machine specically adopted for analysis purposes (thus set up so that the malicious binary cannot damage any actual user data).

The following step instead is related to how we want to instrument and monitor the process. Depending on the type of instrumentation, we can think about several approaches sharing the common aspect that the malicious sample is executed within an isolated environment referred to as the guest.

A rst possible way to separate the existing dynamic analysis techniques is to classify them into in-guest and out-of-guest. With in-guest approaches, the actual analysis happens inside the guest machine, and this opens to two further implementation choices. Indeed, one possibility is to inject the monitoring logic at the userspace level directly into the process we want to track once this has been spawned. To achieve this, the tracer can modify some portions of the tracee's memory depending on the necessity. An example of this is API hooking that implements a function detouring mechanism to redirect the execution ow towards some monitoring logic before invoking the actual API [START_REF] Berdajs | Extending applications using an advanced approach to dll injection and api hooking[END_REF][START_REF] Father | Hooking windows api-technics of hooking api functions on windows[END_REF]. Another well-known approach is dynamic binary instrumentation that comes with the great advantage of a lower granularity level, as implemented by frameworks such as Frida [fri] and Intel Pin [RSCC04, LCM

+ 05]. The overall idea is that the DBI frame- work takes care of duplicating some portions of the code of the tracee into a dierent mapped area that lives in the virtual address space of the tracee itself. Then, the duplicated code is augmented with the custom instrumentation, and the execution of the process interleaves between the original and the instrumented code, depending on what the analyst wants to observe.

Userspace instrumentation is a good resource as it can collect ne-grained information about the executed code but comes with the disadvantage that malware authors can easily recognize when their malware is being analyzed and evade the detection mechanisms.

The counterpart of the in-guest userspace approaches instead tries to detect malicious actions from the kernel level. Kernel level monitoring has some main advantages, such as the fact that the analysis can reach more control over all the exhibited behaviors and performance-wise represents a better alternative compared to the user level strategies. In addition, this analysis paradigm can cope with the several malicious samples in-wild attempting to gain privileges inside the infected machine by performing actions directly at the kernel level. An example of this threat is the case of the socalled rootkits that modify the internal functioning of the operating system to conceal themselves (for instance hiding processes, etc.). On the other hand, the main disadvantage is the level of the granularity, e.g., we cannot reason at the instruction level. Kernel-side instrumentation typically consists of a kernel module installed inside the guest that monitors the execution of the system. When executing the module code (thus in kernel mode), the analysis can access all normal userspace processes, lter their system calls, monitor other aspects such as the creation/termination of a process and rely on the internal data structures of the operating system. Over the past years, this has become a standard technique, and indeed several modern antivirus companies deploy and distribute a kernel-level monitoring system.

A totally dierent approach is the one that is carried out by tools such as PANDA [DGHH + 15] and DECAF [DQQY19, HPY + 14] and falls under the category of the out-of-guest approaches. Indeed, for these cases, the instrumentation is injected during the emulation process, i.e., the malicious sample executes inside a system-level emulator (the guest) that internally translates the emulated ISA. The analysis works at the level of the emulated code, thus allowing for ne-grained measurements as it can see all instructions performed by the process. With this last approach, we do not aect the virtual address space of the tracee even though we pay in performances as this dynamic translation is very expensive.

Finally, the ensemble of run-time environment and instrumentation approaches represent the two design choices that are fundamental for the creation of a sandbox. According to the necessity, a sandbox could be designed to implement one or another of the previously described concepts. For instance, academic sandboxes often need to collect ne-grained information about a particular malware aspect. Thus for this type of sandbox, we could prefer to build an emulator-based machine and deploy an out-of-guest approach to monitor certain behaviors. Many industrial sandboxes instead have to handle thousands of les per day and therefore, they mostly care about lightweight techniques that do not introduce too much slowdown while executing the tracked process.

Static techniques

Static analysis techniques focus on extracting a set of parameters and features from the PE le to infer some aspects of the malware under observation.

Two main approaches exist in this context.

A rst direction is to perform code analysis in a static way, thus without actually executing the code but implementing some well-known program analysis techniques [START_REF] Sihwail | A survey on malware analysis techniques: Static, dynamic, hybrid and memory analysis[END_REF]. The fact that the source code is not available inherently makes the development of such approaches more challenging, and in addition to this, several anti-analysis techniques can make the recovery of the code particularly challenging (e.g., packing).

A classical analysis paradigm is to infer some properties by studying In both cases, a static analysis technique has the pro that it is extremely fast to execute for each sample to analyze. However, they have the cons of the potentially many false positives that can also arise due to the antianalysis techniques implemented by the malware authors.

A more comprehensive presentation of the related work about signatures is given in Chapter 3.5 whereas Chapter 3.6 presents a survey of state-ofthe-art approaches in the context of machine learning for malware analysis, with an emphasis on packing. aect directly the system state (i.e., a symbolically executed program typically modies symbolic memory/registers which are not the physical ones). However, note that this specic technique is actually in the middle between dynamic and static techniques and thus we acknowledge that other ways to categorize it exist First of all, to draw a line between packing and other forms of antianalysis, we consider packing only when I) the original code of the application is already present in the le but is NOT present in an executable form (i.e., it is encrypted, compressed, or otherwise transformed), and II) the original instructions are later recovered and executed at runtime. We consider instead obfuscation when the code is present in the binary and it retains the ability to be executed, even if it is hard to understand (for humans and/or automated tools) or analyze because it was re-written with the goal of hindering binary analysis. For the same reason, if a program encrypts all its data but not its instructions, we do not consider that as a form of packing in our study.

Packing

Dynamically-generated code (that also includes self-modifying code) is a generic term that refers to techniques used to generate or modify code at runtime dynamically. In a broad sense, packing relies on these techniques, and it is, therefore, a form of dynamically-generated code. However, not all forms of dynamically generated code are packing for instance in the case of just-in-time compilers. To distinguish among the two, in our study we measure the size of the unpacked code and use this information to separate the cases when the actual application code is unpacked from the cases when just a small snippet of code (e.g., a shellcode) is generated at runtime.

Second, we limit our analysis to runtime packers that recover and execute the original code at runtime. Droppers that download a compressed archive from the Internet, unpack them on disk and then run the contained application are outside our scope (as both the dropper and the dropped les could be independently statically analyzed).

Finally, we do not consider emulators (like those included in the Themida packer) that transform the original instructions into a new instruction set and then execute them by using a custom emulator. In fact, in this case, the original code is never recovered, but instead permanently replaced with an (often randomized) instruction set.

Vulnerability Discovery

The goal of vulnerability discovery is to analyze dierent types of software to identify vulnerable patterns that can compromise the system that runs such programs. Since a very large and diverse set of approaches exist in this eld, we propose two main orthogonal classications while we cite the more comprehensive survey by Liu et al. [START_REF] Liu | Software vulnerability discovery techniques: A survey[END_REF] for more details.

The rst way is to distinguish the cases where the source code is available from those ones in which the program source is not accessible, and the pro-gram is only available in binary form. This comes with the main implication that some critical information is lost at compile-time such as the types, the data structures, and the variables/functions names. a buer indexing). Since a chapter of this thesis focuses on static software testing, we will present the related work on these aspects later in Section 4.1.

Reverse Engineering approaches and tools

Reverse Engineering is a broad topic that covers several dierent activities.

Therefore, in this section, we emphasize what aspects we studied in our work and the actual focus of the thesis.

In system security, we refer to binary Reverse Engineering (RE) as the activity by which a human, the Reverse Engineer, analyzes an executable le, either in whole or in part, to recover design and implementation information useful to understand the program functionalities. This implies that the reverse engineer has to interact with the low level mechanisms of an architecture and the way a certain operating system manages these aspects.

Overall, for our studies we focused on the x86 architecture running both Linux and Windows operating systems.

Depending on the context (e.g., malware analysis, vulnerability discovery, rmware analysis), the output of a reverse engineering analysis can be dierent. However in all cases the analyst is interested in reconstructing the logic of the program and in understanding which conditions must be met to reach a specic location in the code which can be related to a bug or to a suspicious behavior in the case of malicious les [START_REF] Yurichev | Reverse engineering for beginners[END_REF].

Independently from its goal, the RE process usually involves dierent phases, and dierent tools are used to inspect the program and collect the required information. Some popular frameworks that support the analyst in this complicated task are interactive disassemblers, such as IDA Pro [idaay] and Ghidra [ghiay]. These tools combine multiple functionalities (e.g., a disassembler, a decompiler, a debugger) in an interconnected and interactive user interface, which allows the analyst to inspect an enriched representation of the binary code.

Disassemblers

Disassemblers are popular computer programs that lift the machine code into assembly language. We can refer to the recovered assembly code as disassembly, as it represents a close, but not perfect, reconstruction of the original assembly code. In fact, some information is lost when the assembler generates the machine code. For instance, embedding data in the code areas is a source of errors for disassemblers as they might try to parse the data bytes as if they were instructions, often leading to an incorrect output.

Other reasons that can cause errors are indirect branches, functions without an explicit CALL site, position independent code, and hand-written assembly.

Nevertheless, two main algorithms exist to implement a disassembler and try to address some of these points. The rst one is linear sweep. This naive approach starts decoding instructions from the rst byte and continues until it reaches the end of the code section or an illegal instruction. A more advanced approach is recursive traversal, that relies instead on a careful control ow analysis. More specically, it begins with the entry point and then follows and visits each branch instruction either in a depth-rst or breadth-rst fashion.

Finally, state-of-the-art disassemblers improve the recovered representation to make the disassembly reading easier for the analysts. For instance they resolve libraries function calls, replacing their addresses with API symbols and often reporting their parameters. Moreover, they compute some metadata that can be used by the reverse engineer to understand the internals of the application, such as the Xrefs to and from a certain function, i.e., the callers and the callees of the currently visited function.

Decompilers

In the current section, we present the basic concepts behind the design of a decompiler while in Section 4.1 we will present the state-of-the-art work related to this topic.

Decompilers are tools designed to recover a high-level C-like representation of the assembly code. Typically, we refer to this high-level representation as pseudocode or simply decompiled code. In recent years, using the pseudocode to reverse complicated functions have become a standard technique, as it allows to automatically reconstruct C language constructs such as loops, variable assignments, and function calls. However, compilation is by denition an irreversible process, as a considerable amount of information is stripped away when generating the nal executable. For instance, the type systems information and the size of many stack buers are lost and dicult to reconstruct.

To try to recover some of the list information, the rst step that the majority of modern decompilers adopt is to lift the disassembled code into an intermediate representation (IR). Hence, a set of passes is executed on the IR to reconstruct the expressions (expression propagation), the uses of variables (data ow analysis), and the type system (type analysis and type propagation).

In the last phase, the structuring module is in charge of transforming the elaborated IR into high level constructs such as if/else/while statements.

After that, the decompiler backend can emit the resulting pseudocode. As a consequence of all these modications and lifting steps, the decompiled code can contain complicated expressions and statements. A very frequent example of this is the frequent use of GOTO statements, which are used to reconstruct complex control ow topologies. Another case is the use elds in a C struct. Since decompilers cannot precisely recover struct denitions, they often mis-represent them as arrays, in which elds appears like elements withing the array itself.

Chapter 3

Prevalence and Impact of Low-Entropy Packing Schemes in the Malware Ecosystem

This rst chapter focuses on a classical malware analysis problem known as packing. In the following sections, we will show how we implemented a dynamic analysis approach to perform ne-grained measurements about the packing methods implemented by the several malicious samples we collected in our dataset. Moreover this study exemplies our rst scenario of human intervention, where the analyst has the role to guide the automated component towards the unpacking code and thus works as the entry point of the pipeline.

Both benign and malicious applications have valid reasons to hide or disguise their internal behavior; the former to deter attempts to reverse engineer their code and break software protection mechanisms, and the latter to evade detection from antivirus engines and security products. A wide range of anti-reversing techniques exist that modify the binary code of a program to make it dicult for humans to understand and for computers to analyze. Among them, code obfuscation and runtime packing are the most frequently adopted by both malware and goodware authors.

On the one hand, Obfuscation aims at rewriting a program in a way that preserves its semantic but complicates its form. This can be done, for example, by attening the control-ow, inserting dead code or opaque predicates, or by adding sequences of instructions that can confuse disassemblers ([LK09, BM08, BCCO16, MC06, CTL98, SRX14]). Obfuscation plu-gins are often included in popular compiler toolchain infrastructures (e.g., Obfuscator-LLVM [START_REF] Junod | Obfuscator-llvmsoftware protection for the masses[END_REF] and Proguard [START_REF] Lafortune | Proguard[END_REF]).

On the other hand, Runtime Packing is a technique that was originally introduced to save disk space by compressing (at rest) and decompressing (at runtime) the code of an application. More generally, the term is used today to describe a class of techniques designed to store a compressed, encrypted, or otherwise encoded copy of the original program thus preventing any static analysis of the code itself. Packed samples rely on a short unpacking routine that allows them to reconstruct the original application code in memory and then execute it.

While the exact fraction of packed malware samples is still unclear, in a recent study by Rahbarinia et al. [START_REF] Rahbarinia | Exploring the long tail of (malicious) software downloads[END_REF], the authors found that 58% of the malicious downloaded les are packed with an o-the-shelf packer. However, their estimation does not take into account the presence of custom packers (35% of packed malware adopts custom packers, according to [START_REF] Morgenstern | Useful and useless statistics about viruses and anti-virus programs[END_REF]).

Moreover, the authors rely on signature-based tools that are known to generate many false positives as we show in more detail in Section 3.5. In any case, the widespread adoption of packing makes the problem of correctly and eciently answering the question is an executable packed? fundamental in malware analysis. In fact, many classes of techniques such as static analysis, clustering, and similarity among samples do not work or provide poor results in the presence of packed executables. This forces researchers to pre-process packed samples by introducing a very costly and time-consuming dynamic unpacking phase, or by completely replacing static approaches with more resilient solutions based on dynamic analysis.

A wrong classication of packed samples can also pollute the datasets used in many malware analysis studies. For instance, researchers often rely on datasets that include both packed and not packed samples, and errors in this separation can lead to unreliable or dicult to reproduce experimental results.

To solve these problems, the security community developed a number of ecient tests to assess the presence of packing. Historically, the Shannon entropy of a program was adopted for this purpose, as both encrypted and compressed data are characterized by a very high entropy which can be easily distinguished from that of machine code. While early studies (e.g., [START_REF] Lyda | Using entropy analysis to nd encrypted and packed malware[END_REF]) classied executables just according to their average entropy, researchers quickly moved towards entropy computations performed at a lower granularity, i.e., by relying on sliding windows or by calculating the entropy of individual sections. These more ne-grained techniques were often described as very successful in identifying the presence of packing. For instance, Han and Lee [START_REF] Han | Packed pe le detection for malware forensics[END_REF] To answer these questions, we assembled a dataset containing 50,000 lowentropy malicious samples belonging to multiple families. Our methodology to analyse them consists of a human-in-the-loop approach where the expert guides a dynamic analysis tool that, thanks to the initial input of the analyst, can classify each sample and categorize the scheme and transformations applied to the packed code. Our analysis pipeline reported that over 30% of them adopt some form of runtime packing.

For this reason, we decided to investigate if other features can still be used to detect the presence of packing. In fact, while some papers (e.g., In Section 3.5 we show how the most popular and actively maintained static tools available today perform on our dataset. Finally, in Section 3.6, we collected all the static features that have been proposed in previous studies as reliable indicators of the presence of packing. We then trained several classiers on the union of these features and tested them on our dataset of low-entropy malware (containing both packed and not packed samples).

[
It is important to note that our goal was not to design a new classication scheme based on the combination of all existing features but only to understand whether these features can successfully classify samples in the presence of low-entropy packers.

Background

Entropy of Executable Files

Entropy is a metric to measure the uncertainty in a series of numbers (or bytes) or, in other words, to capture how dicult it is to independently predict each number in the series. The diculty in predicting successive values can increase or decrease depending on the amount of information the predictor has about the function that generated the numbers, and any information it retained about the prior numbers in the series.

In particular, the Shannon entropy H of a discrete random event x tries to predict the number of bits required to encode a piece of data, as given by the formula:

H(x) = - n i=1 P(x i) log 2 (P(x i))
where P(x i) is the probability of the i th unit of information (such as a number) in event x's series of n symbols. This formula generates entropy scores between 0.0 and 8.0 when considering that each symbol can have 256 values as it is the case for binary data. Both lossless compression and encryption functions typically generate high entropy data. In fact, lossless compression functions start by generating a statistical model for the input data, then use such a model to map input data to bit sequences in a way that frequently encountered data will produce a shorter output than infrequent ones; this removes predictability, which increases the entropy. The same applies to encryption functions, as they are specically designed to generate unpredictable data.

Since the generation of a packed executable often relies on compression and/or encryption to disguise the application code, packed les are usually characterized by having a high entropy. As a consequence, entropy was the primary metric used in the past to classify packed executables [START_REF] Lyda | Using entropy analysis to nd encrypted and packed malware[END_REF].

However, many le formats for executables, such as Portable Executable (PE), Executable and Linkable Format (ELF), and Mach Object (MO) divide the le into a number of isolated sections. Obviously, this way of partitioning an executable aects the distribution of its entropy. For instance, machine instructions are often redundant, thus resulting in middlerange (typically 5-to-7) entropy scores, while strings of English text result in even lower entropy values (on average 4.7 [START_REF] Behrouz A Forouzan | Cryptography & network security[END_REF]) due to the limited

Entropy and XOR Encryption

Since packing usually encrypts code to hide it, we set up an empirical experiment focused on PE x86 code encryption to distinguish between average and high entropy values of plain and encrypted code. On Windows 7, we installed the top 10 applications from the Microsoft Store [Mic], including top browsers and the Visual Studio IDE. We then randomly selected 1, 000 PE executable les, both 64 and 32 bit, from the Program File folder 1 . For each of them, we calculated the entropy of their .text sections; then we XORed the .text section with a randomly generated key, and we re-calculated the entropy of this new encrypted data. We repeated the experiment 128 times, changing the key length from 1 to 32 Bytes.

Figure 3.1 shows the evolution of the entropy for dierent key lengths.

The circle shows the mean of the 128 experiments, the thick vertical line is 1 We ensured that each le was not previously packed by using the tool we presented in Section 3.2. slowly grows accordingly to the length of the key. When the key length is only 1 Byte long, the entropy does not change as this is just a substitution of the plain-text code and does not alter the frequency of the symbols. Our test shows that the average entropy of real-world plain x86 code is around 6.2 ± 0.3, and by using a 2-bytes key the entropy increases to 6.7 ± 0.3. Finally, we observed that state-of-the-art approaches [UPBSB15] and frequently used tools (e.g., [detay, manay, pefay] discussed in Section 3.5) adopt 7.0 as entropy threshold to separate packed and not packed executables. According to our graphs, this value is obtained on average by xor-ing the code with a key of 3 bytes. In the rest of our thesis, we will use this threshold to distinguish low entropy data (H < 7.0) from high entropy data (H ≥ 7.0) and we use this value to construct our low-entropy malware dataset.

Dataset

We built our dataset by downloading 50, 000 Portable Executable (PE) les, (excluding libraries and .Net applications), randomly selected among those submitted to VirusTotal [viray] between 2013 and 2019. We only selected PE samples classied as malicious by more than 20 antivirus engines, and such that the entropy of each section, of the entire le, and of potential overlay data2 were less than 7.0 (as motivated in Section 3.1.2). We adopted these conservative criteria to ensure that a sample is certainly malicious and contains neither compressed nor encrypted data.

Furthermore, we collected a second smaller dataset containing 476 samples used in APT campaigns [aptay], which satises the same low entropy constraints. From now on, we will refer to this dataset as the APT dataset.

The samples belonging to the APT dataset were collected over a period spanning from 2015 to 2018. is not empty and it encompasses some memory regions of consecutive addresses (modulo the x86 length of instructions) that contained the unpacked code. However, when a sample manually loads a Dynamically Linked Library (DLL) and then executes one of its functions, PD would detect this behavior as part of an unpacking routine. To remove this noise, our tool further checks whether the program counter points to code that belongs to a DLL, and remove these cases from our analysis. We also use a threshold of 800 bytes on the length of the [W XL] list to exclude samples which simply decrypt a short shellcode, a behavior that we do not consider a form of packing and that anyway would likely not signicantly aect the overall entropy.

Analysis

The heuristic adopted by PD can also generate false negatives (i.e., packed samples detected as not packed) if the sample runs incorrectly because of an unexpected crash, incorrect command-line arguments, missing dependencies, or virtual environment evasion 4 . To avoid the risk of pollut- ing our dataset with wrong labels, we decided to conservatively discard the samples that did not exhibit a sucient amount of runtime behavior, and that therefore might have been incorrectly executed. This includes samples that did not invoke at least ten disk-or network-related syscalls as well as samples whose executed instructions did not span at least ve memory pages.

For this reason the PD hooks the disk/network-related syscalls (for instance 4 Virtual environment evasions are techniques aimed at detecting whether an executable is running on bare-metal or a virtual machine (regardless of it being emulated or based on a hypervisor).

NtOpenFile or NtCreateFile) relying on the syscall hooking interface oered by PANDA. We also keep track of the code coverage of the sample, i.e., the number of instructions executed compared to the total number of instructions in the executable sections (typically .text). The goal of these selection criteria is not to detect evasive malware, which is still an open problem, but to remove from our dataset those samples that could be incorrectly classied as not packed simply because they failed to run. By applying these simple heuristics, we removed a total of 3, 705 malware samples from our dataset.

Based on our conservative thresholds, it is safe to assume that the remaining samples executed long enough to at least unpack their code. For this reason, from now on, we consider 46, 295 as the total number of samples over which we compute our results.

Results

During our analysis, we run into a class of samples that, while packed with a high-entropy scheme, evaded our set of lters described in Section 3.2.1. These samples contained encrypted data, but the data was not stored in any of the section nor the overlay area. For instance, a family of le infectors adopted this technique to inject its encrypted code in an area created between the PE header and the rst section. While this data belongs neither to the PE header nor to any section, it is automatically loaded in the main memory at runtime (unlike, for instance, the overlay data that needs to be manually loaded by the program). Moreover, since the size of this encrypted code is small with respect to the size of the entire le (approximately 2.6%), it has little impact on the total entropy of the le. In addition to the area between the PE header and the rst section, we have also discovered samples that used the empty area (if present) among sections to store their packed data. In total, 11.6% (5, 386/46, 295) of the samples in our dataset adopted this interesting, and to the best of our knowledge previously undocumented, scheme to store packed code in a way that evades common entropy-based checks. Among them, the two prevailing families were hematite (64%) and hworld (35%). Since these samples successfully evaded our entropy checks but without using a low-entropy scheme, we decided to consider them as a separate category in our dataset.

Over the remaining low-entropy samples, our tool discovered that a stunning 31.5% (14, 583/46, 295) employed some form of packing. This shows that entropy alone is a very poor metric to select packed samples and that roughly one-third of the samples with entropy lower than seven are still adopting some form of runtime packing to prevent static analysis. This per- centage is even higher if we exclude the samples with hidden high-entropy data. In other words, if we pick a random malware sample that contains no information with entropy higher than seven, according to our experiments there is a 35.6% probability (14, 583/40, 909) that it is packed with a lowentropy scheme. The overall composition of our dataset is summarized in We also downloaded the VirusTotal report of every sample in our dataset and using AVclass [START_REF] Sebastián | Avclass: A tool for massive malware labeling[END_REF], a malware labeling tool, and we have identied the family associated to each sample. Table 3.1 reports a ranking of the top ten families in the packed and not-packed categories.

Finally, in the APT dataset we did not nd any sample that has hidden high-entropy data, while low entropy packing schemes were adopted by 15% of the samples. This shows that low entropy schemes are a well-known practice for malware authors nowadays and the phenomenon is signicantly widespread in the wild, leading us to our next research question: which packing techniques do malware authors adapt to keep the entropy below the suspicious threshold?

Low Entropy Packing Schemes

In this section, we describe the experiments we conducted to enumerate and analyze the dierent techniques adopted by malware authors to keep the Poly-alphabetic Substitution Slightly increase entropy below detectable levels, and measure the frequency in which they appear in our dataset. We emphasize that we refer to low entropy packing schemes regardless of their eect on the entropy (increasing, decreasing, or unchanged), as long as such schemes produce low entropy data according to our results in Section 3.1.2. Moreover, it is important to note that sophisticated packers often involve several layers of unpacking routines, in which the rst layer unpacks the second one, which in turn unpacks the next layer and so on until the original code is reconstructed. However, for our purpose, we only need to study the rst unpacking layer, as it is the only visible from a static analysis point of view and the only one that determines the entropy of the data. As we will discuss later in this section, malware authors may also decide to use stronger encryption in deeper layers as long as they keep the entropy of the rst layer low.

Schemes Taxonomy

We can divide the low entropy schemes observed in the wild into ve main categories, summarized in Table 3.2. The table also shows the eect that each scheme has on the nal entropy. While some techniques can be used to eectively lower the entropy of data (and therefore `hide' an already packed sequence of bytes), others can only maintain (or slightly increase) the current entropy, thus requiring to be applied as standalone solutions on the original application code.

Byte Padding includes all techniques in which additional low-entropy data is added to the packed section to decrease the overall entropy. This data typically consists of a single byte, or a repetitive subset of bytes, that are either appended at the end of the code or interleaved with the packed instructions. The unpacking routine, accordingly, skips over the padding while restoring the original instructions. Byte padding alone is not a packing technique, and therefore it is often used in combination with other encryption or compression schemes.

Encoding-based schemes decrease the overall entropy by representing the packed information using a dierent number of bits, thus encoding the same data with a dierent alphabet of symbols. Although we observed some samples applying well-known encoding schemes to pack their code, other malicious samples often implement their custom encoding (during our analysis we just observed 6-bit alphabets). As encoding-based schemes can lower the entropy of high-entropy data, they can be used to mask multilayers approaches that also employ traditional encryption packing.

Monoalphabetic Substitution-based approaches aim at replacing every single byte in the packed payload with a dierent byte, computed either by using a simple algorithm (e.g., a XOR with a 1-byte key) or by looking up each symbol in a translation table.

Transposition is another technique that does not alter the byte distribution and the entropy of the data. In this case, either individual bytes or sequences of bytes are shued around to recompose the original code. Sometimes the transposition scheme is xed, while in other cases the samples embed the `instructions' to reassemble the bytes in the correct order in the packed data itself.

Polyalphabetic Substitution schemes are simple cryptographic techniques that extend simple byte substitution by using multiple substitution alphabets. Common examples of this approach are the classic Vigenère cipher or the XOR encryption with a multi-byte key. While these techniques usually result in an increased entropy score, the use of very short keys (e.g., 2-4 bytes, as shown in Section 3.1.2) do not signicantly modify the byte distribution, and therefore it limits the increase of the entropy level.

Schemes in action

To give an idea of how such schemes work on a real example, we have taken a benign le from the samples we used in the experiment in Section 3.1.2.

In particular, we have chosen a sample with the entropy of its .text section corresponding to the average entropy we previously measured in the same experiment. Then, we applied an example of each of the dierent lowentropy scheme listed above on its .text section. As shown in Figure 3.3, we implemented respectively: padding interleaving the byte 0x64 after each original byte (thus doubling the size), encoding base64, substitution XOR with a one-byte key, transposition byte ordering reversed, polyalphabetic substitution XOR with 4 Byte long key. The graph shows for each byte [0, 255] (represented on the x-axis) its frequency in the data (on the y-axis) plotted on a logarithmic scale. In the padding plot, the 0x64 byte is the most frequent; this scheme is noteworthy for the way that it eectively decreases the entropy, with the downside of increasing the original source size. The encoding plot contains only the bytes belonging to the base64 scheme, decreasing the entropy accordingly. Looking closely at the Substitution plot, the reader can notice that the frequencies are shued w.r.t. the original distribution; for example, given that we used the byte 0x32 as the key, the original 0x00 byte frequency has been moved (0x32 ⊕ 0x00 = 0x32) to the 0x32 (50 in decimal) frequency. Given that the frequency distribution does not consider the order, the transposition and the original plot are identical, including the entropy. Lastly, the poly-alphabetic substitution is characterized by a more uniformly distributed bytes frequency, and in fact it is the only one that increases the entropy over the 7 threshold.

Scheme Classier

Once Packer Detector identies a sample as using some form of runtime packing, a more rened analysis is needed to detect to which of the previously introduced ve categories the low-entropy packing scheme belongs to. To accomplish this second set of experiments, we developed another dynamic analysis tool, also based on PANDA, that we call the Scheme Classier.

This tool relies on the output of Packer Detector and applies some heuristics based on the fact that every packing scheme needs to follow the same steps: analysing the disassembly and reading the value stored in the registers and memory. For example, if before a memory write, the target value was previously XORed with a 2-bytes xed value, this means that the sample is using a XOR encryption with a 2-bytes key. In this case, the unpacking scheme is classied as poly-alphabetic (the mono-alphabetic case is captured in the previous step).

5. If no interesting operations are detected, the Scheme Classier looks at the entropy of the input buer. If it is the same that would be obtained by applying a known encoding to the output buer, but the set of symbols is dierent, it marks it as a potential custom encoding.

6. When S b and D b match except for a subset of bytes that is present with high frequency in S b and with low frequency in D b , the Scheme Classier infers that byte padding is being used.

7. When the Scheme Classier cannot apply any of the previous techniques, it marks the scheme as unknown, and leave it for a further manual investigation.

Results

In Table 3.3 we report the result of the Scheme Classier; namely, the distribution of low-entropy schemes that we observed in our ne-grained analysis performed over all the 14, 583 samples found by Packer Detector. When possible, we also specify the specic type of transformation that is employed.

It is also worth noting that the heuristics applied by the Scheme Classier are extremely time-consuming: in average, they require around 90 minutes per sample. of the cases, as well as with multi-byte keys of various length. A basic (base64) encoding was used in 3.9% of the samples, while padding accounted for slightly more than 8%. In 97.9% (14, 276/14, 583) of the cases the Scheme Classier detected a tangible unpacking scheme, so we are reasonably sure that the vast majority of the samples discovered by the PD are actually packed. The remaining 2.1% (307/14, 583) contains either samples adopting unforeseen schemes that we could detect with our tool, or possibly samples using other forms of dynamically-generated code that were not removed by our heuristics.

Human Role

Despite the fact that our approach achieves a proper scalability to cope with the high number of malicious les in our dataset, the human still plays a fundamental role in the overall view of the analysis pipeline. Indeed, the pipeline still represents a human-in-the-loop approach, where the human provides with some input to redirect the analysis towards specic code locations. This source of input is linked to the code understanding skills of the analyst and it is due to the fact that state-of-the-art frameworks cannot really comprehend the dierent portions of the code. For instance, in our case, before writing our tools based on PANDA [DGHH + 15], we needed to man- ually analyse some samples to understand how the unpacking phase works and how the schemes operate to generate a low entropy cipher text. This can require a non negligible amount of time because of the many diculties that arise from the study of malicious code. In many cases in facts, we had to face custom packers whose internal functioning was completely unknown, and that required a careful job of decoding of all procedures involved in the actual unpacking part.

Only after manually analysing a representative portion of the samples we could automate the whole BA approach. This requires a second human activity as the analyst has to indicate a set of rules that capture the interesting behavior and encode such behaviors according to the expressiveness of the language adopted. In our case, the rules are written in form of C++ plugin for the binary analysis framework PANDA [DGHH + 15]. Other tools and approaches can generalize this concept or expose dierent APIs and dierent langauges. However, writing down the automation step is the outcome of a code comprehension phase that tries to point the adopted tool to investigate a certain portion of the code.

Signature and Rule-based Packer Detection

So far, we have discussed the nature and measured the prevalence of dierent low-entropy packing schemes adopted by real malware in the wild. Our experiments show that this is a ubiquitous phenomenon and that entropy alone cannot be used as a reliable indicator to identify the presence of packing. However, beyond simple entropy, security researchers also proposed other tools and techniques to identify packed samples. In this second part of the thesis, we measure to which extent these alternative approaches allow us to distinguish packed from non-packed samples in presence of low-entropy schemes. Manalyze is a static analyzer for PE les, composed of several plugins.

Signature

Its packer detection plugin adopts signatures based on the name of the PE sections (for example the UPX packer compresses all existing sections and renames them as UPX0, UPX1, etc.) as well as several rule-based heuristics designed to capture anomalies in the PE structure typically associated with the presence of packing, including unusual section names, sections both writable and executable, low number of imported functions, resources bigger than the le itself, and sections with entropy greater than 7.0 that is the same threshold we used for constructing our dataset.

DIE and PEiD also have a dedicated component for the entropy. Even if they have dierent thresholds (DIE 7.0 by default, PEiD is not open source so we cannot report the precise number), all of them classify an executable as packed when its entropy is greater than a certain value. Also, the python module pele [pefay], often used to parse and edit PE headers, contains a function that estimates if the input executable is packed, and it is solely based on the entropy. This fact highlights how this metric is still relevant nowadays and how popular tools still support the correlation between high entropy and packing.

Signature scan results

Probably because of its nely tuned signatures, DIE detects no well-known packer in our entire dataset. This is not a bad result, as we expect the vast majority of samples in our dataset to rely on custom packing routines. In fact, popular o-the-shelf packers are widely known and easily recognizable, thus making it more unlikely for them to `y under the radar', which is the main advantage of adopting a custom low-entropy scheme.

In contrast, both PEiD and Manalyze generated a large number of alerts, as summarized in Table 3.4. The result of both tools are comparable, but also quite surprising, as they consistently detected the presence of packing more often in not packed samples than in the packed group. For instance, signature-based mechanisms recognized 1.7%-to-2.6% of samples in the packed group but misclassied 9.6%-to-13.1% of the entries in the not packed dataset. For Manalyze this is due to the presence of sections names that correspond to those used by some o-the-shelf packers. We cannot say for sure why the malware authors used those names. They could be fake clues used on purpose to deceive automated tools into believing that a sample is packed with a known packer and, consequently, to trigger the use of unpacking routines that would invariably fail on the program.

Table 3.5 shows the top ve common packers detected by these signaturebased systems. Given that our dataset only contains samples with low entropy, the presence of compressor packers (UPX, UPolyX 5 , and ASPack) and a crypto packer (Petite) immediately suggests that these are probably all false positives. In any case, we run existing unpacking tools for UPX, UPolyX, and ASPack and conrmed that all of them failed and found no sign of packing. We also manually inspected samples reported as PolyEnE and Petite (as no tools are available for these packers) and again conrmed that there were no traces of these packers. A closer look at the matching PEiD signatures revealed that they were often too general, or designed to match anti-disassembly tricks and strings that could also be used in other contexts. The only case we were able to conrm consisted of three samples recognized as packed (also conrmed by our Packer Detector) with Beria.

Samples packed with Beria contains two types of byte, which we call original and metadata. During the unpacking routine, the metadata bytes are evaluated through an algorithm that computes the correct oset where the original bytes need to be written inside the destination buer. This approach does not increase the entropy as the original bytes appear unchanged (just not in the correct order) and the metadata bytes follow a strict and repetitive pattern.

Table 3.4 also reports the alert generated by the Manalyze heuristic component, which agged 57% of the packed samples and 23% of non-packed samples as likely packed. By investigating the internal logs, these misclassications are mainly due to the presence of unusual section names or of executable permission on writable sections.

ML-based packing detection

If the use of signatures or hard-coded heuristics failed to detect the packed samples in our dataset, this does not rule out the possibility to nd other of the Zeus botnet, one of the rst families that adopted a low entropy packing scheme. However, the approach proposed by the authors is tailored to the single specic case documented in their paper and would fail to address other common low-entropy techniques. Therefore, we did not include this technique in our study.

Raphel et al. [RV15]

, instead, focused their study on the use of XORbased encoders. In this work, XOR encryption is recognized as a form of obfuscation mainly used to encrypt small parts of the code like shellcodes.

The idea was to rene the use of entropy to recognize samples that adopted a XOR-based scheme. Mainly, their approach relies on 5 steps: (i) extraction of fragments from les; (ii) computation of entropy for each fragment; (iii) concatenation of fragments; (iv) computation of entropy for each concatenated fragment; and (v) construction of a similarity distance matrix based on the previously computed values for each le pair in the dataset. Like in the previous case, this solution targets a very specic problem and is not directly applicable to the type of packers we are studying because the authors designed it with the purpose of detecting small portions of encrypted code (essentially schellcodes). Anyway, we considered this approach in our evaluation.

To summarize, we can group the proposed features in six dierent families:

PE Structure: values extracted from the PE headers (and thus often Heuristics: features produced as a result of common knowledge about characteristics of packed PE les.

Opcodes: sequences of assembly instructions extracted from the executable sections.

N-grams: sequences of N bytes extracted from the entire le or some of its sections.

Statistical features: evaluation of statistical properties about the randomness of a sequence.

Entropy features: features based on the computation of entropy with respect to some areas of the le (sections, overall le, sliding windows).

Table 3.8 summarizes all the presented static analysis approaches and lists the categories of features as well as how the authors constructed the dataset they used in their experiments.

Evaluation of Static Features on Low-entropy Packers

In this section, we evaluate the reliability of the previously discussed static analysis techniques in detecting packed samples.

To assess this, we use our dataset of 40,909 samples (i.e., all running programs minus the samples with hidden high-entropy data, because those can be detected with proper entropy analysis). For the same reason we also decided not to include in the dataset any high-entropy packed samples, i.e., those using traditional packing schemes such as UPX, ASPack, and Armadillo. In summary, our dataset contained 14, 583 samples packed with low-entropy schemes and 26, 326 not packed samples. From now on we will refer to this subset of samples as the ML dataset.

For each malware in the ML dataset, we extracted all the features adopted by the 15 state-of-the-art approaches discussed in the previous section, and summarized in Table 3.8. We refer each approach through an index i, where 0 <= i <= 14. The i th approach applies several ML algorithms using an input vector of n features V (i) = [f 0 i , ..., f n i] where f m i represents the m th feature of the i -th approach, with f m i ∈ R. To simplify the experimental setup, we joined the feature vectors V (i), for i = 0, .., 14, in a single vector W = [V (0)|...|V (14)]. If two or more approaches rely on the same feature, we considered it only once. We point out that the vector W includes the entropy features as well. To verify if entropy still plays a role as discerning metric, we dene the vector W as the feature vector containing all the features of W except for all the entropy features. We split the ML dataset into train set (T rS) and test set (T eS) and we run the classiers on dierent subsets of T rS and T eS. T eS is composed by a subset T eS packed of packed samples, and a complementary subset T eS notP acked of not packed samples, s.t. T eS packed ∪ T eS notP acked = T eS.

We indicate F P and F N the sets of false positives and false negatives samples, respectively. The set F P contains the not packed samples which are classied as packed, while F N contains the packed samples which have been classied as not packed. In particular, we focus on the number of errors the classiers make respectively on packed and not packed samples:

Err notP ack = |F P | |T eS notP acked | (3.1) Err pack = |F N | |T eS packed | (3.2)
We show our results in Table 3.6. For each classier we report the ratio between training and testing sets, and the Err notP ack and Err pack obtained by using the two feature vectors W and W (i.e., with and without entropy features). Our experiments, summarized in Table 3.6, indicate that none of the classiers provide a high level of accuracy with the best model implementing MLP and achieving the 11.91% as false negatives rate but also the 6.89% as false negatives rate. It is worth noting that in most of the cases, the classiers show a high Err pack ratio, which means that a signicant number of packed binaries are classied as not packed. This suggests low entropy schemes can eectively be used by malware authors to bypass classiers based on static features alone. For instance, we noticed that several les have PE headers appearing perfectly normal (sections named with standard names, entry point correctly located inside .text, a high number of entries in the IAT, etc.). While this somehow decreases the level of obfuscation provided by traditional packing schemes, it still succeed in protecting the application code against automated static analysis routines.

With this we do not want to say that static features used in previous studies are useless. In fact, they do much better than entropy alone. However, in presence of low-entropy packed samples all classiers trained on these features perform quite poorly, and certainly far worse than what was reported in previous experiments. For instance the authors of [START_REF] Han | Packed pe le detection for malware forensics[END_REF] claim to reach the 0.0% as false positive rate and 2.5% as false negative rate by only relying over entropy metrics while in works that employ ML features, the authors declare to obtain a false positive rate of 0.8% ([SUPS + 11]).

Case studies

In this section, we discuss in more details three malware samples that implement low entropy packing techniques. We also investigate why they are (or are not) detected by the features introduced in the previous section. We hope that this can help to understand better the internals of real-world lowentropy packing schemes and the reason why malware writers adopt them.

Case I: Simple XOR Encryption

For the rst case study, we look at a sample 6 that belongs to the berbew family. By looking at the code located at the application's entry point, it is easy to identify a simple XOR encryption algorithm that applies a xed 4-bytes key to decrypt in place the .text section. The hardcoded decryption key is 0x6d02676d. Since the rst and last digits are the same, the encryption only raises the overall entropy of the packed code to 6.9; it is reasonable to believe that this repetition was a conscious decision introduced to lower the entropy. The malware author also padded the code of its .aciof section with a large number of 0x90 bytes (corresponding to the nop x86 instruction) likely for the same purpose.

Although this sample can evade any entropy-based check, it is easily detectable by using other static features. In fact, this PE le contains several anomalous values including the RWX permissions of the .text section and the non-standard name of the section .aciof. The sample hides the packed data in the .text section, within the range [0x1000, 0x211ff], for a total of 0x21200 bytes. This packed data, PackedSrc from now on, has an entropy of 6.59, and it contains, in a scattered disposition, all the data that is necessary to create a valid PE le.

A simplied algorithm of the packing scheme is presented in Algorithm 1 (the original technique also involved operations between integers of dierent sizes that we omit for brevity). The unpacker uses ve memory regions dynamically allocated (using the VirtualAlloc API) as reported in Table 3.7.

The rst step is a call to init(Moffsets, n) to initialize the Moffsets memory region (line 1 and 6), that represents an array of integers. This array is initialized with n integers s.t. M of f sets = {∀i = 0...n|0 ≤ M of f sets[i] < n} and every number in range [0, n] is contained in the Moffsets. Those properties allow the unpacker to later use the Moffsets region as a lookup table that implements a bijective function f :

[0, n] → [0, n].
The algorithm then splits the PackedSrc and Mdst in 514 chunks of 256 bytes each and it copies every chunk from PackedSrc to Mdst (line 4), but not consecutively: it uses the Moffsets table (initialized in line 1) for looking up the proper oset in the destination buer (line 3).

After that, it splits again Mdst in chunks (this time 257 chunks of 512 bytes) and each chunk is copied into Mtmp1 (line 8); then, one byte at a time, it is copied into Mtmp2 by using the osets specied in the re-initialized (in line 6) Moffsets table (line 10). At the end, Mtmp2 is directly copied into Mdst (lines 12-14) and in turn into the executable region Mexe (line 16).

When the unpacking procedure is completed, the sample parses the unpacked PE in the Mexe memory, and loads (using the library function LoadLibraryA) every dll requested in the Import Table . Then it modi-es the Process Environment Block structure's ImageBaseAddress eld 8 , so that it points at the very beginning of the unpacked PE le. Finally, it jumps to the entry point of the unpacked PE 9 .

The remarkable achievement of this scheme is that the byte distribution, and consequently the entropy, of the packed and unpacked regions are identical. Moreover, from the static analysis point of view, this sample is undetectable using both signatures and ML techniques, among the ones described in the previous sections.

Algorithm 1: GreyEnergy unpacking scheme 1 init (Mosets, 0x202); 2 for (i = 0, j = 0; i < 0x202; i += 1, j += 0x100) do

Case III: Custom Encoding

Our nal sample 10 uses two layers of packing. The second (deepest) layer, relies on a traditional XOR encryption scheme (with an 8-bytes key) and ROR/ROL loops that produced packed data with high entropy. To mask this fact, the malware authors added a rst layer of packing that reduced the entropy from 7.63 to 6.57 by adopting a custom encoding scheme.

The rst layer relies on the content of two sections: .rsrc and .rdata. Figure 3.6 shows some bytes extracted from the .rsrc section. It is clear that the data consists of sequences of three bytes (highlighted by the green 8 The ImageBaseAddress eld contains the address where the legitimate process executable is loaded. 9 md5= ab8df9b7389ae890c3396a238bdc4606 10 md5= c03bc642c5a49c55efb2d07a7272af2e The .rdata section contains a buer lled with some characters without a particular meaning (mainly the B character, 0x42 in hexadecimal). However, from the oset 0x2b to 0x7a (as shown in Figure 3.7), the buer contains bytes ranging from 0x00 to 0x3f.

Algorithm 2 summarizes the unpacking procedure in pseudo-code. The code loops through all values in the .rsrc Section (line 3) and uses each byte as oset to access the string (lines 4-5). If the value of the read byte is 0x42, the algorithm moves to the next byte (line 6), while others are combined four at a time by adding each value to the previous one shifted by six bits (lines 7-8). The result is nally written to another memory region (line 12), before resetting the counter and restarting the loop (lines 13-14).

The PE structure of this le does not contain any anomaly, and the above-described custom scheme (that uses the same symbols of the Base64 scheme) is able to hide the packed code from n-grams and opcodes analysis; therefore this sample evades all the previously described ML techniques. While it might be true that high-entropy le are often packed, our experiments show that the opposite is not correct i.e., the fact that the entropy is low is not sucient to conclude that the le is most likely not packed. This is important as many studies and tools still use the entropy alone to classify a sample as packed or not.

The results of our large scale dynamic analysis performed on 46, 295 samples shows that 31.5% of low-entropy les were packed, proving that this type of malware represents an actual and widespread reality. As nal proof of our results, we have also analyzed a reduced set of 476 APT-linked (Advanced Persistent Threat) malware that represent state of the art for complex attacks. We found that in this context the phenomenon of low-entropy packed malware occurs with a frequency of the 15%. In Section 3.3 we have catego-rized how such schemes keep their entropy low and the frequency in which this technique is adopted in the wild.

We then investigated why actual static analysis techniques are unable to detect the presence of low-entropy packing. We have studied two kinds of approaches: those based on signature/heuristic in Section 3.5, and those based on machine learning in Section 3.6. On the one hand, signatures are just well suited to detect the presence of common o-the-shelf packers, while heuristics generate a large number of false alerts on non-packed samples. On the other hand, we evaluated the performance of static feature-based classiers, when entropy is no longer a reliable way to detect packers. Unfortunately, our experiments show that this is not the case as even the best classier was able to detect only 70% of the packed samples in our dataset. Our results

show that the accuracy of these classiers degrades drastically in the presence of low entropy packers, which means that the results reported in the past relied signicantly on the entropy to discern between packed and not packed les, and that the datasets employed may have not correctly represented the low-entropy packers that we found in the wild. Moreover, the machine learning experiments tell us that the static features proposed so far are inadequate and needs to be extended to allow for a accurate classication of packed samples. This does not mean that these approaches, including simple entropy-based measurements, must be abandoned. Instead, our work emphasizes the need for new solutions to this open problem, and that the existence of low-entropy packing must be considered in future experiments conducted by researchers and practitioners.

Moreover, we share 11 the hashes of the samples, labeled with the cor- responding category by Packer Detector (described in Section 3.2.1) in the hope that other researchers will use it as a basis for further studies.

11 http://www.s3.eurecom.fr/datasets/low_entropy_malware/LEM_dataset.7z While in the rst chapter we demonstrated an example of how the human can help the binary analysis pipeline by redirecting it at the initial step, now we want to show a use case of human-in-the-loop approach where the analyst is in the middle between two algorithmic machines, and serves as a bridge to simplify the communication between the two parts. We do this by concentrating on a dierent binary analysis task, i.e., vulnerability discovery, and by presenting a novel methodology to detect vulnerable aws in binary executables.

As our world continues to accelerate into a software-powered future, vulnerabilities in the software that supports our lives are on the rise. This poses a set of unique challenges for software development and testing. Software tends to be checked for bugs by two categories of testers: by those developing it and thus having access to the source code(source-level program analysis)

and by external security researchers who, often, do not have access to the source code (binary-level program analysis).

Source-level vulnerability analysis is fundamentally dierent from binary-level vulnerability analysis, because critical information about the software, such as type, structure, and size information, is lost when the software is compiled. This makes performing certain analysis paradigms, such as static vulnerability detection, on binary code a daunting challenge: before vulnerabilities can be detected in binary code, this lost information must be somehow recovered. This explains why little work exists in this direction [cweay] and why commercial tools that can analyze binary code (such as Veracode) require the application to be compiled with debugging symbols [veray] (i.e., inherently requiring the source code). Lack of source code also hampers other analysis paradigms, such as fuzzing and symbolic execution, because even these techniques benet from the ability to compile, rather than retrot, instrumentation into the analysis target [START_REF] Poeplau | Symbolic execution with symcc: Don't interpret, compile! In {USENIX}[END_REF]. As a result, static analysis techniques tend to require source code to eectively detect vulnerabilities, and dynamic techniques also function better when source code is available.

Interestingly, there is a related area of research that concerns itself with recovering information lost in the compilation process: decompilation. In

Research questions

In this thesis, we undertake a study to determine the ability of current Static Application Security Testing (SAST) tools to detect vulnerabilities when executed on decompilers' generated code. While it might seem obvious that decompiler code is still unsuitable for static analysis, our case study wants to quantify experimentally how far we are from the point in which static analysis tools could be an eective solution on decompiled code. To do this, we measure precision and recall of 8 state-of-the-art SAST tools as they operate on the original code of 9 real-world applications versus the pseudocode of those applications resulting from the decompilation by 3 dierent state-of-the-art decompilers.

In summary, this chapter tries to investigate the following research questions:

Can we connect the dots between decompilation and source-level static analysis?

What is the eort required to the human analyst who wants to perform this vulnerability discovery task?

How does the detection ecacy of the SAST tools change when we execute them over pseudocode?

What are the root causes of these ecacy changes?

Our study has resulted in four main ndings. First, the output of current decompilers is unsuitable for any analysis by most SAST tools without human analyst intervention and must be xed before compilation-based analyzers (e.g. such as those based on LLVM passes) can be applied. In other words, in our pipeline, an analyst corresponds to the middle point between the decompilers and the SAST tools and her goal is to enrich the output of the decompilers to properly feed the static analysers. Second, when the compilation issues are xed, SAST tools operate at a reduced 71% rate of recall suggesting that a latent potential could actually exist in this approach.

Unfortunately, the precision of SAST tools on pseudocode suered, with an average false positives increase of 232%. Third, compiler optimizations (especially function inlining) can sometimes help (and, at other times, hamper)

SAST tools. Fourth, by analyzing discrepancies in SAST results between original and decompiled code, we detailed 7 root causes that impact the dierences between false positive and true positive detection performance.

In turn, a number of immediate steps forward can be inspired by our results. Our research solidies an idea that modern decompilers are designed to generate pseudocode that is easy to understand for humans, while SAST tools are not designed to ingest it. This suggests a set of new directions for researchers: small improvements to decompilers can improve the ecacy of SAST tools on binary code, even though they were designed with a source code requirement in mind. Alternatively, future studies could focus on SAST tools to make them more noise-resilient when parsing decompiled code. For example, the fuzzy-parsing approach performed by Joern [YGAR], already goes in this direction. Furthermore, the use of decompilers as a rst stage in source-level static analysis can have applications beyond the use of SAST tools on our dataset. For example, embedded device rmware re-

Experiment Design

This chapter studies how modern static analysis tools are impacted by the decompilation process, from the perspective of vulnerability detection.

To that end, we study the interaction of the following entities: SAST tools (Sec. 4.2.2), Vulnerable applications (Sec. 4.2.1) and Decompilers (Sec. 4.2.3).

For each vulnerable application, we proceed as summarized in Figure 4.1 , where two main pipelines are executed.

Baseline analysis. In the source code analysis pipeline, we input the original source code of the application to the dierent static analyzers and store their generated reports for later analysis.

Compilation. We compile each application according to the provided build scripts (e.g., Makeles), using the same compiler options as suggested by the developers, to obtain the compiled binary that is in turn fed into the decompiled code analysis pipeline. A further insight is presented in Section 4.3.8, where we show the results of the dierential analysis we performed for a subset of the vulnerable applications to assess the impact of compiler optimizations.

Decompilation and analysis. In the decompiled code analysis pipeline, we decompile the binary using our decompilers and run the resulting code through the SAST tools that do not require re-compilation.

As we will describe in more details in Section 4.2.2, the majority of the SAST tools require to compile the target application (for example, to perform LLVM passes). Therefore, since the decompilers typically generate C-like pseudocode which cannot be re-compiled out of the box, we manually applied the xes needed to make the decompiler result compilable by both the gcc and clang compilers. This time-consuming process is interesting for dierent reasons. First, it allowed us to complete the experiments with all the static analysis tools selected in our study. Moreover, it provided us with an invaluable feedback on the steps an analyst should take if they want to apply source-code static analysis on binary programs. In other words, it allowed us to quantify the feasibility and eort required by a human-in-theloop solution.

After manually repairing the decompiled results, we process the recompilable code by the compilation-based SAST tools.

Result comparison. Finally, we proceed to manually compare the three sets of reports obtained in our experiments (the one on the original source code, and the two on the decompiled and recompilable code) to assess how the detection and false positive rates were aected by the previous steps.

The results of this comparison are presented in Section 4.3.

Whenever results dier (i.e., if a previously detected vulnerability was no longer detected or if new false alarms were generated by the tools), we performed a root-cause analysis to determine the cause. This step, again performed manually, required us to progressively modify the decompiled code by making it more and more similar to the original source, until the eect we wanted to study disappeared (i.e., the vulnerability was detected or the false alerts were not raised anymore). We discuss the ndings of this analysis in Section 4.4.

In the rest of this section we discuss the methodology we used to select vulnerable applications, SAST tools, and decompilers. It is important to note that the applications and SAST tools had to be selected together. In fact, to have enough results for our comparison, we required each vulnerability to be detected by at least two SAST tools, and viceversa. This constraint forced us to perform a long pre-selection phase in which we evaluated many candidates (both for vulnerabilities and static tools).

Vulnerability and Application Selection

Our selection of vulnerable code was driven by ve main requirements.

Codebase size. We included a mix of small and large code bases to assess the impact of code complexity w.r.t. decompilation and vulnerability detection.

C++. We included a C++ codebase to evaluate the fact that decompilers only produce C code as output.

Real vulnerabilities. We collected real-world CVEs/bugs that are representative of the typical classes of bug. This would allow us to be as general as possible in the evaluation phase, without focusing on articially generated vulnerabilities.

Bug complexity. Third, an important factor that aects the precision of static analysis is whether the bug that needs to be detected is interprocedural (i.e., its discovery involves to go through multiple functions) or intra-procedural (i.e., it is self-contained in a single procedure)

We included examples of both categories, with a preference for intraprocedural. In fact, the purpose of our testbed is not only to benchmark SAST tools, but to cover bugs with dierent detection complexity.

Bug discoverability. Finally, we were also limited by the fact that our vulnerabilities should be identied on the original code by the SAST tools, to compare with the decompiled code output.

To satisfy our constraints, we collected 10 vulnerabilities from nine applications (summarized in (*) indicates an inter-procedural bug, all the others are intra-procedural projects,Xorg and OpenCV, the vulnerability was present in a sub component of the application that could be compiled as an independent module.

Our dataset covers the following ve classes of vulnerabilities:

Buer Overow (BOF) are probably the most widespread class of vulnerabilities and this is why we decided to include ve variations of it, e.g., three incorrect uses of a buer handling API (respectively scanf, memcpy and strcpy), an example of heap-based o-by-one buer overrun (interprocedural) and nally a further stack-based BOF, present in a C++ code base and located in the implementation of an abstract method from a parent class.

Integer Overow (IOF) bugs are a common cause of undened behaviors in software. Our dataset includes one example of IOF that aects the size of a dynamic memory allocation, and that therefore can lead to an heap BOF.

Null Pointer Dereference (NPD) bugs exist when a NULL pointer is dereferenced. We include one example of NPD in our data set: in this example the pointer is returned by a calloc invocation and it is stored inside the eld of a structure. The bug is due to the fact that the caller fails to check the pointer validity.

Double Free/Use After Free (DF/UAF). On the one hand, we would expect that such vulnerabilities are easier from the decompilation point of view, because the decompiler can reconstruct the use of a free without any type system/size problems. On the other hand, SAST tools that detect DF/UAF need to internally keep track of freed pointers and check the subsequent pointer accesses. As a further layer of complexity, one of the two bugs (the DF), is the second of the two inter-procedural vulnerabilities.

Division By Zero (DBZ) is not a memory corruption bug, but it aected several real world software in the past and can be used as denial of service vulnerability. Over the 12 candidate SAST tools, we selected those ones that were able to satisfy the selection criteria of detecting at least two of the vulnerabilities Before selecting these eight tools we conducted a set of preliminary experiments, in which we tested many other SAST tools such as Coverity [covay],

SAST Tools Selection

Frama-C [fraay], CPAChecker [BK] and Flawnder [aay]. However, we discarded them because after executing on a subset of bugs, they did not show a sucient detection rate.

Decompiler Selection

We selected three cutting-edge decompilers for our evaluation: HexRays 1 Note that the low detection rate of some tools may just be due to their underlying strategy in minimizing the false positive rate. 2 The name of the commercial tools is provided for reviewing purposes and it will be anonymized before publication Non-decompiling lifters. Some tools, such as MCSema [START_REF] Dinaburg | Mcsema: Static translation of x86 instructions to llvm[END_REF], can lift binary code directly to LLVM IR, in lieu of decompilation. At rst glance, these might be a usable route for applying compilation-requiring SAST tools on binary code. However, these tools perform only a subset of the analysis which are executed by decompilers, and, in fact, can be considered as the rst stage of a decompilation process. As a result, their output will contain insucient information compared to the result of a decompiler, making the resulting code unsuitable for SAST analysis. For example, bytecode produced by lifters does not contain debug information whereas SAST tools that work on top of an llvm pass typically need compiler-generated symbols.

Though it would be possible to develop more sophisticated SAST tools that bridge the gap between the output of static lifters and their expected input, this is exactly what decompilers already do from the other direction.

Experiments

In this section we discuss our experiments with particular focus on how the decompilation process aects the detection and false positive rates. We leave the investigation of the root causes to Section 4.4. The high detection rate of Joern and Code-ql is due to the custom query rules written by us and inspired from the guidelines described by the authors [joeayb, codayb]. Although our scope was not to generate a query that is suciently generic to cover the many possible scenarios for a certain class of vulnerabilities, we tried to put ourselves in the position of an analyst who does not know the bug a priori and this explains why the user-dened rules still generate a number of false positives. 3 .

Source code analysis

Even though our eort was to produce generic rules, it is unavoidable to introduce some bias. However, note that this is the only way to include the two analyzers, that represent the current state-of-the-art w.r.t. SAST.

Making the queries more generic to catch a broader set of vulnerabilities for a specic class of bugs would also result in a biased result, by increasing the false positives. The opposite strategy (i.e., extremely dedicated queries that only capture the bug under testing) would not be representative of rules that can be used in the real world.

The remaining six analyzers were launched with their own set of rules and thus they do not introduce any bias in the experiment. In particular, we decided not to create custom rules for other tools (such as Checkmarx or Fortify) as they are already shipped with a full set of rules that were sucient to detect some of the vulnerabilities in our dataset.

Decompilation

All three decompilers were able to successfully decompile the nine binaries in our dataset, except for RetDec which failed on the largest projects (Wireshark and OpenCV) due to LLVM errors.

To measure the accuracy of the generated pseudocode, we draw inspiration from the authors of [YEGPS15, GDFFA20], who adopted LOCs and number of GOTO statements to compare the dierent decompilers outcome in their work. As a coarse-grained indicator, Table 4.4 reports a comparison of the lines of code.

The output of HexRays was the smallest in most experiments, and in total resulted in 20.8% more LOCs with respect to the original source les.

Ghidra's code was not too far (+26.2% over the original), while RetDec was considerably more verbose (+79.8% in the binaries in which it ran successfully).

Previous papers often counted the number of GOTOs to measure the `quality' of the produced code. While quality was often used as a synonym for readability, and it is unclear whether this would have any aect on SASTs, a lower number of GOTOs could also be considered a sign of a more advanced decompiler. We noticed that all tools generated code containing many GOTOs, ranging from a minimum of 84 (HexRays on ytnef) to a maximum of 36,002 (HexRays on Wireshark). In average, HexRays generated one GOTO every 60.3 LOCs (of the original source), Ghidra one every 60.7, and RetDec one every 11.2 LOCs.

Finally, we compared the function declarations of the projects source code against the ones contained in the pseudocodes produced by the three decompilers in order to measure the dierence in the number of input parameters. On average, HexRays misses 4 parameters, Ghidra 6, and RetDec 7 every 10 function declarations.

Human role

Three among our SAST tools can directly analyze source code les without any need to compile them: CPPCheck, Joern and Checkmarx. The rst two were able to analyze the output of the decompilers, without any further manual intervention. Checkmarx instead failed at reconstructing the AST for ve instances of decompiled code.

Furthermore, the remaining ve tools require the compilation of the target application to analyse it. However, as shown by the authors of [START_REF] Liu | How far we have come: testing decompilation correctness of c decompilers[END_REF], none of the output produced by the three decompilers was correct C code, and therefore none of them could be re-compiled out-of-the-box.

This obliged us to look for a suitable solution to continue our experiments.

Therefore, to put ourselves in the position of an analyst, we attempted to manually x the produced pseudocode to make it compliant with both GCC and Clang. We performed this operation on the output of all the three decompilers considered in our study, to compare dierent executions of the static analyzers on dierent input pseudocodes.

Overall the manual procedure took from a minimum of 90 minutes to 8 hours (for libyang). However, after spending 24 hours each by trying to x the decompiled code of Wireshark and OpenCV (the two largest projects), we could not obtain a recompilable version of the pseudocode. Hence, for these two applications we adopted an alternative solution, that allowed us to generate a version of the decompiled applications that preserved the vulnerabilities and could be processed by our SAST tools. In particular, for these two cases we xed the pseudocode of the vulnerable functions and of all of the procedures they invoked. We then integrated the resulting code into the the original source code of the vulnerable module thus resulting into an hybrid codebase where all code related to the vulnerability came from the decompiler while the rest was taken verbatim from the original codebase of the module. This compromise allows us to study whether SAST tools could still nd the vulnerability in the recompilable code, extending our evaluation of the tools to all the pre-selected vulnerabilities, but not to measure the impact on the overall number of false positives.

Our manual procedure consisted of a number of repeated steps that involved the proper denition of global variables, the denition of header les, the correction of function invocations (e.g., often the decompiler declared a method with N parameters and invoked it with M ! = N parameters), the resolution of mismatching types, and some small syntactic operations to remove wrong keywords or x syntax errors with brackets.

Although we are aware of the fact that some bias could be introduced while manually xing the pseudocode, we want to underline that this mimics a realistic setting since currently a human-in-the-loop solution is required for this approach and alternatives are still missing.

Decompilers variability

The detection outcomes of the SAST tools able to analyze the output of the three decompilers is presented in the `Decompilers Output' columns of Table 4.6. These outcomes are not broken down for each of the three decompilers as, except for the case of CVE-2017-6298 discussed below, the detection results were always the same regardless of the decompiler.

Indeed we launched the 8 static analyzers for each version of the decompiled code (either the raw or the manually xed one depending on the tool).

Unfortunately, some combinations of analyzer-pseudocode could not produce an analysis result because the corresponding tool failed with a crash.

Except for an execution of Ikos on the Hex-Rays decompilation of CVE-2019-1010315, the other exceptions aected mostly the output of Ghidra and Retdec when analyzed by Ikos (3 failures on Retdec, 5 on Ghidra), Fortify (2 failures on Retdec) and Checkmarx (3 failures on Retdec, 2 on Ghidra). For all the other tools instead, it was possible to compare the output in terms of detections, nding that no dierencies exist between the HexRays and Ghidra outcome from the SAST perspective.

The same does not hold for the output of RetDec. Overall the code generated by RetDec was more complex and considerably less readable for a human analyst. However, readability does not necessarily aect automated algorithms, and in fact vulnerability CVE-2017-6298 could only be detected on the RetDec output when using Joern and Code-ql. This is due to the fact that RetDec adopts a more naive approach and represented the elds of a struct as if they were separate variables (while both Ghidra and HexRays reconstructed a struct), before assigning them in the pseudocode representation of the struct (i.e., an array). As we will explain in more details in Section 4.4, this helps static analysis tools to more easily track the use of the individual elds, which in the aforementioned case helped to discover the vulnerability.

We searched for other cases containing structs to see if they also beneted from the RetDec decompilation approach, but neither the Use-after-free nor the Double free bugs that are related to struct usage could be discovered on the RetDec decompiled code. Note that since RetDec failed to decompile Wireshark in its entirety, we manually tried to point the tools directly to the vulnerable functions (which were decompiled by RetDec), but this did not lead to any detection because in those cases the generated code was more similar to the HexRays one and it contains some patterns that make the bug detection harder. As we will explain more in details in 4.4, the representation of types and structs in the pseudocode is crucial for SAST tools.

In the rest of the thesis we consider a bug as detected by a static analyzer on a binary if at least one decompiled code exists such that the tool can identify the vulnerable aw when analysing it. Similarly, due to space limitations, for Table 4.6 (where we evaluate the variation of false positives), we only report results on the HexRays decompiled code. Moreover, given the failure conditions that some tools experienced on Retdec and Ghidra, the false positives evaluation on these would be incomplete.

Summary of Results: True Positives

Table 4.5 presents a summary of the results, both for the tools that we were able to run on the vanilla output of the decompilers, as well as for the remaining ones that we had to test on the manually curated code. The green marks represent the cases where the bug was found on the pseudocode, whereas We must underline that for ve executions on the raw HexRays decompiled code, Checkmarx failed at building the AST of the analyzed code. For this reason, we opted to run it on the re-compilable code and to report the results related to such executions.

Overall, only one of the tools (Chechmarx) was able to re-discover the same subset of vulnerabilities as when it was applied to the original source code. However, all tools were still able to discover at least one bug (and often more than one), thus showing that running SAST tools on decompiled code is not a useless procedure. In total, the 42 cumulative True Positives on the original codebase decreased to 30 (71%) after decompilation. However, not all tools were equally aected, as reported in the last row of the Table . The three tools that operate on source code without the need to compile it were less aected by the decompilation process. Moreover, the commercial tools, while in general less eective at discovering the vulnerabilities in our dataset, continued to nd exactly the same bugs also in the decompiled code, even though in the case of Fortify, we can observe that a new vulnerability is uncovered instead of another that is not detected anymore. At the other end of the spectrum, Clang and Code-ql were the two tools that were aected the most by the decompilation process.

Another way to look at the data is to group the results in terms of vulnerabilities instead of looking at the dierent tools. In this case (all results reported in the last column of Table 4.5) the integer overow (BUG-2012), the use-after-free (BUG-2010), and the double-free (BUG-2018) clearly stand out as the most dicult to detect on decompiled code. At the other end of the spectrum, the division by zero and the stackbased buer overows seemed instead the easiest to detect. For the rst, a manual inspection shows that there are no interesting variations in the way the decompilers reconstructed the source code. The bug involved two integer variables which are easier to handle than strings/pointers for decompilers. Thus, after decompiling the corresponding binary, the pseudocode surrounding the vulnerability was quite similar to the original code, from a static analysis perspective.

For the three stack-based BOFs, the true positive instead came at the expense of a much larger number of false positives, as we will describe in more detail in the following section. For these cases we reported an asterisk (*) meaning that an high number of buers' operations were agged by the analyzer, partially explaining the detection for these cases.

Summary of Results: False Positives

The usability of a tool is largely determined by the number of false positives, since reporting thousands of alarms would make the triaging phase both dicult and time consuming.

We performed a study of the false positive increment for each project where we could compare the outcomes of the tools on the decompiled code.

Thus, we decided to focus on the Hex-Rays output, since is the one that was easier to parse for the SAST tools reporting only one failure for CVE-2019-1010315 (as explained in Section 4.3.4, 3 tools failed on the Ghidra/Retdec output). Moreover, it was not possible to have such a comparison on the Wireshark and OpenCV projects, because we could not recompile the decompiled code.

We report the variation of false alarms in Table 4.6, marking in red the cases in which there was an increase of more than 50% of false alarms, and in green when the number decreased. Overall, if we exclude Joern (which is a special case we describe below) in 78% of the tests the number of false positives increased. Even worse, in 61% of the tests the false alerts increased by more than 50%.

We point out that we manually went through the generated alarms that the static analyzers produced, to assess if they represented actual false positives. The only assumption that we did to accelerate the procedure, was that if the use of an API call (e.g., strcpy or memcpy) was safe in the source code, it could not become vulnerable in the pseudocode. Moreover, many false positives could be discarded in batch since they were related to uninitialized variables.

However, in some cases (mainly for Clang and Fortify) the tools generated less false alarms on the decompiled code. To gure out the reasons behind this, we checked the reports for those tools that reported a negative variation. One of the main reasons for this behavior is that many false alarms in the source code are due to free-related vulnerabilities (UAF, DF, stack variables freed). However, when analysing the decompilers, the SAST tools could not apply the same dataow and, moreover, the decompiler changed the type of the variable containing the freed memory area, making the job of the analyzers much more dicult. Furthermore, several warnings reported the presence of badly terminated strings in the source code (i.e., strings without the proper null-terminated byte). Because of type confusion problems, the same problem could not be detected in the decompiled code.

To evaluate the Code-ql false positive rate, we adopted the default queries that are shipped with the installation. This allowed us to obtain unbiased results, compared to what we would get if we used the custom rules that we wrote to nd the vulnerabilities.

Finally, Joern deserves a separate discussion as the tool does not come with any predened rule, and all tests were therefore performed by enabling our own heuristic checkers for each project scan. Although these are certainly not a complete and generic set, they allowed us to have a reasonable evaluation of the false positives also for this static analyzer. Moreover, such a tool performs a fuzzy parsing of the code. Even if this feature makes Joern the perfect candidate to analyze decompiled code, we pay for this fact in some cases where it could not correctly interpret some pieces of code and skipped them without providing a complete analysis. As a result, the internal representation lacks some parts that could not be correctly parsed, and thus were not reachable by our queries. This resulted in a decrease of the query output, as only a portion of the code could be properly analyzed.

Bugs detected *only* on pseudocode

Our initial assumption was that running a SAST tool on decompiled code can at best detect the same bugs it would detect when it is used to analyze the original source code of the application (and more likely considerably less than that). Albeit our experiments show that for the majority of the analyzed scenarios this hypothesis is correct, we found one interesting case (BUG-2018) in which tools (both Joern and Fortify) could detect a vulnerability on the decompiled code, but not on the original codebase.

Compilers can aect the control ow of a program in such a way that it is impossible to recover exactly the original version. For example, as we will see in the next sub-section, sometimes compilers remove dead code or simplify boolean conditions for optimization reasons.

The double free vulnerability present in Wireshark (BUG-2018) is an inter-procedural problem, which is therefore harder to detect for static analysis tools. In fact, as reported in Listing 4.1, the vulnerability involves three separate functions that eventually invoke the g_free two times.

In the original codebase Joern was only able to reconstruct a subset of the ows that lead to free, thus missing the vulnerability. Similarly, the internal analysis performed by Fortify was insucient to uncover the vulnerable ow in the original source code.

However, after checking the decompiled code, we noticed that, because of the static keyword, the compiler inlined dierent functions into a single body (the decompiled version of val_from_unparsed). This transformed the inter-procedural bug into an intra-procedural one, largely simplifying the task of detecting the bug. In fact, it turned out that both Joern and Fortify succeedeed at revealing the bug on the pseudocodes they could analyse. To verify this, we performed an additional experiment based on the following four phases. (i) Selection: we selected two among our open source projects, file and libssh2 (CVE-2017-1000249 and BUG-2012). The choice of the two projects was driven by the average size of their codebase and the meaningful number of detections. (ii) Compile with optimization levels: we compiled the selected projects with three dierent optimization levels, O0, O2, O4 (O0 disables all optimization passes whereas O4 indicates that the generated code is highly optimized to improve execution speed). It shall be noticed that all the experiments discussed so far were performed using the default compiler optimizations specied in each project makele (always O2 for our applications). (iii) Decompile: we decompiled the three versions of the same binary with HexRays. (iv) Analysis: we launched all SAST tools on each decompiled outcome. This also implies that we had to manually x all variants of the decompiled code to generate the recompilable versions required by many of our tools.

The rst aspect we wanted to investigate is how the compiler options aect the number of false positives. All static analyzers ran on all versions except for Ikos that reported some problems when parsing the code compiled with the O4 option. Hence, we discarded it, for the computation of the false positives.

For libssh2, the tools cumulatively produced 850, 2,421 and 1,606 false positives for, respectively, O0, O2 and O4. For file we obtained instead 3,085, 2,275 and 2,984 alarms, depending on the compiler optimization. Such results show that there is no clear trend and it is unclear whether a more aggressive optimization of the code would cause more or less false alarms.

However, the dierent amount of false positives for each compilation option means that the compiler actually has an impact on the generated decompiled code, and therefore, on the way SAST tools parse it.

We then inspected all reports generated by the tools, to determine if vulnerability detection is also aected by the compiler optimizations. For BUG-2012, we could not nd any dierence between the executions of the static analysis tools over the dierent versions of decompiled code. The only conguration that brought to a detection consisted of executing Ikos on the O0 and O2 versions of the code. After a manual inspection of the three avours of pseudocode, we understood that the compiler optimization level does not aect the vulnerable function in a signicant way except for a dierent number of declared variables(29 for O0 vs 99 for O4).

CVE-2017-1000249 instead tells a dierent story. Indeed, when scanning the three versions, the tools reported dierent results depending on the compiler optimization. More specically, with O0 and O2, 4 tools out of 8 could detect the bug anyway. Surprisingly, the detection dropped to zero with the O4 ag. To understand the reasons behind such a drastic change, we went through the decompiled code one more time. A rst dierence is that with the O4 ag, multiple functions are compiled inline and thus, the vulnerable function becomes a part of a bigger one, hindering the SAST tools to analyze the data ow. Moreover, such a modication, aects not only the local dened functions of the binary, but also some library functions. Among the others, the memcpy invocation, originally contained in the code and root cause of the buer overow is replaced with an inline implementation that is ignored by the tools. Finally, an unsafe check on the buer size that always evaluates true (because of a programming error) is removed due to the optimization reasons, as described in more details in Section 4.4. Cumulatively, these three aspects make the life of SAST tools remarkably harder, leading to an increment of the false negative.

Although this experiment cannot uncover in a systematic way all possible scenarios where the compiler inuences the resulting pseudocode, these observations indicate that the compiler inuences the decompilation phase w.r.t. both the false positives and false negatives.

Root Cause Analysis

We investigate now the root causes that resulted in the performance degradation of the SAST tools when executed on the decompiled output. For this purpose we gradually change the pseudocode by making it more and more similar to the original codebase, until either the tool reported the missing vulnerability or until the extra false positive disappeared.

Our ndings uncovered seven main root causes, four responsible for false positives and three for false negatives. For each of them we discuss the specic elements in the code (hereinafter patterns) introduced by the compilation and decompilation process that degraded the SAST performances.

Our patterns are summarized in Table 4.7, along with the projects and tools aected by that specic pattern. The column Repairer, indicates which component of the toolchain (decompiler, SAST tool, or both) is in the best position to mitigate/address the problematical pattern. In fact, while on the one hand decompilers could try to infer more information from the binary, on the other hand SAST tools can be designed with this limitation in mind and be more permissive when dealing with the pseudocode.

Finally, we underline that our purpose is to illustrate such root causes that result in the performance degradation of the SAST tools, rather than proposing potential remediations to these issues that will require future research in both the decompilation and SAST elds to be addressed. The sizeof operator is resolved at compile-time, and therefore the decompiler only sees the actual numerical values. Intuitively, one would expect that this makes the SAST's job easier because now the tools do not need to compute themselves the size value. However, the array denition has been replaced with a scalar variable (s1) declared as a char*, without any information about its original size. As a result, when the SAST tools analyze the decompiled code, they ag the two calls as two potential buer overows, since the memory area pointed by the char* s1 variable has unknown size.

P1 -Inability to

In other examples, dierent ways to access the buer (e.g., by index buf[i]), resulted in dierent warning such as NPDs, still because of the missing size information of a pointer variable. Discussion: Although the issue is quite evident, a proper solution is not as simple and it inherently depends on the way compilers generate the assembly code. In fact, even with a sophisticated stack analysis, the decompiler cannot infer if a memory area belongs to the same buer or it represents a group of distinct variables (in particular when an element of a buer is accessed by using an hardcoded index). While some heuristics could be used to infer the original size, e.g., by looking at loop iterations or initialization routines, the risk is that by relying on this information the decompiler can hide the presence of vulnerabilities.

P2 -Signed and Unsigned Integers

Eect: increase false alarms Repairer: SAST Many numerical statements were agged by the SAST tools as potential IOFs. At a closer analysis, this was caused by two main errors in the decompiled code.

An example of this pattern are functions that return an integer value, where a negative value is associated with an error condition. For instance, this is a snippet of decompiled code from Xorg: The v2 variable is used to store the return value and it is assigned to -1 in case of an error condition. However, v2 is erroneously declared by the decompiler as unsigned int, and thus, assigning a negative value, leads the SAST checkers to think that an underow can occur within that variable.

P3 -Integer Operations on Uninitialized Variables

Eect: increase false alarms Repairer: Decompiler Mainly due to a more complex and interprocedural data ow in the decompiled code, we noticed that many SAST tools reported an addition (or subtraction) as potentially dangerous when they could not determine if one of the operands has been initialized.

As an example, we fetched the following lines of code from the libyang pseudocode:

P4 -Function Pointers

Eect: decrease detection rate Repairer: SAST BUG-2012, which aects libssh2, is presented by Yamaguchi et al. [YGAR] as a use case of Joern, but while such a tool can detect it on the original codebase, it misses it in the decompilers output. The main vulnerability consists of an IOF resulting from a sum whose value is used as input for a dynamic memory allocation. As a consequence, the IOF can produce an undened dynamic memory allocation resulting in wrong memory accesses. For clarity, we report the snippet of code in the following listing: ssh2_packet_add (SESSION s e s s i o n , c h a r * data , . .) { . . . uint32_t namelen = l i b s s h 2 _ n t o h u 3 2 (data+9+ s i z e o f (" e x i t -s i g n a l ")) ; channelp->e x i t _ s i g n a l = LIBSSH2_ALLOC(s e s s i o n , namelen + 1) ; memcpy (channelp->e x i t _ s i g n a l , data+13+ s i z e o f (" e x i t -s i g n a l ") , namelen) ; } Listing 4.6: libssh2 vulnerable code snippet The LIBSSH2_ALLOC macro allocates namelen + 1 bytes and returns the requested memory in the exit_signal buer, that is eventually accessed. If data is under the attacker control, it is possible to craft that variable so that the sum namelen + 1 causes an IOF bug. Now we can notice that the macro invocation has been replaced with its actual value that corresponds to a function pointer stored in the struct session at oset 8 (namely, the macro is dened as session->alloc(...)).

The decompiler casts the function pointer accordingly to the function definition, resulting in a more complicated structure of the invocation. The pointer cast is the reason Joern and Code-ql fail at detecting the bug in the pseudocode. Joern is not able to properly parse it, and thus it entirely skips the call. In this case no query exist that can reach the vulnerable path.

Code-ql actually parses the code correctly, but because of its internally used representation, the query used to nd the original vulnerability does not work anymore. It is possible to write a new, and much more generic, query that still capture the bug but the more general rule would cause an increased number of false positives. Discussion: The root cause of the problem is that the function pointer invocation contains many casting operations, therefore hindering the static parsing of the code. However, we could easily solve the problem by instantiating a variable that can store the function pointer address, and then invoking it in a separate line: The rst thing is that the variable vl is a pointer to a custom struct whose denition is unknown for the decompiler. The memcpy invocation itself is safe because the code writes the correct size into the dynamically allocated buer, but the vl->data value is not checked for nullness, potentially leading to a null pointer dereference if calloc returns a null value.

When the code is decompiled with HexRays and Ghidra, we obtain the following code: We can immediately note that the struct is represented as a signed integer pointer (identier v9). The calloc return value is written in v9[0], after casting it to pointer.

Although the tools comprehend that the return value is written inside a local variable, they believe that the assignment happens in a variable of type signed int. Because of such a type confusion problem, from now on the static analyzers are not interested anymore in the return value, stop to track the data ow for that path and go on with the analysis of other potentially vulnerable paths. Overall, they miss the connection between the returned pointer and its dereferences that occur in the following code.

If we look instead at the code generated by RetDec: i n t 6 4 _ t * v103 ; i n t 3 2 _ t v105 ;

. . i n t 6 4 _ t * mem5 = c a l l o c (v102 , 2) ; * v103 = (i n t 6 4 _ t) mem5 ; i n t 6 4 _ t v104 = fun_19b0 (v19 , 2 , v28 , v1) ; i n t 6 4 _ t v108 = v104 ;

. . . memcpy ((i n t 6 4 _ t *) * v103 , &v108 , v105) ; Listing 4.11: Null pointer dereference RetDec pseudocode What makes this output simpler to analyze for static analysis tools is the fact that the return value of the calloc API is directly stored into a proper pointer, without any further cast or array access. Thus, tools are able to track the data ow and can therefore recognize the use of the pointer within the memcpy.

In this example we discussed the case of a returned pointer assigned to an integer variable, but the same issue happened several times when decompilers declared parameters as integers instead of pointers in the functions prototypes (e.g., BUG-2010 and BUG-2018, that are respectively the UAF and the DF).

Discussion: SAST tools seem to have problems tracking pointers that become integer and later pointer again. Learning from RetDec, the solution is just to back-propagate the type information. In other words, if a variable is later casted to a pointer and de-referenced, then this information should be used to redene the variable type as a pointer.

For instance, it is sucient to declare an intermediate variable of type int* instead of v9 in the HexRays's output and all tools that were missing the vulnerability were able to correctly perform their taint analysis until they reach the memcpy invocation.

P6 -Integers of Wrong Size

Eect: increase false positives Repairer: Both Decompilers often declare variables of the wrong size (e.g., double-word instead of bytes) and then rely on cast operations to ensure the type system coherency of their output statements. This behavior caused many SAST tools to generate false alarms due to the potentially erroneous pointer casting.

As an example we can consider the code snippets in Listing 4.12 (original code) and Listing 4.13 (decompiled code). In the original code, the elements are of type uint8_t (i.e., one byte each). In the decompilers output the two variables becomes 64-bit integers, which are later casted to _BYTE to perform the xor operation. Furthermore, the retrieval of the j -th element, is done through pointers arithmetic with type uint8_t.

A similar pattern appears very often in our experiments, with dierent source pointer types and using dierent types to perform the cast. While this pattern is similar to the Pointers as Integers (in fact, again the decompiler used integer variables to store pointers) here is the wrong size and the cast operation that cause false alarms instead of the inability to follow the data ow as in the previous pattern.

It is also interesting to note how, because of the initial declaration of the variables representing the arrays (v22 and v26 are integer types and not integer pointers), the pattern is reported by some SAST tools as a dangerous cast, rather than a buer overow.

On the other hand, if in the previous code, the two variables were dened as __int64* we would still observe an alert warning for a potentially unsafe memory access, converging in the case described for P1.

Discussion:

This is again a case of type confusion, less severe than the pointer case (as it cannot lead to missing real vulnerabilities), but somehow harder to x.

In fact, back-propagating information to mark variables as pointers is not sucient, and correctly sizing all integers requires a more complex analysis and inference techniques.

P7 -Simplied Expressions

Eect: decrease detection rate Repairer: SAST This last pattern is quite unusual, but we report it as it is the cause of some missed vulnerabilities in the decompiled code. The memcpy is unsafe because of the wrong check that is performed before its invocation. In fact, the OR operator is used instead of the AND to check if the size (descsz) is in the appropriate range. The boolean condition always evaluates to True, and this is detected by some tools (such as CPPCheck) and reported as potential bug which in this case it is and leads to a buer overow.

However, compilers are also able to detect that the condition is always satised and they can simplify the code accordingly. This results in the following decompiled code: c h a r v58 ; i f (v49 == 4 && . . . && v28 == 3) { memcpy(&v58 , a4 + v45 , v16) ; } Listing 4.15: Decompiled code of the BOF The desc buer is another example of the inability of decompilers to reconstruct stack-based arrays. But the key element for this pattern is that the wrong test on the buer size is not present anymore. Since the compiler is not generating its corresponding assembly code in the rst place, the decompilers have no way to recover it.

Once the clue that was picked up by static analysis tools (the wrong check on the buer size) is removed, some tools failed to detect the vulnerability altogether.

Discussion and Conclusions

We can distill the ndings of our experiments around four main points,

showing that even though few obstacles still remain, we believe that future work will be able to overcome these issues focusing on both the decompilation side and the static analysis part.

1. The main impediment to the use of SAST tools on pseudocode is that the decompiled code cannot be re-compiled out-of-the-box. The recent paper by Schulte et al. [SRN + 18] make us feel optimistic that this problem will soon be solved. However, so far, human analysts need to manually x the decompiled code, a process that can take just few hours for small applications, but that becomes prohibitively complex for large codebases made of million of LOC.

2. Once the re-compilable issue is solved, existing SAST tools can discover (in our experiments) 71% of vulnerabilities they were nding in the original code. While there is still a margin for improvement, this result already go beyond our initial expectations. On the negative side, the number of false positives often increased considerably, making the output of many tools dicult and time-consuming to navigate. However, even even if the FP increase is on average 232%, in 29/61 cases the FPs either decreased or did not signicantly increase, demonstrating how our approach is still promising in many scenarios.

3. Both the compiler and decompiler transformations contribute to the nal result in a complex way. Our experiments show that there is no linear trend, and in some cases more aggressive optimizations even simplied the job of the SAST tools. For instance, in two cases static analyzers were even able to discover one vulnerability they could not nd in the original source code.

4. Today, decompilers are still designed to generate code that is easy to understand for humans, and SAST tools are still designed to parse well-written code that is not generated by a machine. This humancentric view could, and should, change in the future. In Section 4.4 we listed 7 root causes that explain the dierences we observed in the results. We believe that many of the entries in our list could be solved, or at least mitigated, by improvement in either the decompiler or the SAST analysis (or both).

Chapter 5

RE-Mind: a First Look Inside the Mind of a Reverse Engineer

For our last investigation, we move from the vulnerability discovery domain to the discipline of reverse engineering, a common binary analysis task that very often requires human experts intervention. As we will see in the follow up of the chapter, this activity deserves attention as we can imagine binary reverse engineering as a human-in-the-loop system where the analyst lives at the last node of the pipeline, in charge of interpreting the representations obtained by her set of tools, before providing the actual output of the analysis.

Researchers of dierent elds have studied, from a cognitive perspective, how humans perform several relevant activities with the goal of better understanding, improving, or automating eld-related processes. For instance, binary reverse engineering (RE) is still performed entirely by highly skilled security experts. Machines play an essential role in the process in the form of tools to unpack, disassemble, emulate, and perform binary similarity. However, humans are still responsible for understanding the code. That is, experts are the last step of an analysis infrastrcture made of an arsenal of tools that lift and smooth the original machine code and are in charge of providing the nal outcome of the analysis. This requires considerable expertise, together with a long and tedious manual eort. Unfortunately, the limited number of expert reverse engineers in the world is insucient to cope with our society's security needs and the continuous growth in the amount of released software. The recent DARPA Cyber Grand Challenge (CGC) drove progress in computers' ability to reason about program binaries autonomously and discover vulnerabilities. However, these programs are still far from being able to compete against RE experts 1 .

To overcome this problem, we believe it is fundamental to rst understand how humans approach and solve static RE tasks. The comprehension of the most eective RE strategies used by expert humans can drive further research in the development of automated approaches, but it can also help design tailored training programs that can increase the number and the eectiveness of our experts.

Let us use a simple analogy to introduce the motivation for our work.

When a professional chess player decides her next move, she has hundreds of millions of possible combinations to evaluate. However, previous research on the human brain of chess players has shown that this is not the way she reasons. Her brain can instead recognize patterns and naturally focus only on a handful of possible good moves. Now think about an expert reverse engineer. Similarly to a chess master, she also does not evaluate every single line of assembly code in a program, but she just skims through the code, focusing only on those critical parts to understand the code's logic. We believe that her primary skill is not to read faster every single basic block, but instead that she does not waste time reversing the ones that are not important for her task. In other words, she can see patterns where others can only see endless lines of code.

Sadly, today we do not know whether this hypothesis or any other hy- 1 The 2016 DEF CON CTF nal put the best DARPA cyber-reasoning system (Mayhem [DARay]) against human teams. The supercomputer ended up in the last position [defay] (even on simplied challenges explicitly written to accommodate the limited architecture supported by the machine).

RE. This work inspired our research, where the main focus is restricted to static RE (from now on used alternatively with RE) from the perspective of assembly code comprehension.

Research questions

Our goal is to investigate a set of hypothesis by means of quantitative measurements and statistical tests conducted on ne-grained recordings of real RE tasks. To recruit a sucient number of geographically-distributed participants, we designed an online platform that mimics the UI of traditional interactive disassemblers. We then used our platform to record the negrained behavior of 72 reversers while they solved two dierent reverse engineering exercises. In total, we collected 272 hours of binary reverse engineering activity, which we then analyzed to identify patterns and strategies that we can use to model the `experience' of a reverser.

The research questions that drove our study, methodology and experiments are the following: What do experts do dierently from novices? Do experts/novices share particular strategies to explore binary code? How are these strategies linked to the binary code elements (e.g., functions, basic blocks)?

Is any particular strategy correlated with better RE performances?

The results of our experiments allowed us to conrm that experts indeed visit less basic blocks than beginners, and they are also able to dismiss on average 22% of the blocks they visit in under two seconds. While novices tend to re-visit the same parts of the code multiple times, experts gain more information during their rst visit. We also identied several exploration strategies, both at the basic block and the function level, that seems positively correlated with experience. For example, beginners are more likely to explore a binary `horizontally,' while more skilled reversers are more likely to proceed in a vertical way.

These are only a few examples of the many features we investigate in this last chapter to characterize the static reverse engineering process. We believe that this fascinating area of system security, where human experience is highly regarded but little understood, can help our community to better understand the mechanics behind the cognitive aspects of reverse engineering.

Related Work

To the best of our knowledge, only four studies have been conducted so far In 2018, Claire et al. [START_REF] Claire | Getting revenge: A system for analyzing reverse engineering behavior[END_REF] proposed RevEngE, a framework to monitor reverse engineering from several points of view. The framework is based on an instrumented virtual machine that registers events such as spawning a new process, focusing on a window and mouse clicks. The goal of this work was to describe a system that acts as a base for an observational study but the paper does not contain any measurements about how reverse engineers perform their activities. Even though the authors did not perform any experiments, the study still deserves a special attention because it proposes an approach which is suitable to perform a quantitative study of RE. The authors' goal was to improve the design of RE tools to make them more usable and intuitive. However, due to the lack of prior work outlining REs' processes and no theoretical basis for building quantitative assessments, the authors also performed a number of semi-structured interviews in which 16

participants recalled anecdotes of a binary they had reverse engineered in the past. This provides technical details about their strategy and experience, including when they switched from a tool to another, which hypothesis they formulated, and which type of documentation they consulted. showed that the communication between a fuzzing engine and non-skilled reverse engineers can increase the rate of discovered vulnerabilities by taking advantage of human intuition.

Scope of the study

As introduced in Section 2.3, RE includes a large variety of practices and approaches, depending on the context, the domain and the goal of the analysis. In this study, we focus our investigation on the core activity that is part of any binary RE process: the static code understanding as presented by interactive disassemblers.

Although this activity represents only one portion of the RE process, we believe it deserves a special attention for several reasons. First, it is particu-larly interesting as the low-level nature of the Assembly language forces the human mind to make an additional eort when reading the instructions. In fact, the reverser needs to understand the eects of what she reads on the machine that will execute the code as well as mentally reconstruct high-level patterns (such as loops and branch conditions) and data types.

Moreover, this approach mirrors the initial studies of the program comprehension community, where various authors initially focused on how users read source code rather than directly embedding debuggers in their experiments [Let87, LGHM07, AS96, Bro83, AvML98]. For these reasons, we decided not to include any decompilers/debuggers in our pipeline, focusing instead on an in-depth analysis of the static assembly code comprehension process.

Methodology

To conduct a detailed investigation of how humans perform a RE task, we needed to replace the interview format adopted by previous studies with a ne-grained observation of subjects' actual behavior when requested to perform dierent tasks related to binary reverse engineering.

While the required data could be easily collected in a lab, for instance, by using eye-tracking equipment to monitor the participant behavior [PHG + 04, CG07, TFSL14, BT06], this approach would introduce sev- eral problems. First of all, skilled reverse engineers are rare and remotelyaccessible experiments are required to collect enough participants with different backgrounds. Second, even simple RE exercises require hours of concentration, which is dicult to achieve while under observation in a lab (especially when the candidate needs to keep her head stable to allow for proper monitoring). Therefore, we opted for implementing a web-based platform specically designed to conduct our experiments.

The platform needs to be capable of extracting many low-level metrics, such as how much time a person spends looking at each basic block, how she explores and navigates the binary program, and how she annotates and manipulate the assembly code (e.g., by renaming functions and variables) along the way. Moreover, the interface needs to closely resemble the interface of existing reverse engineering tools (such as IDA Pro, Ghidra, and Binary Ninja) to let the users interact with a familiar environment. Finally, the system should incorporate special techniques (such as Restricted Focus

Viewer [START_REF] Anthony R Jansen | A tool for tracking visual attention: The restricted focus viewer[END_REF] to blur basic blocks that are not currently selected) and a variety of instrumentations to collect a rich set of raw low-level information.

The low-level metrics extracted by our online platform act as basic blocks for the subsequent analyses and characterizations. In this second phase, we manually reviewed the collected data to identify high-level skills starting from the low-level metrics. In this respect, a signicant challenge is that we did not know a priori which skills were more important than others and in which context they may become relevant for solving a reverse engineering task.

Online Platform

Our dedicated online platform provides users with an interface and a set of functionalities, which mimic common interactive disassemblers. The system required users to register an account to allow them to take breaks and perform dierent tasks at dierent points in time. After the registration, a Welcome page described the various tests and guided the participants through the system's functionalities. The user could then select one of the available tests and proceed with it.

A snapshot of the interactive RE interface is presented in Figure 5.1. The left panel shows the list of the functions that are present in the binary as well as those imported from external libraries (such as printf). When the user visits a function, e.g., sub_40089a in Figure 5.1, the system highlights it the dedicated link). For each of the cases mentioned above, the web interface generates a JSON request containing a timestamp, the event type (i.e., the action), the position in the binary (i.e., the function address and the BB), and depending on the action type, the arguments. For example, when the humans rename a stack variable, the JSON string will contain the new proposed name and the old stack oset as further arguments.

All the events, along with the user's changes on the code (such as renamed objects, comments, and previously accessed locations), are stored in a database for further analysis.

Challenges Design

The main problem we encountered when designing our tests was to nd a balance between the complexity of the binaries, the amount of data we could collect from them, and consequently the number of people that we could recruit.

Modeling the complexity of a RE task is not easy because a binary could include many features that make the process of understanding its internals more complex. For instance, obfuscated code would require dynamic analysis or access to the binary le for implementing a de-obfuscation algorithm, thus resulting in less data that could be collected by our platform. We also had to design our tasks to be independent from the domain of the dierent experts;

for instance a challenge about packing would be easier for malware experts than for vulnerability researchers. We decided instead to present binaries that implement common functionalities that can be found in any domain.

That being said, there are many potential strategies to provide a measure of the complexity of our tasks. A possible way to accomplish this goal is to rely on the complexity of the source code, as done by [START_REF] Sutherland | An empirical examination of the reverse engineering process for binary les[END_REF] to formally describe the diculty of their binary challenges. 5.1 (in Appendix). When crafting our challenges we used these metrics of the tasks reported by Sutherland et al. [START_REF] Sutherland | An empirical examination of the reverse engineering process for binary les[END_REF] as a lower bound to make sure that our tasks were suciently complicated. After some internal experiments among the authors, we settled for three binaries. Although we understand that three binaries cannot provide a detailed view of the skills that expert reverse engineers acquired after many years of practice, we believe this choice to be a good tradeo between the amount of data we can collect and the time each participants would need to invest in our exercises.

The rst challenge binary was the smallest and only served as a warm-up to make the users comfortable with our tool's interface. Thus, we did not collect data from this rst assignment. The other two binaries, which from now on, we will call Test_1 and Test_2, were inspired by typical reverse engineering problems in Capture the Flag (CTF) competitions. CTFs are popular games designed to challenge their participants to solve computer security problems. The goal of a RE challenge in a CTF is often to recover the input that needs to be provided to a given binary to produce a specic output. This had the advantage that solutions are small and can be easily veried on our side while still requiring the participants to understand the full logic of the target binary. Both the programs were written in C language and compiled for a Linux x64 machine with the gcc compiler.

In our tests, all binaries include a target function whose purpose is to print the string 'Success!!', and the participants were asked to submit a description of the input required by the program to print the success string. To make things more challenging, all binaries were stripped from their symbols and included several useless snippets of codes, which had no eect on the problem's solution.

Test 1. The rst binary consists of a simple server listening on port 8888 and accepting new incoming connections. For each connection, the server would main useless0 useless1 bridge target useless2 The challenge requires the participants to recognize the assembly patterns associated to simple network actions (e.g., the initialization of the socket structures and bind(), listen(), accept() APIs), and the parent/child relationship during a fork(). For the sake of clarity, we sketch the call graph of the binary in Figure 5.2. The gure shows in green the three functions that need to be reversed to solve the exercise, and in red, the three additional functions that play no role in the solution. Two out of the three additional functions are responsible for handling error conditions generated along the binary. The purpose of such procedures is to assess if participants can easily recognize and ignore functions that only generate error messages.

The third procedure is the one that implements the connection management.

Test 2. The second binary implements a simple list management application. The application accepts two parameters, a list of integer numbers, This second binary is more complicated than the previous one, and all operations are performed over linked lists of custom data structures. To ensure that the diculty was higher than Test_1, we veried that all twelve complexity metrics had higher values than in the previous test. The challenge requires the participants to be familiar with linked lists in assemblers (i.e., on the way C structs and pointers are compiled in binaries) and to recognize list-related operations (including a bubble-sort implementation). Figure 5.3 represents the simplied version of the call graph: as in the previous case, we label as useless the functions that are not related to the challenge solution.

For all the other functions, we report their self-explanatory name. However, the symbols' names were stripped from the binaries, so the participants did not have this information.

Never

Participants recruitment

We ensured that all methods and experiments performed for this work are in line with our institutions' research ethics guidelines and our country regulations on data collection and retention. The participants were recruited over a period of several months and the invitation was sent from our institutional email address as proof of credibility. The text, reported in Appendix A.1, contained a complete description of the experiment with the link to our online infrastructure. As we specify in the recruitment email, we did not provide a compensation for our experiments and we only collected anonymous data.

In particular, we contacted students who took a binary analysis or reverse engineering course in three dierent universities. All students had been previously trained to reverse binary programs, but while some were still beginners, others already had experience by playing CTF competitions. We also contacted nine dierent top CTF teams, asking for players who usually solve complex RE challenges to participate in our experiment. Overall, 95 users responded to our request, but only 72 completed successfully the two tests.

In order to compare the eectiveness of dierent approaches to read the disassembled code, we split our participants into two groups: experts and novices. On the one hand, simply relying on the reputation of the participants could lead to biased results in our data analysis. On the other hand, self-evaluation questions can also produce biased results because humans tend to adjust their answers depending on their concerns with the interviewer's perception [START_REF] Tourangeau | Sensitive questions in surveys[END_REF][START_REF] Holbrook | Telephone versus face-to-face interviewing of national probability samples with long questionnaires: Comparisons of respondent satiscing and social desirability response bias[END_REF]. Therefore, we decided not to divide the participants in two a priori groups, but rather to combine their selfreported experience with the time required to solve the tasks. First, when visiting the website, the participants were asked how often they reverse engineer binary code on a four-point scale in ascending order of frequency: never, sometimes, often, and usually. Then, once all experiments had been completed, we identied the time required by the worst participant who reported to reverse binaries often or usually (i.e., 172 minutes). Finally we adopted this value as a threshold: participants who took less time than this threshold are considered experts, otherwise novices. The two groups contained respectively 33 experts and 39 novices. It is worth noting that all CTF players ended up in the expert group.

Data Analysis

We now discuss the results of the participants who completed the two exercises (39 novices and 33 experts). First of all, as we expected, novices and experts spent a dierent amount of time to complete the assignments. In fact, the two exercises combined took between 24 and 172 minutes (92 on average) for the subjects in the experts' group and between 178 and 941 minutes (340 on average) for novices. In other words, even though the exercises were relatively simple, beginners were, on average, 3.7 times slower than experts, and the fastest beginner was 7.4 times slower than the fastest expert.

To avoid bias, we computed the condence intervals for the two groups of users, with a condence value equal to 0.95. In this second scenario we obtained that the time required was between 75 and 110 minutes for experts We also analyzed the solution time by splitting the users according to their answer to the initial question about how often they reverse binaries.

As shown in Figure 5.4, it took on average 301 minutes for users who answered 1 (rarely reverse binaries), 233 for those who answered 2, 86 minutes for those who answered 3, and nally 40 minutes for the only three experts who reported to reverse binaries on a daily basis. This shows that while all participants in our expert group were fast, on average, those who perform this task more often tend to be faster.

Mining for Strategies

We started our analysis by manually inspecting the telemetry data collected from the users' sessions, looking for macro-dierences that could indicate the use of dierent strategies. As an example, Figures 5.5 The rst two graphs belong to experts (the fastest in our test and an average one), while the bottom depicts a beginner session.

The three graphs clearly show very dierent approaches to reverse the same binary. The second expert spent a considerable amount of time on main (the red band), while the rst moved away from it after a few minutes and returned to its code only after a rst overview of the binary. Moreover, the order of their visits is dierent. The rst started from main while the second user started the exploration from the target function (where the success string is printed). However, even if the rst approach is more ecient, the rst expert spent more time looking at unrelated code (dots in the white band) than the second (9 against 4 minutes).

The novice session appears more chaotic. It contains many more points (i.e., BB visits), reaching a total of 3469 visited blocks, and the user kept switching back and forth between the three main functions, probably trying to make sense of the entire program.

Looking at all 72 graphs, it seems like everyone has their own style.

However, we are interested in generalizing these rst observations and nding whether the strategies adopted by experts have something in common that does not appear in the novice sessions. We also notice considerable variance among the experts themselves, so we want to study possible dierences among users in the same group.

To perform this analysis, we rst distilled the collected low-level events into several high-level features representing observable behaviors that we could identify in our dataset of participants. We then tested whether each feature was substantially dierent between experts and novices and whether it was positively correlated to the overall solution time. While this second aspect does not necessarily imply causation, it can still show which set of For each test that we executed, we collected the resulting p-values inside a vector, and we used the Bonferroni method to correct them with an input alfa of 0.05 (all additional hypotheses we tested are listed in Appendix 5.7).

The corrected alfa that we obtained is 1.2e-03 and all values that we report in the chapter already take into account the Bonferroni correction.

Functions Exploration

Function exploration strategies play an important role to discover the path between the main and the target functions. Once this path has been unveiled, users can focus on the BBs that compose the functions in this path and therefore they abandon their function-level strategy and drive the exploration according to what they found. For example, if we consider the second expert of Figure 5.5, we can note that she adopts a backward approach, starting from the target and then reaching the main function. Then, she focuses with more attention on the BBs of such (and other) functions to gure out how to craft the proper input to solve the challenge.

Three dierent ways exist to move across functions: by following Xref, by direct access (i.e., by clicking on the function name in the sidebar), and by following the CFG (i.e., by clicking on the call instructions or by using the ESC key to step backward). Accordingly, we identied three main exploration strategies: forward (starting from the program's main and following the CFG), backward (by rst searching the API call that prints the success string and then backtracking the analysis by following Xref references), and sequential (i.e., by exploring each function independently of its role or position in the callgraph).

Whenever a user explores the code of a function and encounters a call instruction, she can decide to proceed either depth-rst or breadth-rst. In the rst case, the reverser visits each function vertically until she reaches a leaf. In the other, she explores the called functions horizontally before moving deep into each part of the call graph. To discern between the two strategies we cannot use standard DF and BF detection algorithms, as users

often alternate between the two methods. Therefore, we considered a sliding window of two visits on the call graph and compared consecutive bi-grams by looking for typical BF or DF patterns. For instance, a typical window of a user using a DF approach consists of two visits to dierent functions following the direction of the graph's edges. On the other hand, the bigrams of a BF strategy contain consecutive bigrams of the same two functions, but appearing in alternate directions (e.g., f -g followed by g -f).

We say that a participant predominantly uses a given strategy if it employs it at least 50% more frequently than the other. When this does not happen, we assign the user to a hybrid category, which means that the reverser adopted both exploration strategies at dierent points in time without a clear preference. The prevalence of the dierent exploration techniques is summarized in Table 5.2 for both novices and experts, and it shows that experts and novices clearly use dierent techniques. The sequential exploration is adopted by a non-negligible amount of the beginners (4 in the rst test and 8 in the second one), but none of the more experienced reversers follow this approach. Users in both categories prefer the forward rather than the backward exploration. We can also see that BF visits are much more common than DF, and it is important to note that almost none of the novices resorted to a DF approach.

So far, we learned that experts tend to use dierent strategies, but it is still unclear whether a given strategy impacts the time required to solve the exercises. We performed an ANOVA test by splitting the participants' solution time into 3 groups (depth-rst,breadth-rst or hybrid), and applying the one way function to these. We ran a separated test for each challenge because some participants changed their strategy depending on the task, but all tests failed (p-values for each challenge were 0.17, 0.19 with eect sizes of 1.8 and 1.6 for the forward -backward -sequential classication and 0.14, 0.2, eect sizes of 2.1 and 1.9 according to the depth -breadth separation). In fact, as depicted in Figure 5.6, all techniques were used to eciently solve the two exercises.

Code Selection

We now check where the reversers spent most of their analysis time. Table 5.3 shows all functions in the second binary, and for each of them, it reports several metrics. The table is divided into two parts: the top half lists useful functions, i.e., those involved in the solution of the problem. The bottom half lists instead the ve `useless' functions (the binary accepts three dierent commands, but only one is required to print the success string).

However, since also the related functions include irrelevant paths (e.g., to handle error conditions), in the rst two columns we report the total number of basic blocks in the function and the total number of `good' blocks (B good), which are those that must be reversed to conclude the exercise.

The table also reports how much time (both the absolute median time and in percentage over their entire session) experts and novices spent on each function and the overall ratio between the experts and the novice time (last column) computed as the absolute median time of novices divided by the absolute median time of the experts for that function.

There are two interesting observations we can make from these results. First of all, all participants spent most of their time on main (because it was longer) and on the functions that operate on linked lists. However, beginners were impacted more by the nature and complexity of the function. For instance, they spent much more time (4.8x slower than experts) to recognize that is_number only veries that all parameters are integer numbers. We believe that this is due to the fact that similar simple functionalities are encountered frequently by reversers and therefore are easily recognized by experts.

Nevertheless, the most striking result is the fact that, in percentage, novices spent almost the same percentage of their time (8.6% vs 8.3% for experts) on reversing useless code (even if in absolute terms they still spent four times more than experts). At rst, this seemed counter-intuitive. In fact, we expected experts to be better at quickly skimming through the code and ignoring it if it was not related to their task. However, given the numbers in Table 5.3, we hypothesized that this discrepancy is because novices were so slow to understand the dicult parts of the code that, in percentage, they appeared faster in discarding the non relevant ones. We computed the same values for the rst binary and we observed the same trends even if in that case the number of functions is minor compared to the second challenge (only 6). Indeed, the main is still the function where users spent most of their time and the eort dedicated to the useless functions is basically the same in percentage (13.1% for experts vs. 12.5% for novices). Table 5.4 the values for the rst challenge.

Hence, we decided to measure the total number of basic blocks that were visited by each participant. In total, the two exercises combined contained 155 basic blocks, but only 94 (61%) of them were actually along the solution path. To complete the two exercises, the median expert completely skipped (i.e., never even checked once) 24 basic blocks, while the median novice skips only 6 of them. Indeed, this fact shows that experts could cut entire branches (or functions) by only looking at a few of their blocks.

For instance, Fig. 5.7 shows the CFG of Test 1. The green edges point to interesting BBs while the red ones point to useless BBs. Each node is split in half: the intensity of the left side represents the amount of time spent on that BB by the experts (on average); the right side represents the same for novices. If we consider the noninteresting paths, the blue intensity is generally higher than the red. Experts mostly recognize that some code parts lead to useless BBs by just reading the rst BBs of that function and then recovering the correct path to the target function. Novices instead needed to go through also the noninteresting parts of code before understanding that they do not need them for their purposes.

Finally, we performed a 2-sample t-test using as an hypothesis the correlation between the group (i.e., expert/novice) and the time spent on nonuseful portions of code. With a p-value of 5.3e-04 and a t-test of 4.86 we can conclude that indeed there are statistically signicant dierences in the way the two groups of participants look at the non-interesting parts of the binary.

Birdseye Overview

Experiments on code comprehension conducted by Uwano et al. [START_REF] Uwano | Analyzing individual performance of source code review using reviewers' eye movement[END_REF],

and independently validated by [START_REF] Sharif | An eye-tracking study on the role of scan time in nding source code defects[END_REF], have found that users often perform an initial scan of the entire codebase to get a general idea of what the program is supposed to do. During this initial scan, the authors found that programmers went through 70% of the code in the rst 30% of their analysis.

By looking at the reverse engineering sessions we collected in our experiments, we can clearly identify some reversers performing such preliminary scans. However, this behavior is not as typical as one might expect. In fact, in our data, only 36.0% of the experts visited 70% of the code blocks in the rst 30% of their time. On average, at the 30% mark, expert reversers had visited only 48.2% of all BBs. The number increases to 53.4% (still well below the 70% threshold) if we only count the good basic blocks and ignore those that were not relevant for the task. Beginners tended instead to move through each BB much quicker at rst and to return back multiple times during their sessions to read again the code (we will analyze this aspect in Section 5.5.4). As a result, 69.4% of them met the 70% threshold at the 30% mark.

But there is more. Figure 5.8 shows the Cumulative Distribution Function (CDF) of the visited BB over time by comparing the top ve experts (based on their solution time) against the bottom ve. It is interesting to observe that the fastest reversers (in red) progressed more linearly and did not employ any initial survey strategy. 2 This seems to suggest that a preliminary overview of the entire binary might be useful to get an orientation in large codebases, but it might not be very useful in smaller exercises. Even more surprising, we found that the majority of experts did not even `try' to quickly skim through the code of the various functions, even though they did not know in advance anything about the complexity of the task.

Figure 5.8 also conrms what we found in the previous section, i.e., that all best reversers were not fastest only because they could read and understand the code faster, but also because they reversed less code. On the far right of the CDFs we can see that the red curves terminate between 60% and 80% of the total BBs (remember that only 61% were along the solution path), while the blue lines fall in the range between 80% and 100%.

Basic Blocks Exploration

After looking at the function granularity, we now focus our attention on individual basic blocks.

Thanks to the use of the restricted focus viewer, our reverse engineering platform can accurately track the time spent by each participant on each individual BB. However, not all these time events are equally important.

For instance, it can occur that when moving the mouse pointer between two BBs, the user accidentally moves the mouse over an intermediate BB without being really interested in its content. Our infrastructure would capture this behavior, generating an event for all three BBs. To remove the noise introduced by these spurious events, we decided to conservatively discard all the views with a duration below 500 milliseconds. This threshold is based on the fact that, according to Rayner et al. [START_REF] Rayner | Eye Movements During Reading[END_REF], while reading text, the eyes stay upon each single location from 100 ms to over 500 ms.

Given the fact that a BB is often composed by multiple lines, this threshold ensures that a participant had time to focus on at least one location in the BB. Anything below that would not provide much information to the reverser.

It is essential to understand that the time a reverser spends on a single BB is aected by multiple factors, including the BB complexity, the user assembly reading skills, the role of the block inside the binary, the navigation strategy of the user, and the state of the ongoing RE session. We will try to break down these factors in the rest of the section.

To begin with, for each BB we identify three dierent time values. First, the time each user spent on the block the rst time she encountered it (T f irst). Second, the total cumulative time (T tot) each user spent on the BB over the entire exercise. And nally the longest consecutive time each user spent on the block (T max).

By comparing these three time intervals, we can make several interesting observations. Figure 5.9 shows the distribution of the median time spent by each user over all the basic blocks of the two exercises. It is interesting to note how, the rst time they encounter a new basic block, both experts and novices spend only a few seconds on its code: on average 1.3s for beginners and 1.5s for experts. Instead, the maximum and total time spent on the blocks are over one order of magnitude higher, often lasting for tens of seconds (6.8s vs 21.9s for T max , and 16.3s vs 73.4s if we compute the median times for the T tot). As a conrmation of this aspect, we ran the 2-sample ttest over the values of T f irst , T max and T tot collected over each user and then separated by novices and experts. Indeed, we obtained that the dierence for the rst visit (T f irst) is not statistically signicant (p=0.2) but the time dierence on T tot and T max are (respectively with p=7.4e-07 and p=1.5e-08).

At rst, one might easily dismiss the role of these rst short visits, nothing more than a quick glance at a block while the user rapidly moved the mouse over it. It might seem obvious that the `real' reverse engineering is performed over the subsequent visits. However, if we compute the fraction of BB that a user visited only once we see that things are more complex. On average, experts visit 28% of the BBs only once. In 80% of these cases, the visit lasted less than two seconds. This means that experts dismiss almost 22% of the basic blocks in a single glance. On the contrary, inexperienced users make a single visit only for 10% of the BB, and in total, dismiss only 7% in less than two seconds.

All the remaining BBs are visited by each reverser multiple times. In fact, even if the two programs combined contained only 155 BBs, to complete the two exercises, experts visited, on average, 1368 basic blocks and novices 4326

(2-sample t-test=9.7 and p=6.8e-12). Figure 5.10 shows the relationship between the time required to solve the challenges and the number of visited blocks.

However, visiting a block multiple times is not always a sign of ineciency, and in some instances it is even unavoidable (e.g., those blocks that contain a function call are often re-visited when the user moves out of the function and back to the callee). We ran the Pearson correlation to test if a relationship exists between the number of times the users go through an already visited BB and the overall solution time and obtained a result of 0.68 (p-value 1.2e-05) for experts and 0.46 (p-value 2.5e-04) for novices.

Therefore we investigated this aspect in more detail and computed the num- ber of times the rst visit to a basic block was not the only one, but it was the longest (i.e., T f irst == T max).

If we assume the most prolonged visit is when the user actually completely reversed the BB code, we can use this indicator to know whether this is performed for the rst time the reverser encounters a new code. In this case, the median is 9.6% of the BB for beginners and 14.8% for experts.

Again, it seems that experts tend to fully understand the code the rst time they read it, while beginners go back multiple times, and in 80.6% of the cases, their rst visit is not the one where they reason the longer on the code.

Finally, it is interesting to test if these short rst visits are just a consequence of the fact that a reverser might be simply faster at processing assembly code. In other words, we wanted to test whether those users that have shorter rst-time visits (T f irst) also spend less time overall on the BBs (T tot). However, the Pearson correlation of the 2-time values is -1.2, p-value=0.5, showing no statistically signicant correlation.

Speed Factors

In our nal analysis of the dierent reversers' speed, we look at which factors aected the time spent on individual basic blocks.

For this purpose, we limit our analysis to those blocks that actually needed to be understood in the rst place. Thus, we rst remove those BB that are NOT related to the solution of the exercise as well as all headers and footers of the functions (as it might not always be required to analyze their behavior carefully). The remaining (which we will refer to as BB core , and that account for 47% of all blocks in the two assignments) capture the code each user had to reverse to reach the correct solution.

The rst hypothesis that we wanted to formulate was to study the potential correlation between the time spent on each block and the size of the block itself. Indeed, we observed that the rst, total and max times are positively correlated to the number of assembly instructions contained in the basic block. However, the exciting result is that the Pearson correlations are quite small for T tot and T max while they exhibit an higher value for T f irst as reported in Table 5.5. Moreover, under the same hypothesis, the correlations are always more elevated for novices.

One way to interpret these results is that the amount of time spent by reversers on a basic block is only marginally inuenced by the time required to actually read (or `parse') each assembly instruction. The impact is more visible for inexperienced reversers (who probably spend more time reading the assembly) and less on experienced users. To understand which other factors contributed to the reversing time, we extracted the top 5% of the basic blocks in which each user spent most of her time. Then we compared all sets to identify those blocks that were problematic for a large percentage that are shared between a minimum of 3 and a maximum of 11 novices and that are responsible for an additional 9% of time on average overall. We analyzed them to unveil the assembly language (ASM) patterns that slowed down the novices while reading them. In total 6 blocks contain uncommon instructions (such as setnz, imul, and sar) and 7 include instructions that operate with in-memory data structures, thus requiring to reason about the memory layout of the program in that specic moment (e.g., instructions that access the i-th element of the list of Task 2). We also found 3 BBs that operate on the static strings contained in the binary. Among these 20

BBs only 4 of them have a number of instructions major than 10 while the other 16 contains less than 6 instructions (and in 10 cases they were just 3 instructions long). This nally shows that the nature of the instructions is more relevant than their number to explain the comprehension time for beginners.

Other Aspects

In the previous sections, we discuss several aspects we believe can capture subtle but essential characteristics of the behavior of either experienced users or beginners. We also tested many other hypotheses and tried to isolate other behaviors (reported in Table 5.7) but for which we could not nd any statistical dierence among our users. For these hypotheses that did not nd a statistical validation we report the p-value that we obtained after running the Pearson correlation, but we omitted the correlation value itself for space reasons, since it was not meaningful. However, we want to add two more short points to our analysis regarding the impact of the user interface in branch selection and the other events we collected from our platform.

Branch Selection -when visiting a conditional BB for the rst time, beginners choose to explore the true branch rst in the 41% of the cases, whereas experts followed the true branch in the 42%. However, we found that the physical position (on screen) of the basic block is much more important than its logical one. In fact, our results show that both experts and novices tend to simply visit rst the closer basic block, respectively in 87% and 88% of the cases they encounter a branch. Finally we tested the hypothesis that the choice of either true branch or close branch as a next step has an eect on the overall time to reverse engineer the binary. However for both experts and novices we obtained p-value > 0.1 (values are reported in Table 5.6).

Comments and Rename Actions -we also investigated the use of the other features implemented in our infrastructure: comments, variable re-names, and function renames. On average, we recorded 24 comments among all the expert sessions, whereas we count only 11 from novices. The same trend happens for variable renames (19 vs. 7) and function renames (12 vs.

2). One more time we applied the 2-sample t-test for each of the semantical elements created by the user, divided for experts and novices. The results of the test (reported in Table 5.6) show no statistical signicant relationships between these features and the users performance. At a rst look, this result looks like surprising as we would expect that a statistical signicancy exists between the usage of semantical elements, the solution time and the experience level. However our hypothesis for this behavior is that probably the statistical relationship between the use of semantical text fragments and the RE performances become more and more evident while observing this on larger and more complicated codebases (potentially together with other reversers with the same experience and working in the same team). We will discuss more carefully about challenge design limitations in Section 5.7.

Summary of Findings

In this study we quantitatively measured the behavior of 72 reversers, both experts and novices, over a total of 272 hours of RE activity. By looking past the individual features discussed in the previous section, we will now summarize the main ndings that emerged from all our results.

First of all, we found that each user is unique and has her strategy and her way to reverse binary code. However, by looking under the apparent diversity of actions, we can identify a number of core strategies. To begin with, novices move prevalently forward from the program's main while experts mix forward and backward movements. While statistically the difference is clear, there are notable exceptions in all groups, showing that one can be very ecient independently from the strategy it adopts (except for the sequential scan that is only used by the very beginners).

Experts also exhibit a more linear progress, avoiding to jump back and forth among the same basic blocks they already visited in the past. Moreover, they make every visit count, even the rst one. This allow them to dismiss 22% of the basic blocks in a single observation, which often last less than two seconds. The 70-30 birdseye scan observed several times in studies of program comprehension does not seem to apply to binary reversing, at least at the small scale dictated by our exercises. Instead, the experts' ability to quickly identify and ignore the regions that were not relevant for their task was one of the essential aspects that distinguished experienced users from beginners. This, which ts the self-reported techniques that Votipka Finally, our experiments show that the number of instructions is a very poor predictor of the time required to understand a piece of code and that the presence of less common instructions has a more noticeable impact only on novices.

Limitations

When we designed our experiments, we had to make many choices to balance the diculty of the problems (and, therefore, the time required for completing the exercises), the amount of data we could collect, and the impact of our instrumentation on the user experience. These choices might have introduced biases in the results or might have prevented us from observing some aspects of the users behavior.

Expertise -In our study, we measure the expertise of a user in three ways.

First, based on reputation, i.e., by inviting as experts only those users that can already solve very dicult reverse engineering challenges. Second, by the frequency on which each user reverses binary les (as reported in the questionnaire during registration), and nally by the total time required to solve the two assignments. However, one may argue that a good reverser does not necessarily need to be fastbut some may prefer instead to be meticulous and precise in her ndings. New experiments should be designed only for expert reversers to measure this aspect by providing them with more challenging assignments where precision may be more important than speed.

Restricted Focus Viewer -The use of a RFV to capture the part of the code a user is currently focusing on is a standard methodology in comprehension experiments. While it allows for remote participation without the burden of on-site (and uncomfortable) eye-tracking solutions, this choice also introduces some limitations. First, it impacts each participant's overall speed. It also prevents glances, in which users quickly look at a dierent basic block, maybe just to check a register or the nal instruction. In our settings, this requires moving the mouse, and therefore users might perform this task less often than in an unconstrained environment. We can also hypothesize that the issue with the glances aects the order in which basic blocks are visited. Another potential drawback is that it could technically discourage the participants from using the birdseye overview (Section 5.5.3), forcing them to rely mostly on their own memory to remember a previously visited basic block. However, this aects only a reduced number of cases: moving the mouse back to a previous basic block is expensive only if we want to quickly recall a specic location of that block (e.g., a register, a single ASM line) as in the case of glances, but it becomes fundamental, therefore justifying the time expense, if the participant wants to entirely read the BB.

These factors can aect the code comprehension process by distorting the way it is performed. In absence of RFV, we could expect a higher number of glances and therefore a shorter time to discard some blocks of code. Unfortunately the only way to determine how the RFV inuences our ndings would be to compare it with some data collected using the same tool without RFV, which is impossible by design. Thus we can only acknowledge this limitation and hope that future studies will be able to overcome it with dierent technologies or with a dierent experiments' design (e.g., smaller group of experts monitored with eye tracking devices).

Nature/Number of the Exercises -It is possible that the tasks we ask the participants to perform may aect the ecological validity of the behaviors we observed in their session. In particular, more dicult problems and larger codebases could require dierent strategies or help identify other aspects that dierentiate one expert from the others. However, in this measurement study, we wanted to include beginners and, therefore, opted for tasks that could be solved (even if with more signicant eort) by non experienced reversers. While the number of tasks could be extended , this would increase the time to complete our assignment, especially for some participants who already spent several hours with the current conguration (and that are not aliated to our group). Even if this represents a limitation of our work, it is probably an inevitable choice given our initial goals, i.e., to involve many users ranging from the newbie to the elite hacker and compare them on the same set of challenges. We hope that future studies will either conrm (or disprove) our results with larger and more dicult binaries to reverse. For example, we can hypothesize a more frequent use of the birdseye overview (described in Section 5.5.3), which in our experiments was used only by a small percentage of experts. Another aspect that is largely related to the size of the binaries is the number of functions, and therefore we expect a more pronounced impact of the dierent strategies described in Section 5.5.1 on larger programs. For instance, an initial horizontal investigation can be benecial when analyzing larger codebases.

Conclusions

Drawing inspiration from the rst set of interviews conducted by Votipka in 2020 [VRM + 20], the objective of our study was to lay the second brick towards a solid understanding of the RE process from an assembly code comprehension perspective.

A deep understanding of the topic can help us from dierent points of view and has a few interesting implications that should be taken into account. With our work, we hope to provide a valuable input for future research in a eld that, so far, was poorly explored.

In the spirit of open science, we release 3 the source code of our web RE framework together with the challenges and the test scripts, to allow the community to continue further studies in this direction. Lastly, our measurements are summarized in Table 5.8.

3 https://github.com/elManto/REmind One of the main takeaways of this thesis is that while complex binary analysis tasks can already be fully automated, some form of human eort is still needed at dierent points of the pipeline. This raises a number of challenges that fall into two main lines of research, one focusing on the human side and the other attempting to improve the current automation of binary analysis.

Human studies and Binary Analysis

The rst area that is directly inuenced by this thesis is teaching. More specically, we believe that by leveraging some of the aspects presented in the last chapter, other researchers could propose novel methods to improve the learning phase, especially w.r.t. reverse engineering. Several features we identied correlate with experience, but this does not mean that we cannot improve them by performing specic exercises. As of now, the learning phase is mainly driven by the solution of binary challenges of increasing complexity [START_REF] Chothia | An oine capture the ag-style virtual machine and an assessment of its value for cybersecurity education[END_REF]. A possible implication of our ndings could be to design binary analysis exercises more focused on a few basic blocks to stimulate a student to match and memorize specic patterns. Similarly, this aspect can inuence the formation of experts that work in other domains of binary analysis. For instance, in malware analysis, we could propose specic training exercises to rene the skill of distinguishing between malicious and benign les.

A dierent line of work could instead focus on improving the knowledge about the RE mental process as performed by human analysts. Future research, therefore, might study the many aspects that remained uninvestigated, thus oering a broader range of ndings and insights on the way experts binary analysts work. For instance, an interesting follow-up of our work would be to design a set of experiments specically for expert participants, thus including more complex tasks and challenges.

Besides that, another branch of research could focus on other aspects of a more specic domain, such as malware analysis or vulnerability discovery.

Indeed, we believe that each expert develops a unique set of skills linked to the specic task that she faces every day. Also, the methodology will play a fundamental role, preferring remotely accessible solutions for studies over a large group or eye-tracking devices for smaller groups.

Machines and Binary Analysis

This thesis demonstrates that machines still lack the needed skills to comprehend the code, thus requiring the help of humans to perform this task.

Future Work 123

This suggests that augmenting modern tools and approaches with this single capability could be a promising road for the future of binary analysis.

Indeed, if teaching binary analysis to humans is essential to form new experts in the domain, training computers to mimic human behavior would be fundamental to scale over the large amount of software (both benign and malicious) released every day. We believe that studying the techniques used by humans is the rst step to discovering new ways to train machine learning models to perform similar tasks. Psychologists have learned that many activities are inherently linked to the ability to recognize previously seen patterns [WUF97, FM98, LS91] and that the experts are those who learned a signicant number of patterns over several years of experience. Since learning to recognize patterns is what ML algorithms can do well, in this thesis, we also studied which aspects human experts focus their attention on to provide the building block for further studies on such topics. Extending the concept, we could even introduce semantic awareness in the classier.

For instance, many experts in our experiments could easily recognize nonstandard implementations of list operations or discard branches/functions by just reading a subset of their basic blocks. This suggests that ML classiers could be trained to mimic this behavior and to automate the pattern recognition phase both for useful and useless portions of code.

Another possibility instead is to focus on binary analysis tools that are more robust w.r.t. binary code. For instance, as we show in Chapter 4, the main weakness of current static analyzers is that they are designed to analyze only well-formed source code. However, we believe that with the constant enhancement of modern decompilers, their adoption could represent an opportunity to automate other security-related approaches, dierent from static software testing, once proper tools are implemented to deal with pseudocode. Similarly, in the future, decompilers should be projected to allow dierent analysis paradigms and thus not to assume a-priori that their output is only designed to increase readability for humans.

On the other hand, we may never be able to replace humans with automated machines completely. Thus, another research line will consist of usability studies for binary analysis interfaces. So far, this area has been mostly ignored, but even if our studies do not explicitly speak about usability concepts, we believe this last point deserves its own discussion. For instance, the last chapter 5, shows how most of the participants choose the branch depending on the position on the screen, demonstrating how the visual component aects the RE session.

Conclusion

In this thesis, we proposed a snapshot of the current binary analysis approaches and demonstrated how standard techniques are still heavily based on human intervention. For each of the proposed methodologies, we emphasized what the human activity is and how this is fundamental to help the automated components to achieve a certain goal. Our categorization showed that analysts could have dierent positions in the analysis pipeline, and this requires dierent roles and skills depending on the scenario. We believe that future research should spend more eort on this human-centric view because this could deliver essential benets to the entire eld of binary analysis.

To conclude, we hope that our work can shed light on this poorly investigated aspect that surrounds the binary analysis world and that future work will consider our ndings to increase the understanding of the binary analysis ecosystem and the implementation of novel, more automated methodologies.

though we fully understand this makes the RE process slower, this is needed for some aspects we are trying to collect. So, yes, this is NOT your IDA experience you are looking for... it's an experiment! Please bear with it #2 :-)

For the tests ('Test 1', and 'Test 2'), we disabled the 'Strings' view.

Also in this case, the reason is linked with our models and the data we need to collect. So do not worry if you cannot access the 'Strings' view, there is no bug, it is just a design choice.

In general, we are interested in static analysis, not dynamic one. This explains why we did not add a debugger to the tool. If you are used to reverse with a debugger, that's good! But for this experiment we are interested to know how you would approach a purely static analysis task!

There is no ranking or prize, this is just an experiment: so please do not cheat.

Chapter 3 is based

 on the paper Prevalence and Impact of Low-Entropy Packing Schemes in the Malware Ecosystem presented at the Network and Distributed Systems Security Symposium (NDSS 2020), and shows a rst possible conguration of the human-in-the-loop binary analysis approach in the context of malware packing. Chapter 4 presents the paper The Convergence of Source Code and Binary Vulnerability Discovery A Case Study accepted at AsiaCCS 2022, and illustrates our vulnerability discovery approach that allows to run static software testing tools on the recovered pseudocode thanks to a human-inthe-loop approach. Chapter 5 is based on the paper RE-Mind: a First Look Inside the Mind of a Reverse Engineer accepted at the Usenix symposium 2022 and introduces our human study about static reverse engineering where the analyst represents the end point of the analysis infrastructure. Finally, Chapter 6 concludes the dissertation and provides possible future research directions.

Figure 3 . 1 :

 31 Figure 3.1: .text section entropy w.r.t. XOR encryption

Figure 3

 3 Figure 3.2: Encrypted .text section dierence in entropy means

Figure 3 .

 3 Figure 3.2 shows the dierence between the means of the entropy of the XORed code and the original code emphasizing the rapid eect that the key size has on the entropy of the data.

Figure 3

 3 Figure 3.3: Byte Frequency Distribution w.r.t. Schemes

Figure 3

 3 Figure 3.4: Dataset composition (cardinality = 46, 295)

Figure

 Figure 3.4.

Figure 3 . 5 :

 35 Figure 3.5: Architecture of our analysis tools

 i) locate and access the source buer that contains the low entropy packed data, ii) perform operations on such data, iii) write the unpacked data in the destination buer. We sketched the architecture of our tools and how they are integrated together in Figure3.5.It is worth remembering that the output of Packer Detector is a list of tuples, named [W XL]. Each tuple P C x , AW X y ∈ [W XL], contains the program counter P C x of the instruction that triggered the write operation in memory, and the target address AW X y where the information was subsequently stored and executed. Accordingly, this information denes the memory regions that contain the destination buer of the unpacking routine. Moreover, given that PANDA supports the deterministic record and replay of a sample, the tool performs its analysis by replaying the same trace that was recorded by Packer Detector. For each unpacking operation, the Scheme Classier disassembles (using Capstone [capay]) and analyses the assembly instructions executed just before the memory write to the destination buer. It then parses the assembly code and, by relying on the PANDA framework, it reads the values contained in the registers and in the referred memory addresses. The instructions and the values we obtain are used for two reasons: rst, the Scheme Classier performs a backward data-ow analysis to locate the source buer (S b) where the packed data is located. This corresponds to the identication of all the memory read operations which are supposed to contain the packed code which is being unpacked. For this purpose the Scheme Classier relies on the PANDA callback PANDA_CB_VIRT_MEM_AFTER_READ, which is triggered every time a memory read operation is performed by the process we are tracking (in our case the sample under observation). Second, the Scheme Classier extracts all the mathematical operations that are applied to the source bytes to generate those in the destination buer (D b). To achieve this second step, the tool makes use of the PANDA_CB_INSN_EXEC exported by PANDA, which allows us to analyse all the instructions actually executed by the sample.Since we already know the program counter values corresponding to interesting memory writes (as Packer Detector provides such values in the [W XL]list as mentioned before), we just need to track these specic values and the previous mathematical instructions without taking care of the other instructions executed. It then uses these two pieces of information to classify the possible packing scheme adopted by a sample, by following this sequence of rules:1. The Scheme Classier rst applies some rules to identify the presence of known encoding schemes (base64, base32, ...) in the source buer S b . If it recognizes a standard encoding, the Scheme Classier marks the sample as encoding.2. If the frequency of the bytes in the source and destination buers is the same, but bytes appear in a dierent order, it classies the scheme as a transposition. 3. If the byte distribution in the D b is shued with respect to the S b and the entropy is the same, the Scheme Classier reports it as monoalphabetic substitution. 4. It then looks for arithmetic/logic operations (XOR, ADD, ...) that modify the S b and write to the D b . If it nds an interesting cryptographic operation, it tries to extract the potential encryption key by

 -based solutions identify known packers by relying on a (typically manually curated) set of patterns that are associated with known o-the-shelf packers. Existing engines for pattern detection vary in complexity, from the ones that work on raw bytes to those that recognize and reason about the le structure. This dierence consequently inuences the expressive power of the employed signatures. For our experiments, we have chosen the most popular and actively maintained tools available today that rely on open signatures: Detect It Easy [detay], Manalyze [manay], and PEiD [peiay].Detect It Easy (DIE) adopts an open architecture of signatures, basedon a scripting language similar to JavaScript. This language provides great exibility and expressive power that allows DIE to declare complex and ne-grained signatures.PEiD is another widely used tool for statically analyze PE les, looking for most common packers, cryptors, and compilers. PEiD signatures only contain low-level byte patterns, which can be optionally matched either at the PE le's entry point or anywhere in the le.

 3 oset = Mosets [i] * 0x100; 4 memcpy (Mdst [oset], PackedSrc [j], 0x100); 5 end 6 init (Mosets, 0x200); 7 for (i = 0; i < 0x8080; i += 0x80) do 8 memcpy (Mtmp1, Mdst [i], 0x200); 9 for (j = 0; j < 0x200; j += 1) do 10 Mtmp2 [Mosets [j]] = Mtmp1 [j]; 11 end 12 for (k = 0; k < 0x200; k += 1) do 13 Mdst [i+k] = Mtmp2 [k]; 14 end 15 end 16 memcpy (Mexe, Mdst, 0x20200);

Figure 3

 3 Figure 3.6: Pattern stored inside the .rsrc section

Algorithm 2 :

 2 Pseudocode of the rst layer 1 i = 0; 2 res = 0; 3 for addr ← RSRC_START to RSRC_END do 4 oset = readByte(addr); 5 byte = readByte(RDATA_STR + oset); In this work, we conducted a set of experiments on real-world malware to demonstrate that existing static approaches fail to take into consideration the threat represented by low-entropy packed malware and that this phenomenon is relevant enough that cannot be ignored when designing malware experiments. Although previous works [UPSS + 12, RV15] have discussed the existence of low-entropy packing schemes as case studies, our work is the rst to study this phenomenon in depth, and to measure the prevalence of this technique over a large dataset.

 recent years, techniques have been proposed to improve the recovery of data types [LAB11, NLC16], code structure [YEGPS15, YDGPS16, GDFFA20], and even exact syntactic identity [SRN + 18]. These techniques have been integrated into increasingly powerful, accurate, and publicly available decompiler prototypes [KRS18, KOGY19, FCL + 19]. Our insight is that the place, conceptually, where decompilation leaves o is close to the place where vulnerability detection picks up. That is, we realized that the type information, structure information, and pseudocode recovered by decompilers could be analyzed by vulnerability detection tools in lieu of the original source code, to at least some degree of ecacy. Additionally, as emerging techniques continue to improve decompilation results, and the gap between the original code and pseudocode from the decompilation of the program binary narrows, decompilers can become a more and more eective crutch to source-based vulnerability detection techniques.

Figure 4 . 1 :

 41 fuentes[CG], as part of her Ph.D. dissertation where she described how a decompiler works, the future challenges in the eld and presented dcc, a decompiler for Intel 80286.Over the past two decades, two main approaches have emerged for the development of decompilers: rule-based decompilation and NMT-based (Neural Machine Translation) decompilation. Rule-based approaches [ghiay, hexay, BLSW13, KMZ17] are the most popular today even though the production of a rule-based decompiler is particularly time consuming. For instance, according to its authors, the development of RetDec took a total of 7 years for a team of 24 developers[avaay].

Firstly, we wanted

 to evaluate a range of products relying on a diverse set of features and techniques. Therefore we identied twelve tools (nine open source and three commercials) based on their popularity according to the studies proposed by [Kra05, SMM15, CK11, MM18, FBH18] and including non-academic sources such as [sasay, bloayb, bloaya].

7. 1

 1 [hexay] (the state of the art commercial decompiler from IDA Pro), Ghidra 9.2 [ghiay] (the leader open source decompiler), and Retdec 4.0 [KMZ17] (the emerging challenger).Two main reasons inuenced our choice of these three tools. First, other emerging alternatives are quite far behind in terms of precision and quality of the generated code. Furthermore, prior work about decompilers [YEGPS15, YDGPS16, GDFFA20, SRN + 18] only focused on these three decompilers when performing their evaluations.

s t a t i c v o i d s t r

 i n g _ f v a l u e _ f r e e (f v a l u e _ t * f v) { g _ f r e e (fv->v a l u e . s t r i n g) ; } s t a t i c g b o o l e a n v a l _ f r o m _ s t r i n g (f v a l u e _ t * f v) { s t r i n g _ f v a l u e _ f r e e (f v) ; r e t u r n True ; } g b o o l e a n val_from_unparsed (f v a l u e _ t * fv , . . .) { s t r i n g _ f v a l u e _ f r e e (f v) ; . . . r e t u r n v a l _ f r o m _ s t r i n g (fv , . . .) ; } Listing 4.1: Double free source code 4.3.8 Compiler Impact Compilers support dierent optimization levels that modify the output of the compilation phase at the assembly level. Therefore, we opted to analyze how these compiler options can aect the results of the decompilation, and in particular, if such changes in the pseudocode are meaningful for the SAST tools.

 Recover the Size of Stack Buers Eect: increase false alarms Repairer: Both A large number of extra warnings in the SAST output was reporting the presence of BOFs. As an example, we propose the following excerpt from the file application: #d e f i n e PATH_MAX 4200 FILE* l i s t = f o p e n (o u t f i l e n a m e +1 " rb ") ; c h a r l i s t b u f f [PATH_MAX * 2] ; memset (l i s t b u f f , 0 , s i z e o f (l i s t b u f f)) ; f r e a d (l i s t b u f f , 1 , s i z e o f (l i s t b u f f) -1, l i s t) ;Listing 4.2: Source code of a safe buer access Looking at this code, it is quite evident that the memset and fread invocations are safe in this context, thanks to the proper use of sizeof operator. The decompiled code looks instead quite dierent: FILE* v212 ; c h a r * s 1 ; v212 = f o p e n (d e s t + 1 , " rb ") ; memset (s1 , 0 , 0 x2000uLL) ; f r e a d (s1 , 1uLL , 0x1FFFuLL , v212) ; Listing 4.3: Pseudocode of a (ex safe) buer access

 ERROR_CONDITION) { v2 = -1;} r e t u r n v2 ; } Listing 4.4: Negative return value in the pseudocode

 sub_12B3E (. .) { v2 = 1 0 ; v4 = 1 ; . . // a l o t o f code i n c l u d i n g GOTOs, e t c sub_129CF (. . , &v2 , . . , v4) ; } sub_129CF (. . , u n s i g n e d __int16 *a2 , . . , u n s i g n e d __int16 a4) { u n s i g n e d __int16 v9 = a4 ; . . * a2 -= v9 ; } Listing 4.5: Integer underow due to an uninitialized variable The subtraction at line 12 is agged by Infer and Ikos, because such tools cannot nd an initialization statement for the operands. However, after comparing with the source code, we noticed that both the two variables are initialized. The key dierence is that in the source code those variables are initialized just before calling the function, while in the pseudocode they are initialized at the very beginning of the program so that very likely the SAST tools lose track of their propagation because of complex data ow. Interestingly, so far decompilation researchers mainly studied variable types recovery [DC09, LAB11, NLC16] and names generation [LYS + 19], but no prior work focused on the position of recovered variables in the control ow.

 Listing 4.7 shows the resulting pseudocode: v u l n e r a b l e _ f u n c t i o n (i n t 6 4 a1 , i n t 6 4 a2 , . . .) { . . . i n t name_len = non_vuln_function (a2 + 2 1) ; * (_QWORD *) (v24 + 4 0) = (* (__int64 (_ _ f a s t c a l l * *) (_QWORD, __int64)) (a1 + 8)) ((i n t) (name_len + 1) , a1) ; memcpy (* (v o i d * *) (v24 + 4 0) , (c o n s t v o i d *) (a2 + 2 5) , name_len) ; } Listing 4.7: libssh2 vulnerable decompiled code

 __int64 (* fcn_ptr) (_QWORD, __int64) = (a1 + 8) ; * (_QWORD *) (v24 + 4 0) = (* fcn_ptr) ((u n s i g n e d i n t) (n + 1) , a1) Listing 4.8: libssh2 vulnerable decompiled code after the x P5 -Pointers as Integers Eect: decrease detection rate Repairer: Both For this pattern, let us focus on the CVE-2017-6298, a null pointer deref resulting from an unchecked calloc return value. Reading the following snippet of code the vulnerability looks quite evident, and in facts dierent tools can detect it (Joern, Checkmarx, Ikos, Infer, and Code-ql): v a r i a b l e L e n g t h * v l ; . . . vl ->data = c a l l o c (vl ->s i z e , s i z e o f (WORD)) ; temp_word=SwapWord ((BYTE*) d , s i z e o f (WORD)) ; memcpy (vl ->data , &temp_word , vl ->s i z e) ; Listing 4.9: Null pointer dereference

 s i g n e d i n t * v9 ; s i z e _ t v19 ; v o i d * v20 ; . . . (_QWORD *) v9 [0] = c a l l o c (v9 [2] , 2uLL) ; v18 = sub_19B0 (v4 , 2) ; v19 = v9 [2] ; v20 = * (v o i d * *) v9 ; v76 = v18 ; memcpy (v20 , &v76 , v19) ; Listing 4.10: Null pointer dereference Hexrays pseudocode

 uint8_t out [SIZE] ; uint8_t tmpout [SIZE] ; f o r (j = 0 ; j < s i z e o f (out) ; j ++) out [j] ^= tmpout [j] ; Listing 4.12: Suspicious cast source code __int64 v22 ; __int64 v26 ; f o r (j = 0LL ; j <= 0x1F ; ++j) * ((_BYTE *)&v22+j) ^= * ((_BYTE *)&v26+j) ; Listing 4.13: Suspicious cast decompiled code

 For our discussion we use the CVE-2017-1000249, a stack BOF present in the le project. The original source code is depicted in the following snippet: i f (namesz == 4 && . . . && type == NT_GNU_BUILD_ID && (d e s c s z >= 4 | | d e s c s z <= 2 0)) { uint8_t d e s c [2 0] ; memcpy (desc , &nbuf [d o f f] , d e s c s z) ; } Listing 4.14: Source code of the BOF

 For instance, in the area of computer science, many experiments have been conducted to study the mechanisms behind human's decisions in several tasks, ranging from program comprehension [Let87, RTKM12] to human-computer interaction [Ban, Kap96], and from problem solving [LKJ + 16, CFBS15] to com- puter security [MBC17, VSR + 18]. The crossover between the human mind and computer science has also resulted in the creation, and in the recent rapid evolution, of the eld of articial intelligence. On the one hand, fully autonomous systems have already replaced humans in several security-related tasks including, among the others, host and network-based attack detection [OEV + , ZEKAS17, THLL09], malware classication [UAB19, MDC17, PHL + 15] and phishing detection [MHK08, JST13, AA14]. On the other hand, other areas are still mostly human-driven.

 pothesis about how RE experts think is correct. At the 2020 Usenix Security conference, Votipka et al. [VRM + 20] presented the rst human study about

 on human behaviors in the context of reverse engineering [SKBM06, Bry12, VRM + 20, CC19]. One of the rst studies was conducted by Sutherland et al. [SKBM06] in 2006 to demonstrate that the education/technical knowledge and the ability to reverse engineer simple binary les are positively correlated. In 2012, Bryant [Bry12] performed a semi-structured interview with the addition of in-place observations during the RE sessions to investigate four experts approaching typical RE scenarios, such as breaking the protection scheme of a toy binary. The outcome is a precise observation of the skills, mental ows, and knowledge-based techniques that the subjects exhibit while reversing a binary. Interestingly this work tries to be the bridge between the source code comprehension community and the RE one, by studying how reverse engineers make use of assembly patterns.

Finally, the recent

 work of Votipka et al. [VRM + 20] is what we can consider as the rst human study about RE, focusing on what high-level process reverse engineers follow and what technical approaches they adopt.

 If the literature covering RE is scarce, a vast amount of work has been performed instead in the program comprehension eld. Indeed, RE can be seen as a program comprehension problem applied to assembly code, with the goal of recovering the high-level abstractions needed to understand the program logic. For this reason, we collect here the most critical human studies related to program understanding. One of the leading research directions in program comprehension shows that programmers adopt non-linear ways to interpret source code, reasoning at a level of abstraction higher than the code itself [Let87, LGHM07, AS96, RTKM12, Bro83, AvML98]. A wellknown model about these high-level representations is what researchers refer to as beacons : beacons are patterns that experienced programmers can recognize when reading the source code [Hoc14,[START_REF] Andrew | An exploratory study of how developers seek, relate, and collect relevant information during software maintenance tasks[END_REF][START_REF] Pennington | Stimulus structures and mental representations in expert comprehension of computer programs[END_REF]. The utility of beacons is mainly related to assessing some hypotheses that developers do about some unknown parts of the program, such as when they need to maintain some code base, as described by Littman et al.[START_REF] David C Littman | Mental models and software maintenance[END_REF]. Alternatively, Gugerty[START_REF] Gugerty | Debugging by skilled and novice programmers[END_REF] argues that developers can use debuggers to verify some behaviors within the source code they are analyzing (e.g., by checking whether a variable contains the expected value at some point of the execution). It is also worth mentioning that some of these papers study program comprehension by performing a comparison between experts and novices[START_REF] Gugerty | Debugging by skilled and novice programmers[END_REF][START_REF] Fix | Mental representations of programs by novices and experts[END_REF][START_REF] Wiedenbeck | Characteristics of the mental representations of novice and expert programmers: an empirical study[END_REF]. We believe this to be a critical factor in understanding the impact of the experience, and this methodology served as inspiration for the experiments we present in this thesis. Finally, few studies have investigated the usability of RE tools. For instance, researchers have looked at improving the usability of decompilers [YEGPS15, JLS + 18], showing that better variable naming and a reduced number of GOTOs aected positively the readability of the pseudocode. In the context of vulnerability discovery, Do et al. [DAL + 17] proposed a static analysis framework that allows the developers to write code and run in parallel the static analyzer to help programmers to better manage the large number of alerts generated by the tool. In 2017, Shoshitaishvili et al. [SWD + 17]

 Figure 5.1: Part of the UI of our reverse engineering framework in the code navigation mode showing on the left the functions' list and on the right the CFG of the selected function

 Peitek et al., [PAP + 21] demonstrated, with the use of Functional magnetic resonance imaging (FMRI), the existence of a correlation between such source code metrics and the brain activation registered in users that perform code comprehension tasks. Therefore, we compute a total of twelve metrics (including the Halstead metrics, the cyclomatic complexity, and the number of functions and lines of code) and use these values to assess the diculty of our assignments. All values for the two assignments are reported in Table

Figure 5 . 2 :

 52 Figure 5.2: Call Graph of Test 1

Figure 5 . 3 :

 53 Figure 5.3: Call Graph of Test 2

Figure 5 . 4 :

 54 Figure 5.4: Relationships between how often the subject reverse binaries and the total time spent to solve the exercises.

Figure 5 .

 5 Figure 5.4 shows the relationship between the answer to the frequency question and the time required to complete the two assignments for the two classes of users whereas the dashed horizontal line represents the threshold we have inferred.

Figure 5 . 5 :

 55 Figure 5.5: Three distinct RE sessions of Test 1 showing the time spent on each basic block during the session

 shows a graphic representation of the behavior of three users during the rst exercise (time is on the X axis and BB addresses on the Y). The horizontal bands of dierent colors represent the three useful functions (those required to solve the exercise), while the white region indicates the BBs located in other irrelevant parts of the program. Each dot corresponds to the user focusing on a given basic block for a certain amount of time (expressed by the size of the circle). The labels target and bridge respectively indicate the function that prints the success string and the function that has main as the caller and target as one of the callees.

Figure 5 . 6 :

 56 Figure 5.6: Time needed to solve Test 2 grouped by strategies.

Figure 5 . 7 :

 57 Figure 5.7: Average times spent in the BBs of Test 1

Figure 5 . 8 :

 58 Figure 5.8: Progression of Top5 and Bottom5 experts in the second challenge.

Figure 5 . 9 :

 59 Figure 5.9: Comparison of the distribution of T F irst , T M ax , and T T otal time among the users in the two groups.

Figure 5

 5 Figure 5.10: Solution time w.r.t. number of visited BBs.

Figure 5 . 11 :

 511 Figure 5.11: Percentage of Basic Blocks visited only once, or analyzed on the rst visit.

 et al. [VRM+ 20] group under the name of subcomponent scanning could, in fact, be related to the ability of the expert's brain to recognize code patterns, but more focused experiments (e.g., with brain EEG sensors) are needed to investigate further and validate this hypothesis.

 Thanks a lot for your time/help! https://www. codeanalysistools.com/?cplusplus, Accessed April 20, cybersecuritykings.com/2020/02/16/11-tips-onsast-tool-selection/, Accessed April 20, 2022. [BLSW13] D. Brumley, J. Lee, E.J. Schwartz, and M. Woo. Native x86 decompilation using semantics-preserving structural analysis and iterative control-ow structuring. In {USENIX}, 2013. [BM08] Jean-Marie Borello and Ludovic Mé. Code obfuscation techniques for metamorphic viruses. Journal in Computer Virology, 4(3):211220, Aug 2008. [Bro83] Ruven Brooks. Towards a theory of the comprehension of computer programs. International journal of man-machine studies, 1983. [Bry12] Adam R Bryant. Understanding how reverse engineers make sense of programs from assembly language representations. PhD thesis, Air Force Institute Of Technology, 2012. [BT04] Roman Bednarik and Markku Tukiainen. Visual attention tracking during program debugging. In Proceedings of the third Nordic conference on Human-computer interaction, 2004.

 faire évoluer les outils et les méthodologies vers un niveau supérieur. Par conséquent, nous espérons avec ce travail, inspirer les recherches futures dans le domaine pour atteindre des techniques d'analyse binaire toujours plus sophistiquées et automatisées.

	Contents List of Publications 1 Introduction 2 Background 2.1 Chapter 1	ix

1.1 Contributions . 1.2 Thesis Outline .

 On the other hand, a set of distinct solutions exist that work at the entire le level. The idea is that we can nd some indicators by looking at the PE le format that suggests if a sample can be malicious or benign. Static features can include dierent elds of the PE such as the name and the permission of the sections, the IAT, the timestamp, and other elds of this le format. More modern approaches take into account more elaborated features, for instance, the ones extracted from the binary code, such as n-grams of bytes or disassembled instructions.

	A rst possibility is represented by those solutions that extract features
	processed by a Machine Learning (ML) classier [UAB19]. In recent years,
	this has become a standard practice because it simply needs to fetch some
	features from the analyzed les, encode them into a features vector and pass
	it through a previously trained model.
	Another program analysis technique used in the context of malware is sym-
	bolic execution, which can help to evaluate all execution ows of a binary
	executable that satisfy a certain constraint 1 .

binary representations such as Control Flow Graph (CFG) and Data Dependency Graph (DDG). This can give us information about the execution ow of the executable according to the value of some memory locations. For instance, we can use CFG and DDG to inspect some interesting function call sites and observe what the parameters of the invoked procedure are. At the other side of the spectrum, we nd signature-based approaches that consist of matching sequences of bytes or specic patterns that identify a certain malware family [detay, peiay] or a certain packing or obfuscation technique. W.r.t. this approach the YARA rules [yar] represent the defacto standard to implement expressive queries that can match such byte sequences.

Table 3

 3

	.1: Top 10 families distribution in our dataset
	Packed %	Not packed %
	sivis	28.0	lamer	10.4
	unruy	11.6	daws	8.8
	vobfus	9.5	vbclone	8.0
	dealply	5.4	sivis	7.5
	upatre	4.1	triusor	4.5
	shipup	4.0	ystudio	4.0
	gepys	3.5	zegost	3.9
	vilsel	2.9	mailru	3.6
	sality	2.3	high	2.9
	hematite	2.0	nitol	2.4
	Table 3.2: Low Entropy Scheme
	Scheme		Eect on Entropy
	Padding			Decrease
	Encoding			Decrease
	Mono-alphabetic Substitution	Unchanged
	Transposition			Unchanged

Table 3

 3

	.3: Scheme distribution	
	Scheme	Type	%
	Padding	-	8.0
	Encoding	standard custom	3.9 0.5
		XOR	29.8
	Mono-alphabetic Substitution	ADD	5.2
		ROL/ROR	0.5
	Transposition	-	0.3
	Poly-alphabetic Substitution	XOR ADD	46.9 2.8
	Unknown	-	2.1

XOR-based encryption is by far the most prevalent technique in our dataset, accounting for more than 76.7% of the analyzed samples. It is present both in its simplest form (xor with a single constant byte) in 29.8%

Table 3

 3

	.4: Signature-based detection results. sig. stands for signature and
	heur. stands for heuristics	
	Dataset Manalyze sig. Manalyze heur. Packed 242 (1.7%) 8,358 (57.3%) Not Packed 2,518 (9.6%) 6,023 (22.9%) Hidden H-E 0 (0%) 14 (0.3%)	PEiD 386 (2.6%) 3,438 (13.1%) 2,487 (9.4%) sig ∧ PEiD 214 (1.5%) 2 (0.1%) 0 (0%)

Table 3

 3

	.5: Well-Known Packers Detections
	Packed		Not Packed
	Name	% Name	%
	UPX	1.1	UPX	10.0
	ASPack	0.5	ASPack	1.2
	UPolyX	0.5	UPolyX	1.2
	Petite	0.1	PolyEnE	0.7
	PolyEnE	0.1	Petite	0.4
	In conclusion, existing signature-based tools are well suited to detect
	the presence of common o-the-shelf packers, but unfortunately, generate a
	large number of false alerts on non-packed samples. Even worse, these false
	positives are more frequent on non-packed malware than on those packed by
	using low-entropy schemes, which suggest that these samples are dicult to
	classify statically.			

Table 3 .

 3 6: Results of ML experimentsAlg. Train ErrnotP ack(W) Errpack(W) ErrnotP ack(W) Errpack(W) values, entropy-based metrics, byte n-grams, and disassembly opcodes. Other heuristics includes the raw data per virtual size ratio (computed over all the sections), the ratio of the sections with virtual size higher than raw data or the fact that the entry point is outside any section.

		75%	4.43%	25.01%	4.12%	24.57%
	SVM	50%	4.31%	28.41%	3.97%	26.20%
		25%	4.44%	32.01%	4.11%	29.85%
		75%	6.34%	12.70%	5.86%	12.15%
	MLP	50%	6.87%	16.14%	6.24%	14.73%
		25%	6.89%	11.91%	6.33%	12.93%
		75%	0.20%	32.77%	0.23%	31.54%
	RF	50%	0.18%	29.46%	0.20%	28.46%
		25%	0.21%	28.84%	0.20%	26.83%
	discriminatory features that can help identify even the most elusive form of
	packing.					

Therefore, in the following section we explore alternative static analysis approaches proposed by other researchers. We rst survey the state of the art and gather all the features that have been proposed in the past. In order to evaluate the performance of these features, we implement a machine learning classier based on the union of all these features. With this, we do not intend to propose a new classication system, nor to compare existing approaches with respect to each other. Instead, like in previous sections, our goal is simply to evaluate whether these features are able to correctly classify our low-entropy set of samples.

3.6.1 Feature Extraction

Lyda and Hamrock

[START_REF] Lyda | Using entropy analysis to nd encrypted and packed malware[END_REF]

were the rst to take into consideration entropy (computed initially over the entire le) as a metric to classify packed malware. The basic idea was then rened to calculate the entropy for each section of the sample

[START_REF] Han | Packed pe le detection for malware forensics[END_REF]

or over small byte windows [UPSS

+ 12]

. would allow capturing the presence of custom packing routines better. For instance, the approaches proposed in

[START_REF] Perdisci | Mcboost: Boosting scalability in malware collection and analysis using statistical classication of executables[END_REF]

,

[START_REF] Arora | A heuristics-based static analysis approach for detecting packed pe binaries[END_REF]

, [SUPS + 11] and [UPSGF + 14] adopt a larger collection of features that include structural PE attributes, heuristic We are only aware of two exceptions to this rule. In 2012, Ugarte et al.[UPSS + 12] performed several experiments which included some samples

Table 3

 3

	.7: GreyEnergy dynamically allocated memory regions
	Name	Size [Byte] Permissions
	Mdst	0x20200	RW
	Mosets	0x808	RW
	Mtmp1	0x200	RW
	Mtmp2	0x200	RW
	Mexe	0x24000	RWX
	referred simply as PE).	

Table 3

 3

			.8: Overview of Previous Approaches
	Paper [LH07] [CkKOcR08] ML Type Features Dataset construction Ent. Ent. Not Packed: benign executables Packed: Packers manually applied to benign les PE Heuristics Not Packed: benign executables and PE les from AV manually analysed Packed: benign executables and PE les from AV vendors manually analysed [PLL08b] ML PE Heuristics Ent. Not Packed: benign executables Packed: malware from MALFEASE project and application of a set of packers benign executables [PLL08a] ML [PLL08b] N-grams Not Packed: malware from MALFEASE project ltered with unpackers ([RHD + 06], [KPY07]) Packed: malware from MALFEASE and benign les [SUPS + 11] ML PE Heuristics Ent. Not packed: benign executables and malware from VxHeavens Packed: Variants of the 'Zeus' family and application of a set of packers to the benign executables Not packed: mal/good-ware ltered by PEid, entropy analysis, IAT entries, imported dlls
	[UPSGF + 14] ML	[SUPS + 11] N-grams	and ratio of standard sections Packed: Application of a set of packers to the benign les, malware
	[DN12] [UPSS + 12] [STMF09] [RV15] [LRK + 19] [HL09] [TZ09] [ASPE13] [JCN + 12]	ML Ent. ML Ent. ML Ent. ML ML ML	PE Ent. Ent. PE Ent. Statistical Ent. Statistical Ent. PE PE Heuristics Opcodes	reported by PEid as not packed, 'Zeus' family Not packed: benign executables Packed: Application of UPX to benign executables Not packed: benign executables and malicious samples taken from VxHeavens and checked with PEid Packed: application of some packers to benign les ,malware from Zeus family Not packed: Benign executables and malware from VxHeavens/Malfease ltered by PEid Packed: malware detected packed by PEid Not packed: benign executables Packed: packers/encoders on benign les Not packed: benign executables and evaluation of similarity for adding other binaries Packed: Samples tested with [UPBSB15] Not packed: benign executables Packed: malicious samples from honeypot Not packed: Windows les and les ltered by PEid Packed: malicious samples ltered by PEid Not packed: benign and malicious le from honeypots Packed: Malicious samples tested with [Ste05] Not packed: Benign executables fetched from Windows Installation and unpacked malware Packed: Executables packed with o-the-shelf packers

Table 4

 4

	Table 4.1: The vulnerabilities adopted for the evaluation
	Vulnerability Application Description
	CVE-2017-1000249	le (C)	Stack BOF, unchecked memcpy
	CVE-2013-6462	Xorg comp-nent (C)	Stack BOF, unchecked scanf
	BUG-2012	libssh2 (C)	IOF (leading to heap BOF)
	CVE-2017-	ytnef (C)	NPD
	6298		
	CVE-2018-	wireshark	Heap BOF (o-by-one) (*)
	11360	(C/C++)	
	CVE-2017-	OpenCV	BOF in C++ virtual method
	17760	component	
		(C++)	
	CVE-2019-	libyang (C)	Stack BOF, unchecked strcpy
	19334		
	CVE-2019-	wavpack	DBZ
	1010315	(C)	
	BUG-2010	libslirp (C)	UAF
	BUG-2018	wireshark	DF (*)
		(C/C++)	

.1). The applications ranged from 4 Thousands to 2.1 Millions LOC (for LOC statistics see Tab. 4.4). Note that for two

Table 4 .

 4 3: A breakdown of the bug detections for SAST tools (when applied to original program source code).

	CPPCheck	Joern	Checkmarx	Clang	Ikos	Infer	Code-ql	Fortify
	CVE-2017-1000249							
	CVE-2013-6462							
	BUG-2012							
	CVE-2017-6298							
	CVE-2018-11360							
	CVE-2017-17760							
	CVE-2019-19334							
	CVE-2019-1010315							
	BUG-2010							
	BUG-2018							

Table 4

 4

	.3 reports the detection results of the eight SAST tools when ana-
	lyzing the original source code of the vulnerable applications.
	It is interesting to notice that, except for Joern, Clang and Code-ql, the
	other tools are quite complementary in the bug detection, uncovering 2-4
	bugs each and missing only two bugs overall (CVE-2017-17760 and BUG-
	2018).

Table 4 .

 4 5: Results of running the SAST tools over decompiled code. An asterisk (*) signies that the detection was accomplished through the introduction of an excessive amount of false positives.

		Decompilers Output		Re-Compilable Code		Wrt source
		CPPCheck	Joern	Checkmarx	Clang	Ikos	Infer	Code-ql	Fortify	code
	CVE-2017-1000249			*	*					4/6
	CVE-2013-6462	*		*	*			*		5/5
	BUG-2012					*				1/6
	CVE-2017-6298			*						4/5
	CVE-2018-11360									1/2
	CVE-2017-17760									2/2
	CVE-2019-19334	*			*	*			*	6/6
	CVE-2019-1010315									4/4
	BUG-2010									1/4
	BUG-2018									0/2 + 2
	Wrt source code	3/4	6/8 + 1	3/3	5/8	3/4	1/2	5/9	2/4 + 1

the cross marks show a missing detection. Dashes instead indicate that the bug was not found in both the original source code and the decompiled one.

Table 4 .

 4 6: False positives, as evaluated on the original source code and the decompiled source code produced by Hex-Rays. False positive increases of over 50% are highlighted in red, and decreases are highlighted in green.

		Decompilers Output					Re-Compilable Code				
		CPPCheck	Joern	Checkmarx	Clang		Ikos	Infer	Code-ql	Fortify
		Src	Dec	Src	Dec	Src	Dec	Src	Dec	Src	Dec	Src	Dec	Src	Dec	Src	Dec
	CVE-2017-1000249	68	45	166	144	236	241	88	96	3	9	152	423	174	515	202	583
	CVE-2013-6462	106	503	374	296	485	701	368	365	303	359	89	812	496	1,177	246	1,097
	BUG-2012	68	262	253	110	107	358	298	178	103	541	21	827	102	341	613	453
	CVE-2017-6298	16	125	25	39	52	66	15	10	329	439	10	80	18	132	84	137
	CVE-2018-11360	3,113	20,548	3570	1504	-	-	-	-	-	-	-	-	-	-	-	-
	CVE-2017-17760	475	7668	122	1277	-	-	-	-	-	-	-	-	-	-	-	-
	CVE-2019-19334	833	1072	1019	334	2,295	384	185	315	13	113	128	959	98	176	1999	661
	CVE-2019-1010315	20	143	214	150	173	358	65	45	20	-	295	361	428	208	1417	806
	BUG-2010	69	297	190	41	102	114	2	22	31	32	23	168	37	350	115	525
	BUG-2018	3,113	20,548	3570	1504	-	-	-	-	-	-	-	-	-	-	-	-
	Total	7,881	51,211	9,503	5,389	3460	2223	1,021	1,031	802	1439	718	3630	1353	2899	4676	4262

Table 4 .

 4 7: Decompilation inadequacies that inhibited SAST tool operation on our dataset, separated into patterns and their eect on analysis results.Depending on the pattern, these inadequacies can be repaired through improvements in decompilation techniques, SAST approaches, or both.

	Pattern	Eect Project	Aected Tool Repairer
	(P1) Buer size	FP ↑	all	all except Joern	Both
	(P2) Integer types	FP ↑	all	Checkmarx, Cppcheck	SAST
	(P3) Unitialized				
	variable	FP ↑	all	Clang, Infer, Ikos,Code-ql	Decomp
	(P4) Function				
	pointers	TP ↓	libssh2	Joern,Code-ql	SAST
			ytnef,	Joern,Clang	
	(P5) Pointer as int	TP ↓	wireshark,	Checkmarx,	Both
			libslirp	Ikos,Code-ql	
	(P6) Int wrong				
	size	FP ↑	all	Ikos,Code-ql, Infer	Both
	(P7) Simplied				
	expressions	TP ↓	file	Cppcheck Fortify	SAST

Table 5

 5

	.1: Complexity metrics of the two assignments
	Metric	Test 1 Test 2
	Lines of code	146	207
	Operators count	426	673
	Distinct operators	35	38
	Operands count	207	338
	Distincst operands	89	87
	Program length	633	1011
	Program vocabulary	124	125
	Volume	4402	7042
	Diculty	39	73
	Eort	171678 514095
	Cyclomatic complexity	14	19

Table 5

 5

	.2: Prevalence of Function-level Strategies for novices and experts
	while approaching the two binaries
	Strategy Sequential Backward Forward Depth-First Breadth-First 11 Novices Experts Novices Experts Test 1 Test 2 4 -8 -2 6 5 8 33 27 26 25 0 2 1 6 8 16 12 Hybrid 28 23 22 15
	techniques are more commonly used by those reversers who could complete
	the exercise in a shorter amount of time. Before performing the statistical
	test, we checked if the data distribution (especially for time samples) was
	normal and, in negative case, we applied a log-transformation to normalize
	it.

Table 5 .

 5 3: Median Time Per Functions for task 2

	Function main sort_case setup is_sorted init_list is_empty insert_node 7 BB BB good Experts min (%) min (%) Ratio Novices Time 16 12 9.1 (15.8%) 29.4 (13.9%) x3.2 8 6 5.7 (9.6%) 18.2 (8.6%) x3.1 6 4 4.4 (7.8%) 13.4 (6.3%) x3.0 12 10 10.4 (18.1%) 28.9 (13.7%) x2.7 8 7 8.7 (15.1%) 38.7 (18.3%) x4.4 1 1 0.26 (0.4%) 1.0 (0.5%) x3.9 6 5.8 (10.2%) 28.0 (13.4%) x4.8 is_number 9 8 4.7 (8.2%) 22.9 (10.9%) x4.8 4 4 3.5 (6.2%) 12.0 (6.0%) x3.5 length useless-0 6 0 1.0 (1.8%) 2.8 (1.3%) x2.8 useless-1 4 0 0.5 (0.9%) 2.9 (1.4%) x5.7 useless-2 7 0 0.9 (1.6%) 2.9 (1.4%) x3.1 useless-3 4 0 1.5 (2.6%) 5.4 (2.6%) x3.6 4 0 0.8 (1.4%) 3.9 (1.9%) x4.7 useless-4 TOTAL 96 58 57.2 (100%) 210.4 (100%) x3.6

Table 5

 5

	.4: Median Time Per Functions for Task 1
	Function BB BB good Experts mins (%) mins (%) Time Ratio Novices Time Ratio main 23 17 14.6 (44.6%) 65.3 (45.4%) x4.4 bridge 12 9 11.4 (34.9%) 52.3 (36.3%) x4.5 3 3 2.4 (6.3%) 8.2 (5.7%) x3.4 target useless-0 1 0 0.17 (0.5%) 0.60 (0.42%) x3.5 useless-1 4 0 0.58 (1.8%) 2.07 (1.4%) x3.5 0 3.5 (10.8%) 15.4 (10.7%) x4.4 useless-2 16 TOTAL 59 29 32.6 (100%) 143.8 (100%) x4.4

Table 5 .

 5 5: Correlations between visits duration and BB length

	Hypothesis	Experts Pearson p-value Pearson p-value Novices
	Tmax and len(BB)	0.29	1.0e-04	0.31	5.8e-04
	Ttot and len(BB)	0.30	8.28e-04	0.33	1.6e-04
	T f irst and len(BB)	0.37	1.9e-05	0.37	1.3e-06
	Figure 5.11 shows how a scatter plot of the two aforementioned met-
	rics (percentage of blocks visited only once, and for which the rst visit is
	the longest) can clearly separate the majority of the experts from novices
	reversers.				

Table 5 .

 5 6: Statistical tests w.r.t. the branch selection data (upper part) and

	the semantical elements data (lower part)		
	Hyphothesis	Result p-value
	Novices true branch & solution time	0.21	0.06
	Novices close branch & solution time	0.13	0.2
	Experts true branch & solution time	0.42	0.7
	Experts close branch & solution time	0.87	0.4
	2-sample T-test Comments	0.4	0.6
	2-sample T-test Variable Renames	0.8	0.4
	2-sample T-test Function Renames	0.7	0.4
	of users.		

If we look at total or max time, both experts and beginners spent most of their time (respectively 19% and 18% on average) on blocks that prepared the function call parameters. While usually straightforward to reverse, all reversers probably paused to reason about which values were passed to the function's parameters. If we look instead at the blocks that frequently appear among beginners but not among experts, we nd a total of 20 BBs

Table 5

 5

	.7: Additional hypothesis (not discussed elsewhere)
	Hyphothesis	p-value exp p-value nov
	First quartile of time spent on a BB and BB length	0.1	0.6
	Interquartile of time spent on a BB and BB length	0.06	0.07
	Average of time spent on a BB and BB length	0.08	0.1
	Mode of time spent on a BB and BB length	0.4	0.7
	T f irst and Tmax	0.3	0.2
	T f irst and Ttot	0.8	0.8
	Solution time and number of BBs she		
	skimmed (i.e., she did a quick look at BB	0.4	0.5
	and then a longer one to the same BB)		
	Solution time and how many times the user		
	went back to the previous BB instead of	0.1	0.2
	going forward		
	Glanges (i.e., visits of less than 2 seconds) and BB length	0.1	0.1
	Solution time and how many times she went to a true branch	0.8	0.1
	Solution time and how many times she went to a close branch	0.3	0.2

Table 5

 5

			.8: Individual Experts Features		
	User	Solution Time Function Exploration (Test1 ; Test2) Transitions Trst=Ttot Trst=Tmax Skipped BB
	Exp.1	169	Forward,Hybrid;Forward,DFS	2997	16.7%	14.8%	18
	Exp.2	137	Forward;Hybrid;Forward,BFS	2551	15.4%	8.3%	19
	Exp.3	120	Forward,BFS;Forward,DFS	1662	29.6%	12.9%	24
	Exp.4	120	Backward,Hybrid;Backward,BFS	978	29.8%	16.7%	30
	Exp.5	163	Forward,Hybrid;Forward,BFS	1654	35.6%	17.2%	4
	Exp.6	137	Forward,Hybrid;Forward,Hybrid	2359	18.7%	14.1%	15
	Exp.7	134	Forward,Hybrid;Forward,DFS	2845	22.5%	8.3%	21
	Exp.8	119	Forward,Hybrid;Forward,Hybrid	1750	29.6%	7.7%	30
	Exp.9	156	Forward,Hybrid;Forward,Hybrid	2070	13.5%	21.2%	4
	Exp.10	162	Backward,Hybrid;Backward,Hybrid	2141	25.1%	9.6%	24
	Exp.11	37	Forward,Hybrid;Forward,Hybrid	450	46.4%	14.8%	31
	Exp.12	34	Backward,Hybrid;Backward,Hybrid	727	35.4%	16.7%	25
	Exp.13	118	Forward,BFS;Backward;Hybrid	1546	9.6%	18.7%	2
	Exp.14	119	Forward,BFS;Forward,BFS	1842	11.6%	14.8%	4
	Exp.15	96	Forward,BFS;Forward,BFS	1564	19.3%	17.4%	23
	Exp.16	154	Forward,Hybrid;Forward,BFS	2547	10.9%	14.8%	1
	Exp.17	80	Forward,BFS;Forward,DFS	1321	23.8%	16.7%	13
	Exp.18	48	Forward,Hybrid;Forward,BFS	761	34.8%	10.9%	41
	Exp.19	81	Forward,BFS;Backward,BFS	746	40.0%	13.8%	3
	Exp.20	48	Forward,Hybrid;Forward,DFS	818	22.5%	21.2%	34
	Exp.21	38	Forward,BFS;Forward,BFS	483	47.7%	6.4%	27
	Exp.22	43	Backward,DFS;Backward,Hybrid	627	41.2%	20.0%	29
	Exp.23	44	Forward,Hybrid;Forward,Hybrid	673	39.3%	16.7%	32
	Exp.24	27	Backward,Hybrid;Backward,DFS	462	46.4%	20.6%	30
	Exp.25	29	Forward,Hybrid;Forward,Hybrid	634	36.1%	23.8%	45
	Exp.26	45	Forward,Hybrid;Forward,Hybrid	789	35.4%	18.0%	27
	Exp.27	64	Forward,Hybrid;Forward,Hybrid	835	45.1%	11.6%	21
	Exp.28	70	Forward,Hybrid;Forward,BFS	1478	31.6%	10.9%	24
	Exp.29	32	Forward,Hybrid;Forward,Hybrid	820	38.7%	14.1%	23
	Exp.30	89	Backward,DFS;Backward,Hybrid	1415	14.1%	15.4%	8
	Exp.31	171	Forward,Hybrid;Forward,BFS	2115	10.9%	10.9%	26
	Exp.32	56	Forward,BFS;Forward,BFS	517	45.8%	14.8%	44
	Exp.33	106	Forward,Hybrid;Forward,Hybrid	988	38.0%	17.4%	24
	Nov.1	266	Forward,Hybrid;Backward,Hybrid	3330	5.8%	10.3%	2
	Nov.2	329	Forward,Hybrid;Forward,BFS	5114	7.7%	6.4%	7
	Nov.3	304	Forward,BFS;Forward,BFS	5025	14.1%	8.3%	13
	Nov.4	208	Forward,Hybrid;Forward,BFS	3793	12.9%	9.0%	9
	Nov.5	260	Forward,Hybrid;Forward,Hybrid	3560	20.0%	5.1%	19
	Nov.6	257	Forward,Hybrid;Forward,DFS	4136	8.3%	8.3%	4
	Nov.7	264	Forward,Hybrid;Backward,Hybrid	3433	5.1%	9.0%	1
	Nov.8	331	Forward,Hybrid;Forward,Hybrid	3805	3.2%	10.9%	0
	Nov.9	303	Forward,Hybrid;Forward,Hybrid	3892	16.1%	9.6%	20
	Nov.10	415	Forward,Hybrid;Forward,BFS	7602	12.2%	3.8%	10
	Nov.11	371	Forward,BFS;Forward,BFS	4796	9.6%	10.3%	8
	Nov.12	381	Forward,Hybrid;Backward,Hybrid	4514	16.1%	9.1%	17
	Nov.13	258	Forward,Hybrid;Forward,BFS	2374	1.2%	10.3%	0
	Nov.14	458	Sequential,Hybrid;Sequential,Hybrid	6955	4.5%	6.4%	1
	Nov.15	251	Forward,Hybrid;Backward,BFS	3067	24.5%	14.8%	22
	Nov.16	409	Forward,BFS;Forward,BFS	5656	4.5%	9.6%	2
	Nov.17	481	Forward,BFS;Sequential,BFS	6270	8.3%	4.5%	9
	Nov.18	560	Backward,Hybrid;Sequential,Hybrid	6976	5.1%	7.1%	1
	Nov.19	194	Forward,Hybrid;Forward,Hybrid	2791	7.7%	13.5%	1
	Nov.20	351	Forward,Hybrid;Forward,Hybrid	3685	4.5%	10.3%	1
	Nov.21	301	Forward,Hybrid;Forward,Hybrid	5020	10.3%	10.9%	3
	Nov.22	228	Backward,BFS;Backward,Hybrid	2841	16.1%	12.2%	19
	Nov.23	300	Forward,BFS;Forward,Hybrid	3091	7.7%	12.3%	6
	Nov.24	195	Forward,Hybrid;Forward,Hybrid	2592	6.4%	14.1%	0
	Nov.25	261	Forward,Hybrid;Forward,BFS	2510	11.6%	13.5%	3
	Nov.26	240	Forward,BFS;Forward,BFS	3050	15.4%	9.6%	11
	Nov.27	740	Sequential,Hybrid;Sequential,Hybrid	7879	6.4%	13.1%	8
	Nov.28	543	Forward,Hybrid;Sequential,Hybrid	6641	2.5%	7.7%	0
	Nov.29	941	Sequential,Hybrid;Sequential,Hybrid	8150	0.0%	1.9%	0
	Nov.30	320	Forward,BFS;Forward,BFS	2912	12.5%	7.1%	16
	Nov.31	316	Forward,Hybrid;Forward,BFS	2886	18.7%	10.9%	13
	Nov.32	234	Forward,Hybrid;Forward,BFS	4048	7.7%	6.4%	3
	Nov.33	181	Forward,BFS;Forward,BFS	3445	12.2%	8.3%	10
	Nov.34	207	Forward,Hybrid;Forward,Hybrid	2202	29.0%	9.6%	26
	Nov.35	513	Forward,BFS;Sequential;Forward,BFS	6233	0.0%	4.5%	0
	Nov.36	199	Forward,Hybrid;Forward,Hybrid	3408	18.7%	6.4%	17
	Nov.37	178	Forward,BFS;Forward,Hybrid	1618	5.8%	19.3%	3
	Nov.38	441	Forward,Hybrid;Sequential,Hybrid	5946	6.4%	8.3%	1
	Nov.39	253	Forward,Hybrid;Forward,Hybrid	3486	21.9	10.9%	7

The overlay is just appended data to the end of the executable le that is ignored when loading an executable into memory because it is not covered by the PE header. Anyway, opening the executable le in reading mode will allow access to the entire le including the overlay portion.

https://www.inetsim.org/

UPolyX is basically a scrambler (thus, it does not aect entropy) that needs a UPX packed input le to produce a number of dierent output les.

queries are presented in our anonymized repository at https://anonymous.4open. science/r/dae156f4-5332-4a06-a27e-1e7fac2b4d23/

This trend does not change if, instead of basic blocks, we perform the measurement at a function granularity (we omit the graph for space reason).

A study about how humans coming from dierent backgrounds and expertise levels (from the 'noob' to 'expert') perform the process of Reverse

Engineering and which are the main dierences between these categories.

Before starting

The test is completely anonymous, the registration is mandatory but it is quick (just a self-evaluation question). The system will give you a token which is needed for the login, so please preserve it until the end of the test.

The test

For the test, you can nd our web-UI at this link (https://reverse.s3.

eurecom.fr): it supports some of the main features for RE (commenting code, rename, Xref, ...). After accessing it, the rst page comes with a further description of the experiment and of the interface (we invite you to read for the details) and with a list of 3 challenges that you have to solve with our web-UI. The rst challenge ('Warmup') is just a warmup one so it is optional and we created it just to make the user become more familiar

Submitting a solution

Note that for the two tests (Test 1 and Test 2), the solution is not required in a specic format (like the ags in a CTF), but it is supposed to be a short description in your own words (just 1 or 2 lines) about the needed steps that make the binary to print the string 'Congratulations' or 'Success!'. Alternatively, also a command line that triggers the correct path in the binary is ne.

Notes

The interface is not supposed to be a new competitive product, but it is just a tool for the data collection. This does NOT aim to be a realistic scenario, but a scenario for which we capture some interesting data.

It's an experiment! Please bear with it :-)

The experience could result a bit painful because basic blocks are blurred when the 'onmouseover' event is captured on another BB. Al-