Learning to edit facial images and videos is one of the most popular tasks in both academia and industrial research. This thesis addresses the problem of face editing for the special case of high-resolution images and videos.

In this thesis, we develop deep learning based methods to perform facial image editing. Specifically, we explore the task using the latent representations obtained from two types of deep neural networks: autoencoder-based models and generative adversarial networks. For each type of methods, we consider a specific image editing problem, and propose an effective solution which outperforms the state-of-the-art.

The thesis contains two parts. In part I, we explore image editing tasks via the latent space of autoencoders. We first consider the style transfer task between photos, and propose an effective algorithm which is built on a pair of autoencoder-based networks. Second, we study

the face age editing task for high resolution images, using an encoder-decoder architecture. The proposed network encodes a face image to age-invariant feature representations, and learns a modulation vector corresponding to a target age. Our approach allows for finegrained age editing on high resolution images in a single unified model.

In part II, we explore the editing task via the latent space of generative adversarial models (GANs). First, we consider the problem of facial attribute disentangled editing on synthetic and real images, by proposing a latent transformation network which acts in the latent space of a pre-trained GAN model. We also proposed a video manipulation pipeline, to generalize the editing result to videos. Second, we investigate the problem of GAN inversion -projection of a real image to the latent space of a pretrained GAN. In particular, we propose a feed-forward encoder, which encodes a given image to a feature code and a latent code in one pass. The proposed encoder is shown to be more accurate and stable for image and video inversion, meanwhile, maintaining good editing capacities.

I

Résumé

Apprendre à éditer des images et des vidéos de visages est un domaine particulièrement actif dans la recherche académique et industrielle. Cette thèse aborde le problème de l'édition de visages dans le cas particulier des images et des vidéos à haute résolution.

Dans cette thèse, nous développons des méthodes basées sur l'apprentissage profond pour effectuer l'édition d'images faciales. Plus précisément, nous explorons la tâche en utilisant les représentations latentes obtenues à partir de deux types de réseaux neuronaux profonds : les modèles basés sur l'auto-encodage et les réseaux antagonistes génératifs (GAN).

Pour chaque type de méthode, nous considérons un problème spécifique d'édition d'image et proposons une solution efficace qui surpasse l'état de l'art.

La thèse comprend deux parties. Dans la partie I, nous explorons les tâches d'édition d'images via l'espace latent des autoencodeurs.

Nous considérons d'abord la tâche de transfert de style entre les photos, et proposons un algorithme efficace qui est construit sur une paire de réseaux basés sur des autoencodeurs. Nous proposons d'entraîner deux réseaux pour la stylisation des photos en utilisant uniquement la paire de photos disponibles. Tout au long de l'apprentissage, les réseaux sont contraints de préserver la structure des photos d'entrée par des mécanismes de cycle et d'autoconsistance. Cette approche permet d'éviter les distorsions de structure et de générer une stylisation satisfaisante des photos. Ceci constitue notre principale contribution. Nous explorons ensuite certaines propriétés des convnets entraînés. Tout d'abord, bien que ces réseaux soient entraînés en utilisant une seule paire de photos, nous montrons que chaque réseau peut transférer le style appris à des images naturelles non visualisées au moment de l'entraînement. Les résultats sont comparables à ceux obtenus en entraînant deux nouveaux convnets en utilisant chaque nouvelle image et la photo originale du style. Nous notons cependant que les images à styliser doivent avoir un contenu sémantique similaire à celui de la photo originale du style. Deuxièmement, pour appliquer un nouveau style, nous montrons que seul un petit sous-ensemble de paramètres du réseau doit être réentraîné (avec toutefois un bon choix de la paire d'images utilisée pour pré-entraîner les autres paramètres).

Ensuite, nous étudions la tâche d'édition de l'âge du visage pour les images à haute résolution, en utilisant une architecture d'encodeur-décodeur. Les effets synthétiques de vieillissement ou de désuétude dans les films sont généralement générés par du maquillage ou des effets visuels spéciaux. Bien que des résultats impressionnants puissent être obtenus numériquement, les processus sous-jacents prennent énormément de temps. Par conséquent, des algorithmes robustes et de haute qualité pour effectuer la modification automatique de l'âge sont hautement souhaitables. Néanmoins, la modification des visages est une tâche in-II trinsèquement difficile. Même de petits artefacts sont immédiatement perçus et ruinent la perception des résultats. Pour cette raison, notre objectif est de produire des résultats sans artefacts, nets et photoréalistes sur des images de visages à haute résolution. Nous proposons une architecture codeur-décodeur pour le problème de l'édition de l'âge du visage avec une haute qualité visuelle sur des images à haute résolution. Le réseau proposé encode une image de visage en représentations de caractéristiques invariantes selon l'âge, et apprend un vecteur de modulation correspondant à un âge cible. Notre approche permet une édition fine de l'âge sur des images à haute résolution dans un seul modèle unifié.

Dans la deuxième partie, nous explorons la tâche d'édition via l'espace latent des modèles antagonistes génératifs (GAN). Tout d'abord, nous considérons le problème de l'édition "démêlée" (disentangled) des attributs faciaux sur des images synthétiques et réelles, en proposant un réseau de transformation latent qui agit dans l'espace latent d'un modèle GAN pré-entraîné. Nous proposons un réseau de transformation qui permet de naviguer dans l'espace latent de StyleGAN de manière désenchevêtrée et non linéaire, afin que chaque attribut puisse être manipulé indépendamment et en douceur. Pour y parvenir, nous entraînons un réseau de transformation dans l'espace latent afin de modifier chaque attribut indépendamment, en préservant explicitement les autres attributs. Pour assurer un meilleur désenchevêtrement, nous proposons un terme de régularisation des attributs en fonction de la corrélation dans la fonction objectif pendant l'apprentissage. En outre, notre modèle gère la modification séquentielle de plusieurs attributs avec un grand photoréalisme, ce que, à notre connaissance, nous sommes les premiers à réaliser. En outre, nous avons également proposé un pipeline de manipulation vidéo, afin de généraliser le résultat de l'édition aux vidéos. Le réseau de transformation génère des résultats d'édition d'attributs démêlés, préservant l'identité et contrôlables sur des images réelles. Ces avantages clés nous permettent d'étendre notre méthode au cas des vidéos, où la stabilité et la qualité sont d'une importance cruciale. Pour cela, nous introduisons un pipeline qui permet d'obtenir une édition stable et réaliste des attributs du visage sur des vidéos à haute résolution.

Deuxièmement, nous étudions le problème de l'inversion du GAN -la projection d'une image réelle dans l'espace latent d'un GAN pré-entraîné. En particulier, nous proposons un encodeur feed-forward, qui encode une image donnée en un code caractéristique et un code latent en une seule passe. Le code caractéristique encode les détails spatiaux, et le code latent est utilisé pour l'édition. L'encodeur proposé s'avère plus précis et plus stable pour l'inversion d'images et de vidéos, tout en conservant de bonnes capacités d'édition.
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3.1

The network g q a (¨) transfers the style of the image x a to its input, while g q b (.) transfers the style of x b . Cycle-consistency is the fact that g q b (g q a (x b )) « x b and g q a (g q b (x a )) « x a , while self-consistency is the fact that g q b (x b ) « x b and g q a (x a During generation, we replace the feature maps at the K th convolution layer of the generator with the inverted feature code F, and synthesize the inversion with the latent blocks tw K , ..., w N u. K is a fixed parameter, chosen so that reconstruction is accurate and editing can be performed efficiently. and x B , denoted by G(w A , F A ) and G(w B , F B ), respectively. The second column is generated from the feature code of x A and the latent code of x B , denoted by G(w B , F A ), and vice versa for the third column, denoted by G(w A , F B ). The feature code encodes the geometric structures such as pose and facial shape, whereas the latent code controls the appearance styles like eye color and makeup. . . . . . 6.17 Video inversion. For each method, we show the inversion results of multiple consecutive images extracted from a video sequence. Our inversion method preserves better the identity along the video and yields a better reconstruction for the To perform edits in high resolution images, the following challenges must be overcome:

• High resolution reconstruction. Apart from changing the target attribute, the output images should reconstruct the source images and maintain the original high quality.

• High quality editing. The editing effects must be free of artifacts. At 4K resolution, even small artifacts are perceived immediately and ruin the perception of the results.

• Controllability of semantic editing. Editing of one desired attribute should not impact other attributes. Alternatively, the editing should be disentangled. Moreover, it is preferable to have a fine-grained control on the amount of changes.

• Application on videos. To generate realistic editing in video sequences, the editing effects should be temporally stable and consistent.

Therefore, in this thesis, we investigate deep learning based methods and see how far they can go in editing high resolution images. We conduct experiments on editing tasks, especially for facial attribute editing in high resolution images. In addition, we are also interested in developing a baseline for facial attribute editing in videos.

Research Questions

Indeed, all types of editing tasks for high resolution images must take into account the challenges mentioned above. The existing solutions can be classified into two types: (1) first, 1 1.3. Approach editing via the latent space of an autoencoder, (2) second, editing via the latent space of a pre-trained GAN model.

The core of the autoencoder-based method is the encoder-decoder architecture. The encoder maps an input image to a latent code in the latent space, where the target attribute is supposed to be disentangled in order to be manipulated. Then, the modified latent code is decoded by the decoder into the modified image. To preserve the quality of the input image and reconstruct other attributes, residual learning or skip connection can be applied in the autoencoder. However, manipulating the target attribute and preserving other aspects are two objectives that somehow contradict each other. The encoder tries to reduce the dimensionality of the input to disentangle the target attribute, while the decoder needs as much information as possible to reconstruct the original input. This problem becomes even more apparent with high resolution images. Therefore, we investigate the tradeoff between the editing effects and the reconstruction quality:

• How to achieve disentanglement in the latent space of an autoencoder without compromising the quality of the reconstruction?

• Is it possible to generate satisfying and artifact-free editing effects on high resolution images using autoencoder-based methods?

Editing via the latent space of a pre-trained GAN can be divided into two tasks: latent space editing and encoding. The first task aims to explore the original latent space to achieve disentangled edits on synthetic images generated by the pre-trained GAN. This is not obvious, since the latent space of a pre-trained GAN strongly depends on the training settings.

The latent space obtained may not be naturally disentangled. Another key component is encoding. To perform edits on natural images, we need to encode them into the latent space of the pre-trained GAN. Nevertheless, a latent code that perfectly reconstructs the given image may not exhibit the same behavior as those in the original latent space. In this case, the tradeoff between editing and reconstruction quality is also problematic. Therefore, we try to answer the following questions:

• How to find disentangled and controllable editing direction in the latent space of a pretrained GAN?

• How to accurately reconstruct natural images from the latent space of a pre-trained GAN without affecting the editing properties?

Approach

To answer the questions just discussed, we explore the latent spaces of both types of models on different editing tasks.

• Latent space of autoencoder: We train autoencoder-based models on photo-realistic style transfer and face aging/de-aging tasks. Previous works on artistic style transfer [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF][START_REF] Vincent Dumoulin | A learned representation for artistic style[END_REF][START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF] discovered that artistic styles can be controlled by the normalization layers in a deep network. We thereby hypothesize that photo styles or a target attribute • Latent space of GANs: We approach the task of facial attribute editing in the latent space of a pre-trained StyleGAN [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF]. To edit a given image via the latent space of a pretrained GAN, it is necessary to encode it into the latent space and perform latent space editing. We start with the latent space editing task, by training a latent transformation network in the latent space to obtain a disentangled manipulation. For the encoding task, we train an encoder for the pretrained GAN, which projects a given image into a feature-style latent space. This design provides a balanced tradeoff between editing capacity and reconstruction quality.

Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2 provides an overview of the background and the related works on image editing tasks. We begin with a brief introduction of the basic notions, like convolutional neural networks, autoencoder and generative adversarial networks. Next, we provide a comprehensive presentation of the state-of-the-art high quality image generation model -StyleGAN [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF] and discuss the different latent spaces in the architecture of StyleGAN. Then we review the previous studies on facial attribute manipulation and the related works on latent space interpretation and editing. Finally, we review the recent works on GAN inversion.

Part I: Latent Space of Autoencoder. The first part focuses on the task of image editing with autoencoder-based models.

Chapter 3 studies the problem of photo-realistic style transfer using autoencoder-based models. We introduce a new approach for photo style transfer, by training a pair of deep convolution networks on a single pair of images with cycle-consistency and self-consistency losses. The two networks share the same convolutional layers but have different normalization parameters. We analyze the properties of the trained networks and further discuss the limitations.

Chapter 4 explores the capacity of autoencoder-based models for the task of face aging/de-aging on high resolution images. We discuss how to learn a model that disentangle the age-related and age-invariant features as much as possible, to achieve age editing with high visual quality. We propose a feature modulation layer that enables fine-grained (continuous) selection of the target age and acts directly on the age-related features. Next, we present experimental results on multiple datasets with qualitative and quantitative evaluations. Finally, we discuss the limitations and the possibility of performing face aging via the latent space of a pre-trained GAN.

Part II: Latent Space of GANs. The second part focuses on the task of image editing via the latent space of pretrained GAN models.

In Chapter 5, we address the problem of facial attribute editing in the latent space of Style-GAN [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF]. We first discuss that the latent space of a pre-trained GAN is not necessarily 1.5. Contributions linearly separable. To achieve disentangled and controllable editing, we propose to train a latent transformation network in the latent space of StyleGAN. We further introduce a video manipulation pipeline to generalize the editing effects to videos.

In Chapter 6, we tackle the problem of inverting given images to the latent space of style based generators. We propose a novel architecture for GAN inversion, which encodes a given image to a latent code and the feature code. We show experimentally that this design enables a balanced tradeoff between editing capacity and reconstruction quality. Additionally, we demonstrate that the proposed encoder is especially well-suited for inversion and editing on videos.

Finally, we conclude in Chapter 7 and discuss the perspectives and future directions.

Contributions

In this thesis, we focus on a practical application problem -facial attribute editing on high resolution images. The main contributions can be summarized as follows:

• We propose a method for effective photo stylization between two images that consists in training a pair of deep convnets with cycle-and self-consistency losses. This approach successfully prevents structure distortions and generates satisfying photo stylization.

• We propose an age transformation architecture, which is based on a feature modulation layer that acts in the latent space of an autoencoder. The proposed model is able to produce photorealistic and sharp results, without introducing significant artifacts, on images of resolution 1024 ˆ1024.

• We propose to train a latent transformation network in the latent space of a pretrained GAN, in order to find disentangled and editing directions. Our proposed model achieves disentangled editing on both synthetic images and real images.

• We further propose a video manipulation pipeline, generalizing the facial attribute editing to high resolution videos.

• We propose an effective encoder model to project real images to the latent space of a style based generator. This encoder consists of a latent encoder and a feature encoder, which allows a balanced tradeoff between editing capacity and reconstruction quality.

We list the relevant publications for each chapter below: 

Background

In this chapter, we provide readers with an overview of the background which is needed to understand the work in this thesis. We begin with a brief introduction of neural networks and present some background notions of Convolutional Neural Networks, Autoencoders and Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative adversarial nets[END_REF]. Next, we present the state-of-the-art in high quality image generation, the StyleGAN model [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF], in details. Then we discuss the previous studies on facial attribute manipulation and the related works on latent space interpretation and editing, and show that the latent space of a pretrained GAN model is well suited for editing. Finally, we present the recent works on GAN inversion, which projects real images to the latent space of GANs.

Neural Networks

In the context of machine learning, a neural network is a network composed of layers of artificial neurons. The connections between neurons are modeled as weights. The input data is processed progressively from the first layer to the last layer to produce the final output. A neural network can be trained, which means updating the weights associated to each connection, by minimizing the difference between the processed output and a target output. In computer vision, neural networks have many applications, i.e., pattern recognition, image classification, face editing, etc. In the following sections, we will discuss some important neural network models for image processing.

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of neural networks often used for computer vision tasks. CNNs have been widely used in different tasks, such as image classification, scene segmentation and face recognition. Various models have been proposed, such as AlexNet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], VGG [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] and ResNet [START_REF] He | Deep residual learning for image recognition[END_REF].

Convolution

The key component of convolutional neural networks is the convolutional layer, which convolves the input feature maps with learnable filters (kernels) across the spatial dimensions. In each convolutional layer, the input and output features are 4-D tensors (batch ˆchannel ˆheight ˆwidth), the filter is a tensor of size c 1 ˆc2 ˆh ˆw, where c 1 and c 2 are the channel dimensions of the input features and the output features, and h ˆw is the . This network is first proposed for biomedical image segmentation task. The blue boxes represent the feature maps and the blue arrows correspond to the convolutional layers. This "hourglass" architecture could be considered as an encoder-decoder network. The input image of size 572 ˆ572 is reduced to 32 ˆ32 in the lowest resolution, and further decoded to get the segmentation map. This illustration is taken from [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF].

spatial dimension of the filter. Let us denote the input feature maps as x. The value of the input feature maps at channel k and location (i, j) is denoted by x k,i,j (the batch dimension is ignored) The output feature maps can be computed as:

y n,a,b = c 1 ÿ k=0 h´1 ÿ i=0 w´1 ÿ j=0 W k,n,i,j x k,a+i,b+j + B n , (2.1) 
where y n,a,b is the value of the output feature maps at channel n and location (a, b). W refers to the weight and B refers to the bias parameters of the convolutional layer.

Autoencoders

Autoencoders [START_REF] Hinton | Autoencoders, minimum description length, and Helmholtz free energy[END_REF] are a family of neural networks which rely on two parts, the encoder network and the decoder network, to learn efficient coding of data. The encoder learns to map the input to a latent representation, which is further passed through the decoder to obtain the output. The output often has the same size as the input, whereas the intermediate layers are of reduced spatial dimension. The latent space of an autoencoder refers to the space of the bottleneck layer (the feature maps of minimal spatial size). Autoencoders are widely used for dimensionality reduction and feature learning, as well as learning generative model of data (variational autoencoder [START_REF] Diederik | Auto-encoding variational bayes[END_REF]).

Convolutional autoencoders are particularly useful for image processing tasks. In this case, the autoencoder is a fully convolutional network. Many image-to-image translation approaches [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF][START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF][START_REF] Vincent Dumoulin | A learned representation for artistic style[END_REF][START_REF] Ulyanov | Deep Image Prior[END_REF][START_REF] Choi | Stargan: Unified generative adversarial networks for multi-domain image-toimage translation[END_REF] use convolutional autoencoders as the backbones. The U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] is a popular convolutional autoencoder architecture, which was first proposed for biomedical image segmentation task. As shown in Figure 2.1, the U-Net "hourglass" architecture can be considered as an encoder-decoder network. The input image is first passed through the encoder part to obtain the feature maps of a smaller spatial size, which are further processed by the decoder part to get the output segmentation map.

Generative Adversarial Network

Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative adversarial nets[END_REF] are a type of generative model. Given a training dataset, generative models learn an estimate of the data distribution, and generate synthetic data from random latent codes. The latent space of a GAN model refers to the space where the latent codes are drawn from, which may be constrained to follow a predefined probabilistic distribution.

A generative adversarial model consists of a generator and a discriminator, which are both deep neural networks. During training, the generator G learns a distribution p G over data x " p x (x), and maps a noise vector z " p z (z) to G(z). The discriminator D is trained to distinguish between the real data and those synthesized by the generator. The output of the discriminator D(x) represents the probability that x came from the real data distribution

x " p x (x) rather than p G . At the same time, G is trained to fool the discriminator by maximizing D(G(z)). Formally, G and D are trained simultaneously on the following minimax loss V(D, G):

min G max D V(D, G) = E x"p x (x) [log D(x)] + E z"p z (z) [log(1 ´D(G(z)))] (2.2)
The conditional GAN architecture, cGANs [START_REF] Mirza | Conditional generative adversarial nets[END_REF], is proposed by concatenating the noise vector z with a label vector y to synthesize data in a desired class. Follow-up works [START_REF] Reed | Generative adversarial text to image synthesis[END_REF][START_REF] Odena | Conditional image synthesis with auxiliary classifier gans[END_REF][START_REF] Miyato | cGANs with projection discriminator[END_REF] further proposed new variants of cGAN to improve the generation capacity, by incorporating different kinds of label conditioning.

Most GANs for image generation are built upon the DCGAN architecture [START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF] -deep convolutional GAN. Figure 2.2 shows the architecture of the DCGAN generator. A 100dimensional uniform distribution z is sampled from the latent space, passed through a matrix multiplication and fed to several convolutional layers to generate the output image G(z). Transposed convolutions are adopted to scale the spatial dimension to a larger size, such that DCGAN is able to generate high resolution images.

Inspired by the generation capacity of GANs, GAN-based models are also adopted for image editing tasks [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF][START_REF] Zhu | Unpaired image-toimage translation using cycle-consistent adversarial networks[END_REF]. Pix2pix [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF] addressed the edge-to-photo problem, where the generator is built upon a U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] architecture, conditioned with an edge map. Cycle-GAN [START_REF] Zhu | Unpaired image-toimage translation using cycle-consistent adversarial networks[END_REF] addressed the problem of translating an image from a source domain to a target domain using unpaired data. They propose to train a pair of adversarial models and use a cycle-consistency loss.

Style-based Generator

Recently, GANs have shown great progress in high resolution image generation. Progressive growing GAN [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF] proposed a progressive growing architecture, allowing for generation of high quality images. BigGAN [START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF] propose to apply orthogonal regularization to the generator and succeed to synthesize high resolution images of high fidelity. StyleGAN [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF] proposed an alternative generator architecture, which learns an unsupervised separation of the high-level semantic attributes and enables scale-specific control of the high quality image synthesis.

Karras et al. [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF] proposed the first style-based generator, named StyleGAN, which is the state-of-the-art high quality image generation model. The perceptual quality and variety of the StyleGAN synthetic images surpassed previous image generative models [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF][START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF].

Style Transfer

Before diving into the details of the StyleGAN model, we first give a brief introduction on the history of style transfer. Style transfer aims at generating an output image with the content of a source image and the style of a reference image. Based on the choice of style, the task can be further classified as artistic style transfer or photo style transfer, as shown in Figure 2.3.

Artistic Style Transfer

The goal here is to transfer the styles of artworks (i.e., brush stroke and colorization) to photos. The seminal work of Gatys et al. [START_REF] Gatys | Image style transfer using convolutional neural networks[END_REF] has attracted a wide interest, being the first method to perform artistic style transfer using features extracted from a deep convolutional network. To realize real-time style transfer, Ulyanov et al. [START_REF] Ulyanov | Texture Networks: Feed-forward Synthesis of Textures and Stylized Images[END_REF] proposed to train a feed-forward style-specific network, moving the optimization process to a learning stage. Johnson et al. [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF] proposed to train the image transformation network using perceptual losses. Dumoulin et al. [START_REF] Vincent Dumoulin | A learned representation for artistic style[END_REF] further proposed a conditional style transfer network for 32 styles, showing that a different style can be encoded solely by the parameters of the normalization layers. In a follow-up work [START_REF] Ghiasi | Exploring the structure of a real-time, arbitrary neural artistic stylization network[END_REF], Ghiasi et al. adapted their method for arbitrary style transfer, by using a style prediction network which takes a style image as input and predicts the normalization parameters for the feed-forward style transfer network, enabling it to transfer unseen styles at test time.

Photo Style Transfer

This task concerns transforming a source photo into an output photo with the style of a reference photo. More challenges exist than artistic style transfer: keep spatial consistency between input and output, and ensure the photo-realism of the output image. Luan et al. [START_REF] Luan | Deep Photo Style Transfer[END_REF] first succeed to address the problem. Based on the method of Gatys et al. [START_REF] Gatys | Image style transfer using convolutional neural networks[END_REF], they add a regularization term, built upon the matting Laplacian [START_REF] Levin | A closed-form solution to natural image matting[END_REF], to the objective function in order to keep the spatially consistency under control. Most of their results appear impressive at the first glance, as the spatial consistencies are well preserved. However, some results present painting-like artifacts or are too piece-wise constant. Li et al. [START_REF] Li | A Closed-form Solution to Photorealistic Image Stylization[END_REF] adapt their former work [START_REF] Li | Universal style transfer via feature transforms[END_REF] for photo-realistic stylization tasks and add a smoothing step to control the stylization consistency. The adapted approach can realize photo-realistic style transfer on random content/style pair photos at test time.

Adaptive Instance Normalization (AdaIN) Instance normalization [START_REF] Ulyanov | Instance normalization: The missing ingredient for fast stylization[END_REF] is first introduced to improve the performance of certain deep neural networks for fast stylization. Unlike batch normalization which applies normalization to a whole batch of images, instance normalization is instance-wise -the parameters of normalization are different for each single image in the batch. Ulyanov et al. [START_REF] Ulyanov | Instance normalization: The missing ingredient for fast stylization[END_REF] show that using instance normalization instead of batch normalization in the fast stylization networks [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF][START_REF] Ulyanov | Texture Networks: Feed-forward Synthesis of Textures and Stylized Images[END_REF] brings significant qualitative improvement in the stylized images. Dumoulin et al. [START_REF] Vincent Dumoulin | A learned representation for artistic style[END_REF] further proposed a single conditional style transfer network for 32 styles, showing that a different style can be encoded solely by the parameters of instance normalization layers. Taking a step further, Huang et al. [START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF] further proposed an adaptive instance normalization (AdaIN) layer, where the scale and bias parameters are directly computed from the style features. Given a content input x and a style input y, µ(x) and s(x) are the mean and variance of x, the AdaIN operation is defined as:

AdaIN(x, y) = s(y) ✓ x ´µ(x) s(x) ◆ + µ(y), (2.3) 
where s(y) and µ(y) are computed from y to scale and bias the normalized features. This design allows for arbitrary style transfer in real-time, without any pre-training step for the styles not viewed at training time. ping network f and a synthesis network g. The mapping network f maps a random latent code z P Z to an intermediate latent code w P W; the synthesis network g generates an image

Architecture of StyleGAN

x from a constant input tensor and a set of random noises n, with each convolution layer controlled by w through AdaIN layers:

x = g(w, n), with w = f (z).

(2.4)

As shown in Figure 2.4, a random latent code z P R Nˆ512 is sampled from a Gaussian distribution Z and mapped to an intermediate latent code w P R Nˆ512 , N is the batch size. In the synthesis network, before each convolution layer, w is passed through an affine transformation to generate the styles, which is further used to scale and bias the feature maps through AdaIN layer. After each convolution layer, a random noise tensor n P R Nˆ1ˆHˆW is added to the feature maps, where H ˆW corresponds to the spatial size. The semantic styles of the generated image are controlled by the latent code, whereas the noise inputs control the local spatial variations. Figure 2.5 shows that the image generated with noise inputs set to zero is a smoothed image without specularities.

Latent Space of StyleGAN

The latent space of StyleGAN is different from those of traditional generative models. Most image generative models maps a random vector sampled from a probabilistic distribution to an image, where the latent space refers to the predefined distribution. Yet in the StyleGAN architecture, there exist several latent spaces. As shown in Figure 2.4, the original latent space Z is a predefined Gaussian distribution. The latent code z P Z is mapped to an intermediate Latent Space Property Z Gaussian distribution.

W

The latent code w controlling each convolution layer is the same.

W +

The latent code w controlling each convolution layer could be different.

S

Style latent space, better disentangled. latent space W, of which the distribution is unknown. In the original architecture, we use the same latent code w P W to control each convolution layer. To project real images to the latent space of StyleGAN, Abdal et al. [START_REF] Abdal | Image2stylegan: How to embed images into the stylegan latent space?[END_REF] proposed an extended latent space W + , where the latent code w controlling each convolution layer could be different. w + P W + can be considered as a concatenation of N different latent code w, where N is the number of convolution layers in the synthesis network. As shown in Figure 2.6, each latent code w is further specialized by affine transformation to styles, which lies in another latent space. Wu et al. [START_REF] Wu | Stylespace analysis: Disentangled controls for stylegan image generation[END_REF] named it style space S and performed a deep analysis in it, showing that S is significantly more disentangled than the intermediate space W or W + . Table 2.1 gives an overview of all the latent spaces. In the latent spaces W + or S, we can test more complicated operation than simple interpolation, such as using the styles obtained from different z P Z to control different convolution layer, which is also called style mixing. 

Style Mixing Effects

New Generations of StyleGAN

The image quality was improved further in the second generation -StyleGAN2 [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF], by introducing weight demodulation and path length regularization and redesigning the normalization in the generator. The StyleGAN2-Ada [START_REF] Karras | Training Generative Adversarial Networks with Limited Data[END_REF] explored the possibility to train a style-based generator with limited data regimes, by using an adaptive discriminator augmentation mechanism that significantly stabilizes training. The third generation, alias-free GAN [START_REF] Karras | Alias-Free Generative Adversarial Networks[END_REF], addressed the aliasing artifacts in the generator, by employing small architectural changes to discard unwanted information and boost the generator to be fully equivariant to translation and rotation.

Facial Attribute Editing

Facial attribute editing aims at adding, removing or modifying desired facial attributes, such as smiling, eyeglasses, makeup, etc. Facial attribute editing is potentially useful for real- Yan et al. [START_REF] Yan | Attribute2image: Conditional image generation from visual attributes[END_REF] proposed to train a conditional VAE architecture [START_REF] Diederik | Auto-encoding variational bayes[END_REF] to generate attributeconditioned images. Liu et al. [START_REF] Liu | Unsupervised image-to-image translation networks[END_REF] proposed an unsupervised image-to-image translation framework based on coupled GANs. They assume that a pair of corresponding images in two different domains can be mapped to the same latent code in a shared-latent space, which can be decoded to an image in the target domain by the corresponding decoder. FaderNetwork [START_REF] Lample | Fader networks: Manipulating images by sliding attributes[END_REF] and StarGAN [START_REF] Choi | Stargan: Unified generative adversarial networks for multi-domain image-toimage translation[END_REF] are facial attribute editing networks built upon autoencoder based architectures, which are capable of disentangling attributes in the latent space and generate manipulated images conditioned on the target attribute. The work of cCycleGAN [START_REF] Lu | Attribute-guided face generation using conditional cyclegan[END_REF] extends the CycleGAN architecture [START_REF] Zhu | Unpaired image-toimage translation using cycle-consistent adversarial networks[END_REF] with conditioning on facial attributes. AttGAN [START_REF] He | Attgan: Facial attribute editing by only changing what you want[END_REF] and STGAN [START_REF] Liu | Stgan: A unified selective transfer network for arbitrary image attribute editing[END_REF] enhanced the flexible translation of attributes to improve the image quality by relaxing the strict constraints on the target attributes.

The above-mentioned works focus on images of limited resolution. The progress of generative models on high quality image generation [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF] boosts the facial attribute editing on high resolution images. Viazovetskyi et al. [START_REF] Viazovetskyi | StyleGAN2 Distillation for Feed-Forward Image Manipulation[END_REF] proposed to train the pix2pixHD [START_REF] Ting-Chun | High-resolution image synthesis and semantic manipulation with conditional gans[END_REF] model for facial attribute editing on the high resolution images synthesized by StyleGAN [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF], where the obtained model also performs well on natural images (i.e., photos). Shen et al. [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] propose an effective way to interpret the latent space learned by StyleGAN and achieve high visual fidelity face manipulation on the synthesized images. However, how to accurately reconstruct natural images from the latent space of StyleGAN is still an open question.

Latent Space Editing

In this section, we introduce the recent works on image editing using the latent space of GANs, especially for facial attribute editing. Traditional learning based methods on image editing usually adopt auto-encoder based models, performing the edits with conditioning in the latent space of auto-encoder. For instance, previous works on facial attribute editing [START_REF] Zhang | Age Progression/Regression by Conditional Adversarial Autoencoder[END_REF][START_REF] Choi | Stargan: Unified generative adversarial networks for multi-domain image-toimage translation[END_REF][START_REF] Xiao | Elegant: Exchanging latent encodings with gan for transferring multiple face attributes[END_REF][START_REF] Zhang | Sparsely grouped multi-task generative adversarial networks for facial attribute manipulation[END_REF] adopt auto-encoder architectures, mapping the input images to modified results.

One major drawback of auto-encoder based model is that the model is trained for one or several specific tasks. Retraining is required if we want to apply the model for a new task.

Inspired by the style mixing capacity of StyleGAN, various studies have assessed the possibility to edit images via the latent space of generative networks. Most of those studies mainly consider synthetic images, as projecting real images to the latent space of GANs is of GANSpace [START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF], which performed PCA in the latent space of generative networks, explored the principal directions and discovered interpret-able controls. The results are taken from [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] and [START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF].

still an open question. To explore high level semantic information in the latent space, different learning based techniques have been proposed. These techniques include learning linear directions, learning latent editing networks and latent optimization methods. We now give a brief introduction on each of them.

Editing along directions

Most of the previous works on GAN models have explored interpolation between two latent codes, which yields a smooth transition on the generated images. However, the property of the latent space and the behavior of the latent codes are still mysterious. A straight forward question could be asked: can we find a direction in the latent space, such that moving a latent code along this direction corresponds to changes of a target attribute on the generated image?

InterFaceGAN The work of Shen et al. [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] gives a possible solution. For a binary attribute, they hypothesize that there exist a hyper-plane in the latent space dividing the latent codes into two groups. To learn this hyper-plane, they sampled a large number of generated images from random latent codes and annotated them using an image classifier to obtain the 'latent code-label' pairs. Using this synthetic dataset, they further learned an linear SVM model in the latent space and show that the normal direction of the decision boundary corresponds to the editing direction of the desired attribute. Figure 2.9 (a) shows that it is possible to manipulate the target facial attribute by simple interpolation along the obtained direction.

GANSpace Harkonen et al. [START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF] proposed an unsupervised solution to explore the latent space of GAN, by running principle component analysis on the latent codes. They discovered that the principle directions correspond to interpret-able controls, while each direction may control several attributes simultaneously. Apart from those two methods, Ganalyze [START_REF] Goetschalckx | Ganalyze: Toward visual definitions of cognitive image properties[END_REF] learned a manifold in the latent space of BigGAN [START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF] to generate images of different memorability. StyleSpace [START_REF] Wu | Stylespace analysis: Disentangled controls for stylegan image generation[END_REF] carried out a quantitative study in the style space S of StyleGAN and realized a highly localized and disentangled control of the visual attributes. The recent works [START_REF] Shen | Closed-form factorization of latent semantics in gans[END_REF][START_REF] Wang | The Geometry of Deep Generative Image Models and its Applications[END_REF] discovered interpret-able transforms by directly decomposing the weights or feature maps of pre-trained GANs.

Latent editing networks

One may observe that the learned directions are not disentangled. For instance, in Figure 2.9 (a), the smile is modified when changing gender. Moreover, the linear hypothesis may be valid only for the attributes which are not correlated with the others. Besides, applying the same editing direction for all the latent codes in the latent space, without taking into account the position of each latent code, may be biased. Therefore, it is reasonable to learn more advanced algorithms for latent space editing.

To achieve better disentangled editing, recent works [START_REF] Tewari | StyleRig: Rigging Style-GAN for 3D Control over Portrait Images[END_REF][START_REF] Abdal | Styleflow: Attributeconditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF][START_REF] Hou | Guidedstyle: Attribute knowledge guided style manipulation for semantic face editing[END_REF] proposed to learn neural networks for latent space editing. StyleRig [START_REF] Tewari | StyleRig: Rigging Style-GAN for 3D Control over Portrait Images[END_REF] introduced an approach that provides a face rig-like control on the generated images by training a rigging network to modify the latent code in the latent space W + of StyleGAN. This network takes a latent code and the 3D morphable face model's semantic parameters as input and outputs a modified latent code, which corresponds to a generated image with the desired pose and expression. GuidedStyle [START_REF] Hou | Guidedstyle: Attribute knowledge guided style manipulation for semantic face editing[END_REF] proposed semantic face editing on StyleGAN by guiding the image generation process with a style manipulation network, trained in the latent space W + as well. StyleFlow [START_REF] Abdal | Styleflow: Attributeconditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF] achieved an attribute-conditional exploration of the latent space of StyleGAN, by replacing the mapping network with a learned mapping function conditioned on the target attributes. This mapping function is built upon conditional normalizing flows [START_REF] Ricky Tq Chen | Neural ordinary differential equations[END_REF][START_REF] Grathwohl | FFJORD: Free-Form Continuous Dynamics for Scalable Reversible Generative Models[END_REF], mapping a latent code z P Z to w P W based on the conditional attribute a. Overall these methods yields better disentangled editing results than simple interpolation along a direction.

Latent optimization and other methods

The previous two types of methods focus on editing of synthetic images, as it remains a challenge to project real images to the latent space of StyleGAN. To address that, Im-age2StyleGAN [START_REF] Abdal | Image2stylegan: How to embed images into the stylegan latent space?[END_REF][START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF] proposed to use optimization method to project real images to the latent space W + of StyleGAN. It is possible to edit local semantic information as well as highlevel attributes using optimization. StyleCLIP [START_REF] Patashnik | Styleclip: Text-driven manipulation of stylegan imagery[END_REF] proposed a text-driven latent manipulation schema by including contrastive language-image pre-training models. EditGAN [START_REF] Ling | EditGAN: High-Precision Semantic Image Editing[END_REF] proposed a fine-grained semantic editing by embedding an image to the latent space and performing conditional latent code optimization according to the segmentation mask.

Apart from the above-mentioned approaches, Collins et al. [START_REF] Collins | Editing in Style: Uncovering the Local Semantics of GANs[END_REF] applied k-means clustering to the hidden layer activations of StyleGAN and discovered a decomposition of semantic objects, which allows further local semantic editing on the generated image. Additionally, [START_REF] Alharbi | Disentangled image generation through structured noise injection[END_REF][START_REF] Kwon | Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Translation[END_REF] modify the style-based GAN architecture and retrain it for better disentanglement in image generation. The work of Nie et al. [START_REF] Nie | Semi-Supervised StyleGAN for Disentanglement Learning[END_REF] showed that disentanglement of StyleGAN's 

GAN Inversion

In this section, we provide an overview of the recent GAN inversion methods. As shown in Figure 2.10, the goal of GAN inversion is to encode a real image to the latent space of a pretrained GAN model, so that the image generated from the inverted latent code is the reconstruction of the input image. With the inverted latent code, one can perform edits on real image using latent space editing methods. Much of the recent literature on GAN inversion pays particular attention to style-based generators [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF][START_REF] Karras | Training Generative Adversarial Networks with Limited Data[END_REF][START_REF] Karras | Alias-Free Generative Adversarial Networks[END_REF], as their latent spaces are better disentangled and have improved editing properties. Among the rich literature on GAN inversion [START_REF] Xia | Gan inversion: A survey[END_REF], the approaches addressing style-based generators can be classified into three types: optimization based methods [START_REF] Abdal | Image2stylegan: How to embed images into the stylegan latent space?[END_REF][START_REF] Huh | Transforming and projecting images into class-conditional generative networks[END_REF][START_REF] Xu | From Continuity to Editability: Inverting GANs with Consecutive Images[END_REF][START_REF] Zhu | Barbershop: GAN-based Image Compositing using Segmentation Masks[END_REF], encoder based models [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF][START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF][START_REF] Wei | A Simple Baseline for StyleGAN Inversion[END_REF] and hybrid methods [START_REF] Zhu | In-domain gan inversion for real image editing[END_REF][START_REF] Chai | Ensembling with Deep Generative Views[END_REF][START_REF] Yu | Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions[END_REF].

Optimization based Inversion

Optimization based methods update directly the inverted latent code by minimizing the reconstruction error on the input image. For StyleGAN inversion, Abdal et al. [START_REF] Abdal | Image2stylegan: How to embed images into the stylegan latent space?[END_REF] proposed to embed the input image in an extended latent space W + , which offers better flexibility and improves the reconstruction quality. To tackle the video inversion problem, Xu et al. [START_REF] Xu | From Continuity to Editability: Inverting GANs with Consecutive Images[END_REF] proposed an approach which jointly optimizes three consecutive images, considering the inversion consistency based on optical flow. Recently, it was shown that including a feature code in the optimization helps preserve more spatial details and improves the perceptual quality of inversion [START_REF] Zhu | Barbershop: GAN-based Image Compositing using Segmentation Masks[END_REF][START_REF] Kang | GAN Inversion for Out-of-Range Images with Geometric Transformations[END_REF]. Despite the satisfying reconstruction quality, the latent codes obtained by optimization-based methods usually present lower editing quality due to the randomness in the optimization process.

Encoder based Inversion

To better regularize the inversion, encoder based methods train an encoder to map real images to the latent space of the pretrained generator. Richardson et al. [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF] proposed the first baseline to learn an encoder for StyleGAN inversion. To improve editing capacity, Tov et al. [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF] proposed a regularization term which forces the inverted latent code in W + to lie closer to the original latent space. Alaluf et al. [START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF] improve the reconstruction quality by introducing an iterative refinement mechanism. A recent work of Wang et al. [START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] formulated the inversion task to a data compression problem and proposed an adaptive distortion alignment module to improve the reconstruction quality. Compared to optimization methods, the latent codes obtained by encoder-based methods present better editing capacity but degraded reconstruction quality.

Hybrid Inversion Hybrid methods are combination of the previous two methods, which take the inverted latent code from a pretrained encoder as initialization and perform optimization on it. Zhu et al. [START_REF] Zhu | In-domain gan inversion for real image editing[END_REF] proposed to learn a domain-guided encoder and use it as a regularizer for domain-regularized optimization. Yu et al. [START_REF] Yu | Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions[END_REF] designed a set of encoders for different pretrained GANs using multi-type latent vectors and two-scale attentions, and applied further optimization to obtain high-fidelity inversions. However, despite the gain in the reconstruction quality, the optimization step makes hybrid methods less suited for video inversion and editing.

Part I Latent Space of Autoencoder

Chapter 3

Photo Style Transfer with Consistency

Losses

In Part I, we present two works on image editing using autoencoder-based models. In this chapter, we explore the task of photo-realistic style transfer. We address the problem of style transfer between two photos and propose a new way to preserve photo-realism. Using a single pair of photos available as input, we train a pair of deep convolutional networks (convnets), each of which transfers the style of one photo to the other. To enforce photo-realism, we introduce a content preserving mechanism by combining a cycle-consistency loss with a self-consistency loss. Experimental results show that this method does not suffer from typical artifacts observed in methods working in the same settings [START_REF] Luan | Deep Photo Style Transfer[END_REF][START_REF] Li | A Closed-form Solution to Photorealistic Image Stylization[END_REF]. We then further analyze some properties of these trained convnets. First, we notice that they can be used to stylize other unseen images with same known style. Second, we show that retraining only a small subset of the network parameters can be sufficient to adapt these convnets to new styles.

Introduction

Image style transfer has been investigated for many years [START_REF] Hertzmann | Image analogies[END_REF][START_REF] Efros | Image quilting for texture synthesis and transfer[END_REF][START_REF] Reinhard | Color transfer between images[END_REF]. In the case where one wants to make a photo look like a painting, several innovative approaches using deep convnets have been proposed recently [START_REF] Gatys | Image style transfer using convolutional neural networks[END_REF][START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF][START_REF] Ulyanov | Texture Networks: Feed-forward Synthesis of Textures and Stylized Images[END_REF][START_REF] Vincent Dumoulin | A learned representation for artistic style[END_REF][START_REF] Ghiasi | Exploring the structure of a real-time, arbitrary neural artistic stylization network[END_REF][START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF][START_REF] Li | Universal style transfer via feature transforms[END_REF]. However, these methods fail for style transfer between photos as they generate strong artifacts and the results lack photorealism. This issue can be partly solved by applying a structure-preserving filter / regularization [START_REF] Luan | Deep Photo Style Transfer[END_REF][START_REF] Li | A Closed-form Solution to Photorealistic Image Stylization[END_REF][START_REF] Puy | A flexible convolutional solver for fast style transfers[END_REF] based on the "matting Laplacian" [START_REF] Levin | A closed-form solution to natural image matting[END_REF]. But since this filter tries to generate an eye-pleasing image from an intermediate result with heavy distortions, it sometimes fails to recover all the structures visible in the input photo or to suppress stylization artifacts. In this work, we propose an alternative method for photo style transfer.

The recent work of Ulyanov et al. [START_REF] Ulyanov | Deep Image Prior[END_REF] shows that the sole structure of a deep convnet is able to capture low-level image statistics before any learning and, thus, can be used as an image prior. Given a deteriorated image, they show that optimizing the parameters of a randomly-initialized convnet, using only this image for "training", is sufficient to improve its quality. The authors demonstrate the efficiency of this technique for, e.g., denoising, upsampling and inpainting. Inspired by this work, we propose to train two networks for photo stylization using only the available pair of photos. All along the training, the networks are forced to preserve the structure of the input photos via cycle-and self-consistency mechanisms [START_REF] Zhu | Unpaired image-toimage translation using cycle-consistent adversarial networks[END_REF]. This approach successfully prevents structure distortions and generates satisfying photo stylization. This constitutes our main contribution. We compare our results to those obtained with state-of-the-art methods in Section 3.3. We then explore some properties of the trained convnets. First, even though these networks are trained using only a single pair of photos, we show that each network can transfer the learnt style to natural images not viewed at training time. The results are comparable to those obtained by training two new convnets using each new image and the original photo of the style. We note however that the images to be stylized need to have a similar semantic content to the original photo of the style. Second, to apply a new style, we show that only a small subset of the network parameters needs to be retrained (with however a good choice of the image pair used to pre-train the other parameters).

In this work, we first concentrate on improving [START_REF] Luan | Deep Photo Style Transfer[END_REF] with the construction of a new photo prior. This prior is constructed using two deep convnets that are trained from a random initialization using two images as inputs. Once trained each network can be used to stylize rapidly new images towards the style of one of the images used for training. Applying a new style needs however a partial retraining. Another related image transformation task is domain adaptation. Each style could be considered as a domain and deep convnets can be trained to transform images from a source domain to a target domain [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF][START_REF] Zhu | Unpaired image-toimage translation using cycle-consistent adversarial networks[END_REF][START_REF] Ting-Chun | High-resolution image synthesis and semantic manipulation with conditional gans[END_REF]. In this work, we use the cycle-consistency mechanism widely used for unpaired domain adaptation.

Note however that we do not use any adversarial loss and that a domain/style in our case is not made of a collection but of a single image.

Photo Style Transfer Network

Our goal is to transfer the style of an image x a to another image x b . We denote this stylized image by x bÑa . Following [START_REF] Luan | Deep Photo Style Transfer[END_REF], x bÑa is defined as a solution of arg min

x l c L c (x, x b ) + l s L s (x, x a ) + l L L L (x), (3.1) 
where l c , l s , l L °0. The content loss L c permits us to retain the content of x b in x bÑa , while the style loss L s aims at transferring the style of x a . The content loss is defined as the Euclidean distance between VGG-19 features [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF] of x b and x. The style loss is defined as the Euclidean distance between Gram matrices of VGG-19 features of x a and x. Finally, L L is a regularization term favoring photorealism and built using the matting Laplacian L [START_REF] Levin | A closed-form solution to natural image matting[END_REF].

Although visually pleasing at the first glance, the photo stylization results obtained with the use of the matting Laplacian L present several undesirable artifacts (see Section 3.3). To avoid these disadvantages, we exploit the fact that both x a and x b are photorealistic to build a new content loss that preserves photorealism as much as possible.

Content preserving mechanism

First, we remove the loss L L involving the matting Laplacian in (3.1), or, equivalently, set

l L = 0.
Second, taking inspiration from [START_REF] Ulyanov | Deep Image Prior[END_REF], we propose to use the constraint x = g q a (x b ) in (3.1), where g q a (¨) is a deep network with parameters q a that performs stylization toward the style The network g q a (¨) transfers the style of the image x a to its input, while g q b (.) transfers the style of x b . Cycle-consistency is the fact that g q b (g q a (x b )) « x b and g q a (g q b (x a )) « x a , while selfconsistency is the fact that g q b (x b ) « x b and g q a (x a ) « x a .

Input Cycle-consistency Self-consistency Stylization of x a . Therefore, instead of directly minimizing the loss on x, the minimization is conducted over q a . Third, we borrow from [START_REF] Zhu | Unpaired image-toimage translation using cycle-consistent adversarial networks[END_REF] the idea of cycle consistency to construct a new content loss preserving input structures. Let g q b (¨) be a deep network with parameters q b that performs stylization toward the style of x b . If we feed the stylized image x bÑa = g q a (x b ) into g q b (¨), we expect to recover the original input image x b . Similarly, we expect g q a (g q b (x a )) = x a (Fig. 3.1a). The first part of our new content loss reads

L1 (q a , q b ) = L c (g q b (g q a (x b )), x b ) + L c (g q a (g q b (x a )), x a ), (3.2) 
where we recall that L c is a perceptual loss constructed using VGG-19 features. As in the recent work on image inpainting [START_REF] Huy | Structural inpainting[END_REF], we use layers conv1_1, conv2_1 and conv3_1 of VGG-19.

Fourth, given the input image x a , the stylization network g q a (¨) should be able to preserve x a : x a = g q a (x a ). Similarly, x b = g q b (x b ). We name this mechanism self-consistency (Fig. 3.1b). This yields the second part of our new content loss:

L2 (q a , q b ) = L c (g q a (x a ), x a ) + L c (g q b (x b ), x b ). (3.3)
We remarked that using the cycle-consistency loss exclusively as content loss was not sufficient to preserve input structures. Using jointly the cycle-consistency and self-consistency losses improved the quality of our results. We show in Fig. 3.2 that the cyle-and selfconsistencies are well respected by the pair of trained networks. Finally, the stylization is controlled by the style loss L s , calculated for both styles:

Ls (q a , q b ) = L s (g q a (x b ), x a ) + L s (g q b (x a ), x b ), (3.4) 
where we recall that L s is defined by the distance between Gram matrices of VGG-19 features.

We use layers conv1_1, conv2_1 and conv3_1.

In total, we replace (3.1) by minimizing w.r.t. networks' parameters the complete loss:

L(q a , q b ) = l c ⇥ L1 (q a , q b ) + L2 (q a , q b ) ⇤ + l s Ls (q a , q b ). (3.5) 
In [START_REF] Zhu | Unpaired image-toimage translation using cycle-consistent adversarial networks[END_REF], the cycle-consistency loss is used in combination with an adversarial loss, which also contributes to the photorealism of their result. In our case, no adversarial loss is used.

Let us also re-emphasize that, unlike in [START_REF] Zhu | Unpaired image-toimage translation using cycle-consistent adversarial networks[END_REF] and related works, g q a (¨) and g q b (¨) are trained using only two images: x a and x b . Our method is also inspired by the work of [START_REF] Ulyanov | Deep Image Prior[END_REF], where one network is trained using one image (and a fixed random input) to perform, e.g., denoising, up-sampling and inpainting. However, our trained networks can be applied to images not viewed at training time while the network trained in [START_REF] Ulyanov | Deep Image Prior[END_REF] remains specific to the image used for training.

Network architecture

We use a network architecture which has been proved effective by earlier works on artistic style transfer [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF][START_REF] Vincent Dumoulin | A learned representation for artistic style[END_REF] and domain adaptation [START_REF] Zhu | Unpaired image-toimage translation using cycle-consistent adversarial networks[END_REF]. The structure of the network is presented in Fig. 3.3. It is similar to that of [START_REF] Vincent Dumoulin | A learned representation for artistic style[END_REF] with two differences. First, inspired by U-net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF], we introduce skip connections between the second and penultimate layers, as well as between the third and ante-penultimate layers, with the aim of better preserving the structure of the input image.

Second, we also reduce the kernel size in the residual blocks [START_REF] He | Deep residual learning for image recognition[END_REF] from 3 ˆ3 to 1 ˆ1 as, in our case, reducing the number of parameters had no impact on the quality of generated results while accelerating the training.

Implementation details

As in [START_REF] Luan | Deep Photo Style Transfer[END_REF][START_REF] Li | A Closed-form Solution to Photorealistic Image Stylization[END_REF][START_REF] Puy | A flexible convolutional solver for fast style transfers[END_REF], we match the style of similar semantic regions (sky, building, lake, etc.)

between two images by using semantic segmentation masks. We allocate one stylization network for each semantic region to prevent style mixing. Hence, for a pair of photos each with n corresponding semantic regions, we train 2n networks. Training is performed jointly for up to 8 semantic regions.

The style given to an image in the networks g(¨) can be controlled by the instance normalization parameters as shown in [START_REF] Vincent Dumoulin | A learned representation for artistic style[END_REF][START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF]. In order to reduce the number of trainable parameters, the two networks share the same convolutional layers but have different instance normalization layers.

The full objective function (3.5) contains six sub-losses 1 , each involving the VGG-19 network. To reduce memory footprint, we randomly draw one of the sub-losses at each iteration and apply a gradient step using this sub-loss only. The sub-losses are drawn using a uniform distribution and without replacement. This ensures that all the sub-losses are selected once every six iterations. For a pair of photos of size 700 ˆ400, each with a single semantic region, the training process takes about 15 minutes on a NVIDIA Tesla P100 GPU. Our method was implemented using PyTorch [START_REF] Paszke | Automatic Differentiation in PyTorch[END_REF].

For a fair comparison with existing methods, we post-process the obtained images using the same filter as in [START_REF] Luan | Deep Photo Style Transfer[END_REF][START_REF] Li | A Closed-form Solution to Photorealistic Image Stylization[END_REF][START_REF] Puy | A flexible convolutional solver for fast style transfers[END_REF]. This post-processing permits ones to enhance fine details and global photorealism.

Results

Comparison with state-of-the-art methods

We compare our results with those of [START_REF] Luan | Deep Photo Style Transfer[END_REF][START_REF] Li | A Closed-form Solution to Photorealistic Image Stylization[END_REF] in Fig. 3.4. The method of [START_REF] Luan | Deep Photo Style Transfer[END_REF] has been described above. Li et al. [START_REF] Li | A Closed-form Solution to Photorealistic Image Stylization[END_REF] proposed a closed-form solution to the photo style transfer problem by using a feed-forward network for stylization followed by a smoothing step that favors photorealism.

Qualitatively, the results of [START_REF] Luan | Deep Photo Style Transfer[END_REF] seem satisfying at first glance, but some of them present watercolor painting-like artifacts. The method [START_REF] Li | A Closed-form Solution to Photorealistic Image Stylization[END_REF] is fast and preserves well the content structure. Nevertheless, the smoothing step tends to weaken the stylization, with a lack of color saturation in the output image compared to the style image, and sometimes yields an undesired haze effect. In comparison, we find that our results respect better the original style while looking closer to real photos. They do not suffer from watercolor painting-like or hazy artifacts. However, we remarked that our approach sometimes generates inconsistent stylizations at the boundaries of different semantic regions. We also noticed that it has difficulties transferring city landscape images from night to day. We show such a failure case in the last row of Fig. 3.4. Note that the results obtained by [START_REF] Luan | Deep Photo Style Transfer[END_REF] or [START_REF] Li | A Closed-form Solution to Photorealistic Image Stylization[END_REF] are also not entirely satisfying for this example. Finally, we remarked that the method of [START_REF] Li | A Closed-form Solution to Photorealistic Image Stylization[END_REF] has more difficulties to transfer the color saturation of the style image than the method of [START_REF] Luan | Deep Photo Style Transfer[END_REF] or ours. A measure of the distance between the histograms (computed in the channel S of the HSV color model) of the style

Results

Input Mask Luan [START_REF] Luan | Deep Photo Style Transfer[END_REF] Li [START_REF] Li | A Closed-form Solution to Photorealistic Image Stylization[END_REF] Ours images and stylized images shows that, on average, [START_REF] Luan | Deep Photo Style Transfer[END_REF] preserves the best color saturation followed by our method.

Generalization to unseen images

Even though trained on merely two images, our network can stylize images not viewed at training time. As an example, we first train style transfer networks on the pair of images in Fig. 3.5a. We then use these trained networks to transfer the styles of the small top images in Fig. 3.5a to the images in Fig. 3.5b. We obtained the stylized images in Fig. 3.5c, which preserve well the original structures while incorporating the target styles. For comparison, we

show the results obtained with our original approach in Fig. 3.5d, i.e., obtained after training new convnets for each image in Fig. 3.5b. The results are globally comparable to the results obtained using the pre-trained convnets. We nevertheless remarked that to get a reasonable stylization one should use images of similar semantic content as the one used to pre-train the style transfer networks. When there is a semantic difference, our approach still transfers the styles but may generate unrealistic results, such as blue house or red river. For the domelike artifact in Fig. 3.5d, there exist nearly invisible color differences in the dark area, so the network fails to transform all the area into blue. 

Retraining for new styles

We mentioned in Section 3.2.3 that our stylization networks share the same convolutional layers but have different instance normalization parameters, which control the styles. This design is due to Dumoulin et al. [START_REF] Vincent Dumoulin | A learned representation for artistic style[END_REF]. We show below that it is sufficient to retrain the instance normalization parameters to adapt our networks to a new style, even though the convolutional layers are pre-trained using a single pair of images. Given the extreme scarcity of training data, this property was not guaranteed, as the role of the convolutional filters and normalization parameters could have not been completely disentangled, letting the former still control part of the stylization.

We trained a pair of networks on a first pair of images. We fix the convolutional layers and retrain both networks using another pair of images by optimizing only on the instance normalization parameters. Fig. 3.6c-e present results obtained with this approach. The results are qualitatively comparable to those generated by randomly initialized and fully trained networks. Let us highlight nevertheless that this adaptation of the instance normalization parameters works better when the networks are pre-trained on two images of completely different styles (colorwise).

Discussion

In this chapter, we designed a new method for effective photo stylization between two images that consists in training a pair of deep convnets with cycle-and self-consistency losses.

Despite the high-quality results on several examples, there is still room for improvement of our results. For example, when looking closely, one can notice the artifacts at the boundary of different semantic regions. This may be caused by the use of segmentation masks. Future works could be done to reduce these artifacts and the overexposure that sometimes appears in small regions of the results. A direct extension of this work could be to train another network to predict the style parameters in g q (¨) directly from an image, while using the proposed loss, to adapt the method for arbitrary style at runtime.

Chapter 4

High Resolution Face Age Editing

In this chapter, we consider a specific facial attribute editing task -face age editing, using autoencoder-based models. Among the current methods, adversarial training has produced some of the most visually impressive results for image manipulation. In spite of the considerable progress, current autoencoder-based methods often present visual artifacts and can only deal with low-resolution images. In order to achieve aging/de-aging with the high quality and robustness necessary for wider use, these problems need to be addressed. To achieve that, we propose an encoder-decoder architecture for face age editing. The core idea of our model is to encode a face image to age-invariant features, and learn a modulation vector corresponding to a target age. We then combine these two elements to produce a realistic image of the person with the desired target age. Our architecture is greatly simplified with respect to other approaches, and allows for fine-grained age editing on high resolution images in a single unified model.

Introduction

Synthetic aging or de-aging effects in movies are usually generated by makeup or special visual effects. Although impressive results can be obtained digitally, as in the recent Martin Scorcese's movie The Irishman, the underlying processes are extremely time consuming. Thus, robust, high-quality algorithms for performing automatic age modification are highly desirable. Nevertheless, editing faces is an intrinsically difficult task. Indeed, the human brain is particularly good at perceiving faces' attributes in order to detect, recognize or analyze them, for instance to infer identity or emotions. Consequently, even small artifacts are immediately perceived and ruin the perception of results. For this reason, our goal is to produce artifact-free, sharp and photorealistic results on high-resolution face images.

With the success of Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative adversarial nets[END_REF] in high quality image generation, GAN-based models have been widely used for image-to-image translation [START_REF] Ting-Chun | High-resolution image synthesis and semantic manipulation with conditional gans[END_REF][START_REF] Zhu | Unpaired image-toimage translation using cycle-consistent adversarial networks[END_REF]. Despite having set new standards for natural image synthesis, GANs are known to suffer from two major flaws : an abundance of small artifacts and strong instability of the training process. The latest face aging studies [START_REF] He | S2GAN: Share Aging Factors Across Ages and Share Aging Trends Among Individuals[END_REF][START_REF] Liu | Attribute-aware face aging with wavelet-based generative adversarial networks[END_REF][START_REF] Song | Dual Conditional GANs for Face Aging and Rejuvenation[END_REF][START_REF] Wang | Face aging with identitypreserved conditional generative adversarial networks[END_REF][START_REF] Zhang | Age Progression/Regression by Conditional Adversarial Autoencoder[END_REF]] also adopt GAN-based models.

Specifically, they divide face datasets into different age groups, feed young images into the generator, and rely on the discriminator to map output images to older age distributions.

There are multiple limitations to this approach. Firstly, as can be expected, these approaches 35 inherit the drawbacks of GAN-based methods -blurry background, small parasite structures, instability of training. Secondly, as the aging effect is generated by matching the output image distribution to the target group, these methods are limited to coarse aging/de-aging. To achieve fine-grained transformation, a separate model needs to be trained between each pair of ages.

In this chapter, we propose an encoder-decoder architecture for the problem of face age editing with high visual quality on high resolution images. In order to address the aforementioned limitations, namely the tendency to produce visual artifacts and training instability, we endeavour to keep the architecture as simple as possible. Firstly, we use a single network for both aging and de-aging. This is reasonable since the encoder part of our model is assumed to encode identity, emotion or details in the input image that are not related to age, so that the same latent space can be used for both tasks of aging and de-aging. Secondly, we rely on a feature modulation layer, that is compact, acts directly on the latent space and allows for continuous age transitions. Thirdly, unlike in competing methods where the discriminator used during adversarial training is conditioned on the target age, we use a discriminator which is not conditioned and concentrates solely on the photorealism of the output images to reduce editing artifacts. The discriminator can be considered as a regularizer which imposes photorealism other than a traditional discriminator trying to match two distributions. Thanks to this design, our model achieves efficient disentanglement of age attributes and face identity.

We present experimental results on high resolution images with qualitative and quantitative evaluations. In particular, these experiments provide clear evidence that the visual quality achieved by our results outperforms state of the art methods. Experiments on alternative datasets further illustrate the generalization capacity of the method.

Background

The survey work [START_REF] Fu | Age synthesis and estimation via faces: A survey[END_REF] gives an exhaustive overview of the traditional age synthesis algorithms. In this work, we are more interested in deep learning based methods, which have made impressive progress on face aging tasks during the last few years. A conditional GAN [START_REF] Mirza | Conditional generative adversarial nets[END_REF] model is first introduced for face aging task by [START_REF] Antipov | Face aging with conditional generative adversarial networks[END_REF][START_REF] Zhang | Age Progression/Regression by Conditional Adversarial Autoencoder[END_REF]. They encode the face image to the latent space, manipulate the latent code, and decode it to an aged face with the generator. However, the identity information is damaged during this process. This is further improved by [START_REF] Wang | Face aging with identitypreserved conditional generative adversarial networks[END_REF][START_REF] Yang | Learning face age progression: A pyramid architecture of gans[END_REF], by adding an identity preserving term to the objective. Despite the improvement, their results are over-smoothed compared with the input images. 

Method

In this section, we present the face age editing problem and present our proposed model in detail. Figure 4.2 illustrates our proposed age transformer and training procedure.

Overview

Let x 0 be an image drawn randomly from a face dataset. We denote by a 0 the age of the person in x 0 . Our goal is to transform x 0 so that the person in this image looks like someone at a 1 years old. We want the aged version of x 0 to share many age-unrelated characteristics with x 0 : identity, emotion, haircut, background, etc. That is to say: the facial attributes not 4.2. Method relevant to age, as well as the background, need to be preserved during age transformation.

Therefore, we assume that a face aging model and a face de-aging model can share most of their parameters. In this setting, we consider a single age transformer G and assume that G can transform any face image to any target age. The inputs of our model are the face image

x 0 and the target age a 1 . The output is denoted by G(x 0 , a 1 ), which depicts x 0 at the target age a 1 .

Age transformer

The proposed age transformer shown in Figure 4.2 employs an auto-encoder architecture and is made of an encoder, a feature modulation block and a decoder. The encoder consists of three strided convolutional layers (the first one of stride 1, the other two of stride 2) and four residual blocks [START_REF] He | Deep residual learning for image recognition[END_REF], while the decoder contains two nearest-neighbour upsampling layers and three convolutional layers, similar to the architecture used in [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF][START_REF] Zhu | Unpaired image-toimage translation using cycle-consistent adversarial networks[END_REF]. The main difference compared to these works is our feature modulation block, in which the output features of the encoder are modulated by an age-specific vector (see details below). This idea is inspired by recent works on style transfer [START_REF] Vincent Dumoulin | A learned representation for artistic style[END_REF][START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF] which show the possibility to represent different styles using the parameters of normalization layers.

• Encoder The face image x 0 is the input of the encoder. The output features are denoted by C P R nˆc , where c = 128 is the number of channels and n is the product of the two spatial dimensions.

• Feature modulation for age selection The target age a 1 is encoded as an one-hot vector, denoted by z 1 , and passed to the modulating network. This network consists of a single fully connected layer whith a sigmoid activation. It outputs a modulation vector w P [0, 1] c , which is used to re-weight the features C before passing them into the decoder and obtaining the face image at the desired age. The modulated features are C diag(w), where diag(w) is the diagonal matrix with diagonal w.

• Decoder The decoder takes the modulated features C diag(w) as input and two skip connections, used to preserve the finer details of the input image. The final output is denoted by G(x 0 , a 1 ).

Training

As illustrated in Figure 4.2, we train our age transformer with an age classifier that ensures age-accurate transformation and a discriminator that preserves photorealism.

The initial age a 0 of x 0 is easy to estimate using a pretrained age classifier, e.g., [START_REF] Rasmus Rothe | Dex: Deep expectation of apparent age from a single image[END_REF] 

L class = E x 0 "p(x) E a 1 "q(a|a 0 ) [`(z 1 , V(G(x 0 , a 1 )))] (4.1)
where p(x) denotes the training image distribution over X , `denotes the categorical crossentropy loss, and z 1 is the one-hot vector encoding a 1 .

Adversarial loss

To enforce better photorealism of the modified images G(x 0 , a 1 ), we adopt an adversarial loss built using PatchGAN [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF] with the LSGAN objective [START_REF] Mao | Least squares generative adversarial networks[END_REF]. Unlike the latest works on face aging [START_REF] He | S2GAN: Share Aging Factors Across Ages and Share Aging Trends Among Individuals[END_REF][START_REF] Liu | Attribute-aware face aging with wavelet-based generative adversarial networks[END_REF][START_REF] Song | Dual Conditional GANs for Face Aging and Rejuvenation[END_REF][START_REF] Wang | Face aging with identitypreserved conditional generative adversarial networks[END_REF][START_REF] Zhang | Age Progression/Regression by Conditional Adversarial Autoencoder[END_REF], our discriminator is used to distinguish between real and manipulated images without taking the age information into account. In our work, the aging and de-aging effects is obtained solely with the age classification loss.

The discriminator is denoted by D. The architecture of D is the same as proposed in [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF].

We use a patch size 142 ˆ142 for 1024 ˆ1024 images. The modified image G(x 0 , a 1 ) should be indistinguishable from real samples. Therefore, the losses we use are

L GAN (G) = E x 0 "p(x) E a 1 "q(a|a 0 ) [(D(G(x 0 , a 1 )) ´1) 2 ], (4.2) 
when training G, and

L GAN (D) = E x 0 "p(x) E a 1 "q(a|a 0 ) [(D(G(x 0 , a 1 ))) 2 ] + E y"p(x) [(D(y) ´1) 2 ] (4.3) 
when training D. We apply R 1 regularization [START_REF] Mescheder | Which Training Methods for GANs do actually Converge?[END_REF] with g = 10 on the discriminator.

Reconstruction loss

When the age transformer receives x 0 and a 0 as inputs, the generated output image G(x 0 , a 0 ) should be identical to the input image. Hence, we minimize the following reconstruction loss:

L recon = E x 0 "p(x) [||G(x 0 , a 0 ) ´x0 || 1 ]. (4.4) 
Here we choose to use L1 distance, following a previous work [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF], as using L1 distance rather than L2 encourages less blurring.

Full loss

We train the age transformer and the discriminator by minimizing the full objective:

L = l recon L recon + l class L class + L GAN (4.5)
where l recon and l class are weights balancing the influence of each loss.

Experiments

In this section, we introduce our training setup and present the experimental results. We further evaluate the quality of our results using quantitative metrics.

Data augmentation with synthetic images

Our training dataset is built upon FFHQ [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF], a high resolution dataset which contains 70, 000 face images at 1024 ˆ1024 resolution. The dataset includes large variations in age, ethnicity, pose, lighting, and image background. However, the dataset contains only unlabeled raw images collected from Flickr.

To obtain the age information, we use an age classifier pretrained on IMDB-WIKI [START_REF] Rasmus Rothe | Dex: Deep expectation of apparent age from a single image[END_REF]. We observe that FFHQ contains much more samples of young faces than of old ones. This data imbalance is challenging since the aging and de-aging tasks would not be treated equally during training: most of faces being young, the age transformer would be trained to perform aging much more often than de-aging, failing to yield satisfying de-aging results. To compensate this imbalance in the age distribution, we propose to perform data augmentation using StyleGAN -a state-of-the-art high resolution image generation model [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF]. We use the StyleGAN model pretrained on FFHQ to generate 300, 000 synthetic images. A quick visual inspection shows that most of the generated images have no significant artifacts and are nearly indistinguishable from real images by a human. Therefore, we use them for data augmentation to obtain a quasi-uniform age distribution over Q: for any age bin with less than 1, 000 samples in the original FFHQ dataset, we complete this bin with some of the generated synthetic face images; for any age bin with more than 1, 000 samples, we select randomly 1, 000 face images from the original FFHQ dataset. The age-equalized dataset contains 47, 990 images over the range Q = t20, . . . , 69u.

Implementation details

Our model is implemented in PyTorch [START_REF] Paszke | Automatic Differentiation in PyTorch[END_REF]. We take 95% of the equalized dataset as our training set and the rest as our test set. For the age transformer and the discriminator, spectral normalisation [START_REF] Miyato | Spectral Normalization for Generative Adversarial Networks[END_REF] is applied on all the convolution layers except the last one of the age transformer. All the activation layers use Leaky ReLU [START_REF] Andrew L Maas | Rectifier nonlinearities improve neural network acoustic models[END_REF] with a negative slope of 0.2.

Network architecture Table 4.1 presents the hyperparameters of the proposed network architecture. The discriminator is a 142 ˆ142 patch discriminator. Each element of the output feature map corresponds to a receptive field of 142 ˆ142 on the original input image.

Age classifier

To obtain the age information of FFHQ dataset [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF], we use the age classifier [START_REF] Rasmus Rothe | Dex: Deep expectation of apparent age from a single image[END_REF], which has been pretrained on IMDB-WIKI. This dataset contains 523, 051 face images of 20, 284 celebrities collected from the IMDB and Wikipedia websites. The dataset mostly covers the [START_REF] Fu | Age synthesis and estimation via faces: A survey[END_REF][START_REF] Andrew L Maas | Rectifier nonlinearities improve neural network acoustic models[END_REF] age interval, and has only very few samples for the younger and older age intervals. Consequently, the age classifier might yield less accurate age estimation for faces of people younger than 20 years old or much older than 65 years old. We therefore choose to use images in the age range Q = t20, . . . , 69u for training. We pass the images of FFHQ dataset into the age classifier and observe that FFHQ contains much more samples of young faces than of old ones. We then augment the dataset with synthetic images generated by StyleGAN [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF] to achieve a quasi-uniform age distribution over the age range Q, as described in section 4.1 of the paper.

We consider age transformation only in the age range Q = t20, . . . , 69u. The constant a ˚is set to 25. We have observed that the most significant artifacts appear when the gap between the source and target age is large. By choosing a ˚large enough, we force the discriminator D to suppress these artifacts during adversarial training. The weights l recon and l class are set to 10 and 0.1, respectively. We use Adam optimizer with a learning rate of 10 ´4. The age transformer G is updated once after each discriminator update. Our model is trained for 20 [START_REF] Huang | Arbitrary style transfer in real-time with adaptive instance normalization[END_REF] 45 55 65 We compare our method to the two most recent state-of-the-art methods on face aging for which the official codes are released -IPCGAN [START_REF] Wang | Face aging with identitypreserved conditional generative adversarial networks[END_REF] and PAGGAN [START_REF] Yang | Learning face age progression: A pyramid architecture of gans[END_REF]. We also compare our results to those obtained with FaderNet [START_REF] Lample | Fader networks: Manipulating images by sliding attributes[END_REF], which allows one to manipulate several facial attributes including the age. Figure 4.9 present the face aging results of IPCGAN, PAGGAN and our method on CACD [START_REF] Bor-Chun Chen | Cross-age reference coding for age-invariant face recognition and retrieval[END_REF]. The output size of each method is: 128 ˆ128 for IPCGAN, 224 ˆ224 for PAG-GAN, 256 ˆ256 for our method. IPCGAN generates satisfying aging results and preserves well the identity of input images. However, as can be seen e.g. in Figure 4.9(a) row 1 column 4, the generated image presents noticeable artifacts. PAGGAN generates impressive aging effects but also introduce colored artifacts as shown in The second to fifth column are outputs from Fader Network [START_REF] Lample | Fader networks: Manipulating images by sliding attributes[END_REF], PAG-GAN [START_REF] Yang | Learning face age progression: A pyramid architecture of gans[END_REF], IPC-GAN [START_REF] Wang | Face aging with identitypreserved conditional generative adversarial networks[END_REF] and our method. Our results reach the highest resolution without introducing significant artifacts. Our method preserves the background better compared to other techniques, see for instance the letters on the third row. In addition, compared to other techniques, our method leads to a result without artefacts nor blur.

and PAGGAN both degrade the quality of input images. Our method is able to generate consistent aging effects, and preserve well the fine details of the input images.

Generalisation capacity for images in unseen dataset

For fair comparison and also to reduce the possible effect of overfitting on the training data, we evaluate all methods on a dataset not viewed at training time by any of the methods. We chose CelebA-HQ [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF], a high resolution version of the CelebA dataset. The input images are at 1024 ˆ1024 resolution, and are further downsampled at the resolution at which each method was trained using their official codes. We compare our method against the two most recent state-of-the-art methods on face aging for which the official codes are released -PAGGAN [START_REF] Yang | Learning face age progression: A pyramid architecture of gans[END_REF] and IPCGAN [START_REF] Wang | Face aging with identitypreserved conditional generative adversarial networks[END_REF].

We also compare our results to those obtained with Fader Network [START_REF] Lample | Fader networks: Manipulating images by sliding attributes[END_REF] Figure 4.12: Comparison of face aging results on CelebA HQ [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF]. The first column are the input images. The second to fifth column are outputs from Fader Network [START_REF] Lample | Fader networks: Manipulating images by sliding attributes[END_REF], PAG-GAN [START_REF] Yang | Learning face age progression: A pyramid architecture of gans[END_REF], IPC-GAN [START_REF] Wang | Face aging with identitypreserved conditional generative adversarial networks[END_REF] and our method. Our results reach the highest resolution without introducing significant artifacts. Our method preserves the background better compared to other techniques, see for instance the letters on the third row. In addition, compared to other techniques, our method leads to results that are free of artefacts and blur.

of the face and the background better. In figs. [START_REF]Face++ research toolkit[END_REF]. We compare our method against three methods: Fader Network [START_REF] Lample | Fader networks: Manipulating images by sliding attributes[END_REF], PAGGAN [START_REF] Yang | Learning face age progression: A pyramid architecture of gans[END_REF] and IPCGAN [START_REF] Wang | Face aging with identitypreserved conditional generative adversarial networks[END_REF]. Images are transferred to the oldest age group (50+) for all the methods. The second column presents the average predicted age. The third column indicates the blurriness of the results (lower value means less blurry). The fourth column is the gender preservation rate, meaning to which percentage the original gender is preserved.

The fifth column refers to expression preservation -smiling preservation rate. The last two columns indicate the emotion preservation rate

Quantitative evaluation

Quantitative evaluation of image-to-image translation tasks is still an open question and there is no universal metric to measure photorealism or quantify artifacts in an image. The recent works [START_REF] He | S2GAN: Share Aging Factors Across Ages and Share Aging Trends Among Individuals[END_REF][START_REF] Liu | Attribute-aware face aging with wavelet-based generative adversarial networks[END_REF][START_REF] Yang | Learning face age progression: A pyramid architecture of gans[END_REF] on face aging use an online face recognition API to estimate the age and the identity preservation accuracy of the modified images. We thus employ a similar evaluation process.

In our evaluation, the first 1, 000 images with true "Young" label of the CelebA-HQ dataset are extracted as test images. Using this test set, we make a quantitative comparison with FaderNet [START_REF] Lample | Fader networks: Manipulating images by sliding attributes[END_REF], IPCGAN [START_REF] Wang | Face aging with identitypreserved conditional generative adversarial networks[END_REF] and PAGGAN [START_REF] Yang | Learning face age progression: A pyramid architecture of gans[END_REF]. Each image is transferred to the oldest age group using their official released models. For IPCGAN and PAGGAN, the oldest age group refer to 50+ and [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Liu | Unsupervised image-to-image translation networks[END_REF] respectively. For FaderNet, the old attribute is set to be the default largest value for aging in their official code. To have a fair comparison with groupwise methods, and since 50+ is considered as the oldest age group, we choose a target age of 60

(the mean of the age range t51, . . . , 69u Ä Q) for our age transformer.

Thus we get 1000 modified images for each method. We further evaluate these output images using the online face recognition API of Face++ [START_REF]Face++ research toolkit[END_REF]. From the detect API, we obtain the following interesting metrics: age, gender, blurriness (whether the face is blurry or not, larger values means blurrier), smiling and emotion estimation. The emotion estimation contains a series of emotions: sadness, neutral, disgust, anger, surprise, fear and happiness. With a preliminary analysis on the results, 94.20% of the input images are classified as neutral or happiness. Thus we just keep these two terms for emotion preservation comparison. We have also compared the identity preservation rate using the API to compare the modified images with the original inputs. However, since all methods achieve a nearly 100% accuracy, this metric is not reported here. method performs much better in generating sharper images, which is in agreement with the visual comparisons.

Discussion

Ablation study on discriminator

We have explored three different types of discriminators to train the age transformer. Figure 4.13 presents the face age editing results corresponding to the different settings.

• Conditional discriminator. We adopt a patch discriminator [START_REF] Isola | Image-to-Image Translation with Conditional Adversarial Networks[END_REF] with a label projection applied on the features before the last convolutional layer, similar to the settings in [START_REF] Miyato | cGANs with projection discriminator[END_REF].

The discriminator is conditioned on four age groups: • Two separate discriminators. One discriminator receives manipulated and real images with a desired age lies in the old age group , while the other one takes manipulated and real images in the young age group . With this setting, the task of generating aging/de-aging effects is shared among the classifier and the discriminators. Although the results in 4.13(b) are better than those in 4.13(a), over-smoothing artifacts are perceived in the de-aging results and colored artifacts appear in the aging results.

• One single discriminator. This is our proposed method. The discriminator can be considered as a regularizer which imposes photorealism, as it takes all the manipulated and real images as input. The generation of aging/de-aging effects is solely dictated by the age classifier. We are able to achieve high resolution results only with this last setting.

Image reconstructed from a latent code optimization

The recent work of Shen et al. [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] proposed an effective way to manipulate the latent codes in the latent space of an image generator to achieve high visual quality manipulation of the corresponding synthetic images. It is therefore tempting to manipulate the latent code directly to produce face manipulation (and thus age editing) on natural images with this approach.

However, finding such a latent code for an arbitrary face image is still a challenging problem.

According to our experiments using StyleGAN [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF], only a fraction of natural face images can be accurately reconstructed from the latent code1 by [START_REF] Nikitko | StyleGAN Encoder for Official TensorFlow Implementation[END_REF]. Consequently, this type of method is impractical until a better StyleGAN encoder is made available. Figure 4.14 is meant to support this claim, where reconstruction results of natural face images can be assessed. We notice that the reconstructed images have painting-like artifacts, blurry backgrounds, and sometimes fail to preserve the identity of the person in the input image. Indeed, StyleGAN is much more efficient at sampling random faces from the latent space than at approximating a given face image. To achieve high quality editing on real images using the latent space of the pretrained GAN, it is necessary to first tackle the challenge of GAN inversion.

Weakly supervised training

To the best of our knowledge, our work is the first to use unlabeled data for training among recent face aging studies [START_REF] He | S2GAN: Share Aging Factors Across Ages and Share Aging Trends Among Individuals[END_REF][START_REF] Liu | Attribute-aware face aging with wavelet-based generative adversarial networks[END_REF][START_REF] Song | Dual Conditional GANs for Face Aging and Rejuvenation[END_REF][START_REF] Wang | Face aging with identitypreserved conditional generative adversarial networks[END_REF][START_REF] Zhang | Age Progression/Regression by Conditional Adversarial Autoencoder[END_REF]. A classifier pretrained on IMDB-WIKI [START_REF] Rasmus Rothe | Dex: Deep expectation of apparent age from a single image[END_REF], a low resolution face dataset, is used to provide age information. Moreover, the discriminator in our method is used only to distinguish real and manipulated images. Relying solely on the classifier, we successfully extract the age specific features and further realize age transform on high resolution images. This reveals the capacity of the classifier, even trained on low quality images. Our method could be potentially generalized to other face attributes manipulation tasks, by using a separate pair of modulating network and classifier for each attribute.

Future works

In this chapter, we have proposed an age transformer architecture, enabling continuous face age editing with a single network, which we have endeavoured to keep as simple as possible.

We believe that this approach, combined with an encoder-decoder architecture, is the most efficient way towards high quality, high resolution face editing results. We have demonstrated the capacity of our model to produce photorealistic and sharp results, without introducing significant artifacts, on images of resolution 1024 ˆ1024. The proposed feature modulation block appears to achieve efficient separation of age and identity information. Given the performance achieved, this design can be potentially useful for other face attribute manipulation tasks.

On the other hand, seeing the recent progress of high quality image editing using the latent space of style-based generator, projecting real images into the latent space of a pretrained generator and realizing further editing via latent space editing is another good choice.

Such that a better understanding of the latent space and a good encoder for a pretrained GAN model are two key components for this approach. In the next part of this thesis, we will focus on this type of approaches.

Part II

Latent Space of GANs

Chapter 5

A Latent Transformer for Disentangled

Face Editing in Images and Videos

In the second part of this thesis, we explore the image editing task using the latent space of pretrained GAN models. In Part II, we present two works -an editing method using the latent space of a pre-trained GAN model, and a feature-style encoder for GAN inversion.

In this chapter, we present a latent transformation network for disentangled face editing in images and videos. Recent work has demonstrated the great potential of image editing in the latent space of powerful deep generative models such as StyleGAN. However, the success of such methods relies on the assumption that a linear hyperplane may separate the latent space into two subspaces for a binary attribute. In this work, we show that this hypothesis is a significant limitation and propose to learn a non-linear, regularized and identity-preserving latent space transformation that leads to more accurate and disentangled manipulations of facial attributes. We further introduce a pipeline to generalize our face editing method to videos. Our model achieves a disentangled, controllable, and identity-preserving facial attribute editing, even in the challenging case of real (i.e., non-synthetic) images and videos.

We conduct extensive experiments on image and video datasets and show that our model outperforms other state-of-the-art methods in visual quality and quantitative evaluation.

Introduction

For facial attribute editing tasks, it is highly desirable to be able to control a facial attribute without affecting other information. An appropriate face editing method should rely on disentangled attributes and permit identity-preserving manipulations. Earlier works based on deep learning focus on encoder-decoder based architectures [START_REF] Choi | Stargan: Unified generative adversarial networks for multi-domain image-toimage translation[END_REF][START_REF] Huang | Multimodal unsupervised image-to-image translation[END_REF]. Despite the improvements in quality of recent results, these approaches are limited in resolution and generate noticeable artifacts on high resolution images. Therefore, they are not appropriate for high quality video editing. In addition, these methods are difficult to control, because the modification of one facial attribute tends to modify other attributes.

Recently, generative networks have shown impressive progress in high quality image synthesis [START_REF] Brock | Large Scale GAN Training for High Fidelity Natural Image Synthesis[END_REF][START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF][START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF]. Studies show that moving latent codes along certain directions in the latent space of generative models can result in variations of visual attributes in the corre-sponding generated images [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF][START_REF] Collins | Editing in Style: Uncovering the Local Semantics of GANs[END_REF][START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF][START_REF] Abdal | Styleflow: Attributeconditioned exploration of stylegan-generated images using conditional continuous normalizing flows[END_REF][START_REF] Wu | Stylespace analysis: Disentangled controls for stylegan image generation[END_REF]. These assume that for a binary attribute, there exists a hyper-plane in the latent space which divides the data into two groups. However, this hypothesis has several limitations. Firstly, successful manipulations can only be achieved in well disentangled and linearized latent spaces. Since no attribute has been used in the training of the generative models, there is no reason to assume that the transformation associated to one attribute should be linear. Although the latent space is disentangled compared to the image space, we show in this paper that achieving facial attribute manipulation with linear transformations is a very strong and limiting hypothesis. Furthermore, since these methods are trained on synthetic images (generated from random points in the latent space), their performance on real images (natural, "in-the-wild" photos) is less satisfying. This is an often ignored, but critical, problem.

In this work, we tackle the problem of editing facial attributes on both synthetic and real images. To address the aforementioned limitations, we propose a transformation network to navigate the latent space of the generative model in a disentangled and non-linear manner, so that each attribute can be manipulated independently and smoothly. For synthetic images which are generated from random latent vectors by the generative model, we train our model on the synthesized latent codes. For real images, we project them to the latent space of the state-of-the-art image generator StyleGAN and train our model on the projected latent codes.

The transformation network generates disentangled, identity-preserving and controllable attribute editing results on real images. These key advantages allow us to extend our method to the case of videos, where stability and quality are of crucial importance. For this, we introduce a pipeline which achieves stable and realistic facial attribute editing on high resolution videos.

Our contributions can be summarized as follows:

• We propose a latent transformation network for facial attribute editing, achieving disentangled and controllable manipulations on synthetic and real images with good identity preservation, contrary to previous approaches [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF][START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF].

• We propose a correlation-wise attribute regularization term, to better preserve the attributes which we do not wish to modify.

• We illustrate experimentally that our approach achieves a sequential modification of several attributes, allowing artists to edit images in a controlled, smooth and stable manner for real-world applications.

• We introduce a pipeline to generalize the face editing to videos and generate realistic and stable manipulations on high resolution videos.

The rest of this chapter is organized as follows: In Section 2 we summarize the related works in facial attribute editing, disentangled representation and video editing. Section 3 presents our latent transformation network and the training details. Section 4 presents the experimental results of disentangled attribute editing on real images, and provide qualitative and quantitative comparisons with state-of-the-art methods. We further present results of sequential attribute editing on real images and give an ablation study on the choice of loss compositions. In Section 5 we introduce the pipeline to apply facial attribute editing on videos and show experimental results on video sequences. We conclude in Section 6. 

Method

In this section, we propose a framework to edit facial images in the latent space of StyleGAN.

Overview

Let z P Z be a random vector drawn from the latent space Z of a given generator G. Let G(z) be the corresponding image generated with G. We aim to train a latent transformation network T in the latent space to edit a single attribute of the image G(z). The image synthesized from T(z) is denoted by G(T(z)). It shares all the attributes with G(z) except the target attribute being manipulated. See Figure 5.1 for an illustration.

To train the latent transformation network, we propose a training framework that computes all the losses solely in the latent space Z. Let ta 1 , a 2 , ..., a N u be a set of image attributes, where N is the total number of considered attributes. For each attribute a k , a different T k is trained. To predict the attributes from the latent codes we use a latent classifier C `: Z Ñ t0, 1u N . C `is pre-trained and then its weights are frozen during the training of T k . We train T k with the following three objectives:

• Classification. To ensure that T k manipulates attribute a k effectively, we minimize the binary classification loss:

L class = ´yk log (p k ) ´(1 ´yk ) log (1 ´pk ), (5.1) 
where

p k = C `(T k (z))[k]
is the probability of the target attribute and y k P t0, 1u is the desired label.

• Correlation-wise attribute regularization. In order to ensure that other attributes a i , i ‰ k remain the same, we minimize the Euclidean distance between the classification features, extracted from C `. The distance corresponding to each attribute is weighted according to its correlation with the target attribute. For the attributes which are naturally correlated with the target (i.e. 'chubby' and 'double chin'), the coefficient is close to zero so as not to block the transform, while for the unrelated attributes it is close to 51 5.2. Method one, fully regularized. The regularization term is defined as:

L attr = ÿ i‰k (1 ´gik ) E z,i [||p i ´C`( z)[i]|| 2 ], (5.2) 
where g ik is the absolute correlation value between a i and the target attribute a k , measured on the training dataset.

• Reconstruction. To ensure that the identity of the person is preserved, we further apply a latent code regularization:

L recon = E z [||T k (z) ´z|| 2 ]. (5.3) 
The full objective loss can be described as:

L = L class + l attr L attr + l recon L recon , (5.4) 
where l attr and l recon are weights balancing each loss.

Models

Latent Classifier. We need a facial attribute classifier in the latent space to predict the attributes on the manipulated latent codes. Imagine we have a prepared dataset which contains "latent code -label" pairs, we train an attribute classifier C `on that. C `is fixed during the training of the latent transformation network. Our implementation of C `uses three fully connected layers with ReLU activations in between. The classifier is designed to predict all the 40 attributes together, and trained with binary cross entropy loss.

Latent Transformation Network.

Given an input latent code z, the latent transformation network T k generates the direction for modification of the attribute a k , where the amount of changes is controlled by a scaling factor a. The network is expressed with a linear transformation layer H:

T k (z, a) = z + a ¨H(z), with a P [´1, 1]. (5.5) 
During training the scaling factor a is set according to the probability p of the target attribute of the input latent code (1 ´p for p † 0.5, ´p for p °0.5). At test time, a can be sampled from [´1, 1] or set beyond this range based on the desired amount of changes.

Training data

The proposed latent transformation model can be applied to the latent space of any generative model. The most straightforward application is to modify synthetic images, as the latent codes can be directly sampled from the latent space. Nevertheless, it is also possible to apply this model for modification of real images, if we succeed to project them into the latent space of a pretrained GAN. We conduct experiments for both synthetic and real images.

Synthetic images

To modify the synthetic images, we first generate training data by randomly sampling 500, 000 latent codes and passing them through the StyleGAN to obtain the corresponding generated images. We then automatically label these synthetic images using a classifier pretrained on CelebA-HQ dataset [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF]. CelebA-HQ contains 30K face images at with the annotations for each image in CelebA-HQ, we obtain the "latent code -label" pairs.

Implementation details

We conduct experiments on the state-of-the-art high quality image generation model Style-GAN2 [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF] pretrained on FFHQ 1024 2 dataset. For synthetic images, we train the latent transformation network in the latent space W of StyleGAN2. For real images, we choose the extended latent space W + . We train a separate latent transformation network for each facial attribute.

At the training stage, we use 90% of the prepared data as training set and train the model for 100K iterations, with a batch size of 32. The weights balancing each loss are set to l attr = 1 and l recon = 10. We use Adam optimizer [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] with a learning rate of 0.001, b 1 = 0.9 and b 2 = 0.999. Our implementation is built in PyTorch [START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF].

Video manipulation

In this section, we present a pipeline which applies the the proposed image editing method to the case of videos. The encoding process ensures that the encoded latent codes of two consecutive frames are similar to each other. Therefore, we can reconstruct a face video using the frames projected to the latent space of StyleGAN, which provides the basics for the next manipulation step. Thanks to the stability of our proposed latent transformation network, the manipulation does not affect the consistency between the latent codes and generates stable edits on the projected frames. An overview of our proposed pipeline is presented in Figure 5.2. The pipeline consists of three steps: pre-processing, image editing and seamless cloning.

Pre-processing. In order to edit the video in the latent space of StyleGAN, we first extract face images from the frames, according to the StyleGAN setting. We crop and align each frame around the face, following the pre-processing step of FFHQ dataset [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF], on which the StyleGAN is pretrained. For face alignment we detect landmarks independently on each frame using a state-of-the-art method [START_REF] Bulat | How far are we from solving the 2d & 3d face alignment problem?(and a dataset of 230,000 3d facial landmarks)[END_REF]. To avoid jitter, we further process the landmarks using optical flow between two consecutive frames and a Gaussian filtering along the whole sequence. All frames are cropped and aligned to have eyes at the center and resized to 1024 2 .

Image editing. In this step, we apply our manipulation method on the processed face images. Each frame is encoded to the latent space of StyleGAN using the pre-trained encoder [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF]. The encoded latent codes are processed by the proposed latent transformation network to realize the attribute editing. The manipulated latent codes are further decoded by Style-GAN to generate the manipulated face images.

Seamless cloning.

We use Poisson image editing method [START_REF] Pérez | Poisson image editing[END_REF] to blend the modified faces with the original input frames. In order to blend only the face area, we use the segmentation mask obtained from the detected facial landmarks.

Experiments

In this section, we present the experimental results of facial editing on both synthetic and real images. We show qualitative and quantitative evaluations for image editing, with additional results of sequential editing of several attributes. We further present the results on video editing.

Qualitative results

We compare our method with two recent state-of-the-art methods: InterFaceGAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] and GANSpace [START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF]. For a fair comparison, we follow the methodology of InterFaceGAN and train their model on StyleGAN2 for the attributes of CelebA-HQ using their official code.

The official implementation of GANSpace on StyleGAN2 is available. For each method, we manipulate the latent codes using the suggested magnitude of edits (3 for InterFaceGAN, specified range based on attributes for GANSpace and 1 for our method).

Attribute manipulation on synthetic images Figure 5.3 shows the attribute manipulation results on synthetic images. In each row, the 1st column is the original generated image.

The 2nd column is the result of GANSpace, where the attributes are not well disentangled. In each subfigure, from left to right are the original image, the manipulation result of GANSpace [START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF], that of InterFaceGAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] and ours. Compared to recent approaches, our method achieves a controllable, disentangled and realistic editing, where the person's identity is preserved.

This method has good performance on local features like 'narrow eyes' or 'beard'. However, 'age' is correlated with gender (4th row). The 3rd column corresponds to the result of In-terFaceGAN, where face identity undergoes visible modifications and attributes are not well disentangled. For example, modifying 'gray hair' also changes age; modifying 'narrow eyes enhances smiling. This is because when training the linear SVM model for one attribute, no regularization was applied to other attributes. The last column shows our result. Thanks to the attribute regularization term, our method preserves better the identity and generates more disentangled manipulations. From the 3rd column in each subfigure, from left to right are the manipulation result of GANSpace [START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF], that of InterFaceGAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] and ours. Compared to recent approaches, our method achieves a controllable, disentangled and realistic editing, where the person's identity is preserved.

Attribute manipulation on real images

For the experiments on real images, we use FFHQ dataset for evaluation, independent from the training of all the methods. We project the images of FFHQ into the latent space W + of StyleGAN using the pre-trained encoder [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF]. Figure 5.5 presents the manipulation results on the attributes which are available for all methods ('gender', 'age', 'beard' and 'makeup'). Our method achieves better disentangled manipulations. For example, when changing 'gender', both GANSpace and InterFaceGAN modify the hairstyle, and when changing 'age', GANSpace adds eyeglasses and InterFaceGAN affects smile. In contrast, our method succeeds to separate hairstyle from 'gender' and disentangle 'eyeglasses' from 'age', thanks to the attribute and latent code regularization terms. The directions of GANSpace are discovered from PCA so that they may control several attributes simultaneously. For InterFaceGAN, no attribute preservation is applied when searching the semantic boundary. Compared with their methods, our editing results are of better visual quality and preserve the original facial identities better.

Quantitative comparison

For the quantitative evaluation, we adopt the follow metrics:

• Target attribute change rate: Given a set of manipulated samples, the target attribute change rate refers to the percentage of the samples with target attribute varied among all the samples.

• Attribute preservation rate: The attribute preservation rate indicates the proportion of unchanged samples on the other attributes apart from the target. Table 5.1: Quantitative evaluation on attribute manipulations. For each target attribute, we manipulate 1000 latent codes and compare attributes of input and output images. The identity preservation rate is the percentage of identity-preserved manipulations. The attribute preservation rate is the percentage of unchanged ones on other attributes. The target attribute change rate is the percentage of successful manipulations on the target attribute. Our approach outperforms InterfaceGAN in identity and attribute preservation on successful manipulations, while achieving similar classification accuracy on the target attribute. • Identity preservation score: The identity preservation score refers to the cosine similarity between the VGG-Face [START_REF] Omkar M Parkhi | Deep face recognition[END_REF] embeddings of the original projected images and the manipulated results.

• Identity preservation rate: The percentage of identity-preserved manipulations, measured with the identity preservation score at 0.1% False Acceptance Rate.

Evaluation on synthetic images

We perform a quantitative comparison of our approach and InterFaceGAN. For each target attribute, 1000 random latent codes are manipulated to reverse the target attribute, such as 'w/ bangs' to 'w/o bangs'. We label the input and manipulated latent codes by passing them to StyleGAN2 and annotating the output images. To predict the attributes on the images, we use a state-of-the-art facial attribute classifier [START_REF] He | Harnessing Synthesized Abstraction Images to Improve Facial Attribute Recognition[END_REF],

independent from all methods. To have a comparable classification accuracy, for our method we set the scaling factor to 1.25, while for InterFaceGAN we set the distance to 3, maximum value recommended by the authors. As shown in Table 5.1, our method outperforms Inter-FaceGAN in both identity and attribute preservation. We also observe that InterFaceGAN displays better target attribute change rate on some attributes, probably taking advantage of the entanglement of attributes. In the case of 'gender', for example, adding 'beard' and changing 'hairstyle' when transforming women to men helps the classification.

Evaluation on real images

For real image editing, we compare our method quantitatively with GANSpace and InterFaceGAN. For the evaluation data, we project the first 1K images of FFHQ into the latent space W + of StyleGAN using the pre-trained encoder [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF]. For each input image and each method, we edit each attribute with 10 different scaling factors (t0.2 ¨d, 0.4 ¨d, ..., 2 ¨du, d is the magnitude of change suggested by each method) and generate the corresponding images. We predict the attributes on the modified images using a state-of-the-art facial attribute classifier [START_REF] He | Harnessing Synthesized Abstraction Images to Improve Facial Attribute Recognition[END_REF], independent from all methods. Based on the classification result, we consider an attribute active if its probability is greater than 0.5, otherwise inactive (i.e., w/ bangs versus w/o bangs). For each scaling factor, we compute the target attribute change rate, and the attribute preservation rate averaged on the other attributes.

To check the identity preservation, we compute the average identity preservation score. the attributes detected by all methods. For attributes like 'beard', 'gender' and 'smile', all the methods handle well. For other attributes, we observe that for the same amount of change on the target attribute, our approach has a higher attribute preservation rate while achieving a comparable or better identity preservation score. Overall our method achieves better disentanglement and better identity preservation than existing methods.

Sequential editing

Another advantage of our approach is the ability to modify several attributes sequentially, in a disentangled manner.

On synthetic images In Figure 5.7 we show a sequential modification of several attributes: 'slender', 'wavy hair', 'bangs' and 'eyeglasses'. The top row presents the results of InterFace-GAN, where we observe that when adding bangs, age is reduced. Their method is able to manage two consecutive attribute modifications but fails on more attributes as the error of each manipulation accumulates. On the contrary, our method is able to realize several sequential attribute manipulations without influencing the identity of the original person. As shown in the bottom row, between each two columns, only the indicated attribute is changed. On real images Our approach also achieves sequential modifications of several attributes on real images. We project real images of FFHQ to the latent space W + of StyleGAN using the pre-trained encoder [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF], and apply manipulations on a list of attributes sequentially. As shown in Figure 5.9, our method achieves disentangled and realistic modifications, and is not limited to a defined order of attributes.

We provide additional results of disentangled attribute manipulation on real images in Figure 5.10, where only one attribute is modified at a time from the first projected image.

Figure 5.11 presents additional results on sequential attribute manipulation. Here, we successively manipulate a list of attributes, meaning that each modification is performed on top of all previous modifications. We have trained a separate latent transformation network for each of the 40 attributes in CelebA-HQ dataset [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF]. Our method generates disentangled and identity-preserving manipulations for most of the attributes. We show some failure cases in Figure 5.18. When changing 'wavy hair', only slight changes appear in the hair. One possible reason is that the hair structures are controlled by the noise inputs in StyleGAN [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF], while the pre-trained encoder [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF] uses fixed noise inputs during training, which is a reasonable choice as the noise inputs have too many degrees of freedom to be reconstructed. In the case of 'wearing hat', we fail to generate a real hat. This attribute is very unbalanced in CelebA-HQ, so that it is difficult to learn the correct transformation. 

Ablation study

Scaling Factor. In order to ensure that the scaling factor (amount of change in each attribute direction) is not the source of the previous approaches shortcomings, in Figure 5.12 we show a progressive manipulation result on the 'eyeglasses' attribute. Compared to InterFaceGAN, our manipulation performs better in identity and attribute preservation.

Loss Analysis.

We carry out an ablation study to analyze the effects of each regularization terms in Eq. (5.4). In our proposed baseline, the weights balancing each regularization term are set to l attr = 1 and l rec = 10. We compare with two different scenarios: l attr = 0 (w/o attribute regularization) and l rec = 0 (w/o latent regularization). As shown in Figure 5.13, when l attr = 0 the output is not only manipulated on the target attribute but also affected on the other attributes, e.g., beard added when changing gender, mouth affected when changing age. When l rec = 0, the manipulated images fail to preserve the original facial identity. Balancing each term, our proposed baseline achieves attribute editing with better disentanglement and identity preservation. Figure 5.14 provides a quantitative comparison of the three scenarios. As can be observed, our chosen baseline preserves the other attributes best, with the same amount of attribute change, without sacrificing the identity preservation.

Video editing

We apply our manipulation method on real-world videos collected from FILMPAC library [START_REF] Filmpac | FILMPAC footage boutique library[END_REF]. Figure 5.15 shows the results of facial attribute editing on videos obtained from our proposed video manipulation pipeline. From each input frame, we crop and align a face image and encode it to the latent space of StyleGAN with a pre-trained encoder [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF]. The encoded latent code is processed by the latent transformation network to vary the target attribute, then decoded to an output face image and blended with the input frame. As can be seen from the results, our proposed method succeeds in removing the facial hair or adding the makeup, without influencing the consistency between the frames. Nevertheless, we also observe that the proposed method has more difficulty handling extreme pose (side face), which may be due to the limitation of the generation capacity of the StyleGAN model.

We present additional facial attribute editing results on videos in Figure 5. [START_REF] Deng | Arcface: Additive angular margin loss for deep face recognition[END_REF]. Each subfigure corresponds to a frame extracted from the corresponding video, in which the indicated attributes are modified. For each video, we edit two attributes sequentially, and generate disentangled manipulation results. For example, in Figure 5.16(c) when changing the person to woman, our method does not influence the attribute 'beard', despite the fact that it is correlated with gender. Besides, by varying the scaling factor progressively along the sequence, we achieve progressive attribute editing on videos. As shown by the video in Figure 5.17, we can simulate a progressive smiling process by smoothly varying the scaling factor. Overall, our method generates stable and consistent manipulation results on videos, provided that motion is not too strong. When there are quick changes of pose, we observe lighting or geometric artifacts. These artifacts are in fact due to the projection in the latent space, and therefore necessarily extend to the manipulated videos. As can be seen from the video in Figure 5.19, the manipulation during the first half of the video is realistic and consistent. But when the face turns to a side pose, the projected face is not well reconstructed and therefore neither is the manipulated face. This may be due to the limited reconstruction capacity of the pre-trained encoder and StyleGAN model when the pose is not frontal.

Discussion

In this chapter, we have presented a latent transformation network to perform facial attribute editing on synthetic and real images via the latent space of StyleGAN. Compared to stateof-the-art approaches, our method generates realistic manipulations with better disentanglement and identity preservation. In addition, our method is able to generate sequential disentangled attribute manipulations, which offers great flexibility and controllability to users.

This property is favorable for artists in imaging industry, with a potential in more real-world applications.

We have extended our method to the case of videos, achieving stable and consistent modifications. To the best of our knowledge, this is the first work to present stable facial attribute editing on high resolution videos. Some future work could be dedicated to improve both the applicability of the method and the performance on videos. In particular, the method adaptive instance normalization at each convolution layer to control the style of the generated image.

To project a given image to the latent space of a style-based GAN model, there are two approaches: optimization and learning an encoder. The most straight-forward is to perform optimization [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF] on the latent code by minimizing the image reconstruction error. In order to achieve higher perceptual quality, including the feature maps in the optimization has been proposed [START_REF] Zhu | Barbershop: GAN-based Image Compositing using Segmentation Masks[END_REF][START_REF] Kang | GAN Inversion for Out-of-Range Images with Geometric Transformations[END_REF]. In spite of these achievements, optimization-based methods have significant shortcomings. One major drawback is that the optimization process is carried out locally with respect to a single image. Thus, the resulting inverted latent codes do not necessarily lie on the original latent space, which makes them difficult to use for editing tasks, as shown by [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF].

A better approach is to learn an encoder to invert images to latent codes [START_REF] Zhu | In-domain gan inversion for real image editing[END_REF][START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF][START_REF] Wei | A Simple Baseline for StyleGAN Inversion[END_REF]. The inverted latent codes are more regularized and therefore better suited for editing.

The inversion process is also much faster, which is especially important for computationally intensive tasks such as video editing. However, current encoder-based methods also have several limitations. Firstly, the reconstruction error of the inversion is larger than that of optimization-based methods. Secondly, the reconstructed image is perceptually similar to the input but lacks finer details and appears over smoothed. Thirdly, encoding only the latent code fails to generate correct inversion on outlier data. For instance, given a talking face video, we observe that such methods fail to invert non-frontal poses, thus damaging the consistent reconstruction along the sequence.

To tackle the above mentioned weaknesses, we propose an new inversion architecture. We learn an encoder in the feature-style space, which maps an image to a feature code and a latent code. The feature code encodes spatial details, and the latent code is used for editing. This design significantly improves the perceptual quality of the inversion and achieves a balanced trade-off between reconstruction quality and editing capacity. The main contributions of this chapter can be summarized as follows:

• We propose a new GAN encoder architecture, which is the first to exploit the idea of encoding feature and style separately, without any optimization step at inference time.

Such optimization is both costly and leads to unreliable editing results. Our Feature-Style encoder, on the other hand, significantly improves the perceptual quality of the inversion and improves latent space editing;

• We present a novel training approach, which learns two inversions simultaneouslyone which is amenable to editing and one of higher fidelity but less adapted for editing.

By training in this manner, our encoder achieves a balanced trade-off between reconstruction quality and editing capacity;

• We conduct extensive experiments to show that our model greatly outperforms state-ofthe-art methods on inversion and editing tasks on images and videos. In particular, we improve the perceptual metrics by a very large margin (50%). In addition, we show that the video inversion results of our method is more consistent and stable, which favors further editing on videos. During generation, we replace the feature maps at the K th convolution layer of the generator with the inverted feature code F, and synthesize the inversion with the latent blocks tw K , ..., w N u. K is a fixed parameter, chosen so that reconstruction is accurate and editing can be performed efficiently.

Method

In this section, we introduce the Feature-Style encoder for real image inversion and editing via the latent space of a pretrained style-based generator. In our model, we use a ResNet backbone with two output branches: one for the inverted latent code, the other for the encoded feature maps. Figure 6.1 shows the overall architecture, as well as how the latent code and feature maps are plugged into the StyleGAN architecture to generate the reconstructed image.

Overview

A style-based generator, such as StyleGAN [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF][START_REF] Karras | Alias-Free Generative Adversarial Networks[END_REF], consists of a mapping network and a generator G. The mapping network first maps a random latent code z P Z to an intermediate latent code w P W, which is further used to scale and bias the feature maps, ie the outputs of a convolutional layer, after each layer in the generator. To project a synthetic image G(w)

to the latent space, it is possible to compute the latent code in the original latent space W and achieve a satisfying inversion. However, it is much more difficult to project a real image to the original latent space [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF], due to the gap between the real data distribution and the synthetic one. An alternative is to project real images to an extended latent space W + [1],

where w P W + is a concatenation of N latent blocks tw 1 , w 2 , ..., w N u, each controlling a convolution layer in the generator.

In addition to the latent code, StyleGAN1-2 [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF] add Gaussian noise after each convolution layer to generate local spatial variations. Abdal et al. [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF] show that it is possible to reconstruct a real image by jointly optimizing the latent code in W + and the noise maps.

However, in the original StyleGAN architecture, these noise maps are drawn from a Gaussian distribution, and are therefore not designed to represent geometric elements of the image.

Unfortunately, this optimization of noise maps ends up encoding such geometric information in the noise. This is particularly problematic for latent space editing, since it becomes 6.2. Method very difficult to modify geometric information efficiently, which is extremely limiting for an editing algorithm.

On the other hand, without optimization on the noise maps, it is impossible to achieve perfect reconstruction for real images by optimizing the latent code only. To tackle this dilemma, the authors of [START_REF] Zhu | Barbershop: GAN-based Image Compositing using Segmentation Masks[END_REF][START_REF] Kang | GAN Inversion for Out-of-Range Images with Geometric Transformations[END_REF] propose to include the feature maps in the optimization process, rather than optimizing noise maps, in order to preserve spatial details. Performing optimization on both the latent code and feature maps yields near perfect reconstruction on real images.

In our work, we aim to have the best of both worlds: we wish to achieve this high reconstruction fidelity, while maintaining the speed and editing capacity of an encoder. Thus, we propose our Feature-Style encoder, which projects an image to a latent code w P W + , and a feature code F P F Ä R hˆwˆc . This feature code is thus a tensor, and replaces the original GAN's feature map at a fixed layer indexed K of the generator. The parameters (h, w, c) correspond to the spatial size and the number of channels of the tensor, and depend on the layer K. The rest of the layers are controlled by the latent code w. We now present this architecture in more detail.

Feature-Style encoder

Encoding The basic structure of our Feature-Style encoder is modelled on the classic approach used by most previous works on style-based GAN inversion [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF][START_REF] Wei | A Simple Baseline for StyleGAN Inversion[END_REF][START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF],

which employ a ResNet backbone. After this, as shown in Figure 6.1, we have two output branches: a latent prediction branch to encode the latent code w P W + , and a feature prediction branch to encode the feature code F P F. The ResNet backbone contains four blocks, each down-sampling the input feature maps by a factor of 2. Given an input image, we extract the feature maps after each block. In the latent branch, the four groups of feature maps are passed through an average pooling layer, concatenated and flattened to produce the latent prediction. This is then mapped to the latent code w = tw 1 , w 2 , ..., w N u. Each latent block w i is generated from a different mapping network, expressed by a single fully connected layer. In the feature branch, the feature maps extracted after the penultimate block are passed through a convolutional network to encode the feature code F (see Figure 6.1). Let G K (w) denote the feature maps at the K th convolution layer of the generator. To generate the inversion, we replace G K (w) with the feature code F, and use the rest of the latent codes tw K , ..., w N u to generate G(w, F). We choose K = 5 for a balanced trade-off between the inversion quality and editing capacity, leading to F Ä R 16ˆ16ˆ512 .

Editing In a style-based generator, the styles corresponding to coarse layers control highlevel semantic attributes, the styles of the middle layers control smaller scale features, whereas the finer styles control micro structures. Given an input latent code w, let us consider that we have a latent code w corresponding to a desired editing, where w is obtained from a latent space editing method [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF][START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF][START_REF] Shen | Closed-form factorization of latent semantics in gans[END_REF]. To include the edits controlled by tw 1 , ..., w K´1 u, it is necessary to modify the feature code. Thus we generate two images, G(w) and G( w), from w and w, respectively. During generation, we extract the input features at the K th convolution layer G K (w) and G K ( w), compute the difference between them and add it to the encoded features F. The modified feature F is determined as: Then we generate the edited image G( w, F) with w and the modified feature code F.

F = F + G K ( w) ´GK (w). ( 6 

Training

Training data

Previous methods on GAN inversion [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF][START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF][START_REF] Wei | A Simple Baseline for StyleGAN Inversion[END_REF] take only real image datasets as training data. However, compared with the synthetic images, the perceptual quality of the images resulting from the inversion is worse. An intuitive explanation is that there is a difference between the data distributions of real and synthetic images. The encoder is trained to project a given image to the extended latent space W + . If synthetic images are not viewed by the encoder, the resulting latent code may not perform as well as those of the original latent space. Therefore, we include both synthetic and real images as training data.

In the case of StyleGAN2 [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF], the generator accepts two inputs, a latent code and a group of noise maps for local variations. A synthetic image is generated from a random latent code and a group of random noises. During training, if the input is a synthetic image, we pass the ground truth noises into the generator, so that the encoder can focus on the information encoded by the latent code. If the input is a real image, we pass random noises into the generator. Note that in this case even if the latent code is perfectly inverted, local variations exist between the inversion and the input.

Losses

As shown in Figure 6.2, our Feature-Style encoder inverts an input image x to a latent code w, and a feature code F. To ensure the full editing capacity of the latent code, the encoder is trained on two inversions simultaneously -one generated with only the latent code x1 = G(w) and the other generated with both the feature code and the latent code x2 = G(w, F).

Pixel-wise reconstruction loss

In the case of a synthetic image, the reconstruction is measured using mean squared error (MSE) on x1 only. In this special case, the ground-truth latent code exists and the feature map is irrelevant. For real image input, the ground-truth latent code is unknown, so a per-pixel constraint may be too restrictive. The loss is expressed as:

L mse = ||G(w) ´x|| 2 . (6.2)
Multi-scale perceptual loss (LPIPS) A common problem of the previous GAN inversion methods is the lack of sharpness of the reconstructed image, despite using the per-pixel MSE.

To tackle this, we propose a multi-scale loss design which enables the reconstruction of finer details. Given an input image x and its inversion x, a multi-scale LPIPS loss is defined as:

L m_lpips ( x) = 2 ÿ i=0 ||V(txu i ) ´V(txu i )|| 2 , (6.3) 
where t.u i refers to downsampling by a scale factor 2 i and V denotes the feature extractor.

This design allows the encoder to capture the perceptual similarities at different scales, which favors the perceptual quality of the inversion. This loss is applied on both inversions.

Feature reconstruction

To ensure the possibility of using Eq.( 6.1) to edit the feature code, F should be similar to the input feature maps at the K th convolution layer in the generator, denoted by G K (w). Therefore, we propose a feature reconstruction loss, which favors the encoded features to stay close to the original latent space. This term is defined as:

L f _recon = ||F ´GK (w)|| 2 . (6.4)
The total loss is defined as:

L total = L mse + l 1 L m_lpips + l 2 L f _recon , (6.5) 
where l 1 = 0.2 and l 2 = 0.01 are weights balancing each loss.

Face Inversion

For the inversion of a styleGAN model pre-trained on a face dataset, we adopt the multi-layer identity loss and the face parsing loss introduced by [START_REF] Wei | A Simple Baseline for StyleGAN Inversion[END_REF]. Given an input image x and its inversion x, the multi-layer identity loss is defined as:

L id ( x) = 5 ÿ i=1 (1 ´xR i ( x), R i (x)y), (6.6) 
where R is the pre-trained ArcFace network [START_REF] Deng | Arcface: Additive angular margin loss for deep face recognition[END_REF]. The multi-layer face parsing loss is defined as:

L parse ( x) = 5 ÿ i=1 (1 ´xP i ( x), P i (x)y), (6.7) 
where P is a pre-trained face parsing model [START_REF] Zllrunning | Face Parsing network pre-trained on CelebAMask-HQ dataset[END_REF]. These two above-mentioned losses are applied on both inversions. Hence the total loss for face inversion is:

L f ace = L total + l 3 L id + l 4 L parsing , (6.8) 
where l 3 = 0.1 and l 4 = 0.1 are weights balancing the identity preserving and face parsing terms.

Experiments

In this section, we present the experimental setup and compare our method with state-of-theart GAN inversion methods. We conduct the evaluation from two aspects: inversion quality and editing capacity. We also show results on videos as well as ablative studies.

Experimental setup

We evaluate our framework on several style-based generators pre-trained on various domains. We train the encoder for the inversion of StyleGAN2 [START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF] on faces and cars, and for the last 2 epochs. For the face domain, we minimize Eq.(6.8), using FFHQ [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF] for training, and CelebA-HQ [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF] for evaluation. For the car domain, we minimize Eq.(6.5), using Stanford Cars [START_REF] Krause | 3d object representations for fine-grained categorization[END_REF] training set for training, and the corresponding test set for evaluation. For the cat/dog domain, we minimize Eq.(6.5), using AFHQ Cats/Dogs [START_REF] Choi | Stargan v2: Diverse image synthesis for multiple domains[END_REF] train set for training, and the corresponding test set for evaluation.

Inversion

We evaluate our model against the current state-of-the-art encoder-based GAN inversion methods: pSp [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF], e4e [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF], restyle [START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF] and a recent preprint work HFGI [START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF]. We first perform comparisons for the inversion of StyleGAN2 model pre-trained on FFHQ dataset. For each method we use the official implementation [START_REF] Richardson | Official Implementation of Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Official Implementation of Designing an Encoder for StyleGAN Image Manipulation[END_REF][START_REF] Alaluf | Official Implementation of ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement[END_REF][START_REF] Wang | Official Implementation of High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] to generate the results. Restyle has been implemented on both pSp and e4e. We use restyle-pSp as it has better performance.

Qualitative Results Figure 6.3 shows the inversion results of the different methods. Overall, visual inspection shows that our method outperforms other models. Firstly, faces are more faithfully reconstructed globally. Secondly, zoom-in patches show that more details are Source Optimization [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF] In-domain [START_REF] Zhu | In-domain gan inversion for real image editing[END_REF] pSp [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF] e4e [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF] restyle-pSp [START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF] HFGI [START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] Ours preserved and that the images produced by our framework are significantly sharper than those of the concurrent methods.

We show additional visual results for the inversion of StyleGAN2 pre-trained on face domain in figs. 6.4 to 6.8. We compare our model against an optimization based method [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF],

state-of-the-art encoder based methods [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF][START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] and a hybrid method [START_REF] Zhu | In-domain gan inversion for real image editing[END_REF]. As can be observed, reconstructions using our framework are visually more faithful and zoom-in patches show that they exhibit much more details and sharpness. Our inversion results are comparable to those obtained by optimization based method. Nevertheless, our approach is advantageous to optimization based methods, since the latent codes obtained by optimization are much difficult to edit, as explained in section 6.1.

Source Optimization [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF] In-domain [START_REF] Zhu | In-domain gan inversion for real image editing[END_REF] pSp [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF] e4e [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF] restyle-pSp [START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF] HFGI [START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] Ours Figure 6.5: Inversion on face domain. We compare our model against state-of-the-art GAN inversion methods [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF][START_REF] Zhu | In-domain gan inversion for real image editing[END_REF][START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF][START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] for the inversion of StyleGAN2 pre-trained on face domain. Reconstructions using our framework are visually more faithful and zoom-in patches show that they exhibit much more details and sharpness.

Source Optimization [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF] In-domain [START_REF] Zhu | In-domain gan inversion for real image editing[END_REF] pSp [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF] e4e [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF] restyle-pSp [START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF] HFGI [START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] Ours Figure 6.6: Inversion on face domain. We compare our model against state-of-the-art GAN inversion methods [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF][START_REF] Zhu | In-domain gan inversion for real image editing[END_REF][START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF][START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] for the inversion of StyleGAN2 pre-trained on face domain. Reconstructions using our framework are visually more faithful and zoom-in patches show that they exhibit much more details and sharpness.

Source Optimization [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF] In-domain [START_REF] Zhu | In-domain gan inversion for real image editing[END_REF] pSp [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF] e4e [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF] restyle-pSp [START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF] HFGI [START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] Ours Figure 6.7: Inversion on face domain. We compare our model against state-of-the-art GAN inversion methods [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF][START_REF] Zhu | In-domain gan inversion for real image editing[END_REF][START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF][START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] for the inversion of StyleGAN2 pre-trained on face domain. Reconstructions using our framework are visually more faithful and zoom-in patches show that they exhibit much more details and sharpness.

Source Optimization [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF] In-domain [START_REF] Zhu | In-domain gan inversion for real image editing[END_REF] pSp [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF] e4e [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF] restyle-pSp [START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF] HFGI [START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] Ours Figure 6.8: Inversion on face domain. We compare our model against state-of-the-art GAN inversion methods [START_REF] Abdal | Image2StyleGAN++: How to Edit the Embedded Images?[END_REF][START_REF] Zhu | In-domain gan inversion for real image editing[END_REF][START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF][START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] for the inversion of StyleGAN2 pre-trained on face domain. Reconstructions using our framework are visually more faithful and zoom-in patches show that they exhibit much more details and sharpness.

pSp [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF] e4e [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF] restyle [START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF] HFGI [START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] Ours Eyeglasses Smiling Makeup Inversion Source Figure 6.11: Latent space editing. For each method, we apply InterFaceGAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] to perform latent editing for facial attribute manipulation. Our method yields plausible editing results, while at the same time preserving better the identity and the sharpness.

AFHQ Cat/Dog dataset [START_REF] Choi | Stargan v2: Diverse image synthesis for multiple domains[END_REF]. Our encoder achieves nearly perfect inversions. Here we did not compare with [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF], as the official pre-trained model is unavailable.

Editing

In this experiment, we consider the task of real image editing via latent space manipulation. We compare our approach with the state-of-the-art encoder-based GAN inversion methods [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF][START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] on the facial image editing via the latent space of StyleGAN2 pretrained on FFHQ dataset. Despite the fact that all the encoders project real images to the latent space of StyleGAN, the latent distribution learned by each encoder can be different. As such, for each inversion model, we generate the inverted latent codes for the first 10K images of CelebA-HQ, and apply InterFaceGAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] to find the editing directions in the learned latent space. Figure 6.11 shows facial attribute editing results for all methods. Compared with the stateof-the-art, our method yields visually plausible editing results, while preserving better the identity and sharpness. We show additional facial attribute editing results in Figure 6.12.

The latent editing directions are computed using InterFaceGAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF], except the last attribute 'pose', computed with SeFa [START_REF] Shen | Closed-form factorization of latent semantics in gans[END_REF].

Editing on Other Domains

In the main paper, we have presented the inversion results for StyleGAN2 pretrained on the car domain and StyleGAN2-Ada pretrained on cat and dog domain. Here we present additional editing results. Figure 6.13 shows editing results on We show latent space editing results on dog domain. We compute the latent editing directions with SeFa [START_REF] Shen | Closed-form factorization of latent semantics in gans[END_REF]. The first column is the source image, second column is our inversion result, the third to last column correspond to the semantic directions found with SeFa [START_REF] Shen | Closed-form factorization of latent semantics in gans[END_REF].

Our model yields satisfying editing results on dog domain.

Method pSp [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF] e4e [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF] restyle [START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF] HFGI [ Table 6.2: FID measured on edited images. For each inversion method, we encode the first 1K images of CelebA-HQ to the latent space and perform latent editing on four facial attributes. The FID is calculated between the real images and all the edited images. Our method outperforms the other approaches.

G(w A , F A ) G(w B , F A ) G(w A , F B ) G(w B , F B ) Quantitative Evaluation To evaluate quantitatively the editing results of each method, we take the first 1K images of CelebA-HQ as testing data. For each method, we project each image to the latent space and apply InterFaceGAN [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] to generate the editing result on the following facial attributes: 'gender', 'makeup', 'smiling' and 'eyeglasses'. Then we compute the FID between the real images and all the edited images. Table 6.2 shows that the discrepancy between the data distribution of our editing results and that of the real images is the smallest by a large margin.

Style Mixing Additionally, we show style mixing results in Figure 6.16, generated from the latent code of one image with the feature code of another image. From this experiment we observe that the geometric structures such as pose and facial shape are encoded by the feature code, while the appearance styles like eye color and makeup are encoded by the latent code.

Source pSp [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF] e4e [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF] restyle [START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF] HFGI [START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] Ours Figure 6.17: Video inversion. For each method, we show the inversion results of multiple consecutive images extracted from a video sequence. Our inversion method preserves better the identity along the video and yields a better reconstruction for the extreme poses.

Video inversion

In this section, we discuss the possibility of integrating our proposed encoder into a video editing pipeline. We compare the inversion quality and stability of different encoders on videos. Figure 6.17 shows a qualitative inversion result on consecutive images extracted from a video sequence. The last two frames in the original sequence are extreme poses. As can be observed, other methods fail to invert non-frontal poses, thus damaging the consistent reconstruction along the sequence. Our approach yields consistent inversion of high fidelity, which favors further editing on videos.

Video Results

We provide qualitative video results on inversion and editing in the 'videos/' folder. In each subfolder, 'inversion.avi' is the inversion result, 'edit_attribute.avi' is the latent editing result. Please open the videos to better visualize the results. The videos for evaluation are collected from FILMPAC library [START_REF] Filmpac | FILMPAC footage boutique library[END_REF]. The inversion and editing results are generated using the video manipulation pipeline proposed in [START_REF] Yao | A Latent Transformer for Disentangled Face Editing in Images and Videos[END_REF]. In each video, the first row shows the original video, the result of pSp [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF] and that of e4e [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF]. The second row shows the result of 

Discussion

We have proposed a new Feature-Style encoder architecture for style-based GAN inversion.

For the first time, we achieve projection of a given image to the Feature-Style latent space of a style-based generator, without out any optimization step at inference time. Our approach significantly improves the perceptual quality of the inversion, outperforming the strong and competitive state-of-the-art methods. Additionally, we show that our proposed encoder is more suited for the inversion and editing of videos.

Limitations

Our encoder learns to project an image to a feature code and a latent code. To perform latent space editing, it is necessary to modify the feature code using equation 6.1. We have noticed that in some cases, this may be not sufficient. For instance in Figure 6.12, the editing results of attribute 'gender' is less satisfying when the original person has long hairs. In the future, it could be helpful to study further improvements for the feature code editing. A potential direction is to train a network to merge the difference in equation 6.1 more intelligently. Another possibility is to include masks for interested area, or modify only the relevant channels to achieve local editing [START_REF] Collins | Editing in Style: Uncovering the Local Semantics of GANs[END_REF].

Chapter 7

Conclusion

Summary

In this thesis, we provided readers a general overview of the high resolution image editing problem. We first gave a brief introduction of the background and then discussed our contributions to autoencoder-based image editing and editing via the latent space of a pre-trained GAN model.

Autoencoder-Based Editing

In Part I, we focused on autoencoder-based methods for image editing, by considering two tasks: photo-realistic style transfer and face aging/de-aging. In Chapter 3, we proposed a new method for effective photo stylization between two images that consists in training a pair of deep convnets with cycle-and self-consistency losses. In Chapter 4, we proposed a novel method for face aging/de-aing on high resolution images.

The proposed age transformer architecture enables continuous face age editing with a single network. We have demonstrated the capacity of our model to produce photorealistic and sharp results, without introducing significant artifacts, on images of resolution 1024 ˆ1024.

The proposed feature modulation block appears to achieve efficient separation of age and identity information.

Editing via the Latent Space of GANs In Part II, we addressed the problem of disentangled facial attribute editing and GAN inversion. In Chapter 5, we proposed a latent transformation network, which acts in the latent space of a pre-trained GAN model. The proposed network performs transformation on an input latent code, changing only the target attribute of the corresponding image, without affecting other attributes. We also designed a video manipulation pipeline, to generalize the face editing for high resolution videos. In Chapter 6, we revisited the problem of embedding real images to the latent space of a pre-trained style based generator. A reliable inversion is the basis to perform edits in real images. We proposed a Feature-Style encoder, which maps a given image to a feature code and a latent code. Our approach significantly improves the perceptual quality of the inversion, outperforming the strong and competitive state-of-the-art methods. Additionally, the proposed encoder is more suited for the inversion and editing of videos.

Perspectives and future directions

During the last three years, we have witnessed the fast paced advances in facial image editing.

In late 2018, most of the methods used autoencoder-based models and were limited to images of low resolution (256 ˆ256). Recent works in the last two years have started to explore the editing task in the latent space of a pretrained GAN model [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF] and can handle images of higher resolution (1024 ˆ1024). However, many challenges remain to be tackled. We summarize the potential future research directions below.

Latent Representation. Impressed by the editing property of the StyleGAN latent space, we believe that most studies in the near future should continue working in this direction.

More in-depth analysis of the latent representation will allow us to have a better understanding of the latent space. We see several potential directions:

• Understand the structure of the latent space. Despite that we can edit semantic attributes via the latent space, we have no knowledge about how these attributes are encoded by the latent representations. When manipulating the attributes, we observed that some ones are more correlated with the others while some ones are naturally disentangled from the rest. To understand the structure of the latent space, a straight forward way is to perform channel-wise analyses of the latent code and figure out the target area corresponding to each element.

• Geodesic representation learning. Another future direction is to compute the geodesic corresponding to a desired manipulation in the latent space. For instance, the manipulation of an expression may not be achieved by simple linear interpolations in the latent space. This will help for a potential application -face animation. Given an input face video, identify the trajectory corresponding to each frame in the latent space and use that to animate another facial image.

• Multi-modal latent space manipulation. The work of StyleCLIP [START_REF] Patashnik | Styleclip: Text-driven manipulation of stylegan imagery[END_REF] proposed a textguided latent manipulation to modify the face appearance. Inspired by that, we can perform multi-modal manipulation of a facial image using the StyleGAN latent space, such as generating a video with the person in a given image saying the given sentence or audio. To achieve that, a straight forward way is to map the current latent code to a cross domain latent space with the encoder for text or audio. This may open another door for video compression, instead of sending the video, sending just the face image and the speech is sufficient.

Video Manipulation. Some recent works have started to consider editing on videos. Despite we have proposed a simple video manipulation pipeline, there still exist many challenges to be tackled:

• Temporal consistency. Our approach performs editing on videos frame by frame.

Thanks to the stability of the pre-trained encoder, we obtain stable editing results. However, this temporal consistency is not guaranteed all the time. For future works, it is necessary to consider temporal constraints. We see two potential ways: (1) Using consecutive images for the training of the encoder and the latent transformation network.

(2) Train an encoder specialized for videos by including the optical flow consistency.

• End-to-end video editing network. Our current approach consists of several steps: crop & align, latent transformation, re-projection to video. Each step is independent from the others. At the crop & align step, an accurate and stable landmark detection is essential to produce a stable cropped sequence and then a stable editing result. In the current approach, we adopt an off-the-shelf landmark detection algorithm and only handle videos with limited motions. In the case of fast moving heads, even small error in the crop & align step will result in flickers on the editing results. To eliminate this error, one potential solution is to train an end-to-end video editing network. For instance, training an encoder-decoder network, where the encoder encodes a non-processed frame to the latent space of StyleGAN without cropping and aligning, and the decoder maps the edited latent code directly to the original frame.

GAN Inversion.

The objective of GAN inversion is to project a real image to the latent space of a pretrained GAN model so that it could be manipulated by latent space editing. To improve the current methods, we see two possible goals for the future works:

• Few-shot training. Training an encoder for a pre-trained GAN is time-consuming and computationally heavy. To adapt the encoder for different pre-trained GAN models, it is necessary to fine-tune the hyper-parameters, which takes even more time. An interesting future direction is to apply few-shot learning to train the encoder. An current method, SeFa [START_REF] Shen | Closed-form factorization of latent semantics in gans[END_REF], is able to obtain manipulation directions directly from the pretrained weights of the GAN model, without any training. Inspired by that, and seeing the generation capacity of the generator, we believe that it is possible to train the encoder with limited samples.

• Supervised autoencoder. It is difficult to obtain a perfect inversion by training an encoder for a pretrained GAN model. However, we may use the latent directions leveraged from the pretrained GAN to supervise the training of an autoencoder. Specifically, for a target attribute, we first learn the manipulating direction in the latent space of a pretrained GAN. Then we train an autoencoder and force it to apply similar transforms in the latent space. Under this design, the obtained autoencoder may be able to yield perfect inversion and perform similar editing.
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 24 Thesis Outline can also be disentangled and encoded by the normalization layers. Direct manipulation of the parameters of the normalization layers results in corresponding editing on the output images.
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 2 Figure 2.1: U-net architecture[START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. This network is first proposed for biomedical image segmentation task. The blue boxes represent the feature maps and the blue arrows correspond to the convolutional layers. This "hourglass" architecture could be considered as an encoder-decoder network. The input image of size 572 ˆ572 is reduced to 32 ˆ32 in the lowest resolution, and further decoded to get the segmentation map. This illustration is taken from[START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF].
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 22 Figure 2.2: DCGAN generator[START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF]. A 100-dimensional uniform distribution z is sampled from the latent space, projected and reshaped to a 4-dimensional tensor and further fed to several convolutional layers to generate the output image G(z). The illustration is taken from[START_REF] Radford | Unsupervised representation learning with deep convolutional generative adversarial networks[END_REF].
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 23 Figure 2.3: Style Transfer. The first column shows the reference image (style), the second column shows the source image (content), and the last column shows the stylized output image. The top row shows an example of artistic style transfer, where the reference image (style) is an artwork. The bottom row shows an example of photo style transfer, where the reference image is a natural photo.
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 2425 Figure 2.4: StyleGAN architecture[START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF]. z is a latent code sampled from a fixed distribution Z and w is the corresponding latent code of the intermediate latent space W. Before each convolution layer, a random noise is added to generate more variations. Here "A" stands for a learned affine transform, and "B" applies learned per-channel scaling factors to the noise input. The illustration is taken from[START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF].

  Previous works on style transfer reveal that the styles of an output image generated from a deep convnet can be controlled by the parameters of normalization layers. Inspired by that, Karras et al. proposed a style-based generator architecture, in which the styles of the generated image are controlled by the latent code via AdaIN layers. Traditional GANs feed the latent code as input at the beginning of the generator network, yet StyleGAN has a different design. A style-based generator consists of two parts: a map-
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 26 Figure 2.6: The latent spaces of StyleGAN. Z and W are the original latent spaces defined in StyleGAN.An extended latent space W + can be obtained by using different w to control the convolution layers in the synthesis network. w + P W + can be considered as a concatenation of N different latent code w, where N is the number of convolution layers. Each latent code w is further specialized by affine transformation to styles, which lies in the style latent space S.

  Karras et al. [45] examined the effects of mixing two groups of styles on the generated image, and found that each subset of styles controls meaningful high-level attributes of the image. To illustrate how the latent code control the semantic information across different layers, we show style mixing examples generated from mixed latent codes, obtained by copying the latent code of a source image and replacing a subset of styles from a reference image. As shown in Figure2.7, the styles corresponding to coarse layers control high-level aspects such as pose and face shape. The styles of middle layers control low-level aspects like gender and expression. Those of fine layers control the color scheme and lighting effects. This property reveals the potential editing capacity of the latent space of StyleGAN for semantic editing on the generated image.
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 27 Figure 2.7: Style mixing effects. The first row and the first column show the source image and the reference images, respectively. The rest of the images are generated from mixed latent codes, obtained by copying the source latent code and replacing a subset of styles from the reference image. In the second column, we replace the styles corresponding to coarse layers (4 2 ´82 ) from the reference image.In the third and fourth columns, we replace the styles of middle layers (16 2 ´32 2 ) and fine layers (64 2 ´1024 2 ), respectively. The styles corresponding to coarse layers control high-level aspects such as pose and face shape. The middle styles control low-level aspects like gender and expression. The fine styles control the color scheme and lighting effects.
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 28 Figure 2.8: An example of facial attribute editing in film post-production. In Martin Scorsese's film "The Irishman", digital de-aging process has been applied on the main character.

  (a) Facial attribute editing using InterFaceGAN. (b) Facial attribute editing using GANSpace.
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 29 Figure 2.9: Facial attribute editing in the latent space of GANs. (a) Results of InterFaceGAN[START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF], which proposed to learn a hyper-plane for a binary classification in the latent space, which one can use to manipulate the target facial attribute by simple interpolation. (b) Results of GANSpace[START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF], which performed PCA in the latent space of generative networks, explored the principal directions and discovered interpret-able controls. The results are taken from[START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] and[START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF].

  Figure 2.9 (b) shows the facial attribute editing results. As mentioned above, in the architecture of StyleGAN, styles controlling different layers correspond to different semantic information. By limiting the changes at some specific layers, it is possible to obtain reasonable changes on the generated image.
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 210 Figure 2.10: Illustration of GAN inversion. Given a real image x, the goal of GAN inversion is to project x to the latent space of a pretrained GAN model G to obtain the inverted latent code z ˚, so that the corresponding generated image G(z ˚) is the reconstruction of the input image. With the inverted latent code, one can perform edits on real image by varying z ˚along learned editing directions. The figure is taken from [110].

  Figure 3.1:The network g q a (¨) transfers the style of the image x a to its input, while g q b (.) transfers the style of x b . Cycle-consistency is the fact that g q b (g q a (x b )) « x b and g q a (g q b (x a )) « x a , while selfconsistency is the fact that g q b (x b ) « x b and g q a (x a ) « x a .
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 32 Figure 3.2: Given a pair of input photos, the proposed cycle/self-consistencies yield images that are almost identical to the inputs while the stylization renders each photo in the style of the other.
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 33 Figure 3.3: Our networks consists of 16 convolution layers, of which 10 are in the residual blocks. Instance normalization is added after each layer except the last one. The 2nd and 3rd layers have a stride of 2. Two skip connections are added over the residual blocks.
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 34 Figure 3.4: Photo style transfer results obtained by the methods of [64], [56] and ours.
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 3536 Figure 3.5: Style transfer networks pre-trained on (a) have been reapplied on (b), getting stylized images (c). (d) are outputs generated by our basic approach using (b) and the small top image of (a) as reference image.
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 41 Figure 4.1: Age editing results on 1024 ˆ1024 images. We propose a single deep age transformer network able to perform both face aging and de-aging, producing high quality images that are sharp and with little artifacts. Using the face images indicated by a yellow frame as input, our network can output a photo-realistic image of the same person at any required target age in the range {20, . . . , 69}.
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 42 Figure 4.2:Training process: each input image x 0 is edited by the age transformer G using the initial age a 0 (reconstruction task) and the target age a 1 (editing task). The reconstructed image G(x 0 , a 0 ) should be identical to the input image. The edited image G(x 0 , a 1 ) is further passed in a discriminator D ensures photo-realism of the transformed image, and an age-classifier V ensures age-accurate transformation. The age transformer G contains three sub networks: an encoder, a modulating network and a decoder. The encoder maps the input image x 0 to an age-invariant deep feature space. The modulating network maps a target age a to a 128-dimensional modulating vector. This vector is used to modulate each channel of the encoded features, hence applying the desired age transformation. The modulated features are finally passed in the decoder to obtain the transformed image. Two skip connections between the encoder and the decoder in order to preserve the age irrelevant details better.
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 43 Figure 4.3: Age editing results on 1024 ˆ1024 images on FFHQ [45]. On each row, the yellow frame indicates the original image. Each column corresponds to a target age of: 25, 35, 45, 55, 65. Our approach yields visually satisfying results without introducing significant artifacts. Only age relevant features are modified, while the identity, haircut, emotion and background are perfectly preserved.
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 44 Figure 4.4: Age transformation on 1024 ˆ1024 images. On each row, the yellow frame indicates the original image. Each column corresponds to a target age of: 25, 35, 45, 55, 65. Our approach yields visually satisfying results without introducing significant artifacts. Only age relevant features are modified, while the identity, haircut, emotion and background are perfectly preserved.
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 45 Figure 4.5: Age transformation on 1024 ˆ1024 images. On each row, the yellow frame indicates the original image. Each column corresponds to a target age of: 25, 35, 45, 55, 65. Our approach yields visually satisfying results without introducing significant artifacts. Only age relevant features are modified, while the identity, haircut, emotion and background are perfectly preserved.
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 46 Figure 4.6: Age transformation on 1024 ˆ1024 images. On each row, the yellow frame indicates the original image. Each column corresponds to a target age of: 25, 35, 45, 55, 65. Our approach yields visually satisfying results without introducing significant artifacts. Only age relevant features are modified, while the identity, haircut, emotion and background are perfectly preserved.
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 47 Figure 4.7: Age transformation on 1024 ˆ1024 images. On each row, the yellow frame indicates the original image. Each column corresponds to a target age of: 25, 35, 45, 55, 65. Our approach yields visually satisfying results without introducing significant artifacts. Only age relevant features are modified, while the identity, haircut, emotion and background are perfectly preserved.
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 48 Figure 4.8: Continuous face age editing results on FFHQ [45]. As can be observed, the difference between two adjacent results is nearly invisible, which demonstrates the smoothness of the aging process. Input 31-40 41-50 51+
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 49 Figure 4.9: Comparison with IPCGAN [107] and PAGGAN [114] on CACD [11]. For each subfigure in (a), the top row corresponds to the aging results of IPCGAN. The second row shows the images generated by our method. For each subfigure in (b), the top row corresponds to the aging results of PAGGAN. The second row shows the images generated by our method.
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 410 Figure 4.10: Comparison of face aging results on CelebA-HQ [42]. The first column are the input images. The second to fifth column are outputs from Fader Network[START_REF] Lample | Fader networks: Manipulating images by sliding attributes[END_REF], PAG-GAN[START_REF] Yang | Learning face age progression: A pyramid architecture of gans[END_REF], IPC-GAN[START_REF] Wang | Face aging with identitypreserved conditional generative adversarial networks[END_REF] and our method. Our results reach the highest resolution without introducing significant artifacts. Our method preserves the background better compared to other techniques, see for instance the letters on the third row. In addition, compared to other techniques, our method leads to a result without artefacts nor blur.
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 413 Figure 4.13: Face age editing results with different types of discriminator. (a) Conditional discriminator. (b) Two separate discriminators. One receives images only from old age groups, the other receives images from young age groups. (c) Our proposed method -using one single discriminator. Comparing to the results in (a) and (b), the proposed method (c), which uses a single discriminator, generates reliable face aging/de-aging effets with the least artifacts.

  20-35, 35-45, 45-55, 55-70. At the training stage we find it essential to give the same number of real and fake images from each class to the discriminator to make the training successful. If we sample a target age a 1 from the set Q a 0 = ta P Q : |a ´a0 | • a ˚u at training time, the discriminator will receive more manipulated images in the youngest and oldest group. Thus it tends to classify all the images in these two groups as fake. The conditional discriminator is very sensitive to the original data distribution and needs much more hyper-parameter fine-tuning to converge.

Figure 4 .

 4 13(a) presents the age editing results with conditional discriminator. Strong artifacts can be observed in the aging results.

Figure 4 . 14 :

 414 Figure 4.14: Images reconstructed from a latent code optimization.We analyze the possibility of encoding natural images to the latent space of StyleGAN[START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF], through optimization in the latent space minimizing the distance between the generated image and the input image. Each image is then reconstructed from this optimized latent code. The relatively low quality of the reconstruction strongly suggest that editing performed in the latent space cannot lead to a sharp and artifact-free result.

Figure 5 . 1 :

 51 Figure 5.1: Latent transformation network for single attribute modification. Given an input latent code z, T(z) is the modified latent code obtained through our latent transformation network T, which is trained to modify one target attribute in the generated image, without affecting the others. C `is a pretrained attribute classifier in the latent space.

Figure 5 . 2 :

 52 Figure 5.2: Video manipulation pipeline. Each input frame is cropped and aligned to a face image individually. A pretrained encoder[START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF] is used to encode the face images to the latent space W + of StyleGAN[START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF]. The obtained latent codes are processed by the proposed latent transformation network T to realize the attribute editing. The manipulated latent codes are further decoded by StyleGAN to generate the manipulated face images, which are blended with the original input frames to get the output frames.

Figure 5 . 3 :

 53 Figure 5.3: Disentangled facial attribute manipulation on StyleGAN2 generated images. Each Line corresponds to an attribute manipulation.In each subfigure, from left to right are the original image, the manipulation result of GANSpace[START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF], that of InterFaceGAN[START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] and ours. Compared to recent approaches, our method achieves a controllable, disentangled and realistic editing, where the person's identity is preserved.

Figure 5 . 5 :

 55 Figure 5.5: Disentangled facial attribute editing on real images. The first two columns show the original image and the projected image reconstructed with the encoded latent code in StyleGAN.From the 3rd column in each subfigure, from left to right are the manipulation result of GANSpace[START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF], that of InterFaceGAN[START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF] and ours. Compared to recent approaches, our method achieves a controllable, disentangled and realistic editing, where the person's identity is preserved.

Figure 5 . 6 :

 56 Figure 5.6: Attribute and identity preservation vs. target attribute change. For each method, we edit each target attribute with 10 different scaling factors (t0.2 ¨d, 0.4 ¨d, ..., 2 ¨du, d is the magnitude of change suggested in each method), and generate the modified images. Attribute preservation rate and identity preservation score are measured on the output images. In the figure, each point corresponds to a scaling factor, where the position x indicates the target attribute change rate (the fraction of the samples with target attribute successfully changed among all the manipulations). In the upper subfigure, the position y indicates the average attribute preservation rate on the other attributes. In the bottom sub-figure, the position y indicates the average identity preservation score. Ideally, we want higher attribute and identity preservation for the same amount of change on the target attribute (higher curve is better).

Figure 5 . 7 :

 57 Figure 5.7: Sequential disentangled attribute manipulation. The 2nd to 5th columns correspond to a sequential modification of: 'slender', 'wavy hair', 'bangs' and 'eyeglasses'. Compared to InterFace-GAN, our approach achieves better disentangled manipulation and allows sequential attribute modification.

Fig- ure 5

 5 .6 presents the attribute and identity preservation w.r.t. the target attribute change on

Figure 5 . 8 :Figure 5 . 9 :

 5859 Figure 5.8: Sequential disentangled attribute manipulation. We show in this example how to achieve realistic, controllable, disentangled face editing. From the original image (center), we propose two opposite editing directions where only one attribute is manipulated at a time. For the top sub figure, to the right: 'slender', 'smiling', 'wavy hair' and 'makeup' and to the left: 'receding hairline', 'age', 'gray hair' and 'eyeglasses'. For the second sub figure, to the right: 'bigger eyes', 'open mouth', 'bald' and 'pale skin' and to the left: 'arched eyebrows', 'bushy eyebrows', 'sideburns' and 'rosy cheeks'. All results are obtained at resolution 1024 2 .

Figure 5 .

 5 Figure 5.8 shows additional sequential attributes manipulation results. Starting from the original generated image in the middle, we propose two opposite editing directions where only one attribute is manipulated at a time. Our method is able to realize several sequential attribute manipulations without influencing the identity of the original person.

Figure 5 . 12 :Figure 5 . 13 :

 512513 Figure 5.12: Progressive latent manipulation. From left to right, the results of progressively moving a latent code in the 'Eyeglasses' direction. Compared to InterFaceGAN, our results preserve the identity and other attributes better. Original l attr = 0 l rec = 0 Ours

Figure 5 . 14 :Figure 5 . 15 :

 514515 Figure 5.14: Quantitative comparison of different loss compositions. For each scenario, we edit each attribute with 10 scaling factors (t0.2, 0.4, ..., 2u) and measure the attribute preservation rate and identity preservation score on the modified images. Each point marker represents a scaling factor. The upper sub-figure presents the average attribute preservation rate w.r.t. target attribute change rate. The bottom sub-figure presents the average identity preservation score w.r.t. target attribute change rate. Our chosen baseline has a better trade-off between attribute and identity preservation.

  has difficulty handling side poses due to the fact that StyleGAN has difficulties in generating faces in side poses. This could be potentially addressed by jointly training the StyleGAN encoder with the generator, or by training the StyleGAN encoder and the latent transformation network together.

Figure 5 . 16 :Figure 5 . 17 :Figure 5 . 18 :Figure 5 . 19 :

 516517518519 Figure 5.16: Facial attribute editing on videos. Each sub-figure corresponds to a frame extracted from the specified video, corresponding to the manipulation result of the indicated attributes. In each subfigure, the upper row shows the original frame and the projected frame reconstructed with the encoded latent code in StyleGAN, the bottom row shows the manipulated frames for the first attribute and then for two attributes. Please open the video files to visualize the manipulation details.

Figure 6 . 1 :

 61 Figure 6.1: Feature -Style Inversion Architecture. Our model consists of a ResNet backbone and two output branches: one for latent code prediction, the other for feature code prediction. The inverted latent code w is a concatenation of N latent blocks tw 1 , w 2 , ..., w N u, each controlling a separate convolution layer in the generator.During generation, we replace the feature maps at the K th convolution layer of the generator with the inverted feature code F, and synthesize the inversion with the latent blocks tw K , ..., w N u. K is a fixed parameter, chosen so that reconstruction is accurate and editing can be performed efficiently.

  .1) 

Figure 6 . 2 :

 62 Figure 6.2: Training approach. During training, the encoder learns two inversions simultaneouslyone generated with only the latent code, the other generated with both outputs. This design ensures the editing capacity of the learned latent code.

Figure 6 . 3 :

 63 Figure 6.3: Inversion on face domain. We compare our model against state-of-the-art encoder-based methods[START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF][START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] for the inversion of StyleGAN2 pre-trained on face domain. Reconstructions using our framework are visually more faithful and zoom-in patches show that they exhibit much more details and sharpness. Pixel-wise reconstruction errors (MSE error, lower is better) and perceptual quality (LPIPS distance, lower is better) confirm this visual conclusion on these examples.

Figure 6 . 4 :

 64 Figure 6.4: Inversion on face domain. We compare our model against state-of-the-art GAN inversion methods [2, 125, 87, 96, 5, 104] for the inversion of StyleGAN2 pre-trained on face domain. Reconstructions using our framework are visually more faithful and zoom-in patches show that they exhibit much more details and sharpness.
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 613614615 Figure 6.13: Editing on car domain. We show latent space editing results on car domain. We compute the latent editing directions with SeFa[START_REF] Shen | Closed-form factorization of latent semantics in gans[END_REF]. The first column is the source image, second column is our inversion result, the third to last column correspond to the semantic directions found with SeFa[START_REF] Shen | Closed-form factorization of latent semantics in gans[END_REF]. Our model yields satisfying editing results on car domain.

Figure 6 . 16 :

 616 Figure 6.16: Style mixing. The first and last column show the inversions of two images x A and x B , denoted by G(w A , F A ) and G(w B , F B ), respectively. The second column is generated from the feature code of x A and the latent code of x B , denoted by G(w B , F A ), and vice versa for the third column, denoted by G(w A , F B ). The feature code encodes the geometric structures such as pose and facial shape, whereas the latent code controls the appearance styles like eye color and makeup.

Source K = 4 K = 5 Figure 6 . 20 :

 45620 Figure 6.20: Choice of feature code insertion layer K.The first column shows the source image (yellow frame) and two reference images for style mixing. In the second to last column, the first row is the inversion results of each configuration, the second and third rows are the style mixing results, generated from the feature code of the source image and the latent code of the reference image. Choosing K = 4 yields good style mixing effects but lower reconstruction quality. Choosing K = 6 or 7 encodes nearly all the information in the feature code, which is limiting for editing. Our choice of K = 5 holds a balanced trade-off between editing capacity and reconstruction quality.

  

  

  

  

  

  

  

  

  

  

  

  

  4.2 Training process: each input image x 0 is edited by the age transformer G using the initial age a 0 (reconstruction task) and the target age a 1 (editing task). The reconstructed image G(x 0 , a 0 ) should be identical to the input image. The edited image G(x 0 , a 1 ) is further passed in a discriminator D ensures photo-realism of the transformed image, and an age-classifier V ensures age-accurate transforma-On each row, the yellow frame indicates the original image. Each column corresponds to a target age of: 25, 35, 45, 55, 65. Our approach yields visually satisfying results without introducing significant artifacts. Only age relevant features are modified, while the identity, haircut, emotion and background are perfectly preserved. . . . . . . . . . . . . . . . . . . . On each row, the yellow frame indicates the original image. Each column corresponds to a target age of: 25, 35, 45, 55, 65. Our approach yields visually satisfying results without introducing significant artifacts. Only age relevant features are modified, while the identity, haircut, emotion and background are perfectly preserved. . . . . . . . . . . . . . . . . . . .

	4.6 Age transformation on 1024 ˆ1024 images. On each row, the yellow frame indi-cates the original image. Each column corresponds to a target age of: 25, 35, 45,
	55, 65. Our approach yields visually satisfying results without introducing signif-
	icant artifacts. Only age relevant features are modified, while the identity, haircut,

tion. The age transformer G contains three sub networks: an encoder, a modulating network and a decoder. The encoder maps the input image x 0 to an ageinvariant deep feature space. The modulating network maps a target age a to a 128-dimensional modulating vector. This vector is used to modulate each channel of the encoded features, hence applying the desired age transformation. The modulated features are finally passed in the decoder to obtain the transformed image. Two skip connections between the encoder and the decoder in order to preserve the age irrelevant details better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Age editing results on 1024 ˆ1024 images on FFHQ [karras2019style]. On each row, the yellow frame indicates the original image. Each column corresponds to a target age of: 25, 35, 45, 55, 65. Our approach yields visually satisfying results without introducing significant artifacts. Only age relevant features are modified, while the identity, haircut, emotion and background are perfectly preserved. . . . 4.4 Age transformation on 1024 ˆ1024 images. On each row, the yellow frame indicates the original image. Each column corresponds to a target age of: 25, 35, 45, 55, 65. Our approach yields visually satisfying results without introducing significant artifacts. Only age relevant features are modified, while the identity, haircut, emotion and background are perfectly preserved. . . . . . . . . . . . . . . . . . . . 4.5 Age transformation on 1024 ˆ1024 images. emotion and background are perfectly preserved. . . . . . . . . . . . . . . . . . . . IX 4.7 Age transformation on 1024 ˆ1024 images. 4.8 Continuous face age editing results on FFHQ [karras2019style]. As can be observed, the difference between two adjacent results is nearly invisible, which demonstrates the smoothness of the aging process. . . . . . . . . . . . . . . . . . . .

zhu2020domain, richardson2020encoding, tov2021designing, alaluf2021restyle, wang2021high] for

  During training, the encoder learns two inversions simultaneously -one generated with only the latent code, the other generated with both outputs. This design ensures the editing capacity of the learned latent code. . . . . In (a), we show the inversion results of Style-GAN2 pre-trained on car domain. Our method captures better the details than e4e [tov2021designing] and restyle-e4e [alaluf2021restyle]. In (b), we show the inversion results of StyleGAN2-Ada pre-trained on the cat and dog domains, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

	6.3 Inversion on face domain.	We compare our model against state-of-the-
	art encoder-based methods [richardson2020encoding, tov2021designing,
	alaluf2021restyle, wang2021high] for the inversion of StyleGAN2 pre-trained 6.11 Latent space editing. For each method, we apply InterFaceGAN
	on face domain. Reconstructions using our framework are visually more faithful [shen2019interpreting] to perform latent editing for facial attribute manipulation.
	and zoom-in patches show that they exhibit much more details and sharpness. Our method yields plausible editing results, while at the same time preserving
	Pixel-wise reconstruction errors (MSE error, lower is better) and perceptual quality better the identity and the sharpness. . . . . . . . . . . . . . . . . . . . . . . . . . . .
	(LPIPS distance, lower is better) confirm this visual conclusion on these examples. 6.12 Editing on face domain. We show additional facial attribute editing
	6.4 Inversion on face domain. results. The latent editing directions are computed using InterFace-We compare our model against state-of-the-
	art GAN inversion methods [abdal2020image2stylegan++, zhu2020domain, GAN [shen2019interpreting], except the last attribute 'pose', computed with
	richardson2020encoding, tov2021designing, alaluf2021restyle, wang2021high] SeFa [shen2021closed]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	for the inversion of StyleGAN2 pre-trained on face domain. Reconstructions us-6.13 Editing on car domain. We show latent space editing results on car domain. We
	ing our framework are visually more faithful and zoom-in patches show that they compute the latent editing directions with SeFa [shen2021closed]. The first col-
	umn is the source image, second column is our inversion result, the third to last
	column correspond to the semantic directions found with SeFa [shen2021closed].
	Our model yields satisfying editing results on car domain. . . . . . . . . . . . . . .
	6.14	
		We compare our model against state-of-the-
	art GAN inversion methods [abdal2020image2stylegan++, zhu2020domain,
	richardson2020encoding, tov2021designing, alaluf2021restyle, wang2021high]
	for the inversion of StyleGAN2 pre-trained on face domain. Reconstructions us-
	ing our framework are visually more faithful and zoom-in patches show that they
	exhibit much more details and sharpness. . . . . . . . . . . . . . . . . . . . . . . . .
	6.9 Inversion of Alias-free GAN. We show preliminary inversion results of the
	3rd generation of StyleGAN -recent released (one month ago) Alias-free GAN
	[karras2021alias] pretrained on face domain. Compared with StyleGAN2, the ar-

. . . . . . . . . . . . . . . . . . . XIII 6.2 Training approach. exhibit much more details and sharpness. . . . . . . . . . . . . . . . . . . . . . . . . 6.5 Inversion on face domain. We compare our model against state-of-theart GAN inversion methods [abdal2020image2stylegan++, zhu2020domain, richardson2020encoding, tov2021designing, alaluf2021restyle, wang2021high] for the inversion of StyleGAN2 pre-trained on face domain. Reconstructions using our framework are visually more faithful and zoom-in patches show that they exhibit much more details and sharpness. . . . . . . . . . . . . . . . . . . . . . . . . 6.6 Inversion on face domain. We compare our model against state-of-theart GAN inversion methods [abdal2020image2stylegan++, zhu2020domain, richardson2020encoding, tov2021designing, alaluf2021restyle, wang2021high] for the inversion of StyleGAN2 pre-trained on face domain. Reconstructions using our framework are visually more faithful and zoom-in patches show that they exhibit much more details and sharpness. . . . . . . . . . . . . . . . . . . . . . . . . 6.7 Inversion on face domain. We compare our model against state-of-theart GAN inversion methods [abdal2020image2stylegan++, the inversion of StyleGAN2 pre-trained on face domain. Reconstructions using our framework are visually more faithful and zoom-in patches show that they exhibit much more details and sharpness. . . . . . . . . . . . . . . . . . . . . . . . . 6.8 Inversion on face domain. chitecture of Alias-free GAN has several important changes. Despite the architectural changes, our proposed encoder still yields satisfying inversion results. . . . . XIV 6.10 Inversion on other domains.

Editing on cat domain. We

  show latent space editing results on cat domain. We compute the latent editing directions with SeFa [shen2021closed]. The first column is the source image, second column is our inversion result, the third to last column correspond to the semantic directions found with SeFa [shen2021closed]. Our model yields satisfying editing results on cat domain. . . . . . . . . . . . . . .

	6.15

Editing on dog domain. We

  show latent space editing results on dog domain.

	We compute the latent editing directions with SeFa [shen2021closed]. The first
	column is the source image, second column is our inversion result, the third to last
	column correspond to the semantic directions found with SeFa [shen2021closed].
	Our model yields satisfying editing results on dog domain. . . . . . . . . . . . . .
	6.16

Style mixing. The first and last column show the inversions of two images x A

  

Hyperparameters of the proposed network architecture. The input size is 1024

  ˆ1024 ˆ3. For the age transformer, except the last one, each convolution is followed by an instance normalization and a LeakyReLU activation. For the discriminator, except the first and the last one, each convolution is followed by a batch normalization and a LeakyReLU activation. . . . . . . . . . . . . . . . . . . .

	2.1 An overview of the latent spaces in StyleGAN. . . . . . . . . . . . . . . . . . . . . .
	4.1 4.2

Quantitative evaluation using online face recognition API [megvii2013face++].

  

	We compare our method against three methods:	Fader Net-
	work	[lample2017fader],	PAGGAN	[yang2018learning]	and	IPC-
	GAN [wang2018face]. Images are transferred to the oldest age group (50+)
	for all the methods. The second column presents the average predicted age.
	The third column indicates the blurriness of the results (lower value means less
	blurry). The fourth column is the gender preservation rate, meaning to which
	percentage the original gender is preserved. The fifth column refers to expres-
	sion preservation -smiling preservation rate. The last two columns indicate the
	emotion preservation rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
	5.1					

Quantitative evaluation on attribute manipulations. For

  

	6.2
	each target attribute,
	we manipulate 1000 latent codes and compare attributes of input and output im-
	ages. The identity preservation rate is the percentage of identity-preserved ma-
	nipulations. The attribute preservation rate is the percentage of unchanged ones
	on other attributes. The target attribute change rate is the percentage of successful
	manipulations on the target attribute. Our approach outperforms InterfaceGAN
	in identity and attribute preservation on successful manipulations, while achiev-
	ing similar classification accuracy on the target attribute. . . . . . . . . . . . . . . .
	6.1 Quantitative evaluation. We use SSIM, PSNR and MSE to measure the re-
	construction error, and LPIPS[zhang2018unreasonable] for the perceptual qual-
	ity. We also measure the identity similarity (ID) between the inversion and the
	source image, which refers to the cosine similarity between the features in Arc-
	Face [deng2019arcface] of both images. To measure the discrepancy between the
	real data distribution and the inversion one, we use FID [heusel2017gans]. Over-
	all, our method outperforms the state-of-the-art baselines by up to 10% ´20%. In terms of perceptual quality (LPIPS), we improve the result by 50%. . . . . . . . . .
	XVII

FID measured on edited images. For

  each inversion method, we encode the first 1K images of CelebA-HQ to the latent space and perform latent editing on four facial attributes. The FID is calculated between the real images and all the edited images. Our method outperforms the other approaches. . . . . . . . . . . . . . . .

	6.3

Quantitative evaluation on video inversion. We

  

	sample randomly 120 videos
	from RAVDESS dataset[livingstone2018ryerson], perform the inversion using Chapter 1
	each method and compute the quantitative metrics. Our method outperforms the
	competing approaches on both the reconstruction error and the perceptual quality.
	6.4 Ablative study on experimental setup. We conduct experiments on three dif-ferent configurations: (1) w/o multi-scale setting in the perceptual loss, (2) w/o Introduction
	feature prediction branch, (3) w/o synthetic training data. Our baseline achieves
	better perceptual quality and comparable performance on the distortion metrics. .
	1.1 Motivation
	Facial attribute editing is a key problem for both academic and industrial research. The goal
	is to change, on a given image, semantic attributes such as age, gender, identity, etc. In the
	post-production of films, face retouching is one of the most important stages. Despite the
	development of digital image editing techniques such as DeepFake, to meet the high quality
	required at 4K resolution, most of the current retouching tasks still rely on manual editing by
	artists. Removing wrinkles from an actress in a 10 second video takes an artist several hours.
	Therefore, it is of interest to improve the current deep learning techniques to automate the
	face editing task for high resolution images.
	XVIII

Table 2 .

 2 1: An overview of the latent spaces in StyleGAN.

  . We thus do not use an age-annotated dataset for training. The original age range of the training dataset is denoted by Q Ä N. At test time, the target age can be chosen as any age in Q.Classification lossTo measure the age of G(x 0 , a 1 ), we use the same age classifier as the one used to estimate a 0 . During training, we freeze the weights of this classifier. The classifier, denoted by V, takes G(x 0 , a 1 ) as input and generates a discrete probability distribution over the set of ages t0, 1, . . . , 100u. The classification loss satisfies

	At training time, it would seem reasonable to chose any value in Q uniformly at random. However, we noticed that the artifacts appearing during large age transformations were bet-
	ter corrected when selecting a target age a 1 far enough from a 0 during training. We propose
	to sample a

1 from the set Q a 0 = ta P Q : |a ´a0 | • a ˚u at training time, where a ˚is a predefined constant representing the minimum age transformation interval. We denote by q(a|a 0 ) the uniform distribution over Q a 0 .

Comparison of face aging results on CelebA HQ [42]. The

  

	Input (1024 2 ) Input (1024 2 )	Fader (256 2 ) Fader (256 2 )	PAGGAN (224 2 ) PAGGAN (224 2 )	IPCGAN (128 2 ) IPCGAN (128 2 )	Ours (1024 2 ) Ours (1024 2 )
	, which allows one to manipulate several facial attributes including the age. The output size of each method is: 224 ˆ224 for PAGGAN, 128 ˆ128 for IPCGAN, 256 ˆ256 for FaderNet, and 1024 ˆ1024 for our method. We compare only the face aging results from young age group to old age group, Figure 4.11: target age of 60 (the mean of the age range t51, . . . , 69u Ä Q) for our age transformer. Fig-ure 4.10 shows the results obtained with the different methods. FaderNet [53] introduces
	since PAGGAN and IPCGAN are trained only for aging. Each input image is transformed little modifications. PAGGAN [114] generates satisfying age progression effects. However,
	to the oldest age group using their official released models. For IPCGAN and PAGGAN, the noticeable artifacts are present on the face edges and hairs. IPCGAN [107] is limited to low

oldest age group refer to 50+ and

[START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Liu | Unsupervised image-to-image translation networks[END_REF] 

respectively. For Fader Network, the age attribute is set to be the default largest value for aging in their official code. To have a fair comparison first column are the input images. The second to fifth column are outputs from Fader Network

[START_REF] Lample | Fader networks: Manipulating images by sliding attributes[END_REF]

, PAG-GAN

[START_REF] Yang | Learning face age progression: A pyramid architecture of gans[END_REF]

, IPC-GAN

[START_REF] Wang | Face aging with identitypreserved conditional generative adversarial networks[END_REF] 

and our method. Our results reach the highest resolution without introducing significant artifacts. Our method preserves the background better compared to other techniques, see for instance the letters on the third row. In addition, compared to other techniques, our method leads to results that are free of artefacts and blur.

with groupwise methods, and since 50+ is considered as the oldest age group, we choose a resolution and thus introduces a strong degradation on the quality of the image. In comparison to these results, our approach introduces much less artifacts and preserves the fine details

Table 4 .2: Quantitative evaluation using online face recognition API

 4 4.11 and 4.12, we show additional comparison of face aging results on Celeba-HQ[START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF].

			Gender	Smiling	Emotion Preservation(%)
	Method	Predicted Age Blur Preservation(%) Preservation(%) Neutral	Happiness
	FaderNet [53] 44.34 ˘11.40 9.15 PAGGAN [114] 49.07 ˘11.22 3.68 IPCGAN [107] 49.72 ˘10.95 9.73 Ours 54.77 ˘8.40 2.15	97.60 95.10 96.70 97.10	95.20 93.10 93.60 96.30	90.60 90.20 89.50 91.30	92.40 91.70 91.10 92.70

Table 4

 4 

	.2 shows the quantitative evaluation results. All the methods are given the oldest
	age group as aging target, and we notice that our method has the highest average predicted
	age. The gender preservation rate is calculated by comparing the estimated gender with
	the original CelebA annotations. Using this metric, FaderNet achieves the best performance,
	followed by our method. For expression preservation (smiling) and emotion preservation

(neutral, happiness), our approach yields the best results. It is to be noted however that all methods have similar results. For the blur evaluation, results are much more contrasted. Our

Two in (3.2), two in (3.3), two in (3.4).

The latent code is obtained through optimization in the latent space by finding a latent code that minimizes the distance between the generated image and the input image.
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For the age transformer, except the last one, each convolution is followed by an instance normalization and a LeakyReLU activation. For the discriminator, except the first and the last one, each convolution is followed by a batch normalization and a LeakyReLU activation. epochs to achieve face age editing on high resolution images. The first 10 epochs are trained on 512 ˆ512 images with a batch size of 4. The next 10 epochs are trained on 1024 ˆ1024 images, for which we reduce the batch size to 2, learning rate to 10 ´5 and l recon to 1. Our approach yields visually satisfying results with sharp details (best viewed when zooming on the results) and without introducing significant artifacts. Only the age relevant facial features are modified, while the identity, haircut, emotion and background are well preserved. This is all the more satisfying that no mask has been used to isolate the face from the rest of the image. More age transform results on 1024 ˆ1024 images of FFHQ dataset are presented in figs. 4.4 to 4.7.

Qualitative evaluation

In Figure 5.4 we show disentangled attribute manipulations for all the 40 attributes of CelebA-HQ. We train a separate transformation network for each of the 40 attributes, including the ones which are almost never activated like 'blurry'. Our method achieves well disentangled manipulations on most attributes. For the attributes which are intrinsically correlated we may observe results that are less disentangled, such as '5'o clock shadow' and 'heavy makeup', which are both naturally correlated with gender. We train a separate transformation network for each of the 40 attributes, including inactivated ones like 'blurry'. Each column corresponds to a single attribute manipulation from the original image at the top-left corner. Our method achieves well disentangled manipulations on most attributes. 

Single attribute manipulation

GAN Inversion

In this chapter, we address the problem of GAN Inversion -projecting a given image to the latent space of a pretrained GAN model. We propose a novel architecture for GAN inversion, which we call Feature-Style encoder. The style encoder is key for the manipulation of the obtained latent codes, while the feature encoder is crucial for optimal image reconstruction.

Our model achieves accurate inversion of real images from the latent space of a pre-trained style-based GAN model, obtaining better perceptual quality and lower reconstruction error than existing methods. Thanks to its encoder structure, the model allows fast and accurate image editing. Additionally, we demonstrate that the proposed encoder is especially wellsuited for inversion and editing on videos. We conduct extensive experiments for several style-based generators pre-trained on different data domains. Our proposed method yields state-of-the-art results for style-based GAN inversion, significantly outperforming competing approaches.

Introduction

The incredible image synthesis power of Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative adversarial nets[END_REF] has been amply demonstrated by the great quantity of work on this architecture since its creation.

However, since a GAN only decodes an image from a probabilistic latent space, a significant research problem is how to encode images into the latent space of a pretrained GAN, especially in the case of real (photographic) images, as opposed to synthetic images, which are generated by sampling in the latent space. Recent studies [START_REF] Shen | Interpreting the latent space of gans for semantic face editing[END_REF][START_REF] Härkönen | GANSpace: Discovering Interpretable GAN Controls[END_REF][START_REF] Wu | Stylespace analysis: Disentangled controls for stylegan image generation[END_REF][START_REF] Shen | Closed-form factorization of latent semantics in gans[END_REF] have shown that it is possible to control semantic attributes of synthetic images by manipulating the latent space of a pretrained GAN. However an efficient encoding method, necessary for real images, still remains an open problem, especially in the case of these editing tasks. Thus, an ideal encoder should lead to high perceptual quality on real images, while ensuring that the inverted latent codes are amenable to the same editing that is possible in the case of synthetic images.

Among the many studies on GAN inversion, recent works have been primarily focused on style-based generators [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Karras | Analyzing and improving the image quality of stylegan[END_REF][START_REF] Karras | Alias-Free Generative Adversarial Networks[END_REF], because of their excellent performance in high quality image synthesis, especially on faces. Unlike traditional generative models which feed the latent code though the input layer only, a style-based generator feeds latent code through

.9: Inversion of Alias-free GAN. We show preliminary inversion results of the 3rd generation of StyleGAN -recent released (one month ago) Alias-free GAN [START_REF] Karras | Alias-Free Generative Adversarial Networks[END_REF] pretrained on face domain. Compared with StyleGAN2, the architecture of Alias-free GAN has several important changes. Despite the architectural changes, our proposed encoder still yields satisfying inversion results.

Inversion on Alias-free GAN We show preliminary inversion results of the third generation on StyleGAN -recently released (one month ago) Alias-free GAN [START_REF] Karras | Alias-Free Generative Adversarial Networks[END_REF] pretrained on FFHQ [START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF]. Compared with StyleGAN2, the architecture of Alias-free GAN has several important changes. First, the input tensor passed into the generator is no longer constant, but synthesized from the latent code. The spatial size of the input tensor is increased from 4 ˆ4 to 36 ˆ36. Additionally, the noise inputs are discarded. As shown in Figure 6.9, despite the architectural changes, our proposed encoder still yields satisfying inversion results.

Quantitative Evaluation

We evaluate our approach quantitatively against the aforementioned encoder based methods [START_REF] Richardson | Encoding in style: a stylegan encoder for image-to-image translation[END_REF][START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF][START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF][START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] and a hybrid method (in-domain GAN) [START_REF] Zhu | In-domain gan inversion for real image editing[END_REF].

We compare each method on the inversion of StyleGAN2 pretrained on FFHQ, using the first 1K images of CelebA-HQ as evaluation data. Table 6.1: Quantitative evaluation. We use SSIM, PSNR and MSE to measure the reconstruction error, and LPIPS [START_REF] Zhang | The unreasonable effectiveness of deep features as a perceptual metric[END_REF] for the perceptual quality. We also measure the identity similarity (ID) between the inversion and the source image, which refers to the cosine similarity between the features in ArcFace [START_REF] Deng | Arcface: Additive angular margin loss for deep face recognition[END_REF] of both images. To measure the discrepancy between the real data distribution and the inversion one, we use FID [START_REF] Heusel | Gans trained by a two time-scale update rule converge to a local nash equilibrium[END_REF]. Overall, our method outperforms the state-of-the-art baselines by up to 10% 20%. In terms of perceptual quality (LPIPS), we improve the result by 50%.

Source

e4e [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF] restyle-e4e [START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF] Ours distance. Additionally, we measure the identity similarity (ID) between the inversion and the source image, which refers to the cosine similarity between the features in ArcFace [START_REF] Deng | Arcface: Additive angular margin loss for deep face recognition[END_REF] of the two images. To measure the discrepancy between the real data distribution and the inversion one, we use the Frechet Inception Distance [START_REF] Heusel | Gans trained by a two time-scale update rule converge to a local nash equilibrium[END_REF] (FID). Table 6.1 presents the quantitative evaluation of all the methods. Our method significantly outperforms the state-of-the-art methods on all the metrics. In terms of perceptual quality (LPIPS), improvement can attain 50%.

Inversion for other domains Figure 6.10(a) shows the inversion for StyleGAN2 pretrained on the car domain. We train the encoder with Stanford Car dataset [START_REF] Krause | 3d object representations for fine-grained categorization[END_REF]. Compared with e4e [START_REF] Tov | Designing an encoder for stylegan image manipulation[END_REF] and restyle-e4e [START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF], our inversion achieves a better reconstruction quality, preserving better the details. Figure 6.10(b) shows the inversion for StyleGAN2-Ada pretrained on [START_REF] Steven | The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English[END_REF], perform the inversion using each method and compute the quantitative metrics.

Our method outperforms the competing approaches on both the reconstruction error and the perceptual quality.

Figure 6.18: Identity consistency of video inversion. For each method, we compute the proposed metric identity consistency for each inverted video and plot the results in a box-plot. Our averaged identity consistency is the closest to that of the source videos.

restyle [START_REF] Alaluf | Restyle: A residual-based stylegan encoder via iterative refinement[END_REF], that of HFGI [START_REF] Wang | High-Fidelity GAN Inversion for Image Attribute Editing[END_REF] and our result. Overall our model generates a more consistent inversion, that further favors consistent editing.

Quantitative Evaluation We evaluate our encoder quantitatively against the state-of-theart for video inversion on RAVDESS [START_REF] Steven | The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English[END_REF], a dataset of talking face videos. From which we sample randomly 120 videos as evaluation data. For each method, we perform the inversion on each video and compute the quantitative metrics on the inversion results. As shown in Table 6.3, our approach outperforms the competing approaches on both the reconstruction error and the perceptual quality.

Inversion Consistency Additionally, to evaluate the consistency of the inversion, we propose a new metric, Identity Consistency, which refers to the averaged identity similarity between the reconstructed frame xi and frame x0 along a video sequence:

where R is the pre-trained ArcFace [START_REF] Deng | Arcface: Additive angular margin loss for deep face recognition[END_REF] network. We compute this metric for our encoder and state-of-the-art methods for video inversion on RAVDESS [START_REF] Steven | The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English[END_REF]. From this dataset we sample randomly 120 videos as evaluation data. For each method, we perform the inversion and compute this metric on each inverted video and present the results with a box-plot. Figure 6.18 shows that the averaged identity consistency of our inversion is the closest to that of the source, which proves the stability of our inversion. 

Ablation study

We conduct an ablation study on the experimental setup for the inversion of StyleGAN2 pretrained on FFHQ. Specifically, we compare the quantitative metrics of several ablative configurations:

(A) w/o L m_lpips : we replace the multi-scale perceptual loss by a common LPIPS loss, and change the corresponding weight l 1 to scale it to a similar magnitude as before. 

(D) our baseline

As shown in Table 6.4, for (A), we observe a comparable result on the distortion metrics, but a much higher FID compared to the baseline. Including the proposed multi-scale perceptual loss greatly improves the perceptual quality and presents comparable performance on other distortion metrics. (B) confirms that the feature code helps to generate an inversion with better fidelity. For (C), we observe similar performance on the distortion metrics but a higher FID value. This demonstrates that including synthetic data in the training helps improving the perceptual quality of the inversion results.

We show qualitative results of these ablative configurations in Figure 6.19. Compared with our baseline, the inversion of configuration (A) is less sharp and reconstructs less well the details. Configuration (B) fails to achieve a plausible reconstruction. The inversion of configuration (C) is globally plausible, yet less reliable in details. For instance, the teeth are less photo-realistic compared with our baseline. This qualitative comparison confirms the quantitative evaluation in the main paper. Choice of K We provide an additional ablation study on the choice of feature code insertion layer K. We compared K = 4, K = 6 and K = 7 with our baseline K = 5. A different model is trained for each configuration. Figure 6.20 shows the qualitative results of inversion and style mixing. We observe that using K = 4 yields good style mixing effects but lower reconstruction quality. While choosing K = 6 or 7 generates perfection reconstruction, the style mixing effects is less obvious. Using K = 6 or 7 encodes nearly all the information in the feature code, thus limited in editing. Our choice of K = 5 holds a balanced trade-off between editing capacity and reconstruction quality. The thesis contains two parts. In part I, we explore image editing tasks via the latent space of autoencoders. We first consider the style transfer task between photos, and propose an effective algorithm which is built on a pair of autoencoder-based networks. Second, we study the face age editing task for high resolution images, using an encoder-decoder architecture.

The proposed network encodes a face image to ageinvariant feature representations, and learns a modulation vector corresponding to a target age. Our approach allows for fine-grained age editing on high resolution images in a single unified model.

In part II, we explore the editing task via the latent space of generative adversarial models (GANs). First, we consider the problem of facial attribute disentangled editing on synthetic and real images, by proposing a latent transformation network which acts in the latent space of a pre-trained GAN model. We also proposed a video manipulation pipeline, to generalize the editing result to videos. Second, we investigate the problem of GAN inversion -projection of a real image to the latent space of a pretrained GAN. In particular, we propose a feed-forward encoder, which encodes a given image to a feature code and a latent code in one pass. The proposed encoder is shown to be more accurate and stable for image and video inversion, meanwhile, maintaining good editing capacities.