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Abstract

Communications are one of the key functions in future vehicles. They
are developing at high speed and require a high degree of security.
Whether intra- or extra-vehicular, reliable communications are imper-
ative in order to ensure rapid decision-making according to the environ-
ment. Nevertheless, it can be intercepted and even modified by potential
attackers and therefore requires the use of protections. Cryptography is
an obvious answer to secure communications, but the algorithms used
today seem inadequate in terms of complexity and latency, especially to
satisfy the physical and economic constraints of large-scale embedded
systems. Although the automotive industry generally relies on standards,
it is not uncommon for some players to prefer the use of ad hoc technolo-
gies that are more adapted to cost, performance and safety constraints.
As long as the communication is internal, a standard is not necessary, but
with inter-vehicle communications, the absence of a standard imposes a
great versatility on the vehicle to ensure the compatibility of the com-
munications, while respecting the constraints of complexity and latency.
A second emerging problem specific to embedded systems is the pro-
tection against attacks, especially physical attacks due to the fact that
the system can be accessed by the user. These attacks are formidable
because they can bypass the mathematical protection of cryptographic
algorithms. This is the case of the attacks by side-channels which exploit
the leaks related to the activity of calculation by the means of consump-
tion or electromagnetic radiation. It is therefore essential to take this
aspect into account in the implementation of encryption algorithms to
obtain a high level of security.

Within the context of the ”Connected Cars and CyberSecurity (C3S)“
Chair, the main objectives of the thesis are to study the feasibility of
implementing a wide variety of symmetric lightweight encryption algo-
rithms and their protection. More precisely, the goal is to implement
several families of algorithms on a hardware that is surface constrained
and that would have good performance in terms of physical security and
latency. An optimal solution is to have an agile implementation, able
to quickly execute different lightweight encryption algorithms, using few
resources and guaranteeing protection against physical attacks. The im-
plementation can be fully hardware-based or a dedicated processor im-
plementation taking advantage of the presence of on-board Electronic
Control Units. To ensure the best implementation compromise, this last
architecture can start from a modification of the instruction set of a
RISC processor to satisfy the agility property of light cryptography algo-
rithms. This agility guarantees a great flexibility, a common protection
base for the algorithms, for a cost comparable to that of a standard
microcontroller.
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We have studied many encryption algorithms and have proposed a
first approach with a fully hardware architecture and a second approach
with a dedicated processor in order to efficiently implement Lightweight
Cryptography in a constrained embedded system. Our main contribu-
tions can be summarized as follows:

• Classification of Lightweight Encryption Algorithms by Block
• Configurable hardware implementation dedicated to the acceleration

of the execution of Lightweight Block Ciphers of the SPN type
• RISC-V hardware extension dedicated to accelerating the execution

of Lightweight Block Ciphers
• RISC-V hardware extension dedicated to the protection of Lightweight

Block Ciphers against Auxiliary Channel Attacks
Each contribution is experimentally supported by tests to evaluate hard-
ware cost, performance, latency and physical security against auxiliary
channel attacks.
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Introduction

Contexte

Les communications font partie des fonctions clés dans les futurs véhicules. Elles
se développent à grande vitesse et nécessitent une fort besoin de sécurité. Qu’elle
soit intra- ou extra- véhiculaire, une communication fiable est impérative afin
d’assurer la prise de décision rapide en fonction de l’environnement. Néanmoins,
elle peut être interceptée et même modifiée par des attaquants potentiels et néces-
site donc l’utilisation de protections. La Cryptographie est une réponse évidente
pour sécuriser la communication, mais les algorithmes utilisés aujourd’hui sem-
blent inadéquats en termes de complexité et de latence, surtout pour satisfaire les
contraintes physico-économiques des systèmes embarqués utilisés à grande échelle.
Bien que l’industrie automobile se base généralement sur des standards, il n’est
pas rare que certains acteurs préfèrent l’utilisation de technologies ad hoc plus
adaptées aux contraintes de coût, de performance et de sécurité. Tant que la
communication est interne, un standard ne s’impose pas, mais avec les commu-
nications entre véhicules l’absence de standard impose au véhicule une grande
versatilité pour assurer la compatibilité des communications, tout en respectant
les contraintes de complexité et latence. Un second problème émergeant et pro-
pre aux systèmes embarqués est la protection contre les attaques, notamment les
attaques physiques du fait que le système peut être accessible à l’utilisateur. Ces
attaques sont redoutables car elles peuvent contourner la protection mathématique
des algorithmes cryptographique. C’est le cas des attaques par canaux auxiliaires
qui exploitent les fuites liées à l’activité du calcul par le biais de la consommation
ou du rayonnement électromagnétique. Il est donc essentiel de prendre cet aspect
en compte dans les implémentations des algorithmes de chiffrement pour obtenir
un haut niveau de sécurité.

Dans le cadre de la chaire «Connected Cars and CyberSecurity (C3S)», les ob-
jectifs principaux de la thèse sont d’étudier la faisabilité d’implémentation d’une
grande variété d’algorithmes de chiffrement symétrique ainsi que leur protection.
Plus précisément la finalité est d’implémenter plusieurs familles d’algorithmes sur
un matériel contraint en surface et qui aurait de bonnes performances en termes
de sécurité physique et latence. Une solution optimale est d’avoir une implémen-
tation générique, capable d’exécuter rapidement différents algorithmes de chiffre-
ment légers, utilisant peu de ressources et garantissant une protection contre les

xi
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attaques physiques. L’implémentation peut être totalement matérielle ou alors
hybride matérielle / logicielle en tirant parti de la présence d’Unités de Contrôle
Électroniques embarquée. Pour assurer le meilleur compromis d’implémentation,
cette dernière architecture peut partir d’une modification du jeu d’instruction d’un
processeur RISC pour satisfaire la propriété d’agilité des algorithmes de cryptogra-
phie légère. Cette généricité garantit une grande flexibilité, une base de protection
commune aux algorithmes, pour un coût comparable à celui d’un micro-contrôleur
standard.

Contributions

Nous avons étudié de nombreux algorithmes de chiffrement et avons proposé une
première architecture matérielle, une seconde architecture hybride matérielle/logi-
cielle afin d’implémenter de façon efficace la Cryptographie Légère dans un système
embarqué contraint. Nos principales contributions se résument à:

• Classification des Algorithmes de Chiffrement Légers par Bloc

• Implémentation matérielle configurable dédiée à l’accélération de l’exécution
des Algorithmes de Chiffrement Légers par Bloc de type SPN

• Extension matérielle du RISC-V dédiée à l’accélération de l’exécution des
Algorithmes de Chiffrement Légers par Bloc

• Extension matérielle du RISC-V dédiée à la protection des Algorithmes de
Chiffrement Légers par Bloc contre les Attaques par Canaux Auxiliaires

Chaque contribution est étayée expérimentalement par des tests pour évaluer le
coût matériel, les performances, la latence et la sécurité physique face aux attaques
par canaux auxiliaires.

Organisation

Le Chapitre 2 présente le contexte technique avec une base de connaissances pré-
requises pour appréhender le travail de recherche. Une attention particulière a été
portée dans la description de chaque algorithme étudié lors de cette thèse. Même
si une sous-partie des algorithmes a été conçue pour validation dans un circuit
FPGA, tous ont contribué à trouver l’architecture la plus efficace.

Le Chaptire 3 décrit l’implémentation matérielle générique et configurable dédiée
à l’accélération de l’exécution de certains Algorithmes Légers de Chiffrement par
Bloc (LBC).

Le Chapitre 4 décrit l’implémentation hybride matérielle-logicielle, basée sur
l’Architecture d’Ensemble d’Instructions (ISA) du RISC-V. Cette implémentation
est en fait une extension de l’ISA du RISC-V avec des instructions matérielles
dédiées à l’accélération de l’exécution des LBCs.

Le Chapitre 5 décrit l’implémentation de protections génériques contre les at-
taques par canaux auxiliaires rendant l’exécution des LBC résiliente aux attaques
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par observation de la consommation énergétique. Cette implémentation est égale-
ment une extension de l’ISA du RISC-V par le biais d’instructions matérielles.

Enfin, le Chapitre 6 est une discussion générale des coûts et des gains de chaque
contribution. Les perspectives à tirer de ces recherches y sont également abordées.

Implémentation Générique Entièrement Matérielle

Les Algorithmes Légers de Chiffrement par Bloc (LBC) suivent certains principes
permettant d’assurer la sécurité mathématique et consistent en trois étapes (Cf.
Sect. 2.4). Ces trois étapes ont permis d’identifier un moyen générique d’accélérer
l’exécution des algorithmes LBC tout en réduisant significativement le surcoût de
surface lié à l’implémentation de plusieurs algorithmes en parallèle. Nous avons
donc réalisé une architecture unique et générique utilisant les mêmes instructions
pour plusieurs algorithmes. Cette première réalisation est entièrement matérielle.

Architecture

L’architecture de cette première implémentation est basée sur la structure des
algorithmes SPN. Un module est dédié à chacune des trois étapes d’un chiffrement
par bloc. Le module S correspond aux S-Boxs, ou l’étape de Confusion. Le module
P correspond au P-Layer, ou l’étape de Diffusion. Le module K correspond à
l’étape d’Ajout de la Clé. De plus, chaque module est configurable au niveau de
l’ordre dans lequel les 3 étapes sont exécutées. Ceci se fait par le biais d’une série
de multiplexeurs dont le module s’appelle Route_Mux. Cette implémentation est
représentée dans la Fig. 1

Perm.

Mult.

Configuration

S

Key
Schedule

K

P

State

conf.conf.

conf.

conf.

Rout_Mux

Figure 1: Architecture Entièrement Matérielle pour les Algorithmes de Chiffrement de Type SPN

Chacun des modules est présenté ensuite.
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Le Module K: L’ajout de la clé

Le module K est composé d’un XOR 64-bit qui va XORer les 64-bit du bloc au 64-
bit de la clé de ronde. Cette clé de ronde est pré-calculée par le Key Scheduling et
correspond à la clé de ronde de l’algorithme XORé avec les éventuelles constantes
de ronde et adapté au format 64-bit. Le soucie majeur de ce module est le fait de
garder en mémoire ces clés tout en accédant à une de ces clés par cycle. Cela peut
être géré en utilisant une mémoire sécurisée ainsi qu’un bypass entre le module et
la mémoire. Cette solution n’a pas été implémentée et reste théorique.

Le Module S: Les S-Boxs

Ce module est composé de seize S-Box 4×4 en parallèle et identiques, c’est-à-dire
qui ont la même table de substitution. Une S-Box se comporte comme une LUT
4×4 et c’est ainsi qu’elles sont réalisées. Ces S-Box, bien qu’identiques entre elles,
peuvent être configurées entre chaque algorithme et au cours d’une exécution.

Le Module P: Le P-Layer

L’étape de Diffusion d’un algorithme SPN peut être divisée en deux sous-étapes: la
première de ces sous-étapes est le MixColumn, qui correspond à une multiplication
de matrices et la seconde est une permutation au niveau bit, qui correspond parfois
à la fonction ShiftRow.

La Multiplication générique de Matrices

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

M0, M4, M8, M12

s0’, s4’, s8’, s12’

Figure 2: La Multiplication de Matrices Génériques

La multiplication de matrices de la Figure 2 va utiliser les quatre même bits de
l’entrée (s0, s4, s8, s12) et quatre groupes de bits différents issus de la matrice
(M0, M4, M8, M12).L’opération entre ces bits va permettre d’obtenir quatre bits
en sortie (s0’, s4’, s8’, s12’) qui feront partie du résultat de la multiplication. Cette
méthode permet de n’utiliser que 256 bits de la matrice au lieu des 2048 bits d’une
matrice 64× 64.

Cette réduction des paramètres est possible en ne considérant que des matrices
de niveau nibble (4 bits) ou s’y rapportant. En effet, certains algorithmes utilisent
des matrices 64 × 64 ou 4 × 4 dont l’information utile peut être transformée en
une matrice 16× 16, comme le montrent les Figures 3a et 3b.
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(b) Transformer une Matrice 4 × 4 en une Matrice
16 × 16

Figure 3: L’Uniformisation des Tailles de Matrices

Permutation Niveau Bit Générique

Parmi les différents algorithmes étudiés, certains utilisent le MixColumn, qui est
équivalente au ShiftRow avec une rotation de certains nibbles. Pour les autres
algorithmes, comme une simple rotation est insuffisante, il est nécessaire d’utiliser
une permutation au niveau bit. Dans le cas d’une implémentation spécifique,
ces permutations sont une réorganisation des connexions avec un coût nul pour
un algorithme donné, mais assez complexe pour la rendre générique à plusieurs
algorithmes. Comme il est très coûteux de concevoir une permutation générique
64 × 64, il a fallu se concentrer sur certains aspects de ces permutations qui
permettent d’assurer la diffusion.

1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

16161616

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

64

Figure 4: L’Instruction de Permutation au Niveau Bit

La solution choisie est représentée par la Fig. 4. Elle permet aussi bien d’exécuter
ShiftRow que les permutations au niveau bit de PRESENT ou de GIFT en une
seule instruction. Chaque module permettant la permutation de 4 bits ou de 4 nib-
bles sont implémentés comme des commutateurs Banyan (Cf. Sect. 3.6.2). Cela
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permet à la fois d’accélérer l’exécution mais également de réduire significativement
l’utilisation de la mémoire. En effet, on passe de 8 bits pour un crossbar à 5 bits
en utilisant un commutateur Banyan, ce qui représente 200 bits de configuration
au lieu de 320.

Résultats

Les coûts d’implémentation sont présentés dans la Table 1 qui donne le détail
de chaque module. On observe que tous les modules qui demandent un haut

Table 1: Cout de modules de l’Architecture pour un niveau d’agilité C

Coût PourcentageModule Surface GE de Surface
Route_Mux 695 678

S-Box 348 339
Permutation 956 932

Multiplication 1390 1355
Configuration

Other 87 85

26.9

Route_Mux 2791 2720 21.6
S 1784 1739 13.8

Permutation 2059 2007P Multiplication 744 725 21.7

K 175 171 1.4

niveau de configuration représentent une part importante du coût matériel. No-
tamment les parties Permutation et Route_Mux qui ont un coût quasi-nul dans le
cas d’implémentations classiques.

Table 2: Les Différents Niveaux d’Agilité de l’Architecture

Algorithme Niveaux d’Agilité
PRESENT

GIFT A

SKINNY
Midori B

C

PRINCE
MANTIS

D

De plus, cette architecture peut être modifiée pour correspondre à différents
niveaux d’agilité, présentés dans la Table 2. C’est-à-dire qu’en ajustant les mod-
ules il est possible d’adapter l’architecture pour accélérer l’exécution d’un nombre
croissant d’algorithmes. En comparant ces résultats au coût d’implémentation
de la somme de chacun des algorithmes indépendamment dans la Table 3 on ob-
serve qu’au-delà d’un certain niveau d’agilité, l’architecture générique permet des
économies de ressources conséquentes. En effet, à partir de six implémentations
d’algorithmes, la réduction des coûts matériels est de 62%.
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Table 3: Comparaison des Coûts entre les Niveaux d’Agilité et la Somme des Implémentations

Surface de Somme du coût des
L’Architecture Générique ImplémentationsNiveau d’Agilité

(en GE) (Ratio de Complexité)
A 8494 1.72
B 8245 1.96
C 9212 1
D 9631 0.625

Bien que ces résultats sont très bons, en termes d’agilité et complexité, une
autre approche consiste à combiner les technologies matérielles et logicielles.
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Implémentation Générique Hybride Matérielle-Logicielle

Dans les voitures modernes, la présence d’Unités de Contrôle Électroniques (ECU)
à base de microcontrôleurs repose sur une exécution logicielle des algorithmes.
Nous avons donc jugé pertinent de baser notre implémentation sur un jeu d’instructions
logicielles ISA adapté, tout particulièrement l’ISA du RISC-V (Cf. Sect. 2.8). Ce
jeu d’instructions (ISA) est libre et ouvert et a été conçu dans l’optique d’être
étendu pour répondre au mieux à une diversité d’utilisations. Cette possibilité
d’extension d’instructions permet l’ajout d’instructions matérielles spécifiques afin
de réduire la latence d’exécution logicielle de divers algorithmes.

Classification des Algorithmes Légers de Chiffrement par Bloc

Afin de réduire les surcoûts liés à l’extension il est important de bien choisir les
instructions qui seront implémentées. Pour ce faire, nous avons établi une clas-
sification, présentée en Fig. 4, de nombreux LBCs en fonctions des instructions
requises à l’accélération de leur exécution.

Table 4: Classification des Algorithmes Légers de Chiffrement par Bloc

DiffusionCatégorie Algorithme Confusion Type Niveau
Simon AND Rotation Bit
Speck ADD Rotation Bit
Simeck AND Rotation Bit

RC5 ADD Rotation BitI

XTea ADD Rotation Bit
GOST S-Box Rotation BitII Rectangle S-Box Rotation Bit

PRESENT S-Box Permutation BitIII a GIFT S-Box Permutation Bit
III b PRINCE S-Box x2 MatMult x3 Bit

TWINE S-Box MatMult Nibble
SKINNY S-Box MatMult Nibble
Midori S-Box MatMult NibbleIV

MANTIS S-Box MatMult x3 Nibble

Cette classification divise les LBCs en quatre catégories, à chaque catégorie est
associée un type d’instruction qui permet d’en accélérer l’exécution:

• Catégorie I: Les instructions utilisées sont déjà présentent dans l’ISA
• Catégorie II: Nécessite l’ajout d’une instruction S-Box
• Catégorie III: Nécessite l’ajout d’une instruction S-Box et d’une instruction

de Permutation ou de Multiplication de Matrices, au niveau bit
• Catégorie IV: Nécessite l’ajout d’une instruction S-Box et d’une instruction

de Multiplication de Matrices au niveau nibble
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L’extension qui a été étudiée s’est concentrée sur l’ajout de ces catégories d’instructions.

Le VexRisc Core

Il existe de nombreuses implémentations de l’ISA du RISC-V, et celle que nous
avons choisie est le VexRisc Core 32-bit. En effet, il permet l’ajout de nouvelles
instructions par l’utilisation de plug-ins qui n’impactent pas le cœur du RISC-V
32-bit.

Proposition d’Extension d’ISA

Une implémentation 32-bit pour manipuler des blocs de 64 bits ajoute tout de
même une contrainte. En effet, la sortie des instructions est sur 32 bits, cela
nécessite donc de dédoubler chaque instruction afin d’obtenir le résultat sur 64
bits, comme représenté en Fig. 5. Ainsi, lorsqu’une instruction sera évoquée, on
parlera en fait d’un double instruction la première renvoyant la partie basse de la
sortie, et la seconde renvoyant la partie haute de la sortie.

Crypto Instruction

Tmp. Res.

3232

RS2 RS1
Co

nfi
g.

64

inst. High inst. Low

3232

RD RD

Figure 5: Sortie 64-bit Utilisant Deux Instructions RISC-V 32-bit

En nous basant sur la classification établie, nous avons décidé d’implémenter
cinq instructions (ou groupes d’instructions) pour cette extension:

• L’instruction S-Box: SBOX_C

• L’instruction permutation au niveau bit de PRESENT: PRESENT_D

• L’instruction permutation au niveau bit de GIFT: GIFT_D

• Les instructions de multiplication de matrices au niveau bit de PRINCE:
PRINCE_D

• L’instruction de multiplication de matrices au niveau nibble: NMAT_D
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Comme expliqué dans la partie précédente, les instructions génériques au niveau bit
peuvent être très coûteuses, c’est pourquoi nous avons choisi de réaliser certaines
instructions spécifiques à un algorithme. L’étape de Diffusion de PRINCE évolue
au cours de l’exécution, c’est pourquoi plusieurs instructions sont nécessaires. Les
instructions SBOX_C et NMAT_D sont quant à elles génériques et sont utilisées
dans plusieurs algorithmes.

L’Instruction SBOX_C

Cette instruction prends quatre bits en entrée et les transforme en quatre bits
de sortie par le biais d’une table de substitution. Son comportement est donc le
même que celui d’une LUT lorsque la table est configurable. Nous avons donc
implémenté l’instruction SBOX_C comme une LUT. La configuration de cette
instruction a en principe lieu avant l’exécution mais certains algorithmes peuvent
nécessiter une reconfiguration au cours de l’exécution.

Les Instructions PRESENT_D et GIFT_D

Ces deux instructions utilisées des permutations au niveau nibble. L’implémentation
choisie n’est pas générique et dans les deux cas, l’implémentation se résume à une
réorganisation des fils.

Le Groupe d’Instruction PRINCE_D

L’algorithme de PRINCE utilise trois étapes de Diffusion différentes au cours de
son exécution, c’est pourquoi nous avons implémenté trois instructions différentes.
PRINCE_DF qui est la Diffusion du début d’algorithme, PRINCE_DM qui est
la Diffusion du milieu d’algorithme et PRINCE_DL qui est la Diffusion de fin
d’algorithme.

L’Instruction NMAT_D

Cette instruction convient à tous les algorithmes qui utilisent une structure ShiftRox
MixColumn au niveau nibble. Elle permet la multiplication par n’importe quelle
matrice de nibble 16× 16 qui serait composée de 1 ou de 0 et nécessite 256 bits
de paramètres. Bien que ces matrices 16 × 16 contiennent toute l’information, il
est nécessaire de les transformer en matrice 64× 64 pour les multiplier aux blocs
64-bit. La méthode est présentée dans la Figure 6

L’utilisation de cette instruction comprend donc plusieurs étapes, qui sont
décrites dans Fig. 7. Les 256 bits de paramètre sont d’abord stockés dans huit
registres CSR 32-bit. Les paramètres de chaque registre sont ensuite ANDés avec
chaque nibble d’entrée, puis chaque résultat est XORé afin d’obtenir une sortie
64-bit.

Le datapath de la multiplication en elle-même est montrée dans la Figure 8.
Une fois ces instructions choisies et implémentées, il a s’agit de les tester et de

les valider.
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Figure 6: 256-bit de Configuration d’une Matrice 64× 64 pour NMAT_D
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Figure 7: The NMAT_D Instruction

Plateforme de Test et de Validation

La plateforme que nous avons utilisée est basée sur l’implémentation VexRisc du
RISC-V. Elle est représentée en Figure 9 et contient les éléments suivants:

• Un VexRisc Core

• Deux mémoires on-chip indépendantes de 32KB pour les programmes et les
données

• Un module de communication permettant la connexion à un ordinateur hôte
via une interface USB
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Figure 8: The NMAT_D multiplication datapath

• Un module de configuration qui inclut des registres d’adresse mémoire dédiés
capable de lire et d’écrire depuis l’ordinateur hôte via le module USB

• Un module avec port GPIO (General Purpose Input Output) pour les interac-
tions directes avec les utilisateurs

La carte cible est la Chipwhisperer CW305 [2]. Elle est basée sur un FPGA
Artix-7, et a été conçue pour permettre les analyses de consommation par canaux
auxiliaires.

Afin de tester la validité de chacune de nos instructions, chaque algorithme a
été implémenté en C en utilisant la chaine de compilation GNU GCC pour RISC-V.
A chaque fois, deux modes d’exécution ont été implémentés:

• Logiciel, qui utilise l’ISA RISC-V Standard

• Accélérée, qui utilise la version étendue LBC-ISA

Ce qui nous permet de tester à la validité des instructions mais également de
comparer leurs performances.

Coûts et Gains de l’Implémentation

Nous avons d’abord comparé les coûts d’implémentation du RISC-V sans extension
à ceux de divers configuration d’extension permettant d’accélérer l’exécution d’un
ou plusieurs algorithmes.

Ces résultats, présentés dans le Tab. 5 montrent que les deux instructions les
plus coûteuses que sont SBOX_C et NMAT_S font ensemble doubler le coût
en LUT et moins de tripler le cout en mémoire. Le surcoût lié à l’utilisation
d’instruction génériques n’est donc pas négligeable mais reste dans un ordre de
grandeur semblable.
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Figure 9: VexRisc Platform

Table 5: Coût en Surface de l’Extension du RISC-V par Algorithme

Algorithme Instructions LBC-ISA LUTs % FFs %
None 973 - 765 -

PRESENT SBOX_C + PRESENT_D 1173 +21 767 +0.2
GIFT SBOX_C + GIFT_D 1103 +13 767 +0.2

PRINCE SBOX_C + PRINCE_D 1438 +48 769 +0.5
PRINCE 2xSBOX_C + PRINCE_D 1512 +55 769 +0.5
Midori SBOX_C + NMAT_D 1778 +82 1023 +33.7
TWINE SBOX_C + NMAT_D 1778 +82 1023 +33.7
SKINNY SBOX_C + NMAT_D 1778 +82 1023 +33.7

Nous nous sommes ensuite intéressés à l’accélération d’exécution engendrée par
ces instructions, les résultats sont dans le Tableau 6 et sont donnés en nombre
d’instructions.

La Table 6 montre qu’en termes d’accélération de l’exécution le facteur de gain
est beaucoup plus important. En effet, il varie entre 8 et 100 ce qui représente
entre 1 et 2 ordres de grandeur d’écart.
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Table 6: Nombre d’Instructions par Algorithme en fonction de l’ISA

Algorithm Base ISA LBC-ISA Facteur de Gain
PRESENT 12544 358 35

GIFT 10661 319 33
PRINCE with reconfiguration 17357 2313 8

PRINCE without reconfiguration 17357 126 138
Midori 18944 232 81
TWINE 41279 622 66
SKINNY 40887 409 100

Implémentation Générique Protégée

Bien que les algorithmes de chiffrement soient mathématiquement protégés il n’en
reste pas moins certaines failles qui menacent leur niveau de sécurité. Ces failles se
trouvent notamment dans le matériel sur lequel sont exécutés ces algorithmes. En
effet, dû à la nature des portes CMOS (Cf. Sect. 2.6.2) tout changement de valeur
d’une porte engendre une consommation d’énergie qui peut être exploitée pour
une attaque dite physique. Ce type d’attaque s’appelle les attaques par canaux
auxiliaires SCA (Cf. Sect. 2.6), qui font partie des attaques physiques, et il est
important de pouvoir s’en protéger. Cette dernière partie de thèse va consister à
l’implémentation d’une autre extension du RISC-V permettant la protection contre
les attaques par observation de consommation.

Méthode d’Évaluation de la Sécurité

Dans un premier temps, il s’agit d’identifier la présence de la menace en essayant
d’attaquer l’exécution de chaque type d’algorithme afin d’extraire la clé secrète.
Pour ce faire, nous allons utiliser différents outils permettant de repérer les fuites,
d’attaquer ces fuites puis d’observer le résultat de ces attaques. Chacun de ces
outils est basé sur l’utilisation de traces de consommation d’énergie. Ces traces
sont utiles lorsqu’elles sont en grand nombre puisqu’elles permettent une étude
statistique de la consommation énergétique significative en effaçant l’impact du
bruit.

La Normalized Inter-Class Variance

La NICV permet d’identifier chaque endroit de l’exécution où une fuite potentielle a
lieu. Elle compare l’activité de l’intégralité du circuit à celle d’une valeur donnée en
entrée. Cela permet d’observer des piques de corrélation comme sur la Figure 10.

Il est important de noter que ces piques indiquent les fuites potentielles mais
que chaque pique n’est pas exploitable. Il faut ensuite mettre en adéquation ces
graphiques aux simulations d’exécution des algorithmes.
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Figure 10: La NICV de PRESENT pour 32768 traces

L’Analyse de Consommation Énergétique par Corrélation

L’Analyse de Consommation Énergétique par Corrélation (CPA) est le concept de
base de l’attaque utilisée, elle est expliquée en détails Section 5.2.3. Le principe
est d’observer la consommation énergétique en sortie de S-Box qui est la seule
instruction non-linéaire des algorithmes de chiffrement étudiés. C’est là qu’une
corrélation discriminante peut apparaitre entre le Poids de Hamming et les traces
d’exécution. Pour chaque valeur de nibble possible en sortie de S-Box, une hy-
pothèse est faite et en comparant les résultats de cette hypothèse aux traces il est
possible de déterminer la valeur cachée. Chaque hypothèse donne lieu à un coeffi-
cient, la valeur avec le plus haut coefficient est considéré comme la plus probable.
Lorsque cette valeur la plus probable est la même que la valeur du nibble de la clé,
on dit alors que ce nibble est cassé Lorsque suffisamment de nibble sont cassés
alors on dit que la clé est cassée et l’algorithme de chiffrement n’est alors plus une
protection.

La Guessing Entropy

La valeur la plus probable a son importance dans une analyse CPA mais il est
également important d’observer la place de la valeur du nibble de la clé. En
effet, la Guessing Entropy (GE) va donner la position dans le classement CPA
de la vraie valeur du nibble de la clé en fonction du nombre de traces utilisées.
La position utilisée est en réalité la moyenne des positions obtenue lors de huit
attaques sur différents sous-groupes de traces. Cela permet d’observer l’évolution
de l’efficacité d’une attaque au fur et à mesure que le nombre de traces augmente.
C’est cette mesure que nous avons choisie pour représenter comment l’exécution
des algorithmes se comporte face aux attaques.
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Évaluation de la Sécurité des Implémentations non-protégées

Pour différents types d’algorithmes, représentés par PRESENT, GIFT, PRINCE et
Midori nous avons observé l’évolution de la GE pour des paquets de traces de taille
croissante, allant de 100 à 32768. Les résultats pour PRESENT sont présentés
dans la Figure. 11.

(a) Nib. 0 - 3 (b) Nib. 4 - 7 (c) Nib. 8 - 11 (d) Nib. 12 - 15

Figure 11: La Guessing Entropy de l’Exécution de PRESENT pour jusqu’à 30000 Traces de
Consommation Énergétique

On observe que la majorité des nibbles a pu être cassés avant la barre des 15000
traces mais que certains semblent beaucoup moins sensibles à l’attaque. On note
néanmoins que pour ces derniers nibbles la tendance est à la décroissance de la
GE qui semble tendre vers 1.

Les résultats des autres algorithmes sont présentés dans la Section 5.3. Dans
l’ensemble, l’attaque fonctionne de la même manière sur tous les algorithmes,
une majorité des nibbles sont cassés avant 15000 traces et certains y sont moins
sensibles. Nous n’avons pas d’explication à ce phénomène qui rend certains nibble
plus difficiles à attaquer. Parmi les pistes évoquées il y a la possibilité que les
S-Box ne s’exécutent pas toutes en parallèle ce qui créerait un décalage dans le
flot d’exécution qui modifierait le moment de sortie des S-Box.

Proposition d’Extension d’ISA pour la Protection

Les résultats précédents mettent en évidence la nécessité de pouvoir se défendre
contre les SCA. C’est pourquoi la suite de nos recherches se sont tournées vers
l’implémentation de protections contre ces attaques. Pour ce faire nous avons
maintenu la forme de cette implémentation comme une extension matérielle et
logicielle de l’ISA du RISC-V.

Parmi les divers contremesures existantes, celle qui a retenu notre attention
est la protection par Masquage avec Rotation des S-Box (RSM), décrite dans la
Section 2.7.2.2. Cette protection va masquer le texte d’entrée qui sera décalé
d’un nibble après chaque S-Box. La particularité de cette protection est donc
qu’elle s’applique directement aux S-Box et nécessite la modification des S-Box en
fonction des nibble du masque. Ce qui est adapté à notre implémentation pour
deux raisons:

• Les algorithmes sur lesquels nous nous concentrons utilisent tous la S-Box,
cette protection devrait donc s’appliquer à chacun d’en eux.
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• L’instruction S-Box de la LBC-ISA permet de configurer chaque S-Box in-
dépendamment, et donc de le faire en fonction de chacun des nibbles du
masque

Le dernier point qu’il reste à traiter pour l’implémentation de RSM est la ro-
tation. Pour ce faire, nous avons opté d’effectuer la rotation sur les entrées et
sorties des S-Box, ce qui évite de revoir les reconfigurer en permanence. Nous
avons donc implémentié un Barrel Shifter 64-bit au niveau nibble, qui permet
d’effectuer n’importe quelle rotation au niveau nibble sur un mot de 64 bits. La
Figure 12 montre comment ce Barrel Shifter permet d’assigner chaque nibble à la
S-Box qui correspond à son nibble de masque. On peut voir que grâce aux S-Box

S-BoxS-Box S-Box S-Box
m0-m1 m1-m2 m2-m3 m15-m0

s1⊕m2 s2⊕m3 s15⊕m0s0⊕m1

SB(s0)⊕m2 SB(s1)⊕m3 SB(s2)⊕m4 SB(s15)⊕m1

Barrel Shifter

Barrel Shifter

Figure 12: L’Etape de Confusion avec RSM

modifiées, les Barrel Shifter permettent d’assurer la rotation du masquage sans
rotation du texte.

Nous avons implémenté deux instructions NShift et InvNShift qui forment
l’extension protégée, nommée ProtLBC-ISA. Les instructions implémentées, sont
de type R (Cf. Fig. 13) ce qui permet d’avoir deux entrées 64-bit mais ne laisse
plus l’option de préciser la valeur du décalage (shift amount). Il est donc nécessaire
de définir ce shift amount par le biais de registres CSR.

31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 rs1 funct3 rd opcode

Figure 13: Les Instructions RISC-V de Type R

L’utilisation d’un tel registre est de toute façon nécessaire puisque l’index de
rotation initiale du masque est secret et doit donc être stocké dans un de ces reg-
istres. La valeur de l’index initial contenue dans ce registre est ensuite incrémentée



xxviii Résumé en français

après chaque étape de Confusion. De plus, comme le montre la Fig. 12, chaque
utilisation de NShift implique l’utilisation de la rotation inverse, qui est exécuté
par InvNShift. Ces deux instructions sont donc l’inverse l’une de l’autre, elles
utilisent donc des paramètres légèrement différents, mais le matériel utilisé pour
les implémenter est le même.

Le coût de cette implémentation est résumé dans le Tableau 7, la version com-
plète du tableau est dans la Section 5.1.3.1

Table 7: Coût Matériel de l’Implémentation Générique Protégée

Configuration Instruction
Supplémentaire LUTs % FFs %

RISC-V ISA
de Base - 978 - 775 -

RISC-V Etendu
LBC-ISA (PRESENT)

S-Box +
PRESENT_D 1178 +20 777 +0.2

RISC-V Etendu
LBC-ISA (ENTIERE)

S-Box + PRESENT_D +
GIFT_D + PRINCE_DF +

PRINCE_DM + PRINCE_DL +
MMULT_D

2135 +118 1038 +34

RISC-V Protégé
Extension ProtLBC-ISA

(PRESENT)

S-Box + PRESENT_D +
Nibble-Level Barrel Shifter 1993 +104 814 +5.0

RISC-V Protégé
Extension ProtLBC-ISA

(ENTIERE)

S-Box + PRESENT_D +
GIFT_D + PRINCE_DF +

PRINCE_DM + PRINCE_DL +
MMULT_D +

Nibble-Level Barrel Shifter

2619 +168 1070 +38.1

Évaluation de la Sécurité de l’Implémentation Protégée

Nous avons utilisé la même méthode d’évaluation que pour les versions non pro-
tégée, excepté que nous avons augmenté le nombre de traces. Pour les algorithmes
PRESENT et GIFT, nous avons capturé 1048576 de traces et pour les algorithmes
PRINCE et Midori, nous avons capturé 2097152 de traces. La Figure 14 mon-
tre l’évolution de la GE pour l’attaque de PRESENT. Les résultats des autres
algorithmes sont présentés Section 5.4.

(a) Nib. 0 - 3 (b) Nib. 4 - 7 (c) Nib. 8 - 11 (d) Nib. 12 - 15

Figure 14: La Guessing Entropy de l’Exécution de PRESENT Protégé pour jusqu’à 1 million de
Traces de Consommation Énergétique
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Ces courbes montrent que même pour des paquets de plus d’1 million de traces
la GE ne converge pas vers 1, la tendance est plutôt à des valeurs entre 4 et 10.
Cette absence de convergence vers 1 montre que le bon nibble de clé n’est jamais
identifié par l’attaque comme étant le plus probable. Ainsi, l’efficacité de la pro-
tection a bien été montrée pour un nombre de traces supérieur à 1 million, soit
environ 100 fois plus que pour les versions non protégées. Les résultats pour les
autres algorithmes montrent des comportements similaires ce qui confirme égale-
ment que la même protection va fonctionner sur d’autres algorithmes utilisant des
S-Box.

Conclusion

Nous avons montré lors de cette étude qu’il était possible de grandement réduire la
latence de nombreux algorithmes de chiffrement légers par blocs avec un nombre
restreint d’instructions génériques dédiées. Pour ce faire, nous avons d’abord
adopté une approche entièrement matérielle qui s’est avérée trop coûteuse et ne
profitant pas assez des outils offert par le contexte.

Nous avons également montré qu’en choisissant avec attention ces instructions
et en utilisant l’ISA du RISC-V, il était possible de réduire les coûts matériels.
En effet, l’utilisation du logiciel a permis de réduire certaines contraintes liées à
l’aspect générique. Il est donc bien possible d’adopter une approche générique
à l’implémentation des LBC et d’obtenir un véritable gain de latence. Le coût
matériel est quant à lui raisonnable et adaptable à l’agilité requise.

Pour ce qui est de l’implémentation des contre-mesures, nous avons pu montrer
qu’une approche générique permettait d’assurer une très bonne protection. En ef-
fet, avec l’ajout matériel d’une seule instruction, nous sommes parvenus à montrer
que la protection pouvait être augmentée d’un facteur de 100 en termes de nombre
de traces. Cette protection a tout de même un coût en termes de latence puisque
le nombre d’instructions augmente.

Lors de ces recherches nous nous sommes concentré sur l’objectif d’assurer une
protection générique à des algorithmes dont l’exécution a été accélérée par des
instructions elles aussi génériques. Ce que nous sommes parvenue à faire. Cepen-
dant nous avons laissé plusieurs questions en suspend et il aurait été intéressant
de prendre le temps d’y répondre. Parmi elles, l’explication de la résistance de
certains nibbles aux SCA pourrait donner lieu à des travaux intéressants.





Chapter 1

Introduction

1.1 Motivation

Communication in modern car is developing at a very high pace and with it comes
the need to secure these communications. Indeed, whether it is internally, or
between vehicles, reliable communication is essential to allow modern car to take
decisions and react to its surrounding autonomously. Nevertheless, communication
signals can be intercepted and even modified by attackers and therefore require
protection. Cryptography is the evident answer to secure communication, but
existing cryptography is believed by some to be inadequate and the cost of imple-
menting it in all the embedded systems too high. Although the car industry relies
on standards, it also sometimes prefer to use ad hoc technologies more suited for
its constraints in terms of cost, performance and security. As long as the com-
munication is internal this does not represent an issue, but once the cars start
communicating with each other, then lacking standard becomes a time sensitive
problem.

A second issue with security of embedded communication is the protection
against physical attacks. Indeed, these attacks can bypass the protection offered
by sound cryptographic algorithms by exploiting the fact that these algorithms run
on an accessible hardware device. Nowadays, protection against those physical
attacks must be considered when designing the implementation of a cryptographic
algorithm and such protections are far from being standardized.

In the context of The Connected Cars and CyberSecurity (C3S) Chaire [60],
which financed this work, we wanted to see how multiple cryptographic algorithms
could be handled by an embedded system. In other words, is it possible to keep
a small hardware footprint while keeping good performances. What drove this
work was therefore to find low-resource agile implementation for lightweight cryp-
tographic algorithms while providing protection against physical attacks. The main
constraints were therefore agility, low latency and low hardware cost. It is impor-
tant to note that this only applies to the datapath and that key scheduling is not
part of this work.

Although a fully hardware implementation is proposed, the context of embedded
Electronic Control Units in modern cars, lead us to also study software implemen-
tations and to propose a dedicated processor. This allowed flexibility, which fully
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2 Introduction

hardware implementations do not provide, while keeping hardware cost reasonable
when compared to a standard microcontroller.

1.2 Contributions

Throughout this work we have studied several cryptographic algorithms and pro-
posed a hardware architecture and a dedicated processor to implement efficiently
Lightweight Cryptography (LWC) in an embedded system. Our main contributions
can be summarized as follows:

• Classification of Lightweight Encryption Algorithms by Block

• Configurable hardware implementation dedicated to the acceleration of the
execution of Lightweight Block Ciphers of the SPN type

• RISC-V hardware extension dedicated to accelerating the execution of Lightweight
Block Ciphers

• RISC-V hardware extension dedicated to the protection of Lightweight Block
Ciphers against Auxiliary Channel Attacks

Each contribution is experimentally supported by tests to evaluate hardware cost,
performance, latency and physical security against auxiliary channel attacks.

During our study, we also came across an interesting phenomenon of leakage
linked to the internal pipeline execution order in a processor core and the instruc-
tions order in the executed software.

1.3 Organisation

Chapter 2 give a thorough background regarding the state of the art of all the
concepts studied during this work. As it will be explained later, all studied ciphers
were not exploited to support our results, but they were nevertheless all considered
for their potential use. All these ciphers are described in Appendix A.

Chapter 3 describes the configurable agile hardware implementation dedicated
to the accelerated execution of the selected Lightweight Block Ciphers (LBC).

Chapter 4 describes the dedicated processor implementation, based on the RISC-
V open Instruction Set Architecture (ISA). This implementation extends the RISC-
V ISA with additional hardware instructions dedicated to the acceleration of LBCs
execution

Chapter 5 describes an agile protection against side-channel attacks imple-
mented to make the execution of LBCs resilient against power observation attacks.
The implementation of this countermeasure expand also the RISC-V ISA with a
dedicated set of instructions. The protection is evaluated experimentally for sev-
eral LBCs by performing correlation attacks and comparing its resistance to the
unprotected dedicated processor.

Finally, Chapter 6 is an overall discussion of the costs and benefits of each of
the contributions, along with a look at the perspectives this work offers.



Chapter 2

State-of-the-Art

Understanding the state-of-the-art of cryptography is essential to understanding
this work and this chapter will cover the basis of the principles and ideas used. It
will first explain the basic cryptographic principle, before presenting those specific
to ciphers and most specifically Lightweight Block Ciphers. Each of the ciphers
considered for this research will be detailed in Appendix A. It will then explain the
basic cryptanalysis principles which are used during an attack and more specifically
a side-channel attack. Finally, it will present the RISC-V ISA and some of its
implementations.

2.1 Introduction to Cryptography

Whether it is at a very large scale with the Internet or at a very small scale with
embedded technology, communication is at the heart of modern development in
technology. Just as it becomes more and more essential to how our society work,
it becomes more and more essential to protect it. These protections used are
based on cryptography which is the science of protecting sensitive information. It
is based on four principles [15]:

• Confidentiality: which makes sure that only the allowed party (or user) have
access an understandable form of the message.

• Authenticity: which makes sure that users can identify themselves.

• Integrity: which makes sure that the transmitted message has not been
tempered with (due to transmission or a third party).

• Non-Repudiation: which makes sure that no allowed party can deny being
the sender or receiver of a message

A cryptographic algorithm or cipher will first encrypt a plaintext into a cipher-
text. This means that the original message or plaintext, which can be understood
by anyone, is transformed or encrypted in an unintelligible form or ciphertext.
Once the ciphertext has been obtained, it is then sent to the receiver. While the
message is on its way to the receiver, it can be intercepted as the communication
lines can hardly be entirely secured. Thanks to the encryption, the intercepted
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message isn’t the hidden plaintext, but the unintelligible ciphertext, meaning that
the actual information is still secure. The receiver then receives the message and
uses the same cipher to transform back or decrypt the ciphertext back into the
plaintext.

The security of this operation is based on the mathematical soundness of the
ciphers. The encryption process uses a hidden key to transform the plaintext.
This process will be further explained later. The size of the keys is important in
gaging the security of an algorithm. These keys are usually at least 128-bit long,
meaning that a brute force attack on the ciphertext would require testing out 2128

possibilities, which would take more time to compute on the best supercomputer
available than the age of the universe, by an unfathomable margin. There are
other types of attacks, some of which will be covered later, but reliable attacks
cannot only use the mathematical properties of the algorithms.

Although ciphers share these properties, there are many of them and each have
their specificities.

2.2 Symmetric Cryptography

In symmetric cryptography, a single hidden key is shared between both users. Keep-
ing this secret is the keystone of symmetric cryptography as if any of the users has
his key disclosed, the entire security falls apart. The main issue with this type of
cipher is therefore to ensure that both users get access to the secret key without
having anyone else get a hold of that key. Symmetric cryptography can be divided
in two main classes of algorithms which are stream ciphers and block ciphers.

2.2.1 Stream Ciphers

Stream ciphers [69] are based on bit sequence encryption using a pseudo random
key-stream. This key-stream is generated with a Linear Feedback Shift Register
(LFSR) using the secret key as a seed. There are two main types of stream ciphers:

• Synchronous Stream Ciphers: which use a key-stream independent of
the plaintext or ciphertext. The key-stream is generally XORed with the
plaintext. This method requires bit-level synchronization between the sender
and the receiver.

• Self-Synchronizing Stream Ciphers: which uses a key-stream based of
previous ciphertext or ciphertexts. This method is less demanding but is also
more sensible to certain types of attacks, as any bit disruption in the plaintext
results in the same bit being modified in the ciphertext.

This type of cipher is well adapted to certain types of communication where the
package size is unknown and can vary such as mobile phone conversations. They
are also efficient in terms of hardware and fit well embedded applications. Their
main issue remains their levels of security which appears to be lower than that of
block ciphers [48].
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2.2.2 Block Ciphers

As their name suggest, block ciphers do their encryption and decryption on blocks,
which is a subdivision of a message in groups of a defined number of bit. The
most common block sizes are 64-bits and 128-bits, although some more recent al-
gorithms have opted to increase their block sizes ([13], [27], [52]). Block Ciphers
apply a series of mathematical functions (linear and non-linear) which together
form a round. The linear functions are two folds, first there is the key addition,
second the permutation, which can also be combined with XORs to make matrix
multiplication functions. The non-linear function is the substitution. These opera-
tions will be covered in more details later. This round is repeated a certain number
of times, which depends on the algorithm itself and the security/latency equilib-
rium. The plaintext, the ciphertext and the intermediate values or collectively
referred to as the state.

Block ciphers usually require a mode of operation in order to be used correctly,
there are four of them [28]:

• Electronic Code Book (ECB) mode: Each plaintext is encrypted (and
decrypted) separately. This may cause a security issue as the same plaintext
is encrypted into the same ciphertext meaning that patterns may appear over
large amount of data or when the same data block is used regularly.

• Cipher Block Chaining (CBC) mode: Each plaintext (resp. ciphertext)
block is XORed with the previous ciphertext (resp. plaintext) block during
encryption (resp. decryption). An initializing vector is used for the first
plaintext (resp. ciphertext).

• Cipher Feedback (CFB) mode: Operates like the self-synchronizing stream
ciphers (Cf. Sect. 2.2.1).

• Output Feedback (OFB) mode: Operates like the synchronous stream
ciphers (Cf. Sect. 2.2.1).

2.2.3 Key Scheduling

The secret key is essential in providing security, and the level of security is based
on the key size. Nonetheless, using the exact same key multiple times in a row in
each round of a block ciphers can cause certain patterns to appear which could
lead to specific attacks which strongly decrease the security level. The solution to
this problem is to use key scheduling. Key scheduling consists in modifying the key
using a specific algorithm in order to obtain a different key for each of the cipher’s
rounds called round keys. It is essential in ensuring the security and must itself be
as mathematically reliable as the cipher itself to ensure it cannot be attacked [30].

Each algorithm has its own specific key scheduling, which may use both linear
and non-linear functions. To lower complexity some ciphers re-use some parts of
the cipher itself. Key scheduling is also useful in ensuring the entire 128 bits of
key information is used to encrypt 64-bit size block ciphers.
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2.3 Types of Block Ciphers

There are two main architectures for common block ciphers, Feistel Networks
and Substitution and Permutation Networks (SPN). The algorithms that belong
to these families have similar architectures with some differences in the sub-part
functions and execution order. The most iconic examples are the Data Encryption
Standard (DES) [75] and the Advanced Encryption Standard (AES) [29] that have
respectively a Feistel and an SPN architecture. Another interesting subcategory
of block ciphers, especially in the context of Lightweight Block Ciphers, is the
𝛼-reflective architecture which can be illustrated with the PRINCE cipher [19].

2.3.1 Feistel and Generalized Feistel Network (GFN)

The Feistel type of block cipher corresponds to the structure of the DES cipher.
DES was amongst the first standard cipher, the first widely used free cipher, and
has a very important place in the history of ciphers [72]. It was designed in the
1970s at IBM and was slightly modified in consultation with the National Security
Agency (NSA) before being accepted by the National Bureau of Standards (NBS),
which is now the National Institute of Standard and Technology (NIST) [59]. The
intervention of the NSA lead to high levels of suspicions concerning the actual
security of the algorithm. Indeed, some of its design was classified, and they
advocated for a very short key length of only 56-bits which was much smaller than
the initial design of IBM. These concerns created a strong interest in the field of
cryptography, which was academically disregarded at the time, and lead to its study
as an academic science. The surge over the distrust of the DES lead to an ultimate
discovery in 1998 that the DES was indeed too small and that a brute-force attack,
which consists in testing every single key, could break it in under three days. It also
led to the development of a new cipher, using the same mathematical properties
as DES but with a longer key size, called triple-DES in 1985. DES was a pioneer
in the world of non-military use ciphers and its impact still resonates through the
most recent ciphers. Amongst its influence is the remaining distrust concerning
any NSA suggestion in cryptography.

The Feistel Network or Generalised Feistel Network (GFN) algorithms specificity
is that only half of the state goes through the round process before permuting each
half (Cf. Fig. 2.1). The value the block has during the encryption or decryption,
between the plaintext and the ciphertext, is called the state. This state is therefore
what is being manipulated by the encryption or decryption. In a Feistel or GFN
type cipher, this state is being divided into two part, the right part and the left
part. During a round, each part receives a different treatment and at the end of
the round those parts are switched.

During a round, the first part is temporarily modified, and this temporary value
is then XORed to the second part. The temporary value is obtained by applying
linear and non-linear functions to the first part. The linear function usually includes
some form of permutation to shuffle the bits around, also known as a Diffusion
Step and a XORing with the round key, also known as the AddKey Step. The non-
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Round Key

Non-
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32/64

Figure 2.1: Generic Feistel Round

linear function is usually either a simple AND or ADD function or an S-Box, also
known as the Confusion Step, this will be covered in more details in Section 2.4.3.
Combining both these types of functions offer extra security compared to either
being used alone. Both the non-modified first part and the XORed second part
are then permuted meaning that the next round will apply the modifications to
the other part.

Mathematically, it corresponds to: Let,

• 𝐿𝑖 be the left part of the state during round 𝑖,

• 𝑅𝑖 be the right part of the state during round 𝑖,

• 𝜆() be the linear function, which corresponds to the Diffusion Step,

• 𝜅()𝑖 be the XORing function with the round key from round 𝑖 which corre-
sponds to the Key Addition Step,

• 𝜇() be the non-linear function which corresponds to the Confusion Step.

During a round:

𝑡𝑚𝑝 = 𝜇(𝜅(𝜆(𝐿𝑖)𝑖))
𝑅𝑖 = 𝑅𝑖 ⊗ 𝑡𝑚𝑝

𝑅𝑖+1 = 𝐿𝑖

𝐿𝑖+1 = 𝑅𝑖
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This type of cipher has a very interesting property, which is that both encryption
and decryption use the same hardware. This design allows to greatly lower the
area requirements of implementing such ciphers. Nonetheless, since only half the
state is getting ciphered during each round, it means that the number of rounds
is usually higher in Feistel and GFN ciphers.

2.3.2 Substitution Permutation Network (SPN)

The Substitution Permutation Network (SPN) corresponds to the type of the AES.
The AES is the current NIST standard for cryptography and is widely used in many
fields. It is build around the similar principles as the GFN expect that the entire
state is modified at each round. Here also, there are both linear and non-linear
functions which modify the state at each round.

The AES algorithm uses a 128-bit block size and a variable key length of 128,
192 or 256 bits. Each key size has its own dedicate cipher AES-128, AES-192 and
AES-256. In this algorithm, the state is seen a 4 × 4 byte matrix. It uses fours
functions:

• The Sub Byte Step: This function is the only non-linear step. It is an
8-bit substitution which turns each input byte into an output byte according
to a fixed table, also called an 8 × 8 S-Box. The table is based on certain
mathematical properties in order to avoid patters from forming and from
being exploited by attackers. During this step, the S-Box is applied to each
byte of the state.

• The Shift Rows Step: This step rotates the bytes of each line of the 4× 4
matrix by a defined value.

• The Mix Column Step: This step combines some columns of the state
with a linear transformation.

• The AddRound Key Step: This step XORs each bit of the round key with
the corresponding bit of the state.

Linear

4

4

4

4

4

4
64

Key
64 Round

128
Key Key

Scheduling

Reg
Linear
Non-

Figure 2.2: Generic SPN Round
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Those four functions are specific to the AES algorithm and although many
ciphers imitate those step, some merge the Shift Rows step and the Mix Column
step in a single Confusion Step Therefore a more generic way to look at SPN
algorithms’ rounds is shown in Figure 2.2.

2.3.3 The 𝛼-reflective Algorithms

This is not actually a type of algorithm, but rather a subtype as its rounds use
the same structure as SPN algorithms. The specificity of 𝛼-reflective algorithms
is their overall structure which can be divided into three parts:

• The First Rounds: where the rounds are composed of the S-Box, the Shift
Rows and the Mix Column.

• The Middle Round: which is composed of the S-Box followed by the Mix
Column (without the Shift Rows) followed by the inverse S-Box.

• The Last Rounds: where the rounds are composed of the inverse S-Box,
the inverse Shift Rows and the Mix Column.

This means that unlike the rest of the algorithms, they use two different Diffusion
Steps and two different Confusion Steps. The fact that both the S-Box and the
inverse S-Box are used in the cipher means that the exact same algorithm can be
used for encryption and decryption. The only difference is that the key used is
changed to a related key as shown in Fig. 2.3

𝑘0 𝑘′0

𝑘1

𝛼-reflective cipher CP

(a) 𝛼 − 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒 Encryption

𝑘1 ⊕ 𝛼

𝑘′0 𝑘0

PC 𝛼-reflective cipher

(b) 𝛼 − 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒 Decryption

Figure 2.3: The 𝛼− 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒 Property

2.4 Three Steps Model of a Block Cipher Round

The name of the SPN type comes from the effect each step has on the state.
The Sub Byte Step corresponds to the substitution where each byte is replaced by
another byte, this step is also referred to as the Confusion Step. The Shift Rows
and Mix Column Steps correspond to the permutation where each byte’s position
is changed linearly, this step is also referred to as the Diffusion Step. Although it
is less apparent, these steps can also apply to Feistel and GFN type ciphers.

Each block cipher is a succession of rounds, which can be divided in three main
steps and repeated a defined number of time. Those three steps are:

• Key addition
• Confusion



10 State-of-the-Art

• Diffusion

Each algorithm has a different way of implementing these steps and the heart of
this classification was to identify the similarities that could be found within those
steps. These similarities can then be used to define a few agile instructions which
would accelerate the execution of each of those ciphers.

A representation of the general execution pattern of LBC algorithms is shown
in Alg. 1. This representation is mostly based on SPN structures but fits the
principles of any LBC.

Algorithm 1 Generic Lightweight Block Cipher Algorithm
BLOCK CIPHER ALGORITHM

Data: PlainText (64-bit), Key (128-bit)
Parameters: S-Box parameters (64-bit)
Result: CipherText (64-bit)

𝑟𝑜𝑢𝑛𝑑𝐾𝑒𝑦[#𝑜𝑓𝑅𝑜𝑢𝑛𝑑𝑠]← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦𝑠(𝐾𝑒𝑦)

for 𝑟𝑜𝑢𝑛𝑑 = 0 to #𝑜𝑓𝑅𝑜𝑢𝑛𝑑𝑠 do
𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑡𝑒⊕ 𝑟𝑜𝑢𝑛𝑑𝐾𝑒𝑦[𝑟𝑜𝑢𝑛𝑑]
𝑠𝑡𝑎𝑡𝑒← 𝑆𝐵𝑜𝑥(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒← 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛(𝑠𝑡𝑎𝑡𝑒)

end forreturn 𝑠𝑡𝑎𝑡𝑒

2.4.1 Key Addition Step

The key addition is the step where the secret key is mixed with the state. This
addition can take on different forms from one algorithm to another, but each can
be summed up as a XOR between the 64-bit block and a 64-bit round key. The
round key is a subkey which has been extracted from the 128-bit key. In most
cases has been modified either by using a XOR between some parts of the key or
a constant or both, some algorithms also use rotation and other basic instructions
or their own S-Box to calculate a round key which is unique to each round of the
algorithm.

Some algorithms also use whitening keys. These whitening keys are based on
the key or part of the key. They are XORed to the plaintext (resp. ciphertext)
before the first round and after the last round of encryption (resp. decryption).
These keys are not useful in terms of mathematical protection, but are rather used
as a way to slow down physical attacks. Indeed, these attacks use the values
inside a round for their attacks, usually the first or last round, and thanks to the
whitening key, these values are scrambled by another unknown value. Although
this value can also be attacked, it does avoid simpler attack models from working.
These whitening keys therefore have very little impact on the overall cipher as this
XORing is only done twice, but is a burden for attackers who are slowed down.

Some algorithms also use Constants which are XORed to the state, or part
of the state. Since these constants are combined to the state through the same



2.4. Three Steps Model of a Block Cipher Round 11

linear operation as the key, both those operations can be merged in a single XOR.
This can only be done as long as a non-linear operation does not separate the key
addition and the constant addition.

2.4.2 Key Scheduling

The process of calculating the round keys is called the key scheduling (Cf. Sec-
tion 2.2.3). Each algorithm has a different key scheduling, which unlike the en-
cryption algorithm follow very different rules for each cipher.

2.4.3 Confusion Step

The Confusion Step’s function is to make sure that the ciphertext is as different
from the plaintext as possible. This is the only non-linear step of any block cipher.
This step can take on different shapes from one algorithm to another.

Some algorithms use basic instructions such as AND or ADD. The other main
ways in which this step is implemented in ciphers is through the use of S-Boxes.
These S-Boxes can have different size usually 4 × 4 for 64-bit blocks and 8 × 8
for 128-bit blocks. An S-Box transforms the input bits into different output bits
according to an S-Box table. These tables are usually unique to each algorithm,
although some share the same. Each table is calculated in order to respect certain
mathematical properties which ensure a minimum level of entropy.

2.4.4 Diffusion Step

The Diffusion Step’s function is to make sure that any small change in the plaintext
has great repercussions on the ciphertext. This step can be seen as a permutation
step where each bit is given a new position, or rather the information of a bit is
spread to another position.

There are multiple ways to design this step. Some algorithms use a basic
rotation. Other algorithms use a bit-level permutation. At bit-level we can also
find algorithms using matrix multiplication.

The last type of diffusion, which is the most similar to the Diffusion Step found
in the AES, is a two part permutation. Its first part corresponds to a Shift Row
and its second to a Mix Colmun step. Although these can be seen as two separate
steps, they can also be interpreted as a single nibble-level matrix multiplication.

All these different Diffusion Steps are linear functions and can therefore be
merged together as a single matrix multiplication.
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2.5 Lightweight Block Ciphers

Both DES, standardized over 40 years ago in 1977 [62], and AES, standardized
over 20 years ago in 2001 [29], are becoming less and less adapted to the low
amount resources available to embedded systems, such as those used in connected
cars. Indeed, DES is not even a standard anymore and had to be replaced several
times by more performant iteration of its algorithm. One of these is the Triple DEA
(TDEA) [11] which is the Data Encryption Algorithm (DEA), itself a variation of
the DES, applied three times in a row, the first and third time as encryptions and
the second time as a decryption with different keys each time. This observation
lead to the development of a new generation of ciphers, called lightweight or in
the case of block ciphers: Lightweight Block Ciphers (LBC).

There are two ways to develop such algorithms, either as an improvement of an
existing algorithm, like TDEA [11] or as entirely new algorithms, like PRESENT [18].
In either case, they must respect certain objective of reducing the different costs
of ciphers, in terms of area, latency and/or power consumption. In other words all
the resources which are scarce in embedded systems. There are multiple ways to
achieve such an objective [51] amongst which are:

• Smaller block size: Memory is a very costly resource in terms of area and
lowering the block size has a strong impact on memory costs. Having a
smaller plaintext does lead to some security concerns which require limiting
the size of the encrypted data.

• Smaller key size: Reducing the key size has an impact on area costs and
some algorithms proposed smaller key sizes such as 80 or 96 for example.
Nonetheless, this is no longer an option since the National Institute of Stan-
dards and Technology (NIST) requires using at least a 128 bit key [10] for
any cipher past 2030.

• Simpler rounds: The Confusion Step of LBCs tend to use 4 × 4 S-Boxes
rater than 8×8 S-Boxes as their hardware cost is significantly smaller. In the
same vein is the use of bit-level permutation as their Diffusion Step which
correspond to wire reorganisation which has practically no hardware cost.
Having simpler round reduces area costs but does lower the security of each
round and therefore requires additional rounds which has a latency cost.

• Simpler key schedules: The key scheduling mechanism in itself can be
costly and simplifying them will have a positive impact on every resource
(area, latency and power consumption). Using simpler key scheduling does
imply having certain security concerns as some types of attacks such as related
keys, weak keys, known keys or chosen keys attacks. This type of attacks
can be handled by ensuring that all keys are generated independently using a
secure key derivation function (KDF) [23].

A plethora of LBCs exist since none have been standardized by the NIST yet.
This is about to change as the NIST has started the process of finding their next
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standard or standards in lightweight cryptography [89], [88], [57]. This process
started in 2019, right after the start of this work, and is in its final stage of selection,
of the 57 ciphers initially submitted, only 10 remain in contention. Although some
of my work is based on the absence of lightweight cryptographic standard, it still
has a purpose once contextualised as some industries will rather rely on their own
technology than a standard one.

2.5.1 Studied Lightweight Block Ciphers

In order to determine how to classify those algorithms we must first understand
what the already established classifications imply. The main way to identify the
ciphers we chose for this study is as Lightweight Block Ciphers.

The lightweight part refers to the fact that the ciphers studied were designed
not only to fit security criteria but also area, latency and/or energy consumption
criteria. These ciphers are therefore adapted to constrained environment with
high levels of restrictions. Another aspect of such ciphers is that very few have
been standardized, none have been standardized by the NIST and PRESENT [40]
is the only one to have been standardized by the International Organisation for
Standardization (ISO). This means that no one algorithm particularly stands out,
and we therefore had to look at a large range of ciphers.

The studied algorithms and some of their properties are shown in Tab. 2.1, they
will all be explained in detail further in Appendix A.

The block size corresponds to the amount of bits which is encrypted at a time.
Some algorithms show multiple versions (even more than those found in Tab. 2.1)
but the block size which is common to most LBCs is a 64-bit block.

The Key size corresponds to the amount of bits in the key, the higher the
amount, the higher the security is. In order to ensure the right level of security, at
least a 128-bit key is recommended [46].

The Focus corresponds to the resource usage which has been optimised for this
algorithm. There are three main axes of optimisation.

• Latency, which looks to reduce the time it takes to encrypt data.

• Area, which looks to reduce the size of a dedicated ASIC implementation of
that cipher.

• Energy, which looks to reduce the overall energy consumption of an imple-
mentation of that cipher.

The Structure corresponds to the overall way the data is processed for the
algorithms. The Feistel Network or GFN algorithms’ specificity is that only half
of the state goes through the round process before permuting each half (Cf. Sec-
tion 2.3.1). The SPN algorithms modify their entire state during each round, using
the same three steps (Cf. Section 2.3.2). Finally, the 𝛼 − 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒 algorithms
are those which use the exact same algorithm as both encryption and decryption
(Cf. Section 2.3.3).



Table 2.1: Summary of properties of Lightweight Block Ciphers

Block size Key size Number ofCipher (bits) (bits) Structure Rounds Focus Ref.

NOEKEON 128 128 SPN 16 Area [26]
Piccolo 64 128 GFN 33 Energy [73]

LED 64 128 SPN 48 Area [38]
64 128 Feistel 44 Area [12]Simon 128 128 Feistel 68 Area [12]
64 128 Feistel 27 Area [12]Speck 128 128 Feistel 32 Area [12]

Simeck 64 128 Feistel 44 Area [93]
RC5 64 0-2048 N/A 2-512 Latency [68]
XTea 32 128 GFN 32 Energy [54]
GOST 64 256 GFN 32 Area [61]

Rectangle 64 128 SPN 25 Area [95]
PRESENT 64 128 SPN 32 Area [18]

64 128 SPN 28 Area [9]GIFT 128 128 SPN 40 Area [9]
PRINCE 64 128 SPN 𝛼 10 Latency [19]
TWINE 64 128 GFN 36 Area [77]

64 128 SPN 32 Area [14]SKINNY 128 128 SPN 40 Area [14]
64 128 SPN 16 Energy [8]Midori 128 128 SPN 20 Energy [8]

MANTIS 64 128 SPN𝛼 14 Latency [14]

14
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2.6 Side-Channel Attacks

Cryptography is a sound science, once a cipher has been validated, it becomes
extremely hard, if not impossible to break it by using mathematical approaches.
The science which looks to break such algorithms is called cryptanalysis. Any
method which is able to break a cipher by using fewer samples than a brute
force attack belongs to this category. Some mathematical methods sometimes
exist, but they cannot reduce the sample amount significantly when attacking
modern cryptography. The most efficient cryptanalysis comes from exploiting
other means than the cipher itself, namely the hardware which is executing the
algorithm. Indeed, cryptography needs to be executed via hardware and this creates
a weakness. Any piece of hardware has a specific behavior during any execution,
and this behaviour can be analysed in order to recuperate the information used
during the execution such as the key or the plaintext. This information is said to
have leaked from the hardware. This type of attack is based on the observation of
factors linked to the hardware rather than the algorithm itself in order to retrieve the
key or the plaintext directly. The leaked information can be exploited in different
ways, the main types of attacks exploit variation in:

• Timing

• Power Consumption

• Electromagnetic Radiation.

These attacks can break a cipher with few measurements.

2.6.1 Timing Attacks

Any operation is executed in a given amount of time. Therefore, by analysing the
execution time it because possible to deduce which operation has been executed.
This is particularly important in the case of conditional operation as observing the
time will indicate with condition was true. When this condition is dependent on
the value of a bit, then the value of this bit is no longer hidden. This type of
attacks was first introduced in [44] in 1996 by Kocher et. al.

2.6.2 Power Attacks

Computation on an electronic device consumes energy. The consumed energy is
variable and depends on the value of resulting bit value. Indeed, hardware devices
use CMOS cells as their basic building block. A CMOS cell as shown in Fig. 2.4
derives current from a constant power supply 𝑉𝐷𝐷.

During the output commutation from 0 → 1 or 1 → 0 there is a charge and
a discharge of the output capacitance 𝐶𝑙𝑜𝑎𝑑. The energy-per-transition dissipated
by the gate can be expressed with the following equation:

𝐸 =
∫︁ 𝑉𝑑𝑑

0
𝐶𝑙𝑜𝑎𝑑 · 𝑉𝑑𝑑

d𝑉𝑐

d𝑡
d𝑡 = 𝐶 · 𝑉 2

𝑑𝑑
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Input
𝐶

Output

𝑉𝐷𝐷

Figure 2.4: A CMOS cell

hence, the fundamental dynamic power consumption of a CMOS gate is:

𝑃𝑑𝑦𝑛 = 𝐴 · 𝑓 · 𝐶 · 𝑉 2
𝑑𝑑

where 𝑓 is the frequency of the CMOS device and 𝐴 is the toggle activity.
The difference in power consumption when the output state of a gate changes

can be observed and exploited to retrieve information about the computation.
Thus, an attacker can collect power traces with different plaintexts and, with
the correct attack model which links the power consumption to the activity in the
circuit, could theoretically recover a secret key. The specificities of a power attacks
will be discussed later.

2.6.3 Electromagnetic Attacks

This type of attack exploits the same CMOS weakness, except that instead of
collecting the power consumption, it observes the electromagnetic radiation of the
device. Indeed, any current flow induces an electromagnetic radiation. Unlike the
power attacks where the power consumption is measured for the entire device,
electromagnetic attacks can be localised by focusing on certain parts of the circuit.
This means that depending on where the probe is placed, the radiation will differ.
This also means that this method can be more effective as it mainly collects useful
information and much less noise due to the activity of the rest of the device.

2.6.4 Attack and Leakage Model

In order to analyse the leaked information obtained through any of these techniques,
an attacker must compare it to hypothesis made on the secret key. This comparison
uses an attack model, this section will explain the basic concepts of such a model.

Let,
• 𝐿 be a random variable (RV) that represents the observed leakage (measure-

ment)
• 𝐾 be the secret cryptographic key, an n-bit data; unknown to the attacker,

assumed to be uniformly distributed on F𝑛
2
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• 𝑋 be the input (plaintext) or the output (ciphertext) of the cryptographic
algorithm; known to the attacker

• 𝑍 = 𝑓(𝑋, 𝐾) for a given function 𝑓 be a sensitive variable used internally
that depends only on 𝑋 and 𝐾. We assume that this sensitive variable 𝑍 can
be computed exhaustively from all possible 𝐾 by the attacker. Furthermore,
Z causes the leakages; put differently, when the key guess is correct, 𝑍 and
𝐿 are dependent.

For each key guess (for each value 𝑘 of 𝐾), the SCA will analyse whether the
RVs 𝑍 and 𝐿 are dependant. To note, a key guess is usually not a key-size guess
but rather a smaller part of the key, usually a nibble of a byte which allows to
test all hypothesis exhaustively. When the greatest dependency is obtained for the
correct key value, noted 𝑘*, then the key is broken.

Because of measurement noise, multiple (𝑋, 𝑍) couples are generally required
to compute this dependency. Indeed, the leakage 𝐿 can be decomposed into two
parts a deterministic part 𝜙() and the noise 𝑁 :

𝐿 = 𝜙(𝑍) + 𝑁

where 𝜙() is the leakage function that links the computation to the measurable
activity. The Noise 𝑁 is assumed to have a Gaussian distribution ([22], [71], [47]).
The observed leakage is generated by the computation in the CMOS cells (as
explained in Sect. 2.6.2). Therefore, the leakage can be assumed to come from
the changing of state. By using a known state (the initial plaintext for example)
and comparing to an unknown state (after the key has been added), it is therefore
possible to use the Hamming Distance Model (HD):

𝐿 = 𝐻𝐷(𝑍, 𝑅) + 𝑁

= 𝐻𝑊 (𝑍 ⊕𝑅) + 𝑁

where 𝑅 is the reference, known, state.
When 𝑅 is initialized to zero, it then becomes the Hamming Weight Model

(HW):
𝐿 = 𝐻𝑊 (𝑍) + 𝑁

Once the appropriate attack and leakage model has been chosen, the next step is
to use a distinguisher to test the dependency between the model and the measure-
ments. In the next section, we review some common distinguishers found in the
literature.

2.6.5 Distinguishers

Distinguishers are the mathematical characteristics being used to analyse the leak-
age values and narrow in on the relevant value while discarding the random values
mostly due to noise. There are multiple distinguishers but the most commonly
used are based on correlation. Nonetheless, other distinguishers have been pro-
posed [32], [90], and have shown interesting results.
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2.6.5.1 Difference of Means

This distinguisher is used in the Differential Power Analysis (DPA) [43]. As with
most power-based attacks, the first step is to collect power traces. These traces
are collected each with a different random plaintext and the same secret key. The
attackers then has to guess a value for the key 𝑘 by predicting the value of one
bit 𝑍𝑗 of the sensitive variable. The leakage measurements L are separated in
two partitions according to the hypothetically predicted value 𝑍𝑗 = 0 or 𝑍𝑗 = 1
computed for each key hypothesis. Each hypothesis 𝑍𝑗 = 0 and 𝑍𝑗 = 1 therefore
results in two separate expectation (or mean) E[]. The difference of mean of those
two partitions is:

Δ(𝑘) = E[𝐿|𝑍𝑗 = 0]− E[𝐿|𝑍𝑗 = 1]

The 𝑘* value for which this difference of means Δ(𝑘) is maximised is the most
likely value of the key. This method specifically applies to a single bit but can
easily be generalised to a guess on a multi-bit value, typically 4 or 8.

2.6.5.2 Pearson Correlation Coefficient

This distinguisher is used in the Correlation Power Analysis (CPA) [21], it is strongly
based of the DPA. The attacker predicts the appropriate leakage model function
𝜙(𝑍), then estimates the Pearson correlation coefficient 𝜌𝑘 for every key guess k:

𝜌𝑘 = 𝐶𝑜𝑣[𝐿; 𝜙(𝑍)]
𝜎𝐿 × 𝜎𝜙(𝑍)

where 𝐶𝑜𝑣[] is the covariance and 𝜎𝐿 and 𝜎𝜙(𝑍) are respectively the standard
deviation of the physical leakage and of the leakage model. DPA and CPA are
very similar, the main advantage CPA has is that it reduces the impact of noise
on the power traces, meaning the key will break with fewer traces.

2.6.6 Leakage Channel Metrics

The leakage of a cryptographic device needs to be analysed, to do so some metrics
exist that will indicate how the leakage behaves. For instance, it will indicate
where the leakage is most likely to be relevant to the secret and not just noise.

2.6.6.1 Signal to Noise Ratio

The signal-to-noise ratio (SNR) is used as a leakage metric to estimate the usability
of a specific leakage point. It is defined as:

𝑆𝑁𝑅 = 𝑉 𝑎𝑟[𝜙(𝑍)]
𝑉 𝑎𝑟[𝑁 ]

where 𝑉 𝑎𝑟[] is the variance and 𝑁 the noise.
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2.6.6.2 T-test

The T-test [76] is a type of statistical test which compares the mean of two groups.
This test works in many fields of research and is often used, due to its practical
approach to statistical problem solving. The specificity of this test is its ability to
identify statistical differences by using small sample sizes.

Its principles are summed up in the following equation:

𝑡 = 𝜇1 − 𝜇2

𝜎
√︁

(1/𝑛1)− (1/𝑛2)

where 𝑡 is the 𝑡-statistic, 𝜇1 and 𝜇2 are the means values of the studied samples,
𝜎 is the standard deviation for the two groups and 𝑛1 and 𝑛2 are the amount of
samples of each group. The 𝑡 value represents the probability that the difference in
means is statistically significant. Thereby, the bigger 𝑡 is, the more the difference
in means in the samples is representative of the entire results.

In cryptanalysis, this test can be used to compare the means of different datasets.
This will lead to the identification of phenomenons which have a specific behavior
during the execution. Indeed, when using power traces, the t-test will differentiate
the noise from the statistically significant power consumption. This method will
therefore lead to identifying the potential leakage points.

2.6.6.3 Normalized Inter-Class Variance

The NICV [17] is another metric to estimate the leakage points most likely to lead
to an attack. It is the envelope, or maximum of all possible correlation computable
from 𝑋 with 𝑌 ∈ R (the leakage measured by the attacker). The NICV is defined
so that:

0 ≤ 𝜌2[𝐿(𝑋); 𝑌 ] ≤ 𝑉 𝑎𝑟[E[𝑌 |𝑋]]
𝑉 𝑎𝑟[𝑌 ] = 𝑁𝐼𝐶𝑉 ≤ 1

where 𝜌 is the Pearson correlation coefficient. This metric gives a frame of how
and where the attack is most likely to succeed.

2.6.7 Attack Metrics

A side channel attacks can be more or less successful, depending on many factors
such as the number of traces, the attack model or even some implementation
consideration which make the attacks more complicated. Therefore, it is important
to be able to evaluate the level of success of a given attack.

2.6.7.1 Minimum Traces to Disclosure

This metric is the average number of measurements needed to perform a successful
attack.
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2.6.7.2 Success Rate

This metric is defined by the probability of the best key guess to be the right key
with a given set of traces. It therefore requires using multiple same-sized sub-sets
and looking at the percentage of successful attacks.

2.6.7.3 Guessing Entropy

The Guessing Entropy (GE) works similarly to the success rate, except that it does
not look at the percentage of success. Instead, it looks at the average rank of the
right key among all the key guesses. Is allows for a more gradual evaluation of the
results rather than the more binary principle of the success rate.
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2.7 Introduction to Countermeasures

Side-Channel Attacks are a real threat to the security of any cryptographic design,
therefore these devices should be equipped to resist such attacks. There are many
countermeasure most of which are based on a few basic principles.

2.7.1 Hiding

The concept of hiding-based protection is to cancel out the observable depen-
dencies created by the hardware during its execution. Rather than lowering the
information that is leaking, these methods seek to augment the leaking as a hole.
This has the effect of evening out the behavior making any information as signifi-
cant as the secret, therefore undetectable.

2.7.1.1 Noise Generators

A big part of what takes side-channel attacks time to break an algorithm is getting
rid of the noise. Therefore, one way to disrupt such attacks is to artificially add
more noise, through a noise generator. The amount of traces required to break a
cipher will thereby increase. This method has a very low area over-cost [42] but is
theoretically weak as attacks are already designed to differentiate noise.

2.7.1.2 Activity Balancing

These countermeasures looks to compensate the energy consumption at a gate
level by adding hiding logic to the necessary logic. Theoretically, this would make
the energy consumption constant throughout the entire execution. In practice,
the compensation is never perfect and information can still leak and be exploited
by SCA. Nonetheless, this method is still quite common and can be found in the
literature, where it can also be named dual-rail [24], [37].

2.7.1.3 Shuffling

This countermeasure is about randomizing the execution order of independent
operations [67]. This method is very common as it requires very little over-cost in
software implementations.

2.7.2 Masking

Masking one of if not the most used countermeasure. The basic principle of
masking is to manipulate a data that is randomized or disguised. The mask is a
given value (hidden or public) which is XORed to the manipulated value, the state
for instance, in order to dissimulate any existing correlation. This can be done at
gate or algorithmic level which makes it a flexible method. This method does have
some issues such as the possibility of glitches [56]. Masking can be done at higher
order, but will always be extremely weak to attacks one order above it. Amongst
the existing countermeasures based on masking, we will detail how the Rotating
S-Box Masking (RSM) works, which we used during this work.
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2.7.2.1 Threshold Implementation

The Threshold Implementation [55] is a masking-based protection which works on
transformed subparts of the input, called shares. Let (𝑥, 𝑦, ...) be the input vector
such that each variable can be divided into 𝑛 shares 𝑥𝑖 with 𝑥 = 𝑥1 ⊕ 𝑥2...⊕ 𝑥𝑛.
The basic principle is that if instead of manipulating the entire input at a time,
a part of the masked input is not taken into account then the manipulation can
never be dependent of the input. This idea is based on three properties:

• Non-Completeness

• Correctness

• Uniformity

Non-Completeness means that every function is independent of at least one share
of the input variable. Correctness ensures that the sum of the parts is always
equal to the desired output. Uniformity ensures that the conditional probability
distribution is uniform. In other words, the probability that a vector takes on a
given value is the same, no matter the given value.

This method therefore allows manipulating secret data without ever exposing it
all at once to the observations linked with the execution. This division along with
the masking has the effect of making the observation unusable for an attack. The
Threshold Implementation offers protection against first order attacks.

2.7.2.2 Rotating S-Box Masking

The Rotating S-Box Masking (RSM) protection [53] was designed with LBCs using
S-Boxes in mind. Its basic principle is to make sure that the state is masked at
all time, while changing the mask at each round. The 64-bit mask is divided in
16 nibbles, these nibbles do not change, but the 64-bit mask changes by rotating
these nibbles at each round. Therefore, at each given round, the mask is a one
nibble rotation of the preceding round mask. The initial rotation is determined by
the RSM Index which is randomly chosen and securely stored at the beginning of
each cipher.

Since the S-Box is a non-linear step of the algorithm, the state cannot be
masked when using it. This is a huge problem since losing the mask at any point
creates the possibility of leakage, and the S-Box is already a weak point for side-
channel attacks. The solution is to incorporate the mask to the S-Box itself. This
means that the S-Box table is modified from:

x ↦→ S(x)

to:

x ⊕ mi ↦→ S(x) ⊕ mi+1

where 𝑥 is the S-Box input, 𝑆 is the S-Box function, 𝑚𝑖 is the current round’s
mask and 𝑚𝑖+1 is the next round mask. That way, the state enters the RSM
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S-Box while masked with the current round’s mask and outputs it masked with
next round’s mask. This solution allows to both avoid the unmasking of the state
before using the S-Box and takes care of the mask rotation.

RSM RSM RSM

Round counter

Mask Compensation

Unmasking

Ciphertext

Diffusion

Add Round Key

Initial masking

RSM Index Incrementation

Rotating Masked S-Boxes

S-BoxS-BoxS-BoxS-Box
RSM

Figure 2.5: The RSM Datapath on a Generic LBC

The entire RSM datapath is shown in Fig. 2.5, it uses a generic LBC algorithm
structure as an example. One of the requirements for the RSM protection is that
the nibbles of the mask never change. To avoid modifications of the mask during
the Diffusion Step, a compensation mask must be added to the state before the
next round. The changes applied to the mask are linear and can therefore be
corrected through a simple XOR with the right value. When the Diffusion Step
is applied to the masked state, the output is D(x ⊕ m) where D is the Diffusion
Step function, m is the mask and x is the state. Since the Diffusion Step is linear,
it is equivalent to D(x) ⊕ D(m), therefore, the state is no longer masked with
m but with 𝐷(𝑚). In order to have the state be masked with m once again, it
must be XORed with m ⊕ D(m). It is essential that the state is XORed with the
entire compensation mask at once, since XORing the state with only D(m) would
unmask the state. Once this compensation mask is applied, the state goes back
to D(x ⊕ m) and the cipher can go on to the next round.
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2.8 RISC-V

The RISC-V is an open-souce Instruction Set Architecture (ISA) [91] based on the
reduced instruction set computer, or RISC principles. It is at the heart of the RISC-
V Foundation [66] which regroups a large community of academics and industrials
working on implementing RISC-V processors in many different ways and for many
different purposes. The free access to the RISC-V and many tools developed by
its community makes it a perfect fit for academic study.

2.8.1 History

The RISC-V project started in 2010 at the University of California, Berkeley [58]
by Prof. Krst Asanovi𝑐 and graduate students Yunsup Lee and Andrew Waterman.
It was initially funded by the UC Berkeley PerLab Industrial sponsors for research
on parallel processing systems. The open-source nature of the project led to a fast
growth.

Amongst the specificities of the RISC-V is the fact that it is only an ISA, mean-
ing that no given implementation is required, which offers a lot of freedom. Indeed,
the technology itself has existed for decades but never before had it been open-
sourced. Giving everyone free access to the same unified ISA meant collaborative
work would not only be facilitated but also made available for future work. Any
implementation, any extension, any enhancement could be shared and any further
work could be built on that rather than having to start from scratch. This led to
the development of many RISC-V ISA cor implementations ( [3], [7], [78] to name
a few) which each have their own specificities.

This flexibility along with the risc architecture and the open-source aspect,
makes RISC-V a very interesting candidate for any embedded technology. RISC-V
is therefore of interest to a number of industrial companies, part of the RISC-V
Foundation [65]. Today, the RISC-V Foundation is the organisation which regroups
all the information about the project and finances conferences to help spread the
research made with this ISA.

2.8.2 RISC-V Base Variants and Extensions

There are multiple Base Variants of the RISC-V meant for different sizes and
different uses, they are described in Tab. 2.2.

Table 2.2: Base Variants of the RISC-V ISA

Number of InstructionName Description Registers Count
RV32I Base Integer Instruction Set 32-bit 32 49
RV32E Base Integer Instruction Set (embedded) 32-bit 16 49
RV64I Base Integer Instruction Set 64-bit 32 14
RV128I Base Integer Instruction Set 128-bit 32 14

Moreover, a large part of the design for the RISC-V is based on the fact that
it can be extended. The goal of these extensions is to allow users to have access
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to the most compact possible implementation they would need. This means that
none of these extensions is mandatory, which leaves the basic RISC-V quite small
and lets the user modulate it for its needs. Some of these extensions have even
been made official by the RISC-V foundation and are presented in Tab. 2.3.

Table 2.3: RISC-V Foundation Standardized Extension of the RISC-V ISA

InstructionName Description Count
M Standard Extension for Integer Multiplication and Division 8
A Standard Extension for Atomic Instructions 11
F Standard Extension for Single-Precision Floating Point 25
D Standard Extension for Double-Precision Floating Point 25
G Shorthand for the base and above extensions n/a
Q Standard Extension for Quad-Precision Floating Point 27
C Standard Extension for Compressed Instructions 36

There are other existing extensions which have not been made official by the
RISC-V foundation. Among them is the RISC-V Crypto Extension Proposal [94]
which looks to accelerate the execution of standardized hash functions and the
AES cipher. This project had not started when our research started, and ours took
a different path as it focuses on non-standardized Lightweight Block Ciphers. In
addition to this proposal, the Standard Extension for Bit Manipulation [45], [4] is
also an interesting extension to look at as most of our work seeks to accelerate
the execution of LBC which are often slowed down by their bit-level functions.

Based off these extended ISAs multiple Cores were implemented, each with
their specificities.

2.8.3 RISC-V Cores

There are many existing implementations of this ISA, it is important to select the
one that most fits your criteria. The RISC-V Foundation maintains a comprehen-
sive list of compliant cores and platform on the official foundation website [66].
Here is a short presentation of some RISC-V cores that we considered during this
study.

2.8.4 RISC-V Rocket Core

The RISC-V Rocket Core [7] uses the RV32 ISA. The Rocket Core is written in
Chisel [25], a hardware construction language based on the Scala programming
language. Chisel allows to have an easy to configure architecture with a variety
of parameters which allow to propose many implementations, among which are
multi-core implementations. Among these parameters are the knobs which are
simpler to change:

• Tiles: Number, type

• Memory: Physical/Virtual address bits

• Caches: Set, ways, width for L1 and L2
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• Core: Floating Point Unit, Frequency

• Uncore: Coherence Protocols

It is possible to implement new extensions for this core, but, as this design
targets high performance multi-core systems, we found that we will need to modify
too many aspects for our low complexity target.

2.8.4.1 SiFive

SiFive [74] is a fabless semiconductor company which specialises in the develop-
ment of RISC-V Cores. Their portfolio includes a variety of Cores for a variety of
use. Their main families of cores are:

• E Cores: 32-bit embedded cores

• S Cores: 64-bit embedded cores

• U Cores: 64-bit application processors

Their P550 Series’s performance is announced to be 3× the performance of an
ARM Cortex A75 per 𝑚𝑚2. Some cores have been validated on silicon and de-
velopment board are commercially available. SiFive is also one of the most active
contributors to the open source software environment (compilers, operating sys-
tems) for the RISC-V.

2.8.4.2 Pulp/Pulpino

The PULP project [63] includes multiple implementation as shown in Fig. 2.6
(which was taken from their website), with different target applications. The
PULP is a silicon-proven Parallel Ultra Low Power platform targeting high energy
efficiencies. Its platform is organized in clusters of RISC-V cores that share a
tightly-coupled data memory. The PULPino and PULPissimo contain only a single
RISC-V core, there is no multi-core support. The PULPino is lighter but the
PULPissimo is more advanced with extensions for effective signal processing.

Each of them is implemented in SystemVerilog. PULPissimo supports the use
of multiple variants of the RISC-V:

• RV32I

• RV32C extension

• RV32M extension

• It can also be configured to support RV32F extension

2.8.4.3 OpenHW group

OpenHW group [36] is a non-profit organisation which seeks to develop open-
source cores, related IP, tools and software. They are currently developing two
implementations of the RISC-V, CV32E40P [34] and CVA6 [35] which are directly
related to the Pulp cores families.
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Figure 2.6: The PULP Family (taken from the PULP website [63])

• The former is a 32-bit, in-order RISC-V core with a 4 stage pipeline that
implements the RV32IM[F]C variation.

• The Latter is a 64-bit, in-order RISC-V core with a 6 stage pipeline that
implements the RV64IMAC variation.

2.8.4.4 Syntacore

Syntacore [79] is a semiconductor IP company which specialises in customizable
RISC-V ISA based microprocessors. They offer a large family of cores called SCR
which are described with varying size and RISC-V extensions available. Some of
these implementations, SCR5 and SCR7, support full OS.

Among them, the SCR1 is the only open-source one [80] and its specificities
are:

• RV32I or RV32E ISA base with optional M and C extension available.

• 2 to 4 stage pipeline

• Written with SystemVerilog

• Optimised for area and power

• Verification suite provided

These characteristics are part of what we were interested in for our work imple-
mentation. Nonetheless, no easy way to add custom instructions is provided and
would therefore require the core modifications
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2.8.4.5 Alibaba/T-head

The T-Head [81] is the semiconductor chip business entity of Alibaba [6]. It sells
multiple silicon valid chips amongst which the 9 series uses the RISC-V ISA. They
each support a large variety of RISC-V variations, some of which are summed up
in Tab. 2.4.

Table 2.4: RISC-V ISA Variation Supported By the T-HEAD 9 Series Chips

Model Supported RISC-V Variation
E902 RV32E[M]C
E906 RV32IMA[F][D]C[P]
C906 RV64IMA[F][D]C[V]
C910 RV64GC

V is the Standard Extension for Vector Operations, it adds 186 instructions and
has not yet been made official by the RISC-V foundation.

2.8.4.6 VexRiscv Core

The VexRiscv Core [3], among the numerous available cores based on a RISC-V
ISA, integrates the possibility to easily add personalized instructions by means of
a plug-in mechanism.

The VexRiscv Core is written in SpinalHDL [5], SpinalHDL is an open-source
(LGPL/MIT License) high-level hardware description language and RTL generation
tool set based on the Scala programming language. The SpinalHDL description is
used to generate Verilog RTL netlists which can then be used in a standard digital
design flow.

The main specifications of the VexRiscv Core are:
• 32-bit RISC-V ISA
• Instruction Set extensions support: RV32I[M][C][A]
• 5 stages pipeline
• Separated instruction and data memory interfaces
• Debug extension and standard jtag interface
• Optional hardware MUL/DIV extensions
The high level implementation in SpinalHDL of the Vexriscv processor allows

the addition of user defined instructions through a plug-in mechanism.
For simple register to register instructions which can be executed in one cycle,

the designer can add, in a single SpinalHDL file the plug-in description. This
description should include the instruction opcodes to match in the decode stage,
how the instruction should be inserted in the processor pipeline and the additional
computation logic.

The following SpinalHDL code extract shows a commented example of plug-in
to add a custom instruction.
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class customInstPlugin extends Plugin[VexRiscv ]{
//....
// -> The plug -in configuration
override def setup(pipeline: VexRiscv): Unit = {

//....
// -> We add an entry in the decoder service
decoderService.add(

key = M"0000011----------000-----0110011",
// -> List of contole signals that will be activated
List(

IS_CUSTOM_INST -> True ,
REGFILE_WRITE_VALID -> True ,
BYPASSABLE_EXECUTE_STAGE -> True ,
BYPASSABLE_MEMORY_STAGE -> True ,
RS1_USE -> True ,
RS2_USE -> True

)
)

}

// -> How does the plug -in interacts with the processor pipline
override def build(pipeline: VexRiscv): Unit = {

// ....
// -> A new scope on the execute stage with internal signals
execute plug new Area {

val rs1 = execute.input(RS1).asUInt
val rs2 = execute.input(RS2).asUInt

val rd = UInt (32 bits)
// -> here is the combinational logic of the custom instruction
rd := rs1 + rs2

// -> propagate the result to the output of the EXEC stage
when(execute.input(IS_CUSTOM_INST)) {

execute.output(REGFILE_WRITE_DATA) := rd.asBits
}
}

}
}

As is, this description is incomplete but, you can refer to the VexRiscV official
documentation [3] for a complete and functional plug-in example.

Without going too deep into SpinalHDL specifics, the main steps to define a
plug-in are:

1. define a new class that extends the Plugin class,
class customInstPlugin extends Plugin[VexRiscv ]{

% }%% TODO remove before submission

2. add an entry to the decoder service that matches the opcode we want to use,
decoderService.add(

// -> the opcode we want to match
key = M"0000011----------000-----0110011",
...

% )%%TODO remove before submission

3. specify how the instruction will interact with the processor pipeline, the reg-
ister file input/outputs that will be used and additional control signals,
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IS_CUSTOM_INST -> True , // -> It is our instruction
REGFILE_WRITE_VALID -> True , // -> We write the result to the reg file
BYPASSABLE_EXECUTE_STAGE -> True , // -> The instuction will be executed in

one cycle
BYPASSABLE_MEMORY_STAGE -> True , // We can bypass EXEC/MEM stages
RS1_USE -> True , // -> We will use both register file

outputs
RS2_USE -> True // RS1 and RS2

4. describe the instruction logic in the execute stage.
// -> rs1/rs2 nets are connected to the inputs of the EXEC stage
// that correspond to the outputs of the register file
val rs1 = execute.input(RS1).asUInt
val rs2 = execute.input(RS2).asUInt

// -> declares a net for the output
val rd = UInt (32 bits)
// -> here is the combinational logic of the custom instruction
rd := rs1 + rs2

5. and finally, redirect the output to the register file
when(execute.input(IS_CUSTOM_INST)) {

execute.output(REGFILE_WRITE_DATA) := rd.asBits
}
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Figure 2.7: The Plug-in Insertion in the VexRiscv Pipeline

When the RTL code is generated, the plug-in decode and execution logic will be
automatically inserted the different sub-parts of the processor. Figure 2.7 shows
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how the plug-in description is spread into the processor pipeline. For simple register
to register instructions, will get their inputs from the register file at the beginning
of the Execute stage and the result will be written back to the register file one
clock cycle after. Bypass logic is automatically added as the following pipeline
stages are not needed here. For more complex multi-cycle instructions, the plug-in
mechanism, allows to specify when the result will be ready and eventually add
additional stall logic when necessary.

Despite the fact that SpinalHDL is not the most common hardware description
language, the plug-in mechanism, makes this core easy to customize without having
to maintain a completely different version. Also, regarding the core performances,
the VexRiscv Core won the "RISC-V SoftCPU Contest" [31] back in 2018, which
rewarded small, powerfull and inovative softcore RISC-V implementations.

2.8.5 Comparison of different Core Sizes

We considered diverse cores for our work, and used a few criteria to chose which
one most fit our needs.

• Size, we wanted to minimize all area costs

• Flexibility, we canted to be able to extend the RISC-V without having to
change the core

In terms of flexibility, the VexRiscv Core has a plug-in mechanism which allows
extensions with a single file (Cf. Sect. 4.6.1). This put it very high on our radar,
but size was the most important factor.

We therefore had to compare the cost of implementation for some of these cores.
The chosen cores focused on having a small size, we therefore only compared the
VexRiscv Core, the SCR1 and the Pulpino. The results in Tab. 2.5 were obtained by
using the Cadence gpdk045 library. They are divided in two frequency constraints,
a very low frequency of 25MHz and a 150MHz frequency which is more than the
working frequency we expected. The synthesis results were obtained for as close
configurations as possible. The VexRiscv Core uses a 5 stage pipeline and was
configured to enable bypass between instructions and branch anticipation. The
SCR1 was configured so as to use a 4 stage pipeline and have no interruption
controller nor cabled multiplication. The Pulpino uses a 2 stage pipeline, has an
interruption controller but no cabled multiplication.

Table 2.5: Synthesis Results of Different Cores at Different Working Frequencies

Frequency Core Total Cells Area(𝜇𝑚2)
VexRiscv 5773 22406

SCR1 8414 2324625MHz
Pulpino 10090 27408
VexRiscv 6241 22770

SCR1 10025 27049150MHz
Pulpino 11176 30209
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These results show that the VexRiscv is small compared to other open-source
cores. This further confirmed our choice of working with the VexRiscv Core to
extend the RISC-V.
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2.9 Conclusion

This State-of-the-Art has shown that a plethora of Lightweight Block Ciphers exist.
Each of these ciphers has its own specificities and an agile implementation would
require walking the line between agility and cost.

Although ciphers appear very different, the three steps model accentuate their
similarities. This lead to focus our agile approach on the differences between these
steps in each cipher.

While these ciphers are mathematically secured, Side-Channel Attacks have
shown that none are safe from eavesdropping. This means that implementing
protection measures is essential to the security of a modern implementation. RSM
and the Threshold Implementation, offer protection against first order attacks
but, we found that RSM is much lighter in terms of resources [53] and easier to
implement as an agile hardware protection. And since area is one of our prime
concern, we chose to work with the RSM protection.

Hence, a hardware approach seems like a right way to accelerate execution of
any protected cipher. Nonetheless, the existence of an open-source extendable
ISA like that of the RISC-V does lead to also consider a hybrid approach which
benefits from the efficiency of hardware implementations while maintaining the
ease of use and versatility of software ones. Finally, the VexRiscv Core, with its
plug-in mechanism, offers a perfect means to develop RISC-V extensions by adding
hardware based instructions while maintaining a good level of performances in
terms of speed and area.

Finally, a note on why keys scheduling was not considered for this work. Each
cipher has a very different key scheduling algorithm, meaning that finding a com-
mon ground for them would be overly complicated. Moreover, just as the key is
securely stored, so can the round keys, which stay the same for as long as the key
stays the same. Therefore, the key scheduling can be pre-calculated before the
execution, and will not have an impact on the real-time latency. On the contrary,
this process can even be tweaked to encompass extra calculation that unify the
round key to have them all be 64-bit XORable values. This lead to being able to
use the same simple Key Addition Step for each cipher. This is only possible in an
environment where some software can be used, which is coherent with our project.

The next chapter will present the fully hardware implementation we initially
worked on and which we used as a basis for the RISC-V extension.





Chapter 3

Fully Hardware Agile Implementation

The three steps model of LBCs (Cf. Sect. 2.4) allowed us to identify common
aspects of multiple ciphers. This leads to finding the best way to accelerate the
execution of many ciphers by keeping the overhead as small as possible. Indeed,
the best way to minimize the overhead is to focus on parts that can be found
in multiple algorithms and therefore only need one implementation to work for
multiple accelerations. That is part of the reason why this first implementation
only takes into account SPN ciphers. This same observation is coherent with
the idea of an agile implementation, where similar functions would use the same
hardware, rather than having specific hardware dedicated to each cipher. Our first
implementation was designed to be fully hardware.

3.1 Implementation

The very first implementation was an independent configurable hardware archi-
tecture [82]. It was based exclusively off SPN structured ciphers with 4×4 Sbox
and either a bit-level permutation or a nibble-level matrix multiplication. The
configurable aspects where parameters in the permutation and/or the matrix mul-
tiplication, the S-Boxes, and the order in which each step was applied. Fig. 3.1
shows the general architecture of such an implementation, here the key scheduling
is done before the execution and each round key is stored. The configuration is also
done before the execution during the algorithm loading step. This step includes the
parametrisation of each module and sub-module along with the parametrisation of
the Rout_Mux which allows to choose the order in which each module is executed.
In this figure, the S module corresponds to the S-Box (aka the Confusion Step),
the P module corresponds to the P-Layer (aka the Diffusion Step), the K mod-
ule corresponds to the Key Addition. Due to the round structure, each of these
configurable rounds ends by storing the result in a dedicated state register.

This architecture was a first attempt at an agile architecture to accelerate
the execution of LBCs, and served as a basis for the rest of the project. The
implementation is therefore detailed in the rest of this Section.

35
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Figure 3.1: Fully Hardware Agile Architecture for SPN Ciphers

3.2 Configuration

The configuration parameters allow the agile architecture to select which algo-
rithm will be executed. These parameters are set during the algorithm loading
step, before the encryption begins. This allows the algorithm used to be changed
dynamically. The parameters can also be changed during the execution, especially
the Rout_Mux as most algorithms skip some modules during their first or their
last round. Changing other parameters, such as those of the S-Boxes or the P-
Layer can be useful for 𝛼 − 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒 algorithms but has a latency cost. The
configuration memory bits are distributed throughout the architecture. A shift
register mechanism is used (Cf. Fig. 3.2) to limit the complexity of the external
configuration interface. Once the shift register’s content is valid, the configuration
data is written by block in a configuration register chosen by a selection signal.
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Figure 3.2: The Configuration Scheme

3.3 Instruction ordering

Although all the studied ciphers can be executed by using the same modules with
different parameters, they use it in different orders. This order is defined during
the configuration. The module usage is described in Table. 3.1 The P module

Table 3.1: Module Ordering for LBCs

Cipher Module Ordering
PRESENT K → S → P𝑚

GIFT S → P𝑚 → K
PRINCE S → P𝑚𝑝 → K | S → P*𝑚 → S’ | K → P’𝑚𝑝 → S’
SKINNY S → K → P𝑝𝑚

Midori S → P𝑝𝑚 → K
MANTIS S → K → P𝑝𝑚 | S → P*𝑚 → S | P’𝑚𝑝 → K → S

contains two sub-modules Perm. and Mult. the order of these sub-modules is rep-
resented as an index. P𝑝𝑚 means Perm. followed by Mult. and P𝑚𝑝 means Perm.
followed by Mult., P𝑚 means only Mult. is used. Certain ciphers require mid-
execution re-ordering and use different configuration for certain modules. When
the configuration is changed, ’ or * is added to the module name.

3.4 K Module: The Key Addition

In the K module, the round key considered here is not necessarily what algorithms
call their round key, it also encompasses the round constant if any. The round
key is obtained through the key scheduling which is different for every algorithm
and is calculated during the algorithm loading step. Those round keys are then
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stored to be used by the K module. Thereby, the K module is simply composed
of 64 XOR gates in parallel to add the state to the software precomputed round
key. This precomputed round key actually corresponds to the cipher’s round key
XORed with potential round constants and adapted to a 64-bit format. The main
security issue is that the round keys need to be stored in a secure environment,
which is coherent with the natural use of encryption where the key needs to be
stored securely. This mechanism also echoes the fact that the K module needs to
access this secure memory once per round, therefore once per cycle. Memory does
not usually have this feature but this can be handled by using a bypass between
this section of the memory and the K module. That part was not implemented
and is a theoretical solution.

3.5 S Module: The S-Box

The S module which corresponds to the Confusion Step is rather straight forward,
for each of the 16 possible nibble inputs there is an output defined through infor-
mation stored within a RAM bloc. This module is therefore similar to a LUT. The
substitution of each of the 16 nibbles is done in parallel and therefore requires 16
actual S-Boxes.Most algorithms use the same S-Box throughout the entire encryp-
tion process but some of them require two different S-Boxes. This is the case with
some 𝛼 − 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒 algorithms which use both a non-involutory S-Box and its
inverse, such as PRINCE [19]. Including a second S-Box means having to store
twice as much information and add a mechanism to switch from one S-Box to the
other. This mechanism was not implemented.

3.6 P Module: The P-Layer

The Diffusion Step of an SPN structured algorithm can include two different parts.
The first part, equivalent to the MixColumn function (from AES), is a matrix
multiplication. The second part is a bit-level Permutation which is sometimes
equivalent to the ShiftRow function (from AES).

3.6.1 Agile Matrix Multiplication

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

M0, M4, M8, M12

s0’, s4’, s8’, s12’

Figure 3.3: The Agile Matrix Multiplication

The matrix multiplication (Cf. Fig. 3.3) uses the same four bits of the input
(s0, s4, s8, s12) with four different bit sets of the matrix (M0, M4, M8, M12) to
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compute four bits of the output (s0’, s4’, s8’, s12’). This means that the matrix
multiplication uses four times 64 bits values or a unique 256 bits value. It seems
like a lot but it is still smaller than a full 64× 64 matrix, which requires 2048 bits.

The matrices used for the matrix multiplication are of two types. The first
type is considering a 4× 4 matrix composed of nibbles whose value is either F or
0 (SKINNY [14]). They are represented as 4 × 4 matrix but the multiplication
actually applies to each bit of the state’s 4×4 matrix of nibbles, they can therefore
be considered as 4× 4 matrix of nibbles. The second type is a 64× 64 bit matrix
which is mostly filled with 0s but has four 16×16 sub-matrices composed of 1s and
0s along its diagonal (Prince [19]). The latter matrix are themselves composed of
16 4× 4 diagonal matrices, therefore the 16× 16 matrix can only have 1s placed
along the 4× 4 matrix’s diagonals (Cf. Fig. 3.4). This property makes it possible
to reduce the 64× 64 matrix (2048 bits of information) to the information on the
4 × 4 matrices’ diagonals which compose the 16 × 16 sub-matrix. There are 16
4× 4 matrix in each of the four 16× 16 sub-matrices, each of which have 4 bits
on their diagonal, which amount to a total of 4 × 16 × 4 = 256𝑏𝑖𝑡𝑠 of useful
information (Cf. Fig. 3.4). The first type only consists of a 4×4 matrix of nibbles
with a single bit either at 1 or 0. In this type of matrix, the value of a bit is the
same as the other bits of the same nibble, in other words the 4× 4× 4 = 64𝑏𝑖𝑡𝑠
of the matrix can be summed up as 4× 4 = 16𝑏𝑖𝑡𝑠 of useful information.
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Figure 3.4: Turning the Useful Information of a 64× 64 Prince-type Matrix into a 16× 16 Matrix

This meant that either some algorithms were discarded in order to maintain a
lower amount of required information, or they had to be harmonised. Doing so
meant turning 16 bits of information into 256 bits without changing the result of
the multiplication. This was achieved by changing every nibble of the 4×4 matrix
into a 4× 4 matrix, either filled with 0s if the nibble was a 0 or the 4× 4 identity
matrix if the nibble was a 1 (Cf. Fig. 3.5). The result is a 16 × 16 matrix with
4× 4× 4 = 64𝑏𝑖𝑡𝑠 of useful information, which is the same as one of the 16× 16
sub matrix of the 64× 64 matrix. The 16× 16 matrix thereby obtained was then
duplicated four times in order to have the 256 bits of useful information as with
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Figure 3.5: Turning the Useful Information of a 4× 4 Matrix into a 16× 16 Matrix

the 64 × 64 matrix. This choice is still costly as 256 bits is meaningful but is
much less than the 64×64 = 2048𝑏𝑖𝑡𝑠 of the entire matrix. The question remains
nonetheless on whether adding the second type of matrix is worth the cost, this
will be discussed later.

3.6.2 Agile Bit-Level Permutation

The other sub-part of the P module is the Permutation sub-module. This part
required a lot of attention for multiple reasons. First, in a classic LBC hardware
implementation, this part is generally implemented as a simple reordering of wires
and uses no specific hardware. Second, the algorithms which do not use a matrix
multiplication require permutation at a bit level rather than the at the nibble level
as with AES’s Shift Row. Third, designing a configurable permutation meant being
able to route a signal through a crossbar-like module, but crossbars are expensive
in terms of both area and configuration memory. It was therefore essential to find a
lighter solution. The most efficient solution to optimise those crossbars was using
Banyan switches [33] as shown in Fig. 3.7.

The chosen solution (Cf. Fig. 3.6) was based on a thorough study of each
algorithms’ requirements in terms of permutation flexibility and the crossbar-like
modules were optimised to better fit the situation (these optimised crossbar-like
modules will further be referred to as Banyan switches). The Banyan Switches are



3.6. P Module: The P-Layer 41

1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

16161616

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

64

Figure 3.6: The Agile Bit-Level Permutation Instruction

composed of a set of five switches (Cf. Fig. 3.7). Each switch allows the reordering
of two inputs and is controlled by a single configuration bit. The 4 × 4 Banyan
Switch can thus be configured to reorder its 4 inputs to get any permutation at
the output. The 4 × 3 × 2 = 24 permutations can be controlled with only 5
configuration bits. This structure allows to reduce the area in terms of logic and
configuration memory from 320 bits down to 200 bits.

b0

b1

b2

b3

cmd
5

cmd[1]

cmd[0]

cmd[2]

cmd[3]

cmd[4]

Figure 3.7: Optimised 4× 4 Crossbar-Like Module, The 4× 4 Banyan Switch

Permutation was a key issue as it is usually achieved by simply reordering the
wires. The overhead of making this bloc configurable could thus be significant.
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The simplest way to go is to consider a 64 × 64 crossbar which would allow any
permutation but would be incredibly costly both in terms of area and in terms of
the size of configuration memory. It was therefore essential to identify similarities
between the different permutations in order to limit the area of this module. This
was possible because these permutations are not random as they need to respect
certain diffusion properties.

The result was two levels of permutations, the bit-level permutation and the
nibble-level permutation. The bit-level permutation (PRESENT [18], GIFT [9])
allows any layer-input bit to end up as any layer-output bit within the same 16-
bit word, the restriction being that two bits from the same input nibble may not
end up in the same output nibble. This restriction is coherent with the diffusion
properties of a cipher as a bit level permutation needs to spread the information as
much as possible in order to ensure the diffusion. It requires four sets of Banyan
switches each using the same parameters, which apply to each of the four 16-bit
words of the 64-bits state. It is composed of two layers (Cf. Fig. 3.8). Between
these layers, the connection wires are fixed and cannot be configured. They link
each bit of a nibble to a different nibble. The first layer defines which bit of each
nibble will be connected to which nibble of the second layer, through the use of
a 4 × 4 Banyan switch for each nibble. The second layer reorders the bits within
each nibble with a 4× 4 Banyan switch for each nibble.

1 1 1 11 1 1 1 1 1 1 1 1 1 1 1

4 4 4 4

16

4 4 4 4

64

Figure 3.8: Bit-level permutation layer
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Figure 3.9: Nibble-level permutation layer

Nibble-level permutation (Cf. Fig. 3.9) works similarly and therefore, once again,
any layer-input nibble may end up as any layer-output nibble and the restriction
is that two nibbles of the same 16-bit input may not end in the same 16-bit word
output. There is an exception to this rule in the case of an actual Shift Register
where each nibble is reordered but every nibble stays within the same 16-bit word.
It also requires two layers of Banyan switches separated with transition wires, which
can be configured. There is a set of multiplexers which allows either to connect
the four nibbles of a 16-bit word to four different 16-bit words or to keep each
nibble within the same 16-bit word, which is needed for the Shift Row function.
The first layer defines which nibble goes to which 16-bit word, and the second layer
reorders each 16-bit word. They each use four 4× 4 nibble Banyan switches.

3.7 Implementation Results

The architecture was implemented targeting the Cadence Free45PDK standard
cells library. Post synthesis results are used to evaluate the area and complexity of
our design.

First the agile architecture complexity is evaluated for different levels of agility.
Second the agile architecture is compared to the cost of implementation of classic
LBCs to identify the gain of using such an architecture.

The agile architecture can be divided in multiple sub-parts which have been
presented in detail in this Section. The results of Table 3.2 show the cost of each
of these parts. Making the architecture agile has an important cost. For instance,
Permutation is usually free in terms of area but making it configurable will obviously
make it more costly. It is also true for the S module which requires a configurable
table and cannot be optimised through the use of specific logic functions. The
other two main parts are also new to such an architecture as they do not exist in
a non-agile implementation of cryptographic algorithms. The Route_Mux allows
to order each step at each round and therefore uses an important amount of
multiplexers in order to select the path for the entire 64-bit state. Finally, the
most costly sub-part is the configuration which gathers all the parameters used
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Table 3.2: Cost of Architecture’s Sub-Parts for the Level of Agility C

CostSub-part Area GtE Area percentage

Route_Mux 695 678
S-Box 348 339

Permutation 956 932
Multiplication 1390 1355

Configuration

Other 87 85

26.9

Route_Mux 2791 2720 21.6
S 1784 1739 13.8

Permutation 2059 2007P Multiplication 744 725 21.7

K 175 171 1.4

to select which algorithm is implemented within the architecture. This last sub-
part is divided between the different aspects which require configuration. It appears
that the Multiplication requires the most important part of the parameters. Indeed,
configuration of the Matrix multiplication has a cost of 256 bits (Cf. Section 3.6.1)
which is a lot more that the 64 bits required for the S module or the 176 bits used to
define the algorithm’s route at each round. The overhead of the agile architecture
is therefore important but most of it is due to the very nature of an agile hardware
architecture which has incompressible costs. It would therefore seem that this
architecture is not efficient when compared to a single algorithm but, the more
algorithms it implements, the more interesting it becomes.

The next step was thereby comparing different levels of agility in order to identify
how much adding new algorithms costs. This will then lead to a comparison
between the cost of the agile architecture and the cost of implementing multiple
algorithms.

Table 3.3: Different Agility Levels of the Architecture

Algorithm Level of Agility
PRESENT

GIFT A

SKINNY
Midori B

C

PRINCE
MANTIS

D

Each level of agility, A, B, C and D from Table 3.3 allows the implementation
of a certain set of algorithms. Each of these levels is compared to the cost of each
of the algorithms it can handle in Table 3.4. The cost is given en Gate Equivalent
(GtE).

Figure 3.10 illustrates the complexity reduction provided by the agile architec-
ture when the level of agility increases. It shows that balance is achieved around an
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agility of four algorithms and that once this limit is exceeded, the agile architecture
offers a real gain.

Table 3.4: Comparison between different levels of agility and the sum of the algorithms it can
implement

Area of the Sum of the
Agile Architecture ImplementationsLevel of Agility

(in GtE) (complexity ratio)
A 8494 1.72
B 8245 1.96
C 9212 1
D 9631 0.625

22 4 6
Number of Ciphers

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

C
om

p
le

x
it

y
R

at
io

I

II

III

IV

Figure 3.10: Complexity Ratio for different levels of agility

3.8 Conclusion

This first implementation showed how costly agility can be and that some costs
were incompressible. Nonetheless, the results were promising as it did show how
an agile architecture could offer an area gain if the level of agility was high enough.

This first implementation does have some issues. One being that this imple-
mentation could only handle SPN types of algorithms, excluding any Feistel or
GFN type ciphers. The second being that this implementation was not based on
any standard architecture which could lead to compatibility issues. There are two
main ways of implementing such instructions, the first being to add a co-processor
which has a specific communication channel with the processor which is the one
used in this Section. The second one called ASIP (Application-Specific Instruction
set Processor) is to extend an existing ISA with specific instructions.
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All these issues lead us to reassess how to solve the problem of the agile accel-
erated execution of LBCs as implementing a coprocessor would not fit our needs.
In the next chapter we will take a new hardware/software hybrid approach with
the use of a dedicated processor for the RISC-V (Cf. Sect. 2.8).



Chapter 4

Dedicated Processor Implementation of
the RISC-V for LBC Agility

Including software in the implementation required finding a coherent ISA. The ISA
that was chosen was that of the RISC-V (Cf. Sect. 2.8) which is open source
with a strong base of development and extension possibilities. The new paradigm
for our work is to implement an extension for the RISC-V, the Lightweight Block
Cipher ISA (LBC-ISA). Once again, the key scheduling is not part of the extension
and is assumed to be pre-calculated during the algorithm loading step. This exten-
sion is dedicated to the acceleration of the execution of LBCs. This acceleration
is achieved by using additional instruction which aim to be as agile as possible,
meaning that they should accelerate the execution of multiple ciphers. Some in-
structions may remain cipher-specific as the incompressible cost of making some
instructions agile is too high (Cf. Section 3.1).

The next Section will present the classification we used along with restrictions
on types and sizes of the ciphers’ parameters.

4.1 Classification of Lightweight Block Ciphers

The basic idea behind adapting cryptographic primitives for use in connected cars is
to maintain a low cost in terms of area and latency all the while being able to handle
a diversity of different ciphers. This means finding an agile way to implement
multiple algorithms than fits the requirements of car embedded technology. In
order to determine how to classify those algorithms we must first understand what
the already established classifications imply. The main way to identify the ciphers
we chose for this study is as Lightweight Block Ciphers (LBC).

In order to ensure the agility, the existing similarities between ciphers must be
exploited. There is a plethora of available ciphers and some similarities come from
existing classifications. Hence, our study only takes into account some ciphers
with specific criteria. The main criterion is that they belong to the Lightweight
Cryptography, which corresponds to a more recent generation of ciphers which
have been designed to solve certain flaws such as area or latency costs of pre-
existing ciphers. Amongst the other criteria is that they need to be block ciphers,
as opposed to stream ciphers for example.

47
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They must also respect some implementation and security requirements such
as the block and key size. This study only takes into account symmetric-key
cryptographic algorithms. Therefore, the key is a secret and in order to ensure
minimal levels of security, each cipher must use a key of at least 128 bits. Therefore,
any cipher or version of a cipher with a smaller key is disregarded for lack of security
according to the NIST recommendations [10].

The studied ciphers are only block cipher, which means they encrypt the data
by having a defined portion of the data go through a small process, called a round,
multiple times until the required security level is achieved. The number of rounds
varies from one cipher to another, so can the block size. In order to have a
homogeneous block size between each cipher, we fixed this block size to be 64
bits. This decision was based on wanting to fit the existing Control Area Network
(CAN) standard [39]. Indeed, due to this standard, messages in cars are generally
64-bit. This also has an impact in lowering the overall area cost of implementation.
The most common standard symmetric-key cryptographic algorithm used to secure
digital information is the AES [64], which uses a 128-bit block. By only studying
64-bit block cipher, we therefore had to disregard AES. In order to lower the
hardware cost, we chose to work with a 32-bit VexRiscv Core (Cf. Sect. 4.3). This
choice also meant using 32-bit instructions, with two 32-bit inputs. We would
therefore be able to manipulate 64-bit inputs with a single instruction but not a
128-bit input. Moreover, this becomes an even larger issue when dealing with both
the Confusion Step and the Diffusion Step. Indeed, 64-bit block size ciphers tend
to use 4× 4 S-Boxes whereas 128-bit block size ciphers tend to use 8× 8 S-Boxes.
Having both types of S-Boxes would have a large area cost. The Diffusion Step
also requires permuting bits all over, which takes much longer when all the bits
cannot be used as the input of a single instruction. Therefore, the rest of our work
only takes into account 64-bit block size ciphers, which is why NOEKEON had to
be set aside.

Once these basic choices have been made, there are still a large amount of
ciphers left with a large amount of specificities and identifying their common traits
requires further classification. These ciphers are presented in Section 2.5.1 and
Appendix A. This is why the first step in our study was to establish our own
classifications of this group of ciphers. These classifications evolved as our study
advanced and focuses on different aspects of the ciphers.

Analysis of the different types of operations shows there are two main frames of
classification, according to the Confusion Step and according to the Diffusion Step.
The objective of this classification is to find a minimal amount of instructions to
add to a microprocessor in order to accelerate the execution of LBCs. This means
each algorithm will be classified according to the additional instructions that fit its
operations. We ended up dividing each algorithm into 4 different categories.

Category I applies to algorithms which only use basic instructions, both for the
Confusion Step and Diffusion Step. These algorithms were usually developed for
software use and have good performances without needing any extra instruction,
the only exception is rotation which is not a basic instruction in every instruction
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Table 4.1: Classification of Lightweight Block Ciphers

DiffusionCategory Algorithm Confusion Type Level
Simon AND Rotation Bit
Speck ADD Rotation Bit
Simeck AND Rotation Bit

RC5 ADD Rotation BitI

XTea ADD Rotation Bit
GOST S-Box Rotation BitII Rectangle S-Box Rotation Bit

PRESENT S-Box Permutation BitIII a GIFT S-Box Permutation Bit
III b PRINCE S-Box x2 MatMult x3 Bit

Piccolo S-Box MatMult BitIII c LED S-Box MatMult Bit
TWINE S-Box MatMult Nibble
SKINNY S-Box MatMult Nibble
Midori S-Box MatMult NibbleIV

MANTIS S-Box MatMult x3 Nibble

set (including the RISC-V ISA). This is the only category which does not use an
S-Box based Confusion Step.

Category II applies to algorithms which use a bit-level rotation as their Diffusion
Step. They do not require additional instructions other than the S-Box.

Category III a applies to algorithms which use a bit-level permutation as their
Diffusion Step and a 4×4 Sbox as their Confusion Step. These permutations are
extremely cheap in terms of hardware but cannot be made agile at a reasonable
cost. Therefore, algorithms from this category should be hand-picked in advance
and each require a specific instruction.

Category III b applies to algorithms which use a bit-level matrix multiplication
with a hollow matrix and a 4×4 Sbox as their Confusion Step. Just like cate-
gory III a this type of algorithms requires a specific instruction for each cipher
in this category. The only algorithm in this category is PRINCE [19], which is
an 𝛼-reflective algorithm (Cf. Fig. 2.5.1) and therefore uses a set of 2 different
S-Boxes and a set of 3 different matrix multiplication. The same would be true
for MANTIS [14] in category IV expect that its S-Box is involutory. We chose
to not take this aspect into account regarding their classification as doubling up
on Confusion and Diffusion Steps can be achieved using the same hardware with
different parameters.

Category III c applies to algorithms which use a bit-level matrix multiplication
as the Diffusion Step and a 4×4 Sbox as their Confusion Step. Every bit of the
matrix is relevant as it can take on nibble values different from 0 or from 1. This
is what differentiates their Diffusion Step from that of category IV.
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Finally, category IV applies to algorithms with a nibble-level diffusion which
can be implemented as a matrix multiplication and a 4×4 Sbox as their Confusion
Step. This category is the broadest because matrix multiplication can be made into
an agile instruction which requires configuration but can apply to any nibble-level
matrix.

According to this classification, algorithms can be divided in two parts according
to their Confusion Step. On the one hand those using basic instructions from
category I and on the other those from categories II, III and IV which are using
4×4 S-Boxes. Algorithms which didn’t fit either of those criteria were disregarded
for being too unique. This classification is essential in identifying how the execution
of LBCs can be accelerated while focusing on agile instructions, which can be used
for multiple algorithms. The instructions that seem the most adapted to such an
approach are:

• The 4×4 Sbox

• The bit-level permutation

• The bit-level matrix multiplication

• The nibble-level matrix multiplication

These will therefore serve as instruction basis for the rest of this study.

4.2 RISC-V Rationale

The RISC-V ISA (Cf. Sect. 2.8) is a free and open specification maintained by
the RISC-V Foundation. We chose to work with this particular ISA and there
are multiple reasons why. First off, RISC-V is at the heart of plenty of research
nowadays. Indeed, its architecture takes into account many of the advantages of a
risc architecture with a very light ISA. Second, unlike the Intel or the ARM ISA, the
RISC-V is open source meaning any, and everyone can work on it. This availability
and popularity means there are lots of tools available and plenty of areas being
researched. Third, the RISC-V is only an ISA, meaning that its implementation
isn’t fixed and can therefore be adapted to any specific need. Finally, one of the
RISC-V’s specificity is its innate extendability. Some space has been purposefully
dedicated to future instructions. Thereby, the RISC-V is a perfect fit for our desire
to accelerate the execution of carefully chosen additional instructions.

4.3 VexRiscv Core

In order to work with the RISC-V, We implemented a dedicated processor platform
based on a 32-bit VexRiscv CPU Core [3]. The platform (a microcontroller grade
SoC) uses in addition to the CPU, a specific interconnect, program and data
memory blocks and some communication peripheral. Though we use an FPGA
Board as a means to develop our project, the end result is to target an ASIC. The
specification for this core is provided in Section 2.8.4.6.



4.4. Dedicated Hardware Cryptographic Instructions 51

Except for a few fixed elements, the majority of the core functionalities are
configurable and plug-in based: Branch prediction, Register file, Hazard controller
and many others, most of them optional. This allows to scale the core architecture
depending on the targeted application. One of the main reasons this core was
picked is due to its plug-in mechanism which allows adding and removing hardware
extensions without tempering with the core itself. The reason we picked a 32-bit
RISC-V even though we are working on 64-bit block size is in order to reduce the
size of the implementation. This choice causes some growth in the complexity of
the execution as the 32-bit RISC-V doesn’t allow 64-bit outputs.

4.4 Dedicated Hardware Cryptographic Instructions

The RISC-V extension we propose is hardware-based, meaning that each software
instruction is supported by a hardware implementation of that instruction. Each
additional instruction therefore has an area cost and must be chosen and imple-
mented with care in order to maintain low area overhead with good acceleration
performances.

In this Section, we will detail the instructions that are part of our extension and
how they were implemented.

4.4.1 Double 32-bit Instructions for 64-bit Functions

Similar to standard arithmetic and logic instructions, the new instructions will be
executed in one clock cycle in the execution pipeline stage. From two 32-bit source
registers, coming from the register file, the result is computed combinatorially and
stored back into one 32-bit destination register of the same register file. Since
we handle 64-bit blocks, we use two 32-bit source registers for the block. Also,
we will need two consecutive, and slightly different, instructions to respectively
compute, the high and the low 32-bit parts of the result. The first instruction
does all the computation and returns the first 32-bits of the output. Since the
hardware instruction is based on logic, the second instruction also computes the
64-bit result and returns the last 32-bits of the output. Figure 4.1 shows how both
those instructions use the same 64-bit input and the same logic and configuration
but require using to 32-bit output registers from two separate instructions. Also,
some of our instructions (Cf. Sect. 4.4.3 and Sect. 4.4.6) require a configuration
step. This step stores instruction specific parameters on dedicated RISC-V Control
Status Registers (CSR). These registers can be accessed during the execution to
match the instruction to the selected cipher.

In our actual workflow, these instructions are called separately by the user. So,
each cryptographic plug-in will feature two instructions, to be used as such:

// Add round Key
l = l ^ rdKl[i];
h = h ^ rdKh[i];

// S-Box
t = l;
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Figure 4.1: 64-bit Output Using Two 32-bit RISC-V Instructions

asm volatile ("SBOX_C␣␣%0,%1,%2":"=r"(l):"r"(t),"r"(h));
asm volatile ("SBOX_CH␣%0,%1,%2":"=r"(h):"r"(t),"r"(h));
// P-Layer
t = l;
asm volatile ("PRESENT_D␣␣%0,%1,%2":"=r"(l):"r"(t),"r"(h));
asm volatile ("PRESENT_DH␣%0,%1,%2":"=r"(h):"r"(t),"r"(h));

% ))))%% TODO: remove these before submission

For the rest of this study, when talking about an instruction it will actually be
referring to two instructions, both compute the same result except that the first
stores the lowest significant bits and the second stores the highest significant bits
in separate registers.

4.4.2 Proposed ISA Extension

Once the RISC-V was chosen as an ISA, the VexRiscv Core chosen as an imple-
mentation and the test platform setup, the instructions used for the extension had
to be chosen. As explained in Section 4.1 those instructions where deducted from
Table 4.1 The concerned algorithms from Category II, III and IV require 7 addi-
tional hardware instructions which are part of our extension for the RISC-V ISA,
the LBC-ISA:

• The S-Box instruction: SBOX_C

• The PRESENT bit-level permutation instruction: PRESENT_D

• The GIFT bit-level permutation instruction: GIFT_D



4.4. Dedicated Hardware Cryptographic Instructions 53

• The PRINCE bit-level matrix multiplication family of PRINCE_D composed
of three instructions:

– PRINCE_DF
– PRINCE_DM
– PRINCE_DL

• The nibble-level matrix multiplication instruction: NMAT_D

The SBOX_C instruction is used by each of the ciphers as their Confusion Step.
The _D instructions are used for the Diffusion Step. The PRESENT_D and
GIFT_D instructions are cipher-specific bit-level permutations. PRINCE_D cor-
responds to the three PRINCE specific bit-level matrix multiplications. NMAT_D
is an agile nibble-level matrix multiplication.

The algorithms from Category I are those who only use basic instructions mean-
ing their execution cannot be accelerated through the use of additional instructions.
The studied algorithms are therefore those which use one of these instructions. Our
implementation is based on an algorithm loading step which requires storing the
parameters for the Confusion and Diffusion Step in memory. On the one hand,
the amount of parameters required for an agile 64 × 64 bit-level permutation is
4096 bits (the amount of bits in a 64× 64 matrix), which we considered too high
for a lightweight implementation. Even with an optimisation based on some prop-
erties specific to the permutation of these algorithms, the amount of parameters
remained high (Cf. Sect. 3.7) and also required important resources in terms of
hardware. Implementing an agile instruction for algorithms using bit-level permu-
tation was therefore not an option. Hence, we had to implement a low-overhead
specific instruction for each of the algorithms with a bit-level Diffusion Step. On
the other hand, unlike the bit-level permutation, an agile implementation at nibble-
level is conceivable without the overhead being too high for two reasons:

• The matrix multiplication is done at nibble level, reducing the total amount
of incompressible parameters.

• The matrices used are only composed of 1s and 0s meaning that all multipli-
cations can implemented as a series of ANDs and XORs.

The latter aspect lead to set aside the algorithms from category III c, namely
Piccolo and LED. Indeed, by reducing the useful information at bit level, we con-
sider nibbles with value 0 or 1, the size of the matrix is divided 16-fold since these
parameters constitute a 16× 16 matrix. Therefore, the amount of parameters re-
quired for an agile nibble-level diffusion is only 256 bits. By reducing the amount
of memory needed 16-fold, we were able to use an agile version for nibble-level
Diffusion Steps, while keeping the implementation cost reasonable.

Table 4.2 shows which algorithm uses which instruction. The detailed imple-
mentation of each of these instructions will be given in the following Sections.
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Table 4.2: Instructions Used by Each Algorithm

Cipher Confusion Diffusion
GOST SBOX_C None

Rectangle SBOX_C None
PRESENT SBOX_C PRESENT_D

GIFT SBOX_C GIFT_D
PRINCE SBOX_C (x2) PRINCE_D (x3)
Midori SBOX_C NMAT_D
TWINE SBOX_C NMAT_D
SKINNY SBOX_C NMAT_D
MANTIS SBOX_C NMAT_D (x3)

4.4.3 SBOX_C Instruction

In order to make the S-Box agile, we had to implement an instruction whose
parameters can be modified to correspond to any algorithm. As S-Boxes have
the same function as LUTs, we chose these as the best way to implement this
function. Although a configuration is required, for most ciphers, the same S-
Boxes are used throughout the entire cipher which means this step can be done
beforehand. Indeed, any parameters are set during the algorithm loading step in
order to avoid any delay during the actual encryption.

The S-Box configuration is done before the computation. Nonetheless, for some
few ciphers, namely 𝛼-reflective algorithms [20] such as PRINCE, the Confusion
Step is slightly different. Indeed, PRINCE uses two different S-Boxes during its
execution (Cf. Sect. 2.5.1), which requires a change of S-Box. This can be done
though mid-execution re-configuration of the S-Box or by adding a second S-Box
instruction with different parameters from the start. In addition to doubling the
FF cost, both those solutions have a cost in terms of latency for the former and
area for the latter. The solution chosen in this research was to use mid-execution
re-configuration.

As for implementation, we initially used straightforward RTL implementation
for our S-Boxes, which was not optimal as it requires a large amount of additional
FFs. Since the S-Box is equivalent to a 4 × 4 LUT and we worked with a Xilinx
FPGA, we were able to use the CFGLUT5 primitive. This primitive not only
lowered the additional Flip-Flops (FF) requirements to almost 0, it also lowered
the total amount of LUTs used. Moreover, each CFGLUT5 is configured in parallel
during the algorithm loading step which makes their latency overhead negligible
as re-configuration only happens when the key or the mask is changed, which
happens once every thousand or more encryption for most algorithms. Finally,
with a naive implementation, the power activity is generated by the propagation of
information through 4 stages of LUTs along with the routing whereas for CFGLUT5
it is generated by a single LUT. This is especially relevant in the resilience against
side-channel attacks (Cf. Chapt. 5). A more basic description of the CFGLUT5 is
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Figure 4.2: Sbox_4 Architecture using CFGLUT5 Primitives

given in Appendix B In this section, we explain how and why we implemented the
SBOX_C using the Xilinx CFGLUT5 primitive.

4.4.3.1 Building 4×4 Sbox using the CFGLUT5 Primitive

Figure 4.2 shows how we assembled 4 CFGLUT5 primitives to build a Sbox_4
which implements a 4×4 Sbox.

Four CFGLUT5 primitives are grouped sharing the configuration clock and
activation inputs. The configuration inputs are separate to allow parallel configu-
ration of the 4 primitives. The four functional inputs are shared and the outputs
of the primitives are grouped to form a 4-bit output.

Figure 4.3 shows a configuration sequence and the operation of the Sbox_4
block.

In this example, the Sbox_4 is configured with the Present S-Box (0xC56B90AD3EF84712).
Each CFGLUT5 primitive is configured with on bit of each nibble.

During operation, the input i of the Sbox_4 will come from the output of a
register. The output of the S-box will be ready before the next clock cycle.
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Figure 4.3: Configuration Operation of the Sbox_4 with CFGLUT5

4.4.3.2 SBOX_C Architecture

The SBOX_C is constructed by assembling 2 Sbox_8_4, which itself is 8 4×
4 Sbox assembled together, as shown in Fig. 4.4. The Sbox_8_4 is constructed
by assembling 8 4×4 Sbox. The configuration is still done in parallel, in 16 cycles,
with a 32-bit input word.

The Sbox_8_4 have been described hierarchically in SystemVerilog. The inte-
gration, as a VexRiscv plugin is still possible, as SpinalHDL allows the instantiation
of existing RTL modules (Verilog or VHDL) using a blackbox component.
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Figure 4.4: Sbox_8_4 Architecture using CFGLUT5 Primitives

4.4.3.3 CFGLUT5 against RTL Resources Usage Comparison

There are multiple reasons why we chose to use CFGLUT5 over a straightforward
RTL.

First, the synthesis results presented in Tab. 4.3 show resources for the addition
of the SBOX_C instruction compared to the base version of the VexRiscv for both
CFGLUT5 and RTL implementations. They show that the CFGLUT5 SBOX_C
is much more compact both in terms of fpga LUTs and FFs. Indeed, the naive
RTL implementation uses 15 multiplexers (MUX) to calculate each of the 4 output
bits of each of the 16 4×4 S-Box. Each of these MUX requires a configuration bit,
this represents a minimum of 15× 16× 16 = 960𝑏𝑖𝑡𝑠. This amount can be seen
in the 1057 additional FFs. Moreover, the CFGLUT5 primitive uses only a single
fpga LUT for a total of 64 fpga LUTs for SBOX_C. In practice, some additional
LUTs are added, but they still represent a smaller amount of fpga LUTs than the
Naive RTL SBOX_C which is twice as big.

The second reason is linked to the power activity of each implementation. On
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Table 4.3: Cost Comparison Between Basic RISC-V ISA, Naive RTL and CFGLUT5 Implementa-
tions

Additional Implementation LUT FF
None (Basic RISC-V ISA) 973 765

Naive RTL SBOX_C 1379 1822
CFGLUT5 SBOX_C 1171 766

the one hand, Compared to the CFGLUT5 SBOX_C, the naive RTL SBOX_C
uses a larger amount of fpga LUTs which are likely to be spread over a larger area.
This means that the datapath of this implementation is likely to manipulate the
same input over multiple fpga LUT thereby increasing the activity during their use.
On the other hand, the activity of the CGFLUT5 primitive is limited to its single
fpga LUT. Therefore the amount of leaked information is much lower than with
the naive RTL implementation. Lowering the amount of leakage is essential when
developing hardware with SCA in mind. Figure 4.5 illustrates this phenomenon by
comparing the CPA graphs of an execution of the PRESENT cipher using both
implementations.

Figure 4.5: Comparison of Leakage between Naive RTL and CFGLUT5 Implementations

4.4.4 PRESENT_D and GIFT_D Instructions

Both these algorithms use a similar Diffusion Step. They use a bit-level permuta-
tion as their Diffusion Step (Cf. Appendix A). This permutation correspond to a
reorganisation of wires in terms of hardware. Though it is possible to make an agile
bit-level diffusion layer, specific functions are extremely cheap in terms of hardware
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area, whereas agile instructions can have high implementation cost as shown in
Section 3.7. Indeed, both PRESENT and GIFT use a bit-level permutation which
requires no logic gates and therefore has a near zero cost in terms of area.

4.4.5 PRINCE_D Instruction

The Diffusion Step of PRINCE corresponds to a bit-level matrix multiplication with
a very sparse unitary matrix. Once again, this type of diffusion has a very high
parameter cost in order to be made agile. The hardware cost of such an instruc-
tion is 4096 ANDs to mask the input for each output bit plus 192 XORs, three
XORs to generate each of the 64 bits of the output for each of the bit-level matrix
multiplication and an additional 4096 ANDs for the bit-level permutation. There-
fore, the option of using cipher-specific instructions was chosen. Since PRINCE is
an 𝛼-reflective algorithm, it also requires using the inverse matrix for the second
half of the algorithm and a third matrix, which corresponds to the MixColum part
of the Diffusion Step (Cf. Appendix A). This Diffusion Step is therefore divided
into three instructions PRINCE_DF for the Diffusion step of the First rounds,
PRINCE_DM for the Diffusion step of the Middle round and PRINCE_DL for
the Diffusion step of the Last rounds of the cipher.

4.4.6 NMAT_D Instruction
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Figure 4.6: 256-bit of Configuration for the 64× 64 Matrix of NMAT_D
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Algorithms using NMAT_D instruction have a diffusion layer similar to that
of AES in that they use a Shift Row and/or a MixColumn function. Though they
are presented as two separate instructions, they can be merged into one. Both
these instructions can be seen as a single matrix multiplication U×V where V is
the 64-bit state seen as a vector and U is a 64×64 normalized matrix specific to
the Shift Row and MixColumn combination. Once again, this U matrix requires
parameterisation which can be handled before the cipher’s execution during the
algorithm loading step. Having to handle the parameters for a 64×64 matrix would
require 4 kbit worth of memory, which is incoherent with our lightweight objectives.

With this in mind, and based on the fact that the diffusion layer of these algo-
rithms only handles nibbles and not bits, it is possible to parametrize this 64×64
matrix by using a 16×16 matrix, which requires only 256 bits. In order to go from
this 16×16 parameter matrix to a 64×64 functional matrix, the transformation
used is to turn any 1 from the 16×16 matrix to a 4×4 Identity matrix in the
64×64 matrix, and to turn any 0 from the 16×16 matrix a to a 4×4 null matrix
in the 64×64 matrix as shown in Fig. 4.6. This optimisation logic is the same as
the one used in Section 3.6.1
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Figure 4.7: The NMAT_D Instruction

The NMAT_D instruction requires multiple steps which are shown in Fig-
ure 4.7 First, the parameters are stored in eight 32-bit CSR registers. Each of
those registers contains the parameters for two lines of the 16×16 matrix, or eight
lines of the 64×64 matrix. Once the parameters have been stored in CSR registers,
each input nibble is ANDed with those parameters before getting XORed together
to generate the 64-bit output.

Figure 4.8 represents the implementation of the NMAT_D multiplication. The
parameters contained in the CSR Register are used to select the nibbles used for
the multiplication. The remaining nibbles are then XORed together in a 4 layer
XOR tree in order to generate the resulting nibble. This operation is used to
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generate each of the 16 output nibbles.
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4.5 Theoretical Results

Throughout this study, different methods were used to measure the costs and
gains of this implementation. The numbers published in [85] where based on
theoretical implementations and single round observations. Table 4.4 shows the
number of instructions in a single round for each of the studied algorithms with
the Base ISA compared to the number of instructions required once additional
instructions have been added. The accelerated results are based on simple hand
written assembly code and therefore do not take into account many real-life factors.
Indeed, it doesn’t even take into account any delays caused by branching which is
an important cost especially when the number of rounds is high. It does not take
into account the doubling of instructions due to the use of a 32-bit core either.
Each column corresponds to the instructions required to accelerate the algorithms
from the corresponding category (Cf. Sect. 4.1).

This table also include algorithms from Category I as the RISC-V does not in-
clude a rotation instruction and during this theoretical approach we first considered
rotation as one of the additional instruction that could accelerate the execution
of LBCs. Nonetheless, as the results show, the gain factor of less than 1.5 is
extremely low and only affected algorithms which already had low software latency.
After these observations, we chose to not have rotation be part of our extended
LBC-ISA. Moreover, the rotation instruction is proposed in the Standard Extension
for Bit Manipulation (Cf. Sect. 2.8.2), meaning that this instruction is already part
of a soon-to-exist extension.

The results from Tab 4.4 nonetheless showed a high gain factor of over 26 and
up to 128 for any algorithm using at least two additional instructions which was
a promising theoretical result and led us to continue exploring this option. As a
comparison, the results of Marshall et al. in [49] showed a 4x to 10x acceleration
when working on accelerating the execution of AES using a similar approach.
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Table 4.4: Comparison of the Number of Executed Instructions in One Round between the
Non-Accelerated Ciphers and the Theoretically Accelerated Cipher

Instructions per round GainAlgorithm None I II III IV factor
Simon 15 11 11 11 11 1.36
Speck 12 10 10 10 10 1.20
Simeck 12 10 10 10 10 1.20

RC5 15 11 11 11 11 1.36
XTea 24 16 16 16 16 1.50
GOST 221 213 10 10 10 22.1

Rectangle 236 222 19 19 19 12.4
PRESENT 555 555 352 5 5 111.0

GIFT 641 641 438 5 5 128.2
PRINCE 820 820 617 9 9 91.1
TWINE 174 174 126 126 6 29.0
Midori 350 350 147 147 9 38.9

SKINNY 234 234 31 31 9 26.0
MANTIS 348 348 145 145 5 69.6

4.6 Experimental Test and Validation

Once these instructions were implemented, the next step was to test and validate
them. This means making sure each instruction can indeed be used to execute
each algorithm and that any given input returns the right output.

Taking advantage of the VexRiscv plug-in modular architecture, each spe-
cific hardware instruction is added as a separate plug-in to the CPU core (Cf.
Sect. 2.8.4.6). Thus, depending on the targeted cryptographic algorithms, we
can configure the processor by choosing which plug-in to enable. This allows the
evaluation of hardware resource usage of each additional instruction independently.

We then needed a platform that let us implement the VexRiscv Core of the
RISC-V. This platform was designed in-house for core tests and validations. It is
used to execute each algorithm with random plaintext and key inputs and compare
the results to that of already verified implementations.

In this Section we explore how we were able to use plug-in mechanism of the
VexRiscv to add the LBC-ISA extension on a test platform which uses the VexRiscv
Core.

4.6.1 Software Workflow of the Plug-in Addition

The VexRiscv Core plug-in mechanism allows the implementation of additional
hardware-based instruction. The code for the ciphers was written in C but our
instructions are not part of the GCC standard RISC-V toolchain. We therefore
had to find a way to use our additional instructions without deeply modifying the
toolchain. Modifying the toolchain would have been possible, but only make sens
for a stable addition to the ISA.
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In this section we will explain the compilation flow we have implemented for
our tests. This flow is summarized in Fig. 4.9.
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Figure 4.9: Compilation Flow of a Plug-in Added Instruction

We will use the PRESENT_D instruction as an example to detail each step.
First off, we used inline assembly in our C code to explicitly call our instruction.

The extended inline assembly supported by GNU GCC, allows reading and writing
C variables from assembly as shown in the following code example:

----------------Present_cipher.c---------------
// C code with inline ASM

...
// s1, s2 --> inputs
// d --> output
uint32_t s1, s2;
uint32_t d;
// inline asm passing variables from the C code
asm volatile ("PRESENT_D␣%[rd],%[rs1],%[rs2]":\

[rd]"=r" (d) : [rs1]"r" (s1) , [rs2]"r" (s2))
...
-----------------------------------------------

This code is compiled into an assembly file using the -S GCC flag to generate
an intermediate assembly file before calling the assembler.

riscv -gcc -c -S Present_cipher.c -o Present_cipher.t.s

GCC will compile the C code, allocate registers for the C variables (optimisations
are even possible), whereas the inline assembly code will be included, as is, without
being modified.

The corresponding line in the intermediate assembly file will be similar to the
following.

----------------Present_cipher.t.s-------------
/*

ASM with custom instructions mnemonics
Register allocation has been done by the C compiler (GCC)
In this example:
- a3,a5 <- opperends
- a6 <- result

*/
...
PRESENT_D a6,s3,a5
...
-----------------------------------------------
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As this instruction is not known by the assembler (GNU AS), we have to replace
PRESENT_D by its binary value. We have developed a simple script that parses
the intermediate assembly file and replaces our custom instructions by their values.
asm -fixup Present_cipher.t.s -o Present_cipher.s

For our cryptographic instructions we have chosen free opcodes from the RISC-
V ISA reserved for custom extensions. Their format is known and the script can
compute the correct 32 bit instruction value for the selected registers. Then,
replace the instruction using the .word directive, which allows in GNU AS, to
insert an arbitrary 32 bit value.

---------------------------A.s--------------------
/*

A python script (asm -fixup), replaces the custom instructions by the
corresponding binary value using GNU AS .word directive

*/
...
# PRESENT_D a6,s3,a5
# rd : 16 (10000)
# rs1 : 19 (10011)
# rs2 : 15 (01111)
.word 0b10000000111110011000100000110011
...
-----------------------------------------------

A final call to GNU AS generates object files which are linked using GNU LD
to generate the final executable.

riscv -as -c Present_cipher.s -o Present_cipher.o

4.6.2 Test Platform

The test platform is depicted in Figure 4.10. It includes the following elements:

• One VexRiscv Core : configured as follows:

– implements the RV32I ISA,
– enabled Configuration and Status Registers CSR,
– Light Shifter,
– Simple instruction and Data Bus Interface.

• Two independent 32 KB On-chip memories for program and data.

• A communication module to connect with a host computer through a USB
interface chip on a test board.

• A configuration registers module which includes dedicated memory address-
able registers that can be set and read from the host PC through the USB
module.

• A General Purpose Input Output (GPIO) module for direct user interaction.
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Figure 4.10: VexRiscv Platform

4.6.3 Target FPGA Board

We use The Chipwhisperer CW305 target board [2]. It is build around an Artix-
7 FPGA and brings features like a simplified USB interface, for host to NICV
communication, and GPIOs (LEDS and buttons. . . ). The board is designed to be
used as a target for side channel power analysis. It includes several probing points
and means to measure the voltage and current intensity of the different elements
of the board.

The target FPGA is an Artix-7 xc7a100t device. It includes 101440 Logic Cells,
126800 Registersa and 4860 Kb of RAM. Its working frequency can vary between
5 and 160MHz.

The embedded USB interface can be used to configure the FPGA. At runtime,
the same USB interface can be used to communicate with the device. It is viewed
as a simple data/address bus interface, which can be used to read or write into
the configuration registers of the platform.

4.6.4 Test and validation

Each block cipher algorithms is implemented in C and compiled with the stan-
dard GCC RISC-V toolchain. Two versions of each program have been developed
allowing the following execution modes:

• software: using the standard RISC-V ISA,
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• accelerated : using the proposed hardware instructions of the LBC-ISA.

To synthesize the platform hardware design, we have used the Vivado 2019.1.1
Design suite. The RISC-V software binary programs were converted to onchip
memory initialization files and are pre-loaded into the program onchip memory
when the bitstream is generated. To test and validate our design we have imple-
mented several bitstreams with different plug-ins enabled and the corresponding
software.

To configure the FPGA and communicate with the design, we have used Chip-
whisperer software libraries. The Chipwhisperer software libraries are composed of
a set of open-source Python modules that runs on the host computer.

The developed test program accomplish the following tasks:

• Loads a configuration bitstream file and program the FPGA.

• Uploads a key and a plaintext block using the platform configuration registers.

• Sends the start signal to the processor.

• Waits for test completion by polling a dedicated register acknowledged by the
program that runs on the processor.

• Reads back the ciphertext block and the performance figures (number of
executed instructions and the program duration in clock cycles) written by
the processor program.

4.7 Implementation Analysis

4.7.1 Area Evaluations

Table 4.5 shows the hardware resources for the processor core and for each addi-
tional instruction. As we can see, the configurable instructions NMAT_D needs
significant additional resources. Some of it is due to the configurable nature of this
instruction which requires flip-flops (FF) to store its parameters. A similar trend
was observed with a naive implementation of the S-Boxes as LUTs, this lead us to
find a more optimised way to implement them with CFGLUT5 (Cf. Sect. 4.4.3).
In our implementation, this configuration memory uses standard flip-flop registers
as it requires parallel read access. On the other hand, the specific fixed instructions
GIFT_D and PRESENT_D, have very small overhead as they are implemented
as simple combinatorial logic blocks in the Arithmetic and Logic Unit (ALU). This
is also true for the PRINCE_D family of instruction which regroups the three
instructions PRINCE_DF, PRINCE_DM and PRINCE_DL.

Table 4.6 shows the hardware resource usage overhead for the implementation
of accelerated Lightweight Block Cipher algorithms. The acceleration of each al-
gorithm requires the use of several LBC hardware instructions. The SBOX_C
instruction is needed by all the algorithms and its cost can vary due to the logic
LUTs, which accounts for routing, and are different for every algorithm. Nonethe-
less, the total LUT cost is around 200, and adding the hardware for a second set of
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Table 4.5: Resource Usage Overhead for the Additional Instructions

Instructions LUTs % FFs %
None 973 - 765 -

SBOX_C 1171 +20 766 +0.1
SBOX_C x2 1371 +41 767 +0.3

PRESENT_D 1135 +17 766 +0.1
GIFT_D 1131 +16 766 +0.1

PRINCE_D 1113 +14 768 +0.4
NMAT_D 1545 +59 1022 +34

ALL 2113 +117 1028 +34

S-Boxes is around 400. As shown in Tab. 4.2 Midori, TWINE and SKINNY each
use the NMAT_D configurable agile instruction as their Diffusion Step, which
significantly increases the hardware resource overhead. There is a clear trade-off
between the implementation agility and the hardware cost.

In the case of PRINCE, the SBOX_C instruction requires a mid-execution
reconfiguration since PRINCE uses 2 different S-Boxes throughout its execution.
There are therefore two option on how to implement PRINCE, each with different
costs. The first is to use a single SBOX_C hardware and have the reconfiguration
during the execution, which has an important latency cost. The second is to use
two SBOX_C hardware and configure both of them with different values, which
has an important area cost. The costs of both option are explored in Tab. 4.6 and
Tab. 4.7.

In the case of MANTIS, the NMAT_D instruction can also be used except it
requires a set of 3 matrices due to its 𝛼-reflective nature. This large amount of
reconfiguration led us to set MANTIS aside in favor of the other ciphers.

Table 4.6: Resource Usage Overhead for Lightweight Block Ciphers

Cipher LBC-ISA Instructions LUTs % FFs %
None 973 - 765 -

PRESENT SBOX_C+PRESENT_D 1173 +21 767 +0.3
GIFT SBOX_C+GIFT_D 1103 +13 767 +0.3

PRINCE SBOX_C+PRINCE_D 1438 +48 769 +0.5
PRINCE SBOX_Cx2+PRINCE_D 1638 +68 770 +0.7
Midori SBOX_C+NMAT_D 1778 +83 1023 +34
TWINE SBOX_C+NMAT_D 1778 +83 1023 +34
SKINNY SBOX_C+NMAT_D 1778 +83 1023 +34

4.7.2 Latency Evaluations

Section 4.7.1 showed the cost of extending the RISC-V ISA with hardware-based
instructions. Yet, these addition instructions aim to accelerate the execution of
LBC. In this section, we present the results of the latency evaluation which com-
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pares the instruction count of the execution of each cipher with the basic RISC-V
ISA and with the LBC-ISA. The execution of each of these ciphers was done at
100MHz and no matter the configuration, the critical path was not affected by
the addition of each module. To note, no evaluation of the maximum attainable
frequency was done but the observed slack suggests that the frequency could be
increased.

4.7.2.1 Implementation Results

Table 4.7 shows program execution instructions count for different algorithms for
both Base ISA and LBC-ISA modes. The number of executed instructions is
captured by software by reading the corresponding CSR of the VexRiscv Core.
The machine instructions-retired counter minstret is a standard CSR defined in
the RISC-V ISA.

Table 4.7: Instruction Count for Ciphers According to the ISA Used

Cipher Base ISA LBC-ISA Gain factor
PRESENT 12544 359 35

GIFT 10661 320 33
PRINCE

(SBOX_C x1) 17357 2313 8

PRINCE
(SBOX_C x2) 17357 138 126

Midori 18944 190 81
TWINE 41279 621 66
SKINNY 40887 409 100

The gain factor is between 8 and 126 for the 6 considered algorithms, when
using the specific LBC-ISA instructions. As a comparison, the results of Marshall
et al. in [49] showed a 4x to 10x acceleration when working on accelerating the
execution of AES using a similar approach. This important gain is due to the
fact that bit manipulation in hardware is a single cycle instruction with reasonable
complexity. Whereas in software, bit manipulation is extremely costly for instance,
in the implementation of PRESENT used for these results, each bit has to be
singled out to allow the permutation between single bits. The Basic RISC-V
ISA implementations were made naively and little optimisation was brought to
any of the algorithms, meaning that a more refined implementation could lead
to different results. The algorithm which both least and most profits from this
acceleration is PRINCE. On the one hand, the single SBOX_C implementation
requires mid-execution reconfiguring, which takes a long time and explains the low
results compared with other algorithms. On the other hand, the double SBOX_C
implementation requires an additional hardware instruction, which has a larger area
cost. The other results are also very positive as they show a gain factor of at least
33 which is far more than the area overhead which less than doubles the area cost.
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4.7.2.2 Comparison with Theoretical Results

Table 4.8 sums up the theoretical results from Section 4.5 for the algorithms which
gained most with the extended LBC-ISA where the results are given for the entire
encryption. Once again, these results are theoretical and are the multiplication
of the per round results of Table 4.4 by the number of rounds. This approach is
obviously flawed as some rounds are different and this does not take into account
any of the useful instructions which are not directly parts of a round such as jumps.
The purpose of this table is simply to change the form of the results in order to
compare them to the practical results of Table 4.7 and better understand the
existing discrepancies.

Table 4.8: Theoretical Instruction Count with Hand-Written Assembly Code

With AccelerationBlock Cipher No Acceleration (Theoretical) Gain factor

PRESENT 17760 160 111
GIFT 18060 140 129

PRINCE 9020 99 91
Midori 5600 144 39
TWINE 6264 216 29
SKINNY 7488 288 26

The first discrepancy is the estimation in terms of number of instructions for
the non-accelerated version of the algorithms which were not the same. For the
PRESENT and GIFT algorithms, some aspects of the software implementation
were optimised which lead to a lower instruction count for the non-accelerated
execution. For PRINCE with one SBOX_C, the difference with theoretical results
is large and is mostly due to the necessity to reconfigure the S-Boxes during
the execution. Whereas for PRINCE with two SBOX_C, the results are quite
close. For the algorithms using the NMAT_D instruction, the number of executed
instructions for the Base ISA version is higher due to the software implementation
which was made to mimic the accelerated version which lead to some additional
latency. This approach was taken to have comparable codes for both LBC-ISA and
Base ISA versions.

Second, the estimations were based on the implementation of a single round.
Therefore, the number of instructions for the entire cipher is simply a multiplication
of a single round by the number of rounds, which does not take into account
the additional instructions necessary to handle loops, such as the jump and the
incrementation of the counter.

Third, the assumption that the Round Key values would be accessible from
dedicated registers was made. These registers have not yet been implemented in
our version which therefore requires two instructions to fetch the 64-bit value of
the Round Key from the memory. Adding these specific Round Key registers will
allow us to accelerate our execution.
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Finally, the theoretical results did not take into account the fact that the core
would be 32-bit. This means that in practice, each LBC-ISA instruction is doubled
(Cf. Sect. 4.4.1). Therefore, each round uses at least 3 more instructions than
what the theoretical results suggest.

The two evaluations were made under different assumptions which makes the
comparison of our results uneven. Nonetheless, we can see that the overall number
of instructions has less than doubled from an incomplete theoretical result to an
actual implementation. Moreover, other than for PRINCE with a single SBOX_C
the overall Gain Factor is comparable as it went from being between 26 and 129
to being between 33 and 125 even though the actual value for each algorithm has
changed.

4.8 Conclusion

In this section, we proposed a RISC-V extension called LBC-ISA which consists
in 7 additional instructions. Among these instructions, some are agile and can be
used by multiple algorithms, and other are specific and can only accelerate the
execution of a single cipher.

Each of these instructions has been tested on an FPGA board on which had been
implemented a platform which used the VexRiscv Core. They were then validated
by using them as inline assembly instructions in the C code of each cipher and
comparing the results to already validated results.

For each of these instructions, we have provided an evaluation of the costs both
on their own and as part of the configuration dedicated to each cipher. These
results showed that the most costly instruction was the agile NMAT_D, which
was expected. Thanks to the use of CFGLUT5, the cost of SBOX_C, the other
agile instruction, remained on par with the cost of cipher-specific instructions.
Moreover, the cost of configuration accelerating a single cipher is less than double
the cost of the Basic RISC-V ISA. When the configuration uses the complete LBC-
ISA instruction, the area overhead is of 117% just a little more than doubling of
the Basic RISC-V ISA cost.

These results are promising, especially when compared to the latency evaluation
of these ciphers. Indeed, the executions using the LBC-ISA are from 1 to 2 orders of
magnitude faster than those who do not. Thereby, some ciphers can be accelerated
more than a 100 times. This entire acceleration is uses very little additional
instructions and low area overhead.

Nonetheless, none of these implementations took into account protection against
physical attacks. No matter the chosen implementation, physical attack is a real
security issue, which must be taken into account when high levels of security are re-
quired. The next chapter will present in depth how protection against such threats
was implemented and test its effectiveness against certain types of physical attacks.





Chapter 5

Protected Processor Against
Side-Channel Attacks

Cryptographic algorithms are mathematically sound but the hardware on which
they are implemented can be the source of information leakage. This information
can be exploited by an attacker in order to retrieve the cryptographic key, wrecking
their mathematical strength. This type of attack is called Side-Channel Attacks
and it is essential to protect the hardware from such attacks.

The information can leak in different forms, meaning that a variety of attacks
are available which each require specific responses. The leaking information we
are interested in with this work is based on the power consumption. Indeed, power
consumption varies when a bit in a register changes from a 0 to a 1 or a 1 to a
0 or when it stays the same during a clock cycle. By collecting a large amount of
power traces, it is possible to reduce the impact of the noise to a minimum. This
leads to finding correlations in behaviors which can then lead to an identification
of hidden constant values, such as the key value.

The most sensitive point to observe such discrepancies is around the S-Box.
Since this is the only non-linear instruction of the encryption, it is where the power
consumption can reflect the values used during the execution. This is also why
protections usually have a special interest in protecting the S-Boxes specifically.
This will be further explained in Section 5.2.3.

Despite their importance, protection against side-channel attacks are still rather
new and still lack a standard. In this chapter, we propose, test and validate a RISC-
V extension, dedicated to the acceleration of LBC and coherent with the LBC-ISA
proposed in Chapter 4. This extension aims at the same kind of results regarding
constraint of size, speed and agility.

5.1 Proposed ISA Extension for Protection

The results from Section 5.3 show how non-protected implementations are sensitive
to SCA. The mathematical soundness of the ciphers are therefore not sufficient to
protect the data and the hardware itself requires protection. To be more specific
the hardware cannot be protected in a way that would stop information from
leaking, what is protected is the nature of the information it leaks. The protection
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needs to make sure that even though leakage happens, the information leaked
cannot be used to decrypt hidden information.

There are multiple ways to implement a protection against SCA (Cf. Sect. 2.7).
One of our main constraints in choosing which protection to use was our objective
of having a single agile protection. We also wanted to minimize the area cost of
adding it to the RISC-V extension. The protection we chose was the RSM [53] for
multiple reasons which will be detailed in the next Section.

5.1.1 Rotating S-Box Masking Protection Implementation

The RSM protection [53] was seen as fitting for our implementation. Most impor-
tantly, the RSM protection is one of the most effective in terms of ratio efficiency vs.
security. Moreover, most of the RSM protection steps did not require additional
hardware resources. Indeed, RSM is an effective and low complexity masking
scheme, where the non-linear substitution function are tabulated. The S-Boxes
are modified to unmask, substitute and re-mask atomically the state. They can
also be reconfigured independently with the LBC-ISA implementation proposed
(Cf. Sect. 4.4.3). This was therefore particularly coherent with our existing imple-
mentation as the S-Boxes could be easily changed into the protected S-Boxes with
this architecture. Finally, most of the RSM protection steps did not require accel-
eration and a single additional hardware instructions would be enough to optimise
its execution latency (Cf. Sect. 5.1.2).

The RSM protection is detailed in Section. 2.7.2.2. Instead of rotating the
mask by rotating the S-Boxes, it is easier here, to rotate the state before and after
the S-Boxes using two nibble level barrel-shifters (Cf. Fig. 5.1). This protection
seemed particularly appropriate to implement an agile masking scheme since the
4×4 Sbox is used in many LBCs, by protecting it, all those ciphers should be
protected.

Each S-Box is adapted to a certain nibble of the mask, which requires 16
different S-Box configurations. The existing SBOX instruction does not require
modification since each S-Box is already configured independently during the al-
gorithm loading step. It is also during this algorithm loading step that each table
is calculated according to the mask. Since every nibble is used, only the mask
nibbles are necessary and the initial RSM Index is not required.

RSM was developed with the perspective of an ASIC, therefore using a more
software-based approach requires changing a few aspects of its implementation.
For instance, in our implementation, the S-Boxes are not physically rotated, they
are fixed, and the state is rotated. This 64-bit rotation does not exist in the
basic RISC-V 32-bit ISA nor does it exist in the extended LBC-ISA. As part of
our implementation, these rotations are handled by a single hardware dedicated
instructions that rotate the entire state in a single instruction (technically two, for
the low/high parts as explained in Section 4.4). Although this nibble-level barrel
shifter hardware is unique, it can be used by two separate instructions which will
be referred to as NShift and invNShift, and described later in Chapt. 5.1.2. This
rotation is at the heart of the protection, especially the initial RSM Index of the
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S-BoxS-Box S-Box S-Box
m0-m1 m1-m2 m2-m3 m15-m0

s1⊕m2 s2⊕m3 s15⊕m0s0⊕m1

SB(s0)⊕m2 SB(s1)⊕m3 SB(s2)⊕m4 SB(s15)⊕m1

Barrel Shifter

Barrel Shifter

Figure 5.1: The RSM Confusion Step

rotation, which unlike the mask itself is hidden information. The shift amount of
this initial Index of rotation is set with Mask_init and incremented at each round
with Mask_next. These two instructions are actually CSR instructions, the former
sets the value of a CSR Register to a hidden random value between 0 and 15 the
ladder increments the value of this CSR Register by 1 modulo 16.

The entire execution of a protected algorithm is presented in Alg. 2. It shows
each of the three steps of an unprotected algorithm along with all the instructions
dedicated to the implementation of the RSM protection. Compared to Alg. 1 in
Section 2.4, the S-Box table has been modified into an RSM S-Box table, which
does not change the implementation of the S-Box itself. Most of the instructions
are the direct handling of the mask itself, the main difference applied to the state is
those two nibble-shifts before and after the Confusion Step. These nibble-shifts are
the instructions which were identified as the most area efficient way to accelerate
the execution of the RSM protection for the RISC-V protection extension.
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Algorithm 2 Protected Generic Lightweight Block Cipher Algorithm
PROTECTED BLOCK CIPHER ALGORITHM

Data: PlainText (64-bit), Key (128-bit)
Parameters: Mask (64-bit), Initial RSM value (5-bit), S-Box parameters (1024-bit)
Result: CipherText (64-bit)

Mask_init()
𝑟𝑜𝑢𝑛𝑑𝐾𝑒𝑦[#𝑜𝑓𝑅𝑜𝑢𝑛𝑑𝑠]← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦𝑠(𝐾𝑒𝑦)
curr_mask← invNShift(Mask)
state← Plaintext⊕ curr_mask

for 𝑟𝑜𝑢𝑛𝑑 = 0 to #𝑜𝑓𝑅𝑜𝑢𝑛𝑑𝑠 do
𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑡𝑒⊕ 𝑟𝑜𝑢𝑛𝑑𝐾𝑒𝑦[𝑟𝑜𝑢𝑛𝑑]
state← NShift(state)
𝑠𝑡𝑎𝑡𝑒← 𝑆𝐵𝑜𝑥(𝑠𝑡𝑎𝑡𝑒)
state← invNShift(state)
𝑠𝑡𝑎𝑡𝑒← 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛(𝑠𝑡𝑎𝑡𝑒)
Mask_next()
curr_mask← invNShift(Mask)
comp_mask← Diffusion(curr_mask)⊕ curr_mask
state← state⊕ comp_mask

end for
state← state⊕ curr_mask return 𝑠𝑡𝑎𝑡𝑒

5.1.2 Protection Instructions

The RSM protection, as its name suggests, requires a rotation. Rotation is not part
of the base RISC-V ISA, but even if it were, to implement the RSM protection we
need a 64-bit rotation instruction of the masked state, yet our implementation is
on a 32-bit RISC-V. This means that even the basic rotation proposed in [4] would
not be adapted to our requirements. The addition of a 64-bit barrel shifter, and
corresponding instruction, was therefore added to implement the RSM protection
with reasonable latency. To limit the hardware complexity, this barrel shifter was
limited to nibble granularity.

In terms of hardware implementation, the only addition to the protection for
LBCs extension of the RISC-V called ProtLBC-ISA was this nibble-level barrel
shifter. It required the addition of four instructions to the ISA the low and high
versions of NShift and invNShift. NShift and invNShift are both R-type in-
structions:

31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 rs1 funct3 rd opcode

Figure 5.2: R-Type Instruction of the RISC-V

NShift and invNShift both use the same hardware but use different parameters.
NShift rotates to the left a given amount and invNShift rotates to the right of
the same amount. Quite like the other additional instructions, the nibble shift
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instruction required to implement the RSM protection are not adapted to a 32-bit
microcontroller. Indeed, a 32-bit micro-controller is not adapted to execute a 64-
bit rotation. Nevertheless, the rotations used are only nibble-level rotation, which
allowed the optimisation of the implementation of this barrel shifter.

The RISC-V instructions can only have two 32-bit registers as input and one
32-bit register as output, the rest of the bits are reserved to identifying which
instruction is being called. Nonetheless, the nibble shifters need to have a shift
amount parameter in order to be agile. To include this agility without tempering
with the instruction format of the RISC-V, we used available CSR to store the
parameter value for the shift amount. This means that before using any of those
instructions, it is necessary to assign a value to a CSR register by writing in a
dedicated CSR register, which will then assign a random initial shift amount value,
this operation is done using Mask_init. In terms of hardware, it required the use of
a single additional 5-bit CSR register, which has very minor costs but is important
to note. Since the RSM protection requires incrementing this shift amount value,
it is also included that writing in a separate CSR will add one (modulo 16) to the
current shift amount value, this operation is done using Mask_next.

Using a separate CSR registers to store, initiate and increment the value has a
second important use as it avoids having to store the hidden index value in a normal
register. It is important to be aware that this index is important to the security
of the RSM protection. For practical evaluation reasons, the implementation that
was used does not hide that information as it was important to have control over
it. Nevertheless, in an actual implementation, it should be randomly generated
at the beginning of the execution. This random generation should be done at a
hardware level, using a non-deterministic method such as TRNG, details on this
implementation are out of scope for this work, for reference, the work of Saarinen
et al. [70] shows how such a TRNG could be implemented.

One last thing that was looked at carefully was the registers themselves, each
variable had its own dedicated register. This precaution was taken because crushing
the value of a register with another value generates an activity, if this activity is
correlated to an unmasked state, the entire protection could be broken.

5.1.3 Implementation Analysis

The cost of this protected extension is shown by looking at both the hardware cost
and the latency costs.

5.1.3.1 Hardware Resources

The results of this protected implementation using ProtLBC-ISA are compared to
the implementation of the basic RISC-V and to the implementation of the extended
LBC-ISA with the S-Box instruction along with the same "_D" instructions. All
the synthesis results are shown in Tab. 5.1.

Table 5.1 shows the area costs of each possible configuration of the RISC-V
extension from the Basic RISC-V ISA to the complete ProtLBC-ISA. Each con-
figuration corresponds to the additional instructions required to accelerate the
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execution of a given cipher or group of ciphers. The configurations marked with
a specific cipher such as "PRESENT" corresponds to the resources required to
accelerate the execution of this cipher. The configurations marked with "NMAT"
correspond to the resources required to accelerate the execution of any cipher using
the NMAT_D instruction. The configurations marked with "ALL" correspond to
the combination of all the other configurations. Each configuration is presented
both for the non-protected and the protected extension. The LUT column corre-
sponds to the total amount of LUTs required for the implementation and the FF
colmun to the amount of flip-flops required. The former corresponds to the area
dedicated to logic operations and routing whereas the latter corresponds to the
memory requirements. Each of these colmuns is followed by a column showing the
augmentation percentage compared to the Basic RISC-V ISA implementation.

These results show a clear increase between the non-protected and the protected
extensions. First off, it can be noted that the FF increase is most largely linked
to the agility of an instruction rather than to its protection but protection still has
a cost. For instance, the FF increase on specific instructions is less than 0.5%
for non-protected configurations but goes up to 5% for protected configurations.
This increase is most likely due to the memory cost of adding a mask to the
implementation. Nonetheless, this increase stays far from the 33% increase due
to the use of the agile NMAT_D instruction. Secondly, protection also caused
an increase when looking at the costs in terms of LUTs. Indeed, the smallest area
required for the non-protected extension corresponds to the "GIFT" which shows
a 13% increase compared to the Basic ISA. Whereas the smallest area increase for
the protected extension which also corresponds to the "GIFT" configuration more
than doubles the size of the implementation. This difference lowers as the non-
protected extension cost grows. Indeed, the non-protected "ALL" configuration
shows a 117% increase compared to the Base ISA whereas the protected "ALL"
configuration increase the LUT cost by 167%. This increase is therefore of only
50% when implementing the entire ProtLBC-ISA extension.



Table 5.1: Resource Usage Overhead for the Agile Protected Implementation

ISA Configuration Additional
Instructions LUTs % FFs %

Reference
Basic RISC-V ISA None - 973 - 765 -

PRESENT S-Box +
PRESENT_D 1173 +21 767 +0.1

GIFT S-Box +
GIFT_D 1103 +13 767 +0.1

PRINCE S-Box + PRINCE_DF +
PRINCE_DM + PRINCE_DL 1438 +48 769 +0.5

NMAT S-Box +
NMAT_D 1778 +83 1023 +34

Non-Protected
Extended RISC-V

LBC-ISA

ALL

S-Box + PRESENT_D +
GIFT_D + PRINCE_DF +

PRINCE_DM + PRINCE_DL +
NMAT_D

2113 +117 1028 +34

Basic Protection Nibble-Level Barrel Shifter 1702 +75 799 +0.4

PRESENT S-Box + PRESENT_D +
Nibble-Level Barrel Shifter 1971 +103 804 +0.5

GIFT S-Box + GIFT_D +
Nibble-Level Barrel Shifter 1968 +102 804 +0.5

PRINCE
SBOX_C x1

S-Box + PRINCE_DF +
PRINCE_DM + PRINCE_DL +

Nibble-Level Barrel Shifter
2027 +108 802 +0.5

PRINCE
SBOX_C x2

S-Box + PRINCE_DF +
PRINCE_DM + PRINCE_DL +

Nibble-Level Barrel Shifter
2227 +129 803 +0.5

NMAT S-Box + NMAT_D +
Nibble-Level Barrel Shifter 2432 +150 1057 +38

Protected
RISC-V Extension

ProtLBC-ISA

ALL
(with Protection)

S-Box + PRESENT_D +
GIFT_D + PRINCE_DF +

PRINCE_DM + PRINCE_DL +
NMAT_D +

Nibble-Level Barrel Shifter

2595 +167 1061 +39
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5.1.3.2 Latency Analysis

As shown in Alg 2, the RSM protection adds instruction to each round of a cipher.
This means that the latency is necessarily increased. Table 5.2 compares the
latency cost of non-protected executions of ciphers using the basic RISC-V ISA to
that of protected executions using ProtLBC-ISA.

Table 5.2: Instruction Count for Execution of Ciphers using Base RISC-V ISA and ProtLBC-ISA

Cipher Base ISA ProtLBC-ISA Gain Factor
PRESENT 12544 812 15

GIFT 10661 788 14
PRINCE

(SBOX_C x1) 17357 4642 4

PRINCE
(SBOX_C x2) 17357 323 54

Midori 18944 412 46
TWINE 41279 1429 29

As expected from Tab. 4.7, the results from PRINCE (SBOX_Cx1) are quite
low compared to the acceleration of other ciphers. Nonetheless, it still shows that
even with protection our extension accelerates by a factor of at least 4 any of
the studied ciphers. These results also show that for other ciphers, the protected
execution is between 15 and 54 times faster. When using protection, each round
is impacted by additional instructions. Therefore, these results showing over a
magnitude order of acceleration are very encouraging as they show just how much
a few instructions can offer when dealing with LBCs.

In this section we covered the 9 instructions of ProtLBC-ISA, the costs of their
implementations and the latency gain they offer. In the next section we will present
the means to evaluate the protection offered by this extension.

5.2 Side-Channel Security Evaluation

In order to determine the security of the implementation, different metrics where
used for different purposes.

• The Normalized Inter-Class Variance (NICV) [16]

• The Correlation Power Analysis (CPA) [21]

• The Guessing Entropy (GE) [50]

The NICV was used to establish the framework of the analysis. The CPA was used
as the main tool for the attack as it highlights the correlation between the power
traces and the hidden values. The GE was used as a way to evaluate and compare
the security level of non-protected and protected implementations.
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5.2.1 Experimental Setup

Working on SCA requires the use of a large amount of power traces. For the
acquisition of the power consumption execution traces, two boards were used.
The first is the cw-305 Chipwhisperer FPGA board [2], where the protected RISC-
V is implemented. The second, is the analysis board, the cw-1173 Chipwhisperer-
Lite [1] which is used to collect the execution power traces.

The working frequency of the RISC-V was set to 10MHz, and the sampling
frequency for the power traces was set to 100MHz, which corresponds to the
maximum sampling rate of the analysis board. This frequency of 10MHz was
chosen so as to have 10 samples per clock cycle which is sufficient for our analysis.
Whether on protected or non-protected implementations, we captured 500 samples
per trace. This allowed to capture the entire first round along with some margin.

For each algorithm, we gathered 32768 power traces for the non-protected
version and either 1048576 or 2097152 power traces for the protected versions.
Some algorithms required an additional 524288 power traces for the non-protected
version due to loop unrolling issues (Cf. Sect. 5.3.4). Each trace was retrieved
using the same key and a different non-redundant random plaintext. In the case
of protected implementations, the same mask was used, but initial index value was
changed, so that every one was used for an equal part of the overall traces. The
mask used was the same for each cipher and its value is 0𝑥693𝑐5𝑎96𝑐3𝑎5𝑐3𝑎5, it
was chosen so that every nibble had a Hamming Weight of 2.

5.2.2 Normalized Inter-Class Variance

Multiple methods can be used to determine the feasibility of side-channel attacks,
such as the Test Vector Leakage Assessment [87] but it was decided that the NICV
(Cf. Sect. 2.6.6.3) would be a better fit for our work. The NICV graph compares
the power activity of the overall hardware with the power activity correlated to the
given input value. Fig. 5.3 shows the overall power activity variation trace and
the NICV graph of a non-protected version of PRESENT. The peaks observed on
the NICV graph are where the leakages are susceptible to happen as they show a
suspect activity correlated with the input value. This does not mean that each of
these peaks can be attacked, simply that this is where an attack is most likely to
work. NICV therefore allowed us to identify the most fragile point in the execution.
Nonetheless, this method requires fine-tuning for a few reasons:

• The NICV indicates potential leakage, but does not guaranty it is correlated
to the secret information

• The height of the NICV peak does not indicate how likely this peak is to
suffer leakage

In the NICV graph of Fig. 5.3, we see multiple peaks, with the highest value
around abscissa 370, yet this sampling point corresponds to the slot delay at the
end of the second round. First order attack models can only exploit the information
of the first round, therefore having an NICV peak at the end of the second round
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1st round

SBOX

2nd round

Figure 5.3: The NICV for non-protected PRESENT with 32768 traces

suggests that the attack used should not work at this point. By using the simulation
traces of PRESENT in addition to the NICV curve, it is possible to identify the
peaks that will lead to successful attacks. Indeed, some instructions such as the
S-Box are more susceptible to attacks. If an NICV peak is observed close to the
S-Box, then the spectrum of the attack should be limited to its range. In Fig. 5.3
a small peak is observed at abscissa 110, this peak corresponds to the execution
cycle of the SBOX instruction of the first round. Although it is not the highest
peak in term of NICV, it is the focus point for the attack. To note, this graph is
traced for a specific nibble, but the same behavior can be observed with most of
the other nibbles. The NICV graph was therefore combined with the use of the
simulated execution traces of PRESENT to pinpoint which peaks had the most
potential of being attackable.

5.2.3 Correlation Power Analysis

The NICV allows precise selection of a range of samples on which to apply the
CPA attack (Cf. Sect. 2.6). This analysis uses execution power traces to retrieve
the nibbles of the secret key one by one.

The concept of the CPA is to execute a given cipher with a fixed key and a
changing plaintext and to record the power traces of each of those executions.
The mean of each of these power traces is then compared to the expected value
for each possible hypothesis and whichever hypothesis comes closest, or rather
has the highest CPA peek is deemed the most likely hypothesis. If the hypothesis
corresponds to the real key, then the key has been broken, otherwise the cipher is
unaffected by the attack.

The fact that we use 64-bit blocks means it is extremely inefficient to use the
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CPA on each of the possible values of the 64-bit round key. The hypothesis is
actually done on a 4-bit sub-part of the state, which is the output of the 4×
4 Sbox. Indeed, S-Boxes are the only non-linear operation of the cipher and
apply to groups of 4 bits, which allows two things. First non-linearity ensures
that there is a correlation between the power traces and the Hamming Weight or
Hamming Distance of the hidden key, ensuring that the right hypothesis behaves
is an identifiable way. Second, by having a 4-bit input and a 4-bit output, the
amount of possible values is reduced to 16, which can be brute forced. Therefore,
the output of the S-Boxes is the most sensitive point of the cipher and where the
attack will most likely take place [86].

For each nibble, hypotheses are made for its value from the 16 possible values.
The Pearson Correlation Coefficient is computed for each hypothesis, and the one
with the highest coefficient value is determined to be the most probable value for
this nibble of the key. If this identified nibble corresponds to the real key nibble,
then this nibble of the key is considered broken. All the nibbles do not need to
be broken for the security to be inefficient as with a sufficient amount of broken
nibbles, a more refined attack could still work.

5.2.4 Guessing Entropy

In order to evaluate the attackability of the studied algorithms, we used the Guess-
ing Entropy GE as our indicator (Cf. Sect. 2.6.7.3). When using the CPA, each
hypothesis is given a rank based on the highest value of its CPA graph. The hy-
pothesis with rank 1 is the nibble value most likely to be correct according to the
attack. When this value is the same as the real key nibble value, the nibble is said
to be broken. Therefore, the higher the rank of a given value is, the most likely
this value is to be the real key value, according to the attack.

This rank can vary due to multiple factors, the main one being the amount of
power traces used for the CPA. Indeed, the higher the amount of power traces are
used, the higher the correlation is for the right key nibble. The guessing entropy
graph represents the rank variation according to the amount of power traces used.
The rank used is actually an average between the ranks obtained for different power
traces sets of the same size.

The GE was therefore used a measure of the resistance to SCA and to compare
the results of non-protected and protected implementations. If a nibble can be
broken, then as the sample size grows, the guessing entropy converges towards
one.

The guessing entropy of the non-protected PRESENT in Fig. 5.4 shows that
11 of the 16 nibbles can be broken with less than 32k traces. It is interesting to
note that even though most nibbles break for set sizes around 10000, some nibbles
do not seem to break at all. Indeed, CPA attacks rely on Hamming Weight to
determine the right key nibble which is sometimes based on very small changes.
This means that in certain cases, a much larger amount of traces is needed to
break a nibble. Still, we can see an overall decrease of the guessing entropy which
suggests that with enough traces, each nibble will be broken.
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5.3 Security Evaluation of Non-Protected Implementations

The first security evaluation has to be done on non-protected implementation in
order to verify that the leaking information does allow the attacks to work. Our
first evaluation used the GE of each of the 16 nibbles for growing sizes of power
traces groups. These group size go from 100 up to 32768 power traces, and for
each group size, the GE is calculated for 4 different groups to have an average. This
evaluation was done for PRESENT, GIFT, PRINCE and Midori. These algorithms
were selected in order to have each additional instruction used at least once.

5.3.1 Non-Protected PRESENT

(a) Nib. 0 - 3 (b) Nib. 4 - 7

(c) Nib. 8 - 11 (d) Nib. 12 - 15

Figure 5.4: Guessing Entropy of a Non-protected Execution of PRESENT, up to 32768 Power
Traces

Figure 5.4 is the graph of the GE for each nibble of the non-protected PRESENT
cipher with up to 32768 power traces. It shows how 11 of the 16 nibbles of
PRESENT see their GE converge towards 1 and the 5 others are slowly deceasing.
This means that the value of those 11 nibbles has been broken by the attack with
less than 15k power traces, which shows the vulnerability of such implementation
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to SCA. Of the non-broken nibbles, most seem to slowly decrease and would
eventually converge towards 1.

5.3.2 Non-Protected GIFT

(a) Nib. 0 - 3 (b) Nib. 4 - 7

(c) Nib. 8 - 11 (d) Nib. 12 - 15

Figure 5.5: Guessing Entropy of a Non-protected Execution of GIFT, up to 32768 Power Traces

Figure 5.5 is the graph of the GE for each nibble of the non-protected GIFT
cipher with up to 32768 power traces. It shows how 13 of the 16 nibbles of GIFT
see their GE converge towards 1. This means that the value of those 13 nibbles has
been broken by the attack with in most cases less than 15k power traces, which
shows the vulnerability of such implementation to SCA. Of the non-broken nibbles,
one of the other nibbles shows a very slow decrease, another converges toward 2,
and the last shows a behavior that is unexpected as it tends to increase. The fact
that three nibbles that were not broken is probably due to a specific interaction
we were unable to identify.
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5.3.3 Non-Protected PRINCE

Fig 5.6 is the graph of the GE for each nibble of the non-protected PRINCE cipher
with up to 32768 power traces.

(a) Nib. 0 - 3 (b) Nib. 4 - 7

(c) Nib. 8 - 11 (d) Nib. 12 - 15

Figure 5.6: Guessing Entropy of a Non-protected Execution of PRINCE, up to 32768 Power
Traces

It shows that 14 of the 16 nibbles of PRINCE see their GE converge towards
1, meaning that they are broken by the attack. Most nibbles see their GE at 1
after 5000 to 15000 power traces which shows great vulnerability against SCA.
The behaviour of the other two is different as they seem to either decrease slowly
or converge towards a non-1 value.

5.3.4 Non-Protected Midori

Figure 5.7 is the graph of the GE for each nibble of the non-protected Midori
cipher with up to 32768 power traces. It shows how 10 of the 16 nibbles of Midori
see their GE converge towards 1. This means that the value of those 10 nibbles
has been broken by the attack with in most cases less than 15k power traces,
which shows the vulnerability of such implementation to SCA. Amongst the non-
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(a) Nib. 0 - 3 (b) Nib. 4 - 7

(c) Nib. 8 - 11 (d) Nib. 12 - 15

Figure 5.7: Guessing Entropy of a Non-protected Execution of Midori, up to 32768 Power Traces

converging nibbles, most seem to converge towards a value other than 1. Once
again, the explanation for this phenomenon could not be identified.

5.3.5 Conclusion

These results show that with unprotected executions, ciphers can be broken with
low amounts of power traces. Indeed, most nibbles were broken with under 15000
traces. These graphs therefore illustrate the need for protection consideration for
the implementation of LBCs.

Nonetheless, for these attacks, some nibbles could not be broken. The explana-
tion as to why certain nibbles are less sensitive to the CPA attacks has not been
found. Among the hypothesis, it could be possible that the execution of the 16
S-Boxes would not be done in parallel, despite our parallel implementation, which
could lead to the S-Box output to be found at different points for different nibbles.
This would lead to a lower correlation for some nibbles but not others. It could be
possible that by enlarging the study points area those nibbles would become more
sensitive to the attack, but this solution was not tested.
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Another possible way to identify the issue or even make it disappear would
be to use another type of attack, another attack model or another distinguisher.
Once again, these solutions were not tested but could be a way to go around the
difficulties of attacking those nibbles.

Moreover, during our collection of guessing entropy for Midori, we came across
another interesting phenomenon. Our initial results showed that the guessing
entropy of Midori would decrease down to 1 the same way as it does in Fig. 5.7,
except for much higher values of around 200,000 power traces as shown in Fig. 5.8.
The reason we found for such a difference between Midori and other algorithms
was that due to the low number of rounds, the compiler had unrolled the rounds
loop. This was verified by forcing the compiler avoid unrolling, which gave the
results shown in Fig. 5.8.

(a) Nib. 0 - 3 (b) Nib. 4 - 7

(c) Nib. 8 - 11 (d) Nib. 12 - 15

Figure 5.8: Guessing Entropy of a Non-protected Execution of Midori, up to 500000 Power Traces

Out hypothesis as to why this happened is that the unrolling lead to a reor-
ganisation of the registers used to store the results of SBOX_C. This could have
resulted in lowered correlation as this register was not the same for each round.
This meant that value stored could get crushed by a value with much less in com-
mon, unlike in a rolled version where the same register always used for the same
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purpose. We did not dig any further to identify the actual cause of this gap but
this observation seemed noteworthy nonetheless.

5.4 Security Evaluation of Protected Implementations

In order to test our protected implementation and its resistance to SCA, we used
the same measures as in Section 5.3. The only difference is that we used a larger
scope with up to 1 or 2 million power traces, to make sure the protection would
work for much higher values. In order to ensure maximum security, the mask
and/or key should be changed regularly meaning more often than once every 1
million encryptions. It was therefore not necessary to verify the security passed 1
million power traces.

The results for each algorithm are shown with two sets of graphs, they show
the GE for each nibble of each cipher for up to 1 million power traces.

5.4.1 Protected PRESENT

The Guessing Entropy of the protected version of PRESENT is shown in Fig. 5.9.
It shows that with up to 1048576 power traces, the GE of every nibble is rather
stable between 4 and 10. Therefore, these graph show that with the protection,
the PRESENT cipher is much less sensitive to CPA attacks. Indeed, some nibbles
of the non-protected version would start breaking around the 10000 traces mark.
Here with 100 times more power traces, there is no sign of the attack working.
None of the curves seem to be decreasing towards 1 but rather to converge towards
another value. This could indicate that the attack is still a large amount of traces
away from being able to work.
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(a) Nib. 0 - 3 (b) Nib. 4 - 7

(c) Nib. 8 - 11 (d) Nib. 12 - 15

Figure 5.9: Guessing Entropy of a Protected Execution of PRESENT, up to 1 million power
traces

5.4.2 Protected GIFT

The Guessing Entropy of the protected version of GIFT is shown in Fig. 5.10. It
shows that most nibbles seem to converge towards a given value. They all converge
towards non-1 values except for one. Nibble 13 converges towards 1 which would
mean that this nibble is broken. Nonetheless, this doesn’t mean that the entire key
is broken. Indeed, by nature the mask hides the value which creates correlation
with a different value. It is nonetheless possible that the value behind which it
hides is the one with the most correlation. Indeed, if we consider the value to
be random, there is a statistical chance that this value corresponds to the key
nibble. Since all the other nibbles have random values, it would be very hard for
an attacker to identify which nibble has actually been broken. Once again, the
fact that the values converge towards a non-1 value shows that 1 million power
traces is probably far from enough for the attack to work.
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(a) Nib. 0 - 3 (b) Nib. 4 - 7

(c) Nib. 8 - 11 (d) Nib. 12 - 15

Figure 5.10: Guessing Entropy of a Protected Execution of GIFT, up to 1 million power traces

5.4.3 Protected PRINCE

Fig 5.11 is the graph of the GE for each nibble of the protected PRINCE cipher
with up to 2097152 power traces. It shows that the GE of each nibble converges
towards a value which appear random. In this case, none of the nibble has a value
of 1 which comes to show that none are broken. This statement is true for up to at
least 2097152 power traces, twice as much as with PRESENT or GIFT. The fact
that the behavior of the GE shows no signs of decrease towards 1 could indicate,
as suggested by [53], that the attack would be unlikely to succeed for very large
amounts of traces.

These results also confirm that the protection that worked with the PRESENT
and GIFT ciphers, which have similar Diffusion Steps, also works for PRINCE which
has a very different Diffusion Step.
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(a) Nib. 0 - 3 (b) Nib. 4 - 7

(c) Nib. 8 - 11 (d) Nib. 12 - 15

Figure 5.11: Guessing Entropy of a Non-protected Execution of PRINCE, up to 2 million Power
Traces

5.4.4 Protected Midori

The Guessing Entropy of the protected version of Midori is shown in Fig. 5.12.
The results for Midori are very close to those of PRESENT. All the GE values
are rather stable between 7 and 12 and seem to converge towards a non-1 value.
The amount of power traces was increased to 2097152, just as for PRINCE. As
expected when looking at the PRESENT and GIFT results, it would seem that the
values tend to keep on converging rather than decreasing. As for PRINCE, these
results seem to indicate that an attack would be unlikely to succeed even for very
large amounts of traces.

These results also confirm that the same protection also works with the agile
NMAT_D instruction. This indicated that the protection should work with other
algorithms using this instruction, although the results are not available.
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(a) Nib. 0 - 3 (b) Nib. 4 - 7

(c) Nib. 8 - 11 (d) Nib. 12 - 15

Figure 5.12: Guessing Entropy of a Protected Execution of Midori, up to 2 million power traces

5.4.5 Leakage Due to Instruction Ordering

During this study, we came across an unexpected source of leakage which lead to
the protection completely failing. The NICV was useful in identifying the source
of this leakage during the analysis of the protected implementation. Initially, the
code presented in Alg. 2 was slightly different. After the Confusion Step, the order
in which the instructions were executed was as in Alg.3.

Algorithm 3 Leakage due to Instruction Ordering
RSM_next()
curr_mask← invNShift(Mask)
𝑠𝑡𝑎𝑡𝑒← 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛(𝑠𝑡𝑎𝑡𝑒)
comp_mask← Diffusion(curr_mask)⊕ curr_mask

With this ordering, the Diffusion instruction is used twice consecutively, first
with the state as input then with curr_mask. This should not be a problem,
especially considering that each result is stored in a different register.

Nonetheless, after close inspection, it was noticed that the output of the Arith-
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metic and Logic Unit (ALU), was showing the value of Diffusion(state), before
being replaced by the value of Diffusion(curr_mask). This results in a power
activity correlated to the Hamming distance between those two values.

Let us take a look at what happens at this particular node:

• Let 𝑁𝑛 be the state of the node when it holds the value of Diffusion(state),
or 𝐷(𝑢𝑠⊕𝑚𝑖+1), where 𝑢s is the unmasked state, and 𝑚𝑖+1 the mask after
the Confusion Step.

• Let 𝑁𝑛+1 be the state of the node when it holds the value of Diffusion(curr_mask),
or 𝐷(𝑚𝑖+1)

• Let 𝐻𝐷(𝐴, 𝐵) be the Hamming distance between A and B

• Let 𝐻𝑊 (𝐴) be the Hamming weight of A

We have:

𝐻𝐷(𝑁𝑛, 𝑁𝑛+1) = 𝐻𝑊 (𝐷(𝑢𝑠⊕𝑚𝑖+1)⊕𝐷(𝑚𝑖+1))

Since 𝐷 is linear:

𝐻𝐷(𝑁𝑛, 𝑁𝑛+1) = 𝐻𝑊 (𝐷(𝑢𝑠)⊕𝐷(𝑚𝑖+1)⊕𝐷(𝑚𝑖+1))
= 𝐻𝑊 (𝐷(𝑢𝑠))
= 𝐻𝑊 (𝑢𝑠)

This shows that the power activity linked to these two consecutive Diffusion in-
structions is directly correlated to the unmasked state.

The source of leakage was identified thanks to the NICV indicating where the
leakage was coming from. Although we had taken into account this potential
source of leakage by using different registers for each variable, we did not anticipate
that the micro-architecture and datapath of the RISC-V implementation could lead
to breaking the protection. As it turns out, even if this intermediate value is not
in an accessible register, the activity resulting from modifying its value is sufficient
to break the protection. It is therefore essential to pay great attention to the
instructions ordering to avoid the unmasking of sensitive data.

5.5 Conclusion

Overall this research has shown excellent results for the protection, which requires
at least 100 times as many power traces to break than without protection. These
results are also positive when considering the agile aspect as the same RSM in-
structions were used to protect 4 different algorithms, each using different diffusion
instructions.

Moreover, the cost of the protected extension has proven to be quite light when
compared to the non-protected implementation. The fact that the protection
used the same SBOX_C instruction allowed to minimize the overhead of the
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protection. This is also true of the latency since even the protected execution
duration is reduced at least 4 fold and up to 54 fold. These results also come to
show that with a carefully chosen S-Box implementation, the protection against
correlation power attacks can be achieved with a single additional instruction and
low overhead.

The next chapter will conclude this work by presenting the different results of
each contribution. It will also give insight on future works that could be done to
complete and expand this one.





Chapter 6

Conclusion

Throughout this work, many steps were taken to adapt and refine an agile acceler-
ation of the execution of Lightweight Block Cipher. From our initial idea of having
a dedicated configurable ASIC to a more malleable ASIP which lead to thinking
our implementation as an extension to the RISC-V ISA. This work also includes
the implementation of an agile RSM protection against side channel attacks for
LBCs, still as a RISC-V extension.

This chapter sums up the results we obtained and what we learned from them.
It also presents the perspectives such a work offers and how it could be extended.

6.1 Results of an Agile Implementation

As this study showed, an agile implementation for the acceleration of the execution
LBC can be achieved with less than 10 additional instructions, our extension used
7, even in a restricted environment. These instructions were validated on 7 ciphers.
Moreover, the different evaluation methods showed that:

• Both the configurable instructions SBOX_C and NMAT_D can be used
by multiple LBC

• By choosing only 7 instructions, it is possible to greatly accelerate the execu-
tion of multiple ciphers up to 100 folds

• Despite the agility, the area overhead is a less than doubled when implement-
ing the instructions for any algorithm

This study also showed that on a fully hardware implementation configurability
has a large impact on the overhead. Indeed, Tab. 3.2 shows how over 30% of
the cost came from the routing and its configuration, which is much lower on an
FPGA. Nonetheless, the results from chapter 3 were a great basis to work on for
the RISC-V extension. It allowed to identify some of common grounds between
algorithms, how to implement them and where to set the limit in terms of agility.
The RISC-V processor approach led us to use cipher-specific instructions instead
of bit-level agility.

Out of the 7 final instructions of the LBC-ISA 2 are agile and 5 are cipher specific.
The first agile instruction is SBOX_C which has the function of 16 parallel 4× 4
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S-Boxes and is used in every of the studied algorithms. The large cost of this
high level of agility instruction was avoided through the use of the Xilinx primitive
CFGLUT5 reduced its area to the same as a cipher-specific instruction. Indeed,
despite its agility Tab. 4.6 shows that the cost is around 200 LUTs which represents
a 20% size increase. This is very close to cipher-specific instructions which each
represent between a 14% and 17% size increase. The second agile instruction is
NMAT_D which is also used by multiple ciphers. For this instruction which uses
a straightforward RTL implementation, the cost is higher but still under a 60%
size increase.

The ProtLBC-ISA also added an extra hardware instruction which is used for two
software instructions NShift and InvNShift. This single additional hardware is
sufficient to implement the entire RSM protection. Indeed, this protection applies
directly to the S-Box and each of the studied LBC uses an S-Box. Once again the
area overhead is quite low with a 75% increase compared to the basic RISC-V ISA
implementation.

These results show a low overhead but still represent an increase. Yet this
increase is small in comparison to the execution acceleration observed by using
these instructions. Indeed, this non-protected accelerated execution is over 8 times
faster, and up to 125 times faster. The smallest acceleration is for PRINCE with the
S-Box reconfiguration and the largest acceleration is for PRINCE with a second
SBOX_C to avoid reconfiguration. The results for the protected acceleration
about half of those for non-protected executions. Most LBC use bit or nibble
manipulation in some way, which in software is extremely costly, picking a single
bit out requires multiple instructions. Even without agility considerations, such
high numbers come to show just how much this type of acceleration is needed
when using software to handle LBCs.

If a standard LBC doesn’t emerge in the automotive industry, it would therefore
still be possible to greatly accelerate the execution of many if not any cipher for a
very low cost.

6.2 Results of an Agile Protection Against SCA

When looking at the protection against SCA, the area resource are less of a consid-
eration as protection has some incompressible costs. Therefore, this study on agile
protection focused on showing that protection against SCA does not need to be
cipher-specific. This study showed that by protecting the most sensitive leakage
choke point, the S-Box, the exact same protection will work for all the ciphers
studied here, and most likely any cipher using a 4× 4 S-Box.

CPA attacks were carried out to evaluate the security of such an agile protection.
On the one hand, results showed that without the protection, ciphers would break
with a few thousand power traces. This means that a physical attack could be
realistically used to recover the hidden key on those ciphers. On the other hand,
an agile RSM protection was applied to those ciphers’ execution and showed an
important increase in the resilience to CPA attacks. Indeed, the experimental
results showed that the Guessing Entropy (GE) no longer decreased to 1 but
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instead seemed to converge towards a random value. The amount of power traces
needed to recover the key was greatly increased for this second set of attacks, up
to 2 million power traces.

The fact that the GE remained constant even after so many traces means that
this study was far from reaching the limits of this protection. It could even be
possible that the ciphers stay protected no matter how many power traces are
used. What these results also show is that the exact same protection can work
to protect very different ciphers. Although the evaluation was done on four of
the ciphers, it is reasonable to think that this same protection would work on any
cipher using a 4× 4 S-Box.

6.3 Perspectives

Although this work provided a sturdy basis for a RISC-V extension dedicated to
Lightweight Block Ciphers and their protection, there are some problematics that
were not explored.

First off, a few questions remain pending:

• Why are some nibbles less sensitive to the attack in non-protected versions ?

• Why do unrolled execution show a higher resilience to SCA ?

• In some protected implementations, some nibble had a GE of 1, could this
be exploited for a different type of attack ?

• How many traces are required to break the protected version, or is there even
a number ?

Some solutions were proposed but not tested.
On the one hand, this work has also shown that agile implementations often

require using cipher-specific functions. Other works such as the RISC-V Cryp-
tographic Extension Proposal [94] focuses on accelerating the standardized AES.
On the other hand, most of the acceleration is observed when nibble or bit ma-
nipulation is involved. Therefore, an argument could be made that such part
of this extension is too specific and could be replaced by a much more generic
bit- or nibble-manipulation extension. For instance, some instructions from the
Standard Extension for Bit Manipulation [45] that was added recently could be
used to replace the cipher-specific instructions. This approach was indeed used in
the extension proposed in [49] to accelerate the execution of the AES with great
results.

Regarding the protected implementation, the evaluation could be extended to
find how many traces are required to break the key. This would give a much more
precise answer to how often the secret key used should be changed. Indeed, this
information is important because changing the key can be a time-consuming op-
eration since each round key has to be pre-calculated, particularly when protected
since the entire S-Box configuration has to be changed. Finding the limit would
allow to reduce the overall latency.
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Another way to reduce this latency is to accelerate the calculation of round
keys. Indeed, we established that key schedule was out of bound for this study,
yet this process can be time and energy consuming. Therefore, accelerating this
process, ideally in an agile way could offer latency gains.

Finally, the RSM protection we used was designed to work against first order
attacks, and was not evaluated against higher order attacks. The agility proposed
in this work could be extended to higher order protection. Both an agility in terms
of the spectrum of ciphers but also in terms of level of protection. Indeed, the
order of protection could be used as a parameter to have an extension that would
adapt to the security needs.

6.4 List of Scientific Productions

In this section, we present the list of publications and presentations given during
this thesis. There were four publications:

[82] Etienne Tehrani, Jean-Luc Danger, and Tarik Graba. Generic architecture
for lightweight block ciphers: A first step towards agile implementation of
multiple ciphers. In IFIP International Conference on Information Security
Theory and Practice, pages 28–43. Springer, 2018

[85] Etienne Tehrani, Tarik Graba, Abdelmalek Si Merabet, Sylvain Guilley, and
Jean-Luc Danger. Classification of lightweight block ciphers for specific pro-
cessor accelerated implementations. In 2019 26th IEEE International Con-
ference on Electronics, Circuits and Systems (ICECS), pages 747–750. IEEE,
2019

[83] Etienne Tehrani, Tarik Graba, Abdelmalek Si Merabet, and Jean-Luc Dan-
ger. Risc-v extension for lightweight cryptography. In 2020 23rd Euromicro
Conference on Digital System Design (DSD), pages 222–228. IEEE, 2020

[84] Etienne Tehrani, Tarik Graba, Abdelmalek Si Merabet, and Jean-Luc Danger.
Rsm protection of the present lightweight cipher as a risc-v extension. In 2021
24th Euromicro Conference on Digital System Design (DSD), pages 325–332.
IEEE, 2021

Along with two workshop presentations:

• A talk about "Acceleration of Lightweight Cryptography on Microprocessors"
in 2019 at the Cryptachi workshop

• A talk about "RISC-V Extension for Lightweight Cryptography" in 2019 at a
RISC-V Foundation Cryptographic Extension Task Group meeting
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Appendix A

Lightweight Block Ciphers

Throughout this work we studied many Lightweight Block Ciphers, which all work
in different ways. This chapter describes each of these ciphers in detail.

NOEKEON

NOEKEON [26] is an SPN cipher with a 128-bit key size, a 128-bit block size and
16 rounds. Its state is manipulated as a one-dimension array of 8 bytes numbered
0 through 15.

Let,

• Nr be the number of rounds, which is 16,

• Roundct be the round constants, with the shape 𝑅𝑜𝑢𝑛𝑑𝑐𝑡[𝑖] = (′00′,′ 00′,′ 00′, 𝑅𝐶[𝑖])
and RC[i] the round constant of round i,

• State be a pointer of the state, divided into four 32-bit words a[0], a[1], a[2]
and a[3],

• Gamma be a non-linear function (Cf. Alg. 7) equivalent to an S-Box (Cf. Tab. A.1),
which corresponds to the Confusion Step,

• Theta (Cf. Alg. 8) be a linear function, which corresponds to the Key Addition
Step,

• Pi1 (Cf. Alg. 9) and Pi2 (Cf. Alg. 10) be linear functions, which correspond
to the Diffusion Step.

The NOEKEON encryption algorithm in pseudocode notation is shown in Alg. 4.

Its decryption algorithm in pseudocode notation is shown in Alg. 5.
Its round function in pseudocode notation is shown in Alg. 6.
Its Gamma function in pseudocode notation is shown in Alg. 7.
The Gamma function corresponds to sixteen 4×4 S-Boxes in parallel, for which

the substitution table is shown in Tab. A.1.
The Theta function in pseudocode notation is shown in Alg. 8.
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Algorithm 4 NOEKEON Encryption Algorithm
NOEKEON ENCRYPTION
function Noekeon(𝑊𝑜𝑟𝑘𝑖𝑛𝑔𝐾𝑒𝑦, 𝑆𝑡𝑎𝑡𝑒)

for 𝑖 = 0; 𝑖 < 𝑛𝑟; 𝑖 + + do
𝑅𝑜𝑢𝑛𝑑(𝑊𝑜𝑟𝑘𝑖𝑛𝑔𝐾𝑒𝑦, 𝑆𝑡𝑎𝑡𝑒, 𝑅𝑜𝑢𝑛𝑑𝑐𝑡[𝑖], 0)

end for
𝑆𝑡𝑎𝑡𝑒[0]← 𝑆𝑡𝑎𝑡𝑒[0]⊕𝑅𝑜𝑢𝑛𝑐𝑡[𝑛𝑟]
𝑇ℎ𝑒𝑡𝑎(𝑊𝑜𝑟𝑘𝑖𝑛𝑔𝐾𝑒𝑦, 𝑆𝑡𝑎𝑡𝑒)

end function

Algorithm 5 NOEKEON Encryption Algorithm
NOEKEON DECRYPTION
function InverseNoekeon(𝑊𝑜𝑟𝑘𝑖𝑛𝑔𝐾𝑒𝑦, 𝑆𝑡𝑎𝑡𝑒)

𝑇ℎ𝑒𝑡𝑎(𝑁𝑢𝑙𝑙𝑉 𝑒𝑐𝑡𝑜𝑟, 𝑊𝑜𝑟𝑘𝑖𝑛𝑔𝐾𝑒𝑦)
for 𝑖 = 𝑁𝑟; 𝑖 > 0; 𝑖−− do

𝑅𝑜𝑢𝑛𝑑(𝑊𝑜𝑟𝑘𝑖𝑛𝑔𝐾𝑒𝑦, 𝑆𝑡𝑎𝑡𝑒, 0, 𝑅𝑜𝑢𝑛𝑑𝑐𝑡[𝑖])
end for
𝑇ℎ𝑒𝑡𝑎(𝑊𝑜𝑟𝑘𝑖𝑛𝑔𝐾𝑒𝑦, 𝑆𝑡𝑎𝑡𝑒)
𝑆𝑡𝑎𝑡𝑒[0]← 𝑆𝑡𝑎𝑡𝑒[0]⊕𝑅𝑜𝑢𝑛𝑐𝑡[0]

end function

Algorithm 6 NOEKEON Round function in pseudocode notation
function Round(𝐾𝑒𝑦, 𝑆𝑡𝑎𝑡𝑒, 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡1, 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡2)

𝑆𝑡𝑎𝑡𝑒[0]← 𝑆𝑡𝑎𝑡𝑒[0]⊕ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡1
𝑇ℎ𝑒𝑡𝑎(𝐾𝑒𝑦, 𝑆𝑡𝑎𝑡𝑒)
𝑆𝑡𝑎𝑡𝑒[0]← 𝑆𝑡𝑎𝑡𝑒[0]⊕ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡2
𝑃𝑖1(𝑆𝑡𝑎𝑡𝑒)
𝐺𝑎𝑚𝑚𝑎(𝑆𝑡𝑎𝑡𝑒)
𝑃𝑖2(𝑆𝑡𝑎𝑡𝑒)

end function

The two rotation functions Pi1 and Pi2 in pseudocode notation are shown in
Alg. 9 and Alg. 10.

The NOEKEON cipher differs from the most common LBCs by the fact that:

• It can only use 128-bit block size.



Algorithm 7 The Gamma Function
function Gamma(a)

𝑎[1]← 𝑎[1]⊕ (¬𝑎[3]⊙ ¬𝑎[2])
𝑎[0]← 𝑎[0]⊕ (𝑎[2]⊙ 𝑎[1])

𝑡𝑚𝑝← 𝑎[3]; 𝑎[3]← 𝑎[0]; 𝑎[0]← 𝑡𝑚𝑝
𝑎[2]← 𝑎[2]⊕ 𝑎[0]⊕ 𝑎[1]⊕ 𝑎[3]

𝑎[1]← 𝑎[1]⊕ (¬𝑎[3]⊙ ¬𝑎[2])
𝑎[0]← 𝑎[0]⊕ (𝑎[2]⊙ 𝑎[1])

end function

Table A.1: The S-Box Table of the Gamma Function of NOEKEON

𝑎1𝑎2𝑎3𝑎4 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝐺𝑎𝑚𝑚𝑎(𝑎1𝑎2𝑎3𝑎4) 7 A 2 C 4 8 F 0 5 9 1 E 3 D B 6

Algorithm 8 The Theta Function
function Theta(k, a)

𝑡𝑚𝑝← 𝑎[0]⊕ 𝑎[2]
𝑡𝑚𝑝← 𝑡𝑚𝑝⊕ (𝑡𝑚𝑝 ≫ 8)⊕ (𝑡𝑚𝑝 ≪ 8)
𝑎[1]← 𝑎[1]⊕ 𝑡𝑚𝑝
𝑎[3]← 𝑎[3]⊕ 𝑡𝑚𝑝

𝑎[0]← 𝑎[0]⊕ 𝑘[0]; 𝑎[1]← 𝑎[1]⊕ 𝑘[1]; 𝑎[2]← 𝑎[2]⊕ 𝑘[2]; 𝑎[3]← 𝑎[3]⊕ 𝑘[3]

𝑡𝑚𝑝← 𝑡𝑚𝑝⊕ 𝑎[1]⊕ 𝑎[3]
𝑡𝑚𝑝← 𝑡𝑚𝑝⊕ (𝑡𝑚𝑝 ≫ 8)⊕ (𝑡𝑚𝑝 ≪ 8)
𝑎[0]← 𝑎[0]⊕ 𝑡𝑚𝑝
𝑎[2]← 𝑎[2]⊕ 𝑡𝑚𝑝

end function

Algorithm 9 The Pi1 Function
function Pi1(a)

𝑎[1]← 𝑎[1] ≪ 1; 𝑎[2]← 𝑎[2] ≪ 5; 𝑎[3]← 𝑎[3] ≪ 2
end function

Algorithm 10 The Pi2 Function
function Pi2(a)

𝑎[1]← 𝑎[1] ≫ 1; 𝑎[2]← 𝑎[2] ≫ 5; 𝑎[3]← 𝑎[3] ≫ 2
end function
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Piccolo

Piccolo [73] is a GFN cipher with a 128-bit key size (it also supports 80-bit key
size), a 64-bit block size and 33 rounds. It is a GFN type cipher because like a
Feistel network it modifies only half the state during each round. Unlike a Feistel
type algorithm, it does not divide the state into a right and left part, it divides
it in four equal part and modifies the second and forth quarter. Also, unlike a
Feistel type algorithm, it does not switch the position of the two halves, it uses
a byte-level permutation at the end of each round. Its state is manipulated as a
one-dimension array of four 16-bit words numbered 0 through 3.

Let,

• r be the number of rounds, which is 33 for 128-bit key size,

• X be the 64-bit state, it can be divided into four 16-bit words 𝑋0, 𝑋1, 𝑋2,
𝑋3,

• 𝑤𝑘𝑖 be the four 16-bit whitening keys,

• 𝑟𝑘𝑖 be the 2𝑟 16-bit round keys,

• Y be the 64-bit output of the Piccolo function,

• RP be a linear round permutation (Cf. Fig. A.1), which corresponds to the
Diffusion Step,

• F be a combination of linear and non-linear function (Cf. Fig. A.2), which
corresponds to a mix between the Diffusion and the Confusion Step.

The Piccolo encryption algorithm in pseudocode notation is shown in Alg. 11.

Algorithm 11 PICCOLO Encryption Algorithm
PICCOLO ENCRYPTION
function Piccolo(𝑋, 𝑤𝑘0, ..., 𝑤𝑘3, 𝑟𝑘0, ..., 𝑟𝑘2𝑟−1)

𝑋0|𝑋1|𝑋2|𝑋3 ← 𝑋
𝑋0 ← 𝑋0 ⊕ 𝑤𝑘0; 𝑋2 ← 𝑋2 ⊕ 𝑤𝑘1
for 𝑖 = 0; 𝑖 < 2𝑟 − 2; 𝑖 + + do

𝑋1 ← 𝑋1 ⊕ 𝐹 (𝑋0)⊕ 𝑟𝑘2𝑖; 𝑋3 ← 𝑋3 ⊕ 𝐹 (𝑋2)⊕ 𝑟𝑘2𝑖+1
𝑋0|𝑋1|𝑋2|𝑋3 ← 𝑅𝑃 (𝑋0|𝑋1|𝑋2|𝑋3)

end for
𝑋1 ← 𝑋1 ⊕ 𝐹 (𝑋0)⊕ 𝑟𝑘2𝑟−2; 𝑋3 ← 𝑋3 ⊕ 𝐹 (𝑋2)⊕ 𝑟𝑘2𝑟−1
𝑋0 ← 𝑋0 ⊕ 𝑤𝑘2; 𝑋2 ← 𝑤𝑘3
𝑌 ← 𝑋0|𝑋1|𝑋2|𝑋3

end function

Its RP function is represented in Fig. A.1.
Its F function is represented in Fig. A.2.
The M function used in F uses the M diffusion matrix which is defined as:



Lightweight Block Ciphers 113

88 8 8 8 8 8

64

64

X

Y
Figure A.1: The Piccolo Round Permutation "RP" Function

S

S

S

S

M

S

S

S

S

16 16

4

4

4

4 4

4

4

4

Figure A.2: The Piccolo "F " Function

M =

⎛⎜⎜⎜⎝
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞⎟⎟⎟⎠
In the M function, it gets multiplied to the 16-bit word sub-state 𝑋𝑖 = (𝑥𝑖0|𝑥𝑖1|𝑥𝑖2|𝑥𝑖3)

as such:

𝑡(𝑥𝑖0, 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3)←M ·𝑡 (𝑥𝑖0, 𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3)

In the F function, S a 4× 4 S-Box function, for which the substitution table is
shown in Tab. A.2.

The Piccolo cipher differs from the most common LBCs by a few aspects:
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Table A.2: The S-Box Table of the F Function of Piccolo

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆(𝑥) E 4 B 2 3 8 0 9 1 A 7 F 6 C 5 D

• It uses two layers of Confusion per round.

• It uses two layers of Diffusion, which cannot be merged since they are sepa-
rated by a Confusion Step.

• The Matrix it uses is not just 1s and 0s.

LED

LED [38] is an SPN cipher with a 128-bit key size, a 64-bit block and 48 rounds.
This cipher does not use Key Scheduling. The state is manipulated as a 4 × 4
nibble matrix. The structure of its rounds is very similar to that of AES, expect
that it does the key addition only once every four rounds. Another main difference
with AES is the fact that the 4 × 4 state matrix is arranged in lines rather than
columns. If 𝑚 is the state and 𝑚0|𝑚1|...|𝑚14|𝑚15 its 16 4-bit nibbles, then the
matrix is:

⎡⎢⎢⎢⎣
𝑚0 𝑚1 𝑚2 𝑚3
𝑚4 𝑚5 𝑚6 𝑚7
𝑚8 𝑚9 𝑚10 𝑚11
𝑚12 𝑚13 𝑚14 𝑚15

⎤⎥⎥⎥⎦
Let,

• 𝐾1 and 𝐾2 be the two half of the Key K, such that 𝐾 = 𝐾1|𝐾2,

• addRoundKey be a XOR between two 4×4 nibble matrix, which corresponds
to the Key Addition Step,

• AddConstants be a function that XORs the state to a constant matrix,

• SubCells be a non-linear S-Box function, which corresponds to the Confusion
Step,

• ShiftRows and MixColumn be two linear functions, which correspond to the
Diffusion Step,

• Round be the succession of AddConstants, SubCells, ShiftRows and MixCol-
umn.

• step be the succession of four Round() function.

The LED encryption algorithm in pseudocode notation is shown in Alg. 12.
The LED Round function in pseudocode notation is shown in Alg. 13.
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Algorithm 12 LED Encryption Algorithm
LED ENCRYPTION
function Led(𝑠𝑡𝑎𝑡𝑒, 𝐾1, 𝐾2)

for 𝑖 = 0, 𝑖 < 6, 𝑖 + + do
𝑎𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦(𝑠𝑡𝑎𝑡𝑒, 𝐾1)
𝑠𝑡𝑒𝑝(𝑠𝑡𝑎𝑡𝑒)
𝑎𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦(𝑠𝑡𝑎𝑡𝑒, 𝐾2)
𝑠𝑡𝑒𝑝(𝑠𝑡𝑎𝑡𝑒)

end for
𝑎𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦(𝑠𝑡𝑎𝑡𝑒, 𝐾1)

end function

Algorithm 13 LED Round Algorithm
function Round(𝑠𝑡𝑎𝑡𝑒)

𝐴𝑑𝑑𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠(𝑠𝑡𝑎𝑡𝑒)
𝑆𝑢𝑏𝐶𝑒𝑙𝑙𝑠(𝑠𝑡𝑎𝑡𝑒)
𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠(𝑠𝑡𝑎𝑡𝑒)
𝑀𝑖𝑥𝐶𝑜𝑙𝑢𝑚𝑛(𝑠𝑡𝑎𝑡𝑒)

end function

The AddConstants function XORs the state to the following constant 4 × 4
nibble matrix:

⎡⎢⎢⎢⎣
0 (𝑟𝑐5|𝑟𝑐4|𝑟𝑐3) 0 0
1 (𝑟𝑐2|𝑟𝑐1|𝑟𝑐0) 0 0
2 (𝑟𝑐5|𝑟𝑐4|𝑟𝑐3) 0 0
3 (𝑟𝑐2|𝑟𝑐1|𝑟𝑐0) 0 0

⎤⎥⎥⎥⎦
Where (𝑟𝑐5, 𝑟𝑐4, 𝑟𝑐3, 𝑟𝑐2, 𝑟𝑐1, 𝑟𝑐0) are six bits which are updated by shifting

them one position to the left and changing the 𝑟𝑐0 bit to 𝑟𝑐5⊕𝑟𝑐4⊕1. Theses six
bits are initialized at zero.

The SubCells function is sixteen 4 × 4 S-Boxes in parallel, for which the sub-
stitution table is shown in Table A.3. To note, the S-Box used is the PRESENT

Table A.3: The S-Box Table of LED

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆(𝑥) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

S-Box (Cf. Tab. A.6).
The ShiftRows function in pseudocode is shown in Alg. 14. In this algorithm,

𝐿𝑖 corresponds to the 𝑖𝑡ℎ line of the state matrix, numbered 0 through 3. The
shift amount is given in nibbles.

The MixColumn function multiplies each column of the state with the corre-
sponding column of a matrix M. This M matrix can be seen as four applications
in a row of a matrix A, which more hardware friendly than M.
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Algorithm 14 LED ShiftRows Algorithm
function ShiftRows(𝑠𝑡𝑎𝑡𝑒)

𝐿1 ← 𝐿1 ≪ 1
𝐿2 ← 𝐿2 ≪ 2
𝐿3 ← 𝐿3 ≪ 3

end function

(A)4 =

⎛⎜⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
4 1 2 2

⎞⎟⎟⎟⎠
4

=

⎛⎜⎜⎜⎝
4 1 2 2
8 6 5 6
𝐵 𝐸 𝐴 9
2 2 𝐹 𝐵

⎞⎟⎟⎟⎠ = M

The LED cipher differs from the most common LBCs by a few aspects:

• It doesn’t use Key Scheduling.

• It uses multiple rounds in a row without adding any secret key information.

• The Matrix it uses is not just 1s and 0s

Simon

Simon [12] is a Feistel cipher with a 128-bit key size, a 64-bit block size (it also
supports 128-bit and other block size) and 44 rounds (68 for 128-bit block size).
As a Feistel cipher, it manipulates the state as a concatenation of two parts the
right and the left parts. All the rounds of this cipher are the same. This algorithm
is part of the Simon & Speck family which was submitted by the NSA. As such,
the scientific community is reluctant to push the use of these ciphers, due to the
history of DES which is explained in Section 2.3.1.

Let,

• x be the left half of the state,

• y be the right half of the state,

• k be the round key,

• f be the function used to modify half the state at each round, which is a
combination of rotations and AND instructions,

• 𝑅𝑘 be the round function of Simon using the k round key.

The encryption round function of Simon is defined by:

𝑅𝑘(𝑥, 𝑦) = (𝑦 ⊕ 𝑓(𝑥)⊕ 𝑘, 𝑥)

where,

𝑓(𝑥) = ((𝑥 ≪ 1)⊙ (𝑥 ≪ 8))⊕ (𝑥 ≪ 2)
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The decryption round function of Simon is defined by:

𝑅−1
𝑘 (𝑥, 𝑦) = (𝑦, 𝑥⊕ 𝑓(𝑦)⊕ 𝑘)

The Simon cipher differs from the most common LBCs by the fact that:

• It only uses basic instructions XOR, AND and the Rotation to manipulate the
state.

Speck

Speck [12] is a Feistel cipher with a 128-bit key size, a 64-bit block size (it also
supports 128-bit and other block size) and 27 rounds (32 for the 128-bit block
size). Its specificity is that its round is composed of a set of two Feistel round
functions which are slightly different. All the rounds of this cipher are the same.

Let,

• x be the left half of the state,

• y be the right half of the state,

• k be the round key,

• 𝑅𝑘 be the round function of Speck using the k round key.

The encryption round function of Speck (for 64-bit block size) is defined by:

𝑅𝑘(𝑥, 𝑦) = (((𝑥 ≫ 8) + 𝑦)⊕ 𝑘, (𝑦 ≪ 3)⊕ ((𝑥 ≫ 8) + 𝑦)⊕ 𝑘)

which can be reinterpreted as:

(𝑥, 𝑦) ↦→ (𝑦, ((𝑥 ≫ 8) + 𝑦)⊕ 𝑘)𝑎𝑛𝑑, (𝑥, 𝑦) ↦→ (𝑦, (𝑥 ≪ 3)⊕ 𝑦)

to fit the Feistel framework.
The decryption round function of Speck (for 64-bit block size) is defined by:

𝑅−1
𝑘 (𝑥, 𝑦) = ((((𝑥⊕ 𝑘)− ((𝑥⊕ 𝑦) ≫ 3)) ≪ 8), ((𝑥⊕ 𝑦) ≫ 3))

The Speck cipher differs from the most common LBCs by a few aspects:

• It only uses basic instructions XOR, AND, ADD and the Rotation to manip-
ulate the state.

• It uses two different round functions when interpreted within the Feistel frame-
work

Simeck

Simeck [93] is a Feistel cipher with a 128-bit key size, a 64-bit block size and 44
rounds. It also supports other smaller key size and block size which are too small
to fit modern security standards. All the rounds of this cipher are the same.

Let,
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• x be the left half of the state,

• y be the right half of the state,

• k be the round key,

• f be the function used to modify half the state at each round, which is a
combination of rotations and AND instructions,

• 𝑅𝑘 be the round function of Simeck using the k round key.

The encryption round function of Simeck is defined by:

𝑅𝑘(𝑥, 𝑦) = (𝑦 ⊕ 𝑓(𝑥)⊕ 𝑘, 𝑥)

where,

𝑓(𝑥) = (𝑥⊙ (𝑥 ≪ 5))⊕ (𝑥 ≪ 1)

The Simeck cipher differs from the most common LBCs by the fact that:

• It only uses basic instructions XOR, AND, ADD and the Rotation to manip-
ulate the state.

RC5

The RC5 [68] is one of the most unique algorithms studied in this work. It does
not fit either the Feistel/GFN or the SPN structure. It is highly configurable, the
algorithm is defined for:

• any block size greater than 0, although the recommended values are 32, 64
and 128 bits.

• any key size greater than 0, although the recommended number of key bytes
are 0, 1, ..., 255.

• any number of rounds, although the recommended values 0, 1, ..., 255.

The state is manipulated as two 𝑤 sized words, where 𝑤 is half the chosen block
size.

Let,

• A be the first 𝑤-bit half of plaintext/state,

• B be the second 𝑤-bit half of the plaintext/state,

• r be the number of rounds,

• E be the key expansion array, it contains 2(𝑟 + 1) 𝑤-bit words.

The RC5 encryption algorithm in pseudocode notation is shown in Alg. 15.
The RC5 decryption algorithm in pseudocode notation is shown in Alg. 16.
The RC5 cipher differs from the most common LBCs by a few aspects:
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Algorithm 15 RC5 Encryption Algorithm
RC5 ENCRYPTION
function RC5(𝐴, 𝐵, 𝐸)

𝐴← 𝐴 + 𝐸[0];
𝐵 ← 𝐵 + 𝐸[1];
for 𝑖 = 1, 𝑖 < 𝑟, 𝑖 + + do

𝐴← ((𝐴⊕𝐵) ≪ 𝐵) + 𝐸[2 * 𝑖]
𝐵 ← ((𝐵 ⊕𝐴) ≪ 𝐴) + 𝐸[2 * 𝑖 + 1]

end for
end function

Algorithm 16 RC5 Decryption Algorithm
RC5 DECRYPTION
function invRC5(𝐴, 𝐵, 𝐸)

for 𝑖 = 𝑟, 𝑖 > 1, 𝑖−− do
𝐵 ← ((𝐵 − 𝐸[2 * 𝑖 + 1] ≫ 𝐴)⊕𝐴
𝐴← ((𝐴− 𝐸[2 * 𝑖] ≫ 𝐵)⊕𝐵

end for
𝐵 ← 𝐵 − 𝐸[1];
𝐴← 𝐴− 𝐸[0];

end function

• It only uses basic instructions XOR, ADD and the Rotation to manipulate
the state.

• Its block size, key size and number of rounds are highly configurable.

XTea

XTea [54] is an extended version of the GFN type Tea [92] cipher. It uses a 64-bit
block size, a 128-bit key size and 32 rounds. Other values of block size which use
different multiples of 32-bit words are also supported. It manipulates the state as
two 32-bit words and the key as four 32-bit words. Its key scheduling is done on
the fly and directly part of the encryption/decryption.

Let,
• v be the plaintext/state,
• n be the number of 32-bit words in the plaintext,
• k be the four 32-bit word secret key,
• 𝛿 be a constant used for the key scheduling.
The XTea encryption algorithm in pseudocode notation is shown in Alg. 17.
The XTea decryption algorithm in pseudocode notation is shown in Alg. 18.
The XTea cipher differs from the most common LBCs by a few aspects:

• It only uses basic instructions XOR, ADD and the Rotation to manipulate
the state.

• Its block size, is configurable.
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Algorithm 17 XTea Encryption Algorithm
XTEA ENCRYPTION
function xtea(𝑣, 𝑛, 𝑘)

𝑧 ← 𝑣[𝑛− 1], 𝑠𝑢𝑚← 0, 𝛿 ← 0x9e3779b9
𝑞 ← 6 + 52/𝑛
while 𝑞 −− > 0 do

𝑠𝑢𝑚← 𝑠𝑢𝑚 + 𝛿
𝑒← (𝑠𝑢𝑚≫ 2)⊙ 3
for 𝑝 = 0; 𝑝 < 𝑛; 𝑝 + + do

𝑣[𝑝]← 𝑣[𝑝] + ((𝑧 ≪ 4)⊕ (𝑧 ≫ 5)) + (𝑧 ⊕ 𝑘[(𝑝⊙ 3)⊕ 𝑒]) + 𝑠𝑢𝑚
𝑧 ← 𝑣[𝑝]

end for
end while

end function

Algorithm 18 XTea Decryption Algorithm
XTEA DECRYPTION
function invxtea(𝑣, 𝑛, 𝑘)

𝛿 ← 0x9e3779b9
𝑞 ← 6 + 52/𝑛
𝑠𝑢𝑚← 𝑞 * 𝛿
while 𝑠𝑢𝑚! = 0 do

𝑒← (𝑠𝑢𝑚≫ 2)⊙ 3
for 𝑝 = 𝑛− 1; 𝑝 > 0; 𝑝−− do

𝑧 ← 𝑣[𝑝− 1]
𝑣[𝑝]← 𝑣[𝑝]− ((𝑧 ≪ 4)⊕ (𝑧 ≫ 5)) + (𝑧 ⊕ 𝑘[(𝑝⊙ 3)⊕ 𝑒] + 𝑠𝑢𝑚

end for
𝑧 ← 𝑣[𝑛− 1]
𝑣[0]← 𝑣[0]− ((𝑧 ≪ 4)⊕ (𝑧 ≫ 5)) + (𝑧 ⊕ 𝑘[(𝑝⊙ 3)⊕ 𝑒] + 𝑠𝑢𝑚
𝑠𝑢𝑚← 𝑠𝑢𝑚− 𝛿

end while
end function

GOST

GOST [61] is a GNF cipher, with a 64-bit block size, a 256-bit key size and 32
rounds. As a Feistel cipher, it manipulates the state as two 32-bit parts.

Let,

• 𝐿𝑖 be the left half of the state during the 𝑖𝑡ℎ round,

• 𝑅𝑖 be the right half of the state during the 𝑖𝑡ℎ round,

• 𝐾𝑖 be the round key during the 𝑖𝑡ℎ round,

• S be the S-Box function. It uses eight 4× 4 different S-Boxes,

• 𝐺𝑖 be the round function of GOST during the 𝑖𝑡ℎ round.

The encryption round function of GOST is defined by:

𝐺𝑖(𝑅𝑖, 𝐿𝑖)← (𝑅𝑖, 𝐿𝑖 ⊕ (𝑆(𝐾𝑖 + 𝑅𝑖)≪ 11))
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Only the last round differs as the two halves are not swapped.
The S function is the S-Box function of GOST, for which eight different 4× 4

S-Boxes are used, 𝑆1, 𝑆2, ..., 𝑆8. Their substitution tables are shown in Table A.4.

Table A.4: The S-Box Tables of GOST

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆1(𝑥) 4 A 9 2 D 8 0 E 6 B 1 C 7 F 5 3
𝑆2(𝑥) E B 4 C 6 D F A 2 3 8 1 0 7 5 9
𝑆3(𝑥) 5 8 1 D A 3 4 2 E F C 7 6 0 9 B
𝑆4(𝑥) 7 D A 1 0 8 9 F E 4 6 C B 2 5 3
𝑆5(𝑥) 6 C 7 1 5 F D 8 4 A 9 E 0 3 B 2
𝑆6(𝑥) 4 B A 0 7 2 1 D 3 6 8 5 9 C F E
𝑆7(𝑥) D B 4 1 3 F 5 9 0 A E 7 6 8 2 C
𝑆8(𝑥) 1 F D 0 5 7 A 4 9 2 3 E 6 B 8 C

The GOST cipher differs from the most common LBCs by a few aspects:

• It uses an integer addition rather than a XOR as its Key Addition operation.

• It is Feistel type but uses S-Boxes

• It uses eight different S-Boxes for each of the eight nibbles during each round.

Rectangle

Rectangle [95] is an SPN cipher, with a 64-bit block size, a 128-bit key size and
25 rounds. The state is manipulated as a 4× 16 bit matrix. If W is the state and
𝑤0|𝑤1|...|𝑤62|𝑤63 its 64 bits, then the matrix is:⎡⎢⎢⎢⎣

𝑤15 ... 𝑤2 𝑤1 𝑤0
𝑤31 ... 𝑤18 𝑤17 𝑤16
𝑤47 ... 𝑤34 𝑤33 𝑤32
𝑤63 ... 𝑤50 𝑤49 𝑤48

⎤⎥⎥⎥⎦
which, for convenience can be renamed to ease comprehension as:⎡⎢⎢⎢⎣

𝑎0,15 ... 𝑎0,2 𝑎0,1 𝑎0,0
𝑎1,15 ... 𝑎1,2 𝑎1,1 𝑎1,0
𝑎2,15 ... 𝑎2,2 𝑎2,1 𝑎2,0
𝑎3,15 ... 𝑎3,2 𝑎3,1 𝑎3,0

⎤⎥⎥⎥⎦
Let,

• 𝐾1 and 𝐾2 be the two half of the Key K, such that 𝐾 = 𝐾1|𝐾2,

• addRoundKey be a XOR between two 4×4 nibble matrix, which corresponds
to the Key Addition Step,

• AddConstants be a function that XORs the state to a constant matrix,
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• SubCells be a non-linear S-Box function, which corresponds to the Confusion
Step,

• ShiftRows and MixColumn be two linear functions, which correspond to the
Diffusion Step,

• Round be the succession of AddConstants, SubCells, ShiftRows and MixCol-
umn.

• step be the succession of four Round() function.

The Rectangle Round function in pseudocode notation is shown in Alg. 19. All

Algorithm 19 The Rectangle Round Algorithm
function Round(𝑠𝑡𝑎𝑡𝑒)

𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦(𝑠𝑡𝑎𝑡𝑒)
𝑆𝑢𝑏𝐶𝑜𝑙𝑢𝑚𝑛(𝑠𝑡𝑎𝑡𝑒)
𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤(𝑠𝑡𝑎𝑡𝑒)

end function

the rounds are the same except that the last round is followed by an additional
AddRoundKey.

The AddRoundKey function XORs the state to the round key.
The SubColumn function applies an S-Box to each of the sixteen 4-bit column,

for which the substitution table is shown in Table A.5. In this table, 𝐶𝑗 correspond
to the 𝑗𝑡ℎ column of the state matrix defined by 𝐶𝑗 = 𝑎3,𝑗|𝑎2,𝑗|𝑎1,𝑗|𝑎0,𝑗

Table A.5: The S-Box Table of Rectangle

𝐶𝑗 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆(𝐶𝑗) 6 5 C A 1 E 7 9 B 0 3 D 8 F 4 2

The ShiftRow function in pseudocode is shown in Alg. 20, it applies a rotation
to each of the matrix’s lines. In this algorithm, 𝐿𝑖 corresponds to the 𝑖𝑡ℎ line of
the state matrix, defined by 𝐿𝑖 = 𝑎𝑖,15|𝑎𝑖,14|...|𝑎𝑖,1|𝑎𝑖,0. The shift amount is given
in bits.

Algorithm 20 Rectangle ShiftRow Algorithm
function ShiftRows(𝑠𝑡𝑎𝑡𝑒)

𝐿1 ← 𝐿1 ≪ 1
𝐿2 ← 𝐿2 ≫ 12
𝐿3 ← 𝐿3 ≫ 13

end function

The Rectangle cipher differs from the most common LBCs by a few aspects:

• It respects the three step but does not have a MixColumn function

• The rotation of its ShiftRow function is done at bit-level
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PRESENT

PRESENT [18] is an SPN cipher, with a 64-bit block size, a 128-bit key size and
32 rounds. It respects the three step model. It uses a bit-level permutation as its
Diffusion Step rather than ShiftRow, MixColumn functions. The first 31 rounds
are the same, and the last round consists only of a key addition.

Let,

• state be the state,

• 𝐾𝑖 be the 𝑖𝑡ℎ round key,

• addRoundKey be the XOR between the round key and the state, which cor-
responds to the Key Addition Step,

• sBoxLayer be the S-Box function, which corresponds to the Confusion Step,

• pLayer be the bit-level permutation function, which corresponds to the Dif-
fusion Step.

The PRESENT Round function in pseudocode notation is shown in Alg. 21.

Algorithm 21 PRESENT Round Algorithm
function Round(𝑠𝑡𝑎𝑡𝑒, 𝐾𝑖)

𝑎𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦(𝑠𝑡𝑎𝑡𝑒, 𝐾𝑖)
𝑠𝐵𝑜𝑥𝐿𝑎𝑦𝑒𝑟(𝑠𝑡𝑎𝑡𝑒)
𝑝𝐿𝑎𝑦𝑒𝑟(𝑠𝑡𝑎𝑡𝑒)

end function

The addRoundKey function XORs the round key to the state.
The sBoxLayer function is sixteen 4 × 4 S-Boxes in parallel, for which the

substitution table is shown in Table. A.6.
Table A.6: The S-Box Table of PRESENT

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆(𝑥) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

The pLayer function is a bit-level permutation, for which the permutation table
is shown in Table. A.7.

Table A.7: The PRESENT Permutation Table

𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑃 (𝑥) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

𝑥 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
𝑃 (𝑥) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

𝑥 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
𝑃 (𝑥) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

𝑥 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
𝑃 (𝑥) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63
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The PRESENT cipher differs from the most common LBCs by the fact that:

• It uses a bit-level permutation as its Diffusion Step

GIFT

GIFT [9] is an SPN cipher, with a 64-bit block size (it also supports a 128-bit
block size), a 128-bit key size and 28 rounds (40 rounds for the 128-bit block size).
The GIFT algorithm is strongly inspired by the PRESENT algorithm. It respects
the three step model. It uses a bit-level permutation as its Diffusion Step rather
than ShiftRow, MixColumn functions. All the rounds of this cipher are the same.
All the following information will be given for the GIFT-64 version, with a 64-bit
block size.

Let,

• state be the state, such that 𝑠𝑡𝑎𝑡𝑒 = 𝑏63𝑏62...𝑏1𝑏0,

• 𝑅𝐾𝑖 be the 32-bit 𝑖𝑡ℎ round key,

• 𝑈𝑖 and 𝑉𝑖 be vectors such that 𝑅𝐾𝑖 = 𝑈𝑖|𝑉𝑖 = 𝑢15...𝑢0|𝑣15...𝑣0,

• addRoundKey be the XOR between the round key and some constants to
part of the state, which corresponds to the Key Addition Step,

• sBoxLayer be the S-Box function, which corresponds to the Confusion Step,

• pLayer be the bit-level permutation funtion, which corresponds to the Diffu-
sion Step.

The GIFT Round function in pseudocode notation is shown in Alg. 22.

Algorithm 22 GIFT Round Algorithm
function Round(𝑠𝑡𝑎𝑡𝑒, 𝐾𝑖)

𝑠𝐵𝑜𝑥𝐿𝑎𝑦𝑒𝑟(𝑠𝑡𝑎𝑡𝑒)
𝑝𝐿𝑎𝑦𝑒𝑟(𝑠𝑡𝑎𝑡𝑒)
𝑎𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦(𝑠𝑡𝑎𝑡𝑒, 𝐾𝑖)

end function

The addRoundKey function XORs the round key to specific bits of the state.
The round key is XORed according to the following rule:

𝑏4𝑗+1 ← 𝑏4𝑗+1 ⊕ 𝑢𝑗, 𝑏4𝑗 ← 𝑏4𝑗 ⊕ 𝑣𝑗,∀𝑗 ∈ 0, ..., 15
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It also XORs a 6-bit round constant 𝐶 = 𝑐5𝑐4𝑐3𝑐2𝑐1𝑐0 to specific bits of the state.

𝑏63 ← 𝑏63 ⊕ 1
𝑏23 ← 𝑏23 ⊕ 𝑐5

𝑏19 ← 𝑏19 ⊕ 𝑐4

𝑏15 ← 𝑏15 ⊕ 𝑐3

𝑏11 ← 𝑏11 ⊕ 𝑐2

𝑏7 ← 𝑏7 ⊕ 𝑐1

𝑏3 ← 𝑏3 ⊕ 𝑐0

The initial value of the C constant is zero, and it is updated at each round using
a 6-bit affine LFSR. The update function is:

(𝑐5, 𝑐4, 𝑐3, 𝑐2, 𝑐1, 𝑐0)← (𝑐4, 𝑐3, 𝑐2, 𝑐1, 𝑐0, 𝑐5 ⊕ 𝑐4 ⊕ 1)

The sBoxLayer function is sixteen 4 × 4 S-Boxes in parallel, for which the
substitution table is shown in Table. A.8.

Table A.8: The S-Box Table of GIFT

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆(𝑥) 1 A 4 C 6 F 3 9 2 D B 7 5 0 8 E

The pLayer function is a bit-level permutation, for which the permutation table
is shown in Table. A.9.

Table A.9: The GIFT Permutation Table

𝑥 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝑃 (𝑥) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

𝑥 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
𝑃 (𝑥) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

𝑥 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
𝑃 (𝑥) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

𝑥 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
𝑃 (𝑥) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

The GIFT cipher differs from the most common LBCs by the fact that:
• It uses a bit-level permutation as its Diffusion Step

PRINCE

PRINCE [19] is an 𝛼-reflective cipher based on the SPN round structure, it uses a
64-bit block size, a 128-bit key size and 10 rounds. The algorithm is such that the
number of rounds can also be seen as 11 when considering the middle operations
as a round without key addition, or 13 when also considering the whitening keys
which are added before and after the rest of the rounds. As an 𝛼-reflective algo-
rithm, it has a three part overall structure. It was design with the intent of being
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implemented as a fully unrolled cipher. This means that the encryption/decryption
should be executed in a single clock cycle. PRINCE does not use key schedule,
but instead a key extension. The state is manipulated as a 4 × 4 nibble matrix
and each nibble is arranged in lines, like with LED (Cf. A). If 𝑚 is the state and
𝑚0|𝑚1|...|𝑚14|𝑚15 its 16 4-bit nibbles, then the matrix is:⎡⎢⎢⎢⎣

𝑚0 𝑚1 𝑚2 𝑚3
𝑚4 𝑚5 𝑚6 𝑚7
𝑚8 𝑚9 𝑚10 𝑚11
𝑚12 𝑚13 𝑚14 𝑚15

⎤⎥⎥⎥⎦
Let,

• 𝑃𝑅𝐼𝑁𝐶𝐸𝑐𝑜𝑟𝑒 be the core algorithm of PRINCE,

• k be the secret 128-bit key,

• state be the state,

• 𝑅𝑖 be the round function of round i,

• 𝑆𝐿 be the S-Box function, which corresponds to the Confusion Step,

• 𝑓𝑀/𝑓𝑀 ′ be the M/M’-Layer, which corresponds to the Diffusion Step,

• 𝑆𝑅 be the Shift Row function,

• 𝑅𝐶 be the round constants and 𝑅𝐶𝑖 be the round constant for round i.

The key extension of PRINCE is defined as follows: The 128-bit k key

𝑘 = 𝑘0|𝑘1

is extended to a 192-bit key,

(𝑘0|𝑘′
0|𝑘1)← (𝑘0|(𝑘0 ≫ 1)⊕ (𝑘0 ≪ 63)|𝑘1)

The 𝑘0 and 𝑘′
0 are XORed to the state before and after the 𝑃𝑅𝐼𝑁𝐶𝐸𝑐𝑜𝑟𝑒 as

whitening keys. The 𝑘1 subkey is used during each round of the 𝑃𝑅𝐼𝑁𝐶𝐸𝑐𝑜𝑟𝑒

during the Key Addition Step.
The 𝑃𝑅𝐼𝑁𝐶𝐸𝑐𝑜𝑟𝑒 function in pseudocode notation is shown in Alg. 23.
The 𝑅𝑖 function in pseudocode notation is shown in Alg. 24.
The 𝑅−1

𝑖 function in pseudocode notation is shown in Alg. 25.
The 𝑆𝐿 function is sixteen 4× 4 S-Boxes in parallel, for which the substitution

table is shown in Table. A.10. The 𝑆𝐿−1 function is the inverse function of 𝑆𝐿,
for which the substitution table is shown in Table. A.10.

The 𝑓𝑀 , 𝑓𝑀−1 and 𝑓𝑀 ′ function each multiply the state to the corresponding
64× 64 matrix M, M−1 and M’. The function 𝑓𝑀 is defined as:

𝑓𝑀 = 𝑆𝑅 ∘ 𝑓𝑀 ′
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Algorithm 23 PRINCE𝑐𝑜𝑟𝑒 Algorithm
function 𝑃𝑅𝐼𝑁𝐶𝐸𝑐𝑜𝑟𝑒(𝑠𝑡𝑎𝑡𝑒, 𝑘1, 𝑅𝐶)

𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑡𝑒⊕ 𝑘1 ⊕𝑅𝐶0
for 𝑖 = 1; 𝑖 < 6; 𝑖 + + do

𝑠𝑡𝑎𝑡𝑒← 𝑅𝑖(𝑠𝑡𝑎𝑡𝑒, 𝑅𝐶𝑖, 𝑘1)
end for
𝑠𝑡𝑎𝑡𝑒← 𝑆𝐿(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒← 𝑓𝑀 ′(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒← 𝑆𝐿−1(𝑠𝑡𝑎𝑡𝑒)
for 𝑖 = 6; 𝑖 < 11; 𝑖 + + do

𝑠𝑡𝑎𝑡𝑒← 𝑅−1
𝑖 (𝑠𝑡𝑎𝑡𝑒, 𝑅𝐶𝑖, 𝑘1)

end for
𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑡𝑒⊕𝑅𝐶11⊕ 𝑘1

end function

Algorithm 24 PRINCE Round Algorithm
function 𝑅𝑖(𝑠𝑡𝑎𝑡𝑒, 𝑅𝐶𝑖, 𝑘1)

𝑠𝑡𝑎𝑡𝑒← 𝑆𝐿(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒← 𝑓𝑀(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑡𝑒⊕𝑅𝐶𝑖 ⊕ 𝑘𝑖

end function

Algorithm 25 PRINCE Inverse Round Algorithm
function 𝑅−1

𝑖 (𝑠𝑡𝑎𝑡𝑒, 𝑅𝐶𝑖, 𝑘1)
𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑡𝑒⊕ 𝑘𝑖 ⊕𝑅𝐶𝑖

𝑠𝑡𝑎𝑡𝑒← 𝑓𝑀−1(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒← 𝑆𝐿−1(𝑠𝑡𝑎𝑡𝑒)

end function

where the 𝑆𝑅 function is a permutation function, which will apply a rotation to
each line of the Matrix such that:

𝑆𝑅 ∘

⎛⎜⎜⎜⎝
𝑚0 𝑚1 𝑚2 𝑚3
𝑚4 𝑚5 𝑚6 𝑚7
𝑚8 𝑚9 𝑚10 𝑚11
𝑚12 𝑚13 𝑚14 𝑚15

⎞⎟⎟⎟⎠←
⎛⎜⎜⎜⎝

𝑚0 𝑚1 𝑚2 𝑚3
𝑚5 𝑚6 𝑚7 𝑚4
𝑚10 𝑚11 𝑚8 𝑚9
𝑚15 𝑚12 𝑚13 𝑚14

⎞⎟⎟⎟⎠
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Table A.10: The S-Box Tables of PRINCE

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆(𝑥) B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

𝑆−1(𝑥) B 7 3 2 F D 8 9 A 6 4 0 5 E C 1

TWINE

TWINE [77] is a GFN cipher, with a 64-bit block size, a 128-bit key size and 36
rounds. Its implementation corresponds to the three step model. It uses nibble
level permutation as its Diffusion Step, 8 identical 4× 4 S-Boxes as its Confusion
Step and a key scheduling to have a different round key at each round. Fig. A.3
represents a round of TWINE. Each round is the same except for the first and last
rounds which omits the Diffusion Step.

𝑅𝐾𝑖

F

𝑥𝑖
0

F F F F F FF
𝑅𝐾𝑖

𝑗

S

𝑥𝑖
15𝑥𝑖

14𝑥𝑖
12𝑥𝑖

10𝑥𝑖
8𝑥𝑖

6𝑥𝑖
4𝑥𝑖

2

𝑥𝑖+1
15𝑥𝑖+1

14𝑥𝑖+1
12𝑥𝑖+1

10𝑥𝑖+1
8𝑥𝑖+1

6𝑥𝑖+1
4𝑥𝑖+1

2𝑥𝑖+1
0 𝑥𝑖+1

1 𝑥𝑖+1
3 𝑥𝑖+1

5 𝑥𝑖+1
7 𝑥𝑖+1

9 𝑥𝑖+1
11 𝑥𝑖+1

13

𝑥𝑖
13𝑥𝑖

11𝑥𝑖
9𝑥𝑖

7𝑥𝑖
5𝑥𝑖

3𝑥𝑖
1

Figure A.3: TWINE Round Function

Let,

• state be the state, such that 𝑠𝑡𝑎𝑡𝑒 = 𝑋 𝑖
0|𝑋 𝑖

1|...|𝑋 𝑖
14|𝑋 𝑖

15 during the 𝑖𝑡ℎ round,

• 𝑅𝐾𝑖 be the 32-bit 𝑖𝑡ℎ round key,

• 𝜋 be the permutation function.

The TWINE Round function in pseudocode notation is shown in Alg. 26. where,

Algorithm 26 TWINE Round Algorithm
function Round(𝑠𝑡𝑎𝑡𝑒, 𝑅𝐾𝑖)

for j = 0; j < 8; j++ do
𝑋𝑖

2𝑗+1 ← 𝑆(𝑋𝑖
2𝑗 ⊕𝑅𝐾𝑖

𝑗)⊕𝑋𝑖
2𝑗+1

end for
for h = 0; h < 15; h++ do

𝑋𝑖+1
𝜋[ℎ] ← 𝑋𝑖

ℎ

end for
end function

𝑆() and 𝜋[] are detailed in Tab. A.11
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Table A.11: The S-Box and Permutation Tables of TWINE

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆(𝑥) C 0 F A 2 B 9 5 8 3 D 7 1 E 6 4

ℎ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝜋[ℎ] 5 0 1 4 7 12 3 8 13 6 9 2 15 10 11 14

SKINNY

SKINNY [14] is an SPN cipher, witha 64-bit block size (it also supports 128-bit
block size), a 128-bit key size and 36 rounds (48 rounds for 128-bit block size).
Its algorithm respects the three step model. Unlike most ciphers, it uses a tweakey
framework [41], which modifies the key into a tweakey and lets the user choose
which tweakey to have as an input. It uses a nibble-level Diffusion Step, which
incorporates a Shift Row and a Mix Column function. It uses 16 identical 4 × 4
S-Boxes as its Confusion Step. All the rounds of the cipher are the same. The
state S is manipulated as a 4× 4 matrix of nibbles:⎡⎢⎢⎢⎣

𝑚0 𝑚1 𝑚2 𝑚3
𝑚4 𝑚5 𝑚6 𝑚7
𝑚8 𝑚9 𝑚10 𝑚11
𝑚12 𝑚13 𝑚14 𝑚15

⎤⎥⎥⎥⎦
Let,

• 𝑠𝑡𝑎𝑡𝑒 be the state,

• 𝑠𝐵𝑜𝑥 be the S-Box function, which corresponds to the Confusion Step,

• 𝑅𝑇𝑘𝑖 be the tweakey of the 𝑖𝑡ℎ round, which corresponds to part of the
AddKey Step,

• 𝐶𝑖 be the constant of the 𝑖𝑡ℎ round, which corresponds to part of the AddKey
Step,

• 𝑆𝑅 be the Shift Row function, which corresponds to part of the Diffusion
Step,

• 𝑀𝑥𝐶 be the Mix Column function, which corresponds to part of the Diffusion
Step.

The SKINNY round function in pseudocode is shown in Alg. 28

Algorithm 27 SKINNY Round Algorithm
function SKINNYRound(𝑠𝑡𝑎𝑡𝑒, 𝑅𝑇𝑘𝑖)

𝑠𝑡𝑎𝑡𝑒← 𝑠𝐵𝑜𝑥(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑡𝑒⊕ 𝐶𝑖 ⊕𝑅𝑇𝑘𝑖

𝑠𝑡𝑎𝑡𝑒← 𝑆𝑅(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒←𝑀𝑥𝐶(𝑠𝑡𝑎𝑡𝑒)

end function
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The 𝑠𝐵𝑜𝑥 function is 16 identical 4× 4 S-Boxes in parallel for which the table
is shown in Tab. A.12.

Table A.12: The S-Box Table of SKINNY

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆(𝑥) C 6 9 0 1 A 2 B 3 8 5 D 4 E 7 F

The 𝐶𝑖 constant is initialized to zero and updated before use in a given round.
It uses a 6-bit LFSR denoted (𝑟𝑐5, 𝑟𝑐4, 𝑟𝑐3, 𝑟𝑐2, 𝑟𝑐1, 𝑟𝑐0) and updated as follows:

(𝑟𝑐5|𝑟𝑐4|𝑟𝑐3|𝑟𝑐2|𝑟𝑐1|𝑟𝑐0)← (𝑟𝑐4|𝑟𝑐3|𝑟𝑐2|𝑟𝑐1|𝑟𝑐0|𝑟𝑐5 ⊕ 𝑟𝑐4 ⊕ 1)

Those bits are then rearranged as such:⎡⎢⎢⎢⎣
𝑐0 0 0 0
𝑐1 0 0 0
𝑐2 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦
where 𝑐2 = 0𝑥2 and (𝑐0, 𝑐1) = (𝑟𝑐3|𝑟𝑐2|𝑟𝑐1|𝑟𝑐0, 0|0|𝑟𝑐5|𝑟𝑐4).

The 𝑆𝑅 function is the same used in AES, its permutation function sets 𝑆𝑖 ←
𝑆𝑃 [𝑖], with 𝑃 :

𝑃 = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12]

The 𝑀𝑥𝐶 function multiplies the state by the following matrix:⎛⎜⎜⎜⎝
1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

⎞⎟⎟⎟⎠
Midori

Midori [8] is an SPN cipher, with a 64-bit block size (it also supports 128 bit block
size), a 128-bit key size and 16 rounds (20 for the 128-bit block size). It respects
the three step model. It uses a nibble-level Diffusion Step, which incorporates a
Shift Row and a Mix Column function. It uses 16 identical 4 × 4 S-Boxes as its
Confusion Step. Midori also uses whitening keys before the first round and after
the last. All the rounds of the cipher are the same, except for the last which is
only the Confusion Step. The state S is manipulated as a 4× 4 matrix of nibbles:⎡⎢⎢⎢⎣

𝑠0 𝑠4 𝑠8 𝑠12
𝑠1 𝑠5 𝑠9 𝑠13
𝑠2 𝑠6 𝑠10 𝑠14
𝑠3 𝑠7 𝑠11 𝑠15

⎤⎥⎥⎥⎦
Let,
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• 𝑠𝑡𝑎𝑡𝑒 be the state,

• 𝐾 be the 128-bit secret key, such that 𝐾 = 𝐾0|𝐾1,

• 𝑊𝐾 be the whitening key, such that 𝑊𝐾 = 𝐾0 ⊕𝐾1,

• 𝛼𝑖 be the round constant of the 𝑖𝑡ℎ round,

• 𝑅𝐾𝑖 be the round key of the 𝑖𝑡ℎ round, such that 𝑅𝐾𝑖 = 𝐾(𝑖𝑚𝑜𝑑2) ⊕ 𝛼𝑖,

• 𝑠𝐵𝑜𝑥 be the non-linear S-Box function, which corresponds to the Confusion
Step,

• 𝑆𝑅 and 𝑀𝑥𝐶 be two linear functions which correspond to the Diffusion Step.

The Midori algorithm in pseudocode notation is shown in Alg. ??.

Algorithm 28 Midori Algorithm
𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑡𝑒⊕𝑊𝐾
for i = 0; i < 14; i++ do

𝑠𝑡𝑎𝑡𝑒← 𝑠𝐵𝑜𝑥(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒← 𝑆𝑅(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒←𝑀𝑥𝐶(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑡𝑒⊕ 𝐶𝑖 ⊕𝑅𝑇𝑘𝑖

end for
𝑠𝑡𝑎𝑡𝑒← 𝑠𝐵𝑜𝑥(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑡𝑒⊕𝐾𝑊

The 𝑠𝐵𝑜𝑥 function is 16 identical 4× 4 S-Boxes in parallel for which the table
is shown in Tab A.13.

Table A.13: The S-Box Table of Midori

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆(𝑥) C A D 3 E B F 7 8 9 1 5 0 2 4 6

The 𝑆𝑅 function is a permutation, which transforms the state as follows:

(𝑠0, 𝑠1, ..., 𝑠15)← (𝑠0, 𝑠10, 𝑠5, 𝑠15, 𝑠14, 𝑠4, 𝑠11, 𝑠1, 𝑠9, 𝑠3, 𝑠12, 𝑠6, 𝑠7, 𝑠13, 𝑠2, 𝑠8)

The 𝑀𝑥𝐶 is a matrix multiplication between four nibbles of the state (𝑥0, 𝑥1, 𝑥2, 𝑥3)
and the involutive binary matrix 𝑀 :⎛⎜⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞⎟⎟⎟⎠
such that:

𝑡(𝑥0, 𝑥1, 𝑥2, 𝑥3)←𝑀 ·𝑡 (𝑥0, 𝑥1, 𝑥2, 𝑥3)
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MANTIS

MANTIS [14] is ans 𝛼 − 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒 cipher based on the SPN round structure, it
uses a 64-bit block size, a 128-bit key size and 12 rounds (or round assimilated-
functions). The algorithm is such that the number of rounds can also be seen as
13 when considering the middle operations as a round without key addition, or
15 when also considering the whitening keys which are added before and after the
rest of the rounds. Like PRINCE, described in Section A it has the symmetrical
same three parts as any 𝛼 − 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑣𝑒 algorithm. Also like SKINNY, described
in Section A, it uses a tweakey framework [41], which modifies the key into a
tweakey and lets the user choose which tweakey to have as an input. The state is
manipulated as a 4× 4 nibble matrix and each nibble is arranged in lines, like with
LED (Cf. A). If 𝑚 is the state and 𝑚0|𝑚1|...|𝑚14|𝑚15 its 16 4-bit nibbles, then
the matrix is: ⎡⎢⎢⎢⎣

𝑚0 𝑚1 𝑚2 𝑚3
𝑚4 𝑚5 𝑚6 𝑚7
𝑚8 𝑚9 𝑚10 𝑚11
𝑚12 𝑚13 𝑚14 𝑚15

⎤⎥⎥⎥⎦
Let,

• 𝑀𝐴𝑁𝑇𝐼𝑆𝑐𝑜𝑟𝑒 be the core algorithm of MANTIS,
• 𝑘 be the secret 128-bit key, such that 𝑘 = 𝑘0|𝑘1,
• 𝑅𝑖 be the round function of round i,
• 𝑅𝐾𝑖 be a round key, it is defined as a XOR between 𝑘1 and a permutation

of the tweakey 𝑇𝐾,
• 𝑅𝐾 ′

𝑖 be a round key, it is defined as a XOR between 𝑘1, a permutation of
the tweakey 𝑇𝐾 and a constant 𝛼 = 0x243f6a8885a308d3,

• 𝑠𝑡𝑎𝑡𝑒 be the state,
• 𝑅𝐶𝑖 be the round constant used in 𝑅𝐾𝑖 and 𝑅𝐾−1

𝑖 ,
• 𝑠𝐵𝑜𝑥 be the S-Box function, which corresponds to the Confusion Step,
• 𝑃𝐶 be the permutation function, which corresponds to part of the Diffusion

Step,
• 𝑀𝑥𝐶 be the MixColumn function, which corresponds to part of the Diffusion

Step,
• 𝑅𝐶𝑖 be the rounds constant of round i.
Before and after the 𝑀𝐴𝑁𝑇𝐼𝑆𝑐𝑜𝑟𝑒, a whitening key is applied to the state.

The whitening key XORed before the rounds is 𝑘0 and the one after the rounds is
𝑘′

0, defined by:
𝑘′

0 = (𝑘0 ≫ 1)⊕ (𝑘1 ≪ 63)
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These are the same whitening keys used in PRINCE [19].
The tweakey 𝑇𝐾 is modified after being used at each round by permuting the

tweakey used in the round before with ℎ:

ℎ = [6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11]

The 𝑀𝐴𝑁𝑇𝐼𝑆𝑐𝑜𝑟𝑒 function in pseudocode notation is shown in Alg. 29.

Algorithm 29 𝑀𝐴𝑁𝑇𝐼𝑆𝑐𝑜𝑟𝑒 Algorithm
function 𝑀𝐴𝑁𝑇𝐼𝑆𝑐𝑜𝑟𝑒(𝑠𝑡𝑎𝑡𝑒, 𝑅𝐾)

𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑡𝑒⊕ 𝑘1 ⊕ 𝑇𝐾
for 𝑖 = 1; 𝑖 < 7; 𝑖 + + do

𝑠𝑡𝑎𝑡𝑒← 𝑅𝑖(𝑠𝑡𝑎𝑡𝑒, 𝑅𝐾𝑖, 𝑅𝐶𝑖)
end for
𝑠𝑡𝑎𝑡𝑒← 𝑠𝐵𝑜𝑥(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒←𝑀𝑥𝐶(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒← 𝑠𝐵𝑜𝑥(𝑠𝑡𝑎𝑡𝑒)
for 𝑖 = 6; 𝑖 > 0; 𝑖−− do

𝑠𝑡𝑎𝑡𝑒← 𝑅−1
𝑖 (𝑠𝑡𝑎𝑡𝑒, 𝑅𝐾 ′

𝑖, 𝑅𝐶𝑖)
end for
𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑡𝑒⊕ 𝑘1 ⊕ 𝑇𝐾 ⊕ 𝛼

end function

The 𝑅𝑖 function in pseudocode notation is shown in Alg. 30.

Algorithm 30 MANTIS Round Algorithm
function 𝑅𝑖(𝑠𝑡𝑎𝑡𝑒, 𝑅𝐾𝑖, 𝑅𝐶𝑖)

𝑠𝑡𝑎𝑡𝑒← 𝑠𝐵𝑜𝑥(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑡𝑒⊕𝑅𝐾𝑖 ⊕𝑅𝐶𝑖

𝑠𝑡𝑎𝑡𝑒← 𝑃𝐶(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒←𝑀𝑥𝐶(𝑠𝑡𝑎𝑡𝑒)

end function

The 𝑅−1
𝑖 function in pseudocode notation is shown in Alg. 31.

Algorithm 31 MANTIS Inverse Round Algorithm
function 𝑅−1

𝑖 (𝑠𝑡𝑎𝑡𝑒, 𝑅𝐾 ′
𝑖, 𝑅𝐶𝑖)

𝑠𝑡𝑎𝑡𝑒←𝑀𝑥𝐶(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒← 𝑃𝐶−1(𝑠𝑡𝑎𝑡𝑒)
𝑠𝑡𝑎𝑡𝑒← 𝑠𝑡𝑎𝑡𝑒⊕𝑅𝐾 ′

𝑖 ⊕𝑅𝐶𝑖

𝑠𝑡𝑎𝑡𝑒← 𝑠𝐵𝑜𝑥(𝑠𝑡𝑎𝑡𝑒)
end function

The 𝑠𝐵𝑜𝑥 function is sixteen involutory 4 × 4 S-Boxes in parallel, for which
the substitution table is shown in Table. A.14, they are the same S-Boxes as in
Midori [8]. The fact that the S-Box used is involutory means that the same S-Box
function can be used in 𝑅𝑖 and 𝑅−1

𝑖 .
The permutation function 𝑃𝐶, permutes the state according to the Midori [8]

permutation:

𝑃 = [0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2]
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Table A.14: The S-Box Table of MANTIS

𝑥 0 1 2 3 4 5 6 7 8 9 A B C D E F
𝑆(𝑥) C A D 3 E B F 7 8 9 1 5 0 2 4 6

The 𝑀𝑥𝐶 function multiplies each column of the state with the following
matrix, once again used by Midori [8]:⎛⎜⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞⎟⎟⎟⎠



Appendix B

Configurable S-boxes implementation for
Xilinx FPGAs

We present here an optimisation of the S-Boxes implementation for Xilinx FPGA
targets.

For the configurable S-Box instruction we had the following constraints:

• the S-Box lookup table must be dynamically reconfigurable,

• when the input of the S-Box changes, its output should be available in the
same clock cycle.

For ASIC targets, this can be achieved using Latches to store the configuration
(the lookup table values) and a combinatorial multiplexor tree to select the output
value.

For FPGA targets, it is not that simple, especially if we want to keep hardware
resources usage low. This is important, because used hardware resources usage is
directly related to the power consumption, and thus the visible power activity of
the S-Box instruction.

For instance, a straightforward RTL implementation of a configurable 4×4 Sbox
for an FPGA target would be synthesized as:

• 4× 16 flip-flops to store the configuration,

• a certain number of combinatorial logic cells (the exact number will depend
on the architecture of the FPGA) for the four 16→ 4 selection multiplexors.

Also, this would use non-negligible amount of routing resources.
Commonly, for the purpose of implementing lookup tables, embedded SRAM

block can be used. Those blocks can be used as dual port memories, and we can
imagine using one port for configuration and the second port for the S-box lookup
table. But this solution could not be used for our purpose as the SRAM blocks
in the majority of FPGAs are synchronous. Which would have forced to stall the
processor pipeline for one cycle each time the S-Box instruction is computed.
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B.1 Xilinx Dynamically Reconfigurable Look-Up Table (LUT)
primitives

For Xilinx FPGAs, the CFGLUT5 primitive allows to access, at run time, to the
configuration of the combinatorial logic cells. More precisely, this primitive gives us
access to a serial interface that allows to dynamically reconfigure a 5→ 1 look-up
table LUT.

The following figure shows the interface of the CFGLUT5 primitive.

CFGLUT5

I0
I1

I3
I2

O5

I4

CDO

O6

init 32’h00000000

CLK
CE
CDI

CLK : configuration clock

CE : configuration enable signal

CDI : configuration input bit

cdo : configuration output bit (when daisychaining cells)

In : the LUT functional inputs

On : the LUT functional outputs

This primitive can be used as either a 5-inputs LUT our a 4-inputs LUT. For the
4 input mode, only the lower 16-bits half of the configuration have to be defined,
and the functional output is O5.

The following figure shows an example of configuration sequence for a CFG-
LUT5 cell for in 4-inputs mode.

CLK

CE

CDI

16 cycles

cf
gl

ut

The configuration is done sequentially through a serial 1-bit interface. 16 clock
cycles are required and the configuration input bit CDI must be presented before
each rising edge of the configuration clock. In the previous example, the 16-bits
of the configuration value are 0xAAAA.
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